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Projectile multifragment breakup of16O, 2C and7Li at energies 3.0–4.5A-GeV is studied by
means of the Weizsa¨cker–Williams method. The fragmentation channels of the16O
projectile at 4.5A-GeV are investigated and compared with that of16O at 200A-GeV. The
events characterized byNh50 and the events due to both Coulomb and diffraction dissociation
have been selected and analyzed as a function of impact parameter. Also, the dependence
of the electromagnetic dissociation cross-section on incident energy and the charge of projectile
and target is found. ©1997 American Institute of Physics.@S1063-7761~97!00104-2#
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In recent years, nucleus–nucleus collisions at high en
gies have been attracting more interest as a way to un
stand the important effects of nuclear interaction mec
nisms at different impact parametersb. The reason for the
study at small impact parameter is to observe the signat
of unusual forms of nuclear matter such as the quark–gl
plasma,1 while studies at higher values of the impact para
eters help in understanding the nuclear structure, and a
electromagnetic effects1,2 considered as a source of bac
ground for nuclear interactions like the possible features
quark gluon plasma.

Heckman and Greiner3 reported the first results of a Be
vatron experiment on the fragmentation of nitrogen ions
carbon and hydrogen targets at 29A-GeV. The point of in-
terest in this work is the dislocation of fragments from t
projectile nucleus. In their work, they tried to classify th
reactions according to the following categories.

1! Stripping reactions, in which the spectator part o
projectile is diffracted inelastically while the other part su
fers a strong interaction with the target nucleus. This reac
occurs atRp1Rt.b.Rp2Rt whereRp andRt are the radii
of projectile and target nucleus respectively.

2! More peripheral collisions, in which all projectil
constituents are dislocated and associated with some
rons, mostly pions. These interactions occur at large va
of the impact parameterb, up toRp1Rt .

3! Pure electromagnetic dissociation of the incide
charge nucleus as a result of its passage through the
lomb field of the target nucleus, which provides an elect
magnetic pulse of short duration, enhanced by the Lore
contraction factorg. These interactions occur at impact p
rametersb greater than the sum of projectile and targ
nucleus radius~i.e., b.Rp1Rt!.
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2.1. Experimental details

At the Dubna BR-2 synchrophasotron emulsion sta
were irradiated with beams of 4.5A-GeV 16O and12C ions
and 3.0A-GeV 7Li ions. The dimensions of the pellicell
where 20 cm310 cm3600mm. The composition of the
emulsion is given in Table I.

Scanning was carried out along the track,4 using MBI-9
and Wild binocular microscopes, with magnification 1
3100.

Totals of 958, 1000, and 968 events were found, giv
the interaction mean free paths 12.1860.33, 14.460.33 and
15.260.50 cm for16O, 12C, and7Li, respectively.

The charged particles~tracks! produced in each interac
tion are grouped in the following categories.4

a! Ionization shower tracks (Ns) with very high velocity
b5v/c>0.7 and relative grain densityg*5g/g0<1.4,
where g0 is the minimum grain density of the relativisti
tracks inside the emulsion. Most of them are mesons, al
with some fast hydrogen isotopes.

b! Grey tracks (Ng), which are tracks with range
R>3 mm and 6>g*.1.4. These are mainly knock-out pro
tons from the target nucleus.

c! Black tracks (Nb), which are slow fragments from th
target nucleus with rangeR,3 mm andg*.6.

In emulsion experiments, the term heavy tracks is us
and their number is defined asNh5Ng1Nb .

d! The projectile fragments~PFs! are strongly collimated
in the forward direction within an angle determined by t
approximate relation

sin uPF<
Pf

Pi
,

wherePf is the Fermi momentum5 and Pi is the incident
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TABLE I. TABLE III. Fragmentation modes of16O projectile at 4.5A- and
200A-GeV/c.
momentum. This givesuPF<3.0° at the Dubna energy. I
Heckman and other4–6 the projection angles of the PFs a
measured by finding

tan uPF5
Dy

Dx
,

whereDy is the deflection of the measured fragment a
longitudinal distanceDx51 cm from the emission point.

The PFs with chargeZ>2 for 708, 1000 and 970 event
of 16O, 12C, and7Li beams respectively were recorded. It
possible to identify the doubly charged fragments (Z52) by
eye. A correct estimation is made by using thed-ray
method.4

2.2. Selection of electromagnetic dissociation events

To distinguish between the nuclear interactions and
Coulomb dissociation events, we must consider the expe
characteristics of electromagnetic dissociation~ED! events as
described in Ref. 7. Generally these ED events are cha
terized byNh50, which means that no slow emitted pa
ticles and no lepton pair orb-decay are produced. Also, th
incident charge (Zp) must equal the sum of the fragme
charges and the emitted angleu f r should be<3.0° at pro-
jectile incident energy 4.5A-GeV.

These stringent selection criteria are applied to the
perimental data of16O interactions at 4.5A-GeV and com-
pared with that of16O interactions at 200A-GeV.7,8 It was

Types of nucleus 1H1
12C6

14N7
16O8

80Br35
108Ag47

Density ~N of atoms/1022! 3.15 1.412 0.395 0.956 1.028 1.028
TABLE II. The Nh50 events and those due to both
A-GeV/c and16O-Em at 200A-GeV. Their separation
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found that about 6% of the total inelastic interactions are d
to the effect of the Coulomb field of the target nucleus on
incident 16O at 4.5A-GeV, whereas this ratio is about 10%
for the same projectile at 200A-GeV. These results confirm
the dependence of the ED cross-section on the incident
ergy. Table II represents the total number of analyzed eve
for each beam. The ED events can be divided into two c
egories, one due to the Coulomb field effect and the othe
diffraction on the target surface. This has been corrected
the number of ED events which are not associated w
pions, as shown in Table III. Then the angle of the emiss
fragment (uPF<3.0°) can be divided into two ranges. Th
lower range ofuPF ~0–1.5°! is attributed to the effect of the
Coulomb field, and the relatively larger angles up to 3
result from the effect of diffraction on the outer surface
the target nucleus.

16

Fragmentation Mode

Fraction of Frag.
Chan. of

16O ~4.5! A-GeV %

Fraction of Frag.
Chan. of

16O ~200! A-GeV %

O→N1H 42.266.2 56.064.0
→C12H 1.861.3 14.062.0
→C1He 5.562.2 10.062.0
→B1He1H 1.861.3 3.661.0
→B13H 2.861.6 0.860.5
→Be 4.662.1 5.561.2
→Li 2.861.6 2.560.8
→4He 1.861.3 0.860.5
→3He12H 5.562.2 4.461.1
→2He14H 1.861.3 3.361.0
→He16H 0.960.9 0.860.5
Reference Present Work Refs. 7 and 8
Coulomb and diffraction dissociation inO-Em. at 4.5
is deduced from the experimental data.

636sin et al.
The projectile
and energy

16O (4.5A-GeV/c) 16O ~200A-GeV!

No. of events % No. of events %

Total analysed
events

708 - 920 -

Nh50 events
~peripheral coll.
1Coul. & diff. diss.
1Simulated ED!

98 13.9861.4 112 12.0061.13

ED events
~Coulomb diss.1
diff. diss.!

- - 92 10.0061.00

Pure ED event
~Coulomb diss.!

45 6.3560.94 - -

Diff. diss. on
target~associated
with pions!

36 5.0860.85 - -

The dissociation
into a-fragments
only

2
O→4a

0.2860.19 3
O→4a

0.3060.06

Diffractive diss.
into a-fragments

2
O1Em.→4a1low
energy particle

0.2860.19 2 in all scanned
2934 events

0.0760.05

Reference Present work Refs. 7 and 8
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TABLE IV. The interaction of6Li, 7Li, 12C and 16O at Dubna energies
compared with16O at higher energies.

8

The given numbers of ED events for16O at 200
A-GeV are taken from Refs. 7 and 8. It is clear that these
events increase with the energy and charge of the incid
beam, except for incident7Li. This exception may arise be
cause the binding energy of the7Li nucleus is smaller than
that of the other nuclei, as illustrated in Table IV. The fra
tion of 16O dislocation into four clusters ofa-particles at 4.5
A-GeV is more than twice that of the splitting of16O ~200
A-GeV! into the same number 4a-particles. One reason fo
this may be the difference in the time the projectile spe
inside the Coulomb field of the target nucleus as shown
the last table; this will be discussed in the next section.

Also, the previous conditions could be applied as sel
tion criteria forNh50 events of the7Li interaction at 3.0
A-GeV in order to determine the two easily identified fra
ments ofZ51 andZ52, since the incident projectile has
chargeZ53. These events are tabulated in Table IV a

Type of
projectile and
energy~A-GeV! 6Li ~4.5! 7Li ~3.00! 12C ~4.5!

Total no. of
analysed inel. int.

968 970 1000

Nh50 events 147 136 98
Fraction % (15.261.25) (14.0261.2) (9.861.0)
ED events 70 45 60
Fraction % (7.260.86) (4.6460.7) (6.060.77)
Nuclear radius* 2.55 fm 2.42 fm 2.46 fm
Binding energy** 32.09 39.25 92
BE ~in MeV!
BE/N ~MeV! 5.35 5.61 7.7
Lorentz factor~g! 4.51 3.22 4.51
Emax ~MeV! 99.4 72.0 100.5
Duration timetd
through Ag 0.66310218 0.93310218 0.66310218

target component~sec!
Present Present

References Ref. 17 work work

Type of
projectile and
energy~A-GeV! 16O ~4.5! 16O ~60! 16O ~200!

Total no. of
analysed inel. int.

708 528 920

Nh50 events 98 - 112
Fraction % (13.9861.4) - (12.0061.13)
ED events 81 31 92
Fraction % (11.4361.27) (5.8761.05) (10.0061.00)
Nuclear radius* 2.73 fm 2.73 fm 2.73 fm
Binding energy** 128 128 128
BE ~in MeV!
BE/N ~MeV! 8.0 8 8
Lorentz factor~g! 4.51 64.41 214.71
Emax ~MeV! 98.1 1392.3 4641.1
Duration timetd
through Ag
target component~sec! 0.68310218 0.50310219 0.14310221

Present
References work Refs. 16 and 22 Refs. 7 and

Note.*Ref. 18,** Ref. 19.
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event ratios for incidentLi and Li at nearly the same tota
energy is due to the difference in the binding energy
nucleon. The7Li nucleus, which contains seven nucleons,
smaller and has higher binding energy per nucleon than
6Li nucleus. Therefore,6Li dissociates more readily tha
7Li in the case of interaction with the same target and at
same energy per nucleon. For this reason, the larger valu
the ED events ratio for6Li than that for the16O nucleus at
the same energy per nucleon could be anticipated. Thi
clear from the data given in Table IV.

2.3. Coulomb and diffraction dissociation events

Fragmentation of the projectile can be induced by
strong nuclear interaction~specially at larger impact param
eters! or by the electromagnetic field interaction. The ba
idea9 of Coulomb break-up is similar to that for electrodi
integration, but the cross-section is enhanced byZt

2 ~where
Zt is the target charge number!. The virtual photon method
of Williams and Weizsa¨cker8–12 was used as a suitable wa
of considering the Coulomb effect in the fragmentation p
cess. The Coulomb field of the target nucleus~in the projec-
tile rest frame! appears as a packet of quasireal photons
short duration and enhanced by the Lorentz contraction
tor g5(12v2/c2)21/2.

The collision time1,13 is roughly

td5bmin /gc,

wherebmin is the minimum impact parameter, equal toRp

1Rt . Consequently, the maximum photon frequency is c
tained in the electromagnetic field

vmax5cg/bmin .

Also, this yields the maximum photon energy

Eg
max5hcg/~Rp1Rt!.

According to this model, the electromagnetic pulse c
be sufficiently energetic to excite a giant resonance in
nucleus or to create lepton pairs or pions. From the ba
assumptions of the model there is a flux of photons aro
the nucleus and the photon energy spectrum is comp
classically1,11,13–15and treated by quantum mechanical calc
lations distinguished by the multipolarities of the phot
spectrum. The values ofg andEg

max for an Ag target nucleus
~the heaviest and most abundant element in the emulsion! for
different projectiles and energies are estimated and liste
Table IV. It can be concluded that the values are 4.8, 4.8,
3.2 for incident16O ~4.5 A-GeV!, 12C ~4.5 A-GeV! and7Li
~3.0 A-GeV! respectively. The correspondingEg

max values
are less than 100 MeV, which is smaller than the thresh
energy for pionization, while for incident16O ~60A-GeV!, it
is equal to the value of producing pions having a mass ab
140 MeV. But above the threshold forD-resonance~1232
MeV!, for incident 200 A-GeV, it could produce
D-resonances, which are subsequently dissociated into
tons and pions. The present results for12C and16O strongly
suggest that no pions are associated with the pure ED ev
It is clear from Table III that pions accompanied the sep
rated events due to diffraction dissociation, confirming t
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TABLE V. The nuclear mean free paths and inelastic cross-sections compared with the corresponding ED mean
free path andsED for different projectiles at various energies.
Type of
projectile
and energy

l int , cm lED , cm s int , mb sED , mb Reference

7Li3
3.0A-GeV

15.2 60.50 351.3649.6 1740.56 20.0 50.506 0.6 Present
work

12C6

4.5A-GeV
14.4 60.33 236.0628.2 1837.26 20.0 75.116 0.5 Present

work
16O8

4.5A-GeV
12.1860.33 106.45610.68 2070.06140.0 91.26 0.9 Present

work
16O8

200A-GeV
12.0 60.20 96.06 5.0 2620.06 50.0 198.96611.3 Ref. 7
e. We conclude that the technique of Ref. 23
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can be used only at incident energy smaller than 10A-GeV
for light incident nuclei.

2.4. Mean free paths and corresponding cross-sections

Table IV represents the total observed inelastic, peri
eral, and electromagnetic interactions. We can say that
events as a percentage of the total number of events incr
with the projectile energy. At the same time, the measu
value oflED decreases as the incident projectile charge
energy increase. The total inelastic cross-sectionss in are es-
timated from the relation

s in51/neffl in ,

whereneff in our type of emulsion is the effective density
emulsion nuclei;

neff5(
i
nis iY ( s i53.78•1022 atoms/cm3.

However, this number takes the value 3.2•1022 atoms/cm3

for the prepared emulsion in CERN SPS at 200A-GeV7,14

wherel in is taken as the observed mean free path for e
beam. In order to obtain an absolute value for the elec
-
D
ase
d
d

h
-

of l in in the emulsion must be converted into an absol
cross-section on the Ag component, which is the heav
and most abundant element in the emulsion. The estim
sED for ED events on the Ag target is then calculated fro
the relationsED5 f /rl, wherer51.028•1022 atoms/cm3 is
the density of nuclei in the emulsion andf50.67 is a weight
factor for this target component reaching unity for the em
sion as a whole.

The values ofsED as a function of the projectile charg
are shown in Fig. 1b for this work and other experiments15

This shows thatsED takes similar values despite the differe
detectors and reactions. It can be concluded that in spit
the heterogeneity of the emulsion target, it can be used g
erally to measure ED cross-section.

Figure 1a and 1b illustrates some experimental value
sED as a function of projectile charge. The theoretical valu
of sED calculated by the Weizsa¨cker–Williams ~WW!
method11 for relativistic heavy-ion reaction with a197Au tar-
get at Bevalac energies15 are also included. Here the calcu
latedsED values approach large values for both ultrarelat
istic energy ~100 A-GeV! and high projectile charge, a
noted in Ref. 15. Also, the experimental and calculated v
e
l

l-
y

FIG. 1. a—The ED cross-section for the7Li,
12C and16O interactions at Dubna energy~3.0–
4.5 A-GeV! as a function of projectile charge
Zp ~j—calculated,h—experimental! b—Our
experimental pointsj—1, s—2, h—3 for
7Li 12C and16O respectively at nearly the sam
energy. The pointsx represent the experimenta
values of sED’s at different projectiles with
197Au target. The corresponding calculated va
ues according to WW-method are indicated b
the dashed line.
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7Li, 12C and16O interactions

as a function of projectile chargeZp are shown in the sam
figure.

From this, it can be inferred that there is fair agreem
between the present results for light projectile charge
calculated values at various energies.

The interactions of lithium, carbon and oxygen of t
present work at Dubna energies are tabulated in Table
For comparison, the corresponding results of oxygen inte
tions at higher energies extracted from Refs. 7, 16 and 17
also included. As seen from Table IV and Figs. 1 and 2,
percentage of ED events increases with both energy and
cident beam charge.

Table III presents the different modes of carbon a
oxygen breakup at 4.5A-GeV inside the emulsion targe
~mainly due to the electromagnetic field of the Ag targ
nucleus component!. Their numbers, fractions, and observ
partial cross-sections are listed. The majority of events lie
the channels producing 1 He and 2 He respectively. T
reveals qualitatively that the relative production rates
a-particles in the projectile fragmentation processes are c
sistent with the values for different projectiles an
energies.20 The largest yield of ED events occurred in th
case of emission of one He fragment, associated with c
plete disintegration of the projectile. This result shows t
with decreasing He multiplicity, the surface excitation e
ergy of the projectile spectator increases. Also, the res
confirm the same conclusions from the distributions of
fragments produced from nuclear events,21 which implies the
limiting fragmentation behavior of the He-multiplicity distr
bution.

2.5. Dependence of the electromagnetic dissociation cross-
section on target nucleus

Vidovic and Greineret al.31 have studied the impact
parameter dependence of electromagnetic particle produc
in ultrarelativistic heavy-ion collisions and directly deduc
the equivalent photon method11,24 from quantum electrody-
namics. It is well known that the simple photon method
Williams and Weizsa¨cker11 is widely used2,7,8,15,20–30by sci-
entists. A model32 which depends on the WW-method11 has

FIG. 2. The calculated ED cross-sections at different energies~j!. The
pointss andx represent the experimental values ofsED’s for oxygen and
carbon beams at 4.5A-GeV.
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Coulomb field of heavier nuclei which are easily excited
dissociated by a target nucleus.

In Ref. 33 the decay channels of28Si projectile dissocia-
tion to p127Al, n127Si and 2p126Mg using the WW-
approximation with the experimental data for photonucle
cross sections were examined, and it was found that the
no evidence for two-photon excitation of the28Si nucleus. In
contract, the authors of Ref. 34 found large values for
neutron cross section for electromagnetic dissociation
197Au targets by incident20Ne ~1.7 A-GeV! and 86K,
197Au, 209Bi beams with 1A-GeV. They explained this ob
servation by the dominant contribution from two-photon ga
dipole excitation and interpreted the large cross section
due to theZt dependence, since two-photon excitation w
behave asZt

4 while one-photon excitation showsZt
2 behavior

~or Zt
1.8 behavior for heavy target nucleus!, as found by the

authors of Ref. 33.

3. CONCLUSIONS

The results confirm the dependence of the electrom
netic dissociation cross section on both incident charge
energy. The measured ED cross section has the same tre
the calculated one based on the Weizsa¨cker–Williams
method, and it increases with increasing of the projec
charge and energy.

For light projectiles, it was found that the largest yield
ED events occurred in the case of one He fragment ass
ated with complete disintegration of the projectile. Th
shows that with decreasing He fragment multiplicity, the s
face excitation energy of the projectile spectator increase

Calculations by the WW method with data from count
experiments can be used to examine the decay channel
projectile dissociation by the excitation of the project
nucleus, whereas other experiments interpret the ED of ta
nucleus in terms of the dominant contribution from tw
photon giant dipole excitation.

Despite the heterogenity of the emulsion target, it can
used to measure the ED cross section.

The larger yield of6Li projectile dissociation than tha
for incident7Li may be due to the smaller binding energy p
nucleon of the6Li nucleus.
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Theddm molecule formation rates have been measured from the two hyperfine states of thedm
atom in the temperature rangeT55–30 K. Results are consistent with the measurement of
the TRIUMF groupT53 K and contradict theoretical predictions. This work was performed on the
JINR phasotron~Dubna!. © 1997 American Institute of Physics.@S1063-7761~97!00204-7#

1. INTRODUCTION in Ref. 10; they also were not able to measure the deuter
rin
a

th

n
p
h
m
iso
ve

n

ur
a-

r
e
y-
-
ry

d-
a

qu

o
7
d

re-
he
eu-

tail
me

wn
ed

n-
tal

k-

y-
or-
get
00
tar-
the
d by
nt
con-

-0
Muon catalyzed fusion~MCF! in pure deuterium~see the
schematic diagram in Fig. 1! has relatively simple kinetics
and therefore is an attractive way to check the basic p
ciples of the theory of muonic molecule resonance form
tion. Significant success has been recently achieved bo
theory1–3 and in the measurements4–6 of the ddm molecule
formation rate (lddm), including strong spin effects. As ca
be seen from Fig. 2, measurements of the temperature de
dencelddm(T) at T.20 K are in excellent agreement wit
the standard theory of resonance muonic molecule for
tion. The most impressive consequence of their compar
is the determination of the energy of the weakly bound le
in theddm system with an accuracy of.0.1 meV. Note that
the latter corresponds to 1% of the relativistic contributio
to this energy.

It was thought that measurements at lower temperat
would allow only improved accuracy of the main MCF p
rameters. However, the recent measurement of theddm mol-
ecule formation rate from the spinF53/2 state of thedm
atom atT53 K shows7 a large discrepancy with theory. Ou
goal in this study was to extend the systematic measurem
of ddm mesomolecule formation rate from the different h
perfinedm atom statesl3/2 andl1/2 and the hyperfine tran
sition rateld in the temperature range 5–30 K. Prelimina
results have been published.8

In this paper we give the results of full analysis, inclu
ing the determination of the absolute values of the reson
~from the dm atom spin stateF53/2! and nonresonant (F
51/2) ddm molecule formation rates. At low deuterium
temperature these values were previously measured in li
deuterium atT522 K ~Ref. 6! and T523 K ~Ref. 4! and
showed a noticeable discrepancy with theory for the value
l1/2 ~nonresonant!.9 For normalization the authors of Ref.
used the value ofl1/2 obtained in Ref. 4 and then correcte
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density directly in the experiment.
An important feature of this study is that the measu

ments with liquid and solid deuterium were performed in t
same experiment under conditions having well-defined d
terium density and temperature.

2. EXPERIMENTAL METHOD

The experimental method has been described in de
elsewhere.6 We measured and analyzed the yield and ti
distribution of 2.5-MeV neutrons from thed1d fusion reac-
tion at seven temperatures in the range 5–30 K,

dm1d→ddm→3He1n. ~1!

A simplified diagram of the experimental apparatus is sho
schematically in Fig. 3. In particular, a specially construct
solid deuterium target (T) of volume 280 cm3 ~Ref. 11! and
a total absorption neutron spectrometer12 ~NE-213 provided
n2g separation13!. The spectrometer consisted of two ide
tical parts symmetrically placed around the target with to
volume of 22 liters. High neutron detection efficiency~solid
angle.65% and intrinsic efficiency.70% resulted in suf-
ficiently high counting rate yet relatively low random bac
ground.

The target was enclosed in a liquid-helium cooling cr
ostat. Special attention was given to achieving a high unif
mity in temperature and density throughout the large tar
volume. Accordingly, a heat conductor consisting of 5
copper wires 0.4 mm in diameter was placed inside the
get, which produced temperature gradients throughout
target not higher than 0.1 K. Temperatures were measure
two helium thermometers, which were placed at differe
heights inside the target whose temperatures were held
stant within 0.2 K.

6416$10.00 © 1997 American Institute of Physics
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The deuterium was purified with a palladium filter dow
to 1021 ppm impurity concentration. The protium conte
was no higher than 0.5%.

The trigger selected those events for further record
and analysis which corresponded to the appearance o
neutron@ 4̄(N11N2)# and electron@4(N11N2)# signals dur-
ing the 10-ms gate, opened by the muon stop (1•2•3•4̄)
signal. Discrimination against backgrounds originating fro
the muon stops in the target walls places the requiremen
electron times ofte.0.2ms after the muon stop (t050).

As usual, the neutron yield was normalized to the nu
ber of electrons from the decay of muons stopped in de
rium. The time spectrum ofm-decay electrons obtained i
the run at 19.0 K is shown in Fig. 4. It was analyzed us
the expression

N~ t !5a1 exp~2lt !1a2v~ t !1a3 . ~2!

Here the short-lived componenta2v(t) ~dashed curve in Fig
4! represents muon stops in the target walls; its shape
determined from the measurements with an empty tar
The slow exponent corresponds to muons stopped in de
rium with a slope very close to the free muon disappeara
rate, (l050.455ms21). The number of events belonging t
the slow component (Ne) was used in analysis of the neutro
events.

FIG. 1. Scheme ofm-catalyzed processes in pure deuterium.
g
he

on

-
e-

g

as
t.
te-
e

Experimental conditions for nine full runs are given
Table I. As usual, the density is normalized relative to that
liquid hydrogen ~LHD, f054.2531022 nuclei/cm3!. The
numbers in brackets represent uncertainties in the last
ure~s!.

The highest statistics were accumulated at the low
temperature and in runs 4 and 5, which were as close
possible in temperature but in different deuterium pha
states. The measurement with helium was made to determ
independently the neutron background@a3 in Eq. ~2! above#,
while the data obtained with an empty target allowed us
check the number of moun stops in the target walls.

Those events were selected for further analysis wh
satisfied the criteria of having:
1! A neutron in then2g plot.6,12

2! A m-decay electron in the time intervaltn10.5ms<te
<tn12.5ms.
Times and amplitudes~recoil proton energy! for those events

FIG. 3. Simplified scheme of the experimental setup.1, 2, 3, 4are scintilla-
tion counters;N1 ,N2 are total absorption neutron detectors,T is the deute-
rium target.
e

FIG. 2. Dependencelddm(T). Square—Ref.
7; circles—present work; triangles—
previous Dubna measurements6; stars—
Refs. 4 and 5. The line corresponds to th
standard theory.1–3
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were accumulated separately for each run and for each
tron detector. The final results were obtained from the an
sis of such distributions for the first «detected» neut
events. However, the high neutron detection efficiency
lowed us to record the «second detected» fusion neut
their yield and time distributions were then used to verify t
normalization procedure and the detection efficiency ca
lation. Some neutron time distributions are presented in F
5a and 5b and in Fig. 6. We see that the relative yield of
background is low and that the neutron spectrum beha
remains the same when the temperature and the phase
of deuterium are changed.

3. KINETICS OF THE d2d FUSION CYCLE

The d1d muon-catalyzed processes in pure deuteri
are shown in Fig. 1. According to standard theory,1,2 the
dm atoms are formed with an initial kinetic energy of a fe
electronvolts in two hyperfine states from which they a
quickly thermalized. The thermalization rate is estimated
be14,15 ltherm;109•f s21, which is much higher than them
molecule formation and the spin-flip rates. The thermali
tion stage is therefore ignored in the standard theory.

Muonic molecules can be formed either via the nonre
nant Auger process, where the energy released under
ddm formation is transferred to the conversion electron
via the Vesman resonance mechanism.16 The rate of non-

FIG. 4. Time spectrum of the decay electrons. The dashed line repre
muon stops in the target walls.

TABLE I. Parameters of the exposures.

Number Target filling Temperature, K Density~LHD! Ne , 10
6

1 Deuterium, solid 5.5~3! 1.43~4! 4.49~18!
2 Deuterium, solid 9.9~2! 1.43~4! 2.983~14!
3 Deuterium, solid 15.1~2! 1.42~4! 2.842~14!
4 Deuterium, solid 17.7~2! 1.40~4! 5.777~19!
5 Deuterium, liquid 19.0~2! 1.31~4! 4.598~17!
6 Deuterium, liquid 26.3~3! 1.19~4! 2.786~13!
7 Deuterium, liquid 30.5~3! 1.08~4! 1.738~12!
8 Helium 14.7~2! 0.37~1! 1.487~9!
9 Vacuum

643 JETP 84 (4), April 1997
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resonantddm molecule formation depends slightly on th
dm atom energy (edm) and is equal to 0.0320.04ms21 at
T<50 K ~Ref. 9!. According to the Vesman scheme, th
resonant ddm formation proceeds via the comple
@(ddm),d,2e#* , which is in an excited state. This process
characterized by a set of resonances whose positions ar
termined by the spin states of thedm atom (F53/2,1/2) and
of the ddm molecules (S53/2,1/2), as well as by the rota
tion states of the initialD2 molecule (Ki) and the complex
(Kf). The transitions having

F53/2→S51/2, Ki50→Kf51 , Ki51→Kf52
~3!

dominate at the lowest temperatures.17

Normally, theddm formation is ignored during thermal
ization, but is considered for Maxwell’s distributions of th
dm atom thermal energies. To obtain the values
lddm(T) for a given temperature, one therefore integrates
function17 lddm(edm) over the MaxwellianW(edm ;T). This
procedure was used in Ref. 18 to give the dependenc
l3/2(T) shown in Fig. 2. The Maxwell distributions forT
55 K and 20 K are shown in Fig. 7, together with the res
nance closest in energy. As can be seen from this figure,
thermal energy distribution forT55 K does not overlap this
resonance. Only the nonresonantddm formation is therefore
expected to contribute at this temperature. From Fig. 7
follows also that atT520 K dm atoms spend a small part o
their ‘‘Maxwell cycle’’ in the resonance region.

nts

FIG. 5. Time spectra of the «first detected» catalysis neutron. The deute
temperature: a—19.0 K~liquid!; b—5.5 K ~solid!. Lines correspond to the
function ~4! with an optimal parameters found from the fit.

FIG. 6. Time spectrum of the background neutron events~target is filled
with helium!.

643Bom et al.
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We conclude that the measured value oflddm should
therefore be compared with a calculated effective va
which includes:
1! a contribution during the thermalization stage, no high
than a few percent;1,2

2! integration over the Maxwell distribution. Note that th
competition between the spin-flip and scattering proces
was disregarded~see Ref. 18!;
3! only .1/4 part of theddm molecules undergoes fusion i
competition with the back decay of the complex.1

4. ANALYSIS

A set of the differential equations corresponds to
scheme of thed2d fusion cycle shown in Fig. 1. When
thermalization and thed1d fusion rates are sufficiently
high, it has an exact solution1 for the form of the neutron
time distribution:1,19

Fn~ t !5bf exp~2l f t !1bs exp~2lst !. ~4!

For the fast exponent its slopel f is determined mainly by
the spin-flip rateld and its amplitudebf is determined by the
value of l3/2. The amplitude of the slow componentbs is
close to the value ofl1/2.

The parameters of the function~4! were found from the
fit of the time distributions of the first detected neutron
These spectra were convoluted with a Gaussian resolu
function, to account for the finite time resolution~s!. The
value ofs and the time zero (t0) were optimized for each
run. The analysis showed that the time zero stability dur
the data collection was better than 1 ns. The background
to muon stops in the target walls was approximated by
exponent with the slopel f

b55ms21. Accidental neutron
events were fitted as an exponent withls

b5l0 for tn>t0 and
with a constant value fortn<t0 .

At the next stage of the analysis the absolute values
the steady stateddm-molecule formation rate were obtaine
from

lss5
ls

fbs
FNn

s

Ne
enf tG . ~5!

FIG. 7. Maxwell energy distribution ofdm atoms for T55 K and
T520 K. The closest to zero resonance in theddm formation is shown by
the dashed line.
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Here the expression in the brackets means the abso
neutron yield for the steady state of thed2d fusion cycle,
ls is the slope of the slow exponent in~4!, andbs is the
partial probability of the reaction~1!. To a good approxima-
tion ~better than 1%! bs5bnr50.53, wherebnr corresponds
to the nonresonantddm formation.

In the expression for the absolute neutron yieldNn
s is the

number of neutron events in the ‘‘slow’’ component of th
time spectrum~4!, Ne is the number of electrons indicated
Table I, f t allows for the finite time interval for detection o
a fusion neutron followed by am-decay electron, anden is
the neutron detection efficiency. The latter was calcula
using two ‘‘independent’’ Monte Carlo codes. One code20

was written specially for our experimentald2d program and
the other used the standard package GEANT21 and the low-
energy neutron cross sections therein. The results of the
codes coincide within 3–5%. To determine the efficien
loss due to the finite threshold, the calculated recoil pro
energy spectrum was reconciled with the experimental
tribution. This procedure was repeated for data of each
and the example forT519.0 K is given in Fig. 8. The spikes
in the spectrum are due to ADC differential nonlinearity.

The value oflss, as well as the slopels and the ratio
bf /bs ~4!, are found from the fit used for the numerical s
lution of the set of differential equations referred to abov
For the partial probability of the reaction~1! b r50.58 was
used for the resonantddm formation (F53/2) and bnr

50.53 was used for the nonresonant formation22 (F51/2).

TABLE II. Experimental results.

Temperature, K

The rates of theddm molecule formation
anddm atom hyperfine transition rate,ms21

l1/2 l3/2 l3/2 /l1/2 ld

5.5 0.0448~18! 2.48~13! 55.3~1.8! 31.7~1.0!
9.9 0.0403~20! 2.11~14! 52.3~2.3! 29.3~1.2!
15.1 0.0424~20! 2.27~16! 53.5~2.4! 32.5~1.5!
17.7 0.0419~18! 2.24~11! 53.4~1.7! 32.8~1.2!
19.0 0.0407~21! 2.27~14! 55.8~1.9! 30.2~1.0!
26.3 0.0389~20! 3.03~20! 77.8~2.4! 36.1~1.4!
30.5 0.0428~26! 3.20~21! 74.8~2.4! 32.0~1.1!

FIG. 8. Energy spectrum of protons recoiling from neutrons plotted
detector N1 with the target at 19.0 K~histogram!. Circles are the corre-
sponding calculations. The number of events is given in arbitrary units
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This procedure then gave the values ofl3/2, l1/2, andld .
There were a few small corrections~few percent!, e.g., for
the loss due ton2g separation.

5. RESULTS AND DISCUSSION

The experimental results are presented in Table II.
The values in brackets are the errors due only to sta

tics, the fit, and the corrections and do not include system
uncertainties fromf ~3%! and en ~8%!. Our results are
shown in Figs. 2 and 9, together with the data of other
thors. Again, our data are given without systematic errors
order to show more clearly their dependence on tempera

The data for the ‘‘second detected’’ neutrons~N12N2

and N22N1! were also analyzed. Their time distributio
relative to the ‘‘first detected’’ neutrons is shown in Fig. 1
The data are summed over all exposures with solid de
rium. The curve in this figure corresponds to exponents w
the fast and slow slopes found above in the analysis of
‘‘first’’ neutrons. The measured spectra are in satisfact
agreement with the predicted spectra.

FIG. 9. Experimental data on thedm atom spin-flip rate,ld . Square—Ref.
7; circles—present work; triangles—previous Dubna measureme6

stars—Refs. 4 and 5.
s-
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second neutrons normalized to the number of ‘‘first’’ ne
trons:

l1/2
2 50.041~3! ms21 ~statistical error only!.

This value agrees with that obtained for the ‘‘first’’ neutron
As can be seen from Fig. 2, our data forl1/2 are in

agreement with our previous measurement using liquid d
terium atT522 K and with the results of the PSI group
T523 K; the latter initially gave l1/250.0500(34)
3(22) ms21 ~Ref. 4! and thenl1/250.045(5)ms21 ~Ref.
10!. The experimental results are in excess of theoret
prediction,9 l1/2

(th);0.03ms21.
Of course, our main result is the measurements of

ddm molecule formation rate from the upperdm atom spin
state for the lowest deuterium temperatures. Together w
the pioneering result of the TRIUMF group,7 they sharply
contradict the ‘‘standard’’ theory, according to which on
the nonresonantddm formation from thedm atom spin states
can contribute at the lowest temperatures. Possible me
nisms to explain it are considered in Refs. 18, 22, and 2

According to Ref. 22, thedm atoms moving in solid
deuterium have insufficient time to fully thermalize, becau
they lose energy only in inelastic interactions with the latt
excitation. Significantddm formation therefore occurs a
higher than thermal energies. This effect can explain the
perimental data qualitatively18 but quantitative agreemen
with the experiment is achieved only for few definite valu
of the inelastic cross sections. This mechanism could be
vestigated by repeating the experiment with enhanced
tium.

Another possible explanation involves transitions w
negativedm atom resonance energy forddm formation23

with the transfer of the released energy to lattice excitati
The transitionKi51→Kf50 is appropriate for this scheme
The liquid and solid deuterium in this experiment were he
at room temperature ortho-para ratio because equilibratio
so slow. The experiment should be repeated with cataly
p→s to, among other things, check this mechanism,
cause with pure ortho-deuterium23 only transitions with posi-
tive resonance energies are possible~3!.

;

x-
e
-
-

FIG. 10. Time distribution of the second
detected neutron accumulated for all e
posures with solid deuterium. Line is th
function~4! with the exponent slopes ob
tained from the analysis of the ‘‘first de
tected neutrons.’’
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Of course, both mechanisms can explain the experimen-
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~1987!. W. H. Breunlich, M. Cargnelli, P. Kammelet al., Muon Cat.
Fusion5/6, 149 ~1987!.

op

6,

with
tal results, but, as was pointed out in Ref. 18, the data
solid and liquid deuterium are nearly identical. Perhaps
problem is more complicated and needs a more comp
consideration. Incidentally, the enhanced rate is indepen
of the structure of the solid deuterium lattice, i.e., the TR
UMF group forms fcc solid deuterium directly from the g
phase, whereas our solid deuterium has hcp structure sin
comes from the liquid.

Finally, the experimental data onld are given in Fig. 9.
Our results are in agreement with the previous meas
ments, both in the solid and liquid deuterium. At the sa
time, full set of the data forT<30 K does not show such
sharp difference from the results for gaseous deuterium
was manifested in the first measurement in liquid deuteriu

We wish to thank E. P. Krasnoperov for developing t
solid-deuterium target. We also thank M. M. Petrovsky’ a
A. P. Kustov for assistance with the tests and the runs.
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Resonance fluorescence of a two-level atom excited by a superposition of coherent

e

states, and the instability of the average atomic dipole moment
S. Ya. Kilin and V. N. Shatokhin

B. I. Stepanov Institute of Physics, Belarus Academy of Sciences, 220072 Minsk, Republic of Belarus
~Submitted 21 June 1996!
Zh. Éksp. Teor. Fiz.111, 1174–1189~April 1997!

We find the evolution of average atomic variables in the resonance fluorescence of a two-level
atom excited by a superposition of coherent states shifted in phase byp. A new effect is
predicted, the quantum instability of the average atomic dipole moment, with a strong correlation
between atom and field being the reason. We propose different ways of verifying the effect
in experiments involving high-Q optical and microwave cavities. ©1997 American Institute of
Physics.@S1063-7761~97!00304-1#
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The interest in the so-called nonclassical states of opt
fields ~squeezed fields, superposition fields, and the li
which requires using the language of quantum theory
their description!, which resurged at the end of the 1970s,
still evident today.1,2 In many respects the interest is due
the important applications that such fields have in extrem
precise measurements, optical communications, and qua
computers. The study of these applications has led to fun
mental questions, e.g., questions concerning the interac
between fields in nonclassical states and atoms and
ecules.

Resonance fluorescence, a phenomenon of QED
which the quantum nature of optical fields manifests its
most vividly, reveals many aspects of such interactions
has been intensively studied both theoretically and exp
mentally ~a review of the work done prior to 1981 can b
found in Ref. 3!. The standard model for describing res
nance fluorescence uses a two-level atom interacting wi
set of electromagnetic modes of free space acting as a r
voir for the atom. In describing the excitation of the atom
is usually assumed that one mode is initially coherent. Ho
ever, if we assume that excitation is done by nonclass
light, new features of resonance fluorescence not observe
excitation by coherent light manifest themselves. For
stance, Gardiner4 discussed the decay of a two-level ato
into a wide-band vacuum and showed that one componen
the atomic polarization decays at a rate much lower than
rate of spontaneous decay into an ordinary vacuum. C
michael et al.5 examined the problem of the spectrum
resonance fluorescence into a squeezed vacuum and di
ered a strong dependence of the width of the central pea
the fluorescence spectrum on the phase of the driving fi
Smart and Swain6,7 reported the existence, for a narrow ba
of Rabi frequencies, of unusually shaped fluorescence s
tra of a two-level atom interacting with a squeezed vacuu
They concluded that the anomalous profiles of the fluor
cence spectra are a specific feature of the interaction betw
atomic systems and nonclassical fields. The statistical p
erties of the resonance fluorescence excited by the non
sical light from a second-harmonic generator and a dege
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discussed by Lyublinskaya and Vyas.
The new results obtained by the authors of Refs. 4–8

based on the traditional approach to studies of resona
fluorescence. In this approach the interaction Hamiltonia
written in the dipole and rotating-wave approximations.
some cases a fairly full description of the atom–field int
action can be achieved by using the quantum master equa
for the density matrix averaged over the field states~the re-
duced atomic density matrix!. The effectiveness of this
method is due to the use of a wide-band reservoir spect
in deriving the equation, an approach known as the Mark
approximation.3–14 In this approximation the quantum re
gression theorem is true, which makes it possible, am
other things, to study the behavior of many-time atomic c
relation functions. In examining resonance fluorescence,
authors of Ref. 13 developed a method for deriving a ch
of coupled equations for the operators whose averages
the spectral field correlation functions of various orders.

A characteristic feature of this research in the resona
fluorescence excited by nonclassical light is the perturba
approach to studying the interaction between nonclass
light and an atom. The solution of the problem for arbitra
intensities of the nonclassical light is complex because on
forced to calculate all higher-order moments of the atom
field correlators. Note that for arbitrary light intensities th
problem has been solved only in the special case of cohe
radiation,9,10,12,14 the reason being that a coherent sta
which is an eigenstate of the annihilation operator, does
change because of one-photon absorption processes an
state of the driving field remains coherent. This is not t
case for other states of the exciting field, and the traditio
approaches require generalization.

In this paper we examine the excitation of fluorescen
by nonclassical light that is a quantum superposition of t
coherent states with identical amplitudes, but shifted in ph
~SCS!. When the amplitude is large, these nonclassical st
are of the ‘‘Schro¨dinger’s cat’’ type,2,15–22 which makes
them highly important for experimental verification of th
principles of quantum mechanics. Many methods of gene
ing SCS have been proposed: by a nonlinear wave proce15

by continuous photodetection,16 by negative feedback in a
Kerr medium,17 by four-wave mixing,18 and by nonresonan

6479$10.00 © 1997 American Institute of Physics



interactions of Rydberg atoms and a field in a microwave
19

of
ta
r
o
om
o
n
i
s
s
s
po
tu
uc

us
th
e
a
ol
nc
e

at

as
t
f

o
ric

t
f
it
u
ua
ho

n
p-

,

$2@16exp~22uau2!#%21/2~ ua&6u2a&), ~3!
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cavity.
Buzek et al.20 found that the nonclassical properties

SCS, such as squeezing and the sub-Poisson photon s
tics, emerge because of quantum interference of the cohe
states. Quantum interference not only explains the ab
properties but also changes substantially the nature of at
field interactions in resonance fluorescence. Below we sh
that for a certain threshold amplitude of the initial cohere
state the average dipole moment of an atom interacting w
an SCS becomes unstable. Moreover, the Rabi oscillation
the average dipole moment are suppressed for all value
the amplitude. To clarify the dynamics of the atom we u
the Heisenberg equation method. This method makes it
sible to interpret the emerging effect as the result of quan
interference and correlated atom–field dynamics in a m
fuller way than does the averaging method21 employed ear-
lier.

The plan of the paper is as follows. In Sec. 2 we disc
some properties of SCS. A model for the interaction with
reservoir in the Heisenberg picture is set up in Sec. 3. In S
4 we discuss the dynamics of atomic averages. There we
show that the discovered instability in the average dip
moment of the transition is due to the quantum interfere
of the probability amplitudes of the initial field state, and w
suggest a way of experimentally verifying this effect.

2. NONCLASSICAL PROPERTIES OF SUPERPOSITIONS OF
COHERENT STATES

Let us take a discrete superposition of coherent st
with identical amplitudes:

uC&5A1/2(
k51

n

eifkuaeiqk&, ~1!

whereA is the normalization constant, and the phasesfk and
qk can be arbitrary. The quantum interference in the ph
space is either constructive or destructive depending on
values of these phases.2,20 The state~1! is a special case o
the idea, put forward by Jansky and Vinogradov22, of a con-
tinuous superposition around a circumference, a superp
tion to be generated for molecular vibrations. Let us rest
our discussion to the case wheren52, f15q150,
f25f, andq25p. The associated state

ux&5$2@11exp~22uau2!cosf#%21/2~ ua&1u2a&eif)

5N21/2~ ua&1u2a&eif) ~2!

is the simplest example of an SCS. It is an eigenstate no
the photon annihilation operator, as it is in the case o
coherent state, but of the square of that operator. Notw
standing the apparent simplicity, this state exhibits vario
nonclassical properties, which emerge because of the q
tum interference between the coherent states. Most met
proposed for generating SCS deal with states of type~2!. We
see that the definition of the states contains an additio
phase factoreif, which affects the quantum statistical pro
erties of the superposition.

The casef50 corresponds to even-parity (1) coherent
states and the casef5p to odd-parity (2) coherent states
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while f5p/2 corresponds to Yurke–Stoler states

221/2~ ua&1 i u2a&). ~4!

As shown in a Refs. 2 and 20, notwithstanding that the d
ferences are only in the values of the phase factor, the n
classical properties of the above three states differ consi
ably. For example, even-parity states can contain only
even number of photons, odd-parity states an odd numbe
photons, and in Yurke–Stoler states the photon statistics
the Poisson type. Even-parity coherent states have su
Poisson photon statistics and display second-order squ
ing, while odd-parity states are characterized by sub-Pois
statistics and display no second-order squeezing. As
Yurke–Stoler states, they display second- and fourth-or
squeezing.

Superposition quantum states exhibit other properties
herent in nonclassical states of light. In particular, the int
ference of the probability amplitudes of the statesua& and
u2a& in their superposition makes the Wigner quasipro
ability function

W~b!5
1

pN
$e22ub2au21e22ub1au2

12e22ubu2cos@f14 Im~ba* !#% ~5!

of state ux& ~Ref. 2! negative in the quantum-interferenc
region. The presence of quantum interference of theux&
states manifests itself in another unexpected way in
Glauber–Sudarshan distribution functionP(b), which has
the form ~see the Appendix!

P~b!5N21H d~b2a!1d~b1a!

1
e22uau2

ubu
d~wa2wb1p/2!~e1 ifdAC~ ubu2 i uau!

1e2 ifdAC~ ubu1 i uau!!J . ~6!

The first two terms on the right-hand side coincide, to with
a normalization constant, with theP-functions of the coher-
ent statesua& and u2a&, and the two remaining terms rep
resent the interference part of theP-function and character
ize the purely quantum properties of the states. The last
terms involve the singular function

dAC~x2z!5e2z]/]xd~x!5 lim
«→0

1

Ap«
e2~x1z!2/«, ~7!

which is even more singular than Dirac’s delta-functio
Since integrating this function with a functionF(x) of a real
variablex,

E
2`

`

dxdAC~x2z!F~x!5F~z!, ~8!

amounts to analytically continuingF(x) into the complexz
plane (z in ~8! is a complex-valued quantity!, dAC(x2z) has

648S. Ya. Kilin and V. N. Shatokhin



become known as the generalized function of analytic
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with ŝz the atomic inversion operator, andp̂k
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continuation. Equation~6! shows that when a superpositio
state is averaged with theP-function,1) the interference
terms lead to the replacement of the absolute value of
complex amplitude,ubu, in the averaged expression by th
imaginary quantityi uau. Below we show that this property o
theP-function ~6!, which reflects a property of quantum in
terference, results in the instability of the average dipole m
ment of an atom excited by a superposition of coher
states.

3. A MODEL OF INTERACTION WITH A RESERVOIR.
HEISENBERG PICTURE

Let us examine a quantum system consisting of a sin
two-level atom and a set of field modes comprising a res
voir. To simplify our reasoning we assume that the field
inside a spherical cavity~the quantization volume is a sphe
of radiusR), with the atom at the center of the sphere. F
such a geometry the spectrum of the eigenfrequencies o
field modes with which the atom interacts is nea
equidistant23 with a mode separation equal tocp/R.

Initially the atom is unexcited and is in stateu1&; the
field modes, with the exception of the resonant mode, ar
the vacuum state. The resonant mode, labeledr , is excited to
the superposition stateux& ~Eq. ~2!!, which for the sake of
convenience will be denoted byua1&:

ua1&5~N1!21/2~ ua&1u2a&eif), ~9!

N152~11exp~22uau2!cosf!. ~10!

We will also need the stateua2&

ua2&5~N2!21/2~ ua&2u2a&eif), ~11!

N252~12exp~22uau2!cosf!, ~12!

which has an additional phasep in comparison toua1&. At
t50 the atom and field begin to interact. The total syst
Hamiltonian in the electric-dipole and rotating-wave a
proximations has the form

Ĥ5Ĥ0F1Ĥ0A1ĤIAF , ~13!

where

Ĥ0F5\(
k

vkâk
1âk ,

Ĥ0A5\v21ŝ1ŝ2 ,

ĤIAF5\(
k

~ p̂k
~1 !âk

11 p̂k
~2 !âk!

are, respectively the Hamiltonian operators of the free fie
the free atom, and the atom–field interaction. Hereâk and
âk

1 are the Bose operators of photon annihilation and c
ation in modek, ŝ1 and ŝ2 are the Pauli spin operators
which obey the commutation relations

$ŝ1 ,ŝ2%51, @ŝ1 ,ŝ2#5ŝz ,
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p̂k 5gk* ŝ1 are coupling constants. In accordance with t
above conditions, att50 the density operator for the atom
field system can be written as

r̂~0!5 r̂A~0!r̂F~0![uc1&^c1u,
~14!

uc1&5u1&Aua1&)
kÞr

u0&k[u1&ua1&u$0%&.

The Heisenberg equations for the system’s operators are

ȧ̂k52
i

\
@ âk ,Ĥ#52 ivkâk2 igkŝ2 , ~15.1!

ṡ̂252 iv21ŝ21 i(
k
gk* âkŝz , ~15.2!

ṡ̂z52i(
k

~ p̂k
~1 !âk

12 p̂k
~2 !âk!. ~15.3!

Plugging the solution of Eq.~15.1!,

âk~ t !5âk~0!e2 ivkt2 igkE
0

t

dt exp~2 ivk~ t2t!!ŝ2~t!

~16!

into Eqs.~15.2! and~15.3!, we arrive at the following system
of equations from which the Heisenberg field operat
âk(t) have been eliminated:

ṡ̂252 iv21ŝ21 i( gk* âk~0!exp~2 ivkt !ŝz

1E
0

t

dt(
k

ugku2exp~2 ivk~ t2t!!ŝ2~t!ŝz~ t !,

~17.1!

ṡ̂z52i(
k

~ p̂k
~1 !ak

1~0!exp~ ivkt !2 p̂k
~2 !âk~0!

3exp~2 ivkt !!22E
0

t

dt(
k

ugku2exp~2 ivk~ t2t!!

3$ŝ1~t!ŝ2~ t !1ŝ2~t!ŝ1~ t !%. ~17.2!

The standard approach to solving the above system of e
tions is to go to the free-space limitR→`. In the one-
dimensional case this amounts to the following replacem
~see, e.g., Ref. 14!:

(
k

ugku2•••'E
0

`

dvug~v!u2r~v!•••, ~18!

wherer(v) is the mode density, equal toR/2pc in the case
of the equidistant spectrum of a spherical cavity. Evaluat
of the integrals in the Markov approximation, which amoun
to replacing the correlation function of atomic perturbation

K~ t2t!5(
k

ugku2exp~ i t ~v212vk!~ t2t!!,

by the delta functionGd(t2t), reduces the system of equa
tions ~17! to
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2 2 (
k

k z k 21 k

~19.1!

ṡ̂z52i(
k

@ p̂k
~1 !~ t !âk

1~0!exp~2 i ~v212vk!t !#

22i(
k

@ p̂k
~2 !~ t !âk~0!exp~ i ~v212vk!t !#22G,

~19.2!

where G5pug(v21)u2r(v21) is the rate of spontaneou
atomic decay, which coincides with the Einstein coefficie
A/2. Using the commutation relations12

@ âk~0!, q̂~ t !#5 igkF E
0

t

dt exp~ ivkt!ŝ2~t!,q̂~ t !G ,
~20!

which follow from Eq. ~16!, and the commutativity of the
simultaneous field and atom operators,â(t)andq̂(t), we can
perform normal ordering of the field operators in Eqs.~19!.
The result is the following final system of equations for t
atomic operators:

ṡ̂252Gŝ21 i ŝzL̂2~ t !, ~21.1!

ṡ̂z522G~11ŝz!12i @ L̂1~ t !ŝ22ŝ1L̂2~ t !#, ~21.2!

where

L̂2~ t !5@ L̂1~ t !#15(
k
gk* âk~0!exp~ i ~v212vk!t !

are free-field operators, which act as operators of multipli
tive noise in the Heisenberg equations~21!.

The above system of operator equations cannot
solved exactly, but in some cases the averaged equation
be integrated. Obviously, this is determined by the init
state of the reservoir. In this paper we consider only one
these possibilities: the superposition of two coherent sta
~2! or ~9!, as the initial state for the excited mode. But befo
we solve Eqs.~21!, let us discuss the limits of applicabilit
of the Markov approximation. As noted in the Introductio
this approximation leads to equivalent results in two phy
cally distinct situations: the problem with a source of clas
cal field, and the problem where the quantized field mod
initially prepared as a coherent state with a finite amplitu
equal to the amplitude of the classical field. Since the pr
ence of a source leads to temporal divergences in the ave
numbers of photons in the reservoir modes,14 there emerges a
contradiction between the final results~an infinite energy!
and the initial conditions. To resolve this contradiction w
assume that the coherent mode is heavily populated, so
in the quantum system interacting with the reservoir ther
time for a steady state to set in before the coherent m
becomes depleted. In this sense the Markov approximatio
applicable for all times. If, however, the problem is a
proached more rigorously, then for the time limit of the a
plicability of the Markov approximation one must take th
time in the course of which the total calculated ener
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E05\v0uau . This condition can be shown to be equivale
to the following inequality:

t<2pr~v0!, ~22!

wherer(v0) is the mode density at the frequencyv0. For
modes interacting with an atom at the center of a spher
cavity the density is 1/D, and the right-hand side of~22! is
the cavity’s ‘‘revival’’ time ~see, e.g., Ref. 24! TR52R/c,
coinciding with the crossing time of the cavity.

4. INSTABILITY IN ATOMIC AVERAGES CAUSED BY
QUANTUM INTERFERENCE

The system of quantum stochastic equations~21! has
been described~see, e.g., Ref. 12! for the coherent state of a
initially excited mode. The averaged equations in this c
form a closed system of equations for three atomic avera

^ŝ2&, ^ŝ1&, and^ŝz&. In the initial superposition state~9!,
there can be no reduction to only three atomic average
the averaging of Eqs.~21! over the initial state, sinceua1& is
not an eigenstate of the annihilation operator. Indeed, le
set up an equation for the average matrix element

^ŝ2~ t !&5TrA1F~ ŝ2~ t !r̂A~0!r̂F~0!!

5^c1uŝ2~ t !uc1&.

To this end we average the left- and right-hand sides of
operator equation~21.1! over the initial density operator. Be
cause of the inhomogeneous termi ŝzL̂2(t) we have

K c1U i ŝz~ t !(
k
gk* âk~0!exp~ i ~v212vk!t !Uc1L

5 igr* ^a1u^1u^$0%uŝz~ t !u$0%&u1&âr~0!ua1&

5 ia1g* ^a1u^1u^$0%uŝz~ t !u$0%&u1&ua2&

5 ia1g* ^c1uŝzuc2&,

where the states

uc1&5u1&ua1&u$0%& and uc2&5u1&ua2&u$0%& ~23!

are transformed into each other by the resonant-field ann
lation operatorâ:

âua1&5a1ua2&, âua2&5a2ua1&, ~24!

where a15aAN2 /N1, a25aAN1 /N2, and the states
ua6& and the normalization constantsN6 are specified by
Eqs.~9!–~12!. Thus, new variables related to the appeara
of the new photon stateua2& emerge. By setting up equa
tions for these variables we arrive at two independent s
tems of equations with six equations in each:

^c1u ṡ̂2uc1&52G^c1uŝ2uc1&1 ia1g* ^c1uŝzuc2&,
~25.1!

^c1u ṡ̂zuc2&522G~^c1uc2&1^c1uŝzuc2&!

12i ~a1* g^c2uŝ2uc2&

2a2g* ^c1uŝ1uc1&!, ~25.2!
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^c2u ṡ̂2uc2&52G^c2uŝ2uc2&1 ia2g* ^c2uŝzuc1&,

th
to
e

to
n
r-
e
e

io

t

the initial field state is an eigenstate of the square of the
ini-
ions
ld

em
he
d a

tates.
ock

ce

ents

ent,

the
y,

age
f

~25.3!

^c1u ṡ̂1uc1&5~^c1uŝ2uc1&!* , ~25.4!

^c2u ṡ̂zuc1&5~^c1uŝzuc2&!* , ~25.5!

^c2u ṡ̂1uc2&5~^c2uŝ2uc2&!* , ~25.6!

and

^c1u ṡ̂zuc1&522G~11^c1uŝzuc1&!

12i ~a1* g^c2uŝ2uc1&

2a1g* ^c1uŝ1uc2&!, ~26.1!

^c2u ṡ̂2uc1&52G^c2uŝ2uc1&1 ia1g* ^c2uŝzuc2&,
~26.2!

^c2u ṡ̂zuc2&522G~11^c2uŝzuc2&!

12i ~a2* g^c1uŝ2uc2&

2a2g* ^c2uŝ1uc1&!, ~26.3!

^c1u ṡ̂2uc2&52G^c1uŝ2uc2&1 ia2g* ^c1uŝzuc1&,
~26.4!

^c1u ṡ̂1uc2&5~^c2uŝ2uc1&!* , ~26.5!

^c2u ṡ̂1uc1&5~^c1uŝ2uc2&!* . ~26.6!

The structure of these systems of equations is such
the average value of the dipole moment opera

^ŝ2(t)&[^c1uŝ2(t)uc1&, is related not to the averag
population differencêŝz(t)&[^c1uŝz(t)uc1& but to the in-
terference matrix element^c1uŝz(t)uc2&, equal to the cor-
relation between the atomic inversion operatorŝz(t) at time
t and the field operatorâ(0) at t50,

a1^c1uŝz~ t !uc2&[^ŝz~ t !â~0!&

[^c1uŝz~ t !â~0!uc1&,

and to the correlation between the number of photons
t50 and the dipole moment operator at timet,

^â1~0!ŝ2~0!â~0!&5ua1u2^c2uŝ2~ t !uc2&.

In a similar way, the average value of the inversion opera
is related to the interference matrix eleme

^c1uŝ2(t)uc2&, which determines that the atom–field co
relation ^ŝ2(t)â(0)&, and to the correlation between th
number of photons att50 and the atomic inversion at tim
t:

^â1~0!ŝz~ t !â~0!&5ua1u2^c2uŝz~ t !uc2&.

Obviously, this structure of the equations, i.e., the format
of a closed system for the atomiĉÂ(t)& and atom–field

^B̂(t)â(0)& and ^â1(0)B̂(t)â(0)&, stems from the fact tha
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annihilation operator. In the general case of an arbitrary
tial state of a selected field mode, the averaged equat
~21! form an infinite chain of equations for the atom–fie
normally ordered correlation functionŝ (â1(0))mB(t)
3(â(0))n&. Note that this chain reduces to a closed syst
of a finite number of equations for two classes of states. T
first class consists of SCS discretely distributed aroun
circumference,

ânuj&5anuj&, n50,1, . . . ,

and, as a degerenate case of SCS, ordinary coherent s
The second class consists of finite superpositions of F
states,uz&5(m50

n cmum&.
Solving the system of equations~25! and~26! can easily

be reduced to evaluating integrals if we employ the Lapla
transform. Under the given initial conditions,

^c1uŝ2~0!uc1&5^c1uŝ2~0!uc2&5^c2uŝ2~0!uc1&

5^c2uŝ2~0!uc2&50, ~27!

^c1uŝz~0!uc1&521, ^c1uŝz~0!uc2&52^c1uc2&,

the Laplace transforms of the solutions are

^c6us̃z~p!uc6&52
1

2p F11
Q1~p!

2Q2~p! S 12
N7

N6
D

1
Q2~p!

2Q1~p! S 11
N7

N6
D G , ~28!

^c6us̃2~p!uc6&56ag*
112G/p

N6Q2~p!

3exp~22uau2!sin f, ~29!

where

Q6~p!5~p1G!~p12G!64uagu2 ~30!

are polynomials that determine the characteristic expon
in the time dependence of the atomic averages. As Eq.~29!
implies, the time dependence of the average dipole mom

^ŝ2~ t !&[^c1uŝ2~ t !uc1&5ag* ~N1!21exp~22uau2!

3sin f ~s1e
p1t1s2e

p2t1s0! ~31!

is determined by the roots of the polynomialQ2(p),

p1,252
3G

2
6A4uagu21

G2

4
. ~32!

These differ from the roots of the polynomialQ1(p), which
describe Rabi oscillations for the coherent initial state, in
sign in front of the absolute value of the Rabi frequenc
uagu2→2uagu2. The coefficientssi in Eq. ~31! are

s1,25
112G/p1,2
p1,2
2 2p1p2

, s05
G

G222uagu2
. ~33!

The obtained solution for the time dependence of the aver
dipole moment̂ ŝ2(t)& differs drastically from the case o
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an initially coherent excited mode. Since the rootsp1 and
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p2 are real quantities, under the chosen initial conditio
there is not a single value of the field amplitude for whi
the dipole moment oscillates. More than that, f
uagu2.G2/2 the rootp1 is positive, with the result that the
average dipole moment is unstable.

The effect is the strongest atf5p/2, while atf50 or
f5p, i.e., for even- or odd-parity coherent states, the av
age dipole moment is not excited at all. The reason is tha
f5pn the SCS are orthogonal and the average field am
tude at t50, or ^â(0)&, is zero. In view of this and the
chosen initial conditions, all the initial values of the averag
in the system of equations~25! vanish, and so do the inho
mogeneous terms in this system. Hence atf5pn the solu-
tion of the system~25! is zero. Atf Þ pn, in ~25! there
appear a nonzero average amplitude of the initial field s
and nonzero inhomogeneous terms^c1uc2& caused by the
quantum interference of the coherent statesua& and u2a&,
which form the initial superposition state of the field. A
f5pn the contributions of the interference terms to the a
erage field amplitude reduce each other~destructive interfer-
ence!, while atf5p/2 they amplify each other~constructive
interference!. In the process of interacting with the atom, t
initial field quantum interference manifests itself in the tim
dependence of the average atomic dipole moment.

The emergence of interference terms is characteristi
averaging over states that have no classical analogs.
classical feature of a coherent state consists, in particula
the fact that it does not change when a finite number
photons in this state are annihilated, sinceâkua&5akua&. An
SCS exhibits both purely quantum properties and proper
that make it resemble a coherent state. Indeed, annihila
of a single photon transforms the SCS into a new state
which the average field amplitude is opposite, to within
small correction, in sign to the average field strength in
initial state, i.e., in the process of the interaction with t
atom the phase of the field spontaneously changes byp. On
the other hand, the coherent stateua& and the statesua6&
satisfy the equationâ2uj&5a2uj&. Together these two fea
tures of SCS determine the dynamics of atomic average

All we have said above about the features of SCS
vividly illustrated by the type of the Glauber quasiprobabil
function of the stateua1& ~see Eq.~6!!. In comparison to
other quasiprobability functions, knowing theP-function of
the initial field state,P(b,0), is especially important in
studying the dynamics of the interaction of the atom and
quantized field: with allowance for the normally ordered n
ture of the Heisenberg equations~21!, the solution of these
equations for an arbitrary initial state of the field mode c
be obtained by averaging, with theP-function of the initial
field state,P(b,0), the solution obtained for the initial co
herent stateub& ~Ref. 21!:

^ŝm~ t !&5E d2bP~b,0!^bu ŝ̄m~ t !ub&, m56,z, ~34!

where

ŝ̄m~ t !5TrA~rA~0!^$0%uŝm~ t !u$0%&!.
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an initial coherent field state~see, e.g., Ref. 12! we can find
the evolution of atomic averages for all initial values of t
field. For an atom that initially was in the ground state,

^bu ŝ̄2~ t !ub&5bg* ~ s̃1e
p̃1t1 s̃2e

p̃2t1 s̃0!, ~35!

where

p̃1,252
3G

2
6 iA4ubgu22

G2

4
,

s̃1,25
112G/ p̃1,2

p̃ 1,2
2 2 p̃1p̃2

, s̃05
G

G212ubgu2
.

Upon averaging~35! with the P-function ~6! we arrive at
precisely expression~31!. Here we see that dynamic instabi
ity in the dipole moment emerges because of the interfere
part of theP-function ~6!, whose action on an analytic func
tion of the complex variableb5ubueiwb reduces, as noted
earlier, to the substitutions

ubu→6 i uau, wb→wa1p/2,

i.e., the real absolute value of the field amplitude becom
pure imaginary and the phase increases by 90°.

The above ideas, which demonstrate the link betwe
the instability of the dipole moment of the atom and t
quantum interference in the initial field state, can be a
mented by an interpretation involving the quantum dynam
of the field and atomic states. Let us examine the evolut
of the reduced density operatorp̂(t) of the system consisting
of the atom and the resonant mode, the operator being a
aged over the vacuum states of the other reservoir mo
For the initial state of the resonant mode we take the coh
ent stateub&. To make the situation more transparent w
ignore the atom’s spontaneous decay (G50). Now it can
easily be shown that in this casep̂(t) can be represented b
the following dyadic product of pure states:

p̂~ t !5uC~ t !&^C~ t !u, ~36!

where

uC~ t !&5@cos~ ubg* ut !u1&1 i sin~ ubg* ut !u2&] ub&

[uu~b,t !&ub&. ~37!

Obviously, the density operator~36! can be represented b
the product of atom and field density operators, with the s
of the field remaining coherent with the passage of time.
other words, the states of the atom and field are independ

Let us now assume that the SCS~9! is the initial state of
the resonant mode. We denote the desired density ope
by p̂* (t). This operator can be obtained by integrating t
expression~36! with the Glauber–Sudarshan function~6! ~cf.
~34!!. After integration we obtain
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p̂* ~ t !5A~ ua&uu~a,t !&^u~a,t !u^au1u2a&uu~a,t !&
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3^u~a,t !u^2au1u2a&uũ1~a,t !&^ũ2~a,t !u

3^aueif1ua&uũ2~a,t !&^ũ1~a,t !u^2aue2 if!,

~38!

where

uũ6~a,t !&5cosh~ uag* ut !u1&6sinh~ uag* ut !u2&.

In our case, just as for a coherent state, the field state
not vary in time, since

TrA~p̂* ~ t !!5ua1&^a1u.

But now the density operator cannot be factorized: the st
of the atom and the field become correlated. Indeed, on
basis of~38! we can easily show that the field state

p̂F~ t !u u1&^1u5A~cos2~ uag* ut !~ ua&^au1u2a&^2au!!

1cosh2~ uag* ut !~ u2a&^aueif1ua&

3^2aue2 if!, ~39!

corresponds to the atom in the ground state, and the sta

p̂F~ t !u u2&^2u5A~sin2~ uag* ut !~ ua&^au1u2a&^2au!!

2sinh2~ uag* ut !~ u2a&^aueif1ua&

3^2aue2 if!, ~40!

to the atom in the excited state. Thus, this approximat
clearly demonstrates that in the interaction of the atom w
a superposition field the initially independent states of
atom and the field become ‘‘entangled.’’ Such entanglem
also occurs in the interaction of a two-level atom and a fi
in a cavity ~the Jaynes–Cummings model!. Studies of the
time evolution of the Wigner function in the ground an
excited atomic states has revealed the existence of st
correlation between field and atom in such a quantum s
tem. The phases of the characteristic interference structu
the Wigner functions of the ground and excited states
opposite, i.e., in the process of evolution the field follows
state of the atom, with the atom in the ground state co
sponding to the field stateua1&, and the atom in the excite
state to the field stateua2&. The emerging positive quantum
feedback leads to instability in the average dipole mome

The exponential growth of the average dipole mom
can be observed in experiments that study the time de
dence of the coherent component of scattered light, which
is known ~see, e.g., Ref. 9!, is proportional to the square o
the absolute value of the matrix element of the average
pole moment. However, the presence of the fac
exp(22uau2), which ‘‘destroys’’ the interference part, and th
time limit on the applicability of the model make the obse
vation of the effect in resonance fluorescence problema
For instance, on the basis of~35! we can easily estimate th
time t it takes the matrix element of the average dipole m
ment to assume the measured values. This time proves
longer thanTR but shorter than 2TR , which means it exceed
the time limit on the applicability of the results obtained
the present work. One could attempt to balance the expo
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would require studying in detail the problem of collectiv
scattering with allowance for interatomic correlations i
duced by the field and for the geometric factor. One way
avoiding these difficulties in observing the effect in fre
space is to use a continuous source of superposition lig2)

~which has yet to be developed!, similar to a laser. The sec
ond way amounts to the following. At the initial stage
intracavity interactions, when the response of the emit
field and the attenuation of the field in the cavity are fai
weak, the dynamics of the atom is similar to the dynamics
resonance fluorescence in free space. Hence the pred
effect of quantum instability can also be observed for
single atom interacting with a resonant mode prepared
SCS, e.g., by the method suggested by Bruneet al.19 The
existing experimental methods make it possibly to verify t
effect in both the microwave range25,26 and the optical
range.27 In microwave cavities the following values of th
parameters have been attained:25,26 the atom–field coupling
constant g52p317 kHz, the cavity attenuation ratek
5 2p 3 6.7 kHz, and the spontaneous decay rateG52p35
kHz. At such values of the values of the parameters, at
SCS amplitudea53, and for an interaction time that obey
the relationshipgtint52p30.3, the dipole moment exponen
tially increases to 0.2631026, instead of the full period of
Rabi oscillations as is the case with a coherent initial state
a field of the same amplitude. In an optical cavity,27 where
the values of the respective parameters areg52p37.2 MHz,
k52p30.7 MHz, G52p32.5 MHz, a53, and
gtint52p30.3, the dipole moment exponentially increas
to 1.231024, instead of the full period of Rabi oscillations

5. CONCLUSION

We have studied the interaction of a single two-lev
atom with a reservoir that has an equidistant spectrum wh
resonant mode initially is excited to a superposition coher
mode, while the other modes are in a vacuum state. We h
established the evolution of the averages of the atomic v
ables by the method of Heisenberg equations and by
method of averaging the solutions found for a coherent ini
state with the Glauber quasiprobability function of the sup
position initial state. The dynamics of the atom being exci
by a superposition of two coherent fields differs significan
from the case of excitation by a coherent field. The diffe
ences are due to the quantum interference of the amplitu
of the probability of finding the field in statesua& and
u2a&, with the evolution of the average dipole moment b
ing determined entirely by this quantity~mathematically this
means that the GlauberP-functional has the appropriate in
terference terms, which determine the evolution of the dip
moment!. The nature of the quantum interference depends
the phase shiftf between the coherent states. When t
phase shift is zero orp, the average dipole moment is no
excited, since the contributions of the interference terms
tinguish each other, and whenf5p/2, the average dipole
moment is at its maximum because of mutual amplificat
of the interference contributions. The main result of interf
ence here is that for Rabi frequencies that obey the inequ
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uagu.G/A2 the average dipole moment becomes unstable.
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J ~z!5
1 E2p

dt exp~ i ~kt2z sin t !!, ~A6!

di-

-
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ese

the
The physical reason for the quantum instability is that
correlation between atom and field in the interaction
strong. This results in the onset of positive feedback in
system.

To observe the effect in experiments we have propo
using a microwave or optical cavity in which field states
the form of a superposition of coherent fields are genera
using well-known techniques. The average dipole momen
an atom placed in such a cavity must exponentially grow
the course of the interaction time, instead of the full per
of Rabi oscillations, as is the case with a coherent ini
state.
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APPENDIX

The Glauber functionP(b) of an arbitrary field state is
defined as the two-dimensional Fourier transform of the n
mally ordered characteristic functio
xN(l)5Tr( r̂ exp(lâ1)exp(2l* â)) ~Ref. 1!:

P~b!5
1

p2E d2lxN~l!exp~l*b2lb* !. ~A1!

If the field mode is in the pure stateux& defined by Eq.~2!,
the characteristic function consists of four terms, two
which coincide, to within a normalization constant, with t
characteristic functions of the coherent statesua& and
u2a&, while the other two correspond to the interferen
terms:

xN
coh~l!5

1

N
@exp~la*2l*a!1exp~2la*1l*a!#,

~A2!

xN
int~l!5

1

N
@exp~2la*2l*a22uau22 if!

1exp~la*1l*a22uau21 if!#. ~A3!

The total quasiprobability function is

P~b!5Pcoh~b!1Pint~b!. ~A4!

The Fourier transform ofxN
coh(l) yields the coherent part o

the quasiprobability and consists of two delta functions w
singularities at the pointsb5a andb52a:

Pcoh~b!5
1

p2E d2lxN
coh~l!exp~l*b2lb* !

5N1
21~d~b2a!1d~b1a!!. ~A5!

To calculate the interference part of theP-function we use
the integral representation of integer-order Bes
functions,28
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k 2p 0

and the expression for the generating function of the mo
fied Bessel functions,

exp~z cos t !5 (
k52`

`

I k~z!exp~ ikt !. ~A7!

Combining~A6! and~A7!, we arrive at the following expres
sion for the Fourier transformPint(b) of the function
xN
int(l):

Pint~b!5
2e22uau2

N1p (
k52`

`

exp~ ik~wa2wb!!

3E
0

`

uludulu~ I k~2uluuau!Jk~2uluubu!

3exp~ if!1I k~22uluuau!Jk~2uluubu!

3exp~2 if!!. ~A8!

Using the identity that relates Bessel functions of real a
imaginary arguments and is obtained by expanding th
functions in power series,

expS 6 iy
]

]xD Jk~x!U
x50

5~6 i !kI k~y!, ~A9!

and a representation of the delta function derived from
Fourier–Bessel formula,1

d~x2y!5E
0

`

sxJk~sx!Jk~sy!ds, ~A10!

we arrive at the following formula forPint(b):

Pint~b!

5
exp~22uau2!

Np (
k52`

`

i kexp~ ik~wa2wb!!

3FexpS if2 i uau
]

]xD d~ ubu2x!

ubu

1expS 2 if1 i uau
]

]xD d~ ubu2x!

ubu GU
x50

5
exp~22uau2!

N
dS wa2wb1

p

2 D FexpS if2 i uau
]

]xD
1expS 2 if1 i uau

]

]xD Gd~ ubu2x!

ubu U
x50

5
exp~22uau2!

Nubu
dS wa2wb1

p

2 D
3~exp~ if!dAC~ ubu2 i uau!

1exp~2 if!dAC~ ubu1 i uau!!. ~A11!
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1!
To avoid misunderstanding we note that in view of the peculiar action of
the analytic continuation function, all operations of complex conjugation in
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the averaged function must be performed prior to integration rather
after integration.

2!The existing lasing modes make it possible, at best, to obtain pu
sources~see, e.g., Ref. 17! of macroscopic quantum superpositions of c
herent states.
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Dirac particle with an anomalous magnetic moment in a circularly polarized wave and in

constant longitudinal magnetic and electric fields
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The wave function of an uncharged Dirac particle with an anomalous magnetic moment is
calculated for the case where a circularly polarized wave propagating along constant magnetic and
electric fields is present. ©1997 American Institute of Physics.@S1063-7761~97!00404-6#

The wave function of a Dirac particle in an electromag-
2 ivh

1 ]

th
pa
t
a
lo
is

ith

in
a

.

te
th
g

g e ~c 2 ic !1S 2g 1 Dc
netic wave and a constant magnetic field directed along
wave was determined in Ref. 1 for the case where the
ticle has a charge but no anomalous magnetic moment. In
present paper the wave function is determined for the c
where the Dirac particle has no charge but has an anoma
magnetic moment. A constant longitudinal electric field
also present.

The wave function of an uncharged Dirac particle w
anomalous magnetic momentm is determined by the follow-
ing modified Dirac equation:2

~gLk̂i1k0!c5
im

2\c
Fi jg i jc,

~1!

k̂i5
]

]xi
, k05

m0c

\
, Fi j5

]F j

]xi
2

]F i

]xj
.

Herem0 is the particle’s mass,g i are the Dirac matrices,2,3

and theF i are the components of the field 4-vector, which
a right-handed circularly polarized wave and longitudin
magnetic and electric fieldsH andE are given by

Fx5F sin vh2
1

2
Hy, Fy5F cosvh1

1

2
Hx,

~2!
Fz50, F t5 iEz,

wherevF is the field strength of the wave,vc/2p is the
wave’s frequency, andh5ct1z. We seek a solution of Eq
~1! based on the divisor

G5
1

4
~11 ig12!~11g4! ~3!

in the form of the sum

c5exp~ ik0ct!~c11c2g11c3g31c4g31!G. ~4!

The componentsc i of this sum depend only onh, and in
a rotating system of coordinates in which one axis is direc
along the electric field, of the wave and the other along
magnetic field they can be found by solving the followin
system of equations:
e
r-
he
se
us

l

d
e

F 2 4 E k0 ]h 3

1S 22gH2
i

k0

]

]h Dc150,

2gFe
ivh~c11 ic3!1S gE1

1

k0

]

]h Dc4

1S gH1
i

k0

]

]h Dc250,
~5!

gFe
2 ivh~c41 ic2!1S gE1

1

k0

]

]h Dc1

1S 2gH1
i

k0

]

]h Dc350,

2gFe
ivh~c32 ic1!1S 2gE1

1

k0

]

]h Dc2

1S 21gH2
i

k0

]

]h Dc450,

where gF , gE , and gH are the ratios ofmvF, mE, and
mH to m0c

2, the particle8s self-energy. The following func-
tions comprise the solution of this system of equations:

c15 i ~a1
11a1

2!exp @ i ~l2v/2!h#,

c25 i ~a2
11a2

2!exp @ i ~l1v/2!h#,
~6!

c35~a1
12a1

2!exp @ i ~l2v/2!h#,

c45~a2
12a2

2!exp @ i ~l1v/2!h#.

The constantsa1
6 anda2

6 and the eigenvaluesl are given by
a1
15 A4 @A11@gF /~gv2gH!#261#/@A11@gF /~gv2gH!#271# ,

a2
257A4 @A11@gF /~gv2gH!#271#/@A11@gF /~gv2gH!#261# , ~7!
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Hence in ordinary magnetic fields, for which
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5
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2
~gH

2 1gE
2 !6AgF

2 1~gv2gH!2,

where gv is the ratio of the photon energy\vc to twice
particle self-energy. The components of the veloc
v/c5 i ^c* ugauc&/^c* ug tuc& are

ve
c

56
1

2

gE
gv2gH

gF

16gH1D
,

vh
c

57
1

2

gH
gv2gH

gF

16gH1D
, ~8!

vz
c

5
A11@gF /~gv2gH!#2

16gH1D
21,

the components of the spini ^c* ugabuc&/^c* ug tuc& are

se56
gHgE
gv2gH

gF

16gH1D
,

sh56
12~1/2!~gH

2 2gE
2 !

gv2gH

gF

16gH1D
, ~9!

sz5
611gHA11@gF /~gv2gH!#2

16gH1D
,

and the componentsda5^c* ugatuc&/^c* ug tuc& are

de56
1

2

gH
2 2gE

2

gv2gH

gF

16gH1D
,

dh56
gHgE
gv2gH

gF

16gH1D
5se , ~10!

dz5
gHA11@gF /~gv2gH!#26~1/2!~gH

2 1gE
2 !

16gH1D
,

whereD5(11~1/2!gH
2 1~1/2!gE

2)A11@gF /(gv2gH)#
221,

and the labelse and h indicate that the respective comp
nents are directed along the electric and magnetic field
the wave. The electric polarization is equal to the elec
dipole momentmd, and the magnetic polarization to th
magnetic dipole momentms. When the wave’s frequencyn
tends to the resonant frequencyn052mH/h, the electric po-
larization of the state tends~according to~10!! to

Pe56
m3~H22E2!

2~m0c
2!2

, Ph56
m3HE

~m0c
2!2

, Pz5
m2H

m0c
, ~11!

and the magnetic polarization tends~according to~9!! to

Me56
m3HE

~m0c
2!2

, Mz5
m2H

m0c
2 ,

~12!

Mh56mF12
1

2

m2~H22E2!

~m0c
2!2 G .

The smaller the value ofun02nu compared toumFv/hu ~the
extent of broadening of the resonance by the wave’s fie!,
the more accurate the description of the electric and m
netic polarizations of the state near resonance by Eqs.~11!
and ~12!.
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in
c

g-

umH/m0c u andumE/m0c u are sure to be less than unity, th
anomalous magnetic moments of uncharged Dirac parti
~e.g., neutrons! pointing in the same direction as the consta
magnetic field are reoriented by a resonant circularly po
ized wave in the direction of the magnetic field of the wav
while those pointing in the opposite direction are reorien
in the opposite direction, provided that the broadening of
resonance by the wave’s field is much greater than the bro
ening caused by the thermal motion of the particles and
nonuniformity of the constant magnetic field. In the gene
case, the transverse electric polarizabilityae and the trans-
verse magnetic polarizabilityah , equal to the ratio of the
electric and magnetic transverse polarizations to the wa
field strength, are given by

ae56
m2

h~n2n0!

~gH2 igE!2

16gH1D
,

~13!

ah56
m2

h~n2n0!

22~gH2 igE!2

16gH1D
.

Here the real and imaginary parts ofae determine the com-
ponents of the electric polarizability along the electric fie
in the wave and perpendicular to that field, respectively, a
the real and imaginary parts ofah determine the component
of the magnetic polarizability along the magnetic field in t
wave and perpendicular to that field, respectively. T
imaginary parts ofae and ah are equal in magnitude bu
have opposite signs. Hence the energy of a state in the
of the wave does not change, and the refractive index o
medium consisting of uncharged Dirac particles with anom
lous magnetic moments is a real quantity. If the medium
tenuous, its refractive index is given by

n5112pN~ae1ah!516
2m2N

\~n2n0!

1

16gH1D
,

~14!

whereN is the number of particles per unit volume. In th
limit of small gH andgE , Eq. ~14! yields a refractive index
equal to that of a medium consisting of classical partic
with magnetic momentm and mechanical angular momen
tum \/2.

1P. J. Redmond, Math. Phys.6, 1163~1965!.
2H. A. Bethe and E. E. Salpeter,Quantum Mechanics of One- and Two
Electron Systems, Springer, Berlin~1958!.

3A. Sommerfeld,Wave Mechanics, 6th ed., Methuen, London~1944!.

Translated by Eugene Yankovsky
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Emergence of a stabilization regime in quantum systems subject to a strong laser field

to
and the Kramers–Henneberger approximation
E. A. Volkova, A. M. Popov, O. V. Smirnova, and O. V. Tikhonova

D. V. Skobel’tsin Scientific Research Institute for Nuclear Physics, M. V. Lomonosov State University at
Moscow, 119899 Moscow, Russia
~Submitted 29 July 1996!
Zh. Éksp. Teor. Fiz.111, 1194–1206~April 1997!

We use the Kramers–Henneberger approximation to investigate the phenomenon of stabilization
of quantum systems with short-range potentials in a strong electromagnetic field. We
identify the physical limits imposed on our investigation by the use of this approximation, and
the ranges of parameter values of the system and external field that lead to stabilization.
We analyze the dependence of the stabilization threshold on the frequency of the laser light. The
conclusions obtained from our analytic investigation are confirmed by numerical calculations.
© 1997 American Institute of Physics.@S1063-7761~97!00504-0#

1. INTRODUCTION the inapplicability of perturbation theory. By converting
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By studying the effect of intense laser light on the d
namics of quantum systems, we can observe a numbe
new properties associated specifically with strong fiel
Among these are above-threshold ionization and the p
nomenon of stabilization of atoms and molecules in a str
field.1–3 By stabilization we mean a decrease in the proba
ity of ionization of the systemWi as the intensityP of the
incident laser light increases.1–4 This can be explained quali
tatively by the fact that for large values of the electroma
netic field intensity the oscillation amplitude of an electr
driven by this field significantly exceeds the characteris
size of the original atomic system. Therefore, the elect
may be treated as practically free, in which case absorp
of energy from the field is impossible~as is emission!, and
hence the ionization probability decreases.5,6 Figure 1 illus-
trates the paradox inherent in the concept of stabilization
is the weak, nearly-free-electronlike, coupling between
atomic subsystem and the laser field at the maximum of
laser pulse that in the final analysis leads to the syste
resistance to ionization. One manifestation of this is a s
nificant recovery of the population of the original atom
state towards the end of the laser pulse. The data show
Fig. 2 are an example of stabilization of the system near
maximum of the laser pulse. In terms of the electron den
at the maximum of the laser pulse~as opposed to the leadin
edge!, the ionization is manifested in the detachment o
packet of the electron densityuc(x)u2 which ‘‘leaks to infin-
ity.’’ Figure 2a shows that there is no ‘‘breakaway’’ pack
in the distributionuc(x)u2 at the maximum of the laser puls
~as opposed to the leading edge!. Two symmetric packets
appear at a considerable distance from the central dich
mous maximum because of ionization at the leading edg
the pulse. The behavior ofuc(x)u2 at the end of the lase
pulse ~Fig. 2b! indicates a second time interval in whic
ionization occurs, brought about by the trailing edge of
pulse.

It is noteworthy that analytic investigation of the dynam
ics of the ‘‘atom1field’’ system using a basis of initia
atomic states is hindered in the case of strong fields du
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the Kramers system,we can use a basis of new states th
describe the unified ‘‘atom1strong electromagnetic field’
system; these states exist during the time the laser pulse

In this new basis of Kramers-Henneberger states,
dynamics of the system are described by the equation8–10

i\
]c

]t
52

\2

2m

]2c

]x2
1V~x1ae cosvt !, ~1!

where

ae5
e«0
mv2 ~2!

is the amplitude of the electron’s oscillatory motion caus
by a wave field with amplitude«0 and frequencyv andV is
the initial atomic potential. By expanding the time depe
dence of the potential in a Fourier series and separating
zeroth harmonicVKH, the so-called Kramers–Henneberg
potential, we obtain another way to write Eq~1!:

i\
]c

]t
52

\2

2m

]2c

]x2
1VKH~x,ae!1dV, ~3!

where

dV5 (
nÞ0

Vn~x,ae!e
invt, ~4!

andVn(x,ae) is thenth harmonic of the Fourier expansion o
the oscillating potential.

An advantage of this choice of basis is that for stro
fields the perturbationdV is small and in this system o
coordinates the problem can be solved using perturba
theory~in contrast to the original basis!. The emergence of a
regime of stabilization when the laser light intensity a
proaches atomic values is related to the fact that the pe
bationdV becomes small, and the real behavior of the s
tem differs negligibly from the solution to the problem wit
the DC Kramers–Henneberger potentialVKH(x,ae).

8 In this
case, increasing the laser light frequencyv obviously leads
to a decrease in the matrix element^Vne

invt&, and thus the
ionization probability. Therefore, stabilization in th

6587$10.00 © 1997 American Institute of Physics
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Kramers–Henneberger basis is often described as h
frequency stabilization.6 Note also that in the strong-fiel
region the dependence of the harmonicVn on the laser field
is estimated11 to beVn ; (a/ae) V0 , wherea is the half-
width of the initial atomic potential andV0 is its depth. Thus,
at sufficiently large laser light intensities the conditio
ae @ a is satisfied and the harmonics become small; howe
more and more terms in the sum~4! are found to be close in
order of magnitude, and consequently must be included
solving the problem.12 The smallness of the harmonics fo
ae @ a is in good agreement with the traditional represen
tion of the stabilization conditions, in that this is the ca
where the amplitude of oscillations of the electron is lar
allowing us to assume that it is practically free and to neg
the effect of the original atomic potential. However, in t
low-frequency range the conditionae @ a is easily satisfied
for sufficiently small values of the laser light intensity. Do
this imply that we might observe stabilization at consid
ably smaller intensities in the low-frequency regime? W
is the criterion for emergence of a stabilization regime? If
define the stabilization thresholdP* as the value of lase
intensity above which we observe a decrease inWi with

FIG. 1. Probability of remaining in the ground state during a laser pulse
a one-dimensional model of a negative hydrogen atom obtained by
method of direct numerical integration of the time-dependent Schroedi
equation~see Ref. 4!: the intensity of the laser lightP 5 5 3 1015 W/cm2, the
energy of the field quanta\v 5 5 eV. The laser pulse has a Gaussian sha
with a duration of 4 fs based on half-height and a signal maximum tha
reached att 5 6 fs.
h-

r,

in

-

,
t

-
t
e

find thatP* ; v . However, if we define the stabilizatio
threshold from the conditionkae ; 1 as in Refs. 3, 6, we find
thatP* ; v3. Both these asymptotic expressions lead us
conclude that low frequency stabilization should be obse
able at very low intensities. However, these conclusions
found to contradict certain physical notions. Although tre
ment of the system dynamics using Kramers–Hennebe
basis states involves a mathematically correct transforma
from one system of coordinates to another, there must
physical reasons for the impossibility of using this method
the low-frequency regime.

Pont and Gaurila6 calculated the lifetime of an atom as
function of light intensity for various values of the laser fr
quency. And, in fact, they did observe a rapid decrease in
threshold intensity for stabilization with decreasing optic
frequency, although they did not analyze the specific form
the dependence. It is also significant that the stabilizat
threshold is defined only for high optical frequencies,\v
>27.2 eV.

Volkova and Popov13 the authors also established th
existence of frequency-dependent stabilization for ionizat
of a system with short-range potentials in the range\v51–5
eV. They showed that both the dependences mentio
above qualitatively describe the results of numerical exp
ments. As no one has investigated the phenomenon of s
lization in the range of still lower frequencies\v < 1 eV, the
questions formulated above have not yet been answere
ther.

The main advantage of the Kramers–Henneber
scheme is that it allows the problem of interaction of an at
with a strong field to be treated perturbatively. On the oth
hand, it is the use of perturbation theory rather than the tra
formation to the Kramers system that limits the region
admissible system and laser parameters. Therefore, it is n
ral to define the physical limits of applicability of th
Kramers–Henneberger method as the range of param
for which perturbation theory is valid, i.e., thekth-order ion-
ization probability per unit time calculated by perturbatio
theory~in the basis of Kramers–Henneberger states! exceeds
the (k 1 1)th-order ionization probability. In, particular th
following condition should hold:

r
he
er

,
is
-
as
e

FIG. 2. Spatial distribution of the probability den
sity during laser excitation for the same system
in Fig. 1, at two times: a—at the maximum of th
laser pulse, and b—as the pulse decays.
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Ẇn
I !1 ~5!

for any value ofn, whereẆn
I , Ẇn

II are the ionization rates
calculated in first and second order perturbation theory c
responding to a transition from the ground state to the c
tinuum in which the energy of the electron changes
n\v. It is also necessary to require that the dipole appro
mation be applicable, since the Kramers–Henneberger
malism was developed within its framework.

In this paper, we will employ the Kramers–Henneberg
method, determining its applicability from condition~5!, to
identify ranges of parameter values that lead to stabiliza
of the system. We will determine conditions for the appe
ance of a stabilization regime and the frequency depende
of the stabilization threshold, with the low-frequency ca
discussed as a special case. We will also discuss the que
of how stabilization in the Kramers–Henneberger regime
lates to interference stabilization.14 Our theoretical conclu-
sions are confirmed by the results of numerical experime

2. NUMERICAL CALCULATIONS OF THE DYNAMICS OF
THE SYSTEM

We first numerically integrated the time-depende
Schroedinger equation directly in the two different bas
i.e., the basis of states of the original atomic potential and
basis of Kramers–Henneberger states. The first prob
takes the form

i\
]c

]t
52

\2

2m

]2c~x,t !

]x2
1@V~x!

2ex«~ t !cosvt#c~x,t !,

c~x,t50!5w1~x!. ~6!

Here

«~ t !5«0 expS 2
~ t2t0!

2

2t2 D
is the envelope of the laser pulse,t is its half-width, and the
time t0 corresponds to the maximum of the pulse;w1(x) is
the wave function of the ground state of the atomic potent
In the calculations we sett0 5 3t. ForV(x) we chose a rect-
angular well with various values of the depthV0 and width
2a, and also the smoother short-range potential taken f
Ref. 4 and corresponding to a one-dimensional model o
negative hydrogen ion.

In the Kramers system of coordinates the problem ta
the form

H i\ ]c~x,t !

]t
52

\2

2m

]2c~x,t !

]x2
1V~x1ae cosvt !c~x,t !,

c~x,t50!5wKH
~1!~x!.

~7!

The difference between this problem and Eq.~6! lies in
the representation of both the atomic potential and the fi
as a single potential oscillating in the Kramers coordin
system, and in the choice of the lower Kramer
Henneberger state with 100% occupancy as an initial co
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tion. Both of these problems allow us to compute the wa
function of the systemc(x,t), which can be used to obtai
the populationuCk(t)u2 of the various stateswk(x) in the
basis of atomic states andwKH

(k) in the basis of Kramers–
Henneberger states, and also the ionization probabilityWi of
the system:

Ck~ t !5E c~x,t !wk~x!dx, ~8!

or

Ck~ t !5E c~x,t !wKH
~k! ~x!dx, ~8a!

Wi512(
k

uCk~ t !u2. ~9!

Figure 3 shows the quantity 12 Wi calculated in this
way for the case of the potential from Ref. 4 as a function
the intensity of the laser pulse for various values of the la
frequency. The data indicate more intense ionization at lo
frequencies. The portions of the curves with positive deri
tive correspond to an ionization probability that decrea
with increasing intensity of the laser emission, i.e., stabili
tion. These data allow us to conclude that the threshold
stabilization decreases as we enter the low-frequency ra
However, even when the photon energy satisfies\v
5 1.2 eV, the probability of ionization is practically 100%
over a rather wide interval of intensity values. In this case
curve develops a horizontal portion~a ‘‘shelf’’ !, which leads
to ambiguity in determining the stabilization threshold. If w
nevertheless define the threshold for stabilization as bef
then the rate of decrease of this quantity as a function
frequency will be less in the low-frequency range.

The threshold for stabilization can also be defined
solving the problem~7!, where it corresponds to that value o
field intensity at which the lifetime of the bound Kramers
Henneberger state is a minimum given that the system i
this state initially. Both these approaches give very sim
dependences of the stabilization thresholdP* on the field
frequency~see Fig. 4!; these results are practically indepe
dent of the shape of the initial atomic potential when

FIG. 3. Dependence of the quantity 12Wi on the intensity of a laser pulse
with duration 2t 5 20 fs for a one-dimensional H2 ion and various values of
the quantum energy:\v 5 1.2 ~1!, 2.5 ~2!, and 5 eV~3!.

660Volkova et al.



he

fe

r
an

lo
n
o

tiv
w
n
e
nc
a

r
o

nd-
a
-

ld

ted

tate

he
of
istic

by
the

er
of
y

o
ge
e

or

tan-
depth and width are fixed. However, approximation of t
data obtained here by a power-law functionP* (v) gives
values of the exponent in the range from 3 to 4, which dif
very little. Thus, for curves1, 2, 3 the exponents turn out to
equal 3.31, 3.57, and 3.23 respectively. Calculations fo
rectangular well of depth 12 eV and width 3.33 Å show
abrupt change in the slope of the linear functionP* (\v)
when plotted on a log-log scale as we enter the region of
frequencies~Fig. 5.! These data indicate that the functio
P* (\v) can be approximated by a power law with an exp
nent equal to 3.7 for\v > 10 eV and 2.0 for\v , 10 eV.
The abrupt change in slope of the curve indicates a rela
increase in the ionization threshold as we enter the lo
frequency range. This change in the frequency depende
indicates that at low frequencies stabilization takes plac
relatively high laser intensities. Analysis of the depende
of the stabilization threshold on the depth of the origin
rectangular potential for fixed photon energy~Fig. 6! leads to
an analogous conclusion. As long as the field frequency
mains relatively high compared to the ionization potential
the original state, the quantityP* is a weak function of the
well depthV0 . However, for large values ofV0 the photon

FIG. 4. Dependence of the stabilization threshold on photon energy
tained by finding the minimum lifetime of the Kramers–Henneber
ground state~1! and the lifetime calculated by finding the minimum of th
quantity 12 Wi ~2!. Curves1, 2 are for a rectangular potential well with
depthV0 5 3.33 eV and width 2a 5 3 Å, while3 is for the potential used to
model the one-dimensional negative hydrogen ion~see Ref. 4!.

