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Projectile multifragment breakup ¢fO, ?C and’Li at energies 3.0-4.B-GeV is studied by

means of the Weizsker—Williams method. The fragmentation channels offi@

projectile at 4.5A-GeV are investigated and compared with that at 200A-GeV. The

events characterized by,=0 and the events due to both Coulomb and diffraction dissociation
have been selected and analyzed as a function of impact parameter. Also, the dependence

of the electromagnetic dissociation cross-section on incident energy and the charge of projectile
and target is found. €1997 American Institute of Physid$§1063-776(97)00104-2

1. INTRODUCTION 2. EXPERIMENT AND RESULTS
. . 2.1. Experimental details
In recent years, nucleus—nucleus collisions at high ener-

gies have been attracting more interest as a way to under- At the Dubna BR-2 synchrophasotrl%n emullsior_1 stacks
stand the important effects of nuclear interaction mecha'Vere irradiated with beams of 44-GeV 0 and *C ions

and 3.0A-GeV ’Li ions. The dimensions of the pellicells

nisms at different impact parametdrss The reason for the h 20 10 600 ™ it ¢ th
study at small impact parameter is to observe the signaturevg ere 2 Cm.< me pm. € composition © €
emulsion is given in Table I.

OT unuaslualhflorms (;)_f nuclt:::lrhmattelr suchfars] the quark—gluor Scanning was carried out along the trdaksing MBI-9
plasma, w _|e studies at _|g er values of the impact param-, 4 ilg binocular microscopes, with magnification 10
eters help in understanding the nuclear structure, and alsq, 10
electromagnetic effectd considered as a source of back- Totals of 958, 1000, and 968 events were found, giving
ground for nuclear interactions like the possible features fotne interaction mean free paths 12+18.33, 14.4-0.33 and
quark gluon plasma. 15.2+0.50 cm for®0, 12C, and’Li, respectively.

Heckman and Greingreported the first results of a Be- The charged particledracks produced in each interac-
vatron experiment on the fragmentation of nitrogen ions bytion are grouped in the following categories.
carbon and hydrogen targets at 29GeV. The point of in- a) lonization shower tracksNg) with very high velocity
terest in this work is the dislocation of fragments from the3=v/c=0.7 and relative grain densitg* =g/go<1.4,
projectile nucleus. In their work, they tried to classify the Where go is the minimum grain density of the relativistic

1) Stripping reactions, in which the spectator part of aWith some fast hydrogen isotopes. _
projectile is diffracted inelastically while the other part suf- >3E’) Greydtr;clis>qgé)1, TV;]’h'Ch are tr_aT:ksk W'tkh r?nge
fers a strong interaction with the target nucleus. This reaction’ mm an 9 . Inese are mainly knock-out pro-

.. tons from the target nucleus.
occurs atR,+ R;>b>R,—R; whereR, andR; are the radii :
P P P ¢) Black tracks N,), which are slow fragments from the

of projectile and target nucleus respectively.

. - . ) ... target nucleus with range<<3 mm andg* > 6.
2) More peripheral collisions, in which all projectile In emulsion experiments, the term heavy tracks is used,

constituents are dislocated and associated with some hagng their number is defined a6 =Ngy+N,.

rons, mostly pions. These interactions occur at large values g) The projectile fragment€*F9 are strongly collimated
of the impact parametds, up toR,+R;. in the forward direction within an angle determined by the
3) Pure electromagnetic dissociation of the incidentapproximate relation

charge nucleus as a result of its passage through the Cou-

lomb field of the target nucleus, which provides an electro- p
magnetic pulse of short duration, enhanced by the Lorentz sjn QPFst,
contraction factory. These interactions occur at impact pa- i
rametersb greater than the sum of projectile and target

nucleus radiugi.e., b>R,+Ry). where P is the Fermi momenturnand P; is the incident
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TABLE I. TABLE Ill. Fragmentation modes of'®0 projectile at 4.5A- and

200A-GeVic.
Types of nucleus H, cg N, %0, %%Bry; 10%%Ag,,
- Fraction of Frag. Fraction of Frag.
Density (N of atoms/18%) 3.15 1.412 0.395 0.956 1.028 1.028 Chan. of Chan. of
Fragmentation Mode 160 (4.5 A-GeV % %0 (200 A-GeV %
O—N+H 42.2+6.2 56.0-4.0
momentum. This give®pe<3.0° at the Dubna energy. In —C+2H 18+1.3 14.0-2.0
Heckman and oth&t® the projection angles of the PFs are —CiHe 5522 10.0-2.0
d by findi —B+He+H 1.8+1.3 3.6:1.0
measured by Tinding —B+3H 2.851.6 0.8-0.5
Ay —Be 4.6+2.1 5.5+1.2
tan fpp=-—, —Li 2.8+1.6 2.5-0.8
AXx —4He 1.8-1.3 0.8-0.5
. . — 3He+2H 5.5+2.2 4.4+1.1
Where A_y is t_he deflection of the measurgd _fragm_ent at a_ ,neian 18¢13 3310
longitudinal distanceAx=1 cm from the emission point.  He+6H 0.9-0.9 0.8-0.5
The PFs with charg&=2 for 708, 1000 and 970 events Reference Present Work Refs. 7 and 8

of 180, 1%C, and’Li beams respectively were recorded. It is
possible to identify the doubly charged fragmerifs=(2) by
eye. A correct estimation is made by using tlderay

0 . . .
method’ found that about 6% of the total inelastic interactions are due

to the effect of the Coulomb field of the target nucleus on the
incident %0 at 4.5A-GeV, whereas this ratio is about 10%
for the same projectile at 208-GeV. These results confirm

To distinguish between the nuclear interactions and théhe dependence of the ED cross-section on the incident en-
Coulomb dissociation events, we must consider the expectegtgy. Table Il represents the total number of analyzed events
characteristics of electromagnetic dissociatie®) events as  for each beam. The ED events can be divided into two cat-
described in Ref. 7. Generally these ED events are charaegories, one due to the Coulomb field effect and the other to
terized byN,=0, which means that no slow emitted par- diffraction on the target surface. This has been corrected for
ticles and no lepton pair g8-decay are produced. Also, the the number of ED events which are not associated with
incident charge Z,) must equal the sum of the fragment pions, as shown in Table Ill. Then the angle of the emission
charges and the emitted anglg should be<3.0° at pro- fragment @p<3.0°) can be divided into two ranges. The
jectile incident energy 4.3-GeV. lower range offpe (0—1.59 is attributed to the effect of the

These stringent selection criteria are applied to the exCoulomb field, and the relatively larger angles up to 3.0°
perimental data of®0 interactions at 4.3\-GeV and com- result from the effect of diffraction on the outer surface of
pared with that of:®O interactions at 20\-GeV.® It was  the target nucleus.

2.2. Selection of electromagnetic dissociation events

TABLE Il. The N,=0 events and those due to both Coulomb and diffraction dissociatidfOEm. at 4.5
A-GeV/c and®0-Em at 200A-GeV. Their separation is deduced from the experimental data.

The projectile 160 (4.5A-GeVic) 160 (200 A-GeV)
and energy

No. of events % No. of events %
Total analysed 708 - 920 -
events
N,=0 events 98 13.98:1.4 112 12.06:1.13

(peripheral coll.
+ Coul. & diff. diss.
+ Simulated ED

ED events - - 92 10.0G6:1.00
(Coulomb disst+
diff. diss)
Pure ED event 45 6.35:0.94 - -
(Coulomb diss.
Diff. diss. on 36 5.08t0.85 - -
target(associated
with piong
The dissociation 2 0.28+0.19 3 0.30+0.06
into a-fragments O—4a O—4a
only
Diffractive diss. 2 0.28+0.19 2 in all scanned 0.07=0.05
into a-fragments O+Em—4a+low 2934 events

energy particle
Reference Present work Refs. 7 and 8
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TABLE IV. The interaction of°Li, ‘Li, **C and*®O at Dubna energies compared with other collected data. The difference in the ED
compared with"®O at higher energies. event ratios for incidenfLi and “Li at nearly the same total
energy is due to the difference in the binding energy per

gmscﬁe and nucleon. The'Li nucleus, which contains seven nucleons, is
energy(A-GeV) 5Li (4.5 “Li (3.00 12c 4.5 smaller and has higher binding energy per nucleon than the
Total no. of 968 970 1000 sLI _nucleus. Ther_efore,ﬁl__i diss_ociates more readily than
analysed inel. int. Li in the case of interaction with the same target and at the
N,=0 events 147 136 98 same energy per nucleon. For this reason, the larger value of
Fraction % (1521.25)  (14.0212)  (9.8:1.0) the ED events ratio fofLi than that for the!®O nucleus at

ED events 70 45 60 the same energy per nucleon could be anticipated. This is
;La;telzp r: s (;gsof.:qe) Mff; ?}Z) (Gﬁg']?;) clear from the data given in Table IV.

Binding energs* 32.09 39.25 92

BE (in MeV) 2.3. Coulomb and diffraction dissociation events

BE/N (MeV) 5.35 5.61 7.7 ) L _

Lorentz factor(y) 451 3.22 451 Fragmentation of the projectile can be induced by the
E™ (MeV) 99.4 72.0 100.5 strong nuclear interactio(specially at larger impact param-
Duration timery eterg or by the electromagnetic field interaction. The basic
through Ag 0.66x10°%  0.93<10°%  066<10°  jged of Coulomb break-up is similar to that for electrodis-

target componentseq . . . .
Present Present integration, but the cross-section is enhancedZpywhere

References Ref. 17 work work Z; is the target charge numbeiThe virtual photon method
of Williams and Weizseke12was used as a suitable way
of considering the Coulomb effect in the fragmentation pro-

;ngcﬁe and cess. The Coulomb field of the target nucléusthe projec-
energy(A-GeV) %0 (4.5) %0 (60) %0 (200 tile rest framg appears as a packet of quasireal photons of
Total no. of =08 028 920 short _duratlozn a;ng 11/32nhanced by the Lorentz contraction fac
analysed inel. int. tor 7—(1_11_ (C ) s
Ny=0 events 98 . 112 The collision timé*3is roughly
Fraction % (13.98 1.4) - (12.06-1.13)
ED events 81 31 92 tq=DBmin/ ¥C,
Fraction % (11.43127)  (582105)  (10.00-1.00)  \yhereh,,, is the minimum impact parameter, equalRg
Nuclear radius 2.73 fm 2.73 fm 2.73 fm +R.C tlv. th . hoton . )
Binding energ§* 128 128 128 R;. Consequently, the maximum photon frequency is con
BE (in MeV) tained in the electromagnetic field
BE/N (MeV) 8.0 8 8 —cv/bo
Lorentz factor(y) 451 64.41 214.71 @max™ €Y/ Bmin -
E™ (MeV) 98.1 13923 4641.1 Also, this yields the maximum photon energy
Duration timery
through Ag E?ax: hcy/(Rp+Ry).
target componenfsed  0.68x10 ¢ 0.50x 10~ %° 0.14x 104

Present According to this model, the electromagnetic pulse can
References work Refs. 16 and 22 Refs. 7 and 8 be sufficiently energetic to excite a giant resonance in the

nucleus or to create lepton pairs or pions. From the basic
assumptions of the model there is a flux of photons around
the nucleus and the photon energy spectrum is computed
classically**3~1%and treated by quantum mechanical calcu-
The given numbers of ED events fo®O at 200 lations distinguished by the multipolarities of the photon
A-GeV are taken from Refs. 7 and 8. It is clear that these EBpectrum. The values ofand Er;‘ax for an Ag target nucleus
events increase with the energy and charge of the inciderithe heaviest and most abundant element in the emuyl&on
beam, except for inciderfti. This exception may arise be- different projectiles and energies are estimated and listed in
cause the binding energy of tkei nucleus is smaller than Table IV. It can be concluded that the values are 4.8, 4.8, and
that of the other nuclei, as illustrated in Table IV. The frac-3.2 for incident*®O (4.5 A-GeV), 1°C (4.5 A-GeV) and "Li
tion of %0 dislocation into four clusters af-particles at 4.5 (3.0 A-GeV) respectively. The correspondirig]™ values
A-GeV is more than twice that of the splitting &0 (200  are less than 100 MeV, which is smaller than the threshold
A-GeV) into the same numberadparticles. One reason for energy for pionization, while for incideffO (60 A-GeV), it
this may be the difference in the time the projectile spendss equal to the value of producing pions having a mass about
inside the Coulomb field of the target nucleus as shown in40 MeV. But above the threshold faf-resonancg1232
the last table; this will be discussed in the next section. MeV), for incident 200 A-GeV, it could produce
Also, the previous conditions could be applied as selecA-resonances, which are subsequently dissociated into pro-
tion criteria for N,=0 events of the'Li interaction at 3.0 tons and pions. The present results ¥€ and'®0 strongly
A-GeV in order to determine the two easily identified frag- suggest that no pions are associated with the pure ED events.
ments ofZ=1 andZ=2, since the incident projectile has a It is clear from Table Il that pions accompanied the sepa-
chargeZ=3. These events are tabulated in Table IV andrated events due to diffraction dissociation, confirming the

Note* Ref. 18,** Ref. 19.
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TABLE V. The nuclear mean free paths and inelastic cross-sections compared with the corresponding ED mean
free path andrgp for different projectiles at various energies.

Type of Nint, CM Nep, CM Oine,» Mb ogp, Mb Reference
projectile

and energy

7Li3 15.2 £0.50 351.3+49.6 1740.5 20.0 50.5¢ 0.6 Present
3.0A-GeV work
12C, 14.4 +0.33 236.0+28.2 1837.2 20.0 75.1% 0.5 Present
4.5 A-GeV work
160, 12.18+0.33 106.45-10.68 2070.6:140.0 91.2+ 0.9 Present
4.5A-GeV work
160, 12.0 =0.20 96.0*+ 5.0 2620.a0 50.0 198.96:11.3 Ref. 7
200 A-GeV

present technique. We conclude that the technique of Ref. 2@agnetic dissociation cross sectiopy, the measured value
can be used only at incident energy smaller thamAiBeV  of ),, in the emulsion must be converted into an absolute

for light incident nuclei. cross-section on the Ag component, which is the heaviest
and most abundant element in the emulsion. The estimated
2.4. Mean free paths and corresponding cross-sections ogp for ED events on the Ag target is then calculated from

Table IV represents the total observed inelastic, periph'-[he relationoep=f/p\, wherep=1.028 1072 atqms/crﬁ_ IS
eral, and electromagnetic interactions. We can say that EE€ density of nuclei in the emulsion afe- 0.67 is a weight
events as a percentage of the total number of events increa@§tor for this target component reaching unity for the emul-
with the projectile energy. At the same time, the measure§on as a whole.
value of \gp decreases as the incident projectile charge and  The values olgp as a function of the projectile charge

energy increase. The total inelastic cross-sectigpare es-  are shown in Fig. 1b for this work and other experimefits.
timated from the relation This shows thatrgp takes similar values despite the different

detectors and reactions. It can be concluded that in spite of

Tin=1MeiNin., the heterogeneity of the emulsion target, it can be used gen-
whereng in our type of emulsion is the effective density of erally to measure ED cross-section.
emulsion nuclei; Figure 1a and 1b illustrates some experimental values of
ogp as a function of projectile charge. The theoretical values
Nefr= nicri/ > 0,=3.78 10% atoms/cr. of ogp calculated by the Weizsker—Williams (WW)
I

method?! for relativistic heavy-ion reaction with &Au tar-
However, this number takes the value 3@ atoms/crA  get at Bevalac energisare also included. Here the calcu-
for the prepared emulsion in CERN SPS at 20@eV"*  lated ogp values approach large values for both ultrarelativ-
where)\;, is taken as the observed mean free path for eacfkstic energy (100 A-GeV) and high projectile charge, as
beam. In order to obtain an absolute value for the electronoted in Ref. 15. Also, the experimental and calculated val-

o_., mb
a 3E_D b
O mb
700 g //'
600l . / FIG. 1. a—The ED cross-section for tHei,
5l / 12C and*®0 interactions at Dubna energ$.0—
/ } 4.5 A-GeV) as a function of projectile charge
500} /s Z, (M—calculated, J—experimental b—Our
// experimental pointsll—1, O—2, 0—3 for
400} / "Li *2C and'®0 respectively at nearly the same
,/ energy. The pointg represent the experimental
300+ . / values of ogp's at different projectiles with
1y / 197au target. The corresponding calculated val-
. / ues according to WW-method are indicated by
2007 ,,6 the dashed line.
L Y
100} x
§ E § 1 2 3x’/,
0 A . i 1 i L 'MJ ! L I " 1
0 5 10 15 20 25 30 0 10 20 30 40 50 60
Z, z,
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0, mb been proposed for the dissociation of relativistic nuclei in the

Coulomb field of heavier nuclei which are easily excited or

350 dissociated by a target nucleus.
300 . . . In Ref. 33 the decay channels ¥8i projectile dissocia-
250 . tion to p+2’Al, n+27Si and 2+2°Mg using the WW-
200 , " % approximation with the experimental data for photonuclear
150 cross sections were examined, and it was found that there is
100§ no evidence for two-photon excitation of tASi nucleus. In

50 contract, the authors of Ref. 34 found large values for the

00 50 100 150 neutron cross section for electromagnetic dissociation of

E . A-GeV 197Au targets by incident?®Ne (1.7 A-GeV) and %K,

proj’

197Au, 2°9Bi beams with 1A-GeV. They explained this ob-
FIG. 2. The calculated ED cross-sections at different energibs The ~ S€rvation by the dominant contribution from two-photon gain
points O andx represent the experimental valuesogiy's for oxygen and ~ dipole excitation and interpreted the large cross section as
carbon beams at 4A-GeV. due to theZ, dependence, since two-photon excitation will
behave aZ; while one-photon excitation shoviZg behavior

(or Z}-8 behavior for heavy target nucleuss found by the

ues of theogp cross-section fofLi, *2C and*®O interactions —authors of Ref. 33.
as a function of projectile chargg, are shown in the same
figure.

From this, it can be inferred that there is fair agreemen
between the present results for light projectile charge and The results confirm the dependence of the electromag-
calculated values at various energies. netic dissociation cross section on both incident charge and

The interactions of lithium, carbon and oxygen of the energy. The measured ED cross section has the same trend as
present work at Dubna energies are tabulated in Table IVthe calculated one based on the Weiksa—Williams
For comparison, the corresponding results of oxygen interaanethod, and it increases with increasing of the projectile
tions at higher energies extracted from Refs. 7, 16 and 17 argharge and energy.
also included. As seen from Table IV and Figs. 1 and 2, the  For light projectiles, it was found that the largest yield of
percentage of ED events increases with both energy and ifED events occurred in the case of one He fragment associ-
cident beam charge. ated with complete disintegration of the projectile. This

Table Il presents the different modes of carbon andshows that with decreasing He fragment multiplicity, the sur-
oxygen breakup at 4.%-GeV inside the emulsion target face excitation energy of the projectile spectator increases.
(mainly due to the electromagnetic field of the Ag target  Calculations by the WW method with data from counter
nucleus componentTheir numbers, fractions, and observed experiments can be used to examine the decay channels for
partial cross-sections are listed. The majority of events lie irprojectile dissociation by the excitation of the projectile
the channels producing 1 He and 2 He respectively. Thisiucleus, whereas other experiments interpret the ED of target
reveals qualitatively that the relative production rates ofnucleus in terms of the dominant contribution from two-
a-particles in the projectile fragmentation processes are corphoton giant dipole excitation.
sistent with the values for different projectiles and Despite the heterogenity of the emulsion target, it can be
energies? The largest yield of ED events occurred in the used to measure the ED cross section.
case of emission of one He fragment, associated with com- The larger yield of’Li projectile dissociation than that
plete disintegration of the projectile. This result shows thafor incident’Li may be due to the smaller binding energy per
with decreasing He multiplicity, the surface excitation en-nucleon of thé’Li nucleus.
ergy of the projectile spectator increases. Also, the results
confirm the same conclusions from the distributions of He
fragments produced from nuclear evefitgjhich implies the ~ _R. Bhanjaet al, Phys. Rev. Lett54, 771(1985.
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The ddu molecule formation rates have been measured from the two hyperfine statesdef the
atom in the temperature rande=5—30 K. Results are consistent with the measurement of

the TRIUMF groupT =3 K and contradict theoretical predictions. This work was performed on the
JINR phasotror{iDubng. © 1997 American Institute of Physid$§1063-776(97)00204-7

1. INTRODUCTION in Ref. 10; they also were not able to measure the deuterium
density directly in the experiment.
Muon catalyzed fusiofMCF) in pure deuteriuntsee the An important feature of this study is that the measure-

schematic diagram in Fig.)lhas relatively simple kinetics ments with liquid and solid deuterium were performed in the
and therefore is an attractive way to check the basic prinsame experiment under conditions having well-defined deu-
ciples of the theory of muonic molecule resonance formaterium density and temperature.

tion. Significant success has been recently achieved both in

theory' and in the measuremefi§ of the ddu molecule

formation rate K qq,), including strong spin effects. As can , expERIMENTAL METHOD

be seen from Fig. 2, measurements of the temperature depen-

dencel 4q4,(T) at T>20K are in excellent agreement with The experimental method has been described in detalil
the standard theory of resonance muonic molecule formaelsewher€. We measured and analyzed the yield and time
tion. The most impressive consequence of their comparisoflistribution of 2.5-MeV neutrons from the+d fusion reac-

is the determination of the energy of the weakly bound levefion at seven temperatures in the range 5-30 K,

in theddu system with an accuracy e£0.1 meV. Note that
the latter corresponds to 1% of the relativistic contributions
to this energy.

It was thought that measurements at lower temperatur
would allow only improved accuracy of the main MCF pa-
rameters. However, the recent measurement oflthe mol-
ecule formation rate from the spir=3/2 state of thedu

du+d—ddu—S3He+n. (D)

eé simplified diagram of the experimental apparatus is shown
schematically in Fig. 3. In particular, a specially constructed
solid deuterium targetT) of volume 280 cri (Ref. 1) and

a total absorption neutron spectrom&teNE-213 provided

- ; . n— v separatioft). The spectrometer consisted of two iden-

atom atT=3 K shows a large discrepancy with theory. Our tical parts symmetrically placed around the target with total

goal in this study was to eXteF‘d the systematic measureme%lume of 22 liters. High neutron detection efficien®plid
of ddu mesomolecule formation rate from the different hy- angle=65% and intrinsic efficiency=70% resulted in suf-

p.e.rfmed,u atqm states.s; and Ay, and the hyperflne. trfin- ficiently high counting rate yet relatively low random back-
sition rateh 4 in the temperature range 5-30 K. Preliminary ground.
results have been PU*?"Sh%d- o The target was enclosed in a liquid-helium cooling cry-
In this paper we give the results of full analysis, includ- gstat. Special attention was given to achieving a high unifor-
ing the determination of the absolute values of the resonamity in temperature and density throughout the large target
(from thedu atom spin staté==3/2) and nonresonanty  volume. Accordingly, a heat conductor consisting of 500
=1/2) ddu molecule formation rates. At low deuterium copper wires 0.4 mm in diameter was placed inside the tar-
temperature these values were previously measured in liquiget, which produced temperature gradients throughout the
deuterium atT=22 K (Ref. 6 and T=23K (Ref. 4 and target not higher than 0.1 K. Temperatures were measured by
showed a noticeable discrepancy with theory for the value ofwo helium thermometers, which were placed at different
\1/> (nonresonant’ For normalization the authors of Ref. 7 heights inside the target whose temperatures were held con-
used the value of,,, obtained in Ref. 4 and then corrected stant within 0.2 K.
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FIG. 1. Scheme ofi-catalyzed processes in pure deuterium.
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The deuterium was purified with a palladium filter down
to 10" ppm impurity concentration. The protium content
was no higher than 0.5%. N _ o

The trigger selected those events for further recordingFlG' 3. Simplified scheme of the experimental set?, 3, 4are scintilla-

) ) ion countersN; ,N, are total absorption neutron detectorsis the deute-
and analysis which corresponded to the appearance of th@m target.
neutron[4(N;+ N,)] and electrori4(N;+ N,)] signals dur-
ing the 10us gate, opened by the muon stop-213-4)
signal. Discrimination against backgrounds originating from  Experimental conditions for nine full runs are given in
the muon stops in the target walls places the requirement ohable I. As usual, the density is normalized relative to that of
electron times of.>0.2 us after the muon stopt{=0). liquid hydrogen (LHD, ¢o=4.25x10% nuclei/cn?). The

As usual, the neutron yield was normalized to the num-numbers in brackets represent uncertainties in the last fig-
ber of electrons from the decay of muons stopped in deutedre(s).

rium. The time spectrum ofi-decay electrons obtained in The highest statistics were accumulated at the lowest
the run at 19.0 K is shown in Fig. 4. It was analyzed usingtemperature and in runs 4 and 5, which were as close as
the expression possible in temperature but in different deuterium phase
states. The measurement with helium was made to determine

N(t)=a; exp(—At)+ayv(t) +as. (2

independently the neutron backgroyrd in Eq. (2) abovd,
Here the short-lived componeajv (t) (dashed curve in Fig. while the data obtained with an empty target allowed us to
4) represents muon stops in the target walls; its shape washeck the number of moun stops in the target walls.
determined from the measurements with an empty target. Those events were selected for further analysis which
The slow exponent corresponds to muons stopped in deutsatisfied the criteria of having:

rium with a slope very close to the free muon disappearancé) A neutron in then— y plot®!?

rate, (\p=0.455us ). The number of events belonging to 2) A u-decay electron in the time interva),+ 0.5us<t,

the slow component,) was used in analysis of the neutron <t,+2.5 us.

events. Times and amplitude§ecoil proton energyfor those events
1 -1
JJH » IJ.S
5
Solid Liquid Gas
4t -1
A ms
ddu*
60
3r FIG. 2. Dependenceyg,(T). Square—Ref.
50 + + 7; circles—present work; triangles—
+ previous Dubna measureméhtsstars—
27 + + 4, 4‘ % Refs. 4 and 5. The line corresponds to the
40t ¢ $ + standard theory®
1 F=112
30t
ot A - . . 20 SO]'ld . quulld ) Gas
0 10 20 30 40 50 0 10 20 30 40 50
Temperature, K Temperature, K
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FIG. 5. Time spectra of the «first detected» catalysis neutron. The deuterium
temperature: a—19.0 Kliquid); b—5.5 K (solid). Lines correspond to the
function (4) with an optimal parameters found from the fit.
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FIG. 4. Time spectrum of the decay electrons. The dashed line represents

muon stops in the target walls. . .
P 9 resonantddu molecule formation depends slightly on the

du atom energy €4,) and is equal to 0.030.04 s ! at
were accumulated separately for each run and for each ned=50 K (Ref. 9. According to the Vesman scheme, the
tron detector. The final results were obtained from the analyresonant ddu formation proceeds via the complex
sis of such distributions for the first «detected» neutror (ddux),d,2e]*, which is in an excited state. This process is
events. However, the high neutron detection efficiency alcharacterized by a set of resonances whose positions are de-
lowed us to record the «second detected» fusion neutrorigrmined by the spin states of thg. atom (F=3/2,1/2) and
their yield and time distributions were then used to verify theof the ddu molecules §=3/2,1/2), as well as by the rota-
normalization procedure and the detection efficiency calcution states of the initiaD, molecule K;) and the complex
lation. Some neutron time distributions are presented in FigdK;). The transitions having
5a and 5b and in Fig. 6. We see that the relative yield of the  p_55 g1/ Ki=0—K;=1, K=1-K;=2
background is low and that the neutron spectrum behavior 3)

remains the same when the temperature and the phase state .
of deuterium are changed. dominate at the lowest temperatufés.

Normally, theddu formation is ignored during thermal-
ization, but is considered for Maxwell’s distributions of the
du atom thermal energies. To obtain the values of

The d+d muon-catalyzed processes in pure deuterium, ,, (T) for a given temperature, one therefore integrates the
are shown in Fig. 1. According to standard thebfythe  function'’ Nagu(€q,) Over the MaxwellianW(eg,, ; T). This
d,u atoms are formed with an initial kinetic energy of a few procedure was used in Ref. 18 to give the dependence of
electronvolts in two hyperfine states from which they are), (T) shown in Fig. 2. The Maxwell distributions foF
quickly thermalized. The thermalization rate is estimated to=5 K and 20 K are shown in Fig. 7, together with the reso-
be'**® Nern~10°- ¢ 571, which is much higher than the  nance closest in energy. As can be seen from this figure, the
molecule formation and the spin-flip rates. The thermalizathermal energy distribution foF =5 K does not overlap this
tion stage is therefore ignored in the standard theory. resonance. Only the nonresonartu formation is therefore

Muonic molecules can be formed either via the nonresoexpected to contribute at this temperature. From Fig. 7 it
nant Auger process, where the energy released under thgllows also that af =20 K du atoms spend a small part of
ddu formation is transferred to the conversion electron ortheir “Maxwell cycle” in the resonance region.
via the Vesman resonance mechant8rThe rate of non-

3. KINETICS OF THE d—d FUSION CYCLE

TABLE |. Parameters of the exposures. 2 He
< 10
Number  Target filling Temperature, K DensityHD) N,, 1¢° %
G
1 Deuterium, solid 5.8) 1.434) 4.4918) g 10
2 Deuterium, solid 9.@) 1.434) 2.98314) o
3 Deuterium, solid ~ 15(9) 1424)  2.84214) £ |
4 Deuterium, solid 17(2) 1.40(4) 5.77719) Z L’
5 Deuterium, liquid 19.2) 1.31(4) 4.59817) I
6 Deuterium, liquid 26.3) 1.194) 2.78613) 05 1.0 15 20 25 30 35 40
7 Deuterium, liquid 30.8) 1.084) 1.73812) Time, s
8 Helium 14.72) 0.3711) 1.4879)
9 Vacuum FIG. 6. Time spectrum of the background neutron evétamet is filled

with helium).
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FIG. 8. Energy spectrum of protons recoiling from neutrons plotted for
detector N1 with the target at 19.0 fistogram). Circles are the corre-
sponding calculations. The number of events is given in arbitrary units.

FIG. 7. Maxwell energy distribution ofdu atoms for T=5K and
T=20 K. The closest to zero resonance in thdu formation is shown by
the dashed line.

Here the expression in the brackets means the absolute
neutron yield for the steady state of tde-d fusion cycle,
97\5 is the slope of the slow exponent {#), and B is the
Ipartial probability of the reactiofil). To a good approxima-
tion (better than 1%8s= B,,=0.53, wheres,,, corresponds

2) integration over the Maxwell distribution. Note that the to the nonresonardd. formation.

” . . In the expression for the absolute neutron yislfis the
competition between the spin-flip and scattering processes ; o N
; number of neutron events in the “slow” component of the
was disregarde(see Ref. 13

3) only =1/4 part of theddu molecules undergoes fusion in time spectrumt4), N is thg num_ber Pf electrons indica}ted in
competition with the back decay of the complex. Tablg I, f; allows for the finite time interval for detectlop of
a fusion neutron followed by @a-decay electron, and, is
the neutron detection efficiency. The latter was calculated
using two “independent” Monte Carlo codes. One ctitle
was written specially for our experimentat-d program and
A set of the differential equations corresponds to thethe other used the standard package GEANIhd the low-
scheme of thed—d fusion cycle shown in Fig. 1. When energy neutron cross sections therein. The results of the two
thermalization and thed+d fusion rates are sufficiently codes coincide within 3-5%. To determine the efficiency
high, it has an exact solutidrfor the form of the neutron loss due to the finite threshold, the calculated recoil proton
time distribution>*° energy spectrum was reconciled with the experimental dis-
tribution. This procedure was repeated for data of each run
Fn(t)=br exp(=At)+bs exp(—Al). “) and the example foF =19.0 K is given in Fig. 8. The spikes
For the fast exponent its slopg is determined mainly by in the spectrum are due to ADC differential nonlinearity.

We conclude that the measured valuegfy,, should
therefore be compared with a calculated effective valu
which includes:

1) a contribution during the thermalization stage, no highe
than a few percent?

4. ANALYSIS

the spin-flip ratex 4 and its amplituddy; is determined by the The value of\4g, as well as the slopgg and the ratio
value of 3. The amplitude of the slow componebt is  b;/bg (4), are found from the fit used for the numerical so-
close to the value of ;5. lution of the set of differential equations referred to above.

The parameters of the functiqd) were found from the For the partial probability of the reactiol) 8,=0.58 was
fit of the time distributions of the first detected neutrons.used for the resonanidu formation F=3/2) and 3,
These spectra were convoluted with a Gaussian resolutios 0.53 was used for the nonresonant formatfo = 1/2).
function, to account for the finite time resolutiga). The
value of o and the time zerot{) were optimized for each
run. The analysis showed that the time zero stability duringrABLE Il. Experimental results.
the data collection was better than 1 ns. The background due
to muon stops in the target walls was approximated by an
exponent with the slopa?=5us™. Accidental neutron

The rates of theldu molecule formation
anddu atom hyperfine transition ratg,s™*

events were fitted as an exponent with=X\ for t,>t, and ~ Temperature, K M a2 (SRS A
with a constant value for,<t,. 55 0.044818) 2.4813) 55.31.8) 31.71.0
At the next stage of the analysis the absolute values of 9.9 0.040820) 2.11(14) 52.32.3 29.31.2)
the steady statddu-molecule formation rate were obtained 15.1 0.04220) 22716  53.524 32519
from 17.7 0.041018)  2.2411) 53417  32.41.2
19.0 0.040R1) 22714 55819  30.21.0
Ne [NS 26.3 0.03820)  3.03200  77.82.4  36.11.49
A= e fl (5) 30.5 0.042826)  3.2021)  74.824 32011

®Bs [ Ne
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The value ofA{?) was found from the analysis of the

A, $! ) .
50" ! second neutrons normalized to the number of “first” neu-
Solid Liquid Gas trons:
401 \2,=0.0413) us ! (statistical error only
*
t § # 4‘ This value agrees with that obtained for the “first” neutrons.
¢ 9 4 : !
30+ s b ok As can be seen from Fig. 2, our data fo§, are in

agreement with our previous measurement using liquid deu-

terium atT=22 K and with the results of the PSI group at

20} T=23K; the latter initially gave \,=0.0500(34)

X(22) us! (Ref. 4 and then\,,=0.045(5)us ! (Ref.

10). The experimental results are in excess of theoretical

10 : - : : prediction? A{{)~0.03 us~*

0 10 20 30 40 50 ; ;
Temperature, K Of course, our main result is the measurements ef the

ddu molecule formation rate from the uppdg. atom spin

FIG. 9. Experimental data on ti atom spin-flip rateh . Square—Ref.  State for the lowest deuterium temperatures Together with

7; circles—present work; triangles—previous Dubna measurerfientsithe pioneering result of the TRIUMF grodpthey sharply

stars—Refs. 4 and 5. contradict the “standard” theory, according to which only

the nonresonamtdu formation from thed . atom spin states

can contribute at the lowest temperatures. Possible mecha-

This procedure then gave the valueshaf;, A1z, @andhg.  nisms to explain it are considered in Refs. 18, 22, and 23.
There were a few small correcﬂorﬁﬁew perceny, e.g., for According to Ref. 22, thelx atoms moving in solid
the loss due tm— y separation. deuterium have insufficient time to fully thermalize, because

they lose energy only in inelastic interactions with the lattice
excitation. Significantddu formation therefore occurs at
higher than thermal energies. This effect can explain the ex-

The experimental results are presented in Table II. perimental data qualitativel§ but quantitative agreement

The values in brackets are the errors due only to statiswith the experiment is achieved only for few definite values
tics, the fit, and the corrections and do not include systematiof the inelastic cross sections. This mechanism could be in-
uncertainties from¢ (3%) and €, (8%). Our results are vestigated by repeating the experiment with enhanced pro-
shown in Figs. 2 and 9, together with the data of other autium.
thors. Again, our data are given without systematic errors in ~ Another possible explanation involves transitions with
order to show more clearly their dependence on temperatureegativedx atom resonance energy fardu formatiorf®

The data for the “second detected” neutrofié;—N,  with the transfer of the released energy to lattice excitation.
and N,—N;) were also analyzed. Their time distribution The transitiorK;=1—K;=0 is appropriate for this scheme.
relative to the “first detected” neutrons is shown in Fig. 10. The liquid and solid deuterium in this experiment were held
The data are summed over all exposures with solid deuteat room temperature ortho-para ratio because equilibration is
rium. The curve in this figure corresponds to exponents wittso slow. The experiment should be repeated with catalyzed
the fast and slow slopes found above in the analysis of thp— o to, among other things, check this mechanism, be-
“first” neutrons. The measured spectra are in satisfactorycause with pure ortho-deuteridfonly transitions with posi-

5. RESULTS AND DISCUSSION

agreement with the predicted spectra. tive resonance energies are possi@e
10°F
z FIG. 10. Time distribution of the second
2 b detected neutron accumulated for all ex-
> 10 posures with solid deuterium. Line is the
S & “ function(4) with the exponent slopes ob-
2 UJ d ' l A l ! i l tained from the analysis of the “first de-
£ ‘ { ! I L ‘ f | ’H H 1 ' tected neutrons.”
" U f l HHl
o | ] , II
0 0.5 25
Time, us
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Resonance fluorescence of a two-level atom excited by a superposition of coherent
states, and the instability of the average atomic dipole moment

S. Ya. Kilin and V. N. Shatokhin

B. I. Stepanov Institute of Physics, Belarus Academy of Sciences, 220072 Minsk, Republic of Belarus
(Submitted 21 June 1996
Zh. Eksp. Teor. Fiz111, 1174-1189April 1997)

We find the evolution of average atomic variables in the resonance fluorescence of a two-level
atom excited by a superposition of coherent states shifted in phage Aynew effect is

predicted, the quantum instability of the average atomic dipole moment, with a strong correlation
between atom and field being the reason. We propose different ways of verifying the effect

in experiments involving higl®) optical and microwave cavities. @997 American Institute of
Physics[S1063-776097)00304-1

1. INTRODUCTION ate parametric amplifier in the low-intensity limit were
discussed by Lyublinskaya and VyAs.

The interest in the so-called nonclassical states of optical The new results obtained by the authors of Refs. 4—8 are
fields (squeezed fields, superposition fields, and the likebased on the traditional approach to studies of resonance
which requires using the language of quantum theory fofluorescence. In this approach the interaction Hamiltonian is
their description, which resurged at the end of the 1970s, iswritten in the dipole and rotating-wave approximations. In
still evident today-? In many respects the interest is due to some cases a fairly full description of the atom—field inter-
the important applications that such fields have in extremelyction can be achieved by using the quantum master equation
precise measurements, optical communications, and quantuier the density matrix averaged over the field stdtes re-
computers. The study of these applications has led to fundaiuced atomic density matjix The effectiveness of this
mental questions, e.g., questions concerning the interactiomethod is due to the use of a wide-band reservoir spectrum
between fields in nonclassical states and atoms and moln deriving the equation, an approach known as the Markov
ecules. approximatiort~# In this approximation the quantum re-

Resonance fluorescence, a phenomenon of QED igression theorem is true, which makes it possible, among
which the quantum nature of optical fields manifests itselfother things, to study the behavior of many-time atomic cor-

most vividly, reveals many aspects of such interactions ifelation functions. In examining resonance fluorescence, the

has been intensively studied both theoretically and experiduthors of Ref. 13 developed a method for deriving a chain

mentally (a review of the work done prior to 1981 can be of coupled equations for the operators whose averages are

found in Ref. 3. The standard model for describing reso- the Zperc]:tral ?elq t(;o:crel‘ta\tlon 1‘futrr11(;t|ons of Vﬁr.'mtﬁ orders.
nance fluorescence uses a two-level atom interacting with characteristic feature of this research In the resonance

set of electromagnetic modes of free space acting as a res(:ﬁ:qorescence excited by nonclassical light is the perturbative

voir for the atom. In describing the excitation of the atom it approach o studying the interaction between nonclassical

. L light and an atom. The solution of the problem for arbitrary
is usually assumed that one mode is initially coherent. How- . . S .
tensities of the nonclassical light is complex because one is

) o o
ever, if we assume that excitation is done by nonclassmafp

liaht feat f f t ob d orced to calculate all higher-order moments of the atom—
Ight, néw teatures of resonance fluorescence not ObSErved iy ¢qrrelators. Note that for arbitrary light intensities the
excitation by coherent light manifest themselves. For in-

. . problem has been solved only in the special case of coherent
stance, Gardinérdiscussed the decay of a two-level atom

, _ radiation®1%1214 the reason being that a coherent state,
into & wide-band vacuum and showed that one component Qfich, is an eigenstate of the annihilation operator, does not
the atomic polarization decay_s at a rate r_nuch lower than th@hange because of one-photon absorption processes and the
rate of spontaneous decay into an ordinary vacuum. Calsiate of the driving field remains coherent. This is not the

michael et al” examined the problem of the spectrum of case for other states of the exciting field, and the traditional
resonance fluorescence into a squeezed vacuum and discQsproaches require generalization.

ered a strong dependence of the width of the central peak of | this paper we examine the excitation of fluorescence
the fluorescence spectrum on the phase of the driving fielthy nonclassical light that is a quantum superposition of two
Smart and Swaft’ reported the existence, for a narrow band coherent states with identical amplitudes, but shifted in phase
of Rabi frequencies, of unusually shaped fluorescence spegsCS. When the amplitude is large, these nonclassical states
tra of a two-level atom interacting with a squeezed vacuumare of the “Schrdinger's cat” type?'®-22 which makes
They concluded that the anomalous profiles of the fluoresthem highly important for experimental verification of the
cence spectra are a specific feature of the interaction betwegninciples of quantum mechanics. Many methods of generat-
atomic systems and nonclassical fields. The statistical proping SCS have been proposed: by a nonlinear wave prdeess,
erties of the resonance fluorescence excited by the nonclaby continuous photodetectidfi,by negative feedback in a
sical light from a second-harmonic generator and a degenekerr medium!’ by four-wave mixing® and by nonresonant
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inte.rtacitgions of Rydberg atoms and a field in a microwave  {2[1+exp —2|a|?) ]} YA|a)+|—a)), (3)
cavity. _

Buzek et al2° found that the nonclassical properties of While ¢=m/2 corresponds to Yurke—Stoler states
SCS, such as squeezing and the sub-Poisson photon statis- 2-12(| ) +i|— a)). (4)
tics, emerge because of quantum interference of the coherent
states. Quantum interference not only explains the abov&S shown in a Refs. 2 and 20, notwithstanding that the dif-
properties but also changes substantially the nature of atomferences are only in the values of the phase factor, the non-
field interactions in resonance fluorescence. Below we showlassical properties of the above three states differ consider-
that for a certain threshold amplitude of the initial coherent@0ly. For example, even-parity states can contain only an
state the average dipole moment of an atom interacting wit§ven number of photons, odd-parity states an odd number of
an SCS becomes unstable. Moreover, the Rabi oscillations @hotons, and in Yurke—Stoler states the photon statistics is of
the average dipole moment are suppressed for all values §f€¢ Poisson type. Even-parity coherent states have super-
the amplitude. To clarify the dynamics of the atom we use”0isson photon statistics and display second-order squeez-
the Heisenberg equation method. This method makes it pod?d. While odd-parity states are characterized by sub-Poisson
sible to interpret the emerging effect as the result of quantungtatistics and display no second-order squeezing. As for
interference and correlated atom—field dynamics in a muclYurke—Stoler states, they display second- and fourth-order

fuller way than does the averaging methbdmployed ear- Squeezing. o o
lier. Superposition quantum states exhibit other properties in-

The plan of the paper is as follows. In Sec. 2 we discusderent in nonclassical states of light. In particular, the inter-
some properties of SCS. A model for the interaction with theference of the probability amplitudes of the state$ and
reservoir in the Heisenberg picture is set up in Sec. 3. In Se¢~ @) in their superposition makes the Wigner quasiprob-
4 we discuss the dynamics of atomic averages. There we alg®ility function
show that the discovered instability in the average dipole 1
moment of the transition is due to the quantum interference  W(B)= —{e‘z‘ﬁ‘“|2+ e 2lptaf?
of the probability amplitudes of the initial field state, and we N

suggest a way of experimentally verifying this effect. +2e—2|,8\zco5{¢+4 Im(Ba*)7} (5)

2. NONCLASSICAL PROPERTIES OF SUPERPOSITIONS OF  Of state|x) (Ref. 2 negative in the quantum-interference
COHERENT STATES region. The presence of quantum interference of [the

) . states manifests itself in another unexpected way in the
. L_et us take a _dlscrete superposition of coherent stateg|, ber—Sudarshan distribution functiét(8), which has
with identical amplitudes: the form (see the Appendix

[Wy=AT22, eae™), W pp)= le A(B-a)t+(p+a)

whereA is the normalization constant, and the phaggand

i . ; ~2|af?
I can be arbitrary. The quantum interference in the phase + € 8(@u—@at m2)(er 1 ®nc(| Bl —i|al)
space is either constructive or destructive depending on the |8l « 7P
values of these phasé4’ The state(1) is a special case of
the idea, put forwgrd by Jansky and Vinogratfowf a con- ' +e 18,1 Bl + i|a|))} _ (6)
tinuous superposition around a circumference, a superposi-

tion to_be ge_nerated for molecular vibrations. Let us restrictl-he first two terms on the right-hand side coincide, to within
our_ dISCUSSIOIl to_the case wheme=2, ¢1=9:=0, 4 hormalization constant, with tie-functions of the coher-
$2= ¢, andd,=. The associated state ent statega) and|—a), and the two remaining terms rep-

Ix)={2[1+exp —2|a|?)cos ¢]} YA |a)+|— a)e'?) resent the interference part of tRefunction and character-
1 i ize the purely quantum properties of the states. The last two
=N""q|a)+[-a)e'?) (2 terms involve the singular function

is the simplest example of an SCS. It is an eigenstate not of
the photon annihilation operator, as it is in the case of a Sac(x—2)=e 7% 5(x) = lim
coherent state, but of the square of that operator. Notwith- £—0 \TTE
standing the apparent simplicity, this state exhibits various . = . . - .
nonclassical properties, which emerge because of the qua?‘]v—_h'Ch IS even more smgylar t.han Dlrags delta-function.
tum interference between the coherent states. Most methoogé',n_ce integrating this function with a functidi(x) of a real
proposed for generating SCS deal with states of tgpeWe variablex,
see that the definition of the states contains an additional o
phase factoe'?, which affects the quantum statistical prop- f dxdac(x—2)F(x)=F(2), (8)
erties of the superposition. o

The casep=0 corresponds to even-parity-() coherent amounts to analytically continuing(x) into the complexz
states and the cask= 7 to odd-parity (~) coherent states, plane ¢ in (8) is a complex-valued quantitydac(x—2z) has

e—(x+z)2/s' (7)
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become known as the generalized function of analytiauith o, the atomic inversion operator, ap§™ =g,o_ and
continuatior? Equation(6) shows that when a superposition E)(—):g* o, are coupling constants. In accordance with the
state is averaged with th@-function!) the interference alkaove ckonditions at=0 the density operator for the atom—
terms lead to the replacement of the absolute value of thgg g system can ,be written as

complex amplitude|B|, in the averaged expression by the

imaginary quantity|a|. Below we show that this property of p(0)=pa(0)pe(0)=| v W],

the P-function (6), which reflects a property of quantum in- (14
terference, results in the instability of the average dipole mo- _ _

ment of an atom excited by a superposition of coherent W*)"”A'“”g [0)=[1)] @ )I{0}).

states.
The Heisenberg equations for the system’s operators are

X i~ o~ -
3. A MODEL OF INTERACTION WITH A RESERVOIR. A=~ glacHl=—lo@cigo -, (15.9
HEISENBERG PICTURE
Let us examine a quantum system consisting of a single 0-= ~iwz0_+i ; Ok &0z, (15.2

two-level atom and a set of field modes comprising a reser-

voir. To simplify our reasoning we assume that the field is . A A

inside a spherical cavitthe quantization volume is a sphere ~ 0z=2i Ek: (pka —pi ). (15.3
of radiusR), with the atom at the center of the sphere. For

such a geometry the spectrum of the eigenfrequencies of thelugging the solution of Eq15.1),

field modes with which the atom interacts is nearly

equidistar® with a mode separation equal ter/R. ék(t):ék(o)efiwkt_igkjtdr exp —iw(t— 1) (7)
Initially the atom is unexcited and is in stal&); the 0
field modes, with the exception of the resonant mode, are in (16)

the vacuum state. The resonant mode, labe]ésl excited to
the superposition statey) (Eqg. (2)), which for the sake of
convenience will be denoted By . ):

into Egs.(15.2 and(15.3, we arrive at the following system
of equations from which the Heisenberg field operators

a,(t) have been eliminated:

| )=(N)|a)+] - a)e'?), ) . ) ) )
N, = 2(1+ exp(— 2| al?)cos ). (10 o_=—iwyo_+iY gfal0)exp —iwgt)o,

We will also need the stater ) | N fthE IgPexp— i oyt— 7)o () (1),
la_)=(N_)"Yq|a)— |- a)e'?), 11 0 K (7.2
N_=2(1—exp —2|a|?®)cos ¢), (12

0,=2i 2 (P& (0)expliwt) — Pl 'ax(0)
which has an additional phasein comparison tda, ). At X
t=0 the atom and field begin to interact. The total system t
Hamiltonian in the electric-dipole and rotating-wave ap- Xexﬁ—iwkt))—zfodTEK |9 expl —iw(t— 7))
proximations has the form

N A X{o (T)o_(t)+o_(1) o, (b)) 17.
H:HOF+HOA+HIAF7 (13) { +( ) () ( ) +( )} ( 2

The standard approach to solving the above system of equa-

where . . .

tions is to go to the free-space limR—«. In the one-
N N dimensional case this amounts to the following replacement
H0F=h§k: wy@y Ay, (see, e.g., Ref. 24
Hoa=tiwpi0 0, Y |gk|2~--~f0 dolg(w)?p(w)- -, (18
Aiar=%>, (p~as +play) wherep(w) is the mode density, equal R/27rc in the case

k

of the equidistant spectrum of a spherical cavity. Evaluation
are, respectively the Hamiltonian operators of the free field®f the integrals in the Markov approximation, which amounts
the free atom, and the atom—field interaction. Hageand to replacing the correlation function of atomic perturbations,
é,:' are the Bose operators of photon annihilation and cre-

ation in modek, o, ando_ are the Pauli spin operators,
which obey the commutation relations

K(t—r>=2k |9l 2explit (w1 — w) (t— 7)),

o o A by the delta functiod” 6(t — 7), reduces the system of equa-
{oy,0_}=1, [o,,0_]=0,, tions (17) to
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E(t) in the reservoir modes reaches the initial value

o= _F‘AT—“; 9k a(0)expli (a1~ W), Eo=%wo|a|2. This condition can be shown to be equivalent
(19.1) to the following inequality:

] t<2mwp(wy), (22

S —9j A(+t)yat —i _

UZ_Z'EK [P (Da (O)exp(—i(wa— wt)] where p(w,) is the mode density at the frequenay. For

modes interacting with an atom at the center of a spherical
cavity the density is I, and the right-hand side d22) is

the cavity’s “revival” time (see, e.g., Ref. 24Tg=2R/c,
coinciding with the crossing time of the cavity.

—2i2k [Pl (D ag(0)exp(i(wy— w)t)]—2T,

(19.2

where I'=7|g(w,1)|?p(w,y) is the rate of spontaneous 4. INSTABILITY IN ATOMIC AVERAGES CAUSED BY
atomic decay, which coincides with the Einstein coefficientQUANTUM INTERFERENCE

AJ2. Using the commutation relatiotfs The system of quantum stochastic equatié®$) has
t R R been describetsee, e.g., Ref. 3Zor the coherent state of an
f dr expliogr)o_(7),q(1)|, initially excited mode. The averaged equations in this case
0 (20) form a closed system of equations for three atomic averages:
(0_),(o,), and{0). In the initial superposition stat),
which follow from Eq.(16), and the commutativity of the there can be no reduction to only three atomic averages in
simultaneous field and atom operataét)andq(t), we can  the averaging of Eq$21) over the initial state, sincey ) is
perform normal ordering of the field operators in E¢K9). not an eigenstate of the annihilation operator. Indeed, let us
The result is the following final system of equations for theset up an equation for the average matrix element

atomic operators: ~ ~ ~ ~
(o-(1))=Tra e(0_(t)pa(0)pe(0))

=(i|o_(O)|y.).

('}Z: —2I(1+o)+2i[L.(t)o_—0o,L_(1)], (21.2  To this end we average the left- and right-hand sides of the
operator equatiof21.1) over the initial density operator. Be-

[a(0), q()]=igy

o =—To_+io,L (1), (21.2)

where cause of the inhomogeneous term,L _(t) we have
~ _ ~ + _ * ~ B _ . ~ -
C-(0=[E (017 =2, glay0)exli(wz vt <w+ 10,03 gt a(0)expli(war— ) ¢+>

are free-field operators, which act as operators of multiplica- - A A

tive noise in the Heisenberg equatiof®4). =ig7 (e [(1[({0}|o( [{Oh)[1)a(0)]a-)
The above system of operator equations cannot be =i * L0 () 10V |1

solved exactly, but in some cases the averaged equation can @+ g [(L{OH oD OB )] er-)

be integrated. Obviously, this is determined by the initial =ia+g*(¢+|(}z| W),

state of the reservoir. In this paper we consider only one of
these possibilities: the superposition of two coherent stated
(2) or (9), as the initial state for the excited mode. But before |y, )=|1)|a, )|{0}) and |¢_)=|1)|a_)|{0}) (23
\é\?etr?:hl\//leai%?/(za}));):oe;ilr:]Sa;jil)srlcu;z tr:];;m':]stﬁ; ?25 Ic;iiit():ltlilzl are transformed into each other by the resonant-field annihi-
this approximation leads to equivalent results in two physi-ation operatom:
cally distinct situations: the problem with a source of classi-
cal field, and the problem where the quantized field mode is
initially prepared as a coherent state with a finite amplitudevhere a,=ayN_/N,, a_=ayN,/N_, and the states
equal to the amplitude of the classical field. Since the presl—ar> and the normallzatlon.constaritxst are specified by
ence of a source leads to temporal divergences in the avera§és-(9)—(12). Thus, new variables related to the appearance
numbers of photons in the reservoir modéthere emerges a Of the new photon_stat{sn) emerge. By setting up equa-
contradiction between the final resulan infinite energy  tions for thesg Varla.bles.we arrive at two independent sys-
and the initial conditions. To resolve this contradiction wetems of equations with six equations in each:

assume that the coherent mode is heavily populated, so that P - ) . -

in the quantum system interacting with the reservoir there is (Yolo_|)y==T(gi|o_|g)+ia, g*(di|oly-),

time for a steady state to set in before the coherent mode (25.1
becomes depleted. In this sense the Markov approximation is A —_oT n ~

applicable for all times. If, however, the problem is ap- (Wiloddy-) (el + (il ody))

here the states

ala)=a.|la_), ala_)=a_la.), (24

proached more rigorously, then for the time limit of the ap- +2i(aXg(y_|o_|p_)
plicability of the Markov approximation one must take the A
time in the course of which the total calculated energy —a_ gy lo|gy)), (25.2
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A - . A the initial field state is an eigenstate of the square of the
_ *
(Y-lo_ |y y=—T(y_|o_|g_)+ia_g*(¢_|o|y.), annihilation operator. In the general case of an arbitrary ini-
(253 tjal state of a selected field mode, the averaged equations
(25.4 (21) form an infinite chain of equations for the atom—field

normally ordered correlation functiong(a*(0))™B(t)

(Wl sl sy =(pilo_ b )*,

<¢_|('}Z| b= |alw))*, (25.5 X (a(0))"). Note that this chain reduces to a closed system
_ of a finite number of equations for two classes of states. The
(U |o = | o_|g_))*, (25.6 first class consists of SCS discretely distributed around a

circumference,

a"&)=a"é), n=01,...,

and, as a degerenate case of SCS, ordinary coherent states.

and

(W] 0al )= = 2T (L4 (0| 5 1))

+2i(a (|| ) The second class consists of finite superpositions of Fock
states|{) =] _oCmlM).
—a, g (gl |vl)), (26.) Solving the system of equatiorid5) and(26) can easily

] be reduced to evaluating integrals if we employ the Laplace
(p_lo_|p)=—T(y_|o_|p)+ia,g*(¥_|ov_), transform. Under the given initial conditions,

i A @02 (o)) = (|5 O)p) = (9|5 (O] )
(W lod )= =2T L+ (|5 dp-)) ~(u15-(0)]y)=0, @)

F2i(aro(glo-fu-) WO )= =1, (e 6(0) )= — (| ),

—a_g*(y_|o|y)), (26.3  the Laplace transforms of the solutions are
(alo |9y = =Tl o g ) +ia g (v |orlv.), _ { Q-(p) ( E)
+ + + 26 <w+|0-2 p)|¢+> +2Q (p) 1- Nir
(26.9
~ _ - * Q-(p) N=
)= _lo_ , 26. -
<¢+|(.T+|¢ y=(y-lo-|y:)) (26.5 +2Q+(p) 1+ N+”’ (28
(p_loily)y=(pilo_ly_)*. (26.6 1+2T'/p

The structure of these systems of equations is such that (¢=lo-(P)gz)=* g N.Q_(p)
the average value of the dipole moment operator,

~ ~ _ 2\ i
(o_(t))=(¢|o_(t)|¥.), is related not to the average X exp(—2|al?)sin ¢, (29
population differencéo,(t))=(y. |o(t)| ) butto thein-
terference matrix elemerty. |o,(t)|_), equal to the cor- )
relation between the atomic inversion operatoft) at time Q= (p)=(p+I)(p+2I) =4[ag| (30
t and the field operatca(0) att=0, are polynomials that determine the characteristic exponents

. R in the time dependence of the atomic averages. As(Z9).
a.(P|o(D]g-)=(a()a(0)) implies, the time dependence of the average dipole moment,
=(ih|o(1)a(0)]y), (o_(O))Y=(t.|a_ (D))= ag* (N,) Lexp(—2|a|?)
and to the correlation between the number of photons at X sin ¢ (s,ePil+ s,eP2l+s4) (3D

t=0 and the dipole moment operator at titne

(@*(0)o_(0)a(0))=|a.|Xy_|o_(t)|y_).

