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Abstract—Polarized reflectance and optical conductivity spectra of single crystals of two new isostructural
organic conductors based on the BEDT-TSeF molecule, namely, the κ-(BETS)4Hg2.84Br8 superconductor (Tc =
2 K) and the κ-(BETS)4Hg3Cl8 metal, which undergoes a smooth transition to the dielectric state near 35 K,
have been obtained in the spectral region 700–6500 cm–1 at temperatures of 300–15 K. At 300 K, the spectra
of both compounds are nearly identical and differ from the Drude spectrum characteristic of metals. The nature
of the observed difference is discussed, and the spectra are described in terms of a cluster approach with inclu-
sion of electron–electron correlations in the Hubbard approximation combined with the Drude model. The
parameters of the theory were determined, including the electron transfer integrals between molecules in a clus-
ter. The spectra in the conducting plane of the crystals were found to be essentially anisotropic, which should
be assigned to specific features of in-plane interaction between molecules. The spectra of the superconductor
and the metal become increasingly different as the temperature is lowered. The spectra of the metal obtained
for T < 150 K exhibit splitting of the broad electronic maximum in the mid-IR region into two bands, which is
accompanied by a splitting of a vibronic feature deriving from electron interaction with intramolecular BETS
vibrations of ν3(Ag) symmetry. No such splitting is observed in the superconductor spectra with decreasing tem-
perature. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Quasi-two-dimensional organic conductors based
on the bis(ethylenedithio)tetrathiafulvalene molecule
(BEDT–TTF) and its derivatives are presently attract-
ing considerable interest spurred by their unique elec-
tronic properties and the relation of these properties to
compound structures. The crystal structure of these
compounds (radical-ion salts) is an array of alternating
cation and anion layers. Depending on the actual pat-
tern of molecular stacking in the conducting cation lay-
ers (α, β, λ, θ, and κ phases), the chemical composition
of the anion, and the specific features of interaction
between molecules in a layer and between layers, these
compounds exhibit a rich variety of electronic proper-
ties, including metallic behavior within a broad spectral
region, superconductivity (with a highest critical tem-
perature Tc = 12.3 K at normal pressure), metal–insula-
tor transitions of various types, giant magnetoresis-
tance, and antiferromagnetism (see, e.g., [1–3]). These
1063-7834/04/4611- $26.00 © 21985
molecular conductors have the following characteristic
features: (i) electron interaction with intramolecular
vibrations (IMV), which gives rise to coupled elec-
tronic–vibrational states, and strong electron–electron
correlations and (ii) instability of the electron system to
the formation of charge or spin density waves. The for-
mation of the latter, accounted for by the low dimen-
sionality of the electronic structure in these crystals,
inhibits the appearance of the superconducting state.

Salts based on bis(ethylenedioxy)tetrathiafulvalene
(BEDO–TTF) [4–6] and bis(ethylenedithio)tetrasel-
enafulvalene (BETS) [7–11] molecules (Fig. 1) exhibit
the most stable metallic state among these compounds.
In BETS-based salts, this is accounted for by the fol-
lowing factors: first, by the stronger overlap of the
higher occupied BETS molecular orbitals in the con-
ducting crystal layers (compared to BEDT–TTF salts)
due to the radius of Se (in BETS) being larger than that
of the S atom (in BEDT–TTF) and, second, by the Cou-
lomb repulsion of two electrons in a molecule being
004 MAIK “Nauka/Interperiodica”
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Fig. 2. (a) Reflectance and (b) optical conductivity spectra
of the κ-(BETS)4Hg2.84Br8 superconductor obtained in the
E || b polarization at various temperatures T: (1) 300,
(2) 200, (3) 150, (4) 80, and (5) 15 K. Insets: (a) structure of
the  conducting layer and (b) optical conductivity
spectra measured in the vibronic frequency region.
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Fig. 1. Structural formulas of bis(ethylenedithio)tetrathi-
afulvalene (BEDT–TTF), bis(ethylenedioxy)tetrathiaful-
valene (BEDO’–TTF), and bis(ethylenedithio)tetraselena-
fulvalene (BETS) molecules.
PH
weaker because of the difference between the first and
second ionization potential in BETS (0.22 eV) being
smaller than that in BEDT–TTF (0.28 eV). Some BETS
salts have a superconducting ground state [12–15]. The
λ-BETS2FeCl4 salt has an insulating ground state
because of iron spins in the anions being antiferromag-
netically ordered and because of the localized magnetic
moments interacting with conduction electrons in the
BETS layers [16, 17]. It is the rich diversity of proper-
ties of BETS-based salts and the possibility of control-
ling them by changing the chemical nature of the anion
properly that account for the interest in these com-
pounds.

Two new molecular conductors based on this mole-
cule, κ-(BETS)4Hg3Cl8 and κ-(BETS)4Hg2.84Br8, have
recently been synthesized [18, 19]. The salt with Cl,
judging from the pattern of the temperature behavior of
its electrical resistivity in the range 295–32 K, is a
metal; as the temperature is lowered still further, the
resistivity begins to grow smoothly [18]. The salt with
Br is a superconductor with a superconducting transi-
tion temperature Tc = 2 K. It appears of interest to learn
the difference in the electronic structure and electronic
interactions between these compounds that are so sim-
ilar in chemical and crystal structure.

It is known that valuable information on the elec-
tronic structure, the nature of the ground state, and elec-
tron interactions in quasi-two-dimensional molecular
compounds based on BEDT–TTF and BEDO–TTF
molecules can be gained from optical studies (see, e.g.,
[20–22] and our publications [23–26]). Optical proper-
ties of BETS-based salts have been investigated on
κ-(BETS)2FeCl4 [10], α-BETS2I3 [27], and θ-
(BETS)4HgBr4(C6H5Cl) [28]; the last compound
revealed an instability in the electronic metallic state
induced by unstable structural distortions along the
BETS molecule stacks.

We report here on a study of polarized reflectance
and optical conductivity spectra of single crystals of κ-
(BETS)4Hg3Cl8 and κ-(BETS)4Hg2.84Br8 measured in
the spectral region 700–6500 cm–1 at temperatures
ranging from 300 to 15 K and in the range 9000–
40000 cm–1 at room temperature with the aim of
obtaining information on the specific features of the
electronic system in these compounds and of revealing
differences in this information between the metal and
superconductor within the temperature range covered.

2. EXPERIMENTAL
The crystals of both compounds under study were

thin plates shaped as incompletely faceted rhombs
measuring 0.5 × 0.5 × 2 mm. The main crystallographic
data for κ-(BETS)4Hg3Cl8 (BETS-Cl subsequently) are
as follows [18]: monoclinic symmetry, a = 38.23(4) Å,
b = 8.694(6) Å, c = 11.37(1) Å, β = 106.55(9)°, V =
3623.8 Å3, and Z = 2. The crystallographic data
obtained by us for κ-(BETS)4Hg2.84Br8 (BETS-Br in
YSICS OF THE SOLID STATE      Vol. 46      No. 11      2004



OPTICAL PROPERTIES OF NEW ORGANIC CONDUCTORS 1987
what follows) are the following: monoclinic symmetry,
a = 39.34 Å, b = 8.63 Å, c = 11.51 Å, and β = 106.2°.
The conducting layers of BETS molecules in both crys-
tals are oriented parallel to the major face, (100) (bc).
The BETS molecules in the conducting layers are
stacked to form mutually perpendicular pairs 
(dimers) in the manner characteristic of the κ phase (see
inset in Fig. 2a) [18, 19].

Polarized reflectance spectra R(ω) obtained under
normal incidence of light onto the major crystal face,
(100), were measured in the range 700–6500 cm–1 at
temperatures of 300–15 K and in the range 9000–
40000 cm–1 at room temperature. The largest anisot-
ropy of reflectance spectra R(ω) obtained in the range
700–6500 cm–1 was observed in the polarizations
where the electric vector of the light wave E was
aligned with the long or the short rhomb axis. By vary-
ing the crystal orientation in the light wave field, it was
shown that the largest reflectance Rmax(ω) is observed
for both crystals in the E || b polarization and the mini-
mum reflectance Rmin(ω), in the E || c polarization.

The experimental techniques employed were
described by us in [26, 28]. The optical conductivity
spectra σ(ω) were extracted from the corresponding
reflectance spectra using the Kramers–Kronig rela-
tions. Extrapolation to the high frequency range was
done using the R(ω) spectra obtained by us in the range
9000–40000 cm–1.

3. RESULTS

3.1. κ-(BETS)4Hg2.84Br8

Figures 2a and 2b present R(ω) and σ(ω) spectra of
the BETS-Br superconductor, respectively, obtained in
the E || b polarization in the spectral range 700–
6000 cm–1 for the (100) major conducting face of the
crystal in the temperature interval 300–15 K. Figure 3
displays similar data for the E || c polarization. We
readily see that the R(ω) and σ(ω) spectra for the two
polarizations differ appreciably from the Drude
(“metallic”) pattern. This difference, as discovered ear-
lier, is typical of all salts of the BEDT–TTF κ phase,
both for conductors and superconductors (see, e.g.,
[21–25]). On the other hand, in contrast to the BEDT–
TTF κ-phase salts, for which the optical anisotropy in
the conducting plane is small, κ-BETS-Br exhibits a
noticeable optical anisotropy; indeed, the spectra
obtained in the E || b and E || c polarizations differ
markedly.

The R(ω) spectra obtained in the E || b polarization
qualitatively resemble those of salts of the BEDT–TTF
κ phase. The similarity increases with decreasing tem-
perature; indeed, a broad maximum appears in the
range 3000–40000 cm–1 and shifts slightly toward
higher frequencies with decreasing temperature; at low
frequencies, 700–1000 cm–1, R is observed to grow
with decreasing frequency, a feature characteristic of

BETS( )2
+

PHYSICS OF THE SOLID STATE      Vol. 46      No. 11      20
metals (for T = 15 K, R = 0.7 at 700 cm–1). Against this
background of electronic reflectance, one clearly sees
strong vibrational features at 1330, 1220, and 1165 cm–1

deriving from the electron–vibration interaction,
which, as pointed out in Section 1, is typical of molec-
ular conductors.

The R(ω) spectra measured in the E || c polarization
have a different pattern: weak reflectance (R = 0.05–
0.13 in the range 6000–3000 cm–1) grows gradually
with decreasing frequency up to R = 0.5 at 700 cm–1. As
the temperature is lowered, R falls off over nearly all
the frequency range covered, a plateau forms in the
range 2000–3000 cm–1, and, at low frequencies (1000–
700 cm–1), R increases when the temperature is lowered
from 150 to 15 K, a feature that likewise resembles the
metallic pattern. Two vibrational features are seen at
frequencies of 1360 and 1277 cm–1.

The σ(ω) spectra in both polarizations exhibit a very
broad electronic maximum: in the range 2000–
3000 cm–1 for E || b and 2000–4000 cm–1 for E || c; this
maximum is also characteristic of the spectra of all salts
of the BEDT–TTF κ phase (see, e.g., [21, 22]). As seen
from Figs. 2 and 3, the electronic maximum shifts
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Fig. 3. (a) Reflectance and (b) optical conductivity spectra
of the κ-(BETS)4Hg2.84Br8 superconductor obtained in the
E || c polarization at various temperatures T: (1) 300,
(2) 200, (3) 150, (4) 80, and (5) 15 K. Inset: optical conduc-
tivity spectra measured in the vibronic frequency region.
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slightly with decreasing temperature toward higher fre-
quencies (up to ~3400 cm–1) and has a doublet pattern
at 80 and 15 K. The intensities and widths of the maxi-
mum measured in the E || b and E || c polarizations dif-
fer considerably more greatly than is the case with the
BEDT–TTF salts. A similar behavior of the maximum
in the σ(ω) spectra was also observed for κ-
(BETS)2FeCl4 [10].

Strong vibronic features in the σ(ω) spectra are
observed in the E || b polarization at frequencies of
1304, 1260, and 1164 cm–1 and in the E || c polarization
at 1347 and 1265 cm–1. As the temperature decreases,
the vibrational bands narrow considerably, with the
band at 1260 cm–1 (E || b) exhibiting a slight high-fre-
quency shift (+15 cm–1).

3.2. κ-(BETS)4Hg3Cl8

Figures 4 and 5 display R(ω) and σ(ω) spectra of the
BETS-Cl metal measured in the same polarizations and
within the same temperature interval. We readily see
that these spectra also differ from the Drude profile and
exhibit a noticeable anisotropy. At 300 K, the spectra of
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both salts are qualitatively similar and the σ(ω) spec-
trum in the E || b polarization has a broad maximum in
the mid-IR region (2000–3000 cm–1).

However, the changes observed to occur in the
BETS-Cl spectra with decreasing temperature differ
substantially from those seen in the BETS-Br spectra;
namely, the broad maximum in the σ(ω) spectra seen
for T < 150 K at 2000–3000 cm–1 in the E || b polariza-
tion splits into two broad bands peaking at 1900 and
3500 cm–1. For E || c, the intensity of the broad IR max-
imum decreases substantially at low temperatures and is
also seen to split. At low frequencies (1000–700 cm–1),
σ is seen to grow slightly with decreasing frequency at
15 K, in accordance with the increase in R predicted by
the Drude model.

Vibronic features in the R(ω) spectra are observed in
the E || b polarization at 1340, 1280, and 1165 cm–1 and
in the E || c polarization at 1340 and 1280 cm–1.

The σ(ω) spectra reveal such features for E || b at
1308, 1268, and 1165 cm–1 and for E || c at 1357 and
1272 cm–1. For T < 150 K, the vibronic features at
1308 cm–1 (E || b) and 1357 cm–1 (E || c) split into two
components (1306 and 1321 cm–1 for E || b and 1346
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Fig. 5. Spectra of (a) reflectance and (b) optical conductiv-
ity of the κ-(BETS)4Hg3Cl8 metal measured in the E || c
polarization at various temperatures T: (1) 300, (2) 200,
(3) 150, (4) 80, and (5) 15 K. Inset: optical conductivity
spectra obtained in the vibronic frequency region.
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and 1374 cm–1 for E || c) and the electronic maximum
at 2000–3000 cm–1 also splits.

4. DISCUSSION OF THE RESULTS

4.1. Electronic Phenomena

The presence of a broad maximum in the mid-IR
region (near 2200 and 3500 cm–1, depending on the
polarization) and the increase in conductivity with
decreasing frequency at low frequencies (<800 cm–1)
and low temperatures (<50 K) are characteristic fea-
tures of optical conductivity spectra of molecular con-
ductors of the BEDT–TTF-based κ phase [21, 22, 29].
Our spectra displayed in Figs. 2 and 3, as well as the
data reported in [10], indicate that a similar maximum
is observed in the spectra of conductors of the BETS-
based κ phase. The spectra of the latter compounds are,
however, strongly anisotropic, so this maximum differs
in intensity and width between the two major directions
in the conducting plane of the crystals.

As pointed out in [18], the main difference in the
structure of conducting layers between salts of the
BEDT–TTF- and BETS-based κ phase consists in the
absence of shortened S…S contacts in the

 dimer, whereas in the  dimer
there are shortened Se…Se contacts (as compared to
van der Waals contacts). It is this difference that proba-
bly accounts for the larger anisotropy of the spectra of
these salts in the IR region. The same factor is appar-
ently also responsible for the higher optical conductiv-
ity at low frequencies (below 1000 cm–1) near room
temperature in the BETS salts studied by us (as com-
pared to the optical conductivity of their structural ana-
logs based on the BEDT–TTF molecule [22]).

In the literature, the following views can be found
concerning the possible nature of the maximum in the
mid-IR spectral region (for the κ-(BEDT–
TTF)2Cu(SCN)2 superconductor):

(1) The maximum derives from electronic transi-
tions between the lower occupied bands below the
Fermi level and the upper unfilled band in the electronic
structure of these compounds (on which intraband elec-
tronic transitions in the upper band, which determine
the low-frequency part of the spectra [21], are superim-
posed);

(2) From the molecular-physics viewpoint, it is
assumed that the maximum originates from charge
transfer between the dimers [22];

(3) The maximum is assigned in [30] to absorption
by localized small-radius polarons, which form as a
result of strong interaction of electrons with intramo-
lecular vibrations (the metallic behavior at low temper-
atures is explained in terms of coherent motion of large-
radius polarons).

BEDT–TTF( )2
+

BETS( )2
+
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Although these explanations are physically reason-
able, they do not take into account the strong electronic
correlations characteristic of low-dimensional molecu-
lar conductors (see, e.g., [31]) and cannot be applied to
describe R(ω) and σ(ω) spectra with vibronic features.

Two alternate approximations have been used in an
attempt to describe the optical spectra of low-dimen-
sional molecular conductors with vibronic features,
namely, the theory of phase phonons [32] and cluster
models [31]. The former theory assumes that the elec-
trons are delocalized and that electronic correlations
can be taken into account in the mean-field approxima-
tion. The simplest model of the conducting layer pro-
posed in the cluster approximation for κ-phase molec-
ular conductors [24] is given by two orthogonal

 dimers with two holes in the outer BETS
molecular orbitals (see inset to Fig. 6b). The model
considers electronic correlations in the Hubbard
approximation and includes interaction of electrons
with intramolecular vibrations.

In an attempt to quantitatively describe our R(ω) and
σ(ω) spectra of BETS-Br in the spectral region covered
(700–6500 cm–1), we used a combination of these
theories, similar to what we did earlier to explain the
optical properties of the molecular superconductor
κ-(BEDT–TTF)2Cu[N(CN)2]Cl0.5Br0.5 [33]. For delo-
calized electrons, however, we invoked the simple rela-

tion from the Drude model ε = ε∞ – /(ω2 + iΓDω),
because application of the phase phonon concept to the
case in question failed to describe the experimental
spectrum.

The cluster approximation model includes the Cou-
lomb repulsion U between two electrons (holes)
located on the same molecule and transfer integrals
between BETS molecules in a dimer, t, and between
molecules belonging to neighboring dimers, t' (see inset
to Fig. 6b). The model also includes the extreme case of
U  ∞ (where two electrons (holes) cannot occupy
the same molecular orbital) [25] and is described by
Eqs. (1)–(6) presented below [24]:

(1)

where the first two terms relate to the electrons (holes)
and intramolecular vibrations in each molecule in the
absence of electron–vibration interaction, respectively,
and the third term describes electron–vibration interac-
tion in the linear approximation; gα, i are the electron–
vibration coupling constants of the electronic density ni

of holes on the ith molecule and vibrational mode α
(Ag) of this molecule characterized by a dimensionless
coordinate Qα, i. The last term in Eq. (1) is the interac-
tion energy of the electric dipole moment p of the tet-
ramer induced by the displacement of the electronic
density of holes in an external electric field E. In the

BETS( )2
+

ωp
2

H He HV gα i, niQα i,

α i,
∑ p–+ + E,⋅=
04
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limiting case of U  ∞, two particles cannot occupy
the same molecular orbital, which simplifies the elec-
tronic Hamiltonian of the tetramer to

(2)

(where (ci) is the operator of creation (annihilation)
of a hole on molecule i) and allows analytical solution.

The complex conductivity of the κ-phase crystal is
given by

(3)

He = –t c1
+
c2 c3

+
c4 H.c.+ +( ) t ' c2

+
c3 c2

+
c4 H.c.+ +( )–

ci
+

σtetra ω( ) iωN p I χ– diag D⋅[ ] 1– χ p⋅ ⋅,( ),–=
PH
(4)

where N is the tetramer concentration; a and a' are the
distances between BETS molecules inside a dimer and
between the dimers, respectively; I is the unit matrix;
diagD is a diagonal matrix with components

(5)

p
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∑=
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Features of electron–vibration interaction (EVI) and their assignment

Frequencies of EVI features in σ(ω), cm–1

Frequencies of the BETS0 and BEDT–TTF0

features (cm–1) and their assignment [10]k-(BETS)4Hg2.84Br8 k-(BETS)4Hg3Cl8

E || b E || c E || b E || c

1304 1341 1308 1356 1493 ν3(Ag) ν(C=C)*

1260 1263 1268 1272 1282 ν5(Ag) ν(C–C)**

1164 – 1165 – 1195 ν7(Ag) δ(C–C–H)***

    * Stretching vibrations of central and ring C=C bonds.
  ** Stretching vibrations of C–C bonds in ethylene groups.
*** Bending vibrations of C–C–H bonds in BEDT–TTF0 (for D2 symmetry) [37].
and χ is the electronic polarizability matrix with ele-
ments

(6)

In Eq. (5), ωαi and γαi are the frequency and decay
coefficient of the Ag-IMV α mode, respectively. In
Eq. (6), Γβ is a phenomenological decay coefficient of
charge transfer electronic excitation with energy ωβ1 =
Eβ – E1, Eβ and |β〉 are the eigenvalues and eigenfunc-
tions of the electronic Hamiltonian He in Eq. (1), and
β = 1 corresponds to the ground state.

According to [25], two allowed transitions, ω21 and
ω51, contribute to σ(ω).

The total conductivity of the crystal was determined
from the relation

(7)

Figure 6 shows calculated and experimental σ(ω)
and R(ω) spectra of the BETS-Br superconductor
obtained for E || b at 300 and 80 K; the corresponding
fitting parameters are specified in the figure captions.
The proposed combined model is seen to fit the experi-
mental spectra satisfactorily, including the vibronic
region, and suggests the presence of two groups of elec-
trons in the molecular conductors studied, namely,
electrons delocalized in the conducting plane and local-
ized on two orthogonal dimers (similar to [33]). As the
temperature is lowered, the transfer integral between
BETS molecules in the dimer (t) increases, whereas the
ratio t'/t decreases slightly. This gives us grounds to
conjecture that the shift of the maximum in the experi-
mental σ(ω) spectra observed to occur in the mid-IR
region toward high frequencies (Fig. 2b), which also
takes place in salts of the BEDT–TTF κ phase with
decreasing temperature, indicates charge transfer
between molecules in the dimer to be the main factor
causing this maximum to appear.

As already mentioned, the changes induced in spec-
tra of the BETS-Cl metal by a decrease in temperature

χ ij

1〈 |ni β| 〉 β〈 |n j 1| 〉2ωβ1

ωβ1
2 ω2

– iωΓβ–
------------------------------------------------.

β
∑=

σ ω( ) σtetra σDrude.+=
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differ substantially from those observed in supercon-
ductor spectra. The splitting of the electronic maximum
in the σ(ω) spectra at 2000–3000 cm–1 into two broad
bands (at 1900 and 3500 cm–1), which is accompanied
by splitting of the vibronic features at 1308 cm–1 (for
E || b) and 1356 cm–1 (for E || c) [mode ν3(Ag), see
below] into two components at T < 150 K, indicates a
change in the electronic structure and in its symmetry
occurring at low T, and it is apparently this change that
inhibits the onset of superconductivity in this molecular
metal.

The change in the electronic structure may be asso-
ciated with changes in the crystal lattice. For instance,
the Hg sublattice in the organic superconductor
(BEDT–TTF)4Hg2.84Br8 with a similar structure under-
goes a transition at a low temperature, in which the Hg
columns gradually shift parallel to the column axis
[34], but this transition does not inhibit the onset of
superconductivity. Another factor responsible for caus-
ing the change in the BETS-Cl electronic structure with
decreasing T could be redistribution of charges local-

ized on the  dimers or  tetramers,
which is caused by their interaction on neighboring
molecules and is not included in [24, 25]. The Coulomb
interaction of charges localized on nearest neighbors,
which brings about a specific ordering on the lattice, is
considered, in particular, in [35].

4.2. Vibrational Features

Our assignment of the vibronic features in the spec-
tra was based, as that in [28], on Raman spectra of the
neutral molecule BETS0 [10] and on the corresponding
data available on salts of BEDT–TTF [36, 37] (see
table).

The strong bands seen in the σ(ω) spectra of BETS-
Br at 1304 cm–1 (for E || b) and 1341 cm–1 (for E || c) and
in the σ(ω) spectra of BETS-Cl at 1308 cm–1 (E || b) and
1356 cm–1 (E || c) derive from the interaction of elec-
trons with stretching vibrations of the central and ring

BETS( )2
+

BETS( )4
+2
04
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C=C bonds, the ν3(Ag) mode of BETS0 (1493 cm–1).
The low-frequency shift of this feature can be attributed
to the shift of the ν3(Ag) frequency caused by the mole-
cule ionization, as well as to the corresponding shift
induced by electron–vibration interaction, as was
observed earlier in BEDT–TTF salts [36]. (Note that
the BETS molecule does not have optically active
vibrations in the range 1350–1390 cm–1.) The bands at
1260 cm–1 (E || b) and 1263 cm–1 (E || c) for BETS-Br
and at 1268 and 1272 cm–1 for BETS-Cl derive from
electron interaction with stretching vibrations of the C–
C bonds in ethylene groups [the ν5(Ag) mode of BETS0

at 1282 cm–1]. We assign the weaker feature at 1165
cm–1 seen in the spectra of both salts only in the E || b
polarization to the ν7(Ag) mode (at 1195 cm–1, bending
vibrations of the C–C–H bonds), which was observed
in the Raman spectra of salts of BEDT–TTF and was
also obtained theoretically for the D2 symmetry of this
molecule. It is less likely that this band belongs to the
vibration of B2g symmetry observed in the Raman spec-
tra of BETS0 at 1173 cm–1 [10], because Bg vibrations
usually do not couple to the electronic system.

Note the large difference in the frequency of the
vibrational feature associated with the ν3(Ag) mode
and measured in the E || b and E || c polarizations,
namely, 37 and 48 cm–1 for BETS-Br and BETS-Cl,
respectively. We believe that this difference is due to
the large anisotropy of the electronic band (the max-
ima in the IR region) and indicates strong electron
coupling to the ν3(Ag) mode. This difference is sub-
stantially larger than that observed in the spectra of
θ-(BETS)4HgBr4(C6H5Cl) (3 cm–1 in the R(ω) spec-
tra), where the anisotropy of the electronic system is
very small [28]. The vibronic features seen in the σ(ω)
spectra of κ-BETS-Br, κ-BETS-Cl, and
θ-(BETS)4HgBr4(C4H5Cl) also differ in shape; indeed,
these features are strong bands on the low-frequency
wing of the electronic band for salts of the κ phase and
dips in the electronic spectrum for the θ phase. This dif-
ference is accounted for by marked differences in the
electronic spectra between salts of the κ and θ phases,
as well as by the fact that the vibronic features of the θ
phase lie practically at the center of the electronic band
and those of the κ phase, on its low-frequency wing.

As already mentioned, at T < 150 K the BETS-Cl
metal exhibits a splitting of the vibronic ν3(Ag) features
(at 1308 cm–1 for E || b and at 1357 cm–1 for E || c) into
two components, in addition to the splitting of the elec-
tronic maximum at 2000–3000 cm–1.

5. CONCLUSIONS

Thus, we have carried out comparative optical stud-
ies ranging in frequency from 700 to 6500 cm–1 in
polarized light at temperatures of 300–15 K on two new
organic isostructural conductors based on the BETS
PH
molecule, which differ in the nature of the ground state,
namely, a κ-(BETS)4Hg2.84Br8 superconductor (Tc =
2 K) and a κ-(BETS)4Hg3Cl8 metal that transfers to the
insulating state at 35 K. It was shown that the room-
temperature spectra of reflectance, R(ω), and optical
conductivity, σ(ω), are nearly identical for the two
compounds and differ from the Drude spectrum charac-
teristic of metals. The nature of the observed difference
is discussed, and the σ(ω) spectra are quantitatively
described in terms of a cluster model (taking into
account electron–electron correlations in Hubbard
approximation) and the Drude model; this approach
suggests the presence of two groups of electrons in the
molecular conductors investigated, more specifically,
electrons delocalized in the conducting plane of the
crystal (bc) and localized on two orthogonal dimers.
For κ-(BETS)4Hg2.84Br8, theoretical parameters were
determined, including the electron transfer integrals
between molecules inside a dimer and between dimers;
for T = 300 K, the parameters are t = 0.195 eV and
t'/t = 0.45 (for E || b) and t = 0.21 eV and t'/t = 0.26 (for
E || c); for 80 K, t = 0.216 eV and t'/t = 0.36 for E || b.
The conclusion has been drawn that the broad elec-
tronic maximum observed in the spectra of the crystals
under study in the range 2000–3000 cm–1 originates
primarily from charge transfer between molecules
inside a dimer. This conclusion is apparently also appli-
cable to other salts of the κ phase. The anisotropy of the
spectra in the conducting plane of the crystal was found
to be larger than that seen in related salts of the κ phase
based on the BEDT–TTF molecule, which can appar-
ently be assigned to the difference in the intermolecular
separations between dimers of the corresponding mol-
ecules in the crystal structure.

The variation of the R(ω) and σ(ω) spectra induced
by a decrease in temperature was found to be radically
different in the superconductor and the metal undergo-
ing a transition to the insulating state. The spectra of the
metal (κ-(BETS)4Hg3Cl8) cooled down to 150 K reveal
splitting of the broad electronic maximum in the range
2000–3000 cm–1 into two bands, which is accompanied
by splitting of the vibronic feature deriving from elec-
tron interaction with intramolecular ν3(Ag) vibrations of
BETS0. The observed changes suggest a substantial
rearrangement of the electronic structure, which brings
about a transition to the dielectric state when the tem-
perature is lowered to 35 K and inhibits the onset of
superconductivity.
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Abstract—The x-ray emission spectra of magnesium diboride MgB2 are measured. It is found that the Mg L2, 3
and B Kα emission lines are shifted with respect to the spectra of the pure metals toward the low-energy range.
The band calculations of the MgB2 diboride in the framework of the full-potential linearized muffin-tin orbital
(LMTO) method demonstrate that the electron populations of the shells in both components of MgB2 are higher
than those of pure metals. This increase in the electron populations is associated with the crystal contraction
and manifests itself in low-energy shifts of the emission lines. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The discovery of superconductivity in magnesium
diboride MgB2 [1] has stimulated intensive investiga-
tions into the electronic structure of this compound and
the microscopic nature of its superconducting (and
other) properties (see the review by Ivanovskiœ et al.
[2]). The electronic structure and chemical bonding in
the MgB2 diboride have been investigated theoretically
[3–7] and experimentally [8–10] using x-ray emission,
absorption, and photoemission spectroscopy. Calcula-
tions of the band structure have demonstrated that the
energy spectrum of the valence band of the MgB2 com-
pound is predominantly determined by the B 2p states,
which form two groups of energy bands of the σ(2px, y)
and π(pz) types and for which the dependences E(k) dif-
fer significantly. An important feature of the electronic
structure of the MgB2 diboride is that the hole quasi-
two-dimensional B 2px, y states are localized along the
Γ–A direction of the Brillouin zone. These bands reflect
the distribution of electron states of boron atoms in the
planar graphite-like networks. Two B 2px, y bands inter-
sect the Fermi level EF and make a substantial contribu-
tion to the density of states at the Fermi level. As was
shown by An and Pickett [5] and Kong et al. [11], the
hole nature of the B 2px, y states at the Γ point of the
Brillouin zone is a necessary condition for supercon-
ductivity in the MgB2 diboride. The B 2pz bands are
responsible for weaker ppπ interactions between the
atomic planes. These bands (of the 3D type) are charac-
terized by a maximum dispersion along the kz (Γ–A)
direction.
1063-7834/04/4611- $26.00 © 21994
At present, it has been established that the state of
magnesium ions in the form Mg2+, which appears as a
result of electron transfer from magnesium atoms to
boron atoms, plays an important role in the formation
of the electronic structure of the MgB2 diboride. Band
calculations carried out for the MgB2 compound and
isoelectronic systems (graphite C2, hypothetical
diboride h2+B2) [5] showed that the presence of the
Mg2+ ions in the structure brings about the lowering of
the B π(2pz) nonbonding bands with respect to the B
σ(2px, y) bonding bands as compared to graphite, which,
in turn, leads to the σ–π electron transfer and the emer-
gence of holes in the σ band. For the MgB2 compound,
the electron transfer from magnesium atoms to boron
atoms is confirmed by theoretical calculations [12, 13]
and experimental data on x-ray diffraction [13].

It should be noted that the direction of the charge
transfer in borides has been a topic of discussion in the
literature for a long time [14, 15]. It has been estab-
lished that the metal is a donor in diborides and higher
borides, whereas boron is an acceptor of electrons. In
lower borides, the direction of the electron transfer is
inverse. It is believed that, in higher borides, charge
transfer stems from the necessity of supplying electrons
for the formation of strong covalent B–B bonds. The
results of investigating the direction of charge transfer
in terms of the sign of the chemical shift with the use of
x-ray emission and photoelectron spectroscopy are
contradictory. For the TiB2 compound, the B Kα emis-
sion line [16] and the Ti L2, 3 emission line [17] are
shifted to the low-energy range. This indicates an
004 MAIK “Nauka/Interperiodica”
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increase in the electron density for atoms of both com-
ponents as compared to the corresponding metals. The
photoelectron spectrum is characterized by a high-
energy shift of the Ti 2p3/2 level [17]. However, it
should be remembered that the x-ray photoelectron
spectra substantially depend on the surface condition.
For example, the x-ray photoelectron spectra of inner
levels in diborides exhibit an additional peak caused by
strong oxidation of the surface [15, 17]. Moreover, the-
oretical and experimental investigations of the surface
of titanium [18, 19] revealed that the charge states of
atoms at the surface and in the bulk differ significantly.
Therefore, x-ray photoelectron spectroscopy can also
provide incorrect information on the bulk charge states.
In this work, the charge state of magnesium and boron
ions and the direction of charge transfer in the MgB2
compound are investigated using x-ray photoelectron
spectroscopy (which provides information on the bulk
state) and band calculations for the MgB2 compound
and pure magnesium and boron metals.

2. CHEMICAL SHIFTS 
OF THE EMISSION LINES

The spectra of Mg L2, 3 (the 3s3d–2p transition) and
B Kα (the 2p–1s transition) x-ray emission were mea-
sured on a spectrometer with a diffraction grating and
electron excitation. The energy resolution was 0.3–
0.4 eV. Figure 1 shows the Mg L2, 3 and B Kα x-ray
emission spectra of the MgB2 diboride and its constitu-
ent pure metals. It is found that the x-ray emission spec-
tra of both components in the MgB2 compound are
shifted with respect to the spectra of pure magnesium
and boron metals toward the low-energy range: the low-
energy chemical shift is equal to 0.5 eV for Mg L2, 3 and
0.3 eV for B Kα. The chemical shifts reflect the varia-
tion in the electron population near the corresponding
component through the mechanism of screening of the
x-ray hole. Therefore, we investigated the electronic
structure of the MgB2 compound, calculated the ener-
gies of core levels and the populations of magnesium
and boron shells for different radii, and constructed the
charge density maps.

The band structures of the MgB2 compound and
metallic magnesium and boron were calculated by the
full-potential method of muffin-tin (MT) orbitals,
which does not involve approximations accounting for
the shape of the potential and charge density [20]. In
order to interpret the chemical shifts, we compared the
energies of the Mg 2p and B 1s core levels, as well as
the electron populations in the shells of magnesium and
boron atoms in the MgB2 compound and the corre-
sponding metals (magnesium with a hexagonal struc-
ture and boron with an α-B12 structure) for two radii of
Mg MT shells, RMg = 2.83 and 2.00 au. The radius of
boron atoms was taken to be constant and equal to
1.65 au. As can be seen from the table, the results of
calculations substantially depend on the radii chosen
PHYSICS OF THE SOLID STATE      Vol. 46      No. 11      200
for the Mg MT shells. For RMg = 2.83 au, the change in
the energy of the Mg 2p level in the MgB2 compound
with respect to the pure metal is determined to be
∆Mg2p = 1.1 eV. The corresponding change in the energy
of the B 1s level is ∆B1s = 0.7 eV. For RMg = 2.00 au,
these changes are considerably smaller: ∆Mg2p = 0.4 eV
and ∆B1s = 0.3 eV. It should be emphasized that, for two
radii of MT shells, the core levels of both magnesium
and boron atoms are shifted toward lower energies,
which corresponds to directions of the shifts deter-
mined in our experiments.

Analysis of the data presented in the table shows
that, for both radii of magnesium, the total populations
qtot in the magnesium and boron shells in the MgB2
compound exceed those in metallic magnesium and
boron. For RMg = 2.83 au, the increase in the population
of the shells is equal to 0.5e and 0.02e for magnesium
and boron, respectively. For RMg = 2.00 au, these quan-
tities are equal to 0.1e and 0.04e, respectively. Consid-
ering the changes in the orbital populations, it is worth
noting that the populations of the Mg 3s states decrease
and the populations of the Mg 3p and Mg 3d states
increase in the MgB2 compound as compared to metal-
lic magnesium for both MT radii. This is also con-
firmed by the map of the valence charge density, which
is determined as the difference between the change
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Fig. 1. Mg L2, 3 and B Kα x-ray emission spectra of the
MgB2 compound and its constituent pure metals.
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Energies Ecore (eV) of Mg 2p and B 1s core levels and populations of orbitals ql and atoms qtot (electrons/atom)

MgB2 Mg B

RMg = 2.83 au
RB = 1.65 au

RMg = 2.00 au
RB = 1.65 au RMg = 2.83 au RMg = 2.00 au RB = 1.65 au

Mg B Mg B

–Ecore 42.36 168.49 37.67 168.95 43.49 38.08 169.22

qs 0.506 0.581 0.153 0.587 0.600 0.173 0.573

qp 0.785 1.028 0.185 1.041 0.522 0.129 1.018

qd 0.392 0.064 0.075 0.011

qtot 1.683 1.609 0.402 1.628 1.197 0.313 1.591
densities in the MgB2 compound and metallic magne-
sium (Fig. 2).

Most likely, the increase in the electron population
of the magnesium and boron shells is caused by the
crystal chemical contraction of the hexagonal lattice:
the lattice parameter is equal to 6.042 au for Mg and
decreases to 5.834 au for MgB2. As regards boron
atoms, the loose-packed structure of elemental boron
transforms into the hexagonal close-packed structure of
the MgB2 compound. Upon crystal contraction, the
electron density per unit volume increases. Therefore,
the electron population in equivalent volumes of the
shells in the MgB2 compound also increases as com-
pared to that of the pure metal. It should be noted that
the electron population in magnesium shells increases
at the expense of the p and d states. This indicates that
the crystal contraction is due to the enhancement of the

Fig. 2. Difference charge density for the MgB2 compound
in the xy plane. Dashed and solid lines correspond to a
decrease and an increase in the charge density of the com-
pound as compared to metallic magnesium (lattice parame-
ter aMg = ), respectively.aMgB2
PH
interatomic interaction (as compared to the initial ele-
ments) involving the d states, which are vacant in mag-
nesium atoms in a free state. The calculations of the
energy of the core levels for metallic magnesium with
the lattice parameters of the MgB2 diboride also
revealed crystal contraction. The calculated energies of
the Mg 2p level are equal to 43.12 eV (RMg = 2.83 au)
and 37.67 eV (RMg = 2.00 au) and correspond to low-
energy shifts of 0.4 eV.

3. CHARGE TRANSFER

Analysis of the difference charge-density maps
(Fig. 3) demonstrates that, in the MgB2 compound, the
charge is transferred from magnesium atoms to boron
atoms. It is worth noting that, according to these maps,
the charge density changes upon the formation of
diboride as compared to free atoms. The direction of
the chemical shift is determined by comparing the x-ray
emission spectra of the components of the diboride and
metallic magnesium and boron.
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Fig. 3. Difference charge density for the MgB2 compound
in the xz plane. Dashed and solid lines correspond to a
decrease and an increase in the charge density of the com-
pound as compared to free atoms, respectively.
YSICS OF THE SOLID STATE      Vol. 46      No. 11      2004



CHEMICAL SHIFTS IN THE X-RAY EMISSION SPECTRA 1997
The calculated total populations qtot for the case of
close radii of the magnesium and boron atoms (RMg =
2.00 au, RB = 1.65 au) are equal to 0.4e (Mg) and 1.6e
(B). These values correspond to the ionic formula

Mg+1.6 , which is in excellent agreement with the

formula obtained in [12]: Mg+1.68 . This formula
suggests that the charge is transferred from magnesium
to boron atoms and that the magnesium atom losses
approximately 1.6e upon the formation of the diboride,
whereas two boron atoms acquire this charge. The same
value for charge transfer (1.5–1.6e) was obtained by
Tsirelson et al. [13].

4. CONCLUSIONS

Thus, the experimental and theoretical investiga-
tions demonstrated that the electron population in mag-
nesium and boron shells of the MgB2 diboride is higher
than that in pure metals. This manifests itself in low-
energy shifts of the emission lines. The low-energy
shift is due to a more effective screening of the inner-
shell x-ray hole in the MgB2 compound. The chemical
shift in MgB2 is caused primarily not by the charge
transfer, which should lead to different shifts for mag-
nesium and boron atoms, but by the crystal chemical
contraction of the lattice upon changing over from the
pure metals to MgB2.
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Abstract—The electromagnetic properties of superconductors are investigated as a function of the discreteness
of the crystal lattice in the London limit. The dependence of the superconducting current on the magnitude of the
order parameter is obtained in the framework of the lattice model. The dependence of the critical current on the
degree of deviation from the continuous approximation is calculated. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The effect of an external magnetic field on the
superconducting state near the upper critical field for
type-II superconductors has been intensively investi-
gated in recent years. In particular, Brezin et al. [1]
demonstrated that, in a strong magnetic field, fluctua-
tions of the order parameter near the upper critical field
become substantially stronger due to their quasi-one-
dimensionality. The nonrenormalizability of the rele-
vant theory makes the use of the renormalization-group
method ineffective. In our earlier work [2], we estab-
lished that the breakdown of the continuous transla-
tional symmetry of the crystal lattice recovers the
renormalizability of the theory. The kinetic term of the
effective action takes the form of a Harper operator.
Consequently, the fluctuations have three-dimensional
character in the case where the magnetic flux through
the lattice plaquette is comparable to the London flux
quantum. On the other hand, the shift of the supercon-
ducting transition toward higher temperatures has given
impetus to the development of new approaches with
inclusion of the strong-coupling approximation, which
is most appropriate for the use of lattice models. In their
pioneering work [3], Nozieres and Schmitt-Rink con-
sidered the problem of strong coupling in the theory of
superconductivity and also noted that inclusion of the
discreteness of the translational symmetry in explicit
form is of fundamental importance. In this respect, it is
of interest to analyze all the possible physical conse-
quences of this form of the Ginzburg–Landau action in
a more general context, i.e., in terms of the bounded-
ness of the spectrum of the corresponding operator due
to the translational symmetry of the superconducting
crystal. However, the complex mathematical character
of this operator makes it very difficult to solve the prob-
lem. Another important aspect of our problem is to
investigate the stability of the superconducting state
when an electric current flows through the studied crys-
tal. In the most consistent form, the current in a super-
1063-7834/04/4611- $26.00 © 21998
conductor as a thermodynamic variable was studied by
Kudinov [4]. In the present work, the phenomenologi-
cal approach applied to a superconductor with strong
coupling is similar to the approach used in the theory of
stability of the current state, which is based on the Gin-
zburg–Landau equation in the London limit [5].

2. ELECTRODYNAMIC EQUATIONS 
FOR A NARROW-BAND-GAP 

SUPERCONDUCTOR

Our analysis is based on a phenomenological
approach similar to that used in the monograph by
de Gennes [5].

The lattice version of the Ginzburg–Landau equa-
tion was derived from the microscopic theory in our
previous work [6]. The free energy functional has the
form

(1)

where B = curlA is the magnetic induction, τ = α(T –
Tc)/Tc, Tc is the temperature of the superconducting
transition in the self-consistent field approximation in
the absence of an external field and current, and εp is
the function of the quasi-wave vector with periods
(2π)/a1, (2π)/a2, and (2π)/a3. The operators ∇  and A(x)
commute in the case where we choose the gauge

F x ψ* x( )ε –i"∇ 2e
c

------A x( )– 
  ψ x( )d∫=

---+ τψ* x( )ψ x( )

+
g
2
--- x ψ* x( )ψ x( )( )2 B2

8π
------+ ,d∫
004 MAIK “Nauka/Interperiodica”



        

LONDON LIMIT FOR THE LATTICE MODEL OF A SUPERCONDUCTOR 1999

                               
divA = 0. This functional can also be written in the
Bloch representation:

(2)

The vectors m enumerate the lattice sites in the
plane perpendicular to the magnetic field. By varying
expression (1) with respect to the vector potential A(x),
we obtain the Maxwell equation

(3)

with the density of the electric current 

(4)

where v(p) = (∂ε)/(∂p) is the group velocity of the wave
packet of the order parameter. Let us represent the com-
plex order parameter ψ(x) in the form 

(5)

where R2 = ns is the density of superconducting elec-
trons. When the coherence length is small as compared
to the depth of current penetration, the quantity τ is rel-
atively large, which is equivalent to the presence of a
small parameter in the kinetic term. In this case, the
spatially homogeneous solution to Eq. (1) can be taken
as a magnitude of the order parameter:

(6)

which is valid almost everywhere. The last remark fol-
lows from the well-known fact that the small parameter
before the higher derivative does not guarantee com-
plete spatial homogeneity of the solution; it is owing to
this loophole that the eddy solutions exist in the London
limit. Under the assumption that the magnitude of the
order parameter is constant and that the phase varies
slowly, we obtain the following expression for the cur-
rent in the London limit:

(7)

where  = . By introducing the gauge–invariant
vector field

(8)
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we can rewrite the Maxwell equation (3) in the form

(9)

In the continuous approximation v(p) = p/m, expres-
sion (9) can easily be reduced to the standard Londons’
equation

(10)

where δ2 = (mc2)/(4πe2R2) and m–1 = (∆a2)/"2. Let us
now use relationship (9) to analyze the classical prob-
lem of a critical current in order to elucidate the specific
features that arise when the translation symmetry in the
crystal is reduced.

3. CRITICAL CURRENT IN A THIN FILM

We consider a crystal with tetragonal symmetry and
with a kinetic term of the form

(11)

It is assumed that the electric current j flows through
a film with thickness d in a direction parallel to the x
axis. Let us also assume that d ! ξ(T) and d ! δ(T),
where ξ(T) is the coherence length. These conditions
ensure the homogeneity of the order parameter R and
the density of the current j over the thickness of the
film, respectively. By using relationships (1), (5), (7),
and (8), we can write the following conditions for the
minimum of the free energy (here, we disregard the
effect of the magnetic field, as is usually done in the
theory of a critical current):

(12)

(13)

Here,

(14)

(15)

Now, we eliminate the quantities v x and εx from
relationships (14) and (15) with the use of the expres-
sion

(16)
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PH
and derive the following relationship between the cur-
rent jx and the order parameter R:

(17)

Next, we introduce the dimensionless variables J
and f according to the formulas

(18)

(19)

As a result, we have 

(20)

where k = |τ|/(∆⊥ ). In the limit "v x/(a∆⊥ )  0 and,
hence, k  0, relationship (20) transforms into the
standard expression, which holds in the continuous
approximation [5]:

(21)

Figure 1 shows the dependences of the dimension-
less current J on the dimensionless order parameter f in
the cases k  0 and k = 1. The maxima of the dimen-
sionless order parameter fm and the dimensionless cur-
rent Jm as a function of k are presented in Figs. 2 and 3,
respectively.

4. PENETRATION OF THE MAGNETIC FIELD

Let us return to the Maxwell equation (9). In the case
when the kinetic term has the form of relationship (11),
the Maxwell equation (9) can be rewritten as

(22)

or, with the London gauge div! = 0, in the form

(23)

Under the assumption that the dispersion law (11)
holds, expression (23) for the x component can be rep-
resented in the form

(24)

where Φ0 = (2π"c)/(2e) is the London–Onsager flux
quantum. In the weak-field limit, this expression takes
the form of the Maxwell equation (10). Here, it is
appropriate to introduce a new variable,
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(25)

As a result, relationship (24) takes the form

(26)

Let us now consider the classical problem of penetra-
tion of a magnetic field [5] in terms of relationship (24).
In the one-dimensional case, relationship (24) has the
form

(27)

This is a standard equation that differs from the equa-
tion of pendulum only in sign. The one-dimensional
penetration of a magnetic field can be described by the
solution [7]

(28)

where cn(x) is the elliptic cosine and κ is the elliptic
modulus. It is worth noting that the problem under con-
sideration is mathematically similar to the problem of a
fluxon in the one-dimensional Josephson contact.