FIG. 5. Dependence of the stabilization threshold on photon energy f
rectangular potential well with depthV0 5 12 eV and width 2a 5 3.33 Å.
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energy\v becomes comparable to or smaller than the bi
ing energy, so that this frequency becomes ‘‘small’’ for
given value ofV0 . Hence the stabilization threshold in
creases sharply.

Let us now try to estimate the stabilization thresho
P* ~v! from analytical considerations.

3. ESTIMATING THE STABILIZATION THRESHOLD

The emergence of a regime of stabilization is connec
with low probability of ionization per unit timeẆKH from
the lower state. When we approximate the continuum s
by a plane wave, we can write the following:

ẆKH}UEwKH
~1!Vne

ikxdxU2. ~10!

This quantity will necessarily be small if many periods of t
plane wave are contained within the characteristic width
the Kramers–Henneberger potential. Since the character
width of the Kramers–Henneberger potential is 2ae , where
ae is the amplitude of oscillation of an electron acted on
the electromagnetic wave, the threshold condition has
form

kae;1. ~11!

Relating the wave vectork with the energy of an electron in
the continuum

k2\2

2m
5\v2IKH, ~12!

we obtain

P*5v3
mc

16pe2
1

12IKH~ae!/\v
, ~13!

where IKH(ae) is the ionization potential of the state und
discussion which depends on the amplitude of oscillation
the electronae , which is given in terms of the laser intensit
at the thresholdP* by the following expression:

ae
25

8pe2

cm2v4 P* . ~14!

b-
r

a

FIG. 6. Dependence of the stabilization threshold on the depth of a rec
gular potential wellV0 for fixed values of the well width 2a 5 3.33 Å and
field quantum energy\v 5 10 eV.
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Thus, in order to solve Eq.~13! it is necessary to know the
form of the functionIKH(ae).

The required dependence was investigated via nume
calculations for rectangular potentials with various para
eters~Fig. 7!. It turned out that in the range of values ofae
larger than the half-width of the atomic potential, the qua
tity IKH could be approximated with good accuracy by
power-law function ofae :

IKH}ae
20.75. ~15!

Using the functionIKH(ae) shown in Fig. 7, we solved
Eq. ~13! and obtained the functionP* (v). The data obtained
for V0 5 3.33 eV and 2a 5 3 Å are plotted in Fig. 8 on a
log–log scale. The presence on the graph of two straight-
segments with markedly differing slopes~P*}v2.8, in the
high-frequency range andP* } v1.5 in the low-frequency
range! is in good agreement with the results of numeric
integration of the Schroedinger equation, and indicate
relative increase in the stabilization threshold at low frequ
cies. In this case, the condition\v . I 0 ' IKH is satisfied in

FIG. 7. Dependence of the ionization potential of the Kramer
Henneberger ground state on the oscillation amplitude of an electron
various depth parametersV0 and width parameters 2a of the initial atomic
potential:1—V0 5 3.33 eV, 2a 5 3 Å, 2—V0 5 5 eV, 2a 5 2 Å, 3—V0

5 3.33 eV, 2a5 2 Å.

FIG. 8. Stabilization threshold vs. energy of the field quanta plotted us
Eq. ~13!, taking into account the dependence of the ionization potential
the Kramers–Henneberger ground state on the amplitude of oscillatio
the electron.
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ionization potential of the initial atom!. Further decreasing
the frequencyv leads to multiphoton ionization out of th
atomic potential; however, in the Kramers–Henneberger r
resentation the ionization remains single-photon up to val
\v 5 0.1 eV. Thus, at the stabilization threshold the con
tion

\v>IKH,

is always satisfied; this corresponds to the Gavrila–Kamin
condition8 for applicability of the Kramers–Henneberger a
proximation. Note, however, that this condition does n
characterize the stabilization effect as a high-frequency p
nomenon, since it turns out to hold at very small frequenc
and does not constitute a frequency bound on the applica
ity of this approximation from below.

The question of when the Kramers–Henneberger
proximation can be used will be discussed in more detai
the next section.

4. ANALYSIS OF WHEN THE KRAMERS–HENNEBERGER
METHOD CAN BE USED AND THE EXISTENCE OF A
STABILIZATION EFFECT

In light of the problems mentioned above, which ari
when the process of ionization of a quantum system is a
lyzed in the low-frequency limit, we must address the pro
lem of delineating the region of applicability of th
Kramers–Henneberger treatment, starting from Eq.~5!, and
also of investigating the resulting region with regard to d
pendence of the ionization probability on the laser intens
Our investigation allowed us to establish ranges of values
P andv within which stabilization is observed.

Condition ~5! implies that for ionization from the
Kramers–Henneberger ground state, in which the elec
energy changes byn\v, the probability per unit timeẆn

II for
ionization in second-order perturbation theory is mu
smaller than the first-order quantityẆn

I for any value ofn.
The ionization probability per unit time from th

Kramers–Henneberger ground statecKH
(1)(x) given by first-

order perturbation theory has the form

Ẇn
I 5

2p

\2 uV0k
~n!u2

m

\kn
. ~16!

Here

V0k
~n!5E wKH

~1!~x!Vn~x,ae!exp~ iknx!dx ~17!

is the matrix element that connects the initial state with
continuum state characterized by a wave vectorkn , where
kn is defined by the condition

\2kn
2

2m
5n\v2uIKHu'n\v. ~18!

Calculating the matrix element~17!, we obtain12

Ẇn
I ;pB

V0

\

Jn
2~knae!sinc

2~kna!

n2knae~11a/ae!
, ~19!

or

g
r
of
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whereB 5 2mV0a
2/\2 is the Born parameter, andV0 and
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a are the depth and half-width of the original atomic pote
tial.

Analogous computations to second order in perturba
theory and use of the pole approximation yields the follo
ing expression forẆn

II :

Ẇn
II;pB

V0

\ (
j

B2

~n2 j !2 j 2

3
sinc2~~kn2kj !a!Jn2 j

2 ~~kn2kj !ae!

~kja!2knae~11a/ae!

3Jj
2~kjae!sinc

2~kja!. ~20!

Here the summation ranges over intermediate states with
bel j .

Using Eqs.~19! and~20!, we can rewrite condition~5! in
the form

Ẇn
II

Ẇn
I

;(
j

n2B2

~n2 j !2 j 2
sinc2~kja!sinc2~~kn2kj !a!

~kja!2 sinc2~kna!

3
Jn2 j
2 ~~kn2kj !ae!Jj

2~kjae!

Jn
2~knae!

!1. ~21!

The ranges of values ofP andv that satisfy this relation
are bounded, while bounds on the applicability of t
Kramers–Henneberger method exist in the sense of Eq.~5!.

By searching over allj for the maximum value of
Ẇn

II /Ẇn
I and using the asymptotic forms of the Bessel fun

tions for various relations between the argument and inde16

along with known expansions of the function sincx, we ob-
tain the region of values ofP andv that satisfy~21!:

for ka,1, i.e., v,S aata D 2vat:

P

Pat
.

n5

~n71!5 SV0

I at
D 4S aaatD

4S v

vat
D , ~22!

for ka.1, i.e., v.S aata D 2vat:

P

Pat
.

n7

~n71!7 SV0

I at
D 4S vat

v D . ~23!

The ‘‘1’’ sign in the denominator corresponds ton
51; Pat, I at, aat, andvat are values of the atomic intensity
energy, length, and frequency. Since Eqs.~22! and ~23!
should be valid for anyn, it is sufficient to require that they
holed for thosen that maximize the expressions on the rig
sides of~22! and~23!. It is easy to verify that this occurs fo
n 5 2. The resulting bounds for the region of applicability
the Kramers–Henneberger approach~for n 5 2! are plotted
on a log–log scale in Fig. 9~straight lines1, 2!. We add to
these the condition for applicability of the dipole approxim
tion v ! c, giving the expression

P

Pat
,~137!2S v

vat
D 2 ~24a!
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The straight line3 shown in Fig. 9 representing this expre
sion constitutes an additional restriction on the admiss
region. Use of more rigorous criteria for applicability of th
nonrelativistic approximation, based on comparing the re
tivistic drift velocity of an electron due to the Lorentz forc
with the rate of spreading of the electron wave packe17

leads to the relation

P

Pat
,~23!2S v

vat
D 2. ~24b!

Note that this condition does not qualitatively change
picture under discussion; however, it is a stronger constr
on the range of applicability of the Kramers–Henneber
approximation at low frequencies than condition~24a!. The
resulting bounds on the applicability of this approximati
define the ranges of values ofP andv we are looking for; in
particular, they bound the range of frequencies where it
be used from below. It is also worth noting that our analy
is correct when~18! holds, which in the limit is equivalent to
the conditions\v . I 0 orka. 1. This condition ‘‘cuts off’’ a
portion of the admissible region, whose dimensions dep
on the parameters of the original atomic potential.

Using the expression for the total ionization probabil
per unit time

Ẇtot
I >(

2p

\
BV0

Jn
2~knae!sinc

2~kna!

n2knae~11a/ae!
, ~25!

let us investigate the dependence ofẆtot
I on the intensity of

the laser pulse. In this case the required region is divided
into subregions by the straight lines:

FIG. 9. Bounds on the region of applicability of the Kramers–Henneber
method and subregions with different frequency dependencesẆi(P), the
straight lines 1, 2 are bounds on the applicability of the Kramers
Henneberger method obtained from the conditionẆn

II /Ẇn
I 5 1; 3—the con-

dition e«0 /mv 5 c; 4—the conditionkae 5 1; 5—the conditiona 5 ae;
6—the conditionka 5 1. The parameters of the potential wereV0 5 5 eV,
2a52 Å.
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5const for a given potential.

Herek5A2m\v/\2.
The parameters of the potentialV0 anda, along with the

straight lines4, 5, and 6, lead to a division of the initial
region into as many as six subregions. In each subregion
quantityẆtot

I depends onP in a different way. By examining
the functionsẆtot

I (P) in each of the subregions, we can tra
the values of parametersP andv that lead to a stabilization
regime~see Fig. 9!:

I2Ẇtot
I }P, IV2Ẇtot

I }
1

P
,

II2Ẇtot
I }

1

AP
, V2Ẇtot

I }AP,

III2Ẇtot
I }

1

AP
, VI2Ẇtot

I }P.

Thus, stabilization occurs in subregions II, III, and IV
since in these regions increasingP leads to a decrease in th
ionization probability. However, the relative positions of t
straight lineskae 5 1 andae 5 a may change depending o
the parametera of the atomic potential. This implies tha
stabilization can begin as soon as the conditionkae 5 1 is
fulfilled. However, in this caseae,a is possible, i.e., the
double-well Kramers–Henneberger potential has not
formed. Thus, the frequency dependence of the stabiliza
threshold can be eitherP* } v3 or P* } v4, which is also
observed in the numerical calculations. At low frequenc
the functionP* (v) becomes linear, which agrees qualit
tively with the data shown in Figs. 5 and 8. The fact that
stabilization is possible even before the two-well Kramer
Henneberger potential forms is extremely significant in
context of comparing mechanisms for interferen
stabilization14 with this kind of stabilization. It is well known
that interference stabilization arises because of destruc
interference between probability amplitudes for transitio
from two closely spaced states in the discrete spectrum o
atomic potential to the continuum. A typical example of
system in which stabilization of this kind is possible is
Rydberg atom. However, the Kramers–Henneberger po
tial can also have closely-spaced levels with overlapp
widths when the conditionae @ a holds. Therefore, we migh
expect the mechanism of interference stabilization to ope
in our system, and that the Kramers–Henneberger forma
simply gives an alternate method for describing it. This po
of view was advanced by the authors of Ref. 15. However
a number of cases our calculations show that stabilizatio
achieved even whenae , a holds, when the Kramers–
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lated bound state. This indicates that the mechanisms o
terference stabilization and stabilization in the Kramer
Henneberger regime are different. In the limitae @ a,
interference stabilization can contribute and compete w
Kramers–Henneberger stabilization. However, it is a
noteworthy that there is a range of parameters for wh
stabilization does not arise in general even thoughae @ a.

5. CONCLUSION

Thus, our analysis of the conditions for stabilization le
us to the following conclusions.

1. Bounds on the applicability of the Kramers
Henneberger method can be identified which show that
Kramers–Henneberger approach cannot be used at
frequencies.

2. In the range of applicability of the Kramers
Henneberger method, stabilization can occur only for cert
subsets of the system parameters, i.e., the atomic-pote
parameters and field frequency, and the dependence o
stabilization threshold on frequency is different for differe
ranges of these parameters.

3. Since formation of a two-well Kramers–Henneberg
potential is not a necessary condition for stabilization,
mechanism of stabilization in this regime does not uniqu
reduce to the interference mechanism.
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Decay of transient nutation in two-level spin systems

ri-
G. G. Fedoruk

A. N. Sevchenko Research Institute of Applied Physics Problems, 220064 Minsk, Republic of Belarus
~Submitted 9 August 1996!
Zh. Éksp. Teor. Fiz.111, 1207–1213~April 1997!

This paper reports the results of an experimental study of the decay of transient NMR nutations
in a two-level spin system with homogeneous line broadening. The NMR nutation signals
in glycerin were studied for 10<v1T2<150, wherev15gH1, with g the gyromagnetic ratio and
H1 the amplitude of the magnetic component of the radio-frequency field, andT2 is the
transverse relaxation time. It is found that in a high-power field (v1T2@1) the nutation decay
rate is independent ofv1 and is quantitatively described by Bloch’s model. The data is
compared with the data on non-Bloch (v1-dependent! EPR-nutation decay in quartz~R. Boscaino,
F. M. Gelardi, and J. P. Corb, Phys. Rev. B48, 7077~1993!!. © 1997 American Institute
of Physics.@S1063-7761~97!00604-5#
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Lately the decay of transient nutations in two-level sp
systems has attracted attention in connection with verify
the validity of Bloch equations in the high-power driving
field limit.1,2 Other phenomena such as free-induction dec
echo, and burning out of dips, which constitute the basis
coherence resonant spectroscopy, have been studied
similar reason~see Refs. 1–3 and the works cited therein!.

Time-dependent oscillations~Rabi oscillations or nuta-
tions! constitute the simplest coherent dynamic effect in
spectroscopy of quantum systems used in NMR, EPR,
optical resonance.1,4,5 This effect can be observed within
time interval that is short compared to the relaxation ti
and reflects a situation in which a new stationary state
established after the sudden~nonadiabatic! turn-on of a reso-
nant interaction of an intense electromagnetic field and
equilibrium quantum system. The oscillation frequency is
measure of the interaction between the quantum system
the field, while the decay of the oscillations provides info
mation about dephasing and relaxation processes ta
place in the presence of an electromagnetic field. These
cesses are usually described by Bloch’s model by introd
ing phenomenological transverse and longitudinal relaxa
times,T2 andT1.

The first transient nutations were observed nearly
years ago in NMR experiments6 and 20 years ago in optica
resonance and EPR experiments, and then in multipho
resonances~see the literature cited in Ref. 1!. Nevertheless,
up to now the validity of Bloch’s model in the high-powe
driving-field limit of the nutation mode has not been subst
tiated by experiments. The difficulties lie in registering
transient signal during a pulse of the driving field, and imp
a narrow range of admissible field values and limited po
bilities of observing undistorted decaying nutations, a p
cess masked by the inhomogeneities in the driving field.

The fact that the observed decay rate for the nuta
signal is higher than the value predicted by Bloch’s mo
was usually related to the inhomogeneities in the driv
field in the bulk of the sample.4–7 Sometimes, to overcom
this limitation and to study relaxation in the presence o
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ments ~rotary echo and two-pulse delayed nutation!,
which allow for reversal of the dephasing caused by the
homogeneities of the driving field, are employed. Howev
the decay time for these signals exceeds the transverse r
ation time determining the decay of nutations.5

Only recently have results been obtained in experime
that quantitatively investigated the properties of decay
transient nutations not distorted by the inhomogeneities o
variable driving field.1 Such studies, involving two-photon
EPR1 in quartz, for spin systems with inhomogeneous li
broadening, revealed a discrepancy between the experim
tal data and the predictions of Bloch’s model: the measu
nutation decay rate proved to be higher and linearly dep
dent on the amplitude of the driving field. The reason
such behavior has yet to be established. The problem is
portant because the theory of resonant interaction of field
matter is based on Bloch equations. Boscainoet al.1 assumed
that the anomalous~non-Bloch! decay is a property of truly
homogeneous quantum systems, whose effective spe
linewidth is characterized by a term dependent on the am
tude of the driving field, in addition to being characterized
the internal timeT2. The present paper is an attempt to ver
the validity of Bloch’s model in the high-power driving fiel
limit by experimentally studying the decay of transie
~time-dependent! nutations in a two-level spin system wit
homogeneous line broadening. The experiments invol
studying the NMR for protons in glycerin.

2. THE PREDICTIONS OF BLOCH’S MODEL

The solution of the Bloch equations in Torrey’s hig
power driving field approximation4,6 (v1@1/T2, 1/T1) for
thev-component of transient nutation~the absorption signal!
has the form

v5v0
v1

V
expF2H 1T2 2

1

2S 1T2 2
1

T1
D S v1

V D 2J t Gsin Vt,

~1!

wheret.0,

V5Av1
21~v02v!2, ~2!
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v0 is the equilibrium value of the population difference,
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v15gH1 is the Rabi frequency,g is the gyromagnetic ratio
v andH1 are the frequency and amplitude of the magne
component of the radio-frequency~rf! field, andv0 is the
resonant frequency of the quantum system.

For resonant (v5v0) excitation of the spin system with
T15T2, the detected signal must~according to~1!! be de-
scribed by the following relationship:

v5v0 expS 2
t

T2
D sin v1t. ~3!

We see that nutation decay is determined solely by
time T2 and is independent of the strength of the rf fie
acting on the system.

Because of its simplicity, this case is convenient
checking the predictions of Bloch’s model in the high-pow
driving field limit. On the other hand, by studying this sit
ation experimentally it is also possible to check the hypo
esis of Boscainoet al.1 concerning the dependence of nut
tion decay on the amplitude of the field acting on the syste
According to this hypothesis, the decay timet of nutation of
a homogeneous line must depend on the field strength in
following manner:

1

t
5

1

T2
12bv1 , ~4!

with b a dimensionless parameter equal to 0.021–0.033~ac-
cording to the EPR data of Boscainoet al.1 on parametric
centers in quartz!, andt the time of ane-fold decrease in the
amplitude of the exponentially decaying nutations. The g
of the experimental studies described below was to estab
the conditions sufficient for checking both Bloch’s mod
and the above-mentioned hypothesis.

3. EXPERIMENT

The choice of NMR was determined by the relaxati
times, which are longer than the relaxation times in EPR
optical resonance. The experiments were done using
NMR spectrometer with a frequency 14.4 MHz at room te
perature. Transient nutations were formed by pulsed va
tions of the amplitude of the rf field. The modulator ensur
the formation of rf pulses with an attenuation in the off sta
of at least 70 dB. The pulses were fed to a power ampli
with a high-Q circuit that corrected the spectral compositi
of a pulse with a rise time of about 7ms. After the amplifier
the pulses were fed through an attenuator to an rf brid
Detection of the signals in the course of an rf pulse requi
good matching of the rf channel~60–80 dB!. After the am-
plifier the signal of the bridge unbalance caused by the in
action of the rf field and the spin system was sent to a ph
sensitive detector with a time constant of about 3ms.

The effect of inhomogeneities in the rf field was reduc
by reducing the filling factor of the pick-up coil to 0.0025 v
a reduction of the sample volume to 3 mm3. The loss of
signal-to-noise ratio caused by the decrease in sample
ume was partially offset by coherent digital signal integ
tion. On the whole, a compromise between the homogen
of the driving field, the duration of the experiment, and t
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attainable signal-to-noise ratio was chosen. The inhomo
neity of the fieldH1 in the sample was monitored by me
suring the shape of the two-pulse delayed-nutation sig8

and by observing the nonexponential decay of nutations.
As is known,4,6 the spatial inhomogeneity of a polarizin

magnetic field,DH, can transform the nutations into a form
described by a zero-order Bessel function, and for this rea
it may lead to additional decay of the nutations. In the e
periment described here,gDH,1/T2, and inhomogeneous
broadening was negligible. This was monitored by the ti
of decay of the free-induction signal and by the shape of
initial region of nutations.

Protons in glycerin (T1'T2) were selected for the two
level system with homogeneous broadening. The relaxa
parameters of this system have been thoroughly studie4,9

and the first nutations in this system were observed
Torrey.6 At room temperature and at the operating frequen
(v0/2p514 MHz) for protons in glycerin,T153.231022s
~Ref. 9!. The uniformity of the external fields achieved in th
experiments described below made it possible to detec
the course of the above time interval, nutation signals t
were essentially undistorted by inhomogeneities. Here
maximum rf power, the nutation frequency amounted
about 2p30.8 kHz and was found to exceed 1/T2 by a factor
larger than 150, which to a considerable extent correspo
to the high-power driving-field limit (v1T2@1).

4. RESULTS AND DISCUSSION

The transient nutation signals were detected when
spin system was under resonant excitation (v5v0). Accu-
rate tuning to resonance was monitored by measuring
frequency of the observed nutations, with the minimum f
quency corresponding to resonance. The length of an rf p
was 30 ms, the pulse repetition period was 500 ms, and
signal was averaged 128 times. A typical oscillogram of
detected signal is depicted in Fig. 1. The rf pulse is turned
at t50. Clearly, Eq.~3! provides a good description of th
observed signal atv152p3107 Hz andT2532 ms ~the
dotted curve!. The fact that the top of the initial section o

FIG. 1. The transient nutation signal detected atv152p3107 Hz and
v2v050. The dotted curve was obtained from Eq.~3! with T2532 ms.
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FIG. 2. Time dependence of the nutatio
signal amplitude at~a! v152p3107 Hz
and~b! v152p3426 Hz. The solid lines
represent the approximation of the ex
perimental data by an exponential func
tion.
the detected signal is shifted in relation to the theoretical
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T
ch
value is due to the drift of the zero line in the course of the
pulse, the drift being caused by imperfect matching of the
bridge. This shift was found to increase with rf power, bu
had no effect on the amplitude properties of the nutati
and was taken into account in processing the data.

Figure 2 depicts the decay of nutations for two differe
values of the amplitude of the driving rf field. The data sho
that in both cases the decay follows an exponential law w
a characteristic timet close to the value ofT2 for the system.

The dependence of the decay time for transient nutat
on the amplitude of the driving rf field is depicted in Fig.
The data show that the nutation decay time forv1T2,20
increases somewhat~by 10%! with H1. This is caused by
temporal instability in the polarizing magnetic field, whic
changes the nutation frequency~see Eq.~2!! due to varia-

FIG. 3. Dependence of the nutation decay time on the Rabi frequency.
points represent the experimental data, the solid line represents Blo
model, and the dashed line was obtained from Eq.~4! with b50.021.
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signals with distinct frequencies leads to the abo
mentioned decrease int during the coherent integration pro
cess. AsH1 grows, the effect of the instability of the polar
izing magnetic field diminishes~in accordance with~2!!, and
vanishes whenv1T2 becomes greater than 20. As Fig.
shows, in the 20,v1T2,106 interval the nutation deca
time remains constant at 33.061.5 ms. This coincides with
the known relaxation timeT2 for protons in glycerin,

9 which
suggests that within this range of rf-field amplitude t
field’s inhomogeneity is negligible in this experiment. Th
interval corresponds to a high-power driving field, in view
which it appears that within experimental error~5%! nutation
decay is independent of the driving field amplitude and c
by described by Bloch’s model. A further increase
H1(v1T2.106) drives the rate of nutation decay up~the
corresponding data are not depicted in Fig. 3!. The decay
becomes exponential and results from inhomogeneities in
rf field.

It is worth noting that the nutation decay time measur
by Torrey6 in a 1.5 cm3 sample of glycerin was abou
11 ms and resulted from inhomogeneities in the rf field.

According to Boscainoet al.,1 the decay time of nuta-
tions of a homogeneous line depends on the amplitude of
driving electromagnetic field. The predictedv1-dependence
of the nutation decay time~Eq. ~4!! is depicted in Fig. 3 by a
dashed line. If we assume that for two-level quantum s
tems this dependence is universal, comparison of the E
data on paramagnetic defects in quartz and the NMR dat
protons in glycerin shows that there is no correlation b
tween the two sets. If Eq.~4! is valid, the parameterb for
proton nutation decay must be smaller than this quantity
EPR nutations in quartz by a factor of at least 100. In t
case determining the small (,1024) but finite value ofb
requires increasing the accuracy in measuring the param
of proton nutation decay.

On the other hand, the fact that the decay time of pro
nutations coincides withT2 suggests that for the given quan

he
’s
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spin systems withT2'T1 is described by Bloch’s model
with the result that the purportedv1-dependence of the ef
fective width of a homogeneous spectral line is not corro
rated by experiments. In this situation, the reason for
observed anomalous~non-Bloch! decay of EPR nutations in
quartz can be established, in particular, by studying
v1-dependence of nutation decay in this object in the sing
photon mode~to eliminate features of the two-photon mod
from nutation studies!. It is also important to establish th
features of the nutation process due to the dynamics of q
tum systems in the presence of a high-power driving field
distinctT2 andT1.

5. CONCLUSION

NMR studies of protons in glycerin (T2'T1) have
shown that the rate of decay of transient nutations is in
pendent~to within 5%! of the amplitude of the driving elec
tromagnetic field up tov1T2'110. This suggests that fo
homogeneously broadened two-level spin systems Blo
model is valid in the high-power driving field limi
(v1T2@1). The data obtained in these experiments do
corroborate the hypothesis of Boscainoet al.1 about the de-
pendence of the effective width of a homogeneous spec
line on the amplitudeH1 of the driving variable field, the
reason being that the value ofb, which reflects the extent o
668 JETP 84 (4), April 1997
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smaller than the value ofb measured for EPR nutations o
quartz by a factor no less than 100. This suggests that n
Bloch nutation decay is related to the features of quant
systems atT2 Þ T1, in view of which the problem of inter-
preting thev1-dependence of the nutation decay rate
quartz1 remains unresolved and requires further experime
investigation.
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Elastic scattering of low-energy electrons by a uranium atom: reliability of theoretical

this
predictions of based on a model description
D. P. Grechukhin and A. V. Lomonosov* )

Russian ‘‘Kurchatov Institute’’ Science Center, 123182 Moscow, Russia
~Submitted 5 September 1996!
Zh. Éksp. Teor. Fiz.111, 1214–1228~April 1997!

We used the method of phase functions to solve the radial relativistic Dirac equation and
nonrelativistic Schroedinger equation. With these solutions, we investigated the elastic scattering
of slow electrons by a uranium atom, and obtained numerical values for the total cross
section and elastic scattering phases. In order to check the correctness of the results found from
the method of phase functions, in all cases we also solved the Dirac and Schroedinger
equations by direct numerical integration. Several types of polarization and exchange potentials
were used to simulate the scattering process. We conclude that the strong dependence of
the cross section for elastic scattering of an electron by uranium on the shape of the effective
potential of the latter at small kinetic energies (Ek,5 eV) makes it impossible to predict
the presence or absence of a Ramsauer effect reliably. ©1997 American Institute of Physics.
@S1063-7761~97!00704-X#
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The Ramsauer effect~i.e., the presence of a deep min
mum in the elastic scattering cross section of slow electr
by atoms! was first observed experimentally for atoms
certain inert gases, for instance argon. In Ref. 1, Kudrin
Drozdov argued that this effect could be exploited to ma
an MHD generator based on a nonequilibrium tw
temperature uranium plasma. In this device, a spectrum
electrons would be generated with kinetic energiesEk in the
energy neighborhood of the Ramsauer minimum cross
tion in order to create a medium with high electrical condu
tivity. These authors calculated the cross section for ela
scattering of slow electrons by a uranium atom for the ra
of electron kinetic energies 0,Ek,40 eV using a nonrela
tivistic version of the method of phase functions.2,3 The
model of the interaction of an electron with the uraniu
atom used in Ref. 1 was based on the Thomas–Fe
model,4 including the polarization potential5 Vp(r ) arising
from the electric dipole moment induced by the slow ele
tron. The experimental determination of the elastic scatte
cross section for uranium at kinetic energies less than 10
is a complicated problem, and we do not know of anyo
who has solved it. In this range of energiesEk practical
theoretical calculations of the scattering cross section are
single-particle calculations in which the interaction betwe
the scattered electron and the multielectron system~a heavy
atom! is approximated by a spherically symmetric potent
V(r ) that decreases faster thanr21 as r→`:

V~r !5Va~r !1Vp~r !1Vex~r !, ~1!

whereVa(r ) is the average atomic potential, determined
the density distributionr(r ) of electrons in the atom
Vp(r ) is the polarization potential, andVex(r ) is the ex-
change potential.

All these components of the interaction are in tu
modeled by various radial dependences, whose param
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situation, questions arises regarding the reliability of theo
ical predictions of the behavior of the total elastic cross s
tion ~especially in the range of kinetic energiesEk,10 eV of
interest to us, wheres, p, andd partial waves all contribute
to the total cross section and the Ramsauer effect is poss!
and the stability of this quantity against admissible chan
in the shapes of the potentialsVa(r ), Vp(r ), andVex(r ).

It is possible to describe the elastic scattering of a sl
electron by an atom either relativistically~the Dirac equa-
tion! or nonrelativistically~the Schroedinger equation!. In
our previous papers,6,7 we used the example of low-energ
elastic scattering of electrons by atoms of the inert gases
Kr, and Xe to show that it is important to use a relativis
approach to treat the scattering of slow electrons. We fo
that for electron energies less than 1 eV the discrepancy
tween computed values of the total cross section for the r
tivistic and nonrelativistic cases increases with increas
atomic numberZ, and that the energy behavior of the cro
section was quite sensitive to the choice of models for
atom–electron interaction potential.

In this paper we continue our analysis of this situatio
Using a single-particle treatment of the scattering, we cal
late values of the elastic scattering cross section of elect
by a uranium atom with various types of interactions b
tween the electron and the atom obtained from the literat
Using the method of phase functions,2,3 we solve the radial
relativistic Dirac and nonrelativistic Schroedinger equatio
for the problem of elastic scattering by a spherically symm
ric potential V(r ) which decreases at infinity faster tha
r21. In all cases, we checked the results obtained by
phase method by direct numerical integration of the rad
Dirac and Schroedinger equations and subsequent matc

with their asymptotic solutions.

6699$10.00 © 1997 American Institute of Physics



2. SOLUTION OF THE RADIAL DIRAC EQUATION BY THE
METHOD OF PHASE FUNCTIONS
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1AE2mc2
@cosd ~r ! j ~pr !

-

tial

and

the

-
ns:
The solution to the Dirac equation in a centrosymme
field is given in the form of the following bispinor:8

C j lm~r !5 H g~r !V j lm~r /r !,
i f ~r !V j l 8m~r /r !

, ~2!

whereV j lm(r /r ) is a spherical spinor,l 852 j21, j is the
quantum number corresponding to a definite value of
total angular momentum operatorĴ5L̂1Ŝ ~where Ŝ is the
electron-spin operator!, andg(r ) and f (r ) are radial func-
tions that satisfy the system of differential equations

d

dr
@rg~r !#1

k

r
@rg~r !#2

1

\c
@E1mc22V~r !#r f ~r !50,

~3!

d

dr
@r f ~r !#2

k

r
@r f ~r !#2

1

\c
@E2mc22V~r !#rg~r !50,

~4!

Herek52 j ( j11)1 l ( l11)21/4, E is the total energy of
the electron,m is the electron mass, andc is the velocity of
light in vacuum.

In a spherically symmetric potentialV(r ) that decreases
at infinity faster thanr21, the large (g(r )) and small
( f (r )) components of the electron wave function in the co
tinuous spectrum (E.mc2) have the following asymptotic
behavior asr→`:

g~r !5AE1mc2

2E

sin~pr2p l /21d j l !

pr
, ~5!

f ~r !5 i l2 l 811AE2mc2

2E

sin~pr2p l 8/21d j l !

pr
, ~6!

wherep5AE2/c22m2c2/\ is the wave vector andd j l is the
elastic scattering phase.

In accordance with the method of phase functions,
replace the radial functionsg(r ) and f (r ) by a phase func-
tion d j l (r ) and an amplitude functionAjl (r ) ~see Ref. 3!.
Then

g~r !5AE1mc2

2E
Ajl ~r !@cosd j l ~r ! j l~pr !

2sin d j l ~r !h l~pr !#, ~7!

f ~r !5 i l2 l 811AE2mc2

2E
Ajl ~r !@cosd j l ~r ! j l 8~pr !

2sin d j l ~r !h l 8~pr !#, ~8!

where j l(pr) andnl(pr) were defined in Ref. 9.
Substituting~7! and ~8! into ~3! and ~4!, we obtain di-

rectly the equations for the phase and amplitude functi
with the boundary conditionsd j l (0)50,Ajl (`)51 ~see Ref.
2!:

d

dr
d j l ~r !5

V~r !~pr !2

\c HAE1mc2

E2mc2
@cosd j l ~r ! j l~pr !

2sin d j l ~r !h l~pr !#
2
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E1mc2 j l l 8

2sin d j l ~r !h l 8~pr !#
2J , ~9!

d

dr
Ajl ~r !52

Ajl ~r !V~r !~pr !2

\c

3HAE1mc2

E2mc2
@cosd j l ~r ! j l~pr !

2sin d j l ~r !h l~pr !#@cosd j l ~r !h l~pr !

2sin d j l ~r ! j l~pr !#

1AE2mc2

E1mc2
@cosd j l ~r ! j l 8~pr !

2sin d j l ~r !h l 8~pr !#@cosd j l ~r !h l 8~pr !

1sin d j l ~r ! j l 8~pr !#J . ~10!

Let us go to the nonrelativistic limit in Eqs.~9! and~10!.
In this case A(E1mc2)/(E2mc2)→2mc/\k,
A(E2mc2)/(E1mc2)→0, p→k ~the nonrelativistic expres
sion for the kinetic energy isEk5(\k)2/2m!, and we obtain
equations for the phase and amplitude functions1! ~see Ref.
3! with boundary conditionsd l(0)50, Al(`)51:

d

dr
d l~r !5

2m

h2
V~r !kr2@cosd j l ~r ! j l~kr !

2sin d j l ~r !h l~kr !#
2, ~11!

d

dr
Al~r !52

2m

h2
Al~r !V~r !kr2@cosd l~r ! j l~kr !

2sin d l~r !h l~kr !#@cosd l~r !h l~kr !

2sin d l~r ! j l~kr !#. ~12!

When a nonrelativistic particle is scattered by a poten
whose characteristic depth is of ordermc2, it is necessary to
include relativistic corrections. It is clear from Eq.~9! that
for such potentials we cannot neglect the second term
simply make the transition to Eq.~11!.

In conclusion, we give the expressions that relate
elastic scattering cross sections to the elastic scattering
phasesd j l in the relativistic case.8 The scattering cross sec
tion is expressed in terms of a sum of partial cross sectio

s5(
l j

s l j5
4p

p2
(
l j

ukusin2 d l j . ~13!

For the case of low energy scatteringd l ,l11/2'd l ,l21/2'd l ,
and Eq.~13! reduces to the nonrelativistic expression

s5(
l50

`

s l5
4p

k2
(
l50

`

~2l11!sin2 d l . ~14!
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3. MODEL POTENTIAL FOR SCATTERING OF AN
ELECTRON BY A URANIUM ATOM
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The state of an electronic shell of a uranium atom
described by using the relativistic Hartree–Fock–Sla
method. In order to determine the stability of our resu
against a change in the average atomic potentialVa(r ), let us
change the centrosymmetric Slater potentialVSlt(r ), which
determines the electronic atomic wave functions required
obtain the electron densityr(r ). These changes will be mad
in two ways:

1. By changing the initial electronic configuration of th
uranium atom. For this, in addition to the ground electro
configuration of uranium 5f 5/2

3 6d3/2
1 7s1/2

2 , we used the fol-
lowing possible configurations: 5f 5/2

4 6d3/2
0 7s1/2

2 ,
5 f 5/2

2 6d3/2
2 7s1/2

2 , 5f 5/2
1 6d3/2

3 7s1/2
2 , and 5f 5/2

0 6d3/2
4 7s1/2

2 . The
choice of this sequence of configurations for the urani
atom 5f 5/2

n 6d3/2
42n7s1/2

2 , wheren51, 2, 3, 4, is motivated by
the fact that a change in the population of the spatially co
pact 5f 5/2 orbit due to transition of electrons from the sp
tially extended orbit 6d3/2 can cause a considerable change
the potentialVSlt(r ). We illustrate this assertion by calcula
ing the average squared radius of the orbit for the seque
of configurations 5f 5/2

n 6d3/2
42n7s1/2

2 :

^5 f 5/2uS ra0D
2

u5 f 5/2&5 H1.73,2.79,
n50,
n54,,

^6d3/2uS ra0D
2

u6d3/2&5 H 8.24,19.48,
n50,
n54,

where a0 is the Bohr radius, whose value isa05\2/me2

50.5291772310210 m;
2. By changing the form of the correlation-exchange p

tential used in the iterative procedure for obtaini
VSl t(r ). We will use the following forms of the correlation
exchange interaction:

a! the standard Slater form10 with two choices of the
Slater exchange parameteraSlt : aSlt52/3 andaSlt51;

b! the form based on Ref. 11;
c! the form from Ref. 12;
d! the form from Ref. 13.
In addition, we calculated the atomic potential using t

nonrelativistic Thomas–Fermi–Dirac model4 with a subse-
quent integration of the relativistic Dirac equation.

The polarization potential we used had the form14

Vp~r !5HVp
SR~r !,

Vp
LR~r !,

r<r c ,
r.r c ,

~15!

Vp
SR~r !55

0.0622 lnr s20.09610.018r s ln r s20.02r s ,
r s<0.7
20.123110.03796 lnr s ,
0.7,r s,10,
20.876r s

2112.65r s
23/222.8r s

2220.8r s
25/2,

r s>10,
~16!

Vp
LR~r !52e2aU/2r

4, ~17!
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aU is the dipole polarizability of uranium, andr c is the point
whereVp

SR(r ) andVp
LR(r ) intersect.

This potential was used both in our previous papers6,7 to
calculate elastic scattering by inert gases, and in Ref. 1
describe elastic scattering by alkali metal atoms. At this tim
we know of no experimental values of the dipole polarizab
ity of uranium aU . In Ref. 1, the following value of the
polarizability of uranium was obtained using the Thoma
Fermi-Dirac model:4 in atomic units,aU /a0

3529.36, which
is somewhat larger than the experimentally known pola
ability of the more compact xenon atomaXe /a0

3527. Actu-
ally, the dipole polarizability is a variational paramete
whose value we will take to beaU /a0

3530; for this value we
find r c53.7575268.

In order to study the question of stability of our resu
with respect to changes in the shape of the polarization
tential, we also used a polarization potential of the form5

Vp~r !52
e2aU

2~r 21r v
2!2

, ~18!

wherer v is a fitting parameter of the model determined fro
agreement between numerical calculations and experime
data, and is usually rather well described by the express
r v5(a/2)1/3. For our value of the polarizability of uranium
aU we pick r v to satisfyr v /a052.45.

As a model exchange potential we used the expres
proposed in Ref. 15:

Vex~r !52
2

p
KFF~h!, F~h!5

1

2
1
12h2

4h
lnU11h

12hU.
~19!

where

KF5@3p2r~r !#1/3, h5
K

KF
.

If we include relativistic corrections we have

K5A~ I1E1Ac2KF
21m2c4!2

c2
2m2c2, ~20!

while without them we have

K5AKF
21k212I , ~21!

whereI is the ionization potential of the atom.
In order to study the stability of our results with respe

to variations of the shape of the model exchange interac
we used16

Vex~r !5
1

2
$Ek2Va~r !2Vp~r !%

2
1

2
A~Ek2Va~r !2Vp~r !!224pr~r !

e2\2

m
.

~22!
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4. NUMERICAL CA

TABLE I. Numerical calculations of the total elastic scattering cross sections ~in atomic units! as a function
of the electron kinetic energyEk for a U atom with an unperturbed potentialVa(r ) obtained from the

d

correlation-exchange term of Ref. 11 with the third set of parameters, with the polarization potentialVp(r ) of
Ref. 14, and the exchange potentialVex(r ) of Ref. 15.

Note. Column 1 is the total cross section including relativistic corrections based on Eqs.~13!, ~9!, and ~10!;
column 2, the total cross section without including relativistic corrections, is based on Eqs.~14!, ~11!, and~12!;
column 3 is the total cross section~relativistic case! obtained by direct solution of the Dirac equation; an
column 4 is the total cross section~nonrelativistic case! obtained by direct solution of the Schro¨edinger equa-
tion.
LCULATIONS
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We solved the systems of differential equations~9!, ~10!
~11!, and ~12! numerically using the Adams predictor
corrector method.17 In addition, we found the value of th
phase by direct integration of the radial Dirac Eqs.~3! and
~4! with subsequent matching to the asymptotic solutions~7!
and~8!, and also by integration of the Schroedinger equat
without including relativistic corrections.

The results of these numerical calculations, which
present here, lead us to the following conclusions.

1. In accordance with assertions of our previo
papers,6,7 at low electron kinetic energies the values of t
elastic scattering cross section differ significantly for t
relativistic and nonrelativistic cases.

2. The values of the cross section obtained for urani
whenEk,5 eV holds are sensitive to changes in the sha
of all three terms of the total interaction potential between
electron and an atom, i.e., the unperturbed atomic pote
Va(r ), the polarization potentialVp(r ), and the exchange
potentialVex(r ).

3. The presence or absence of a Ramsauer effect,
also the particular electron kinetic energy at which the ela
scattering cross section is a minimum when there is a R
sauer effect, are contingent on the detailed potential sha

In what follows we will illustrate these assertions wi
specific examples.

Table I shows the results of calculations of the to
cross section for elastic scattering of an electron by a u
nium atom with the unperturbed potentialVa(r ) obtained by
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third set of parameters, the polarization potentialVp(r ) taken
from Ref. 14, and the exchange potentialVex(r ) taken from
Ref. 15. In Table I we list the results as a function of t
electron kinetic energyEk : the first column is the total cros
section, including relativistic corrections based on Eqs.~13!,
~9!, and ~10!; the second is the total cross section witho
including relativistic corrections based on Eqs.~14!, ~11!,
and~12!; the third is the total cross section~relativistic case!
obtained by direct integration of the Dirac equation; and
fourth is the total cross section~nonrelativistic case! obtained
by direct integration of the Schro¨dinger equation. By com-
paring columns 1 and 2~3 and 4!, we can estimate the mag
nitude of the relativistic effects associated with electron sc
tering.

The solution to the Dirac and Schroedinger equations
the method of phase functions allows us to consider the
dial dependence of both the phase functionsd j l (r ) and
d l(r ) and the amplitude functionsAjl (r ) andAl(r ). If the
depth of the effective potentialV(r ) Eq. ~1! is of order
mc2, then the second terms in Eqs.~9! and ~10! which we
neglected in going to the nonrelativistic limit in Eqs.~11!
and ~12!, contribute to the phase and amplitude functio
Once we know the radial behavior of these functions, we
determine at what value of radius vectorr relativistic correc-
tions play a significant role and how the set of phas
d j l (r ) develops. From this we can estimate the influence
the effective potential shape. Figure 1 shows plots of
phase and amplitude functions versus distance from the
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FIG. 1. Dependence of the amplitude~a!
and phase~b! functions on distance from the
center of the nucleus~in atomic units! for an
s-wave at electron kinetic energyEk

51028 eV. The unperturbed potentia
Va(r ) is taken from from the correlation-
exchange term of Ref. 11 with the third se
of parameters, the polarization potenti
Vp(r ) is from Ref. 14, and the exchange po
tential Vex(r ) is from Ref. 15. The solid
curves are relativistic calculations, th
dashed curves nonrelativistic.
ter of the nucleus fors-waves and an electron kinetic energy
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Ref. 15; the unperturbed atomic potential of uranium was
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Ek51028 eV, and the unperturbed potentialVa(r ), polar-
ization potentialVp(r ), and exchange potentialVex(r ) cho-
sen above. The solid curve is the result of a calculation
the relativistic case, while the dashed curve is for the n
relativistic case. The jumps in the phase function (2p<ds
<p) and zeros in the amplitude function corresponding
them match the zeros of the radial wave functionsg(r ) ~Ref.
7! and f (r ) ~Ref. 8!. From Fig. 1 it is easy to see that the
points shift on the radial scale as we go from the nonrela
istic to the relativistic case. Thus, the relativistic correctio
for the uranium atom must be included both in the phase
the amplitude functions.

In order to check our calculations of the phase functio
d j l (r ) and amplitude functionsAjl (r ), we calculated the
wave radial functionsg(r ) and f (r ) from Eqs.~7! and ~8!
and compared them with the same functions obtained
rectly from an integration of the radial Dirac equations~3!
and~4! with subsequent matching to the asymptotic solutio
~5! and~6!. The results of the two methods agree complete
The phase functionsd l(r ) and amplitude functionsAl(r )
from the nonrelativistic Schro¨dinger equation were checke
in the same way.

The relativistic and nonrelativistic calculations diffe
considerably for kinetic energies less than 1 eV, since
characteristic momentum of an electron within the atom is
large that relativistic corrections play an important ro
Therefore, in what follows we give results only for the rel
tivistic case.

The slight discrepancy between the results of the t
computational methods we have used at low electron e
gies is explained by complications that arise when system
differential equations are solved numerically by the ph
method; nevertheless, when the phases are calculate
these two methods, they agree to an accuracy of;0.01%; if
this were not so, there would be a rather large difference
the total scattering cross section. For definiteness we
give results obtained by using the solution to the relativis
Dirac equation by the phase method~9! and ~10!.

Let us consider the effect of changing the unperturb
atomic potentialVa(r ). Figure 2 shows the results of nu
merical calculations of the total cross sections for elastic
scattering of an electron by a uranium atom as a function
the electron kinetic energyEk , using the polarization poten
tial Vp(r ) from Ref. 14 and exchange potentialVex(r ) from
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calculated using the relativistic Hartree–Fock–Slater met
with various exchange-correlation potentials. Curve1 is the
Slater form ~with parameteraSlt52/3!; 2 is the potential
from Ref. 11 with the third set of parameters;3 is from Ref.
12; 4 is from Ref. 13;5 is the Slater form~with parameter
aSlt51!; and 6 is a calculation of the unperturbed atom
potential using the nonrelativistic Dirac model.4 From this
figure it is easy to see that model perturbations of the aver
atomic field lead to different behavior of the functions for
electron kinetic energies less than 1 eV, whereas forEk

.20 eV all of these models give similar results.
Table II lists the results of calculations in which th

unperturbed atomic potentialVa(r ) is modified by changing
the initial electron configuration of the uranium atom
Va(r ) is obtained from the correlation-exchange term giv
in Ref. 11 with the third set of parameters, the polarizat
potentialVp(r ) is taken from Ref. 14 and the exchange p
tential Vex(r ) from Ref. 15. The first column is the tota
cross section for electron configuration 5f 5/2

4 6d3/2
0 7s1/2

2 , the
second for 5f 5/2

3 6d3/2
1 7s1/2

2 , the third for 5f 5/2
2 6d3/2

2 7s1/2
2 , the

FIG. 2. Dependence of the total elastic scattering cross section for uran
s ~in atomic units! on the electron kinetic energyEk with the polarization
potentialVp(r ) from Ref. 14, the exchange potentialVex(r ) from Ref. 15,
and an unperturbed atomic potential obtained within the framework of
relativistic Hartree–Fock–Slater method. The exchange-correlation po
tials were taken from: Ref. 10, withaSlt52/3 ~curve1!, Ref. 11 with the
third set of parameters~curve2!; Ref. 12~curve3!; Ref. 13~curve4!; and
Ref. 10, withaSlt51 ~curve5!. Curve6 is calculated using the nonrelativ
istic Thomas–Fermi–Dirac model~see Ref. 4!.
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fourth for 5f 5/2
1 6

TABLE II. Numerical calculations of the total elastic scattering cross sections ~in atomic units! as a function
of the electron kinetic energyEk for uranium with an unperturbed potentialVa(r ) obtained from the correlation-

674 JETP 84
exchange term of Ref. 11 with the third set of parameters, the polarization potentialVp(r ) of Ref. 14, and the
exchange potentialVex(r ) of Ref. 15.

Note. The total cross sections are listed here for the following configurations: column 1—5f 5/2
4 6d3/2

0 7s1/2
2 ,

column 2—5f 5/2
3 6d3/2

1 7s1/2
2 , column 3—5f 5/2

2 6d3/2
2 7s1/2

2 , column 4—5f 5/2
1 6d3/2

3 7s1/2
2 , and column 5—

5 f 5/2
0 6d3/2

4 7s1/2
2 .
d3/2
3 7s1/2

2 , and the fifth for 5f 5/2
0 6d3/2

4 7s1/2
2 .

d
1
lc

In order to determine the sensitivity of our results to a
ar-
er-
-
f

The model variations of the average atomic field also lea
different values ofs for electron kinetic energies less than
eV. Note the absence of a Ramsauer effect for all the ca
lations presented in Table II.
TABLE III. Overlap integrals I b of radial wave fun
n-shell as a function of the electron kinetic energyEk for
to

u-

change in the shape of the polarization interaction, we c
ried out additional calculations in which we used the unp
turbed atomic potentialVa(r ) obtained from the exchange
correlation potential of Ref. 11 with the third set o
ctions for the scattered and atomic electrons in the
uranium with an unperturbed potentialVa(r ) obtained

ntial

674onosov
from the correlation-exchange term from Ref. 11 with the third set of parameters, the polarization pote
Vp(r ) from Ref. 14 and the exchange potentialVex(r ) from Ref. 15.
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FIG. 3. Dependence of the total elastic scattering cross section
uraniums ~in atomic units! on the electron kinetic energyEk with
the unperturbed atomic potentialVa(r ) obtained from the
exchange-correlation potential of Ref. 11 with the third set of p
rameters, the exchange potentialVex(r ) of Ref. 15, and polariza-
tion potentialsVp(r ) taken from: Ref. 14~curve1!, Ref. 5 ~curve
2!, andVp(r )[0 ~curve3!.
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took the polarization potential from Ref. 14 and Ref. 5; w
also calculated the scattering with no polarization potent
Figure 3 shows the results obtained when the two mo
polarization interactions are used. It is clear that they are
good agreement with one another for energies greater th
eV, but differ markedly at smaller energies. The cross s
tion functions shown do not have a deep minimum at sm
kinetic energies, i.e., there is no Ramsauer effect.

In order to determine the effect of variations in the e
change potential we carried out a fourth series of calculati
in which we used the unperturbed atomic potentialVa(r )
obtained from the exchange-correlation potential of Ref.
with the third set of parameters and the polarization poten
Vp(r ) from Ref. 14, while varying the exchange potent
Vex(r ). In the first series of calculations, which we me
tioned already, the exchange potential was taken from R
15; the second set of calculations included no exchange
tential at all; in the third we used the potential from Ref. 1
and in the fourth, the Slater potential~with aSl t52/3!. The
results are shown in Fig. 4. For kinetic energies less tha
eV, the behavior of the cross section is totally different fro
one calculation to the next. Clearly, the cross section is v
sensitive to the form of the exchange interaction at these
kinetic energies. There is no Ramsauer effect for all fo
types of calculations.

In Ref. 18 we presented data from a numerical calcu
tion of the dependence of the partial scattering phases
electron kinetic energyEk in eV for uranium, using the rela
tivistic phase function method for all the types of electro
atom interaction potentials chosen by us.

In this paper we calculate the degree of orthogonality
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trons. Consider first the orthogonality of the radial wa
functions with the same quantum numbersj and l . The de-
gree of orthogonality of the radial wave functions is det
mined by the overlap integral

I b5U *0
r n j l@gEjl~r !gnl j~r !1 f E j l~r ! f nl j~r !#dr

A*0
r n j l@gEjl

2 ~r !1 f E j l
2 ~r !#dr*0

r n j l@gn jl
2 ~r !1 f n j l

2 ~r !#dr
U ,

~23!

wherer n j l is the radius of normalization of the wave functio
of a bound electron,gEjl(r ) and f E j l(r ) are the large and
small components of the continuous-spectrum wave func
of the scattered electron, andgn jl(r ) and f n j l(r ) are the large
and small components of the wave function of a bou
atomic electron from Eq.~6!. The radius of normalization
r n j l is chosen from the condition

E
0

r n j l
@gn jl

2 ~r !1 f n j l
2 ~r !#dr512«, ~24!

where«51027. The calculations show that the value ofI b
exceed 1% for electron from the outer shells of the atom w
minimum binding energy. Table III shows how the overla
integral I b depends on the kinetic energyEk of an electron
for uranium with the unperturbed potentialVa(r ) derived
from the correlation-exchange term taken from Ref. 11 w
the third set of parameters, the polarization potentialVp(r )
taken from Ref. 14, and the exchange potentialVex(r ) taken
from Ref. 15. The first column is fors1/2 waves and 7s1/2
atomic electrons with binding energyEb54.743 eV; the sec-
ond is forp1/2, 6p1/2, Eb529.526 eV respectively; the third
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FIG. 4. Dependence of the total elastic scattering cross section
uraniums ~in atomic units! on the electron kinetic energyEk with
the unperturbed atomic potentialVa(r ) obtained from the
exchange-correlation potential of Ref. 11 with the third set of p
rameters, the polarization potentialVp(r ) of Ref. 14 and exchange
potentialsVex(r ) taken from: Ref. 15~curve1!; Ref. 16~curve2!;
Vex(r )[0 ~curve3!; and the Slater potential of Ref. 10 andaSlt

52/3 ~curve4!.
for p3/2, 6p3/2, Eb520.627 eV; the fourth ford3/2, 6d3/2,
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Eb52.776 eV; the fifth ford5/2, 5d5/2, Eb594.462 eV; the
sixth for f 5/2, 5f 1/2, Eb53.225 eV; and the seventh fo
f 7/2, 4f 7/2, Eb5365.490 eV. Other types of the mea
atomic, polarization, and exchange potentials give roug
the same maximum value ofI b , but at a different value of
Ek .

It is possible that the models of elastic and exchan
potentials we have used, which describe the elastic scatte
of electrons by inert gas atoms and certain alkali metal ato
rather well, may be unsuitable for describing scattering
uranium. However, we can assert that at low energies
computed behavior of the total cross section for elastic s
tering of an electron by uranium depends markedly on
model interaction potential. Note that it is necessary to us
relativistic model of the scattering of an electron by a hea
atom. The relativistic effects are especially evident in
s- and p-waves forEk,5 eV. This fact prevents us from
making any reliable predictions regarding the presence
absence of a Ramsauer effect in the scattering from aver
potential models.

5. CONCLUSION

Reliable assertions about the shape and magnitude o
energy dependence of the cross section for elastic scatte
of a slow electron by a uranium atom, and the presenc
absence of a Ramsauer effect, can be made only with
help of experiments that refine the theoretical concepts u
to describe the elastic scattering process. There are a nu
of simple model potentials that are in good agreement w
one another, but only for energies of several tens of
More first-principles theoretical calculations would have
be made using the continuous-spectrum multiconfiguratio
relativistic Hartree–Fock method for the complete ato
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quire a great deal more computational power. We know
similar calculations carried out by Saha19 for atoms of cer-
tain inert gases in the nonrelativistic approximation, whi
require tens of hours of machine time on a Cray-level sup
computer. In our paper Ref. 7, we compared the calculati
of Ref. 19 for the elastic-scattering cross sections of arg
atoms with relativistic and nonrelativistic single-particle ca
culations based on an effective spherically symmetric pot
tial, and concluded that it is necessary to include relativis
corrections in describing the scattering at electron kine
energies less than 5 eV.

The authors are grateful to V. Yu. Dobretsov for provi
ing us with programs without which the numerical calcu
tions would have been very difficult. Partial financial supp
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1!The phase functiond l(r ) and amplitude functionAl(r ) derived from the
Schroedinger equation depend only on the radial quantum numberl , and at
nonrelativistic energies we haved l'd l11/2,l'd l21/2,l , p'k.
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Mechanisms for long-range forces in the ‘‘three atoms 1electron’’ system

the
F. M. Pen’kov* )
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The Born–Oppenheimer approximation is used to obtain an equation for the effective interaction
of three atoms bound by a single electron. For low binding energies long-range forces arise
between the atoms in an ‘‘electron1atom pair’’ that lead to bound states when the size of the
three-atom cluster is several tens of angstroms. A system made up of alkali metal atoms is
considered as an example. ©1997 American Institute of Physics.@S1063-7761~97!00804-4#

1. INTRODUCTION found. In this paper a scheme is given for constructing
te
te

is
th
th

g
a

d-
o

um
th
of

c
n
ai

g
o

d
s
fe

lo
in
e
e
er
c
os
s
lie
ys
th
b

r-
–
em
ms
ange
na-

ee
tes,
ari-
are
bi

to

of

red
ef-
on

bel
ls
n

ace

s a
tial
ect

s

-0
Nowadays, methods for creating matter in the clus
phase and determining its properties are widely investiga
Thus, a model was proposed by Manykinet al.1,2 for matter
consisting of highly excited atoms in which the stability
determined by the large overlap of wave functions from
valence electrons. Later this model was used to explain
cluster properties of a cold plasma of cesium atoms.3 In this
paper we propose a different mechanism for maintainin
very diffuse cluster based on the small affinity energy of
electron for a neutral atom.

Previously,4 it was shown by direct analysis of the Fa
deev equations5 that the effective interaction potential of tw
atoms in a ‘‘two atoms1electron’’ system for real electron–
atom affinity energy scales has long-range Efimov6 and
quasi-Coulombic terms proportional to 1/r 2 and 1/r respec-
tively, which determine the asymptotic part of the spectr
of these systems. In this case the quasiclassical limit for
effective potential coincides with the effective potential
Ref. 7 obtained from the Schro¨dinger equation in the Born–
Oppenheimer approximation. The self-similarity of the effe
tive potential at distances larger than the characteristic ra
of the pair forces makes it possible to use convenient p
wise separable Yamaguchi potentials for the analysis.

It turns out that in a ‘‘three atoms1electron’’ system the
effective potential for interatomic interactions also has lon
range parts with coupling constants that are larger than th
of a ‘‘two atoms1electron’’ system. In what follows, the
terms ‘‘triatomic system’’ and ‘‘diatomic system’’ are use
for simplicity without mentioning the electron, whose pre
ence here also determines the diatomic and triatomic ef
tive potentials.

The effective potential of such a triatomic system is
cal, but the three-particle potential cannot be broken up
a sum of pairwise interactions. Three-particle forces ar
serious problem for analyzing the spectrum of such a syst
while the quasiclassical nature of the motion makes num
cal calculations of the states of real atomic systems pra
cally impossible. In addition, the range of energies of m
interest is above the diatomic threshold, where two atom
the three can form a bound state while the third particle
in the continuum spectrum. Therefore, a complete anal
requires investigation not only of the spectrum but also
series of resonances in which the triatomic system may
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effective potential of the triatomic subsystem for a fou
particle problem within the framework of the Born
Oppenheimer approximation. The properties of this syst
will be discussed only for those configurations of three ato
that are necessary to illustrate assertions about the long-r
character of the effective potential and the quasiclassical
ture of the spectrum.

2. EFFECTIVE POTENTIAL

In order to treat a four-particle system consisting of thr
atoms and an electron, we introduce Jacobi coordina
which are convenient since the electron coordinate is inv
ant with respect to permutation of the atoms when they
used. Letra and ra be the standard three-particle Jaco
coordinates of the atoms, i.e.,ra joins a pair of atoms and
ra is a vector directed from the center of mass of this pair
the third atom. The labela 5 1, 2, 3 identifies one of the
three possible systems. Then the electron coordinatex will
be a vector from the position of the electron to the center
mass of the three atoms.

In view of the smallness of the electron mass compa
with the atomic masses, our scheme for constructing the
fective potential in the Born–Oppenheimer approximati
consists of finding the quantityU(r ,r) from the equation.1!

2
1

2m
DxC1(

i51

3

v~xi !C5U~r ,r!C, ~1!

wherem is the electron mass andv(xi) is the pairwise inter-
action potential between an electron and the atom with la
i . In what follows we will use rank-1 separable potentia
that act only in anS-wave. The effect of such a potential o
the wave function can be written in the form

v~ t !C5n~ t !^n~ t8!C~ t8!&,

where the angle brackets imply integration over all the sp
of the variablet8.

The separable form of the pairwise potential define
simple scheme for constructing equations for the poten
U. In this case we must take a Fourier transform with resp
to the variablex. Then the coordinatesr and r , denoted
below by a six-dimensional vectorR, drop out of the discus-
sion. The Fourier transforms of the quantitie
v(xi) C(R,x) have the following simple form:

6784$10.00 © 1997 American Institute of Physics
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where the vectorai connects the position of the atom wit
label i and the center of mass of the triatomic system.
what follows we will expressC~R,k! in terms of the un-
known quantities in angle brackets. Then by projecting
onto the functionn(k)exp( 2 ikai) for eachi we obtain a
homogeneous system of equations which is solved by se
its determinant equal to zero. In this way we obtain the eq
tion

@G~0!21#312G1G2G32~G1
21G2

21G3
2!@G~0!21#50

~2!

for the effective potentialU, which enters into the Green’
functionsGi [ G(r i) averaged over momentum:

G~r !5 K n~k!
exp~ ik–r !

U2k2/2m
n~k!L . ~3!

Here the vectorr i joins two atoms, i.e., it coincides with th
coordinatesra for a corresponding choice of the set of Jaco
coordinates. For definiteness, a pair of particles will be
beled according to the label of the third particle.

Equation~2! with the definition~3! is valid for any sepa-
rable potentials. In what follows we will consider th
Yamaguchi potential, which has the form

n~k!n~k8!52
4p

m

~k1b!2b

~b21k2!~b21k82!
,

the quantityk is a wave number for a real (k . 0) or virtual
(k , 0) state with energy« 5 2k2/2m, whileb determines
the inverse range of the pair potential, and consequently
depth b2/2m. Simple integration gives an expression f
G(r ):

G~r !5S b1k

b1uD 2S 2b

~b2u!2
e2ru2e2rb

r
2

b1u

b2u
e2rbD .

~4!

Here we define the wave numberu5A22m U of the poten-
tial for Reu . 0. In what follows we require the value of th
function ~4! at zero:

G~0!5S b1k

b1uD 2, ~5!

and in the limiting caser @ b21:

G~r !→S b1k

b1uD 2 2b

~b2u!2
e2ru

r
. ~6!

3. PROPERTIES OF THE EFFECTIVE POTENTIAL

Let us consider the effective potential at zero. Sett
r i equal to zero, we obtain from Eq.~2! the simple expres-
sion

3G~0!51,

which shows that the wave number of the effective poten
corresponds to three times the depth of the pairw
electron–atom interaction, since there is no factor of 3 in
eigenvalues of the pairwise problem for the electron-ato
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potential at zero is determined by the wave numberulim :

ulim5~)21!b1)k,

which reduces to zero only for a virtual value of the wa
number of the electron–atom interaction. However, the
fective potential of a triatomic system exists fork .
20.423b.

The equations given above for the effective potential
valid for any separable interaction used to define the det
of the pairwise force at small distances. Below we will tre
the case of a resonant interaction, where the wave numbe
the bound state is much smaller than the inverse range o
pairwise forces. For the Yamaguchi potential the reson
nature is determined by the conditionk/b ! 1. In this case
the amplitude of the pairwise electron–atom interaction
determined by the pole nearest to the bound state~real or
virtual!, and does not depend on the details of the pairw
forces, i.e., on the choice of potential. For the effective p
tential of a triatomic system this independence will be fou
for r i@b21.

Let us consider Eq.~2! in the resonant case. Taking~6!
into account, it simplifies to an expression that does not
pend onb:

122 f 1f 2f 32 f 1
22 f 2

22 f 3
250, ~7!

where

f i5
e2kr ie2ci

ci
, ci5~u2k!r i .

The quantitiesci determine the behavior of the effective p
tential with coordinater i :

U52
ci
2

2mr i
22

cik

mr i
1«,

and have the sense of coupling constants which depen
the mutual atomic positions.

The form of Eq.~7! allows us to draw some preliminar
conclusions about the behavior of the effective potent
First of all, the larger the quantityf i is, the smaller the cou-
pling constant corresponding to it. Secondly, the condit
for solvability of Eq.~7! imposes restrictions on the values
f i :

f i
21 f j

2<1, iÞ j ,

for any pair of coordinates. Thus, the limiting valuef i 5 1,
and consequently the minimum value forci is achieved only
in the case where the remaining two components equal z
corresponding to the configurationra @ r a for any pair of
atoms. This case corresponds to two isolated atoms wh
effective interaction potential has clearly expressed lo
range terms with coupling constantclim . In particular, in the
regionkr i ! 1 the limiting value of the coupling constan
clim 5 0.567 is a solution to theequationc5 exp(2 c). For any
other configuration of three atoms we havef i,1 and ci
. clim . Thus, the pairwise diatomic potential is an upp
limit on the triatomic interaction.

As in the diatomic case,4 for k . 0 the asymptotic value
of u reduces tok, corresponding to real electron–atom co
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The
therefore the behavior of the effective potential is determin
by these variables. In the diatomic case this dependence
mediately leads to long-range potentials of the Efimov a
quasi-Coulombic type. In the triatomic case the situation
more complicated, since there are three independent co
nates that determine the triangle of particles.

Of course, for spatial configurations of three bod
specified by a single coordinater we return to the case o
long-range forces, as in the diatomic case,4 but with different
values of the constantc. Some examples of this are config
rations withr i→0, for which the atoms are located on th
same line symmetrically with respect to the atom with la
i , or the configuration of an equilateral triangle. In the fi
case, assuming for definitenessr150 we obtainr 2 5 r 3
5 r 1 /2. Then Eq.~7! gives an equation forc:

c25~81c!e2c,

with the unique solutionc 5 1.473...
For the equilateral triangle configuration (r 1 5 r 2 5 r 3

5 r ) Eq. ~7! reduces to the form

c52e2c, ~8!

which differs from the diatomic case4 by a factor of 2 and
therefore gives a larger coupling constantc 5 0.8526... .

It is not difficult to show that this configuration of atom
is unstable, i.e., any deviation from the configuration of
equilateral triangle gives a deeper effective potential. In
der to verify this, let us consider a variationdu which dis-
torts the configuration for a fixed moment of inertia, i.
R2 5 (r 1

2 1 r 2
2 1 r 3

2)/3. We note that constancy of themome
of inertia mR2 implies independence of the kinetic ener
with respect to such variations.

Varying Eq. ~2! with respect tou and r i
2, taking into

account the constancy ofR and the sign of the derivative
]G/]u, we obtain

du5M F32 ~d1
21d2

2!1~d11d2!
2G , d i5dr i

2, M.0.

Thus, the wave number reaches its minimum and the ef
tive potential its maximum value in the ‘‘equilateral tr
angle’’ atomic configuration. Hence using this maximu
value we can obtain a lower bound on the number of lev
and draw conclusions about the long-range character fo
bitrary atomic positions.

The equation of motion for three atoms contains six
dependent coordinates. It is convenient to choose hy
spherical coordinates~see, e.g., the review Ref. 8!. Since it is
sufficient to investigate onlyS-wave motion in each pair in
order to confirm the long-range character of the effect
potential, the only variables in the Schro¨dinger equation will
be the hyperradiusR and the hyperanglex:

R25
2

3
r21

1

2
r 2, tanx5A3

4

r

r
.

In these variables the motion of the atoms is described b
Schroedinger equation, which for the wave functi
F(R,x), after separating out the standard factor 1/rr, takes
the form
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~9!

wherem is the mass of an atom. In this case the functionF
can take on zero values forR5 0, x 5 0, x 5 p/2; since we
are discussing the problem as an eigenvalue problemF
should be quadratically integrable.

The effective potentials under discussion have the sc
of the potential energy for an electron interacting with
atom, i.e., they consist of fractions of an electron vo
whereas the de Broglie kinetic energy of the atoms on
atomic scale of distances amounts to only a few thousan
of an electron volt. Thus, the motion of the atoms is ess
tially quasiclassical. In order to verify this, let us consid
the solutions to Eq.~9! with maximum value of the effective
potential determined by the equilateral-triangle configu
tion. Since this value is independent ofx, the variables sepa
rate and the solution can be written as a sum of functi
AK(R)BK(x); the functionsBK(x), which are found by
solving the eigenvalue problem, are required to vanish
x 5 0 andx 5 p/2. The solutions are obvious and give th
eigenvalues2 4K2 (K 5 1,2,3), leading to an additional re
pulsive potential of the form 4K2/2mR2. The equation for
A(R) is quasiclassical. Actually, introducing the constantg
5 Am/m and taking into account thatg @ 1, we can look for
an expansion of the actionS with respect tog:

S5gs01s11... .

SubstitutingA(R) in the form exp(iS) into Eq.~9!, we obtain
the usual quasiclassical solution with Bohr–Sommerf
quantization rules in the form

gE
Rmin

RmaxAu212mE2
4K220.25

g2R2 dR5pS n1
3

4D .
~10!

The latter condition can be used to estimate the numbe
levels if we set the energy equal to the electron–atom bi
ing energy or zero for the virtual states. In what follows w
will sum over allK, which gives a numbern . 0. Since the
effective potential at small distances depends on the mo
chosen both for the electron–atom and the atom–atom p
wise interaction, it is reasonable to choose the boundRmin in
the range greater than the characteristic scales of these i
actions. This choice of the left-hand boundary correspond
a model with an additional interatomic repulsion at sm
distances. By increasingRmin we can impose the vanishin
of the bound state. This boundary also will define the r
scale of the long-distance effective potential of t
equilateral-triangle configuration.

In order to demonstrate these assertions, it is good
consider a number of alkali metals with rather sm
electron-affinity binding energies for an atom in aS-state.
For 6Li and 133Cs we estimate affinity energies of 0.62 an
0.47 eV respectively.9 We calculate our estimates of th
number of levels over a region larger than 5 Bohr radii, i.
2.65 Å. In this case we use the asymptotic equation~7!. Then
the system6Li3

2 has more than 1.63 103 levels and disap-
pears when the repulsion radius is greater than 20 Å.
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2 has more than 4.03 104 levels and disappears
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when the repulsion radius is greater than 34 Å. Since th
calculations are for configurations with very shallow effe
tive potentials, these estimates are lower bounds.

4. CONCLUSION

The mechanisms for quantum-mechanical long-ra
behavior in systems of heavy particles with almost class
dynamics do not change when we go from a diatom
problem4 to a triatomic one, and are explained by the lar
characteristic size of the electronic shell for the added e
tron. This physics of the long-range behavior should also
present in systems with larger numbers of atoms. Such c
ters should exhibit certain special features: negative charg
large average distance between the atoms, and for atoms
unfilled shells of valence electrons magnetic properties
well, connected with a tendency to align their spins antip
allel to the spin of the external electron that binds the syst
In addition to atoms with rather small real electron affinitie
atoms with small virtual affinities can also be candidates
the formation of such clusters. In this paper we have con
ered the effective interaction of three ground-state atoms
diated by an external electron, but the mechanism for suc
681 JETP 84 (4), April 1997
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of freedom and does not exclude excited atoms. In this c
additional long-range attractive potentials may arise betw
the atoms in such a system.

This work was carried out under Project K-40-96.
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Coherent repopulation of hyperfine structure levels in the field of a bichromatic

he
resonant radio-frequency wave
D. F. Zaretski  and S. B. Sazonov

Kurchatov Institute, 123182 Moscow, Russia
~Submitted 11 October 1996!
Zh. Éksp. Teor. Fiz.111, 1236–1244~April 1997!

We consider the resonant interaction between atoms with hyperfine energy levels and a
bichromatic radio-frequency field. Nuclear Zeeman levels of an impurity center in a magnetic
host form a structure of this kind. Using the spin-density-matrix formalism, we solve
the problem of coherent repopulation of a system of three of these levels under the action of a
bichromatic resonant radio-frequency wave, taking into account transverse relaxation, and
note the connection between this effect and the well-known phenomenon of coherent population
capture when a laser bichromatic field interacts resonantly with a three-level system. We
discuss various possibilities for observation of this effect experimentally. ©1997 American
Institute of Physics.@S1063-7761~97!00904-9#
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The resonant interaction of laser fields with atoms c
lead to significant repopulation of levels of these atoms
particular, this effect is observed when a bichromatic la
wave interacts with atoms with hyperfine structure.1 This re-
population can be accompanied by the phenomenon of
herent population capture.1–3 In optics this effect is used to
obtain amplification without inversion, the creation
anomalously transparent medium, etc.4

It is reasonable to assume that an analogous ef
should occur when systems of atomic hyperfine levels re
nant interact resonantly with bichromatic radio-frequen
waves. An example of such a system could be nuclear Z
man levels of impurity centers in the magnetic field of a ho
In some cases, the Zeeman nuclear levels are not equidi
due to the quadrupole electric interaction of the nuclei w
the crystal field of the host.5

The primary difference between RF resonance and o
cal resonance is the fact that, as a rule, all the Zeeman le
are populated from the very beginning in the RF case. Po
lations of these levels less than unity are observed onl
ultra-low temperatures. Furthermore, both longitudinal a
transverse spin relaxations play a significant role in RF re
nance. It is noteworthy that in the NMR region, as a rule
transverse relaxation timeT2 is considerably shorter than th
longitudinal relaxation timeT1 ~for spin depolarization!.

One of the commonest methods for recording repopu
tion of the Zeeman nuclear levels of radioactive impur
centers is to measure the angular anisotropy of their de
products.6

2. COHERENT REPOPULATION OF LEVELS FOR A THREE-
LEVEL SYSTEM WITH TRANSVERSE RELAXATION

Let us consider the coherent interaction of a three-le
nuclear system with a resonant bichromatic radio-freque
field, in which the first component of the bichromatic wa
induces resonance transitions between levels 1 and 3, w
the second component induces resonance transitions bet
levels 2 and 3. Level 3 is common to both. Let us assu
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populations as functions of time are found by solving t
system of equations for the spin-density matrix. In the
equations we will include only transverse relaxation~relax-
ation timeT2!. For impurity centers this approximation i
valid, because, as a rule,T2!T1 ~where T1 is the spin–
relaxation time!. However, this limitation is not fundamenta
In the equations for the density matrix, we can introdu
terms associated withT1 , but then the solution will be more
complicated.

In addition, we will use the following approximation.
1. Each frequency of the bichromatic wave coincid

with the frequency for a transition between the correspo
ing levels~the resonant approximation!.

2. Throughout the entire interaction, the relative pha
constant of the two components of the waveDw remains
fixed. For simplicity we consider only the casesDw50 and
Dw5p.

3. The matrix elements for the magnetic dipole intera
tion of the nuclear spins with the magnetic field of thei th
component of the bichromatic waveVi ( i51,2), which
stimulate the corresponding transition, are assumed to
equal in absolute value~V25V1 for Dw50 andV252V1

for Dw5p!.
4. The three-level system consists of nonequidistant l

els.
There are several different ways that a three-level sys

can interact with a resonant field, depending on where
common third level is located compared to the other two. W
will consider a system of three nonequidistant Zeeman lev
for which the common third level, which participates in th
interaction with both components of the resonant bich
matic field, is located between levels 1 and 2.~The analo-
gous scheme in optics is referred to as theJ scheme.!

The interaction of the three-level system with the res
nance field is described by an equation for the spin den
matrix s i j , which is the best way to include relaxation pr
cesses. In our case, this equation has the form

ṡ1Ĝs52 i @~Ĥ01V̂int!,s#. ~1!

6825$10.00 © 1997 American Institute of Physics
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the interaction operator between the system and the field,
Ĝ is an operator that describes the transverse relaxation
cess; here\51. Following Ref. 7, we convert from Eq.~1!
for s to an equation for the matrixr in the interaction pic-
ture, using the relations

r i j5s i j exp~ i ~Ej2Ei !t !,

Vi j5~V̂int! i j exp~ i ~Ej2Ei !t !. ~2!

Eventually we obtain the following ninth-order system
equations for r i j in the resonance approximation fo
Dw50, p, for which the (V̂int) i j are real:

ṙ1152 iV1~r312r13!,

ṙ2252 iV2~r322r23!,

ṙ3352 iV1~r132r31!2 iV2~r232r32!,

ṙ131Gr1352 iV1~r332r11!1 iV2r12,

ṙ311Gr3152 iV1~r112r33!2 iV2r21, ~3!

ṙ231Gr2352 iV2~r332r22!1 iV1r21,

ṙ321Gr3252 iV2~r222r33!2 iV1r12,

ṙ121Gr1252 iV1r321 iV2r13,

ṙ211Gr2152 iV2r311 iV1r23.

HereG is the transverse relaxation width:G5T2
21. In order

to simplify this system of equations~3! we introduce the
quantities

x135r312r13, x235r322r23, x125r121r21,

and also use the normalization condition

r111r221r3353A.

As a result, we go from a system of equations of ninth or
to a system of equations of fifth order:

ṙ1152 iV1x13,

ṙ2252 iV2x23,

ẋ131Gx1352 iV1~4r1112r2226A!2 iV2x12,
~4!

ẋ231Gx2352 iV2~4r2212r1126A!2 iV1x12,

ẋ121Gx1252 iV2x132 iV1x23.

The characteristic equation of this system~4! is an irre-
ducible algebraic equation of fifth order, whose solution
difficult to find. We can solve this equation approximate
along with the system of equations~4!, by assuming that the
magnitude of the interaction energy for the three-level s
tem with the bichromatic fieldV is much larger than the
transverse relaxation widthG. In this case, the period of th
Rabi oscillations will be much smaller than the timeT2 . As
our zeroth approximation we take Eq.~4! with no relaxation:
G50. In this case the characteristic equation for the ene
eigenvalues has the form

k5110V2k3116V4k50. ~5!
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k150, k25 iA2V, k352 iA2V, k452iA2V,

k5522iA2V. ~6!

Using ~6!, we obtain for the solutions to the characteris
equation of system~4! to accuracy up to first order of smal
ness in the small parameterj5G/V

k1523G/4, k25 iA2V2G/2, k352 iA2V2G/2,
~7!

k452iA2V25G/8, k5522iA2V25G/8.

Let us assume that all the levels of the impurity cen
are populated at timet50, with populations unequal to unity
in general: the diagonal matrix elements of the density
r i i (0)5Ai . The initial conditions for the off-diagonal den
sity matrix elements require some discussion. We can
sume that the rf field is turned on instantaneously. In t
case the phases of the off-diagonal matrix elements at t
t50 will be fixed:

r i j ~0!5AAiAj exp~ i ~a i2a j !!,

wherea i are phase constants. Turning the field on instan
neously implies that the turn-on time is much shorter th
the time between interactions that change the phases o
amplitudes of the level populations of the impurity cent
Among the processes that change the phase are interac
of an impurity center with phonons, magnons, etc. Beca
this time is the same order of magnitude asT2 , the turn-on
time should be much shorter thanT2 . Then, taking into ac-
count that the wave functions in quantum mechanics are
termined only up to a phase factor, the dependence on
time-independent phase constantsa i can be eliminated from
the system~4!.

When the field is turned on adiabatically over a tim
@T2 , the phases of the off-diagonal matrix elements c
cycle many times during the turn-on time, and the init
conditions in this case should have the formr i j (0)50(i
Þ j ). On the other hand, in order to bring about a Ra
oscillation regime, the quantum system should interact w
the field coherently over times that do not exceedT2 , i.e.,
the period of the Rabi oscillations should be much sma
thanT2 . Then, according to~7!, it is necessary that the field
be sufficiently strong:V@G.

The solution to the system of Eqs.~4! to first-order ac-
curacy in the parameterj for instantaneous turn-on of th
strong field forDw5p has the form

r11~ t !5A1@~A11A212AA1A222A!/8#exp~23Gt/4!

1$$128~A12A2!cos~A2Vt!14A2j~11A1

25A216AA1A2!sin~A2Vt!1@96~A11A2

22A!264AA1A2#cos~2A2Vt!1j@15A2~A1

1A2!242A2A210A2A1A2#sin~2A2Vt!%/

256%exp~2Gt/2!. ~8!

Analogously, forDw50 we obtain
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1$$128~A12A2!cos~A2Vt!14A2j~11A1

25A226AA1A2!sin~A2Vt!1@96~A11A2

22A!164AA1A2#cos~2A2Vt!1j@15A2~A1

1A2!242A2A110A2A1A2#sin~2A2Vt!%/

256%exp~2Gt/2!. ~9!

For r22(t) we obtain expressions analogous to~8! and ~9!
with the difference that terms proportional to cos(&Vt) and
sin(&Vt) have opposite signs. The expressions forr33(t) are
easy to obtain from the normalization condition

r11~ t !1r22~ t !1r33~ t !53A,

whereA is the average initial population of the levels:

A5~A11A21A3!/3.

From these expressions it follows that the magnitude
the population depends significantly on the phase differe
Dw of the components of the bichromatic wave. In partic
lar, if A15A25A35A and the duration of the pulset satis-
fies the conditionV21!t!G21, then for the quantityr̄11,
which in this case equalsr̄22 ~the bar above the matrix ele
ment implies time-averaging away the Rabi oscillation!,

r̄1153A/41~3A/16!~t/T2! for Dw50,

r̄1155A/42~3A/16!~t/T2! for Dw5p. ~10!

Hence it is clear that for a short field pulse (t/T2!1) the
populations of levels 1 and 2 will differ significantly from
the population of level 3 ('25%) even when the popula
tions of all levels are the same before the field is turned
Furthermore, this difference will change for different valu
of Dw. The reason for this effect is the coherent addition
population amplitudes at the common level 3, i.e., it is ana
gous to the phenomenon of coherent population capture
three-level atomic system interacting resonantly with
bichromatic laser field. The repopulation of NMR levels
impurity centers should be observable if these centers
radioactive by examining the angular anisotropy of the de
products.

Since the populations of the levels depend significan
on the transverse relaxation timeT2 , this effect affords an
additional way to measure this quantity.

Let us now briefly discuss the case of adiabatic turn
of the strong field. For this we obtain the solution to syst
~4! for zero initial conditions of the nondiagonal density m
trix elements. In this case,r11 andr22 are given by the same
expressions, which do not depend on the phase differenc
the components of the bichromatic field. To second orde
the small parameterj we have

r11~ t !5A2~3Aj2/512!exp~23Gt/4!1@3A2Aj

3sin~A2Vt!/3223A2Aj sin~2A2Vt!/64

13Aj2 cos~2A2Vt!/512#exp~2Gt/2!. ~11!
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els takes place in this case; however, small-amplitude R
oscillations appear in the system. The amplitude of th
oscillations is proportional toT2

21.

3. RAPID REPOPULATION OF A THREE-LEVEL NUCLEAR
SYSTEM USING PULSED RESONANCE FIELDS

As we showed above, a resonance bichromatic rad
frequency strong field can bring about significant repopu
tion of the nuclear levels. Furthermore, the degree of repo
lation can be increased substantially using a sim
procedure: to produce a major alteration of the level popu
tions, we combine the resonant interaction with the bich
matic field with a turn-off of one of the components of th
field. In this case, the single component of the resonant fi
that is not turned off will equalize the level population
which it couples. When both components of the bichroma
field are turned on once more, the coherent repopulation
all the levels of the three-level system begins again, but n
with different initial conditions.

Let us investigate the behavior of the three-level syst
in these pulsed fields in detail, for simplicity neglecting r
laxation and describing the quantum mechanical system
ing the Schro¨dinger equation for the state amplitudes. W
emphasize that the formalism of wave functions can be u
when relaxation effects are negligible. As follows from th
results of the previous section, this approximation is valid
pulsed bichromatic fields if the pulse is shorter than all
relaxation times.

The wave function of the three-level system has the fo

C~ t !5a1~ t !C11a2~ t !C21a3~ t !C3 ,

whereC i are eigenfunctions of the HamiltonianĤ0 . The
time-dependent perturbation theory equations for the am
tudesai(t) in the resonance approximation will take the for

ȧ152 iV1a3 , ȧ252 iV2a3 , ȧ352 iV1a12 iV2a2 ,
~12!

here, as in~3!, Vi is the dipole matrix element for the tran
sition between the correspondingi th level and level 3 under
the action of the field component with frequencyv i and
phasew i that is resonant with this transition. The solution
~12! for the initial conditionsai(0)5AAi has the form

a1~ t !5~V2A21V1A1 cos~Vt !!/V2

2 iAA3V1 sin~Vt !/V,

a2~ t !5~V2A18 cos~Vt !2V1A28 !/V2

2 iAA3V2 exp~ iDw!sin~Vt !/V,

a3~ t !52AA3 cos~Vt !2 iA1 exp~2 iw1!sin~Vt !/V,

A15AA2V2 exp~2 iDw!1AA1V1 ,

A25AA1V22AA2V1 exp~2 iDw!, ~13!

A18 5AA2V21AA1V1 exp~ iDw!,
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2.

From~13! it is clear that in a system of nuclear levels that a
all populated at timet50, total coherent population captur
i.e., vanishing population of level 3 at all times, is impo
sible. For this it is necessary thatA350 at the very least.
However, it is clear from~13! that for certain relationships
between the system parameters the interaction with the r
nant bichromatic field can bring about a drastic readjustm
of the populations in our case as well, even whenA3 is not
equal to zero. The magnitude of the repopulation depe
both on the values of the initial level populations and on
ratio of phases and intensities of the components of
bichromatic rf field.

Let us consider two characteristic situations. Supp
that A150 andA3Þ0. ThenA1 can become zero forDw
5p and

V15V2AA2 /A1. ~14!

In order to estimate the values of the level repopulations
us convert from the amplitudesai(t) to the populationsr i i
5uai u2 averaged over the Rabi oscillations. From~13! we
obtain

r̄115V2
2uA2u2/V41V1

2uA1u2/2V41V1
2uA3u2/2V2,

r̄225V1
2uA2u2/V41V2

2uA1u2/2V41V2
2uA3u2/2V2,

~15!
r̄335uA1u2/2V21uA3u2/2.

From this we obtain the following relations for the values
the average populations in the case under discussion w
Dw5p and when~14! holds:

r̄115A11A2A3/2~A11A2!,

r̄225A21A1A3/2~A11A2!, ~16!

r̄335A3/2.

Assume that initially all the level populations are th
same: A15A25A351. Then after the bichromatic field
pulse acts the population of level 3 decreases by a facto
2, while the populations of the other levels are increased
5/4. Let us assume that the field that couples levels 1 and
turned off. Due to the action of the remaining components
the field on the system, the populations of levels 2 and 3
comparable and become equal to 7/8. Let us once again
on both components of the field, changing their intensit
according to~14!. After the second bichromatic field puls
according to~16! the following level populations are estab
lished:

r̄115389/272, r̄225308/272, r̄335119/272.

It is clear that the emptying of the third level will be larger
magnitude than it is after the first pulse. Thus, by repeate
turning on and turning off the field many times, we can ra
idly induce a significant decrease in the magnitude of
population of level 3 compared to the other levels.

Consider a different situation:A250 andA3Þ0. These
relations can hold forDw50 and
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The expressions for the average populations in this case
have the form

r̄115A1~A11A21A3!/2~A11A2!,

r̄225A2~A11A21A3!/2~A11A2!,

r̄335~A11A21A3!/2. ~18!

According to~18!, as a result of the action of the bichromat
field the population of level 3 increases to 3/2, while t
populations of levels 1 and 2 decrease to 3/4. Let us turn
the component that couples levels 1 and 3. Then, under
action of the other field components the populations of 2 a
3 both become 9/8. Repeatedly turning on both compone
of the bichromatic field with changes in their intensities a
cording to Eq.~17! leads according to~18! to the following
level populations:

r̄1156/10, r̄2259/10, r̄33515/10.

In this case, conversely, the populations of both levels 1
2 can be decreased compared to the population of leve
Thus, it is clear that by repeatedly turning the bichroma
resonance field and its components on and off, we can
idly make large changes in the pattern of populations of
three-level system.

4. CONCLUSIONS

The results we have obtained show that coherent repo
lation of the levels of hyperfine structure in the field of
bichromatic resonance radio-frequency wave is entirely re
istic for observing the effect. However, for this we require
number of conditions to be fulfilled.

1. The times for turning the bichromatic field on and o
should be considerably shorter than all the relaxation tim

2. During the field pulset it is necessary to maintain
regime of Rabi oscillations, i.e., it is necessary for the co
dition Vt@1 to hold. This implies that the field should b
strong.

3. The field pulset should be shorter than both relax
ation times (T1 ,T2). If t.T1 , T2 , then it is clear from Eqs.
~8! and~9! that the populations of all the levels will becom
equal with time.

4. For a system of Zeeman nuclear levels, the energ
interaction with the field should not exceed the fixed amo
by which they are separated, i.e.,uDE132DE23u.V, where
DEij5Ei2Ej andEi are the energy levels.

5. It is particularly important to address the question
how these processes are affected by inhomogeneous b
ening. Due to the bichromatic character of the resona
field, inhomogeneous broadening will not significantly alt
the way it affects the three-level system if the broadening
the same for all the levels. For the case of coherent pop
tion capture, as was shown in Ref. 3, a frequency detunin
the field from resonance that is the same for all the tran
tions will not interfere with the effect. However, the inhom
geneous broadening cannot be too large, because a crit
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for the system to be treated as three-level is that the transi-
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tion frequency differenceuDE132DE23u must be larger than
the value of the inhomogeneous broadening.

6. In our calculations we set the widths of the transve
relaxation for all transitions equal. This may not be so
practice, although the widths can hardly differ in order
magnitude. For the pulse processes under discussion, w
durations are smaller than all the relaxation times, the
sumption of identical relaxation widths is not fundament
On the other hand, introducing widths that are different
magnitude would give rise to additional complications in t
final result.

7. We have assumed that heating of the medium by th
field does not lead to a significant increase in the level bro
ening. It is, of course, desirable that the size of the sampl
less than the skin-depth thickness. In this case, as was sh
in the papers by Chaplin,5 heating of the medium is insig
nificant even at ultra-low temperatures.

8. Repopulation of fine-structure nuclear levels in t
fields of a pulsed radio-frequency wave is analogous to
population of atomic levels in strong laser fields, for whi
the field width is larger than all the relaxation widths. Fro
this point of view, these effects are nonlinear in the mag
tude of the field. However, their formal description can
carried out by using the equations for the density matrix
which the field enters in linearly.

It should be emphasized that the repopulation of th
levels also takes place when all the levels are popula
equally before turning on the bichromatic field, i.e., at hi
temperatures. Furthermore, as Sec. 3 showed, by turnin
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order, we can augment this repopulation when the syste
in the lowest Zeeman level, i.e., ‘‘cooling’’ of the nuclea
subsystem takes place.

Repopulation of the hyperfine levels is also possible
the gas phase. However, in this case, we find as a rule
T1'T2 , and the theoretical calculations given in this pap
require refinement since we have not included longitudi
relaxation.

In conclusion, one of the authors~D. F. Zaretski�! is
deeply grateful to Prof. D. Chaplin~Canberra, Australia!
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Weibel instability associated with inverse bremsstrahlung absorption of intense

ible
electromagnetic radiation
A. Yu. Romanov, V. P. Silin, and S. A. Uryupin

P. N. Lebedev Institute of Physics, Russian Academy of Sciences, 117924 Moscow, Russia
~Submitted 7 August 1996!
Zh. Éksp. Teor. Fiz.111, 1245–1257~April 1997!

We investigate the Weibel instability in a plasma with a nonstationary three-temperature electron
distribution generated by inverse bremsstrahlung of an intense elliptically polarized
electromagnetic wave. We show that electron–ion collisions in this strong high frequency field
are simultaneously the cause of the development of the instability and the reason it is
suppressed. We find plasma and radiation parameters for which spontaneous quasistationary
solenoidal electromagnetic fields can increase by many times. ©1997 American Institute of
Physics.@S1063-7761~97!01004-4#
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It has long been known~see, e.g., Refs. 1–4! that a
plasma with an anisotropic electron velocity distribution
unstable against the generation of quasistationary elec
magnetic fields. One of the most well-studied plasma ins
bilities of this kind is the Weibel instability.1 According to
the fundamental postulates of the theory, the threshold
development of the Weibel instability in a fully ionize
plasma is determined by electron–ion collisions, which
cording to the prevailing wisdom prevent the instability fro
developing~see, e.g., Refs. 5 and 6!. However, the situation
changes qualitatively when the plasma is in the field of
intense high-frequency laser. In this case the electron–
collisions can generate an anisotropy in the electron distr
tion via backward braking absorption of the radiation, whi
then gives rise to the instability.7,8 This effect is especially
marked when the amplitude of the quiries velocityvE of an
electron in the laser field exceeds the thermal velocityvT of
the electrons, while the ionization stateZ of the ions is large
enough thatZvT@vE@vT . Under these conditions, accord
ing to Ref. 8, heating of the electrons via inverse bremsst
lung of the radiation leads to the formation of an anisotro
bimaxwellian electron distribution. Such a distribution can
turn give rise to the Weibel instability. However, the we
known postulates of the theory5,6 indicate that collisions
should stabilize the Weibel instability. Our goal in this wo
is to understand this dual manifestation of electron–ion c
lisions by developing a first-principles description of the w
they affect the Weibel instability when the plasma intera
with an intense laser field. The corresponding theory is
forth in this paper.

The basis of our discussion is the kinetic equation for
electron distribution function, which takes into accountab
initio the effect of a strong high-frequency electromagne
wave on the electron–ion collisions. In the second sec
we show that forZvT@vE@vT an elliptically polarized
wave can generate a nonstationary three-temperature d
bution function. In this case the maximum temperature
along the direction of the propagating wave, while the mi
mum is along the axis of the highest field intensity. In t
third section, we assume that the system is operating
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unstable configurations of quasistationary perturbations
the electromagnetic field. We establish that perturbati
grow most effectively whose wave vectors are along the a
of lowest temperature and whose electric field intensity v
tors are along the axis of highest temperature. In the fou
section we give a first-principles description of ho
electron–ion collisions in a strong optical field affect th
growth rate of the most unstable quasistationary mode.
establish bounds on the time intervals, plasma paramet
and optical field for which development of a Weibel inst
bility is possible in a plasma with a nonstationary thre
temperature electron velocity distribution.

2. KINETICS OF ELECTRONS IN A STRONG FIELD

Consider a fully ionized plasma in the field of a plan
electromagnetic wave of the form

E05
1

2
~Ex exp~ iwx!,Ey exp~ iwy!,0!

3exp~2 iv0t1 ik0z!1c.c., ~2.1!

wherewx andwy are phases,Ex andEy are real projections
of the electric field intensity vector on the coordinate ax
k0 is the wave number, andv0 is the frequency of the wave
We will assume the frequencyv0 is much larger than the
plasma frequencyvL of the electrons. Then the wave num
ber isk05v0 /c, wherec is the velocity of light, and we can
neglect possible dependence ofEx and Ey on coordinates.
We will limit ourselves to studying situations where the v
locity of light is much larger than both the thermal veloci
of the electronsvT and the amplitude of their quiver velocit
in the high-frequency field:

vE5
ueuE
mv0

, E5AEx
21Ey

2, ~2.2!

wheree andm are the charge and mass of an electron. Un
these conditions, we can use a kinetic equation to desc
the motion of the electrons in the form

]

]t
f1

e

m
E0•

]

]v
f5St~ f !1St~ f , f !, ~2.3!
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wheref5 f (v,t), St(f ) is the electron–ion collision integral,
e-
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]
F̄5

]
D ~u,t!

]
F̄, ~2.12!

the

f the
s.
n

ual

l-
and St(f , f ) is the electron–electron collision integral. N
glecting small changes in electron energy during collisio
with the ions, we will use the following expression fo
St(f ):

St~ f !5
1

2
n~v !

]

]v i
~v2d i j2v iv j !

]

]v j
f , ~2.4!

n~v !54pZe4nLm22v23, ~2.5!

wheren is the electron density,Z is the multiplicity of ion-
ization of the ions, andL is the Coulomb logarithm. The
weak logarithmic dependence of the parameterL on velocity
will be neglected. Let us now discuss Eq.~2.3! for the case
of a plasma whose ions are in high ionization states, i.eZ
@1, under conditions where the amplitude of the veloc
oscillations satisfies the inequalities

ZvT@vE@vT . ~2.6!