In a similar way, the average value of the inversion operator _ _3F+ 4 2 F_ 32
. ; . P12~ = lag|®+—. (32
is related to the interference matrix element 2 4

(¢r+|o_(t)|¢-), which determines that the atom—field cor- These differ from the roots of the polynomidl, (p), which
relation (o_(t)a(0)), and to the correlation between the describe Rabi oscillations for the coherent initial state, in the
number of photons at=0 and the atomic inversion at time sign in front of the absolute value of the Rabi frequency,

is determined by the roots of the polynom@l (p),
2

t: |ag|?— —|ag|?. The coefficients; in Eq. (31) are
(@"(0)a(Da(0))= e || oo(D)] ). S T (33
27 2 ’ T r2_ 2
Obviously, this structure of the equations, i.e., the formation P12~ P1P2 I*~2Jag|

of a closed system for the atomi@(t)) and atom—field The obtained solution for the time dependence of the average
(B(t)a(0)) and(a*(0)B(t)a(0)), stems from the fact that dipole momento_(t)) differs drastically from the case of
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an initially coherent excited mode. Since the roptsand gy sing the well-known atomic averag©3|:f_ﬂ(t)|,3> with
p2 are real quantities, under the chosen initial conditionsyn jnitial coherent field statesee, e.g., Ref. 32ve can find
there is not a single value of the field amplitude for which e eyolution of atomic averages for all initial values of the

the zdipgle moment  oscillates. More than that, forfie|q. For an atom that initially was in the ground state,
|eg|*>T"?/2 the rootp, is positive, with the result that the

average dipole moment is unstable. ~ - o~
The effect is the strongest gt= /2, while at¢=0 or (Blo_(1)|B)=Bg* (5,61 +5,eP2'+5y), (35)
¢=, i.e., for even- or odd-parity coherent states, the aver-
age dipole moment is not excited at all. The reason is that a¥here
¢=mn the SCS are orthogonal and the average field ampli-

tude att=0, or (a(0)), is zero. In view of this and the ~ _ 38U /4| |2_F_
chosen initial conditions, all the initial values of the averages Pr2== 5= A9 4’
in the system of equation®5) vanish, and so do the inho-

mogeneous terms in this system. Hencebat wn the solu- 1+2T/Py, r

tion of the system25) is zero. AW # mh, iq (_25) t.here S12°=5 == So= FWZ
appear a nonzero average amplitude of the initial field state P 127 P1P2 9
and nonzero inhomogeneous terfs, |¢_) caused by the _ _ . _
quantum interference of the coherent states and |—«), ~ Upon averaging35) with the P-function (6) we arrive at
which form the initial superposition state of the field. At Precisely expressio(81). Here we see that dynamic instabil-
é=n the contributions of the interference terms to the av-ity in the dipole moment emerges because of the interference
erage field amplitude reduce each ottagstructive interfer- Part of theP-function (6), whose action on an analytic func-
ence, while at¢= /2 they amplify each otheconstructive  tion of the complex variablgg=|s|e'“s reduces, as noted
interferencg In the process of interacting with the atom, the €arlier, to the substitutions
initial field quantum interference manifests itself in the time
dependence of the average atomic dipole moment. |Bl—=ilal, Pp— ot T2,

The emergence of interference terms is characteristic of
averaging over states that have no classical analogs. The&., the real absolute value of the field amplitude becomes
classical feature of a coherent state consists, in particular, iBure imaginary and the phase increases by 90°.
the fact that it does not change when a finite number of The above ideas, which demonstrate the link between
photons in this state are annihilated, S"&gm>:ak|a>. An the instability of the dipole moment of the atom and the

SCS exhibits both purely quantum properties and propertie§u@ntum interference in the initial field state, can be aug-
that make it resemble a coherent state. Indeed, annihilatioff€nted by an interpretation involving the quantum dynamics
of a single photon transforms the SCS into a new state ii9f the field and atomic states. Let us examine the evolution
which the average field amplitude is opposite, to within aof the reduced density operata(t) of the system consisting
small correction, in sign to the average field strength in theof the atom and the resonant mode, the operator being aver-
initial state, i.e., in the process of the interaction with theaged over the vacuum states of the other reservoir modes.
atom the phase of the field spontaneously changes.iyn  For the initial state of the resonant mode we take the coher-
the other hand, the coherent st and the state$o.) €Nt state|8). To make the situation more transparent we
satisfy the equatior&2|§>=a2|§>. Together these two fea- i9nore the atom’s spontaneous decdy=0). Now it can

tures of SCS determine the dynamics of atomic averages. €asily be shown that in this caset) can be represented by
All we have said above about the features of SCS ighe following dyadic product of pure states:

vividly illustrated by the type of the Glauber quasiprobability

function of the statda ) (see Eq.(6)). In comparison to (1) =¥ ()W ¥ (1), (36)

other quasiprobability functions, knowing tfefunction of

the initial field state,P(B,0), is especially important in where

studying the dynamics of the interaction of the atom and the

quantized field: with allowance for the normally ordered na- | (t))=[cog|Bg*|t)|1)+i sin(|Bg*|t)[2)]|B8)

ture of the Heisenberg equatiofil), the solution of these

equations for an arbitrary initial state of the field mode can =[0(8,1))|B). 37

be obtained by averaging, with thi-function of the initial

field state,P(8,0), the solution obtained for the initial co- Obviously, the density operat¢86) can be represented by
herent statég) (Ref. 21): the product of atom and field density operators, with the state

of the field remaining coherent with the passage of time. In

- ) ~ other words, the states of the atom and field are independent.
<"M(t)>:J d BP(B70)<B|%(")|:3>7 pn==*.,z, (34 Let us now assume that the SC3 is the initial state of
the resonant mode. We denote the desired density operator
where by 7* (t). This operator can be obtained by integrating the
- . expression36) with the Glauber—Sudarshan functi) (cf.
o, ()=Tra(pa(0)({0} o, (1)[{0})). (34)). After integration we obtain
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%*(t)=A(|a>|0(a DN O(a,)|(a|+|— a)|6(a,t)) tially small factor by an ensemble of atoms. However, this
' ' ' would require studying in detail the problem of collective

{0, )|(— a|+|—a)| 0, (a,))(O_(a,b)] scattering with allowance for interatomic correlations in-
i ~ ~ i duced by the field and for the geometric factor. One way of
X(ale+]a)[0_(a,t))(0:(a,t)[(—ale™®),  ayoiding these difficulties in observing the effect in free

(39 space is to use a continuous source of superpositiorPlight
(which has yet to be developgdimilar to a laser. The sec-
ond way amounts to the following. At the initial stage of

|§t(a,t)>=cosr(|ag*|t)|1>tsinr(|ag*|t)|2). intracavity interactions, when the response of the emitted
. , field and the attenuation of the field in the cavity are fairly

In our ca.se,.Just as for a coherent state, the field state do%eak, the dynamics of the atom is similar to the dynamics of

hot vary in time, since resonance fluorescence in free space. Hence the predicted

Tra(m* (1) =] a: Y a,|. effect of quantum instability can also be observed for a

] ) single atom interacting with a resonant mode prepared in

But now the density operator cannot be factorized: the stategcs, e.g., by the method suggested by Brenal® The

of the atom and the field become correlated. Indeed, on thgyisting experimental methods make it possibly to verify the

basis of(38) we can easily show that the field state effect in both the microwave range® and the optical

- _ * v range?’ In microwave cavities the following values of the
eVl = A(co(|ag*[t) (| a)al +| - a)(-al)) parameters have been attairféd® the atom—field coupling
+cost(|ag*|t) (| — a)(ale'?+]|a) constant g=2mX 17 kHz, the cavity attenuation rat&

B ig = 27 X 6.7 kHz, and the spontaneous decay fate27 x5
X(—ale™), (39 kHz. At such values of the values of the parameters, at an
corresponds to the atom in the ground state, and the state SCS amplitudex=3, and for an interaction time that obeys

the relationshigt;,= 27X 0.3, the dipole moment exponen-

where

7E(D)] 122 = A(SI(|ag* |t) (|a){al +] — a)(—a])) tially increases to 0.2610°°, instead of the full period of
—sink?(|ag*|t)(|— a><a|ei¢+|a> Ra_bi oscillations as is the_ case with a coherent ir_1itia| state of
' a field of the same amplitude. In an optical cavifyhere
X(—ale”'?), (40)  the values of the respective parametersgae@mx 7.2 MHz,

to the atom in the excited state. Thus, this approximatio=27X0-7 MHz, I'=2mx25 MHz, «=3, and
clearly demonstrates that in the interaction of the atom witrgtint:h%?-?f’ the dipole moment exponentl'ally Increases
a superposition field the initially independent states of the® 1.2¢10°", instead of the full period of Rabi oscillations.
atom and the field become “entangled.” Such entanglement
_also occurs in the interaction of_a two-level atom and a field5_ CONCLUSION
in a cavity (the Jaynes—Cummings mogeBtudies of the
time evolution of the Wigner function in the ground and We have studied the interaction of a single two-level
excited atomic states has revealed the existence of strorajom with a reservoir that has an equidistant spectrum whose
correlation between field and atom in such a quantum syseesonant mode initially is excited to a superposition coherent
tem. The phases of the characteristic interference structure imode, while the other modes are in a vacuum state. We have
the Wigner functions of the ground and excited states arestablished the evolution of the averages of the atomic vari-
opposite, i.e., in the process of evolution the field follows theables by the method of Heisenberg equations and by the
state of the atom, with the atom in the ground state corremethod of averaging the solutions found for a coherent initial
sponding to the field stater, ), and the atom in the excited state with the Glauber quasiprobability function of the super-
state to the field statex_). The emerging positive quantum position initial state. The dynamics of the atom being excited
feedback leads to instability in the average dipole moment.by a superposition of two coherent fields differs significantly
The exponential growth of the average dipole momentrom the case of excitation by a coherent field. The differ-
can be observed in experiments that study the time depemnces are due to the quantum interference of the amplitudes
dence of the coherent component of scattered light, which, asf the probability of finding the field in stategy) and
is known (see, e.g., Ref.)9is proportional to the square of |—a), with the evolution of the average dipole moment be-
the absolute value of the matrix element of the average diing determined entirely by this quantifgpnathematically this
pole moment. However, the presence of the factomeans that the Glaub&-functional has the appropriate in-
exp(—2|al?), which “destroys” the interference part, and the terference terms, which determine the evolution of the dipole
time limit on the applicability of the model make the obser- momen}. The nature of the quantum interference depends on
vation of the effect in resonance fluorescence problematithe phase shifty between the coherent states. When the
For instance, on the basis (85) we can easily estimate the phase shift is zero ofr, the average dipole moment is not
timet it takes the matrix element of the average dipole mo-excited, since the contributions of the interference terms ex-
ment to assume the measured values. This time proves to bieguish each other, and whep= 7/2, the average dipole
longer thanT i but shorter than 2z, which means it exceeds moment is at its maximum because of mutual amplification
the time limit on the applicability of the results obtained in of the interference contributions. The main result of interfer-
the present work. One could attempt to balance the exponerence here is that for Rabi frequencies that obey the inequality
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|ag|>T/\2 the average dipole moment becomes unstable. 1 (2=

The physical reason for the quantum instability is that the = Jk(2)= Efo dt exp(i(kt—z sint)), (AB)
correlation between atom and field in the interaction is

strong. This results in the onset of positive feedback in theand the expression for the generating function of the modi-

system. fied Bessel functions,
To observe the effect in experiments we have proposed o
using a microwave or optical cavity in which field states in exp(z cost) = 2 1 (2)explikt). (A7)
k=—o

the form of a superposition of coherent fields are generated

using well-known techniques. The average dipole moment of o mpining(A6) and(A7), we arrive at the following expres-
an atom placed in such a cavity must exponentially grow insion for the Fourier transformP,(8) of the function
the course of the interaction time, instead of the full period Int\):

of Rabi oscillations, as is the case with a coherent initiaIXN
state. )
Partial financial support for this work was provided by Pin(8) = N, 7 kzz_m expik(¢.— @p))
the Belarus Fund for Fundamental Resea(@Ghants Nos.
F18-203 and MP96-3&nd the International Soros Program
for Education in the Exact Sciences. One of the authors
(V.N.Sh) is grateful to A. P. Nizovtsev, T. M. Maevskaya,
and D. S. Mogilevtsev for their useful comments. xexplio) + 1 (—2|N||e]) I (2N B)

Xexp —ig)). (A8)

Using the identity that relates Bessel functions of real and
imaginary arguments and is obtained by expanding these
functions in power series,

72|a\2 *°

g RININRENPISREINPED

APPENDIX

The Glauber functiorP(B) of an arbitrary field state is
defined as the two-dimensional Fourier transform of the nor-

. d )
mally ordered characteristic function exp{ iy 5) )| = (=DM, (A9)
Xn(\)=Tr(p expha*)exp(-\*a)) (Ref. 1: -
1 and a representation of the delta function derived from the
P(B)= ?J A2\ (V) EXpA® B—AB*). (A1) Fourier—Bessel formula,
If the field mode is in the pure stalg) defined by Eq(2), S(x—y)= fo sxd(sx)Ju(sy)ds, (A10)

the characteristic function consists of four terms, two of

which coincide, to within a normalization constant, with the We arrive at the following formula foP;(5):
characteristic functions of the coherent staies and

|- ), while the other two correspond to the interferencePint(8)

terms:
exp—2[a?) <
1 = =777 ikexn(ik( o . —
X,C\IOh()\)=N[exﬁ)\a*—)\*a)+exﬁ—)\a*+)\*a)], N7 k:E—oo rexplik(ea=¢p)
(A2 o a\esl-x)
' 1 X|ex I¢—I|a|5T
XNV = N[exq—)\a* —\*a—2|a|?=i¢)
. d\é —-X
+expha* +\*a—2|a|®+ig)]. (A3) +ex;<—i¢+i|a|5)%
The total quasiprobability function is =0
_ 2
P(B)=Pec B)+Pin( B). (Ad) :WTZWZ“,;( Pe st exp(i milal >
“ X
The Fourier transform of(ﬁ,"“()\) yields the coherent part of
the quasiprobability and consists of two delta functions with a\158(8|-x)
singularities at the point8=a and 8= —a: +ex;< —igp+ilal &) }T
x=0
1
— 2 col * D_ *
Peo(B) 772J dAxN h(h)exp(h B—\B*) _EX[X—2|01|2) -
. TTONp %t
=N, (8(B—a)t é(B+a)). (A5)
To calculate the interference part of tRefunction we use X(exp(i @) Sac(|Bl—ilal)
the integral representation of integer-order Bessel
functions?® +exp(—id)dac(|Bl+ilal)). (A11)
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Dirac particle with an anomalous magnetic moment in a circularly polarized wave and in
constant longitudinal magnetic and electric fields

O. Ya. Savchenko

Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences,
630090 Novosibirsk, Russia
(Submitted 25 June 1996

Zh. Eksp. Teor. Fiz111, 1190-1193April 1997)

The wave function of an uncharged Dirac particle with an anomalous magnetic moment is
calculated for the case where a circularly polarized wave propagating along constant magnetic and
electric fields is present. @997 American Institute of Physid$$1063-776(197)00404-4

The wave function of a Dirac particle in an electromag- _
netic wave and a constant magnetic field directed along the 9a€ '“"(¥2—i¢)+
wave was determined in Ref. 1 for the case where the par-
ticle has a charge but no anomalous magnetic moment. In the
present paper the wave function is determined for the case
where the Dirac particle has no charge but has an anomalous
magnetic moment. A constant longitudinal electric field is
also present. ) 1 9

The wave function of an uncharged Dirac particle with — g€ ¢1+W3)+(QE+ P %) s
anomalous magnetic mometis determined by the follow- 0
ing modified Dirac equatiof:

g
%llfs

1
_9E+k_o

d
+ Z—QH—VO%) $1=0,

i d
9H+k—05) $2=0,

_ +
- I 5
(7Lki+k0)¢:%|:ij'yij¢v ©
()

~ J mgC L?q)] (9@, e—iaﬂ] +i + + i i)

ki_ﬁ_Xi' kO—T, Fij—a—xi—[y—xj. 9o (¢4 lpZ) Je kO an (pl
Heremy is the particle’s massy; are the Dirac matrices® - I_i —o
and the®; are the components of the field 4-vector, which in 9H ko 07 ¥3=0,
a right-handed circularly polarized wave and longitudinal
magnetic and electric fieldd andE are given by

dO.=P si 1 d. =P 1 _g¢eiwn(¢3_i¢1)+ _gE"_ii)‘pz

x=® sin w75 Hy, y= COSwn-i—E HX, ko dm
. @ i
CDZ:O’ (I)tIIEZ, + 2+gH_k_0% 17/1-420’

where w® is the field strength of the waveyc/27 is the
wave’s frequency, angy=ct+z. We seek a solution of Eq. wheregg, gz, andgy are the ratios ofuw®, xE, and
(1) based on the divisor wH to myc?, the particlés self-energy. The following func-
1 tions comprise the solution of this system of equations:
rzz(l+i712)(l+74) ) o .
Y1=i(ag +a)exp[i(A—w/2) 7],
in the form of the sum .
p=expikoCt) (1 + Yoy1+ ayst+ hays)T . (4) ¥2=1(8; +ag)expli( +w/2)nl, (6)
The componentg; of this sum depend only on, and in W3=(a, —aj)exp[i(A—w/2) 7],
a rotating system of coordinates in which one axis is directed
along the electric field, of the wave and the other along the ¢4:(a2+—a§)exp[i(>\+ wl2)n].
magnetic field they can be found by solving the following
system of equations: The constanta; anda, and the eigenvalues are given by

a; = V[ V1+[00/(9— 9012+ 1V[V1+ (90 /(9. —0r) 27 1],

a; =7 VN1 190/(9,— 90 27 LV V1+ [0 /(9,— g 2= 1], 0
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a; =(1-gy+ige)a;, a; =(l+gy+igea,,

ANl 2
k_ozi(gH+gE)i VI3t (du—0n)%

whereg,, is the ratio of the photon energywc to twice

particle self-energy. The components of the velocity

vle=i(* [ya )I{* [ 1ily) are
Oe Yo

go—On lxgyt+A’
Uh

Uh_ _ 9H Jo
C 29,70y lxgut+A’

v, V1+[90/(go—gn)1*
c 1+gy+A

— =+

o
= NP

)

11

the components of the spikiy™* |y, gl ¥)/[(¥* | v ¢) are

gnOe Jo
Jo—9n 1*gy+A’
1-(12)(g5—98)  do
9o~ O 1+xgy+A’
.o +1+gyv1+[ge/(9,—9n)]°
z 1+gy+A ’
and the components, = (¢ | yu|¥)/(¥* | v/ ¥) are
G_LLOATGE ge
¢ 729,09y lxgytA’

Il
I+

Se

I+

©)

Sp=

. OnOEe Jo
"0, 0n lxgutA

. 9uV1+[00/(9,— 912~ (1/2) (g5 +93)
z- 1+gy+A ’

where A = (1+ (1/2)g3+ (1/292) V1+[9o /(go—gn) 1°— 1,

dp

=S, (10

Hence in ordinary magnetic fields, for which
| wH/moc?| and|wE/mqc?| are sure to be less than unity, the
anomalous magnetic moments of uncharged Dirac particles
(e.g., neutronspointing in the same direction as the constant
magnetic field are reoriented by a resonant circularly polar-
ized wave in the direction of the magnetic field of the wave,
while those pointing in the opposite direction are reoriented
in the opposite direction, provided that the broadening of the
resonance by the wave’s field is much greater than the broad-
ening caused by the thermal motion of the particles and the
nonuniformity of the constant magnetic field. In the general
case, the transverse electric polarizability and the trans-
verse magnetic polarizability,,, equal to the ratio of the
electric and magnetic transverse polarizations to the wave’s
field strength, are given by

w?  (gu—ige)?

%™ Th(v— vo) l*xgy+A’ 13
e M 27(9uige)’
h _h(V_Vo) 1_—'_gH+A

Here the real and imaginary parts @f determine the com-
ponents of the electric polarizability along the electric field
in the wave and perpendicular to that field, respectively, and
the real and imaginary parts af, determine the components
of the magnetic polarizability along the magnetic field in the
wave and perpendicular to that field, respectively. The
imaginary parts ofa, and «}, are equal in magnitude but
have opposite signs. Hence the energy of a state in the field
of the wave does not change, and the refractive index of a
medium consisting of uncharged Dirac particles with anoma-
lous magnetic moments is a real quantity. If the medium is

and the label® and h indicate that the respective compo- tenuous, its refractive index is given by
nents are directed along the electric and magnetic fields in
the wave. The electric polarization is equal to the electric

dipole momentud, and the magnetic polarization to the

magnetic dipole moments. When the wave’s frequency
tends to the resonant frequengy=2uH/h, the electric po-
larization of the state tendgccording to(10)) to

pi(H?=E?) uPHE puH
Pe=*———27 Phv=*—=3, P,~=——, (13
2(moc?) (mMgc*) mgC
and the magnetic polarization ten@cording to(9)) to
3 2
n°HE umH
Me= etz Mz myc?:
o o (12)
1 u*(H?*-E?)
=+ _——
Mh=*u|l-3 (Mec?)2

The smaller the value dfy— »| compared tqu® w/h| (the

142N pa 2KN !
n=iramNaet an) =150 20 Togura”

(14)

whereN is the number of particles per unit volume. In the
limit of small gy andgg, Eq. (14) yields a refractive index
equal to that of a medium consisting of classical particles
with magnetic momeng. and mechanical angular momen-
tum#/2.

1p. J. Redmond, Math. Phy8, 1163(1965.

extent of broadening of the resonance by the wave’s)field 2H. A. Bethe and E. E. SalpeteQuantum Mechanics of One- and Two-
the more accurate the description of the electric and mag- Electron SystemsSpringer, Berlin(1958.

netic polarizations of the state near resonance by Eds.
and(12).
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Emergence of a stabilization regime in quantum systems subject to a strong laser field
and the Kramers—Henneberger approximation

E. A. Volkova, A. M. Popov, O. V. Smirnova, and O. V. Tikhonova

D. V. Skobel'tsin Scientific Research Institute for Nuclear Physics, M. V. Lomonosov State University at
Moscow, 119899 Moscow, Russia

(Submitted 29 July 1996

Zh. Eksp. Teor. Fiz111, 1194—-1206April 1997)

We use the Kramers—Henneberger approximation to investigate the phenomenon of stabilization
of quantum systems with short-range potentials in a strong electromagnetic field. We

identify the physical limits imposed on our investigation by the use of this approximation, and

the ranges of parameter values of the system and external field that lead to stabilization.

We analyze the dependence of the stabilization threshold on the frequency of the laser light. The
conclusions obtained from our analytic investigation are confirmed by numerical calculations.

© 1997 American Institute of Physids$1063-776197)00504-0

1. INTRODUCTION the inapplicability of perturbation theory. By converting to
the Kramers systerhyve can use a basis of new states that

By studying the effect of intense laser light on the dy-describe the unified “atomstrong electromagnetic field”

namics of quantum systems, we can observe a number &fystem; these states exist during the time the laser pulse acts.

new properties associated specifically with strong fields. In this new basis of Kramers-Henneberger states, the

Among these are above-threshold ionization and the phedynamics of the system are described by the equittfn

nomenon of stabilization of atoms and molecules in a strong 5 2

field -3 By stabilization we mean a decrease in the probabil- 7 2% _ _ Aoy +V(X+a, coswt) 1)

ity of ionization of the systenW, as the intensityP of the ot 2m ox* ¢ '

incident laser light increaseés? This can be explained quali- \yhere

tatively by the fact that for large values of the electromag-

netic field intensity the oscillation amplitude of an electron a _%20 @)

driven by this field significantly exceeds the characteristic ¢ me?

size of the original atomic system. Therefore, the electron : , . .

may be treated as practically free, in which case absorptioﬁ the ampll_tude (.)f the elg ctron’s oscillatory motion cgused

of energy from the field is impossibl@s is emissiop and y awave f'eld.W'th amplltudeo and frequencyo gndv IS

hence the ionization probability decreasé<sigure 1 illus- the initial atomic potential. By expanding the time depen-

trates the paradox inherent in the concept of stabilization: igence of the pptemlal In a Fourier series and separating the
zeroth harmonicv™", the so-called Kramers—Henneberger

is the weak, nearly-free-electronlike, coupling between the : : . ]
atomic subsystem and the laser field at the maximum of thBOtem'al’ we obtain another way to write EL):
laser pulse that in the final analysis leads to the system’'s gy h? 9%y KH
resistance to ionization. One manifestation of this is a sig- ' 5 =~ ﬁﬁJ’V (X,8¢)+ 8V, )
nificant recovery of the population of the original atomic
state towards the end of the laser pulse. The data shown Mhere
Fig. 2 are an example of stabilization of the system near the .
maximum of the laser pulse. In terms of the electron density V=2, V,(x,a,)e"*, (4
at the maximum of the laser puléas opposed to the leading n+0
edge, the ionization is manifested in the detachment of aandV,(x,a,) is thenth harmonic of the Fourier expansion of
packet of the electron density(x)|? which “leaks to infin-  the oscillating potential.
ity.” Figure 2a shows that there is no “breakaway” packet An advantage of this choice of basis is that for strong
in the distribution| /(x)|? at the maximum of the laser pulse fields the perturbationsV is small and in this system of
(as opposed to the leading edig&wo symmetric packets coordinates the problem can be solved using perturbation
appear at a considerable distance from the central dichotaheory(in contrast to the original bagisThe emergence of a
mous maximum because of ionization at the leading edge akegime of stabilization when the laser light intensity ap-
the pulse. The behavior di)(x)|? at the end of the laser proaches atomic values is related to the fact that the pertur-
pulse (Fig. 2b indicates a second time interval in which bation 6V becomes small, and the real behavior of the sys-
ionization occurs, brought about by the trailing edge of thetem differs negligibly from the solution to the problem with
pulse. the DC Kramers—Henneberger potenti&i(x,a,).8 In this

It is noteworthy that analytic investigation of the dynam- case, increasing the laser light frequenreybviously leads
ics of the “atomtfield” system using a basis of initial to a decrease in the matrix elemém,e"*!), and thus the
atomic states is hindered in the case of strong fields due tmnization probability. Therefore, stabilization in the
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1-W increasingP, and usea, ~ a as our threshold condition, we
find thatP* ~ »*. However, if we define the stabilization
LW\A threshold from the conditioka, ~ 1 as in Refs. 3, 6, we find
08t thatP* ~ w3. Both these asymptotic expressions lead us to
conclude that low frequency stabilization should be observ-
0.6+ able at very low intensities. However, these conclusions are
found to contradict certain physical notions. Although treat-
0.4} ment of the system dynamics using Kramers—Henneberger
basis states involves a mathematically correct transformation
from one system of coordinates to another, there must be
“ physical reasons for the impossibility of using this method in
, A A . . the low-frequency regime.
4 6 8 10 tfs Pont and Gaurifacalculated the lifetime of an atom as a
FIG. 1. Probability of remaining in the ground state during a laser pulse forfunCtIcm of |Ight Intensity for various values .Of the laser _fre—
a one-dimensional model of a negative hydrogen atom obtained by th€lU€NCY. And, in fact, they did observe a rapid decrease in the
method of direct numerical integration of the time-dependent Schroedingethreshold intensity for stabilization with decreasing optical
equatior(fsie I‘:e{a;l: the igensitg o{/th_?rllaslerligm I: 5h>< 1015(’3W/c"?2v th‘:‘ frequency, although they did not analyze the specific form of
o e o e & Cabssin st dependence. It is also significant that the stabilzation
reached at = 6 fs. threshold is defined only for high optical frequenciésy
=27.2 eV.

Volkova and Popo¥? the authors also established the
Rsxistence of frequency-dependent stabilization for ionization
of a system with short-range potentials in the rahge=1-5
eV. They showed that both the dependences mentioned
above qualitatively describe the results of numerical experi-

width of the initial atomic potential andy, is its depth. Thus, ments. As no one has investigated the phenomenon of stabi-

at suff.|CIent_Iy. large laser light ntensities the (?ondltlon lization in the range of still lower frequenciés < 1 eV, the
a. > ais satisfied and the harmonics become small; however . :
more and more terms in the su@ are found to be close in duestions formulated above have not yet been answered ei-

order of magnitude, and consequently must be included "I\her.

solving the problen? The smallness of the harmonics for The _main advantage of the K.ramers-—Henneberger
a, > ais in good agreement with the traditional representa-SCheme is that it allows the problem of interaction of an atom

tion of the stabilization conditions, in that this is the caseWith @ strong field to be treated perturbatively. On the other
where the amplitude of oscillations of the electron is large hand, itis the use of perturbation theory rather than the trans-
allowing us to assume that it is practically free and to neglecformation to the Kramers system that limits the region of
the effect of the original atomic potential. However, in the admissible system and laser parameters. Therefore, it is natu-
low-frequency range the conditian, > a is easily satisfied ral to define the physical limits of applicability of the
for sufficiently small values of the laser light intensity. Does Kramers—Henneberger method as the range of parameters
this imply that we might observe stabilization at consider-for which perturbation theory is valid, i.e., th¢h-order ion-

ably smaller intensities in the low-frequency regime? Whatization probability per unit time calculated by perturbation
is the criterion for emergence of a stabilization regime? If wetheory(in the basis of Kramers—Henneberger stateseeds
define the stabilization threshold* as the value of laser the (k + 1)th-order ionization probability. In, particular the
intensity above which we observe a decreasaMnwith  following condition should hold:

0.2

-—

0 2

Kramers—Henneberger basis is often described as hig
frequency stabilizatioR.Note also that in the strong-field
region the dependence of the harmoXijcon the laser field
is estimated! to beV,, ~ (al/ag) V,, wherea is the half-

Iu/lz, arb. units lez, arb. units
I a b
2t 2 FIG. 2. Spatial distribution of the probability den-
sity during laser excitation for the same system as
in Fig. 1, at two times: a—at the maximum of the
laser pulse, and b—as the pulse decays.
1 1F
-200 -100 0 100 x A -200 -100 0 100 x A
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for any value ofn, whereW! , W!! are the ionization rates
calculated in first and second order perturbation theory cor-
responding to a transition from the ground state to the con-
tinuum in which the energy of the electron changes by
nfw. It is also necessary to require that the dipole approxi-
mation be applicable, since the Kramers—Henneberger for-
malism was developed within its framework.

In this paper, we will employ the Kramers—Henneberger
method, determining its applicability from conditidb), to }
identify ranges of parameter values that lead to stabilization 0 10° 10' 10* P, TWiem?
of the system. We will determine conditions for the appear-
ance of a stabilization regime and the frequency dependend#G. 3. Dependence of the quantity-W; on the intensity of a laser pulse
of the stabilization threshold, with the low-frequency caseWwith duration 2r = 20 fs for a one-dimensional Hon and various values of
discussed as a special case. We will also discuss the questii§ duantum energyio = 1.2(1), 2.5(2), and 5 ev(3).
of how stabilization in the Kramers—Henneberger regime re-

lates to interference stabilizatidh.Our theoretical conclu- tion. Both of these problems allow us to compute the wave
sions are confirmed by the results of numerical experimentsnction of the systemy(x,t), which can be used to obtain

the population|C,(t)|? of the various stateg,(x) in the
2. NUMERICAL CALCULATIONS OF THE DYNAMICS OF basis of atomic states ar\d&k& in the basis of Kramers—

THE SYSTEM Henneberger states, and also the ionization probabiljtyf
We first numerically integrated the time-dependenttn® system:

Schroedinger equation directly in the two different bases,
i.e., the basis of states of the original atomic potential and the ~ Ck(t) = f P(X, D) @ (X)dXx, (8)
basis of Kramers—Henneberger states. The first problem
takes the form or
b h2 Py(xt) c _f (k)
i — = D= #(xX,t) pgp(x)dx, (83
I G om ax TLVX) -
_eXS(t)COSwt]lﬂ(X,t), Wizl_zk: |Ck(t)|2 9)
P(X,t=0)=@1(X). (6) _ . o
H ! Figure 3 shows the quantity + W, calculated in this
ere

way for the case of the potential from Ref. 4 as a function of
(t—tg)? the intensity of the laser pulse for various values of the laser
e(t)=eg exp( - T) frequency. The data indicate more intense ionization at lower
frequencies. The portions of the curves with positive deriva-
is the envelope of the laser pulseis its half-width, and the  tive correspond to an ionization probability that decreases
time t, corresponds to the maximum of the pulge(x) is  with increasing intensity of the laser emission, i.e., stabiliza-
the wave function of the ground state of the atomic potentialtion. These data allow us to conclude that the threshold for
In the calculations we s¢§ = 37. ForV(x) we chose arect-  stabilization decreases as we enter the low-frequency range.
angular well with various values of the dep#ra and width However, even when the photon energy satisfie®
2a, and also the smoother short-range potential taken from= 1.2 eV, the probability of ionization is practically 100%
Ref. 4 and corresponding to a one-dimensional model of @ver a rather wide interval of intensity values. In this case the

negative hydrogen ion. curve develops a horizontal porti¢a “shelf”), which leads
In the Kramers system of coordinates the problem takegs ambiguity in determining the stabilization threshold. If we
the form nevertheless define the threshold for stabilization as before,
Cap(x.) h2 Py(x,t) then the ratg of decre_ase of this quantity as a function of
if - om T+V(X+ a. Cos wt) (X, t), frequency will be less in thfa. Iovy—frequency range.
@ The threshold for stabilization can also be defined by
(X, 1=0)= @iy(X). solving the problen(7), where it corresponds to that value of

(7) field intensity at which the lifetime of the bound Kramers—
The difference between this problem and E).lies in  Henneberger state is a minimum given that the system is in
the representation of both the atomic potential and the fieldhis state initially. Both these approaches give very similar
as a single potential oscillating in the Kramers coordinatedependences of the stabilization thresh8ftl on the field
system, and in the choice of the lower Kramers—frequency(see Fig. 4 these results are practically indepen-
Henneberger state with 100% occupancy as an initial condident of the shape of the initial atomic potential when its
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- FIG. 6. Dependence of the stabilization threshold on the depth of a rectan-

Qiﬁéj ' bseﬁﬁgﬂznfﬁeoinﬁ?ﬁmﬁ;b"I'i?:ttim tg;ef:eo 'i;%g:‘so_tzneﬁ::g%fggfgu|ar potential well, for fixed values of the well width @ = 3.33 A and

ground state1) and the lifetime calculated by finding the minimum of the fi€ld quantum energgew = 10 eV.

quantity 1 — W; (2). Curvesl, 2 are for a rectangular potential well with

depthV, = 3.33 eV and width 2 = 3 A, while 3is for the potential used to

model the one-dimensional negative hydrogen (sze Ref. 4 energyfw becomes comparable to or smaller than the bind-
ing energy, so that this frequency becomes “small” for a
given value ofV,. Hence the stabilization threshold in-

depth and width are fixed. However, approximation of thecreases sharply.

data obtained here by a power-law functi®¥ () gives Let us now try to estimate the stabilization threshold

values of the exponent in the range from 3 to 4, which differp* () from analytical considerations.

very little. Thus, for curved, 2, 3 the exponents turn out to

equal 3.31, 3.57, and 3.23 respectively. Calculations for a

rectangular well of depth 12 eV and width 3.33 A show an3' ESTIMATING THE STABILIZATION THRESHOLD

abrupt change in the slope of the linear functiBh (% w) The emergence of a regime of stabilization is connected

when plotted on a log-log scale as we enter the region of lowyith low probability of ionization per unit tim&Vy,, from

frequencies(Fig. 5) These data indicate that the function the lower state. When we approximate the continuum state

P*(fiw) can be approximated by a power law with an expo-by a plane wave, we can write the following:
nent equal to 3.7 foiw = 10 eV and 2.0 foriw < 10 eV.

The abrupt change in slope of the curve indicates a relative WKH“ fqo{jlvne‘kxdx 2_
increase in the ionization threshold as we enter the low-

frequency range. This change in the frequency dependencenis quantity will necessarily be small if many periods of the
indicates that at low frequencies stabilization takes place gilane wave are contained within the characteristic width of
relatively high laser intensities. Analysis of the dependencehe Kramers—Henneberger potential. Since the characteristic
of the stabilization threshold on the depth of the originalwidth of the Kramers—Henneberger potential & 2 where
rectangular potential for fixed photon ener@yg. 6) leads to  a_ is the amplitude of oscillation of an electron acted on by

an analogous conclusion. As long as the field frequency rethe electromagnetic wave, the threshold condition has the
mains relatively high compared to the ionization potential ofform

the original state, the quantify* is a weak function of the
9 quantity kag~1. (11)

well depthV,. However, for large values of, the photon
Relating the wave vectdt with the energy of an electron in
the continuum

(10

P., Wiem? k2#2
thw—ﬂﬂ*, (12)
we obtain
) mc 1
161 *_ 3
10 P =0 6 T 1M (e e’ (13

wherelX"(a,) is the ionization potential of the state under
discussion which depends on the amplitude of oscillation of

oL the electrora,, which is given in terms of the laser intensity
10° 10" ho, eV at the threshold* by the following expression:
I 8me?
FIG. 5. Dependence of the stabilization threshold on photon energy fora 52— p* (14)
rectangular potential well with deptfy, = 12 eV and width 2 = 3.33 A. ¢ cmfo?
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I eV the range of frequencies for whid¥* « »2® (herel, is the
ionization potential of the initial atojm Further decreasing
the frequencyw leads to multiphoton ionization out of the
atomic potential; however, in the Kramers—Henneberger rep-
resentation the ionization remains single-photon up to values
hw = 0.1eV. Thus, at the stabilization threshold the condi-
tion

KH
ho=1"",

is always satisfied; this corresponds to the Gavrila—Kaminski
conditiorf for applicability of the Kramers—Henneberger ap-
proximation. Note, however, that this condition does not
= . characterize the stabilization effect as a high-frequency phe-
10 G A nomenon, since it turns out to hold at very small frequencies
and does not constitute a frequency bound on the applicabil-
jty of this approximation from below.

107!

_g

- 10

10

FIG. 7. Dependence of the ionization potential of the Kramers—
Henneberger ground state on the oscillation amplitude of an electron fo

various depth paramete¥4, and width parametersa2of the initial atomic The question of when the Kramers—Henneberger ap-
potential:1—V, = 3.33 eV, 2= 3A, 2—V,=5eV, 2a = 2A, 3—V, proximation can be used will be discussed in more detail in
=3.33eV,a=2A. the next section.

Thus, in order to solve Eq13) it is necessary to know the
form of the functionl“"(ay). 4. ANALYSIS OF WHEN THE KRAMERS-HENNEBERGER

The required dependence was investigated via numericfETHOD CAN BE USED AND THE EXISTENCE OF A
calculations for rectangular potentials with various param-STABILIZATION EFFECT
eters(Fig. 7). It turned out that in the range of values af

| han the half-width of th ) il th In light of the problems mentioned above, which arise
arger than the hal-width of the atomic potential, the quan-,yap, the process of ionization of a quantum system is ana-

tity 1" could be approximated with good accuracy by 31yzed in the low-frequency limit, we must address the prob-

power-law function ofa.: lem of delineating the region of applicability of the
|KHocagO'75_ (15 Kramers—Henneberger treatment, starting from &g. and

also of investigating the resulting region with regard to de-

: ) . pendence of the ionization probability on the laser intensity.
Eq.(13) and obtained the functioR™ (). The data obtained Our investigation allowed us to establish ranges of values of

for Vo = 3.33 eV and 2 = 3 A are plotted in Fig. 8 0n & p 414, within which stabilization is observed.
log—log scale. The presence on the graph of two straight-line Condition (5) implies that for ionization from the

. . . * 2.8 .
segments with markedly differing slopeB*<w™, in the o mars_Henneberger ground state, in which the electron

high-frequency range anB* = «'® in the low-frequency energy changes hy% w, the probability per unit tim&V! for
range is in good agreement with the results of numericalionization in second:order perturbation theory ins much
integration of the Schroedinger equation, and indicates a i Y
relative increase in the stabilization threshold at low frequen—smaller than.the. first-order q.uam'W” for-an)_/ value ofn.
The ionization probability per unit time from the

cies. In this case, the conditidiw > 1, ~ 1" is satisfied in ) .
0 Kramers—Henneberger ground sta/t%l(x) given by first-
order perturbation theory has the form

Using the function ¥H(a,) shown in Fig. 7, we solved

P, Wiem® 12T m
Wn=?|V5”k)|2h—kn- (16)
Here
104F . Vi = f O (X)Vp(X,a0) explik,x)dx (17)
* is the matrix element that connects the initial state with the
10"} continuum state characterized by a wave ve&tpr where
] k, is defined by the condition
h2K2
0% L . "=nho— I ~nfw. (19
10" 10° ho, eV 2m

o , _ Calculating the matrix elemeril7), we obtair?
FIG. 8. Stabilization threshold vs. energy of the field quanta plotted using

Eqg. (13), taking into account the dependence of the ionization potential for . Vo Jﬁ(knae)sincz( kna)
the Kramers—Henneberger ground state on the amplitude of oscillation of W'n~7r — , (19
the electron. i nkpa.(l+alag)
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whereB = 2mV,a?/#? is the Born parameter, and, and log(P/B,)
a are the depth and half-width of the original atomic poten-

tial. 8t
Analogous computations to second order in perturbation
theory and use of the pole approximation yields the follow- 6l
ing expression fokN'r: :
. Vo B? ar
W'~ 7B — —_—s
AT
2 -
| SINC((kn—ka) Iy ((kn—kj)ac)
(kja)?knae(1+alay) of
x J?(kjae)sin(k;a). (20)
2F 1
Here the summation ranges over intermediate states with la-
bel j. al
Using Eqgs(19) and(20), we can rewrite conditiolb) in Y
the form % VI
) 4 - 0 2
wi! n?B?  sind(k;a)sinc((k,—k;)a) 2 log(w/e )
WL T (-2 (ka)? sind(ka)

FIG. 9. Bounds on the region of applicability of the Kramers—Henneberger
Jﬁ—'((kn_ ka )‘]'Z(k,a ) met_hod and subregions with different frequer_my t_:i_ependew;eﬁ’), the
J i I (21) straight lines1, 2 are bounds on the applicability of the Kramers—
Henneberger method obtained from the conditidhW!, = 1; 3—the con-
dition eey/mw = c; 4—the conditionka, = 1; 5—the conditiona = ag;
The ranges of values &f and w that satisfy this relation 6—the conditionka = 1. The parameters of the potential waftg= 5 eV,
are bounded, while bounds on the applicability of the2a=2A.
Kramers—Henneberger method exist in the sense of &q.
By searching over allj for the maximum value of o o _ .
W!'/W! and using the asymptotic forms of the Bessel func-The straight line3 shown in Fig. 9 representing this expres-
tions for various relations between the argument and itfdex SioN constitutes an additional restriction on the admissible
along with known expansions of the function siqcwe ob- ~ F€gion. Use of more rigorous criteria for applicability of the

tain the region of values d® and o that satisfy(21): no_nrglatiyistic approximation, based on comparing the rela-
tivistic drift velocity of an electron due to the Lorentz force

J3(kqae)

for ka<l i | 2 with the rate of spreading of the electron wave pacdket,
or ka<l, le,w @at- leads to the relation
2
P (Vo)fa)e 22 Pi <(23)2(i) . (24b)
Pae (NF1)° [ 1g) \ag) |wg’ at @at
2 Note that this condition does not qualitatively change the
for ka>1, ie., o> Bat Wat: picture under discussion; however, it is a stronger constraint
on the range of applicability of the Kramers—Henneberger

7 4 approximation at low frequencies than conditi@#a. The
———— (= | =] (23) resulting bounds on the applicability of this approximation
Pa (n+1)"\1g) | @ define the ranges of values Bfand w we are looking for; in
particular, they bound the range of frequencies where it can

The “+” sign in the denominator corresponds to ) ; ‘
be used from below. It is also worth noting that our analysis

=1; Py, la, @a, andwy are values of the atomic intensity, o e )
energy, length, and frequency. Since E¢®2) and (23) is correct wher{18) holds, which in the limit is equivalent to
should be valid for any, it is sufficient to require that they the conditionsiw > Ioorka> 1. This condition “cuts off” a
holed for thosen that maximize the expressions on the right POrtion of the admissible region, whose dimensions depend
sides 0f(22) and(23). It is easy to verify that this occurs for ©ON the parameters of the original atomic potential. 3

n = 2. The resulting bounds for the region of applicability of ~ USiNg the expression for the total ionization probability
the Kramers—Henneberger approdfdr n = 2) are plotted ~ PEr unitime

on a log—log scale in Fig. 8straight linesl, 2). We add to . 20 J2(knae)sind(kna)
these the condition for applicability of the dipole approxima- WtotEE - BVg— ;
. o ) h n“k,a.(1+ala,)
tionv < c, giving the expression

(25

let us investigate the dependence\)t)i{()t on the intensity of
(249 the laser pulse. In this case the required region is divided up
into subregions by the straight lines:

2

P <(137)2( @
Pat Wat
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w3 Henneberger potential is still a single well with a single iso-
4-ka=1 Ofp—Z(w—> , lated bound state. This indicates that the mechanisms of in-
at at . . - . .
terference stabilization and stabilization in the Kramers—
P a\?l w\* Henneberger regime are different. In the linaf > a,
S—a.=a Orp_at: a w_at) interference stabilization can contribute and compete with
Kramers—Henneberger stabilization. However, it is also
) a\? noteworthy that there is a range of parameters for which
6-ka=1 oo oy stabilization does not arise in general even thoagk a.

=const for a given potential.

Herek= \2m#h w/#?. 5. CONCLUSION
The parameters of the potentld) anda, along with the . . I
straight lines4, 5, and 6, lead to a division of the initial tTQES' our analysis °|f the conditions for stabilization lead
region into as many as six subregions. In each subregion thes 10 the Tollowing conciusions. —
: 1. Bounds on the applicability of the Kramers—

quantity Wi, depends ofi in a different way. By examining Henneberger method can be identified which show that the

the functionsWio(P) in each of the subregions, we can t_raceKramers—Henneberger approach cannot be used at low-
the values of parametes and w that lead to a stabilization frequencies

regime(see Fig. & 2. In the range of applicability of the Kramers—
. . Henneberger method, stabilization can occur only for certain
| = Wige P, |V—W{ot°‘5’ subsets of the system parameters, i.e., the atomic-potential
parameters and field frequency, and the dependence of the

, 1 ) stabilization threshold on frequency is different for different
=Wl o —, V-W P, ranges of these parameters.
WP 3. Since formation of a two-well Kramers—Henneberger
1 potential is not a necessary condition for stabilization, the
=W —, VI—W xP. mechanism of stabilization in this regime does not uniquely
JP reduce to the interference mechanism.
Thus, stabilization occurs in subregions II, Ill, and IV, This work was carried out with the financial support of

the Russian Fund for Fundamental Resedfgrant No. 95-

since in these regions increasiRdeads to a decrease in the 02-06258.

ionization probability. However, the relative positions of the
straight lineka, = 1 anda, = a may change depending on
the parametern of the atomic potential. This implies that
stabilization can begin as soon as the condiﬁe@ =1is IN. B Delone and V. P. KrainovMultiphoton P_rocesses in_ Atoms
fulfilled. However, in this cas@,<a is possible, i.e., the (1862”22822/1%%? 1993N. B. Delone and V. P. Krainov, Usp. Fiz. Nauk
double-well Kramers—Henneberger potential has not yetk. umett, V. C. Reed, and P. L. Knight, J. Phys28, 561 (1993.
formed. Thus, the frequency dependence of the stabilizatioriM. V. Fedorov,The Electron in a Strong Optical FieliNauka, Moscow,
threshold can be eithd?* « »® or P* « »* whichis also ,1992. _

observed in the numerical calculations. At low frequencies ﬁghgs_POpov’ O. V. Tikhonova, and E. A. Volkova, Laser Phgs1184
the functionP* (w) becomes linear, which agrees qualita- Sm. pont, N. R. Walet, M. Gavrila, and C. W. McCurdy, Phys. Rev. Lett.
tively with the data shown in Figs. 5 and 8. The fact that the661, 939(1988. _

stabilization is possible even before the two-well Kramers—, M- Pont :nqgr?'cglfgggé Egyse}?ﬁg;tﬁ.efﬁ.:ffzﬁﬁg; dam, 1955
Henneberger potential forms is extremely significant in thesy, =avrila and J. 7. Kamins’ii’ Phys. Rev. Lef, 613(1984)1

context of comparing mechanisms for interference °m. J. Offerhaus, M. Gavrila, and J. Z. Kaminski, Phys. Lett122 151
stabilizatiort* with this kind of stabilization. It is well known _ (1985.

that interference stabilization arises because of destructive’: Van de Ree, M. Gavrila, and J. Z. Kaminski, Phys. Re\B7A4536
interference between probability amplitudes for transitionsiug “a "volkova, A. M. Popov, and O. V. Smimova, Zhk&b. Teor. Fiz.
from two closely spaced states in the discrete spectrum of the1o9 138(1996 [JETP82, 72 (1996)]. ;

atomic potentia| to the continuum. A typ|Ca| examp|e of alZE. A. Volkova, A. M. Popov, and O. V. Smirnova, Zhk&p. Teor. Fiz.
system in which stabilization of this kind is possible is a1%0‘21\3,‘(")?&3:‘2‘5?%9'Jg:;vlgggﬂ-gp Teor. Fiz105 592 (1994
Rydberg atom. However, the Kramers—Henneberger poten-j;etp7g 315(1994]. T o

tial can also have closely-spaced levels with overlapping*Mm. V. Fedorov and A. M. Movsesian, J. Opt. Soc. Amer5B850(1988;
widths when the conditioa, > a holds. Therefore, we might M. V. Fedorov, M. Yu. Ivanov, and A. M. Movsesian, J. Phys28 2245
gxpect the mechanism of interference stabilization to oper.atgg%%??l'vatson’ C. H. Keitel, P. L. Knight, and K. Burnett, Phys. Re®2A
in our system, and that the Kramers—Henneberger formalism 4025 (1995,

simply gives an alternate method for describing it. This point*®M. Abramowitz and I. Stegun(Eds) Handbook of Mathematical Func-
of view was advanced by the authors of Ref. 15. However, in,ions (U.S. Govt. Printing Office, Washington, DC, 1972

a number of cases our calculations show that stabilization is 2" M- V- Fedorov, Laser Phys, 265(1993.

achieved even whema, < a holds, when the Kramers— Translated by Frank J. Crowne
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Decay of transient nutation in two-level spin systems
G. G. Fedoruk

A. N. Sevchenko Research Institute of Applied Physics Problems, 220064 Minsk, Republic of Belarus
(Submitted 9 August 1996
Zh. Eksp. Teor. Fiz111, 1207-1213 April 1997)

This paper reports the results of an experimental study of the decay of transient NMR nutations
in a two-level spin system with homogeneous line broadening. The NMR nutation signals

in glycerin were studied for ®w,T,<150, wherew;= yH,, with y the gyromagnetic ratio and

H, the amplitude of the magnetic component of the radio-frequency fieldTans the

transverse relaxation time. It is found that in a high-power fieldT,>1) the nutation decay

rate is independent ab; and is quantitatively described by Bloch’s model. The data is

compared with the data on non-Bloch{-dependentEPR-nutation decay in quarfR. Boscaino,

F. M. Gelardi, and J. P. Corb, Phys. Rev4B, 7077(1993). © 1997 American Institute

of Physics[S1063-776(97)00604-3

1. INTRODUCTION driving field, more complex modifications of nutation experi-
ments (rotary ech8® and two-pulse delayed nutatfn
Lately the decay of transient nutations in two-level spinwhich allow for reversal of the dephasing caused by the in-
systems has attracted attention in connection with verifyindvomogeneities of the driving field, are employed. However,
the validity of Bloch equations in the high-power driving- the decay time for these signals exceeds the transverse relax-
field limit.2 Other phenomena such as free-induction decayation time determining the decay of nutatiohs.
echo, and burning out of dips, which constitute the basis of  Only recently have results been obtained in experiments
coherence resonant spectroscopy, have been studied fortteat quantitatively investigated the properties of decay of
similar reasor(see Refs. 1-3 and the works cited theyein transient nutations not distorted by the inhomogeneities of a
Time-dependent oscillationdRabi oscillations or nuta- variable driving fieldt Such studies, involving two-photon
tions) constitute the simplest coherent dynamic effect in theEPR in quartz, for spin systems with inhomogeneous line
spectroscopy of quantum systems used in NMR, EPR, anddroadening, revealed a discrepancy between the experimen-
optical resonanck&*® This effect can be observed within a tal data and the predictions of Bloch’s model: the measured
time interval that is short compared to the relaxation timenutation decay rate proved to be higher and linearly depen-
and reflects a situation in which a new stationary state islent on the amplitude of the driving field. The reason for
established after the suddémonadiabatigturn-on of a reso- such behavior has yet to be established. The problem is im-
nant interaction of an intense electromagnetic field and thgortant because the theory of resonant interaction of field and
equilibrium quantum system. The oscillation frequency is thematter is based on Bloch equations. Boscahal! assumed
measure of the interaction between the quantum system ariblat the anomalouéon-Bloch) decay is a property of truly
the field, while the decay of the oscillations provides infor-homogeneous quantum systems, whose effective spectral
mation about dephasing and relaxation processes takininewidth is characterized by a term dependent on the ampli-
place in the presence of an electromagnetic field. These préude of the driving field, in addition to being characterized by
cesses are usually described by Bloch’s model by introducthe internal timeT ,. The present paper is an attempt to verify
ing phenomenological transverse and longitudinal relaxatiothe validity of Bloch’s model in the high-power driving field
times, T, and T. limit by experimentally studying the decay of transient
The first transient nutations were observed nearly 5dtime-dependentnutations in a two-level spin system with
years ago in NMR experimer‘?tand 20 years ago in optical- homogeneous line broadening. The experiments involved
resonance and EPR experiments, and then in multiphotodtudying the NMR for protons in glycerin.
resonancessee the literature cited in Ref).INevertheless,
up to now the validity of Bloch’s model in the high-power 2. THE PREDICTIONS OF BLOCH'S MODEL
driving-field limit of the nutation mode has not been substan-  The solution of the Bloch equations in Torrey’s high-

tiated by experiments. The difficulties lie in registering @power driving field approximatidtf (w,>1/T,, 1/T;) for

transient signal during a pulse of the driving field, and implythev—component of transient nutatidthe absorption signl
a narrow range of admissible field values and limited possiy 55 the form

bilities of observing undistorted decaying nutations, a pro-

cess masked by the inhomogeneities in the driving field. by 1 ex;{ _(i_ }(i i) (ﬂ)z}t sin Ot
The fact that the observed decay rate for the nutation °0 T, 2\T, T,/\1Q '

signal is higher than the value predicted by Bloch’s model (1)

was usually related to the inhomogeneities in the drivingyheret>0,

field in the bulk of the sampl&.” Sometimes, to overcome

this limitation and to study relaxation in the presence of a 0= Vw%‘(wo—w)zy 2
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vo is the equilibrium value of the population difference,
w1= yH is the Rabi frequencyy is the gyromagnetic ratio,
o andH; are the frequency and amplitude of the magnetic
component of the radio-frequendyf) field, and wg is the
resonant frequency of the quantum system.

For resonantd = wg) excitation of the spin system with
T,=T,, the detected signal mugaccording to(1)) be de-
scribed by the following relationship:

vV=vg exp{—%)sin w1t. (3 \/

We see that nutation decay is determined solely by the
time T, and is independent of the strength of the rf field
acting on the system. ) .

Because of its simplicity, this case is convenient for 0 10 20 s 30
checking the predictions of Bloch’s model in the high-power '
driving field limit. On the other hand, by studying this situ- FIG. 1. The transient nutation signal detectedegt=27x107 Hz and
ation experimentally it is also possible to check the hypoth-,— w,=0. The dotted curve was obtained from E8) with T,=32 ms.
esis of Boscainet al! concerning the dependence of nuta-
tion decay on the amplitude of the field acting on the system. ) . . ]
According to this hypothesis, the decay timef nutation of attf';unable S|gnal—to-h0|se ratio was chosen: The inhomoge-
a homogeneous line must depend on the field strength in tHaeity of the fieldH, in the sample was monitored by mea-

following manner: suring the shape of the two-pulse delayed-nutation sfgnal
and by observing the nonexponential decay of nutations.
} _ i +280 4) As is known?® the spatial inhomogeneity of a polarizing
T T, b magnetic field AH, can transform the nutations into a form

described by a zero-order Bessel function, and for this reason

cording to the EPR data of Boscaired all on parametric it may lead to additional decay of the nutations. In the ex-

centers in quarjz and 7 the time of are-fold decrease in the perlmen'F described he.rey,AH<.1/T2, and |r1homogeneoqs
Proadenmg was negligible. This was monitored by the time

amplitude of the exponentially decaying nutations. The goa g ; ;
of the experimental studies described below was to establis‘i’\f decay of the free-induction signal and by the shape of the

the conditions sufficient for checking both Bloch’s model initial region of nutations.
and the above-mentioned hypothesis.

with 8 a dimensionless parameter equal to 0.021-0(683

Protons in glycerin T;~T,) were selected for the two-
level system with homogeneous broadening. The relaxation
parameters of this system have been thoroughly stifdied,
3. EXPERIMENT and the first nutations in this system were observed by
Torrey® At room temperature and at the operating frequency

— H : — — 2
times, which are longer than the relaxation times in EPR and@0/27= 14 MHz) for protons in glycerinl,=3.2x10 s
optical resonance. The experiments were done using a ef. 9. The uniformity of the external fields achieved in the

NMR spectrometer with a frequency 14.4 MHz at room tem_experiments described be!ow T“ade it possilple tq detect, in
perature. Transient nutations were formed by pulsed variat-he course O.f the abqve time mtgrval, nutathn signals that
tions of the amplitude of the rf field. The modulator ensured" "€ essentially undistorted b_y inhomogeneities. Here, at
the formation of rf pulses with an attenuation in the off stateM&xXimum i power, the nutation frequency amounted to
of at least 70 dB. The pulses were fed to a power amplifie bout 2rx0.8 kHz af‘d was found_to exceedLby a tactor
with a highQ circuit that corrected the spectral composition arger than 150, Wh'.ch to a coq3|QerabIe extent corresponds
of a pulse with a rise time of about/s. After the amplifier to the high-power driving-field limit §,T,>1).
the pulses were fed through an attenuator to an rf bridge,
Detection of the signals in the course of an rf pulse requireé" RESULTS AND DISCUSSION
good matching of the rf channé60—-80 dB. After the am- The transient nutation signals were detected when the
plifier the signal of the bridge unbalance caused by the interspin system was under resonant excitatian=w,). Accu-
action of the rf field and the spin system was sent to a phaseate tuning to resonance was monitored by measuring the
sensitive detector with a time constant of abouyts3 frequency of the observed nutations, with the minimum fre-
The effect of inhomogeneities in the rf field was reducedquency corresponding to resonance. The length of an rf pulse
by reducing the filling factor of the pick-up coil to 0.0025 via was 30 ms, the pulse repetition period was 500 ms, and the
a reduction of the sample volume to 3 finThe loss of signal was averaged 128 times. A typical oscillogram of the
signal-to-noise ratio caused by the decrease in sample votletected signal is depicted in Fig. 1. The rf pulse is turned on
ume was partially offset by coherent digital signal integra-att=0. Clearly, Eq.(3) provides a good description of the
tion. On the whole, a compromise between the homogeneitgbserved signal atv;=27X107 Hz andT,=32 ms (the
of the driving field, the duration of the experiment, and thedotted curvg The fact that the top of the initial section of

The choice of NMR was determined by the relaxation

666 JETP 84 (4), April 1997 G. G. Fedoruk 666



In(vivy)

0

> ms

30

In(v/vy)

0

FIG. 2. Time dependence of the nutation
¢ signal amplitude afa) w,=27x107 Hz

-0.5¢ and(b) w;=2mx426 Hz. The solid lines
represent the approximation of the ex-
perimental data by an exponential func-
tion.
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the detected signal is shifted in relation to the theoretications in wg— w in the course of the experiment. Averaging
value is due to the drift of the zero line in the course of the rfsignals with distinct frequencies leads to the above-
pulse, the drift being caused by imperfect matching of the rimentioned decrease induring the coherent integration pro-
bridge. This shift was found to increase with rf power, but it cess. AsH, grows, the effect of the instability of the polar-
had no effect on the amplitude properties of the nutationszing magnetic field diminishegn accordance witli2)), and
and was taken into account in processing the data.
Figure 2 depicts the decay of nutations for two differentshows, in the 26:w;T,<106 interval the nutation decay
values of the amplitude of the driving rf field. The data ShOWtime remains constant at 33:2.5 ms. This coincides with

vanishes whemw,T, becomes greater than 20. As Fig. 3

that in both cases the decay follows an exponential law withhe known relaxation tim@, for protons in glycerir?, which

a characteristic time close to the value of, for the system. suggests that within this range of rf-field amplitude the
The dependence of the decay time for transient nutationfe|g's inhomogeneity is negligible in this experiment. The

on the amplitude of the driving rf field is depicted in Fig. 3. jnterval corresponds to a high-power driving field, in view of

The data show that the nutation decay time &T,<<20  \yhich it appears that within experimental er(6#%) nutation

increases somewhaby 10% with H;. This is caused by gecay is independent of the driving field amplitude and can
temporal instability in the polarizing magnetic field, which by described by Bloch’s model. A further increase in

changes the nutation frequen¢see Eq.(2)) due to varia- H,(w,T,>106) drives the rate of nutation decay (pe

corresponding data are not depicted in Fig. Bhe decay
becomes exponential and results from inhomogeneities in the
2 rf field.
4 It is worth noting that the nutation decay time measured
~ by Torrey’ in a 1.5 cmi sample of glycerin was about
Ve 11 ms and resulted from inhomogeneities in the rf field.
According to Boscainet al.,! the decay time of nuta-
e tions of a homogeneous line depends on the amplitude of the
s driving electromagnetic field. The predicteg -dependence
., of the nutation decay timéEq. (4)) is depicted in Fig. 3 by a
s dashed line. If we assume that for two-level quantum sys-
2l e tems this dependence is universal, comparison of the EPR
e data on paramagnetic defects in quartz and the NMR data on
e protons in glycerin shows that there is no correlation be-
tween the two sets. If Eq4) is valid, the paramete8 for
proton nutation decay must be smaller than this quantity for
EPR nutations in quartz by a factor of at least 100. In this

FIG. 3. Dependence of the nutation decay time on the Rabi frequency. Th(e)
points represent the experimental data, the solid line represents Bloch'’s

100

model, and the dashed line was obtained from @gwith 8=0.021.
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case determining the smalk(10 #) but finite value ofg
requires increasing the accuracy in measuring the parameters
f proton nutation decay.

On the other hand, the fact that the decay time of proton
nutations coincides witfi, suggests that for the given quan-

G. G. Fedoruk 667



tum systemB=0. This means that the decay in two-level the action ofH; on the nutation decay rate, proved to be
spin systems withT,~T, is described by Bloch’s model, smaller than the value g8 measured for EPR nutations on
with the result that the purported;-dependence of the ef- quartz by a factor no less than 100. This suggests that non-
fective width of a homogeneous spectral line is not corroboBloch nutation decay is related to the features of quantum
rated by experiments. In this situation, the reason for thesystems aff, # T4, in view of which the problem of inter-
observed anomalouson-Bloch decay of EPR nutations in preting the w;-dependence of the nutation decay rate for
quartz can be established, in particular, by studying thejuartZ remains unresolved and requires further experimental
w1-dependence of nutation decay in this object in the singlemnvestigation.

photon modgto eliminate features of the two-photon mode The author is grateful to I. Z. Rutkovgkand V. S.
from nutation studies It is also important to establish the Kuz'min for discussing the results. Partial financial support
features of the nutation process due to the dynamics of quarfer this work was provided by the Belarus Fund for Funda-
tum systems in the presence of a high-power driving field formental Research.

distinct T, and T;.

5. CONCLUSION !R. Boscaino, F. M. Gelardi, and J. P. Corb, Phys. Re¥8B7077(1993.
' 2V. S. Kuz'min, zh. Prikl. Spektrosk63, 229 (1996.