In conclusion, it should be noted that, according to
expression (18), the critical current in a superconductor
with strong coupling tends to zero as the width of the
allowed band ∆ approaches zero. However, in this case,
there can appear a strong lattice pinning of vortices,
which will be considered in a separate paper.
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Abstract—The relaxation electronic phenomena occurring in TlGa0.99Fe0.01Se2 single crystals in an external dc
electric field are investigated. It is established that these phenomena are caused by electric charges accumulated
in the single crystals. The charge relaxation at different electric field strengths and temperatures, the hysteresis
of the current–voltage characteristic, and the electric charge accumulated in the TlGa0.99Fe0.01Se2 single crystals
are consistent with the relay-race mechanism of transfer of a charge generated at deep-lying energy levels in the
band gap due to the injection of charge carriers from the electric contact into the crystal. The parameters char-
acterizing the electronic phenomena observed in the TlGa0.99Fe0.01Se2 single crystals are determined to be as
follows: the effective mobility of charge carriers transferred by deep-lying centers µf = 5.6 × 10–2 cm2/(V s) at
300 K and the activation energy of charge transfer ∆E = 0.54 eV, the contact capacitance of the sample Cc =
5 × 10–8 F, the localization length of charge carriers in the crystal dc = 1.17 × 10–6 cm, the electric charge time
constant of the contact τ = 15 s, the time a charge carrier takes to travel through the sample tt = 1.8 × 10–3 s, and
the activation energy of traps responsible for charge relaxation ∆Eσ = ∆EQ = 0.58 eV. © 2004 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

Single crystals of the TlGa0.99Fe0.01Se2 compound
belong to the class of layered semiconductors. These
materials are characterized by a rather high electrical
resistivity (ρ = 1.3 × 108 Ω cm at 298 K). Earlier [1], we
found that, at temperatures T < 250 K, TlGa0.99Fe0.01Se2
single crystals in a dc electric field possess variable-
range-hopping conduction. The density of states in the
vicinity of the Fermi level was estimated as NF = 5.6 ×
1017 eV–1 cm–3.

Investigations into the electrical properties of
TlGa0.99Fe0.01Se2 single crystals have revealed that, at
an applied dc voltage, the samples undergo transient
processes resulting in changes in the electric current
with time.

The purpose of this work was to investigate experi-
mentally the relaxation phenomena occurring in
TlGa0.99Fe0.01Se2 single crystals and to elucidate their
mechanisms.

2. SAMPLE PREPARATION 
AND EXPERIMENTAL TECHNIQUE

Samples of the composition TlGa0.99Fe0.01Se2 were
synthesized by alloying initial components of high-
purity grade (no less than 99.99) in silica glass ampules
evacuated to a residual pressure of 10–3 Pa. Single crys-
tals were grown using the Bridgman–Stockbarger
method [1].
1063-7834/04/4611- $26.00 © 22002
The TlGa0.99Fe0.01Se2 samples used in electrical
measurements were obtained by cleaving bulk single
crystals along the natural cleavage planes. The thick-
ness of the samples was approximately equal to
100 µm. The ohmic contacts were produced by solder-
ing indium in the samples. For these experiments, sam-
ples were prepared in the form of a sandwich in such a
way that the dc electric field applied to the sample
would be directed parallel to the C axis of the crystal.

Immediately prior to measurement, the samples
were placed in a shielded vacuum cryostat equipped
with a temperature regulator. The temperature was
kept constant to within 0.02 K. All the measurements
were performed under vacuum at a residual pressure of
~10−2 Pa.

The dark current passing through samples of the In–
TlGa0.99Fe0.01Se2–In system at an applied dc voltage
was accompanied by charge relaxation. The time
dependence of the dark current was investigated in dif-
ferent external dc electric fields. The charge relaxation
in the studied samples was controlled by the applied
voltage.

3. RESULTS AND DISCUSSION

The time dependences of the dark current in the
TlGa0.99Fe0.01Se2 single crystal at different applied dc
voltages ranging from 1.0 to 50 V are shown in Fig. 1.
It can be seen from curves 1–5 in Fig. 1 that, at rela-
tively low voltages, the dark current decays with time
and reaches a steady-state value 100–120 s after the
004 MAIK “Nauka/Interperiodica”
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onset of the experiment. The decay curves of charge
relaxation are observed up to a voltage of 40 V. Begin-
ning with this voltage, the dark current first decreases to
a minimum and then increases to a steady-state value
(Fig. 1, curves 6, 7). As can be seen, the dark current
first decays for 40–50 s and then slightly increases. At
higher voltages, no decay of the dark current occurs
with time; on the contrary, the current only increases.

Since the electric current changes with time, the cur-
rent–voltage characteristics of the samples studied
exhibit a hysteresis. Figure 2 depicts the current–volt-
age characteristics constructed from the initial currents
I0 (curve 1) and the steady-state currents I measured
120 s after the onset of the experiment (curve 2). In the
case when the voltage is applied to the sample for a
longer time, the current–voltage characteristic is shifted
toward weaker currents. Curve 1 has a linear portion
I0 ~ U up to a voltage of 25 V and a quadratic portion
I0 ~ U2 at higher voltages (U > 25 V). Curve 2 has a
shorter linear portion at voltages U < 10 V and a portion
I ~ U1.3 at voltages U > 10 V.

The decay of charge relaxation observed in samples
of the In–TlGa0.99Fe0.01Se2–In system is accompanied
by the accumulation of electric charge. After the exter-
nal voltage was switched off and the electrodes were
short-circuited, the circuit experienced a discharge cur-
rent flow whose direction was opposite to the direction
of the current passing through the sample when the
voltage was switched on. The sample was completely
discharged either under heating at a high temperature or
under exposure to light. The electric charge accumu-
lated in the system was calculated from the area under
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Fig. 1. Relaxation of the dark current in the
TlGa0.99Fe0.01Se2 single crystal at different applied volt-
ages. U = (1) 1.0, (2) 1.5, (3) 2.0, (4) 3.0, (5) 4.0, (6) 40, and
(7) 50 V. T = 300 K.
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the current–time curve according to the formula Q =

.

Figure 3 shows the experimental time dependences
of the electric charge accumulated in the
TlGa0.99Fe0.01Se2 single crystal at different applied dc
voltages. It can be seen from Fig. 3 that, as the time of
exposure to an external dc electric field increases, the
electric charge accumulates more slowly and gradually
reaches saturation.

A change in the dc voltage applied to the sample for
the same time leads to a variation in the accumulated

I td
0

t∫

10–6

10–7

10–8

I, A

U, V

1

2

I 0 ~
 U

I ~ U

I0 ~ U2

I ~ U1.3

100 101 102

Fig. 2. Current–voltage characteristics of the In–
TlGa0.99Fe0.01Se2–In system: (1) the initial current I0 and
(2) the steady-state current I measured 120 s after the onset
of the experiment.
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Fig. 3. Time dependences of the electric charge Q accumu-
lated in the TlGa0.99Fe0.01Se2 single crystal at different
applied voltages. U = (1) 1.0, (2) 1.5, and (3) 2.0 V.
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charge. Figure 4 depicts the dependence of the accumu-
lated charge on the voltage applied to the sample for a
constant time t = 15 s. It can be seen from Fig. 4 that, at
low applied voltages, the accumulated charge rapidly
increases as the square of the voltage: Q ~ U2. As the
applied voltage increases, the accumulation of the elec-
tric charge occurs more slowly. At higher voltages (U >
4 V), the accumulated charge is linearly proportional to
the voltage: Q ~ U.

The experimental results obtained in this study were
interpreted within a model according to which the
transfer of an electric charge injected into a crystal
occurs through the relay-race mechanism [2] and which
accounts for the above specific features of the electric
current flowing through a metal–semiconductor–metal
system. This model implies that the crystal under con-
sideration involves centers with deep-lying trapping
levels responsible for hopping conduction. When the
concentration of deep-lying centers is sufficiently high
for the transfer of an electric charge injected into the
crystal, it is this charge transfer that makes a dominant
contribution to the electrical conduction of the crystal.
According to the model proposed by Timan [2], the
charge transfer provided by these local centers is
accompanied by the formation of an energy barrier at
the boundary with the anode, which hinders the transfer
of electrons (injected from the cathode) to the anode.
The energy barrier at the boundary with the anode
arises from the energy difference between the electron
affinity for the local center and the work function of the
anode metal. Consequently, the electric current is lim-
ited by both the space charge in the bulk of the semi-
conductor and the energy barrier at the boundary with
the anode. This brings about the accumulation of an
excess charge in the vicinity of the anode, which, in
turn, leads to a redistribution of the voltage across the

10–6

10–7

Q, C

U, V

Q ~ U2

100 101

Q ~ U

Fig. 4. Dependence of the electric charge Q accumulated in
the TlGa0.99Fe0.01Se2 single crystal for time t = 15 s on the
applied voltage U.
PH
crystal. As a result, the potential difference across the
contact should increase with time, whereas the electric
current passing through the crystal should decrease.

A theory of unsteady injection current with allow-
ance made for trapping levels in the band gap of crys-
tals was developed earlier by Many and Rakavy [3].
However, according to this theory and inferences made
by Lampert and Mark [4], the injection current is
caused by charge transfer through the conduction band
of the crystal. An important feature of the current lim-
ited by the space charge [3, 4] is that the electric charge
in this case cannot exceed the quantity CgU, where Cg

is the geometric capacitance of the sample and U is the
voltage imposed across the sample. For the samples
studied in the present work, the geometric capacitance
was estimated at ~6 × 10–12 F. The maximum voltage
across the sample at which the decay of charge relax-
ation was observed in TlGa0.99Fe0.01Se2 single crystals
amounted to 50 V. This means that the greatest possible
charge Q accumulated in the system is equal to 3 ×
10−10 C. However, in our experiments, the maximum
charges Q accumulated in the crystal are significantly
greater than the above value even at lower voltages
(Figs. 3, 4).

According to Timan [2], the accumulated charge at
short times of polarization can be given by the follow-
ing relationship:

(1)

where µf is the mobility of charge carriers transferred
through the band gap of the crystal, ε0 is the permittiv-
ity of free space, ε is the permittivity of the crystal, S is
the contact area, L is the thickness of the crystal, U is
the polarizing voltage, and t is the polarization time.

The experimental dependence Q(U) measured at
low voltages (Fig. 4) is adequately described by expres-
sion (1). The mobility of charge carriers transferred by
local centers through the band gap of the
TlGa0.99Fe0.01Se2 single crystal was estimated from the
slope of the quadratic portion Q ~ U2 in the voltage
dependence of the accumulated charge as follows: µf =
5.6 × 10–2 cm2/(V s). At higher voltages, the accumu-
lated charge varies according to the law Q ~ U (Fig. 4),
which is also consistent with the theory presented in [2]:

(2)

From formula (2), the contact capacitance of the sam-
ple was estimated as Cc = 5 × 10–8 F. By substituting the
contact capacitance Cc into expression Cc = εε0S/dc, we
determined the localization length of charge carriers in
the crystal: dc = 1.17 × 10–6 cm.

Q µ f εε0S
U

2

L
3

------t,=

Q CcU .=
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The electric charge time constant of the contact τ =
15 s was calculated from the relationship [2]

. (3)

The time a charge carrier takes to travel through the
sample,

, (4)

was found to be equal to 1.8 × 10–3 s. It should be noted
that the time tt is approximately one order of magnitude
longer than the Maxwell relaxation time tM = εε0/σ =
2.4 × 10–4 s.

As follows from the theory developed in [2], the
electric current passing through the system and the
accumulated charge are related by the expression

(5)

It can be seen from expression (5) that, at each instant
of time, the accumulated charge is proportional to the
square root of the current flowing through the system.
Relationship (5) holds for the voltages and times corre-
sponding to the descending branches of the relaxation
characteristics. It is worth noting that the lower the volt-
age and the shorter the time, the better the fit of rela-
tionship (5) to the experimental data.

Figure 5 shows the experimental dependences of the
charge accumulated in the In–TlGa0.99Fe0.01Se2–In sys-
tem within different time intervals on the electric cur-
rent measured at the same times. These dependences
were obtained at applied dc voltages U = 1.0 (curve 1)
and 1.5 V (curve 2) in the range of the descending
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Fig. 5. Dependences of the electric charge Q accumulated in

the In––In system on the current  at different applied
voltages. U = (1) 1.0 and (2) 1.5 V.

I
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branches of the relaxation characteristics. In this case,
the currents I are the experimental values after subtract-
ing the background current Ib, which corresponds to the
leakage current. The background current Ib was chosen
equal to the minimum value in the descending branch
of the relaxation characteristic at a specified voltage
and a longer time. The dependences constructed in the

–Q coordinates in Fig. 5 exhibit linear behavior in
accordance with relationship (5). Extrapolation of
curve 1 in Fig. 5 gives the cutoff current Ic = 5.6 × 10–9 A
at Q = 0. As a result, from relationship (5), we obtain
the following expression for the charge-carrier mobil-
ity:

(6)

After substituting the known parameters into expres-
sion (6), we have µf = 9.6 × 10–2 cm2/(V s), which coin-
cides in order of magnitude with the charge-carrier
mobility µf determined from formula (1).

The above results were obtained at room tempera-
ture. In order to elucidate the nature of the observed
phenomena, we considered it expedient to compare the
magnitudes of the activation energy of electrical con-
duction ∆Eσ and the activation energy of charge gener-
ation ∆EQ. For this purpose, we measured the tempera-
ture dependences of the electrical conductivity σ and
the charge Q accumulated in the TlGa0.99Fe0.01Se2 sin-
gle crystal (Fig. 6). The dependence of logσ on 103/T is
characterized by an extended exponential portion in the
temperature range 250–300 K. This portion corre-
sponds to a deep-lying trapping level with the activation
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Fig. 6. Temperature dependences of (1) the electrical con-
ductivity σ and (2) the charge Q accumulated in the
TlGa0.99Fe0.01Se2 single crystal at a polarizing voltage U =
2 V and polarization time t = 120 s.
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energy ∆Eσ = 0.58 eV. As the temperature decreases
below 250 K, the slope of the temperature dependence
of the electrical conductivity is ever changing; i.e., the
activation energy of electrical conduction decreases
progressively with a decrease in the temperature to
150 K. As was noted above, the TlGa0.99Fe0.01Se2 single
crystals at low temperatures possess hopping conduc-
tion.

It is known that the electric charge accumulated at
shallow-lying trapping levels is only slightly or not at
all dependent on the temperature. On the other hand,
the temperature dependence of the electric charge accu-
mulated at deep-lying trapping levels exhibits exponen-
tial behavior. The activation energy determined from
the slope of this dependence plotted in the Arrhenius
coordinates virtually coincides with the energy location
of the corresponding trapping level. These results were
confirmed in our experiments. The temperature depen-
dence of the electric charge Q (Fig. 6, curve 2) accumu-
lated in the TlGa0.99Fe0.01Se2 single crystals is similar to
the dependence σ(T); i.e., the accumulated charge Q
increases drastically at temperatures T > 250 K with the
activation energy ∆EQ = ∆Eσ = 0.58 eV. At lower tem-
peratures T < 250 K, the dependence Q(T) becomes
smoother. The equality of the activation energy of elec-
trical conduction and the activation energy of charge
generation indicates that the processes of charge gener-
ation and electrical conduction occur through mecha-
nisms of the same nature.
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Fig. 7. Current–voltage characteristics of the In–
TlGa0.99Fe0.01Se2–In system at different temperatures. T =
(1) 150, (2) 200, (3) 250, and (4) 300 K.
PHY
The current–voltage characteristics of the In–
TlGa0.99Fe0.01Se2–In system at different temperatures
(from 150 to 300 K) are depicted in Fig. 7. These curves
are constructed from the initial values of the current
passing through the system, i.e., at t < τ. At tempera-
tures T < 300 K, the current–voltage characteristics
involve sublinear portions that transform first into lin-
ear portions and then into quadratic portions. At low
temperatures (T < 150 K), no quadratic portions are
revealed in the current–voltage characteristics of the
sample up to a voltage of 400 V. In Fig. 7, the dashed
lines issuing out of the points corresponding to the
crossover from the ohmic to quadratic current–voltage
characteristic of the sample are perpendicular to the
abscissa axis. It can be seen from this figure that, with
a decrease in the temperature, the voltage Ub of the
crossover from the ohmic to quadratic current–voltage
characteristic shifts toward larger values. The tempera-
ture dependence of the voltage Ub is plotted in the
Arrhenius coordinates in Fig. 8. As the temperature
decreases from 300 to 150 K, the voltage Ub increases
from 25 to 200 V. It can be seen that this dependence
exhibits exponential behavior: Ub ~ exp(W/kT), where
W = 0.05 eV.

The presence of quadratic portions I ~ U2 in the cur-
rent–voltage characteristics follows from the relation-
ship [2]

(7)

At t ! τ, relationship (7) takes the form

(8)
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Fig. 8. Temperature dependence of the voltage Ub corre-
sponding to the crossover from the ohmic to quadratic cur-
rent–voltage characteristic of the TlGa0.99Fe0.01Se2 single
crystal.
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Expression (8) bears a resemblance to the Lampert
formula [4] for an electric current limited by the space
charge. However, as was already mentioned, according
to the theory developed in [4], the injection current is
caused by charge transfer through the conduction band
of the crystal. If the electrical conduction is provided by
states localized in energy bands, the temperature
dependence of the conductivity is determined primarily
by the temperature dependence of the charge-carrier
concentration and, hence, the temperature dependence
of the charge-carrier mobility can be disregarded (σ =
neµ). In the case when charge transfer over localized
states occurs through the hopping or relay-race mecha-
nism, the main contribution to the electrical conductiv-
ity is made by the thermal activation of the mobility [5]:
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Fig. 9. Temperature dependence of the mobility of charge
carriers in the band gap of the TlGa0.99Fe0.01Se2 single
crystal.
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(9)

where ∆E is the activation energy of charge transfer.
The temperature dependence of the mobility of

charge carriers transferred by local centers through the
band gap of the TlGa0.99Fe0.01Se2 single crystal is shown
in Fig. 9. The dependence of  on 103/T is charac-
terized by an extended exponential portion with slope
∆E = 0.54 eV. Within the limits of experimental error,
the activation energy ∆E coincides with the activation
energies ∆Eσ = ∆EQ = 0.58 eV.

4. CONCLUSIONS

Thus, the experimental results obtained in the above
investigation of the relaxation processes occurring in
TlGa0.99Fe0.01Se2 single crystals in an external dc elec-
tric field are in agreement with the relay-race mecha-
nism of transfer of a charge generated in deep traps due
to the injection of charge carriers from the electric con-
tact into the crystal.
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Abstract—The mechanism responsible for the spin-galvanic effect is considered. According to this mecha-
nism, the current is generated as a result of the difference between the rates of spontaneous radiative transitions
of charge carriers with oppositely directed spins. This difference arises when a spatially uniform nonequilib-
rium spin orientation of thermalized electrons (holes) is provided by any known method. © 2004 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

Recently, Ganichev et al. [1] experimentally
observed the phenomenon referred to as the spin-gal-
vanic effect (see also references in review [2]). In
essence, this effect consists in exciting an electric cur-
rent in a bulk semiconductor (or a heterostructure)
when a nonequilibrium spin orientation of charge carri-
ers is provided, for example, by uniform optical gener-
ation [1]. The origin of the current associated with the
spin-galvanic effect was explained by the asymmetry of
spin-flip scattering of thermalized charge carriers with
oppositely directed spins [1]. It should be noted that the
spin-galvanic effect caused by spin-dependent scatter-
ing processes was previously considered in [3–5]. In
particular, Averkiev and D’yakonov [5] discussed the
effect (more recently observed experimentally in [6])
governed by the spin diffusion due to a spatially non-
uniform optical orientation of spins of charge carriers.

Ganichev and Prettl [2] noted that the spin-galvanic
effect can be treated as an inverse (conjugate) effect
with respect to the current-induced spin polarization of
charge carriers, which would be reasonably termed the
galvanospin effect. The galvanospin effect was theoret-
ically considered by Aronov and Lyanda-Geller [7],
Edelstein [8], and even earlier by Levitov et al. [9]. In
the last work, this effect was called the kinetic magne-
toelectric effect. Note that the conjugate effect, i.e., the
spin-galvanic effect, was also analyzed in [9]. In all the
above works, the appearance of spin polarization was
explained by spin-dependent scattering of charge carri-
ers. However, quite recently, Mal’shukov and Chao
[10] theoretically described the mechanism of current-
induced spin polarization due to the difference between
the radiative-recombination rates for electrons with
oppositely oriented spins. By analogy with the spin-
galvanic and galvanospin effects caused by spin-depen-
dent scattering, the question arises as to whether the
spin-galvanic effect can be associated with a similar
recombination mechanism.
1063-7834/04/4611- $26.00 © 22008
In the present work, the recombination mechanism
of the spin-galvanic effect is considered within a micro-
scopic model. According to this mechanism, the current
is generated as a result of the difference between the
rates of spontaneous radiative transitions for charge
carriers with oppositely directed spins. The difference
in the radiative recombination arises when a nonequi-
librium spin orientation of electrons (or holes) is
ensured by any method known to date. Since the pur-
pose of this work is to illustrate the main features of the
recombination mechanism of the spin-galvanic effect,
the model under consideration is not related to any spe-
cific bulk semiconductor or semiconductor heterostruc-
ture.

2. MODEL

Let us consider a sample of a semiconductor mate-
rial whose symmetry allows for the existence of terms
linear in the wave vector k in a Hamiltonian describing
the energy spectrum of this sample. For example, these
terms can have the form

(1)

where subscripts x and z denote the corresponding crys-
tallographic axes of the sample, σz is the Pauli matrix,

and the quantities  are related to the spin splitting
of the conduction and valence bands due to the spin–
orbit interaction. For bulk semiconductors or hetero-
structures, the symmetry necessary for terms similar to
term (1) to exist is well known [11]. A number of sim-
plifying assumptions can be introduced into the model
of the recombination mechanism without a loss of gen-
erality.

(i) We will consider a p-type degenerate semicon-
ductor with allowance made for the spin polarization of
only the conduction band electrons, because their spin

Hc v, βzx
c v, σzkx,=

βzx
c v,
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relaxation time  is assumed to be considerably longer

than the spin relaxation time of holes .

(ii) It is assumed that the states with the angular-
momentum projection mz = ±3/2 (the subband of
heavy holes) are dominant in the vicinity of the
valence band top.

(iii) The hierarchy of relaxation times for conduc-
tion band electrons is assumed to satisfy the following

inequalities: τp ! τε ! τr and  ! τnr, where τp is the
momentum relaxation time, τε is the energy relaxation
time, and τr and τnr are the radiative and nonradiative
recombination times, respectively.

(iv) The spin orientation of conduction band elec-
trons is provided through interband optical transitions
induced by circularly polarized (left circularly polar-
ized) light propagating along the z axis.

(v) Optical transitions occur from valence band
states lying below the quasi-Fermi level of heavy holes
under illumination. It is assumed that the temperatures
are sufficiently low.

(vi) We also assume that the degree of spin polariza-
tion of electrons, i.e., the relative population of the s+
and s– spin branches (electrons with sz = ±1/2) of the
conduction band, is determined primarily by the ratio

between  = τs and τ0 = τrτnr/(τr + τnr) ~ τr.

A schematic diagram of the band structure satisfy-
ing the above conditions is depicted in the figure. This
figure also shows the asymmetry in the stationary pop-
ulation of spin-split branches in the conduction band
with nonequilibrium electrons (n+, n–) upon exposure to
light under the above conditions. In order to compare
the proposed mechanism of the spin-galvanic effect
with the mechanism considered in [1], the spontaneous
radiative transitions and the transitions with spin-flip
scattering of electrons are represented in the figure. It is
assumed that these processes make the determining
contributions to spin relaxation.

3. RESULTS AND DISCUSSION
Since the radiative and direct interband transitions

obey the same optical selection rules, the radiative
recombination and spin-flip scattering are spin-depen-
dent processes. As for the spin-galvanic effect associ-
ated with the spin-dependent scattering [1], the recom-
bination contribution to the generation of an electric
current is made by electrons of the s+ branch lying
above the quasi-Fermi level for electrons of the s–
branch. However, unlike the situation analyzed in [1],
there are only three types of radiative transitions. The
transitions of the first two types, which occur for both
branches (arrows 2, 3 in figure), make mutually com-
pensating contributions to the electric current, because,
after the recombination event, electrons with equal but
oppositely directed wave vectors are removed from the

τ s
e

τ s
h

τ s
e

τ s
e

PHYSICS OF THE SOLID STATE      Vol. 46      No. 11      20
electron gas. For transitions from the s+ branch (arrow 1
in figure), the corresponding transitions are absent in
the s– branch. Therefore, the processes of radiative
recombination from this branch (as well as the corre-
sponding processes of scattering [1]) are accompanied
by the generation of a current j r. However, the contribu-
tions made by scattering and recombination to the spin-
galvanic current differ significantly. Let us now turn to
the discussion of these differences.

In the case of scattering, the removal of an electron
characterized by a parameter –kx from the region of the
s+ branch (this process can be treated as the formation
of a positively charged hypothetical “hole” with the
same wave vector) is accompanied by the creation of an
electron with the vector kx in the s– branch. The contri-
butions of the aforementioned hole and electron to the
current coincide both in sign and in magnitude [1]. The
event of radiative recombination involving the same
electron, first, leads to the creation of a similar hole in
the electron gas of the conduction band. Second, the
real hole with vector –kx is removed from the hole gas
of the valence band due to the recombination. This
brings about the generation of an uncompensated hole
flux with oppositely directed wave vectors (see figure).
Unlike the scattering mechanism, the contributions of
the hypothetical and real holes to the recombination

E

1

2 3
0

kx

–kx

kx

|+3/2〉z |–3/2〉z

|+1/2〉z |–1/2〉z

Schematic diagram of the band structure and electron transi-
tions within the microscopic model of the recombination
mechanism of the spin-galvanic effect. Radiative transition 1
leads to the generation of the spin-galvanic current, whereas
transitions 2 and 3 do not result in the generation of a cur-
rent. Curved arrows indicate spin-flip scattering of electrons
for comparison with the mechanism of the spin-galvanic
effect considered in [1]. Open circles correspond to a hypo-
thetical “hole” in the conduction band and a real hole in the
valence band. These holes make contributions (opposite in
sign) to the recombination component of the spin-galvanic
current.
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current have opposite signs. It should be noted that a
similar situation is observed for the circular photogal-
vanic current jex generated upon interband transitions.
In this case, the resultant current is proportional to the
average total velocity of charge carriers [2]:

(2)

However, the expression for the average total velocity
determining the current j r has a form different from the
expression for the current jex. The total velocity of
charge carriers during the recombination event shown
in the figure can be written in the form

(3)

The general relationship for the current determined
by the recombination mechanism can be derived in the
framework of the model under consideration with the
use of balance equations for the concentrations of non-
equilibrium electrons n+ and n– with spins of +1/2 and
–1/2, respectively. According to assumption (vi), the
balance equations can account for only the processes of
radiative recombination and spin-flip scattering of elec-
trons:

(4)

(5)

where G+ is the rate of optical generation of spin-polar-
ized electrons. From this system of equations, it is easy
to obtain the following expressions for n+ and n–:

(6)

(7)

In order to simplify further calculations, we assume
that the intensity of light is such that the maximum pop-
ulation of any spin branch with nonequilibrium elec-
trons does not exceed the energy level specified by the
point of intersection of the branches at k = 0. Then, the
analysis of the recombination from both spin branches
clearly demonstrates that the radiative transitions from
these branches are characterized, on the average, by the
wave vector corresponding to the extremum of the
given spin branch kmin = ±(meβc/"2). Next, from formu-
las (3), (6), and (7) with due regard for the condition
that the momentum relaxation times for electrons and
holes are approximately equal to each other, it is easy
to find the current

(8)

Moreover, it is expedient to give the expression derived
for the current j sc in the framework of our model; that is,

(9)
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Note that, in the expressions for the spin-galvanic cur-
rent in real samples, it is necessary to take into account
the distribution of charge carriers in the k and s spaces.

First and foremost, it can be seen from relationship (8)
that, as should be expected, the current j r is maximum
when the recombination rate is considerably higher
than the scattering rate, i.e., at τs @ τr (it is quite reason-
able that the reverse holds true for the current j sc).

Depending on the ratio between the effective masses
of electrons and holes, the sign of the current j r can be
different; namely, it can either coincide or differ from
the sign of the current j sc. Certainly, this circumstance
can complicate the interpretation of the results of
experimental investigations into the spin-galvanic
effect. Note also that one more difference between the
two mechanisms of generation of spin-galvanic current
should be taken into account.

In [1], it was emphasized that, upon elastic spin-flip
scattering, the current j sc is not spin polarized, because
the hole and the electron generated in the s+ and s–

branches have oppositely directed spins. Although the
real hole in the valence band and the hypothetical hole
in the conduction band for the recombination mecha-
nism also have oppositely directed spins (for the real
hole, this is the angular momentum projection, which
differs in magnitude from the spin of conduction band
electrons), the total current j r can turn out to be spin
polarized. Moreover, the polarization, like the current,
can be opposite in sign.

Therefore, the recombination component of the cur-
rent of the spin-galvanic effect, like the current of the
circular photogalvanic effect, can be considered a
source of the current of spin-polarized charge carriers.
Furthermore, the use of methods based on the recombi-
nation mechanism of the spin-galvanic effect makes it
possible to detect the current of spin-polarized charge
carriers. Indeed, the spin-dependent recombination of
thermalized charge carriers, which leads to the genera-
tion of the current j r (in a gyrotropic medium), is
attended by a circular polarization of recombination
radiation [12]. It is known (see, for example, [13]) that
the measurement of the ellipticity of this radiation is
used in so-called spin LED detectors (spin-polarized
light-emitting diodes) to determine the degree of spin
polarization of electrically injected charge carriers.
However, the use of the purely electrical method (i.e.,
measurement of the current j r) can offer certain advan-
tages over the optical measurement technique. It should
be noted that the aforementioned condition for the most
effective generation of the recombination current (τs @
τr) is consistent with the specific feature of spintronics
according to which the spin relaxation time of charge
carriers should be as long as possible.
YSICS OF THE SOLID STATE      Vol. 46      No. 11      2004
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4. CONCLUSIONS

Thus, a microscopic model was proposed for the
recombination mechanism of spin-galvanic current.
This current arises as a result of the difference between
the rates of spontaneous radiative transitions for charge
carriers with oppositely directed spins under the condi-
tions of a spatially uniform nonequilibrium spin orien-
tation of thermalized carriers. It was shown that the use
of methods based on this mechanism makes it possible
to generate and detect spin-polarized charge carriers.
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Abstract—Dc and ac electrical conductivity of lead molybdate crystals is studied in the temperature range
300–550 K. The electrical conductivity was shown to have electronic (hole) impurity character. The I–V charac-
teristics are typical of a space charge–limited current. The carrier mobility was estimated to be 10–5 cm2 V–1 s–1

at T = 300 K. The results of the study suggest the hopping mechanism of conduction in PbMoO4 crystals.
© 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Lead molybdate crystals have been a subject of
intense research for over three decades. The reason for
this lies in the fact that PbMoO4 crystals possess a com-
bination of physical properties that makes them prom-
ising for use in acoustooptical devices, for instance, in
acoustooptical deflectors and modulators [1]. The
velocities of sound for various types of waves, the
dependence of acoustic losses on frequency, the photo-
elastic constants, and other characteristics listed in [1]
suggest that these crystals can be employed to advan-
tage at ultrasonic frequencies below 500 MHz in the
spectral range 0.45–4 µm. Melt-grown PbMoO4 crys-
tals are most frequently of yellow color because of
absorption in the ~0.45-µm region. The intensity of col-
oring is governed by many factors, such as the actual
oxide ratio in the charge, the gas environment during
the growth, the gas ambient and temperature of anneal-
ing, and impurities. PbMoO4 crystals become colored
under illumination (photochromic effect). Color cen-
ters form and transform under the action of various fac-
tors through charge transport (ions, electrons) and are
related to disordering in the crystal lattice.

The processes occurring in PbMoO4 crystals at high
temperatures have been studied in considerable detail
(see, e.g., [2]). The photochromic effect [3] and photo-
luminescence [4, 5] have attracted great interest. Con-
siderable effort has been devoted to growing perfect
crystals [6–8]. Charge transport has been studied as a
function of temperature, partial oxygen pressure, and
stoichiometry [2]. It has been established that, at low
temperatures, PbMoO4 supports primarily electron
(hole) conduction, but no discussion of the electron
transport mechanisms has been undertaken. We report
here on a study of the dc and ac electrical conductivity
of PbMoO4 crystals at temperatures substantially below
the melting point in order to determine specific features
of the charge transport mechanism.
1063-7834/04/4611- $26.00 © 22012
2. MEASUREMENT TECHNIQUE

The PbMoO4 crystals studied by us were Czochral-
ski-grown in air from OSCh-grade MoO3 and PbO
oxides taken in stoichiometric proportion. The samples
for measurement were plane-parallel, (001)-oriented
plates 0.1-cm thick. Pt electrodes were applied by vac-
uum deposition.

Dc measurements were performed using a voltmeter
and an ammeter in electric fields ranging from 10 V/cm
to 10 kV/cm, and ac measurements were carried out by
the bridge technique in a weak field in the frequency
range ν from 200 Hz to 16 kHz. All measurements were
carried out in the temperature interval 300–550 K.

3. EXPERIMENTAL RESULTS AND DISCUSSION

Figure 1 depicts plots of the electrical conductivity
versus temperature obtained in a weak electric field
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Fig. 1. Temperature dependence of the electrical conductiv-
ity of PbMoO4 crystals: (1, 2) dc measurements (direct and
reverse runs, respectively) and (3, 4) measurements at a fre-
quency of 8 kHz of (3) Reσ and (4) Imσ.
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(curve 1). The dc electrical conductivity σ exhibits the
standard activated behavior with temperature. There are
two temperature regions differing in activation energy:
Ea = 0.38 eV at T < 520 K and Ea = 1.02 eV at T >
520 K. Heating–cooling runs performed within the
temperature interval of the measurements did not affect
the crystal parameters, which is indicated by the coin-
cidence of the σ(T) graphs measured under heating and
cooling (Fig. 1).

Some limited information concerning the electrical
conductivity of lead molybdate can be found in [2, 9].
According to [2], the conduction at temperatures above
800 K is largely ionic, although the authors of the afore-
mentioned work believe that the conductivity is intrin-
sic at these temperatures. At low temperatures (T <
700 K), the ionic component of the current does not
exceed 0.01–0.02% and the activation energy is
0.36 eV. The data from [9] suggest that, within the
range 300–100 K, conduction is also of activated
nature, with an activation energy of 0.24 eV. Photocon-
ductivity was observed in the same temperature inter-
val, which indicates that the conduction is electronic in
character. The band gap in lead molybdate crystals is in
excess of 3 eV; therefore, the conductivity observed in
this work and in [2, 9] is extrinsic. The similarity
between the activation energies obtained in studies of
samples with different impurity concentrations and in
different temperature intervals provides reason to
believe that the electronic character of charge transport
in PbMoO4 is accounted for not by impurities but rather
by native lattice defects.

Figure 1 plots temperature dependences of the real
(Reσ) and imaginary (Imσ) parts of the complex con-
ductivity measured at 8 kHz (curves 3, 4). In the high-
temperature domain, the values of the dc conductivity
σ nearly coincide with those of Re(σ) and their activa-
tion energies are also similar. At lower temperatures,
the activation energy for Re(σ) is slightly lower. Im(σ)
is practically frequency-independent, thus reflecting
the weak temperature dependence of permittivity,
which is determined primarily by ionic displacement
polarization.

The frequency dependences of Re(σ) measured at
different temperatures are displayed in Fig. 2. At low
frequencies, Re(σ) is almost entirely independent of
frequency, while for ν ≥ 1 kHz it can be fitted by the
relation

(1)

where s grows weakly with temperature. The imaginary
part Imσ above 1 kHz can also be fitted by a power-law
dependence on frequency, with an exponent that is
close to unity.

The frequency dependence of complex conductivity
can be determined both by the properties of the material
and by other factors. These include inhomogeneities of
the conductivity over the volume and electrode pro-
cesses. The parts played by these factors can be conve-

σ νs
,∼
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niently estimated by plotting the conductivity measure-
ments in the Z'–Z" plane of complex impedance [10].
Figure 3 displays the dependence of Z" on Z' measured
for PbMoO4 crystals at two temperatures. The Z"(Z')
graphs take the form of circular arcs with the centers
lying below the Z' axis. The dependences thus obtained
suggest that near-contact phenomena and macroscopic
volume inhomogeneities play a negligible role in crys-
tal conductivity. This gives us grounds to maintain that
the observed behavior of Reσ and Imσ is accounted for
by the bulk properties of the crystals.

The conductivity of a material is determined by the
type of charges and their concentration and mobility.
There are efficient methods for determining these
parameters in classical semiconductors. These methods
are inapplicable to complex oxides (to which PbMoO4
belongs), because they have a high electrical resistivity
and a low charge mobility. To estimate the transport
parameters, we used the method of space charge–lim-
ited currents (SCLC) [11]. The I–V characteristics of
PbMoO4 obtained at different temperatures are typical
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conductivity of PbMoO4 crystals obtained at different tem-
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of SCLC in insulators containing traps. The carrier mobil-
ity extracted from these I–V curves is ~10–5 cm2 V–1 s–1 at
T = 300 K. The mobility grows exponentially with
increasing temperature. Estimation of the carrier con-
centration yields 1012 cm–3. The low carrier mobility
and its exponential growth with temperature are charac-
teristic of the hopping mechanism of conduction.

The problem of hopping conduction in disordered
systems is treated in a number of papers in the cluster
approximation (see, e.g., [12, 13]). In this model, clus-
ters are approximated by variable-length chains con-
necting accessible carrier positions. Carrier motion
within a cluster occurs by activated hopping with an
activation energy E3. The electrical resistivity decreases
exponentially with increasing chain length. This cluster
model was invoked to determine the form of the fre-
quency dependence of complex conductivity. It was
found in [12] that, in different frequency intervals, the
conductivity is determined by clusters of different
length. In particular, at very low frequencies, transport
occurs over clusters comparable in size to the sample.
At higher frequencies, transport takes place over clus-
ters of a finite size. In this frequency range, the expo-
nent s in Eq. (1) grows slowly with increasing fre-
quency at constant temperature but remains less than
unity. It was demonstrated that the temperature depen-
dence of conductivity of PbMoO4 crystals has an acti-
vated character and that its variation with frequency
implies the hopping mechanism of carrier transport
along finite clusters. Clusters in PbMoO4 can have the
form of agglomerates of native point defects.

Lattice defects in PbMoO4 have aroused particular
interest [2, 14] in connection with the nature of their
coloring and luminescence [4]. Data obtained on the
self-diffusion of Mo ions indicate that defect agglomer-
ates are likely to exist [2]. Such agglomerates may be a
pair of vacancies on the molybdenum and oxygen sub-
lattices, lead with a valence greater than two, and
trapped electrons, as well as extended defects. The elec-
tronic states of these defects have not been studied.
According to [9], however, the optical absorption spec-
trum is strongly broadened near the absorption edge
and varies substantially with temperature in accordance
with Urbach’s rule. Rather than being determined by
PH
impurities, these electronic states are related primarily
to native lattice defects, because the absorption spec-
trum of PbMoO4 depends noticeably on crystal anneal-
ing [3].

4. CONCLUSIONS

Thus, the results obtained in our study of the tem-
perature and frequency dependences of electrical con-
ductivity in PbMoO4 crystals can be qualitatively
described by multiple jumps of carriers over finite clus-
ters, which are probably defect agglomerates.
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Abstract—The temperature dependences of the thermal conductivity are calculated for solid SF6 and Xe. The
influence of thermal pressure in a crystal on the isochoric thermal conductivity is investigated. The contribu-
tions of the phonon–phonon and phonon–rotation interactions to the total thermal resistance of solid SF6 are
calculated using a modified method of reduced coordinates. The temperature dependence of the isochoric ther-
mal conductivity of SF6 is explained by a combined effect of thermal pressure and phonon–rotation interaction.
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1. INTRODUCTION

At present, there are many works concerned with the
thermal properties of rare-gas crystals [1–4]. The ther-
mal properties of molecular crystals have not been ade-
quately investigated to date. However, molecular crys-
tals are of considerable research interest, because they
are characterized by different types of thermal molecu-
lar motion, which, in many cases, can have a substantial
effect on the temperature dependence of the thermal
conductivity. Additional mechanisms that, in principle,
can affect the thermal conductivity are associated with
the processes of orientational disordering and intramo-
lecular vibrations. However, the frequencies of
intramolecular vibrations in the majority of molecular
crystals are sufficiently high. Consequently, this type of
thermal motion does not significantly affect the heat
transfer in solid phases.

It should be noted that, in an equilibrium state, no
phase transformations are revealed in classical atomic
crystals with central interactions. By contrast, the
majority of molecular crystals can have several solid
phases [5] that substantially differ in terms of the char-
acter of orientational disordering. At temperatures
above the Debye temperature, the heat transfer in sim-
ple molecular crystals is governed, to a great extent, not
only by translational motion but also by rotational
motion of molecules at lattice sites [5]. The contribu-
tion from rotational molecular motion to the heat trans-
fer is insignificant, whereas the contribution from
phonon scattering by rotational excitations of mole-
cules can be of the order of the contribution from
phonon–phonon scattering. However, up to now, there
has not been a practically applicable consistent micro-
scopic theory that would adequately describe the influ-
ence of the above factors on the thermal properties of
molecular crystals. The development of such a theory is
a fairly complex problem. This is primarily due to a
large number of elementary excitations existing at high
temperatures, which extremely complicates micro-
1063-7834/04/4611- $26.00 © 22015
scopic analysis. Therefore, the initial problem, as
always, consists in accumulating reliable data over a
wide range of temperatures for crystals with different
symmetries. This will make it possible to investigate
different types of molecular motion in order to separate
the contributions of the aforementioned factors and to
establish their correlation with thermodynamic param-
eters of the studied materials.

2. THE OBJECT OF INVESTIGATION

Sulfur hexafluoride SF6 was chosen as the object of
our investigation. This compound is frequently
assigned to materials with plastic crystalline phases.
However, the nature of orientational disordering in the
high-temperature phase of SF6 somewhat differs from
that in plastic phases of other molecular crystals in
which the symmetries of the molecules and environ-
ment do not coincide with each other. As a rule, in crys-
tals formed by molecules with orientational freedom,
there exist a number of possible molecular orientations
and the molecules can execute a reorientational motion.
In some cases, this reorientational motion can trans-
form into continuous rotation. In general, an increase in
the rotational mobility of molecules is associated with
the phase transition. The presence or absence of the
phase transition depends on whether the possible orien-
tations of molecules can be distinguished in the lattice.

For solid sulfur hexafluoride SF6, the high-tempera-
ture β phase is observed over an unusually wide range
of temperatures. The crystallization temperature of SF6
is equal to 222.4 K, whereas the phase transition
accompanied by a reduction of the symmetry of the
translational and orientational subsystems in the crystal
occurs only at 94.3 K [6, 7]. In this temperature range,
molecules of solid SF6 have octahedral symmetry. The
Debye characteristic temperature θD = 62 K is consid-
erably lower than the temperature of the phase transi-
tion to the plastic phase [8]. According to [9, 10], the
004 MAIK “Nauka/Interperiodica”
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symmetry of the crystal is reduced to trigonal at tem-
peratures below the phase transition point and then to
monoclinic or even triclinic at T < 50 K. Structural
investigations revealed that the high-temperature phase
of SF6 has a body-centered cubic structure with space
symmetry Im3m and that the S–F bonds at temperatures
in the vicinity of the phase transition temperature are
oriented along the principal directions of the lattice
[10–12].

In cubic crystals of the AX6 type, the symmetries of
individual molecules and their lattice sites are identical
and the plastic properties manifest themselves due to
the quasi-sphericity of molecules that execute large-
amplitude librations and reorientations [13, 14].
According to Dove and Pawley [15], the interaction
between the nearest neighbors in the body-centered
cubic phase of SF6 favors the ordering of S–F bonds in
molecules along the {100} planes, whereas the repul-
sion dominates in the interaction with the next-to-near-
est neighbors (between fluorine atoms). Therefore, the
noncentral interaction in SF6 encourages orientational
ordering in the first coordination sphere and orienta-
tional disordering in the second coordination sphere
[11]. This character of the interaction with an increase
in the temperature leads to a considerable increase in
the libration amplitude and facilitates the molecular
reorientation [8, 11, 16, 17].

The analysis of the experimental data [8] demon-
strated that SF6 is characterized by a strong orienta-
tional order at temperatures immediately above the
phase transition point. This distinguishes SF6 among
the other plastic crystals (such as CH4, CCl4, adaman-
tane, etc.) in which the long-range orientational order is
disturbed immediately after the phase transition [18].
X-ray diffraction investigations revealed that the inten-
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sities of particular reflections, especially of the {h00}
and {hk0} types, begin to decrease and approach the
values calculated within the model of orientational dis-
ordering of molecules only at temperatures above
150 K. A decrease in the intensity of the x-ray reflec-
tions indicates that the orientational disorder becomes
more pronounced. This increase in the degree of orien-
tational disordering with an increase in the temperature
does not result from a simple increase in the libration
amplitude but is associated with the dynamic reorienta-
tions, which are assisted by the frustration of the inter-
molecular interaction [8, 15, 16, 19]. It is of interest that
the experimental data on neutron scattering in SF6 at
premelting temperatures indicate the absence of collec-
tive excitations [11, 12]. From the aforesaid, it is clear
that SF6 is a convenient material for analyzing the
dependence of the thermal properties of a single-phase
system on the rotational state of molecules in a wide
range from almost complete orientational order to vir-
tually free rotational motion.

To date, the isobaric thermal conductivity of solid
SF6 has been experimentally studied over the entire
temperature range of existence of the high-temperature
phase [20] and the isochoric thermal conductivity has
been directly investigated at premelting temperatures
[17]. The obtained data on the thermal conductivity of
equilibrium samples of solid SF6 are presented in
Fig. 1.

3. RESULTS AND DISCUSSION

The isobaric thermal conductivity λp (Fig. 1, solid
line) decreases with an increase in the temperature as
λp ~ T–1.35. The isochoric thermal conductivities λV at
given temperatures were obtained by recalculating the
experimental data on the isobaric thermal conductivity
for a constant volume Vmol = 58.25 cm3/mol, which is
occupied by the samples immediately above the phase
transition temperature. The calculations were per-
formed according to the formula [1]

(1)

where Vm(T) is the molar volume of the free sample as
a function of temperature, Vm0 is the molar volume of
the sample for which the recalculation is carried out,
and g = –(∂lnλ/∂lnV)T is the Bridgman coefficient
taken equal to 5.2 [17]. As the temperature increases,
the isochoric thermal conductivity λV of solid SF6
(Fig. 1) initially decreases, passes through a flattened
minimum, and then increases. This behavior is incon-
sistent with the theoretical predictions according to
which the thermal conductivity in the given tempera-
ture range should decrease as 1/T. In our earlier work
[21], such an increase in the thermal conductivity of
solid SF6 was explained by the defreezing of molecular

λV λ p

Vm T( )
Vm0

--------------- 
 

g

,=
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motion, which results in a weakening of libron scatter-
ing.

It is important that the temperature dependence of
the isochoric thermal conductivity for rare-gas crystals
[1] (in which rotational degrees of freedom are absent)
and some molecular crystals that consist of strongly
asymmetric molecules and retain orientational ordering
up to the melting temperature [22, 23] is also weaker
than 1/T. This indicates that the deviation from the law
1/T cannot be explained by the influence of the
phonon–rotation interaction alone.

In the isochoric experiments performed upon heat-
ing, the measuring cell, which is only slightly suscepti-
ble to thermal expansion, prevents thermal expansion
of the studied sample; as a result, the thermal pressure
increases in the crystal structure [1, 17, 22]. This can
lead to an additional increase in the isochoric thermal
conductivity as compared to that predicted by the
dependence λ(1/T).

The isochoric thermal conductivity with due regard
for the thermal pressure can be calculated using the
standard gas-kinetic relationship

(2)

where CV is the isochoric heat capacity, v  is the velocity
of sound, and l is the mean free path. In isochoric inves-
tigations, a crystal sample upon heating experiences an
increasing pressure produced by a measuring cell that is
only slightly susceptible to thermal expansion. This
process is similar to uniform compression with nega-
tive sign, because the thermal pressure is associated
with the thermal expansion of the studied sample. Upon
uniform compression, the same pressure directed nor-
mally to the surface acts on each unit area of a polycrys-
tal. This completely corresponds to the conditions aris-
ing in isochoric experiments.

