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Nuclear transparency for incoherent real and virtual photoproduction of vector mesons off nuclei
depends crucially on the interplay of the initial-state and final-state interactions. We

develop a consistent description of initial-state and final-state interactions based on the coupled-
channel multiple-scattering theory. We present detailed predictions for incoherent

production ofss andcc mesons. The onset of initial-state interactions is controlled by the
production lengti, and we find strong variations of nuclear transparency whetises with

energy and becomes comparable to the radius of the target niRleusSor ss mesons,

the regimelp, ~ R, corresponds to precisely the kinematic range of the HERA—HERMES
experiment, whereas farc mesons the same condition will be met at the ENC electron—nucleus
collider at GSI. In spite of the subasymptotic valuesfand v, we find a complex pattern

of color transparency-induced effects whose experimental study may provide information on
several issues relevant to the understanding of QCD, both in the perturbative and
nonperturbative regimes. @997 American Institute of PhysidsS1063-776097)00103-7

1. INTRODUCTION 1 do(e+A—e'+A*+V)
ATA do(e+N—e +N+V) "’

(1)

The color transparenc{CT) phenomenon in diffractive
exclusive virtual photoproduction of vector mesons offwhereA is the mass number of the target nucleus. In inco-
nuclear targets has recently attracted much attedtidihe  herent production off the nucleus, the nuclear cross section is
Q2-dependence of the size of the initigd fluctuation of the  summed over all excited and nuclear break-up states
virtual photon makes the measurements of nuclear transpagxcluding production of secondary particl@sesons In the
ency in these reactions a unique tool for probing the colorSingle incoherent rescattering approximation, the reaction
dipole cross section, which plays a fundamental role in low/hechanism can be viewed as a formation and propagation of
x physics?~1! Measurements of nuclear transparency in vecih® projectile wave packet, the incohereffuasi-elastig
tor meson electroproduction may also provide important in-Scattering of which off the bound nucleon produces the ejec-

formation on the spatial wave function of vector mesbns. tile wave packet, Wh'.Ch propagates through the nucleus and
forms the observed final state vector me&anThe nuclear

Prediction§® of CT effects at asymptotic energies have been .

confirmed in the E665 muon scattering experiment at FERgransparency can be written as

MILAB, although the statistical accuracy of the E665 data 1 |(V|ASf(r)?(q)ASi(r)|y*>|2

was limited!? Much more accurate data on nuclear transpar-  Ta(Q)= A j d3r na(r) —

ency in virtual photoproduction of vector mesons will be KVIF(@]y*)]

obtained in the forthcoming high-luminosity experiments alHeren,(r) is the nuclear density is the transverse momen-

CEBAF and HERA(HERMES collaboration In these ex-  yym transferS;(r) andS;(r) are the evolution operators de-

periments the energy will be rather low, which makes ascribing the coherent initial-state interactitil) of the pro-

thorough theoretical analysis of CT effects at subasymptotigectile and final-state interactio(FSI) of the ejectile in a

energies a pertinent issue. nucleus, respectively, and(q) is the scattering matrix,
Virtual photons are produced in the scattering of elecawhich describes projectile-to-ejectile diffractive transitions

trons(muong, and nuclear transparency for virtual photopro-in interaction on a free nucleon. The evolution operators

duction with photon energy and virtuality Q? is defined as S+ and the scattering matrix in Eq. (1) act in a space

. (2
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including both the hadronic states and the photon state. Thieinction approach to FSI. This technique was further used in
physical meaning of the numerator in the integrand®fis  Ref. 8 for evaluation of nuclear transparencysia vector
obvious: it is the cross section of the one-fold incoherenimeson electroproduction for the energy range of future ex-
interaction with a bound nucleon, modified by the intra- periments at CEBAF. A, = R4, ISI and FSI must be taken
nuclear coherent ISI of the projectile and FSI of the ejectilejnto account on the same footing. In the limit of high energy,
the denominator is the photoproduction cross section on whenlp £ > Ry, ISl and FSI absorption effects can be evalu-
free nucleon. Equatiofil) is valid atq? < 1/B, whereB is  ated within the frozen-size approximation for propagation of
the diffraction slope for photoproduction on a free nucleonthe qq fluctuation of the virtual photon through the nuclear
for which the many-fold incoherent rescatterings in a nucleamedium?
medium can be neglected. For incoherent diffractive scatter- The intermediate energy region whégg are compa-
ing of hadrons off nuclei at subasymptotic energies, theable with the nucleus size is the most complicated for evalu-
counterpart of Eq(2) has been derived in Ref. 13. For the ation of CT effects. In Ref. 3 an approximate formula for
first application to an evaluation of CT effects in the chargenuclear transparency, interpolating between the high- and
exchange of pions off nuclei at asymptotic energies, see Refow-energy regimes was obtained within the two-channel
14. model. Because of the relatively weak nuclear attenuation in
To leading order in the fine-structure constantJ/W photoproduction, this interpolation formula works well,
a@em= 1/137, the intermediate state decomposition of the maand the theoretical results of Ref. 3 agree with the experi-
trix element(V|S;(r)f(q)S(r)|¥*) which enters into Eq. mental data of NMC collaboratiolf.A more rigorous treat-

(2) is given by ment of CT effects altp  ~ Ry is highly desirable, because
the kinematic conditions at the CEBAF and HERA-

(VISES]y*) = (VIS h)hTl v )+ (V]Sh') HERMES experiments on production of light vector mesons

h h,h’ correspond precisely to this situation. In the energy range of

Ja . the ENC electron—nucleus collider which is being planned at
SUBHUNGIETEA2 3 GSil, one will encounter the cabge ~ R, in the production of

where|h),|h’) are the intermediate hadronic states, and we)/¥, ¥’ mesons off nuclei(At much higher energies of
have taken into account that to |eading Ordeagan, one can HERA Operating in the electron—nucleus collider mode, one
Set<y*|éi|y*)=l. The first term in the decompositia) wiI_I have the asymptotic.situatiorb,lp_ > RA,. which re-
describes incoherent scattering at the level of production ofitires a separate analysighe theoretical basis for evalua-
the intermediate statgh) at the electromagnetic interaction tion of CT effects without restrictions on the valued pf is
vertex, and is described by the amplituﬁdﬂy*}. IS| ef- the Glauber—Gribov coupled-channel multiple-scattering

16,17 ;
fects are present only in the second term, in which incohererff'€07Y (CCMST). ™" The formalism of CCMST allows for
scattering takes place at the level of intermediate sfiies both evolution and absorption effects in propagation of the

and |h’) and is described by the amplituda’|f|h). The projectile state through nuclear medium.

coherency properties of ISI of the projectile and FSI of thed_ff Thte_.\ mtgrglay odeSItfand ifSI eff|e<_:tsB|s also 'mpﬁrt:nt n
ejectile in virtual photoproduction of vector mesons are char- Ifiractive hadroproduction off nuciel. Because In hadronic

acterized by two different length scales. For ISI, the reIevanjtmera(itit?nS one atIV\(/jay_?hha,sT lIF't, th]?tlhg arr:d FﬁS l e;‘]fecr:]ts
scale is the production length of tlogy pair by the virtual cannot be separated. 1he virtuaiity ot the p o, whic .
can easily be varied experimentally over a broad range, gives

hoton, .
P an important handle on the valueslgfand the strength of
2v ISI, which makes the real and virtual photoproduction of
lp~ —Q2+mv’ 4 vector mesons a unique testing ground of the coherency

properties of diffractive production off nuclei. In the present

while for FSI, the relevant scale is the formation length ofpaper we carry out a CCMST analysis of CT effectsping’
the wave function of the final vector meson, andJ/¥, ¥’ electroproduction.

| 2v 5
A
2. 1SI AND FSI EVOLUTION OPERATORS IN THE COUPLED-
where my , are the masses of theSland 2S vector = CHANNEL MULTIPLE-SCATTERING FORMALISM
mesons:?

The strength of IS effects critically depends on the ratio ~ We use for evaluatpn of the ISI anq FSI evgluhon
|p/Ra, whereR, is the nuclear radius. At sufficiently low operatorsS, s an extension of the formalism previously
energy and/or larg®?, whenl, < R,, the off-diagonal ma- developedf for calculating FSI effects in nuclear transpar-
trix element(h|S|y*) is suppressed due to the large longi- €ncy for quasiglasti@\(e,e’p) scattering. As in thg case of
y* —qq transition. As a result, the second term in Eg) ~ Scattering, the operatol§ and S; within CCMST can be
related to ISI can be neglected. In this case the nuclear efritten in z-ordered operator exponential form
fects are exhausted by FSI, which in turn depends crucially 1

. . . — ~ ~ z
on the ratloIF/RA._In Ref. 2 this _reg|me fo_cc_ vector me- ’ S(r)=P, exg — = J dé 6(£—2)na(b, &) |, 6)
son photoproduction was considered within the Green’s A
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Sf(r):PZ exf{_z fz dg 0'(§—Z)nA(b,§) y (7) f_mdzl nA(b'Zl)eXF{Ikily*Zl_Et(b'zz!zl)oilil y V?Z,
wherer=(b,z), and IADZ is the z-ordering operator. The ma-
trix elements of the-dependent operataer(z) are related to 20) 1
the diffraction scattering matrix a=0: (VIS;”(b,2)|h)=yh exg — 5 t(b,%,2)ayy |, (14

(i|5(2)|jy=—i explik;;2)(i|F(q=0)[j), ®)

wherek;; is the longitudinal momentum transfer associated,, ,; &(») B
with the transitioniN— jN,*’ (VISi"'(b,2)|h)

14

I S

2 i i VIV*l ly—1ly—2 I1h
1oy

mZ—m?

= 9 X exp(ikny2) f dz; na(b,z;)

m; andm; are the masses of the stafgsand|j), and for the
virtual photonmi* =—Q?2. The exponential phase factor in
Eq. (8) results from the difference between the phases for the
plane waves describing the statésand|j) after propagat-

ing the distancez. It is easy to check that the full phase
factors, which the operatof§) and(7) yield in the case of
arbitrary sequences of intermediate states for transitions
v*—h andh—V, coincide with the phase factors that can
be obtained by solving the set of coupled-channel wave
equations.

For numerical calculations, it is convenient to treat the
off-diagonal part of matrixs(z) in (6) and(7) as a pertur-
bation. Then we can represent the matrix elements of the
operatorsS; ¢(r) in the form ofv-fold off-diagonal rescatter-

Xexr{ ikilhz1

1
- E t(bazlyz)o-hh

XJ dz, n,\(b,zz)exp{ikizilz2
Z

J‘oo
N dZV
! Zy—1

an(b,zy)exp{ikViule

1
—5 Ubz,zy)0i

ing series:
(hISD]7)= 2 (hIS"(0)]7*), (10
(VISHn)I) = 2, (VIS(r)hy, 1y
where

~ 1 z
(&Y (.2)|v*)= = 5 one exptik,en2) | a2 na(bzy

. (12

1
XeX[{ikhy*Zl_ z t(b,Z,Zl)O'hh

(h|S"(b,2)] y*)=

1 v
_— 2 0', O', . 0.00'_ *
2/ - hi, %, 41,2 Y

ig,dyq

z
Xexqiky*hz)f dz, na(b,z,)

1
X exp{ iKni ,z,~ > t(b,z,z,) o

zZ
<[ a2 muibz,

Xex;{ikivlivzzy—l
1
— E t(byzy!ZV*l)Uiyfliv,l T
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1
—Et(b,OO,z,,)va , v=1 (15

Hereo| = oy — Sy , the matrixo is related to the forward
diffraction  scattering  matrix, f(q=0)=io, and
t(b,zz,zl)zfiidz na(b,z) is the partial optical thickness.

The ISI and FSI evolution operators comprise two ef-
fects: the first can be called nuclear filtering of the projectile
and ejectile wave packets due to the difference in attenuation
factors exp — (1/2)t(b,z,,2;) ;i ], the second is the space-
time evolution of these wave packets resulting from off-
diagonal coherent rescattering in a nuclear medium. The
first-order I1SI term(h|S®)(b,2)| y*) of Eq. (12) and zeroth-
order FSI term(V|S{”(b,z)|h) of Eq. (11) describe the con-
ventional Glauber ISI and FSI absorption, respectively. In
this Glauber approximation, only the nuclear filtering effects
are included. The termd.3) and(15) give corrections to ISI
and FSI associated with the off-diagonal rescattering of the
intermediate hadronic states in a nuclear medium, and de-
scribe the space-time evolution of the projectile and ejectile
wave packets due to intranuclear interactions. It is precisely
the oscillating exponential phase factors in E(E3) and
(15) that lead to suppression of the contributions of the off-
diagonal inelastic intermediate states at low energies of the
virtual photon. Notice that the suppression of ISl gE R,
discussed above is also related to the oscillating exponential
phase factor exj,«z) in the integrand in Eq(12). Equa-
tions (2) and(10)—(15) form the basis for numerical evalua-
tion of nuclear transparency in incoherent vector meson and
electroproduction in the framework of CCMST.
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3. CALCULATION OF THE DIFFRACTION SCATTERING as a sum of the energy-dependent perturbative and the
MATRIX energy-independent nonperturbative componénts.
The energy dependence of the perturbative pawk(pj

The ISI and FSI operatoéi,f describing the evolution : ) i
of the qq State as it propagates through the nucleus d(:Jloen%enerated by the higher Fock states is governed by the gen

critically on the form of the diffraction matrix. In our analy- eralized BFKL equation” The analysis of CT effects at high

sis we describe thgq states in the nonrelativistic oscillator energy in the regime of large contribution to the dipole cross

model. Then, assuming the dominance of Pomeron eXsectlon of higher Fock states requires an accurate treatment

change, the diffraction matrix elements, can be written as of the nuclear f||ter|ng. effects for .the.many-b(.)dy parton
components of the projectile and ejectile. The interplay of

A absorption effects for the different Fock states may be im-
<'|U|k>:f d*p dz¥7 (p,2)o(p) ¥ i(p.2), (16) portant to the energy dependence of nuclear transparency in
the limitlp > R4

In the present paper we restrict ourselves to evaluation
of CT effects at relatively low energies, in which the higher
Fock states do not greatly affect nuclear transparency. We
use foro(p) the parametrization given by the two-gluon ex-
change model of the pomerdh?! which yields the energy-
independent dipole cross section

wherep is the transverse size of thgg pair, ¥ (p,z) are
the wave functions describing thgy states, andr(p) is the
dipole cross section describing the interaction of qlagpair
with a nucleon.

We need also the matrix element for the diffraction ex-
citation of the virtual photon into aq state on the free
nucleon. Following Ref. 2, we use the perturbatiplight-

cone wave function of the virtual photband write the ma- 16 "
trix elements(i|&|y*) in the form olp)=75 f d’k
(il&ly*)z)\f d?p dz¥* (p,2)a(p)Ko(€p) Xas(maXC/p,k))as(k)[l—eXp(ikp)][l—Gz(k,—k)]
(K*+ ) ’
2 (19
X ex ) (17)
where G,(kq,k,) =(N|expikir; + ikaorp)|N) is the two-
where quark form factor of the nucleony, is an effective gluon
2 124024 18 mass, ancC = 1.5° We calculated the dipole cross section
€' =my+Q74, (18 making use of the running and freezing coupling(k) ac-

m, is the quark mass(x) is the modified Bessel function, cording to the prescription of Ref. 9. The value ®f was
d=1/2my and\ is a normalization coefficient that is imma- frozen at the momenta < k¢ =0.7 GeV. At higher mo-
terial for the evaluation of nuclear transparency. Equatiormenta, the runningrs was calculated through the one-loop
(14) yields the diffrﬁtion amplitude for transition of the vir- formula with Aqcp=0.3. As in Ref. 22, we use for the ef-
tual photon into aqq state with the sum of quark helicities fective gluon mass valuﬁg:O_17 GeV. Thep-dependence
equal to the photon helicit%/ﬂlis amplitude dominates for of the dipole cross section calculated in the two-gluon model
production of nonrelativisticjq states and/or for the moder- is shown in Fig. 1. Calculation af(7N)=(m|o]m7) with our
ately largeQ? = m? considered in the present paper. parametrization of the dipole cross section reproduces the
In our analysis we restrict ourselves to calculation ofexperimental value of the pion—nucleon total cross section in
nuclear transparency at small momentum transfer. Then, wihe 10-100 GeV energy range.
can use EQs(16) and(17) to calculate the scattering matrix The decrease in dipole cross sectiofp) at perturba-
f in the numerator and denominator of the integrand in Eqtively small p given by the parametrizatiofi9) agrees well
(2). At small momentum transfer; rescatterings of the  with the behavior of the dipole cross section extracted re-
state on nucleons do not change the projection of its orbitatently from experimental data on vector meson electropro-
momentum on the-axis. As a result, in the oscillator model, duction off free nucleons for the range of dipole sige
the intermediate)q states emerging in the coupled-channel~ 0.2—1.5 fm?® The p-dependence of the dipole cross sec-
formalism are exhausted by the transverse excitations of thion given by Eq.(19) was previously corroborated by the
qq system with zero value of the azimuthal quantum num-analysis of CT effects in the quasielastic charge-exchange
ber. The masses of thegg states entering into Eq9) for  reactionm— = A— 7°A’,** and of the nuclear shadowing and
longitudinal momentum transfer can be writtenras=m, diffraction cross section in deep inelastic scattefiiy.
+ 2iwg, wherewy is the oscillator frequency. For the oscil- At this point, it must be made clear that the above choice
lator frequencies of thes andcc systems we use the values of gluon mass is oriented toward description of the nonper-
ws=(m, —my)/2=0.33 GeV and w.=(Mmy —myy)/2  turbative part of the dipole cross section, gmgl is a phe-
=0.3 GeV. For the quark masses we takg=0.5 GeV and nomenological parameter that must not be taken at face
m.=1.5 GeV. value. The analysis of low- HERA data on the structure
The form of the diffraction matrix is sensitive to the function F,! within the generalized BFKL equatidfi,and
p-dependence of the dipole cross section. The available exhe nonperturbative evaluation of the gluon correlation
perimental data on the structure functiép at low x and the  radiug® yield clearcut evidence for an effective gluon mass
cross sections of vector meson electroproduction off nucle= 0.75 GeV. The value o4 used in the present paper does
ons can be described by representing the dipole cross sectioot affect the dipole cross section at perturbatively srpall
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o(p), mb In concluding this section it is appropriate to discuss the

120 \ 7 scanning phenomenon and the effect of the nodal structure of

otk —— 2g m°del' ) /] the spatial wave function of radially excitedSZector me-
""" p* approximation /¢ sons on the amplitude of the transitigif —V(2S). The

80t / 1 transverse spatialq wave function of the virtual photon,
6ot ,,/ ] « Ky(ep), which enters into the matrix eleme(it?), de-
4 creases proportionally to expep) at large p = 1le

40t 1 ~ 1/\/mq2+ Q%/4; see Eq(19). Due to the vanishing of the
20} dipole cross section ai=0, the typical size of theq pair

that dominates the matrix eleme(i7), the so-called scan-

%_0 1o 2.0 ning radiusr g, turns our to be considerably greater than the
p, fm naively expected value 1/\/mq2+ Q%/4, and is given by

FIG. 1. The dipole—size dependence of color dipole cross sections for the
parametrization$19) (solid curvg and(21) (dashed curve

6
(20)

r5~ T —

< lug, but it provides a viable parametrization of the ex- VQ*+ m\z/
perimental information on the dipole cross section in the
semiperturbative and nonperturbative ranges of langer
which really cannot be described in perturbative QCD. (here we put 2ny ~ my). At low Q?, rgis close to the radius

Making use of the parametrizatigh9) for o(p), with the  r,, of the 1S state and to the position of the nodg,~ ry, in
above set of the quark masses and oscillator frequencies, vilee spatial wave function of the radially excite® Zector
find the following total interaction cross sections for vectormesons. This leads to considerable cancellation between the
mesons with a free nucleow:, (¢ N) ~ 16 mb, ooi(¢'N) contributions to the amplitudéV(2S)|a|y*) coming from
~ 24.5 mb,o(J¥N) =~ 7.5 mb, andr,,(V'N) ~ 14.5 mb.  the regions of larged = r,) and small p < r,) dipole
For the ratio(V(2S)|a|y*)/(V(1S)|a|y*) at Q?=0, we size>?®Precisely this cancellation is responsible for the cited
obtain 0.186 and 0.49 for tresandcc mesons, respectively. suppression of the cross section of photoproduction $f 2
Notice that the resulting ratio R(2S/1S)=a(y*N vector mesons as compared t& Yector mesons. Similar
—W'N)/o(y*N—J/¥N) ~ 0.24 predicted forQ?=0  suppression of the production amplitud®(nS)|a|y*)
agrees well with the result of the NMC collaboration, holds for higher state¥(nS).

R(2S/1S)=0.22+ 0.05*°andR(2S/1S)=0.21+ 0.02 from The effect is extremely strong for light vector mesons.
the E687 collaboratiof. For the diffraction amplitudeév(2S)|o|y*) for light vector
TUMNY) TUn)
1.0 1.0

FIG. 2. Predictions for nuclear transpar-
ency in incoherent production of
J/¥(1S) andW¥’'(2S) mesons off nuclei
for the color dipole cross section of Eq.
(19). The dot-dashed, dashed, solid, and
dot-dot-dashed curves are f@*>=0, 5,
10, and 20 Ge¥, respectively.

30 100 1000 v, GeV 30 100 1'600 v', GeV
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mesons at lowQ?, one can have either the undercompensathe similar suppression of matrix elementfs) for virtual

tion scenario, with dominance of the smaltontribution, or  photoexcitation of higher statgf) for a relatively large
the overcompensation scenario with dominance of thealue of the scanning radilg0).

largep contribution. Which scenario is realized can only be In the present paper, we focus on predictions for nuclear
decided experimentally. To this end, the nuclear filtering eftransparency inp, ¢', J/¥, andW¥’ virtual photoproduction
fects drastically affect the cancellation between the contribuen the target nucleiBe, ®Fe, and®°’Pb. For the nuclear
tions of the regions of large and small interquark distances tenatter density in the target nucletBe we use the oscillator
the 2S vector meson photoproduction amplitudes. The analyshell model nuclear density, with the oscillator frequency
sis of p’ photoproduction in the frozen-size approximation adjusted to reproduce the experimental rms radius of the
appropriate to the high-energy regime in Ref. 6 shows thagharge distributiomrzﬁge: 2.51 fm?2° For the target nucleus
the strong nodal effect for light2vector mesons can lead to 56Fe, the parametriza

tion of the nuclear density in terms of a
an anomaloug\-dependence of nuclear transparency.

sum of Gaussians from Ref. 29 was used. EYPb the

The btera"";r d(')fffnucliar tr?n;spa}[rhency;or IlgiS\Zectotr. Wood-Saxon parametrization of the nuclear density with pa-
mesons at lovQ“ differs strongly for the undercompensation . i< taken from Ref. 29 was used.

and overcompensation scenarios. In our model for the dipole 11,4 1asults obtained for the dipole cross section param-

cross section and for the wave functions of vector mesons, i by Eq(19) are shown in Figs. 2 and 3. At low ener-
the undercompensation regime takes place in real photopr% ' ' :

: ; , 7 jies, the magnitude of nuclear transperenciggé®) and
duction of $?¢f an:qf ,0?] the free nucl_eon &]f]? _Q' In TA(J/P) is controlled by FSI attenuation of the ejectile. The
contrast to¥”, for the ¢ the compensatloq € eCt_'S VeY' decrease iMa(®) andT(J/P) at higher energies is due to
strong, and at present the overcompensation regimepfor

h ducti | be ruled A Zysi the onset of attenuation for ISI effects. The enevgyt which
photoproduction also cannot be ruled out. A recent analysis T,(¢) and TA(J/¥) start dropping is higher for largep?

Ici)f h\f[eé:;?]; wzig?ugzg;%pfrgr?rzjgltif; ;?oxgei‘hg%foﬁtg rtgeand for heavier vector mesons, which nicely correlates with
- - i ; 2 2
d%ction of light 25 vector mesons by longitudinal F|)3hoto$15 the conditionl » = Ra, 18y = RA(r.nV Q) for fully-
L . ' developed ISI. This ISI-driven drop in nuclear transparency
relativistic effects can lead to the overcompensation scenarig preceded by a rise i (4) andTA(J/W) at lower ener
A A -

2
at Ic:\rlwv(?rd.erto ilustrate the behavior of nuclear trans arenc;?ies' We shall comment more on the origin of this rise be-
. " ) VI u P ow, when discussing the results for the Glauber approxima-
in the overcompensation scenario, we also compute nucle

i hich makes f izt . &bn to the ISI and FSI operators shown below in Figs. 6 and
ransparency, which makes for a parametrizationr@f) in 7. The asymptotic values df,(¢) and TA(J/¥) rise with

the form Q?, which is the CT effect. In the frozen size approximation,
appropriate at high energies, this diminishing attenuation de-
o(p)=p? "tot(‘fN) , (21) rives from the decrease in the scanning radigsvith Q?;
(¢lp®l ) see Eq(20).

The preasymptotic rise in nuclear transparency is much
which enhances the large-contribution and leads to the stronger for the $ vector mesons. Also for theSstates, the
overcompensation scenario f¢f photoproduction, although onset of ISI is followed by a decrease if\(¢') and
this parametrization is somewhat unrealistic, in view of theT,(¥’) at higher energies. At sma?, when the scanning
available experimental information on the dlpole Cross SsecCradius rs is |arger and the node effect is stronger’ both
tion o(p) analyzed in Ref. 23. The normalization(@®1) has  T,(¢’) and TAo(¥') exhibit rapid Q® dependence, faster
been so chosen as to produce approximately the same resulian for T,($) and TA(J/¥), respectively. At much higher
for T(¢), while emphasizing the overcompensation effectsg?, when the scanning radiug is substantially smaller than
in T(¢'). the radiusr of the 1S states, the role of the node effect

diminishes and we find Ta(¢')~Ta(¢) and

TaA(P")=Ta(I/P) (for more discussion on this point see
4. NUMERICAL RESULTS Ref. 4. Nuclear transparency for theS2states peak in the

range v~10—30 GeV for ¢’ photoproduction and~50

We carried out our numerical calculations in the range—150 GeV forW' photoproduction. Our results show that

Q’= 2m\2,. The number of includedq resonance states and despite the inequalityo(V'N) > aio(VN), in the kinematic
the multiplicity of the off-diagonal rescatterings used in Eqgs.region studied, the counterintuitive inequalify,(V(2S))
(7)—(12) were equal to 5 and 3, respectively. We checked> T(V(1S)) is predicted. For reak)’ photoproduction
that the contributions from higher excitations and rescatter{Q?=0), we predict a considerable antishadowing effect. Of
ings withv > 3 are negligible in the above range@f, even  course, one must bear in mind that due to the strong node
at high energies, when the suppression of the higher massfect in ¢’ photoproduction discussed above, the theoretical
states related to the longitudinal momentum transfer vanpredictions forT,(¢') at low Q? are very model-dependent.
ishes. In the above range @2, predictions of the CCMST We consider the above predictions for nuclear transpar-
are saturated by the contribution of several lowest resonar@ncy in ¢’ photoproduction as only an illustration of the
qq states for two related-reasons: the suppression of the dienergy- andQ?-dependence of nuclear transparency ex-
fraction matrix elementl16) for transitions with large differ- pected for the undercompensation scenario. Notice that much
ence between the masses of the initial and final states, araf the interesting energy dependenceTa{ ¢) andTA(¢')
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FIG. 3. Predictions for nuclear transpar-
ency in incoherent production of the
¢(1S) and ¢'(2S) mesons off nuclei
for the color dipole cross section of Eq.
(19). The dot-dashed, dashed, solid, and
dot-dot-dashed curves are fdp2=0,
0.5, 1.0, and 2.0 G€¥/ respectively.

takes place at ~ 10—30 GeV, which is precisely the kine- between theory and experiment is good. Here we note that
matic range of the HERA—HERMES experiment. Similarly, the results obtained in the full CCMST for the energy depen-
the interesting variations af,(J/ W) andTA(W') take place dence of the ratidl's(J/W)/Tc(J/¥) turn out to be very
atv ~ 30— 200 GeV, which are in the kinematic range of the close to the evaluation of the energy dependence from the
ENC collider. approximate two-channel extrapolation formula for nuclear
In Fig. 4 we compare the theoretical predictions obtainedransparency suggested in Ref. 3.
for the dipole cross sectiofl9) with the experimental data In Figs. 5 and 6 we show the nuclear transparency ob-
on the ratio of nuclear transparencies for tin and carbon tartained with the quadratic parametrization of the dipole cross
gets atQ?=0 from the NMC collaboratiof® The agreement section(21). As stated above, this parametrization was so
devised as to enforce the overcompensation scenario, and to
have a negative amplitude foy* — ¢’ transition at low
. (1Y) Q2. For ¥' production, the undercompensation regime is
% retained. In the undercompensation scenario, nuclear trans-
¢ parency To(¢') decreases monotonically in the range of
Lok M Q? considered.
In the overcompensation scenariba(¢') rises with
i ? Q? at low Q?, which is mostly due to the decrease in the
0.8¢ denominator in Eq(2) with rising Q2. In our simplified
[ model in which we neglect the small real part of the pomeron
amplitudes T5(¢') even becomes infinite at a certain value
of Q2, at which the denominator in E(R) vanishes and then
0 100 200 300 decreases witl)?, following the pattern for the undercom-
v, GeV pensation regime.
In a more realistic model, the infinity of,(¢') is re-
FIG. 4. Predictions for the ratio of nuclear transparencies in incoherenmoved, and one instead finds a maximunTig(¢') if one

photoproduction of thé/¥ off Sn and C targets for the dipole cross section takes into account the nonzero real part of the amplitude for
of Eq. (19), in comparison with experimental data from the NMC muon

M , . :
scattering experiment. The open and full circles are for muon energy 28¢/ —¢ _transmon. We Sha” not dwell on _th|S' but merely
GeV and 200 GeV, respectively. emphasize that an experimental observation of such a non-

0.6F
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FIG. 9. The ratio of nuclear transpar-
ancies for incoherent production of
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they are the same as in Fig. 3. The
dipole cross section of Eq19) has
been used.
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monotonicQ?2-dependence df 5(¢') would be clearcut evi-
dence for the overcompensation scenarioginelectropro-
duction.

30 100 300
v, GeV

andy* —h in the photoabsorption vertex. It is interesting to
assess the relative importance of difference off-diagonal

transitions. In the most naive and unrealistic single-channel

For the 1S states, we find only marginal changes in vector meson dominand®MD) model, one allows only the
TA(J/¥) andT4(¢) from the ones shown in Figs. 3 and 4 y* —V transitions in the photoabsorption vertex and the di-

for the dipole cross sectiofl9). For thed/V¥, Fig. 5 shows

agonalV—V transitions in the ISI and FSI operators. The

slightly weaker attenuation than in Fig. 3 which is obviousenergy dependence caused by the onset of ISl is present even

from the fact that the dipole cross secti@i) is smaller than
the parametrizatiorf19) in the range ofp relevant toJ/¥

production. The cross sectio$9) and(21) differ substan-
tially only atp = 1 fm, and the changes if,(W¥) from one

in VMD, but it completely fails to describe th®? depen-

dence of photoproduction on free nucleons—all the CT ef-
fects are lost, and we skip a discussion of this unrealistic
approximation. A more interesting case is the one in which

parametrization to another are also marginal. The node effethe I1SI and FSI operators are approximated by the Glauber

is somewhat enhanced, though, and the inequaliffV')

> Ta(J/¥) becomes stronger, withi,(V') even reaching
the antishadowing regime @, (¥') for Q2 ~ 0. Finally, the
CT effect derives from the variation af(p) with p. Because
this variation is stronger for the parametrizati@l), the
Q? dependence oT 5(J/¥) and TA(¢) in the high-energy

formulas(12) and(14). In such a simplified model, which we
call here the Glauber approximation, one neglects the evolu-
tion of the ejectile and projectile wave packets caused by
off-diagonal rescattering. The retention of the interference of
transitionsy* —V andy* —h in the photoabsorption vertex
yields theQ?-dependent projectile wave packet, and the in-

regime of the developed ISI is somewhat stronger for theerference of the diagon&l—V and off-diagonah— V tran-

parametrization(21) than for the parametrizatiofl9), in
particular for theTo(¢); cf. Fig. 6 and Fig. 3.
The rise of TA(J/ W) and Ta(¢) with Q? is the CT ef-

fect, which in the framework of CCMST derives from the

off-diagonal transitiondv—h’'—...—V in the ISI and FSI
operators, and from the interference of transitioris—V

430 JETP 84 (3), March 1997

sitions in the incoherent rescattering vertex allow a correct
description of theQ? dependence of the free nucleon cross
section.

The importance of off-diagonal transitions in the FSI
operator is best seen by comparing the energy dependence of
TA(J/W) in Figs. 3 and 7 with that oT 5(¢) in Figs. 4 and
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8 in the low-energy regimk, < R, . In Figs. 7 and 8, nuclear B. G. Z. and N. N. N. thank Prof. J. Spetch for hospital-
transparency is flat versus energywhereas in Figs. 3 and 4 ity at IKP, KFA Juich, where part of this work was done.

nuclear transparency exhibits a growth, which is a contribuThe work of N. N. N. was supported by DFG Grant ME864/
tion from the off-diagonal transitions to the CT effect. For 132-1. N. N. N. is grateful to Prof. U. Meissner for hospital-
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regime of developed ISI at high energies is weaker in the

Glauber approximatioiicf. Figs. 7, 8 and Figs. 3,)4which

is evidence for the importance of the off-diagonal transitions

also in the ISI.
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Reduction of the finite grand unification theory to the minimal supersymmetric standard
model
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The recently proposed mechanism for reducing the fi@it#5) grand unification theoryGUT)

to the minimal supersymmetric standard mo(dE5SM) is reanalyzed and simplified. For

the scalaiISU(2) X U(1) invariant Higgs doublet potential that results fr&(5) symmetry

breaking to have no dangerous directions, a restriction on the parameters of the unified

theory should be imposed. At the same time, this restriction guarantees that the scalar Higgs
doublet potential has a minimum at zero at the GUT scale, and the low-energy theory appears to be
exactly the MSSM. ©1997 American Institute of Physid$$1063-776(97)00203-5

1. INTRODUCTION breaking of the electroweak symmetry occliPs.
Although the one-loop finiteness conditions fix the

The supersymmetricSUSY) field theories have remark- gauge groups and the multiplet contents of the fihite 1
able properties in the ultraviolet range. The no-SUSY theory, they allow considerable arbitrariness in the
renormalization theorem fod = 1 SUSY theoriesguaran-  Yukawa and mass matric&SIn this situation the main guid-
tees absence of divergences in quantum corrections to theg principles in choosing the finite GUT are simplicity and
superpotential. The only possible divergences in these the@esthetic attractiveness of the unified theory. In Ref. 11, the
ries (in the background field methodare the logarithmic  finite GUT satisfying these requirements was completely in-
divergences of the two-point Green functions of gauge andestigated in a consistent way. The model was based on the
chiral superfields. If the group and the multiplet contents ofSU(5) gauge group and is the simplest finite GUT compat-
theN = 1 theory are chosen in some particular way, thesdble with the low-energy phenomenology. Its distinction
divergences disappear at the one-loop level too. This occufigom the minimal SUSYSU(5) GUT model is in the exten-
as the result of mutual cancellation of the divergent contri-sion of the Higgs sector: it contains eight Higgs superfields
butions from gauge and Yukawa interactiSn¥he gauge instead of two in the minimaB U(5) GUT2 The Yukawa
groups and the multiplet contents of the theories for whichand mass parts of the Lagrangian are chosen in the most
this cancellation is possible have been classified in Ref. 3. leconomical way. Soft supersymmetry breaking takes place at
Refs. 2 and 4 it has been shown that one-loop finitenesthe Planck scalél, due to the appearance of soft terms in
guarantees two-loop finiteness of the theory without imposthe Lagrangiat®!* A universal form for these terms at the
ing new conditions, but this requirement appeared to be inPlanck scale is assumétin Ref. 11, the condition of finite-
sufficient for the theory to be free from ultraviolet diver- ness was extended to them, which resulted in a completely
gences at the three-loop leveHowever, an algorithm for finite theory betweeM p andMgyr. Complete finiteness in
constructing arN = 1 SUSY field theory finite in all orders this case means that no charge or mass coupling of the theory
of perturbation theory has been proposed and a finitghanges in this energy range. To get the small initial mass
SU(5) grand unification theorfGUT) was constructell. parameters of the low-energy theory from the large mass
The method used there was based on fine-tuning of thparameters of the unified theory, the usual fine-tuning proce-
Yukawa coupling constants in each new order of perturbadure was used in Ref. 11. This procedure generates the hier-
tion theory. The only requirement imposed on the theory forarchy of the mass scales in the doublet part of $ié(5)
this algorithm to work is one-loop finitene¢and, automati-  superpotential which decouples from the triplet part of the
cally, two-loop finiteness® latter after spontaneous breaking of BE(5) symmetry.

The idea of complete finiteness of the unified theory is  In the treatment of the low-energy part of the finite GUT
very attractive, and it is not surprising that many efforts havemodel in Ref. 11, in addition to the matter superfields of the
been made to derive low-energy predictions of the finite uniminimal supersymmetric standard mod@ISSM), three
fied theory and compare them with modern experimentaHiggs doublets were included in the low-energy Lagrangian.
data’ For this purpose the standard approach is used: it i¥o get the Higgs potential at the electroweak scale, the
assumed thaBU(5) symmetry is spontaneously broken atrenormalization group equations for the parameters of the
the unification scale, and the unified theory is reduced to @otential were used. According to the radiative symmetry-
low-energy supersymmetric theory with the correspondingreaking scenaridthe parameters of the scalar Higgs poten-
boundary conditions for the coupling constants of the low-tial yield nontrivial vacuum expectation values of the scalar
energy Lagrangian at the GUT scale. Then, the renormaliza-iggs fields at the electroweak scale. Due to the degeneracy
tion group equation method is applied to get quantities of thef the Yukawa couplings with respect to the generations of
Lagrangian at the electroweak scale, where spontaneotise matter superfields;!® the quark and lepton mass spec-
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trum at the GUT scale in this model is completely deter- A nag 24 . I
mined by the spectrum of vacuum expectation values of the 4a2,k Ai(Aj)™ + 5 ; Fia(Fja) +4% Gil(Gj)
Higgs fields at the electroweak scale.

In this paper, the low-energy part of this finite theory is — 12 25, 23 Aa(at ) +3> B2 (B2 )*
analyzed in a simpler and more efficient way than that of 5 979> ; (M) ; k(Bjid
Ref. 11. Namely, the finite GUT is shown to reduce to the 18
MSSM after spontaneous breaking of t8&J(5) symmetry +23 E Bl +2S GGl = 25
at the unification scale. The parameters of the electroweak ;, a( Eap) % a(Gl)™ =5 9%,

Lagrangian need not be evolved down to low energies in this
approach. L 2 . . 5
2, Can(Cap)* + 5 DD* + 2, Fia(Fia) " =5¢% (1

2. FINITE GUT In Ref. 11 the following simple ansatz for the Yukawa

. . _ _ _ . matrices of the superpotential was proposed:
In this section, a brief review of the main points of the

softly broken supersymmetric finit&&U(5) model con- — L= Y,
structed in Ref. 11 is proposed. The multiplet contents of the ~ W=Y1WiK;; @A j+y1Wi® A+ - BiAjA;
model and its Lagrangian were described there. The sector of ,

i i ; i Y2 — e Y4
the ch|ral_ matter and Higgs superflelds has the f_ollowmg +§ ‘1’4Ai/\i+Y3q3i5112‘bj+ys®42‘1’4+g
contents (in terms of the irreducible representations of
SU(5)): — — M
(5)) X334 B D)+ DM D+ 32, @

Matter fields: ¥,—5, A;—10, i=1, 2, 3,
where theSU(5) indices are omitted, but can easily be re-

Higgs fields: ®,—5, ®,—5 X-24, covered in a covariant manner. The potent®!is taken in
this form so that each generation of the matter interacts with
a=1, 2, 3, 4, its pair of Higgs fields, while the fourth pair of the Higgs

. L fields is coupled with all the generations of matter as well as
wherei anda are the generation indices of the matter andy, Higgs pair of the minimal SUS®BU(5) GUT. In Ref. 6
Higgs superfields, respectively. _ it is demonstrated that the Yukawa matrices corresponding to

The most general form of the superpotential for they,s gpecific ansatz will not be changed by the quantum cor-
theory having this field contentfis rections if the Yukawa couplings i{2) satisfy the conditions

o 1 of one-loop finitenesgl) and if their necessary fine tuning is

W= Aﬂ (I)aa\IriBAJQB_l_ 5 Bf}@;AFVAf"e“ﬁ’&” performed in each order of perturbation theory step by step.

The presence of unitang¢ andS matrices does not con-
o 1 tradict the finiteness conditiond). The matrixK is neces-
+ CapPanPp2 5+ 3 DE%E@’EZ sary to create the initial mixing of the quark fields at the
unification scale(that is, initial values of the Cabibbo-
— — Kobayashi—Maskawa matpixAs for the matrixS, it con-
ts EapPaaPosA{’ +Fi Wi, PEE G tains all initial information about the hierarchy of the quark
mass spectrum at this scale. This roleSofill become clear
below.

From the no-renormalization theorem for the
superpotentidlit follows that the mass parametevs,, M,
wheree®#7% is a completely antisymmetric tensor. The lastand M;; are not fixed by the requirement of one-loop finite-
three terms, which would violate the baryon and lepton numness. IfM is negative, the unifie®@U(5) symmetry is bro-
bers at the tree levels and lead ® { L)-nonconservation, ken by the vacuum expectation valueXf(Ref. 11):
are usually ignored.

The one-loop finiteness conditions of the two-point Vv
Green'’s functions in the theory with the above potentiaf are

1
k a
+ E Gij\yia\l,j,BAkB’

a by« % * i i\*
42} AJ(AD* + 5 2 CadCoo)* +42 ExelEpo (5)= 3 |

12 24
=5 %0, 32 Bj(B)"+ 5 2 CedCen” 3
24 12
+— 2, Fia(Fi)* = — ¢%6ap,

5 Z a(Fio)™ = 57 0% where V~M,/y, ~ 10 GeV.
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After breaking of theSU(5) symmetry, the Higgs quin- wherea, b =1, 2arethé&sU(2) indices and, = 1, andthe
tets ®, and ®, split into doublets and triplets. As can be following notation is used

seen from(2), their mass terms look like 3
— — T=T'=3 ysV.
Ya®;§(2) @+ DM @,
yaS;V+M;; The three pairs of Higgs doublets have the quantum numbers
_— 3 o, 3) _ 1) ([ H? 1) (H
— 5 YsSV+ My Hi| 1.2- 5= H Hi| 1.2, 5] = HO | (6)
and while the other superfields ifb) are the usual matter super-
_ _ fields of the MSSM®
Y3Py(2) Pyt PM D, In addition, the following soft supersymmetry breaking
VIV M terms must be added to the superpotenal
o 1
= 3 D,. 4 —m2 124 =
4 ~ S VIVEM 4 Wssg= moEi leil*+ 5 mmEk Mt H.c.
All the mass parameters in these relations are on the +B{HIX(RI+TD)X"];H}+c.cleap

order of theM gyt scale. To generate light initial boundary
values for the masses in the doublet part of the Higgs sector
of the unified theory, which should be radiatively corrected +AQYUGPHA +¢.C) €, @
to give the mass parameters at the electroweak scale, it is , )

necessary to carry out a fine-tuning procedure. For this putvhere; denotes all scalar fields with common masg at

+ (ADyDanKij Hd, + ALy, IPH,

pose, the following trick was used in Ref. 11. the unification scale, ani, are the gauginos with common
First, the unitary matrixS was represented as massmy, at_the same scale. Aside from the gauginos, all

_ other fields inWggg are the low scalar components of the
e 0 0 corresponding superfields. The notation for the scalar Higgs

s=x| 0 €% 0 |x=xDxT doublets in(7) coincides with the corresponding superfield
0 0 et ' notation (6). These soft supersymmetry breaking terms can

be reduced from the correspondi8§J(5) invariant terms of
the unified theory after th8U(5) symmetry-breaking*
Having rotated the superfield$;, andH; as

Hi=(XH")i=XijH]+ XipH,+ XizH3, ®

X™X=1, X"™X=I,

whereX and X are real orthogonal matriceB, is a unitary
diagonal matrix, and is a unit matrix. The solution of the e e
one-loop finiteness conditions for the specific ansatz of the  H,=(XH"’);=X;,H]+ X;,H,+ XigH3, 9)
Yukawa matrices used in the superpotenilstill has some — ) ]

arbitrarinesg? which can be used to sgt = 0. This allows WhereH/ and H; are the new Higgs superfields, one can
one to absorb one common phase into the redefinition of theonveniently rewritg5) as

fields. Therefore, in what fO||OWS it.is supposed that= O.. It W:(YDQFK“X_WH—&aDi +yLLFX_ikH_l,<aEi
is necessary to note thgt = 0 implies that the fourth pair of o
the Higgs doublet$4) _remains heavy in any case. +yUQ?XikH,Qan)eab+[Hi’a(RI+TD)ijHj’b]eab,
Second, the requirement of one-loop finiteness does not (10)
restrict the mass matrik;; . This matrix can be written as
_ and(7) as
M=X(RI+T'D)X",
Wsse= 23, loif24 = [ my,S, H
whereR and T’ are some heavy mass parameters, sse=Mo2 @i+ 2 | Muze Mgt H.C.
R=T'~V. +B[H/A(RI+TD);;H!+c.Cleq
Now, if the fourth pair of the Higgs doublets and its Yukawa —, O T T T e
interactions are omitted, tH@U(2) x U(1) invariant super- T (ApYodKijXicHicdi + ALy XicH e
potential at theM gyt scale can be represented as +AUYUGPXicH T+ C.C) €ap - (11
2 — 2 — To get the light Higgs doublet pair, a fine tuning proce-
_ b b
W_( \[5 gQK;HD; + \/; gL7HPE, dure should be performed:
8 o R+T=u~10 GeV. (12)
b ja a
+ \/1:59Qi HUi | eap+ {HITX(RI The fine-tuning procedure is more meaningful than in the
- other GUTS, since in the finite model none of the parameters
+TD)X ]ijHj €ap, () is running above the GUT scale.
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As can be seen frortl0) and(11), the first two compo- nondynamical components of the Higgs and gauge super-
nents in the decompositiort8) and(9) remain heavy, while fields are eliminated, and from the corresponding soft super-
the third component$i; and H; become light. By the de- symmetry breaking paftl4).1® Hence, the full potential has
coupling theorent! only this pair need be taken into account the following form at the unification scale:
in the effective low-energy theory, whose superpotential

S P+ S Inir|

takes the following form at the unification scale: V(m H»’)=(m§+R2+T2)
| 1
+RT(D*+D);;(H; "H/ +H/TH))

W=(ypnQ°K;;H32D; +y nLPH 3%,

+yYuNiQPHL2U)) €an+ B(HLH L) €ap, (13 - i
ra !
where +B[H/%RI+TD);jH; +c.cles
2 12
_ — g +9
X meXe, SAte1 3 et DI
| I
The corresponding soft supersymmetry breaking terms are 9°

o - _ 2
(H{*H{)*(H(*H;)—(2i IH{IZ)

4

1
Wssszngi |<Pi|2+§ ml/2; N+ H.c. )
+(Hi’THi’)*(Hi'THj’)_(Ei |Hi,|2)

+B(,uH_§,aH +c¢.c) et (Apypniq q]K Hj ad

+ ALY NIPHATE + Ay uniGrHAT +€.0) €p. +2(H—{TH,’)*(H—{THJ—’)}, (16)
19

Here ¢; denotes all light scalar fields of the effective low-
energy theory. In analogy wittY), the notation for the scalar
Higgs doublets in(14) coincides with the notation of the
corresponding superfields.

Equations(13) and(14) are the usual superpotential and 1t js more convenient to introduce the new notation
soft supersymmetry breaking potential of the MS&Me-
spectively. As is well known, in the MSSM there is no prob- M§= m§+ R%2+T2+2RT cos 6,
lem with unification of the gauge coupling constants of

where summation over the repeating Higgs generation indi-
ces is implied. Also, it is assumed for brevity that

[Hil2=[HP2H[H 12 2= |H 2+ H2

MSSM at a single point at a very high scafeMoreover, M1€M=R+Te%, _7,=|R+Te?"|,
only in the supersymmetric model with two Higgs doublets .
is this unification possibl&® M3=m§+R?+ T2+ 2RT cos §,,

As can be seen fronil3), all information about the o " - »
quark mass hierarchy at the GUT scale is contained in the -/%2€7?=R+Te%, . 7,=|R+Te%|,
Higgs sector of the finite unified theory, namely, in the uni-

2__ 2 2 —
tary Higgs mixing matrixS: m =mp+(R+T)", wu=R+T,
yP=nyY, yP=nyP, yr=ny. and rewrite the potentigtL6) as
4 2 V=ME(Hi 2+ Hi[)+ M3(IH5I2 + [H5l2) + m (| H3[2
y _\/1—gGUTa y =y \/ggGUTa (15 o R
+[H5|2) + B(#Z1€MH BH P+ 72,6 2H 52H 5P
where ggyt IS @ gauge coupling constant of the unified g2+g'?

theory. +MHéaHéb)€ab+ =z -
These conclusions are natural and correct, and there are 8

no subtle points if the full scalar Higgs doublet potential has 2
no dangerous directior{@long these directions it can be un- + g
bounded belowand has absolute minimum at zero at the 4
unification scale. Since the full scalar Higgs potential has a

rather complicated structure because of the large number of +(H’TH )*(H ’*H i) (E |H{ |2)
Higgs fields, this is not obvious. In the next section, a con-

DI

o o _ 2
(Hi/THj/)*(Hi/THjI)_<Ei |Hi/|2)

dition will be written for the parameters of the unified super- — —,
potential which is necessary to guarantee this. +2(H{"H{)* (H{ Hj,)}- 17)
3. DOUBLET POTENTIAL AT THE GUT SCALE Having parametrized the Higgs doublets as
The scalar Higgs doublet potential arises from the super- H—U 0 H_—U_ i
potential(13) and minimal SUSY gauge interaction, when all i ) —Cho)
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whereU; andU_iare someSU(2) matrices, and; andv; are
positive, one can derive that when the quartic termé&lin
vanish the condition for positivity of the quadratic part of

a7 is
Mi(aZ+ )+ M5(as+ B5) +m?(a5+ B3)
—2|B//él|al,31—2|Bl ///j _2|B/,L|C¥3ﬁ3>0,
(18)

where

al+a2+ oz3

>

1, Bi+B5+pB5=
> vl

This requirement is necessary to provide stability(D#) in
these directions. The quadratic forthd) is obviously posi-
tive if the following conditions are satisfied:

e 2
V= q; Ui,

M1=|B. 74|, (19
1

M35=|B.7,|, (20

m<=|Bu|. 1
i (21)

The conditions(19) and (20) hold in any case due to our
fine-tuning procedurél?) (it is assumed thaB ~ w). Note
that if (21) is violated, the quadratic form would be negative ,
when

ay=ay=f1=Br=
Thus, the condition
(22)

is necessary for the stability of the potent{dlr) for large
fields. At the same time, as can be seen f@®) and(19)—
(21), the restriction(22) guarantees the positivity of the sca-
lar Higgs potential(16) on any field configurations. This
means that after spontaneous breaking ofSh€5) symme-

mg+ u?=(Bul

try the scalar Higgs doublet potential has its only and abso-,

lute minimum at zero at the GUT scale.

4. CONCLUSIONS

In this paper, the SUSYSU(5) finite theory with an
R-symmetrical and B — L)-conserving superpotential has |

been considered. The Yukawa matrices of this theory were

the scalar Higgs doublet potential have no dangerous direc-
tions and have an absolute global minimum at zero at the
unification scale after th8U(5) symmetry breaking. These
requirements impose the restricti@®2) on the parameters of
the finite GUT. If this restriction holds, both the require-
ments are met. As for the rest, after tB&J(5) symmetry
breaking one gets the MSSM as the low-energy theory with
the boundary conditions at the GUT scale for the Yukawa
couplings(15).
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We examine the theory of potential scattering of Rydberg atoms in a microwave field. The

model of a three-level atom is employed to calculate the radiative force emerging in the resonant
coherent interaction with the microwave field for the case of a two-photon resonance and

high intensities, using the method of quasienergies of the system consisting of the atom and the
field. We determine the probabilities of Landau—Zener transitions in the spatial regions

where under two-photon resonance conditions the quasienergies of the atoms approach one another
by a small quantity. We also study the dynamics of the variation of the spatial profile of a

beam of Rydberg atoms caused by resonant scattering. Finally, we give the results of the first
experimental observation of the variation of the transverse beam profile when Rydberg

atoms pass through a nonuniform microwave field formed in a rectangular waveguide and in
resonance with the two-photon B637P transition. © 1997 American Institute of Physics.

© 1997 American Institute of Physids$1063-776(097)00303-X

1. INTRODUCTION atoms in the 3B state in a spatially nonuniform microwave
field in the form of a standing wave.
The resonant interaction of Rydberg atoms and micro-
wave radiation is one of the areas of the physics that is being
vigorously explored. Lately a number of papers have ap- , A MODEL FOR THE INTERACTION OF RYDBERG ATOMS
peared that study the effect of spatially nonuniform micro-oND A MICROWAVE FIELD
wave fields on the motion of Rydberg atom in resonant
one-photofi and multiphotof interactions. Let us take a beam of Rydberg atoms propagating along
The present study is devoted to a theoretical analysis dfex axis with a thermal velocity ~1C° cm/s and entering
the process of resonant scattering of a beam of Rydberg atofh€gion with a standing microwave field directed along the
in a microwave field of a standing linearly polarized wave,Z @XIs:
based on the assumption that the three-level model of atomic E(r,t)={e‘i“"Eoeo sin(kz)+ c.c}, (1)
energy states is valid. In Sec. 2 we describe the interaction of . . . .
the atoms with the microwave field. Section 3 is devoted to E\l/vhereEo is amplitude of the field is the wave frequency,

study of “dressed” states of Rydberg atoms in a microwaveandeo is the linear polarization vector. For instance, for so-

field. The analysis is done by applying the method Ofdlum atoms in highly excited states with principal quantum

: . numbers n=20-40, the corresponding resonance wave-
quasienergies to separate resonant states of the system C?@ﬁgth X is of order 3-5mm and lies in the microwave
sisting of an atom and the field. In Sec. 4 we investigate tht? 4

e . . - " Yange.
probabilities of Landau—Zener transitions in spatial regions %n analyzing the interaction of atoms with such a field

where the corresponding quasienergies of the atoms mo\ge jimit ourselves to a simplified energy-level structure con-
closer together by a small quantity in conditions of a tWo-gigting of only three states of sodium atoms, in accordance
photon resonance. In Sec. 5 we calculate the radiative forcgiin Ref. 4: we isolate the statesBE37S, and 3P from the
emerging as a result of the resonant interaction of the atomgire set of energy states existing in the given energy range
and the microwave field. Here we study various limiting see Fig. 1a This means we ignore multiphoton resonance
cases depending on the initial population of the Se'eCteérocesses involving more than two photons, and the other
Rydberg states of atoms: in two-photon resonance, and atates D andF) are not taken into consideration either be-
high microwave field intensities. We compare our resultscause of the existing selection rules in a linearly polarized
with those for a one-photon transition, a case thoroughlyield or because of the nonresonant nature of the interaction.
studied for optical transitions. Section 6 is devoted to anThe simplified energy-level structure of the atoms has the
analysis of the kinetics of an atomic beam as a whole, witliform depicted in Fig. 1b. Here, following Ref. 5, we use the
the effects of spontaneous decay of Rydberg states of atonfsllowing notation:

ignored. In Sec. 7 we examine the dynamics of the variations E;, withi=1, 2, 3, stands for the values of the energies
of the spatial profile of the beam caused by scattering proef the given stateéwe ignore the fine structure &f states;
cesses in the light field. There we also give the results of A,=(E,—E;)/%—w is the detuning of the microwave
experiments on the scattering of a beam of Rydberg sodiurfield from resonance for the B6-37S levels;
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w
oo
&

resonances Here, however, we limit ourselves to two-

v T T\ photon processes.
o A . . .
130 \ If we limit ourselves to coherent processes of the inter-
\\ o e action of atoms and a microwave field, it is sufficient to
\ T .;’. - analyze the corresponding Sctioger equation for the at-
1201 \\ “. —,,‘-3‘5%6p oms and to assume that the field is fixed and classkal
A\ D):
318 ‘\ l‘. I/' /// +-B23
'S -/ =
601 '\T‘hf. R A
A 1/ |ﬁE\P=(HO+Vint)\P. 2
i
\ 1S /
ol \\||'// N e 1
6P m=-1 m=0 m=]

HereHo= Ty, + Vo is the operator of the energy of the atom
in the absence of the interaction with the microwave field.
Note that the given operator determines the dynamics of the

FIG. 1. The energy-level diagram of the Rydberg states of the sodium atom . . .
nearn=36. The dashed lines indicate multiphoton transitions, and the solioatom in relation to both translational degrees of freedtra

lines one-photon transitions. kinetic-energy operatofl ;,= —#V?%/2m) and internal de-
grees of freedonithe operator\70). The energy level dia-
gram in Fig. 1 determines the eigenvaligsof the operator

Vo, While the corresponding wave functiors’ determine
A3=(E3—E,)/fi—w is the detuning of the microwave the probability amplitudes of the corresponding states. Note
field from resonance for the $#37P levels; the following feature of the model presented in Fig. 1b: all
Azp=(E3—Ej)/hi—2w = Az — A,isthe detuning of the the Zeeman sublevels present can be divided into three inde-
microwave field from two-photon resonance of theP36 pendent groups, in accordance with the stimulated transitions
37P levels. that emerge in the model. In the first, and most important,
The following aspects set our model apart from the eargroup the P-atoms with angular-momentum projections
lier models of three-level atoms resonantly interacting withm=0 and theS-atoms (3B) participate in the coherent in-
light fields. teraction with the linearly polarized field. The dynamics of
1. The lifetimes of the Rydberg states increase with thehe populations of these states is determined by one-photon
principal quantum number in proportion t¢'—n®. For the  and two-photon resonant transitions. The other two indepen-
values of the principal quantum number considered herelent subgroups are formed by theP3@nd 3P sublevels
(n=36 and 37 these lifetimes reach several hundred micro-with projectionsm= =1 and are connected by two-photon
seconds. This means that processes of spontaneous emissifinsitions. However, because of the absence of an interme-
into the vacuum modes of the microwave field can be treatediate real levelsee Fig. 1bthe interaction with the field is
by perturbation techniques. For Rydberg atoms the incohefonresonant. There are two reasons why the dynamics of
ent processes of interaction with the thermal-reservoir modeghese subgroups will not be examined here: first, because of
become most important. However, when the temperature ahe smallness of the resulting effects due to the nonresonant
the surrounding medium is fairly low, this type of incoherentnature of the interaction; second, because these processes
interaction can also be considered a perturbation. Thereforeontribute nothing to the gradient radiative for@s).")
to a high accuracy we can consider the processes of resonant |5 gq. (2), V,w=—d-E is the operator of the energy of

interaction of Rydberg atoms and microwave fields as beinghe interaction of atoms with the microwave field is the

coherent to lowest order. This approximation is valid even tomic dinol ¢ toand¥ is th | ‘
when the transverse profiles of the microwave field are fairl)f’i omic dipo'e moment operajoan IS the colimn vector

broad, of orderr ~10 cm. of the atomic wave function,
2. The dipole moment of the transitions increases con-
siderably since geometrically Rydberg atoms are large. The vy
corresponding dipole momentsare of order 18ea,, where = v,
a, is the Bohr radius. Hence the effect of saturation of reso- ¥
nant transitions in microwave fields sets in at fairly low in- 3
tensities. For example, for the transitions in sodium under
discussion the saturation intensity,; is of order which in the representation of the self-energy st@t@%, of
5x 10" "W/cn?. a “bare” atom described earlier couple the corresponding
3. The momentunp,,=7k=h/\ transferred from the probability amplitudesV; (herei=1 corresponds to 3% at
field to an atom as a result of a single act of stimulatedn=0, i=2 corresponds to & andi=3 corresponds to
absorption is roughly 13-10° smaller than the momentum 37P at m=0), whose squaregF;|?> determine the popula-
of recoil from an optical photon. tions of the given states.
4. The distribution of some groups of levelfor ex- Since we are considering only coherent atom—field inter-
ample,S andP) is almost uniform, so that multiphoton reso- action process, specifying the initial conditions is also an
nances also play an important rdle addition to one-photon important part of the model:

: 3
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C,; Due to the relatively large wavelength of the microwave

V(t=0)=| C, |. (4
Cs

When we are dealing with optical transitions from the
ground state of the atom, the initial conditions are usually

fields this condition is easily met even for beams with a
divergence angle

chosen to beC;=0 andC,=C3;=0. However, specifying where the transverse size of the microwave field in xhe
the initial conditions in our case is a problem in its own right direction is of order ,~10 cm.

since, firstly, the 3B state with the lowest energy is not the
ground state at allit is obtained as a result of a certain

The corresponding system of equations is

multistage proceésand, secondly, groups of Rydberg atoms Ja(r,t) =—iQ,(r)b(r,t),
with closely spaced energy values are actually formed in the at
excitation process. ab(r,t)

Therefore, usually all three probability amplitudésare =—iA,b(r,t)—iQ7r)ar,t)—iQ,s(r)c(t),
finite. However, in analyzing specific results we mainly ex- ot )
amine, for the sake of simplicity, the ideal case where in the
process of formation of Rydberg atoms all the atoms accu-  dc(r,t) i .
mulate in the 36 sublevel withm=0, i.e., C;=1 and o 1Asl(r ) —iQay(r)b(r,1).

C=C3=0. . . . .
Here we have introduced the following notation for the Rabi

3. QUASIENERGY ATOMIC STATES frequencies:

We analyze the dynamics of the atoms with respect to Q;;(N=0°%sinkz), Q;=0j, ®
the internal degrees of freedom in their interaction with an dE
electromagnetic wave by employing the quasienergy 90:%, 9)

method® Let us write the components of the atomic wave

function in the form of an expansion in the time harmonicsyhere thed;; are the dipole moments of the corresponding
of the microwave field: transitions.

Note that by ignoring the contribution of the kinetic-
energy operator we ensure that the system of equations
describes the dynamics of the internal degrees of freedom of
Next we use the resonance approximation, which means ig2h atom. The effect of translational motion on the dynamics
noring the contribution of the terms in E¢p) that oscillate ~ Of the internal degrees of freedom of atoms can be large in
in time. As demonstrated by Akulin and Karléun such a  regions where the field is low, i.e., at the nodes of a standing
model it is sufficient to analyze the approximate closed sysWave. As is well known, in this case the Landau—Zener tran-

tem of equations for the three following components: sitions between states with closely spaced energy levels be-
come important. In what follows this aspect is studied sepa-
By
¥, p=a(t)exg —i Wt ,

\pp(t):lzx v, exdil wt].

rately.
We examine the solution of the system of equati@n
by diagonalizing the system and finding its eigenvalues and

Y, = b(t)ex;{ —j %t) (5) eigenvectors. In matrix form the systgi) becomes
d " A
E = X(r,t) =A(r)X(r,t),
\1’3‘2=c(t)exy{—ift). at
. L , 0 Q 0

To this we add one more approximation: at the first stage we a R . 12
ignore the contribution of the kinetic-energy operator. Note X=| b |, A=| Q5 A; (10
that in models in which the atoms interact with spatially c 0 Ok Agp

uniform electromagnetic fielda traveling wavgthe kinetic R

energy can be taken into account fairly simply by allowing The eigenvalues of the matri are given by the following
for the corresponding Doppler shiffs,=k-v. In our model ~ Cardan formulas:

we examine the case of the spatially nonuniform figld(a
standing wave The fact that in the atom—field interaction
we ignore the atom’s kinetic energy means that the atomic
beam is well-collimated: the timg,=2ry /vt of the atom—
field interaction is not sufficiently long for the atom to be
shifted along the field by a distance of the order of one wave-
length: 1

1
©6) 51,2:3\/ri\/q3+r2, ngal_gag,

az

7\1(51+52)—§y

sl+sz_%+_\/§

Np3z=— 5 3 —'7(31_32),

UZtint<)\.
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FIG. 2. Spatial dependence of the eigenvalues of the matfor different
detunings and intensities of the microwave field.

1 1, 2
r=€(a1a2—3a0)—2—7a2, ap=24,[Q4,%,

a;=A5A5— |923|2_ |le|2: a=—A,—As.

Figure 2 depicts the spatial dependence of the given ei-
genvalues at half of the wavelength of the microwave field.

The corresponding eigenvectors are defined as

1
Aj=Nt Ni/Qqp 11
(QoAN/[ Q1 \i—Az)]
with the normalization constants
N:\/1+ )\iz + Ai2|023|2 (12
' Q1% (Ni—Ax)? Q)"

field’'s nodes the energies the states 2 and 3 are close,
|N,—\3|~As,. Identification of the corresponding dressed
states(11) shows that forA, and A5, positive the state\ ;
corresponds in the node regiéh—0 to the bare state 37
A, corresponds to 38, and A ; corresponds to 3. When
A5, is negative, the situation changes in the following man-
ner?) A, corresponds to 38, and A, to 37P.

In the approximation of small values df;,, the energy
values are given by the following formulas:

Ao+ JAS+A(|Q4%+ Q157

1,27 > +0ON1,
(13
)\3:5)\3,
|52
5)\1_A32|923| +[Q44*’
10,4
5)\2’3_A322(|923|2+|912|2)
A
2 (14)

X| 15 .
VASHA(|Qd %+ Q5%

As noted earlier, in the regions whekg and \; are
close the effect of the kinetic-energy operator cannot be ig-
nored. Here quantum hopping from stateto state\ ; (or in
the opposite directiorbecome possibld_andau—Zener tran-
sitions; see Ref. )5 Below we calculate the probabilities of
such transitions.

The general solution of the Scliioger equatiorf2) can
be expressed in terms of the eigenvectors defined above in
accordance with the initial conditions as follows:

~ 3 N
V(t)= 21 aAg exp(—ig),

W =
1 €eX |7

=~ =
P(t)=| V,ex |7t+|wt

(15

E1
Vs ex |7t+2|wt

where the factorsag can be found from the initial conditions
att= O andﬂzgylzz O
For instance, att=0 only the 3@ sublevel is populated,

C1=a2=1, C213= al’3 fOI’ A32>O, (16)

C1:a3:1, C213:al’2 f0r A32<0.

Note the important physical essence of the given states: thdyigure 3 depicts the distribution of the probability ampli-
describe “dressed” states of an atom, with the eigenvaluesudes for these initial conditions with different values of the
\; (Fig. 2 determining, among other things, level repulsionparameters of the problem. The upper diagram which shows

caused by the switch-on of the fiid.

the case of a two-photon resonance when the population of

Analysis of Fig. 2 shows that under two-photon reso-the intermediate level proves is low, is especially notewor-

nance conditions, whemz,<A,,Q,3,, holds, near the
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Under two-photon resonance conditions, the probability

Lo} Sep amplitude for the 3% state we havéb|<|a,|c| by virtue of
0.8} the small parametdf)3,//A,, and we can use the following

el L . approximation:

041 ,-": \ 37p b (Q9)*kzat O kze 18

02t/ 3 - A, : (18)
g Y

o pa— =T3S As a result, the system of equatiofi?) is reduced to a

02 - p— T o ' system of two equations for the probability amplitudeand
0 05 10_15 20 25 30 o

Dy /By =107,Q,, /A, =0, 1A,= 0.1
da da  V3(kz)?a+V,V,y(kz)’c

1.0 .
36P — =jp,— =
S\___./// "at 7z A, | 19
0.6 }

i37p de_. dc_ Vi(k2)%c+V,V,(kz)%a 20
0.2r ; Idt_lvzdz_ 32 AZ ’ ( )
_0’2:‘\\\\ /,/3'75, V]_:ng, V2:Qg3' (21)
06 T Note that the Landau—Zener Hamiltonian that follows from
0 05 10 15 20 25 30 this system of equations differs considerably for the ordinary
Byy /B,y = 107,92, 18)= Q5 18y = 1 Hamiltonian which is linear irz for the case of two-level
atoms® This, in particular, leads to a situation in which it is
1.0 26p impossible to derive a Landau—Zener transition matrix for
\ [ such a Hamiltonian, contrary to the case of Ref. 5. But the
0.5¢ :!"37P probability W, of transitions from the 3B state to the
ol ; 37P state can be estimated by employing the complex-time
1 method! We can assume with fairly high accuracy that
-0.5[ ,/' 378 V;~V,=V. In this approximation the corresponding prob-
i - ability is
-0 R N
0 05 10 15 20 25 30 1 Ag,)\ 32
Ay 1A, = 107,Q, 1A= Q, /A, = 10 Wap=exg — 7B(3/2,1/4 it (22)
FIG. 3. The probability amplitudes of various states with the initial condi- /2 1/4 = (32T (1/4) . . V2(kv)2 13
tionsa,=1 anda;=az=0. B(3/2,1/4= L'(7/4) T ALT A, :
(23)

The characteristic parameter here is the frequekgcy for
A3>~A| the Landau—Zener transitions become important.
We estimate\ for the following orders of magnitude of the

Let us estimate the probability of the above Landau-quantities involved in the problem:

Zener transitions between the stafes, near the nodes of a « for the transition in sodium with an exact two-photon

standing wave. To this end we linearize the initial Rabi fre-résonance the detuniniy, is 27X 2.6 GHz;
« the dipole moment is estimated at 18@g;

4. LANDAU-ZENER TRANSITIONS UNDER TWO-PHOTON
RESONANCE CONDITIONS

guencies, ] .
« the velocity of the atoms along the wave vector is

0, (1)~ dijEo Kz— 0%kz estimated ab,~ A agv1=10"3X600 m/s, where\ g, is

g ) e the divergence angle of the atomic beam, ards the cor-

" . . responding thermal velocity of the atoms; and
and employ the condition that the translational motion of the =", |~ 20 mW/cn? is the maximum intensity of the mi-

center of mass of an atom is giveR(t)~Ry+ vt (see Ref. ' .
R . ST crowave field from the open end of the waveguide.
5). Under these simplifying assumptions the initial Sehro h I f th A hes i .
dinger equatior(2) acquires the form For these values of the parametes reaches its maxi-
mum value, roughly 2x80kHz, i.e., A is extremely
da 0 small, smaller in order of magnitude than the fine structure
Igp = Qakzb, ~114 and 124 MHz(Ref. 4 of the 3P and 3P states.
Note, however, that in this model only the single Zeeman
db sublevel with the projectiom=0 interacts resonantly with
F— 0 \x 0
Idt =(0Q7)*kzat A,b+Q5Kkze a7 the field.
As we show below, the effect of Landau—Zener transi-
tions near nodes can essentially diminish the gradient radia-

dc 0 vk
i—=(Q33*kzb+ Az tive force.

dt
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5. GRADIENT FORCE IN A MICROWAVE FIELD A3, we can use the corresponding approximate v@ls:

) ] ) ] for \,: As a result we arrive at the following expression for
By the gradient force acting on an atom in a microwavey, o gradient radiative force:

field we mean the corresponding vectefr) entering into
the Fokker—Planck equation for the atomic distribution func- B IV gt

tion f(r,p,t), Fo==—— (31
E'FV-V F(r,p.t)=— %(F(r)f(r,p,t)) (24) where the effective potential is defined as
h
and defined as Veﬁ:§\/(Az)2+ 4(1Q1A2)[*+]Q242)]?). (32

3 . . . .
Below we list the important features of this potential.

F:;B VQepPpa 25 1. The potential resembles what is known as the non-

resonant potentialin the theory of coherent interaction of

Here summation is over the entire set of states of the atomyq_jevel atoms with the field of a standing light wave. Here
The matricesp, in the adopted coherent atom—field inter- e inclusion of an additional, third, level into the picture of

action model can be expressed in terms of the correspondinge resonant interaction with the field effectively increases

probability amplitudes of the levels: the potential32) due to the additional terrf),; by a factor
pap=TEV,. (26) of approximately\/i_. It can be suggested that aIIowin_g for
) _ ) ) three-photon and higher-order processes may further increase
For the solution(15) obtained earlier this means that the effectiveness of the potential by a factor\af , where
3 3 m is the corresponding order of the process involving pho-
F= >, VO expli A= A)DAR Agiakan, tons.
i,j=1 mn=1 ' '

27 2. In the case of a two-photon resonance, when
wherem andn label the dressed states defined(lt§), and 912<1, Agy<Q,A,, (33
i andj label the matrix elements of these states. A

Let us now show that the corrections oscillating in time ;i Q1~0,5=Q(2) for Rydberg atoms, the effective po-

can be ignored. For instance, in the particular case of poSkantial becomes the well-known potential for two-photon
tive detuningsA 3, considered here the smallest difference is4nsitions

Ao— N\ Nzg 28 QZ(Z)
No—Agl~275-. (28) Ver=H . (34)
A,

At_sducjh ufzr;sme_st, :OI?NR; 1 a;ndAzfl GHZ&:” theht[[rrr]1e 3. Finally, we note that the results are independent of the
"o l'}t;:th ps L 1akes i elda (t)r:ns 0 pass dr_ougt € ®5ign of Ay, and are determined mainly by the value of:
?2'%;] V:rformeaggc;gwa_vi 04|e 1 05 ogc'(lzl(; rtr(e)ﬁzogézge _enrrgs_ "Nwhen the microwave field intensity satisfi@s>A,, the am-

P Ulosc™ 17— mations. in av plitude of the effective potential32) depends or{) almost
eraging over the velocities, these contributions can be dis-

ded ided that th . td lect Iipearly. Actually, at such microwave field intensities we
carded, provided that the experiment does Select groups @, not limit ourselves to two-photon processes in the model,
atoms with fixed longitudinal velocities:

and we must take into account higher-order multiphoton pro-
8 3 8 cesses.
F~ 2 2 VO jlal?Af A= |ailFi. (29 If, however, the initial conditions are defined in a more
M=l =1 complicated way and there are components with
We also assume that the interaction between the microwave,, a; # 0, we must use the general formyRg). Figure 4
field and the Rydberg atoms is switched on smoothly, i.e., bylepicts the graphs of the corresponding components of the
allowing for an approximately Gaussian decay of the intenconstituent forces ii29) at the half-wavelength of the field.
sity of the microwave field toward the periphery we can as-n particular, we see that as the componapnincreases due
sume that the probability of the transitions between the corto Landau—Zener transitions, the overall force diminishes,
responding quasienergy states considered earlier isince|F;|<|F,|.
negligible. Due to the adiabaticity of the switch-on process
the quantitiesa,, are determined solely by the initial condi-
tions?)
Let us take, for example, the boundary conditi¢hé).
In this case the expression for the force simplifias=@ at
A3,>0): The kinetics of a beam of Rydberg atoms in microwave
_ * % fields is described by Eq24), with (30) as the force. Let us
F~VQ1oA5 A5 1+ V QA5 5455+ C.C. B0 examine the time-iné/epcindent pattern of the atoms scattered
If we now take values of the problem’s parameters suctby the microwave field. In this case the initial kinetic equa-
that A3, can be neglected in comparison{, ,3, A,, and  tion assumes the form

6. THE KINETICS OF RYDBERG ATOMS IN A MICROWAVE
FIELD
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whereN is the normalization factom,, is the radius of the

0.01 atomic beamgz, specifies the position of the center of the
atomic beam along the axis, 6(y) is the Heaviside step
function,v, = Aav is the transverse thermal velocity of the

0.0 atoms in the beamA« is the beam divergence angle in
radians(the extent to which the beam is collimajednd
vt is the longitudinal thermal velocity.

I Let us solve Eq(35) by perturbation techniques. Here
-0.01 . . A . . . for the zeroth approximation we can take the solution of the

0 05 10,15 20 25 30k initial kinetic equation(35) with a zero right-hand side,

Ap/Ay=107,Q,,/A=Q, /A, = 0.1
fO(X>O!ZIUX!UZ)
0.6] /" ‘\ 1 (z— 29— (v, /vy )X)? vi vf 0(v,)
/ \ F, =— exp — ——— — | 6(v,).

0.4, /,/ £ \\ 2 N rg U%— UJZ_ X

0.0 ¥ - (37)

it /’

-t ,I . . .
02 A\ E It describes the spread of the transverse profile of the atomic
-0.48 N ’ beam caused by thermal motion of the atoms alongzthe
0.6 - , . . \ \ axis. If the effect of the microwave field on the atomic-beam

0 05 10 15 20 25 30 k profile is regarded as a perturbation, the initial distribution

Ayl = 107, 821y 18)=Qfy = 1 function can be written as
6 T f(r,v)=fo(r,v)+ f(r,v), (39
’/” :
; ,,/’ "..’5 where the kinetic equation for the corresponding correction
o v E 4 is
2 ANAPY F -
< - - r,v)=—F,(z2)p(X) —fq(r,v).

._4| L E Uy X UZ(?Z (r,v) z( ) o( )apz 0( )

_6 -‘\___—// (39)

0 05 10 .15 20 25 30 The solution of this equation can be written in the form

Ay /A, =107,0,/A,=,,/A, = 10
x  Fldz+ (v lv)(E—X)]e(€)
5f(r,p)=—f deé—= =
FIG. 4. The components of the constituent forces for different detunings and 0 Ux
intensities of the microwave field in relative units.
| L EX O ez (0,
—— — ’Z
o0, b 9z ol &2+ (v, /vy)
J J 17
—+v,— | f(r,v)=—F,2)o(x) —f(r,v), (35 X(E=X),0x,0,]. (40)
(vxax vzaz)( )= =Fu2e() 5 -f(r0), (39 xvz

In particular, if we take a simplified version of the prob-
lem, where the microwave field begins immediately after the
i source of the atomic beam and its profile has sharp bound-
atomic beam. , _ . aries, p(x) = 6(2r,—x) (recall thatr, is the traverse radius

An important aspect of solving Eq39) is formulating ¢ e profile of the microwave fieJdthe computational for-
the appropriate boundary conditions. In this case the boundy, i for the correction following the region with the micro-
ary condition is fixed by the distribution function for the | .. field &>2r,) assumes the form
atoms at the “muzzle” of the atomic gurxE0). We as-
sume that the atoms are thermalized in the longitudinabf(x>2rg,z,p)

(vy) and transverseu() projections of the velocities but that

the temperatures are different. The corresponding velocity — _ erodg FZ(ZJF(”Z/UX)@_X))I i_ £—x i
distributions are shaped like Maxwellian distributiérgimi- 0 Ux ldp,  px oz
larly, the spatial distribution, or profile, of the atomic beam

in the cross sectiotfalong thez axis) is determined by a X Fo(£,2F (z/v) (£7X),vx.02), (41)

Gaussian law. Thus, the boundary condition can be writterr, using the explicit form of the zeroth approximati8v),

where the functiorp(x) determines the profile of the micro-
wave amplitude in the directiox of propagation of the

as we obtain

f(X:OIZIUX1UZ) 5f(Z,X,UX,UZ)
1 (z—zo)2 vi vg 2rg  F(z+(v,/vy)(E—X))
=Sexp ———5 —— 37| 0(vy), 36 = 270x
Nexp( TR o (30 2[ " N
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FIG. 5. The results of calculations of the spatial profile of the atomic beam for different positions of its center in relation to the nodes of a standing microwave:
kz= /8 (curvel), kz= /4 (curve 2), kz=0.188(curve 3).

«| - &_ (z=29— (v /v )X)§ f
pt FbPx
The perturbation theory we have just described actuallyThen, expanding the integrand in a Taylor series and keeping
amounts to an expansion in powers of the time of flighe  only the first correction, we arrive at the following approxi-
interaction time of the atom through the microwave field, mate result for the given correction:
tim=2ro/vy, and the first correction is linear in this param- AF (2— (0,10,)X)

agiv2r o

107

o(Z,X,v,,Uy). (42

eter. Note that the highetorder corrections give rise to di- sf=f,

vergences, related to the large interaction times for atoms Ux

whose velocitiew, are low. As is well known, these diver- D, (z— 20—(vz/vx)x)r3

gences can be removed by summing the entire X|—=rg— 5 . (44
perturbation-theory series. In the present model, however, PL MbPx

calculating the first correction is sufficient because of theFurther calculations of the profile of the atomic beam at the
small effect of the microwave field on the dynamics of thedetector with a known distribution function are done accord-
atoms. For example, let us estimate in order of magnitude thiag to the following algorithm:

corresponding smallness parameter in the problem.

1. We assume that the force acting on the atom attainsits  (z)= J dv f(z,Xx—L,v4,0,)Ng, (45)
maximum value, and its order of magnitude, in accordance
with Egs. (31) and (32), is estimated aF~7ik(). For the  wherelL is the position of the detector of atoms along the
limiting value we take the Rabi frequency at which the dy-x axis, andn, is the average atomic density in the beam in
namic Stark broadening, is of order 27X 2.6 GHz. the initial stage.

2. In accordance with the coherent nature of the atom— |n particular, if we plug the above correctigd4) into
field interaction chosen in the model, the interaction timethis formula, the final expression for the correction to the
tinr cannot exceed the characteristic time of radiative decamensity caused by the radiative force becomes
of the corresponding Rydberg states. In our case we limit this

value totj,~35 us. on(z,L)
Then the correspo_nding smallness parameter in the per- 4F (z— (v,lv)L) [ p,
turbation theory described above has the form =ny(z, > p—zr0
X L
Ftint 802 fiKtine ,
= = , 43 (z—zp— (v /v )L)r
Pz (A,)Z+802 Aagymut “3 - > rzpz Lt : (46)
bMx v, Uy

and with the above parameters and the corresponding mass
of sodium atoms we obtaim~0.1-1. Note that for Rabi whereng(z,L) is the distribution of the atomic beam density
frequencies()=A, the parameter becomes greater than at the detector in the absence of a microwave field. The total

unity and our perturbation theory becomes invalid. density of the atomic beam is
The above result42) for the first correction to the dis-
I . LT ,L)= ,L)+én(z,L). 4
tribution function can be simplified if we allow for the fact n(zL)=ng(z.L)+on(zL) “7)
that in the microwave field the wavelengih=4 mm, as a Figure 5 depicts the results of calculations of the spatial

characteristic parameter for the spatial gradientFgg is  profile of the atomic beam for different values of the param-
large compared to the integration parameter:eters of the problem. The left diagram shows the distribu-
(v,1vy)2r o~ agi2r o< \. For instance, for microwave fields tions n(z) at the detector at point=L for the following

with transverse dimensionsr@-10cm the value of the values of the dimensionless parameters: the detuning of the
small parameter is two-photon transition iSAg,=A3,/A,=5X10"%~0; the
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FIG. 6. Experimental setud—vacuum chambe2—beam of sodium at- . . . 0

oms,3—oven,4 and5—diaphragmsg—moving slit, 7—entrance windows 0.5 0 +0.5
of the channel multipliers, an8—waveguide.

FIG. 7. Experimental traces of the profile of a beam of Rydberg sodium
- atoms for different intensities of microwave radiation in resonance with the
Rabi frequencies arg; ;=(); j/A,=1; the width of the mi-  36P-37P two-photon transitiorithe atomic beam passes through the region

crowave beam i§o=ry/\=10; the detector position is With the maximum gradient fore
L=L/\=10% the divergence of the atomic beam is
a=v, lv;=10"3; the width of the atomic beam is

Tp=rp/A=10""; the position of the center of the atomic nel electron multipliers. The electric signals from the out-
beam in relation to the nodes of the standing wave of thgut of the multipliers were processed in the pulse-counting
microwave field is Zo=k20=77/8 for the curvel and mode with an accumulation time of 10 s.
Zo=/4 for the curve2; and the scale along the vertical axis ~ The detection device consisted of two parts. In one the
is chosen in units of the characteristic parameter of the probRydberg atoms were excited by laser radiation and were
lem to beSn=7%A,/mv?~10"*, which, of course, in this forced to interact with the microwave field when the beam of
case is a small parameter. excited atoms was sent through the wavegudélere the
The right diagram in Fig. 5 depicts the density distribu-signals from tuning the field frequency to the multiphoton
tion on for the following altered parameters of the problem:resonances were registered. The total number of Rydberg
Rabi frequencies); j=(; ;/A,=10; and the position of the atoms passing through the moving diaphragnwas mea-
center of the atomic beam is chosen by the maximum of thesured in the second part of the device. By changing the po-
gradient force, i.e., a,~0.188. sition of the diaphragm one could obtain the distribution of
An important aspect should be noted. The above correcthe number density of the Rydberg atoms in the beam along
tion to the density(46) becomes divergent as a result of one axis. Scattering or deflection of the beam of Rydberg
averaging because of the contribution of atoms with low ve-atoms caused by the transfer of transverse momentum from
locitiesv,~0, since the time it takes such atoms to interactthe microwave field changes the measured beam profile. In
with the microwave field tends to infinity. The above resultsaddition we were able to vary the gradient of the microwave
are given for velocities,>10 %y . field in the opening of the waveguide by changing the posi-
tion of the reflecting wallpiston), which ensured the forma-
tion of a quasistanding wave. The peak power flux of the
microwave field could reach 0.2 W/émThis was done by
We measured the profile of a beam of Rydberg sodiumusing a frequency-tunable oscillator with a G4-142
atoms in two-photon resonance with a standing wave of thbackward-wave valve.
microwave field(at frequency 72.6 GHzon the 3®-37P Figure 7 depicts the characteristic traces of the profiles
transition. Earlier we studied this transition in detail in two- of a beam of Rydberg sodium atoms with and without a
photon microwave spectroscopy and double-Stark-resonaneeicrowave field. The frequency of the microwave radiation
experiment$. In addition, other multiphoton resonances was tuned exactly in resonance with the two-photon transi-
were also observed in the given frequency rahge. tion 36P—-37P. The initial profile of the beam was a nearly
The experimental setup is shown schematically in Fig. 6symmetric trapezoidal distribution with a width of about
The 3@ Rydberg state of a sodium atom was excited in al mm, determined by the size of the collimating diaphragms.
three-stage processS33P—-4S-36P by the radiation from The contribution of the measuring device to the width was
three pulsed locked tunable lasers. The parameters of tHess than 0.3 mm. The signal noise was related primarily to
lasers were close to those described in Ref. 4. The lasehe fluctuations in the frequency and amplitude of the laser
beams were matched on dichroic mirrors and were focussemdiation. Also, a slight constant background noise was ob-
on the vacuum chambédrat right angles to the atomic beam served, which was attributed to the charged particles from
2. The sodium atoms were evaporated in the o¥emith the  the magnetic discharge pump which produced the high
beam being formed by two diaphragmsand5, which lim- ~ vacuum, entering into the registration area. Introduction of
ited the initial divergence to aboutx310 3 rad. The Ryd- the microwave field was found to change the profile of the
berg atoms were detected by the means of selective fieldtomic beam considerably, depending on how the standing
ionization® in a pulsed electric field. The produced photo- wave was formed in the waveguide. Figure 7 corresponds to
electrons were gathered at the entrance windows of the chatuning to one of the slopes of the standing waves, where the

7. EXPERIMENT
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gradient force is at its maximum. We also see that the distrithe excited 3@ state of sodium to lower states. But in strong
bution of the Rydberg atoms in the cross section after thenicrowave fields the resonance defect may be balanced by
atoms have gone through the opening in the waveguide dehe dynamic Stark effect, and then the resulting resondnces
pends on the intensity of the microwave field and on thecould drive up the probabilities of radiative transitions, in-
point of interaction. When the minimum of the microwave cluding multiphoton transitions, considerably.
was formed in the opening, the profile of the beam of Ryd-  The detected profiles of a beam of Rydberg sodium at-
berg atoms was found to change insignificantly. oms depicted in Fig. 7, with the atoms passing through a
Analysis of the experimental results suggests two basispatially nonuniform microwave field formed in the wave-
physical effects that determine the change in the profile ofuide, most probably reflect a combination of kinetic effects
the beam of Rydberg atoms when the atoms pass throughand multiphoton radiative quenching of Rydberg states.
nonuniform resonant microwave field. Moreover, strong signals have been detected in the range of
The first, is the mechanical effect produced by the mi-intensities of the microwave field in which the three-level
crowave field. This effect is caused by the gradient force andnodel, for which there is a reliable theory, ceases to be valid.
was discussed above. In our experiment we were able to To observe the kinetic effects more clearly and to com-
deflect the Rydberg atoms to angles comparable to the initiglare the results with the above theory, we need experiments
divergence of the atomic beam. For this reason the atomgt minimum intensities of the microwave field, which re-
passing through the antinodes of the standing microwave af@uires increasing the sensitivity of the device considerably
deflected to larger angles than when passing through th@nd retaining spatial resolution. Nevertheless, our experi-
slopes of the wave. According to the above the@se Sec. Ments have revealed a considerable variation in the profile of
5), the dependence of the angle of deflection of the beam b§ beam of Rydberg atoms in the presence of a spatially non-
the gradient force on the velocity and on the time it takes thé/niform microwave field, which qualitatively supports our
Rydberg atoms to interact with the microwave field compli-picture of resonant scattering of Rydberg atoms. To ensure
cates the pattern of the spatial distribution of the atoms conduantitative agreement the experimental setup must be rede-
siderably. Here, by allowing for the distribution of the atomssigned, and other resonances, where the contribution of ra-
over the longitudinal and transverse velocities we arrive at &liative quenching would be less important, should be found.

complex scattering pattern, and the microwave field may actheoretical calculations that allow for higher-order multi-
as a positive or negative lens. |In addition' the position of thé)hoton interaction must also be done. Estimates show that at

detector also affects the beam profile. high intensities of the microwave field the contribution of the

Actually, the narrowing of the atomic beam observed in@Pove factor may be extremely significant.
Fig. 7 corresponds to the focussing mode. But at the same
time we see that the total number of the Rydberg atoms i§- CONCLUSION

not conserved. This is due either to scattering by very large By using the present method we can study, at least in
angles, as a result of which the signal from the Rydbergrinciple, the scattering of atoms when the interaction in the
atoms falls below the background noise, or to quenching oglectromagnetic fields is coherent, to any photon order. Here
the Rydberg atoms in the microwave field. Such quenchingiot only can we calculate the effect of a force on an indi-
may be caused by ionization coupling with the continuum ofvidual atom but we can also estimate the kinetic characteris-
the type of diffusion ionization" However, in our experi- tics of the atomic beam as a whole. Below we list the pos-
ments the probability of such ionization is negligible sincesible avenues of research.
the ionization threshold corresponds to microwave fields 1.Taking into account a large number of levels in the
whose strength must be higher by a factor of 10 to 100 folimit of an m-photon resonance.
states with such values of 2. Taking into account the perturbations of relaxation
A more likely explanation is the phenomenon of radia-processes for Rydberg states.
tive quenching of Rydberg states in an intense microwave 3. Studying other field configurations. Here a standing
field, related to the transition of the atoms to lower stateswave is not a good example, since for a microwave field the
For states 3B the lifetime of Rydberg atoms, with allow- spatial gradients are low. Note that the results given in this
ance for the decrease in lifetime due to the interaction withpaper(e.g.,(32)) are valid not only for a standing wave but
thermal radiation at liquid nitrogen temperatures is &8 also for a wave of arbitrary spatial configuratitio be sure,
and exceeds, albeit insignificantly, the time it takes thea linearly polarized field Thus, the choice of the appropriate
Rydberg atoms with typical velocities to travel from the sharp spatial nonuniformity in a microwave field with a gra-
point of laser excitation to the second channel multiplier. Indient extending over a region with dimensior&\ could
this case practically all Rydberg atoms are detected. Dependboost the scattering effect considerably.
ing on the principal quantum numbar the lifetime of Ry- 4. Landau—Zener transitions require further study. In
dberg states increases at least ke and for lower levels it  particular, it would be interesting to select models with cor-
decreases according to the same law. This could lead to r@sponding field and atomic configurations, where the
situation in which for essentially lower states not all the Ry-Landau—Zener transitions would have a strong effect on the
dberg atoms that have interacted with microwave radiatiorscattering of atoms by the field.
would be detected. Calculations have shown that at the fre- 5. Various polarization field configurations, possibly in-
guency of the microwave radiation used in the experimentluding a static field, could be used as an instrument to con-
there are no transitions, either resonant or multiphoton, frontrol scattering processes.
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Exact nonrelativistic analytical expressions are derived for dipole two-photon transitions between
arbitrary multiplets of the hydrogen atom and positive hydrogenlike ions. The result is

expressed in terms of a single Gauss hypergeometric function and polynomials whose degrees
increase linearly with the number of nodes of the bound states of the quantum system.