NMR studies of protons in g|ycerin T(2A~,T1) have 3V. S. Malinovski, Zh. Eksp. Teor. Fiz108 1907(1995 [JETP81, 1041

shown that the rate of decay of transient nutations is inde—4(1995]' . .
L . .. A. Abragam,The Principles of Nuclear Magnetisr@larendon Press, Ox-
pendent(to within 5%) of the amplitude of the driving elec- 5 (1961,
tromagnetic field up taw,;T,~110. This suggests that for °R. L. Shoemaker, inaser and Coherence Spectroscopy |. Steinfeld
homogeneously broadened two-level spin systems Bloch’%f_?dé ';'enum ELGSS’RNG;VE;YS(;‘;L%%;‘ g- 197.
: P L . - L . C. Torrey, Phys. ReVi6, .

model is valid in the h|gh power dnvmg_ field limit "R. E. Orlowski and A. H. Zewail, J. Chem. Phyz0, 1390(1979.
(w1T,>1). The data obtained in these experiments do noty. s, kuz'min, A. P. Sko, and G. G. Fedoruk, Zh.Kgp. Teor. Fiz99,
corroborate the hypothesis of Boscaieal! about the de- 215(1991) [Sov. Phys. JETR2, 121(1991)].
pendence of the effective width of a homogeneous spectra?A- A. _Vashma}n and I. S. ProqirNucIear Magnetic Relaxation Spectros-
line on the amplitudeH, of the driving variable field, the  CcOPYHn Russiad Energoatomizdat, Moscott986, p. 100.

reason being that the value gf which reflects the extent of Translated by Eugene Yankovsky
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Elastic scattering of low-energy electrons by a uranium atom: reliability of theoretical
predictions of based on a model description
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We used the method of phase functions to solve the radial relativistic Dirac equation and
nonrelativistic Schroedinger equation. With these solutions, we investigated the elastic scattering
of slow electrons by a uranium atom, and obtained numerical values for the total cross

section and elastic scattering phases. In order to check the correctness of the results found from
the method of phase functions, in all cases we also solved the Dirac and Schroedinger
equations by direct numerical integration. Several types of polarization and exchange potentials
were used to simulate the scattering process. We conclude that the strong dependence of

the cross section for elastic scattering of an electron by uranium on the shape of the effective
potential of the latter at small kinetic energids, &5 eV) makes it impossible to predict

the presence or absence of a Ramsauer effect reliablyl9€y American Institute of Physics.
[S1063-776(197)00704-X

1. INTRODUCTION are chosen based on certain atomic characteristics. In this
situation, questions arises regarding the reliability of theoret-

The Ramsauer effect.e., the presence of a deep mini- . . . .
. . . . ical predictions of the behavior of the total elastic cross sec-
mum in the elastic scattering cross section of slow electrons

by atoms was first observed experimentally for atoms of U7 (especially in the range of kinetic energigg<10 eV of
certain inert gases, for instance argon. In Ref. 1, Kudrin andMterest to us, whers, p, andd partial waves all contribute
Drozdov argued that this effect could be exploited to makeo the total cross section and the Ramsauer effect is popsible
an MHD generator based on a nonequilibrium two-and the stability of this quantity against admissible changes
temperature uranium plasma. In this device, a spectrum dh the shapes of the potentidg(r), V(r), andVe(r).
electrons would be generated with kinetic enerdigsn the It is possible to describe the elastic scattering of a slow
energy neighborhood of the Ramsauer minimum cross segijectron by an atom either relativisticalljhe Dirac equa-
t!o_n in order to create a medium with high electrical conduc.-tion) or nonrelativistically (the Schroedinger equatipnin
tivity. These authors calculated the cross section for elastig,, previous papefs’ we used the example of low-energy

scattering of .SIOV.V electro'ns by a uranium aFom for the 'and%|astic scattering of electrons by atoms of the inert gases Ar,
of electron kinetic energies<0E, <40 eV using a nonrela- L s
Kr, and Xe to show that it is important to use a relativistic

tivistic version of the method of phase functiois.The _
model of the interaction of an electron with the urar'iumapproach to treat the scattering of slow electrons. We found

atom used in Ref. 1 was based on the Thomas—Fernthat for electron energies less than 1 eV the discrepancy be-
model? including the polarization potent%I\/p(r) arising  tween computed values of the total cross section for the rela-
from the electric dipole moment induced by the slow elec-tivistic and nonrelativistic cases increases with increasing
tron. The experimental determination of the elastic scatteringtomic numbe#Z, and that the energy behavior of the cross
cross section for uranium at kinetic energies less than 10 e¥ection was quite sensitive to the choice of models for the
is a complicated problem, and we do not know of anyoneatom—electron interaction potential.

who has solved it. In this range of energigg practical In this paper we continue our analysis of this situation.
theoretical calculations of the scattering cross section are aﬁsing a single-particle treatment of the scattering, we calcu-

single-particle calculations in Wh'Ch_ the interaction betweeqate values of the elastic scattering cross section of electrons
the scattered electron and the multielectron systereavy by a uranium atom with various types of interactions be-

atom is approximated by a spherically symmetric potential ) )
m bp y P e P tween the electron and the atom obtained from the literature.

V(r) that decreases faster than! asr—: - X |
Using the method of phase functichdwe solve the radial
V(1) =Va(r) +Vy(r)+Velr), (1)  relativistic Dirac and nonrelativistic Schroedinger equations

. . . . for the problem of elastic scattering by a spherically symmet-
whereV,(r) is the average atomic potential, determined byric potential V(r) which decreases at infinity faster than

the density distributionp(r) of electrons in the atom, In all cases, we checked the results obtained by the

Vp(r) is the polarization potential, anWl(r) is the ex- ) L . .
change potential. phase method by direct numerical integration of the radial

All these components of the interaction are in turnDirac and Schroedinger equations and subsequent matching
modeled by various radial dependences, whose parametength their asymptotic solutions.
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2. SOLUTION OF THE RADIAL DIRAC EQUATION BY THE
METHOD OF PHASE FUNCTIONS

E-mdc _
+ \/E+—mcz[0035j|(f)l|'(Pr)

The solution to the Dirac equation in a centrosymmetric

field is given in the form of the following bispind: —sin 5j|(r)77|'(pf)]2], (€)
] a(n)Qjm(rir),
Fim (=it (1) Q11" @ Ay POV ?
where Q,(r/r) is a spherical spinor,’=2j—1, j is the i
quantum number corresponding to a definite value of the Erm
total angular momentum operatdltLJrS (whereS is the x[ \ /—Cz [cos & (r)j(pr)
electron-spin operatprandg(r) and f(r) are radial func- E-m
tions that satisfy the system of differential equations —sin &, (r) m(pr)][cos & (r)»(pr)
d 1 ; ;
S [rg(0]+ = [rg(r)] - - [E+mc=V(N)]rf (1) =0, = sin 9 (1) (pr)]
(3) E-mc _
. + VEgme [cosai (i (pr)
K 1
ar [MO1= 7 rO]= g [E-me*=Vn)]rg(r) =0, —sin & (r) 7.(pr)1[cos 8 (r) 7 (pr)
4
Here k=—j(j+1)+I(I+1)—1/4, E is the total energy of +sin 5j,(r)j|,(pr)]}. (10

the electronm is the electron mass, amdis the velocity of
light in vacuum.

In a spherically symmetric potenti®(r) that decreases
at infinity faster thanr~!, the large ¢(r)) and small
(f(r)) components of the electron wave function in the con-
tinuous spectrumE>mc?) have the following asymptotic
behavior ag —o:

Let us go to the nonrelativistic limit in Eq€9) and(10).
this case (E+mc)/(E—mc®)—2mdrk,
V(E—mc®)/(E+mc®)—0, p—k (the nonrelativistic expres-
sion for the kinetic energy iE,= (% k)%/2m), and we obtain
equations for the phase and amplitude functibfsee Ref.
3) with boundary conditions,(0)=0, A;(«)=1:

E+mc® sin(pr—ml/2+5;)
g(r)= 5E ; , (5) d _2m 5 .
p a&(r)—FV(r)kr [cos & (r)ji(kr)
, E—mc® sin(pr—ml'/2+ ;) . 2
=jl-1"+1 ! —sin &,(r) 7,(kr)]?, 11
f(r)=i \arT= or , (6 j(r)ym(kr)] (1)
wherep= \E?/c?—m?c?/# is the wave vector and; is the a _ 2 .
elastic scattering phase. A==z AnV(rkricos (r)jikr)
In accordance with the method of phase functions, we ) K K
replace the radial functiong(r) andf(r) by a phase func- —sin 3(r) m(kr)]{cos §(r) m(kr)
tion &,(r) and an amplitude functiod;(r) (see Ref. B —sin §(r)ji(kr)]. (12

Then
When a nonrelativistic particle is scattered by a potential
E+md _ o . .
()= \/—==— A;(r)[cos &;(r)j,(pr) whose characteristic depth is of order?, it is necessary to
g oE il (M hP . o ) .
include relativistic corrections. It is clear from E(@) that

for such potentials we cannot neglect the second term and

sin oy (1) m(pr)]. @) simply make the transition to Eq11).
71 E-mc® ) In conclusion, we give the expressions that relate the
f(r)=i Vg Au(nlcos ()i (pr) elastic scattering cross sectian to the elastic scattering
phasessj; in the relativistic casé.The scattering cross sec-
—=sin & (r)m.(pr)], (8)  tion is expressed in terms of a sum of partial cross sections:

wherej,(pr) andn,(pr) were defined in Ref. 9.
Substituting(7) and (8) into (3) and (4), we obtain di-
rectly the equations for the phase and amplitude functions

with the boundary conditiong;;(0)=0, Aj(«) =1 (see Ref.

T
a’=2 a'|]-=—22 | | sir? dyj - (13
] ]

2): For the case of low energy scatteriag, 17~ ) -1~ ,
and Eq.(13) reduces to the nonrelativistic expression
d 5 _V(r)(pr)? E+mdc .
g Gn(D=—752 E_ma Lcosu(nii(pr) i Ao % n2
] o= =— 2+ 1)sirr 4. (14
=sin 8 (r) m(pn)J? =0 kK=o
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3. MODEL POTENTIAL FOR SCATTERING OF AN where r={3/4mp(r)} e is the charge of an electron,
ELECTRON BY A URANIUM ATOM ay, is the dipole polarizability of uranium, and is the point
whereV5(r) andV;R(r) intersect.

The state of an electronic shell of a uranium atom is This potential was used both in our previous pa’ff)ére

described by using the relativistic Hartree_FOCk_SI""tercalcuIate elastic scattering by inert gases, and in Ref. 14 to

me?“"f- Inhorder_tothdetermlne t:'e S_tab”;ty (_)f oulr treSU|tSdescribe elastic scattering by alkali metal atoms. At this time,
aﬁalns ?hc angte inthe avte_ragsei\ "f: 0m|ctpove\dge|l), eh'ur? we know of no experimental values of the dipole polarizabil-
change the centrosymmetric Slater potenig|(r), whic ity of uranium «y. In Ref. 1, the following value of the

determines the electronic atomic wave functions required t?)olarizability of uranium was obtained using the Thomas-
obtain the electron densip(r). These changes will be made Fermi-Dirac modef in atomic units aU/a3—29 36. which
. y 0~ . )

In two ways: is somewhat larger than the experimentally known polariz-

1. By changing the initial electronic configuration of th(_e ability of the more compact xenon atonr;(e/a8=27. Actu-

urarf1_|um ::tom. fFor th_'s’ n ?d:(;tl'o;' t20 the grour:jdtﬁlecftr:)nlca”y’ the dipole polarizability is a variational parameter,
lcon' 'guration o _gjlranlum %43 3/2t. S22 Wefgsgdo 7e2 O whose value we will take to bey,/a3=30; for this value we
owing possible configurations: 09327812 find r = 3.7575268.

2 2 2 1 3 2 0 4 2
5156d3,7S12 ST5603,7S12 aNd F56d3,7S),  The In order to study the question of stability of our results

choice of this sequence of configurations for the uranium, .. respect to changes in the shape of the polarization po-

n 4—n—-2 _ ; :
atom 3 5603, 71, wheren=1, 2, 3, 4, is motivated by tential, we also used a polarization potential of the form
the fact that a change in the population of the spatially com-

pact 5, orbit due to transition of electrons from the spa- e2ay,
tially extended orbit 65, can cause a considerable changeto ~ V,(r)=— m
the potentiaMg(r). We illustrate this assertion by calculat- v
ing the average squared radius of the orbit for the sequen
of configurations 5 {,6d3,"7s3:

(18

(iﬁhererv is a fitting parameter of the model determined from
agreement between numerical calculations and experimental
2 data, and is usually rather well described by the expression
r 173, n= 0, _ 1/3 . . .
(5fs| —| |5fg0)= o r,=(al2)*". For our value of the polarizability of uranium
A 2.79, n=4, ay we pickr, to satisfyr,/a,=2.45.
As a model exchange potential we used the expression

r\2 8.24, n=0, i :
<6d3’2|(a_0) |6d3’2>:{19.48, —a proposed in Ref. 15:

2 1-7% |1+9
where a, is the Bohr radius, whose value i&=%2/mé Vedr)=——KeF(7m), F(m=35+ a7 |nm-
=0.529177% 10 m;

2. By changing the form of the correlation-exchange po- (19
tential used in the iterative procedure for obtainingwhere
Vg (r). We will use the following forms of the correlation- <
exchange interaction: _ 2 13 _
a) the standard Slater forfhwith two choices of the Ke=[3m"p(]™ T Ke
Slater exchange parameteg);: ag;=2/3 andag;=1;
b) the form based on Ref. 11; If we include relativistic corrections we have
¢) the form from Ref. 12;
d) the form from Ref. 13. (I+E+ Vc?KZ+mPc*)?
In addition, we calculated the atomic potential using the K= 2 —m?c?, (20)

nonrelativistic Thomas—Fermi—Dirac moflelith a subse-
guent integration of the relativistic Dirac equation.
The polarization potential we used had the f&tm

VSR(1), r=r K= KZ+k>+2I, (21)
p ] =lcy

while without them we have

Ve(D) VRR(r), r>re, (19 wherel is the ionization potential of the atom.
In order to study the stability of our results with respect
( 0.0622 Inrs—0.096+0.018 In r—0.02, to variations of the shape of the model exchange interaction
r«<0.7 we used®

.. | —0.123%-0.03796 Inr,
Veln=1 0.7<r.<10,

1
V()= 5 {Ex— Va(r)—=Vy(r
—0.876 1 +2.65,%%-2.8.%2-0.8.°?, )= 5 B Va(D=Vy(n)

\ I‘SZZI_O, 1 eZﬁZ
(16) -3 \/(Ek—Va(r)—Vp(r))2—477p(r) —
VpR(r)=—e?ayl2r?, (17 (22)
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TABLE I. Numerical calculations of the total elastic scattering cross sectiin atomic unit$ as a function
of the electron kinetic energf, for a U atom with an unperturbed potenti®i,(r) obtained from the
correlation-exchange term of Ref. 11 with the third set of parameters, with the polarization pog(itiabf
Ref. 14, and the exchange potentgl(r) of Ref. 15.

Ey, o/a} E;, o/a}
eV 1 2 3 4 eV 1 2 3 4
10-38 104.0 | 4619 | 106.9 | 462.0 4410 1142 | 67.4 | 112.7| 654
0.010 | 1449 511.0 ] 1451 S511.2 |} 4.840 100.8 | 61.8| 99.8 | 60.8
0.040 | 217.4 | 5454 | 219.2 | 545.6 5.290 914 | 60.2 | 89.9 | 58.7
0.090 | 359.0 { 579.1 | 359.3 | 579.2 5.760 844 | 604 | 82.8 | 58.8
0.165 | 665.6 | 6594 | 6654 | 659.2 6.250 802 | 62.7 | 779 | 604
0.250 | 1022.4 | 784.9 | 1022.0| 784.6 7.840 74.8 727 | 72.8 70.8
0.365 | 11224 | 911.4 | 1122.1 | 911.0 9.000 76.0 81.1 | 744 | 79.7
0.490 | 993.0 | 921.3 | 992.8 | 920.8 10.240 | 789 89.1 | 77.8 | 88.1
0.640 | 838.2 | 830.7 | 838.0 | 830.5 11.560 | 829 | 96.5 | 82.2 | 95.7
0.810 | 710.7 | 702.8 | 710.5 | 702.7 || 12960 | 87.4 |102.7| 86.9 | 102.2
1.000 { 607.5 5774 | 607.3 | 577.4 14.440 | 91.8 | 107.8| 91.5 | 107.5
1.440 | 448.6 | 376.6 | 448.4 | 376.8 16.000 | 96.1 | 111.8] 958 | 111.6
2.250 | 282.3 193.2 | 282.1 | 193.1 || 20.250 | 104.2 | 1169} 104.1 | 116.8
2.560 | 241.0 155.2 | 240.7 | 154.8 || 25.000 | 108.1 | 116.3108.0( 116.3
2.890 | 205.7 125.6 | 205.2 | 125.0 (] 30.250 | 1079 | 111.811079| 111.8
3.240 175.7 1029 | 175.1 | 102.2 [} 36.000 | 104.7 | 105.1 | 104.7 | 105.1
3.610 150.9 86.3 149.9 85.3 42250 | 99.5 97.3 1 995 | 97.3
4,000 1309 75.1 129.3 73.4

Note Column 1 is the total cross section including relativistic corrections based on(Ejs(9), and (10);
column 2, the total cross section without including relativistic corrections, is based oflByg11), and(12);
column 3 is the total cross sectidrelativistic casg obtained by direct solution of the Dirac equation; and
column 4 is the total cross sectignonrelativistic caseobtained by direct solution of the Scledinger equa-
tion.

4. NUMERICAL CALCULATIONS using the correlation-exchange term from Ref. 11 with the
third set of parameters, the polarization poter¥ig(r) taken
from Ref. 14, and the exchange potentl(r) taken from
Ref. 15. In Table | we list the results as a function of the

phase by direct integration of the radial Dirac E(®. and electron kinetic energy : the first column is the total cross

(4) with subsequent matching to the asymptotic solutighs section, including relativist.ic corrections based on E“@’

and(8), and also by integration of the Schroedinger equatiorf): @nd(10); the second is the total cross section without

without including relativistic corrections. including relatl_vlst_lc corrections based_ on E_cﬁf$.4), (11,
The results of these numerical calculations, which weAnd(12); the third is the total cross sectigrelativistic casg

present here, lead us to the following conclusions. obtained by direct integration of the Dirac equation; and the
1. In accordance with assertions of our previousfourth is the total cross sectignonrelativistic caseobtained

paper$” at low electron kinetic energies the values of thePy direct integration of the Schdinger equation. By com-
elastic scattering cross section differ significantly for theParing columns 1 and @ and 4, we can estimate the mag-
relativistic and nonrelativistic cases. nitude of the relativistic effects associated with electron scat-
2. The values of the cross section obtained for uraniuniering.
whenE,<5 eV holds are sensitive to changes in the shapes The solution to the Dirac and Schroedinger equations by
of all three terms of the total interaction potential between arthe method of phase functions allows us to consider the ra-
electron and an atom, i.e., the unperturbed atomic potentidlial dependence of both the phase functiofgr) and
V,(r), the polarization potentiaV/,(r), and the exchange &(r) and the amplitude functiond;,(r) and A(r). If the
potentialV,(r). depth of the effective potentia¥(r) Eq. (1) is of order
3. The presence or absence of a Ramsauer effect, amdc?, then the second terms in EG$) and (10) which we
also the particular electron kinetic energy at which the elasti®ieglected in going to the nonrelativistic limit in Eqd.1)
scattering cross section is a minimum when there is a Ramand (12), contribute to the phase and amplitude functions.
sauer effect, are contingent on the detailed potential shapeOnce we know the radial behavior of these functions, we can
In what follows we will illustrate these assertions with determine at what value of radius vectorelativistic correc-
specific examples. tions play a significant role and how the set of phases
Table | shows the results of calculations of the total 6j(r) develops. From this we can estimate the influence of
cross section for elastic scattering of an electron by a urathe effective potential shape. Figure 1 shows plots of the
nium atom with the unperturbed potentiaj(r) obtained by  phase and amplitude functions versus distance from the cen-

We solved the systems of differential equatig@) (10)
(12), and (12 numerically using the Adams predictor—
corrector method’ In addition, we found the value of the
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10+ b f FIG. 1. Dependence of the amplitude)
and phaséb) functions on distance from the
center of the nucleu@n atomic unitg for an
s-wave at electron kinetic energyEy
=10"%eV. The unperturbed potential
V,(r) is taken from from the correlation-

— exchange term of Ref. 11 with the third set

/7 of parameters, the polarization potential

i V(r) is from Ref. 14, and the exchange po-

tential Ve, (r) is from Ref. 15. The solid
~10l_, . i . . ) curves are relativistic calculations, the
05 2 4 6 8 dashed curves nonrelativistic.

W
————— e .

ter of the nucleus fos-waves and an electron kinetic energy Ref. 15; the unperturbed atomic potential of uranium was
E,=10"8 eV, and the unperturbed potenti}(r), polar- calculated using the relativistic Hartree—Fock—Slater method
ization potentialV,(r), and exchange potential,,(r) cho-  with various exchange-correlation potentials. Cutvis the
sen above. The solid curve is the result of a calculation foSlater form (with parameterag;=2/3); 2 is the potential
the relativistic case, while the dashed curve is for the nonfrom Ref. 11 with the third set of parameteBsis from Ref.
relativistic case. The jumps in the phase functien®d<45;  12; 4 is from Ref. 13;5 is the Slater form(with parameter
<) and zeros in the amplitude function corresponding toag;=1); and 6 is a calculation of the unperturbed atomic
them match the zeros of the radial wave functigfis) (Ref.  potential using the nonrelativistic Dirac modeFrom this

7) andf(r) (Ref. 8. From Fig. 1 it is easy to see that these figure it is easy to see that model perturbations of the average
points shift on the radial scale as we go from the nonrelativatomic field lead to different behavior of the functienfor

istic to the relativistic case. Thus, the relativistic correctionselectron kinetic energies less than 1 eV, whereasHpr
for the uranium atom must be included both in the phase and-20 eV all of these models give similar results.

the amplitude functions. Table 1l lists the results of calculations in which the

In order to check our calculations of the phase functionunperturbed atomic potenti&gl,(r) is modified by changing
6;(r) and amplitude function®\; (r), we calculated the the initial electron configuration of the uranium atom;
wave radial functiong(r) and f(r) from Egs.(7) and (8)  V,(r) is obtained from the correlation-exchange term given
and compared them with the same functions obtained diin Ref. 11 with the third set of parameters, the polarization
rectly from an integration of the radial Dirac equatioi®  potentialV(r) is taken from Ref. 14 and the exchange po-
and(4) with subsequent matching to the asymptotic solutiongential V¢, (r) from Ref. 15. The first column is the total
(5) and(6). The results of the two methods agree completelycross section for electron configuratiorizs6d3,7s2),, the
The phase functions;(r) and amplitude functions\(r)  second for $2,6d3,7s3,, the third for §£,6d5,7s7, the
from the nonrelativistic Schobinger equation were checked
in the same way.

The relativistic and nonrelativistic calculations differ c/ag
considerably for kinetic energies less than 1 eV, since the 1500
characteristic momentum of an electron within the atom is so
large that relativistic corrections play an important role.
Therefore, in what follows we give results only for the rela-
tivistic case.

The slight discrepancy between the results of the two
computational methods we have used at low electron ener-
gies is explained by complications that arise when systems of
differential equations are solved numerically by the phase
method; nevertheless, when the phases are calculated by
these two methods, they agree to an accuracy ©@01%; if )
this were not so, there would be a rather large difference in 0 0.5 1.0
the total scattering cross section. For definiteness we also Ep
gi-ve resu”S-Obtained by using the solution to the reIatiViStiCFIG. 2. Dependence of the total elastic scattering cross section for uranium
Dirac equation t.)y the phase methc an,d (10). o (in atomic unit$ on the electron kinetic enerdy, with the polarization

Let us consider the effect of changing the unperturbeq)otentialvp(r) from Ref. 14, the exchange potenthl,(r) from Ref. 15,
atomic potentialV,(r). Figure 2 shows the results of nu- and an unperturbed atomic potential obtained within the framework of the
merical calculations of the total cross sectiorfor elastic relativistic Hartree—Fock—Slater method. The exchange-correlation poten-

- - : ials were taken from: Ref. 10, withg,=2/3 (curve 1), Ref. 11 with the
scattering of an e_leCtron by a ur_amum atom_as a function orhird set of parameter&urve 2); Ref. 12(curve 3); Ref. 13(curve4); and
the electron kinetic enerd, , using the polarization poten- ret 19, withag,=1 (curve5). Curve6 is calculated using the nonrelativ-

tial Vp(r) from Ref. 14 and exchange potent\gl,(r) from istic Thomas—Fermi-Dirac modésee Ref. 4
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TABLE Il. Numerical calculations of the total elastic scattering cross seeti@in atomic unit$ as a function
of the electron kinetic enerdy, for uranium with an unperturbed potent\d)(r) obtained from the correlation-
exchange term of Ref. 11 with the third set of parameters, the polarization podégal of Ref. 14, and the
exchange potentiaV,,(r) of Ref. 15.

E;, o/aj Ex, o/a}

eV 1 2 3 4 5 eV 1 2 3 4 5

1073] 88.6 [ 104.0] 97.5 {90.3]84.6 || 4.410] 112.9] 114.2] 116.1] 118.2] 120.0
0.010] 125.3| 144.9 | 134.2 {126.2|121.1{; 4.840 | 100.1 | 100.8 { 102.1 | 103.5 | 104.8
0.040| 228.9 [ 217.4 | 199.9 [190.4|191.6]/ 5.290 | 90.5 | 91.4 | 91.8 | 924 | 92.8
0.090] 664.3 | 359.0 [ 319.1 {295.2288.3]| 5.760 | 83.5 | 84.4 | 84.2 | 839 | 835
0.165{1691.6} 665.6 | 570.5 |493.41445.2][ 6.250 | 78.7 | 80.2 | 79.2 | 78.2 | 76.8
0.250(1616.5{1022.4] 892.7 |759.6,658.5|1 7.840 | 73.8 | 74.8 | 73.1 | 71.0 | 68.0
0.365]1213.7|1122.4/1051.7{957.0|861.3|| 9.000 | 754 | 76.0 | 74.1 | 71.8 | 68.5
0.490{ 978.9 { 993.0 | 962.6 {922.7|875.2|{10.240| 789 | 789 | 769 | 744 | 71.3
0.640| 818.6 | 838.2 | 821.0 |803.7|784.1|[11.560{ 83.4 | 829 | 80.8 | 78.2 [ 75.0
0.810{ 700.7 | 710.7 | 698.7 |688.41678.3/112.960} 88.1 | 87.4 | 85.0 | 822 [ 79.0
1.000] 605.1 | 607.5 | 599.1 |592.1|585.7||14.440] 92.7 | 91.8 | 89.4 | 86.4 | 83.1
1.440] 451.7 | 448.6 | 446.5 {444.0/441.21116.000| 96.8 | 96.1 | 93.6 | 90.5 | 87.1
2.250] 283.8 | 282.3 | 285.8 {288.0(289.4{(20.250] 104.2 ;1 104.2 [ 102.4 | 99.7 | 96.5
2.560| 241.6 | 241.0 | 245.2 {248.2/250.4)125.000{ 106.9 | 108.1 | 107.6 | 105.8 | 103.5
2.890| 205.5 | 205.7 | 210.0 |213.5[216.1}}30.250( 105.6 { 107.9 | 108.8 | 108.4 | 107.2
3.240] 175.0 { 175.7 | 179.8 |183.4|186.2{136.000| 101.4 { 104.7 | 106.7 | 107.4 | 107.4
3.610] 149.8 | 150.9 | 154.4 |157.7|160.4{(42.250( 95.6 | 99.5 [ 102.2|103.6 | 104.4
4.000( 129.3 1 130.9 | 133.6 {136.2|138.4
Note The total cross sections are listed here for the following configurations: columnf g,8¢,,7s2,,
column 2—53.6d1,7s%, column 3—52,6d2,7s%, column 4—&l.,6d3,7s2, and column 5—
513,,6d3,7>

fourth for 5f%.,6d3,7s2,, and the fifth for 52,6d3,7s3,. In order to determine the sensitivity of our results to a
The model variations of the average atomic field also lead t@hange in the shape of the polarization interaction, we car-
different values ofr for electron kinetic energies less than 1 ried out additional calculations in which we used the unper-
eV. Note the absence of a Ramsauer effect for all the calcuurbed atomic potentiaV/,(r) obtained from the exchange-
lations presented in Table II. correlation potential of Ref. 11 with the third set of

TABLE Ill. Overlap integralsl, of radial wave functions for the scattered and atomic electrons in the
n-shell as a function of the electron kinetic enekgyfor uranium with an unperturbed potent\(r) obtained
from the correlation-exchange term from Ref. 11 with the third set of parameters, the polarization potential
V,(r) from Ref. 14 and the exchange potendial(r) from Ref. 15.

Ex, Iy, % E, Iy, %

eV [7si/2|6pis2|6pss2|6dssa|Sds/a|5fss2|4 12| €V {781/2{6p1/2|6pas2{6dss2[Sdssa|S 52|42,
1071141000301 [00]00]00/4410{13.3/06 | 1.0]11.6[ 0.1 59700
0010} 1.7 {00103 102[00{00(]00/[4840(124[06 | 1.0 |104]| 0.1 [ 59 0.0
0040 3.4 { 00 |04 103 (0000 0.01(5290(11.5[/06 (1095|011 (59]00
0090147 101]05{07[00}00([00 /57607506 15]84]|0.1](46]00
0165/ 62 0.1 |06 |17 {00}00}001}625070|08]15]73]01]|44]00
0250 7.1 1021107 12710001 ]001}7840 530813 (50¢[01]39]0.0
0.365{8.0[02]07}45{00(01({0019000)|44|08/|12]39]02]|34]|00
0490} 86 {02 |07} 601} 00}021} 00110240/ 3608 ) 1.1 34023000
0640} 9.1 ([ 03 ] 07 |81 }{00j03}]001}11560]29}107]|11}23]02]25]|00
0810 94 (03 ]07 96|00 04|00112960|/24}10710]17]027}22]00
1.000| 9.5 [ 03 {07 {114 0.0 | 0.6 | 0.0 {{14.440( 19| 07 | 09 | 1.3 |02 | 1.8 ] 0.0
14401238 05| 1.1 |17.5]1 0.0 | 2.3 | 0.0 ||16.000| 1.5 | 06109 | 09 | 02 | 1.6 | 0.0
2250(209)06 | 1.1 | 180 0.1 | 3.4 { 0.0 {/20.250| 0.8 { 06 | 0.7 { 04 | 02 | 1.2 | 0.0
2560[19.21 0.6 | 1.1 |17.7| 0.1 | 40 | 0.0 /25000 04} 06 | 0.7 { 0.2 | 02 | 0.8 ] 0.0
2.890(17.6f{ 06 [ 1.1 |16.8| 0.1 | 46 | 0.0 1/30.250/ 0.1 | 0.6 | 0.6 | 0.1 | 0.2 | 0.7 | 0.0
3.240{16.2| 0.6 | 1.t [153| 0.1 | 52| 0.0 {|36.000{ 0.0 | 0510501 ]|02(06]00
3610{15.1; 06 | 1.1 |142] 0.1 | 5.7 0.0 {|42.250/ 00|04 | 04101 |02]05]00
4000[14.1}; 06 | 1.1 [13.1] 0.1 | 58} 00
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FIG. 3. Dependence of the total elastic scattering cross section for
uraniume (in atomic unitg on the electron kinetic enerdy, with
» the unperturbed atomic potentiaV/,(r) obtained from the
exchange-correlation potential of Ref. 11 with the third set of pa-
100 rameters, the exchange potentgl(r) of Ref. 15, and polariza-
000 tion potentialsV,(r) taken from: Ref. 14curve 1), Ref. 5(curve
2), andV,(r)=0 (curve3).
500 -
0
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parameters and the exchange potentig(r) of Ref. 15, and the wave functions of the scattered and atothisund elec-

took the polarization potential from Ref. 14 and Ref. 5; wetrons. Consider first the orthogonality of the radial wave

also calculated the scattering with no polarization potentialfunctions with the same quantum numbgrand!. The de-

Figure 3 shows the results obtained when the two modegree of orthogonality of the radial wave functions is deter-

polarization interactions are used. It is clear that they are ifinined by the overlap integral

good agreement with one another for energies greater than 1 -

eV, but differ markedly at smaller energies. The cross sec- To" [9eji ()G (1) + fej (1) fry;(r)1dr

tion functions shown do not have a deep minimum at smallb= T2 > 2 2 '

kinetic energies, i.e., there is no Ramsauer effect. \/fom [9E;(r)+Feu(r)1dr g [gn; () +f fy(r)]dr
In order to determine the effect of variations in the ex- (23

change potential we carried out a fourth series of calculationgnerer , is the radius of normalization of the wave function
in which we used the unperturbed atomic poten¥a(r) = of 3 hound electronge (r) and fg;(r) are the large and
obtained from the exchange-correlation potential of Ref. 1lgma)| components of the continuous-spectrum wave function
with the third set of parameters gnd the polarization poteqtlabf the scattered electron, agg; (r) andf;(r) are the large
Vp(r) from Ref. 14, while varying the exchange potential 3nq small components of the wave function of a bound

Ve(r). In the first series of calculations, which we men- 4iomic electron from Eq(6). The radius of normalization
tioned already, the exchange potential was taken from Repnjl is chosen from the condition

15; the second set of calculations included no exchange po-
tential at all; in the third we used the potential from Ref. 16; Tnil 2
and in the fourth, the Slater potentialith as, =2/3). The Jo [Gnj(r)+ T qu(r)]dr=1-e, (24)
results are shown in Fig. 4. For kinetic energies less than 5
eV, the behavior of the cross section is totally different fromwheree=10"". The calculations show that the value Igf
one calculation to the next. Clearly, the cross section is vergxceed 1% for electron from the outer shells of the atom with
sensitive to the form of the exchange interaction at these lowninimum binding energy. Table Il shows how the overlap
kinetic energies. There is no Ramsauer effect for all fourintegrall, depends on the kinetic enerd, of an electron
types of calculations. for uranium with the unperturbed potentigl,(r) derived
In Ref. 18 we presented data from a numerical calculafrom the correlation-exchange term taken from Ref. 11 with
tion of the dependence of the partial scattering phases otte third set of parameters, the polarization potentigir)
electron kinetic energ, in eV for uranium, using the rela- taken from Ref. 14, and the exchange potentig(r) taken
tivistic phase function method for all the types of electron—from Ref. 15. The first column is fos,,, waves and g,
atom interaction potentials chosen by us. atomic electrons with binding enerd,=4.743 eV; the sec-
In this paper we calculate the degree of orthogonality ofond is forp,,,, 6p12, E,=29.526 eV respectively; the third
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1000 + 3 \ uraniumo (in atomic unitg on the electron kinetic enerdy; with
1000} the unperturbed atomic potentiaV/,(r) obtained from the
exchange-correlation potential of Ref. 11 with the third set of pa-
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0 0.5 1.0 Ve(r)=0 (curve 3); and the Slater potential of Ref. 10 and,
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for psj, 6p35p, Ep=20.627 eV; the fourth fods,, 6ds,, plus-electron system; however, such calculations would re-
E,=2.776 eV; the fifth fords,, 5ds,, E,=94.462 eV; the q'uir.e a great d'eal more computational power. We know of
sixth for fgp, 51, E,=3.225€eV; and the seventh for sqmlgr calculatlops carried out by $a1ﬂdor atpms.of cer-
f1p, 475, E,=365.490 eV. Other types of the mean tain _mert gases in the nonrel_atlw_stlc approximation, which
atomic, polarization, and exchange potentials give roughly€duire tens of hours of machine time on a Cray-level super-
the same maximum value of, but at a different value of computer. In our paper Ref. 7, we compared the calculations
Ey. of Ref. 19 for the elastic-scattering cross sections of argon
It is possible that the models of elastic and exchangétoms with relativistic and nanelativi;tic single-partiple cal-
potentials we have used, which describe the elastic scatterirfg/lations based on an effective spherically symmetric poten-
of electrons by inert gas atoms and certain alkali metal atom$2!, @nd concluded that it is necessary to include relativistic
rather well, may be unsuitable for describing scattering b)porregtlons in describing the scattering at electron kinetic
uranium. However, we can assert that at low energies th@nergies less than 5 eV. _
computed behavior of the total cross section for elastic scat- 1€ authors are grateful to V. Yu. Dobretsov for provid-
tering of an electron by uranium depends markedly on thd"g Us with programs without which the numerical calcula-
model interaction potential. Note that it is necessary to use §0ns would have been very difficult. Partial financial support
relativistic model of the scattering of an electron by a heavyfor this work was obtained from a grant by the Russian
atom. The relativistic effects are especially evident in the Kurchatov Institute” Science Center.
s- and p-waves forE,<5eV. This fact prevents us from .
making any reliable predictions regarding the presence orE-mail: x1064@kiae.su

: _ ! ; . . .
absence of a Ramsauer effect in the scattering from averageghﬁ phg‘?e f””Ct'O’f_'(r)da”d admp“lt“detfkll‘“c“g_ml'(r) d‘:”"eduf“;mdthf
potentlal mOde|S chroedinger equation aepend only on the radial quantum numaaea al

nonrelativistic energies we havig=~ 6, 1,,~ -1, , p~K.
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Mechanisms for long-range forces in the “three atoms +electron” system
F. M. Pen’kov*)

Joint Institute for Nuclear Research, 141980 Dubna, Moscow Region, Russia
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Zh. Eksp. Teor. Fiz111, 1229-1235April 1997)

The Born—Oppenheimer approximation is used to obtain an equation for the effective interaction
of three atoms bound by a single electron. For low binding energies long-range forces arise
between the atoms in an “electrémmtom pair” that lead to bound states when the size of the
three-atom cluster is several tens of angstroms. A system made up of alkali metal atoms is
considered as an example. 897 American Institute of Physid$1063-776(97)00804-4

1. INTRODUCTION found. In this paper a scheme is given for constructing the
effective potential of the triatomic subsystem for a four-

Nowadays, methods for creating matter in the clustemparticle problem within the framework of the Born-

phase and determining its properties are widely investigateddppenheimer approximation. The properties of this system

Thus, a model was proposed by Manykital for matter  will be discussed only for those configurations of three atoms

consisting of highly excited atoms in which the stability is that are necessary to illustrate assertions about the long-range

determined by the large overlap of wave functions from thecharacter of the effective potential and the guasiclassical na-

valence electrons. Later this model was used to explain thaure of the spectrum.

cluster properties of a cold plasma of cesium atdrirsthis

paper we propose a different mechanlsm.fgr maintaining g EEFECTIVE POTENTIAL

very diffuse cluster based on the small affinity energy of an

electron for a neutral atom. In order to treat a four-particle system consisting of three
Previously? it was shown by direct analysis of the Fad- atoms and an electron, we introduce Jacobi coordinates,

deev equatiorshat the effective interaction potential of two Which are convenient since the electron coordinate is invari-

atoms in a “two atoms electron” system for real electron— ant with respect to permutation of the atoms when they are

atom affinity energy scales has long-range Efifhend used. Letr, and p, be the standard three-particle Jacobi

quasi-Coulombic terms proportional tori/and 1f respec- coordinates of the atoms, i.&., joins a pair of atoms and

tively, which determine the asymptotic part of the spectrump, is a vector directed from the center of mass of this pair to

of these systems. In this case the quasiclassical limit for théhe third atom. The labek = 1, 2, 3 identifies one of the

effective potential coincides with the effective potential of three possible systems. Then the electron coordiraté!

Ref. 7 obtained from the Schiimger equation in the Born— be a vector from the position of the electron to the center of

Oppenheimer approximation. The self-similarity of the effec-mass of the three atoms.

tive potential at distances larger than the characteristic range In view of the smallness of the electron mass compared

of the pair forces makes it possible to use convenient pairwith the atomic masses, our scheme for constructing the ef-

wise separable Yamaguchi potentials for the analysis. fective potential in the Born—Oppenheimer approximation
It turns out that in a “three atomiselectron” system the ~consists of finding the quantity(r,p) from the equatior)

effective potential for interatomic interactions also has long- 1 3

range parts with coupling constants that are larger than those — —— A W+ >, v(x)¥=U(r,p)V, (1)

of a “two atomstelectron” system. In what follows, the 2p i=1

terms “triatomic system” and “diatomic system” are used where is the electron mass andx;) is the pairwise inter-

for simplicity without mentioning the electron, whose pres- action potential between an electron and the atom with label

ence here also determines the diatomic and triatomic effeg- |n what follows we will use rank-1 separable potentials

tive potentials. that act only in arS-wave. The effect of such a potential on
The effective potential of such a triatomic system is lo-the wave function can be written in the form

cal, but the three-particle potential cannot be broken up into , ,

a sum of pairwise interactions. Three-particle forces are a v(OW=rO (V)

serious problem for analyzing the spectrum of such a systemyhere the angle brackets imply integration over all the space

while the quasiclassical nature of the motion makes numerief the variablet’.

cal calculations of the states of real atomic systems practi- The separable form of the pairwise potential defines a

cally impossible. In addition, the range of energies of mossimple scheme for constructing equations for the potential

interest is above the diatomic threshold, where two atoms o). In this case we must take a Fourier transform with respect

the three can form a bound state while the third particle lieso the variablex. Then the coordinatep andr, denoted

in the continuum spectrum. Therefore, a complete analysibelow by a six-dimensional vect&, drop out of the discus-

requires investigation not only of the spectrum but also thesion. The Fourier transforms of the quantities

series of resonances in which the triatomic system may be(x;) ¥(R,x) have the following simple form:

678 JETP 84 (4), April 1997 1063-7761/97/040678-04%$10.00 © 1997 American Institute of Physics 678



exp(ik-a) v(k){v(k)exp —ik-a)W¥(R,k)), system. Taking(5) into account, the depth of the triatom

» . potential at zero is determined by the wave numigy:
where the vectog; connects the position of the atom with

label i and the center of mass of the triatomic system. In  Uim=(vV3—1) 8+V3k,

what follows we will express¥(R,k) in terms of the un-  \hich reduces to zero only for a virtual value of the wave
known quantities in angle brackets. Then by projecting ithymber of the electron—atom interaction. However, the ef-
onto the functionv(k)exp( — ika;) for eachi we obtain a  fgctive potential of a triatomic system exists far >
homogeneous system of equations which is solved by setting g 4233,
its determinant equal to zero. In this way we obtain the equa-  The equations given above for the effective potential are
tion valid for any separable interaction used to define the details
[G(0)— 1]3+26162G3—(G"{+G§+G§)[G(O)— 1]=0 of the pairwise force at. small d_istances. Below we will treat
) the case of a resonant interaction, where the wave number of
] ) . ) the bound state is much smaller than the inverse range of the
for the effective potentiall, which enters into the Green's painise forces. For the Yamaguchi potential the resonant

functionsG; = G(r;) averaged over momentum: nature is determined by the conditiat3 < 1. In this case
exp(ik-r) the amplitude of the pairwise electron—atom interaction is
G(r)=<v(k) m v(k)>. 3 determined by the pole nearest to the bound saal or

virtual), and does not depend on the details of the pairwise

Here the vector; joins two atoms, i.e., it coincides with the forces, i.e., on the choice of potential. For the effective po-
coordinates , for a corresponding choice of the set of Jacobitential of a triatomic system this independence will be found
coordinates. For definiteness, a pair of particles will be lafor rj>pg~1.
beled according to the label of the third particle. Let us consider Eq(2) in the resonant case. Takiri6)

Equation(2) with the definition(3) is valid for any sepa- into account, it simplifies to an expression that does not de-
rable potentials. In what follows we will consider the pend ong:
Yamaguchi potential, which has the form

1-2f,f,f3—f2—f3—3=0, 7
4 (K+ﬂ)2B
K (k') = — — m— where
V( )V( ) P (ﬂ2+k2)(ﬁ2+k 2) e
e e ¢
the quantityx is a wave number for a reak(> 0) or virtual fi:T, Ci=(U—kK)ri.
(k < 0) state with energy = — «?/2u, while 8 determines '

the inverse range of the pair potential, and consequently it§he quantities; determine the behavior of the effective po-
depth B%/2u. Simple integration gives an expression for tential with coordinate; :

G(r): ¢ ok
o) B+ K 2 28 e U_g 18 B+u s U——Zluriz—m-i—s,
)= — 2 - — e .
Bruj \(B-u) r p-u @ and have the sense of coupling constants which depend on
the mutual atomic positions.
Here we define the wave number \—2u U of the poten- The form of Eq.(7) allows us to draw some preliminary
tial for Reu > 0. In what follows we require the value of the conclusions about the behavior of the effective potential.
function (4) at zero: First of all, the larger the quantitf; is, the smaller the cou-
2 pling constant corresponding to it. Secondly, the condition
B+ kK e . L
G(0)= (5)  for solvability of Eq.(7) imposes restrictions on the values of
B+ u/’ fi .
and in the limiting case > g~ *: f24i2<1, i#],
(- B+k\?2 2B e ®) for any pair of coordinates. Thus, the limiting valfie= 1,
B+ul (B—u)? r and consequently the minimum value fgris achieved only
in the case where the remaining two components equal zero,
3. PROPERTIES OF THE EFFECTIVE POTENTIAL corresponding to the configuratign, > r, for any pair of

atoms. This case corresponds to two isolated atoms whose
Let us consider the effective potential at zero. Settingeffective interaction potential has clearly expressed long-
ri equal to zero, we obtain from E) the simple expres- range terms with coupling constany, . In particular, in the
sion region xr; < 1 the limiting value of the coupling constant
3G(0)= Cim = 0.567 is a solution to the equation= exp(— c). Forany
(0)=1, ' .
other configuration of three atoms we hafe<1 and c;
which shows that the wave number of the effective potential> c;,,. Thus, the pairwise diatomic potential is an upper
corresponds to three times the depth of the pairwisdimit on the triatomic interaction.
electron—atom interaction, since there is no factor of 3 inthe  As in the diatomic caséfor x > 0 the asymptotic value
eigenvalues of the pairwise problem for the electron-atomiof u reduces tac, corresponding to real electron—atom cou-
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pling. For kr; < 1 the functionsf; depend only ort;, and 1/ 92 1 9 1 g2

therefore the behavior of the effective potential is determined 5| sz P T g g P T Rz B ®[+U(RY)P=ED,

by these variables. In the diatomic case this dependence im- 9)

mediately leads to long-range potentials of the Efimov and

quasi-Coulombic type. In the triatomic case the situation igvherem is the mass of an atom. In this case the function

more complicated, since there are three independent coordian take on zero values f&r= 0, y = 0, x = /2; since we

nates that determine the triangle of particles. are discussing the problem as an eigenvalue problém,
Of course, for spatial configurations of three bodiesshould be quadratically integrable.

specified by a single coordinatewe return to the case of The effective potentials under discussion have the scale

long-range forces, as in the diatomic cAgeit with different of the potential energy for an electron interacting with an

values of the constait Some examples of this are configu- atom, i.e., they consist of fractions of an electron volt,

rations with p;— 0, for which the atoms are located on the whereas the de Broglie kinetic energy of the atoms on the

same line symmetrically with respect to the atom with labelatomic scale of distances amounts to only a few thousandths

i, or the configuration of an equilateral triangle. In the firstof an electron volt. Thus, the motion of the atoms is essen-

case, assuming for definiteneps=0 we obtainr, = r, tially quasiclassical. In order to verify this, let us consider

= r,/2. Then Eq(7) gives an equation fot: the solutions to Eq(9) with maximum value of the effective
- e potential determined by the equilateral-triangle configura-
c“=(8+c)e ", tion. Since this value is independent yafthe variables sepa-
with the unique solutioe = 1.473... rate and the solution can be written as a sum of functions
For the equilateral triangle configuration,(= r, = r;  Ax(R)Bk(x); the functionsBy(x), which are found by
= r) Eq. (7) reduces to the form solving the eigenvalue problem, are required to vanish for
e x = 0 andy = =/2. The solutions are obvious and give the
c=2e", @ eigenvalues- 4K2 (K = 1,2,3), leading to an additional re-
which differs from the diatomic caddy a factor of 2 and Pulsive potential of the form K#2mR. The equation for
therefore gives a larger coupling constant 0.8526... . A(R) is quasiclassical. Actually, introducing the constant

It is not difficult to show that this configuration of atoms = Vm/u and taking into account that> 1, we can look for
is unstable, i.e., any deviation from the configuration of anan expansion of the actid® with respect toy.
equilateral triangle gives a deeper effective potential. In or-
der to verify this, let us consider a variatidiu which dis-
torts the configuration for a fixed moment of inertia, i.e., SubstitutingA(R) in the form expiS) into Eq.(9), we obtain
R? = (rf + rg + r§)/3. We note that constancy of the momentthe usual quasiclassical solution with Bohr—Sommerfeld
of inertia mR? implies independence of the kinetic energy quantization rules in the form
with respect to such variations.

S= ’)/SO+S:|_+... .

2
Varying Eg. (2) with respect tou and riz, taking into JR”‘&X\/U2+2 E— 4K _O'ZSdR: (n+ _)
account the constancy & and the sign of the derivatives Rmin K YR T 4)

dG/du, we obtain (10

3 ) ) The latter condition can be used to estimate the number of
Su=M|z (85+85)+(81+8)%|, §=6rf, M>0. levels if we set the energy equal to the electron—atom bind-
ing energy or zero for the virtual states. In what follows we
Thus, the wave number reaches its minimum and the effeGg;|| sum over allK, which gives a numben > 0. Since the
tive potential its maximum value in the “equilateral tri- gffective potential at small distances depends on the model
angle” atomic configuration. Hence using this maximum chosen hoth for the electron—atom and the atom—atom pair-
value we can obtqln a lower bound on the number of levelgyise interaction, it is reasonable to choose the bdRpg in
and draw conclusions about the long-range character for afne range greater than the characteristic scales of these inter-
bitrary atomic positions. ~ actions. This choice of the left-hand boundary corresponds to
The equation of motion for three atoms contains six in-3 model with an additional interatomic repulsion at small
dependent coordinates. It is convenient to choose hypeistances. By increasinB,,;, we can impose the vanishing
spherical coordinatesee, e.g., the review Ref).&ince itis  of the bound state. This boundary also will define the real

sufficient to investigate onl-wave motion in each pair in gcale of the long-distance effective potential of the
order to confirm the long-range character of the effectivesqujlateral-triangle configuration.

potential, the only variables in the Schlfoger equation will In order to demonstrate these assertions, it is good to
be the hyperradiu and the hyperanglg: consider a number of alkali metals with rather small
2 1 3r electron-affinity binding energies for an atom inSastate.
R2=§ p>+ > r2, tany= \/; ’: For Li and 13%Cs we estimate affinity energies of 0.62 and

0.47 eV respectively.We calculate our estimates of the
In these variables the motion of the atoms is described by aumber of levels over a region larger than 5 Bohr radii, i.e.,
Schroedinger equation, which for the wave function2.65 A. In this case we use the asymptotic equaf®nThen
®(R,y), after separating out the standard factorpl/takes the systenfLi; has more than 1.& 10° levels and disap-
the form pears when the repulsion radius is greater than 20 A. The
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system33Cs; has more than 4.8 10" levels and disappears interaction is an intrinsic property of the interatomic degrees
when the repulsion radius is greater than 34 A. Since thesef freedom and does not exclude excited atoms. In this case
calculations are for configurations with very shallow effec-additional long-range attractive potentials may arise between
tive potentials, these estimates are lower bounds. the atoms in such a system.
4. CONCLUSION This work was carried out under Project K-40-96.

The mechanisms for quantum-mechanical long-rangé’E-mail: penkov@thsund jinr.dubna.su
behavior in systems of heavy particles with almost classical'™ this Paper we will set Planck’s constant= 1.
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Coherent repopulation of hyperfine structure levels in the field of a bichromatic
resonant radio-frequency wave
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Kurchatov Institute, 123182 Moscow, Russia
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Zh. Eksp. Teor. Fiz111, 1236-1244April 1997)

We consider the resonant interaction between atoms with hyperfine energy levels and a
bichromatic radio-frequency field. Nuclear Zeeman levels of an impurity center in a magnetic
host form a structure of this kind. Using the spin-density-matrix formalism, we solve

the problem of coherent repopulation of a system of three of these levels under the action of a
bichromatic resonant radio-frequency wave, taking into account transverse relaxation, and

note the connection between this effect and the well-known phenomenon of coherent population
capture when a laser bichromatic field interacts resonantly with a three-level system. We
discuss various possibilities for observation of this effect experimentally19@7 American

Institute of Physicg.S1063-776(97)00904-9

1. INTRODUCTION that all initial populations are nonzero. The values of the
rPopulations as functions of time are found by solving the

The resonant interaction of laser fields with atoms ca L stem of equations for the spin-density matrix. In these
lead to significant repopulation of levels of these atoms. In y 9 P Y .

particular, this effect is observed when a bichromatic lasegquathns we will m_clude_ only transverse relaxqt(melgx- .
wave interacts with atoms with hyperfine structtifEhis re- ation time T). For impurity centers this approximation is

population can be accompanied by the phenomenon of cc}/-al'd’ because, as a ruld,<T, (whereT, is the spin—

herent population capture? In optics this effect is used to Ir??;](:“gnl}ggghgivovre\t/ﬁg t:;g?'t?:g;if rxé fzggir:tigéaﬂée
obtain amplification without inversion, the creation of terms asqsociated with, , but ther?/the SO|l,Jti0n will be more
anomalously transparent medium, &tc. n

It is reasonable to assume that an analogous effe(ﬁomphcateq . . o
In addition, we will use the following approximation.

should occur when systems of atomic hyperfine levels reso- 1 Each f f the bich i incid
nant interact resonantly with bichromatic radio-frequency . =’ ach requency ot the bichromalic wave coincides
waves. An example of such a system could be nuclear Zeé’ylth the frequency for a tranS|t.|on petween the correspond-
man levels of impurity centers in the magnetic field of a host'"Y levels(the resonant appro>_<|mat|br_1 .
In some cases, the Zeeman nuclear levels are not equidistant 2. Thrc;ughhout the entire mtera(;uohn, thae&relatwe _phase
due to the quadrupole electric interaction of the nuclei With;:.on;'tal'gt ot ¢ (T. t_\{vo comporjéents OI E[he w S:’ r_egnalnj
the crystal field of the hodt. A|xe_. or simplicity we consider only the caség=0 an

The primary difference between RF resonance and opti= ¢ _ 7 . C .
cal resonance is the fact that, as a rule, all the Zeeman levels 3. The matrix elements_for the magne_tlc pllpole 'T“erac'
are populated from the very beginning in the RF case. Poput—'on of the nuclear spins W'th.the magne_t|c field of u.hh
lations of these levels less than unity are observed only aciomponent of the bichromatic wave; (i=1,2), which

ultra-low temperatures. Furthermore, both longitudinal anastlmulate the corresponding iransition, are assumed to be

transverse spin relaxations play a significant role in RF resgcdual in absolute valug/,=V, for A¢=0 andV,= -V,

¢ - : for Ap=).
nance. It is noteworthy that in the NMR region, as a rule the . -
y 9 4. The three-level system consists of nonequidistant lev-

transverse relaxation time, is considerably shorter than the ols

longitudinal relaxation timé, (for spin depolarization .
One of the commonest methods for recording repopula- There are several different ways that a three-level system

tion of the Zeeman nuclear levels of radioactive impuritygﬁnmgger]r?ﬁ:r(ﬁzce?i;ﬁigg?en; Zlgrlg, srzr()jetr;dtlr?g o(?tﬂe\;vtr]vs(r)e\}\?ee
centers is to measure the angular anisotropy of their dec P j

a\%ill consider a system of three nonequidistant Zeeman levels
products’ . ) : > .

for which the common third level, which participates in the
interaction with both components of the resonant bichro-
matic field, is located between levels 1 and(Zhe analo-
gous scheme in optics is referred to as Fhaechems.

Let us consider the coherent interaction of a three-level ~ The interaction of the three-level system with the reso-
nuclear system with a resonant bichromatic radio-frequencyance field is described by an equation for the spin density
field, in which the first component of the bichromatic wave matrix oj; , which is the best way to include relaxation pro-
induces resonance transitions between levels 1 and 3, whikesses. In our case, this equation has the form
the second component induces resonance transitions between R L
levels 2 and 3. Level 3 is common to both. Let us assume o+To=—i[(Hy+Viy),o]. (2)

2. COHERENT REPOPULATION OF LEVELS FOR A THREE-
LEVEL SYSTEM WITH TRANSVERSE RELAXATION
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HereHy is the Hamiltonian of the three-level systeW), is  Its solutions are the values
the interaction operator between the system and the field, and k=0 K —'\/EV ke '\/EV =2 \/EV
I is an operator that describes the transverse relaxation pro- <t~ > K2=! v K= K= el :

cess; heréi=1. Following Ref. 7, we convert from Edql) Ke= —2i 2V 6)
for o to an equation for the matrix in the interaction pic-
ture, using the relations Using (6), we obtain for the solutions to the characteristic

o . equation of systen) to accuracy up to first order of small-
pij = 0ij exXpi (B —E)Y), ness in the small parametée=1"/V

Vig=(Vin)ij exa(i(E—E)Y). @ ky=—3T/4, ky=i\2V-T12, ky=—i\2V—T/2,
Eventually we obtain the following ninth-order system of . _ (7)
equations for p; in the resonance approximation for ky=2i\2V—5T/8, ks=—2i\2V—-5I/8.

A¢=0, m, for which the ¥iy);; are real: Let us assume that all the levels of the impurity center

p11=—1V1(pa1— p1a), are populated at time= 0, with populations unequal to unity
) . in general: the diagonal matrix elements of the density are
p20=—1Va(p32—p23), pii(0)=A,. The initial conditions for the off-diagonal den-

pas=—iV1(p1s—pa1) — iVl pas— pao) sity matrix elemer_lts r(_aquire some _discussion. We can as-

3 1rs s Z\res e sume that the rf field is turned on instantaneously. In this

p1st T p1z=—iVi(pss—p11) +iVap1z, case the phases of the off-diagonal matrix elements at time
t=0 will be fixed:

pij(0) = VAA; expli(ai—a))),

) i , where ; are phase constants. Turning the field on instanta-

part L'pas=—1Valp2o—p3d ~1Vipaa, neously implies that the turn-on time is much shorter than

p1o+ T pro= —iVipatiVapys, the ti.me between interactions that change 'Fhe phases of the

_ amplitudes of the level populations of the impurity center.

p21+1p21= —1Vopai+iVipos. Among the processes that change the phase are interactions

of an impurity center with phonons, magnons, etc. Because

this time is the same order of magnitudeTgs the turn-on

time should be much shorter thdn. Then, taking into ac-

count that the wave functions in quantum mechanics are de-

X13= P31~ P13, X23=Pa2— P23r  X12= P12+ P21 termined only up to a phase factor, the dependence on the

time-independent phase constaatcan be eliminated from

the system(4).

P11+ past paz=3A. When the field is turned on adiabatically over a time

. . >T,, the phases of the off-diagonal matrix elements can

As a result, we go from a system of equations of ninth order . : : A

to a system of equations of fifth order: cycle_ many tlm_es during the turn-on time, and the mltlal
conditions in this case should have the fopn(0)=0(i

partpz=—1Vi(p11—psz) —iVapor, ©)

P23t T pos=—1Va(paz—pad) +iVipor,

HereT is the transverse relaxation widtA=T,*. In order
to simplify this system of equation§3) we introduce the
guantities

and also use the normalization condition

p11=—iVixis, #j). On the other hand, in order to bring about a Rabi-
) ) oscillation regime, the quantum system should interact with
p22=~1V2X23, the field coherently over times that do not excded i.e.,

: - _ i the period of the Rabi oscillations should be much smaller
Xagt Pxas= = Valdpart 2p22= 6A) = Vaxz, (4)  thanT,. Then, according t47), it is necessary that the field
X235+ T X25= —iVo(4post 2p1,— 6A)—iVix12, be sufficiently strongVsT.

. . . The solution to the system of Eg&l) to first-order ac-
X12+ I'x12= = 1Vax13=1Vaxzs. curacy in the parametef for instantaneous turn-on of the

The characteristic equation of this systé is an irre-  strong field forA o= has the form

ducible algebraic equation of fifth order, whose solution is _ AA,
difficult to find. We can solve this equation approximately, p1a() =AF[(Ar+Ay+2VAA,— 2A)/8]exp( —3Tt/4)

along with the system of equatio®), by assuming that the +{{128A;— Ay)cog \/§Vt)+4\/§§(11A1

magnitude of the interaction energy for the three-level sys-

tem with the bichromatic field/ is much larger than the —5A,+6vA;A5)sin( \/EVI)‘F[QG(A]_'FAZ

transverse relaxation width. In this case, the period of the

Rabi oscillations will be much smaller than the tiffig. As —2A) — 64/A1A;]co8 2V2Vt) + £ 15V2(A;

our zeroth approximation we take Eg,) with no relaxation: +A2)—42\/§A— 10\/T1A2]sin(2\/§Vt)}/

I'=0. In this case the characteristic equation for the energy

eigenvalues has the form 256 exp —I't/2). 8
k>+ 10v2k3+ 16V*k=0. (5)  Analogously, forAo=0 we obtain
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pra(t) =A+[(Aj+A,—2AA,— 2A)/8]exp — 3Tt/4) As is clear from(11), no significant repopulation of the lev-
els takes place in this case; however, small-amplitude Rabi

+{{128(A; — A;)cog \2V1) +442£(11A, oscillations appear in the system. The amplitude of these
_5A2_6\/E)Sin(\/§Vt)+[96(A1+A2 oscillations is proportional tagl.