The temperature dependences of the thermal pres-
sure (Fig. 2) in SF6 solid samples with the given con-
stant molar volumes were calculated from the relation-
ship [24]

(3)

The molar volumes Vmol, the temperature dependences
of the Grüneisen coefficient γ, and the isochoric heat
capacities CV were taken from [8].

It can be seen from Fig. 2 that the thermal pressure
in the isochoric sample changes by more than two
orders of magnitude in the temperature range under
investigation. The molar volumes of the samples
depend on their growth temperature. The results of cal-
culations are in good agreement with the data obtained
from direct measurements of the thermal pressure in
solid SF6 [17] for samples with a molar volume Vmol =
62.2 cm3/mol (Fig. 2, solid line 1).

λ 1/3 CVv l( ),=

∂P
∂T
------ 

 
V

γCV

Vmol
----------.=
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As follows from the theory [25], the phonon veloc-
ity in dielectric crystals under isochoric conditions is
virtually independent of temperature and is equal to the
mean velocity of sound. Unfortunately, no experimen-
tal data on the velocity of sound in solid SF6 under iso-
choric conditions are available in the literature. In this
respect, the isochoric phonon velocity was calculated
from the data on the thermal pressure (Fig. 2) and the

thermal expansion [8]. The diagonal elements  and

 of the stress tensor for free samples of solid SF6

(necessary for evaluating the effect of the thermal pres-
sure on the phonon velocity under isochoric conditions)
were calculated from the expressions [26]

(4)

where  and  are the longitudinal and transverse
phonon velocities for free samples, respectively, and
ρ is their density [8].

It is known [26] that, upon uniform compression,
the stress tensor is uniquely determined by the diagonal
elements and is related to the strain tensor through the

expression Cii = 3Kuii, where K = –  is the com-

pressibility factor. The diagonal elements of the strain
tensor were calculated according to the data taken from

[8]. The dependence  was obtained using the

data on the thermal pressure (Fig. 2) and the molar vol-

ume [8]. The diagonal elements  and  of the
stress tensor (determined with allowance made for the
thermal pressure) were used to calculate the tempera-
ture dependences of the longitudinal and transverse
phonon velocities under isochoric conditions from
expressions (4).
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Fig. 2. Calculated temperature dependences of the thermal
pressure for solid SF6 (dashed lines). Solid line 1 shows the
experimental data taken from [17] for samples with the
molar volume Vmol = 62.2 cm3/mol.
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The mean (according to Debye) isochoric phonon
velocity vV (Fig. 3) at a specified temperature was com-
puted from the relationship

(5)

where  and  are the longitudinal and transverse
phonon velocities in the crystal under isochoric condi-
tions. The temperature dependence of the mean free
path was determined from the experimental data on the
isochoric thermal conductivity (corresponding to the
beginning of the fulfillment of the isochoric conditions)
under the assumption that the thermal conductivity in
the temperature range T > θD is inversely proportional
to the temperature. Finally, the temperature dependence
of the thermal conductivity λ (Fig. 1, dashed line) with
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Fig. 3. Temperature dependences of the isobaric vp [8] and
isochoric vV velocities of sound in solid SF6.
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Fig. 4. Temperature dependences of the isochoric λV and
isobaric λp thermal conductivities of solid Xe. Symbols
indicate experimental data on the isobaric thermal conduc-
tivity [28] and the isochoric thermal conductivities calcu-
lated from formula (1). The solid line shows the smoothed
experimental dependence. The dashed line represents the
temperature dependence of the thermal conductivity λ cal-
culated from formula (2) for solid Xe. Line 1 corresponds to
the data obtained in direct investigations of the isochoric
thermal conductivity of solid Xe [1] for samples with the
molar volume Vmol = 37.4 cm3/mol.
PH
due regard for the effect of the thermal pressure was
obtained from formula (2) using the calculated data on
the isochoric phonon velocity and the mean free path
and also the isochoric heat capacities taken from [8].

It should be noted that, in this work, we extended the
field of application of formula (2) and used it for calcu-
lating the thermal conductivity of molecular crystals,
even though this formula within the traditional theory is
used only to calculate the lattice thermal conductivity
[25]. The curve calculated without fitting parameters
(Fig. 1) adequately describes the behavior of the tem-
perature dependence of the isochoric thermal conduc-
tivity λV and agrees with the results of direct investiga-
tions into the isochoric thermal conductivity [17] (mak-
ing allowance for different molar volumes of the
studied samples). In our case, CV is the volume isoch-
oric heat capacity of the system and contains the fol-
lowing components under the additivity condition:

(6)

where Ctr is the translational heat capacity, Crot is the
rotational heat capacity, and Cin is the intramolecular
heat capacity. However, separating these contributions
is quite problematic [5].

The analysis of the obtained results on the basis of
the relationship λ = 1/3(CVv l) shows that, at v  = const
and l ~ 1/T, the increase in the thermal conductivity at
premelting temperatures is caused by the increase in the
heat capacity CV. The lattice heat capacity in the given
temperature range (T > θD) obeys the Dulong–Petit law,
and the frequencies of intramolecular vibrations are so
high that the interaction of phonons with these excita-
tions of the crystal lattice does not satisfy the law of
conservation of energy. Therefore, we can assume that
the decisive factor responsible for the anomalous
behavior of the isochoric thermal conductivity is the
phonon–rotation interaction. This inference is consis-
tent with the results obtained in our previous work [27],
in which the increase in the isochoric thermal conduc-
tivity of solid SF6 was explained by the decrease in the
contribution of phonon scattering from rotational exci-
tations of the crystal lattice. Moreover, this is also con-
firmed by the results of the calculations performed in
[8], according to which the rotational heat capacity var-
ies significantly with a variation in the temperature.

Of particular interest is a comparison of the results
obtained with the calculated data for atomic crystals,
because there are no orientational excitations of their
crystal lattices and this factor does not affect the behav-
ior of the isochoric thermal conductivity. Solid xenon,
whose mass is closest to the mass of the SF6 molecule,
was chosen for comparison. The results of the calcula-
tions carried out with the use of the data taken from
[28–30] are presented in Fig. 4. It can be seen from
Fig. 4 that the results obtained taking into account the
influence of the thermal pressure fit the experimental
dependence well and the maximum differences do not
exceed 5%. This explains why the temperature depen-

CV Ctr Crot Cin,+ +=
YSICS OF THE SOLID STATE      Vol. 46      No. 11      2004
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dence of the isochoric thermal conductivity for solid
xenon deviates from the law 1/T. It is quite reasonable
to assume that similar deviations (caused by the ther-
mal pressure) should also be observed for molecular
crystals.

However, this circumstance does not allow us to
explain the increase in the isochoric thermal conductiv-
ity of solid SF6 at premelting temperatures. In order to
elucidate the origin of the increase in the isochoric ther-
mal conductivity, we separate the contributions of the
phonon–phonon and phonon–rotation interactions to
the total thermal resistance of solid SF6. It is assumed
that the heat is predominantly transferred by transla-
tional vibrations regardless of the orientational order-
ing. The role of librations in the heat transfer is insig-
nificant due to the low group velocity of librons,
whereas the contribution from phonon scattering by
rotational excitations of the crystal lattice can be of the
order of the contribution from phonon–phonon scatter-
ing. Under the assumption that the contributions of the
phonon–phonon Wpp and phonon–rotation Wpr interac-
tions to the total thermal resistance 1/λ = W are addi-
tive, we separate out the phonon–rotation contribution.
The calculations are performed by the modified method
of reduced coordinates [27]. It should be emphasized
that, in this case, there is no need to invoke a particular
approximate model of heat transfer. By assuming that,
in the reduced coordinates (W* = W/Wmol, T* = T/Tmol),
the thermal resistance associated with the phonon–
phonon scattering Wpp is identical to that of solidified
rare gases, we can separate out the phonon–rotation
contribution Wpr to the thermal resistance of solid SF6
at equal reduced volumes V* = V/Vmol.

As a rule, the quantities Tmol = ε/kB, λmol =

kB/σ2 , and Vmol = Nσ3 are used as reduced param-
eters. Here, σ and ε are the parameters of the Lennard-
Jones potential, µ is the molar weight, and N is the
Avogadro number. The temperatures Tcr and the molar
volumes Vcr for SF6 and solidified rare gas xenon Xe at
the critical points [1, 8, 17, 31] were chosen as the
reduced parameters Tmol and Vmol. The choice of these
coordinates is motivated by the fact that, for simple
molecular compounds, the critical parameters Tcr and
Vcr are proportional to ε and σ3, respectively. However,
the accuracy in the determination of the critical param-
eters is considerably higher than that of the parameters
of the binomial potential. Note also that the values of σ
and ε depend significantly on the choice of the binomial
potential and the method of its determination.

The results of the calculations are presented in
Fig. 5. It is interesting to note that the phonon–phonon
component of the thermal resistance is virtually inde-
pendent (within 2–3%) of the choice of the particular
rare gas for comparison. An increase in the temperature
initially leads to a slow increase in the thermal resis-
tance component corresponding to the rotational
degrees of freedom of molecules in solid SF6. This

ε/µ
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behavior of the thermal conductivity can be explained
by the increase in the contribution of phonon scattering
from collective rotational excitations, whose density
increases with an increase in the temperature. This
agrees well with the data obtained in [8] on a rather
strong orientational order in solid SF6 at temperatures
close to the phase transition point but contradicts the
results of inelastic neutron scattering measurements
and molecular dynamics calculations [14, 15]. The
phonon–rotation contribution to the thermal resistance
passes through a maximum at approximately 170 K and
begins to decrease. This is in agreement with the data
obtained by Isakina and Prokhvatilov [8], according to
which the orientational disordering in the crystalline β
phase of SF6 becomes more pronounced at tempera-
tures above 150 K.

Note also that the temperature dependence of the
phonon–rotation contribution to the thermal resistance
of solid SF6 is similar to the dependence observed for
the low-temperature phase of solid CCl4 [32]. Hence, it
follows that, as for solid CCl4, the observed increase in
the isochoric thermal conductivity can be explained by
the decrease in the contribution of phonon scattering
from collective orientational excitations of SF6 mole-
cules upon defreezing of their rotational motion. The
additional contribution due to the rotational degrees of
freedom to the thermal resistance is approximately
equal to 30% of the phonon–phonon component.
According to the Brillouin scattering data [16], the
translation–rotation coupling in solid SF6 is weaker
than that in solid methane and other cubic crystals.
Thus, the data obtained on the isochoric thermal con-
ductivity in the high-temperature β phase of solid SF6

can be explained by the combined effect of the thermal
pressure and the phonon–rotation interaction on the
heat transfer processes.
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Fig. 5. Contributions of the phonon–phonon Wpp and
phonon–rotation Wpr interactions to the total thermal resis-
tance W of solid SF6 in the framework of the additive
model.
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Abstract—The ability of intrinsic defects in SiO2 to capture electrons and holes is investigated by quantum-
chemical methods. It is established that a twofold-coordinated silicon atom with two unpaired electrons,
namely, the silylene center = , and a silicon–silicon bond, namely, the oxygen vacancy ≡Si–Si≡, are electron–
hole traps in SiO2. The properties of a defect in the form of an associate of the two above centers are studied.
It is shown that this defect can capture electrons and holes; i.e., it is an amphoteric defect in SiO2. The optical
absorption spectrum of the studied associate virtually coincides with that of the oxy radical (≡Si– ) in silicon
dioxide. © 2004 MAIK “Nauka/Interperiodica”.
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1. INTRODUCTION

Amorphous SiO2 and Si3N4 have been widely used
as materials for modern semiconductor electronic
devices. In this respect, it is important to elucidate the
influence of external factors on the physical character-
istics of dielectrics. In particular, dielectric materials
subjected to strong electric fields (up to 108 V/m) or
exposed to ionizing radiation and high temperatures
undergo structural transformations with the formation
of defect centers, such as electron and hole traps. Elec-
tric charges induced in a dielectric material or at an
Si−SiO2 interface can bring about a shift in the thresh-
old voltage of metal–insulator–semiconductor transis-
tors, parasitic leakage in p–n junctions, and a decrease
in the gain of bipolar transistors. For silicon devices at
a standard supply voltage U = 3 V, the field strength in
the dielectric is approximately equal to 108 V/m and the
mean field strength in the channel amounts to 1–5 ×
106 V/m. In such strong fields, the following phenom-
ena can be observed in a dielectric material: (i) elec-
trons and holes can be injected from contacts, (ii) sur-
face states can be generated, and (iii) injected charge
carriers can be trapped by deep-level centers.

A large number of theoretical and experimental
works have been devoted to the identification and inves-
tigation of defects in SiO2. In the present work, we stud-
ied two intrinsic defects in SiO2, namely, the silylene

center =  and the oxygen vacancy ≡Si–Si≡. Hereaf-
ter, the symbols (–), (:), and (·) denote a chemical bond,
a lone electron pair, and an unpaired electron, respec-

Si..
1063-7834/04/4611- $26.00 © 22021
tively. For convenience, we introduce the following
designations: S is a silylene center, V is an oxygen
vacancy, and VS is an associate formed by a silylene
center and an oxygen vacancy. Earlier [1–3], it was
shown that the Si–Si bond can capture a hole. A similar
inference regarding the S center was made in [4, 5]. The
purpose of this work was, first, to refine the results
obtained in our previous studies of the V and S centers
and, second, to elucidate how direct contact between
these defects affects their parameters, i.e., to investigate
the electronic structure and optical properties of the VS
center. This center is an oxygen vacancy in which one
of the two silicon atoms is coordinated by the other sil-
icon atom and by one oxygen atom. The structural for-
mula of this defect has the form –Si:–Si≡.

2. COMPUTATIONAL TECHNIQUE

We carried out ab initio calculations in the frame-
work of the density-functional theory according to the
Gaussian98 program package. All the calculations were
performed in the cluster approximation with the use of
two variants of the cluster model. This made it possible
to investigate the properties of defects located both in
the bulk of the dielectric material and near the surface.
In order to simulate the bulk of SiO2 and bulk defects,
we used fragments of crystalline α-quartz. Dangling
bonds at the cluster boundary were saturated with
hydrogen atoms whose positions were fixed in the
course of the geometric optimization (search for the
minimum in the hypersurface of the total electronic
energy of the system). The bulk oxygen vacancy was
004 MAIK “Nauka/Interperiodica”
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simulated by the Si2O6H6 [Si2O7H6] clusters (Fig. 1a)
(hereafter, the corresponding models of the regular
structures are given in square brackets). The silylene
center was simulated using the Si(OH)2 [Si(OH)4] and
Si3O8H6 [Si5O16H12] clusters (Figs. 2a, 2b). When sim-
ulating the surface defects, we used the Si4O3H8

[Si4O4H8] and Si8O13H8 [Si8O14H8] clusters for the oxy-
gen vacancy (Figs. 1b, 1c) and the Si4O4H6 [Si4O4H8]
clusters for the silylene center (Fig. 2b). These clusters
consisted of one or several closed rings. Such structures
enabled us to arrange the defect centers on the “sur-
face” of the cluster model. The sole exception is the
bulk silylene center, whose geometry makes it impossi-
ble to construct a cluster in which a defect can be posi-
tioned at the center of a regular coordination sphere (in
accordance with the geometry of crystalline α-quartz).
However, it should be remembered that the method
used for determining the energy gain due to capture of
charge carriers by a defect involves calculation of the
total energy of two structures, namely, a regular struc-
ture (which either has the geometry of α-quartz in the
case of bulk defects or contains closed rings formed by
≡Si–O–Si≡ fragments in the case of surface defects)
and the corresponding defect-containing structure in
different charge states. For this reason, as was noted
above, we used fragments of crystalline α-quartz,
namely, the Si(OH)4 and Si5O16H12 clusters, as models

(a)

(b)

(c)

Si
O
H

Fig. 1. Cluster models of an oxygen vacancy in SiO2:
(a) Si2O6H6 [Si2O7H6], (b) Si4O3H8 [Si4O4H8], and
(c) Si8O13H8 [Si8O14H8]. The corresponding model of the
regular structure is given in brackets to the right of the struc-
ture containing the defect (indicated by an arrow).
PHY
of regular structures for studying the bulk silylene cen-
ter. In the clusters simulating surface defects, the posi-
tions of the hydrogen atoms were not fixed.

The Kohn–Sham molecular orbitals were con-
structed using the split-valence (double-zeta) basis set
augmented with 3d polarization functions (the standard
6–31G* basis set) for all the silicon atoms. The posi-
tions of all the Si and O atoms were optimized with the
B3LYP gradient-corrected exchange–correlation func-
tional [6, 7].

The energy gain due to capture of charge carriers (an
electron and a hole) by a defect was determined from
the following relationships:

(1)

(2)

Here, , , and  are the energies of the
neutral, negatively charged, and positively charged
clusters simulating the bulk of the dielectric, respec-

tively; and , , and  are the energies of the
neutral, negatively charged, and positively charged
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Fig. 2. Cluster models of a silylene center in SiO2:
(a) Si(OH)2 [Si(OH)4], (b) Si3O8H6 [Si5O16H12], and
(c) Si4O4H6 [Si4O4H8]. The corresponding model of the
regular structure is given in brackets to the right of the struc-
ture containing the defect (indicated by an arrow).
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clusters simulating the defect, respectively. An electron
(hole) is captured when the quantity ∆Ee (∆Eh) is neg-
ative in sign.

3. RESULTS AND DISCUSSION

The results of our calculations are presented in Table 1.
It was assumed that the silylene center can exist in two
states in which the total spin of the electronic system is
equal to zero (singlet state) and unity (triplet state). The
triplet state is an excited state, and the excitation energy
is equal to 2.97 eV. The two possible paths of the reac-
tion =  + e  =  are shown in Fig. 3. A similar
situation occurs with the capture of a hole.

From analyzing the results presented in Table 1, we
can make the inference that the quantities ∆Ee and ∆Eh

characterizing the energy location of the electron and
hole traps do not depend on the location of defects with
respect to the cluster boundaries (for bulk and surface
defects, the values of ∆Ee and ∆Eh are nearly identical).

In order to investigate the properties of the VS
defect, which is an associate formed by an oxygen
vacancy V and a silylene center S, we used the Si4O3H6
[Si4O4H8] and Si3O7H6 [Si5O16H12] cluster models for
the surface and bulk defects, respectively (Figs. 4a, 4b).
As in the case of the S center, the calculations were per-
formed for the triplet and singlet states. It was found
that the energy of the singlet state of the defect is 1 eV
less than the energy of the triplet state. The calculated

Si.. Si.

–

–

(I)

(II)

∆Ee

(II) 2.97 eV

s

t

Fig. 3. Schematic diagram of the electronic structure of a
=Si: defect in SiO2. Designations: s is the ground (singlet)
state of the silylene center, and t is the excited (triplet) state.
Solid arrows indicate the possible paths of the reaction
=Si: + e  =Si: (I) capture of an electron in the ground
state of the defect with a decrease in the energy of the sys-
tem by 1.16 eV and (II) excitation of the defect (Eex =
2.97 eV) with subsequent capture of an electron and a
decrease in the energy of the system by 4.05 eV.
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energy gains due to the capture of an electron and a hole
are listed in Table 2.

The Si–Si bond length in the neutral Si4O3H8 cluster
is equal to 2.37 Å. The capture of an electron does not
lead to considerable structural distortions, whereas the
capture of a hole results in an increase in the length of
the Si–Si bond to 2.61 Å. A somewhat different situa-
tion arises with the Si8O13H8 and Si2O6H6 clusters. The
capture of an electron leads to an increase in the Si–Si
bond length from 2.33 to 2.48 Å in the Si8O13H8 cluster

Table 1.  Energy gains due to capture of an electron (∆Ee)
and a hole (∆Eh) by an oxygen vacancy and a silylene center
in SiO2 according to calculations from formulas (1) and (2)

Defect Cluster ∆Ee (eV) ∆Eh (eV)

V Si4O3H8 [Si4O4H8] –0.63 –0.98

Si8O13H8 [Si8O14H8] –0.61 –0.95

Si2O6H6 [Si2O7H6] –0.59 –0.97

S Si4O4H6 [Si4O4H8] –1.16(s) –1.12(s)

–4.05(t) –4.1(t)

Si(OH)2 [Si(OH)4] –1.45(s) –1.62(s)

–4.2(t) –4.3(t)

Si3O8H6 [Si5O16H12] –1.19(s) –1.35(s)

Note: (s) and (t) stand for the singlet and triplet states of the
silylene center, respectively. The models of bulk defects are
marked with bold type.

(a)

(b)

Si2

Si1

Si2
Si1

Si
O
H

Fig. 4. Cluster models of a VS defect (an associate formed
by an oxygen vacancy and a silylene center) in SiO2:
(a) Si3O7H6 [Si5O16H12] and (b) Si14O3H6 [Si4O4H8]. The
corresponding model of the regular structure is given in
brackets to the right of the structure containing the defect.
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and from 2.48 to 3.00 Å in the Si2O6H6 cluster. The cap-
ture of a hole also results in an increase in the Si–Si
bond length from 2.33 to 2.58 Å in the Si8O13H8 cluster
and from 2.48 to 2.90 Å in the Si2O6H6 cluster. The
attractive forces between the silicon atom of the defect
and the oxygen atoms of the nearest environment and
an increase in the repulsive force (in the case of the hole
capture) between the silicon atoms can lead to an
increase in the length or even to the breaking of the Si–
Si bond with the formation of a positively charged E'
center [2, 3]. However, in the framework of our model,
we can only be sure that the Si–Si bond length increases
by ~12% of the initial length in the case of the hole cap-
ture and by ~5% of the initial length for the electron
capture. For both defects, the spin density distribution
is symmetric with respect to the plane perpendicular to
the Si–Si bond and, hence, there are no grounds to
believe that the Si–Si bond is broken.

Table 2.  Energy gains due to capture of an electron (∆Ee)
and a hole (∆Eh) by a VS defect (an associate formed by an
oxygen vacancy and a silylene center) in SiO2 according to
calculations from formulas (1) and (2)

Defect Cluster ∆Ee (eV) ∆Eh (eV)

VS Si4O3H6 [Si4O4H8] –2.16(s) –2.39(s)

–3.24(t) –3.3(t)

Si3O7H6 [Si5O16H12] –2.15(s) –2.37(s)

Table 3.  Energies Tex of optical transitions for an oxygen
vacancy V, a silylene center S, and an associate VS according
to the TD–DFT (B3LYP/6–31G*) calculations

Defect Cluster Transition Tex (eV) f

V Si2O6H6 S0  S1 7.04 0.1

S0  S2 7.11 0.13

S0  T1 5.1 0.0

Si8O13H8 S0  S1 7.17 0.06

S0  S2 7.6 0.0006

S0  T1 5.3 0.0

S Si3O8H6 S0  S1 4.86 0.1

S0  S2 5.66 0.003

S0  T1 3.0 0.0

Si4O4H6 S0  S1 5.19 0.1

S0  S2 6.04 0.005

S0  T1 2.9 0.0

VS Si3O7H6 S0  S1 1.7 0.002

S0  S2 4.2 0.01

Si4O4H6 S0  S1 2.02 0.003

S0  S2 4.16 0.02

S0  T1 1.0 0.0
PH
In the neutral Si4O3H6 cluster simulating the VS sur-
face defect, the Si–Si bond length is equal to 2.46 Å.
Structural relaxation due to the capture of an electron or
a hole is insignificant. The Si–Si bond lengths in the
Si4O3H6 cluster upon capture of an electron and a hole
are equal to 2.41 and 2.56 Å, respectively. The behavior
of the bulk defect does not differ radically from that of
the surface defect. However, it should be noted that the
spin density distribution is nonsymmetric for the bulk
defect. In particular, the spin density in the Si4O3H6
cluster is approximately equal to 0.86 at the Si1 atom
and 0.1 at the Si2 atom for the electron capture and 0.52
at the Si1 atom and 0.3 at the Si2 atom for the hole cap-
ture. Therefore, the captured charge carrier is predomi-
nantly localized at the silylene center of the associate.

The optical properties of the defects, namely, the
energies and intensities of the electron transitions, were
calculated in the framework of the time-dependent den-
sity functional response theory (TD–DFT). This
approach offers new possibilities for investigating the
properties of excited states of defects in dielectric mate-
rials. Although the TD–DFT method was devised rather
recently, it has managed to show good performance in
the study of the optical properties of point defects in
SiO2 [8]. The energies of optical transitions were calcu-
lated in the adiabatic approximation; i.e., upon excita-
tion of the electronic system, the geometric parameters
of the cluster models remained unchanged. For each of
the three defects (S, V, or VS), we calculated the excita-
tion energies Tex and the oscillator strengths f for the
two lowest singlet  singlet transitions (S0  S1
and S0  S2) and one singlet  triplet transition
(S0  T1). The results of the calculations are given in
Table 3. It can be seen from the data presented in Table 3
that the calculated energy of the S0  S1 transition for
the oxygen vacancy almost coincides with the experi-
mental value (7.6 eV) [9]. It should be noted that the
augmentation of the basis set with s and p polarization
functions, i.e., the use of the standard 6–31G* basis set
in the quantum-chemical calculations (which we per-
formed only for the oxygen vacancy), leads to slightly
underestimated energies of the optical transitions as
compared to the experimental values. For example, we
obtained the excitation energy Tex = 6.57 eV (f = 0.2)
for the S0  S1 transition. This discrepancy suggests
that the inclusion of the polarization functions in the
basis set used in calculating the optical absorption spec-
trum of oxygen-deficient defects is not necessary and,
in some cases, is even deleterious. The data calculated
for the silylene center are in reasonable agreement with
the results obtained in [8, 10, 11]. The optical absorp-
tion spectrum of the VS defect is of particular interest
because the energy of the S0  S1 transition coincides
with the energy of the D0  D2 (doublet  doublet)
transition for another intrinsic defect in SiO2, namely,
the ≡Si–  oxy radical (f ~ 0 for the D0  D1 transi-
tion), whose optical spectrum has been repeatedly
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investigated theoretically [8, 12] and experimentally
[13, 14]. Therefore, although this coincidence, in our
opinion, is accidental, it indicates that the identification
of defects only on the basis of the optical absorption
spectra can be problematic.

In an earlier work [4], we noted that the method for
calculating the energy gain upon interaction of defects
with charge carriers on the basis of formulas (1) and (2)
disregards the long-range Coulomb polarization
induced in the lattice by a charged defect. However, the
correction to the energy gain for lattice polarization can
be estimated in the framework of the classical Born
model [15]. For the cluster models used, this correction
falls in the range from ~–0.4 to ~–0.5 eV. Therefore,
the error of the method almost coincides in magnitude
with the energy gain ∆Ee for the oxygen vacancy.
Hence, we cannot draw correct inference concerning
the role played by the V defect in the accumulation of
negative charges in SiO2. On the other hand, as follows
from our data, the S defect is an electron–hole trap in
SiO2. By analogy with the capture of a hole [4], the cap-
ture of an electron by a neutral diamagnetic center
brings about the formation of a negatively charged S
center, i.e., a twofold-coordinated silicon atom with an
unpaired electron. The direct contact of the oxygen
vacancy and the silylene center also results in the for-
mation of an electron–hole trap whose depth (i.e., the
energy gains ∆Ee and ∆Eh) is considerably greater than
the depths (energy gains) of the constituent elementary
defects.
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Abstract—A mechanical model is proposed for the amorphization of solids. The model is based on a concept
according to which the accumulation of radiation-induced defects gives rise to forces and force moments that
act on local volumes of the material and are responsible for fragmentation. The estimates obtained demonstrate
that the proposed model can adequately describe the amorphization of solids only with allowance made for
strain waves generated during reactions between defects. This model is consistent with the paracrystalline struc-
ture of silicon layers transformed into the amorphous state under ion bombardment. © 2004 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

It is known [1] that, under ion bombardment, a sur-
face layer in crystalline solids of different types, in par-
ticular, covalent semiconductors, undergoes amor-
phization, i.e., a transition to an amorphous state. This
phenomenon plays an important role in the case of ion
implantation. There exist two basic models of amor-
phization. According to the model proposed by Parsons
[2], the formation of an ion track is accompanied by
melting of the material along the track followed by
solidification. Since the cooling rate is very high, the
molten region has no time to crystallize and retains the
amorphous structure. In our opinion, this model is valid
only for the heaviest ions. Christel et al. [3] proposed a
more general model, according to which the crystal
region exposed to irradiation spontaneously transforms
into an amorphous state after reaching a sufficiently
high (critical) concentration of radiation-induced
defects. Despite the large number of works dealing with
the amorphization, the mechanism of the transition to
the amorphous state in the latter case is still not clearly
understood.

In this work, we proposed the simplest (mechanical)
model of a transition from a crystalline state to an
amorphous state due to the attainment of a critical con-
centration of radiation-induced defects.

2. THE MODEL OF AMORPHIZATION

The model is based on the concept that an amor-
phous material is a conglomerate of mutually misori-
ented small-sized crystals, i.e., nanocrystals. It is obvi-
ous that this model, which was proposed even tens
years ago by Valenkov and Porai-Koshits [4], is signif-
icantly simplified. For example, structural, optical, and
1063-7834/04/4611- $26.00 © 22026
electron diffraction investigations revealed that the
degree of short-range order in the structure of amor-
phous silicon (a-Si) prepared by several methods dif-
fers from the degree of short-range order in the struc-
ture of crystalline silicon but, in both materials, tetrahe-
dra are the main structural units [5]. It is generally
believed that the structure of amorphous silicon can be
best described in the framework of the random network
model [6]. However, the degree of short-range order
cannot serve as a criterion for validity of a particular
model, because the fraction of atoms located at inter-
faces or in their vicinity in a conglomerate composed of
small-sized nanocrystals is rather large. Moreover, it
should be remembered that, for the most part, the works
concerned with the structural investigation of amor-
phous materials have not covered ion-irradiated semi-
conductors. Information on the structure of amorphous
films formed by ion-irradiated semiconductor materials
is very scarce. In their recent work, Cheng et al. [7] ana-
lyzed the results obtained using a new technique,
namely, fluctuation electron microscopy, and demon-
strated that the structure of a-Si films synthesized
through ion implantation at low temperatures can be
adequately described within the so-called paracrystal-
line model. According to this model, the short-range
order is not perfect and, unlike the random network
model, there also exists a medium-range (intermediate-
range) order, which makes it possible to distinguish and
characterize grain (block) boundaries. Note that the
diameter of grains lies in the range 1–3 nm. Only after
annealing of the material at a temperature of 500°C or
higher does the structure become similar to that
described in terms of the random network model. These
results suggest that, in the case of ion bombardment (at
least, at low temperatures), the concept of an amor-
004 MAIK “Nauka/Interperiodica”
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phous layer being formed by a set of misoriented blocks
can hold true.

Let us assume that ion-beam amorphization leads to
the fragmentation of a surface layer of the crystal, dur-
ing which each fragment (block) is rotated through a
sufficiently large angle. In contrast to the fragmentation
under mechanical treatment (for example, mechanical
dispersion in ball mills), ion-beam amorphization does
not result in fracture of the material: after the reorienta-
tion, fragments form new interatomic bonds with each
other along the interfaces. In the framework of our
model, the fragmentation is caused by the local stresses
associated with the high concentration of radiation-
induced point defects, such as vacancies, interstitial
atoms, and their complexes (divacancies, di-interstices,
multivacancies, multi-interstitial complexes). Each
fragment (a local volume of the crystal) experiences a
force exerted by adjacent blocks, so that the resultant
force and its moment are not equal to zero due to fluc-
tuations in the distribution of defects. Apart from the
static forces, the block subjected to ion bombardment
experiences a dynamic action due to the generation of
strain waves in the course of reactions between defects,
for example, during recombination of Frenkel pairs [8].
It has been demonstrated that such waves can bring
about atomic displacements [8]. Consequently, these
waves can initiate reactions between defects, which, in
turn, generate secondary strain waves. As a result, there
arises a chain process that enhances the action of strain
waves. When the strain waves reach the boundaries of
a particular block, they produce a nonuniform pressure
that results in rotation of the block.

Of course, blocks in an original (ideal) crystal are
virtual. In our model, the sizes (and shape) of the blocks
are postulated. Intuitively, it is clear that the macro-
scopic approach is not appropriate for very small
blocks and that rotations of very large blocks cannot
occur without disruption of the medium (accommoda-
tion). As follows from the results of structural investi-
gations, the sizes of regions with short-range order in
amorphous materials, for example, in silicon, are
approximately equal to 1–2 nm [5]. For our estimates,
the block size will be taken equal to 2 nm.

Now, we divide a volume of the irradiated layer into
blocks. For convenience, these blocks are assumed to
be identical and cubic in shape (with the size a = 2 nm).
It is also assumed that the blocks are arranged in a brick
masonry (see figure), even though the block arrange-
ment is of no fundamental importance in our model.
Below, we will estimate the threshold concentration of
defects necessary for amorphization in the static and
dynamic cases.

2.1. The Static Case

Let the mean number of defects in each block be
equal to N. For a Gaussian statistics and a sufficiently
large N, the root-mean-square deviation of the number
PHYSICS OF THE SOLID STATE      Vol. 46      No. 11      20
of defects is equal to . It is this quantity that plays
the role of the effective number of defects when esti-
mating (in order of magnitude) the mean force or the
mean force moment acting on the given block from
adjacent blocks, because the forces for equal numbers
of defects in all blocks are balanced and the resultant
moment of the forces is equal to zero. Each defect
induces an elastic-stress field in its environment [9, 10].

If the stresses generated by  defects located in
block 1 (see figure) are summed, the resultant force
vector F will be applied at the point indicated in the fig-
ure. This force produces the moment M with respect to
the center of the cube. The moments of forces exerted
by the other adjacent blocks can be determined in a
similar manner (the forces exerted by more distant
blocks are ignored in rough estimates). The inclusion of
the other blocks (except for block 1) surrounding block
2 in our calculation leads to a decrease in the force
moment and to an increase in the critical concentration
of defects. (This circumstance only supports the infer-
ence made below.)

According to the schematic diagram depicted in the
figure, we can write the following relationship:

(1)

where σ is the stress. By equating σ = σcr (where σcr is
the ultimate stress), we obtain the critical moment

(2)

On the other hand, the effective stress for block 1 con-

taining  defects, according to the elasticity theory,
can be represented in the form

(3)
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Schematic diagram of crystal blocks in the initial state. F is
the resultant force acting on block 2 from block 1.
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where B is the bulk modulus and β is the change in the
volume due to the presence of a single point defect in
the block. Now, we substitute expression (3) into rela-
tionship (1) at the standard values of σcr = 0.05B and
β = 3 × 10–24 cm–3 [10]. Here, the theoretical ultimate
stress is taken as σcr. Why is specifically the theoretical
ultimate stress used? This can be explained by the fact
that the block size is considerably smaller than the dis-
location spacing typical of semiconductors, for exam-
ple, silicon (>10–4 cm); hence, the fragmentation is not
related to the dislocation motion and, unlike the dislo-
cation mechanism of fracture, requires the breaking of
all interatomic bonds at the block boundary. From rela-
tionships (1)–(3), we obtain the critical concentration
of point defects ncr = N/a3 ~ 1025 cm–3. This value is two
orders of magnitude greater than the atomic concentra-
tion in silicon, which has no physical meaning. There-
fore, the static stresses caused by the radiation-induced
defects are not sufficient for fragmentation.

2.2. The Dynamic Case

In the course of ion bombardment, radiation-
induced defects can undergo transformations, such as
the formation of more complex defects, reorientation,
recombination, etc. These transformations are accom-
panied by changes in the local strain fields and, hence,
by the generation of strain waves. In turn, the interac-
tion of strain waves with defects can initiate reactions
between the defects with the generation of secondary
strain waves. (This process was described in detail in
[11].) Therefore, the crystal subjected to ion bombard-
ment experiences “radiation shaking” [8], whose
amplitude increases with an increase in the defect con-
centration. Any separated volume of the crystal is in the
field of strain waves. These waves produce a pressure
that is not uniform and, hence, induces the moment of
the force acting on this volume. The same is true for
nanovolumes (blocks). Let us now estimate the defect
concentration at which the pressure exceeds the theo-
retical ultimate stress and, consequently, initiates frag-
mentation.

For a sufficiently high concentration of defects
(sources of strain waves), summation can be replaced
by integration. In this case, the pressure that is associ-
ated with the defects involved in block 1 and acts on the
right half of the upper face of block 2 can be written in
the form

(4)

Here, the x axis is directed upward (see figure) and r is
the radial coordinate in the plane perpendicular to the x
axis. In relationship (4), we introduced the following
designations: n is the mean concentration of radiation-
induced point defects, p0 = Bε0 is the pressure inside the
source of strain waves (the source is assumed to be
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spherical in shape), ε0 is the local strain caused by the
point defect, and r0 is the effective radius of the locally
strained region. The typical values of the above param-
eters are as follows [10, 12]: r0 = 0.1 nm and ε0 = 10–2.
Relationship (4) was derived under the assumption that
the distribution of defects is uniform, the amplitude of
strain waves decreases in inverse proportion to the dis-
tance from the point defect, and the dissipation of the
energy of the strain waves at distances of the order of a
can be disregarded.

By equating the pressure P to the critical pressure
determined by the theoretical ultimate stress σcr, i.e.,
P = σcr = 0.05B, we obtain ncr ≈ 1020 cm–3. The experi-
mental value of ncr for silicon amounts to approxi-
mately 10% of the atomic concentration, i.e., to ~5 ×
1021 cm–3 [3]. However, our estimate of the critical con-
centration ncr is rather low. This is associated with the
fact that, in general, the strain waves arriving at the face
of block 2 from point defects are shifted in phase and
can partially cancel each other. Furthermore, as was
noted above, the forces acting on the given block from
other (adjacent) blocks partially balance each other.
These factors are difficult to take into account with high
accuracy. However, the estimate obtained indicates that
the dynamic model is at least not in contradiction with
the experimental data.

3. DISCUSSION

The amorphization can be explained in the frame-
work of the mechanical model but only in terms of the
dynamic variant, i.e., with due regard for strain waves
excited upon transformation of radiation-induced
defects. Of course, this model raises a number of ques-
tions.

It is not quite clear how an individual block can
rotate with respect to a surrounding material without
disruption of the medium. It seems likely that the adja-
cent blocks rotate in a correlated fashion: the mutual
accommodation of individual blocks is attended by the
breaking of the already existing bonds and the forma-
tion of new bonds. (A similar situation is observed upon
the formation of rolling textures. In this case, the sense
of rotation of the stacks composed of atomic planes
(grains) is specified by the rolling direction and the pro-
cess occurs through the dislocation mechanism.) Note
that the amorphization is accompanied by a slight frac-
ture of the material: the amorphous structure, as a rule,
contains pores, which can be interpreted as a result of
imperfect accommodation.

As was noted above, the initial crystal (prior to frag-
mentation), in the general case, does not involve nano-
blocks (not to be confused with “blocks” in mosaic sin-
gle crystals, which are usually of considerably larger
size and are not necessarily formed). In our case, the
notion of blocks suggests that the ion bombardment
induces nonuniform stress fields responsible for the
generation of forces that act on local crystal regions
YSICS OF THE SOLID STATE      Vol. 46      No. 11      2004
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and, thus, initiate fragmentation. The block size
(~2 nm) is comparable to the distance between subcas-
cades in displacement cascades [13]; i.e., it is actually
comparable to the characteristic scale of fluctuations in
the defect distribution. Therefore, we can assume that,
although these fluctuations themselves do not bring
about the fragmentation (see Section 2), they produce
“weak sites” (in regions with an increased defect con-
centration) through which the fragmentation proceeds
within the framework of the dynamic model.

The mechanical model under consideration does not
allow one to determine the dose dependence of the vol-
ume fraction of the amorphous phase. Within this
model, the amorphization is treated as a unit event that
covers the regions in which the mean defect concentra-
tion reaches a critical value. This is the disadvantage of
the model.

At the same time, the advantage of the model is its
better agreement with the paracrystalline structure of
amorphous layers [7] as compared to the hypothesis for
the gradual disturbance of the long-range order in the
course of defect accumulation.

As regards the role played by strain waves in amor-
phization, it is pertinent to note that a similar concept
was used to explain the so-called long-range interaction
upon ion bombardment [11]. In our opinion, strain
waves play an important role in many processes occur-
ring in solids, such as plastic deformation, fracture,
phase transitions, etc. (i.e., processes attended by rapid
local transformations of atomic configurations). Unfor-
tunately, this circumstance has received little attention
in the theory of solids. Apparently, the traditional
phonon formalism, even with allowance made for the
anharmonicity, is not appropriate for considering simi-
lar phenomena due to the strong nonlinearity of the pro-
cesses. The other methods indented for describing
dynamic processes (for example, the soliton formal-
ism) have been rarely used and lack generality. Most
likely, it would be expedient to use the molecular
dynamics method for simulating processes in large-
sized blocks. (Here, unlike the above consideration, the
term “block” implies a model crystal in the sense com-
mon for molecular dynamics.) Attempts to perform the
molecular dynamics simulation (only for relatively
small-sized blocks however) have already demon-
strated the possibility of revealing new previously
unpredicted interesting phenomena under bombard-
ment of solids with low-energy ions [14]. However, cal-
culations of this type as applied to amorphization were
not carried out.
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4. CONCLUSIONS

Thus, it was demonstrated that the proposed model
is consistent with the concept according to which amor-
phization is treated as a spontaneous phase transition
occurring after reaching a critical concentration of
point defects [1, 3]. The above model is a step forward
in the development of this concept and makes it possi-
ble to elucidate the mechanism of transformation. The
estimates obtained serve as a basis for more accurate
mathematical development of the model (possibly with
the use of computer calculations).

REFERENCES
1. E. I. Zorin, P. V. Pavlov, and D. I. Tetelbaum, Ion Doping

of Semiconductors (Énergiya, Moscow, 1976) [in Rus-
sian].

2. J. R. Parsons, Philos. Mag. 12 (120), 1159 (1965).
3. L. A. Christel, J. F. Gibbons, and T. W. Sigmon, J. Appl.

Phys. 52 (12), 7143 (1981). 
4. N. Valenkov and E. Porai-Koshits, Z. Kristallogr. 95

(1/4), 195 (1937).
5. V. P. Zakharov and V. S. Gerasimenko, Structural Fea-

tures of Semiconductors in the Amorphous State (Nauk-
ova Dumka, Kiev, 1976) [in Russian].

6. D. Polk and D. S. Bondreax, Phys. Rev. Lett. 31 (2), 92
(1973).

7. Ju. Yin Cheng, J. M. Gibson, P. M. Baldo, and B. J. Kes-
tel, J. Vac. Sci. Technol. A 20 (6), 1855 (2002).

8. V. L. Indenbom, Pis’ma Zh. Tekh. Fiz. 5 (8), 489 (1979)
[Sov. Tech. Phys. Lett. 5, 200 (1979)].

9. J. D. Eshelby, in Continuous Theory of Dislocations
(Inostrannaya Literatura, Moscow, 1966).

10. A. C. Damask and G. J. Dienes, Point Defects in Metals
(Gordon and Breach, New York, 1963; Mir, Moscow,
1966).

11. P. V. Pavlov, Yu. A. Semin, V. D. Skupov, and
D. I. Tetelbaum, Fiz. Tekh. Poluprovodn. (Leningrad) 20
(3), 503 (1986) [Sov. Phys. Semicond. 20, 315 (1986)].

12. M. W. Thompson, Defects and Radiation Damage in
Metals (Cambridge Univ. Press, Cambridge, 1969; Mir,
Moscow, 1971).

13. V. L. Vinetskiœ and G. A. Kholodar’, Radiation Physics
of Semiconductors (Naukova Dumka, Kiev, 1979) [in
Russian].

14. I. V. Tereshko, V. I. Khodyrev, É. A. Lipskiœ,
Zh. A. Rymkevich, V. V. Glushchenko, V. N. Kon-
chalenko, and D. L. Vinogradov, Vestn. Nizhegorod.
Univ. im. N. I. Lobachevskogo, Fiz. Tverd. Tela, No. 2,
131 (1998).

Translated by O. Borovik-Romanova
4



  

Physics of the Solid State, Vol. 46, No. 11, 2004, pp. 2030–2034. Translated from Fizika Tverdogo Tela, Vol. 46, No. 11, 2004, pp. 1964–1967.
Original Russian Text Copyright © 2004 by Gorlov.

                                                                        

DEFECTS, DISLOCATIONS, 
AND PHYSICS OF STRENGTH

                                                 
Ligand Electron–Nuclear Double Resonance 
of T1 Trigonal Gd3+ Centers in CaF2 

with a Mixed Oxygen–Fluorine Environment
A. D. Gorlov

Research Institute of Physics and Applied Mathematics, Ural State University,
pr. Lenina 51, Yekaterinburg, 620083 Russia

e-mail: Anatoliy.Gorlov@usu.ru
Received April 13, 2004

Abstract—This paper reports on the results of ligand electron–nuclear double resonance (ENDOR) investiga-
tions of T1 trigonal 157Gd3+ centers in the CaF2 compound. It is experimentally found that the nearest environ-
ment of an impurity center contains only one 19F ion. Anions in the other coordination shells are identical to
those in the pure CaF2 crystal. However, 19F ions in these shells are displaced from their ideal positions in the
lattice. The parameters of the ligand hyperfine interaction (LHFI) for 19F nuclei and their coordinates and dis-
placements with respect to the positions in the lattice of the pure CaF2 crystal are determined. It is demonstrated
that the unusual isotropic LHFI constant As > 0 for Gd3+ ions in the lattice with a mixed oxygen–fluorine nearest
environment can be associated with the strong polarization of impurity centers in accordance with the empirical
model proposed in [1], provided the structural model of the nearest environment of impurities in the T1 centers
[2] is correct. This structural model is confirmed by the analysis of the isotropic hyperfine constant A(s) for
157Gd3+ centers. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Early investigations of the optical and electron para-
magnetic resonance (EPR) spectra of MeF2 compounds
[2–8] have revealed a great diversity of impurity centers
with trigonal local symmetry. It has been established
that the formation of impurity centers differing in local
symmetry is determined by the conditions of crystal
growth. The spectra of these centers are characterized
by crystal-field parameters and initial splittings that dif-
fer in magnitude and sign. This indicates considerable
changes in the nearest environment of impurities.
Among the proposed structural models of these centers,
only the models according to which ions with nonzero
nuclear spin serve as compensators can be directly con-
firmed by ligand electron–nuclear double resonance
(ENDOR) spectroscopy [1, 2, 7].

The most complete and consistent EPR investiga-
tion of T1 trigonal Gd3+ centers in MeF2 (Me = Ca, Sr,
Ba) was performed by Yang et al. [6]. It was found that
the observed ligand hyperfine structure of the EPR lines
is in agreement with the structural model proposed in
[2] for the nearest environment of impurity centers.
This model is based on the results of the sole ENDOR
investigation of T1 trigonal Yb3+ centers in a CaF2 com-
pound for which impurities were introduced in the form

of  and the nature of compensators was studied.
It was assumed that the nearest environment of impu-

Yb2
17

O3
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rity centers contains one 19F ion and four 17O ions, of
which three ions form a triangle with the plane perpen-
dicular to the C3 trigonal axis of the crystal and one ion
rests on the C3 axis. However, no data on more distant
ligands were reported.

The main objective of the present work was to per-
form a detailed ENDOR investigation of T1 trigonal
Gd3+ centers in CaF2 in order to elucidate the nature of
anions in the second and more distant coordination
shells, to estimate their displacements, and to answer
the question as to why the isotropic constant of the
ligand hyperfine interaction (LHFI) for the nearest 19F
nucleus is positive in sign. It should be noted that the
positive isotropic constant of the LHFI interaction is
not characteristic of rare-earth ions in the ground S state
in fluorites [1, 9].