The cross sections of elastic scattering of lightkboyandL-shells of the hydrogen atom are

given as an example. It is demonstrated that by expanding the discrete-spectrum wave functions in
ultraspherical polynomials it is also possible to obtain analytical expressions of the cross
sections of two-photon transitions between states described by the Simons model potential. The
basis consisting of Chebyshev polynomials is shown to be the best expansion basis, and

the coefficients of such an expansion are given for a broad range of parameters of the problem.
Calculation of the polarizability of the &state of the rubidium atom is chosen as an

example. Finally, the results are compared with the experimental data and the theoretical results
of other researchers. @997 American Institute of Physicg® 1997 American Institute

of Physics[S1063-776(97)00403-4

1. INTRODUCTION more convenient to expressE not in terms of the tensor

) 1 . . a; but in terms of the scalar and tensor polarizabilities pro-
As is knovyn, the matrlx element€;, of the dipole ten- _portional to the components of this tensor.

sor of scattering of light by an atom can be expressed in qrogenlike and Rydberg states are also degenerate in

terms of the wave functions of the initia|1)) and final | Generally speaking, the contribution to the shift of an

|2) states as follows: atomic level is provided not only by the terms @f, propor-

tional to the square of the field strength but also by terms

Cik_<2|diGE1+“’1dk+deEl_“’Zdi|l>' @) linear in Z. It ig the linear terms that cgompletely detgrmine

where thed; are the components of the dipole-interactionAE |n.the static [imit. Howeyer, in the range of OP“C"?" fre-
operator,G is the atomic Green’s functior, is the energy ~duenciesw such terms provide only a small contribution to

of the initial level, andw , are the energies of the absorbed the Stark effect.In the presence of a field so strong that the
and scattered photons, 'respective{lylere and in what fol- fine structure of_the levels can be |gnored, _the proble_m_ can,
lows the atomic system of units is employedhe dipole generally speaking, bg reduced to dlagonaI|Z|rlg the tr!d|ago-
approximation is applicable in studies of the interaction be."8! duasienergy matrix of rank—[M|, wheren is the prin-
tween bound atomic states and an electromagnetic wave bgiPal quantum number, with elements proportionallio(see

cause the linear dimensionf atoms are small compared to R€f- 4. In particular cases of fields that do not lift the de-
the wavelength., i.e.,r<\. In the optical range this is true 9€neracy completely the calculation AE is simpler. For

for states whose principal quantum numisedoes not ex- instance, in linearly polarized fields the level parity is con-
ceed 30(see Ref. 2 served and the quasienergy matrix can be expanded in a di-
The Cy can be used to express the probabilities of elas/€Ct sum of matrices that mix states of fixed pafity.

tic and inelastic scattering of light and the shifts of energy ~ TNe Situation becomes more complicated when we wish
levels in an electromagnetic field. For instance, for an isol0 describe the Stark effect for an atomic multiplet. The rank

lated atomic level, the tens@;, degenerates into the polar- of the matrix that must be diagonalized depends on the fre-

izability tensora;, , related to the level shifAE as follows: ~ duency and strength of the field and cannot be specified in
advance. It is determined by the number of levels for which

aix i éx the shift of a separate level is on the order of the width of the
AE= T (2 multiplet. For the excited states of most atoms in real fields
all levels belonging to a multiplet are mixed by the field,
where theZ; are the components of the electric field vector.while different multiplets can be assumed isolated.
The atomic states with positive orbital quantum numbders Since in all cases except that of a static field the calcu-
cannot be isolated and are degenerate at leddt,ithe pro- lation of the scattering matrix is a mandatory stage in study-
jection of the total angular momentudn The dependence of ing level shifts, probabilities of elastic and Raman scattering
Cik on bothM and the indiced and k can be found in of light, two-photon ionization, and other two-photon pro-
general form via the Wigner—Eckart theorem, which makesesses, the problem has attracted great interest and many
it possible to determine the dependenceA& on magnetic methods have been employed for its solution. Time-
quantum number$Here, for an isolated atom, it has proved dependent perturbation theory in the Hartree—Fock method,
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many-particle perturbation theofyand the method of ran- 2. EXACT ANALYTICAL EXPRESSIONS FOR THE

dom phase with exchangare the methods commonly used COMPONENTS OF THE TENSOR FOR SCATTERING OF

for studying ground states of complex atoms. However!GHT BY HYDROGEN LEVELS

many difficulties of a technical nature are encountered when The standard methods of the theory of angular
one attempt_s to apply these methods to excited degene,rew?omenturﬁ“ make it possible to integrate ifl) over the
states. In this case the use of the Coulomb approximatiog,y jar variables and to find the dependenc€gfon the
proves to be justified from the physical standpoint. However,gnetic quantum numbers of the initial, virtual, and final
even in this approximation exact analytical expressions fog;onic statesN1, m, andM , respectively. By applying the
the elements of the scattering matrix have only been Obtai”eﬁ/igner—Eckart theorem t@l) we can expres€;, in terms

for the ground and first excited states of the hydrogenyt clebsch—Gordan coefficients and the reduced

Sturm expansion of the Green’s function is possible only if ) _

the one-photon ionization channel is clode& method G ()M Jo1 3y 1 J
based on solving an inhomogeneous differential equétion W=D M g m/|M g M;
uses the spherical symmetry of tiSestate explicitly. But
even in this case the considerable technical difficulties in- X(2||dGEl+w1d+dGErwldnl)’ €
volved allow only the two lowest states to be studied. Thewhereqi =0+ 1. Calculation of(3) has been done for vari-
use of the spectral expansion and the integrap,s angular-momentum coupling schemes and presents no
representatiol! of the Green’s function leads to cumber- difficulties (see, e.g., Refs. 3 and J18n what follows we
some numerical calculations, whose complexity rapidly in-yill need the explicit expression fd€; in the LS coupling

creases wit. scheme in terms of the radial composite matrix elenient
If nis greater than 2, calculatinG;, for an arbitrary  gnd the Racah coefficien®:

frequencyw of the external field requires additional approxi- )
i . ) J 1
mations even for levels of the hydrogen atom and hydrogen Cie=(— 1)) M-m-j+2s-L-L;
k™

like ions. Some researchers have used the expansi@y,of M g m
in inverse powers ofv (see Ref. 1], but this resulted in .
obtaining only a few terms of the expansion. The slow con- x( J 1 (2] + D)[(23+1)(23,+1)]*2
vergence of such an expansion and the nonanalytic nature of M g« M
the behavior of the imaginary part €, limit the applica- . : .
bility of this approximation. XWLSSHWIL 13351 maok-1max
The semiclassical expansion in inverse powers of the X[T(nL,v, I,nL)+T(nL,v 1,n;L1)]. (4)

principal quantum numben (see Ref. 12is also weakly
convergent. Technical difficulties limit the accuracy of this
expansion to terms of order A7, and the fact that the level

HerelL, |, andL; are, respectively, the orbital quantum num-
bers of the initial, virtual, and final statels;,, is the largest

dth | vtic in th kes it i il of the numberd. andl; Sis the spin quantum number; the
Wi t. IS nonana ytic In the energy makes 'F Impossible Oetfective principal quantum number of the virtual level is
obtain the imaginary part AAE in this approximation. defined as

Methods based on summing a finite number of oscillator
strengths calculated in the Kramer approximaltiaiso have v, _=[2(-E*xw)]"} %)
limited applicability. Since in this case the contribution of
the continuous spectrum te;, is completely ignored, the
approximation is inapplicable for frequencies exceeding
the ionization potential of the level being excited. Here, as  T(n¢L¢ L) =(nL|r3g,(v,r,r)r3nLy), (6)
shown in Ref. 3, for ground atomic states the virtual transi-

. . ) \?/here(nL| and|n¢L¢) are the radial parts of the wave func-
m m — 0
tions to the continuous spectrum determine up to 50 90 /° Yons of the initial and final atomic states, agdv,r,r,) is

. . . "the radial part of the Green'’s function. Calculatingonsti-
varies dramatically, and for values of the orbital quantumy +os the main difficulty in the problem

numberl greater_tha}n u_nity it can ref_;lch considerable values The general algorithm for calculating two-photon dipole

even when the ionization channel is closed. On the othef,qja| matrix elements for hydrogen states can be found in
hand, the approximation also becomes invalid for low fre-get 15 Reasoning along similar lines, we arrive at an ex-
quenciesw. The thing is that in the Kramer approximation yression for the elements of the scattering matrix. We sub-
the oscillator strengths do not depend loriThis makes it gtjtyte the Sturm representation of the radial part of the Cou-

impossible to allow for the mixing of levels that are degen-jomb Green’s functiohin terms of the Laguerre polynomials
erate inl, and this mixing cannot be ignored for low frequen- L2 Y in (6) (see Ref. 1§

and the perturbation-theory radial composite matrix element
is given by

ciesw.
The situation requires developing new methods for ob- 4. & (rrp'exp(—r/v—rylv)
taining exact analytical expressions o, . The present pa- Gi(w.r.ry) = v ,Z‘o Kl(k+2l+ 1) (k+1+1—v)
per is devoted to solving this problem in the nonrelativistic
dipole approximation. XLt 2r/v)Lg T2, /), (7
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and the explicit expression for the bound-state wave func- m

tion, Rn=I1 (k+21+2+9), m=1,...j, Ry=1, (14
L+1 r=0
|nL>=n,_—+2[(n+L)!(n—L—1)!]1’2 we find that
i
n-L-1
—=2r/v)” Pi: (k)= b (X, Vi Xs,Yi) Ry - 15
% 2 ( v) (8) |f() mE:O m(lyl fyf) m ( )

a=o (n—-L-1-a)!2L+1+a)!a!"’
Since the system of polynomia{44) is not orthogonal, we
The matrix element6) can be expressed in terms of the cannot obtain closed expressions for the coefficients
Laplace transform fol.g"“*. Using the expression for a p_(x. y. x;,y) of the expansior(15). Such an expansion
Laplace transform in terms of the hypergeometric functfon, can be done by standard methods: either by Horner's method

we get via successive division d?;;(k) by R, (m=0, ... j), or by
2 (24 k+1)! solving a system of +1 linear equation obtained by com-
T(n¢Ls,vl,nL))=C;Cs >, TN R R paring the coefficients of like powers of the variaklen the
=o kl(k+1+1-v) right- and left-hand sides of E¢15). The fact that the lead-
v—n; v—n;¥ ing coefficients of all the polynomials ifl4) are equal to
unity makes it possible to construct a more economical re-
van vy cursion procedure for obtaining the,(X; ,Yi,Xs,Ys) coeffi-
X1(niL;,v,IK)I(n¢L¢,v,1K). (9)  cients, a generalization of the moving band techni(see
Ref. 17, Chap. lLto the case of asymmetric functions. If we
Here we have introduced the following notation: subtract fromP;¢(k) the polynomialR; with a weight equal

to the leading coefficient dP;;(k), the remainder is a poly-

o 1/2 O\ I+Li+4
i=[(nit+L;)! (ni—li— DI v, ' (10)  homial of degreg — 1. By recursively repeating this proce-
nTSITY 21+ vty dure with the remainders— 1 times we arrive at the system
of coefficientsb,,. This algorithm consists only of subtrac-
H(niLi,v,1k) tion of polynomials with integral coefficients, is free from
ni-Li-1 (I+L+a+3)! numerical errors, and can easily be programmed.
= Now we allow for the fact that
a=0 (ni—li—a—l)!(ZLi-i—a—l—l)!a!
(k+21+1)'Ry=(k+ 2l +m+1)!, (16)
_ a 2n;:
X F —k,I—Li—a—2,2|+2,—'}, (11 and reducd9) to
v+n; v—N;

j
whereF is the Gauss hypergeometric function, which inour  T(n.L; ,vI,n,L;)=C.C >, bi | ¢ m(Xi,Vi Xs,Ys)
case is a finite polynomial in the variable,Z(v— n;) whose m=0 "’

degree is the smaller of the numbé&randL;— 1+ a+2. At “ (214 k414 m)!
the same timeF can be considered a polynomial of degree % i
L;+a+2—1 in the parametek. k=0 K!(k+I+1-v)
This property makes it possible to analytically continue e vk
T(n;L;,vl,niL;) into the region of imaginary, where the ! f (17)
expansion9) diverges. Physically this region corresponds to vHn; v+ng

an open channel of one-photon ionization of the initial
atomic state. Let us writg(n;L;,»,lk) in the form of a poly-
nomial ij_i Yi(k) of the variablek with coefficients that de-

Since the inner sum with respectkocan be expressed by a
hypergeometric serie§,

o)

k

pend on E 2l+k+1+m)! {v—n; v—n;
n v =0 Kl(k+I+1—v) | v+n; v+n;
|
X; = , .= . 12
" v—n, Yi v+n; (12 (21+1+m)!
: . - , , =———Fq2l+m+1]+1-p,l

The degreg; of this polynomial is determined by the leading [+1-v
term in the expansion ofF with the maximum value .
=i —Li—1 and isj;=n;+ 1—1, with the result that the +2-y,—0 —|, (18)
degreej of the productP;;(k) of the polynomialsQ; and v+n; v+ng

Q: is determined by the total number of nodes of the wavaye see that Eq(17) constitutes a finite sum of contiguous
functions of the initial and final states, andn, : Gauss hypergeometric functions:

j=ni+n +2-2I; (13 J
e T(nsLy, vl ,niLi):mE:O di f.m(XiLYi o Xe Y Fig(m).

the P;; (k) are polynomials of the variablewith coefficients (19

that depend on the paramet&sy;, X;, andy;. Expanding
Pi:(k) in the polynomials Here the following notation has been introduced:
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di | f.m(Xi Vi XsY5)

(21 +1+m)!
icfﬁbi,l,ﬁm(xi Yi o Xe, Y1),
(20)
v—n; v—nN;
Fir(M) =oFy| 20+ m+ 11 +1= w1 +2—p o,

The algorithm not only makes it possible to describe the

X +x%F(2)

1
-5+ Sy) + 14x2(1—20y) + 4003y

7
x| |55y +16x(—1+20y)— 728 +y |+ x3F(3)

X[6(1—20y)+576xy]+ 168*F(4)(—1+y), (21)

behavior of the scattering tensor in the region of analyticityT(Zp’VO’Zp)

but also gives the correct position of the poles:1+n+1
forn=0, 1,..., o,

The above algorithm for deriving analytical expressions
for the components of the scattering tensor in terms of hy-
pergeometric functions contains only the procedures of di-
viding polynomials with rational coefficients and collecting
like terms in the variableg andy, which means that it can
easily be programmed. The program implementing the algo-
rithm contains only integer operations and is free from nu-
merical errors.

By way of an example we give the explicit expressions
for the diagonal (in the principal quantum numbers:
Xj=X;=X andy;=y;=Yy) transitions from the ground and

273

=F(0 ! +10x2 160+160(4 256¢°+ >12
=F(0)] 5 =x e e
+xF(1)(1—23x—208*— 9283+ 2048*— 179X5)

13
+ 16x2F(2)(E— 16x+116x2— 3683+ 432x4)

19
+ 16x3F(3)(§—98x+ 496¢%— 824x°

+ 160x*F (4)(3— 32x+ 84x?) + 640x°F (5) (2 — 11x)

first excited states of the hydrogen atom:

T(1s,v1,1s)
2832

=F(0)(1—4x+4x%) +xF(1)(4—9x) +5x%F(2),

T(2s,v1,2)
211335

+2x2

1/5—-2y+5y? x(—1/5+3y—10y?)
= F(O)[ 5 + >

X

1
£~ 6y+ 300y? | +16x3y(1—10y) + 160<4y2}

1/5—3y+10y?

5 +x(— 9/10+ 26y — 130y?)

+xF(1)[

—56x%y(1— 10y) — 800x3y?

1
+2x2F(2)[<Z—7y

—64x3yF(3)

+35y2) +32xy(1—10y) + 728*+y?

X (1— 10y +48xy) + 336x*F (4)y?,

T(2p,v1,%)
2193%5
1-5y x(—3+2
=F(0)[ 16y+ ( 2 Oy)+3x2

X (1—10y)+4x3(— 1+ 20y) — 80x“y

+xF(1) +13x

35
Zy
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T(2p1V112p) 1 2 3 4
W—F(O) 1—6—X+6X —16x°+ 16x

+xF(1)(1—13x+56x%—80x%)

738
+x%F(2)| 7—64x+ z

24x\  168*F(4)
+243F(3)| 1— — |+ ——,
5 5
T(2p,v2, 1
—(2f2;z53,2p)=3F(0)(§—x+2x2 +xF(1)(3—13x)

+7x°F(2).

In the formal static limitv=n; (+1; ;+1 the initial se-
ries (17) can have only one first-order polemt =1-1; ¢,
which is possible only ifAl=0,—1. In all other casesl?)
tends to a finite limit. Clearly, in the finite sums {@1) all
the termsx] ; containing poles of orders higher than (i)
cancel out. For instance, fai(1s,v1,1s) there exists a finite
static limit, T(1s,v1,1s)=27/4, which yields a correct value
for the static polarizability of the ground state of the hydro-
gen atom:as= —9/2.

The above algorithm makes it possible to express the
tensor for scattering of light by any hydrogenlike atomic
state in terms of a finite sum of contiguous Gauss hypergeo-
metric functions. The three-term Kummer recursion relations
allow any contiguous hypergeometric functions to be re-
duced to two functions. The fact that the second and third
arguments inF;;(m) differ by unity makes it possible to
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reduce(20) to a single hypergeometric function and severalproperty simplifies both the summation and averaging over

elementary functions. Let us prove this assertion.
Applying the Kummer relation

F(a,b,c,z)+bF(a,b+1,c,2)

F(at+1b,c,z2)= a

(22

to F;(m) and allowing for the fact thaF(a,b,b,z) is an
elementary function,

F(a,b,b,z)=(1-2)"?8, (23
we find that
l+m+1+v l+1—v
. - @@ _ T A21+2+m
Fir(m)= o orm FM= D+ 555 :
(24)
with
+n)(v+n
o (ZEM Y 5

2v(n;+ng)

By applying (24) successively we can expreBs(m) with
an arbitrarym and hence the sui20) in terms ofF;;(0) and
an elementary function:

_|+m—1+v
Fif(m)_umFif(o)
p,Q2+2+m-i
(I+1- V)E 2l¥1+m—j (26)
where
i-1
[+j+v— k
1;[ 2I+1+]— @7)

To illustrate the above ideas, we give two examples of

the atomic multiplet components and the diagonalization of
the quasienergy matrix.

According to the selection rules in the dipole approxima-
tion, the angular momenturh of the virtual state can be
L;, Li+1, orL;—1. HenceF;;(0) can be expressed in terms
of the angular quantum number of the initial state as follows:

Fii(0)=F(2L;+4L;+2—v,L;+3—-7,2),
Fit(0)=

FE(O): F(2L| ,Li_

F(2Li+2L+1—»,Li+2—-v,2), (29

v,Li+1-v,2).

Let us expres§;;(0) in terms ofF;;(0). Thereduction
of the first parameter in the functiof;;(0) to the value
2L;+2 is done by applying the transformati@?) twice. A
simultaneous decrease of the second and third parameters by
unity can be achieved by a single Kummer transformation:

c[F(a,b—1,,2)—(1-2)F(a,b,c,2)]

F(a,b,c+12)= 2(a—c)

(30

In view of the fact that we have=b in (29), the function
F(a,b,c,z) is, in accordance witli23), an elementary func-
tion, with the result that

radial composite matrix elements expressed in terms of the

single hypergeometric functioR(0):
T(1s,v1,1s)
B 3( 2v
T2 1+

(7,, ~18v+12)F(0)+(2— »)[(3v—8)Q*+4Q5]

0 _ Li+2 14
i1(0) 2L;+3
Li+1+w»
2Li+3 ' 2Li+2_
x| QT S [Q 2 Fy(0)]).
(31
Applying the transformation
F(a—1b,c,2)
bF(a,b+1,c,z)/z—(c—b—a)F(a,b,c,z
_bF( )z ( )F( ) @

c—a

to F;;(0) twice and allowing for the fact that(a,b
+ 1,c,2) is an elementary function, we can reduce the first
parameter irF;; (0) to 2L;+2. The Kummer transformation

3 ,
v—1)(2—v
( X ) F(a,b,c—1,2)
27158 [ 2p \ 1
T(2p,v2,2p)= Fo—272\ 24 _bF(a,b+1c,2)/z+(c—b-1)F(a,b,c,2) 33
c—a
(49v°—162v+ 324)F(0)
X 24 +(3-v) makes it possible to expre$s;(0) in terms ofF;;(0) as
(5v—24Q°  (3v—3207 follows:
Vv— Vv—
X 3 Q + 4 Q ] (28) QZL
Fi:(0)= (2L Q-Li+v)
The relationships between contiguous hypergeometric
functions can be used to prove a more general assertion: not 22L(2L;+1)
only can an individual component of the tensor for scattering C(Li—v)(Li+r+1) Fir(0). (34)
of light by an atomic shell be expressed in terms of a single
hypergeometric function but so can the entire tensor. Thisn particular, forP-states we have
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3—v 2+v XL 2riv)L2r 1),
Fif(0)=—%—| Q%+ ——(Q"=Fi(0)) |, , o (Zrivbic(zr/v) o
(35) whenn, is the radial quantum number. The effective princi-
2 67 pal quantum number of a bound staig,;, is defined as
Fif(0)= —=(2Q—1+v)— ————5———Fi:(0). v, ¢=(—2E; 1) "2 and the parametex is a function of the
v+1 (1-v)(2+v) ’ ' .
energyE of the optical electron and the angular quantum
numberl. The parameter is selected in such a way that the
experimentally established values of the bound-state energies
coincide with the poles of the Green’s function. The neces-
sary condition for the Simons model-potential method to be
applicable in calculating the photoprocess probabilities is the
When the one-electron approximation can be used to desmoothness of the functian(E):
scribe the behavior of the optical electron of a complex atom,
we can employ the model-potential method to construct the | —
wave function and the Green’s function. The only method
that leads to analytical results and is therefore most ofteiSubstituting(37) into (6), we arrive at the generalized ex-
used in ?rnultiphoton calculations is that of the Simons modepressiong9)—(11) for the case of complex atoms:
potential

3. ANALYTICAL EXPRESSIONS FOR THE ELEMENTS OF
THE TENSOR FOR SCATTERING OF LIGHT BY
HYDROGENLIKE STATES OF COMPLEX ATOMS

<1

T(Vf)\f,V)\,Vi)\i)
Z B/(E)P
V(r)=—7+2I I(rz) 3 (36) “ F(2N+k+2)!

P& K (K+HN+1—v)

Here B|(E) is a parameter determined from the condition

that the poles of the Green’s function and the experimental
spectrum of the atom coincide, aij is the projection op-

erator on the subspace of angular-momentum eigenfunctions
with a givenl. Like as any one-electron method, it incor- v ore
rectly describes the atomic-core region, where correlations

V—Vi V— V¢ K
|(Vi)\i,V,)\k)l(Vf)\f,V;)\k)u (38)

v+uv v+ug

have a strong effect. However, in calculating the probability . [T(nj+Li+1)ng! 1 [ wny |2 A+
of processes involving photons the dipole-interaction opera- i_ni}\i+2V}\i+1/2F(2)\i+2) v+n; '
tor d reduces the relative contribution of this region to the
integral (6). I(ni\;,v,AK)
The Simons potential is characterized by an incorrect .

asymptotic behavior in the opposite limit of large values of  _ < F(N+Nj+at4)
r, too. However, the wave functions and the Green’s func- a=o'(ni—a)l'(2\i+a+2)! a!
tion in the region of large are exponentially small. In ad- ) )

. . . —2v a n:
d|t|(_)n, the nonlocgl char_acter of the pot_entlal_lr_w the angular x( Fl kA —A—a—2,20+2, | (39)
variables makes it possible to offset this deficiency at least vt v—n;

partially by an appropriate choice of the paramete/tE) A particular case of(37) and (38) for transitions that are

(see Ref. B As numero.us_ calculatlons_have shown, there a.r iagonal in the principal quantum number was obtained by
a broad range of radiation frequencies and level energies  nakov and Ovsiannikol

within which photoprocesses involving excited states of at- The expansion(37) converges only for reab, which

oms of alkali and alkali-earth metals, noble gases, and othgf, . o standpoint of physics means that the one-photon

E|em.ents are descrllbed fairly wel! with such a pq'genhal. Mionization channel is closed. It is impossible to directly apply
addition, the potential also describes phototransitions frorrghe above algorithm for analytic continuation of

the ground states of atoms with one valence electron. Thi§(n L,.vl.nl;) to the imaginary » region, since
makes it possible to use the approximation with the Simon's_.[_fkf)’\_’)\.'_'a_2 A+2, 20, /(v—n)] is not ,a finite
] | ’ 1 I 1

model potential to calculate the tensor for scattering of Iightpolynomial of variablek for noninteger values of the param-

by aT;:]ompIex atforﬁ.t_ N d the G ‘s funcii eter \;—\. For the analytic continuation algorithm to be-
e wave function|y\) an € Lreens unclion  .ome applicable we must redutén;\;,v,Ak) with nonin-

g,(v,r,r,) of an optical electron in this potential dre tegerh and, to a sum of polynomialQJ*ﬁ Yi(k). To this end

A+1
ly\) = Vx+2[(Vi+)\)! n,1]%2 we expand "2~ in integer powers of the variable
5max
Mo _or\e 1 r"i+2‘”=2 hg()\—)\i)r's. (40
X2 (37) o=0
a=o \ 7 n!2\N+1+a)!la! . . L
A function can be expanded in power series in orthogo-
w \ nal Jacobi polynomials in an infinite number of ways, with
a(vrry) = 4 D (rry) exp(—r/v—ry/v) the various series differing by the weight function with re-
MUV ) & K (k20 DN (KN +1-v) spect to which orthogonality is established. By collecting
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terms with equal powers af we arrive at the power expan-
sions(40). For 8, all these expansions are exact and
equivalent. But if the purpose of the expansion is to attain an
accuracy that is fixed in a finite interval with a minimum
number 5,2 Of expansion terms, the convergence varies.
Since the error in calculating the cross section of a photopro-
cess involving a complex atom is in any case bounded below
by the one-electron approximation of the model potential,
there is no need to strive for absolute accuracy in the expan-
sion. It is precisely this situation that we are studying here.

The expansion basis must be selected so as to ensure the
most economicalfor the given accuragydescription of the
integrand in(6) in the interval O>r= v of variation of vari-
abler, the interval that provides the main contribution to the
integral. Generally speaking, the local Taylor and Maclaurin
expgnsmns _are extremely 'nefﬂC'_ent here, smc_e they US? OnlIE"IG. 1. The energy dependence of the parametes$ the model potential
the information about the behavior of a function at a singlésor the rubidium atom. The curvels-5 correspond t@-, py,-, Py d-» and
point. Much more effective is the procedure of expanding inf-states. Energies are measured in units of triThe given values o, are
orthogonal polynomials, and from the overall point of view normalized by the condition\;=A—a,, where a,=038, a, =13,
the best is the expansion in ultraspherical polynontials. ~ @py,~1-2:39=1.68, anda;=2.98.

The contributions of the different parts of the domain of
integration in(6) differ for different values of the parameters
of the problem. This fact can be taken into account by an
appropriate choice of the weight factors in the orthogonal
expansion and, hence, of the form of the ultraspherical . i o
polynomial” The basis consisting of Chebyshev polynomi- WhereBm(Xi.yi ,X;,yy) is simply a linear combination of the
als T,(x) ensures a uniform estimate for the relative maxi-duantitiesbn(x;,yi,xs,ys) determined earlier, with weights
mum deviationA ., of the approximation polynomial from defined by the coefficients of the approximati@):
the expanded function in the entire interval of values .ot 3
is this property of Chebyshev polynomials that determines  Bpn(Xi,Yi . X¢.Ys)= E hs(A—\;)
their advantage in approximating a function over a broad 0=0
interval of variation of the parameters of the problem. Such a S
choice of the basis makes it possible to determine the form of X 2 h(;l()\—)\f)bm(xi VYioXi,Y5)-
the power expansion irrespective of the type of atom and the =0
field parameters. Here the relative ertorin calculating the
integral cannot exceed . In the interval—1<r<1 the
polynomials T (x) are determined by the recurrence rela-
tions

0.1+

j

Pif(k):mZ:O Bm(Xi Vi X, Y1) Rm, (44)

(45)

Thus, the problem of calculating the elements of the ten-
sor for scattering of light by a complex atom amounts to
determining the energy dependence of the parameters
A, andX¢ and calculating the coefficientss(A —\; 1+ 2).
The first part of this problem for each atom can easily be
solved by approximating the values ®fcalculated from the
The coefficientsa, of the expansion of a functiofi(x) in e.xperlmental spectrurti. By way of an example, Fig. 1 de-

. ; . picts the energy dependence of theoarameters for the ru-
Chebyshev polynomials are given by the following expres- .. S ; :
sion: bidium atom, which is used below in calculations.

The solution of the second part of the problem is inde-

T 1(X) =2XTy(X) — Ty 1(X),

To(xX)=1, Ti(X)=x. (41

[t 12 pendent of the features of a specific atom. Table | lists the
= f_l FO) T (1= x%) 7 dx. (42)  values of the coefficients(p) of the lowest-order terms in
the expansion and Table Il the values of the coefficients of
Substituting(40) into (6) we get the highest-order terms, which ensure an approximation ac-
L(ohs v k) curacy A ma= 104 for 0<r<40. These data make it pos-
1T sible to calculate the probabilities of photoprocesses in
5i Nri T(NEN +at4) which v, v;s, Vs40 hold . The intgryal of variation of the
=> hs(A\—=\) >, , parameterp describes all the transitions between the levels
°o=0 a=o I'(ni—e)l(2\i+at2)al of alkali and alkali-earth metals and noble gases. Here the
—2p\@ 2n; approximations that vanish to the specified accuracy are dis-
o Fl -k, —d—a,2\+ 2’v—_ni : (43)  carded, an@/n stands forcx 107", Table | and Il show that,

Since now the second parameterFns a negative integer,

we have an expression similar (b5):
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TABLE I.

o
p 0 1 2 3 4 5 6 7 8
0.6 1 4 -7 8.7 -8 4.541 —1.788 0.506 —0.1059
07 -2 35 -7 6.5 —-4.9 2.83 —1.09 0.309 —0.06482
08 -1 21 -35 2.8 —2.7 15 —0.59 0.167  —0.03455
0.9 26 —1.227 1.339 -0.99 0.594 —0.233 0.06621 —0.01385
1.0 1
11 0.1 0.5 0.95 -0.733 0.67 —0.3712 0.145  —0.04077 0.008526
1.2 0.5 0.2 14 —1464 1.07 —0.595 0.225 —0.0629 0.01308
1.3 -04 1.2 1.2 —1.272 1.15 —0.64 0.253 —0.0705 0.0147
1.4 0.05 0.31 1.08 -0.6713 0.344 -0.1241 0.3142 —0.00569 0.7485/4
15 0.1 0.3 0.9655—0.3927 0.14148 —0.03759 0.006787—8.585/4 0.7659/4
1.6 -0.027 0.274  0.903 —0.2188 0.05504 —0.009698 0.001162—-0.9382/4  0.502/5
17 0.033 0.215  0.9106-0.1463 0.02905 —0.004056  0.3778/3 —0.2293/4  0.8688/6
1.8 0.041 0.16 0.9234-0.8634 0.01314 —0.001406 0.9748/4 —0.4156/5 0.9878/7
1.9 -0.038 0.12 0.9851—-0.02804  0.002309-0.1252/3 0.3728/5 —0.4612/7
2.0 1
21 —0.0089 —0.11 1.056 0.03913-0.00291 0.1528/3 0.445/5 0.548/7
2.2 0.085 —-0.18 1.089 0.09076—0.00634 0.3261/3 0.947/5 0.1153/7
2.3 0.074 -0.27 1.092 0.1561 —0.0101 0.5089/3 0.146/4 0.1772/6
2.4 0.438 —0.36 1.063 0.2362 —0.01392 0.6851/3 0.195/4 0.2347/6
2.5 0.01 -0.29 0.993 0.3315 —0.01736 0.8334/3 0.234/4 0.2806/6
26 —-002 -04 0.883 0.4421 —0.01985 0.9261/3 0.257/4 0.3061/6
2.7 173 -05 0.746 0.5667 —0.02056 0.9294/3 0.255/4 0.3013/6
2.8 095 -05 0.6835 0.6572 —0.01173 0.3128/3 0.391/5
2.9 039 -01 0.3815 0.8213 —0.008 0.2049/3 0.252/5
3.0 1
3.1 —0.096 0.8 —0.708 1.243 0.008875—0.9342/4
32 -04 0.8 —0.936 1.1375 0.03685 —0.8004/3 0.9357/5
33 -1 11 —1.483 1.547 0.07107 —0.001431  0.1638/4
3.4 1 1.8 —1.893 1.687 0.1205 —0.002209 0.2471/4
35 —-101 5 —2.451 1.766 0.1894 —0.003086 0.3366/4
36 —-11 3 —2.821 1.763 0.2825 —0.003948 0.4186/4

error estimate that is uniform over the entire approximation
interval, does not provide a correct description of the prob-
accuracy is ensured by a small number of terms With5.  lem. For different parameter intervals the range of values of
For & small and highly excited states, the numldgy, of  r providing the greatest contribution {6) is different. Here
terms in(40) that must be taken into account increases, andhe basis of Jacobi polynomials with asymmetric weight fac-
one is forced to allow for the leading terms in the expansiortors emphasizing such a range of valuesrolfias proved
(Table 1), making the use of the method in calculating themore economical than that of ultraspherical polynomials.
tensor of scattering of light much more complicated. Naturally, with this choice of basis, the expansi@) be-

In this case the basis of ultraspherical polynomials andgcomes more economical but loses in generality. There exists
in particular, of Chebyshev polynomials, which yields anan important limit of a strong asymmetry of the integrand for

for v~10°, and for an arbitrary it also rapidly converges
for p>1.5. In this case, even whenis large, the required

TABLE II.

o
p 9 10 11 12 13 14 15 16 17
0.6 0.01668 —0.2/2 0.183/3 —0.128/4 0.677/6 —0.267/7 0.7567/9—0.15/10 0.172/12
0.7 0.01016 —0.12/2 0.111/3 —0.778/5 0.412/6 —0.162/7 0.46/9 —0.89/11 0.104/12
0.8 0.00545 —0.65/3 0.6/4 —0.417/5 0.221/6 —0.869/8 0.2465/9—0.48/11 0.56/13
0.9 0.00218 —0.26/3 0.238/4 —0.166/5 0.88/7 —0.346/8 0.982/10—0.19/11 0.223/13
1.0
1.1 -0.00134 0.16/3 —0.146/4 0.1017/5 —0.54/7 0.2121/8 —0.6/11 0.116/11 —0.14/13
1.2 —-0.00205 0.245/3-0.224/4 0.156/5 —0.825/7 0.3247/8—-0.92/10 0.178/11-0.21/13
1.3 -0.0023 0.275/3—-0.251/4  0.175/5 —0.235/7 0.3648/8—0.103/9 0.2/11 —0.23/13
1.4 -0.748/3 0.505/5—-0.256/6  0.913/5 —0.217/9 0.307/11-0.2/13
15 —0.479/5 0.205/6 —0.574/8  0.943/10 —0.7/12
1.6 —0.17/6 0.332/8 —0.28/10
1.7 —-0.19/7 0.173/9
1.8 —-0.1/8
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which the Chebyshev-polynomial basis can be used for large 18786 _ (. 03235+ 0.1335 +0.91962—0.038 3
values ofv and small values gp as well.

As shown in Ref. 10, the range of valuesrofontribut- +0.0088 *~0.00015°—0.0003°
ing to the integral6) narrows as the energy of bound atomic +1.6X10 4 7—2.9x10 5r8+4.8x 10 6r°.
states and the frequency of the electromagnetic wave grow.
Since the model potential provides an incorrect description (47)

of the behavior of wave functions for<r., wherer:isthe  Sincewr of the initial and virtual stateéand hence the range
atomic-core radius, this fact imposes restrictions on the apef values ofr contributing to the integral6)) is of order 2,
plicability of the Simons model potentigand hence of the there is no need to include i#7) the highest-order terms in
method to calculations of the tensor for scattering of elec- 5 from Tables | and Il. The discarded terms contribute a
tromagnetic radiation by Rydberg states. For highly excitedelative correction less than 16. Plugging (47) into (45)
states the range of applicability of the dipole approximationand allowing for(20), we obtainass= 707 a.u., which is in
narrows, too. All this hinders theoretical studies of the inter-good agreement with other theoreticatsg=692 a.u.; see
action of light with such levels. At the same time, within the Ref. 3 and experimental dss=769+61 a.u.; see Ref. 18
range of applicability of the method for states with principal values.
quantum numben=10', the number of terms in the expan-
sion (40) required to ensure a given accuracy decreases WithA. |. Akhiezer and V. B. BerestetskiQuantum Electrodynamic&Viley,
increasmgni’f and _and Wit_h narrowing approximation Zu?VX.Ylgrrle(cgé?;ﬁ-enski Opt. Spektrosk77, 559 (1994 [Opt. Spectrosc.
range. This makes it possible to use the Chebyshev-77 494(1994].
polynomial basis in calculations of the tensor of scattering of>L. P. Rapoport, B. A. Zon, and N. L. ManakoVhe Theory of Multipho-
light by complex atoms in these cases even wpémsmall. ~ton Processes in Atoniin Russiaf, Atomizdat, Moscow(1978.

. . V. I. Ritus, Zh. Esp. Teor. Fiz.51, 1544(1966 [Sov. Phys. JETR4,

Here is an example that illustrates how the method can 1041 (1967].
be used to calculate the scattering tensor. Let us compute th®, epstein, J. Chem. Phys3, 1881(1970.
shift of the ground S-state of the rubidium atom at the °H.P.Kelly, Phys. Rev182 84 (1969. .
frequencyw= 9434 cni'® of a neodymium laser, which has 'M: Ya. Amusya, N. A. Cherpakov, and S. G. Shapiro, ZIksf: Teor.
. . . Fiz. 63, 889(1972 [Sov. Phys. JETR6, 468 (1973].

recently been studied both theoretically and experi-sy; ‘Gayila, Phys. Revi63 147 (1967.
mentally!® Since the detuning to the nearest level exceeds*M. Marinescu, H. R. Sadeghpoure, and A. Dalgarno, Phys. Re¢9A
0.1 a.u., the isolated-level approximation is valid for real la- 5103 (1994; V. L. Yakhontov and K. Jungmann, irEurophys. Conf.
ser fields, with the result that, in accordance wif, the AAPStracts(1966, p. 74.

. L . . 1ON. L. Manakov and V. D. Ovsiannikov, J. Phys.1®, 569(1976.
polarizability ass can be expressed in terms of the radialiiy | manakov, V. A. Sviridov, and A. G. Rashtan. Zh. Eksp. Teor. Fiz.

matrix elementg6) as follows: 95, 790 (1989 [Sov. Phys. JET®S8, 451 (1989].
12y, M. Vainberg, V. D. Mur, V. S. Popov, and A. V. Sergeev, JETP Lett.
44, 9 (1986. )
o T(5,0,v,1,50+T(5,0,v_1,5,0 . (46) 13N. B. Delone and V. P. Kraov, Zh. Eksp. Teor. Fiz.83, 2021 (1982
12 [Sov. Phys. JETP6, 1170(1982]; I. L. Beigman, Zh. Esp. Teor. Fiz.
. . _ 100, 125(199)) [Sov. Phys. JETH3, 68 (1991]; I. L. Beigman, L. A.
The energies of the virtual states ﬁé' =+ w, . Extrapo- Bureyeva, and R. H. Pratt, Phys. Rev48, 5883(1994).

lation of the data of Fig. 1 vyields\y=0.8236, )\I 141, 1. SobelmanIntroduction to the Theory of Atomic Spectfaergamon

= 1.26124, anch; =0.945, in view of whichp " =1.5624 15|\P/|r.e/i.S’P?ex<];(k)Jrr(£ﬁz§kii, Laser. Phy 638(1963.

andp‘=1.8786. InterpOIation by the data listed in Table | 16A. Erddyi, Higher Transcendental Functior®ateman Projegt 3 vols.,

yields McGraw-Hill, New York (1953—1955
17C. Lanczos, Applied Analysis Prentice-Hall, Englewood Cliffs, N.J.
r15624- _0 22+ 0.3128 +0.9142-0.273+0.09* (1956.

18K. D. Bonin and M. A. Kadan-Kelly, Phys. Rev. A7, 999 (1993.
19C. E. Moore, inNational Bureau of Standards, Circular No. 488/ash-
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Quantum kinetic Boltzmann equation taking into account the resonant exchange of
excitations
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A derivation of the quantum Boltzmann equation is given for identical particles with internal
degrees of freedom. It is shown that the off-diagomdéth respect to the internal degrees

of freedon) term of the equation contains an energy pole term, which is not present in the most
commonly used kinetic equation, known as the Waldmann-Snider equation. The physical
conditions underlying the occurrence of the pole term in the quantum kinetic equation are
analyzed. ©1997 American Institute of PhysidS1063-776097)00503-9

1. INTRODUCTION term. We also show that the pole term in the kinetic equation
appears when the scattering amplitudes depend on the inter-
A necessary adjunct to line-shape calculations for gasesal state of the particles. In particular, the presence of two
in laser spectroscopy problems is a kinetic Boltzmann equéeollision processes with different scattering amplitudes is
tion with the internal degrees of freedom of the particlessufficient for the onset of a pole term.
taken into accounti.e., an equation for the density matrix
The spectral line shape is determined by the off-diagonal—
with .respect'to |nte.rnal degrees of freedom—element of th%' DERIVATION OF AN EQUATION FOR THE DENSITY
density matrixt Typical of such degrees of freedom are the MATRIX
electronic states of an atom, both nondegenerate and degen-
erate with respect to the projections of the angular momen-  The basic plan of derivation is the same as that used by
tum. Snidef except that our treatment is applicable both to degen-
Of special interest are gases whose magnetic moment israte (as in Snider's work and to nondegenerate systems.
determined entirely by spi(5 statg and in which the mag- We assume for simplicity that the particles in question are
netic polarization, like the line shape in optics, is determinecbosons(it can easily be shown that the final result does not
by the off-diagonal—with respect to the spin variables—depend on this choi¢eln coordinate representation the den-
element of the density matrix. So-called spin-polarized gasesity matrix has the form
have come under intense scrutiny in recent years as various , o,
techniques afford increasing possibilities for the polarization Paar (XX )= (g (X" D a(X,1)). (1)
of paramagnetic gasdsee, e.g., Refs. 2 and.3At issue is  Here y,(x,t) is the wave function of the given particles in
the fact that spin polarization significantly influences thethe second-quantization representatiarenumerates the in-
macroscopic properties of quantum gases and, under definitgrnal states and the angle brackets signify quantum-
conditions, even admits the existence of weakly damped spistatistical averaging.
waves in thent: The second-quantized Hamiltonian of the system has the
The primary tool for the theoretical investigation of spin- ysual form
polarized gases is currently the Waldmann—Snider kinetic
equatiofi”’ generalized to the case of identical partides, |:|:J B OHO (x)dx+E f o)t ()
which has no pole term. The presence of the pole term in the K ! 2 a ’
Boltzmann equation has been mentioned in several _
papers ‘! and it leads to a number of interesting physical U unoo(X=Y)Yo(X)thyy) dx dy. @
effects. In particular, the optical region of the spectrum acHereH® is the single-particle Hamiltonian:
quires an additional line shift with an anomalous dependence v2
on the temperature of the g%ﬂsand spin waves occur in H“”%(X)( ——X+EV ¥, (X),
spin-polarized gas&s®*? 2m
Meyerovich, Stepaniants, and Lalbave recent§aug-  wherem is the particle massy? is the Laplace operator,
mented the Waldmann—Snider equation with a pole term, but  is the energy of the internal state, abidis the particle
it is obtained as a third-order term with respect to the densitynteraction potential taking their internal state into account.
of the gas, and they have stated that such a term does npbr simplicity, we set:=1. The following properties of the
occur in second order with respect to the density. In thanteraction potential are deduced from the Hermitian prop-

present study we show that a pole term in the kinetic equagrty of H and the condition of symmetry under permutations
tion does in fact occur in second order with respect to the gag jgentical particles:

density, as is usual for the Boltzmann equation. We analyze .
the physical conditions underlying the origin of the pole  Yuueo(X)=Upouu(X),  Uuea(X)=U,u0.(=X).  (3)
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The equations for the single-particle density matftix and
for the two-particle density matrix

aﬂa g (%Y. XY') = (G g (V) o (X ) g (Y'))
have the standard fort°

2
AP gor (X, Xt V2 Ve
i paa( ): __X+Ea+_X_E Paa
ot 2m 2m
X (XX D)+ g (XX, 1) = 1%, (X, X,1),
4
2
p5_1)7_27_374(X1,X2,X3,X4)
i
at
2 2 2 2
VX3 Vxl Vxl sz
=|| - 5=—-5=|+E, +E, —| —5=—=—+E,
2m  2m 3 4 2m  2m 1
+ E p(Ti)TZTSM(Xl 1X2,X3 'X4) +U 7'3747’E(X3

2
- X4)P(Tl)727,g(xl X2,X3,X4) = U gyr - (Xo—Xy)

2
prg’}leTZ(Xl’Xz'X:’? 1X4)! (5)

wherel ., is the collision integral:

I aa’(XIX’ 1t) = f U}\aoﬂ(x_y)pg\i)(}a(x’ ,y,y,X)dy. (6)

Summation on repeated indices is understood. Here, as usqu,e

ternary collisions are disregarded.

To solve Eq(6), it is necessary to specify the asymptotic
form of the solution in the region where the particles essen-
tially do not interact. The formula for this case is well

known?

(2)

p717'27'31-4( 1:1X2,X3 1X4) = (1+ P)pr3rl(x3 !Xl)pTATz(X4 :XZ) '

HereP is the 12 or (equivalently 3+ 4 particle permu-

tation operator.

Assuming, as is customary in the Boltzmann approxima-
tion, that collisions are local and transforming from the den-

which provides a natural separation of the motion of the
center of inertia of the colliding particles from their relative
motion.

The next step in the derivation of the equation in Snid-
er's papet has been done compactly and in an abstract op-
erator form, a device that probably accounts for certain inac-
curacies in the final result. We shall cover this part of the
derivation in greater detail. We first invoke the obvious iden-
tity:
fT3Tl(p/)fT47'2(p”) f I ,(p )fr (p”)571 l TZT,6TST:;6T4T:"

2

Here the function
r_ pr/

;7-3!7'41r) :573735747 eXF{' > r

represents the asymptoti@t infinity) value of the wave
function of the two-patrticle collision problemp(—p”)/2 is
the relative momentunithe reduced mass i$/2), 75 and
7, are quantum numbers, angd and 7, are the correspond-
ing internal state variables. We illustrate this operation in the
example of a particle with spin, for which the wave function
of the internal state represents spin@d(g,), and d_ 1/,
wherer=1/2 or — 1/2.

The groups of variablesr (R, 73,7,) and (',R,71,75)
are separated in Ed4), the second group describing time-
reversed motion. We can assume that the time-inversion op-
eration is tantamount to complex conjugation of the wave
function, because the pair of them comprises a boson even in
case of fermions.
An exact solution is now easily obtained for the equation
for the two-particle density matrix. It suffices in Ef) to
replace the factors representing asymptotic wave functions of
the scattering problem according @ by the corresponding
exact wave functiong’:

T, T, p/_pn
()D 3114 2

A ”

@(Té,ri, T;mmﬁ)

! n

—>¢( T3, Ta,s T;Tg,T4,r).

As a result, the expression for the two-particle function

sity matrix in coordinate representation to the Wigneracquires the form

function!?
the two-patrticle function:

p73rl(x3 !Xl)p7472(x4 !XZ) = f d p,d p”f 737'1( p,)f7472( p")

xexpil (p’+p")(R-R’)

+(p’—p")(f—r’) .

5 @

Along with the initial variables, the right-hand side of this

expression uses the change of variables:

I‘=X3—X4, R:(X3+X4)/2, rI:X]__Xz,
=(X1+%2)/12,
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we readily obtain an asymptotic expression for

(2)
p7'1727'3r4(xl 1 X2, X3 'X4)

=2f dp'dp”exdi(p’+p")(R

-R’ )]f ( )fT T (p”)equ Tiféféfét)lﬂ
! n
! ! p B . *
X\ 73,74, T,T3,’T4,I’>¢I
' A
X TiaTéa T;T]_!TZ!I”)' (8)
Here
Coimyryr, =B By —By —Ep
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! n

2

We note that the factor 2 on the right-hand side of the equa-
tion is a consequence of the symmetrization of the wave/
function (we assume everywhere thdt has already been

! !
T1:To,

;a’,)\,x)

symmetrizedl p'—p” o[ P = p")?
With the expression for the two-particle function at our =9, 1 a0 "\’ex% 2 x| +G 4m + ETi
disposal we can readily form the collision integral S,
Iw,(x_,x 1) [see(6)]. It is convenient to write it directly in ETr)Ozjx( .7, o’ Nx|.
the Wigner representation: 2 2
l e (X,P,1) Here G*(E)=(E—H®) "1 is the Green’s function of the
" noninteracting patrticles. is equation provides a facile
2 p'—p int ti ticl Thi ti id facil
=— f dy dé dp'dp"Umog(ﬂ)lﬂ( %, 7h, — means for expressing the4 collision integral exclusively in
terms of T-matrix element$? The final form of the quantum

! n

p' —p kinetic Boltzmann equation can now be written as
><0,a',7)> zﬁ*(ri,ré, T;a',)\,n—Zg)

afaa’(p)
XF (P (D) EXPI[ 21 at

+&(2p—p'—p")1)- =il 4 (P) =1} ,(P)]. 9)

+i(Ea_Ea’)faa'(p)+ % Vz) faa’(p)

The subsequent transformation of this expression reThe variablesx andt have been omitted from the Wigner
quires the use of matrix elements of thenatrix[cf. Ref. 6.  function and the collision integral for brevity. The integral
For this purpose we can use the Lippmann-Schwinget . (p) is expressed in terms df-matrix elements as fol-
equatior® lows:

p _p p _p ’ ’ /71 A~ N !
e P1= 2702 [ ATy P52 PR i1 (0 () - (2102 apapr oo+ Bp

B Torrgr [ (P=P)2,(p" = p")I2T,, . [(P=p)2,(p" = p")/2]
—p )equéTlTZT3T4t] (p/_pr/)2/4m+ E7'1+ ETZ_(’E)’_ p)2/4m_ Ea/—E)\—iO f‘rgrl(p )f‘r472(p )

(10

A comparison of this equation with the correspondingtween nondegenerate states. For the time being, in the inter-
expression in Snider's pageshows that they concur only est of simplicity, we consider only the linear termTirin the
when theT matrix does not depend on the internal quantumkinetic equation for the off-diagonal element of the Wigner
numbers. In this case thE-quadratic part of the collision distribution function(9). In this case the equation assumes
integral contains only a term with the enerdyfunction, the very simple form
while the pole tern{interpreted as a principal-value integral
disappears. 3 aer(P)

at
3. DISCUSSION =—(T+iV?)f 40 (p),

+i(Ea_Ea’)faa’(p)+

p
a 'V)faa’(p)

Consequently, it follows from Eq.10) that the widely
used Waldmann-Snider kinetic equafionust be augmented F+iv2=i (217)3h2J dp'{[ T ool 6=0)F ,.(p")
with a pole term. This term vanishes only when thenatrix “ a

(and, hence, the scattering amplitudees not depend on the +T,,.(6=0)f,...(p')Jexp(i AEY)
internal quantum numbers of the colliding particles. This is “a

the situation treated in Ref. 13 and explains why the authors —[Tz,a,(a: 0)f i (p")

obtained a pole term only in the third order with respect to

the gas density. We consider the following special cases as +T5(6=0)f,,(p")]exp( —iAED)}.

examples. Let thd matrix be initially diagonal:
T T o5 Here AE=E,—E/,, and#§ is the scattering angle.
apa’ ' LafpCaat OpB! This equation differs from the similar type of equation
and let it be energetically nondegenerate. This approximationormally used(see Ref. L Thus, the relationship of the
is customarily used in the theory of spectral line broadehing,width and shift of the spectral line to the elements of The
even though in reality there is always an off-diagonal termmatrix (S matrix) differs from the one usually encounterkd.
and indeed this term describes the transition probability beThe more general case taking into account the quadratic term
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in T and the off-diagonality of th@ matrix, in which case tion can be found in Ref. 2. It follows from the results of the
the equation acquires a pole term, poses an independeptesent study that the discussion is not over.
problem and will be treated separately. ) ) ) )

The second case refers to a paramagnetic gas, where the This work has received financial support from the Rus-
energy levels corresponding to different spin projections aré@" Fund for Fundamental Researt@rant No. 96-02-
nondegenerate. The simplest model for this case essentialVBlz'a'
take_s only _two types of coIIisi_ons into aqcount_: collisions of 11, 1. Sobelman. L. A Vainshtein. and E. A YukoExcitation of Atorms
par.tldes with par.all.el and antiparallel spins, with the conser- énd Broadenin’g 61‘ épectral Iineyspringe.r-\)erlag, Berlif1981) [Russ.
vation of total spin in both cases. When these two processesqiginal, Nauka, Moscow1979)].
are taken into account, the matrix (nonsymmetrizedhas 2A. E. Meyerovich, S. Stepaniants, and F. Lal@hys. Rev. B52, 6808

the form (1995. _
o 3N. P. Bigelow, P. J. Nacher, and M. Leduc, J. Ph¢Rari§ 2, 2159
Tabcd™ Tadacbat TeThoohy (1992.

“R. P. Bashkin and A. K. Meyerovich, Adv. Phya0, 1 (1981).
. . . . 5 i i
(o denotes the Pauli spin matrigeblow the pole term in the (El 926']335“"'”' Usp. Fiz. Naukag, 433 (1986 [Sov. Phys. Usp29, 238
!(inetic equation(g)*includes only the imaginqry part of the eg "¢ "spider, 3. Chem. Phy82, 1051(1960.
interference ternT; Ty4. Consequently, only in théhypo- L. Waldmann, Z. Naturforsch. Teil A3, 609 (1958.
thetica) event of exact coincidence of the scattering ampli- °A. E. Meyerovich, Phys. Rev. B9, 9318(1989.

; : ; . °N. N. Bogolyubov, inStudies in Statistical Mechanicgol. 1, J. De Boer
tudes for particles with parallel and antiparallel spins and G. E. Uhlenbecteds), Wiley, New York(1963, p. S[Russ. original,

(T4=Te) is the pole term abse_nt- o _ Gostekhizdat, Moscow1946)].
We note that a pole term in the kinetic equation for thel®v. p. Silin, Introduction to the Kinetic Theory of Gasém Russia,

density matrix of a paramagnetic gas first appeared in a pap%r'\‘aUka’ Moscow(199D. _

by Silin.1° However, the term in that paper has a different ;;1'2"(fggéieva' Zh. sp. Teor. Fiz54, 641(1968 [Sov. Phys. JETRY,
form from our expressiofl0). Moreover, a kinetic equation 123 g Moyaj, Cambridge Philos. So¢5, 100 (1949.

containing a pole term has been derived previously by one 0fB. A. Lippmann and J. Schwinger, Phys. R&@, 449 (1950.

the present author(s!\ndreevél) in a study of the scattering A, S. Davydov, Theory of the Atomic NucleUsn Russiaf, Fizmatgiz,
of particles by amorphous impurities. A detailed historical MoScO" (1958

discussion of the origin of the pole term in the kinetic equa-Translated by James S. Wood
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Combined configuration-superposition and many-particle perturbation calculations for
atoms with two valence electrons

M. G. Kozlov and S. G. Porsev*)

B. P. Konstantinov St. Petersburg Institute of Nuclear Physics, 188350 Gatchina, Leningrad Province,
Russia
(Submitted 2 September 1996

Zh. Eksp. Teor. Fiz111, 838—846(March 1997

A new high-precision method is used to calculate the characteristics of atoms with two valence
electrons. An effective Hamiltonian for the valence electrons is formulated by many-

particle perturbation theory with respect to the residual interaction of the valence electrons with
the core. The configuration-superposition method is then used to find the energy levels of

the atom. The application of the combined method to divalent calcium, strontium, barium, and
ytterbium atoms shows that the ionization potential is obtained within 0.5% error limits.

The precision attained for the first few lowest levels of the energy spectra is significantly higher
than is obtained by configuration-superposition calculations alone198Y American

Institute of Physicg.S1063-776197)00603-3

1. INTRODUCTION operates, is partitioned into two subspaces, and appropriate
projection operator® and Q are introduced, satisfying the
conditionP+ Q= 1. The HamiltoniarH and the wave func-
tion ¥ can be written as follows in thB, Q formalism:

The fruitfulness of atomic physics methods in the inves-
tigation of fundamental interactions is well known, espe-
cially in the study of discrete symmetri&s The nonconser-

vation of parity has been measured to within 1% for a H=PHP+PHQ+QHP+QHQ, (2
number of atoms® However, only for cesiu® and
franciunt! has a comparable precision been attained in the Y=P¥+Q¥=d+y. €)

calculations required for the mterp_retathn of expenment;.l_he operatoP is defined as the projector onto those states of
The need for a new method by which to improve the preci-

. . . : . : o .~ the atom for whichN, electrons are always present in the
sion of atomic calculations is obvious in this light. This . .
) S core(i.e., the core does not contain any holes, adlalstates
method, representing a combination of two well-known : . i
methods (the superposition of configurations and many are filled with electrons The operatoiQ projects onto the
particle perturbation theojywas proposed earlié?. orthogonal complement of subspaRdi.e., onto those states

L . . of the atom where at least one hole is present in the)core
The application of many-particle perturbation theory to . : . . :
. The following problem is solved in the configuration-
heavy atoms with several valence electrons cannot be ex- . )
X ; . . Superposition stage:
pected to yield high computational precision, because elec-
trostatic interaction between valence electrons cannot be pre- (PHP)®=EC'®. (4)
cisely accounted for within the context of this method. _ . o .
However, this situation can be rectified by the configuration-The solution of this equation is not a solution of H@),
superposition methodor the related multiconfigurational Since the subspad® is not taken into account here. It has
Hartree—Fock methgdwhich has been used on many occa- been ShOVV?'? that the inclusion of this subspace leads to the
sions in calculations for complex atorhs2° But then the —equations

precision of the configuration-superposition calculations is

also limited by the impossibility of fully taking into account [PHP+X(E)]®=E®, ®)
the correlations between core and valence electrons. These 1
methods can therefore complement one another, and therein 2 (E)=(PHQ) m (QHP). (6)

lies the motivation for their combining them.

The normalization conditiodW;| ¥, )= &, can be rewritten
in terms of the function®; in the form

2. BRIEF DESCRIPTION OF THE METHOD

1 1
The method has been proposed in two previous péﬁers,@i'lHPHQ) E;—QHQE,—QHQ (QHP)|Py)=dix.

which include detailed descriptions. We shall therefore con- (7)

fine the present discussion to a review of its basic precepts, we restrict the discussion to a few of the lowest levels, i.e.

The complgte Hilbert space, in which the many-part|cleif we assume thath=(E,—E,)/2 is much smaller than
Dirac equation

E.= (Ei+Ey)/2, we see at once that the second terni7in
HY=EWV (1) can be written in the series form:
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a_ B b a B
> = > -
bg b A FIG. 1. Self-energy diagrams for valence
o V b electrons.

1 We note that the diagrams in Figs. 2 and 4 are drawn

(PHQ) E—QHO E,—QHQ (QHP) with allowance for the fact that the Hartree—Fock field in-

' K cludes contributions fronNp1— N, valence electrons. They
obviously vanish for the casdpt=N,. Since the potential

®) VNPT occurs with a minus sign in Eq10), these diagrams
are called subtractive.

IS(E) A? °3(E)
T 9E 6 oS

E=E,

The first term of the expansiof8) is already much smaller

than unity. Consequently, in calculating the lowest energy

levels, we can simply omit the second term in Ef). and

write the normalization condition in the conventional form 3 coMPUTATIONAL PROCEDURE

(Pi]©1) =i © The procedures used to perform the calculations can be
It has been showf that the operatol (E) can be trans- divided into three parts. In the first stage a basis set of one-
formed as follows for the proper choice of core orbitals:  electron wave functiongorbitals is formulated. The one-

1 electron wave functions of the ground state of the atom and
m Q(V—VNeT)P, (10) the corresponding one-electron energies are found by the

Hartree—Fock—Dirac method. We use a program written by

where V denotes the two-electron electrostatic interactionBrattsev, Déneka, and Tupitsy?t and subsequently modi-
and VNPT is the interaction ofNp; electrons with the fied by Tupitsyn(in particular, with allowance for the finite
Hartree—Fock field. The quantifyp must satisfy the con- size of the nucleus, which is important in the treatment of
dition N. < Np1 < N. For the calculation of the energy de- heavy atoms In addition to the Hartree—Fock variety we
nominators in the indicated approximati@nis replaced by also construct virtual orbitals. Each of these can be repre-
E. in Eq. (10). sented by the product of one of the corresponding orbitals of

The operato2, is calculated by standard diagram tech-the same symmetry and the exponemith subsequent or-
nigue. In the lowest order the corresponding diagrams cathogonalization of the newly constructed orbitals with re-
have one, two, or three outer linEsDiagrams of the first spect to all those preceding. A similar method for the con-
type describe corrections to the one-electron PaiP (Figs.  struction of basis functions has been proposed by
1 and 2. Diagrams of the second type give a correction forBogdanovich*?and has already been used by us for calcu-
shielding of the core by the interaction between valence eledations of ytterbiumi* and bismutH?>
trons (Figs. 3 and 4 Diagrams corresponding to three- In the second stage it is required to calculate the matrix
particle interaction, of course, do not exist for atoms withelements of the operat@. To calculate the self-energy dia-
two valence electrons. grams and the shielding diagrams by perturbation theory, we

3(E)=P(V-V"P1)Q

FIG. 2. Subtractive diagrams for the self-
energy.
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a b a a b configuration of atoms and also for thep and (h—1)d

- o - T a b o shells. The virtual orbitals, which together with the Hartree—
[+ . .
Fock orbitals form the basis set, are subsequently constructed
‘s A 4 .4 according to the procedure set forth in the preceding section.

The number of orbitals that must be included in the basis will
be discussed below.

The next stage is to calculate the matrix elements of the
operator3, by perturbation theory. In the case of thé
approximation, which is the one used for the calculations, all
the diagrams of Figs. 1-4 need to be taken into accthet
subtractive diagrams do not vanish in this case, because
Npt # N¢). In the perturbation calculations the number of
excited states that must be included to attain saturation is
FIG. 3. Shielding diagrams. fairly high. The test of whether saturation has been reached

is that the matrix elements of the operatoessentially cease

use the constructed set of basis orbitals. Since we are cofP ch-ange as new shells are added. For examplg, n .the cal-

cerned in this stage with the excitation of electrons havingulation of the energy spectrum of Yb, the following virtual

inner shells(which can be quite deeply situajedve must ~ States are included:s#19%, 6p-1%, 5d-1&d, 5f-17,

take into account a large number of states of the continuou39—169. The number of orbitals included for the other at-

spectrum as excited states. The need to include a large nuf@Ms is approximately the same. Once the virtual orbitals

ber of diagrams for a large number of excited states makeave been constructed, the Hartree—Fock—Dirac operator is

this part of the calculations the most time-consuming. diagonalized on them. In this case the majority of the orbitals

The third and final step is to solve E¢5). This can be 0f each symmetry resides in the continuous spectrum, and

done by the well-known configuration-superposition methodthe energy of the last orbitals is on the order of &Qu.

In the calculations we use a program written by Kotochigova ~ Next we solve Eq(5) by the configuration-superposition

and Tupitsyr?* which we have substantially modified. method, using the calculated matrix elements of the operator
3. In this state we take into account configurations associ-
ated with the excitation of both valen¢eut not core) elec-

4. CALCULATIONS FOR Ca, Sr, Ba, AND Yb trons to higher levels. The configurations are augmented un-

We have chosen the Ca, Sr, Ba, and Yb atoms to test th \INthe energy hOf the mvgsngated .Ievgls r?o Iohnger changfei.
configuration-superposition method in combination with e assume that saturation s attained when the energy of the

many-particle perturbation theory. They have in common thd€Ve!S does not vary by more than 30—40chwith the
existence of twas-electrons in the outermost shell. It is rea- 2ddition of new configurationsThe basis set of orbitals re-
sonable, therefore, to assume tBatlectrons are present in quired to attain saturation in the configuration-superposition

the valence zone and that the remaining electrons form thg?lculations is far smaller than in the state where many-
core. particle perturbation theory is used. In our case it is sufficient

As mentioned, the first step in calculating the energyt® include 18-27 virtual orbitals. The two or three highest
spectrum is to obtain the one-electron functions by theS- P-, d-, f- andg-shells are added as virtual. As explained,
Hartree—Fock—Dirac method. In this stage a self-consisterfixcitations in thén-shell are insignificant for the given atoms
field procedure is implemented for all electrons in the atomand can be disregarded.
including electrons of the outermost shell. The resulting or-  For comparison we also solve E@l) instead of(5) to
bitals are then frozen in place, one electron from the lasgbtain a solution by the pure configuration-superposition
ns shell is moved to ther(—1)d shell, and the Hartree— method. The results of calculations of the lowest energy lev-
Fock—Dirac equation for this shell is solvéad=4,5 for Ca els for both methods, the pure configuration-superposition
and Sr, andh=6 for Ba and YB. Thenp shell is augmented method(SC) and its coordination with the many-particle per-
analogously. The procedure culminates in the construction dlurbation theory(SC+MPP) for the Ca, Sr, Ba, and Yb at-
Hartree—Fock orbitals for all electronic states of the mainoms are summarized in Tables I1-1V.

a a J) a a b
n >b < 5 c FIG. 4. Subtractive diagrams for shield-
c é d n d ng-
d
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TABLE |. Energies of the lowest few levels of Ca (cf) (multiplet split-
tings are shown in parentheges

TABLE lIl. Energies of several lowest levels of Ba (cf).

Configuration Level SC SEMPP ExperimerfP
Configuration Level SC SEMPP Experimerff

6s? 1S, 0 0 0
4s? s, 0 0 0 6s5d D, 11019 9423 9034
4s4p 3pg 13720 15230 15158 6s5d °D, 11104 (85) 9631 (209 9216 (182
4s4p 3pg 13769 (49 15284 (54) 15210 (52 6s5d D, 11281 (1770 10065 (434 9597 (381
4s4p 3PS 13870 (101) 15394 (110 15316 (106 6s6p 3pg 10253 12221 12266
4s3d D, 23661 21489 20335 6s6p 3p9 10597 (344 12583 (362 12637 (371)
4s3d °D, 23664 (3) 21505 (16) 20349 (14 6s6p 3pg 11370 (773 13448 (865 13515 (878
4s3d D, 23664 (0) 21530 (25) 20371 (22 6s6p P9 17157 17740 18060
4s3d D, 23642 22984 21850
4s4p P9 23255 23555 23652

two valence electrons their ener@y, is simply the sum of

sense. Knowingde, for the atom and the ion, we can obtain
the ionization potential for each of them without undue com-

plication (see Tables V and Tables VI

Analyzing the results obtained for the ionization poten-
tials, we see that the combined method yields precision at th
0.5% level, which is roughly an order of magnitude better
than obtained by pure configuration-superposition calcula-
tions. The energy spectrum obtained for the lower levels fo
all four atoms by the configuration-superposition method in
conjunction with many-particle perturbation theory also ex-
hibits significantly better agreement with the experimental.

for even levels(particularly theD levels the precision is

tenth of the experimental splitting of th2 triplet, whereas
the combined method reproduces this splitting almost per-
In addition to the energy spectra we can also calculatgectly. The loss of precision for even as opposed to odd
the ionization potentials of these atoms. Thus, in the case Qévels is most likely attributable to the fact that the Hartree—
Fock d-functions are a poor approximation to the true wave
the first and second ionization potentials. Consequently, tnctions.(We note that an attempt to use virtual rather than

find the first two ionization potentials, it is sufficient to also Hartree—Fockd-functions does nothing to improve the situ-
solve Eq.(5) for a single positive ion. If the same basis set of gtjon)

orbitals is used, the radial integrals needed in order to calcu-
late the matrix elements of the operatétsand 2 are the
same as for the neutral atom. This fact is extremely impor-
tant, since the calculation of the radial integrals for the op-
eratory, is the most costly operation in the computational®- CONCLUSION

Our calculations for atoms with two valence electrons

(Ca, Sr, Ba, and Ybby the combined method of configura-

tion superposition and many-particle perturbation theory

spectrum
[

limits.

confirms that the accuracy of computation of such atomic
Characteristics as the ionization potential and the energy
is significantly higher than when the pure

configuration-superposition method is used. In particular, the
Ionization potential has been reproduced within 0.5% error

Work is currently in progress on the application of the

For odd levels the precision is close to that attained for thé:ombmed method for transition amplitude calculations. This

ionization potentialgi.e., for the most part better than 1% approach will make it possible to improve the precision of

calculation of impurityP-odd amplitudes needed for the in-

terpretation of experimental parity-nonconservation results

somewhat lower but still far better than for pure éil’ld for testing the standard model.

configuration-superposition calculations. The change in th
multiplet splitting is especially dramatic when correlations  The authors are grateful to Yu. G. Rakhlina for assisting
are taken into account by perturbation theory. In the case afith the ytterbium calculations. This work has received par-

Yb, for example, it is evident from Table IV that the tjal support from the Russian Fundamental Research Foun-
configuration-superposition method gives approximately onjation (Grant No. 95-02-03701)a

TABLE II. Energies of several lowest levels of Sr (ch). TABLE IV. Energies of several lowest levels of Yb (crf).

Configuration Level SC SEMPP Experimerf Configuration Level SC SEMPP ExperimertP
5s? s, 0 0 0 6s? 1s, 0 0 0
5s5p 3PS 12475 14242 14318  6s6p 3pg 14357 17075 17288
5s5p 3pg 12648 (173 14428 (186 14504 (186) 6s6p 3p9 15022 (665 17764 (689 17992 (704
5s5p 3PS 13007 (359  14821(393 14899 (395 6s6p 3pg 16527 (505 19447 (683  19710(718
5s4d D, 19618 18877 18159  6s5d D, 25216 25075 24489
5s4d °D, 19635 (17) 18936 (59) 18219 (50) 6s5d °D, 25238(22) 25338(263 24751 (262
5s4d 3Dy 19664 (29) 19033(97) 18319 (100 6s5d 5D, 25299 (61)  25855(517 25270 (519
5s5p p9 20863 21444 21698 6s6p pg 24221 25306 25068
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TABLE V. lonization potentials of C&, Sr*, Ba*, and Yb" (cm™?). TABLE VI. lonization potentials of neutral atoms (crh.

lon SC SC+-MPP Experiment Atom SC SC-MPP Experiment
ca' 91887 95537 95748 Ca 47806 49142 49305
Srt 84635 88747 88964 Sr 44057 45679 45926
Ba" 76011 80421 80687 Ba 39881 41800 42032
Yb* 90788 97254 98269 Yb 46759 50295 50444
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Spontaneous and induced Cherenkov radiation generated by electrons in cylindrical
dielectrics
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A theory of induced Cherenkov radiation in cylindrically symmetrical dielectrics in the case

when an electron beam is moving close to the dielectric surface is presented. The spectrum of
excited radiation modes has been investigated, and analytical expressions for the gain at the
frequencies of various modes have been derived. 1997 American Institute of Physics.
[S1063-776(197)00703-9

1. INTRODUCTION ing a free-electron laser. We will present a general approach

Induced Cherenkov radiation makes feasible free_to the problem in order to obtain equations for an arbitrary

electron lasers operating over a broad spectral rafijehe separatiorpy between the electron and the cylinder axis and

major factor reducing the gain in Cherenkov free-electron:)nuosrecLf:giﬁoinﬂgit;%nexv%?;f 'grnjJ?J;;ig??@i;gfggﬁne'
lasers is multiple Coulomb scattering of electrons, which is_. . ' o y
is of induced Cherenkov radiation.

important even in gases and relatively thin targets. A desigﬁ : ) . .
alternative to that of a free-electron laser, in which an elec- Let us first consider the case of a solid cylinder, and the

tron beam passes through material, is a scheme using eleg]?n rifaﬁnggiatzd Lc;stehgf ri:(;t?r\:v;?’;'Sggrtﬁ:ncbﬁn%g?%?d
trons moving next to a dielectric surfat€In this case, mul- y L y

tiple electron scattering is no longer a factor, but the intensit)f:h"’lr""cterIZEd by a dielectric permitivityy(w) (which is,

of Cherenkov radiation drops exponentially when the dis_generally speaking, complixand the material of the cylin-

tance to the dielectric surface exceeds2m, wherey is the der by #5(w), and let an electron move along the cylinder

Lorentz factor of the electrons andis the radiation wave- XS with a velocityv. In order to find solutions of the inho-

length. Nonetheless, it has been possible to detect Cherenk Wogeneous Maxwell equations determined by the current

acaton of fan Nigh nlensiy in e microws(e sna | 1 ST o et elecon, we expres e et
far-infrared ranges in devices using waveguides coupled tg. 9 . ntegrais P
dielectrics. time and the distance along the cylinder axis, and in the

The paper presents a theory of Cherenkov radiation ir‘Orm of a Fo.ur|er series in the azimuthal .angf»e which is
the case when an electron beam moves near a solid dielectfi]aeasurefd with respect to the plane p.)assmg through the cyl-
cylinder or inside a hollow dielectric cylinder parallel to its inder axis and the electron trajectory:
axis. First we will describe the general approach to the prob-
lem of the electron energy loss, which can be also applied to E(r,t):(zﬂ-)ﬂf
other problems, such as plasmon generation, or to more com-
plicated structures, such as an optic fiber with smoothly X exp(ime—iwt +ik,z)dk,de 1)
varying refraction index. Then we will investigate the spec- z e
trum of excited Cherenkov radiation modes in solid and hol- Y e =
low dielectric cylinders. The ultimate aim of this researchH(r,t):(zTr)*Zf E H(p,m,k,,o)
was to study induced Cherenkov radiation at relatively short —oJ o m=—w
wavelengths, namely in the visible and near-infrared bands. X exp(ime—iwt +ik,z)dk,do.
In the limit of a cold electron beam and small gain, analytical o
expressions for the gain at frequencies of different modeshe energyW lost by the electron as it moves equals the

will be given, and optimal conditions for light amplification work done by the electric field on the charge:
will be presented.

© oo

> E(p,mk;,0)

— 0 —0 M=-—®

sz i*(r,t)E(r,t)d%rdt, 2)
2. ELECTROMAGNETIC LOSSES OF ELECTRON ENERGY e

IN A MEDIUM WITH CYLINDRICAL SYMMETRY

. where only the longitudinal current component is nonzero:
The theory of spontaneous Cherenkov radiation gener- y g P

ated by a char.ge moving parallel to the axis of a cyhpdncal i (r)y=evd(r,—r, o) 8(z—vt):

channel in a dielectric was developed by Bogdankevich and

Bolotovskiil® But they analyzed the case of an electronherer , is the electron radius-vector in the plane perpen-
moving inside a cylinder, whereas the case of an electrodicular to thez-axis, r=(r,q,z). Let us use an expansion
outside a cylinder is more interesting with a view to design-like the one in Eq.(1) for both the electron current and
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electric field and perform the integration in E@). As a iwe IET™  mk,

result, we have the spectral expansion of the energy losses in Hf,,h)= - == 2 H(ZTE).
Ck ap K°p
the form
ev - b w . . .
W= —Re 2 EZ< Po,M, —,w) do. 3 Let us seek the longitudinal components of free fields for
Tom===Jo v k,= w/v in the form

As might be expected, the electron energy losses are deter-
mined by those modes whose phase velogiti, parallel to
the cylinder axis coincides with the electron veloaityand ~ Ey " =LAR"Kn(x1p), HI®=LATFK (k1p), p=a,
only the modes with the nonzemcomponent of the electric 6)
field contribute.

Let us see_k a _general solution of the mhom_ogeneouE(ZTM):LBgM)lm(sz), HQTE)=LB§IE>Im(K2p), p=<a,
Maxwell equations in the form of a sum of a particular so-
lution of the inhomogeneous equations, hereinafter identified
by the upper indexf), and the general solution of the ho- \ynhere ATM B ATE 40 BT® are unknown coeffi-
mogeneous equations identified by the index.(The first  cients, x=(w/v)y1—eB2 and B=v/c. The factor
term of this sum is the electromagnetic field generated by & 5k — w/v) in Eq. (4) should be interpreted for
moving electron, and in each region of space, namela . —,/y as the electron free path. The unknown coeffi-
andp>a, wherep=|r, |, it can be expressed in terms of the ¢jents are derived from continuity conditions for the tangen-

z-component of the vector potential, : tial and longitudinal components for the electric
i A E=E®+EM™ and magneticH=H® +H® fields. These

(p_M (p) A - - L ,

H,"=—A;, H, =—$, H;"=0, coefficients are determined by the following linear algebraic
equation system:

E(p)ziﬁ_Az E(p):_ﬂ ,

P ve dp’ ¢ vep °’

K Ag\—E)Km( K@) = BgE>| m(K28),
® C

EP=il = — ZZ|A

z c vel ?

. . N 2iew 1

where the subscripts denote components in the cyI|ndr|cad\g'\/'>}<m(Kla)+_2 1— ——|fu( ki)
coordinate system, angdis the permittivity of the medium: ¢ 18

g1(w) for p>a, 2iew 1
:[sigw; for Z<a =B ln(28) + (1_ sZBz)fm(Kza)’
Thez-componen#, of the vector-potential can be expressed
in turn as i im |
4me o 2| Am ik (a@) = g AT Kn(r18) | = i 13)
Alp.mKy, @)= ——Tm(p.po) 8| ko= — |, (4) ! !
D) im
__ Y e, T R(W)
.  [Ki(kpo)lm(xp) for p<pq, . 3 B2l m(128) =2 B "l m((122)
P) = 1 kpo)K(kp) Tor p=po. ® o
Here K,, and |, are modified Bessel functions, and _vszafm(Kza)’

k= ((wl/c)?s—k2)/2,

It is known'! that the general solution of the homoge-
neous Maxwell equations can be expressed as a linear com, rim
bination of TE-modes(in which the longitudinal electric — —A(rIE)Km(Kla)+81K1AQM)K,’n(Kla)
field componenE(® is identically zerd and TM-modegin €1 pa
which H{™=0). The nonzero components of the fields 2ex,
EI™ andH{™® satisfy the equation

im
TE
_Bﬁn )I m(KZa)

£ (ki) )
Ki1d)=—>
m 1&)=L 2

Ba

10/ oF

T | = (P 2\ E= 2ek,

P &p(p&p) (m*=«%)F=0, + ek aBIY I (100) |+ Fr(k02),
and the transverse components can be expressed in terms of
E'™ andH{"® . In particular, the tangential field compo- . _ o
nents are expressed as where the primes denote differentiation with respect to the

argument.
iw oHT® k i i i i
£ _ lw z +m Z (TM) After solving this system of equations, we obtain the
¢ “ck? ap k% % longitudinal electric field componer,(py,m, w/v,):
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L E(po=<a) scribes generation of electron density oscillatiguiasmong
o and should be the subject of a separate study. We note only
_Ap(w) 2ie «3 that the plasmon spectrum in a cylindrical sample as in a
" Dp(w) mlr28) = 2= s_zlm(KZPO)Km(KZa)’ spherical? sample can differ from the spectrum in a continu-
ous medium §,=e,=¢) determined by the condition
LilEZ(pOZa) g(w):O

_2ie| «ilm(xo2) Ki(x1po)
o | aDp(w) Kp(x;a)

13)
, , 3. ENERGY LOSSES TO CHERENKOV RADIATION
% Im(x22)Ki (k1) _ I'n(K28)Kiy(k18)

K1 K2

Now let us investigate the case which is especially inter-
esting from the viewpoint of generating Cherenkov radiation,
Km(x1p0) when an electron travels in vacuugy,=1, and the cylinder
m - (7 is made from a fairly transparent dielectric with the dielectric
permittivity e,(w)=¢(w). In this case, the argument of the

K3
+8_1Km(K1PO)I m( K1)

Here we have introduced the notation modified Bessel function in Eq§7) and(8) is purely imagi-
. nary, and it is more convenient to replace them with the

2ie : . .

Am:_lm(KZPO)[SlK‘IKg Bessel functionsJ,(x) using the well known relations:
® Im(iz)=i"J,(z). Moreover, note that the dispersion equa-

| (ko) K (x10) ) 1! (kp2)Km( K10) tion D,,=0 is quadratic with respect to the ratig/J,,. As

X a result, it splits into the two equations
K1 K2
, , In(X 2—1)2 K
K k20K k18) Ko 520K 1) ) (BT s g
X - Im(X)  2g(1— 32 Km(y)
€2K1 €1K2

2 2 2\2
(K2 Kl) 2
- pa Wlm(Kza)Km(KZa)Km(Kla) ’

KL(y)\?  4em?p?
( (y) D ) ©

Km(Y) ep?—1)%?

®) where we have introduced the notatior=(wal/v)
X (gB8%2—1)Y2 andy=(wal/v)(1— B?)*?, and both plus and
minus signs on the right-hand side of this equation should be
considered. Let us introduce a binary indexwhich equals
1 or —1, depending on the sign on the right-hand side of Eq.
(9), and denote the zeros of the dispersion equations as

4 Im(k2@)Ki(kq@) I n(koa)Kin( k)
Dm(w)=g182K1 -

K1 K2

o Im(128)Kn(k12) | (Kx28) Kl k18)

&2K1 E1K2 omns- FUrther, let us calculate the sum of the residues at

m 2 2\ 2 ordinary polesw,,, at each value ofr, which is equivalent

| — (1__;) Iﬁq(KZa)Krzn(Kla)- to calculatingA(w) and the derivativedD,,/dw at the
pa K pointsw .- Suppose that the frequency range of interest is

The expressions for the longitudinal field components in quar from the absorption bands and lines in the material, so

(7) are in agreement with similar resiftsderived using a that the dispersion of the permittivity (w) is relatively
different technique small: |de/dw|<e/w. In this case, we can assume in calcu-

The electron energy loss is determined in the generapind the derivativedDy,/dw to lowest order that is inde-
case by the poles of the electric field Componentpendent of the frequenay. In order to simplify the resulting

E,(po.m, wlv,®), regarded as a function of the complex fre- expressions, we use the recurrence relations between the
quenoéya; in ’the’ upper half-plane. When the absorption ofBessel functions and their derivatives. We replace the oscil-

electromagnetic waves in both media can be neglected, tHgtory terms containing Bessel functions by monotonic func-

imaginary part of the permittivity tends to zero, and the spec:[Ions Km using the dispersion equatidf). After a long se-

trum of possible excitations resulting in energy losses is def'®> of transformations, which we do not describe here, we

termined by the zeros of the functioB,(w). Thus, the obtain the spectral distribution of the Cherenkov radiation in
m . ’
analysis of the spectrum of the electromagnetic energy Iossé@e form

in a relatively transparent material reduces to solving the o
Y oanop o dw  4elL YiK3(ypola)

dispersion equatio® ,(w)=0 and calculating the sum of g _

residues for the integrand in E¢). It follows from our do  a° ngl Y?Ki(y) +eKg(y) (= won)
analysis that the dispersion equation can have solutions both o K2(ypo/a) S+

in the frequency range where the real part of the dielectric +22 E m 32/’)0 m™ T 0—omng) |-
permittivities e, or &, is negative and at frequencies where m=1o=+1 K&(y) Qm 7

g, and e, are positive, and the electron velocity is larger (10)

than the threshold velocity of the Cherenkov radiation in one
of the media. The solution for negativd w) in metals de- We have introduced the following notation:
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Qm=<s—1>(sn+o>+2ssm( R - T—§)+[s<sn—a)+sm G G b
Frly)= E:—X; sm<y>=[1+[;%; %ﬂm, i

a |
Rm<y)=(ﬁlz%f/f$) QT “

—(e+D)]IFn(y),

a a

x="—(ef’~1), y=—(1- )",
v v

where Br=¢"*2 s the electron Cherenkov-threshold veloc-

ity divided by the speed of light, and(w— w,,) is the

Dirac delta-function, which should be replaced, owing to the 0

finite cylinder length, with the function

L (sinz,b)2

S(0— Wmpg) = m

FIG. 1. Mode wavelengths.,,; (dashed curvesand respective gains
7 ~ 2 (0= omnp). (12) G [in units of Go=10"3(i/i,)(L/a)®] versus the electron Lorentz factor
v for several modes in a dielectric cylinder=2.3) of radiusa. The num-

The dispersion relation(9) in this notation becomes bers at the curves show the indicesr). The most intense modes with
Jr,n(x)/Jm(X) =Ry (Y). o=1 are shown.

The first term on the right-hand side of Ed.0) corre-
sponds to the spectrum of axisymmetrical=€ 0) modes. In
appordance with E(9), the axisymmetrical modes are clas- y=(1-p) Y2 yi=(1-3) 12 y>y;.
sified as TM,, and Tk, modes with purely transverse mag- o )
netic and electric fields, respectively, and only JMnodes The radiation intensity versus electron energy for the
corresponding tar=1 contribute to radiation. The disper- Most intense modeg=1) calculated from Eq(9) for quartz

sion equation for the Tly}, modes can be expressed as in the visible spectral range=2.3) is shown in Fig. 1 by
dashed curveghe right-hand ordinate axiswhere the num-

(1= B)Y231()Ko(y) + Br( B~ B7)2Io(x)K4(y) =0. bers are the indicest(,n). The wavelength& ,,, for almost
(13 all modes tend to certain limits as the electron energy in-

The other modes witm # 0 are hybrid, i.e., neither the elec- creases. The only exception is the mode with=1 and

tric nor magnetic field is purely transverse in them, which ish=1, whose wavelength grows logarithmically with the

the case in a conventional waveguide, therefore, the modelectron energy.

with both 0=1 ando=—1 contribute, generally speaking,

to the radiation. Numerical calculations, however, indicate

that the Cherenkov radiation intensity of thm,0,1) modes 4. CHERENKOV RADIATION IN CAPILLARY TUBES

is considerably higher than that of the(,—1) modes be-

cause the modes with= —1 have a nearly transverse po-

larization also in the case of # 0.

Another case which is of interest from the viewpoint of
generating induced Cherenkov radiation is an electron beam
In the case when the dispersion of the dielectric permit_travelmg inside a hollow dielectric cylindécapillary tube.

tivity &(w) can be neglected and the electron energy is muctr€t @ b€ the inside radius of the capillary tutigits outside
higher than the threshold value, the approximate solution of2dius.e2(w) the dielectric permittivity of the capillary tube

Eq. (13) has the form material, anc: ;(w) the permittivity of the er_wi_ronr_nent. The
spectrum of spontaneous Cherenkov radiation is calculated
v an using Eq.(3) and the technique described in Sec. 2. In the
@on1~ 5 m (14 regionsp<<a andp>h, the field components are calculated
in a form similar to Eq.(6), and in the regiom<p<b as a
where theqa,, are the zeros of the Bessel functidp(«a,,), linear combination of the functionk,(k,p) and K,(k,p)

which for sufficiently largen are approximately located at with unknown coefficients. The continuity conditions on the
w(n—1/4). In this case the spectral distribution of radiationtube boundaries yield a linear equation system for eight un-
energy among the modes with=0 takes the simpler form: known coefficients. In the case of arbitrary azimuthal indices
o 2 ® 2 m, the solution is rather lengthy, so we limit our analysis to
%zﬁﬁ M _ the case of axisymmetrical modes with=0. Note that
d 7 2 2 S(®—won1), ) ;
& a® y a=1 Ki(y) (15) these are the only excited modes if an electron travels along
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the tube axigpy=0. By solving the linear algebraic equation /G
system, we obtain the following expression for the longitu- 400"_ 0
dinal field componenE,(pq,0,0/v,w) in the regionpg<a: -

2ie lo(k1pg) | Ko(kra)as—lg(koa)a
LflEZ(po<a)=— ol K1P0 olKza)da1™ lol K2d)d22 ]
wa lo(k,a) Qyidpo— agx821 300F
K3 [
+_K0(K1a) f (16)
€1
where 2001

€1 €2
an=—li(k@)lo( k@) ——lo(Kk1a)l1(Kk2a),
K1 K2

100+
€1 %] [
a1o=—l1(Kk1a)Ko(kza) +—lg(k18)K1(k2a),
Ky K2
€1 €2
a1=—Ky(k1b) (kb)) +—Kq(k1b)I1(k2b), 0
K1 K2
azzzﬂKl(Klb)Ko( Kb) —2K0(K1b)K1( Kk5b). FIG. 2. Raﬁdaie_lti_on waveglengthson (dashed curvgsand gainGg, in units
K1 Ky of Gy=10 (il/ig)(L/b)*> versus electron Lorentz factoy for several

) . axisymmetrical modes in a capillary tube with aspect ratib=0.9 and
Let us next consider the case when the tube material is 8=2.3. The numbers at the curves are the indicesnj of respective

relatively transparent dielectric ( Im,=0, Ree,=&>0),  modes.
and the tube is in vacuunz(=1). We sek= —i«, and use
the relation

Ko(ka)=(—iml2)[Jo(ka)—iYq(ka)], When the tube radius is much larger than the wavelength

. ] ) . (ka>1), the resulting spectrum can be expressed in a sim-
whereYj is the Neumann function. Then the integration of pler form:

Eq. (3) yields the following expression for the spectral dis-

tribution of the radiated energy of the modes witlx=0: dw, 4e? < ) )
do = 2T, olEp0)| (L+ed)lf(éa)

dw, 4e’Lg e )
do = a2 2 18Ep)| | —gye (e D)|15(£a) 2 -
n=1 (77 a O) Y 2
+| || —| —1]6-1|I7(éa); S(w—wqp),
y2 -1 YT
_7_$|§(ga)] S(w—wgp). (17) 19
Here where 6= (b—a)/a, and the dispersion relation is also sim-
plified:
o _L(V* = %) 2Ky (£b)po— & yrKo(£b) do]® K ey |
fo= 2K1(£b) + eK2(£b) ’ tar[k(b—a)]zs—g ol )+ ol£2)
7 0 k[ Ky(80) " y(ga)]
k= 2(8[‘32—1)1/2 £= 2(1_'32)1/2 Since the conditioré<k holds in this case, the mode fre-
v ' v ' qguencies fon # 1 are determined in the first approximation
op by the equation
0
Po=Jo(ka)Yo(kb) = Jo(kb) Yo(ka), Qo= 4. won=m(nN—1)v/[b—a)(sf2~1)*7]. (20)
Py a0 The wavelengths of the excited modes as functions of

the electron Lorentz factoy calculated by Eq.18) are
shown by dashed lines in Fig. 2 for a capillary tube with
and wg, are the roots of the dispersion equation. In derivinge =2.3 and the rati@/b=0.9. At all electron energies much
Eq. (17, we have wused the relationship larger than the thresholdy& y;), the wavelengths of all
PoSo— Uof o= 4/(7?k?ab). The dispersion relation is derived modes except (0, 1) tend to certain limits. They are deter-
using the condition that the denominator in E§6) should mined by the ratio between the inner and outer raalib,

lo=——, Sg=——,
0" oka’ O ska

vanish: which is illustrated by the curves in Fig. 3 for=10y;. One
can see that in thin-wall capillary tubes{ a<b) the mode
l1(¢a) + ﬁ kK1(£b)ro—e£Ko(£b)so =0 (18) wavelength is determined by the wall thickness, rather than
lo(§a)  k kKi(€b)po—eéKo(éb)gy by the tube radius.
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Ag, /b G,..1/Gy

30F

T T T 1

0 0.2 04 0.6 0.8 1.0
alb 0

FIG. 3. Wavelengths of modes with indices rf,in a capillary at FIG. 4. The gainG,,,; at the frequencies of the modes with=0, n=1,

y= 10y versus the ratio between capillary ragiib. o=1 (solid curve3 andm=0, n=15, s=1 (dashed curvésn a cylinder
with ¢=2.3 and radiusa for a hollow electron beam with inner radius
r=Ca and outer radiufR=2a as a function of the Lorentz factar. The
coefficientsC are shown by numbers at the curves.

5. INDUCED CHERENKOV RADIATION

The optical gain due to induced radiation at wavelengths
of various modes can easily be calculated in the limit of lowvalues of these parameters for the electron—photon system in
optical gain and cold electron beam, when the nonlinear efthe process of radiatioabsorption are constant, i.e.,
fects of interaction between the radiation and electrons are _ . )2 )
negligible, and the spectral width of the radiation line is de-  E =Exho, pz=p,7hk;, p'L=(fk)%, (22)
termined by the length over which an electron interacts withyhere ¢ «)2= (f w/c)2e — (%k,)? is the square of the pho-
the wave field. LefN be the initial number of phOtOﬂS in a ton transverse momentum in the mate[@e Eq(S)] Since
certain modeify,n,o) between the planes=0 andz=L.In  the relationships ~ E2—p2=mc=E'?—(p'?+p|?),
particular, these may be photons generated by an externgl 2=z «2 and p,=Ev also hold, we derive from Eq.
source. The chang&N in the photon number is caused by (22) the condition of Cherenkov radiatiofbsorption of
both induced radiation of photons by electrons at the correyarious modes with due account of the quantum recoil effect:
sponding mode frequency and induced absorption of photons 5
by beam electrons. The probabilities of these processes are (0—kK v)"‘ﬁi(l—s):O
related to the spontaneous radiation probability by the well- 7T 2E ’
known relation Wi,q=Wca;=Nwg,.  The  parameter

. ; . o Hence
AN=Wi,q— W4, is nonzero if the recoil due to emission or

absorption of a photon is taken into account. As a result, we  Ay= fiw’(e —1)L/(2Ev). (23
h P . . .
ave Then the gairs is determined using the equation
IMWsp
AN=N—7A4, 21 1( AN,
Y PV ey Sriteeods (24

where the phasé is determined by Eq12), and its change
Ay by the mode frequency shift due to recoil.

The probabilityws, of spontaneous radiation is obtaine
by dividing the classical radiation energyV,,,,/dw of the
corresponding mode calculated above by the photon ener
fhiw. As for the small shiftA ¢, it can be calculated using
conservation of momentum and energy in the process of pho- (e—1)wlL [ 3 dWy
ton emission to a certain moden(n,o). Let the electron Cmne="%eE, s J(Po,soo)w o 95 (29
have in the initial state energl, longitudinal momentum
p,, and zero projection on they-plane. The corresponding wheredW,,,,/dw is the spectral distribution of spontaneous
parameters in the final state d¢, p,, andp| . The total Cherenkov radiation in thenf,n,c) mode. Note that the

wherej(pg,¢o) is the electron current density as a function
d of the distance from the cylinder axis and of the azimuthal
anglepq, and integratior{24) is performed over the electron
am cross sectio8. Using Egs.(21) and(23), we can ex-
délreess the gain at the frequency of thm,,0) mode as
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expression for the gain in Eq25) does not contain the due to electrons moving at distancks py—a from the cyl-
Planck constant and can be derived from a purely classicahder surface withiM .=\ ,,,8v/4m. Thus, the gap\ be-
theory. tween the electron beam and the dielectric surface deter-

In the case of a solid dielectric cylinder, we derive frommines the  minimum  electron Lorentz  factor
Eq. (10) and(25) the gain for the moden{,n, o) in the form  y.=47A/\ B Nneeded for efficient amplification of radia-
tion at the wavelength ,,,,. The gain described by E6)

Gmno at ¢y~ — 1.3, corresponding to the maximum &, for
2i L3(e—1) <Kr2n(yp0/a)> (St 0)(2— 8mo0) the most intense modes with=1 as a function of the ratio

:E 2\ v B KZ(y) Qn betweeny and its threshold valug; is plotted in Fig. 1 for

7 m the case okt =2.3 (visible band in quarizand a beam with

d sirfy the parameters=1.1a, R=2a [see EQ.(27)]. In this case
X@ Ty (26 the minimum gapA=r—ais 0.1a. The gain is measured in

e Sle i the unitsGo,=10 3(i/iy)(L/a)3. One can see thag corre-
Here we have writtemo=mc/e, i is the total electron cur-  gnonding to the maximum gain increases with decreasing
rent, y=2ma/(Amno¥B), Mmno=27ClOmns, Smo 1S the  \ayelength(increasing mode inder), whereas the maxi-

Kronecker symbol, and angular brackets denote averaging,ym gain itself drops. Similar effects can be observed when
over the beam cross section. In particular, if the electrons arge mode indices ,n) are fixed and the gap width
distributed uniformly over a ring with inner radiussa and A —,_5 is varied(Fig.’ 4,

outer radiusR, we obtain, using integration formula$, In the case of a hollow dielectric cylindecapillary
tube, the gainGg, at frequencies of harmonics with=0

2
yp P yp
<Kr2n —ao >=R2_°r2[|<ﬁ] —ao can be expressed as
R 2i L (I8(£po)) d sinfy
YPo YPo Gop=— — , 28
—Km-1 2 Km+1 2 (27) "ip a(b—a)kony*B® Ii(£a) dy ¢F @8

r

For axisymmetrical modes(=0), the gain determined by uniform density in the region € po<R, we havé*
Eq. (26) is expressed by a simpler formula: '

K =13(ER) —12(¢R). 29
one =7 220 2 22\ + eK2(v) A 02 Calculations of the gain by E¢28) for the case:=2.3 and
0 one YA” Y Ki(y) +eKoly) ddr & R=0.9a, when the gap between the beam and the tube wall

Since at large values of the argument the modifieds 0.1 of its inside radiua, are given in Fig. 2. These results

Bessel functions in E¢27) contain an exponentially decay- are similar to those for the case of a solid cylinder discussed
ing factor, most of the radiation at the wavelength,, is above(Fig. 1).

where é=27x/\g,B7. If a cylindrical electron beam has a

6. CONCLUDING REMARKS

G, /G, In deriving Eqs.(26) and(28) for the gain, we assumed
40r that the spontaneous radiation line had a natural width due to
I the finite time of interaction between the dielectric and an
electron. The resulting expressions are also valid in the case
of inhomogeneous broadening due to the spread of the elec-
tron energy and angle distributions, if the inhomogeneous
broadening is smaller than the natural line width. By varying

the phase angle parametets in Eq. (12) and assuming
Sy<<ar, we obtain the following limitations:

A#*<(eB2—1)\BIL, (30
Ayl y3<(eB?—1)B3\NIL, (31

whereA #? is the mean-square spread of the electron propa-
gation angle around the dielectric axis aAdmc® is the
spread in the electron energy. The conditi¢®8) and (31)
were obtained assuming that the electron energy was notably
different from the threshold value and the mode frequencies
4 ;A M o 1 5 3 . \(/;%;e determined by the approximate expressid# and
(L) [(y-117) : . . L
The condition(31) can be also used in estimating the
FIG. 5. The gainG,,,; for the mode 111 versus the deviation from the maximum efficiency of conversion of the electron energy to

resonant electron Lorentz factgs . Curvel corresponds toy, / yr=1.10; .that Of_induced Cherenkov radiati.on- if the entire Spré?ﬂ_
(2) 1.21;(3) 1.46;(4) 1.70;(5) 2.00. is ascribed to electron energy radiation losses. The efficiency

30

20

1

4
-
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is fairly high, especially at high electron energy y;, but, The work was supported by the Russian Fund for Fun-
according to curves of Figs. 1 and 2, the gain drops with thelamental Researdproject No. 95-2-0445%a

ratio y/ yr. In the range of electron energies close to the

threshold value, where the gain is maximum, the simple es-

timates by Eqs(30) and(31) do not apply. For this case, Fig. !v. M. Arutyunyan and S. G. Oganesyan, JETP Lat, 515 (1981).