—2A) +64YAA,]cog 2\/2V) + & 15\2(A,
+A,) — 422A+ 10V2A,A,]sin(2\2V)}/
256 exp( —I't/2). (9)

3. RAPID REPOPULATION OF A THREE-LEVEL NUCLEAR
SYSTEM USING PULSED RESONANCE FIELDS

As we showed above, a resonance bichromatic radio-
For p,,(t) we obtain expressions analogous(8 and (9)  frequency strong field can bring about significant repopula-
with the difference that terms proportional to ad@®(t) and  tion of the nuclear levels. Furthermore, the degree of repopu-
sin@2Vt) have opposite signs. The expressionsggft) are lation can be increased substantially using a simple

easy to obtain from the normalization condition procedure: to produce a major alteration of the level popula-
tions, we combine the resonant interaction with the bichro-
p1a(t) + paa(t) + pas(t) = 3A, matic field with a turn-off of one of the components of this

field. In this case, the single component of the resonant field
that is not turned off will equalize the level populations
A= (A +A,+A,)/3. which it couples. When both components of the bichromatic
field are turned on once more, the coherent repopulation of
From these expressions it follows that the magnitude otll the levels of the three-level system begins again, but now
the population depends significantly on the phase differenceith different initial conditions.
A ¢ of the components of the bichromatic wave. In particu-  Let us investigate the behavior of the three-level system
lar, if A;=A,=Az=A and the duration of the pulsesatis- in these pulsed fields in detail, for simplicity neglecting re-
fies the conditiolv ™ *<7<I'"*, then for the quantity;;,  laxation and describing the quantum mechanical system us-
which in this case equals,, (the bar above the matrix ele- ing the Schrdinger equation for the state amplitudes. We
ment implies time-averaging away the Rabi oscillations emphasize that the formalism of wave functions can be used
when relaxation effects are negligible. As follows from the
results of the previous section, this approximation is valid for
pulsed bichromatic fields if the pulse is shorter than all the
relaxation times.
Hence it is clear that for a short field pulse/T,<1) the The wave function of the three-level system has the form
populations of levels 1 and 2 will differ significantly from _
the population of level 3425%) even when the popula- P=a, 1+ 3 (T2t ag(H) Vs, R
tions of all levels are the same before the field is turned onwhere ¥; are eigenfunctions of the Hamiltoniad,. The
Furthermore, this difference will change for different valuestime-dependent perturbation theory equations for the ampli-
of Ae. The reason for this effect is the coherent addition oftudesa;(t) in the resonance approximation will take the form
population amplitudes at the common level 3, i.e., itis analo- . _ . ) . ) )
gous to the phenomenon of coherent population capture in a 21~ ~1V183,  8;=—1V83, a3= _'Vlal_'VZafz’
three-level atomic system interacting resonantly with a (12
bichromatic laser field. The repopulation of NMR levels athere, as in(3), V; is the dipole matrix element for the tran-
impurity centers should be observable if these centers arsition between the correspondiitp level and level 3 under
radioactive by examining the angular anisotropy of the decayhe action of the field component with frequenay and
products. phasegp; that is resonant with this transition. The solution to
Since the populations of the levels depend significantly(12) for the initial conditionsa;(0)= /A; has the form
on the transverse relaxation timig, this effect affords an ’
additional way to measure this quantity. a1()=(V2A-+ V1A, cogQt))/Q)
Let us now briefly dis_cuss the case of adigbatic turn-on —i\/A—3V1 sin(Q)/Q,
of the strong field. For this we obtain the solution to system
(4) for zero initial conditions of the nondiagonal density ma-  a,(t)=(V,A’ cogQt)—V,;A’)/Q?
trix elements. In this case,; andp,, are given by the same

whereA is the average initial population of the levels:

p11=3A/4+ (3A/16)(7/T,) for Ap=0,

p11=5Al4—(3A/16)(7/T,) for Ap=r. (10)

expressions, which do not depend on the phase difference of —iVAzV, expl(iAg)sin(Qt)/Q,
the components of the bichromatic field. To second order in . . .
the smaIFI) parametef we have ag(t) = — VA3 cog Q1) —iA . exp(—iy)sin(Qt)/Q,
pui(t)=A— (3ALU51exp — 3Tt/4) + [3y2A¢ A=AV, expl—iAg) + VAV,
X sin(\2V1)/32— 3\2A¢ sin(2y2V1)/64 A-=AV,— VAV, exp(—idg), (13
+3A¢2 cog2\2V)/5120exp —TH2).  (11) AL = AV, + VAV, explidg),
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A=AV, explide)— VAV, Vi=V,\/AL /A, (17)

QZ=Vf+V§. The expressions for the average populations in this case will

o ) have the form
From(13) it is clear that in a system of nuclear levels that are

all populated at tim¢=0, total coherent population capture,  P11=A1(A1+A+A3)/2(A;+A,),
i.e., vanishing population of level 3 at all times, is impos- ~ — _

sible. For this it is necessary thA;=0 at the very least. P22= Ao At Aat Ag)2(Ar+ Ag),
However, it is clear from(13) that for certain relationships 3= (A1 +A,+Az)/2. (18

between the system parameters the interaction with the reso- ) ) ) )
nant bichromatic field can bring about a drastic readjustmerfrccording to(18), as a result of the action of the bichromatic

of the populations in our case as well, even wienis not field the population of level 3 increases to 3/2, while the
equal to zero. The magnitude of the repopulation dependgopulations of levels 1 and 2 decrease to 3/4. Let us turn on
both on the values of the initial level populations and on theN€® component that couples levels 1 and 3. Then, under the
ratio of phases and intensities of the components of th@&ction of the other field components the populations of 2 and
bichromatic rf field. 3 both become 9/8. Repeatedly turning on both components
Let us consider two characteristic situations. Suppos@f the bichromatic field with changes in their intensities ac-
thatA, =0 andA;#0. ThenA, can become zero foh ¢ cording to Eq.(17) leads according t¢18) to the following

= and level populations:
In order to estimate the values of the level repopulations, lef! this case, conversely, the populations of both levels 1 and
us convert from the amplitudes (t) to the populationg;; 2 can be decreased compared to the population of level 3.

Thus, it is clear that by repeatedly turning the bichromatic

=|a;|* averaged over the Rabi oscillations. Frdf8) we : ,
resonance field and its components on and off, we can rap-

obtain . . .
o idly make large changes in the pattern of populations of the
p1i=V3|A_|21Q4+ V3| A, 21204+ V2| Ayl %1202, three-level system.
2=V A_|IZIQ*+ VI A, 21204+ V3| A5|21207, 15
paz=|A[2120%+|Agl?12. 4. CONCLUSIONS

From this we obtain the following relations for the values of The results we have obtained show that coherent repopu-

the average populations in.the case under discussion Wh§fion of the levels of hyperfine structure in the field of a
A= and when(14) holds: bichromatic resonance radio-frequency wave is entirely real-

P11=AL+ALA2(AL+A,), istic for observing the effect. However, for this we require a
L number of conditions to be fulfilled.
p22= Ao+ AAI2(A+A), (16) 1. The times for turning the bichromatic field on and off

should be considerably shorter than all the relaxation times.
2. During the field pulser it is necessary to maintain a
Assume that initially all the level populations are the regime of Rabi oscillations, i.e., it is necessary for the con-
same: A;=A,=A;=1. Then after the bichromatic field dition V,>1 to hold. This implies that the field should be
pulse acts the population of level 3 decreases by a factor aftrong.
2, while the populations of the other levels are increased to 3. The field pulser should be shorter than both relax-
5/4. Let us assume that the field that couples levels 1 and 3 &tion times T;,T,). If 7>T,, T,, then it is clear from Egs.
turned off. Due to the action of the remaining components 0f8) and(9) that the populations of all the levels will become
the field on the system, the populations of levels 2 and 3 arequal with time.
comparable and become equal to 7/8. Let us once again turn 4. For a system of Zeeman nuclear levels, the energy of
on both components of the field, changing their intensitiednteraction with the field should not exceed the fixed amount
according to(14). After the second bichromatic field pulse, by which they are separated, i.eAE 35— AE,4 >V, where
according to(16) the following level populations are estab- AE;=E;—E; andE; are the energy levels.
lished: 5. It is particularly important to address the question of
— — — how these processes are affected by inhomogeneous broad-
p11=389/272, ppy=308/272, psy=119/272. ening. Due to the bichromatic character of the resonance
It is clear that the emptying of the third level will be larger in field, inhomogeneous broadening will not significantly alter
magnitude than it is after the first pulse. Thus, by repeatedlyhe way it affects the three-level system if the broadening is
turning on and turning off the field many times, we can rap-the same for all the levels. For the case of coherent popula-
idly induce a significant decrease in the magnitude of thdion capture, as was shown in Ref. 3, a frequency detuning of

53: A3/2

population of level 3 compared to the other levels. the field from resonance that is the same for all the transi-
Consider a different situatiols_=0 andA;#0. These tions will not interfere with the effect. However, the inhomo-
relations can hold foA =0 and geneous broadening cannot be too large, because a criterion
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for the system to be treated as three-level is that the transthe bichromatic and monochromatic rf fields in a specific
tion frequency differenc@AE;3— AE,4 must be larger than order, we can augment this repopulation when the system is
the value of the inhomogeneous broadening. in the lowest Zeeman level, i.e., “cooling” of the nuclear
6. In our calculations we set the widths of the transversesubsystem takes place.
relaxation for all transitions equal. This may not be so in  Repopulation of the hyperfine levels is also possible in
practice, although the widths can hardly differ in order ofthe gas phase. However, in this case, we find as a rule that
magnitude. For the pulse processes under discussion, who$g~T,, and the theoretical calculations given in this paper
durations are smaller than all the relaxation times, the asrequire refinement since we have not included longitudinal
sumption of identical relaxation widths is not fundamental.relaxation.
On the other hand, introducing widths that are different in  In conclusion, one of the autho(®. F. Zaretski) is
magnitude would give rise to additional complications in thedeeply grateful to Prof. D. ChapliiCanberra, Australia
final result. who initiated this work, and without whose advice and help
7. We have assumed that heating of the medium by the it would not have been completed. The authors are also
field does not lead to a significant increase in the level broadgrateful to Prof. R. Cousemath.ouvain, Belgium for dis-
ening. It is, of course, desirable that the size of the sample beussing the possibility of observing these effects experimen-
less than the skin-depth thickness. In this case, as was showally.
in the papers by Chaplihheating of the medium is insig- This work was carried out with the partial financial sup-
nificant even at ultra-low temperatures. port of the Russian Fund for Fundamental Resea@tant
8. Repopulation of fine-structure nuclear levels in theNo. 96-02-17612a
fields of a pulsed radio-frequency wave is analogous to re- _ _ ,
population of atomic levels in strong laser fields, for which Z(E;' gr;:‘oﬂgdgif‘n”edn%frlr'g’l'z'%”o"o Cimento Let7, 333(1976.
the field width is larger than all the relaxation widths. From sg’ a korsunski, B. C. Matisov, and Yu. V. Rozhdestvengkzh. Eksp.
this point of view, these effects are nonlinear in the magni- Teor. Fiz.100, 1438(1991 [Sov. Phys. JETH3, 797 (1991)].
tude of the field. However, their formal description can be ‘M. O. Scully, Phys. Rep219 191 (1992.

5 g ) .
carried out by using the equations for the density matrix, in gézigiglagan, P. J. Back, D. H. Chapénal, Hyperfine Interaction@2,

which the field enters in linearly. 6N. J. Stona, and H. Postmaow Temperature Nuclear Orientation
It should be emphasized that the repopulation of these Elsevier Scientific Publisherd.986.

levels also takes place when all the levels are populatedV- S. Butylkin, Yu. O. Khronopuloet al, The Resonant Interaction of
) . e : . Light with Matter, [in Russiaj Nauka, M 1977.

equally before turning on the bichromatic field, i.e., at high 9N With Matter [in Russiai Nauka, Moscow(1977

temperatures. Furthermore, as Sec. 3 showed, by turning dmanslated by Frank J. Crowne
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Weibel instability associated with inverse bremsstrahlung absorption of intense
electromagnetic radiation

A. Yu. Romanov, V. P. Silin, and S. A. Uryupin

P. N. Lebedev Institute of Physics, Russian Academy of Sciences, 117924 Moscow, Russia
(Submitted 7 August 1996
Zh. Eksp. Teor. Fiz111, 1245-1257April 1997)

We investigate the Weibel instability in a plasma with a nonstationary three-temperature electron
distribution generated by inverse bremsstrahlung of an intense elliptically polarized
electromagnetic wave. We show that electron—ion collisions in this strong high frequency field
are simultaneously the cause of the development of the instability and the reason it is
suppressed. We find plasma and radiation parameters for which spontaneous quasistationary
solenoidal electromagnetic fields can increase by many timesl19€y American Institute of
Physics[S1063-776(197)01004-4

1. INTRODUCTION above the threshold for the instability, and analyze possible
unstable configurations of quasistationary perturbations of
It has long been knowrisee, e.g., Refs. 1}+4hat a the electromagnetic field. We establish that perturbations
plasma with an anisotropic electron velocity distribution isgrow most effectively whose wave vectors are along the axis
unstable against the generation of quasistationary electr@f lowest temperature and whose electric field intensity vec-
magnetic fields. One of the most well-studied plasma instators are along the axis of highest temperature. In the fourth
bilities of this kind is the Weibel instability.According to  section we give a first-principles description of how
the fundamental postulates of the theory, the threshold foelectron—ion collisions in a strong optical field affect the
development of the Weibel instability in a fully ionized growth rate of the most unstable quasistationary mode. We
plasma is determined by electron—ion collisions, which acestablish bounds on the time intervals, plasma parameterss,
cording to the prevailing wisdom prevent the instability from and optical field for which development of a Weibel insta-
developing(see, e.g., Refs. 5 and.@However, the situation bility is possible in a plasma with a nonstationary three-
changes qualitatively when the plasma is in the field of artemperature electron velocity distribution.
intense high-frequency laser. In this case the electron—ion
collisions can generate an anisotropy in the electron distribuz. KINETICS OF ELECTRONS IN A STRONG FIELD
tion via backward braking absorption of the radiation, which
then gives rise to the instabiliy? This effect is especially
marked when the amplitude of the quiries veloaity of an

Consider a fully ionized plasma in the field of a plane
electromagnetic wave of the form

electron in the laser field exceeds the thermal velogityof 1 ) ]

the electrons, while the ionization stafeof the ions is large Eo=75 (Ex expliey),Ey expliey),0)

enough thaZv>vg>v1. Under these conditions, accord- . ]

ing to Ref. 8, heating of the electrons via inverse bremsstrah- Xexp —iwpt+ikgz) +c.C., 2.0

Iung of the radiation leads to the formation of an aﬂiSOtrOpiC\Nhere(Px and @y are phase<:, and Ey are real projections
bimaxwellian electron distribution. Such a distribution can in of the electric field intensity vector on the coordinate axes,
turn give rise to the Weibel instability. However, the well- kO is the wave number, ando is the frequency of the wave.
known postulates of the the(f’r@ indicate that collisions We will assume the frequenwo is much |arger than the
should stabilize the Weibel |nStab|llty Our goal in this work p|asma frequench of the electrons. Then the wave num-
is to understand this dual manifestation of electron—ion colper isk,= w,/c, wherec is the velocity of light, and we can
lisions by developing a first-principles description of the Wayneg|ect possib|e dependence ﬁf and Ey on coordinates.
they affect the Weibel instability when the plasma interactsye will limit ourselves to studying situations where the ve-
with an intense laser field. The corresponding theory is sefocity of light is much larger than both the thermal velocity

forth in this paper. of the electrons 1 and the amplitude of their quiver velocity
The basis of our discussion is the kinetic equation for than the high-frequency field:
le|E
Ve=—

electron distribution function, which takes into accoutt

initio the effect of a strong high-frequency electromagnetic c E= m 2.2
wave on the electron—ion collisions. In the second section Mg’ ©y

we show that forZvr>vg>vr an elliptically polarized  \yheree andm are the charge and mass of an electron. Under
wave can generate a nonstationary three-temperature distiese conditions, we can use a kinetic equation to describe
bution function. In this case the maximum temperature iSne motion of the electrons in the form

along the direction of the propagating wave, while the mini-

mum is along the axis of the highest field intensity. In the ¢ e J

third section? we assume that ?he system is ope):ating far gt m B0 gy F=SUNTSILD, 23
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wheref=1f(v,t), St(f) is the electron—ion collision integral, 9 — oy —

and Stf,f) is the electron—electron collision integral. Ne- ~ ——F=——-Djj(u,7) ——F, (2.12

glecting small changes in electron energy during collisions ' :

with the ions, we will use the following expression for where

St(f):

— Wy 27l wg

1 0 J Dij(U,T):EJ dr Dij(U,T). (213

St(f)zzv(v) T(vzﬁij—vivj)ff, (2.9 0
Uj oy . . . . .

Since we are interested in patterns in the evolution of the

v(v)=4mwZe'nAm %3, (2.5 electron distribution in a strong field of the for(@.1), we

can also neglect the dependence of the components of the

tensorD;;(u,7) on velocityu. In this case, we can use Egs.

(2.8), (2.10 for the averaged component of the diffusion

tensor to obtain

wheren is the electron densityZ is the multiplicity of ion-
ization of the ions, and\ is the Coulomb logarithm. The
weak logarithmic dependence of the paramdt@m velocity
will be neglected. Let us now discuss EQ.3) for the case

of a plasma whose ions are in high ionization states, Ze., D E2 E2 202
>1, under conditions where the amplitude of the velocity — D,,=——— —» {(1—2—; sir? cp)K( \/ >
oscillations satisfies the inequalities p*N1+p°E E 1+p
2 2
ZutSveSuT. 2.6 Ex [ 2
UTZUEZUT 2. — l+p2—1_ ZE—)Z(SInZ(p E 1_:J2 ,
In this case, the effective frequency of electron—ion colli- P P
sions is~v(vg) and the frequency of electron—electron col- (2.19
lisions is~v(vt)/Z. In discussing the effect of high-power ,
radiation on the plasma, we see from the left side of inequal- D EE cosol K [ 2p
ity (2.6) that we can neglect the electron—electron collision xy© Eyxe p*1+p2 E? ¢ 1+ p?

integraf in Eq. (2.3, and the right side of2.6) allows us to

assume the thermal motion of the electrons is slow compared 14 p?)E / 2p? 21
to the rapid motion in the high-frequency field. Under these —(1+p%) 1+p2) |’ (2.19
conditions it is useful to rewrite the kinetic equation in the
variables 5 D E2 [(1 2E§ 2ol [ 2p?
=TT ez St @ T2
T=t, U=v-Vg(t), (2.7) Yot 1+p?E E 1+p
d e E2 2p2
- =— x| 1+ p%— 5 sir? ¢ |E :
dt VE(t) m Eo. (28) 1% 1_p2 E2 (] 1+p2
Then we have for the distribution function of electrons in the (2.16
new variabled=F(u,7)=f(u+vg(7),7) >
D - ( 2 2.17)
J J J 2z~ \/—2 1+2] .
— F=—D. — 1+p p
P F o, Dij(u,7) o F, (2.9

In Egs.(2.19—(2.17), K(x) andE(k) are the complete el-
liptic integrals of the first kind

. :E 3 -3 2o
Dl](U-T) 2 u V(u)|U+VE(7)| {lu+ve(7)] 5”

/2 dw
—[u+ve(n) i[u+ve(n) ]} (2.10 K(K)Zfo ﬁp' (2.18

According to Eq.(2.9), the only reason for the functidh to )

depend on time is the electron—ion collisions modified by thetd second kind

external field, whose frequency is much smaller than the ra- 2

diation frequency. In this situation, the functiéh may be E(K)ZJ dy1— k2 sirf ¢, (2.19
written in the form of a sunF=F + 6F, whereF=F(u,7) 0

is that large part of the functioR which is slowly varying  Here we have used the notatign= ¢, — ¢y, and

over a period of the high-frequency field, averaged over the

- 2
latter: D=7vév(vE), (2.20
— wo 2ml wg
F=_— d7 F(u,7), (2.11
27 Jo 4 4 oo
_ o p'=1-zz EE) Sir? o. (2.21)
and 6F is the small {6F|<F) highly oscillatory correction
caused by the collisions. Then, averaging E219) over a The remaining components of the diffusion tensor equal
period of the high-frequency field and omitting small termszero: D,,=D,,=D,,=D,,=0. We now turn to a detailed
that containsF, we find the following equations fdF: investigation of Eqs(2.12) in the interesting case of an el-
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liptically polarized electromagnetic wave, for whiclp  verse bremsstrahlung of an intense electromagnetic field. As-
=m/2. ThenD,,=D,,=0, the diffusion tensor is diagonal, sume that a low-frequency perturbation arises in the plasma

and Eqg.(2.12 has the form of the form
9 — L — SE, 5B, 5F ~exp —iwt+ikr) (3.1
_F:D” _ZF, (222
ar au; at a frequencyw much smaller than the the radiation fre-

where the summation runs over triply repeated indices. Th8UENCY wo, but much larger than the inverse time over
solution to Eq.(2.22 has an especially simple form if the which the nonstationary electron distributién changes as
initial distribution of the electrons is Maxwellian, i.e., given by(2.23:
F(u,7=0)=Fp(u)=(n/2m\2mv})expu?2v%). In this 0o | w|>Dy Iv2. 3.2
case, we obtain fron2.22) '
) ’ ) In order to describe the response of the plasma to such a
= n x| — U Uy U perturbation, we use the kinetic equation for the small qua-
2m\2m AN 2vF, 2v$y 20t )’ sistationary correctionsF to the functionF, in which ac-
(2.23 cording to(3.2) we neglect collisions

and the components of the thermal velocity increase with e 1 J —

time Iinearly: I(w— kU)éF: E SE+ 5 [U[k5E]] E F, (33)
vf=vi(71)=2D;7+vf. (2.24  and the linearized Maxwell equations for the fielés and

Thus, when backward braking absorption of an intense high-5B.

frequency electromagnetic field takes place, anisotropic heat- KSET= ) 5B 3.4

ing of the electrons occurs and a three-temperature Maxwell- [ 1= c (3.4

ian velocity distribution is generated. Note that in the special

cases of linear&,=0) or circular €,=E,=E/v2) polar- [koB]=— 4_77 iej du USE — w SE 3.5
ized waves, two of the three temperatures coincide, and the c c '
distribution (2.23 reduces to the bimaxwellian distribution We will assume that the perturbations of the field are sole-

discussed previously in Ref. 8. The absolute values of the ... thatK5E)=0. Then from Eqs(3.3—(3.5) we
components of the thermal velocity depend on the values o ’ ' . .

the diffusion tensor components. In particular, for a circu-

larly polarized wave we have from Eq$2.14—(2.17) Ajj(o,k) 6E;=0, (3.6

that Dy,=Dyy=D,,/2=vEv(ve)/\/8, indicating more effi- B 2 2 22 2

cient heating of the electrons in the direction orthogonal to Aij(w.k)= 5”'(1 ol "=k )

the plane of polarization of the electromagnetic wave. The f Uiy ( >_
te s du

anisotropy in the heating is manifest most clearly for a wave —y (3.7
with componentd,>E, . In this case, we find fron2.14—

(2.17) that Equation(3.6) has a nontrivial solutiodE+# 0 when

D,,= 2D In(2E,/E,)>D,,=\2D[In(2E,/E,) — 1/2] Def{Ajj(w,k)}=0. (3.8

>D,=D/\2. (2.25 T'h(.a.dispersion relatio(B.9) allqwg us to' i.nvestigate the pos-
sibility that an electromagnetic instability can develop as a

According to(2.25, when the light is absorbed by inverse fynction of the direction of the perturbation wave veckor
bremsstrahlung, the electrons that are most efficiently heateghd the direction of polarization of the perturbatioB. Let
are those with velocities in the directions of low electric field ys use Eq(3.8) first to describe the states of the plasma that
intensity. AsE,— 0, which corresponds to the case of a lin- grise during absorption of a plane electromagnetic wave with
early polarlzed wave, according (8.25 we can neglect the ave vectork,=(0,0k) and componentE,>E,, ie.,
difference between the componerds,, Dy, of the diffu-  when according to Eqg2.24), (2.25 all three components
sion tensor. In this case E(®.25 for these components has of the electron thermal velocity are different. This difference
a logarithmic dependence omgy=eE,/mwo. When we s especially important once the initial thermal energy of the
take into account the thermal motion of the electrons angjectrons has doubled, Whepr >UT >v7 . We note that
whenve, is smaller than the electron thermal velocities, thisy,e penhavior of the electromagnetlc mstablllty under the ac-
reduces to a logarithmic dependenceuan® tion of a linearly polarized waveH,=0) automatically fol-
lows from the relations given in this section if we further
take UTZ:va>vTx' Similar behavior occurs under the ac-
tion of a circularly polarized waveH,=E,=E/v2), for

Weibel instability can develop in a plasma with an an-which case we should assumg =vr, <vr, in discussing
isotropic distribution of electrongsee, e.g., Refs. 1, 2)4 the stability conditions. We will analyze the most general
Let us consider the possibility that this instability can de-case below, when all three components of the thermal veloc-
velop when the anisotropic distribution is generated by in-ty are different. With the goal of determining the configura-

3. INSTABILITY OF THE ANISOTROPIC DISTRIBUTION
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tion of the most unstable perturbations, let us discuss ththe special features of the growth of these perturbations are
consequences of Eq3.6)—(3.9) for all three independent described by Eqs(3.12—(3.15 and (3.17), in which we
orientations of the wave vectdr and field S E. must replaceyr by v, - Becausa;Ty<vT , the maximum

We begin our analysis with a discussion of perturbationgyrowth rate for ‘these perturbatlons is smaller than that given
with k= (k,0,0) andsE= (0,0,6E). Then using the distribu- by Eqgs.(3.14), (3.17).

tion (2.23, from (3.6)—(3.8) we find The response to a perturbation wit=(0k,0) and 5E

2 1o 2 2 =_(5E,0,0) is described by the functiok,,(w,k) =0, which

Ao k)=1— oL k_C+ @ T, 3 (L) —0 differs from (3.9 through the replacement of by vy and
e ' 0 o U$X " kot vt by v, - Because we haveTy>vTX, in this case the

(3.9  perturbation is damped. If, as before, we hawve(0k,0),
while the field is oriented along another axisE
=(0,0,86E), then the dispersion relation has the fo(&9),

B ) ) where in place of;Tx the larger (:1uantity)Ty enters in. Since

J(B)=p exp—p /2)ﬁwdy eXpy~/2). (310 the velocitvay is close tovr , the maximum growth rate of

this perturbation is described by the expression

where the functiord, (8) has the form

At low enough frequencies th¢m|<vax<kc, using the

expansion 2\ 32
B 8 uT, vT,
J.(B)=—ipJm2, |Bl<1, (3.11) m=No7z oo ¢ |17z (318

for =iy we obtain from Eq(3.9

5 5 and turns out to be significantly smaller than that described
2 vt [ VT, k?c? by (3.14. Finally, the response of the plasma to perturba-
y=\ kvt 21—

gy 7 (312 tions withk=(0,0k) and 5E=(SE,0,0) or SE=(0,6E,0) is

described by the function&,,(w,k) and Ay (w,k) respec-
Since in the cases under discussion we ha.ye>v.|_ , Eq. tiVEly These functions differ fron(3.9) by the replacement
(3.12 determines the growth rate of the Weibel |nstab|I|ty of vy, by vy, andur, by vy orvr, by vr , respectively.

for perturbations with small wave numbers SlncevTZ is Iarger than botlaaTx andva, th|s perturbation is
damped. From this analysis it follows that perturbations that
grow most effectively are solenoidal perturbations of the
k<— v_z_lzkm\/a (313 field with wave vectors in the direction with the smallest
component of electron thermal velocity and polarizations in
The perturbation with wave numbke=k,,, has the maximum the direction with the largest component of the thermal ve-

growth ratey,,. In this case locity.
3/2
8 uT vT,
Ym= Voz- oo o | 172 - (3.149
™ c v, 4. EFFECT OF COLLISIONS ON THE INSTABILITY
Becausevy,, should be smaller thakmvT , Eg. (3.1 is The uniqueness of the electromagnetic instability created

valid if the degree of anisotropy of the temperatures is smallby inverse bremsstrahlung absorption of intense electromag-
netic radiation lies in the fact that the instability is caused by

U12-Z—v-2|-x< 977/8v$z. (3.159  anisotropy of the temperature distribution generated by heat-
_ _ _ ing of the electrons when they collide with ions. In this sense
In the range of high frequencider <|w|<kc, using the we can say that the electron—ion collisions cause the insta-

expansion bility. However, according to the basic postulates of the
B 9 theory of the Weibel instability, collisions suppress the insta-
Jo(B=1+p""+.., [BI>1, (3.16 bility and determine the threshold for its appearahtén
for =iy we obtain from(3.9) order to clarify the dual role of the electron—ion collisions,
let us consider a near-threshold theory of the Weibel insta-
y=kvr (1+ kZCZ/wE)_1/2>vaX. (3.17  bility. In this case, keeping in mind the results of the previ-

ous section, we will limit ourselves to discussing the most

This solution is realized only when the temperature anisotefficiently excited perturbations, i.e., those which have the
ropy is large, i.e.vr>vr . The maximum value of the configuration k=(k,0,0), SE=(0,0,6E), and JB
growth rate is reached for large wave numbersw, /c, and  =(0,6B,0) and depend only on the single coordinate as
is less thanw vy /c (compare with(3.14). ~exp(kx). In writing this perturbation we relax the right

The response of the plasma to a perturbation vkith side of inequality(3.2), and in place of3.3) we use a more
=(k,0,0) andé E=(0,6E,0) is described by the dispersion general equation that takes into account the effect of colli-
relation A, (w,k)=0, which differs from(3.9 by the re- sions on the quasistationary correction to the function
placement ob+ by the smaller veIocity;Ty. Consequently, (2.23,
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J J
- oF +iku, 5F+—5E—F+— 5B

du, mc
sl ug 2w, 2 |E
U, ——u, —
X9u, % duy
& 52
:Dxxo"_l.li §F+Dyyﬁ_U§
(92

X 6F +D,, — 6F, 4.1
au’

where the components of the electromagnetic figfdand
6B are themselves determined by the correctfhhin ac-
cordance with the Maxwell equations

0
— 6B=ikcdE, (4.2
or

J
e 6E=ikc§B—47-reJ’ du u,doF. 4.3

In discussing Eqs(4.1)—(4.3) it is convenient to introduce

the functions

5Fx(u><a7'):f_ duyf_ du,u,6F (u,7), (4.9
. n uz .
m(uxaT)_ \/EUTX ex 21)-2|—X ) ( 5)

which are independent of the velocity componenjsand

u,. Furthermore, taking into account the time dependence of X
the functionF in Egs.(2.23), (2.24), and also the first-order

correction to the differential equatiorig.1)—(4.3), we find
approximately that

5E,5B,5Fx~exr{f7d7"y(7') . (4.6)
0
Then from(4.1)—(4.3) we obtain
[72(T)+k202]5E=—47Tef du,y(7)6F,(uy,7),
4.7

2

e uT,
Y(7) OF(Uy,7) = o OE| 1— — | Fm(uy,7)
vTX

y7) e

2
’)’(T)‘Hkux — O0E 2>< Fm(UXaT)

Do ” SF
’)’(T)+Ikux aUZ[Y( 7) X(uX!T)]'
4.8
At the threshold for excitation of the Weibel instability,
| kuX| > 7( T)!

Dxx/vix. 4.9
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These conditions ensure applicability of the approximation
(4.6). Furthermore, according t64.9), in solving Eq.(4.8
we first use the relation

[y(7)+iku] t=—iP + ard(kuy) (4.10

Kuy
(where P denotes principal vaIlJe and then include colli-
sions by perturbation theory. Taking these assumptions into
account, we obtain fron@.8)

2
Ur

;) Frn(Uy,7)

UT

Y(7) F (U, 7) = — 5E(

X

e . ( 1)
+55E w&(kux)—lP k_UX

v,
X 2 V(T)Fm(uxﬂ')
Ut

02
— | Dxx (9_U>2< Fr(ux,7) -

(4.1)

Substituting expressio#.11) into Eq. (4.7) and dropping a
small term proportional toy?(7)<k?c?, we find for the
growth rate of the instability

2 3/2
2 uT, 1 UT,
Y(7)=Ym(7)— \/ﬁwLT Tz

k\2 k
1- — 2+— : (4.12
Kem
\/\ uT, UT,
'Vm(T): 1- 27w W — ;
(4 13
W) U'Zl'z
km=kn(1)=V3 — \[ >~ L. (4.14
UTX

In Egs. (4.12—(4.14), the components of the electron ther-
mal velocity increase with time in accordance with Eq.
(2.24). The maximum value of the growth ratg,(7) is as-
sociated with perturbations with wave vector equal to
k(7). Equation(4.13 differs from Eq.(3.14) obtained ear-

lier by the fact that the dependence of the growth rate on the
effective electron—ion collision frequency in the strong field
is explicit. As in the theory of a plasma with no radiation
field, the threshold of the Weibel instability is proportional to
the electron—ion collision frequency. Equatigh13 allows

us to trace how anisotropic heating of the electrons can lead
to the development of a Weibel instability. At the initial
time, Wheanxszzsz holds, the plasma is stable. As the
electrons are heated, the anisotropy in the temperatures in-
creases. As soon as the maximum growth rat€r) be-
comes positive, solenoidal electromagnetic perturbations
grow, following Eq.(4.6). According to Eq.(4.13 the time

7o at which the instability appears is given by the equation
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16 wL ) o s mum possible inprease in the initial noi;e, which is not real-
577 o2 T0(Dzz7 Dy =Dy 2Dxmotv7) % (4.19  ized when nonlinear effects become important before the
time 7, is reached, leading to saturation of the Weibel insta-
Note that Eq.(4.15 is valid under the condition' (7o)  bility. Numerical investigations of the nonlinear stage of the
=2D,,mo+v2<vZ, i.e., when the electron thermal velocity Weibel instability show(see, e.g., Ref.)2that the energy
is small compared to the amplitude of the quiver velocity indensity of the magnetic field in the saturated state is no more
the high-frequency field of the radiation. If the intensity of than 10% of the kinetic energy of the initial anisotropic elec-
the radiation and frequency of electron—ion collisions satisfytron distribution. In light of this observation, if we estimate

Zvt>ve>vT and the kinetic energy density of electrons in a strong high-
frequency field bynmu2, we find for the energy of the qua-
) / \/2 UcE V“;L (416 Sistationary magnetic field a vallg# /47~0.Inmu 2, or
)
3171/2 |[W/Cﬁ'|2] 1/2
then the mstablllty appears at time ~ nfem -
_27 ¢ v(vy) n 2E, -1
0716 VVE  of 2 Ey ' (4.17 where\ is the wavelength of the radiation. According to this

. . . . last estimate, for interaction with radiation from a neody-
when the velocnvax(TO) is close to the initial velocity mium laser with A\~1um and I~4X 10" W/cm? in a

v, Whilevr (7o) is much less thane . In this case we have plasma with electron density~10?° cm 3, ionization state
from (417 the estimate 7o~ (velvy)v Y(vy) Z~10, and electron temperaturel50 eV, a magnetic field
~(vT/vE)V Y(vg) as a boundary condition on the applica- of ~0.5 mG is generated. Here we have chosen the electron
bility of (4.16). In other words, this time is found to be much temperature and ionization state of the ions so that the con-
smaller than the characteristic time between electron—ioulitions for applicability of the theory given here are satisfied,
collisions, which is~1/v(vg). The appearance of anisotropy assuming that the inequali®wv>vg>v+ holds.

in the electron distribution is caused by the high intensity of ~ We note that the limiting value of the magnetic field
the heating radiation. I[Zv>vg>vt holds as before, but B, may not be reached if the timg, is smaller than the time
the frequency of electron—ion collisions is somewhat largerfor saturation of the instability. In this case, from the time

Tm ON the evolution of the electron distribution is described
UE | . . .
1> / \/2 by perturbation-theory equations for a small high-frequency
¢ v(vr) field in a hot plasma, where the amplitude of the electron
3 2F velocity oscillations is smaller than the effective thermal ve-
x ( a (4.18 locity. In this case, it is well known that the temperature
VE y

anisotropy is relaxed not only by solenoidal magnetic fields
then the instability appears later, at time but also by the electron collisions themselves, which weak-
ens the effectiveness of the transformation of kinetic energy

2 1/3
:§ 23] © 1 1 of the anisotropic electron distribution into magnetic energy.
To=7 T\ 2 2 (4.19 . . e 2 RS
4 vg wiv(ve) 2In(2E4/Ey)—1 Still another reason why creation of a magnetic field is hin-

dered is the short duration of the laser radiation pulse, both

At this time the velocityvt (7p) is considerably larger than o e >
X compared to the saturation time of the Weibel instability

the initial velocityvt. However, due to the right-hand in-

equality(4.18), the largest component of the thermal velocity 1 B 7m B

vT (7o) is still smaller thanvg. Here it is appropriate to rs]~—In =C=/— n -2
z . . . . B 8 W VE BS

point out that during the period prior to; becoming com- m P P

parable tawg, both in conditiong4.16 and(4.18), the level
of solenoidal excitations described by E@4.6), (4.13 of
the electromagnetic field increases by many times compared N 5
with its initial value. Z[ 10t 2] ]
The latter assertion follows from use of the linear theory [[W/cny] K

of the instability to derive a simple estimate of the ratio

B2/BZ, of the energy density of the quasistationary field at(WhereBs, s the spontaneous magnetic field strengthd to
time rm~vE/2Dzz, whenuvr ~ve holds, to the initial en- the time

ergy density of the spontaneous electromagnetic fields. Ac-

B
=2X 1ol3< In —m>
Bep
1/2

10%°

x nfcm 2]

cording to Eq(4.13), for perturbations of the field with wave Tl S]~ i v Lvg)=10"13
vectorky,~v3(w,/c)(vr, /vy ) (4.14, we have In(2E,/Ey)
4\(10\[ 10%

B2 2 1 W Vg X(—)(—)

—~ ~ Y il P —

ng exp(2YmTm) exp{ 27 (26, /E,) co(vg) |’ A\ Z)[n[em™]

3/2

It is clear from inequalitieg4.16), (4.18 that this ratio is [—I[chmz] N ]} —.
much larger than unity. The linear theory gives the maxi- 10 In(2E,/E,)
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laser with A\~1 um and intensityl ~4Xx 10" W/cm? we  search, and also with partial support of the International Sci-
have 7.~ 7,~0.5 ps. For these parameters of the plasmance and Engineering Cent@roject No. 310

and the light, this additional reduction in the efficiency with

which the solenoidal magnetic field is generated can occur, '
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as usual to include electron—ion collisions in order to deter-s,\P/lhyvsv':ﬁé(\:/:"Jﬂﬁorg‘r;(’k't';’i"l?d'CA\'/“VStggan';i‘l’l 133%\/ Forslund. and R. J
mine threshold conditions arising from the corresponding wmason, Phys. Fluid80, 1085(1987). T ' o
dissipation. On the other hand, these same electron—ion coFA. F. Alexandrov, L. S. Bogdankevich, and A. A. RukhadReinciples of
lisions generate the trimaxwellian electron distribut{@r23d ,Plasma ElectrodynamicsSpringer, Berlin, 198

in the process of absorbing the radiation that heats the;/;lps'gs(”l'g;g? S. A Uryupin, Zh. Esp. Teor. Fiz111, 107(1997 [ JETP
plasma. Since this distribution is in general anisotropic witheg N Chichkov, S. A. Shumsky, and S. A. Uryupin, Phys. Revag
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Nonlinear theory of a plasma microwave oscillator using cable waves
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The nonstationary problem of excitation of a plasma microwave oscillator of a finite length

driven by a pulsed relativistic beam is analyzed. Both analytic and numerical techniques have been
used in studying the oscillator dynamics at given beam param@mngiguration, electron

energy, and current pulgewith different plasma configurations, and at various lengths of the
system. Oscillator characteristics such as the output power, efficiency, and output spectrum

have been determined at parameters close to real experimental values. Conditions of optimal
oscillator operation have been determined. 1@97 American Institute of Physics.
[S1063-776(197)01104-9

1. Relativistic plasma microwave oscillators based ongate a simple model of a relativistic microwave oscillator
cable waves have been intensely studied both experimentallyased on a cable wave with two assumptions:

and theoretically over recent years. The first prototype of this — the generation frequeney (average frequency of the

oscillator was built in 1982 .Later detailed measurements of radiation spectrumnis of the order of the frequency at

the oscillator were taken with the aim not only to detect the which the plasma wave gaifgrowth rate has a

output radiation and determine its power, but also to record maximum;

spectra of output radiatich. — the width of the output spectrutw is much smaller
Although it may seem strange, the theory has been lag- than the average frequenay.

ging behind the experiment in recent time. The authors of These assumptions have proved to be true in modeling
most theoretical studies investigated various limiting caseghe oscillator by directly solving the Maxwell-Vlasov equa-
in which they could considerably simplify theoretical modelstion system and are partially justified by experimental re-
and even perform analytic calculatiohhe parameters of sults. It is too early, however, to claim full agreement with
real experiments quoted in this paper, however, are notablgxperimental dat4/ since more improved measurements are
different from those limiting casdshe relativistic parameter necessary.
of the electron beam is moderate, the beam current is of the The model based on the assumptions given above was
order of the vacuum limit, et so the previous theoretical used in the studyof a microwave oscillator based on a vol-
estimates do not directly apply to the reported experimentd/me wave. The cable plasma wave is a surface wave, and
The results of computer simulations of a beam—plasma sysome of its features are determined by this property. Note
tem with parameters of a real experiment and based on tH&at most real prototypes of plasma microwave oscillators
initial problem statemefialso cannot be applied to an oscil- Were based on this type of plasma waves.
lator where space transfer of radiation, its amplification, and 2. First let us recall some properties of cable plasma
output coupling are important. Besides, all the studies quoteWaVeS?
above ignored the fact that in experiments the electron beam Consider a metal waveguide of arbitrary cross section.
is formed by a pulse with definite shapes of its leading and-et us denote by the longitudinal coordinate in the wave-
trailing edges. guide and byr, the coordinate in the cross section. The
Some authors, however, used the oscillator model basefaveguide contains an infinitely thin beam of plasma defined
on the direct numerical solution of the Maxwell-Viasov by the expression,S,5(r, —r,), wheren,S, is the plasma
equation system.Physical interpretation of such models is density per unit length and, is the plasma coordinate in the
often difficult, like interpretation of real experiments. More- Waveguide cross section. The plasma is magnetized by a
over, definition of boundary conditions at the oscillator out-Strong external magnetic field aligned with theaxis. We
put coupler that are faithful to the Maxwell-Vlasov equa- aSsume that the eigenfunctions of the waveguide cross sec-
tions is a difficult problem: its more or less accurate solutiontion, @n(r), and the corresponding eigenvaluk$, are
can be obtained only in some limiting cadeBinally, even  known (n=1,2.3,...).
with state-of-the-art computation techniques, numerical N the linear approximation, the modes of a waveguide
implementation of accurate models demands a lot of CP$oNtaining plasma are determined by equafions
time, especially as the data processing includes analysis of

numerous variants, or even optimization of the model param-
eters. J 7L P

. _ L At | P = -
The aim of the reported work was to create and investi-  dz At oz @ ae)V=4mPeSedll—rp),
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072Pp wf, IE, is close to the speed of light. One can sAdhat the field
=T 1 configuration of this wave is similar to that of the calfte

o>~ 4w 9z’ , _ >imi :
T TEM) wave in a metallic coaxial lin& so the wave with the
#? 1 & spectrum defined by Ed5) is called a cable plasma wave.
27\ 9227 o2 a2 . As w,— (the plasma turns into a metathe wave de-

) o ] . o scribed by Eq(5) becomes identical to the cable wave in a
Here ¥ is the polarization potentiak, is the longitudinal  -yaxial line.

component of glectric fieldg,, is the plasma density pertur- In the region of shorter wavelengths, when,=>1, both
bation, andA, is the transverse component of the Laplaceihe phase velocity and field configuration of the surface
operator. On the waveguide metal surfdce:0. The param-  plasma wave are radically different from those of the cable

eters¥ and p, as functions ofz andt are assumed to0 be \yaye. In this case the spectrum is similar to that of surface
proportional to expfiwt+ikzz), and¥ is expanded in terms  \yaves in deep water:

of the waveguide eigenfunctions:

- 0=wVKA /2. (6)
\I’:zfl Anen(r)exp —iot+ik,z), 3. An important component of the plasma oscillator is its
(2 output couplerthorn). Let us denote by=L the horn coor-
ppzﬁp(rl)exp(—iwtﬂkzz). dinate, and byz=0 the plane where the electron beam is

injected into the oscillator. It is obvious that the plasma oc-
cupies in the waveguide the regior<@<L. Suppose that
the injection plane contains a metal gfmt a cut-off section
of a waveguidg which is transparent for the electron beam
but does not transmit the radiation. The boundary condition
for the electromagnetic field &=0 is obvious: it is total
reflection. Now the boundary condition atL should be
defined.
w _“’pﬁ' In experiments, the horn is a metallic coaxial line with
P (3 the outside radiuR and inside radius,, i.e., the plasma
coaxial line is matched to the metallic one. We must formu-
late boundary conditions for the field at this junction. They
were previously formulated in a general but very compli-
Here w,=+4me?n,/m is the Langmuir frequency, cated form®® For our purpose, the boundary condition at
x*=kZ—w?c?, andk?  is the square of the transverse wave z=|_ in a simple form is sufficient.
number of the thin plasma in the waveguide. The transverse An electron beam generates a surface plasma wave
components of the wave defined by E8). can be expressed whose phase velocity is close to the unperturbed velacity
in terms of ¥ according to generally known formuld$In  of the electron beam. On tize= L boundary, a fraction of the
the frequency band<k,c the wave with the spectrum de- plasma wave is generated into the metallic coaxial line as a
fined by Eq.(3) is a surface wave, i.e., its field intensity cable wave, and the rest is reflected back into the plasma
decays with distance from the plasma beam. waveguide. If the plasma wave generated by the electron
If the waveguide is circular with radilR, Eq.(3) canbe peam is well matched to the cable wave, I, <1,
simplified. In this case, the plasma is described as a tube wit5p> k. pC), its reflection at the junction with the coaxial line
an average radius,<R and a thickness\, (the plasma s determined by the difference between the phase velocities,
density per unit length is 2r,Apn,), and the waveguide as in Fresnel's problem. Since the phase velocity of the
modes are described by Bessel functions. Here we considglasma wave is-u and in the coaxial line it equals the speed
only the axially symmetric configuration, and after summa-of light c, the reflectivity in the case of a relativistic velocity

Substitute Eq(2) into Eqg. (1), derive from the first line
of Eqg. (1) the coefficientsA,,, and substitute them into the
second line of Eq(1). Then multiply the second line of Eq.
(1) by &(r, —r,) and integrate it over the waveguide cross
section. EIiminatingiEp from the resulting equation, we de-
rive the spectrum of plasma oscillations in the waveguide:

i S, eArp] !

K=Y ey b
P K+ x Tl

tion in the second line of Eq3) we obtain u is k=1/4y?, where y=(1—u?/c?) "2 is the relativistic
, , Ko(xTp) Ko(xR) -1 factor of the electron beam. . _
KT p=1rpAplo(xTp) I “TOR , (4) If k,r,~1, one must take into account not only the dif-
o(XTp) o(xXR) ference between the phase velocities, but also between the

wherel, and K, are modified Bessel functions of the first transverse patterns of both the plasma and cable waves. It is

and second kind, respectively. obvious that the reflectivity will grow withk, (or frequency
For k,—0 we derive from Eqs(3) and (4) an explicit ~and tend to unity a&— w,.
expression for the spectrum: By estimating the energy distribution in the plasma cable
2 o\ —12 wave inside the plasma tuber<r,) and outside it
w=kc| 1+ =2 ) 1 (r>r,)° and using some experimental datagne can derive
wp the following extrapolation formula for the reflectivity in the

(5) . o
kfp=[rpAp In(R/rp)]*l. range of higher frequencies:

. . . 1 2r2
It is clear that at higher plasma density, when o= 140.25—" In — | )
w’>k? c?, the phase velocity of the wave given by EB) 4y? usy® - 2ry
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13 and describe them in the linear approximattoriherefore
the perturbation of the plasma electron density is described
by the second line in Eq1).

The equations of motiofiL0) are supplemented with the
conditions for electron-beam injection across the cross sec-
tion z=0. Let us denote the injection time of tth electron
(large-size particleby to;. Given that the electrons in the
injected beam move at a fixed velocity, we have the follow-
ing injection conditions:

0 s 10 15 20 25 21 =0, vl =u. 11
o, 10" rad - s-1 '|t7t°J ’ J|t’t01 11

FIG. 1. Reflectivity as a function of frequency for several plasma rébii: If the eleCtrOn beam |.nject|on begins at'=0, ,then
r,=0.7;(2) 0.8;(3) 0.9; (4) 1.0; (5) 1.1; (6) 1.2 cm. to;>0 for all j. It is convenient to select the time interval

between sequential inputs of large-size particles into the
waveguide as a constant defined by the following relation:

Equation(7) is not valid atw~w,, but in this frequency T
band, when plasma waves are potential, it makes no sense to toj+1~toj= o+ 1=1.2...., (12)
consider the oscillator as a source of electromagnetic waves;

furthermore, the model of an infinitely thin plasma does notwherew is the average frequency of the output signal. From

apply. Therefore, we will assume in what follows that the this equation and the second line in Efj1), we derive the
frequencies are not very high and use the estimate given byharacteristic length in Eq. (10):

Eq. (7). It will be shown below that this assumption is well
justified. Figure 1 shows the reflectivity as a function of AN=27U/w.
w calculated by Eq(7) for various plasma radii. Hereinafter
the other parameters are fixed, namely, the waveguide radius In order to include the shapes of edges of beam current
is R=1.8 cm, the electron beam velocity=2.6x 101°cm/s,  pulses, it is convenient to introduce weighting factors
and the electron relativistic factor=2. q(to;) in the sum in Eq(9). If q(ty;)=0, the leading edge

4. Now let us derive the basic nonlinear equations forhas not arrived yet, and i(t,;)=1 the beam current has
our analysis. If there is an infinitely thin electron beam, theachieved its stationary value. The shape of the function

first line in Eq.(1) can be simplified: q(to;) was determined from experimental oscilloscope
traces-?’
9 92 1 42 Let us express the polarization potential in the wave-
5( Lt 72 c W)\P guide containing both the plasma and electron beam as

= AmPpSpO(TL =)+ ATppSpA(r, = To), ® \P(z,t,ri)zé > on(r )[AL(Z ) exp —i ot +iK,2)
h=1

where py, is the perturbation of the charge density in the

beam defined by the equatfbn +Bn(z,t)exp —iwt—ik,z) +c.c. (13
N Here the terms withA, correspond to the wave resonantly
Pr=ey ; 8(z—z)). (9)  excited by the electron beam and propagating fm#0 to

z=L. The terms withB, correspond to the reflected wave
propagating in the opposite direction and responsible for the
Here n,S, is the number of electrons in the beam per unitfeedback in the oscillator. On average, the interaction be-
length, z; is the longitudinal coordinate of thgh electron, tween the reflected wave and the electron beam vanishes.
\ is a characteristic lengttsee beloy, andN is the number Since the resonant excitation of the plasma wave by the
of electrons(large-size particléson a section of the unper- electron beam occurs through the Cherenkov efteither
turbed beam with the lengtk. single-particle or collecti®) and in accordance with the
The coordinates of beam electrons are determined by theefinition of \, the wave vector in Eq.13) must be equated
relativistic equations of motion: to k,=w/u.
Equation (13) contains slow wave amplitude&,(z,t)
dz d - e andB,(z,t). These are not the amplitudes of different trans-
_J:Uj, _( —’22> =—E,, (10)  verse waveguide modes, since only one mode, namely the
dt dt 1-vjlc m surface one, is excited. This mode is determined by infinite
sums ofg,A, and ¢,B, in Eqg. (13). These amplitudes are
wherev; is the velocity of thejth electron ande, is defined  slow in the sense of our basic assumptions, namely the av-
by the third line in Eq(1). As concerns plasma electrons, we erage spectral frequenay and the spectral width o< w.
apply the approach commonly used in microwave electronic3 herefore the differential operators are
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FIG. 2. Diagram illustrating the averaging procedure.
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where the tilde means that only the slow amplitude is differ-is the inverse operator of theth harmonic of the polariza-

entiated, the plus in the expression fatoz refers to the tion potential =u/c). In deriving Eq.(17), we have taken

resonantly coupled wave, and the minus to the reflecte@ccount of Eq(14).

wave. The slow changes in the amplitudes mean that The averaging procedure which has been used in deriv-
~ ing Eq. (16) is described bY

1 oA,

1 A, -
KA, dz

—<1
wA, ot

, 1. (14) 1 Z+\/2 ) .
<(D>:X L MZ(I)(z’)exp(mtilkzz’)dz’, (19

Similar inequalities apply to the amplitudBs . In what fol-
lows, the tilde in the derivatives of slow amplitudes is omi
ted for brevity.

By analogy with Eq(13), the perturbation of the plasma 2
charge density derived from the second line in Eb. is <Pb>:N > q(topexpliot—ik,z). 19
expressed as .

t. Wwhere® is the averaged function. Therefdie,) in Eq.(16)
is defined, obviously, by the formula

The summation in Eq(19) is performed over all large-size
particles on the interval z—X\/2,z+\/2). The resulting
value is assigned to the coordinate

In order to get rid of noise due to quantization in numeri-
cal calculations, it is worthwhile to perform additional aver-

where the first term with the amplitude; describes the @aging over time. Consider a time interval{2m/w,1),
resonantly coupled wave, and the second term wjfhthe wheret is the current time. Divide this interval intel sec-
reflected wave. Since the plasma is infinitely thin, the ampliions and calculate the parameter defined by(E§). on each
tudesp;, are defined only at a fixed point in the waveguide Section. The averaged val{g,) is defined as the arithmetic
cross section, namely at =r,. Therefore there is no need mean over all these sections. The averaging procedure is
to expand the functionﬁg in terms of the waveguide eigen- illustrated by Fig. 2a. The resulting value is ascribed to the

1 + . .
pp=§[pp exp( —iwt+ik,z)

+pp exp —iot—ik,z) +c.c], (15

functions g, (r,). point (t,z). At intermediate points the function is defined by
Substituting Eqs(13) and (15) into Eq. (8) and averag- Cubic splines.
count of Eq.(14), the expressions for the amplitudas and ~ ©f EQ. (1) and the second line of E410) (with due account
B,: of Eq. (13), definition of E,, and that the averaged interac-
tion between the reflected wave and electron beam is).zero
A= £;1477(Gpnpg +en,Gpn{pp))s After simple but cumbersome calculations, we obtain the ba-
(16) sic equations of this study:
BnZL;147TGpnp‘;. (i+ii+| 7o at
X vgdr 1+f,

Here G,,=S,en(r )/l ¢nll?, @a=p, b are geometrical fac-

tors taking into account the positions of the plasma and elec- i 1+fg

d d
- — 2__
tron beams in the waveguide cross section, and T % 29y2(1+f,) + 1+f, ax P (;T) (Po), 0
Lol==xik| 14— | 7—— L2 -
" 27 kp0z) ki +koy 2 (ax vg IT I1+fp a =0,
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2 Equations(20) are supplemented with additional bound-

(pp(X,7))= MN < q(7oj)expli 7—ix;) O(X,7), ary conditions(feedback conditions
a (x=wlL/u,7)=ka*(x=wl/u,7),
dx 4 Y, (X=w T)=ka (X=w T) (23
ar Yi' dr 1-g2y? a*(x=0,r)=—-a (x=0,7),
i o, 9 , 0 where the reflectivityx is determined by Eq(7), and the
=757 1-i2y5(1+fg) 5+l3 97 minus in the second line corresponds to the phase reversal
due to reflection from a metallic surface. In addition, the
9 P initial values a*(x,7=0)=0 and electron-beam injection
xa+ap| 1-i29%(1+f,)| —+B%—] |{pp) conditions(11) are required. To model the excitation mecha-
b Y /| ox o7 Pb
nism of electromagnetic waves, we assumed that the input

electron beam had a smalt~(%) random modulation of
relativistic momentum(in another version, a small random
Here we have introduced the dimensionless tirmewt, co-  density modulation

ordinatex=Kk,z, and velocityy=v/u. The explicit expres- The generation efficiency is estimated using relative ki-
sions for the dimensionless amplitud®$ of both the reso- netic losses in the beam described by the formula

nant and reflected waves is immaterial because they are

Xexp(—iT+ix;)+c.c.

expressed in relative units in what follows. The function _ Win—Wo—Woy (24)
6(x,7) in the expression fofpy) is unity in the hatched area n Wi, '

in Fig. 2b and zero outside this area. Furthermore, (2Q. _ o .

contains the following notation: HereW,, is the energy of all electrons injected into the wave-

guide by timer, W, is the energy of all electrons that have

_ wf, . wﬁv’fs passed across the cross sectwnl by time 7, W, is the
“P_kipUZ),Z' TIZ uZy2 energy of all electrons in the waveguide<@<L) at the
momentr.
- - 1 en(rp)en(ry) 2 ) ) 5. Letus analy;e the eql_Je}tion systéaD) in th(_a linear
= 2T ol SokipSokip. (21 approximation. It will be sufficient for our analysis to con-
n=1K ,TX Pn . . .
sider only the resonant wave. One can prove that in the linear
1 ( 1 ( ) -1 approximation the equation f@p,) has the form
=5 1-—|, vg=|B+ ——r
=2\ 1T VT B AT S a2
2 - - > —+ | (o)
Here k?, is the parameter introduced in E(), ki, is a ar X

similar parameter with the indgx replaced withb, « is the

coupling constant between the beam and plasma waves _ _ 1—i2yX(1+fg) i+52i at

(overlap integral for their field$), 7, is the detuning of the IX JrT

wave frequency from the exact Cherenkov resonéh@ei,s

the ratio between the plasma-wave group velocity anth N PRSI Sl 25
Eq. (21) x is defined by the formula = w/uvy. % (| A (o), (25

The frequency dependence of the parameters defined by ) . )
Eq. (21) is due to the nonlinear dispersion of the beam and"d the equation foa™ is the same as in the syste@0).

plasma waves. This dispersion also determines the param- L€t us suppose thad7=0, which corresponds to am-
etersf,, f,, andfg in Eq. (20). As @—0, they tend to zero, plification of a steady signal at fixed frequency, and let us

and if yR>1, they tend to- 1/2. They are important in the S€ekasolutioninthe foripy,),a™ = exp(X). From Eq.(25)
frequency band where the spectrum is defined by (Bg. gnd the first equation i20) we derive the dispersion rela-
The explicit expressions for these parameters are not given PN

this paper because they are too cumbersome.

In a circular waveguide, when the beam is a thin-wall| s+ 7o )[52—%(14' 27y%(1+1,)6)]
tube with the radius,, and thicknesd\,, the coupling con- 1+fp
stanta has the form(here, for definiteness,>ry) Fay
=——————[1+29%(1+fg) 5]~ (26)
= KT (R —KoxR)oxTp)] 27(1+ 1) ©
Lo(XTp)[Ko(XT)lo(XR) ~Ko(xR)o(xTb)] Given the definition of the dimensionless coordinatand

If re="rp, the Coup"ng constank=1. The factora drops Eq (15) for the perturbation of the plasma Charge density,
with the differencer,—ry,, and this decrease is larger at One can see that the total longitudinal wave number in the

higher frequencies_ In the high_frequency band plasma—beam system is determined by the relationship

. Kj=k(1+8)= = (1+9). (27)

- zw
a=ex W|rp Il
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FIG. 3. Resonant frequencies versus plasma radidsRaman resonance; 'adii (1) r,=0.7;(2) 0.8;(3) 0.9;(4) 1.0;(5) 1.1;(6) 1.2 cm.

(2) Cherenkov resonance. The electron beam radius is 0.65 cm.

. . _ . _ frequency is plotted against, in curve 1 of Fig. 3. The
The imaginary part of Eq27) determines the gain of oscil- gmpiification at the Raman resonance frequency is called
lations. o amplification due to the Raman effect or, more often, collec-

In the low-frequency limit, Eq(26) transforms to the tjye Cherenkov effect* It is reasonable to select one of the
equation described in detail in Ref. 13. We are not going tcfrequencies mentioned above for the frequency in Eb@),
investigate Eq(26) by analytic techniques because one can(15) (hence in Eq(20)), and(21) and in the formula for the
hardly derive simple and instructive analytic solutions for thereflectivity K.
interesting parameters of the plasma—beam system. The pa- The question of the frequency selection can be answered
rameters of the system are real experimental véiute by investigating numerical solutions of E(R6). Figure 4
beam Curr_e”ﬂgaxzz kA, the beam radius,=0.65 cm, the  ghows the parameter Im(/u), i.e., the growth rate calcu-
beam thicknessA,=0.1 cm, the plasma frequency |ateq at different plasma radif,, as a function of frequency.
wp=35x10" rad/s, the beam velocity=2.6x 10" cm/s _ Figures 3 and 4 indicate that the growth rate maximum oc-
(y=2). In the reported study, we varied the waveguidecs at the Raman resonance frequency, whereas the Cheren-
length,L=10, 15, 20 cm, and the plasma radiys kov resonance frequency shows no features. Moreover, at

The dispersion relatiori26) is necessary for deriving rp>1.1 cm, the growth rate is zero at the Cherenkov reso-
formulas important for further analysis. By equating the first,5nce frequency. Therefore, in what follows we substitute
factor in parentheses on the left-hand side of 26) to zero,  jnto Egs. (20), (21), and (26) the Raman resonance fre-

7o qguency, since excitation of the oscillator at this frequency is
o=— 117 (28 most probable. Otherwise the spectra derived numerically
P from Eq. (20) will show a corresponding deviation.

we can determine the wave number of the resonant surface Now let us clearly define the terms. The gain band is the
plasma wave. This can be easily proved by substituting Edrequency band where the growth rate is nonzéfiy. 4).
(27) into Eq. (3) and expanding Eq3) in powers ofd. It The regimes in which the growth rate occurs at zero fre-
follows from Eqg. (27) that at6=0 we havek;=k,=w/u,  quency are termed Compton. The regimes in which the
which denotes exact equality between the beam velacity growth rate does not extend to zero are called Raman. When
and phase velocity of the plasma wave, i.e., the Cherenkothe plasma is brought away from the electron beam, the
resonance. The Cherenkov resonance frequency is derivetbmpton regime of amplification and generation transforms
from the equatiorn,=0. This frequency is plotted against to the Raman regime. It is noteworthy, however, that for
rp in curve2 of Fig. 3 (the system parameters were quotedparameters of real experiments, the Compton and Raman re-
above. The amplification at the Cherenkov resonance fregimes as the limiting cases investigated in detail
quency is called amplification due to the single-particlepreviously 23 cannot exist. We operate actually in the in-
Cherenkov effect? termediate region of parameters, which is most difficult from

Zeros of the second factor on the left-hand side of Eqthe theoretical viewpoint.