2. EXPERIMENTAL TECHNIQUE, 
RESULTS AND DISCUSSION

The ligand hyperfine interaction of 19F nuclei
(nuclear spin I = 1/2) in T1 trigonal Gd3+ centers (elec-
tron spin S = 7/2) in CaF2 crystals was investigated
using nutation ENDOR spectroscopy [8]. CaF2 crystals
doped with 157Gd2O3 (0.01 wt % in the batch) were
grown by the Czochralski technique. The EPR spectra
of doped CaF2 crystals are characterized by two Gd3+
004 MAIK “Nauka/Interperiodica”
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Ligand hyperfine constants (kHz); spherical coordinates of fluorine nuclei in the second, third, and fourth coordination shells
of T1 trigonal Gd3+ centers in CaF2; and deviations (Å) ∆R = R – R0, ∆ = z – z0 (z = Rcosθ + δ, where δ is the displacement
of the impurity center), and ∆θ = θ – θ0

Shell Type of nuclei (their 
number) As Ap R θ, deg ∆R × 102 ∆θ, deg ∆ × 102

2 311(3) 0(3) 857.1(36) 4.42(1) 29.9(3) –10(1) 0.4(3) 8(2)

1 3(3), 31 (3) 0(3) 849.3(39) 4.43(1) 59.4(3) –9(1) 0.9(4) 7(2)

3(3) –4(4) 810.4(26) 4.59(2) 78.5(2) 7(2) –1.5(3) 31(3)

1 1(3) 0(5) 767.5(36) 4.59(2) 98.3(4) 7(2) –1.7(4) 30(3)

1 (3), 1 (3) 7(6) 795.9(85) 4.53(3) 122.3(4) 1(3) 0.6(5) 13(4)

(3) 14(4) 740.3(50) 4.64(3) 148.6(4) 12(3) –1.9(5) 15(4)

3 313(3) 0 380.1(22) 5.80(2) 22.9(3) –13(3) 0.9(3) 2(3)

3 3(3) 0 372.3(36) 5.84(2) 48.2(4) –9(3) 0.0(4) 14(4)

1 3(3), 3 1(3) 0 348.5(32) 5.97(3) 84.3(12) 4(5) 1.8(15) –1(2)

3(3), 3 (3) 0 349.3(40) 5.98(3) 97.5(14) 5(5) 0.1(16) 19(3)

1(3) 0 358(4) 5.91(3) 131.9(3) –2(4) 0.4(3) 16(4)

(3) 0 332(4) 6.07(3) 158.9(4) 13(4) 0.9(4) 2(4)

4 333(1) 0 218.9(19) 6.97(3) 0 –8(4) 0 8(4)

(1) 0 194.1(12) 7.25(3) 0 18(4) 0 0(4)

1 1

11

3

31 1 3

131

1

3 3

13 31

33

331

333
signals with an intensity ratio of 1 : 1, which corre-
sponds to the T1 and T2 trigonal centers [8]. The EPR
signals of these centers at a temperature T = 1.8 K are
adequately described by the standard spin Hamiltonian
with the parameters taken from [8] in the coordinate
system in which the principal symmetry axis of the cen-
ter has the orientation Z || C3 || [111] and the other axes

are oriented as follows: X || [ ] and Y || [ ].

For the most part, the ENDOR measurements were
carried out in an external magnetic field H aligned par-
allel to the symmetry axes of the crystal (C3, C2, C4).
Moreover, if required, we investigated the angular
dependences in the vicinity of these axes. For each EPR
transition, the experimental nutation ENDOR spectra
associated with the ligands contain a set of resonance
signals in the form of decaying periodic distortions of
the absorption signal (periodic nutations) and aperiodic
distortions of the level of the absorbed microwave
power. For a small constant amplitude of the radio-fre-
quency field applied to the sample, the periodic-nuta-
tion signals are primarily observed for nuclear spins
with large LHFI parameters. This is explained by the
radio-frequency field gain at nuclei of ligands [8]. For
any EPR transition, there are no more than two
ENDOR signals in the form of periodic nutations and
their angular dependences in any crystallographic plane
of the CaF2 crystal indicate that these periodic nutations

112 110
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are always single signals. This means that only one ion
with nuclear spin I = 1/2 and large LHFI constants is
located in the vicinity of the impurity center. The sets
of all observed ENDOR frequencies are adequately
described when the nuclear Zeeman frequency νF is
determined by the nuclear g factor of 19F. Therefore, the
number of signals, their positions, and splitting into a
particular number of components upon deviation from
the principal orientations uniquely indicate that the
nearest environment of impurity centers involves only
one fluorine ion. On the other hand, as in the lattices of
pure MeF2, the second and more distant coordination
shells consist of 19F ions.

The above findings directly confirm the structural
model for the T1 center, according to which only one
fluorine ion is located in the nearest environment of a
Gd3+ ion (see Fig. 1 in [8], where a fragment of the
hypothetical environment of a Gd3+ ion is shown), pro-
viding that the Me2+  complex is replaced by the

Gd3+F–  complex if the atmosphere during the crys-
tal growth contains water vapor or oxygen [2, 3, 5, 6].

The ENDOR frequency spectrum was analyzed by a
standard method on the basis of the complete spin
Hamiltonian corresponding to trigonal symmetry of the
impurity center and local symmetry of 19F in the coor-
dinate system of the chosen nucleus according to the

F8
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technique described in [1]. The set of frequencies
(~200) for different orientations of the external mag-
netic field is adequately described by the LHFI con-
stants listed in the table.

The calculations demonstrate that, irrespective of
the local symmetry of nuclei, all the ENDOR frequen-
cies corresponding to aperiodic signals are described
by axially symmetric LHFI tensors with the hyperfine
constants –2Axx = –2Ayy = Azz = 2Ap and As ~ 0, as is usu-
ally the case with all Gd3+ and Eu2+ centers in MeF2 [9].
This indicates that the fluorine ions in the second and
more distant coordination shells are involved in the
magnetodipole ligand hyperfine interaction. On this
basis, we determined the coordinates of these ligands
(with respect to the impurity centers). The table pre-
sents these coordinates and the calculated distances
R(Gd3+–19F), which are compared with the distances
R0(Me2+–19F) in the lattices of the pure CaF2 com-
pound. The type of nuclei is determined by the Miller
indices in the cubic lattice.

The experimental ENDOR frequencies were
assigned to specific types of nuclei under the following
assumptions. Previous investigations [1, 7, 9] revealed
that, when impurity centers are formed with local com-
pensation in MeF2, lattice relaxation decays rapidly in
the range far from charge-compensating ions. On this

basis, we assume that nuclei of the  type occupy
positions identical to those in the pure CaF2 compound.
An excess negative charge of the oxygen ion should
lead to displacement of the impurity center along the C3

axis toward O2–. In this case, we have R(333) < R( ).
The cation displacements should only slightly affect the
positions of these nuclei. These nuclei are characterized
by single signals, which are observed in the vicinity of
the Zeeman frequency of 19F nuclei and can be easily
separated by analyzing the angular dependences of the
ENDOR spectra. The remaining spectra were identified
with due regard for the displacement of the impurity
center.

In the table, the polar coordinates of anions do not
contain azimuthal angles, because they coincide with
the lattice angles to within the limits of experimental
error. It can be seen from the data presented in the table
that, in the second shell, 19F nuclei are characterized by
R < R0 at θ < 80° (where θ is the angle between the axis
Z || C3 and the axis of the Gd3+–19F pair) and, con-
versely, R ≥ R0 at θ > 120° due to the displacement of
the impurity center toward oxygen. From here, it is nec-
essary to exclude the fluorine nuclei with θ close to 90°,
because their displacement most strongly depend on
the Coulomb interaction with three O2– ions (located in
the vicinity of the XY plane) and on the cation displace-
ment.

Unfortunately, we failed to identify all the frequen-
cies attributed to 19F nuclei located in the fourth coordi-
nation shell, because the resolution of the nutation

333

333
PH
ENDOR technique is lower than that of the stationary
technique. However, the locations determined from the
experimental constants for two nuclei in this shell dem-
onstrate that the distortions of the shells are insignifi-

cant. By assuming that the fluorine ion of the  type
is not displaced, we found that the Gd3+ ion is displaced
toward the O2– ion along the C3 axis by δ = 0.18(4) Å,
where δ is the displacement of the impurity center with
respect to the Ca2+ position in the undistorted lattice.

The relaxation of the nearest anion environment of
the Gd3+ ion can be more clearly demonstrated by ana-
lyzing the displacements of the planes containing fluo-
rine nuclei that are equivalent from the standpoint of
the parameters R and θ (these planes are perpendicular
to the Z axis). The displacements of these planes can be
characterized by the quantities ∆ = z + δ – z0, where z
and z0 are the coordinates of the centers of the panes in
the lattices of doped and pure CaF2, respectively. The
positive sign of the quantity ∆ indicates displacement
away from the already existing center at θ < 90° and
displacement toward this center at θ > 90°.

It was found that ∆ > 0 (see table). As a result, in the
region far from the oxygen ion, all the anions are dis-
placed toward the already existing center. On the other
hand, the nuclei located close to the O2– ion are dis-
placed from the center. Therefore, the experimental
data show that all the nuclei in the second shell and a
number of nuclei in the third shell are displaced in the
same manner and accompany the displacement of the
impurity center and cations toward the oxygen ion. This
regularity can be broken only for 19F nuclei with angles
θ close to 90°, because their displacements are affected
not only by cations displacements but also by the fact
that the number of anions (located in the same region in
pure CaF2) nearest to the impurity center is halved.

In our opinion, the most surprising result obtained in
this work is the positive sign of the constant As =
1.114 MHz for the fluorine ion nearest to the Gd3+ ion
[8]. This is quite unusual for rare-earth ions in the S
state [1, 9–11]. Without aiming for quantitative agree-
ment, we attempted to use the model described in [1],
which relates the isotropic LHFI constants to the quan-
tities R through the dipole moments D and d induced at
the Gd3+ and F– ions, and to obtain a positive constant
As > 0. Making allowance for the directions of the dis-
placement of the impurity center and fluorine ions of
distant shells and also for the changes in the distances
to them, we assumed that R(111) ≥ 2.5 Å (the change in
R by ±0.05 Å leads to a change in the magnitude but not
in the sign of the constant As). The distances to the axial
oxygen ion were determined as the sum of the ionic
radii. As in [8], the superposition model for the param-
eters of the initial splitting and the crystal filed was
used for calculating the parameters for the oxygen ions
of the triangle: R ≈ 2.42 Å and θ ≈ 95° (unlike Fig. 1 in
[8], the Z axis is directed at the O2– ion). According to

333
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[1], the projections of the dipole moments D and d
along the bond axis were estimated within the point-
charge model without regard for cation displacements.
As a result, we obtain d ≈ –0.05 eÅ for 19F ions of the

 type and D ≈ –0.09 eÅ (e is the magnitude of the
elementary charge). It should be noted that the negative
sign of the dipole moments is governed by the axial O2–

ion. The expression for the constant As is written in a
form similar to expression (3) in [1]; that is,

(1)

for the model parameters As(R0) = –4.058(2) MHz at

R0 = 2.37 Å, Ks = a = –4.1(1) (eÅ)–1, and /As(R0) =
A = 25(3) (eÅ)–1 [10]. On the basis of these data, we
find that As ≤ 2.1 MHz; i.e., the constant under consid-
eration has the positive sign. Note that we modified
relationship (3) obtained in [1], because our last calcu-
lations of isotropic contributions based on theoretical
estimates of the dipole moments R and d for the nearest
ligands of impurity centers with different symmetries in
crystals having a CaF2-type structure [10] demon-
strated that the radial dependence is given by a single-
power function and expression (1) adequately describes
all the measured isotropic constants.

The result obtained allows us to make the inference
that the positive sign of the constant As is associated
with the large contribution of the positive spin density
at the fluorine nucleus due to the overlap of the electron
shells of the anion and the excited states of the impurity
center. For example, the electron density arises at the 5d
orbital due to the mixing with the 4f and 5p states by a
strong negative (with respect to the direction of the
Gd3+–19F bond) odd electric field. This field is antipar-
allel to the bond in the T1 center and is one order of
magnitude stronger than that in the fluorine trigonal
center [1]. Undeniably, this effect enhances the state
mixing proportional to matrix elements of the
〈4f, 5p|D |5d〉  type. The contribution made to the con-
stant As by the polarization of the 19F ion turns out also
to be negative and considerably smaller than those in
other MeF2 crystals [1, 9–11].

According to the data obtained in [8] for the hyper-
fine interaction of 157Gd3+ ions, these ions are character-
ized by the isotropic hyperfine constant A(s) = 9.505(8)
MHz. It is well known that this constant for impurity
centers of the iron group depends heavily on the num-
ber of the nearest ligands and their type [12]. A similar
regularity is observed for 155Gd3+ and 157Gd3+ ions in
different materials [13]. The smallest constant A(s) =
8.3 MHz was determined for 157Gd3+ in ZnO, in which
the impurity centers are surrounded by four O2– ions
[14]. This constant is close to that obtained in the
present work. Therefore, by ignoring the radial depen-
dence of the constant A(s) due to a change in the cova-
lence parameters and the degree of overlap of the elec-

111
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tronic states of impurity centers and ligands in isostruc-
tural crystals, the analysis of the data available in the
literature [11, 13, 14] within the model proposed in [12]
enables us to argue that, compared to ZnO, the degree
of covalence of the complex studied in the present work
is lower, if for no other reason than the presence of an
additional F– ion, which results in an increase in A(s).
Hence, it is clear that the number of nearest O2– anions
in the T1 center satisfies the condition 4 < n < 6. Conse-
quently, there exists a sole variant with n = 5 and,
according to the ENDOR data, the 19F ion is the ligand
nearest to the impurity center. Therefore, the coordina-
tion of the T1 trigonal 157Gd3+ center in CaF2 is once
again confirmed.

3. CONCLUSIONS

Thus, the results obtained in this work can be sum-
marized as follows.

(1) Ligand ENDOR investigations of T1 trigonal
157Gd3+ centers in CaF2 revealed that the second and
more distant anion shells are composed of fluorine ions
and the nearest environment of impurity centers con-
tains only one 19F ion.

(2) The LHFI constants and the spherical coordi-
nates of distant fluorine nuclei were determined reason-
ing from the fact that the ligand hyperfine interaction is
described as the interaction of two magnetic point
dipoles.

(3) The analysis of the ligand displacements showed
that the complex as a whole, including distant 19F ions
(up to the third anion shell), is displaced in the direction
positive with respect to the Z axis, even though the dis-
placements of 19F ions decrease with an increase in the
distance to the impurity center and O2– ions.

(4) A comparison of the experimental and calculated
anisotropic constants As for the 19F ion nearest to the
center demonstrated that the change in the sign of the
constant As is predominantly associated with the mix-
ing of electronic states of the impurity center due to its
polarization by a negative odd electric field induced by
the environment.

(5) The small value of the constant A(s) for 157Gd3+

ions in T1 centers was explained by the decrease in the
number of nearest ligands. This constant can be pre-

dicted with a high accuracy when 157Gd3+F–  com-
plexes are formed in crystals.
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Abstract—Equations of dislocation kinetics are used to quantitatively compare the mechanisms of formation
and evolution (with deformation) of cellular dislocation structures at moderate strains and of submicron block
dislocation structures at high plastic strains. In both cases, the formation of nonuniform dislocation structures
is a result of dislocation self-organization, more specifically, the self-organization of statistically random dislo-
cations during the formation of cellular structures and the self-organization of geometrically necessary disloca-
tions (which appear due to the nonuniform character of plastic deformation on the micron scale) during the for-
mation of block structures. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The mechanisms of strain hardening and evolution
of a dislocation structure in metals subjected to severe
plastic deformation are being extensively studied
experimentally [1–5] and theoretically [6–10]. This
problem is of interest because severe plastic deforma-
tion by, e.g., equal-channel angular pressing [3] pro-
duces ultrafine-grained materials (with nano- or submi-
crograins) that have a higher strength than the respec-
tive coarse-grained materials. These features result
from the formation of a block (fragmented) dislocation
structure with high (>1°) misorientation angles
between neighboring fragments (blocks) in a material
at shear strains γ > 0.5.

There exist a number of assumptions and hypothe-
ses regarding the causes of the high strength of severely
deformed metals. They can be divided into three
groups. One group contains hypotheses that the high
strength σ of a material after its severe plastic deforma-
tion is caused by the small size Λ and high misorienta-
tion angle ω of crystal fragments according to the Hall–
Petch relation σ ~ Λ–1/2 [2]. This mechanism is sup-
ported by the fact that severe deformations (γ > 10–20)
result in a subgrain structure with mean misorientation
angles of ≈45° between crystal fragments [11, 12].
Another group of hypotheses assumes that the high
strength of severely deformed materials is related to
high internal stresses due to the nonequilibrium bound-
aries of highly misoriented fragments [7, 13, 14].
Finally, according to the third group of hypotheses, a
high strength after severe plastic deformation is caused
by strain hardening of the material, that is, by the high
density of dislocations (≈1015–1016 m–2), which are
mainly concentrated in fragment boundaries [6, 9, 10].
1063-7834/04/4611- $26.00 © 22035
Another frame of questions that are being discussed
now is the mechanism of formation of block dislocation
structures in a severely deformed material. As for cellu-
lar dislocation structures, their formation is known to
be related to the process of self-organization of disloca-
tions in a deformed crystal [15]. This circumstance
explains why cellular structures change self-similarly,
by retaining the relations between their parameters [2,
10, 15] and the character (law) of the statistical size and
misorientation-angle distributions of cells (scaling of
cellular structures [4, 5]). There are a number of exper-
imental facts indicating that strongly misoriented (to at
least ω < 15°–30°) block structures are also formed due
to the self-organization of dislocations. This hypothesis
is confirmed by the fact that such structures obey the
laws of self-similarity [2, 10, 16] and scaling [2, 4, 5].

In this work, we continue the comparison of the
mechanisms of formation of cellular and block disloca-
tion structures and of their parameters that was started
in [9, 10, 16]. In those studies, we assumed that the
additional hardening induced by severe plastic defor-
mation and the appearance of the fourth and fifth
strengthening stages in the stress–strain curves of fcc
metals were caused by the generation of geometrically
necessary dislocations (GNDs) due to nonuniform plas-
tic deformation at a microscopic level and by the for-
mation of block boundaries from GNDs. In Section 2,
we analyze data on the evolution of the dislocation-cell
(block) size with strain. In Section 3, we perform a sim-
ilar analysis for the evolution of the misorientation
angles of cells and blocks with strain. In Section 4, we
discuss the possible causes of the low annihilation coef-
ficients of geometrically necessary dislocations as com-
pared to those of statistically random dislocations,
which are involved in the formation of cellular disloca-
tion structures and are responsible for the appearance of
004 MAIK “Nauka/Interperiodica”
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the second and third stages in the stress–strain curves of
fcc metals. In the final section, we discuss the formation
of dislocation block structures and the related strain
hardening.

2. EVOLUTION OF THE DISLOCATION-CELL 
AND DISLOCATION-BLOCK SIZES 

WITH STRAIN

According to the two-phase model [9, 16], the total
dislocation density ρ in a crystal subjected to plastic
deformation in the range from the second to the fifth
stage in a stress–strain curve is the sum of the densities
of statistically random (ρC) and geometrically neces-
sary (ρB) dislocations concentrated in dislocation-cell
and dislocation-block boundaries, respectively:

(1)

where γ is the shear strain; fC = ∆ΛC(γ)/ΛC(γ) and fB =
∆ΛB(γ)/ΛB(γ) are the strain-independent volume frac-
tions of cell and block boundaries, respectively, in the
dislocation structure [2, 10]; ∆ΛC and ∆ΛB are the
widths of the cell and block boundaries, respectively;
and ΛC and ΛB are the cell and block sizes, respectively.
The dislocation density (1) defines the flow stress

(2)

where α is the dislocation interaction constant, µ is the
shear modulus, and b is the Burgers vector. The stress
(2) corresponds to the square law of summation of flow
stresses:

(3)
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Fig. 1. Strain dependence of the dislocation-cell size ΛC
according to Eq. (6) in Al [19], Ni [20], Cu [21], and in Ni–
Al, Cu–Al, and Cu–Zn alloys [22].
PH
where τC(γ) = αCµb (γ) and τB(γ) = αBµb (γ) are
the contributions of the cell and block boundaries to the

total flow stress, respectively; αC = ; and αB =

. The square law of summation is known to define
the flow stress in the presence of dislocation-motion
obstacles having strongly different strengths. In the
case under analysis, block boundaries are stronger
obstacles for dislocations than cell boundaries.

The dislocation density in dislocation-cell bound-
aries increases with strain according to the law [15]

(4)

where ρ3 is the equilibrium dislocation density in cell
boundaries at the end of the third stage in the strain-
hardening curve (the first stage of dynamic recovery).
This density depends on the coefficient kf (which deter-
mines the intensity of dislocation multiplication by for-
est dislocations) and the coefficient of annihilation of
the screw segments of dislocation loops ka according to
the kinetic equation for the dislocation density at the
second and third stages of the strain-hardening curve
[17]:

(5)

By solving Eq. (5), we obtain the law of evolution of the
dislocation density with strain given by Eq. (4). The
additional factor (6/5)2 is the result of the self-organiza-
tion of dislocations during the formation of a cellular
dislocation structure [15]. Since bkf ≈ 10–2 and ka ≈ 4–8
at 293 K [15], the dislocation density at the end of the
third stage is ρ3 ≈ 1013–1014 m–2.

According to the principle of similitude of cellular
dislocation structures, the cell size and dislocation den-
sity at different strains are connected by the relation

ΛC(γ) = K2 (γ), where K2 ≈ 8–10 is a certain scale
factor [18]. Thus, taking into account Eq. (4), we have

(6)

where Λ3 = K2  ≈ 1–2 µm is the cell size at the end
of the third stage. Figure 1 shows the results of process-
ing the experimental ΛC(ε) dependences for Al [19], Ni
[20], and Cu [21] metals and Ni–2% Al, Cu–2.8% Al,
and Cu–10% Zn [22] alloys in the log(1 – Λ3/ΛC(ε))
versus ε coordinates using Eq. (6), where ε = γ/m is the
tensile strain and m ≈ 3 is the Taylor factor for polycrys-
tals. The experimental points in these coordinates are
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seen to fall on straight lines, whose slopes increase with
the dislocation annihilation coefficient ka. In the case of
fcc metals, this coefficient increases with the stacking
fault energy γD [15], which is confirmed by the data
from Fig. 1. For Al, Ni, and the Ni–Al alloy, γD = 140–
180 mJ m–2, whereas for Cu and the Cu–Al and Cu–Zn
alloys we have γD = 20–60 mJ m–2. Table 1 shows the
parameters of evolution of the dislocation-cell size with
strain for the metals under analysis. The strain ε3 =
2/mka characterizes the duration of the third stage of
strain hardening (the first stage of dynamic recovery).

Geometrically necessary dislocations differ from
statistically random dislocations in their source, since
they appear as a result of elastic-stress relaxation asso-
ciated with nonuniform plastic deformation at the
micron level (at the level of the dislocation-cell size in
the case under study) [23]. Another difference from sta-
tistically random dislocations consists in the fact that
dislocations of the same sign and the same orientation
of the Burgers vector with respect to the dislocation line
are predominantly generated in certain local regions.
As for the other features (participation in the processes
of multiplication and annihilation), the geometrically
necessary dislocations are qualitatively similar to sta-
tistically random dislocations. This behavior allows us
to write the following kinetic equation for the density of
GNDs [10]:

(7)

where βi is the coefficient of immobilization of disloca-
tions at obstacles, which exclude dislocations from the
processes of multiplication by forest dislocations (the
second term in the right-hand side of Eq. (7)) and of
annihilation (the third term). According to Eq. (7), at
the end of the third stage of strain hardening (at βi = 0.9,
b = 0.25 nm, Λ3 = 1 µm, γ3 = 0.5), the density of GNDs
is equal to ρG = [2(1 – βi)/bΛ3]γ3 ≈ 4 × 1014 m–2 and
becomes comparable to the density of statistically ran-
dom dislocations. As a result, the additional forth and
fifth hardening stages appear in the strain-hardening
curve at high strains (γ > γ3).

The GND density in dislocation-block boundaries
increases with strain according to the following law
[10] (which is analogous to Eq. (4)):

(8)

where ρ5 is the dislocation density at the end of the fifth
strain-hardening stage (the second stage of dynamic
recovery). According to the principle of similitude of

block dislocation structures ΛB = K2/ , the evolution
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of the block size with strain should be described by the
following formula, similar to Eq. (6):

(9)

where Λ5 = K2/  is the equilibrium block size at the
end of the fifth hardening stage. Figures 2 and 3 show
the results of processing the experimental ΛB(ε) depen-
dences for Ni [2], Ti [24], α-Fe [25] and the Al–0.13%
Mg and Al–1.3% Fe alloys [3] in the log(1 – Λ5/ΛB(ε))
versus ε coordinates by using Eq. (9). It is seen that,
despite the scatter of the experimental data, especially
at high strains (Fig. 2), Eq. (9) agrees with experiment.

The steplike character of Eq. (9) plotted for the Al–
Mg alloy in Fig. 3 is likely to be related to the fact that
magnesium atoms strongly pin dislocations in alumi-
num in the temperature range 200–350 K as a result of
dynamic strain aging, which causes a delay in the for-
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Table 1.  Parameters of the evolution of the dislocation-cell
size with strain

Metal Reference Λ3, µm ε3 = 2/mka ka

Al 99.995% [19] 1.6 0.10 6.7

Ni [20] 0.14 0.15 4.5

Ni–2%Al [22] 0.14 0.20 3.3

Cu [21] 0.14 0.36 1.8

Cu–2.8%Al [22] 0.14 0.36 1.8

Cu–10%Zn [22] 0.12 0.83 0.8
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Fig. 2. Strain dependence of the dislocation-block size ΛB
according to Eq. (9) in Ni [2], Ti [24], and α-Fe [25].
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mation of both cellular and block dislocation structures
[3]. This delay is small in the case of the Al–Fe alloy,
since iron atoms interact weakly with dislocations in
aluminum and form Al3Fe precipitates approximately
2 µm in size in the aluminum matrix [3]. Table 2 gives
the parameters of the evolution of a block structure with
strain in the metals and alloys in question. A compari-
son of the dislocation annihilation coefficients given in
Tables 1 and 2 indicates that the effective annihilation
coefficient for GNDs (k5) is about an order of magni-
tude lower than that for statistically random disloca-
tions (ka) (Table 2, last column). The possible causes of
this difference are discussed in Section 4.

3. EVOLUTION OF THE MISORIENTATION 
ANGLES OF DISLOCATION CELLS 

AND BLOCKS WITH STRAIN

Analysis of the experimental data shows that the
mean dislocation-cell size ΛC and the mean misorienta-
tion angle ωC are connected by the relation
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0 2 6 10
ε
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Fig. 3. Strain dependence of the dislocation-block size ΛB
according to Eq. (9) in Al–Mg and Al–Fe alloys [3].

Table 2.  Parameters of the evolution of the dislocation-
block size with strain

Metal Refer-
ence Λ5, µm ε5 =

2/mk5
k5

β =
k5/ka

Ni 99.99% [2] 0.1 3.1 0.21 0.05

α-Fe [25] 0.1 3.1 0.21 –

Ti [24] 0.32 6.25 0.11 –

Al–0.13%Mg [3] 0.42 3.0 0.22 0.03

Al–1.3%Fe [3] 0.40 3.0 0.22 0.03
PH
ΛC(γ)ωC(γ) = const [2, 10, 16], which means that the

cell size varies with strain as ωC =  or

(10)

where ω3 =  is the equilibrium misorientation
angle of cells at the end of the third hardening stage, K3
is a certain constant, and ε = γ/m. Figure 4a shows
experimental strain dependences of the misorientation
angle of cells in aluminum of different purity [25, 26]
and in a Ni3Fe alloy [11]. Curves 2 and 3 correspond to
the maximum and average misorientation angles of
cells in Al, respectively [26]. Figure 4b shows the
results of processing these dependences in terms of
dimensionless variables according to Eq. (10). The cal-
culated (solid) curve is seen to agree with the experi-
mental data. Table 3 gives the values of the parameters
ω3, ε3, and ka that control the evolution of the average
misorientation angle of dislocation cells with strain in
the metals under study.

Experimental data regarding the evolution of the
misorientation angle of dislocation blocks with strain in
Ni [2], Al [28], and α-Fe [25] are shown in Fig. 5a.
For blocks, in a first approximation, the relation
ΛB(γ)ωB(γ) = const between the mean block size and the
mean misorientation angle holds true [10, 16]. There-
fore, the evolution of the angle ωB with strain should be
described by a relation similar to Eq. (10):

(11)
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Fig. 4. (a) Strain dependence of the misorientation angle of
dislocation cells ωC for (1) Al 99.995% [26], (2, 3) Al
99.9% [27], and (4) Ni3Fe [11]. (b) The same dependence
plotted in dimensionless variables using Eq. (10).
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where ω5 =  is the equilibrium misorientation
angle of blocks at the end of the fifth hardening stage.
Figure 5b illustrates the results of processing the exper-
imental data from Fig. 5a by using Eq. (11). It is seen
that, apart from the two experimental points corre-
sponding to the highest strains, the points fall on the
calculated (solid) curve. Table 4 lists the values of the
parameters ω5, ε5, and k5 that control the evolution of
the mean misorientation angle of dislocation blocks
with strain in the metals under study. As is the case with
the block sizes (Table 2), the dislocation annihilation
coefficient k5 at high strains is an order of magnitude
smaller than the dislocation annihilation coefficient ka

in the third stage of the strain-hardening curve.

4. ANNIHILATION OF GEOMETRICALLY 
NECESSARY DISLOCATIONS

There can be several causes of the fact that the dis-
location annihilation coefficient at high strains (k5) is an
order of magnitude smaller than the dislocation annihi-
lation coefficient ka in the third stage of the strain-hard-
ening curve (the first stage of dynamic recovery).

In writing kinetic equations (5) and (7), we assumed
that the densities of dislocations of opposite sign in the
crystal are the same. This is true for the case of statisti-
cally random dislocations in the second and third
stages. However, the situation is different in the case of
geometrically necessary dislocations: in local regions,
dislocations of one sign dominate over dislocations of
the other sign. As a consequence, dislocation blocks
where sign-uncompensated dislocations are concen-
trated become strongly misoriented. In the case where
dislocations of one sign dominate, the effective disloca-
tion annihilation coefficient that controls the second
stage of dynamic recovery (the fifth stage of strain
hardening) is obviously smaller than that in the third
hardening stage. If we assume that the ratio of the den-
sities of positive and negative dislocations at large
strains is constant (β = ρ–/ρ+ = const) [10], then, taking
into account the experimental values of β (Tables 2, 4),
we can conclude that the relative fraction of disloca-
tions of opposite sign does not exceed ten percent at the
given strains.

The low values of the annihilation coefficient of
GNDs can also be related to the physical mechanism of
dislocation annihilation that controls the dynamic
recovery of a plastically deformed metal at low and
moderate temperatures. According to [29, 30], the
effective annihilation coefficient of screw dislocations
during dynamic recovery is specified by the formula

(12)

K3bρ5
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pα

---------------- µ
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where ωs is the fraction of screw segments in expanding
dislocation loops, p is the number of operating slip sys-
tems, and τc is the friction stress, which determines the
critical distance for the spontaneous annihilation of
screw dislocations of opposite sign. In the case of bcc
metals at temperatures T < 0.15Tm, the friction stress
corresponds to the Peierls stress [30].

For fcc metals, the stress τc is the stress τIII that is
required for a screw dislocation to go from the slip

Table 3.  Parameters of the evolution of the misorientation
angle of dislocation cells with strain

Metal Reference ω3, deg ε3 = 2/mka ka

Al 99.995% [26] 20.0 0.125 5.3

Al 99.9% 
(Fig. 4a)

[27]

Curve 2 18.3 0.125 5.3

Curve 3 6.7 0.125 5.3

Ni3Fe [11] 3.25 0.24 2.8
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Fig. 5. (a) Strain dependence of the misorientation angle of
dislocation blocks ωB for (1) α-Fe [25], (2) Ni [2], and
(3) Al [28]. (b) The same dependence plotted in dimension-
less variables using Eq. (11).

Table 4.  Parameters of the evolution of the misorientation
angle of dislocation blocks with strain

Metal Refer-
ence ω5, deg ε5 k5 β = k5/ka

Ni 99.99% [2] 26 3.3 0.21 0.08

α-Fe [25] 10 3.2 0.22 –

Al 99% [28] 25 2.2 0.3 0.06
04
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plane to the plane of cross slip to meet a screw disloca-
tion of the opposite sign [31]:

(13)

where τIII(0) is the stress τIII at T = 0, A is a parameter
dependent on the stacking fault energy,  is the plastic-
strain rate,  is the preexponential factor, and k is the
Boltzmann constant. By substituting Eq. (13) into
Eq. (12), we obtain the temperature–rate dependence of
the annihilation coefficient of screw dislocations:

(14)

Analysis of the experimental data indicates [10, 16] that
the ratio of the dislocation annihilation coefficients in
the first and second stages of dynamic recovery (k5/ka)
is temperature-independent. This means that the lower
values of the annihilation coefficient of GNDs k5 = βka

(as compared to the annihilation coefficient of statisti-
cally random dislocations ka) are related to the preexpo-
nential factor k5(0) = βka(0), i.e., to the parameters ωs,
α, p, and τIII(0) in the second formula in Eqs. (14).

Since the dislocation interaction constant α
decreases at high dislocation densities, it cannot be a
factor that decreases the parameter k5(0). The estima-
tions made in [31] show that τIII(0) ≈ 0.1µ/n, where n ≈
20–30 is the number of screw dislocations required in a
pileup to activate the cross slip of the leading disloca-
tion of the pileup. Since ka(0) ~ n, the decrease in the
number of dislocations in pileups in a nano- or submi-
crometer (subgrain) dislocation structure at high strains
can substantially decrease the probability of GND anni-
hilation. It is also known that, at high strains, the num-
ber of operating slip systems p increases; according to
the second relation in Eq. (14), this increase should also
cause the annihilation coefficient of geometrically nec-
essary dislocations to decrease. Finally, if elastic lattice
bends dominate over elastic lattice rotations during
microscopically nonuniform plastic deformation, the
fraction of screw segments in dislocation loops ωs will
decrease, which, according to Eqs. (14), should addi-
tionally decrease the annihilation coefficient of GNDs.

5. DISCUSSION OF THE RESULTS

In conclusion, we will discuss a number of the spe-
cific features of the formation of block dislocation
structures and the related strain hardening. Block struc-
tures are secondary formations; they appear after (and
as a result of) the formation of a cellular dislocation
structure in a material. This circumstance explains why
the strain hardening due to the formation of block struc-
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PH
tures becomes noticeable only at sufficiently high
strains. As was shown above and in [10, 16], this hard-
ening is related to the high GND density in block
boundaries. Such discrete dislocation boundaries can
be boundaries with misorientation angles of less than
15°–30°.

The contribution of block boundaries with misorien-
tation angles above 30° to the strain hardening of a
severely deformed material is less understood. If the
blocks are submicron subgrains with equilibrium
boundaries, it is natural to assume that their contribu-
tion to the hardening of a severely deformed material is

described by the Hall–Petch relation σ ~ , as has
been assumed by many authors. However, the Hall–
Petch hardening is known to control not only the initial
deformation stage (the yield strength), but also to affect
(intensify) the strain hardening of a polycrystalline
material. However, experiments show that, at shear
strains γ > 5, the strain hardening of a material ceases to
occur and the flow stress and microhardness reach sat-
uration [1, 3, 32]. This means that, at such strains, there
exists a dynamic equilibrium between the processes of
dislocation multiplication and annihilation (hardening
and recovery, respectively). Since dislocations are con-
centrated in the boundaries of strongly misoriented
blocks, dynamic equilibrium exists in them as well.

Under this equilibrium, however, the boundaries do
not become equilibrium in the thermodynamic sense, as
is the case after high-temperature annealing. The pres-
ence of sufficiently high local stresses near block
boundaries [14] indicates their disordering. The spatial
disordering of the boundaries manifests itself in the fact
that, in terms of dislocations, they behave as dislocation
obstacles with a dislocation density that is higher than
that in cell boundaries. This circumstance can explain
why the flow stress of a material at high strains is deter-

mined by the relation σ ~  [25, 32] (as in the case
of dislocation-cell boundaries) rather than by the Hall–
Petch relation.

However, if a material with a submicron dislocation
structure is annealed to remove an excess dislocation
density, to order block boundaries, and to subject them
to partial recrystallization, then, during plastic defor-
mation, the annealed material with a submicron or
micron structure undergoes strong strain hardening and
its yield strength (the stress at the initial deformation
stage) varies with grain size according to the Hall–
Petch law [33].
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Abstract—A theoretical model is proposed to describe the emission of partial dislocations by grain boundaries
in nanocrystalline materials during plastic deformation. Partial dislocations are assumed to be emitted during
the motion of grain-boundary disclinations, which are carriers of rotational plastic deformation. The ranges of
the parameters of a defect structure in which the emission of partial dislocations by grain boundaries in nanoc-
rystalline metals are energetically favorable are calculated. It is shown that, as the size of a grain decreases, the
emission of partial dislocations by its boundary becomes more favorable as compared to the emission of perfect
lattice dislocations. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The mechanisms of plastic deformation in nanoc-
rystalline materials (NCMs) have been extensively
studied (see, e.g., [1–17]). Some NCMs have signifi-
cantly higher values of yield strength and ultimate
strength as compared to their coarse-grained analogs;
in addition, they retain high plastic properties [3, 4].
This combination of high mechanical properties of
NCMs is mainly caused by the fact that the dislocation
activity typical of coarse-grained materials is sup-
pressed in nanograins and other mechanisms of plastic
deformation become operative [1, 2, 6–17]. One of
such mechanisms is the experimentally observed emis-
sion of partial Shockley dislocations by grain bound-
aries followed by the formation of stacking faults and
twins in nanocrystalline aluminum [13–15] and copper
[16, 17]. However, the microscopic mechanisms and
basic laws of this emission remain unknown. Computer
simulations [8–12] and experimental observations [12–
17] are insufficient for explaining the characteristic fea-
tures of this process.

Generally speaking, the emission of both partial and
perfect dislocations by grain boundaries is well known
[18, 19]. In particular, the emission of partial Shockley
dislocations by grain boundaries has been established
to account for the heterogeneous nucleation of twin lay-
ers and martensitic plates in some fcc metals [18, 20].
In this case, stress concentrators can be lattice disloca-
tions trapped by grain boundaries. Splitting of these
dislocations into two partial Shockley dislocations, one
of which is retained in the grain boundary and the other
glides far into the grain, is the well-known microscopic
mechanism of emission of partial dislocations in
coarse-grained metals [20]. In NCMs, the density of
ordinary lattice dislocations is low; however, grain
1063-7834/04/4611- $26.00 © 22042
boundaries, as a rule, have nonequilibrium structures
[2, 21–24]. Grain boundaries can pass to a nonequilib-
rium state due to disordered absorption of lattice dislo-
cations during severe plastic deformation used to pro-
duce NCMs [25]. In particular, the nonequilibrium state
manifests itself in sharp changes in the misorientation
angle of a boundary, which can be described in terms of
grain-boundary disclinations [24, 26–28]. Grain-
boundary (and junction) disclinations can be stress con-
centrators and dislocation sources in grain boundaries
in NCMs. In our recent studies [29–31], we considered
the emission of pairs of perfect lattice dislocations by
partial wedge grain-boundary disclinations and showed
that this emission causes effective disclination motion
and, correspondingly, rotational plastic deformation of
NCMs. The emission of partial Shockley dislocations
by grain-boundary disclinations was studied in [32–
34], as applied to the problem of heterogeneous nucle-
ation of the ε martensite in coarse-grained fcc metals
(this nucleation is also sensitive to the stress fields of
immobile dislocations [35]).

The purpose of this work is to develop a theoretical
model to describe the emission of partial Shockley dis-
locations by grain-boundary disclinations in nanocrys-
talline fcc metals. This model is used to calculate and
compare the critical stresses for emission of partial and
perfect dislocations with allowance made for the orien-
tation (the orientation angles of a slip plane and the dis-
clination dipole arm) and scale (the nanograin size) fac-
tors.

2. DISLOCATION EMISSION 
BY GRAIN BOUNDARIES: MODEL

Let us consider a two-dimensional model of an
NCM in which rectilinear positive and negative partial
004 MAIK “Nauka/Interperiodica”
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wedge disclinations having a mean strength of +ω and
–ω, respectively, are distributed over grain boundaries
(Fig. 1). These disclinations simulate sharp changes in
the misorientation angles of tilt boundaries, and their
density can serve as a measure of equilibrium in the
grain-boundary structure of an NCM. In our model, an
ensemble of such grain-boundary disclinations consists
of individual disclination dipoles; that is, we analyze a
nonequilibrium but relatively low-energy disclination
structure, each of whose elements (disclination dipoles)
has a low-energy self-screened defect configuration. It
is assumed that the dipole distribution and orientation
are random and that the average distance between
dipoles is substantially (several times) greater than the
average distance L between disclinations of a dipole
(dipole arm). In such an ensemble, in a rough approxi-
mation, the effective screening length R of the dipole
elastic fields can be half the distance between dipoles
(Fig. 1). The length L is assumed to be approximately
equal to the nanograin size d.

With these assumptions, we can restrict our analysis
to a model of an individual dipole of partial wedge dis-
clinations in considering the emission of a dislocation
by a grain-boundary disclination. In the initial state, the
positive disclination (with strength ω) of the dipole is
assumed to be located in a grain boundary at the center
of an imaginary circle with a radius equal to the dipole
arm L = d. Figure 2 shows the semi-infinite wall of
excess edge grain-boundary dislocations (having a
Burgers vector b and a period l) that forms this discli-
nation. The position of the negative disclination in this
circle is specified by azimuthal angle θ (Fig. 2). Physi-

R

d

–ω

+ω

d

Fig. 1. The model of an NCM having positive and negative
wedge disclinations distributed over grain boundaries. The
dashed lines show the circular region of radius R where the
elastic field of a disclination dipole in a random disclination
ensemble of the dipole type is screened and a circle of
radius d specifying the possible position of the negative dis-
clination near the positive one.
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cally, the negative disclination can be either a grain-
boundary or junction disclination [24, 26–28].

Let the positive disclination emit a partial disloca-
tion under the action of an external shear stress τ. The
microscopic mechanism of such emission in an fcc
crystal can be the splitting of the extreme grain-bound-
ary dislocation with Burgers vector b in the wall into a

partial Shockley dislocation with Burgers vector  =
(a/6)[112] and a difference grain-boundary dislocation

with Burgers vector (b – ), with the  dislocation
gliding deep into the grain. This process can be
described as displacement of the positive disclination
through a distance l (Fig. 2). As a result of the splitting,
a new defect structure forms; it consists of a disclina-
tion dipole having an arm L', an edge difference dislo-
cation with Burgers vector b1, a partial edge dislocation
with Burgers vector b2, and a dipole of partial screw
dislocations with Burgers vectors ±b3. The edge b1 dis-

location and the screw –b3 dislocation form a (b – )
difference dislocation, and the edge b2 dislocation and
the screw +b3 dislocation form a partial Shockley dislo-
cation. The Burgers vector b1 makes an angle π/2 – β
with the plane of the grain boundary. The partial Shock-
ley dislocation moves on its slip plane and forms a
stacking fault of length p behind it. The position of the
slip plane is specified by angle α (Fig. 2). Note that the
external shear stress τ in our model is always oriented
along this plane.

b1'

b1' b1'

b1'

L

L'

d θ

–ω

τβ

b1

–b3

+ω
b

α

G
ra

in
 b

ou
nd

ar
y

b2

b3

Fig. 2. Emission of a partial Shockley dislocation by a grain
boundary when a grain-boundary disclination moves.
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3. CHANGE IN THE ENERGY
OF THE SYSTEM CAUSED BY EMISSION 

OF A SHOCKLEY DISLOCATION

We now consider a change in the total energy of the
defect system caused by the emission of partial Shock-
ley dislocation by a positive grain-boundary disclina-
tion. This process is energetically favorable if the dif-
ference between the total energies (per unit disclination
or dislocation length) after (W2) and before (W1) the
spitting of the b dislocation ∆W = W2 – W1 is negative
(∆W < 0).

The energy of the system in the initial state is the
elastic self-energy of the disclination dipole with arm L
[28]:

(1)

where D = G/[2π(1 – ν)], G is the shear modulus, ν is
the Poisson ratio, and the screening length R is taken to
be equal to kd (where k @ 1).

The total energy of the system in the final state, W2,
can be written as

(2)

where , , , and  are the elastic self-ener-
gies of the disclination dipole, b1 dislocation, b2 dislo-
cation, and the dipole of the ±b3 screw dislocations,
respectively; Ec is the contribution from the dislocation

cores to the energy;  is the elastic interaction

energy between the b1 and b2 edge dislocations; 

and  are the energies of elastic interaction of the
disclination dipole with the b1 and b2 edge dislocations,
respectively; Eγ is the stacking-fault energy; and Eτ is
the energy of interaction of the shear stress τ with the
b2 edge dislocation.

Let us consider the energies entering into Eq. (2).

The elastic energy of the disclination dipole  is

(L  L'), (3)

where L'2 = L2 + l2 + 2Llsinθ. The elastic components
of the self-energy of the b1 and b2 edge dislocations
are [18]

(4)

where i = 1, 2;  ≈ bi is the core radius of the bi edge

dislocation; and  = b2 +  – 2bb2cosα.
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The elastic energy of the dipole of screw disloca-
tions can be calculated as the work done in producing
the dipole in its own stress field and is equal to

(5)

where  ≈ b3 is the core radius of the screw disloca-
tion with Burgers vector b3.

In calculating the contribution of the dislocation
cores to the energy (2), we can take into account only
the cores of the edge and screw components of the glide
partial Shockley dislocation. It is difficult to correctly
estimate the change in the energy of the core of the
grain-boundary dislocation. We assume that this
change is negligible as compared to the core energy of
the lattice partial dislocation and neglect it to a first
approximation. The contribution from the core of the
partial Shockley dislocation to the energy is [18]

(6)

The interaction energies  and  are [31]

(7)

where β = ;

(8)

where

(9)

(10)

The stacking-fault energy Eγ is given by

(11)

where γ is the specific surface stacking-fault energy.

The work Eτ done by the external shear stress τ on
the Shockley dislocation to move it a distance p is

(12)
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Using Eqs. (1)–(12), the change in the total energy
of the system ∆W = W2 – W1 as a result of the emission
of a Shockley dislocation can be found to be

(13)

4. CALCULATION RESULTS

Now, we analyze the change in the energy character-
istics of the defect structure (Fig. 2) formed when the

 partial dislocation travels a distance p into the grain.
As noted above, the splitting of the b grain-boundary
dislocation is energetically favorable under the condi-
tion ∆W < 0. This condition, however, is only a neces-
sary condition for the beginning of motion of the 
dislocation, since it contains no direct information on
the variation in the total system energy with increasing
distance p traveled by this dislocation. To unambigu-
ously determine whether a further displacement of the

 dislocation is energetically favorable, it is necessary
to analyze the variation of ∆W with p. For this analysis,
it is convenient to use the thermodynamic driving force
F, which is defined as [34]

(14)

At F > 0, an increase in the splitting length p is energet-
ically favorable, whereas at F < 0 its decrease is ener-
getically favorable. Thus, both conditions ∆W < 0 and
F > 0 are necessary for the nucleation and development
of the defect structure at hand (Fig. 2).

Let us use nanocrystalline Al as an example. Its
shear modulus G and Poisson ratio ν are 26.5 GPa and
0.34, respectively [18]. For the Burgers vector b of the
grain-boundary dislocation, we take the characteristic
value b = 0.1 nm [19]. The Burgers vector magnitudes
of the partial edge dislocation (b2) and the partial screw
dislocation (b3) can be determined from the crystallog-
raphy of the fcc lattice [18] and are equal to 0.143 and
0.022 nm, respectively. The stacking fault energy is
taken to be γ = 120 mJ/m2; this value corresponds to the
upper limit of the calculated values of γ (from 104 to
122 mJ/m2) and to the lower limit of the experimental
values of γ (from 120 to 142 mJ/m2) in pure Al [8–10].
The strength ω of the disclination dipole is taken to be
ω = 0.1 (≈6°), which is typical of NCMs.
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4.1. Possible Scenarios for the Emission
and Motion of a Shockley Dislocation

We consider the ∆W(p) and F(p) dependences at a
fixed grain size (d = 30 nm) and different values of the
shear stress τ and azimuthal angles α and θ. Our calcu-
lations indicate that, under the necessary condition
∆W(p = b2) < 0, there are ∆W(p) and F(p) curves of four
different types (constructed for τ = 0, 0.25, 0.50, 0.75,
1, and 1.25 GPa in Fig. 3) corresponding to various
combinations of the angles α and θ.

∆W(p) and F(p) curves of the first type are shown in
Figs. 3a and 3b, respectively, for angles α = 10° and θ =
180°. All the ∆W(p) curves are seen to have three inflec-
tion points, which correspond to two minima (at p =
pmin1 and p = pmin2) and one maximum in the F(p)
curves. The ∆W(p) curves can have the first minimum
(in the range τ = 0–1 GPa in Fig. 3) at p ≈ 1 nm and the
second minimum (for τ ≈ 1.1 GPa; it is not shown in
Fig. 3) at p = 10–20 nm or can have no minimum (at τ =
1.25 GPa). These curves can also have one maximum
(for τ = 1 GPa at p ≈ 28 nm) or two maxima (for τ = 1.1
GPa at p ≈ 5 nm and p ≈ 29 nm; not shown in Fig 3).
Naturally, these minima and maxima meet the condi-
tion F = 0 and determine the positions of stable and
unstable equilibrium, respectively, for the glide partial
Shockley dislocation.