5 shows curves of the gain as a function of the electronzy-fegkﬂlandl\f-E-Z'\:I]Clver, Phyz-'\lzex 1}‘;5 956”(1198% . Akad. Nauk
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conversion of the electron energy to induced radiation. Meth. A 259, 125(1987.
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Helium ionization with excitation of the atom accompanied by absorption and scattering
of high-energy photons

M. Ya. Amus’ya and A. |. Mikhailov

B. P. Konstantinov St. Petersburg Institute of Nuclear Physics, 188350 Gatchina, Leningrad Region, Russia
(Submitted 16 September 1996
Zh. Eksp. Teor. Fiz111, 862—-870(March 1997

We calculate analytically the cross sections for ionization of the helium atom with absorption
and scattering of high-energy photons. The electrons are assumed to be moving in the
Coulomb field of the nucleus. The electron—electron interaction is taken into account in the first
order of perturbation theory. The high-frequency limits for the ratios of these cross sections

to the single-electron ionization cross sections are obtaineg-éucitations in absorption and for

s- and p-excitations in scattering. €997 American Institute of Physics.

[S1063-776(197)00803-2

1. lonization with excitation of the atom accompanied by electrons in the final state. ¥, refers to the bound state, at
photon absorption or scattering is determined entirely by thdigh photon frequencies>1 the energy of the ejected elec-
electron—electron interaction. The helium atom is the simtron, E;, is approximatelyw and the momentunp; is
plest system in which such a process can take place. Whil¢2mw> w, while the wave functionV; can be taken in the
two-electron ionization has been thoroughly studied botHform of a plane wave, since the Coulomb parameter for this
theoretically and experimentally, the process in which theelectron is small:
removal of one atomic electron is accompanied by excitation

of the other electron belonging to the same atom has been
studied much less. However, this process contributes to the 51:1: \/: <1.
formation of singly charged ions and must be taken into P1 w

account when the theoretical and experimental values for the
ratio of the cross sections of double and single ionizationghis is also true for double ionization, since, as shown in
are compared. Ref. 3, the principal contribution to the cross section of this
We examine photons whose energyis in the interval  process is provided by energies ranging frép~w to
| <w<m (herel is the ionization energy of the atom is  E,~1.
the electron mass, and we employ the relativistic system of The Feynman diagram of the process is depicted in Fig.
units, in whichz=c=1). When the photon energy is limited 1. A line with a solid black dot indicates that the correspond-
by the inequalitied <w< 7, wherep=maZ is the average ing state is described by a Coulomb function, a wavy line
momentum of a bound electronv&1/137, andZ is the  depicts electron—electron interaction, and a dashed line cor-
atomic numbey;, photoabsorption has a much higher prob-responds to a photon. Estimates done in Ref. 3 show that the
ability than inelastic photon scattering. The probabilities ofdiagram of Fig. 1 is the leading term in the amplitude of the
these two processes become comparable-aty, where in  process. The contributions of other diagrams contain an ad-
the energy range> 7 photon scatteringthe Compton ef- ditional small factor of ordet/w.
fect) dominates. For the helium atom the threshold frequency  Writing the electron—photon interaction operator in the
satisfieswy~ 7~7 keV. ordinary gradient fornp-A/m, whereA is the photon vector
Similarly, ionization with excitation of the atom by pho- potential andp is the electron momentum operator, and al-
tons occurs primarily through photoabsorption fefw<7  lowing for the fact thatp; —k~p, holds (wherek is the
and through scattering fav> 7. photon momentump;>k=w), we arrive at the following
2. We start with ionization with excitation of the helium expression for the amplitude of the process:
atom in photoabsorption. The process has been studied in
Refs. 1-3. Browh and Dalgarno and Sadeghpdutid nu-
merical calculations involving variational wave functions of F= ﬂj (p1|G(E)|f ) (F + | ¥ 15)
the initial state and Coulomb wave functions of the final m

electrons. An analytic calculation was done in Ref. 3, but the dfdf.df
final formula contains an error, which is corrected in the xp(wz|f2><f2—f|wls>ﬁ. (1)
m

present paper. We also derive an analytical formula linking

the cross sections for double ionization and single ionization

with excitation. Here E=2E,s—E, is the energy of the intermediate state,
Let us derive a formula for the cross section of the pro-G(E) is the Coulomb Green'’s function of the electron, &nd

cess in the first approximation in the electron—electron interis the photon polarization vector.

action, using Coulomb wave functions as the zeroth approxi- The integrals with respect fiq andf, with the Coulomb

mation. By¥w, and¥, we denote the wave functions of the functions¥ ¢ can easily be evaluated:
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FIG. 1.

df,
f<pl|G(E)|f1><fl+f|qfls>W:N(_

><<p1|G(E)VIV| _f>|V:7]|

df,
| vttt 5 2

=N(—%)<wzlviylf>ly=n,

whereN=(7%°/m)*?, and n=maZ.

Using the Coulomb Green’s function in the momentum
representatichand performing a series of transformations,

we find that

dipmp
(P1|G(E)V,,|—f)= o
1

<[ dy()y,“)' (HVpy1,/0),

(v —ﬂn)” !
(@n/mlVi,|0)= 4Wan5/o5mo,

@)

'u.e

3

1/2
7 7
- m=y

Np= -

‘anm

In the event of double ionizationV, is the Coulomb wave
function of the continuous spectrugy, . In the coordinate
representation the functio(m|<pp2)= @p,(r) behaves asymp-
totically like a combination of a plane wave and a converg-
d ing spherical wave. For the Coulomb function of the continu-
5) ous spectrum there exists a closed nonrelativistic
expression, which yield$

2 .
(v+ip,) et
(¢p,|Vi|0)=47Np, (V_—Ip;.m
2 27752 _i
@ P lew-amk) “py ©

The same expression can be obtained if ngg we take a

partial-wave expansion. As ir{7), only the wave with

/=0 contributes to the matrix elemei®). Thus, in our

approximation, the transition of a second electron is possible

only in the s-state of the discrete and continuous spectra.
Comparing(7) and (8), we conclude that

, 9

n—>i§2

sz
<99p2|Viv|O>:(N_n<‘Pns|Viv|0>)

@ where ¢ns= @n10-

p= \/ﬁ:i N, A= m -2 Plugging(6) into (7), we arrive at the following expres-
' ’ ' sion for the amplitude of photoionization accompanied by
2 i 1 excitation of the ion to a state with principal quantum num-
|=77—, igz—n:—_ bern:
2m p A
Fooy e o, -2 -3
Here (f|V;,|f') is the matrix element of the Yukawa poten- Fr(m=F"(ns)=87% "NnBlyx(y)(1+Ay)™* (10
tial exp(—ar)/r in the momentum representation: Y(¥)= (1, — o(x,1) — (x—1)%¢(x,2), (11)
47 e
<f|VIa|f > f £/ )2+a2 (5) X:2+)\y, A=+2—n 2,
—-1yn—k
After Egs. (2)—(4) are substituted in(1) we arrive at the k)= (@-n"") 12
following expression for the amplitude of the process: e(ak) (g+n-Hn* < (12

ReplacingN, with N, andn with i&; in (10), we arrive at

J\1
NI A Nl Y
F=BNy 07,u,>,u,2<q,2|v'77 Viertwl0), an expression for the double ionization amplitueie™ .
RN ©®) The differential cross sections of the process involving
B=— _”r(e.nﬂ nlzﬁ, u=n(1+\y), photon absorption are
P1 P1

where do, (n)= (47Ta)3 [F*(n )|2 2 )2

y:f dy(m ><5(w+2E15— El_EnS)! (13)
is an integral operator, and the ket vectoy stands for a d0'++—(477a)3 F pld%
plane-wave state with zero momentum. a (2m)

Formula(6) can be used in the cases of ionization with X 8(w+2E o~ E;— Ey) (14)

s .

excitation and double ionization. In the first proceds, is

the Coulomb functionp,, ., of a bound state. For it the ma- The bar ovelF|? stands for an average over photon polar-

trix element in(6) is
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TABLE I. Values of 87 (n) in %.

Ref. 2 Present work
n He Li* He Li*
2 4.79 1.60 2.31 1.03
3 0.59 0.25 0.43 0.19
4 0.19 0.08 0.16 0.071
5 0.09 0.04 0.076 0.034
6 0.05 0.02 0.043 0.019

Q, in (14)), we find the total cross sectiar, (n) for single
ionization and the energy distributiato, “/de, for double
ionization:

2 (n)
Ba(n )—U —QZ(E), (15)
ve 1 dog" Ry(ep)
Ba (82)—0—; de, ~ 22 (16)

HereZ is the atomic numbefwe are examining helium and
heliumlike atomg ando, is the cross section of an ordinary
photoeffect on a helium atom in the Born approximation:

. 287Ta/ | 5/2
72 " 3me Z) ’ 17
28
Q(M)=—53%(n),  Ra(s2)=2"7(py), (18)
. 1\
_ s - -3
J(n)—kfl dy(y_l) X(Y)(1+Ay) 7, (19
I(py)=J(n—i _n_1 (20
(p2)=J(n—i&y), fz—pz— \/3—2
The inverse is also true, i.e.,
J(N)=I(pa—imn), == (21
This yields a relationship linkin@(n) andR,(e,):
2
Q(n)= 5 Ra(P2—1i7n). (22

By calculating J(n) in the limit n—« we can find the
asymptotic behavior oQ(n):

0336 2R,(0)
= (23

Q(n>1)~

The graph in Ref. 3 presenting the dependenciobn
g, can be used to findR,(0), which is equal to 0.168 and
coincides with(23). But from the data listed in Table 1 of
Ref. 3 it follows thatQ(n)=0.277h%, which contradicts
(23). This forced us to calculat@, (n) anew via formula

(15) and to tabulate the results in Table | together with re-

sults obtained earlier by Dalgarno and Sadeghpéar He
and Li"

improves amn andZ grow.
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. As Table | clearly shows, the agreement between
the numerical results of Ref. 2 and our analytical results

k, k,
\\ /4

f+1 N

1s *—> —e L v,

% p ) k |
£ 1

ls \d A & V’,,],,,

f,~t L,

FIG. 2.

3. Now let us discuss inelastigCompton) photon scat-
tering in the p<w<<m energy range. Double ionization of
the helium atom in such a process was studied in Refs. 7-12.
Here we develop the ideas of Ref. 10 and derive formulas for
the cross sections of ionization with excitation in first order
in the electron—electron interactigRef. 8 contains only nu-
merical values of such cross sections obtained in the momen-
tum approximation

The process is described by the Feynman diagram de-
picted in Fig. 2. The electron—photon interaction is repre-
sented by the operat#?/2m. As Refs. 9 and 10 show, this
diagram plays the leading role in double ionization via
Compton scattering. In double ionization the main contribu-
tion is provided by the part of the electron energy spectrum
where the second electron acquires an endtgy |. The
energy of the incident photofminus the ionization and ex-
citation energiesis distributed between the scattered photon
and the ejected electron.

Let E; and p; be the energy and momentum of the
ejected electron, an@d; and w, the frequencies of the inci-
dent and scattered photons. In Ref. 10 it is shown that the
scattered photons predominantly carry away the energy
wy~w1— wi/m. Since E;=p?/2m~w;— w,~w?/m holds,
we have p;~w;, and the Coulomb parameter satisfies
&1=nlp1~nlw<€1. This makes it possible to use a plane
wave with momentunp, as the wave function of the ejected
electron.

Let o, be the cross section of ordinary Compton scat-
tering by a helium atom, and let; (n/") be the cross section
for inelastic photon scattering by helium in which one elec-
tron leaves the atom and the other is transferred to an excited
staten/” of the He" ion. Equations(11), (29), and (45) of
Ref. 10 make it possible to find the ratio of these cross sec-
tions:

. al(n/)
:Bc (n/): +
g

J
= (47701)2( - E) % <¢n/m|G(E)| ¢n/m>a
(24)
N2 7 df v If
<¢n/m|_ 0—'1/1&1/2 (27T)S<¢’n/m| iV1| >
X_Z< f|V|V2 (25)
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whereN?= 7%/ 7, andE=2E,— E,,,. After finding the de-
rivatives we must pub,=rv,= n=maZ.

TABLE Il. Values of Q;, in %.

As in Ref. 10, we approximate the Coulomb Green’s” 2 3 4 > 6
function G(E) by three terms of the Sturm expansibh: Quo 6.01 1.05 0.376 0.179 9.93(2)*
-Qup 0126 274¢2) 1.04-2) 509(-3)  2.87(-3)
L4 v 4 4 V4 4 Q 0.479 0.115 45142) 2.24(-2) 1.27(-2)
G(E)WM | 1O><110| | 20>§-/220|+2 | 21M>§-/221;L| 21
A= A= M A= Note* The number in parentheses stands for the power of 10.
=G0+ G20t Gay, (26)
2y 2
A _ B 5 2\ —1
M=—Toz M=Ve, e=—g=2-n% Xo= = T T+ DAA 0@, (32
The functionsy;, in the coordinate representation have the X1 1
=————+-(\+ +
(r[¥T=e"", (r|[W=(1—yr)e ",

(27)
(r|¥a,)=y(e, e,
where y=7\, and theg, are cyclic unit vectors, with
pn=0,*x1.
As a result of inserting26) into (24) we get

B(n/)
_(47Ta)zi 2 |<¢n/m|lplo>|2
21N N5 A—1
[ b/ ml ¥ 20)|* [ bn/ml ¥ 20,012
T D T N 17 ) 8

Substituting(25) into (28) yields the following matrix ele-
ments:

<_f|Vi77|‘;[,10>:<f|Viv|o>! V= 77+ Y

J
(= 1V, a0 = L+ v 1) 1V, 10), 29

< - f|Vi 77|‘I'21,L> =i Y(EMVk)<f|Vi v| k>|k—»0 .
Employing (29), we obtain

d\ 1
<¢n/m|‘l'10>:N2( _5) 7<‘Pn/m|vin_vi(7/+ v)|0>1

d
(dn/mlPa0)=|1+ 7£)<¢n/m|q}10>! (30
(92 E Vk
N2 M
<¢n/m|q’21/u> iyN vy v

1
% || dgnmVinlkD o

whereA = v, + vt. Now we can use Eq7) and the definition
(12) to obtain

8N,
<¢n/m|\1,i0>:5/05m0ﬁ)(i, i=1, 2,
! A1
7( ) (31
32N\
<¢n/m|w2m>:5|15m;/,7]2()\—_:1)3)(3a

x1=¢(1)—¢(a)—(a—1)%¢(a,2),
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wherea=A+2.

As Egs.(31) show, the second electron can be excited
only to thes- and p-states of the helium ion, which is a
consequence of our approximation of the Green’s function.
The probability of a transition to other states can be found if
we leave a greater number of terms in the Sturm expansion
of the Green’s function. But such transitions, as Setial®
argue, have a small probability, and we ignore them here.

We plug (31) into (28) and find the derivative with re-
spect to\. For transitions t;ms- andnp-states we have

Q1o+ Q2o Q21
B;(HS)=?1 Bg(np)=7, (33
718 N+ =1)\A=1  N+1 N xq )
207 13 (A +1)5(N—1/2)

1 6 2 2x5

X(x——ufm‘rz)' (39
27 3 n?/ (A +1)5(\—1/2)
S 2x4
A—1/2 N+1 N x3)'

where | = dx;/I\. After the derivative with respect o is
found, we can use the definition= y2—n~2 to simplify the
expressions fo; and y; .

Forn>1 we have the following asymptotic formulas:

0.196 0.00585 ~ 0.0263

—3 ., 20=— =3 Qu=—3—. (395

07 n n

Table 11 lists the values o®;, for finite n that were calcu-
lated by (34), and Table Il lists the results of calculating
B (n/) for He by (33) and those of Suriet al® Note that
the results of numerical and analytical calculations for pho-
ton scattering Table Ill) are in better agreement than those
for photoabsorption.

As in the photoeffect, in Compton scattering there exists
a simple relationship between the cross sections of double
ionization,o; *, and of ionization with excitationg_ (n):
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TABLE IIl. Values of B;(n/) in %. The validity of (37) can easily be established far—~. In

Ref. 8 Present work this case
n ns np ns np
2
2 2.60 0.163 1.47 1.120 (n>1)= —R.(0). 40
3 0.292 0.0316 0.256 0.0288 Qi ) n3 k(0) (40
4 0.094 0.0119 0.091 0.0113
5 0.043 0.0057 0.043 0.0056 .
6 0023 0.0032 0.024 0.0032 By' taking the valuesloRik(O) from Table 2 of Ref. 10
we arrive at the expressioi35) for the Q;y .
This work received partial financial support from the
L Section of Fundamental Sciences of the U.S. Department of
o . Energy under the contract W-31-109-ENG-38.
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Different methods for calculating the turbulent diffusion coefficiBrit of a passive scalar

impurity in an infinite homogeneous isotropic stationary turbulent medium are examined. The
values ofD+ calculated by these methods are compared for two limiting types of

turbulence, viz., turbulence with &function spectrum and turbulence with a Kolmogorov-type
spectrum. The temporal dependence of the velocity correlators is assumed to be exponential.

It is shown that the most accurate method is based on the use of the solution of the nonlinear
equation for the averaged Green’s function with consideration of the contribution from the
four-point turbulent velocity correlators. A comparison with the results of other methods that are
simpler from the mathematical standpoint shows that some of them also permit the

calculation ofD with relatively good accuracy. €1997 American Institute of Physics.
[S1063-776(197)00903-1

1. INTRODUCTION can certainly be generalized to turbulent flows in bounded
media.

The description of the transport of a passive scalar im-  Thus, the problem is formulated as follows: there is an
purity (particle concentrations, temperaturéa turbulent  incompressible infinite turbulent medium characterized by an
media is one of the main problems in the theory of turbu-ensemble of assigned velocitiegr,t). The turbulence is
lence. In view of the complexity of the exact solution of the assumed to be homogeneous, isotropic, and stationary, the
problem, efforts are usually confined to the use of the diffu-mean velocity satisfiequ(r,t))=0, and divu=0. The angle
sion approximation, which is suitable for large-scale spabrackets denote averaging over the ensemble of the actual
tiotemporal averaging of an impurity fiel(for further de-  turbulent velocitiesi(r,t). Because of the homogeneous sta-
tails, see Refs. 1 and).2In the diffusion approximation the tionary character of the turbulence, all the averaged quanti-
main problem is the calculation of the turbulent diffusion ties depend on the coordinate differeriRe-r;—r, and the
coefficientD+. The latter determines the mean impurity flux time differencer=t;—t,. To be specific, we shall discuss
[F(r,t)=—D+V{(n)] at the fixed point of the medium at the diffusion of impurity particles with the concentration
the timet in the diffusion approximation. As will be shown n(r,t). The molecular diffusion coefficiend,, is usually
below, the calculation db is associated with the use of the much smaller tharDy, and in the final formulas we set
ordinary single-particle Green’s functi@(1,2) of the exact Dm=0.
transport equation for the impurity field. The numerical values of the turbulent diffusion coeffi-

We note that the theory of turbulence is also concerne@ient Dt are essentially determined by the explicit form of
with the somewhat different problem of “relative diffu- the pair velocity correlator
sion,” in which interest is focused on the probability
p(R,t) of the separation of two initially close liquid particles Bam(R, 7) =(Un(ry,t)um(rz,t2)), (2)
to a distanceR during the timet. The functionp(R,t) ap-
proximately satisfies a diffusion equation with the diffusion Which can also be characterized by the generalized spectrum
coefficient K(R,t). The classic work by Richardsdrand  E(P.7):

Batchelof® was devoted mainly to the solution of this prob-

lem (see also Ref. 6 and).7The exact determination of e

K(R,t) requires knowledge of the two-particle Green’s func- {ur,hu(r.t+n)= fo dp E(p.7). @
tion G(1,2;3,4). We stress that the ordinary diffusion coef-

ficient D1 does not coincide withK(R,t). This is because the most significant contribution to impurity

The problem of calculatin®t is also related directly to transport is made by the large-scale turbulent fluctuations,
long-enduring problems of the theory of turbulence, viz., thewhich are described well by the two-point correlatby. The
problem of closing the hierarchy of equations for the velocitydescription of small-scale fluctuations clearly requires
correlators and the problem of calculating the turbulent visknowledge of the four-point and higher velocity correlators.
cosity. Various methods have been developed to solve thesthe generalized spectrufd(p,r) is characterized by the
problems®® The methods for describing turbulent transportlifetime 7o, the wave numbep,=1/R,, and the velocity
in bounded media and for the case of free turbulence in ang of the turbulent motions. The turbulent diffusion coeffi-
infinite medium differ significantly. In the present work we cientD depends significantly on these parameters. It is con-
consider only the latter case, although the proposed method&nient to represerid; in the dimensionless form
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Ug —( t _ 2 _ .

DT:_O DT(—,éo,...). @ (alat—D,VA)N(r,t)=—(u(r,t)V)n(r,t) (6)
Po To

Here £,=ug7opo IS a dimensionless parameter, which is

very important for determinin@+. The following estimates

applyl Dr=uZ7o/3=(Ug/po)éo/3 for &<1 and Dy

=Uq/py for frozen turbulence witlg,>1. Thus, the dimen-

sionless turbulent diffusion coefficiem as a function of B @

&, first increases linearly witly/3 and then tends monotoni- G(1,2)—Gm(1—2)+J d3G(1-3)(-u(3)V*)G(3,2),

cally to a certain limiting valu® (). The monotonicity of (7

this increase is dictated by the fact that an increaséyin _ _ —3

corresponds to a longer lifetime for the turbulent quctua-Gm(R'T)zem(l_2)_H(T)(47TD"“T)

tions. X exp(— R?/4D 1), (8)

These limiting estimates can have only a qualitativewhereH(7_)::L for 7>0 andH(7)=0 for 7<0. For turbu-
character. For tur_bulent flows having a broac_j ENergy SP€Gant flows in bounded media the Green'’s fur;ctidh,§ and
g#;]czn(;jf ?hgorgfgﬁ]aéff dzazndeir;cjn?:gr?;?ntﬂ?r?i\s/ecnh(t)rife G(1,2) satisfy particular boundary conditions, but the gen-

P R 7o ' feral formula(5) is also suitable in these cases. The formal

is more or less unique only for narrow-band spectra Ofsolution of E (6) in terms of the Lagrangian velocit
E(p,7). The diffusion coefficientD; depends on the : d: ; grang y
v(a,t) gives the expression

specific form ofE(p, r,) as a whole, and methods for calcu-
lating it that are independent of the formal choice of the ty
parameterp, and 7, are needed. G(1.2)= 5( rl_rz_ft dr v(at)
In this paper we shall study mainly the stationary value o ? . )
of D corresponding to the times> 7, (or t>t,=Ry/Ug for whose substitution together with the relations
frozen turbulence
r,=a+ f

The Green'’s functiors(1,2) is the solution of this equation
with a S-function source[ Q(r,t)=46(R)d(7)]. Using the
Green'’s functionG,,(R, 7) of this equation without the term
containing the velocity(r,t), we obtain the integral equa-
tion for G(1,2):

ty
dr v(a,7)

In the Lagrangian representation of the velocity field o

v(a,t) the exact expression for the turbulent diffusion coef-

ficient has the forrf andu(r,t)=v(a,t) into the basic expressigb) leads at once
to (4).
DT(t)=E Jtd7<v(a,t)v(a,7)), 4) Thus, the differqnt methods for caIc_uIatirigT iq the
3 Jo Eulerian representation reduce to a particular choice of the

. — . o i . Green'’s functiorG(1,2) (or to the method for calculating)it
wherea is the initial position of a liquid or gas particle. This The explicit form of the stochastic Green's function

simple formul_a can be used 9”'3_/ in cases ir_1 which the ®N5(1,2) as a functional of the random velocityr,t) is un-
semble of trajectories of the liquid part|cles |s_kn0‘¢ms a8  known. Therefore, ways must be sought to represent
result of measurements or a humerical experimehs we G(1,2) in the form of a series of approximations, whose

kno:xjv,f thehEuIerlan represgntano.n of the Vﬁloawl’t) '? substitution into(5) would lead to a corresponding series of
used for the most part, and E@) is practically useless for o, imations foD+. The main question here is the rapid

calculatingD+, since_ passage _from thg EuIt_ar?an VelOCitieS(although only asymptotic for broad spegtmnvergence of
u(r,t) to the Lagrangian velocitieg(a,t) is a difficult prob-  .c <aries for different values &= Uo7oPo -
lem that has not yet been solved.

In the Eulerian representation the exact expression for
D+ contains averaging of the velocity componenigr,t) 2. RENORMALIZED EQUATION FOR THE GREEN'S
with the Green’s functiorG(r,t;;r,,t,)=G(1,2):}? FUNCTION

1 t The simplest representation of the Green’s function
Dr(t)=3 f deodTWn(1)G(1,2)Un(2)>- (5 G(1,2) in the form of a series is confined to the iteration of
the basic equatiof¥). The substitution of this series of itera-
Here and below we use the convenient notationtions into(5) leads to a series of approximations o of
dn=dr,dt,, f(n)=f(r,,t,), f(1-2)=f(r;—rs,t;—1,), the form
R=r,—r,, 7=t;—t,, as well as the usual convention re- W2r
garding the summation over repeated vector and tensor indi- DTZO_O (a+bg2+céd+..). 9
ces. The Green’'s functio®s(1,2) is a random function, 3
which depends on the velocity field(r,t). As is usually  Here the term with2 is specified by the four-point velocity
done, we represent all the quantities in the form of a sum oforrelatoru(r,t), the term with&3 is given by sixth-order
the mean value and the fluctuational part: correlators, etc. It is seen frof@) that Dt can be calculated
- ' - ' in this manner only forgg<1. For turbulence with a broad
nrH=(m+n(r.y, G(12)=(G)+C'(1.2. Kolmogorov-type spectrum ¢ p~>3), only the first term in
The evolution of the impurity concentration(r,t) sat- the expansion exists, and the terms witl, ... diverge. The
isfies the equatiowe recall that diw=0): series(9) converges poorly because the expansion into a se-
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ries was performed in powers of the molecular Green'’s funcparticles with the solution of this equation, Kraichnan subse-
tion G,,, which does not describe the convective character ofjuently showetf'*that they agree well with one another.
the transport of an impurity by turbulence. Thus, the first of the equations in the hierarchy already
An equation forG(1,2) in a new renormalized form describes the convective transport of particles well and can
must clearly be obtained. In this new equation the convectivbe employed as the free term in the renormalized equation
mechanism of impurity transport must already be taken intq10). The substitution of the iterations of E¢L0) into (5)
account in the free term. The possibility of writing such anthen leads to a series of the form
equation is obvious and is based on the relations
upro [ a bép
G(1,2)=M<1—2>+f d3M(1-3) Dr="3" |Tvdg, T @res)®

(14)

This series exhibits good asymptotic convergence for all val-
ues of the parameter & ;<. The serieg14) can be re-
garded as an analog of Kummer's methbtbr improving
—4)G(4,2)}, (10) the convergence of the original serig¥. The first term in
(14) is obtained when the free termM =g of the renormal-

X

(—u(3)v<3>)e(3,2)—f d4K(3

ized equation(10) is substituted inta(5). This term com-

M(1—2)=Gm(1—2)+f d3f d4G,(1-3) pletely takes into account the contribution of all the forms
A and powers of the two-point correlatai® to Dy. The sec-
XK(3—4)M(4-2). (11)  ond term in(14) describes the contribution of the remaining

fourth-order correlators etc. Of course, the choice of the ker-
nel K in (11) is formally arbitrary, but its apparently physi-
cally substantiated choice in the forft2) is quite fortuitous.
From the physical standpoint it is clear that the contributions
to D from the higher-order velocity correlators, which de-
scribe the details of the turbulent fluctuations, should be far
less significant than the contributions of the two- and four-

It is easy to verify that the substitution @f1) into (10) leads

to the original equatiori7). The most satisfactory choice of
the kernelK is probably the one for which the auxiliary
function M (R, 7) would coincide with the averaged Green’s
function (G(1,2)). In fact, the free term

M(1-2)=(G(1,2)) describes the convective transport of
impurity particles in a turbulent medium. Thus, Efl) for nt correlators.

. Oi

'(\B/Ir(eF;’r:)s fs?]c():t'.lg g? 12)C|$ﬁ: st?) %?:;1?2 efor atthfm e?\;irggecp We present the explicit form of the first two terms in the
(7) are Iinuear Ie:q‘(uatioinsylt is howeverI ea(ll;/ tcl) see that avs-erieSDT.: D.(TO)+ D(T1)+"" which is obtained as a resu.lt of

: o ’ L . %he substitution of the free terd =g and the first iteration
eraging these equations does not give separate equations 1Qr Eq. (10) into (5) (here we consider only the stationary
(n(r,t)) or (G(1,2)), i.e., there will always be terms like valueé ofD+ at t—c0):
(u(1)Vn’(1)) or (u(1)VG’'(1,2)). The situation is similar T '
to the one which emerges during the derivation of the Rey- 1 (= -
nolds equations for the mean velocity, i.e., the mean values D{?== J dpj dr E(p,ng(p,7), (15)
depend on the contribution of the fluctuations, and the latter, 3 Jo 0
in turn, are determined by the distribution of the averaged
guantities. The endeavor to write a separate equation f0[5<1>:i
(G(1,2)) leads to a hierarchy of equations that are nonlinear T~ 24 J,
in (G(1,2)). The procedure for deriving this hierarchy was
described in detail in Ref. 1. Thus, the kerri¢lin (11) y f “dr, f “dr, f C B (pu i+ ) E(Q, Tt 7)
depends orG) and can be represented in the form of an 0 0 0
infinite series of terms with continually increasing powers of
(G). The first term in this series has the form

k(”(l—2):<(—u(1)V(1))(G(1,2)>(—u(2)V(2))>. Here p-q=pqu, and g(p,7,) is the Fourier transform
(12 (R, 7) in the variableR:

oo

© 1
app| daa” dpui-p)

Xg(p,71)9(0,73)9(|p+al, 7). (16)

The substitution of this kernel intd 1) leads to the simplest

nonlinear equation in the hierarchy of equations for §(p,7-)=de exp—ip-R)g(R, 7). (17)
(G(1,2))=g(1-2):

In calculating(16) we assumed that the fourth-order velocity
g(1—2)=Gm(1—2)+J d3f d4Gm(1-3) correlators are Gaussian, i.e., they were assumed to be equal
(3o () B to the sum of all the possible products of the second-order
X(u(3)V*¥g(3—4)u(4)Vv*)g(4-2). (13 correlators.

This is the familiar nonlinear equation proposed by  Here we present the results of the calculationD§?
Kraichnart! and Robert¥ to describe turbulent transport and D(Tl) for the two limiting types of spectra, viz., a
(the direct interaction or DIA equatiopnComparing the re- §-function spectrum and a very broda#&olmogorov-type
sults of the numerical simulation of the transport of impurity spectrum:
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0.6 // e ] FIG. 1. Stationary values of turbulent diffusion coeffi-
s /// = F——- cients. The upper group of curves corresponds to the
J T ] S-function spectrunk, (p, 7), and the lower group cor-
0.5F / ——————————— - responds to the Kolmogorov-type spectria(p,7).
I =T — The dot-dashed curves represBi?)(£&,), and the solid
04l '/,/’ . I curves represent the valuesB{”(&,) +D{(&). The
- A e S dotted curves giveD{™(¢&;). The dashed and long-
7 ////,-——"’_’-——-‘ dashed curves correspond B4 (&) and D$ (=, ).
0.3F ,/ ¢/ﬂ e e T LT The two-dot-dashed curves represent the combined self-
y’ //—”/_-—;’:'— ———————— consistent values dd$(&y). The levels on the right
02 4 _,.»';/':‘J—"’ correspond to the values Bf; in the limit £,— o (fro-
. _ //’ . zen turbulence
017 b
1 1 1 1 1 s ¥l ] 1 —
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%o
E.(p,7)=u28(p—po)expl — 7/ 7p), (18 < 1% of D{”) when&,—=. When&,—0, the contribution
, . . of all the correctionD{V,D$?, ... tends to zero.
Ea(p,7) = (Ug/Po)0.6515%*/(1+x* " exp( — 7/ 7o), The results obtained with the use of the nonlinear equa-

wherex=p/p,. In the limitx>1, we haveE, « p~53, j.e.,  tion(13) and the iterations of the renormalized equaiib@)

the spectrum is of the Kolmogorov type. These results maké&re physically and mathematically sounder. The direct nu-

it possible to evaluate the accuracy of proposed methods fdRerical simulation of turbulent diffusidn for the E; spec-
intermediate types of spectra. trum confirms this. Therefore, we shall assume that the val-

The values 0D{®(¢,) andD{®(&,) + DW(&,) are pre-  Ues ofD{”+ D are very close to the exact valuedf and
sented in Fig. 1. It is seen that the contribution of the fourth-compare the results of the calculationslof using different
order velocity correlators increases monotonically from 0%@PProximate methods specifically with these “standard” val-
at £,=0 to 4.1% for theE, spectrum and up to 5.5% for the U€S:

E, spectrum at,=10. The exact values d{” andD{"

for frozen turbulence §,—>) were obtained in Ref. 16,

where they were denoted IB4” andD{". For theE; spec- 3. APPROXIMATE METHODS FOR CALCULATING D

trum we haveD{Y(«)=0.6222 andD{"()=—-0.0691,
i.e., the correctiorD{") amounts to 11.1% ob{”. For the _ o _
E, spectrum we have D(TO)(oo) —0.4359 and D_(I_l) The numerical determination of the solutions of the non-

X () = —0.0291, i.e., the correction for this broad spectrum!inear equation(13) is a fairly complicated problem. It is
amounts to less than 6.7%. most convenient to use the Fourier transformRirand the
These results show that the main contributiorDtpis ~ -@place transform in- (we takeD ,=0):
made by the two-point velocity correlators, which describe
the Iqrgg—scale structure.of the turbulgnt fluctL_lations. The ﬁ(p,s)zf dede exp(—sr)exp—ip-R)g(p, 7),
contribution of the four-point correlators s 10%, in agree- 0
ment with the comparatively small influence of small-scale 19
turbulent motions on diffusion. It is noteworthy that the cor-
rection satisfie®{")<0. This seems physically natural, since
the presence of small-scale eddies clearly means that not all
the impurity particles are carried by the medium to great
distances. Because the formulas are very lengthy, it is diffi-
cult to evaluate the contributiob!?) of the sixth-order cor-
relators, which describe even smaller eddy motions. If, how-
ever, it is assumed that the relative rate of decrease of thiéis easy to see that the interatiof29) comprise a continued
terms in(14) is identical for at least the first terms, the maxi- fraction with positive terms. This means that two consecutive
mum contribution of the sixth-order correlators will be interations represent the exact vali@,s) with a deficiency

3.1. Use of asymptotes of the nonlinear equation (13)

2 © 1 )
Gp-|s+ 2 | daf aw1-p2) [ “are
4 Jo 1 0

-1

X (0,7)9(|p—al,7)exp(—s7) (20)
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(9<(p,s) and an excessgi(p,s). Thus, g-(p,s)=1/s ©
clearly represent§(p,s) with an excess. The substitution of DY (&)= 3 f dpf dr E(p,7)exd — D (&)p?7].
this expression int§20) gives (24)

-t The expressiori24) is a nonlinear equation for finding the

self-consistent diffusion coefficier{®(&,). This expres-

sion was apparently first proposed in Ref. 17.

However, these functions are excessively rough representa- The results of the calculations m(s)(go) are presented

tions of the exact valug(p,s). A more exact representation in Fig. 1 (dashed lines The maximum departure from

is given by the asymptotg(p,s) for p>po: D{Y+ D for the 5-function spectrunE,(p,r) amounts to
- e 2 15% at§ 3, and then the difference decrea$6$b% at
ga(p,s)=g<(p,s)=2[s+(sz+4uop2/3)l’2] g 2D £&=10 a(r)1d 4% foréyg—oe). The difference for the broad

oTop

9-(p,s)=|s m

Substitution of(21) into (13) yields g~ (p,s): spectrumE,(p, 7) is greater: 19%, 17%, and 15%, respec-
, tively for ¢&,=3, 10, and=. Such accuracy is perfectly ac-
—~ * * 1 ceptable for many cases.
9-(p,s)= S+p—f dqf drf du(1—u?E P y
4 Jo 0 -1
-1 3.3. Combined self-consistent method

(22

X(a,7)9<(Ip—al. m)exp(—s7) A more exact result is provided by the method in which

the diffusion Green’s functiorg(p, ) =exp(— D(Sa)p 7) is
The mean valugn,=(9<+9-)/2 is a fairly good represen- ysed forp < p, and the asymptote1) is used fop = p, .

tation of the exact value af. The substitution ofy, into (5)  ForE(p,7) « exp(—/x) such a combined method gives
gives the following expression for the case of

E(p,7) =E(p)exp(- 77): sa_To [Pry  E()
DT - 3 p 1 (sa) 42
0 +D5"pT1o
D™ (&0)= f dp E(p)l 2[1+(1+4ugrop?/3)H 1 . 279 (= E(p) -
, 3 U, P 1t (1rapi3 -
pro\? (= 1
+1+ 70) J dq E(q)f du Continuity of the combined Green’s function at the point
0 -t p,. gives
1—u? -1 2 sa (sa)\2,_ 712
% Py =[(ugTo—3D7)/3(DT) 719] " (26)
L+ (1+U37(p— )13 7 @3 -

The results of the calculations based on this method for
The calculation ofD; using this formula does not present E>(p,7) are given in Fig. 1the two-dot-dashed curyelt is
any difficulties. seen that this method gives values that are closer to
The results of the calculations 8X™(¢&,) for the spec- D{”+D{" than does the pure self-consistent method. For
tra (18) are presented in Fig. (the dotted curveslt is seen the 5-function spectrunt,(p,7) this method is as accurate
that for both spectra the plots BX{™ are close to the values as the pure self-consistent method.
of D{Y+D®. For Ey(p,7) a maximum difference of
~12% is observed at,=5, and it decreases to 4% for
&o—oe. In the case of the narrow-band spectriq(p, ), a
maximum difference of=13% is observed fogy—o°.
Thus, the comparatively simple formui@3) represents The stationary values db+(&,) can also be calculated
D quite satisfactorily, especially for frozen turbulence with @S thet—oe limit of the time-dependent turbulent diffusion
a broad spectrum. More exact approximate formulas CaﬁoefﬁmentDT(t &o). A self-consistent method for calculat-

probably be found for the Green’s functigR, 7) and used N9 D1(t,£o) follows from (5), if a diffusion Green's func-
to calculateD . tion with a time-dependent diffusion coefficient is taken as

the Green’s function. Ultimately we obtain

3.4. Self-consistent method with a time-dependent diffusion
coefficient

S

3.2. Self-consistent method D< (t, 50)_ f dpJ dr E(p 7

We have already stated that the large-scale turbulent mo- t
tions make the largest contribution®: . On the other hand, X exr{ - f dr' D (7' -fo)pz}- (27)
for such scales the Green’s functi¢G(1,2)) is described 0
well by the diffusion formula(8), in which the sum If we takeD{(t,&,)=D'Y(&,) here and let—o, Eq.(27)
D=D,+Dy=Dt must be taken instead @,. Therefore, transforms inta(24). The coefficientD{¥(t,£,) takes a sta-
it is natural to employ the  expression tionary value, in the limit> 7, for £,<1 or t>ty=1/uyp,
'g'(p,r)zexp(—D(TS)pzr) with the as yet unknown diffusion for £;>1, i.e., the process is determined by the smaller of the
coefficientD{¥(£&,) asg(p,7) in (15): characteristic times.
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The results of the calculations B (e, £,) are given in 3. For turbulence characterized by a broad spectrum, the
Fig. 1 (the long-dashed curyelt is seen that the curves mean valueD{®™ of the stationary and nonstationary self-
practically coincide wittD{¥+ D{Y at &, < 1. Then the dif-  consistent values oDt also represent®(&,) with good
ference increases monotonically and reaches 23%=atl0  accuracy.
for the &-function spectrunk(p, 7) and 15% for the broad 4. All the methods considered can be generalized for
spectrumE,(p,7). In the limit £;,— the differences are calculating the nonstationary diffusion coefficients
even greater, being=48% and 17%, respectively. A com- D+(t,&,). For short time®+(t, &,) =t/3t, is a good approxi-
parison of Egs.(24) and (27) reveals thatD{(t,&,)  mation up tot/t, < &, for turbulence withé,<1 and up to
>D{(&). The figure confirms this. The values of t/ty < 1 for &>1. We recall thaty=1/upo=Ry/uqg. For
D+ D lie between the plots 0D{?(x,&,) and DY  &<1 the quantityD(t,&,) achieves a stationary value at
X (&), which can be regarded as the upper and lowett/to=2-3, and for{,>1 it achieves a stationary value at
bounds for the real turbulent diffusion coefficiddt(&g). In - t/tg=10-20.
addition, the mean valu®{™ = (D{® (=, &) + D (£0))/2
of these coefficients represerd®+D{" with very good
accuracy. The difference between this mean
D+ DY for the broad spectrurii,(p,7) amounts to 3%,

1.5%, and 1.2% a§,=5, 10, and, respectively, i.e., inthis 1\ A silantev, zh. Bsp. Teor. Fiz101, 1216(1992 [Sov. Phys JETP
caseD{®™ is more accurate thaB{™ . However, the differ- 74, 650(1992].

ence for thed-function spectrumE,(p,7) is greater and ié é-ic'?]‘;'rgdigg‘r: agrdogl- RA- ggiﬂii‘gdﬁzt{zghggéflltgggw& 139(1992.
amounts to 0.1%, 7%, and 25%, respectlvely, at the Same’Gl. K. Batchel(;r, Prolc. éamt;ridge Philos. Sd8, 345(i952.

values of¢,. For this SDECUUI’D(TS)(&)) is more accurate for  5Survey in Mechanicss. K. Batchelor(ed), Cambridge University Press,

&0>10. Cambridge(1956), p. 352.
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Investigation of the turbulent mixing of thin layers of materials of different density
during the laser acceleration of flat multilayer targets in the Iskra-4 facility
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The results of the first experiments devised to investigate the mixing of thin layers of Al and Au
during the laser acceleration of flat three-layer targets dbSim), Al (2 um), and Au
(0.05-0.26um) by radiation converted to the second harmonic from the Iskra-4 iodine laser with
an intensity of 410 — 7x 10" W/cn? (7,5~ 1 ns), which acts on the Si side of the

target. A method for detecting the occurrence of mixing is developed. It is established that under
the experimental conditions the thickness of the mixing region is at te@st5um. The

results of a theoretical analysis of the evolution of the disturbances leading to mixing are
presented. ©1997 American Institute of Physid$$1063-776(97)01003-2

The turbulent mixing of thermonuclear fuel with the ma- laser radiation of suitable intensity, a plasma of Au and Al
terial of the target capsule compressing it is a serious probons can be obtained, and the occurrence of mixing can be
lem in the intertial-confinement thermonuclear fusion pro-detected by observing the appearance of the x-ray line emis-
gram. This process leads to a significant increase in thsion of those ions. For this purpose, a diagnostic pulse with
energy of the laser radiation needed to effect the ignition ofluration7y~0.3—0.5 nm and intensityy~ <103 W/cn? is
laser targets:? supplied coaxially with the power pulse to the rear side of

Mathematical-physical models of the mixing procgss, the target in the experiments. The delay of the diagnostic
which have been experimentally confirmed in shock-tubébeam relative to the power beam was selected so that the
experiment$, are presently known. However, the accelera-mixing process would manage to develop. In the experiments
tion of the target capsule by laser radiation has some speciahder consideration this delay amounteditio~0.86 ns.
features, which preclude extrapolating the existing models to  In the absence of mixing a possible reason for the ap-
the case of targets for laser-driven thermonuclear fusiopearance of the Al line emission may be that a sufficiently
without experimental verification. For this reason, speciallythin layer of Au is “burned through” because of the pres-
designed experiments involving the laser acceleration oénce of “hot” spots in the intensity distribution over the
such capsules or their flat analogs would be of interest.  cross section of the diagnostic beam. However, even when

This paper presents the results of the first experimentmixing occurs, the presence of these “hot” spots must be
performed to investigate the mixing of thin layers of Al and taken into account when the experiment is compared with
Au when three-layer flat Si—Al—Au targets are accelerated irtheoretical estimates of the time for the appearance of the Al
the Iskra-4 facility> The methodical approach to performing x-ray line emission. To monitor the possibility of a manifes-
the experiments under consideration, whose main featurdation of the effect just indicated on the target, an additional
were proposed in Refs. 6 and 7, was implemented in th&eam, which we shall henceforth call the control beam, was
following manner(see the schematic representation in Fig.directed onto the target from the gold side. The design delay
1). A Si—Al-Au target was irradiated from the Si side by a of this beam relative to the power beam wad.6 ns, and
pulse with wavelength A\=0.66um, duration 7, the spotwas located at a distance of 4 mm from the diagnos-
~0.8-1.2 ns, and intensithy,~0.5x 10"~ 1x 10"W/cn¥,  tic beam. Both spots were simultaneously within the field of
which we shall henceforth call the power pulse. The thick-vision of the diagnostic instrument. It was assumed that the
ness of the silicon layer was selected so that the thermahser flux densities and the intensity distributions in the di-
wave would not manage to reach the Al layer during theagnostic and control spots are similar. An identical delay of
period of action of the power laser radiation, i.e., the alumi-the appearance of the Al x-ray line emission relative to the
num and gold layers were accelerated in the “cold” sfdte beginning of the diagnostic and control laser radiation pro-
their heating by the x radiation of the plasma corona and the@ides evidence that the Au layer is burned through at the hot
shock wave is disregardedrhe conditions for the develop- points of the respective spots. The appearance of the pulse of
ment of Rayleigh—Taylor instability, which results in turbu- Al x radiation from the diagnostic spot before the corre-
lent mixing, obtained on the Al—Au interface because of thesponding x-ray pulse from the control sgot the absence of
large difference between the densitiesof these materials the latter pulsgcan indicate the occurrence of mixing.
and the direction of acceleration of the materials realized The target fabrication technique ensured a specular sur-
(g-Vp<0). face on the Al and Au layers with a roughness no greater

When the mixture of these materials formed is heated byhan 0.05.m2 The roughness of the Si surface was 0.1-0.3
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um. In the experiments described here the thickness of the $i1G. 2. Temporal irradiation diagram of targets in one of the experiments:
layer was 4.3—5um, the thickness of the Al layer was 1.7— power(1), diagnostic(2), and control(3) beams.
2.0 um, and the thickness of the Au layer varied in the range
0.05-0.3um.
The temporal parameters of the laser radiatibe shape varied in the range 320-520m. The intensity of the diag-
and duration of the pulsgsvere determined using an BE nostic beam fell within the range-20-4. 10 W/cn?,
type electro-optic device deteclawith a time resolution of and the intensity of the control beam was between
~40 ps. The values of the energy in the power, diagnostic).7x 10" and 2x 10'® W/cn? when the pulse duration was
and control beams were measured using TPI-2A calorim@.3—0.5 ns. The corresponding spot diameters were 390-530
eters. The measurement error wa$5%. The energy of the um and 500—80@.m. The absorption factor of the energy of
laser radiation absorbed by the target was also measured the power beam in the target wis,~0.9 in these experi-
the experiments. Plasma and optical caloriméfepdaced ments.
within the vacuum interaction chamber were used for this Let us turn to the results from recording the x-ray emis-
purpose. sion spectrum of the plasma formed on the rear side of the
The dimensions of the irradiation spots of the power,target. We, first of all, note that the Al line emission in the
diagnostic, and control spots and the nature of the distribu®.04—0.25 keV range was recorded on the time-integrated
tion of the intensity of the laser radiation in thgtthe pres-  spectrograms on a background of the x-ray emission of gold
ence of hot poinswere evaluated using x-ray pinhole cam- from both the diagnostic and control spots when the thick-
eras. ness of the gold layer was up to 0.4%n. As for the control
The x-ray diagnostic system provided for the recordingspot, this is evidence either that Au is burned through at the
of the following: the time-integrated x-ray line emission hot points or that a layer of Au of thickness 0.4%n man-
spectrum of the plasma in the 0.04-0.25 keV and 1.4—-2.&ges to vaporize within the duration of the control pulse.
keV ranges using spectrographs on a diffraction grating and The results of the temporal recording of the x radiation
a KAP crystal; the x-ray line emission near the JAkline of the plasma in the range of quantum energies near
(hv=~1.6 keV) on a background of the x emission in the Auhv~1.5 keV for thicknesses of the gold layer on the target
M band with a time resolution 0of150 ps; the x-ray emis- equal to 0.1 and 0.1&m are presented in Fig. 3. In each
sion continuum of the plasma in the 1-5 keV range with afigure the spectral photochronograms are presented on the

time resolution of~50 ps. left, and the plots of the time dependence of the intensity of
The shape and time sequence of the power, diagnostithe x-ray emission in the Au continuum and the A# line
and control laser pulses are presented in Fig. 2. (A=0.776 nm) obtained as a result of their treatment are

The intensity distribution in the power beam was fairly presented on the right. The duration of the emission of the
smooth. At the same time, numerous hot microregions werdu continuum at half-height corresponds approximately to
observed on the pinhole images of the diagnostic and espéhe duration of the diagnostic and control laser pulses
cially the control irradiation spots. The transverse dimen{~0.5 ns), and the temporal distance between them is
sions of the control spots were 1.5-2 times greater than the 0.7 ns, which corresponds to the difference between the
dimensions of the diagnostic beam on the target. This causeatrival times of the diagnostic and control beams on the rear
the corresponding mean intensities in the beams to differ bgide of the target. In this case the temporal shape of the Al
a factor of 2—3. The transverse dimensions of the power andmission approximately repeats the shape of the pulse of the
diagnostic beams on the target were similar. Au x-ray continuum.

The flux density of the laser radiation in the power beam  When the thickness of the gold layer is Quin, Al line
varied in the range,~5x10"~10" W/cn?, the duration emission is observed for both the diagnostic and control
varied in the range 0.83-1.1 ns, and the diameter of the spdieams, simultaneously with the Au emission. However, for
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the control beam this finding is most likely attributable to theThe shape of the diagnostic pulse was given by a Gaussian
rapid burning through of the Au at the hot points, whoseline profile with a duration at half-maximumg s=0.45 ns
presence was evidenced by the pinhole image of the experand a peak intensityy=3x 10" W/cn?. The thicknesses of
ment. At the same time, the fairly good synchronism of thethe Si(5 um) and Al (2 um) layers corresponded to the
Al and Au x-ray emission pulses for the diagnostic beam carexperimental values. The thickness of the Au layer was var-
be attributed to the occurrence of their complete mixing as &d from 0.15 to 0.3um.
result of acceleration of the target by the power laser radia- The following physical processes were taken into ac-
tion already at the arrival time of the diagnostic pulse. count in the calculations: the gas dynamics, the electronic
Considerable synchronism of the Au and Al emissionand ionic heat conduction, the nonequilibrium spectral diffu-
pulses in the diagnostic spot is also observed when the thiclsion of the x radiation, the relaxation of the electron and ion
ness of the gold layer is 0.15-0.16m. At the same time, temperatures, and the kinetics of the ionization of the multi-
there is no Al emission from the control spot. Such a picturecomponent highZ plasma. The electronic thermal conduc-
definitely attests to the presence of a region of mixing of Altance was calculated with consideration of the heat flux lim-
and Au of thickness 0.15-0.16m at the arrival time of the iting. The limiting factor was set equal t6=0.1. The
diagnostic pulse. absorption of the laser radiation was taken into account with
Preliminary calculations of the development of turbulentconsideration of the inverse bremsstrahlung mechanism only.
mixing when a three-layer target is accelerated were per- Figure 4 shows the motion of the interface between the
formed using physical modélsand the SNDP prograft.  Au and Al layers in the calculation without mixing. Up to
The shape of the power laser pulse was approximated in th@pproximatelyt=0.5 ns the motion of the boundary is gov-
calculations by an isosceles trapezium with a duration at therned by the removal of the thin gold layer under the action
baser,=2 ns and rise and decay times=0.6 ns. The in- of the hard x radiation in the silicon laser coraomaainly the
tensity at the maximum was equal ltg=7.5x 10" W/cn.  line emission in the silicoi , region. The Au and Al den-
The diagnostic pulse was incident on the régold) side of  sities are practically equalized, and no mixing appears. Then,
the three-layer target with a delay of the pulse maximumat the moment when the shock wave appears, the interface
relative to the beginning of the power pulag=1.46 ns. accelerates abruptly, and a density jump forms. Rayleigh—
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) . ) FIG. 6. Calculated time dependence of the emission in th@Hmmes from
FIG. 4. X — t diagram of the motion of the interface between the gold and e rear side of the target for different thicknesses of the gold lager (

aluminum layers and diagrams of the velocityand acceleratiog of the — 8,,=0.15um, 2 — 8,,=0.3 um), of the diagnostic laser pul¢8), and
interface calculated without mixing. of the x radiation in the continuous spectrum of the gold plagfha

Taylor instability, which results in mixing of the layers, rejative to the diagnostic pulse is clearly seérequals ap-
should develop after this moment. roximately 100 ps For a thin layer of gold its emission in
Figure 5 presents a density profile and the distribution othe continuum spectrum and the emission of the aluminum
the mass concentrations of gold and aluminum calculateglnes practically coincide along the time scalthe delay
with consideration of mixing at=1.4 ns, which corre- amounts to~50 ps, which is appreciably smaller than the
sponds approximately to the intensity maximum of the diagtemporal resolution of the electro-optic device detectar
nostic pulse for a gold thickness equal to 04 Itis seen  sjgnificant delay@bout 0.2 nsof the beginning of the emis-
from the calculation that because of the rapid removal of thejon of the aluminum lines relative to the Au emission in the
gold layer as a result of its being heated by the hard x radiacontinuum spectrum is observed for the thick gold layer.
tion of the Si laser corona, the mixing zone for the experi- A comparison of the Au emission and the aluminum
mentally realized acceleration values does not manage fhes in the experiments with gold layers of different thick-
cover the entire layer. At the time represented in Fig. 5 thgyegg suggests the appearance of such a del&p ps) for a
mass of the mixed gold layer corresponds approximately t9ayer thicknesss,~0.15um; however, the insufficiently
half of its initial mass. Similar behavior of the mixing zone is high temporal resolution of the detector precludes drawing
observed in the calculation with a thickness of the gOld Iayeran unequivoca' conclusion regarding its presence and mag-
equal to 0.3um. The comparison of the calculated emissionpjtyde. As the calculations show, when the thickness of the

pulses in the HgAl lines in calculations with different thick-  gold layer is increased, reliable detection of this delay can be
nesses of the gold layer and of the background emission Qxpected.

the gold plasma is more striking.

Figure 6 presents calculated plots of the time depen-
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Creation of ordered structures in a classical thermal plasma containing macropatrticles:
experiment and computer simulation
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We have compared experimental measurements of ordered structures in a thermal plasma
containing macroparticles of Cg@t atmospheric pressure and a temperature around 1700 K with
the results of numerical Monte Carlo calculations for the Yukawa model. We describe

several distinctive features of the way the experiments were done, including how the ordered
macroparticle structures were detected. We discuss a theoretical model of the behavior

of an equilibrium system of charged macroparticles in a plasma and the effective interaction
potential between them. Good agreement between the experimental and numerical results is noted,
and possible reasons for the observed discrepancies are discuss&897@\merican

Institute of Physicg.S1063-776(97)01103-7

1. INTRODUCTION HereT, is the plasma temperatur@,) = (47n,/3) " *3is the
o ) ) mean distance between particles, anpds the particle den-

A characteristic of plasmas with macroparticlesten g The yukawa model includes the effect of screening by a
referred to as a dusty or aerosol plasma, or a plasma with g,y around charge, which leads to an interaction potential of
condensed dispersive phasse the fact that the particles Debye—Hickel type. The effect of screening is determined
(whose sizes can vary from hundredths of a micron up thy the ratiox=(r)/rp (whererp is the Debye radius The

several tens of micropseffectively interact with the elec- model of a one-component plasma is a limiting case of the
trons and ions, and thus significantly affect the properties Oﬁ(ukawa model agr)/—rp0

tr:e plasma_. VYhen the§e _tpartlcles atLe mtrocljtucfed m(;o the Note that these models treat a classical quasineutral spa-
plasma, or Just appear in it, €.g., as the result of con enSEi!fally unbounded plasma, for which critical values of the in-

tion, they are charge_d _by the eleciron and ion currents, anfJerparticle interaction parameter are obtained by numerical
also by electron emission. The latter process can lead to @mulation: these critical values correspond to phase

positive elegtrlc charge; in this case, particles that emit elecfransition§'9 Thus, in a one-component plasma the three-
trons can raise the electron density in the gas phase and th

its electrical conductivity. If. however. th icles tr | ensional system forms a regular crystalline structure for
s electrical conductivity. 1, NOWEVET, Ie particies rap €1€C-y alues ofy, larger thany,=171. For small values ofy,
trons, then the opposite effect occtirs.

. . <4) the plasma is in a gaslike statee Ref. 8
P
One O.f the pa'rameters used to d.esc.rlbe the plasma IS ﬂgg One of the first experimental observations of crystal
so-called interaction parametgp, which is the ratio of the

. . ﬁtructures was in systems of micron-size charged particles of
average Coulomb energy of a particle to its average therma . : ; : .
iron and aluminum confined by a certain configuration of AC

energy. A distinguishing feature of a plasm:_a with MAacropar, 4 pc electric field<® Later investigations revealed Cou-
ticles is the fact that the char of a particle can have

extremely large value®@f order 16— 16 electron chargés lomb crystals of atomic ions in traps of various kinds, for

As a result, the interaction parametey, which depends on example in _Pennmg traps.For macroscopic particles with
> ) LA large negative charge~(10%e), crystalline states are ob-
Z:, can greatly exceed unity, which implies that the result- : . .
P ) . . . served when the particles are introduced into the boundary
ing plasma is highly nonideal. Theoretical calculations of the . . : :
L ; space-charge layer of a high-frequency disch&rigrewhich
equilibrium properties of such a plasma show that under ceré uilibrium is established between gravitational and electro
tain conditions strong interparticle correlations lead to thestqatic forced-16 9
appearance of ordered structures in the distribution of mac- - .
In practically all the experimental papers known to us,

roscopic particles analogous to structures in liquids or :

solids® Electrons and ions in this case remain an ideal gas, a rdered structures are observed in clouds of space charge

. ' “containing from a hundred to a few thousand charged par-

in a Debye plasma 9 ged p
Here we will conduct a detailed investigation of Ordereolt|cIes. The interaction potential between particles, whose

structures, including the conditions for their formation, form Is found to havg as_trong effept on.the_ phase transitions
n the plasma, can in this case differ significantly from the

within the framework of the single-component plasma and . . : .
the Yukawa model&7 Interaction potential in a classical quasineutral plasma. For

For a one-component plasma the interaction potentia@lasrr&a struct(l;.;.es th this kw;d, the(f)fry talsothpreilcts trlai
between particles)(r) is Coulombic, and the plasma ther- oundary conditions nave a strong efiect on the phase state

modynamics are characterized by a paramegof the form of the plasma’ Thus, for example, a cloud of particles in a
spherical trap separates into spherical layers. In place of

Yp= (Zpe)zl(r)kTg. sharp phase transitions, the system undergoes a gradual evo-
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lution from a liquid state characterized by short-range order The interaction between macroparticles and micropar-
to an intermediate state characterized by the coexistence oftigles (electrons and ionsis described by a potential .
liquid and solid phase, and finally to a solid stite. such thatV,(r)=« for r<R,+0o,, while forr>Ry+a,

For a system of macroparticles in the boundary layer of 2

igh- i i is ob- (Zp0)€
a high-frequency discharge, a crystalline structure is ob V(6 = ———
served for 2.110°<y,<1.6x10° and 0.6<x<4.8 (Ref. r
14), or yp~ 106_f°r x~9.8 (Ref. 16. However, numerical \yhereq_e is the charge on a microparticle of type and
calculations using the Yukawa model predict that for crys-, is its characteristic size(for example: =1 and
tallization we requirey,~99 for k=0.7, 166<y,<850 for q:= —1 for electronsa=2 andq,>0 for ions.
1<«<5, andy,=4.8x10" for k=10 (Ref. 9, 19. In Ref. The interaction between microparticles is described by a

, @

20 this considerable jump in the value gf (by roughly two potential V,,, for which V,(r)=o for r<o,+a,, while

orders of magnitudewas explained by Brownian motion of ¢5 1~ +

the particles. The corresponding model calculations lead to “oo

values ofy,~1.6X 10* for k=4. Nevertheless, a consider- V. (r)= (040,)€° 3)
ay .

able difference remaing factor of ~10) in the value of
, Which is assigned to perturbations of the external high- . . .
Yp, WHICT IS asSIg perturbations xter '9 The macroparticle, electron, and ion densitigs n,

frequency field. . . . D
Thus, the study of phase transitions in systems of pargndnz should satisfy the condition of electrical neutrality:

ticles confined in traps requires both inclusion of the effect ~ z n +q,n,=q;n;. (4

of the external field and the choice of an adequate particle . )
interaction potential. All these factors make the problem of  Because of the strong charge and density asymmetries
numerically simulating phase transitions in these systems sop> 1. Zp>92, 91~02, Np<<ny and ny<ny Ny,
complicated that present-day efforts have met with only iso-<"M1d1, and alsq the strong interaction betwgen part|c|es_, the
lated successes. primitive model is very difficult to use, both in constructing

In this paper we study experimentally and theoreticellly"’,l first—pringipl_es analytic theory. "?md in nun_1erica| simula-
the appearance of ordered structures in a weakly ionizelions. At this time the most promising theoretical approaches

thermal plasma containing charged macroparticles underg@,ﬁrtla based on d?s(}?b'n.g the mteractlon.bletwheen mac;opar-
ing practically laminar flow at atmospheric pressure and temtcles in terms of effective pseudopotentials that arise from

peratures of order 2000 degré@€ur theoretical analysis is 2Veraging(integration over microparticle coordinates. One
based on numerical calculations using the Monte Carlcpf the most natural ways to introduce effective pseudopoten-

method to solve the Yukawa model. The rather large size ofiS for interaction between macroparticles is to generate an
the region of plasma formatiofa volume of~ 10 cn?, cor-  €fective Hamiltonian by using the expression

responding to macroparticle numbers of ordef d0densi- H

ties~10" cm™2), together with the uniformity of the plasma Hep= —KkT In< exp{ kT > ; 5

and the absence of external electric and magnetic fields, al-

low us to minimize the influence of boundary conditions onwhereH is the full Hamiltonian of the primitive modek is

the phase transitions in the plasma and thereby correctly an8oltzmann’s constant, and the brackéts denote canonical
lyze the experimental results within the framework of theaveraging over coordinates and momenta of the micropar-

r

Yukawa model. ticles. The effective Hamiltoniahl . can have the following
form:

2. EFFECTIVE INTERACTION OF MACROPARTICLES IN A Het=Km+ Umn{R;}) +F([pc(r)i{R}]), (6)

PLASMA whereK , is the macroparticle kinetic energy,

The problem of correctly constructing an effective
pseudopotential for the interaction of macroparticles in a  Unn({RiD =2, Viu(|Ri—R;|/2R)
low-temperature plasma is extremely difficult, and up to now =)
has not been solved. An analogous problem arises in thig the potential energy of the interaction between macropar-
theory of suspensions of charged particles as f%éfiMany ticles based on the potentigdl), and{R;} is the set of coor-
theoretical papers begin their investigations of the propertiedinates that describe the configuration of the macroparticles.
of these systems within the framework of the so-calledin this expression, the functiongl describes the free energy
primitive model. In this model the interaction between of the microparticles in the external field of the macropar-
charged macroparticles is described by a hard-sphere Cotieles. It is knowr® thatF can be represented as a functional
lomb potential, for which we hav¥/,,(r)=« for r<2R;, of the local charged-particle densip(r), which depends

while for r>2R, parametrically on the positions of the macroparticl&s}.
(Z.e)2 The functionalF can be written in the form of a sum of four
Vinml(F) = ’; , (1)  terms as follows:
F=Fig+Fext Fect Feor (7)

where Z, is the charge on a macroparticle an&2is its
characteristic size. where
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3. CRITERIA FOR CRYSTALLIZATION

F-=kadr DN 3pe(r))—1], 8
'd pe(rLin(rcpe(r)) —1] ® In the literature, authors have used various phenomeno-

logical criteer7i6213tg)5 dgine the transition of a system to a crys-
— — talline state’=>“>7°<The best-known criterion is that of
Fex fdr Po(1)Vex(1{R}}) 2 fdr pe(r) Lindemanr?®=28 according to which a solid phase melts
when the ratio of the mean-square displacement of a particle
to the mean interparticle distance begins to exceeddl-1
(q8)2 pe(D)pa(r") though for different physical systems this number sometimes
= f dr'dr %; (10) varies between 0.05 and 0.®ther criteria are formulated in
2 r=r’| Refs. 29-32. For example, it has been shown that the first
maximum of the structure fact@®@(q) of a liquid on its crys-
fallization curve, where

><Vmc(|r_Rj|)r (9)

here A, is the thermal wavelength of the microparticles,
F oy describes the interaction between micro- and macropa
ticles, andr . is the contribution of the average field arising )

from the Coulomb repulsion between electrons. Unfortu- S(Q):lJF”pf dr[g(r)—1]exp(—i{q-r)), (13

nately, no explicit expression is known for the tefyg,, that f constant and equal to 2.85. Hagr) is the binary corre-

describes the correlation between macroparticles; therefor tion function. which is the orobability for finding barticles
various approximations are used in the literature. One rath ? T P y 9p
separated by a distance=|r|.

romising approximation is the expression X - o .
P gapp P A simple criterion for crystallization based on the binary
correlation function can be formulated by considering the

Feor= ka dr pe(N)WEEHT,pe(r)), (1) ratio of the minimumm valugy,,,, to the maximum value
Omay Of this function?’=2°
whereW gEo(T,pc(r)) is the contribution to the free energy i
per unit volume for the one-component plasma model, which ~ R;= . (14
is known from Monte Carlo calculations. It is obvious that Imax
the functional F depends nonlinearly on the coordinatesThe transition from liquid to crystalline state corresponds to
{Rj}- values of this parameter equal to 0.2.

In Refs. 24 and 25, the authors minimize the functional
F and find the effective interaction potential between macy gxpeRIMENT
roparticles by using the numerical Carparrinello method.
Their calculations showed that over a wide range of tempera- Our experimental setup, which includes a generator of
tures and densities the two terms on the right side of(6y.  Plasma and diagnostic apparatus for determining the param-
which depend on the macroparticle coordinates and whiclters of the particles and the gas, is described in detail in
describe many-particle interactions, can be reliably approxiRefs. 21, 33. The source of plasitatwo-flame propane-air
mated by a sum of pairwise additive terms, each of which ifMecker burner creates a laminar jet of plasma with uni-
turn is well approximated by the Yukawa potential. Thus, weformly distributed parametefsemperatures, electron and ion
can use a screened Coulomb potential of the Debyekélu concentrationsin the region interior to the jet. The pressure
type as an effective pairwise potential to describe the interof the combustion products is atmospheric. The diameter of
action between macroparticles, in which the characteristi¢he plasma jet was 25 mm, with a velock that varied in
scale of the screening and the interaction parameter havet@e range 2—-3 m/s. The concentrations of electrons and ions
more complicated dependence on density and temperatut@ the plasma are in the range *tL0'° cm™2, with equal
than in the Debye case. These dependences are different fefectron and ion temperature$;=Te=T,. Spectrometer
different phase states of the systéAi=28 measurements of the particle temperattishow that the lat-

By virtue of the latter fact, a first-principles investigation ter is close to the gas temperatuf, & Tg).
of the phase diagram requires very careful and extensive cal- Our object of study was a weakly ionized thermal
culations. The best approach is probably to use speciallyplasma with Ce@macroparticles. Cerium dioxide was cho-
designed numerical methods combined with comparison§en as a material for the macroparticles both because of its
and analysis of experimental data. In this paper, the modedihemical inertness and because of the small amount of work
we adopt, which matches the conditions of the experimentd}eeded to liberate thermal electrans2.75 eV, see Ref. 35
is one in which the macroparticles interact through afrom the surface of heated Ce@articles. Particles of ce-
screened Coulomb potentigthe Debye model or the rium oxide powder contain impurities of alkali metal com-

Yukawa model: pounds. As a result, spectral measurements in the plasma jet
detected the presence of sodium atoms with a low ionization
(Zpe)zexp(—r/rD) potential. Thus, the basic components of the plasma were
U(r)= r : (12 charged particles of Cef electrons, and singly-charged
Na' ions.

Justification for our use of the Yukawa model is also In order to study Coulombic ordered structures in this
provided by analysis of the experimental data given inplasma it is necessary to have data both on the particle
Ref. 21. charge and on the basic plasma parameters. Our experiments
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FIG. 1. Sketch of optical measurements of spatial
macroparticle structures.

particles
optical trap

determined the particle sizes, their densities, the plasma tenticles were compared with the results obtained for an aerosol
perature, the local electron density, and the density of sojet at room temperature. In this case, the interior flame of the
dium iongs?1:33:36-38 burner contained only air and CeQ@articles. This system

Plasma diagnostics were carried out both by probe andimulates a plasma with a randdchaotig spatial distribu-
optical methods. The density of positive alkali metal ions tion of macroparticlesa gaslike plasma
was measured by the electric probe metffbt.The method Figure 2 shows typical binary correlation functions
used to determine the local electron densitywas based on g(r) for CeG; particles in an aerosol jet at room temperature
measuring the currenit and the longitudinal electric field (Ty4=300K) and in a plasma (T,=2170K and
intensity E in the plasma?® The temperature of the gas and T4=1700K). It is easy to see that the correlation functions
the density of alkali metal atoms were measured by tradi-
tional methods: the generalized reversal method and the
method of total absorptiott.

In order to determine the averaggautey diameterD,, 94
and the macroparticle density, in the plasma jet we used a
novel laser method The method is based on measurement
of the extinction(attenuation of light in a dispersive me- 1.0¢
dium at small scattering angles, and is designed to determine 05 /"’"’”W

the characteristics of particles in the size range 0.5gb

1.5}

Measurement errors of the extinction of about 2% give rise 0o gb 160 240 3io 200 r u‘m
to errors in finding the particle sizes of about 3%, and errors
in the density of about 10%. gt

In order to measure the spatial positions of the macro- sk b

particles we used a laser time-of-flight detectbhe mea-
surement volume for the time-of-flight detector is formed by 1.0h

focusing the beam of an argon laser € 0.488.m) in a

given region of the plasma jéFig. 1). The pulses of scat- 0.5
tered light from individual particles are converted by a pho-
tomultiplier into electric signals. These signals are processed
to calculate the correlation functiog(r), wherer=V,t.
Here V, is the average velocity of the particle¥{~V,)
andt is the time. In what follows, the binary correlation
functiong(r) will be used to analyze the spatial structure of
the particles.

In measurements with Ceatrticles, the particle den-
sity n, varied in the range (0.2—5.8)10" cm™3, the tem-
perature of the plasmé, in the range 1700-2200 K. Con- 0 80 160 240 320 400 ; u;
sequently, the ion density; varied from 0.4< 10" cm™2 to '

4.0x10%cm 3, and the electron densityn, from 6. 2 B ation function(r) for CeQ, particles | N
0. _3 0.3 . . 2. Binary correlation functiog(r) for CeQ, particles in an air jet a
2.5x10"cm 3 to 8x 10 cm % The average diameter room temperaturd ;=300 K andy,=0 (a), in a plasma Z,=500) at a

D, of a CeQ particle is about O&m temperatureT,=2170 K, 7,=40 and x=3.5 (b), and at a temperature
The measurements of the spatial structures of macropar,=1700 K, y,=120, andx=1.6 (c).

0 . . . . . ~
0 80 160 240 320 400 r, ym
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g(r) for the aerosol jet and for the plasma at a temperaturgstic of these experiments, ie.(r)=17um and
Ty=2170K and particle density1,=2.0x10° cm™® are ;=11 um, we obtainy,=120 andl ,= y,(r)/r =185 for
practically the saméFigs. 2a, b. We therefore conclude that Z,=500, andT,=1700 K.
particles in the plasma are weakly interacting and the forma-  As an alternate model for analysis and comparison of
tion of ordered structures is impossible. This is also connumerical and experimental results, we chose the model of a
firmed by independent diagnostic measureméptsbe and  single-component plasma in which the macroparticles inter-
optica) made in the plasma. Thus, the values of the interacact via the Coulomb potentidll) superposed on a uniform
tion parametery, computed from the measurement results,compensating background of the opposite charge. As is well
and the parametet=(r)/rp that takes into account Debye known from the literatur&® the model of a single-
screening, are respectively 40 and 3.5. component plasma has been studied in considerable detail by
At a plasma temperature of about 1700 K and €eO Monte Carlo methods. For this reason it is expedient to com-
particle density of order 0cm™2, analysis of the binary pare the numerical results for both models. In doing this, we
correlation functiorg(r) reveals short-range order, which is muyst keep in mind that the model of a single-component
characteristic of liquidsFig. 29. That is, the particles form plasma has the property of similarity, which implies that all
an ordered structurg.Under these conditions the ion density the results depend only on the single dimensionless param-
(nj=4.2<10° cm ) is roughly an order of magnitude etery,. However, in the Debye model the results depend on
lower than the electron densityn{=7.2x10"°cm °). The  two dimensionless parameters, namefy, and x=(r)/rp,.
charge of the particles obtained from the quasineutrality conNumerical results within the Debye model were obtained for
dition in the form Z,n,=ne (n;<ne) is positive, with a  the two valuesk=1.0 and 2.0. These values correspond to
value of about 18. This value is accurate to within a factor the experimental conditions, and allow us to analyze thor-
of 2, which can be explained by the thermal emission ofoughly the tendency for the computed quantities to change
electrons from the particle surfaté> The parametery,,  when we compare with the results of the single-component
and « obtained from these diagnostic measurements had vaplasma model.
ues > 120 and 1.6 respectively, indicating a system of  |n Monte Carlo calculations we usually consider a finite
weakly interacting particles. According to criteria of Refs. 2, number of particlesN located in a cell of sizé with peri-
7, 19, this implies that a gas—liquid phase transition is ocodic boundary conditions. Current speeds of available com-
curring. puters and the requirement that computation times be reason-
able (one point per dayrestricts the problems that can be
solved to those for which values bf range up to 125. Thus,
in our case the size of the call which is also conveniently
The plasma with macroparticles was numericallymeasured in units of the Debye radius, equaled
simulated using the Monte Carlo methtid.For the

5. NUMERICAL RESULTS

calculations the following parameters for the plasma L N \13 (4, \18 (r)

with  CeQ, particles were chosen: macroparticle —:< 3) =(— N) —. (16)
density n,=5.0x10" cm 3, electron density n,=7.2 o \Mpfp 3 o

X 10'° cm™3, ion densityn;=0.42x 10'° cm™ 3, and plasma

temperaturel;=1700 K. The Debye radius, and average In the calculations withk=1.0 and 2.0, the quantity

distance between particles in this case wereutd and 17 | /r, was equal to 8.05 and 16.1 respectively, and the inter-
wm respectively. The electron density and ion density in thesction parameter varied over wide limits. Let us begin our
plasma was roughly three orders of magnitude larger than thgnalysis of the numerical results with a discussion of the
macroparticle density. Therefore, in simulating the plasmainary correlation functiong)(r) obtained within the one-
the Monte Carlo calculations can be carried out only aftecomponent model. Figure 3 shows the macropartj¢te for
introducing an effective interaction potential between theyalues of the parametey, from 1 to 1408 Note that in this
macroparticles, which arises, as we mentioned above, froffhodel crystallization occurs at,= 171, and that the binary
averaging over the positions of electrons and ions. In thigorrelation functiong(r) for ¥p=171 satisfies the crystalli-
context it is worth recalling that the question of the form of zation criteria mentioned above.
the effective potential is not finally resolved; however, atthis  The results of calculating(r) for the Yukawa model
time the Debye potentidll2) is the most reliable choice. and analogous values of the paramekey for values of

In these calculations it is convenient to pick the Debyex=1.0 and 2.0 are shown in Figs. 4 and 5. Comparison and
radiusrp as a unit of length, where this radius depends omanalysis of Figs. 3, 4, and 5 shows that within the framework
the electron and ion density of the plasma. TH&®) be-  of the Debye model(r) is close to the analogoug(r)

comes obtained within the framework of the one-component model;
(Z.e)%exp 1) for k=1.0 this is quite natural, since ag—o the Debye
U(r)= p# (15 model reduces to the one-component plasma model. Increas-
D

ing the parametel , to 1000 forx = 1.0 (which significantly
where we have introduced the dimensionless distancexceeds values of , obtained under experimental condi-
r=r/rp from the macroparticle. tions) does not lead to crystallization of macroparticles ac-
The correlation parametﬂp=zge2/kTgrD can be writ- cording to this criteria. Evidence of this is the ratio
ten in the formI" ;= y,(r)/rp. Under conditions character- R,>0.2 and the behavior of the computed structure factor
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FIG. 3. Binary correlation functiong(r) of the one-component plasma
model for various values df , .

1/
shown in Fig. 6. The maximum value 8{q) atI',= 1000 is 1 /%/
smaller than 2.5, whereas according to Ref. 29 it should 0 L. .

reach 2.85 on the crystallization curve $(q). 0 1 2
Comparison of these numerical results fgr) with ex-
periment is Co,mpllcatEd by the _faCt that the waist of th,e Iase":IG. 5. Binary correlation functiong(r) of the Debye plasma model for
beam has a diameter several times smaller than the interpa- 1.T,=1.5(1), 7.5(2), 15(3), 75(4), 150(5), 185(6), 210(7), and 1000
ticle distance. Therefore, the diagnostic methods used fow).
these ordered structures in the plasma give us information
not about the correlation function itself, but rather about the
correlation function averaged over the measurement volum
formed by the focusing of the laser beam.
In order to estimate an effective sidgy that takes into

rir)

Valid for noninteracting particles wheh>D holds. There-
fore, in order to estimatéy; we use measurements of the

. T orrelation function for Ce@particles in an air jetFig. 2b).
account the diameter of the laser constriction, we note th he effective sizaly lies in the interval within which the

when thg d'St"’?”C? from such a pgrncle IS smallerwhe' . value of the correlation function equals zero. According to
probability of finding another particle reduces to zero. This is

g(n S(q)
25 25
2
] 6 .
2.0 A 20 |
; /
1.5
A 3
1.5 y
1.0
3 ]
1.0 & /
0.5 >
; / ]
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FIG. 4. Binary correlation functiong(r) of the Debye plasma model for FIG. 6. Structure factor for the Debye plasma model with macroparticles for
k=2.T,=(1), 7.5(2), 15(3), 75(4), 150(5), and 210(6). k=1.T,=216(1) and 1000(2).
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g(n plasma consisting of positively charged micron-size €eO
207 particles, electrons emitted by them, and singly charged so-
] 8 dium ions at atmospheric pressure and temperatures of about
1700 K. Analysis of the theoretical and experimental binary
correlation functiongy(r) show that the latter are in good
agreement after averaging the theoretig@al) over the mea-
surement volume formed by focusing of the laser beam. Nu-
merical results also confirm that under the conditions of the
experiment no crystallization of macroparticles takes place in
the plasma. However, a gas-liquid phase transition is clearly
observed, along with spatial ordering of the macroparticles
associated with strong interparticle interactions. This asser-
tion is based on analysis of the computed correlation func-
tions and verification that the two criteria for crystallization

0.5 / mentioned abovéR,>0.2 andS(q)>2.89 are fulfilled.
: 3 This work was carried out with the partial financial sup-
] port of the Russian Fund for Fundamental Resed@tant
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Interaction of a high-power laser beam with low-density porous media
A. E. Bugrov, S. Yu. Gus’kov, and V. B. Rozanov

P. N. Lebedev Institute of Physics, Russian Academy of Sciences, 117924 Moscow, Russia

I. N. Burdonskii, V. V. Gavrilov, A. Yu. Gol'tsov, E. V. Zhuzhukalo, N. G. Koval'skii, M. 1.
Pergament, and V. M. Petryakov

Troitsk Insitiute for Innovative and Thermonuclear Studies, 142092 Troitsk, Moscow Region, Russia
(Submitted 26 June 1996
Zh. Eksp. Teor. Fiz111, 903-918(March 1997

We have experimentally investigated the processes of laser light absorption and energy transfer
in porous targets made of “agar-agar” {f1,40;) with an average density of 1-4

mg/cn? illuminated by the focused beam of a neodymium laser with an intensity ‘¢f\locn?

within a pulse of duration 2.5 ns. Many important scientific and technical problems, e.g.,
inertial-confinement thermonuclear fusion, the creation of lasers in the x-ray regime, and the
modeling of astrophysical phenomena under laboratory conditions, can be successfully
addressed by using low-density porous media as components of such targets. In our experiments
with porous targets of variable density and thickness we used optical and x-ray diagnostic
methods, which ensured that our measurements were made with high temporal and spatial
resolution. We show that a region forms within the porous target consisting of a dense
high-temperature plasma which effectively absorbs the laser radiation. Energy is transferred from
the absorption region to the surrounding layer of porous material at up<ttd2 cm/s.

Experimental data are in good agreement with the predictions of our theoretical model, which
takes into account the specific features of absorption of laser radiation in a porous material

and is based on representing the energy transfer within the material as a hydrothermal wave.
© 1997 American Institute of Physids$$1063-776(97)01203-1

1. INTRODUCTION Use of this procedure appears to lead to efficient smoothing
out of nonuniformities in the illumination at high values of

The use of low-density porous media as components ofhe ablation pressure at the target surface. In the indirect-

various types of targets illuminated by high-power laserjjjymination scheme, a low-density material placed at the

pulses is a very promising approach to the study of the physnner surface of a shell-converter made of heavy elements

ics of interaction between a Ia_ser beam and matte_r, and cafhd illuminated by laser beams can confine the expanding

lead to the successful resolution of a number of 'mportanFeradiating plasma, thereby ensuring the required uniformity

scientific and technical problems. Among these are inertialgs the distribution of x-ray intensity at the surface of the

confinement thermonuclear fusion, the creation of sources %ermonuclear target. A porous medium is a fundamentally

coherent radiation in the x-ray region of the spectrum, SImu'necessary element in the construction of promising targets of

L?t':n o;;sﬁt;ogﬁhyf&ggl r%hi?olm?ngi und;arthlaborrato% con?—he “laser greenhouse” type as wellA further attractive
ons, a ally fundamenta’ studies of Ihe properties a gossibility is the option of introducing a small amount of

states of matter under dynamic loading in the megabar pre various elements into the porous target, thereby influencing

sure range. the spectral composition of the x-ray emission from the
Continuing efforts to initiate thermonuclear fusion in mi- Plasmr; P d

crotargets by high-power laser beams have led to conside A fund tal feat ¢ low-density t s i
able refinement of the fundamental requirements on the pa- uhdamenial feature of porous low-density targets 1s

rameters of laser radiation and target construction. The use &€l nonuniformity. The structure of these materials is, as a

complex targets made with materials whose average dendi€: @ disordered aggregate of particles of various shapes
ties are two or three orders of magnitude smaller than normZind normal solid-state densities together with pores. The ab-
solid-state densities can in principle ensure symmetric comsOrption of high-power laser radiation, the mechanism for

pression of the thermonuclear fuel and implementation ofnergy transport, and the fluid dynamic processes in media
thermonuclear ignition with significantly more relaxed re- with discrete structures can have a very distinctive character
quirements on the parameters of the laser system and conditd has recently attracted more and more interest and
tions for illumination. In the direct-illumination scheme, it is attention’

possible to significantly alter the spatial density distribution  In contrast to the classical process of light scattering in a

of the plasma corona that forms at the illuminated surface oflispersive medium when the latter is illuminated by a laser

a spherical thermonuclear target by depositing on the surfadeeam with intensity exceeding ¥0wW/cn?, in a porous me-

a layer of foam material with suitably chosen thickness andlium heating and expansion of the structural elements takes
initial density made from elements with low atomic numbers.place, causing the dimensions of the structure to increase.
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This in turn causes the length over which absorption is effocused onto the target by a lens with a relative aperture of
fective to decrease with time. 1:10 (the half-width of the intensity distribution within the
Consider a case where the average density of electrorfecal spot was~150 xm); and the optical flux density at the
in the porous target is below the critical density for the givensurface of the illuminated target was f@&/cn?. In these
wavelength of the laser light. The length of the interactionexperiments we used planar targets with thicknesses of 100—
region, which is related to the overlap of the laser beam cros$000 . m made of “agar-agar” (GH1507) with densities in
section by the expanding dense elements of the porous m#he range 1-10 mg/cinand also multilayer targets in which
terial, will decrease until the particles of the material havelayers of aluminum with thickness 1—-6m were deposited
dispersed to below a critical density. After this, a region ofon the illuminated surface, back surface, or both surfaces of
bulk absorption of the laser radiation forms, whose longitu-the low-density material. The agar has a chaotic structure
dinal size(along the direction of the laser beans deter- made up of fibers with solid-state density and a diameter of

mined by classical collision mechanisms: 1-2 um, and a spacing between fibers of 10—&M. The
99%10°8 (A2 T2 technology for fabricating targets from agar was developed

Lo=— _) . at TRINITI by S. F. Medovshchikov and S. L. Nedoséev.
Z Z] Ap The diagnostic complex we used to investigate the

HereA, Z are the atomic number and charge of the plasmdnechanisms for interaction of the laser light with low-
ions respectively) is the wavelength of the laser lighin  density targets and the energy transport in these targets in-
um), T is the electron temperatui@n keV), andp is the cluded a number of methods based on measuring the x-ray
plasma densityin g/cn?). Finally, after total internal vapor- emission of the plasma, and also optical diagnostic methods.
ization of the porous materight which point the density of The x-ray methods included time-integrated calorimetric
the p|asma becomes equa| to the average initial denﬂﬁg measurements in the Wavelength range 0.5-2 nm; imaging of
size of the region of bulk absorption will depend only on thethe plasma using a pinhole camera behind various filters for
plasma temperaturéWe assume that the pulse persists untilobserving both along the surface of the irradiated tafgith
all these processes are able to proceed to their completiona spatial resolution- 15 um) and at an angle of 30° to the
What kind of mechanism should operate to transport endirection of the laser beanwith spatial resolution~25
ergy from the bulk absorption element to the cooler innerwm); and recording of the x-ray emission from the plasma
layers of the target? An electron thermal conductivity waveusing photodiodes with a time resolution 6f0.5 ns. The
should form only after the pores in the material are filledoptical methods included multiframe shadow photography of
with plasma during the internal vaporization of the solid el-the expansion of the plasma as it forftise exposure time of
ements. However, under our conditions, energy can be trangn individual frame was~0.3 ns, the wavelength of the
ferred from the zone where the laser radiation is absorbed bgrobe light was\=0.53 um, and the spatial resolution was
a wave that is best referred to as hydrothermal. This wave- 30 um); measurements using an Agat-SF photodetector of
forms as fluid dynamic plasma currents diffuse through théhe time evolution of illumination of the back surface of the
low-density porous material; behind the wave front, a rapidrradiated target in the wavelength range 400—700 nm with a
equalization of the plasma temperature occurs due to elespatial resolution- 30 um and time resolution of 50 ps; and
tron thermal conductivity. The velocity of a hydrothermal time-integrated measurements of the emission spectra scat-
wave is close to the velocity of sound, which for the ex-tered into the aperture of a focusing lens. The positioning of
pected plasma temperatures of order 1 keV comes tghe x-ray and optical diagnostics is shown in Figs. 1a, 1b.
~2x10" cm/s, whereas the velocity of an electron thermal
conductivity wave at the same temperature and densities & EXPERIMENTAL RESULTS

10"°~10 2 glent exceeds~5X 10" cms. Let us first discuss the results of measuring the illumi-
This paper presents experimental and theoretical studiggation of the back surface of the target in the visible wave-
of thg interaction qf high-intensity Ilaser light with _Iow- length range 400—700 nm, spatiallglong the direction of
density porous media. In Sec. 2 we discuss our experimentghe discriminating slit and temporally resolved measure-
conditions, the parameters of the targets used, and also O{ents made with an Agat-SF electrooptic camera. Figures
suite of diagnostic equipment. In Sec. 3 we give the results,_o¢ show measurements of the time evolution of the back-
of experiments and their discussions. Section 4 deals witface illumination of the target, recorded in experiments in
the development of a theoretical model and comparison ofhich three different types of planar targets made of agar
computational results with experimental data. The main congere jlluminated. In Fig. 2a, note the first flash, which coin-
clusions are formulated in Sec. S. cides in time with the start of the laser pulse illuminating the
target. This flash is caused by the passage of the laser radia-
tion through the target at the initial stage of the illumination
process. We note that we observed an analogous effect in
previous experiments on illuminating thin plastic films made
In these experiments on the interaction of high-powerof Mylar.® As follows from Fig. 2a, the duration of the phase
laser light with low-density targets we used the Mishen’of partial transparency is 200—300 ps. As we might expect,
facility® with the following illumination conditions: the opti- this flash is absent when a layer of aluminum of thickness
cal wavelength was 1.054m; the half-width of the laser 1.5 um is deposited on the back surface of the taigeég.
pulse was~2.5 ns with a rise time of 0.3 ns; the light was 2b). In all the image-converter pictures shown we observe an

2. EXPERIMENTAL CONDITIONS AND DIAGNOSTIC
APPARATUS
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FIG. 1. Sketch of the positioning of diagnostic appa-
ratus.

Photographic film

abrupt growth in the intensity of illumination at the target's dium is constant, then it is easy to obtain an estimate of this
back surface with a time delay relative to the start of the lasevelocity vy, and also to estimate the thickness of the absorp-
pulse. The delay in appearance of this flash relative to théion zoneA. Under our experimental conditions, the results
beginning of the laser pulse increases with increasing targathown in Fig. 2 imply that the corresponding values are
thickness, as can be seen by comparing Figs. 2a, 2b, and 26,~2x 10" cm/s andA~ 150 um (Here and in what fol-
If we assume that the origin of the flash is associated withows, we will neglect the relatively smal~100 ps time
energy transport to the back surface of the target from thelelay connected with the passage of the shock wave through
developing zone of efficient absorption of the laser light,the aluminum layer of thickness 1/6m.)
assuming the velocity of energy transfer in the porous me-  The question of what mechanism can transfers energy
from the zone of absorption with such a high velocity is a
o topic for special discussion. One possible mechanism could
Egg'r”;&?sgem be the propagation of a shock wave from the high-pressure
zone (the zone where the laser light is absorbé@to the
interior of the target. In order to test this assumption we set
up experiments in which we illuminated three-layer targets
made up of a porous mediurtagar with a density of
~1 mg/cnt and thicknesses from 500m to 1000.m) in-
Ky serted between layers of aluminum at the illuminated and
+ |/mm back surfaces of the targéf thickness 6um and 1.5um
respectively. Under these conditions, energy is transferred
through the porous medium primarily by propagation of a
shock wave. From our previous experiméras the illumi-
nation of aluminum foils with thickness gm, we know that
for a laser pulse with duratior-2.5 ns and an optical flux
density of~ 10" W/cm? an aluminum layer with thickness
~4 pum accelerates in the direction of propagation of the
laser beam and acquires a velocity (6£-8x 10" cm/s. In
experiments with a three-layer target, the accelerated and
relatively cold(5-10 eV} aluminum plasma plays the role of
the piston, which excites a shock wave in the porous mate-
rial. The experiments show that the rate of propagation of the
shock wave in the agar practically coincides with the piston
velocity and is a few times smaller than the energy transport
velocity (vt) recorded when a single-layer target made of
agar is illuminated. Thus, the shock-wave mechanism is not
responsible for the energy transport in one-layer porous tar-
gets.
FIG. 2. Time history of the illumination of the back surface of a target made Information about the dimensions and temperature of the
of agay with deisit;' ! mg /cﬁ‘;n i thickness 60pm (s:) 500 (b),gan 4 “plasma wave formed with a target made of agar was obtained

1000um (c), In cases b and ¢ an aluminum film with thickness iLr& was bY recor(_jing x-ray phOtons in_ the range of ene_rgy 1-1.5keV
deposited on the back surface of the target. with a pinhole camera. In Fig. 3 we show pinhole camera
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FIG. 3. Pinhole camera picturg)
and the corresponding darkness dis-
tribution (b) obtained from illuminat-
ing a target made of agar with thick-
ness 500 um and densities 1
mg/en? (1) and 4 mg/crf (2), and
also during illumination of a target
made of Mylar with thickness 10

um (3).

Initial position of
a the target surface Laser beam

pictures obtained with a beryllium filter 5am thick and  method, and for targets of all types was 0.8—1 keV, decreas-
observations perpendicular to the direction of the laser beaning somewhat in the direction into the depth of the porous
in experiments where the illuminated targets were of agatarget. For example, when the target density is 1 mgAve
with thickness of 50Qum and densities 1 mg/chil) and 4 have T.~0.6-0.7 keV at a distance of 350m from the
mg/cn? (2). For comparison, the same figure shows a pindlluminated surface. Note that during illumination of a target
hole camera picture obtained by illuminating a target madevith decreased density the intensity of x-ray light in the re-
of Mylar with solid-state density and a thickness of 40 gion of photon energies 1-1.5 keV exceeds the correspond-
(3). The results of processing these pinhole camera pictureiag value obtained in experiments with the Mylar target by a
are shown in Fig. 4. It is clear from this figure that the lon- factor of 2—3.
gitudinal (in the direction of the laser beamdimensions of Taken together, these experimental data are in good
the developing high-temperature plasma layer are 400—508greement with the results of multiframe shadow photogra-
wm for a target with initial density of 1 mg/ctrand 150~ phy of porous targets illuminated by a high-power laser
200 um for a target with initial density 4 mg/cinThe elec-  heam. Figures 5a, 5b show shadow photographs recorded in
tron temperature of the plasma is determined by the f”tebxperiments on an agar target with thickness %08 and
density 1 mg/cr (a) and a Mylar film with thickness 10
3 3 pm (b). It is clear that the overall pictures of the plasma
{ﬂg'?;%"ei'ts'z’r}gée dispersal differ significantly for these cases. For the illumi-
807 I Laser beam nated Mylar film the transverse size of the high-pressure
zone at the back surface of the target practically coincides
with the diameter of the focal spot of the laser begfy.
5b), whereas for the low-density target this dimension, as is
apparent from Fig. 5a, is several times larger than the diam-
eter of the focal spot. We find that practically all the material
of the porous target is in motiofsee Fig. 5aonly three
nanoseconds after the start of the illumination. Figure 6
shows the results of shadow photographs of the process of
plasma expansion in experiments where agar targets with
density 1 mg/crh and two different thicknesses are illumi-
nated; at the back surface of both targets aluminum layers
were deposited with thicknesses of Lu&n. These photo-
graphs allows us to measure the rate of directional motion of
FIG. 4. Distribution of intensity of x rays from the plasma along the direc- the aluminum layer and estimate the press.(lﬂmaergy den-
tion of the laser beam obtained as a result of processing the pinhole came®ity) at the back surface of the porous material, which for the
oscura pictures shown in Fig. 3. case of targets made of agar with thickness %0@ and
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FIG. 5. Shadow photographs taken in experiments in
which an agar target with density 1 mg/rand
thickness 50Qum is irradiated(a) and a target made
+Jns of Mylar with thickness 1Qum is irradiated(b).
+6ns

density 1 mg/cr(see Fig. 6aamount to~2x 10" cm/s and  decay instabilities which could lead to undesirable conse-
~2.5 Mbar respectively. As the initial thickness of the po-guences when porous media are used as targets for laser
rous material increases, the velocity of the aluminum foilthermonuclear fusioridecrease in the absorption coefficient
decreasegsee Fig. 6 Increasing the initial density of the Of the laser light, generation of fast particles, decrease in the
agar target leads to a similar effect. Aluminum foil with conversion coefficient of the laser light to x-rays, ptelow-
thickness 1.5um efficiently confines the expansion of the ever, preliminary experiments in which we measured the en-
heated material of the porous target into vacuum, and motiofrgy and spectrum of the radiation scattered into the aperture
is observed only within the zone of maximum pressure. The&f a focusing lens showed that for optical flux densities of
transverse size of this zone depends weakly on thickness amd10** W/cn? the fraction of scattered energy came to 5 to
the density of the porous material, and equaB00m, i.e., 6 percent of the pulse energy for illumination of either po-
it exceeds the size of the focal spot at the illuminated surfacéous targets or targets made of Mylar with solid-state densi-
of the target by a factor of several. ties. It is interesting to note that radiation is observed in the
The distinctive features of the interaction of high-powerscattering spectrum at the second harmonic frequency
laser light with our porous targets arise from the lower den{\ =0.53 um) even when the illuminated agar target has an
sity and larger extent of the plasma that forms. When thdnitial density of 1 mg/cr, although in this case the maxi-
material from a target made of agar with density 4 mg/isn  mum electron density of the plasma for such a target at full
totally ionized, the electron density is close to the criticalionization of the porous materiahg~3x 10°%m ) is sev-
density for the fundamental harmonic of a neodymium laser€ral times lower than the critical value.
while the longitudinal size of the plasma that forms, as the
data shown above iIIustrate, is several hundred times th@_ THEORETICAL MODEL FOR THE INTERACTION OF
wavelength of the laser radiation. It is knolMiat at suffi-  PULSED LASER LIGHT WITH A POROUS MATERIAL
ciently high optical flux densities %10 W/cn?) these , o ,
conditions are favorable for the development of various™ " Absorption of laser light in & porous material
types of anomalous processes in the plagstisnulated Bril- Let us discuss the problem of absorption of a laser beam
louin scattering, stimulated Raman scattering, and parametria a planar layer of porous material, taking into account the
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FIG. 6. Shadow photographs recorded in experiments
on irradiated targets made of agar with density 1
mg/cn? and thicknesses 350m (a) and 1000um (b).