(26) determine the longitudinal wave numbers of the beam 6. Let us consider numerical solutions of EQO). The
charge-density waves, the fast and slow offé=or the slow  parameters of the beam current pulse are derived from ex-

wave we have perimental data® the full width is 37 ns, the leading edge
1 width is 10 ns, and the trailing edge width is 14 ns.
5= apy?(1+fy)+ E\/[ab272(1+fb)]2+4ab. (29 The basic characteristics of the plasma oscillator given

in this paper are the following: the output power as a func-
The frequency at which the phase velocities of the plasmé&on of time at different plasma radii; the oscillator response
wave and slow beam wave are equal is called the Ramatime as a function of the plasma radius; the total relative
resonance frequen®.The Raman resonance frequency iskinetic losses in the beam during the entire injection time at
determined by solving the equation systéd®), (29). This  various waveguide lengths; the distribution of mode ampli-
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tudes over the waveguide length and phase planes of thescillator does not operate because the current pulse is too
beam electrons at the moment before the current pulse traihort. If the current pulse were longer, the oscillator could
ing edge; the output spectra during the oscillator operation.operate even at this plasma radis.

The response time is defined as the time when the effi-  Figure 6a shows the oscillator response time as a func-
ciency reaches about 0.00the injection onset occurs at tjon of the plasma radius for several waveguide lengthis

t=0). The output spectrum is given by the Compton regime, when the separation between the beam
, —— o~ (" 0 and plasma is small, the response time increases with the
S()=aa*, a= fo a’(wl/u,m)e™dr. (30 plasma radius slowly. In the Raman regime this increase is

_ . notably faster. The calculated response times in the range of
Here()=w/w, where is the Raman resonance frequency,s_3o ns are in agreement with experimental data.

andw is “;e output frequency. . . Figure 6b shows the resulting radiation efficiengyfor
b lE\IoteZt 4at_ at sc)tmetquilltrary t'nll.e't ethparamei@I? medff_ different oscillator lengths. Each system length has a corre-
ci}t/ancq. ESu'z ;?ter:Otr;escrllj(irgntspleflzénlge’a dir? %?jnegavl\/?;gi: g sponding optimal configuration of the electron and plasma
y. BU . P ; g edge, beams in the cross section at which the energy loss to radia-
constant, it determines the lost fraction of the beam energy. . . - .
tion of the electron beam is maximum. The efficiency maxi-

This loss is due to the following drains: plasma heating, re- ) ) .
flection of electrons in the regian<0, and radiation. In our mum decreases with the oscillator length and shifts to the

model, the plasma heating is neglected, and in real condf2n9€ of large separations between the plasma and electron

tions it is not essential. Numerical calculations indicate thaP&am-

there are no reflected electrons. Thus, the energy is lost only At each fixed length., the oscillator has certain features.

to radiation. There is an optimal plasma radius, at which the radiation
Figure 5 shows the output power and beam current pulsefficiency peaks. At larger and smalleg the efficiency is

shape forL=15 cm and several plasma radii. One can sedower. The drop in the efficiency with, has a simple expla-

that the oscillator response time increases with the separatigration: the oscillator response time increases because of the

between the electron and plasma beamsr At1 cm the lower coupling constant, and only a fraction of the beam

Iy, NS n
2 3 0.12
0.10} FIG. 6. (a) Response time of the oscillator as a
A function of the plasma radius for several tube
0.08 lengths:(1) L=10; (2) 15; (3) 20 cm.(b) Oscil-
0.061 lator efficiency as a function of the plasma ra-
0.04 dius at several tube length&t) L=10; (2) 15;
0.02+ (3) 20 cm.
0 0

065 075 085 095 105 I,» CM 065 075 085 095 1.05 T,: CM
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FIG. 7. (a) Amplitude distribution of the resonafihick line) and reflected w, 10 rad. s
(thin line) waves at=22 ns forL =15 cm and ,=0.79 cm.(b) Phase plane

of the electron beam dt=22 ns forL =15 cm andr,=0.79 cm.(c) Spec-  FIG. 8. (a) Amplitude distribution of resonarthick line) and reflectedthin

trum of the resonant plasma wave output radiation lfer 15 cm and line) waves at the momertt=22 ns forL=20 cm andr,=1.03 cm.(b)

r,=0.79 cm. Phase plane of the electron beam at the morter®2 ns forL =20 cm and
r,=21.03 cm.(c) Spectrum of resonant plasma wave output radiation for
L=20 cm andr,=1.03 cm.

current is utilized. At very large, the pulse is even shorter

than the response time.

The efficiency decrease with decreasingalso has an
explanation. The generation parameters approach those of ) o )
the Compton regime as the plasma radius drops. It is knowNOWn by the phase trajectory in Fig. 7b. Figure 7a shows
that in the Compton regime the coupling between the electhat electrons are captured inside the oscillator caV|ty_ at
tron beam and plasma is stabilized due to capture of bea 11 cm. These parameters correspond to the nonoptimal
electrons by the plasma wave fiéfiThe captured beam is Compton regime. The fast capture of the electron beam, drag
divided into bunches, which oscillate in potential wells cre-Py the plasma wave, oscillations, and destruction of electron
ated by the plasma wave, and they sometimes absorb energyinches lead to the wide output spectr(fig. 79. Most of
from the wave, sometimes emit their energy into it. The ef-the radiation is emitted in the band between the Cherenkov
ficiency is maximum at such a plasma radius that the elect12x 10" rad/9 and Raman (18 10' rad/9 resonance fre-
trons are captured, with due account of the feedback effect§luencies.
near the output coupler, where they leave the oscillator. Ata Figure 8a—c show the curves similar to those in Fig.
smaller plasma radius, the coupling between the electroda—c, but aL. =20 cm andr,=1.0 cm, for which the oscil-
beam and plasma is stronger, the capture point shifts insid@tor parameters are close to those of the Raman regime. The
the system, and electrons leave the system in the phases letk of significant spatial oscillations of the resonant wave
post-capture oscillations, when they absorb energy of thamplitude due to electron capture is evident. The nonlinear
plasma wave. For this reason, the oscillator efficiency dropsstabilization of the plasma—beam instability in this case is

Figure 7a shows the distribution of the amplitudes of thedue to the reversal of the beam wawehich can be seen in
resonantthick line) and reflectedthin line) waves at a fixed the phase plane of the beam electr@Fig. 8. The absence
timet=22 ns,L=15 cm, and' ,=0.79 cm. The phase plane of oscillations of the resonant plasma wave results in a nar-
for the beam electron at the same moment and same oscillsewer output spectrunFig. 80.
tor parameters is shown in Fig. 7b. The ordinate is the di- In our opinion, no reliable data about the spectra of
mensionless velocity;j=v;/u. Finally, Fig. 7c shows the plasma microwave oscillators have been published to this
output radiation spectrum for this case. Figure 4 indicatesime, so we do not compare the details of calculated and
that atr,=0.79 cm the oscillator operates in the Comptonexperimental spectra. This issue can be reconsidered when
regime. It is characterized by post-capture oscillations of th@ew results of the experiment which is currently under way
beam electrons in the field of the resonant plasma wave, awe available.
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An experimental investigation and numerical simulation of resonant laser breakdown are
performed. As a result, quantitative agreement between the experimental data on the parameters
of a dense resonant plasrtthe electron density and the electron temperatarel the

results of calculations in the range of detunings of the laser radiation from resonance
AN>2-25 nm, in which the spatial instability of the intense resonant laser beam and the
absorption of radiation are minimal, is obtained for the first time. It is shown that the

previously proposed mechanism of resonant breakdown associated with laser-induced associative
ionization introduces only a small correction to the final extent of ionization of the resonant
plasma and scarcely alters its temperature. The influence of quantum stimulated inverse
bremsstrahlung processes, which are usually described as collisions of the second kind in the
resonance case, on the energy gain by electrons is analyzed for the first time in reference

to specific experimental findings. The numerical calculations show that at detunings of the order
of the Rabi frequency, the mechanism by which electrons gain energy through the resonant
system does not reduce to collisions of the second kind and can significantly increase the density
of the resonant plasma. However, in this range of detunings the laser beam is still strongly
perturbed by instability processes, precluding a proper comparison of the theory with experiment.
At large A\ the classical and quantum cases differ from one another only slightly, and the

values ofN, calculated for both mechanisms lie within the measurement errorl9€¥ American
Institute of Physicg.S1063-776(097)01204-3

1. INTRODUCTION ally two-quantum ionization of a resonant level, and laser-
induced collisions. The seed electrons then quickly gain en-
The resonant laser plasma produced when laser radiatiagrgy in superelastic collisions with resonantly excited atoms
with a quantum energy close to the energy of some resonawff the medium, quickly populating higher-lying levels and
atomic or molecular transition acts on a gaseous medium hasnizing them. A certain auxiliary role is again played here
attracted attention for a long time and has been thoroughlpy the laser radiation, which accelerates the rise in electron
investigated in many studigsee, for example, the reviews density by causing the one-quantum photoionization of the
in Refs. 1-3 and the references cited thexeliis is largely  highly excited levels. Ultimately the development of electron
because the resonant plasma, which has a high densitwalanche leads to essentially complete ionization of the me-
Ne=10"—10" cm™2 at a relatively low electron tempera- dium in a narrow channel along the laser beam.
ture T,=0.2—0.5 eV, is a unique physical system and, as  We note that as was shown theoretically in Refs. 2 and
was noted in Ref. 4, the achievement of such parameters bg, in a strong resonant field the rate at which electrons gain
other methods is infeasible in practice. energy in quenching collisions can differ significantly from
The broad range of the parameters of experiments iithe rate postulated in Refs. 5 and 6.
which the formation of a resonant laser plasma has been Besides the mechanism just considered, other mecha-
studied, viz., the density of the mediutwhich generally nisms for the formation of a resonant plasma have been pro-
consists of an alkali-metal or alkaline-earth-metal vapitie  posed in several papers. In particular, it was concluded in
intensity and duration of the laser pulses, the energy spectiRefs. 8 and 9 on the basis of an analysis of numerous experi-
of the atoms irradiated, etc., has greatly hindered the formumental data that laser-induced associative ionization involv-
lation of a general theory for the phenomenon under considing resonantly excited atoms plays a major role in the devel-
eration, and there are presently several models of resonaopment of breakdown.
breakdown. It follows from the foregoing that for resonant break-
The model proposed in Refs. 5 and 6 is most generalidown of a medium in any case the intensity of the laser
accepted for the case of high vapor density and pulsed laseadiation need be only of the order of magnitude of the satu-
action. According to Refs. 5 and 6, in the first stage of breakration intensity, which is low in metal vapors
down the resonant transition becomes saturated by laser r&7,=10—1000 W/cn?) as a consequence of the large value
diation, and initial ionization appears in processes involvingof the dipole moment and the small width of the resonant
excited atoms, viz., associative ionization, multiphotosu-  transition(of course, in real experiments because of the great
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amount of absorption, as well as the finite time needed for- A v, and thus strong-field effects could not be detected in
the development of electron avalanche, significantly greateRef. 17. In addition, there was no comparison of experiment
intensities, 7=10°—10° W/cn? with a pulse width of with theoretical calculations in Ref. 17. The dependence of
10 8-10© s, are needed to create a plasma channel with the plasma density on the detuning from resonance was mea-
length of ~1-10 cm in a vapor with a density of sured in Refs. 18 and 19 during an investigation of the ero-
10"-10" cm™3). In the case of nonresonant breakdown, insion plasma formed when laser radiation interacts with the
which the mechanism for heating the electrons is determinedurface of a metal target. However, here too the strong non-
by inverse bremsstrahlung, the threshold intensities argniformity of the erosion torch essentially precludes a quan-
known to be much greater: 16 10'* W/cn?.1° In the case titative interpretation of the experiment.
of resonant breakdown, the role of traditional inverse brems-  In the present work, which is devoted to an experimental
strahlung is negligiblé? investigation and theoretical simulation of resonant break-
Although various models of resonant laser ionizationdown at various detunings, an attempt is made to fill this gap.
qualitatively account for many experimental findings, theDetailed data on the characteristics of a resonant laser
calculations performed on their basi&!'~1*are consistent plasma as a function af» have been obtained for the first
with the experimental data only in order of magnitude. Ittime in the case of sodium vapor, and we have determined
should, however, be noted that there is no detailed comparthe range of detuning over which the influence of the insta-
son of the results of theory and specific experiments in th&ility of the laser beam is minimal, but considerable ioniza-
literature. On the other hand, the setting up of experimentdjon is still observed. In addition, we compare experimental
especially in dense vapors, greatly impedes their unequivocélata and the results of numerical calculations, and we use the
interpretation. To a considerable extent, this is because th&sults to evaluate the roles of the various ionization mecha-
nonlinear interaction of intense laser radiation with a dens&isms.
resonant medium causes not only ionization, but also several Section 2 describes the experimental setup and the diag-
other well known phenomena, particularly spectral and SpaDOStiC methods. The results of the experiments are presented
tial instability of the laser wavésee, for example, Refs. 15 in Sec. 3. Section 4 is devoted to a description of a theoret-
and 16 and the references cited there#s a result of such ical model of ionization. Finally, Sec. 5 contains the results
instability, the divergence of the laser beam increases corff numerical simulations, a discussion of these results, and a
siderably and its spatial structure becomes highly distortecGomparison with the experimental data.
making the intensity of the radiation, which largely deter-
mines the ionization kinetics of the resonant plasma, uncer?- EXPERIMENTAL SETUP AND DIAGNOSTIC METHODS

tain. In addition, the presence of |nStabl|lty precludes prop- The experiments were carried out using a setup consist-
erly taking into account the strong resonant absorption whicling of a tunable dye laser, a heated cell with sodium vapor,
the laser beam experiences in a dense medium. All thignd a set of diagnostic instrumerisee Fig. 1 The design
makes it impossible to properly compare the experimentabf the heated cell was similar to that described in Ref. 20 and
data with theory and to establish the real contribution of anyhermitted the creation of a cylindrical column of sodium
particular mechanism to the overall pattern of resonanyapor with a height of 1.5 cm and a density greater than
breakdown. 10 cm™ 3. Before performing the experiments, the cell was
Nevertheless, it is possible to eliminate or, at leastevacuated to 10° mm Hg and then filled with an inert gas
strongly suppress the negative effect of instability, if the fre-(argon at a pressure of 190 mm Hg and heated to the re-
quency of the laser radiation, is shifted relative to the quired temperatureT(~700 K). The relatively high argon
resonant frequencyy, since the growth rate of the instability pressure was necessary to prevent the condensation of so-
decreases rapidly as the detunihg= v — v, increases. At  dium vapor on the windows and other cold parts of the cell.
the same time, because of the large value of the ratidThe density of the sodium atoms and its distribution over the
1.7, it can be expected that the extent of excitation of theradius of the cel(Fig. 2) were calculated by taking the Abel
medium will still be considerable even whexw is fairly  transform of data obtained by the Rozhdestvensidok
large, although the absorption of laser radiation decreases asethod(for further details, see Ref. 2itaking advantage of
the detuning increases. In addition, studying the dependencghke cylindrical symmetry of the vapor column. We note that
of resonant ionization on the detuning permits variation ofall the experiments were performed at the vapor derisity
the degree of saturation of the medium at a constant intensitgt the maximum of the distribution, which equals B0
of the laser radiation, making it possible to separate the inem™ 3. The argon density in the hot zone was two orders of
fluences of different processes on the formation of the resamagnitude greateiN,,=2.6x 108 cm 3.
nant plasma and, in particular, to evaluate the influence of a The tunable dye laser was excited by the second-
strong field on the heating rate of the electrons. harmonic emission of a YAG:Nid laser and generated lin-
Nevertheless, to date there have been essentially no suelarly polarized radiation with a spectral width of 0.05 nm
investigations. To the best of our knowledge, the dependencand pulse widthr; =16 ns. The pulse-to-pulse variability of
of the density of a resonant plasma on the detuning in @he output energy of the dye laser did not exceed a few
stationary vapor was measured in only one sttfdlow-  percent. The laser was tuned to a specific wavelength to
ever, in Ref. 17 the width of the resonance curve was of thevithin 0.02 nm relative to the standard spectrum of a neon
order of the spectral width of the laser radiatidbm_, and its  lamp using a DFS-451 grating spectrograph, in whose focal
intensity was so low that the Rabi frequency was alsgplane there was a photodiode array, which simultaneously
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FIG. 1. Experimental setupt — dye laser,2 —
Eg] 0 < pll n I:g:l cell, 3 sodium vapor column4 — grating mono-

! chromator5 — FEU-84 photomultiplier6 — V9-5
0,= > gated voltmeter,7 — IMO-2N calorimeter,8 —

photodiode array9 — FEK-31KP coaxial photo-
cells, 10 — personal computer.

recorded the spectrum of the laser radiation and the referenege of the central fluorescent region at the entrance slit of a
spectrum. The laser beam was directed into the heated cejtating monochromatdrl200 lines/mm The slit width was
and focused at its center by a long-focus objective lenset to 20—4Qum in the experiments, and the slit itsélfith
(F=150 cm. The radius of the beam at the half-height of a height of 1 cm was oriented parallel to the plasma chan-
the energy distribution, which was measured by another phaiel. Considering of the twofold demagnification of the image
todiode array in the focusing region in the cold dgke., in  produced by the projection system, this means that the spa-
the absence of vappmwas 0.3 mn{see Fig. 3. In the central tial resolution of the detection system along the channel was
portion of the cell of radius 3 cm the value pf remained 2 cm. We note that the vapor density is essentially constant
unchanged to within the experimental errar @.015 mn). over this distance{ 1 cm from the center of the cgl(see
We note that in discussing the experimental data below, wé&ig. 2). The resolution along the height of the channel was
shall construe the intensity of the laser radiatiop as the  0.04-0.08 mm.
guantity calculated from the formulz, =E, /(7. S,), where An FEU-84 photomultiplier was positioned behind the
E, is the energy of the laser pulse afid=7r2. The energy exit slit, and its signal was recorded by a V9-5 gated volt-
distribution over the cross section of the laser beam aftemeter with a variable time delay; relative to the beginning
passage through the sodium vapor was measured by a thicd the dye laser pulse. The intensity of the plasma fluores-
photodiode array 110 cm from the center of the cell. Thecence remained essentially constant within the grating time
total power and the energy of the laser radiation at the celf4 n9. To obtain the fluorescence spectra of the plasma, the
entrance and exit apertures were monitored by coaxi#l-FE transmission wavelength of the monochromator was auto-
31KP photocells and IMO-2N calorimeters. matically scanned in the vicinity of the spectral lines se-
The parameters of the resonant sodium vapor plasmiected, the photomultiplier output being averaged over 10
(electron density and electron temperajusere determined
using optical diagnostics from the Stark-broadened profile of
the spectral lines and their relative intengty>For this pur-
pose, the fluorescence of the plasma at the center of the cell
was collected in the direction perpendicular to the axis of the /\\

laser beam by two objective lenses, which composed an im-

‘——j\\_—z__‘
N, 10"cm™®
2.0 /’/\,\\i*

1.5F
4
1.0} M
0.5¢ 06 -04 02 0 02 04 06
r.cm
0 L L . . . .
0 1 2 3 4 5 6 7 FIG. 3. Energy distribution of the radiation across the radius of the laser
R,cm beam:1 — at the center of the cold cdlin the absence of vappr—5 —

emerging from the heated celNf=1.8x 10'® cm™3) at various detunings
FIG. 2. Distribution of the density of the sodium vapor across the radius o2 — AA=3 nm,3 — AA=1.2 nm,4 — AA=0.3 nm,5 — AN= — 3.6
the cell. nm); .7, =66 MW/cn?.
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E,, /Eq did, the recording photodiode array significantly exceeds its ap-

2.0 ol oo erture (1.3 cm. As the detuning increases, the contraction
rapidly weakens, and the cone angle decreases. Being super-
1.5t : imposed on the beam core, the conical emission broadens the
*s measured beam profile significantly over a narrow range of
1ob R A AAAAA } e detunings, imparting a characteristic two-humped shape to it
R (curve3in Fig. J). At still larger detuning®AA>2—2.5 nm
ost 1 ¢ s‘: ] the instability effects cease to influence the spatial form of
° % the beam, and the profile measured under such conditions
oLe ° ‘ 3%_9 (Fig. 3, curve?) is essentially the same as the one recorded
-4 -2 0 2 4 in the absence of vapor.
AA, nm

In the opposite case of long-wavelength detuning

FIG. 4. Dependence of the relative energy of the laser bEggE, ab- (AN<0) there are no data on the ratiéd, in Fig. 4, since
sorbed in the sodium vapdf, 3) and of the relative beam diametetd, |arge_scale Self-defocus|ng processes erode the beam prof”e
emerging from the cel(2) on AN (1, 2 — experiment,3 — calculation); much that r rding within th rture of th hotodiod
7,=66 MW/cn?. The vertical lines mark the positions of the sodiii SO muc atreco ) g € aperture of the photodiode
andD2 lines. array becomes possible only whigx\ | = 3—4 nm. We note

that the conical structure of the laser beam scattered in the
) Na vapor is clearcut even at such large detuniffgg. 3,
pulses at each point along the spectrum. The spectral resolgarve 5)

tion of this system reached 0.02 nm. The absorption of laser radiation is also important in the
L s T vicinity of resonance. These data are also presented in Elg. 4,
RESONANT LASER PLASMA where the dependence of the beam energy absorbed in the
vapor E 4, normalized by the beam enerdy, at the cell
entrance aperture plotted. The asymmetry of the curve asso-
ciated with the dependence of the spatial structure of the
laser radiation on the detuning considered above is appre-

_An investigation of the spatial structure of a laser beanyjgple. Because of instability effects, the cross-sectional area
with an intensity of some tens of MW/cin gr_ld a Wave- g of the beam, and therefore the absorbed potmdrich is
lseond%r:ndo:o:g th% SOf 1h§2); and;)r]i trasggtlo_ngzgf the proportional toS when.7>.7), are significantly greater at

12 12 12 32'  npegative values ofAX than at positive values, and conse-

Ap1=589.592 nm,\p,=588.995 nm, which has passed . o . .
th?éugh a vapor withDéensity 10% o2 e under condi. Auently the drop irEpswith increasing AX| is more gradual
e .at AN<0. We note that at small positive values &h a

tions characteristic of many experiments devised to investi= ) h - )
gate resonant laser ionizatidnompare, for example, with considerable fraction of the beam energy shows up in conical

Refs. 9 and 24 demonstrated, as expected, the presence @gmission, which undergoes considerable absorption. There-
developed spatial and spectral instability in the laser wavefore, despite the strong contraction of the beam core, the
This instability is clearly evident in the experiments in the energy of the laser pulse absorbed in the vapor remains high
form of broadening of the laser emission spectrum, selfnear resonance: 3o 0.8, for0 < AN < 1 nm.
focusing and self-defocusing of the laser beam as a whole, These data clearly indicate that, near resonance, as dis-
splitting of the beam into separate filaments, generation ofussed in the Introduction, strong nonuniformity of the beam
conical emission, generation of frequency-mixed scatteringind considerable absorption preclude a proper determination
components, etc. As we have already noted, the characterigf the intensity of the laser radiation in the zone where the
tics of such instability are well known, and here we only flyorescence of the resonant plasma is recorded. Moreover,
dwell briefly on the results that have direct bearing on theyf |ong-wavelength detuning range is totally inaccessible to a
formation of the resonant plasma. comparison of the results of experiments and theoretical
Figure 3 presents profiles of the laser beam recorded & jation, because, as the measurements have shown, spa-
the sodium vapor cell output at different values of the detun;[ial nonuniformity of the radiation remains up to values of

ing AN (AN=X\po—\_, A\ is the wavelength of the laser . . . - S
radiation), and Fig. 4 shows the dependence of the diamete%)\ at which there is essentially no significant ionization of

d of a cross section of the laser beam at the half-height of th he vapor. However, it follows from thg PIOtS in Fig. 4 thatin
energy distribution relative to the beam diametigrmea- e wavelength range <p, (i.e., positiveA)), the influ-
sured in the absence of vapor. It follows from these data thatnce Of the vapor on the spatial profile of the laser beam is
at relatively small detuningd >0, the laser radiation un- @already insignificant at relatively small detunings
dergoes strong large-scale self-focusifigyhich leads to AN=2-2.5 nm(where the degree of ionization is still high;
considerable contraction of the beam core. The usual conicge€ below;, and absorption reduces the radiation intensity
emission(see, for example, Ref. 26 generated in this case, only slightly. This permits the use of this range of detunings
but not at small ofA\, since the cone angle becomes soto compare experimental data with the results of theoretical
great that the diameter of the scattered beam in the plane ahalysis.

3.1. Measurement of the absorption of laser radiation in
sodium vapor and spatial structure of the laser
beam emerging from the cell
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3.2. Measurement of electron density and electron
temperature in a resonant laser plasma J\\Aj\“v\
The formation of a resonant laser plasma under the con- 3
ditions of our experiment was visually observed in the form
of distinct white glow in the channel of the laser beam when
radiation with a wavelength close to the wavelengths of the 2W)\_JM\~NA»_
D1 and D2 transitions and an intensity exceeding several
MW/cm? acted on the sodium vapor. As in Ref. 9, the
plasma fluorescence contained numerous spectral lines, the
strongest of which belonged to thé®3-nD (n=3-7) and . ;
3P—nS (n=4-7) transitions in a neutral sodium atom. 567 568 569 570 A, nm
There were no lines of sodium ions or argon atoms in the 6.5 Exoerimenll 4 brofiles of the i dina to th
fluorescence spectrum. This is obviously attributable to the@P_‘ ha t’r‘;’:S”ig‘oen’? P Gp;‘r’n"gs_o A)\ez'gisncnifrss_poz)\'igo o the
high excitation potentials. nm: 7, =66 MW/cn?, r,=130 ns.
To determine the electron densltly, we chose the spec-
tral lines corresponding to theP3-4D (A=568 nn) transi-
tion, since, on the one hand, they had the highest intensitthird component of the multipletwhich corresponds to the
and were easily detected as the intensity of the laser radi®?P5,— 4?D5, transition does not show up at all in the
tion, the detuning of the laser frequency from the frequencyspectrum, since its intensity is low, and the wavelength is
of the 35— 3P transition, and the time delayy between essentially the same as that of theP3,— 4°Dyg, transition.
detection and the beginning of the laser pulse were varieEven under resonance conditions, the lines in the short-
over broad ranges. On the other hand, there are reliable thesavelength wing of the B—4D multiplet that correspond to
oretical data on the broadening parameters for tRe-3D dipole-forbidden ® —4F transitions, which can be excited
transition?>?’ In addition, at electron densities between at high electron densities, do not show up at all in the spec-
10*® and 13°% cm3, the Stark widths of the spectral lines for trum.
this transition are fairly largéof the order of 0.03—-0.3 nm Note that the isolated-line approximation, in which the
and, as can easily be shown, greatly exceed the broadenirglculations of the Stark broadening parameters were per-
due to other factor¢Doppler broadening, collisional broad- formed in Refs. 22 and 27, is valid if the distance to the
ening, ete. nearest perturbing level is much greater than the Stark width.
At the same time, the use of spectral lines correspondingn the sodium & levels ,this means that the influence of the
to transitions to the sodiumPR levels for determining the 4F levels will be negligible, ifN,<6Xx 10 cm™3. This is
plasma density has its own drawbacks: in particular, it enalways the case under the present conditions.
ables one to make measurements only in the plasma after- Figure 5 clearly shows that the spectral lines are some-
glow in the absence of radiation. This is because the considvhat asymmetric and broadened on the red side. This means
erable optical thickness of the plasma channel introduces that, besides electronic broadening, ionic broadening affects
significant error into the profiles of the detected spectral linesheir shape. Under these conditions, the line profile is not
due to the high population of the resonant levels during d.orentzian(collisional), and the electron density was, there-
laser pulse. Measurements are possible only after the poptere, determined using the Holtsmark distribution, which de-
lation of the 3 levels has dropped to an acceptable level ascribes the Stark profile of spectral lines with consideration
a result of spontaneous decay and deactivation by electronef the influence of the ions in an ideal plasma. For this pur-
Under the present conditions, the lack of capture wagose, in the first step the Holtsmark distribution tabulated in
verified by the correspondence of the intensity ratio of theRef. 22 was approximated by a certain analytic function
principal lines in the multiplet to the theoretical value deter-F(\,N.) on the basis of the experimental data on the elec-
mined from the sum rule: J(32Py,—4°Dy)/ tron temperaturgsee below, and this function was then
J(32P 35— 4?Ds)p) heo= 0.56. As the measurements showed,used to construct another functidn(\,N.), which describes
the plasma becomes optically transparent when the time de¢he superposition of the profiles of the two strongest lines of
lay relative to the beginning of the laser pulse is of the ordethe multiplet with consideration of their relative intensities.
of 80—100 ns; therefore, all of our experiments were perfinally, the convolution ofd and the instrumental function
formed with 74=100 ns. We note that absorption by Na of the monochromator, which was already used to approxi-
molecules (with a crosssection=10"%" cn? (Ref. 28), mate the experimentally measured spectrum of the multiplet
which atT=700 K account for~3% of all atoms®is neg- by the least-squares meth¢ske Fig. 6, was calculated. As
ligibe at these vapor densitié¢see also Ref. )9 A more de-  a result, this procedure made it possible to obtain the value
tailed discussion of the applicability of Stark methods to theof N, with which the theoretical curve most closely describes
measurement of the density of a resonant laser plasma can tie experimental data.
found in Refs. 9 and 24. The results of the measurements of the dependence of
Figure 5 presents profiles of thé?3-4D multiplets re-  the electron density on several parameters of the experiment
corded experimentally at various detunings. They displayare shown in Figs. 7-9. It is clear from the preliminary data
only the two strongest lines, which correspond to thethat the dependence ®f, on the detuningA\ has a reso-
32P,,,— 4?Dy;, and FP,,— 42Dy, transitions, while the nance characte(Fig. 7) and that the maximum of the elec-
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FIG. 6. Experimentally measured profile of thé®34D multiplet for
AN=2.1 nm and its approximation7, =66 MW/cn?.
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tron density Ne=8x 10" cm3) is achieved when the laser

radiation is tuned to the frequencies of fh& andD2 lines. o

One characteristic feature of this dependence is the fact th S'i:t'er?;g/e';?eg]‘;e I‘;fsg'rerzlgi‘:trig&degp'grit:z;ﬁzon_anzé?csjgﬁﬁma on

N, decreases considerably more slowly at short-wavelengtiy =2 1 nm, ,=130 ns.

detunings than at long-wavelength detunings. This is because

the laser beam is broadened to a considerably greater degree

at negative detunings than wham >0. The intensity of the

radiation at a given absolute value of the detuning is signifiSitions. The applicability of this method is based on the fact

cantly smaller forAA<0 than forAN>0. This is respon- that after completion of a laser pulse, the dense resonant

sible for the faster drop i, at negative detunings. plasma quickly reaches a state of local thermodynamic
Figure 8 presents the dependence of the electron densigﬂuilibrium.“’29 As we know, for the existence of local ther-

on the intensity of the laser beam fan=2.1 nm, i.e., for modynamic equilibrium, the plasma density must satisfy the

the detuning at which, as follows from the foregoing, a moreconditiorf®

or less proper determination of the power density of the laser _ 4 _y

radiation is possible. Plots of the time dependenchl ofor Ne[cm™*]>3.3x 10°Ep, {eVIT, Tevl,

two values ofAX are shown in Fig. 9. Hence it is clear, in \yhere E.., is the highest energy of the transitions consid-
particular, that at both detunings the plasma density degred. Under the present conditiong,{,<2.5 eV, T,.~0.5
creases approximately by a factor of 2 after a timegy) the critical electron density is of the order o0
712=100 ns; at least-squares fit to the experimental datgm-3 which is several times lower than the experimentally
yields Ne(t)o t~*. measured values, and therefore the inequality just presented
The electron temperaturg, was determined in the ex- g satisfied with a sufficient margin.
periments from the relative intensity of the set of spectral  The gata from a series of measurements of the intensities
lines belonging to the B—nD and 3°—nS series of tran-  of |ines are presented in Fig. 10. Here the energies of the
upper levels of the corresponding transitions are plotted
along the horizontal axis, and the values plotted along the

N 10'em® vertical axis are of the logarithm of the reduced intensity
10 J’ of the emission in the line:
0.8} of®
0.6 °
)
o
0.4
(-]
0.2t o ©
0 Dl|_|D2 3
—4 -2 2
AA, nm
FIG. 7. Dependence of the electron density in the resonant laser plasma on
the detuningA\X: 1 — experiment;2, 3, 5 — calculations based on the
mechanism proposed in Refs. 5 and 6 without consideration of the influence

of stimulated inverse bremsstrahlung on the heating of the electons; 100 140 180 220 1 ns

calculation with consideration of that effect. Curseorresponds to a cal-

culation with the inclusion of laser-induced associative ionizatign= 66 FIG. 9. Dependence of the electron density in the resonant laser plasma on
MW/cm? (1, 2, 4, 5) and 33 MW/cnd (3), 74=130 ns. The vertical lines time (1, 2 — experiment,3 — calculation: 1, 3 — AA=2.1 nm,2 —

mark the positions of the sodiud1 andD2 lines. AN=0, 7,=66 MW/cn?.
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dium vapor and a buffer gaargorn, allowing for the actual
temporal shape of the laser pulse. It was assumed here that
both the medium and the laser radiation are spatially homo-
geneous, and, thus, the development of breakdown with time
can be described by a system of ordinary differential equa-
tions. This system included equations for the populations of
a series of levels of the Na atom, equations for the number
densities of the electrons, monatomic Néns, Ng and
NaAr" molecular ions, and Nasodium molecules, an equa-

4.8 tion for the electron temperature, and an equation for the
laser pulse energ¥y dissipated per unit volume of the
resonant medium. We note that the excitation and ionization
processes of Ar atoms and the excitation of"Nens, which,
as estimates show, are insignificant at the small values of
T, characteristic of a resonant plasma, were neglected in the
model. This is also confirmed by the absence of any lines for
argon and the Naion in the fluorescence spectrum of the
plasma column.

In the calculations we did not assume complete satura-

where \ is the wavelength of the transition, the indices tion of the resonant transition, and the populations of the

i=1, 2 correspond to the two components of the doublet, th . ;
J; are the intensities of the doublet lines with a correction for%S and 3 levels were calculated independently, with con-

the spectral sensitivity of the photomultiplier, ahdand g; Sffnerf?gr?]nrzfsg]neaiiéunéligf éze(:frig:elgfyem ;Te;a;e:hf?ﬁé
are the oscillator strengths of the corresponding transitions iH litting SA—0.6 ' (whi E ) gbl Vt(i)\ '
the doublet and the degrees of degeneracy of their lowerP' NG oA=1.5 NM (WAICh 1S comparable ), we

2
level; values can be found in Ref. 30. The electron temperat-reated the & levels as two separate levels“(,, and

2 . . - .
ture is given in such a plot by the slope (tam —1/T,) of 3“P3») that interact independently with the laser field. In

the linear least-squares fit to the experimental data. In thgddmon, It \r/]vas ne:):e;ssary t?héi;e mt(é E:i;;ountt ": the model
present caseT,~0.38 eV (AN=0) and T,~0.34 ey CENErYy exchange between 2 an 312 States, me-

- iated by collisions with argon atoms; the cross sections for
(AN=2.1 nm. Figure 11 presents the dependence of theﬂ:e Iatte); i fla:rl I::I o .(r(gP Py = 11X 101 crlnz
electron temperature on the detuning. As follows from this y 1arg A A ' '
(P3p— P1p) =0.56x 10 * cn? (Ref. 31). We neglected

figure, T, decreases only slightly as\ decreases, and this h ! lisi ith sodi hich
decrease lies within the experimental error. The electro/fNErdy exchange in collisions wit §?4|um atoms, whic
ve a similar cross section of X80 ** cn? (Ref. 32,

temperature is also essentially constant varies as the del ) ;
74 varies over the range 100—250 ns. since _the density of the buffer gas is more than two orders of
magnitude greater than the density of the vapor.

In calculating the cross sections of stimulated transitions,
the profile of each of the two resonant absorption lines was
assumed to be Lorentzian and to have a full width,, at

To calculate the characteristics of the plasma formed aga|f maximum equal to the sum of the widths corresponding
a result of resonant laser breakdown, we constructed a kip atomic collisional broadening and the decay of the reso-
netic model that describes the principal processes involved iRgnt |evels. Among the former we took into account only
the production of the charged particles in a mixture of soyesonant collisions involving the Vlasov—Fursov mechanism,
for which the collisional broadening parameters were taken
from Ref. 33 K, e=2.4X10 7 cn/s for the FP5, level).
However, the Weisskopf frequency, which determines the
limits of applicability of the collisional approximation and
can be estimated from that constant, is just onky1®° Hz
(which corresponds to a detuning of 0.04 )ni8ince we are
only interested in fairly largeA\, the contribution of the
resonant collisions to the absorption cross section was deter-
mined on the basis the static wing, which is kndtvo have
a symmetric Lorentzian line profile with a widthy, s Some-
what exceeding the collisional linewidttby 16% for the
32P,, leve)) in the process under consideration. For a vapor
02 , N density No=1.8x10® cm 3 Ave=7 KesNg is
4 5 1.4x 10° Hz. When the plasma parameters are calculated in

A4, nm the wavelength range of the laser radiatign<\p,, broad-
ening due to collisions of excited Na P3 atoms with argon
atoms can be neglected, since the static wing is significant in

Ep.ev

FIG. 10. Dependence of the reduced fluorescence intensity of the spectr
lines on the energy of the upper level of the corresponding transities:
AN=0,2 — AN=2.1 nm;.7, =66 MW/cn?, 74=130 ns.

InJ’=In()\3Z Ji/Z figi),

4. THEORETICAL MODEL OF RESONANT LASER
BREAKDOWN

0.4f
b

0.3f

FIG. 11. Dependence of the electron temperature on the detdnnghe
notation and the parameters of the experiment correspond to Fig. 7.
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this case only at low-frequency detuningsand the limit of  also turned out to be insignificant. We note that the possibil-
the collisional approximation based on the collisional broad-ty of one-photon ionization of the@ and 4S levels by laser
ening parameters given in Ref. 36 also corresponds to smathdiation with a cross section6x 108 cn? (Ref. 40 was
AN~0.2 nm. Inhomogeneous Doppler broadeningtaken into account in their kinetics. Photoionization was ne-
(Avp=2x10° Hz) likewise does not play a role in the glected for the higher-lying levels, since the cross section of
wings of the absorption lines. this process decreases rapidly as the excitation enErgy
In calculating the cross sections we also took into acincreases ¢ [ (I —E;)/hv ], wherel =5.14 eV is the ioniza-
count all the decay processes of the resonant levels includdibn potential of the sodium atoth).
in the model under consideration. Among them, the main  The applicability of the diffusion approximation is based
contributions are made by the aforementioned mixing ofon the fact that the influence of radiative processes on the
fine-structure states in collisions with argon atotagich  upper levels can be neglected at the large valuds.di/pi-
corresponds to a uniform widthv,,=0.46x 10° Hz for the  cal of the present experimentil{~ 10" cm™2).*8 Radiative
32P,, level), and by the electronic deexcitation of resonantdecay of the lower levels (3, 3D, and 45) was taken into
levels with a transition to the S state, with a rate constant account in the model, although as the calculations show, its
k(3P—3S)=1.6x10 ' cm’/s atT,=0.3-0.4 eV(Ref. 37, role is negligible, and therefore the possible capture of radia-
which corresponds to a similar width »,=0.5x10° Hz  tion in the 3P—-3S, 3D—-3P, and 45— 3P transitions is
whenNg= 10" cm 3. insignificant.  Population of the upper levels in
Other inelastic collisional processes have a significantly2Na(3P) — Na(3S) + Na(nL) reactions, whose constants are
smaller influence on the total broadening of the absorptiosmall (10 —10""3cm*/s (Ref. 28), likewise does not play
lines. The contribution of spontaneous emission is small@ role. The constant for excitation transfer from resonant
Avg= 107 Hz3 We note that the short phase relaxation timelevels to a Na molecule is considerably larger~(10~°
of the resonant system T,<7 cm’/s (Ref. 28). However, owing to their low density
(To=(mAvy) t=m Y Avect Ava+Avy) 1~10710 g  (6x10“cm?), this process likewise does not affect ioniza-
and the large value of the Rabi frequendygr >1 tion kinetics in times~10"7 s. As estimates show, in this
(Qr=pE/%, wherepu is the dipole moment matrix element situation stepwise ionization is relatively insensitive to the
and E is the field Strength of the laser wave; whefx=70 details of the IeVeI'by'IeVel kinetics in h|gh|y excited states
MW/cm?, Qr=8x 102 s~ 1) enables us to ignore coherent of the sodium atom, and the incorporation of equations for
and time-dependent effects in the kinetic description of thdWo series of levelsas was done, for example, in Refs. 5, 11,
interaction of radiation with the resonant transition. 12, and 13 makes no particular sense and, in addition, is
Besides the resonant levels, only the two |0west_|yingunreliable, since the constants of the pertinent elementary
levels, D and 4S, whose ionization by electron impact has Processes are poorly knowsee also Ref. 14 _
been calculated in the diffusion approximatinyere taken Apart from stepwise processes, processes leading to
into account in the kinetics of the excited states in the modeiSeed” ionizatior?® play an important role in the dynamical
under consideration. This was based on the fact that becau§gvelopment of resonant breakdown. The main such process
of the low electron temperature under our conditiéS— S assomat_lve |on|z_at|on during a collision between two reso-
0.4 eV), inelastic collisions with electrons are important to Nantly excited sodium atoms:
the population kinetics of the Na levels only for transitions
between neighboring terms. Then the “bottleneck” in the2Ne(3P)—>Na2*+e, (ka=3.8x10 ' cmP/s (Ref. 28).
ionization of laser-populated resonant states is the excitation @
of the 3D and 4S levels nearest to them, since the energies
of the 3P—3D, 4S transitions are significantly higher than Although the value of this constant, which was accurately
the energies of the transitions between the higher-lying levmeasured in special experiments at low intensity of the ex-
els. We calculated the constants of the processes of excitgiting laser field and agrees well with other ddsee the
tion and deexcitation by electrons in the dependencédn discussion of this point in Ref. 28s quite high(a constant
the 35—3P and 3 —3D, 4S ftransitions in the Van two orders of magnitude smaller was used in the analytic
Regemorter approximatiotf,and the calculated deexcitation model in Ref. 6, the actual contribution of associative ion-
constant for the resonant transition, whose value has thization is small. When the density of the resonantly excited
strongest influence on the final degree of ionization of theatoms is 16f cm™3, associative ionization occurring during a
vapor, coincides with the value measured in Ref. 37 to higlsingle laser pulse can provide an electron number density
accuracy 5%). only at the level of 1&f cm™2. In addition, this process has a
The electronic excitation constants calculated in thesignificant influence on shortening the time for the develop-
same approximation for the allowedS3nP (n = 4), ment of electron avalanche by providing a considerable num-
3P—nD (n= 4),and —nS(n = 5) transitions were sev- ber of initial electrons.
eral orders of magnitude smaller than the stepwise excitation We note that associative ionization involving atoms in
constants, confirming what was stated above. The probabilitypnore highly excited states has been neglected because of
of the excitation of forbidden transitions by electron colli- their relatively scarcity and the significantly smaller constant
sions is also negligible at low temperature. of the proces$® Apart from associative ionization, the fol-
The direct ionization of all the low-lying levels calcu- lowing less important processes were also taken into account
lated in accordance with the recommendations in Ref. 39n the model as sources of seed ionization: two-photon ion-
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ization of the 3 levels by laser radiation with a cross sec- times greater than the estimate obtained from the formula
tion o,p=7.8x10"*° cm/s (Ref. 41 and laser-induced given in Ref. 3. In addition, Ng ions form in similar

Penning ionization: conversion reactions:
2Na3P)+hv —Na"+Na(3S)+e, Na’+2Na—Na, +Na, (5)
(op=2X10"* cmfs (Ref. 42). (2) Na’+Na+Ar—Na, +Ar. (6)

As noted in Sec. 3, measurements of the electron densitflowever, whenN,~10'® cm™3, reaction(5) is completely
could only be performed with a considerable delay relative tanegligible, while(6) makes a small contribution to the total
the end of the laser pulse. For this reason, to compare thgroduction rate of molecular ions, even despite the signifi-
experimental data with the results of calculations, it is verycant value of the conversion constdah estimate using the
important to have a proper description of the decay processdermula from Ref. 31 yields a value of>610 30 cmP/s).
of the resonant plasma. One of the main such processes is A significantly greater role is played by the production

three-body recombination, of the Ng ion in the associative ionization reaction consid-
. ered above, as well as in the following reaction involving
Na”+2e—Nate, (3 charge transfer from an NaArion:
whose constant was also calculated in the diffusion  NaArt +Na— Naj +Ar. @)

approximatior?® However, three-body recombination alone
is not capable of accounting for the experimentally observed he value of the constant of this process, which can be de-
drop in electron density with timéFig. 9). Thus, a typical termined from the polarization capture cross sectisae
relaxation timer, of the density of a resonant plasma as aRef. 49 is 2x10™° cmP/s.
result of this process, allowing for the dominant cooling of ~ The dissociative recombination constant of the NaAr
electrons in elastic collisions with ions, according to Ref. 29,ion in the model was set equal to that for the;Nan, for
for T,=~0.3—0.4 eV andN;=10' cm™3, is of the order of ~which the value X 10 7(0.026/T[eV])¥? was given in
5x10 ' s, which is several times the empirical value. Ref. 45. The results of the calculations, however, are insen-
We note that the characteristic relaxation time of thesitive to its exact value, since even if the constant is dimin-
electron density as a result of elastic collisions of electronsshed by an order of magnitude, dissociative recombination
with argon and sodium atoms, calculated from the data owf the molecular ions is still restricted by their production
the corresponding transport cross sections presented in Refate. Besides dissociative recombination, for thg Nen we
23 and 43, is an order of magnitude greater than The  also took into account another decay process, namely photo-
recorded drop inN. cannot be attributed to diffusional dissociation under the action of laser radiation with a cross
spreading of the plasma column, since the rate of ambipolagection of 1.% 10" cn?.*® Photodissociation by visible
diffusion at the pressures used in the experiment is low duéight is impossible for the NaAT ion, since the ground state
to the low mobility . of sodium ions in argon. The mobil- in the Na —Ar system has a single term, and transitions to
ity can be evaluated from the formdfa the excited states lie in the ultraviolet region.
. =97x 10" (N VBM)=30 cnf/V-s, where 3=11.08 Besides the equations for the populations of the levels of
amu is the polarizability of the Ar atothandM=14.6 amu  atomic sodium and the densities of the monatomic and mo-
is the reduced mass. Hence the typical time of ambipolalecular ions, an equation for the density of the,Maolecules
diffusion from a cylindrical column with a radius equal to was also introduced into the kinetic model of resonant break-
the radius of the laser beaf@.3 mn) is down. The only process that takes place with the participa-
tion of these molecules and had to be taken into account in
the calculations is their dissociation under electron impact,
whose constant was evaluated in Ref. 44=8x10 8

) cn/s. Photodissociation of Naby radiation at the laser
For these reasons, to describe the decay of the plasmﬁzavelength K~590 nm is insignificant®

;thed_model P;]adfto take mtodag(_:ount_ the pos&bli_prqcessfes Note that the excitation of vibrational and rotational de-
eading to the formation and dissociative recombination ofy e of freedom of molecular sodiuas well as, inciden-

molecular |ons,_yvh|ch can only be §Iaand_ NaAr ions _tally, the excitation of the molecular ionsvas neglected in
under the' conditions of the present gxperlment. _Th,e Mall}e calculations. The constants of these processes are un-
role here is clearly played by the NaAion (with a binding  |hon byt the estimates of these constants for similar
energy of 0.16 eMRef. 30), that forms in the conversion asma parameters in Ref. 44 show that they play a minor
reaction of the monatomic Naion role. The formation of the excimer NaAmolecule, whose
Na' + 2 Ar— NaArt + Ar. (4) dissociation energy0.07 eV(Re_f. 30) is of the order of th_e
temperature of the heavy particles, was also neglected in the
We were unable to find data on the constant of this reactiocalculations.
in the literature; therefore, its value was determined by fitting It was assumed in the calculations that the electron en-
the calculated\(t) to the experimental datéwith allow-  ergy distribution function is Maxwellian. Under our condi-
ance for all other plasma decay mechanismich yielded tions this is fully justified, since at the high values
the value % 10 3! cmP/s (we note that this value is three N.>10' cm 2 characteristic of the resonant plasma, the fre-

r\z 1 &
Tdif= ﬁ M+T925X10 S>7'1/2.
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guencies of the electron—electron collisions, which establish  When stimulated inverse bremsstrahlung is taken into
the Maxwellian energy distribution function, are sufficiently account, the expression for the energy gain in transitions
high. In addition, numerical simulations of the electron en-from the upper resonant level to other leveislso changes:

ergy distribution function in Ref. 12 show that a deviation

from the Maxwellian distribution is observed only in the Qom= E(ETQ) :hﬂ{kZm[Nz 1+A_,V

earliest stage of resonant laser breakdown, in which the ex- dt|2 om 2 41

tent of ionization is less than 16. All this makes it possible A

for us not to calculate the distribution function, but to simply +N,; | 1- _’V) _2km2Nm]a (10)
use the equation fof., which takes into account all pro- VR

cesses leading to energy gain or loss by electrons in th\ﬁ/herehvm is the energy of the 2 m transition,N, is the
present kinetic model. In this case the contribution of inversepopulation of levelm, andk,,, andk,, are the constants of
bremsstrahlung evaluated from the classical fornfdlas  the inelastic transitions in the absence of a laser field. As can
small and does not influence the reqske also Refs. 11 and easily be seen, Eq10) also transforms into the standard
12). _ _ expression in the same two limiting cases.

However, as shown in Refs. 2, 7, and 47, the mechanism |t should be noted that, generally speaking, under the
by which electrons are heated during resonant ionization of @pndjtions of our experiment the three-level nature of the
medium cannot be reduced to collisions of the second kinthesonant system must also be taken into account in calculat-
and it must be regarded as a stlr_nulateq inverse _bremsstram—g the energy gain by electrons, since the Rabi frequency
lung process accompanying the inelastic scattering of eleGyng the detuning are of the same order of magnitude as the
trons by an atom in the field of the resonant laser wave. We,o splitting between the B levels. However, since we
note that this phenomenon can also be interpreted in terms oy of no generalization of the transition probabilities for
inelastic collisions of electrons with a resonant atomic sySxtimylated inverse bremsstrahlung to the three-level case, we
tem split as a consequence of the dynamic S_tark effe(_:t. Thigsed the two-level approximation consisting(8f and (10)
enables us, in particular, to take resonant stimulated inversg ine equation fofl . In this caseN, andg, in (8) and(10)
bremsstrahlung into account in the equation for the temperggere construed as the total population and degree of degen-
ture without so_lw_ng the quantum kinetic equation by mOdE"_‘eracy of the 8Py, and P, levels, and the total value of
ing the terms in it that correspond to excitation and deexcCiyhe matrix element for the two transitions was used in the
tation of the resonant transition by electron impact while.gicylation of the Rabi frequendgee Ref. 3D We note that
allowing for the influence of the laser field. . _adetuning of 1.6 nm corresponds to the Rabi frequency for

The following expression for the energy gain loss in a7, =66 MW/cm?. The two-level approximation is also jus-
resonant transition as a result of resonant stimulated inversgieq by the fact that, as follows from the calculations, the
bremsstrahlung can be obtained from the probabilities correjeviations of the ratios between the populations of the
sponding to the transitions for a two-level system presente@spu2 and 2P, levels from those determined by the sta-

in Ref. 47 in the approximatiom > vg=Qg/27, v >Av,  fistical weights of those levels do not exceed 10%.
vr, Avs>(7T,) L

le:{i(%-e” 5. NUMERICAL MODELING AND COMPARISON WITH
dt\ 2 5 EXPERIMENTAL DATA
hv, Av 9> Av In the first stage of numerical modeling, we calculated
:T{ k21{N2 1+ o +ng— 1- V—,) the parameters of the resonant laser plasma for the mecha-
R ! R nism of heating electrons proposed in Refs. 5 and 6, which
01 Av Av corresponds to the approximatiop=0 in Egs.(8) and(10).
—ku[ Nza( 1- A TNy 1+ oA } (8)  Figure 12 presents the time dependence of the densities of

the individual components of the laser plasma, as well as the
whereN; , and g, , are the populations and degrees of de-electron temperature, for a detuning. =2.1 nm and a laser
generacy of the lower and upper resonant levkls,and  pulse intensity.7, =66 MW/cn? calculated for that case.
ky1 are the excitation and deexcitation constants in the abThe figure also presents the empirical temporal shape of the
sence of a laser field, ane,= (vi+Av?)*?is the general- |aser pulse, which was taken into account in the calculations.
ized Rabi frequency. As follows frori8), whenvg>Av and  As is clear from this figure, the development of resonant
N,=N,, the expression foQ, transforms at saturation into |aser breakdown is highly time-dependent. The electron tem-
the usual expression for the energy gain in collisions of theperature varies markedly during the laser pulse, rising from
second kind, and the energy loss as a result of excitation: its initial value, which was assumed to equal the temperature
r _ of the cell (~0.06 eV}, to 0.75 eV at the maximum of the
Quz=hvo(kaaNz = KiaNo). © lasing pulse. The high value of the temperature is associated
The same expression is also obtained in the other limitwith the still relatively low degree of ionization~0.01) at
ing case of a weak field and large detunings>vg, but that time. The rise of the electron density, and thus the large
when Av=vg, Qq, differs significantly from(9) and ex- losses involved in the large ionizing the Na atoms lead to a
ceeds it, the difference for given valuesif andN, being  subsequent drop in temperature to 0.45 eV by the end of the
greatest whel v=vpg. laser pulse(which is close to the analytically calculated
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16 -3 . mechanism in the model mentioned above and the neglect of
N, 107cm 7 T, eV Z rel. units . . . .
! 5 the Doppler broadening in the calculation of the cross section
1] N Na(3S) of the resonant transition. No simulation was performed at
-4 long-wavelength detunings, since a correct comparison with
) experiment is impossible for thefsee Sec. 3)1 As follows
3 from Fig. 7, the calculations fak\A = 2-2.5 nm agree well
1074 B with the experimental data to within the measurement error.
NaAr* In the intermediate range of detunings equal to 1-2 nm the
1073 Na, NaG3D)}1 calculated vaIues_ dfl are significantly higher thgn the mea-
T sured values. This also reflects the decrease in the effective
-41 ./ Naz 0 . . . .
10 S % intensity of the laser pulse in the region where the plasma
0 20 40 60 L ns parameters are recorded due to the influence of the instability

and the absorption of the laser radiation considered in Sec.
FIG. 12. Calculated plots of the time dependence of the concentrations @8.1. As the calculations showed, at the small detunings
individual components of the resonant laser plasma and the electron temMy\ =0.5—1 nm practically complete ionization of the me-
perature. The dashed line shows the experimentally measured temporal m is achieved by the end of the lase Ise not onlv fo
shape of the laser pulsg;, =66 MW/cnf, AA\=2.1 nm. ium 15 achi _V_ _y . _n . S r puise n 8 y tor

the laser radiation intensities realized in the experiment, but
also for significantly smaller intensities. The resonant plasma
decays in the same manner; therefore, as is shown in Fig. 7,
the calculated curve for7=66 MW/cn? practically coin-

nm. In the absence of radiation, the temperature continues t(ades with the curve constructed for an intensity two times

slowly decrease because of the cooling of the electrons iﬁmaller atAr=0.5 nm, deviating strongly from it at larger

elastic collisions and dissociative recombination processes.values OfAX. This is reflected in the fact that even at the

Note that in the analytic model in Ref. 6 and the numeri-fairly large detuningA =2.1 nm both the experimental and

cal calculations in Ref. 11, the temperature was found to bgalculated dependences Bt on the intensity of the laser

independent of the time and significantly higher: 0.8 eV. Theradiation _have a tendency fo achieve satura_t&ee Fig. 8
he relative agreement between the experimental data and

time-dependent character of breakdown typically also showt imulati its at Il detuni . hieved. b
up in nonmonotonic behavior of the density of the ground- € simulation results at small detunings 1S achieved, because

state sodium atoms. It decreases rapidly at first as a result &t g{;\lues OfAX f:lost(_a”to rtre]‘_sonaénze gom;t)rLete |o|n|zat|0n of thhe
saturation of the resonant transition, then increases som odium vapor IS Stll achieved during the puise even when

what asN, increases due to the rapid deexcitation of thethe intgnsity of the laser radiation .is reduced due to absorp-
resonant levels by electrons, and drops again toward the erfign- Figure 4 presents the theorepcal dependence of the en-
of the laser pulse, reflecting the intense ionization of the™'9Y (_)f the Ia_ser pulse absorbed m_the soqlum vapor on the
medium. The high electron density causes Nwlecules to dfatunmg, which was ca!culated _by mt_egratlEgis over the
essentially vanish at the end of the laser pulse as a result ameter of the cell with consideration of the measured

rapid dissociation by electron impact. The process leading t 9 (tR) ql;r:\/t?\(sfhe F'gi. 2 IA compar||:§on 4Of the ?X?ﬁ r'tTﬁ ntal
their formation is very slo#?*4and was not taken into ac- 9@ With the theoretical curve in Fig. 4 reveals that they are

count in the present model. The main components of thd! good agreement atllarge valuesiot, bgt(jlvergg signifi-

resonant plasma in the afterglow dsee Fig. 12 electrons cantly as resonance is approached. This is attributed to the

Na' ions (N(Na')~N.), and ground-state sodium atorhs appearance of intense absorption due to the development of
e/ ’

the character of the drop in the theoretiba(t) curve being instability under real experimental conditions. We note that,

consistent with experiment at large times equal to 100—25(5lnllke N‘?’ the calculated values of the_ el_ectron temperature
ns (see Fig. 9. agree with the experimental data to within the measurement

Note that the line profiles that we measure and use t rror over the entire range of detuningee Fig. 1) This is

calculateN, and T, correspond to integration of the plasma . ecagsél’e varies relatively slowly as the radiation_inte_nsity
fluorescence across the diameter of the laser beam. The a{%vaned at0< AN < 2 nm(compare curveg and3 in Fig.

sociated error, however, is small, since the dominant contri= )-
bution to the plasma emission comes from the narrow centj{av

zone of the plasma channel. An analysis of the experiment .
data obtained with the spatial resolution in Ref. 24, as well a§hOUId cause the dependenceNfon A (o be determined

a calculation of fluorescence in the spectral lines of théﬁa?i)rgy by t?he ddepten(_jence gf the podpulalitior; Oftrt]”%(lfvels f
3D — 3P transition integrated over the diameter, utilizing the (3P) on the detuning and, accordingly, by the degree o

model described above, confirm this fact and show that th atur:_:ltion of the re_sonant syste_m b y t_he laser rad_iation. The
error associated with averaging is in the range 10_15%’ull width at half-height of the distribution oN(3P) in the

which is within the overall error of the measurements. stationary case is specified by the expression

valueT.,=0.35-0.4 eV in Ref. ¥ the electron density reach-
ing a maximum at the same time for the detunihy=2.1

The decisive role of electron deexcitation of the resonant
els in the energy gain by electrons in the resonant plasma

Figure 7 presents the dependenceNgafon A\ calcu- AS G
lated for the short-wavelength detuninga = 0.5 nm. No ANnpy= ¢ Arie\ o (13)

calculations were performed for the near-resonance region
|[AN]<0.5 nm because of the use of the static broadeningvhere G=(1/2)(g3s/gsp+1)=2/3 andc is the speed of
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light. Setting Avy,,~=2.4x10° Hz for No~10' cm™2 and  noteworthy that the difference for the calculated electron
taking the relaxation time of the energy of the resonant sysdensity can be significantly greater under other conditions.
tem T;=(7Av,) '=6x101°s, we can easily show that This is because in the present experiment the resonant tran-
ANnspy=6 nm. With consideration of the roughness of its sition is still under strong saturation whefv=vgr. The
evaluation, this value agrees with the experimentally meaequality.7=.75, as we know, is satisfied at the detunings
sured value of 4 nm for the width of thé,(A\N) distribution ~ Ave=vr\T1/T,. For Ng=10' cm™3 the ratioT, /T, is ap-
(see Fig. 7. We note that if the spontaneous decay tifthé  proximately equal to 5, andv,=2.3vg. Therefore, when
ns) is used forT,, ANy (sp) turns out to be five times greater. Av=vg, the value ofN, still differs little from N;, and, as
Thus, the quenching of the resonant levels by electronfollows from (8) and (9), the differenceAQ=Q,—Q1, is
strongly diminishes the saturation, as was noted back in Refilso small. The maximum effect will obviously be achieved
48. Nevertheless, since the saturation is still great near ressthenT,=T,.
nance, it can be assumed that calculations based on this The calculations showed that at the larger detunings
model will also be valid in the range of detunings. <0.5 AA>2-2.5 nm the calculated values of the electron density
nm regardless of the broadening mechanism, as is confirmat the resonant plasma in the two cases differ from one an-
by the flattening of both the experimental and theoreticabther by an amount that is smaller than the measurement
Nc(AN) andT.(AN) curves as resonance is approached. error, and, thus, the data from the present experiment do not

As was noted in the Introduction, a mechanism of resopermit an unequivocal determination of the differences be-
nant breakdown based on the hypothetical laser-induced atveen the two mechanisms described above for heating elec-
sociative ionization process 2Na@P3+hy —Na, +e  trons in a strong laser field. The range of small detunings,
[k a=5%x10"1 cm’/s for .7,>0.1 MW/cn? (Ref. 8,  Where the effect is more pronounced, is inaccessible, as has
which is an order of magnitude greater than the constant fopeen stressed repeatedly, to a correct comparison of the
ordinary associative ionizatidrwas proposed in Ref. 8. In theory with the experimental data. We note that this circum-
Ref. 9 experimentally obtaingdnder the conditions of exact stance has a fairly fundamental character, since the range of
resonance\\ =0) laws for resonant breakdown were inter- detunings in which developed instability of the laser radia-
preted on the basis of this process, and the low electrofion is observed is determined specifically by the condition
temperature in the plasma aftergldy=0.3 eV, which con- Av~vr (see, for example, Ref. 26
tradicts the calculations in Refs. 6 and 11, was explained for ~We estimate the accuracy of the calculations, which is
the most part. However, as the data presented above sho@etermined by the use of the diffusion approximation, the
even in the near-resonance region the calculated temperatu@gProximation of a Maxwellian electron energy distribution
can be fairly low. Taking into account that the density of thefunction, the errors in the reaction constants, the neglect of
vapor in Ref. 9 was significantly higheNg=0.8—4x 107  several elementary processes, including the excitation of the
cm 3), we should expect that the instability of the laserrovibronic levels of the molecules and molecular ions, whose
beam will be displayed even more strongly and that the unconstants are unknown, neglect of the possible role of small
certainty in the intensity of the radiation will increase ac-impurities in the buffer gas, etc., to be 20-30%. The experi-
cordingly. Therefore, it would be quite incorrect to perform mental error is approximately the same. In addition, the ex-
any quantitative comparison of the experimental data witfP€rimental data on the electron density that we obtained are
the results of rough evaluations. Nevertheless, to determindétermined to a significant extent by the error in the calcu-
the contribution of laser-induced associative ionization to thdation of the Stark broadening parameters, which, as a rule,
final extent of ionization we performed calculations of reso-2/0 qmogg’gs to  10-20%. There are alternative
nant breakdown with consideration of this process in thecalculation&”* of the broadening parametéfswhich give
present work. The corresponding curves are shown in Figs. Yalues that are 30% smaller. The use of the data from Ref. 49
and 11. As expected, at small detunings the plasma pararhe-adS, toa cprrespondmg increase in the measured electron
eters practically coincide with the values obtained in the predensity. Taking all this into account, we can assume that
ceding calculations, and at the large detunidgs>2 nm counting on an increase In the accuracy of thg experiment
they only slightly (by 10—20% forN, and by 2—3% for and the numgncal simulation is very problematic, at least at
T,) exceed them. the present time.