∆W(p) and F(p) curves of the second type are shown
in Figs. 3c and 3d, respectively, for angles α = 10° and
θ = 120°. ∆W(p) curves of this type have two inflection
points, which correspond to a minimum at p = pmin1 and
a maximum in the F(p) curves. The ∆W(p) curves can
have only the first minimum (in the range τ = 0–0.5 GPa
in Fig. 3) at ≈1 nm; the first and second minima (for
τ ≈ 0.6 GPa; not shown in Fig. 3) at p ≈ 1 nm and p ≈
10–12 nm, respectively; only the second minimum (for
τ = 0.75 and 1 GPa at p ≈ 15 and 25 nm, respectively);
and no minimum (for τ = 1.25 GPa). Moreover, these
curves can have only one maximum (for τ ≈ 0.6 GPa;
not shown in Fig. 3) at p ≈ 3–4 nm.

∆W(p) and F(p) curves of the third type are shown
in Figs. 3e and 3f, respectively, for angles α = 10° and
θ = 200°). All the ∆W(p) curves have only one inflec-
tion point, which corresponds to a minimum at p = pmin1
in the F(p) curves. The ∆W(p) curves can have one min-
imum (in the range τ = 0–1 GPa) at p ≤ 1 nm or have no
minima (for τ = 1.25 GPa). Maxima can also exist for
relatively high values of τ (in Fig. 3, for τ = 0.75 GPa at
p ≈ 28 nm and for τ = 1 GPa at p ≈ 22 nm). For lower
values of τ, the ∆W(p) curves increase monotonically at
p > 1 nm.

∆W(p) and F(p) curves of the fourth type are shown
in Figs. 3g and 3h, respectively, for angles α = 30° and
θ = 180°. ∆W(p) curves of this type have no inflection
points, which corresponds to the absence of extrema in
the F(p) curves. The ∆W(p) curves either increase
monotonically at relatively low τ (up to 0.5 GPa in
Fig. 3) or reach a maximum and then decrease at high τ.
4
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Fig. 3. Dependences of (a, c, e, g) the energy difference ∆W and (b, d, f, h) the thermodynamic driving force F on the distance p
traveled by an emitted Shockley dislocation for pure Al at a grain size d = 30 nm; applied shear stresses τ = 0, 0.25, 0.50, 0.75, 1,
and 1.25 GPa [from top to bottom for (a, c, e, g) and from bottom to top for (b, d, f, h)]; and various azimuthal angles α and θ: (a,
b) α = 10°, θ = 180°; (c, d) α = 10°, θ = 120°; (e, f) α = 10°, θ = 200°; and (g, h) α = 30°, θ = 180°.
Note an important feature of curves of the first, sec-
ond, and third types. Since the term given by Eq. (12)
(describing the work done by the external stress τ on the
Shockley dislocation to move it) varies linearly with
displacement p, its derivative with respect to p gives a
constant term in the F(p) function. Correspondingly,
the extrema of F(p) (the inflection points in the ∆W(p)
curves) do not change position as τ is varied (Figs. 3a–
3f). As will be shown below, this finding allows us to
easily formulate the conditions for emission and subse-
PH
quent changes in the motion of the Shockley disloca-
tion.

The ∆W(p) and F(p) dependences discussed above
allow us to consider several possible scenarios for the
emission of a partial Shockley dislocation by a grain-
boundary disclination depending on the stress τ applied
in the slip plane and on the azimuthal angles α and θ.
Obviously, these scenarios correspond to the four types
of ∆W(p) and F(p) curves considered above.
YSICS OF THE SOLID STATE      Vol. 46      No. 11      2004
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In the first case (α = 10°, θ = 180°), the grain-bound-
ary dislocation splits and a Shockley dislocation is
emitted even in the absence of stress τ. A Shockley dis-
location is emitted and occupies the position of stable
equilibrium in the vicinity of the boundary. As τ
increases, this position moves gradually to the point p =
pmin1 ≈ 2 nm. At this point, τ reaches a certain critical
value τc1, which meets the condition F(p = pmin1) = 0 (in
Fig. 3b, τc1 ≈ 1.15 GPa), and the Shockley dislocation
again begins to move until it reaches a new position of
stable equilibrium at a point p ≈ 17 nm. As τ increases
further, this position shifts gradually toward larger val-
ues of p. Finally, when τ reaches a second critical value
τc2, which meets the condition F(p = pmin2) = 0 (in
Fig. 3b, τc2 ≈ 1.2 GPa), the Shockley dislocation breaks
away from this equilibrium position and rapidly
reaches the opposite boundary of the grain (the circle of
radius d). Thus, in this scenario, three stable positions
of the emitted Shockley dislocation are possible,
depending on the external stress. The first position is
near the point of splitting, the second is approximately
at the center of the grain, and the third is at the opposite
boundary (which is not covered by our model). Corre-
spondingly, we can distinguish three possible charac-
teristic states of the defect structure in the grain: state I,
in which grain boundaries emit very short (as short as
1 nm) stacking faults; state II, in which these stacking
faults reach the central region of the grain; and state III,
in which the stacking faults pass through the entire
grain.

In the second case (α = 10°, θ = 120°), the system
initially follows the first scenario. The grain-boundary
dislocation splits in the absence of an applied stress τ,
and the Shockley dislocation occupies the first stable
equilibrium position near the boundary. As τ increases,
this equilibrium position shifts gradually from the
boundary toward the point p = pmin1 ≈ 2 nm and reaches
this point at τ = τc1 (in Fig. 3d, τc1 ≈ 0.7 GPa), when the
Shockley dislocation breaks away from the first posi-
tion of stable equilibrium and goes to the second posi-
tion, which is located at point p ≈ 12 nm at this stress.
The Shockley dislocation cannot break away from this
equilibrium position; it can only move gradually with
this position as τ increases further. The dislocation
reaches the opposite grain boundary at a certain critical
stress τ =  (in Fig. 3d,  ≈ 1.1 GPa). This second
critical stress can be found from the condition F(p =
d) = 0. By comparing the critical stresses for the first
and second scenarios, one can see that the second sce-
nario requires substantially lower critical stresses (τc1 ≈
0.7 GPa instead of 1.15 GPa, and  ≈ 1.1 GPa instead
of τc2 ≈ 1.2 GPa). Unlike the first scenario, where the
transition from structure II to structure III occurs in a
jump at τ = τc2, in the second scenario, structure II
transforms into structure III smoothly as the stress τ
reaches .

τc2' τc2'

τc2'

τc2'
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In the third scenario (α = 10°, θ = 200°), the situa-
tion develops according to the first scenario; namely,
the grain-boundary dislocation splits spontaneously
and the Shockley dislocation goes into a state of stable
equilibrium near the boundary. As the applied stress τ
increases, this equilibrium position again shifts and
reaches the point p = pmin1 ≈ 2 nm at τ = τc1 (in Fig. 3f,
τc1 ≈ 1.25 GPa). At this instant of time, the Shockley
dislocation breaks away from the equilibrium position
and reaches the opposite boundary. Thus, in the third
scenario, the second position of stable equilibrium for
the dislocation (in the central zone of the grain) and the
second critical stress do not exist. Correspondingly,
intermediate defect structure II should not form in this
case. Note that the transition from structure I to struc-
ture III requires the highest stress τ among all the
stresses analyzed.

Finally, the fourth case (α = 30°, θ = 180°) corre-
sponds to the situation where the grain-boundary dislo-
cation can split and emit a Shockley dislocation only at
a very high applied stress (τ =  ≈ 2 GPa), which is
determined by the condition F(p = b2) = 0. The Shock-
ley dislocation has no intermediate equilibrium posi-
tions and goes through the entire grain at once. In this
case, defect structure III is immediately formed in the
system.

Thus, when splitting itself is energetically favorable,
i.e., ∆W(p = b2) < 0, the choice of the pair of azimuthal
angles α and θ specifies one of the four possible scenar-
ios of the development of the defect structure in a nan-
ograin of size d = 30 nm. To consider the influence of
the nanograin size d on the situation, we will study the
behavior of the critical stresses, which are the basic
parameters characterizing each scenario.

4.2. Critical Stresses

In the previous subsection, we discussed the critical
stresses that determine the state of the defect structure
when a partial Shockley dislocation is emitted by a
grain-boundary disclination. In general, these stresses
are given by the equation F(p = p*) = 0, which can eas-
ily be solved for the critical stress τc:

(15)

By substituting successively pmin1, pmin2, d, and b2 for

p* in Eq. (15), we find τc1, τc2, , and , respec-
tively.

Using Eq. (15), we plot the dependence of the criti-
cal shear stress τc on the angle θ at α = 10° and d = 10,
20, and 30 nm (Figs. 4a, 4b, 4c, respectively). Here, the
τc(θ) dependences are shown for only the angles θ at
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which the emission of a Shockley dislocation is ener-
getically favorable (i.e., under the condition ∆W(p ≈ b2) <
0). Regions with different defect structures are marked
as I, II, and III. Each defect structure forms in certain
stress τ ranges, whose boundaries are characterized by
three critical stresses: τc1 for the boundaries between
regions I and II, τc2 for the boundaries between regions
II and III, and  for the boundaries between regions I
and III. As noted above, the critical stress , which
specifies the state of the system for the fourth scenario
(see Subsection 4.1), is substantially higher than the
other critical stresses; therefore, it is not shown here.

Figure 4 demonstrates that the τc(θ) diagram sub-
stantially depends on the grain size d. At α = 10° and
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Fig. 4. Dependence of the critical applied stress τc on the
azimuthal angle θ at various grain sizes d: (a) 10, (b) 20, and
(c) 30 nm. Roman numerals mark the following states of the
defect structure in the grain: (I) partial Shockley disloca-
tions are located at a distance p ≤ 2 nm from the emission
points in grain boundaries, (II) partial Shockley dislocations
are located inside the grain, and (III) partial Shockley dislo-
cations reach the opposite grain boundary.
PH
d = 10 nm (Fig. 4a), only defect structures I and III can
exist, and they exist in a relatively narrow θ range (here,
from ≈15° to ≈105°). As the grain size increases, struc-
ture II can appear (Figs. 4b, 4c) and the θ range where
all three structures can exist becomes significantly
wider. On the whole, at low (here, from 0° to ≈65°) and
high θ angles (here, from 355° to 360°), only defect
structures I and III can form. In the angular ranges θ ≈
65°–140° and θ ≈ 160°–190°, all three types of defect
structures can form in the material.

Thus, as follows from Fig. 4, an increase in the grain
size d results in widening of the θ angular range in
which a grain-boundary b dislocation can split to form
a Shockley dislocation. As d increases, the τc(θ) curves
split into branches that correspond to τc1 and to τc2 or

, which leads to the possible formation of all three
types of defect structures in the material. The critical
stresses decrease with increasing d.

4.3. Comparison of the Characteristics of the Emission 
of Partial Shockley Dislocations and Perfect 

Dislocations by Grain Boundaries

Let us assume now that a grain-boundary disloca-
tion splits to form a perfect lattice dislocation with
Burgers vector  rather than a partial Shockley dislo-
cation. We compare the critical shear stresses that are
required for the emission of a perfect and partial dislo-
cation. The calculation of the energy characteristics of
the emission of the perfect  dislocation is similar to
the calculation performed for the  partial dislocation.
We have only to replace the Burgers vector  of the
partial dislocation by the Burgers vector  of the per-
fect dislocation, which is equal to double the Burgers
vector of the edge component of the  partial Shock-
ley dislocation (  = 2b2), as follows from the crystal-
lography of the fcc lattice [18]. Moreover, in the calcu-
lation for the  perfect dislocation, the contributions
from the dipole of screw partial dislocations and from
the stacking fault to the complete energy of the system

disappear. In this case, the critical shear stress  for
the emission of a  perfect dislocation by a grain
boundary can be found to be

(16)

where  = b2 + 4  – 4bb2cosα.

Using Eqs. (15) and (16), we plot the τc(θ) and

(θ) dependences at various angles α and grain sizes
d for the emission of a partial and perfect dislocation,
respectively. These dependences are shown in Fig. 5 for
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a grain size (a, b) d = 5, (c, d) 10, (e, f) 20, and (g, h)
30 nm. Figures 5a, 5c, 5e, and 5g show the τc(θ) (solid

lines) and (θ) (dashed lines) dependences for the
angle α increasing from 0° to 180° in 30° steps. Fig-
ures 5b, 5d, 5f, and 5h show these curves for α increas-
ing from 210° to 330° in the same steps. When plotting
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the τc(θ) and (θ) curves, we do not show the
branching points (for the sake of simplicity) and take

only the critical stresses τc2, , and  at which
defect structure III can form in the material (when the
emitted partial or perfect dislocation reaches the oppo-
site grain boundary). The ranges of admissible θ and α
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angles were determined from the conditions ∆W(p ≈
b2) ≤ 0 for the partial dislocation and ∆W(p ≈ 2b2) ≤ 0
for the perfect dislocation, i.e., from the conditions
under which the defect configurations in question are
energetically favorable. Therefore, the τc(θ) and

(θ) curves have discontinuities for the majority of
the angles α.

Most τc(θ) and (θ) curves shown here lie at very
high stresses, which are virtually unachievable in real
nanocrystalline aluminum. The only purpose was to
demonstrate, first, the dependence of the critical
stresses on the angles θ and α and, second, the relation
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between the quantities τc(θ) and (θ) over the entire
admissible range of these angles. The maximum shear
stresses that can be achieved in nanocrystalline alumi-
num in practice are likely to be 1–1.5 GPa [8–10].

Let us compare the τc(θ) and (θ) dependences at

various grain sizes d. At d = 5 nm, the (θ) curves
are significantly higher than the corresponding τc(θ)
curves for all values of angles α and θ (Figs. 5a, 5b).
This means that, at a grain size d ≤ 5 nm, the emission
of partial Shockley dislocations by grain boundaries
always requires a lower external shear stress than does
the emission of perfect lattice dislocations.

When the grain size increases to 10 nm (Figs. 5c,
5d) at high α angles (α = 330° for curve 12' in Fig. 5d),
there appears a θ range (60°–110°) in which perfect dis-
locations can be emitted at lower shear stresses as com-
pared to the emission of partial dislocations. As the
grain size increases further and becomes equal to 20 nm
(Figs. 5e, 5f), a θ angular range (θ ≈ 10°–120°) where
perfect dislocations should first be emitted appears
even at low α angles (α = 0°–30° for curves 1' and 2' in
Fig. 5e).

A further increase in the grain size to 30 nm
(Figs. 5g, 5h) causes no qualitative changes. Only the θ
angular range where the τc(θ) and (θ) curves lie at
relatively low stresses (up to 2 GPa) becomes gradually
wider and the θ angular range where the τc(θ) and

(θ) curves lie at high stresses (from 2 to 15 GPa)
becomes narrower.

Now, we consider the range of real stresses (up to
≈2 GPa) in more detail for two characteristic cases: d =
5 nm (Fig. 6a) and 30 nm (Figs. 6b, 6c). Figure 6a

shows the τc(θ) curves (the (θ) curves lie above and
do not fall within this range of relatively low stresses)
for an increase in the angle α from 0° to 30° and from
330° to 350° in 10° steps. Figure 6b gives the τc(θ)

(heavy solid and dashed lines) and (θ) depen-
dences (thin solid and dashed lines) for an increase in
the angle α from 0° to 30° in 10° steps. Figure 6c dem-
onstrates the corresponding curves for an increase in
the angle α from 330° to 350° in the same steps. The
solid lines indicate the boundaries between defect
structure I and defect structure II or III. The dashed
lines show the boundaries between defect structures II
and III.

As is seen from Fig. 6a for a grain size d = 5 nm,
only partial Shockley dislocations are emitted at
applied shear stresses τ ≤ 2 GPa, whereas the emission
of perfect dislocations is completely suppressed here.
The ranges of admissible values of the angle α are
rather narrow: emission is possible at α ≈ 30° and
330°–350°. For a grain size d = 30 nm, the emission of
perfect dislocations dominates over almost the entire
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range of angles α and θ (Figs. 6b, 6c), because the
emission of partial dislocations requires application of
higher shear stresses. Note that, at certain combinations

of the angles α and θ, the critical stress  for the
emission of perfect dislocations becomes negative; that
is, spontaneous emission of perfect dislocations can
occur even when a low opposed stress is applied.

4.4. Emission of Extended Dislocations 
by Grain Boundaries

Apart from the emission of single partial Shockley
dislocations and perfect dislocations by grain bound-
aries, extended dislocations can also be emitted. Such a
configuration consists of two partial Shockley disloca-
tions (leading and trailing dislocations) connected by a
stacking-fault strip. Extended dislocations are formed
in two stages. First, a leading partial Shockley disloca-
tion is emitted; it moves away from the emission point
(grain boundary) and forms a stacking fault behind it.
This stage was considered in detail in the previous sec-
tions. In the second stage, the trailing partial Shockley
dislocation (in which the stacking fault extending from
the leading Shockley dislocation terminates) splits off
from the grain boundary.

Our calculations of the change in the system energy
caused by the emission of such split dislocation config-
urations show that there are no ranges of the system
parameters where this emission is energetically favor-
able. Only in the parameter ranges where the emission
of perfect dislocations should be predominant (Subsec-
tion 4.3) does the emission of extended dislocations
also become possible. The equilibrium length of their
splitting (the distance between the leading and trailing
Shockley dislocations) is very small, so the extended
dislocations do not differ from perfect dislocations
either in terms of their energy characteristics or critical
stresses. In the parameter ranges where the emission of
leading partial Shockley dislocations should prevail
(Subsection 4.3), the splitting off of their trailing partial
Shockley dislocations from the boundary is energeti-
cally unfavorable.

5. CONCLUSIONS

It has been shown that the deformation mechanism
that occurs via the emission of partial Shockley dislo-
cations by grain-boundary disclinations can effectively
operate in fcc nanocrystalline materials when an exter-
nal shear stress reaches a certain critical value τc. The
type of defect structure formed is determined by the
external shear stress τ operating in the slip plane of a
Shockley dislocation. At 0 < τ < τc1, a defect structure
of type I forms; it is characterized by the emission of
short stacking faults (as short as 2 nm) at grain bound-
aries. At τc1 ≤ τ < τc2 or τ < , a defect structure of type
II forms; it is characterized by more extended (as com-

τc
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pared to structure I) stacking faults. At τ ≥ τc2 or τ ≥ ,
a defect structure of type III forms; here, stacking faults
intersect entire grains. Note that all types of defect
structures were observed upon two-dimensional [8–10]
and three-dimensional [11, 12] molecular-dynamics
simulations of the plastic deformation of NCMs.

As follows from our model, two characteristic criti-
cal grain sizes (dc1 ≈ 5 nm, dc2 ≈ 30 nm) can be distin-
guished in nanocrystalline aluminum. At d ≤ dc1, grain
boundaries emit partial Shockley dislocations at lower
values of τ as compared to the emission of perfect dis-
locations over the entire range of admissible angles α
and θ. At d ≥ dc2, the emission of perfect dislocations
becomes energetically favorable over the entire range
of admissible angles α and θ (in the range of real τ ≤
1 GPa). In grains of intermediate size (at dc1 < d < dc2),
both partial and perfect dislocations can be emitted,
depending on the angles α and θ.
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Abstract—In terms of two-dimensional dislocation–disclination dynamics, a theoretical model is developed to
describe the decay of a low-angle tilt boundary in a deformed nanocrystalline material under the action of an
externally applied elastic stress and of the elastic field of a neighboring decayed boundary. The critical external
stresses are calculated at which the boundary decays and the dislocations making up this boundary either are
trapped by the boundary that decayed earlier or break away from both boundaries. The decay of a low-angle tilt
boundary is shown to result in a substantial decrease in the critical decay stresses for the neighboring bound-
aries, which can cause an avalanche-like chain decay of low-angle boundaries yielding high-density ensembles
of mobile dislocations capable of carrying substantial plastic deformations and of forming shear bands in
deformed nanocrystalline materials. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Nanocrystalline materials (NCMs) have unique
mechanical properties, whose mechanisms of forma-
tion are being extensively studied [1–18]. Many NCMs
are very hard and brittle [19], whereas others can be
subjected to superplastic deformation [20–24]. The
characteristic feature of plastic deformation of many
NCMs is its strong nonuniformity: a plastic flow is
localized in shear bands [25]. On the whole, the mech-
anisms of plastic and superplastic deformation in
NCMs can be divided into ordinary dislocation glide
[1–4], diffusion creep along grain boundaries [5–9] and
triple junctions [6], rotation deformation [7–10], grain-
boundary sliding [10–14], and twinning [15]. The acti-
vation of these mechanisms is substantially determined
by the grain size d in NCMs [18].

In this work, we consider plastically deformable
NCMs with a relatively large grain size (100 ≥ d ≥
30 nm). In such NCMs, intragrain dislocation glide is
predominant. To discuss the specific features of plastic
deformation in these materials, it is necessary to con-
sider dislocation sources in them. Indeed, the operation
of ordinary Frank–Read dislocation sources can be hin-
dered or even suppressed because of a small grain size
and the strong effect of grain boundaries [26]. Under
these conditions, alternative sources of lattice disloca-
tions can be grain boundaries [9, 10], whose volume
fraction in NCMs is very high. The theoretical models
developed in [9, 10] assume that the emission of lattice
dislocations from high-angle grain boundaries could be
controlled by the motion and transformation of grain-
boundary dislocations and disclinations. However,
these processes are too slow to form an ensemble of
1063-7834/04/4611- $26.00 © 22053
mobile dislocations having a high density and thus
being capable of carrying severe plastic deformation in
shear bands. At the same time, nanocrystalline metals
have a significant amount of low-angle boundaries
formed by lattice dislocations [27]. Low-angle bound-
aries are known to be able to undergo substantial rear-
rangement under the action of internal and external
stresses in coarse-grained polycrystals [28–30]. It is
natural to assume that they also undergo similar trans-
formations in NCMs.

In [31], we proposed a model to describe the decay
of a single low-angle tilt boundary under the action of
an applied stress. The trajectories of glide edge disloca-
tions making up a low-angle tilt boundary in the fields
of internal and external elastic stresses were studied in
the context of two-dimensional dislocation–disclina-
tion dynamics similar to that considered in [32]. The
critical external stress τc for the decay of such a bound-
ary was calculated, and this decay was found to result
in the formation of an ensemble of mobile lattices dis-
locations, which can carry substantial plastic deforma-
tion [31].

In this work, we develop the model described in
[31]; namely, we study the decay of a low-angle tilt
boundary in the elastic-stress field of a decayed neigh-
boring boundary. It is shown that the decay of the
former boundary can lead to an avalanche-like chain
decay of the neighboring low-angle boundaries, which
should cause substantial changes in the shape and size
of grains in shear bands in NCMs (grains become
extended along the direction of development of the
shear bands). These changes were experimentally
observed in [33].
004 MAIK “Nauka/Interperiodica”



 

2054

        

BOBYLEV 

 

et al

 

.

                                                                                                                                                                         
2. MODEL FOR THE DECAY 
OF A LOW-ANGLE TILT BOUNDARY

As was shown in [31], the decay of a low-angle tilt
boundary is accompanied by the formation of grain-
boundary junctions with uncompensated misorienta-
tion angles, which are sources of elastic stresses of the
disclination-dipole type. Indeed, after the dislocations
making up a tilt boundary move far away from its initial
plane, two partial wedge disclinations having opposite
signs and strengths ±ωl (where ωl is the misorientation
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Fig. 1. Possible positions of low-angle tilt boundary KL
with a misorientation angle ω near decayed low-angle tilt
boundary AB with a misorientation angle ωl in the case
when the dislocations of decayed boundary AB move away
from boundary KL.
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Fig. 2. Interaction of the dislocations from decayed bound-
ary AB (open symbols) with the dislocations of neighboring
boundary KL.
PH
angle of the initial tilt boundary, AB in Fig. 1) form in
the neighboring, former triple grain-boundary junc-
tions. This disclination dipole interacts elastically with
the surrounding defects. Depending on its position, the
dipole either attracts or repulses the lattice dislocations
making up the neighboring low-angle boundaries.
Obviously, this interaction should strongly affect the
decay of these boundaries.

Figure 1 shows possible positions of decayed
boundary AB (which is represented in the form of a
dipole of disclinations having strengths ±ωl and sepa-
rated by a distance dl) with respect to a probe low-angle
boundary KL with a misorientation angle ω. The dislo-
cations formed during the decay of boundary AB move
away from boundary KL and do not participate in the
decay of boundary KL. In the case shown in Fig. 1a, dis-
clination dipole AB attracts the lattice dislocations of
boundary KL, thereby facilitating its decay (the critical
decay stress τc decreases). This critical stress also
decreases in the case shown in Fig. 1b. Here, disclina-
tion dipole AB repulses the dislocations; however, since
this dipole is located on the other side of boundary KL,
its stress field again facilitates the decay of this
boundary.

Radically different kinds of defect configurations are
shown in Fig. 2. Here, the dislocations from decayed
boundary AB (marked by open symbols) approach
boundary KL and take part in its decay. Figure 2a shows
the situation where the dislocations and both bound-
aries opposite in sign interact with each other. Obvi-
ously, some dislocations should annihilate. This would
result in a decrease in the dislocation density in bound-
ary KL, i.e., in a decrease in its misorientation angle
(ω' < ω) and, hence, a decrease in the critical stress τc.
In the right-hand side of Fig. 2a, this is shown as an
increase in the flexure of boundary KL. Note that only
the case of ωl < ω is of interest, since a stress that breaks
a boundary with a misorientation angle ωl will, of
course, break a boundary with a lower misorientation
angle. Thus, the number of dislocations that made up
decayed boundary AB should be smaller than the num-
ber of dislocations in boundary KL. Therefore, the dis-
locations of boundary AB cannot annihilate completely
with the dislocations of boundary KL.

Figure 2b shows the interaction of the dislocations
of both boundaries when they have the same sign. The
dislocations of decayed boundary AB abut against
boundary KL and either increase its flexure (Fig. 2b,
right-hand side) or break it when their amount is suffi-
ciently high (ωl ≈ ω). In any case, we can also conclude
that the dislocations of the decayed boundary cause a
decrease in the critical stress τc for the decay of the
neighboring boundary.

Thus, the disintegration of a low-angle grain bound-
ary should lead to a decrease in the critical stresses for
the decay of the neighboring boundaries.
YSICS OF THE SOLID STATE      Vol. 46      No. 11      2004
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We now go from a qualitative analysis of the decay
of low-angle boundaries to its quantitative description.
We estimate the change in the critical stress τc for the
decay of a low-angle boundary in the presence of a
neighboring decayed boundary using the configuration
shown in Fig. 1a as an example. Let dipole AB of wedge
disclinations having strengths ±ωl and separated by a
distance dl be located at a distance l from dislocation
wall KL consisting of N lattice dislocations. To analyze
the decay dynamics of boundary KL, we apply the
approach developed in [31] to describe the decay of a
single low-angle boundary. In the context of this
approach, the glide of the lattice dislocations making
up the low-angle boundary is described by the equa-
tions of motion

(1)

where xi is the coordinate of the ith dislocation in the
boundary, m = ρb2/2 is the effective dislocation mass
[34], ρ is the material density, b is the Burgers vector of
a lattice dislocation, β is the dynamic-friction coeffi-
cient of the lattice (the coefficient of viscosity), and Fi

is the elastic force acting on the ith dislocation. The
force Fi is specified by the superposition of the external
shear stress τ and the shear-stress fields of the neighbor-
ing dislocations [35] and disclination dipoles AB and
KL [36]. This force can be written as

(2)

where σxy = Gbx(x2 – y2)/(2π(1 – ν)(x2 + y2)2) is the
shear component of the stress tensor of an edge dislo-
cation, G is the shear modulus, and ν is the Poisson
ratio.

3. CRITICAL DECAY STRESSES 
OF A LOW-ANGLE BOUNDARY

Equations (1), with the right-hand side defined by
Eq. (2), were solved numerically for nanocrystalline
iron as an example at various values of the parameters
ωl, dl, and l. For iron, the parameters were taken to be
the following: G = 82 GPa, ν = 0.29, the lattice param-
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eter is a = 2.87 Å, the typical Burgers vector is
b = (a/2)〈111〉  ≈ 2.5 Å, ρ = 7800 kg m–3, m = 2.4 ×
10−16 kg m–1, and β ≈ 5 × 10–5 Pa s [34]. Figure 3 shows
the calculated dependence of the critical stress τc for the
decay of boundary KL on the angle of its initial misori-
entation ω for the case of l = 50 nm and dl = d. The
uppermost curve corresponds to the τc(ω) dependence
at ωl = 0, i.e., in the absence of disclination dipole AB.
Then, from top to bottom, we plot the curves that show
how the τc(ω) dependence varies with the strength of
dipole AB at ωl = 1°, 3°, and 5° (these curves are plotted
in the range ωl ≤ ω ≤ 10°). As was expected, the critical
stress τc decreases with increasing ωl, and this decrease
can be rather significant at certain values of the param-
eters ω and ωl. For example, at ω = 8.5° and ωl = 5°, the
critical stress τc decreases by approximately 40% as
compared to the case of ωl = 0.

It should be noted that there is an important distinc-
tion between the model of the decay of a low-angle
boundary in the field of a decayed boundary and the
model of the decay of a single boundary developed in
[31]. Indeed, in the latter case, the critical decay stress
is unambiguously defined as the stress at which dislo-
cations break away irreversibly from the boundary and
go to infinity (to the outer boundary of the crystal),
whereas a more complex situation may occur in the
model considered in this paper. In the field of an applied
stress, the dislocations of boundary KL can reach the
line of decayed boundary AB rather than go to infinity.
This situation can naturally be treated as a transition of
dislocations from one boundary to another, since the
dislocations no longer belong to their parent boundary
KL. The stress at which this situation is realized can be
taken as the critical stress for the decay of boundary KL.
We will call it the first critical stress τc1. By the second

2.5

2.0

1.5

1.0

0.5

0 2 4 6 8 10
ω, deg

τc, GPa

Fig. 3. Dependences of the critical stress τc for the decay of
low-angle boundary KL on its misorientation angle ω at var-
ious values of the misorientation angle ωl of decayed
boundary AB: ωl = 0°, 1°, 3°, and 5° (from top to bottom).
4
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critical stress τc2 will be meant the stress at which dis-
locations also break away from the second boundary
(here, boundary AB) and go to infinity. It is important
that τc2 exists always, whereas τc1 appears only at cer-
tain values of the parameters of the system. As follows
from the definitions of τc1 and τc2, τc1 is always lower
than τc2. In the situations where both τc1 and τc2 exist,
by the critical stress will be meant the lowest quantity,
namely, τc1.

Detailed calculations show that the first critical
stress τc1 is realized when either the strengths of dipoles
AB and KL are similar (ω ≈ ωl) or the dipoles are
located close to each other (l ≈ d). At high values of ω,
the transition from the first to second critical stress
almost always occurs, which is clearly seen from the
curves shown in Fig. 3. The breaks in the curves are
related to this transition. These curves also indicate
that, contrary to the second critical stress τc2, the first
critical stress τc1 (the curve segments on the left of the
breaks) only weakly depends on ωl (the curves for dif-
ferent values of ωl almost coincide in these segments).

If dipoles AB and KL are located close to each other,
the first critical stress τc1 is realized over the whole ω
range. This situation takes place when, for example, l =
d, ωl = 3°, and dl = d. Figure 4 shows the τc1(ω) and
τc2(ω) curves. The second critical stress τc2 turns out to
be even higher than the critical stress for the decay of a
single boundary (Fig. 4, dashed line). This can be
explained by the fact that, at the instant of breakaway
from the strongly bent wall KL, its dislocations are on
the right-hand side of decayed boundary AB; therefore,
the boundary elastic field hinders rather than facilitates
this breakaway.

Now, let us consider the dependence of the critical
stress on the length dl of decayed boundary AB. In this
case, it is of no importance which of the critical stresses

2.5

2.0

1.5

1.0

0.5

4 6 8 10
ω, deg

τc, GPa

Fig. 4. Dependences of the first (τc1) and second (τc2) criti-
cal decay stresses of low-angle boundary KL on its misori-
entation angle ω (the lower and upper solid lines, respec-
tively) at ωl = 3°, dl = d, and l = d. The dashed line shows
the τc(ω) dependence for the decay of a single boundary.
PH
(τc1 or τc2) is realized, since the critical stress τc is the
lowest of them. In the case analyzed above, where l = d
and dl = d, the maximum of the shear stress field of
decayed boundary AB is exactly at the center of bound-
ary KL [36]. If dl decreases or increases at fixed d and l,
this maximum shifts to the right or to the left of bound-
ary KL, respectively, which would increase τc. This
conclusion is fully confirmed by calculations. Figure 5
shows the τc(ω) dependence for three cases: dl/d = 0.5,
1, and 1.5 at l = d and ωl = 5°. For the configurations
with dl/d = 0.5 and 1.5, the critical stress τc increases,
with the increase in the latter case being greater. This
behavior is explained by the fact that, in the former
case, the maximum of the field of decayed boundary AB
shifts to the right and dislocations can reach it, whereas
in the latter case this maximum shifts to the left and the
field of decayed boundary AB weakens in the zone
between boundaries AB and KL.

4. CONCLUSIONS

This study of the effect of a decayed grain boundary
on the decay of a low-angle tilt boundary has shown
that, in general, the presence of a decayed boundary
results in a decrease in the critical decay stresses of the
neighboring boundaries. This decrease can serve as a
prerequisite for the chain decay of low-angle bound-
aries to form high-density ensembles of mobile disloca-
tions, which can carry substantial plastic deformation
in shear bands in NCMs.
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Abstract—Laser interferometry is used to study micrometer-scale creep-strain nonuniformities (jumps) that
occur during compression of metals (Ag, Al, Bi, Cu, Pb, Sn, Zn) and LiF : Mg crystals. The strain rate is found
to vary periodically. The average magnitude of deformation L over one period and the variation of L with the
total strain are determined. Correlations are found to exist between L and the Mg content in the LiF crystals,
between L and the grain size in the metals, and between the magnitude of small jumps and the Burgers vector
in the metals. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The concepts of a multilevel character of deforma-
tion and its localization at different levels have been
developed in many works [1–4]. However, in the tradi-
tional techniques of recording deformation, its micro-
scopic nonuniformity is often averaged, since the
recording precision does not allow one to resolve small-
scale local displacements. One of the manifestations of
deformation localization during creep is its nonunifor-
mity (serrated creep), which was detected when the
strain rate changed during compression of amorphous
and amorphous–crystalline polymers for small changes
in the sample length [5–7]. A new method of recording
deformation with a laser interferometer and precision
measurement of the strain rate and its change make it
possible to study deformation jumps on the micrometer
scale. A characteristic feature of the deformation of
polymers is alternation of creep segments with rela-
tively high and low rates. Experiments show that the
periods of creep instability measured in terms of defor-
mation units (the jump length) correlate with the size of
inhomogeneities in the polymer structure on the
micrometer scale [6–9]. It was shown in [10, 11] that
serrated creep is characteristic of different types of sol-
ids; however, the nature of creep nonuniformity in met-
als and crystals has not been studied.

In this work, we study the effect of different struc-
tural factors on the deformation nonuniformity in solids
using the techniques applied for polymers in [5–9]. Par-
ticular emphasis was placed on the dependence of the
deformation nonuniformity on the grain size, using tin,
lead, and microcrystalline aluminum as an example. We
also study the effect of preliminary deformation, impu-
rities, and the type of crystal lattice on the average mag-
nitude of micrometer-scale deformation jumps.
1063-7834/04/4611- $26.00 © 22058
2. EXPERIMENTAL

We studied creep in Ag, Al, Bi, Cu, Pb, Sn, Zn, and
LiF subjected to constant compressive stresses at
290 K. Aluminum, tin, lead, and lithium fluoride were
studied in more detail. Aluminum samples were pre-
pared from single crystals and microcrystalline Al. The
latter was produced by multiple equal-channel angular
pressing (ECAP). The grain size after ECAP was 1–
2 µm. The grain size in tin (β modification) was 50–
70 µm, and that in lead was 90–110 µm.

The LiF single crystals differed in Mg impurity con-
centration (c = 0.0024, 0.007, 0.03 wt %). The single
crystals were grown by the Kyropoulos method,
annealed at 1020 K for 48 h, and then cooled at a rate
of 5 K/h. The crystals were cleaved along the {100}
planes to produce 4 × 4 × 10-mm samples. Metallic
samples were 3 mm in diameter and 6 mm in height.

The variation of deformation with time was
recorded with a laser interferometer; one of its mirrors
was connected rigidly with a movable grip to track the
deformation of a sample. The creep interferogram con-
sists of sequential beats each of which corresponds to a
deformation increment of 0.3 µm [5–9]. The strain rate
is determined from the formula  = λ0ν/2l0, where λ0 =
0.63 µm is the laser wavelength, ν is the beat frequency
in the interferogram, and l0 is the initial sample length.
The recording technique makes it possible to measure
the strain rate with an accuracy of 1–5% when deforma-
tion changes by 0.15–0.30 µm; that is, one can study
deformation kinetics on the micrometer and submi-
crometer scales.

To reveal periodic changes in the strain rate (defor-
mation jumps), the rate was measured in each sequen-
tial beat in an interferogram and the dependence of the
strain rate  on the deformation increment (which was

ε̇

ε̇
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a multiple of 0.3 µm) was plotted (Figs. 1, 2). The mea-
surements are related to short deformation segments at
different time stages of creep. The deformation periods
(measured in micrometers) of oscillations in the strain
rate (Figs. 1, 2) were determined as L = 0.3n, where n
is the number of beats over a given period (the number
of points), and the average values of L were calculated,
as a rule, for several sequential periods at a given pre-
liminary macrodeformation.

Depending on the structure and deformation stage,
the strain-rate oscillations can have various shapes. We
distinguish small deformation jumps Lmin, which are
usually equal to 0.6–1.2 µm; medium jumps Lmed,
which are equal to several micrometers and consist of
small simple jumps); and large jumps Lmax, equal to
tens of micrometers and consisting of small and
medium jumps.

3. RESULTS AND DISCUSSION

3.1. Correlation between the Jump Length
and the Grain Size

Figure 1 shows examples of changes in the strain
rate during creep in Al single crystals and in polycrys-
tals with fine (1–2 µm) grains. The measurements were
performed both in the initial creep stage (at a strain of
3–5%) and after significant deformation (26–35%).
Preliminary deformation of the microcrystalline alumi-
num (26%) was accomplished on a universal Instron
1342 machine at loads exceeding the macroscopic yield
stress σy = 440 MPa. The measured average magnitudes
of small creep deformation jumps are given in Table 1.

Microcrystalline Al samples were tested in the creep
mode at stresses of 30–200 MPa. The creep rate at these
stresses was low (on the order of 10–7 s–1). At a stress of
200 MPa, the initial strain was 3% and the creep strain
after 100 min was 0.1%. Creep-rate oscillations corre-
spond to the period Lmin = 1.2 µm for very low stresses
and 1.7 µm for higher stresses, approximately equal to
half the yield stress. As the initial deformation was
increased to 26%, the average deformation jump
remained almost unchanged.1 This value of Lmin at high
stresses (200 MPa) virtually coincides with the grain
size in Al. It is likely that creep starts in coarser grains
whose size is close to 2 µm and that the dislocation path
length is equal to the grain size. In this case, a correla-
tion between the grain size and the jump magnitude
(and even their approximate equality for the corre-
sponding calculated dislocation density) can exist. A
lower value of Lmin at very low stresses can indicate that
deformation occurs either in finer grains or in the same
coarse grains that are operative at high stresses, but

1 The absence of the effect of preliminary deformation on the jump
magnitude is likely due to the fact that an additional deformation
of 26% is negligibly small as compared to the deformation pro-
duced by ECAP.
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these stresses are insufficient to move a dislocation
through the whole grain.

As compared to microcrystalline Al, the creep rate
in Al single crystals is two orders of magnitude higher,
the average value of Lmin is smaller, and Lmin decreases
with increasing strain (Table 1). Based on the relation
between Lmin and the dislocation path length, we can
assume that barriers for dislocation motion are created
by the deformation itself (e.g., during the intersection
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Fig. 1. Dependence of the creep rate in (a) single-crystal
and (b) microcrystalline Al on the deformation increment.
The preliminary strain ε is (a) 35 and (b) 3%. The stress σ
is (a) 40 and (b) 200 MPa. The mean oscillation period L of
the creep rate is (a) 0.8 and (b) 1.7 µm.
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Fig. 2. Creep curve of β-Sn with a grain size of 50–70 µm
at a stress σ = 10 MPa. The successive strain rate periods
correspond to Lmax = 30, 60, 80, and 80 µm. εmax = Lmax/l0,
where l0 is the initial sample length.
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of dislocations belonging to different slip systems) and
that the interbarrier distance decreases with increasing
strain.

Figure 2 shows a creep curve for polycrystalline tin
with a grain size of 50–70 µm. In this case, we did not
plot the curve in the rate–strain coordinates, since small
jumps could blur the large-period pattern. As seen from
Fig. 2, the large periods of strain-rate oscillations are
clearly visible in the ordinary strain–time curve for
creep. Thus, deformation develops with periodic accel-
erations and decelerations and the rate oscillation peri-
ods are equal to tens of micrometers (for example, four
sequentially measured deformation jumps are 30–60–

Table 1.  Deformation jumps in materials with different
grain sizes subjected to different deformations

Material Strain, % Lmin, 
µm

Lmed, 
µm

Lmax, 
µm

Al (single 
crystal)

3 1.1

20 0.9

35 0.8

Al (after 
ECAP, grain 
size 1–2 µm)

3 (σ = 30 MPa) 1.2

3 (σ = 200 MPa) 1.7

26* (σ = 200 MPa) 1.6

Pb (grain size 
90–110 µm

3.5 1.3

58 0.9 2.7

3.5–5.1 100

120

Sn (grain size 
50–70 µm)

1.0 1.4 4.2

4.8

4.0 1.2 4.5

2.1

1.8

0.5–4.6 30

60

80

80

* Preliminary deformation was performed at stresses exceeding
the yield stress σy = 440 MPa.

Table 2.  Comparison of the deformation jump L with the
mean distance d between impurity atoms in a slip plane for
LiF + Mg (the average jumps L are measured at stresses cor-
responding to the yield stress for each crystal (7, 12, 42 MPa)
and strains of 2–5%)

Mg concentration, wt % L, µm d, nm

0.0024 1.0–1.5 95

0.007 0.9–1.3 56

0.03 0.8–1.1 27
PH
80–80 µm), which corresponds to the coarse-grain
sizes in Sn (Table 1).

Similar data were obtained for coarse-grained lead
with a grain size of about 100 µm. As seen from Table 1,
Lmax for Pb corresponds to the coarse-grain sizes. Strain
rate–strain curves plotted for sequential strain incre-
ments of 0.3 µm show that micrometer-scale jumps are
typical of the creep in Sn and Pb, as well as in other
metals, with small jumps transforming into larger ones.
The data from Figs. 1 and 2 and Table 1 prove that the
magnitude of jumps corresponds to the size of struc-
tural inhomogeneities characteristic of a material.

3.2. Effect of Impurities on Serrated Deformation 
of LiF Crystals

When analyzing the creep in LiF crystals, the
authors of [10] considered the deviations of experimen-
tal values of the strain rate from a logarithmically
decaying curve. The authors believed that, because of
the high measurement accuracy, the experimental error
did not contribute to the calculated rate deviation.
Therefore, the mean deviation from the true strain rate
at different times (or the mean strain deviation calcu-
lated using the known law) can be a characteristic of the
time creep nonuniformity. However, the authors of [10]
did not take into account that the simple logarithmic
creep law is approximate and that the application of a
more complex law would result in changes in the char-
acteristic of deformation nonuniformity. The calcula-
tion of the nonuniformity performed in this work is not
related to any creep law. Moreover, we detect deforma-
tion nonuniformity (the step height in a stress–strain
curve) rather than time nonuniformity.

In Table 2, the results of measuring the jump defor-
mation are compared with the mean distance d between
Mg impurity atoms in a slip plane, which is determined
by the impurity concentration. Both characteristics are
seen to decrease with increasing impurity concentra-
tion. For the time nonuniformity of deformation (see
[10]), the relation between its value and the impurity
concentration would be inverse, which is mainly due to
the fact that the yield stress and the flow stress increase
with the Mg concentration [12]. Hence, the time and
strain nonuniformities of deformation behave differ-
ently upon alloying. This finding can be interpreted as
follows: at a low Mg concentration (Mg atoms play the
role of barriers), the dislocation path lengths are large;
therefore, the deformation jumps L are large and rate
changes in the jumps are small [10]. On the contrary, at
a high Mg concentration, rate changes in the jumps are
large and occur more frequently, which results in a
greater scatter of the data [10] and a smaller period L
(Table 2). Thus, the time nonuniformity of deformation
on the mesoscale correlates with the force characteris-
tic (the yield stress or the flow stress) and the deforma-
tion nonuniformity correlates with the geometrical
(structural) characteristic, (the impurity interatomic
distance d).
YSICS OF THE SOLID STATE      Vol. 46      No. 11      2004
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Assuming that the basic deformation mechanism in
this stage is the broadening of slip bands [12], we can
estimate the number of broadening slip bands that form
a step in the creep curve. The axial strain in a jump L

can be expressed as L = mγs/ , where m is the number
of the bands, γ is the shear in the band, and s is the aver-
age displacement of the band edge in the direction nor-
mal to the slip plane (which can be taken to be equal to
d for LiF). Substituting the values given in Table 2 and
taking into account that a slip band can grow from both
sides, we obtain m = 150–250. This value corresponds
to an interband distance of 40–70 µm, which is admis-
sible for this level of deformation.

Therefore, as in Subsection 3.1, L allows us to dis-
tinguish the basic structural characteristic of deforma-
tion on the mesoscale, namely, the displacement of an
active deformation element. The scatter and large oscil-
lation of this quantity during deformation (Table 2) are
likely related to the random character of impurity dis-
tributions in the crystals.

3.3. Serrated Creep in Metals

Figure 3 shows an example of the variation of the
creep rate in Pb with the deformation increment ∆l on
the micrometer scale. The total strain at which the –
∆l curve is plotted is given in the figure caption. Each
point corresponds to an increment of deformation of
0.3 µm (0.005%). Similar curves were plotted for all
the materials under study for different creep segments.
It is seen from Fig. 3 and Table 1 that, as the strain
increases, the sizes of small jumps Lmin can change and,
simultaneously, more complex jumps (Lmed, Lmax) can
form from the small ones.

Let us consider the relations between the magnitude
of small jumps Lmin at the initial deformation stage and
the characteristic distances in the structure of the mate-
rial. Since all the materials were annealed, the disloca-
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Fig. 3. Dependence of the creep rate of lead on the deforma-
tion increment on the micrometer scale. The total initial
strain is ε = 58%, the stress is σ = 9 MPa, and the creep-rate
oscillation periods are Lmin = 0.9 µm and Lmed = 2.7 µm.
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tion density in them can be assumed to be approxi-
mately the same in the strain range under study. There-
fore, we can suppose that the mean path lengths of
dislocations ld in the initial stage are also approximately
the same; in this case, the characteristic deformation
ε = ρbld, to which the jump magnitude Lmin is com-
pared, should be proportional to the Burgers vector
magnitude b.

As follows from Fig. 4, the values of Lmin and b do
correlate with each other: the greater b is, the larger the
deformation jumps. If Lmin and b are measured in the
same length units (e.g., micrometers), the straight line
in Fig. 4 can be described as Lmin = 0.6 + 1400b. Here,
0.6 µm is obviously a characteristic of the device (its
limiting resolution) and a small jump corresponds to an
elementary deformation act on the mesoscale.

4. CONCLUSIONS

Thus, the deformation jumps (nonuniformities),
which indicate cooperative motion of interrelated struc-
tural defects, are caused by ordered formations at dif-
ferent structural levels. We can state that, if repeated
morphological inhomogeneities exist or are created by
deformation, jumps on the same scale should appear in
creep and that, vice versa, deformation jumps indicate
the presence of ordered structural elements of a size
similar to that of the jumps. For example, small jumps
observed in metals and crystals indicate the existence
of a characteristic deformation size of 1 µm and large
jumps correspond to grain sizes. There can also occur
smaller jumps that cannot be resolved by this technique
and well-known macroscopic jumps that result from
macroscopic localization of deformation [13, 14].