+56ns An aluminum layer with thickness 1,a6m was depos-
ited on the back surface of the targets.

+/0ns

processes of internal vaporization of initially solid elementsprocess of internal vaporization is directly proportional to the
as they are heated by the laser light. The properties of eadius of the expanding fiber. As we show below, under the
porous material are determined by its atomic compositiongonditions of our experiments the duration of the internal
density, and the sizes of the solid particles of material, andiaporization procesghomogenizationof the porous mate-
also the dimensions of the pores. In the experiments we usadhl in the region where the laser beam acts is shorter than the
targets made of agar, which consists of randomly locatedise time of the laser pulse. Doing the calculations for cylin-
fibers of solid-state densities and lengths10—-50um and  drical isothermal expansion of a fiber of porous material for
radii bg~1 um (I>bg). The average pore sizg, and the alinearly growing laser light power, we obtain the following
average numban of fibers per unit volume are expressed in expression for the opacity and the absorption length for
terms of the dimensions and bulk density of the thread laser radiatiorl =0, *:

materials, and also the average bulk density of the porous

materialp,, in the following way: o=xIL, L=Lo[1+(t/t,)?]"% Ost<tys,. ®)

rp=m"%05%4 3 po/pa) 2 n=pa/(pomb}l). @D Here Lo=mpobo/2p, is the absorption length correspond-
For porous materials consisting of randomly located fi-ing to the initial state of the porous material;
bers, the degree of geometric overlap of the laser beam pég =[24m2/(y— 1) (pobd/kal mt1) 1Y% k, is the average ab-
unit length along the direction of propagation of the beam issorption coefficient of laser light in an individual expanding
given by the expression, =2/arbgln. thread;t, is the duration of the leading edge of the laser
For a laser beam propagating into the porous material aulse; 1,=I(t;); vy is the adiabatic constant;
distancex from the surface, the fractional overlap of the tega=[(po/pea)*—1]1Y%, are completion times for the
optical flux, when we neglect light scattering, is processes that generate the region of absorption of the laser
beam:,, is the internal vaporization time of a thread, i.e., the
time it takes to reach the critical densitipr a material with
Since the length of an agar fiber greatly exceeds its radensity p,<p.), while t, is the total internal vaporization
dius (>bg), the expansion of an individual fiber as it is time, i.e., the time it takes to reach its average densjtgfor
heated by the laser light can be treated in the approximatioa material with density,> pc,).
of cylindrical dispersal. In this case, according (8 the Figure 7 shows the time dependence of the length of the
increase in the degree of opacity of the porous material in thabsorption region for the laser beam in a porous material for

o=l-expg—o ., X)=0c,X. (2)
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L ym In reality, formation of the region of absorption of laser

50001 light in the porous material ends with the total internal va-
porization of the material. Using the expression for the char-

4000 acteristic length of a classical collisional absorption mecha-
nism, and also Eq6), and setting<,~0.5, we can find the

30001 temperature and size of the absorption region at this total

internal vaporization time. For a target made of agar with
average densitg,~1 mg/cn? it is easy to obtain the values

2000 T~400 eV,L;~300 um.
1000 \2 Thus, the effect of increasing opacity of the porous ma-
NG N\ terial as it internally vaporizes under the action of the laser
\\ light can explain the finite duration of the transparency stage
0 100 200 300 tns observed in experiments on planar porous targets, and the

formation within these targets of a region of bulk absorption
FIG. 7. Time dependence of the absorption length of a laser beam in Q_f th? laser light. _Fo_r mos’_[ of th_e duration of the_ laser Pu_lse
porous material with average density 1 mg?ath) and 4 mg/cr (2). The  light is absorbed in just this region due to classical collision
dashed lines show the characteristic thicknesses of the targets used. mechanisms, and the hydrothermal wave transports energy to
the surrounding layers of porous materials.

. . . . 4.2. Energy transfer in the porous material
two values of its average density mg/cnt is a subcritical oy P

density and 4 mg/cfhis a supercritical densily calculating The problem of propagation of a spherical hydrothermal
using Eq.(3). The absorption coefficient was taken to be 0.5,wave is described by a system of equations which includes
and the initial radius of the thread wasudm. The calcula- an equation for the velocity of the wave front:

tions show that the absorption region for laser light in the

targets used in our experiments forms in a time shorter than  — =[(y—1)BT]Y?, t>ty, Z>L(ty), Z>1;
the rise time of the laser puldg;=0.3 ng. The absorption dt

length for the laser beam in a porous material with a density @)

close to the critical density decreases in the process of intefwherer is the radius of the focal spoand an equation for

nal vaporization from its initial valug,, which depends on the energy, assuming that the temperature behind the wave
the density of the materigl, and is a few mm, to a value front is uniform (the temperature behind the hydrothermal
L~Lo(pe!po)t? corresponding to the critical density of the wave front is equalized by the ultrasonic electron thermal
expanding fibers, which equate200 um. According to(3),  conduction wave

for a target of thicknesd , the transparency stage lasts a t
time — J E dt, O=t=<t,
7Z°TBp,=4 70 . 8
t=[(Lo/A =117, A,<Lo. @ P ®

E., t>t,
Then for a target with average densipy=1 mg/cn? the

duration of the transparency stage is 150 ps for a target thic
ness of 500um, and 120 ps for a target thickness of 1000
pum. And, in fact, this time was less than 300 ps in experi-

k‘[he solution of this system of equations for the case of con-
stant laser light power; = const) has the form

3(5\2(y—1E. ™

ments. =3 (5) T (1), €)

The spatial extentalong the laser beanof the specific . -
(per ion energy absorption is determined from the expres- L. 3(5 EL L6552 (1) 10
sion 23] (y=—1)%Bxp, e

E(xt)= — ft'(x)k I(t) o (x,t)dt 5 e

X, t)==— o(x,t)dt,
Bpa Jo ()Y, ty<t<t,

in which t; is the time of arrival at the point with coordinate e(t)= [, t=t,

x of the front that marks the start of the region of cut-off :
absorption, an@=[Z/(y—1)A]x 105 erglgkeV is the spe- xg\e/;eiass the pressure behind the front of the hydrothermal

cific heat of the plasma. For a porous material with subcriti-
cal average density the spatial extent of the specific energy in
the absorption region with final lengthy,~Ly(pe/po)*? is

quite uniform. The magnitude of the energy per unit volume ) i
absorbed in this region up to tinfe., according to(3) and Note that fort>t,_ the solution to the problem of propagation
(5) is of a hydrothermal wave coincides up to constant coefficients

. 1o with the solution to the problem of a strong explosfofhe
Po KalmbPo difference in the coefficients is connected with the different
Per BZpot ) velocities of the hydrothermal and shock waves. According

5

3 —1)E 3/212/5
(3) g(y ;Lpa} -55,%(1). 11

32

Eo= 32=1) (6)
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pressions(9), (11), (15). Calculations for the hydrothermal
wave give results close to experiment for the arrival time of
to00r 14 the energy transport wave at the back surface of a planar
target and for the pressure behind the wave front at this time.
For a target with thicknes&,=0.5 mm these quantities
come to 1.3 ns and 0.6 Mbar, respectively for a material
whose mean density,=1 mg/cn?, and 2.2 ns and 1.2 Mbar
for a material whose densip, =4 mg/cnt. The propagation
velocity of the hydrothermal wave equalx40’ cm/s for a
material of density i, =1 mg/cn? and 2.7 10" cm/s for a
material whose density,=4 mg/cn?. The classical electron
thermal conduction wavéor a thermal flux bounding factor
f=1) propagates with a higher velocity:x6L0’ cm/s for
pa=1mg/cn? and 3.8< 10" cm/s for p,=4 mg/cn?, which
implies an arrival time of the wave at the back surface of the
FIG. 8. Time dependence of the radius of the energy transport wave frofi@rget that is considerably smaller than the experimental
(curvesZ,, andZ; ;) and the pressure behind the wave fréeurvesP,,  value (especially for the target with,=1 mg/cnt): t,=0.6
and P} ,). Label 1 is for an average density of 1 mgfnimbel 2 is for 4  ns for pa=1 mg/cn‘i” andt,=1.8 ns forp,=4 mg/crﬁ’_ The
mg/cn. CurvesZ, , and P, ; are plotted for transport of energy by a hy- glactron thermal conduction wave gives results close to ex-
drothermal wave, curveg; , and P; , for transport by an electron thermal- - . D L
conduction wave. : : periment only when we introduce significant limiting factors

for the thermal flux(f~0.01 for p,=1 mg/cn? and f~0.1

for p,=4 mgl/cn?).
to (9) when a laser beam strikes a planar target with thick- ~ Thus, our model of energy transfer via hydrothermal

nessA, the hydrothermal wave reaches the back surface of@ves when laser light is absorbed in a porous medium is
the target at the time adequate to describe the experimental results. We note that

the energy transport wave passes through a target of thick-
Sl 4 nessA,=0.5 mm in a time shorter than the duration of the
5/ 3(y—-1)E, laser pulset,<t, . Estimates using Eq13) give values of
3122 mp,AS 112 12 the temperatur@~800 eV for a target of this thickness and
(g) 3 m} , L=t a densityp,= 1 mg/cn? at the instant the hydrothermal wave
reaches the back side of the surface. In contrast, the back-
At this time, according t¢9)—(12) the temperature and pres- ward (classical bremsstrahlung absorption length in a

Z pym P. Mbar

8001

600

400

200¢

0 i 2 3 4 t,ns

3\22 'n'pat,_Ag s
, st

t,=

sure of the plasma behind the wave front equal plasma with temperature 800 eV and an electron density cor-
3/(3 E, 2/3 responding to a target with densipy,=1 mg/cn? is 720
3 (E) -1 7% Az} , L=t wm, i.e., larger than the target thickness. Therefore, for po-
_ Y LPaBa (13  rous targets with these parameters we can reach the stage of
3 E_ =t ' secondary transparency to the laser light, connected with the
EWBA;’ =L formation of the high-temperature plasma over the entire
thickness of the target.

3\ (y— 1)ELP§/2 23 <t In concluding this section, let us consider the question of

5 TrtLAaz oL acceleration of the planar layer of solid material at the back

P= 3 (y—1)E . (14 of the target surface. Acceleration of a planar layer of solid

_7_3_'-, t,>t, material after the arrival of the hydrothermal wave at the

2 mAy back surface of the porous material takes place, while the

In analyzing energy transport by a hydrothermal wavehydrothermal wave continues to propagate through the po-

and comparing it with experimental results, it is also useful0uUs material; however, it is now in the form of a cylindrical
to include a calculation of the propagation velocity of aWave. Solution to the equations of motion for a thin solid

spherical electron thermal conduction wave in a uniform melayer under these conditions gives the following estimate for
dium of densityp,, under the action of a constant-power laserthe asymptotic velocity of the layer:

1

pulse: N P(t)\ Y2 p.A, s
~ 19 fy [ 3 E, 5/212/19( ¢ \ 7/19 Us™ _Pa _psAs ,
7™ 2r ol (19

where p; and A are the density and thickness of the solid
Here y~10'%Z erglkeV’2cmxs) is the coefficient in the material layer respectively. For a two-layer target consisting
expression for the thermal conductivity, afids the factor of a layer of agar withp,=1 mg/cn?, A,=0.5 mm and a
that limits the thermal flux. Figure 8 shows the time dependayer of aluminum withp,=2.7 g/cn?, A,=1.5 um, Eq.
dence of the radii of the hydrothermal wave front and of the(16) givesv ~5x 10° cm/s for the magnitude of the velocity
electron thermal conduction wave front, and also the presin the solid layer, which is in good agreement with experi-
sure behind the front for these waves calculated using exment.
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5. CONCLUSION target with density 1 mg/cfrand thickness 50@m the pres-

We have experimentally investigated the interaction ofSureé of the plasma exceeds 1 Mbar within an area with di-
high-power laser pulsesA=1.054 um, 7=2.5 ns, Mmensions that are several times larger than the diameter of
| =10 W/cn?) with planar low-density porous targets—4  the focal spot.
mg/cn).

We find that targets with thicknesses of several hundre
microns are partially transparent to the laser radiation fo
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The dynamics of spontaneous polarization switching of the ferroelectric sn@ttin a variable
electric field are examined theoretically and experimentally with the help of polarized light
scattering. The observed effect of quasiresonant scattering both in freely suspended smectic films
and in ordinary electro-optical cells is interpreted within the framework of the nonlinear

model of isolated movable kinks in the director orientation distribution. It is shown that the
maximum of the scattering intensity at the characteristic frequency of the applied electric

field disappears at low temperatures and for small thicknesses of the smectic film. The dependence
of the “resonant” frequency on the electric field amplitude, the proximity to the phase

transition temperature, the film thickness and thickness of the ferroelectric domains, and also
various material parameters is found. Estimates are made of such important
characteristics as the dielectric anisotropy, viscosity, and elasticity of the smectic films. The

effect of film thickness on the density distribution of the polar anisotropy energy in the film and on
the corresponding shape of the moving orientation front within the film are discussed.

© 1997 American Institute of Physids$1063-776(97)01303-§

1. INTRODUCTION the surface of a liquid-crystal film, sufficiently weak anisot-
The dynamics of ferroelectric liquid crystals.C) in ropy of the liquid crystal in the plane of the smectic layer,

electric fields is usually associated with the existence of col@Nd relative rigidity of the orientational structure of the lig-
lective mode<; %2 which are damped. Specifically, this uid crystal along the crystal axis perpendicular to the smectic
means they are associated with the Goldstone mode, whid@Ye': variations of the tilt anglé can be weak, but varia-
describes the relaxation of perturbations of the phase of thiions of the azimuthal angle become large. _
order parametefspontaneous polarizatioR), and a soft A large number of varl_ed _appllcatlons of electro-_optlcal
mode, which describes the relaxation of perturbations of th&€llS based on ferroelectric liquid crystals possessing such
amplitude of the order parameter. properties come at once to mind. Thus, the corresponding

These modes are readily observed by means of dielectrigharacteristics of azimuthal switching of the spontaneous po-
spectroscopy as a response of ferroelectric liquid crystals tirization are of significant interest; however, these essen-
the application of a relatively weak electric fielig which, as  tially nonlinear repolarization processes have been little stud-
a rule, is smaller than some critical valdéig called the un-  i€d. .
winding field of the polarization hel(such a helix exists in In the present paper we present a fundamentally nonlin-
practically all ferroelectric liquid crystals in thermodynamic €ar model of azimuthal repolarization of ferroelectric liquid
equilibrium). Here the phase, which is the azimuthal angle crystals in a variable electric field together with experimental
of the orientation vectoP lying in the plane of the smectic data on light scattering in repolarizing liquid-crystal films.
layer of the ferroelectric liquid crystal, and the amplitude These studies allow us to draw definite conclusions about the
P=u6, where u is the piezoelectric modulué material ~ suitability of the proposed model. We also advance the hy-
parameter of the liquid crystedind 6 is the polar angle of the pothesis that the described nonlinear polarization dynamics
collective tilt of the molecules in the smectic layer, vary is also applicable in the case of solid solutions of ferroelec-
weakly and almost independently of each other. trics with the corresponding anistropy properties.

In strong fields exceeding the unwinding field, perturba-  The main idea is that repolarization, i.e., rotation of the
tions of the angleg and # become large and are in general polarization vector® under the action of the electric field
interdependent. Thus, ferroelectric liquid crystals repolarizeE through the angler does not happen all at once through-
in strong fields. For the appropriate boundary conditions orout the volume of the liquid crystal, but begins in the “weak-
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FIG. 1. Geometry of ferroelectric
liquid-crystal films: a geometry #1—

freely suspended film, )bgeometry

#2—"bookshelf” (ordinary cel).

est” points of the film, e.g., on its surface, assorted defectsis the anisotropy energy ang, is the dielectric anisotropy.
etc., via local generation of a so-called orientational kink,We assume that the quantity=U,+ €,E? is positive, i.e.,
which is characterized by an abrupt change in the deperthe easy(most favored direction of the polarization vector
dence ¢(r) over a relatively small scaleAr. A kink P corresponds to the anglgs=0 and¢=7r. The anglep in
Ap~o@(r+Ar)—¢(r)~ then propagates into the interior these cases varies along thaxis which lies in the plane of
of the film with some velocity which depends on the ap- the smectic layer.
plied field to distancesl which are much greater than the The right-hand side of Eql) corresponds to the exis-
width |Ar| of the kink, where the distancescan character- tence of the invariant expression
ize the thickness of the film, the width of the ferroelectric
domain, the distance between defects, €Buch a moving y( & 5_52_ & ‘7_‘51) — (X '§) &)
kink is sometimes called a solitonin a variable field this at at y
mov_:_r;]gijskrlglg cﬂ:i;?;ﬂ%i?ﬁ;%in?f ié(: ,otﬁgllg/tr?;mi cs of mo Or the viscous torque, which retards the rotation of the two-
tion of the orientational kinKsolitons, leads to an entirely dimensional vectog with components
differe_n'F form of the pertu_rbations o_f the d_ielectric tensor £ =g cosp, &=20sine, (4)
(permittivity tensoj e(r,t) in comparison with the Gold-
stone contribution to these perturbations. In particular, lighdescribing the orientational order parameter of the ferroelec-
scattering off a Goldstone mode cannot explain the curves dfic liquid crystal®
the observed frequency dependence of the integrated scatter- The anisotropy parametéf6? characterizes the energy
ing intensity | (w), which have a quasiresonant character,0f the anisotropic dipole—dipole interactions which give rise
where o is the frequency of the applied field to the polarization fluctuations inducing a Coulomb interac-
E=E cos(t). We show below that the soliton mechanism of tion between the polarization charges, which in turn checks
perturbations in the perm|tt|v|ty provides a Comp]ete]y ad_the development of such fluctuations. The preferrEd orienta-
equate exp|anati0n of the experimenta| results. tion of the Spontaneous pOIarization vector in the ||qL||d-
crystal film may be conditioned by the boundary conditions
2. THE EQUATION OF AZIMUTHAL MOTION AND ISOLATED and external factors and may be fixed in the film, thanks to
ORIENTATIONAL KINKS the presence of free current carriers. Negative values of the
) o ) _ ) ~ parameterJ correspond to the preferred orientation of the
~ We consider two situations in which the applied electricyo|arization vector = 7/2, i.e., perpendicular to the applied
field E is parallel to the smectic layers and induces azimuthag|ectric field, while in the case of the bookshelf geometry
rotations of the polarization vectét by the anglep(r.,t) in - (see Fig. 1bthe preferred direction is parallel to the film
the plane of the sr.nectllc Iayer, that is tolsay, the case of g, face. In the case of a freely suspended thin ffig. 1a
freely suspended film, in \{vhlcr_l the smectic layers are parale smectic layer can be homogeneous alongztheis and
lel to the surface of the filniFig. 18, the case of "book-  jnnomogeneous ix andy due to the influence of the film
shelf” geometry, i.e., the case of a surface-stabilized ferrogyfaces and the electrodes. In particular, very thin films can
electric 'I|qU|d crysta] in WhICh. the smectic layers are payve an easy direction, tteeaxis, withU<0. The tempera-
perpepdlcular to 'Fhe film surch(élg. 1b. In the;e cases the ture dependence of the parametés is completely deter-
equations of motion for the director and polarization vectoryined by the fluctuational nature of the considered anisot-

3-17
have the forr ropy: in the phenomenological description it satisflég
_ , , P e x— §% TAQ* —T, i.e., the corresponding contribution to the
PE sin ¢— U sin ¢ cosp+ K@ (9—y2=y0 rE (1) free energy is
whereK is the elasticity constanty is the viscosity coeffi- U 6°= —const 6*+ €, 6°E2. 5

cient, and the quantity HereTc+ is the temperature of the smec#e-smecticC*

U6?=(Uy+ €,E?) 62 (2)  phase transition.
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Thus, it may be supposed that in very thin films the It should be noted that we are considering large reorien-
parametet) can take negative values, at least at sufficientlytation anglesp~ 7, i.e., the given case differs fundamentally
low temperaturesgat sufficiently large values of the tilt angle from the usual dielectric measurements in weak electric
#). In relatively thick films in the absence of a field the fields. Moreover, in this situation repolarization takes place
parametetd is evidently small since in the limiting case of between two homogeneous orientational staies@ and
an unbounded ferroelectric liquid crystal the smectic layersp= ), i.e., in the absence of an orientational helix. As is
should be practically isotropic. When a field is applied  well known, such a helix can be unwound between the walls
perpendicular to the surface of a thick film the parameteiof the electro-optical cell if the smectic film is thin enough
U can take positive valuese{>0) since usually the elec- (d<0.1-1um), and also if the electric fielE exceeds the
trode surfaces define the orientation of the polarization vecunwinding fieldE.. The value ofE. is a function of the
tor P to be normal to the film surface. These considerationdemperature and vanishes at the second-order phase transi-
are purely qualitative and motivational. Below we show thattion temperaturel, (Ref. 5. Therefore even in relatively
they can be backed up by light-scattering experiments inhick films at temperatures close 1Q we are in the right to
various liquid-crystal films where the parametélg ande,  consider homogeneous orientational states in moderate
can be estimated from the experimental data. fields.

Equation (1) can be used to describe rotations of the
director and of the polarization under the action of an applied
field E=E cos@t). In this case we will make use of an ap- 3. DYNAMICAL INHOMOGENEITY OF THE PERMITTIVITY
proximate expression for the anisotropy energy which correAND SCATTERING OF POLARIZED LIGHT
sponds to the time-averaged value of the expreski@R,

: . . Experimentally, such repolarization processes can be
i.e., without allowance for the second harmonic: P y P P

studied by scattering polarized light off the dynamic inhomo-
~ geneities of the permittivity. The total integrated scattered
(U¢?)~—const 6*+ > €.0°E?, (6) light intensity is proportional to the integral of the square of
the scattering amplitude(y,t) over the variabley andt.
where by ¢ we understand some effective value of the tit ~ The function «(y,t) is proportional to the quantity
angle of the director depending on the field amplitele i-Ae(y,t) - f, wherei andf are the initial and final polariza-
This approximation, as a consideration of problems of thigions of the light, and\¢ is the permutation of the dielectric
kind shows, gives an adequate qualitative description. Belowensor (permittivity tensoy for light with the given wave-
we will drop the time-averaging notatidp. .). length. In the case under consideration the quantikg-f is
It is convenient to introduce the dimensionless variableproportional to the difference of the products of the compo-
s=yl/ 75, the dimensionless parameter=d/», and param- nents of the order parameter
eters having dimensions of frequency and length, respec £y D&Y — E(Y.0£(y.0), (12)

tively
and therefore the total scattered light intensity is proportional

nE K to
=25 g ®

27w d
— : _ £ 2
whered is the characteristic length in the film. Given the i fo dtfo VL&Y, D&(y.D ~ &i(y.0&(y.0 1%

assumptions we have made, Ef), as shown in the Appen- (13

dix, has a solution of the form Two experimental geometries are of interest:

1 1) a freely suspended filniFig. 19 with the y axis
— - , (8)  aligned with the normal to the plane of the film, in an exter-
Sinfs=So—(a/w)sin(wt)] nal field E directed along thex axis; light with polarization
wheres, is some constant, and for constant and homogek Or i, is normally incident upon the film.

¢(s,t)=arctan

neousU, in the notation of Eq(Al) we have 2) An electro-optical cel(Fig. 1b with the y axis per-
- pendicular to the plane of the electrodes, in which the exter-
E_M_E 9= wy _ E _. Yy 9 nal field E lies; the incident light has polarizatiag or i, .
=Tue VTu Ty u(s)=s= 7' ©) If the incident and scattered light are polarized identi-

] ] ] } ] cally (either along thex axis or along thez axis) in both
Solution (8) describes the motion of an isolated kink along cases then the quantity characterizing the total scattered
they axis with velocity light intensity is, according to Eq$4), (12), and(13), equal

v=7na cog wt). (10) in both cases to

27w d
In a constant field, i.e., in the limib— 0, Eqgs.(8) and (10) lex=1,,= 04f dtJ' dy[cod o(y,t)
describe the motion of the kifhk!* with constant velocity 0 0
v=rna —co¢ ¢(y,0]% (14
1 In the case of crossed polarizgiig and f,) for geom-

o(s,t)=arctan (11

sinh(s—sy—at)’ etries #1 and #2 we obtain respectively the equations
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27w d
= 0“f0 dtfo dy[sin ¢(y,t)cos ¢(y,t)

—sin ¢(y,0)cos ¢(y,0)1%, (15

27w d
|Zz=02fo dtfody[COScp(y,t)—COSso(y,O)]Z- (16)

For geometry #2 and the light incident in thalirection in
crossed polarizer§, andf,) the quantityl,, coincides with
the value ofl,, for geometry #1. It is useful to note in the
calculations of the intensity that in geometry #2see Fig.
1b) the projection of the directan on thez axis is approxi-
mately equal toy1— 6? co< ¢.

Using the relations

sin ¢(y,t)= cose(y,t)=tanh(s—A),

cosis—A)’

sin p(y,0) = cos¢(y,0)=tanhs, (17)

coshs’

A=A(t)= 2 si t b= d
=A()=— sin(wt), =2
in which we have left out the unimportant constagt we
can calculate the integrals over the coordinata expres-
sions(14)—(16). We obtain

1
tanhb— 3 tani¥ b-+tanhA

27w
Izz(w)=6'47]f dt
0

1 1
tant® A+tani(b—A)— 3 tant(b—A)

3
2 hb (1—tant? A)tanhb
t s A | BNt T AhD tanhA
+ anhA In(1—tanhb tanhA)H, (18

27w 1 1
liz(w)=0477f dt[gtanh? b+§tanh°’(b—A)
0

1 B A 2
T3 At ShA

In(1—tanhb tanhA)

2 coshA
sint A

(1—tanif A)tanhb
1—tanhb tanhA

tanhb+

2
+

tanh A (19

In(1—tanhb tanhA)} ] ,
27w

IQZ(w)z—e“nf dt[tanhb+tanl"(b—A)+tanhA
0

(20

+ anhA In(1—tanhb tanhA)) .

Integrals(18)—(20) cannot be expressed in terms of el-
ementary functions and, what is more, at very low frequen-
cies w of the external variable field the limits of integration

that if the period of the oscillations of the electric field is
much greater than the time it takes a kink to move across the
film (perpendicular or parallel to its surfgcei.e., for

2wl w>dlv, perturbations of the permittivity will exist only
for times of order/v. Therefore, in the low-frequency limit,
whenA(t) ~at holds, the integrals in Eq$18)—(20) should

be calculated over the intervakt<b/a, i.e., the quantities
I(w—0) tend toward some finite limit. At very high fre-
quencies, when the spatial amplitudes of the oscillations of
the kinks are of the order ofa/w<d, the intensitiesl
should tend to zero. The asymptotic liniitw— ) can be
calculated with the help of expansions in the small quantity
A. In particular, expressiond8)—(20) have the asymptotic
limits

4 4 ma?

§ tank’ b g tant? b 33—, (21)

| dw—%)~6y

I, (w—%)~@*n| 6 tanhb—7 tani¥ b

2

16 5 b ma -
+ g tan _0)3 , (22
1 ma’®
1} (w—o)~6%p| tanhb— §tanh'5 b| —. (23)

The limits| (w—0) can also be calculated for small val-
ues of the parametdr if we make the substitution

JZMAZ(t)dt= W—agzeazjb/aﬂdt: b—s, (24)

0 () 0 3a

which gives
l,{w—0, b—0)~6*ybd/a, (25
I, (0—0, b—0)~ 6*7b*/a, (26)
I” (#—0, b—0)~ 62yb*a. 27)

Expressiong25)—(27) can be used to estimate the effect
of scattering when the kinks in fact disappear g1 and
the dependenc w) has a quasiresonant character. At inter-
mediate values of» the functionl () should have a maxi-
mum. This has the physical meaning that the permittivity
experiences its largest perturbation when the kink runs across
a distanced during a time of the order of the half-period
7lw.

v na . a
d~ ~ , e Wext™

Wext  Wext
where the quantityv,,; corresponds to the maximum inten-
Sity | max=1(wex) ~ 8*7b/a. Consequently, we have

(28)

b y6d vyéd U
o*d  y6°d
Imax(w"'wext)w?"' M”E'- (29

Numerical calculations confirm these qualitative esti-

in time must be changed for the following reasons. It is cleamates. Figures 2a—b reveal the role of the upper integration
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I, arb. units I, arb. units 1, arb. units

0.004} 0.020} 0.004+
a b (o}

0.003 0.015 0.003

0.0021 0.010F 0.002
0.0011 0.005 0.001f

0 % 0 % 0 N ! i i ) L
0 10 20 30 0 10 20 30 0 10 20 30
wi2r, kHz a'2m, kHz a2, kHz

FIG. 2. Numerical calculations of the frequency dependence of the integrated light scattering iritzasggd polarizeysThe effect of the integration limit
in time is shown: 327/w for w>alb and 2ra/b for w<a/b; b) 107/ w for w>alb and 1Gra/b for w<a/b; ¢) 207/ w for o>al/b and 20ra/b for
w<a/b. The parametera andb in the calculations of the four curves from top to bottom took the respective valad€f, b=10; a=10°, b=20;
a=10°, b=10; a=10°, b=5.

limit in expressiong18)—(20), which was chosen to be equal The temperature dependence wf,; and | ,,,, is deter-

to 27/ w, 107/ w, and 207/ w, respectively, fow>a/b and mined by the temperature dependence of the tilt argle

2mralb, 10ral/b, and 20ra/b, respectively, form=alb. It Thus, as the temperature is lowered the tilt angle increases

is clear that the figures are qualitatively similar, but at lowand correspondingly the frequeney,,; decreases and the

frequencies the behavior of the functiong») depends on intensityl . increases. If, in accordance with relati@), as

the upper limitty, which is determined in the experiment by the temperature is lowered in a sufficiently thin film the

the instrument parameters. quantityU vanishes at some value of the temperafiréhen
Relations(29) show that at a fixed temperature, i.e., for at this point the width of the kink; diverges(the parameter

6=const andJ ~ E? the quantitieSve, andl maxas functions b vanisheg and, according to relation@80), the frequency

of the field amplitudeE behave as follows: wext grows without bound and the intensity,., vanishes at

, - this temperature.

L2z Vxz, 0 1/E. (30

It would be well to underscore the main features of the be4. DISCUSSION OF EXPERIMENTAL RESULTS

havior of the intensity max'mu”ﬁzmax as a function of for The observed frequency dependence of the light scatter-
constantd: I, =const, which follows from relation§lé)  ing intensity(Figs. 3—6 is reminiscent of resonant behavior
and (20). Thus, the field dependence of the quasi-resonardind can be explained by the motion of kinks described
behavior of the intensity in geometries #1 and #2 differs inabove. Fits of the experimental dependendes) for geom-

Wey= CONSL,

the case of crossed polarizers. etries #1 and #2 at large frequenci®s wey to the func-
1, arb. units 1, arb. units
1.0 L3r
a
FIG. 3. Fit to the high-frequency limb of the
0.8 function |,,(w) by the power-lawo 3 in

geometry #1(a) and #2(b). In the experi-
ments we used the liquid crystal 4-
(2s,3s)-2-{chloro-3-methylpentanoyloXy
4'-heptyloxybiphenyl with smectic
A-smecticC" phase transition temperature
Tacx=43 °C and spontaneous polarization
varying within the limits 1300—290 nC/c¢n
in the C* phase.

0.6

04

0.2

. 3.0 35 4.0
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FIG. 4. Frequency characteristics of quasi-resonance light scattering in geometry #4diiderant numbers of smectic layehs and b amplitudes of the
variable electric field. Figure 4c shows the resonance scattering characteristics as functions of the field amphted20ITc« — T~0.5 °C.

tional form G(w+B)~© are s§h0wrl in Fig. 3 thezbest fit (29). However, at very small values & the nature of the
results for the lawl(w)~w~* with G~a’~10° s™2 (the  gependence,.(E) changes abruptiyFig. 49, which is ex-
theoretical dependences were calculated for values of the PBiained by the disappearance of kinks fo1, when the

—1
rametera=10" s™7). width » of a kink becomes larger than the characteristic

Figure 4a presents data of an experiment in geometry #aimension of the filmd. Indeed, as was noted above, esti-
in which the thickness of the freely suspended film was de- ' ’

creased. The calculated curves foe const and decreasing Mates24)—(26)foraxbe » te E show thatfor smak the

b exhibit qualitatively similar behavior: a decreaselgf,  Unction!mnq(E) begins to grow steeply with increasirtg

and an increase abe,, (cf. Figs. 4 and 2 Figure 5 illustrates the two types of temperature depen-
Figures 4b and c show that for fixed tilt anglein a  dence ofwpq and I,y for thin and thick freely suspended

freely suspended film an increase in the amplitude of thdilms. In the thin film disappearance of scatteririg,{—0)

field leads to a decrease of the maximum intensity for esser&nd a critical increase @b, are observed at some tempera-

tially constantw,;, Which is explained by relation®8) and  ture while in the thick film no such critical temperature is

W, /21, kHz I par» arb. units
08
6F a o b +
N=152 .
o +
5 " -
06 . N=182
Dn +
+
4T ooon W
° *” FIG. 5. Temperature dependence of the
3t 0.4f ot resonant frequencya) and the scattering
- amplitude(b) in thin and thick freely sus-
* pended films.
2 -
N=182 0.2r
+ * e * o .
I+ 0 _ 00y * o N N =400 Do
[ L ] + v e, o nN=152
0 2 L . s 0 L 0,0 ) R L
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-T.°C T .-T.C
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511 JETP 84 (3), March 1997 Pikin et al. 511



Ig, . 8- units 1, arb. units W,/ 270, KHZ L max » ATD. UNitS
y —

T T T T T T T T T 3.0 T T T T o 7
st 25, b NTbOA C| c
° 16
i 29 1 . I
201 + 45
4l |
g 28}
+ "
+
. 14
1.5} Flete ®
3t 4 277 + o+ +
. Do o . N 3
1.0 e . ¥ LI
26} s
2F 1 + 12
+ +++
0.5r AT=1.1 T 7 250 N "
. + ", 1
i 1 -
1l I B | 0 ROV ST R SR 24l . ) P L . Jo
0 2 4 0 2 4 -5 4 3 2 - 0 1 2
w27, kHz w/2m, kHz T-T . °C
ac”’

FIG. 6. Frequency characteristics of quasiresonant light scattering in geometry #& different amplitudes of the variable electric field for
A=Taex—T=0.5°C and b for different temperatures. Figure 6¢c shows the resonance characteristics as functions of templer&bipem; |—smectic
C*, Il—smecticA.

observed, andl,,, grows while w.,; decreases continuously the integralg18)—(20) the upper limitt, remains fixed, lead-
with decrease of temperature. These data are easily explainétg to the replacement of the functional dependehge)
with the help of relationg5)—(7) if it is assumed that in the * @~ 2bythe lawl () « &~ 2.

thin film we haveU,<0 and in the thick filmUy,—0. The In thick films with geometry #2 in the case of crossed
geometry of the investigated thin filmsee Fig. 1acan  polarizers, experiment showsee Fig. 6athat the depen-
cause the appearance of the easy éxiaxis) and the nega- dence of the maximum intensity,max 0N the field amplitude

tive value ofU, since the film is practically homogeneous in E differs fundamentally from that for geometry #1. This

z, but inhomogeneous ix andy due to the influence of the maximum increases as the field increases at constant tem-
film surfaces and the electrodes. Here note should be mageerature near the phase transition temperaiygg , where

of a remarkable feature of such freely suspended filmsthe ratio of the maxima for temperatures below and above
banded domains exist in them spontaneously, parallel to th€xc+ is significantly greater than unitisee Fig. 6l As the

z axis, with characteristic widttAx~10? xm.}®=22 There-  temperature increases through the phase transition tempera-
fore for thin films(less than Jum), when the kink becomes ture Tac+ , the quantityl szax falls rapidly while the quantity

thicker than the film, kinks can arise and migrate only in thewext rapidly grows(see Fig. 6& Such a qualitative difference
xz plane of the film. At the same time, the widtix of &  petween the experimental data for the geometries #1 and #2
domain becomes the characteristic dimensioand the pa- s explained by several factors. First, as was noted above, at
rameterb~Ax/7 remains large. For very small film thick- temperatures not too close M+ and not for too large
nesses(less than 0.um), when the indicated domains fieidsE, the chirality of the smecti€* stabilizes the azi-
disappeaf; the time it takes the kinks to move across themythal helix of spontaneous polarization and hinders motion
film becomes very large, for which reason in the latter casy the orientational kinks. In the immediate vicinity of the
we do not observe any quasiresonant light scattering pheshase transition, when the effective fi€lds greater than the
nomena. . _ _unwinding fieldE; « ¢, kinks can move, and here the polar
A word should be said about the complexity of experi- angles, which depends strongly on temperature and the ap-
mental studies of the dependeri¢e) at very low frequen-  pjied field, determines the corresponding quasiresonant be-
cies. These difficulties are connected with the proper choic@gyior according to relation§29). Making use of well-
of the instrument time constat§< w,; , which defines the  nown thermodynamic expressions for the functia(T,E)
upper integration limit in expressiond8—(20). If the pa- i these simple cases and taking relati¢29) into account,

rametert, is a random quantity, then the observed scatteringye obtain qualitative dependences for the characteristics of
intensity can have random jumps in the low-frequency rethe quasiresonance peak:

gion, which indeed took place in the experiment.

Anothe_r f_eature_ of the low-frequency dependeinte) 1 const uE
shows up in films with small characteristic dimensihni.e., Wext™ - oL
for b<1. As was noted above, in this case there is no maxi- VTace =T \(Tacx=T)
i ity; h i f the fo(22)—(24) (Y
mum intensity; however, expressions of the - 2
remain valid for the frequency intervakk w<b/a, where in Dz V(Tac —T)*+constuE
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in the phase C*, when 6 o« \Taex—T for
E<const/(Tacx — T)3;
O A = (32

in phasesC* and A for E>const[Tacx—T|° and 6
« EY3 and

T—Tacr ES3

Coi* T E v D (T 7,003 (33
in phase A for E<consty(Tacx—T)° and 6

o« E/(T—Tacx). Expressions(31)—(33) provide a com-

turbed  helix and 6~ (Tacx—T)/Tacs, for
u~103C/m?, K~10'N, qy~10'm  and
E~10* V/m in thick films the described effects can take
place in a narrow temperature interval abdyt« , specifi-
cally for AT=(Tacx = T)<AT~Tacx(LE/Kg3)?>~1 K,
where (AT,)~10 1.

In thin films, where the orientational helix is absent
thanks to the influence of the boundaries, these effects exist
over a wider temperature interval.

The motion of the kinks is substantially influenced by
the dielectric anisotropy in the plane of the smectic layer.

pletely adequate explanation of the experimental datd his anisotropy can be due to the two-dimensional nature of
graphed in Fig. 6c. the C* smectic, the anisotropy of the dipole—dipole interac-

To estimate the parameteasandb in the kink model tions, and electrical effects of the outer boundaries. Specific
and describe the experimental data, we use the foIIowiniombi”ations of these conditions lead to various regimes of
characteristic orders of magnitude: ink motion and, accordingly, to different temperature and

field dependences of the characteristics of quasiresonant

pu~10"% CIn?, K~10"" N, y~10"! Pas, scattering of polarized light. Guided by the experimental
_ meN data, with the help of the dynamic kink model discussed
E~3-1° V/im, d~10° m, g,~10 1 = above we have arrived at estimates of the unknown material

parameters, namely the orientational viscosity and elasticity,
6~101 for AT=Tprcx—T~1 K. (34)  and also the dielectric anisotropy.

) It is of interest to study the situation in which the ferro-
Thus we obtain electric liquid-crystal film has not one, but several different
ME \/E characteristic scales, e.g., as a result of the coexistence of
a=—~3%X10° s, g~ —~10" m, several domain structures. In this case, one can expect the
024 €a appearance of several quasiresonances in the light scattering
d intensity, corresponding to different characteristic frequen-
b=—~10, e 3x10° sL cies. We explored this possibility in the case of the ferroelec-
K tric liquid crystal FLC-240 Tacx=53.5 °Q, which has a
In fact the quantitiesy, K, and e, are not known exactly; relatively high spontaneous polarizatié¢h=40 nClcni. In
however, they can be estimated from the experimental dat®efs. 23-25 it was shown that such liquid crystals in an
by choosing the parameteasandb that most adequately fit ordinary electro-optical cell possess a specific static domain
the experimental data. structure which is characterized by a strong temperature de-
pendencel(T) of the domain widths. Along with such do-
mains, under certain critical conditions in these liquid crys-
5. CONCLUSION tals a dynamic domain structure appears, caused, for

The observed frequency dependence of the light scatteF':X""mple’_by an electrohydrodynamical instability which _is
ing intensityl,, is reminiscent of resonant behavior and is characterized _by a sfrong frequency dependenc_e of the_ width
explained by the motion of the orientational kinks discussed®’ the doma'F‘S dZ((_") (Ref. _5)’ where the inequality :
above. Here a substantial role is played by the boundaries gf (w)<d1.(T) IS (_ant|rely possible. Consequences of this
the homogeneous layer of ti@* smectic phase. Under the ind require additional study. In the present paper we have

action of an external field such isolated kinks can form onOnIy presented evidence of the appearance of two quasi-

these boundaries, after which they move into the interior O]resonancessee Fig. 7 for different values of the frequency

the ferroelectric film. Both the surface of the film and the of the applied electric field which adequately correspond to

domain walls, in the case in which a domain structure isthe two observed domain structures and depend substantially

formed in the film, can serve as such boundaries. It makef" the temperature and field amplitude.

sense to speak of the motion of kinks if the distance between

the characteristic boundaries exceeds the width of a kink.

Therefore in thick films, whether freely suspended or found

between the solid electrode surfaces, isolated kinks can moyg&cKNOWLEDGMENTS

in three dimensions, whereas in the case of thin films they

can move only along its surface. The helical structure of the We would like to express our deep gratitude to L. A.
C* smectic is unfavorable for the appearance of kinks, andBeresnev for providing a quantity of the liquid crystal FLC-
therefore the above-discussed quasi-resonant behavior of 240, to U. Hoffmann and S. Astaf'ev for technical assistance,
light scattering characteristics is not observed in @&  and to the German Society of Natural Scientigs.D) for
phase far from the transition poifitycx , wWhere the helix  support. This work was carried out with the partial support of
exists. Since the critical unwinding field of the helix is INTAS (Grant No. 94-407B8and the Russian Foundation for
Ec~q§K 0/ u, whereqq is the wave number of the unper- Basic ResearckGrant No. 96-02-16667

my -

513 JETP 84 (3), March 1997 Pikin et al. 513



1, arb. units , v=0 they describe the motion of a kink in a constant field
60 1 along thes axis (the solutions with subscripts 1 and 2 corre-
spond to motion in opposite directions

] ) 1
1 (s,7)=*arctan——————,
1(5,7) sinh(s—s;—E7)

407

6)
20 4 1

>(s,7)=*arctan—————,
¢2(5,7) sinh(s—sy+E7)

[=]

with constant velocity = =ds/dt= = =, where the plane of
2w, kHz the front is perpendicular to the directian
o o _ The first term on the left-hand side of B¢\1) describes
FIG. 7. Frequency dependence of scattering intensity with two maximay, o~ linear interaction between the spontaneous polarization
observed in the smectic liquid crystal FLC-240 with coexistence of two j ) . —
domain structures. and the effective field containing a homogeneous Eafthe
external field and the contribution of some internal field due
to the electrical properties of the liquid-crystal layer. The
second term, which is quadratic in the polarization, describes
APPENDIX A the influence of the anisotropy energy on the motion of the
We consider a class of nonlinear equations of motionzpon.t?ne?ltﬁ polarlztgtulan vector, tr)werle thIT gnlr]sotropy energy
which can be written formally as ensity of the smectic layer can be locally inhomogeneous,
thanks to the influence of the film surface, domain walls, and
J%u 1 u\? P dp structural defects. The third term gives the usual contribution
+2 — sin 2(p+2
i

_ J
~ 2|3 ¢7 2 2,: (&_si 92 o7’ of the orientational elasticity energy. The right-hand side of

I

(A1) Eqg. (Al) describes the contribution of the orientational vis-
cosity and the corresponding moment of the friction forces.
The dimensionless variables=x; / ; and r=t/t, reflect the
existence of characteristic spatial;j and temporal 1)
scales, defined by the material parameters of the liquid crys-
tal.

Equation (A1) makes it possible to estimate, at least

where u=u(s) is an arbitrary function,Z=2 cos7),
¢=¢(s,7), ands and = are dimensionless variables. If it is
assumed that at the time=0 (the time at which the field is
switched on such a region exists inside the ferroelectric
liquid-crystal film, bounded by the ling(r) =uy=const, and

that inside it we havee(s7=0)=0 and outside it qualitatively, the influence of inhomogeneity of the ferro-

o (s, T 0)=7-r'orv.|ce versawhere the widtAs|~1 of .th? .electric liquid—crystal film on the repolarization processes.
transition region is much smaller than the characteristic dl-We will give a few examples

mensionless film parametsy then it can be easily seen that

1) Let the anisotropy energy density in the plane of the
Eg. (A1) has the exact solutions ) py *)% y p

smectic layenthe s;s, plang in the vicinity of some point
defect vary quadratically in the coordinatesands,, and

1
@] = +arctan— = ) (A2) the effective field be homogeneous and constant, i.e.,
sinf u(s) —up— (E/v)sin(v7)] S\ oy
u
The form of the solutiorfA2) is uniquely determined by (a_sl + (a_sz) =4(sf+s5),
the following relations:
1 7y + ~u t (AB)
— + —=const.
inef=— = dss  9s;
sin ¢, CoShR, cos¢; =tanhRy, 1 2
In this case the functions(s;,s,) may take the following
2 sinhR :
sin 27 = . Rl, forms:
! s?+s3,  25S,. (A7)
+ +
dor 1 R dep 1 IRy Depending on the shape of the linés; ,s,) = u, describing
s coshR; ds; ' a7 coshR; a7’ the surface of constant phase=7/2 at the initial time
- 5 _ 5 7=0, the motion of the phase front(s;,s,,7)=/2, i.e.,
Per 1 Ry sinhR ﬁ_F\’l) (A3 @ orientational kink, can take various forms over the course
9s? coshR; gs?  costf Ry | dsi |’ of time 7. According to Eqs(A5) and(A7), the correspond-
ing fronts can have the form of circles, parabolas, and hyper-
where bolas, i.e., the following proportional dependences are pos-
= sible:
Ri(s,7)=u(s)—ug— — sin(v, 7). A4
UST=U(E) Uo7 sin(v,7) (A4) sixshor, 285y (A8)
The solutions(A2) describe the motion of isolated ori- 2) Let the anisotropy energy density fall off exponen-

entational kinks in the functiorp(s,7). For example, for tially according to the law exp{2s,;) in some directiors; in
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the smectic layer, for example, with depth_into the film awayand (s—sp)|s,2 1. In this case, the solutiori&5) can have
from a planar defectthe surface of the film and let the the following meaning: if an orientational kink appears near

effective field be homogeneous and constant, i.e., the film surface having widtAs,~1 (Ax~7), then it can
au\2 [ au\2 20 Su move a distanc&r>1 in the s, direction during the time
(— + ( —) =e %1, —+—=0. 7, and in this case boundary conditi¢h10) is satisfied with

9s; s, ds]  9s5

exponential accuracy.
In this case the functions(s;,s,) may take the forms If the parameterQ is positive, then the derivative
e*S1 sin's, (A9) (ago/as)|s_urin Eqg. (A10) _should also_be positive._ln this case
' the solutions(A5) describe the motion of a w-kink along
which lead to wedge-shaped fronts, where the wedges atte s, axis and a+ 7-kink in the opposite direction. For
arrayed periodically along an isolated surfdeéong thes,  negative values of) the solutiongA5) describe the motion
axis) with period equal to the effective penetration depth ofof a + 7-kink along thes, axis and a— 7-kink in the oppo-
the front along thes; axis. site direction.
The above simple examples, of course, do not exhaust
the shapes of kink motion in a constant field. It is clear that
the shapes and velocities of such fronts depend strongly oﬁﬁ.g;%shino, T. Uemoto, and Y. Inuishi, Jpn. J. Appl. Phys, 571
the local propertlesf of the ferrqelectr}c I|qU|d—cryst_aI films. In 25 Hoffmann, W. Kuszyski, and J. Malecki, Mol. Cryst. Lig. Crysti4
the case of the action of a variable field the solution(A2) 287(1978.
shows that the kinks execute oscillatory motion relative to*A. Levstik, B. Zeks 1. Levstik et al, J. de Phys40, 303(1979.

..l . . . 4 H '
some initial position with frequency and amplitude propor- ~ _R- Blinc and B. 2ks Phys. Rev. Al§, 740(1978.
S. A. Pikin, Structural Transformations in Liquid Crysta{®auka, Mos-

tional to E/V cow, 198).
Generally speaking, the boundary conditions on the surSA. Levstik, T. Carlsson, C. Filipicl. Levstik, and B. Zks Phys. Rev. A
faces of a film of finite thickness have the fdfin® 35, 3527(1987. _
’S. Nonaka, K. Ito, M. Isogai, and M. Odamura, Jpn. J. Appl. PBgs.
. de 1609(1987.
Q sin¢lgy=G —| (A10) 8M. Ozaki, T. Hatai, and K. Yoshino, Jpn. J. Appl. Phg3, 1906(1988.
Js sur °A. M. Biradar, S. Wrobel, and W. Haase, Phys. Rev3%\ 2693(1989.

. : . 19T, Carlsson, B. kS C. Filipi¢, and A. Levstik, Phys. Rev. A2, 877
whereQ is the effective parameter of polar adhesion to the (199q. P Y

surface ands is the effective elastic coupling constant. Not- *'F. Gouda, K. Sharp, G. Andersat al, Jpn. J. Appl. Phys28, 1887

ing the relations 12(1989- ‘
F. Gouda, G. Anderson, S. T. Lagerwatl al, Lig. Cryst.6, 219(1989.
1 &(Pf 13p. Schiller, G. Pelzl, and D. Demus, Lig. Cry8f.21 (1987).
sin ‘Pf =+ = , 143, A. Pikin, Mol. Cryst. Lig. Cryst179, 201(1990.
cosl{is—sy— E7) Js 153, A. Pikin, Ferroelectricd17, 197 (1991).
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Thus, condition(A10) is approximately fulfilled forSr>1  Translated by Paul F. Schippnick
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The metal—insulator transition and the phase transition in metal-ammonia solutions
A. A. Likal'ter

Institute for High Temperatures, Russian Academy of Sciences, 127412 Moscow, Russia
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Zh. Eksp. Teor. Fiz111, 938—-948(March 1997

The ground state of impurity metéodium atoms in liquid ammonia close to the solvated state

of the free electrons is considered. It is shown that the critical solubility point lying on the

metal side of the metal—insulator transition is determined by the Coulomb interaction between the
ions and electrons in the overlapping impurity states, classically accessible spheres of which
form an infinite percolation cluster. The percolation conductivity via the impurity states is
estimated. The estimate agrees with the experimental data near the critical solubility point.

© 1997 American Institute of PhysidsS1063-776197)01403-0

1. INTRODUCTION in equilibrium having different concentrations of the dis-
solved metal.

For a long time metal solutions in liquid ammonia have  The recently developed theory of plasma critical points
attracted attention by virtue of the unique variety of effectsof metals is based on their being found near the metal—
observable in them, yet they belong to the class of disorderedonmetal transition poirtt! Therefore, they are character-
electron systems which have received of yet little theoreticaized by a metallic state with strong electron—ion coupling
study. From the theoretical viewpoint, they are of interest nowhich is described in terms of the virtual atomic structure
only because of their unique properties, but also the gener&nodel. In particular, the position of the plasma critical points
properties which define the behavior of apparently comis determined by the interaction of virtual atoms with over-
pletely different physical systems. In dilute solutions with [apping electron shells. It may be expected that the critical
metal concentration less than 1% the atoms are almost congolubility points of metal solutions are also determined by
pletely dissociated into ions and solvated electrons. Of espdb@ interaction of overlapping impurity states.

cial interest is the possibility, as the concentration is in-  Despite the apparent obviousness of the above analogies,

creased, of observing a continuous transition from a weakly"€tal-ammonia solutions have their own idiosyncracies,

conducting electrolyte to a metal solution with conductivity rendering their theoretical treatment more difficult. These in-
greater than A0~ cm~t. The strong variation in their clude, in particular, frequency dispersion and nonlinearity of
properties links metal—ammonia solutions with other elec-the dielectric constant, caused respectively by the inertia of

tron systems undergoing a metal-nonmetal transition. Thethe dlpol.ar molecgles and saturation of their polarization
.fllear the ions. In this paper we estimate the parameters of the

Z:)e SO(I)SS(::]ilgot:glljrcﬁ(;?spemes to expanded metals and heaVl%purity states and extend the theory of plasma critical
pTh nal with ) miconductors is based on the hi I#)oints to metal-ammonia solutions.
€ analogy semiconductors 1S based o e nig The plan of the paper is as follows. Section 2 introduces

d|ele<|:tr|c constan; of I|.qU|d gmrr}onla, thanks tohWh'Ch tdh,ethe dielectric model of an electron solution, which is used to
metal atoms can form Impurity electron states whose radiU§eqcribe the critical solubility point. Section 3 describes a

is greater than the distance between the solvent molecules._ Model of the impurity states playing the main role in connec-

contrast to semiconductors, the impurity states in ammonigqon, with the percolation metal—insulator transition. Section
have been little studied, since the main role in dilute solu4 presents a theory of conductivity in the vicinity of the

tions is played by solvated electrons. Localization of SOl-ransition point and compares the results of this theory with
vated electrons is the reason why dilute metal-ammonia sahe experimental data. Section 5 is the conclusion.

lutions are analogous in many of their properties to
electrolytes’ However, as in heavily doped semiconductors
in which the impurity states overlapconcentrated solutions 2- DIELECTRIC MODEL OF THE SOLUTION

have metallic properties. _ _ The dielectric constant of liquid ammonia associated
Itis noteworthy that solutions of some metals, in particu-y;ith electron polarization of the molecules at optical fre-
lar sodium, allow one to observe the phase transition withyencies is roughly equal to 2. The high dielectric constant at
stratification into a metallic and a dielectric phase with dif- gy frequencies, becoming as large as 22, is due mainly to
ferent concentrations. As was noted long ago, this transitiongrientation of the constant dipoles of the ammonia mol-
reaching completion at the critical solubility point, is analo- ecules. Thanks to the delayed response of the molecules, a
gous to the condensation of metal atctis.connection be-  unique form of self-interaction of the electron takes place
tween this phase transition and the metal—insulator transitiowhich can be describetutside the preferred localization
has also been notédThe metallic electrical conductivity at region by an asymptotic  potential energy
the critical solubility point of sodium-ammonia solutions — (e, *—¢,)e?/r, wheree is the electron charge, and,
shows that near this point two metallic phases can be foundnd e, are respectively the optical and static dielectric
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constant§. The corresponding asymptotic limit for the impu- for the critical temperaturé.andT, are measured in electron
rity state obtained by adding the potential energy of the elecvolts, andn, in cm™3.
tron in the field of an ion—e?/gqr is simply When the density corresponding to the critical concen-

U= —ee.r ) tration x,=0.0415 and the critical temperatufig,=230 K

el (Ref. 10 is substituted into Eq96) and(7), Eq. (6) yields

The radius of the classical accessible sphere in potefifial the estimatd =1.665 eV for the binding energy and EQ)
is equal to the estimate .= 6.9 for the effective dielectric constant. The
binding energy of the impurity states turns out to be near the

— a2
Ra=€7e. I, @ binding energy of the solvated electron. This estimate is
wherel is the binding energy of the impurity states. backed up below by a calculation for a simple model of the
A characteristic parameter is the fraction of the volumeimpurity states.
occupied by the classically accessible spheres Let us consider how to explain the relatively small ef-
3 fective dielectric constant. First of all, the minimum scale at
4 R, . . . T
(=— Rgn: —1, (3)  Which this quantity can have meaning is greater than or of
3 Rs the order of the mean distance between the molecules

wheren is the density of the metal atoms aRdlis the radius Ry=(4mN/3)~ 13

of the Wigner—Seitz sphere
B S whereN is the density of the ammonia molecules. At such
Re=(4mn/3)" . distances the ion field is large enough for saturation of po-
The virtual structure of the over|apping impurities in metal larization. The polarization vector of the dipolar molecules in
solutions is assumed to lie in the interval between the percahe field of an ion is equal to
lation thresholdZ~1/3 (identified with the metal-insulator
transition point and random dense packing of spheres P=y&= 5,
[~213. 4qr ea(r)r
The interaction between the overlapping impurity statesyherey is the dielectric susceptibility of the dipoles,is the
in a percolation cluster is characterized by the Coulomb couintensity of the electric field of the iom,(r) is the effective

eo(r)—e, €

®

pling parameter dielectric constant, which for polarization saturation be-
I'=e?/e R.T 4) comes a function of the distance from the ion. The magni-
es tude of the saturation polarization is given by

whereT is the temperature. Since this interaction is governed

by the region of preferred localization of the electrons, the P=dN, ©)
static dielectric constant enters into the coupling parameteiwhere d=0.58 a5 is the dipole moment of the ammonia
The effective value of the dielectric constant, as was molecules andig is the Bohr radius. Equating expressions

mentioned above, differs from its macroscopic value due tq8) and(9) and solving the resulting equation feg(r), we
saturation of the polarization of the dipolar molecules neapbtain

the ions.
Another dimgns!onlgss parameter is.the ratjo of the tem- (1) = 8; 5, Ry<r<Ry, (10)
perature to the ionization potential. It is not independent, 1-r9/Ry

since it can be expressed in terms of the paramétarsd I’
already introduced. In particular, formulé®)—(4) yield the

ratio e
13 Ra= N 27dN-

E:S“_C (5)
I N

whereRy is the polarization saturation radius,

Schematically the dielectric constant is given by formula
(10) for those values of for which ¢, is less than its mac-
roscopic value, and is equal & at large distanceg~ig. 1).
ﬁowever, before it can be used in the equations of electro-
s?atics, it must be averaged over space. Since the potential of
a single ion can be represented as an integral/ of(r)r?,

the average of the dielectric constant over a Wigner—Seitz
cell is found as follows:

for the critical solubility point. Here the subscriptindicates
a critical parameter. Assuming similarity of plasma critical
points, one might expect that the dimensionless paramete
{. and T’ are universal. The ratid@./l, however, is not
universal. According to EqJ5) it depends on the ratio of the
dielectric constants.

Using known values for the parametefg~0.365 and
I';~17 (Refs. 7 and § formulas(2) and (3) yield the fol- 1 ( 1 1 )‘1JRS dr

lowing expression for the critical density e Ry R Ry ea(1)r2
Ne=2.92<10%z.. 1)?, ®  For conditions at the critical solubility point, averaging gives
and formula(5) yields the expression £¢~9, which is in reasonable agreement with the estimate
obtained above based on the critical parameters. Thus, as a
T.= 0_04258_°° I 7) consequence of polarization saturation, the average dielectric
€e constant, defining the interaction between the impurity states
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oL . é . 1‘0 : 1'2 FIG. 2. Pseudopotential and impurity levék —0.2492 a.u., obtained by
solving the Schrdinger equation. lonic core radil.=3.26%8g .

Distance from ion, a. u.

FIG. 1. Effective dielectric constant, with allowance for saturation of polar- ) . . ) )
ization of dipolar molecules at small distances from the ion. The radius owave function into this equation. In particular, we use a

pseudo wave function that differs from zero only outside the

polarization saturation iRy=5.72ag .
ionic core

in a percolation cluster, is roughly three times smaller than W(r) = . ek >R, (13)
VAT

its macroscopic value, so the treatment of the critical solu-
bility point based on similarity with plasma critical points of where

metals is self-consistent.
k=\2ml/A?,
3. IMPURITY STATES m is the electron masg; is Planck’s constant, anB is a
normalization factor,

For a more detailed analysis of the impurity states, we
choose the Heine—Abarenkov pseudopoteritahstant in- B=2k3? exp(KR;)/ 1+ 2kR:+ 2k?RZ.
side the ionic corg which reproduces the energy level of the
free atom‘! In ammonia solution the ionic core of the impu-
rity atom is smaller than the molecular cell, and the Coulomb ~ ¢=—ewv(r)/er,
potential outside the core falls off asrland is inversely | oo
proportional to the dielectric constant. With allowance for )

ization fi i i 1+kr
the polarization field of the constant solvent dipoles induced b(r)=1— R IR exf—2k(r—R)]. (19

by the impurity electron cloud, the pseudopotential takes the
For r near the classically accessible radis, the pseudo-

r<Re, potential defined by formulagll) and (15) is close to a

r>R., Coulomb potentialFig. 2).
(11 The impurity level is found from the Schiimger equa-

The solution of the Poisson equation has the form
(14

form

[ —€%Rg,
U=\ [+ (e — e v(r)]e2/r +C,

where the factow(r) describes the deviation of the electric tion (in atomic units

potential of the electron cloud from a Coulomb potential, and 2y
the constanC is determined by the condition of continuity. > +2(E-U)x=0, (16)
The potential of the electron cloud satisfies the Poisson
wherex=rR(r), R(r) is the radial wave functiork is the

equation
1 o2 Amey?(r) energy, and the boundary conditions are
FW(“P)ZS—’ (12 d In y()
€ X(O):O, = T <0

where (r) is the wave function of the electron. Since the
dependence of the potential on the charge distribution has aolving the Schrdinger equation for the core region gives

integrated character, we may substitute a quite simple teshe additional boundary condition
A. A. Likal'ter 518
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S that excitations of the impuritiesolvated electronsare de-

0.2}F - scribed by Boltzmann statistics. The conductivity below this
point is due to thermal excitation of the electrons to the
o1k _ percolation level, i.e., it has an activation character. Without
repeating all the argumentdywe may simply review here the
ok ] main relations needed to describe percolation conductivity.
The modified Drude formula has the form
L';‘O'l I 1 o=e’ngrd/m, (19
=
~ -02f . wheren, is the density of the valence electronss /vt is
the relaxation timel,~ Ry is the minimum mean free path for
03} . scattering off the impuritieg;+= 8T/7rm is the mean ther-
mal velocity, and¥ is the localization factor.
0.4} . Partial localization of the electrons is connected with the
mobility gap defined by the two parameteXg (the absolute
050l v ey ey and relative gaps
2 6 10 14 18
Radius, a. u. e?

Akzl__

€

i)m k=1,2 (20
3§k ( - 1)7 )

FIG. 3. Numerical solution for the logarithmic derivative of the pseudo

wave functionz=d In y/dr. The impurity level is subtended between two where(;~ 1/3 and{,~ 2/3. The first and second gaps define

near-lying energy values for whick(r) diverges at large with negative  hg excitation energies, below which the mobility is respec-

sign (as in the figurkzor positive sign{not shows. tively equal to zero and less than the minimum gas-kinetic
value.

2(R) =k COKRy), x=2(E+1Ry). 17) On the nonmetal side of the transition the localization

factor is an exponentially decreasing function of the first mo-

In the outer region it is convenient to solve the equivalentpility gap:

nonlinear first-order equation

dz CT(Fi=Fp) 2 VAT A1> ”
a+22+2(E—U)=O (18 T TA,—A, ’V\/_; A, A, ex T/ (22)

instead of Eq(16) (Ref. 12. The impurity level is subtended A> A>T,
between near-lying energy levels at whigfr) diverges at
large distances with positive and negative s{fig. 3). The
binding energy, which is only weakly sensitive to variation

where the functionF, is a combination of incomplete
gamma functiond™(m,x):

of the parametersin particular, the active dielectric con- 2 5 A A (3 A,
stan}, is equal to 1.53 eV, which agrees with the estimate F,=— F(E’ ?) -7 F(E’ ?”
based on the critical solubility point. In practice, however, \/;

much higher accuracy is needed. In particular, the bindingy, the metal side of the transition
energy of the impurity states should be greater than the bind-
ing energy of the solvated statéfer which normalization to _ 3T2=A;—TF, 3T/2—A,

the experimental optical spectra gives 1.6 eV, Ref. 1 o= A,— A, - A,—A; (22)

4. PERCOLATION CONDUCTIVITY A;<0O, A>T.

In the vicinity of the metal—insulator transition point the According to Eq.(22), in the metallic state the localization
conductivity is due to electron diffusion between the classifactor tends to unity for the width of the gap,~T.
Ca”y accessible Spheres of the virtual |mpur|ty states. The Growth of the localization factor on the metal side of the
solvated electrons diffuse along with them. Assuming thatransition is linked with growth of the Fermi energy and with
the classically accessible radius of the solvated states is clo§€generacy of the electrons. The Fermi energy of the mixed
to that of the impurities, from the percolation viewpoint they impurity states is equal to
may be considered as equivalent. With the exception of the b 392 o2 _ P 3
latter point, the metal-nonmetal transition is completely er=h7Ked7/2m,  Ke=(6m"ni/ga)™, (23
analogous to the percolation transition in impurity wherekr=mug/% is the Fermi wave vector of the delocal-
semiconductor§® The transition point corresponds to the jzed valence electrons,- is the Fermi velocity,g, is the
percolation threshold of classically accessible spheres ddtatistical weight of the impurity level, and the prime denotes
electrons. The Fermi energy of the mixed impufiplvated  deviation from an electron gas. For degenerate electrons the
states with continuous energy spectrum depends on proxingelaxation time in the Drude formula is
ity to the transition point. As one approaches this point, the
ratio of the Fermi energy to the temperature tends to zero, so 7= lve, ve=ved. (24)
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Substituting formulag24) into formula (19) and cancelling
out the localization factor which now appears both in the
numerator and the denominator, we obtain the minimum me-
tallic conductivity

104: M T ¥ ¥ Ll M T v L]

o e’nl 25
Mug ’

—
[
w
T

Thus, for the degenerate electrons the conductivity no
longer has a percolation character. Consequently, the mean
free path for impurity scattering becomes larger than the dis-
tance between the impurity atoms. The minimum mean free
path in the loffe—Regel’ sense is

I~#/Ap, (26)

whereAp is the quantum indeterminacy of the momentum.
At high enough temperatures the mean thermal momentum ol o
mut may serve as a measure of the uncertainty in the mo- 1 2 3 4
mentum, and the thermal wavelength may serve as a measure Na concentration, 102'cm™

of the minimum mean free path. We thus obtain from for-
mula (19) FIG. 4. Dependence of the conductivity of an ammonia solution of sodium
on the sodium concentration at the critical solubility temperature

ezne ezneRs T.=230 K. The points correspond to experimé&hthe curve plots the val-

(27) ues calculated in the present work. The metal—insulator transition point lies
not far below 16'cm 3. The binding energy of the impurity states

Thus, to within a numerical factor of order unity, the con- |:1t.6§5 ev. 'I;)hg5normallzat|on parameter for the conductivity at high con-

L . ... centrationsy=0.25.
ductivity would be the same in the Boltzmann case with 1onsy
mean free patiR;. To this accuracy, formulad9)—(22) for

the percolation conductivity can be directly extrapolated 1054y as the concentration is increased. Overlap of the clas-

the electron degeneracy region on the metal side of thgjcaly accessible spheres of the impurity and solvated states
metal-insulator transition. is responsible the metal—insulator transition. Despite the

However, in the limiting case of strong degenerday  jjitative differences between metal—ammonia solutions
sufficiently low temperatures or high concentratiptige un- 54 goped semiconductors or expanded metals, the metal—

certainty in the momentum ca_n be expressed only in terms qf,gator transitions in them have an identical percolation
the Fermi momentum, i.eAp=ymug, wherey is a Coef-  a4,re and are described by a universal theory.

ficient. According to relation26), the mean free path for The metal—insulator transition in metal-ammonia solu-

strong degeneracy is-1/yke. Schematically, we will @s-  ions has an effect on the phase transition analogous to the

sume that the transition between cases of moderate arh ijq_gas phase transition in pure metals. The parameters of
strong degeneracy takes place at the point where yor  he critical solubility point are determined by the Coulomb

holds, so thaiAp varies continuously. Thus, using the Con- yieraction of the ions and electrons in the overlapping im-
dition of matching with the extrapolated Boltzmann formu- o ity states, and the effective dielectric constant, which

las, we obtain weakens this interaction, is substantially less than its macro-
|=Rg/y. (29 scopic values due to saturation of the polarization of the
dipolar molecules near the ions. An analogy with plasma

Thus, the parametey may be Qefined as the ratio of the critical points was used to estimate the binding energy of the
inverse mean free path in the limit of strong degeneracy tQ

. ! . = . Impurity states. This estimate is confirmed by solving the
the inverse of the distance between impurities. When usin purty y g

thi ‘ hich defi th ductivity sianificantl chralinger equation for a simple model of the impurity
IS parameter which defines the conductivity signiicantly 1o pe percolation conductivity via the impurity states
above the metal-nonmetal transition point, there is no need t

licitly allow f tteri f elect by th 9 Wear the metal—insulator transition point also agrees with ex-
%X(ﬁe'(;'u?/esa ow for scattering ot €lectrons by the ammonia periment. Taken together, the self-consistency of the various

. - . _ estimates corroborates the given interpretation of the elec-
The percolation conductivity of sodium—ammonia solu-

i th diff t trati . d with th tronic structure of metal-ammonia solutions in the vicinity
ions with different concentrations is compared wi € €X-¢ the metal—insulator transition point.

perimental data in Fig. 4, which shows qualitative agreement
between theory and experiment.

Conductivity, Q-1cm!

g==
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Optical reflectivity measurements have been conducted near the sestiigecticE phase

transition in free-standing films with thickness between two and eleven molecular layers. The
temperature dependence of the reflectivity in thin film differs significantly from that in thick

films. The optical thickness per layer increases in films with two to five layers as a result of
cooling, in contrast with thick films. The average layer spacing was found to decrease with
decreasing film thickness. @997 American Institute of Physid$§1063-776(97)01503-5

Phase transitions in thin, liquid-crystal, free-standingtransition is a second-order or weak first-order transition.
flms have recently been studied extensivelf Free- Our experimental setup enabled simultaneous optical obser-
standing films reveal rich variety of properties unknown forvations and measurements of the reflection and transmission
the bulk samples. The discrete layer-by-layer surface freezntensities to be made. The films were illuminated with
ing has been observed near the ®mSm{, nearly normally incident light. The temperature was con-
Sm-A—Hex-B, Sm-A—Cry-B bulk transitiong?>1%1! |n trolled with an accuracy 0of-0.01 °C, X-ray-diffraction stud-
contrast, ellipsometric measurements of the molecular tilies of the bulk samples were carried out using a curved linear
angle have demonstrated that the order parameter for theosition-sensitive multidetector and a curved quartz mono-
Sm-A—Sm-C transition is a continuous function of tempera- chromator. The layer spacing wdg = 3.02 nm at 82 °C and
ture in thin films'?® The surface ordering phenomena nearincreased slightly in Sr# temperature range with decreas-
the SmA—Sm-C transition are very unusual. Boundary lay- ing temperature(about 102 nm/°C). In the SmC phase
ers in free-standing films are tilted in the temperature intervaflc decreased significantly with decreasing temperatdge
of Sm-A phasé?*3This tilt causes an increase in the transi- = 2.92 nmat 71 °C
tion temperature on decreasing the number of layfers. The 2 to 11-layer films were spread over a 6-mm-diam
The optical reflectivity measurements are an informative toohole in a 0.2-mm-thick steel plate. Two methods of films
for studies of phase transitions in free-standing films. Untilpreparation were used. Thin films could be spread by a
now, however, detailed optical reflectivity measurementgnovement of a mobile steel slip across the hole. As a rule, it
have not been conducted in extremely thin films near thdook many attempts to obtain a film of the required thickness.
Sm-A—Sm-C transition. The second method was based on the step-by-step thinning

In this paper we report the results of high-precision,of free-standing films above the bulk S#w-isotropic® or
optical-reflectivity measurements near -SmC transi-  SM-A—nematic”*® phase transitions. The film thickness de-
tion for free-standing films varying from two to eleven mo- creased in a stepwise manner on increasing the temperature.
lecular layers. We have observed an anomalous temperatuféter preparing a film of a required thickness, the heating
dependence of the optical thickness in ultrathin layers. wa&vas stopped and the film cooled in the temperature interval
present the thickness dependence of the average interlay@ the bulky SmA. Combining these two methods, we pre-
spacing on the film thickness. The penetration length of thébared films ranging from 2 and 11 layers. The film thickness
Sm-C surface ordering was found to be significantly larger@nd interlayer spacings were determined by optical-

than in the case of the layer-by-layer transitions. reflectivity measurements using the equatfon

The experiments were performed on free-standing films
of p-decyloxybenzoic acig-n-hexyloxyphenyl ester. The _ (n®=1)%sif(2mnL/N) @
bulk samples possess the following phase sequenceC Sm- ()= 4n?+(n°—1)? sirf(27nL/N)’

(77 °C Sm-A (83 °C) nematic(89 °C) isotropic. Using the

polarizing microscope we did not observe discontinuities ofwhereN is the number of layers) = 1.48 is the refractive
the optical properties at the bulk transition temperaturandex, andd is the interlayer spacing. For thin films E@{.)
(Tac). These observations indicate that the 8mSm-C can be simplified?
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FIG. 1. Temperature dependence of the reflectivity in various free-standing;g 2. Temperature dependence of the optical density per lajer (1)d
films. The data from 3-, 5-, 7-, and 11-layer fims were multiplied by 5 5. 3. 5. 7. 9. and 11-layer films.

4/N2. The temperature was decreased at the rate 2 mK/s.

racy of 0.02, there was a good agreement between optical
N272d2(n2—1)2 and x-ray data in the Smf_ phase. However, the relative
N2 . (2) decrease of th.e layer spacindy(— d¢)/da =~ 0.03. (x-ray
measurementsn the range of temperatures from 82 to 71 °C
Equation (2) allows the determination of the optical was more than the decrease of the optical thickness in thick
thickness per layem? — 1)d. In our case this equation gives films. In our opinion, this difference stems from the change
the optical thickness with acceptable accuracy only for eof the refractive index.
very thin film. For thicker films, it was necessary to use the  Data for theN < 5 layer films display the anomalous
exact equatioEq. (1)]. The thickness of very thick films, increase of the optical thickness and seem to indicate that the
together with the refractive index, can be obtained from theSm-A—Sm-C transition is not present in thin films. Ex-
fitting of the reflectivity spectrd(\) with Eq. (1).1* How-  tremely thin films exhibit similar variation ofr® — 1)d in
ever, this does not work properly for thin fim&(< 15), the entire temperature range, in which these thicknesses are
because tha-dependence of the reflectivity is very smooth. stable(up to 104 °C for a two-layer filcn These results can
In this case, we used the bulk value for the refraction inde>be explained if we assume that the surface field stabilizes the
and reduced the number of fitting parameters. The numeric®m-C molecular ordering near the surface. The anomalous
estimates show that this procedure allows us to find opticalemperature dependence of the optical thickness in ultrathin
thickness without significant errgno more than 0.3% films (N < 5) can be interpreted in two way$:the increase
Figure 1 shows the temperature dependences of the ref the refractive index as a result of cooling,tihe change in
flectivities from 2- and 11-layer films\( = 550 nm) multi-  the interlayer spacing. Our data are not sufficient to distin-
plied by 4N? to compare results from films of different guish between these two cases. It should be noted that there
thicknesses. As expected for the second-order transition, weannot be a simple analogy with the behavior of thick films.
observed the continuous variation in the reflected intensitiesThe increased packing efficiency and the quench of the layer
Unexpected result is a drastic change in the temperature déuctuations in thin filmg! as compared with thick films, can
pendences with decreasing number of layers. The variatiohe the reason for the anomalous change of the optical thick-
in the slope of the curves was found to occur for the numbeness.
of layers ranging from 7 to 5. Recently, x-ray reflectivity studies of ultrathin S@
Using the reflectivity data in Fig. 1, the temperature de-films on subtrates have shown an increase in the smectic
pendences of the optical thickness per layer ¢ 1)d were  layer spacing with decreasing number of smectic layers
calculated. These dependences are shown in Fig. 2. THabout 20%.?? Figure 3 shows the plot of the optical thick-
change of the thickness is continuous, which corresponds toess per layer versus the number of layers. Our results show
the second-order StA—Sm-C transition. For the 7 to 11 that at low temperaturé71 °C, SmC phasg the change in
layer films the optical thickness decreases on cooling. Qualithe interlayer spacing is less than 1%. At high temperatures
tatively similar decrease in the optical thickness at thewe observed significant differences in the optical interlayer
Sm-A—Sm-C transition was observed previously for very spacings in thin and thick filméFig. 3. The (2 — 1)d
thick films* The interlayer spacing was estimated using thechanges are continuous within the measurement error. From
optical thickness per layer and the refractive index. In thickFig. 3 it is clear that?> — 1)d increases at different rates as
films (9 to 11 layery at 82 °C(Sm-A phasé d, coincided the temperature changes. It should be noted that some sur-
with the value obtained from x-ray measurements with accuface ordering has been observed even below the bulk transi-
racy of 2%. Since the value of the optical reflectivity wastion temperature(75 °C Fig. 3. The s-like shape of the
measured with an uncertainty of about 1% andith accu- thickness dependend®6 °C) provides strong evidence of

I(\)=
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T cal reflectivity measurements. The temperature dependence

86 C of the layer spacing in thin films differs significantly from
3651 1 that in thick films near the bulk Sm—Sm-C transition. Our
. ° ] observations indicate that surface field stabilizes theGm-
3.55¢ 1 phase in extremely thin films. In the high-temperature re-
T 80 C gion, the layer spacing decreases with decreasing number of

w

o

=)
R

layers and remains approximately constant at lower tempera-
4 tures. These observations indicate that the GaSm-A
| transition takes place with increasing film thickness.
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The magnetic field and energy of an Abrikosov vortex in an anisotropic London
superconductor
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The behavior of a straight Abrikosov vortex in an anisotropic uniaxial London superconductor is
studied. Analytical expressions are derived that approximately describe the magnetic field

in three regions: the asymptotic region, where the distanitem the vortex line is greater than

A (N is the London length anll is the anisotropy constanthe intermediate region

A<r<AT', and the regiom<A\. It is found that in the intermediate region with high anisotropy

the component of the magnetic field along the vortex line changes sign for a certain

interval of angles between the vortex line and the anisotropy axis. Because of this the interaction
of parallel vortices whose plane is parallel to the anisotropy axis has a minimum and a
maximum. This means that numerous metastable vortex lattices can exist. Additional terms in the
vortex self-energy are obtained, and although they are smaller than the leading logarithmic

term, they display a different dependence on the angle between the vortex line and the anisotropy
axis. © 1997 American Institute of Physid$$1063-776(97)01603-X

1. The magnetic field of a straight Abrikosov vortex in an Fourier transform. Here we derive analytical expressions for
anisotropic superconductor with large values of theg(R) in the regionsR<1 and <R<I\1-sirPg(1-T 9,
Ginzburg—-Landau parameterwas studied in Refs. 1-4. An  and refine the asymptotic expression &§R) whenR>T.

equation describing the magnetic fiéd§R) can be derived |n obtaining the results we often use formulas from Refs. 7
from the Ginzburg—Landau theofgee Ref. 3 and)5 and 8. Actually,

- D,
h+curl(x curl h)= ——A(R)v. 1 1
= gm0 . h(Ry)= Zf 9(R1—R2)A(Rp)dR,. @
In what follows we confine ourselves to the case of uniaxial S
anisotropy, when the effective mass along the axis is great
than in the perpendicular plane. Then, along the major ax
the tensor has the following components:

9h what follows we show that foR<1 the averaging of4)

R important in the case of an anisotropic superconductor.
Bearing Eq.(4) in mind, we also refine the expression for the
= pao=1, pg=I?>1, (2)  Abrikosov-vortex energy derived in Ref. 6.

. . . . 2. Let us decomposg(R) along the directions of the
whered, is the quantum of magnetic fluluxoid), v is the Cartesian axes of a system of coordinates with axis 3 di-

unit vector along the Abrikosov-vortex linen(0)-v=>0, A rected alongv, axis 1 perpendicular to the anisotropy axis
is the depth of penetration of the magnetic field parallel to o, perp Py '

. ) : . : . and axis 2 directed in such a way thas@< /2. We as-
the anisotropy axis, and is the two-dimensional radius vec- . .
. . . . sume that the components are functions of the polar coordi-
tor in the plane perpendicular toand measured, in units of

\ fom he pont of mersecion of he plane and he 2SS 300% 1 he pare pemenier e Trene®
Abrikosov-vortex line. We denote the polar coordinates in P y 9 '

this plane byR and ¢, and the angle between the anisotropy w

axis anq the' Abrikosov-vortex line, measu.red from th axis 9.(R)= 2 91,(R)sin 2n¢,
to the direction ofv, by 6. As for the functionA(R), it is n=1

known that forR>R,= 7(¢,0)x ! it is negligible and that

f A(R)dR=21. (3) 92(R)= ZO g2n(R)COs 2o, ®)
S =

The values of the functiom(¢, 6) differ little from unity, o

andS stands for the entire plane perpendlculav_tdn Refs. ga(R) = Z gan(R)COS 2.

1-4,A(R) was replaced by 25(R), whereS(R) is a delta n=0

function in a plane, i.e., instead 6{R) one actually finds

g(R), the Green’s function of Eq(l). (More precisely, Next we show that the other Fourier amplitudes are zeros.
o(R) is one of the three vectors comprising the Green’s teni et us discuss in greater detail the calculatiorygfR). The

sor of Eq.(1).) The Fourier transform of(R) was obtained integral formula for this function obtained in Refs. 2 and 6
in Refs. 2 and 6, while in Ref. 8(R) was studied via nu- can be derived by means of some identities. It has the fol-
merical integration and asymptotic expansion of the inversédowing form:
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27 the amplitudeys, in a series in sif¥ begins with the power
92(R)= zﬁ)\)ZJ f exiliq Reod e —y)] 2n. This ensures good convergence of the Fourier series.
Let us study the asymptotic behavior gf,(R) in the
{( cosy cos'6 ) limit R>T (n # 0). With the help of the identity
1—sirfy sirfy  1—sirfe sinfy
I'?(1—sirfy sirfy)=(I'?>—1)(1—sirf8 sirfy)+1
y L (13
q°+T 2(1—sirfy sirfy) 1
20 X we can easily show that all the terms of the asymptotic ex-
co

pansion of the integrand if®) originating from the sum in

(11) are proportional to sfy with a power of at most

n—1, with the result that they vanish when integrated with

respect toy. The leading term of the asymptotic expansion

of the modified Bessel function does not depend on the order
sify=sifd(1-T"2), 0<y<o<m/2, (7)  of the function. Then Eqs(5), (9), and(11) and the well-

with y=6 only if 6=0. Using formula(8.511.4 of Ref. 7, known defini.tion of th'e coefficients of a Fourier series lead

to the following result:

expliz c05a):.10(z)+2nz1 i"J,(z)cosna, (8) ®, /l{( cody
2R

9s(R)= 2m\° 1—sirfy sirfe
we arrive at the following expressions for the Fourier ampli-
tudes: cos'6

 1-sir sirfe

1 siPe sify g°+1 qdq dy, ©)

where q and ¢ are the polar coordinates of the two-
dimensional vectoq,

)Fllz(l—sinzy Sin2<p)1/4

g o Dy (2-5 )fzwcos 2’11//[( cos'y
= (2= 81 T e Sred
FNE . 1-sirfy sify xex;{_%l—sinzysinzgo)‘l’z}

cogd )G ( R 2
1-sirPg sirPy) "\ T(1—sirPy sirfy)? cos 0 _
e T 1= sie sie PR 19
1 Sirfe sin 2y Gn(R )}dl// © Let us now comparél4) with the corresponding Egs.

(15—(19) of Ref. 3. The dependence g§(R) on R in both

Here cases is the same: an exponential decreasBsgasws, with
G (aR)=(—1)”fx Jon(gR)qdq a pre-exponential chtor proportional  tdR~ Y2, .The.
n 0 q°+a? ¢—dependent factor in the exponefthe expression in
square brackelsof the first term is also the same, to first
_(- 1)nf°° Jan(2)zdz 10 order in sirfy. The factor of the second exponential function
o Z°+a’R?’ is also partly the same, but in the present paper it proves to

be universal for all angleg and 8, while in Ref. 3 it differs
These integrals are evaluated in the Appendix, with the resulfignificantly in some sectors, even exhibiting a different de-

that pendence orR. The most important is the difference in the
Gn(aR)=Kz(aR) factor of the first exponential function. In particular, in Eq.
(14) it is always nonnegative, which is understandable if we
1" (=1)M(2n—m—1)1220-2m allow for (7). Generally, Eq.(14) suggests thatz(R) for
T 2.4, m! (aR)2"~2m , (11 R>T is always positive, i.e., the inversion effect discovered
by Grishinet al2 does not manifest itself in the asymptotic
Go(aR)=Ky(aR), region. In Ref. 3 the existence of inversion in this region

rests on the assumption that the second term of the
asymptotic expansion is greater in absolute value than the
first (see Eqs(15) and(20) in Ref. 3. From(11) it follows
that the functionG,(aR) may have zeros originating from
the sum, but, as we have just seen,Re¢I" the contribution
of the sum from(11) to gs,(R) vanishes and only the
asymptotic behavior of the modified Bessel functions, which
are always positive, is important here.
Inversion in g3(R) was also discovered by Grishin
SirP™My= 2, S cog2(m—k)y] (12 etal? in their numerical calculations in the intermediate re-
k=0 gion of values ofR. From (9) it follows that the effect can
(see formula(1.320.1 of Ref. 7 and sify enters into the occur when the first and second terms in the integrand have
integrand only with a factor sf# or sirfy, the expansion of different signs. Let us study the region

i.e.,Gy(aR) for n # 0 is equal to the corresponding modified
Bessel functiorK,,(aR) minus the terms in the series rep-
resentation of this functiofisee formula(8.446 in Ref. 7)
that diverge atR=0. Equations(6)—(9) suggest that since
the factor of cos (sinny) in the integrand is a function
only of sirfy, only the terms in the Fourier series propor-
tional to cos 2¢ are retained. Since
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1<R<T cosy. (15

Then, using(11), we can write the following approximate
relationships:

(=1)"

R
I'J1-—siry sin2¢) 2n

Gy

2n
Go(R)~(~1) "7,

R R
G ~—In—=-C
°\ T V1=sir?y sinz:,b) "or
+%In(1—sinzy Sirfy), b
(16)

aw
Go(RI~ \/ 55 &XP (~R),

whereC is Euler’'s constant. Pluggin@d6) into (9), evaluat-
ing the integrals via formula&3.615.2 and(4.399.3 of Ref.
7, and summing the series via formuld5.4.9.6 and
(5.4.9.13 of Ref. 8, we find that

(R)= o (cosy—cos 6) —InE—C -10
9N = o2 Y 2r
+c08 0/ R
cos ﬁexq— )—cosy
1+cosy b% b% 2
n TOS’}/ 1-2 tar?z cos 2cp+tarf‘§)
- cosp] 14+cosé
cosgin COoSs y+cos @
L r?e rf‘e Y214 coso
X|1-2 ta zcos 2p+ta 5 R
< iarp ! 12I1(012) + 1)cOS 22 tart(612) 10 = 0 s 00
82 (1—2 tarf(612)cos 2p+tarf(6/2))2 ]

(17 FIG. 1. Equal-value curves for the components of the funoggR), nor-
malized to®, /A2, in the plane perpendicular to the axis of an Abrikosov
The expressiorfl7) in the sectors where cogpds close to  vortex: a—g4(R), b—gs(R), and c—g.(R). The heavy curves separate

—1 can be negative. For instance, for the values of the pabe regions of positive and negative values.
rameters adopted in Ref. 3 in numerical calculatidns,8

and =m/6 at the point with coordinatefR=5.2 and

¢=m/2, which corresponds to the negative minimum of

H — —3 2
gs(R) in Eq. (17), we havegs=—3.3x10 “®o/27A" (I niry () in the dimensional units of lengthThen the terms

the notation adopted in the present papel, a8 the value . . . : .
of \ is half the value oi of Ref. 3) The departure from the n thg Fourier serle@ change can|derany over a dlftlance
of min(1, R/n). If this distance is much larger thaq™ -,

value depicted in Fig. 1c of Ref. 3 amounts to about 10%, o .
However, in contrast to the results of Ref. 3, in the presen'rmegratIon in(4) does not change the corresponding term.

work the regions whergs<0 are limited. Thus, over the given distané®integration changes only the
For the values oR we are considering here the field terms in the Fourier series with=R«, and, as shown ear-

h(R) differs little from g(R). Indeed, the characteristic dis- lier, the smallness of these terms is of order¥in
tances over whiclg;,(R) changes considerably are of order For R<1 we have
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Gn( R ~G,(R)~ v
I'\1-sirPy sirfy 2n
R R 1
G°(rm)”"”f+i
X In(1—sirfy sirfy)—C,
(18)
R
Go(R)=—1In 5 —C,
which yield
D, R
g3(R)=m (cosy—cosf)In I'+cosy —InE—C)
1+cosy 1+cosé
—cosy In 7 cosy +cos 6 Inm

2

cosy In(1—2 tar?% cos 2(p+tarf‘% } (19

Not only does this expression diverge, it becomes strongly

dependent orp asR— 0. This singularity, which is natural
for a Greens function, vanishes im(R) if formula (4) is

employed. In(19) we put

R=[R;— R,

CoS 2p= cos{ 2arctar6 ) } .
Note thatA(R,)R, has a sharp peak &, =R, with a width
of orderx 1. Then integration ir4) with respect taR, can
be done in general form by taking the slowly varying factors
of A(R,)R, outside the integral sign &,=R,, ignoring the
dependence dR, on ¢ to the same accuracy, and employing
Eq. (3). As a result of integration with respect ¢g we find
that the axisymmetric term ih3(R;) =h3(Ry) +h3(Ry, ¢1)
for R;=7« ! coincides with a similar term if19), while

for R;<7n« ! it remains constantthe factory differs little
from unity). The ¢,-dependent term ih3(R;) has the form

h3(R1,¢1)

(20
Rysin ¢1—Rssin ¢,
R;cos ¢;— R,C0S @5

q)O 27 0 0
P —+ —— —
Z(ZWA)ZCOSVJO In{l tarf‘2 2tar?2
R; sin ¢;— 7k~ ! sin
x cog 2arctaf ——— 1 #2 des
R; cose;— nk ! cose,
(21)
At R;=7k1,
sin ¢1—sin ¢,
— | |== +@5).
COE{ZarCta'écos%—cos%” cog o1t @y). (22

Then, according to EQq(2.6.36.9 of Ref. 8, we have
hs(nx~1,¢,)=0. Reasoning along similar lines we can
show thaths(0,p4,)=0.

Thus, Egs.(14), (17), (19), and(21) describe the com-
ponent of the magnetic field parallel to the Abrikosov-vortex
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line in different ranges of values &®. Here the magnetic
field changes sign only in the intermediate region.

Similarly, we can write expressions for the other com-
ponents of the Green’s function. In the asymptotic region
R>T,

91(R)
dy sin 20 sin 2¢

ar
= 2_ gy
22 4 =Dy 2R

IY2(1—sirfy sirfe)
X TZ=1)(1—sirPo sirfg)

1

- I¥(1-sirfy sinzgo)3’4}
R

XEXR T T (1 sy Si? o) 72

1
T T2 1)(1-sif0 sie) eXp(_R)]’ @3

_ 2cod¢

92(R)=— M%(R)- (24)

In the intermediate regiofi5),

g1(R)

4 cos 4(6/2)cos 0 sin 2¢
R? [1—2tarf( #/2)cos 2p+tarf(6/2)]?

tarf(y/2)sin 2¢

1—tarf(y/2)cos 2p
tarf(6/2)sin 2¢
7T
\/ 2R exp —R)

1—tarf(6/2)cos 2p
rz—1 1

2 cos® [1+tarf(6/2)]cos 20— 2 tarf(6/2)

"~ R2cod(6/2) [1—2 tarf(6/2)cos 2p+tarf(6/2)]?

T 2mA2

cot 6’|

+ arcta+

(25

- arcta+

92(R)

Dy sin 26
2m\% 4

1
cos(6/2)

2r

+ Inﬁ—C

[2cod(y/2) cog(612)

2 cosy |l+cosy 0%
<70 In = cosy 1-2 tanzi cos 2p
1/2
0% 2 cosé 1+cosé
+tarf"§ Sirf e In cos y+cos 6

1/2
X

|

It may seem that these expressions are incorrect since they
do not vanish when we |df go to 1. In this case, however,
the intermediate region determined by the inequalitEs
vanishes.