In this case, the effective frequency of electron–ion co
sions is;n(vE) and the frequency of electron–electron co
lisions is;n(vT)/Z. In discussing the effect of high-powe
radiation on the plasma, we see from the left side of inequ
ity ~2.6! that we can neglect the electron–electron collis
integral8 in Eq. ~2.3!, and the right side of~2.6! allows us to
assume the thermal motion of the electrons is slow compa
to the rapid motion in the high-frequency field. Under the
conditions it is useful to rewrite the kinetic equation in t
variables

t5t, u5v2vE~ t !, ~2.7!

d

dt
vE~ t !5

e

m
E0 . ~2.8!

Then we have for the distribution function of electrons in t
new variablesF5F(u,t)5 f (u1vE(t),t)

]

]t
F5

]

]ui
Di j ~u,t!

]

]uj
F, ~2.9!

Di j ~u,t!5
1

2
u3n~u!uu1vE~t!u23$@u1vE~t!#2d i j

2@u1vE~t!# i@u1vE~t!# j%. ~2.10!

According to Eq.~2.9!, the only reason for the functionF to
depend on time is the electron–ion collisions modified by
external field, whose frequency is much smaller than the
diation frequency. In this situation, the functionF may be
written in the form of a sumF5F̄1dF̃, whereF̄5F̄(u,t)
is that large part of the functionF which is slowly varying
over a period of the high-frequency field, averaged over
latter:

F̄5
v0

2p E
0

2p/v0
dt F~u,t!, ~2.11!

anddF̃ is the small (udF̃u!F̄) highly oscillatory correction
caused by the collisions. Then, averaging Eq.~2.9! over a
period of the high-frequency field and omitting small term
that containdF̃, we find the following equations forF̄:

688 JETP 84 (4), April 1997
s

-

l-

ed
e

e
a-

e

]t ]ui
i j ]uj

where

Di j ~u,t!5
v0

2p E
0

2p/v0
dt Di j ~u,t!. ~2.13!

Since we are interested in patterns in the evolution of
electron distribution in a strong field of the form~2.1!, we
can also neglect the dependence of the components o
tensorDi j (u,t) on velocityu. In this case, we can use Eq
~2.8!, ~2.10! for the averaged component of the diffusio
tensor to obtain

Dxx5
D

r4A11r2
Ey
2

E2 H S 122
Ex
2

E2 sin
2 w DKSA 2r2

11r2D
2S 11r22

2

12r2
Ex
2

E2 sin
2 w DESA 2r2

11r2D J ,
~2.14!

Dxy5Dyx52
D

r4A11r2
ExEy

E2 coswHKSA 2r2

11r2D
2~11r2!ESA 2r2

11r2D J , ~2.15!

Dyy5
D

r4A11r2
Ex
2

E2 H S 122
Ey
2

E2 sin
2 w DKSA 2r2

11r2D
3S 11r22

2

12r2
Ey
2

E2 sin
2 w DESA 2r2

11r2D J ,
~2.16!

Dzz5
D

A11r2
KSA 2r2

11r2D . ~2.17!

In Eqs. ~2.14!–~2.17!, K(k) andE(k) are the complete el-
liptic integrals of the first kind

K~k!5E
0

p/2 dc

A12k2 sin2 c
, ~2.18!

and second kind

E~k!5E
0

p/2

dcA12k2 sin2 c, ~2.19!

Here we have used the notationw5wx2wy , and

D5
A2
p

vE
2n~vE!, ~2.20!

r4512
4

E4 Ex
2Ey

2 sin2 w. ~2.21!

The remaining components of the diffusion tensor eq
zero:Dxz5Dzx5Dyz5Dzy50. We now turn to a detailed
investigation of Eqs.~2.12! in the interesting case of an e
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liptically polarized electromagnetic wave, for whichw
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5p/2. ThenDxy5Dyx50, the diffusion tensor is diagona
and Eq.~2.12! has the form

]

]t
F̄5Dii

]2

]ui
2 F̄, ~2.22!

where the summation runs over triply repeated indices.
solution to Eq.~2.22! has an especially simple form if th
initial distribution of the electrons is Maxwellian, i.e
F̄(u,t50)5Fm(u)5(n/2pA2pvT

3)exp(2u2/2vT
2). In this

case, we obtain from~2.22!

F̄5
n

2pA2p vTxvTyvTz
expS 2

ux
2

2vTx
2 2

uy
2

2vTy
2 2

uz
2

2vTz
2 D ,
~2.23!

and the components of the thermal velocity increase w
time linearly:

vTi
2 5vTi

2 ~t!52Dii t1vT
2. ~2.24!

Thus, when backward braking absorption of an intense h
frequency electromagnetic field takes place, anisotropic h
ing of the electrons occurs and a three-temperature Maxw
ian velocity distribution is generated. Note that in the spec
cases of linear (Ey50) or circular (Ex5Ey5E/&) polar-
ized waves, two of the three temperatures coincide, and
distribution ~2.23! reduces to the bimaxwellian distributio
discussed previously in Ref. 8. The absolute values of
components of the thermal velocity depend on the value
the diffusion tensor components. In particular, for a circ
larly polarized wave we have from Eqs.~2.14!–~2.17!
that Dxx5Dyy5Dzz/25vE

2n(vE)/A8, indicating more effi-
cient heating of the electrons in the direction orthogona
the plane of polarization of the electromagnetic wave. T
anisotropy in the heating is manifest most clearly for a wa
with componentsEx@Ey . In this case, we find from~2.14!–
~2.17! that

Dzz5A2D ln~2Ex /Ey!.Dyy5A2D@ ln~2Ex /Ey!21/2#

@Dxx5D/A2. ~2.25!

According to ~2.25!, when the light is absorbed by invers
bremsstrahlung, the electrons that are most efficiently he
are those with velocities in the directions of low electric fie
intensity. AsEy→0, which corresponds to the case of a li
early polarized wave, according to~2.25! we can neglect the
difference between the componentsDzz, Dyy of the diffu-
sion tensor. In this case Eq.~2.25! for these components ha
a logarithmic dependence onvEy5eEy /mv0 . When we
take into account the thermal motion of the electrons a
whenvEy is smaller than the electron thermal velocities, th
reduces to a logarithmic dependence onvT .

8

3. INSTABILITY OF THE ANISOTROPIC DISTRIBUTION

Weibel instability can develop in a plasma with an a
isotropic distribution of electrons~see, e.g., Refs. 1, 2, 4!.
Let us consider the possibility that this instability can d
velop when the anisotropic distribution is generated by
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sume that a low-frequency perturbation arises in the plas
of the form

dE,dB,dF;exp~2 ivt1 ikr ! ~3.1!

at a frequencyv much smaller than the the radiation fre
quency v0 , but much larger than the inverse time ov
which the nonstationary electron distributionF̄ changes as
given by ~2.23!:

v0@uvu@Dii /vTi
2 . ~3.2!

In order to describe the response of the plasma to suc
perturbation, we use the kinetic equation for the small q
sistationary correctiondF̃ to the functionF̄, in which ac-
cording to~3.2! we neglect collisions

i ~v2ku!dF5
e

m H dE1
1

v
@u@kdE##J ]

]u
F̄, ~3.3!

and the linearized Maxwell equations for the fieldsdE and
dB:

@kdE#5
v

c
dB, ~3.4!

@kdB#52
4p

c
ieE du udF2

v

c
dE. ~3.5!

We will assume that the perturbations of the field are so
noidal, such that (kdE)50. Then from Eqs.~3.3!–~3.5! we
find

L i j ~v,k!dEj50, ~3.6!

L i j ~v,k!5d i j ~12vL
2/v22k2c2/v2!

1
vL
2

nv2 E du
uiuj

v2ku S k ]

]uD F̄. ~3.7!

Equation~3.6! has a nontrivial solutiondEÞ0 when

Det$L i j ~v,k!%50. ~3.8!

The dispersion relation~3.8! allows us to investigate the pos
sibility that an electromagnetic instability can develop as
function of the direction of the perturbation wave vectork
and the direction of polarization of the perturbationdE. Let
us use Eq.~3.8! first to describe the states of the plasma th
arise during absorption of a plane electromagnetic wave w
wave vectork05(0,0,k0) and componentsEx@Ey , i.e.,
when according to Eqs.~2.24!, ~2.25! all three components
of the electron thermal velocity are different. This differen
is especially important once the initial thermal energy of t
electrons has doubled, whenvTz.vTy@vTx . We note that
the behavior of the electromagnetic instability under the
tion of a linearly polarized wave (Ey50) automatically fol-
lows from the relations given in this section if we furth
take vTz5vTy.vTx . Similar behavior occurs under the a
tion of a circularly polarized wave (Ex5Ey5E/&), for
which case we should assumevTx5vTy,vTz in discussing
the stability conditions. We will analyze the most gene
case below, when all three components of the thermal ve
ity are different. With the goal of determining the configur
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tion of the most unstable perturbations, let us discuss the
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consequences of Eqs.~3.6!–~3.8! for all three independen
orientations of the wave vectork and fieldd E.

We begin our analysis with a discussion of perturbatio
with k5(k,0,0) anddE5(0,0,dE). Then using the distribu-
tion ~2.23!, from ~3.6!–~3.8! we find

Lzz~v,k!512
vL
2

v22
k2c2

v2 1
vL
2

v2

vTz
2

vTx
2 F12J1S v

kvTx
D G50,

~3.9!

where the functionJ1(b) has the form9

J1~b!5b exp~2b2/2!E
i`

b

dy exp~y2/2!. ~3.10!

At low enough frequencies thatuvu!kvTx!kc, using the
expansion

J1~b!52 ibAp/2, ubu!1, ~3.11!

for v5 ig we obtain from Eq.~3.9!

g5A2

p
kvTx

vTx
2

vTz
2 S vTz2vTx2 212

k2c2

vL
2 D . ~3.12!

Since in the cases under discussion we havevTz.vTx , Eq.
~3.12! determines the growth rate of the Weibel instabil
for perturbations with small wave numbers

k,
vL

c AvTz
2

vTx
2 21[kmA3. ~3.13!

The perturbation with wave numberk5km has the maximum
growth rategm . In this case

gm5A 8

27p
vL

vTz
c S 12

vTx
2

vTz
2 D 3/2

. ~3.14!

Becausegm should be smaller thankmvTx , Eq. ~3.14! is
valid if the degree of anisotropy of the temperatures is sm

vTz
2 2vTx

2 !A9p/8vTz
2 . ~3.15!

In the range of high frequencieskvTx!uvu!kc, using the
expansion

J1~b!511b221..., ubu@1, ~3.16!

for v5 ig we obtain from~3.9!

g5kvTz~11k2c2/vL
2!21/2@kvTx. ~3.17!

This solution is realized only when the temperature anis
ropy is large, i.e.,vTz@vTx . The maximum value of the
growth rate is reached for large wave numbersk.vL /c, and
is less thanvLvTz /c ~compare with~3.14!!.

The response of the plasma to a perturbation withk
5(k,0,0) andd E5(0,dE,0) is described by the dispersio
relation Lyy(v,k)50, which differs from~3.9! by the re-
placement ofvTz by the smaller velocityvTy . Consequently,
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described by Eqs.~3.12!–~3.15! and ~3.17!, in which we
must replacevTz by vTy . BecausevTy,vTz , the maximum
growth rate for these perturbations is smaller than that gi
by Eqs.~3.14!, ~3.17!.

The response to a perturbation withk5(0,k,0) anddE
5(dE,0,0) is described by the functionLxx(v,k)50, which
differs from ~3.9! through the replacement ofvTz by vTx and
vTx by vTy . Because we havevTy.vTx , in this case the
perturbation is damped. If, as before, we havek5(0,k,0),
while the field is oriented along another axisdE
5(0,0,dE), then the dispersion relation has the form~3.9!,
where in place ofvTx the larger quantityvTy enters in. Since
the velocityvTy is close tovTz , the maximum growth rate o
this perturbation is described by the expression

gm5A 8

27p
vL

vTz
c S 12

vTy
2

vTz
2 D 3/2

~3.18!

and turns out to be significantly smaller than that describ
by ~3.14!. Finally, the response of the plasma to perturb
tions withk5(0,0,k) anddE5(dE,0,0) ordE5(0,dE,0) is
described by the functionsLxx(v,k) andLyy(v,k) respec-
tively. These functions differ from~3.9! by the replacemen
of vTx by vTz and vTz by vTx or vTz by vTy , respectively.
SincevTz is larger than bothvTx andvTy , this perturbation is
damped. From this analysis it follows that perturbations t
grow most effectively are solenoidal perturbations of t
field with wave vectors in the direction with the smalle
component of electron thermal velocity and polarizations
the direction with the largest component of the thermal
locity.

4. EFFECT OF COLLISIONS ON THE INSTABILITY

The uniqueness of the electromagnetic instability crea
by inverse bremsstrahlung absorption of intense electrom
netic radiation lies in the fact that the instability is caused
anisotropy of the temperature distribution generated by h
ing of the electrons when they collide with ions. In this sen
we can say that the electron–ion collisions cause the in
bility. However, according to the basic postulates of t
theory of the Weibel instability, collisions suppress the ins
bility and determine the threshold for its appearance.5,6 In
order to clarify the dual role of the electron–ion collision
let us consider a near-threshold theory of the Weibel ins
bility. In this case, keeping in mind the results of the pre
ous section, we will limit ourselves to discussing the mo
efficiently excited perturbations, i.e., those which have
configuration k5(k,0,0), dE5(0,0,dE), and dB
5(0,dB,0) and depend only on the single coordinate
;exp(ikx). In writing this perturbation we relax the righ
side of inequality~3.2!, and in place of~3.3! we use a more
general equation that takes into account the effect of co
sions on the quasistationary correction to the functionF̄
~2.23!,
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]
dF1 iku dF1

e
dE

]
F̄1

e
dB

e
r

These conditions ensure applicability of the approximation

into

r-
q.

to
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ld
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to
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e
s in-

ons

n

]t x m ]uz mc

3S ux ]

]uz
2uz

]

]ux
D F̄

5Dxx

]2

]ux
2 dF1Dyy

]2

]uy
2

3dF1Dzz

]2

]uz
2 dF, ~4.1!

where the components of the electromagnetic fielddE and
dB are themselves determined by the correctiondF in ac-
cordance with the Maxwell equations

]

]t
dB5 ikcdE, ~4.2!

]

]t
dE5 ikcdB24peE du uzdF. ~4.3!

In discussing Eqs.~4.1!–~4.3! it is convenient to introduce
the functions

dFx~ux ,t!5E
2`

`

duyE
2`

`

duzuzdF~u,t!, ~4.4!

Fm~ux ,t!5
n

A2p vTx
expS 2

ux
2

2vTx
2 D , ~4.5!

which are independent of the velocity componentsuy and
uz . Furthermore, taking into account the time dependenc
the functionF̄ in Eqs.~2.23!, ~2.24!, and also the first-orde
correction to the differential equations~4.1!–~4.3!, we find
approximately that

dE,dB,dFx;expF E
0

t

dt8g~t8!G . ~4.6!

Then from~4.1!–~4.3! we obtain

@g2~t!1k2c2#dE524peE
2`

`

duxg~t!dFx~ux ,t!,

~4.7!

g~t!dFx~ux ,t!5
e

m
dES 12

vTz
2

vTx
2 D Fm~ux ,t!

1
g~t!

g~t!1 ikux

e

m
dE

vTz
2

vTx
2 Fm~ux ,t!

1
Dxx

g~t!1 ikux

]2

]ux
2 @g~t!dFx~ux ,t!#.

~4.8!

At the threshold for excitation of the Weibel instability,

ukuxu@g~t!, Dxx /vTx
2 . ~4.9!
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~4.6!. Furthermore, according to~4.9!, in solving Eq.~4.8!
we first use the relation

@g~t!1 ikux#
2152 iPS 1

kux
D1pd~kux! ~4.10!

~whereP denotes principal value!, and then include colli-
sions by perturbation theory. Taking these assumptions
account, we obtain from~4.8!

g~t!dFx~ux ,t!5
e

m
dES 12

vTz
2

vTx
2 D Fm~ux ,t!

1
e

m
dEFpd~kux!2 iPS 1

kux
D G

3H vTz2vTx2 g~t!Fm~ux ,t!

1S 12
vTz
2

vTx
2 DDxx

]2

]ux
2 Fm~ux ,t!J .

~4.11!

Substituting expression~4.11! into Eq. ~4.7! and dropping a
small term proportional tog2(t)!k2c2, we find for the
growth rate of the instability

g~t!5gm~t!2A 2

27p
vL

vTz
c S 12

vTx
2

vTz
2 D 3/2

3S 12
k

km
D 2S 21

k

km
D , ~4.12!

gm~t!5S 12
vTx
2

vTz
2 D HA 8

27p
vL

vTz
c A12

vTx
2

vTz
2 2

Dxx

vTx
2 J ,
~4.13!

km5km~t!5A3
vL

c AvTz
2

vTx
2 21. ~4.14!

In Eqs. ~4.12!–~4.14!, the components of the electron the
mal velocity increase with time in accordance with E
~2.24!. The maximum value of the growth rategm(t) is as-
sociated with perturbations with wave vector equal
km(t). Equation~4.13! differs from Eq.~3.14! obtained ear-
lier by the fact that the dependence of the growth rate on
effective electron–ion collision frequency in the strong fie
is explicit. As in the theory of a plasma with no radiatio
field, the threshold of the Weibel instability is proportional
the electron–ion collision frequency. Equation~4.13! allows
us to trace how anisotropic heating of the electrons can l
to the development of a Weibel instability. At the initia
time, whenvTx5vTz5vT holds, the plasma is stable. As th
electrons are heated, the anisotropy in the temperature
creases. As soon as the maximum growth rategm(t) be-
comes positive, solenoidal electromagnetic perturbati
grow, following Eq.~4.6!. According to Eq.~4.13! the time
t0 at which the instability appears is given by the equatio
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t ~D 2D !5D2 ~2D t 1v2!22. ~4.15!
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Note that Eq.~4.15! is valid under the conditionvTz
2 (t0)

52Dzzt01vT
2,vE

2, i.e., when the electron thermal veloci
is small compared to the amplitude of the quiver velocity
the high-frequency field of the radiation. If the intensity
the radiation and frequency of electron–ion collisions sati
ZvT@vE@vT and

A8p

27
A2 ln

2Ex

Ey
21

vE
c

vL

n~vT!
@1, ~4.16!

then the instability appears at time

t05
27

16

c2

vTvE

n~vT!

vL
2 F2 ln 2Ex

Ey
21G21

, ~4.17!

when the velocityvTx(t0) is close to the initial velocity

vT , while vTz(t0) is much less thanvE . In this case we have
from ~4.17! the estimate t0;(vE /vT)n

21(vT)
;(vT

2/vE
2)n21(vE) as a boundary condition on the applic

bility of ~4.16!. In other words, this time is found to be muc
smaller than the characteristic time between electron–
collisions, which is;1/n(vE). The appearance of anisotrop
in the electron distribution is caused by the high intensity
the heating radiation. IfZvT@vE@vT holds as before, bu
the frequency of electron–ion collisions is somewhat larg

1@A8p

27
A2 ln

2Ex

Ey
21

vE
c

vL

n~vT!

@
vT
3

vE
3 S 2 ln 2Ex

Ey
D 3/2, ~4.18!

then the instability appears later, at time

t05
3

4
p2/3H c2vE2 1

vL
2n~vE!

1

2 ln~2Ex /Ey!21J 1/3. ~4.19!

At this time the velocityvTx(t0) is considerably larger than
the initial velocity vT . However, due to the right-hand in
equality~4.18!, the largest component of the thermal veloc
vTz(t0) is still smaller thanvE . Here it is appropriate to
point out that during the period prior tovTz becoming com-
parable tovE , both in conditions~4.16! and~4.18!, the level
of solenoidal excitations described by Eqs.~4.6!, ~4.13! of
the electromagnetic field increases by many times comp
with its initial value.

The latter assertion follows from use of the linear theo
of the instability to derive a simple estimate of the ra
B2/Bsp

2 of the energy density of the quasistationary field
time tm;vE

2/2Dzz, when vTz;vE holds, to the initial en-
ergy density of the spontaneous electromagnetic fields.
cording to Eq.~4.13!, for perturbations of the field with wave
vectorkm;)(vL /c)(vTz /vTx) ~4.14!, we have

B2

Bsp
2 ;exp~2gmtm!;expFA2p

27

1

ln~2Ex /Ey!

vLvE
cn~vE!

G .
It is clear from inequalities~4.16!, ~4.18! that this ratio is
much larger than unity. The linear theory gives the ma
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ized when nonlinear effects become important before
time tm is reached, leading to saturation of the Weibel ins
bility. Numerical investigations of the nonlinear stage of t
Weibel instability show~see, e.g., Ref. 2! that the energy
density of the magnetic field in the saturated state is no m
than 10% of the kinetic energy of the initial anisotropic ele
tron distribution. In light of this observation, if we estima
the kinetic energy density of electrons in a strong hig
frequency field bynmvE

2, we find for the energy of the qua
sistationary magnetic field a valueBm

2 /4p;0.1nmvE
2, or

Bm@G#;2.53105Fn@cm23#

1020 G1/2F I @W/cm2#

1015
l2@mm#G1/2,

wherel is the wavelength of the radiation. According to th
last estimate, for interaction with radiation from a neod
mium laser with l;1mm and I;431015 W/cm2 in a
plasma with electron densityn;1020 cm23, ionization state
Z;10, and electron temperature;150 eV, a magnetic field
of ;0.5 mG is generated. Here we have chosen the elec
temperature and ionization state of the ions so that the c
ditions for applicability of the theory given here are satisfie
assuming that the inequalityZvT@vE@vT holds.

We note that the limiting value of the magnetic fie
Bmmay not be reached if the timetm is smaller than the time
for saturation of the instability. In this case, from the tim
tm on the evolution of the electron distribution is describ
by perturbation-theory equations for a small high-frequen
field in a hot plasma, where the amplitude of the electr
velocity oscillations is smaller than the effective thermal v
locity. In this case, it is well known that the temperatu
anisotropy is relaxed not only by solenoidal magnetic fie
but also by the electron collisions themselves, which we
ens the effectiveness of the transformation of kinetic ene
of the anisotropic electron distribution into magnetic ener
Still another reason why creation of a magnetic field is h
dered is the short duration of the laser radiation pulse, b
compared to the saturation time of the Weibel instability

ts@s#;
1

gm
ln
Bm

Bsp
*A27p

8

c

vLvE
ln
Bm

Bsp

52310213S ln Bm

Bsp
D

3F 1020

n@cm23#G
1/2F 1015

I @W/cm2#
l22@mm#G1/2

~whereBsp is the spontaneous magnetic field strength! and to
the time

tm@s#;
p

4 F 1

ln~2Ex /Ey!
Gn21~vE!510213

3S 4L D S 10Z D F 1020

n@cm23#G
3F I @W/cm2#

1015
l2@mm#G3/2 1

ln~2Ex /Ey!
.
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Taking as estimates Bm /Bsp;100, L;4, Z;10,
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This work was performed under the auspices of Project
Re-
ci-

ids

J.

s

n;10 cm and Ex /Ey;3, for light from a neodymium
laser with l;1mm and intensityI;431015 W/cm2 we
have ts;tm;0.5 ps. For these parameters of the plas
and the light, this additional reduction in the efficiency wi
which the solenoidal magnetic field is generated can oc
only when subpicosecond laser pulses are used.

In conclusion, we note that these investigations of
Weibel instability in a plasma heated by high-power elect
magnetic radiation show that, on the one hand, it is neces
as usual to include electron–ion collisions in order to de
mine threshold conditions arising from the correspond
dissipation. On the other hand, these same electron–ion
lisions generate the trimaxwellian electron distribution~2.23!
in the process of absorbing the radiation that heats
plasma. Since this distribution is in general anisotropic w
respect to velocities, it is also a cause for excitation of
Weibel instability. In this case, quasistatic magnetic fie
are excited in a plasma heated by high-power radiation
very short time under conditions~2.6!.
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Nonlinear theory of a plasma microwave oscillator using cable waves

or
M. Birau

École Polytechnique, Palaiseau, France

M. A. Krasil’nikov, M. V. Kuzelev, and A. A. Rukhadze

Institute of General Physics, Russian Academy of Sciences, 117942 Moscow, Russia
~Submitted 17 September 1996!
Zh. Éksp. Teor. Fiz.111, 1258–1273~April 1997!

The nonstationary problem of excitation of a plasma microwave oscillator of a finite length
driven by a pulsed relativistic beam is analyzed. Both analytic and numerical techniques have been
used in studying the oscillator dynamics at given beam parameters~configuration, electron
energy, and current pulse!, with different plasma configurations, and at various lengths of the
system. Oscillator characteristics such as the output power, efficiency, and output spectrum
have been determined at parameters close to real experimental values. Conditions of optimal
oscillator operation have been determined. ©1997 American Institute of Physics.
@S1063-7761~97!01104-9#

1. Relativistic plasma microwave oscillators based ongate a simple model of a relativistic microwave oscillat
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cable waves have been intensely studied both experimen
and theoretically over recent years. The first prototype of
oscillator was built in 1982.1 Later detailed measurements
the oscillator were taken with the aim not only to detect
output radiation and determine its power, but also to rec
spectra of output radiation.2

Although it may seem strange, the theory has been
ging behind the experiment in recent time. The authors
most theoretical studies investigated various limiting cas
in which they could considerably simplify theoretical mode
and even perform analytic calculations.3 The parameters o
real experiments quoted in this paper, however, are not
different from those limiting cases~the relativistic paramete
of the electron beam is moderate, the beam current is of
order of the vacuum limit, etc.!, so the previous theoretica
estimates do not directly apply to the reported experime
The results of computer simulations of a beam–plasma
tem with parameters of a real experiment and based on
initial problem statement4 also cannot be applied to an osc
lator where space transfer of radiation, its amplification, a
output coupling are important. Besides, all the studies quo
above ignored the fact that in experiments the electron b
is formed by a pulse with definite shapes of its leading a
trailing edges.

Some authors, however, used the oscillator model ba
on the direct numerical solution of the Maxwell–Vlaso
equation system.5 Physical interpretation of such models
often difficult, like interpretation of real experiments. Mor
over, definition of boundary conditions at the oscillator o
put coupler that are faithful to the Maxwell–Vlasov equ
tions is a difficult problem; its more or less accurate solut
can be obtained only in some limiting cases.6 Finally, even
with state-of-the-art computation techniques, numeri
implementation of accurate models demands a lot of C
time, especially as the data processing includes analys
numerous variants, or even optimization of the model para
eters.

The aim of the reported work was to create and inve
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based on a cable wave with two assumptions:
— the generation frequencyv ~average frequency of the

radiation spectrum! is of the order of the frequency a
which the plasma wave gain~growth rate! has a
maximum;

— the width of the output spectrumDv is much smaller
than the average frequencyv.

These assumptions have proved to be true in mode
the oscillator by directly solving the Maxwell–Vlasov equ
tion system5 and are partially justified by experimental re
sults. It is too early, however, to claim full agreement wi
experimental data,2,7 since more improved measurements a
necessary.

The model based on the assumptions given above
used in the study8 of a microwave oscillator based on a vo
ume wave. The cable plasma wave is a surface wave,
some of its features are determined by this property. N
that most real prototypes of plasma microwave oscillat
were based on this type of plasma waves.

2. First let us recall some properties of cable plas
waves.9

Consider a metal waveguide of arbitrary cross secti
Let us denote byz the longitudinal coordinate in the wave
guide and byr' the coordinate in the cross section. Th
waveguide contains an infinitely thin beam of plasma defin
by the expressionnpSpd(r'2r p), wherenpSp is the plasma
density per unit length andr p is the plasma coordinate in th
waveguide cross section. The plasma is magnetized b
strong external magnetic field aligned with thez-axis. We
assume that the eigenfunctions of the waveguide cross
tion, wn(r'), and the corresponding eigenvaluesk'n

2 are
known (n51,2,3,. . . ).

In the linear approximation, the modes of a wavegu
containing plasma are determined by equations9

]

]zS D'1
]2

]z2
2

1

c2
]2

dt2DC54prpSpd~r'2r p!,
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Ez5S ]2

]z2
2

1

c2
]2

]t2DC.

HereC is the polarization potential,Ez is the longitudinal
component of electric field,rp is the plasma density pertur
bation, andD' is the transverse component of the Lapla
operator. On the waveguide metal surfaceC50. The param-
etersC and rp as functions ofz and t are assumed to b
proportional to exp(2ivt1ikzz), andC is expanded in terms
of the waveguide eigenfunctions:

C5 (
n51

`

Anwn~r'!exp~2 ivt1 ikzz!,

~2!
rp5 r̃p~r'!exp~2 ivt1 ikzz!.

Substitute Eq.~2! into Eq. ~1!, derive from the first line
of Eq. ~1! the coefficientsAn , and substitute them into th
second line of Eq.~1!. Then multiply the second line of Eq
~1! by d(r'2r p) and integrate it over the waveguide cro
section. Eliminatingr̃p from the resulting equation, we de
rive the spectrum of plasma oscillations in the waveguid

v25vp
2 x2

k'p
2 ,

~3!

k'p
2 5F (

n51

`
Sp

k'n
2 1x2

wn
2~r p!

iwni2 G21

.

Here vp5A4pe2np /m is the Langmuir frequency
x25kz

22v2/c2, andk'p
2 is the square of the transverse wa

number of the thin plasma in the waveguide. The transve
components of the wave defined by Eq.~3! can be expresse
in terms ofC according to generally known formulas.10 In
the frequency bandv,kzc the wave with the spectrum de
fined by Eq.~3! is a surface wave, i.e., its field intensi
decays with distance from the plasma beam.

If the waveguide is circular with radiusR, Eq.~3! can be
simplified. In this case, the plasma is described as a tube
an average radiusr p,R and a thicknessDp ~the plasma
density per unit length is 2pr pDpnp), and the waveguide
modes are described by Bessel functions. Here we cons
only the axially symmetric configuration, and after summ
tion in the second line of Eq.~3! we obtain

k'p
2 5H r pDpI 0

2~xr p!FK0~xr p!

I 0~xr p!
2
K0~xR!

I 0~xR! G J 21

, ~4!

where I 0 andK0 are modified Bessel functions of the fir
and second kind, respectively.

For kz→0 we derive from Eqs.~3! and ~4! an explicit
expression for the spectrum:

v5kzcS 11
k'p
2 c2

vp
2 D 21/2

,

~5!
k'p
2 5@r pDp ln~R/r p!#

21.

It is clear that at higher plasma density, wh
vp
2@k'p

2 c2, the phase velocity of the wave given by Eq.~5!
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configuration of this wave is similar to that of the cable~or
TEM! wave in a metallic coaxial line,10 so the wave with the
spectrum defined by Eq.~5! is called a cable plasma wave
As vp→` ~the plasma turns into a metal!, the wave de-
scribed by Eq.~5! becomes identical to the cable wave in
coaxial line.

In the region of shorter wavelengths, whenkzr p>1, both
the phase velocity and field configuration of the surfa
plasma wave are radically different from those of the ca
wave. In this case the spectrum is similar to that of surfa
waves in deep water:

v5vpAkzDp/2. ~6!

3.An important component of the plasma oscillator is
output coupler~horn!. Let us denote byz5L the horn coor-
dinate, and byz50 the plane where the electron beam
injected into the oscillator. It is obvious that the plasma o
cupies in the waveguide the region 0<z<L. Suppose that
the injection plane contains a metal grid~or a cut-off section
of a waveguide!, which is transparent for the electron bea
but does not transmit the radiation. The boundary condit
for the electromagnetic field atz50 is obvious: it is total
reflection. Now the boundary condition atz5L should be
defined.

In experiments, the horn is a metallic coaxial line wi
the outside radiusR and inside radiusr p , i.e., the plasma
coaxial line is matched to the metallic one. We must form
late boundary conditions for the field at this junction. Th
were previously formulated in a general but very comp
cated form.5,6 For our purpose, the boundary condition
z5L in a simple form is sufficient.

An electron beam generates a surface plasma w
whose phase velocity is close to the unperturbed velocitu
of the electron beam. On thez5L boundary, a fraction of the
plasma wave is generated into the metallic coaxial line a
cable wave, and the rest is reflected back into the plas
waveguide. If the plasma wave generated by the elec
beam is well matched to the cable wave (kzr p!1,
vp@k'pc), its reflection at the junction with the coaxial lin
is determined by the difference between the phase veloci
as in Fresnel’s problem. Since the phase velocity of
plasma wave is;u and in the coaxial line it equals the spee
of light c, the reflectivity in the case of a relativistic velocit
u is k51/4g2, whereg5(12u2/c2)21/2 is the relativistic
factor of the electron beam.

If kzr p;1, one must take into account not only the d
ference between the phase velocities, but also between
transverse patterns of both the plasma and cable waves.
obvious that the reflectivity will grow withkz ~or frequency!
and tend to unity asv→vp .

By estimating the energy distribution in the plasma ca
wave inside the plasma tube (r,r p) and outside it
(r.r p)

9 and using some experimental data,1,7 one can derive
the following extrapolation formula for the reflectivity in th
range of higher frequencies:

k5
1

4g2S 110.25
v2r p

2

u2g2 ln
R

2r p
D . ~7!
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Equation~7! is not valid atv;vp , but in this frequency
band, when plasma waves are potential, it makes no sen
consider the oscillator as a source of electromagnetic wa
furthermore, the model of an infinitely thin plasma does n
apply. Therefore, we will assume in what follows that t
frequencies are not very high and use the estimate give
Eq. ~7!. It will be shown below that this assumption is we
justified. Figure 1 shows the reflectivityk as a function of
v calculated by Eq.~7! for various plasma radii. Hereinafte
the other parameters are fixed, namely, the waveguide ra
is R51.8 cm, the electron beam velocityu52.631010 cm/s,
and the electron relativistic factorg52.

4. Now let us derive the basic nonlinear equations
our analysis. If there is an infinitely thin electron beam, t
first line in Eq.~1! can be simplified:

]

]zS D'1
]2

]z2
2
1

c

]2

]t2DC

54prpSpd~r'2r p!14prbSbd~r'2rb!, ~8!

where rb is the perturbation of the charge density in t
beam defined by the equation8

rb5enb
l

N (
j

d~z2zj !. ~9!

HerenbSb is the number of electrons in the beam per u
length,zj is the longitudinal coordinate of thej th electron,
l is a characteristic length~see below!, andN is the number
of electrons~large-size particles! on a section of the unper
turbed beam with the lengthl.

The coordinates of beam electrons are determined by
relativistic equations of motion:

dzj
dt

5v j ,
d

dtS v j
A12v j

2/c2
D 5

e

m
Ez , ~10!

wherev j is the velocity of thej th electron andEz is defined
by the third line in Eq.~1!. As concerns plasma electrons, w
apply the approach commonly used in microwave electron

FIG. 1. Reflectivity as a function of frequency for several plasma radii:~1!
r p50.7; ~2! 0.8; ~3! 0.9; ~4! 1.0; ~5! 1.1; ~6! 1.2 cm.
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the perturbation of the plasma electron density is descri
by the second line in Eq.~1!.

The equations of motion~10! are supplemented with th
conditions for electron-beam injection across the cross s
tion z50. Let us denote the injection time of thej th electron
~large-size particle! by t0 j . Given that the electrons in th
injected beam move at a fixed velocity, we have the follo
ing injection conditions:

zj u t5t0 j
50, v j u t5t0 j

5u. ~11!

If the electron beam injection begins att50, then
t0 j.0 for all j . It is convenient to select the time interva
between sequential inputs of large-size particles into
waveguide as a constant defined by the following relatio

t0 j112t0 j5
2p

Nv
, j51,2, . . . , ~12!

wherev is the average frequency of the output signal. Fro
this equation and the second line in Eq.~11!, we derive the
characteristic lengthl in Eq. ~10!:

l52pu/v.

In order to include the shapes of edges of beam cur
pulses, it is convenient to introduce weighting facto
q(t0 j ) in the sum in Eq.~9!. If q(t0 j )50, the leading edge
has not arrived yet, and ifq(t0 j )51 the beam current ha
achieved its stationary value. The shape of the funct
q(t0 j ) was determined from experimental oscillosco
traces.1,2,7

Let us express the polarization potential in the wav
guide containing both the plasma and electron beam as

C~z,t,r'!5
1

2 (
n51

`

wn~r'!@An~z,t !exp~2 ivt1 ikzz!

1Bn~z,t !exp~2 ivt2 ikzz!1c.c.#. ~13!

Here the terms withAn correspond to the wave resonant
excited by the electron beam and propagating fromz50 to
z5L. The terms withBn correspond to the reflected wav
propagating in the opposite direction and responsible for
feedback in the oscillator. On average, the interaction
tween the reflected wave and the electron beam vanishe

Since the resonant excitation of the plasma wave by
electron beam occurs through the Cherenkov effect~either
single-particle or collective12! and in accordance with the
definition ofl, the wave vector in Eq.~13! must be equated
to kz5v/u.

Equation ~13! contains slow wave amplitudesAn(z,t)
andBn(z,t). These are not the amplitudes of different tran
verse waveguide modes, since only one mode, namely
surface one, is excited. This mode is determined by infin
sums ofwnAn andwnBn in Eq. ~13!. These amplitudes are
slow in the sense of our basic assumptions, namely the
erage spectral frequencyv and the spectral widthDv!v.
Therefore the differential operators are
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where the tilde means that only the slow amplitude is diff
entiated, the plus in the expression for]/]z refers to the
resonantly coupled wave, and the minus to the reflec
wave. The slow changes in the amplitudes mean that

U 1

vAn

]̃An

]t
U!1, U 1

kzAn

]̃An

]z
U!1. ~14!

Similar inequalities apply to the amplitudesBn . In what fol-
lows, the tilde in the derivatives of slow amplitudes is om
ted for brevity.

By analogy with Eq.~13!, the perturbation of the plasm
charge density derived from the second line in Eq.~1! is
expressed as

rp5
1

2
@rp

1exp~2 ivt1 ikzz!

1rp
2exp~2 ivt2 ikzz!1c.c.#, ~15!

where the first term with the amplituderp
1 describes the

resonantly coupled wave, and the second term withrp
2 the

reflected wave. Since the plasma is infinitely thin, the am
tudesrp

6 are defined only at a fixed point in the wavegui
cross section, namely atr'5r p . Therefore there is no nee
to expand the functionsrp

6 in terms of the waveguide eigen
functionswn(r').

Substituting Eqs.~13! and ~15! into Eq. ~8! and averag-
ing over fast variables~see below!, we obtain, with due ac-
count of Eq.~14!, the expressions for the amplitudesAn and
Bn :

An5L̂n
214p~Gpnrp

11enbGbn^rb&!,
~16!

Bn5L̂n
214pGpnrp

2 .

HereGan5Sawn(ra)/iwni2, a5p, b are geometrical fac-
tors taking into account the positions of the plasma and e
tron beams in the waveguide cross section, and

L̂n
2156 ikzS 11

i

kz

]

]zD 1

k'n
2 1kz

2g22
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3F11
k'n
2 1kz

2g22 S 6
kz ]z

1
v ]t D G ~17!

is the inverse operator of thenth harmonic of the polariza
tion potential (b5u/c). In deriving Eq.~17!, we have taken
account of Eq.~14!.

The averaging procedure which has been used in d
ing Eq. ~16! is described by8

^F&5
1

l E
z2l/2

z1l/2

F~z8!exp~ ivt7 ikzz8!dz8, ~18!

whereF is the averaged function. Therefore^rb& in Eq. ~16!
is defined, obviously, by the formula

^rb&5
2

N (
j
q~ t0 j !exp~ ivt2 ikzzj !. ~19!

The summation in Eq.~19! is performed over all large-siz
particles on the interval (z2l/2,z1l/2). The resulting
value is assigned to the coordinatez.

In order to get rid of noise due to quantization in nume
cal calculations, it is worthwhile to perform additional ave
aging over time. Consider a time interval (t22p/v,t),
wheret is the current time. Divide this interval intoM sec-
tions and calculate the parameter defined by Eq.~19! on each
section. The averaged value^rb& is defined as the arithmeti
mean over all these sections. The averaging procedu
illustrated by Fig. 2a. The resulting value is ascribed to
point (t,z). At intermediate points the function is defined
cubic splines.

Substitute the coefficientsAn andBn into the second line
of Eq. ~1! and the second line of Eq.~10! ~with due account
of Eq. ~13!, definition ofEz , and that the averaged intera
tion between the reflected wave and electron beam is z!.
After simple but cumbersome calculations, we obtain the
sic equations of this study:

S ]

]x
1

1

vg

]

]t
1 i

h0

11 f p
Da1

52abãF i

2g2~11 f p!
1
11 f G
11 f p

S ]

]x
1b2

]

]t D G^rb&,
~20!

S ]

]x
2

1

vg

]

]t
2 i

h0

11 f p
Da250,
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Equations~20! are supplemented with additional bound-
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ity,
the
b MN (
j

0 j j

dxj
dt

5yj ,
d

dt S yj

A12b2yj
2D

52
i

2
g3H F12 i2g2~11 f G!S ]

]x
1b2

]

]t D G
3a11abF12 i2g2~11 f b!S ]

]x
1b2

]

]t D G ^rb&J
3exp~2 i t1 ix j !1c.c.

Here we have introduced the dimensionless timet5vt, co-
ordinatex5kzz, and velocityy5v/u. The explicit expres-
sions for the dimensionless amplitudesa6 of both the reso-
nant and reflected waves is immaterial because they
expressed in relative units in what follows. The functi
u(x,t) in the expression for̂rb& is unity in the hatched are
in Fig. 2b and zero outside this area. Furthermore, Eq.~20!
contains the following notation:

ap5
vp
2

k'p
2 u2g2 , ab5

vb
2g23

k'b
2 u2g2 ,

ã5F (
n51

`
1

k'n
2 1x2

wn~rb!wn~r p!
iwni2 G2Spk'p

2 Sbk'b
2 , ~21!

h05
1

2g2 S 12
1

ap
D , vg5S b21

1

apg
2~11 f p!

D 21

.

Here k'p
2 is the parameter introduced in Eq.~3!, k'b

2 is a
similar parameter with the indexp replaced withb, ã is the
coupling constant between the beam and plasma wa
~overlap integral for their fields12!, h0 is the detuning of the
wave frequency from the exact Cherenkov resonance,1!vg is
the ratio between the plasma-wave group velocity andu. In
Eq. ~21! x is defined by the formulax5v/ug.

The frequency dependence of the parameters define
Eq. ~21! is due to the nonlinear dispersion of the beam a
plasma waves. This dispersion also determines the pa
etersf p , f b , andf G in Eq. ~20!. Asv→0, they tend to zero
and if xR.1, they tend to21/2. They are important in the
frequency band where the spectrum is defined by Eq.~6!.
The explicit expressions for these parameters are not give
this paper because they are too cumbersome.

In a circular waveguide, when the beam is a thin-w
tube with the radiusr b and thicknessDb , the coupling con-
stantã has the form~here, for definiteness,r p.r b)

ã5
I 0~xr b!@K0~xr p!I 0~xR!2K0~xR!I 0~xr p!#

I 0~xr p!@K0~xr b!I 0~xR!2K0~xR!I 0~xr b!#
. ~22!

If r b5r p , the coupling constantã51. The factorã drops
with the differencer p2r b , and this decrease is larger
higher frequencies. In the high-frequency band

ã5expS 22
v

ug
ur p2r bu D .
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ary conditions~feedback conditions!:

a2~x5vL/u,t!5ka1~x5vL/u,t!,
~23!

a1~x50,t!52a2~x50,t!,

where the reflectivityk is determined by Eq.~7!, and the
minus in the second line corresponds to the phase reve
due to reflection from a metallic surface. In addition, t
initial values a6(x,t50)50 and electron-beam injectio
conditions~11! are required. To model the excitation mech
nism of electromagnetic waves, we assumed that the in
electron beam had a small (;1%) random modulation of
relativistic momentum~in another version, a small random
density modulation!.

The generation efficiency is estimated using relative
netic losses in the beam described by the formula

h5
Win2W02Wout

Win
. ~24!

HereWin is the energy of all electrons injected into the wav
guide by timet,Wout is the energy of all electrons that hav
passed across the cross sectionz5L by time t, W0 is the
energy of all electrons in the waveguide (0,z,L) at the
momentt.

5. Let us analyze the equation system~20! in the linear
approximation. It will be sufficient for our analysis to con
sider only the resonant wave. One can prove that in the lin
approximation the equation for^rb& has the form

S ]

]t
1

]

]xD
2

^rb&

52F12 i2g2~11 f G!S ]

]x
1b2

]

]t D Ga1

2abF12 i2g2~11 f b!S ]

]x
1b2

]

]t D G^rb&, ~25!

and the equation fora1 is the same as in the system~20!.
Let us suppose that]/]t50, which corresponds to am

plification of a steady signal at fixed frequency, and let
seek a solution in the form̂rb&,a

1 } exp(idx). From Eq.~25!
and the first equation in~20! we derive the dispersion rela
tion

S d1
h0

11 f p
D @d22ab~112g2~11 f b!d!#

52
ãab

2g2~11 f b!
@112g2~11 f G!d#2. ~26!

Given the definition of the dimensionless coordinatex and
Eq. ~15! for the perturbation of the plasma charge dens
one can see that the total longitudinal wave number in
plasma–beam system is determined by the relationship

ki5kz~11d!5
v

u
~11d!. ~27!
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The imaginary part of Eq.~27! determines the gain of oscil
lations.

In the low-frequency limit, Eq.~26! transforms to the
equation described in detail in Ref. 13. We are not going
investigate Eq.~26! by analytic techniques because one c
hardly derive simple and instructive analytic solutions for t
interesting parameters of the plasma–beam system. The
rameters of the system are real experimental values2: the
beam currentJB

max52 kA, the beam radiusr b50.65 cm, the
beam thicknessDb50.1 cm, the plasma frequenc
vp53531010 rad/s, the beam velocityu52.631010 cm/s
(g52). In the reported study, we varied the wavegu
length,L510, 15, 20 cm, and the plasma radiusr p .

The dispersion relation~26! is necessary for deriving
formulas important for further analysis. By equating the fi
factor in parentheses on the left-hand side of Eq.~26! to zero,

d52
h0

11 f p
, ~28!

we can determine the wave number of the resonant sur
plasma wave. This can be easily proved by substituting
~27! into Eq. ~3! and expanding Eq.~3! in powers ofd. It
follows from Eq. ~27! that atd50 we haveki5kz5v/u,
which denotes exact equality between the beam velocitu
and phase velocity of the plasma wave, i.e., the Cheren
resonance. The Cherenkov resonance frequency is de
from the equationh050. This frequency is plotted agains
r p in curve2 of Fig. 3 ~the system parameters were quot
above!. The amplification at the Cherenkov resonance f
quency is called amplification due to the single-parti
Cherenkov effect.12

Zeros of the second factor on the left-hand side of E
~26! determine the longitudinal wave numbers of the be
charge-density waves, the fast and slow ones.14 For the slow
wave we have

d5abg
2~11 f b!1

1

2
A@ab2g2~11 f b!#

214ab. ~29!

The frequency at which the phase velocities of the plas
wave and slow beam wave are equal is called the Ra
resonance frequency.2) The Raman resonance frequency
determined by solving the equation system~28!, ~29!. This

FIG. 3. Resonant frequencies versus plasma radius:~1! Raman resonance
~2! Cherenkov resonance. The electron beam radius is 0.65 cm.
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frequency is plotted againstr p in curve 1 of Fig. 3. The
amplification at the Raman resonance frequency is ca
amplification due to the Raman effect or, more often, coll
tive Cherenkov effect.14,12It is reasonable to select one of th
frequencies mentioned above for the frequency in Eqs.~13!,
~15! ~hence in Eq.~20!!, and~21! and in the formula for the
reflectivity k.

The question of the frequency selection can be answe
by investigating numerical solutions of Eq.~26!. Figure 4
shows the parameter Im(vd/u), i.e., the growth rate calcu
lated at different plasma radiir p , as a function of frequency
Figures 3 and 4 indicate that the growth rate maximum
curs at the Raman resonance frequency, whereas the Ch
kov resonance frequency shows no features. Moreover
r p.1.1 cm, the growth rate is zero at the Cherenkov re
nance frequency. Therefore, in what follows we substit
into Eqs. ~20!, ~21!, and ~26! the Raman resonance fre
quency, since excitation of the oscillator at this frequency
most probable. Otherwise the spectra derived numeric
from Eq. ~20! will show a corresponding deviation.

Now let us clearly define the terms. The gain band is
frequency band where the growth rate is nonzero~Fig. 4!.
The regimes in which the growth rate occurs at zero f
quency are termed Compton. The regimes in which
growth rate does not extend to zero are called Raman. W
the plasma is brought away from the electron beam,
Compton regime of amplification and generation transfor
to the Raman regime. It is noteworthy, however, that
parameters of real experiments, the Compton and Rama
gimes as the limiting cases investigated in det
previously9,12,13cannot exist. We operate actually in the i
termediate region of parameters, which is most difficult fro
the theoretical viewpoint.

6. Let us consider numerical solutions of Eq.~20!. The
parameters of the beam current pulse are derived from
perimental data1,2: the full width is 37 ns, the leading edg
width is 10 ns, and the trailing edge width is 14 ns.

The basic characteristics of the plasma oscillator giv
in this paper are the following: the output power as a fun
tion of time at different plasma radii; the oscillator respon
time as a function of the plasma radius; the total relat
kinetic losses in the beam during the entire injection time
various waveguide lengths; the distribution of mode amp

FIG. 4. Spatial instability growth rate versus frequency for several plas
radii: ~1! r p50.7; ~2! 0.8; ~3! 0.9; ~4! 1.0; ~5! 1.1; ~6! 1.2 cm.
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FIG. 5. Output power versus time fo
L515 cm: (O) shape of the electron
current pulsePbeam/10; ~1! r p50.79; ~2!
0.81; ~3! 0.83; ~4! 0.85; ~5! 0.89; ~6!
0.91; ~7! 0.95 cm.
tudes over the waveguide length and phase planes of the
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beam electrons at the moment before the current pulse t
ing edge; the output spectra during the oscillator operati

The response time is defined as the time when the
ciency reaches about 0.001~the injection onset occurs a
t50). The output spectrum is given by

S2~V!5ã ã* , ã5E
0

`

a1~vL/u,t!eiVtdt. ~30!

HereV5ṽ/v, wherev is the Raman resonance frequenc
and ṽ is the output frequency.

Note that at some arbitrary time, the parameterh defined
by Eq. ~24! is not, strictly speaking, the generation ef
ciency. But after the current pulse leading edge, whenh is
constant, it determines the lost fraction of the beam ene
This loss is due to the following drains: plasma heating,
flection of electrons in the regionz,0, and radiation. In our
model, the plasma heating is neglected, and in real co
tions it is not essential. Numerical calculations indicate t
there are no reflected electrons. Thus, the energy is lost
to radiation.

Figure 5 shows the output power and beam current p
shape forL515 cm and several plasma radii. One can s
that the oscillator response time increases with the separa
between the electron and plasma beams. Atr p51 cm the
il-
.
fi-

,

y.
-

i-
t
ly

e
e
on

short. If the current pulse were longer, the oscillator co
operate even at this plasma radius.3)

Figure 6a shows the oscillator response time as a fu
tion of the plasma radius for several waveguide lengthsL. In
the Compton regime, when the separation between the b
and plasma is small, the response time increases with
plasma radius slowly. In the Raman regime this increas
notably faster. The calculated response times in the rang
5–30 ns are in agreement with experimental data.7

Figure 6b shows the resulting radiation efficiencyh for
different oscillator lengths. Each system length has a co
sponding optimal configuration of the electron and plas
beams in the cross section at which the energy loss to ra
tion of the electron beam is maximum. The efficiency ma
mum decreases with the oscillator length and shifts to
range of large separations between the plasma and ele
beam.

At each fixed lengthL, the oscillator has certain feature
There is an optimal plasma radius, at which the radiat
efficiency peaks. At larger and smallerr p the efficiency is
lower. The drop in the efficiency withr p has a simple expla-
nation: the oscillator response time increases because o
lower coupling constant, and only a fraction of the bea
a
e

-

FIG. 6. ~a! Response time of the oscillator as
function of the plasma radius for several tub
lengths:~1! L510; ~2! 15; ~3! 20 cm.~b! Oscil-
lator efficiency as a function of the plasma ra
dius at several tube lengths:~1! L510; ~2! 15;
~3! 20 cm.
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current is utilized. At very larger p the pulse is even shorte
than the response time.

The efficiency decrease with decreasingr p also has an
explanation. The generation parameters approach thos
the Compton regime as the plasma radius drops. It is kno
that in the Compton regime the coupling between the e
tron beam and plasma is stabilized due to capture of b
electrons by the plasma wave field.15 The captured beam i
divided into bunches, which oscillate in potential wells cr
ated by the plasma wave, and they sometimes absorb en
from the wave, sometimes emit their energy into it. The
ficiency is maximum at such a plasma radius that the e
trons are captured, with due account of the feedback effe
near the output coupler, where they leave the oscillator. A
smaller plasma radius, the coupling between the elec
beam and plasma is stronger, the capture point shifts in
the system, and electrons leave the system in the phas
post-capture oscillations, when they absorb energy of
plasma wave. For this reason, the oscillator efficiency dro

Figure 7a shows the distribution of the amplitudes of
resonant~thick line! and reflected~thin line! waves at a fixed
time t522 ns,L515 cm, andr p50.79 cm. The phase plan
for the beam electron at the same moment and same os
tor parameters is shown in Fig. 7b. The ordinate is the
mensionless velocityyj5v j /u. Finally, Fig. 7c shows the
output radiation spectrum for this case. Figure 4 indica
that at r p50.79 cm the oscillator operates in the Compt
regime. It is characterized by post-capture oscillations of
beam electrons in the field of the resonant plasma wave

FIG. 7. ~a! Amplitude distribution of the resonant~thick line! and reflected
~thin line! waves att522 ns forL515 cm andr p50.79 cm.~b! Phase plane
of the electron beam att522 ns forL515 cm andr p50.79 cm.~c! Spec-
trum of the resonant plasma wave output radiation forL515 cm and
r p50.79 cm.
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shown by the phase trajectory in Fig. 7b. Figure 7a sho
that electrons are captured inside the oscillator cavity
z;11 cm. These parameters correspond to the nonopt
Compton regime. The fast capture of the electron beam, d
by the plasma wave, oscillations, and destruction of elect
bunches lead to the wide output spectrum~Fig. 7c!. Most of
the radiation is emitted in the band between the Cheren
(1231010 rad/s! and Raman (1531010 rad/s! resonance fre-
quencies.

Figure 8a–c show the curves similar to those in F
7a–c, but atL520 cm andr p51.0 cm, for which the oscil-
lator parameters are close to those of the Raman regime.
lack of significant spatial oscillations of the resonant wa
amplitude due to electron capture is evident. The nonlin
stabilization of the plasma–beam instability in this case
due to the reversal of the beam wave,9 which can be seen in
the phase plane of the beam electrons~Fig. 8b!. The absence
of oscillations of the resonant plasma wave results in a n
rower output spectrum~Fig. 8c!.

In our opinion, no reliable data about the spectra
plasma microwave oscillators have been published to
time, so we do not compare the details of calculated a
experimental spectra. This issue can be reconsidered w
new results of the experiment which is currently under w
are available.

FIG. 8. ~a! Amplitude distribution of resonant~thick line! and reflected~thin
line! waves at the momentt522 ns forL520 cm andr p51.03 cm.~b!
Phase plane of the electron beam at the momentt522 ns forL520 cm and
r p51.03 cm. ~c! Spectrum of resonant plasma wave output radiation
L520 cm andr p51.03 cm.
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1!We assume thatkz5v/u in Eq. ~3!. We then obtainap51 or h050.
2!In the literature this mechanism is also termed the anomalous Doppler
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Fiz. 25, 883 ~1984!.
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effect, which entails interaction between waves with energies of oppo
sign.14

3!The start condition~current! of the oscillator onset is known from the
theory of plasma microwave oscillators.9 This condition approximately
expressed by the formula Im(vdL/u). ln(3/k) is satisfied by the param
eters of our model. We do not apply this condition for two reasons: fi
the current pulse is short, second, the onset condition was derived
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Mechanisms of resonant laser ionization

r-
A. G. Leonov and D. I. Chekhov

Moscow Physicotechnical Institute, 141700 Dolgoprudnyi, Moscow Region, Russia

A. N. Starostin

Troitsk Institute of Innovative and Thermonuclear Research, 142092 Troitsk, Moscow Region, Russia
~Submitted 12 September 1996!
Zh. Éksp. Teor. Fiz.111, 1274–1296~April 1997!

An experimental investigation and numerical simulation of resonant laser breakdown are
performed. As a result, quantitative agreement between the experimental data on the parameters
of a dense resonant plasma~the electron density and the electron temperature! and the
results of calculations in the range of detunings of the laser radiation from resonance
Dl.222.5 nm, in which the spatial instability of the intense resonant laser beam and the
absorption of radiation are minimal, is obtained for the first time. It is shown that the
previously proposed mechanism of resonant breakdown associated with laser-induced associative
ionization introduces only a small correction to the final extent of ionization of the resonant
plasma and scarcely alters its temperature. The influence of quantum stimulated inverse
bremsstrahlung processes, which are usually described as collisions of the second kind in the
resonance case, on the energy gain by electrons is analyzed for the first time in reference
to specific experimental findings. The numerical calculations show that at detunings of the order
of the Rabi frequency, the mechanism by which electrons gain energy through the resonant
system does not reduce to collisions of the second kind and can significantly increase the density
of the resonant plasma. However, in this range of detunings the laser beam is still strongly
perturbed by instability processes, precluding a proper comparison of the theory with experiment.
At largeDl the classical and quantum cases differ from one another only slightly, and the
values ofNe calculated for both mechanisms lie within the measurement error. ©1997 American
Institute of Physics.@S1063-7761~97!01204-3#
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The resonant laser plasma produced when laser radia
with a quantum energy close to the energy of some reso
atomic or molecular transition acts on a gaseous medium
attracted attention for a long time and has been thoroug
investigated in many studies~see, for example, the review
in Refs. 1–3 and the references cited therein!. This is largely
because the resonant plasma, which has a high de
Ne.101521017 cm23 at a relatively low electron tempera
ture Te.0.220.5 eV, is a unique physical system and,
was noted in Ref. 4, the achievement of such parameter
other methods is infeasible in practice.

The broad range of the parameters of experiments
which the formation of a resonant laser plasma has b
studied, viz., the density of the medium~which generally
consists of an alkali-metal or alkaline-earth-metal vapor!, the
intensity and duration of the laser pulses, the energy spe
of the atoms irradiated, etc., has greatly hindered the for
lation of a general theory for the phenomenon under con
eration, and there are presently several models of reso
breakdown.

The model proposed in Refs. 5 and 6 is most gener
accepted for the case of high vapor density and pulsed l
action. According to Refs. 5 and 6, in the first stage of bre
down the resonant transition becomes saturated by lase
diation, and initial ionization appears in processes involv
excited atoms, viz., associative ionization, multiphoton~usu-
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induced collisions. The seed electrons then quickly gain
ergy in superelastic collisions with resonantly excited ato
of the medium, quickly populating higher-lying levels an
ionizing them. A certain auxiliary role is again played he
by the laser radiation, which accelerates the rise in elec
density by causing the one-quantum photoionization of
highly excited levels. Ultimately the development of electr
avalanche leads to essentially complete ionization of the
dium in a narrow channel along the laser beam.

We note that as was shown theoretically in Refs. 2 a
7, in a strong resonant field the rate at which electrons g
energy in quenching collisions can differ significantly fro
the rate postulated in Refs. 5 and 6.

Besides the mechanism just considered, other mec
nisms for the formation of a resonant plasma have been
posed in several papers. In particular, it was concluded
Refs. 8 and 9 on the basis of an analysis of numerous exp
mental data that laser-induced associative ionization invo
ing resonantly excited atoms plays a major role in the dev
opment of breakdown.

It follows from the foregoing that for resonant brea
down of a medium in any case the intensity of the la
radiation need be only of the order of magnitude of the sa
ration intensity, which is low in metal vapor
(I s.1021000 W/cm2) as a consequence of the large val
of the dipole moment and the small width of the reson
transition~of course, in real experiments because of the gr

7033$10.00 © 1997 American Institute of Physics
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the development of electron avalanche, significantly gre
intensities, I.105–108 W/cm2 with a pulse width of
1028–1026 s, are needed to create a plasma channel wi
length of ;1–10 cm in a vapor with a density o
1015–1017 cm23). In the case of nonresonant breakdown,
which the mechanism for heating the electrons is determi
by inverse bremsstrahlung, the threshold intensities
known to be much greater: 10921011 W/cm2.10 In the case
of resonant breakdown, the role of traditional inverse brem
strahlung is negligible.11

Although various models of resonant laser ionizati
qualitatively account for many experimental findings, t
calculations performed on their basis4–6,11–14are consistent
with the experimental data only in order of magnitude.
should, however, be noted that there is no detailed comp
son of the results of theory and specific experiments in
literature. On the other hand, the setting up of experime
especially in dense vapors, greatly impedes their unequiv
interpretation. To a considerable extent, this is because
nonlinear interaction of intense laser radiation with a de
resonant medium causes not only ionization, but also sev
other well known phenomena, particularly spectral and s
tial instability of the laser wave~see, for example, Refs. 1
and 16 and the references cited therein!. As a result of such
instability, the divergence of the laser beam increases c
siderably and its spatial structure becomes highly distor
making the intensity of the radiation, which largely dete
mines the ionization kinetics of the resonant plasma, un
tain. In addition, the presence of instability precludes pr
erly taking into account the strong resonant absorption wh
the laser beam experiences in a dense medium. All
makes it impossible to properly compare the experime
data with theory and to establish the real contribution of a
particular mechanism to the overall pattern of reson
breakdown.

Nevertheless, it is possible to eliminate or, at lea
strongly suppress the negative effect of instability, if the f
quency of the laser radiationnL is shifted relative to the
resonant frequencyn0, since the growth rate of the instabilit
decreases rapidly as the detuningDn5nL2n0 increases. At
the same time, because of the large value of the r
I /I s , it can be expected that the extent of excitation of
medium will still be considerable even whenDn is fairly
large, although the absorption of laser radiation decrease
the detuning increases. In addition, studying the depende
of resonant ionization on the detuning permits variation
the degree of saturation of the medium at a constant inten
of the laser radiation, making it possible to separate the
fluences of different processes on the formation of the re
nant plasma and, in particular, to evaluate the influence
strong field on the heating rate of the electrons.

Nevertheless, to date there have been essentially no
investigations. To the best of our knowledge, the depende
of the density of a resonant plasma on the detuning i
stationary vapor was measured in only one study.17 How-
ever, in Ref. 17 the width of the resonance curve was of
order of the spectral width of the laser radiationDnL , and its
intensity was so low that the Rabi frequency was a
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Ref. 17. In addition, there was no comparison of experim
with theoretical calculations in Ref. 17. The dependence
the plasma density on the detuning from resonance was m
sured in Refs. 18 and 19 during an investigation of the e
sion plasma formed when laser radiation interacts with
surface of a metal target. However, here too the strong n
uniformity of the erosion torch essentially precludes a qu
titative interpretation of the experiment.

In the present work, which is devoted to an experimen
investigation and theoretical simulation of resonant bre
down at various detunings, an attempt is made to fill this g
Detailed data on the characteristics of a resonant la
plasma as a function ofDn have been obtained for the firs
time in the case of sodium vapor, and we have determi
the range of detuning over which the influence of the ins
bility of the laser beam is minimal, but considerable ioniz
tion is still observed. In addition, we compare experimen
data and the results of numerical calculations, and we use
results to evaluate the roles of the various ionization mec
nisms.

Section 2 describes the experimental setup and the d
nostic methods. The results of the experiments are prese
in Sec. 3. Section 4 is devoted to a description of a theo
ical model of ionization. Finally, Sec. 5 contains the resu
of numerical simulations, a discussion of these results, an
comparison with the experimental data.

2. EXPERIMENTAL SETUP AND DIAGNOSTIC METHODS

The experiments were carried out using a setup cons
ing of a tunable dye laser, a heated cell with sodium vap
and a set of diagnostic instruments~see Fig. 1!. The design
of the heated cell was similar to that described in Ref. 20 a
permitted the creation of a cylindrical column of sodiu
vapor with a height of 1.5 cm and a density greater th
1016 cm23. Before performing the experiments, the cell w
evacuated to 1025 mm Hg and then filled with an inert ga
~argon! at a pressure of 190 mm Hg and heated to the
quired temperature (T;700 K!. The relatively high argon
pressure was necessary to prevent the condensation o
dium vapor on the windows and other cold parts of the c
The density of the sodium atoms and its distribution over
radius of the cell~Fig. 2! were calculated by taking the Abe
transform of data obtained by the Rozhdestvenski� hook
method~for further details, see Ref. 21!, taking advantage of
the cylindrical symmetry of the vapor column. We note th
all the experiments were performed at the vapor densityN0

at the maximum of the distribution, which equals 1.831016

cm23. The argon density in the hot zone was two orders
magnitude greater,NAr.2.631018 cm23.

The tunable dye laser was excited by the seco
harmonic emission of a YAG:Nd31 laser and generated lin
early polarized radiation with a spectral width of 0.05 n
and pulse widthtL516 ns. The pulse-to-pulse variability o
the output energy of the dye laser did not exceed a
percent. The laser was tuned to a specific wavelength
within 0.02 nm relative to the standard spectrum of a ne
lamp using a DFS-451 grating spectrograph, in whose fo
plane there was a photodiode array, which simultaneou
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FIG. 1. Experimental setup:1 — dye laser,2 —
cell, 3 sodium vapor column,4 — grating mono-
chromator,5— FÉU-84 photomultiplier,6— V9-5
gated voltmeter,7 — IMO-2N calorimeter,8 —
photodiode array,9 — FÉK-31KP coaxial photo-
cells,10— personal computer.
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spectrum. The laser beam was directed into the heated
and focused at its center by a long-focus objective l
(F5150 cm!. The radius of the beamr L at the half-height of
the energy distribution, which was measured by another p
todiode array in the focusing region in the cold cell~i.e., in
the absence of vapor!, was 0.3 mm~see Fig. 3!. In the central
portion of the cell of radius 3 cm the value ofr L remained
unchanged to within the experimental error (60.015 mm!.
We note that in discussing the experimental data below,
shall construe the intensity of the laser radiationI L as the
quantity calculated from the formulaI L5EL/(tLSL), where
EL is the energy of the laser pulse andSL5pr L

2 . The energy
distribution over the cross section of the laser beam a
passage through the sodium vapor was measured by a
photodiode array 110 cm from the center of the cell. T
total power and the energy of the laser radiation at the
entrance and exit apertures were monitored by coaxial F´K-
31KP photocells and IMO-2N calorimeters.

The parameters of the resonant sodium vapor pla
~electron density and electron temperature! were determined
using optical diagnostics from the Stark-broadened profile
the spectral lines and their relative intensity.22,23For this pur-
pose, the fluorescence of the plasma at the center of the
was collected in the direction perpendicular to the axis of
laser beam by two objective lenses, which composed an

FIG. 2. Distribution of the density of the sodium vapor across the radiu
the cell.
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grating monochromator~1200 lines/mm!. The slit width was
set to 20–40mm in the experiments, and the slit itself~with
a height of 1 cm! was oriented parallel to the plasma cha
nel. Considering of the twofold demagnification of the ima
produced by the projection system, this means that the
tial resolution of the detection system along the channel w
2 cm. We note that the vapor density is essentially cons
over this distance (61 cm from the center of the cell! ~see
Fig. 2!. The resolution along the height of the channel w
0.04–0.08 mm.

An FÉU-84 photomultiplier was positioned behind th
exit slit, and its signal was recorded by a V9-5 gated vo
meter with a variable time delaytd relative to the beginning
of the dye laser pulse. The intensity of the plasma fluor
cence remained essentially constant within the grating t
~4 ns!. To obtain the fluorescence spectra of the plasma,
transmission wavelength of the monochromator was au
matically scanned in the vicinity of the spectral lines s
lected, the photomultiplier output being averaged over

f

FIG. 3. Energy distribution of the radiation across the radius of the la
beam:1— at the center of the cold cell~in the absence of vapor!; 2—5—
emerging from the heated cell (N051.831016 cm23) at various detunings
~2— Dl53 nm,3— Dl51.2 nm,4— Dl50.3 nm,5— Dl5 2 3.6
nm!; I L566 MW/cm2.
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pulses at each point along the spectrum. The spectral res
tion of this system reached 0.02 nm.

3. RESULTS OF THE EXPERIMENTAL INVESTIGATION OF A
RESONANT LASER PLASMA

3.1. Measurement of the absorption of laser radiation in
sodium vapor and spatial structure of the laser
beam emerging from the cell

An investigation of the spatial structure of a laser be
with an intensity of some tens of MW/cm2, and a wave-
length close to that of theD1 andD2 transitions of the
sodium atom (32S1/2232P1/2 and 32S1/2232P3/2,
lD15589.592 nm,lD25588.995 nm!, which has passed
through a vapor with density;1016 cm23, i.e., under condi-
tions characteristic of many experiments devised to inve
gate resonant laser ionization~compare, for example, with
Refs. 9 and 24!, demonstrated, as expected, the presenc
developed spatial and spectral instability in the laser wa
This instability is clearly evident in the experiments in t
form of broadening of the laser emission spectrum, s
focusing and self-defocusing of the laser beam as a wh
splitting of the beam into separate filaments, generation
conical emission, generation of frequency-mixed scatter
components, etc. As we have already noted, the charact
tics of such instability are well known, and here we on
dwell briefly on the results that have direct bearing on
formation of the resonant plasma.

Figure 3 presents profiles of the laser beam recorde
the sodium vapor cell output at different values of the det
ing Dl (Dl5lD22lL , lL is the wavelength of the lase
radiation!, and Fig. 4 shows the dependence of the diam
d of a cross section of the laser beam at the half-height of
energy distribution relative to the beam diameterd0 mea-
sured in the absence of vapor. It follows from these data
at relatively small detuningsDl.0, the laser radiation un
dergoes strong large-scale self-focusing,25 which leads to
considerable contraction of the beam core. The usual con
emission~see, for example, Ref. 26! is generated in this case
but not at small ofDl, since the cone angle becomes
great that the diameter of the scattered beam in the plan

FIG. 4. Dependence of the relative energy of the laser beamEabs/E0 ab-
sorbed in the sodium vapor~1, 3! and of the relative beam diameterd/d0
emerging from the cell~2! on Dl ~1, 2 — experiment,3 — calculation!;
I L566 MW/cm2. The vertical lines mark the positions of the sodiumD1
andD2 lines.
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erture ~1.3 cm!. As the detuning increases, the contracti
rapidly weakens, and the cone angle decreases. Being s
imposed on the beam core, the conical emission broaden
measured beam profile significantly over a narrow range
detunings, imparting a characteristic two-humped shape
~curve3 in Fig. 3!. At still larger detuningsDl.222.5 nm
the instability effects cease to influence the spatial form
the beam, and the profile measured under such condit
~Fig. 3, curve2! is essentially the same as the one record
in the absence of vapor.

In the opposite case of long-wavelength detuni
(Dl,0) there are no data on the ratiod/d0 in Fig. 4, since
large-scale self-defocusing processes erode the beam p
so much that recording within the aperture of the photodio
array becomes possible only whenuDlu > 3–4 nm. We note
that the conical structure of the laser beam scattered in
Na vapor is clearcut even at such large detunings~Fig. 3,
curve5!.

The absorption of laser radiation is also important in t
vicinity of resonance. These data are also presented in Fi
where the dependence of the beam energy absorbed in
vapor Eabs normalized by the beam energyE0 at the cell
entrance aperture plotted. The asymmetry of the curve a
ciated with the dependence of the spatial structure of
laser radiation on the detuning considered above is ap
ciable. Because of instability effects, the cross-sectional a
S of the beam, and therefore the absorbed power~which is
proportional toS whenI@I s), are significantly greater a
negative values ofDl than at positive values, and cons
quently the drop inEabswith increasinguDlu is more gradual
at Dl,0. We note that at small positive values ofDl a
considerable fraction of the beam energy shows up in con
emission, which undergoes considerable absorption. Th
fore, despite the strong contraction of the beam core,
energy of the laser pulse absorbed in the vapor remains
near resonance: 0.3E0 to 0.8E0 for 0 < Dl < 1 nm.

These data clearly indicate that, near resonance, as
cussed in the Introduction, strong nonuniformity of the be
and considerable absorption preclude a proper determina
of the intensity of the laser radiation in the zone where
fluorescence of the resonant plasma is recorded. Moreo
of long-wavelength detuning range is totally inaccessible t
comparison of the results of experiments and theoret
simulation, because, as the measurements have shown,
tial nonuniformity of the radiation remains up to values
Dl at which there is essentially no significant ionization
the vapor. However, it follows from the plots in Fig. 4 that
the wavelength rangelL,lD2 ~i.e., positiveDl), the influ-
ence of the vapor on the spatial profile of the laser beam
already insignificant at relatively small detuning
Dl>2–2.5 nm~where the degree of ionization is still high
see below!, and absorption reduces the radiation intens
only slightly. This permits the use of this range of detunin
to compare experimental data with the results of theoret
analysis.
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3.2. Measurement of electron density and electron
temperature in a resonant laser plasma
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The formation of a resonant laser plasma under the c
ditions of our experiment was visually observed in the fo
of distinct white glow in the channel of the laser beam wh
radiation with a wavelength close to the wavelengths of
D1 andD2 transitions and an intensity exceeding seve
MW/cm2 acted on the sodium vapor. As in Ref. 9, th
plasma fluorescence contained numerous spectral lines
strongest of which belonged to the 3P2nD (n53–7) and
3P2nS (n54–7) transitions in a neutral sodium atom
There were no lines of sodium ions or argon atoms in
fluorescence spectrum. This is obviously attributable to th
high excitation potentials.

To determine the electron densityNe we chose the spec
tral lines corresponding to the 3P24D (l.568 nm! transi-
tion, since, on the one hand, they had the highest inten
and were easily detected as the intensity of the laser ra
tion, the detuning of the laser frequency from the frequen
of the 3S23P transition, and the time delaytd between
detection and the beginning of the laser pulse were va
over broad ranges. On the other hand, there are reliable
oretical data on the broadening parameters for the 3P24D
transition.22,27 In addition, at electron densities betwee
1015 and 1016 cm23, the Stark widths of the spectral lines fo
this transition are fairly large~of the order of 0.03–0.3 nm!
and, as can easily be shown, greatly exceed the broade
due to other factors~Doppler broadening, collisional broad
ening, etc.!.

At the same time, the use of spectral lines correspond
to transitions to the sodium 3P levels for determining the
plasma density has its own drawbacks: in particular, it
ables one to make measurements only in the plasma a
glow in the absence of radiation. This is because the con
erable optical thickness of the plasma channel introduce
significant error into the profiles of the detected spectral li
due to the high population of the resonant levels durin
laser pulse. Measurements are possible only after the p
lation of the 3P levels has dropped to an acceptable level
a result of spontaneous decay and deactivation by electr

Under the present conditions, the lack of capture w
verified by the correspondence of the intensity ratio of
principal lines in the multiplet to the theoretical value det
mined from the sum rule: J(32P1/2242D3/2)/
J(32P3/2242D5/2) theor50.56. As the measurements showe
the plasma becomes optically transparent when the time
lay relative to the beginning of the laser pulse is of the or
of 80–100 ns; therefore, all of our experiments were p
formed with td>100 ns. We note that absorption by N2
molecules ~with a crosssection*10217 cm2 ~Ref. 28!!,
which atT.700 K account for;3% of all atoms,28 is neg-
ligibe at these vapor densities~see also Ref. 9!. A more de-
tailed discussion of the applicability of Stark methods to
measurement of the density of a resonant laser plasma ca
found in Refs. 9 and 24.

Figure 5 presents profiles of the 3P24D multiplets re-
corded experimentally at various detunings. They disp
only the two strongest lines, which correspond to t
32P1/2242D3/2 and 32P3/2242D5/2 transitions, while the
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third component of the multiplet~which corresponds to the
32P3/2242D3/2 transition! does not show up at all in the
spectrum, since its intensity is low, and the wavelength
essentially the same as that of the 32P3/2242D5/2 transition.
Even under resonance conditions, the lines in the sh
wavelength wing of the 3P24D multiplet that correspond to
dipole-forbidden 3P24F transitions, which can be excite
at high electron densities, do not show up at all in the sp
trum.

Note that the isolated-line approximation, in which th
calculations of the Stark broadening parameters were
formed in Refs. 22 and 27, is valid if the distance to t
nearest perturbing level is much greater than the Stark wi
In the sodium 4D levels ,this means that the influence of th
4F levels will be negligible, ifNe!631016 cm23. This is
always the case under the present conditions.

Figure 5 clearly shows that the spectral lines are som
what asymmetric and broadened on the red side. This me
that, besides electronic broadening, ionic broadening aff
their shape. Under these conditions, the line profile is
Lorentzian~collisional!, and the electron density was, ther
fore, determined using the Holtsmark distribution, which d
scribes the Stark profile of spectral lines with considerat
of the influence of the ions in an ideal plasma. For this p
pose, in the first step the Holtsmark distribution tabulated
Ref. 22 was approximated by a certain analytic functi
F(l,Ne) on the basis of the experimental data on the el
tron temperature~see below!, and this function was then
used to construct another functionF(l,Ne), which describes
the superposition of the profiles of the two strongest lines
the multiplet with consideration of their relative intensitie
Finally, the convolution ofF and the instrumental function
of the monochromator, which was already used to appro
mate the experimentally measured spectrum of the multi
by the least-squares method~see Fig. 6!, was calculated. As
a result, this procedure made it possible to obtain the va
of Ne with which the theoretical curve most closely describ
the experimental data.

The results of the measurements of the dependenc
the electron density on several parameters of the experim
are shown in Figs. 7–9. It is clear from the preliminary da
that the dependence ofNe on the detuningDl has a reso-
nance character~Fig. 7! and that the maximum of the elec

FIG. 5. Experimentally measured profiles of the lines corresponding to
3P24D transition;1 — Dl523.6 nm,2 — Dl52.1 nm,3 — Dl50
nm; I L566 MW/cm2, td5130 ns.
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tron density (Ne.831015 cm23) is achieved when the lase
radiation is tuned to the frequencies of theD1 andD2 lines.
One characteristic feature of this dependence is the fact
Ne decreases considerably more slowly at short-wavelen
detunings than at long-wavelength detunings. This is beca
the laser beam is broadened to a considerably greater de
at negative detunings than whenDl.0. The intensity of the
radiation at a given absolute value of the detuning is sign
cantly smaller forDl,0 than forDl.0. This is respon-
sible for the faster drop inNe at negative detunings.

Figure 8 presents the dependence of the electron de
on the intensity of the laser beam forDl52.1 nm, i.e., for
the detuning at which, as follows from the foregoing, a mo
or less proper determination of the power density of the la
radiation is possible. Plots of the time dependence ofNe for
two values ofDl are shown in Fig. 9. Hence it is clear, i
particular, that at both detunings the plasma density
creases approximately by a factor of 2 after a tim
t1/25100 ns; at least-squares fit to the experimental d
yieldsNe(t)} t21.

The electron temperatureTe was determined in the ex
periments from the relative intensity of the set of spec
lines belonging to the 3P2nD and 3P2nS series of tran-

FIG. 6. Experimentally measured profile of the 3P24D multiplet for
Dl52.1 nm and its approximation;I L566 MW/cm2.

FIG. 7. Dependence of the electron density in the resonant laser plasm
the detuningDl: 1 — experiment;2, 3, 5 — calculations based on the
mechanism proposed in Refs. 5 and 6 without consideration of the influ
of stimulated inverse bremsstrahlung on the heating of the electrons;4 —
calculation with consideration of that effect. Curve5 corresponds to a cal-
culation with the inclusion of laser-induced associative ionization.I L566
MW/cm2 ~1, 2, 4, 5! and 33 MW/cm2 ~3!, td5130 ns. The vertical lines
mark the positions of the sodiumD1 andD2 lines.
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sitions. The applicability of this method is based on the f
that after completion of a laser pulse, the dense reso
plasma quickly reaches a state of local thermodyna
equilibrium.4,29 As we know, for the existence of local the
modynamic equilibrium, the plasma density must satisfy
condition23

Ne@cm
23#.3.331013Emn

4 @eV#Te
21/2@eV#,

whereEmn is the highest energy of the transitions cons
ered. Under the present conditions (Emn,2.5 eV, Te;0.5
eV!, the critical electron density is of the order of 231015

cm23, which is several times lower than the experimenta
measured values, and therefore the inequality just prese
is satisfied with a sufficient margin.

The data from a series of measurements of the intens
of lines are presented in Fig. 10. Here the energies of
upper levels of the corresponding transitions are plot
along the horizontal axis, and the values plotted along
vertical axis are of the logarithm of the reduced intens
J8 of the emission in the line:

on

ce

FIG. 8. Dependence of the electron density in the resonant laser plasm
the intensity of the laser radiation:1 — experiment,2 — calculation;
Dl52.1 nm,td5130 ns.

FIG. 9. Dependence of the electron density in the resonant laser plasm
time ~1, 2 — experiment,3 — calculation!: 1, 3 — Dl52.1 nm, 2 —
Dl50, I L566 MW/cm2.
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where l is the wavelength of the transition, the indic
i51, 2 correspond to the two components of the doublet,
Ji are the intensities of the doublet lines with a correction
the spectral sensitivity of the photomultiplier, andf i andgi
are the oscillator strengths of the corresponding transition
the doublet and the degrees of degeneracy of their lo
level; values can be found in Ref. 30. The electron tempe
ture is given in such a plot by the slope (tanw521/Te) of
the linear least-squares fit to the experimental data. In
present caseTe.0.38 eV (Dl50) and Te.0.34 eV
(Dl52.1 nm!. Figure 11 presents the dependence of
electron temperature on the detuning. As follows from t
figure,Te decreases only slightly asDl decreases, and thi
decrease lies within the experimental error. The elect
temperature is also essentially constant varies as the d
td varies over the range 100–250 ns.

4. THEORETICAL MODEL OF RESONANT LASER
BREAKDOWN

To calculate the characteristics of the plasma formed
a result of resonant laser breakdown, we constructed a
netic model that describes the principal processes involve
the production of the charged particles in a mixture of

FIG. 10. Dependence of the reduced fluorescence intensity of the spe
lines on the energy of the upper level of the corresponding transition:1—
Dl50, 2— Dl52.1 nm;I L566 MW/cm2, td5130 ns.

FIG. 11. Dependence of the electron temperature on the detuningDl. The
notation and the parameters of the experiment correspond to Fig. 7.
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temporal shape of the laser pulse. It was assumed here
both the medium and the laser radiation are spatially hom
geneous, and, thus, the development of breakdown with t
can be described by a system of ordinary differential eq
tions. This system included equations for the populations
a series of levels of the Na atom, equations for the num
densities of the electrons, monatomic Na1 ions, Na2

1 and
NaAr1 molecular ions, and Na2 sodium molecules, an equa
tion for the electron temperature, and an equation for
laser pulse energyEdis dissipated per unit volume of th
resonant medium. We note that the excitation and ioniza
processes of Ar atoms and the excitation of Na1 ions, which,
as estimates show, are insignificant at the small values
Te characteristic of a resonant plasma, were neglected in
model. This is also confirmed by the absence of any lines
argon and the Na1 ion in the fluorescence spectrum of th
plasma column.

In the calculations we did not assume complete satu
tion of the resonant transition, and the populations of
3S and 3P levels were calculated independently, with co
sideration of the detuning of the frequency of the laser rad
tion from resonance. Because of the large value of the
splitting dl.0.6 nm ~which is comparable toDl), we
treated the 3P levels as two separate levels (32P1/2 and
32P3/2) that interact independently with the laser field.
addition, it was necessary to take into account in the mo
energy exchange between the 32P1/2 and 32P3/2 states, me-
diated by collisions with argon atoms; the cross sections
the latter is fairly large (s(P1/2→P3/2)51.1310214 cm2,
s(P3/2→P1/2)50.56310214 cm2 ~Ref. 31!!. We neglected
energy exchange in collisions with sodium atoms, wh
have a similar cross section of 1.6310214 cm2 ~Ref. 32!,
since the density of the buffer gas is more than two order
magnitude greater than the density of the vapor.

In calculating the cross sections of stimulated transitio
the profile of each of the two resonant absorption lines w
assumed to be Lorentzian and to have a full widthDn1/2 at
half maximum equal to the sum of the widths correspond
to atomic collisional broadening and the decay of the re
nant levels. Among the former we took into account on
resonant collisions involving the Vlasov–Fursov mechanis
for which the collisional broadening parameters were tak
from Ref. 33 (kres.2.431027 cm3/s for the 32P3/2 level!.
However, the Weisskopf frequency, which determines
limits of applicability of the collisional approximation an
can be estimated from that constant, is just only 331010 Hz
~which corresponds to a detuning of 0.04 nm!. Since we are
only interested in fairly largeDl, the contribution of the
resonant collisions to the absorption cross section was de
mined on the basis the static wing, which is known34 to have
a symmetric Lorentzian line profile with a widthDn ressome-
what exceeding the collisional linewidth~by 16% for the
32P3/2 level! in the process under consideration. For a vap
density N051.831016 cm23, Dn res5p21kresN0 is
1.43109 Hz. When the plasma parameters are calculated
the wavelength range of the laser radiationlL,lD2, broad-
ening due to collisions of excited Na (3P) atoms with argon
atoms can be neglected, since the static wing is significan

tral
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the collisional approximation based on the collisional bro
ening parameters given in Ref. 36 also corresponds to s
Dl;0.2 nm. Inhomogeneous Doppler broadeni
(DnD.23109 Hz! likewise does not play a role in th
wings of the absorption lines.

In calculating the cross sections we also took into
count all the decay processes of the resonant levels inclu
in the model under consideration. Among them, the m
contributions are made by the aforementioned mixing
fine-structure states in collisions with argon atoms~which
corresponds to a uniform widthDnAr50.463109 Hz for the
32P3/2 level!, and by the electronic deexcitation of resona
levels with a transition to the 3S state, with a rate constan
k(3P→3S).1.631027 cm3/s atTe.0.3–0.4 eV~Ref. 37!,
which corresponds to a similar widthDne.0.53109 Hz
whenNe51016 cm23.

Other inelastic collisional processes have a significan
smaller influence on the total broadening of the absorp
lines. The contribution of spontaneous emission is sm
Dnsp5107 Hz.30We note that the short phase relaxation tim
of the resonant system T2!tL
(T25(pDn1/2)

21.p21(Dn res1DnAr1Dne)
21;10210 s!

and the large value of the Rabi frequencyVRtL@1
(VR5mE/\, wherem is the dipole moment matrix elemen
andE is the field strength of the laser wave; whenI570
MW/cm2, VR.831012 s21) enables us to ignore cohere
and time-dependent effects in the kinetic description of
interaction of radiation with the resonant transition.

Besides the resonant levels, only the two lowest-ly
levels, 3D and 4S, whose ionization by electron impact ha
been calculated in the diffusion approximation,38 were taken
into account in the kinetics of the excited states in the mo
under consideration. This was based on the fact that bec
of the low electron temperature under our conditions~0.3–
0.4 eV!, inelastic collisions with electrons are important
the population kinetics of the Na levels only for transitio
between neighboring terms. Then the ‘‘bottleneck’’ in t
ionization of laser-populated resonant states is the excita
of the 3D and 4S levels nearest to them, since the energ
of the 3P23D, 4S transitions are significantly higher tha
the energies of the transitions between the higher-lying
els. We calculated the constants of the processes of ex
tion and deexcitation by electrons in the dependence onTe in
the 3S23P and 3P23D, 4S transitions in the Van
Regemorter approximation,34 and the calculated deexcitatio
constant for the resonant transition, whose value has
strongest influence on the final degree of ionization of
vapor, coincides with the value measured in Ref. 37 to h
accuracy (;5%!.

The electronic excitation constants calculated in
same approximation for the allowed 3S2nP (n > 4),
3P2nD (n > 4), and 3P2nS(n > 5) transitions were sev
eral orders of magnitude smaller than the stepwise excita
constants, confirming what was stated above. The probab
of the excitation of forbidden transitions by electron col
sions is also negligible at low temperature.

The direct ionization of all the low-lying levels calcu
lated in accordance with the recommendations in Ref.
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ity of one-photon ionization of the 4D and 4S levels by laser
radiation with a cross section;6310218 cm2 ~Ref. 40! was
taken into account in their kinetics. Photoionization was n
glected for the higher-lying levels, since the cross section
this process decreases rapidly as the excitation energEi

increases (} @(I2Ei)/hnL#3, whereI55.14 eV is the ioniza-
tion potential of the sodium atom30!.

The applicability of the diffusion approximation is base
on the fact that the influence of radiative processes on
upper levels can be neglected at the large values ofNe typi-
cal of the present experiments (Ne;1016 cm23).38 Radiative
decay of the lower levels (3P, 3D, and 4S) was taken into
account in the model, although as the calculations show
role is negligible, and therefore the possible capture of rad
tion in the 3P23S, 3D23P, and 4S23P transitions is
insignificant. Population of the upper levels
2Na(3P)→Na(3S)1Na(nL) reactions, whose constants a
small (10211210213 cm3/s ~Ref. 28!!, likewise does not play
a role. The constant for excitation transfer from reson
levels to a Na2 molecule is considerably larger (;1029

cm3/s ~Ref. 28!!. However, owing to their low density
(631014 cm23), this process likewise does not affect ioniz
tion kinetics in times;1027 s. As estimates show, in thi
situation stepwise ionization is relatively insensitive to t
details of the level-by-level kinetics in highly excited stat
of the sodium atom, and the incorporation of equations
two series of levels~as was done, for example, in Refs. 5, 1
12, and 13! makes no particular sense and, in addition,
unreliable, since the constants of the pertinent elemen
processes are poorly known~see also Ref. 14!.

Apart from stepwise processes, processes leading
‘‘seed’’ ionization2,6 play an important role in the dynamica
development of resonant breakdown. The main such pro
is associative ionization during a collision between two re
nantly excited sodium atoms:

2Na~3P!→Na2
11e, ~kAI53.8310211 cm3/s ~Ref. 28!!.

~1!

Although the value of this constant, which was accurat
measured in special experiments at low intensity of the
citing laser field and agrees well with other data~see the
discussion of this point in Ref. 28! is quite high~a constant
two orders of magnitude smaller was used in the anal
model in Ref. 6!, the actual contribution of associative ion
ization is small. When the density of the resonantly exci
atoms is 1016 cm23, associative ionization occurring during
single laser pulse can provide an electron number den
only at the level of 1014 cm23. In addition, this process has
significant influence on shortening the time for the develo
ment of electron avalanche by providing a considerable nu
ber of initial electrons.

We note that associative ionization involving atoms
more highly excited states has been neglected becaus
their relatively scarcity and the significantly smaller consta
of the process.28 Apart from associative ionization, the fol
lowing less important processes were also taken into acc
in the model as sources of seed ionization: two-photon i
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tion s2ph.7.8310 cm /s ~Ref. 41! and laser-induced
Penning ionization:

2Na~3P!1hnL→Na11Na~3S!1e,

~sPI52310244 cm4/s ~Ref. 42!!. ~2!

As noted in Sec. 3, measurements of the electron den
could only be performed with a considerable delay relative
the end of the laser pulse. For this reason, to compare
experimental data with the results of calculations, it is ve
important to have a proper description of the decay proce
of the resonant plasma. One of the main such process
three-body recombination,

Na112e→Na1e, ~3!

whose constant was also calculated in the diffus
approximation.38 However, three-body recombination alon
is not capable of accounting for the experimentally obser
drop in electron density with time~Fig. 9!. Thus, a typical
relaxation timet r of the density of a resonant plasma as
result of this process, allowing for the dominant cooling
electrons in elastic collisions with ions, according to Ref. 2
for Te.0.320.4 eV andNi.1016 cm23, is of the order of
531027 s, which is several times the empirical value.

We note that the characteristic relaxation time of t
electron density as a result of elastic collisions of electr
with argon and sodium atoms, calculated from the data
the corresponding transport cross sections presented in R
23 and 43, is an order of magnitude greater thant r . The
recorded drop inNe cannot be attributed to diffusiona
spreading of the plasma column, since the rate of ambip
diffusion at the pressures used in the experiment is low
to the low mobilitym1 of sodium ions in argon. The mobil
ity can be evaluated from the formula23

m1.9731019/(NArAbM ).30 cm2/V•s, whereb511.08
amu is the polarizability of the Ar atom30 andM.14.6 amu
is the reduced mass. Hence the typical time of ambipo
diffusion from a cylindrical column with a radius equal
the radius of the laser beam~0.3 mm! is

tdif.S r

2.4D
2 1

m1Te
.531026s@t1/2.

For these reasons, to describe the decay of the pla
the model had to take into account the possible proce
leading to the formation and dissociative recombination
molecular ions, which can only be Na2

1 and NaAr1 ions
under the conditions of the present experiment. The m
role here is clearly played by the NaAr1 ion ~with a binding
energy of 0.16 eV~Ref. 30!!, that forms in the conversion
reaction of the monatomic Na1 ion

Na112Ar→NaAr11Ar. ~4!

We were unable to find data on the constant of this reac
in the literature; therefore, its value was determined by fitt
the calculatedNe(t) to the experimental data~with allow-
ance for all other plasma decay mechanisms!, which yielded
the value 7310231 cm6/s ~we note that this value is thre
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given in Ref. 31!. In addition, Na2 ions form in similar
conversion reactions:

Na112Na→Na2
11Na, ~5!

Na11Na1Ar→Na2
11Ar. ~6!

However, whenN0;1016 cm23, reaction~5! is completely
negligible, while~6! makes a small contribution to the tota
production rate of molecular ions, even despite the sign
cant value of the conversion constant~an estimate using the
formula from Ref. 31 yields a value of 6310230 cm6/s!.

A significantly greater role is played by the productio
of the Na2

1 ion in the associative ionization reaction consi
ered above, as well as in the following reaction involvin
charge transfer from an NaAr1 ion:

NaAr11Na→Na2
11Ar. ~7!

The value of the constant of this process, which can be
termined from the polarization capture cross section~see
Ref. 44! is 231029 cm3/s.

The dissociative recombination constant of the NaA1

ion in the model was set equal to that for the Na2
1 ion, for

which the value 331027(0.026/Te@eV#)1/2 was given in
Ref. 45. The results of the calculations, however, are ins
sitive to its exact value, since even if the constant is dim
ished by an order of magnitude, dissociative recombinat
of the molecular ions is still restricted by their productio
rate. Besides dissociative recombination, for the Na2

1 ion we
also took into account another decay process, namely ph
dissociation under the action of laser radiation with a cr
section of 1.7310217 cm2.46 Photodissociation by visible
light is impossible for the NaAr1 ion, since the ground stat
in the Na1–Ar system has a single term, and transitions
the excited states lie in the ultraviolet region.

Besides the equations for the populations of the levels
atomic sodium and the densities of the monatomic and m
lecular ions, an equation for the density of the Na2 molecules
was also introduced into the kinetic model of resonant bre
down. The only process that takes place with the partici
tion of these molecules and had to be taken into accoun
the calculations is their dissociation under electron impa
whose constant was evaluated in Ref. 44:k.831028

cm3/s. Photodissociation of Na2 by radiation at the lase
wavelength (l;590 nm! is insignificant.28

Note that the excitation of vibrational and rotational d
grees of freedom of molecular sodium~as well as, inciden-
tally, the excitation of the molecular ions! was neglected in
the calculations. The constants of these processes are
known, but the estimates of these constants for sim
plasma parameters in Ref. 44 show that they play a mi
role. The formation of the excimer NaAr* molecule, whose
dissociation energy~0.07 eV~Ref. 30!! is of the order of the
temperature of the heavy particles, was also neglected in
calculations.

It was assumed in the calculations that the electron
ergy distribution function is Maxwellian. Under our cond
tions this is fully justified, since at the high value
Ne.1015 cm23 characteristic of the resonant plasma, the f
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the Maxwellian energy distribution function, are sufficient
high. In addition, numerical simulations of the electron e
ergy distribution function in Ref. 12 show that a deviatio
from the Maxwellian distribution is observed only in th
earliest stage of resonant laser breakdown, in which the
tent of ionization is less than 1025. All this makes it possible
for us not to calculate the distribution function, but to simp
use the equation forTe , which takes into account all pro
cesses leading to energy gain or loss by electrons in
present kinetic model. In this case the contribution of inve
bremsstrahlung evaluated from the classical formulas23 is
small and does not influence the result~see also Refs. 11 an
12!.