As noted above, the jumps characterize not only ini-
tial inhomogeneities but also the structural evolution
during deformation. Hence, the experiments performed
on the crystals and metals confirm the conclusion
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Fig. 4. Relation between the average length Lmin of simple
jumps and the Burgers vector for various materials under
similar deformation conditions.
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drawn for polymers: the inhomogeneity of a medium is
the cause of jumplike cooperative displacements [9,
11]. The jump characteristics can be used to estimate
the structural parameters of solids that determine defor-
mation and to track their variation during structural
evolution.
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Abstract—Tunneling microscopy is used to study the geometry and dynamics of slip lines on the surface of
cold-rolled polished copper during steady-state creep at room temperature. Dislocation sources in a 200- to
300-nm-thick surface layer are found to be initially activated under stresses. As a result, a large number of lines
are formed whose lengths vary from several tens to several hundreds of nanometers. Then, dislocation sources
located in deeper layers become operative, which results in the formation of slip lines as long as ≈8–9 µm. The
formation, evolution, and disappearance of slip lines are caused by the motion of bands having a width of sev-
eral nanometers. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Dislocation motion along several slip planes is
known to result in a deformation relief on the crystal
surface. Studies of the dynamics of relief formation in
the nanometer range have shown that, during plastic
deformation of metals (Cu, Au, Mo, etc.), defects in the
form of individual pits, whose walls are parallel to dis-
location slip lines, form on their surfaces at the begin-
ning of steady-state creep [1–6]. As the strain increases,
slip lines form on the surfaces [1]. This work is a con-
tinuation of a series of such studies. In this paper, we
describe the results of studying the formation and evo-
lution of slip lines.

2. EXPERIMENTAL

The surface profiles of commercial 60-µm-thick
cold-rolled copper (99.96% purity) ribbons were stud-
ied. Strips 6-mm wide (parallel to the rolling axis) were
cut from the ribbons. To localize the deformation zone,
half-round notches 1.5 mm in radius were made at the
edges of the strips. The gauge length of a sample was
12 mm. For loading, we used a spring device [1]
designed at the laboratory; it was fixed on the micro-
scopic stage of an RTP-1 scanning tunneling profilome-
ter [1].

In this profilometer, a measuring tip can travel no
more than 1 µm normally to the surface to be studied.
To remove microasperities higher than 1 µm, the sam-
ples were mirror-polished with a GOI paste before
measurements. To remove the rest of the paste and
other impurities from the surface, the samples were
rinsed in acetone and alcohol. The chemical composi-
tion of the sample surfaces before and after measure-
ments was controlled with an LH-10 Auger spectrome-
1063-7834/04/4611- $26.00 © 22063
ter. The sample surfaces were found to be covered with
a ≈2-nm-thick oxide layer.

The measurement window was 10 × 10 µm, and the
time of recording a complete topogram was about
40 min. Because of creep, the area under study moves
gradually with respect to the profilometer tip. In order
to obtain a high-quality image of the surface under such
conditions, the absolute displacement of the surface in
recording must be at least 10–100 times smaller than
the linear dimensions of the area under study; that is, it
must be smaller than ≈100 nm/h. The low creep rate
caused the experiments to be long in duration, covering
up to 30 days.

To minimize the distortions induced by the residual
deformation of piezoengines and the measuring tip, we
took periodic breaks in the experiments to control the
quality of surface images by recording a test grid. To
prevent the formation of an electrolyte on the sample
surface, the measuring device with the piezoengines
was covered by a polyurethane cap, through which dry
nitrogen was blown.

3. GEOMETRY OF DEFORMATION 
NANODEFECTS AND THE MECHANISMS 

OF THEIR FORMATION

Figure 1 shows the time variation of the position of
a microdefect produced on the surface by the measur-
ing tip. The experimental points are seen to fall on a
straight line; hence, the topograms recorded are related
to steady-state creep. The creep rate determined from
the slope of this line is ≈1.6 nm/h.

Figure 2a shows a fragment of a topogram of the
copper surface obtained 2 h after a tensile stress of
400 MPa was applied. It contains individual defects,
004 MAIK “Nauka/Interperiodica”
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which are magnified in Fig. 2b. The defect sizes are the
following: the depth is d = 10–20 nm, the wall length is
l = 30–50 nm, and the width is h = 25–35 nm. The apex
angle of the nanodefects is ≈70°, with one of the walls
being approximately perpendicular to the surface and
the other wall making an angle of ≈20°–30°. This ori-
entation of the defect walls coincides with that of the
(111) easy-slip planes in copper after cold rolling.
Therefore, the defects were assumed to be formed dur-
ing dislocation motion along the easy-slip planes [1]. A
theory on the formation of nanodefects by dislocations
reaching the surface was developed in [7].

The defect sizes increase with time, and the wall
length increases faster than the depth and width. As a
result, slip lines in the form of grooves are formed.
Before fracture, their length reaches ≈8–9 µm (Fig. 3).
The walls of grooves are irregular, their depths vary
from several tens of nanometers to one micrometer or
larger, and their axes are curved. The angle between the
line axis and the tensile direction is 60° ± 20°.

4. SLIP-LINE DYNAMICS
To study the dynamics of slip lines, we recorded

topograms over 452 h in steps of ≈1 h. The time to frac-
ture was 454 h.

We found that, if the groove length does not exceed
a critical value lc ≈ 2.5–3 µm, grooves grow and disap-
pear with time (Fig. 4). Simultaneously, their depth
increases. In time, a valley forms, which, as a rule, is
located in the central portion of the line (Fig. 5).

To study the line growth mechanism, we recorded
line cross sections in intervals of 40 s (Fig. 6). Analysis
shows that the lines grow and disappear due to the dis-
placement of 5-nm-wide bands in directions normal to
the surface or at an angle of ≈30° with the surface.

Lines whose lengths are larger than 3 µm are formed
upon the coalescence of two or three sequentially
arranged lines shorter than 3 µm. Analysis indicates
that there are three deep sites (deeper than 1 µm) at the
bottom of lines (grooves) 7–9 µm long (Fig. 7). Since
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Fig. 1. Displacement of a microdefect on the copper surface
with time under a stress of 400 MPa.
PHY
the measuring tip cannot travel more than 1 µm, we
failed to measure the depths of these sites.

5. MECHANISM OF SLIP-LINE FORMATION

According to modern concepts [8, 9], slip lines form
when dislocation loops generated by dislocation
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Fig. 2. Defects forming on the copper surface within two
hours after a tensile stress of 400 MPa is applied: (a) frag-
ment of a surface topogram and (b) a scaled up nanodefect.
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Fig. 3. Slip lines forming on the copper surface within 450 h
after a tensile stress of 400 MPa is applied.
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PHYSICS OF THE SOLID STATE      Vol. 46      No. 11      20
sources reach the surface. As noted above, we studied
samples subjected to a high degree of preliminary
deformation (cold rolling). Therefore, a large number
of dislocations moving in different slip planes are
involved in a slip.

Moreover, the samples were polished before mea-
surements, which additionally increased the number of
dislocation sources in the surface layer.

In such samples, sources in the polished surface
layer are initially activated under the action of mechan-
ical stress. As a result, a large number of individual
defects having a depth of 10–20 nm and a wall length
of 30–50 nm are formed. Some of them disappear, and
the others transform into slip lines 0.5–1.5 µm long and
≈100–200 nm deep.

As these sources are exhausted, sources in deeper
subsurface layers become operative, which results in
the formation of longer and deeper slip lines. Their
lengths vary from 2–2.5 to 8–9 µm, and their depths are
1 µm or greater.

As noted above, one deep valley exists inside a slip
line ≈2.5–3 µm long and three such valleys exist inside
a slip line 8–9 µm long. The positions of these valleys
are likely to reflect the positions of dislocation sources
in a sample. Therefore, the mean intervalley distance
corresponds to the mean distance between dislocation
sources (≈3 µm). Interestingly, a theoretical analysis of
nanodefect formation on the surface of copper [7] also
gave the same intersource distance (≈3 µm).

45
0 

nm

500 nm

50
0 n

m

Fig. 7. Slip line ≈8 µm long on the copper surface. The
regions located deeper than 1 µm are crosshatched. In these
regions, the measuring tip cannot reach the surface.
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6. CONCLUSIONS
The results obtained indicate that, as cold-rolled

polished copper is stretched, dislocation sources in the
polished surface layer are initially activated; this leads
to the formation of a large number of slip lines in the
form of grooves 100–200 nm deep with lengths varying
from several tens to several hundreds of nanometers.
Then, sources located in deeper layers become opera-
tive, which results in the formation of slip lines as deep
as 1 µm or deeper and ≈8–9 µm long. The distance
between sources in these layers is ≈3 µm. The forma-
tion, evolution, and disappearance of slip lines are
caused by the motion of material bands several nanom-
eters wide.
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Abstract—The electrical resistivity of single crystal α-MnS in crystallographic directions [111] and [100] was
found to be anisotropic in the temperature interval 77–300 K. The change in activation energy below the Néel
temperature was determined. Magnetoresistance was revealed, and reversal of its sign in the (111) plane above
the Néel point was found. The experimental data are analyzed in terms of the s–d model, with the manganese
ion holes interacting with localized spins assumed to be free carriers. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

A new direction in science, spintronics, has recently
been undergoing explosive development [1]. Spintron-
ics draws on the dependence of conductivity on mag-
netic structure, which changes when acted upon by an
external magnetic field. The use of nanotechnology in
electronic devices places constraints on the area of
application of p–n junction–based semiconductors and
calls for using alternative materials that have strongly
interrelated magnetic and electronic properties. Manga-
nites figure among such materials. They have the
remarkable feature of exhibiting giant magnetoresis-
tance at room temperature, with the resistivity in an
external magnetic field varying over more than an order
of magnitude. The effect of magnetic order on transport
properties also becomes manifest in the sulfide systems
MexMn1 – xS (Me = Cr, Fe), which are prepared on the
basis of the monosulfide α-MnS and exhibit colossal
magnetoresistance [2]. Off-stoichiometry in the α-MnS
magnetic semiconductor also brings about a change in
the magnetic structure and a substantial variation in
resistivity [3].

We report on a study of the relation between the
magnetic, electronic, and elastic subsystems in the
α-MnS magnetic semiconductor. The manganese
monosulfide α-MnS is an antiferromagnet with an fcc
lattice. Its magnetic structure combines ferromagnetic
ordering of the magnetic moments of manganese ions
in (111)-type planes and antiferromagnetic interplane
ordering with a Néel temperature TN ≈ 150 K [3, 4].
Antiferromagnetic ordering is also observed to set in
along the cube edges. It thus appeared reasonable to
investigate the effect of magnetic ordering on the trans-
port properties of an α-MnS single crystal in (111)- and
(100)-type planes. The experimental data obtained are
analyzed in terms of the s–d model in the strong-cou-
pling limit, where the conduction band width W ! I (I
1063-7834/04/4611- $26.00 © 22067
is the s–d exchange integral), which is valid for mag-
netic semiconductors with a narrow conduction band.

2. EXPERIMENTAL TECHNIQUES 
AND EXPERIMENTAL RESULTS

An α-MnS single crystal was grown by saturating
liquid manganese with sulfur at T ~ 1245°C. X-ray
structural analysis was performed on a DRON-2.0 dif-
fractometer with CuKα radiation in the temperature
interval 77–300 K. X-ray fluorescence analysis was
carried out on a SPARK-1 x-ray spectrometer. The
electrical resistivity in the (100) and (111) crystallo-
graphic planes was measured in zero magnetic field and
in transverse magnetic fields of up to 15 kOe in the tem-
perature interval 77–300 K. The magnetoresistance was

calculated using the relation  =  ×

100%.
The x-ray diffraction measurements showed the α-

MnS single crystal to have a NaCl-type fcc lattice with
the parameter a = 5.222 ± 0.001 Å, which agrees well
with the data obtained on α-MnS single crystals grown
using chemical transport reactions [5]. The x-ray fluo-
rescence analysis suggests the absence of impurities in
the α-MnS single crystal. Figure 1 shows the tempera-
ture dependence of the lattice parameter, which
decreases nonlinearly with decreasing temperature.
The variation in a(T) is maximum in the region (166–
125) ± 5 K, where the NaCl-type fcc lattice was shown
in [5] to undergo a rhombohedral distortion.

Figure 2 plots the temperature dependence of elec-
trical resistivity in the (111) and (100) crystallographic
planes obtained in zero magnetic field in the tempera-
ture interval 77–300 K. When measured at ~300 K, the
electrical resistivity of the crystal is 3.17 × 105 Ω cm in
the (100) plane and 5.98 × 105 Ω cm in the (111) plane.

δH
ex ρ H( ) ρ H  = 0( )–

ρ H( )
-----------------------------------------
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For temperatures T ~ 170–300 K, the conductivity can
be fitted by a relation typical of semiconductors, σ ~
exp(–Ea/kBT), with activation energy Ea ~ 0.2 eV. For
T < 160 K, the electrical resistivity in the (111) plane
increases, which is accompanied by the conductivity
activation energy decreasing down to Ea ~ 0.04 eV
below TN. An analysis of the behavior of electrical
resistivity in the (100) plane measured in zero magnetic
field shows ρ(T) not to be activated thermally for
T < TN.

The magnetoresistance of α-MnS was studied by
measuring the electrical resistivity in the (111) and
(100) planes in the temperature interval 77–300 K and
magnetic fields of up to 15 kOe. Figures 3a and 3b plot
temperature dependences of the magnetoresistance
measured in the (111) and (100) planes of α-MnS,
respectively, in a field of 10 kOe at temperatures of
100–300 K. It was established that the magnetoelectric
properties, as well as the electrical properties, depend
on crystallographic orientation. The negative magne-
toresistance reaches –12% at 10 kOe and becomes most
pronounced in the (111) plane at temperatures T ~
230 K. The maximum positive magnetoresistance in
the (100) plane in the same field is +11% in the region
of the magnetic transition point. As the magnetic field
increases, the minimum negative magnetoresistance in
the (111) plane does not change in magnitude but shifts
to low temperatures; indeed, in a field of 15 kOe, the
minimum is seen at T ~ 170 K. The observed variation
in magnetoresistance is reversible.

3. MODEL AND METHOD OF CALCULATION

Hall measurements performed for T < 450 K suggest
[4] that the conduction in α-MnS is due to holes in the

5.200

5.205

5.210

5.215

a, Å

100 150 200 250
T, K

Fig. 1. Temperature dependence of the lattice parameter of
a manganese monosulfide single crystal.
PH
3d levels of the manganese ion. This conclusion is also
supported by calculations made using the electronic
density functional method [6]. For instance, the hole
concentration in the t2g and eg shells is 0.11 and 0.29 per
Mn2+ ion, respectively. The rhombohedral distortion of
the fcc lattice occurring near the Néel temperature
brings about a weak overlap of the t2g shells of neigh-
boring manganese ions and the formation of a narrow
energy band. For T > TN, the low mobility of the holes
caused by their being trapped by dynamic rhombohe-
dral distortions supports the validity of assuming a nar-
row Mn2+ band.

Since the hole concentration is much less than unity,
we neglect the Coulomb interaction of holes at a site
and consider a gas of holes interacting with the local-
ized manganese ion spins in the s–d model, an instruc-
tive approach that simplifies a qualitative understand-
ing of the experimental results obtained.

We treat the magnetic and electronic properties in
the adiabatic approximation. We define the magnetic
structure in the Heisenberg model with antiferromag-
netic interaction between the nearest (Js) and next-to-
nearest (K) neighbors mediated by sulfur ions:

(1)

where Hi is an external magnetic field.

The electronic properties will be considered in
terms of the s–d model with an Ising-type Hamilto-
nian [7]:

H Ji js, SiS j Ki j, SiS j HiSi,
i

∑–
i j,
∑–

i j,
∑–=

6

8

10

log ρ [Ω cm]

3 4 5 8
T, K

6 7

(111)

(100)

Fig. 2. Temperature dependence of the electrical resistivity
of α-MnS in the (111) and (100) planes.
YSICS OF THE SOLID STATE      Vol. 46      No. 11      2004



SPIN-DEPENDENT TRANSPORT IN α-MnS SINGLE CRYSTALS 2069
(2)

where  is the operator of the z component of the
localized spin at site i; JH is the Hund exchange param-
eter; tij is the matrix element of hole transfer over the
lattice, which depends on the mutual orientation of
spins at sites i and j involved in the hole transfer; and

(aiσ) is the Fermi operator of creation (annihilation)
of a hole with spin σ at site i. In second order of pertur-
bation theory in parameter W/JH (W is the band width),
one can switch from the original Hamiltonian H =
Hkin + Hint with simplified interaction (2) to the effec-
tive Hamiltonian

(3)

Here, Jh is the indirect interaction between the nearest

neighbor sites (Jh ~ t2/JH), niσ = ciσ, and ciσ( ) is
the Fermi-like annihilation (creation) operator for a
complex consisting of a localized spin at site i and a
hole with a parallel spin,

(4)

The states of sites at which the spins in the com-

plexes described by operators (1/2)(1 – )aiσ are
antiparallel are disregarded [8]. In the limit as z  ∞,
the Hartree–Fock approximation of intersite interaction
becomes exact; therefore, the exchange term in Eq. (3)
can be linearized and the Hamiltonian can be recast in
the form

(5)

where εσ = –µ –  and µ is the chemical

potential.

Using a special diagrammatic technique, Izyumov
and Letfulov [8] obtained the following coupled equa-
tions to determine the magnetizations ms and md of itin-
erant and localized spins, respectively, and the chemi-
cal potential µ:

H Hkin H int, Hkin+ tijaiσ
+

aiσ,
ijσ
∑= =

H int –
1
2
---JH Si

z
ai↑

+
ai↑ ai↓

+
ai↓–( ),

I

∑

Si
z

aiσ
+

H t ciσ
+

ciσ∑– Jij
h
niσniσ.∑–=

ciσ
+

ciσ
+

ciσ
1
2
--- 1 σSi

z
+( )aiσ.=

σSi
z

H εσciσ
+

ciσ∑ t ciσ
+

ciσ,∑–=

Jij
h

n jσ〈 〉
j∑

m
d 1

2
---λ ,tanh=
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(6)

Here, µr = µ + Ihn/2, n = 〈ni↑〉  + 〈ni↓〉 , ν = (1/2)Ihms, Ih =

zJh,  = (1/8)W2(1 + σmd), β = 1/T, and f(x) is the
Fermi distribution function.

We will use these equations to determine the chem-
ical potential, bandwidth, and hole concentration as
functions of localized spin magnetization in the (111)
plane. For temperatures above the Néel point, we will
include the interaction of holes with the short-range
localized spin order, i.e., the parameter (md)2 =

(4/L) .

The magnetic structure and thermodynamic charac-
teristics for localized spins were calculated using the

λ 1
π
--- t

1 β µr ν– a↑ tcos–( )exp+
1 β µr ν a↓ tcos–+( )exp+
----------------------------------------------------------------,lnd

0

π

∫=

m
s
 = nm

d
1 m

d( )
2

–[ ] σ 1
π
--- t t f aσ tcos σν+( ),sin

2
d

0

π

∫
σ
∑+

n 1 σm
d

+( )1
π
--- t tf aσ tcos σν+( ).sin

2
d

0

π

∫
σ
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aσ
2

S
z

0( )S
z

r( )〈 〉
r
L/4∑
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Fig. 3. Temperature dependence of the magnetoresistance

 = [(ρ(H) – ρ(H = 0))/ρ(H)] × 100% of α-MnS in a mag-

netic field H = 10 kOe in (a) the (111) and (b) (100) planes.
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Monte Carlo technique (MC) in classical Heisenberg
model (1) with the exchange energy ratio K/J = 1.85
determined earlier in [9]. The procedure used periodic
boundary conditions imposed on a 20 × 20 × 20 grid
with 30000 MC steps per spin.

4. RESULTS AND DISCUSSION

The fcc lattice of α-MnS contains the maximum
number of frustrated spin exchange bonds: the numbers
of nearest neighbors with parallel spins and with anti-
parallel spins are equal, and the local energy for Ising
spins is E01/J =  = 0.

In the classical Heisenberg model, frustration
accounts for a noncollinear spin arrangement. For T !
TN, the contribution from the transverse spin compo-
nents to E0.1/J is ≈2, which is approximately 3% of the
maximum contribution, and their contribution to the
exchange interaction energy in the second coordination
shell E02/J = (K/J)  is about 12%. For certain
directions, the sign of the spin–spin correlation func-

S0Shh 1=
 12∑

S0Shh 1=
h = 6∑

1
2

1
2
3

(a)

(b)

0.04

0.02

–0.02

0

6

4

2

0
1 2 3

T/TN

〈S
a (0

)S
a (r

 =
 1

)〉
E

01
,0

2/
J

Fig. 4. (a) Spin–spin correlation function 〈Sα(0)Sα(r = 1)〉
for nearest neighbors along the [011] direction calculated
for (1) α = x, (2) y, and (3) z. (b) Local spin interaction ener-

gies (1) E01/J =  and (2) E02/J =

(K/J)  in the first and second coordi-

nation shells, respectively, plotted vs. normalized tempera-
ture T/TN.

S0
α

Sh
α

h 1=
 12∑α x y z, ,=∑

S0
α

Sh
α

h 1=
 6∑α x y z, ,=∑
PH
tions of transverse spin components does not coincide
with the sign of the spin–spin correlation functions of
longitudinal spin components calculated for the cube
face diagonals. Figure 4a presents graphs of typical
temperature dependences of the nearest neighbor corre-
lation functions in the [011] direction. The transverse
spin components in the (111) plane are possibly disor-
dered.

As one crosses the Néel temperature, the short-
range magnetic spin order for T > TN corresponds to the
long-range magnetic order. The correlation length of
the spin–spin correlation functions in the paramagnetic
phase decreases following a power law. The exchange
interaction energy in the second coordination shell E02
falls off rapidly, whereas the energy E01 is practically
independent of temperature (Fig. 4b). In the vicinity of
the temperature T* ≈ 1.6TN, the type of short-range
magnetic order changes. Indeed, as seen from Fig. 4a,
the nearest neighbor spin–spin correlation function
〈Sz(0)Sz(r = 1)〉  becomes negative in the (111) plane. An
external magnetic field applied perpendicular to the
(111) plane reduces the correlation length and
decreases the temperature at which the type of short-

–2

–2

0

2

4

160 200 240 280
T, K

0

2

δSz(Q), %

(‡)

(b)

Fig. 5. Relative variation of the magnetic structural factor in
the (111) plane, δSz = [(Sz(Q, H) – Sz(Q, H = 0)/Sz(Q, H)] ×
100%, in a magnetic field (a) H = 8 and (b) 16 kOe plotted
vs. temperature for wave vector Q ≤ 0.
YSICS OF THE SOLID STATE      Vol. 46      No. 11      2004
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range order changes. The magnetic structural factor in
the (111) plane also decreases in magnitude. The corre-
sponding relative change δSz(Q) = [Sz(Q, H) – Sz(Q,
H = 0)]/Sz(Q, H) with temperature (Q is the wave vec-
tor) is displayed graphically in Fig. 5. Near the Néel
temperature, the magnetic field suppresses a noncol-
linear spin arrangement and thereby increases the cor-
relation functions of longitudinal components. This
case is a typical for frustrated systems, where an exter-
nal magnetic field brings about destruction of a noncol-
linear structure.

Using the known hole concentration n ≈ 0.1 [4] at
T = 435 K, we calculated the indirect interaction
parameter Ih = 9.3 meV and the Hund exchange integral
JH ≈ 4 eV. The calculated parameters correlate well
with JH ≈ 3.8 eV and W ≈ 1 eV from [3]. The interaction
of the hole spins with localized spins exhibiting short-
range magnetic order in the (111) plane splits the upper
and lower hole band edges. This effect manifests itself
particularly clearly below the Néel temperature, as seen
from Fig. 6. Because of the strong s–d coupling, a local-
ized spin is bonded in a complex with a band hole,
which results in efficient attraction of the hole to the site
and in a gap opening at the Fermi level below TN in the
(111) plane. The temperature dependence of the gap is
shown in Fig. 7.

Manganese ions arranged along the cube edges are
coupled by indirect antiferromagnetic exchange inter-
action mediated by sulfur ions, and hole hopping with-
out spin flip is possible by the double exchange mecha-
nism. The double-exchange model allows the forma-
tion of a weak ferromagnetic moment (m0 ! md) [7]
and nonactivated conductivity in the [100] direction. In
a magnetic field, the magnetic structural factor changes
(Fig. 5) and the position of the chemical potential
changes relative to the Fermi level (inset in Fig. 7). As
a result, the electrical resistivity in the (111) plane
undergoes a change, because lnρ ~ (EF – µ)/kBT. The
calculated temperature ranges corresponding to nega-
tive and positive changes in the quantity {(EF – µ)H –
(EF – µ)H = 0} are in good agreement with those over
which positive and negative values of magnetoresis-
tance are observed.

The temperature derivative of the chemical potential
dµ/dT has a minimum tending to zero at the Néel tem-
perature. The temperature behavior of µ(T) is shown in
Fig. 6. According to [8], the thermopower is propor-
tional to dµ/dT. The experimentally observed growth of
thermopower for T > TN [4] agrees qualitatively with
our results. The compressibility coefficient κ is defined
as the second derivative with respect to energy and is
given by

(7)

The compressibility coefficient reverses sign from
negative to positive near the Néel temperature at T =

1
κ
--- ∂2

E

∂n
2

---------
∂n
∂µ
------ 

 
1–

.= =
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162 K. The dependence of the hole concentration on the
chemical potential is presented graphically in Fig. 8.
The negative compressibility coefficient in the temper-
ature interval 125 < T < 162 K should be attributed to
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–0.2

–0.4
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Wup,d, µ, eV

Fig. 6. Temperature dependences (1, 2) of the upper and
lower edges of the (1) spin-up and (2) spin-down subbands
and (3) of the chemical potential.

Fig. 7. Temperature dependence of the difference between
the Fermi energy and the chemical potential. Inset: calcu-
lated shift in chemical potential relative to the Fermi level
δth = [{(EF – µ)H – (EF – µ)H = 0}/(EF – µ)H] × 100% in a
magnetic field H = 8 kOe plotted vs. temperature.
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the sharp increase in the hole concentration. This brings
about a decrease in Coulomb interaction between the
ions and, possibly, a change in the elastic modulus of
the α-MnS crystal. Furthermore, additional ferromag-
netic exchange interaction mediated by delocalized
holes appears between the localized spins in the (111)
plane, which gives rise to a rhombohedral distortion of
the fcc lattice observed to occur in α-MnS [4]. The dis-
tortion angle is directly proportional to the exchange
interaction Jh and inversely proportional to the elastic
modulus of the crystal [10]. Exchange-induced stric-
tion compresses the lattice. The calculated temperature
interval over which the compressibility coefficient is
negative correlates well with the temperature region in
which the lattice constant is observed to undergo the
maximum change (Fig. 1).

5. CONCLUSIONS
The pronounced increase in the resistivity anisot-

ropy observed in an α-MnS single crystal below the
Néel temperature is induced by the hole spins interact-
ing with ferromagnetically ordered localized spins in
the (111) plane and by gap formation at the Fermi level,
which correlates qualitatively with the activated char-
acter of the conductivity in the (111) plane. The sign
reversal of magnetoresistance in α-MnS in the (111)
plane is initiated by a change in magnetic order for

Fig. 8. Dependence of the hole concentration on the chem-
ical potential normalized against the hopping integral t.
Inset: temperature dependence of compressibility coeffi-
cient dn/dµ for a hole gas.
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T > TN; indeed, the disappearance of long-range mag-
netic order gives rise to positive magnetoresistance at
T ~ 160 K and the destruction of short-range magnetic
order causes negative magnetoresistance at T ~ 230 K.
The additional exchange interaction created by the
holes leads to compression and rhombohedral distor-
tion of the lattice in the (111) plane below the Néel tem-
perature.
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Abstract—The conditions for the appearance of self-oscillating and stochastic regimes in an exchange-coupled
multilayer structure in the presence of a longitudinal high-frequency magnetic field are studied. Bifurcational
diagrams are constructed that reveal various types of dynamic states of magnetic moments in the multilayer
structure and transitions between these states with varying the frequency of the ac field. Attractors of stochastic
oscillations are studied, and Lyapunov exponents determining the divergence of their phase trajectories are
numerically calculated. © 2004 MAIK “Nauka/Interperiodica”.
1. In recent years, special attention has been paid to
various oscillating systems where, in addition to regular
regimes, stochastic dynamic regimes are also possible
[1]. Magnetically ordered structures, whose dynamics
is related to precession of magnetization and is gener-
ally described by the Landau–Lifshitz nonlinear equa-
tion, are among the most extensively studied [2, 3].
There is currently a large interest in multilayer
exchange-coupled structures, in which giant magne-
toresistance is observed [4–6]. The presence of charac-
teristic statistical and dynamic bistable states, near
which the behavior of the magnetic subsystem is deter-
mined in many respects by self-organization of the
magnetization in the presence of an ac magnetic field,
can be important for wide practical applications of such
structures [7, 8]. The magnitude and the type of cou-
pling of magnetic moments of neighboring layers are
expected to play a decisive role in such processes. In the
studies available [9, 10] concerning the analysis of sto-
chastic dynamics in layered structures, substantial sim-
plifications are used (approximation of the planar
motion of magnetic moments and dipole–dipole inter-
action of two magnetized layers); these simplifications
do not allow one to describe the nonlinear dynamics of
real structures adequately. The structures with antifer-
romagnetic ordering of the magnetic moments of the
neighboring layers are of greatest interest for the real-
ization of various equilibrium states [11]. In this paper,
we study the nonlinear regular and stochastic dynamic
regimes of magnetization that occur in a multilayer
structure with exchange interlayer coupling of the anti-
ferromagnetic type in the presence of a longitudinal ac
magnetic field near the boundaries of an orientation
hysteresis loop.

2. We assume that the structure consists of a large
number of identical layers of a magnetic metal (n @ 1)
separated by nonmagnetic layers, which provide the
1063-7834/04/4611- $26.00 © 22073
antiferromagnetic type of ordering of the magnetic
moments of the neighboring layers in the initial state.
To avoid complications related to the roughness of
interlayer boundaries, which can result in frustrations
and splitting of ferromagnetic layers into domains [12,
13], we assume that the interlayer boundaries are suffi-
ciently smooth and that each of the ferromagnetic lay-
ers is homogeneously magnetized. These approxima-
tions are widely used in the studies dealing with orien-
tational phase transitions in multilayer nanostructures
[14–16], and their correctness has been confirmed by
experimental and theoretical studies of the ferromag-
netic resonance in structures of the (Fe/Cr)n type [17].
In this case, the entire set of magnetic layers is divided
into two subsystems (j = 1, 2) with identical behavior of
the magnetic moments of the layers of each subsystem.
For the structures under study, the contributions to
magnetic anisotropy come from the induced uniaxial
anisotropy of the “easy-axis” type and the crystallo-
graphic cubic anisotropy; the crystallographic [100]
and [010] axes lie in the layer plane, and the easy mag-
netization axis of the induced anisotropy is directed
normally to the layers. The free energy of the system
per unit area is given by

(1)

where d is the magnetic layer thickness; Mj is the mag-
netization of the layers of the subsystem j; J is the bilin-
ear exchange coupling constant of the magnetic
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moments of the nearest neighbor layers; K1 and K2 are
the first and second constants of cubic anisotropy; Ku is
the growth anisotropy constant; H and h are the static
and high-frequency magnetic fields, respectively; ϕj is
the azimuthal angle measured from the [100] axis and
determines the orientation of the magnetic moment in
the layer plane; and ψj is the angle between the vector
Mj and the film plane.

The equations of motion for the magnetization vec-
tors of each of the layers in the spherical system of
coordinates have the form

(2)

where γ is the gyromagnetic ratio and λ is the decay
parameter. For simulation, we use the parameters corre-
sponding to a real (Fe/Cr)n structure. For the iron lay-
ers, we set M = 1620 G, K1 = 4.6 × 105 erg/cm3, K2 =
1.5 × 105 erg/cm3, Ku = 2.06 × 106 erg/cm3, λ = 5 ×
107 s–1, γ = 1.76 × 107 (Oe s)–1, and d = 21.2 × 10–8 cm.
We note that, for the chosen orientation of the crystal-
lographic axes, the contribution to the free energy
related to the second cubic anisotropy constant can be
disregarded, since its effect on the magnetic properties
of the structure is small. The layer parameters for chro-
mium do not appear in Eqs. (1) explicitly, but they deter-
mine the magnitude of the coupling constant J [17].

3. In the absence of a high-frequency field (h = 0),
with allowance for large demagnetizing fields (4πM @
2Ku/M, JM), the magnetic moments lie in the layer
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Fig. 1. Field dependence of the equilibrium azimuthal angle
of the magnetic moments of the structure for (1) J = 0.1, (2)
0.17, and (3) 0.24 erg/cm2.
PHY
plane if the magnetic bias field lies in this plane; i.e., the
equilibrium angles are ψ0j = 0. The equilibrium azi-
muthal angles ϕ0j(H) are determined by the relations

∂E/∂ϕj = 0 and ∂2E/∂  > 0, which, in combination
with Eq. (1), lead to the system of equations

(3)

where j = 1, 2;  = 2J/d; and ϕH is the azimuthal angle
measured from the [100] axis and determining the
direction of the field H in the layer plane.

An analysis of these equations shows that, at small
enough values of the coupling constant J, a change in
the magnitude of the magnetic bias field is accompa-
nied by orientational hysteresis loops and the related
bistability. Figure 1 shows the bias field dependence of
the equilibrium azimuthal angles of the magnetic
moments of the first (solid curves) and second (dashed
curves) subsystems of magnetic layers obtained for
coupling constants J = 0.1, 0.17, and 0.24 erg/cm2. For
the initial orientation of the magnetic moments ϕ0j =
±π/2 and for the orientation of the bias field ϕH = 0, i.e.,
for M0j ⊥  H, a noncollinear symmetric orientation of
the magnetic moments of the neighboring layers (ϕ02 =
–ϕ01) occurs in the equilibrium state in the range 0 <
H ≤ Ha. In this range, an increase in the bias field results
in a decrease in the angle between the magnetic
moments of the neighboring layers ∆ϕ0 = ϕ01 – ϕ02.
When the field becomes equal to the critical value Ha,
this angle reaches a minimum value

(4)

This minimum angle decreases as the coupling constant
increases until an orientational phase transition occurs
and the magnetic moments are aligned with the bias
field. With a decrease in the bias field from H > Ha, the
state with codirected orientation of magnetic moments
of the layers is conserved down to a value Hb. At H =
Hb < Ha, a reverse phase transition occurs in which the
vectors M1 and M2 cease to be collinear and their azi-
muthal angles change in a jump to the values ±ϕb; i.e.,
∆ϕ0 = 2ϕb. A further decrease in the bias field produces
an increase in ∆ϕ0, and for H = 0, we have again ∆ϕ0 =
π. The critical fields bounding the orientational hyster-
esis loop are given by

(5)
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As the coupling constant increases, the hysteresis loop
narrows to collapse at J = Jab, where Jab is found from
the equation Hb = Ha. For J > Jab, the orientational states
of the system are characterized by a single magnetiza-
tion curve with a one-to-one correspondence between
ϕ0j and H.

4. The systems with narrow hysteresis loops are of
special interest for the realization of different dynamic
regimes. In the case where H corresponds to the center
of the hysteresis loop and there is a longitudinal high-
frequency field (h || H) whose amplitude is close to the
loop width (h ≥ Ha – Hb), various high-amplitude self-
oscillating and stochastic regimes appear in the system
of layer magnetic moments. The most detailed informa-
tion on the dynamic regimes in the structure considered
in a wide frequency range can be obtained from the
bifurcational diagram. Figure 2 shows the bifurcational
diagram, where we plot the frequencies of the ac field
as abscissas and the corresponding maximum and min-
imum values of the angles of the magnetic moments as
ordinates; the data are obtained for the exchange cou-
pling constant J = 0.24 erg/cm2 (this value is close to
Jab ≈ 0.244 erg/cm2); magnetic bias field H =
2227.4 Oe, corresponding to the collinear equilibrium
state with angles ϕ0j = 0; and the amplitudes of the ac
field h = 0.2 and 1.0 Oe, which exceed the value Ha –
Hb ≈ 0.144 Oe. For a fixed value of H, a single point
with zero angle ϕjm implies the absence of oscillations,
two points correspond to an oscillating regime with one
maximum ϕj max and one minimum ϕj min, a set of a
greater countable number of points represents a more
complicated oscillation, and a set of closely spaced
points corresponds to stochastic dynamics of magnetic
moments. Oscillations of the magnetic moments of the
two subsystems are always in antiphase; therefore, in
both the regular and stochastic regimes, the equality
ϕ2(t) = –ϕ1(t) is satisfied with high accuracy. It is seen
in Fig. 2 that, as the frequency is varied, the transforma-
tion of one regular oscillatory regime into others, as a
rule, occurs by passing over the frequency intervals cor-
responding to the stochastic dynamics of magnetic
moments. Among regular regimes, there are both sym-
metric and asymmetric ones with respect to the axis
with a zero azimuthal angle.

From the diagram, it is seen that, as the frequency
decreases in the high-frequency region, the system first
appears to be insensitive to the effect of an ac field.
Then (after Hopf’s bifurcation [1]) a limit cycle
appears, whose amplitude increases with decreasing
frequency. Next, at a low amplitude of the ac field
(Fig. 2a), after a cascade of oscillation period dou-
blings, the system attains a stochastic oscillatory
regime. When the amplitude of stochastic oscillations
becomes high enough, the magnetic moments enter the
attraction zone of the attractor given by a high-ampli-
tude limit cycle, resulting in new bifurcations and in the
establishment of a self-oscillating regime. High-ampli-
PHYSICS OF THE SOLID STATE      Vol. 46      No. 11      200
tude oscillations can also be established at higher fre-
quencies but in the case of another initial orientation of
the magnetic moments. Thus, in a certain frequency
range, dynamic bistability occurs. At large amplitudes
of the ac field (Fig. 2b), there is no time for stochastic
dynamics to develop: the amplitude of the low-ampli-
tude limit cycle that appears after Hopf’s bifurcation is
sufficient for the magnetic moments to be drawn by the
attractor in the self-oscillating regime. The amplitude
of self-oscillations weakly depends on the frequency of
the ac field and, in all cases, appreciably exceeds the
difference between the angles of the magnetic moments
in the hysteresis loop (ϕa ≈ 6°). The oscillation ampli-
tude depends on h only weakly: an increase in h by a
factor of 5 increases the amplitude of the angle ϕ1 only
by one-third. However, the frequency range corre-
sponding to this regular regime significantly grows
with increasing ac field and is displaced towards higher
frequencies.

In addition to wide frequency ranges corresponding
to stochastic oscillations, in the diagram there are also
narrow frequency intervals of stochastic regimes (∆ω ~
107 s–1) outside which regular high-amplitude regimes
are realized. With decreasing frequency, the stochastic
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Fig. 2. Frequency dependence of the maximum and mini-
mum values of the angle ϕ1 (bifurcational diagram) for h

equal to (a) 0.2 and (b) 1.0 Oe. J = 0.24 erg/cm2, H =
2227.4 Oe.
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regimes are established in these narrow frequency
ranges after a cascade of bifurcational period dou-
blings, whereas the return of the system to the self-
oscillating regime with a period equal to the period of
the ac field occurs after only one bifurcation. The regu-
lar regimes occurring at frequencies above and below
the interval corresponding to stochastic dynamics can
both be very close and differ appreciably in terms of the
phase trajectories.

Except for stochastic and regular oscillations, there
are also frequency intervals of dynamic insensitivity
(for example, at h = 0.2 Oe near the frequency ω = 6.5 ×
108 s–1), which narrow progressively and disappear
with increasing h.
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Fig. 3. Phase trajectories for (a) regular oscillations of the vec-
tor M1 for ω = 7.9 × 108 (dashed curve) and 8.7 × 108 s–1

(solid curve) and (b) stochastic oscillations for ω = 8.0 ×
108 s–1. h = 0.2 Oe. The insets show the ϕ1(t) dependence.
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At low frequencies (ω ~ 107 s–1), regular dynamic
regimes are realized in which there are time intervals
with zero angle and with fast oscillations related to
magnetization reversal (Fig. 2). At certain frequencies,
we have asymmetric regimes with an oscillation period
equal to the period of the ac field and at other frequen-
cies we have a symmetric regime for which the signs of
high-amplitude oscillations of the angle of the mag-
netic moment alternate, resulting in the period dou-
bling. By changing the magnitude of the bias field by a
small value ∆H ~ 0.1 Oe, we can control the relative
pulse duration for the regimes under study, i.e., change
the duration of the periods with zero angle.

5. Let us consider two narrow frequency intervals
corresponding to stochastic oscillations. Figure 3
shows the (ϕ1) phase trajectories for the magnetic
moments of the first subsystem of layers at an ampli-
tude of the ac field h = 0.2 Oe and at frequencies corre-
sponding to regular regimes (Fig. 3a) and to stochastic
oscillations (Fig. 3b). The corresponding time depen-
dence of ϕ1(t) is plotted in the insets. The phase trajec-
tories for regular regimes at frequencies lying above
and below the frequency interval corresponding to sto-
chastic dynamics differ only slightly: both regimes
have a high amplitude and are symmetric, and their
period is equal to the period of the ac field. The ampli-
tude of the stochastic regime that arises after a cascade
of period doublings (as the frequency ω decreases),
only slightly differs from the amplitude of self-oscillat-
ing regimes; the stochastic nature is mainly seen as
smearing of the phase trajectory of the limit cycle.

This regime is sensitive to the variation in the bias
field. Decreasing H only by 0.01 Oe with respect to the
value indicated above brings the system from the sto-
chastic to the self-oscillating regime, which is also real-
ized only in a very small interval of bias fields (∆H ~
0.02 Oe). Then again the stochasticity is developed to
cover the entire angular range of oscillations of the
magnetic moment. When the bias field approaches the
boundary of the hysteresis loop, low-amplitude regular
oscillations are established corresponding to noncol-
linear equilibrium orientation of the magnetic moments
of the system. With increasing H, the stochasticity first
grows and then the system becomes insensitive to the ac
field, since the bias field magnitude lies outside the hys-
teresis loop and corresponds to a collinear codirected
orientation of the magnetic moments. At other frequen-
cies close to the chosen one, the main features of the
bias-field dependence of the magnetic moment dynam-
ics is similar to that just described.

In Fig. 4, phase trajectories of the magnetic
moment M1 are plotted for h =1.0 Oe and ω = (12.2,
12.3) × 108 s–1. The phase attractor of stochastic oscil-
lations (Fig. 4b) is symmetric and is formed in the
merging and smearing of two asymmetric limit cycles,
more specifically, a phase trajectory of the adjoining
(with a close frequency) regular regime (Fig. 5a) and
the phase trajectory that is symmetric to it and corre-

ϕ̇1
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sponds to the dynamics of the magnetic moment M2. At
higher frequencies, the region of stochastic oscillations
passes, after only one bifurcation, to the region of
dynamic insensitivity (Fig. 2a) corresponding to the
absence of magnetic moment oscillations induced by
an ac field. These regimes also appear to be rather sen-
sitive to a change in the bias field because of the nar-
rowness of the hysteresis loop corresponding to these
regimes.

For clarity, it is convenient to represent complicated
phase trajectories as a set of points obtained in time
steps equal to the period of the ac field (an analog of
Poincaré diagrams [18]). In Fig. 5, a discrete (in time)
representation of phase portraits of the stochastic
dynamics of the magnetic moment is shown on the (ϕ1,

) plane for h = 0.2 Oe and various frequencies of the
ac field. In the insets, the corresponding ϕ1(t) depen-
dences are plotted. The dynamic regime near the fre-
quency ω = 5.0 × 108 s–1 (Fig. 5a) arises via intermit-
tency; however, “laminar” phases (high-amplitude
angle oscillations either in the positive or in the nega-
tive half-plane) consist only of several periods. The
phase portrait for this regime is a union of two funnel-
shaped attractors joined to each other in the central
region of the phase plane. The regime at the frequency
ω = 1.1 × 109 s–1 (Fig. 5c) also has laminar phases, alter-
nating with bursts of turbulence and characterized by a
certain angular interval of disorder in the oscillation
amplitude. As the frequency increases, the bursts of tur-
bulence stop and a stochastic regime is established with
an attractor not involving the central region of the phase
plane (a similar attractor is shown in Fig. 3a). In the
case shown in Fig. 5b, stochasticity manifests itself
only in a small interval of azimuthal angles of the mag-
netic moment and its first derivative, i.e., in slight
smearing of the trajectory of the limit cycle. This
regime has an asymmetric attractor and is realized in a
narrow frequency interval (Fig. 2a). In the case shown
in Fig. 5d, stochastic dynamics has developed as a
result of a cascade of period doublings and after the
reverse cascade [18] corresponding to merging of the
“noise” intervals of the angle ϕ1; therefore, stochastic-
ity covers the entire angular range of oscillations of the
magnetic moment.

The attractors corresponding to the stochastic
dynamics of magnetization have regions of strong com-
pression (or folds) and regions of expansion. This fea-
ture causes sensitivity of the phase trajectories to the
initial conditions. Figure 6 shows the time dependences
of the natural logarithm, ln(δ/δ0), of the relative dis-
tance between two points of phase trajectories of the
magnetic moment M1 on the (ϕ1, ) plane, which are
initially close to each other (δ = δ0 at t = 0), for the cases
considered in Fig. 5. The curves are shifted along the
time axis, since, for convenience, the initial times were
chosen to be different for them. From Fig. 6, we see that
the average distance between the points first increases

ϕ̇1

ϕ̇1
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according to an exponential law δ = δ0exp(ζt), where ζ
is the largest Lyapunov exponent, equal to the slope of
the straight line fitting the divergence of the phase tra-
jectories (the dashed line plotted for curve a). After
diverging to the attractor scale, δ begins to oscillate
about a value determined by the size of the attractor
itself. An analysis of phase portraits for the correspond-
ing regimes shows that the Lyapunov exponent grows
as the attractor expands (and, hence, the noise intervals
increase). When the attractor covers the central region
of the phase plane (curves a, c, d), the rate of divergence
of trajectories close to each other is much greater than
in the case where stochasticity manifests itself only in
smearing of the trajectory of the limit cycle (curve b).
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Fig. 5. Discrete-time representation (with a step of ∆t = 2π/ω) of phase trajectories of the magnetic moment at h = 0.2 Oe and dif-
ferent values of ω (108 s–1): (a) 5.0, (b) 9.95, (c) 11.0, and (d) 13.1. The ϕ1(t) dependence is shown in the insets.
For ω = 11 × 108 s–1 (curve c), the rate of divergence of
the trajectories is determined by two rates: the low rate
in the laminar phase and the high rate during the bursts
of turbulence. As the frequency increases, the time of
existence of laminar phases grows; therefore, the rate
decreases and the δ(t) dependence becomes smoother.
For the cases considered, ζ ≈ (12.7, 3.8, 9.8, 15.2) ×
107 s–1.

6. With the relations 4πM2 @ 2K1 and λ ! γM,
which are obeyed well, equation of motion (2) can be
transformed to the following system [3]:

(6)

ϕ̇̇ j 4πλϕ̇ j
4πγ2

d
------------ ∂E

∂ϕ j

--------+ + 0,=

ψ̇ j
ϕ̇̇ j

4πM j

-------------.–=
PH
Because of the symmetric orientation of the bias and
high-frequency fields with respect to the crystallo-
graphic and growth anisotropy axes, as well as the char-
acter of interaction of the magnetic moments of the
neighboring layers, symmetry takes place for the devi-
ation angles from the layer plane (ψ1 = –ψ2 = ψ) and for
the azimuthal angles (ϕ1 = –ϕ2 = ϕ), which was con-
firmed above by numerically solving Eqs. (2). Using
this asymmetry, we can reduce the system of four equa-
tions (6) to two equations for the angles ϕ and ψ. Fur-
ther simplification of the problem is based on the fact
that the angle ψ that the magnetic moments make with
the layer plane is small because of the high demagne-
tizing fields (for the parameters of the system indicated
above, ψ(t)max ~ 10–2 deg). For ψ ≈ 0, the derivative
∂E/∂ϕ becomes independent of the angle ψ; therefore,
when analyzing the azimuthal motion, we can replace
YSICS OF THE SOLID STATE      Vol. 46      No. 11      2004
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spatial precession of the magnetic moments with their
planar oscillatory motion. In this case, the equation for
the azimuthal angle takes the form

(7)

However, a comparative analysis of the azimuthal
motion of the magnetic moments shows that, if preces-
sion is neglected, the solutions in a number of fre-
quency intervals differ strongly from those described
above and obtained from the initial equations of motion
(2). This is especially true for stochastic dynamics. In
particular, for h = 0.2 Oe, there are no stochastic
regimes for ω ≅  (10, 11) × 108 s–1 (Figs. 5b, 5c) and ω ≅
3 × 108 s–1 (Fig. 2a) and there are no regular asymmetric
regimes for ω ≅  7.5 × 108 s–1. Nevertheless, many self-
oscillating and stochastic regimes, for example, for ω ≅
(5.0, 13.5) × 108 s–1 (Figs. 5a, 5d), are obtained by solv-
ing only the first equation in system (6).