ForR<1,

(7
1-2 tar?i cos 2gp+tarf"§ (26)
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D, tarf(y/2)sin 2¢ HereE is the energy density per unit length of the Abrikosov
g:(R)= WCOt 0 arcta 1—tar’(y/2)cos 2¢|’ (27)  vortex. Integrating the second term by parts and plugéing
and (4), we obtain

The dependence ofj;(R) on R appears when the (ON
higher-order approximations R are taken into account. The E=33 JSLA(Rl)gs(Rl_ R2)A(R;)dRdR,.  (30)
function g,(R), as well asgs(R), has a logarithmic singu-

larity at R=0: The cutoff procedure ig-space carried out in Ref. 6 means
replacing one of the functiond(R) by 278(R) and the
. ®, (I'2—1)sin 26 In(2/R)—C other by
9(R)=5732 2 212c02(12) 1 (x(2m
A(R)= 2—f f exfligR cog ¢ — ) ]qdady
+In r 1 1 } mJo Jo
2 |I'%cos(y/2) (I'>—1)cos(6/2)  kJi(kR) -
.\ 1 I 1+cosy R
(I'2—1)sir’e cosyY N5 cos ¥ Instead we allow for the fact that, as noted earlRA(R)
has a sharp peak &=R,~7« 1. Then ingz(R;—R,) of
—cosé In 1+cosf + 2COS)/- Eq. (30) we can puR,=R,= 7« ! and, using Eqs3), (19)
cosy+cos@| 2(I'*—1)sinfo and (20), we obtain
Y Y )] 27 (27 o o

XIn| 1—2tarf | cos 2rp+tan4§ ] (289 E:T;?‘fo . 9s(pc Y o1 e @)de de,
This means that even at the center of the vortex neither [ @ 2 | 2k
g(R) nor h(R) is parallel tov. “\ zan | | GO n;_—c +(cosy—cos6)

Figure 1 depicts the equal-value curves for the three

components of the functiogs(R) formed by matching the 1+cosy 1+cosé
above asymptotic expressions foiR) at parameter yalues XInI'—cosy InTOS)/+ cos ¢ |nm :
I'=8 and#= /6. The matching was done by including one
expression and excluding the other via coefficients varying (32

from zero to unity in the intermediate regions8B<1 and  Here the first term coincides with the well-known formula
6<R=8. Hence Fig. 1 provides a qualitative representatioryerived in Ref. 6. The employed method of integration
of the functiong(R), while in the regions of applicability of makes it possible to estimate the relative accuracy of the
the asymptotic formulas this representation is even quantitgsy|cylations. For the first term this accuracy is g, i.e.,
tive. Figure 1 can be compared with the corresponding figuregne term is determined to within logarithmic accuracy, as
in Ref. 3, which was obtained by numerically integrating thenoteq in Ref. 6. The other terms are determined to within a
inverse Fourier transform for the same parameter valuegg|ative accuracy ok~ ! and are generally smaller than the
Note that the unit of length in the present paper is half that iffirst, They are characterized, however, by a different depen-
Ref. 3. In both papers the pattern 9f(R) (Fig. 13 is the  gence on the angle between the Abrikosov vortex and the
same. The functiog,(R) in Fig. 1b corresponds even quan- gpisotropy axis: ap=0 they are zero, and their contribution
titatively to theg, of Ref. 3 in the region represented in that monotonically increases withd. For =8, x=50, and

paper. The position of the negative minimum on the horizony— /> the correction amounts to 14% of the value of the
tal axis cannot be obtained exactly from the asymptotic for+jst term.

mulas for the chosen values of the parameter. However, this  The energy of interaction, per unit length, of two parallel
region does not provide a full description of the function aprikosov vortices separated by a distariceso large that
02(R). From Eqs(23) and(24) and from the corresponding ha(L)~gs(L) is

asymptotic formula of Ref. 3 it follows thai,(R) is non-
positive forR>1" and vanishes on the vertical axis, since it
is proportional to cdp. Hence the zero-level curve becomes
closed on the vertical axis and then continues along this axiz

o
Ein= 7 s(L). (33

f the plane containing the Abrikosov vortices passes through
he anisotropy axis, for parameter values allowing for the
inversion of the sign ofys(L), in the intermediate region
(15) the E;; vs L dependence acquires a negative minimum
at L=L,,, and a positive maximum at=L,, (here
Lmin<Lmax=T). In this case, at Abrikosov-vortex densities
N<L 2 there can be two ideal vortex lattices in the system:
a metastable Abrikosov lattice in which all the vortices are

2 . .
E= )‘_J [|h|2+ (curl h)- - (curl h)]dR. (29) separated by dl_stances _greaf[er than, and_ are repulsive,
8m)s and a stable latticédescribed in Ref. Bconsisting of repul-

Figure 1c shows that the region of negative values o
03(R) is limited, in contrast to the behavior depicted in the
corresponding figure in Ref. 3.

3. The leading contribution to the energy of a singular
vortex is provided by the magnetic field and the kinetic en-
ergy of the superconducting currehts
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sive planes that are parallel to the anisotropy axis and iTaking (2&R)* outside the brackets, replacing the summa-
which the Abrikosov vortices are separated by distances dfon indexm with k—I, and writingK,(aR) in the form of a
aboutL ,. There can also be metastable groups of nonideaderies via formula8.449 of Ref. 7, we arrive at a series
lattices in which chains of different lengths consisting of expansion ofG,(aR) in powers of the argument:

Abrikosov vortices separated by distances of alqy, are

* 2m _1\k+1
surrounded on all sides by Abrikosov vortices separated by (ar)=> i(ﬂ?) s (-1 A
distances greater thdn,,,. These metastable lattices can be " moomil 2] &b (m+ky! "
one of the reasons for the hysteresis phenomena observed R 1(m g mekg
and discussed in Ref. 9 and the works cited therein. ar - - -
x|In—>+C 2(21|+|21|”. (A5)
APPENDIX

One can obtain the zeroth term in this expansion,
Using the recursion relation for the Bessel function ofG,(0)=(—1)"/2n, directly from Eq.(10) by using formula
the first kind(see formula8.471.) of Ref. 7), we find that (6.561.14 of Ref. 7. For the modified Bessel function
n K,n(X) we can derive, by employing recurrence relations, a
J (x):(—l)“z (= DR300 A, (A1) fo_rmula similar to(A1) with the _same_coefﬂuentank but
2n k=0 “ nk without the factors £ 1)¥*". Using this formula, we can

where theA,,, are positive integral coefficients. We have transform(A4) to

n k
* dx — K+
k —k+1 G, (aR) =K R) — An(—1
2 fox 300 e (aRI=Kop(aR =~ 3 3 An(~1)
- 21171 _ 1
_ 2 _2k+1j D1y dx o 2774(1 l)2 . (A6)
(k—1)!b? 0 k=1 (2 +p2)% (k—D!(aRr)

(A2) Writing K, (aR) in the form of a series via formul@.446
of Ref. 7 and comparing the result wifA5), we conclude

Here integration by parts is done according to formulaga; the coefficients of the negative powersaR vanish,
(5.52.2 of Ref. 7. Doing thisk times and using formula | hich yields(12).

(6.565.4 of Ref. 7, we get
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We study the energy spectrum and some properties of various quadrupole ¢eragnetic

impurities or magnetic impurity complexes that are symmetric with respect to the magnetic
sublattices of the antiferromagheWe allow for the effect of spin—phonon coupling on the
quadrupole splitting parameter and show that such coupling can lead to a considerable decrease in
the value of this parameter and even change its sign. We investigate the behavior of
quadrupole centers with an orbitally degenerate ground state and of quadrupole impurity
complexes formed by mixed-valence ions. We demonstrate that such centers may greatly affect
the resonant, magnetic, and thermodynamic properties of antiferromagnets. Finally, we

analyze the existing experimental data and show that several new effects can be observed in
systems with such centet® particular, a magnetic analog of the Jahn—Teller effect and a strong
magnetoelectric effegt© © 1997 American Institute of Physid$S1063-776(97)01703-4

1. INTRODUCTION in analyzing the special features of the electron spectrum of
carriers in high¥, superconducting oxide.
Localized low-frequency excitations of an impurity spin In this paper we go into a deeper study of the energy

positioned symmetrically with respect to the magnetic subspectrum of various types of quadrupole centers. Here for the
lattices of an antiferromagnet have been studied by mangraditional quadrupole centers we find the contribution of
researchergsee, e.g., Refs. 1}6In the absence of a mag- spin—phonon coupling to the quadrupole splitting parameter
netic field the spectrum of such impurities is described by artA and attempt to resolve the contradiction between the
effective Hamiltonian of quadrupole type with a constant theory developed earlier and the new experimental tea.
equal, in order of magnitude, to the ratio of the square of thdocus on the analysis of the features of the low-frequency
constant of the exchange impurity—matrix coupling to the energy spectra and properties of unconventional quadrupole
width of the spin-wave band of the antiferromagnet, withcenters, such as centers in which the ground state is orbitally
A>0. As a result, the ground state of impurities with half- degenerate, and impurity complexes that occur due to charge
integer spin proves to be twofold generafe= +1/2.Here  transfer between ions of transition elements that are neigh-
the magnetic, resonant, and thermodynamic properties of dpors of an impurity aton{quadrupole centers with mixed-
antiferromagnet containing such centers exhibit many spevalence ions
cific properties characteristic of crystals with two-level sys-
tems, including the presence of a peculiar glass phase. 2. COMMON QUADRUPOLE CENTERS

The present upsurge of interest in guadrupole cenFers Ifl' Contribution of spin—phonon coupling to the
caugc_ed by the appearance of nev_v.objects., of res_earch_ln bo []adrupole splitting parameter
traditional systermsand such specific quasi-two-dimensional
magnetic materials as high: superconducting oxidés!? An example of quadrupole centers is the orbitally non-
The reason for the appearance of quadrupole magnetic ceflegenerate magnetic impurity interstitial atoms positioned
ters in highT. superconducting oxides is either nonstoichi- Symmetrically with respect to the magnetic sublattices of an
ometry of the composition or nonisovalent substitutional at-2ntiferromagnet. For such centers the Hamiltonian of the ex-
oms. Therefore, it is natural that in this case the behavior ofhange interaction with the spin subsystem of the matrix can
the impurity center strongly depends on the nature of localbe written as
ization of excess charge on the center. The same systems

have been mentionetsee Ref. Bin connection with the T=2 2 Iine(SnS), 2 Jins= 2 Jans, D
possibility of forming quadrupole centers with an orbitally nos " :
degenerate ground state. whereS; is the spin of an impurity atom at the interstitial site

Following the description of quadrupole states belongingwith numbers, and theJ;, ¢ are the constant of exchange
to impurity centers, a similar approach was adopted in deeoupling between an impurity at the interstitial sstand the
scribing the properties of some types of antiferromagnets, imatrix spinS;, in the celln of the sublattica (i=1,2).
which the average value of the exchange field generated by When the exchange coupling of impurity and matrix is
the atoms of one sublattice on the other is Zéras well as  weak, the effective spin Hamiltonia#, for noninteracting
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impurity centers can be found by perturbation techniquesin the orthoferrite YFe@ (Ref. 7) act as a kind of probe. For
The small parameter in the perturbation series is the ratio othe impurity center F& (c) in YFeQ;, the presence of five
the impurity—matrix exchange interaction to the maximumiines in the spectrum has made it possible to determine the
exchange interaction in the matrix)/maxd;:), where constants in the effective impurity Hamiltonian and to esti-
J=ZX.Jix s is the effective impurity—matrix exchange inter- mate the impurity—matrix exchange coupling parameters.
action, andJ;;»=2J;, i'n is the corresponding interaction Here the experimentally determined quadrupole splitting
of matrix atoms belonging to different sublattices. Then, toconstantA=0.5 cni ! proved to be smaller by a factor of ten
second order in this ratiofe can be expressed s than thegfractionJ2/J12~ 10 cmi ! found from theoretical

o — A2 estimates.

Her=AS;=S(SHD)), @ The only obvious reason for the experimental value of
whereS is the impurity spin, and, is the projection of the A of Ref. 7 to be so small is almost perfect balance between
spin on the antiferromagnetism axis. The quadrupole splitthe exchange and spin—phonon contributionédg. In this

ting parameteA in (2) is positive and satisfies connection it seems natural to study analogous quadrupole
72 centers in substances that are similar in structure, and to
A establish whether such a perfect balance of these contribu-

max( i) tions is a unique property or a general law.
These statements concerning the magnitude and sign of
the quadrupole splitting parameter may become invalid if2.2. Strongly coupled quadrupole centers
there is a strong interaction between the magnetic moment of

. . . e A characteristic feature of higihzsuperconducting ox-
an impurity center and phonons. Lattice vibrations model the : . .
) . . . .~~ " ides is that the exchange interaction between the holes
parameters of the impurity—matrix exchange interaction:

formed as a result of doping and the matrix spins is much
stronger than the exchange interaction in the matrix proper,

97/1:%: % Tins(Sn SN =7 ), i.e., |3]>13;i]. In describing the energy spectra of such
(3)  strongly coupled quadrupole centers it is convenient to use
R Jin,s a=x, Y, 2 the approach suggested in Ref. 4. Here for the zeroth ap-

proximation we take the spectrum of an isolated complex
o e e o a , consisting of an impurity center and the nearest spin neigh-
where R, Rg and 77 i, 7/ ¢ are the coordinates of the o Then the interaction of this complex and the remaining

equilibrium positions and the displacements of the matrixy iy is taken into account by perturbation techniques. Here
atoms and the impurity in the lattice. Allowing for this effect (o smaliness parameter id,/wherez, is the number of

in second-theory perturbation theory i (with respect 0 o negrest magnetic neighbors of a spin in the matrix. For
the phonon subsystgmadds the fO||/QWIhg term to the jystance, the spectrum of a complex consisting of an impu-
impurity-center effective Hamiltoniateq (E. (2)); fity spin and the two nearest magnetic ions belonging to

Sg(. VAL different sublattices of an antiferromagnet can be described
TSP =p7PIGZ - Als~ p)~—w—’ <0, in the zeroth approximation by the following expression:
D _
) Eiss. poy o S ST St 1) S5+ 1))
where S, is the spin of the matrix atoms, the labet & (S:S12,Ms)= 2
numbers the sites nearest to an impurity cestea is the (St 1)
' i i in i 12912

distance between the impurity and the nearest spin in the +3p > —Sy(Set+ 1) |, (5)

matrix, andwp, is the Debye frequency.

We see that the contributioA®>P of the spin—phonon
interaction(Eq. (4)) to the total quadrupole splitting constant whereJ;o andJ;, are the parameters of the exchange inter-
Agi=A+ACP is negative. As a resulid; can become action in the complex between the spins of the impurity and
much smaller tha and even have different signs. The tem- Matrix and between the spins in the matrix, respectively,
perature dependence of the paramé{ér® at low tempera- S;» is the total spin of two matrix atoms, ar@lis the total
tures can be approximately described if (# we replace spin of the complex.

S, with the temperature-dependent functioy(T) We see that the nature of the ground state of the impurity
= Sy (T)/o(0), which reflects the variation of the sublattice complex strongly depends on the signsJgf and J;,, in
magnetizations(T) with temperature. Thus, the parameter contrast to the case of a weakly coupled quadrupole center,
AP s proportional too?(T). At the same, we can easily Where the sign of the impurity—matrix exchange interaction
show thatA exhibits no such temperature dependence, as has no effect on the structure of the spectral terms. Here for
result of which the effective quadrupole splitting parametera complex where antiferromagnetic interactid is domi-

A can increase with temperature within a certain temperapant (J;o>0) the ground state corresponds to a maximum
ture range. value of S;, and a minimum value 08.

At present we know of two examples of direct spectral In this approximation, when the interaction between the
manifestation of ordinary quadrupole centers in magnetidésolated complex and the matrix is ignored, all energy levels
materialst'’ In both cases, Fé ions at the interstitial sites of (5) are degenerate in the magnetic quantum nuribgicor-
the FeC} lattice (Ref. 1) or occupying “illegal” positionsc  responding to the projection of the total spin of the complex.
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The degeneracy is lifted when we allow for the effective Here we limit ourselves to the case of a weak exchange
exchange fields, described by the Hamiltoniati.q(a), interaction between the centers and the nearest neighbors,
through which the remaining magnetic atoms of the matrix.e., |L|,|L|<|H 4, whereH s is the molecular field acting on

act on the spins of the complex 0, 1, 2 is the number of the matrix spins. Then the effective Hamiltonian of an iso-
the atom in the complgx Second-order perturbation theory lated quadrupole center is given by the following expression,
in the above parameter yields the following correctionsaccurate to within second-order terms in the above small

AE(S,S;5,M7g) to the energyE(S,S;,,M3): parameters:

AE(S,S12,M5)=A(S,S1)[M5— S(S+1)], (6) Heoi=A(S2—S(S+1))+BS,, ®)
where the constantA(gslz) prove to be positivdas they (L%+ 2[2)302 10
are in (2)), but their value is determined by the exchange ~ A=Aql, AOZW, =lo 1)’

parameters only for the matrix atofh$hus, the ground state

of the complex in this approximation is achieved only when

the projectionMg of the total spinS is at its minimum. B_% BenUes

However, in the present case the renormalization of the

qguadrupole splitting parameter caused by spin—phonon coys

pling is still determined by the corresponding parameters for

the matrix atoms. ) o )
Note that the impurity center examined by Aristov andvyherez is the number of magnetic ions nearest to the impu-

MaleyeV, which incorporates two Gi ions and a spin-1/2 "%

hole (O") between the ions, fully corresponds to the model T when we allow for magnetic order in the matrix the
of a strongly coupled quadrupole impurity adopted in the!0c@l Symmetry of the impurity center does not chafged

present paper and in Ref. 4. Here, in thenerally accepted ~coincides with the crystallographic symmejrhen only the
case of antiferromagnetic interaction between the hole anfirSt term, which is independent of the orbital variables
the copper ions, the ground state in the spin triad'Gu  (Be,=0), remains in the effective Hamiltoniai8) of the

O~ —CuP*is, according ta5), the state with an intermediate impurity center. Here the splitting of the magnetic states is
spinS,,=1 and a total Sphg: 1/2 rather thars=3/2. as is  9€scribed by the same effective Hamiltonian as in the case of

the case in Ref. 9. Nevertheless, here too the ground sta?éb'ta"y nondegenerate quadrupole centers:
proves to be twofold degenerate and contributes considerably E(M)=A,M?.

to the magnetic properties of high:- superconducting ox-
ides.

=L X Ceps [(S)— L(SH(So+ 1)~ ((S?) /s,

But when the symmetry of the impurity cluster with al-
lowance for the spin orientations of the magnetic ions nearest
to the Jahn—Teller center is lower than the crystallographic
3. ORBITALLY DEGENERATE QUADRUPOLE CENTERS §ymmetry, an additional splitting of the spectrum of local-

ized states may occur:

Let us now examine the case where a position symmetric ” > 5
with respect to the magnetic sublattices of the antiferromag-  E=(M)=AoM*F J(BgyM +hgy)*+ (Be.M + he,),
netic is occupied by a Jahn—Teller impurity ion in which the ©)
ground state is twofold orbitally degenerate in a cubic cryswhere thehg, are the components of the low-symmetry
talline field (the E-statg. Such a situation occurs, for in- crystalline field on the Jahn—Teller ion. If the lowering of the
stance, when Jahn—Teller centers replace nonmagnetic tetrs¢mmetry on the impurity is caused only by exchange inter-
hedral cations in the spinel lattice with antiferromagneticactions fg,=0), the twofold degeneracy of the energy lev-
ordering of the magnetic ions in octopositions. els of the Jahn—Teller center is retained forMll# O:

The exchange interaction of a Jahn—Teller impurity in

E-(M)=E.(=M).

the nearest magnetic ions can be described by the following
Hamiltonian:® Equation(9) clearly shows that the value 1| for the
_ impurity spin in the ground state depends on the parameter
=2 (L(S'Sa)H- > CE,LL,&(S'S(S)UEM)’ n=\BZ,+BZ./A, and, in contrast to the case of an orbit-
° p=be (7)  ally nondegenerate quadrupole center, may not assume its
-1 0 0 1 minimum value. In particular, for an impurity with an integer
UEH:( 0 1), Ue.= 1 O)’ spin the ground state transforms with increasipgn the
following manner: the nondegenerate nonmagnetic state with
where theS; are the operators of the spins of the nearesM =0 is successively replaced by twofold degenerate states
neighbors of the impurityl. andL are the exchange interac- with spin projectionsstM (M # 0) when the parametey
tion parameters for an impurity with orbital degeneracy, andeaches the corresponding critical valueggi(M)
the Ug,, are the orbital operators specified in the space of the= (2|M|+1). Such behavior of the ground magnetic state is
wave functions of the grouné-state. The expressions for the magnetic analog of the Jahn—Teller effect.
the unitary matriceCg,, ; for some impurity-cluster types Let us now analyze the effect of quadrupole Jahn—Teller
can be found in Ref. 15. centers on the magnetic anisotropy energy and the magneto-
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elastic properties(usually Jahn—Teller ions provide an z
anomalously large contribution to these characteristics of the
magnetic material The corresponding terms in the impurity
Hamiltonian that describe single-ion anisotropy on a Jahn—
Teller center, and the interaction of the center and uniform
magnetostriction strains have the fdfm

, S(S+1) %—F-
T a=Ugy| D sﬁ—T +Veegy O-o*
, , . _ Mn4+
D(S—5) " — e -el
+Ug, S><\/§Sy +Veee, |, (10) ® - ¢ -electron

. . . . . FIG. 1. A mixed-valence quadrupole center coupled with an anion substi-
whereD is the single-ion anisotropy constant, avigl is the tution of F~ for 0%~ in the Me—O plane of the antiferromagnet.

parameter of the interaction of the Jahn—Teller ion with the
Eg-strains eg,=(26,,—€—€yy)/2 and eg.= J3(eyy _ _
— e,,)/2 in a cubic magnetic material. pounds as a result of doping the compounds by nonisovalent

For the sake of brevity let us examine the case where wgubstitutional atoms or in the presence of nonstoichiometry
haveBg,=0 and the Hamiltoniai10) can be considered a in the cation or anion sublattices. Such centers are character-
perturbation with respect to the energy levéds Then the ized by a strong resonant coupling of thé-Bns in equiva-

magnetic anisotropy energi, related to the Jahn—Teller lent crystallographic positions nearest to the defect, a situa-
subsystem can be written as tion realized by the transfer of an excess electron or hole

from one magnetic 8-ion of the complex to anothédouble

D< M2— S(5+1) > Zener exchangeThe tunneling splitting of the states of such
3 0 a cluster is at its maximum and the ground-state energy is at

its minimum when all the spins in the complex are aligned.
% /1_32 :Bi2:8j2! keT<|D|, (11) When the cluster cente_r occupies a position symmetnc with
i< respect to the magnetic sublattices of the antiferromagnet
. . and the resonant exchange interaction of cluster ions domi-

where x;7 is the concentration of Jahn-Teller centers, .

nates, a new type of quadrupole center, a mixed-valence

{--+)o stands for the quantum average in the ground Statedomplex appears. In the mean-field approximation, the ex-

and theg; are the direction cosines of the sublattice magne- ) . .
B 9 hange interaction of such a complex and the nearest antifer-

tizations with respect to the crystallographic axes. We se : . o
-romagnetically ordered spins of the matrix is found to be
that even when the ground state of quadrupole centers wit lily balanced

integer spin is nonmagneticM=0), the contribution of Usually one of the charge states of mixed-valence ions is

these centers to the magnetic anisotropy of the crystal is 0cf)rbitally degenerate. Hence describing the behavior of a

the same order of magnitude as that of a Jahn—Teller ion . ) o
: X : : o mixed-valence complex requires proper generalization of
with an ordinary dipole spectrum. The maximum splitting of

the doublet and, accordingly, the greatest absolute value (gjfouble-exchange thedryand analysis on its basis of the

E, are achieved when magnetization is directed along thégzztgf_:];t:&eegﬁzzde Si;ﬁa;?o;h?n (;%T/?rllexth?snd rczgt—a
tetragonal axes of the crystal. P 9 ' 9 P

According to Ref. 16, the contribution of such Jahn—!;?e v;en db?r?elrr]l \(,jvigzuzsmréxoercei-\ézlrin(I:iia(t:gglnpije;(drouf Eglgl;?;rs
Teller centersAB;, to the magnetoelastic constdyt at low ' P q P '

temperature&g T<<|D| is given by the following expression: 4.1. Double exchange in a pair of 3 d-ions with orbitally
degenerate resonance states

S+1
A|—°>1:XJT|VE|59"( VED< M2~ S(T)> ) (12 Let us take a cubic or quasi-two-dimensional antiferro-
0 magnet with anion substitution of, say, For O?~ in the
What is important is that for quadrupoleith M=0 or Me-0O plane with antiparallel-ordered magnetat-®ns Me.
F1/2 in the ground stajeand dipole(with M=S in the This gives rise to the simplest mixed-valence center: a pair
ground state centers not only do the values of the corre-0f 3d-ions of Me separated by the”Fon and an excess
sponding contributions t8, differ but so do their signs. A €y~ Or tyg-€lectron localized at this complékig. 1). For the
similar effect exists for the contribution of the Jahn—Tellersake of definiteness we select Mif3d®) ions as the main

subsystem to the magnetostriction constegby; - magnetic ions, as the substitution of For O*~ leads to
another state, Mit (3d*), which corresponds to the addition

of an e4-electron to the cation subsystem. This is the situa-
tion, for instance, for the GMnNO,_,F, (x<<1)
compound-®

In this section we discuss another type of quadrupole For the basis of the lowest electron states of the cluster
center in an antiferromagnet: an impurity cluster containingve take the one corresponding to the localization of the ex-
mixed-valence 8-ions. Such clusters form in various com- cess electron on one of the twa,p) magnetic ions of the

Ea=—Xs1

4. QUADRUPOLE CENTERS WITH 34d-IONS OF MIXED
VALENCE
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complex accompanied by the formation of the following field A, is smaller tharjb|/2. But if A,>|b|/2, the exchange

configurations: MA™(a)-Mn**(b) and Mrf*(a)—  energy is reduced considerably fax,/A,|<1 and amounts
Mn3"(b). The ground state of the Mn ion is the orbital to a quantity of order £,/A,)%b.
singlet*A,, and the ground state of the Binion in a cubic The caseA;=0 is of special interest. It corresponds to

crystalline field is the orbitally degeneratE-state. The de- mixed-valence complexes in cubic crystéisthe absence of
generacy is lifted by the following low-symmetry crystalline random crystalline fields of tetragonal symmetrin this
fields: the rhombic field\,, caused by the presence of the case, forA,>|b|/2 there is no charge transfer in the ground
F~ ion on the MA*—Mn*" line, and the tetragonal field state of the completwith an energyE; =E;=—A,), so that
A;, present in crystals with a quasi-two-dimensional structhe degenerate levels of the ground state correspond to total
ture. Nevertheless, in analyzing the spectrum we allow fofocalization of aneg-electron on the ions of the- or
both orbital states of the M ion, since the resonant inter- b-pair. The absence of effects associated with the transfer of
action may prove to be comparable or even stronger than then e;-electron is due in this case to the nature of the orbital
low-symmetry fieldsA, and A, . All these interactions are wave function of the M#" ion, which in the present condi-
assumed to be weaker than intratomic exchange. tions is oriented perpendicularly to tlyeaxis of the complex.

Let us write the wave functions of the mixed-valence Note that random crystalline fields with, # 0 may have a
complex as a combination of antisymmetrized products oktrong effect on the nature of the exchange interaction in

the wave function of the M and Mrf* ions: such mixed-valence complexes.
— The Heisenberg exchange interactidyy, in the (a,b)
¥ (SM3)= $(a,Az,S0;b,En,S;SMY) pair provides a certain contribution to the energy leviels
n S J2 (n=1-49) of the mixed-valence complex, tending to align the
. spins of the MA"—Mn** ions in an antiparallel manner.
Iz//(a,E,u,S;b,Az,So;SMg) 13 These effects are important only wheh,>|b|/2 and

2 ' |A/A;|<1 hold, i.e., when the resonant splitting of the two
lowest states is smalin absolute value comparable to, or

whereS and S, are the spins of the Mii and Mrf* ions,  smaller than, the Heisenberg exchange in the) pair

S andMg are the total spin of the pair and its projection on Below for the sake of simplicity we examine only the

the quantization axis, and the indgxnumbers the orthogo- limiting cases in the behavior of the Mh—Mn** pair cor-

nal states of the orbital doublet on the &nion. The corre-  responding to the Heisenberg exchange or double exchange

sponding energy leveE,(E,=E,(S,Mg), n=1-4) of the being dominant. The degeneracy Mg of the ground state

mixed-valence complex are given by the following expres-

sion (which does not allow for Heisenberg exchange

1 2
E1p=5 [17 V(t+ 24,2+ 4AF+2A(t+2A,)], \ 2 .
(14) 1
1 2 2 £
Esa=5 [—tF V(—t+2A,)2+4A2+2A(—t+2A,)], €
s : N
— b(S+1/2) uf
t=t(S=—g 7
2Sy+1 N
-2 —————
.0 25

4 -5, 5.0

t, rel. units

A
0 25 0
whereb is the transfer integral for they-electron in the pair 6
we are considering heféand the energieg; , andEj 4 cor- 4] S b
responds to the respective wave functions withand — ]
signs in(13). Figures 2a and b depicts the curves represent- 1
ing the dependence of the resonance state endfgies the T 4
double-exchange parametgs). : \
1 \
25 00 25 5.0

b=4bg, o= 3 bee = ﬁbEB,Es ;

[ 8]

E, rel. units
(=]

I
N A

An analysis of Eqs(14) (see also Fig. Pshows that the
energy of the lowest statds,,, decreases with increasing
[t| (unlessA,>|b|/2 andA;=0). Since the parametérde-
scribing resonant splitting is at its maximum at -4
Sha= S+S3=2Sy+1/2, the ground state of the mixed- 30
valence complex correspond to parallel orientation of the

spins. Here the energy of exc@nge spllttmg, Corresl:)OndmglG. 2. The energy spectrum of a mixed-valence quadrupole center as a

to the‘_ change ofS from 1_/2 t0 Spax, IS equa! in order_ of  function of the transfer parameterboth E andt are measured in units of
magnitude to the transfer integfaif the rhombic crystalline A,): A,/A,=0.2(a), andA,/A,=1 (b).

t, rel. units
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(Sin the first case an8=S,,= 2S,+ 1/2 in the seconidof ~ Second-order perturbation theory, we arrive at the following
such complexes is lifted if we allow for the exchange inter-€XPression for the energy of quadrupole splitting of the main

action between the total spthof the complex and the near- spectral term §, or E;):

est spins in the matrix. We start by examining the qualitative AE(§M§=A(M2§—%— 1)),

nature of the behavior of mixed-valence centers in an anti-

ferromagnet, ignoring the possible effects of renormalization 17
of the parameters of the exchange interaction between the Jf; —

spins of the mixed-valence complex and the spins of the A=25 2(z—1)J,’ S=5+%,

remaining matrix caused by the transfer ofgpelectron. _ ) _
where J, is the value of the exchange interactiody$ 0)

between the Mfi* ions in the matrix, and thd, are the

parameters of exchange between the mixed-valence center
4.2.The effec_t of the.interaction with magnetic sublattices and the spins of the Mr ions nearest to the center. The
on the behavior of mixed-valence centers convergence of the perturbation-theory series is ensured in

When (A,/A,)?|b|<|J4| holds and we can ignore the this case by the parameter las it is in the case of strongly
effects of electron transfer on a mixed-valence complex, theoupled ordinary quadrupole centers.
ground state of this complex in the molecular field of the  Note that in contrast to the earlier situation with
matrix is characterized by the projections of the total spin{A¢/A,)?|b|<|J,p|, here the dipole moment at the mixed-
Ms=1/2 orMg=—1/2 , depending at what iora(or b) the ~ valence center is zero in the ground state, in view of the
excess charge is localized. As a result, the degeneracy of tilymmetric nature of its wave function.
ground state of the mixed-valence complex is of a combined  Obviously, the type of quadrupole centers with an excess
nature, where one projectiollg of the total spin on the electron or hole considered here is always characterized by a
antiferromagnetism axis corresponds to a well-defined prohalf-integer total spa®. As a result, irrespective of the sign
jection of the electric dipole momept on they axis of the  of the quadrupole splitting parametar the ground state of
complex. Thus, we arrive at a peculiar two-level system, inthe center proves to be twofold degenerate. At present a
which direct tunneling between its states wiiMs=+1 is  number of basic features of the behavior of crystals with
impossible, so that the corresponding reorientation of such auch two-level systems are known, but they are still a topic
mixed-valence complex may be only activational. Stabiliza-of great interest in research, including research that involves
tion of these states of the two-level system may occur irhigh-T, superconducting oxides.
external fieldgelectric, magnetic, or stress figldnd in ran- The specific properties of quadrupole mixed-valence
dom crystalline fields. centers are due to the presence of orbital degeneracy in one
A characteristic feature of the two-level systems consid-of the 3d-electron configurations,d or 3d"*1. As already

ered here is the strong magnetoelectric effect that they praioted in Sec. 3, this manifests itself in a considerable contri-
duce. The interaction of such two-level system with an elecbution of such centers to the constants of magnetic crystal-
tric field E, and a magnetic fielt|M has the form lographic anisotropy and magnetostriction at low tempera-

tures. The energy of magnetic anisotro@,(M7g), of the

A== (poEy+ uggH/2) 7, (15 quadrupole centefFig. 1) can be obtained by averaging the
1 0 Hamiltonian(10) over the ground-state wave functidn, of
Tz:( . Po=lelr, the complex:
0 1 1
wheree is the electron charge, is the distance between the Ea(Ms)= Dll(ﬁ§_§) +Di('8>2<_'8>2')
Mn and F ions,ug is the Bohr magneton, angl is the gy- , ——
romagnetic ratio of the mixed-valence center. As a result, in X(Mg— S(S+1)/3), (18)

the absence of random crystalline fields, the free enErgy
the subsystem consisting bf mixed-valence centers is

3 .
DH=§K(S)D cos @, DJ_:7K(S)D sin ¢,

pOEy+/'LBH

F=—NkgT In| 2cos kaT , g

=2. (16)  whereD is the single-ion anisotropy constant of the ¥n
ion, x(S) is a reduction factor£(S)<1), and the angle is
This expression describes a magnetoelectric effect of an urielated to the wave functiow, as follows:
usual type. At temperatures exceeding the splitting energy of 37212 P \/§(x2—y2) p
the two-level system, the effect is transformed into an ordi- ¥~ > >cos§+ T> si 5
nary linear magnetoelectric effect, when the corresponding
contribution Fgy to the free energy assumes the form We see that the anisotropy ener@) is determined by
Fen~—NE/H/T. In random crystalline fields with disper- the large constard typical of Jahn—Teller ions and strongly
sionT" the effect is reduced in proportion T for T<T. depends on the effects of charge transfer at the impurity cen-
Let us now analyze the behavior of an impurity center inter. As a result, the value and sign of the corresponding ef-
an antiferromagnetic matrix when double exchange is domifects for the impurity contribution to the magnetic-anisotropy
nant in the mixed-valence complex. In this case, usingand magnetostriction may differ from those observed in
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Jahn—Teller ions, which have a fixed charge state and existhere U is the energy of the repulsion of electrons at a
in a nonzero exchange field. Note in this connection that theingle center, andby, is the transfer integral of a
anisotropy energyl8) is also a source of competing anisot- t,g-electron, responsible for the superexchange interactions
ropy in systems where impurity mixed-valence complexesdetween the Mfi* ions in the matrix and the M —O? —

have different orientation axes. Mn** pair (hereJ,JO~bS/U). What is important is that the
condition (21) is met over a broad range of values of the

4.3. Renormalization of the exchange parameters; transfer integrab’, since the potential energy differengas

enlargement of mixed-valence complexes usually much smaller than the repulsion enetgy

Note that for large negative values df (|Js |>Jg,J) it

Now let us examine the renormalization of the param- . . :
Qecomes necessary to increase the dimensions of the mag-

eters of exchange between the impurity center and the matrix~ >~ ) . . .
spins. Here we allow for the transfer of ag-electron be- netic impurity cluster without changing the radius of electron
tween the ions of the mixed-valence complex and the magl_ocahzatzlon of the eg-electr_on. Here, in the limit of
netic ions of the matrix. We also assume that the differencé®t/Ar)*[b|<|Jap|, the effective value of the total spBiof

u in the potential energies of the localization of an excesdnix€d-valence centers must increase considerably, and so
change on the first and secofttird) magnetic neighbors of does the height of the potential barrier between the states of
the F ion is much larger than the transfer integtgl be- ~ the two-level system with projectiond's= +S. As a resullt,
purity mode). Then the corresponding effective eXchangeproperties may turn out to be strongly dependent on the pres-

interactions can be described by the following Hamiltonian:@nce of agents inducing transitiofihotoinduced effec}s
In the case of mixed-valence centers of the quadrupole

, z — type, an increase in the size of the impurity complex substan-
H= 521 J5(SSs), tially increases the contribution of these complexes to the
magnetic susceptibility, specific heat, etc. Similar effects of
beS increased contribution of the impurity centers to the various
Js= 1ot B Jl_m>' (19 observables linked, however, to different causes are known
to exist in other systems, such as magnetic impurities in

S _ S strongly correlated paramagnétsand orthogonal impurity

YT 2(S¥ Sy p= 2(S+Sy)’ centers in magnetic materidls.

wherelJ; is the superexchange interaction integthl> 0) in
+ - 4+ ; ;

the MrP*—0*”—Mn*" configuration, théb; are the transfer 4 \iore complicated types of mixed valence in
parameters of aeg-electron between the ions of the com- ,qtiterromagnets
plex and matrix through the intermediate oxygen iofi O ) ] )
andz’ is the number of the nearest magnetic neighbors of the L€t us examine the more complicated centers with
mixed-valence complex. charge transfer in antiferromagnetic crystals of a cubic or

We see that the ferromagnetic interactionsb@ Ju) re- quasi-two-dimensional structure. In such substances one can
lated to the transfer of asg-electron may change not only expect the emergence of mixed-valence centers with four
the magnitude but also the sign of the paramedgrsf the 3d-ions nearest to the corresponding defect, and it is be-
exchange interaction. Here the ferromagnetic contributiondveen these ions that electron transfer occurs. Here the defect
to J, for the bonds oriented along theandy axes of the and the cations may belong to different crystallographic

mixed-valence complex diffelsee Fig. 1, thanks to the an- Planes, say, when the defect is at the vertex of a pyramid
isotropy of the transfer integrats,: (e.g., the Ca,Y,MnO, and Ng_,Ce,CuQ, compounds
) Let us discuss the Ga,Y,MnQO, system in greater de-

b= tail. Here there is transfer of agy-electron between Mt
2 ions, just as there is in the case of a complex with two
(20)  3d-ions discussed above. When the transfer integras
small (in comparison to the parameters of antiferromagnetic
1+cos( _2m exchange for Mfi" =Mn3* ions), we can assume that the
2 3 ground state of the mixed-valence complex is fourfold de-

where the prime on the transfer integrl ) implies that, in ~ 9enerate, in accordance with the number of possible posi-

contrast tob, the transfer of areg-electron occurs through tions for localizing areg-electron. Each of these four states
oxygen rather than through fluorine. For instance, forlS characterized by a specific direction of the dipole moment
[t|>]A,],|A{ (and, correspondinglyp=2m/3), the integral of tﬂe complex and a proje_ction of the tote}l complex spin
of transfer along thg axis is almost four times greater than (Ms=1/2 or —1/2, depending to which antiferromagnetic
that along thex axis. sublattice the position belongsAs a result, a kind of mag-
The ferromagneti¢resonantcontribution may dominate netoelectric effect may manifest itself in the impurity sub-
in Jy if system. This effect amounts to the following. If the
eg-electron is stabilized in one of the four positions by di-
b’ |5 |by| \ﬁ 21) recting the electric field along the diagonal of the pyramid’s
o Nu base, we have fixed the magnetic moment of the mixed-

along thex axis,

2
1+CO{ o+ ?

!

b5:_

along they axis,
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valence complex and of the entire system as a whole. Thhattices of the antiferromagnet. It can reduce the value of the
corresponding free energy of the impurity subsystem in amuadrupole splitting parameter and change the sign of that

electric fieldE and a magnetic fieltH|M is parameter.
aH Do(E, +Ey) .2. A special type of quadrupole center is the one |n
F=—NkgT In[z exr{ T )cosh kXT Y which the ground state is orbitally degenerate. The specific
B B features of the properties of such centers are related to the
ugH Po(Ex—E,) individual properties of the exchange _and _spin—orbit_ cou-
+ex;< - KT cosh KT ] (22 plings and to the presence of strong vibronic effects in the

orbitally degenerate states. We have predicted the existence
We see that in contrast to the situation examined earlier ant(a]c a rc\:;lgr;]etm ar:alo? of gh?hJ?TQ_Te”?r.; f{?Ct fofr t.;uc? (Len-
involving the Mrf* —Mn®* pair, the present magnetoelectric _I(_arﬁ' e a\(f asto tz;un a i € con rtl ution od € Ja tn_
effect is even in the electric field. eller impurities to the magnetic-anisotropy and magneto-

When strong resonant coupling is present, i.e., when thgrlctlofrlhconstants |sdefxcepf;|ontallé/'f:cargfe, butth thte \{aIL:e and
electron is moving along the plaquette of four Mnions, sign of the corresponding etiects difier from the typical ones

the energy levels of the mixed-valence complex in a stat(gOr ordinary Jahn—Te_IIer lons in magnetic CrySta.IS'. "
with spin S=4S,+1/2 are 3. We have studied a new class of magnetic impurities

that we believe to be quite broad: mixed-valence centers po-
sitioned symmetrically with respect to the sublattices of an-
tiferromagnets of different types. We have shown that the
properties of these mixed-valence centers strongly depend on
the nature of localization of excess charge. For small transfer
E(B2)=—A—b/2, (23)  integrals, twofold degeneracy of the ground states in the pro-
S STV jections |[Mg| is accompanied by dipole degeneracy with a
E(A2)=A—3b/2, Ex(E)=%A{+3b74. Jmultiplicit)|/ eim to the npumber o¥mi2ed-val2nce ion)g in the
These states of the mixed-valence center are classified aigapurity cluster. As a result, the mixed-valence centers may
cording to thel’ representations of th€,, group C=A,, give rise to strong magnetoelectric effects of an extraordi-
A,, B4, B,, and ZE) and are degenerate M in first-order  nary nature. On the other hand, in systems where resonant
perturbation theory in the molecular field of the matrix. In interactions dominate, the mixed-valence centers are de-
the same way as for ordinary quadrupole centers, the degegeribed by an effective Hamiltonian of the quadrupole type,
eracy is lifted in the second order, and the correspondingvhose ground state is twofold degenerate+ifMgf. Delo-
energy levels are described by an effective Hamiltonian otalization of the excess charge in this case leads to a situa-
type(2). The states in question have a zero dipole moment irtion in which the dipole moment of the center in the ground
the Mn—-0 plane. state vanishes. In both cases such centers with a degenerate
Usually the ground state of a mixed-valence center igground state can have an anomalously strong effect on the
orbitally nondegenerate. But in the range of valuesresonant, magnetic, and thermodynamic properties of various
b= 3 2A, the spectral terms, one of which is orbitally degen-substances. The behavior of the magnetic susceptibility char-
erate, move closer to each other. Here the Jahn—Teller stateteristic of the systems discussed above has, probably, been
E_(E) may turn out to be the lowest if we allow for the observed in the GMnO,_,F, compound®
orbitally dependent part of the exchange interaction between The authors are grateful to V. M. Loktev for useful dis-
the mixed-valence complex and the matrix. In this case theussions of problems pertaining to highsuperconducting
guadrupole center possesses the specific features discussedxides.
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Resonant microwave absorption ifBEDO-TTF),ReQ,(H,0) organic conductor single crystal

at a temperature of 1.9 K, a magnetic field of up to 70 kOe, and in the frequency band

between 30 and 120 GHz has been studied. A spectral component due to the cyclotron resonance
(CR) of two-dimensional charge carriers has been identifiedvf280 GHz andH =10

kOe. The effective mas®i(w) increases with the frequency from~0.8m; at v=80 GHz to
m~0.95m, at v=120 GHz. Measurements of the CR line position and FWHM as

functions of frequency yield an independently determined imaginary part of the memory function
M (w), which controls the dynamic magnetoconductivity, and the relaxation time

7(v=100 GHz)~2.9x10 ! s, which is more than thirty times the value of this parameter in the
low-frequency limit7(v—0). The anomalous behavior of the CR line position and FWHM

is caused by the dispersion of both real and imaginary parkd (@), which are probably due to
strong Fermi-liquid effects. €1997 American Institute of Physid§1063-776(97)01803-9

1. INTRODUCTION nant magneto-absorption spectrum in organic metals in
strong magnetic fields was determin&tThis structure is
The cyclotron resonancCR) recently detected in sev- composed of broad absorption lines due to the cyclotron
eral quasi-two-dimensional organic metafshas generated resonance on which narrower lines of various magnetic reso-
special interest in studies of microwave absorption in thes@ances are superposed, namely, the electron spin resonance
materials. The first publications on this topgee Refs. 1 and and antiferromagnetic resonance, with amplitudes smaller by
2, and references thergineported the differences between a factor of five to teri-® Thus, distinguishing CR lines from
the effective masses derived from quantum oscillations andbsorption spectra of organic metals with specific magnetic
CR curves. Cyclotron resonance yielded effective massestructures may be quite a difficult problem.
m~ (0.5—1)my, wherem, is the free electron mass, which Moreover, it is noteworthy that most CR experiments
were a factor of 2.5-3 smaller than the effective massewere conducted using organic metals of (IﬁDT-TTF)2

derived from Shubnikov—de Haas and de Haas—van AlpheyHg(SCN), family, where M=K, TI, NH,, and BEDT-TTF
measurements. This behavior led to a conclusion about bigethylenedithigtetrathiafulvalené;® the most thor-
strong Fermi-liquid effects resulting in a giant frequency-oughly investigated cases being=N&, TI,%° i.e., two-
dependent effective mass renormalizationThe dispersion  dimensional conductors characterized at helium temperatures
in the band ofv=w/27=30-120 GHz was detected in our py antiferromagnetic ordering and consequently complicated
previous work}® where we found that the effective mass magnetoabsorption spectra.
decreased with the frequency. It is remarkable that, in addi- The aim of the present work directly derives from the
tion to light masses, CR modes corresponding to massesbove description of the present status of the problem. First,
heavier than those derived from quantum oscillation meait is not clear to what extent the description of the cyclotron
surements were also detecfed. resonance in(BEDT-TTF),MHg(SCN), applies to other
From a technical standpoint, detection of magnetotwo-dimensional organic conductors. Hence, the interest in
absorption in organic metals is a very difficult problem be-studying an organic metal based on a cross-linking molecule
cause of the small dimensions of single crystals of theselifferent from BEDT-TTF and with a nonmagnetic ground
materials. The first experimenftswere performed with mo- state is obvious.
saic samples, and a technique that can be used in detecting Second, the interactions responsible for the renormaliza-
signals due to individual organic single crystals was develtion and dispersion of the effective mass should also give
oped by ud and described in detail in subsequentrise to the behavior of the relaxation timéw). This follows
publications?=® As a result, the general structure of the reso-from both the theoretical analysis of cyclotron resonance in
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interacting systenisand experimental data on heavy-fermion
system$ The shape of CR lines in organic metals, however,
has not been analyzed, and the issue of the correspondence
between relaxation times in the high- and low-frequency ex- -
periments has not been addressed.

118 GHz
1.9 K

2. EXPERIMENTAL TECHNIQUES AND SAMPLES r

Experiments were carried out usin(BEDO-TTP),
ReQ,(H,0) single crystals, where BEDO-TTF is leathyl-
endioxytetrithiafulvalene. Compared to (BEDT
-TTF),MHg(SCN),, both the basic molecule forming the
conducting plane and the anion have different chemical com-
positions. The physical and structural propertiesREDO-
TTF),ReQ,(H,0) have been studied in detdil!? It is
known that the structure of this organic metal is similar to
those of compounds based on BEDT-TTF, and its conduc-
tivity has a pronounced anisotropy. :p,:pp~1:3:1000 at
T=300 K°*2 wherea and c are the crystal axes in the |
conducting plane, and thb axis is perpendicular to the . . )
ac-plane. The quasi-two-dimensional nature of its conduc- 10 20 30 40 H, kOe
tivity at helium temperatures is confirmed by transport mea-
surements, and studies of Shubnikov—de Haas oscillationsG. 1. Bolometer signal as a function of magnetic figtt: experimental
yield the effective masse®=0.9m, and m=1.15m; (Ref.  cell with the (BEDO-TTF),ReQ,(H,0) sample;(2) empty cell. The arrow
10), corresponding to different sections of the Fermi surface!ndicates the ESR peak correspondinggte2.

Temperature§ <3 K correspond to the onset of the super-

conducting transition in(BEDO-TTF),ReQ,(H,0), which

ends atT=2.4 K (Ref. 10. Therefore, in contrast to At first glance, the factof(Z.,Z,) makes the analysis of
(BEDT-TTF), MHg(SCN), with M=K, TI, it seems that the the absorption line shape more difficult. The cell configura-
ground state of BEDO-TTPH,ReQ,(H,0) is not magneti- tion, however, can be selected so thig¥.,Z,) is a weak
cally ordered forT<2-3 K, although a possible antiferro- function of the magnetic field, and we can take
magnetic structure like a spin-density wave at higher temf(Z.,Zo)~const near a resonance if its line is sufficiently
peratures (3 K=T=<35 K) has been discussed in narrow. This was the case in our experimental device.
literature®-12 The experiments were performed in a magnetic field

The (BEDO-TTP,ReQ,(H,0) single crystals studied in H=70 kOe at a temperatuiie=1.9 K. The applied magnetic
our experiments had typical dimensions of<x2x0.05 field and the Poynting vector of the microwave field were
mm. The technique of measuring microwave absorption innormal to the conducting plane in which two-dimensional
small metallic samples was described in detail in our previcurrent carriers moved. Assuming that at this temperature for
ous publication4-® The underlying idea of the method is to H=0 the sample was in the superconducting state, we ana-
compare the microwave powd?(H) absorbed at a fixed lyze in this paper the absorption fét>10 kOe, when the
microwave frequency = const when the cell in the experi- superconducting state was surely destrdy¥dand the
mental device is empty and when it contains a sample.  sample was a normal metal. The circuit stabilizing the bo-

As in previous experiments? radiation was detected by lometer temperatureallowed us to record features in the
a small carbon bolometer placed close to a sample. Microabsorbed microwave poweP(H) down to the level
waves of the 30—-120-GHz band were generated by a set @iP(H)/P(0)~5X 107%. In order to rule out effects of
backward-wave oscillators with a frequency stability Sample overheating, we performed calibration experiments at
Av/iv~10"* and were fed to the experimental cell via a several microwave powers.
waveguide. Typical experimental curves of the signal detected by the

The theoretical analy$is® has demonstrated that the bolometer as a function of magnetic field,(H), for the
power absorption due to the sample is determined by thease of the empty cell and the cell with the sample are shown
sample impedancg, and the functiorf(Z;,Z,) which de- in Fig. 1 (curvesl and 2, respectively. They demonstrate
scribes the change in the reflectivity caused by introducinghat introduction of the sample into the cell leads to an ad-
the sample into the cell: ditional broad absorption maximum connected with the or-

ganic metal[here we take into account that, owing to the

OP~1(Z¢.Z0)/ RE[Z,}, negative slope of the bolometer characteristic,
whereZ, andZ, are the impedances of the waveguide andP(H)~ —U,,(H)]. The difference between curv@sand 1
empty cell, respectively. Sincg, depends on the bolometer yields a function proportional téP(H).
resistance, which is a function of magnetic field, the absorp- The shape of theSP(H) curve in an organic metal is
tion resonances due to the sample are superposed on a monetermined by the superposition of broad maxifialue to
tonic signalP(H). the CR and narrower resonances due to the spin degrees of

rel. uni
Ubol, el. units
T
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freedom. The curves in Fig. 1 conform to this assumption. . .
Specifically, a narrow ESR line of a smaller amplitude cor-
responding to they-factor g=~2 (the arrow and dotted line

in Fig. 1) can be seen superposed on a broad absorption
maximum.  Note that, unlike the case of
(BEDT-TTF),MHg(SCN),,*® no additional magnetic reso-
nances have been detected (BEDO-TTH,ReQ,(H,0).
This result is in agreement with the d&t¥ indicating that

118 GHz

(BEDO-TTH,ReQ,(H,0) is not magnetically ordered at lig- §
uid helium temperatures. In view of this, the question of 5
magnetic spin-density-wave ordering in this mat&fis] § 100 GHz

seems controversial and calls for further investigation.
Note that, because of the thinness 50 um) of the

(BEDO-TTF),ReQ,(H,0O) crystal (in earlier experiments
0.1-0.3 mm samples were ugedot all the radiation was
absorbed in the sample, and the fraction of microwave trans-
mitted through the sample excited ESR in the bolometer
(Fig. 1, curve?2). Although the amplitude of this signal is
lower than in the case of the cell with the meaig. 1, curve

1), the contributions due to the sample and experimental cell
to the ESR are comparable, which makes the quantitative
analysis of the absorption around the ESR difficult. There-

. L . . FIG. 2. Magnetoabsorption i(BEDO-TTFH,Re(,(H,0) due to the cyclo-
fore this study is limited to the main broad maximum on thetron resonance at=1.9 K for various microwave frequencies. Experimen-

magnetoabsorption curig(H) (Fig. 1). tal data are plotted by circles, and the best Lorentzian approximations by
In order to test whether the maximum on fR¢gH) curve  solid lines.

is really due to the CR of two-dimensional carriers, we per-

formed measurements in the configuration where the field . .

was directed at an angtewith respect to the sample normal. cally, under the'condltlons for cyglotron resonance in a nor-

In this case the absorption maximuiFig. 1) was shifted to mal metal, carriers move in a highly nonnuniform micro-

higher magnetic fields by a factor cds, which confirmed wave field concentrated in the skin layer, so the magneto-

our interpretation of the absorption maximum as a CRabsorption curvep(H) is a superposition of a set of peaks

peak due to two-dimensional carriers (BEDO-TTF), corresponding to multiple frequenci&sin an organic metal

ReQ(H,0), because in this case the effective component 0§tudied using this experimental geometry, in which the mag-
the dc mag;netic field i8] =H cosa netic field H and the Poynting vector are directed perpen-
J__ .

dicular to the conducting plane, the microwave electric field
also drops with increasing depth, but since the electron mo-

10 40  H KkOe

3. CYCLOTRON RESONANCE IN (BEDO-TTF),REQ,(H,0)

The technique described in the previous section was H
used to distinguish the CR signal at different microwave fre-
guencies. The result is given in Fig. 2. The absorption maxi- 40t
mum was detected at frequencies 80 GHz. The experi-
mental curves of §P(H) can be approximated by
Lorentzians,

kQe AH, kOe

res®

Pra{AH)? 35
A(H—H, 92+ (AH)Z" @)

where H . is the position of the absorption peak with the
amplitude Pyhax, AH is the FWHM of the resonant curve 30F
[open circles in Fig. 2 show experimental data, and the solid
curves are best fits to Eq1l)]. The parameter# s and
AH corresponding to the curves in Fig. 2 are plotted in Fig.
3 as functions of microwave frequency. The uncertainty of 25t
the nonlinear approximation procedure using @9 .is about
5% for H,.sand about 15% foAH. It is remarkable that the
function H,{v) is nonlinear, and the nonlinear function . Y L
AH(v) has a minimum around~ 100 GHz(Fig. 3. 80 % 100 110 120

In analyzing the CR iBEDO-TTF),ReQ,(H,0), one %, GHz
should bear in mind that the case of an organic conductor ijg. 3. (1) Peak positions and2) FWHM of the CR line in
essentially different from that of a normal me‘iaf.Specifi— (BEDO-TTPH,ReQ,(H,0) as functions of frequency.

SP(H)=
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tion is two-dimensional, the microwave amplitude in each

. ) : . Im{M(»)}, GH /
plane is constant, whereas the motion along the field ampli- mi f(,vc);} z e’

tude gradient is practically nonexistent because the transport ] () ﬂ
in the direction perpendicular to the layers is negligible. In 2281071 0
this cas&® we have Z, « 1/o(w,H) and SP(H) o 1 ;410
o« Re{o(w,H)}, whereo(w,H) is the sample conductivity. 1
Thus, the process of microwave absorption in an organic 18 no"z-E
conductor resembles the case of a semiconductor, in which 161 ; 109
SP(H) = Re{o,(wH)} also holds.

Another essential feature of the process is that the 14F
Drude—Lorentz model fos-(w,H), generally speaking, does 12'_ 108
not apply to the case of CR in a system with strong interac- I b
tion, and the following function should be uséd: or ‘_2 lo7

en ifo—w.+M'(0)]+M"(w 8r
ol )=y [w[—w v '(w(>]2)]+[w((w>)]2' @ -
¢ or e Jos

M’'= RegM(w)}, M"= Im{M(w)}, (2a) 4k 0

wherew.=eH/mc is the cyclotron frequencyy is the car- 7 0.5

n 1 " i i
rier density, andVl () is the memory function, which takes % 100 1o GH;2°
into account interactions in the systém. '
H ! 4
Assuming tha (a)) andM ((u) vary S”(_)le near the FIG. 4. (1) Effective mass an¢R) imaginary part of the memory function as
resonance, one can transform E2).to a quasi-Drude forf  functions of the microwave frequency f6BEDO-TTF),ReQ,(H,0). The

and obtain insert shows the relaxation time v) derived from the experimental data.
6Px Reo(w,H)

_ ez_n M"(wg) 3 may decrease as a function of the frequency, i.e., in the case
= oM (oD ldee— o2 M w2 P of (BEDO-TTR,ReQ(H,0) the function m(w) may be
nonmonotonic. It is also remarkable that, although the func-

whereas the resonance condition takes the form tion AH(») has a minimum (Fig. 3, the function
eH,od @) M”(v)=Im{M(v)} increases monotonically with frequency
OO =) (4)  and has no singularities in the frequency band studied.
Our analysis indicates that Eq®)—(6) can be applied to
M’ (w) the cyclotron resonance (BEDO-TTH,ReQ,(H,0) at fre-
m(w)=m| 1+ } (5)  quencies ranging between 80 and 120 GRgs. 2—4. One

can easily derive an expression for the relaxation time in the
and generalized Drude—Lorentz model with frequency-dependent
e AH(0)® Hofw) effective mass and relaxation time®

M (@)= 5cm Hedw) do © _[1+dM'(0)/dw]  Hies

7(v)= - = .

Using Egs.(4) and (6), we have derivedm(v) and M"(w) mvAH
M"”(v) from the experimental data plotted in Fig(see Fig. It follows from Eq. (7) that, in the generalized Drude—
4). In order to calculat&yH ./ dw, we approximated the ex- Lorentz model, both the real and imaginary partdvbfw)
perimental data by a polynomigéhe solid line in Fig. 3, and  contribute to the dispersion of. As a result, even if
in subsequent calculations used the derivative of the approxM’(w) andM”(w) are smooth functioné-ig. 4), the curve
mating function. In calculatingM”(») we used the value of 7(v) may be nonmonotonic. The calculations according to
m=0.9m,. Eq. (7) based on the data plotted in Fig. 3 are given in the

Since the functionH 4 ») is nonlinear, the effective insert to Fig. 4. The experimental values «{fv) are about
mass depends on the frequency and, unlike the earliek0 !'s, and the maximum relaxation time=2.9x10 11 s
resultst~® m(v) increases with the frequend¥ig. 4), but  occurs atv~100 GHz.
rather then decreasing as in the case BEDT Now let us compare the results of this work to the values
-TTF),MHg(SCN),. Note that the observed values of the corresponding tow=0 derived from Shubnikov—de Haas
effective mass range between @gand 0.95n,, i.e., they oscillations:®~1? Earlier we have noted the difference be-
are close to the value m{(=0.9m, derived from tween the effective masses. As for the relaxation times, the
Shubnikov—de Haas oscillations. But for-80 GHz the ex-  Dingle temperature yields(0)=0.9x 10 *? s1° Thus the
perimental curve om(») shows a tendency to saturation at a difference between the relaxation times at low and high fre-
level m(») <m. Summarizing the results of the present work quencies is also consideralikee the insert to Fig.)4and in
and other publication®*2we therefore conclude that at mi- the case of the relaxation time, the renormalization is much
crowave frequencies lower than 80 GHz the effective masfarger than that of the effective mass the frequency range

@)
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The permittivity of monoclinic Tag a quasi-one-dimensional conductor with an incommensurate
charge density waveCDW), as a function of frequency and temperature has been studied.

At low temperatures and at frequencies below 1 MHz, the temperature dependence of the real part
of the permittivity shows a maximum shift to lower temperatures with decreasing frequency.

The temperature dependence of the relaxation time consists of two branches corresponding to
macroscopic regions of CDWSs with long and short relaxation timea the microscopic

scale. With decreasing temperature, the growthr &r large CDW regions is faster than thermal
activation and shows a tendency to diverge at a finite temperature while the growth of

due to the relaxation on the microscopic scale is slower than the activation rate. Our results show
that with decreasing temperature timeTaS; quasi-one-dimensional conductor goes over to

a glasslike state due to the strong pinning of CDWs by randomly distributed impurities and the
formation of mutually interacting solitary CDW collective excitations. 1©97 American

Institute of Physicg.S1063-776(97)01903-3

1. INTRODUCTION 2. EXPERIMENTAL RESULTS

We have investigated four samples of monoclinic FaS

the evidence that a maximugaingularity) exists on the tem- with cross sections of 1010 ° cn¥ and a.Iength of 1-2 :
. ) _ mm. The samples were placed on a sapphire substrate. Their

perat.ure dependgnce Of_ the r_eal pelitT) of the dielectric electrical contacts were made of silver paste or vacuum
function of q.ua5|-0ne—d|men5|onal condgctors measured %eposition of indium strips on the samples after thermal
low frequencies between 18 and 16 Hz in the low tem-  treating’ The contacts fabricated in vacuum had lower resis-
perature range. A model ascribing this maximum to an intances, and were stable during thermocycling. In this paper,
crease of the coherence length and relaxation times of CDWge present data for thev4 sample, which had dimensions
in this temperature range and a transition to a “frozen” 1200x10xX2.5 um, a room-temperature resistance of
glasslike state has been propodéd.hese effects have been 144 Q, and contacts fabricated in vacuum. Similar results
found in two materials with CDWs, namely in the blue have been obtained with other samples.

Recently several papers have been publiSiestating

bronze K MoO;1? and orthorhombic Tas®* where the We have measured the dc conductiv@y, and current—
CDW of one type is incommensurate with the initial crystal voltage curves(IVC) of m-Ta$; in the temperature range
lattice near the Peierls transition temperatiige from 30 to 300 K. The real part R& and the imaginary part

The CDW wave vector in these materials is temperaturelm G of the ac conductivity at frequencies betweer B
dependent, and its value approaches four-fold commensur@nd 16 Hz were measured over a wide temperature range
bility with decreasing temperatufé.n this connection, the Petween room and liquid helium temperature. The measure-
guestion arises as to whether the observed features gpents .Of the conductivity were made using an HP 4192A
&'(T) are typical of only such quasi-one-dimensional Con_vector impedance analyzer under computer control. At low

. . . temperatures, when the sample resistance was greater than 1
ductors where, in particular, the maximum ©f(T) can be P b 9

. . MQ, we used a special preamplifier in order to enhance the
attributed to a transition to the commensurate CDW. In Ordegensitivity at frequencies below 461z* The ac voltage ap-

to test whether the divergence éri(T) at low temperatures plied to the sample was 5—10 mV, which corresponds to less
is a fundamental phenomenon deriving from basic physicaghan one-tenth of the minimum threshold fi&lg throughout
principles, we have measured at low temperatures the pefhe studied temperature range. As follows from our data and
mittivity of monoclinic Ta§, a quasi-one-dimensional con- other publicationd;®° the conductivity was independent of
ductor in which two CDWs occur with wave vectags and  such field amplitudes, i.e., our experiments were performed
0., independent of temperature and never approaching conin the linear regime, and we measured the conductivity of the
mensurability as the temperature decredses. CDW ground state.
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narrow-band generation begitfsBut at temperatures below
100 K, simultaneously with the continuing growth &

(Fig. 1), a small nonlinear contribution emerges on the IVC
linear section beginning with the threshold fietd below
E.'MFigure 1 shows as a function of temperature. One
can see that below 100 K the threshold voltage of this non-
linearity decreases with decreasing temperature, approaches
a minimum, its value at the minimum being close to the
minimum E; at T=149 K, and after that shows a nonlinear
growth.

Simultaneously withG,. and IVC, we measured the
complex ac conductivityG(w) at fixed temperatures be-
tween 4.2 and 300 K. From these data we derived the per-
mittivity using standard relations: the real part of the permit-
tivity is &’(w)= Imo(w)/w, and the imaginary part is
&"(w)=[ Reo(w)— o4)/w, whereo denotes conductivity.

Figure 1 shows a plot of’(T) measured at the frequency
FIG. 1. Temperature dependence of threshold field and permittivity: stars— = w/27r= 10 kHz in the temperature range of 4.2 to 160 K.
threshold fieldE+ for the first CDW; circles and diamonds—threshold figl(_iS One can see that it has two clearly defined maxima. One of
E; and E; for the second CDW; squares—real part of the permittivity these is near the Peierls transition temperaTlér,eNhere the
£'/2x 10 at a frequency of 10 kHz. .
second CDW emerges. In the temperature range below this
maximum, e’ drops monotonically and, according to previ-
ously reported measurements at frequentied0 MHz, this
It follows from our measurements that the temperaturejrop should extend to very low temperatuté©ur measure-
dependence of the dc conductiviBy in our samples has a ments at low frequencies, however, show that fer1 MHz
form typical ofm-TaS; with two sharp drops in the conduc- 5 clear maximum can be seenTat 80 K superposed on this
tivity ¢'?lt T,=240 K and T,=160 K corresponding t0  monotonic  decrease ine’(T). Comparing the curves
formation of two CDWs with wave vectors E+(T), EXT), ande’(T) in Fig. 1, one can see a certain
q.=(0a*, 0.25%%, 0c*) for T<T; and q2=((1/2)a*,  cqrrelation among them. The maxima of(T) occur near
0.24%*, (1/2)c*) for T<T,0 In the temperature range o temperatures wher; and E; have minima. Similar
between 100 and 160 K, the function 1@(1/T) is almost  o¢ro0ts \vere observed in other quasi-one-dimensional
linear and characterized by the activation enefgy 900 — .qqq,ctordS The data plotted in Fig. 1 were taken from the
K. N The I.VCS qf m-Ta% samples had forms typical of m-TaS; sample with a relatively low room-temperature re-
quasi-one-dimensional conductors with CDWsAt tem- sistance Ry=144()); therefore our device could not accu-

peratures above the first Peierls transitibpy the IVCs of .
; . S rately measure InG nearT; at such low frequencies be-
our samples were linear in electric fields of up to about 5 . :
! .. “cause of inadequate resolution. Measurements ofnti3e
V/cm, with subsequent smooth growth of the conductivity .
: sample withRy~10°) at a frequency of 1 MHz, however,
proportional to the second power of the current due to

heating effect. At temperatures beldwy, a large nonlinear- Taxeﬂ%egons:;ateld Tthat there 'Sd a(;sot afmaX|mum fnfar
ity develops on the IVC at values as low a3 V/cm. The 1 on thes'(T) curve recorded at a frequency o

pulsed measurements eliminated sample heating, showi Hz.

that the nonlinearity is not due to the thermal effects, but to  F19ure 2 shows the'(T) curves neaiT, measured at
the beginning of CDW motion as a wholgFigure 1 shows several frequencies between 1 kHz and 1 MHz. As can be

the threshold fieldE; as a function of temperature. In the S€€N from Fig. 2, the amplitudes of these peaks increase as
range of the first CDW160-240 K, E; has a minimum at the frequency decrgases, but their position remains constant
T=200 K, then grows with decreasing temperature and ret® Wlthln the expenmental accuracy. This result is in quali-
mains relatively high, which is typical ofn-TaS.!% It is  tative agreement with the behavior of th&(T) curve near
known that after formation of the second CDW<{ 160 K),  the Peierls transition in orthorhombic TaS NbSe,'” and
the bulk of the nonlinear conductivity is associated with it. (NDS®)10d.*® Figure 3 shows the:'(T) curves near the
The threshold field decreases in several times, although it§W-temperature maximum at frequencies between 700 Hz
temperature dependence is qualitatively similar: it drops afteend 1 MHz. The growth of the peak with decreasing fre-
the transition througf,, has a minimum, and at lower tem- quency is considerably larger than négr. But it is more
peratures increases exponentially aB(T)=E;(0) important that the peak position depends strongly on the fre-
X exp(—T/T), whereT,=25 K quency, in contrast to the region néay. The location of the

In the temperature range between 100 and 160 K, thgeak shifts to lower temperatures as the frequency decreases.
threshold fieldE; is clearly defined because the CDW at That is, in this quasi-one-dimensional conductor, as in other
E<E; is immobile, and the IVC is linear, whereas at materials of this kind, such as;gMoO; (Ref. 12 and ortho-
E>E the CDW is driven by the electric field, the IVC is rhombic Ta$,3* the functione’(T) shows a tendency to
quite nonlinear, which is seen most clearlyrTaS;, and  diverge with a specific frequency dependence, which is typi-
F. Ya. Nad’ and P. Monceau 546
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FIG. 4. Real parG of the conductivity versus frequency measured at the
FIG. 2. Real part’ of the permittivity versus temperature around the sec- gifferent temperatures indicated at the curves.
ond Peierls transition measured at different frequencies: squares—10;
triangles—100; diamonds—300; stars—1000 kHz.

eral case, of many systems with a certain degree of disorder
. : __in which the hopping conductivity dominat&s.
cal of many disordered systems which go over to a glasslike Th o6 | f lculating the dissi
state at low temperaturd&2! ‘The parameteB, is necessary for calculating the dissi-

) pative part of the dielectric permittivity” using the relation

fixe;—?:mregagu?:soa{st:\?ui?:zgzccﬂ‘vflrtg, Li?é.mi‘;’l?;;?gn_at given above. If the transition db(w) to the constant value
P 4 0. G is observed within the measured frequency range, the

lar to those measured in other quasi-one-dimensional con- _ . L
. ) ~'maximum on the:” curve should also be located within
ductors with CDW<:* In the frequency range under investi- ()

gation, the low-frequency region is achieved at '[emperatureg;his frequency range. This can be seen from Fig. 5, which
above 50 K in which ReG becomes independent of the hows thes”(w) curves measured at fixed temperatures be-

A, tween 50 and 100 K. For temperatuies 50 K, the maxima
frequency, i.e., it equal&,.. But at lower temperatures, Re on thes”(w) curves are in the frequency range below? 10
G varies with the frequency in this region, and it should 9 y g

. Hz, and we can see only the tails of these curves. For
approachGy, at even lower frequenciésAt low tempera- y

; >50 K, most of thes"(w) curve (which is also called the
tures between 4.2 and 40 K, the observed behavior . :
G(w) is well approximated by the functioB(w) = o, Yoss function are in the measured frequency band. The

wherea~ 0.8, which is typical of low-temperature states of maximum on thee"(w) curve shifts to higher frequencies

. ) . . with increasing temperature, and Bt 100 K it approaches
quasi-one-dimensional conductér&, and in the more gen- the edge of the frequency range in question.

Figure 5 shows the"”(w) curves at different tempera-
) tures and, as will be shown below, the values6fw) are
-6 considerably different from theoretical predictions obtained

107
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FIG. 3. Real part of the dielectric permittiviy’ versus temperature in the
low-temperature range measured at different frequencies: crosses—0.7;
circles—1; squares—3; squares with crosses—10; diagonal crosses—3B|G. 5. Imaginary part of the dielectric permittivity’ versus frequency
triangles—100; diamonds—300; stars—1000 kHz. measured at the different temperatures indicated at the curves.
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under the assumption of simple Debye relaxation with a e
single relaxation timery.?* The &”(w) and &’(w) curves
obtained at low temperatures are similar to those observed in
a wide range of disordered materials, including various
glasseg? In these materials the relaxation of excitations is
found to be nonexponential with an wide distribution of re-
laxation times. This relaxation is described by various phe-
nomenological equations, which were generalized in the
theory of dielectric relaxation in polymefs:

€07 €HF

e(w)=eppt [T Gwnt P’ (1

107 L R .
3 4 s 6

wheree e corresponds to the high-frequency linsit(w) at

0> wg (0= 751), gg Is the low-frequency limit ot ' (w) at 10 10 10 f.Hz 10

w<wg, and« and B characterize the width and asymmetry

of the relaxation time distribution. According to Ed.), the  FIG. 6. Real part of the permittivity’ as a function of frequency at differ-
relationship betweer” and ¢’ is similar to the familiar  ent temperatures: filled squares—4; diamonds—10; squares with crosses—
Cole—Cole relation described by an asvmmetrical arc of 6?[0; triangles—30; stars—40; filled circles—50; circles with slash—60;
circle?* The point where the h)i/gh freq{Jency part of the empty circles—70; squares with dots—80; circles with crosses—90 K.
e"(e") curve crosses the”=0 axis defines the high- . .
frequency parameter,;-, and the intersection with the low- of fundamental properties of condensed matter. This method
frequency part definess,. Our plots of the function IS equally applicable to electronic condensed states such as a
" (') have demonstrated that,- can be determined us- CDW in quasi-one-dimensional conductors.

ing measurements in this frequency range with sufficient ac- _ The results described above, in particular those plotted
curacy. By determining this parameter at different temperaln Fig. 1, demonstrate that the temperature dependence of the
tures and subtracting it from measurements ‘qfw), we can ~ conductivity, threshold fieldr, and permittivity are inter-
obtain the low-frequency component of the dielectric re-élated. The decreases in the conductivity néarand T,
sponse more accurately because the dielectric response, ag¥gere the appropriate CDWs develope, correspond to de-
well known, can include contributions from different sub- creases in the threshold field and, as follows from our mea-
systems, such as the lattice, free electrons, etc. Figure $irements, maxima on the CurveSsd(T).. The amplitudes
shows a plot o’ — &/, as a function of frequencgn Fig. 3 Of the peaks on the curves of the permittivity(T) depend

and hereinafter this difference is denotedsas Throughout ~Weakly on the frequency, but their positions on the tempera-
the temperature range studied, the measufgdvas signifi-  furé axis do not change with the frequency. Th|§1r31ay be
cantly smaller thar ' . As can be seen from Fig. 6, log—log caused by the small relaxation ting of CDWs (=10""s)

plots of ¢'(w) at different temperatures are qualitatively ngar_the Pgerls transmoﬁ%l.eg the response to the ac elec-
similar and can be brought to coincidence by shifting thendric field with a frequency>10" Hz weak!y depends on the
along the logw and log &’ axes*?* In the temperature frequency. The temperatures beldw, which correspond to
range between 4.2 and 50 K, these curves shift upwards wit1€ &' (T) maximum and=(T) minimum, are close to each
the temperature, and in the range between 50 and 100 K théfher. Howeverg’ in this range is a steeper function of
move downwards. These curves can be roughly approxitemperature thaky, and as a result, the produetEyr de-
mated by two parts with different slopes: a smaller slope aPends on the temperature. In the temperature range below
lower frequencies;’ (w) « o~ ™, wheremincreases from0.1  T1 (80-120 K, the correlation between the increase in
to 0.25 as the temperature decreases, and a larger slopefat(T) and decrease in'(T) is stronger, and their product
higher frequencies;’ (w) * ", wheren changes between changes little. It is known that the produstEy is also a

0.5 and 0.7. The region of the crossover between these twaeak function of temperature below the Peierls transition
parts shifts to higher frequencies with increasing temperalemperature in other quasi-one-dimensional conducfors.
ture. Figure 5 shows that the curvese§{ w) are also similar The interpretation of this fact is based on the assumption that
to each other in the log—log plots and can be brought tghe force needed to shift the CDW as a whole, i.e., tq over-
coincidence by shifting them along both aXéé Moreover, ~cOme the threshold, and the field needed to polarize the
Figs. 5 and 6 indicate that the high-frequency parts of th&DW are proportional to one another, which is in agreement

¢'(w) ande”(w) curves are similar and can be described byWith the concept of an elastic CDW with a fairly large co-
the formula herence lengtt.y, whose motion is blocked by a collective

action of impurities within its coherence length. This case

n

g'~g"oxw™ ", corresponds to pinning of weak CDWs and has been treated
in some theoretical papet$?’ This means that an elastic,
3. DISCUSSION weakly pinned CDW is a typical state in the region near the
Peierls transition.
Measurement of the permittivity as a function of tem- The number of electron—hole pairs excited across the

perature and frequency is a widely used technique in studieBeierls gapA drops exponentially with decreasing tempera-
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ture, and the screening length increases accordingly. ThigsmperatureT,=160 K in this region of temperatures
leads to an increase in the local interaction between thé=50 K), there is a local minimum of the threshold field
CDW and strong pinning centers, hence a gradual transitio&, which also indicates the possibility of extension of re-
from the weak, collective pinning to strong pinnifig?32°in  gions with coherent states of collective excitations, because
the case of strong pinning, the coherence of CDWs extendeir motion leads to the initial, weak departure of IVC from
only over a distancé; <L, between impurity centers. This a linear curvé'214|n this temperature range, the change in
is probably the reason for the drop &1 with decreasing &' is larger than irEZ(T), and the product’E+ is no longer
temperature inm-TaS and other quasi-one-dimensional constant, and it is considerably smaller than neaKat ap-
conductors. Additional evidence in favor of the increase in proximately the same minimum values Bf andE}). The
pinning force and decrease in coherence length at low temamplitudes of the peaks on thé(T) curve and their posi-
peratures is the exponential growth of the threshold fieldions are steeper functions of the frequency than rear
E (Fig. 1), the decrease in the nonlinear contribution to the(Fig. 2). This difference indicates that the physical causes for
conductivity, etc3 the maxima one’(T) curves in the low-temperature range
In our m-TaS; samples below 80 K, the CDW interacts, may be different. This type of ground state and its behavior
in effect, locally with simple impurity centres. The onset of at a variable temperature resemble the ground state and do-
its coherent motion as a whole demands high electric fieldamain growth near transitions to a glassy state in many mate-
In a weak field it is practically immobile, and its response torials with a certain degree of disorder, such as spin glasses,
a weak ac field can probably be accounted for in terms obrientational glasses, et¢:%!
deformations of local CDW regions localized near impuri- Simultaneously with the growth of the siteof the co-
ties. As follows from some theoretiéd™! and herence region, their relaxation time also increasesras
experimentat** studies, it is most probable that deformed o« exp L.3*We measured’ at low but finite frequencies; for
regions of a CDW near impurities correspond either to topo2f> 71, the CDW did not have enough time to respond to
logical solitons with phase shifts af 27 and charges of the field at this frequency, so that delay effects and a de-
+ 2e, or dipole solitons with zero charge. It seems that mostrease ire’ were detected. This dynamic effect, also named
of the change in the CDW phase takes place over a length @fs “slowing-down behavior,” is responsible for the maxi-
about ten lattice constants near an impurity. Soliton tailsmum on thee’(T) curve. At temperatures below the maxi-
however, may extend over considerably longer distancesnum ofe’(T), the relaxation time is so large that the CDW
Such collective excitations, involving several electrons ands frozen in a glasslike state. Assuming that the maximum
similar to polarons, have effective masses larger than the fregoint satisfies the conditiom=1/2#f, we can derive from
electron masé’ In our opinion, these collective CDW exci- the functione’ (T,w) the characteristic relaxation timé of
tations determine the kinetic properties of the CDW grounda CDW at low temperatures*
state at low temperatures. The dc conductiv@y;, is con- Figure 7 shows the characteristic relaxation tirieas a
trolled by the hopping of such collective excitations amongfunction of the reciprocal temperature, which, probably,
randomly distributed impurities. In accordance with the hop-characterizes relaxation of the largest and slowest CDW re-
ping conductivity mechanism, its temperature dependence igions, i.e., it describes so-calledrelaxation*?* The curve

described as follow$' 4 of log 7 = 7o(1/T) plotted in Fig. 7 cannot be described by
o a pure activation mechanisfwhich suggests a linear func-
Gy exp(—T/To) ™" tion of 1/T), but curves downward, i.e., demonstrates a ten-

dency to divergence. According to the dynamic scaling hy-
pothesis, which provides an adequate description of many
disordered materials near a transition to a glassy $taté,
ﬁuch a dependence should be described by the equation

As can be seen from Fig. 4, im-TaS;, as in other quasi-
one-dimensional conductors, we ha@w) « w®, where
«~0.8, which is typical of the hopping conductivity?
Measurements of the optical absorption due to states withi
the Peierls gap also indicate the presence of collective exci- 7 =71o(1—T./T) ?".
tations resulting in localized electron stafés? Our experimental data can be approximated by this equation
It is natural to assume that the response of a pinnegyith r,~10"!s, T,=36 K, andzy=13 (Fig. 7).
CDW to a weak electric f|3|d, described in terms of the per- Figure 7 also shows the dependenge'r): ((Up)_l de-
mittivity, is also determined mainly by these collective rived from the frequency, corresponding to the maximum
eXCitati0n§'4 The number of collective excitations at low of the dissipative part of the permitt|V|ty versus frequency,
temperatures should probably be determined largely by thg”(4) (Fig. 5). In the temperature range above 70 K the
concentration of pinning centers for CDWs and be a flatcurves of 7* (1/T) and 7o(1IT) are close, which should be
function of the temperature. But because the CDW becomegye when the process is characterized by a single relaxation
more rigid and cooperative interaction among collective eXtime, or the distribution of relaxation times is narrow. In this
citations increases with decreaSing temperature, there is t@mperature range, both curves tend asymptotica"y to an ac-
tendency to ordering in their distributions and to extension ofjyation curve defined by~ 7, exp(~A/T) with A=900 K,
regions with a certain alignment of microdipoles, i.e., to anwhich corresponds to the gapiim-TaS; obtained from mea-
enhancement of coherence regions of collectivesyrements of its conductivity versus temperature. This, ap-
eXCitati0n§'34 The pel’mlttIVIty should also increase, which parentiy’ means that in this temperature range the CDW re-
is observed imm-Ta$ (Figs. 1 and Band in other similar  |axation is largely determined by single electron—hole pairs
materials. Figure 1 shows that, as near the Peierls transitiogkcited across the Peierls gap. One of these relaxation
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s branches of the temperature dependence of the relaxation
time deviating upwards and downwards from the activation
o curve is a sign of broadening of the relaxation time distribu-
107°F o tion at low temperatures and, accordingly, of the energy dis-

i i . tributions of barrier heights to be overcome in the process of
[ & e relaxation. It is also possible, naturally, to determine an av-
105k S erage relaxation time, whose temperature dependence would
3 e be close to that described by the Arrhenius law and would lie
between the two branches shown in Fig. 7.

Thus, as can be seen from the above data, in monoclinic
TaS;, as in other quasi-one-dimensional conductors, several
effects are observed with decreasing temperature which are
,0-7’ , ) , . ) characteristic of a transition to a glasslike state. The experi-

1 12 14 16 18 2 mental data are satisfactorily described in terms of the dy-
100/T, K~ namic scaling hypothesisand the approximate model of the
ground state in the form of a CDW and its collective soliton-
FIG. 7. Characteristic relaxation time as a function of temperature. Thdike excitations at low temperaturé’é’.zg'?’o’?’SAs was noted
parameterr, (circles wi_th Crossess de_rived from the peak pos_it_ions on the above, there are two CDWSs im-TaS; and, according to
e"(w,T) curves. The time™ (squaresis derived from the positions of the earlier result€ their wave vectors are independent of tem-
peaks on the'(w,T) curves. ! _
perature and do not approach values corresponding to a com-
mensurate CDW. From this it follows that the transition to a

mechanisms of local CDW deformation can be a thermall;plassnke state described in the paper is directly related nei-
activated phase slip with dephasing between the two parts 6¥;etrhto the preserlce nor ai)sen(;e of i_tempfe rt'atur(e;g\e/\r/) etndence
the wave in a small region which go over to the normal statd' € wave tvec (;r't norTﬁ a trans_lt_lon 0 ¢ © ©a
for a short time and through which the energy is dissipated. COMmensurate  state. - ihe ftransition of a quasi-one-
As can be seen from Fig. 7, thef (L/T) and 7,(1/T) dimensional conductor with CDWs to a glasslike state seems

curves differ at temperatures below70 K. The 7* (1/T) to be determined mainly by processes of strong pinning of

curve deviates upward from the thermal activation line and,CDWs at randomly distributed impurities with formation of

as was mentioned above, resembles the typical divergence gperacting soliton-like CDW collective excitations.

¢'(T) near the transition to a glasslike state with a transition T 91:;hgo\évork v;ashsu%portgd b'3:/ II\(IjT?\QSIr:ant dNo. 101|0;?
temperaturel ;=36 K. This divergence corresponds to the “0051 and the Russian Fund for Fundamental Re-

case of barrier heights increasing with decreasing temperg_earch(Grant No. 95-03-05811
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On the theory of quantum interference between inelastic and elastic electron scattering
events
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The mechanism of weak localization of relatively fast electrons scattered with a fixed energy loss
from disordered media is examined. The main focus of this paper is to put forward an
explanation why coherent enhancement of electron scattering in the inelastic-scattering channel
takes place at angles which differ from A simplified kinematic model is proposed to

determine the basic properties of the weak localization of electrons in the inelastic scattering
channel. The model reproduces easily the range of scattering angles typical of the weak
localization of electrons with a fixed energy loss. The procedure does not require calculation

of the contribution from the crossed diagrams. The results agree with those based on the dynamical
theory associated with the calculation of the crossed and ladder diagrams. It is possible to

follow the transition from the new type of weak localization to the ordinary weak localization with
decreasing energy loss. The new-type weak localization is in agreement with the regular

weak localization if the energy loss is approximately equal to the energy of an optical phonon.

© 1997 American Institute of Physids$1063-776197)02003-9

1. INTRODUCTION ductance of a system, experiments with the beams of
intermediate-energy electrons have the advantage of measur-
The weak localization of conduction electrons and back-ing the angular and energy spectra of electrons for an experi-
scattering enhancement of classical waves in disordered menental realization. In Refs. 10-12, the weak localization of
dia have been studied extensively during the last few decadesternal electrongwith energies from tens to thousands of
(see, for example, Refs. 1):9The two phenomena, which electronvolty has been studied. Neutrons have also been the
are connected with the constructive interference of randorgubject of such a consideratiGhAccording to those studies,
wave fields, are closely related to each other. In the case @foherent phenomena can be observed in the elastic back-
conduction electrons, coherent quantum-—mechanical backcattering of electrons, in spite of sufficiently high energies
scattering can be regarded as a precursor of the exponent@f external electrons.
localization. It gives rise to a variety of quantum transport In contrast with the scattering of electromagnetic waves,
phenomena, particularly to the logarithmic increase in thehe interaction of an external energetic electron with a disor-
resistance of metallic films with decreasing temperaturelered medium leads, with high probability, to inelastic scat-
which approaches absolute zero. In the case of electromagering. The effects of inelastic processes on the conductivity
netic waves and other classical fields, weak localizatiorunder weak localization have been studied extensivily
manifests itself in the enhancement of scattering in a narroxample, see Refs. 1 and 2Ve now see a new wave of this
angular cone of width on the order of kIj < 1 inthe back- activity. One method of treating inelastic processes when
ward direction(k is the electron wave vector or the wave they occur only in an electron reservéaoupled to a device
vector of a classical wave, arids the mean free path without inelastic processgsvas developed in Refs. 14 and
Now we observe a partial shift of interest in the studies15, and elsewhere subsequently. The quantum kinetic equa-
of weak localization from the problems of electron conduc-tion, which can be employed for describing quantum trans-
tivity or elastic backscattering of light to new domains asso-port, has been derived under the assumption that the inelastic
ciated with the electron motion in disordered media. Thescattering is caused by noncorrelated point scattéfers.
discovery of universal conduction fluctuations has shifted théMluch attention has been given to the effect of inelastic scat-
interest from average values of physical quantities to theitering on the observed coherent phenomena like the
variance and to the behavior of separate groups of electronsharonov—Bohm  oscillation¥, conductance fluctua-
with fixed energies. Another point of interest is associatedions®® persistent currerf® resonance behavior of the
with the dissipation effects, because the inelastic scatteringonductancé! conductance of a disordered linear chin,
leads to the loss of phase memory of the wave function andnd destruction of weak localization in inelastic scattering of
suppresses the weak localization and the resistance fluctuparticles?®> We also point out an elegant experimental
tions. study?* in which the authors tried to use the weak localiza-
Finally, coherent phenomena are also of interest in théion as a thermometer. Some studies are devoted to the effect
scattering of external particleuch as electrofswith a  of dissipation on the localization of classical fields. The re-
fixed energy incident on disordered samples. In contrast tflection and transmission coefficients in the presence of ab-
electronic measurements which can only measure the comsorption under the localization of classical fields have
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been considered in Ref. 25. The effect of absorption on theveak localization is pronounced at scattering angles different

wave transport has been studied in Refs. 26—35. In manfrom .

cases the absorption has been introduced as a uniform imagi- In the case of the ordinary weak localization, there is a

nary energy part. The common feature of those studies is thgarticular simple graphic methdd, which provides insight

inelastic scattering destroys the phase memory and forbidsto the phenomenon and which explains why the angis

the quantum interference effect. specific for the regular weak localization. This method takes
In some cases, however, the inelastic processes do niitto account that an electron with a momentkis scattered

lead to a phase memory loss. A very simple example wa¥ia two complementary series of intermediate scattering
considered recentff In that study the authors demonstratedstates k—ki—ky—...—kp_;—ky=—k and k—kj

the effect in which the electron-photon interaction in a bal-—Kz—...—Kp_1—kp = —kinto the— k state. The momen-
listic microstructure plays the same role as the impurity scattum changes are;,ds,....0n-1,0s for the first series, and
tering in disordered media. In the presence of an externdln:Gn-1,---,02,0; for the second one. The amplitudes in the
electromagnetic field all relevant photons are coherent, anfin@! state— k are identicalA” = A” = A, and interfere con-
spatial interference in electron-photon scattering becomes afiructively. This is because the complementary scattering se-
lowed, despite the inelastic nature of the collisions. The elecli€S have the same momentum changes in opposite se-
trons do not couple to a large number of degrees of freedonflY€NCeS.

and their phase memory is preserved. The interference ef- 1€ weak localization of electrons in the inelastic-
fects are, therefore, certainly possible in the system eveﬁcattermg channel increases the electron scattering cross sec-

though the electron scattering is inelastic. t|or; ‘.”lt scattering Zn_gles dlffergnt flr)?m I}/(Ijoreover, th? ef- |
The quantum interference can occur even if an E:IectrOIInec IS pronounced in a considerably wider range of angles

) . : . o . .than for the localization in the elastic-scattering channel. In
undergoes a single inelastic scattering while interacting with), . . . . : ;
. o : . this article we show that there exists a simple kinematic
an incoherent electromagnetic field. Because of a single in- . . .
. o ) method which reproduces the range of scattering angles typi-
elastic collision, the electron loses a fixed enerfyy, and

. . ; . ; . cal of the new type of weak localization. We explain the
finds itself in the so-called inelastic-scattering channel. Th'?nechanism of particle localization with a fixed energy loss.

energy of thi_s electron is different from th_e energy of theThe results obtained in the framework of our kinematic ap-
incident particles. It can escape the medium and then bﬁroach are compared with those based on the exact dynami-

detected. In addition to the single inelastic collision, the elec-Cal theory. The scattering angles typical of coherent scatter-

tron should undergo at least one elastic scattering before fﬁg and calculated in the kinematic and dynamical
leaves the medium through the same surface through WhiCQpproaches are in good agreement.
it penetrates the medium. There are two ways to realize this'  \ye shall also show that the localization of the new type

process, since it can either start or end with an inelastic colyms into an ordinary localization in the limit of vanishing
lision. The interference of electron waves associated Wwithixeq energy loss.

these complementary processes has been ptb¥etb be

constructive. It manifests itself in the enhancement of elec-

tron scattering through an angle which differs framThe 5 iNEMATIC APPROACH TO DESCRIBE THE FEATURES
difference of this angle fromr may be considerable. The ofF WEAK LOCALIZATION

new coherent phenomenon is called a iewdifferen type

of weak localization. Let us consider a process in which the electron moving

The ratioy/w < 1 (wherevy is the particle collision fre- in a disordered medium undergoes elastic collisions and a

quency, andiw is the particle energy loshias been consid- single inelastic collision. The electron energy is assumed to
ered in’ Refs. 37—39. Recently, the opposite limiting casd€ higher than the energies of the conduction electrons. The

ylw > 1, which is closer to the usual weak localizatige., X€d ﬁ_n_ergyﬁ]sﬁw of the electron occurfs_dule to the inelas-
weak localization in the elastic-scattering channieds been tic collision. There are many sources of inelastic scattering,

considered in Refs. 40 and 41. In both cases the new type Stg'::eprol\gsdz:ng?:éy;'?'?ﬁgghg? I;:gzgy;tzsms‘fcfc;:;g;.
weak localization appears to be clearly observable. » P u ' !

The main difference between the ordinary and the nev&'ons' o .
In the regular weak localizations and in the new type of

weak localization is the typical electron scattering angle. The o : .
L . o . Wweak localizations the interference of the electron waves is
angular distribution of particles and radiation undergoing

eak localization in a disordered medium can be found b described by crossed diagrams. In contrast with the ordinary
W callzation In a dis u u Xveak localization, one of the crossed lines in the new type of
calculating the contribution of the crossedr so-called

N . . ! weak localization corresponds to the inelastic interaction,
fan ,) dlagrgms Into an e[egtro(mad|at|or) Cross sectlonlor while the others correspond to elastic interaction with ran-
density matrix. However, it is also useful to have a simpley, )y gistributed force centers. In accordance with @)

physical model explaining why coherent phenomena are pagss Ref. 37, the crossed diagrams, together with the corre-

ticularly pronounced in particle scattering at certain anglessponding ladder diagrams, contribute to the scattering prob-
This approach is clear and enables us to evaluate the scatt%rbi“ty factor

ing angles without calculating the crossed diagrams. The

main goal of the present article is to find the physical inter- —(2 ‘3fwd Ca W (a A 1
pretation of the fact that constructive interference of the new (@.x)=(2m) o (A (@) 210w, (D
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wherey is the electron scattering angle,(q; ,») is the rate 1

of inelastic scattering accompanied by excitation of the me- (Ex—Ex_q—fo—i7)(Er—E,_ Fiv)
dium with a momentung; and energyiw. The functionis k ko K TheQtg
given by 1

+ - —.
(Ex—Ek—q+q 1 V(Ex—Ex—q—frw+iy)

(5a)

@ 00=#2 [ 40|60 E—ho)
, It is evident that the ratio of Eq5a) to Eq. (4) is propor-

+G(k—Q+a; El* (2)  tional to the small guantity. We can assume, therefore, that

HereG(k — q; ,Ex — fiw) andG(k — Q + q; ,E,) aretheelec- the frequencyy in the denominators of Eq5a) is (as a first
tron Green’s functions. The former describes electron motio@Pproximation an infinitesimal quantity. This enables us to
between the inelastic and elastic scattering events and tHgwrite Eq.(5a in the form

latter refers to the process with the opposite sequence of L

events.E, andk are the initial energy and momentum of an P ; _ _

incident electron, respectivel®) = q; + g is the total mo- 7 Ek—Ek_qi—ﬁw i S(Ey Bi—q ﬁ“’)}

mentum transfer to the medium, angd corresponds to the

elastic scattering. The integration in E®) is performed {L/)

over possible orientations @f . Equation(2) can be rewrit- T B EK,Q+qi
ten in the form

- iﬂ-é(Ek_Ek—Q+qi)

- 1 1 :
%(Ch ,w;X)_J qui vqi—w—ﬁinIZm—iy + ./)m+lﬂ5(Ek Ek—Q+qi)
1 ‘2 1
+ - . 3 P _ _
oV —hoZiZm—1y € X fEk_ T i7S8(E—Eyq ﬁw)}. (5b)

Here we assume that the electron energg,is= #2k?/2m, v

andv’ are the electron velocities in the initial and final states,An estimate reveals that in E¢ba) the ratio of the terms

respectively, andy is the electron collision frequency. containing the product of two delta functions to the terms
The function (3) is convenient for studying the weak which contain the principal values is

localization since it describes the propagation of electron

waves between collisions. Equati@®) contains three terms. ho Kk

The squared absolute value of the first Green's function g, q."

gives the contribution of a ladder-type diagram and describes

the process in which the first collision is inelastic. TheHere g is the maximum momenturg; (for example, the

squared absolute value of the second Green'’s function corutoff plasmon momentumAs long ak > g, the contribu-

responds to a ladder-type diagram for the case in which thdon of the product of the delta functions is dominant. This

inelastic collision is the last collision. In both cases the ex-means that although the quantum transport geneaitlgl the

pressions are independent of the electron-scattering angleeak localization specificallyoccurs due to such electron

x = cos {w'/vv"). There is also the third term, which con- collisions at which every next scattering begins before the

tains the product of the first and second Green'’s functions. lend of the previous one, weak localization perngits the

corresponds to the crossed diagrams and describes the intéirst approximation a physical interpretation, which starts

ference of two electron waves which propagate along thérom the analysis of the consequences of the simultaneous

same path in opposite directions. The integration (ﬂr@irin satisfaction of the two conditions,

this term does not “kill” they-dependence that describes the

(6)

weak localization. The functior¥” describes it at a fixed Ex—Ek—q+q=0 and Ey—Eyx_q—7iw=0. )
length ofg; , while Eq.(1) is appropriate if the length af; is
not fixed. These conditions come from the two delta functions and

If an inelastic collision occurs between two elastic colli- have the meaning of energy momentum conservation. An
sions, the weak localization does not exfsit was also analysis based on Eq€Y) is called the kinematic method in
showr?® that elastic multiple scattering at arbitrary anglesthe theory of weak localization.
does not change the angular dependence determined by the Below we compare the results of the kinematic analysis

functions ¢ and.”. with the so-called dynamic results of the exact theory. We
The squared absolute value of the first Green’s functiorshall prove that the kinematic approach reproduces the angu-
in Eq. (3) at smally can be represented in the form lar properties of the weak localization with fairly good accu-
racy.
1 > Let us rewrite E [
- _ _ gs(7) in the form
Ek_Ek—ql_ﬁw_l'y‘ ﬁ’}/ 5(Ek Ek—qi ﬁ(D) (4)
i . Ek’_Ek*q-:O’ (8)
The squared absolute value of the second Green’s function in '
Eq. (3) can be written similarly. The term in the integrand of B
Eq. (3), which describes the interference, has the form Ek—Ek—qe_o' ©
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inelastic scattering in the procegsn,k’|H.GH;|nk) is
shown with the segment that connects the end of the v&ctor
and the poinB on the circleR" = k’, where the vectog; is
perpendicular to the vectay,. The vectorg, in the process
under consideration is shown with the segm&Bt The vec-
tors g and g; in the procesgm,k’|H;GH¢|n,k) and the
vectorsg andg, in the proces¢m,k’|H.GH;|n,k) convert
the vectork to k.