However, as shown in Refs. 2, 7, and 47, the mechan
by which electrons are heated during resonant ionization
medium cannot be reduced to collisions of the second k
and it must be regarded as a stimulated inverse bremss
lung process accompanying the inelastic scattering of e
trons by an atom in the field of the resonant laser wave.
note that this phenomenon can also be interpreted in term
inelastic collisions of electrons with a resonant atomic s
tem split as a consequence of the dynamic Stark effect. T
enables us, in particular, to take resonant stimulated inv
bremsstrahlung into account in the equation for the temp
ture without solving the quantum kinetic equation by mod
ing the terms in it that correspond to excitation and deex
tation of the resonant transition by electron impact wh
allowing for the influence of the laser field.

The following expression for the energy gain loss in
resonant transition as a result of resonant stimulated inv
bremsstrahlung can be obtained from the probabilities co
sponding to the transitions for a two-level system presen
in Ref. 47 in the approximationnL@nR5VR/2p, nL@Dn,
nR , Dn@(pT2)

21:

Q125F ddt S 32TeD G
12

5
hn0
2 H k21FN2S 11

Dn

nR8
D 1N1

g2
g1

S 12
Dn

nR8
D G

2k12FN2

g1
g2

S 12
Dn

nR8
D 1N1S 11

Dn

nR8
D G J , ~8!

whereN1,2 and g1,2 are the populations and degrees of d
generacy of the lower and upper resonant levels,k12 and
k21 are the excitation and deexcitation constants in the
sence of a laser field, andnR85(nR

21Dn2)1/2 is the general-
ized Rabi frequency. As follows from~8!, whennR@Dn and
N2.N1, the expression forQ12 transforms at saturation int
the usual expression for the energy gain in collisions of
second kind, and the energy loss as a result of excitatio

Q128 .hn0~k21N22k12N1!. ~9!

The same expression is also obtained in the other lim
ing case of a weak field and large detuningsDn@nR , but
when Dn.nR , Q12 differs significantly from~9! and ex-
ceeds it, the difference for given values ofN1 andN2 being
greatest whenDn5nR .
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account, the expression for the energy gain in transiti
from the upper resonant level to other levelsm also changes:

Q2m[F ddt S 32TeD G
2m

5
hnm
2 H k2mFN2S 11

Dn

nR8
D

1N1S 12
Dn

nR8
D G22km2NmJ , ~10!

wherehnm is the energy of the 2→m transition,Nm is the
population of levelm, andk2m andkm2 are the constants o
the inelastic transitions in the absence of a laser field. As
easily be seen, Eq.~10! also transforms into the standar
expression in the same two limiting cases.

It should be noted that, generally speaking, under
conditions of our experiment the three-level nature of
resonant system must also be taken into account in calc
ing the energy gain by electrons, since the Rabi freque
and the detuning are of the same order of magnitude as
fine splitting between the 3P levels. However, since we
know of no generalization of the transition probabilities f
stimulated inverse bremsstrahlung to the three-level case
used the two-level approximation consisting of~8! and ~10!
in the equation forTe . In this caseN2 andg2 in ~8! and~10!
were construed as the total population and degree of de
eracy of the 32P1/2 and 32P3/2 levels, and the total value o
the matrix element for the two transitions was used in
calculation of the Rabi frequency~see Ref. 30!. We note that
a detuning of 1.6 nm corresponds to the Rabi frequency
I L566 MW/cm2. The two-level approximation is also jus
tified by the fact that, as follows from the calculations, t
deviations of the ratios between the populations of
33P1/2 and 32P3/2 levels from those determined by the st
tistical weights of those levels do not exceed 10%.

5. NUMERICAL MODELING AND COMPARISON WITH
EXPERIMENTAL DATA

In the first stage of numerical modeling, we calculat
the parameters of the resonant laser plasma for the me
nism of heating electrons proposed in Refs. 5 and 6, wh
corresponds to the approximationnR50 in Eqs.~8! and~10!.
Figure 12 presents the time dependence of the densitie
the individual components of the laser plasma, as well as
electron temperature, for a detuningDl52.1 nm and a laser
pulse intensityI L566 MW/cm2 calculated for that case
The figure also presents the empirical temporal shape of
laser pulse, which was taken into account in the calculatio
As is clear from this figure, the development of resona
laser breakdown is highly time-dependent. The electron te
perature varies markedly during the laser pulse, rising fr
its initial value, which was assumed to equal the tempera
of the cell (;0.06 eV!, to 0.75 eV at the maximum of the
lasing pulse. The high value of the temperature is associ
with the still relatively low degree of ionization (;0.01! at
that time. The rise of the electron density, and thus the la
losses involved in the large ionizing the Na atoms lead t
subsequent drop in temperature to 0.45 eV by the end of
laser pulse~which is close to the analytically calculate
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valueTe.0.35–0.4 eV in Ref. 4!, the electron density reach
ing a maximum at the same time for the detuningDl52.1
nm. In the absence of radiation, the temperature continue
slowly decrease because of the cooling of the electron
elastic collisions and dissociative recombination process

Note that in the analytic model in Ref. 6 and the nume
cal calculations in Ref. 11, the temperature was found to
independent of the time and significantly higher: 0.8 eV. T
time-dependent character of breakdown typically also sh
up in nonmonotonic behavior of the density of the groun
state sodium atoms. It decreases rapidly at first as a resu
saturation of the resonant transition, then increases so
what asNe increases due to the rapid deexcitation of t
resonant levels by electrons, and drops again toward the
of the laser pulse, reflecting the intense ionization of
medium. The high electron density causes Na2 molecules to
essentially vanish at the end of the laser pulse as a resu
rapid dissociation by electron impact. The process leadin
their formation is very slow28,44 and was not taken into ac
count in the present model. The main components of
resonant plasma in the afterglow are~see Fig. 12! electrons,
Na1 ions (N(Na1)'Ne), and ground-state sodium atom
the character of the drop in the theoreticalNe(t) curve being
consistent with experiment at large times equal to 100–
ns ~see Fig. 9!.

Note that the line profiles that we measure and use
calculateNe andTe correspond to integration of the plasm
fluorescence across the diameter of the laser beam. Th
sociated error, however, is small, since the dominant con
bution to the plasma emission comes from the narrow cen
zone of the plasma channel. An analysis of the experime
data obtained with the spatial resolution in Ref. 24, as wel
a calculation of fluorescence in the spectral lines of
3D23P transition integrated over the diameter, utilizing t
model described above, confirm this fact and show that
error associated with averaging is in the range 10–15
which is within the overall error of the measurements.

Figure 7 presents the dependence ofNe on Dl calcu-
lated for the short-wavelength detuningsDl > 0.5 nm. No
calculations were performed for the near-resonance re
uDlu,0.5 nm because of the use of the static broaden

FIG. 12. Calculated plots of the time dependence of the concentration
individual components of the resonant laser plasma and the electron
perature. The dashed line shows the experimentally measured tem
shape of the laser pulse.I L566 MW/cm2, Dl52.1 nm.
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the Doppler broadening in the calculation of the cross sec
of the resonant transition. No simulation was performed
long-wavelength detunings, since a correct comparison w
experiment is impossible for them~see Sec. 3.1!. As follows
from Fig. 7, the calculations forDl > 2–2.5 nm agree well
with the experimental data to within the measurement er
In the intermediate range of detunings equal to 1–2 nm
calculated values ofNe are significantly higher than the mea
sured values. This also reflects the decrease in the effec
intensity of the laser pulse in the region where the plas
parameters are recorded due to the influence of the instab
and the absorption of the laser radiation considered in S
3.1. As the calculations showed, at the small detunin
Dl50.5–1 nm practically complete ionization of the m
dium is achieved by the end of the laser pulse not only
the laser radiation intensities realized in the experiment,
also for significantly smaller intensities. The resonant plas
decays in the same manner; therefore, as is shown in Fi
the calculated curve forI566 MW/cm2 practically coin-
cides with the curve constructed for an intensity two tim
smaller atDl50.5 nm, deviating strongly from it at large
values ofDl. This is reflected in the fact that even at th
fairly large detuningDl52.1 nm both the experimental an
calculated dependences ofNe on the intensity of the lase
radiation have a tendency to achieve saturation~See Fig. 8!.
The relative agreement between the experimental data
the simulation results at small detunings is achieved, beca
at values ofDl close to resonance complete ionization of t
sodium vapor is still achieved during the pulse even wh
the intensity of the laser radiation is reduced due to abso
tion. Figure 4 presents the theoretical dependence of the
ergy of the laser pulse absorbed in the sodium vapor on
detuning, which was calculated by integratingEdis over the
diameter of the cell with consideration of the measur
N(R) curve ~see Fig. 2!. A comparison of the experimenta
data with the theoretical curve in Fig. 4 reveals that they
in good agreement at large values ofDl, but diverge signifi-
cantly as resonance is approached. This is attributed to
appearance of intense absorption due to the developme
instability under real experimental conditions. We note th
unlikeNe , the calculated values of the electron temperat
agree with the experimental data to within the measurem
error over the entire range of detunings~see Fig. 11!. This is
becauseTe varies relatively slowly as the radiation intensi
is varied at 0< Dl < 2 nm~compare curves2 and3 in Fig.
11!.

The decisive role of electron deexcitation of the reson
levels in the energy gain by electrons in the resonant pla
should cause the dependence ofNe on Dl to be determined
mainly by the dependence of the population of the 3P levels
N(3P) on the detuning and, accordingly, by the degree
saturation of the resonant system by the laser radiation.
full width at half-height of the distribution ofN(3P) in the
stationary case is specified by the expression

DlN~3P!.
l0
2

c
Dn1/2AGI

I s
, ~11!

whereG5(1/2)(g3S /g3P11)52/3 and c is the speed of

of
m-
ral
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light. SettingDn1/2.2.43109 Hz for Ne;1016 cm23 and
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taking the relaxation time of the energy of the resonant s
tem T1.(pDne)

21.6310210 s, we can easily show tha
DlN(3P).6 nm. With consideration of the roughness of
evaluation, this value agrees with the experimentally m
sured value of 4 nm for the width of theNe(Dl) distribution
~see Fig. 7!. We note that if the spontaneous decay time~16
ns! is used forT1, DlN(3P) turns out to be five times greate
Thus, the quenching of the resonant levels by electr
strongly diminishes the saturation, as was noted back in
48. Nevertheless, since the saturation is still great near r
nance, it can be assumed that calculations based on
model will also be valid in the range of detuningsDl,0.5
nm regardless of the broadening mechanism, as is confir
by the flattening of both the experimental and theoreti
Ne(Dl) andTe(Dl) curves as resonance is approached.

As was noted in the Introduction, a mechanism of re
nant breakdown based on the hypothetical laser-induced
sociative ionization process 2Na(3P)1hnL→Na2

11e
@kL,AI.5310210 cm3/s for I L.0.1 MW/cm2 ~Ref. 8!,
which is an order of magnitude greater than the constant
ordinary associative ionization# was proposed in Ref. 8. In
Ref. 9 experimentally obtained~under the conditions of exac
resonanceDl50) laws for resonant breakdown were inte
preted on the basis of this process, and the low elec
temperature in the plasma afterglowTe.0.3 eV, which con-
tradicts the calculations in Refs. 6 and 11, was explained
the most part. However, as the data presented above s
even in the near-resonance region the calculated temper
can be fairly low. Taking into account that the density of t
vapor in Ref. 9 was significantly higher (N050.82431017

cm23), we should expect that the instability of the las
beam will be displayed even more strongly and that the
certainty in the intensity of the radiation will increase a
cordingly. Therefore, it would be quite incorrect to perfor
any quantitative comparison of the experimental data w
the results of rough evaluations. Nevertheless, to determ
the contribution of laser-induced associative ionization to
final extent of ionization we performed calculations of res
nant breakdown with consideration of this process in
present work. The corresponding curves are shown in Fig
and 11. As expected, at small detunings the plasma pa
eters practically coincide with the values obtained in the p
ceding calculations, and at the large detuningsDl.2 nm
they only slightly ~by 10–20% forNe and by 2–3% for
Te) exceed them.

In a second series of calculations the heating of the e
trons in the strong laser field was described by Eqs.~8! and
~10!, the Rabi frequency appearing in~8! and ~10! being
calculated in accordance with the experimentally measu
time dependence of the intensity of the laser radiation. T
theoretical plots ofNe(Dl) and Te(Dl) for this case are
also presented in Figs. 7 and 11. Confirming the statem
in Sec. 4, these curves approach the curves calculated
neglect of the strong-field effects in the two limiting cases
small and large detunings~compare curves2 and4 in Figs. 7
and 11!, deviating from them only at intermediate values
Dl. However, these differences are small and do not exc
;30% forNe , and the difference inTe is even smaller. It is
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density can be significantly greater under other conditio
This is because in the present experiment the resonant
sition is still under strong saturation whenDn5nR . The
equality I5I s , as we know, is satisfied at the detunin
Dns5nRAT1 /T2. ForNe.1016 cm23 the ratioT1 /T2 is ap-
proximately equal to 5, andDns.2.3nR . Therefore, when
Dn5nR , the value ofN2 still differs little from N1, and, as
follows from ~8! and ~9!, the differenceDQ5Q122Q128 is
also small. The maximum effect will obviously be achiev
whenT25T1.

The calculations showed that at the larger detunin
Dl.2–2.5 nm the calculated values of the electron den
in the resonant plasma in the two cases differ from one
other by an amount that is smaller than the measurem
error, and, thus, the data from the present experiment do
permit an unequivocal determination of the differences
tween the two mechanisms described above for heating e
trons in a strong laser field. The range of small detunin
where the effect is more pronounced, is inaccessible, as
been stressed repeatedly, to a correct comparison of
theory with the experimental data. We note that this circu
stance has a fairly fundamental character, since the rang
detunings in which developed instability of the laser rad
tion is observed is determined specifically by the condit
Dn;nR ~see, for example, Ref. 26!.

We estimate the accuracy of the calculations, which
determined by the use of the diffusion approximation, t
approximation of a Maxwellian electron energy distributio
function, the errors in the reaction constants, the neglec
several elementary processes, including the excitation of
rovibronic levels of the molecules and molecular ions, who
constants are unknown, neglect of the possible role of sm
impurities in the buffer gas, etc., to be 20–30%. The exp
mental error is approximately the same. In addition, the
perimental data on the electron density that we obtained
determined to a significant extent by the error in the cal
lation of the Stark broadening parameters, which, as a r
also amounts to 10–20%. There are alternat
calculations22,27 of the broadening parameters,49 which give
values that are 30% smaller. The use of the data from Ref
leads to a corresponding increase in the measured elec
density. Taking all this into account, we can assume t
counting on an increase in the accuracy of the experim
and the numerical simulation is very problematic, at leas
the present time.

6. CONCLUSIONS

In the present work resonant laser breakdown in a
vapor with a density;1016 cm23 has been investigated ex
perimentally and theoretically. Quantitative agreement
tween the experimental data for the parameters of a de
resonant plasma and the results of calculations based
homogeneous model has been obtained for the first tim
the large detuningsDl.2–2.5 nm, where the effects of th
resonant spatial instability of the laser beam and the abs
tion of radiation practically vanish. We note that the effec
of resonant ionization must also be taken into account
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investigate the actual instability of laser beams. The influ-
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11R. M. Measures, N. Drewell, and P. G. Cardinal, Appl. Opt.18, 1824
~1979!.

-
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ys.

ys.

ol.

iat.
ence of the quantum stimulated inverse bremsstrahlung
cesses, which do not reduce to collisions of the second k
in the general case, on the energy gain by electrons has
analyzed for the first time in reference to concrete exp
mental data. The numerical calculations showed that this
fect can significantly increase the density of the reson
plasma at detuningsDn of the order of the Rabi frequency
However, in this range of detunings the instability proces
still strongly disturb the laser beam, precluding a corr
comparison with experiment. At large values ofDn the two
cases differ little from one another, and the value ofNe cal-
culated for both mechanisms lie within the range of the m
surement error. It was also shown in this work that the p
viously proposed mechanism of resonant breakdown, wh
was associated with laser-induced associative ionizat
produces only a small correction to the final degree of i
ization of the resonant plasma~10–20%!.

The considerable width of the resonant dependence
Ne on the detuning (;4 nm! discovered both in the calcula
tions and in the experiment calls for taking into account
possible considerable ionization of the gaseous med
when intense laser radiation passes through it even u
off-resonance conditions. We note that on the basis of
results of the present work the creation of conducting ch
nels for transporting charged particles by resonant laser
ization ~see, for example, Ref. 6! would be promoted by
using large detunings, at which the shape of the laser bea
maintained, the absorption is relatively small, but the ioni
tion of the medium is still significant. For example, the c
culations showed that at a detuningDl.2 nm a laser beam
with an energy of only 0.1 J is needed to create a hom
enous plasma channel withNe;0.531016 cm23, a diameter
of 1 mm, and a length of about 10 m when the pulse dura
is ;1028 s.
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Statistical theory of the diffusion of a passive tracer in a random velocity field

or-
V. I. Klyatskin
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A passive tracer on the surface of an incompressible liquid behaves like a tracer in two-
dimensional compressible flows, whose characteristic feature is the formation of cluster structures,
i.e., compact regions of increased density surrounded by vast low-density regions. The
cluster formation dynamics are studied, and statistical spatiotemporal characteristics of the density
fields, which faithfully reflect the properties of the cluster structures, are calculated.
© 1997 American Institute of Physics.@S1063-7761~97!01304-8#

1. INTRODUCTION of a passive tracer, which make it possible to indicate imp
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When a passive tracer moves in random incompress
flows, its density field becomes increasingly disconnec
with time, even if it is spatially smooth at first, and the lin
of constant density acquire a fractal character.1,2 This process
is accompanied by a decrease in the characteristic sp
scales of the density field until the influence of molecu
diffusion becomes significant. However, when the density
averaged over an ensemble of realizations, the fine struc
of the realizations of the density field vanishes. It can
revealed only by analysis of the probabilistic properties
the density field. This is applicable to an even greater deg
to the realizations of the density of a passive tracer. The m
feature distinguishing it from an incompressible tracer is t
a passive tracer on the surface of an incompressible liq
behaves like a tracer in two-dimensional compressible flo
Accordingly, besides the characteristic features descri
above, a passive tracer exhibits some qualitatively new
fects, primarily the formation of clusters of particles su
rounded by vast low-density regions.

We note that the clustering of a passive tracer was pr
ably first detected in Refs. 3–5, in which numerical simu
tion of the so-called Eole experiment was carried out wit
very simple equations describing the dynamics of the atm
sphere. As part of this global experiment, 500 balloons
constant density were to be launched in Argentina in 197
1971 and then allowed to spread out over the entire sout
hemisphere at a height of approximately 12 km. The spa
positions of these balloons were to be determined daily w
the aid of a system of satellites. Unfortunately, this expe
ment was never carried out.

The object of the statistical theory of the diffusion of
passive tracer is to determine the significant qualitative
quantitative features of typical realizations of the density
the tracer from known statistical properties of the dens
field or some of its functionals. This problem is especia
important for the atmosphere and oceans, where experim
talists generally deal only with individual realizations of th
fields under investigation, rather than with ensembles. In
present work the probabilistic properties of the density fi
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tant characteristic features of the behavior of the density
alizations in time and in space, are investigated in a de
correlated approximation for a random velocity field. On t
conceptual level this work is closely related to the work
Ref. 2 and can be regarded as a continuation of it. We n
that there are essentially no publications on this subjec
the scientific literature.

2. FORMULATION OF THE PROBLEM AND STATISTICAL
MODEL OF A VELOCITY FIELD

The evolution of the density of a passive tracer movi
in a velocity fieldu(r ,t) is governed by the equation

S ]

]t
1

]

]r
u~r ,t ! D r~r ,t !5mDr~r ,t !, r~r ,0!5r0~r !.

~1!

Its right-hand side takes into account molecular diffusi
with the diffusion coefficientm, the total mass of the trace
being conserved during evolution, i.e.,

M5E r~r ,t !dr5E r0~r !dr5const.

The velocity field is assumed to be a random Gaussian fi
that is incompressible@div u(r ,t)[0#, statistically isotropic
in space, and stationary in time and has the correlation
spectral tensors (^u(r ,t)&[0)

^ui~r ,t !uj~r 8,t8!&5Bi j ~ ur2r 8u,t2t8!,

Bi j ~r ,t !5E dkEi j ~k,t !exp~ ik•r !, ~2!

Ei j ~k,t !5E~k,t !S d i j2
kikj
k2 D , i , j51, 2, 3.

Let the passive tracer move in thez50 plane, i.e., let its
density be represented in the form

r~r ,t !5 r̃~R,t !d~z!, R5~x,y!, r5~R,z!. ~3!
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Substituting this expression into~1! and integrating it over
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all z, we obtain the equation

S ]

]t
1U~R,t !

]

]RD r̃~R,t !1
]Ua~R,t !

]Ra
r̃~R,t !

5m
]2

]R2 r̃~R,t !. ~4!

HereU(R,t) is the projection of the fieldu(R,0,t) onto the
z50 plane, and the summation is performed over the
peated indicesa51, 2. Since we shall study only the prop
erties of a passive tracer, we shall omit the tilde in the no
tion for its density everywhere below.

Clearly, the fieldU(R,t) is also a compressible rando
field that is Gaussian, statistically isotropic in thez50 plane,
and stationary with time and has the correlation tensor

^Ua~R,t !Ub~R8,t8!&5Bab~ uR2R8u,t2t8!,

where

Bab~R,t !5E dk' exp~ ik'•R!E
2`

`

dkzE~k'
21kz

2 ,t !

3S dab2
k'ak'b

k'
21kz

2 D .
We recall the general formula relating the correlation ten
to the solenoidal componentEs(k' ,t) and the potential com
ponentEp(k' ,t) of the spectral tensor of an arbitrary com
pressible, statistically isotropic velocity field:

Bab~R,t !5E dk' exp~ ik'•r !FEs~k' ,t !S dab

2
k'ak'b

k'
2 D 1Ep~k' ,t !

k'ak'b

k'
2 G .

Comparing it with the preceding expression, we find that
solenoidal and potential components of the spectral tenso
the velocity field on the surface of an incompressible liqu
are related to the spectral tensor of the liquid by the equ
ties

Es~k' ,t !5E
2`

`

dkzE~k'
21kz

2 ,t !,

Ep~k' ,t !5E
2`

`

dkzE~k'
21kz

2 ,t !
kz
2

k'
21kz

2 .

Henceforth, in calculating the statistical properties of t
density of a passive tracer we shall assume that its velo
field U(R,t) is delta-correlated in time and has the corre
tion tensor

^ua~R,t !ub~R8,t8!&52Bab
eff ~ uR2R8u!d~ t2t8!, ~5!

where

Bab
eff ~R!5

1

2 E
2`

`

Bab~R,t !dt5E
0

`

Bab~R,t !dt.
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Refs. 6 and 7. We note further that becauseU(R,t) is statis-
tically isotropic, the following relations hold:

Bab
eff ~0!5

1

2
D0dab ,

]

]Rg
Bab
eff ~0!50, ~6!

2
]2

]Rg]Rd
Bab
eff ~0!5

1

8
Ds@3dabdgd2dagdbd2daddbg#

1
1

8
Dp@dabdgd1dagdbd

1daddbg#,

where

D05E
0

`

dtE dk'@Es~k' ,t !1Ep~k' ,t !#

5
4

3E0
`

dtE dk E~k,t !,

Ds5E
0

`

dtE dk'k'
2Es~k' ,t !5

2

3E0
`

dtE dk k2E~k,t !,

~68!

Dp5E
0

`

dtE dk'k'
2Ep~k' ,t !

5
2

15E0
`

dtE dk k2E~k,t !.

In this paper we shall neglect the effects of molecu
diffusion. Then Eq.~4! can be simplified and takes the form

S ]

]t
1U~R,t !

]

]RD r~R,t !1r~R,t !
]Ua~R,t !

]Ra
50,

a51, 2. ~7!

This first-order partial differential equation can also
solved using characteristic curves. Introducing the charac
istic curvesR(t), which obey the equation

d

dt
R~ t !5U~R,t !, R~0!5j, ~8!

we pass from~7! to the ordinary differential equation

d

dt
r~ t !52

]Ua~R,t !

]Ra
r~ t !, r~0!5r0~j!. ~9!

The solutions of Eqs.~8! and ~9! have a graphical geo
metric interpretation. They describe the evolution of the d
sity in the vicinity of a fixed tracer particle, whose trajecto
is specified byR5R(t). Now, as is seen from~9!, the den-
sity in compressible flows varies, increasing in regions
compression and decreasing regions of rarefaction of the
dium. The solutions of the system consisting of~8! and ~9!
depend on the initial coordinatej of the particle:

R~ t !5R~ tuj!, r~ t !5r~ tuj!. ~10!

The components of the vectorj, which uniquely defines the
position of an arbitrary particle, are called its Lagrangi
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coordinates. Now Eqs.~8! and ~9! correspond to the La-
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]Ua~R,t !
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grangian description of the evolution of the density field. T
relationship between the Eulerian coordinatesR of a particle
in a stationary coordinate system and its Lagrangian coo
nates is given by

R5R~ tuj!. ~11!

Solving for j, we obtain a relation which expresses the L
grangian coordinates in terms of the Eulerian coordinate

j5j~ t,R!. ~12!

Then, eliminating the dependence onj in the last equality in
~10! with the aid of~12!, we arrive at the Eulerian descrip
tion of the density:

r~R,t !5r~ tuj~ t,R!!. ~13!

3. LIOUVILLE’S EQUATION

The statistical properties of a density field can be inv
tigated most completely on the basis of Liouville’s equ
tion. In this section we derive it and discuss the structure
this equation for both the Lagrangian and Eulerian proba
ity distributions of the density field. We first discuss the L
grangian description.

3.1. The Lagrangian description

In the Lagrangian representation the behavior of a p
sive tracer is described by the ordinary differential equati
~8! and~9!. It is easy to go from them to the linear Liouvill
equation in the corresponding phase space. To derive it
introduce the function

FLag~ t;R,ruj!5d~R~ tuj!2R!d~r~ tuj!2r!, ~14!

which has been written in a form that explicitly takes in
account the dependence of the solution of the original
namical equations on the Lagrangian coordinatesj. Differ-
entiating~14! with respect to time and using Eqs.~8! and~9!,
we arrive at an equation which is equivalent to the origi
problem in first-order partial derivatives, which is known
Liouville’s equation:

]

]t
FLag~ t;R,ruj!5F2

]

]R
U~R,t !

1
]Ua~R,t !

]Ra

]

]r
r GFLag~ t;R,ruj!,

~15!

FLag~ t;R,ruj!5d~j2R!d~r0~j!2r!. ~158!

As we know~see, for example, Refs. 6–8!, to go from a
Lagrangian to a Eulerian description, we must introduce
transformation matrix for going from Lagrangian to Euleri
coordinates:

j ab~ tuj!5
]

]jb
Ra~ tuj!,

Differentiating ~8! with respect to the components ofj, we
arrive at the equations for the elements of the transforma
matrix:
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Hence it follows that the determinantj (tuj)5u j ab(tuj)u of
this matrix obeys the equation

d

dt
j ~ tuj!5

]Ua~R,t !

]Ra
j ~ tuj!, j ~ t50uj!51. ~16!

Since the fieldj (tuj) is a quantitative measure of the degr
of compression or expansion of the physically infinitesim
liquid particles, we shall call it the divergence. Compari
Eqs.~9! and ~16!, we see that

d

dt
$r~ t ! j ~ t !%50,

and, therefore,

r~ tuj![r0~j!/ j ~ tuj!. ~17!

We include the fieldj (tuj) in the treatment, i.e., we
replaceFLag(t;R,ruj) by the function

FLag~ t;R,r, j uj!5d~R~ tuj!2R!d~r~ tuj!2r!d~ j ~ tuj!2 j !.

~18!
Liouville’s equation then obviously generalizes Eq.~15!:

]

]t
FLag~ t;R,r, j uj!5F2

]

]R
U~R,t !

1
]Ua~R,t !

]Ra
S ]

]r
r

2
]

] j
j D GFLag~ t;R,r, j uj!, ~19!

FLag~ t50;R,r, j uj!5d~j2R!d~r0~j!2r!d~ j21!.

3.2. Eulerian description

To describe the statistical properties of the density fi
in the Eulerian description, we introduce a function ana
gous to~14!:

FEul~ t;R,r!5d~r~ t,R!2r!. ~20!

The equation for it is easily obtained either directly from~7!
~see, for example, Ref. 7! or on the basis of Liouville,s equa
tion ~19! in the Lagrangian representation. In fact, taki
~12! into account, we write

d~R~ tuj!2R!5
1

u]Ra /]jbu
d~j2j~ t,R!!

5
1

j ~ tuj!
d~j2j~ t,R!!.

Thus, with consideration of the relation~13! and the defini-
tion ~20! we have

FLag~ t;R,r, j uj!5
1

j
d~j2j~ t,R!!d~ j ~ tuj!

2 j !FEul~ t,R;r!. ~21!

Therefore,
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F ~ t,R;r!5E djE jF ~ t;R,r, j uj!d j . ~22!
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Multiplying through Eq.~19! by j and integrating it overj
and j, we find the corresponding Liouville equation in th
Eulerian representation:

S ]

]t
1U~R,t !

]

]RDFEul~ t,R;r!

5
]Ug~R,t !

]Rg

]

]r
rFEul~ t,R;r!, ~23!

FEul~0, R;r!5d~r0~R!2r!. ~238!

4. STATISTICAL ANALYSIS

Let us proceed to a statistical analysis of a chaotica
moving passive tracer. We shall, first of all, discuss su
important characteristics of tracer particles as their posi
in space and their density. The diffusion of a tracer in
random velocity field is described by Liouville’s equatio
~19! in the Lagrangian representation and by Eq.~23! in the
Eulerian representation. Averaging them over the ensem
of realizations of the velocity field$U% leads to equations fo
the one-point Lagrangian probability distribution

P~ t;R,r, j uj!5^FLag~ t;R,r, j uj!& ~24!

and the one-point Eulerian probability distribution

P~ t,R;r!5^FEul~ t,R;r!&. ~25!

The main problem in deriving these equations is in dec
pling the correlations of the velocity fieldU(R,t) and the
fieldsFLag(t;R,r, j uj) andFEul(t,R;r), which are function-
ally related to it. The decoupling methods depend on
nature of the random fieldU(R,t). If it is Gaussian, the
correlations are decoupled using the Furutsu–Novikov
mula ~see, for example, 6 and 7!:

^Ua~R,t !F@U#&5E dR8E dt8^Ua~R,t !Ub~R8,t8!&

3K d

dUb~R8,t8!
F@U#L , ~26!

which is valid for an arbitrary functionalF@U# of the Gauss-
ian fieldU(R,t) and is essentially a formula for integratio
by parts in a functional space. When applied to the fi
U(R,t) ~5!, which is delta-correlated in time, the equali
~26! can be simplified, and takes on the form

^Ua~R,t !F@U#&5E dR8Bab
eff ~ uR2R8u!

3K d

dUb~R8,t20!
F@U#L . ~27!

4.1. Lagrangian description

Averaging Eq.~19! over an ensemble of realizations
the random fieldU(R,t), using Eq.~27!, and taking into
account the equality
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dUb~R8,t20! Lag

52F ]

]Rb
d~R2R8!1

]d~R2R8!

]Rb
S ]

]r
2

]

] j
j D G

3FLag~ t;R,r, j uj!,

we arrive at the following Fokker–Planck equation for t
Lagrangian probability distribution~24!:

]

]t
P~ t;R,r, j uj!5H 12D0

]2

]R2 1DpS ]

]r
r2

]

]r

22
]2

]r] j
r j1

]2

] j 2
j 2D J P~ t;R,r, j uj!,

~28!

P~0;R,r, j uj!5d~j2R!d~r0~j!2r!d~ j21!.

The solution of Eq.~28! is

P~ t;R,r, j uj!5P~ t;Ruj!P~ t; j uj!d~r2r0~j!/ j !, ~29!

where

P~ t;RuR8!5expH 12D0t
]2

]R2 J d~R2R8!

5
1

2pD0t
expF2

~R2R8!2

2D0t
G ~30!

is the probability distribution of the coordinates of a pass
tracer particle, and

P~ t; j uj!5expHDpt
]2

] j 2
j 2J d~ j21!

5
1

2 jApt
expH 2

ln2~ jet!

4t J ~31!

is the probability distribution of the divergence field in i
vicinity. The dimensionless timet5Dpt is used in~31! and
everywhere below. We stress that the solution~29! signifies
statistical independence of the coordinatesR(tuj) and the
divergencej (tuj) in the vicinity of a particle with Lagrang-
ian coordinatesj, and that the Gaussian distribution~30!
corresponds to the standard Brownian motion of a part
with parameters

^R~ tuj!&5j,

sab
2 ~ t !5^@Ra~ t !2ja#@Rb~ t !2jb#&5D0dabt, ~32!

and the log-normal distribution ~31! signifies that
x(tuj)5 ln j(tuj) is distributed according to a Gaussian la
with the parameters

^x~ tuj!&52t, sx
2~ t !52t. ~328!

Hence, we have the following expressions for the mome
of the random divergence field, which also follow direct
from Eq. ~28!:

^ j n~ tuj!&5exp@n~n21!t#, n561, 62, . . . ~328!
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^ j (tuj)&51, and its higher moments increase exponentia
with the time. The corresponding cumulative distributi
function has the form

F~ t; j !5E
0

j

P~ t; j !d j5FS ln~ jet!

2At
D , ~33!

where

F~z!5
1

Ap
E

2`

z

exp~2y2!dy

is the standard error integral. A useful asymptotic form
for the probability that the mean divergence is exceed
which is valid fort@1, follows from ~33!:

P~ j ~ tuj!.1!5FS 2
At

2 D'
1

Apt
expS 2

t

4D . ~34!

We note further that according to (329) and ~17! we
have the following expression for the Lagrangian mome
of the density:

^rn~ tuj!&5r0
n~j! exp@n~n11!t#, ~35!

which signifies, in particular, an exponential increase in b
the mean density and its higher moments in the Lagrang
representation. Here the joint probability distribution of t
density and the divergence has the form

P~ t;r, j uj!5P~ t; j uj!d~r2r0~j!/ j !, ~36!

where P(t; j uj) is described by~31!. Integrating Eq.~36!
over j , we obtain the Lagrangian probability distribution
the density:

P~ t;ruj!5
1

2rApt
expH 2

ln2~re2t/r0~j!!

4t J . ~37!

It can also be obtained as the solution of the Fokker–Pla
equation following from~28!:

]

]t
P~ t;R,ruj!5H 12D0

]2

]R2 1Dp
]

]r
r2

]

]r J P~ t;R,ruj!,

~38!

P~0;R,ruj!5d~j2R!d~r0~j!2r!.

The paradoxical behavior of the statistical characteris
of the divergence and the density revealed above, wh
takes the form of a simultaneous increase in their mom
functions with time, is attributable to the properties of t
log-normal probability distribution.9 Thus, we can introduce
a certain ‘‘typical realization’’j * (t) of the random proces
j (tuj) such that in any time interval (t1 ,t2) the mean time
with satisfaction of the inequalityj (tuj), j * (t) coincides
with the mean time with satisfaction of the reverse inequa
j (tuj). j * (t), which equals (t22t1)/2 ~Fig. 1!. The typical
realization is defined as the solution of the equat
F(t; j * (t))51/2, whereF(t; j ) is a cumulative distribution
function and for a log-normal distribution
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j * (t)5exp$2^lnj(tuj)&%. Thus, it follows from (328) that the
typical realization of the random divergence is an expon
tially decaying function:

j * ~ t !5exp~2t!. ~39!

There are upper estimates for realizations of the l
normal processj (tuj).9 For example, with the probability
p51/2

j ~ tuj!,4 exp~2t/2!

in the time intervalt P (0,̀ ). Plots of this upper estimate an
the realizationj (tuj) lying beneath it are shown in Fig. 2
Similarly, for density realizations we have the followin
typical realization and lower estimate:

r* ~ t !5r0 exp~t!, r~ tuj!.r0 exp~t/2!/4.

We stress that the Lagrangian statistical properties o
passive tracer in compressible flows investigated above
fer qualitatively from the properties of a tracer in incom
pressible media,1,2,6,8 where j (tuj)[1, while the density in
the vicinity of a fixed particle is conserved
r(tuj)5r0(j)5const. The estimates for a passive tracer p
sented above indicate that the statistics of the random
cessesj (tuj) and r(tuj) are shaped by the peaks of the
realizations relative to the typical realizations.

At the same time, the probability distributions of th
coordinates of the particles in the two cases of compress
and incompressible velocity fields are essentially the sam

The relative diffusion of two particles can be treated in
similar manner. For example, for the quanti
l(t)5R1(t)2R2(t) we have the dynamical equation

FIG. 1. Determination of the ‘‘typical realization’’ of the random proce
j (t).

FIG. 2. Determination of the upper estimate of the random processj (t).
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which corresponds to the Fokker–Planck equation

]

]t
P~ t; l!5

]2

] l a] l b
Dab~ l!P~ t; l!, P~0;l!5d~ l2 l0!, ~40!

whereDab( l)52@Bab
eff (0)2Bab

eff ( l)# is the structural matrix
of the vector fieldU(R,t).

Equation ~40! cannot be solved in the general cas
However, if the initial distance between the particl
l 0! l cor, where l cor is the spatial correlation radius of th
velocity fieldU(R,t), we can expandDab( l) in Taylor se-
ries. As a result, in a first approximation we obtain

Dab~ l!52
]2Bab

eff ~ l!

] l a] l b
U
l50

l al b .

Using the representation~6!, we can simplify the diffusion
tensorDab( l) and write it in the form

Dab~ l!5
1

8
@3Ds1Dp# l2dab2

1

4
@Ds2Dp# l al b . ~41!

Now, substituting~41! into ~40!, multiplying the two sides of
the equation byl n and integrating overl, we obtain the
closed equation

d

dt
^ l n~ t !&5

1

8
n@n~Ds13Dp!12~Ds2Dp!#^ l n~ t !&,

whose solution corresponds to exponentially increasing fu
tions of the time for all the moments (n51,2, . . . ). Now the
probability distribution for the random processl (t)/ l 0 will
be a log-normal distribution with the parameters

K lnF l ~ t !l 0 G L 5
1

4
~Ds2Dp!t,

s ln@ l ~ t !/ l0#
2 5

1

4
~Ds13Dp!t.

Therefore, the typical realization for the distance betwe
two particles will be the exponential function of the time

l * ~ t !5 l 0 expH 14 ~Ds2Dp!tJ ,
which increases or decays, depending on the sign of the
ferenceDs2Dp. In particular, for the incompressible cas
(Dp50) we have an exponentially increasing typical realiz
tion, which corresponds to exponentially rapid movemen
the particles with small distances between them. This re
is valid for the times

1

4
Dst! lnS l corl 0

D ,
at which the expansion~41! is valid. In the other limiting
case of a potential velocity field (Ds50), the typical realiza-
tion will be an exponentially decreasing function, i.e., t
particles will tend to ‘‘fuse.’’ Taking into account that liquid
particles are then compressed, we see that clusters, i.e
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cated largely in rarefied regions, should form in this case
Figure 3 presents the results of the numerical simulat

of the evolution of a realization of an initially uniform dis
tribution of particles in the random potential of a veloci
field ~according to the data in Ref. 10!, which convincingly
supports the conclusion regarding the formation of cluste
This picture is very reminiscent of the picture of the appe
ance of caustics of an optical field in randomly inhomog
neous media. This is no accident, since the dynamics of
tical radiation in the approximation of geometric optics a
also described by the stochastic equation~7!, whereU(R,t)
is the gradient of the phase fluctuations of the wave~the
parametert plays the role of the distance traversed by t
wave, and the density becomes the intensity of the opt
wave!. A similar pattern can be observed on the bottom o
pool or in shallow water on a sunny day when the surface
the water is gently agitated.

Returning to the analysis of the problem of the diffusi
of a passive tracer in a random velocity field, we see t
(68) impliesDs2Dp.0, and therefore the closely arrange
particles should move apart in an initial relatively short tim
interval. Nevertheless, as will be shown below, the prese
of the potential component of the velocity fieldU(R,t) en-
sures cluster formation in the density field at large times

4.2. Eulerian description

Above all, we note that in the case of a delta-correla
random velocity field, it is easy to go from the linear equ
tion ~4! to closed equations for both the mean density o
passive tracer and for high moments of the functions.
example, after averaging Eq.~4!, we can use the Furutsu
Novikov equation~27! and the expression following from~4!
for the variational derivative

dr~R,t !

dUa~R8,t20!
52

]

]Ra
d~R2R8!r~R,t !,

to obtain the equation for the mean density of the tracer

]

]t
^r~R,t !&5S 12D01m D ]2

]R2 ^r~R,t !&. ~42!

Under the conditionD0@m (m!su
2l cor
2 , where su

2 is the
variance of the random velocity field andl cor is its correla-
tion radius!, Eq. ~42! coincides with the equation for th
probability distribution~30! of the coordinates of a particle
and, therefore, the diffusion coefficient, which is analogo
to the diffusion coefficient in an incompressible random v
locity field, characterizes only the scales of the regions wh
the tracer is concentrated as a whole, and it contains no
formation on the local structure of the density realization

To describe the local behavior of the realizations o
passive tracer we must know the probability distribution
its density. When molecular diffusion is neglected, the eq
tion for the Eulerian probability distribution of the densi
can easily be derived by multiplying Eq.~28! by j and inte-
grating it over all possible values ofj andj. We ultimately
find the equation for the probability distribution~25!:
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FIG. 3. Temporal evolution of an initially
uniform distribution of particles in a realiza
tion of a potential random velocity field.
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r* ~ t !5r0 exp~2t!. ~48!
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S ]t
2
2
D0 ]R2DP~ t,R;r!5D

]r2
r P~ t,R;r!, ~43!

P~0,R;r!5d~r0~R!2r!.

Hence it follows, in particular, that the moment functions
the density field are described by the equation

S ]

]t
2
1

2
D0

]2

]R2D ^rn~R,t !&5Dpn~n21!^rn~R,t !&,

^rn~R,0!&5r0
n~R!. ~44!

Its solution has the structure

^rn~R,t !&5exp@n~n21!t#E dR8P~ t;RuR8!r0
n~R8!.

~45!

Thus, if the initial density of the tracer is identical ever
where, i.e., ifr0(R)5r05const, the probability distribution
of the density does not depend onR and has a log-norma
character with the cumulative distribution function

F~ t;r!5FS ln~ret/r0!

2At
D . ~46!

In this case

^r~R,t !&5r0 , ^rn~R,t !&5r0
n exp@n~n21!t#, ~47!

and the typical realization of the density field at any giv
point is
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The Eulerian statistics of the density are shaped by the d
sity fluctuations relative to this curve, attesting to the clus
character of the fluctuations of the density of the medium
arbitrary compressible flows and, in particular, in the case
a passive tracer under consideration.

5. ELEMENTS OF STATISTICAL TOPOGRAPHY

Below we shall discuss the one-point probability dist
bution of the tracer density in the Eulerian representati
which has already enabled us to draw several conclus
regarding the behavior of the realizations of a density fi
with time at fixed points in space. We now show that th
distribution also makes it possible to elucidate some cha
teristic features of the spatiotemporal structure of the real
tions of the density field. We note that important informati
on the spatial behavior of the realizations can be provided
an analysis of the level contours defined by the equality

r~R,t !5r5const, ~49!

the areas of the regions demarcated by these level conto

S~ t,r!5E u~r~R,t !2r!dR, ~50!

and the total mass of the tracer contained in these regio

M ~ t,r!5E r~R,t !u~r~R,t !2r!dR. ~51!
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function!. The statistical means of the areas and masses
described can obviously be expressed in terms of the solu
of Eq. ~43!:

^S~ t,r!&5E
r

`

dr̃E dRP~ t,R; r̃ !,

^M ~ t,r!&5E
r

`

r̃dr̃E dRP~ t,R; r̃ !. ~52!

After plugging in the solution of Eq.~43! and performing
some relatively simple transformations, we find explicit e
pressions for the mean areas and masses of the par
within the level contours~49!:

^S~ t,r!&5E dRFS ln@r0~R!e2t/r#

2At
D , ~53!

^M ~ t,r!&5E r0~R!dRFS ln@r0~R!et/r#

2At
D .

Hence it is clear, in particular, that fort@1 the area of the
regions where the density is above the levelr decreases
exponentially with time according to the equation

^S~ t,r!&5
1

Aptr
expS 2

t

4D E Ar0~R!dR, ~54!

while the mass of the tracer contained in these regions

^M ~ t,r!&5M2A r

pt
expS 2

t

4D E Ar0~R!dR ~55!

tends monotonically to its total mass

M5E r0~R!dR.

This again confirms the previous conclusion that the tra
particles tend to gather in clusters, i.e., compact region
enhanced density surrounded by rarefied regions, with ti

The dynamics of cluster formation can be illustrated
the case in which the original passive tracer is uniform
distributed in the plane:r0(R)5r05const. Here, by analogy
with ~52!, the specific area of the regions within whic
r(R,t).r is

s~ t,r!5E
r

`

P~ t; r̃ !dr̃5FS ln~r0e
2t/r!

2At
D , ~56!

whereP(t,r) is the solution of Eq.~43! that does not depen
on R, and the specific mean mass of the tracer concentr
in these regions is described by the expression

m~ t,r!5
1

r0
E

r

`

r̃P~ t; r̃ !dr̃5FS ln~r0e
t/r!

2At
D . ~57!

It follows from ~56! and~57! that at long times their specifi
area decreases exponentially according to the expressio

s~ t,r0!5FS 2
At

2 D'
1

Apt
expS 2

t

4D , ~58!
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regardless of the value ofr/r0, while essentially all the
tracer particles gather within them:

m~ t,r0!5FSAt

2 D'12
1

Apt
expS 2

t

4D . ~59!

The character of the temporal evolution of the formati
of the cluster structure depends significantly on the value
r/r0. For example, ifr/r0,1, we initially haves(0,r)51
andm(0,r)51. Then, because the passive tracer partic
tend to move apart in the initial period, small regions w
r(R,t),r form, which contain an insignificant part of th
total mass. With the passage of time, these regions rap
increase in size, their mass passes into the cluster reg
and the asymptotic dependences~58! and ~59! are achieved
quite rapidly ~Fig. 4a!. We note further that at the time
t*5 ln(r0 /r) the areas(t* ,r)51/2.

In the opposite case ofr/r0.1, we initially have
s(0,r)50 andm(0,r)50. The initial movement of the par
ticles produces small cluster regions withr(R,t).r, which
are essentially conserved with time and rapidly draw in
considerable part of the total mass~Fig. 4b!. Subsequently,
the areas of these regions decrease with the passage of
but the mass contained in them increases according to
asymptotic dependences~58! and ~59! ~Fig. 4c!.

FIG. 4. Dynamics of the formation of ‘‘cluster regions.’’
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6. CONCLUSIONS
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We have thoroughly discussed the one-point probab
properties of a passive tracer moving in a compressible c
otic velocity field. As was shown in this work, even th
simplest statistical characteristics of the density and div
gence fields enable one to draw useful conclusions regar
the fine structure of the density field and, in particular,
garding the clustering of the passive tracer. A more comp
statistical topography of the tracer, including, for examp
determination of the statistics of the lengths of level co
tours, the number of level contours, the mass of the parti
contained in clusters, etc. requires knowledge of the stat
cal properties of the gradients of the density field and
higher derivatives.2,8,11We note that the conclusions of th
present work are applicable not only to the idealized cas
a passive tracer in thez50 plane, but also to a real agitate
surfacez5Z(R,t) on which a passive tracer is distributed.
fact, instead of~3! we then have

r~r ,t !5 r̃~R,t !d~Z~R,t !2z!,

where the functionr̃(R,t) obeys the equation

S ]

]t
1u~R,Z~R,t !,t !

]

]RD r̃~R,t !

1
]Ua~R,Z~R,t !,t !

]Ra
r̃~R,t !50.

When the velocity field and the agitated surface are
tistically independent, it is easy to see in the delta-correla
724 JETP 84 (4), April 1997
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ties of the density do not depend on the agitation of
surface and coincide with the properties of the tracer den
on an ideal plane studied above.

We thank E. M. Dobryshman, who directed our attenti
to the work in Refs. 3–5. The present work was carried
with the partial support of the Russian Fund for Fundamen
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Dynamic fractal structure of emulsions due to motion and interaction of the particles:

an
numerical simulation
V. V. Zosimov and D. N. Tarasov

Scientific-Research Institute of Applied Acoustics, 141980 Dubna, Moscow Region, Russia
~Submitted 9 September 1996!
Zh. Éksp. Teor. Fiz.111, 1314–1319~April 1997!

The method of numerical simulation is used to study the geometrical structure of micro-
emulsions in the plane. It is found that the interaction between the particles leads to the formation
of a dynamic homogeneous fractal structure of the micro-emulsion. In the absence of any
interaction between the particles the structure of the emulsion is homogeneous. The interaction
energy of the particles at which the fractal inhomogeneity arises is close in magnitude to
the interaction energy of the particles in real~e.g., aqueous! micro-emulsions. It is also found that
the size of the inhomogeneities~correlation radius! depends on the particle density in the
system and is largest for the density of the percolation transition. The numerical simulation data
qualitatively coincide with the results of measurements in real micro-emulsions. ©1997
American Institute of Physics.@S1063-7761~97!01404-2#

Fractal structures have become a popular object of study
1,2

Thus, inhomogeneities in micro-emulsions, as Ozhov
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in recent years, but are by no means exotic objects a
may be encountered in completely ordinary situations. I
study of the mechanical properties of aqueous mic
emulsions the authors of Refs. 3 and 4 advanced the hyp
esis that the geometrical structure of micro-emulsions c
tains inhomogeneities which are characterized by a fra
structure. In Ref. 5, using the method of rapid freezin
Ozhovan investigated the structure of a micro-emulsion
silicate glass in a vitrophobic liquid melt. Ozhovan disco
ered that for some fraction of the dispersed phase in s
size range the geometrical structure of the micro-emuls
has inhomogeneities characterized by a fractal structure.
analysis of these data in Ref. 5 was based on the conce
a connecting cluster, arising during a percolation transiti
In general, it is this connecting cluster that possesses fra
dimensionality. Near the percolation threshold the numbe
particles entering into this cluster is significantly less th
the total number of particles in the system. The measu
ments reported in Ref. 5 allowed for all the particles in t
system. Here in the case when there is no interaction
tween the particles, the system as a whole should be ho
geneous. Thus, the fractal structure of a micro-emulsion c
not be explained by the percolation transition.

Other models of fractal structure formation in two-pha
dispersive systems are based on a consideration of proc
of particle aggregation for different laws of motion and i
teraction of the particles. To analyze these processes,
merical simulation methods have acquired the most wi
spread use. Such methods, along with their simplicity, g
quite good results, agreeing with the experimental data
within 2 %.6 What distinguishes processes of solid parti
aggregation from the formation of inhomogeneities in
micro-emulsion is the following: although conditions exist
which solid particles have a small probability of forming
bond in a collision,7 in the final count after some time clus
ters are formed which from then on do not change, i.e.,
process is irreversible. A micro-emulsion exists in thermo
namic equilibrium, which excludes irreversible process
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pointed out, have a dynamic character, i.e., they are o
served not only at certain spatial scales, but also on cer
time scales.

The aim of the present paper is to explain the appeara
of dynamic fractal structures in emulsions and their conn
tion with the percolation transition. The problem is solved
numerical simulation.

A two-dimensional model which allows for all the abov
features is constructed as follows: 200 particles are place
a cell with periodic boundary conditions. For a fixed numb
of particles their density varies due to variation of the size
the cell. The particles are modeled by solid disks of rad
r 0 and massm0, and the interaction between the solid dis
by a constant force acting over a distance of 0.1r 0. The mo-
tion of the particles is simulated, as in the well-know
method of molecular dynamics.8 At the initial time an equi-
librium distribution of particle velocities with temperatur
T is prescribed. At each subsequent time the velocities
forces acting between the particles are calculated and sim
taneous mixing of all particles is effected. In contrast to t
molecular dynamics method, to model the Brownian nat
of the particle motion after a timet0 the velocities of all
particles are replaced by new values in accord with the
tribution at the given temperature. The timet0 is equal in
order of magnitude to the time it takes a particle on aver
to move through the distance 0.1r 0.

To determine the distribution of the particles in the sy
tem, the dependenceg(r ) of the number of particles in a
circle of radiusr on this radius is found. At the initial time
the particles are distributed in the cell as solid shells.9 The
functiong(r ) is monitored as a function of time. The calcu
lations are carried out until the values ofg(r ) cease to vary
for some set length of time; in this case it is assumed that
system has reached equilibrium.

Let us consider the behavior of the modeled system
different interaction energies between the particles.
E50, i.e., let the particles be modeled by solid disks witho
any interaction potential. In this series of runs the parti

7254$10.00 © 1997 American Institute of Physics
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FIG. 1. System of particles after comple
tion of simulation, r 051. a! C50.09,
E50, b! C50.09, E52.5 kT, c!
C50.09, E51.3 kT, d! C50.25, E51.3
kT.
concentrationC in the system was varied from 0.01 to 0.5. It
n
o

an
eo
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sy

b

o
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tion g(r ) for E50, and the system remains practically ho-

d
on
the
was found that, independent of the concentration, the fu
tion g(r ) does not vary with time after the commencement
particle motion and the values ofg(r ) completely coincide
with the values obtained theoretically by Ambartsumy
et al.9 for the process of solid shells. In this case the g
metrical structure is homogeneous and does not possess
tal properties. Thus, simple Brownian motion of so
spheres does not lead to fractal inhomogeneities in the
tem.

The introduction of a short-range model potential su
stantially alters the situation~Fig. 1!. In this series of com-
puter experiments the particle concentration remained c
stant and equal to 0.09. If the interaction energy between
particles satisfiesE.3kT, then the particles form associate
A particle falling into such an associate has a very sm
probability of leaving it; for this reason with time each ass
ciate only increases in size as a result of collisions with f
particles and other associates. As a result, at some time
one associate remains in the system, consisting of part
packed as they would be in a crystalline lattice. It turns
that after a time for a large enough interaction between
particles the system separates into two phases. Indeed, e
sions of liophobic liquids very often are unstable, and w
time a separation of phases takes place.10

When the interaction energy between the particles sa
fiesE,kT the functiong(r ) almost coincides with the func
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For energieskT,E,3kT inhomogeneities are forme

in the system, that is to say, clusters. A particle, falling up
a cluster, after some time leaves it. After a certain time

FIG. 2. Log–log plot of the functiong(r ) for various interaction energies
between the particles,C50.09: 1! E50, 2! E51.3 kT, 3! E52.5 kT, 4!
g(r ) } r 2 ~homogeneous distribution!, 5! g(r ) } r 1.42~fractal distribution!.
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clusters decay and new clusters form in a different place
this case, for 3r 0,r,10r 0 and E51.3kT we haveg(r )
} r 1.42 ~Fig. 2!. Consequently, the interaction between t
particles leads to the result that the geometrical structur
the system becomes fractal.

The value;(122)kT of the interaction energy betwee
the particles in an emulsion is completely realistic. Thus,
example, it is generally assumed that an interaction ex
between hydrophobic particles in water, due to a breakdo
of the hydrogen bonds in water caused by the hydropho
particles and equal in order of magnitude to the energy of
hydrogen bond between the water molecules.11 The energy
of the hydrogen bond between two water molecules
EH'5 kcal/mole, which at room temperatureT5300 K
givesEH'8kT, which coincides in order of magnitude wit
the energies at which fractal inhomogeneities are forme
the simulated system.

In the next series of computer experiments we varied
particle concentration fromC50.06 toC50.4 while keep-
ing the interaction energy between the particles constant
equal to 1.3kT. The functiong(r ) is plotted in Fig. 3 for
various concentrations. It can be seen that at low concen
tions up toC50.08 the dependenceg(r ) corresponds to the

FIG. 3. Log-log plot of the functiong(r ) for the interaction energies be
tween the particlesE51.3 kT: 1! C50.05, 2! C50.15, 3! C50.26, 4!
C50.33,5! g(r ) } r 1.45~fractal distribution!,6! g(r ) } r 2 ~homogeneous dis-
tribution!, 7! g(r ) } r 1.72~fractal distribution!.
In
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ideal gas or ideal solution. At concentrations above 0.08
gions of inhomogeneity begin to be formed which have
fractal dimensionD: g } r D, where the correlation function is
described by a power law only for 4r 0,r,j, wherej is the
correlation radius. The dependence ofD and j on the par-
ticle concentration in the system is shown in Fig. 4.

A decrease of the correlation radiusj with further in-
crease of the particle concentration is characteristic for m
other cases where fractal inhomogeneities are present in
system, e.g., in the case of solutions of polymers12 or in
cluster–cluster aggregation models.13 This phenomenon is
explained by the fact that the concentration of t
inhomogeneity–clusters increases as the particle conce
tion is increased. At a particle concentration equal to
critical concentration of the percolation transition, the clu
ters begin to overlap. As a result, the correlation radiuj
decreases.

In the case of polymer solutions the correlation rad
j for concentrations below the concentration of the perco
tion transition ~the critical concentration! does not change
and is equal to the diameter of the coiled-u
macromolecule.12 In the case of cluster–cluster aggregatio
percolation depends on the size of the simulation region
the simulation region is enlarged without limit, the critic
concentration of the percolation transition decreases with
limit.13 In our case, below the critical concentration a
abrupt decrease of the correlation radius takes place. Th
because the action of the attractive forces and Brownian
tion balance out at a certain cluster size and this size dep
on the particle concentration.

As the concentration is increased, the fractal dimens
of the inhomogeneities increases and tends to the Euclid
dimension of space~Fig. 4a!, which is characteristic for
cluster–cluster aggregation models.6,13 In polymer solutions
the fractal dimension of the inhomogeneities remains c
stant as the concentration is increased.12 Reference 5 does
not present any data on the variation of the fractal dimens
of the inhomogeneities, which is understandable in view
the small range of concentrations at which the measurem
were made.

To summarize, by means of computer simulation
have established that in emulsions dynamic inhomogene
with fractal structure can indeed exist. The size of these
homogeneities is largest near the critical concentration of
-

FIG. 4. Fractal dimension of the inhomogeneitiesD ~a! and cor-
relation radiusj ~b! plotted as functions of the particle concen
tration atE51.3kT.
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the Russian Fund for Fundamental Research~Project No.

y

crease and with decrease of the particle concentration.
The fractal structure of the system owes its existence

to the percolation transition~at the percolation transition
only a connecting cluster possesses fractal dimensiona!,
but to attraction between the particles. When the interac
between the particles is decreased, the fractal structure o
system disappears. The interaction energy at which fra
inhomogeneities exist corresponds in order of magnitude
the interaction energy in real emulsions. The magnitude
the fractal dimension and its growth with increase of t
concentration agree with the results obtained in clust
cluster aggregation models.

Although it would be difficult to compare the results
this simulation with real emulsions due to the fact that
have used here a two-dimensional model and the real in
action forces between the particles of the emulsion are
known, these results coincide qualitatively with the resu
obtained in Ref. 5 for a micro-emulsion of silicate glass in
vitrophobic liquid melt by the method of rapid freezing.
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Acoustics of a relativistic superfluid

Yu. V. Vlasov
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The velocity of propagation of first and second sound at arbitrary temperatures is calculated here
for the first time according to the currently accepted covariant theory of superfluidity. Low-
intensity shock waves are considered. In the low-temperature limit the results agree with already
known expressions obtained by another method. ©1997 American Institute of Physics.
@S1063-7761~97!01504-7#
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It so happened historically in the covariant theory
superfluidity1–4 that the main attention was given to fund
mental problems while applied problems remained in
shadow. This was particularly the case with the study of
propagation of sound in a relativistic superfluid, which w
only begun quite recently. The speeds of first, second,
fourth sound were first calculated by Vil’chinski�,5 using a
simple, but as is well known,1,2,4,6invalid model~of the same
type as the Israel theory!, in which the superfluid and norma
components were treated as ideal fluids. Therefore, the
sults of Ref. 5 in fact pertain not to a superfluid, but
noninteracting gases. In point of fact1,2 the interaction of the
two components leads to the result that the ordinary hyd
dynamics of an ideal fluid is no longer applicable, and
more elaborate formalism developed by Lebedev, Khala
kov, and Carter is required. Results serving as confirma
were obtained by Carter and Langlois7 for the phonon equa
tion of state. However, the speed of second sound at arbit
temperature, when the spectrum of elementary excitat
deviates from the phonon spectrum, has not yet been reli
calculated. We will attempt to fill this gap below by usin
the recently derived theory of shock waves in a superflu8

Although there is no need to rederive the results of Re
here, we will, as an introduction to the subject, present so
basic results which will help us to derive, for example, t
intermediate formulas previously omitted as unimportant

In this paper we use the system of units customary
relativity theory with\5c51, in which the metric tensor is
gmn5diag$21,1,1,1%.

2. A RELATIVISTIC SUPERFLUID

In the covariant theory of superfluidity1–4 the conserva-
tion laws of the particle number current

¹rn
r50 ~1!

and the entropy current

¹rs
r50 ~2!

are written in combination with the conservation law of t
energy–momentum~pseudo-! tensor

¹rTn
r50, ~3!

where
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and the one-forms conjugate with the corresponding o
vectors are called the chemical potential covectormr and
temperature covectorQr . The pressure functionC related to
the LagrangianL by the Legendre transformation

C5L2srQr , ~5!

depends on three invariants, specifically the chemical po
tial in the superfluid reference system~this is the terminology
of Carter, Lebedev, and Khalatnikov!,

m252mrmr, ~6!

the effective temperature

Q252QrQr ~7!

and the product

z252Qrmr . ~8!

Thus, there exist four reference systems which are assoc
with the dynamical variablesnr, mr , s

r, andQr . If we
were working with an ideal two-component fluid, we wou
have two reference systems. But in the case of a relativi
superfluid, this is anything but the case: e.g., Eckart’s re
ence system does not coincide with the superfluid refere
system since the vectorsnl andml are not collinear. As a
matter of fact, only two of these four variables are indepe
dent, and the two others are expressed in terms of them
the formulas

nr5Fmr1HQr, sr5Hmr1GQr, ~9!

where the coefficientsF, G, andH are calculated with the
help of the pressure function:

F5
1

m

]C

]m
, G5

1

Q

]C

]Q
, H5

1

2z

]C

]z
, ~10!

and are components of the inverse metric tensor in the sp
of dynamical variables.2 Theories of the Israel type corre
spond to a conformally planar ‘‘metric,’’ and may be inco
rectly viewed as equivalent to the current theory at low te
peratures, for thenH→0. Below, in the instance of acousti
waves we will see just how wrong such a viewpoint is.

7295$10.00 © 1997 American Institute of Physics
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introduce a dependence on the relative velocityw between
the superfluid component and normal component by me
of the formula7,8

z25
H

G
m2w21ASHG m2w2D 21Q2m2. ~11!

3. SHOCK WAVES

The general theory of discontinuities in a relativistic s
perfluid was considered in Ref. 8. To treat the propagation
acoustic and weak shock waves, we will proceed from
general formalism. Let us consider a planar shock w
propagating along the x1 axis, with unit normal
lr5(0,1,0,0) to the hypersurface of the discontinuity. He
it is convenient to represent the vectors and covectors in
form

nr5n~coshw,sinhw,0,0!, mr5m~2coshc,sinhc,0,0!,

sr5s~cosha,sinha,0,0!, Qr5Q~2coshb,sinhb,0,0!.

~12!

We assume that the medium in front of the discontinu
surface is at rest, and we write the equations in the refere
system accompanying the shock wave. Thus, ahead of
front the relative velocity will be equal to zero, and

a25b25w25c2 . ~13!

The latter expression defines the velocity of the medi
v5tanhc2 ahead of the shock wave front; obviously, th
velocity is equal to the velocity of propagation of the disco
tinuity in the reference system in which the medium ahead
the front is at rest.

Conservation laws~1!–~3! lead to the following relations
on the discontinuity~the brackets denote the difference, t
subscripts1 and2 denote the states in front of and behin
the discontinuity:8

@nrlr#50, @srlr#50, @Tn
rlr#50. ~14!

Hence we have

n1
1 5n2

1 , s1
1 5s2

1 , ~15!

i.e., taking Eqs.~12! and ~13! into account

n1sinhw15n2sinhw2 , s1sinha15s2sinha2 .
~16!

The last of relations~14! defines two forms of strong
discontinuities,8 specifically first-sound discontinuities
which are characterized by the condition

m1
0 5m2

0 ,

and second-sound discontinuities, which satisfy the equa

Q1
0 5Q2

0 .

Equations~12! and ~16! lead to the relations

m1 coshc15m2 coshc2 ,

Q1 coshb15Q2 coshb2 . ~17!
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with the help of formulas~9!, to obtain expressions forv in
terms of the thermodynamic quantities for the two types
discontinuities:

n2v5F1Am2
2 2m1

2 1v2m1
2 1H1AQ2

2 2Q1
2 1v2Q1

2 ,

~18!

s2v5G1AQ2
2 2Q1

2 1v2Q1
2 1H1Am2

2 2m1
2 1v2m1

2 .

~19!
The solutions of Eqs.~18! and ~19! respectively define dis-
continuities analogous to ordinary shock waves and temp
ture discontinuities in superfluid helium.9 It should also be
noted that the quantitiesm andQ grow8 ~this is valid at least
for the phonon equation of state!.

4. FIRST AND SECOND SOUND

In order to obtain the velocity of propagation of first an
second sound from Eqs.~18! and ~19!, we replace the ex-
pressions for the parameters behind the discontinuity fr
by the finite differencem12m2 5 Dm and drop the subscrip
2. We obtain the system of equations

F~v221!Dm1mv2
]F

]m2 Dm21mv2
]F

]Q2 DQ2

1mv2
]F

]z2
Dz21H~v221!DQ1Qv2

]H

]m2 Dm2

1Qv2
]H

]Q2 DQ21Qv2
]H

]z2
Dz250, ~20!

G~v221!DQ1Qv2
]G

]m
Dm1Qv2

]G

]Q2 DQ2

1Qv2
]G

]z2
Dz21H~v221!Dm1mv2

]H

]m
Dm

1mv2
]H

]Q2 DQ21mv2
]H

]z2
Dz250. ~21!

For the quantityDz2, with the help of relation~11! we write
down the expansion

Dz25QDm1mDQ1~H/G!mQw2, ~22!

substitution of which into Eqs.~20! and ~21! in the linear
approximation leads to the biquadratic equation

H v22FFF1m
]F

]m
1Q

]H

]m
1QS m

]F

]z2
1Q

]H

]z2D G
21J

3H v22GFG1Q
]G

]Q
1m

]H

]Q
1mS Q

]G

]z2

1m
]H

]z2D G
21J 2v2HHFH1m

]F

]Q
1Q

]H

]Q
1mS m

]F

]z2

1Q
]H

]z2D G
21J HHFH1m

]H

]m
1Q

]G

]m
1QS Q

]G

]z2

1m
]H

]z2D G
21J 50 ~23!
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This biquadratic equation is solved approximately

splitting it into a pair of quadratic equations, one for fir
sound,

uI
25FFF1m

]F

]m
1Q

]H

]m
1QS m

]F

]z2
1Q

]H

]z2D G
21

5F
]m

]n
~24!

and one for second sound,

uII
25GFG1Q

]G

]Q
1m

]H

]Q
1mS Q

]G

]z2
1m

]H

]z2D G
21

5G
]Q

]s
. ~25!

This approximate solution is valid given certain conditio
~about this see below!, and in the most general case first a
second sound are, as one says, ‘‘coupled,’’ i.e., Eq.~23! does
not split into Eqs.~24! and~25!. At the same time, formulas
~24! and ~25! do not in principle impose any restrictions o
the equation of state and thus generalize the particular
considered in Ref. 7.

It is interesting to compare Eqs.~24! and ~25! with the
analogous nonrelativistic relation.9 Toward this end, we ex-
press the quantityG in terms of the determinant of the Cart
tensor:3,7G5B/K, whereB has the dimensions ofm/n ~and
at low temperature coincides with this quantity!. On the
other hand, it is well known7 that the effective ‘‘energy den
sity’’ of the normal componentrN is linked with the entropy
density in the superfluid reference systemss by the relation
rN5F2Kss

2 , whereF2 is called a dilaton3 and the effective
density of the superfluid componentrs is expressed in term
of the chemical potentialmN in the normal reference system
as rs5F2mN

2 . Therefore in place of formula~7! we may
write

uII
25B

ss
2

mN
2

rs
rN

]Q

]s
,

which has some superficial resemblance to the well-kno
nonrelativistic expression.9 However, the analogy with the
nonrelativistic case cannot be complete for the reason th
the covariant theory1–4 one cannot introduce conserved no
mal and superfluid currents. It can be shown that formula~8!
goes over to the corresponding nonrelativistic expressi9

the ‘‘energy density’’ of the normal and superfluid comp
nents acquires the ordinary meaning of a mass density,
entropy density at nonrelativistic velocities will be the sam
in any reference system, and the chemical potential tend
a constant value equal to the rest energy of the coupled
ticles.

To check expressions~24! and ~25! in the low-
temperature limit, where the elementary excitations
phonons, they may be compared with the corresponding
sult of Carter and Langlois,7 obtained by the extremely cum
bersome Hadamard method. But in the high-tempera
case we no longer have any known result against which
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the speed of second sound calculated by Vil’chinski�. Thus,
we will show that relation~25! gives the result of Carter an
Langlois in the low-temperature limit.

At low temperatures the Lagrangian is given by t
expression4

L$m,z,Q%5L$m%2c$m,z,Q%, ~26!

where the second term, corresponding to the contribution
the elementary excitations, is written explicitly as

c$m,z,Q%5
1

4
csS 3

4\I
D 3~GnlQnQl!2, \I 50.99\.

~27!

Here the projective tensor is

Gnl5gnl1S 12
1

cs
2D mnml

m2 ~28!

andcs is the speed of first sound. With the help of relatio
~5!, ~9!, ~10!, and~26!–~28!, by differentiating the Lagrang-
ian ~9!, we readily calculate the coefficients of interest

G52csS 3

4\I
D 3F2Q21S 12

1

cs
2D z4

m2G ,
~29!

H5csS 12
1

cs
2D S 3

4\I
D 3 z2

m2 F2Q21S 12
1

cs
2D z4

m2G .
Next, with the help of relations~9! and~10! we calculate the
entropy density

s5csS 3

4\I
D 3F2Q21S 12

1

cs
2D z4

m2G 2
3AQ22F12S 1

cs
2D 2G z4

m2
. ~30!

Equations~18! and~19! and consequently also~24! and~25!
pertain to the case in which the relative velocity between
components ahead of the wavefront is equal to zero. T
corresponds toz25mQ. Then substituting expressions~29!
and ~30! into Eq. ~25! gives

uII
25cs

2/3, ~31!

which exactly coincides with the result of Carter an
Langlois,7 even though the calculational technique was co
pletely different. The agreement of the results obtained
two independent methods gives a basis for confidence in
validity of both methods.

Similar calculations using the Israel model of noninte
acting components with the Lagrangian~26!, ~27! leads to
the incorrect resultuII

251/3, whereas expression~25! agrees
with the nonrelativistic value of the speed of second soun9

Finally, it should be noted that for the phonon excitati
spectrum the speed of second sound is given by the s
expression as for superfluid helium.

It only remains for us to convince ourselves that t
speed of first sound~24! corresponds to the value ofcs de-
termined by Carter. Toward this end, we make use of
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relation F5F2(11A2/K) and the asymptotic behavior of
2 -

ith
v

re

o
nd

o
in
av
r
di
o
iv

r
a

f

te
lic

p

equation of state we have10 u1
25(12m/m)/g, wherem is

-

ing
the
e.
ll
rop-

us

the
nti-

the
d at
dis-
he
t

plit

of
e
ult

ns
lcu-
cond
are

ed
for
non

em,
.
is
e it

e
nd
dis-

in
ivis-
s
the
the dilatonF , the true anomalyA, and the Carter determi
nant K at low temperature:4 F25n/m1O(Q4),
A2/K5O(Q4). It follows that

uI
25

n

m

]m

]n
[cs

2, ~32!

i.e., Eq.~24! is also found to be in complete agreement w
current theory, which, it may be noted, could easily ha
been foreseen.

Let us turn our attention to the low-temperatu
asymptotic limitH/G;O(Q). In the Israel theory we have
H[0. But if we neglect~without justification! the coefficient
H, we obtain the same incorrect resultuII

251/3. When using
the hydrodynamics of an ideal fluid in the description
relativistic superfluid systems it should be borne in mi
what such a simplified theory leads to.

5. WEAK DISCONTINUITIES

The logical conclusion of our calculations is a study
weak discontinuities. In other words, we will try to ascerta
whether the discontinuities appear in front of the sound w
or behind it. Ordinary shock waves~always! propagate faste
than sound waves. But in superfluid helium temperature
continuities can also arise on the trailing edge of a wave
second sound.9 Let us see how the matter stands in a relat
istic superfluid.

In Eqs. ~18! and ~19! we must keep not only linea
terms, but also second order terms, proceeding from the
proximate expressions

nv5~F1DF !@$2mDm1~Dm!2%~v221!1v2m2#1/2

1~H1DH !@$2QDQ1~DQ!2%~v221!

1v2Q2#1/2,

sv5~H1DH !@$2mDm1~Dm!2%~v221!1v2m2#1/2

1~G1DG!@$2QDQ1~DQ!2%~v221!1v2Q2#1/2

and the more accurate@than ~22!# expansion

Dz25DQm1QDm1
1

2 S DQ2
m

Q
12DmDQ

1
Q

m
Dm2D1

1

2 SHG m2w2D 2 1

Qm
1
H

G
m2w2.

Skipping intermediate steps, we present the final results
the case of the phonon equation of state:

v I
25uI

21H 2~12u1
2!2uI

4 m2

n

]2n

]m2J Dm

m
, ~33!

v II
25uII

21
3216cs29cs

2

6

DQ

Q
. ~34!

Equation~33! shows that if the speed of first soundu1 is
small, the corresponding discontinuity always propaga
ahead of the sound wave. We may obtain a more exp
understanding of formulas~33! and ~34! for specific in-
stances of equations of state. Specifically, for the polytro
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the rest mass of the paired particles andg.1 is the poly-
trope index. Taking~32! into account, we may convince our
selves thatv.u1 .

It follows from ~34! that if the speed of first soundcs is
small, temperature discontinuities are formed on the lead
edge of the wave of second sound, which corresponds to
results for superfluid helium in the low-temperature rang9

However, for cs>0.97 the temperature discontinuities fa
behind the wave of second sound, this being a specific p
erty of a relativistic superfluid.

Finally, let us turn our attention to the almost obvio
fact that substituting the speed of first sound~24! into system
~18! expanded out to quadratic terms in the jumps of
various quantities at the discontinuity shows that the qua
tiesDQ andw2 should be of a higher than first order inDm.
And in a wave of second sound the jumpDm and the quan-
tity w2 are quantities of higher than first order relative toDQ.

6. CONCLUSIONS

To summarize, in the foregoing we have calculated
speeds of first and second sound in a relativistic superflui
arbitrary temperature and have also discussed where the
continuities arise in waves of first and second sound. T
main result consists in Eq.~23! and its consequences for firs
~24! and second sound~25!. Equation~23!, in contrast to the
Israel model and the result of Ref. 5, does not in general s
into Eqs.~24! and~25!. The speed of first sound~24! at low
temperature is given by the well-known expression~32!
which is not in any doubt. The expression for the speed
second sound~25!, valid at arbitrary temperatures, in th
particular case of the low-temperature limit gives the res
~31! found previously by Carter and Langlois.7 At the same
time, the equation obtained here~25! pertains specifically to
a relativistic superfluid and not to the Israel model, by mea
of which the speed of second sound was previously ca
lated. Thus, the expressions for the speeds of first and se
sound obtained here generalize well-known results which
either particular cases of the low-temperature limit7 or per-
tain to the approximate model,5 which cannot be applied to a
description of a relativistic superfluid. We were compell
toward this latter conclusion by the incorrect expression
the speed of second sound found in the case of the pho
equation of state.

It is also important to mention that Eq.~23! is universal
in the sense that it applies to any two-component syst
e.g., in the hydrodynamical description of nuclear matter

As for the calculational technique, we employed what
unquestionably the most universal method possible, sinc
was based on the global formulas~18! and ~19! for shock
waves, which in the limit of infinitesimally small amplitud
lead to the velocities of propagation of first and seco
sound. This approach allowed us to also consider weak
continuities@Eqs.~33! and ~34!#.

Finally, the present formalism can be constructed
terms of temperature and pressure as is done in nonrelat
tic theory,9 but this would only complicate the calculation
and not increase the physical clarity of the exposition. On
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contrary, operating with the temperature and chemical poten-
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tial allowed us to write down all the equations, so to spe

in symmetrical form, i.e., to obtain Eqs.~20! and~21!. It may
be noted in passing that such ‘‘symmetry’’ falls away on
when we turn to specific equations of state, which can
clearly seen from the difference between formulas~31! and
~32! or formulas~33! and ~34!.
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Molecular-dynamics simulation of evaporation of a liquid

the
V. V. Zhakhovski * ) and S. I. Anisimov
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Moscow Region, Russia
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The molecular-dynamics method is used to investigate high-temperature evaporation of a simple
liquid. The interaction of the atoms is described by a Lenard–Jones 6–12 potential. The
simulation shows that fluctuations of the binding energy in the surface layer play an important
role in evaporation, thanks to which a significant contribution to the evaporated flux
comes from atoms whose kinetic energy is of the same order of magnitude as the mean thermal
energy. Such a mechanism of evaporation differs substantially from the traditional one
@Ya. I. Frenkel’,Kinetic Theory of Liquids~Clarendon Press, Oxford, 1946!# based on the
assumption that only those particles evaporate that have energies of the order of the binding
energy, i.e., much larger than the mean thermal energy. The structure of the transitional
layer between the bulk gas and liquid phases is investigated. Potential energy fluctuations and
pairwise correlation functions in the bulk phases and transitional layer are calculated.
The velocity distribution function of the atoms for evaporation into vacuum is found. ©1997
American Institute of Physics.@S1063-7761~97!01604-1#
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The problem of evaporation of condensed matter is
of the classical problems of physics. It is of fundamen
interest and is important for many applications in scient
research and engineering. The intense study which this p
lem has received in recent years has been facilitated by
development of efficient methods of producing high ene
densities based on the use of laser radiation and high-po
particle beams. The extensive experimental material obta
in this way is usually interpreted on the basis of greatly s
plified theoretical models~see, for example, Refs. 1–3!. In
this connection, processes taking place in the gas ph
where kinetic effects play an important role,4–6 have been
studied in a more fundamental way than processes in
condensed phase and in the interphase transitional layer
stead of analyzing the latter, most studies make do with
simple single-particle model, which treats evaporation as
escape of the fastest atoms from a potential well whose d
is equal to the mean binding energyU0 . In order to calculate
the flux of evaporated material, the velocity componentvz
normal to the phase boundary is integrated over the tai
the Maxwellian distribution withvz.A2U0 /m. Such a
model is obviously an oversimplification. In reality, for a
oms located in the surface layer and making the main c
tribution to the evaporated flux, the binding energyU is not
a fixed quantity, but depends on the immediate environm
of the given atom. It is equal toU0 only in order of magni-
tude. The following circumstance is also important. A s
face atom with binding energyU before the transition to the
gas phase completes on average exp(U/kT) oscillations, i.e.,
it remains in the bound state for a time of the order
t exp(U/kT), wheret is equal in order of magnitude to th
inverse Debye frequency. At temperatureskT!U this time
is much greater than the characteristic time of variation
the binding energy of the atomU, i.e., than the time, of orde
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immediate environment of the surface atom. Thus, evap
tion must be considered as a collective process. As a co
quence of fluctuations of the binding energy, atoms
groups of atoms are formed in the surface layer such that
energy per particle required to tear any of them free is s
nificantly less thanU0 and their lifetime in the bound state i
the surface layer is of ordert. These atoms with kinetic
energy on the order of the mean thermal energy mak
substantial contribution to the evaporated flux. Here we m
make the following remark. If we assume that the main co
tribution to the evaporated flux comes from particles belo
ing to the tail of the Maxwellian distribution, then it may b
expected that evaporation will lead to a depletion of f
particles from the surface layer of the condensed phase
this case the complicated question arises of the mechan
by which fast particles fill the tail. This question has be
discussed a number of times, but it has not obtained a s
factory answer. The fluctuation mechanism of evaporat
discussed here is free from this difficulty.

At temperatures less than critical, the boundary betw
the liquid and gas phases is well defined: the density va
in the direction of its maximum gradient over a length on t
order of the interatomic distance in the liquid. This bounda
has a complicated shape which varies with time. Lon
wavelength perturbations of the boundary include the w
known capillary waves with dispersion lawv25gk3/r,
whereg is the surface tension andr is the density of the
liquid.12 Curving of the phase boundary as the wave pro
gates leads to variation of the binding energy of the atoms
a magnitude of the order ofgkn21/3, wheren is the particle
number density in the liquid. This quantity becomes com
rable to the mean binding energyU0 at wavelengths of the
order of the interatomic distance. Numerical calculation11

show that at sufficiently high temperatures perturbations
the interphase boundary with wavelength of the order

7342$10.00 © 1997 American Institute of Physics
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considerable amplitude. Perturbations of the boundary
crease the surface-averaged thickness of the transiti
layer, which is also much greater than the thickness of
boundary. The excitation of short-wavelength surface mo
inside the transitional layer leads to the formation on
phase boundary of segments with high local curvature wh
make a significant contribution to the evaporated flux. N
that at wavelengths severalfold greater than the interato
distances, the motions of some neighboring atoms are co
lated; therefore, along with the evaporation of individual
oms one may also expect large clusters to break free from
surface. Such clusters have been observed in molec
dynamics calculations.11

The real structure of the surface layer of an evapora
liquid should have a substantial effect on the interaction
the atoms of the vapor with the surface of the liquid.
studies of surface phenomena at the interface between
densed matter and a gas, calculations of such quantitie
accommodation coefficients and reflection coefficients of
atoms have traditionally occupied an important place. U
ally such calculations have a model character and are t
cally carried out for a flat stationary interface. In light of th
complicated, time-dependent structure of the transitio
layer between a liquid and a gas, the applicability of t
results of such studies to a real liquid–vapor boundary ra
doubts. Processes in the transitional layer determine the c
acter of the velocity distribution of the evaporated atom
and discontinuities in the gas-dynamic quantities in
Knudsen layer near the phase boundary depend, in turn
this distribution. To solve the Boltzmann equation for t
Knudsen layer, the distribution function of the atoms emit
by the surface is usually assumed to be Maxwellian~with
temperature equal to the temperature of the liquid and
ticle number density equal to the density of the satura
vapor at this temperature! for vz,0 ~the z axis is directed
from the liquid to the gas!.4–10 This boundary condition was
never rigorously derived. It is probably correct in the case
a planar phase boundary, but is not obvious in genera
molecular-dynamics simulation would give some idea
how close it is to reality for a real boundary.

In the present study we have simulated the evapora
of a liquid by the molecular-dynamics method and have
dertaken an effort to consider the above-mentioned quest
of the mechanism of intense evaporation, the structure of
transitional layer between a liquid and its vapor, and
velocity distribution of the evaporated atoms. The pape
organized as follows. Section 2 describes the model and
mulates some methodological questions. Section 3 addre
simulation of equilibrium between the liquid and vapor in
closed space, and Sec. 4—non-equilibrium evaporation
vacuum.

2. THE MODEL

We consider a system ofN particles located in a paral
lelepiped with dimensionsL3L32L, called from here on
the molecular-dynamics cell. The interaction between
i th andj th particles is described by the Lenard–Jones po
tial
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wherer i j is the distance between the particles, and« ands
are the potential parameters. In order to separate the sy
into a liquid phase and a gas phase along thez axis, we
introduce an additional potential acting on the system fr
the direction of one of the faces of the parallelepiped,
floor of the molecular-dynamics cellz52L:

ub~zi !54«b@~s/~L1zi !!122~s/~L1zi !!6#. ~2!

To simulate evaporation into vacuum and into a clos
space, we introduce a repulsive potential at the opposite
of the cellz5L

uc~zi !54«c@s/~L2zi !#
12. ~3!

This potential plays the role of the lid of the molecula
dynamics cell. For a closed lid we have«c5«, and for an
open lid«c50. Periodicity conditions with periodL are im-
posed on the system in thexy plane. In this way, for each
particle with radius vectorr i located in the main cell an
infinite series of images with radius vectorsr i1nL is intro-
duced, wheren is an integer-valued vector in thexy plane:
n5$ l ,m,0%. The distance between thei th andj th particles is
defined here by the rule

r i j5min~ ur i2r j1nLu!,

where the minimum is taken over all vectorsn.
The molecular-dynamics simulation of the system

based on the solution of the equations of motion of the p
ticles making up the system. As the equations of motion i
convenient to take Newton’s equations, which do not cont
first derivatives in time

mr̈ i5f i~r1 ,r2 ,...,rN!, i51,2,...,N, ~4!

where the forcesf i are determined by differentiating the po
tentials~1!–~3!.

Special numerical methods have been developed to s
such equations~mainly in connection with the problem o
celestial mechanics!.13 In the present study, to integrate th
equations of motion~4! we applied~apparently for the first
time in the practice of molecular-dynamics calculations! the
explicit eighth-order Sto¨rmer method. This method was cho
sen in place of the simpler schemes traditionally used
molecular-dynamics simulations14 because of the necessit
of calculating the trajectories of the system for an extend
interval of time since the establishment of thermodynam
equilibrium in a two-phase system is much slower than i
one-phase system. The application of a higher-order met
makes it possible while preserving the prescribed accurac
use a several times greater time step and thereby spee
the calculation and reduce the accumulation of errors. N
that this statement is valid for sufficiently dense system
where the number of particle–neighbors calculated is la
and the main fraction of the time (.90%) is spent calculat-
ing the interparticle distances and forces. Therefore, an
crease in the order of this explicit integration method on
insignificantly increases the computer time expended per
tegration step~less than 10% in our case! and allows us to
substantially increase the size of the integration step~by
roughly a factor of four!. Thus, in the case of a large numb
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of neighbors~dense systems, long-range potentials! the use
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of the explicit eighth-order Stormer method speeds up th
calculation in comparison with ordinary methods by rough
a factor of 324. A significant increase in the amount o
computer memory used is not a real problem at the pre
time. The calculational formula used to integrate the eq
tions of motion does not depend on the particle velocit
and has the form
,
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xn1152xn2xn211 60480(j50
ajxn2 j . ~5!

Heren is the number of the time step,h is the length of the
time step, and the quantitiesaj are given in the following
table.
een
To simplify the presentation, formula~5! is written down much faster in a two-phase system than equilibrium betw
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only for thex component of the vectorr . The form of for-
mula ~5! is the same for they andz components. Obviously
more than just this one formula is needed for the molecu
dynamics simulation since it is also required to know t
velocitiesṙ i of all the particles at each time step to calcula
the physical quantities which depend on the particle velo
ties. We derived and implemented the following formula:

ẋn115
1

2h
~xn112xn21!1

h

3
~ ẍn1112ẍn!. ~6!

The main difference between formula~6! and the usual
finite-difference estimates of the first derivative consists
the use of second derivatives to enhance the accuracy.
approach is natural since it uses values of the accelera
already calculated in order to evaluate formula~5!. It should
be emphasized that formula~6! is not used in the process o
integrating the equations of motion~4! by the method~5!.
Therefore, the error of estimate~6! affects only values of the
velocity-dependent physical quantities such as the kinetic
ergy calculated at thenth step.

To carry out the calculations, it is convenient to u
dimensionless variables. It is customary to takes as the unit
of length, « as the unit of energy, and the quanti
t5sAm/48« as the unit of time. In what follows, if the
dimensions are not explicitly stated, we will use these qu
tities. For example, the temperature in dimensionless uni
expressed as

T5
16

N (
i51

N

v i
2516^v2&.

To transform to dimensioned quantities, it is necessary to
the parameters of the Lenard–Jones potential of the spe
material involved. For example, for argon we may u
s53.40531028 cm, «51.653310214 erg5119.8 K, there-
fore the unit of time ist53.114310213 s.

To start the integration of Eqs.~4!, it is necessary to
assign the initial coordinates and velocities of all the p
ticles. Toward this end, the particles are arranged at
nodes of a simple cubic lattice inside a cube of dimensi
L3L3L resting on the floor of the molecular-dynamics ce
The particle velocities were chosen to be equal in magnit
to v5AT/16 and randomly distributed in direction. Note th
the results of the calculation do not depend on how the in
conditions are prescribed. As the molecular-dynamics sim
lations showed, a Maxwellian distribution is establish
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the phases is reached. In order to bring the system into
equilibrium state with prescribed temperature, at the ini
step of the simulation it is necessary to scale the veloci
and damp the oscillations of the center of mass along thz
axis. This initial step is followed by a shorter intermedia
step in which the system is not subjected to any exter
forces and enters a stationary state. Here a small chang
the temperature takes place. The criterion for the comple
of both steps is constancy of the temperature along thez axis
and smallness of the fluctuations of the center of mass of
entire system and of the gas and liquid phases separa
Note that thez component of the total momentum of th
system is not conserved; therefore fluctuations of the p
tion of the center of mass of the entire system are inevita
and reflect the fluctuations of the particle number density

The main difficulty of a molecular-dynamics simulatio
as is well known, has to do with the fact that to calculate
forces acting on a particle it is necessary at each time ste
calculate all the distances between the particles. The num
of these distances is equal toN(N21)/2; therefore the num-
ber of calculations grows asN2. The most successful way o
avoiding quadratic growth of the calculation time with in
crease of the number of particles was proposed by Verle15

It consists of defining the matrix of nearest neighbors, wh
is only used to calculate the interparticle distances. With t
goal, a cutoff radius of interactionr c and horizon radiusr g
are introduced. The particles located a distance less thar g
from the given particle are taken to be its nearest neighb
Only particles from the interaction spherer i j,r c interact
with the given particle. The particles located between
two spherical surfaces with radiir c and r g form a buffer
which exchanges particles with the interaction sphere. T
matrix of nearest neighbors is replenished everyk time steps.
So that even the fast particles will not be able to make it p
the buffer in the timekh, whereh is the time step, Verlet15

proposed choosing the horizon radius equal to

r g5r c1sk̂ v&h, ~7!

where ^v& is the mean-square velocity of the particles a
the parameters'5.3. We have introduced two new elemen
into the classical algorithm. First, the particlesj moving out
beyond the horizon radius of thei th particle during the time
kh were excluded from amongst its nearest neighbors u
the matrix of nearest neighbors is updated again. This pro
dure made it possible to speed up the program by roug
10% and use formula~8!. Second, we did not taker g to be a
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constant quantity

TABLE I. Parameters of closed two-phase systems.
as was done in Ref. 15, but rather assumed
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it to depend on the velocity of the particle and the struct
of its immediate environment. We assumed thatr g( i ) in-
creases with growth of the velocity of the particlev i , de-
creases as the number of particlesNi inside the cutoff radius
of the i th particle increases, and decreases as the time o
next update is approached. These conditions are satisfie
the empirically chosen dependence

r g~ i ,m!5r c1~k2m!^v&hS 31
v i
2

^v2& D 4

11CNi /r c
3 , ~8!

wherem50, . . . ,k21 is the number of time steps that ha
passed since the last replenishment,k2m is the number of
time steps until the next update,v i is the speed of thei th
particle, andC is an empirical constant. The maximum valu
of C for which no cases of penetration of the buffer
outlying particles are observed was identified by prelimin
calculations. In our calculations we adopted the va
C50.88. Using the parameters of our modelNi'100 and
r c53.2, form5k/2 andv i5^v& we obtains'2.2. This re-
duces the number of neighbors~for k516, ^v&51/4,
h51/32! in comparison with formula~7! by a factor of
roughly 1.5. On the basis of this estimate we may concl
that defining the horizon radius by formula~8! substantially
increases the efficiency of the algorithm in comparison w
its original definition.15 Moreover, as a consequence of
sensitivity to the local value of the particle the number de
sity formula ~8! offers definite advantages for simulatin
two-phase systems. It should be noted that formula~8! is not
optimal from the point of view of minimizing the number o
nearest neighbors. This question requires special study,
we will not touch on it further in this paper.

3. EQUILIBRIUM LIQUID–GAS SYSTEM

In this section we present results of a molecul
dynamics simulation of an equilibrium two-phase Lenar
Jones system. The system was brought into equilibrium w
the prescribed temperature. Its physical characteristics w
then calculated by averaging along a phase trajectory on
constant energy surface, i.e., we simulated the microcan
cal ensemble. As has already been mentioned, we are u
molecular-dynamics units. In all of the cases the numbe
particles in the main cellN was equal to 8000, and the ce
had dimensionsL3L32L with L525.1984. The integra
tion step was h50.03125 and the cutoff radius wa
r c53.2. We give for guidance the dimensioned values of
molecular-dynamics units in the case of argon~atomic mass
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sity 1.6825 g/cm3. The units of length, time, and energ
were given above. Some results of the calculations are s
marized in Table I. For the liquid and gas phases~indicated
by the subscriptsl and g, respectively! the table gives the
values of the densitynl andng , mean potential energy pe
particleul andug , and mean kinetic energye l andeg at four
temperatures~the numbers after the6 sign are the values o
the mean-square fluctuations!. As can be easily seen, the k
netic energy fluctuations satisfy the relation

^~^e&22e2!&5
2

3
^e2&,

with high accuracy, which indicates that the system is
thermodynamic equilibrium. The small value of the tempe
ture fluctuations ('0.8%), a consequence of the large nu
ber of particles, may also be noted. This justifies the adop
formulation of the problem, based on the use of anNVE
ensemble without artificial procedures for maintaining co
stant temperature. The time dependence of the ‘‘insta
neous’’ temperature, defined by relation~7!, is shown in Fig.
1.

In order to determine the dependence of the mean va
of a physical quantityf on the coordinatez, the molecular-
dynamics cell was subdivided into 512 layers of thickne
dz52L/512 and the values off ~which depends on the co
ordinates and velocities of the particles! were summed over
all the particles falling within the given layer. The result w
then divided by the total number of particles falling with

FIG. 1. Time dependence of the total energy and instantaneous temper
in a closed system withT50.897.
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the layer. Profiles of the particle number at different tempe
tures calculated in this way are shown in Fig. 2. As w
noted in the previous Section, near the floor of the cell
system is acted upon by forces with the potential~2!. At
T50.725 the constant«b was set equal to 0.5, and at high
temperatures it was set equal to 1. This potential affects
density profile only near the floor of the cell and has
effect on the bulk properties of the phases. Note that in
transitional layer between the liquid and gas the density p
file turns out to be monotonic. Thus, our calculation does
support the hypothesis advanced some time ago by Fish16

of the existence of density oscillations in the transition
layer.

Figure 3 plots the mean potential energy per particle
the mean-square fluctuation of this quantity as functions
z. We used the standard recipe in the calculation of th
quantities: half of the interaction energy was assigned
each of the pair of interacting particles. The calculation w

FIG. 2. Spatial profiles of the particle number density in a closed syste
different temperatures:1—T50.725, 2—T50.795, 3—T50.897, 4—
T50.991.