In a second series of calculations the heating of the elec-
trons in the strong laser field was described by E§sand
(10), the Rabi frequency appearing ®) and (10) being
calculated in accordance with the experimentally measured In the present work resonant laser breakdown in a Na
time dependence of the intensity of the laser radiation. Theapor with a density~10'® cm™2 has been investigated ex-
theoretical plots ofNo(AN) and To(AN) for this case are perimentally and theoretically. Quantitative agreement be-
also presented in Figs. 7 and 11. Confirming the statementsveen the experimental data for the parameters of a dense
in Sec. 4, these curves approach the curves calculated witlesonant plasma and the results of calculations based on a
neglect of the strong-field effects in the two limiting cases ofhomogeneous model has been obtained for the first time at
small and large detuningsompare curve and4 in Figs. 7  the large detuningd\>2-2.5 nm, where the effects of the
and 11, deviating from them only at intermediate values of resonant spatial instability of the laser beam and the absorp-
A\. However, these differences are small and do not exceeiibn of radiation practically vanish. We note that the effects
~30% forN,, and the difference iff, is even smaller. Itis of resonant ionization must also be taken into account to

6. CONCLUSIONS
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Statistical theory of the diffusion of a passive tracer in a random velocity field
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A passive tracer on the surface of an incompressible liquid behaves like a tracer in two-
dimensional compressible flows, whose characteristic feature is the formation of cluster structures,
i.e., compact regions of increased density surrounded by vast low-density regions. The

cluster formation dynamics are studied, and statistical spatiotemporal characteristics of the density
fields, which faithfully reflect the properties of the cluster structures, are calculated.

© 1997 American Institute of Physids$$1063-776(97)01304-9

1. INTRODUCTION of a passive tracer, which make it possible to indicate impor-

When a passive tracer moves in random incompressiblgj‘.nt c_harag:ter.istic featgres of the behavior.of the Qensity re-
flows, its density field becomes increasingly disconnectet‘?ﬂ'Zat'cmS n tlme.and'm space, are mvestlgateq ina delta-
with time, even if it is spatially smooth at first, and the lines correlated approxmatlon fo_r a random velocity field. On the
of constant density acquire a fractal charatteFhis process conceptual level this work is closely r_elateq 0 th_e work in
is accompanied by a decrease in the characteristic spati ef. 2 and can be regarded asa _con_tlnuatlon O.f It W_e no_te
scales of the density field until the influence of molecular 2t th_ere_ are essentially no publications on this subject in
diffusion becomes significant. However, when the density iéhe scientific literature.
averaged over an ensemble of realizations, the fine structure
of the realizations of the density field vanishes. It can be
revealed only by analysis of the probabilistic properties of2. FORMULATION OF THE PROBLEM AND STATISTICAL
the density field. This is applicable to an even greater degre®ODEL OF A VELOCITY FIELD
to the realizations of the density of a passive tracer. The main ) . . )
feature distinguishing it from an incompressible tracer is that 1€ évolution of the density of a passive tracer moving
a passive tracer on the surface of an incompressible liquilf' @ velocity fieldu(r,t) is governed by the equation
behaves like a tracer in two-dimensional compressible flows. J 9
Accordingly, besides the characteristic features described <—+ —U(r1t)>P(f,t)=MAp(f,t), p(r,0)=po(r).

. L o ot oar
above, a passive tracer exhibits some qualitatively new ef- (1)
fects, primarily the formation of clusters of particles sur- _ _ ) o
rounded by vast low-density regions. Its right-hand side takes into account molecular diffusion

We note that the clustering of a passive tracer was probWith the diffusion coefficieni, the total mass of the tracer
ably first detected in Refs. 3—5, in which numerical simula-P€ing conserved during evolution, i.e.,
tion of the so-called Eole experiment was carried out within
very simple equations describing the dynamics of the atmo- M =f p(f,t)dFZJ po(r)dr=const.
sphere. As part of this global experiment, 500 balloons of
constant density were to be launched in Argentina in 1970-The velocity field is assumed to be a random Gaussian field
1971 and then allowed to spread out over the entire southefat is incompressiblediv u(r,t)=0], statistically isotropic
hemisphere at a height of approximately 12 km. The spatiah space, and stationary in time and has the correlation and
positions of these balloons were to be determined daily witippectral tensors(((r,t))=0)
the aid of a system gf satellites. Unfortunately, this experi- (ui(r,t)uj(r’,t’))zBij(lr—r’|,t—t’),
ment was never carried out.

The object of the statistical theory of the diffusion of a .
passive tracer is to determine the significant qualitative and Bii(r’t):f dkE;; (k,t)explik-r), @
guantitative features of typical realizations of the density of
the tracer from known statistical properties of the density
field or some of its functionals. This problem is especially
important for the atmosphere and oceans, where experimen-
talists generally deal only with individual realizations of the
fields under investigation, rather than with ensembles. In th
present work the probabilistic properties of the density field  p(r,t)=p(R,t)8(2), R=(x,y), r=(R,z). (3)

k2

Let the passive tracer move in tke 0 plane, i.e., let its
gensity be represented in the form

( kikj) o
Ell(k,t)zE(k,t) 5”__ f |, J=l, 2, 3
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Substituting this expression intd) and integrating it over A discussion of such a model can be found, for example, in
all z, we obtain the equation Refs. 6 and 7. We note further that becalf®,t) is statis-
tically isotropic, the following relations hold:
(R t)+&U“(R’t)~(R t)
p(Rt)+——=—p(R, 1 d
IR, BE(0)=5Dod4g, &—RyBifgm):o, 6)

a-f—U R,t i
ot (')r?R

&2
=u—=7p(R,1). (4) 92 1

R = 3R, R, B 0= § DT300s0, SayBpa~ 8usdy)
HereU(R,t) is the projection of the fieldi(R,0t) onto the
z=0 plane, and the summation is performed over the re-
peated indicesr=1, 2. Since we shall study only the prop-

erties of a passive tracer, we shall omit the tilde in the nota-

1
+ gDp[ 5(1[35}/5+ 6(17555

tion for its density everywhere below. T 0as0py],
Clearly, the fieldU(R,t) is also a compressible random where
field that is Gaussian, statistically isotropic in ttve O plane, "
and stationary with time and has the correlation tensor Do:J dtJ’ dk, [ES(k, ,t)+EP(k, ,t)]
0
<Ua(R!t)UB(R/!t/)>:Baﬁ(|R_R,|!t_t,)l 4 (o
where :§fo dtf dk E(k,t),
. * ) 2 (=
Baﬁ(th):f dk, EXF(IkL.R)ledeE(ki-Fkg,t) Dszf dtf dkikaS(kL 't)zgj dtf dk sz(k,t),
0 0
s Kk ©
BRG]

Dpzf dtf dk, K?EP(k, ,t)
We recall the general formula relating the correlation tensor °

to the solenoidal componeBf(k, ,t) and the potential com- 2 (= )
ponentEP(k, ,t) of the spectral tensor of an arbitrary com- = 1_5f0 dtf dk kE(k,1).

pressible, statistically isotropic velocity field:
In this paper we shall neglect the effects of molecular

diffusion. Then Eq(4) can be simplified and takes the form

AU ,(R,1)
iR, =0,

BaB(R,t)zf dk, exp(ik, -r)

ES(kL =t)< 5aﬁ

d d
kiakL,B (E"'U(R,t)ﬁ)p(R,t)-f—p(R,t)

kL aki B
k2 ‘

k?

+ Ep(kj_ !t)

a=1, 2. (7)

Comparing it with the preceding expression, we find that theThis first-order partial differential equation can also be
solenoidal and potential components of the spectral tensor @folved using characteristic curves. Introducing the character-
the velocity field on the surface of an incompressible liquidistic curvesR(t), which obey the equation

are related to the spectral tensor of the liquid by the equali-

ties FRO=URD, RO)=§ ®
E3(k, ,t)= fx deE(kf+kf 1), we pass from7) to the ordinary differential equation
d U ,(R,1)
. K2 GiPO=—"——g M, p(0)=po(§). (€)
EP(k, ,t):f dkE(K?+k2,t) 5. “
— kL +k; The solutions of Eqs(8) and (9) have a graphical geo-

metric interpretation. They describe the evolution of the den-

sity in the vicinity of a fixed tracer particle, whose trajectory

15 specified byR=R(t). Now, as is seen fron®), the den-

sity in compressible flows varies, increasing in regions of

compression and decreasing regions of rarefaction of the me-

(ua(R,t)uﬁ(R’,t’))zZB%dR—R’|)5(t—t’), (5  dium. The solut_io_n_s of the system consist?ng(ﬁ)‘ and (9)
depend on the initial coordinat&of the particle:

Henceforth, in calculating the statistical properties of the
density of a passive tracer we shall assume that its velocit
field U(R,t) is delta-correlated in time and has the correla-
tion tensor

where

R(=R(t|&), p(t)=p(t|§). (10)
B (R) = E fw B, 5(R,t)dt= ij (R,t)dt. The_ (_:omponents o_f the vect§r which uniqueI)_/ defines th_e
af af af
2 ) 0 position of an arbitrary particle, are called its Lagrangian
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coordinates. Now Eqs(8) and (9) correspond to the La- d U, R,t) _
grangian description of the evolution of the density field. The gl as(t18) = ——2——15(t18),  jap(t=018)=3up.
relationship between the Eulerian coordind®esf a particle 7

in a stationary coordinate system and its Lagrangian coorditlence it follows that the determinapt|£) = .s(t[8)| of
nates is given by this matrix obeys the equatlon

ReRtle. W Siae="2 e, j=olp-1. a9

Solving for &, we obtain a relation which expresses the La-

grangian coordinates in terms of the Eulerian coordinates: Since the field(t|§) is a quantitative measure of the degree
£= £LR) (12) of compression or expansion of the physically infinitesimal

o liquid particles, we shall call it the divergence. Comparing

Then, eliminating the dependence &§in the last equality in  Egs.(9) and(16), we see that

(10) with the aid of(12), we arrive at the Eulerian descrip-

tion of the density: —{p(Dj()}=0,

R,t)=p(t|&1,R)). 13
p(R,t)=p(t|&(t,R)) (13 and, therefore,

3. LIOUVILLE’S EQUATION p(t|§)=po(&)/i(1]§). (17)

We include the fieldj(t|£€) in the treatment, i.e., we

The statistical properties of a density field can be inves- replaced . (t;R 0| & by the function

tigated most completely on the basis of Liouville’'s equa-
tion. In this section we derive it and discuss the structure ofPag(t;R,p,j|€)=S(R(t|&) —R) 8(p(t|&)—p) 8(j(t|§)—]).
this equation for both the Lagrangian and Eulerian probabil- (18

ity distributions of the density field. We first discuss the La- | jouville’s equation then obviously generalizes Ef5):
grangian description.

d :
3.1. The Lagrangian description Eq)Lag(t;Rrpr 1&)=|— ﬁU(Ryt)
In the Lagrangian representation the behavior of a pas- U (R.1)
sive tracer is described by the ordinary differential equations “—( p
(8) and(9). It is easy to go from them to the linear Liouville IR, \dp
equation in the corresponding phase space. To derive it, we P
introduce the function - a_jj ) }(I)Lag(t;R,p,j 1), (19
D ag(t R, p[§) = S(R(t| &) —R) 8(p(t[§) —p), (14

: L . _ D Lag(t=0;R,p,j|€) = 8(§—R) 8(po(§) — p) 8(j — 1).
which has been written in a form that explicitly takes into

account the dependence of the solution of the original dy-

namical equations on the Lagrangian coordingeBiffer-  3.2. Eulerian description
entiating(14) with respect to time and using Eq8) and(9),

we arrive at an equation which is equivalent to the original.
problem in first-order partial derivatives, which is known as
Liouville’s equation:

To describe the statistical properties of the density field
in the Eulerian description, we introduce a function analo-
gous to(14):

Cey(t;R,p)=8(p(t,R)—p). (20

J J
= Pradts R,p|é)= [ —-rURD The equation for it is easily obtained either directly frém
(see, for example, Ref) @r on the basis of Liouville,s equa-

aUa(R t) o tion (19) in the Lagrangian representation. In fact, taking
dR, ap’ PLag(t;R.p[9), (12) into account, we write
(15 1
S(R(t§-R)= |aR T3, 26 LR
P Lag(t;R,p[§) = 8(E—R) 8(po(€) —p)- (15)
As we know(see, for example, Refs. 6)80 go from a S(é—£1,R)).
Lagrangian to a Eulerian description, we must introduce the ](t|§)

transformation matrix for going from Lagrangian to Eulerian

) Thus, with consideration of the relatiqi3) and the defini-
coordinates:

tion (20) we have

Jap(t16)= 3¢ Ral1l9). Lo tiR,p.j16)= T S(E- ELR)) (&)
Differentiating (8) with respect to the components §f we P (1R 21)
arrive at the equations for the elements of the transformation D®eu(t.R:p). (
matrix: Therefore,
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o
(I)Eul(th;P):fdgfj(bLag(t;R:pajlg)dj- (22) m‘bLag(t;R,p,Hﬁ

Multiplying through Eq.(19) by j and integrating it ovej J
and &, we find the corresponding Liouville equation in the = _{ﬁ S(R—R")+
Eulerian representation: A

aa‘(R—R’)< I 9 )
S
XPag(tiR,p,j]8),

d
(EJFU(R'UE)@E“'(LR;’J) we arrive at the following Fokker—Planck equation for the
Lagrangian probability distributio24):

_JU(Rt) 4 _
- %Pq)Em(t,R,P), (23 P . 1P,
Y _— N = —_ JR— N JE—
©ey(0, Rip) = 8(po(R) = p). (23) , ,
d d
_ . _.2 . .
4. STATISTICAL ANALYSIS (28

Let us proceed to a statistical analysis of a chaotically ~ P(0;R,p,j[&)=8(£—R)&(po(&)—p)6(j—1).
moving passive tracer. We shall, first of all, discuss suchl_
important characteristics of tracer particles as their position
in space and their density. The diffusion of a tracer in a  P(t;R,p,j|&) =P(t;R|&)P(t;j| &) 8(p—po(/]), (29
random velocity field is described by Liouville’s equation

he solution of Eq(28) is

(19) in the Lagrangian representation and by Ez) in the ~ Where
Eulerian representation. Averaging them over the ensemble 2
of realizations of the velocity fielflU} leads to equations for P(t;R|R")= exp{ EDot a_Rz] S(R—R")
the one-point Lagrangian probability distribution
. i . H 1 (R— Rr)z
P(t;R,p,j|§) =(Pragt;R,p,}|§) (29) = - —
18)=(PLag 19) 57D & 5D (30)

and the one-point Eulerian probability distribution
is the probability distribution of the coordinates of a passive

P(t,R;p) =(Peu(t,R;p)). 29 tracer particle, and
The main problem in deriving these equations is in decou- P
pling the correlations of the velocity field(R,t) and the P(t;j|§):exp[D”t+2j2} 5(j—1)
fields @ oo(t;R,p,j|€) andPgy(t,R;p), which are function- 9]

nature of the random field)(R,t). If it is Gaussian, the =— exp —
correlations are decoupled using the Furutsu—Novikov for- 2|t 47
mula (see, for example, 6 ang:7

ally related to it. The decoupling methods depend on the 1 Inz(jeT)]
(31

is the probability distribution of the divergence field in its

vicinity. The dimensionless time=DPt is used in(31) and

<Ua(R’t)q’[U]>:J dR'j dt’(U(RHU4R',t')) everywhere below. We stress that the solutig®) signifies
statistical independence of the coordinaii|£) and the
><< 4 <D[U]> (26) divergencej (t| € in the vicinity of a particle with Lagrang-

U g(R',t") ' ian coordinates£, and that the Gaussian distributi@B0)

corresponds to the standard Brownian motion of a particle

which is valid for an arbitrary functionab[ U] of the Gauss- X
with parameters

ian field U(R,t) and is essentially a formula for integration
by parts in a functional space. When applied to the field (R(t|&)=¢,

U(R,t) (5), which is delta-correlated in time, the equality

(26) can be simplified, and takes on the form oos(0=([Ro() = & J[Re(t) — £5)=DoSupt, (32

and the log-normal distribution (31) signifies that
x(t|®=Inj(t|§) is distributed according to a Gaussian law
with the parameters

1)
X<—5Uﬁ(R’,t—0)qD[U]>' @0 (x(t|&)=—7, oit)=2r. (32)

4.1. Lagrangian description Hence, we have the following expressions for the moments

. L of the random divergence field, which also follow directly
Averaging Eq.(19) over an ensemble of realizations of from Eq. (28):

the random fieldU(R,t), using Eg.(27), and taking into
account the equality (j"(t|®)y=exdn(n—1)7], n==*1,*2,... (32)

<ua<R,t>d>[UJ>=f drR'BSL(|R—R’|)
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We stress that the mean divergence is constant, i.e., i
(j(t|&)=1, and its higher moments increase exponentially
with the time. The corresponding cumulative distribution
function has the form

mqu @3

an:ﬂpmnw=¢(2ﬁ

where

0 T

<I>(Z)=i i exp( —y?)dy
\/; —o0

FIG. 1. Determination of the “typical realization” of the random process
(.

is the standard error integral. A useful asymptotic formula

for the probability that the mean divergence is exceeded, _ _

which is valid for 71, follows from (33): j* (t)=exp{—(Inj(t|&))}. Thus, it follows from (32) that the
typical realization of the random divergence is an exponen-

1 tially decaying function:
P(j(t|§)>1)=d>(—£7 ~— exd-~|. (39 y decaying
2) \wr 4 J* () =exp(— 7). (39)
We note further that according to (32and (17) we There are upper estimates for realizations of the log-
have the following expression for the Lagrangian momentiormal procesg (t|£).° For example, with the probability
of the density: p=1/2
(p"(t]&)=po(&) exdn(n+1)7], (35 j(t|§) <4 exp—1/2)

in the time intervat e (0,). Plots of this upper estimate and

which signifies,.in partigular, an exponentia! increase in bo.tr{he realizationj (t| € lying beneath it are shown in Fig. 2.
the mean d-ensny and its .hl.gher moments in t_he I__agranglagim”arly’ for density realizations we have the following
representation. Here the joint probability distribution of thetypical realization and lower estimate-

density and the divergence has the form
p*()=po exp(7), p(t|&)>po exp(7/2)/4.

P(t;p,j|&)=P(t;j| &) 6(p— Ii), 36

(tpJ18=P]18 oo po(/]) 38 We stress that the Lagrangian statistical properties of a
where P(t;j| &) is described by(31). Integrating Eq.(36) passive tracer in compressible flows investigated above dif-
over j, we obtain the Lagrangian probability distribution of fer qualitatively from the properties of a tracer in incom-

the density: pressible medi&>%8wherej(t|£€=1, while the density in
. . the vicinity of a fixed particle is conserved:
P(t: pl &) = 1 exp[ _In*(pe""Tpo($)) ) 37 p(t]&) = po( &€ =const. The estimates for a passive tracer pre-
' 2p\Jmr 47 ' sented above indicate that the statistics of the random pro-

cesseg (t|£) and p(t|€) are shaped by the peaks of their
It can also be obtained as the solution of the Fokker—Planclealizations relative to the typical realizations.
equation following from(28): At the same time, the probability distributions of the
P 1 P P p coordinates of the particles in the two cases of compressible
—P(t; R'p|§)=[ “Do—=z+ Dp_pZ_] P(t;R,p|&), and incompressible velocity fields are essentially the same.
at 2 "0R dp~ d The relative diffusion of two particles can be treated in a

(38) similar manner. For example, for the quantity
P(0:R,p|l&)=8(é—R)8(po(&)—p). I(t)=R4(t) — R,(t) we have the dynamical equation
The paradoxical behavior of the statistical characteristics
of the divergence and the density revealed above, which Jo
takes the form of a simultaneous increase in their moment 4 N
functions with time, is attributable to the properties of the AN

\
\,

log-normal probability distributiod.Thus, we can introduce
a certain “typical realization”j* (t) of the random process
j(t|& such that in any time intervalt{,t,) the mean time

with satisfaction of the inequality(t|€ <j*(t) coincides

with the mean time with satisfaction of the reverse inequality
j(t|&>j*(t), which equals (,—t;)/2 (Fig. 1). The typical
realization is defined as the solution of the equation 0 A

F(t;j* (t))=1/2, whereF(t;j) is a cumulative distribution

function and for a log-normal distribution FIG. 2. Determination of the upper estimate of the random prodess
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gions with compact concentrating of particles, which are lo-

gi/(U=URy,1)=U(Ry,1), 1(0)=lo, cated largely in rarefied regions, should form in this case.
Figure 3 presents the results of the numerical simulation
which corresponds to the Fokker—Planck equation of the evolution of a realization of an initially uniform dis-
J 2 tribution of particles in the random potential of a velocity
—P(t;)= =—=—D,g(DP(t;l), P(0;H=38(I-lp), (40 field (according to the data in Ref. L,0which convincingly
at il g supports the conclusion regarding the formation of clusters.

where Daﬁ(|)=2[B§f}g(0)— Bff;(')] is the structural matrix  This picture is very reminiscent of the picture of the appear-
of the vector fieldU(R,t). ance of caustics of an optical field in randomly inhomoge-
Equation (40) cannot be solved in the general case.n€ous media. This is no accident, since the dynamics of op-
However, if the initial distance between the particlestical radiation in the approximation of geometric optics are
lo<lcor,» Wherel, is the spatial correlation radius of the @IS0 described by the stochastic equatién whereU(R,t)
velocity field U(R,t), we can expand 4(1) in Taylor se- IS the gradient of the phase fluctuations of the wéthe

ries. As a result, in a first approximation we obtain parametett plays the role of the distance traversed by the
wave, and the density becomes the intensity of the optical

*BE(1) wave. A similar pattern can be observed on the bottom of a
Dap(h=— l 4ol g - lalg- pool or in shallow water on a sunny day when the surface of
-0 the water is gently agitated.
Using the representatiof®), we can simplify the diffusion Returning to the analysis of the problem of the diffusion
tensorD ,4(1) and write it in the form of a passive tracer in a random velocity field, we see that

1 1 (6") impliesD*—DP>0, and therefore the closely arranged
D)= 5[3D%+DPJI25,5— 7[D°=DPlllz.  (41)  particles should move apart in an initial relatively short time
8 4 interval. Nevertheless, as will be shown below, the presence
Now, substituting41) into (40), multiplying the two sides of Of the potential component of the velocity field(R,t) en-
the equation byl™ and integrating ovet, we obtain the sures cluster formation in the density field at large times.
closed equation

d 1
a(l "(t))= gn[n(DS+ 3DP)+2(D5-DP)KI"(1)), 4.2. Eulerian description

h luti ds t tially i ing f Above all, we note that in the case of a delta-correlated
whose solution corresponas to exponentially InCreéasing unCey 44 velocity field, it is easy to go from the linear equa-
tions of the time for all the momentai& 1,2, ...). Now the

- L . tion (4) to closed equations for both the mean density of a
Eroba}blhty d|str;bdt1_t|opb fqr the.rﬁn;]jom procebt)/l will passive tracer and for high moments of the functions. For
e a log-normal distribution with the parameters example, after averaging E(4), we can use the Furutsu—

[(t) 1 Novikov equation(27) and the expression following frod)
In Nl Z(DS— DP)t, for the variational derivative
5,(R,t) d
1 — = S(R-R")p(R,t),
g = 7 (D°+3DPt. SULR—0) R, )p(R.D

. o , to obtain the equation for the mean density of the tracer
Therefore, the typical realization for the distance between

two particles will be the exponential function of the time d 1 92
S (P(R1)={5Dot+ u| ==z (p(R,1). (42)
1
* — _ S_Np " .
F(O=lo exp[ 70D )t]' Under the conditionDy>u (u<o?l2,, where o2 is the

variance of the random velocity field amg, is its correla-

which increases or decays, depending on the sign of the dif;, radiug, Eq. (42) coincides with the equation for the
ferenceD*—DP. In particular, for the incompressible case

o ) ! g A > probability distribution(30) of the coordinates of a particle,
(DP=0) we have an exponentially increasing typical realiza-pnq therefore, the diffusion coefficient, which is analogous
tion, which corresponds to exponentially rapid movement okq, the ditfusion coefficient in an incompressible random ve-

the particles with small distances between them. This resulpcity field, characterizes only the scales of the regions where

is valid for the times the tracer is concentrated as a whole, and it contains no in-
formation on the local structure of the density realizations.

To describe the local behavior of the realizations of a
passive tracer we must know the probability distribution of
at which the expansiof4l) is valid. In the other limiting its density. When molecular diffusion is neglected, the equa-
case of a potential velocity field*=0), the typical realiza- tion for the Eulerian probability distribution of the density
tion will be an exponentially decreasing function, i.e., thecan easily be derived by multiplying E28) by j and inte-
particles will tend to “fuse.” Taking into account that liquid grating it over all possible values ¢fand & We ultimately
particles are then compressed, we see that clusters, i.e., fiad the equation for the probability distributid@5):

I cor

lo

lDSt |
Z <In
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FIG. 3. Temporal evolution of an initially
uniform distribution of particles in a realiza-
tion of a potential random velocity field.

g 1 _ 92 *(t)=po exp(— 7). 48
(___Do_z) P(t,R;p)=DP——p?P(t,Rip), (43 p™(D)=po EXp(—1) | “8)

gt 27dR ap The Eulerian statistics of the density are shaped by the den-
P(OR:p)=8(po(R) = p). sity fluctuations relative to this curve, attesting to the cluster

_ _ _ _ character of the fluctuations of the density of the medium in
Hence it follows, in particular, that the moment functions of grbitrary compressible flows and, in particular, in the case of

the denSity field are described by the equation a passive tracer under consideration.
g 1
(E — EDOW) (p"(R,1))=DPn(n—1){p"(R,1)), 5. ELEMENTS OF STATISTICAL TOPOGRAPHY
N n Below we shall discuss the one-point probability distri-
(p"(R,0))=po(R). (44 pution of the tracer density in the Eulerian representation,
Its solution has the structure which has already enabled us to draw several conclusions
regarding the behavior of the realizations of a density field
(p”(R,t)):exp[n(n—l)T]f dR'P(t;R[R")pl(R"). with time at fixed points in space. We now show that this
distribution also makes it possible to elucidate some charac-

(45) teristic features of the spatiotemporal structure of the realiza-
Thus, if the initial density of the tracer is identical every- tions of the density field. We note that important information
where, i.e., ifpg(R) = pg=const, the probability distribution on the spatial behavior of the realizations can be provided by
of the density does not depend &and has a log-normal an analysis of the level contours defined by the equality
character with the cumulative distribution function

p(R,t)=p=const, (49
In(pe™ i
F(t;p)=d (p PO)) _ (46) the areas of the regions demarcated by these level contours
27
In this case S(t,p)If 8(p(R,t)—p)dR, (50)

(p(Rt))=po, {(pP"(R,1))=pgexdn(n—1)7], (47 and the total mass of the tracer contained in these regions

and the typical realization of the density field at any given

point is M(t.p)=f p(R1)8(p(R,t)—p)dR. (51
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Here 6(z)=1 if z>0, and #(z)=0 if not (Heaviside step
function). The statistical means of the areas and masses just m, s
described can obviously be expressed in terms of the solution
of Eq. (43):

(sitp)= | "5 [ dRP(LRD)

(M(t,p))= f:zdz [ arp(tR). (52

After plugging in the solution of Eq(43) and performing

some relatively simple transformations, we find explicit ex- m, s
pressions for the mean areas and masses of the particles 0.7¢ ~
within the level contourg49): 0.6¢ b
0.5
In[po(R)e™"/p] 0.4}
S(t,):decD—, (53 b
(S(t.p)) N 03 .
0.2} s
In[ po(R)€p] 0.1}
M(t,p))= R)AR®| ——————|.
(M(t.p)) j Po(R) 2\r 0 02 04 06 08 10 12 l4r
Hence it is clear, in particular, that far=>1 the area of the '(')1_5
regions where the density is above the lepeldecreases I
exponentially with time according to the equation 0.8¢
1 e 0.6}
<S(t,p))= \/77_7'p ex[{_Z)f Vpo(R)dR, (54) 04k
while the mass of the tracer contained in these regions 02
p T 0 2 4 6 8 T
(M(t,p)) =M=/ — exp( -7 f Vpo(R)dR  (55)
tends monotonically to its total mass FIG. 4. Dynamics of the formation of “cluster regions.”

regardless of the value gf/pg, while essentially all the

This again confirms the previous conclusion that the tracetracer particles gather within them:
particles tend to gather in clusters, i.e., compact regions of Jr
. 8 ) 2 . T 1 T
enhanced density surrounded by rarefied regions, with time. m(t,Po)Z‘D(—) ~1— exg — _)_
The dynamics of cluster formation can be illustrated in 2 NTT 4

the case in which the original passive tracer is uniformly  rhe character of the temporal evolution of the formation
distributed in the planeno(R) = po=const. Here, by analogy  of the cluster structure depends significantly on the value of
with (52), _the specific area of the regions within which plpo. For example, ifp/po<1, we initially haves(0,0) =1
p(R)>p s and m(0,0)=1. Then, because the passive tracer particles
o In(poe™ " p) tend to move apart in the initial period, small regions with
S(t,p)=j P(t;’ﬁ)d’ﬁ:@(—), (56) p(R,t)<p form, which contain an insignificant part of the
P 2\7 total mass. With the passage of time, these regions rapidly
whereP(t,p) is the solution of Eq(43) that does not depend increase in size, _their mass passes into the cluste_r regions,
on R, and the specific mean mass of the tracer concentrated/'d the asymptotic dependendé8) and (59) are achieved
in these regions is described by the expression quite rapidly (Fig. 48. We note further that at the time
7™ =In(py/p) the areas(t*,p)=1/2.
1 (> In(poe’ p) In the opposite case o0p/py>1, we initially have
m(t,p) = gf pP(t;p)deQ)(z—\/;>. (57) s(0,0)=0 andm(0,p) =0. The initial movement of the par-
’ ticles produces small cluster regions wjbR,t)>p, which
It follows from (56) and (57) that at long times their specific are essentially conserved with time and rapidly draw in a
area decreases exponentially according to the expression considerable part of the total mag&ig. 4b. Subsequently,
Sz 1 the areas of these regions decrease with the passage of time,
s(t,p ):q)( - _T)% exp( — Z) (58  but the mass contained in them increases according to the
[ 0] 1 . .
2) mr 4 asymptotic dependencés8) and (59) (Fig. 40.
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6. CONCLUSIONS approximation of a velocity field that the statistical proper-

We have thoroughly discussed the one-point probabilitQies of the density do _not depend on the agitation of the
urface and coincide with the properties of the tracer density

properties of a passive tracer moving in a compressible cha ideal ol tudied ab
otic velocity field. As was shown in this work, even the on et/r\]/' tﬁa i%nel}\/lslg Ibe 10\/& ho directed ttenti
simplest statistical characteristics of the density and diver- € thank £. V. Lobryshman, who directed our attention

gence fields enable one to draw useful conclusions regardin@_ the work n Refs. 3-5. The pres_ent work was carried out
the fine structure of the density field and, in particular, re- ith the partial support of the Russian Fund for Fundamental

garding the clustering of the passive tracer. A more Completgesearch(PrOJects Nos. 95-05-14247 and 96-05-65847

statistical topography of the tracer, including, for example,
determination of the statistics of the lengths of level con-
tours, the number of level contours, the mass of the particles
contained in clusters, etc. requires knowledge of_ the statl_sthv_ |, Kiyatskin and W. A. Woyczynski,
cal properties of the gradients of the density field and its (1995 [JETP81, 770(1995].
higher derivative$®!! We note that the conclusions of the 2V. . Kiyatskin, W. A. Woyczynski, and D. Gurarie, J. Stat. Phg4, 797
present work are applicable not only to the idealized case og(lgge-_ ) )

ive tracer in the=0 plane. but also to a real agitated F. Mesinger and Y. Mintz, Technical Report No. 4, Department of Me-
a passive . P T R 9 teorology, University of California, Los Angeld4970.
surfacez=Z(R,t) on which a passive tracer is distributed. In 4f. Mesinger and Y. Mintz, Technical Report No. 5, Department of Me-

Zh. Esp. Teor. Fiz.108 1403

fact, instead of3) we then have teorology, University of California, Los Angeld$970.
— SF. Mesinger, Mon. Weather Re99, 15 (1971).
p(r,t)=p(R,t)6(Z(R,t)—2), 6V. I. Klyatskin, Usp. Fiz. Nauk164, 531 (1994 [Phys. Usp.37, 501
L~ . (1994)].
where the functiorp(R,t) obeys the equation V. I. Klyatskin, Stochastic Equations and Waves in Random Inhomoge-

neous Medidin Russian, Nauka, Moscow(1980.
8A. I. Saichev and W. A. Woyczynski, iBtochastic Models in Geosystems
(IMA Vol. 85) Springer-Verlag, New York1996, p. 359.
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IR, 85), Springer-Verlag, New York1996), p. 459.

11 H
When the velocity field and the agitated surface are sta- - B !Sichenko, Rev. Mod. Physi4, 961(1992.

tistically independent, it is easy to see in the delta-correlatedranslated by P. Shelnitz
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Dynamic fractal structure of emulsions due to motion and interaction of the particles:
numerical simulation

V. V. Zosimov and D. N. Tarasov

Scientific-Research Institute of Applied Acoustics, 141980 Dubna, Moscow Region, Russia
(Submitted 9 September 1996
Zh. Eksp. Teor. Fiz111, 1314-1319April 1997)

The method of numerical simulation is used to study the geometrical structure of micro-
emulsions in the plane. It is found that the interaction between the particles leads to the formation
of a dynamic homogeneous fractal structure of the micro-emulsion. In the absence of any
interaction between the particles the structure of the emulsion is homogeneous. The interaction
energy of the particles at which the fractal inhomogeneity arises is close in magnitude to

the interaction energy of the particles in réalg., aqueoysmicro-emulsions. It is also found that

the size of the inhomogeneitiésorrelation radiusdepends on the particle density in the

system and is largest for the density of the percolation transition. The numerical simulation data
qualitatively coincide with the results of measurements in real micro-emulsions.9%F

American Institute of Physic§S1063-776(97)01404-2

Fractal structures have become a popular object of studyhus, inhomogeneities in micro-emulsions, as Ozhovan
in recent year$;? but are by no means exotic objects andpointed out have a dynamic character, i.e., they are ob-
may be encountered in completely ordinary situations. In &erved not only at certain spatial scales, but also on certain
study of the mechanical properties of aqueous microtime scales.
emulsions the authors of Refs. 3 and 4 advanced the hypoth- The aim of the present paper is to explain the appearance
esis that the geometrical structure of micro-emulsions conef dynamic fractal structures in emulsions and their connec-
tains inhomogeneities which are characterized by a fractaion with the percolation transition. The problem is solved by
structure. In Ref. 5, using the method of rapid freezing,numerical simulation.

Ozhovan investigated the structure of a micro-emulsion of A two-dimensional model which allows for all the above
silicate glass in a vitrophobic liquid melt. Ozhovan discov-features is constructed as follows: 200 particles are placed in
ered that for some fraction of the dispersed phase in soma cell with periodic boundary conditions. For a fixed number
size range the geometrical structure of the micro-emulsiomf particles their density varies due to variation of the size of
has inhomogeneities characterized by a fractal structure. Thte cell. The particles are modeled by solid disks of radius
analysis of these data in Ref. 5 was based on the concept of and massn,, and the interaction between the solid disks
a connecting cluster, arising during a percolation transitionby a constant force acting over a distance of §.The mo-

In general, it is this connecting cluster that possesses fractéibn of the particles is simulated, as in the well-known
dimensionality. Near the percolation threshold the number ofnethod of molecular dynamiésAt the initial time an equi-
particles entering into this cluster is significantly less thanlibrium distribution of particle velocities with temperature
the total number of particles in the system. The measure¥ is prescribed. At each subsequent time the velocities and
ments reported in Ref. 5 allowed for all the particles in theforces acting between the particles are calculated and simul-
system. Here in the case when there is no interaction beaneous mixing of all particles is effected. In contrast to the
tween the particles, the system as a whole should be homanolecular dynamics method, to model the Brownian nature
geneous. Thus, the fractal structure of a micro-emulsion caref the particle motion after a timg, the velocities of all

not be explained by the percolation transition. particles are replaced by new values in accord with the dis-

Other models of fractal structure formation in two-phasetribution at the given temperature. The timgis equal in
dispersive systems are based on a consideration of processasler of magnitude to the time it takes a particle on average
of particle aggregation for different laws of motion and in- to move through the distance 9yl
teraction of the particles. To analyze these processes, nu- To determine the distribution of the particles in the sys-
merical simulation methods have acquired the most widetem, the dependenag(r) of the number of particles in a
spread use. Such methods, along with their simplicity, givecircle of radiusr on this radius is found. At the initial time
quite good results, agreeing with the experimental data tehe particles are distributed in the cell as solid shellhe
within 2 %° What distinguishes processes of solid particlefunctiong(r) is monitored as a function of time. The calcu-
aggregation from the formation of inhomogeneities in alations are carried out until the values @fr) cease to vary
micro-emulsion is the following: although conditions exist in for some set length of time; in this case it is assumed that the
which solid particles have a small probability of forming a system has reached equilibrium.
bond in a collisior?, in the final count after some time clus- Let us consider the behavior of the modeled system for
ters are formed which from then on do not change, i.e., theifferent interaction energies between the particles. Let
process is irreversible. A micro-emulsion exists in thermody-E=0, i.e., let the particles be modeled by solid disks without
namic equilibrium, which excludes irreversible processesany interaction potential. In this series of runs the particle
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concentratiorC in the system was varied from 0.01 to 0.5. It tion g(r) for E=0, and the system remains practically ho-

was found that, independent of the concentration, the funcmogeneous.

tion g(r) does not vary with time after the commencement of  For energiek T<E<3kT inhomogeneities are formed

particle motion and the values gf(r) completely coincide in the system, that is to say, clusters. A particle, falling upon

with the values obtained theoretically by Ambartsumyana cluster, after some time leaves it. After a certain time the

et al® for the process of solid shells. In this case the geo-

metrical structure is homogeneous and does not possess frac-

tal properties. Thus, simple Brownian motion of solid

spheres does not lead to fractal inhomogeneities in the sys-

tem. 10 A
The introduction of a short-range model potential sub- ]

stantially alters the situatioffig. 1). In this series of com-

puter experiments the particle concentration remained con-

stant and equal to 0.09. If the interaction energy between the 10

particles satisfiekE>3kT, then the particles form associates.

A particle falling into such an associate has a very small

probability of leaving it; for this reason with time each asso-

ciate only increases in size as a result of collisions with free 10

particles and other associates. As a result, at some time only

one associate remains in the system, consisting of particles

packed as they would be in a crystalline lattice. It turns out

that after a time for a large enough interaction between the

particles the system separates into two phases. Indeed, emul- 10

sions of liophobic liquids very often are unstable, and with

time a separation of phases takes pllé’ce FIG. 2. Log—-log plot of the functiomy(r) for various interaction energies
When the interaction energy between the particles satlsgetween the particleC=0.09: 1) E=0, 2) E=1.3 kT, 3) E=2.5 KT, 4)

fiesE<kT the functiong(r) almost coincides with the func- g(r) « r2 (homogeneous distributigyB) g(r) = r“?(fractal distribution.

g(r)
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g(r homogeneous distribution that obtains in the model of an
ideal gas or ideal solution. At concentrations above 0.08 re-
gions of inhomogeneity begin to be formed which have a
fractal dimensio: g = rP, where the correlation function is
described by a power law only forg<<r <&, where¢ is the
correlation radius. The dependence»fand £ on the par-
ticle concentration in the system is shown in Fig. 4.

A decrease of the correlation radigswith further in-
crease of the particle concentration is characteristic for many
other cases where fractal inhomogeneities are present in the
system, e.g., in the case of solutions of polyrters in
cluster—cluster aggregation modé&isThis phenomenon is
explained by the fact that the concentration of the
inhomogeneity—clusters increases as the particle concentra-
tion is increased. At a particle concentration equal to the

riry critical concentration of the percolation transition, the clus-

ters begin to overlap. As a result, the correlation radjus
FIG. 3. Log-log plot of the functiorg(r) for the interaction energies be- decreases.
t&”f‘%”g;hse) g(“rr)“i'fﬁj(]}r-j’cgails)tri?);i%;’%)z)(gz?-zl(i'oiz‘oz;%gﬁ's‘gis In the case of polymer solutions the correlation radius
tribution). 7) g(r) = r 72 (fractal distribution. 3 for concentrations pglow the concentration of the percola-

tion transition (the critical concentrationdoes not change

and is equal to the diameter of the coiled-up
clusters decay and new clusters form in a different place. Imacromoleculé? In the case of cluster—cluster aggregation,
this case, for By<r<10r, and E=1.%kT we haveg(r) percolation depends on the size of the simulation region. If
« r142 (Fig. 2). Consequently, the interaction between thethe simulation region is enlarged without limit, the critical
particles leads to the result that the geometrical structure afoncentration of the percolation transition decreases without
the system becomes fractal. limit.** In our case, below the critical concentration an

The value~ (1—2)KT of the interaction energy between abrupt decrease of the correlation radius takes place. This is
the particles in an emulsion is completely realistic. Thus, forbecause the action of the attractive forces and Brownian mo-
example, it is generally assumed that an interaction existdon balance out at a certain cluster size and this size depends
between hydrophobic particles in water, due to a breakdowin the particle concentration.
of the hydrogen bonds in water caused by the hydrophobic As the concentration is increased, the fractal dimension
particles and equal in order of magnitude to the energy of thef the inhomogeneities increases and tends to the Euclidean
hydrogen bond between the water molecdfeShe energy dimension of spacdFig. 4a, which is characteristic for
of the hydrogen bond between two water molecules iscluster—cluster aggregation mod&fs.in polymer solutions
Ey~5 kcal/mole, which at room temperaturé=300 K the fractal dimension of the inhomogeneities remains con-
givesE,~8kT, which coincides in order of magnitude with stant as the concentration is increaSe@Reference 5 does
the energies at which fractal inhomogeneities are formed imot present any data on the variation of the fractal dimension
the simulated system. of the inhomogeneities, which is understandable in view of

In the next series of computer experiments we varied théhe small range of concentrations at which the measurements
particle concentration fron€=0.06 toC=0.4 while keep- were made.
ing the interaction energy between the particles constant and To summarize, by means of computer simulation we
equal to 1.8T. The functiong(r) is plotted in Fig. 3 for have established that in emulsions dynamic inhomogeneities
various concentrations. It can be seen that at low concentravith fractal structure can indeed exist. The size of these in-
tions up toC=0.08 the dependenagr) corresponds to the homogeneities is largest near the critical concentration of the

D 4

I 30F
1.8 a 0 b

o 25

1.6+ 20+ o

3 FIG. 4. Fractal dimension of the inhomogeneitizga) and cor-
1.4F 15t relation radius¢ (b) plotted as functions of the particle concen-

o tration atE=1.%T.
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percolation transition and falls off abruptly both with in- the Russian Fund for Fundamental Resea(etoject No.
crease and with decrease of the particle concentration. 95-02-06084.

The fractal structure of the system owes its existence not
to the percolation transitioat the percolation transition :5 v ?mi.mo"' Usg‘LFii)l Nf uI§.63h51 %993 E-Dhy;' 5?32'6(11 gfe?s}'
only a connecting cluster possesses fractal dimensionality g, < 8:;?,)%"'(2395]: - Lyamshev, Usp. Fiz. Naul65, 361 (1999
but to attraction between the particles. When the interactiorep, Argyrakis, G. Duportail, and P. Lianos, J. Chem. Ptgs. 3808
between the particles is decreased, the fractal structure of thg1992.
system disappears. The interaction energy at which fractafG: Puportail, 3-C. Brochon, and P. Lianos, J. Phys. Che6y. 1460
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The velocity of propagation of first and second sound at arbitrary temperatures is calculated here
for the first time according to the currently accepted covariant theory of superfluidity. Low-
intensity shock waves are considered. In the low-temperature limit the results agree with already
known expressions obtained by another method.1997 American Institute of Physics.
[S1063-776(197)01504-1

1. INTRODUCTION TP=nPp,+5°0 ,+ W, 4)

It so happened historically in the covariant theory of
superfluidity~ that the main attention was given to funda-

mental problems while applied problems remained in th emperature covectd ,. The pressure functioW related to
shadow. This was patrticularly the case with the study of thehe Lagrangiari. by th’e. Legendre transformation

propagation of sound in a relativistic superfluid, which was

only begun quite recently. The speeds of first, second, and p—| — $0, (5)

fourth sound were first calculated by Vil’chingRiusing a

simple, but as is well knowh?*®invalid model(of the same depends on three invariants, specifically the chemical poten-

type as the Israel theoryin which the superfluid and normal tial in the superfluid reference systdthis is the terminology

components were treated as ideal fluids. Therefore, the ref Carter, Lebedev, and Khalatnikpv

sults of Ref. 5 in fact pertain not to a superfluid, but to

noninteracting gases. In point of faétthe interaction of the i (6)

two components leads to the result that the ordinary hydro,

dynamics of an ideal fluid is no longer applicable, and the

more elaborate formalism developed by Lebedev, Khalatni- g2— -0,0° (7)

kov, and Carter is required. Results serving as confirmation

were obtained by Carter and Langlofsr the phonon equa- and the product

tion of state. However, the speed of second sound at arbitrary

temperature, when the spectrum of elementary excitations < =—0u,. ®

deviates from the phonon spectrum, has not yet been reliab

calculated. We will attempt to fill this gap below by using

the recently derived theory of shock waves in a superfluid.

Although there is no need to rederive the results of Ref.

here, we will, as an introduction to the subject, present some

basic results which will help us to derive, for example, the

intermediate formulas previously omitted as unimportant.
In this paper we use the system of units customary in

relativity theory withi=c=1, in which the metric tensor is

gt’=diag{—1,1,1,3.

and the one-forms conjugate with the corresponding one-
vectors are called the chemical potential coveqgigrand

the effective temperature

|'}(hus, there exist four reference systems which are associated
with the dynamical variables”, u,, s”, and®,. If we

ere working with an ideal two-component fluid, we would
ave two reference systems. But in the case of a relativistic
Superfluid, this is anything but the case: e.g., Eckart’s refer-
ence system does not coincide with the superfluid reference
system since the vectors' and u* are not collinear. As a
matter of fact, only two of these four variables are indepen-
dent, and the two others are expressed in terms of them by
the formulas

2. A RELATIVISTIC SUPERFLUID nN’=Fuf+HO?, sP=Hu’+GOP, 9
In the covariant theory of superfluidty” the conserva-  where the coefficient§, G, andH are calculated with the

tion laws of the particle number current help of the pressure function:
V=0 @ 10w 1 g% 1 g%

and the entropy current F= w o’ C=630' N3 77 (10
V,s’=0 2

and are components of the inverse metric tensor in the space
are written in combination with the conservation law of the of dynamical variable$.Theories of the Israel type corre-
energy—momentunipseudo} tensor spond to a conformally planar “metric,” and may be incor-
vV T°=0 3) rectly viewed as equivalent to th_e current theory at low tem-
plv. = peratures, for thekl — 0. Below, in the instance of acoustic
where waves we will see just how wrong such a viewpoint is.

729 JETP 84 (4), April 1997 1063-7761/97/040729-05%$10.00 © 1997 American Institute of Physics 729



In place of the dependence on the quansityve may The latter relations together with relatiof&6) allow one,
introduce a dependence on the relative velogitpetween with the help of formulag9), to obtain expressions far in
the superfluid component and normal component by meangrms of the thermodynamic quantities for the two types of
of the formuld® discontinuities:

H \/ H 2 n_v=F Ju2—u2+v2u2+H, 02 -02 +1202,
211 202 o2 2 2
z G,uW-i— (G/.LW +0Ou”. (11 (19)
s.v=G,V02-0%+0v202 +H_ \Ju® —u’ +v2u’.
3. SHOCK WAVES (19)

The general theory of discontinuities in a relativistic su- The solutions of Eqs(18) and (19) respectively define dis-
perfluid was considered in Ref. 8. To treat the propagation ofontinuities analogous to ordinary shock waves and tempera-
acoustic and weak shock waves, we will proceed from thdure discontinuities in superfluid heliutnit should also be
general formalism. Let us consider a planar shock wavdioted that the quantities and® grow? (this is valid at least
propagating along thex® axis, with unit normal for the phonon equation of state
A?=(0,1,0,0) to the hypersurface of the discontinuity. Here
it is convenient to represent the vectors and covectors in thg FIRsT AND SECOND SOUND

form
In order to obtain the velocity of propagation of first and

n’=n(coshe,sinh¢,0,0, u,=u(—coshy,sinh,0,0), second sound from Eq$18) and (19), we replace the ex-
. . pressions for the parameters behind the discontinuity front
P — = —
s’=s(cosha,sinha,0,0, ©,=06(=coshg,sinh,0,0. by the finite differencec,. — u_ = Au and drop the subscript
(12) —. We obtain the system of equations
We assume that the medium in front of the discontinuity

surface is at rest, and we write the equations in the reference F(,2—1)A 4+ po? a_FZ Ap2+ po? (9_F2 A@?2
system accompanying the shock wave. Thus, ahead of the I 70
front the relative velocity will be equal to zero, and 9F 9H
+ uv? 24 2_ +@p2 2
@ =8_=¢_=y_. (13) MU (9—22AZ H(v 1HA®+06Ov WAM
The latter expression defines the velocity of the medium , oH 5 ,0H
v=tanhy_ ahead of the shock wave front; obviously, this +Ov" —57 ABT+OvT 5 AZ°=0, (20

velocity is equal to the velocity of propagation of the discon-
tinuity in the reference system in which the medium ahead of
the front is at rest.

Conservation lawgl)—(3) lead to the following relations
on the discontinuitythe brackets denote the difference, the
subscriptst+ and — denote the states in front of and behind
the discontinuity?

9G G
G(vz—l)A®+v2%A,u+®v2 AB?

90?

+0v? © AZ?+H(w?=1)Ap+ uv? i Au
9z° m

2 /1 A®%+ po? ol AZ?=0 21
[n*X,]=0, [s’\,]=0, [TiA,]1=0. (14 Th THYT G RE D @Y
Hence we have For the quantityAz2, with the help of relatior{11) we write
11 11 down the expansion
n,=n-, s;=s_, (15
_ ) ) AZ2=0OAu+pAO®+(H/G)u®OW?, (22
i.e., taking Eqs(12) and(13) into account o o ) .
_ _ _ _ substitution of which into Eqs(20) and (21) in the linear
nisinhg,=n_sinhe_, s,sinha,=s_sinh a—(- | approximation leads to the biquadratic equation
16
5 IF oH IF gH\ |71
The last of relations(14) defines two forms of strong jv°—F|/F+u &—+® a—+® Mﬁjt@ 7
discontinuitied  specifically first-sound discontinuities, K K
which are characterized by the condition 2 Gl aG ® dG
o_ 0 O Ge T e TH O oz
My =M,
; T - ; - H\ ]t IF aH dF
and second-sound discontinuities, which satisfy the equahtyhu a_zz) ]_vz[ HIH+ u +@ %-f-,u pon
0 0
0.=0~.
i i +®0H - H H+ 5H+®&G+® @aG
Equations(12) and(16) lead to the relations g s e P 772
My coshy, =p_ coshy, JH\1-1
©, coshB,=0_ coshp_. (17) +’uﬁ) ]:0 23
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with solutions defining the velocity of propagation of first check expressioii25): in principle it cannot coincide with

and second sound. the speed of second sound calculated by Vil'chin3Kihus,
This biquadratic equation is solved approximately bywe will show that relatior(25) gives the result of Carter and

splitting it into a pair of quadratic equations, one for first Langlois in the low-temperature limit.

sound, At low temperatures the Lagrangian is given by the

. I . M . e . SH1T-1 expressiof
WimFI Pt O T ka2 ™9 52 A{p,2,0}=A{p}—p{n,2,0}, (26)
P where the second term, corresponding to the contribution of
M s . . .
=F o (24)  the elementary excitations, is written explicitly as
1 (3)\°
and one for second sound, Wp,2,0 == Cs( _) (G"0,0,)%, #=0.9%.
2_clere &G+ aH+ @&G+ aH\ Tt 4 \42 27
U= 90 e T T a2 TH 2 o _
Here the projective tensor is
_G 07 25 1 v, A
~C s @3 GM=g"+[1-5 —Z—MM“ (28)
S

This approximate solution is valid given certain conditions

; : . dc, is the speed of first sound. With the help of relations
(about this see belowand in the most general case first and andcs ) .
second sound are, as one says, “coupled,” i.e.,(B8). does (5), (9), (10), and(26)-(28), by differentiating the Lagrang-

not split into Eqs(24) and (25). At the same time, formulas ian (9), we readily calculate the coefficients of interest

(24) and (25) do not in principle impose any restrictions on 3\3 1\ 24
the equation of state and thus generalize the particular case G=—cs| —| | —0?+| 1— | |
considered in Ref. 7. Cs/ M 29
It is interesting to compare Eq&4) and (25) with the 3, 4
L . . 1 3 z 1) z
analogous nonrelativistic relatiGriToward this end, we ex- H=cd 1-=|| —| —=|-02+|1-=| =]|.
press the quantit in terms of the determinant of the Carter C§ ah) p? C§ w?

tensor’”’ G=B/K, whereB has the dimensions ¢f/n (and
at low temperature coincides with this quantityon the
other hand, it is well knowhthat the effective “energy den-

Next, with the help of relationg9) and(10) we calculate the
entropy density

sity” of the normal componengy is linked with the entropy 33 1\ 22
density in the superfluid reference systsgrby the relation S:Cs( _ﬁ> —0%+| 1- = 3
pn==D2Ks2, whered? is called a dilatohand the effective 4% Cs/
density of the superfluid componeny is expressed in terms 1\?]
of the chemical potentigky in the normal reference system X \/@2— { 1- ( - —- (30
as ps:qﬂ,uﬁ. Therefore in place of formul&7) we may Cs M
write Equations(18) and(19) and consequently alg@4) and(25)
g2 ps 90 pertain to the case in which the relative velocity between the
2 s FPs . .
u;=B 2 oy 7 components ahead of the wavefront is equal to zero. This

corresponds ta?= 1 ®. Then substituting expressiol29)
which has some superficial resemblance to the well-knowand (30) into Eq. (25) gives
nonrelativistic expressiohHowever, the analogy with the 2_ 2

L . uj=cg/3, (3D
nonrelativistic case cannot be complete for the reason that in
the covariant theorfy* one cannot introduce conserved nor- which exactly coincides with the result of Carter and
mal and superfluid currents. It can be shown that forng@la  Langlois/ even though the calculational technique was com-
goes over to the corresponding nonrelativistic expression:pletely different. The agreement of the results obtained by
the “energy density” of the normal and superfluid compo- two independent methods gives a basis for confidence in the
nents acquires the ordinary meaning of a mass density, thealidity of both methods.
entropy density at nonrelativistic velocities will be the same  Similar calculations using the Israel model of noninter-
in any reference system, and the chemical potential tends tacting components with the Lagrangié®6), (27) leads to
a constant value equal to the rest energy of the coupled pathe incorrect resuluﬁ=1/3, whereas expressi@@5) agrees
ticles. with the nonrelativistic value of the speed of second sound.

To check expressiong24) and (25 in the low- Finally, it should be noted that for the phonon excitation

temperature limit, where the elementary excitations arespectrum the speed of second sound is given by the same
phonons, they may be compared with the corresponding reexpression as for superfluid helium.
sult of Carter and LangloiSpbtained by the extremely cum- It only remains for us to convince ourselves that the
bersome Hadamard method. But in the high-temperaturspeed of first soun{24) corresponds to the value of de-
case we no longer have any known result against which ttermined by Carter. Toward this end, we make use of the
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relation F=®?%(1+ A%/K) and the asymptotic behavior of equation of state we ha%u%(l—m/,u,)/y, wherem is
the dilaton®?, the true anomaly, and the Carter determi- the rest mass of the paired particles apg 1 is the poly-
nant K at low temperaturd: ®2=n/u+0(0%, trope index. Takind32) into account, we may convince our-

A?%/[K=0(0%). It follows that selves thav >uj.
It follows from (34) that if the speed of first sound}, is
, Ndu . A .
uf=———=c?, (32 small, temperature discontinuities are formed on the leading
poan edge of the wave of second sound, which corresponds to the

i.e., EQ.(24) is also found to be in complete agreement withresults for superfluid helium in the low-temperature rahge.
current theory, which, it may be noted, could easily haveHowever, forc,=0.97 the temperature discontinuities fall

been foreseen. behind the wave of second sound, this being a specific prop-
Let us turn our attention to the low-temperature erty of a relativistic superfluid. _
asymptotic limitH/G~ O(®). In the Israel theory we have Finally, let us turn our attention to the almost obvious

H=0. But if we neglect{without justification the coefficient  fact that substituting the speed of first sou@d) into system

H, we obtain the same incorrect resuft=1/3. When using  (18) expanded out to quadratic terms in the jumps of the

the hydrodynamics of an ideal fluid in the description ofvarious quantities at the discontinuity shows that the quanti-

relativistic superfluid systems it should be borne in mindties A® andw? should be of a higher than first order ..

what such a simplified theory leads to. And in a wave of second sound the jump and the quan-
tity w? are quantities of higher than first order relativeAi®.

5. WEAK DISCONTINUITIES

The logical conclusion of our calculations is a study of 6- CONCLUSIONS

weak discontinuities. In other words, we will try to ascertain - To summarize, in the foregoing we have calculated the
whether the discontinuities appear in front of the sound wav@peeds of first and second sound in a relativistic superfluid at
or behind it. Ordinary shock wavéalways propagate faster arbitrary temperature and have also discussed where the dis-
than sound waves. But in superfluid helium temperature disgontinuities arise in waves of first and second sound. The
continuities can also arise on the trailing edge of a wave Ofain result consists in E423) and its consequences for first
second soundLet us see how the matter stands in a relatlv-(24) and second soun@5). Equation(23), in contrast to the
istic superfluid. _ Israel model and the result of Ref. 5, does not in general split
In Egs. (18) and (19) we must keep not only linear into Egs.(24) and(25). The speed of first soun@4) at low
terms, but also second order terms, proceeding from the aRemperature is given by the well-known expressi@®)

proximate expressions which is not in any doubt. The expression for the speed of
nv=(F+AF)[{2uApu+(Ap)ZH(v2—1)+02u?]"2 second sound?25), valid at arbitrary temperatures, in the
particular case of the low-temperature limit gives the result
+(H+AH)[{20A0 +(A0)%}(v?-1) (31) found previously by Carter and LangldisAt the same
+p2@2]12 time, the equation obtained hef25) pertains specifically to
’ a relativistic superfluid and not to the Israel model, by means
sv=(H+AH)[{2uAu+ (Aw)?}(v?—1)+v2u?]¥? of which the speed of second sound was previously calcu-

lated. Thus, the expressions for the speeds of first and second

2.2 227112
+(G+AG)[{20A0+(A0)}(v°—1)+v°0O7] sound obtained here generalize well-known results which are

and the more accurafthan (22)] expansion either particular cases of the low-temperature [inoit per-
1 tain to the approximate modelyhich cannot be applied to a
AZZ=AOu+OAu+=|AO2 Ll 2AuA® description of a relativistic superfluid. We were compelled
2 0 toward this latter conclusion by the incorrect expression for
o N OLH 2 1 H . the speed of second sound found in the case of the phonon
+;A,u, +§ a,uw) era,uw. equation of state.