As can be seen from Fig. 1, there is the other set of
vectorsg; ,qe andg; ,q; . In this caseg; connects the point
C (at the end ok’) with the end ok,. The segmen€D and
the segment joining the poim and the end ok defineq,
andq; .

As a rule, the two sets of solutions, which correspond to
the segmentsAB and CD, cannot be realized simulta-
FIG. 1. Kinematic diagram of the sequence of events which give rise to neously. It is obvious that a solution concerned with the ex-
weak localization. istence of the segmel@D corresponds to the lengty,

0= VK®— (Qef2)?+ VK 2= (0e/2)?,

and show that the vectocs andqe, the momentum transfers and to the electron-scattering angle,
during the inelastic and elastic collisions, are reciprocal or-

thogonal vectors. T4 - 1) Ye
Subtracting Eq(8) from Eq. (9), we have X= Fsin A o) TSN A o )
(k=k")(k+k")=(qi—0e)(2k—0i — ). (100 so thatr/2< y<.

From Eq.(9) we obtainqg = 2kq,. SinceQ = k — k' = q; Therefore,

+ Je, We obtain g?=k?+k'2+ 2Kk’ sin y, (13
2k(Q—0i—qe) =Q%*—af — 2. (19 , (2KK' cosy)? »

SinceQ = q; + qe, we obtairQ? = g + g2. Therefore, Qe = k2 K2+ 2kK sin - (14
0ige=0. (12 It is evident thatg; /g. > 1, an inequality that is difficult to

) realize. For example, in the case of plasmon excitations there
Let us now represent graphically the sequence of eventg 5 cytoff vectog; = g, = wv;l (whereu, is the electron

which give rise to a new type of weak localization. The perm velocity, and the probability of plasmon excitation
circles in Fig. 1 have the radiR = k and R" = k' \ith q. > q_ is zero. In other cases of inelastic scattering the
= Vk“=2m# ", respectively. The radii coincide with the -5cesses with small momentum transfers are also probable.
lengths of the electron wave vectors in the initial and finalpyoyever, when taking the limit of the ordinary weak local-
states. Let us first consider the case in which the first collijzation k' —k), the solution of Eqs(13) and (14) corre-

sion is elastic. For brevity, we denote this process agponds to the correct description of the process. When the
(m,k’'[H;GHg|n,k). Herem andn correspond to the initial | atio 7 w/E is small, we have
and final states of the medium. The end of the vegtptthe

momentum transfer during the elastic scatteriwgich may 1 fho\?

involve multiple elastic scatteringtouches the circl®, so cosy=—1+ 8[(2k/q.)°—1] (E) : (15

that the electron wave vector becomes equdd;tas a result

of elastic scattering. The following event of the scattering isand y— 7 asfw—0.

an inelastic collision with a momentum transfgr, and the When we consider the new type of weak localization, the
conditiong;q, = O is satisfied. The vectaj; connects the end solution associated with small momentum transfgres re-

of the vectork; with the pointA on the circleR’ = k’ alized. In this case the interference conforms to the rectangle

(where the end of the vectér rests. The energy of the final with the vorticesABLM. According to Fig. 1, the depen-

state electron is lower bfw than the energy of the initial dence of the length of the vectgr on x has the form

State. = 5 — 5
In  the complementary  scattering  process qi=Vk?— (0e/2)°~ Vk'*~ (0s/2)%, (16)

(m,k’"|HGH;i|n,k) the particle first loses its energy and and

only then undergoes the elastic scattering. The interference

between two realizations of the scattering process is effective 1[G

if the wave vectors transferred during inelastic scattering in ~ x=SIn (ﬂ

each realization are parallel and if they have the same

lengths. Therefore, the momentum trangfgin the event of  From Eqgs.(16) and(17) we obtain

+sin‘1(%). (17)
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) (2kK’ sin x)?

9e™ 12+ K2+ 2Kk cosy’ {19
2Mw
qi:7’Nk2+k’2+2kk’ cosy 19
We see from Eq(19) that
K2+k'2 202
COSX:_W+W' (20

This expression determines the electron-scattering angle un-
der weak localization at different values @f, the inelastic
momentum transfer.

If k—k’'<k,then

2w? w FIG. 2. Three-dimensional diagram of the realization of constructive inter-

X
COSy=— 1+ Uz_qz or COSE = E ference.
i i

It is convenient to rewrite them as

x=2cos?!

(29

w
ﬁ) (1) 0<y<2 cosl(

c
el
If the electron scattering excites the electromagnetic waves o o
(longitudinal or transverse Eq. (21) can be interpreted as N the case of excitation and ionization of atdfhwe have

the condition of the electron scattering through the double

< - : , evz
Cerenkov angle. This circumstance was pointed out in Ref. 0= =,
37. |dx il

There is a top value of the vectqg (this vector is rep-

whereZ is the atomic number, a is the matrix ele-
resented by the dashed lifdF) at which the vectom;, Nk mn

ment of the atomic dipole for excitation from the ground

S/ﬁa:wn from the pomtl; perpen@cnlJlarIA?/ to dt.helse.gme.nt staten to the upper statm. Therefore, the coherent phenom-
, Ceases to cross the inner circle. Accor gL, LIS IM-g5 at electron scattering will be pronounced at
possible to expect the new type of weak localization to be at

electron-scattering angles close#oWe see from the geo- o|dy el
. . . . . —1 X mni
metric consideration that the top scattering angle is x=2cos ‘| ——|. (26)
ev\zZ
_ ho
Xo=m=Cos | 1= =] (22 For an optical-phonon excitation, the weak localization is
effective when
Therefore, we obtain
w VZ2mo
Qio=K Sin xo=v2mw#a 1. (23 Tph <q; <Tph<|G|
The new type of weak localization takes place onlygjf i ) _ )
<. (G is the reciprocal lattice vectprThe appropriate range of
Now we can determine the range of scattering angles of'€ €lectron-scattering angles is
the electrons that undergo weak localization for different 1
. o . 0<x<2cos “(Vhwl/iE). 2
types of medium excitations. When a bulk plasmon is ex- X (VA wl4E) @7
cited and its wave vector is in the range Until now we have assumed that every vector in Fig. 1
© ® lies in the same plane. However, the vectpr which is
L <q; <qC=—p, perpendicular tay, does not necessarily lie in the plane of
v VE

the vectork andgq, . If the vectorsy;, ge, 4/ , de, k, andk’

the coherent phenomena at electron scattering occur at ~ are situated as shown in Fig. 2, the complementary scattering
processes will be accompanied by a constructive interfer-

~1
0<x=2cos (ve/v). (24 ence. In this case the ends of the vecyrandq; are situ-
The range of wave vectors of the transverse electromagnetied on the circles formed by intersection of the inner sphere
waves(at the &renkov excitationis R’ = k' and the planes which are perpendiculagtoand
© © pass through the pointsandM. The vectorsy; andq; form
the “fan”
— <g; <— Ve
—<gi < Ve
The most intense scattering will then occur in the range of wv2 <g. <mi 2me _ 28
. Q| min ﬁz vq| max| - ( )
scattering angles vyl—cosy
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Instead of Eq(15) in this case we have To analyze the weak localization during excitation of the

1 o2 long-wavelength medium states, e.g., of plasmons or optical
=— — honons, it is convenient to write;(q; ,w) as follows:
cosy=—1+ S[(2K/q)’—1]cos | E ) , (29 P i(di, o)
— O -2 _
whered is the azimuthal anglén the plane perpendicular to wi(di,@)=7()0d; “0(di max—i)-

k.) between the vec'ForK. andde. AIt.hou_gh the klnematlc The function7(w) is the long-wavelength limit of the imagi-
diagram of the realization of effective interference is now : ; . .
nary part of the reverse dielectric function of the medium

three-dimensional, our conclusions about the interference - g
: .~accurate within a constant. The degree of coherency will then
mechanism and about the features of electron—scatterlnge

angles remain valid.
fgqin(k+k 1] ma»qui yc(qi ,w,X)
fgnin(k+k’,qi may)dqi f'fl_(qi ,) .

3. DYNAMICAL APPROACH FOR THE DESCRIPTION OF M(x) =
THE NEW TYPE OF WEAK LOCALIZATION X

(33

Although the description of weak localization requires,
first of all, the contribution from the poles of the Green's ~ The function.s| determines the incoherent part of the
functions in Eq(3), the contribution from the principal value €lectron cross section and takes the form
might modify the results of the previous section. In addition,

we shall consider the uncertainty of the radii of the spheres C(q0)= 2_77 {1 —1
. .

v+ w+ ﬁqf/Zm)

tan
in Figs. 1 and 2 due to the image potential of the medium. Vi Y
The uncertainty isc = 2mU'[2%E] "%, whereU’ is the 2
. . . _[vgi—e—fg/2m
image potential mentioned above. +tan *
Moreover, the momentum transfgrusually is not fixed Y
in exp_eriments._ Hencg we should perfor_m integration over 1 v’qi+w—hqi2/2m
g; . It is convenient to introduce the function +— |tan?!
v Y
fk+k’d i 2W( ,UJ)&/( i@, ) ’
M(y)= 0k - di g 2| di ,C Qi X , (30) v qi—w+hqi2/2m
J6™ day afwi(gi,@) Z1(0;,w) tan 5 TS
which is called the degree of coherency. Equatioh®), ) _
(18), and (19) in Ref. 37 clarify the definition oM (x). In The coherent part is determined by
Eq. (30) wi(q; ,w) is the rate of excitation of a state with Ao
energyhw and momentun; . C(qi,w,x)=— Re‘%_l(v,v',w,wc,x,qi)
The functions%; and ¢, occur due to the crossed and Qi
IaFider diagrams; these functions are defined as o qiz(vv’)+(hqi2/2m)2—w§+qi;//
Zol ) o+ (hafzm)P—wZ=a,7) |
=2 Ref dQ, (39
where Z(v,v’,w,w¢,x,q;) has the form
X 1 2 2
. _ 72 ; 0 —7%02 i\ ) 2h ww. g
(Vgi—w—Aq{/2m+iy)(w—V'g— g /2m—ivy) f?/:{wg(v—v’)z—[(qi[vv’])zwL _mzc_q'
(31
o2\ 2 112
1 ! "2
7 0) f d q{(VQi—w—fLCIiZ/Zm)znL ¥? 2m
1 Herew.=w—ivy.
B —— 2]. (32 The position of the angular features of the interference
(@=vo—hoi/2m) +y part in the electron cross section is mainly determined by
Here the damping iy = «uv. zeros of the functiory/. The equatiory” = 0 has two roots:
) 8w [[W' %+ (hw/m)?](v+V') 2
(@)1=—"3 2 -2 4 =21 12! (37)
[W' 2+ 2h%wom 2+ \[wW ] +4hw(w—w)m [w']
oo 2m WP+ 2h%00m 2+ [W I+ dhol( o — og)m 2w’ ]? a8
(qi 2_? (V+V,)2 . ( )
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FIG. 3. Degree of coherency versus electron-scattering angle for plasmop|G. 4. Degree of coherency at different values of the energy IBss.
excitation. The sharp decrease of the curves is due to the absence of the50p ev,U’ = 1 eV. Curevel corresponds tbw = 2 eV, 2—4 eV,3—8
Cerenkov generation of plasmons. The difference in the degree of coherengy/, and4—12 ev.

from zero at angles which lie in the range from 2 tlfse /v) up to 7 is due

to the finiteness ofy and the contribution from the principal value in Eq.

(5b). iw = 10 eV,U’ = 1 eV. Curvel corresponds t& = 200 eV,2—300 . L _
eV, 3—400 eV,4—500 eV, and5—600 eV. at the angles which lie in the range from 2 c&®/v) up to

7 is due to the finiteness of and the contribution from the
principal value in Eq(5b).
Figure 4 shows the plot d¥1(y) versus the energy loss
We can associate these roots with the vajudefined by Eq.  gue to the plasmon excitation. With an increasé i, , the
(19). The association is clearly seen in the limitp£0.In yeak position shifts to smallgr If w = 2 eV, the construc-

this casew.— w, and from Eq.(37) we obtain tive interference takes placeat, = 150°. Ifiw = 4 eV, we
2w havey,, = 120°. These results agree with EB1) which was
Q.= ——. (39 obtained from a kinematic analysis.
bV The curvedM (x) depend also on the image potential. As

shown in Fig. 5, a considerable decrease in the degree of

coherency af =  (i.e., in the range of bremsstrahlung plas-

mon generationtakes place up t¢/w = 0.5. Only aty/w

= 1 the angular dependence begins to smooth out when
\/k4+ k'%—2k%k’? cos = 2 cos Ywlvg). In that case it looks like a peak on the

Qi2= k>+k'?+2kk’ cosy (40) curveM (). With an increase iy, it shiftstoy = .

h ¢ Figure 6 shows a theoretical curi&(y) for excitation
From Egs.(40), (18), and(19) we see the sum of Eq18) of polar optical phonons. Weak localization associated with

and the squared E19) is equal to the squared right-nand yis eycitation corresponds to cun& We assume that
side of Eq.(40). Therefore, Eq(40) corresponds to the case fiwpn = 0.05 eV. Other curves correspondite,y, larger than
whereg; = Q. This solution is not significant for the new ¢, ordinary optical phonons. These curves show a variation
type (.)f weak Iocallzgtmn, ) of M(x) when the energy loss increases from phonon to
Since the equations are rather complicated and do NGl smon josses. Atw < 0.5 eV, the width of the coherent

give a transparent insight into the dependence of the eIectrob'neak aty = m is equal to 15° and it does not get narrower
cross section on the various parameters, we present the the-

oretical features in Figs. 3—6 for a few typical cases.

Figure 3 showdM () for the plasmon excitation in met-
als. Every curve shows a clearly defined slope. The nature of
the sharp decrease has been explained in Sec. 2 on the basis
of Eg. (22). In the case of a particular excitation the condi-
tion (22) might undergo some change. The dynamical ap-
proach takes into account these changes. In the particular
case of the bulk plasmon excitation the change can be de-
scribed in terms of the &enkov and bremsstrahlung genera-
tion of plasmons. The weak localization takes place when the
plasmon generation mechanism differs only slightly from the
Cerenkov mechanism. The absence of tlegebkov genera- -0.2 P T S S P S

tion of plasmons at 200 40 80 120 160
Electron scattering angle

Equation(39) coincides with Eq(19). This means that the
kinematic approach yields a reasonably good accuracy.
In the same approximation E(B8) yields

e
00
1
1
4

° o
3 [}
(&9
LN

Degree of coherency

=)
= o
j

2 cos Nvplv)<xy<mw
. . ... FIG. 5. Dependence of the degree of coherency on the image poté&ntial.
implies that at these angles the new type of weak localization. 5o ev, 7w = 10 eV. Curvel corresponds t)’ = 1 eV, 2—3 eV,3—5

is suppressed. The difference in the cross sections from zerv, 4—8 eV, and5—10 eV.
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dependence of the angles on the electron energy loss and on

1.0
other parameters can be predicted. Finally, we have shown
-, 0.8} that there is no wall between new and ordinary weak local-
§ izations. The two phenomena are two different manifesta-
So6 tions of the constructive quantum interference of electron
8 waves.
Sy
o 0.4
;§° We thank Prof. D. G. Yakovlev for critical reading of
R 0.2 .45 our paper and for helpful advice.
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Propagation of magnetostatic waves in unsaturated ferrite films with a strip domain
structure

A. V. Vashkovskil, E. G. Lokk, and V. . Shcheglov

Institute of Radio Engineering and Electronics, Russian Academy of Sciences,
141120 Fryayzino, Moscow Region, Russia
(Submitted 24 June 1996

Zh. Eksp. Teor. Fiz111, 1016-1031(March 1997

The propagation of surface and volume magnetostatic waves in unsaturated films of yttrium iron
garnet is studied experimentally for the case when the wavelength greatly exceeds the

domain width, while the domain width is comparable to the film thickness. The characteristics of
these waves are examined for symmetric linear, asymmetric linear, and symmetric zigzag

strip domain structures in the films. These characteristics cannot be explained by a theory based
on averaging the magnetization over all the domains.197 American Institute of
Physics[S1063-776097)02103-3

1. INTRODUCTION Besides wave processes associated with magnetostatic

Javes, domain walls in unsaturated ferrite films can oscillate

Studies of the propagation of magnetostatic waves i t high f idd and spi itati h
ferrite films with a domain structure have been of interest fora Igh requenct a.n Spin-wave . excitation, such as
aves or modes localized on domain boundaligé,can

many years because of saturation owing to various physicé’Y

phenomena and effects. Most of the previous work has bee(?]ccur. Collective oscillations of the domain structures as an

devoted to the propagation of magnetostatic wave in ferrit entire ensemble can exist, whose dynamic properties were

) . . ) Gescribed by Fillipov and Tankeé?.
films and wafers with regular strip domain structures- . .

. 1 Here we describe an experimental study of the charac-
ferred to as plane-parallel or laminar by some writers

. . teristics of magnetostatic waves with wave numbers
but some papers report observations of magnetostatic Waves_ | 1000 el in the case oh>d ands~d for tangen-
in films with an irregular domain structuté.The character-

st ¢ tostat in il th o d . tially magnetized films of yttrium iron garndgbne of the
ISUCS of magnetostatic waves In Tiims with & strip domain widely studied materials in research on the physics of

structure have most often been examined theoretically a%agnetismgrown in the (111) plane. No detailed studies of

suming _that the w(_a\velengm IS much greater than the_ d_o- this kind have been carried out previously and only some
main width d, while the ferrite layer thickness satisfies preliminary result®16 have been reported.

s>d> § (4 is the thickness of the domain boundaries, which
are assumed to be infinitely thin 180-degree waifs®The = 2. EXPERIMENTAL APPARATUS AND THE PARAMETERS
caser<d has been studied in Ref. 2 and=d, in Ref. 8.  OF THE MAGNETIC FILMS

Here the medium was described by magnetic susceptibility —The experiments were conducted on a device which per-
¥ and permeability x tensors averaged over all the mitted simultaneous microwave and optical measurements.
domaing'’ or the medium was treated as a “macroscopicThe ferrite films to be studied were magnetized by a tangen-
antiferromagnet” in which neighboring domains play the tial uniform magnetic fieldH,=0-100 Oe. Magnetostatic
role of antiparallel spin.Both these models have made it waves were excited and detected by means of moveable an-
possible to use conventional techniques from electrodynantennas with transducers made of gold-plated tungsten wires
ics to obtain dispersion relations. Depending on the addiof length 3.5 mm and thickness }2m. A mechanical sys-
tional assumptions that have been made, such as the abserie@ was used to displace the antennas in two mutually per-
of an external magnetic fielf*® the absence of anisotropy Pendicular directions in the plane of the film and rotate them
fields in ferrite> or the presence of an easy &for cubic ~ about an axis perpendicular to the surface of the film. The
symmetry with an anisotropy constaii<0°" in the fer- ~ detector antenna was moved along a line joining the centers
fite, the calculated and/. tensors were either diagofidlor ~ ©f the transducers to determine the wave numbers by mea-
nondiagondt?>5~7 while the resulting dispersion relations SUring the phase shift from the phase-frequency characteris-

described different types of surface and volume waves. ThC at a fixed frequencysliding probe techniqueThe orien-

theoretical models obtained in these papers, however, onl _t|on_of the crystallographl_c axes of the films r_elatlve to the
apply to a rather limited or specific circle of actual situations. irection ofH, could be varied by rotating the film about an
In many experiments, the domain width and the film thick-

axis perpendicular to its plane. The domain structure was
ness do not obey the relationsfsp-d, so it becomes neces- observed with the aid of a measurement microscope from the
sary to include the demagnetizing fields of the static effective

Faraday effect when a beam of light was incident on the film
magnetic surface charges created by the domain walls arff rpFe"r;Tc]j ;cm;lfar tttcr)itljt; Si:Jon;aCZrnet rown in the (111) plane
the calculations cannot be carried out using the earlier theo-. y 9 9 pa
retical modeld-3-5 with a well resolved domain structure as seen by the micro-

’ scope were chosen for study. This domain structure was ap-
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linear symmetric zigzag symmetric linear nonsymmetric

FIG. 1. Forms of strip domain structures in yttrium iron
garnet films.

0<H0<H
L
0<H0<Hs

H <H <H H <H <H
$-2 0 z- z-n 0

Z sat

parently a consequence of the presence of an easy-axis mapd on the previous domain state of the film, i.e., on the type
netic uniaxial anisotropy perpendicular to the film surface, sof domain structure which existed in the film prior to this, as
that the local magnetization of the domains had a large comwell as the orientation of its domain boundaries relative to
ponent along this axis over a rather wide range of fields. Théhe applied fieldH,. In order to eliminate the effect of the
parameters of the three films that were most studied arprevious domain structure of a film on the domain structure
shown in Table I, where the following notation is used: which develops in the film, before the experiments the film
47 My is the saturation magnetizatioAH is the half width  was magnetized to saturation along a crystallographic direc-
of the resonance line is the film thicknessH. is the cubic  tion, after which the magnitude of the field was no longer
anisotropy field,d is the deviation of the uniaxial anisotropy allowed to go below 3-5 O&so as to preclude random do-
axis from the normal to the film plane, ang, is the angle main structures This made it possible to create just regular
between the projection of the uniaxial anisotropy axis on théypes of domain structures and to reproduce each type of

film plane and the[110] axis. (The parameterH._,, structure the required number of times in the course of the
H, n, Heat, Hao,, andHg, will be defined late). The pa- ~ experiments. Films in which a single regular domain struc-

rameterss, H., 6, and ¢, were measured by a method that ture developed over the entire sample area were studied. This
has been described elsewh&félhis method yielded large made it possible to eliminate effects related to the develop-
errors in the uniaxial anisotrogy, and in 4mM,, so thatthe ~ment of block domain structuréd The propagation of mag-
listed values of 4M, were determined from microwave netostatic waves in reproducible domain structures of this
measurements on films that had been magnetized to saturaype will be examined in this paper.

tion. When the yttrium iron garnet films were magnetized
The film size was at least 3030 mn?, so that edge along the[110] axis by a uniform magnetic field,, a regu-
effects were eliminated. lar domain structure developed in them. Depending on the

In order to avoid nonlinear effecfshree-magnon decay magnitude of the field, the nature and parameters of this
and four-magnon scatterihgor which the threshold level is domain structure varied as followsee Figs. 1 and)2
generally higher in unsaturated yttrium iron garnet films than (1) for =0<Hy<H,_, the films had a linear strip sym-
in saturated film® (in the latter this level is=5—15uW, at
bes}, the power of the cw sinusoidal microwave signal inci-
dent on the input converter was kept belowuW over the

entire frequency range. 2T§ T T 4y b

3. DOMAIN STRUCTURES IN THE TEST FILMS 20 I
The type of domain structure that occurs in the films /

depends on the magnitude of the applied magnetic figJd 15

2 ]
TABLE I. 10 éﬁg’g)”// ///
Value s 'ﬁ:a 2 u‘é/

8 4
Parameter No. 1 No. 2 No. 3 Error - .,9 SRR e a | ,,;---&--a--l.., el
47y, G 1781 1787 1890 +20
2AH, Oe 0.6 0.75 0.5 0 1020 30 40 S0, %
s, um 7.9 115 8.9 +0.1 0
H¢, Oe -84 —83 —76 +4
o 1.5 3.8 49 +1 FIG. 2. Dependence oH, of the periodsT of a linear strip symmetric
©.° -925 —107.6 —-17.0 +25 domain structurésmooth curves T, of a zigzag strip symmetric structure
Hs_ ,, Oe 28 7 4 +0.5 (dashed curvgs and T, of a linear strip nonsymmetric domain structure
H,_, Oe 35 13.5 6.5 +0.5 (thick curves and of the widthd,, of the narrow domains of a nonsymmetric
Hga O 62 35.5 24 +1 strip structurg(dot-dashed curyefor films No. 1-No. 3 (* fieldH, applied
H%, Oe 39.3 14 7 +0.5 along the[110] axis of the film,O field H, applied perpendicular to the
Hi, Oe 69.5 55.5 29 +1 [110] axis of the film. Curvesl, 4, and7 are for film No. 1; curve2, 5,

and8 for film No. 2; and, curves, 6, and9 for film No. 3.
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metric structure; neighboring domains had the same widtd. PROPAGATION OF SURFACE MAGNETOSTATIC WAVES
and were oriented along the field direction; IN YTTRIUM IRON GARNET FILMS WITH A STRIP

(2) for Hy_,<Ho<H,_, the fims had a zigzag strip DOMAIN STRUCTURE
symmetric structure; neighboring domains had the same In the following we describe the parameters and charac-
width and were oriented at angles ©f30° to the field, i.e., teristics of magnetostatic waves in yttrium iron garnet film
along directions specified by the projectiong 811] axeson  No. 1 for wave propagation perpendicularHg (transducers
the plane of the film; here the length of the straight segmenoriented parallel to the fiellly). Then surface magnetostatic
of the domaingfrom the point where the orientation of the waves are excited in the film in the saturated state. The dis-
domain segments relative tbl, changes from—30° to tinctive features of and differences in the propagation of
+30° to the point where it changes from30° to —30°) magnetostatic waves in the other films will be noted in the

exceeded the domain width by a factor of 10-20; course of the discussion. _ _
(3) for H,_,<Hy<H.ythe films had a linear strip non- First we consider the propagation of magnetostatic

symmetric structure in which neighboring domains had Sig_waves_when the films were magnetized by a fieglalong

nificantly different widths and were oriented along the field; the[110] axis. _ , _ _
and For fieldsHy<H_,, with a linear strip symmetric do-

(4) for Hy>H, there was no domain structure in the mai_n structure in film NQ' 1His_,=28 Og three excitation
films and the films were in a saturated state regions for magnetostatic waves were obser&d:S;,, and

. . at frequencies of 150-500 MHz. These regions, together
The fieldsH,_,, H,_,,, andHg,for the transitions from S a g g

. ) : . with plots of the low frequency limit§,, f,, andf for the
one state of magnetic ordering to another for yttrium irony,,hetostatic waves in each region as a function of the field

garnet films Nos. 1-3 are listed in Table I, while the periodsH0 are shown in Fig. 3a. The high frequency limits of the
of the symmetricT, zigzagT,, and nonsymmetrid, do-  regjons where magnetostatic waves exist could generally be
main structures and the domain widtisof the nonsymmet-  determined only very approximately, since their location is
ric domain structure in these films can be judged from Fig. 2substantially determined by the ratio of the amplitudes of the
which shows plots of Tg(Hg), T,(Hg), Tn(Ho), and  signal and electromagnetic picku@hese limits are not in-
d,(Hp). We note that the contrast of the nonsymmetric do-dicated in the figures.The fo(Hg), fso(Hp), and fsa(Ho)

main structure observed with the microscope in the intervaturves were measured from the phase—frequency character-
H, ,<Ho<Hg (especially nearH,) decreased signifi- istics by following the change with frequency in the constant
cantly as the field was raised:; this is evidence of an increasealue of the phase corresponding to wave numker§. In

in the component of the domain magnetization parallel to thé Similar fashion, by varying the field and maintaining a
field. fixed distance between the transducers, it is possible to fol-

When the films were magnetized perpendicular to théow the frequency variation of any other fixed value of the
- phase corresponding to another constant value fobm the

[110] a;qs byfathunl(;orm _mag:net;c flelﬁ*o.’ Lhe _?sttjhre and .phase—frequency characteristics. The cuffyé€lly) (in what
parameters ol the domain Structure varied wi € MagNisliows we shall refer to them as the “equiphase” curyes
tude of the field in the following waysee Figs. 1 and)2

h _ ) X obtained in this way for the regior&, Ss,, andSg; of film
(2) for =0<Ho<Hjs the films had a linear strip sym- N 1 are shown in Fig. 3a. Here the valuekaheasured by

metric structure; neighboring domains had the same widthnoying the detector transducer are written near the corre-
and were oriented along the field; sponding curvesFor clarity some values d have not been
(2) For H§<HO<H;lt no domain structure was ob- written down)

served in the films, although the films were not in a saturated ~ The minimum attenuatioh" for the transmission co-

state over the entire range of fields; efficient in regionS; for Hy=6 Oe was— 36 dB, while the
(3) for Hy>Hg,, there was no domain structure in the electromagnetic pickup level,, was =—55 dB. When
films and they were in a saturated state. Ho was raised to 18 Od," increased to-29 dB and then,

When characterizing the magnetic state of the films inas the field was increasedth,_,, decreased te-40 dB. In
the above field intervals, one should note that forthe regionSy, which was observed for 24.3 @¢1,<26.4
~0<Hy<H. the period of the regular strip symmetric do- O¢ the mipimum attenuation in the ampli.tud.e—freq.uency
main structureT. differs little from the periodTs when the ~Characteristic was at a level of 46 dB, while in region
[15] axis is oriented parallel téi, (see Fig. 2 HereH: Ss3 when the field was changed from 6 Oe to 13.4 Oe it

) i varied from—41 dB to roughlyL¢,,.
was always slightly greater tha, , for the same film. As Dispersion curves for magnetostatic waves in regions

Ho was increased, t'he contrast in the symmetric domal%ﬂ' S.,, and S are shown in Fig. 4curves1-4). It is

structure observed with the microscope gradually fell and for,iqent from Fig. 3a that the dispersion curve for region
1 : )

Ho=H; no domain structure could be seen. S; will have discontinuities for fieldsl ;< 17.5 Oe(curve3,

The fieldH ,, at which the films reached saturation mag- Fig. 4 and will not have them for 17.5 GeH,<28 Oe
netization could not be determined using the Faraday effectcurve 4, Fig. 4). The shapes of the observed curves corre-
This field could be evaluated only indirectly from measure-spond to the dispersion curves for surface magnetostatic
ments of the equiphase curves for the magnetostatic wavesaves. The surface character of the excited waves is also
This will be described below. confirmed by the large difference in the damping of the
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1600 1600 2 7 L) equiphase curves for film No. ¢the
104 values ofk in cm™! are written next
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waves when their propagation direction is revergBegcause
of the nonreciprocity of surface magnetostatic waves, whewbserved waves only with small wave numbers up=td5
the maximum amplitude of the wave is localized at thecm ! in the 240- 260 MHz band.

ferrite—substrate interface, the losses increase noticgably.

Ho' Qe

was lower than in film No. 1. For example, in film No. 2, we

When film No. 1 had a zigzag domain structure, in fields

An analysis of the amplitude- and phase—frequencyH._,<H,<H,_, (28 Oe<H,<35 08, no magnetostatic
characteristics of the excitations observed in regi®&gs
Ss2, andSg; leaves no doubt that we have observed travellinghat were studied.

waves. The nature of the magnetostatic waves in these re-

waves were observed, and this was typical of the other films

When film No. 1 had a linear strip nonsymmetric domain

gions may be related to collective oscillations of domainstructure, for fieldsH,_,<Ho<Hgy (35 Oe<Hy<62 08,
boundaries, as noticed previou§l¥*° In accordance with
theoretical calculatiort$ the domain boundaries have a reso-The amplitude—frequency characteristics of the transmission
nant frequency in the range 50—150 MHz.

We note that in some yttrium iron garnet films the effi- are shown in Fig. 5. For fields close t#,_, the surface
ciency of exciting magnetostatic waves at fieldg<Hg_,

f, MHz
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200
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350}
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.——>r/*,,
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150
100
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(=

150
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FIG. 4. Dispersion curvei(k) for surface(curvesl-6) and volume(curve
7) magnetostatic waves with a linear strip symmetric domain structure "hwagnetostatic waves characteristic of a saturated (fig.
film No. 1 (* field H, applied along the (10) axis of the film,O field
H, applied perpendicular to the (@} axis of the film: (1) for region Sg;
with Hy=6 Oe;(2) for regionS,, with Hy=26.5 Oe;(3) and(4) for region
S with Ho=6 Oe andH,=26.5 Oe;(5) and (6) for region Sg; with
Ho=11 Oe andH,=27.5 Oe;(7) for regionVsx, with Hy=39.3 Oe.
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surface magnetostatic waves were also excited in the film.
coefficient for these waves at different magnetization fields

magnetostatic waves with a low frequency boundgyyin

the spectrum are only slightly higher than the average elec-
tromagnetic pickup level,, (Fig. 5. As H, was raised the
frequency bands and excitation efficiency of the surface
magnetostatic waves gradually increagéid. 4a—d, while a
narrow band in which surface magnetostatic waves were not
excited appeared between the initial portion and the rest of
the spectruniFig. 50 and beginning at fieldsl ;=46 Oe the
initial portion of the spectrum was no longer observed. For
59 Oe<H <62 Oe, there are two other regions in which
surface magnetostatic waves exist: at frequencies of 1550—
1620 MHz with an initial frequencyf,, and 1000—-1200
MHz with an initial frequencyf,; (Fig. 58. Thus, for
H,_,<Hy<Hg,three regions in which magnetostatic waves
exist were observed,, S,,, andS, 3. The equiphase curves
for these regions are shown in Fig. 3a. Fy=H,= 62 Oe

the film was magnetized to saturation and instead of the re-
gions S,1, S,», and S,3, there was a spectrum of surface

5f; the regionS,; of Fig. 33 occupying the band 990-2400
MHz, in agreement with theor}?. Note that, despite a break
at the pointHy=Hg,, the equiphase curves for regio8g

andS,; (see Fig. 3porganically join the equiphase curves
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~45 d FIG. 6. Dispersion curvei(k) for surface magnetostatic waves in film No.
-50 fr 1 for the regionsS,, (curves1-5), S, (curve 6), Sg, (curve 7, *), Sk,
jg " (curves8 and9), S" (curve 10), andSL,, (curve 11, O) with the following
_s0}¢ values of the magnetic field, (* field H, applied along the (1a) axis of
the film, O field H, applied perpendicular to the (@} axis of the film)
-55 i
b " (09): (1) 35.7,(2) 38, (3) 50.1,(4) 54.9,(5) 59.7,(6) 59.7,(7) (*) 62.2, (7)
‘gg ) (O) 69.5,(8) 36.9,(9) 39.1,(10) 39.5.
- 1
-50 M
=55 Jat _ .
s YT for the frequencies. The curvé$, andf,; bound the region

900I I12I00. I 1600 20JOO. 2400

£ MHz that corresponds to the experimentally unobserved waves

with k<k,;. kn; varied over=50-150 cm? for fields in
the range=45—-60 Oe.
FIG. 5. Amplitude—frequency characteristics of the transmission coefficient In the other studies of yttrium iron garnet films the
for a microwave setup with a distance between transducers of 15 mm an@ropagation of surface magnetostatic waves mostly retained
the following values of the applied field, (Oe): (&) 35.7,(b) 40.5,(c) 45.2,  the same character, but there were also differences. In many
(d) 54.9,(¢) 61.0, and(f) 62.2. films, waves were not observed in the main regitype
S,1) immediately forHy>H,_, but with the appearance of
a nonsymmetric domain structure in the film; thus, in film
for the regionSg,, while the equiphase curves for region No. 2 magnetostatic waves appeared onlyHge> = 19 Oe
Sh> do not merge at the poiil y=Hg, with the analogous and in film No. 3, forHy> = 14 Oe. In these films the
curves for the regiorBs;. Thus, the magnetostatic waves equiphase curves for tHg,; type region looked the same as
observed in region$,; and S,; transform organically into those for film No. 1, but without the initial segment of the
waves that are characteristic of a saturated film, while theurves lying between the straight lingdg=H,_, and
magnetostatic waves observed in reg®p simply cease to  H,=45 Oe(i.e., in these films waves with smak k,,; were
be excited forHy=H,;. not excited in theS,,; type regiong In some films, often not
Figure 6 shows the dispersion curvé&k) for region just a single existence region of the tyfg (which vanishes
S, (curveslb5), regionS,, (curve6), and regionSg, (curve  when the film is saturat@dvas observed to the left of the
7). The dispersion curves for regid,; become steeper as main region for the existence of magnetostatic waves, but
Hq increases; this is apparently a consequence of the irtwo or three such regions distributed side by side, separated
crease in the projection of the average magnetization of thby frequency intervals in which there were no waves. The
film parallel to the field. Unlike the dispersion curvé&) range of fields in which these regions were observed was, as
for a saturated film, in regio,; at fields 45 OecHy<<62  a rule, wider for the other films than for the one described
Oe (curves3-5, Fig. 6) and in regionS,,, (curve 6, Fig. 6 here(for No. 2 regions of this type were observed for 24 Oe
the f(k) curves for films with a nonsymmetric domain struc- <H;<35.5 Oe and for No. 3, for 14.5 GeHy<24 Os, the
ture begin not ak=0, but at somé,,; andk,, which depend minimum values ofk (type k,,) at which the dispersion
on Hy. In other words, the low frequency limits of the sur- curves for these regions originated always dependet on
face magnetostatic wave spectrum for regi®s andS,,  and varied over 40—200 cm for the different films, and the
(thef,; andf,, curves in Fig. 3acorrespond to waves with width of the range of wave numbers for these dispersion
k # 0.(Thef,; curve coincides with the equiphase curve for curves could be as high as 150 ¢thn(e.qg., for No. 3. In
k=0 only for 35 Oe<Hy<45 Oe) Approximating the exactly the same way, the range of fields within which mag-
f(k) curve for regionS,; (curves3-5, Fig. 6) to its inter-  netostatic waves were observed in regions of t#pe was
section with the ordinaté, we obtain the frequenciefy,;;,  wider for some of the other films than for film No. 1. Thus,
n14s Tnis, - .. in the surface magnetostatic wave spectrumin film No. 3 waves were observed in a tyfgs region for
which would correspond to waves witt=0. The dashed 18 Oe<H,<24 Oe, with waves having 101 cm<k<208
curvef/; in Fig. 3a has been constructed from these valuesm ! being observed aH,=18 Oe, waves having 65
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cm 1<k<179 cm! being observed at,=20.5 Oe, and In the other yttrium iron garnet films that were studied,
waves havind< 120 cm ! being observed dt,=23.5 Oe. the propagation of surface magnetostatic waves mostly re-
We now consider the propagation of magnetostatidains the character described above. ThUS, in some films with
waves when the films were magnetized by a fidlgperpen- @ Symmetric domain wallfo<Hs) the efficiency of wave
dicular to the[110] axis. excitation in the low frequencsp,; type region was much
lower: for example, in film No. 2 magnetostatic waves with
k<15 cm ! were observed in the 235-255 MHz band with
overall losses of=—53 dB. In the high frequenc$., type

In fields Hy< Hé with a linear strip symmetric domain
structure in film No. 1 Hg =39.3 Og, two regions for exci-
tation of surface magnetostatic waves were obser&g: 4 ; | ,
and S, lying at frequencies of 300-500 MHz and 1500— region, magnetostatic waves were not excited at all in most
2100 MHz, respectively. These regions, the low frequenc;})f the test samplesfor example, in sample No.)2 For

i Lo i i
limit fg, for the regionS;; , and the equiphase curves for the Hs <Ho<Hgy, in all the samples of yttrium iron garnet that

. . . . —.were studied, the excitation of magnetostatic waves in the
magnetostatic wave spectra in both regions are shown in Fliﬁ region was similar in charactergto that described above

3b and the dispersion curvégk) are shown in Figs. 4for . .
N P : f ) gs. 4 for film No. 1. However, we note that the equiphase curves
regionS;;) and 6(for regionS;, . As can be seen from these . . . .
for those films in which waves were not observed in the

figures, f(k) for the regionSg; has no discontinuities for : . . . o
) - _ : S S;, type region did not have an inflection poifds in Fig.
fields of 5—-15 Oe and 28-35 QFig. 4, curveb), while it 3b) in the neighborhoodHozHg.

does for fields 15 O€ Hy<28 Oe(Fig. 4, curveb). Surface
magnetostatic waves cease to be excited in the regfipfor
Ho~35 Oe. In fields of 35 Oe H(<36.9 Oe magnetostalic ; ppqpcATION OF VOLUME MAGNETOSTATIC WAVES
waves are not excited at any frequency in the film, but fony vrTRIUM IRON GARNET FILMS WITH A STRIP
Ho=36.9 Oe they appear in regio®, at frequencies of poMAIN STRUCTURE

1570-1750 MHz. This new frequency range for the exis-

tence of surface magnetostatic waves expands quite rapid% i , S A
agnetostatic waves in yttrium iron garnet film No. 1 for the

and forH,=H¢ =39.3 Oe it extends over 1130—2120 MHz. i which th lleH q
At the same time there is a substantial reduction in the damp(Ease N whic the waves propagatg paralletifp(transduc-
s oriented perpendicular to the fidi}). In the saturated

ing as these waves propagate. Thus, at a frequenc : . . .
f=1650 MHz for Hy=36.9 Oe, the losses were52 dB, S{ate a backward volume magnetostatic wave is excited in

while atH;=39.3 Oe they were already 33 dB. It is clear the f'lm' We note at_ once that, of all fche f"”_‘s_ that were
. . AL studied, magnetostatic waves were excited efficiently in this
from the dispersion curvel k) for the regionS, (curves8

and9in Fig. 6) that magnetostatic waves with wave numbers“qeometry only |n.f|lm No. 1. In another two films th? waves
. 0 . were hardly noticeable above the electromagnetic pickup
k below a certain valugg, are not excited and thét, tends

¢ the field hek Iso th oh level (—55 dB), so that measurements could not be made. In
0 zero as e Nield approac (see also the equiphase the remaining films magnetostatic waves were simply not
curves in Fig. 3

, . excited.
In film No. 1 a spectrum of surface magnetostatic waves First we consider the propagation of magnetostatic

. . . . S . 1 €
is excited in the regionS" in fields Hi<Ho<Hs:  yayes for the case in which the film is magnetized by a field
H, along the[110] axis.

(39.3<H,<69.5 O¢ with a low frequency boundarf/- (see

F|g._3b) which always corresponds to waves WO The . At fields Ho<Hg_,, with a linear strip symmetric do-
equiphase curves of the magnetostatic waves for this regiof 4in structure in film No. 1 magnetostatic waves were ob-
merge smoothlywithout discontinuities or abrupt changes in ¢\ o4 at frequencies of 1300—2500 MHz. The regian
slope W'trl the equiphase curves of the waves in reg8  \\here these waves exist, its low frequency lifit and the

at Ho=H;g and they merge just as smogthly with the equiphase curves are shown in Fig. 7a and the dispersion
equiphase curves for the regi@, at Ho=Hgy (see Fig. curvesf(k) are shown in Fig. &curvesl and?2). The dis-

3b), which correspond to the ordinary surface magnetostatigersion curves indicate that forward volume magnetostatic
waves excited, according to thedfin a film that has been \yaves are excited, and this is also confirmed by the fact that
magnetized to saturation. The magnitude of the fitéigwas  \hen the direction of propagation of the wave is reversed the
determined using the equiphase curves for surface magnetgamping does not change. The excitation of forward volume
static waves when the sign of the derivative of the equiphasgagnetostatic waves when there is a symmetric domain
curve fork=0 changegcurvef* in Fig. 3b. It was possible  structure in the film is apparently caused by the quite large
to determineH g, only within =1 Oe, since the sign change projection of the magnetization vector along the normal to
in the derivative takes place very smoothly. The dispersionhe plane of the film in domains with both signs. As can be
relationsf (k) for the regionsS* and Sy, (for Hy=Hyg,) are  seen from Fig. 8, the dispersion curve fég= 6.3 Oe(curve
shown in Fig. 6(curves10 and 11). In accordance with the 1) is interrupted; the spectrum of the excited waves looks
change in the character of the dispersion in the re§ianas  like frequency bands with fairly efficient wave excitation al-
in the regionSy,, whenH, increases the damping of the ternating with bands in which waves are not excited. As the
magnetostatic wave continues to decrease: thus, at a fréield H, is increased, the magnetostatic waves with sikall
quency off =1650 MHz forHy=39.3 Oe the overall losses gradually ceased to be excited, while the excitation bands
in the conversion and propagation of the magnetostaticnerged. ForH,=27 Oe the dispersion curve was already
waves were- 33 dB and folHy;=69.5 Oe,— — 26 dB. continuous.

We now estimate the parameters and characteristics of
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When a zigzag domain structure was present in the filmsurface magnetostatic waves with magnetization of the film
magnetostatic waves were not excited. along the[ 110] axis). Thus, the dispersion curvegk) for
When the film contained a nonsymmetric structure, exH,>40 Oe(curve4, Fig. 8 have a discontinuity. The con-
citation of forward volume magnetostatic waves was agairvergence of the equiphase curves with increasing field for the
observed at 1900-2200 MHz, but onIy for fields 35 Oeregion Vn in Fig_ 7a is apparenﬂy caused by the gradua|
<H(<46 Oe(saturation took place di,=62 O¢. The re-  disappearance of the component of the average magnetiza-
gion V,, where the waves exist, its low frequency linfijt, tion perpendicular to the film surface.
and the equiphase curves are shown in Fig. 7a and the dis- At saturation H,>Hg,) backward volume magneto-
persion curved (k), in Fig. 8 (curves3 and4). The disper-  static waves were excited in the regidh, in accordance
sion curves in the frequency range occupied by magnetoyith theory™ (not shown in the figune
static waves were much less steep than the analogous e now consider the propagation of volume magneto-

parameters for forward volume magnetostatic waves excitegiatic waves when the films are magnetized by a fild
in the film with a symmetric domain structure. Beginning at perpendicular to thg110] axis.

fields Hy=40 Oe, the efficiency of exciting forward volume In fields Ho<H. when film No. 1 had a linear strip

magneto;;[atlc waves 1 W't,h wave nurnberssymmetric domain structure two regions for excitation of
; e50S aclzgek<a|;jzthlé)(; a(\:nTe ﬁgleégr:l)sra;grs trs}gn;frlggggg?gn LfMagnetostatic waves/; andVs, were observed: one in the
band 1300-2850 MHz and the other in the band 100—200
MHz. The equiphase curves and low frequency limiggsand
f+, for both regions where these wave exist are shown in Fig.

{b'(\)ﬂoHZ 7b and the dispersion curvégk) are shown in Fig. &for
2800 the regionVy;) and Fig. 4(for the regionVy,). These dis-
" persion curves indicate the excitation of forward volume
2600 | 'y,.—"" “ magnetostatic waves in both regions. For fidtig<32 Oe
2400 jﬁm 6 the dispersion curveg k) have discontinuitiescurves5 and
2200 &4,— ,<’2" 6 of Fig. 8, while for H,>32 Oe and for the regiolvy,
2000 =t s there are no discontinuities in ti€k) curves(Fig. 8, curves
1800 "'\4'_‘ ﬁ'ﬂfjﬁ’* 7-9, and Fig. 4, curve). With increasingH, the steepness
1600 ! 'w // T of the f(k) curves always decreases. Ne#g=27 Oe the
1200#s et Y excitation of magnetostatic waves in the film ceases com-
1200"{5 pletely (except for a narrow band segment near 1350 MHz
0 200 200 600 300 with k<50 cmi'%). In fields Hy>32 Oe in regiorVy, mag-
k, cm- netostatic waves with<k; are not excited wittk;; rising

from 130 to 240 cm?! as the field is increased. In region
FIG. 8. The dispersion relationk) for forward volume magnetostatic Véz. on the other hand, magnetostatic waves \ki?ﬂ’kéz are

waves in film No. 1 for region¥ (curvesl and2), V,, (curves3 and4), and : Ll e =1 :
VL (curves5-9) with the following applied fieldsH, (08 (* field Hq not excited withkg, rising from 20 to 100 cm™ as the field

applied along the (1a) axis of the film,O field H, applied perpendicular is increased. . .

oy . In the second field intervald; <H,<Hg,, magneto-
to the (1 D) axis of the film: (1) 6.2,(2) 27.3,(3) 35.7,(4) 44,(5) 13.2,(6) ) h s '0 sat’
26.3,(7) 32.2,(8) 37.4, and(9) 38.3. static waves were not excited in the film.
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6. ANALYSIS OF EXPERIMENTAL DATA specified by thg 111] axes nearest to the direction Hif,.

In comparing the experimental data obtained for magneWhen Ho=Hs_ it becomes favorable for them to orient
tization of yttrium iron garnet film No. 1 parallel and perpen- themselves along these axes; the domain boundaries also ori-
dicular to the[110] axis, it should be noted that the €nt themselves along these directions and a zigzag domain
equiphase and dispersion curves for surface magnetostafigructure develops in the film foHs ,<Ho<H, . For
waves in regionsSy, and S} are substantially the same in Hz-n<Ho<Hsa the vectorsM, and M, appear to rotate
character forHo,<H. ,=28 Oe: the equiphase curves for 29ain in the plane passing througtandHy , but because of
the samek (whenk< 80 cm 1) with the same fieldsl, have the higherH, a nonsymmetric domain structure develops in
essentially the same steepness and lie at the same frequendi§ film. o _

(see Figs. 3a and 3bThe same can also be said about the ~ 11€ above remarks implies that only for fields
characteristics of the forward volume magnetostatic waves ififo=Hs-z can the characteristics of the magnetostatic waves
regionsV, and Vi, when Hy<H,_,=28 Oe(see Figs. 7a for the cases When tHel 10] axis is perpendicular and par-
and 71. Since the dependences of the peridgsand T, of  allel to Ho coincide to a substantial degree.

the domain structures also are essentially the same for 1he above discussion of the change in the character of
Ho<Hs_, (see Fig. 2, we may conclude that the local mag- the magnetic ordering in yttrium iron garnet films is basically
netizationsM; andM, of both kinds of domains in a sym- NypPothetical and does not explain the many experimental
metric domain structure have essentially the same projed€Sults described earlier. In particular, for example, it is un-
tions on the normal to the film surface and on the direction of/€&" Why the initial frequencies of the spectra of surface
Hq, for both parallel and perpendicular orientations of theMagnetostatic wa\r/]e; |rr1]a f||hm with af_roniymrr]netr[l)c domain
[110] axis of the film relative tdd, and, apparently, that the structure are much higher than in a fiim that has been mag-

vectors themselves are identichli =M+ andMb=M; for netized to saturation. o
Ho<H._,. It is easy to show that these data cannot be explained in

terms of a theory which employs averaging of the magnetic

In order to explain the differences which are neverthe- . .
; - ermeability tensor over all the domairiSee Refs. 1, 3, and
less observed in the characteristics of the magnetostat ) ) . .
—7, for examplg. With this approach, operating with the

waves for perpendicular and parallel orientations of theaverage effective magnetization and average effective mag-
[110] axis of the film relative tdH, (such as a slight differ-

. . ) netizing field, we can use the standard dispersion relations
ence in the behavior of the equiphase curves of the surfa g P

. , . r magnetostatic waves. With the aid of these, using ap-
magnetostatic waves fae>80 cni %, the existence of addi- g g ap

i > A proximation methods, we can obtain good agreement be-
tional regionsSg; andSgz when the{ 110] axis is parallel to  yeen the calculated and experimental curves. It is quite

H,, etc), we shall examine how the magnetic ordering of thegimple to guess the shortcomings of this approach: estimates
film changes as it is magnetized. The magnetization of theyr syrface magnetostatic waves show that an initial fre-
film, Whic_h has an easy axis anisotrqpy norm_al to t.he planequency for the spectrum on the order of 1500—2000 MHz
can be viewed simply as a change in the orientation of th‘%typical of many experimental dependences given in this pa-
magnetizations of the domainl,, andM, from a position ey at an average magnetization of less than 175@V@r-
parallel to the easy axid(; directed alongr andM, inthe  54ing over all the domains cannot yield a value exceeding
opposite direction frorm) H, to a position parallel to the 47M, for pure saturated yttrium iron garnetan be ob-
applied field M4||Ho andMy|[Ho). In the first case, when tained only with the aid of fields!, of magnitude 300-500
the [110] axis is perpendicular tdd,, the vectorsn and  Oe and not the 5-70 Oe used in the experiments, while in
Ho and the{ 111] axis (the orientation of the vectod; and  order to make the width of the spectrum of the volume mag-
M,, along which the magnetic energy of a yttrium iron gar- netostatic waves as large as in curdeand5 of Fig. 8, the

net crystal is reducedie in a single plane, so that all the “average effective magnetization” should be on the order of
changes iM; andM, asH, is increased will also take place 6000 G. Thus, although models employing “averaging” ap-
in a single plane. In the second case, when ] axisis  parently can yield fair agreement with experiment, they can-
parallel toH,, the vectorsn andH, and the typd 111] axis  not provide a reasonable physical interpretation of the result-
do not lie in a single plane. Within a certain range of fieldsing average effective magnetization and field or explain the
0<Ho<H,_,, however, the change in the vectdvs; and  impossibility of exciting magnetostatic waves when a zigzag
M, asHy is increased nevertheless takes place in a plandomain structure exists in the films, the absence of waves in
passing through andH,. This also explains the coincidence certain ranges of wave vectdksthe discontinuous character

of the characteristics of the magnetostatic waves in this rangef the spectra, and the simultaneous excitation of magneto-
of fields. Nevertheless, the closeness of [th&1] axes to a static waves at different frequencigén Fig. 7b magneto-
plane passing throughandH, may lead to the formation of static waves are excited at frequencies of 100—-200 MHz and
domains of closure that cannot be seen in the microscope ardd00-2100 MHz for 33 Oel Hy<<39 Oe)

have magnetizationM; and M, oriented along thg 111]

axes nearest to the direction Hf, and, apparently, are the

reason for the differences observed in the characteristics df CONCLUSIONS
the magnetostatic waves in the first and second cases. As An experimental study has been made of wave processes
H, is increased, the vector,; andM,, which lie in a plane in tangentially magnetized unsaturated films of yttrium iron
passing througin andH,, come ever closer to the directions garnet with regular symmetric, honsymmetric, and zigzag
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Two-pulse and three-pulse echoes in powdered yttrium and bismuthThighperconductors are
investigated to determine the dependence of the signal amplitude on the magnetic field, the
temperature, and the gas pressure. The temperature is measured as a function of the relaxation time
of the echo signal. The properties of the long-lived rf echo are studied in detail; it exhibits a
persistent(lasting more than several hoursmemory of a time series of write pulses and a
cumulative storage effect. The experimental results can be explained qualitatively within the
framework of the theory proposed by AsadullBverkhprovodimost6, 545(1993] to account for

the nonlinear motion of vortices associated with sample defects198¥ American

Institute of Physicg.S1063-776197)02203-§

1. INTRODUCTION namics of crystal structure defe&3his work lends qualita-
tive insight into the principal attributes of rf echo observed in
Radio-frequency echo in powders, also known as polarhigh-T. superconducting powders.
ization, powder, or phonon echo, was discovered in the six- Two-pulse and three-pulse rf echoes have been classified
ties and continues to intrigue both experimental and theoretas dynamic echoes. In addition, a long-lived stimulated echo
ical scientists to the present day. The echo was observed tmas been observed in powders of certain materials, where it
powdered piezoelectrics, ferroelectrics, ferromagnets, andccurs under the influence of a read pulse even after a pair of
normal and superconducting metéee the surveys in Refs. write pulses has terminated. This memory effect of a time
1 and 2. By the nature of the dynamics of these objects, theseries of exciting pulses is retained in the sample for a very
rf echo effect is classified as an oscillator eédyecause it long time (hours and even days
is a result of the dynamics of a system of nonlinear oscilla-  Here we give the results of a detailed experimental study
tors. of dynamic and stimulated echo in yttrium and bismuth high-
An interesting topic in its own right, polarization echo is T. superconductors; this work has been briefly reported in an
also used as a method for the investigation of physical pheearlier publicatiorr.
nomena. It has far-reaching implications in radiospectros-
copy, specifically in the coherent pulsed radiospectroscopy
of defects in crystals and their powders. As one example,
Romanov and Solovaréhave used rf echo to investigate
the anomalous generation and conversion of acoustic modes The observation of rf echo is methodologically similar to
in the vicinity of phase transitions in ferroelectric single pulsed NMR experiments. The process is well known: The
crystals. nuclear spin system is excited by a train of rf pulses with
The sum total of experimental data indicates that in evspecially selected durations and delays between pulses. This
ery case the phenomenon is attributable to acoustic vibreevent creates rotating magnetization in a coil, inducing a
tions of powder grains driven in resonance by rf pulses. Likaveak emf in it. To maximize the emf, the axis of the coil
all echo phenomena, powder echo is a nonlinear effect; howmust be perpendicular to the external field. The emf has two
ever, the mechanism of the nonlinearity has its own charactexomponents: a time-decaying free induction after each pulse
specific to each situation. and a subsequently emerging echo signal after the pulse
Immediately following the discovery of high- train.
temperature superconductivity, rf echo was observed in high- In the case of the rf powder echo signal as well, the
T, superconducting powders! It is observed only in the application of essentially the same sequence of two pulses
superconducting phase, where the amplitude of the rf echseparated by a time intervalcauses an echo signal to appear
signal is three orders of magnitude times the amplitude ofn the sample at a time after the second pulse. The ampli-
nuclear magnetic resonan¢BlMR) signals in these com- tude of this signal decays with time with a characteristic
pounds(the echo is scarcely observable in the normal phaseaglaxation time of the order of a few tens of microseconds
since highT . superconductors are poor mejalBundamen- (by analogy with NMR, it is denoted by,, i.e., the longi-
tal to the rf echo phenomenon is the question of what kind ofudinal relaxation timg and when a third sensingead
mechanism underlies such strong enhancement of the effeptilse is transmitted after a time much greater than a
in superconductors and what is the relationship between thgtimulated echo signal appears, again after a timéhe
superconducting and acoustical properties. In 1993 Asadullifundamental difference of rf echo in powders from the NMR
proposed a theoretical description of rf echo in highsu-  signal is its nonresonant character: For exciting pulses of a
perconductors, based on the nonlinear character of the dgiven frequency it occurs in any magnetic field.

. EXPERIMENTAL APPARATUS
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Thermometer

FIG. 1. Apparatus and circuit for the mea-
surement of rf echo in highTsupercon-
ductors. a Placement of the rf circuit in
the cryostat; b schematic view of the
heater and attached thermometer;ca-
cuit schematic: 1l exciting pulse genera-
tor; 2) preamplifier.

T

The measurement arrangement is shown schematicallyrevent the evaporation of helium and the formation of a
in Fig. 1. A magnet with superconducting coils is used totemperature gradient in the vessel.
generate a magnetic field. The rf coil is a hollow Teflon A sinusoidal signal from an rf oscillator is sent to an rf
cylinder of length 22 mm and diameter 7 mm with 25 turnspulse shaper, whose second input receives square-wave
of 0.3-mm PB/ wire wound around it. The axis of the coil is pulses from a programmable pulse generator. The pulse
perpendicular to the external magnetic field and has an inshaper output signal consists of pulses of the same duration
ductancel ;=3 uH. The investigated powder is packed in- as the square-wave pulses but with an rf sine wave carrier.
side the coil. In addition to the powder, a Nichrome heatefThe pulses are sent from the shaper to an rf power amplifier,
wound on a copper form made from two crossed coppewhich energizes the excitation circuit. The divider diodes
plates of thickness 0.2 mm is also placed inside the coil td, , are open at the instant of transmission of the rf pulse,
create a uniform temperature in the powé@ege Fig. L The acquiring a voltage drop-0.7 V. Since the capacitance, C
heater winding is bifilar. Also contained inside the coil is aof the sensing ,C, circuit is shunted by the diodes;[p, the
semiconductor thermometer. The resistance of the thermonturrent in this circuit is determined by the reactance of the
eter is measured by a four-point technique with current re€oil L,. Consequently, most of the power from the power
versal to compensate the thermal emf in the measuremeamplifier is transferred to the resonance-tuned exciting
wires. The coil with the sample enclosed is placed in a vessdl,C; circuit with Q=25. When the electric length of the
filled with helium gas as a heat-transfer medium. The vessatonnecting cable is set bt \/4, optimal conditions are cre-
wall and liquid helium are separated by a vacuum jacket tated for transferring energy into the exciting circuit. The

FIG. 2. Oscillogram of dynamic two-pulse and three-
pulse echoes; not only the second, but also the third
echo is visible.
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FIG. 3. Relaxation timeT, of dy-
namic echo in YBaCuO powder vs
temperature T (H=25 kOe¢ (left
graph and echo amplitudé vs time
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voltage across the coil;Lattains 1 kV in this case, and the rf The echo amplitude is a maximum when the rf pulse
field isH_=25 G. lengths are equal, and its width increases as the duration of

The preamplifier and the receiver operate at saturatiothe sensing pulses increases. A secondary echo is observed
during transmission of the rf pulse. The decay of the rf volt-for short time delays, as seen in Fig. 2.
age to the 0.7-V level requires a time of abouu8, after As the time delay between pulses is increased, the echo
which the diodes B, close and disconnect the power ampli- amplitude decays with a time constaft=35 us, which is
fier. The preamplifier has a high-resistance input and a gaigpproximately the same at temperatures from 4.2 K-80
equal to 10. A YaS-54 spectrum analyzer is used as the f, and thenT, begins to decread€ig. 3). It is evident from
oscillator and receiver. The amplifier and the receiver leavérig. 3 that the decay of the echo amplitude with increasing
the saturation regime 1@s after the pulse. Consequently, time delay is exponential.
although not normally recommended, the time delay between When a third pulse is sent to the input, a stimulated echo
exciting pulses is made shorter than this value. Without exis observed, as seen in Fig. 2. Here the time delay between
citing pulses the elements;|. C;, and G form a single the first pair of write pulses and the third, read pulse can be
series resonant circuit. The preamplifier and the receiver aninuch longer than the decay time constdpt of the two-
plify the voltage formed across the capacitoy @hder the pulse echo. The long-lived stimulated echo does not vanish
influence of the sample-induced emf in the cojl. L even after the pair of write pulses has terminated.

The signal from the receiver is sent to a V9-5 gated  Both the echo intensity and the relaxation time depend
voltmeter, whose gate is controlled by a programmable pulsgignificantly on the pressure of the g&lium in our experi-
generator. The gate is visually adjusted to the maximum ofments used to fill the capsule containing the powder; the
the echo signal by means of a dual-beam oscilloscope, whodegher the gas pressure, the lower is the echo amplitude
two beams provide sweeps for the receiver signal and th&-igs. 4 and 5 These measurements offer further evidence
gate pulse. to the effect that the phenomenon is associated with acoustic

On the order of 19 ceramic grains of diameter Vibrations of the sample powders.
~100m were used to observe the echo in YBaCuO and Both the dynamic and the stimulated echo die out with
BiCaSrCuO powders. The powder was prepared by crushintjicreasing temperature and exist only in the superconducting
a polycrystalline sample and then screening fine grains from
coarse grains by means of two metal screens with different

mesh sizes. T.us
No echo of any kind was observed for a powder sample 2’
containing~ 10°— 10 grains of diameter 1 mm or smaller. 30 ' ' '
Instead, a highly erratic “ringing” was visible after each rf
pulse as a result of beats generated by different powder-grain 40 1

oscillators.

30
3. EXPERIMENTAL RESULTS

When two successive rf pulses of frequeneg0 MHz, 20
power ~100 W, and duration-5 us are fed into the reso-
nant circuit containing the powder, a strong dynamic echo
signal is observed. The rf frequendyis very close to the 10
estimated acoustic resonance of the experimental powders.
Indeed, if the characteristic grain diametespans one half-
wavelength, then it satisfies|=A/2=s/2 f, where
s=(3-4)-10° m/s is the speed of sound. At a frequency
f=2.10" Hz the resonance grain diameter must in fact be ofig. 4. Relaxation time vs helium pressure for YBaCii@=25 kOe,
the order of 10Qum. T=4.2 K).

—t

0 100 200 300 400

P, torr
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FIG. 5. Intensities of two-pulse®) and three-pulse@) dynamic echoes
vs ambient pressure of the géwelium). ] ] ]
quence of two rf write pulses separated by a time interval

7<T, is applied, the stimulated echo grows with the same
phase. However, the temperature behavior of the echo antime scales as shown in Fig. 8. It must be emphasized that
plitude differs for YBaCuO and BiSrCaCu(ig. 6), even the characteristic times of this process are not tens of micro-
though the superconducting transition temperatures of botheconds like the typical relaxation time of the dynamic echo,
samples have very nearly the same value, 90-92 K, a fadiut are measured in minutes, i.e., the time scale of this effect
that has been verified both for the initial polycrystalline is 1¢° times greater.
samples and for their powders. More than one, in fact several time series can be written,

Graphs of the echo amplitude as a function of the exteras shown in Fig. 9, where the powder is initially exposed to
nal magnetic field for the yttrium and bismuth high-su-  a pair of rf pulses with a 3@s time delay between them,
perconducting powders are shown in Fig. 7. For both sysand then the spacing of the pulses is approximately doubled.
tems the dependence is essentially linear, although foFwo echo signals are observed after the read pulse. In this
YBaCuO the amplitude begins to increase with increasingsituation the write pulses become read pulses, as is patently
magnetic field at~3 kOe. Note that Petroet al.” have ob-  evident in the given oscillogram. However, slight $%)
tained a quadratic field dependence of the echo amplitudehanges in either the temperature or the external field almost
but their measurements were performed in a narrow range afompletely erase the memory of the time series of write
magnetic fields, only up to 7 kOe. pulses, and the long-lived echo signal disappears.

A characteristic feature of the stimulated echo is the cu- The intensity of the stimulated echo, like that of the
mulative storage effect of repeated inputs of coherent pairdynamic echo, decreases as the ambient gas pressure is in-
of rf write pulses. After a pair of write pulses is cut off, the creased, but at low pressures the quantitigsand U, ex-
amplitude of the long-lived echo decreases by one half irhibit altogether opposite behavior: Wherdasg exactly re-
10-20 s, then after a few minutes it settles into a constarpeats the pressure dependence of the dynamic echo
level U, approximately to 0.4 times the initial vall®,;, and  amplitude,U, increases at first but then begins to diminish
it remains unchanged for at least several hours. When a sas the gas pressure is increaseiy. 10.

A, arb. units A, arb. units
T T

FIG. 7. Echo amplitude vs external mag-
netic field for yttrium(a) and bismuth(b)
- samplegT=4.2 K).

N

20 25
H, kOe H, kOe
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4. DISCUSSION OF THE EXPERIMENTAL RESULTS

. -IG. 10. Amplitudes of stimulated ech@vith the constant input of two
The nonresonant dependence of the echo signal ampl\‘/:vrite pulse$ and long-lived(with the input of a read pulse onlgchoes vs

tude on the static external magnetic field leads to the conclusmbient helium pressure for YBaCu@=4.2 K, H=20 kOa.

sion that it is not related to the rotation of nuclear spins, but

is attributable to oscillations imparted to the diamagnetic

moment of the powder grains by the emf in the rf circuit. Asmensions. This means that spatial modulation of the mag-

mentioned, the acoustical nature of the echo is confirmed bygetic field in the sample interior is extremely weak, so that

the correlation of the frequency of the exciting pulses withthe external field can be assumed to act directly on the elec-

the grain diameter and by the dependence of the echo intetrons.

sity on the ambient gas pressure. The vibrations of the powder grains induce in the receiv-
When rf pulses are applied to a powder, acoustic vibraing circuit an emf that decays within a time 1/A» after

tions are excited in its grains. The electromagnetic generaeach pulse, wherd w is the spread of the oscillator eigen-

tion of sound in normal metals has been studied at considefrequencies. If a second exciting pulse is incident on the

able lengtt?!® The feasibility of generating sound powders after a time, before the grain vibrations have had

electromagnetically in high<Tsuperconductor samples in an time to decay but after they have fallen out of phase, a sec-

external magnetic field has already been demonstfated.  ond, similar decay of the induced emf sets in; after a time
Acoustic waves are generated with the same frequencgr the grain vibration enter back into phase, producing an

as the alternating current in the exciting inductance coil byecho.

virtue of the Lorentz force acting on electrons down to the  Gould? has shown that echo generation in a system of

field penetration depth. The magnetic field in which thevibrating oscillators can be attributed only to their anharmo-

sample is immersed penetrates it as a system of vorticesicity. The occurrence of echo in a system of anharmonic

separated by a distance shorter than their characteristic dbscillators is clearly illustrated by the following simple

FIG. 9. Oscillogram of stimulated echo produced by
two different time series of write pulses: after one series
is written (=30 us) and the time delay between them

is changed tor=50us, the write pulses resume the

role of read pulses and are therefore followed by a
stimulated echo signal.
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model. Let us suppose that we have many nonlinear oscilla- The theory of polarization echo in powders is based on a
tors with distinctly discernible resonance frequencies andhift of the particle resonant frequency due to the defect
that their motion is described by the equation structure of the sample material, in particular to dislocation
1) deformatior? Asadullif has developed the same approach
to account for the echo in highsBuperconductors. Accord-
The behavior of this system under the influence of an extering to the Granato-Leke string theory, the dislocation lines
nal force in the form of a sequential pair of pulses separateth a crystal form a three-dimensional grid. The lines are rig-
by a time intervalr is easily exhibited on a computer. The dly attached at the nodes of the grid and cannot be broken
results of such a simulation are conveniently displayed oway by an ultrasonic field. A dislocation loop is loosely
thex¢ phase plane in a rotating coordinate frafwéere the  pinned in the interstitial space by all possible point defects.
X axis corresponds to vibra.tion.of an oscillator with the mean, the field of elastic vibrationgafter pulsed excitation
frequency and are shown in Fig. 11. small loops of lengtt. vibrate as an elastic string without

When exposed to the first pulse, all the oscillators Vi-genarating from the pinning sites if the elastic stress is small.
brate with the same amplitude and phase regardless of thef,,o |osses and the modulus StepE effect due to these

ILequentcy(Flgf. 11t?|’| atnd aénet\ctrhoscopmt.reSponse appears 'trfoop vibrations are amplitude-independent. The response of
€ system ot oscillators. but then as ime passes, owing 1f, system is essentially nonlinear in this case, and echo does

the different resonance frequencies, the vibration amplitudes
) . . N . not occur.

gradually diverge in phase until the distribution of the direc- . .

4 2 As the amplitude of the stresses increases, the loops are

tions of the vibration vectors becomes completely random

so that the phase diagram simply takes the form of a CirCIé:atastrophlcally broken away from their pinning sites, but the

(Fig. 119 process is reversible: After each half-period of the elastic

Under the influence of the second pulse all the oscilla-wbr"jltions a loop of length breaks away and is repinned t?y
tors acquire the same amplitude increment as in the exciti€f€Cts. The attendant losses depend on the stress amplitude.
tion of the first pulse, and the phase diagram now representsS & dislocation moves under the influence of an rf pulse, it
the same circle shifted along the axis (Fig. 118. If the transfers from one local potential minimum to another. In its
nonlinear ternjthe coefficienty in Eq.(1)] is small(or equal ~ NeW position, initially at least, it is not necessarily pinned by
to zero, in the subsequent evolution of the phase diagranP0int defects and, in that sense, can be characterized as ex-
the average projection of all the vectors describing the oscilcited. It is reasonable to assume that the density of excited
lator motions onto the axis becomes equal to zero, and thedislocations is a function of the elastic stress amplitude and
induction signal in the receiving coil, being proportional to the pulse duration.
the vibration amplitude of the system at the mean frequency, Under the influence of one pair of pulses only some of
becomes equal to zek&ig. 11f. In the presence of nonlin- the mobile dislocation loops make an irreversible jump. The
earity, however, the phase trajectory is asymmetrical, and aapplication of several pairs causes the pileup of such dislo-
echo signal appears after the time cations. This pileup of irreversibly excited dislocations is the

X+ w?x+ yx3=0.
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basis of the cumulative formation of the long-lived stimu- Nt )= af2= a[bG{s, exf (iw;— y1) 7]+ So}
lated echo.

The nonlinearity of the excitation process lies in the fact +nj,®Po]?=B expliw7). (6)
that the dislocation densit), which depends on the ampli- Here and 8 are constants.
tude of the elastic straifs(x,t)| excited by this field, can According to(3), the frequency shift and the variation of

vary during the lifetime of the rf pulse. The variation of {he gamping are proportional to the dislocation density, but
N(|s(x,t)|) influences the losses and dispersion of the elastigccording to(6), the number of excited dislocations depends
vibrations as well as the magnetostrictive contribution 05, the time interval between pulses, so that the variations of
their excitation. the frequency and the damping factor acquire a factor that

We now consider the way in which, according to depends on the spacingof the write pulses:
Asadullin® an echo signal is generated in the case of super-

conductor in the mixed state. We assume for simplicity that A (t)=Awo—Aw; COfw;7),
the exciting pulses are identical and that acoustic vibrations _
. . . t)=Ayy+Ay; cO 7
s(t) of amplitudes, are generated in the powder grains un- Y()=A70+ 47, cOSwy7) _ 0
der their influence. The first exciting pulse is followed by ~ The new frequency and the new damping factor of the

vibrations in time at a frequenay, with dampingy; : vibrations contain phase information about the rf pulse in the
B ) form of the phase of the elastic vibratiors, 7. Now the
S1(1) =S exp (iwy = y1)t]. () expression(4) for the vibration amplitude of the powder

The Lorentz force exerted by the rf current on the vorti-gains assumes the form
ces is transferr_eq to a dislocation assqciated v_vith the_m. We s(t)=(s;+8)exd —iAw cog w,7)]
assume for definiteness that the echo is associated with non-
linear properties in the dislocation vibrations. If the disloca- xexd —Ay cofw;7)]. ®
tions vibrate without breaking away from the weak pinningIt has been shovir3

sites, the only consequence after the input of a second pulsoﬁ] echo signal a short time after the second pulse in a

is an amplitude-independent resonance shift and a change Q)f/stem consisting of a large number of particles with dis-
the damping factor proportional to the dislocation denSitytinctIy discernible resonant frequencies

N:

that this result implies the formation of

A remarkable characteristic of rf echo in powders is the

sy(t)=s¢ exf (iwy— y,)(t—1)], long-term memory effect. We now elucidate the process by
which a long-lived stimulated echo is produced under the
Ay=y=71=CN, Aw=w;~w;=CN, (3 influence of nonlinear mechanisms. We consider a time

wherec, andc, are constants. After the second pulse thewhen the vibrations excited by the first and second pulses

vibration amplitude is the sum of the response to the first anffave decayed, but the memory of these pulses is retained in
second pulses and at a tirte 7 has the form the variations of the dampind y(p;,p,,7) and the fre-
quencyAw(pq,p2,7) of the particle eigenfrequencigp;

s(t) =s1(t) +sp(t) =sp{exf (iwy— y1) 7]+ 1} andp, are the dipole moments of the powder grairghese
. variations are attributable to the irreversible motions of de-
Xex(iwa=y2)(t=7)]. @ fects in the graingdislocations, et¢.under the influence of
If Aw andAy do not depend on the amplitude, it is evident the elastic vibrations.
from Eq. (4) that theith oscillator with frequencyw; # w4 The third (read pulse imparts a dipole momepi; to
merely experiences a phase shift, but the system of oscillaeach grain. As in the case of two-pulse exposure, nonlinear-
tors with a random distribution of; about the mean fre- ity leads to echo generation. The phase memory of the pre-
guencyw, does not acquire a macroscopic moment, and ameding pulses is retained in the density of excited disloca-
echo is not produced. tions. As time passes, the state of the excited dislocations
We now inquire what happens when the system acquireshanges, and in the new position they are gradually pinned
excited dislocations, the number of which depends on théy point defects diffusing toward them and continue the pro-
vibration amplitude. During the second pulse the force actingess of diffusion to other potential minima, thereby breaking
on a unit length of the systefaislocationt+vortex is up the coherence of the state.
. ; By this time, of course, all the elastic vibrations gener-
f=bG{so exfl(iwy= 1) 7+ So} +1j2Po. ®  ated %y the first two pulses have died out. The mer?wry of
The first term in this expression for the force describes théhem is retained only in the damping factgs and the fre-
direct effect of the acoustic vibration& is the shear modu- quencyw,. The third pulse imparts a dipole moment to each
lus, andb is the Burgers vectdr and the second term de- grain, and once again an echo signal appears after astime
scribes the interaction between the rf current in the seconthe damping in the system is amplitude-dependent.
pulse and the vortice® is the number of vortices associated The lifetime of the echo in this case is determined by the
with one dislocationj, is the convolution of the second rf relaxation time of the indicated excited state. The relaxation
pulse with time, andb is the magnetic flux quantum process could be associated, for example, with the gradual
The average number of dislocations shifted from theirpinning of dislocations by point defects diffusing toward
sites (excited dislocationsis proportional to the effective them or with the reverse process of truncation of extended
force, and the substitution of the force expresgi®nyields  dislocation loops. The cumulative storage effect in the re-
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peated input of coherent pairs of rf pulses is associated witkix)/a~0.1-0.2, wherea is the spacing of the vorticgs
the pileup of excited dislocation®r twinning boundarigs  transforming into a vortex liquid® The mobility of the vor-
The erasure of the memory as the temperature and the extdiees increases dramatically when the shear modulus of the
nal magnetic field vary is readily explained in the following vortex lattice becomes equal to zero at the melting point.
model: When the temperature varies, the pinning force It follows from the experimental results that not only do
changes and, accordingly, the vortices transfer to other locahe echo signals vanish long before the transition tempera-
minima of the potential relief of the lattice; when the field ture of our high-T superconductors is reached, but also their
varies, the number of vortices changes, and they can aldemperature dependences differ for the yttrium and bismuth
transfer to other pinning centers, i.e., become rearranged. systems. These characteristic attributes of the generation of
In a superconductor the breaking away of a dislocatiorecho signals are readily understood through the results of
from its pinning site inevitably sets in motion the vortex recent studies of§,T) diagrams: They differ significantly
associated with it, and magnetic flux jumps take place. Irfor anisotropic three-dimensioné&¥BaCuO type and lay-
exactly the same way, any motion of the vortices impartsered(BiCaSrCuO typg high-T, superconductors in that the
motion to defects associated with them. This can happeboundary of the phase diagram for the yttrium system exists
only so long as the unpinning of vortices does not set in at @t much higher temperatures and fields than for the BiCaSr-
some temperature where the coupling between the motionSuO system.
of dislocations and vortices is brokéhThe (B,T) diagram An estimate of the line of irreversibility for grains of
therefore acquires two regions separated by a line of irreversdiameter 100um at a frequency of 20 MHz shows that its
ibility, above which the diamagnetic moment quickly re- position coincides with the curve representing the tempera-
laxes, and the critical current drops abruptly with increasingure dependence of the echo intensity, and the difference in
temperature, both of these effects being associated with the temperature behavior of the yttrium and bismuth powders
variation of the vortex mobility in the highzTsupercon- is qualitatively consistent with the difference in the positions
ductor. The energy of pinning of a solitary vortex by a pointof their lines of irreversibility.
defect can be described by the expression

U,~¢9B2,, (9 5. CONCLUSION

where¢ is the coherence length, which is very smallin high-  we have carried out a detailed experimental study of

T, superconductors,2d<3, andB; is the second critical dynamic and stimulated rf echo in powdered yttrium and

field. This energy must be compared with the energy of therpismuth high-T superconductors as functions of the mag-

mal vibrationsk T, which lead to thermaIIy activated vortex netic field, the ambient gas pressure, and the temperature.

hops from one pinning center to another. The probabifty e have measured the temperature dependence of the echo

of such hops is relaxation time, and we observed a long-lived stimulated
_ echo and its cumulative storage.

Woeexp(—Up/kT), (10 Most of the results can be explained in terms of the
and the ratidJ,,/kT in the high-T; superconductor can be an model proposed by Asadullin, based on the nonlinear char-
order of magnitude lower than in ordinary superconductorsacter of the motion of defects and their associated vortices in
Consequently, thermally activated vortex motion has a sigthe sample. It follows from the temperature dependence of
nificant influence on the magnetic and transport properties ahe echo amplitude that this phenomenon is intimately re-
high-T. superconductors. In conventional superconductorsated to the vortex lattice dynamics and can therefore serve
this phenomenon is observed only near the transition temas an effective method of investigation of the latter.

perature as flux creep. )
The unpinning effect appears as a maximum on the tem- The authors are deeply indebted to V. V. Zhuchkov for

perature curve of the losses in the superconducting Samp%sssta.nce Wlth thg experiments and to Ya. Ya. Asadullin for
when the vortex lattice is set in motion by the external force 'eWwarding discussions. _ _
Data of this kind have been obtained so far in experiments to__T1iS work has been performed in part under the auspices
measure the real and imaginary parts of the magnetic susceft Project 93210 of the State Scientific Program “Supercon-
tibility as well as the speed and attenuation of ultrasoundtuctors

and also from the results of measurements of the current-

voltage characteristics in experiments with a highsuper- "W, P. Mason and R. N. Thurstofeds), Physical AcousticsVol. 16

conducting single crystal vibrating in an external figte, Academic Press, New York—Londd982, Chaps. 4—6.

e.g., Ref. 15 2U. Kh. Kopvillem and S. V. PrantsPolarization Echo[in Russiaf,
The mobility of the vortices can also be regarded as Nauka Moscow1985. _ '

melting of the vortex latticé® Thus, even in a perfect crystal Eié /2]' mzi':”,\;‘ggcg\;\(\{'gggmaﬁse@p“ca' Echo Spectroscofiin Rus-
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when the vibration amplitudéx) becomes sufficiently large,  most 3, 2363(1990. o ’
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We establish how trapped magnetic flux depends on the frequency and amplitude of an
alternating field and how such a field affects the relaxation rate of the flux. We find that the nature
of the flux creep changes in the process and that relaxation of the flux stops after the

external field is switched off. We examine the dynamics of flux relaxation in a ring in the
approximation in which the current density is assumed homogeneous, for various density
dependences of the effective vortex activation energy. The critical current density and the

vortex activation energy are obtained as functions of the external field strength. Finally, we explain
the observed behavior in terms of the different field profiles emerging in the ringl9%

American Institute of Physic§S1063-776(97)02303-7

1. INTRODUCTION ing ring, was placed between the two auxiliary coils. A Hall-

Much research has been done in studying the effect of aﬁffeCt detector and the jungtion of a thermpcouple were
alternating magnetic field on the properties of granulatecpl"’lcetd ?t the cetr_lterf_o]‘dthe nr:g. ;’gggolenorﬁ g?rr]\era}ted a
high-T. superconductortsee, e.g., the review in Ref).IThe constant magnetic mield ‘up 1o €, whiie the low-
research involved studying the complex magnetic Suscept,_nductance coils were used to generate an additional alternat-

bility, the penetration of samples by weak alternating mag-"9 magnetic field with an amplitude of up to 20 Oe. The cell

netic fields? the formation of various current layers by such was placed in a bath of liquid nlt_rogen or helium vapor.
fields® the effect of an alternating field on the current— Measurements were done automatically and were computer-

voltage characteristics of the sampfeand other research. controlled. The error in measuring the magnetic field at the

However, the effect of an alternating field on relaxation phe-”ng,S center amounted to 0.020e, and the sample tempera-

. - 72 .
nomena has been studied less. ture was kept constant to within>610" “K. The rings we

It is known that the presence of weak fields gives rise tooUdied were made of Bi-based ceramic and of granulated
a random network of Josephson junctions in granulated hight BCO films on a sapphire substrate. The dimensions of the
T, superconductors.’ When this problem is studied phe- C&ramic rings were: exte_rnal radiRs~4.8 mm, mternal_ ra-
nomenologically, the system is interpreted as an effectivéiuS Ri~3.2mm, height ~1.4-2mm, and width
medium with a Josephson penetration deptiand an effec- W= RZ_R{; 12-2mm; the current density —was
tive permeability e that allows for Meissner screening of ~1 kA/cm = at 4.2 K; andT.~105-107 K. The film rings
the granules. In fields lower thand; , the first critical field ~had an extermnal diameter of approximately 9 mm, internal
of the granules, the electrodynamics of the medium is dete/diameter of approximately 6.5 mm, tt‘g'r height0.5um;
mined by intergranular currents. Such an approach is valid if’® current density was~11kA/cm < at 78K; and
\;>a(VHo<VHgy), wherea is the size of the granules, Te~98K. _ o o
andH.; andH_, are the first and second critical fields for the ~ First we studied the magnetization of the rings, i.e., the
medium. In such a medium the condition for the existence ofléPendence of the fielB at the center of the ring on the
a critical state|dH/dx|=j.(H), is valid, with the field pen- st_rengthHe of_ the external field generated by th_e solenoid.
etrating the medium in the form of Josephson vortices, whictigure 1 depicts one such dependefcerve 1), with cell-
can move and get pinned at various pinning centers, leadin nfiguration corrections introduced in accordance with Ref.
to various effects in flux creep. . Obviously, up tdH;, corresponding to the critical states

In this work we study the effect of an alternating low- of the ring, the transport current encompasses an ever in-

frequency magneticfield:'() on the magnetic flux trapped in creasing cross-sectionalla.lrea of thg ring, starting from the
ceramic highT, superconducting rings when a JosephsorPUter layer. When the critical state is reached, the field ex-

medium is formed in rings and the amplitude of the alternatPands into the hole of the ring. A further increase in the
ing field is lower than the field capable of completely pen_strength of the external field causes a decrease in current
etrating the sampléing). density. This is evident from the fact that tBevs H® curve

approaches the straight lin@=H®. In higher fields,
H®>30 Oe, the dependence is affected by magnetization of
the granules, which, on the one hand, additionally lowers the
The measuring cell consisted of a solenoid with two aux-transport current density and, on the other, generates a field
iliary coils forming a Helmholtz system, the coils being co- acting on the Hall-effect detector in the opposite direction. In
axial with the solenoid. The sample, a highsuperconduct- high external fields and at high temperatures the field gener-

2. EXPERIMENT
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FIG. 2. The transport current density (O) and the relaxation rat&’

0 10 20 30 (A) as functions of the external field strengt#f, found from the data on

the relaxation of the fiel@ at the center of the ring whe® is introduced

into the ring at 37 K: the solid curve represents the results of calculations by
FIG. 1. Magnetization of the ring by a constant magnetic fiéfd curve 1 formula (2), and the dashed curve the results of calculations by the formula
represents the behavior of the figklat the center of the ring ad® in- S'=AH°®, with A=4x10"* Oe *.

creases; curv@ the behavior ofB at the center of the ring afted® is

switched off; the straight linB=H?® represents the readings of a Hall-effect

detector in the absence of the rinly; stands for the penetration field jong
strength corresponding to the critical state of the rig; stands for the jo(H®)= 7 (3)
value of H® at which maximum flux is trapped; anid=77.3K. H>+ Ho

with the fitting parameters jo,=420.4 Alcnt and
Ho=36.50e =37K); see Fig. 2. Note that there is a

ated by the granules exceeds the field generated by the trarf@nge of weak fields in whicfy, changes little. Figure 2 also
port current and creates several effects, including revers@epicts the dependence of the relaxation &iteon the ex-
hysteresis loop. The curve2 in Fig. 1 represents the ternal field strength.
trapped field after several seconds-4s) following the Figure 3 depicts the curves representing the relaxation of
switch-off of the external field. We see that in fields the constant component of the trapped fiBld) after H® is
He<Hy; the flux is not trapped, in the rangt,;<H°<H* switched off, in the absence of an alternating field and when
the flux is trapped only partially, and Bt®=H* the trapped such a field is switched on at the moment of trapping
flux reaches its maximum value, remaining almost constan_&T:78 K). Without the altgrnating_field .the relaxation curve
in high fields(the observed small decrease in flux is due toiS described by the following relationship:
granule magnetizatiSh Note that for all the sampledoth
bismuth and yttriumthe curves exhibit similar behavior, dif- B(t)= Bo[ 1-S'In
fering only in the value of the characteristics.