FIG. 3. Spatial profiles of the mean potential energy per particleū and its
mean-square fluctuationdu in a closed system at different temperatures. T
curves are labeled as in Fig. 2.
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carried out according to the scheme described above.
marked growth of the potential energy~binding energy! fluc-
tuations in the interphase region draws attention to itself. I
precisely these fluctuations, as was noted in the Introduct
that increase the probability that particles go from the liqu
to the gas. Figure 4 plots the mean potential energy and
fluctuations as functions of the particle number density. T
curves corresponding to different temperatures differ little
the region of densities corresponding to the transitional lay
Therefore, as a rough estimate it may be assumed tha
potential energy in the transitional layer is a function of t
local density. More detailed information about the bindi
energy of the atoms in the liquid, gas, and transitional la
may be obtained by calculating the potential energy distri
tion function from the molecular-dynamics simulation da
Examples of such calculations for different temperatures
shown in Fig. 5 (T50.795) and Fig. 6 (T50.991). The
figures show the unit-normalized potential energy probabi
distribution functions for the equilibrium system for sever
different cross sections of the molecular-dynamics cell. T
energy was averaged over layers of thickness 0.2, paralle
the xy plane. Thez coordinate of each of the layers is ind
cated in the caption. Curve1 in both figures corresponds t
the homogeneous liquid, and curve8—to the gas, and the
remaining curves—to the transitional layer. For all of t
cross sections the potential energy distribution function
nonzero at negative energies. In the gas phase it exh
features associated with the formation of diatomic and lar
clusters. In the high-temperature case the potential ene
distributions in the cross sections close to the ‘‘gas’’ end
the transitional layer exhibit similar behavior~see curves
5–7 in Fig. 6!. This can be interpreted as an indication of t
formation of clusters inside the transitional layer. The me
potential energy per atom in the gas phase is negative~which
is also apparent from Figs. 3 and 4!. In the transitional layer
the distribution broadens noticeably, corresponding
growth of the amplitude of the binding energy fluctuation
The shape of the distribution function in the transitional lay
and in the gas phase differs substantially from a Gauss

at
FIG. 4. Mean potential energy per particleū and its mean-square fluctuatio
du as functions of the particle number density at different temperatu
Notation of the curves is the same as in Fig. 2.
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Here we must note than in our earlier paper~Ref. 11! the
valueu/2 is erroneously used in the figures instead ofu.

The two-particle distribution functionn(r i ,r j ) is an im-
portant source of information about the structure of the tr
sition layer. Obviously, in a homogeneous phase it depe
only on the interatomic distancer i j5ur i2r j u. In our case, in
which the system varies in thez direction,n(r i ,r j ) is a func-
tion of three variables, which we may choose as thez coor-
dinateszi andzj of the two particles and the radial distan

r i j5A(xi2xj )
21(yi2yj )

2 between their projections on th
xy plane. The two-particle distribution functions in the

FIG. 5. Normalized distributions of the potential energyr(u) for a system
in equilibrium withT50.795, calculated for different layers during the tra
sition from liquid ~curve 1! to gas ~curve 8!. Coordinates of the layers
1—the layer 217.0,z,214.0, 2—the layer 29.0,z,28.8, 3—the
layer 28.5,z,28.3, 4—the layer 28.0,z,27.8, 5—the layer
27.5,z,27.3, 6—the layer 27.0,z,26.8, 7—the layer
26.5,z,26.3, 8—the layer21.0,z,18.0.

FIG. 6. Normalized distributions of the potential energyr(u) for a system
in equilibrium withT50.991, calculated for different layers during the tra
sition from liquid ~curve 1! to gas ~curve 8!. Coordinates of the layers
1—the layer 215.0,z,214.0, 2—the layer 26.5,z,26.3, 3—the
layer 25.5,z,25.3, 4—the layer 24.5,z,24.3, 5—the layer
24.0,z,23.8, 6—the layer 23.5,z,23.2, 7—the layer
23.0,z,22.8, 8—the layer 3.0,z,18.0.
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variables were calculated using the results of the molecu
dynamics simulation. In order to get an idea of how t
function n(r i j ,zi ,zj ) varies as one goes from the liquid t
the gas phase, we divided the transitional region into a se
of layerszs of thickness 0.2 parallel to thexy plane, and the
coordinatezi was chosen inside one of these layers. Dis
butions of two types were investigated: radial, depending
the variable r i j and calculated for the condition
uzi2zj u,0.2, and axial, depending on the variablezj2zi and
calculated for the conditionr i j,0.2. Distributions of both
types were also constructed for the bulk phases. The di
butions were calculated for different temperatures fro
T50.725 toT50.991. Figures 7 and 8 plot the radial distr
butions in various layerszs , calculated for the two extreme
temperature values. The coordinates of the layers are i
cated in the captions. It can be seen that as one goes from
liquid to the gas phase, the first thing one notices is
destruction of the higher-order coordination spheres. H
the positions of the maxima hardly change at all. This me
that the most probable distance between some isolated
ticle and the particles of thenth coordination sphere tends t
remain fixed in an equilibrium two-phase system. Thus,
one goes from the liquid to the gas a tendency is manifes
to preserve close-range order.

Examples of axial distributions are shown in Figs. 9 a
10. Although the level of the fluctuations in the axial dist
butions is higher than in the radial ones due to poor statist
the main features of the transition from liquid to gas a
preserved in this case. The curves numbered1 in all the
figures correspond to the homogeneous liquid phase,
which the radial and axial distributions should obviously c
incide. Calculation indeed demonstrates complete agreem
between the two distributions. This can be seen from Fig
and 10, in which the square symbols indicate the radial d
tributions for the liquid phase. On the basis of a study of
pairwise correlation functions in the transitional region b

FIG. 7. Pairwise radial distributions in an equilibrium system
T50.795, plotted vs the position of the layerzs during the transition from
liquid ~curve1! to gas~curve7!: 1—the layer217.0,z,214.0, 2—the
layer 29.0,z,28.8, 3—the layer 28.5,z,28.3, 4—the layer
28.0,z,27.8, 5—the layer 27.5,z,27.3, 6—the layer
27.0,z,26.8, 7—the layer21.0,z,18.0.
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tween the liquid and the vapor, we may draw the followi
conclusions about the structure of the liquid surface layer.
a consequence of preservation of short-range order, the
density ~defined on a scale of 223 unit lengths! in the in-
terphase region takes only two values corresponding to
densities of the bulk phases—liquid or gas. This means
there exists a well-defined phase boundary between the
uid and the gas, whose thickness is equal to roughly 122
molecular-dynamics units. The amplitude of the fluctuatio
in the position of this boundary defines the mean den
profile along thez axis and the mean thickness of the inte

FIG. 8. Pairwise radial distributions in an equilibrium system
T50.991, plotted vs the position of the layerzs during the transition from
liquid ~curve 1! to gas~curve 8!: Coordinates of the layers:1—the layer
215.0,z,214.0, 2—the layer 26.5,z,26.3, 3—the layer
26.0,z,25.8, 4—the layer 25.5,z,25.3, 5—the layer
24.5,z,24.3, 6—the layer 24.0,z,23.8, 7—the layer
23.5,z,23.2, 8—the layer 3.0,z,18.0.

FIG. 9. Pairwise axial distributions in an equilibrium system forr i j,0.2,
plotted vs the position of the layerzs (z5zj2zi) at T50.725. Squares on
curve 1 correspond to the radial distribution in the liquid:1—the layer
217.0,z,214.0, 2—the layer 29.0,z,28.8, 3—the layer
28.5,z,28.3, 4—the layer 26.5,z,26.3, 5—the layer
21.0,z,18.0.
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phase region, which increases with the temperature
reaches roughly eight molecular-dynamics units atT'0.9.

We made an attempt to apply the formalism of tempo
correlation functions to study the density fluctuations in t
transitional layer. Toward this end, three regions were dis
guished in the molecular-dynamics cell, corresponding to
bulk liquid and gas phases and to the transitional layer.
each of these regions we analyzed the density fluctuat
with wave vectors ql ,m5(2p/L)( l ,m,0) ~l50,1,2,3,
m50,1,2,3! lying in thexy plane and calculated the dynam
structure factor. We calculated the spatial Fourier transfo
of the density operator at the timet for each region:

n~q,t !5
1

Nt
(
j51

Nt

exp~ iq•r j~ t !!,

whereNt is the number of particles observed in the region
the timet and the subscriptj numbers the particles. The tim
seriesn(q,t) was written to disk. After the termination of th
calculation, the fast Fourier transform was used to estim
the spectral density function of the stationary proce
n(q,t), where this spectral density function is the desir
dynamic structure factor:

S~q,v!5
N

2p E dt^n* ~q,0!n~q,t !&exp~2 ivt !, ~9!

where F(q,t)5N^n* (q,0)n(q,t)& is the autocorrelation
function of the density fluctuations. Using the finite Fouri
transform, we may rewrite this expression in the form

S~q,v!5 lim
T→`

N

2pT U E
0

T

dt n~q,t !exp~2 ivt !U2. ~10!

HereN is the mean number of atoms in the region. As
consequence of the statistical invalidity of estimating t
spectral density from a single realization of the random p
cess in question,17 we divided the entire time interval into
Nd segments in order to reduce the error of the estim

FIG. 10. Pairwise axial distributions in an equilibrium system f
r i j,0.2, plotted vs the position of the layerzs (z5zj2zi) at T50.991.
Squares on curve1 correspond to the radial distribution in the liquid:1—the
layer 215.0,z,214.0, 2—the layer 26.5,z,26.3, 3—the layer
25.5,z,25.3, 4—the layer 24.0,z,23.8, 5—the layer
3.0,z,18.0.
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which is proportional to 1/ANd. We did this without using
spectral windows. Details of the technique can be found
Ref. 18.

An example of the dynamic structure factor calculat
according to the described technique is shown in Figs.
and 12. At the longest wavelengths and low temperatu
~0.725, 0.897! collective excitations are observed whose v
locity turns out to be close to the speed of sound in arg
'1 ~1000 m/s! near the triple point.

Because of the variability of the mean densityn(z) in
the transitional layer, it is difficult to interpretS(q,v) as the
dynamic structure factor of the interphase region. Howev
if we use the existence of a well-defined boundary betw
the liquid and the vapor, mentioned above, then it is poss
to attempt to link the functionS(q,v) with the spectrum of
the fluctuations of this boundary. A similar analysis was c
ried out for the static case by Triezenberg and Zwanzi19

which examined the effect of density fluctuations in the tra
sitional layer on the fluctuations of the separating Gibbs s

FIG. 11. Dynamic structure factorS(q,v) of the liquid phase in equilibrium
with the vapor atT50.725 as a function ofv for different values ofq
(Nd581): 1—0.2493,2—0.3526,3—0.7480.

FIG. 12. Dynamic structure factorS(q,v) of the liquid atT50.725 as a
function ofv for q50.2493 (Nd581): the solid curve corresponds to th
equilibrium system, the dashed curve to vapor in vacuum.
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obtained links the Fourier component of the height of t
Gibbs surface with the Fourier components of the fluct
tions of the local densityn(q,z):

z0~q!5E dz n~q,z!/~nl2ng!, ~11!

where the vectorq lies in thexy plane. The formalism de-
veloped by Triezenberg and Zwanzig19 permits one to gen-
eralize to the dynamic case. It can be shown that for tim
dependent density fluctuations the Fourier component of
height of the separating Gibbs surface is related to the F
rier component of the density fluctuations by a relati
analogous to~11!:

z0~q,t !5E dz n~q,z,t !/~nl2ng!. ~12!

If we now substitute relation~12! in Eq. ~10!, we obtain

S~q,v!5~nl2ng! lim
T→`

1

2pNT U E
0

T

dt z0~q,t !

3exp~2 ivt !U2.
Thus, the dynamic structure factor which we have calcula
for the transitional layer coincides with the power spectru
of the fluctuations of the separating Gibbs surface. For w
vectors lying in the interval 0.2493<uku<0.899, this spec-
trum corresponds to high-power low-frequency noise.
study of the dynamics of the separating surface by the abo
described method would require an extension of the wa
vector interval.

4. EVAPORATION INTO VACUUM

In order to simulate evaporation of a liquid into vacuum
the potential at the upper face of the molecular-dynamics
is set equal to zero~‘‘open lid’’ !. In this case the atoms ca
freely leave the cell and equilibrium states are not attained
is possible, however, to bring the system into a station
nonequilibrium state with prescribed constant temperat
Ts on the surface of the liquid phase. This is achieved
transferring the particles that have left the molecul
dynamics cell to the near-floor region of the cell with ne
velocities chosen such that the total kinetic energy is c
served and thex andy components of the total momentum
remain equal to zero. In such a stationary state it is poss
to average the characteristics of the system over time
compare the results with the characteristics of the equi
rium system withT5Ts .

The maximum flux density of the atoms evaporated fro
the surface of a condensed body is given by the He
formula20

j m5nsA kBT

2pm
,

wherens is the density of the vapor in equilibrium with th
liquid at the temperatureT. The ratio of the real flux density
of the evaporated atomsj to their maximum valuej m is
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TABLE II.

n

called the evaporation coefficient. Table II displays the
sults of calculations of the fluxesj m and j and the evapora
tion coefficienta5 j / jmax for three temperatures of the liqui
surface.

The near-constancy ofa with temperature draws atten
tion to itself. It is possible that the valuea.0.8 is universal
for simple liquids.

In the simulation of evaporation into vacuum a signi
cant change in the density profiles is observed. First,
mean vapor density is decreased severalfold below its e
librium value. Second, the density of the bulk gas and liq
phases becomes inhomogeneous. Figure 13 shows tha
density of the liquid grows linearly withz. It can be seen
from Fig. 14 that the density of the vapor falls withz, also
according to a linear law. Table III lists values of the dens
gradients of the liquid and gas phases for three temperatu
and also values of the gradients of the mean kinetic
potential energy per particle in the liquid.

Knowing the gradients of the thermodynamic quantit
and the corresponding fluxes, it is easy to find the trans
coefficients. For the liquid phase this problem is of gre
interest; however, we will not consider it here.

As was done in the equilibrium state, for the case
evaporation into vacuum we calculated spatial profiles of
mean potential energy per particle and its mean-square
tuations from the molecular-dynamics simulation data. W
also determined the potential energy distribution functio
for the bulk phases and different cross sections in the tra
tional layer. Comparison with the equilibrium case sho
that the differences are not large and show up mainly in

FIG. 13. Particle number density at different temperatures as a functio
z: 1—T50.725 ~equilibrium system!, 18—Ts'0.725 ~evaporation into
vacuum!, 2—T50.897~equilibrium system!, 28—Ts'0.9 ~evaporation into
vacuum!.
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gas phase. To first order it may be assumed that the poten
energy in the transitional layer at a given temperature is
function of the local density. We are led to the same conclu
sion by an examination of the two-particle distribution func
tions in the non-equilibrium system, from which it follows
that evaporation into vacuum has only an insignificant effec
on the pairwise distribution functions at the same densitie
n(zs).

Molecular-dynamics simulation of evaporation into
vacuum allows us to determine a very important characteri
tic of the evaporation process–the velocity distribution func
tion of the evaporated particles near the phase bounda
This function, which serves as a boundary condition for ga
kinetic calculations,21 is usually assumed to be Maxwellian
for particles moving away from the surface (vz.0) and
equal to zero for particles moving toward the surfac
(vz,0). No serious theoretical derivation of this boundary
condition is known to us. Figures 15 and 16 present resu
of a calculation of the particle distribution functions over the
transverse velocityvx in the bulk phases and in the transi-
tional layer for different temperatures. All the distribution
functions are quite close to Maxwellian with zero mean ve
locity and temperature falling somewhat as one goes fro
liquid to gas. Spatial profiles of the mass velocities and tem
peratures are shown in Figs. 17 and 18. The distribution
the particles over the longitudinal component of the velocity
vz , has a more complicated character. As can be seen fro
Figs. 19 and 20, inside the liquid the distribution is Maxwell-
ian. Figure 21 shows that the number of particles with neg
tive velocities falls almost monotonically in the transitiona
layer and in the gas phase. However, even at the upp

of

FIG. 14. As in Fig. 13, but for particle density in vapor only.

TABLE III. Parameters of open two-phase systems.

742V. V. Zhakhovski  and S. I. Anisimov



ar
fo

ar
b

th
in
r
ob
th
ea
sm
a

as
n

can

of a
se

le,
ma-

d
of

the

ince
-
to
o-

r

boundary of the molecular-dynamics cell the fraction of p
ticles with negative velocities amounts to around 8.1%
Ts50.725 and around 10.7% forTs50.897.

The existence of two mechanisms of formation of p
ticles with negative velocities in the evaporated flux may
supposed.

1. As a consequence of the low particle density in
gas, the particles of the gas are found almost always
region in which the long-range attractive field of the su
rounding particles is acting. Since the vapor density is
served to decrease with distance from the liquid surface,
mean field in which a particle moves should create a m
force directed toward the liquid. Obviously, this mechani
can operate far from the interphase boundary and in the
sence of collisions.

2. Since evaporation takes place from an interph
boundary perturbed by surface waves, individual segme

FIG. 15. The particle velocity distributionr(vx) inside thezs layers for
T50.725:1—liquid layer213,z,211, solid curve—transitional laye
25,z,23, dashed curve—gas layer 23,z,25.

FIG. 16. The particle velocity distributionr(vx) inside thezs layers for
T50.897: 1—transitional layer26,z,22, solid curve—transitional
layer22,z,0, dashed curve—gas layer 22,z,24.
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of which can make large angles with thexy plane, the inter-
action of the evaporated particles with these fluctuations
give rise to a ‘‘tail’’ of particles with negative velocities. It is
clear that this mechanism can lead to the appearance
significant returning force, but only near the interpha
boundary at distances of the order of 122 thicknesses of the
transitional layer.

In Fig. 21 two spatial regions are clearly distinguishab
apparently corresponding to these two mechanisms of for
tion of a negative tail in the particle velocity distribution.

From Figs. 17 and 18~which show the first and secon
moments of distributions 15, 16 and 19, 20—the profiles
the mass velocity and effective temperature, respectively! it
can be seen that inside the molecular-dynamics cell
‘‘temperatures’’ of thevx and vz distributions differ mark-
edly. Strictly speaking, they cannot even be compared, s
thevz distribution function differs substantially from a Max
wellian. The ‘‘transverse temperature,’’ corresponding
nearly Maxwellian distributions over the velocity comp

FIG. 17. Mean particle velocitiesV̄ inside thezs layers atTs50.725:h—
V̄s , 3—Vx1Vy ; at Ts50.897:n—V̄s , s—Vx1Vy.

FIG. 18. Temperature inside thezs layers atTs50.725:h—TVz2 V̄z
, 3—

TVx,y; at Ts50.897:n—TVz2 V̄z
, s—TVx,y.
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cs
nentsvx andvy varies quite smoothly in the transitional lay
and in the gas phase. The ‘‘longitudinal temperature,’’ c
responding to the distribution overvz and having the mean
ing of the width of the distribution, falls abruptly in the tran
sitional layer~on a scale of 528 molecular-dynamics units!
and then varies smoothly in the gas phase, remain
1.522 times lower than the ‘‘transverse temperature.’’ S
multaneous with the steep variation of the ‘‘longitudin
temperature’’ a finitez component of the mass velocit
arises on the same scale of the thickness of the transiti
layer. Of course, the decrease of the width of thevz distri-
bution and the simultaneous appearance of az component of
the mass velocity are a result of the transformation of
original Maxwellian distribution into an asymmetric distribu
tion in which the fraction of particles withvz,0 is radically
diminished. This transformation takes place on the scale
the transitional layer. The fraction of particles with negati

FIG. 19. Particle velocity distributionsr(vz) plotted as a function ofzs at
Ts50.725: 1—liquid layer 213,z,211; 1—transitional layer
25,z,23; 2—gas layer 9,z,11; 3—gas layer 23,z,25.

FIG. 20. Particle velocity distributionsr(vz) plotted as a function ofzs at
Ts50.897: 1—liquid layer 26,z,22; 1—transitional layer
22,z,0; 2—gas layer 8,z,10; 3—gas layer 22,z,24.
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z component of their velocity falls with distance from th
liquid surface and should become negligibly small at d
tances much greater than the thickness of the transitio
layer. Thus, in the case of a low-density vapor the use o
semi-Maxwellian distribution as a boundary condition in t
solution of gas-dynamic problems is a reasonable appr
mation.
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Partial suppression of hydrodynamic mixing in profiled shells

,

N. A. Inogamov
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The problems of stability and mixing are important in the physics of high-energy densities.
Ablation-induced acceleration of foils and compression of liners entail loss of symmetry and the
development of instability. The most destructive instability is the fundamentalf2 mode,
which conserves the pressure in Lagrangian particles. A means has been proposed to eliminate
this dangerous mode, based on special profiling of the mass distribution among the
subshells. The presence of this mode has led to novel proposals for limiting the degree of
instability and optimization of the shells by profiling in the important case of very large density
ratios at the ablation front. The solution is based on a class of new polytropes with an
inverted density profile and a negative polytrope indexN. In this class the densityr of the material
does not decrease towards the boundary with the vacuum, as for ordinary polytropes with
N.0, but rather increases. This permits modeling multilayer distributions ofr typical of inertial
confinement fusion systems in which the high-density subshells form an inner core
surrounding a low-pressure cavity, and the outer layers are made from low-density materials
~plastic, foam-type materials, composites!. It is emphasized that the distributions are self-similar,
and hence both the linear and the turbulent dynamics are scale-invariant. The spectral
problem of perturbations in an incompressible fluid has a hidden symmetry. Isospectral
deformations of the density profileI $r0(y)% are known that leave the spectrum unchanged. It is
of interest to apply the transformationI to the invariantf6 modes, since they are not tied
to any specific profile ofr0(y). This paper analyzes a new type of invariant mode obtained in this
way. © 1997 American Institute of Physics.@S1063-7761~97!01704-6#
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The program of laser-induced inertial confinement
sion has been developing for more than 20 years.1–7 In that
time there have been vast changes in the technology of h
power laser systems, and the technology of making tar
has advanced in parallel. To obtain high compression,
laser-generated pulse~duration and shape! and the structure
of the target must be well fitted to one another. Present-
methods allow one to make targets with any density dis
bution r(r ) ~Refs. 8 and 9! by depositing coatings of con
trolled thickness of a broad spectrum of materials. It is p
posed to use these capabilities to make profilesr(r ) that are
optimum with respect to instability. In these targets the
velopment of gasdynamic perturbations is slow relative
the fastest possible development. As is well known,2–7 the
Rayleigh–Taylor or interchange instability is the main o
stacle to achieving the ignition threshold and success in
entire program of controlled thermonuclear fusion.

The optimum targets consist of a stack of subshells w
a densityr i and thicknessdi , where 1, i,I , in which the
densityr falls off and the thickness increases with increas
radiusr according to a specified rule . The numberI is large
(I@1) and therefore the relative jumps in the density
small

2ur i112r i u/~r i111r i !!1.

With this condition a density distribution with small step
can be approximated by a continuous function. These tar
can be either thin or thick, since on the one hand the th
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but on the other hand, the minimum densities are reache
the very thin inner subshells. Accordingly, the effective a
pect ratioReff /DReff is intermediate between large value
;100 and small values;1.

The isobaric Rayleigh-Taylor mode is very important
the theory of instability. This is the solution for which th
velocity field v satisfies the condition¹•v50. As a result,
the pressure is conserved in the Lagrangian particles du
the motion. This result is particularly obvious for a com
pressible medium, since the condition¹•v50 implies con-
servation of volume, i. e., the particles are not compresse
is also called the condition of incompressibility, and it is t
most important property of the solution. For this reason,
condition is called the isobaric condition. It is satisfies ide
tically the isobaric boundary condition, which specifies co
stant pressure at the contact surface. This condition is
called the free-boundary condition. Its growth rates5Agk
is the largest in the class of all possible unstable mod
Because of the invariance of the Lagrangian pressure
mode is insensitive to stratification and even to the equati
of state in the subshells or particles, which can be arbitr
and different for the individual particles. It cannot be elim
nated by profiling. These now well-known properties we
established in Ref. 10, where it was also shown that
isobaric gravitational waves are closely related to trochoi
waves.

It thus appears desirable to extend the Cowling class
cation used in astrophysics.11,12 According to this scheme

7462$10.00 © 1997 American Institute of Physics
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FIG. 1. The question as to whether or not thef2 mode exists in the
spectrum and where it is localized relative to the valuable hig
density region, shown by the wavy line.
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waves (p modes!, stable (g1,v2.0) and unstable
(g2,v2,0) gravitational waves, and the fundamentalf
mode. The extended classification consists ofp, g1, g2,
f1, and f2 modes.1! The f mode is now called thef1 mode.
The isobaric properties of this classification of modes
been known for a long time~see the work of Gerstner, cite
in Ref. 10!. The isobaric Rayleigh–Taylor mode will also b
called the fundamentalf2 mode.

Previous proposals for profiling in an incompressib
fluid13,14 involved the smoothing of the density jump

r~y!5rD1u~y!~rU2rD!→rCONT~y!,

whererCONT(y) is a monotonic continuous function, such
tan21y or erfy, with rCONT(2`)5rD andrCONT(`)5rU .
In the smoothed case the unbounded growth rate,

s5A~12m!/~11m!gk,

m5rD /rU5~12A!/~11A!,

is cut off ask→` by the Brunt–Va¨isälä frequency

sBV5Ag max @d ln r0 /dy#.

We note in passing that in a compressible medium it is eq
to

sBV5A~g/g!~2d ln s0 /dy!,

wheres0 is the hydrostatic entropy profile andg is the adia-
batic index. Because of this limitation in turbulent mixing,
time delay;1/sBV occurs in the mixing. Asymptotically a
large scales the effect of the smoothing becomes insig
cant.

Let us consider the growth rates and the localization
the gravitational modes. A distinct set of eigenmodes is
sociated with each profiler(y). For the case depicted in Fig
1a, we have

s2→~12m!/~11m!gk for kd→0,

s→sBV for kd→`.

The functions(k) is given by curve1 in Fig. 1d. The dashed
curve 1 in this figure corresponds to thef2 mode. For
m→0 we haveDs(k)/s(k)→0 askd→0, and curves1 and
I are tangent at the origin. It is important to emphasize tha
this case, even form→0 the value ofs(`) remains finite,
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transition region; see Fig. 1. This is due to the lower bou
ary condition, according to which the perturbations are
quired to be bounded asy→2`, and the fact that the zero o
the functionr(y) for m50 is located at infinity and the
derivative falls off faster than the function, so th
ry8(y)/r(y)→0 asy→2`. Therefore, thef2 mode does not
appear in the spectrum of this profile form50.

In the case shown in Fig. 1b,sBV→` for m→0, and
curve1 tends to curveI . Mixing of the payload, indicated by
the wavy line, occurs because of the growth of thef2 mode.

Most of the drop in the accelerating pressure is acr
this layer. Therefore most of the kinetic energy built u
through acceleration is accumulated in it.

In the case intermediate between the two shown in F
1c, the f2 mode is present in the spectrum form50. Nev-
ertheless, this presence is merely formal, since the main
tribution to the mixing of the payload is associated with t
mode with a bounded growth rate.Ag/d, as in the case of
Fig. 1a. Although the growth rate of thef2 mode is larger,
nevertheless, because the pointyI is far off, this mode, which
decays exponentially with distance from the pointyI , is spa-
tially separated from the valuable layer of immediate inter
and has little effect on its mixing.

Consequently, with the optimum profile it is proposed
separate thef2 mode~Fig. 2b! from the payload~shown by
the wavy line in Fig. 2a! by the extended low-density ta
~the section LDT in Fig. 2a!. The high-density subshells
which are the most important for the compression proce

FIG. 2. a — Smoothed profile of a multilayer shell bounded by isoba
boundariesyV andyA . b — Localization of thef2 andg0

2 modes near the
yA andyV boundaries, respectively.
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yV50. The mode responsible for the mixing in this part
localized near the boundaryyV ~see Fig. 2b!. Therefore two
different regions of instability and mixing arise near t
boundariesr V and r A ~or yV50 andyA).

It should be mentioned that in the long-wavelength ca

k,a2g/4b2vA
25~a2/4b2!MA

22/h, h5c2/g,

the boundary condition at the ablation front can be appro
mated by the isobaric condition. HerevA is the velocity of
the ablation front with respect to the cold material andc is
the speed of sound in the cold material. An estimate follo
from the well-known Takabe formula,15

s5aAgk2bkvA ,

a'0.9,b'3, and the Mach numberMA5vA /c of the front
is small compared with unity. It is also noted that the mixi
in the inner layers of a complex shell is of interest in itse
regardless of the situation on the ablation front. This qu
tion is of particular interest in the case of complex lar
targets and long laser pulses.

The optimum profiles are self-similar in the sense that
the subshells hold equal status with respect to the growt
instability. This means that within a single profile, regio
with enhanced instability are eliminated. In these regions
density variation is peaked towards the boundary of the in
cavity, r V . These profiles are polytropic, and belong to t
class of power-law functions,r } (2y)N. The parameterN is
called the polytrope index. For these polytropes the ind
N is negative. Thereforer→` asy→0. The ordinary poly-
tropes studied in connection with geophysical and as
physical applications16–20 satisfyN.0 andr→0 asy→0.

In self-similar profiles there are no dimensional scal
Therefore the spectral characteristics of the linear theory
scale-invariant, and self-similar formulas are generated.
expression fors is obtained by dimensional analysis and
equal tosm5AAmgk, whereA is a dimensionless numbe
andm labels the countable set$m% of discrete eigenvalues
Qualitatively the formula fors is found to be the same as i
the simple case of a discontinuity in an incompressible flu
For an instability, the mode of interest is that with the larg
growth rate. It corresponds to the ‘‘ground state,’’ wi
m50. The dependence ofs onN was studied briefly in Ref.
21. In the present paper not only are the eigenvalues ca
lated, but also the eigenfunctions; the locations of th
maxima are determined; a study is made on how a fi
pressure in the inner cavity and a finite density of the co
pressible multilayer shell affect the final result, as well as
effect of a rigid wall; also included in the analysis is the ro
of the equation of state, which is important, since the s
shells are made out of different materials; and the struc
of a new kind of self-similar Rayleigh–Taylor turbulence
studied. The structure remains self-similar in a compress
medium. Previously, self-similarity was known only in th
incompressible case. It should also be noted that the de
dence ofA0 (A05s0

2/gk) on the variable parameterN can
be used for optimization. A decrease inN improves the one-
dimensional dynamics of the shell and reduces the amoun
energyE necessary for ignition. On the other hand, a res
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and the one-dimensional modeling becomes inadequate
the real situation. Therefore there must exist an intermed
value ofN corresponding to a lower ignition threshold. Th
is of no small importance in the situation where this thre
old is still to be achieved, the more so in that it only requir
changes in the targets, rather than expensive upgrading o
parameters of the laser system

2. PRINCIPLES OF STABILIZATION

The system of gasdynamic equations is

Dtr1r¹•v50, rDtv1¹p2rg50, Dts50,

Dt5] t1~v•¹!, s5s~p,r!.

Linearizing it in the standard way about the unperturb
state, we obtain the equation16

~pL!yy9 2
r0y8

r0
~pL!y82k2WpL50,

W512
r08

r0y

g

s2 1S s2

gk
2
gk

s2D g

kc0
2 ,

pL5p2
g

iv
r0v, ~2.1!

for the perturbed Lagrangian pressurepL , which is valid for
an arbitrary equation of state. Here and below,g5ugu,
c25(]p/]r)S , andp is the perturbed Eulerian pressure.
the equations5p/pg is satisfied, then the functionW in Eq.
~2.1! can be written as

k2W5k21S s

c0
D 21 k2

g

g

s2

s0y8

s0
. (2.1)8

Otherwise

r0}~2y!N, p0}~2y!N11, c05Agg~2y!/~N11!,

s0}~2y!u, u512N~g21!, ~2.2!

and Eq.~2.1! becomes

h~pL!hh9 2N~pL!h82~h22a2N!pL50,

a52
1

2 SN2
N11

g
S21

u

gS2D ,
h5ky, S25

s2

gk
. ~2.3!

With the substitutionpL5ehu and h52z/2, it is trans-
formed into the Kummer equation

zuzz1~2N2z!uz2au50

~see Ref. 22, p. 504!, and the substitutionpL5hN/2c and
h5z/(2a1N) converts Eq.~2.3! into the time-independen
Schrödinger equation

czz2~2E1U !c50
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FIG. 3. a — Partial stabilization in-
volves a decrease in the growth rate b
the amount S(N,g) relative to the
growth rate of thef2 mode. The stabili-
zation is retained when the adiabatic in
dex is varied~b! and when the density of
the shell is finite at the boundary with
the inner cavity~c!.
for a particle in a Coulomb field with a total angular momen-
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tum l equal toN/2, energyE52(2a1N)22, and a potential
U521/z1 l ( l11)/z2.

We shall assume that the upper and lower mixing zo
~Fig. 2b! are spatially separated. Then to descr
g-perturbations in the upper zone near the surfaceyV50 we
require that the solution of Eq.~2.3! go to zero asy→ 2 `. It
is expressed in terms of the KummerU functions22 and is
equal to

pL5ehU~a,2N,22h!, M ~a,b,z!5(
j50

`
aj
bj

zj

j !
,

aj5a~a11! . . . ~a1 j21!, a051, ~2.4!

U52
p

sin Np F M ~a,2N,22h!

G~a1N11!G~2N!

2~22h!N11
M ~a1n11, N12,22h!

G~a!G~N12! G . (2.4)8

Now we must consider the condition on the upper bounda
We assume that this is an isobaric boundary. Then its ve
ity and displacement are nonvanishing, but the perturba
of the Lagrangian pressure vanishes on it. Let us cons
first the simplest case, where we can neglect the pressu
the inner cavity. Then the unperturbed pressurep0 vanishes
on the boundaryyV , i. e., according to the distributions~2.2!
the point yV is at the origin (yV50). We require
pL(yV)50 andyV50. Analyzing the equilibrium equation
we find that the indexN is bounded from below:N.21.
We see that to satisfy the conditionpL(0)50 we must get
rid of the first term in the expression forU given by
~2.4!8. To do so, we require that it occur at one of the po
zm52m, m50, 1, 2, . . . of the gamma functionG(z) in
the denominator of the first fraction in Eq.~2.4!8. Conse-
quently, we have

am1N1152m.

From this result and the definition ofa in Eq. ~2.3! it is easy
to obtain the dispersion equation. We discard the branc
belonging to the modesp and f1, while theg1 modes are
absent. Among theg2 modes, we are interested in the mo
m50 with the largest growth rate
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In the incompressible case,g→`, this formula simpli-
fies and takes the form

~S0
2!rigid52N/~N12!.

Compressibility~for the same profiles ofr andp) enhances
the instability, D(N,g)5S0

22(S0
2)rigid.0. The function

D(N,g) increases monotonically for fixedN asg decreases,
i. e., with increasing compressibility. It reaches the larg
value, equal toD(N,1), at g 5 1. The relative role of the
compressibility varies withN. As N decreases, the gap

D~N,1!5~S0
2!soft2~S0

2!rigid

5
N12

2~N11!
SA114

N11

~N12!2
21D 1

N

N12

~2.5!

between the soft case (g51, curve2, Fig. 3a! and the hard
case (g5`, curve1, Fig. 3a! is reduced. It goes to zero a
N521.

For any fixedg the growth rates decreases with in-
creasingN. For N521 it increases to its maximum value
Agk, coinciding with the growth rate of thef2 mode. An
expansion of(0

2 at the point of the maximum growth rate
N521, (251, is

S0
25122dN1~214/g!~dN!21O@~dN!3#,

where dN5N11. As one can see, the term linear indN
does not depend ong. Therefore the expansion ofD(N,1) at
this point begins with the term quadratic indN. The region
of present interest,N,0, S2.0, is a square. It is bounde
by the upper and left limits. The upper limit is the grow
rates25Agk of the f2 mode, and the left limit is the con
dition N.21, which follows from the requirement that th
mass be finite near the pointy50.

Reduced growth rates are found within the gapD(N,1)
defined by Eq.~2.5! As we see, the polytropic growth rate
are shifted downward by the amountS(N,g) compared to
the growth rate of thef2 mode~see Fig. 3a!. This is how the
stabilizing action of the profiling works.
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3. THE ROLE OF THE EQUATIONS OF STATE IN THE
SUBSHELLS
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This paper presents an analysis of the spectral prope
of polytropes inverted in density. The results are used
modeling the growth of instability in multilayer targets. Th
question arises: how applicable is this approach for the
situation? The target consists of a large number of subsh
made of different materials. Can one describe the deve
ment in a unified manner when the equation of state of
material is first, nonideal, and second, different in the diff
ent subshells?

We shall find an answer to these questions. Targets w
a power-law profile of the densityr are formed in practice
by selecting a sequence of materials that increase in de
and specifying the thickness of the subshells. It is assum
that they are in an effective gravitational field. This is
standard approximation used by many investigators. If
assumption is valid, then the equation of hydrostat
py852gr is also valid. This means that if the pressurepV in
the cavity is neglected, then even the pressure profile
follow a power law. According to the equations of hydrost
ics, the exponents ofp andr differ by unity. Consequently
the ratiop/r is a linear function of the position.

The basic model is Eq.~2.1!. It is valid for any equation
of state. In order to arrive at the solutions, given in Sec
inertial and thermodynamic conditions must be satisfied. T
inertial conditions~the power-law profile ofr, linearity of
the ratiop/r) are already satisfied. It remains to consider
thermodynamic condition, which says thatc2 must be a lin-
ear function of position.

Let us find this condition. We write the relation betwe
the thermodynamic functionsc2 and p/r. By definition we
have

c25g
p

r
, c25S ]p

]r D
S

, g5S ] ln p

] ln r D
S

. ~3.1!

In the case of a nonideal equation of state the exponentg in
adiabatic processes is a function of a single thermodyna
variable, for example, the density:

g5g~r!.

In the various subshells this function will beg j (r), where
the index j labels the subshell. This is a hydrostatics pro
lem, i.e., the distribution is stationary. In equilibrium th
densities of the subshells arer j and are fixed. Therefore th
exponents depend only on the label

g j~r!5g j~r j !5g j .

The ratiop/r in Eq. ~3.1! is linear. Therefore for this ap
proach to be applicable,g must not depend onj ; that is, the
value ofg must be the same in the subshells.

The values of the exponentsg vary somewhat for differ-
ent materials. The effect of these variations on the main
sult of this work is small. The main result is a partial sta
lization of the instability~Fig. 3a!. This involves a reduction
in the growth rates by the shiftS. The conclusion thats is
reduced also holds when the exponentsg are the same in al
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more important than the thermodynamic conditions.
To show this, let us consider the two-shell case. We

g5gU for yS,y,0 andg5gD for y,yS . Then the growth
rates for kuySu@1 is determined by the exponentgU , and
for kuySu!1 by the exponentgD . In the intermediate region
kuySu;1, s interpolater monotonically~see Fig. 3b!. This
result is explained by the fact that the small-scale pertur
tions are localized inside the outer layer, and this laye
unimportant for long-wavelength perturbations.

This discussion implies that the growth rate in the pro
lem with a variable exponentg(y) remains in the gap be
tween curves2 and1 ~see the points a and b in Figs. 3a a
3b!. Consequently the growth rates remains reduced.

4. MULTILAYER PROFILE WITH FINITE DENSITY

Let us investigate how the result changes if the press
in the inner cavity is taken into account and we give up
condition that the density of the shell material is infinite
the boundary with the cavity. As before, we place the orig
of the coordinate systemy50 at the point where the extrapo
lation of the pressure distributionpL } (2y)N11 goes to zero.
The unperturbed boundary is at the pointy5yuG52«. It is
easy to see that the value of« is determined by the pressur
p« in the cavity:

«}p«
1/~N11! .

In the case of a ‘‘cut-off’’ power-law distribution, the
problem is no longer self-similar. Its spectrum is shown
Fig. 3c. Here the straight lineSS refers to the self-similar
~power-law! spectrum; its value of s0 is
s05S0(N,g)Agk. The asymptoteBV corresponds to the
Brunt-Väisälä frequency sBV5Agus0y8 u/gs0, calculated at
the edge of the profile at the pointy52«. It limits the
growth of s. The square of the dimensionless ratio
SBV
2 5(u/g)/k«, whereu is defined in Eq.~2.2!. The result-

ing dispersion relation is given by curve1. For k→0 and
k→` it goes to the limiting functionsSSandBV, respec-
tively. The transition region between these asymptotes
curs fork;k«51/«.

In the section where the shells are matched the pres
in the cavity is low:p«!pA . Therefore the shift of« is small
compared to the total thickness of the multilayer shell. Un
these conditions there is some justification for calculatin
correction to the self-similar growth rate due to the bac
pressure. We shall therefore be interested in the situa
where the parameterk« is small:k«!1. Let us find the first-
order ~in k«! correction to the growth rates05S0Agk.

The general dispersion relation, which is valid for a
arbitrary value of k«, is found from the condition
pL(2k«)50. To find the solutionpL(h) that satisfies the
condition of vanishing at infinity, we use expressions~2.4!
and (2.4)8 and substitute them into this boundary conditio
As a result, we obtain the general relation
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FIG. 4. a — The conclusion that partial stabilization occurs in t
acceleration stage carries over to the case of any finite smo
profile 1. b — The two-sided profileE–I inhibits the instability
during both the acceleration stage and the deceleration stage.
N11
G~2N!
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modes, and the other to the gravitational modes. An analysis
pres-
ble

on

s

the
the
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and
~2k«!
G~a!

2
G~N12!

G~a1N11!

M ~a,2N, 2k«!

M ~a1N11, N12, 2k«!
50. ~4.1!

As «→0 the first term in Eq.~4.1! vanishes, since
N.21, and the functionM tends to unity~see their defini-
tion, Eq.~2.4!!. In this case, which was analyzed in Sec. 2
is required that the argument of the gamma function coinc
with a pole

a1N1152m, a5aM , m50,1, . . . .

Let us see how the answer changes for« Þ 0. Fork«!1, as
before we are in the neighborhood of a pole. In this nei
borhood, as is well known~Ref. 23, p. 867! the asymptotic
behavior is

G~z!'@~21!m/m! #/~z1m!, m50,1, . . . .

This gives us the desired expression for the correction

am52m2N211Dam ,

Dam5
~21!m

m!

G~2N!

G~2m2N21!G~N12!
~2k«!N11.

~4.2!

It is interesting to note that the functionam(k) for acous-
tic (p) modes and gravitational (g6) modes are the same.
thus follows, by the way, that even their eigenvalues co
cide ~for any value of«). The reason is that relations~2.4!
and ~2.48), which definepL , do not contain their frequen
cies, which of course are different, but the quantitya. The
rest of the eigenfunctions (v, r, etc! of thep modes and the
g modes are different, so that the frequency enters into t
definition.

Let us analyze these relations. The functionG(x) for real
x,1 alternates between identical positive and nega
parts.23 It follows that for anyN.21 the correctionsDam
~Eq. ~4.2!! are negative. Substituting Eq.~4.2! into ~2.3!,
which connectsa ands, we obtain a biquadratic equatio
for s. One of the roots of this equation~taken with a minus
sign! gives a negative frequency (s252v2) for the acoustic
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of the frequency dependence shows that because of the
surep« thep modes are hard, and the stable and the unsta
gravitational modes are soft. As a consequence, curve1 in
Fig. 3c is deflected below the straight lineSSwith increasing
k.

Therefore the conclusion regarding partial stabilizati
still holds even for a profile with a finite density~see points
a andb in Figs. 3c and 3a!. The same conclusion also hold
for profile 1 with any smooth cutoff2 of the power-law
dependence fory→0 ~see Fig. 4a!. We note that this carries
over to a two-sided stabilizing profile~Fig. 4b!, which weak-
ens the instability and retards the onset of mixing, both in
stage in which the shell is pushed toward the center by
accelerating pulse, and in the stage where it is decelerate
the back-pressure of the fuel. In the acceleration stage
instability is stabilized by the outer part of the profile,E, and
in the deceleration stage by the inner part,I .

5. STRUCTURE OF THE POLYTROPIC PERTURBATIONS

Let us address the analysis of the eigenfunctions
their structure. From formulas~2.4! and ~2.4!8, and the dis-
persion relationa052N21, we find that for theg0

2 mode
the field of the Lagrangian pressure is

pL5~2h!11Neh, h5ky.

The maximum in the functionpL(h) is at the point
hPL
max5212N. The vertical component of the velocityv is

calculated frompL with the relation

v5 i
k

v

S2

~S211!~S221!

S2~pL!h82pL
r0

. ~5.1!

This follows from the system

vh81
v

S2 5S 11
s2

k2c0
2D k

sr0
pL ,

vh8

S2 1v5
k

sr0
F ~pL!h81

g

kc0
2 pLG , (5.1)8

which precedes Eq.~2.1!. This component is equal to
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v5~12b21h!eh, 2hmax512b, b5
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Although the Mach numberv/c0 is formally large, near
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V S0
2221

~5.2!

The velocity Eq.~5.2! is normalized to unity on the surfac
y50. The position of the maximum ofv is also written
down in Eq. ~5.2!. It is located within the polytrope. The
proof of this fact will not be presented because it is very lo
and involved. ForN→21 the pressure becomes a mon
tonic function. The localization of theg2 modes near the
surface must be emphasized. They are localized in a la
adjacent to the boundary with the vacuum. The thicknes
this layer,uDyu, is of orderuhV

maxu/k;1/k.
Let us see how the velocity distribution depends onN.

The expansion inN of the expression that gives the positio
of the velocity maximum (2hV

max) near the pointN521 is

2hV
max51/21~1/221g!~dN!1~dN!2/g1O@~d N!3#.

In the incompressible case we have

~2hV
max!511N/2.

Now we shall compare the position of the maxima of t
perturbed Lagrangian pressure (2hPL

max) and velocity
(2hV

max). One can show that there exists anNSEP such that
for 21,N,NSEPthe maximum in the velocity is above th
maximum in the pressure, i.e., furthest from the vacuum
terface, while forNSEP,N,0 on the other hand, the max
mum pressure is found at the greatest depth.

We shall now analyze the behavior of the eigenfunctio
in the neighborhood of the pointy50. An analysis of the
linearized system gives

~i! pL→0 for y→0;
~ii ! the velocityv remains finite at the interface with th

vacuum;
~iii ! the ratiov/c0 } 1/A2y for uyu!1;
~iv! the perturbation of the Eulerian pressure satis

pE5pL1(g/ iv)r0v→` for y→0. This last condition,
which includes the details of the density-inverted polytro
is what distinguishes it from astrophysical situations, wh
r0→0 asy→0, and consequentlypE→0 asy→0.

The degree of nonlinearity is governed by the functi
a(h)5pL /p0. It characterizes the relative amplitude of th
perturbation. The vacuum amplitudes of the velocityv(0)
and of the relative pressurea(0) are proportional to each
other (v } a,uyu!1). If this ratio is small,pL!p0, then the
perturbation is linear. One can see thatpL /p0 } eh for
m50. The maximum of the functiona(h) occurs at the
boundary with the vacuum,y50. An important point is that
this function remains finite aty50. It therefore follows that
if a(0)!1 holds, then the perturbation is linear everywhe

The singularities inv/c0 andpE ~see iii and iv! are fic-
titious. Their existence does not mean that the perturba
goes over to a nonlinear regime, or that shock waves
formed in the vicinity of the vacuum boundary for any arb
trarily small perturbation at large distances from the bou
ary. They are, rather, associated with the displacementdh of
the perturbed boundary, because of which the phys
boundary is located not at the pointy50, but at
y501dh.
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the boundary the essential factor is the displacement of a
near-boundary layer as a whole.2! In this layer the local ve-
locity of soundc0 is lower thanv(0). However, the buildup
of this velocity occurs more slowly than the time required f
sound to pass through the layer. This means that the ac
eration is smallu(dh) tt9 !g. Accordingly, the accelerating
pressure gradient is also small; that is to say,pL!p0 holds
for the pressure itself, which means that the perturbatio
linear.

6. CONTACT WITH A RIGID BOUNDARY

Let us consider yet another interesting modification. W
shall examine what happens when the upper boundary
dition is replaced. The condition we consider is in a sen
opposite to the free-boundary condition. We assume that
upper wall is rigid. We take it to be located at the poi
y52«.

The solutionpL(h) of Eq. ~2.1!, matched with the lower
boundary condition, is given by the relations~2.4! and~2.4!8.
To find the spectrum we must require that a condition i
posed on the wall be satisfied. Namely, we set

v~2k«!50.

This condition along with relation~5.1! gives the dispersion
equation

@~pL!h8S22pL#u2k«50.

Substituting Eqs.~2.4! and ~2.48) into this and differentiat-
ing, we obtain

2
12S22

2

M ~a,2N,2k«!

G~a1N11!G~2N!

1~2k«!N11
12S22

2

M ~a1N11,N12,2k«!

G~a!G~N12!

2
a

N

M ~a11,2N11,2k«!

G~a1N11!G~2N!
2~N11!

3~2k«!N
M ~a1N11, N12, 2k«!

G~a!G~N12!

2~2k«!N11
a1N11

N12

M ~a1N12, N13, 2k«!

G~a!G~N12!
50.

~6.1!

We examine first the long-wavelength limitk«!1. If N.0
holds, then in the zeroth approximation in the small para
eterk« the answer coincides with that calculated above. S
cifically, the spectrum is given by the equation

am1N1152m.

The first order correction ink« is now different. It is equal to

Dam5
~21!m

m! S 2
12Sm

22

2

1
N111m

N D 21 ~N11!G~2N!

G~2N212m!G~N12!
~2k«!N.
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As can be seen, the power to which the parameterk« enters
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tial
into the answer is smaller~compare Eq.~4.2!!.
However, if we have21,N,0, then the answe

changes even in zero order, compared to the case of an
baric boundary, as described in Sec. 2. In this case,
necessary to eliminate the large fourth term in Eq.~6.1!. To
do so, it must be located at a pole ofG(a). It then follows
that am52m, m50, 1, . . . . To determineS from this
equation we use formula~2.3! for a. Solving the equation
we find

Sm
2 52b1Ab21u/~N11!,

where

b5~g/2!~2m2N!/~N11!.

It is the largest growth rate that is of interest. Therefore
must consider the first values ofm.

Form50 the radicand is a perfect square. Therefore
instability for any values ofN(21,N,0) and g corre-
sponds to the answerS2[1. This should be taken as a
indication that we should study the caseS251. In this case
the system (5.18) degenerates, and relation~5.1! loses any
meaning~it contains the expression 0/0!. We shall describe
briefly the analysis. SettingS251 in Eq. ~2.1!, we find the
solution to this equation

pL5eh.

Now we must find a relation betweenpL and v. Setting
S251 and pL5eh in the system (5.18), we see that the
equations in the system become identical. They are equ

vh81v5S 11
s2

k2c0
2D pLr0

. ~6.2!

The unimportant factor is chosen to renormalizepL . The
field pL is known, so we shall studyv. Making the substitu-
tion v5we2h in Eq. ~6.2!, we obtain

wh85S 11
s2

k2c0
2D e2h

r0
. ~6.3!

The general solution of Eq.~6.2! is

v~h!5~wp1C!e2h.

wherewp is a particular solution of Eq.~6.3! andC is an
arbitrary constant. The right-hand side,R(h), of Eq. ~6.3! is
positive (s2/k2c0

25(N11)/(2h)g.0). Therefore,wp(h)
is a monotonically increasing function ofh. For (2h)@1
the functionR is small. Therefore at large distances, th
function increases slowly. For (2h)→0 we have

R}1/~2h!12~2N!.

Since 0,(2N),1, this singularity is integrable. Thi
means that the integral

wp~0!2wp~2`!5E
2`

0

R dh ~6.4!

is finite. In order to satisfy the condition at the rigid upp
boundary, we must setC52wp(0). With this choice ofC
the functionv(h) vanishes at the boundary. It is equal to
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By virtue of Eq.~6.4! this function diverges exponentially a
the lower boundary. Consequently it does not satisfy one
the two boundary conditions, and must be discarded.

Thus it has been shown that the valuem50 must be
discarded. Let us go now to the casem51. The correspond-
ing functionSR(N,g) is smaller than unity and considerab
smaller than the functionSF(N,g), which was obtained with
isobaric upper boundary conditions withm50 ~here we have
used the subscriptsR andF in order to distinguish the rigid
and the free cases!. This is as it should be, since the rigi
boundary provides a stabilizing influence.

The above discussion has referred to the asymptotic
havior k«!1. For intermediate wavelengths,k;1/« the in-
crementSR(k) is adjusted to the Brunt–Va¨isälä asymptotic
behavior. This means that the short-wavelength BV asym
totes in Fig. 3c of the growth ratesSR(k) andSF(k) are the
same.

7. ISOSPECTRAL DEFORMATIONS AND INVARIANT POINT
IN THE ACOUSTIC DISPERSION RELATION

The special behavior of the mode withm50 in the case
with the rigid boundary~see Section 6! stimulates interest in
analyzing modes that are invariant with respect to the str
ture of the hydrodynamic profile and obey the limiting di
persion lawv256gk. Let us consider thef6 modes. The
spectral problem of perturbations in incompressible flu
has a hidden symmetry. It is known that the isospectral
formation

r0~y!→I $r0~y!%5 r̃0~y!,

leaves the spectrum stationary. Unlike the eigenvalues,
eigenfunctions transform in a nontrivial manner. It is a m
ter of interest to apply the transformationI to the invariant
f6 modes, since they are not ‘‘tied’’ to any specific profile.
turns out that in this way we obtain a new type of invaria
mode. The solution withm50, obtained in Section 6 be
longs to this type.

7.1 Isospectral Density Inversion

Inversion of the density

r~h!→ r̃~h!5
1

r~2h!
~7.1!

does not change the eigenvalue spectrum. This property
observed in Ref. 13 in numerical calculations of the char
teristic equations of step-function density profiles with se
eral steps. Then in Ref. 24 it was derived for the particu
case of a three-layer transition zone between two homo
neous half-spaces. A rigorous general proof of the symm
of Eq. ~7.1! was given in Ref. 25. The proof was based
algebraic transformations of arbitrary tridiagonal matric
They describe the spectral problem in the case of an arbit
step-function distribution with any number of steps. An a
bitrary continuous profile can be approximated to any deg
of accuracy using step functions. Another proof of Eq.~7.1!
in the continuous case has been provided in Ref. 26, p. 2
In Ref. 26 relations also were obtained connecting the ini
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velocity v with the transformed velocityI $v%. A new and
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short proof of the symmetry of Eq.~7.1!, which reveals the
property of duality between the eigenfunctions of the L
grangian pressure and velocity, has been given in Ref. 2
number of other recent papers have exploited the symm
of Eq. ~7.1! ~Ref. 27, p. 526 and Ref. 28, Sec. IV!.

The transformation~7.1! is not trivial. It changes the
profile qualitatively, transforming one functionr(h) into an-
other. It has been shown21 that when Eq.~7.1! is inverted, the
eigenfunctions are transformed according to the rule

ṽ~h!5pL~2h!, p̃L~h!5v~2h!. ~7.2!

It is clear that the functionsv andpL are transformed and th
sign of the argument is changed.

For the f6 modes there is no perturbation of the pre
sure:pL(h)[0. We shall denote these modes that are inv
ant with respect to the profile asf G

6 modes. The velocity is
found from any of the equations of system (5.18) for
pL[0. They arev65e6h. If we transform them according
to the rule~7.2!, we find that

~pL!6~h!5e7h, v256gk. ~7.3!

Here and in what follows the upper and lower signs cor
spond to the upper and lower signs in the dispersion law
the form it is written in Eq.~7.3! . We shall call the solutions
of ~7.3! the f P

6 modes. These same solutions are found fr
Eq. ~2.1! after substituting into it the dispersion laws~7.3!. If
we operate using Eq.~2.1!, then it is easy to see that th
modes f P

6 are invariant. This means that the distributio
pL ~7.3! do not depend on the equilibrium profiles of th
density and pressure.

7.2 Velocity Profile and the Boundary Conditions

Let us determine thev6(h) functions of thef P
6 modes.

It is not possible to determine them from the rules~7.2!. It is
necessary to use Eq.~6.2!. In the general case it is equal t

~v6!h87v65S 17
g

kc2D e
7h

r
. ~7.4!

At this point we can find these functions.
It may be noted that the general solution to Eq.~7.4!

depends on two constants,CP andCG . One of the constants
is related to the functionpL , since (pL)

65CPe
7h, and the

other is related to a first-order differential equation~7.4!. The
general solution of the homogeneous equation correspon
to Eq. ~7.4!,

~v6!h87v650,

is equal toCGe
6h. This means that the general solution

Eq. ~7.4! is a mixture of f P
6 and f G

6 modes, taken with the
weightsCP andCG , respectively.

Thus in the general case the form of thef P
6 mode is

described. Now it is a matter of interest to determine whet
one of them matches the physical boundary conditions.
isobaric conditions must be discarded because the funct
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gate a layer bounded by two walls. Here we require soluti
of Eq. ~7.4! with two zeros.

The case when the right-hand sideR does not change
sign was studied in Section 6. This includes the case o
incompressible fluid. In Section 6 it was shown that the
lutions of Eq.~7.4!, taken with the lower sign, are monoton
and cannot have more than one zero. Consequently it
mains to examine the case of the upper sign. Let us ma
substitution similar to that in Section 6. We obtain

wy85kS 12
g

kc2D e
22ky

r
5kR~y!, v1~y!5ekyw~y!.

~7.5!

We consider an arbitrary monotonically increasing
decreasing function c(y), defined on the interva
yD,y,yU , whereyD and yU are, respectively, the lowe
and the upper rigid boundaries. It is necessary to study th
values ofk for which the zeros of the functionR(y) ~see Eq.
~7.5!! lie within this segment. We setR(yz)50, and for defi-
niteness assume that the functionc(y) falls off with increas-
ing y. Then fory,yz we find thatR(y).0. We shall inte-
grate Eq.~7.5! from the pointy5yD , and setw(yD)50.
Then for the velocity we also havev(yD)50 The solution
w(y) of Eq. ~7.5! increases foryD,y,yz , it reaches a
maximum aty5yz and then begins to fall off.

Variations ink cause variations inyz . With decreasing
k the pointyz moves towards the lower boundaryyD . If the
point yz is close enough to the boundaryyD , then the func-
tionw(y) after going over the maximum decreases again
becomes zero at the pointyzz inside the section
yz,yzz,yU . It is understood that if nowk increases, then
the point yzz moves upwards towards the upper bounda
yU . There exists a valuekP for which the equalityyzz5yU is
satisfied. This wave number corresponds to the freque
vP5AgkP. For these values ofk andv the velocity function
v(y) satisfies both the upper and the lower boundary con
tions and is an eigenmode. It corresponds to the po
I (kP ,vP) on the (k,v) plane.

7.3 Inverse Transition Between Acoustic and Gravitational
Branches

In Section 7.2 we considered a layer bounded by ri
walls. The related spectrum is shown in Fig. 5a. There e
p and g modes. For the acoustic modespm (m50,1, . . . )
the indexm denotes the number of zeros of the functi
v(y) inside the layer. Fork→0 their frequencies tend to
constant values.c/d, and fork→` they approach the as
ymptotev5ck ~hered5yU2yD is the distance between th
boundaries andc is the characteristic speed of sound!.

There exists yet another acoustic mode with a differ
asymptotic limit at zero. It is indicated by the letterL in Fig.
5a, and is called a Lamb mode. The origin of this mode c
best be understood by considering the limitg→0. It is clear
that in a gaseous layer a mode exists that propagates
cisely horizontally. Let us consider a rectangular cell w
hard walls. The acoustic modes are classified by a pai
numbers (my ,mx), wheremy denotes the number of half
waves that fit into the cell in they direction, andmx denotes

754N. A. Inogamov



-

id
v
o
e

io
of

-

e

om

e

es

are related to the upper boundaryyV , and thef G
2 mode to the

d.
re-

r

le
e-
ey
of a
an
un-

-
t in

nal-

me
his
tur-

n

the
of

m
s

g-
ent

yer

c-
d-

o
the
ical

. T

n

the same in thex direction. There are modes~0,1!, ~1,0!,
~1,1! . . . . The modes p0 ,p1 , . . . correspond to
my51,2, . . . , and theL mode corresponds tomy50.

In a homogeneous layer withg50 the vertical compo-
nent of the velocityv vanishes identically,v(y)[0, in the
case of theL mode. We note, incidentally, that in the inho
mogeneous case the form of the functionv(y) is essentially
defined by the inhomogeneity. It may not have zeros ins
the layer in the case of a monotonic profile, or it may ha
one or several zeros depending on the nature of the n
monotonicity. TheL mode vanishes if even one of th
boundaries is isobaric~see, e. g., Fig. 5b!. For the present
purposes it is important that forg Þ 0 the qualitative struc-
ture of the acousticL andpm modes is retained.

For g Þ 0 gravitational modesgm
6 arise, where

m50, 1, . . . denotes the number of zeros of the funct
v(y). In the limit k→0 they have the asymptotic behavior
a shallow-water wave

vm5jmAd ln s

dy
d ck5ajmAd ln s

dy
dAgh k,

whereh5c2/g, the numbersjm anda depend on the spe
cific profile, andj→0 asm→`.

The point I , which refers to the invariant modef P
1 , is

located on the intersection of the dispersion curve of thL
mode and the curvev5Agk. Its coordinates arekP and
vP ~see Sec. 7.2!.

For the sake of comparison, Fig. 5b also shows the c
plete spectrum of polytropes investigated here, bounded
two isobaric boundaries. There arepm , f G

1 , gm
2 , and f G

2

modes. The indexm denotes the number of zeros of th
functionpL(y). The asymptotes fork→0 remain in the same
qualitative relation as for the case of two rigid boundari
The asymptotes fork→` aresm5AgkSm for theg modes
andvm5AgkVm for the p modes. Thef G

1 and gm
2 modes

FIG. 5. a — The case of a gaseous layer between two rigid boundaries
family of acoustic modes (L,p0 ,p1 , . . . ) and (g6) gravitational modes
~curve1!. The dashed lines give the dispersion lawv5Agk. The point I
indicates the invariant acoustic modef p

1 . b — The case of a layer betwee
two isobaric boundaries~the pressure ispV50 on the upper boundary!.
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lower boundaryyA . Therefore, they are spatially separate
As mentioned above, different eigenfunctions cor

spond to the invariant fundamentalf P
6 and f G

6 modes for the
former the pressurepL is exponential, whereas for the latte
the velocity v is exponential. Thef G

6 modes are gravita-
tional. This follows from the fact that in the incompressib
limit c→` their frequencies remain finite, whereas the fr
quencies of the acoustic waves go to infinity. Moreover, th
have a gravitational asymptote. For example, in the case
layer bounded below by a rigid boundary and above by
isobaric boundary, the mode with the asymptote of the f
damental mode,v→Agk ask→`, joins the family of gravi-
tational modes ask→0. Fork→0 they approach the asymp
tote of the shallow-water mode. This mode is the hardes
this family. Conversely, the modef P

1 should be grouped with
the acoustic family. In fact, it is situated on the acousticL
mode and coincides with it asc→`, along with all the rest
of the acoustic modes. Therefore the complete gravitatio
acoustic classification scheme has the form

p, f P
1 , f G

6 , g6.

8. TURBULENT MIXING OF POLYTROPIC PROFILES

The analysis in the previous sections has given so
exact results pertaining to the linear spectral theory. T
theory is applicable as long as the amplitudes of the per
bation are small:

t!
1

s~k!
ln

1

ka0
,

wherea0 is the initial amplitude. Let us consider the motio
in the nonlinear stage

t;
1

s~k!
ln

1

ka0

and the highly nonlinear~turbulent! stage

t@
1

s~k!
ln

1

ka0
.

It is found that definite conclusions can be drawn about
turbulence from the spectral theory. The most important
these are the following.

A. In the case of polytropes bounded by the vacuu
(pV50) the growth rates increases without bound a
k→` ~see Sec. 2, and Fig. 5b, theg0

2 mode!. This indicates
preferential mixing of small-scale perturbations over lon
wavelength perturbations in the early stages of turbul
mixing

B. The perturbations are localized in a near-surface la
of thickness;1/k at the vacuum boundary~see Section 5,
which deals with an analysis of the fields of the eigenfun
tions!. This means first, that the mixing starts at this boun
ary, and second, the mixed layer is adjacent to it.

C. A periodic perturbation in the layer develops in tw
stages. The first is a stage of exponential growth, and
second is the saturation stage. Let us estimate the typ
velocity in the second stage by the formula

he
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v;s~k!/k. ~8.1!
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The development of a periodic perturbation causes ‘‘sme
ing’’ of the power-law singularities. The smearing caus
averaging of the density profile over the horizontal coor
nate, as for profile1 in Fig. 4a. The thicknesshP of the
smeared layer increases with time~here the letterP stands
for ‘‘periodic’’ !. The maximum rate of expansion

dhP
dt

;S0Ag

k
~8.2!

is attained when the system makes the transition from
first to the second stage. Then the velocity Eq.~8.1! de-
creases. This decrease occurs because the parameterkhP be-
comes larger than unity, and the growth rate in the estim
~8.1! begins to decrease, since it is no longer calculated fr
the formula s5S0Agk but from the formula s5sBV

; Ag/hP. The reason is the transition from theSSasymptote
to theBV asymptote~see Fig. 3c in Sec. 4!.

D. Let us compare the development of small-scale a
large-scale periodic perturbations. According to point~A!
enumerated above, small-scale perturbations are domina
the early stage. However, the expansion velocity related
the large-scale phenomena, Eq.~8.2!, is greater. Therefore in
the later stages the large-scale perturbations dominate.

E. Self-similar growth rates~Sec. 2! and self-similar
eigenfunctions ~Sec. 5! are associated with a uniform
~power-law! distribution. The self-similarity or uniformity
means in this context that all the space and time scales a
equal weight. This then implies equal weight of all the pa
of ‘‘small-large’’ scales~these are denoted by the letterslS

and lL , respectively! that differ by a fixed factor
(lL /lS5Q).

From the discussion in point~D! regarding the change in
the dominant scales that occurs in time, and the discussio
point ~E! regarding the self-similarity, it follows that durin
the development of turbulence there is a kind of relay
quence of instantaneous dominant horizontal scales^l&. It
may be called a cascade of increasing instantaneous sc
This is an inverse cascade, since in this process the cha
teristic wave numberk decreases. Correspondingly, the Fo
rier transforms of the gasdynamic functions such asr are
self-similar. Let us designate byr(x,y,t) and r(k,y,t) the
density distribution and its Fourier transform. The se
similarity of the Fourier transform means that it can be w
ten as a function of two variables,r(q,h), whereq5kgt2

andh5y/gt2. The dependence onq for fixedh has a maxi-
mum corresponding to the dominant scale. We use the n
tion q5qmax to indicate the value ofq at the maximum,
2p/aH .

Then the dominant horizontal scale is^l&52p/kmax,
whereqmax5kmaxgt

2, is equal tô l&5aHgt
2.

In a similar way, we can infer from dimensional arg
ments~the accelerationg is the only dimensional paramete!
that the thickness of the turbulent mixing layer is se
similar:

hT5aV~N,g!gt2. ~8.3!

756 JETP 84 (4), April 1997
r-
s
-

e

te
m

d

t in
to

of
s

in

-

les.
ac-
-

-
-

ta-

The development of turbulence is shown in Fig. 6. Duri
mixing, the power-law singularity is smoothed out by th
turbulence. This is due to the elimination of the low-entro
Lagrangian particles and the increase of the high-entr
ones. It should be emphasized that the thicknesshT increases
according to the self-similarity rule~8.3! in the compressible
case. The turbulent mixing coefficientaV depends on the
exponentsN andg characterizing the compressible materi
It decreases with increasingN and fixedg.

This work was carried out with the financial support
the Russian Fund for Fundamental Research~Grant No. 95-
02-06381-a! and INTAS ~Grant No. 94-1105!.

1!In the theory of atmospheric oscillations the situations in which an isob
boundary is below a gaseous layer simply does not arise, and ther
there are nof2 modes.

2!Here an example is pertinent. The velocity of sound in the Earth’s at
sphere is low compred to the earth’s orbital motion. Accordingly, t
Mach number calculated for the orbital velocity is very large,'100. This
does not interfere with the atmosphere being in subsonic equilibrium.
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Effect of an electric field on the surface tension of a liquid at low temperatures

L. A. Mel’nikovski  and S. A. Kriminski 

P. L. Kapitsa Institute of Physical Problems, Russian Academy of Sciences, 117334 Moscow, Russia
~Submitted 1 November 1996!
Zh. Éksp. Teor. Fiz.111, 1369–1372~April 1997!

An external electric field changes the dispersion law of waves on the surface of a liquid. Besides
the usual capillary term (}k3, k is the wave number! and gravitational term (}k), a term
quadratic in the wave vector appears in the expression for the square of the frequency in a
homogeneous field. These excitations are associated with the variation of the coefficient
of surface tension of the liquid at low temperatures. In the case of a large field tangent to the
surface, the correction is proportional toT8/3, unlike theT7/3 correction in the absence of a field.
© 1997 American Institute of Physics.@S1063-7761~97!01804-0#

The temperature dependence of the coefficient of surface div E50, curlE50. ~4!
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tension close to absolute zero is associated with low-ene
excitations of the liquid–gas boundary~surface waves!.1 The
usual classification separates capillary and gravitatio
waves. The properties of the former are mainly determin
by surface-tension forces, which are substantial in the li
of small wavelengths. The gravitational forces, on the ot
hand, correspond to long wavelengths. This paper discu
the spectral variation effect associated with an external e
tric field constant in time. It is substantial in the region i
termediate~in wavelength! between the capillary and grav
tational regimes.

Let us find the dispersion relation for a surface wa
propagating in the presence of external fieldE0 ~for definite-
ness, letE0 be the field outside the liquid!. Thex axis is in
the wave-propagation direction, while thez axis is upward,
perpendicular to the surface of the unperturbed liquid. T
surface displacement from the equilibrium position in th
wave is described by a function of the form

z5z~x,t !5zeikx2 ivt.

Assuming that the liquid is incompressible, the continu
condition of Ref. 2 is imposed on the velocityv and takes the
form

div v50. ~1!

The Euler equation in the linear approximation~deviations
from equilibrium are considered small! gives a second con
dition for the velocity:

]v i
]t

5
1

r

]s ik

]xk
, ~2!

where

s ik52~rgz1P!d ik2
E2

8pF«2rS ]«

]r D
T

J d ik1
«EiEk

4p

~3!

is the stress tensor.3 HereP is the pressure corresponding
the same densityr in the absence of a field, and« is the
permittivity of the liquid. The electric field itself obeys th
following equations~all the velocities are much less than th
velocity of light, and the liquid is assumed not to have a
free charges!:
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The corresponding field distribution, periodic along thex
axis, has the form

Eg5E01Aeikx2kz, El5E0
l 1Beikx1kz,

where the superscriptsl and g refer to the liquid and gas
respectively, with

Ax52 iAz52 iA, Bx5 iBz5 iB, Ay5By50.

The possibility of making the following transformatio
of the right-hand side of Eq.~2! by using Eq.~4! is essential
for the subsequent treatment:

]v i
]t

5
1

r

]s ik

]xk
5
1

r

]

]xiF2~rgz1P!1
E2

8p
rS ]«

]r D
T

G .
As a consequence, the motion of the liquid is irrotation
i.e., v5“c. Using Eq.~1!, we get

c5 ż
ekz

k
52z

iv

k
eikx1kz2 ivt.

Euler’s equation itself in terms of the potentialc takes the
form

]c

]t
52S gz1P

r D1
E2

8pS ]«

]r D
T

. ~5!

At the interface, the electric field satisfies3

Ei
g5Ei

l , E'
g5«E'

l .

We can use the surfacez50 for the interface~we assume
kz!1). After elementary transformations, we get

E0x5E0x
l , E0y5E0y

l , E0z5«E0z
l ,

A5kz
«21

«11
~E0z2 iE0x!, B5kz

«21

«11SE0z

«
1 iE0xD .

~6!

Using explicit expressions fors i j
g and s i j

l in the boundary
conditions for the stress tensor,

s i j
g nj5s i j

l nj2a
]2z

]x2
ni

7582$10.00 © 1997 American Institute of Physics



~heren is the unit vector normal to the interface, whilea is

he

fo
om
n
ld

al
a
e

n
n

ity

a
e

ill
l

ica

e

vi

ec

n
e

da5
]V

,

y

ith

ial

es
ri-
ela-
ur-
to
ry
r-
ex-
in
e
ea-

.
of
r

a

the coefficient of surface tension!, we get the equation for the
pressure at the boundary:

P5const52a
]2z

]x2
1
El2r

8p S ]«

]r D
T

2
«21

8p
~«E'

l21Ei
l2!. ~7!

Finally, substituting Eq.~7! into Eq. ~5! and using Eq.~6!,
we find

v25gk1
a

r
k31

~«21!2

4pr«~«11!
~«Ei

2 cos2u2E'
2 !k2. ~8!

Above, for brevity, we have omitted the subscript 0 in t
field and have introduced into the treatment the angleu be-
tween the wave vectork and the projection of fieldE onto
the horizontal plane. It is clear that the dispersion relation
surface waves in a liquid in a magnetic field is obtained fr
Eq. ~8! by replacing the permittivity by the permeability. I
fact, in the particular cases of tangential and normal fie
our result coincides with that of Ref. 4.

The resulting formula is inapplicable for large vertic
fields. The unperturbed surface of the liquid in this case c
not be regarded as a horizontal plane. For such a surfac
be stable, the quantityv2 must be positive for allk, since
otherwise the amplitudes of the waves with the correspo
ing wave vectors will grow without limit. It is easy to obtai
the required limitation on the field:

~«21!4E'
4,64p2rag«2~«11!2.

For example, in water, the density isr51 g/cm3, «581,
a573 dyne/cm, and the critical field isE52.5 kV/mm. In
the limit «→`, corresponding to a conductor, the stabil
condition goes over to the inequalityE'

4,64p2rag ~Ya. I.
Frenkel’, 1935; see, for example, Ref. 3, section 5!.

The generalization of the dispersion relationship to
weakly inhomogeneous external field is obvious. If the ch
acteristic scalel over whichE0

2 varies is much larger than th
corresponding scale of the wave (z or 1/k), the only thing
that changes in Eq.~8! is the coefficientg ~which, of course,
will no longer mean the acceleration of gravity, but w
characterize the force acting on unit mass of the materia
the combined electric and gravitational fields!. For example,
in the geometry of a charged jet surrounded by a cylindr
layer of liquid with radiusr ,

g5
«21

4p«

E0
2

rr
.

HereE0 is the field at the surface, gravitation is consider
small, and the applicability condition isz!r .

In a strong horizontal field, when the capillary and gra
tational terms can be neglected,v } kucosuu, and the group
velocity is independent ofk and is always parallel to the
field. The surface thus becomes effectively rigid in the dir
tion of the field.

The correctionda to the coefficient of surface tensio
~relative to the value atT50) equals the derivative of th
‘‘quasi-partial’’ ~associated with the surface waves! potential
V with respect to the surface area:
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for an ideal two-dimensional Bose gas, it is determined b5

da5T E ln F12expS 2
\v

T D G d2k4p2.

Assuming that the variation of the spectrum associated w
the field is small, we get

da52
T

8p2E
0

2p

duE
0

` k2

eq21
dq

'2GS 73D zS 73D r2/3T7/3

4pa2/3\4/3

1GS 53D zS 53D ~«21!2r1/3~«Ei
222E'

2 !T5/3

48p2«~«11!a4/3\2/3

'20.1341
r2/3T7/3

a2/3\4/3

10.004
~«21!2r1/3~«Ei

222E'
2 !T5/3

«~«11!a4/3\2/3 ,

whereq5\v/T. In the opposite case of a strong tangent
field, however,

da'A3 T8

a\5A«11

p3

2r5/6

~«21!E E
0

`

drE
0

`

ds ln @1

2exp~2Ar 21s3!#'20.59
r5/6T8/3A«11

a1/3\5/3~«21!E
.

We should point out that it is convenient to use wav
propagating perpendicular to the field direction to expe
mentally measure the surface tension. Their dispersion r
tionship depends on the field only via the renormalized s
face tension. Atkins’s theory is actually applicable only
liquid helium and hydrogen. Since the former is only ve
weakly polarizable («51.047), the effect under conside
ation apparently cannot be measured with present-day
perimental technique. The susceptibility is much larger
hydrogen («51.231), while a fairly low temperature can b
attained. Thus, it is preferable to choose hydrogen for m
suring the correction to the surface tension.

A stimulating discussion with A. F. Andreev, K. O
Keshishev, and A. Ya. Parshin was essential to the writing
this article. We would also like to thank Yu. A. Kosevich fo
pointing out Ref. 4.
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The effect of pulsed magnetic fields on Cz-Si crystals

ri-
M. N. Levin and B. A. Zona)

Voronezh State University, 394693 Voronezh, Russia
~Submitted 30 December 1995; resubmitted 23 October 1996!
Zh. Éksp. Teor. Fiz.111, 1373–1397~April 1997!

It has been established that short-term effects of pulsed magnetic fields initiate long-term low-
temperature decay of a supersaturated solid solution of oxygen in silicon crystals grown
by the Czochralski method~Cz-Si!, which results in the generation of oxygen-containing defects
in the form of O–V centers and more complicated SixOyVz complexes, where V is a
vacancy. The process of defect formation after the action of the pulsed magnetic fields culminates
in the formation of spatially ordered oxygen–vacancy clusters and/or the precipitation of
oxide phases, depending on the original defects present in the crystal. The action of such fields
also initiates crystallization of an amorphized layer when it is present on the surface of
the original crystal. The detected effects are characterized by a threshold field strength, are
accumulate with successive pulses, and reach saturation in terms of these parameters of the action.
The effects induced in Cz-Si crystals by pulsed magnetic fields are analyzed in terms of a
possible cause consisting of the excitation of the Si–O bond of an interstitial oxygen by
nonequilibrium population of the vibrational levels of a metastable electronic term of the bond.
© 1997 American Institute of Physics.@S1063-7761~97!01904-5#
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It is well known that relatively weak magnetic fields~,1
T! can substantially affect the actual structure and phys
properties of solids. Weak magnetic fields have been
served to have an effect on the mechanical properties
solids,1–4 the luminescence of crystals,5 the resonance ab
sorption of ultrasound by dislocations,6 and the optical ab-
sorption of impurity centers.7 Detailed studies have bee
made of the magnetoplastic effect~the increase of the mobil
ity of dislocations in a magnetic field!, which is detected in
the alkali halide crystals NaCl, LiF, and CsI and the nonm
netic metals Al and Zn under the action of weak magne
fields, both constant8,9 and variable.10,11 It has been observe
that dislocations in NaCl crystals continue to have increa
mobility after the magnetic action is removed~the magnetic
memory effect!.12,13

The influence of weak dc and ac magnetic fields
chemical reactions in condensed media14–18 has been de-
tected and actively studied.

It is assumed in most papers that weak magnetic fie
affect materials because they remove the forbiddenness
any transitions in which the electron spin changes. For
ample, theoretical models of the effect of weak magne
fields on radical chemical reactions are based on the assu
tion that the magnetic field removes the spin forbiddenn
on intercombination transitions between states with differ
multiplicity.5,14–16Ideas about the removal of spin forbidde
ness in intercombination transitions have made it possibl
explain the main features of the magnetoplastic effect,19–21

the effect of a magnetic field on dislocation friction, and t
crystal-strengthening effect in a dc magnetic field.22,23In par-
ticular, the increased mobility of dislocations in a magne
field was explained by the effect of the field on the probab
ity of intercombination transitions between singlet and trip
states of radical pairs, which arises when unpaired nuc

760 JETP 84 (4), April 1997 1063-7761/97/040760
al
b-
of

-
c

d

n

s
for
x-
c
p-
s
t

to

c
-
t
ar

ties ~dislocation stoppers!, and by an increase in the occup
tion of antibonding triplet states of radical pairs that poss
reduced breaking energies.

Interest has recently arisen in studying the effect
pulsed magnetic fields~PMFs! on condensed media.

It has been experimentally established that short-te
actions of weak PMFs initiate long-term changes of t
structure and physical properties of a wide class of nonm
netic materials. Long-term structural changes after the ac
of PMFs have been observed in alkali halide crystals,24 chal-
cogenide semiconductors,25 II–VI semiconductor crystals,26

III–V semiconductor crystals,27 Ge,27 Si,28,29 and Si–SiO2
structures.30–33

The distinctive features of PMF-induced effects are t
there is a delay in their appearance after the magnetic ac
ends and that the kinetics has a long-term nonmonoto
character. Thus, after a PMF acts on silicon crystals for s
eral seconds, the processes of structural changes in t
crystals last hundreds of hours at room temperature.29,32

Despite the large amount of accumulated experime
data, the phenomenological picture of PMF-induced effe
is not yet complete, and existing model concepts have
adequately explained them.

The goal of this paper is to study PMF-induced effects
silicon crystals grown by the Czochralski method~Cz-Si! in
order to establish the mechanism by which a PMF effe
long-term structural changes and to construct a qualita
model of the phenomenon.

2. EXPERIMENTAL RESULTS

The PMF-induced effects were studied on crystals
dislocation-free semiconductor silicon with substantially d
ferent concentrations of dissolved oxygen. Silicon cryst
with a low concentration of dissolved oxygen~ @O#,1016

7604$10.00 © 1997 American Institute of Physics



cm23) were obtained by crucibleless zone melting~Zm-Si!,
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and crystals with a high oxygen concentration~ @O#.10
cm23) were obtained by pulling from the melt by th
Czochralski method~Cz-Si!.34 Samples withn-type conduc-
tivity and crystallographic orientation of the~111! planes
were studied. The dopant~phosphorous! concentration was
less than 531015 cm23. The crystals for the study were cu
from the central part of the Cz-Si or Zm-Si bars. The samp
fabrication methods are specifically indicated below for ea
of the investigation methods used here.

PMFs were imposed as series of from one to 104 unipo-
lar triangular pulses with similar widths of the leading a
the trailing edges. The pulse amplitudeH was varied from
102 to 106 A/m, while the pulsewidthst were varied from
1022 to 1026 sec, with a fixed repetition frequency o
231022 sec.

The magnetic processing was carried out at room te
perature, except for the specifically mentioned cases
which it was done at liquid-nitrogen temperature. In the
tervals between measurements, the PMF-processed sam
were stored in an inert gas~a mixture of argon and nitrogen!
at room temperature.

2.1. Optical microscopy

When a cleavage face of a silicon plate was visua
observed in an MII-4 optical microscope before and af
magnetic action, the formation of precipitates was detec
in Cz-Si crystals subjected to PMF processing. Typical
sults are shown in Fig. 1. The size and concentration of
observed precipitates increased for hundreds of hours
the magnetic action ended. The precipitates that formed a
the action of the PMF possessed a very nonequilibrium s
tial distribution. They were mainly localized in the regions
the cleavage face with the most significant original structu
damage. No precipitates formed on the control cleav
faces of Cz-Si crystals not subjected to PMF action dur
the entire storage time. Images of the corresponding con
cleavage faces are shown in the insets in Fig. 1.

No formation of precipitates as a result of PMF acti
was detected on the cleavage faces of Zm-Si plates.

2.2. Transmission electron microscopy

PMF-induced structural changes in silicon crystals w
studied in an E´MV-100AK transmission electron micro
scope.

To prepare a sample, a disk 3 mm in diameter was
from the central part of a silicon plate about 250mm thick.
An indentation was ground out at the center of the disk t
residual thickness of about 30mm, after which the surface o
the crystal was sputtered with a beam of Ar1 ions with an
energy of about 6 keV until a hole opened up. The thickn
of the sample thus prepared decreased radially from the e
to the center.

Typical images of the precipitates that appeared in
Cz-Si crystals after the action of PMFs are shown in Fig
No such defects were observed on the original samples
the control samples not subjected to the action of PMFs
feature of the transmission images of PMF-induced prec
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tates on thin sections of the sample close to the perforatio
the complex picture of the extinction contours accompany
them~Fig. 2a!. As the storage time of the samples after ma
netic action increased, the extinction contours around
precipitates became less pronounced. Extinction contours
not appear on the transmission electron micrographs of
precipitates made close to the outer edge of the sample
cause of the large thickness of the crystal~Fig. 2b!.

The observed extinction contours can be caused
elastic-stress fields that arise because of the wide dispari
the molar volumes of the oxide precipitates and the cry
matrix, and they can be made to disappear by removing th
elastic stresses as a result of the gradual accumulatio
vacancies in the regions where the crystal is compres
around the precipitates. As is well known, elastic stresses
be compensated by forming vacancy-type dislocation lo
around the precipitates that create compressive stresses
crystal.34

It should be pointed out that the ion sputtering of t
crystal was nonequilibrium and created island-like relief
the sample surface on the side subjected to the sputte
This was manifested on images in the direct beam of
transmission microscope by the presence of dark reg
separated by lighter boundaries where the crystal was m
deeply sputtered. Moreover, bombardment of the surface
the crystal with heavy ions caused its surface layer to

FIG. 1. Image of a cleavage face of a Cz-Si crystal in an optical microsco
~a! before the action of PMF;~b! 250 h after the action of PMF. The PMF
regime isH5105 A/m, t5231025 sec,N5103 pulses. The insets show
images of a cleavage face of a control sample that was not subjected t
action of PMF.
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FIG. 2. Transmission electron micrographs of precipitates formed in a Cz-Si crystal after the action of a PMF:~a! on a thin section of the sample~75 h after
PMF!; ~b! on a thick section of the sample~250 h after PMF!. Magnification 12 000.
amorphized, and this resulted in a corresponding halo in the

o
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specially exposed in the electron microscope for several min-
not

lli-
the

e
be-
sed
the

ig-
electron-diffraction pattern of the sample.
Complete images of a Cz-Si sample in the direct beam

the transmission electron microscope and its electr
diffraction patterns, obtained before and after the action o
PMF, are shown in Fig. 3.

Short-term action~a few seconds! of PMFs caused the
halo on the electron-diffraction patterns of the Cz-Si cryst
to be completely eliminated, showing that the amorphiz
surface of the sample was crystallized. The halo disappe
within tens of hours after the completion of the magne
action. In control samples the original halo remained as lo
as the samples were kept. When the control samples w
f
-
a

s
d
ed

g
re

utes under a 170-keV electron beam, the initial halo did
disappear.

These results show that the detected effect of crysta
zation of the amorphized phase of silicon results from
action of the PMF.

Another indication of PMF-induced crystallization of th
amorphized surface was that the electron micrographs
came more distinct because the diffuse background cau
by electron scattering in the amorphized surface layer of
original sample was eliminated.

The action of PMFs on the Zm-Si samples did not s
f a
ion
FIG. 3. Images of a Cz-Si sample in the direct beam o
transmission electron microscope and its electron diffract
pattern: ~a! before the action of a PMF,~b! 150 h after the
action of a PMF. Sample diameter 3 mm.
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FIG. 4. Images in a scanning electron microscope of a se
tively etched surface of a Cz-Si crystal:~a! before the action of a
PMF; ~b!, ~c!, and ~d! 20, 75, and 150 h after the action of
PMF, respectively. The inset to~d! shows the selectively etched
surface of a control sample.
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by
op
le
th
f t

pl
le
w
e
n

io
iv
in
er
tim
F
c
in
c
n
ite
fre
t

re

u
ng
t

The action of a PMF caused isolated etch pits to appear

de-
d by
ipi-
ro-
ar-
is

the
ary

er
z-Si
rm

al
of

in
ich
e of

r-

m-
d
r at
pol-

tra
ed
ro-

at
-

electron-diffraction pattern.

2.3. Scanning electron microscopy

The effect of PMFs on silicon crystals was studied
scanning electron microscopy with a CamScan microsc
as follows: A Cz-Si plate was cleaved into several samp
one of which was subjected to the action of PMFs, while
others served as control samples. The surface topology o
samples was studied in the secondary-electron recording
gime. To reveal structural defects, the surface of the sam
was subjected to selective chemical etching. All the samp
were processed by PMFs together, and each sample
etched individually but in identical regimes for different tim
intervals after the magnetic action, immediately before mo
toring the surface topology.

The main results obtained by this method for the act
of PMFs on Cz-Si crystals are shown in Fig. 4. Select
etching did not reveal any surface defects on the orig
samples~Fig. 4a!. However, etch pits were detected aft
magnetic processing, and their depth increased with the
interval that passed after the end of the action of the PM
~Fig. 4b–4d!. These pits, detected when the crystal surfa
was selectively etched, had no crystallographic faceting
side them characteristic of the emergence of linear dislo
tions onto the surface. The absence of faceting is evide
that the detected etch pits are caused by spatially lim
defects that are etched more rapidly than is the defect-
crystal. Such defects may be the precipitates observed in
optical and transmission electron microscopes.

No etch pits appeared on the control samples sto
along with the samples processed by PMFs~inset in Fig. 4d!.

2.4. Scanning tunnelling microscopy

Studies in a scanning tunnelling microscope of the s
face topology of Cz-Si crystals with layer-by-layer etchi
showed that PMF-induced effects appeared very differen
the near-surface layers and in the depth of the crystal.
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in the near-surface layers of the crystal~Fig. 5a!. As with the
scanning-electron studies, the absence of faceting of the
tected etch pits showed that their appearance is cause
spatially limited defects. Such defects can be oxide prec
tates visually similar to those observed in an optical mic
scope on cleavage faces of a Cz-Si crystal. In the ne
surface layers, the process of PMF-induced precipitation
also facilitated by an increase in the concentration of
original structural disturbances that can serve as prim
nucleation centers.

Note that, along with oxygen-containing defects, oth
point defects can be formed in the surface layers of the C
crystals—for example, clusters of interstitial atoms that fo
during the growth of precipitates of oxide phases.

In the bulk of the Cz-Si crystal, with higher structur
perfection, the action of PMFs resulted in the formation
regular structures of nanometer scale~Fig. 5b!.

The formation of such structures was detected only
Cz-Si crystals and was not observed in Zm-Si crystals, wh
is evidence that oxygen plays a key role in the appearanc
the effect.

The regular structure may result from PMF-induced fo
mation of clusters of the type SixOyVz , where V is a va-
cancy.

2.5. IR transmission spectroscopy

The IR transmission spectra in the region of wavenu
bers n from 400 to 1200 cm21 were recorded before an
after the action of PMFs on a UR-brand IR spectromete
room temperature. The samples were of a Cz-Si plate
ished on two sides.

The long-term variations of the IR transmission spec
of the Cz-Si crystals after magnetic action directly show
that dissolved oxygen participated in the PMF-induced p
cesses. It is known that the main band (n51106 cm21) in
the spectral interval in Fig. 6a is caused by IR absorption
Si–O bonds of interstitial oxygen.35 The permanent distor
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FIG. 5. Topology of a selectively etched surface of a Cz-
crystal 250 h after the action of a PMF. The thickness of t
etched layer is about 2mm ~a! and about 20mm ~b!. The
image size is 300 nm along thex axis, 300 nm along they
axis, and 45 nm along thez axis.
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dence that the silicon–oxygen bond is excited by the m
netic field.

Another sign that oxygen participates in PMF-induc
effects was the appearance of a narrow absorption b
(n5830 cm21). The presence of this band in the IR spe
trum is associated with absorption at an oxygen–vaca
~O–V! complex, well known as the radiation point defe
called theA center.36–38

The IR absorption also increases in the wavenumber
terval 400–650 cm21 ~Fig. 6b!. The appearance of absorp
tion bands in this part of the spectrum was observed ea
after long~tens and hundreds of hours! heat treatments in the
temperature interval 600–800 K and was associated with
formation of low-temperature thermodonors.39 The nature of
the thermodonors is still being discussed in the literature,
it seems certain that they are oxygen-containing SiO4 com-
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2.6. Deep-level transient spectroscopy

The possibility of PMF-induced formation of point de
fects with deep levels in the band gap of a semiconductor
been tested by deep-level transient spectroscopy.42 The stud-
ies were carried out in the constant-capacitance regime43 on
Au–Si Schottky barriers formed on Cz-Si crystals. Polish
plates of KÉF-7.5 silicon were used for the samples. Rec
fying metal–semiconductor contacts were obtained by th
mally depositing gold electrodes 0.8 mm in diameter a
about 500 nm thick through a molybdenum mask in
vacuum better than 1023 Pa with no special heat treatmen
An ohmic contact was created by mechanically depositing
indium–gallium eutectic mixture on the back side of t
sample.
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FIG. 6. IR transmission spectraDT
of a Cz-Si crystal in the wavenumbe
intervals 800–1200 cm21 ~a! and
400–650 cm21 ~b!; 1—before the
action of a PMF;2, 3, 4, and5—25,
150, 250, and 600 h after the actio
of a PMF, respectively.
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On the original samples~before magnetic action! as well
as on companion samples periodically monitored in
course of hundreds of hours after fabrication, the concen
tion of any deep levels that contribute to the spectrum w
less than 1013 cm23. The action of PMFs caused the appe
ance of a signal whose amplitude substantially increased
several days after the completion of the magnetic action
then decreased~Fig. 7!.

A characteristic of the detected peak was that its sh
was distorted on the high-temperature side. Such distortio
evidence that the observed signal could be caused by a d
level band.44 In fact, the relaxation of the nonequilibrium
charge of the band of deep levels forming the overall sig
peak results in a nonexponential variation of the recor
parameter~the voltage on the electrode in the method us
here, in which a constant capacitance is maintained on
Schottky barrier!. In this case, it becomes incorrect to u
Lang’s classical technique42 for determining the energy po
sition of the levels and their majority-carrier capture cro
sections.44

It is well known45 thatA centers in silicon give a peak i
the signal spectrum obtained by deep-level transient s
troscopy, with a maximum at a temperatureTm;80 K for a
relaxation time oftm;10 ms, wheretm;(t22t1)/ln(t1 /t2),
while t1 andt2 are the variable times of recording the rela
ation parameter. It is also known36 thatA centers belong to

765 JETP 84 (4), April 1997
e
a-
s
-
or
d

e
is
ep-

l
d
d
he

s

c-

FIG. 7. Signal obtained by deep-level transient spectroscopy of a C
crystal:1—before the action of a PMF;2, 3, 4, and5—25, 150, 250, and
600 h, respectively, after the magnetic action. The solid curves show
experimental dependences, and the dashed curves show the results
numerical calculation with the parametersE05Ec2Et50.17 eV,
sn55310215 cm2, t15231023 sec, andt251022 sec and with a com-
pressive hydrostatic pressure ofP050.32, 0.34, and 0.27 GPa for curves,2,
3, 4, respectively.
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FIG. 8. Effect of uniaxial compression~curves1!
on the signal obtained by deep-level transient sp
troscopy of a PMF-induced center in a Cz-Si cry
tal: ~a! P[100]50.3 GPa,~b! P[110]50.3 GPa, and~c!
P[111]50.3 GPa. The signal-recording regime
t15831023 sec, t251022 sec; curves2—initial
signal with no external compression.
theC2v symmetry group and, in the absence of external ef-
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Using the parameters of theA center~an energy position

in the band gap ofEc2Et50.17 eV, whereEc is the energy
level in the conduction band andEt is the energy of the dee
level, and an electron-capture cross section
sn55310215 cm2, Refs. 34 and 35! and taking into accoun
elastic hydrostatic-compression fields, a numerical calc
tion of the signal makes it possible to accurately reprod
the experimental signals of the PMF-induced defect. Figu
shows the experimental and calculated signals. The si
observed after the action of PMFs shows features chara
istic of a center ofC2v symmetry in a cubic crystal.

To conclusively determine the symmetry group of t
PMF-induced defect, the effect of uniaxial compression
the crystal was studied by the method proposed in Ref.
The samples specially fabricated for this method w
531.531.5 mm3 parallelepipeds cut from the central part
a Cz-Si sample. To optimize the signal resolution, the m
surements were made with close-lying values of the par
eterst1 and t2.

Structures with Schottky barriers and ohmic conta
were formed on the opposite side faces of the samples.
long sides of the samples were oriented along one of
crystallographic axes@100#, @110#, and@111#. Uniaxial com-
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device similar to that described in Ref. 36 and an additio
lever whose free end was loaded with the test sample.

The results of the action of uniaxial compression a
shown in Fig. 8. When the sample was compressed along
@100# axis, the recorded signal invariably showed a seco
maximum ~Fig. 8a!. The signal was shifted toward lowe
temperatures relative to the initial value, its amplitude w
reduced, and an inflection point appeared on the hi
temperature side at a height close to the amplitude of
second maximum. Substantially smaller distortions of
original signal and reduction of its height were observ
when the sample was compressed along the@110# axis ~Fig.
8b!. The application of external pressure in the@111# direc-
tion significantly reduced the amplitude of the initial sign
and caused the appearance of a second maximum an
inflection point at a height twice that of the second maximu
~Fig. 8c!.

These effects of uniaxial compression on the record
signal confirms that the PMF-induced point defect belongs
theC2v symmetry group.

Since there are no data on the electronic–vibratio
characteristics of the detected center caused by the Ja
Teller effect nor on the character of the reconstruction of
partially filled broken silicon bonds, the PMF-induced defe
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FIG. 9. Diffraction patterns of a Cz-Si crystal~111!: ~a! before the
action of a PMF;~b!, ~c!, ~d!, ~e! 25, 150, 250, and 600 h after th
action of a PMF, respectively. Diffraction patterns1 and2 corre-
spond to a PMF-processed sample and a control sample.
cannot be unconditionally identified as anA center. How-
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ever, the fact that the detected defect coincides in ene
position, electron-capture cross section, and symmetry
with the corresponding characteristics of anA center, in our
opinion, justifies the use of the term ‘‘A-like center’’ to des-
ignate the detected PMF-induced point defect.