From the above analysis, it follows that, in the struc-
ture under study with the antiferromagnetic type of
coupling, in the presence of a longitudinal ac magnetic
field, various types of stochastic and regular high-
amplitude regimes are established, depending on the ac
field frequency, for certain parameters of the magnetic
subsystem and bias fields. The widths of the frequency
ranges corresponding to different regimes can be both
appreciable and rather small. The scenarios of the
appearance of stochasticity, and therefore the number
of bifurcations giving rise to stochasticity, may also be
different. High sensitivity of the dynamic regimes to a
change in the bias field is caused by the narrowness of
the orientational hysteresis loop; near the loop limits,
nonlinear oscillations of the magnetic moments are
excited by a weak ac field. The variety of possible oscil-
lation regimes makes such structures rather promising
both for practical applications and for experimental
studies of nonlinear dynamics.

In the approximation of two magnetic subsystems,
which is valid if the number of identical ferromagnetic
layers is sufficiently large, the expression for the energy
and the equation of motion of the magnetic moments
are analogous to the corresponding equations for a two-
sublattice antiferromagnet. However, for realizing the
dynamic regimes discussed above, the numerical val-
ues of the parameters of the magnetic system play a
decisive role. By varying the ratios of these parameters,
we can obtain sufficiently narrow hysteresis loops with
greatly different equilibrium angles in the region of ori-
entation bistability; this is necessary for obtaining large
amplitudes of the precession of the magnetic moments.
Compared to the multilayer structure considered,
uniaxial growth anisotropy is not important in antifer-
romagnets and the exchange energy is greater by two to
three orders of magnitude. Therefore, in antiferromag-
nets, orientational hysteresis is absent or the difference
between the equilibrium angles in the region of bista-

ϕ̇̇ 4πλϕ̇ 4πγ2
H h ωtsin+( )M ϕcos[+ +

+ K1 2ϕcos J–( ) 2ϕsin ] 0.=
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bility is very small. In this respect, a special additional
study is required in order to search for and analyze the
features of stochastic and regular nonlinear dynamics
of magnetization in antiferromagnets.

Our model of a multilayer structure is rather simpli-
fied. In addition to the interface roughness, in real struc-
tures, there are deviations of the coupling constants and
magnetization from their average values because of, in
particular, the presence of defects in the films and the
limited number of layers. In addition, the interlayer
coupling can differ from bilinear exchange interaction
[13, 16]. Allowing for these factors should essentially
complicate the analysis of nonlinear regular and sto-
chastic dynamics of the magnetic moments and consid-
erably increase the variety of dynamic regimes. Never-
theless, the results obtained correctly reflect the basic
features of dynamic behavior of real multilayer systems
with narrow hysteresis loops.

ACKNOWLEDGMENTS

This study was supported by the Ministry of Educa-
tion of the Russian Federation, grant no. PD02-1.2-72.

REFERENCES

1. G. G. Malinetskiœ and A. B. Potapov, Modern Problems
in Nonlinear Dynamics (Editorial URSS, Moscow,
2002) [in Russian].

2. S. M. Rezende and F. M. de Aguiar, Proc. IEEE 78 (6),
893 (1990).

3. A. G. Gurevich and G. A. Melkov, Magnetic Oscillations
and Waves (Nauka, Moscow, 1994).

4. V. V. Ustinov, M. M. Kirillova, I. D. Lobov, V. M. Mae-
vskiœ, A. A. Makhnev, V. I. Minin, L. N. Romashev,
A. R. Del’, A. V. Semerikov, and E. I. Shreder, Zh. Éksp.
Teor. Fiz. 109 (2), 477 (1996) [JETP 82, 253 (1996)].

100 500 900

a b c dln
(δ

/δ
0)

0

10

20

30

Fig. 6. Time dependence of the distance between two ini-
tially closely spaced phase points.

t, ns
04



2080 SHUTYŒ, SEMENTSOV
5. V. V. Kostyuchenko and A. K. Zvezdin, Phys. Rev. B 57
(6), 5951 (1998).

6. G. S. Patrin, N. V. Volkov, and V. P. Kononov, Pis’ma Zh.
Éksp. Teor. Fiz. 68 (5), 287 (1998) [JETP Lett. 68, 307
(1998)].

7. A. M. Shutyœ and D. I. Sementsov, Fiz. Met. Metalloved.
95 (3), 211 (2003) [Phys. Met. Metallogr. 95, 211
(2003)].

8. D. I. Sementsov and A. M. Shutyœ, Fiz. Tverd. Tela
(St. Petersburg) 45 (5), 878 (2003) [Phys. Solid State 45,
922 (2003)].

9. F. V. Lisovskiœ and O. P. Polyakov, Pis’ma Zh. Éksp.
Teor. Fiz. 68 (12), 643 (1998) [JETP Lett. 68, 679
(1998)].

10. F. V. Lisovskiœ and O. P. Polyakov, Pis’ma Zh. Éksp.
Teor. Fiz. 73 (9), 546 (2001) [JETP Lett. 73, 483 (2001)].

11. D. I. Sementsov and A. M. Shutyœ, Pis’ma Zh. Éksp.
Teor. Fiz. 75 (5), 287 (2002) [JETP Lett. 75, 242 (2002)].

12. A. I. Morozov and A. S. Sigov, Fiz. Tverd. Tela
(St. Petersburg) 41 (7), 1240 (1999) [Phys. Solid State
41, 1130 (1999)].
PH
13. V. D. Levchenko, A. I. Morozov, and A. S. Sigov, Zh.
Éksp. Teor. Fiz. 121 (5), 1149 (2002) [JETP 94, 985
(2002)].

14. A. K. Zvezdin and V. V. Kostyuchenko, Fiz. Tverd. Tela
(St. Petersburg) 39 (1), 178 (1997) [Phys. Solid State 39,
155 (1997)].

15. M. I. Kurkin and D. Z. Khusainov, Fiz. Tverd. Tela
(St. Petersburg) 41 (4), 660 (1999) [Phys. Solid State 41,
595 (1999)].

16. S. O. Demokritov, A. V. Drovosekov, N. M. Kreœnes,
H. Nembach, M. Rickart, and D. I. Kholin, Zh. Éksp.
Teor. Fiz. 122, 1233 (2002) [JETP 95, 1062 (2002)].

17. A. B. Drovosekov, O. V. Zhotikova, N. M. Kreœnes,
V. F. Meshcheryakov, M. A. Milyaev, L. N. Romashev,
V. V. Ustinov, and D. I. Kholin, Zh. Éksp. Teor. Fiz. 116,
1817 (1999) [JETP 89, 986 (1999)].

18. P. Bergé, Y. Pomeau, and C. Vidal, L’ordre dans le
Chaos. Vers une Approche Deterministe de la Turbu-
lence (Hermann, Paris, 1988; Mir, Moscow, 1991).

Translated by I. Zvyagin
YSICS OF THE SOLID STATE      Vol. 46      No. 11      2004



  

Physics of the Solid State, Vol. 46, No. 11, 2004, pp. 2081–2085. Translated from Fizika Tverdogo Tela, Vol. 46, No. 11, 2004, pp. 2014–2017.
Original Russian Text Copyright © 2004 by Men’shenin.

                    

MAGNETISM 
AND FERROELECTRICITY

         
Antiferromagnetic Photogalvanic Effect in Orthoaluminates
V. V. Men’shenin

Institute of Metal Physics, Ural Division, Russian Academy of Sciences, 
ul. S. Kovalevskoœ 18, Yekaterinburg, 620219 Russia

e-mail: menshenin@imp.uran.ru
Received January 12, 2004; in final form, March 19, 2004

Abstract—The antiferromagnetic photogalvanic effect in gadolinium, dysprosium, and terbium orthoalumi-
nates is described within the phenomenological approach. The cases of linear and circular polarization of light
are considered. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The antiferromagnetic photogalvanic effect consists
in generating direct electric current in centroantisym-
metric antiferromagnets under exposure to light in the
absence of an external dc electric field and spatial inho-
mogeneities. The phenomenological theory of the anti-
ferromagnetic photogalvanic effect in tetragonal and
trigonal antiferromagnets was developed earlier in [1].
The microscopic phonon mechanism of the origin of
this phenomenon was proposed in [2].

Phenomenologically, the antiferromagnetic photo-
galvanic effect is characterized by the following fea-
ture: in centroantisymmetric antiferromagnets, the
transformation of the antiferromagnetic vector L
through symmetry operations of the medium can
reverse the sign of the vector. This transformation takes
place in the situation where all magnetic atoms occupy
identical positions in the lattice and the symmetry oper-
ations transfer atoms from positions in one magnetic
sublattice to positions in another magnetic sublattice. In
particular, this permutation of atoms can occur in cen-
troantisymmetric antiferromagnets in which the center
of symmetry becomes the center of antisymmetry due
to magnetic ordering and for which the antiferromag-
netic vector L obeys the equality

(1)

Therefore, centroantisymmetric antiferromagnets are
the only materials for which the density of the photo-
galvanic current can be written in the form

(2)

where βijkl is the antiferromagnetic photogalvanic ten-
sor, e is the polarization vector of light, and J is the
intensity of light.

In our earlier work [1], we analyzed the linear anti-
ferromagnetic photogalvanic effect in trirutiles, ortho-
phosphates, orthovanadates, and Cr2O3. In these mate-
rials, the electric current can be generated by linearly

1L L.–=

ji βijklL jekel*J ,=
1063-7834/04/4611- $26.00 © 22081
polarized light. The antiferromagnetic photogalvanic

tensor  can be represented by the expression

(3)

This tensor determines the relation between the direc-
tion of the photocurrent, the orientation of the antifer-
romagnetic vector L, and the direction of the polariza-
tion of the electromagnetic wave. The antiferromag-
netic photogalvanic tensor coincides in symmetry with
the piezomagnetic tensor.

Let us also call attention to the specific features of
the phonon mechanism responsible for the antiferro-
magnetic photogalvanic effect. The point is that, unlike
nonmagnetic media in which a photogalvanic current
has been observed in experiments, centroantisymmetric
antiferromagnets do not exhibit a piezoelectric effect
but are characterized by a magnetoelectric effect. Con-
sequently, the long-range part of the electron–phonon
interaction in centroantisymmetric antiferromagnets
can be caused by two factors: (i) polarization of the
medium in response to an external magnetic field due to
the magnetoelectric effect and (ii) phonon-assisted
modulation of the medium.

It is of interest to extend the list of materials in
which the antiferromagnetic photogalvanic effect can
be observed in the experiment. The orthoaluminates we
are interested in also belong to this class of materials.
The magnetoelectric effect and magnetic properties of
orthoaluminates have been studied in sufficient detail,
and the literature on the magnetic and magnetoelectric
properties of these materials is quite extensive. It
should be noted that the conditions used for exciting a
linear photocurrent in orthoaluminates with low sym-
metry are less diverse than those for tetragonal antifer-
romagnets. In this respect, it is necessary to investigate
the manifestation of both the linear and circular antifer-
romagnetic photogalvanic effects in orthoaluminates.

βijkl
L

βijkl
L

Re βijkl.=
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2. EXCHANGE MAGNETIC STRUCTURES

Compounds of the general formula RAlO3, where R
is a rare-earth metal ion (Gd3+, Dy3+, Tb3+) located in

the 4c position, have the symmetry Pbnm( ). It is
assumed that the crystallographic axes are aligned par-
allel to the twofold axes. Table 1 presents the permuta-
tion relationships for ions located in the 4c positions.
As can be seen from Table 1, orthoaluminates of gado-
linium, dysprosium, and terbium have two exchange
magnetic structures (EMS) (with oppositely oriented
magnetizations of the magnetic sublattices) that are odd
with respect to the inversion. The first exchange mag-
netic structure is even with respect to the 21x screw axis
of the crystal and belongs to structures of the a type.
The second exchange magnetic structure is even with
respect to the 21y screw axis and belongs to structures of
the g type. For these structures, we can write the follow-
ing relationships [3]:

(4)

where Mi (i = 1, …, 4) is the local sublattice magnetiza-
tion. Table 2 presents the irreducible representations of
the Pbnm group with components of the basis vectors a

D2h
16

OMC1 –( )2x +( )2y –( ), a M1 M2– M3 M4,–+=

OMC1 –( )2y +( )2z –( ), g M1 M2– M3– M4,+=

Table 1.  Permutation relationships for ions located in the 4c
positions

g 21x 21y

1 2 3 4

2 1 4 3

3 4 1 2

4 3 2 1

1

Table 2.  Irreducible representations of the Pbnm group

Γ 21x 21y 21z

Combinations
of basis
vectors

Magnetic
point
group

Γ1 +1 +1 +1 +1 mxmymz

Γ2 +1 +1 –1 –1

Γ3 +1 –1 +1 –1

Γ4 +1 –1 –1 +1

Γ5 –1 +1 +1 +1 ax, gy

Γ6 –1 –1 –1 +1 gx, ay

Γ7 –1 –1 +1 –1 az

Γ8 –1 +1 –1 –1 gz

1

mxmy' mz'

mx' mymz'

mx' my' mz

mx' my' mz'

mxmymz'

mxmy' mz

mx' mymz
PH
and g that are transformed by these representations. It
should be noted that the other two possible exchange
magnetic structures are even with respect to the inver-
sion and, consequently, are of no interest to us.

3. GADOLINIUM ORTHOALUMINATE

Gadolinium orthoaluminate GdAlO3 in the ground
state is characterized by the Γ5 representation. The
results of investigating the magnetoelectric effect indi-
cate that the GdAlO3 compound has an exchange mag-
netic structure with magnetic sublattices in the axgy ori-
entation state (the cross type) in the xy plane [3]. How-
ever, since the component χxx of the magnetic
susceptibility of the GdAlO3 compound tends to zero at
T  0 and a spin-flop transition occurs in an external
magnetic field H aligned with the x axis, the vector a ||
Ox is the maximum antiferromagnetic vector and the gy

component of the exchange magnetic structure can
exist only in the form of a small addition [3].

Let us first consider the situation where the gy com-
ponent of the exchange magnetic structure is absent. In
this case, the density components of the linear photo-
galvanic current can be represented in the form

(5)

where  = Re  are the components of the real
part of the antiferromagnetic photogalvanic tensor. As
was noted above, the antiferromagnetic photogalvanic

tensor  coincides in symmetry with the piezomag-
netic tensor. The superscript a in parentheses indicates
that these tensors refer to the exchange magnetic struc-

ture (–)2x(+)2y(–). It follows from relationships (5)
that the photocurrent passing through the GdAlO3 sam-
ple is directed perpendicularly to the plane of the polar-
ization of the electromagnetic wave, provided one of
the components of the polarization vector is equal to
zero and the other two components are nonzero. The
electric current can be generated along an arbitrary
crystallographic axis with appropriate choice of the
direction of the electromagnetic wave polarization.

Next, we analyze how the expression for the electric
current can transform depending on whether the gy

component of the exchange magnetic structure is
present or absent. An exchange magnetic structure of
the g type can be represented by the second equality in
relationships (4). This structure differs from the
exchange magnetic structure of the a type by the parity
of the 2y screw axis. Hence, the other components of the
real part of the antiferromagnetic photogalvanic tensor
are also nonzero. The photogalvanic current density

jx 2βxxyz
L a( )

eyezaxJ , jy 2βyxzx
L a( )

ezexaxJ ,= =

jz 2βzxxy
L a( )

exeyaxJ ,=

βijkl
L a( ) βijkl

a( )

βijkl
L a( )

1
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related to the vector g || Oy is given by the following
expressions:

(6)

A comparison of relationships (5) and (6) shows that
the expressions for the components jz of the photogal-
vanic current density differ significantly. Actually, in
the case when the gy component does not contribute to
the magnetic structure, the photocurrent jz is generated
along the z axis of the crystal for the polarization of
light e = (ex , ey , 0). If the gy component makes a contri-
bution to the magnetic structure, the photocurrent jz is
generated for the polarization of the electromagnetic
wave along an arbitrary coordinate axis. Therefore, the
manifestation of the antiferromagnetic photogalvanic
effect can provide direct evidence of the presence or
absence of a contribution from the gy component to
magnetic ordering of the GdAlO3 compound.

4. DYSPROSIUM AND TERBIUM 
ORTHOALUMINATES

The neutron diffraction data and results of investigat-
ing the optical transitions between multiplet layers [4–6]
give grounds to believe that dysprosium and terbium
orthoaluminates have a noncollinear exchange magnetic
structure with four magnetic sublattices in the axgy orien-
tation state; i.e., as in the preceding case, the compounds
are characterized by the Γ5 representation. Earlier [3], it
was shown that the exchange magnetic structure of these
orthoaluminates in the axgy orientation state can be rep-
resented in the form of two antiferromagnetic configura-
tions with the antiferromagnetic vectors

(7)

which are inserted into each other. The vectors L1 and
L2 are oriented along the principal axes of the g tensors
of the ions related through the inversion. In this case,
we obtain

(8)

Here, we have the vectors L1 + L2 || x and L1 – L2 || y in
the ground state. It is evident that, for the DyAlO3 and
TbAlO3 orthoaluminate compounds, the expression
describing the components of the photogalvanic current
density is a combination of equalities (5) and (6) in
which ax and gy are replaced by (L1 + L2)x and (L1 –
L2)y, respectively.

5. CIRCULATING ANTIFERROMAGNETIC 
PHOTOGALVANIC CURRENT

In the preceding sections, we analyzed the case of
linearly polarized light. Now, we consider the situation
where the light is circularly polarized. For circularly

jx 2βxyzy
L g( )

ezeygyJ , jy 2βyyzx
L g( )

ezexgyJ ,= =

jz βzyxx
L g( )

ex
2 βzyyy

L g( )
ey

2 βzyzz
L g( )

ez
2

+ +( )gyJ .=

L1 M1 M2, L2– M3 M4,–= =

a L1 L2, g+ L1 L2.–= =
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polarized light, the expression describing the density of
the photogalvanic current involves only the imaginary
part of the antiferromagnetic photogalvanic tensor:

(9)

where the tensor βijs does not possess any properties
associated with the permutation of the subscripts. In
order to determine nonzero components of the antifer-
romagnetic photogalvanic tensor βijs, we use the rela-
tionship for the circulating electric current,

(10)

and the rule following which each material tensor can
be transformed through the symmetry operations of the
medium according to the rule of transformation of the
quantities related by this tensor; i.e., the tensor can be
transformed as a product of these quantities. Therefore,
the antiferromagnetic photogalvanic tensor βijs can be
transformed by the symmetry operations as the product
jiLj[e, e*]s. In equality (10), the superscripts (a) and (g)
refer to the exchange magnetic structures characterized
by the vectors L1 + L2 and L1 – L2, respectively.

Let us determine the nonzero components of the

antiferromagnetic photogalvanic tensor . Since the
sum of the vectors L1 + L2 has a sole nonzero projection
onto the x axis, it is sufficient to consider only the quan-

tities . Recall that the exchange magnetic structure
is even with respect to the 2x screw axis of the crystal.
On this basis, we can easily verify that the antiferro-
magnetic photogalvanic tensor has the following non-
zero components:

For exchange magnetic structures of the g type, the
antiferromagnetic photogalvanic tensor has the nonzero
components

As a consequence, the components of the density of the
photogalvanic current for circularly polarized light can
be represented by the expressions

(11)

Im βijkl βijsεskl,=

ji βijs
a( ) L1 L2+{ } j e e*,[ ] s(=

+ βijs
g( ) L1 L2–{ } j e e*,[ ] s )J ,

βijs
a( )

βixs
a( )

βxxx
a( )

, βyxy
a( )

, βzxz
a( )

.

βxyx
g( )

, βyyy
g( )

, βzyz
g( )

.

jx βxxx
a( ) L1 L2+{ } x βxyx

g( ) L1 L2–{ } y+( )=

× eyez* ezey*–( )J ,

jy βyxy
a( ) L1 L2+{ } x βyyy

g( ) L1 L2–{ } y+( )=

× ezex* exez*–( )J ,

jz βzxz
a( ) L1 L2+{ } x βzyz

g( ) L1 L2–{ } y+( )=

× exey* eyex*–( )J .
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For the gadolinium orthoaluminate compound under
the condition that the gy component of the exchange
magnetic structure is absent (gy = 0), expressions (11)
involve only the terms proportional to the quantities

, , and . It follows from expressions (11)
that, for circular polarization of the electromagnetic
wave, the photogalvanic current is directed perpendic-
ularly to the plane of wave polarization. This inference
holds true where the polarization of the electromag-
netic wave has only two nonzero components.

Now, we consider the significant difference in the
manifestation of the antiferromagnetic photogalvanic
effect and the photogalvanic effect in nonmagnetic
crystals. For this purpose, we will analyze how the
operation of time inversion can transform the right-
hand and left-hand sides of equality (2). With the
replacement t  –t, the current density j and the anti-
ferromagnetic vector L reverse sign and the polariza-
tion vector of the electromagnetic wave changes as fol-
lows: e  e*. In this case, the sign of the antiferro-

magnetic photogalvanic tensor  should remain
unchanged, whereas the imaginary part of the tensor
Imβijkl reverses sign. Consequently, the antisymmetric
part of the antiferromagnetic photogalvanic tensor
should become zero, provided the dissipation of light
energy is disregarded. Therefore, we can infer that, in
the case of the antiferromagnetic photogalvanic effect,
the nondissipative current can be generated only by lin-
early polarized light. In nonmagnetic media, the non-
dissipative current is generated by circularly polarized
light.

6. RESULTS AND DISCUSSION

Thus, the linear and circulating photogalvanic cur-
rents in gadolinium, dysprosium, and terbium orthoalu-
minates were analyzed within the phenomenological
approach.

First and foremost, we note that the question as to
whether the gadolinium orthoaluminate in the ground

state has an exchange magnetic structure (–)2y(+)2z(–)
remains open. In principle, this problem can be solved
in terms of the antiferromagnetic photogalvanic effect:
if the photocurrent is generated in a direction parallel to
the z axis of the crystal upon exposure to light that is
linearly polarized along an arbitrary coordinate axis,
the GdAlO3 compound has an exchange magnetic

structure (–)2y(+)2z(–). In the absence of an exchange
magnetic structure in the GdAlO3 compound, the linear
photocurrent is directed perpendicularly to the plane of
the polarization of the electromagnetic wave.

In the DyAlO3 and TbAlO3 orthoaluminate com-
pounds, there can exist two possible centroantisymmet-
ric exchange magnetic structures. In this respect, the
photocurrent generated in dysprosium and terbium
orthoaluminate crystals is most conveniently observed

βxxx
a( ) βyxy

a( ) βzxz
a( )

βijkl
L

1

1

PH
under conditions where the polarization of the electro-
magnetic wave and the photocurrent are directed along
the same axis (namely, the z axis). For any other polariza-
tion of the electromagnetic wave, the photocurrent is
directed perpendicularly to the plane of the wave polar-
ization and can be determined from equalities (5) and (6)
with due regard for the aforementioned replacement (8).

A number of remarks concerning the order of mag-
nitude of generated currents need to be made. It should
be noted that, in the case under consideration, the pho-
tocurrent is generated through the phonon mechanism.
Therefore, the qualitative assessment obtained in [2] for
the photocurrent is also valid for dysprosium and ter-
bium orthoaluminates in which the photogalvanic cur-
rent is directed along the z axis of the crystal. In actual
fact, the metamagnetic transition from the antiferro-
magnetic to ferromagnetic exchange magnetic struc-
ture in the DyAlO3 and TbAlO3 orthoaluminate com-
pounds occurs in a magnetic field H ~ 5 kOe. Hence,
the magnetic field H ~ 1 kOe used in [2] can also be
applied to the DyAlO3 and TbAlO3 compounds. The
temperature range of manifestation of the antiferro-
magnetic order in dysprosium and terbium orthoalumi-
nate crystals coincides with that used in [2] for evaluat-
ing the photocurrent density. As a result, we obtain
j(CGS) ~ 10–5J (erg/cm2 s), where J is the intensity of
light.

In [7–9], when studying electron–hole correlations
in “exciton” dielectrics, considerable attention was
given to the current states and, in particular, the photo-
galvanic effect. The origin of these states can be associ-
ated with the instability of the system with respect to
the electron–hole pairing in the course of electron scat-
tering by holes. It was demonstrated that the bulk pho-
togalvanic effect is caused by the interband transitions
responsible for the appearance of the imaginary part of
the singlet order parameter in the system. On the mac-
roscopic level, the existence of the imaginary part of the
singlet order parameter is equivalent to the existence of
the antisymmetric components of the magnetoelectric
tensor of the medium. For orthorhombic crystals, the
photogalvanic effect can manifest itself through the
above mechanism in the case when the point magnetic
symmetry in the ground state is mmm'(D2h(C2v )). How-
ever, the orthoaluminate crystals in the ground state
considered in this paper have the point magnetic sym-
metry m'm'm'(D2h(D2)); i.e., the orthoaluminate crystals
in the ground state are characterized only by the sym-
metric magnetoelectric tensor. Consequently, the fac-
tors responsible for the photogalvanic effect [7–9] do
not manifest themselves in the studied orthoaluminates
until the magnetic state of the crystal changes.

In this respect, we should note that, in an external
magnetic field, the GdAlO3 orthoaluminate compound
undergoes a spin-flop transition to the az magnetic state
with the point magnetic symmetry mm'm(D2h(C2v )). In
this situation, when the magnetic field does not sub-
stantially affect the electron–hole pairing, the photogal-
YSICS OF THE SOLID STATE      Vol. 46      No. 11      2004
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vanic effect can occur through the mechanism proposed
in [7–9]. In an external magnetic field, the DyAlO3 and
TbAlO3 orthoaluminate compounds undergo a transi-
tion to an intermediate state characterized by the off-
diagonal components α13 and α31 of the magnetoelec-
tric tensor [3]. Therefore, under the condition α13 =
−α31 for the DyAlO3 and TbAlO3 orthoaluminates in
the intermediate state, the photogalvanic effect can also
occur through the mechanism proposed in [7–9]. How-
ever, the equality α13 = –α31 must be verified in the
experiment.
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Abstract—Oxygen-deficient La0.67Sr0.33MnO3 − α solid solutions have been studied. A comparison is made
with the results obtained in an earlier study of a similar lanthanum–calcium manganite series. The physical
characteristics of both series are accounted for as being due to a change in the Mn3+/Mn4+ ratio caused by oxy-
gen removal. The differences between the strontium and calcium series originate from differences in both the
bulk properties of the original oxygen-stoichiometric materials and their texture. In the strontium series, the tex-
ture manifests itself in intergrain magnetoresistance, which exceeds in magnitude the colossal magnetoresis-
tance caused by bulk properties of the material. Study of the oxygen-deficient La0.67Sr0.33MnO3 − α compound
revealed specific features in the dependence of the electrophysical parameters on temperature and the Mn4+

fractional content that were not observed in the La0.67Ca0.33MnO3 − α compound studied by us earlier and in
La1 − xSrxMnO3 samples described in the literature. The physics underlying these differences is discussed. A
modified phase diagram relating the phase transition temperature to the Mn4+ fraction is proposed. © 2004
MAIK “Nauka/Interperiodica”.
1. FORMULATION OF THE PROBLEM

The physics underlying the phenomenon of colossal
magnetoresistance (CMR) in solid solutions of alka-
line- and rare-earth (AE and RE, respectively) manga-
nites is currently fairly clear (see reviews [1–6]). The
concepts involved rest on the idea of a mixed valence
state (MVS) of the manganese ions (Mn3+/Mn4+). All
the other features of the structure and spin, orbital, and
charge ordering may play an important and even deci-
sive role, but only in the formation of the manganese
MVS. Basic research and applications in the area of the
physics and chemistry of manganites depend crucially
on the possibility of controlling this state.

The method most widely used to control the manga-
nite MVS is based on varying the cation ratio in a solid
solution, e.g., in La1 − xSrxMnO3. A modification of this
approach consists in synthesizing nonstoichiometric
solid solutions deficient in one of the cations. This tech-
nique enjoys wide use in studies of simple manganites,
e.g., La1 − xMnO3 [7]. It has also been found that the
manganites, including their simple structures, tend to
form defect compounds of the type of La1 − x Mn1 − xO3;
these compounds are actually oxygen-rich manganites
defined customarily by the formula LaMnO3 + δ (see,
e.g., [8]). This property vanishes in solid solutions with
the AE manganites [9].

Controlling the manganese MVS by producing oxy-
gen deficiency is a much less popular approach [10–
14]. This should be attributed to the difficulties
involved in varying the oxygen content, because the
1063-7834/04/4611- $26.00 © 22086
oxygen in manganites is bound much more strongly
than, say, in oxide superconductors. At the same time,
investigating oxygen-deficient manganites could sub-
stantially broaden experimental possibilities for fine
tailoring of the characteristics of a material to a specific
basic study or an application. Our preceding investiga-
tion [10] showed that the changes in the physical char-
acteristics of the La0.67Ca0.33MnO3 − α series (0 ≤ α ≤
0.34) are qualitatively similar to those obtained when
the cation composition x is varied. For instance, as α is
increased, the semiconductor–metal transition point,
the maximum in the magnitude of the CMR, and the
region where the specific heat exhibits anomalous
behavior shift toward lower temperatures, just as has
been observed when x is reduced. There is, however, no
quantitative coincidence between these shifts obtained
for the same Mn3+/Mn4+ ratio by varying the La/Sr cat-
ion ratio and producing an oxygen deficiency, i.e.,
where |∆α| = 2|∆x |. To gain a deeper understanding of
these phenomena, it appeared necessary to continue the
investigation of the part played by oxygen deficiency in
an apparently similar series, La0.67Sr0.33MnO3 − α.

The lanthanum–strontium manganites have been
studied to a greater extent than the lanthanum–calcium
manganites. Despite their similar chemical composi-
tions, the Ca, Sr, and Ba series differ both quantitatively
and qualitatively in terms of their physical characteris-
tics, including the conductivity and CMR. Some
reviews stress the large difference in conduction band
width between the materials of these series, a factor that
004 MAIK “Nauka/Interperiodica”
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Characteristics of La0.67Sr0.33MnO3 – α samples: oxygen deficiency α and phase transition temperatures as derived from elec-
trical, magnetoresistance, and calorimetric measurements

Sample no. α z TCMR, HT, K TCMR, LT, K Tρ, HT, K Tρ, LT, K |CMR|, % maxCp, K Eact, meV

1 0.000 0.33 352 n/obs 352 n/obs 10 356 35*

2 0.010 0.31 344 n/obs 341 n/obs 8.0 348 47*

3 0.016 0.298 339 250 345 250 5.8 340 52*

4 0.030 0.27 326 220 325 220 4.0 n/obs 70*

5 0.034 0.262 322 200 320 200 4.0 n/obs 80

6 0.040 0.25 318 180 315 180 4.0 n/obs 80*

7 0.070 0.19 265 140 n/obs n/obs 2.3 n/obs 120

8 0.100 0.13 238 n/obs n/obs n/obs 1 n/obs 150

9 0.16 0.01 n/obs n/obs n/obs n/obs n/obs n/obs 220*

Note: z = 0.33 – 2α; TCMR, HT and TCMR, LT are positions of the high- and low-temperature maxima in the magnitude of CMR, respec-
tively; Tρ, HT and Tρ, LT are positions of the high- and low-temperature maxima in resistivity, respectively; Cp is the specific heat
above 100 K; Eact is the activation energy for conductivity in the semiconducting region (asterisks refer to the values calculated
using data from [16]); and n/obs stands for not observed experimentally.
is also apparent in the diagram of the magnetic phases
and metal–semiconductor transitions (see, e.g., [6]).
Our earlier study revealed different crystallization pat-
terns for calcium and strontium samples prepared by
direct cold-crucible high-frequency melting. Stron-
tium-based samples are an agglomerate of heavily
intergrown needle-shaped crystals, 10–15 mm long and
~1–2 mm in diameter (in contrast to the smaller crystals
of the calcium series).

Because no comprehensive investigation of oxygen-
deficient La0.67Sr0.33MnO3 − α samples has thus far been
carried out experimentally, let alone theoretically, this
study was aimed primarily at establishing the general
pattern of changes that the conductivity, magnetoresis-
tance, and heat capacity undergo within the range of
Mn4+ fractions from 0.33 to zero. (This fraction is
found from the charge neutrality condition.) The study
is logically concluded with a comparison with mea-
surements where the variation of the Mn4+ fraction was
attained in a different way (rather than by removing
oxygen), as well as with works where the oxygen con-
tent was not varied methodically [11–15].

2. EXPERIMENTAL TECHNIQUES

The techniques used to prepare the starting material;
remove the oxygen by various physicochemical proce-
dures; and measure the electrical conductivity, magne-
toresistance, and heat capacity were described in our
earlier paper [10]. The table lists characteristics of the
samples studied by us. To make our presentation more
PHYSICS OF THE SOLID STATE      Vol. 46      No. 11      20
revealing, we drop from the subsequent consideration
(particularly in the figures) data on several of the sam-
ples. This relates to samples with similar characteristics
(primarily, samples 1, 2, and 4–6).
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Fig. 1. Temperature behavior of the electrical resistivity ρ of
La0.67Sr0.33MnO3 − α for various values of α: (1) 0, (3)
0.016, (5) 0.034, (7) 0.070, (8) 0.100, and (9) 0.160. The
numerals adjacent to the curves refer to the sample numbers
(see table). Inset: data for sample 3 obtained in the region of
the feature in the ρ(T) course (solid line) and the magnetore-
sistance curve (dashed line).
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3. EXPERIMENTAL RESULTS

3.1. Electrical Conductivity

The temperature dependence of electrical resistivity
ρ for increasing values of the oxygen deficiency is plot-
ted in Fig. 1 in the logρ vs. T coordinates. The nine
samples studied can be divided into three groups
according to the magnitude and temperature behavior
of their conductivity.

Below 360 K, samples 1 and 2 (see table) transfer
from a high-conductivity state (where ∂ρ/∂T ≈ 0 in the
range 400–550 K) to another, higher conductivity state,
which can be called metal-like, because ∂ρ/∂T > 0 and
the resistivity is ~10–4 Ω cm at low (liquid-helium) tem-
peratures.

The temperature dependence of the resistivity of
samples 3–6 (see table) exhibits extrema; i.e., the deriv-
ative ∂ρ/∂T changes sign. Also, additional extrema can
be isolated on both sides of the main hump in ρ(T). For
illustration, the inset in Fig. 1 shows the temperature
behavior of the derivative ∂ρ/∂T obtained for sample 3
in the range 200–400 K; the less pronounced feature in
∂ρ/∂T near 340 K correlates with the distinct peak in
magnetoresistance (the same behavior is characteristic
of samples 4–6). Turning now to the low-temperature
side of the main hump, i.e., below 250 ± 5 K for sample
3 and below 200 ± 20 K for samples 4–6, we see that
the curve describing the metal-like decrease in the
resistivity with decreasing temperature (∂ρ/∂T > 0)
passes through a broad minimum near 30 K; i.e., ∂ρ/∂T
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Fig. 2. Temperature dependence of magnetoresistance of
La0.67Sr0.33MnO3 − α for various values of α: (1) 0, (3)
0.016, (5) 0.034, (7) 0.070, and (8) 0.100. The numerals
adjacent to the curves refer to sample numbers (see table).
PH
switches sign. A comparison of the behavior of the ρ(T)
curves obtained for samples 4–6 indicates a good accu-
racy and reproducibility of the measurements, which
was particularly evident in the sensitivity to small
changes in the oxygen content: 2.970, 2.966, and 2.960
for samples 4–6, respectively. Therefore, to make the
curves more revealing and to facilitate subsequent dis-
cussion of the main features present in the high-temper-
ature part of the curves, we will use only the curve for
sample 5.

The third group of samples (7–9, see table) exhibits
only semiconducting behavior (∂ρ/∂T < 0), although
sample 7 suggests the formation of a plateau in the
range 70–150 K. For sample 9, the ρ(T) curve exhibits
an inflection point near 100 K; however, the measure-
ment accuracy in this region is poor and no refinement
of the curve behavior was undertaken.

Both the clearly pronounced features in the temper-
ature behavior of ρ(T) (which were used to classify the
samples) and the peculiarities requiring a more careful
analysis are compared with CMR data and available lit-
erature data in Section 4.

3.2. Magnetoresistance

The magnetoresistance is defined as {ρ(H) – ρ(H =
0)}/ρ(H = 0), where the magnetic field is H = 0.65 T in
our experiments. Considered physically, this quantity
in our manganites is negative; in Fig. 2, which shows
the temperature course of the CMR (as well as in the
inset to Fig. 1), the absolute values of the corresponding
quantities (|CMR | and |MR |, respectively) are given. To
make the plots more revealing, the group of curves for
samples 4–6 is not presented in full; in fact, there are
only data for sample 5 (as in the case of electrical resis-
tivity). The data on the two other samples are qualita-
tively very similar, and the quantitative changes are
small and what should be expected. For the same rea-
son, we do not display the curve for sample 2; indeed,
its CMR temperature dependence behaves qualitatively
similar to what we see for sample 1.

The CMR of the oxygen-deficient
La0.67Sr0.33MnO3 − α samples exhibits three distinct fea-
tures. One of them is associated with the presence of an
extremum near and above room temperature. The CMR
of samples 1–3, 5, and 8 reaches a maximum in magni-
tude at temperatures 352 ± 1, 344 ± 1, 339 ± 2, 322 ± 1,
and 238 ± 8 K, respectively. An inflection point, barely
discernible on the scale of Fig. 2 but nevertheless dis-
tinct, is seen in the graph for sample 7 at 265 ± 5 K.
Another feature is a monotonic (but fairly steep) growth
of CMR in magnitude for the same samples observed as
the temperature is lowered still further, so that the CMR
at liquid-helium temperature is even larger than that at
the maximum of the peak. The third feature is a clearly
YSICS OF THE SOLID STATE      Vol. 46      No. 11      2004
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pronounced change in the temperature behavior of the
CMR exhibited by samples 3–8 in the range 100–250 K.
The CMR curves of these samples can be represented
phenomenologically as the sum of two curves, one of
which grows monotonically with increasing tempera-
ture and the other passes through a maximum (we con-
sider the magnitude of CMR). Sample 7 exhibits, starting
from 160 K, a broad plateau extending down to 70 K,
after which the temperature behavior of CMR becomes
poorly reproducible, and therefore we neither present
nor discuss it here. It may be conjectured that the chem-
ical composition forming at an oxygen content corre-
sponding to an index of 2.93 (or α = 0.07) is poorly
reproducible, so the properties of the manganite
become intermediate between those observed in the
third group of the samples (without the characteristic
transition to metallic conduction) and in the first and
second groups, which feature such a transition (see
Subsection 3.1).

3.3. Specific-Heat Anomaly

Differential scanning calorimetry spectra showed an
anomalous temperature behavior of the heat capacity in
samples with α < 0.05 in the range 320–350 K, where
the CMR passes through a maximum and/or ∂ρ/∂T
either switches sign or varies in magnitude. The heat
capacity did not feature anomalies as distinctly as the
conductivity and magnetoresistance do when the tem-
perature is lowered to 100 K.

4. DISCUSSION OF THE RESULTS

We start the analysis of the conductivity and magne-
toresistance of our La0.67Sr0.33MnO3 − α samples with a
general comparison with our earlier data on
La0.67Ca0.33MnO3 – α (the calcium series) [10]. Ignoring
quantitative differences (in the magnitude of ρ and the
temperatures of the conductivity and CMR extrema),
similarity in the behavior of the characteristics of these
two series can be noticed only for samples with extreme
oxygen deficiencies, i.e., for samples with the lowest
(α = 0 for both series, α = αCa = 0.006 for the Ca series,
and α = αSr = 0.01 for the Sr series) and the largest
(α = 0.16 for both series) deficiency levels. The
strongly oxygen-deficient samples of the Ca and Sr
series, as should be expected for manganites with a
close-to-zero Mn4+ content, exhibit the lowest semicon-
ductor-type conductivity without CMR (at least in the
experimentally covered temperature regions). Samples
that are nearly or fully stoichiometric in oxygen reveal
a classical transition to the metallic state and CMR. The
transition temperatures are close to those quoted in the
literature. (It should be noted that the changes in Tc
observed by us in samples with low oxygen off-stoichi-
PHYSICS OF THE SOLID STATE      Vol. 46      No. 11      20
ometry could account for the scatter in the literature
data!)

Samples of the two series under study with interme-
diate oxygen-deficiency levels exhibit distinct qualita-
tive differences. For instance, the ρ(T) curve for the
sample with αCa = 0.017 ± 0.001 in the calcium series
exhibits an inflection point, correlating with the maxi-
mum in CMR (165 K), below which the temperature
behavior changes from lnρ ~ 1/T to lnρ ~ 1/T1/4, a pat-
tern that persists down to liquid-helium temperatures.
The behavior of ρ(T) of sample 3 in the strontium series
(with αSr = 0.016 ± 0.001) and of the sample with αCa =
0.017 ± 0.001 in the calcium series at relatively high
temperatures are qualitatively similar (∂ρ/∂T < 0). Fur-
thermore, the extremum observed for the strontium
sample in the 323- to 345-K interval could be identified
with the above-mentioned inflection point for the cal-
cium series. Below 250 K, however, the character of the
ρ(T) dependence of the strontium sample switches to
metallic, i.e., to a pattern radically different from that of
its counterpart in the calcium series.

A similar conclusion can be drawn from comparing
samples of both series that are off-stoichiometric in
oxygen (0.03 ≤ α ≤ 0.04). The calcium series exhibits
in this case only a transition from one type of semicon-
ducting conductivity to another, and this transition
occurs in the temperature region where CMR reaches a
maximum in magnitude. Judging from the sign of its
derivative, the temperature dependence of conductivity
in samples of the strontium series having the same oxy-
gen off-stoichiometry radically changes its pattern
below ~200 K (Fig. 1). While the conductivity below
this temperature is no longer metallic, it nevertheless is
higher by one and a half to two orders of magnitude
than that for the calcium samples.

Samples 7 and 8, just as the calcium samples with
similar oxygen off-stoichiometry (αCa = 0.06, 0.10),
reveal a semiconducting behavior. However, two differ-
ences should be pointed out. First, the ρ(T) dependence
for the Ca sample with αCa = 0.06 does not show a ten-
dency toward the formation of a plateau, in contrast to
that for the Sr sample with αSr = 0.07. Second, the Ca
sample with αCa = 0.10 does not exhibit CMR, in con-
trast to the Sr sample with αSr = 0.10, which certainly
reveals not only intergrain CMR but also bulk CMR,
with a maximum at 238 ± 8 K.

Thus, a purely phenomenological comparison of the
two oxygen-deficient series shows that substitution of
Sr for Ca, a simple procedure at first glance, produces
different responses to oxygen loss. The strontium series
retains the metallic-like and ferromagnetic state to
heavier oxygen deficiencies than the calcium series.

A more comprehensive analysis of our results and
comparing them with other available data would
require knowledge of the numerical parameters
04
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describing the dependence of conductivity on tempera-
ture and the Mn4+ content, which is dictated by the Sr
and/or oxygen content. It turned out very hard, how-
ever, to locate in the numerous reviews that have
appeared in recent years [1–6] the numerical parame-
ters corresponding to the universally accepted analyti-
cal forms of the ρ(T) relation. Therefore, the informa-
tion necessary for performing a comparative quantita-
tive analysis is taken primarily from the graphs
presented in various papers and the analytical descrip-
tion is of a phenomenological character and based on
the present authors' concepts rather than on those put
forward in the cited papers.

The only publication that presents analytical tem-
perature dependences of σ(T) = 1/ρ(T) for a broad
range of variations of both the cation composition and
oxygen off-stoichiometry for La1 – xSrxMnO3 − α is [16].
Regretfully, the temperature range of 600 to 1400 K
covered there lies substantially higher than the region
where the phase transitions and CMR occur. In this
range, the conduction is treated in [16] in terms of the
small-polaron model. To compare these results with our
data on the conductivity of the strontium series, we
extrapolated the data from [16] to temperatures of 300–
500 K using the corresponding relations. Attention is
focused on the temperature behavior of ρ rather than on
its magnitude. The fact is that the values of the conduc-
tivity quoted in the literature are poorly reproducible,
because they depend strongly on technological factors.
This dependence was demonstrated earlier in [17] for
La0.67Sr0.33MnO3-based samples studied by us by com-
paring the conductivities of a single crystal and two
ceramic samples of composition La0.67Sr0.33MnO3 pre-
pared at different anneal temperatures. Above 400 K,
the single crystal and the ceramic sample annealed at
1973 K have a fairly similar resistivity, which is lower
by about a factor of 1.5 than the values obtained by us
and those reported in [18], but these differences
decrease to ~10% with a decrease in temperature. The
ceramic sample annealed at 1573 K has an electrical
resistivity at 400 K differing from our data by no more
than 10%, but as the temperature is lowered, this differ-
ence reaches an order of magnitude (the conductivity of
the ceramic sample becomes lower). Our oxygen-sto-
ichiometric sample 1 features approximately the same
temperature behavior of CMR as the ceramic samples
studied in [17]; namely, the CMR grows in magnitude
continuously as the temperature is decreased to 4.2 K
and its values are similar in both cases at the same mag-
netic fields (10% in the present work and ~20% in
[17]).

In view of the part played by technological factors
and the temperature range covered in [16], it appeared
only natural to compare the temperature behavior in the
temperature regions where the conductivity follows a
PH
semiconducting pattern. The data obtained for the sec-
ond and third groups of samples, which feature temper-
ature regions with semiconducting behavior, are most
appropriate for this purpose. It was found that in these
groups the temperature dependences of ρ(T) obtained
experimentally on samples 4–8 and calculated for the
same compositions using the equations from [16] are
similar. However, in order to match the data on ρ, the
prefactor given in [16] had to be multiplied by factors
of 4.3, 4.8, 5.7, 17, and 31, respectively. Also, this pro-
cedure is efficient for samples 4–6 above 360 K (Eact ≈
80 meV), for sample 7 above 200 K (Eact ≈ 120 meV),
and for sample 8 above 150 K (Eact ≈ 150 meV). For
samples 3 and 9, the activation energies quoted in [16]
differ from ∂lnρ/∂(T–1) for our samples (above 360 K
for the former sample and above 150 K for the latter) by
a factor of approximately 2, which makes matching the
data of the two studies by varying the prefactor impos-
sible.

The electrical resistivity of samples 1 and 2 (making
up the first group) at temperatures above 400 K is five
times higher than that calculated using the equations
from [16]. However, because of the smallness of the
activation energies (35 and 47 meV, respectively [16]),
the function ρ = (ρ0/T)exp(Eact /T) in this temperature
region features a broad minimum for Tmin = Eact resem-
bling a plateau. This does not permit us to unambigu-
ously conclude whether the conductivities obtained in
the semiconducting region for our oxygen-stoichiomet-
ric samples and calculated from data from [16] are con-
sistent or not.

Let us turn now to studies dealing with the tempera-
ture region where electrical and magnetic phase transi-
tions and CMR occur. For comparison, we chose publi-
cations [9, 18], which reported on a comprehensive
study of the temperature and concentration depen-
dences of the conductivity. Those studies dealt, how-
ever, with samples of lanthanum–strontium manganites
which had variable cation composition but were oxy-
gen stoichiometric. It is customarily believed that the
conductivity of the manganites under study depends
primarily on the Mn4+ fraction, which is determined
either by the fraction of Sr (or another AE element) sub-
stituting for lanthanum or by oxygen off-stoichiometry
[1–6]. Therefore, we make a comparison of our date
with experimental data from the literature by reducing
the oxygen off-stoichiometry α to the Mn4+ fraction,
which we denote by z. For samples with a Sr fraction of
x, we have z = x – 2α. The corresponding values of z for
our samples are listed in the table.