It is also important to mention that E(R3) is universal
Skipping intermediate steps, we present the final results fon the sense that it applies to any two-component system,
the case of the phonon equation of state: e.g., in the hydrodynamical description of nuclear matter.
As for the calculational technique, we employed what is

2 92
vi=u?+{2(1-ud)—u} Ll 212 A_’“ (33)  unguestionably the most universal method possible, since it
n dus) n was based on the global formulés8) and (19) for shock
3—-16c.—9c2 AO® waves, which in the limit of infinitesimally small amplitude
2 2 S S oy . .
UﬁuﬁT?' (39 lead to the velocities of propagation of first and second

sound. This approach allowed us to also consider weak dis-
Equation(33) shows that if the speed of first sound is  continuities[Egs. (33) and (34)].

small, the corresponding discontinuity always propagates Finally, the present formalism can be constructed in
ahead of the sound wave. We may obtain a more expliciterms of temperature and pressure as is done in nonrelativis-
understanding of formulag33) and (34) for specific in- tic theory? but this would only complicate the calculations
stances of equations of state. Specifically, for the polytropi@and not increase the physical clarity of the exposition. On the
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The molecular-dynamics method is used to investigate high-temperature evaporation of a simple
liquid. The interaction of the atoms is described by a Lenard—Jones 6—12 potential. The
simulation shows that fluctuations of the binding energy in the surface layer play an important
role in evaporation, thanks to which a significant contribution to the evaporated flux

comes from atoms whose kinetic energy is of the same order of magnitude as the mean thermal
energy. Such a mechanism of evaporation differs substantially from the traditional one

[Ya. I. Frenkel',Kinetic Theory of LiquiddClarendon Press, Oxford, 194&ased on the
assumption that only those particles evaporate that have energies of the order of the binding
energy, i.e., much larger than the mean thermal energy. The structure of the transitional

layer between the bulk gas and liquid phases is investigated. Potential energy fluctuations and
pairwise correlation functions in the bulk phases and transitional layer are calculated.

The velocity distribution function of the atoms for evaporation into vacuum is found19@7
American Institute of Physic§S1063-776(97)01604-]

1. INTRODUCTION 7, required for a noticeable rearrangement to take place in the
immediate environment of the surface atom. Thus, evapora-
The problem of evaporation of condensed matter is ongéion must be considered as a collective process. As a conse-
of the classical problems of physics. It is of fundamentalquence of fluctuations of the binding energy, atoms or
interest and is important for many applications in scientificgroups of atoms are formed in the surface layer such that the
research and engineering. The intense study which this prolenergy per particle required to tear any of them free is sig-
lem has received in recent years has been facilitated by theificantly less thatJ, and their lifetime in the bound state in
development of efficient methods of producing high energythe surface layer is of order. These atoms with kinetic
densities based on the use of laser radiation and high-powehergy on the order of the mean thermal energy make a
particle beams. The extensive experimental material obtaineslibstantial contribution to the evaporated flux. Here we may
in this way is usually interpreted on the basis of greatly sim-make the following remark. If we assume that the main con-
plified theoretical model¢see, for example, Refs. 1):3n  tribution to the evaporated flux comes from particles belong-
this connection, processes taking place in the gas phasiag to the tail of the Maxwellian distribution, then it may be
where kinetic effects play an important rdié, have been expected that evaporation will lead to a depletion of fast
studied in a more fundamental way than processes in thgarticles from the surface layer of the condensed phase. In
condensed phase and in the interphase transitional layer. Ithis case the complicated question arises of the mechanism
stead of analyzing the latter, most studies make do with they which fast particles fill the tail. This question has been
simple single-particle model, which treats evaporation as theiscussed a number of times, but it has not obtained a satis-
escape of the fastest atoms from a potential well whose depffactory answer. The fluctuation mechanism of evaporation
is equal to the mean binding energy. In order to calculate discussed here is free from this difficulty.
the flux of evaporated material, the velocity componept At temperatures less than critical, the boundary between
normal to the phase boundary is integrated over the tail ofhe liquid and gas phases is well defined: the density varies
the Maxwellian distribution withv,>\2Ug/m. Such a in the direction of its maximum gradient over a length on the
model is obviously an oversimplification. In reality, for at- order of the interatomic distance in the liquid. This boundary
oms located in the surface layer and making the main conhas a complicated shape which varies with time. Long-
tribution to the evaporated flux, the binding enetdyis not  wavelength perturbations of the boundary include the well-
a fixed quantity, but depends on the immediate environmerknown capillary waves with dispersion law?= yk%/p,
of the given atom. It is equal td, only in order of magni- where v is the surface tension angis the density of the
tude. The following circumstance is also important. A sur-liquid.'? Curving of the phase boundary as the wave propa-
face atom with binding energy before the transition to the gates leads to variation of the binding energy of the atoms by
gas phase completes on average () oscillations, i.e., a magnitude of the order afkn™ '3 wheren is the particle
it remains in the bound state for a time of the order ofnumber density in the liquid. This quantity becomes compa-
7 expU/KT), wherer is equal in order of magnitude to the rable to the mean binding enerdy, at wavelengths of the
inverse Debye frequency. At temperatuk€B<U this time  order of the interatomic distance. Numerical calculattbns
is much greater than the characteristic time of variation oshow that at sufficiently high temperatures perturbations of
the binding energy of the atoh, i.e., than the time, of order the interphase boundary with wavelength of the order of
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(5—8)d, whered is the mean interatomic distance, have a u(rij):48[(0'/rij)12_(U/rij)6]1 )
considerable amplitude. Perturbations of the boundary in-

crease the surface-averaged thickness of the transitionﬁfherer‘i IS th? distance between the particles, anahd o
layer, which is also much greater than the thickness of th@re the potential parameters. In order to separate the system

boundary. The excitation of short-wavelength surface mode© & liquid pha_s_e and a gas pha§e along zhexis, we
inside the transitional layer leads to the formation on th ntroduce an additional potential acting on the system from

phase boundary of segments with high local curvature whic he direction of one of the f"?‘ces of the parallelepiped, the
loor of the molecular-dynamics cet= —L:

make a significant contribution to the evaporated flux. Not
that at wavelengths severalfold greater than the interatomic  uy(z;)=4e,[(o/(L+2)) 2~ (o/(L+2))®]. (2)

distances, the motions of some neighboring atoms are corre]_—0 simulate evaporation into vacuum and into a closed
lated; therefore, along with the evaporation of individual at- P

oms one may also expect large clusters to break free from thgbace, we introduce a repulsive potential at the opposite face

surface. Such clusters have been observed in molecula?—f the celiz=L

dynamics calculation’: Uc(z)=4efol(L—2z)]* ©)
. _The real structure of the s_urface layer of an evapqratlngrhls potential plays the role of the lid of the molecular-
liquid should have a substantial effect on the interaction of : .
. S dynamics cell. For a closed lid we havg=¢, and for an
the atoms of the vapor with the surface of the liquid. In : L . . . .
. . apen lide .= 0. Periodicity conditions with periotd are im-
studies of surface phenomena at the interface between con® : .
) i osed on the system in they plane. In this way, for each
densed matter and a gas, calculations of such quantities as . . . . ;
. = . - article with radius vector; located in the main cell an
accommodation coefficients and reflection coefficients of the . . . ; . . _
o ; . infinite series of images with radius vectars-nL is intro-
atoms have traditionally occupied an important place. Usu- . ; . )
: duced, wheren is an integer-valued vector in they plane:
ally such calculations have a model character and are typi- . , : . :
. . . . n={l,m,0}. The distance between thth andjth particles is
cally carried out for a flat stationary interface. In light of the | ..
. : . efined here by the rule
complicated, time-dependent structure of the transitiona
layer between a liquid and a gas, the applicability of the  rj=min(|r;—r;+nL|),
results of such studies to a real liquid—vapor boundary raiseS ore the minimum is taken over all vectors

doubts. Processes in the transitional layer determine the char-
acter of the velocity distribution of the evaporated atoms’based on the solution of the equations of motion of the par-

irr]]d dd|src1;?nt|n:ﬂrt]|esr lt?] thi gast-)dyr:]?jm:c dquanntgleisn ;nrr;[heticles making up the system. As the equations of motion it is
uasen fayer near the phase bounaary depend, UM, Obnvenient to take Newton’s equations, which do not contain

this distribution. To solve the Boltzmann equation for the.. N L
Knudsen layer, the distribution function of the atoms emittedﬂrSt derivatives in time
by the surface is usually assumed to be Maxwelljasth mr;=fi(ry,ro,...ry), i=1,2,...N, (4)
temperature equal to the temperature of the liquid and par- here the force$ are determined by differentiating the po-
ticle number density equal to the density of the Saturate‘ﬁ;ntials(l)—e).
vapor at this temperaturdor v,<0 (the z axis is directed
from the liquid to the gas*~*° This boundary condition was
never rigorously derived. It is probably correct in the case o
a planar phase boundary, but is not obvious in general. ,%
molecular-dynamics simulation would give some idea of
how close it is to reality for a real boundary.

In the present study we have simulated the evaporatio

The molecular-dynamics simulation of the system is

Special numerical methods have been developed to solve
f'such equationgmainly in connection with the problem of
celestial mechani¢s® In the present study, to integrate the
guations of motiori4) we applied(apparently for the first
time in the practice of molecular-dynamics calculatiotie
explicit eighth-order Staner method. This method was cho-
L _ en in place of the simpler schemes traditionally used in
of a liquid by the moleculgr-dynamms method_ and have L_m'molecular—dynamics simulatiotfsbecause of the necessity
dertaken an effort to consider the above-mentioned questloqﬁ calculating the trajectories of the system for an extended

of the mechanism of intense evaporation, the structure of thﬁnerval of time since the establishment of thermodynamic

transitional layer between a liquid and its vapor, and th_eequilibrium in a two-phase system is much slower than in a

velocity distribution of the evaporated atoms. The paper I$he-phase svstem. The application of a higher-order method
organized as follows. Section 2 describes the model and for- P y ' PP ¢

. : . makes it possible while preserving the prescribed accuracy to
mulates some me;t.ho.dologlcal questlon's. Sect|on 3 addressgge a several times greater time step and thereby speed up
simulation of equilibrium between th_e_ Ilqwd and Vaporin ane cajculation and reduce the accumulation of errors. Note
closed space, and Sec. 4—non-equilibrium evaporation Nithat this statement is valid for sufficiently dense systems,
vacuum. where the number of particle—neighbors calculated is large
and the main fraction of the time{90%) is spent calculat-
ing the interparticle distances and forces. Therefore, an in-

We consider a system & particles located in a paral- crease in the order of this explicit integration method only
lelepiped with dimensiong XL X 2L, called from here on insignificantly increases the computer time expended per in-
the molecular-dynamics cell. The interaction between theegration stefless than 10% in our casand allows us to
ith andjth particles is described by the Lenard—Jones potensubstantially increase the size of the integration dtep
tial roughly a factor of four. Thus, in the case of a large number

2. THE MODEL
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of neighbors(dense systems, long-range potenjidle use he

of the explicit eighth-order Stmer method speeds up the Xnt1=2Xn—Xp_1+ === E aXn_i. (5)
T . ; . 60480/=p 1"")

calculation in comparison with ordinary methods by roughly

a factor of 3-4. A significant increase in the amount of

computer memory used is not a real problem at the present

time. The calculational formula used to integrate the equaHeren is the number of the time step,is the length of the

tions of motion does not depend on the particle velocitiedime step, and the quantitieg are given in the following

and has the form table.

i1 0 1 2 3 4 5 6 | 7
a;|88324| —121797|245598| — 300227|236568| —117051|33190| —4125

To simplify the presentation, formul®) is written down  much faster in a two-phase system than equilibrium between
only for thex component of the vectar. The form of for- the phases is reached. In order to bring the system into an
mula(5) is the same for thg andz components. Obviously, equilibrium state with prescribed temperature, at the initial
more than just this one formula is needed for the molecularstep of the simulation it is necessary to scale the velocities
dynamics simulation since it is also required to know theand damp the oscillations of the center of mass alongzthe
velocitiesr; of all the particles at each time step to calculateaxis. This initial step is followed by a shorter intermediate
the physical quantities which depend on the particle velocistep in which the system is not subjected to any external
ties. We derived and implemented the following formula: forces and enters a stationary state. Here a small change in

1 h the temperature takes place. The criterion for the completion
o= _ (¥ % of both steps is constancy of the temperature along thrds

Xns1 2h (e1=¥n-2) 3 (Xns1+ 2Xn). © and smalln%ss of the fluc}[luations of tFr)le center of r%ass of the
The main difference between formul®) and the usual entire system and of the gas and liquid phases separately.
finite-difference estimates of the first derivative consists in\O€ the_xt thez component of the total momentum of the_
the use of second derivatives to enhance the accuracy. THYSIEM IS not conserved; therefore fluctuations of the posi-
approach is natural since it uses values of the acceleratiofo" of the center of mass of the ennrq system are |neV|_tabIe
already calculated in order to evaluate form(8 It should ~ and reflect the fluctuations of the particle number density.
be emphasized that formui) is not used in the process of 'The main difficulty of a mplecular-dynamlcs simulation,
integrating the equations of motio@) by the method5). 5 IS well known, has tp dq Wlth the fact that to calpulate the
Therefore, the error of estimaté) affects only values of the forces acting on a particle it is necessary at each time step to

velocity-dependent physical quantities such as the kinetic er{:_alculate z_;\II the dis_tances between the particles. The number
ergy calculated at thath step. of these distances is equalf{N—1)/2; therefore the num-

: 2
To carry out the calculations, it is convenient to useber of calculations grows d¢“. The most successful way of

dimensionless variables. It is customary to takes the unit ~2v0lding quadratic growth of the calculation time with in-
of length, & as the unit of energy, and the quantity crease of the number of particles was proposed by Vétlet.

r=om/48 as the unit of time. In what follows, if the It consists of defining the matrix of nearest neighbors, which
dimensions are not explicitly statéd we will use thése quani-s only used to calculate the interparticle distances. With this

tities. For example, the temperature in dimensionless units igoal', a cutoff radius of mteracﬂorb and hpnzon radius,
expressed as are introduced. The particles located a distance lessithan

from the given particle are taken to be its nearest neighbors.
16 N ) Only particles from the interaction spherg<r interact
=3 iZl vi=16(v?). with the given particle. The particles located between the
two spherical surfaces with radii; andry form a buffer
To transform to dimensioned quantities, it is necessary to usehich exchanges particles with the interaction sphere. The
the parameters of the Lenard—Jones potential of the specifipatrix of nearest neighbors is replenished euetyne steps.
material involved. For example, for argon we may useSo that even the fast particles will not be able to make it past
0=3.405< 10 & cm, e =1.653< 10" ¥ erg=119.8 K, there- the buffer in the timekh, whereh is the time step, Verlét
fore the unit of time isr=3.114x10 3s. proposed choosing the horizon radius equal to
To start the integration of Eqg4), it is necessary to _
assign the initial coordinates and velocities of all the par- rg=rotskiv)h, @)
ticles. Toward this end, the particles are arranged at thevhere(v) is the mean-square velocity of the particles and
nodes of a simple cubic lattice inside a cube of dimensionshe parametes~5.3. We have introduced two new elements
L XL XL resting on the floor of the molecular-dynamics cell. into the classical algorithm. First, the particlesnoving out
The particle velocities were chosen to be equal in magnitudeeyond the horizon radius of théh particle during the time
to v = \/T/16 and randomly distributed in direction. Note that kh were excluded from amongst its nearest neighbors until
the results of the calculation do not depend on how the initiathe matrix of nearest neighbors is updated again. This proce-
conditions are prescribed. As the molecular-dynamics simudure made it possible to speed up the program by roughly
lations showed, a Maxwellian distribution is established10% and use formulé8). Second, we did not takg, to be a
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TABLE |. Parameters of closed two-phase systems.
T | 0.7250 + 0.0058 | 0.7952 & 0.0063 0.897 + 0.007 0.991 + 0.008

ny 0.8060 0.7722 0.7164 0.6582

n, 0.004886 0.009655 0.02367 : 0.04687

u | —5.423£0.5796 | —5.146 £ 0.6070 | —4.713 £ 0.6463 | —4.285 + 0.6845
u, |—0.05292 £ 0.1364|—-0.09212 + 0.1741{—0.2282 + 0.2851] —0.4263 £ 0.4013
€ 1.087 £+ 0.8874 1.190 + 0.9721 1.346 £ 1.099 1.486 + 1.214
€ 1.107 £+ 0.8991 1.232 £ 1.002 1.329 + 1.077 1.474 + 1.200

constant quantity as was done in Ref. 15, but rather assumem): unit velocityv,=1093.3 m/s, unit particle number den-

it to depend on the velocity of the particle and the structuresity 1.6825 g/cri The units of length, time, and energy
of its immediate environment. We assumed thgli) in-  were given above. Some results of the calculations are sum-
creases with growth of the velocity of the partiale, de-  marized in Table I. For the liquid and gas phaeslicated
creases as the number of partichsinside the cutoff radius by the subscript$ and g, respectively the table gives the

of theith particle increases, and decreases as the time of thgilues of the density, and ng, Mmean potential energy per
next update is approached. These conditions are satisfied Rrticleu, andug, and mean kinetic energy ande at four

the empirically chosen dependence temperaturegthe numbers after the: sign are the values of
02 4 the mean-square fluctuation#\s can be easily seen, the ki-
. I - . . .
=r . +(k— netic energy fluctuations satisfy the relation
rg(i,m=re+(k—m){v)h 3+<v2> T oN I (8) gy fy
2
wherem=0, . .. k—1 is the number of time steps that have  (({€)?>—€?))= 3 (€?),

passed since the last replenishmédnt,m is the number of
time steps until the next update; is the speed of theth  with high accuracy, which indicates that the system is in
particle, andC is an empirical constant. The maximum value thermodynamic equilibrium. The small value of the tempera-
of C for which no cases of penetration of the buffer by ture fluctuations £0.8%), a consequence of the large num-
outlying particles are observed was identified by preliminaryber of particles, may also be noted. This justifies the adopted
calculations. In our calculations we adopted the valudormulation of the problem, based on the use of NMYIE
C=0.88. Using the parameters of our mod¢k100 and ensemble without artificial procedures for maintaining con-
r.=3.2, form=k/2 andv;=(v) we obtains~2.2. This re- stant temperature. The time dependence of the “instanta-
duces the number of neighbor§or k=16, (v)=1/4, neous” temperature, defined by relatitf, is shown in Fig.
h=1/32 in comparison with formula(7) by a factor of 1.

roughly 1.5. On the basis of this estimate we may conclude In order to determine the dependence of the mean value
that defining the horizon radius by formul@) substantially of a physical quantityf on the coordinate, the molecular-
increases the efficiency of the algorithm in comparison withdynamics cell was subdivided into 512 layers of thickness
its original definition’> Moreover, as a consequence of its 5z=2L/512 and the values df (which depends on the co-
sensitivity to the local value of the particle the number den-ordinates and velocities of the particlagere summed over
sity formula (8) offers definite advantages for simulating all the particles falling within the given layer. The result was
two-phase systems. It should be noted that forn(@las not  then divided by the total number of particles falling within
optimal from the point of view of minimizing the number of

nearest neighbors. This question requires special study, and

we will not touch on it further in this paper. -2.798

E

3. EQUILIBRIUM LIQUID-GAS SYSTEM

—2. 800 Tor oA o T et TR
In this section we present results of a molecular-
dynamics simulation of an equilibrium two-phase Lenard—
Jones system. The system was brought into equilibrium with ~2.802
the prescribed temperature. Its physical characteristics were 1.00
then calculated by averaging along a phase trajectory on the
constant energy surface, i.e., we simulated the microcanoni- -
cal ensemble. As has already been mentioned, we are using 0-90%}-". >
molecular-dynamics units. In all of the cases the humber of 0.85
particles in the main celN was equal to 8000, and the cell ‘
had dimensiond XL X2L with L=25.1984. The integra- 0'800 5000 10000 15000
tion step wash=0.03125 and the cutoff radius was

re=3.2. We give for QUi_dance the dimensioned ve_llues of thesig. 1. Time dependence of the total energy and instantaneous temperature
molecular-dynamics units in the case of ardatomic mass in a closed system witfi=0.897.

0 5000 10000 15000

0.95
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_ _ _ o FIG. 4. Mean potential energy per particlend its mean-square fluctuation
FIG. 2. Spatial profiles of the particle number density in a closed system afy as functions of the particle number density at different temperatures.
different temperaturesl—T=0.725, 2—T=0.795, 3—T=0.897, 4— Notation of the curves is the same as in Fig. 2.
T=0.991.

the layer. Profiles of the particle number at different temperapamed out according to the_ scheme_ de_scrlbed above. The
tures calculated in this way are shown in Fig. 2. As Wasmarked growth of the potential enerdlyinding energy fluc-

noted in the previous Section, near the floor of the cell the;uations, in the interphase region draws attention to itself. It is
system is acted upon by forées with the potent@l At precisely these fluctuations, as was noted in the Introduction,
T=0.725 the constant,, was set equal to 0.5, and at higher that increase the probability that particles go from the liquid

temperatures it was set equal to 1. This potential affects th the gas. Figure 4. plots the mean potential energy and its
density profile only near the floor of the cell and has no uctuations as functions of the particle number density. The

effect on the bulk properties of the phases. Note that in th&urves corresponding to different temperatures differ little in
i the region of densities corresponding to the transitional layer.

transitional layer between the liquid and gas the density pro: heref h estimate it b d that th
file turns out to be monotonic. Thus, our calculation does not ¢ c10'€, @S a fough estimate it may be assumed that the
otential energy in the transitional layer is a function of the

support the hypothesis advanced some time ago by Efsher” . ) . g -
of the existence of density oscillations in the transitionalIocal density. More detailed information about the binding

layer energy of the atoms in the liquid, gas, and transitional layer

Figure 3 plots the mean potential energy per particle and"® be obtained by calculating the potential energy distribu-

the mean-square fluctuation of this quantity as functions of' " function from the molgcular-dypamlcs simulation data.
2. We used the standard recipe in the calculation of thes xamples of such calculations for different temperatures are

qguantities: half of the interaction energy was assigned t .hown In Fig. 5 Q'_20.795) 'and Fig. 5-(:0'991)' The_.
each of the pair of interacting particles. The calculation wa; igures show the unit-normalized potential energy probability
distribution functions for the equilibrium system for several

different cross sections of the molecular-dynamics cell. The
energy was averaged over layers of thickness 0.2, parallel to

ur J 4 the xy plane. Thez coordinate of each of the layers is indi-
05¢ 2 ] cated in the caption. Curvkin both figures corresponds to

OF the homogeneous liquid, and cur@e-to the gas, and the
—0.5¢ remaining curves—to the transitional layer. For all of the
-LOf cross sections the potential energy distribution function is
-L.5F nonzero at negative energies. In the gas phase it exhibits
20 features associated with the formation of diatomic and larger
-23¢ clusters. In the high-temperature case the potential energy
—3.0¢ distributions in the cross sections close to the “gas” end of
-3¢ the transitional layer exhibit similar behavigsee curves
40 5-7in Fig. 6). This can be interpreted as an indication of the
'4'5_ formation of clusters inside the transitional layer. The mean
:g:g N ST potential energy per atom in the gas phase is negétitech

-25 =20 -15 -10 -5 0 is also apparent from Figs. 3 angl 4n the transitional layer

z the distribution broadens noticeably, corresponding to

FIG. 3. Spatial profiles of the mean potential energy per partickd its growth of the amp_lltu_de (_)f the blr_1d|n_g energy fl_u_ctuat|0ns.
mean-square fluctuatiosu in a closed system at different temperatures. The 1N€ _shape of the d|3t”bu_t|on function n the transitional |aY_er
curves are labeled as in Fig. 2. and in the gas phase differs substantially from a Gaussian.
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FIG. 5. Normalized distributions of the potential enejgfyu) for a system

in equilibrium withT=0.795, calculated for different layers during the tran- FI?' 7. Pairwise radial d_i§tributions in an . equilibrium . _system at
sition from liquid (curve 1) to gas(curve 8). Coordinates of the layers: |~ 0-795, plotted vs the position of the layey during the transition from

1—the layer —17.0<z<—14.0, 2—the layer —9.0<z<—8.8, 3—the liguid (curvel) to gas(curve7): 1—the layer—17.0<z<—14.0, 2—the
layer —85<z<-83, 4—the layer —8.0<z<—7.8, 5—the layer |6 —9.0<z<-88, 3—the layer ~85<z<~83, 4—the layer
~75<2<-173, 6—the layer —7.0<2<-68, T7—the layer ~80<z<—78 5—the layer —7.5<z<-73,  6—the layer

—6.5<2< — 6.3, 8—the layer—1.0<2<18.0. ~7.0<2<~6.8, 7—the layer—1.0<z<18.0.

variables were calculated using the results of the molecular-
lueu/2 i I din the fi ) diof dynamics simulation. In order to get an idea of how the
valueu/2 is erroneously used in the figures insteadio function n(p;; ,z;,z;) varies as one goes from the liquid to

The two-particle distribution function(r;,rj) is an im- 4, gas phase, we divided the transitional region into a series

portant source of information about the structure of the trangs layersz, of thickness 0.2 parallel to they plane, and the

sition layer. Obviously, in a homogeneous phase it dependg,, qinatez, was chosen inside one of these layers. Distri-
only on the interatomic distanag =|r;—r;|. In our case, in

. o hol . butions of two types were investigated: radial, depending on
which the system varies in theedirection,n(r; ,r;) is a func- P g P ¢

) ) _ the variable p;; and calculated for the condition
tion of three variables, which we may choose aszlwor-

) . N |z; —zj| <0.2, and axial, depending on the variabje-z; and
dinatesz; andz; of the two particles and the radial distance 50\ jjated for the conditiop;;<0.2. Distributions of both

pij=(x—x;)?+(yi—Y;)* between their projections on the types were also constructed for the bulk phases. The distri-
Xy plane. The two-particle distribution functions in these pytions were calculated for different temperatures from
T=0.725 toT=0.991. Figures 7 and 8 plot the radial distri-
butions in various layergg, calculated for the two extreme
p temperature values. The coordinates of the layers are indi-
4t cated in the captions. It can be seen that as one goes from the
liquid to the gas phase, the first thing one notices is the
3t destruction of the higher-order coordination spheres. Here
the positions of the maxima hardly change at all. This means
that the most probable distance between some isolated par-
ticle and the particles of theth coordination sphere tends to
remain fixed in an equilibrium two-phase system. Thus, as
1.0} one goes from the liquid to the gas a tendency is manifested
to preserve close-range order.
! 7 Examples of axial distributions are shown in Figs. 9 and
0.5 2 3 4 g 10. Although the level of the fluctuations in the axial distri-
butions is higher than in the radial ones due to poor statistics,
the main features of the transition from liquid to gas are
0 - : ; . .
6 -5 -4 3 -2 1 o0& preserved in this case. The curves numbetem all the
figures correspond to the homogeneous liquid phase, for
FIG. 6. Normalized distributions of the potential eneyefy) for a system  Which the radial and axial distributions should obviously co-
in equilibrium withT=0.991, calculated for different layers during the tran- incide. Calculation indeed demonstrates complete agreement
sition from liquid (curve 1) to gas(curve 8). Coordinates of the layers: patween the two distributions. This can be seen from Figs. 9
1—the layer ~15.02<~14.0, 2—=the layer ~6.5<2<~06.3, 3—the 54 10, in which the square symbols indicate the radial dis-
layer —5.5<z<-5.3, 4—the layer —4.5<z<-4.3, 5—the layer . ! oo X
—40<z<-38, 6—the layer —35<z<-32, 7—the layer tributions for the liquid phase. On the basis of a study of the
—3.0<z<—2.8, 8—the layer 3.8:z<18.0. pairwise correlation functions in the transitional region be-

Here we must note than in our earlier pagief. 11 the
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FIG. 10. Pairwise axial distributions in an equilibrium system for
FIG. 8. Pairwise radial distributions in an equilibrium system at 2ij<0-2, plotted vs the position of the layeg (z=2;—2z) at T=0.991.
T=0.991, plotted vs the position of the layarduring the transition from  Sguares on curv correspond to the radial distribution in the liquit:-the
liquid (curve 1) to gas(curve 8): Coordinates of the layers—the layer layer —15.0<z<-14.0, 2—the layer —6.5<z<-6.3, 3—the layer
—-15.0<z2<—14.0, 2—the layer —6.5<z<—6.3, 3—the layer —5.5<z<-5.3, 4—the layer —4.0<z<-3.8, 5—the Ilayer
—6.0<z<-58, 4—the layer —55<z<-53, 5—the layer 3.0<2<18.0.
—4.5<z<—-4.3, 6—the layer —-4.0<z<-3.8, 7—the Ilayer
—3.5<z<—-3.2, 8—the layer 3.8:z<18.0.

phase region, which increases with the temperature and

reaches roughly eight molecular-dynamics unit§ a0.9.

- . We made an attempt to apply the formalism of temporal

tween the liquid and the vapor, we may (_1raw the fOIIOV\”ngcorrelation functions to study the density fluctuations in the

conclusions about the structl_Jre of the liquid surface layer. A?r nsitional layer. Toward this end, three regions were distin-

Z con_ts e((qju?_ncz of preser\llatlofrizgj‘ shqtrtl—ran?he Qrdtir’ t_he Iocaﬁished in the molecular-dynamics cell, corresponding to the
ensity (defined on a scale o unit length$ in the in- bulk liquid and gas phases and to the transitional layer. For

terph.a.se region takes only tWO. va}lues corresp_onding to th8ach of these regions we analyzed the density fluctuations
densities of the bulk phases—Iiquid or gas. This means th%ith wave vectors q o= (27/L)(I,m,0) (1=0,1,2.3
,m ’ ’ 1y

there exists a well-defined phase boundary between the Ii%zoll,z,3 lying in thexy plane and calculated the dynamic

U|d|and| thz gas, .whosg:[ th_'l_crlf ness I?t ectiqualf E[?l rc;lu gtIyQt'l structure factor. We calculated the spatial Fourier transform
molectiar-dynamics unis. he ampiitude ot the TuctuationS,g e density operator at the tiniefor each region:
in the position of this boundary defines the mean density

profile along thez axis and the mean thickness of the inter- Ne

1
n(a.b =g ,21 exp(iq-ri(t)),

whereN; is the number of particles observed in the region at

n2.,) the timet and the subscrigt numbers the particles. The time
23 ’ . seriesn(q,t) was written to disk. After the termination of the
calculation, the fast Fourier transform was used to estimate
2.0 the spectral density function of the stationary process
n(q,t), where this spectral density function is the desired
s dynamic structure factor:
. ) , N . .
S(q,0)=5— | dn*(q,0n(g,h))exp—iwt), (9
1.0 2
where F(q,t)=N{n*(q,0)n(q,t)) is the autocorrelation
] A function of the density fluctuations. Using the finite Fourier
03 transform, we may rewrite this expression in the form
0 L P N jT 2
g v ,w)=lim —— dt n(g,t)exp —iwt)| . 10
-32 24 -16 -08 08 1.6 24 32 S)=lm oo ‘ o drnia.nexp—iet) (10

FIG. 9. Pairwise axial distributions in an equilibrium system fgr<0.2, Here N is the mean number of atoms in the region. As a
p'OttEleS the pos'(tj'ot” C:Lthe 'gyelﬂ%d(_zt:,;jgzi) ?‘tIh:OI-,725ﬁ-’_5tfrl]“a:es on  consequence of the statistical invalidity of estimating the
curve 1 correspon (0} e radial aistripution In e liquitr e layer . . . . _
C170-7<-140, 2—the layer —9.0<z<—88, 3—the layer spectral den5|_ty f7rom a_s!ngle reallzat_|on pf tht_a randon_w pro
—85<7<—83, 4—the layer —65<z<—63, 5-the layer CESS IN questioh, we divided the entire time interval into

—-1.0<z<18.0. Ny segments in order to reduce the error of the estimate,
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S(q.w) face and on the surface tension. The formula which they
obtained links the Fourier component of the height of the
Gibbs surface with the Fourier components of the fluctua-
tions of the local density(q,z):

%«D=fd2quKm—n@, (11

where the vectoq lies in thexy plane. The formalism de-
veloped by Triezenberg and ZwanZlgermits one to gen-
eralize to the dynamic case. It can be shown that for time-
dependent density fluctuations the Fourier component of the
height of the separating Gibbs surface is related to the Fou-
rier component of the density fluctuations by a relation
analogous td11):

0 0.1 0.2 03 0.4 (0]
| . 2(a.0= [ dz naz0/n-ny). 12
FIG. 11. Dynamic structure fact®(q, w) of the liquid phase in equilibrium

with the vapor atT=0.725 as a function o for different values ofg ; ; ; ;
(Ng=81): 1—0.2493,2—0.3526,3—0.7480. If we now substitute relatioil2) in Eq. (10), we obtain

. 1 T
S(d, @) =(nj—ng) lim TNTL dt z(q,t)

which is proportional to 3/N4. We did this without using T
spectral windows. Details of the technique can be found in 2
Ref. 18. Xexp —iwt)| .

An example of the dynamic structure factor calculated
according to the described technique is shown in Figs. 1Thus, the dynamic structure factor which we have calculated
and 12. At the longest wavelengths and low temperaturefor the transitional layer coincides with the power spectrum
(0.725, 0.897 collective excitations are observed whose ve-of the fluctuations of the separating Gibbs surface. For wave
locity turns out to be close to the speed of sound in argowectors lying in the interval 0.2483/k|<0.899, this spec-
~1 (1000 m/$ near the triple point. trum corresponds to high-power low-frequency noise. A

Because of the variability of the mean densit{z) in  study of the dynamics of the separating surface by the above-
the transitional layer, it is difficult to interpré&(q,») as the  described method would require an extension of the wave-
dynamic structure factor of the interphase region. Howeveryector interval.
if we use the existence of a well-defined boundary between
the liquid and Fhe vapor, m_entloned abpve, thenitis possmlgL EVAPGRATION INTO VACUUM
to attempt to link the functiors(q,w) with the spectrum of
the fluctuations of this boundary. A similar analysis was car-  In order to simulate evaporation of a liquid into vacuum,
ried out for the static case by Triezenberg and ZwanhZig, the potential at the upper face of the molecular-dynamics cell
which examined the effect of density fluctuations in the trands set equal to zer¢‘open lid"). In this case the atoms can
sitional layer on the fluctuations of the separating Gibbs surfreely leave the cell and equilibrium states are not attained. It

is possible, however, to bring the system into a stationary
nonequilibrium state with prescribed constant temperature
S(g,w) T on the surface of the liquid phase. This is achieved by
07¢ transferring the particles that have left the molecular-
dynamics cell to the near-floor region of the cell with new

0.6 : velocities chosen such that the total kinetic energy is con-
05 served and th& andy components of the total momentum
; remain equal to zero. In such a stationary state it is possible
0.4 to average the characteristics of the system over time and
compare the results with the characteristics of the equilib-
03} rium system withT=Tj.
The maximum flux density of the atoms evaporated from
02} the surface of a condensed body is given by the Hertz
formule?®
0.1t
. kgT
0 01 02 03 04 o Im=Ns N 27

FIG. 12. Dynamic structure factd®(q,w) of the liquid atT=0.725 as a V_Vhe_rens is the denSIty of the vap_or n equ"lb”um with Fhe
function of w for q=0.2493 (N4=81): the solid curve corresponds to the liquid at the temperatur?é_. The ra_tlo of the real flux (_jen_3|ty
equilibrium system, the dashed curve to vapor in vacuum. of the evaporated atomg to their maximum valug, is
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TABLE II.

n
T, e , 0.050
’ 2 - 0.045¢
0.725 | 0.00023956 | 0.0001908 | 0.79646 0.040l
0.795 0.00049577 | 0.0003932 | 0.79311 ’
0.897 | 0.00129090 | 0.0010280 | 0.79636 0.035¢
0.030¢
0.025}F 2
called the evaporation coefficient. Table Il displays the re- 1
. . X 0.020
sults of calculations of the fluxgs, andj and the evapora-
tion coefficienta= j/j .« for three temperatures of the liquid 0.015¢
surface. 0.010F
The near-constancy af with temperature draws atten- 0.005F
tion to itself. It is possible that the value=0.8 is universal 0 ‘ : : : : -
for simple liquids. % =3 2 7 12 17 22:

In the simulation of evaporation into vacuum a signifi-
cant change in the density profiles is observed. First, th@,g. 14. As in Fig. 13, but for particle density in vapor only.
mean vapor density is decreased severalfold below its equi-
librium value. Second, the density of the bulk gas and liquid

phases becomes inhomogeneous. Figure 13 shows that the ' . :
density of the liquid grows linearly witlz. It can be seen 925 phase. To first order it may be assumed that the potential

from Fig. 14 that the density of the vapor falls withalso ~ N€r9Y in the transitional layer at a given temperature is a

according to a linear law. Table 11l lists values of the densityfunctlon of the local density. We are led to the same conclu-

gradients of the liquid and gas phases for three temperature¥°" b_y an examination (_)f the two-particle d|st_r|bu_t|on func-
ons in the non-equilibrium system, from which it follows

and also values of the gradients of the mean kinetic anah o R
that evaporation into vacuum has only an insignificant effect

potential energy per particle in the liquid. S S : L
Knowing the gradients of the thermodynamic quantitiesC” the pairwise distribution functions at the same densities

and the corresponding fluxes, it is easy to find the transpor'? z).

coefficients. For the liquid phase this problem is of great Molecular-dynamics S|mulat|on O_f evaporation '”tf?
interest: however. we will not consider it here vacuum allows us to determine a very important characteris-

As was done in the equilibrium state, for the case ofti€ of the evaporation process—the velocity distribution func-

evaporation into vacuum we calculated spatial profiles of thé'?p ?f th_e evaﬂprﬁted partlclesbneard the phz_sg b(f)undary.
mean potential energy per particle and its mean-square flug-"'> unction, which serves as a boundary condition for gas-

. . . l . .
tuations from the molecular-dynamics simulation data. W inetic calculations;' is usually assumed to be Maxwellian

also determined the potential energy distribution functiond®! Particles moving away from the surface,(0) and

for the bulk phases and different cross sections in the transfdu@l to zero for particles moving toward the surface
tional layer. Comparison with the equilibrium case shows(vz<0)' No serious theoretical derivation of this boundary

that the differences are not large and show up mainly in th&ondition is known to us. Figures 15 and 16 present results
of a calculation of the particle distribution functions over the

transverse velocity, in the bulk phases and in the transi-

n tional layer for different temperatures. All the distribution
0.9¢ functions are quite close to Maxwellian with zero mean ve-
0.8f ’ locity and temperature falling somewhat as one goes from
07t liquid to gas. Spatial profiles of the mass velocities and tem-

' peratures are shown in Figs. 17 and 18. The distribution of
06 the particles over the longitudinal component of the velocity,
0.5 v,, has a more complicated character. As can be seen from

Figs. 19 and 20, inside the liquid the distribution is Maxwell-
0.4 ian. Figure 21 shows that the number of particles with nega-
0.3 tive velocities falls almost monotonically in the transitional
ool layer and in the gas phase. However, even at the upper
0.1
0 TABLE Ill. Parameters of open two-phase systems.
-25 -15 -5 5 15 25
z T dn;/dz dng/dz du;/dz de;/dz
FIG. 13. Particle number density at different temperatures as a function of 0.725 +0.00058 ~0.000030 [ —0.005 —0.0020
z: 1—T=0.725 (equilibrium systery 1'—T¢~0.725 (evaporation into 0.795 +0.00150 | —0.000057 | —0.010 | —0.0038
vacuum, 2—T=0.897(equilibrium systen 2'—T¢~0.9 (evaporation into 0.897 +0.00440 { —0.000210 | -0.034 | —0.0110

vacuun).
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<!

0.15
31 0.10]
23 0.057
11 0.004 & = x8x020,0%0,0,050%0,0x0x0%0 0% 0x
0 . -0.05 : . ,
04 -03-02-01 0 01 02 03 04 210 0 10 20 . 30

X

FIG. 15. The particle velocity distributiop(v,) inside thezg layers for ~ FIG. 17. Mean particle veIocitie‘sTirLside thez, layers atT,=0.725:0—
T=0.725: +—liquid layer —13<z<—11, solid curve—transitional layer V,, X—V,+V,; atT;=0.897: A—V;, O—V,+V,,.
—5<z< -3, dashed curve—gas layer22<25.

of which can make large angles with thg plane, the inter-
boundary of the molecular-dynamics cell the fraction of par-action of the evaporated particles with these fluctuations can
ticles with negative velocities amounts to around 8.1% forgive rise to a “tail” of particles with negative velocities. It is
T,=0.725 and around 10.7% fdr,=0.897. clear that this mechanism can lead to the appearance of a

The existence of two mechanisms of formation of par-significant returning force, but only near the interphase
ticles with negative velocities in the evaporated flux may beboundary at distances of the order of 2 thicknesses of the
supposed. transitional layer.

1. As a consequence of the low particle density in the In Fig. 21 two spatial regions are clearly distinguishable,
gas, the particles of the gas are found almost always in apparently corresponding to these two mechanisms of forma-
region in which the long-range attractive field of the sur-tion of a negative tail in the particle velocity distribution.
rounding particles is acting. Since the vapor density is ob-  From Figs. 17 and 18wvhich show the first and second
served to decrease with distance from the liquid surface, thmoments of distributions 15, 16 and 19, 20—the profiles of
mean field in which a particle moves should create a meathe mass velocity and effective temperature, respectiviely
force directed toward the liquid. Obviously, this mechanismcan be seen that inside the molecular-dynamics cell the
can operate far from the interphase boundary and in the al¥temperatures” of thev, andv, distributions differ mark-
sence of collisions. edly. Strictly speaking, they cannot even be compared, since

2. Since evaporation takes place from an interphaséhev, distribution function differs substantially from a Max-
boundary perturbed by surface waves, individual segmentgellian. The “transverse temperature,” corresponding to

nearly Maxwellian distributions over the velocity compo-

p
4 T
0.9
0.8
34
0.7
21 0.6 1
0.5
1 0.4
/ 0.3 1
04 -03-02-01 0 0.1 02 03 04 0.2 , . .
v, -10 0 10 20 30

4

FIG. 16. The particle velocity distributiop(v,) inside thezg layers for
T=0.897: +—transitional layer—6<z<-2, solid curve—transitional FIG. 18. Temperature inside tfrg layers atT;=0.725:0—Ty _y , X—

layer —2<z<0, dashed curve—gas layer22<24. Tny; atTs= O.897:A—TVZ,\TZ, O—Tvxy.
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0.1
l-
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FIG. 21. Fraction of particles with negative velocity inside thdayers as
FIG. 19. Particle velocity distributions(v,) plotted as a function o at a function of separation from the liquid bounda@®—T=0.725; +—
T,=0.725: +—liquid layer —13<z<-11; l1—transitional layer Ts=0.897.
—5<z<-3; 2—qas layer %Xz<11; 3—qas layer 23.z<25.

z component of their velocity falls with distance from the
nentsv, andv varies quite smoothly in the transitional layer liquid surface and should become negligibly small at dis-
and in the gas phase. The “longitudinal temperature,” cortances much greater than the thickness of the transitional
responding to the distribution over, and having the mean- |ayer. Thus, in the case of a low-density vapor the use of a
ing of the width of the distribution, falls abruptly in the tran- semi-Maxwellian distribution as a boundary condition in the
sitional layer(on a scale of 58 molecular-dynamics units  solution of gas-dynamic problems is a reasonable approxi-
and then varies smoothly in the gas phase, remainingnation.

1.5-2 times lower than the “transverse temperature.” Si-
multaneous with the steep variation of the “longitudinal
temperature” a finitez component of the mass velocity
arises on the same scale of the thickness of the transitional This work was carried out with the support of the Rus-
layer. Of course, the decrease of the width of #hedistri-  sian Fund for Fundamental Resear@@rant No. 95-02-
bution and the simultaneous appearance ptamponent of  45353.

the mass velocity are a result of the transformation of the
original Maxwellian distribution into an asymmetric distribu- .,
tion in which the fraction of particles with,<0 is radically
diminished. This transformation takes place on the scale of——

the transitional layer. The fraction of particles with negative 1\1(346'- Frenkel', Kinetic Theory of Liquids(Clarendon Press, Oxford,
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Partial suppression of hydrodynamic mixing in profiled shells
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The problems of stability and mixing are important in the physics of high-energy densities.
Ablation-induced acceleration of foils and compression of liners entail loss of symmetry and the
development of instability. The most destructive instability is the fundaméntahode,

which conserves the pressure in Lagrangian particles. A means has been proposed to eliminate
this dangerous mode, based on special profiling of the mass distribution among the

subshells. The presence of this mode has led to novel proposals for limiting the degree of
instability and optimization of the shells by profiling in the important case of very large density
ratios at the ablation front. The solution is based on a class of new polytropes with an

inverted density profile and a negative polytrope iniextn this class the density of the material
does not decrease towards the boundary with the vacuum, as for ordinary polytropes with
N>0, but rather increases. This permits modeling multilayer distributions tgpical of inertial
confinement fusion systems in which the high-density subshells form an inner core
surrounding a low-pressure cavity, and the outer layers are made from low-density materials
(plastic, foam-type materials, composijtelt is emphasized that the distributions are self-similar,
and hence both the linear and the turbulent dynamics are scale-invariant. The spectral

problem of perturbations in an incompressible fluid has a hidden symmetry. Isospectral
deformations of the density profild po(y)} are known that leave the spectrum unchanged. It is
of interest to apply the transformatidrto the invariantf = modes, since they are not tied

to any specific profile opg(y). This paper analyzes a new type of invariant mode obtained in this
way. © 1997 American Institute of Physids$$1063-776(97)01704-4

1. INTRODUCTION ness of the outer sheldl,, and the entire structure is large,
. . . . but on the other hand, the minimum densities are reached in
The program of laser-induced inertial confinement fu- o : .

the very thin inner subshells. Accordingly, the effective as-

sion has been developing for more than 20 yéafsn that ¢ rafio R/ AR IS int diate bet | I
time there have been vast changes in the technology of higoCt a0 Reir/ A Re 1S INIEIMediate between farge values
~100 and small values-1.

power laser systems, and the technology of making targets

has advanced in parallel. To obtain high compression, theh h £ bilitv. This is th \ution 1 hich th
laser-generated puldduration and shapeand the structure the t_eor_y 0 msta} ! ity. This is t € SO ution for which the
velocity field v satisfies the conditioW-v=0. As a result,

of the target must be well fitted to one another. Present-da%/ _ ) . : .
methods allow one to make targets with any density distri{'® Pressure is conserved in the Lagrangian particles during
bution p(r) (Refs. 8 and Dby depositing coatings of con- the mpuon. Th|s re;ult is partlcullalrly obwo_us for a com-
trolled thickness of a broad spectrum of materials. It is pro-Pressible medium, since the conditi®hv=0 implies con-
posed to use these capabilities to make profilgg that are _servatlon of volume, i. e, the partlcles are n_qt compr_es_sed. It
optimum with respect to instability. In these targets the delS alsq called the condition of mcompressublhty: and it is the
velopment of gasdynamic perturbations is slow relative tgMoSt important property of the solution. For this reason, the
the fastest possible development. As is well kndwhthe condition is called the isobaric condition. It is satisfies iden-
Rayleigh—Taylor or interchange instability is the main ob-tically the isobaric boundary condition, Wh_ich spe_ci_fies_ con-
stacle to achieving the ignition threshold and success in thgtant pressure at the contact surface. This condition is also
entire program of controlled thermonuclear fusion. called the free-boundary condition. Its growth rate \gk

The optimum targets consist of a stack of subshells witHs the largest in the class of all possible unstable modes.
a densityp; and thicknessl;, where ki<, in which the = Because of the invariance of the Lagrangian pressure the
densityp falls off and the thickness increases with increasingmode is insensitive to stratification and even to the equations
radiusr according to a specified rule . The numivés large  of state in the subshells or particles, which can be arbitrary
(I>1) and therefore the relative jumps in the density areand different for the individual particles. It cannot be elimi-

The isobaric Rayleigh-Taylor mode is very important in

small nated by profiling. These now well-known properties were
2 / +o<l established in Ref. 10, where it was also shown that the

. —_— . . . < . . . B .
lpiva=pill (pisat p)<1. isobaric gravitational waves are closely related to trochoidal

With this condition a density distribution with small steps waves.
can be approximated by a continuous function. These targets It thus appears desirable to extend the Cowling classifi-
can be either thin or thick, since on the one hand the thickeation used in astrophysi¢s!? According to this scheme,
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7 ,/ 1 10y FIG. 1. The question as to whether or not fhemode exists in the
i ° AG // spectrum and where it is localized relative to the valuable high-
{' V/ density region, shown by the wavy line.
{ 7
5t
—00® 1 0
0 k=
a b c d

there arep, g and f modes. These are acoustic pressures(k)— ogy=+/g/d, kd—=, whered is the width of the
waves @ mode3, stable @',0?>>0) and unstable transition region; see Fig. 1. This is due to the lower bound-
(97,w%<0) gravitational waves, and the fundamenfal ary condition, according to which the perturbations are re-
mode. The extended classification consistspefg*, g~, quired to be bounded g5~ — 0, and the fact that the zero of
f*, andf~ modes® Thef mode is now called thé" mode. the function p(y) for w=0 is located at infinity and the
The isobaric properties of this classification of modes haglerivative falls off faster than the function, so that
been known for a long timésee the work of Gerstner, cited p,(y)/p(y)—0 asy— —c. Therefore, thé ~ mode does not

in Ref. 10. The isobaric Rayleigh—Taylor mode will also be appear in the spectrum of this profile far=0.

called the fundamentdl™ mode. In the case shown in Fig. llegy—~ for u—0, and
Previous proposals for profiling in an incompressiblecurvel tends to curve. Mixing of the payload, indicated by
fluid***involved the smoothing of the density jump the wavy line, occurs because of the growth of themode.
_ Most of the drop in the accelerating pressure is across
=pp+ - . L2 .
P(Y)=po+ 6(Y)(py~po)—pcontly), this layer. Therefore most of the kinetic energy built up
wherepcont(y) is_ a monotonic continuous function, such asthrough acceleration is accumulated in it.
tan™ 'y or erfy, with pcont(—2)=pp and pcont(*) =py - In the case intermediate between the two shown in Fig.
In the smoothed case the unbounded growth rate, 1c, thef~ mode is present in the spectrum fer=0. Nev-
ertheless, this presence is merely formal, since the main con-
=\J(1-w)/(1+ K, N i ) ; .
o=V(1-w/(1+um)g tribution to the mixing of the payload is associated with the
m=pplpy=(1—A)/(1+A), mode with a bounded growth rate\/g/d, as in the case of

Fig. 1a. Although the growth rate of tifé mode is larger,
nevertheless, because the pgints far off, this mode, which
ogv=g max[d In py/dy]. decays exponentially with distance from the pajint is spa-
aH’ally separated from the valuable layer of immediate interest
to and has little effect on its mixing.
Consequently, with the optimum profile it is proposed to

gev=\(9/y)(—d In so/dy), separate thé ™ mode(Fig. 2b from the payloadshown by
the wavy line in Fig. 2aby the extended low-density tail
(the section LDT in Fig. 2a The high-density subshells,
which are the most important for the compression process,

is cut off ask—co by the Brunt—Visada frequency

We note in passing that in a compressible medium it is equ

wheres, is the hydrostatic entropy profile andis the adia-
batic index. Because of this limitation in turbulent mixing, a
time delay~ 1/ogy occurs in the mixing. Asymptotically at
large scales the effect of the smoothing becomes insignifi-

cant. 01

Let us consider the growth rates and the localization of
the gravitational modes. A distinct set of eigenmodes is as- ] yy yy_
sociated with each profilg(y). For the case depicted in Fig. vl VY T v

P
la, we have
4] Yal Ya

o—ogy for kd—oo,

The functiono (k) is given by curvel in Fig. 1d. The dashed r
a b

curve 1 in this figure corresponds to th&~ mode. For

n—0 we haver’(k)/(_T(,k)H_o ,aSdeO' and Curves' and . FIG. 2. a — Smoothed profile of a multilayer shell bounded by isobaric
| are tangent at the origin. It is important to empr_]asu.e.that IMhoundariesy, andy, . b — Localization of thef ~ andg, modes near the
this case, even fop—0 the value ofo () remains finite, y, andy, boundaries, respectively.
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are situated on the payload, next to the boundayyor  of this reduction is that instability begins to develop faster,

yy=0. The mode responsible for the mixing in this part isand the one-dimensional modeling becomes inadequate for

localized near the boundasy, (see Fig. 2 Therefore two the real situation. Therefore there must exist an intermediate

different regions of instability and mixing arise near thevalue ofN corresponding to a lower ignition threshold. This

boundariegy, andr , (or yy=0 andy,). is of no small importance in the situation where this thresh-
It should be mentioned that in the long-wavelength caseold is still to be achieved, the more so in that it only requires

changes in the targets, rather than expensive upgrading of the

k<a’glab%j=(a’/4b?)M,?/h,  h=c?/g, parar%eters of theglaser system P P °

the boundary condition at the ablation front can be approxi-

mated by the isobaric condition. Hepe is the velocity of

the ablation front with respect to the cold material an$  , prINCIPLES OF STABILIZATION

the speed of sound in the cold material. An estimate follows

from the well-known Takabe formufg, The system of gasdynamic equations is
o=a\gk—bkv, Dyp+pV-v=0, pDyv+Vp—pg=0, D=0,
a~0.9,b~3, and the Mach numbevl ,=v 5/c of the front Di=di+(v-V), s=s(p,p).

is small compared with unity. It is also noted that the mixingL_ ing it in the standard bout th turbed
in the inner layers of a complex shell is of interest in itself, In€arizing 1t In the standard way about the unperturbe

regardless of the situation on the ablation front. This ques—State’ we obtain the equatidn

tion is of particular interest in the case of complex large

targets and long laser pulses. (pL);jy— m(pL))’,—kZWpLIO,
The optimum profiles are self-similar in the sense that all Po
the subshells hold equal status with respect to the growth of P69 o2 gk| g
instability. This means that within a single profile, regions W=1-— —z+(—— 7) —,
Poy O gk o7/ kg

with enhanced instability are eliminated. In these regions the
density variation is peaked towards the boundary of the inner g
cavity, ry. These profiles are polytropic, and belong to the  PL=pP— i POU (2.1
class of power-law functiong, = (—y)N. The parameteX is
called the polytrope index. For these polytropes the indexor the perturbed Lagrangian pressiie, which is valid for
N is negative. Thereforp—o asy—0. The ordinary poly- an arbitrary equation of state. Here and beloyw|g|,
tropes studied in connection with geophysical and astroe?=(dp/dp)s, andp is the perturbed Eulerian pressure. If
physical application$=?°satisfyN>0 andp—0 asy—0. the equatiors=p/p? is satisfied, then the functioW in Eq.

In self-similar profiles there are no dimensional scales(2.1) can be written as
Therefore the spectral characteristics of the linear theory are
scale-invariant, and self-similar formulas are generated. The 2= k2+
expression forr is obtained by dimensional analysis and is
equal too,,= VAL,gk, whereA is a dimensionless number, Otherwise
andm labels the countable s} of discrete eigenvalues.
Qualitatively the formula fowr is found to be the same as in pyx(—y)N, pex(—y)N*L,  co=Vyg(—y)/(N+1),
the simple case of a discontinuity in an incompressible fluid.
For an instability, the mode of interest is that with the larges€o(—Y)’,  6=1—N(y—1), (2.2
growth rate. It corresponds to the “ground state,” with 54 Eq.(2.1) becomes
m=0. The dependence of on N was studied briefly in Ref.
21. In the present paper not only are the eigenvalues calcu-  7(p)5,—N(py),—(7—2a—N)p_ =0,
lated, but also the eigenfunctions; the locations of their

2 K g s
A (2.2)

Co

maxima are determined; a study is made on how a finite ,_ _ E _ E 24 i

pressure in the inner cavity and a finite density of the com- 2 Y ys2)

pressible multilayer shell affect the final result, as well as the 9

effect of a rigid wall; also included in the analysis is the role ., zzza__ 2.3
of the equation of state, which is important, since the sub- gk

shells are made out of different materials; and the structurgyit, the substitutionp, =e”u and 7=—z/2, it is trans-
of a new kind of self-similar Rayleigh—Taylor turbulence is t5rmed into the Kummer equation

studied. The structure remains self-similar in a compressible

medium. Previously, self-similarity was known only in the ~ ZU;;+(—N—2)u,—au=0

incompressible case. It should also be noted that the depepéee Ref. 22, p. 504 and the substitutiop, = 72y and

_ 2 :
gence gf]f\o (A{’._ _Uo/tg K) oAndthe varlaNl:lg parame:;]et can  ,—z/(2a+N) converts Eq(2.3) into the time-independent
e used for optimization. A decreaseNnimproves the one- O%chr"cdinger equation

dimensional dynamics of the shell and reduces the amount
energyE necessary for ignition. On the other hand, a result  ,,—(—E+U)¢=0
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o’zlgk ozlgk ozlgk

FIG. 3. a — Partial stabilization in-
SN, Y volves a decrease in the growth rate by
the amount S(N,y) relative to the
growth rate of thef™ mode. The stabili-

o a 2 a zation is retained when the adiabatic in-
.\. dex is variedb) and when the density of
b b the shell is finite at the boundary with
the inner cavity(c).
) S 0
-1 N 0 klyl oo
a b c

for a particle in a Coulomb field with a total angular momen- 52— /g2+ 6/(N+1)— B8, B=y(N+2)/2(N+1).
tum| equal toN/2, energyE= —(2a+N) 2, and a potential

U=—1/z+1(1+1)/2% In the incompressible casg— x, this formula simpli-
We shall assume that the upper and lower mixing zone§es and takes the form

(Fig. 2b are spatially separated. Then to describe

g-perturbations in the upper zone near the surface0 we (2 rigia=

require that the solution of E.3) go to zero "’ngz_ *. 1t compressibility(for the same profiles gf andp) enhances

lasqﬁzﬂﬁssed in terms of the Kummer functions® and is 4,4 instability, A(N,V)ZEZ—(ES)ngiPO The function

—N/(N+2).

A(N,vy) increases monotonically for fixed as y decreases,
7 i. e., with increasing compressibility. It reaches the largest
Ak value, equal tAA(N,1), aty = 1. The relative role of the

p.=e”U(a,—N,-27), M(ab,z)= 2 b—J
compressibility varies wittN. As N decreases, the gap

=a(a+l)...(atj—1), ap=1, (2.9 A(Nal):(zg)soﬁ_(zcz))rigid
uo— 7| M@-N—2y) N+2 NT1 N
sinN7|I'(a+N+1)I'(—N) :m \/1+4(N+—2)2_1)+m
_(_ZU)N+1M(a+n+1,N+2,—27]) . (2.4)’ 2.5

I'@)'(N+2)
between the soft caseyE& 1, curve2, Fig. 33 and the hard
Now we must consider the condition on the upper boundary ase f/=c, curvel, Fig. 33 is reduced. It goes to zero at

We assume that this is an isobaric boundary. Then its Ve'°9§|
ity and displacement are nonvanishing, but the perturbation For any fixedy the growth rates decreases with in-
of the Lagrangian pressure vanishes on it. Let us conside Y

first the simplest case. where we can nealect the pressure ir reasingN. For N=—1 it increases to its maximum value,
irst. 'mp! » W W g pressu \'y k, coinciding with the growth rate of th&™ mode. An
the inner cavity. Then the unperturbed pressugevanishes

2
on the boundaryy, i. e., according to the distributiorig.2) expansmnzc_:’rz _at the point of the maximum growth rate,
. ’ L . —-1,2°=1,is
the point y, is at the origin §,=0). We require
p.(yy)=0 andyy,=0. Analyzing the equilibrium equation, E§=1—25N+(2+4/7)(5N)2+ O[(8N)3],
we find that the indexN is bounded from belowN>—1.
We see that to satisfy the conditign (0)=0 we must get Where SN=N+1. As one can see, the term linear 4N
rid of the first term in the expression fdd given by does not depend op. Therefore the expansion af(N,1) at
(2 4)'. To do so, we require that it occur at one of the polesthis point begins with the term quadratic &N. The region

m=—m, m=0,1,2,... of the gamma functiohi(z) in  of present interesiN<0, 32>0, is a square. It is bounded
the denominator of the first fraction in E.4)’'. Conse- by the upper and left limits. The upper limit is the growth
quently, we have rate 2= \/gk of the f~ mode, and the left limit is the con-

dition N> —1, which follows from the requirement that the
mass be finite near the poipt=0.

From this result and the definition afin Eq. (2.3) it is easy Reduced growth rates are found within the gafiN,1)

to obtain the dispersion equation. We discard the branchedefined by Eq(2.5 As we see, the polytropic growth rates
belonging to the modep and f*, while theg® modes are are shifted downward by the amou8(N,y) compared to
absent. Among thg™ modes, we are interested in the modethe growth rate of thé”™ mode(see Fig. 3a This is how the
m=0 with the largest growth rate stabilizing action of the profiling works.

antN+1=—m.
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3. THE ROLE OF THE EQUATIONS OF STATE IN THE the subshells. Here the role of the inertial conditions are
SUBSHELLS more important than the thermodynamic conditions.