2.7. X-ray diffractometry

X-ray structural studies of the effect of PMFs on silico
crystals were carried out on a DRON4-07 diffractomet
The diffraction patterns were measured with CuKa x-rays
(l51.54051 Å!, in the regime in which the sample is aut
matically angularly displaced with a step of 0.01° and
exposure time of 3 sec at each point. The doublet chara
of theKa x-ray line caused the x-ray diffraction lines to b
split into two peaks.

The samples were polished Cz-Si and Zm-Si plates w
the crystallographic orientation of the~111! planes.

The brief action of PMFs produced long-term nonmon
tonic variations of the interplanar distancesd in the Cz-Si
crystals and also substantially changed the total and m
mum intensities of the x-ray diffraction lines of these cry
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crystals after the action of PMFs are shown in Fig. 9. F
comparison, the same figure shows the results of meas
ments on control samples that were not subjected to m
netic processing.

The detected intensity changes of the x-ray diffracti
lines of Cz-Si samples after the action of PMFs can
caused by the formation of the quasiregular spatial structu
observed in the scanning tunnelling microscope. Deform
tion of the atomic planes of the original Cz-Si crystal as
result of PMF-induced formation of oxygen-containin
SixOyVz clusters should cause the primary extinction duri
dynamic x-ray scattering to be suppressed and indeed re
in a substantial increase of the total and maximum inten
of the x-ray diffraction lines~making them several times a
strong!, while their ratio, which characterizes the half-wid
of the line, is maintained.

No appreciable changes of the x-ray diffraction line i
tensities were observed in the Zm-Si crystals after the ac
of PMFs.

The relative changesDd/d of the interplanar distance
of Cz-Si crystals after PMFs act on them reached values
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FIG. 10. Variations of the parameters o
a Cz-Si crystal vs the time after the ac
tion of a PMF: ~a! interstitial oxygen
concentration~from the IR transmission
at about 9mm!; ~b! relative variation of
the lattice constant~from the shift of the
x-ray diffraction line!; ~c! concentration
of A centers~from the area of the signa
obtained by deep-level transient spe
troscopy!; ~d! free-electron concentra-
tion.
about 531025 for the ~444! planes, while this parameter did
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not vary by more than 1.531025 on the control samples
The corresponding temporal variations of the lattice cons
a of the crystal (a5dAh21k21 l 2, whereh, k, andl are the
crystallographic indices! are shown in Fig. 10.

We should also point out that, in Si–SiO2 structures ob-
tained by thermal oxidation of Cz-Si plates, PMF-induc
changes of the x-ray diffraction lines and of the interplan
silicon spacings were significantly weaker than on uno
dized plates.

The temporal variations of the interplanar distances
Zm-Si crystals after the action of PMFs was less than
variation of this parameter on the control samples.

Thus, the results of x-ray structural studies confirm t
oxygen dissolved in the silicon lattice plays a key role in t
appearance of PMF-induced effects and indicate that the
face state of the crystal is very significant in these effect

2.8. Time dependences of the variation of the parameters

The main features of the kinetics of the long-term var
tions of the parameters of the Cz-Si crystals, observed a
the short-term action of PMFs, are shown in Fig. 10. Besi
the time dependence of the PMF-induced change of the
tice constant of the Cz-Si crystal mentioned above, Fig.
shows the time dependence of the concentration of inte
tial oxygen, PMF-inducedA-like centers, and conductio
electrons.

The concentration of interstitial oxygen dissolved in t
silicon lattice was determined by comparing the IR transm
sion coefficients of the test crystal at a wavelength o
mm (n51106 cm21) with a reference crystal whose oxyge
concentration was known. The concentration ofA-like cen-
ters was estimated from the area of the signal obtained
deep-level transient spectroscopy. The conduction-elec
concentration was determined from the ratio of the minim
and maximum values of the steady-state high-frequency
pacitance of poly-Si–SiO2–Si structures specially formed o
part of the test plates of silicon. The errors noted in Fig.
and the subsequent figures are caused by statistical scat
the measured results on batches of at least twenty sam
Note that the time variations of the parameters of con
samples not subjected to the action of PMFs were less
the statistical scatter of the corresponding parameters.
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induced changes of the parameters of a Cz-Si crystal is
dence that the concentration of interstitial oxygen and
lattice constant of the crystal both decrease at the initial st
of the evolution. In other words, magnetic action causes p
of the oxygen atoms to leave the interstitial state and cau
internal elastic compressive stresses to appear in the cry

The subsequent increase of the lattice constant can
caused by the arrival of additional vacancies from the surf
of the crystal, compensating the compressive stresses
appeared earlier.

The entry into the crystal of vacancies from the surfa
can increase the concentration ofA-like centers formed by
the interaction of these vacancies with interstitial oxyge
The gradual decrease of the concentration of PMF-indu
A-like centers at the later stages of the evolution is de
mined by two factors: the consumption of theA-like centers
in cluster-formation processes and the reduction of the
of vacancies from the surface as the elastic stresses in
crystal are compensated.

The nonmonotonic change of the concentration of f
carriers reflects the multistage process of the conversio
electrically neutral interstitial oxygen into electrically activ
defects, includingA-like acceptor centers, thermal donor
and other oxygen-containing centers. However, this cause
the variation of the free-carrier concentration is not the o
one possible. This parameter can also vary as a resu
PMF-induced redistribution of the dopants. Such a redis
bution effect has been observed in II–VI semiconduc
crystals26 and is not ruled out in Cz-Si crystals.

2.9. The effect of the regimes of action of PMFs

The experimental data presented above show that
long-term changes of the structural and electrophysical
rameters of the Cz-Si crystals that occur after the short-t
action of PMFs are associated with the change of state
part of the interstitial oxygen atoms.

To explain the mechanism of PMF-induced excitation
the silicon–oxygen bond of interstitial oxygen in the silico
lattice, studies were carried out to establish how the varia
of the magnetically sensitive parameters of the Cz-Si crys
depends on the regimes of the magnetic action. The rela
variation of the IR transmission atl59mm and the concen-
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FIG. 11. Maximum variation of the pa-
rameters of a Cz-Si crystal vs the ampl
tudeH of the magnetic-field pulses~a!
and~b! and vs timetPMF of the action of
a PMF with frequency 50 Hz~c!, ~d!; ~a!
and ~c! are the relative change of the IR
transmission at about 9mm (n51106
cm21); ~b! and~d! are the concentrations
of A centers. The open dots are for pro
cessing by a PMF atT5300 K; the
closed dots are forT577 K.
tration ofA-like centers were chosen as the test parameters,
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reflecting the state of the oxygen in the crystal.
The variable parameters of the action were the am

tude, the pulsewidth, and the number of pulses of the m
netic field. The magnetic action was implemented at ro
temperature and liquid-nitrogen temperature.

Figures 11a and 11b show the maximum values of
changes of the test parameters~in the entire period of their
evolution after the action of a PMF! as a function of the
magnetic-field pulse amplitude. These dependences are
dence that the appearance of PMF-induced effects ha
threshold character, with saturation in the amplitude of
magnetic-field pulses. The orientation of the samples in
magnetic field had no appreciable effect on the results of
action of the PMFs.

Figures 11c and 11d show the dependences of the v
tion of the test parameters on the time of action of the PM
~at a pulse-repetition rate of 50 Hz!. The effectiveness of the
magnetic action increased with the number of pulses
reached saturation.

The variation of the IR absorption coefficient at th
Si–O–Si bond of interstitial oxygen vs the magnetic-fie
pulsewidth is shown in Fig. 12. No appreciable effect of t
parameter on the results of the magnetic action was obse

FIG. 12. Relative variation of the IR transmission of a Cz-Si crystal at ab
9 mm (n51106 cm21) vs the magnetic-field pulsewidtht.
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comparable to their repetition interval, the efficiency of t
magnetic action began to decrease.

Unlike a PMF, a constant magnetic field with a value
106 A/m and a duration of about 15 min caused no chan
of the test parameters.

PMF-induced effects were also substantially suppres
if the magnetic processing was carried out at reduced t
perature (T577 K!. Experimental data confirming this ar
shown in Fig. 11.

3. QUALITATIVE THEORY OF THE PHENOMENON

Let us evaluate the possible mechanisms for the ac
of PMFs on Cz-Si crystals. First, it should be pointed out t
the energy of the carriers associated with the Zeeman e
changes by less than 1023kT under our conditions. Second
magnetostriction effects are also extremely small and mo
over depend on the magnetic field (}H2), which does not
agree with the experimental results.

Finally, as pointed out in Sec. 2.9, the absence of a
pendence of the observed effects on the pulsewidth of
magnetic pulses in fairly wide limits makes it impossible
explain these effects by induction fields.

The induction electric fieldEind can be estimated from

Eind.mm0rH t21,

wherem is the permeability of silicon,m0 is the permeability
of free space,r is the maximum radius of the contour a
which an induction emf appears~which is smaller than the
linear dimensions of the sample; i.e.,r,1 cm in our experi-
ments!, H is the amplitude of the magnetic pulses, andt is
the width of the triangular pulses, with identical rise and f
times of the field.

For the regime typically used for the action of PMF
(H5105 A/m; t5231025 sec!, the induction fields are les
than 50 V/cm, which is clearly inadequate, for example,
t
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appreciably heat the carriers or to lower any internal poten-
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tial barriers associated, in particular, with the Stark effec
Since the detected effects cannot be explained in te

of the mechanisms enumerated above, we propose a
qualitative model for PMF-induced phenomena.

A characteristic of PMF-induced effects is that there i
significant delay for the manifestation of the magnetic act
on silicon crystals, reaching tens and hundreds of hour
should be pointed out that such a delay is not unique an
encountered in many areas of solid-state physics. The
nomenon of phosphorescence is a well-known examp47

The generally accepted model of phosphorescence assoc
this phenomenon with the de-excitation of metastable e
tations of a crystal that are formed by cascade transiti
from optically allowed states populated by radiation incide
on the crystal.

Another phenomenon related to the model under con
eration is magnetic quenching of the fluorescence of ga
and molecular crystals, which was studied comparatively
cently in a series of papers~see, for example, the reviews i
Refs. 5 and 16!. These papers reported that the delayed
minescence of materials disappeared when they were pl
in a constant magnetic field. The explanation of the effec
based on concepts concerning the removal by the magn
field of the forbiddenness of the decay of metastable sta

After these preliminary remarks, let us pass on to
explanation of the qualitative theory of the phenomena t
we observed.

As follows from the experimental data, the effect of
magnetic field on Cz-Si crystals is largely determined by
presence of dissolved oxygen in the silicon. It is well know
that oxygen in silicon mainly occupies a bridge position,
which its two valence bonds are distributed between t
silicon atoms of the lattice.34 The equilibrium position of the
oxygen atom in this case is shifted relative to the straight
connecting the silicon atoms, so that the anglea between the
oxygen–silicon valence bond and this straight line is ab
20°.48

We assume that the electronic excitation of this vale
bond is metastable, with the dependence of the electr
terms on a certain coordinate, for example, the anglea men-
tioned above, being qualitatively shown by Fig. 13a.1! Such
excited states, not optically coupled with the ground sta
are well known in free molecules. A classical example is
triplet state in the hydrogen molecule. In this case, howe
sincea varies in a limited interval, several vibrational leve
can exist in the metastable state.

A fundamental point, shown in Fig. 13a, is the assum
tion that there is a point where the ground and metasta
terms intersect. When a magnetic field is present, the de
eracy of the levels at the point of intersection is remov
and anti-intersection of the terms appears, as shown in
13b. Such a transformation of the terms is completely an
gous to the transition from diabatic to adiabatic terms in
theory of vapor-phase chemical reactions, which occ
when the finite collision rate of the atoms or molecules49 is
taken into account.2!

It is evident that, under the conditions of such a tra
formation, it becomes impossible to speak of vibrational le
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els belonging to the ground or the metastable terms if
energies of these levels lie in the region of the ‘‘window
between the terms that appears because of the magnetic
The vibrational levels inside this window are a superposit
of the vibrational levels of the ground and the metasta
states. Therefore, if, before the magnetic field was turned
the system was on a vibrational level of the ground te
lying in the region of the window~level Eg in Fig. 13a!,
then, when the field is turned on, this level is smeared o
the doublet levels of the superposition (Egm in Fig. 13b!.
After the field is switched off, the system has an apprecia
probability of being in a vibrational state of the metastab
term (Em in Fig. 13a!. Thus, the metastable level is pop
lated by a pulsed magnetic field.

For the subsequent evolution of the system, it is essen
for there to be a long time interval in which there is n
magnetic field. During this time, the metastability of the e
cited electronic term is restored, and its upper vibratio
levels are populated according to Boltzmann’s law. It sho
be taken into account in this case that the lower vibratio
levels of the ground and metastable terms have different
ergies, and therefore the populated vibrational levels in
metastable state have on the average an absolute energ
is greater than the mean absolute energy of the vibratio
levels in the ground state. The difference of these energie
determined by just the energy difference of the lower vib
tional levels of the two terms, which means, in other wor
by the activation of the Si–O bond.

The picture described here by no means contradicts
principles of thermodynamics, as it might seem to at fi
glance. The very fact that the mean energies of the gro
and metastable degrees of freedom of the Si–O bond

FIG. 13. Qualitative form of the electronic ground term (Vg) and metastable
term (Vm) of the Si–O bond of interstitial oxygen in a silicon lattice:~a!
with no magnetic field,~b! in a magnetic field. The horizontal lines conven
tionally show the positions of the vibrational levels in each term. The in
acting levels are designatedEg andEm . When the ‘‘window’’ is opened,
these levels form the doubletEgm .
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different reflects the property of metastability of one of them.
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Of course, after some time all the degrees of freedom
have equal mean energies; however, this time can be
tremely long for the metastable state.

If the nonequilibrium-populated vibrational levels of th
metastable term are able to partially relax during the pa
after the magnetic-field pulse, for example, by tunnelli
from an upper vibrational level through the potential barr
along any generalized coordinate, the Si–O bond will
come excited, and this excitation will not be destroyed by
next magnetic-field pulse. In this case, periodic repetition
the pulses causes the excitation of the silicon–oxygen b
to accumulate.

The proposed model thus reduces to the following: T
magnetic field opens a window between the ground
metastable states for a short time, as a result of which
metastable state is populated. After the window is clos
thermal processes cause the upper vibrational levels of
metastable state to be excited. As a result, the energy fo
excitation and consequently also for the chemical activa
of the Si–O bond is drawn not from the magnetic field b
from the phonon thermostat~the crystal lattice!. In this sense,
the activation of the Si–O chemical bond can be regarde
endothermic. The emptying of the upper vibrational levels
the metastable term, for example, by tunnelling~for brevity,
we shall call this the nonthermal channel! ensures that the
excited state is maintained until the next magnetic-field pu
and that this excitation will grow~be ‘‘pumped’’! as the
pulses are periodically repeated.

This description explains in a natural way why the o
served effects are substantially suppressed if the crystals
processed by PMFs at reduced temperature, and also wh
effect is absent in a constant magnetic field.

The excited-state pumping effect of the silicon–oxyg
bond by a pulsed magnetic field can be achieved only if
nonthermal emptying of the upper vibrational levels of t
metastable term during the action of the PMF occurs i
time that is shorter than the interval between the magn
pulses, which, we recall, was 231022 sec in our experiment
The population time can be estimated from the halfwidth
a spectral line of the vibrational level~1–100 cm21) and is
about 10210–10212 sec.

The proposed model makes it possible to explain
threshold dependence of the appearance of PMF-induce
fects on the magnetic-field amplitude. The metastable s
actually becomes populated as soon as the energies o
vibrational levels from both terms fall into the region of th
magnetic window. Increasing the amplitude further does
strengthen the magnetic action, so that the field depend
of PMF-induced effects should have the characteristic fo
of curves with saturation, which is observed in experime

The threshold fieldH0 is determined by the condition

mBH0.uEg2Emu,

wheremB is the Bohr magneton.
When the magnetic field isH;33104 A/m, the window

is about 0.02 cm21 wide. This value can be compared wi
the characteristic spacing between the vibrational levels
the ground electronic term, which is several tens of inve
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acteristic spacing between the vibrational levels of the me
stable term is no greater than this value, the resulting e
mate can be regarded as not contradicting the experime
measurement of the thermal processes. Moreover, it sh
be taken into account that the vibrational levels are stron
broadened by thermal processes. And, although the fac
broadening does not in itself fundamentally change the p
ture of the phenomenon,3! nonetheless the quantitative es
mates given here can give a close approximation to the
perimental data.

Based on the proposed model, the PMF-induced effe
in Cz-Si crystals presented above can be interpreted as
lows: The excitation of the Si–O bond by a pulsed magne
field increases the chemical activity of the interstitial oxyge
As a result, part of the activated oxygen atoms can enter
interaction with the vacancies that exist in the crystal bef
the magnetic action. The fact that the original vacancies
present in the crystal not in isolated but in clustered form,
example, in the form of thermally stable point defects su
as pentavacancies or the well-knownD defects,35 does not
rule out the possibility of such interaction. In other word
part of the oxygen atoms excited by the action of PMFs p
from an interstitial position to the position of nearby vaca
lattice sites~possibly with some shift from the position of th
regular site similar to what takes place in theA center!.

The decrease of the initial concentration of vacancies
the Cz-Si crystal because their positions are occupied
oxygen atoms that were at interstitial sites before the ac
of the PMFs causes elastic compressive stresses to appe
the crystal. The resulting deficiency of vacancies in the cr
tal can be compensated by the arrival of additional vacan
from its surface.

We should point out that the PMF-induced crystalliz
tion of the surface of the samples described in Sec. 2.2
the lower sensitivity to the action of PMFs of Cz-Si crysta
with thermal oxide on the surface noted in Sec. 2.7 a
agrees with the assumption that nonequilibrium vacanc
from the surface enter into a Cz-Si crystal processed
PMFs.

The vacancies that arrive from the surface and enter
volume of the crystal interact with the interstitial oxyge
atoms, which also manifests itself in the long-term gene
tion of A-like centers observed after the completion of t
action of PMFs. A feature of the PMF-induced generation
A-like centers is that, unlike the radiational generation
ordinaryA centers, it accompanies not an excess but a d
ciency of vacancies. This feature causes PMF-indu
A-like centers to form a band of energetically closely spac
deep levels because their degeneracy is removed by th
ternal elastic stress field, and this is shown by the splitting
the corresponding signal obtained by deep-level trans
spectroscopy.

The transformation of interstitial oxygen atoms into t
more mobileA-like centers, caused by the arrival of vaca
cies from the crystal surface, causes a multistage proces
complex formation, which manifests itself in the formatio
of clusters of the type of SixOyVz in the volume of the crysta
and/or of oxide precipitates in the more defective surfa
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layers. The appearance and growth of clusters and precipi-
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tates, which are point sources of elastic stresses, incre
the internal stress level in the crystal. This increase of
elastic stresses in the crystal in turn stimulates the arriva
vacancies from the surface. That is, positive feedback oc
between the generation of vacancies and elastic fields in
crystal and is maintained by the conversion of nonmob
interstitial oxygen into the more mobileA-like center when
the oxygen captures a vacancy. This produces further gro
of the clusters that creates local elastic stresses.

The process continues until the concentration of inter
tial oxygen is decreased to levels such that the vacancies
reach the regions of elastic compression close to the pre
tates without being captured at the interstitial oxygen ato

The subsequent arrival of vacancies is not accompa
by the formation ofA-like centers and continues until th
elastic stresses in the crystal are compensated and their
modynamic equilibrium concentration is reestablished.

The indicated positive feedback should become stron
the larger the size of the PMF-induced precipitates and c
ters. This makes it possible to understand why there is a t
delay in the appearance of PMF-induced effects after
magnetic action ends. The latency of the PMF-induced
fect formation at the initial stage is caused by the small s
of the clusters that are formed~the sources of elastic
stresses!, for which the positive feedback that strengthens
appearance of the PMF-induced effects is still weak.

The proposed interpretation of the PMF-induced def
formation assumes that the mobility of the oxyge
containing complexes in silicon is rather high at room te
perature. We know of no data on the mobility of such co
plexes when the elastic-stress fields are inhomogene
when nonequilibrium vacancies arrive from the surface, a
when there is a high original concentration of interstitial ox
gen. It is significant that each of the indicated factors is
pable of stimulating the migration of oxygen in the crystal
low temperatures. For example, Ref. 52 found that, in Cz
crystals with an inhomogeneous distribution of elas
stresses created by carbon implantation~about 0.2 GPa, Ref
53!, the oxygen diffusion coefficient reaches anomalou
high values~about 10210 cm2/sec at 720 K!, where the nor-
mal value of this parameter is 10220 cm2/sec.

From an analysis of the splitting of the signal obtain
by deep-level transient spectroscopy of the PMF-indu
center~Fig. 7!, the local compressive stresses in the crys
reach values of about 0.3 GPa, while the observed variat
of the lattice constant of silicon~Fig. 10! correspond to the
appearance of elastic stresses of about 0.1 GPa. These
mates coincide in order of magnitude with the data of Re
52 and 53 and consequently can result in equally signific
changes of the diffusion coefficient.

Another factor that can be considered responsible
accelerated low-temperature diffusion of oxygen in silicon
that nonequilibrium intrinsic defects of the crystal can p
ticipate in its transport.35 In our model, the PMF-induced
migration of oxygen is counter to the flux of nonequilibriu
vacancies from the surface, which agrees with this conc

Finally, the ability of oxygen to migrate in silicon crys
tals increases as the original concentration of dissolved o
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10 cm , annealing of the radiation-inducedA centers in a
Cz-Si crystal occurs not at 300–400°C, as it is assumed
do, but in a much lower temperature interval~.100 °C!.54

We recall that the Cz-Si crystals that we studied had a si
larly high concentration of dissolved oxygen.

The combination of all three factors acting together a
parently ensures that the capability of oxygen to migrate
anomalously high and produces the effects that we obser

It should be pointed out that other mechanisms for
migration of oxygen-containing complexes are not rul
out—for example, exchange or cooperative mechanis
However, the establishment of all possible mechanisms
PMF-induced oxygen transport requires further study a
goes beyond the limits of this article. We should also po
out that PMF-induced anomalous migration of an impurity
crystals at room temperature has been observed earlier
recall in this connection the indium-redistribution effect, o
served at room temperature in CdClTe crystals after the b
action of PMFs.26

The appearance of a flux of vacancies from the surf
into the bulk of the crystal makes it possible to understa
the effect of PMF-induced crystallization of an amorphiz
surface layer. It is well known that a flux of point defec
into an amorphized region of a crystal can cause it to cr
tallize. Thus, in the phenomenon of low-temperature io
induced crystallization, the crystallization of an amorpho
layer is associated with diffusion to the phase interface
intrinsic point defects of the crystal, created by ion beam55

There is also fundamental significance in the fact t
PMF-induced excitation of Si–O bonds occurs coherently
the entire crystal. For a sufficiently high concentration
oxygen dissolved in the lattice of a Cz-Si crystal, this c
result in the appearance of long-range order and can c
the observed formation of spatially ordered structures of
nometer scale.

4. CONCLUSIONS

1. The action of PMFs on Cz-Si crystals initiates t
decay of a supersaturated solid solution of oxygen and m
fests itself in the long-term generation of oxygen-contain
defects, which culminate in the formation of spatially o
dered clusters of the type SixOyVz ~V is a vacancy! in defect-
free regions of the crystal and/or cause the precipitation
oxide phases in the near-surface layers having initial str
tural disturbances.

2. As the result of the action of PMFs, amorphized lay
are crystallized when they are present on the surface of C
crystals.

3. PMF-induced effects have a threshold dependence
the PMF amplitude, accumulate as the number of pulses
creases, and reach saturation in these parameters of th
tion.

4. A possible start-up mechanism for the appearance
PMF-induced effects in Cz-Si crystals is the excitation of t
Si–O bond of interstitial oxygen by the population of th
vibrational levels of its metastable term.
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The Peierls system in a light field

-

A. L. Semenov

Ul’yanovsk Branch of the M. V. Lomonosov Moscow State University, 432700 Ul’yanovsk, Russia
~Submitted 4 April 1996!
Zh. Éksp. Teor. Fiz.111, 1398–1409~April 1997!

This paper studies the behavior of the low-temperature phase of the Peierls system in a
quasimonochromatic time-independent random light field whose frequency is much lower than
the frequency of the lower edge of band-to-band transitions. The density matrix method
in the dipole approximation is used to derive equations for the band gap. A dependence between
the band gap and the light-field intensity is established in an approximation in which the
concentration of the nonequilibrium electrons in the conduction band is low. The possibility of,
and the conditions for, the existence of a light-induced semiconductor–semiconductor
phase transition and cavityless optical bistability with increasing absorption are established.
© 1997 American Institute of Physics.@S1063-7761~97!02004-0#
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The Peierls system is a one-dimensional chain of ato
each of which contains one outer electron. In the hig
temperature metallic phase, the atoms in the chains are p
tioned equidistantly and the conduction band is half-fille
When the system is cooled and the temperature beco
lower than a critical valueT0, the metallic phase become
unstable, and a metal–semiconductor phase transition
curs. As a result the chain atoms move closer togethe
pairwise fashion.1

The theoretical results obtained from the Peierls mo
are used to describe the experimentally observed prope
of many quasi-one-dimensional materials: complex va
dium compounds,1m-TaS3compounds,

2 organic conductors,3

oxide vanadium bronzes,4,5 and others.6,7 In particular, this
model makes it possible to explain the effect on the met
semiconductor transition in vanadium dioxide films
uniaxial pressure,8 alloying,9–11 cohesion of a vanadium di
oxide film and the substrate,12 adsorption, and othe
factors.13

The behavior of the low-temperature phase of the Pei
system in a light field whose frequency exceeds the
quency of the lower edge of band-to-band transitions
been studied both theoretically14 and experimentally~in va-
nadium dioxide!.15,16 It was found that because of stron
electron–phonon coupling under irradiation, the forbidd
band narrows, and in strong fields there occurs
semiconductor–metal phase transition. This result is ba
on the fact that an increase in the concentration of cond
tion electrons narrows the forbidden band of the Peierls s
tem.

This paper studies the behavior of the low-temperat
phase of the Peierls system in a quasimonochromatic l
field whose frequency lies somewhat below the lower e
of band-to-band transitions. Nevertheless, the finite width
the optical spectrum of the light field allows processes
which electrons ‘‘hop’’ from the valence band to the condu
tion band. In such conditions, when the irradiation intens
increases, there may be a sudden drop in the band gap i
system~a light-induced semiconductor–semiconductor ph
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nance light field causes a slight decrease in the band gap
a result, electron–phonon coupling becomes more reso
and hence more intensive, which in turn leads to a furt
decrease in the band gap. Thus, positive feedback lowers
stability of the system. If the positive feedback is stron
stability can be lost, and there is a sudden transition to a n
state of equilibrium.

Thus, thanks to the strong coupling between the elect
subsystem and the static phonon mode in the Peierls mo8

one of the mechanism causing cavityless optical bistab
with increasing absorption comes into play.17 Generally, the
given type of bistability is due to the nonlinear dependen
of the absorption coefficient on the incident radiation inte
sity and may be brought on by different causes:17 atomic
correlations within a small volume, the temperature dep
dence of the band gap, renormalization of the band gap
to electron–phonon coupling,17,18 and variations in the fre-
quency of transitions in an ensemble of two-level atoms d
to local-field effects or electron–phonon coupling.19 How-
ever, the author knows of no mechanism similar to that
cavityless optical bistability in the Peierls system conside
in this paper.

2. ELECTRON SPECTRUM OF THE SYSTEM

Let us examine a chain of atoms each of which has
outer electron. The Hamiltonian of the electron subsystem
the tight-binding approximation can be written as1

H5(
n

Bn,n11~an
1an111an11

1 an!, ~1!

wheren is the number of the atom in the chain,Bn,n11 is the
overlap integral of the wave functions of neighboring ele
trons, andan

1 andan are the electron creation and annihil
tion operators at thenth atom.

For narrow-gap systems, e.g., for the Peierls model,
separation of adjacent atoms,r n,n11, exceeds the effective
radiusR of the atomic wave function of an electron sever
fold. In this caseBn,n11 } exp(2rn,n11 /R) ~Ref. 20!. The
separationr n,n11 can be written

7746$10.00 © 1997 American Institute of Physics
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wherer 0 is the atomic separation in the metallic phase, a
j is the period-doubling parameter for a one-dimensio
crystal. If we allow for~2!, the overlap integralBn,n11 as-
sumes the form

Bn,n115b exp~~21!nj!, ~3!

where b is the overlap integral in the metallic phas
(j50). With Hamiltonian~1!, the phases of the atomic wav
functions are selected in such a way thatb in ~3! is real.

To diagonalize the Hamiltonian~1! we employ Bogo-
lyubov’s method of canonical transformations.21 We intro-
duce collective second-quantization Fermi operatorsck and
ck

1 as follows:

an5
1

AN (
k
cke

ikn, ~4!

where N is the number of atoms in the chain,k50,
62p/N, . . . ,6p, andck12p5ck .

In the new operator representation the Hamiltonian~1!
becomes

H5(
k
2b~ck

1ck coshj cosk1 ick
1ck2p sinh j sin k!. ~5!

Now in ~5! we apply the canonical transformation to th
operatorsak andak

1 :

ck5
ak1 iwkak2p

A11wk
2

. ~6!

The functionwk is selected in such a way that the resulti
Hamiltonian is diagonal in the new variablesak andak

1:

H5(
k

«kak
1ak . ~7!

Plugging ~6! into ~5! and zeroing out the off-diagona
elements, we arrive at an expression forwk and a dispersion
relation for«k :

wk5
coshj cosk2sgn~cosk!Acos2k1sinh2j

sinh j sin k
, ~8!

«k52b sgn~cosk!Acos2k1sinh2j. ~9!

Equation~9! shows that forj Þ 0 the spectrum of«k has
two bands, with the lower band in the ground state co
pletely occupied and the upper band vacant~the semicon-
ducting phase!. At j50 the spectrum~9! consists of one
half-filled band~the metallic phase!.

3. DIPOLE MOMENT OPERATOR

In the tight-binding approximation, the dipole mome
operator of the Peierls system is

d5(
n

~dn,n11an
1an111dn,n11* an11

1 an!, ~10!

where the dependence ofdn,n11 on j is similar to ~3!:
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cn* ~r !rcn11~r !dV. ~11!

Herecn(r ) is the atomic wave function of the electron at th
nth site, ande is the electron charge. By selecting the phas
of the wave functionscn(r ) in such a way that the overla
integral~3! is real we ensure that bothd1 andd2 in ~11! are
uniquely defined.

Plugging ~4! into ~10! and allowing for ~11! and the
identity exp@(21)nj#5coshj1(21)nsinhj, we obtain

d52(
k

@coshj~d1 cosk2d2 sin k!ck
1ck

1 i sinh j~d1 sin k1d2 cosk!ck
1ck2p#. ~12!

Introducing the Fermi operatorsak and ak
1 into ~12! and

allowing for ~6! and ~8! we finally obtain

d5(
k

H Fd1«kb
2

2d2
11wk

2 @~12wk
2!coshj sin k12wk sinh j

3cosk#Gak
1ak1 i

2d2
11wk

2 @~12wk
2!sinh j

3cosk22wk coshj sin k#ak
1ak2pJ . ~13!

Note the formal similarity of the operators~1! and ~10!
at d250. The operators~7! and ~13! are also formally simi-
lar.

Suppose that in the absence of an external electric fi
the total dipole moment of the system is zero. Th
Eqs. ~13! and ~9! imply that d150. Thus, the fact that we
have chosen the phases of the wave functionscn(r ) in such
a way that the overlap integralBn,n11 in ~1! is real ensures,
in the present case, that the interstitial dipole-moment ma
elementdn,n11 in ~10! is imaginary. The case ofd1 Þ 0 can
probably be observed in systems exhibiting ferroelec
properties, but we will not consider such systems here.
j→0, as Eq.~8! indicates,wk→0 for all k Þ6 p/2, with the
result thatdk,k2p→0 in ~13! and all dipole transitions are
forbidden. Ifj Þ 0, thendk,k2p Þ 0 in ~13!, and the corre-
sponding dipole transitions are allowed. Since in this c
the intervalk P @2p/2,p/2# is the first Brillouin zone, the
given transitions in the spectrum~9! are vertical band-to-
band transitions.

4. EQUILIBRIUM EQUATION

In describing the behavior of the Peierls system in a lig
field we assume that the electron intraband relaxation tim
much shorter than the band-to-band relaxation timet ~Ref.
22!. In this case, following the approximation adopted
Refs. 14 and 23, we can assume that the electron statisti
each band is described by a Fermi distribution with a spec
Fermi quasilevel. Then, allowing for~9!, we arrive at the
following expression for the population differenceD be-
tween the valence and conduction bands in a light field:
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k (
uku<p/2

S 2kBT D
Herem is the Fermi quasilevel of the conduction band~in
view of the symmetry of the dispersion relation~9! the Fermi
quasilevel of the valence band has the opposite value!, kB is
Boltzmann’s constant, andDk5rk2p,k2p2rkk , with rkk an
element of the density matrixr of the electron subsystem
The factor of 2 in front of the sum in~14! is present becaus
of the spin degeneracy of each level.

Treating the parameterj as a generalized coordinate, w
can write the equilibrium equation for the Peierls system

S ]F1

]j D
T,N1

1S ]F2

]j D
T,N2

1S ]Fph

]j D
T

50, ~15!

where

F j5m jNj2kBT(
k
lnF11expS m j2«k

kBT
D G , ~16!

Fph5
A

2
j2,

with F j , m j , and Nj the electron free energy, the Ferm
quasilevel, and the number of electrons belonging to
j th band (j51,2), andA is the coefficient in the expansio
of the free energy of the phonon subsystem,Fph, in powers
of j ~see Ref. 1!. Summing overk in ~16! must be done
within the j th band of the spectrum~9!.

Plugging ~16! into ~15! and performing the necessa
transformations, we finally get

22 (
uku<p/2

]«k
]j

tanhS «k2m

2kBT
D1Aj50. ~17!

The expansion coefficientA can be expressed in terms
the critical temperatureT0 of a thermodynamic equilibrium
metal–semiconductor transition~in the absence of a ligh
field! and other characteristics of the system.8,11Such a tran-
sition occurs when the metallic phase loses stabi
(]2F(T0 ,j50)/]j250, whereF is the free energy of the
system). In the absence of a light field, the Fermi quasilev
of the valence and conduction bands of the spectrum~9! are
zero:m1,257m50. Combining this with Eqs.~17! and ~9!,
we get

A52 (
uku<p/2

S ]2«k
]j2

tanh
«k

2kBT0
D

j50

. ~18!

Calculating the sum in~18!, we arrive at the following
approximate expression forA:

A5
4bN

p F lnS pb

2kBT0
D11G . ~19!

Thus we have obtained an equation~Eq. ~14!! expressing
the dependence of the population differenceD on the Fermi
quasilevelm and an equilibrium equation~Eq. ~17!! describ-
ing the relationship between the parameterj of the Peierls
system andm. The Fermi quasilevelm is determined in turn
by the degree to which light acts on the system. An equa
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system.

5. INTERACTION WITH RADIATION

The interaction between the system and the light field
described by an operatorV, which in the dipole approxima-
tion can be written as

V52d•E~ t !52d•E Eve
2 ivtdv, ~20!

whereEv andv are the amplitude and frequency of a spe
tral component of the light field.

We assume the incident radiationE(t) to be a quasimo-
nochromatic time-independent random process linearly
larized along the crystal’s axis.24 As a result, all the spectra
componentsEv are statistically independent:24,25

^Ev•Ev1
&5G~v!d~v1v1!. ~21!

HereG(v) is the spectral density of the light field, which fo
a quasimonochromatic signal can be written as24

G~v!5Ig~ uvu2v0!, ~22!

wherev0 is the carrier frequency, andg(x) is a bell-shaped
function, with its maximum atx50, satisfying the normal-
ization condition*g(x)dx51. The widthDv of the spec-
trum G(v) satisfies the inequalityDv!v0. The quantity
I5*G(v)dv/2 is the intensity of the light field~in the
Gaussian system of units, to within the factorcn/2p, where
c is the speed of light, andn is the medium’s refractive
index!.

Using Liouville’s equation26

i\
]r

]t
5@H1V,r# ~23!

and allowing for Eqs.~20! and~21!, we arrive at an equation
for the diagonal elementsrkk of the density matrixr of the
electron subsystem in second-order perturbation theory:

]rkk
]t

5
2p

\2 (
s

udksu2GS «s2«k
\ D ~rss2rkk!, ~24!

wheredks is the matrix element of the dipole moment oper
tor ~13!. In the special case of a monochromatic fie
E(t)5E0 cos(v0t1w) with a uniformly distributed random
phasew, the spectral density is

G~v!5 1
4 E0

2@d~v2v0!1d~v1v0!#.

Then Eq.~24! becomes Fermi’s well-known Golden Rule fo
the probability of stimulated transitions.25

If we combine~13! and ~9! with ~24!, we get

]rkk
]t

5
2p

\2 dk
2GS 2«k

\ DDk , ~25!

where

dk5
2d2
11wk

2 u~12wk
2!sinh j cosk22wk coshj sin ku.

~26!
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rkk1rk2p,k2p51, which is true due to the symmetry of th
electron spectrum~9!, we can use~25! to derive the follow-
ing kinetic equation for the population differenceD:

]D

]t
52

8p

\2 (
uku<p/2

dk
2 tanhS «k2m

2kBT
DGS 2«k

\ D2
D2D0

t
,

~27!

whereD0 is the band population difference in the absence
a light field:D05D(m50). The last term on the right-han
side of Eq.~27! allows for band-to-band relaxation with
relaxation timet. Equation~27! shows that the variation in
D is due to the interaction of the electron subsystem and
spectral components of the light field with frequenc
vk52«k /\.

Combining ~22! with Eq. ~27! in the steady-state
(]D/]t50), we finally arrive at the following expression fo
the intensity:

I5
~D02D!\2

8pt S (
uku<p/2

dk
2 tanhS «k2m

2kBT
D gS 2«k

\
2v0D D 21

.

~28!

Equations~14!, ~17!, and~28! constitute a closed system o
equations with respect to the internal parametersm, D, and
j of the Peierls system with given external parametersT, I ,
v0, etc.

6. RELATIONSHIP BETWEEN THE BAND GAP AND THE
INTENSITY OF THE LIGHT FIELD

Let us analyze Eqs.~14!, ~17!, and ~28! for the case
where the light frequency is smaller than the lower edge
band-to-band transitions:«02\v0.0, where«0 is the band
gap of the system in the absence of a light field.

The light is assumed weak, so that

«/22m

kBT
.2, ~29!

where« is the band gap. Physically, Eq.~29! means that 1!
4kBT,«, and 2! the concentration of excited electrons li
so low that the Fermi quasilevel is in the forbidden ban
Then, taking exp@2(«/22m)/kBT# as a small parameter, w
can approximately transform Eq.~14! for D into

D5NF12A«kBT

pb2
expS 2

«/22m

kBT
D G . ~30!

We write the equilibrium equation~17! in the following
form:

expS 2
«/22m

kBT
D

5A «

4pkBT
Farcsinp

4
1 lnS 2pb

« D2
pA

4bNG . ~31!

Here in addition to assuming that condition~29! is met we
assume thatj<0.5. This is justified because such values
j are realized in the majority of materials described by
Peierls model.1,6,8
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band gap«0 in the absence of light (m50) for kBT!«:

«054kBT0 expFarcsinp

4
21G.3.63kBT0 . ~32!

The conditionkBT!«, for which ~32! is valid, then becomes
T,T0/2. Note that a similar result«.3.53kBT0 was ob-
tained by Bulaevski�.1

Plugging~31! into ~30! and allowing for~32!, we arrive
at a relationship linking the nonequilibrium population d
ferenceD to the band gap«:

D5NS 12
«

2pb
ln

«0
« D . ~33!

This is true whenD«[«02« is small, and the reason for thi
lies in the adopted approximation~29!, which with allowance
for ~31! and~32! can be written in the more convenient for

D«[«02«,
A«0kBT

2
, ~34!

where, as in~32!, it is assumed thatT,T0/2.
To solve Eq.~28! we must know the functiong(v) char-

acterizing the spectral density of the light field. To this e
we assume thatg(v) has the Lorentzian form25

g~v!5
t0

p@11~vt0!
2#
, ~35!

wheret0 is the reciprocal of the spectral halfwidth.
Bearing in mind that near the lower edge of an optic

transitiondk.2d2 coshj, as Eq.~26! implies, and combin-
ing Eq.~28! with ~33!, ~35!, and~9!, we arrive at the follow-
ing expression for the light field intensity:

I5
\2x0z~x!

16pd2
2tAt0

3v0

, ~36!

where

z~x!5S 12
x

x0
DA~11x2!~x1A11x2!, ~37!

andx5t0(«/\2v0) is a dimensionless parameter charact
izing the detuning of the lower-edge optical-transition fr
quency from the carrier frequency of the light field, wi
x05t0(«0 /\2v0) the initial detuning.

7. SEMICONDUCTOR–SEMICONDUCTOR PHASE
TRANSITION AND CAVITYLESS OPTICAL BISTABILITY

Equations~36! and ~37! describe the relationship be
tween the light-field intensity I and the band gap
«5\(v01x/t0) of the Peierls system in a stationary state
equilibrium. An analysis of the kinetic equation~27! shows
that for the state to be stable]I /]« must be negative, which
in a form more convenient for analysis can be expressed

]z

]x
,0. ~38!
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Let us study thez vs. x dependence~37! in the range
uxu<1. To this end we expand~37! in Taylor series up to
terms cubic inx:

z~x!511a1x1a2x
21a3x

3, ~39!

where

a15
x022

2x0
, a25

5x024

8x0
, a35

3x0210

16x0
. ~40!

The pointsx1 andx2 corresponding to the loss of stability i
the system can be found by solving the equation]z/]x50.
Combining this with~39! yields

x1,252
a26Aa2223a1a3

3a3
. ~41!

We see that the behavior of the system is critical
a2
223a1a3.0. Combining this fact with~40!, we arrive at
the necessary condition for a phase transition, a condi
that imposes a contraint on the initial detuning of the lig
field carrier frequency from the lower-edge optical-transiti
frequency,x0.1.55, or, in the initial notation,

«02\v0.
1.55\

t0
. ~42!

If condition ~42! is met, an analysis of Eqs.~36! and~37!
shows thatI has the behavior depicted in Fig. 1 as a functi
of «. As the light intensity increases, a point on the gra
moves along the curve 0→4→1→3, while as the intensity
decreases the point moves along the curve 3→2→4→0.
The jumps in the value of« in the 1→3 and 2→4 sections
correspond to direct and inverse phase transitions. The in
val I 2,I,I 1 constitutes the bistability region.

Analyzing Eq. ~39!, we can find the pointsx3 and x4
corresponding to the new positions of equilibrium for t
direct and inverse transitions,

x3,452
a272Aa2223a1a3

3a3
, ~43!

and the dimensionless valueDx of the jump in the band gap
D«5\Dx/t0 in a phase transition:

FIG. 1. The light-field intensityI as a function of the band gap«.
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Dx52
a3

. ~44!

Here it turns out thatDx is the same for direct and invers
transitions.

Using ~39!, we can also derive an expression for t
width of the hysteresis loop in a semiconducto
semiconductor phase transition~the size of the region of
cavityless optical bistability in terms of the dimensionle
light-field intensity!:

Dz5z~x1!2z~x2!5
8~a2

223a1a3!
3/2

27a3
2 . ~45!

Equations ~39!–~45! were derived foruxu<1, which
contrainsx0. Using~40!, we find that Eq.~41! for x1 is valid
if x0<1.77 and forx2 if x0<3.32, while Eq.~43! for x3 is
valid if x0<2 and for x4 if x0<1.60. Thus, within the
present approximation we are able to describe the beha
of the system near the threshold valuex051.55, above which
critical behavior is observed.

For the sake of numerical estimates, let us assume
x051.6. Then, in accordance with Eqs.~39!–~45!, we have

x1.0.757, x2.0.271, x3.0.028, x4.1,

Dx.0.729, Dz.0.409, z~x1!.1.

If we putd2'10218 esu~Refs. 19 and 25!, t'10210 s ~Ref.
22!, t0'10213 s, andv0'1015 s21, we find the detunings
« j2\v05\xj /t0'xj•10

22 eV for j50,1,2,3,4 and the
jump in the band gap in a phase transitio
D«5\Dx/t0'0.731022 eV. Employing~36!, we find that
I 1'103 esu andDI5I 12I 2'0.43103 esu, which corre-
sponds to values of the light-field intensity of about 15

W/cm2.

8. CONCLUSION

Our theory suggests that when the Peierls system is
diated with light whose frequency is much lower than t
frequency of the lower edge of band-to-band transitions
semiconductor–semiconductor phase transition and cav
less optical bistability can be observed in such a syst
These phenomena occur when condition~42! is met, i.e.,
when the light-field frequencyv0 is bounded above. The fac
that such a condition exists can be explained by competi
of two feedback mechanisms. Positive feedback is reflec
by the first term on the right-hand side of Eq.~27!, and the
mechanism has been described in detail in the Introduct
Negative feedback consists in the following: as the conc
tration n of the nonequilibrium electrons in the conductio
band grows, the recombination rate increases, which dr
n down. This process is represented by the second term
the right-hand side of Eq.~27!. If negative feedback is stron
ger than positive feedback, the equilibrium state of the s
tem is stable, and slow variations in the external parame
lead to smooth variations in the internal parameters. Bu
positive feedback is dominant, then, in accordance with~27!,
there is a sharp increase in fluctuations, which leads t
sudden variation in the internal parameters of the system
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10V. I. Emel’yanov, N. L. Levshin, and A. L. Semenov, Vestnik Moskov.
Univ. Ser. III Fiz. Astronom.31, 99 ~1990!.

h.
larger than the widthDv of the optical spectrum, i.e.
«02\v0@\/t0, the intensityI needed for observing a pos
sible semiconductor–semiconductor phase transition
creases sharply. The present theory is unable to examine
frequency range, since the approximation~34! of a weak
optical excitation is invalid in this range. At temperatur
T'100 K (kBT'8.631023 eV) and a band gap
«0'0.5 eV this condition imposes the constrai
0,«02«,0.033 eV.

In conclusion it must be noted that the phenomenon
cavityless optical bistability with increasing absorption sim
lar to that studied in the present paper~but caused by othe
mechanisms! was observed in experiments involving zin
selenide,27 the amorphous semiconductor GeS2 ~Ref. 28!,
amorphous GeSe2 films,17 CdS plates, and othe
materials.17,18However, the author knows of no such expe
ments involving materials whose electronic properties can
described by the Peierls model.
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Model of two systems with random P-spin interaction and a fixed correlation between

their spin configurations

A. É. Allakhverdyan and D. B. Saakyan

Erevan Physical Institute, 375036 Erevan, Armenia; Joint Institute for Nuclear Research, 141980 Dubna,
Moscow Region, Russia
~Submitted 17 April 1996!
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The binary spins of each subsystem interact within the confines of its subsystem. The scalar
product~coupling! of the spin configurations of the two subsystems is fixed. Nontrivial interference
develops between the subsystems when~for certain values of the parameters! they can only
slide into the spin-glass phase. ©1997 American Institute of Physics.@S1063-7761~97!02104-5#
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The Derrida model1 for P-spin glass is the simplest sys
tem that can be solved exactly for a single breakdown
replication symmetry.2 It can be also used for optimum
encoding.3–6 In this paper we consider a system consisting
two subsystems with aP-spin interaction, having the6 1
spin setss i

1, i 5 1,...,N ands i
2, i 5 1,...,N. Here the restric-

tion

1

N (
i

s i
1s i

25C ~1!

is imposed~whereC is a parameter!. The general hamil-
tonian has the form

H52 (
1< i1, i2 ..., i P<N

~s i1
1 ...s i P

1 j i1 ...i P
1

1s i1
2 ...s i P

2 j i1 ...i P
2 !A N

CN
P, ~2!

where theCN
P are binomial coefficients andj 1 and j 2 are

gaussian random quantities with zero mean and dispers
of 1/2 andJ2/2, respectively. We assumeJ < 1. The param-
eterC in Eq.~1! varies over the range 0< C < 1. ForC 5 0
we have two independent systems. At high temperatures
subsystems will be in a paramagnetic phase. Then, as
temperature is lowered, the first system undergoes a tra
tion into a spin-glass phase, while the second remains in
paramagnetic phase. Finally, a second phase transition t
place and the second subsystem also enters the spin-
state. This sort of qualitative picture is retained in our mo
for nonzero~subcritical! values ofC.

Here we encounter a situation in which the system
be solved exactly in the second order of the breakdown
replication symmetry. ForC 5 1 we return to the usual Der
rida model, in which

^~ j i1 ...i P
1 !2&5

11J2

2
. ~3!

In this system there is only one phase transition and a si
breakdown of the replication symmetry. Then one of the s
systems is in a ferromagnetic or spin-glass phase and
thermodynamic properties of the other subsystem will co
spond to the usual Derrida model in which there are only
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expF2NS 2
ln

2
1

2
ln

2 D G ~4!

configurations, rather than 2N. The thermodynamic proper
ties of the Derrida model can be calculated in accorda
with the following principle: perform the high-temperatu
expansion at high temperatures and calculate the free en
for the paramagnetic phase. Then continue the expressio
the free energy from the temperature at which the entr
goes to zero to zero temperature. In the following we cal
late the free energy rigorously by the average field meth
All our results based on the above simple principles are
agreement with what we expected.

In the first five sections we investigate the model us
the average field method and in the last two we derive th
results by a method that is applicable to the random-ene
model.

2. PARAMAGNETIC PHASE

Solving the model~1!–~3! using replicas, we obtain the
following expression for the partition functionZn:

^Zn&5E
2 i`

i`

)
a,b

dQabdSC2(
i51

N

s i
1s i

2D dSQab
1

2
1

N (
i51

N

sa i
1 sb i

1 D dSQab
2 2

1

N (
i51

N

sa i
2 sb i

2 D
3expHNn B2

4 F(
a,b

(
s51

2

~Js!
2~Qab

s !PG J , ~5!

whereB is the reciprocal temperature,Qa,b are the ordering
parameters, and

J151, J25J. ~6!

On introducing the integral representation for thed-function,
by analogy with Ref. 2 we obtain

^Zn&5E
2 i`

i` dk

2p )
a,b

E
2 i`

i` NdQabdlab

2p

3expH NH B2

4 F ~11J2!n1 (
aÞb

~Qab
1 !P
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3. SPIN-GLASS PHASE IN TWO SUBSYSTEMS

etry
. As

e
we

er.
1J ~Qab! G2(
s51

(
a,b

Qablab(
a

CKa

1 ln (
sa
1sa

2
expF (

s51

2

(
aÞb

lab
s sa

ssb
s

2(
a

Kasa
1sb

2 G J J . ~7!

In the paramagnetic phase we take

lab
s 5ls, Qab

s 5qs, Ka5K. ~8!

Here thelab are the Lagrangian multipliers in the expre
sion for thed-function. ForF 5 ^ ln Z&/N we obtain the ex-
pression

B2~11J2!

4
1
B2

4
@q1

P1J2q2
P#2KC1

l1q11l2q2

2

2
l11l2

2
1E

2`

`

Dr E
2`

`

Ds ln@2eK cosh~rAl11sAl2!

12e2K cosh~rAl12sAl2!#, ~9!

where

Dr5
1

A2p
exp~2r 2/2!, Ds5

1

A2p
exp~2s2/2!,

~10!

and r and s are the auxiliary variables in the Stratonovic
transform. On differentiating Eq.~9! with respect toq1 and
q2 , we obtain the following equation forl1 andl2 :

PB2q1
P21/25l1 , PJ2B2q2

P21/25l2 . ~11!

In the paramagnetic phase we must haveq1 , 1 andq2 , 1.
This implies that

l150, l250. ~12!

The integrals are easily evaluated after substituting Eq.~12!
in Eq.~9! and we obtain~settingq1 5 0 andq2 5 0!

F5B2~11J2!/42KC1 ln 4 coshK, ~13!

whereK satisfies the equation

C5tanhK.

Finally, for the free energy we obtain

F5
1

N
^ ln Z&5

4~11J2!

B2 1@11h~C!# ln 2, ~14!

where

h~C!5F2
11C

2
ln
11C

2
2
12C

2
ln
12C

2 G / ln 2. ~15!

WhenC 5 0 the free energy~14! is given by the sum of the
free energies for two independent models. ForC 5 1 we ob-
tain the free energy for a single model with an effecti
constant.
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Let us examine the case where the replication symm
fails once and both systems slide into a spin glass phase
will become clear below, this happens when

J2.h. ~16!

By analogy with Ref. 2, we introduce the variablesl0
1, l1

1,
l0
2, l1

2, q0
1, q0

2, q1
1, andq1

2, where the superscripts denote th
number of the subsystem, and then for the free energy
obtain

F5
B2

4
~11J2!1

B2

4
@2m~q0

1!P1~m21!~q1
1!P#

1
B2J2

4
@2m~q0

2!P1~m21!~q1
2!P#1

1

2
@l0

1q0
1m

2~m21!l1
1q1

1#1
1

2
@l0

2q0
2m2~m21!l1

2q1
2#

2
l1
11l1

2

2
1

1

m E Dr 0Ds0 ln E Dr 1Ds1@2e
K

3cosh~Al0
1r 01Al1

12l0
1r 11Al0

2s01Al1
22l0

2s1!

12e2K cosh~Al0
1r 02Al1

12l0
1r 11Al0

2s0

2Al1
22l0

2s1!#
m, ~17!

wherem is the replication symmetry breakdown paramet
Differentiating Eq.~17! with respect toq0

1, q1
1, q0

2, andq1
2

yields

l i
15

PB2~qi
1!P21

2
, l i

25
PB2~qi

2!P21

2
. ~18!

We again find that

l0
1→0, l0

2→0, ~19!

and

l1
1→`, l1

2→`. ~20!

Condition ~20! implies that

F5
B2

4
~11J2!m1

1

m
ln 4 coshKm2KC. ~21!

On differentiating Eq.~21! with respect toK andm, respec-
tively, we obtain

tanhKm5C, ~22!

and

B2m2

4
~11J2!1cosh~Km!ln 41Km tanhKm50. ~23!

Equations~22! and ~23! have the following solutions:

Bc
2

4
~11J2!5 ln 2@11h~C!#, ~24!

and

m5Bc /B, ~25!
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whereBc is the critical value of the reciprocal temperature at
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F5
B B1

2

1 ln 2 1
B J2B1

2

1h~C!ln 2 , ~32!

ond,

in the
in-

se
which the phase transition takes place. Now we obtain
following expression for the free energyF 5 ^ ln Z&/N:

F5
B

Bc
FBc

2

4
~11J2!1 ln 2~11h~C!!G . ~26!

The spin-glass phase which we have found exists for

B.Bc , J2.h~C!. ~27!

The second of conditions~27! will be examined in the nex
section.

4. SPIN-GLASS PHASE WITH A DOUBLE FAILURE OF
REPLICATION SYMMETRY AND THE SPIN-
GLASS1PARAMAGNETIC MIXTURE

Let us examine the case in which the replication gro
for the first subsystem is broken down to anm1 subgroup
and that for the second, tom2 . Calculations similar to those
in the previous section yield

F5
B2

4
~11J2!1

B2

4
1~m121!~q1

1!P1
B2J2

4
~m221!

3~q1
2!P2

l1
11l1

2

2
1
1

2
@~12m1!l1

1q1
11~1

2m2!l1
2q1

2#1
1

m2
ln E Dr 1$Ds1@2e

K

3cosh~Al1
1r 11Al1

2s1!12e2K

3cosh~Al1
1r 12Al1

2s1!#
m2%m2 /m1. ~28!

Here we have omitted the terms withq0
1, q0

2, l0
1 and l0

2,
which are zero. In deriving Eq.~28! we have considered th
case where the replication group initially breaks down int
subgroup ofm2 permutations and then into a subgroup
m1 . After integrating overds1 in Eq. ~28!, we arrive at an
expression of the form

1

m2
ln E Dr 1@2 cosh~Km1!#

m2 /m1$u~r 1!exp@m1Al1
1r 1

1l1
2~m1!

2#1u~2r 1!exp@m1A2l1
1r 1

1l1
2~m1!

2#%5
1

m2
ln 21

1

m1
ln~2 coshKm1!,

~29!

whereu(x) is the Heaviside function. Substituting Eq.~29!
in Eq. ~28! and differentiating with respect tom2 andm1 , we
obtain

B2m1
2

4
2 ln 250, ~30!

and

J2B2m1
2

4
2h~C!ln 250. ~31!

For the free energy we have
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B1
F 4 G B2

F 4 G
where

B15l1Aln 2, ~33!

and

B25l2Ah~C!ln 2/J. ~34!

This solution exists for

B.B2 , ~35!

and

Bc.B2.B1 . ~36!

The latter inequality holds for

J2.h~C!. ~37!

For

B1,B,B2 , ~38!

the first subsystem is in the spin-glass phase and the sec
in the paramagnetic phase. In place of Eq.~28! we obtain

F5
1

4
B2~11J2!1

1

4
B2J2~m21!q1

P1~m21!q1
P2~m

21!l1q12
1

2
l12KC1

1

m
ln

3E Dr ln@~2 coshk!m2 cosh~Al1mr!#. ~39!

On choosing

q151, l1→`, ~40!

we obtain

F5
1

4
B2J21

1

4
B2m1

1

m
ln 22KC1 ln

1

m
coshK.

~41!

Differentiating with respect tom andK, we obtain

tanhK5C, ~42!

and

1

4
B2m25 ln 2. ~43!

Finally,

F5
B

B1
FB1

2

4
1 ln 2G1

B2J2

4
1h~C!ln 2, ~44!

whereB1 has been defined in Eq.~33!. This regime exists
when condition~38! is satisfied. Equation~44! can be treated
as follows: whenh(C) is large enough~close to 1!, the first
subsystem slides into the spin-glass phase, as happens
usual Derrida model. Since the entropy is zero in the sp
glass phase, there are exactly exp@Nh(C)# states in the first
subsystem~in the paramagnetic phase!. When the entropy
vanishes in Eq.~44!, the system slides into a spin-glass pha
with a free energy given by Eq.~32!.
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5. FERROMAGNETIC PHASE WITH STRONG SUBSYSTEM
CORRELATION

u
i

ll b
d

et
re

th

,
te
la
t

it

1 E Dz ln exp mt1mAl1z 1
1

l1m2 2 coshkm

we

ed
and

ak
the
s

Thus far we have considered only a symmetric distrib
tion for the coupling constants. We now consider the ham
tonian

H52 (
1< i1, i2 ..., i P<N

s i1
1 ...s i P

1 ~AN/CN
Pj i1 ...i P

1

1J0
1N/CN

P!1s i1
2 ...s i P

2 ~ j i1 ...i P
2 AN/CN

P1J0
2N/CN

P!

~45!

with the coupling~1!. The constantsj i1 ...1P
1 and j i1 ...1P

2 have

the distribution~3!. We assume that condition~1! is satisfied
for $s i

1% 5 $1% and$s i
2% 5 $j i%, where$j i% is a given con-

figuration of the spins in the second subsystem. We sha
interested in the spin-glass–ferromagnetic transition un
the condition

1

N (
i51

N

j i5C. ~46!

In a situation where both systems are in the ferromagn
phase, the average field method gives the following exp
sion for the free energy:

F5~J0
11J0

2!B. ~47!

We first consider the case of strong correlation between
subsystems and then, the case of weak correlation.

In order for the solution of Eq.~47! to be thermodynami-
cally favorable, we must have

J0
11J0

2.Bc~11J2!/25Aln 2@11h~C!#. ~48!

This condition is necessary, but not sufficient. In principle
situation can arise in the system where one of the subsys
is in a ferromagnetic phase and the other in a spin-g
phase. Let the first subsystem be in a ferromagnetic and
second in a spin-glass phase. Then,

F5
1

4
B2~11J2!1J0

1sP1
1

4
J2~m21!~q1

2!P2~m

21!l1
2q1

2/22st2KC2l1
2/22

1

4
~q0

1!PB2J21
l0
1q0

1

2

2
l0
1

2
1

1

m E
2`

`

Dz0 ln E
2`

`

Dr 1@2e
K cosh~r 1Al1

2

1t1z0Al0
2!12e2K cosh~r 1Al1

22t2z0Al0
2!#m,

~49!

wheres is the magnetization of the first subsystem andt is
the conjugate variable. We leave out the termJ0

2 since it does
not contribute to the free energy in the thermodynamic lim
when the magnetization~in the second subsystem! is equal to
zero. Differentiating with respect tos, q0

1, andq1
2 at s 5 1,

q0
15 1, andq1

25 1 gives

t→`, l0
1→`, l1

2→`. ~50!

Transforming the integral in Eq.~49!, we obtain
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m 0 H F 0 0 2 2 G J
5

1

m
ln 2 coshkm1

1

2
l2
1m1t. ~51!

For the free energy we obtain

F5
1

4
B2J2m1

1

m
ln 2 coshKm2KC1J0

1B, ~52!

where

tanhKm5C,

Bm5
2

J
Ah~C!ln 2. ~53!

Substituting Eq.~53! in Eq. ~52!, we obtain

F5J0
1B1BJAh~C!ln 2. ~54!

Thus, along with Eq.~48! we have the condition

J0
2.JAh~C!ln 2. ~55!

If the first subsystem underwent a phase transition, then
would obtain the condition

J0
1.JAh~C!ln 2. ~56!

The inequalities~48!, ~55!, and~56! have two types of solu-
tions:

H J01.Ah~C!ln 2,

J0
2.A~11 j 2!h~C!ln 22J0

1 ~57!

and

H J02.Ah~C!ln 2/J,

J0
1.A~11 j 2!/h~C!ln 22J0

2.
~58!

Here the following condition must be satisfied:

J2.h~C!. ~59!

If, on the other hand, the first inequalities in the systems~57!
or ~58! are violated, then the system shifts into a mix
phase where one subsystem is in a ferromagnetic phase
the other is in a spin-glass phase.

We now consider a ferromagnetic phase with a we
correlation between the subsystems. The expression for
free energy in a mixed (ferromagnet1spin glass) phase ha
the same form as with strong correlation. Instead of Eq.~48!
we have the condition

J0
21J0

1.Ah~C!ln 2/J1Aln 2. ~60!

We again obtain a pair of solutions,

H J01.Ah~C!ln 2,

J0
2.Ah~C!ln 2/J1Aln 22J0

1 ~61!

and

H J02.Ah~C!ln 2/J,

J0
1.Ah~C!ln 2/J1Aln 22J0

2.
~62!

This occurs for
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J2,h~C!. ~63!

y

1
.

-

C ~u!5E` dx dy
exp$2~x21y2!2eu~el1x1l2y!%.

ex-

of

e

the

the
6. PROCEDURE FOR THE RANDOM-ENERGY MODEL

Let us consider two sets of 2N levels with energiesEa
1,

Eb
2 with 1 < a, b < 2N. The energy of the system is given b

E 5 Ea
1 1 Eb

2. Not all pairs of levelsEa
1, Eb

2 are allowed. We
introduce the coupling matrixCab whose elements equal
for the allowed pairs (Ea

1,Eb
2) and 0 for the forbidden pairs

The levels with energiesEa
1,Eb

2 have the following dis-
tributions:

Px~Ea
1 !5

1

ApN
expF2

~Ea
1 !2

N G , ~64!

and

Py~Eb
2 !5

1

ApNJ
expF2

~Eb
2 !2

NJ2 G . ~65!

Thus, the free energy is equal to

^ ln Z&5E )
a51

M

dEa
1dEb

2 lnF (
a,b51

M

Cab

3exp@Ea
11Eb

2 #BGPx~Ea
1 !Py~Eb

2 !, ~66!

whereM 5 2N. For the matrixCab we have the restriction

(
b51

M

Cab5eNh ln 2, a51,...,M . ~67!

Using the formula

ln Z5G8~1!2E
0

`

ln Zde2 iZ[G8~1!2E
2`

`

ude2euZ

~68!

from Ref. 1~G8 is the derivative of the Euler function!, we
obtain

^ ln Z&5G8~1!2E
2`

`

udC~u!, ~69!

where

C~u!5E
2`

`

)
a51

M
dxadya

p
expH 2 (

a51

M

~xa
21yb

2 !

2eu (
a,b51

M

Cabe
l1xa1l2ybJ , ~70!

l1 5 NAB, andl2 5 NABJ. In the first approximation the
monotonic functionC(u) has the form of a step~with its
center at the pointu0 which we shall define below!, so that
Eq. ~68! yields

ln Z.2u0 . ~71!

Foru . 2u0 the functionC(u) falls off exponentially, while
for u , 2u0 it equals 1 to within an exponential factor. De
pending on the values ofl1 and l2 , different asymptotic
forms will be obtained for the following similar function:
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1
2` p

~72!

When uuu→`, we have two cases.
In the first case we can expand the last term in the

ponential and then

C1~u!.12exp@u1~l1
21l2

2!/4#. ~73!

The main contribution is from the region near the point

x5
l1

2
, y5

l2

2
. ~74!

In order for the calculations to be self consistent, the value
exp@u 1 (l1x 1 l2y)# at the point determined by Eq.~74!
should be small. This condition is satisfied when

u,2~l1
21l2

2!/2. ~75!

Proceeding similarly with all the degrees of freedom, w
obtain

C~u!.expH 2expFu1
l1
21l2

2

4
1~11h!N ln 2G J . ~76!

Using Eq.~70!, from this we have

^ ln Z&
N

5
l1
21l2

2

4
1~11h!ln 2[~11J2!

B2

4

1~11h!ln 2. ~77!

Equation~75! gives

B,Bc[2A~11h!ln 2

11J2
. ~78!

We have thus determined the critical temperature for
paramagnet–spin-glass transition.

We now consider the second case, where exp(u 1 l1x
1 l2y) is large compared to 1 in the region which makes
main contribution to the integral. Then,

C~u!5E
D

)
a51

M

dxadya expF2 (
a51

M

~xa
21ya

2 !G , ~79!

where the convex regionD is defined by the condition

l1xa1l2yb,2u. ~80!

The value of the integral~79! is determined by the point on
the boundary of regionD at whichxa

2 1 yb
2 has a minimum.

For this point we obtain

xc52
l1u

l1
21l2

2 , yc52
l2u

l1
21l2

2 . ~81!

For one pair of configurations we obtain~omitting the pre-
exponential factor!

C1~u!.12exp@2~xc
21yc

2!#. ~82!

Similarly,

C~u!.expH 2expS 2u2

l1
21l2

2 1N~11h!ln 2D J . ~83!
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ForB . Bc this yields

s-

-

the solution is Eq.~84!. At high temperatures we have the
i-
e

ro-

er
its

ing

ate
rms
^ ln Z&.NA~l1
21l2

2!~11h!ln 2

5BNA~11h!~11J2!ln 2. ~84!

In general, forC1(u) we have the following expression:

C1~u!'E
2`

`

dx
e2x2

Ap
H 12uS 2u2l1x2

l2
2

2 D
3exp@u1l11l2

2/4#2uS u1l1x1
l2
2

2 D
3exp@2~u1l1x!2/l2

2#J . ~85!

Taking the integral over the variablexa alone and over the
2Nh variablesyb associated with it, we find that the expre
sion in the curly brackets of Eq.~85! is of degree 2Nh. This
cuts off the region of integration in Eq.~85!. Depending on
the values ofl1 and l2 , one of the correction terms pre
dominates in Eq.~85!. As a result, we have two regimes:

1

Ap
E

2`

x1
e2x2dx.12

e2x1
2

2x1Ap
,

x15S l2
2

4
1Nh ln 21uD 1

l1
~86!

or

1

Ap
E

2`

x2
e2x2dx.12

e2x2
2

2Apx2
, x25

l2ANh ln 21u

l1
.

~87!

Raising Eqs.~86! and~87! to the 2N-th power, we obtain the
corresponding expressions forC(u):

C~u!.expH 2expF2~u1Nh ln 21l2
2/4!2

l1
2 1N ln 2G J

~88!

or

C~u!.expH 2expF2
~u1l2ANh ln 2!2

l1
2 1N ln 2G J .

~89!

From this, we find that for 2Aln 2, B , 2Ah ln 2/J,

^ ln Z&
N

5BAln 21
B2J2

4
1h ln 2, ~90!

and forB. 2Ah ln 2/J

^ ln Z&
N

5BAln 2
B2y2

4
1h ln 2. ~91!

The solutions~90! and ~91! exist for

h.J2, ~92!

while for

h,J2 ~93!

785 JETP 84 (4), April 1997
paramagnetic solution~77!. Subsequently, when the cond
tion ~93! is satisfied andB 5 Bc , the system goes into th
ferromagnetic phase~84!. In the case of Eq.~92!, we have a
(spinglass1paramagnet) mixture and the spin glass.

7. A STUDY OF THE FERROMAGNETIC PHASE USING THE
RANDOM-ENERGY MODEL

Now for each of the subsystems we have one ‘‘fer
magnetic’’ configuration apiece. Instead of Eqs.~64! and
~65! for E1

1 andE1
2 we can write

P1~E1
1!5

1

ApN
expF2

1

N
~E1

11J0
1N!2G , ~94!

and

P2~E1
2!5

1

ApNJ
expF2

1

J2N
~E1

21J0
2N!2G . ~95!

For the otherEa
1 andEa

2 with a > 2, the old distributions~64!
and~65! remain valid. The constantsJ0

1 andJ0
2 are positive.

Then, forC(u) we obtain

C~u!5E )
a51

M
dxadya

Ap
expH 2 (

a51

M

~xa
21ya

2 !2H exp@u
1u11u21l1x11l2y1#2 (

b52

M

C1b exp@u1u1

1l1x11l2yb#2 (
a52

M

Ca1 exp@u1u21l1xa

1l2y1#2 (
a,b52

M

Cab exp@u1l1xa1l2yb#J J ,
~96!

where

u15J0
1BN, u25J0

2BN. ~97!

For the ferromagnetic phase the first term in Eq.~96! is the
principal term. To lowest order we can neglect the oth
three terms, so thatC(u) can be regarded as a step with
center at the pointu0 5 2(J0

1 1 J0
2)NB to the right of which

C(u) falls off as

C~u!.expF2
~u1u11u2!

2

l1
21l2

2 G . ~98!

From this we obtain

^ ln Z&
N

5~J0
11J0

2!NB . ~99!

This solution is correct when it exceeds the correspond
expression for the spin-glass and mixed~one subsystem in
the ferromagnetic and the other in the spin-glass st!
phases. Mixed phases occur when the second or third te
in the curly brackets of Eq.~96! are dominant. Then
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^ ln Z&
5J1N 1BAh ln 2J ~100!

-

he

th
he
tin
in
ar
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gr

e

-
at

C2(u) equals 1 for allu < 2(J0
1 1 J0

2)/NB and falls off ex-

point
ut-
the
en
N 0 B

or

^ ln Z&
N

5J0
2NB1BAh ln 2. ~101!

For J2 < h we obtain the following conditions for the exis
tence of the solution~99!:

H J011J0
2.Aln 21Ah ln 2J,

J0
1.Ah ln 2,

J0
2.Ah ln 2J

. ~102!

In the case ofh2 < J2, on the other hand, the existence of t
solution ~99! is determined by the conditions

H J011J0
2.A~11h!~11J2!ln 2,

J0
1.Ah ln 2,

J0
2.Ah ln 2J

. ~103!

8. FINITE VOLUME EFFECTS

We are interest in corrections to the expression for
free energy which show up when the finite volume in t
ferromagnetic phase is taken into account. When calcula
the magnetization in the ferromagnetic phase, on examin
the relative weight of the ferromagnetic configuration we
rive at the expression

K 1Z e2B~E1
1
1E1

2
!L 5K e2B~E1

1
1E1

2
!E

0

`

dte2tZL
5E

2`

`

C~u!du, ~104!

whereC(u) is defined in Eq.~96!. If we neglect the last
three terms in the exponent of Eq.~96!, then the integral in
Eq. ~104! will be equal to 1. We denote the expression f
C(u) in this case byC2(u).

The correction terms in the exponent cause the inte
in Eq. ~104! to be replaced by an expression of the form

E
2`

2uc
C2~u!C3~u!du, ~105!

where the cutoff point2 uc is defined as the point where th
expressions~100!, ~101!, and ~84! have a maximum forh
. J2 or the expressions~100!, ~101!, and~91! have one for
h , J2. The functionC3(u) is defined by the principal cor
rection term in Eq.~97!. It has the form of a step centered
the point2 uc . When Eq.~84! is dominant, we obtain

E
2`

2uc
C2~u!H 12expF2

u2

Nb2~11y2!
1N~11h!ln 2G J

3du.12E
2uc

2`

C2~u!du2E
2`

2uc
C2~u!

3expF2
u2

Nb2~11y2!
1N~11h!ln 2Gdu. ~106!
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ponentially beyond that:

C2~u!.
1

Ap

NB2~11J2!

2uu1~J0
11J0

2!NBu

3expH 2
~u1~J0

11J0
2!NB!2

NB2~11J2! J . ~107!

There are two possibilities for evaluating Eq.~107! by the
method of steepest descent. In the first case, the saddle
lies within the domain of integration and in the second, o
side it. In the second case the integral is determined by
value of the exponent at the boundary of the region. Giv
this, for the magnetizationm we obtain

m512a expH S J011J0
22A~11J2!~11h!ln 2

11J2 D 2NJ
3uF2

J0
11J0

2

A11J2
12A~11h!ln 2G2b

3expH 2
~J0

11J0
2!2N

2~11J2!
1N~11h!ln 2J

3uS J011J0
2

A11J2
12A~11h!ln 2D . ~108!

This is valid under the conditions

A~11J2!~11h!ln 2.J0
11JAh ln 2, ~109!

and

A~11J2!~11h!ln 2.J0
21JAh ln 2. ~110!

When the inequalities~109! or ~110! are not satisfied, we
obtain

m512a exp$2~ J012Ah ln 2!2N%u~2J0
1

12Ah ln 2!

2b exp$@2~J0
1!2/21h ln 2#N%

3u@J0
122Ah ln 2# ~111!

for

H J011JAh ln 2.A~11J2!~11h!ln 2,

J0
11JAh ln 2.J0

21Ah ln 2
~112!

or

m512b expH F2
1

2 S J02J D 21h ln 2GNJ
3uFJ02J 22Ah ln 2G2a expH 2S J02J
2Ah ln 2D 2NJ uF2

J0
2

J
12Ah ln 2G ~113!

for
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J0
21JAh ln 2.A~11J2!~11h!ln 2,

. ~114!
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into account~Section 8!. For the case of a rarefied system
und
e
cts

n-
t
-
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b-
s at
on

.

S.
M.

f
any

07.
H J021JAh ln 2.J0
11Ah ln 2

Similar calculations can be done for the caseJ2 . h. We see
that forT 5 0 there is a set of subphases differing by sm
corrections for the finite volume.

9. CONCLUSION

We have solved a system of two Derrida models w
fixed coupling~scalar products! between the spin configura
tions and independent random constants. A solution
found both by the average field method and by using
technique developed by Derrida for the random-ene
model. The two solutions are the same and this confirms
reliability of the ~very tedious!! calculations. An interesting
interference effect develops between the subsystems. A
nomenon of this sort should be observed with other mod
of spin glasses~spherical model, Kirkpatrick–Sherringto
model!. Similar models have been examined recently by
risi’s group ~Italy! in studying the properties of a spin-gla
phase. In their work, however, both subsystems have
same set of random constants.

The methods used in the last two sections of this pa
can be generalized to the case of weak coupling~diminished
coupling constants!, where the sum in Eq.~2! is not taken
over the entire set of indicesi ,...,i P , but only overaN of
them, chosen randomly from all the possibleCN

P possibilities.
The physical picture does not change. Besides the phys
interest of our results, they can be used for encoding ma
terminal systems in the case of channels with multiple
cess. More complicated examples of problems7 involving
many-terminal systems such as broadcasting channels
not been solved. This suggests than the concepts and m
ods used for spin glasses may also be of use there.

The most difficult task in this paper was to derive t
corrections to the expression for the free energy which a
when the finite volume in the ferromagnetic phase is ta
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these corrections are analogous to those we have fo
before.8 For couplingsa near critical, they correspond to th
maximum possible suppression of finite volume effe
~probability of decoding error!. In the case of largea, on the
other hand, a limiting expression for this exponentially va
ishing ~proportional to exp@ 2 gaN#! correction has not ye
been found. The coefficientg in the exponent of the expres
sion for the corrections is evidently some sort of univer
function ~such as the critical indices for phase transition!.
Calculating this function has a significance close to that
calculating the critical indices in real dimensionalities. Th
fact, along with the above-noted possibility of advances
solving problems involving multi-terminal systems, esta
lishes the importance of research in this area, which lie
the frontier between statistical physics and informati
theory.
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Simultaneous gamma, x-ray, and electron Mo ¨ssbauer spectroscopy of the volume and

ap-
surface magnetic structure of hexagonal M-ferrites
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L. P. Ol’khovik

Kharkov State University, 310077 Kharkov, Ukraine
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Direct comparative studies are made between the magnetic structures of a surface layer of
thickness; 40 nm and the bulk magnetic structure of ferromagnetic single crystals of hexagonal
M ferrites ~BaFe12O19, SrFe12O19, PbFe12O19! with a magneto-plumbite structure.
Measurements are made by simultaneous gamma, x-ray, and electron Mo¨ssbauer spectroscopy in
order to investigate the properties of the surface layer and the bulk crystal simultaneously.
Experimental data obtained with a depth resolution of; 10 nm show that the orientation of the
magnetic moments of the iron ions~along the crystallographicc axis! does not change on
approaching the surface from the crystal volume. Thus, to within an experimental error of
; 10 nm, single crystals of the hexagonal ferrites BaFe12O19, SrFe12O19, and PbFe12O19

with a ferromagnetic structure do not have a ‘‘transition’’ surface layer whose magnetic structure
differs from that of the bulk crystal such as that which exists, with a depth of several
hundred nm, in antiferromagnetic materials with weak ferromagnetism. ©1997 American
Institute of Physics.@S1063-7761~97!02204-X#

1. INTRODUCTION similar result was obtained using various theoretical
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Since the beginning of the 1970’s there has been incr
ing interest in research on the magnetic properties of cry
surfaces. From a scientific standpoint, the study of the
face properties is important because further developmen
the new branch of solid state physics which has come to
known as ‘‘surface magnetism’’ requires an understanding
the relationships among the properties and phenomena a
surface and those observed in the interior of a crystal. F
an applied standpoint, research on surface properties is
portant because promising microelectronic devices can o
be made from very thin films and powders. Thin powders
also widely used as magnetic memory carriers, as catal
and in magnetic fluids. An understanding of the reasons
changes in the magnetization and coercive force of thin p
ders will make it possible to determine ways of creating n
magnetic materials to serve as information carriers with h
and superhigh recording densities. Many researchers h
pointed out that the properties of the surface govern
properties of thin films and powders because of the subs
tial increase in the importance of the surface in these m
rials. Thus, studies of the properties of surfaces and of
nature of the formation of the crystalline and magnetic str
tures in the surface layer of crystals are of current intere

Research on the properties of surfaces began with
1954 paper by Ne´el1 in which he proposed the existence of
surface anisotropy based on the fact that ions lying on
surface have a smaller number of covalent bonds than do
ions occupying sites within the crystal volume. In later stu
ies of surface properties2,3 it was predicted theoretically tha
magnetization might exist on the surface of magnetic ma
rials at temperatures above the Curie or Ne´el points. Later, a
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proaches for studying the role of the surface.
The influence of the surface was invoked for the fi

time in interpreting experimental data ong-Fe2O3 ~Ref. 5!
andg-Fe3O4 ~Ref. 6! to explain the fact that the saturatio
magnetization of thin powders is lower than in macrosco
samples. This experimental fact has now attracted the c
attention of researchers for a quarter of a century. Vari
models have been used to explain it. Berkowitzet al.5 con-
jectured that there is a nonmagnetic~magnetically dead! sur-
face layer at the facets of crystallites. The thickness of t
layer was estimated to be; 6 Å.5

Thin powders and films are widely used for studying t
properties of surfaces because of a lack of experime
methods that can distinguish signals from a thin surface la
and those from the crystal volume. In the case of thin po
ders, it is known that the smaller the volume of the crystal
the greater the importance of its surface. In addition,
example, in Mo¨ssbauer spectroscopy it is possible to enha
or attenuate the signal from a surface layer by doping it w
the isotopes Fe-57 or Fe-56.

Based on data from Mo¨ssbauer studies of fineg-Fe2O3

powder it was found7 that the reason for the reduction in th
saturation magnetization of the powder is a change in
magnetic structure of the surface of the crystallites. In or
to explain experimental data from studies of thin powders
g-Fe2O3,

8,9 CrFe2O4,
10 NiFe2O4,

11 CrO2,
12 Y3Fe12O19 and

Dy2BiFe5O19,
13 and BaFe12O19,

14 a ‘‘shell’’ model has been
used which describes the magnetic properties of a particle
particular its outer shell and inner part.15 The magnetic struc-
ture of the inner part is similar or, perhaps, entirely identi
to the structure of a bulk crystal, while the magnetic m

7886$10.00 © 1997 American Institute of Physics



ments in the outer shell~i.e., on the surface! are arranged
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A transition layer has been observed on the surface of
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A number of other authors, however, do not explain

experimental data in terms of a shell model. Thus,16 it has
been proposed that the spin noncollinearity in particles
g-Fe2O3 does not exist only on the surface. Others

17 assume
that in order to overcome the bulk anisotropy and comple
order the magnetic moments, much stronger magnetic fi
must be imposed collinearly with the external magnetic fi
than the fields used to test the shell model. Studies of
behavior of the magnetic moments in texturedg-Fe2O3

samples in strong magnetic fields18 have shown that the rea
son for the incomplete ordering of the magnetic moments
a particle cannot be the large assumed17 bulk magnetic an-
isotropy. The experimental data18 obtained forg-Fe2O3 were
explained by the noncollinearity of the spin ordering.

Polarized neutron scattering data for CoFe2O4 particles
have been explained by the existence within a particle o
magnetically ordered volume and a magnetically disorde
shell.19 It has been assumed20 that on the surface o
NiFe2O4 particles there is also a surface layer with angu
ordering of the spins with a set of stable configurations, o
of which is separated out upon cooling in a field and tha
temperatures below 50 K this layer is converted into a sp
glass phase.

The question of the existence of a thin layer on the s
face of ferrimagnetic crystals with magnetic properties wh
differ from those observed in the volume, therefore, rema
open. Furthermore, studies of surface properties emplo
such objects as fine powders are quite complicated becau
number of factors such as the variation in the particle s
distribution, superparamagnetic phenomena, a strong de
dence on fabrication techniques, etc., make it much harde
interpret the experimental data. In order to understand
nature of the phenomena on a surface and their relation
with bulk phenomena, it is necessary to study the proper
of the surface layers of macroscopic crystals.

The first experimental studies of the surface propertie
macroscopic crystals were carried out in 1972 by Krinc
et al.,21 who showed that the surface anisotropy predicted
Ref. 1 could be observed in antiferromagnetic materials w
weak ferromagnetism with easy plane magnetic anisotro
This is because in this type of magnet~in contrast to ferro-
magnets! the energy of the demagnetizing field is low owin
to the resulting small magnetic moment and there is es
tially no magnetic anisotropy in the basis plane. This lat
circumstances leads to an increased role for the surface
isotropy in weakly ferromagnetic crystals. This is what ma
it possible to observe surface magnetism in hematite.21,22

Based on these data, it was proposed22 that on a hematite
surface there is a ‘‘transition’’22 layer within which the ori-
entation of the magnetic moments undergoes a smooth
sition from their direction in the volume to their direction
the surface. A phenomenological theory was developed22 to
calculate the thickness of the transition layer, which wa
few nm in the case of hematite.22 A thin transition layer
within which the orientation of the magnetic moments diffe
from that in the interior of the crystallites has also been
served in Mo¨ssbauer studies of thin hematite powders.23
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macroscopic crystals of FeBO3, ErFeO3, and
TbFeO3,

27 which, like hematite, are antiferromagnetic wi
weak ferromagnetism. The thickness of the surface la
whose properties differ from those in the bulk material h
been found experimentally to be; 500 nm for FeBO3,

24 i.e.,
ten times greater than the calculated value for hematit22

Magnetooptical data25 of the surface layer of FeBO3 and an
analysis of these data using the theory of surfa
magnetism22 also showed that the thickness of the transiti
layer in FeBO3 is; 500 nm.

Direct experimental data on the existence of a transit
layer on the surface of macroscopic crystals have b
found.28 These data were obtained using a new method
simultaneous gamma, x-ray, and electron Mo¨ssbauer spec
troscopy first proposed by Kamzinet al.29 and described in
detail elsewhere.30 This technique makes it possible to e
tract information from the surface layer and the crystal in
rior simultaneously.

Simultaneous gamma, x-ray, and electron Mo¨ssbauer
spectroscopy has been used to study the properties o
surface and interior of bulk antiferromagnetic Fe3BO6 crys-
tals, which have weak ferromagnetism and belong, as d
FeBO3, to the borate family. It was shown experimenta
that there is a transition layer on the surface of Fe3BO6 in
which the orientation of the magnetic moments of the ir
ions differs from the orientation of the magnetic moments
iron ions occupying sites within the sample volume.28 Layer-
by-layer studies revealed that the thickness of the transi
layer is; 400 nm. As the crystal surface is approached,
angular deviation of the magnetic moments of the iron io
from their orientation in the volume~the lower boundary of
the transition layer! increases smoothly to an angle corr
sponding to the deviation of the magnetic moments of
iron ions lying on the surface~the upper boundary of the
transition layer!.28

Thus, the existence in antiferromagnetic crystals w
weak ferromagnetism of a surface layer whose magn
structure differs from that in the bulk crystal~referred to as a
transition layer in Refs. 21 and 22! has been convincingly
demonstrated. In this paper we study the properties of
surface layer of ferromagnetic crystals for the case of h
agonalM ferrites.

2. MÖSSBAUER STUDIES OF THE MAGNETIC STRUCTURE
OF CRYSTALS

Mössbauer spectroscopy is so widely used for study
the magnetic properties of materials because almost all m
netic materials contain the iron ion used in the overwhelm
majority of Mössbauer studies. Mo¨ssbauer spectroscopy pro
vides direct information on the magnetic structure of a cr
tal. In fact, the magnetic moment~M ! of the iron ion is
always oriented antiparallel to the effective magnetic field
the nucleus (Heff), whose direction, as will be shown below
is easily calculated from the ratio of the intensities of t
Mössbauer spectrum lines.

The location of the hyperfine structure sublevels is d
termined by the ratio of the energies of the magnetic a
electric interactions, the symmetry of the electric field gra

789Kamzin et al.



ent, and, in general, the direction of the internal magnetic
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field relative to the axes of the tensor of this gradient.We
assume for simplicity that the energy of the electric inter
tion in the crystal is negligibly small and that the levels sp
owing to the energy of the magnetic hyperfine interacti
In the Mössbauer spectrum of a thin absorber, the inten
ties of the components of the Zeeman sextup
A1 :A2 :A3 :A4 :A5 :A6 depend on the angleu between the
direction of propagation of theg-photons and the orientatio
of the effective magnetic fieldHeff at the nucleus of the iron
ion ~or the magnetic moment of the iron ion! as follows:

3~11cos2 u!:4 sin2 u:~11cos2 u!:~11cos2 u!:

4 sin2 u:4~11cos2 u!. ~1!

In this way, the formula relating the intensity of the se
ond or fifth (A2,5) lines of the Zeeman sextuplet associat
with transitions withDm 5 0 to the intensity of the first or
sixth (A1,6) lines,

31

A2,5/A1,654 sin2 u/3~cos2 u11!, ~2!

can be used to find the angleu which gives the orientation o
the magnetic moments relative to theg-ray beam from the
Mössbauer spectrum of a single crystal:

u5sin21A ~3/2!A2,5/A1,6

11~3/4!~A2,5/A1,6!
. ~3!

If the angleu varies over the sample, then Eqs.~2! and
~3! yield an averagêu&. Thus, Mössbauer spectroscopy ca
be used to determine the orientation of the magnetic m
ments in a crystal with rather high accuracy.

3. SIMULTANEOUS MÖSSBAUER STUDIES OF THE
SURFACE AND VOLUME OF CRYSTALS

The simultaneous gamma, x-ray, and electron Mo¨ss-
bauer spectroscopy method proposed in Ref. 29 and
scribed in Ref. 30 was used in the measurements. T
method is based on the simultaneous detection of Mo¨ssbauer
spectra at wavelengths with different mean free paths in
material, specificallyg-rays and the characteristic x-radiatio
of both conversion and Auger electrons, which carry inf
mation on the volume and on surface layers with thicknes
of a few mm and; 300 nm of bulk crystals, respectively
The energy of an electron leaving the sample is lower w
the atom which produced the electron lies deeper in the
terial. The electrons could be selected for energy by us
simple proportional detectors.32–34Of course, the accuracy o
the analysis of the layers by thickness is considerably po
than with electron or magnetic separators,35 but in a number
of cases this accuracy was entirely sufficient. Thus, simu
neous gamma, x-ray, and electron Mo¨ssbauer spectroscop
with a proportional detector was used to perform layer-
layer analysis of the properties of surface layers with thi
nesses below 300 nm.33

The advantages of simultaneous gamma, x-ray, and e
tron Mössbauer spectroscopy are, first, that the spectra
taining information on the properties of the surface and v
ume are taken simultaneously under identical conditions
the sample and, second, the spectral data containing th

790 JETP 84 (4), April 1997
-
t
.
i-
t

-

-

e-
is

e

-
es

n
a-
g

er

-

-
-

c-
n-
l-
r
in-

formation on the surface and volume can be compared
rectly because they have been obtained using a single ef
namely the Mo¨ssbauer effect.

Simultaneous gamma, x-ray, and electron Mo¨ssbauer
spectroscopy was performed on the automated system i
trated in Fig. 1. The radiation~g-photons, x-ray emission
and conversion and Auger electrons! is detected by counter
labelledG, X, andE mounted in a universal three-chamb
detector. The signals from the counters are fed to amplifi
~A! and then discriminators~D! to set the thresholds for dis
tinguishing the corresponding energies; the resulting sign
are then sent to corresponding storage registers~SR! for the
Mössbauer spectra.

4. EXPERIMENTAL RESULTS

Studies were conducted on single crystals
BaFe12O19, SrFe12O19, and PbFe12O19. These compounds
have several names, including hexagonal ferrites,M ferrites,
or ferrites with a magnetoplumbate structure. The last te
comes from the name of the mineral PbFe12O19.

36 The crys-
talline structure of these compounds can be regarded
superposition of hexagonal and spinel units. The iron io
are distributed over five nonequivalent positions and the b
magnetization of theM -ferrites is the vector sum of the mag
netizations of the five sublattices. The hexagonalc axis is a
magnetization easy axis, so that the magnetocrystalline
isotropy of these ferrites is very large.

FIG. 1. Block diagram of the automated system for simultaneous gam
x-ray, and electron Mo¨ssbauer spectroscopy.G, X, andE denote the detec-
tors of g-rays, characteristic x-rays, and secondary electrons, respecti
Other components are:~S! a g-ray source,~T! the test sample,~H! a heater
~oven!, ~V! a Doppler modulator~vibrator!, ~MG! a motion generator,
~LVC! a laser velocity calibrator,~A! amplifiers,~D! discriminators,~SR!
storage registers,~HV! high voltage supplies,~NFC! a negative feedback
channel, and~CC! a computer correction channel.
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Samples in the form of; 110mm thick wafers with the
crystallographicc axis perpendicular to the plane of the w
fer were prepared for the measurements. This cut was ch
because at temperatures below the Curie point the mag
moments are oriented along thec axis and if a beam of
g-rays is directed parallel to the crystallographicc axis then
the second and fifth lines of the Zeeman sextuplet co
sponding to transitions withDm 5 0 will be absent from the
Mössbauer spectrum.37 A deviation of the direction of the
magnetic moments from that of theg-ray beam causes th
second and fifth lines of the sextuplet to appear.

Single crystals with a natural mirror facet were chos
for the experiments. Wafers were also subjected to chem
polishing by various methods, including~a! boiling in ortho-
phosphoric acid,~b! holding for one minute in orthophospho
ric acid at a temperature of 120 °C, and~c! holding in an
H3PO41H2SO4 acid mixture ~1:1 proportions! heated to
90 °C for several minutes. The Mo¨ssbauer spectra were nu
merically processed to yield the intensities, linewidths of
Zeeman sextuplets, and the hyperfine interaction parame

Simultaneous gamma, x-ray, and electron Mo¨ssbauer
spectroscopy yielded experimental spectra at temperatur
300 to 700 K with the wave vector of theg-rays oriented
parallel to the crystallographicc axis. As an example, Fig. 2
shows spectra of SrFe12O19 at room temperature with detec
tion of g- and x-rays, as well as of conversion and Aug
electrons escaping from a surface layer at least 200 nm th

Gamma-ray and conversion and Auger electron Mo¨ss-
bauer spectra of BaFe12O19 at 450 K and of PbFe12O19 at 473
K are shown in Figs. 3 and 4. In these figures, as oppose
Fig. 2, the spectra have been obtained by detecting elect
originating from a surface layer with thickness less than 1
nm ~Fig. 3 curve2, and Fig. 4 curve2! or 40 nm ~Fig. 3
curve1 and Fig. 4 curve1!. It should be noted that theg-ray
spectra of SrFe12O19, BaFe12O19, and PbFe12O19 ~Fig. 2

FIG. 2. Mössbauer spectra of Sr-M hexaferrite obtained at a temperature
293 K with g-ray detection~3!, i.e., from the bulk of the crystal, with
detection of the characteristic x-radiation from a surface layer severalmm
thick ~2!, and with detection of conversion and Auger electrons from
surface layer extending from 0 to 200 nm~1!. The crystallographicc axis is
oriented parallel to the wave vector of theg-rays.
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curve 3, Fig. 3 curve3, and Fig. 4 curve3! are similar to
Mössbauer spectra taken previously38–40 by the authors un-
der the same experimental conditions. The spectrum lines
well resolved in these figures and this made it possible
calculate the anglesu which determine the direction of th
magnetic moments relative to the wave vector of theg-rays
with high resolution using Eq.~3! and the intensity ratio of
the first and second~fifth and sixth! lines of the sextuplets.

Data from an analysis of theg-ray spectra obtained
when the crystallographicc axis was oriented parallel to th
wave vector of theg-rays~Fig. 2 curve3, Fig. 3 curve3, and

FIG. 3. Mössbauer spectra of Ba-M hexaferrite obtained at a temperature
450 K with g-ray detection~3!, i.e., from the bulk of the crystal, and with
detection of conversion and Auger electrons from surface layers exten
from 50 to 100 nm~2! and from 0 to 40 nm~1!. The crystallographicc axis
is oriented parallel to the wave vector of theg-rays.

FIG. 4. Mössbauer spectra of Pb-M hexaferrite obtained at a temperature
473 K with g-ray detection~3!, i.e., from the bulk of the crystal, and with
detection of conversion and Auger electrons from surface layers exten
from 50 to 100 nm~2! and from 0 to 40 nm~1!. The crystallographicc axis
is oriented parallel to the wave vector of theg-rays.
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Fig. 4 curve3! showed that in the Zeeman sextuplets of ea
nonequivalent position, the intensities of the second and
lines, which correspond to transitions withDm 5 0, were
zero. This means~see Eq.~3!! that the angleu equals zero
and, therefore, the magnetic moments of the iron ions at s
in the crystal volume are collinear with the wave vector
theg-rays and parallel to the crystallographicc axis.

An analysis of the spectra taken by detecting convers
and Auger electrons when the crystallographicc axis was
oriented parallel to the wave vector of theg-rays ~Fig. 2
curve1, Fig. 3 curves1 and2, and Fig. 4 curves1 and2!
showed that the intensities of the second and fifth lines of
sextuplets are zero. This means that the magnetic mom
of the iron ions occupying sites in a surface lay
; 200 nm thick layer~Fig. 2! are collinear with the wave
vector of theg-rays and the crystallographicc axis. A similar
result was obtained for iron ions located in 100 and 40
thick surface layers~Figs. 3 and 4!. This picture is seen up to
temperatures of 600 K, beyond which it is difficult to dete
mine u owing to the poor resolution of the lines.