The time dependence of the figkdtrapped at the center
of the ring when the field is turned of& relaxation curvgis

; 4

t
14—
"

BIB
generally described by a function characteristic of collective 1_00".
creept1? ]
B(t)= i 1
U= Hrsinirun]? @ 0951
where By is the value of the field at time zer&' is the
relaxation rate, and is the characteristic relaxation time.
When the external fieltH® is switched on, the time de- 0 90_' ]
pendence oB(t), i.e., the introduction of the field into the )
ring, is described by the following formula: 4 2
t 1 3
Hé—B(t)=(H®—Bg)|1+S'In| 1+ —]|. 2 0.85 . . . . .
®=( o ( T @ o 2 4 6 8 10
Inz

To study the effect of an alternating field on the relax-
ation mode, we first found the dependence of the currentic. 3. Relaxation of the trapped fieRl in the presence of an alternating
density in the ring at time zeroj{), calculated from the magnetic field with an amplituddi® after H® has been switched off
relationshipj, « H®— By, on the external field strength. This (T=77.3K): curvel represents the behavior 8f without the alternating
1 . . . . 0: _

dependence oRie, experimentally found from the param- field; curve‘2_r<_3presents thee behavior BfatH 2.9 Oe,y=1100 Hz, and

. . . . the same initial value oH® as for curvel; and curve3 represents the
eters of the relaxation curve during the introduction of thepepayior of8 at HO=2.9 Oe,»=100 Hz, and the value df® correspond-

field into the ring, is described satisfactorily by the function ing to the case of curve.
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FIG. 4. The effect of introducing an alternating field on the relaxation of ther | 5. The fields trapped by a ring after®

. ) ; is switched off as a function
constant component of the trapped fiddd at 77.3 K. The fieldH® is

: et - ) . of the amplitudeH® of the alternating field. Her8, is the field trapped at
switched off, and the arrows indicate the various timeg; dhe amplitude H°=0, andH°(B=0) is the amplitude of the alternating field at which the

is H=1 Oe and the frequency is=7 kHz; att, the alternating field is i fig|q trapped by the ring vanishes. The solid curve corresponds to the results

switched off, att; the amplitude isH°=2.50e and the frequency is of calculations by formula8). The experimental points for six different

v=TkHz; and at, the amplitude increases t6°=3.11 Oe which the fre-  frequencies in the interval from 10 Hz to 20 kHz fit the calculated curve if

quency isy=7 kHz. The dashed straight line separates the regions withtor each frequency we take the corresponding valud 4B =0). The inset

different scales along the horizontal axis. shows the dependence of the average derivat{@B,)/dH° on Inv in the
interval 0.5<H%H%(B=0)<1.

with the parameterssS’=0.0133,B;,=8.77 Oe, andr=1
(curvelin Fig. 3). Note that this dependence is the limit of
the function(1) as 18—1 for small values ofS’. In an

on; see Fig. #on the amplitude and frequency of the applied
alternating field. Clearly, the experimental points for all am-
plitudes and frequencies in these coordinates fit on a single

a_\lternating fielfj the relaxafié)n curve is described bz the func'curve. Note, however, that the effect of the frequency on the
tion (1) with S'=9.48<10"°, Bo=7.18 Oe, and =1.83  jojyativedB/dHC is weak(see the inset in Fig.)5
for an alternating field amplitude equal to 2.9 Oe and a fre-

quency v= 1100 Hz (curve 2), and with S'=1.48<10 2,
By=7.31 Oe, and ¥=1.26 for the same alternating field 3. DISCUSSION
amplitude and a frequenay= 100 Hz(curve3). The param- Before we consider the effects of an alternating field on
eter calculated from the formule=S'j W(dH®/dt) ! (see  a trapped magnetic flux, let us discuss the characteristics of
Ref. 12 was equal to 0.06 s. As Fig. 3 shows, the introduc-the Josephson medium realized in the samples. As an ex-
tion of an alternating field transforms the logarithmic depen-ample we take the results for one ceramic risge Fig. L
dence(4) into the nonlinear dependen¢®). For H®=H* the curve2 reaches a plateau, which corre-
Figure 4 depicts the effect of an alternating magneticsponds to the maximum value of the trapped flux. We find
field on the relaxation of the constant component of the fieldH* ~1.8H,;, a result that is in approximate agreement with
B trapped by the ring. Up to timg the fieldB relaxes with  the calculated one. Indeed, reasoning on the basis of the
arateS’=0.015. Att, an alternating field with an amplitude critical-state equation and the usual assumptions concerning
H°%=1 Oe and a frequency=7 kHz is switched on, which thej. vs H® dependence, one can show thet=2H,; (see
leads to a sharp drop i, after which the field relaxes until Ref. 5. When the strength of the field is further increased,
time t, with a rateS’=0.017, provided that this relaxation the value of trapped flugcurve2) slowly decreases because
process starts at;. At time t, the alternating field is of suppression of the critical curretthe depinning curreit
switched off over~0.5-1s, after which the trapped field by the external field due to degradation of the Josephson
ceases to change, within the limits of sensitivity of the meamedium and granule magnetizatidiVe observed a similar
suring device §B~0.004 Oe). As a result, one can observebehavior of the curves for the YBCO film rings.
an interesting phenomenon—the flux in the ring becomes The variation of the relaxation rate of a magnetic flux in
trapped. In the course of several hours no change in this stateceramic ring in the absence of an alternating field, which
was observed. At timet; an alternating field with we studied in our description of the Josephson medium, is
H%=2.5 Oe andv="7 kHz is switched on, there is again a depicted in Fig. 2. FoH®<150 Oe theS’ vs H® dependence
sharp increase iB, and relaxation sets in once more. At time can be described by an expression of the f@hs= AH®
t4 the amplitude increases 1°=3.11 Oe B drops still fur-  (A=4x10* Oe 1). For H®<H,; the method does not al-
ther, and relaxation continues with a r&e=0.017. low the dependence @& on H® to be detected, since in this
Figure 5 depicts, in relative units, the dependefat®r-  range of field strengths the contriimportant of the field gen-
acteristic of all ring$s of the constant component of the erated by the relaxing current itself is important. There are,
trapped fieldB (the value to which the fiel® rapidly drops  however, certain experimental indications, obtained from
after an alternating fielti with an amplitudeH® is switched  single-crystal studie¥ that for H*<H, the S’ vs fH® de-
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pendence degenerates into a constant. In a FgldH, at HO kgT

37 K, the weak Josephson junctions in the medium are de- i(t)=io[ 1- Wio sin wt— o

stroyed. This value oH, agrees with the value dfl., ob- 0 0

tained in measurements of the magnetization of rectangular

rods fabricated from the same ceramic matétighis value Xln } (6)

of H,, has a corresponding sizé=+®y/H ,~0.7 um,

which in order of magnitude coincides with the average size

of a grain(granule, with @, the quantum of magnetic flux. Here we writeC=(U,/kgT)H% oW with allowance for the
As is well known!? if the Kim—Anderson model is ap- fact thatjo,~j.. Averaging this solution over the period

plicable, i.e., if creep in a thin film generates an electromo~yields

tive force whose value per unit length is

Eo Uo @j
== Po - orl )
where
then forkgT/Uy<<1 and relatively long times the relaxation
rate is given by the following expression:

wt
1+CJ exp(—C sin wt)d(wt)
0

, , kT
(J(t)>=Jo[1—U—Oln[1+G(H°)wt]], )

C (ot
G(Ho)z—f exp(— C sin wt)d(wt).
KeT wtJo

ajo’ The solution implies that with the passage of time the current
generating the flux trapped by the ring decreases logarithmi-
cally, as is the case with ordinary cregee Eq(4)), but we
haver=[G(H% w] ! rather than unity. In addition, this so-
lution provides a qualitative description of bursts of the
trapped flux escaping when the alternating field is switched
on (see Fig. 4. Choosing the characteristic values of the
kgT He2 parameters of, say, one bismuth ring at 77K,
:AJOO(—t)H( +H_§) kgT/Ug=1.6X10"2, W:2><10’3m,' gnd jo=3.4
x 10°PA/m?, we found that an alternating field of frequency
By definition, the critical current densiifhe depinning cur- 100 Hz with an amplitude-|°~HCj= 11.4 Oe in the experi-
rend j. is equal toUy/a. In our case we can assume that ment leads to complete destrapping fiitixe field is pushed
jo~ic-  Then Ug=~joa=kgT/S'=kgT/AH® when  out of the hole of the ring On the other hand, if we use Eq.
H®>H;. Note that in Ref. 8 it was established that in mag-(7) and determines(11.4 Oe) by numerical integration, we
netic fields induced by the critical current itself, we havefind that it takes roughly one second for the field trapped by
S’ =« T, with the result tha# is proportional toT andUg is  the ring(the current in the ringto drop from 8.63 Oe to only
temperature independent. An estimateEofrom the data on .86 Oe, while it takes a field of 76 Oe to achieve complete
flux relaxation at 37 K yield&€=(1/2)Ru¢B,S'/(t+ 7). At detrapping of the flux in the course of several seconds, in
t=0 and 7=1 we have Ey=(1/2)XRu¢BsS'~3  view of the almost exponential rise in the functi@(H?).
X1078 V/m, where R is the mean radius of the ring, The discharge of the trapped field caused by introduction of
S'=0.015,B,=10 Oe=786 A/m, anduo=4mx ~"H/m. an alternating field of amplitudel® occurs in a relatively
To explain the effect of an alternating field on the be-short interval, the time it takes to introduce the figlc.,
havior of the magnetic flux trapped by a ring we attempted to~1-2 9 see Fig. 4. Calculation of the discharge by Eq.
describe our experiment using the Kin—Anderson model withat timet, in Fig. 4 has shown that such a step on the relax-
Uer=Uo(1—j/jc). This model allows for an analytical so- ation curve appears when an alternating field with
lution for a thin ring in an approximation in which the cur- H°=0.04 Oe andv=7 kHz is introduced, while in the ex-
rent density is homogeneous akgT/Uy<1. Suppose that periment the amplitudei® amounted to 1 Oe. We also note
the amplitude of the alternating field is sufficiently high for that the solutior(6) for an infinitely thin ring contains a term
the field to extend into the hole of the ring. Then the elec-with sinwt, as a result of which the alternating field reaches
trodynamics of the ring is described by the following equa-the center of the ring at any amplitué. This, however, is

S/

Here U, is the vortex activation energyy is a coefficient
that accounts for the lowering of the barrier for vortex hop-
ping due to the Lorentz force, arjg is the current density
corresponding toBy in (1) or to H®*—By in (2). For
H®>H;, according ta(3), this yields

a

tion: not the case for a real ring of widiV, and we can examine
di E U wi the effect of this solution on the field at the center only from
2R L_J + exd ——2 |ex _J) that outer part of the ring that is penetrated by the alternating
dt = 2 kT kgT field.
+ 1y mR20HO sin wt=0, (5) Thus, the model provides a qualitative description of the

behavior of the samples in an alternating field, but for better
Here the dimensions of the ring were taken into account onlyagreement with the experimental data it is advisable to take
by the ring inductancd = woRW?2, whereR is the mean into account the finite dimensions of the ring and the result-

radius of the ring, andV is the width of the ring. ing current and field distributions. Similar results concerning
The solution of Eg.(5) with the initial condition the effect of an alternating field are achieved by using the
j(t=0)=]¢ has the form collective creep model
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B

Uo [{io explanation. It is knowh!*that relaxation of the trapped flux
Ueﬁ:kB_THj_ in a Josephson medium occurs because of the motion and
emergence of Josephson vortices with a certain diffusion co-
within the same approximations. Combining this model ancefficient D as a result of the existence of a field gradient.
the method of Gurevich and Brandwe arrive at the follow- ~ Strong variation oD requires a frequency of the alternating
ing expression for the time dependence of the current densitfjeld that is comparable with the frequency of vortex hopping
between pinning center§) ~10°-10% 1. Since in our ex-

0
j(t)=jo[ 1+ ﬁ sin wt + kB_T periments the frequency of the alternating field varied from
Wio Uo 20 Hz to 20 kHz, which is much lower than hopping fre-
ot —1B guency, the sharp decrease in the rate of flux relaxation must
xInl 1+ ﬂcf exp(— BC sin wt)d(wt)” , be attributed to field gradients. Consequently, we assumed
0 that the practical termination of relaxation is caused by a

field structure modulated along the ring radius, a structure
coincides with(6). produced by a low-frequency alternating field. Differently

Let us now explain the results depicted in Fig. 5. Here itdIreCteOI varying gradients may appear in such structures

is natural to assume that if the conditions for a critical stateWhen the field is applied, while a constant structure emerges

L - . ; < when the field is switched off. Here it is assumed that the

are met, in rings of finite width a weak alternating fietd ) S )
; : . average gradient of the field in a modulated structure is zero,
penetrates the ring only up to a certain depth along the radius : .
L and so is the flux trapped by such a struct(gee solution
from the external lateral surface. This field evens out the(7))
average gradient of the field trapped in the ring. Thus, if* "
HO is lower than the field in which the current is destroyed in

the entire ring, then the trappéaveraggtransport current is

which in the limit of small amplitude$i® andkgT/Uy<1

Thus, our interpretation is as follows. When there is re-
laxation of the trapped flux in an alternating field whose
amplitude is lower tharH°(B=0), the section of the ring

destroyed only within a certain layeXR and, hence, the near the hole contains a constant field gradient that pushes
trapped flux proves to be smaller than when the current ﬂowﬁwe vortices out, while the section of the ring near its outer

through the entire cross section of the ring. In this case the

dependence of the constant component of the ekt the surface, penetrated by the alternating fiéld contains a
center of the ring orH® is given by the following expres- modulated structure with a zero average gradient. When the

sion: field is applied, the modulated structure oscillates and does
not prevent the vortices from escaping, only slightly distort-
B(H% In{1+(W/R)[1-H%H°(B=0)]} ing the purely logarithmic pattern of relaxati¢see Fig. 3
Bo - In(1+W/R) : ® After H is switched off, the modulated structure becomes
. . ] ) frozen. The frozen structure contains field gradients directed
HereR is the external radius of the ring, att’(B=0) is g as to prevent the vortices from escaping, the flux in the
the amplitude at which the trapped flux is destroyed by the(ing freezes, and relaxation stofsee Fig. 4.
alternating field in the entire ring. In Fig. 5 the dependence The modulated structure emerges primarily because the
(8) is represented by the solid line, which approximates thndgitions for the critical state to emerge are met. lts stability
behavior of the experimental values fairly well. The experi-is determined by the phenomenon of self-organized
ments in the frequoency range<dn »<77 revealed a weak criticality,'> amounting to the fact that when the field gradi-
d%pendenc_e oB(H") on v (see the inset in Fig.)5with  ent spontaneously decreases, the current density in a section
HY(B=0) increasing with frequency, with the result that of the ring also decreases, which in turn results in an increase
qualitatively the suggested dependefi@ecorrectly reflects i the effective pinning energy driving the field gradient up,
the behavior of the derivative (B¢)dB/dH® in the experi-  and vice versa. Such a modulated structure was observed by
ment. The weak frequency dependence of this derivative alsgatkin and Savchenkdbwhich suggests that the proposed

follows from the solution(7), since the derivative physical picture correctly reflects the experimental situation.
1dj 1 dB
jodH? By dH” 4. CONCLUSION

found from(7) is almost frequency-independent. We have found that the magnetic behavior of the rings

The observed sudden changeBn(Fig. 4) corresponds corresponds to the low-field dynamics of a Josephson
to the dependence &(H®) given by(8), while cessation of medium?>>'>We have established the main characteristics of
flux relaxation resembles the same phenomenon of flux tragsuch a medium: the dependence of the critical current and
ping in the region fromH_; to H* without an alternating the reduced logarithmic-relaxation rate on the constant field,
field, which in the previous papéRef. 8 was explained by and the dependence of the field at the center of the ring on
the formation of two field distributions in a ring with gradi- the external field and on the trapped total current induced by
ents opposite in sign, with the field gradient in the regionswitch-off of the external fields.
adjacent to the hole directed in such a way that a force di- We have shown that the introduction of an alternating
rected toward the center of the ring acts on the vortices. Thisagnetic field changes the nature of relaxation of the current
explains the absence of flux relaxation in the hole. Cessatioin the ring induced by the trapped constant external field.
of relaxation when the fieltl is switched off has a different We have experimentally established the dependence of
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Average persistent current over a set of diffusive metallic rings with fixed number of electrons is
considered. We study the case in which the phase breaking time is much greater than an
inverse average interlevel distance. In such a case, many return events for an electron must be
taken into account. As a result, one arrives at a honperturbative problem for a cooperon

mode fixed by an external magnetic field. This multi-cooperon problem has been considered
previously by Altlandet al, [Europhys. Lett.20, 155 (1992] and in several following papers
within the framework of supersymmetric approach. Such an approach involves very tedious
calculations which were performed using a computer algebraic package. Here we solve the
problem in question with the help of a replica trick. It is demonstrated that the replica trick

in combination with a proper analytical continuation in the replica space allows one to obtain the
result in much more explicit way. €997 American Institute of Physics.

[S1063-776(197)02403-1

1. INTRODUCTION

: @

r=0

vh? (74
Woe— J dt P(r,t)
Magnetic properties of small conductors were studied P
extensively during the last several yegsge Refs. 1 and 2 whereP(r,t) is the probability density. Here we employ the
and the bibliography cited therdt has been understood that fact that in a diffusive regime it is a smooth function of
the magnetic momeriand the associated persistent current coordinates at the scale of the mean free patfio estimate
induced by an external magnetic flux is a very specific maniP(0,t) we take into account that the electron diffusion is
festation of mesoscopic behavior. While originally predictedrestricted by a finite volume of the sample. In such a case, we
to appear in clean, one-dimensional, metallic riigspst of  have

the recent discussions about persistent currents have been 2 2

L L itf . 1 n nt
focused on metallic rings that contain impuritiesStatic POt)x= > exg—D|=5+—5|t|. )
magnetic properties of small rings and dots were studied by Viin, R® df

several authors:** An important step in the understanding {erep is the diffusion constanR is the radius of the ring,

of magnetization of mesoscopic quantum rings took into aCandd, is its transverse dimension. The numbers1, have
count the difference between canonical and grand canonicghe meaning of quantum numbers for longitudinal and trans-
ensemble$:!®*>~1It was shown that the magnetization of \erse diffusive modes, respectively. For a thin ridg,< R,
isolated rings with a fixed number of particles is much Iargeromy n, = 0 isimportant. We can see tha@t-¢/R2 > 1 the
than that of the ensemble of rings kept under fixed chemicadym over discreta, n, in (2) cannot be replaced by an

potential. As a result, the main contribution to the magnetiGntegral. Otherwise, onlyn = 0 is important, andwW
moment was expressed in terms of the fluctuation of the. 74A /% If this quantity is small, we can restrict the analy-
number of particles at fixed chemical potentig{SN)?).  sis to a single return event.

The latter quantity was analyzed in Refs. 10 and 14 under the | et us now concentrate on the case of external magnetic
conditionfi/A7, > 1. HereA is an average interlevel dis- field. In a magnetic field, the numbarin the expressioif2)
tance at the Fermi level = = vV (vis the density of states  must be replaced by — ®/®,, whered is the magnetic flux

at the Fermi level, an¥ is the volumg and 7, is the phase- embedded in the ring, anll, = w4 c/e.*® It is clear that the
breaking time. quantum contribution is maximal ib/®, is close to an in-

Let us discuss the physical meaning of the parameteteger numben,. If the differencen = ny — ®/d, = 0, we
hlAT,. As is well known?® in the absence of an external have the same situation as that in the absence of a magnetic
magnetic field the quantum correction to the conductivity isfield—only the mode witm = n, is important. One can ex-
proportional to the classical probability/ for an electron pect that this property is also the case at fiftile< 1. Indeed,
with a velocityv and momentunp to return to the vicinity forn # ng
of the starting poinfmore exactly, into the volume of the 2

o e e . A AR
order ofv dt(%/p)<, which is important for quantum inter- SWax D —= s ~
ference. The probabilityW is given by the expressidn n#ng DN /R°+1/7, D

584 JETP 84 (3), March 1997 1063-7761/97/030584-08%$10.00 © 1997 American Institute of Physics 584



(for the last estimate we have assur’libtfi,ﬁ/R2 > 1). Conse- where((éN)z)ﬂ:w) is the particle number autocorrelation
quently, if SW < 1 one can ignore the contributions of all the function, calculated at a given value of chemical potential.
modes withn # n; to the probability for the return. However, The latter can be expressed in terms of single-electron
the corresponding contribution of the mode with- nyisnot  Green’s functions &3

small atA7, /A = 1. Hence, we arrive at the problem of cal-
culating the localization contribution in the case

D/R?*>Alfiz1l7,.

In this region we can still use a single-mode approximationwhere
but the perturbation theory involving a single return event

fails. 1 R

The problem in question was addressed by AItIandK(el’EZ)_? J' drdro{(Im Gel(rl’rl)

et all”18 (see also Refs. 19-21The authors used the so- & e

called Q-Hamiltonian approach within the framework of the XIm G2 (r2,r2)) —(Im G (ry,11))
supersymmetric method. An intrinsic feature of this method R

is that one has to cancel out specific nonphysical contribu- X(Im sz(rz’r2)>}' )

tions. Therefore, the supersymmetric approach involves te- . _

dious algebraic calculations. Consequently, the authors dgre"€(:-» means the usual impurity average. The quarily
Refs. 17 and 18 extensively used a computer algebraic pacR@S Pbeen calculated in Ref. 10 in the limiting case,

age. As a result, the intermediate equations have not been - Our aim is to go beyond this limiting case, i.e. to cal-

published, because, as it was stated, the computer printofif‘l"",te the correlgtion function for arbitratyr, /%, keeping
had many pages. pr/ > fi. For this purpose we employ the method used by

On the other hand, another approach—the so-called ref=retov. Larkin, and Khmelnitskif with minor modifications.
lica method—exist&2 According to this method, one has to Namely, we will use the so-calleQ-Hamiltonian approach
replace the system under considerationNbgystems which Wlthln_ the framework of the rep_llca trick. The confined ex-
are identical to the original one and at the end téhet0. ~ Pression for the correlation functidt(w) (w = €, — €) can
Usually, after such a procedure one obtains relatively simpl@€ Written in the form(cf. Ref. 22
expressions. The limiting transitidd— 0 (if done properly 2
automatically cancels out the nonphysical contributions, K(w)= 5 v f dfldfzf DQe F
which has to be done explicitly within the supersymmetric N“/DQ exp(—F)

: (6)
N—O

0
(aN)?)= f_ﬂdeldezwel,ez). )

approach.
To take the full advantage of this property, one needs a XTI AQ(r)]TrAQ(ry)]

regular procedure to calculate the lihit—0. The aim of the

present paper is to suggest a procedure of analytical continu-

. - . , . Where

ation of a nonperturbative, two-particle Green’s function

from integerN to the whole complex plane which includes i

the pointN = 0. Such a procedure allows one to calculate the F= e f dz Tr

limit rather automatically, without the need of direct cancel-

lation of nonphysical contributions. We obtain an analytical 1

nonperturbative expression for the persistent current in a me- +2( lo— T—)AQ

soscopic diffusive ring and compare it with the results of ¢

Refs. 17 and 18. HereA is the vector-potential, afd\,B]_ = AB — BA. Tak-
The paper is organized as follows. In Sec. 2 the basi¢ng into account only the elastic scattering by short-range,

equations for the fluctuation of the number of particles, assonmagnetic impurities, we can specilyas 2N X 2N Her-

well as for the persistent current are analyzed. The effectivenitian matricesQ? = 1, Tr Q = 0, N is the number of repli-

action in the single-mode approximation is considered ingas, while

Sec. 3. In Sec. 4 the particle number autocorrelation function

and persistent current are calculated in the nonperturbative 1 0

region, and results are summarized. In the following calcu- A= ( 0 1>,

lations we seti = 1. Then# will be restored in the estimates

and final results.

ie 2
D| v+ — A[Q,A]_>

. Y

where 1lis theN X N unit matrix. The parameter;l is in-
troduced phenomenologically. We assume that the phase
2. BASIC EQUATIONS breaking is due to the inelastic processes. Following Ref. 22,
we use the parametrization

0 B
-BT 0/’

whereB is an arbitraryN X N matrix.

According to Ref. 10, the main contribution to the per-
sistent current can be expressed in terms of the magnetic
flux ® embedded in the ring as follows: Q=A expW), W=

CA ¢ )
|:7ﬁ<(5N) >M:<M>’ 3)

585 JETP 84 (3), March 1997 V. V. Afonin and Yu. M. Galperin 585



3. EFFECTIVE ACTION IN SINGLE-MODE APPROXIMATION which is a consequence of the symmetry properties of the

initial replica Hamiltonian(see Appendix A It is clear that

the matrixQ is a periodic function op, and that one has to

Specify a region at least not larger than one period in order to

obtain a one-to-one correspondence. Moreover, to obtain

' proper analytical propertiegdamping is the lower semi-
plane of thew-variable of the actionF (8), we must define
the integration limits as ¢ /2, 7/2). Finally, the actior

Let us consider a ring with the radid®& and the width
d, < R. We can therefore take into account only the depen
dence of the matriceB on the angular coordinate. Ex-
panding this dependence into the discrete Fourier seBies
= 3,B, expng), we introduce the mode number As was
explained in Sec. 1, only one mode with= ng correspond-
ing to min( — ®/®y) is important(this assumption will be

o2 - ' reads as
justified at the end of Sec. 4ARetaining only this mode and )
assuming/ , = (1/R)d/ d, we obtainVv ;W + V WW= 0. _7|D[ @ .
Hence, F=2x |R2 | No , Tr sir® p
1.9 1 o1
V‘PQzﬁAﬁe =(V,W)W™= sinhW +2 |w—7_—¢ Tr cosp|. (12
ing . Now let us transform the variables frol, B™ to p, u
=g sinhw. = exp(¢), where the Jacobian {see Appendix B
P _ - D(B,B™)
We can then expand siflW = (1/2) (cosh 2 — 1) as a series ( —2(detu~p)N. (13
In D(p,u)
/BnoB:o 0 2k We see that the variablas can be integrated out and can-
W= (—1)k celled with the denominator in E@6).
0 v B;OBnO
The item Tr(AQ) can be t_reated in a similar way. As a 4. PARTICLE NUMBER AUTO-CORRELATION FUNCTION
result, we obtain the following expression fir
2 A. Eigenvalue representation
7 | D o ) —
F=3x|Rz | No~ @, Tr smz(\/Bnano) Let us now return to Eq.(6). Since TrAQ
= 2 Tr cosp, we see that the integrand depends only on the
1 eigenvalues op. Hence, we should transform the variables
.1 - ,
+t2lio T¢> Tr cogy B“oB”o) ) ® to the eigenvalues and some other ones which could be inte-

grated out in the numerator and the denominator. This trans-

We must now consider an important point. An arbitrary com-cJ "o 0 il 4 Appendix 5. As a result, we obtain

plexN X N matrix B can be described by two Hermitidh

X N matrices. These matrices are defined as L X a2
, , (Vp)?[g{dN}OND)| > cos——
B=p explip), B =exp—igp)p. (9) =1 2
i - Kn= RN ’ (149
The quantityF depends only on the matrix On the other Joldn}o(n™)
hand, an arbitrary Hermitian matrix could be diagonalized,where{d\} = TTN";'d\ |\ |2 *N and
the eigenvalues being real. One can immediately see that the )
integral overp in the expressioli6), with F taken from Eq. o(x) = exd — 7D no— hd sir? X ™
- ion di is di i 2AR? |0 @ 2] A
(8), for the correlation function diverges. This divergence, in 0
fact, does not occur, because the eigenvalues wiust be 1 X
defined in a finite interval. Indeed, one has to define the X|i(e1—e€,)— —|cod —| |. 15
ined in. | (e1—€) 5 (15
variablesp in a way to obtain a one-to-one correspondence T

betweerp andQ. On the other hand, one can explicitly show The expression(15) contains three dimensionless param-

that eters:
: N 2
— sicyBB* _ mh _m(e1—€) o fmDn
cosyBB —\/W B __Ar¢’ O= A , &= SRZA (16
— W__
Q=Ae"= sin/BB™ wheren = (ny — ®/®,). Itis important to keep in mind the
—cosyB*B following. If max(y,Q2) > 1, only the small\’s are important.
VBB Hence, one obtains at the result which is found in the frame-

cosp  sinp e work of the perturbation theor?:*4 However, if bothy and
= o . (10) Q) are small one must sum the multi-cooperon contributions,
e “sinp —C0Sp which cannot be done in the framework of the perturbation

where pT denotes the transposed matyix Here we have theory. There is a substantial simplification in the case
employed the relation

- ___hwD
pT= e 9p2e'®, (11) n<l, but éc=m>1. (17)
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In this case, only one mode withy — ®/®,| < 1 is impor-
tant; this is the case in which E€L5) is valid. Consequently,
we consider the case in which the inequaliti#$) hold, but - +
the quantitiesy and Q) can be arbitrary. In fact, the mode
ng must be considered in a nonperturbative manner, while
the other modes can be treated in the framework of the per-
turbation theory.

Im &

Re k
B. Analytical continuation

We are not able to analytically calculate the expression
(14) for an arbitraryN. Instead, we will perform analytical
continuation of this expression to arbitraldy and then cal-
culate its limit asN— 0.

We introduce the quantity

N—1 1
Zn= kHo . dx 2 Na(x,), (18

FIG. 1. The integration contouf3.. for N = 4.

where . . : T
integrals to the integrals along the real axis. For simplicity let

O(x)=exf — & sif(mx/2) = (1Q—y)cog mx/2)]. (19)  us assume thatl is even. As a result, we have

It is convenient to define © af(K) k+imN
= Z =R+ A brm=+ fxdk( ak ) ( 27 )
where L[ k=3i7N
3N-1 - (T (23
R 1 ; ! k=1+46 "
&= 2 ENH In fo dx x* 0(x), We can now perform an analytical continuation oxerFor
k==~ (20) the functionsF = the continuation must be done in a different
_3N-1 way for the reason to be discussed later. For this purpose we
AL 2 1 ko148 replaceiN by + Ny in the functions==, respectively. Here
=3 4y In J; dx x 0(x), N, is a real, positive quantity which will eventually tend to
k=——— zero. Finally, we have
§ is a smal! positive humber which .Iater will yanish. We - af (k— 7Ny) af (k—37No)
introduce this parameter to keep the important integrals con- Ing= k K - oK
vergent in the limitN— 0. The first step is to express the sum —
overk in terms of the contour integral over complkx For K K
this purpose we should keep in mind that the derivative X F‘(Z—Tri)—F*(m”. (29

af[2mri(k + 1/2)]ok [wheref(z) = (€% + 1) '] has second-
order poles at integer numbers. Consequently, one can exs a result, the lowest-order term in thi-expansion of the

presslra) as function{y is = NZ. Finally, we obtain
af(2mik)\ .,
gR(A):JCtdk K F=(k), (21)
1 [k 1 , 1/m)Im k
Fi(k)=§f dk’ In f dx x“2K'=19g(x) |. (22 (U/mim -
0

The contour<C™ are shown in Fig. 1. These expressions are C,
correct only if other singularities, except for the polesfpf >

are not important. We can show that the functioh(k) has
singularities only in the left-hand semi-plane of the complex
variablek, while the functionF~ has singularities only in (1/m)Re k
the right-hand semi-plane & To prove this statement, one
must expand the functiod(x) in a Taylor series. For the
following, it is convenient to rotate thie-plane throughm/2 ¢
by introducing a new variabld,; = 2xik. The transformed
contoursC™* are shown in Fig. 2.

Making use of exponential convergence of the integral
due to the properties off/dk, we transform the contour FIG. 2. The integration contouts. for N = 4.
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1 ) _ eA D7
fodx x KT=1%0g(x) |. l=—Jn, 31:—3R—;". (28

o

_ o 3%t (k)
§=2WlNgf_mdk(W) In

(25 In the region

. . . . R A .
The reason for splitting t_he fgnchqm into £™ and ¢ with y<l, Zmee1
the replacementdl— = iNg is as follows. AsN tends to
zero, the integration contour comes infinitely close to the cubne can also develop a perturbation theory. Indeed, only
of the logarithm functions in the expressions for. Such a  small values ofx in the integrals in Eq(27) are important.
situation is not the case for any finité, and it leads to a The physical reason for this is the magnetic-field-induced
nonphysical pinch which should be subtracted. Within thephase breaking. In this region we obtain the result
above-mentioned procedure such a contribution is purely 2
. . . - . . . } 1 RA 1 eA
imaginary, while the one of interest to us is real. The imagi- ¢=—3—  |=——5 —.
nary contributions t&=* andF~ have opposite signs. Thus, 7°n © D ™n h

the nonphysical contribution is automatically cancelled in theThis result agrees with the asymptotic result of Ref. 14 for

sumZ® + £, We note that these terms are of the first order iny, > 1, JR%D 1, < T < 1. Note that the resu9) obtained
No, and that they must vanish; otherwise, the two-particlefor y < 1 is valid in the region

Green'’s function would be divergent. B
In fact, a similar trick has been used by Matsubara to ~ VR°A/AD<R<1.

formulate the thermal Green's function technidsee, e.g., Forthe case < 1, < 1, where the perturbation theory is not
Ref. 24. Let us compare our analytical continuation of the gppjicable, we sefi(x,Q2 = 0) = 1. As a result, we obtaif¥”
function ¢ to the analytical continuation of the two-particle = .21, and the current is

Matsubara Green’s functiok((,), whereQ, is the exter-
eD _
nal Matsubara frequency. In each case one must use two l=—0021 = (30)
functions, which are regular in the uppeetarded and the TR
lower (advanced semi-plane, respectively. The two above- We observe a maximum @t~ VRZA/AD. where the maxi-
mentioned functions can then be combined into one with aal current is '
cut in the complex plane. The physical reason for such a
splitting into R and A parts is to cancel the nonphysical | max~ €VAD/AR?. (31

contributions. In the Matsubara case the nonphysical contri: . . .
butions toK(2,,) arise at the poinf,.—0 and cancel out Expressiong29) and(30) are fully consistent with the curve

S : : ) calculated in Refs. 17 and 18 with the help of a computer
after a similar continuatio) ,,—i€) of the sum ovex). : .
algebraic package. Let us consider the dependence of the
maximal current ony ~ #/A7,. At y > 1 the perturbation
theory’®!* predicts the maximum of the current at

(29

C. Persistent current ~ JR%D 74, the maximum value is
Following Ref. 10, we express the current according to A 74D
Egs.(3) and(4). On the other hand, Imax~€ 7=\ Rz (32
2
K(ey,ep)oce ‘ Consequentlyl, > v Y?aty> 1, and itisy-independent at
dedey v < 1. In this region we estimate the persistent current to be
Finally, we obtain eve A Tel
J o= _1
cA o Infe1=€=0) - "R OV A
=% NI'TO N2 =—Jons (20 \yhere 7o IS the elastic relaxation time. The quantity
0 A7yl for a typical metal can be estimated as
wherel, = ficD/R?®, = eD/wR?, and (/IR)(a?/A), where/ is the mean free patla is a typical
- interatomic distance, and is the cross section of the ring.
;;*:ij dk Equation(30) shows that at\7,/% > 1 the phase-breaking
- time 7, is not contained in the expression for the persistent
(k) f},dx SIR(mx/2)x~ K™= 139 (x, 0 =0) current. Returning fto Eq(l), we ml_Jst conclude thgt at
2 I ——Trs . (27 = h/A the electronic wave packet is not smeared in space.
ok Sodx x ™7 0(x,Q2=0)

This means that the,-mode of the cooperon is localized in
One can check directly that at a sense; the localization length is of the ordeg/6D/A. Of
course, this does not mean localized, because other modes
A<i<ﬁ_D Ifil<1 are still under weak localization conditions.
Ty R?’ The range of parameters in which the theory is appli-

. : . cable and where it leads to nontrivial results can be ex-
the above expressions lead to the expressions obtained [n

Refs. 10 and 14. One can calculate the integrals with the heIBressed as follows:
of the steepest-descent method to fid 1<RI/ <K, (1K) (T4l Tq),
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whereK ~ (pd, /4)? is the number of transverse channels.Herey; ;" + 4" ¢ = 0. The action can be written as follows:
The left inequality is the criterion for a diffusive motion, the

first right inequality is the Thouless criteriéf}, > 1, and the A

last right inequality is the condition 7,/ > 1. We see that F=i f (dr) W (r)(E-2)W" (1),

one needs low temperatures to satisfy the inequaljfyr,

> K > 1, and also samples of very small size. No previous

experiments, to the best of our knowledge, satisfy this set of E=El %/:[H iy (r)]f— 2+i5 A (A1)
conditions. t 0" el 2 '
5. DISCUSSION HereH, is the free-electron Hamiltoniai,is the 2N X 2N

As one can see from the preceding sections, the result#Nit matrix, andUg(r) = UoSMa(r — r;), whereM is the

of the replica procedure which are complicated for arbitrarytotal number of impurities. The firdt rows of .77 describe
integerN, are rather simple in the limi—O0. In this limit  the evolution of the retarded Green’s functions, while the last

the nonphysical contributions are cancelled automaticallyN rows describe an evolution of the advanced Green'’s func-

while in the supersymmetric method this has been done extions. The following step is the averaging over the positions

plicitly. An important feature which leads to such a simpli- of the impurities. We have

fication is the procedure of the analytical continuation which

is done before direct calculations. Specifically, one has two M

functions which are analytical in the uppépwern semi- 3= H ~ eXF{IUoE W () W(r )}

plane of the complex plane di, respectively. The proper

analytical continuation is a combination of these two func-

tions. Consequently, it has a cut at M= 0. The procedure

used above allows one to cancel automatically the nonphysi-

cal pinch in the two-particle Green’s function, which other-

wise would exist aN, = 0. We believe that such a construc- Here we have taken into account that only the linear terms in

tion is important, in general, for the calculations involving # andy; can enter the continual integral for the correlation

the replica trick. In such a way we reproduce analytically andunction (Grassman algebraFor the same reason, one must

rather simply the results obtained in Refs. 17 and 18 by &llow for only the terms with different when calculating the

computer algebraic package. product. For a weak scattering and in the thermodynamic
We wish to thank V. L. Gurevich, V. Yu. Petrov, and A. limit M,V—o, M/V=const,

D. Mirlin for valuable comments. One of the auth®.V.A.)

is grateful to the Research Council of Norway for a financial S ~exp su—+il'),

support within the Cultural Exchange ProgrékAsS).

M
(A2)

dr A
= f Vf];[1(1+iuoz/f?(r)t,//f(r))

APPENDIX A: EFFECTIVE ACTION-DERIVATION Su= dr @ (r)W(r),
Here we rederive the expressi@®d) following Ref. 22,
in order to clarify important symmetry properties. Following o
. i ; i ] 9%
Ref. 22 we use the replica trick and introduce field operators:  -_ j drf > bt () (1) g (1) hg(1). (A3)
¢
Here Su is a shift in the chemical potential, angg
W={y,....hn :'/ff 7___,%}, Pt= wN . = 2M US/V (go is the coupling constantBy analogy with
i Ref. 22, we introduce an auxiliary scalar field which is rep-
resented by Hermitian matric€3. As a result, the effective
— N * interaction can be decoupled as follows:
|
2 o 2 +
9 N . _J2Q exf —Tr [dr(mv/Are) Q°(r) — (1/27¢) W™ (r)QW(r)]
eXF{ f drf;g I//f (r)lr/lf(r)l[/g (r)wg(r) - f»(JQ eX[i_Tr fdr(?TV/4Te|)Q2(r)] ' (A4)

Here we used the definitionqﬂzgére|= 1. This expressionis impurity averaging and after introducing the fie@. In
the same as Eq17) from Ref. 22. To analyze the symmetry terms ofQ it reads asQ;; = —iQf, ;.. Taking into ac-
properties of the impurity-averaged Hamiltonian, we takecount Eq.(10), we obtain the relatiorf11). The following
into account that the initial Hamiltonian possesses the propsteps are exactly the same as those in Ref. 22.

erty. Zijlij<n = i+ n,j+n - This property must be kept after
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APPENDIX B: CALCULATION OF THE JACOBIAN

Let us arrange the columns of th&2 x 2N? matrix
J(B,BM)/d(p,u) as
{B11,..-Bn1:B12s - BaniBigs - Bunt
and the rows as
{P11+--PNLIP12s - PN2s - ONNS
Ugg,--Un1 U2, UN2 s - UG-
Taking into account the matrix identities
dB=dpu+pdu, dB =u"ldp—uldu ulp, (Bl
we express)(B,B*)/d(p,u) as follows:
All A12
Azi Az,

d(B,B™)
apu)
whereAik are theN? x N? matrices. One can show that
A"=qu, An=—(u"p)Xu",

. (B2)

Ay=p®p®...p, Ap=u"'ou'®..u"l, 83)
N ) N ’

Here X means the Kronecker product, asdmeans the di-
rect product® Making use of the identify

def AXB)=(detA)P(detB)9,
(whereq and p are the ranges of the matricés and B,

the definitionp X = A ® 5, X that any vector of the type
e”x®) (where y® is an arbitrary phagesatisfies the
equation with the sama(® and p;,. Consequently, one
must excludeN extra variablesy®. We therefore require
the diagonal elements(") to be real. Consequently, the ma-
trix X(k') can be constructed according to the following pro-
cedure. The first columnx(!), containsN — 1 variables
X i # 1, while the las{(rea) column,X{", is calculated
from the requirement of normalization. In the next column,
X{?)  the lastN — 2 variables are chosen independently. The
elementx{?) is determined by the orthogonality of the vec-
torsX® andX®), while the last elemenX$?) is determined

by the normalization ofX(®)|. The following elements are
determined by continuation of this procedure. Note that since
all the off-diagonal elements are complex, we can consider
the real ") and the imaginary\({") parts. In this way we
can preseni? independent elements of the matpiin terms

of N eigenvalues\(), andN? — N independent variables
U andv{’. From the definitionp;; = 2, XMAMOXH™ | we

can expres in terms of{U,V,\} as

Ipij .
F_("k)=>\<k>[u}k>(1+5i,-)—|v}">(1—5i,-)],
I
Wi iy (0 (K
|
Ipij .
0 =UUfO VIOV (VOUO - ufoviR).

(CY

respectively, and of the Laplace expansion of the \gte that the above formulas do not contain summation over

determinant® we obtain Eq(13).

APPENDIX C: VARIABLE TRANSFORMATION

repeated superscripts. To calculate the Jacobian, we arrange
the correspondingl? X N? transformation matrix in the fol-
lowing way. The columns are labeled by ((old)) variables

Let us consider the set of variables which includes the

eigenstates ;) andN eigenvectorX(”). One can see from

The rows are labeled b{? “new” variables

1
v,

(1)

,{Uﬁ)z "..'{Ugv-l)}; {Vish

{pilypi21---1PiN}-

AVELL VY DAY,

S e — S— — S e — e N —

N-1 N-2 1

Consequently, as follows from E¢33), the first N — 1)
rows contain the common factor¥) times the quantities
which depend only ofilU,V}. The next N — 2) lines contain
the factor\(?), etc. The lasN lines are{\}-independent. As
a result, the Jacobian can be expressedllfjis [\ ]2(N"D

X (some function ofU,V}). This expression must be mul-
tiplied by (detp)N = (ITY. AD)N, and we obtain Eq14).
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A model systematically accounting for the cutting of Abrikosov flux lines has been developed

for the critical state of a hard superconductor in crossed dc and ac magnetic fields. The
electrodynamic equations have been derived by minimizing the Gibbs free energy calculated
using the proposed two-velocity hydrodynamic model. One velocity describes the motion of the
vortex lattice as a whole, and the other describes the relative motion of the two intersecting
sublattices. The resulting equations yield as special cases the previously known electrodynamic
equations for hard superconductors. The model provides a natural explanation for the
suppression of dc magnetization by a transverse ac magnetic field observed in our experiments.
© 1997 American Institute of Physids$1063-776097)02503-1

1. INTRODUCTION easily. The problem is more complicated when the applied

o . . magnetic field consists of several components or its orienta-
The problem of describing the electrodynamic propertiesion is variable. Some authofsee, for example, Ref) &ug-

of hard superconductors has noat been completely solved {Qusteq for calculations of electromagnetic parameters a gen-
this day. The static and quasi-static properties of these Masgjized critical-state equation in the form

terials are usually described using an equation proposed by

Beart for the distribution of the magnetic field : 4w _E
curl B= < g (2
dH Aar
Ix - T Je (1) whereE is the electric field and® is the magnetic induction.

This equation can be understood by analyzing the current-
whereJ, is the critical current density andis the speed of voltage characteristic of a hard superconductor. A change in
light. This equation has allowed the dc magnetization of hardhe magnetic flux within the superconductor generates an
superconductors to be calculated, and determines the shapaectric field and converts the sample to a resistive state. One
of hysteresis loops and the energy loss due to remagnetizaan assume that, as in the case of a normal metal, the current
tion. This equation has been used in describing low-=should be aligned with the electric field. By taking the limit
frequency properties of superconductors. It was employed iE— 0, one obtains Eq2). This equation has been used in
developing a technique for remote measurements of the critinterpreting several effects associated with the nonlinear in-
cal current densityl., and determination of its dependence teraction between electromagnetic waves.
on the magnetic field, temperature and other parameters us- Description of superconductors in crossed magnetic
ing measurements of the surface impedance, ac magnefiields is of special intere§t*' Recently? we have detected
susceptibility, third harmonic in the superconductor responséhe collapse of the dc magnetic moméntof a hard super-
to an ac magnetic field, etc® conductor subjected to an ac magnetic fiekd hycoswt or-

The Bean equation was verified by analyzing the balanc¢éhogonal to the dc magnetic field. Both fields were aligned
of forces acting on magnetic flux lines. According to this with the superconducting plate surface. We found that the dc
model, called a critical-state model, the magnetic force actmagnetic moment decreases markedly under the ac magnetic
ing on a vortex is balanced by the pinning forces due to thdield ho<H, and the hysteresis on thd(H) curve disap-
interaction of vortices with crystal lattice irregularities, pre- pears.
cipitates of other phases, sample boundaries® &wing to There are two alternative approaches to the electrody-
pinning, the critical current density. is nonzero, and the namics of superconductors in crossed magnetic fields. One of
magnetic field distribution is fairly accurately described bythem is based on Ed@2). In accordance with this equation,
Eqg. (1). shielding currents, generating the dc magnetization, are

Presently the critical state equation is usually defined adlriven by the ac magnetic field inwards, which leads to a
the Maxwell equation for magnetic field combined with the decrease in the magnetic moment. A more consistent ap-
material equatiod=J..” In most cases when the configura- proach can be based on the features of the vortex system in
tion is simple, the direction of the vectdg is determined crossed magnetic fields due to crossing of magnetic flux
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lines, which is also calleflux cutting®**1t would be natu- —4nM. G

ral to account for the collapse of the dc magnetization in
terms of electrodynamic equations based on the model of 1
flux cutting!®>® which has been successfully used in inter- 400
preting several experiments in crossed magnetic fiEtds. !
These equations describe the magnitude of the magnetic flux 200 2
density B and its tilt angled with respect to a selected
z-axis as functions of coordinates and are a generalized ver- 0 4
sion of the Bean model by E¢l). In the simplest case, they
can be expressed in the form -200

B 4 a0

¢ Je, &x_kc’ 3 —400
whereJ, is the critical current density similar to that in Eq. —600L_. . T —

. X . -20 ~10 0 10 20

(1), andk, is a phenomenological parameter determined by H, Oe

the current component aligned with the veckr Unfortu-

nately, these equations cannot account for the collapse of tHdG. 1. Evolution of magnetization loops with increasing ac field amplitude:

dc magnetization (1) hy=0; (2) 100 Oe;(3) 200 Oe;(4) 300 Oe;w/27=130 Hz, T=77 K.
Thus, we have a paradoxical situation, when E2),

which has no proper theoretical justification and ignores im-

portant features of the vortex system, describes the collaps§;ced by a solenoid. The ac magnetic fib(t) was directed
of the dc magnetization, whereas the equations based on ”E)%rpendicular to the dc field in the sample plane.
physical properties of the vortex system in crossed magnetic The effect of the ac magnetic field on the dc magnetic
fields yield a description in which this magnetic moment ,oment is illustrated by Fig. 1. The curves Mf(H) were
does not strongly depend on the ac field. One can ascribe thigcorded in a sample with dimensions ok 8 X 0.4 mm and
paradox to the.fact that th.e electromagnetic equations hav@orrespond to different amplitudes of the ac field. One can
not been consistently derived from the model of crossingee that the hysteresis of the magnetization is smaller at
magnetic yortex filaments and are purely phenomenologicahigherho_ Moreover, for largeH the magnetization hyster-
The aim of the present study was to develop an electrogg;s js totally suppressed and cannot be seen on some parts of
magnetic model adequately taking into account the featureg,e magnetization curve. The share of these parts increases
of the vortex system in crossed magnetic fields and describmarkedly withh,. Some estimates have demonstrated that
ing the above effect. The next section will present a detailegnege parts of the magnetization curve corresponid tnd
description of the experimerf,which was a crucial test of 1 for which the ac magnetic field penetrates throughout the
existing models of hard superconductor electrodynamics iRample volume. The effect has been shown to be insensitive
crossed magnetic fields. Then the equation system whicl the ac field frequency. It is noteworthy that the suppres-
successfully describes the collapse of the dc magnetic MQsion of the dc magnetization caused by the ac field is irre-
ment and also describes other existing models as limitingersiple. i.e., when the ac magnetic field is turned off at an
cases will be derived using a variational technique. arbitrary dc fieldH =H,, the magnetic moment is frozen and
does not return to its initial value correspondingMdH ;)
on curvel (Fig. 1).
These experimental results provide indirect evidence in
An efficient method for studying the behavior of hard favor of the following description of direct and alternating
superconductors in crossed magnetic fields is measuring ttehielding currents in the sample. Alternating currents in-
effect of ac magnetic field on dc magnetization curves. Meaduced by the applied ac magnetic figi¢t) push the direct
surements were performed with plates of textured High- shielding current from the surface layer into the sample in-
superconductor of the Y-Ba—-Cu—(YBCO) family cut terior. As a result, the regions containing the ac magnetic
from a bulk piece (& 7X60 mn?). The plate surface coin- field do not contain currents generating dc magnetization,
cided with theab crystal plane. The sample microstructurei.e., the dc magnetic field in these regions is uniform. If the
had a brick-wall shape, which is typical of fused YBCO ac magnetic field penetrates throughout the sample volume,
materials. The temperatures of the onset and completion dhe magnetization curve has no hysteresis, and this state per-
the superconducting transition were 92 and 91.3 K, respecsists even when the applied ac magnetic field is turned off.
tively, and the critical current density at=77 K in a mag- This decoupling of direct and alternating shielding currents
netic field of 10 kOe was about 1@&/cm?. leads to other effects detected in experiments, such as the
The magnetization curvdd (H) were recorded using a collapse of the transport current due to a collinear ac mag-
vibrating-sample magnetometer. A dc magnetic field of up tanetic field, the suppression of induced circular currents in
10 kOe was generated by an electromagnet and directed pauperconducting loops, et¢! Direct measurements of the
allel to the sample surface. An ac magnetic fieldspatial current distribution in a sample using a Hall pfobe
h(t) = hycoswt with the amplitudeh, of up to 600 Oe and a have produced experimental evidence in favor of this model,
frequencyw/27 ranging between 100 and 2000 Hz was pro-describing the decoupling of shielding currents. The theory

2. EXPERIMENT
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described in the next section and based on the kinetics of the First of all, let us define the required macroscopic vari-
vortex system provides an interpretation of all the experi-ables. In this situation, there is a spatial distribution of vor-
mental facts. tices with different orientations. A simple analysisee Ap-
pendix A demonstrates that the flux-line cutting is
impossible if we introduce a single velocit)(x,t) as a con-
tinuous function of time and coordinate characterizing mo-
3.1. Two-velocity hydrodynamic model of vortex lattice tion of vortices at a given point. We should introduce, at

In order to describe the electrodynamics of hard superl-?aSt’ one additional velocity(x,t) characterizing the rela-

conductors in crossed magnetic fields, let us consider thilve motion of vortices. Introducing the second velocity

behavior of the vortex system in the macroscopic approxim_fr?n(?f;hat \;ve allss.L:.me trt]e eX|_stence .Of tvx;o vort:ax _?roups
mation. The state of the system is characterized not by th!th dierent velocilies at a given pon‘(Fa Wo-veloctty
positions and velocities of isolated flux lines, but by Somequa3|-hydrodynam|c approximation was discussed in the ear-

. PRV
averaged parameters describing the state of vortex erk'—er publicatiort®):

3. THEORY

sembles, i.e., we use the quasi-hydrodynamic approximation. U U

In this model, we introduce two continuous functions, Va=V+Z, Vg=V-=. (4)
namely the vortex density and the mean velocity of a

sufficiently large group of vortices. The velocity is non-  In fact, we have separated all the vortices into two groups,

zero when the applied magnetic field is varied, and we asA andB. Let us assume, for simplicity, that the vortex den-
sume that this variation is slofguasi-stationary If the field  sities in both groups are equal, i.e4=ng=(1/2)n(xt). It

on the superconductor surface is constant, the vortex latticé obvious that the vortices of grougs and B, having the
remains in its current state for an infinite time. In the state ofmean velocitiesV, and Vg, should have different vortex
equilibrium, the magnetic force acting on the vortices is fully anglesia(x,t) and 9g(x,t) relative to a certain axis. Spe-
balanced by the pinning force. This means that our considcifically, vortices that have not undergone cutting arrive at
eration is limited to the critical state model, and both thethe pointx from its neighborhood of the sizel 2The length
magnetic flux creep and viscous flow of vortices are ignoredl can be derived from the parameter of the vortex lattice
The electrodynamic equations for such a system are derived=1/Vn and the dimensionless paramefgrwhich can be

by varying the Gibbs energy with respect to small perturbacalculated by averaging the microscopic flux-line cutting
tions of the vortex coordinates. The Gibbs energy includegrobability p* over the angles. As a result, we have
bpth_ the magnetic energy of the system and the work against | = 1/p\/ﬁ. )
pinning forces.

In what follows, we will assume that the superconductorThis length is the vortex free path. In what follows, we will
occupies the half-space>0. Suppose that both the absolute characterize the system by the average ariqfbet)=(1/2)
value and direction of the applied magnetic field are variable x (3, + Jg) and the differencé & between the mean vortex
but the field is always parallel to the sample surface. In thisangles in the group# and B. This difference can be esti-
case, the vortex lattice state can change for several reasomsated through the gradient of the average vortex angle
First, flux lines driven into the sample from the surface andd(x,t):
tilted with respect to those in the bulk can change their align-
ment owing to their magnetic interaction. A simple analysis, A 9= 9,— 95=—I @ (6)
however, indicates that this process is energetically unfavor- 2
able. Specifically, the gain in the magnetic energy due 10 Generally speaking, there are vortices of different orien-
vortex realignment along the magnetic field is proportionalations with an angular spread9 around each point, and

to its length, whereas the work done by the pinning force iSne theoretical description should include a distribution func-
proportional to its length squared. Second, nonparallel vortizi,n f(x,t,9). In this study, however, we have limited our

ces can cross one another during their motion. When twensideration, for simplicity, to two vortex groups with the
vortices cross, there are two options. They may pass throug&\/erage angles, and 9 .

one another without changing their alignments, or two new

vortices parallel to one another may be generated as a result

of their crossing>'* In this process, the vortices change

their directions, which become closer to that of the magneti®-2- Transport equations for the vortex density and angle

field, so they gain some energy. In what follows, for conve-  Given the average translationdland relativeU veloci-
nience, we will refer to the cutting as the interaction of tWo tjes in the system, both the vortex densitand the average
vortices in which initial vortices disappear and two new onesygrtex angled are transported across the sample volume. It
are generated. The probability of this process is characterizgd gpvious that the velocity gives rise to changes in both
by the parametep*, which depends on their mutual align- n(x) and 9(x), whereas the relative velocity generates
ment and may also be a function of the vortex densitfhe  only an additional flow of the vortex angle. The vortex den-

parametep* can be calculated, in principle, only using the sity n(x) should satisfy the continuity condition
microscopic theory. Our task is construction of a model of
the critical state for the vortex lattice taking into account the 9N d(nV)

= . (7)

process of flux-line cutting. ot X
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The hydrodynamic component of the angle ﬂg@ydr, It is convenient to derive the electromagnetic component
determined by the velocity, can be expressed as of the Gibbs energy in the nonlocal case, when the magnetic
flux density and vortex density are related not by a simple
linear formulaB=n®, whered is the magnetic flux quan-

The other component of the angular flow is due to the relatum. but by the integral formutd*

tive motion of the vortices. In order to obtain the expression

for this flow, it is convenient to introduce the plame=x, BZBm+f dx’hy(x,x")e(x")n(x"). (12
moving at the velocity/(Xq,t) with respect to the laboratory _

coordinate system. Vortices of tyf on the right of the Here the kerneh,(x,x") and the Meissner compone, of
plane and those of typA on the left cross the plane and the magnetic induction are defined by the equations
transport a certain average angle. It is clear that the numbers D,
of the vortices crossing the plane from the left and right are hl:ﬁ
equal because the total flow of vortices across the plane is

zero. This means, in fact, thah/R)U/2 vortices of typeA Bm=Hoe ¥, 14
cross the plane per unit time, and the equal number of vor-

tices of typeB cross the plane in the opposite direction TheWhere)‘ is the London penetration deptH, is the applied
factor 1/2 multiplyingn is introduced because the concentra—rm’u‘:’m'}tIC field, the vectax(x) = (€x+€;)/2 defines the aver-

tion of vortices of each type is/2, and the factor 1/2 & is age direction of vortices at a given point in space, and the

. . nit vectorse, andeg define the directions of the vortices of
due to the fact that the average vortex velocity with respec : . . :
. ypesA andB. By using the technique described in Ref. 20
to the plane idJ/2. The angle transported across the plane N :
i and taking into account Eq12), we derive from the well-
when a vortex of typé\ is replaced by one of typB equals

AY [Eq. (6)]. Thus, the angle flow due to the relative motion !:r?eovlilgned)g;rfs'?SXE%JQ%G,[;]Zb?OﬁQVEVESy ?(Ir?nz(lja?ex lattice in
of vortices is determined by the expression PP 9 ’

1
g=—tn 202 o  Ceras [ ax ax gy een noonea)

gi'=nvo. (8)

(ef\xfx’\/)\_ef(xﬂ’)/)\), (13)

—2H In(x")hy(x,x")]. 15
By adding Eqs.(8) and (9) for both angle flows and using 0€X)N(X )y (x,x")] (15)
Eq. (6), which yields the difference between the angles, we  The variation of the Gibbs energy with respect to vortex

obtain the following equation for the angle transport: displacements can be expressed in the form of two terms,
5G4 and 5G| each of which is a function of one inde-
ond) 9 oJ 1 9 pendent variablesu™® and su' respectively. From Eq.
= (nVY)+ nul . (10 ; ) . .
at IX ax\4 X (15), one can derive the following expressions for variations

of both componentgésee Appendix B
3.3. Gibbs energy and basic electrodynamic equations

This section describes derivation of electrodynamic
equations for a hard superconductor taking into account in- ® . 3
i i 1% J
teractions among vortices, between_ a vorte_x and t_he sample 5 Ler:]:_OJ dx>nl— su™e, —[e(x),B(x) — Hy],
surface, pinning centers, and flux-line cutting. This can be ™ 4 X X
done by varying the Gibbs enerdy, which includes the 7

magnetic energy, the work done by pinning forces when th‘%vhereex is the unit vector aligned with the-axis.
vortex lattice is translated, and the work by pinning forces in - Now consider the Gibbs energy component due to the
unbending a vortex after crossing, with respect to the veloCiwork done by pinning forces on the vortex lattice. The work

ties, 6V(x,t) and 6U(xt). To begin with, note the funda- gone in a timer per pair of vortices can be expressed as
mental difference between the Gibbs energy variation taking

into account flux-line cutting and the case when this effect is A=-— fp|VA| T fp|VB| 7 (18)
ignored;~!i.e., when the magnetic field does not change itsyhere f, is the magnitude of the maximum pinning force,
direction. In the latter case, the relative vortex velocity isandv, andV; are the sublattice velocitid€q. (4)]. It fol-

zero, so, the variation should be performed only with respecows from Egs.(4), (11), and (18) that the variation of the
to one variable, namely/. Note that the variation of the \york

Gibbs energy with respect to the velocitiss and U is el
equivalent to the variation of the vortex lattice as a whole SA= —f <5uhydr_ u ) sigr(V— B) —f (5uhydr
with respect to the hydrodynamic displacemefu!®", and P 2] P

of sublatticesA and B with respect to the relative displace- su U
ment, su'®" ke ) sigr<v+ >

2
SuMdr= 78V, su'=rsU, (11)

@ B
5Gmf:4—; J dx nsu™e(x)——, (16)

(19

depends sensitively on which of two motioftsanslational
wherer is an arbitrary time interval smaller than the charac-motion of the lattice as a whole or the relative displacement
teristic time over which fields in the sample change. of the two sublatticesprevails. One can see that two funda-
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mentally different cases may occur|¥|>|U|/2 holds, then Thus, Eqs(16), (17), (22), and(26) determine the Gibbs

the vortices of bottA andB types travel in one direction in energy variations due to the mean and relative displacements
the laboratory coordinate system, and the energy loss definaf flux lines. By equating the coefficients au™% and

by Eq. (19) is determined by the hydrodynamic displace- 5u' to zero, we obtain the sought electrodynamic equations:
ment:

B Am U]
SA= —2f, sign(V) suher (20) &(X) 7% =~ g JesigV) 0| V=, 27
Otherwise (V|<|U|/2) we derive from Eq(19) a different P 4r  p2yn
formula: & 55 [8X),B(X) —Ho] =~ ——J—or" signU)
SA=—f, signU)su™. (21 2 (U]
The fundamental difference between these two cases is that X1+ 50 7_|V|”' (28)

the work done by pinning forces, and hence the correspond-h Jo—cf /D
ing component of the Gibbs energy, depends on two differV€"€Je=Clp/ 0. N
In the local limit of interest to us\— 0, the direction of

ent independent variables. In the first case, this is the lattic

average displacement, and in the second case, the relati{[j%e vectore coincides with that of the magnetic induction
displacement of the Sljblattices ' vector, and the equation system takes a simpler form. It can

By combining the two latter equations, we can expres§$ﬁ'f;er%m' dependlgg olntt_he rde_latllon bet\NfenFthe velocmles
the Gibbs energy variation as follows: of hydrodynamic and relative displacements. For example,
for |V|>|U|/2 we have

1 U
5Gp=—f dx n(x)f,| 28u™¥ sign(Vv) | |V|— vl B Am
2 P 2 —=x—1,,
oX c
rel oj |U| 2
+8u'® signU) 6| —-—|VI] |, (22) g _ 47TJ p%Jn 29
. - . ax N ¢ °Hocog 9 )
where 6(x) is the Heaviside step function. _ _
Finally, let us consider the Gibbs energy component reWwhile for [V|<[U[/2 we obtain
lated to the work done by pinning forces in unbending flux ;g
lines after their cutting. After the cutting of two flux lines of X =0,
the A andB sublattices, new flux lines are generated. Some
of_ their sections are aligned with the tyaglines, and others 99 A pzx/ﬁ 2
with the typeB vortices. Then the new lines are unbent so o F\/—J——m 1+ -], (30
that their sections of the average lengtrand aligned with X € "Hocogd— o) P

vortices of typesA and B should turn towards one another where 9, is the tilt angle of the magnetic fielt, with

through an angle of /2. The pinning forces act against respect to thez-axis. Finally, in the degenerate case, when
such a turn, and the energy loss per unit length of the vorteyy|=|U|/2 holds, the number of variables in the problem is

is determined by the expression reduced. After transformations similar to those performed
. 1 1f L2|A‘9| B 1f ! 99 ’s above, we obtain the following equation:
T2 2T e i @3 B Hy 99 dsin9—19,) 4
) ) . (9— + (9— 2 Zi—JC[l(i)p].
The lengthL is easily expressed in terms of the vortex X" 2pyn X X ¢
lattice constant and the angléAd| between the vortices. (31
With due account of Eqg5) and(6), we obtain A more detailed analysis demonstrates that the plus or minus

signs in all equations can be selected independently, but
- — - _ (24) those in parentheses should be consistent with each other.
A9 njodiox|I  |o01x| Note that we prefer to express our results in terms of the

In order to derive the expression for the Gibbs ener Comparametelp, not the related parameterThe dimensionless
P gy arameterp seems to be more convenient because it is

ponent due to unbendlng of f!ux lines, one ShOl.Jld CalcuI"’m%:)losely related to the real microscopic probability of flux-line
the number of lines cut during the relative dlsplacementCutting
su' of the sublatticesA and B in unit time. This simple '

estimate yields

MNey=n sign(U) su™dx!. (29 The electrodynamic equations derived from the simple
The unknown Gibbs energy variation is derived from Eqs.Wo-component model allow us to analyze the behavior of
(23—(25): hard superconductors in crossed magnetic fields. Equations
(29) and(30) supplemented with the transport equatidis
and (10), and continuity conditions for the velocitiés and
U and the magnetic inductioB form a complete system of

a 1 p

L

4. DISCUSSION

1
8Geu=7 f dx npf, signU)su'™. (26)
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equations for the variabld8=n®d,, 9, V, andU. Note that pressed by a single scan, the transverse magnetic field, can
the first lines in Eqs(29) and(30) do not contairp, i.e., they  probably be also interpreted in these terms.

are independent of the selection of the flux-line cutting  The analysis of Eq(30) combined with Faraday’s law
model. Depending on the values of the velocitieandU,  demonstrates that, in the limity<H, the direction of the
the system of equatior® and ¢ takes one of the possible alternating shielding current coincides with the direction of
forms [with different selections of plus and minus signs in the induced electric field. As a result, E§0) is transformed
Egs.(29—(31)]. In this respect, our model is similar to the to Eq.(2). Therefore Eq(2) can be used in interpreting the
traditional one-component model of the critical state, wheredbserved effect? For this reason, this equation yields correct
the sign of the current density is also determined by théesults in many other cas&$!" In the general case, one
direction of vortex motion. As in the traditional model of the should test in solving a specific problem whether E2).
critical state, the selection of electrodynamic equati@es, ~ @pplies, or a more sophisticated model must be U3&Y.
(30), or (31) is determined by the magnetic history of the Moreover, it is plauglble than in some regions pf a supercon-
system. In principle, starting with an arbitrary initial state, ductor Eq.(30) applies, whereas in other regions Eg9)

one can reconstruct the system evolution using the electrgould be used. In other words, a careful analysis of the
dynamic equations. complete equation system described in this paper is needed

Note that system of equations in the form of E2Q) is for a theoretical description of the electrodynamic properties

fully equivalent to the model often applied to the eIectrody—Of hard superconductors in crossed magnetic fields.

namic properties of hard superconductors in crossed ma%- Thzw?_rk_tistﬁ pﬁg o”f ”a“?”a' protgrams on hi;g'b; u;h
netic fields™>!® Specifically, the second line of EQRY) can  Pereonductivi y(the “Collapse” projects sponsored by the

be easily transformed t@d/dx=*k.. Our analysis has governments of Russia and Ukrainand was supported by

) the Russian Fund for Fundamental ResedFitoject 96-02-
demonstrated that, generally speaking, the paranketde- : : )
17730 and the Mexican Committee on Science and Tech-
pends not only o8, but also on the anglé.

Let us apply the resulting equations to our experimentapomgy(CONACyT)’ Grant 3004E306.
results. Direct calculations of the magnetic induction by Eq.
(29), which holds for|U|<2|V/|, have shown that at all am- APPENDIX A
plltudes_ of the ac magnetic field the dc _magnetlc field com- Let us prove that the flux-line cutting cannot be de-
ponent is nonuniform, so the dc magnetization of the sample . . . :
: Scribed in terms of one continuous function, namely the ve-
is not suppressed. . . o :

Therefore, let us try to interpret our experimental resultsbc't); M) Ef flux lines. ShpeCIfrl]Cﬁ:cy' the equation of mo-
in terms of the second pair of Eq&0). According to the tion for an arbitrary vortex has the form
first of these equations, the magnitude of the magnetic induc-  dx; /dt=V(xy,t). (A1)
tion B(x,t_) is independent of the coordinate Sinceho in For a neighboring vortex, we have the equation
the experiment was much smaller than the typical strength of dx ;
the dc fieldH, the uniformity of B is equivalent to the uni- Ux2 _ _ VA
formity of the z-component of magnetic induction through- ar VOt Oemx0) D=V, O+ (xe=x1) 5o -
out the volume where the ac field penetrates. The increase in (Alz)
hy leads to an increase in its penetration depth and suppres- . . . .
sion of the dc sample magnetization, which is in agreemen he separation between them is described by the equation
with our experimental data. We should, however, test d(x,—X;) v
whether this solution is consistent with the complete systems ~— gt XZ_Xl)g
of equations. In other words, we should test whether the
condition |U|>2|V| for the applicability of Eq.(30) is sat- Its solution has the form
isfied. This condition is surely satisfied, in particular, if ¢ oV
V=0 holds throughout the region where the ac field pen-  (x,—x;)=(Xy—X;)|{=€X f dt—
etrates. This can be proved using E¢&. and (10). Given p( o X X=x,

the solutionB=const and the smallness of the ac field N The latter equation indicates that the separation between the

comparison With the_ dc_ field, we find from EQ) thg_t the vortices only asymptotically approaches zero, and the flux-
hydrodynamic velocity is also independent of position. Theline cutting is impossible.

velocity V(x,t) is a continuous function. Sinceé(x,t)=0
holds in the region where the magnetic field is constant, i.e.,
where the vortex lattice is “frozen,” it is zero throughout the APPENDIX B
sample. At the same time, it follows from the second line of
Eq. (30) and the transport equatidtO) for the vortex angle
that the relative velocity satisfiés # 0. Hence the necessary
condition for the applicability of Eq(30) is met.

Thus, Eq.(30) allows us to give a qualitative interpreta-
tion of our experimental results. The results obtained by
Hasanainet al.?> where the dc magnetization was sup-

(A3)

X=Xq

#0. (A4)

Let us derive expressions for the variation of the electro-
magnetic component of the Gibbs energy due to the average
and relative displacements of vortices. To this end, we ex-
pressGenl° as

1
Gem:—wf dxdx {hy(x,x")®on(x)n(x")
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X cog FH(X)— FH(X")]—2Hn(x")hy(x,x")

X[ hy(x,x")n(x")sin(FH(x) — FH(x"))
X cog F(x")— o]} (B1)
It follows from the transport equation&’) and (10) that _m N .
small displacements of the vortices lead to the following d)ohl(x’x )SIF0) = o) | - (B5)

variations in the vortex density and vortex angle: After expressing the sines in terms of vector products and

d hvd using the relation
on=—— (nou™®), (B2)
H fdx’h X,X")=P[Hog—Bn(x)], B6
B X nox\4 ax ) which can be easily verified, we obtain Eq$6) and (17).

By varying G, with respect to the flux-line density and its
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Magnetic fields at '®'Ta nuclei in Laves phases of RFe , (R=Nd, Pr, Sm, Gd, Dy, Yb, Lu)
A. A. Sorokin, B. A. Komissarova, G. K. Ryasnyl, L. G. Shpin'kova, Z. Z. Aksel'rod

L. V. Skobel'tsin Science and Research Institute of Nuclear Physics, Moscow State University
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L. F. Vereshchagin Institute of High-Pressure Physics, 142092 Troitsk, Moscow Region, Russia
(Submitted 15 August 1997
Zh. Eksp. Teor. Fiz111, 1085-1091(March 1997

By studying the perturbed angular correlationsyefays emitted during the decay &t'Hf

impurities in the Laves phases of PsF®yFe,, and YbFg, we have investigated the magnetic
hyperfine interaction between these compounds and its daughter niftfEaisand have

determined the temperature dependence of the magnetic hyperfine fields. At room temperature
we obtained the following values of these magnetic hyperfine fidgs

Bni(PrFe) = 7.6(1) T,By(DyFe) = 15.5(5) T, andB,{ YbFe,) = 18.8(3) T. Whentaken

together with data obtained previously, the results of our experiments show that for Ta nuclei in
the RFg Laves phases the values Bf; depend strongly on whether R is a light or a

heavy rare- earth element, which allows us to conclude that in these phases the value of the
magnetic moment induced at the impurity Ta nuclei depends on the interatomic distand®97©
American Institute of Physic§S1063-776(197)02603-9

1. INTRODUCTION complex; in Ref. 2 it was shown that the moments of Nd are
oriented antiparallel to one another and are almost perpen-
The Laves phases form a general class of intermetalligiicular to the iron moments. In the Laves phases of Rie
compounds with the chemical formula ABwhich crystal-  4f-moments of the rare-earth elements interact with the iron
lize either in the MgCy cubic structure(C15 or the 3d-bands through the rare-earth valence electrons, which are
MgZn, (C14) or MgNi, (C36) hexagonal structures. A de- polarized by their interaction with thed3band electrons.
tailed classification of the Laves phases was given in th@ecause this interaction also determines the peculiar mag-
monograph Ref. 1. The members of this class of compoundsetic properties of these intermetallics, the experimental
with transition metal and rare-earth elements are especiallytudy of these compounds is of great interest.
interesting, since they exhibit great variety in their electric ~ We attempted to study several aspects of this interaction
and magnetic properties, depending on their constituent aby using data on hyperfine magnetic fields at substitutional
oms. The recent development of powerful computationaimpurity Ta ions located at the sites of rare-earth ions. We
methods makes it possible to arrive at a fairly realistic depreviously studied compounds based on the light rare-earth
scription of the electronic structure of these intermetallicselements(R=Nd, Sm, Gd and Lu with a fully occupied
from which predictions can be made regarding their macro4f-shell. The results of our measurements of hyperfine fields
scopic properties. Verification of these predictions calls forat Ta in NdFg, SmFe, GdFe, and LuFe were published
experimental techniques that make it possible to determinpreviously in separate short communicatidns.In the
the parameters of the hyperfine interaction between nuclei gfresent paper we continue our investigation of hyperfine
ions incorporated into their composition, since these parammagnetic fields at Ta nuclei in the Laves phases with light
eters are very sensitive to the details of the imtermetallicgare earths (Prkg and extend it to compounds with heavy
electronic structure. The need for these techniques has led tere earthgDyFe, and YbFe).
wide application of investigative methods such as nuclear
magnetic resonance, the Mossbauer effechuclear gamma . oco ENTAL METHOD
resonancg and the method of perturbed angular correlations
of cascade gamma quanta. The compounds Prkeand YbFg can be synthesized
All the rare-earth elements except Eu combine with irononly under special conditions, specifically by sintering or
to form the intermetallic compounds RFwith the structure  smelting the original materials under high pressdrate
of the cubic Laves phases. The magnetism of these interm@repared our sample@s we did the compound Gdf&
tallics is determined by thed3bands of Fe and by the well- Ref. 4 by smelting at a pressure up to 80 kbar in a special
localized 4 - moments of the rare-earth ions. In the majority high-pressure chamber. Construction of the chamber and the
of cases, the magnetic moments of the rare-earth elementsethod for smelting are described in Ref. 8. The samples of
are oriented antiparallel to the Fe moments, i.e., the correDyFe, were prepared by smelting in an induction furnace
sponding compounds are not ferromagnets but ferrimagnetsontaining an argon atmosphere at ordinary pressure. In the
The exceptions are Priand NdFg (see Ref. 2 according course of smelting these samples, in all cases we added a
to the data of Ref. 3, Prkes a ferromagnet. In Ndkethe  rather small amouriusually less than 1 percent by weight of
mutual orientation of the Fe and Nd moments is much moreghe Laves phase of HfEepreviously irradiated in a reactor
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and containing the isotop®Hf (T,,,=43 days) with high -R

specific activity. This procedure ensured that our final prod- 0.15 T=82K
uct was a solid solution of Hfkein RFe, with impurity 0.10 N |
atoms localized in the REdattice at substitutional sites of 0.05 ik

the rare-earth ions. The quality of the samples was checked 0.00 t

by x-ray structure analysis, and also measurement of the 0.10 T=293K

Mossbauer spectra for Fe, and by comparing them with pub- 0.05

lished data. h
During the 8 decay of'®Hf into 8'Ta, a series of 133— 0004" T=435K

142 keV v transitions is excited, in the course of which the 0.10

nucleus passes through an isomer state of 482 keV with a 0.0S

lifetime 7=15.6 ns. The spin of this statelis= 5/2 and the ’

magnetic moment is u=3.25uy5 (the g factor is 0.00

g=u/1=1.30, whereuy is the nuclear magnetpnThe 0.15 T=515K

magnetic hyperfine field acting on a Ta nucleus was deter- 0.10

mined from the method of perturbed angway correlations 0.05

in the cascade. Measurements were made using an automatic 0.00

three-detector scintillation coincidence spectromeighich 0.20f, T=575K

allowed us to simultaneously record coincidence spectra 0.10 i

N(t,#) between cascadg rays as a function of the time for
angles#=90° and#=180° between the detectors. Accord-
ing to the widely used procedure based on the theory of
perturbed angular correlatiof$jnformation about the mag-
netic hyperfine fields is obtained from a frequency analysi
of the anisotropy spectra of the angular correlatit(s)
determined fronN(t, #) by the expression

R(t)=2[N(t,180° —N(t,90°)]/[N(t,180°)

0.00
0 10 20 30 40 ¢ ns

FIG. 1. Spectra of angular correlation anisotropy ¥Ta in PrFe mea-
Qured at different temperatures.

electric field gradients with a characteristic random distribu-
tion in frequency and direction. By processing these spectra,
+2N(t,90°)]. 1) we find that the gradients are characterized by a mean-square

For static magnetic hyperfine interactions in an unmag-yalue of the quadrupole frequengyq) =25 MHz, which

netized ferromagnetic samplee., with chaotic orientation ' Sofsg)d&ﬁbl]y ;mFa”erdtlhfgo l\t/lhl—? fLa:('”ft‘)Cl’:f Irequency
of the domainsthe anisotropy of the perturbed angular cor-E“’L_ twr Z1or Frikg an z for £at room
relations is expressed in the fotfn emperatur

R(t)=A{0.2+0.4 exp(— Aw t)coswt
+exp —2A o t)cos 2o t]}. (2

Here w =27gunBpi/h is the Larmor precession frequency
andByy is the magnetic hyperfine field acting on the nucleus.
The coefficienfA is determined by the known nuclear param-
eters for a given cascade; in our case, including the correc-
tions for the angular resolution of the detectors, we had
A= — 0.24. The exponemk characterizes the scatter in the
hyperfine interaction frequencies due to crystal imperfections
in the region around the probe nucle@ssuming that the
distribution of frequencies around the average value is
Lorentzian.

3. MEASUREMENT RESULTS AND DISCUSSION

Figures 1 and 2 show experimental anisotropy spectra of
perturbed angular correlations for Ta in PsFand YbFe
measured at temperatures frans+80 K to T>T. In these
figures the modulation at the Larmor spin precession fre-
guency is easy to see. The relatively weak attenuation of the
precession is evidence that the probe Ta nuclei are localized o'om ns
at substitutional sites of the rare-earth ions with point cubic ’

symmetry. _Thi_S attenuation is caused by the Iattic_e defectig. 2. spectra of angular correlation anisotropy %a in YbFe mea-
randomly distributed around the probe nucleus, which createured at different temperatures.
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FIG. 4. Magnetic fields at®*Ta nuclei extrapolated t6=0 K in the com-
N L L pounds RFg

FIG. 3. Temperature dependence of the magnetic hyperfine fields foﬁnd the different values of the magnetic moments of the rare-
18174 nuclei in YbFe, DyFe, and PrFe earth elementée.g.,< 0.5ug for Sm and g for Gd). In the
heavy groupBy; is 10-15 T larger in absolute value, and
also is insensitive to increases in the magnetic moment of the
The values of the hyperfine field obtained from analysisrare-earth ionsQug for Dy, 4ug for Yb, while for Lu
of these spectra are shown in Fig. 3 as functions of temperag:(4f ) = 0). Note that the lattice constant of RF#ecreases
ture for these compounds, and also for DyFEhe observed monotonically from 7.47 A to 7.22 A with increasing
falloff in B,«(Ta) at high temperatures is in good agreementatomic number of the rare-earth elemésete Table)l
with known values ofT; (see Refs. 2, Di—except for Studies of the magnetic hyperfine interactions of impu-
YbFe,, for which a value 54() K is obtained instead of the rity '8'Ta ions in the ferromagnetic Laves phase of AFe
only available valuel -=560 K in the literature. In the tem- (where A is a 8- or 4d-transition element®~® show that
perature range below 0.5T, in contrast to the ordinarily these ions possess rather small intrinsic magnetic moments
observed increase in the hyperfine field, we observed a sligtia few tenths of a Bohr magnetporiented antiparallel to the
decrease with temperature. We have observed analogous baacroscopic magnetization of the host, i.e., the magnetic
even more marked behavior in studies of NgF@émFg, and  moments of the Fe ions. The presence of this moment gives
GdFe. In Table | we show values of the hyperfine field for rise to an additional contribution to the magnetic hyperfine
Ta extrapolated td =0 K. The signs of the hyperfine field, field at the nucleus of the Ta ion, essentially due to polariza-
when given, were determined directly from measurements ition of the s-electrons of the host.
an external magnetic field. In the table we also list the fun-  Calculations of the electronic structure of tH€5)d-
damental properties of these systems as published in Refs.3l Laves phase published after 19&te Refs. 17-19 and
and 11. the citations in the review article Ref. 19nd also the re-
Figure 4 shows the dependence of the magnitude ofults of the experimental papers Refs. 20-25, show that both
Bn(Ta) on the atomic number of the rare-earth elementshost and impurity 4- and 5-ions (e.g., Nb in ZrFg see
The RFe phases clearly separate into two groups, one foRef. 21 possess intrinsic magnetic moments of order
light R and one for heavy R. For the light group the values 0f0.3-0.7«g antiparallel to the moments of the Fe ions in the
By are small and close to one anotlier~6 T), despite the Laves phases. Consequently, the hyperfine magnetic fields at
different types of magnetic orderingferromagnetic for nuclei of ions of thend elements should be the sum of two
PrFe and NdFe and ferrimagnetic for Smkeand GdFe) contributions: one from the interaction between the ion va-

TABLE I. Properties of the Laves phase of RRad values oB(Ta) reduced tol = 0 K.

Magnetic
Phase a, A Tc, K ordering w(Fe), ug w(4f), ug Bn(Ta), T
PrFe 7.47 543 ferro 1.6 3.2 6.2
NdFe 7.46 578 ferro 1.6 3.27 - 50
SmFe 7.42 676 ferri 1.6 <0.7 6.0
GdFe 7.39 796 ferri 1.62 7.0 + 6.0
TbFe 7.35 697 ferri 17 8.4 -
DyFe, 7.32 630 ferri 1.7 9.4 155
HoFe 7.30 608 ferri 1.7 9.4 -
ErFe 7.28 587 ferri 1.7 8.4
TmFe 7.23 600 ferri 1.7 6.1 -
YbFe, 7.24 543 ferri 1.64 4.0 175
LuFe, 7.22 596 ferri 1.67 0 -20.5
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lence electrons and the polarized electrons of tdeb&nd The authors are grateful to S. I. ®énan for measuring
(B,), and one from the polarization of the comB(): and analyzing the nuclear gamma resonance spectra of our
samples, and to N. N. Delyagin for discussing the results.
Bhi=B, *+ Bhost ©) P ya ?

These contributions have opposite sigi;<0, whereas

Bhost>0. It is knowrt! that in rare-earth Laves phases the

magnetic moment of iron, which determines the value of the

negative contribution toBy(Ta) remains practically un-  1m. yu. Tesyluk,Intermetallic Compounds with the Laves-Phase Structure
changed (1.6—14g) as R in RFg varies over the entire  (Nauka, Moscow, 1981[in Russian.

rare-earth series; therefore, the observed chan@%f(ﬁ'a) 2V. Meyer, F. Hartmann-Boutron, Y. Gros, and Y. Berthier, J. Physifje

) " . 605(198)).
must be due to a sudden change in the positive contrlbutlqu_ Shimotomai, H. Miyake, and M. Doyama, J. Phys1@ 707 (1980.

Bhoste Which is determined by the intrinsically localized 4a A sorokin, G. K. Ryasny, B. A. Komissarova, L. G. Shpinkova, A. V.
5d-moment of the Ta ion. According to the estimates of Ref. Tsvyashchenko, L. N. Fomichova, and E. N. Shirani, Sol. State Commun.
26 the magnetic moment of th@Shell ug(5d) = 1ug due 88 529(1993. _ o
to polarization of the host creates a field at the nucleus of ;K Ryasny, A. A. Sorokin, Z. Z. Akselrod, E. N. Shirani, B. A. Ko-

) missarova, L. N. Kryukova, and L. G. Shpinkova, Sol. State Comrégn.
Bhost=50 T. Thus, the observed change of 10-15 T in the 741 (1994,
positive contribution corresponds to a change in the intrinsic®A. A. Sorokin, G. K. Ryasny, B. A. Komissarova, L. G. Shpinkova, E. N.
moment of the Ta ion of 0.2-Qu3, or an equivalent Shirani, V. I. Krylov, A. V. Tsvyashchenko, and L. N. Fomichova, Sol.

change in the degree of localization of this moment, i.e., its%tafe}(cooc':";gcsg BAG(tgogrﬁi'ssamva V. 1. Krylov, A 1. Muminov, Ya

dlffusene_ss. . . . Sazhinski, A. A. Sorokin, and V. M. Tsupko-Sitnikov, Abst. Repts from
At this point it is worth discussing an analogy between the 27th Conf. on Nuclear Spectroscopy and Structure of Atomic Nuclei
the behavior of the intrinsic moment of Ta ions in the seriesS(Nauka, Moscow, 1987 p. 543[in Russiar.
RFe and the magnetic moment of Mn ions in the series A V- Tsvyashchenko, J. Less-Common Met88; L9 (1984
RMeZ In Ref. 27 9 hich . dat tgz. Z. Akselrod, B. A. Komissarova, L. N. Kryukova, G. K. Ryasn$. A.
n. In . el. ! W IC_ summarizes a a c_m measuremen SSergeev, and A. A. Sorokin, Instrum. Experim. Technig8&s28 (1983
of magnetic hyperfine fields at Mn nuclei using nuclear mag- [in Russian.
netic resonance, the authors showed that in the light-R°Alpha-, Beta-, and Gamma-Ray Spectroscdggl. 3, K. Sieghahn, ed.
phases from Pr to Tb the Mn ions possess large magnetic(North-Holland, Amsterdant1968.
ts. from~2.5 to 3 5/, but that (Mn) =0 holds W. E. Wallace Rare Earth Intermetallic§Acad. Press, New York, 1973
momen ' : B AVl 77 2B, A. Komissarova, L. N. Kryukova, G. K. Ryasny, and A. A. Sorokin,
in the heavy-R phases=FHo, Er, Tm. Yoshimureet al. 5th Int. Conf. on Hyperfine Interaction&Vest Berlin, 198D [book of
conclude that the magnitude of the magnetic moment of th%abstracts, C5911 _ _
Mn ions is determined by the interatomic distance: large val- - Z. Akselrod, M. Budzynski, T. Khazratov, B. A. Komissarova, L. N.
. . Kryukova, S. I. Reiman, G. K. Ryasny, and A. A. Sorokin, Hyperfine
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Although our situation is different—the ions we are g N. shirani, Ser. Fiz58, 10 (1994.
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A hybrid-phonon resonance in a quasi-two-dimensional nanostructure
V. A. Margulis

N. P. Ogaryov Mordovian State University, 430000 Saransk, Russia
(Submitted 29 August 1996
Zh. Eksp. Teor. Fiz111, 1092-1106March 1997

The coefficient of absorption of electromagnetic radiation by a quasi-two-dimensional electron
gas placed in an oblique magnetic field is found. The scattering of electrons by optical

phonons is shown to lead to resonant absorption. The shape of the resonance peaks on the
absorption curve is studied, and their doublet nature is demonstrated. Finally, the dependence of
the resonance peaks on the angle between the magnetic field vector and the confinement

plane is investigated. €1997 American Institute of Physids$$1063-776(97)02703-7

1. INTRODUCTION high-frequency field is accompanied by absorption or emis-

sion of an optical phonon. We call a resonance in absorption
The study of intraband optical transitions of quasi-two-due to processes of this type a hybrid-phonon resonance.

dimensional electrons in an oblique magnetic field yields im-

portant informgtion abc_)ut th_e energy spectrum of c_harge Cals THE ENERGY SPECTRUM AND THE WAVE FUNCTIONS

riers and their interaction with the scatter&r$A review of

the early work in this area can be found in the article by =~ The energy spectrum of a electron in a parabolic well

Ando et al,* while the more recent results can be found inplaced in an oblique magnetic field has the form

Refs. 5 and 6. Hybridization of electric and magnetic quan- 1 1

tization in a quasi-two-dimensional nanostructure leads to a &g=%w;( N+ > +hwy| M+ 3): n, m=0, 1, ...,

purely discrete energy spectrum of the electrons. In view of 1)

this, resonant absorption of electromagnetic radiation caused

by electron transitions between two hybrid energy levels bewhere the hybrid frequencies &re

comes possible. To study these transitions we must select an w2+ 02 (02+0?)?

appropriate model for the confinement potential of the quasi- w?,= ¢ 5 * \/ < 7 —wgﬂzcoszao,

two-dimensional electron gas in the nanostructure. The

model employed in Ref. 7-9 in studying the effects causednd 6, is the angle between fiel8 and the confinement

by an oblique magnetic fielB uses a parabolic well with a plane. The respective wave functions in the mixed

confinement potentidl = m* 12z%/2, wherem* is the effec-  coordinate—momentum representation can be described as

tive mass of the charge carriers, afidis the frequency of follows:

the potential, related to the characteristic confinement dimen- ,

sionl by | = yA/m* Q). The explanation for such a choice lies — i |p_xx) E) (1)

. . . . . |B> €Xx ®n Pm ) 2

in two important facts. First, the Hamiltonian of the one- JLy h Iy 2

electron states ir_1 this model is qgadratic, S0 that by applyingvhere on(x) are the oscillator functiond,, is the normal-

a certain canonical transformation of the phase space tn(fation size, B=(p,, n, m), and the hybrid-magnetic

spectrum of the system can be reduced to a sum of the Spel%'ngths ard; = m The variabless andv are re-

tra_of tv_vo harmonic oscillators, while t_he elgenfunct|ons faC'Iated to the electron coordinates and momenta as follows:
torize, i.e., become a product of oscillator functidAshe

filling factor of these states is determined by the degeneracy

A _ _ K0

of the hybrid-oscillator levels and is equale®,/c?, where u=(y—Yyo)Cose m* Q (Pz=P2),

B, is the component of the magnetic fiedd= (B,,0,B,) per- (3

pendicular to the confinement plane. Second, in accordance _ 1 o

with the generalized Kohn theorethglectron—electron in- v=(y=yo)sina+ —o (P~ Pz),

teractions in this case have no effect on the electron transi-

tions. where p2=—m* w.yq sin 6y, yo=—cpy/eB cosa, and the

Since the spectrum and wave functions of one-electronglea is defined by the relatidn

states have a simple analytical form, it is possiglad this 20,0 sin 6,

will be shown shortly to derive explicit analytical expres- tan 2o=————— (4)
. . . . wi—)

sions for the coefficient of absorption of a high-frequency ¢

electromagnetic field. The hybrid-quantization leveldl) are smeared by ther-

Scattering by phonons in a two-dimensional nanostrucmal motion by an amount of orddrand by collisions by an
ture can lead to a process in which the transition betweeamount of ordefi/ 7, the latter being determined by the elec-
electronic states occurs under the simultaneous action of twiwon relaxation timer. Clearly, a hybrid-phonon resonance
factors, i.e., when the absorption of a quantéim of the  can be observed only if all levels are well-resolved and the
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The energy of noninteracting electrons, photons, and
g ha, phonons is described by the following Hamiltonian:

Ho=2> egagag+ > hobi b+ X fiwcicy,  (6)
B f q

nm whereay (ag), b (by), andc, (c,) are the creatioran-

B _ o nihilation) operators for electrons, photons, and phonons, re-
E;(tBi(.)r:]L.teroarrfltlons leading to resonant absorption in second-order perturépectively. Following the ideas of Ref. 12, we can write the
matrix elements of the transitions depicted in Fig. 1 as fol-

lows:

photon and phonon frequencies are sufficiently monochro- (
matic. Hence in what follows we assume that the photon (a|H|a’)=>,
B"

B.0HRIB", —f)(B".0H. 8", =q)

frequency is high ¢ 7>1) and the hybrid confinement is € eprtho

sufficiently strong f; o7 > 1) and quantizingfw, ;> T). (B,OJH | 8", +q){B",0Hg|B",— 1)
The phonon frequency is quite monochromatic if the in- +> P, .

teraction involves long-wave optical phonons. The character- A AR

istic distance over which the electron wave function varies is (7)

of the same order as the hybrid-magnetic lendths For
realistic situations in nanostructures these lengths are large In Eq. (7) the initial state |a) is simply
compared to the lattice constant, with the result that the in}8, ... N¢, ... Ng, ...)=|8,0,0, and the final statgx")
teracting phonons are long-wave. is|B’,....Ni—1,... Ng*=1,...)=[B',—f,£q). Itis now
Now let us examine the physical nature of a hybrid-convenient to write the absorption coefficient in a form simi-
phonon resonance. In the absence of size confinement alotgy to that used in Ref. 12:
thez axis, motion along the magnetic field is free and, hence, (o) =T+ -
the electron spectrum is quasidiscrét@ndau levels This (i)_ (@) +1" (o),
fact is known to lead to root singularities in the density of thewherel" stands for thermal averaging over the initial phonon
initial and final states, which in turn lead to logarithmic sin- states, and
gularities in the cyclotron-phonon absorption of high- 2
frequency radiation? 1‘_‘ The singularities become smeared =), — ™ 8(w)(1_e—ﬁm/T) S folepl(—t,
if we allow for the collisional width of the levek-#/7, or chiN; o
for optical phonon dispersion. , _
For a quasi-two-dimensional nanostructure the physical =q,8'[VI0,08)|*8(es— €5 Fhwgthw),
nature of the singularity is different. In our case the probabil- (8)

ity of an electron transition occurring is proportional to where &(w) is the real part of the dielectric constafior

deg—€p thorhog), Whereeg, s are electron energies, \ypion in the frequency range considered here there is no
andf w is the optical phonon energy. Because the Spec””'ﬁispersiom, c is the speed of light in vacuum; is the

of one-electron states is discrete, if we ignore optical phonor&umber of initial-state photons with a frequency
dispersion, the absorption coefficieh{w) containing this w=cf/\z(w), and

factor has, delta-function singularities at points where the '

photon frequency satisfies the condition 8mhinglL, ho fhw,y ex;{ €

. 1 .
foleg)= sinh sinh
hiw(N—n")+ho(Mm—m')+ho*ho,=0. (5) A m* o cos by 2T 2T
If phonon dispersion is taken into account, the singularityis the ele_ctron distribution function.for a nqndegenerate gas,
becomes smeare@s shown beloly and at the singularity Whereng is the electron concentration ahd is the normal-

T

the absorption vanishes. ization length. In Eq(8) we introduced the matrix element
' The possible types of electron transition are depicted in ~ (B OHRIB", —f)(B".0lh.| B, £ )
Fig. 1. (V)=
5 €g—€pgrtho
3. A GENERAL EXPRESSION FOR THE ABSORPTION ny (B,0h.|B",=a)(B",0Hg|B",—T) ©
COEFFICIENT P €g—€g—hw '

Using an approach based on the method suggested Ihe interaction with the lattice is represented by the Hamil-
Fronhlich®® and examined in the case of transitions in a mag+onian
netic field by Bass and LevinsdAwe can find the absorp-
tion coefficient by applying ordinary perturbation-theory HLZE h,(q),
techniques for the interactions of electrons with the high- q
frequency fieldHg, and the latticeH, , which are switched Where
on simultaneously. The transitions depicted in Fig. 1 emerge
in second-order perturbation theoryktg+H, . h (q)= chqeiqu c.c.,
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andDg is the eIectron—.pho_non coupling cqnstant. _ exdi(ayy+a,2)]=exdig,(u cosa+uv sin a+yo)]
We write the HamiltoniarHg representing the interac-

tion with the high-frequency field in the forth xexp ;12 sin ai_COSai
z au |

Hem o\ oy 6 P, 10
HereV is the normalization volume, arfélis the generalized We introduce the generalized momemtga and p. that
momentum in a constant magnetic field: are the canonical conjugates wfandv. Then

e eB, eB, ) foo hoo
P: + _A| A (_ ) v . - =T
P e y. 0 ¢’ Pu=T 50 PTG

Below we calculate the absorption for linear polarization andyng the second exponential factor on the right-hand side of
choose the polarization vecterin they direction. Then Eq. (16) becomes exjin,|2(p,sina—p,cosw)]. Next we use

y e 2mh ] ” the relationship

R m* e(w)wV t Py (1) F{Ia (u) u+a 17
. . e (p ' = (P - 1
In the calculations of the matrix elements Hf; that Pul @nl 1y =T,

follow, the high-frequency field is assumed uniform. For this
the photon wavelengthh must be much larger thah ,,
which im_poses certain_ restric?ipns on the hybrid-oscillation Combining (16) and (17), we can easily obtain an ex-
frequenciesw, ,. If this condition is met, the electron— pression for the matrix elements:
photon transitions are dipole transitions, with the result that

(n",m’[exdli(ayy +9,2)][n,m)=exp(iqyyo)

which follows from the fact that the exponential operator is
the generator of the translation group.

(BOHB 0= e\ glp g7, (12 z
) RO —1)=—\ T3 APIP . u u+l sin
m* Ve(w)oV ><<g0n,<| ) exp(igyu cos @) (pn(—?i a)>
u v—1%q, cosa
4. FORMULAS FOR THE MATRIX ELEMENTS o expliayv sina)|en| —— | |-
2

Since the one-electron statgs) are given in the mixed (18)
coordinate—momentum representation, to calculate the ma-
trix elements(12) we must write the operatqa,, in the same
representation. Usin(g), we get

Instead of the projections of the phonon wave vector we
introduce the following dimensionless quantities:

F d l1q

_ by
py= COSaa +sin a. (13 gy—f cosa, Q,= \/_ % 2 sina, s
Plugging (13) into (12) and performing simple transforma- q
tions, we get d ELY COSa 2 sin a.
T \2 f I
, ieh 7hN
(B,OHg|B",—T)= eI, S(w)wv5(k Ky) After simple but lengthy transformations, evaluation of the

integrals with oscillator functions ifl8) yields

><{I25(m',m)COSa[\/ﬁﬁ(n’,n—l) (n’,m’|exr[i(qyy+qzz)]|n,m>

—yn+14(n’,n+1)]

m’In'! R~ , ,
_ _ayn+m=n"-m'4n—n’ ym-m
+1,8(n’,n)sin af yms(m’,m—1) N m! n! (=1 g" " d
—ym+15(m’,m+1)]}. (149

d2+gz)
xexp idyyo———F—|expife(n—n")+¢¥(m—m"')])
After integration with respect to the variabfethe matrix ;{ y70 2

elements of the electron—phonon interaction become

XLy ™ (@)L ™ (d?), (20
l
(+q,8'|h.[0,8)=Dy\/Ng +5 5(k Ky Oly) where  tang=g,/g;, tany=dy/d,, d?=d;+dz,
' 9?=gi+gZ, andLy are generalized Laguerre polynomials.
x(n'm’|exdi(qyy+q,z)][n,m). We introduce the notation

19 (n',m'lexfi(ayy+a,2)]|n,m)

To find the matrix element on the right-hand side of Eq.
(15 we write the exponential function in the mixed
coordinate—momentum representation: Then, using(9), (4), (15), and(21), we obtain

=exp(igyyo)Jd(n’,m’,n,m). (22
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(—f,=a,8'|v[0,0,8)
ief \/Trh Ni(Ng+1/2+1/2)

Do S(ky K’ £0)

TmElyl, we(w)V
l,yn+1 cosa
X 2—J(n+1,m;n’,m’)
i(w—wq)
I,Vn cosa ., liym+1lsina
B O R UL A Sy prempry
I \/ﬁsina
><J(n,m+1;n’,m’)—1—J(n,m—1;n’,m’)
h(w+ wy)

l,\n' cosa

— J(n,m;n’—1m’)+

ﬁ(w 1)
l,vm’ sin
l—a\](n,m;n’,m’—l)
h(w— wy)

l,yn'+1 cosa

h(w+ wq)

XJ(n,m;n"+1m’)—

l;ym'+1 cosa
+—

(ot o) J(n,m;n",m’+1) rexp(iqyyo)-

(22
Using (20) and(21) we can transforn{22) into

(=f.>0,8'|V[0,0,8)

e, \/Trh Ni(Ng+1/2+1/2)
m*14l, we(w)V

XexquyyO)é(kx!k;iqx)Jnn’(gz)Jmm’(dz)r (23)

where

Alw)

Jnn’(xz)
n't , NG 1 _
=n—|x”*“ exp —— |ex —ElquZ|ZSInaCOSa

X(—1)" Mexdie(n’ —n)]LN " (x?), (24)

and J,wv(x) can be found from(24) by replacinge with
. The frequency factor

e ie elv
Alw)=4gl, COSa’(wl_w + ot
_ el e 'V
+dl; sin a(wz_w—w2+w). (25
This can also be used to write
|A(w)|?=2[a(w)qZ+b(w)q?], (26)
where
1* 03— 0% w3 wi— 02
B e A P el s
(1)2'% w%—QZ 2
t——> 77
wz w wz wl
(27)
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wi-0% 1 wi—0?
2
1

b(w)= |
( 3y WV S
2
1 wz—Qz
t—>—> 2 2
Q)Z w Q)Z wl

In deriving (27) we employed the following relation-
ships:

w?—0? . 03— Q?
cofa=—5—>, sifa=—5—>
17 @7 W™ @y

5. THE CHARACTERISTICS OF RESONANT ABSORPTION
PEAKS

We introduce partial absorption coefficients by the fol-
lowing formula:

o0

r“o)= X

n,mn’,m =0

)(n,m;n’,m’). (28)

We also introduce the quantity
Av=w1(n—n")+w(M—M')+wFw,. (29
Using the results of Sec. 4 and summing okgr we get

e?w,cod,

m* ¢ 212150l Ve (w)

n''m’!
X _ A holT 2
(1-e )zq: D ( n!'m! )

T®)(n,m;n'm’)=

% |A(w)|2d2(mfm’)92(n7n’)efd27g2[Lzlfn’(QZ)
™ (d2)]A(Np+ 1/2+ 1/2) (A w) ol 2 ), (30)

where N+ is the Planck distribution function, which results
from thermal averaging over phonon states.