Thi N vsis of th ral i To show this, let us consider the two-shell case. We set
f bol Its baper prester:j; ar& anqty5|§rr? N Sﬁec ra propderfleS= vy for ys<y<0 andy= vy, for y<ysg. Then the growth
Of poiytropes Inverted In density. The resulls are Used 1f e for klyg/>1 is determined by the exponest,, and
modeling the growth of instability in multilayer targets. The

for k|lyg/ <1 by th . In the int diat [
guestion arises: how applicable is this approach for the reﬁr vl y the exponenfy . In the intermediate region,

o . ys|~1, o interpolater monotonicallfsee Fig. 3h This
situation? '_I'he target COUS'StS of a large ”““?ber of subshel sult is explained by the fact that the small-scale perturba-
made_of d|ffe_r_ent materials. Can one des_crlbe the d('3\“:‘\|Op['|ons are localized inside the outer layer, and this layer is
ment in a unified manner when the equation of state of th%nimportant for long-wavelength perturbations

material is first, nonideal, and second, different in the differ- - +.c jiscussion implies that the growth rate in the prob-

ent subshells? . : S
. . .lem with a variable exponeng(y) remains in the gap be-
We shall find an answer to these questions. Targets wit een curve® and1 (see the points a and b in Figs. 3a and

a power-law profile of the density are formed in practice 3b). Consequently the growth rate remains reduced.
by selecting a sequence of materials that increase in density

and specifying the thickness of the subshells. It is assumed
that they are in an effective gravitational field. This is a
standard approximation used by many investigators. If this
assumption is valid, then the equation of hydrostatics
p§: —gp is also valid. This means that if the pressptgin

the cavity is neglected, then even the pressure profile will | ot s investigate how the result changes if the pressure
follow a power law. According to the equations of hydrostat-i {he inner cavity is taken into account and we give up the
ics, the exponents g andp differ by unity. Consequently  congition that the density of the shell material is infinite at

the ratiop/p is a linear function of the position. the boundary with the cavity. As before, we place the origin

The basic model is Eq2.1). Itis valid for any equation st the coordinate system=0 at the point where the extrapo-
of state. In order to arrive at the solutions, given in Sec. 2y5ti0n of the pressure distributign = (—y)N*1 goes to zero.
inertial and thermodynamic conditions must be satisfied. Theq unperturbed boundary is at the pajmty|r=—s. It is

inertial conditions(the power-law profile ofp, linearity of easy to see that the value efis determined by the pressure

the ratiop/p) are already satisfied. It remains to consider thep in the cavity:

thermodynamic condition, which says theit must be a lin- °

ear function of position. (N+1)
Let us find this condition. We write the relation between &P,

the thermodynamic functions®> and p/p. By definition we o
have In the case of a “cut-off” power-law distribution, the

problem is no longer self-similar. Its spectrum is shown in
dinp Fig. 3c. Here the straight lin&Srefers to the self-similar
' 7:(6 In p 3D (powerlaw  spectrum; its value of oy s
s o0=20(N,7) \/g_k The asymptoteBV corresponds to the
In the case of a nonideal equation of state the expopént  Brunt-Vasda frequency ogy= \/g|s(’)y|/yso, calculated at
adiabatic processes is a function of a single thermodynamithe edge of the profile at the poigt=—e¢. It limits the

4. MULTILAYER PROFILE WITH FINITE DENSITY

d
=P 02:(_'0
p dp

S

variable, for example, the density: growth of o. The square of the dimensionless ratio is
EZB\,:(G/y)/ks, whered is defined in Eq(2.2). The result-
y=7(p). ing dispersion relation is given by cunke For k—0 and

k—o it goes to the limiting functionS§SandBV, respec-
tively. The transition region between these asymptotes oc-
curs fork~k,=1/e.

In the section where the shells are matched the pressure
in the cavity is low:p,<<p, . Therefore the shift of is small
compared to the total thickness of the multilayer shell. Under
these conditions there is some justification for calculating a
correction to the self-similar growth rate due to the back-
The ratiop/p in Eq. (3.1 is linear. Therefore for this ap- pressure. We shall therefore be interested in the situation
proach to be applicable; must not depend ojt that is, the  where the parametée is small:ke<1. Let us find the first-

In the various subshells this function will bg(p), where
the index|j labels the subshell. This is a hydrostatics prob-
lem, i.e., the distribution is stationary. In equilibrium the
densities of the subshells apg and are fixed. Therefore the
exponents depend only on the label

Y (p)=7(p)="7.

value of y must be the same in the subshells. order (in ke) correction to the growth rate,=3 gk
The values of the exponensvary somewhat for differ- The general dispersion relation, which is valid for an

ent materials. The effect of these variations on the main rearbitrary value of ke, is found from the condition
sult of this work is small. The main result is a partial stabi-p, (—ke)=0. To find the solutionp, (%) that satisfies the
lization of the instability(Fig. 3. This involves a reduction condition of vanishing at infinity, we use expressid@s4)

in the growth rater by the shiftS. The conclusion that is  and (2.4) and substitute them into this boundary condition.
reduced also holds when the exponeptare the same in all As a result, we obtain the general relation
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0 p 0 P FIG. 4. a — The conclusion that partial stabilization occurs in the

Y [ acceleration stage carries over to the case of any finite smooth

,/’2’ profile 1. b — The two-sided profilEE—I inhibits the instability

during both the acceleration stage and the deceleration stage.

E
% %]
a b
I'(—N) modes, and the other to the gravitational modes. An analysis
2k N+1
(2ke) T(a) of the frequency dependence shows that because of the pres-

surep, thep modes are hard, and the stable and the unstable

I'(N+2) M(a,—N, 2ke) 0 .1 gravitational modes are soft. As a consequence, clirire

" T(a+N+1) M(a+N+1,N+2, ke) - Fig. 3c is deflected below the straight liB&with increasing

As ¢—0 the first term in Eq.(4.1) vanishes, since
N>~—1, and the functiorM tends to unity(see their defini- still holds even for a profile with a finite densitgee points

tion, Eq.(2.4)). In this case, which was analyzed in Sec. 2, ita and 3 in Figs. 3¢ and 3a The same conclusion also holds
is.required that the argument of the gamma function coincide;or profile 1 with any smooth cutoff2 of the power-law
with a pole dependence foy— 0 (see Fig. 4a We note that this carries
a+N+1=-m, a=ay, m=01,.... over to a two-sided stabilizing profil&ig. 4b), which weak-
ens the instability and retards the onset of mixing, both in the

Let us see how the answer changessfet 0. Forke<1, as : : )

. . : . stage in which the shell is pushed toward the center by the
before we are in the neighborhood of a pole. In this ne'gh'acceleratin ulse, and in the stage where it is decelerated b
borhood, as is well knowiiRef. 23, p. 86Y the asymptotic gp ' 9 y

behavior is the back-pressure of the fuel. In the acceleration stage the
instability is stabilized by the outer part of the profile,and
r2~[(-1)"'m!]/(z+m), m=0,1,... . in the deceleration stage by the inner pért,

Therefore the conclusion regarding partial stabilization

This gives us the desired expression for the correction
5. STRUCTURE OF THE POLYTROPIC PERTURBATIONS
a,=—-—m—N-1+Aa,,
(-p" I'(—N)
- m!l T'(—=m—=N-1)I'(N+2)

Let us address the analysis of the eigenfunctions and
their structure. From formula@.4) and (2.4)’, and the dis-
persion relatiorag=—N—1, we find that for theg, mode

(4.2 the field of the Lagrangian pressure is

It is interesting to note that the functian,(k) for acous- pL=(—n)t"Ne?, p=ky.

tic (p) modes and gravitationab{") modes are the same. It ) ) ) . _
The maximum in the functionp (%) is at the point

thus follows, by the way, that even their eigenvalues coin-" = ) L
cide (for any value ofs). The reason is that relatioig.4) ~ 7pL — — 1~ N. The vertical component of the velocity is

and (2.4'), which definep_, do not contain their frequen- calculated fromp,_ with the relation

Aa,, (2ke)N*HL,

cies, which of course are different, but the quanttyThe Kk 32 EZ(DL);,— pL
rest of the eigenfunctions)( p, etg of the p modes and the V=l ST D= e (5.1
g modes are different, so that the frequency enters into their
definition. This follows from the system
Let us analyze these relations. The functigix) for real v o2\ Kk
x<1 alternates between identical positive and negative v+ s2- ( 1+ W) —DpL,
parts®® It follows that for anyN>—1 the correctiong\a,, Co/ OP
(Eqg. (4.2) are negative. Substituting E@4.2) into (2.3, o' g
which connectsaa and o, we obtain a biquadratic equation E—Z+v= U_po (pL);?Jr k_c(z)p" , (5.1)’

for o. One of the roots of this equatidiaken with a minus
sign) gives a negative frequencyt= — w?) for the acoustic ~which precedes Ed2.1). This component is equal to
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1+N Although the Mach number/c, is formally large, near
v=(1-b"'p)e”, —py¥=1-b, b= ﬁ>0' the boundary the essential factor is the displacement of a thin

0 (5.2) near-boundary layer as a whélen this layer the local ve-

locity of soundc, is lower thanv (0). However, the buildup

The velocity Eq.(5.2) is normalized to unity on the surface of this velocity occurs more slowly than the time required for
y=0. The position of the maximum of is also written  sound to pass through the layer. This means that the accel-
down in Eq.(5.2). It is located within the polytrope. The eration is small|(67)};<g. Accordingly, the accelerating
proof of this fact will not be presented because it is very longpressure gradient is also small; that is to say<p, holds

and involved. ForN— —1 the pressure becomes a mono-for the pressure itself, which means that the perturbation is
tonic function. The localization of thg™ modes near the |inear.

surface must be emphasized. They are localized in a layer

adjacent to the boundary with the vacuum. The thickness of

this layer,|Ay], is of order| 77®{/k~ 1k. 6. CONTACT WITH A RIGID BOUNDARY
Let us see how the velocity distribution dependsibn

The expansion iMN of the expression that gives the position

of the velocity maximum ¢ »3®) near the poinN=—1 is

Let us consider yet another interesting modification. We
shall examine what happens when the upper boundary con-
dition is replaced. The condition we consider is in a sense

— U= 1/2+ (1/2— 1y)(SN) + (8N)?/ y+ O[ (5 N)3]. opposite to the free-boundary condition. We assume that the

upper wall is rigid. We take it to be located at the point
In the incompressible case we have y=—¢.

The solutionp, () of Eqg.(2.1), matched with the lower
boundary condition, is given by the relatiof®&s4) and(2.4)’.

Now we shall compare the position of the maxima of theTo find the spectrum we must require that a condition im-
perturbed Lagrangian pressure— 5™ and velocity —posed on the wall be satisfied. Namely, we set
(—7U®). One can show that there exists lggp such that k) —

v ) ; SEP v(—ke)=0.
for —1<N<Nggpthe maximum in the velocity is above the = _ _ _ . _
maximum in the pressure, i.e., furthest from the vacuum in-This condition along with relatiof5.1) gives the dispersion
terface, while forNggp<N<0 on the other hand, the maxi- €quation
mum pressure is found at the greatest depth. '32-p ]| =0

i . . [(PL), PLl—ke=0.
We shall now analyze the behavior of the eigenfunctions o _ ) ) )

(— 0™ =1+N/2.

linearized system gives ing, we obtain

(i) p.—0 fory—0; _ _ 1-372  M(a,—N,2ke)

(i) the velocityv remains finite at the interface with the — 2 T(arN+fLI(—N)
vacuum;

(iii ) the ratiov/cqy = 1/\/—y for |y|<1; vi1 =22 M(a+N+1N+2,2ke)

(iv) the perturbation of the Eulerian pressure satisfies — +(2ke) 2 T(a)[(N+2)
pe=p.+(g/iw)pgv— for y—0. This last condition,
which includes the details of the density-inverted polytrope, @ M(a+1,—N+1.2ke) N+ 1
is what distinguishes it from astrophysical situations, where N T(a+N+1)[(—N) ( )
po—0 asy—0, and consequentlpe.—0 asy—0.

The degree of nonlinearity is governed by the function X (2ke)N M(a+N+1, N+2, Zke)
a(7)=p./po. It characterizes the relative amplitude of the I'(a)l'(N+2)
perturbation. Th_e vacuum amplitudes of thg veloaiy)) a+N+1 M(at+N+2 N+3, 2e)
and of the relative pressu(0) are proportional to each —(2ke)N*?L =
other p « a,|y|<1). If this ratio is smallp, <p,, then the N+2 I'(a)l'(N+2)
perturbation is linear. One can see that/py = e7 for (6.1

m=0. The maximum of the functiom(#) occurs at the

boundary with the vacuuny,=0. An important point is that

this function remains finite at=0. It therefore follows that

if a(0)<<1 holds, then the perturbation is linear everywhere
The singularities irv/cq and pg (see iii and iy are fic-

titious. Their existence does not mean that the perturbation ap+N-+1=-—m.

goes over to a nonlinear regime, or that shock waves argne first order correction ike is now different. It is equal to
formed in the vicinity of the vacuum boundary for any arbi-

We examine first the long-wavelength linkie<1. If N>0
holds, then in the zeroth approximation in the small param-
eterke the answer coincides with that calculated above. Spe-
‘cifically, the spectrum is given by the equation

trarily small perturbation at large distances from the bound- (D™ 1-3.72

ary. They are, rather, associated with the displacerdendf am= m! )

the perturbed boundary, because of which the physical .

boundary is located not at the poing=0, but at N+1+m (N+1)I'(=N)

(2ke)N.

y=0+ 7. TN T(—N—1-mI(N+2)
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As can be seen, the power to which the paramleteenters v(n)=[Wp(7)—wWy(0)]e "

into l:f;(\a,vg\r;z\;\,/eirf|SWsemiI;e\(/r;0_mlp2rl\el<Eg,(4iﬁ)é.n the answer BY virtue of Eq.(6.4) this function diverges exponentially at

changes even in zero order, compared to the case of an isﬁ:“-e lower boundary. qusequently it does not satisfy one of

baric boundary, as described in Sec. 2. In this case, it i e two bqundary conditions, and must be discarded.

necessary to eliminate the large fourth term in Eg1). To . Thus it has been shown that the valoe=0 must be

do so, it must be located at a pole Bta). It then follows @scardeq. Letus 90 how to the cape: 1 The corre§pond-
ing functionZg(N, y) is smaller than unity and considerably

that a,=—-m, m=0,1,... . To determin& from this . : : .
equatin(;n we use formulé2.3) for a. Solving the equation smaller than the functioR (N, y), which was obtained with
we find ' isobaric upper boundary conditions with=0 (here we have

used the subscrip® andF in order to distinguish the rigid
32=—B+ B2+ 0/(N+1), and the free casgsThis is as it should be, since the rigid
boundary provides a stabilizing influence.
The above discussion has referred to the asymptotic be-
B=(yl2)(2m—N)/(N+1). haviorke<1. For intermediate wavelengthis;-1/e the in-
. . . crementX z(Kk) is adjusted to the Brunt—\&da asymptotic
It is the largest growth rate that is of interest. Therefore we .- ior This means that the short-wavelength BV asymp-

must consider the first values of. F—
totes in Fig. 3c of the growth rat k) and k) are the
Form=0 the radicand is a perfect square. Therefore th ame g g &R (k) 2r(K)

instability for any values ofN(—1<N<0) and y corre-
sponds to the answek?=1. This should be taken as an
indication that we should study the ca88=1. In this case 7- ISOSPECTRAL DEFORMATIONS AND INVARIANT POINT

the system (5.9 degenerates, and relatigf.1) loses any !N THE ACOUSTIC DISPERSION RELATION

where

meaning(it contains the expression 0/0O/Ne shall describe The special behavior of the mode with=0 in the case

briefly the analysis. Setting?=1 in Eq. (2., we find the  ith the rigid boundarysee Section stimulates interest in

solution to this equation analyzing modes that are invariant with respect to the struc-
p =e". ture of the hydrodynamic profile and obey the limiting dis-

. _ . persion laww?= +gk. Let us consider thé* modes. The
Now we must find a relation betweem andv. Setting  spectral problem of perturbations in incompressible fluids

3?=1 andp_=e” in the system (5.9, we see that the has a hidden symmetry. It is known that the isospectral de-
equations in the system become identical. They are equal frmation

2 ~
(14 7 2)& 6.2 po(Y)—1{po(y)} =Foly),
2 ' .
k“ca) po leaves the spectrum stationary. Unlike the eigenvalues, the
The unimportant factor is chosen to renormalize. The  €igenfunctions transform in a nontrivial manner. It is a mat-
field p_ is known, so we shall study. Making the substitu- ter of interest to apply the transformatiorio the invariant

!
v,7+v

tion v =we~ 7 in Eq. (6.2, we obtain f* modes, since they are not “tied” to any specific profile. It
o turns out that in this way we obtain a new type of invariant
r_ o | e’ mode. The solution withm=0, obtained in Section 6 be-
K k“cg) po longs to this type.
The general solution of Eq6.2) is 7.1 Isospectral Density Inversion
v(n)=(w,+C)e"". Inversion of the density
wherew,, is a particular solution of E¢6.3) and C is an ~ 1
pls 2P 469 p()—~5(7) (7.1

p(—m)
does not change the eigenvalue spectrum. This property was
observed in Ref. 13 in numerical calculations of the charac-
teristic equations of step-function density profiles with sev-
eral steps. Then in Ref. 24 it was derived for the particular
Rocl/(— 7))t~ N, case of a three-layer transition zone between two homoge-
neous half-spaces. A rigorous general proof of the symmetry
of Eq. (7.1) was given in Ref. 25. The proof was based on
algebraic transformations of arbitrary tridiagonal matrices.

0 They describe the spectral problem in the case of an arbitrary
Wp(o)—Wp(—W)IJ R dy (6.4 step-function distribution with any number of steps. An ar-
o bitrary continuous profile can be approximated to any degree
is finite. In order to satisfy the condition at the rigid upper of accuracy using step functions. Another proof of Ef1)
boundary, we must sél=—w,(0). With this choice ofC in the continuous case has been provided in Ref. 26, p. 297.
the functionv (#7) vanishes at the boundary. It is equal to  In Ref. 26 relations also were obtained connecting the initial

arbitrary constant. The right-hand sid®(,»), of Eq. (6.3) is
positive (@%/k?c§=(N+1)/(— 5)y>0). Thereforew,(7)

is a monotonically increasing function of. For (—7)>1
the functionR is small. Therefore at large distances, this
function increases slowly. For-{7)—0 we have

Since O<(—N)<1, this singularity is integrable. This
means that the integral
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velocity v with the transformed velocity{v}. A new and p, =e*” do not have any zeros. Therefore we shall investi-
short proof of the symmetry of Eq7.1), which reveals the gate a layer bounded by two walls. Here we require solutions
property of duality between the eigenfunctions of the La-of Eq. (7.4) with two zeros.
grangian pressure and velocity, has been given in Ref. 21. A The case when the right-hand si®edoes not change
number of other recent papers have exploited the symmetrsign was studied in Section 6. This includes the case of an
of Eq. (7.1) (Ref. 27, p. 526 and Ref. 28, Sec.)lV incompressible fluid. In Section 6 it was shown that the so-
The transformation(7.1) is not trivial. It changes the lutions of Eq.(7.4), taken with the lower sign, are monotonic
profile qualitatively, transforming one functigr{ ) into an-  and cannot have more than one zero. Consequently it re-
other. It has been showhthat when Eq(7.1) is inverted, the mains to examine the case of the upper sign. Let us make a

eigenfunctions are transformed according to the rule substitution similar to that in Section 6. We obtain

_ _ g efzky

v(n)=pu(—=n), Pn)=v(—mn). (7.2 w)’,:k( —k—(?)T:kR(y), v (y)=ew(y).
It is clear that the functions andp, are transformed and the 7.9
sign of the argument is changed. We consider an arbitrary monotonically increasing or

For thef* modes there is no perturbation of the pres-decreasing function c(y), defined on the interval
sure:p, (7)=0. We shall denote these modes that are invariyp<y<yy, whereyp andy are, respectively, the lower
ant with respect to the profile afé modes. The velocity is and the upper rigid boundaries. It is necessary to study those
found from any of the equations of system (§.1for  values ofk for which the zeros of the functioR(y) (see Eq.
p.=0. They arev “=e* . If we transform them according (7.5)) lie within this segment. We s&(y,) =0, and for defi-

to the rule(7.2), we find that niteness assume that the functify) falls off with increas-
ing y. Then fory<y, we find thatR(y)>0. We shall inte-
(P (p)=e""7, w?’==*gk (7.3  grate Eq.(7.5 from the pointy=yp, and setw(yp)=0.

Then for the velocity we also hawg(yp) =0 The solution
Here and in what follows the upper and lower signs correw(y) of Eq. (7.5 increases foryp<y<y,, it reaches a
spond to the upper and lower signs in the dispersion law ifmaximum aty=y, and then begins to fall off.
the form it is written in Eq(7.3) . We shall call the solutions Variations ink cause variations iy,. With decreasing
of (7.3 the f; modes. These same solutions are found fronk the pointy, moves towards the lower boundayy . If the
Eq. (2.1) after substituting into it the dispersion la@s3). If ~ pointy, is close enough to the boundayy , then the func-
we operate using Eq2.1), then it is easy to see that the tionw(y) after going over the maximum decreases again and
modesf; are invariant. This means that the distributionsbecomes zero at the poiny,, inside the section
pL (7.3 do not depend on the equilibrium profiles of the Y,<Y,,<Yy . It is understood that if now increases, then
density and pressure. the pointy,, moves upwards towards the upper boundary
yu - There exists a valules for which the equalityy,,= vy is
satisfied. This wave number corresponds to the frequency
Let us determine the () functions of thef 5 modes. wp= Jgke. For these values &f andw the velocity function
It is not possible to determine them from the ru@<). It is v(y) satisfies both the upper and the lower boundary condi-
necessary to use E¢6.2). In the general case it is equal to tions and is an eigenmode. It corresponds to the point
| (kp,wp) on the K,w) plane.

7.2 Velocity Profile and the Boundary Conditions

O P
(v )71+U l+k_02 p (7.4 7.3 Inverse Transition Between Acoustic and Gravitational
Branches
At this point we can find these functions. In Section 7.2 we considered a layer bounded by rigid

It may be noted that the general solution to E6.4)  walls. The related spectrum is shown in Fig. 5a. There exist
depends on two constantSp andCg . One of the constants p andg modes. For the acoustic modps, (m=0,1,...)
is related to the functiop, , since . )“=Cpe™”, and the the indexm denotes the number of zeros of the function
other is related to a first-order differential equati@). The  y(y) inside the layer. Fok—O0 their frequencies tend to
general solution of the homogeneous equation correspondingbnstant values=c/d, and fork—o they approach the as-

to Eq. (7.4, ymptotew = ck (hered=y—yp, is the distance between the
boundaries and is the characteristic speed of sojnd
(v¥),Fv™=0, There exists yet another acoustic mode with a different

asymptotic limit at zero. It is indicated by the lettelin Fig.

is equal toCge™ 7. This means that the general solution of 5a, and is called a Lamb mode. The origin of this mode can
Eq. (7.4) is a mixture off; andfg modes, taken with the best be understood by considering the ligit:0. It is clear
weightsCp andCg, respectively. that in a gaseous layer a mode exists that propagates pre-

Thus in the general case the form of the mode is  cisely horizontally. Let us consider a rectangular cell with
described. Now it is a matter of interest to determine whethehard walls. The acoustic modes are classified by a pair of
one of them matches the physical boundary conditions. Thaumbers (n,,m,), wherem, denotes the number of half-
isobaric conditions must be discarded because the functiongaves that fit into the cell in the direction, andmn, denotes
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are related to the upper boundary, and thef ; mode to the
lower boundaryy, . Therefore, they are spatially separated.
As mentioned above, different eigenfunctions corre-
spond to the invariant fundamentgl andfg modes for the
former the pressurp, is exponential, whereas for the latter
the velocity v is exponential. Thef; modes are gravita-
tional. This follows from the fact that in the incompressible
limit c—< their frequencies remain finite, whereas the fre-
guencies of the acoustic waves go to infinity. Moreover, they
have a gravitational asymptote. For example, in the case of a
layer bounded below by a rigid boundary and above by an
isobaric boundary, the mode with the asymptote of the fun-
damental modey— /gk ask— =, joins the family of gravi-
tational modes ak— 0. Fork— 0 they approach the asymp-
tote of the shallow-water mode. This mode is the hardest in
this family. Conversely, the modg should be grouped with
FIG. 5. a— The case of a gaseous layer between two rigid boundaries. THAI€ acoustic family. In fact, it is situated on the acoustic
family of acoustic modesL(,py,p;, ...) and %) gravitational modes ~mode and coincides with it as—«, along with all the rest
(curve ). The dashed lines give the dispersion law: \gk. The pointl  of the acoustic modes. Therefore the complete gravitational-

indic_ates the invarian't acoustic moﬂé. b — The case of a layer between acoustic classification scheme has the form
two isobaric boundarieg&he pressure ip,=0 on the upper boundary
f+ fi =+
P, Tp, Tg, Q™.

the same in thex direction. There are mode®,1), (1,0, g TURBULENT MIXING OF POLYTROPIC PROFILES
(1, ... . The modespg,p;, .- correspond to
my,=1,2,..., and theL mode corresponds tm,=0. The analysis in the previous sections has given some
In a homogeneous layer witl)=0 the vertical compo- €xact results pertaining to the linear spectral theory. This
nent of the velocityv vanishes identicallyy(y)=0, in the theory is applicable as long as the amplitudes of the pertur-
case of the. mode. We note, incidentally, that in the inho- bation are small:
mogeneous case the form of the functiofy) is essentially 1 1
defined by the inhomogeneity. It may not have zeros inside t<—— In—,
the layer in the case of a monotonic profile, or it may have a(k) "~ kag
one or several zeros depending on the nature of the nonherea, is the initial amplitude. Let us consider the motion
monotonicity. TheL mode vanishes if even one of the in the nonlinear stage
boundaries is isobari¢see, e. g., Fig. Bb For the present 1 1
purposes it is important that fgr # 0 the qualitative struc- t~—— In —
ture of the acoustit. andp,, modes is retained. o(k) " kag
For g # O gravitational modesg,, arise, where and the highly nonlineafturbuleny stage
m=0, 1, ... denotes the number of zeros of the function
v(y). In the limitk— 0 they have the asymptotic behavior of t> L In i
a shallow-water wave a(k)  kag

1] i It is found that definite conclusions can be drawn about the
_ ns _ jdins turbulence from the spectral theory. The most important of
©m=&m dy d ck=agm dy dVgh k these are the following.

A. In the case of polytropes bounded by the vacuum
whereh=c?/g, the numbers:,, and @ depend on the spe- (p,=0) the growth rates increases without bound as
cific profile, andé—0 asm—oo. k—o (see Sec. 2, and Fig. 5b, tgg modg. This indicates

The pointl, which refers to the invariant modg; , is preferential mixing of small-scale perturbations over long-
located on the intersection of the dispersion curve oflthe wavelength perturbations in the early stages of turbulent
mode and the curvev=\/gk. lts coordinates arép, and  mixing
wp (see Sec. 7)2 B. The perturbations are localized in a near-surface layer

For the sake of comparison, Fig. 5b also shows the comef thickness~ 1/k at the vacuum boundargsee Section 5,
plete spectrum of polytropes investigated here, bounded byhich deals with an analysis of the fields of the eigenfunc-
two isobaric boundaries. There apg,, f&, 9, and fg tiong). This means first, that the mixing starts at this bound-
modes. The indexn denotes the number of zeros of the ary, and second, the mixed layer is adjacent to it.
functionp, (y). The asymptotes fdt— 0 remain in the same C. A periodic perturbation in the layer develops in two
qualitative relation as for the case of two rigid boundariesstages. The first is a stage of exponential growth, and the
The asymptotes fok— o are o= \gk>,, for theg modes second is the saturation stage. Let us estimate the typical
and w,= \/gkQ,, for the p modes. Thefg andg,, modes velocity in the second stage by the formula
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v~a(k)/Kk. (8. y

The development of a periodic perturbation causes “smear-

ing” of the power-law singularities. The smearing causes

averaging of the density profile over the horizontal coordi- Y
nate, as for profilel in Fig. 4a. The thicknes$ip of the

smeared layer increases with tinflgere the lettel stands

for “periodic” ). The maximum rate of expansion

dhp \F
W"“Eo K (8.2

is attained when the system makes the transition from the
first to the second stage. Then the velocity E8.1) de-
creases. This decrease occurs because the pardthgetbe-
comes larger than unity, and the growth rate in the estimate
(8.1) begins to decrease, since it is no longer calculated from
the formula o=3,Jgk but from the formulao=ogy
~ /g/hp. The reason is the transition from tB&asymptote
to the BV asymptote(see Fig. 3c in Sec.)4 FIG. 6. , The deyelopment _o_f polytropic compressible turbulence.
hr= a\gt® is the width of the mixing layer.
D. Let us compare the development of small-scale and
large-scale periodic perturbations. According to pdiAp
enumerated above, small-scale perturbations are dominant fhe development of turbulence is shown in Fig. 6. During
the early stage. However, the expansion velocity related tenixing, the power-law singularity is smoothed out by the
the large-scale phenomena, E8.2), is greater. Therefore in  turbulence. This is due to the elimination of the low-entropy
the later stages the large-scale perturbations dominate. | agrangian particles and the increase of the high-entropy
E. Self-similar growth rategSec. 2 and self-similar  ones. It should be emphasized that the thickigsisicreases
eigenfunctions (Sec. 5 are associated with a uniform according to the self-similarity rulé8.3) in the compressible
(power-law distribution. The self-similarity or uniformity case. The turbulent mixing coefficient, depends on the
means in this context that all the space and time scales are ekponentsN and y characterizing the compressible material.
equal weight. This then implies equal weight of all the pairs|t decreases with increasirlg and fixedy.

of “small-large” scales(these are denoted by the letters This work was carried out with the financial support of
and A\, respectively that differ by a fixed factor the Russian Fund for Fundamental Resedftant No. 95-
(A /As=Q). 02-06381-aand INTAS (Grant No. 94-110p

From the discussion in poiiD) regarding the change in

the_ dominant sc_ales that OCC.UI’S. 'n_t'm?’ and the dISCUSSIOI’] ) the theory of atmospheric oscillations the situations in which an isobaric
point (E) regarding the self-similarity, it follows that during  boundary is below a gaseous layer simply does not arise, and therefore
the development of turbulence there is a kind of relay se;thereare nd modes. _ _
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Effect of an electric field on the surface tension of a liquid at low temperatures
L. A. Mel'nikovskil and S. A. Kriminskil

P. L. Kapitsa Institute of Physical Problems, Russian Academy of Sciences, 117334 Moscow, Russia
(Submitted 1 November 1996
Zh. Eksp. Teor. Fiz111, 1369-1372April 1997)

An external electric field changes the dispersion law of waves on the surface of a liquid. Besides
the usual capillary terme(k®, k is the wave numbgrand gravitational termsk), a term

quadratic in the wave vector appears in the expression for the square of the frequency in a
homogeneous field. These excitations are associated with the variation of the coefficient

of surface tension of the liquid at low temperatures. In the case of a large field tangent to the
surface, the correction is proportional T8/, unlike theT”® correction in the absence of a field.

© 1997 American Institute of PhysidsS1063-776(97)01804-0

The temperature dependence of the coefficient of surface  div E=0, curlE=0. (4)
tension close to absolute zero is associated with Iow-energ1\5 ) . o o
excitations of the liquid—gas boundafsurface waves' The he corresponding field distribution, periodic along the
usual classification separates capillary and gravitationaX!S: has the form
waves. The properties of the former are mainly determined I—E.+Aekxkz  El=El | gelkxtkz
by surface-tension forces, which are substantial in the limit 0 ’ 0 '
of small wavelengths. The gravitational forces, on the othewhere the superscriptsand g refer to the liquid and gas,
hand, correspond to long wavelengths. This paper discussesspectively, with
the spectral variation effect associated with an external elec- , i ) ,
tric field constant in time. It is substantial in the region in- A= ~1A;= —IA, B,=iB,=IB, A,=B,=0.
termediate(in wavelength between the capillary and gravi- The possibility of making the following transformation

tational regimes. of the right-hand side of Eq2) by using Eq.(4) is essential
Let us find the dispersion relation for a surface wavefor the subsequent treatment:

propagating in the presence of external fiEld(for definite-

ness, letE, be the field outside the liquidThex axis is in i 1doy 1 9 E? [de
the wave-propagation direction, while tkeaxis is upward, ot p e p o ~lpgztP)tgT e ap
perpendicular to the surface of the unperturbed liquid. The T
surface displacement from the equilibrium position in thisAs a consequence, the motion of the liquid is irrotational;

wave is described by a function of the form i.e.,v=V. Using Eq.(1), we get
z={(x,t)=ge'*iet, . e 1O kot
{//—Z ?— —§ ? e .

Assuming that the liquid is incompressible, the continuity
condition of Ref. 2 is imposed on the velociand takes the  gyjer's equation itself in terms of the potentigltakes the

form form

div v=0. (D) W ( +P)+E2<(98) i
The Euler equation in the linear approximatiGteviations ot gz p/ 8w\ dp T' ®)
from equilibrium are considered smadjives a second con- _ o )
dition for the velocity: At the interface, the electric field satisfles

dv; 1 doi @ Ef=E|, Ef{=sE..

at p ax’ We can use the surface=0 for the interfacelwe assume
where k{<1). After elementary transformations, we get

E2 de ¢EE, Eox=Eox  Eoy=Eny,  Eoz=8Ep,,
Tik (p9z+P) o S E—p ap ] ik 4o el e—1/E,,
3) A=kl (B0, ~1Eox), B=k{ m(?_FIEOX)'

is the stress tensSHereP is the pressure corresponding to ©®

the same density in the absence of a field, andis the  Using explicit expressions for? and o'
N I PN ij i

permittivity of the liquid. The electric field itself obeys the conditions for the stress tensor,

following equationdall the velocities are much less than the )

velocity of light, and the liquid is assumed not to have any L

9n =4 n
olni=c;ni—a — N
free charges CAR :

j in the boundary

NG
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the coefficient of surface tensigmwe get the equation for the 7S

(heren is the unit vector normal to the interface, whieis (aQ)
oa=|—=| ,
pressure at the boundary: T

for an ideal two-dimensional Bose gas, it is determined by

32 E|2 de e—1
P=const — a —§+—p( —) N Y S ho)\dk
axc 8m\dp/, 8w Sa=T [ In|l—exp ——=| |5
T /|4
Finally, substituting Eq(7) into Eq. (5 and using Eq(6),  Assuming that the variation of the spectrum associated with
we find the field is small, we get
_ 2 2
2 a g (e—1) ) 22 T (o S ¢
w gk+p k +—47Tp8(8+1)(8EH cos'6 EDk® (8 6(1_—W o de 0 e1—1 dqg
Above, for brevity, we have omitted the subscript O in the 7\ [T\ p?RT73
field and have introduced into the treatment the amyhee- ~ —F(g) §(§> 1723573

tween the wave vectdr and the projection of field&E onto

the horizontal plane. It is clear that the dispersion relation for 5\ (5)\(e—1)%p3(eE2—2E?)TS®

surface waves in a liquid in a magnetic field is obtained from F(g) (g) 487% (e + 1) a*Th2

Eq. (8) by replacing the permittivity by the permeability. In

fact, in the particular cases of tangential and normal fields, ~_0.1341 2l3y7is

our result coincides with that of Ref. 4. ' PETIE
The resulting formula is inapplicable for large vertical

fields. The unperturbed surface of the liquid in this case can- +0 004(8_ 1)?p"3(sEf —2E3)T™®

not be regarded as a horizontal plane. For such a surface to ' e(e+1)a??r?3 ’

be staple, the quar.1t|ty)2 must be posmve_ for alk, since whereq=r%w/T. In the opposite case of a strong tangential

otherwise the amplitudes of the waves with the correspondﬁeld however

ing wave vectors will grow without limit. It is easy to obtain ' '

the required limitation on the field: 5 3 [T8  [e+1 2p5 fxd del )
N3V e-DE Jo 47, 98l

(e—1)*E} <64m?page?(s+1)2.
p5/6-|-8/3\/m

a5 S(e—1)E

For example, in water, the density js=1 glcn?, e=81, —exp(—\/r—ms)]~—0.59
a=73 dyne/cm, and the critical field E=2.5 kV/mm. In
the limit & —cc, corresponding to a c40nductor, the stability  \ve should point out that it is convenient to use waves
condition goes over to the |nequaI|E/L<64772p_ag (Ya. . propagating perpendicular to the field direction to experi-
Frenkel’, 1935; see, for example, Ref. 3, section 5 mentally measure the surface tension. Their dispersion rela-
The generalization of the dispersion relationship 10 &;onship depends on the field only via the renormalized sur-
weakly inhomogeneous external field is obvious. If the charssce tension. Atkins’s theory is actually applicable only to
acteristic scalé overwhichEé varies is much larger than the liquid helium and hydrogen. Since the former is only very
corresponding scale of the wavg or 1k), the only thing  \yeakly polarizable §=1.047), the effect under consider-
that changes in E@8) is the coefficieng (which, of course,  a4on apparently cannot be measured with present-day ex-
will no longer mean the acceleration of gravity, but will herimental technique. The susceptibility is much larger in
characterize the force acting on unit mass of the material ihydrogen ¢ =1.231), while a fairly low temperature can be
the combined electric and gravitational figldsor example,  4itained. Thus, it is preferable to choose hydrogen for mea-
in the geometry of a charged jet surrounded by a cyIindricaguring the correction to the surface tension.

layer of liquid with radiusr, A stimulating discussion with A. F. Andreev, K. O.
e—1 Eg Keshishev, and A. Ya. Parshin was essential to the writing of
g= —. this article. We would also like to thank Yu. A. Kosevich for
4me pr pointing out Ref. 4.

HereE, is the field at the surface, gravitation is considered
small, and the applicability condition i&<r.
. In a strong horizontal field, when the capillary and gravi- 1k r_ atkins, Can. J. Phys31, 1165(1953.
tational terms can be neglected,« k|cosf|, and the group  2L. D. Landau and E. M. LifshitzFluid Mechanics(Nauka, Moscow,
velocity is independent ok and is always parallel to the 1988; Pergamon Press, Oxford, 1987

3 e ) . .
- - P . ~~_ L. D. Landau and E. M. LifshitzElectrodynamics of Continuous Media
field. The surface thus becomes effectively rigid in the direc (Nauka, Moscow, 1992: Pergamon Press, Oxford, 1960

tion of the ﬁeld-_ o ) 4J. R. Melcher,Fluid Coupled Surface WavedIT Press, Cambridge,
The correctionda to the coefficient of surface tension Mass., 1963

(relative to the value aT =0) equals the derivative of the 5'&5')35-. Il_:andau andp E. M-oLiffSh(;tzlstatiS“tCi" Physic{Nauka, Moscow,
“quasi-partial” (associated with the surface wayestential + Pergamon Press, Oxford, 13g0art 1.
Q with respect to the surface area: Translated by W. J. Manthey
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The effect of pulsed magnetic fields on Cz-Si crystals
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It has been established that short-term effects of pulsed magnetic fields initiate long-term low-
temperature decay of a supersaturated solid solution of oxygen in silicon crystals grown

by the Czochralski metho(Cz-S), which results in the generation of oxygen-containing defects

in the form of O-V centers and more complicated({V, complexes, where V is a

vacancy. The process of defect formation after the action of the pulsed magnetic fields culminates
in the formation of spatially ordered oxygen—vacancy clusters and/or the precipitation of

oxide phases, depending on the original defects present in the crystal. The action of such fields
also initiates crystallization of an amorphized layer when it is present on the surface of

the original crystal. The detected effects are characterized by a threshold field strength, are
accumulate with successive pulses, and reach saturation in terms of these parameters of the action.
The effects induced in Cz-Si crystals by pulsed magnetic fields are analyzed in terms of a
possible cause consisting of the excitation of the Si—O bond of an interstitial oxygen by
nonequilibrium population of the vibrational levels of a metastable electronic term of the bond.

© 1997 American Institute of PhysidS1063-776097)01904-3

1. INTRODUCTION spins of the dislocations interact with paramagnetic impuri-
ties (dislocation stoppejsand by an increase in the occupa-

It is well known that relatively weak magnetic fiels1  tion of antibonding triplet states of radical pairs that possess
T) can substantially affect the actual structure and physicaleduced breaking energies.
properties of solids. Weak magnetic fields have been ob- Interest has recently arisen in studying the effect of
served to have an effect on the mechanical properties gdulsed magnetic fieldPMF9g on condensed media.
solids}™ the luminescence of crystalsthe resonance ab- It has been experimentally established that short-term
sorption of ultrasound by dislocatiofisand the optical ab- actions of weak PMFs initiate long-term changes of the
sorption of impurity center§.Detailed studies have been structure and physical properties of a wide class of nonmag-
made of the magnetoplastic effdthe increase of the mobil- netic materials. Long-term structural changes after the action
ity of dislocations in a magnetic fieldwhich is detected in  of PMFs have been observed in alkali halide crystatshal-
the alkali halide crystals NaCl, LiF, and Csl and the nonmag<ogenide semiconductof3|1-VI semiconductor crystalé
netic metals Al and Zn under the action of weak magnetidll-V semiconductor crystal$, Ge?’ Si?4% and Si-SiQ
fields, both constafif and variablé®** It has been observed structures®33
that dislocations in NaCl crystals continue to have increased The distinctive features of PMF-induced effects are that
mobility after the magnetic action is removéttie magnetic there is a delay in their appearance after the magnetic action
memory effect 213 ends and that the kinetics has a long-term nonmonotonic

The influence of weak dc and ac magnetic fields oncharacter. Thus, after a PMF acts on silicon crystals for sev-
chemical reactions in condensed médid® has been de- eral seconds, the processes of structural changes in these
tected and actively studied. crystals last hundreds of hours at room temperattie.

It is assumed in most papers that weak magnetic fields Despite the large amount of accumulated experimental
affect materials because they remove the forbiddenness fétata, the phenomenological picture of PMF-induced effects
any transitions in which the electron spin changes. For exis not yet complete, and existing model concepts have not
ample, theoretical models of the effect of weak magneticddequately explained them.
fields on radical chemical reactions are based on the assump- The goal of this paper is to study PMF-induced effects in
tion that the magnetic field removes the spin forbiddennessilicon crystals grown by the Czochralski methi@iz-Sj in
on intercombination transitions between states with differenfrder to establish the mechanism by which a PMF effects
multiplicity.>'*~*61deas about the removal of spin forbidden- long-term structural changes and to construct a qualitative
ness in intercombination transitions have made it possible tg10del of the phenomenon.
explain the main features of the magnetoplastic efféct
the effect of a magnetic field on dislocation friction, and the
crystal-strengthening effect in a dc magnetic fi&d®In par-
ticular, the increased mobility of dislocations in a magnetic  The PMF-induced effects were studied on crystals of
field was explained by the effect of the field on the probabil-dislocation-free semiconductor silicon with substantially dif-
ity of intercombination transitions between singlet and tripletferent concentrations of dissolved oxygen. Silicon crystals
states of radical pairs, which arises when unpaired nuclearith a low concentration of dissolved oxygediO]< 10

2. EXPERIMENTAL RESULTS
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cm®) were obtained by crucibleless zone melti@@n-Si),
and crystals with a high oxygen concentratiofO]>10'®
cm %) were obtained by pulling from the melt by the
Czochralski methodCz-Si).>* Samples wittn-type conduc-
tivity and crystallographic orientation of th€l11) planes
were studied. The dopariphosphorousconcentration was
less than 5 10 cm™3. The crystals for the study were cut
from the central part of the Cz-Si or Zm-Si bars. The sample £
fabrication methods are specifically indicated below for eact ™ *
of the investigation methods used here.

PMFs were imposed as series of from one t6 afipo-
lar triangular pulses with similar widths of the leading and
the trailing edges. The pulse amplitubewas varied from
10? to 1P A/m, while the pulsewidths- were varied from
102 to 10 ® sec, with a fixed repetition frequency of
2x10 2 sec.

The magnetic processing was carried out at room tem
perature, except for the specifically mentioned cases i
which it was done at liquid-nitrogen temperature. In the in-
tervals between measurements, the PMF-processed samp s
were stored in an inert gda mixture of argon and nitrogen
at room temperature.

2.1. Optical microscopy

When a cleavage face of a silicon plate was visually
observed in an MII-4 optical microscope before and after b
magnetic action, the formation of precipitates was detecte

in Cz-Si crystals subjected to PMF processing. Typical re-
Y ) P 9. 1yp FIG. 1. Image of a cleavage face of a Cz-Si crystal in an optical microscope:

sults are ShOWT‘ n F'g-_ 1. The size and concentration of the, etore the action of PMFib) 250 h after the action of PMF. The PMF
observed precipitates increased for hundreds of hours aft@sgime isH=10° A/m, r=2x 1075 sec,N=10° pulses. The insets show
the magnetic action ended. The precipitates that formed aftémnages of a cleavage face of a control sample that was not subjected to the
the action of the PMF possessed a very nonequilibrium spa©tion of PMF.

tial distribution. They were mainly localized in the regions of

the cleavage face with the most significant original structural,yeq o thin sections of the sample close to the perforation is
damage. No precipitates formed on the control cleavagg,e complex picture of the extinction contours accompanying
faces qf Cz-Si cry;tals not subjected to PMF acnpn du”nglhem(Fig. 23. As the storage time of the samples after mag-
the entire storage time. Images of the corresponding contrQletic action increased, the extinction contours around the
cleavage faces are shown in the insets in Fig. 1. _ precipitates became less pronounced. Extinction contours did
No formation of precipitates as a result ‘?f PMF action , ¢ appear on the transmission electron micrographs of the
was detected on the cleavage faces of Zm-Si plates. precipitates made close to the outer edge of the sample, be-
cause of the large thickness of the crystl. 2b.
The observed extinction contours can be caused by
elastic-stress fields that arise because of the wide disparity of
PMF-induced structural changes in silicon crystals werethe molar volumes of the oxide precipitates and the crystal
studied in an BEIV-100AK transmission electron micro- matrix, and they can be made to disappear by removing these
scope. elastic stresses as a result of the gradual accumulation of
To prepare a sample, a disk 3 mm in diameter was cuvacancies in the regions where the crystal is compressed
from the central part of a silicon plate about 2aén thick.  around the precipitates. As is well known, elastic stresses can
An indentation was ground out at the center of the disk to @e compensated by forming vacancy-type dislocation loops
residual thickness of about 30m, after which the surface of around the precipitates that create compressive stresses in the
the crystal was sputtered with a beam ofAbns with an  crystal*
energy of about 6 keV until a hole opened up. The thickness It should be pointed out that the ion sputtering of the
of the sample thus prepared decreased radially from the edgeystal was nonequilibrium and created island-like relief of
to the center. the sample surface on the side subjected to the sputtering.
Typical images of the precipitates that appeared in th&his was manifested on images in the direct beam of the
Cz-Si crystals after the action of PMFs are shown in Fig. 2transmission microscope by the presence of dark regions
No such defects were observed on the original samples argkparated by lighter boundaries where the crystal was more
the control samples not subjected to the action of PMFs. Aleeply sputtered. Moreover, bombardment of the surface of
feature of the transmission images of PMF-induced precipithe crystal with heavy ions caused its surface layer to be

2.2. Transmission electron microscopy
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FIG. 2. Transmission electron micrographs of precipitates formed in a Cz-Si crystal after the action of @PdfiFa thin section of the samp(@5 h after
PMF); (b) on a thick section of the samp{@50 h after PMIF. Magnification 12 000.

amorphized, and this resulted in a corresponding halo in thepecially exposed in the electron microscope for several min-
electron-diffraction pattern of the sample. utes under a 170-keV electron beam, the initial halo did not
Complete images of a Cz-Si sample in the direct beam ofjisappear.

the transmission electron microscope and its electron-  These results show that the detected effect of crystalli-
diffraction patterns, optalned before and after the action of 34401y of the amorphized phase of silicon results from the
PMF, are shown in Fig. 3. action of the PME.
Short-term actiona few secondsof PMFs caused the L . L
. . ; Another indication of PMF-induced crystallization of the
halo on the electron-diffraction patterns of the Cz-Si crystals hized ; that the elect . hs b
to be completely eliminated, showing that the amorphizeoamorp Ized surtace was that the electron micrograpns be-
surface of the sample was crystallized. The halo disappeardg@Me more distinct because the diffuse background caused
within tens of hours after the completion of the magneticby electron scattering in the amorphized surface layer of the

action. In control samples the original halo remained as lon@riginal sample was eliminated.
as the samples were kept. When the control samples were The action of PMFs on the Zm-Si samples did not sig-

FIG. 3. Images of a Cz-Si sample in the direct beam of a
transmission electron microscope and its electron diffraction
pattern: (a) before the action of a PMRp) 150 h after the
action of a PMF. Sample diameter 3 mm.
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FIG. 4. Images in a scanning electron microscope of a selec-
tively etched surface of a Cz-Si crystéh) before the action of a
PMF; (b), (c), and(d) 20, 75, and 150 h after the action of a
PMF, respectively. The inset f@l) shows the selectively etched
surface of a control sample.

f0 pm

nificantly change the brightness of the halo of the original  The action of a PMF caused isolated etch pits to appear
electron-diffraction pattern. in the near-surface layers of the crygtaig. 5. As with the
scanning-electron studies, the absence of faceting of the de-
tected etch pits showed that their appearance is caused by
spatially limited defects. Such defects can be oxide precipi-
The effect of PMFs on silicon crystals was studied bytates visually similar to those observed in an optical micro-
scanning electron microscopy with a CamScan microscopgcope on cleavage faces of a Cz-Si crystal. In the near-
as follows: A Cz-Si plate was cleaved into several samplesgyrface layers, the process of PMF-induced precipitation is
one of which was subjected to the action of PMFs, while they|so facilitated by an increase in the concentration of the
others served as control samples. The surface topology of thgiginal structural disturbances that can serve as primary
samples was studied in the secondary-electron recording r@ycleation centers.
gime. To reveal structural defects, the surface of the samples Npote that, along with oxygen-containing defects, other
was subjected to selective chemical etching. All the samplegpint defects can be formed in the surface layers of the Cz-Si

were processed by PMFs together, and each sample wagystals—for example, clusters of interstitial atoms that form
etched individually but in identical regimes for different time quring the growth of precipitates of oxide phases.

intervals after the magnetic action, immediately before moni-  |n the bulk of the Cz-Si crystal, with higher structural

toring the surface topology. perfection, the action of PMFs resulted in the formation of
The main results obtained by this method for the actionyegular structures of nanometer scéfég. 5b.

of PMFs on Cz-Si crystals are shown in Fig. 4. Selective  The formation of such structures was detected only in

etching did not reveal any surface defects on the originatz-s; crystals and was not observed in Zm-Si crystals, which

samples(Fig. 4a. However, etch pits were detected after js evidence that oxygen plays a key role in the appearance of
magnetic processing, and their depth increased with the timge effect.

interval that passed after the end of the action of the PMFs The regu'ar structure may resu|t from PMF_induced for-
(F|g 4b—4d These pitS, detected when the CrySta| SUrfaCQ'nation of clusters of the type )&yVZ! where V is a va-
was selectively etched, had no crystallographic faceting ingancy.

side them characteristic of the emergence of linear disloca-

tions onto the surface. The absence of faceting is evidence

that the detected etch pits are caused by spatially limiteqd ¢ | transmission spectroscopy

defects that are etched more rapidly than is the defect-free

crystal. Such defects may be the precipitates observed in the The IR transmission spectra in the region of wavenum-
Optica| and transmission electron microscopes_ bers v from 400 to 1200 le were recorded before and

No etch p|ts appeared on the control Samp|es Storeafter the action of PMFs on a UR-brand IR Spectrometer at
along with the samples processed by PMiRset in Fig. 49.  foom temperature. The samples were of a Cz-Si plate pol-
ished on two sides.

The long-term variations of the IR transmission spectra
of the Cz-Si crystals after magnetic action directly showed

Studies in a scanning tunnelling microscope of the surthat dissolved oxygen participated in the PMF-induced pro-
face topology of Cz-Si crystals with layer-by-layer etching cesses. It is known that the main bang=(1106 cnm!) in
showed that PMF-induced effects appeared very different ithe spectral interval in Fig. 6a is caused by IR absorption at
the near-surface layers and in the depth of the crystal. Si—O bonds of interstitial oxygeft. The permanent distor-

2.3. Scanning electron microscopy

2.4. Scanning tunnelling microscopy
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FIG. 5. Topology of a selectively etched surface of a Cz-Si
crystal 250 h after the action of a PMF. The thickness of the
etched layer is about 2zm (a) and about 20um (b). The
image size is 300 nm along theaxis, 300 nm along thg
axis, and 45 nm along the axis.

tions of this band as a result of the action of PMFs are eviplexes or have a more complicated compositibir:4%:4
dence that the silicon—oxygen bond is excited by the mag-
netic field.

Another sign that oxygen participates in PMF-induced
effects was the appearance of a narrow absorption band The possibility of PMF-induced formation of point de-
(»=830 cm 1). The presence of this band in the IR spec-fects with deep levels in the band gap of a semiconductor has
trum is associated with absorption at an oxygen—vacancpeen tested by deep-level transient spectrosébpye stud-
(O-V) complex, well known as the radiation point defecties were carried out in the constant-capacitance retjiore
called theA center®-38 Au-Si Schottky barriers formed on Cz-Si crystals. Polished

The IR absorption also increases in the wavenumber inplates of KB--7.5 silicon were used for the samples. Recti-
terval 400-650 cm! (Fig. 6b). The appearance of absorp- fying metal—semiconductor contacts were obtained by ther-
tion bands in this part of the spectrum was observed earliemally depositing gold electrodes 0.8 mm in diameter and
after long(tens and hundreds of hoyifseat treatments in the about 500 nm thick through a molybdenum mask in a
temperature interval 600—800 K and was associated with theacuum better than 10 Pa with no special heat treatment.
formation of low-temperature thermodondPsThe nature of ~ An ohmic contact was created by mechanically depositing an
the thermodonors is still being discussed in the literature, buindium—gallium eutectic mixture on the back side of the
it seems certain that they are oxygen-containing,3@m-  sample.

2.6. Deep-level transient spectroscopy
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On the original sampleefore magnetic actigras well
as on companion samples periodically monitored in the
course of hundreds of hours after fabrication, the concentra-
tion of any deep levels that contribute to the spectrum was
less than 18 cm™3. The action of PMFs caused the appear-
ance of a signal whose amplitude substantially increased for
several days after the completion of the magnetic action and
then decrease(Fig. 7).

A characteristic of the detected peak was that its shape
was distorted on the high-temperature side. Such distortion is
evidence that the observed signal could be caused by a deep-
level band** In fact, the relaxation of the nonequilibrium
charge of the band of deep levels forming the overall signal
peak results in a nonexponential variation of the recorded
parameter(the voltage on the electrode in the method used
here, in which a constant capacitance is maintained on the
Schottky barriex. In this case, it becomes incorrect to use
Lang'’s classical technig@&for determining the energy po-
sition of the levels and their majority-carrier capture cross
sectlo.ns“.“ X . . i FIG. 7. Signal obtained by deep-level transient spectroscopy of a Cz-Si

It is well knowrf" thatA centers in silicon give a peak in crystal: 1—before the action of a PMR, 3, 4, and5—25, 150, 250, and
the signal spectrum obtained by deep-level transient spe®oo0 h, respectively, after the magnetic action. The solid curves show the
troscopy, with a maximum at a temperatdrg~ 80 K for a experir_nental depen_dence;, and the dashed curves show the results of a
relaxation time ofr,,~ 10 us, wherer,~ (t,—t;)/In(t, /t,), nurfencalilcéalculatloz W|th73the paramfterggz E.— E[:Q.17 ev,

i - . ; o,=5%10"1 cn?, t;=2%10"3 sec, and,=10 2 sec and with a com-
while t; andt, are the variable times of recording the relax- pressive hydrostatic pressureé=0.32, 0.34, and 0.27 GPa for curvés,
ation parameter. It is also knowhthat A centers belong to 3, 4, respectively.
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FIG. 8. Effect of uniaxial compressiofturves1)

y ' n * . , on the signal obtained by deep-level transient spec-
0 %0 100 10 80 20 100 troscopy of a PMF-induced center in a Cz-Si crys-
T.K tal: (&) P100j=0.3 GPa(b) P1,0=0.3 GPa, andc)
Pr11j=0.3 GPa. The signal-recording regime is
t,=8x10 2 sec,t,=10"2 sec; curves2—initial
signal with no external compression.

80 90 100
T,K

the C,, symmetry group and, in the absence of external efpression along these directions was created by means of a

fects, are sixfold degenerate. device similar to that described in Ref. 36 and an additional
Using the parameters of tecenter(an energy position lever whose free end was loaded with the test sample.
in the band gap oE.— E;=0.17 eV, where is the energy The results of the action of uniaxial compression are

level in the conduction band artg} is the energy of the deep shown in Fig. 8. When the sample was compressed along the
level, and an electron-capture cross section 0f100] axis, the recorded signal invariably showed a second
o,=5x10"®cn?, Refs. 34 and 3kand taking into account maximum (Fig. 83. The signal was shifted toward lower
elastic hydrostatic-compression fields, a numerical calculatemperatures relative to the initial value, its amplitude was
tion of the signal makes it possible to accurately reproduceeduced, and an inflection point appeared on the high-
the experimental signals of the PMF-induced defect. Figure Temperature side at a height close to the amplitude of the
shows the experimental and calculated signals. The signalecond maximum. Substantially smaller distortions of the
observed after the action of PMFs shows features characteoriginal signal and reduction of its height were observed
istic of a center ofC,, symmetry in a cubic crystal. when the sample was compressed along| 1#)] axis (Fig.

To conclusively determine the symmetry group of the8b). The application of external pressure in {id 1] direc-
PMF-induced defect, the effect of uniaxial compression oftion significantly reduced the amplitude of the initial signal
the crystal was studied by the method proposed in Ref. 4@and caused the appearance of a second maximum and an
The samples specially fabricated for this method weranflection point at a height twice that of the second maximum
5% 1.5x 1.5 mn? parallelepipeds cut from the central part of (Fig. 80.

a Cz-Si sample. To optimize the signal resolution, the mea- These effects of uniaxial compression on the recorded
surements were made with close-lying values of the paramsignal confirms that the PMF-induced point defect belongs to
eterst; andt,. the C,, symmetry group.

Structures with Schottky barriers and ohmic contacts Since there are no data on the electronic—vibrational
were formed on the opposite side faces of the samples. Theharacteristics of the detected center caused by the Jahn—
long sides of the samples were oriented along one of thd&eller effect nor on the character of the reconstruction of the
crystallographic axefl00], [110], and[111]. Uniaxial com-  partially filled broken silicon bonds, the PMF-induced defect
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cannot be unconditionally identified as @& center. How- tals. Typical changes of the diffraction patterns of the Cz-Si
ever, the fact that the detected defect coincides in energyrystals after the action of PMFs are shown in Fig. 9. For
position, electron-capture cross section, and symmetry typeomparison, the same figure shows the results of measure-
with the corresponding characteristics of Arcenter, in our  ments on control samples that were not subjected to mag-
opinion, justifies the use of the termAlike center” to des-  netic processing.

ignate the detected PMF-induced point defect. The detected intensity changes of the x-ray diffraction
lines of Cz-Si samples after the action of PMFs can be
2.7. X-ray diffractometry caused by the formation of the quasiregular spatial structures

X-ray structural studies of the effect of PMFs on silicon qbserved in the scanning tunnelling microscope. Deforma-

crystals were carried out on a DRON4-07 diffractometer 1" of the atomic planes of the original Cz-Si crystal as a

The diffraction patterns were measured withiCux-rays result of PMF-induced formation of oxygen-containing
(A=1.54051 A, in the regime in which the sample is auto- SiyOyV, clusters should cause the primary extinction during

matically angularly displaced with a step of 0.01° and anijnamic X-ray scattering to be suppressed and indeed results

exposure time of 3 sec at each point. The doublet charactdéf & substantial increase of the total and maximum intensity
of the K, x-ray line caused the x-ray diffraction lines to be Of the x-ray diffraction line{making them several times as

split into two peaks. strong, while their ratio, which characterizes the half-width
The samples were polished Cz-Si and Zm-Si plates wittof the line, is maintained. o
the crystallographic orientation of tH&11) planes. No appreciable changes of the x-ray diffraction line in-

The brief action of PMFs produced long-term nonmono-tensities were observed in the Zm-Si crystals after the action

tonic variations of the interplanar distancesin the Cz-Si  of PMFs.
crystals and also substantially changed the total and maxi- The relative changedd/d of the interplanar distances
mum intensities of the x-ray diffraction lines of these crys-of Cz-Si crystals after PMFs act on them reached values of
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about 5< 10~ ° for the (444) planes, while this parameter did A comparison of the time dependence of the PMF-
not vary by more than 1%10 ° on the control samples. induced changes of the parameters of a Cz-Si crystal is evi-
The corresponding temporal variations of the lattice constandence that the concentration of interstitial oxygen and the
a of the crystal 6=dh?+k?+12, whereh, k, andl are the lattice constant of the crystal both decrease at the initial stage
crystallographic indicesare shown in Fig. 10. of the evolution. In other words, magnetic action causes part

We should also point out that, in Si—SiGtructures ob- of the oxygen atoms to leave the interstitial state and causes
tained by thermal oxidation of Cz-Si plates, PMF-inducedinternal elastic compressive stresses to appear in the crystal.
changes of the x-ray diffraction lines and of the interplanar  The subsequent increase of the lattice constant can be
silicon spacings were significantly weaker than on unoxi-caused by the arrival of additional vacancies from the surface
dized plates. of the crystal, compensating the compressive stresses that

The temporal variations of the interplanar distances inappeared earlier.
Zm-Si crystals after the action of PMFs was less than the The entry into the crystal of vacancies from the surface
variation of this parameter on the control samples. can increase the concentration Aflike centers formed by

Thus, the results of x-ray structural studies confirm thathe interaction of these vacancies with interstitial oxygen.
oxygen dissolved in the silicon lattice plays a key role in theThe gradual decrease of the concentration of PMF-induced
appearance of PMF-induced effects and indicate that the suA-like centers at the later stages of the evolution is deter-
face state of the crystal is very significant in these effects. mined by two factors: the consumption of tAelike centers

in cluster-formation processes and the reduction of the flux

of vacancies from the surface as the elastic stresses in the
2.8. Time dependences of the variation of the parameters crystal are compensated.

The main f