The following experiments were done as a control: a t
single-crystal wafer was positioned so that the crysta
graphicc axis was at an angleu with respect to the wave
vector of theg-rays. Figure 5 shows some examples
Mössbauer spectra foru 5 25°6 2°. As can be seen fromFig
5, the deviation of the magnetic moments from the propa
tion direction of theg-rays causes the second and fifth lin
of the Zeeman sextuplets, which correspond to transiti
with Dm 5 0, to appear in theg-ray and conversion and Au
ger electron Mo¨ssbauer spectra. The angleu given by Eq.~3!
is 25° and is consistent with the specified experimental c
ditions.

For the purpose of analyzing the experimental data,
have modelled the Mo¨ssbauer spectra assuming that a s
face layer with a different magnetic structure from t

FIG. 5. Mössbauer spectra of Ba-M hexaferrite obtained at a temperature
293 K with g-ray detection~3!, i.e., from the bulk of the crystal, and with
detection of conversion and Auger electrons from surface layers exten
from 50 to 100 nm~2! and from 0 to 40 nm~1!. The crystallographicc axis
is oriented at an angleu 5 25° to the wave vector of theg-rays.
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bulk exists on the surface of these hexaferrites~and, by
analogy with antiferromagnetic materials with wea
ferromagnetism,22 we refer to it as a transition layer!. Let us
assume that within this transition layer the magnetic m
ments veer continuously relative to the normal on approa
ing the crystal surface by an amount, ranging from 0° to 2
determined for antiferromagnetic crystals with we
ferromagnetism.32 Let us suppose that the transition layer h
a thickness of 10 nm and the turning of the magnetic m
ments takes place in 2 nm layer steps, i.e., over five lay
The magnetic structure of the layers lying below the tran
tion layer is similar to that in the bulk crystal. Figure 6 show
Mössbauer spectra constructed for a 40 nm thick layer

FIG. 6. Model Mössbauer spectra calculated for a surface layer extend
from 0 to 40 nm with a 10 nm transition layer:~1! model spectrum from a
layer extending from 0 to 2 nm with a deviation ofu 5 25° for the magnetic
moment,~2! from 2 to 4 nm,u 5 20°, ~3! from 4 to 6 nm,u 5 15°, ~4! from
6 to 8 nm,u 5 10°, ~5! from 8 to 10 nm,u 5 5°, ~6! from 0 to 40 nm,u
5 0, ~7! combined model spectrum of all layers from 0 to 40 nm.
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1–5 of Fig. 6 show Mosssbauer spectra of 2 nm thick laye
in which the magnetic moments deviate from thec axis by
amounts ranging from 25° to 0°. The Mo¨ssbauer spectrum o
a layer lying at a depth of from 10 to 40 nm below th
surface of the model crystal is shown in curve6 of Fig. 6 and
the parallelism of the magnetic moments to the crysta
graphicc axis is indicated by the absence of the second
fifth lines of the Zeeman sextuplet from the spectrum. Cu
7 of Fig. 6 shows the model Mo¨ssbauer spectrum of a 40 n
thick surface layer obtained by summing~with appropriate
weighting! the spectra of curves1–6 of Fig. 6. As can be
seen from curve7 of Fig. 6, the second and fifth lines, whic
correspond to transitions withDm 5 0 essentially have zero
intensities. Thus, an analysis of the model spectra sho
that when Mo¨ssbauer spectroscopy is used to study a sur
to a depth of; 40 nm, the accuracy of the method is n
adequate to establish the existence of a transition layer
a thickness of; 10 nm. This implies that, in order to dete
mine the presence or absence of a magnetic structure o
surface of the Pb-M hexaferrites which differs from the bul
structure, methods will have to be used which permit m
surements on surface layers thinner than 20 nm.

To summarize, we have found experimentally that in
surface layer with a thickness of; 40 nm on macroscopic
hexagonalM -ferrites, specifically BaFe12O19, SrFe12O19,
and PbFe12O19, the magnetic moments of the iron ions a
oriented just as in the interior of the crystal, i.e., parallel
the crystallographicc axis. Thus, to within the limits of ac
curacy of the experiment (; 10 nm), no transition surface
layer of the sort which exists in antiferromagnetic cryst
and having a thickness of several hundred nm24,25,28has been
found in theM -hexaferrites~BaFe12O19,

41 SrFe12O19, and
PbFe12O19!.

This work was supported by the Russian Fund for F
damental Research~Grant No. 95-02-04069!.

*E-mail: KAMZIN@DIR.SHUV.IOFFE.RSSI.RU

1L. Neel, J. Phys. Radium15, 225 ~1954!.
2M. I. Kaganov and A. M. Omel’yanchuk, Zh. E´ksp. Teor. Fiz.61, 1679
~1971! @Sov. Phys. JETP34, 895 ~1972!#.

3D. L. Mills, Phys. Rev.3, 3887~1971!.
4K. Binder, in: Phase Transitions and Critical Phenomena, Acad. Pr
N.Y. ~1983!, Vol. 3, p. 325.

5A. E. Berkowitz, W. J. Schuele, and P. J. Flanders, J. Appl. Phys.39, 1261
~1968!.

6L. Liebermann, D. R. Fridkin, and H. B. Shorre, Phys. Rev. Lett.22, 539
~1969!; L. Liebermann, J. Clinton, D. M. Edwards, and J. Mathon, Ph
Rev. Lett.25, 232 ~1970!.

7J. M. D. Coey, Phys. Rev. Lett.27, 1140~1971!.
8A. H. Morrish, K. Haneda, and P. J. Schurer, J. de Physique, Colloque
37, C6-301~1976!.

9P. M. de Bakker, E. DeGrave, R. E. Vandenberghe, and L. H. Bow
Hyperfine Interactions54, 493 ~1990!.
793 JETP 84 (4), April 1997
-
d
e

ed
ce

ith

the

-

a

s

-

s,

.

6

,

11A. H. Morrish, and K. Haneda, J. Appl. Phys.52, 2496~1981!.
12K. Haneda, J. Kojima, A. H. Morrish, P. J. Picone, and K. Wakai, J. Ap
Phys.53, 2686~1982!.

13A. H. Morrish and K. Haneda, IEEE Trans. Magn.MAG-25, 2597~1989!.
14K. Haneda and A. H. Morrish, Nucl. Instrum. and Methods in Phys. R
B 76, 132 ~1993!.

15K. Haneda, Canad. J. Phys.65, 1233~1987!.
16F. T. Parker, M. W. Foster, D. Margulis, and A. E. Berkowitz, Phys. R
B 47, 7885~1993!.

17Q. A. Pankhurst and P. J. Pollard, Phys. Rev. Lett.67, 325 ~1991!.
18P. V. Hendriksen, S. Linderoth, C. A. Oxborrow, and S. Morup, J. Ph
Cond. Matter6, 3091~1994!.

19D. Lin, A. C. Nunes, C. F. Majkrzak, A. E. Berkowitz, and M. B. Maple
J. Mag. Magn. Mat.45, 343 ~1995!.

20R. H. Kodama, A. E. Berkowitz, E. J. McNiff Jr., and S. Foner, Submitt
to J. Mag. Magn. Mat.~1996!.

21G. S. Krinchik, A. P. Khrebtov, A. A. Askochenski�, and V. E. Zubov,
JETP Lett.17, 335 ~1973!.

22G. S. Krinchik and V. E. Zubov, Zh. E´ksp. Teor. Fiz.69, 707~1975! @Sov.
Phys. JETP42, 359 ~1976!#.

23A. M. van der Kraan, Phys. Stat. Sol.~a! 18, 215 ~1973!.
24V. G. Labushkin, V. V. Rudenko, E´ . R. Sarkisov, V. A. Sarkisyan, and
V. N. Seleznev, JETP Lett.34, 544 ~1981!.

25V. E. Zubov, G. S. Krinchik, V. N. Seleznev, and M. B. Strugatski�, Zh.
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Mössbauer absorption by soft ferromagnets in radio-frequency magnetic field
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The simultaneous influence of periodical magnetic field reversals at the nucleus between the
values6h0 and of magnetostrictive vibrations on the shape of the Mo¨ssbauer absorption spectrum
is analyzed. The effect of a constant external magnetic field is taken into account by
assuming unequal durations of the states2h0 and1h0 . It is shown that such asymmetric
reversals of the magnetic field lead to splitting of the absorption lines into Zeeman patterns
corresponding to the time-averaged magnetic fieldh0R, whereR is the asymmetry
parameter of the reversals. The calculations agree well with experiment. ©1997 American
Institute of Physics.@S1063-7761~97!02304-4#
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As is well known ~see the surveys in Refs. 1–4!, an
external radio-frequency~RF! magnetic field generates mag
netostrictive vibrations in ferromagnets. The correspond
Mössbauer absorption spectrum for hard ferromagnets1–12

consists of a central Zeeman pattern and additional li
~sidebands! shifted by nV, where n is an integer andV
52pn is the circular frequency of the alternating magne
field. The corresponding theory is the standard one for Mo¨ss-
bauer absorption in a vibrating crystal.11,15In the case of soft
ferromagnets with low anisotropy fieldsHa , the absorption
spectrum is a fringe of equidistant lines~doublets if the
quadrupole interaction is important, i.e.,QÞ0!. It collapses
to single or double lines when the frequencyV greatly ex-
ceeds the Larmor frequencyVL . Such RF collapse has bee
qualitatively explained by Pfeiffer,1,16 who assumed that th
crystal magnetizationM (t), induced by the RF magneti
field and the magnetic fieldh(t) at the nucleus, related toM ,
periodically reverse direction, so that at high frequencies
nucleus feels only a zero average magnetic field and the
sorption spectrum degenerates to a single line. In the op
site case of vanishingV the spectrum1–4 coincides with the
typical spectrum for constant magnetic field.

Two main model approaches to this problem are know
the harmonic model of Olariuet al.,17 in which h(t)
5h0 cosVt is assumed, and second, the coherent stepw
model,18,19 assuming thath(t) performs periodical instanta
neous jumps between the values1h0 and 2h0 . General
formulae for both the absorption and scattering spectra,
ing into account time-dependent effects, were derived in R
20. In particular, it was shown that the harmonic model
Olariu17 leads to incorrect result in the stationary limit, whe
V→0.

The stepwise model only qualitatively reproduces
observations, yielding collapse at high frequencies and a
tionary Zeeman spectrum at vanishing frequencies. In
intermediate caseV;VL , this model predicts a much mor
rapid drop in satellite intensities with the ordern than is
found experimentally.1,16 But experimental data for Perma
loy with damped magnetostrictive vibrations are well d
scribed by the stepwise model.21 So it is natural to attribute
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data to the contribution of magnetostrictive vibrations. A
attempt to take into account simultaneously the effect of b
the magnetic field reversals and magnetostrictive vibrati
has been described in Ref. 19. Unfortunately, the final re
was stated without any derivation, and as will be shown
low, it contains some mistakes.

Hence one goal of this paper is to derive a theory sim
taneously treating both reversals of the magnetic field
magnetostrictive vibrations. Another goal is to analyze
effect of a superimposed constant magnetic fieldH0 on the
Mössbauer absorption in an RF magnetic field.

There are clear indications22,23 that soft ferromagnets
represent cluster structure. Every such cluster behaves
superparamagnetic particle, within which all the spins
strongly coupled. At the same time, the intercluster inter
tion is weak. The main role of an external RF field is pro
ably to destroy this intercluster cooperation.19 The magneti-
zationM c of the superparamagnetic cluster may be orien
along the easy magnetization axis or in the opposite dir
tion. Consequently, its potential energyW has the form of
two potential wells separated by a potential barrier.24 The
minima of these potential wells correspond to the two valu
of the magnetization,M c and2M c . If the easy magnetiza
tion axis is parallel to the external magnetic fieldHRF(t),
then the additional potential energy of the cluster will
V(t)52M c•HRF(t). Hence the complete potential energ
W1V(t) will be an asymmetric time-dependent curve. In
strong field,HRF(t) one of the potential wells vanishes
some point, which forcesM c to jump into the opposite po
tential well. Another jump occurs in the backward directio
at timeT/2.

When we superimpose a constant magnetic fieldH0 par-
allel to HRF(t), the superparamagnetic cluster receives
additional contributionMcH0 or 2McH0 to the potential
energy. The static fieldH0 itself withoutHRF(t) ensures the
asymmetry of the potential curve, deepening the poten
well corresponding to M c oriented along H0. The
switched-on fieldHRF(t), being larger thanH0 , will again
produce jumps of the magnetization, but in this case the t
T1 spent by the cluster in the potential well withM c parallel

7946$10.00 © 1997 American Institute of Physics



b
w
a
a

a

tro

ld

C IkMk

N ~ t !5uI kMk&F IkMk

N ~ t !eiEMk

N t/\, ~5!

s

-

s is

vi-
za-
at
ra-

xi-
de-
ors
er-

se

in
e

e
e

to H0 will be greater than the timeT2 spent in that with
M c antiparallel toH0 .

We do not touch on any stochastic problems here~see
also Ref. 19! and suppose the crystal magnetization to
completely governed by the external magnetic field, i.e.,
deal only with coherent reversals of the magnetization
definite times, which imply corresponding coherent revers
of the magnetic field at the nucleus.

2. WAVE FUNCTIONS

Let the magnetic fieldh(t) at the Mössbauer nucleus
periodically change its direction to the opposite one, i.e.,

h~ t !5h0f ~ t !, f ~ t !5 f ~ t1T!, ~1!

whereT is the period of the RF field andV52p/T is the
circular frequency. We suppose that the reversals of the m
netic field occur as abrupt jumps from1h0 to 2h0 and vice
versa. Let one of such jumps from1h0 to 2h0 be att50. If
we haveH0Þ0, then the timeT1 during which h(t)5h0
holds is greater than the timeT2 whenh(t)52h0 . Then

f ~ t !5 H1,21,
2T1,t,0 or T2,t,T11T2 ,
0,t,T2 ,

~2!

as shown in Fig. 1.
In order to describe such asymmetric reversals, we in

duce the dimensionless parameter

R5
T12T2
T11T2

, ~3!

which varies in the interval 0<R<1. The valueR50 cor-
responds to symmetric reversals at equal timesT/2, and
R51 to the constant field1h0 during the whole time. From
~3! it follows that

T15
11R

2
T, T25

12R

2
T. ~4!

The Floquet wave function of the nucleus in periodical fie
~1!, and~2! may be written as

FIG. 1. Time-dependence of the magnetic field at the nucleus.
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whereuI kMk& is the stationary wave function of the nucleu
in thekth state~k5g for the ground state andk5e for the
excited one! with spin I k and projectionMk in the direction
of h0 ; the periodic function of timeF

N(t) may be defined in
the interval from2T/2 to T/2 as

F IkMk

N ~ t !5H exp@ igkMkh0~12R!t#,
exp@2 igkMkh0~11R!t#,
exp@ igkMkh0~12R!~ t2T!#,

2T/2<t<0,
0<t<T2 ,
T2<t<T/2.

~6!

The corresponding quasi-energies are

EMk

N 5Ek
N2gkMkh0R1Q@3Mk

22I k~ I k11!#, ~7!

whereEg
N50 andEe

N5E08 is the energy of the unsplit reso
nant level,gk specifies the gyromagnetic ratio, andQ is the
quadrupole constant. The complete set of quasi-energie
obtained by addingn\V to ~7!, wheren is an integer; the
corresponding functions are given by~6! multiplied by
exp(inVt).

The RF magnetic field also induces magnetostrictive
brations in a ferromagnetic crystal. If the crystal magneti
tion induced by the RF field coherently changes direction
definite moments of time, then the magnetostrictive vib
tions occur with frequency twiceV.17,19 Strictly speaking,
the wave function of such a lattice in the harmonic appro
mation is represented by a product of wave functions to
scribe the quantum oscillations of uncoupled oscillat
about their instantaneous equilibrium positions, which p
form classical vibrations.14,15The displacement of the Mo¨ss-
bauer atom owing to such classical vibrations is

X~ t !5A cos~2Vt1w0!, ~8!

whereA andw0 are the amplitude and initial phase of the
magnetostrictive vibrations, respectively.

3. MÖSSBAUER ABSORPTION

A simple generalization of the method developed
Refs. 14, 15, and 20 gives the following result for th
phononless absorption cross-section of ag-ray with energy
E by the Mössbauer nucleus:

sa~E!5
s0G

2

2
e22Wa

3 (
n52`

`

(
Me ,Mg

Jeg~q!uaeg~n!u2

~E2Ee
N1Eg

N2n\V!21~G/2!2
,

~9!

wheres0 is the resonant cross-section,G is the width of the
resonant level,e2W is the Debye–Waller factor, and th
functions Jeg(q) determine the relative intensities of th
lines versus the angleq between the wave vectork of the
g-quantum andh0 :

1

3
J63/2,61/2~q!5J61/2,61/2~q!5

1

16
~11cos2 q!,

J61/2,71/2~q!5
1

4
sin2 q. ~10!
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FIG. 2. Simultaneous effect of mag
netic field reversals and magnetostric
tive vibrations on the shape of Mo¨ss-
bauer spectra: a! our calculations
without any constraints to the modula
tion index; b! Pfeiffer’s data;16 c! our
calculations using the frequency de
pendence~24! of the modulation in-
dex. Curves1, 2, 3, 4, and 5 corre-
spond tog50, 32, 39, 61, and 106
MHz.
The quantitiesaeg(n) stand for the following Fourier coeffi-

s

ve

-

-

`

to
etic
-

red
cients:

aeg~n!5
1

T E
2T/2

T/2

dte2 inVtFe
N~ t !*Fg

N~ t !

3exp@ ik–A cos~2Vt1w0!#. ~11!

The cross-section~9! must be averaged over the phononle
energy distribution of the incidentg-rays

we~E!5e22We
G/2p

~E2E02s!21~G/2!2
, ~12!

wheres5(v/c)E0 is the Doppler shift andv is the velocity
of the emitter relative to the absorber. This averaging gi
for 57Fe

sa~s!5
s0G

2

2
e22We22Wa (

n52`

`

(
Me ,Mg

3
Jeg~q!uaeg~n!u2

$s2D2\aegR2Q@3Me
2215/4#2n\V%21G2 ,

~13!

whereD5E082E0 is an isomer shift; the quantities

\aeg5~ggMg2geMe!h0 ~14!

determine the Zeeman splitting in the constant fieldh0 . Fur-
thermore,\aegmultiplied byR determines the magnetic hy
perfine structure provided by the time-averaged field^h(t)&
5h0R.

In order to calculateaeg(n) we use the familiar expan
sion

eix cos t5 (
n52`

`

i nJn~x!eint, ~15!

whereJn(x) is the Bessel function of ordern. Then
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aeg~n!5 (
m52`

i meimw0Jm~k–A!beg~n22m!, ~16!

where the coefficientsbeg(n), given by~11! with A50, may
be written as

beg~n!5beg
~1 !~n!1beg

~2 !~n!,

beg
~1 !~n!5

1

T E
0

~12R!T/2
dt exp@2 inVt2 iaeg~11R!t#,

beg
~2 !~n!5

1

T E
2~11R!T/2

0

dt exp@2 inVt1 iaeg~12R!t#.

~17!

A simple calculation yields

beg~n!5
2xeg

@~12R!xeg2np#@~11R!xeg1np#

3sinH 11R

2
@~12R!xeg2np#J

3expH i 11R

2
@~12R!xeg2np#J , ~18!

where we have used the notation

xeg5
aegT

2
. ~19!

The forced vibrations are important only fork–AÞ0,
i.e., whenA is not perpendicular tok. In all the experiments
the beam of incident Mo¨ssbauer radiation is perpendicular
the absorber surface and the external alternating magn
field HRF(t) is parallel to it. Therefore the original magneto
strictive vibrations generated alongHRF(t) are perpendicular
to k. As pointed out in Ref. 16, these vibrations are scatte
by defects of the crystal, giving rise to vibrations alongk,

796A. Ya. Dzyublik and V. Yu. Spivak
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FIG. 3. Hyperfine structure of Mo¨ssbauer absorption
lines due to the asymmetry of the magnetic field reve
sals: a! when vibrations are absent (Q5m50! and
R50.5; b! the modulation indices are the same as
Fig. 2a andR50.2; s t(s) is in units (s0G

2/2)exp
(22We22Wa); curves1, 2, 3, and 4 correspond ton
532, 39, 62, and 106 MHz.
which manifest themselves in experiment. Then such vibra-

,

n

ti

Jeg~q!ubeg~k!u2

n
r
e

of
er,
of

-

tions have random phasesw0 . Averaging uaeg(n)u2 over
w0 one gets

uaeg~n!u25 (
m52`

`

Jm
2 ~kx0!ubeg~n22m!u2, ~20!

where x05k–A/k is the amplitude of vibrations alongk.
Besides, we must average~20! over the distribution of the
amplitudes x0 . We shall take the Rayleigh distribution
which describes Mo¨ssbauer data most accurately:

P~x0!5
x0
2

x̄ 0
2 expH 2

x0
2

2x̄ 0
2J , ~21!

where x̄0 corresponds to the maximum of the distributio
Then the average cross section may be written as

s t~s!5 (
n52`

`

e2m2
I n~m

2!s t~s2n2\V!u x̄050 , ~22!

whereI n(x) is the modified Bessel function,m5kx̄0 repre-
sents the so-called modulation index, and the cross-sec
s t(s)u x̄050 for the case without vibrations is given by

s t~s!u x̄0505
s0G

2

2
e22We22Wa (

k52`

`

(
Me ,Mg
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3
@s2D2\aegR2Q~3Me

2215/4!2k\V#21G2 .

~23!

Previous calculations19 for R50 were based on an equatio
similar to ~22!, which contained the incorrect facto
I 2n(m

2) instead ofI n(m
2). Therefore we first analyzed th

case of symmetric reversals withR50. Using Eqs.~22! and
~23! we found the best fit to Pfeiffer’s data1,16 using the
modulation indexm50.05 for n5106 MHz, m50.6 for
n561 MHz m52.4 for n539 MHz, and m54 for
n531 MHz. As can be seen from Fig. 2, the agreement
these calculations with experiment is good. Howev
Pfeiffer1,16 proposed the following frequency dependence
the modulation index:

m2}1/n3.5. ~24!

Calculations employing this law are shown in Fig. 2~c!. In
this case the fitting parameters arem50.28 for
n5106 MHz, m50.74 for n561 MHz, m51.6 for
n539 MHz, andm52.4 for n531 MHz. Here the agree
ment with experiment is worse, so that the law~24! is doubt-
ful.
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FIG. 4. Splitting of the collapsed line due to a supe
imposed static magnetic field: a! our calculations; b!
experimental data~Ref. 26!.
4. LIMITING CASES

-

ti
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rupole doublet forQÞ0 only in the case of symmetric re-
s
-
ag-
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ced
In the high-frequency case we have

lim
V→`

beg~n!5dn0 . ~25!

The average amplitudex̄0 of magnetostrictive vibrations de
creases with growing frequencyV. ForV@uaegu one there-
fore has

uaeg~n!u2.dn0 . ~26!

Thus, at such high frequencies the absorption cross-sec
becomes

s t~s!av5
s0G

2

2
e22We22Wa

3 (
Me ,Mg

Jeg~q!

@s2D2\aegR2Q~3Me
2215/4!#21G2 .

~27!

Hence we can state that the hyperfine structure of the M¨ss-
bauer spectrum collapses to a single line atQ50 or a quad-
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versals with R50. When the magnetic field reverse
asymmetrically with R.0, the nucleus feels the high
frequency reversing magnetic field as a static field with m
nitude^h(t)& smaller thanh0 by the factorR. Then the spec-
trum retains its hyperfine structure corresponding to the fi
^h(t)&.

In the opposite low-frequency case, (12R)T→`, using
the definition of thez-function25 one finds

beg
~6 !'6

1

iT
@nV6~16R!aeg7 ih#21, ~28!

whereh→10. PuttingnV5vn andV5Dv, one can treat
the sums overn as integrals,

1

T (
n52`

`

→
1

2p E
2`

`

dv, ~29!

in the limit T→`. Substitution of~28! and ~29! into ~13!
gives after a contour integration the six-line pattern produ
by the constant magnetic fieldh0 ~see the curves1 in Fig. 2!.
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5. DISCUSSION
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An external RF magnetic field influences the nucleus
a soft ferromagnet via the reversing magnetic fieldh(t) at
the nucleus and magnetostrictive vibrations. For the cons
magnetic fieldH050 the nucleus has infinite sets of qua
energetic levels separated by the interval\V both in the
ground and excited states. In the absence of quadrupol
teraction (Q50) each such level is degenerate with resp
to the magnetic quantum numberMk . Such quasi-energeti
structure produces transitions of the nucleus absorb
g-rays, from the ground state to any quasi-energetic le
corresponding to the excited nuclear state. As a conseque
the Mössbauer spectrum will consist of a set of equidist
lines ~doublets ifQ50!. Therenth line ~doublet! is associ-
ated with the transitions from the ground state with qua
energy EMg

N to excited states with quasi-energiesEMe

N

1n\V, which are specified by the quantum numberMe . In
high- and low-frequency cases, such spectra approach s
or double lines and a standard sextet, respectively.

Our calculations well agree with Pfeiffer’s data o
Permalloy16 ~see Fig. 2! supporting the point of view that th
RF magnetic field causes both reversals of the magnetiza
and magnetostrictive vibrations. Note that Julian a
Daniels,19 who have been using the incorrect formula, p
dicted unreasonably high modulation indices fitting the sa
data: for 32 MHz they usedm5100.

When a constant magnetic field is superimposed,
quasi-energetic sublevels split as indicated by Eq.~7!. It is of
interest that such split quasi-energies coincide with the e
gies of the nucleus placed in the constant magnetic fi
h0R. Thus, the quantum system not only feels the osci
tions of the magnetic field exchanging photons with f
quency V, but also sees its time-averaged value^h(t)&
5h0R, where the asymmetry parameterR depends on the
magnitude of the external fieldH0 . The splitting of quasi-
energies leads to a corresponding splitting of the Mo¨ssbauer
lines. Such a splitting arises at all frequencies and is typ
both for the central line and for sidebands. This effect
illustrated by Fig. 3a, showings t(s) in units (s0G

2/2)exp
(22We22Wa) for R50.5 andQ5m50. The changes owing
to the magnetostrictive vibrations are shown in Fig. 3
where we used the same modulation indices as in Fig. 2a
took R50.2. Our calculations withQ5m50 are compared
with data26 obtained atn562 MHz with different gradually
increasing values ofH0 for amorphous Fe78Si9B13 alloy. In
Fig. 4 we can see satisfactory agreement with these obse
tions when the line splits under the influence of the sta
799 JETP 84 (4), April 1997
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R50, 0.2, 0.28, 0.36, 0.44, 0.6, 0.66. In Figs. 2 and 3
usedG50.4 mm/s, and in Fig. 4G50.6 mm/s.

It is of great interest to observe such a splitting, caus
by an external constant magnetic fieldH0 , not only for the
collapsed line but also for the sidebands existing at interm
diate frequencies. It would be the most direct evidence
the nuclear quasi-energetic picture~7! and respectively to the
cluster structure of soft ferromagnets.

* !
e-mail: kinr@sovam.com
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Magnetic ordering of Fe atoms in icosahedral Al 702xBxPd302yFey quasicrystals
I. S. Lyubutin

Institute of Crystallography, Russian Academy of Sciences, 117333 Moscow, Russia

Ch. R. Lin and S. T. Lin

Department of Physics, National Cheng-Kung University, 70101 Tainan, Taiwan
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Novel icosahedral quasicrystals, in which Fe atoms possess a magnetic moment, have been found
in Al702xBxPd302yFey compounds with 5,x,10 and 10,y,20. The compounds have
ferromagnetic properties, and their Curie temperature ranges between 280 and 340 K, the
saturation magnetizationss(5 K)'7.5 emu/g. It follows from Mo¨ssbauer spectra that only a
fraction of Fe atoms~12 to 15%! are magnetically ordered at 4.2 K, and the mean saturation
field ^Hhf&596 kOe. The isomer shift values confirm that the atomic volume of magnetic Fe sites
is larger than that of nonmagnetic Fe sites. The magnetic properties of these quasicrystals
can be interpreted in terms of large magnetic clusters with a size of 185 to 290 Å. This size
correspond to about 43104 ‘‘unit cells,’’ hence the magnetic state can be described in
terms of bulk parameters. The localized magnetic moment of Fe atoms is tentatively ascribed to
bonding between Fe and B, similarly to that in the amorphous Fe;50B;50 alloy. © 1997
American Institute of Physics.@S1063-7761~97!02404-9#

1. INTRODUCTION recently the novel Al62.5B7.5Pd15Fe15 magnetici -QC contain-
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Magnetic icosahedral quasicrystals (i -QC! containing
iron have not been known until recently.1–4 Unlike i -QC
with Mn, quasicrystals containing even a notable quantity
iron are usually nonmagnetic.3 For example, in the
Al65Cu20Fe15 i -QC iron atoms bear no magnetic moment,
least atT.1.5 K.3 Al70Pd20Fe10

5 andAl70Pd16Fe14
6 icosahe-

dral quasicrystals are also nonmagnetic at temperat
higher than 4.2 K. Quasicrystals based on Al–Mn alloys w
a small content of Fe are paramagnetic.7–9 In Al–Si–Mn
ferromagnetici -QC, iron doping results in spin-glass orde
ing, which coexists at low temperatures with ferroma
netism, but iron atoms in these materials have zero magn
moment.7 In ferromagnetic Al40Ge25Mn25Cu102xFex i -QC,
iron atoms have zero magnetic moment at 100 K, and a s
hyperfine magnetic field at iron nuclei (Hhf59 kOe! is
transferred from manganese atoms.10 Recently Nasu and
co-workers11–13 detected in Al–Ge–Mn–Cu–Fe quasicry
tals a magnetic transition at 30 K, and the presence of m
netic and nonmagnetic iron atom sites below 30 K. Stad
and Stroink14,15 have found that in Al–Ge–Mn and
Al–Ge–Cu–Mni -QC lightly doped with iron, a fraction of
iron atoms have a small magnetic moment at 4.2 K, but th
are also nonmagnetic sites, at which Fe atoms have
magnetic moment.

Recently Yokoyama and co-workers16,17 discovered that
boron doping of nonmagnetic quasicrystals based on Al–
compounds leads to appearance of magnetic moments a
atoms. The magnetization value of Al–Mn–Pd–B quasicr
tals depends on the B content and has a maximum at 10%
The magnetic state of Al–Mn–Pd–B system is a feature
the quasicrystalline phase, and the magnetization vani
when the icosahedral phase transforms to a crystalline s
By analogy with the Mn-based systems, we have discove
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ing iron. This is a ferromagnet with a Curie temperatu
TC5305 K. At T55 K its magnetization isss54.2 emu/g,
the coercive force is 1.2 kOe, and the magnetic mom
meff is estimated to be 1.63mB per Fe atom. The conclusio
that the magnetic state is a feature of the quasicrystal
phase of Al62.5B7.5Pd15Fe15 and is not due to impurities o
crystalline phases was supported by various arguments.18

Mössbauer spectroscopy is one of the most effici
techniques in studies of atomic and magnetic structure
quasicrystals containing Fe atoms. This topic was discus
in several recent reviews.3,4,12This paper reports on magnet
measurements and Mo¨ssbauer spectroscopy studies of nov
Al702xBxPd302yFey ferromagnetic quasicrystals containin
iron.

2. EXPERIMENT

We attempted to fabricate quasicrystals of vario
Al702xBxPd302yFey compositions. Icosahedral quasicrysta
were produced by arc melting of high-purity initial comp
nents, namely Al~99.999 wt. %!, B ~99.9 wt. %!, Pd ~99.9
wt. %!, and Fe~99.995 wt. %! in purified argon atmosphere
The melt was rapidly quenched by pouring it onto a cop
roller with a diameter of 15 cm rotated at 6000 rpm. X-r
diffraction patterns were recorded using an x-ray tube wit
rotating copper anode~we used theKa line, the tube was
operated at 50 kV and 200 mA! with a graphite monochro-
mator using the~002! reflection. Magnetization was mea
sured by an MPMS-5 Quantum Design SQUID magnetom
ter in the temperature range 5 to 400 K in a magnetic fi
Hext of up to 5.5 T. Electrical resistivity of some of th
samples was measured in the temperature range 4.2–30
Mössbauer spectra of57Fe nuclei were recorded in the tem
perature range 4.2–400 K using conventional spectrome

8008$10.00 © 1997 American Institute of Physics
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operating in the transmission configuration at constant ac
eration. The57Co~Rh! gamma-ray source was at room tem
perature. Measurements at temperatures 4.2 to 295 K w
performed in a helium-flow cryostat of Oxford Instrumen
CF-506 type, and at 295–400 K in a VF-1000 vacuum ov
of Austin Instruments Inc. The effective thickness of o
absorbers was estimated to be;0.08.19 This means that in
analyzing our spectra we could use the ‘‘thin-absor
approximation.’’19 All the values of the Mo¨ssbauer isome
shift are given in the paper with respect to metallic iron
room temperature.

3. RESULTS AND DISCUSSION

3.1. Formation and stability of quasicrystalline phases

We have succeeded in obtaining the Al70Pd20Fe10 single-
phase quasicrystal of the Al70Pd302yFey system and a simila
Al70Pd20Fe8Mn2 compound, in which some iron atoms we
replaced with manganese. In addition toi -QC phase,
Al70Pd15Fe15 contained a fraction of the crystalline phas
Several single-phasei -QCs, however, were fabricated by r
placing some aluminum atoms with boron. We plotted
phase diagram for the Al702xBxPd302yFey system and found
that compounds with the single-phase icosahedral struc
were formed in the region 5,x,10, 10,y,20 ~Fig. 1!. In
particular, we fabricated Al62.5B7.5Pd302yFey single-phase
i -QC aty512.5, 15 and 17.5.

X-ray diffraction patterns of these materials are shown
Fig. 2. All the reflections are identified as icosahedral pea
according to Elser’s scheme20,21 suggested for identification
of icosahedral quasicrystalline phases. This means tha
entire sample is composed of a single phase, and its struc
can be described as a six-dimensional face-centered icos
dral quasilattice. According to Elser,20 the quasilattice con-
stantaR is defined as the length of edges of rhombohed
cells making up Penrose’s three-dimensional tiling. We
rived from X-ray diffraction patterns ofAl62.5B7.5Pd15Fe15 the
value 2u542.3° for the intense reflection with the indice

FIG. 1. Regions of the composition diagram of the Al–B–Pd–Fesystem
where single-phase icosahedral quasicrystals occur: (d) only single icosa-
hedral phase; (s) crystalline phase and/or decagonal quasicrystall
phases coexist with the icosahedral phase, the icosahedral phase being
nant.
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(422222) ~Fig. 2! characterized by the relatio
Q10000054pl21sinu.20 By using the equation
Q100000aR513.308, which applies to the face-center
icosahedral structure,20,21we obtainedaR54.5217 Å.

We have also studied transformation of thei -QC phase
to equilibrium crystalline phases. The Al62.5B7.5Pd15Fe15 qua-
sicrystal was annealed at a fixed temperatureTa ranging be-
tween 400 and 1000 K for two hours, and after each ann
stage, x-ray diffraction patterns and Mo¨ssbauer spectra wer
recorded. We have found that no phase transformations
cur atTa<800 K. At annealing temperatures of up to 100
K, the i -QC phase starts to decompose into crystall
phases. From the x-ray data, these phases were identifie
Al–Fe, Fe2B, and FeB. The Mo¨ssbauer spectra of these cry
talline phases are radically different from those of the qua
crystalline phase, so they can be used as an additional te
the sample phase composition.

3.2. Magnetic measurement data

Curves of magnetization versus magnetic field,s(H),
are given in Fig. 3. In strong magnetic fields, the curves
almost saturated, and they show the typical ferromagn
behavior of all icosahedral compositions. Hysteresis prop
ties of magnetization typical of the ferromagnetic state w
observed at all temperatures up to the Curie pointTC .

18 We
have found that the saturation magnetizationss increases
with the concentration of Fe and B~Fig. 4!. The values of
ss are equal for ribbon and powder samples. However,
values ofss and TC for samples of identical composition

mi-

FIG. 2. X-ray diffraction patterns of Al702xBxPd15Fe15 icosahedral quasi-
crystals.
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fabricated in the same conditions but at different times
slightly different. In particular, ss and TC for the
Al62.5B7.5Pd15Fe15 samples measured in this work are diffe
ent from the results of Ref. 18. The temperature depende
of magnetization~Figs. 5 and 6! are very complicated and i
is difficult to find a proper fitting model which is valid
throughout the studied temperature range. For rough est
tion of the Curie temperature, we used the linear extrap
tion of the s2(T) curves obtained by measuring the fiel
cooled magnetization. The resulting Curie temperat
increases with the Fe content, but decreases with the con
of boron ~see Table II and inserts in Figs. 5 and 6!.

Ferromagnetic properties and an increase in the ma
tization with the boron concentration were also detected
the Mn-analog of our quasicrystals, i.
Al 702xBxPD15Mn15,

17 although the B concentrations a
which single-phase quasicrystals exist are different for th
two systems. The ferromagnetism of Al702xBxPd15Mn15 qua-
sicrystals has been explained in terms of magnetic Mn–
clusters, whereas the role of B is to enhance the magn
coupling among the Mn–Mn pairs due to Mn–B bondi
and an increase in the cluster size.17

FIG. 3. Magnetization of Al702xBxPd302yFey quasicrystals with various
compositions versus magnetic field at 5 K:~1! x57.50, y517.5; ~2!
x510.0, y515.0; ~3! x58.25, y515.0; ~4! x57.5, y515.0; ~5! x56.25,
y515.0; ~6! x55.0, y515.0; ~7! x53.75,y515.0; ~8! x57.50,y512.5.

FIG. 4. Saturation magnetizationss of the Al702xBxPd302yFey quasicrystals
at 5 K as afunction of the iron concentration~at a fixed boron concentration
x57.5) and of the boron concentration~at a fixed iron concentration
y515).
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3.3. Analysis of Mo¨ssbauer spectra

Typical 57Fe Mössbauer spectra of Al702xBxPd302yFey
icosahedral quasicrystals are shown in Fig. 7. At low te
peratures, the spectra contain an intense central compo
typical of the nonmagnetic state of Fe atoms in quasicrys
and a highly split component of lower intensity. The tem
perature dependence of the spectrum shape indicates tha
less intense component belongs to a subspectrum due t
magnetic hyperfine interaction. This means that a fraction
Fe atoms at low temperatures are in a magnetically orde
state. In the temperature range 4.2–250 K the magnetic
nonmagnetic components coexist. The coexistence of m

FIG. 5. Magnetization of Al702xBxPd15Fe15 quasicrystals with various boron
concentrationsx in a magnetic field of 20 Oe versus temperature. The ins
shows the Curie temperature as a function of the boron concentrationx.

FIG. 6. Magnetization of Al62.5B7.5Pd302yFey quasicrystals with various
content of irony in a magnetic field of 20 Oe as a function of temperatu
The insert shows the Curie temperatureTC as a function of the iron conten
y.

802Lyubutin et al.
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TABLE I. Parameters of hyperfine interaction derived from Mo¨ssbauer
spectra of the Al62.5B7.5Pd15Fe15 quasicrystal using various models.IS is the

re,
,
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ith
netic and nonmagnetic components was also recently
tected in NMR spectra of55Mn nuclei in Al–B–Pd–Mn
quasicrystals.22

We have tested several models for processing meas
spectra of Al702xBxPd302yFey . Table I lists as an exampl
hyperfine parameters derived from spectra of
Al62.5B7.5Pd15Fe15 sample using different models. The no
magnetic component is fairly well described by the mode
quadrupole-splitting distribution,P(QS) ~Fig. 8a, b, and
Table I!, in which we have used Window’s approximation.23

In order to account for the asymmetry of experimental sp
tra, we have introduced a linear relation between the qu
rupole splitting QS and isomer shift IS24,25:
IS5IS01nQS, whereIS0 corresponds toQS50, andn is
the correlation parameter. We have noted, however, tha
center of gravity of the magnetic component of the spectr
is shifted to higher velocities with respect to the nonmagn
component. Therefore we have attempted to describe
nonmagnetic component by two doublets, D1 and D2, w
differentIS but closeQSvalues~Table 1!. This model yields
a good fit to the experimental spectra~Fig. 9!, but the areas
of the doublets are nonmonotonic functions of temperatu

In order to improve the resolution of the magnetic co
ponent, the nonmagnetic component~previously fitted to the
QS-distribution model! was subtracted from the measur
spectrum. Figure 9 demonstrates that this procedure all
us to resolve magnetic components clearly. The mean va
of the hyperfine parametersHhf , QS, and IS for the mag-
netic components of quasicrystals of various compositi
are listed in Table II. In what follows, we will use the mea

FIG. 7. Mössbauer spectra of57Fe nuclei in theAl62.5B7.5Pd15Fe15 quasicrys-
tal at several temperatures ranging between 4.2 and 350 K.
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value of the hyperfine magnetic field^Hhf&, which is defined
as(HiAi /(Ai , whereAi is the relative area of thei th com-
ponent.

At higher temperatures the magnetic component tra
forms to a nonmagnetic one typical of the quasicrystall

isomer shift with respect to metallic iron at room temperatu
QS5e2qQ/2 is the quadrupole splitting,Hhf is the hyperfine magnetic field
Arel is the relative spectrum area,G is the half-maximum linewidth,Mi are
magnetic sextets,Di are paramagnetic doublets,^M & and^D& are the mean
values for the magnetic and nonmagnetic components

T, IS, QS, Hhf, Arel, G,
K M ,D mm/s mm/s kOe % mm/s x2 Model

^D& 0.340 0.503 – 88.0 0.280 2.304 1
^M & 0.512 20.069 95.5 12.0 0.334

D 0.368 0.495 – 87.7 0.454 6.393
M1 0.514 20.067 105.6 5.4 0.351 2

4.2 M2 0.528 20.107 85.5 6.9 0.250

D1 0.398 0.526 – 52.5 0.369 2.148
D2 0.256 0.425 – 35.5 0.415 3
M1 0.509 20.054 106.6 4.9 0.342
M2 0.515 20.084 85.9 7.1 0.330

293 D1 0.399 0.417 – 18.2 0.310 2.314 4
D2 0.213 0.445 – 81.8 0.429

350 D1 0.368 0.395 – 20.0 0.241 2.269 4
D2 0.187 0.439 – 80.0 0.385

^D& 0.210 0.454 – 100.0 0.280 2.191 5

Note: 1 is the fitting model with a distributionP(QS) of quadrupole split-
tings for the central, nonmagnetic component of the spectrum and wi
mean hyperfine magnetic field̂Hhf& for the magnetic component of the
spectrum; 2 is the fitting model based on one asymmetric paramag
doublet and two magnetic sextets; 3 is the fitting model with two symme
doublets and two sextets; 4 is the fitting model with two symmetric doub
~at 293 K the area of the magnetic components is;0.4% and can be ne-
glected!; 5 is the model with the distributionP(QS).

FIG. 8. Mössbauer spectra of theAl62.5B7.5Pd15Fe15 quasicrystal at~a! 350 K
and~b! 4.2 K. The experimental spectra are approximated by the model w
a distribution of quadrupole splittingP(QS). The inserts showP(QS) for
the paramagnetic components of the spectra.
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phase, and no additional lines due to extra phases are
tected. This conclusion can be tested to high accuracy ow
to the high sensitivity of thex2 factor to the fitting proce-
dure, and this is an additional argument against the pres
of extra iron phases in Al702xBxPd302yFey .

3.4. Comparative magnetic and Mo ¨ssbauer parameters in
quasicrystals and related amorphous and crystalline
materials

An important point is comparison of macromagne
characteristics and hyperfine parameters of Mo¨ssbauer spec

FIG. 9. Mössbauer spectra of the Al62.5B7.5Pd15Fe15 quasicrystal at~a! 330 K
and~b! 4.2 K. ~c! The spectrum after subtraction of the paramagnetic co
ponent in the form of theP(QS) distribution from the experimental spec
trum recorded at 4.2 K. The experimental data are approximated by~a! two
symmetric doublets,~b! two doublets and two magnetic sextets, and~c! two
magnetic sextets.

TABLE II. Parameters of hyperfine interaction for the magnetic compon
of the Mössbauer spectrum of Al702xBxPd302yFey icosahedral quasicrysta
at T54.2 K. IS is the isomer shift with respect to metallic iron at roo
temperature,«5e2qA/4 is the quadrupole shift,^Hhf& is the mean hyperfine
magnetic field,Arel Am /Atot is the relative area of the magnetic compone
The Curie temperatureTc and saturation magnetizationss are derived from
magnetic measurements,meff is the magnetic moment per Fe atom.

IS, «, ^Hhf&, Arel , TC , ss , meff

x y mm/s mm/s kOe % K emu/g (mB)

5.0 15 0.516~5! 20.097~5! 97.5~5! 14.1~5! 304 4.3 1.55
10.0 15 0.502~5! 20.062~5! 96.4~5! 14.3~5! 258 7.2 2.50
7.5 12.5 0.520~5! 20.087~5! 95.0~5! 10.0~5! 247 3.6 1.86
7.5 15.0 0.508~5! 20.082~5! 95.3~5! 12.3~5! 287 5.8 2.37
7.5 17.5 0.497~5! 20.068~5! 95.5~4! 14.1~5! 294 7.8 2.69
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phous and crystalline materials. The center shift of the Moss-
bauer spectrum,CS, andHhf are functions of temperature
At T.0 CS includes the isomer shiftIS and the second-
order Doppler shift, whereasHhf can change owing to relax
ation effects. Therefore parameters of different mater
should be compared at the same temperature close to 0 K
the Al–Fe, Al–B–Fe, Al–Pd–Fe, and Al–B–Pd–Fesys-
tems, we have found neither crystalline nor amorphous co
pounds with values ofIS, Hhf , andTC close to those mea
sured in the studied quasicrystals. It is known, in particu
that the iron solubility in the face-centered metallic alum
num is very low, and at large Fe concentrations the so
solution of Fe and Al coexists with the Fe4Al13 compound.

26

In both Fe–Al dilute solution and Fe4Al13, iron atoms are
nonmagnetic, andIS(4.2 K)'0.6 mm/s and 0.12 mm/s
respectively.26 Given these parameters, the presence of th
phases in the studied quasicrystals is out of the question

Al70Pd20Fe10 ~Ref. 5! and Al70Pd16Fe14 ~Ref. 6! quasic-
rystals are nonmagnetic at temperatures above 4.2 K. Th
fore the ferromagnetic properties of Al702xBxPd302yFey qua-
sicrystals, which contain boron, are probably due to lo
bonds between Fe and B, as in Mn-bearingi -QC.16,17 The
hyperfine Mössbauer parameters and temperatures of m
netic ordering in amorphous and crystalline Fe–B co
pounds of various compositions were studied in detail
Chien and co-workers.27–29

There are three crystalline Fe–B compounds, nam
FeB, Fe2B, and Fe3B. Their values ofHhf at 4.2 K andTC
equal~131 kOe, 598 K!, ~242 kOe and 252 kOe, 1015 K fo
two sites in the lattice!, and ~242 kOe, 284 kOe, and 30
kOe, 800 K for three sites in the lattice!.27 It is obvious that
these values ofHhf andTC in crystalline materials are nota
bly higher than in Al702xBxPd302yFey quasicrystals~Table
II !. The crystalline FeB has the parameterHhf~4.2 K!5131
kOe close to that of quasicrystals, but its isomer sh
IS~4.2 K!50.37 mm/s is considerably lower thanIS~4.2 K!
50.51 mm/s typical of magnetic type Fe atoms in quasicr
tals ~Table II!. In the crystalline Fe2B the value ofIS~4.2 K!
is even lower (;0.22 mm/s!. Thus, the ferromagnetism de
tected in Al702xBxPd302yFey icosahedral quasicrystals is no
caused by crystalline Fe–B inclusions in the studied mat
als.

In the FexB1002x amorphous system,28 we have found
the composition Fe45250B55250 with the parametersHhf and
TC close to those in the studied quasicrystals, but the par
eterIS~4.2 K! in amorphous materials is much lower than
the quasicrystals. In this system, the amorphous Fe47B53

compound has the highestIS~4.2 K!'0.33 mm/s,28 which is,
nevertheless, considerably lower than in quasicrystals. M
over, it is well known that FexB1002x amorphous alloys with
x<50 can be fabricated only by the sputtering method,28 but
cannot be produced by the melt quenching technique use
our experiments. In actuality, we could not find any signs
amorphous phase in x-ray diffraction patterns~Fig. 2!. Thus,
we have come to the conclusion that ferromagnetism
icosahedral Al702xBxPd302yFey is an inherent property of the
quasicrystalline phase, and local atomic configuratio
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around magnetic Fe atoms in thesei -QC might be similar to
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those in the Fe45250B55250 amorphous phase.

3.5. Electronic properties

Our analysis of Mo¨ssbauer spectra indicates that ir
atoms in Al702xBxPd302yFey i -QC are distributed among
two types of lattice sites, magnetic and nonmagnetic, and
to 15% of iron atoms are magnetically ordered at low te
peratures. The average value ofIS~4.2 K! for nonmagnetic
iron atoms is 0.34 mm/s, which is typical of mo
quasicrystals,3–5,12 whereas this parameter of magnetic ir
atoms is notably higher~0.51 mm/s!. In the general case, a
increase inIS indicates a lower density ofs-electrons at iron
nuclei, and this implies that the material becomes less me
lic and more insulating. Our measurements of t
Al62.5B7.5Pd15Fe15 resistivity in the 4.2–300 K range yielde
;331023V•cm. This value is two or three orders of ma
nitude higher than that of metallic iron and close to Mot
minimal conductivity;200 (V•cm)21. A material with a
lower conductivity becomes insulating at 0 K. This sugge
electronic localization in quasicrystals.30 The higher value of
IS for magnetic iron atoms is consistent with the concept
electron localization at these sites and it may correlate w
appearance of the magnetic state in these sites. We
found out that the temperature dependencies of isomer s
of magnetic and nonmagnetic iron atoms are similar,
cannot be described in the Debye approximation.

Previously8,31–33an assumption about two types of la
tice sites for transitional atoms ini -QCs was made. The di
mension of a nonmagnetic site is smaller than that of a m
netic one. The presence of two types of sites can be ascr
to the intrinsic disorder typical of icosahedral quasicrysta15

and follows from the general principles of the theory of e
ergy bands in transitional metals and their alloys.34,35 This
concept has been confirmed by some experiments.11–15,32

The presence of two types of iron sites
Al702xBxPd302yFey quasicrystals is directly confirmed no
only by the coexistence of magnetic and nonmagnetic ato
but also by the observed values of isomeric shifts. Table
and II clearly demonstrate that, irrespective of the data p
cessing technique, the parameterIS for magnetic atoms is
much higher than for nonmagnetic ones. This means tha
density ofs-electrons at57Fe nuclei is lower for magnetic F
atoms. This may be caused~a! by a chemical effect of dif-
ferent local atomic environment and/or~b! by a larger atomic
volume of magnetic sites as compared to that of nonmagn
ones. The comparison with the FexB1002x amorphous system
indicates that the mechanism~a! cannot provide the observe
effect, hence the mechanism~b! is the most probable. Tabl
II shows that the parameterIS in Al702xBxPd302yFey quasi-
crystals in the region 5<x<10, 12.5<y<17.5 is almost
constant. This indicates that the iron–ligand bond in th
compounds has a similar character.

3.6. Magnetic properties derived from Mo ¨ssbauer spectra

The hyperfine magnetic fieldHhf changes slowly with
both x and y ~Table II!, and its average saturation value
approximately 96 kOe. This low value of^Hhf& can be as-

805 JETP 84 (4), April 1997
2
-

l-
e

s

f
h
ve
fts
t

g-
ed

-

s,
I
-

he

tic

e

cribed to the low magnetic moment of Fe atoms, which
typical of quasicrystals. The fieldHhf at an iron nucleus in a
metallic system can be expressed as37,38

Hhf5amFe1bm, ~1!

where the first term on the right is the local contribution
the electronic magnetic momentmFe of this iron atom, and
the second term is the contribution of conduction electro
spin polarized by neighboring magnetic moments. The fi
term is usually negative, and the second can be either n
tive or positive, depending on the magnetic structure a
type of interaction.39 The typical value of the constanta for
most alloys is2142 kOe/mFe.

37,38Given that the conductiv-
ity of the studied quasicrystals is close to the meta
dielectric transition, we neglect the parameterb on the right
of Eq. ~1!. Then using the relationuHhfu5142mFe and the
experimental valuê Hhf&'96 kOe for the material with
x57.5 and y515, we obtainmFe50.68mB . This result,
however, is much lower than the magnetic moment per i
atom meff52.37mB derived from our magnetic measure
ments~Table II!. Similar results were obtained by Shinoha
and co-workers22 for manganese magnetic moments
Al64B6Pd15Mn15 i -QC. The value ofmMn derived from the
NMR frequency of 55Mn was notably different from the
value derived from magnetization measurements. This pr
ably means that Eq.~1!, derived for metals, is not valid fo
highly resistive quasicrystals. The values ofmeff listed in
Table II were derived from the values ofss under the as-
sumption that only a fractionArel (%) of all Fe atoms are
magnetic, whereArel5Am/Atot is the relative area of the
magnetic component. In the Al62.5B7.5Pd302yFey system, we
have detected correlation between the values ofss and
Arel , which indicates an increase in the magnetic-phase
ume with the Fe content.

FIG. 10. ~a! Mean hyperfine magnetic field̂Hhf& and ~b! relative area
Am /Atot of the magnetic component of the Mo¨ssbauer spectrum of the
Al62.5B7.5Pd15Fe15 quasicrystal as functions of temperature. Solid lines
theoretical curves calculated by~1 and 2! Brillouin functions withS55/2
and S51, respectively,~3! model of collective spin excitations, and~4!
model of critical indices forb51 in the spin-glass approximation.
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Figures 10a and 10b show the field^Hhf& and areaArel
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as functions of temperature for Al62.5B7.5Pd15Fe15. We have
found thatArel does not abruptly drop to zero at the Cur
temperature. In the range 4.2–80 K this area is appr
mately constant, but above 80 K it gradually decreases w
temperature and vanishes nearTC ~Fig. 10b!. The curve of
^Hhf& versus temperature also has a peculiar shape~Fig.
10a!.

We tried to describe the curvêHhf&5 f (T) using vari-
ous theoretical models, such as the model of critical indic
Brillouin functions, two-dimensional Ising model, spin-gla
model, and collective-spin-excitations model, but none
these models could approximate the experimental cu
throughout the studied temperature range. The features
scribed above, however, suggest that the magnetic prope
of thesei -QCs can be described in terms of superparam
netic behavior of small magnetic particles or magnetic cl
ters.

3.7. Superparamagnetic approach

The behavior of an assembly of small magnetic partic
is governed by the particle volumeV and depends on th
relaxation timet40:

1/t5 f 0 exp@2KV/kT#, ~2!

whereK is the anisotropy constant andf 0 is a frequency
factor approximately equal to 109 s21.41,42 The parameter
K can be derived from magnetic measurements18 using the
relationship

Hc5~2KMs!@12~25kT/KV!1/2#,

whereHc is the coercivive force andMs is the saturation
magnetization.40 For the quasicrystals withx57.5 and
y515 at 4.2 K we haveMs54.2 emu/g andHc51200 Oe.18

From these data we have in the low-temperature approxi
tion K55.383103 erg•cm23.

With certain assumptions, we can derive from Mo¨ss-
bauer spectra the particle size in this sample. The chara
istic time in Mössbauer experiments is the timetL of Larmor
precession in the fieldHhf , and atHhf'100 kOe it equals
;0.531028 s. From Eq.~2! we obtainV'1.6 kT/K. On the
other hand, there is a so-called blocking temperatureTb for
particles of a constant size. Below this temperature, the m
sured sample magnetization is stable, and Mo¨ssbauer spectra
yield the hyperfine magnetic splitting. For uniaxial particl
Tb'KV/1.6k. The parameterTb can be evaluated from th
curve of Arel5 f (T). Figure 10b shows thatArel is almost
constant in the temperature range of 4.2–80 K and drop
higher temperatures. By takingTb

min580 K for the lowest
blocking temperature, we can estimate the minimal volu
of magnetic particles,Vmin'3.30310218 cm3, which corre-
sponds approximately to the particle diameterDmin'185 Å.
The temperature at whichArel50 can be defined as the max
mal blocking temperatureTb

max. It corresponds to the maxi
mum volumeVmax of particles tested in a Mo¨ssbauer experi-
ment. We have derived from the curveArel5 f (T) the values
of Tb

max5300 K andVmax'1.24310217 cm3, which corre-
sponds toDmax'290 Å.
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minimum particle size of about 185 Å. Given the dimensi
of the ‘‘unit cell parameter’’ quoted aboveaR.4.52 Å, a
particle of the minimum size contains about 33104 ‘‘unit
cells,’’ and this particle can be treated as bulk mater
Moreover, it turned out thatTb

max value is very close to the
Curie temperature of this material~305 K!. All this means
that its magnetic properties can be described in the bulk
terial approximation.

3.8. Temperature dependence of hyperfine magnetic field

Figure 10a demonstrates that the experimental cu
^Hhf&5 f (T) cannot be approximated by the Brillouin func
tions, but it can be described by two linear laws, one in
low-temperature range 4.2–150 K and the other in the ra
160–300 K~Fig. 10a!. Morup et al.43,44 showed that in iso-
lated particles with uniaxial anisotropy, in the low
temperature range of collective spin excitations
kT/KV,0.1 ~which corresponds tot.1027 s in Mössbauer
experiments!, the observed dimensionless hyperfine fie
should be described by a linear function of temperature:

Hobs/H0512kT/2KV. ~3!

We have found that in the quasicrystalline sample w
x57.5 andy515 the curve of̂ Hhf&5 f (T) can be approxi-
mated in the range 4.2–150 K by the linear function given
Eq. ~3! with a slope of20.07473 kOe/deg~curve3 in Fig.
10a!. With the experimental value ofK, Eq. ~3! yields an
estimate of the particle volume,V51.65•10217 cm3. It is
interesting that this independent estimate is close toVmax

quoted in Sec. 3.7. This agreement supports the applicab
of the cluster approximation to magnetic behavior of t
studied materials.

In the high-temperature range 160–300 K, curve4 in
Fig. 10a corresponds to the model of critical indice
Hobs/H05(12T/TN)

b, whereb'1, which is typical of ma-
terials with spin-glass~SG! ordering. A linear decrease o
magnetization atT.TSGwas proposed for concentrated sp
glasses on the basis of theoretical concepts.45–47 The theory
assumes existence of magnetic clusters of various sizes
interaction between the clusters depending on the magn
phase concentration.

Similar behavior^Hhf&5 f (T) was observed in othe
Al702xBxPd302yFey compounds. Thus, the magnetic prope
ties of these materials can be understood in terms of sm
magnetic particles or magnetic clusters. A similar interpre
tion was suggested for ferromagnetic properties
Al702xBxPd15Mn15.

17 Feasibility of clustering of Mn atoms
in icosahedral and decagonal Al–Mn quasicrystals was a
analyzed by Machadoet al.48,49

4. CONCLUSIONS

We have discovered a new system of iron-bearing ico
hedral quasicrystals, i.e., Al702xBxPd302yFey (5,x,10 and
10,y,20) with ferromagnetic properties,TC ranging be-
tween 280 and 340 K, and maximum magnetizati
ss'7.5 emu/g. Magnetic measurements indicate that
quasicrystals are inhomogeneous magnetic systems. M¨ss-
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bauer spectra show that only about 12–15% of all iron atoms
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have a magnetic moment, and their magnetic behavior ca
interpreted in terms of large magnetic Fe clusters with a s
of 185–290 Å. A cluster of such a size contains abo
43104 rhombohedral ‘‘unit cells’’ that make up the Penro
three-dimensional tiling, and it can probably be treated a
bulk material.

None of the known crystalline or amorphous materi
has magnetic or Mo¨ssbauer parameters close to those
these quasicrystals. Only theFe;50B;50 amorphous alloy has
close values ofTC andHhf , but its isomer shift is different
from that of the quasicrystals. The saturation magnetiza
of these quasicrystals increases with the concentration
both Fe and B, but the hyperfine magnetic field and isom
shift values are almost constant. This implies that both
local crystal-chemical and magnetic environment of iron
oms in a cluster do not change, and only the cluster s
and/or number of clusters change with the content of Fe
B. Bonding between Fe and B, similar to that in amorpho
Fe;50B;50, is thought to be mainly responsible for the cr
ation of the local magnetic moment at Fe atoms.

Two circumstances which can lead to coexistence
magnetic and nonmagnetic atoms in quasicrystals have
discussed in the literature, namely, the existence of spe
large and small aluminum ‘‘caves’’ for atoms of transitio
elements on the one hand, and the continuous distributio
interatomic distances on the other~see Refs. 3 and 4 an
references therein!. The larger value of isomer shift for F
atoms at magnetic sites, as compared to nonmagnetic s
found in our experiments, is in agreement with the conc
of a larger atomic volume of magnetic sites.36

We are indebted to T. V. Dmitrieva, D. M. Lin, and Ch
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Emergence of heterophase structures near phase transitions in photoferroelectric

n.
materials
R. F. Mamin
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Kazan, Russia
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The present study shows that under intense illumination, various spatially nonuniform states may
emerge near structural phase transitions in systems with semiconducting properties.
Different traveling and stationary autosoliton states are studied, and so is a periodic heterophase
structure with alternating para- and ferroelectric phases, which results from a redistribution
of electrons on trapping levels. The problem is solved for the one-dimensional case. The emergent
behavior is related to the dynamics of the ferroelectric semiconductor as a whole and is an
example of synergistic behavior. ©1997 American Institute of Physics.
@S1063-7761~97!02504-3#
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Lately there has been an upsurge of interest in vari
fields of science in studies of complex systems consisting
several subsystems.1,2 On the one hand, this is due to th
realization that systems consisting of two or more s
systems may have properties that cannot be attributed to
subsystem separately. On the other hand, studies of com
systems in various fields of science have revealed qua
tively similar motives in the behavior in the entire range
emergent new qualities. In particular, it appears that n
states emerge when there is an influx of energy. All th
facts have led to the development of a new scien
synergetics,1,2 devoted to establishing the laws governing t
emergence of new qualities and to developing methods
analyzing complex systems. One example of complex s
tems is presented by ferroelectric semiconductors, a clas
substances manifesting new properties related to the inte
tion of the electron and lattice subsystems.

Another interesting problem in this connection is t
study of heterophase structures and their relationship to
fects in crystals.3–12 The objects that were investigated i
clude large-scale periodic structures emerging because o
effect of elastic stresses in the presence of random field
the local transition temperature6 and heterophase state
emerging because of the screening of polarization by
electrons in heavily doped semiconductors.7,8

A special line of research deals with the situation
which heterophase states emerge as a result of external
mination. Bursianet al.3 and Baryshnikovet al.4 studied the
effects when a periodic heterophase structure is forme
the field of intense laser radiation. The formation of suc
structure is directly related to the periodic electric field of t
laser light. Another situation emerges when crystals are i
minated by ordinary white light.12 In this case periodic struc
tures also emerge. But since in the given situation the ex
nal agent~light! is characterized by no distinct periodicity
the formation of structures and their spatial size and per
icity are due to the properties of the given crystals as co
plex systems and to the interaction between the constit
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The present study is devoted to the case where the l
possesses no distinct periodicity~white light!, so that the
nonuniform states emerge because of the cooperative ef
of the electron and lattice subsystems in ferroelectric se
conductors. The result of illumination of the semiconducto
is the generation of conduction electrons, which in turn
the trapping levels and hence change the balance in the c
tal. Such an approach corresponds to the situation studie
Refs. 11 and 12.

As is known, in ferroelectric semiconductors near ph
tostimulated phase transitions there is strong interaction
tween the electron and lattice subsystems.13 This manifests
itself in such effects as vibrations of the phase boundary
SbSI ~Ref. 14! and order-parameter oscillations in proust
~Ag3AsS3).

15 The dynamic behavior of ferroelectric sem
conductors and the synergistic behavior of the given sys
were established on the basis of the model suggested in
16. But in addition to the dynamic states mentioned earlie
synergistic system may have nonuniform states related to
correlation of the behavior of the interacting subsystems
space.17,18So-called autosoliton states may be formed.17 The
evolution of an autosoliton may lead to the formation of
periodic heterophase structure with a period determined
the diffusion length of the electron subsystem. This could
the mechanism of formation of a periodic heterophase st
ture observed in photoferroelectric materials.12

The present work studies the formation of various h
erophase structures in ferroelectric semiconductors unde
tense illumination. The study is done for the one-dimensio
case.

2. THE MODEL AND THE METHOD OF BUILDING THE
SOLUTION

Cooperataive effects in the electron and lattice s
systems in ferroelectric semiconductors manifest themse
in the shift in the transition temperature as the concentra

8086$10.00 © 1997 American Institute of Physics
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energy intervals of the electron spectrum as the order par
eter varies.16

We write the equation describing the dynamics of t
order parameterh in the form of a Landau–Khalatnikov re
laxation equation:

dh

dt
52GF ~a1am!h1bh31gh52d

]2h

]x2 G . ~1!

Herea, b, g, andd are the coefficients in the expansion
the lattice part of the thermodynamic potential in powers
the order parameter and its derivatives (a5a8(T2T0)), G
is a kinetic coefficient, and the termam determines the shif
of the transition temperature due to electrons on trapp
levels ~traps!.

The equation that describes the dynamics of the conc
trationm of the electrons on trapping levels and depends
the order parameter has the following form:16

dm

dt
5D

]2m

]x2
2Q~h,m!, ~2!

Q~h,m![2J~M2m!1mA~h!,

J5gnn0 , A~h!5gnNc expS 2
u01ãh2

kT D .
Here J is proportional to the illumination intensityI , n0 is
the concentration of conduction electrons, withn0 } I , M is
the concentration of trapping levels,gn is a kinetic coeffi-
cient, Nc is the density of states in the conduction ban
u5u01ãh2(x) is the energy interval between the bottom
the conduction band and the trapping levels, which depe
on the order parameter,16 andD is the diffusion coefficient.

Let us examine the possibility of emergence and the
namics of nonuniform states caused by the redistribution
electrons in the traps. Here we are dealing with a typi
synergistic system consisting of two interacting subsyste
~the lattice subsystem and the electron subsystem! in the
presence of an energy influx. Nonuniform states eme
when the only stable state in the system becomes uns
because of illumination. The existence of nonuniform sta
and the distribution of the order parameter in such states
directly related to the distribution of the trapped electrons
space.

The dynamics of the system is determined by the f
that, first, the characteristic times of variation of the ord
parameterh and the electron concentrationm at the trapping
levels differ substantially (e5th /tm!1) and, second, the
characteristic diffusion lengths for these variables also di
substantially (l5Lh /Lm!1). This makes it possible to
solve the problem by separating fast and slow processes

In the region of rapid variations of the order paramete
the phase boundary, there exists an exact solution11,18 for the
order parameterh with a constant electron concentration
the trapping levels:

h2~j!5
h0
2

11exp~2j/D!
,
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D5S 2
4dg

3b2 D 1/2, h0
252

3b

4g
, ~3!

where j is measured from the center of the correspond
domain wall. The electron concentration at the trapping l
els in the vicinity of a static domain wall,m0, is given by

m05
3b2216ga

16ga
. ~4!

The value of the order parameter in the slow-moti
region depends on the electron concentration at the trap
levels at the given point and can be found by solving Eq.~1!
by employing them-dependence of the stationary value
the order parameter, which in the paraelectric phase is z
and in the ferroelectric phase is given by

h2~m!5
2b1Ab224g~a1am!

2g
~5!

for a given value of the electron concentration at the trapp
levels.

The value ofm(x) in the slow-motion region can be
found from diffusion equations. These equations are sim
to the equation of motion of a particle in the potential fie

U152JSM2
m

2 Dm1
m2

2
A~0! ~6!

in the region where the order parameter is zero and in
potential field

U35JSM2
m

2 Dm
2

g2A~h~m!!

4a2e4
@y22~y11!~2amge223!#, ~7!

y5e~2gh2~m!1b!, e5
ã

2kT
,

in the region where the order parameter is nonzero.
In nonequilibrium conditions, which emerge when the

is an influx of energy, the system may become metasta
and unstable in the uniform case. The possible unsta
states are depicted in Fig. 1 in the form of intersections
zero-isoclines of the uniform system. In the nonunifor
case, however, these unstable states may manifest th

FIG. 1. Relative positions of the zero-isoclines of Eqs.~1! and~2! ~curves1,
2, and3 correspond toṁ50) for different values ofa. The cases1 and3
correspond to uniform metastable states, and the case2 corresponds to an
uniform unstable state.
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selves in the form of spatially nonuniform distributions
the parameters of the system: the order parameter and
electron concentration at the trapping levels.

Now let us describe the possible nonuniform states
can appear because of intense illumination. Such illumi
tion may lead to the formation of nonuniform localize
states, or autosolitons, and nonuniform states in the en
bulk with periodic phase alternation. Autosolitons emer
when under illumination the only steady state in the syst
becomes metastable. Traveling and static autosolitons
emerge in such a system.

3. A TRAVELING AUTOSOLITON

As noted earlier, a traveling autosoliton may emer
when the only steady state of the system becomes metas
under illumination. Such an autosoliton is the combination
a traveling domain~region! of one phase in another~a
ferroelectric-phase domain in a metastable paraelec
phase, as depicted in Fig. 2, or a paraelectric-phase dom
in a metastable ferroelectric phase! and the related moving
spatial nonuniformity of the electron concentration at t
traps.

A traveling autosoliton emerges in the following way. A
a certain point in the sample, say, at the sample’s bound
as a result of an external agent or fluctuations there form
region of the opposite phase, which begins to propag
since the state is metastable under variations of the o
parameter. In the region of the newly formed phase the e
tron concentration at the traps changes, with the change
creasing with the distance from the wavefront of the mov
phase boundary, until the phase becomes unstable for
given value of the electron concentration at the traps. A
result the system goes back to the initial phase and the t
ing edge of the domain in the form of a moving domain w
begins to emerge. Initially the back domain wall moves w
a greater velocity than the front wall. But in the process
‘‘pursuit’’ the velocity of the back wall decreases and b
comes equal to that of the front wall. The result is a sta
autosoliton moving with a constant velocity. The trailin
edge of the domain is followed by an autosoliton tail in t
form of a relaxation of the electron concentration at the tr

FIG. 2. Distributions of the order parameterh and the concentrationm of
the electrons on the trapping levels in a traveling autosoliton with
ferroelectric-phase domain in a metastable paraelectric phase, in a m
coordinate system (j5x2vt, wherev is the velocity of the traveling auto-
soliton!.
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rameter in the case of a metastable ferroelectric phase.
In the region of rapid variations of the order parameter

the phase boundary withm0 ~Eq. ~4!! constant there exists a
exact solutionh(j) ~Eq. ~3!!, wherej is measured from the
center of the corresponding phase boundary in a moving
tem of coordinates (j5x2vt). The velocityv of the travel-
ing autosoliton is given by

v5v0~12A11m~m02ms!!,

v052bGAd

g
, m5

16ga

b2 . ~8!

The order parameter in the slow-motion region depends
usual on the concentration of electrons on the trapping le
at the given point: it is determined by Eq.~5! in the ferro-
electric phase and is zero in the paraelectric phase.

The values ofm(x) in the slow-motion region can be
found by solving the diffusion equations in the potent
fields ~6! and ~7!. The boundary conditions for these equ
tions are fixed by the following considerations. Directly
front of the autosoliton~at the front boundary! and far from
the back boundary of the moving autosoliton the values
the system parameters are those of a uniform steady s
hs andms , defined as the stationary solution of Eqs.~1! and
~2!. The values of the parameters at the back boundary~trail-
ing edge! of the autosoliton domain,he and me , can be
obtained by making the velocities at the front and ba
boundaries of the autosoliton domain equal:

v~me!5v~ms!, he5h~me!

~see Eq.~5!!.
The final shape of the spatial distribution of the electr

concentration at the trapping levels is fixed by numeri
integration of Eq.~2! in the moving system of coordinates
The result of such integration is depicted in Fig. 2.

4. STATIC AUTOSOLITON

A static autosoliton may emerge when as a result of
external agent or a fluctuation at defects there forms a reg
of the opposite phase and a related nonuniformity in
electron concentration at traps. If in the space of states of
system the given state lies in the attracting basin of the
tosoliton state, the system relaxes to a state with a st
autosoliton. A stable static autosoliton has certain dim
sions and is characterized by certain distributions in spac
the order parameter and the electron concentration at
trapping levels, both being determined primarily by diffusio
processes in the electron subsystem.

In the region of rapid variations of the order parameter
the phase boundary withm0 ~Eq. ~4!! constant there exists a
exact solutionh(x) ~Eq. ~3!!, wherex is measured from the
center of the corresponding stationary phase boundary.

The values ofm(x) in the slow-motion region can be
found by solving the diffusion equations in the potent
fields ~6! and ~7!. The boundary conditions for these equ
tions are fixed by the following considerations. Far from t
autosoliton the system parameters are those of the unif
steady state,hs andms , defined as the stationary solution o

a
ing
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Eqs.~1! and ~2!. The parameters at the autosoliton’s cent
hc andmc , can be obtained from the condition that the d
tribution of the concentration of electrons on the trapp
levels at the phase boundary is smooth:

E
ms

m0
Q~h~m!,m! dm1E

mc

m0
Q~h~m!,m! dm50, ~9!

whereh(m) corresponds to the value of the order parame
in the autosoliton. The halfwidthL0 of the autosoliton is

L05LE
mc

m0
G~mc ,m! dm, ~10!

G~m1 ,m2!5SA~0!

2 D 1/2F E
m1

m2
Q~h~m!,m! dmG21/2

,

and for the case of an autosoliton paraelectric-phase dom
in a ferroelectric phase has an exact solution,

L05L
2

~J11!0.5
~ l ~ms!2 l ~m0!!, ~11!

l ~m!5 ln@2~J1A~0!!~U3~m!2U3~m0!!1/22J~M2m!

1mA~0!#,

whereL is the characteristic diffusion length of the electr
subsystem (L25DA21(0)).

In the slow-motion region the distribution of the electro
concentration at the trapping levels can be found by integ
ing the stationary part of Eq.~2!:

uxu5LE
mc

m

G~mc ,m! dm for 0,uxu,L0 ,

uxu2L05LE
m0

m

G~ms ,m! dm for L0,uxu,`. ~12!

FIG. 3. Distribution of the order parameterh and the concentrationm of the
electrons on the trapping levels in a stationary autosoliton with
paraelectric-phase domain in a metastable ferroelectric phase.
,
-
g

r

in

t-

form, the final result must be obtained by numerical integ
tion. Figure 3 depicts the distribution of the order parame
h and the concentrationm of the electrons on the trappin
levels in an autosoliton for the case of a ferroelectric-ph
autosoliton in the paraelectric phase.

The autosolitons described above are stationary enti
but the parameters of the system are such (e!1 andl!1)
that, according to Ref. 17, static autosolitons may beco
pulsed autosolitons, which requires studying the system
greater detail.

5. PERIODIC HETEROPHASE STRUCTURE

Now let us examine the possibility of emergence and
dynamics of a nonuniform state in the form of a period
heterophase structure caused by a redistribution of elect
on the trapping levels. Periodic nonuniform states can o
emerge when the uniform steady state of the system beco
absolutely unstable~see Fig. 1! as a result of illumination.
Here the periodic heterophase structure and the periodic
tribution of the electron concentration at the traps emerge
a self-consistent manner. The structure of the periodic s
consists of the following elements: the regions of pha
boundaries, where the order parameter rapidly changes w
the electron concentration at the trapping levels remains c
stant, and the regions inside the domain of a single ph
where the variation of the order parameter follows t
smooth variation of the electron concentration at the trapp
levels.

The concentrationm0 of electrons on the trapping level
in the region of a static phase boundary~Fig. 4! is given by
Eq. ~4!, and the variation of the order parameterh(x) in the
region of the phase boundary withm0 constant is, as before
determined by Eq.~3!.

The order parameter in the slow-motion region is,
before, a guiding variable. Its behavior in space follows
behavior of the concentration of electrons on the trapp
levels at a given point:h5h(m) ~Eq. ~5!! for m.m0 and
h50 for m,m0.

The electron concentration at trapping levels,m(x), in
the slow-motion region can be found by solving the diffusi
equations~2!. The boundary conditions for these equatio
are fixed by the following considerations. The paramet
mb of the system at the center of a paraelectric-phase
main,hb50, are determined by the conditions at the boun
aries of the sample or by the structure at the defects.
parameters at the center of a ferroelectric-phase domainhc

andmc , can be obtained from the condition that the dist

a

et-

FIG. 4. Distribution of the order parameterh and the concentra-
tion m of the electrons on the trapping levels in a periodic h
erophase structure with phase alteration.
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E
mb

m0
Q~h50,m! dm1E

mc

m0
Q~h~m!,m! dm50, ~13!

whereh(m) ~Eq. ~4!! corresponds to the order parameter
the given point. The period of the structure,L0
(L05L11L2; see Fig. 4!, is given by

L15LE
mc

m0
G~mc ,m,h!dm,

~14!

L25LE
m0

mb
G~mb ,m,0!dm,

G~m1 ,m2 ,h!5SA~0!

2 D 1/2F E
m1

m2
Q~h~m!,m! dmG21/2

,

where L is still the characteristic diffusion length for th
electron subsystem.

The final expression for the distribution of the electr
concentration at the trapping levels can be found by integ
ing the stationary part of Eq.~2! and allowing for the bound-
ary conditions:

y5ux2L2/22nL0u

5LE
mb

m

G~mb ,m,0! dm, 0,y,L2/2 ,

y5ux2L1/22L22nL0u

5LE
mc

m

G~mc ,m,h!dm, 0,y,L1/2 . ~15!

Since Eq.~2! cannot be solved entirely in analytic form
the final result must be obtained by numerical integrati
Figure 4 depicts the distributions of the order parameteh
and the concentrationm of the electrons on the trappin
levels in a periodic heterophase structure.

6. EXISTENCE REGIONS

The region where an autosoliton can exist coincides w
the region where the only state of a uniform system beco
metastable under variations in the order parameter in co
tions of illumination. The region where a periodic structu
can exist coincides with the region of instability of all stat
of a uniform system. All these regions in the space wh
coordinates are the illumination intensity and the tempera
are bounded by lines given by the following relationship
different values of the parametersDT andP:

J~T!5J~DT,P![
~a2DT!A~P!

DT2a2aM
. ~16!

Here the temperature dependence is hidden in the vari
a ~Eq. ~1!! and the functionA(P), the latter determining the
probability of a thermal jump in Eq.~2!. The lines

J1~T!5JS 3b2

16g
,2

3b

4g D , J2~T!5JS b2

4g
,2

b

2g D ,
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J3~T!5J~0,0!, J4~T!5JS 3b2

16g
, 0D

bound the region of existence of traveling and station
paraelectric-phase autosolitons in the ferroelectric phase
ferroelectric-phase autosolitons in the paraelectric phase
spectively. The region of existence of a periodic structure
the space whose coordinates are the illumination inten
and the temperature are bounded by the linesJ2(T) and
J3(T). Figure 5 depicts the various regions of existence
these states. We see that nonuniform correlated states em
in the system in a critical manner at high enough illumin
tion levels. We also note that all these modes can eme
only when the electron and lattice subsystems have a st
effect, which is expressed by the following conditions im
posed on the interaction parametersa and ã:

aM~a8ã2b!2.4bTã~a8!2 ~17!

for the emergence of autosolitons, and

aãM@
Gb3T

gA~0!
~18!

for the emergence of periodic structures.
Figure 6 depicts the variation of the autosoliton sizeL0

with temperature in terms of the parametera under constant
external illumination (J50.6).

7. DISCUSSION

So far no phenomena have been observed in ferroele
semiconductors that could be associated with autosol
states. Apparently, no special research in observing s
states has ever been done, since the present paper is th
study in this area of research and establishes the import
and the subject of such investigations.

FIG. 5. Soliton existence regions in the space whose coordinates ar
illumination intensity and the temperature:1 and2 are the regions of exis-
tence of stationary and traveling autosolitons~1 for autosolitons with
ferroelectric-phase domains in the metastable paraelectric-phase region
2 for autosolitons with paraelectric-phase domains in the metast
ferroelectric-phase region!, and the hatched area corresponds to a perio
heterophase structure.
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In contrast to autosolitons, the mechanism of format
of a periodic domain structure may be analogous to
mechanism of formation of a similar structure observed
Grekovet al.12 in the SbSI photoferroelectric material. An
other mechanism of this phenomenon was suggested by
kin and Khmel’nitski�.11 They related this effect to a differ
ence in conduction electron concentrations near the ph
boundary. In contrast to the results of Ref. 11, in conditio
of high illumination intensities the conduction electron co
centration is uniform over the sample and is proportiona
the irradiation intensity. In addition, since the publication
Ref. 11, new experimental and theoretical data have
peared, and it now obvious that phase transitions in fe
electric semiconductors are affected mainly by the electr
in the traps rather than by conduction electrons. But even
it remains a fact that it was Larkin and Khmel’nitski� who
predicted that the size of the structure is related to the
namics of the electron subsystem in space.

The mechanism of formation of a periodic heteropha
structure suggested in the present paper has another dis
tive feature, in addition to the obvious fact that electrons
the trapping levels rather than conduction electrons play
important role in the formation of such a structure. In t
ferroelectric-phase region the electron concentration at t
is higher than it is in the paraelectric phase, a result differ
from that of Ref. 11. This is certainly a nontrivial fact, sinc
as before, an increase in electron concentration shifts
transition temperature toward lower temperatures, and in
uniform case, as a rule, the paraelectric phase correspon
a higher concentration of electrons on the trapping lev
and the ferroelectric phase to a lower concentration. I

FIG. 6. The dependence of the soliton size on the parametera: 1 corre-
sponds to an autosoliton with a ferroelectric-phase domain in the metas
paraelectric phase, and2 to an autosoliton with a paraelectric-phase dom
in the metastable ferroelectric phase. The lines with dots correspon
traveling autosolitons, and those without dots to stationary autosolit
FP stands for the ferroelectric phase,PP for the paraelectric phase, an
UP for the unstable phase. Here (b5273104, g5331010, a510219,
ã543108, M51018, T5300 K, andJ50.6).
813 JETP 84 (4), April 1997
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tically from the one suggested in Ref. 11. The emergent
havior is related to the dynamics of the ferroelectric sem
conductors as a whole and is an example of synergi
behavior.

In a real system both aperiodic domain structures a
separate domains can emerge. The mechanism of forma
of a periodic heterophase structure in real systems dep
on the mechanism of autosoliton realization. It may be
lated to a local breakdown at the border of an autosolit
where there is instability under small but finite fluctuatio
of the order parameter.17

Thus, we have studied the formation of various h
erophase structures near a photostimulated phase trans
We found that this is caused by the fact that a uniform st
becomes totally unstable. The related phenomena are lin
to the self-consistent emergence of new-phase regions an
the fact that electron concentration at trapping levels is n
uniform.
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Orbital and spin effects in the low-temperature behavior of the magnetoresistance
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An observation of the suppression of negative magnetoresistance in samples of doped CdTe that
are far from the metal–insulator transition as the temperature is lowered in the temperature
range 3–0.4 K was previously reported@N. V. Agrinskaya, V. I. Kozub, and D. V. Shamshur,
JETP80, 1142~1995!#. The results of an investigation of samples that are closer to the
transition in the low-temperature region below 36 mK are presented. It is discovered that the
samples investigated~which do not exhibit the suppression of negative magnetoresistance
at comparatively high temperatures! display this effect at low temperatures and that, as previously,
the suppression of the negative magnetoresistance correlates with the transition to conduction
via Coulomb-gap states. A plateau-like magnetoresistance feature is displayed at low
temperatures for the sample that is closest to the metal–insulator transition. The results obtained
are analyzed within existing theoretical models that take into account the role of both the
orbital and spin degrees of freedom. In particular, the low-temperature feature indicated is
interpreted as a manifestation of positive magnetoresistance caused by spin effects.
Nevertheless, it is shown within a detailed analysis supplemented by numerical calculations that
the observed suppression of the negative magnetoresistance cannot be attributed only to
the appearance of spin positive magnetoresistance. Moreover, the possibility of observing spin
positive magnetoresistance is determined to a certain extent specifically by the suppression
of the negative magnetoresistance competing with it. ©1997 American Institute of Physics.
@S1063-7761~97!02604-8#
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As has recently been shown in numerous theoretical
experimental studies, the picture of magnetoresistance
hopping conduction regime is fairly complicated and dive
and depends on numerous physical factors. The most o
ous among them is the ‘‘contraction’’ of the wave functio
of the centers in a magnetic field, which leads to posit
magnetoresistance. As was first shown by Shklovski�,1,2 this
effect is modified significantly when scattering centers
present. Another important factor is determined complet
by the scattering centers and is caused by the interferenc
various tunneling ‘‘trajectories,’’ which include subbarrie
scattering events. Since the logarithmic character of the
eraging over the different configurations stresses the confi
rations with ‘‘destructive’’ interference, suppression of t
interference contribution by a magnetic field leads to ne
tive magnetoresistance. These two factors have a very
eral character, and the competition between them determ
the observed picture of the magnetoresistance.

The special mechanisms include, in particular, the n
rowing of the impurity band in a magnetic field predicted
Raikh,3 which also leads to negative magnetoresistance
has a purely orbital character.

814 JETP 84 (4), April 1997 1063-7761/97/040814
d
a
e
vi-

e

e
ly
of

v-
u-

-
n-
es

r-

d

they can influence the interference contribution.4 The corre-
sponding mechanism operates when scattering occurs
filled centers~which, because of the statistics, should ma
the dominant contribution2!. When the spin of an electron in
a scattering center and the spin of an electron participatin
‘‘direct’’ ~without scattering! hopping are antiparallel, the
final spin states of the systems for the ‘‘direct’’ channel a
the channel with scattering are different, and interferenc
prevented. Accordingly, a sufficiently strong magnetic fie
aligns the spins and thereby eliminates the ‘‘antiparalle
configurations. Since, according to the foregoing stateme
the latter do not undergo destructive interference~and, thus,
the hopping probability is higher!, this can lead to positive
magnetoresistance.

We note that the observation of features associated w
‘‘spin alignment’’ was reported in a recently publishe
paper.5 The competition of the ‘‘spin’’ factor under consid
eration with the suppression of interference by a magn
field can significantly complicate the picture observed.4 We
note that the presence of ‘‘built-in fields’’~due to exchange
interaction!, which fix the orientations of the spins at lattic
sites, can suppress this mechanism.2
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spin effects to the magnetoresistance operates, if do
filled sites take part in the conduction along with the sing
filled and empty sites~which is possible if the Hubbard en
ergy is lower than the width of the filled part of the impuri
band!.6 In fact, the Zeeman splitting of the spin levels in
magnetic field leads to suppression of the hopping involv
doubly filled sites in sufficiently strong fields, and thus to
decrease in the effective density of states, i.e., to posi
magnetoresistance.

In addition, the type of magnetoresistance can differ
der different mechanisms of hopping conduction: hopp
between neighboring sites, variable-range hopping under
conditions of a constant density of states at the Fermi le
and similar hopping between Coulomb-gap states.

The question of the temperature dependence of the m
netoresistance is an interesting problem that has not b
investigated in sufficient detail. It should be noted that va
ous experimental studies have demonstrated behavior di
ences, and there has not been a systematic analysis o
available data.

In our recent studies,7,8 we investigated the temperatu
dependence of the magnetoresistance in doped CdTe cry
in the temperature range 0.4–4 K. It was shown that sam
which are sufficiently far from the metal–insulator transiti
on the insulator side exhibit crossover from conduction c
responding to Mott’s law to conduction via Coulomb-g
states~the Éfros–Shklovski� law! when the temperature i
lowered. The transition to E´ fros–Shklovski� conduction is
accompanied by suppression of the negative magnetor
tance in weak magnetic fields as the temperature is lowe

In the theoretical papers by Schirmacher9 and Raikh
et al.10 a significant increase in the negative magnetore
tance with decreasing temperature according to aT27/8 law
was predicted within perturbation theory for hopping in t
presence of scattering centers in the Mott regime in
‘‘weak-scattering’’ situation10 ~see also Ref. 9!. Extrapola-
tion of the corresponding estimates to the Coulomb-gap
gime would give aT27/4 dependence. An increase in th
magnetoresistance in the ‘‘strong-scattering‘‘ situation w
also predicted in Ref. 10, but it obeyed a weakerT23/8 law in
the Mott regime, while extrapolation of the correspondi
results to the Coulomb-gap regime gaveT23/4 behavior.

As can easily be seen, a combination of negative m
netoresistance with quadratic positive magnetoresista
~which is caused by contraction of the wave functions! for
the laws indicated always leads to enhancement of the
tribution of the negative magnetoresistance as the temp
ture is lowered, but the value of the resistance at the m
mum does not decrease in the strong-scattering reg
These predictions are not consistent with our experime
data.

In Ref. 8, we proposed a simple semiphenomenolog
model~based on the original model arguments of Shklovs�
and Spivak!, which presumes a dominant role for the sc
terers with energies close to the energies of the sites res
sible for conduction. The decrease in the number of s
sites upon passage into the Coulomb-gap region then a
ally does lead to suppression of the negative magnetore
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ment. We note that the effect observed is thus interprete
a feature of the mechanism of interference negative mag
toresistance.

On the other hand, the positive magnetoresistance a
ciated with spin effects4,6 increases with decreasing temper
ture, and, as was demonstrated by the numerical calculat
in Ref. 11, can also lead to the suppression of interfere
negative magnetoresistance. This raises the question, in
ticular, of the possibility of experimentally distinguishing b
tween the suppression of negative magnetoresistance ca
by a combination of the latter with spin positive magneto
sistance, which is not part of the interference contributi
and the possible effects associated with the interference
tribution proper.

We note that the temperature range studied in Ref. 8
not broad enough for a detailed investigation of the supp
sion of negative magnetoresistance. In particular, crosso
on the temperature dependence of the resistance and the
pression of negative magnetoresistance were observed
for samples far from the metal–insulator transition, wh
samples close to that transition did not display such beha
and remained in the Mott conduction regime. This natura
raised the question of the behavior of such samples at lo
temperatures, where their crossover point should be loca
according to calculations.

In the present work we performed detailed investigatio
of variable-range hopping~VRH! conduction for doped
CdTe crystals in the ultralow temperature range 0.03–1
The fairly broad temperature range of the investigations p
mitted the observation of various VRH conduction regim
~passage from Mott’s law to conduction via Coulomb-g
states!, even for samples that are close to the metal–insula
transition. The suppression of negative magnetoresista
was observed for all the samples as the temperature
lowered and upon passage to the Coulomb-gap conduc
regime, attesting to the fundamental character of the ef
observed. Features characteristic of the mechanisms
scribed in Refs. 4 and 6~a segment with saturation of th
magnetoresistance! were discovered for the sample closest
the metal–insulator transition. At the same time, the mag
toresistance for the other samples~with a larger degree of
compensation! did not exhibit distinct features. A compar
son of the data obtained with the theory reveals that
suppression of negative magnetoresistance cannot be
plained on the basis of spin mechanisms.

2. EXPERIMENT

The CdTe crystals were grown from a melt by horizo
tally directed crystallization and were doped in the melt b
fine source of Cl donor impurity atoms~the ionization energy
of an isolated Cl donor atom at a Te site is close to
hydrogenic value and amounts to 14 meV!. The density of
electrically active donors was evaluated from Hall measu
ments on uncompensated samples:Nd5531017 cm23. This
value exceeds the critical value for the metal–insulator tr
sition in CdTe,nc051.531017 cm23, and the uncompen
sated samples consequently had metallic conductivity.
samples investigated were compensated~the degree of com-

815Agrinskaya et al.
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TABLE I. Principal parameters of the samples:n300 K — the electron den-
sity at 300 K obtained from Hall measurements;T0 andT1 — parameters

ed in
pensation was;0.2–0.5! and had an electron density clos
to 1017 cm23 ~the exact values of the electron density
room temperature are given in Table I!. In the case of com-
pensation the critical density is somewhat greater thannc0,
and the compensated samples with an electron density c
to 1017 cm23 are insulators.

The measurements at temperatures below 1 K were per-
formed in the cryogenic system in the Freie Universita¨t Ber-
lin by R. Rentzsch and in the University of London by
P. Fozooni. The data on the low-temperature behavior of
CdTe crystals were partially published in Ref. 12. We fi
focus on the results of the investigation of the temperat
dependence of the resistance in the absence of a mag
field. As we know, VRH conduction can be described
different laws, depending on the temperature and the par
eters of the material. At high temperatures, at which
VRH density of statesg(«F)5const in the characteristic en
ergy range, Mott’s law holds:

r~T!5r0~T!exp~T0 /T!1/4, T05b0 /g~« f !a
3. ~1!

At lower temperatures, at which the characteristic hopp
takes place within the Coulomb gap,g(«)5g0«

2, and

r~T!5r1~T!exp~T1 /T!1/2, T15b1e
2/ka. ~2!

Hereb0521 andb152.8 are numerical coefficients, andk
is the dielectric constant. We also note the different tempe
ture dependences of the pre-exponential factors for these
laws:r0(T) } T1/4, r1(T) } T1/2. As was shown in Refs. 7, 13
and 14, the influence of the pre-exponential factors is v
significant for the samples that are near the metal–insul
transition. On the basis of data obtained for several Cd
samples in the temperature range 0.6–3 K, we previou

obtained from the temperature dependences of the resistance@see Eqs.~1!
and ~2!#; Tc – the experimentally determined crossover temperature;a —
the localization radius.

No. n300 K , cm
23 T0, K T1, K Tc , K a, Å

1 931016 23104 43 0.4 90
2 1.231017 205 3.5 0.15 180
t

se

e
t
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e
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ly

reported7 the observation of crossover from Mott conductio
to Éfros–Shklovski� conduction for CdTe samples that we
fairly far from the metal–insulator transition. At the sam
time, a less compensated sample exhibited pure Mott c
duction in the temperature range indicated. Therefore, an
vestigation of that sample at lower temperatures would be
special interest.

Figure 1 presents the temperature dependence of th
sistance of that sample~which is close to the metal-insulato
transition! in log(RT21/4) versusT21/4 and log(RT21/2) ver-
susT21/2 coordinates. As can be seen from Fig. 1, the co
ductivity of this sample is described well by law~1! in the
high-temperature regionT.0.2 K, and appreciable devia
tions toward higher resistances are observed as the tem
ture is lowered. At low temperatures the logR(T) curves
correspond to law~2!, and as the temperature rises abo
Tc50.15 K, deviations from this law are observed, at fi
toward higher resistances and then toward lower resistan
Thus, this sample, which is close to the transition, also
hibits crossover, but at significantly lower temperatures th
in the more compensated samples.7

Let us examine the behavior of the magnetoresistanc
a function of the temperature and the magnetic field. Figu

FIG. 1. Temperature dependence of the resistance of sample No. 2 plott
the coordinates corresponding to Eqs.~1! and ~2!.
es
in
le
e
-

FIG. 2. Magnetoresistance of the two sampl
of CdTe~Cl! whose parameters are indicated
Table I for various temperatures: a — samp
No. 1, b — sample No. 2. The numbers of th
curves correspond to the following tempera
tures: a! 1— 900,2— 600,3— 400,4— 300,
5— 140 mK; b! 1— 300,2— 150,3— 90,4
— 60 mK.
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2a and 2b present the dependence of the resistance o
magnetic fieldH for samples Nos. 1 and 2 at various tem
peratures. At high temperatures (;1 K! the magnetoresis
tance is negative at fields from 0 to 2 T, and the maxim
value of the negative magnetoresistance~at the minimum
determined by the competition with orbital positive magn
toresistance! does not exceed 10%. At low temperatures
negative magnetoresistance at the minimum (Hmin) at first
increases slightly with decreasing temperature, reachin
value of 10%, and then after a certain temperature, it
creases with decreasing temperature. In addition, the valu
Hmin shifts toward smaller values ofH as the temperature i
lowered. At temperatures less thanTc this drop in the con-
tribution of the negative magnetoresistance becomes e
cially sharp, and atT'Tc/2 the latter vanishes complete
~the point where the negative magnetoresistance vanish
determined by how accurately it is measured at smallH).