Equation(30) clearly shows that if one ignores optical
phonon dlsperS|on dq=wo), the partial coefficients
I'®)(n,m;n’,m’) have delta-function singularities at points
where the detunlng from resonancay, is zero. Let us now
allow for weak phonon dispersion. For long-wave phonons
we assume a parabolic dispersion law:
0g=wo(l—wy 2p2g%), where w, is the opticat-phonon
threshold frequency, ang, is the speed of sounid.In this
case the integral with respect tq| in (30) can easily be
evaluated thanks to the presence of a delta function of the
form S(Aw=*wq v g?). The electron—phonon coupling
constant forP O- and DO-phonons ¥

v2m*
fwo for PO-phonons,
2_27Tﬁza|_wo q
P v an? for DO-ph
—— for -phonons.
\/Zm*ﬁwo
(31
Then forI'§J(n,m;n’,m’) we obtain
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r',0,1,0) r0.0,1,2)

7000t 200

35001 1001

8.0744 8.0763 w- 10" 8.6477 8.6496 w-10"  FIG. 2. Partial absorption coefficients in the
™ 0,0,0,0) ™ 0,0,0,2) case of emission 0D O-phonons;f,=30°.
L |
25000f 1250}
12500} 625;
3.4992 35012 @-10" 8.6477 8.6496 o-10"
rSg(n,m;n’,m") The maxima inl’(n,m;n’,m’) are obviously caused by the
maxima in®(n,m;n’,m’). Let us examine transitions that
2e2ny(No+1/2+1/2)(1—e "Mk wd( A w)*Pw 0 originate from the ground state€m=0). As Eq.(33) im-
= plies, in this case the integrand in the expression for
Com*v2\2m* 4 -
RO Vs s(w) ®(0,0n’,m’) has the form fw)" ™ exd —f(9e)Aw].
. hoy . fo, For small values ofA w, this function increases according to
X sinh—sinh —— a power law, and then falls off exponentially.
If we allow for the smearing of the hybrid-oscillation
< extl — w1(N+1/2) +fiwy(Mm+1/2) levels caused by collisions, théi{A ») must be replaced by
T Rel'(Aw+ivy), with the collisional spread=7"1. In Eq.
L, (8) we must replace the delta function by the Lorentzian
X@(n,m;n",m’). (2 a1+ ?(Aw)?]. In this casel'(Aw) has delta-function-

Here a, is the dimensionless electron—lattice coupling con-like spikes with a halfwidth equal te™*.

stant,N,=(e"“0/T—1)"1 and the integral over the angles
®(n,m;n’,m’) is given by 6. RESULTS OF NUMERICAL ANALYSIS

Let us study the absorption coefficient more closely. We

d(n,m;n’,m") : v
confine ourselves to the ultraguantum case, where transitions

n''m’l (2= ™ 2 originate from the ground state of the system. The above
~Taml J, de o N ddd(a cos'd analytical expressions for the partial absorption coefficients
' )(0,0n,m) imply that at the point where the frequency of
+b sinkd sin2¢)xg—“’xg1—m’e—xl—><z the electromagnetic radiation satisfidso=0 these coeffi-
, , cients vanish. Within a small neighborhood of this point,
X[Lp, " (xp)Lp ™ (X2)13, (33)  ®(0,0n,m) as a function ofAw has two symmetrically po-
sitioned sharp peak@o the left and right of the poihtand
where henceI'™)(0,0:n,m) has the same peaks near this point,
2_0n2 i.e., the partial absorption peaks have a doublet structure. We
1 wolAw| [ @7 4 ) ;
X1 o=% 11, si?d sir? also note that the exponential nature of the dependence of the
1275 @202 wf—wg 1,2 ¢
2Ys

partial absorption coefficients on the numberandm of the
wg_ 2 hybrid-oscillator levels guarantees a sharp decrease in partial
+—5——I14 coszﬂ), (34  absorption as the level numbers grow.
@2m ¥ In view of the complexity of the analytical formulas

For the partia| absorption Coeﬁicieﬂj’[%io)(n'm;n’,m’) we (32)—(34), a detailed description of the absorption peaks re-

have quires numerical studies of the dependence of
) I'*)(0,0n,m) on the radiation frequency, the magnetic field
r(i)(n m:n’,m’)= (M) Tpo(n,m:n’,m’) strength, and the angle between the magnetic field and the
POLLEL T 2h|Aw| POV confinement plane.
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r0,003) 20,021
! !

250t 100¢

125} 50f

13 FIG. 3. Partial absorption coefficients in the

12 ) .
7.9906 7.9924 @-10 case of absorption of DO-phonons;

5.183 5202 ®-10

o r0,0.1,2) 0=60°.
650007 2500
325001 1250

1.5751 15770 w-10" 42544 42563 w-10"

Figures 2-5 depict several partial absorption coefficients  Note that the distance between the doublet components
as functions of the radiation frequenay for DO- and in frequency 10°s™1) is small compared to the character-
PO-phonons. The curves were found by numerically inte-istic frequenciesw;, w,, Q, w;, andw, in the system.
grating Eqs.(32—(34). In constructing the graphs we used  The dependence of the partial absorption coefficients on
the numerical values of the 3pfl1rameters for M8b: e magnetic field is roughly the same as depicted in Figs.
g0~ 17'5’8“’:616’ an_%w0=3.7x 10" " atan electron den- ¢ o1 yho values o at whichAw=0 the absorption is
sty n=10% cm °,  temperature T=100K, and nil. The peaks on thd(*) vs B curves exhibit the same

w.=3.4x10" s 1. The graphs in Figs. 2-5 correspond to o . .
different values of the angle between the magnetic field an((jjoljbIGt structure as those i=)(w). Besides being depen-

the confinement plane, and the doublet structure in the atfi€nt on the magnitude of the magnetic field, the absorption
sorption peak is clearly visible. The peaks comprising thecoefficientsl'*) depend on the anglé, between the plane
doublet in all figures have a similar asymmetric shape: inwith field B and the confinement plane. Figures 2-5 clearly
relation to the point at which w=0 the left peak gradually show that the amplitude and absorption of the peaks strongly
rises but then suddenly drops, while for the right peak thelepend oné,, but the general shape of the curves and, in
situation is the opposite.

r0,0,1,0) r0.0,1.2)
750} 25}
375} 12.5
8.5750 8.5771 w-10" 1.1255 1.1257 w-10" FIG. 4. Partial absorption coefficients in the
r0,0,0,0) r%0.00.2) case of emission oP O-phonons;f,=60°.
7500} 750}
3750t 375t
3.4992 35012 w-10" 6.1788 6.1807 @-10"
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5 3i93 ®- 10'3 FIG. 5. Partial absorption coefficients in the

. . - .
=) 4.544 4563 o-10 =) 53174 case of absorption of PO-phonons;
r '(0,0,1,0) r '(0.0,2,1) —4E°
) ) 0o=45°.
25001 101
1250 st

1.3627 1.3645 - 10" 8.2029 8.2048 w-10°

particular, their doublet nature remain the same. Figure & (n,m;n’,m’) have delta-function singularities at the points
depicts the dependence of the partial absorption coefficientshere Aw=0. Allowing for dispersion generally broadens
on the angle betweel and the confinement plane. Clearly, these peaks, but it also leads to an interesting change in the
the dependence d(*)(0,0n,m) on 6, is represented by a shape of the absorption curve. The above results suggest that
resonance curve. The resonance peaks are symmetric ab@ylthis case the partial absorption coefficientdifw) have

the value oft), at whichAw=0. On the whole the general 1o narrow and high peaks to the left and right of the point
nature of thel'®) vs 6, dependence is the same as for 5t whichAw=0 holds, while at the point itself absorption is

() (=) . . . .
" (w) andI(B). nil. The separation in frequency between the peaks is ex-
tremely small. Thus, the doublet structure reveals itself be-

7. DISCUSSION cause phonon dispersion is taken into account. We also note

The absorption peaks in the hybrid-phonon resonancéhat the results of Sec. 6 imply that the doublet components
are due primarily to the selection rules for the transitions inare asymmetric. The widths of the maxima in thevs o
second-order perturbation theory and the law of energy corsurve are much smaller than the characteristic frequencies of
servation in such transitions. If we ignore optical phononthe system. Figures 2—5 suggest that the ratio of the peak
dispersion, the partial absorption peaks if"(*) value ofl'(w) to the value in the tail of the absorption line is

r0.00.1) r°00,1.2)
90000¢ 1000}
45000} K\ 5001
/*jo " - FIG. 6. Dependence of partial absorption
o 78.62 80.35° 6 (+) 63.326 63.424 8, coefficients on the angle 6, at
I '(0,0,0,1) I"’(0,0,1,2) 0.=3.4x10%!, w=4x10%1!, and
3 T=100 K.
5000} 2500L
2500 1250t

78.90° 7899° 6,
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much larger than unity, with the result that near resonancger N; is exponentially small~exp(—#%wy/T), and in the
points only the corresponding partial absorption coefficientexpression forl’(w) one can retain only the terms corre-

contributes. o _ sponding to processes with phonon emission. In view of this,
Note that this method of calculation is restricted by thefor 4 degenerate gas E(0) acquires the form

conditionw>1 (Ref. 16, with 7 the relaxation time in the
system, so that the passage to the limit~>0 in order to

obtain DC conductivity in an oblique magnetic field is in- I (N:m:n’,m’)

valid. 2 ~holT
. . e cosfy(l—e n'm!
The frequency factora(w) andb(w) in the absorption _ =% . ol ) 2 IDglPA(w)[?
coefficient have singularities at the points=w; and m*chwye(w)l VN M=7g

w=w,. These singularities, however, are unimportant in o, N S T -
studies of the hybrid-phonon resonance, since they are X d2m=mg2n=nie=d-g [L:' " (GZ)LQ " (d*]?
shifted in relation to the points whetew=0 by the optical T _

phonon frequency, with the result that they lie in the distant X (Ngt1)(Aw)fo( g1~ Toleg )], 38
region of the wings of the hybrid-phonon resonance lines.

There is also an analog of a cyclotron resonance in thaherefo(ep) is the Fermi functionV is the normalization
system, which is due to purely electromagnetic transitiongolume, and Aw=wi(N—n")+w(M—M")+w—wq. In
between hybrid-oscillator levels broadened by scattering. the limit of T=0 the distribution is a step function, with the

To find the absorption we employ the same approach a#litial—state electrons “occupying” the energy interval
we did in calculating the hybrid-phonon resonance. In first{l # —fiw+7%iwq,u] and the finat-state electrons the interval

order perturbation theory the absorption coefficient is [u,n+ho—fiwg]. This suggests that the partial contribu-
tions to absorption are provided only by electrons with os-

I(w)= ZZVﬁ%JI\iw) (163 fo(en)(BAHRE', \(j!llz;tor quantum numbers lying within the respective inter-
f BB’ '
a2 _ A comparison of(38) and the results of Sec. 4 shows
i Olepepthe). @9 that the hybrid-phonon resonance peaks are at the same
Using (14) and summing, we get points and have the same structure as the peaks for a nonde-
5 5 s o generate gas. _ o _
I(w)= 27°e’ny w -} [8(01— ) — 8wy )] The resonance under discussion is observed against the
cm* e(w) wi—w% ! 2 ' background of lattice absorption byO-phonons. These,

(36)  however, provide only a monotonic contribution in the
neighborhood of a hybridphonon resonance, which can be
excluded by using the expression for the lattice absorption
‘coefficient discussed in Ref. 12.

Note, finally, that the condition for hybrid quantization,
hw,>T (sincew;> w,), IMposes a restriction on large val-

We allow for the time dependence in the hybrid-
oscillator levels by introducing a phenomenological param
eter 1/, the halfwidth of the absorption peak, wherés the
phenomenological relaxation time. Then E86) yields

27%e?nyr [ 02— Q2 1 ues of the angle between the field and the confinement
I'w)= lane®
( ) Cm* g(w) w%—wg 1+7'2(w—w1)2 p
2 2 2 2
w;— 1 T g
w;—w; 1+ Tz(w—wz)z} S C0§00>(ﬁ_w2 1+? '

We call this resonance at poinis= w; , a hybrid resonance. _ _ _

Since the hybrid-oscillator frequencies, , depend on the Thus, for a fieldB that is almost parallel to the confinement
magnitude of the magnetic field and the angle between thelane the above results cease to be valid.
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We discuss drag effects in a two-layer system of spatially separated electrons and excitons: the
entrainment of excitons by moving electrons, and the entrainment of electrons by moving
excitons. For the case of excitons entrained by electrons we find the drag velggityand for
electrons entrained by excitons we compute the induced electricHieldhese drag

effects can be sensitive indicators of the phase state of the excitons and of phase transitions in
the exciton systen(to a liquid phase, superfluid state, ¢tc.© 1997 American Institute

of Physics[S1063-776097)02803-3

1. INTRODUCTION exciton—electron system. However, we hope that the effect
will nevertheless be observable.

In Ref. 1, drag effects in a two-layer system of spatially In this paper we solve a system of two Boltzmann equa-
separated electrons and holes were predicted theoreticalliipns for the electron and exciton distribution functions. We
and their influence on phase transitions to a superfluid excifind the velocityv 4,4, Which excitons acquire through inter-
tonic phase investigategee also Ref. 2 and the papers citedacting with the moving electrons. We obtain an expression
therein. Later, Pogrebinski discussed the entrainment of for the electric fieldE, that arises in the electron system due
electrons by electrons in a semiconductor—insulator-to the entrainment of electrons by excitons.
semiconductor structufePrice proposed a practical method
for observing the drag effect in heterostructures. Subse-
quently, the drag effect was explored in a number of theon praG COEEEICIENTS
retical and experimental papers;® where various physical
realizations of the drag effect were discussed in one- Consider a double quantum-well structure. Assume
dimensional, two-dimensional, and three-dimensional systhat excitons are created by a laser in one of the weltsch
tems. we will denote with the number)with nonuniform density

In this paper we discuss new effects: drag phenomena iffiue to, e.g., the use of a mask that is opaque to the laser
a two-layer system of spatially separated excitons and ele¢adiation, focusing, ett.. Asssume that the other wethich
trons. The electrical neutrality of excitons is a source of greaV@ 1abel with the number)Zontains a gas of electrons with
difficulty in the investigation of their transport properties. Up 9€nsityn,. The width of the barrier between the wells we
to now, information about their transport properties has beefi€note byd. In th'? problem we will not consider t“””e"”g
obtained from local investigations of their recombination effects. Our goal is to compL_Jte _the response of the exciton
emission'® Therefore, it would interesting to investigate the system to an external electric field applied to the electron

drag exerted on electrons by excitons that are set into motio stem, and also the response of the electron system to forces
. . . . . exerted by the exciton system.
by a concentration gradient. The drag in this case is cause .
In the two-layer system of electrons and excitons, the

by the interaction of an exciton with an electron that polar-__ . o
izes it. In principle, the effects we will discuss could make it S /0" Mass fluxi=m;n,v, and the electron charge flux
-np Pie, j=—en,V, can be expressed in terms of the exciton concen-

possible to learn things about the transport properties of e tation gradientn, and the external electric fiel, applied
citons, and how they change as a result of phase transitioqg the electron subsystem by

in the exciton system, by measuring the current or voltage
associated with the entrained electrons. We will also discuss J= RS, (1)
the inverse effect in a system of spatially separated electrons
and excitons, namely the entrainment of excitons by movingvhere
electrons. In pr|-nC|pIe, th|§ effect could.make it .poss.lble to (il) A ( —mDy;  —NMypp,
control the motion of excitons by varying the field in the J= , =
electron layer. Naturally, all these effects will also occur for emDa/m;  enyuy,
electrons and excitons in a single layer. The results we obtain vn
are qualitatively correct for this case as well. Sz( E 1).
The interaction between an electron and an exciton is 2
weaker than the interaction between two charged particlefHere D, is the exciton diffusion coefficienf),; is the co-
Consequently, drag in an electron—exciton system will beefficient of mutual diffusion of electrons and excitops,, is
harder to detect than drag in a purely electronic system. Thithe coefficient of mutual mobility of the excitons and elec-
fact leads to complications in seeing it experimentally in antrons, andu,, is the mobility coefficient of the electrons.

2
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Note that in our two-layer system the coefficiems; afy
and u,, include the interaction between electrons and exci- 7 vi=1y, (8)
tons(as is true foD,; and w1y).

When no external electric field is applied to the electron  4f, .

layer, but it is not connected into a closed circuit, creation of TDZ P2=1l21. 9)
a concentration gradient in the exciton system gives rise to
an induced electric fiel&y® in the electron layer equal to Let us rewrite the left side of Eq8) in the following
form (assumingn; =n4(x)):
E3'=- D21 Vny=—KyVn;. ) of afy du an ofy T
2 M,N5 Loy 1 dlpop om AR (10)

— V= — — — Vg,
_ _ _ _ ary Y amoang ax ST GT ary 't
In this case, we obtain the following expression for the ex-

citon flux from (1): whereu = u(x) is the chemical potential of the exciton gas.
] We will neglect the temperature gradient and write the col-
i1=—(mMDy—NMyu1Kz) VN, () lision integrall in the r-approximation:
If, however,Vn,=0, then we have for the exciton flux fl_fo
1
. l,=— , 11
I1=—NnimyuEs, (4) 1 m (11)
in this case, it follows fron{4) that the velocity of the exci- wherer, is the relaxation time of the excitons. Hefgis a
tons Is Bose function withu= u(nyg) = g, Normalized by
V1=~ ik, 5 o dps
nloz fl (27Tﬁ)2 (12)

3. ENTRAINMENT OF ELECTRONS BY EXCITONS .
As a result, Eq(8) acquires the form

When their density is nonuniform, excitons will diffuse 0
in the direction of its decrease. As they move, the excitons ﬂ ‘9_#@ D= — fi—f1 (13)
interact with electrons, thereby imparting momentum to  du dny X 1 T
them. As a result of this, an induced electric fi€lglappears
in the electron layer.

Consider the case where the circuit to which the electro
layer is connected is open. The kinetic equations for the ex-  f,=f2+f0(1+f2)y,. (14)
citon and electron distribution functions have the form

We linearize Eq(13); for this we letn;(x) =ng+ dny(X),
I,{L(nl):,u(nm)Jr Su(x), and writef, in the form

As a result, we obtain the following expression i6y:

Jf
_V1:|1+|12, (6) 71 ﬁ/Uvo ﬁnl

i V1= RGT g ax U as
of, of, .

(7) Let us assume that collisions between excitons and elec-
trons are elastic. Then the collision integral in E9).has the

herel, is a collision integral that includes all exciton scat- form

tering processes except scattering of excitons by electrons,

while 1, is the collision integral that takes the latter into |2122 W(P1P2;P1/P2 )i f1 for(1+F1)(1—fy)

—Z vyt —2 py=I
ir, 2 apzpz 21

account. In Eq(6)_ there is no term with a momentum de- o

r|vat|ve_ (0f1/9p1)p,. This term yamshe_s because no mac- — o o(L4 1) (1= )} S(e1+E0—87 —£01)
roscopic force acts on the excitons, apg=0. When the

circuit that includes the electron layer is open, the collision dp, dpy: 16
integral |, for the electrons in layer 2 also vanishes and in X(zwﬁ)? (zwﬁ)?' (16)

equilibrium an induced electric field, appears which com- _ o . _
pensates the change in momentum of the electrons as a restfferew is the probability of scattering of an exciton by an
of electron—exciton collisions. The system of E¢8) and ~ €lectron. y .

(7) can be simplified if we assume that the electron—exciton Ve linearize Eq(9) by writing f in a form analogous to
interaction has only a weak effect on the process of excitoh4: i-e.,

diffusion, so_thaﬂ I.1|%|I12| ar_1d t.he term ;, can be omitted. fo= O+ F3(1—9) iy, 17)
If the nonuniformity in the distribution of electrons is small,
ie., wherefJ is a Fermi function that satisfies the normalization
condition
af, - af, .
arz V2 (9p2 p2 ' _ fO dp2
n,=2| f; —(277%)2' (18

then we also can neglect the spatial derivativé7@n Then
we obtain Sincep,= —eE,, we obtain
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000 o o we obtain a different expression for the coefficiéht; :
e, ot i, =2 | W)= 1))yt g

ap’ K 1 T1 aMO foc z(q)quqfw dw
_¢1_¢2)6(81+82_817_827) 21~ 2 eﬁszTmlnz anlo —»
dp;  dpy fx 0 0 dp,
X(277—ﬁ)2(27T—ﬁ)2 (19 X _ocfl(l‘f‘fl,)ﬁ(sl ey~ hw) m
When there is no current in the electron layés, and % dp,
¥, vanish. We multiply both parts of Eq(19) by X f_ fA1—13)8(ey— e +Hiw) (2nh)? (29
Pox/(27h)?, integrate over all the momeng@,, and sum
over projections of the spia,. Then Eq(19) can be written We rewrite Eq.(25) in the form
in the form
_ 1 T )
E2= KV, 20 Ka=g 2 ef’kgTmyn, anlof U(a)a’dg

where the coefficienk,, (see Eq.(2)) equals

= 1m x%(q,®)Im xF(q, )
__ 21 Iro J 0£0(1 4 0 0 Xf snf(hal2kgT) 0% 26
KZI_W(?TH) Wf1f2(1+f1,)(1—f2,) ( B
where
X Pox(P1rx—P1x) 8(e1+e2— €1 —€31)
0 0
dp; dp, dpy B _ fi(er)—f(e1)  dpy )
X(Z’]Tﬁ)z (zwh)z (th)Z (21) x(g,0) (e1— ey +hwt+id) (2’77;1)2, 27)
Taking into account the conservation of momentum dur- . f0(e,) —1%ey) dp,
. Rt =— _ . (29
ing collisions:py,— P1/x=P2rx— P2y, and also the symmetry X (d,0) (g2, Fhotid) (2mh)? (

of the integral in Eq(21), we obtain
Let the system parameters be such that the excitons and

Ky 1 dpo J fr9(1+ fg,)(l— fg,) electrons obey Boltzmann distributions. In this case we find
2emnykgT dnyg a simpler expression fdf,, from (25):
Xq 5(81+82_817_82r)
TN | dlg f U2(k)K2
d d dp, 217
% . Pfi -~ IO; , przi . 22) 4,/ 2o emy (kBT) N
(2mh)? (27h)? (2mh) s
whereq=p, —p>. xXexp — BMKaT dk, (29
For the probability of scattering of an exciton by an elec-
tron we will use the Born approximation: whereM =m;m,/(m;+m,), k=g/A andU is the potential
o energy of the interaction between electrons and excitons.
W(P1P2;P1’ Par) = z (23 We now wrteE, in terms of the exciton diffusion veloc-

ity vgi . Doing so, we find
where U(q) is the Fourier transform of the effective
. ) . 1 dp;
exciton—electron interaction energsee Sec. b D 01,0 (30)
. A . . . 1X 1¥1 20 ﬁ)Z
Use of the Born approximation in this case is correct Ny (

because the condition for its applicability has the form Taking into account Eq(15), we obtain from(30)

yn®l<hy, if d<n 12

T 0 oan
d=3<# if d>n—12 Vdift= — T Fo T (31
y U, ' ml anlo &X

wheren=maxnq,n,}; the quantityy is defined below in
Eqg.(71), andv is the electron—exciton relative velocity. This
condition is fulfilled over a wide range of densities and tem- £, =),y . (32)
peratures. For example, for an exciton radas20 A, a

dielectric constané = 10, in the medium and<n~? we  Using (29), we find the following expression fox,;:
obtain the conditiom®?v<10"cm 4.

Using the identity N 1 N1 [ M
' a2r e V(keT)®?

6(81+ 82_811_82/):f d(hw)&(sl—slf—ﬁw)

232
x | U3k k2exp{—
X 8(e,— ey +hw), (24) fo (k) 8MkgT

Let us write the equation fdE, in the form

dk. (33
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4. ENTRAINMENT OF EXCITONS BY ELECTRONS

Consider the reverse situation, i.e., where the electrons
drag the excitons. Let us calculate the velocity imparted to

the excitons when they interact with electrons.
In this case, the kinetic equations have the form

of,

EV1:|1+|12, (34)
ﬁv+ﬁ' =l,+1 (35
ir, 2 P P2=1l211521.

In order to simplify Eqs(34) and (35) we will assume

that the electron current is uniform, and also that the colli-

sion integrall ,; is a small correction td, and thus can be

neglected in(35). Furthermore, if we are interested only in

287’17’2

_ 00 0\/1_ 0
12_mlmznlokaT fo1f2(1+f1’)(1 fz')plx
X(pZ’X_p2x)5(81+82_81'_821)

dp; dpy dp,
(27h)? (27h)? (27h)?"

Omitting calculations like those described above, we fi-
nally find an expression fog,:

[da [ dwvr@e
0 — o

Im xB(q,0)Im xF(q,w)

(43

1 LT e
K12= 8’772 mlmznloﬁz kBT

the drag velocity 4,4, assuming that it dominates over the OF in the classical case

diffusion velocityv 45 , we can omit the term containing the

spatial derivative of ; in Eq. (34). Then we obtain

|1+ | 12:0, (36)
ALY (37
(?p2 2 2

The usual procedure of substitutirig into Eq. (37) in
Eq. (17) and using ther approximation for , gives

T2
V2= mokgT

eE,p,. (39)

HereE,={E,,0} is the intensity of the external electric field
and 7, is the relaxation time of the electrons.
Let us write Eq.(36) in more detail:

=~ 2

0’2,0’2’

W{f17f21(1+fl)(l_fz)_flf2(1+flr)

dpy dp;
(27h)? (27h)?"
(39
By substitutingf, in the form (14) and f, in the form

(17) into (39), and also setting; = —(f,— fg)/rl, we obtain
the linearized equation

X(1_f2/)}5(81+82_81/_82/)

f8(1+f8>¢1=2nf WIEQ(L+£5,)(1—19,) (41 + P

—Y1— ) 0(e1ter—e1 —€y)

dpy,  dp;

X2k 2nh)?
The conditionv g <v grag PErMIts us to drop the terms in
1 and ¢4, under the integral sign in Eq40).

The expression for the drag velocity has the form

(40)

1 0 0 dp,
Uerag™ Pufi(1+f]) gy 2nh)? (41)
We write the equation fob 4,4 (S€€(5)) as
Udrag= — M12E2. (42)

In light of the relationg40) and (41), we have foru,
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SnR(hawl2kgT) (44)
T1T2 enz M fw 2 2
= \/ U<(k)k
Hemy 2m mm, N (kg T)® Jo o
k?h2
X exr{ - W) dk. (45

5. EFFECTIVE INTERACTION IN THE ELECTRON-EXCITON
SYSTEM

In order to compute the effective interaction energy in a
two-layer system of electrons and excitons we will use the
self-consistent approximation. Quantities that refer to exci-
tons we label with the number 1, while those that refer to
electrons we label with 2. If the exciton radius is much
smaller than the distance between electrons and excitons,
then the interaction energy between an isolated electron and
an exciton has the form

. r
[(ry—rp)?+d“]*

where y=ae€?/2e, a is the polarizability of the two-
dimensional exciton in its ground statd, is the distance
between layers|r,—r,| the distance between excitons and
electrons along the layers, aids the dielectric permittivity

of the medium. In deriving expressions for the effective in-
teraction energy in a multiparticle electron—exciton system
we will assume that the exciton—exciton interaction is negli-
gibly small compared to the electron—exciton interaction and
omit it. Let us place a test chargee in the electron sub-
system at the origin of the coordinates. The linearized kinetic
equations for the distribution functions of excitons and elec-
trons have the form

Ve edl1—r2,d)=—

M e -0 46
mvl 0—,_plp1_ : (46)
of, . ot o .
a—erz ﬂ_pzpz_ , (47)
where

. Jd U q L 0 U 0
pl_ arl (rll )l pZ_ F?rz (r21 )
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The interaction energidd(r,0) andU(r,d) satisfy the equa-
tions

e
U(r,0)=f pz(r,) m dr’

(r’)dr’ e2
-| et 49
3 ypo(r')dr’ 4
U(rad)__ [(r_r/)2+d2]2 - (r2+d2)21 (49)
where

d
pi0)= | 1) o

d
A1=2 [ 1400) Gy

Fourier-transforming Eqs(46), (49), we obtain(assuming
thatk={k,0})

O

U(k,d 50
fi(k,p)= ome 5|01x (k,d), (50)
0
fo(k,p)=— U(k,0 51
2(k,p) o 5p2x (k,0), (51)
wheref? is a Bose function and is a Fermi function, and
Uk0—4we2ff kp) =P
(kO =—— | fa(kip) (2ah)2

F(k,d ff k dp + i 52
yF(k,d) | fa( ’p)(277—h)2 — 62

dp
Ulkd)==29F () [ 120 G5z~ 7K.,
59

where the functior (k,d) = (wk/d)K(kd), whereK(z) is
a modified Bessel function.

From Egs.(50)—(53) we obtain a system of two alge-

braic equations for determinind(k,0) andU(k,d):
2

U(k,0= B2U(k,0) = yB1F(k,d)U(k,d)
+ ZLeZ (54
ek ’
U(k,d)=—yB,F(k,d)U(k,0)— yF(k,d), (55
where
109 dp 19ty dp
S It O e ot
(56)
If £ andfJ are Boltzmann distributions, then
n n
Bi==ip B i (57)
If £9 is a Fermi step function, then
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mo

R (58

Bo=—

As a result, the expression for the effective interaction
energy in a multiparticle electron—exciton system has the
form

yF(k,d)
1- 27Te2ﬂ2/6k_ ’}/Zﬁlﬁze )

U(k,d)=— (59

The expression for the effective interaction energy has
the same form in a one-layer system of electrons and exci-
tons, except that the functiorr(k,d) is replaced by
F(k,a), defined as follows:

e krdr Jo(kr)dr
F(k,a)=f o =27 3
a

wherea is the exciton radius and, is a Bessel function.

By defining the functiorF(k,a) in this way, we assert
that the interaction between an electron and an exciton is
dipole—charge at distances down to the exciton size and
equals zero at smaller distances.

We now derive the value of the parametgs ae?/2e
entering into Eq(59).

To second order in perturbation theory with
respect to the electron—exciton interaction operator
V=—dE=—edR/eR® (Whered=er is the exciton dipole
moment andR the distance between the electron and the
exciton), the energy of interaction between an exciton in its
ground state and an electron has the form

W-2'E

|V0k|2 2

ae
~ 2eR*
(60)

We will use this expression to calculate the effective inter-
action in the many-particle electron—exciton system. First we
calculate the polarizabilityy entering into the parameter

for a two-dimensional exciton:

|X0k|
2R4 E Ek

2% o, |xoul?
YT Te € Eo-E (61
We introduce the auxiliary operatar by*5
omy db 62
T ar (62
Then we obtain forr the expression
2ime® .
a=—>3 (XP)oo- (63

Consider the action of the operatf)ron the wave function
o for the exciton ground state:
m; db

iMy ~n an
Xpo=—3" gt Yo~ 7z (Hb—bH)dy, (64)
whereH is the system Hamiltonian.
Let byo=b(r)¢o. The equation [—#A2VZ/2m,
+ U(r) o= Eqig implies that Eq(64) has the form
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1 R from one another. These probes measure the intensity of
X¢ho=7 V20(r) o+ Vh(r)V . (65  the luminescence. By measuring the time interval between
maxima of the luminescence, we can determine the drag ve-
Substitutingb(r) =f(r)cos ¢ into Eq. (65) reduces it to the  |ocity of the excitor 4,4 (this experiment is possible when a
form pulsed laser is usedActually, both diffusion(connected
1 1§ 1§ 0! with the concentration gradienand drag give contributions
. 0 : : :
ir=cf'"+s——s—5+f —. (66) to the measured exciton velocity. However, the role of dif-
2 2r 2r o fusion can be isolated by measuring the velocity of exciton
The ground-state wave function of the two-dimensionalmotion when there is no electron current dragging the exci-

exciton is tons.
Analogous experimental setups are possible when the
Yo= /iz e 'la (67) electrons and excitons shqrg a common layer.
7Ta In a one-layer system it is possible for a rather shallow

| electron—exciton bound state to foftrdue to the polariza-
tion interaction between them. However, the predicted bind-
ing energy of this state should decrease markedly when we
take into account the Pauli exchange repulsion between the
free and excitonic electron and screenitige latter is espe-
ia cially important for exciton concentrations,> 1/r§, where
r 2 r2 is the radius of the state of a single electron bound to a
single exciton. For temperatures larger than 0.2 ionization
energies of this bound state, the latter gives no contribution
' 68 to our kinetic equations.

The formation of electron—exciton bound states in a two-
layer system turns out to be even less important because
even at distancesd=100 A the ionization temperature of
these states is less than 1 K.

These drag effects, in particular the electric fiélolt-
age induced by excitons in the electron layer, can be sensi-
tive indicators of the state of the excitonic subsystem and its
phase transitions. For example, the response should change

where a= ef2/2m,€? is the radius of the two-dimensiona
exciton in its ground statan;=m.m/(mg+mg), m, and
m,, are the electron and hole masses.

Solving Eq.(66), taking (67) into account, we obtain

e2r/a

or +B

a
f=A(1+—

, . 3ar . 3a? . 3a’
2 2 4r

X\ re+

The coefficientsA and B are chosen from the condition of
finiteness off yy asT—0 andr—c. As a result, the solution
takes the form

(69

For the polarizabilityw, taking(63) and(67) into account we

obtain markedly when a phase transition to the liquid state takes

21 m,e? . 21 5 place in the two-dimensional exciton system. In particular,

=8 a? a —1—68 . (700 the appearance of moving ms_ulatlng excitonic droplets can
lead to electric current pulses in the electron layer.

Thus, the parametey entering into Eq(59) for the ef- It would be interesting to study the implications of exci-
fective interaction energy in a many-particle electron—tonic Bose—Einstein statistics using these drag effects, in
exciton system equals particular the appearance of an excitonic Bose—Einstein con-

21 o253 densate. In a two-dimensional system of excitons at low tem-

V=3 (71)  peratures, where Bose—Einstein condensation does not occur

(in the thermodynamic limjtit would be interesting to in-
vestigate how the electron drag is affected by the appearance
first of a local superfluid densitgwith uncorrelated phasgs

Let us discuss possible types of experiments to detecfind then a global sup(_arflmd exciton density at the
entrainment excitons by electrons and electrons by exciton%(_osterl|tz—ThouIess transition temperature. In the crossover

First consider entrainment electrons by excitons. A directed9ion where the local superfluid density appears, the drag

flux of excitons can be obtained if we locally create excitonscoefflments(mutual mobility and mutual diffusionshould

(for example, using a laser with cw pumpjrat one of the slowly increase and be discontinuous at the Kosterlitz—
edges of layer 1. The excitons will diffuse away from theThOUIess transition point.

edge of the layer in the direction opposite to the concentra-  This work was supported by grants from the Russian

tion gradient. During the diffusion process the excitons will g ,nd for Fundamental Research and the programs “Physics

partially recombine, and also interact with electrons in theyf Solig-State Nanostructures,” and “Fundamental Spec-
second layer. The response of the electron subsystem to t%scopy.”

exciton diffusion will either be an induced current of elec-

trons or an induced electric fieldoltage in layer 2, which

can be measured. *)e-mail: lozovik@isan.msk.su.
For the case of entrainment of excitons by electrons, the
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Current—voltage characteristics of tunnel junctions between superconductors with
anisotropic pairing
Yu. S. Barash and A. A. Svidzinskil
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Zh. Eksp. Teor. Fiz111, 1120-1146March 1997

Charge transfer in tunnel junctions between superconductors with anisotropic singlet pairing is
considered theoretically on the basis of the Eilenberger equations for the quasiclassical

Green’s functions. New singularities of the current—voltage characteristics, which are characteristic
of the case of anisotropic pairing, are treated analytically assuming that the electrons reflect
specularly from the boundaries of the tunnel barrier. All four contributions to the tunneling current
are investigated. Two of them describe Josephson tunneling, and the other two contributions
correspond to the quasiparticle currétiie last term appears only for a variable voltadggifferent
dependences of the order parameter on the momentum directions in the interior of the
superconductors and different orientations of the crystal axes relative to the junction plane are
considered. The results of numerical calculations of the current—voltage characteristics

for several particular cases are presented.197 American Institute of Physics.
[S1063-776(197)02903-X

1. INTRODUCTION culation of the electron propagators in the tunnel barrier is
not plagued by the uncertainties inherent in the tunneling
Charge transfer through a tunnel junction between supemamiltonian formalism.
conductors with isotropic pairing was considered theoreti-  In this paper we analytically investigate the singularities
cally 30 years ago. In particular, a microscopic description obon the current—voltage characteristics of tunnel junctions be-
the total tunneling current that flows when an external varitween superconductors with anisotropic pairing, to which an
able voltage is applied to a junction was obtained within theexternal, generally variable voltage is applied. We use a mi-
tunneling Hamiltonian  formalism by Larkin and croscopic approach based on a microscopic expression for
OvchinnikoV and by Werthamér(see also Ref. 3 and the the tunneling current and on the solution of the Eilenberger
references cited thereinlt has recently become clear for equations together with the corresponding boundary condi-
superconductors with anisotropic pairing that measurementsons for quasiclassical electron propagators. In the special
of the Josephson and quasiparticle currents provide impoicase of a junction between superconductors with isotropic
tant information on the structure of the superconducting orpairing, our results coincide with those found in Ref. 1. In
der parameter on both sides of the junction, on the proximityRef. 1 general expressions were obtained, and the singular
effect, and on several other surface effects near the plane pbints of the functions,,(V) (m=1, 2, 3, 4), which appear
a tunnel junction between superconductbrsinvestigations  in the expression for the total tunneling current, were de-
in this area have attracted a great deal of attention, primarilgcribed[see, for example(6) and(7) below]. The functions
because of the importance of determining the structure of the, o(V) play the role of amplitudes in the expression for the
anisotropic superconducting order parameter for differenfosephson current, which for a constant voltage reduces to
high-temperature superconduct¢see, for example, Ref. 10
and 11. . eVt
One of the characteristic features of the microscopic deh(V)sm( Xl_X2+ZT
scription of charge transfer through tunnel junctions between
superconductors with anisotropic pairing is the ineffective-The functionsl ; (V) describe the quasiparticle current. The
ness of the tunneling Hamiltonian formalism in this c&se. functionl,(V) appears only in the case of a variable voltage,
This method, which can usually be employed successfullwhile in the case of a constant voltage the quasiparticle cur-
for tunnel junctions between superconductors with isotropiaent reduces to the single terlg(V). In particular, it was
pairing, contains uncertainties in the case of anisotropic pairshown that at the voltageeV|=A;+A, the functions
ing because of the significant momentum dependence of thg (V) and1,(V) diverge logarithmically, whilel,(V) and
matrix elements describing the tunneling between the supet-(V) undergo jumps. Similar singularities were found for a
conductors. Choosing the matrix elements independent of theariable voltage oscillating with a frequenéyw=A;+A,.
momentum directiongwhich is permissible for isotropic The divergence of; is called the Riedel peda®. This diver-
s-wave pairing leads to incorrect results for anisotropic pair- gence ofl ; is associated with a corresponding singularity in
ing. At the same time, the momentum dependence of tunnethe density of states of the superconductoré at=A.
ing matrix elements cannot be obtained within this method. In the case of anisotropic pairing, in which the density of
The use of a systematic microscopic description of the tunstates does not exhibit divergence, the Riedel peak is, of
neling of a charge between superconductors based on a caeurse, smeared out. Nevertheless, as is shown below, some

eVt
+|2(V)CO{ Xl_X2+ZT> .
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new characteristic singularities appear on the currentV(t)=®,(t) —d(t) is applied to the junction. We align the
voltage characteristic under certain conditions specificallyx axis parallel to a normal to the junction plaméx. To first
because of the anisotropy of the order parameter, some afrder in the transparendy the microscopic expression for
them caused by reversal of the sign of the order parameter #te tunneling current density can be written in the following
the Fermi surface. The characteristic behavior of theform:!®
current—voltage characteristic can depend significantly on

the orientation of the crystal axes of the superconductors sz_igf
relative to the junction plane. Their orientation determines 8w Jy
the spatial behavior of the order parameter near that plane. ARAK - AKAA ARAK  AKAA
However, even in the simplest case of a uniform distribution X (9195 +9192~ 9201 ~ 9291)0(t. )} @)
of the superconducting order parameter on the two sides dfiere and below we set, #, c=1, wheree=—|e| is the
the junction, the features of the current—voltage characterischarge of the electron.

tic differ sharply from the case of isotropic pairing. In fact, In (1) the retarded, advanced, and Keldysh quasiclassical
for superconductors with anisotropic singlet pairing the func-matrix propagators are taken directly on the junction bound-
tions1 (V) also become dependent on the momentum direcary and should be calculated in zero order with respect to the
tion on the Fermi surface, and to find the tunneling currentransparency of the barrigr.e., for a nontransparent bound-
these functions must be integrated with some weight over thgry). These propagators depend on the corresponding direc-
Fermi surface. For orientations of the crystal axes in whichions p; and p, in momentum space. The subscript(2)
there is no suppression of the order parameter on either sidgbels the left-handright-hand half-space with respect to
of the junction, we found that nonanalytic behavior of thethe boundary plane;, is the component of the Fermi veloc-
current—voltage characteristic is observed only for the direcity along the normah to the junction plane. Ifl) the inte-
tions of |eV| which are equal to the values of the expressiongyration is performed over the part of the Fermi surface for
[A2(p2)| +]A1(py)| at their extremum points. Hef® is the  whichv,>0. The relation between the incident and transmit-
momentum direction of a quasiparticle impinging on theted Fermi momentdi.e., betweerp; andp,) is as follows.
boundary of the tunnel barrier, amg is the momentum di- The components which are parallel to the specularly reflect-
rection of a transmitted quasiparticle, which is directly re-ing barrier plane should be equal to one another, and the
lated top, and to the form of the Fermi surfaces of the magnitudes of the components along the normal to the
contacting metals. The expressions presented have been @yundary are determined from the condition that the mo-
amined, for example, as a function pf. It was found that mentap, andp, lie on the corresponding Fermi surfaces. It
the singularities of the current—voltage characteristic depeng obvious that in the special case of superconductors with
strongly on the types of extrema for these expressions. Thiglentical spherical or cylindrical Fermi surfacésrovided
was first pointed out in Ref. 7, which treated the characterthe cylindrical axis is parallel to the junction plartée inci-
istic behavior of the current—voltage characteristic for thedent and transmitted momenta are eqpak p,.
quasiparticle current at low temperatures in the critical ori-  The quantities used ifil) are found in accordance with
entations, in which there is no suppression of the order pathe following example:
rameter on either side of the junction. .

T_he sﬁuaﬂo_n becomes more compllc_ate(_:l fqr_ crystal ori- (@?@§>o(t,t)=f dtlg?(t,tl)gg(tl,t). ?)
entations in which the order parameter is significantly sup- —
pressed near the junction plane. In this case quasiparticle . " A
bound states localized near the junction plane can occuf!®® g (L) =S (-t S () (1=1,2),
Among them we can distinguish the bound state with zerd'nere
energy, which appears under quite general condiffdfist’ A
In the case of an opaque, specularly reflecting boundary, Sl(t)=<
such a state always appears for quasiparticles whose incident
and reflected momenta correspond to different signs of the t
order parameter in the bulk of the superconductor. Besides x|(t)=)(|—2f @, (t")dt’ 3
such universal states localized near a boundary, quasiparticle
bound states with a nonzero energy, whose value is specifigahd x; is the phase of the order parameter of tte super-
by the specific profile of the variation of the order parameterconductor in the junction plane when the electric potential
near the surface, can also be predeBelow we shall con- @ is zero.
sider both types of bound states and their manifestations on Below we consider only singlet types of anisotropic pair-

dZSlv x1

Tr{7sD(p
>0 47val {73 (pl)

exli xi(1)/2] 0
0 exd —ixi(1)/2])’

the current—voltage characteristic. ing. The matrix propagators for them can be written in the
form
2. MICROSCOPIC EXPRESSION FOR THE TUNNELING g f
ELECTRIC CURRENT n_ . 4)
o= ] (

Let us consider a tunnel junction with a transparency
factor D<1 and with a specularly reflecting plane at the For the further calculations we note that the nonequilib-
potential barrier between two clean superconductors havingum effects are generally insignificant for tunnel junctions.
singlet pairing. We assume that the external voltageThe voltageV only shifts the Fermi levels of the electrodes
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relative to one another by an amownht In addition, to find R » do ®

the current in first order with respect to the transparency, the |1(V,I01):f 52 tam(ﬁ) IM{f¥(0—V)[f3 (o)
Green’s functions can be calculated for nontransparent half- o

spacegif we neglect the tunneling of electrons through the +HiX (w) ]+ (1=2V——V)}, (8
junction). Under the conditions considered here the electron

distribution functions still correspond to equilibrium, and theI (V,py) = _f
electric potential leads only to the appearance of the corre? 't
sponding coordinate-independent terms in the phases of the
superconducting order parameters and in the Green'’s func-
tions on the two sides of the juncti¢see, for exampleg3)].

©

do ® Rel {7 v
ﬁtan ﬁ e{ l(w— )

X[f3R(w)+ ¥ (0)]-(1=2V——V)}, (9

; - . » dw w—V )

The following relation then holds: I3(V’pl):ﬁx s tan?‘(? —tanl‘(ﬁ)

f:J"(w)=[§1R(w)—@A(w)]tr’:ml‘(ﬂ - 5 X ImgR Rw—

2T g7(w)Im g5 (w—V), (10

According to the general symmetry properties of propa- * dw o)
gators,@A=}E(QR)*}g,gwhere}: is a P):ilrl)" rr;atrix. LeiousIO I4(V'ﬁl):_ﬁw — tan)‘(ﬁ){Re[g?(w—V)]lm 5
consider the case in which the phase of the order parameter
within the half-space occupied by a superconductor with an X () + R g (w—V)]Im gf(w)}. (11)

opaque boundary does not depend on the coordinates or tti%e replacemertf* in formulas(8) and (9) leads to the

momentum. Then this phase correspondg,tm Eg. (3), and same result for the Josephson current after integration over

the Green’s functions should be calculated for the real orde,[rhe momentum directions if¥).

parameter, although the sjgn .Of the order paramete.r.can de- For the special case of superconductors with isotropic
pend on the momentum direction. Under these conditions WSairing Egs.(6)—(11) agree with the results of Larkin and

have A A Ovchinnikov! We note that (V) andl,(V) are even func-
fRA(=P.x,0) = — T TRAPX,0), tions of V, while I, and| are odd. This difference enables
RA(— P x, ) =gRA(P, X, w), us, in prir}cip[e, to unequivocallly isolate the behavior of all
A . four contributions to the tunneling current from the results of
fRAP,X, — )= fR** (p,x,w), measurements and to study it on an individual basis. Then
GRAD X, — @)= — BR*™ (Px, ). thg parit.y properties with respect tbju;t mentioned permit
) ) ) elimination of the replacement— —V in the complete ex-
We also take into account in the calculations that the Valueﬁressions fot, V), which leads only to reversal of the sign
of the propagator from the incident momentyrmand from iy front of the corresponding term in the expression for
the reflected momentump coincide andv,(p) = —v(p) on 1,(V).
an opaque boundary. Therefore, wh(_an th'e variable voltage Equations(8)—(11) were written out above in a form
V(t) =Vo+acost) is applied to the junction, we can ob- \ynich is conserved in the more general cesmmpared with
tain the following expression for the tunneling current from o case considered belpim which the phase of the com-

Eq. (1): plex order parameter depends on the coordinates and the mo-
_ * a\[ mentum directions and the Green'’s functions satisfy the gen-
x= > J“(w_o) J1(Vot wp) eral symmetry relations

n:—DO
. f+R'A(—[3,X,—a))=—fR’A*(fJ,X,w),
X Sir{)(l—)(z‘l' 2V0t+ (1)_0 gR,A( _ [S,X, _ w) — gR,A* (fJ,X,w).

Here, of course, a different choice of the phase difference
+jo(Vot ©p) X1— X2 Can appear in the arguments of the trigonometric
functions with a corresponding change in the definition of
the amplitudeg, ,. If this phase difference is chosen depen-
dent on the momentum direction, those trigonometric func-
tions must appear together with (V) in the integral over
the Fermi surface. In the general cds€V) andl,(V) do
not have the properties of evenness or oddness with respect
to the direction.

X Sin(wgt) + wpt

a
0

a
+ja(Vo+ wn)COS{ wpt— P sin(wot)
0

. : _a For a constant voltage on the junction, settiag 0,
+j4(Vo+ wn)3|r{wnt o0 sin(wgt) } (6) from (6) we obtain
Here we have introduced the quantities: ix(V)=j1(V)sin(x1— x2+2Vt)+j,(V)cos x1— x>
. dzsl Ux1 ~ ~ i
m(V) = f @ o DBUIm(ViP), +2V)+ja(V). (12
Ux1~ f1 It follows from (12) and(6) that the characteristic singu-
m=1, 2, 3, 4, (7) larities of the current—voltage characteristic for constant and
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variable voltages on the junction are given by the singular 7A(P)
points of the functiong (V). We useV,, to denote the f(P,@)|xew=—F"(P,)|x=0= —.
singular points of these functions. Then the current—voltage VIAL(P)|*— w
characteristic for a constant voltage on the junction will have

. " ; . We assume that we can choose the order parameter
singularities only at these points. However, in the case of 8.4l within a superconducting half-space with an opaque
variable voltage the expression for the curré§thas singu- P 9 P paq

larities at the voltage value¥=V,,—nw, (M=1, 2, 3, 4; Z?l;n\?\?(;yi(rll.t?(;),d\ll,lvchee?hg(?ocl:llcj):/:/?:t ?fﬁ;?:n;hrough the bound-
n=0,£1,+2,...). For sufficiently large values ofn Y- 9 '

(a/wg=n) the amplitude of the current becomes snihk- 1
cause of the corresponding behavior of the Bessel fundtions f1=§ (f—1H), fz:i (f+1). 17

(16)

3. QUASICLASSICAL GREEN'S FUNCTIONS ON AN For f; andf, Eqgs.(13) and(14) take on the forms
OPAQUE FLAT BOUNDARY
2wf1+ivx&xf2+ 2Ag:0,
It follows from the preceding section that to calculate the
tunneling electric current through a junction of low transpar-

ency it is sufficient to find the values of the retarded electron  fa=—1i 5~ dif4, (18)
propagators on a flat opaque boundary of a half-space occu-
pied by a superconductor. It is apparently impossible to find 2A
the complete analytic solution of this problem for a pairing 0yg=—i . fs,
X

potential that leads to an anisotropic order parambecept

for a few special orientations of the crystal axes, for which
there is no suppression of the order parameter near the
boundary and it does not depend on the coordinat®®l a  the poundary conditions at=0 for f,, are the same as

numerical calculation is required for this purpose. However(15) but in the bulk of the superconductor we have
the problem is simplified significantly, if we are interested '

g?+f5—fi=—7% (19

only in the singularities of the current—voltage characteristic, 7A (D)
since finding them requires knowledge of the behavior of the fl(ﬁ,w)|x=m=ﬁ, foly=w=0. (20
Green's functiongtaken on the boundarynly near the sin- VIAL(P)[*~ o

gular points. To solve this problem we use the Eilenberger
equation for delayed quasiclassical propagators, which cap

. L I ou
be written for a superconductor with singlet pairing in the
following manner(below we omit the subscripts on the re-
tarded propagatoys

(2w +iv,d) (P, X, 0)+2A(P,X)g(P,X,w)=0,
(2w—ivyd) fF(P,X, ) —2A* (p,X)g(P,X,0)=0, (13 K(Iﬁ,w)z

A representation of the functiorgs and f taken on the
ndary, which is convenient for considering the singular
parts of the propagators, can be obtained from these equa-
tions. To obtain this representation we introduce the follow-
ing function:

JOA(PX)f2(p, X, @)dX
Jofa(p,x, w)dx

(21)

10x3,9(P, X, @) = A(P,X)f T (P,x, @) = A* (p,x) f(P,x,w)=0.
. From the second and third equations(it8) we can easily
To be specific, we assume that the superconductor ocCpt4in

pies the half-spacg>0.

Apart from the self-consistency equation far(p,x), 20 (= A
Egs.(13) should be supplemented by the normalization con- ~ 9(*)=9(0)=——= fo A(p,x)f2(p, X, w)dXx,
dition X

g3+ fft=—n? (14) 2iw

I oo
N o 1) -1,0= = |
and the boundary conditions for the quasiclassical propaga- Ux Jo

tors. For an opaque, specularly reflecting surface we have

fo(p,X,w)dx. (22)

~ . . . With consideration of this functio&(ﬁ,w) can also be re-
9(p,0)=9g(P,®)|x=0, f(P,®)=F(P,®)|x=0, written in the form

f+(ﬁaw):f+(()vw)|x=o- (15 g()—g(0)

Here p is the incident momentum direction, apdis the A(p,w)=~w T1()—f4(0)°
reflected momentum direction.

An additional boundary(asymptoti¢ condition is im- Here we introduce the notation g|,_o=g(0),
posed on Eqg(13) by the behavior of the propagators in the g|y—..=g(»), f|y=o=1(0), andf|,_..=f(x).

(23

interior of the superconductor: After substituting the expressiori6) and (20) for the
propagators in the bulk of the superconductor into 8),
9P )|y = T mw we arrive at the following relation betwegg{0), f,(0), and
’ X=00 = ’ ~ A
VIAL(P)]*— w? A(p, w):
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o A(D, 0)A(P)— w? ~ A(p, ) fo5(P. X, @)=f,4(P,0.0)

9(0) = f1(0). (24 .
@ ]AL(P)|*— 2sgiAL(P)] (* . .,
Xexp ——————— | A(p,x")dx’;.
A completely analogous relation can be written for the mo- vl 0
mentum directiorp. Thereafter, using the boundary condi- (28)
tions (15), we can write the following representation for o _ o _
g(0) andf,(0): Substituting this solution int¢21), we obtain
TRV ALY A ~ 1
B AP AP | ALPAP @) - w? ApO=75 lo sgiA.(P)]
© A(P,@) = A(P,®) | A(p,w) V]|An(P)2— .
o~ . X exp —————————
AL(P)A(P, @) — w? 0 vl
o —, (25 ) ,1
A(paw) |A0<:(p)| —w Xf A(ﬁyx’)dx’}dx (29)
~ 0
™ AL(P)A(P,0) — w® — .
f1(0)= = - We note that determination of the sign (@8) from the
A(p,w)—A(p,w) \/|Aw([3)|2_w2 asymptotic condition in the interior of the superconductor
_ makes it possible to fix the sign in the relation between the
AL(P)A(P, ) — w? singular parts of the quasiclassical propagators taken near the
- = (26)  boundary fore—0:
VIAL(P)?— w?

. . . fs(f),X,w)zf:(f),X,w)=—i Sgr{vaoo(ﬁ)]gs(f)’X:w)-
It is seen from Eq(25) that the candidates for the sin- (30
gular points of the propagatay(0) arew=0, |A.(p)l, Thus, Eqgs(27), (29), and (30) provide a fairly general

*| Ax(p?l, a}vndA, genera!lyvspeaklhg,_ the S_ln_gular points Ofdescription of the singular parts of the propagators taken on
the functionsA(p, @) andA(p, ). Similarly, itis seen from boundary in the vicinity ofo=0. If we are interested

Eq. (26) that the candidates for the singular pointsff0) only in the singularities of the current—voltage characteristic,

arewfilAm(p)l_, iIAw(p)I_. We note that if we are inter- problem of solving the self-consistency equation for a

ested in the points for whicl\(p,»)=A(p,w) holds, the  ghaific pairing potential can be considered separately. The
treatment of Eq(24) for the momentum directiop yields N0 |ater problem is an important part of the complete theoreti-

independent relation other than HQ4) for the momentum .o description of the current—voltage characteristic and can
directionp. Thus, additional information is needed to con- 5 go1ved by numerical methods.

sider this limiting case in Eq$25) and (26). Let us now consider the behavior of the propagators near

Let us first consider the singular parts of the propagatorg,o pointsw=*|A..(P)|, =|A.(P|. For this purpose, we

s, fs, and f] taken on the boundary in the vicinity of first find the values oA(p ; ;
p,w) at these frequencies. This can
w=0. It follows from (25) and(26) thatf,(0) does not have be done, for example, using the relaticz). In fact, Eqgs.

a singularity atw=0, while g(0) has poles at that point 18-(20) qi the followi totic behavi f
(providedA..(p) andA..(p) have opposite sighs gz(% ((u) Lsgﬁew. ¢ lofowing asymplotic behavior o

1 7A(p,0)A(p,0) ) 2\[A (PP -’
9s(0)= — =————=——— {sgfA..(p)] 5 x o) ocexp] — SWa=P T @
S W A(p,o)_A(p,o) fz(p,x,w) eX% |UX| X . (31)
. Bg(ﬁ) Hence it is seen from(21) that in the limit
—sgiA.(p)]}= o (27)  |w|—|A(p)| the main contribution to the integrals (1) is

made by the region within the superconductor where the or-

It is noteworthy that besides this relation we can alsoder parameteA (p,X) is equal to its value in the interior.
find the explicit expression foA(p,0) in terms of the non- Taking this into account, we obtain the following relation:
uniform distribution of the order parameter. In fact, since ~ . N -
f, does not have a singularity at=0 [see(18)], the relation AP.w)—=Ax(p) for || —[A.(p)]. (32
gs= *if,s (for w—0) between the singular parts of the Now we can examine the behavior of the functians
functionsg and f, can be obtained from the normalization and f, in the vicinity of the point§w|=|A.(p)|, |A.(P)].
condition (19). Then, from the last equation of syst€i)  Going over to the limitjw|—|A..(p)| or |w|—|A.(p)| in
we obtain the following equation for the singular part of Egs.(25) and(26) and taking into accoun32), we see that

fsr the divergences are reduced and théd) andf,(0) [and,
oA therefore, f(0)] have a square-root nonanalyticity of the
yfrst— f,4=0. form VAZ(p) — w? (or VAZ(P) - w?) at these points in first
Ux order. The orientations for whickA(p)=A(p) holds, in
The solution of this equation which satisfies the boundarywhich, strictly speaking, Eqg25) and (26) do not provide
conditions(20) and (15) is the function more information thari24), can be exceptions. As is gener-
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ally known, if this condition holds for all the momentum <min|A.(p)|,|A..(p)|) holds, it is natural to impose the
directions, then there is no suppression of the order parantondition ImC, Im Q,=0. In addition, for the particular ori-
eter, and in this special case the propagators diverge in thentation in which the equalitd (p,x)=—A(p,x) holds for

limit |w|—|A.(P)]: all x, we haveA(x=0)=0 andf,(0)=0 on the supercon-

ductor boundary. Then it can be found for this orientation
mTw

9P, w) = — ————, from the Eilenberger equations that R8)=0 will hold in
VIA(P)|2— ? the frequency rangéw|<|A..(p)|. Therefore, RE&E(,w)
~ +E(p,w)] =0 holds in this frequency range.
R(pw) = mA(p) 33 As is shown below, the positions and types of singulari-
' JVIA(P) 2= w? ties on the current—voltage characteristics of tunnel junc-

. ) ) o tions, which are governed by the contribution from the qua-

Finally, the possible existence of quasiparticle boundginarticle bound states, are determined, in particular, by the
states with nonzero energy, localized near the boundaryyremum and nonanalytic points of the functiop). The

should be taken into account. They can appear, for examplgy,ndary conditions for propagators in the case of singlet
because of the spatial variation of the order parameter, whicBairing imply h(p) = h(— p). Since we also havp= —p for
is suppressed near the boundary. Such a bound state can{f& momentum directioplin, the functionh(p) (as well as

interpreted as a bound state in the “potential well” formed i, complete propagat@i0)) should have an extremum in
by the order parametérSince such a bound state corre- e direction in which the vectqy is parallel to the normal to

sponds to a pole in the quasiclassical propagators, we cafe houndary (provided there is a bound state for this value
simply add the pole term to the singular parts of the propays ihe momenturh Similarly, we find that the function

gators. If the propagatorg(0) and f,(0) have the same ¢ (p) is purely imaginary foplin. In particular, it follows
poles describing bound states with a nonzero energy, it folgat for orientations of the crystal axis in which the relation-
lows from Eq.(23) and the boundary condition&9) that  ghip A (p,x)= —A(p,x) is satisfied for allx, the equality
A(p,w) =A(p,w) holds at the point of the pole. Q1 4(P) =0 will hold for plin. The other characteristic points
With consideration of the results obtained above, thefor the functionh(p) are the momentum directions for which
nonanalytic parts ofy(0) andf(0) can be written in the the quasiparticle bound states vanish near the boundary.

following form: Figure 1 presents the results of numerical calculations of
5 By(P) Qq(P) By(¢). Qg(#)=|Q1(#)|, ReQ{(¢), andh(¢). We consid-
gs(p'w)|><:°:w+i5+ @—N(p)sgr(@) +15 ered a tetragonal superconductor with a cylindrical Fermi

surface and an opaque, specularly reflecting flat boundary
+C(P,w)sgn ) VAZ(P) — w? located atx=0 (the cylindrical z axis is parallel to the

boundary plane The pairing potential is taken in the form
~ 2,5\ _ 2
FOR @ISO =0t -y V(b ¢')=2Vy OS2 29)C0S 26 ~ 2,

34
(34) which leads to an order parameter w'nikgg_yg symmetry.
(o) _1B¢(P) le(p) Here ¢ is the azimuthal angle in thry plane, measured
s\ EI=0T 4 s w—h(p)sgnw)+ié from the direction of a normal to the boundary. The angle
R - ¢, describes the orientation of theg crystal axis relative to
) 2
+E(p,w) VAL(P) —w a normal to the boundary. For the pairing potential that we
FED,0) VAZ(D) — 02 ..., selected the order parameter has the form
5040, @5 A(,X)=A(x)008 2~ 2bo),
. . . ) whereA(x) is calculated using the self-consistency equation.
In addition, the following relations hold: The angleg assigns the incident momentum direction along
B¢(P) = —sgrv,A.(P)1By(P) = —Bi(—P), the quasiparticle trajectory. In the numerical calculation we
. . took ¢o=m/9, T=0.45T., and Ay /2T=2, where
QP =1Q1(p), Ay=A(x==) andT, is the critical temperature. For the ori-

A kA AN entation of the crystal axes that we selectég=< 7/9) the
Qi(P)==Qi(=p), h(=p)=h(p). order parameter is suppressed near the boundary to the value
Below we shall be interested only in the values of theA(x=0)=0.28),. In Fig. 1 the functionsBy(¢), Qy(¢),

functionng,f(ﬁ) near the poles= *=h(p). When the posi- and ReQ;(¢) were normalized torA,, while h(¢) was
tive and negative poles are considered, it should be takenormalized tdA,. It is seen from the figure that bound states
into account thang(f),w) and ReQs(p,w) are even func- with a nonzero energy-h(¢) exist in the narrow range of
tions and that InQ(p, w) is an odd function with respect to angles¢ e (—0.095,0.095) in the vicinity of the normal to
. Henceforth we shall not consider the dependence ofhe boundary. States with zero energy exist in another,
Qg,r ON w, and we shall assume that these functions aréroader range of angles, in whigfy(¢) # 0. In addition, the
evaluated at the positive pole. value ofh(¢) at the maximum point i&,,=0.7A,, and the
Since there are no states with a continuous spectrumalue ofh(¢.g at the cut-off pointgwhere the bound state
for an assigned momentum directiop when || vanisheg is h,q=0.63\,. We note that for the momentum
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in the preceding section, but also to the emergence of an
order parameter with a different symmetry in the near-
boundary regiort®2°

Even in the case of the ordinary boundary conditions, in
which there is no suppression of the superconducting order
parameter near the junction plane, the characteristic features
of the current—voltage characteristic for a junction between
superconductors with anisotropic pairing differ from those in
the case of a junction between superconductors with isotro-
pic pairing. Under the condition of specular reflection from
the boundary, suppression of the order parameter is not ob-
served for orientations of the crystal axes in which the order
parameter remains unchanged when the incident momentum
is replaced by the reflected momentum for all momentum
directions. In this section we examine the current—voltage
characteristics only for such orientations. Thus, we explore
the behavior of the functiong,(V) for cases in which the
quasiclassical propagators have the same f(88) on an
opaque boundary as in the bulk of the superconductor. Sub-
stituting these propagators into Eq48)—(11), we obtain

FIG. 1.

. [ o
11(V,p1)=—A1(p1)A2(P2) J, do tam‘(ﬁ

directionsp (¢.q= +0.095), at which the bound state with a
nonzero energy vanishee=min(A..(9)],|A-(p)|) is sat- y ( 0(|A1(By) | —0—=V]) (o] ~[Ax(P2)])
isfied. This means that a discrete level splits off from the =2 . 2 7 >
continuum spectrum at the poindg.4. For these momentum Va1(B)I*= (0= V)* Vo'~ [A(py)]
directions the quantitie€(p,») and E(p,») appearing in
(34) and(35) (or C(p,w) andE(p,w), depending on which
of the two quantities\ .(p)| and|A.. (p| is smalley diverge
at |w| = hed .

6(lw|—[A1(PD]) O(|Ax(P)|—|w+V])
Vol =[A1(p)[? VIAAP)P—(w+V)?
(36)

4. CURRENT-VOLTAGE CHARACTERISTICS FOR THE
JOSEPHSON AND QUASIPARTICLE CURRENTS WHEN THE
ORDER PARAMETER IS NOT SUPPRESSED ON THE
BOUNDARY

|2(V1F31):A1(ﬁ1)A2(f)2)
X j:dw tanl‘(%
XSQF(H))SQF(H)+V)9(|0)| =[A1(pD)])
Vo —|Ay(py)]?

y 0(|o+V|—[Ax(p2)])

2T

%w+V
—tan

The features of the current—voltage characteristic appear
because the functiori,(V,p;) have singular points. If these
functions do not depend on the momentum directions, then,
according to(6)—(11), their dependence on the voltage di-
rectly describes the behavior of the current—voltage
characteristit? (see also Ref. 3 and the references cited

therein. Conversely, the features of the current—voltage > —— (37)
characteristics for superconductors with anisotropic pairing V(0 +V)?=]A2(py)|

differ significantly from the singularities of the functions

I (V,p;) because of the integration of these functions over

the momentum directions. In this case the features of the o w—V »
current—voltage characteristics will correspond to the singu- I3(V,r31)=j do tan!‘( o7 —tan)‘(ﬁ>

larities of the functiong (V). Another distinguishing fea- o

ture of superconductors with anisotropic pairing, which di- _ _ A

rectly influences the behavior of the Josephson and xlw“w VIo(lo| AlAl(pl)D

guasiparticle currents, is their sensitivity to inhomogeneities Vo©=[A1(py)]

and boundaries. Suppression of the anisotropic order param- N

eter near a boundary leads, generally speaking, not only to 0(|w—V[—[45(p2)]) (39)
the appearance of the quasiparticle bound states considered \/(w—V)2—|A2(62)|2’
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~ * 1
|4(V,P1):—f_ocdw tank(%)(w—V)|w| la==5 \/|A1Az|[

™
tanl‘( oT
x(ﬂ(IAl(ﬁl)l—lw—Vl)0(|w|—|Az(r32)| “Inf|v] - ‘ Ayl Ayl +
VIAL(PD)[P= (= V)? Vo —[A(p,)]?
(]|~ 1A2(Po)l) 0(A(P2)|—|w—V))

Vo?=[A1(p)[? V]Az(p2)[?—(w0—V)?
(39

]
an{ 2]

—tanr('ZT')e<|V|—||A2|—|A1||>}. @3

According to (6) and (7), to find the behavior of a
current—voltage characteristic in the vicinity of the singulari-
ties, Eqs.(40)—(43) must be integrated over the momentum
directions. After this integration, we find that the current-
voltage characteristic will exhibit nonanalytic behavior at

(which multiply one another in the denominators of the inte- Vi ec4|rual o th? values Of. the  expressions
grand$ can vanish simultaneously. This is possible for cer- ||A2(p2)__ |A1(P1)]| (which can be examined, for example, as

function ofp,) at the extremum points. As it turns out, the
tain frequency and voltage values. As a result, we find thal
. A . o . characteristic behavior of the current—voltage characteristic
the functionsl (V,p;) can have singularities at points for

which [V|=|A,|=|A,]. From Egs.(36)—(39) we find the near these extrema depends strongly on the nature of the

following expressions for the singular parts of the functionsexuemurn pomts_. Itis seen f.“’”? a comparison of qu) .
| (V.py): (43) that the pairs of functiong;(V), j4(V) and j,(V),
m 1M1/ -

j3(V) behave identicallyto within a sign near singularities.
Therefore, it is sufficient to describe only the nonanalytic
) points forj.(V) andj;(V).

After integration over the frequency, the singularities of the
functions 1,(V,p;) appear only if the two square roots

tan)*(' d Below it will be convenient to consider the singular
2T points in the conductanc&=dj,/dV. It turns out that to
A, A, find the nona_nalytic behavior _cﬂ;(V) gnly thg 0 functions
+tan?‘( >T ”In||v| —|Aq| =AY - 7T|tam'( >T ) and the logarithms need be differentiated with respedt.to
In the former case, @ function appears following differen-
|A,| tiation. Consequently, integration over the Fermi surface re-
—tanl‘(—_l_)|0(|V|—||A2|—|Al||)} (40 duces to integration along a line on that surface. The corre-
sponding termss; (V) in the functionsG, (V) =dj; 3/dV
can be written in the following manner:

1
|1=§ V|A1A2|SQWA1A2)[

1 ~
= — ~ K_
12=3 VIA1A,|sgr(A;A)sgr(V) G1=—Sgr(V)J dl (P1) ,
N V5, (1A= A,])]
1
{SQW|A1|_|A2|) tan)—( ) R
2T ~ K*(py)sgr(A,A
G3=—fd| (P1)sgn(A, 2). (a4
|[Aq|+[V]sgr(| Az —[A4)]) Vs, (1A1]+]A])]
~tan - v/
Here | is the local coordinate along the line
A = 0 0 i i
1Ay —|A |||+ | tan I‘(' 1 it ni‘(u) IVI=]A1(py) | £ [A(po)l on the_Ferm| surfacéhe plus sign
2T 2T belongs tdG;, and the minus sign belongs &). The func-
tionsK* are defined by
X O(|V|=]A4] =A%) ¢, 471
(| | | l| | 2|)] ( ) Ki(}\ ): 1 an | l|) an @
T 2T 2T
1 ™ Ux1
15=5 1814, |sgr(V)[sgr<|A1|—|A2|> tanr( ZT) XVIAuhlsgriasag) D “9

T we shall obtain the features of the behavioGy(V) corre-

I_(|A1| +|V[sgr(|A,| - |A1|)” Below we shall consider different types of extrema, and
—tal
sponding to them. Let the functidi\,|—|A,|| have a local

| 1] maximum or minimum at the poinp;=p, on the Fermi
XIn[[V[=]Az[ = |A4][| - | tan oT surface and have the following form in the vicinity of that
A, point:
+tan*( (V|- |A1|_|A2|)]: (42 1A, —|Ay|=a=(bp2+cP2), a,b,c,>0. (46)
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Herep, andp, are the local orthogonal coordinates in the Gy=—sgnA;A,)]; :boG4
vicinity of the pointpy. Since the functio|A,|—|A4| ap- '

pears in the argument of thefunction in the expression for 2sgnV)sgr(|Vl-a) . .

j14, as well as in the argument of the logarithm in the for- = bc K™ (Po)

mula for j, 3, we obtain two different types of singular be-

havior near the voltagp/|=a: xIn?||V|—al. (56)

. The conductance jumps described by Eg3) and(49)
K™ (Po), correspond to breaks in the current—voltage characteristic.
47) The logarithmic divergences of the conductance described by
the expression&t8), (50), (52), and(55) correspond to step-
1 type features on the current—voltage characterisiite that
Gzzsgr(AlA2)|f,1:b063= +—— K (po)In||[V|—al. (48) G has the same sign on both sides of these singular points
\/R Finally, the terms containing squares of logarithifas) and
(56), describe “beak-shaped” features on the current—
voltage characteristic. They appear in the case of saddle
points of the functiong|A,|+|A,|| after integration of the
5G|\v\:a:G(|V|>a)—G(|V|<a)- logarithmic singularities i,
We now consider the case in which the expressions
There will be similar singularities when the function ||A,|+|A,| take extremum values on a certain lihen the
|A5|+|A4| has a local maximum or minimum, near which Fermi surface, rather than at isolated points. Then, for ex-
|Ao]+]A | =a* (bpF+cP3).a,b,c,>0: ample, in the vicinity of a local maximum or minimum of the

functions||A,| —|A4|| we have
5Gz|\v\:a:_59“A1A2)|61:b0563|\v\:a 42l =144]

8G1ljvj=a=SgMA14,)|p, =4, 8Culjvj=a= F

gl
(@]

Here we have introduced the following notation for the con-
ductance jump:

|42l =[A4|=a=B], ab,>0, (57)

=+ (49 wherep, is the local coordinate on the Fermi surface that is

™ R
T K™ (Po),
orthogonal to the line of extrema
G;= _Sgr(AlAZHﬁfboG“ In this case the conductance will have square-root diver-
gences on one side of the voltage val\g=a:

1
= £ —= K" (po)sgn(V)In||V|—al. (50 sgnV)
vbe G1=5gMA18,)[7 Gy= ~ ————
_ _ VIIVI=al
When the function|A,||A4] has a saddle point, near
which ~ K~
><0(i(|V|—a)) f dl m, (58
142l = A |=a+bpi-cp3, ab,c,>0, (51) T
1A51-144]|=a
the corresponding singularities in the conductance have the vxa=0
form _
G,=sgnA,A,)|7 G _AEMVIT)
2= 12211 3Tt T o/
G1=sgrA18,)]5 3 Ga=—= K~ (Bo) VIIV[=al
1 1=22)1p,=p 24 \/b—C 0 k-
X dl —. 59
xsgr(V)in||V|—al, (52 f 5 9
1a51=1a4ll=2
| G 2 vy1>0
Go=sgnA1A7)|p, -3 Gs=—7—=
1R mbc These conductance singularities corresponding to one-
% sar(IVl—a)K~ (B-)In2lIVI—al. 53 sided vertical tangents to the current—voltage characteristic
gr[VI=a)K" (po)In%}V] =a| 63 at|V|=a in each of the four terms in the expression for the
Similarly, for the saddle point of the function total tunnell[lg current. For example, in the case of a maxi-
> mum on thd line there are vertical tangents to thgV) and
|A;|+[Ay[=a+bpi—cp3, ab,c,>0 (54 j,(v) curves afV|=a on the|V|<a side and to thg (V)

andj4(V) curves on thdV|>a side.

we obtain Similarly, if the function |A,[+|A,| achieves a local
G,= _59“A1A2)|ﬁ1=‘p063 maximum or minimum on thé line
1 |A4|+]A,]=a*bp3, a,b>0, (60)
=—— K*(py)Inla—|V||, (55
Jbc (Po)infa=[VI] ) the conductance has the singular behavior:
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Go=—sgr(A14A,)[7G;

:G(i(|V|—a)) J dT K* (61)
VI[V[-a 2\b’
[Aq]+]A,]=a
vy1>0

G1=—sgrA;A,)[7 G,

sgn(V) ~K*
=F— (T (|V|—-a)) dl —.
v [
[Aql+]A,]=a
vxl>0

(62

In the formulas written out above for the singularities of
the current—voltage characteristic associated with an extre-
mum of the differencéA;|+|A,|, we could not go directly
to the limitA;=*A,=A. It follows from (40)—(43) that in . L L L
this particular cas&,; and G, do not have a singularity at 0 ! 2 Viny
V=|A,|—|A,|=0, while forG, andG3 nearV=0 (or, more
precisely, ajV|<T), instead 0f(48), (53), and(59), we ob-  FIG- 2
tain the expression

5. CURRENT-VOLTAGE CHARACTERISTIC FOR THE

2
G+ Gam + In[V] d°S: va TUNNELING CURRENT WHEN THE ORDER PARAMETER IS
27T T 2T )0 (2mPuy SUPPRESSED ON ONE SIDE OF THE JUNCTION
R |A| Let us consider a tunnel junction between two supercon-
XD . 63 i i i iri i i
(P CosRTATZTY N (63 ductors with anisotropic pairing. Unlike the case considered

in the preceding section, here we gradually vary the orienta-
For superconductors with isotropic pairing this expres-t'on of the _crystal axis of one of the superconductors relapye
sion is exponentially small at low temperatufesA. Con- to the barrier plane, and we assume that the former condition

versely, for superconductors with anisotropic pairing the ex22(P)=22(p) holds for the other superconductor. Accord-

pression(63) has a power-function temperature dependencdd to (34) and(35), in an intermediate crystal orientation the
at T<A .. For example, if the order parameter vanishes on
a certain line on the Fermi surfad@vhen |A(p)|=b|p,]
holds near that lingit follows from (63) thatG, 3 T In |V| at
low temperatures.

Figures 2 and 3 present the results of numerical calcula-
tions of thej,(v)(v=V/A,) for orientations in which there
is no suppression of the order parameter on either side of the
tunnel barrier. Figure 2 presents plots for a junction between
a superconductor with anisotropic pairing and an isotropic
superconductor:A;= A, cos(2p), A,=Ay/2=const. Here
¢ is the azimuthal angle in thgy plane of a tetragonal
superconductofthe z axis is parallel to the junction plajpe
For a superconductor witd-wave pairing we assume that
the Fermi surface is cylindrical. We take the transparency of
the barrier in the fornD « cog ¢, andA,/(2T)=0.5. In this
case the singular points of the current—voltage characteristic
will be only the maximum values dfA;(¢)|=|A,|, since
the minimum values of these quantities are achieved when
A, equals zero. We note that in the caseAsf=2A, only
the minimum of|A,(¢)|—|A,| would be important for this
same functionA(¢). Figure 3 presents the results of nu- ey L
merical calculations for a junction between two 0 1 2 ViA,

identical superconductors

with  anisotropic  pairing:

A;=A,=Aq cos(2p). All the functionsj,(v) were normal-

ized to|j,(0)|. FIG. 3.
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electron propagators for the first superconductor taken in the,(v,p;)= Bgl(ﬁl)
barrier plane do not have the square-root divergences char-

acteristic of the values of these propagators in the interior of ’_( IVI\ IV]6(]Ax(p2)|— V)
X tan

VIAz(py)[2— V2

tanh —
2T

0(hy+[A5=[V])

Vhy+[A5] =]V

}‘( |Az|) }_( hl)
tanf — | —tani —
2T 2T

the superconductor. Therefore, the singularities which were -
) . . : . 2T

found in the preceding section will be smoothed and will

vanish at sufficiently large deviations from the initial orien- . \/—

tation. At the same time, as we have already mentioned, Qqu(P1) VIA,|

some new characteristic singularities of the current—voltage +

characteristic appear in this case. Some of these singularities

of the current—voltage characteristic are associated with the IA,|

existence of regions on the Fermi surface where the order
parameten\, ..(p) has different signs. A quasiparticle bound
state with zero energy then appears near the boundary plane.
Other singularities appear, if additional quasiparticle bound

2T

states with a nonzero energy occur because of the spatial +

variation of the order paramet®rs is seen from(34) and

(35), in the former case the terms containingolin the ((IVI=1[A2l=hy])sgrth, = [Ag]))
propagators are important. In the latter case the pole at a X 6 (65)
nonzero frequency should be considered in the propagators. \/(V| —[|1A,|—hy])sgrthy—|A,]) ]

Thus, we use Eq4$34) and(35) for the singular parts of the

propagators of the first superconductor and &) for the The terms describing the square-root analyticitie¢3i)
propagators of the second superconductor. and(35) are not taken into account {64) and(65), since in

It is significant that in the case in which quasiparticle the case under consideration here they lead to jumps and
bound states with zero energy exist on only one side of th@jvergences only in derivatives of the conductance, but not
junction (and there is no suppression of the order parametef, the current or the conductance itself. Because the depen-
on the other sidea singular contribution from these bound dences of the order paramet®s and the functiorh; of the
states appears only in the quasiparticle current, but not in thgomentum directions can be different, subsequent integra-
Josephson current. In fact, according (8D), the singular tjon over the Fermi surface can give rise to different types of
parts of the propagators associated with the pole at zero fringular points on the current—voltage characteriftie
quency satisfy the relatioffis(p) = (). Conversely, the type of singularity is influenced by the behavior of the cor-
relationf(p) = —f"(p) holds for orientations in which there responding functions near the extrem(sae below]. Let us
is no suppression of the order parameter. For this reason thgst consider the singularities of the current—voltage charac-
corresponding singular parts ¢f andj, vanish. However, teristic, which are related to the terms of the form I the
this is not so for the bound states with a nonzero energyexpressions for the propagators of the first superconductor,
since Q¢(p) is complex, unlike B¢(p), which is real and confine ourselves to two important examples. In the spe-
(Bf =Bf =B, Qf =Q7). cial case in which the second superconductor is a supercon-

Substituting(33)—(35) into (10) and(11) and then inte-  ductor with isotropic pairing, the following square-root di-

grating overw, we obtain the following singular contribu- yergences will appear in the current—voltage characteristic:
tions forl; andl,:

. l_(V)|V|49(|V|—|Az|)
ja=—tanH == | —————
2T) W2=]A,?

|3(V,[31) == Bgl(lsl)

~ d281 Uyx1 ~

can 2| VAV laoa) <[ s DBy(h), (66
2T) W2=1A5(p)? .
~ Qgi(p1)v|Azlsgn(V) . —tanl‘(m) IVIO(|A2|—|V])
V2 * AN

hy |A2| J' d251 Ux1 ~
X[ tam(ﬁ +tan|‘(ﬁ X o0 (27 g DBg1(P1)- (67)
O(|V|—hy—|A,]) |A, The function;j ; diverges atV|=A, on the|V|>A, side,
X N[—h._|a,| +|tann S andj, diverges on théV|<A, side. In the casd,=0 (an

S-N junction, it follows from (66) that Gj
O((|V[—[|A2| —ha)sgn(|Az[ —hy)) } « [T cosHi(V/2T)] L. Hence at the low voltagd¥|<T we
haveG; « 1/T, and we obtain an anomalous increase in the
(VI=[[A2]=hi)sgri[Az| —hy) conductance at low temperaturésee also Ref. 21 Of
(64) course, such a divergence @ occurs at zero temperature

hy
—tan ﬁ
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only for an idealized system when the factors leading to U 1A,]sgr(A,)
broadening of thes peaks in the quasiparticle density of Mfi:f dl = D\/Tm Im Qs1(Py)

states are not taken into account.
Next, if the anisotropic order paramet&y has an extre- h, |A,|
tanh == | =tanh —=
2T 2T
If the function||A,|—h,| has a line of extrema

mum on a certain line on the Fermi surface, near which X

the type of singularity on the current.—voltage charactgristic 1A, =y :atb'ﬁf, a,b>0, (76)
depends on the behavior of the functiBg, (p,) only of this

line. If By;(p;) # O on this line of extremaj; will have a  we obtain the following singularities in the current:

logarithmic divergence for a line of maxima, angd will M =+ _ _
have such a divergence for a line of minima: J1.4= My gl 6((|A2] =hy))In[[V] -a]

: (75)
|A,|=a*+bp3, a,b>0, (68)

\/5 a +m0(+(|Az]—hy)6(a—|V])}, (77
s = tanH == |In||V|—a. , - -

J3:J4% Np tam—( ZT) nijvi-al €9 J25=M¢ g sSGnV){0(= (|Az|—h1))In|[V|—al

If the functionBg,(p;) vanishes on the line of extrema +70(=(]A,|—hy))o(a—|V])}. (78

and exhibits linear behavior near zero, i.e., Thus, for a positive(negativé value of |A,|—h, the

Bgl(’ﬁl)=/3|’51|, (700 functionsj, 3 (j1 4 have a logarithmic divergence only for
_ . _ ) the line of maxima of||A,|—h;|, while the functionsj; 4
then j; and j, will have one-sided vertical tangents at ; 5 have such a divergence only for the line of minima of

IV|=a: this quantity.
_ As was noted above, the functitigp) can have nonana-
Ja a\ o(|Vv|-a) . : . -
Gy 5 anh oz | —=—" lytic behavior, for example, in the momentum direction for
vIV[—a which the bound state vanishes near the boundary. Taking
into account this possibility, we assume that the function
@ a | #a—|Vv)) h,+|A,| exhibits the following nonanalytic behavior near
G, ——tan . (71 2 X
b 2T} Ja—|V| some line on the Fermi surface:
Now, let us move on to consider the singularities of the  hy+|A,/=a+[bé(p)+co(—p)Ip, a>0. (79

purrent—voltage characteris.tic appearing because of the polq.she special case df(or ¢)— corresponds to the absence
in the propagators of the first superconductor at a NONZergs - hound state in the directiofis>0 (or P<0) from this

frgquency. Unlike the contrlputlop from the bound st.ates"ne_ Then the functiong,, will have the following one-sided
with zero energy, the quasiparticle bound states with ertical tangents dv|=a:

nonzero energy make a singular contribution not only to the
guasiparticle current, but also to the Josephson current, even 6(a—|V|) N
if they are present on only one side of the junction plane. G1.— 4:W sgn(V)Ps g4,
This is related to the nonzero value of Py(p) (while

Im B¢(p) =0). The positions of the corresponding singular (V|- a)
points on the current—voltage characteristic are related to the G,,—G3= Pffg . (80)
extremum values of the quantitids +|A,| on the Fermi JIVI-a
surface. For example, the presence of a line of extrefoa  Here we have introduced the notation
hy+|A,J=a=bp?, a,b>0 (72) . AT Qg1(P1)
leads to logarithmic divergences and discontinuities of the Pg= Lxl>odI b E) v D[4l 8v2 73
functionsj: h ™
1 2
_ _ [ In]|v|—al, X tam—(ﬁ ttam(ﬁ) , (81
J1,—]a=Mi g wo(|V|—a)’
(a=|V]) Pr J dl(l -
. . m0(a—|V y F: -
—j2.j3=M{y sgr(V)[ In||V|-a). (73 ba>0 b C
The upper(lower) rows in these formulas correspond to <2 A, M Im Q;1(py)
the upper(lower) sign in(72), and Vi1 2 8yand ik
.1 va o flAl r(hl r(lAzl)
== == — X|tanh == | *tanh ——||. 82
M 16V2 73 JUXl>oOII v PN QulP 2T 2T (82)
h IA,| Similarity, if the function|h;—|A,|| has the form(79)
X tam'(ﬁ ttanl‘(z—_lz_) , (74 near some line, the functiong, will have one-sided vertical
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tangents atV|=a: ture for the superconductor withwave pairing. The trans-
parency of the tunnel barrier was taken in the foBn
Gy 4=sgn(V)sgr(|A,|—hy) *cos ¢. _ . .
The plots ofj; and j, have square-root divergences at
o((a—|V]) (|Azl=hy)) 83 V=A,=0.2A,. In addition, atv=h,,— A,=0.5A, the func-
V(a—|V])sgr(|A,]—h;) fg tions j; andj, have logarithmic divergences, whijg and

j3 have jumps. AW=h,+A,=0.9A, there are logarithmic
divergences ofj, and j; and jumps onj; andj,. At the
_ ovi—a (4,[—hy) T (84)  voltagesV=hes+A,=0.831, 0.43), the current-voltage
V(VI=a)sgr([A,[—hy)  * characteristics have breaks, although some of them are
weakly expressed. All the functiorjg,(v) were normalized
Formulas(64) and (65) are not suitable for direct pas- to j;(0).
sage to the limitA,=0 at a finite voltage, since it was as-
sumed during their derivation that the magnitude of the volt-
age is close to the corresponding singularities in these
formulas. In the case of &N junction, it follows from(7),
(10), and (11) that if h; has an extremum of the form 6. CURRENT-VOLTAGE CHARACTERISTIC FOR THE
h,=a*bp?, a, b>0, the conductance &V|=a: will ex-  TUNNELING CURRENT WHEN THE ORDER PARAMETER IS
hibit the low-temperature anomaly; 4 = 1/\bT. SUPPRESSED ON BOTH SIDES OF THE JUNCTION
Figure 4 presents the results of numerical calculations of
plots of j,(v) (v=VI/Ay) for the case in which there is
suppression of the order parameter on only one side of the Let us now consider the case in which the order param-
tunnel barrier. A tunnel junction between a superconductoeter is suppressed significantly near the junction plane in
with d-wave pairing and a superconductor with isotropicboth superconductors. The singular parts of the propagators
s-wave pairing was considered under the following condi-on both sides of the barrier should then be describe(B8y

2,37

tions: and (35). When these expressions are substituted {Bje
(11), several types of nonanalytic terms appear. They are
A,=Agcog2¢p—2¢y), A,=0.2Ag=const. obtained after renormalization of the pole terms to one an-

other and from the product of the pole terms on one side and

For the superconductor witt-wave pairing we chose the the square-root terms {{34) and(35) on the other side. After
same parameters as beforesee Fig. L ¢o=7/9, this, for the singular part of;, for example, we find the
T=0.45T.;, Ag/(2T)=2. HereT,, is the critical tempera- following expression:
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the special orientation ,(P,,X) = —A,(P,,X), the logarith-
mic divergence irG, remains only for a line of minima. The

R = -root behavior of the propagator of the form
X| R VV2—A2 square-roo . . .
eC(P2) 2:(P2) VAZ(p) — w? led here to logarithmic divergence in the con-

ductance. In other cases it can give rise to a kink in the

1 v because INC=0 holds for|w|<min(A.(p)|,|A.(p)|). For
tan gl(pl)

X O(IVI=142:(P2)) conductance or divergence of its derivatives. In the present
+1m Cy(p,) /—Agx(ﬁz)—VZQ(IAzw(ﬁz)l work we shall not consider such singularities.
If the functionh, has a line of extrema of the form
a ~ ~
_|V|_E Qg2(P2) 8(|V[—ha(p2)) h,=a+bp?, a,b>0, (88
A 3 1 hy(py)+V the current—voltage characteristic will have the following
+(P2—(P2) |+ — tanl'(T square-root divergences:
i(py) ol o] M) Y
_tanl'( }le( l) Ji:+)a 16’773 tan 2T ||V|_a|
D
7 Qua(P2)3(1a(Br) + V|~ ha(By)) x| 2B (pIRe QP —,
g b0 V11 f.g1(P1)Re Qs g2(P2) \/B
+Re Cy(P2) V(hy(Ppy) +V)? =~ AZ..(Po) (89)
X O(Ih1(P1) +V|=[A2:(p2)]) +1Im C, i 1 an )’( ) 6(=(|V|—a))
X (B2) VAZ.(B2) — (ny(Py) +V)? SR T P N
" A D
X O(|A2(p2)| = [h1(P) + V) = (V= =V) Xf dl 22 B, .(py)Re po) —.
b0 V11 f.g1(P1)Re Qs g2(P2) \/B
+(ppPo) | +(12). (85 (%0

In this section the coefficient8, and Qf, are taken from

Similar singularities appear in the expressionslfos 4. the corresponding expressions fof of the second super-

In the last formula we neglected the contribution which conductor, whileB¢; andQs; are taken from the expressions
is obtained after multiplying the pole terntelhere w=0)  for f of the first superconductor.
appearing in the Green’s functions on both sides of the junc-  Let the functionh, near a certain liné have, for ex-
tion. When the broadening of the bound states is neglecteégmple, the following nonanalytic behavior:
this contribution vanishes at a finite voltage. However, in _ o
real systems it can be important for voltages that are less h>=a+[bé(p)+co(—p)]p, a>0. (91)
than or comparable to the characteristic width of the corre-

sponding peak in the quasiparticle density of states. For the This leads to logarithmic divergence of the functions

stationary Josephson effect this contribution leads to a lowt'* at|V|=a

temperature anomaly in the critical current and to the possi- In||V|—a| V|

bility (at some temperaturef a phase transition from a 0 jl’j“:T V‘(ﬁ)
22,23

junction to a7 junction’

During the subsequent integration over the momentum -
directions, we assume that the order paramees(p,)| or XJ >od| v_fl DBy ,g1(P1)
the quantitiegh,*|A,.||, h,, and|h;=h,| have a line of o

extrema. Let, for exampléA,..(p,)| or |h;+|A,.|| have a .
line of extrema of the form XReQrg2(P2)| c ~ /- (92
|Azel, [y [As.||=a*bPp?  ab>0, (86) The functionsj, andj; have jumps:
and letB,(p;) or |A,..| andQ,(p;) be nonvanishing on that 1 Y
line. Then the conductanc@, ,, will have the following i2—i3= —3tam( )
logarithmic singularities: 2T
a x| a1 22 DB,y (pReQy lP)
sgnV)Gy,Gz,sgn(V) G, b In[|V|—-al. (87) b0 Vg PORFE f.o2i k2
At the same time, the logarithmic divergenceGn of o o((|V|—a)b) . f((a—|V|)c) @3
the form (87) appears only for a line of maxima. This is |b| c| '
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Finally, let us consider the case in whily —h,| has a line  scribed in this section there are also similar singularities,
of extrema which are described by the same E{R6)—(93) after the

Chleatrhs2 > replacement & 2.
[h1—hz[=a=bp*,  a, b>0. (94) Figure 5 presents the results of numerical calculations of

Then we find that the current—voltage characteristics willthe functionsj,(v)(v=V/Ay) when the order parameter is
have the following square-root divergences: suppressed on both sides of the tunnel barrier. We consid-
i, —ja=——— — , (95) with d-wave pairing in the special case of a specularly re-
Ji. 7l 1673V||V|—a| Juu>0 Vb "o flecting junction, in which the tunnel barrier is a
ipi—] ar A1,(P1) = A (Pr) =Ag cOS(2h—2¢y). As before(see Fig.
2," 3 g \[[V[-a| 0,120 \b 1), we took¢po= /9, T=0.45T;, Aq/(2T)=2,D o cos ¢.
Here we have introduced the notation square-root divergences. In addition, dt= 2heq=1.26)
Vs h, the plots ofj; andj, have logarithmic divergences, and the
Nig =2 D ReQ11Qf ) ~tant| 72|
(97) ior of the plots ofj,; andj, resembles a break. This is attrib-
. . . uted to the contribution of the bound states with zero energy
In the case in which the value fi, —h,| near a certain
line has nonanalytic behavior of the fori®l), the functions spectrum of the quasiparticles on the other size of the junc-
tion. The function min |cos(2p—2d¢)|,|cos(2p+24)|)
. Inf[v|-al
lv"lam g (98) ¢==0.79, in whichB; # 0.

ered a tunnel junction between two identical superconductors
C Fe(x(a-|V)) d| ‘ b
symmetry plane of the superconducting electrodes:
_sgnV)o(=(|V|—-a)) dl
= Nig. (96)
At the voltageV=2h,=1.4A, the plots ofj,,34 have
hy
tan o7 : plots of j, andj; have jumps. Nea¥=0.63%, the behav-
on one side of the junction and the states in the continuum
j1 andj, have logarithmic divergences at|=a:
(1 1) takes the maximum value 0.635 in the direction
b 1

he f iong ' i :
and the functiong, andj; undergo jumps 7 CONCLUSIONS

sgnVvV o((|V|—a)b . .
Jz,—i::,:ia) dmn%% As we have shown above, a large variety of nonanalytic
87 vx1>0 bl points can appear on the current—voltage characteristics of
o((a—|V|)c) junctions between superconductors with anisotropic pairing

(999  when the quasiparticles are specularly reflected from the
plane of the tunnel barrier. The singular behavior of the
Whenh;+h, has a line of extrema, all the results for the current—voltage characteristic differs significantly from the
singularities are obtained fror®4)—(99) after the replace- behavior typical of a junction between superconductors with
mentsh,— —h,, j1——j1, andQf,— Q. in these formu- isotropic s-wave pairing. Of course, in real systems all the
las. It should be added that besides the singular points ddeatures should be smeared out to a considered extent. In

lc|
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