At high temperatures a segment with a quadratic dep
dence ofr(H) is observed in very weak magnetic fields a
gives way to a linear law asH increases. However, at low
temperatures linear behavior is observed for all the samp

Let us now move on to the results for stronger magne
fields. Figure 3 contains plots ofr(H) for sample No. 1 in
ln(r(H)/r(0)) versusH2 coordinates and ln(r(H)/r(0)) versus
H2/3 coordinates forT5300 mK. A well-defined region of
quadratic positive magnetoresistance is observed. The an
sis for other temperatures shows, however, that this regio
displaced toward weaker magnetic fields as the tempera
is lowered, while positive magnetoresistance, which depe
weakly onH ( } H2/3), is observed at stronger fields~Fig. 3!.
This dependence is typical of the anomalous positive m
netoresistance associated with the contraction of the w
functions of the sites by the magnetic field in the presenc
scatterers. As was shown in Ref. 2, the small distance
tween the scatterers in comparison withR ensures significan
lowering of the ‘‘magnetic barrier’’ and leads to a significa
decrease in the magnitude of the positive magnetoresist

FIG. 3. Dependence of the magnetoresistance of sample No. 1 onH2 and on
H2/3, T5300 mK. The arrows point to the values ofHal calculated for this
temperature.
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~in comparison with the case of no scatterers!. The depen-
dence of the magnitude of this magnetoresistance onH
gradually weakens as the magnetic field increases with
sage from anH2 law to anH2/3 law.1

Sample No. 2, which is very close to the transition, d
plays a well-defined point of inflection between convex a
concave portions of the curve at low temperatures~Fig. 4!.
Its position shifts toward weaker fields as the temperatur
lowered, while the portion of the curve in its vicinity flatten
and atT536 mK a well-defined region of saturation of th
positive magnetoresistance is displayed at 0.3–2 T~we note
that the magnitude of this magnetoresistance in the regio
the feature increases with decreasing temperature
reaches 0.2 atT536 mK!. Below we shall interpret this fea
ture as a manifestation of spin effects.4,6

3. DISCUSSION

Let us first analyze the temperature dependence of
quadratic positive magnetoresistance~which is associated
with deformation of the wave functions of the sites in a ma
netic field! that is observed for the samples under consid
ation at sufficiently low temperatures and not excessiv
strong magnetic fields. For VRH conduction at weak ma
netic fields such that lnr(H)/r(0)!1 the dependence of th
positive magnetoresistance on the magnetic field is descr
by the expression2

ln
r~H !

r~0!
5SHB D 2, ~3!

where

B25
ac2\2

r 3ae2
~4!

is a parameter that depends on the temperature, the loca
tion radius, and the conduction mechanism~law ~1! or ~2!!:

B25
c2\2

C0e
2a4 S TT0D

3/4

, ~5!

FIG. 4. Magnetoresistance of sample No. 2 at high magnetic fields and
temperatures:1— 36,2— 60,3— 90,4— 150 mK. The arrows point to
the values ofHal andHsat,K calculated for the corresponding temperature

817Agrinskaya et al.
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Equation ~5! corresponds to Mott’s law,C050.0025, and
a.400. Equation ~6! corresponds to conduction vi
Coulomb-gap states, and two values are given forC1: 0.0015
(a;700) and 0.0035 (a;300). We note that the value o
B is of the order of the value of the saturation field f
interference negative magnetoresistanceHsat;F0 /r

3/2a1/2:
B5(Aa/p)Hsat.

The localization radii for the two hopping conductio
regions~the Mott and E´ fros–Shklovski� regions! can be de-
termined from the coefficient of the quadratic contributio
These values are presented in Table I. The negative ma
toresistance observed at weak magnetic fields, which is
ear with respect to the magnetic field and small in abso
value, is caused by the interference of the contributions
the amplitude of the hopping probability from different tr
jectories, one of which includes a scatterer with a nega
scattering amplitudem ~the energy of the corresponding ce
ter must be lower than the energy of the sites between w
hopping occurs!. Such interference obviously has a destru
tive character, the contribution of the corresponding confi
rations being enhanced owing to the logarithmic characte
the configurational averaging. The suppression of such in
ference by a magnetic field also leads to negat
magnetoresistance.2 Within a semiqualitative phenomeno
logical description the contribution of the magnetic field
the hopping probability can be expressed in the form

L~H,R!5Nm5/2a3/2RH, ~7!

whereR is the hopping distance andN is the number of
scatterers. A more rigorous analysis, which takes into
count, in particular, the energy dependences of the scatte
processes, leads to a more complicated expression for
coefficient in the corresponding linear law.8–10

To compare the linear negative magnetoresistance
the positive magnetoresistance it is convenient to express
negative magnetoresistance in the form

ln
r~H !

r~0!
5k

H

B
, ~8!

whereB is defined by~5! and ~6!, while k depends on the
details of the interference mechanism. In particular, in
strong-scattering limit the estimates in Ref. 10 give the va
k.1.3 for k.

Summing the two contributions, we have

ln
r~H !

r~0!
52k

H

B
1SHB D 2. ~9!

Hence we at once obtain

Hmin5
k

2
B, ln

r~H !

r~0!
U min52

k2

4
. ~10!

We note that, strictly speaking, the estimated data are v
only for k,1, since in the opposite caseHmin is of the order
of Hsat, and thus the linear extrapolation for the negat
magnetoresistance breaks down whenH;Hmin .

10

818 JETP 84 (4), April 1997
.
e-
n-
te
to

e

h
-
-
of
r-
e

c-
ng
he

th
he

e
e

id

Figure 5 presents the temperature dependence
ln(r(H)/r(0))umin } k2 for the two samples. Appreciable de
creases in these parameters with decreasing tempera
which are especially sharp at the low temperaturesT,Tc ,
are seen. We emphasize that the temperatures at which
sharp decrease in the negative magnetoresistance is obs
are different for the two samples and correlate with the cro
over temperature.

As we have already pointed out, the analysis of tempe
ture dependence of interference negative magnetoresist
performed in Refs. 9 and 10 predicts a significant increas
the negative magnetoresistance with decreasing temper
in the Mott regime: according to aT27/8 law ~weak scatter-
ing! or a T23/8 law ~strong scattering10!. In the regime of
conduction via Coulomb-gap states the strong-scatte
limit gives aT23/4 law ~as follows from extrapolation of the
results in Ref. 10 to the Coulomb-gap regime!. In addition, in
the strong-scattering limit the value of the magnetoresista
at the minimum does not vary with the temperature, and
the case of weak scattering it increases significantly w
decreasing temperature. These results are not consistent
the experimental data presented here.

In Ref. 8, utilizing the original arguments of Shklovsk�
and Spivak~which relate the interference component of t
tunneling probabilityL(H,R) to the scattering parameter
specifically the scattering amplitudem and the density of
scatterersN), we proposed a model, which takes into a
count the energy dependence of the scattering amplitude~its
increase as the energy of the scatterers« approaches the
energies of the sites responsible for VRH!. Under the as-
sumption that the scattering potentials are small, it lead
the conclusion that the scatterers with energies in the vici
of the characteristic energy band for VRH conduction p
the decisive role~in fact, the proximity of the scattering on
such centers to resonance permits compensation for the s
values of the scattering potentials!. Thus, a decrease in th
number of such centers in the regime of conduction in
Coulomb gap leads to suppression of the negative mag

FIG. 5. Temperature dependence of the parameterk2 determined from the
magnetoresistance curves: lnr(H)/r(0)umin;k2; the dashed lines represent th
power-law dependence ofk2 on the temperature predicted in Ref. 8 fo
various limiting cases; the arrows indicate the crossover temperatures.
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Figure 5 compares the corresponding theoretical pre

tions with the experimental data. Qualitative agreemen
observed, although the observed decrease in the neg
magnetoresistance with decreasing temperature is faster
the decrease predicted by modeling considerations.8 We
note, however, that both the semiphenomenological cha
ter of the model8 and the model assumptions employed~par-
ticularly the assumption that the scattering potentialV0 is
small! introduce a certain element of uncertainty and requ
a more detailed analysis of the situation. This is due part
larly to the presence of spin effects, which lead to posit
magnetoresistance and can thereby cause suppression
negative magnetoresistance.

We therefore discuss the possible role of the spin effe
We begin with the effect associated with the influence of
spin degrees of freedom on the interference contribu
proper that was considered in Ref. 4. In the three-
approximation,8–10 under which there is only one scatterin
center, this effect reduces to suppression of the interfere
contribution for the configurations in which the electron sp
in the ~filled! scattering center is antiparallel to the spin
the electron participating in the hopping. Accordingly, alig
ment of the spins in the magnetic fieldsH.Hal , where

Hal.T/gm0 ,

m0 is the Bohr magnetic, andg is the g factor, leads to
restoration of the corresponding contribution and thus
positive magnetoresistance. Inasmuch as the weight of
antiparallel configurations amounts to 50%, the posit
magnetoresistance amounts to 50% of the total interfere
contributionrsat for spinless electrons. Utilizing the expre
sion for the filling functions of the spin sublevels in a ma
netic field, we can represent the contribution to the mag
toresistance under discussion in the form

rsat
2

tanhS H

2Hal
D .

Sinceg50.45 for CdTe, the values ofHal for temperatures
0.036, 0.1, 0.3, and 1 K are estimated as;0.1,;0.3,;1,
and;3 T, respectively. We note that, as can easily be se
at an assigned temperature the position of this feature d
not depend on the proximity of the sample to the met
insulator transition@which is characterized, in particular, b
j, where j5(T0 /T)

1/4 ~the Mott regime! or j5(T1 /T)
1/2

~the Coulomb-gap regime!#.
This spin mechanism of positive magnetoresistance

clearly displayed against a background of the~linear! orbital
negative magnetoresistance caused by suppression of th
terference contribution discussed above, as well as the~qua-
dratic in weak fields! orbital positive magnetoresistance a
sociated with contraction of the wave functions. In additio
the two former contributions are of an interference nat
and have an upper boundrsat ~which does not exceed 40% o
r(H50)), while the orbital positive magnetoresistance u
dergoes an exponential increase atH.B. Furthermore, the
orbital positive magnetoresistance predominates alread
H.Hmin . Therefore, the behavior of the magnetoresista

819 JETP 84 (4), April 1997
c-
is
ive
an

c-

e
-
e
the

s.
e
n
e

ce

o
he
e
ce

e-

n,
es
–

is

in-

,
e

-

at
e

Hmin,Hsat;B. In fact, whenH.Hmin and especially when
H.B, the rapidly increasing orbital positive magnetores
tance clearly prevents the appearance of features assoc
with a spin contribution. Accordingly, whenHal@Hmin , the
spin factor can be neglected. It is not difficult to see that t
inequality is satisfied in the high-temperature limit in th
Mott regime~whereB } T3/8, whileHal} T).

On the other hand, in the limitT→0 we should expect
Hal!(Hmin , B) because of the stronger temperature dep
dence ofHal . WhenH!Hmin , the orbital positive magne
toresistance can obviously be neglected, and everythin
determined by the competition between the spin posit
magnetoresistance and the orbital negative magnetor
tance. In such a case the presence of spin positive ma
toresistance can be manifested as a ‘‘jump’’Dr(H) toward
more positive values at the weaker fieldsH,Hal followed by
a decrease caused by the interference orbital magnetor
tance. Also, because the maximum value of the latter is tw
the maximum spin positive magnetoresistance, reversa
the sign of the magnetoresistance asH increases is possible
~We note, however, that as the numerical calculations sh
the corresponding nonmonotonic dependence can be
served only ifHal is at least an order of magnitude small
thanHmin . WhenHal is large, the orbital positive magnetore
sistance is significant, and the spin positive magnetore
tance is manifested only as a tendency to form a plateau!

However, as the estimates show, the difference betw
Hal andHmin for the experimental situation under discussi
is not large enough to correspond to one of the limiting ca
just described. Therefore, when the behavior of the mag
toresistance is analyzed, the predominant contribution can
be isolated. In particular, the competition between the s
positive magnetoresistance and the orbital negative ma
toresistance can lead to the mutual suppression of both
evaluate the extent to which this circumstance can hav
bearing on the observed suppression of the negative ma
toresistance as the temperature is lowered, let us conside
sum of the two contributions indicated in the regio
H,min(Hal ,Hsat), where they are both described by a line
law. This sum equals

rsat
2

H

Hal
2k

H

B
, ~11!

or, if we have in mind a combination with quadratic orbit
positive magnetoresistance, we can represent it in the fo

2 k̃
H

B
, where k̃5kS 12

rsatB

kT D . ~12!

SinceHal } T21 andB } T23/4 in the Coulomb-gap regime
~where suppression of the negative magnetoresistance is
served experimentally!, it can easily be seen that suppressi
of the negative magnetoresistance by the spin contribu
can occur ifT1/4k/rsat→0 asT→0. We recall that in accor-
dance with the predictions in Refs. 9 and 10, under we
scattering conditionsk increases rapidly with decreasingT,
and the suppression of the negative magnetoresistance i
corresponding situation could not be attributed to the pr
ence of a spin contribution. In the strong-scattering lim
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such a situation, in principle, the role of the spin positi
magnetoresistance is in fact enhanced as the temperatu
lowered.

However, we note that the difference between the te
perature dependences of the two contributions is small in
case; we are dealing with the combination

kS 12S T*T D 1/4D ,
whereT* is a constant. It is clear that an appreciable d
crease in the negative magnetoresistance with decrea
temperature occurs only over the temperature range in w
the two contributions are nearly compensat
(T*,T,Tm5T* (4/3)4;3T* ) and that because of thi
compensation the maximum attainable coefficient of the
ear negative magnetoresistance~at T5Tm) amounts to no
more than 1/3 of the value in the absence of a spin contr
tion. When the quadratic dependence of ln(r(H)/r(0))umin on
the coefficientk in such a situation is taken into account, t
value of the magnetoresistance at the minimum could
exceed 2%, which contradicts the experiment. On the o
hand, as follows from the estimates,T* ~and thus the tem-
peratureTm at which the decrease in the negative magneto
sistance begins! depends very sensitively on the paramet
of the material (Tm } T1

3/a8), and this dependence does n
correlate at all with the corresponding dependence of
crossover temperature. This is also at variance with the
periment.

Thus, the combination of orbital negative magnetores
tance with spin positive magnetoresistance is not capabl
explaining the observed effect. We supplemented the fore
ing arguments with numerical calculations that take into
count either spin positive and orbital negative magnetore
tance or orbital positive magnetoresistance~see the
Appendix!.

Therefore, in our opinion, the observed effects sugg
that a decrease in temperature in the Coulomb-gap reg
leads to a decrease in the negative magnetoresistance
the coefficientk ~which follows from the modeling consid
erations in Ref. 8!. As follows from~12!, the decrease ink is
also accompanied by ‘‘decompensation’’ of the temperat
dependences of the spin positive and negative magnetor
tance, and thus leads to sharper suppression of the neg
magnetoresistance. Therefore, even a slow decrease ink can
lead to rapid suppression of the negative magnetoresista
For example, under the assumption of the depende
k } T1/4 ~which in the model of Ref. 8 corresponds to th
experimental situation under consideration!, the combination
of orbital negative and spin positive magnetoresistance ta
the form

k̃} T1/4S 12S T*T D 1/2D .
We now turn to the spin positive magnetoresistance

scribed in Ref. 6, which is associated with the participat
of doubly filled sites in hopping conduction. We recall that
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man splitting exceeds the width of the effective VRH ener
band:

Hsat,K.
Tj

gm0
, ~13!

and Hsat,K is ;j@1 times greater than the characteris
field Hal describing the spin mechanism.4 The value of the
corresponding contribution in the saturation region is

ln~rK/r0!; ln~rsat,K/r0!5gj, ~14!

where g characterizes the relative fraction of the doub
filled sites.

Thus, it is clear that the manifestations of this mech
nism are qualitatively similar to the spin interference mec
nism considered above.4 The primary quantitative difference
lies in the larger values of the saturation fieldHsat,K ~in com-
parison withHal), so that it can be observed only in th
low-temperature limit; otherwise, this contribution is mask
by the rapidly increasing orbital positive magnetoresistan
Another difference is the absence of a direct relations
between the value ofrsat,K and the interference contributio
responsible for the negative magnetoresistance. We note
with consideration of what has been stated this mechanism
positive magnetoresistance is associated with a larger n
ber of independent parameters than is the mechanism in
4 and, thus, with greater arbitrariness in a comparison w
experiment.

Finally, we also note that some uncertainty in the eva
ation of the role of the spin mechanisms is attributable to
role of the intersite spin correlations, which are capable
suppressing the spin contribution described in Ref. 2.

We now compare the arguments presented above
experiment. The value ofHal for sample No. 1 is of the orde
of Hmin for all the temperatures investigated. Therefore,
absence of plateau-like features is not surprising. At the sa
time, in our opinion, the abrupt decrease
ln(r(H)/r(0))umin with decreasing temperature suggests a
crease ink against the background of spin positive magn
toresistance.

On the other hand, at low temperatures sample No
exhibits a well-defined feature in the range of fields 0.4–1
which might be associated with a spin contribution. Ho
ever, as noted above, the behavior of the negative ma
toresistance in this sample, too, cannot be explained with
postulating a decrease ink with decreasing temperature.

It can be stated forT536 mK, at which the feature is
most pronounced, that the beginning of the plateau-like s
ment corresponds to fields of;0.4 T, which exceed the ac
curately determined value ofHal (;0.1 T!. At the same time,
the ‘‘jump’’ in the positive magnetoresistanc
(dr/r0;0.2) is appreciably greater than the maximum va
of the negative magnetoresistance at the minim
(;0.07!. From our standpoint, both of these findings attes
manifestations of the contribution described in Ref. 6 alo
with the contribution described in 4. The possible emerge
of this contribution is associated with the comparative
small values ofHsat,K for this sample at low temperatures.
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FIG. 6. Calculated dependences of the magn
toresistance for various temperatures co
structed according to the procedure described
the Appendix for sample No. 1~a! and for
sample No. 2~b!; solid curves — calculation
under the assumption thatk } T1/2, dashed curves
— calculation under the assumption tha
k5const; a! 1— 600,2— 400,3— 300,4—
150 mK, dot-dashed curve — calculation und
the assumption thatk } T1/4; b! 1— 150,2—
90, 3 — 60 mK, dot-dashed curve4— 36 mK,
calculation under the assumption that the cont
bution described in Ref. 6 is neglected.
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guments with experiment we performed some numerical
culations~whose details are presented in the Appendix!. Fig-
ure 6 presents theoretical curves for the combination
interference negative, orbital positive, and spin positive m
netoresistance both with consideration of the decreasek
with decreasing temperature and for the strong-scatte
situation. It is clear that the curves constructed under
assumption ofk5const do not in any way reproduce th
observed behavior. At the same time, consideration of
decrease ink enables us to achieve fairly good agreem
with experiment.

We note that better agreement is achieved for sam
No. 2 when the spin contribution described in Ref. 6 is tak
into account along with the spin contribution described
Ref. 2.

4. CONCLUSIONS

The investigation of low-temperature magnetoresista
performed in this work has disclosed the competition
tween various orbital and spin mechanisms.

In comparatively weak fields suppression of the nega
magnetoresistance is observed as the temperature is low
upon passage to hopping conduction via Coulomb-gap sta

Although magnetoresistance features which we ass
ated with spin effects2,5 were discovered for samples that a
close to the metal–insulator transition, consideration of
latter does not allow us to quantitatively account for the o
served suppression of the negative magnetoresistance. I
dition, the very possibility of observing the indicated featur
results from the decrease in the negative magnetoresist
competing with them as the temperature is lowered.

At the same time, however, this decrease is capabl
significantly enhancing spin positive magnetoresistance. A
result, even a comparatively weak seed decrease in thk,
which characterizes the magnitude of the negative mag
toresistance, is capable of leading to reversal of the sig
the magnetoresistance even when the temperature is v
by only a factor of 2–3.

The arguments presented are confirmed by the nume
calculations.
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range of temperatures, confirm the conclusion that we pr
ously drew regarding the decrease in the interference co
bution upon the transition to VRH conduction via Coulom
gap states.

We thank D. V. Shamshurin for assisting with the low
temperature measurements.
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APPENDIX A

To simulate the combination of spin positive, interfe
ence negative, and orbital positive magnetoresistance
sample No. 1, we used the following expression, which
scribes the sum of the corresponding interpolation formu

ln
r~H !

r0
5rsatS S expS gmH

T D11D 21

2
1

2D
1rsatS expS 2

k

rsat

H

B D21D
1S SHB D 22

1cSHB D 20.66D 21

. ~15!

The value chosen forrsat was 0.3~which is smaller than the
value for the strong-scattering limit!. The value of the field
B at T5300 mK was set equal to 1.8 T. Although this e
pression takes into account the transition in the depende
of the orbital positive magnetoresistance from a quadr
dependence to aH2/3 law in strong fields, the correspondin
deviations for the sample under consideration are actu
significant at fields significantly greater thanHmin . Since we
were interested in the range of fields in the vicinity
Hmin , we used the valuec50.3.

As for the temperature dependencek(T), we discovered
that the principal features of the observed behavior~com-
plete suppression of the negative magnetoresistance
T5150 mK from values of;10% atT5600 mK! are repro-
duced withk } T1/4. However, the best agreement with e
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The calculated curves are presented in Fig. 6a along w
experimental points for comparison. Clearly the agreem
between them is at least satisfactory. In addition, for
suppression of the negative magnetoresistance proper~which
can be observed in comparatively weak fields! the agreemen
can be regarded as good, while in stronger fields the t
perature dependence of the slopes of the curves is some
stronger than predicted by the theory in Ref. 2.

For comparison, we also present the curves obtained
k5const. It is clear that these curves do not describe
observed behavior of the negative magnetoresistance a
At the same time, forT5150 mK we also present the calcu
lated curve corresponding to ak } T1/4 dependence.

For sample No. 2, which is closer to the metal–insula
transition, in the field dependence of the orbital posit
magnetoresistance we took into account the transition
weaker dependence (} H2/3), as well as the possible eme
gence of the spin contribution described in Ref. 6. For s
plicity, we used the simplified interpolation equation pr
posed in Ref. 11 for this contribution. The sum of all t
contributions discussed takes the form

ln
r~H !

r0
5ArsatS S expS gmH

T D11D 21

2
1

2D
1rsatS expS 2

k

rsat

H

B D21D
1S SHB D 22

1SHB D 20.66

~c1CB20.66! D 21

1rsat,K
H2

H21Hsat,K
2 . ~16!

Optimum agreement with experiment is achieved wh
rsat50.4,c50.5, andB(T590 mK)51.2 T. We note, how-
ever, that in the strong fields corresponding to theH2/3 law
for the orbital positive magnetoresistance this sample ex
its a weaker temperature dependence of the correspon
slopes than that following from the theory in Ref. 2. It
conceivable that such behavior results from passage to a
weaker field dependence of the positive magnetoresistanc
H increases.1 To take this circumstance into account, we a
introduced the fitting parameterC in ~16!, selecting its value
at 2.5.
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k(T5150 mK!51.2 fork. We stress, however, that the prin
cipal features of the observed behavior of sample No. 1~the
suppression of the negative magnetoresistance and the
pearance of a positive magnetoresistance feature! are also
reproduced fork } T1/4, although neither features is as we
defined as in the case ofk } T1/2.

The calculated curves are presented in Fig. 6b along w
experimental points for comparison. It is clear that the agr
ment for the sample under consideration can be regarde
satisfactory, and that it is better at weak fields, where s
pression of the negative magnetoresistance is also m
fested. At the same time, the curves constructed under
assumption thatk5const do not permit a description of th
experiment at all. For 60 mK we also present the calcula
curve fork } T1/4. At the same time, for 36 mK the curv
obtained without consideration of the spin contribution d
scribed in Ref. 6 is presented. It is clear that in the latter c
it is not possible to achieve a faithful description of the o
served positive magnetoresistance feature.
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Features of charge density waves in quasi-one-dimensional conductors at low

ure,
temperatures
S. N. Artemenko*

)

Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 103907 Moscow, Russia
~Submitted 30 September 1996!
Zh. Éksp. Teor. Fiz.111, 1494–1512~April 1997!

The reported study of charge density waves at low temperatures is based on a microscopic
theory. One feature of a charge density wave at low temperatures is a large shift in the chemical
potential near its defects, such as solitons, dislocations, and pinning centers, which leads to
a higher conductivity of material along chains when the charge density wave is immobile, and the
wave dynamics is controlled by this shift. Equations describing the dynamics of a charge
density wave have been derived and used to estimate the velocity of 2p-solitons along conducting
chains. The resulting soliton mobility has proved to be low and makes a small contribution
to the conductivity. The large shift in the chemical potential near strong pinning centers can lead
to a considerable increase in linear conductivity along conducting chains. ©1997
American Institute of Physics.@S1063-7761~97!02704-2#
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It is known1 that below the Peierls transition temperatu
a charge or spin density wave is formed in a quasi-o
dimensional conductor; as a result, the conductor transits
semiconducting~or semimetallic, such as NbSe3) state.
Transport properties of materials with charge and spin d
sity waves are quite similar, and almost all statements in
paper concerning charge density waves also apply to
density waves. In the Peierls state, single-electron excitat
~electrons and holes! coexist with a deformable electroni
crystal, which is called a charge density wave. If elect
field E applied to a sample is higher than the threshold va
ET , which is a function of impurity concentration and tem
perature, the charge density wave is driven across the cr
and contributes to the electric current; as a result, the c
ductivity increases with electric field by several orders
magnitude. WhenE,ET , the charge density wave cann
move as a whole, and the conductivity of the quasi-o
dimensional conductor is controlled by single-electron ex
tations. The material is then similar to an ordinary semic
ductor, the only difference being that deformation of t
charge density wave~for example, due to electric field! alters
the concentration of electrons and holes, so perturbation
this wave alter the conductivity at a field strength below
threshold value. The change in the conductivity due to
charge density wave may be caused not only by its motio
a whole, but also by motion of its nonlinear excitations
defects of the electronic crystal, such as solitons and di
cations.

Presently the theory yields a fairly adequate descript
of conductors with charge density waves at relatively h
temperaturesT.TP/3,

2 when the effects mentioned abov
are quite reproducible and described in terms of a cha
density wave as an elastic medium whose interaction w
impurities can be described in terms of the theory of we
~collective! pinning.3 At lower temperatures, understandin
of properties of charge density waves is not so clear. T
activation energy of conductivity along chains at fie
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whereas the activation energy of the transverse conduct
is constant,4,5 and this behavior is often ascribed to the co
tribution of mobile defects in the charge density wave, su
as 2p-phase solitons. Besides, at low temperatures
threshold field is considerably higher, the activation ene
of nonlinear conductivity is a function of electric field, an
the spread of sample parameters is notably wider, which
dicates a greater role of defects at low temperatures. At v
low temperatures~for example, below 20 K for TaS3), there
is a maximum in the low-frequency dielectric constant,6–8 a
greater role is played by metastable states and low-en
excitations of charge density waves, and new effects m
festing in the electric and thermodynamic parameters can
ascribed to glass-like properties of charge density waves9

Models based on the existence of metastable states
different coordinate dependencies of the phase near pin
centers and transitions between such states have
suggested.10–12 An interpretation of the low-temperatur
maximum in the dielectric constant as a manifestation o
relaxation mode due to impurity pinning has also be
proposed.13 The papers quoted above, however, did not ta
into account a possibility of a large shift in the chemic
potential from the midgap position due to deformations
the charge density wave at low temperatures.

The example of soliton domain walls in a commensur
charge density wave14 demonstrated that this shift shou
lead to a nonmonotonic temperature dependence of
screening range of nonuniform perturbations in the cha
density wave, and a model was proposed for interpretatio
the dielectric constant at low temperatures15 based on this
temperature dependence with charge density wave defo
tions caused by periodically distributed pinning centers.
large shift in the chemical potential should also occur16,17 in
2p-solitons and around pinning centers, and this shift c
generate metallic islands, where the chemical potential i
the continuum of real states either above or below the Pe
gap. As a result, the structure and typical dimensions
phase perturbations strongly depend on the temperature

8230$10.00 © 1997 American Institute of Physics
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low temperatures. This, in particular, results in temperat
dependence of the energy of both phase solitons and am
tude solitons.18

Thus, we need kinetic equations for the charge den
wave and single-electron excitations that take account of
strong deformation of the wave around defects and its n
linear perturbations in order to describe correctly the con
bution of charge density waves to the low-temperature c
ductivity and, in particular, to test whether 2p-solitons
~vacancies or interstitial defects of the electronic crystal! and
other defects of the charge density wave can act as ch
carriers. This paper presents such equations, which are
ferent from the standard semiclassical equations since
take into consideration large differences between the ch
density wave phases at neighboring chains and large de
tions of the chemical potential from the midgap positio
Thus nonlinear effects in the Coulomb screening of elec
field generated by charge density due to deformation o
charge density wave is taken into account in the s
consistent field approximation. The resulting equations w
be applied to estimates of the 2p-soliton velocity and their
contribution to the conductivity.

In our calculations, the electron charge, Planck’s a
Boltzmann’s constants are equated to unity.

2. BASIC EQUATIONS

In deriving the equations of motion for the charge de
sity wave and expressions for the current density, we use
equations for Green’s functions integrated with respect to
momentum component along the conducting chains. Sim
equations were derived20,14 using the Keldysh technique fo
nonequilibrium processes19 in the case when all paramete
vary little over a distance of the order of the Fermi wav
length 2p/pF along the chains and are continuous functio
in the direction perpendicular to the chains. Such equati
can be easily generalized to the case of large differen
between phases of the charge density waves at neighbo
chains, which will be needed in studying perturbations loc
ized at one or several chains. To this end, one should tran
to Wannier’s site representation with respect to chain nu
bers, similarly to the equations for a layered semiconduc
in Ref. 21, without using an expansion in terms of sm
gradients in the transverse direction.14 Then we use for sim-
plicity the tight-binding approximation for electrons at th
chain, i.e., we consider the nearest neighbor interaction
which the energy as a function of the transverse momen
is expressed as

e'52t'~cosapy1cosapz!, t'!D.

As a result, we have an equation for the Green’s functi
introduced by Keldysh, which are matrices with respect
time indices, the index identifying the sheets of the Fer
surface of the quasi-one-dimensional conductor at1pF and
2pF , and the chain numbern:

ǧ5S ĝR ĝK

0 ĝA
D ,
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functions, andĝK is the Green’s function introduced b
Keldysh, containing information about the electron distrib
tion. The arrays of the functionsǧ satisfy the equation

iv
dǧnm
dx

1t'(
i

~Ann1 i ǧn1 im2ǧnm1 iAm1 im!

1 i S sz

dǧnm
dt1

1
dǧnm
dt2

szD
1~ isyDn2Fnsz!ǧnm2ǧnm~syDm2szFm!

1
i

2
n f@szǧnnszǧnm2ǧnmszǧmmsz#

2
i

4
nb@sxǧnnsxǧnm2ǧnmsxǧmmsx1syǧnnsyǧnm

2ǧnmsyǧmmsy#50, ~1!

where the products assume the convolution with respec
time and matrix product,x is the coordinate along the chain
the self-consistent electric potential is contained in the eq
tions in the form of a chirally invariant combination with th
phase

Fn5fn2
v
2

dwn

dx
2
1

2

dwn

dt
,

fn is the matrix element of the electric potential in the ba
of the Wannier functions of then-th chain,Dn andwn are the
amplitude and phase of the order parameter in thenth chain,

Anm5sz cos
wn2wm

2
1 i sin

wn2wm

2
,

sk are Pauli’s matrices, and summation in the term conta
ing t' is performed over nearest neighbors. The last term
Eq. ~1! represent the integral of elastic collisions,n f and
nb are the forward- and back-scattering rates, i.e., rate
scattering without and with transition between differe
sheets of the Fermi surface. Note that the equations forǧ are
expressed in the representation in which the phase of
order parameter is extracted.

The order parameter satisfies the self-consiste
conditions14,20:

i S 11
1

vQ
2

]2

]t2D ~sy coswn1sx sin wn!Dn

5
l

2E ~ ĝnn
K 2szĝnn

K sz!de, ~2!

wherevQ is the frequency of phonons with the wave vect
of the Peierls instability. Summation of the components
the matrix equation~2! yields an equation for the amplitude
and their difference yields the equation for the phase.

The charge density at thenth chain can be expressed a

rn5
2

pvS 18E Tr~szĝnn
K !de2F D . ~3!

The density of current along the chain is expressed as
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j ~x!5
1 E Tr ĝK de. ~4!
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The current in the direction perpendicular to the chains
to transitions between thenth and (n11)-th chains is deter-
mined by the equation

j n,n11~x!}t'E Tr~Ann11ĝn11 n
K 2ĝnn11

K An11n!de. ~5!

In a general case, it is very difficult to solve Eq.~1!. We
limit our analysis to the case of smooth phase perturbatio
when the phase changes little over a distance of the orde
the coherence lengthv/D and the frequencies are muc
smaller thanD. We take into account only the perturbatio
of the gap caused by the coordinate dependence of the p
and ignore amplitude solitons.22,23

Two types of Green’s function perturbations in a sta
with a nonuniform charge density wave can be distinguish
The first type are perturbations in the state of thermodyna
equilibrium due to equilibrium deformations of the char
density wave, such as phase solitons, dislocations, and
ning centers. Such perturbations are described by the e
librium distribution function, which can be derived from th
retarded and advanced Green’s functions. The functionĝK in
this case is defined as

ĝK5~ ĝR2ĝA!tanh~e/2T!.

The latter equation does not hold when the distribution fu
tion is nonequilibrium and dissipation takes place. In t
case, one must solve an additional equation forĝK, which
describes, in particular, the quasiparticle distribution fu
tion. The functionĝK contains an anomalous component d
scribing the deviation of the distribution function from equ
librium and defining the current and friction coefficient
the charge density wave.14 In the next section we will con-
sider perturbations in equilibrium states.

3. EQUATION FOR A NONUNIFORM CHARGE DENSITY
WAVE IN THE STATE OF THERMODYNAMIC EQUILIBRIUM

We apply to Eq.~1! the perturbation theory in the pa
rametert' describing coupling between chains and in t
electric field component along the chains2df/dx.

In the case of a uniform state and zero coupling betw
chains, one can derive from Eq.~1! convenient expression
for the retarded and advanced Green’s functions in the f
of implicit solutions:

gnn5gnsz1 f nisy[
en
jn

sz1
D̃n

jn
isy , ~6!

where

en5e2Fn1 in1gn
R~A!/2, n15n f1nb ,

D̃n5Dn2 in f f n
R~A!/2, jn

R~A!56Aen
22D̃n

2.

The density of states of electrons is determined by
diagonal components of the Green’s functions through
expression

N~e!5~gR2gA!/2. ~7!
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charge density wave and electric potential lead to bendin
energy bands, and the density of states as a function of
ordinates is determined by the energy shiftFn(x). Since the
electrochemical potential~i.e., the sum of the electric an
chemical potentials! should be constant in equilibrium an
the phase gradient equal to the local change in the ch
density wave vector, then

Fn~x!52mn~x!,

wheremn is the local shift in the chemical potential from th
middle of the gap.~Here we ignore the asymmetry betwee
electrons and holes, which usually occurs in Peie
conductors24 and leads to a small shift ofm from the midgap
position in an undistorted conductor with charge dens
waves.!

According to Eqs.~6! and ~7!, in the limit n→0, the
density of states has a square-root singularity at the gap e
This singularity is blurred out owing to interaction betwe
chains and scattering, which is considered to be modera
this case,n!D ~otherwise we would have a gapless Peie
state!. The expressions forĝR and ĝA with due account of
scattering can be easily derived for energiesue2Du!D,
where the diagonalg and off-diagonalf components ofĝR

and ĝA matrices are similar, and the equations forgR(A) re-
duce to cubic equations. Their solutions are

gR~A!5
1

4 S D

n D 1/3$ i @~4h!1/32~11h/21A11h!1/3

2~11h/22A11h!1/3#

6A3@~11h/21A11h!1/32~11h/2

2A11h!1/3#%, ~8!

whereh52(e2D)3/27Dn2, n[n f1nb . For largeh, when
e2D@(Dn2)1/3, the solutions given by Eq.~8! drop as
1/Ae2D, and near the edge (h'21), when
ue2EGu!(Dn)1/3, where the gap halfwidth
EG5D23(Dn2)1/3 is remormalized because of the spread
the density of states, Eq.~8! reduces to

gR~A!52 i S D

2n D 1/36 A3
n2/3S D

2 D 1/6Ae2EG. ~9!

It follows from this equation that the density of states dro
to zero at the gap edge, in accordance with numer
calculations.25

Now let us calculate corrections of the formgx,nnsx to
the solution of Eq.~6! for ĝR andĝA. After substituting these
corrections into the self-consistency condition~2!, we obtain
an equation for the phase. The interaction between ch
described by the parametert' /D contributes only in the sec
ond order of the perturbation theory:

gx,nn52(
i

i t'
2D sin~wn2wn1 i !

jnjn1 i~jn1jn1 i !
2
i\vD

2jn
3

dm

dx
. ~10!

The gradients ofFn(x) and D(x) also contribute to
gx,nn and f nn , which determine the perturbations of th
phase and amplitude of the charge density wave, res
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in Eq. ~1! in the explicit form and neglecting interactio
between chains, we obtain identical equations forgx,nn

R(A) in
the form

v2
d2gx
dx2

14j̃ 2gx522ivS f dF

dx
1g

dD

dx D , ~11!

where the energy is shifted byFn(x),

j̃ 25e22D216inD f R.

The expression for the correction which determines the p
turbationD(x) has the form

d f52
ivg

2~eg2D f !

dgx
dx

, ~12!

whereg and f are the advanced and retarded Green’s fu
tions in the zeroth approximation with respect to gradie
and t' .

If j̃ on the left-hand side of Eq.~11! is sufficiently large,
the second coordinate derivative can be omitted, i.e., we
use a local approximation corresponding to the semiclass
approximation, which yields standard equations for the ph
used, for example, in the problem of phase solitons.26,27 It
will be demonstrated below that this approximation applie
the chemical potential in bent energy bands does not ove
with bands of allowed states or penetrates little into th
bands. The solution of Eq.~11! has the form

gx52E
2`

`

dx1
fF81gD8

2j̃
exp

2i j̃ux2x1u
v

, ~13!

where primes denote coordinate derivatives. Substitution
Eqs. ~10!, ~13!, and ~12! into the self-consistency conditio
~2! yields equations for the phase and amplitude of a cha
density wave. But integration with respect to energy in E
~2! is quite difficult in a general case, sinceg and f are
complex functions of the factors leading to the spread in
density of states.

Therefore we consider a limiting case of an ideal qua
one-dimensional conductor, which applies when typical q
siparticle energies~i.e., temperatureT or m2EG for
umu.D) are larger than both (Dn2)1/3 and the spread of the
one-dimensional density of states due to the incomplete n
ing of the sheets of the Fermi surface shifted by the cha
density wave vector. In this case, the phase is determine
the equation

J(
i
sin~wn1 i2wn!

5
iD

4vE2`

`

deE
2`

`

dx1@DF8~x1!1eD8~x1!#

3S exp~2i jRux2x1u/v !

~jR!2
2
exp~2i jAux2x1u/v !

~jA!2 D
3tanh

e2F~x!

2T
, ~14!
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the side on which the integration contour ine bypasses the
singularities.

The integration on the right-hand side of Eq.~14! yields

Re (
n50

` E
2`

` 2pD0T$D0F8~x1!1@F~x!1 iTn#D8~x1!%

v z̃ n
2

3 expS 2
2z̃nux2x1u

v D dx1 , ~15!

where

z̃n5AD0
21@Tn1 iF~x!#2,

Tn5(2n11)pT. The coefficientJ describing the interaction
between chains is determined, in a general case, by inte
ing Eq. ~10! and its expression is rather cumbersome.

Consider the expression for the caseD@T, which is re-
alized practically at all temperatures below the fluctuat
region and also for the case when a chemical-potential s
comparable to the gap width occurs only at one chain:

J5
t'
2

v
D2

uFuAD22F2/4

3F2 arcsin
uFu
2D

2u~ uFu2D!

3S p

2
2arcsin

2D22F2

uFuD D G .
Note that the functionJ(F) is rather flat: J(0)5t'

2 /v,
J(0)/J(D)'0.8; therefore the model with the consta
J5J(0) yields qualitatively correct results.

In order to make the problem a closed one, Eqs.~14! and
~15! must be supplemented with the equation describing
deviation of the charge density wave amplitude from its u
perturbed valueD0:

D2D05 Re(
n50

`

2pvDTS 1
z̃n

2
1

zn
D 2 Re(

n50

`
v
2E2`

`

dx1

3
pT@m~x!1 iTn#@D0m9~x1!1~m~x!1 iTn!D9~x1!#

z̃ n
4

3expS 2
2z̃nux2x1u

v D , ~16!

where zn5 z̃(F50). Note that the first term on the right
hand side of Eq.~16! contains the unperturbed value of th
amplitude and should be linearized with respect toD2D0.

If the integrand in Eq.~14! changes little over the dis
tance of aboutv/AD22m2, the local approximation applies
and the equation can be reduced to the standard semiclas
equation for the phase26,27 with an additional force propor-
tional to the gradient ofD. Let us prove that the local ap
proximation holds when the shifted chemical potential is
ther within the band gap or slightly penetrates into the ba
of allowed states, i.e., metallic islands are small. To do th
we add and subtract tanh(e/2T) to tanh@(e2F(x))/2T# on

826S. N. Artemenko



the right-hand side of Eq.~14! and calculate the integrals
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with the factor tanh(e/2T) and the difference between th
two hyperbolic tangents separately.

The main contribution to the integral of the term wi
tanh(e/2T) with respect toe calculated using residues at th
tangent poles in the complex plane comes from the reg
e; iD. Therefore the typical range of the dropping expon
in the integral with respect tox1 is small and approximately
equalsv/D, and since we consider perturbations almost c
stant over the coherence length, the functionsF8 andD8 can
be taken out of the integrand. After calculating the integra
we find on the right-hand side of Eq.~14! the semiclassica
result NsF8, where Ns512A2pD/T exp(2D/T);1 for
D.T.

One can easily prove that the remaining integral w
respect to e, containing the difference
tanh@(e2F(x))/2T#2tanh(e/2T) is proportional to the van-
ishingly small exponential exp@(D2uFu)/T# if
D2uF(x)u@T, and it can be omitted. Thus, the local a
proximation applies to the regions outside metallic island

Now let us assume that the point with the coordinatex is
within a small metallic island with the lengthl m and show
that the latter integral responsible for the nonlocal contri
tion to the equation is small at sufficiently smalll m . If
l m!v/max$T,AD(uFu2D)%, the typical range of the expo
nential is notably larger than the island dimension, andx in
the exponential can be ignored. Since the functionsF(x) and
D(x) describing a soliton are odd, the integral with respec
x1 contains only an odd function and vanishes. Thus,
nonlocal contribution is also small in the case of a su
ciently small metallic island.

In a general case of an arbitrary perturbation, the se
classical approximation does not apply, and the full syst
of integro differential equations~14!–~16! must be solved.

4. TIME-DEPENDENT EQUATIONS

If electric field is applied to a conductor with charg
density waves and electric current flows across it, the ph
equation contains terms due to deviation from equilibriu
and a quasiparticle current is generated. In order to calcu
the quasiparticle distribution, one must solve the kine
equation forĝK, which can be reduced to the semiclassi
kinetic equations for the distribution function in the case
smooth perturbations.14 We are, however, interested in pe
turbations which are gradual along chains, but vary rapi
in directions perpendicular to the chains. Such perturbati
occur, for example, in solitons and near pinning centers
this section, we generalize the previously develop
approach14 to such perturbations.

Our analysis is limited to the case of low frequencie
when the typical times of changes in the electric field, ph
of the charge density wave, etc. are larger than the en
and momentum relaxation times. In this case, the ene
distribution of quasiparticles is described by a Fermi fun
tion with a chemical potentialm, which is a function of co-
ordinates and time and in the nonequilibrium case, is, ge
ally speaking, different fromF. In calculatingm, we use the
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defined by Eq.~3! with

Tr~szĝnn
K !52N~e! tanh@~e2m!/2T#,

where the density of statesN(e) is defined by Eq.~7! with
Green’s functions calculated in the previous section:

rn52
k2

4pFv2 dwn

dx
1 f ~mn!G1

«D

4p

d2F

dx2
. ~17!

Here 1/k is the screening radius in the metallic state,eD is
the dielectric constant component due to the Peierls gap
ing to the corrections togR(A) ~the derivation is given in Ref.
14!, f (m) is the contribution of single-electron excitations
the charge density, analogous to similar to the contribut
of electrons and holes in conventional semiconductors:

f ~m!5E
D

`

deN~e!@nF~e2m!2nF~e1m!#, ~18!

nF is the Fermi distribution function. The explicit expressio
for f (m) depends on the broadening of the density of sta
near the gap edge, although the approximate shape off (m) is
universal. If the density of states broadening ingR(A) for
D2umu@T is neglected,

f ~m!5NQ sinh~m/T!, NQ5A2pD/T exp~2D/T!,

and for umu2D@T

f ~m!5Am22D2.

Since all the functions of the coordinate along the ch
are smooth, perturbations of the functionĝK generated by an
electric field aligned with the chains are semiclassical a
largely controlled by perturbations in the quasiparticle dis
bution function, whereas perturbations of the functio
ĝR(A) can be neglected. The perturbation of the distribut
function can be calculated by the equation14

nz5
vVn81~nb/2!G2ẇn

neff

dnF~e2mn!

de
, ~19!

Vn5Fn2mn , ~20!

where

neff5nbG2/21 iDF1 /G2 , G25gR2gA,

F15 f R1 f A,

and Vn is the electrochemical potential, which vanishes
the equilibrium state because the field-induced and diffus
components of the current cancel each other. A dot ove
function denotes a time derivative.

The perturbation of the distribution function defined b
Eq. ~19! describes the longitudinal current and adds to
phase equation the term corresponding to friction of a m
ing charge density wave. The corresponding nonequilibri
corrections to the Green’s function components have
form

Tr gK5G2nz , gx
~a!52F1nz .

Substituting these expressions into Eq.~4!, we calculate the
current density along the chains:
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l 2v S ]t 2`
2 z D 4p dxdt

5
sNlnb
2v

~12b!
]wn

]t
2s lVn82

«D

4p

d2F

dxdt
, ~21!

wheresNl is the chain conductivity in the normal state~i.e.,
whenD50). The expression for the quasiparticle conduct
ity s l , as well as the parameterb describing the effect of
quasiparticles on the current due to charge density wa
depends on the density of states broadening and shift o
chemical potential. They are determined by the contributi
of the first and second terms in the distribution function d
scribed by Eq.~19! to the integral in Eq.~21!. Calculations
of these parameters in the limit of pure material a
umu,D are given in Ref. 14. We do not give the explic
expression forb, because at low temperatures this parame
contributes little to the charge-density-wave current alo
the chains~although it largely controls the contribution o
charge density waves to the Hall effect and therm
conductivity28,29!. In this paper, a calculation ofs l is given
in the limit of T!D only for an arbitrary shift of the chemi
cal potential:

s l54sNl

nbT

nD F lnS 2 coshEG2umu
2T D2

EG2umu
2T G . ~22!

In deriving this equation, the density of states broaden
near the gap edge was neglected; in the opposite limi
large broadening due to a high scattering rate, the factor
Eq. ~9! should be replaced by 3.

Calculating the term due to the nonequilibrium contrib
tion to the quasiparticle distribution function~19! for the
phase equation and adding it to the phase equation derive
the previous section, we obtain the equation of motion
the phase. Here we write this equation, for simplicity, in t
semiclassical approximation, whose applicability to meta
islands is restricted, as was mentioned above, to small is
dimensions:

1

2v
m*

m

]2wn

]t2
1g

]wn

]t
2
v
2

]2wn

]x2

1J(
i
sin~wn2wn1 i !5En , ~23!

wherem is the electron mass,m*5(114D2/lvQ
2 )m is the

‘‘effective mass of the charge density wave’’ due to the te
with the time derivative in Eq.~2! ~recall that large effective
mass is a feature distinguishing charge density waves f
spin density waves, whose effective mass should be equ
the band electron mass1!. The coefficient of friction is de-
fined as

g
]wn

]t
5
iD

2vE F1nzde. ~24!

Like the quasiparticle conductivity,g is a function of the
density of states broadening. This parameter was calcul
in Ref. 14 for the case of zero broadening andD2umu@T,
and it was demonstrated that most of the friction is due
quasiparticles with energies near the gap edge, so the inte
in the expression forg had to be cut off near the density o
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T@(Dn ) , when the main contribution to the integral i
Eq. ~24! is due to quasiparticles near the broadened edg
the density of states:

g5
3nbD

1/3T

~2n!4/3 F lnS 2 coshEG2umu
2T D2

EG2umu
2T G . ~25!

Note that in the lowest-order approximation the righ
hand side of Eq. ~23! contains the electric field
E52df/dx, but not the gradient of the electrochemical p
tential, which determines the quasiparticle current in E
~21!. The contribution proportional to the chemical potent
gradient appears if one takes into account quasiparticle
rections, which are small at low temperatures.

The stability study of Eq.~23! with the interaction be-
tween neighboring chains indicates that the homogene
solution with equal phases on all chains is unstable aga
small phase perturbations. In the stable solution, the ph
differences between neighboring chains isp. This conclu-
sion corresponds to the well-known fact that in the tig
binding approximation the opposite sheets of the Fermi s
face coincide after a shift by a wave vector corresponding
the period doubling in the direction perpendicular to t
chains. Therefore the charge density wave generated afte
Peierls transition also has a double period in the perpend
lar direction. In what follows, we definewn as a phase de
viation from the stable solution, in which neighboring chai
are in antiphase. The equations for such deviations di
from Eq. ~23! by the sign ofJ.

Unlike the response to a field aligned with the chain
the current density in the direction perpendicular to t
chains cannot be described in the semiclassical approx
tion since we consider perturbations in which the phase
ference between neighboring chains can be large. In
case, the expression for the current density must include
only quasiparticle distribution functions, but also correctio
to the retarded and advanced Green’s functions. In calcu
ing Green’s functions components that are off-diagonal
the chain indices, which are needed for determining the c
rent between chains, one can neglect terms with derivat
and consider only the first order of the perturbation theory
the chain coupling parametert' .

Calculation of the combination of Green’s functions
Eq. ~5! for the current density among the chains yields

j t5 i
sNtn1

4d E
2`

`

deS tanhe2Vn

2T
2tanh

e2Vn11

2T D
3~FRA1FAR2FRR2FAA!, ~26!

wheresNt is the conductivity in the direction perpendicula
to the chains in the normal state, and

FIJ5
gn
I gn11

J 211 f n
I f n11

J cos~wn2wn11!

zn
I 1zn11

J .

Equation~26! indicates that the current between thenth and
(n11)-th chains is caused by the electrochemical poten
difference

Vn2Vn115Fn2mn2Fn111mn11,
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since, according to Eq.~6!, the components of the Green
functionsgn , f n , f n11, andgn11 as functions of energy ar
shifted byFn and Fn11, respectively. Note also that th
conductivitys t is a function of the phase difference betwe
neighboring chains, and this effect is similar to the tunnel
current between two conductors with charge density wave30

Calculation of integrals in Eq.~26! in a general case is
cumbersome; therefore we will discuss only general featu
of the conductivity and its expressions in limiting cases.
low temperatures and smallFn andFn11, the conductivity
is exponentially small:

s t}sNt@11cos~wn2wn11!#exp~2D/T!. ~27!

Note that under these conditions the longitudinal conduc
ity is also exponentially small:

s l}sNl exp~2D/T!.

If one of the chains has a large shift in the potent
Fn'mn , which is usually the case near a pinning center
in a phase soliton,16,17 the longitudinal and transverse co
ductivities behave differently. The conductivity along th
chain described by Eq.~22! increases proportionally to
exp(uFu/T) owing to the high local density of quasiparticle
whereas in the transverse conductivity the large chem
potential shift affects only the pre-exponential factor in E
~27!, which notably drops withF. The reason is that at sma
chemical potential differences between neighboring cha
the conductivity is inversely proportional to the scatteri
rate, which is typical of semiconductors and leads to sm
denominators zn

R1zn11
A in Eq. ~26!. At large

Fn2Fn11@ADT the response is similar to the tunnelin
current between chains, and the denominators in the first
terms of Eq.~26! are no longer small, so the integratio
yields the approximate result

s t5OS Dn2T3/2

~Dn21mT2!m3/2DsNt expS 2
D

T D . ~28!

The equation of motion for the phase combined with
Poisson and continuity equations, Eq.~17! for the charge
density, and Eqs.~21! and~26! for the current density deter
mine the contribution of a moving charge density wave or
parts to the conductivity.

5. CONTRIBUTION OF PHASE SOLITONS TO CONDUCTIVITY

Both analytic16 and numerical calculations17 of phase
solitons indicate that the difference between their struct
and energy derived from such diverse models as the m
of interaction between neighboring chains and the model
single chain~which describes interaction among many cha
in the self-consistent field approximation10! is purely quanti-
tative. This means that essential features of solitons are
dependent of the specific lattice structure and energy s
trum of a quasi-one-dimensional conductor. In our estima
of the soliton velocity due to a voltage applied to a qua
one-dimensional conductor given below, we will simpli
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one chain by neglecting in our equations the phase and
tential perturbations on neighboring chains.

In this model, we will use the semiclassical equati
~23! for solitons without metallic islands or with a sma
island. Since we seek a solution for a soliton moving alo
chains, all functions of time should have the form

w~x,t ![w@x2xs~ t !#;

therefore the time derivatives can be replaced with coo
nate derivatives. Let us use dimensionless variables with
ergy, time, and length units beingt' , 1/t' , andv/t' , re-
spectively. Then the phase equation in the approxima
linear with respect to the voltage and velocity takes the fo

]wn

]x Sm*2mẍs1g ẋsD1(
i
sin~wn2wn1 i !5

]~mn1Vn!

]x
,

~29!

where the dimensionless parameterg is measured in units o
t' /v, and the electric potential is expressed in terms of
electrochemical and chemical potentials by means of
~20!.

The components of the Laplacian in the Poisson eq
tion containing coordinates in the plane perpendicular to
chains is expressed in the discrete form, neglecting the te
with eD :

z(
i

~fn1 i2fn!5
1

2

dwn

dx
1 f ~mn!, ~30!

where the dimensionless parameterz5\v/8e2;1022.
In solving this problem, we also need the continu

equation, which, after substituting into it the expressions
the charge and current density, takes the form

]

]xS s l

sNl

]Vn

]x D1a(
i

s t

sNt
~Vn1 i2Vn!12ẋsnb

3
]

]xF f ~m!1b
]wn

]x G50, ~31!

where

a5~sNt /sNl!~v
2/t'd

2!;1.

In order to calculatexs , we multiply Eq. ~29! by
]wn /]x, sum overn, and integrate with respect tox from
2` to `. As a result, some of the terms can be expresse
integrals of function derivatives, whose perturbations van
at infinity; therefore the nonzero contribution to the integr
is made only by several terms, namely

Sm*2mẍs1g ẋsD(
n
E

2`

` S ]wn

]x D 2dx5(
n
E

2`

` ]Vn

]x

]wn

]x
dx.

~32!

In the first order of the perturbation theory, unperturbed
lutions for a static soliton can be substituted into the integr
in Eq. ~32!.

In order to derivexs from Eq. ~32!, one must derive the
function Vn(x) from the continuity equation~31!. Since
within most of the soliton the shift in the chemical potent
on the central chain is large,16,17, the conductivitys t , ac-
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cording to Eq.~28!, is negligible, and a solution of Eq.~31!
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can be derived by rejecting the second term in Eq.~32!.
As a result, we find a solution for the gradient of th

electrochemical potential:

]Vn

]x
52

j ext
s l

1 ẋs
2nbsNl

s l
S f ~mn!1b

]wn

]x D , ~33!

where the integration constant is derived from the condit
that far from the soliton the current is determined by sing
electron excitations,j ext5s0lE(x5`) is the current density
ands0l5s l(x5`) is the conductivity far from the soliton
After substituting Eq.~33! into Eq.~32! for xs , the first term
yields the force which gives rise to a soliton movement, a
the second term yields the additional friction connected w
a charge redistribution caused by the soliton movement.
nature of this contribution is similar to that of the therma
activated quasiparticle contribution to the damping of
charge density wave31,32moving as a whole in the presenc
of weak pinning centers at relatively high temperatures.

Thus, owing to the smallness of current between
chains at a large shift in the chemical potential from t
midgap position, the gradient of the electrochemical pot
tial described by Eq.~33! is determined by the phase an
potential on the central chain. This provides justification
using the model with a single chain in analyzing the solit
mobility and its contribution to the conductivity. Therefor
taking into account that the phase and potential perturbat
in the soliton drop rapidly with the distance from the cent
chain, we neglect the contributions of all the chains exc
the central one. Substituting Eq.~33! into Eq.~32!, we obtain
the equation of motion for the soliton:

Mẍs12nbsNlG ẋ5A jext/s0l , ~34!

where

M5 ~m* /2m!E ~w8!2dx, A5E w8 ~s0l /s l ! dx,

G5E w8@~ f1bw8/s l 1 gw8/2nbsNl!#dx.

Let us average Eq.~33! over the coordinatex and sub-
stitute into it the soliton velocity derived from Eq.~34! in the
limit of low frequencies, when the term with the effectiv
mass can be rejected. Assuming that the linear densit
noninteracting solitons on the chain isns , we obtain the
relation between the average field and current, which de
mines the conductivity of a crystal with solitons:

Ē5
j ext
s0l

F12nsS E ds

s l
dx1

A

GE f1bw8

s l
dxD G , ~35!

whereds5s l2s0l . The expression in the parentheses d
scribes the decrease in resistivity due to solitons, the sec
term being the contribution due to the solitons’ drift, and t
first term is related to the local increase in the conductiv
due to the screening of the soliton charge and chemical
tential shift.

In calculating solitons’ contribution to the linear condu
tivity, one can ignore the effect of the applied field on t
soliton shape and substitute solutions for an immobile sol
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model and in the case when there is no metallic island at
middle of the soliton~or the island is small!, the phase equa
tions and Poisson equation describing a static soliton can
derived from Eq.~29! and ~30! by omitting the variables
describing neighboring chains. If the number of neighbor
chains is four, we have

dm

dx
524 sinw,

1

2

dw

dx
524zf2TNQ sinh

m

T
. ~36!

Solutions to Eq.~36! have a simple form in two limiting
cases: atT50, when the effect of quasiparticles is neg
gible,

w54 tan21@exp~A32zx!#,

and at higher temperatures, whenNQ@z and the quasi-
neutrality condition holds:

w52 cot21@A112/NQT
2sinh~8NQx!#.

Substituting these expressions into Eq.~35!, we obtain the
resistivity of a sample with noninteracting solitons in th
limiting cases mentioned above and when the temperatu
sufficiently low:NQT

2!1. In dimensional units, the resistiv
ity is

r5
1

s0l
~12ns!

3H a1 /ANQ1b1T/t' for NQ!z,

~a2 /Az1b2T/t'!ln@ t' /TAz# for NQ@z,

~37!

where the factorsa andb are of the order of unity, and thei
exact values depend on the lattice structure, specifically,
number of nearest neighbors. Equation~37! clearly indicates
that in both limiting cases the terms with the factorsa de-
scribing soliton’s contribution to the conductivity due to th
chemical potential shift are notably larger than the contrib
tion of the soliton drift described by the terms with the fa
tors b. The soliton mobility is low because the force actin
on a soliton when current flows across the sample is
owing to the screening of the electric field in the cent
region of the soliton, where the chemical potential shift
large and the local quasiparticle concentration is high
Therefore the main contribution to the force driving the so
ton is largely generated at large distances from the cen
where the chemical potential shift is small and the appl
electric field is not screened by quasiparticles, whereas
entire region of the phase perturbations in the soliton c
tributes to the factorG responsible for the soliton friction
Note that the main contribution to the friction is due to t
first term inG, which describes the dissipation caused by
charge redistribution at the soliton center during its motio

Note that pinning impurities can also make a contrib
tion to the linear conductivity similar to the soliton’s contr
bution to the conductivity owing to the chemical potent
shift, and unrelated to its drift. The chemical potential is a
shifted around a strong pinning center,16,17 and the drop in
this shift with the distance from the center is similar to th
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in a soliton. As it is well known, the pinning center can be
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described by adding to the first of Eqs.~36! the term
vQd(x2x8)sin(Qx1w), where the dimensionless potenti
vQ52VQD/lt'v is expressed through the Fourier comp
nent of the impurity potentialVQ corresponding to the wav
vectorQ of the charge density wave.14 It follows from the
solution of Eqs.~36! with d-functions that the pinning cente
generates a local phase perturbation with a considerable
of the chemical potential, which decays at a distance of
order of the soliton length. For example, in the limitT→0
the phasew i and chemical potentialm i near an impurity are
determined by the relationship

2um i u5A8/z sin~w i /2!5vQ sin~Qxi1w i !.

Hence it follows that pinning leads to a large shift
m i comparable toD if the impurity potentialV is of the order
of the Fermi energy, i.e., is comparable to characteri
atomic energies. Note that the formal solution in the mo
with the d-function yields a potential jump at the impurity
but it does not invalidate this model because it means a r
drop in the potential over a short distance of the order of
Thomas–Fermi screening length.

Note also that an investigation based on a thr
dimensional model that takes into account many cha
shows up the relatively slow drop of the perturbations,
scribed by a power law, at large distances from the impur
where the chemical potential shift is small, and this sm
decrease may result in a collective pinning.

The large shift in the chemical potential at the pinni
center produces a contribution to the resistivity similar
that of the terms with the factorsa in Eq. ~37!, but the soliton
concentrationns should be replaced by the linear concent
tion of pinning centersnp . Since the soliton concentration a
low temperaturesns } exp(2Es/T), it drops rapidly with de-
creasing temperature since it is controlled by thermal act
tion and the soliton energy increases with decreas
temperature.16,17 Therefore the effect of pinning centers o
the conductivity should be stronger at low temperatures t
that of solitons.

Thus, our calculations contradict the concept used pr
ously by many authors, which holds that the soliton drift c
account for the conductivity along the chains exceeding
thermally activated conductivity with the activation ener
close toD. One can see that the contribution of the solit
drift is very small. The increase in the conductivity along t
chains due to the chemical potential perturbation aroun
pinning center is considerably larger.

Our calculations also indicate that this increase in
longitudinal conductivity should not be accompanied by
increase in the transverse conductivity, as is observed in
periments. The dimension of the region with enhanced c
ductivity is determined by the soliton lengthl s , which in-
creases with decreasing temperature and is a macrosc
parameter, whereas in the perpendicular directions the
turbation drops over a distance comparable to the interc
distance. Therefore regions with enhanced conductivity ov
lap in the longitudinal direction at relatively small conce
trations of the pinning centersnp;1/l s , which leads to a
notable increase in the longitudinal conductivity over t
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energy. The solution of the conductivity problem in the ca
of a relatively high pinning center concentration is very co
plicated and deserves special treatment. One can expec
in this case a large role should be played by metastable s
with different spatial phase distributions around pinning ce
ters.

6. CONCLUSIONS

It is well known that the effects due to long-range Co
lomb interaction and its screening determine static and
namic properties of nonuniform perturbations of charge d
sity waves at high temperatures. For example, lin
screening by single-electron excitations determines th
typical range~rigidity of charge density waves!20,33and their
velocity.31,32 It follows from calculations given above tha
Coulomb effects should be also included in the description
low-temperature dynamics of charge density waves, w
there are few electron–hole excitations in a uniform cha
density wave.

In regions of nonuniform perturbations of the char
density wave, the chemical potential shifts notably from
equilibrium position near the middle of the Peierls gap, p
ducing a considerable effect on the structure and mobility
nonlinear perturbations of the charge density wave.

We have derived equations which apply to the dynam
of perturbations with large variations of the phase and pot
tial between neighboring chains, such as 2p-solitons or pin-
ning centers. In such regions, the single-electron conduc
ity along the chains increases notably, whereas
conductivity between the chains does not change. The ca
lation of the soliton velocity due to applied electric fie
indicates that the velocity of solitons is too small, and th
drift contributes little to the low-temperature conductivit
The differences between the observed temperature de
dence of the linear conductivity and that expected from c
ventional electron–hole conductivity can be ascribed to
chemical potential shift and increase in the quasiparticle c
centration around pinning centers.
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Electrical conductivity in the metal–polymer–metal system: the role of boundary

tates
conditions
V. M. Kornilov and A. N. Lachinov

Institute of Physics of Molecules and Crystals, Russian Academy of Sciences, 450065 Ufa, Russia
~Submitted 30 November 1995; resubmitted 18 October 1996!
Zh. Éksp. Teor. Fiz.111, 1513–1529~April 1997!

We study a new type of charge instability in electroactive polymers, an instability caused by a
change in the boundary condition at the metal–polymer interface. The change in the
boundary conditions is achieved by melting one of the electrodes in a measuring cell of the
metal–polymer–metal sandwich type. Charge instability manifests itself in the form of an
insulator–metal phase transition, which emerges when one of the electrodes is melted. We
list the results of numerous studies of the role of artifacts. Finally, we propose a model that
explains several features of the phenomenon. ©1997 American Institute of Physics.
@S1063-7761~97!02804-7#
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The existence of high-conductivity states in undop
polymers, discovered at the end of the 1980s,1–3 still remains
a remarkable but unexplained phenomenon. What is rem
able is the extremely low value of the threshold perturbati
that initiate an insulator–metal phase transition in su
polymers.4 In particular, the pressure threshold is about 14

Pa ~Ref. 5! and the field threshold is 103 V/cm ~Ref. 6!.
These quantities are so small that they certainly have
effect on the energy band structure. It is known,7 for in-
stance, that the metallic state in electroactive polymers of
polyacetylene type is reached at pressures of about 1010 Pa,
which is considerably higher than the threshold value. H
the transition is attributed not to a change in the intermole
lar bonds, for the pressure is not sufficiently high, but to
increase in the strength of the intermolecular interaction.

It can be assumed that in a metal–polymer–metal s
tem such perturbations affect the energy band structure o
polymer indirectly, leading to energetically favored vari
tions in the polymer sample. This may occur, for instan
because of variations in the space or surface charge den
Generation of the high-conductivity state of a polym
sample under rapid ionization at the peak of the therm
stimulated current was discussed in Ref. 8. There it was
noted that exciting the high-conductivity state requires
taining a certain critical concentration of the uncompensa
charge in the sample’s bulk. Such concentration w
achieved by selecting an appropriate rate for heating~or
cooling! the sample.

The effect of trapping states on the threshold charac
istics of the formation of the high-conductivity state in pol
mer films was studied in Refs. 8 and 9. It was establis
that by increasing the trap concentration the hig
conductivity state can be reached in samples that are
mm thick, rather than 0.1–1mm thick as reported earlier.

In thin ~up to 1mm) samples the surface plays an im
portant role, since the concentration of defects and, co
quently, of traps on it is high. If we bear in mind that th
sample thickness is comparable to the depth of penetratio
the space charge generated by the bending of the en

833 JETP 84 (4), April 1997 1063-7761/97/040833
d

k-
s
h

o

e

e
-
n

s-
he

,
ity.
r
y
so
t-
d
s

r-

d
-
00

e-

of
rgy

have a strong effect on the conditions in which the hig
conductivity state is formed. A brief report on this effect c
be found in Ref. 10.

In view of this, the goal of the present work is to stud
the role of surface states at the metal–polymer interface
the process of generation of the high-conductivity state in
polymer field.

The idea behind the experiment is as follows. When
metal and a polymer are in contact, the bands near the
face~the interface! bend as a result of the evening out of th
Fermi levels and the redistribution of charges. The poten
energyVb(z0) of the carriers at a distancez from the phase
boundary determines the magnitude of this band bending11

Vb~z!5H V02
2pe2N~z2z0!

2

«
if 0,z,z0 ,

V0 if z.z0 ,

~1!

wherez0 is the depth of penetration of the polymer’s bulk b
the surface chargeN. According to various estimates,z0 may
vary by a factor of ten depending on the type of polymer a
the estimation method.12,13 Note that the average valu
z0;3mm ~Ref. 13! is comparable to the thickness of th
films employed earlier in studies of switching to the hig
conductivity state.4–6

Using the expression forVb(z0), we can determine the
surface charge density

N5
«W0

2p~ez0!
2 , ~2!

whereW05wp2wm , with wp andwm the work functions of
the polymer and the metal, respectively. Thus,N can be
changed by varying the ratio of the work functions of t
polymer and the metal. Some metals, e.g., indium,
known14,15 to change their work function very rapidly in th
course of melting. Hence, if we use such a metal for one
the electrodes, at the transition temperature the charge
sity at the polymer–metal phase boundary may change d

8339$10.00 © 1997 American Institute of Physics
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tically, which, as expected by analogy with thermally stim
lated switching,8 leads to the appearance of the hig
conductivity state in the polymer sample.

2. SAMPLES AND METHODS

We studied polymers of the polyphthalidylidenearyle
type, in which earlier Zolotukhinet al.16 observed phenom
ena associated with generation of high-conductivity sta
The results are given for a typical representative of this c
of polymers, polyphthalidylidenebiphenylilene~PPB!.

PPB is easily soluble in chloroform and cyclohexano
This allows fabrication of polymer samples of differe
thicknesses~from fractions of a micrometer17 to several
dozen micrometers!. To fabricate uniform films we used th
method of centrifuging a solution of PPB in cyclohexanon

The polymer films needed for electrophysical measu
ments were fabricated on a support made of polished g
with a flat metal electrode~we called this the lower elec
trode!, Optically polished microscope glass of theTeget
brand or cover glass of theIlmglas brand was used. The
experimental measuring cell was of the ‘‘sandwich’’ typ
~Fig. 1!. The lower electrode was manufactured by vacu
thermal sputtering of two metal layers: a;200–500 Å inner
layer of chromium or vanadium for better adhesion to
glass, and a;1000 Å contact layer of copper, gold, alum
num, calcium, etc. to ensure good conductivity and the p
sibility of attaching leads.

Various metals, such as indium, gallium, and Wood
alloy, were used for the electrode~the upper electrode! on
the surface of the polymer film.

The block diagram of the electric circuit is depicted
Fig. 2. The measuring cell was placed in a heater that
lowed heating the cell to 250–300 °C. The voltage across
sample was supplied by a B5-12 power source. The ba
resistor was needed to limit the current flowing through
sample, with the resistance chosen in such a way
Rs@Rr and Rs.Rb/100. Here the first inequality follows
from the condition that the reference resistor introduces
smallest possible disturbance in the measuring circuit, w
the second reflects the accuracy of the measuring devic

The signal on the reference resistor was measured
feeding it to theY terminal of an N307 chart recorder, an
scanning along in theX coordinate was done via the sign
from a differential copper–constantan thermocouple, w
one junction in contact with the sample and the other ins
a vessel with melting ice.

FIG. 1. Schematic of the measuring cell:1 is the upper electrode,2 is the
polymer film,3 is the lower electrode,4 is the glass support plate,5 is the
heater, and6 is the thermocouple.
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3. RESULTS OF MEASUREMENTS

3.a. The effect of temperature on the electrical conductivity
of the metal–polymer–metal system

Figure 3 depicts the temperature dependence of the
rent flowing through a polymer film. Here curve1 corre-
sponds to the case where Wood’s alloy is used for the up
electrode, curve2 to the case of indium, and3 to the case of
gallium. A characteristic feature of all the curves is a sha
increase in conductivity near the melting points of the up
electrode material. When the temperature is lowered the
conductivity of the metal 1–polymer–metal 2 system is
stored.

Let us discuss in greater detail the case when Woo
alloy was used for the upper electrode. At room temperat
the polymer sample has a specific conductan
;10214(Vcm)21 ~the sample resistance was;10 GV). As
the temperature rises to 40–45 °C, current fluctuations be
to appear in the circuit, with the fluctuations correspond
to a drop in potential on the ballast resistor amounting
1–10% of the applied voltage~Fig. 4!. In the process the
resistance of the system consisting of the lower electrode

FIG. 2. Block diagram of the electric circuit used for measuring the te
perature dependence and the current–voltage characteristics:Rs is the
sample,Rr is the reference resistor,Rb is the ballast resistor, V1 and V2 are
voltmeters, and PS is the power source.

FIG. 3. The temperature dependence of the current flowing through
sample for different metals acting as the upper electrode:1—Wood’s alloy,
2—indium, and3—gallium. The voltage supplied by the power source w
10 V, the arrows indicate the direction in which the temperature chang
the cell heating rate was 5 °C min21, and the polymer layer was 2mm thick.
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polymer, and the upper electrode drops to 1–5 MV. Current
fluctuations exist up to the melting point of the upper ele
trode.

At the melting point of the upper electrode (68 °C f
Wood’s alloy! there is a sudden jump in the current in t
circuit. The voltage drop on the ballast resistor in this ca
becomes roughly equal to the applied voltage. Here the
sistance of the system consisting of the lower electrode,
polymer, and the upper electrode amounts to 0.1–5V.

The temperature dependence of the conductivity of
system exhibits metallic behavior, since the sample’s re
tance grows when the temperature of the measuring ce
increased to 250 °C~Fig. 5!. Here the calculated temperatu
resistance coefficient is 331023 K21, which within the ex-
perimental error coincides with the temperature resista
coefficient of the electrodes. The temperature dependenc
the polymer sample proper is masked in this case by
properties of the electrodes but, we must note, is not of
activation nature.

A similar pattern is observed when indium is used
the upper electrode~curve2 in Fig. 3!. As the temperature
rises to 125–130 °C, current fluctuations in the measur
circuit increase, with the resistance dropping to 1–10 MV.
When the melting point for indium~156.2 °C! is reached, a
sharp jump in current is registered in the measuring circ
with a corresponding drop in the sample’s resistance to 0

FIG. 4. Current fluctuations in the pre-transition region~the sample tem-
perature is lower than the melting point of the upper electrode, and
arrow indicates the sample’s transition to the high-conductivity state!. The
voltage supplied by the power source was 10 V, the cell heating rate
5 °C min21, and the polymer layer was 2-mm thick.

FIG. 5. The temperature dependence of the current flowing through
sample when the sample is heated to a temperature higher than the m
point of the upper electrode. The voltage supplied by the power source
10 V, the cell heating rate was 5 °C min21, and the polymer layer was 2
mm thick.
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5V. A further increase in the temperature of the measur
cell to 220 °C results in only a slight increase in the sampl
resistance.

Finally, for gallium as the material of the upper electro
~curve3 in Fig. 3! the sample goes into a low-resistance st
as the temperature of the measuring cell rises to the me
point of gallium ~29.75 °C!.

When the temperature of the measuring cell is lower
all processes involving changes in conductivity are revers
When the solidification point of the upper electrode
reached, the current in the measuring circuit suddenly dr
~this is depicted by the arrows in Fig. 3!. The observed hys-
teresis phenomenon can probably be explained by the in
of the measuring cell. When the temperature is lowered
further, current fluctuations become evident, and at ro
temperature the system returns to its initial insulator stat

3.b. The effect of temperature on the current–voltage
characteristics of the metal–polymer–metal system

Studies of the current–voltage characteristics of the fi
sample at different temperatures have revealed the exist
of three types of such characteristics. The first type~curve1
in Fig. 6! is observed at the initial~room! temperature, when
the sample is in the insulator state. This type correspond
an exponential dependence typical of charge transfer thro
polymers and is often explained by Frenkel–Pa
processes.18

The second type is represented by a power function w
an exponent close to two~curve2 in Fig. 6!. Such a current–
voltage characteristic is observed near the transition p
when the temperature is raised or lowered. Note that u
reversal of the direction of temperature variation after
transition has occurred, current–voltage characteristics
this type are observed even at the temperature at which
measurements were started. Restoration of an expone
current–voltage characteristic is achieved after a certain t
has elapsed~roughly one hour!.

Usually the power-like nature of the current–volta
characteristic is explained by the presence of a space ch

e

as

e
ting
as

FIG. 6. Current–voltage characteristics of the polymer sample at diffe
temperatures:1—at T520 °C, and2—at T560 °C. The inset depicts the
current–voltage characteristic for temperatures higher than the melting p
of the upper electrode. Wood’s alloy was used for a low-melting metal.
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toration of the initial type of the current–voltage charact
istic can probably be explained by the long recombinat
times of the space charge.

The third type~the inset in Fig. 6! appears at tempera
tures above the electrode melting point and after the poly
has reached the high-conductivity state. The character
has a linear ohmic shape.

3.c. Analysis of the role of artifacts

The sharp drop in the sample resistance at the mel
point of upper electrode can be explained in different wa
First, there can be direct contact between the electrodes
to through holes, inhomogeneities, and impurities in
polymer film. Second, the resistance can drop becaus
electrical breakdown of the polymer film at points where t
electric field is locally inhomogeneous. Third, molten me
can diffuse through the polymer film, forming conductin
metallic bridges in the process. To check these assumpt
we conducted additional experiments.

1. Through holes and inhomogeneities.We used poly-
mer films of different thicknesses in our experiments. T
thickness of a polymer film was varied by successive de
sition of polymer layers from a solution of a fixed conce
tration. It was assumed that each successive polymer l
reduces the number of defects in the previous layer and
minishes the contribution of the defects to the switching
fect in temperature. After a layer was deposited, the sam
were studied to see whether the effect was still presen
was found that the effect reproduces itself equally succ
fully up to a maximum number of layers equal to eight. T
overall thickness of the polymer layer in this case was
less than 5mm.

To resolve the problem of the relative importance of t
phase transition in the metal and the aggregation state o
metal we set up an experiment with a liquid metal electro
When the upper electrode was liquid mercury deposited
the polymer film, no switching to the high-conductivity sta
was observed. We also note that in the liquid state s
metals as Wood’s alloy, indium, gallium, and mercury do n
wet the polymer film.

2. Electrical breakdown.It was found that neither the
type of material selected for the electrodes nor the polarity
the applied voltage affects the transition to the hig
conductivity state.

An attempt was made to determine the minimum volta
of the power supply at which a switching effect still occu
and it was found that this value is certainly lower th
1 mV. For different film thicknesses this corresponds to
electric field strength of 10 to 100 V/cm. All these values a
too small to initiate electrical breakdown in the polymer film
According to Ref. 20, the breakdown voltage for polymers
no lower than 105V/cm.

Studying the temperature dependence of the contact
tential difference in a metal–polymer–metal system,
found that the dependence exhibits singularities in the fo
of potential fluctuations at temperatures close to the tra
tion temperature, while at the melting point the contact p
tential difference drops sharply~Fig. 7!.
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3. Metallic bridges in the polymer matrix.In analyzing
this assumption we discovered that the switching effect
pends on the magnitude of the current flowing through
sample. The experimental conditions are favorable to dif
sion, so that an increase in current should facilitate furt
formation of metallic bridges. In our case, however, the
fect was just the opposite.

As the current flowing through the sample was i
creased, at temperatures above the melting point of on
the electrodes the sample resistance was found to drasti
increase, with the sample transforming entirely into the lo
conductivity state. The inset in Fig. 6 depicts the curren
voltage characteristic of a polymer film in the conducti
state. The current linearly increases with voltage up to
threshold valueI th , after which the conductivity suddenl
drops, with the sample transforming into a state with int
mediate conductivity. This is reflected by anN-shaped sec-
tion with negative incremental resistance appearing on
current–voltage characteristic at exactly such voltages.
magnitude ofI th increases as the film becomes thinner~up to
2–3 Å!.

4. Results of electron-microscope analysis of polym
films. The assumptions concerning the effect of defec
electrical breakdown, and metallic bridges on the discus
phenomena were checked by direct observation of poly
films in a transmission electron microscope.21 It was found
that a polymer film obtained as a result of the formati
process is durable and homogeneous. After repeated c
transitions of the polymer films into the conducting state a
back, no through holes or traces of electrical breakdo
were observed, irrespective of how the sample was subje
to external perturbations.

However, the question of thermal diffusion of metal a
oms into the polymer and the effect of such atoms on
charge transfer in the polymer film are extremely importa
all the more so as it has been suggested, based on ind
results of experiments22 ~the effect of a magnetic field on
charge transfer in conducting channels in polymers at
tremely low temperatures!, that the diffusion of the atoms o
the metal electrode into the polymer sample determines
the unusual properties of this system.

It must be noted at this point that diffusion of met

FIG. 7. The temperature dependence of the contact potential differenc
the metal–polymer–metal sandwich. Fluctuations near the melting poin
the upper electrode~Wood’s alloy! are clearly visible.
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extremely stringent, requiring that the sample be maintai
for a long time~five to six hours! at a current that is as clos
as possible to the threshold valueI th ~see the inset in Fig. 6!
and at a temperature above the metal’s melting point, i.e
the presence of the high-conductivity phase in the sam
Here, due to thermal diffusion of the metal atoms at
points of current flow, there occurs an irreversible proces
which the conductivity of the polymer stabilizes at a certa
level. As a result, the electrophysical properties of
sample change. In particular, the initial low-conductiv
state is not restored after the temperature is lowered,
effect of ‘‘switch-off’’ of the high-conductivity state by the
critical current ~see the inset in Fig. 6! is absent, and the
fluctuation instability regions near the melting
crystallization points of the electrodes disappear.

The experiment, however, made it possible to prod
electron micrographs of the regions of current flow in t
polymer. As a result of studying polymer films subjected
the treatment mentioned earlier with a transmission elec
microscope, we obtained micrographs, with typical ones
picted in Fig. 8a. The dark areas correspond to regions
current flow and diffusion of metal atoms into the polyme
If the sample is in the insulator state, no such decora
occurs, irrespective of the applied voltage and the aggre
tion state of the metal electrode~Fig. 8b!.

The size of the conducting regions is 50–250 nm, wh
agrees well with the estimates given earlier in Refs. 22
23 and obtained from the results of indirect measureme
involving liquid crystals and the use of the current-spread
method. It is also evident that these regions have an in
structure and consist of smaller entities.

Certainly, the switching to the high-conductivity sta
initiated by the melting of the upper electrode and t
switching caused by an electric field, uniaxial pressure,
thermally stimulated currents have common features. Am
these are the metallic temperature dependence of the r
tance of a sample in the high-conductivity state, the h
conductivity of a pure undoped polymer, the existence o
threshold value for the current flowing through the samp
and the occurence of states with the activation mechanism
conductivity.

4. DISCUSSION OF EXPERIMENTAL RESULTS AND
CONCLUSIONS

Both the presence of regions of fluctuation excitation
currents in a polymer film at temperature below and ab
the temperature of the transition to liquid state of one of
electrodes and the fact that the temperature of the trans
in the polymer film to the high-conductivity metallic sta
coincides with the melting point of the electrode are an
dication that the surface–surface interaction in the met
polymer junction has a strong effect on the overall cond
tivity of the sample.

Figure 9 schematically depicts a surface potential bar
and the related surface charge regions. This case corresp
to wm,wp (wm is the work function of the metal andwp the
work function of the polymer!, since usually holes are th
majority charge carriers in polymers. Under such conditio
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the electrons go from the metal to the polymer, with t
result that a region of negative space charge is formed in
polymer.24

Let us examine a metal–polymer junction with allow
ance for the assumptions characteristic of a Scho

FIG. 8. Electron micrographs of the polymer film. Magnification
23104. ~a! Electron microscope images of a diffusion-decorated electrica
conducting film; the dark areas correspond to regions of current flow,
the size of these regions is 50–250 nm.~b! Electron microscope images o
the sample in the insulator state. The ‘‘cobblestone’’ texture is caused by
support’s microprofile.

FIG. 9. The surface potential barrier at the metal-polymer interface:wp and
wm are the work functions for the polymer and the metal, respectively;Eg is
the polymer’s energy gap,EF is the Fermi level,Ec andEv fix the bottom of
the conduction band and the top of the valence band, andz0 is the depth of
penetration of the space charge.
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uniform and sharp; there are no surface states; the polym
uniform up to the interface, at which the band gapEg

changes abruptly; the one-electron approximation is va
i.e., the electron affinity (x) is defined asx5w2Eg , and
the contribution of surface dipoles and, accordingly, ot
effects influencing the absolute values ofwm , wp , andx do
not change the differences of these quantities when the
materials come into contact; and the polymer parame
wp , x, Eg , and z0 are independent of the position of th
Fermi level.

With these restrictions, the height of the potential barr
between the polymer and the metal,wb , is given by the
following relationship:

wb5wm2x. ~3!

The thermodynamic equilibrium that sets in when co
tact between the metal and the polymer is established is
lated to the evening out of the Fermi levelsEF . The uncom-
pensated charge in the polymer generates a space char
densityeN in a region of sizez0.

The parabolic potentialVb(z0) in ~1! determines the size
of the band bending for the carriers at a distancez from the
interface. The magnitude of the surface charge, the sig
that charge, and the depth of penetration of the charge
the bulk of the polymer sample depend on the ratio of
work functions of the polymer and the metal, on t
acceptor–donor properties of some groups of polymers,
on other parameters of the materials in contact.26 In this con-
nection we discuss the possible effect of variations in
metal work function on the charge state of the meta
polymer junction, variations that result from changes in
aggregation state of the metal.

Combining Eq.~2! and the results of Ref. 15, where
was shown that the metal work function is temperatu
independent but has a singularity at the solid–liquid ph
transition point, we find that

W015wp2wm1 ,

W025wp2wm2 , ~4!
whereW01 andwm1 are the energy parameters of the me
electrode at temperatures below the phase transition p
andW02 andwm2 are the same parameters at the phase t
sition point. If the corresponding parameters differ, the s
face charge density changes by

DN5N12N25
«W01

2p~ez0!
2 2

«W02

2p~ez0!
2 . ~5!

Combining this with~4!, we get

DN5N12N25
«Dwm

2p~ez0!
2 , ~6!

i.e., the space charge concentration near the surface
experience the largest jump, equal to«Dwm/2p(ez0)

2, at the
phase transition point. Thus, the difference in the metal w
functions near the melting point has the greatest effect on
variation of the surface charge density near the met
polymer junction.
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To determine the role of the parameterz0, we use Eq.~2!
to estimatez0. The surface charge density was found
analyzing the capacitance–voltage characteristics for me
polymer–metal systems and amounted to 1027–1028C/cm,
so thatz0 was found to be 0.1–1mm, respectively. Note tha
herez0 coincides with the critical thickness of polymer film
;1–2mm, above which usually no variations in electric
conductivity are observed. This fact can be interpreted
‘‘charge instability,’’ an effect that emerges in polyme
samples whose thickness is close to the depth of penetra
of the surface charge induced at the metal–polymer in
face. Bearing in mind that there are always two electro
and, accordingly, two surfaces, the critical thickness can
doubled.

Thus, the entire volume of the polymer lies within th
region affected by the field generated by the densest sur
part of the space charge. On the other hand, a nonequilibr
charge permeates the sample, while in ‘‘thicker’’ samp
there is a region outsidez0 in which the effect of the surface
charge is less important. The nonequilibrium charge in t
region is generated by the ‘‘tails’’ of the surface states, w
the result that the concentration of this charge is low.

Let us examine the case where the metal~indium! is in
contact with the polymer~PPB!. Alchagirov et al.15 mea-
sured the temperature dependence of the indium work fu
tion w In ~Fig. 10!. Their result shows thatw In increases with
temperature and at the melting point reaches its maxim
value;4.1 eV. A further increase in temperature results in
sharp drop in the work function of the indium electrode.

The relative variation inw In at the melting point amounts
to about 0.2 eV. According to Eq.~6!, the relative variation
of the surface charge density,DN/N, is close to 80%. Obvi-
ously, only a fraction of this charge is redistributed in t
polymer’s bulk at temperatures close to the metal’s ph
transition point, and its effect depends on the relations
between such quantities as the charge production rate,
effective trapping cross section, the electron–hole recom
nation rates, and diffusion coefficients.

The recombination and relaxation of the nonequilibriu
charge in the polymer can take different routes. Some
these are depicted in Fig. 11. By recombination we mean

FIG. 10. The temperature dependence of the indium work function nea
phase transition point.15
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FIG. 11. The diagram illustrating the
transition of the polymer film in a
metal–polymer–metal sandwich to
the high-conductivity state.
the traditional routes by which an equilibrium distribution
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sets in. But there is also the possibility of a nontradition
route, in which the charge interacting with a polymer mo
cule transforms the molecule’s electron subsystem by op
ing the C–O bond in a side fragment. In this way the mo
cule becomes transformed into a new state. The likelihoo
such a result of the interaction of a PPB molecule and
elementary charge has been mentioned earlier in the ex
mental work of Lachinovet al.27 and the theoretical paper o
Johanssonet al.28 Here the state was characterized
charged, with an uncompensated positive charge on a
ternary carbon atom in the skeleton part of the molecule
a negative charge on the CO2 group in a side fragment~Fig.
12b!. When the relative concentration of such states is
high that the wave functions of neighboring state overlap
transition to the high-conductivity state probably takes pla

Experiments carried out to establish the mechanism
the interaction of free electrons and compounds that mo
the electronic state of a monomer chain~negative-ion mass

FIG. 12. The energy-stable states of a PPB molecule:28 ~a!—an electroneu-
tral state, and~b!—a state with an open C–O bond in a side fragment.
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pound to a higher-energy charged state takes place at e
gies close to those of thermal electrons.29 This means that the
energy of an electron belonging to the cloud of the nons
tionary space charge may be sufficient for initiating charg
states in a macromolecule by transfering the molecule
another stable state. External excitation~in our case the jump
in surface potential! generates this charge. When the conce
tration of the charge states is high, a polaron lattice with
corresponding half-filled metallic subband may be formed~at
least in principle!.

One consequence of this model is the dependence o
given phenomenon on the rate of variation of the sam
temperature. When the rate is low, the excess charge nea
surface has time to relax to an equilibrium distribution, a
the critical concentration needed for the formation of a co
ducting state is not attained.

Figure 13 depicts the temperature dependence of
conductivity of a polymer film with indium as the materia
for one of the electrodes. The sample is placed in a ther
stated cell, and the rate of temperature variation rate amo
to 0.1 °C min21 ~curve 1!. No transition to the high-

FIG. 13. The temperature dependence of the conductivity of the poly
film for different heating rates:1 corresponds to 0.1 °C min21, and2 cor-
responds to 5 °C min21. The arrows indicate the direction in which th
temperature changes.
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conductivity state when the heating rate is roughly to 5
min21 ~curve2!.

This conclusion is indirectly corroborated by the fa
that thin films of polymers belonging to this class exhi
thermally stimulated switching to the high-conductivi
state,30 an effect that occurs when the space charge con
tration reaches a certain critical value because of ther
ionization of traps within the polymer’s bulk at high enoug
heating rates. At low heating rates there is no switching
the high-conductivity state. The appearance of the hi
conductivity state is related to the formation of a polar
band due to the mutual interaction of electron–phonon st
caused by the exchange of virtual phonons.

We suggest interpreting the fluctuations in the curr
~Fig. 4! and the contact potential difference~Fig. 7! from the
viewpoint of the phenomena of pre-melting and po
melting. Ubbelohde31 was probably the first to suggest th
there may be a region preceding melting, a pre-melting
gion. Frenkel32 proposed a theory of cooperative heteroph
fluctuations. By now, from the numerous studies of ph
transitions of the melting type~solid–liquid!, it is evident
that all such transitions are accompanied by anomalies in
physical properties, which emerge long before the melt
temperature is reached. These effects is observed in me
of insulators,33 metals,34,35 and semiconductors.36

At temperatures much lower than the melting point
the substance (DT; 202150 K), discrepancies in the be
havior of the specific heat37 and thermal diffusivity and
conductivity38 set in, pre-melting regions appear ne
impurities,35 and there emerges a melted layer, which b
comes thicker as the bulk melting point is approached.39 As
shown in Refs. 33, 34, and 36, in this temperature ra
temperature oscillations of the substance being melted
observed. Here the pre-melting process is of an exother
fluctuation nature and consists of a set of thermal pulses
a repetition frequency ranging from 0.05 to 0.45 Hz. A co
parison of these results with the data depicted in Fig
shows that the registered current fluctuations in the me
polymer–metal system can be explained by the existenc
a pre-melting effect in the metal used as an electrode.
cording to current ideas on pre-melting, the defects on
metal surface — and even more so, the contact with poly
molecules — enhance this effect, broadening the tempera
interval for pre-melting.35

Pre-melting effects strongly influence the energy str
ture of the metal–polymer junction and, in particular, t
size of the surface charge. The fluctuations of this charg
the polymer are registered as current fluctuations. This c
clusion is based on a well-known relationship,40 in which the
work function depends on the energy of the interaction
atoms and the ionization potential, i.e., on the parame
that vary in the pre-melting region. Thus, in the case of fil
whose thickness is of the order of the depth of penetratio
the surface charge into the sample’s volume, the fluctuat
of the surface charge are actually fluctuations of the sp
charge. They ‘‘follow’’ the energy variations in the met
electrode and manifest themselves in the form of curr
fluctuations in the measuring circuit.
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difference, which are observed in our experimental struct
near the temperature of the phase transition of the metal e
trode~Fig. 7!. As the temperature rises, the contact poten
difference increases according to an exponential law, wh
agrees with its nature. But when the temperature reaches
47 °C, this increase stops and low-frequency~0.01–
0.005 Hz! fluctuations of the contact potential difference a
pear in the experimental structure. When the melting poin
the metal is reached, the contact potential difference
comes minimal and low-frequency oscillations again oc
in the system, with the oscillations registered in the 2
30 °C range above the melting point.

The curves in Figs. 3, 4, and 7 are reproducible p
vided that the preliminary preparation of the sample ta
place under identical conditions: equal initial temperatu
and equal times of exposure to the initial temperature, w
the latter exceeding the time of charge relaxation in
metal–polymer–metal system. According to our estima
this time must be at least six hours, which points to t
relaxation nature of the phenomenon. If for some reason
polymer material was initially in the high-conductivity stat
the dependence of the contact potential difference on
temperature in the phase transition region exhibits no spe
features.

Comparison of the results depicted in Figs. 3~curve
1!, 4, and 7 shows that the temperatures and tempera
intervals coincide for the pre-melting regions, the melti
point of the metal, and the post-melting regions. The dev
tion of the temperature dependence of the contact pote
difference from the exponential dependence and the pres
of other special temperature features are probably a co
quence of the excitation in the polymer film of a nonequili
rium space charge under considerable variations of
boundary conditions at the metal–polymer interface in te
perature ranges corresponding to pre- and post-melting
nomena and near the melting point of the metal. This,
particular, does not contradict the fact~mentioned earlier by
Kokorin and Chernenko41! of generation of a pulse of ther
moelectric power in the melting of metals.

Summing up the results of the present work, we sho
mention the following. The proposed interpretation of t
mechanism describing the transition to the high-conductiv
state suggests that such transitions follow different rou
An external energy perturbation disrupts the equilibriu
charge state in the surface layer of the polymer. The me
polymer interface is convenient in that the large work fun
tion makes it possible to generate a high-density surf
charge. The transition in the polymer occurs as a result o
specific interaction between the macromolecules and
cloud of nonequilibrium charge. Such interaction leads to
emergence of charged states in the macromolecules and
certain sense is similar to self-doping. The subsequent o
lap of the wave functions of the new states, when the c
centration of these states reaches a critical value, leads to
polymer’s transition to the high-conductivity state.

Many thanks go to V. S. Korsakov for his help in me
suring the surface charge density. The present work was
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Functional~continuous! integration provides a universa
approach to the study of various kinds of physical syste
In quantum statistical mechanics it does not so much c
pete with the operator approach, as supplement it and ma
more intuitive, especially in studies of collective perturb
tions and phase transitions and in renormalizing perturba
theory. In this book the applications of this method to pha
transitions and collective perturbations in solids are d
cussed taking the crystal structure into account. Interes
this topic is currently stimulated by the search for the k
mechanism of high temperature superconductivity.

This book, written by leading experts in statistical phy
ics and condensed matter physics, is intended for scien
and students in the corresponding specialties.
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The principal aim of this book is to reflect the remar
able contributions of A. Ya. Khinchin to twentieth centu
mathematics and, especially, to probability theory and sta
tical physics. The influence of his creativity on the mode
theory of probability and his role as one of the leadi
founders of this theory have, by now, been widely reco
nized. In the meantime, many of his brilliant results a
innovative ideas have been inaccessible to mathematic
and theoretical physicists because of the absence of tra
tions or of old journals and books in many libraries. No
this lack has been corrected by this thorough and alm
exhaustive collection of his work on probability theory. Pu
lished in 1923–1956 in Italian, Russian, German, a
French, these papers have been carefully collected and
pared for publication by his student, B. V. Gnedenko. Ma
of them are of both historical and methodological intere
This collection of papers is being published for the first tim
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