Let us turn to the temperature dependences
described in different publications. In all three studies
under discussion (in the present paper and in [9, 18]),
one can isolate two main types of ρ(T) behavior,
namely, a monotonic (or nearly monotonic) behavior,
YSICS OF THE SOLID STATE      Vol. 46      No. 11      2004
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where the ∂ρ/∂T derivative does not change sign, and
dependences with maxima and minima, which can be
absolute or relative in the temperature interval covered.
The nearly monotonic course is characteristic of the
samples that transfer to the metallic state. We note
immediately that La0.67Sr0.33MnO3 exhibits, as a rule,
metallic-like behavior slightly above the transition tem-
perature, although this conclusion is based rather on the
specific features of the ρ(T) course for the small-
polaron conduction (see above). Nearly monotonic
behavior is seen clearly in our samples 1 and 2 (Fig. 1),
for which z = 0.33 and 0.31, respectively (see table),
and for the samples with z ≥ 0.175 studied in [9, 18],
where z = x. We stress immediately that the cation-vari-
able series from [9, 18] differ from our oxygen-defi-
cient system, where ρ(T) follows a different course
already for z < 0.3 (see below). A monotonic course of
ρ(T) is also characteristic of samples with a purely
semiconducting behavior and is observed for samples
with z = 0.05 and 0 [18] and for our samples 8 (z = 0.13)
and 9 (z = 0.01).

A nonmonotonic ρ(T) dependence with a relative
maximum and minimum was seen for z = 0.15 in [18]
and over the interval 0.125 ≤ z ≤ 0.175 in [9] (where 11
samples were studied with a step of ∆z = 0.005). In
addition, the ρ(T) curves from [9] exhibit a distinct pla-
teau or inflection points within the interval 0.10 ≤ z ≤
0.12. Our sample 7 (z = 0.19) also reveals a clearly pro-
nounced plateau, so it can be placed in the group of
samples with nonmonotonic behavior. Thus, the ρ(T)
dependence for our samples 1, 2, and 7–9 coincides
with that identified in the literature as characteristic of
samples with variable cation composition and, most
essentially, within the corresponding intervals of z.

The situation with our oxygen-deficient samples 3–
6, whose Mn4+ fraction varies within the interval 0.25 ≤
z ≤ 0.3, is more complicated. According to the above
classification, they exhibit a ρ(T) dependence with
extrema; this feature is unique for the reason alone that
it was not reported in the publications we are familiar
with from reviews [1–6], primarily in [18]. (In [9], such
compositions were not studied.) The uniqueness of this
behavior consists in that oxygen-deficient samples in
the above z interval pass through an absolute resistivity
maximum at 180–250 K. This maximum is preceded on
the high-temperature side by a relative maximum for
sample 3 (z = 0.298) and by inflection points in the ρ(T)
dependence for the other samples (see above). It is also
essential that the temperature region where the relative
maximum in ρ is observed coincides with the region of
the peak in CMR (Fig. 2) and of the anomalous temper-
ature behavior of the heat capacity. We believe that this
feature should be assigned to the unconventional
method of manganese MVS control used in our study.
The low-temperature part of the ρ(T) curve (i.e., below
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the temperature of the absolute maximum) for the
group of samples being discussed exhibits a weakly
pronounced minimum near 30 K (see above), which
was mentioned in some publications dealing with man-
ganites and assigned to electron correlation at liquid-
helium temperatures. This effect is usually observed,
however, for close-to-metallic conductivities, while the
conductivity of oxygen-deficient samples is substan-
tially lower than metallic. More detailed experimental
data, which may be obtained already in the near future,
are needed to better understand the nature of this ρ(T)
minimum.

Let us turn now to the concentration dependence of
ρ(z, T), i.e., the dependence of the conductivity on the
Mn4+ fraction. Figure 3 plots isotherms of the concen-
tration dependences derived from our measurements.
Their main feature is a clearly nonlinear, exponential-
like behavior of ρ(z). Of particular interest is a still
steeper course observed in the case of Mn4+ fractions
near z = 0.3, where at all temperatures presented in
Fig. 3 except 400 K the metal–semiconductor transition
takes place. This effect is also evident when all experi-
mental data are projected onto the xz plane (Fig. 3). The
concentration dependence of conductivity is discussed
primarily qualitatively in all experimental studies of
which we are aware. We succeeded in extracting the
ρ(z) dependence from [9, 18] and compared it with our
data. In view of the above differences in the conductiv-
ity attributable to technological factors, we focused
attention on the general pattern of this relation. It turned
out that the corresponding curves behave in a similar
manner, including the sharper variation in the interval
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Fig. 3. Isotherms of the electrical resistivity ρ of
La0.67Sr0.33MnO3 − α samples plotted vs. the Mn4+ fraction
z.
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z = 0.25–0.3. The patterns of ρ(z) curves for oxygen-
deficient samples (our data) and samples with varied
cation composition [9, 18] differ, however, in two
respects. First, the latter samples with z > 0.25 exhibit,
in effect, a jump to metallic-like conductivity. Second,
because the ρ(T) dependences of samples of both types
for 0.04 < z < 0.3 exhibit a complex behavior with
extrema located at different temperatures (for example,
at 300 K, one part of the curves relates already to a
metal-like state while the other relates to the semicon-
ducting state), the similarity in the behavior of the
curves obtained in different studies is of a conceptual
rather than quantitative character. For temperatures
near 400 K, however, the curves can be approximately
described by a parabolic relation of the type
lnρ(400 K) = 3.7 – 49z + 68z2, which passes through a
minimum near z ~ 0.36. According to the phase dia-
grams available in the literature, at the Mn4+ contents
z = 0.3–0.4, Tc reaches a maximum for La1 − xSrxMnO3
(see, e.g., [5, 6]).

In concluding this section, we discuss the modified
phase diagram of the lanthanum–strontium manganites
(Fig. 4) constructed with allowance for the two phase
transitions that occur in oxygen-deficient samples (see
table). A number of features for z > 0.5 given in reviews
[1–6] are dropped here, but for z < 0.5 the diagram con-
tains all the experimental points presented in the publi-
cations discussed in this paper. A three-dimensional
diagram Tc(x, α) would certainly provide more infor-
mation; nevertheless, we can state with confidence that

100

0 0.1

Tc, K

z
0.2 0.3 0.4

200

300

400

PS

FS
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B

C
FM + FS

1
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4
5

Fig. 4. Modification of the phase diagram relating the phase
transition temperature Tc to the Mn4+ fraction z for
La0.67Sr0.33MnO3 − α. PS stands for paramagnetic semicon-
ductor, FS for ferromagnetic semiconductor, and FM for
ferromagnetic metal; (1, 2) our data for the high- and low-
temperature branches, respectively, and data from (3) [18],
(4) [9], and (5) [15].
PH
the establishment of a second curve (at lower tempera-
tures) was possible only due to the nonstandard manner
in which the manganese MVS was varied in this study.
The identification of the magnetic and electrical phases
was made from experimental data. The simplest inter-
pretation of the A–B–C cut of the diagram in Fig. 4 is
as follows: a paramagnetic semiconductor (PS) trans-
fers, with decreasing temperature, to a ferromagnetic
semiconductor (FS) and only after that to a ferromag-
netic metal (FM). The latter assignment cannot, how-
ever, be considered to be supported fully by experi-
ment; indeed, while ∂ρ/∂T follows a metallic behavior,
the magnitude of ρ is far from the values characteristic
of metals. It appears therefore more reasonable to sug-
gest that, in actual fact, phase separation (electronic or
microheterogeneous) occurs at point B; to stress this
point, an FM + FS state is shown under the low-temper-
ature phase diagram line.

5. CONCLUSIONS

The electrophysical and magnetic properties of oxy-
gen-deficient La0.67Sr0.33MnO3 − α (α ≤ 0.16) have been
studied in the temperature range from 4.2 to 550 K. The
changes in conductivity induced by varying both the
concentration of carriers (holes, Mn4+) and the number
of Mn–O–Mn bonds differ from those obtained by
varying the cation composition. Furthermore, the con-
ductivity changes differ from those observed to occur in
La0.67Ca0.33MnO3 – α. In particular, the metal-like
behavior of strontium-based samples persists down to
larger oxygen deficiencies. Invoking the concept of
phase separation provides a basis for deeper insight into
the behavior of conductivity and the features in the dia-
gram relating the phase transition temperature to the
Mn4+ fraction. The potential inherent in the method of
“soft” oxygen removal for controlling the properties of
manganites for basic science and applications is dem-
onstrated; indeed, with no need for high-temperature
synthesis, it has become possible to lower the metal–
semiconductor and ferromagnet–paramagnet transition
temperatures by more than 100 K (360–238 K) and to
change the conductivity by several orders of magnitude
(7 and 11 orders of magnitude at room temperature and
100 K, respectively).
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Abstract—The EPR of Mn ions in the (La1 − yPry)0.7Ca0.3MnO3 system has been studied within a broad range
of temperatures (4 < T < 600 K) and Pr concentrations (0 ≤ y ≤ 1), as well as under isotope substitution of 18O
for 16O. All compositions were shown to undergo transitions to a magnetically ordered state with decreasing
temperature. Magnetic phase diagrams were constructed for systems with different oxygen isotopes. The dia-
grams include paramagnetic, ferromagnetic, and antiferromagnetic regions. In the paramagnetic region, at tem-
peratures not too close to the phase transition points, the Mn ion linewidth ∆Hpp(T) is related to the magnetic
susceptibility χ(T) through the relation ∆Hpp(T) = [χ0/χ(T)]∆Hpp(∞) + ∆H0, where ∆Hpp(∞) is the width of the
exchange-narrowed line in the high-temperature approximation, χ0 ∝  1/T is the susceptibility of noninteracting
ions, and ∆H0 is the residual width originating from the sample porosity and resonance-field scatter in unori-
ented grains of a powder sample. An analysis of the data on ∆Hpp(∞), ∆H0, and χ(T) made it possible to estimate
the symmetric and antisymmetric exchange interaction of Mn ions and of the noncubic crystal-field component
of the oxygen ions. These parameters were found to be independent of the oxygen isotope species to within
experimental error. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The recent intense investigation of perovskite man-
ganites with the general formula A1 – x MnO3 (A = La,
Pr, or another rare-earth element; A' = Ca, Sr, Ba)
should be attributed to the fact that the colossal magne-
toresistance effect has been revealed in them [1–3].
These compounds show a close relation between the
transport, magnetic, and structural properties. The level
of doping by divalent cations A' determines the frac-
tional content of the Mn3+ and Mn4+ ions, and the aver-
age cation ionic radius 〈rA〉  determines the extent of
deviation of the structure from a perfect cubic perovs-
kite.

The doping level in the (La1 − yPry)0.7Ca0.3MnO3
compound remains constant as the Pr concentration y is
varied from 0 to 1, and the average cationic radius 〈rA〉
decreases, accordingly, from 1.21 to 1.18 Å. This
entails a substantial change in the low-temperature
phase state; indeed, for 0 < y < 0.6, the compound is a
ferromagnetic (FM) metal; for 0.6 ≤ y ≤ 0.8, it is an
inhomogeneous mixture of FM and antiferromagnetic
(AFM) regions (conducting and insulating, respec-
tively); and for 0.8 < y ≤ 1.0, it is a canted antiferromag-
netic (CAFM) dielectric. Within the interval 0.6 ≤ y ≤
0.8, the material is very sensitive to various external
disturbances; in particular, the metallic state may
switch to dielectric in response to even such a weak per-
turbation as substitution of the 18O isotope for 16O [4].
The properties of magnetically ordered phases in this

Ax'
1063-7834/04/4611- $26.00 © 22094
compositional region have been studied in considerable
detail by neutron diffraction [5, 6]. This communica-
tion reports on an EPR study of the magnetic properties
of the (La1 − yPry)0.7Ca0.3MnO3 system.

The EPR signal in the manganites was shown to be
generated by all manganese ion species present in a
sample, namely, Mn3+ and Mn4+ [7]. These ions are
coupled by exchange interaction strongly enough to
favor the realization of phonon bottleneck conditions,
which accounts for the observation of one common
exchange-narrowed line. By neglecting spin–lattice
relaxation, the temperature dependence of the width of
this line can be described by [8]

 (1)

Here, ∆Hpp(T) is the linewidth (field separation
between the peaks in the derivative of the absorption
curve) measured at temperature T; χ0(T) ∝  1/T is the
magnetic susceptibility of noninteracting spins; χ(T) is
the experimentally observed susceptibility; and
∆Hpp(∞) is the width of the exchange-narrowed line in
the high-temperature limit, where most of the eigenval-
ues of the Hamiltonian of isotropic exchange interac-
tion between Mn spins

 (2)

∆H pp T( )
χ0 T( )
χ T( )
--------------∆H pp ∞( ).=

Hex JijSiS j

i j<
∑–=
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are much less than kBT (kB is the Boltzmann constant).
The linewidth ∆Hpp(∞) is given by the well-known rela-
tion [9]

 (3)

where M2 is the second moment of the line, ωex . J/" is
a characteristic exchange frequency, µB is the Bohr
magneton, g is the magnetic-splitting factor, " is the
Planck constant, and α is a dimensionless constant of
order unity, whose value may differ slightly in various
theories concerning exchange-induced narrowing.

It was shown in [8, 10] that the second moment M2
in compounds with nonmagnetic ions A and A' is deter-
mined primarily by the Dzyaloshinskiœ–Moriya anti-
symmetric exchange interaction

 (4)

and the noncubic crystal-field component, which is
caused by deformation of the oxygen octahedra sur-
rounding the Mn ions. Analyzing the experimental data
on ∆Hpp(∞) allowed us to estimate the parameters of
these interactions and their dependence on temperature
and the composition of the systems under study.

We carried out EPR measurements on two lots of
powder samples of (La1 − yPry)0.7Ca0.3MnO3, with the
oxygen isotopic composition corresponding to a natural
16O abundance or a composition enriched in the 18O iso-
tope and with y = 0.0, 0.25, 0.5, 0.6, 0.7, 0.75, and 1.0
(which are subsequently designated as LPCM-100y-
16(18)). At temperatures not too close to the phase tran-
sition points, the experimentally observed temperature
dependence of the linewidth for powder samples with
0 ≤ y ≤ 1 is related to the magnetic susceptibility χ(T)
(obtained by integrating the spectrum) by a slightly
modified form of Eq. (1),

 (5)

We measured the dependences of ∆Hpp(∞) and ∆H0 on
y and the oxygen isotopic composition and estimated
the parameters governing these quantities. The charac-
teristic variations in the EPR spectra and in the mag-
netic susceptibility χ(T) were used to derive the transi-
tion temperatures to the ferromagnetic (TFM) and anti-
ferromagnetic (TAFM) states and to construct a magnetic
phase diagram of the system.

2. SAMPLES AND MEASUREMENT TECHNIQUE

2.1. Sample Preparation

(La1 − yPry)0.7Ca0.3MnO3 samples with Pr contents
y = 0.0, 0.25, 0.5, 0.6, 0.7, 0.75, and 1.0 were prepared
in the form of a powder using the so-called paper syn-
thesis. A water solution comprising nitrates of La, Pr,

∆H pp ∞( ) . 
"

gµB
--------- 

  α M2

ωex
-----------,

HDM DDMij Si S j×[ ]
i j<
∑=

∆H pp T( )
χ0

χ T( )
------------∆H pp ∞( ) ∆H0.+=
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Ca, and Mn mixed in required proportion was deposited
on ashless paper filters, which were burnt after drying
at 120°C. The oxides thus prepared were calcined in air
at 700°C for two hours. The final powder product was
pelletized and calcined subsequently in air for 12 h at
1200°C.

The pellets intended for EPR measurements were
ground to powder with a characteristic grain size of a
few microns. Enrichment with oxygen isotopes was
carried out at 950°C at an oxygen pressure of 1 atm.
Two samples of the same composition were annealed
simultaneously, one of them in an 16O environment
(99.7% enrichment), and the other, in an 18O atmo-
sphere (enrichment 93%). Platinum crucibles with
powders were placed in two quartz tubes fixed in a fur-
nace parallel to each other. Each tube was actually part
of a closed circuit, with 16O and 18O, respectively, cir-
culating through them. Samples were annealed for 48 h
at 950°C and subsequently cooled slowly to room tem-
perature. The 18O content in the samples, derived from
the change in their weight after isotope enrichment, was
never less than 80%. Samples with y = 0.75 were
checked for oxygen stoichiometry by neutron diffrac-
tion (in powder form) and iodometric titration. The dif-
ference in oxygen content in samples with different iso-
topes did not exceed 0.002.

X-ray diffraction was employed to verify that sam-
ples of all compositions were single phase. The same
method showed that all the samples had an orthorhom-
bic Pnma crystal structure (no. 62). The unit cell param-
eters in this space group are related to the lattice param-
eter of the cubic perovskite ac ≈ 3.8 Å by the relations

a ≈ c ≈  and b ≈ 2ac.

The results obtained in structural, transport, and
magnetic-structure studies of samples of this system
are reported in [5, 6, 11]. The orthorhombicity, defined
as the relative deviation of the lattice parameters a, c,

and b/  from one another, did not exceed 0.5–0.6%
throughout the temperature range covered, 4.2–300 K,
and for the Pr content y varied from 0 to 1. The largest
deviation was observed for compositions with y ≥ 0.75.
The crystal structure differs from that of an ideal per-
ovskite, besides in the cell parameters not being equal,
in that the Mn–O–Mn valence angle is not equal to 180°
because the oxygen octahedra are tilted. Indeed, the
average room-temperature valence angle in samples
with y = 0 is ϕ = 160.1° and decreases linearly with
increasing Pr content down to ϕ = 156.5° for y = 1.0. At
room temperature, the oxygen octahedra are close to
regular; i.e., the three independent bond lengths Mn–
O1 (along the b axis), Mn–O21, and Mn–O22 (in the
a−c plane) only slightly differ from one another. As the
temperature decreases and approaches the phase transi-

2ac

2
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tion points, Jahn–Teller distortions of the lattice appear.
For samples with y ≥ 0.5, the parameter

 (6)

reaches noticeable values on the order of 10–2 Å. Note
also that, in the paramagnetic region, the difference in

σJT

Mn–O( )i Mn–O〈 〉–[ ] 2
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Fig. 1. Temperature dependence of EPR linewidth ∆Hpp
obtained at frequency ν ≅  9.4 GHz on
(La1 − yPry)0.7Ca0.3MnO3 samples with oxygen isotopes
16O and 18O (LPCM-100y-16(18)). Filled symbols refer to
samples with the 16O isotope, and open symbols, to samples
with the 18O oxygen.
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Fig. 2. Resonance field Hr at frequency ν ≅  9.4 GHz plotted
vs. temperature for (La1 − yPry)0.7Ca0.3MnO3 samples.
Notation is the same as that in Fig. 1.
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structural data between samples with different oxygen
isotopes did not exceed the measurement error.

As the temperature decreases, samples of all compo-
sitions transfer to a magnetically ordered state, whose
actual form depends on both the Pr content and the iso-
topic substitution [5, 6]. For y ≤ 0.5, collinear FM struc-
tures arise, with the magnetic moment lying in the a−c
plane in the c direction and reaching a value of 3.40µB
per Mn ion at saturation. For y ≥ 0.6, samples with dif-
ferent oxygen isotopes exhibit substantial differences.
In the 0.6 ≤ y ≤ 0.8 interval, samples with the 16O iso-
tope undergo two successive transitions, first to a col-
linear AFM state with a pseudo-charge exchange (CE)
structure and after that to an inhomogeneous state sep-
arated into AFM and FM domains. For y > 0.8, a homo-
geneous CAFM structure sets in below the second tran-
sition point. In samples with 18O, an inhomogeneous
state with phase separation into AFM and FM domains
is observed to occur within the narrow concentration
interval 0.5 ≤ y < 0.6, with no second transition seen for
y ≥ 0.6, so the magnetic structure remains a collinear
antiferromagnet.

2.2. Measurement Technique

The spectra were recorded on a Bruker ESP-300
EPR spectrometer equipped with a helium-flow cry-
ostat (Oxford Instruments). The measurements were
performed at a frequency ν ≅  9.4 GHz at temperatures
ranging from 4 to 600 K. The derivative of the absorp-
tion signal was usually measured. The 0.5- to 3-mg
powder samples intended for measurements were
loaded in quartz ampoules. The powders prepared for
measurements in the vicinity of the phase transitions
and in magnetically ordered phases were fixed in the
ampoules with molten paraffin.

3. EXPERIMENTAL RESULTS AND DISCUSSION

3.1. Paramagnetic Region

Figure 1 plots temperature dependences of the line-
width ∆Hpp(T) for samples of different compositions.
Each curve passes through a minimum at a temperature
Tmin. As y increases, the value of Tmin decreases by more
than a factor of 2 and the rate of linewidth growth with
temperature within the linear part of the graph increases
by the same factor. Figure 2 contains data on the reso-
nance fields Hr. In the temperature region where the lin-
ewidth grows linearly, the line position depends only
weakly on temperature and corresponds to g = 1.99 ±
0.01. The slightly larger scatter of the resonance fields
can be traced to the resonance frequency varying from
one sample to another and to a variation in the temper-
ature.

The line shape in this temperature region is fitted
well by a Lorentzian profile, irrespective of the compo-
sition and the isotope content. The peak ratio of the sec-
ond derivative was close to 4. Only as the temperature
YSICS OF THE SOLID STATE      Vol. 46      No. 11      2004
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was reduced to below Tmin did this ratio for samples
with y ≤ 0.5 decrease to 3–3.5. (Recall that this ratio is
2.24 for a Gaussian curve and is exactly 4 for a Lorent-
zian.) Samples with a high Pr content (y ≥ 0.6) cooled
below Tmin exhibited a decrease in the resonance field
by 10–15%, but this did not entail a strong change in the
line shape, which remained symmetric and close to
Lorentzian.

Figures 3 and 4 plot the data on magnetic suscepti-
bility χ (per Mn ion) obtained by double integration of
the spectra. Note that double integration of spectra can
only yield reliable information for lines that are not
overly broad, where the integration range (8–10 kOe in
our experiments) is substantially larger than the line-
width ∆Hpp. To reduce the line integration error for lin-
ewidths in excess of 0.5–1.0 kOe, the results were cor-
rected assuming the line shape to remain Lorentzian not
only within the integration region but also beyond it. At
temperatures T ≥ 300–350 K, in the region of small
Jahn–Teller deformations, the susceptibility data fit
well to the Curie–Weiss law

 (7)

with the constant

 (8)

For the effective value of the quantity S(S + 1) in
Eq. (8), we chose the composition-averaged value

 

where, as is well known, S4 = 3/2 for the Mn4+ ions and
S3 = 2 for Mn3+. The Curie–Weiss temperature Θ0

χ T( ) C
T Θ0–
----------------=

C
S S 1+( )g

2µB
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3kB
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Fig. 3. Temperature dependence of magnetic susceptibility
per Mn ion for samples of (La1 – yPry)0.7Ca0.3Mn16O3.
Notation is the same as that in Fig. 1.
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decreased with increasing Pr content from Θ0 ≅  320 K
for y = 0 to Θ0 ≅  260 K for y = 1.

Using Eq. (1), one can derive the values of ∆Hpp(∞)
from experimental data on χ(T) and ∆Hpp(T) and draw
a conclusion on possible contributions to the linewidth
(estimate the second moment M2 and the main parame-
ters defining it). Equation (1), as already mentioned, is
obtained neglecting the spin–lattice relaxation. Possi-
ble broadening mechanisms associated with sample
inhomogeneities and the scatter of resonance fields in
powder samples originating from the appearance of
demagnetizing fields and from the presence of a noncu-
bic crystal-field component are also disregarded. The
contributions from these mechanisms to the linewidth,
as a rule, are proportional to the magnetization and can
be neglected for high temperatures. As the temperature
decreases and approaches the phase transition region,
however, these mechanisms may produce noticeable
effects. It is no wonder, therefore, that we succeeded in
achieving a good fit in describing the experimental lin-
ewidth ∆Hpp(T) in terms of the susceptibility χ(T) by
merely introducing an additional term into the right-
hand part of Eq. (1), the residual linewidth ∆H0 (see
Eq. (5)), which accounts for the influence of tempera-
ture-independent or weakly temperature-dependent
broadening mechanisms.

Figure 5 compares the experimental linewidth rela-
tions with those obtained from susceptibility data by
using Eq. (5). For samples with low Pr contents, the
curves practically coincide. As the Pr content increases,
the region of good fit narrows, but even for y = 1.0 there
is an interval of about 200 K within which the agree-
ment is quite satisfactory and one is still able to deter-
mine the parameters of interest. Note that this compar-
ison is valid at sufficiently high temperatures, where the

0.8

0.6

0.4

0.2

0
100 200 300 400 500 600

T, K

χ, µB
2/(κB K)

Fig. 4. Temperature dependence of magnetic susceptibility
per Mn ion for samples of (La1 – yPry)0.7Ca0.3Mn18O3.
Notation is the same as that in Fig. 1.
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quantity ∆Hpp(∞) can still be considered temperature-
independent, an assumption that, as in Eq. (7), is correct
for small enough Jahn–Teller deformations. As for ∆H0,
the values thus obtained are characteristic primarily of
a region near T ≈ Tmin, where ∆Hpp(T) ≈ ∆H0, i.e., where
∆H0 provides a major contribution to the linewidth.

Figure 6 plots the parameters ∆Hpp(∞) and ∆H0 as a
function of Pr content obtained in comparing the
∆Hpp(T) and χ(T) dependences. ∆Hpp(∞) is seen to
exceed ∆H0 by an order of magnitude or more. In the
0 ≤ y ≤ 0.7 interval, ∆Hpp(∞) grows practically linearly,
to increase at y = 0.7 by nearly a factor of 2.5. After this,
the growth stops, followed even by a certain falloff. As
for the residual linewidth ∆H0, it grows fairly sharply
only for y > 0.7, i.e., exactly where ∆Hpp(∞) stops
increasing. The dependence on oxygen isotope substi-
tution is fairly weak; indeed, the obtained parameters
coincide to within experimental error.

Now, we consider the possible mechanisms of
broadening that govern the magnitude of ∆H0. As
shown in [12, 13], the contribution to the linewidth due
to the appearance of demagnetizing fields can be esti-
mated from the expression

 (9)

where VMn ≅   ≅  57 Å3 is the volume per Mn ion and ρ
is the sample porosity, i.e., the fractional volume of all
pores and other nonmagnetic inclusions. The line broad-
ening that is observed with reducing the temperature to
below Tmin and is accompanied by a deviation of the line
shape from a Lorentzian implies that the contribution
due to the first term on the right-hand side of Eq. (5) is
no longer dominant. As is evident from Figs. 1, 3, and

∆H0M 4πχHrρ/VMn,≈

ac
3
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Fig. 5. Comparison of experimental linewidth ∆Hpp (filled
symbols) with a plot of Eq. (5) (open symbols) for samples
LPCM-0-16, LPCM-50-18, and LPCM-100-16.
PH
4, χ(Tmin) ≈ (0.4–0.6) (kBK)–1 and depends only
weakly on composition. From an analysis of the ferro-
magnetic resonance (FMR) spectra, the porosity was
found to be ρ ≈ 0.3–0.4. Substituting these values into
Eq. (9) yields ∆H0M(Tmin) ≈ 100–150 Oe. As seen from
Fig. 6, ∆H0 assumes approximately the same values for
samples with 0 ≤ y ≤ 0.5; i.e., ∆H0M provides a major
contribution to ∆H0 already at Tmin. We also see that, for
samples with y > 0.7, this contribution is clearly inade-
quate.

In addition to a change in the linewidth caused by
the appearance of a second moment, the noncubic crys-
tal-field component, as shown in [14, 15], leads to the
resonance field becoming dependent on its orientation
relative to the crystallographic axes of the crystal.
Deformation of the oxygen octahedra in the orthorhom-
bic O' phase derives primarily from the Jahn–Teller
effect. Orbital ordering brings about the formation of
macroscopic regions with preferred directions of defor-
mation, in which an additional term appears in the spin
Hamiltonian of the form [8]

 (10)

The deviation from perfect cubic structure is
described here by a sequence of (i, j) octahedra elon-
gated alternately along the c and a axes; indices i and j
refer to the Mn ions in these octahedra, N is the number
of Mn ions, and D is the crystal field parameter. Using
the results obtained in [14, 15], one can readily estimate
the scatter in resonance fields for an interaction of the
type of Eq. (10) and for randomly distributed orienta-
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Fig. 6. Dependence of the parameters ∆Hpp(∞) and ∆H0,
involved in Eq. (5), on Pr concentration. Filled symbols
refer to samples with 16O, and open symbols, to samples
with 18O. The lines are intended only to guide the eye.
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tions of the grain crystallographic axes in a powder
sample to be

 (11)

Accepting typical field parameters D/kB ≈ 0.5–1 K [10],
the resonance field scatter at T ≈ Tmin, depending on the
actual orientation, amounts, according to Eq. (11), to
∆Hr ≈ 150–300 Oe, which is greater than ∆H0M. In the
case where the lines are originally not very broad, this
will produce an additional linewidth contribution of the
same order of magnitude for a nonoriented powder
sample. This contribution is not related to the magni-
tude of exchange interactions and depends only on the
crystal field parameters. The growth of ∆H0 for y > 0.7
apparently indicates the appearance of noticeable non-
cubic distortions in these samples. This also correlates
with the increase in the Jahn–Teller parameter (6) in
this concentration region. Judging from the residual lin-
ewidth ∆H0 ≈ 300–600 Oe, the parameter D/kB may
become as large as 1–2 K.

Let us consider now the quantity ∆Hpp(∞) in Eq. (3)
in more detail. The symmetric exchange interaction
constant J, determining the exchange frequency ωex .
J/", can be estimated by invoking experimental data on
the Curie–Weiss temperature Θ0. Assuming interaction
only with the nearest neighbors (and neglecting the dif-
ference in this interaction among various neighbors,
Jij ≅  J), J is given by [16]

 (12)

where z = 6 is the number of nearest neighbors for the
Mn ions. As Θ0 is varied from 320 to 260 K, J/kB
changes from ≅ 30 to ≅ 24 K; in other words, the average
value of the symmetric-exchange constant drops by
about 25% with y changing from 0 to 1.

The second moments M2DM and M2CF generated by
the Dzyaloshinski–Moriya antisymmetric exchange
interaction (4) and by single ion anisotropy with the
interaction Hamiltonian (10) were derived in [8] under
the assumption of anisotropic exchange interaction
between Mn spins described by Eq. (2). The corre-
sponding expressions are applicable for the Pnma crystal
structure and, neglecting the difference between the
components |DDMij | ≈ DDM [17], can be reduced, for
homogeneous powders, to the form

 (13)

 (14)

As follows from Eqs. (13) and (14), the relative contri-
bution of M2CF to the second moment is on the order of

0.1D2/ . As will be shown later, DDM/kB ≈ 1 K. On
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the other hand, in the temperature regions where the
experimental data on ∆Hpp(T) and χ(T) were compared
to determine ∆Hpp(∞), the orthorhombic distortions for
samples with y ≤ 0.7 are fairly small; therefore, D ! DDM

in this case. According to our preliminary estimates
from the residual linewidth, only for samples with a
high Pr content, y ≥ 0.75, can the quantity D/kB in the
region where experimental data on ∆Hpp(T) and χ(T)
were compared reach values of the order of 1–2 K. Even
in this case, however, the relative contribution of M2CF

remains small. For D ! DDM, the coefficient α in Eq. (3)
is approximately 0.5 and only slightly decreases as the
ratio D/DDM increases [8]. This allows us to estimate DDM

for the region of not very high Pr concentrations. For
instance, for y = 0, we have DDM/kB ≅  0.95 ± 0.1 K. The
difference for different oxygen isotopes remains within
experimental error. Similar values for this quantity,
DDM/kB ≈ 0.8 K, were obtained in [8, 10] for the sys-
tems La1 – yCaxMnO3 and LaMnO3 + δ, with the depen-
dence on composition and temperature found to be very
weak in both cases.

As follows from [18], the variation of DDM with
increasing Pr concentration should be associated pri-
marily with the decrease in the average valence angle ϕ,
according to the relation DDM ∝  sin2ϕ(y). It follows

from this relation that the increase in  should not
exceed 25–30% with a variation in y from 0 to 1 and a
corresponding variation in the average valence angle
from 160.1° to 156.5°. Thus, in accordance with
Eq. (3), variation of the parameters D, DDM, and J with
increasing Pr content can initiate an increase in
∆Hpp(∞) by no more than a factor of 1.5–1.6, which is
clearly not large enough to account for the experimen-
tally observed growth by a factor of nearly 2.5 (Fig. 6).

Therefore, inclusion of other factors capable of
strongly affecting the linewidth appears inevitable.
Note the approximately linear rise of ∆Hpp(∞) with Pr
concentration (at least in the region y ≤ 0.7). Since the
Pr3+ ions have a magnetic moment, the indirect
exchange interaction appearing in these conditions and
the associated additional relaxation may play a certain
role.

3.2. Region of Magnetic Ordering

3.2.1. Observation of the FM transition. Near
Tmin, samples with y ≤ 0.5 exhibit a fairly sharp growth
of magnetic susceptibility with decreasing temperature
(Figs. 3, 4). Here, the quantity χHr, equal to the mag-
netic moment per Mn ion, reaches values (1–2)µB,
which are comparable to the saturation magnetic
moment µ0. (Recall that the theoretical value of the sat-
uration moment at a temperature tending to zero is µ0 =
g(0.7S3 + 0.3S4) = 3.7µB and the experimental value
quoted in [6] is 3.4µB.) The results obtained in [6] allow

DDM
2

04



2100 GUDENKO et al.
us to conclude that the samples transfer to the FM state.
The transition temperature TFM was defined as the tem-
perature at which the EPR line broadened to the extent
that it could no longer be observed. At this point, a new
line characteristic of the FMR signal of a powder sam-
ple appeared in the absorption spectrum [19].

For y ≤ 0.5, isotopic substitution affects primarily
the phase transition temperatures and has almost no
influence on the pattern of spectral evolution.

3.2.2. Observation of the AFM transition. The
broadening of the EPR line in samples with y ≥ 0.6
observed to occur at temperatures below Tmin is not
accompanied by a sharp growth of susceptibility. By
contrast, it ceases to increase at a certain temperature,
experiences a subsequent falloff, and a characteristic
maximum appears in the χ(T) graph (Figs. 3, 4). The
line shape does not vary strongly and remains approxi-
mately Lorentzian. The resonance field Hr begins to
decrease (Fig. 2); for samples with y = 1, this decrease
can be as large as 300–400 Oe. This behavior of the
spectra can be accounted for by assuming that part of
the sample transfers to the AFM state, which does not
contribute to the absorption signal (as a rule, because of
a gap ∆Eg @ hν present in the resonance mode spec-
trum [20]), and that the observed EPR signal is due to
the sample regions that remained in the paramagnetic
(PM) state. The decrease in the resonance field appar-
ently indicates that these regions are extended along the
field. For instance, the decrease in the resonance field
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Fig. 7. Magnetic phase diagram of the
(La1 − yPry)0.7Ca0.3MnO3 system. TFM is the FM ordering
temperature, and TAFM is the AFM ordering temperature.

Filled symbols refer to samples with the 16O oxygen, and
open symbols, to the 18O samples. The lines are intended
only to guide the eye. Vertical lines specify the Pr concen-
trations at which the fractional volume of the FM phase
decreases sharply.
PH
applied along the z axis for regions of ellipsoidal shape
with demagnetizing factors Nz ! Nx, Ny will be [21]

 

In the transition region, we have χ ≈ (0.4–0.6) (kBK)–1

and the decrease in the resonance field can be estimated
as δHr ≈ –(150–200) Oe. We note that the line shift
should increase with decreasing temperature and
increasing susceptibility inside the PM regions.

We accepted for the AFM transition point the tem-
perature at which the formation of the AFM phase
brought about a stop in the growth of the susceptibility,
i.e., the temperature corresponding to the maximum in
the χ(T) curve.

As the temperature is lowered still further, the sus-
ceptibility starts to grow again, but the line no longer
has a Lorentzian shape. As at lower Pr concentrations,
the EPR line vanishes and the FMR signal appears.
However, in contrast to the case of lower Pr concentra-
tions, χHr is here substantially smaller. Only for the
LPCM-60-16 sample does it reach a noticeable value of
≈0.7µB, while for the other samples it does not exceed
≈0.2–0.3µB, which corresponds to an FM fraction in the
sample of about 10–20%.

3.2.3. Phase diagram. Figure 7 presents data on the
temperatures of phase transitions to the FM state (TFM)
and the AFM state (TAFM). The vertical lines identify the
Pr concentrations at which the FM phase fraction
decreases strongly in volume.

This phase diagram fits, on the whole, the neutron
diffraction data obtained on this system [6]. One
observes a monotonic decrease in TFM with increasing
Pr content and enhancement of the effect of oxygen iso-
tope substitution; indeed, for y = 0.5, the difference
16TFM – 18TFM is 16 K. Below TAFM, according to [6],
samples with the 18O isotope and y ≥ 0.6 do not undergo
any magnetic phase transitions, there is no FM compo-
nent, and the AFM structure always remains collinear.
The total ordered magnetic moment of this phase turns
out, however, to be smaller by about 25% than that at
lower Pr concentrations. In addition, the diffraction
spectra revealed fairly intense additional peaks, whose
origin remains unclear. This suggests the possible for-
mation of one more phase, which accounts for the res-
onance absorption signal. We estimate the content of
this phase as 10–20%, which is consistent with the
jump in the magnetic moment of the AFM phase. This
most probably also accounts for the appearance of the
FMR signal in the LPCM-100-16 sample, which like-
wise exhibits a transition to a collinear AFM state with
a reduced magnetic moment. As the temperature con-
tinues to decrease, this sample undergoes a second tran-
sition to the homogeneous canted AFM state [6]. The
FM component of the magnetic moment is fairly large,
µCAFM ≈ 2.15µB. In our experiments, the EPR spectra
and, subsequently, FMR spectra for samples LPCM-

δHr 2π 3Nz/2–( )χHr/VMn– 2πχHr/VMn.–≈ ≈

µB
2
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100-16 and LPCM-100-18 undergo practically the
same evolution with decreasing temperature, which
supports the assumption that the AFM phase does not
contribute to the absorption signal whatsoever, even for
a large canting of the magnetic sublattices.

The reason for the fairly small ordered magnetic
moment of the FM phase in the inhomogeneous state in
the LPCM-60-16 and, particularly, LPCM-75-16 sam-
ples remains unclear, although the transition itself to the
FM state and the magnitude of the transition temperature
TFM agree well with neutron diffraction data [6].

We also readily see from Fig. 7 that TAFM falls off
monotonically with increasing y and does not depend,
within experimental error, on oxygen isotope substitu-
tion.

4. CONCLUSIONS

We have studied the EPR of Mn ions in the
(La1 − yPry)0.7Ca0.3MnO3 system within broad ranges of
temperatures (4 < T < 600 K) and concentrations (0 ≤
y ≤ 1) and in the case of 18O isotope substitution for 16O.
All compositions exhibited transitions to a magneti-
cally ordered state with decreasing temperature. Mag-
netic phase diagrams were constructed for systems with
different oxygen isotopes. The diagrams include para-
magnetic, ferromagnetic, and antiferromagnetic
regions.

Powder samples studied in the paramagnetic region
at temperatures not too close to the phase transition
points exhibit an absorption curve of Lorentzian shape,
with the linewidth ∆Hpp(T) being related to the mag-
netic susceptibility χ(T), obtained by integrating the
spectrum, by an equation of the type of Eq. (5). This
relation was derived neglecting spin–lattice relaxation
and with inclusion of the demagnetizing fields and the
noncubic crystal-field component, which is responsible
for the additional broadening due to the scatter of reso-
nance fields caused by random orientation of the crys-
tallographic axes in powder sample grains with respect
to the external field. The experimental data on χ(T) and
∆Hpp(T) were employed to obtain the values of ∆Hpp(∞)
and ∆H0. An analysis of the data on ∆Hpp(∞), ∆H0, and
χ(T) provided an estimate of the symmetric (J) and
antisymmetric (DDM) exchange interactions of Mn ions
with one another and of the noncubic crystal-field com-
ponent of oxygen ions (D). The values thus obtained do
not depend, within experimental error, on the oxygen
isotope involved; J/kB falls off practically monotoni-
cally in the range 30–24 K with the Pr content y increas-
ing from 0 to 1, DDM(y = 0)/kB ≅  0.95 K, D(0 ≤ y ≤
0.7)/kB ! 1 K, and D(y ≥ 0.75)/kB may reach 1–2 K.

It has been shown that taking into account the vari-
ation of J, D, and DDM only is clearly not sufficient to
explain the experimentally observed growth of ∆Hpp(∞)
with Pr concentration by a factor of more than 2.5 and
that one should invoke other broadening mechanisms.
The linear dependence of ∆Hpp(∞) on Pr concentration
PHYSICS OF THE SOLID STATE      Vol. 46      No. 11      20
and the existence of spin on the Pr3+ ions give one
grounds to assume that the additional relaxation may be
induced by exchange interaction between the Mn and
Pr ions.

The transition to the FM state was identified from
the growth in magnetic susceptibility and a change in
the absorption spectrum, more specifically, from the
vanishing of the EPR line and appearance of the FMR
signal. For y > 0.6, the volume fraction of the FM phase
does not exceed 10–20%. For these compositions, the
transition to the FM state is preceded by an AFM order-
ing region. The transition to the AFM state is accompa-
nied by a marked decrease in susceptibility, with the
Lorentzian line shape preserved; here, the absorption
signal derives only from the fractional sample volume
remaining in the paramagnetic state. An increase in the
Pr concentration brings about a monotonic decrease in
the magnetic phase transition temperatures (both TFM
and TAFM), with the effect of oxygen isotope substitu-
tion, 18O for 16O, being the largest for TFM for y = 0.5–
0.6. In this case, ∆TFM reaches values of approximately
–(15–20) K.
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Abstract—The influence of gyrotropy on the conditions for propagation and localization of a shear elastic
wave in a semi-infinite magnetic superlattice composed of ferromagnetic and superconducting layers is inves-
tigated by the effective-medium method. This method correctly takes into account the dynamic interaction
between the spin and elastic subsystems. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In recent years, the dynamic properties of composite
magnetic structures with a one-, two-, or three-dimen-
sional translational invariance (magnetic photonic crys-
tals [1]) have been investigated extensively. In the gen-
eral case, a one-dimensional magnetic phonon–photon
crystal can be considered a two-component magnetic
superlattice that is composed of a set of alternating
equidistant, acoustically coupled magnetic and non-
magnetic layers. Consistent theoretical treatment of the
dynamics in this crystal is based on the simultaneous
inclusion of the magnetoelastic and magnetodipole
interactions. When the nonmagnetic component of the
superlattice under consideration is an ideal diamagnet,
for example, a superconductor (2λ/t  0, where λ is
the London penetration depth and t is the thickness of
the superconducting layer), this structure should be
treated as a one-dimensional magnetic phonon crystal,
because the acoustic interlayer interaction is the sole
mechanism responsible for the formation of the spec-
trum of collective excitations. However, even for a
semi-infinite acoustic magnetic superlattice, calcula-
tion of the spectrum of normal elastic shear horizontal
(SH) waves with due regard for the magnetoelastic and
magnetodipole interactions and gyrotropy by the trans-
fer matrix method requires the use of matrices no less
than 4 × 4 in size [2]. On the other hand, at sufficiently
small wave numbers (a thin-layer superlattice), the
spectrum of collective excitations of an acoustic mag-
netic superlattice with allowance made for the finite
dimensions of the real sample can be analyzed using the
effective-medium method [3, 4].

Considerable research attention has been focused on
the investigation of different classes of one-dimen-
sional magnetic phonon crystals, in particular, acoustic
superlattices of the ferromagnet–superconductor type.
Traditionally, these superlattices (like superlattices of
1063-7834/04/4611- $26.00 © 22103
the antiferromagnet–superconductor type) have been
studied only from the standpoint of the coexistence of
magnetic and superconducting ordering. Note that,
even in an infinite homogeneously magnetized easy-
axis and elastically isotropic ferromagnet, the only
geometry that allows for the propagation of an elastic
SH wave with the wave vector k, which is noncoinci-
dent with the direction of the equilibrium magnetiza-
tion vector M, must satisfy the condition k ⊥  M || u
(where u is the vector of elastic lattice displacements).
However, the question as to the influence of gyrotropy
on the conditions for propagation and localization of a
shear elastic wave in the vicinity of the outer surface of
a semi-infinite superlattice of the magnet–ideal dia-
magnet type remains open.

In this respect, the purpose of the present work was
to reveal the gyrotropy-induced features in the propaga-
tion and localization of an elastic shear horizontal wave
traveling along the surface of a semi-infinite acoustic
superlattice of the “easy-axis ferromagnet–ideal super-
conductor” type. These investigations were performed
using the effective-medium method.

2. BASIC RELATIONSHIPS

In our model, the magnetic superlattice under inves-
tigation is considered a set of equidistant ferromagnetic
layers (medium 1) of thickness d1. These layers are
acoustically coupled through identical ideal supercon-
ducting layers (medium 2) of thickness d2 (it is assumed
that, in the superconductor, the London penetration
depth λ obeys the inequality 2λ ! d2 with good accu-
racy). It is known that, even in an infinite easy-axis fer-
romagnet, a shear linearly polarized acoustic wave can
propagate only in the case when the vector of elastic
displacements u and the wave vector k⊥  satisfy the con-
dition u || M ⊥  k⊥ .
004 MAIK “Nauka/Interperiodica”
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It is assumed that the magnetic medium in the super-
lattice can be adequately described within the one-sub-
lattice model of easy-axis ferromagnets (OZ is the easy
axis) [5] and that the elastic properties of the magnetic
and nonmagnetic media are isotropic. For example, this
situation corresponds to crystals with hexagonal sym-
metry when the OZ axis is a sixfold axis and the wave
vector of shear acoustic vibrations lies in the XY plane.
According to the one-sublattice model of uniaxial fer-
romagnetic crystals (medium 1), the energy density W,
with due regard for the interaction of the spin and elas-
tic subsystems, can be written in the form [5]

 (1)

where b is the easy-axis anisotropy constant, γ is the
isotropic magnetoelastic interaction constant, λ1 and µ1
are the Lamé coefficients of the magnetic medium, uik
is the elastic strain tensor, and hm is the magnetodipole
field. In the model under consideration, the dynamics in
the nonmagnetic medium (medium 2 with the Lamé
coefficients λ2 and µ2) is described by the basic equa-
tion in elasticity theory. In the case of the magnetic
medium (medium 1), this equation is supplemented
with the Landau–Lifshitz and magnetostatic equations.
The requirement of the acoustic continuity at the
boundary of the magnetic and nonmagnetic layers in
the hybrid structure leads to the following relation-
ships:

 (2)

 (3)

Here, N = 0, 1, …, ξ is the current coordinate along the
interface of the magnetic and nonmagnetic layers in the
superlattice; σik is the elastic stress tensor; and sub-
scripts 1 and 2 indicate media 1 and 2, respectively.
Under the assumption that the superconducting
medium is an ideal superconductor, the electrodynamic
boundary conditions at the magnet–nonmagnet inter-
face can be represented as follows [6]:

 (4)

Therefore, the indirect interlayer interaction
through the phonon field is the sole mechanism respon-
sible for the formation of the collective excitation spec-
trum in the superlattice, which is a variant of magnetic
phonon crystals.

Since, even for model (1) of the infinite easy-axis
ferromagnet, the shear elastic wave can propagate only
in the case when its wave vector is orthogonal to the
easy axis and u || M || OZ [5, 7], the analysis is per-
formed under the following assumptions. (1) k ∈  XY.
(2) The equilibrium magnetization directions in all the
magnetic layers of the superlattice formed by the easy-

W 0.5bmz
2

– mhm– γmimkuik λ1uii
2 µ1uik

2
,+ + +=

u1 u2, ξ d1 N d1 d2+( ) N d1 d2+( ),,+= =

σik
1( )

nk
1( ) σik

2( )
nk

2( )
,=

ξ d1 N d1 d2+( ) N d1 d2+( ).,+=

B1n 0, ξ d1 N d1 d2+( ) N d1 d2+( ).,+= =
PH
axis (OZ) ferromagnet and superconductors are col-
linear and orthogonal to the normal n to the interface.
(3) Owing to the isotropic properties of the magnet in
the XY plane, the normal to the interface can be consid-
ered to be parallel to the OX axis (n || OX) without loss
of generality. (4) At equilibrium, the magnetic
moments of any pair of adjacent ferromagnetic layers
are parallel to each other. From the viewpoint of trans-
lational symmetry, the elementary period D of the mag-
netic superlattice consists of two layers, namely, a mag-
netic layer (d1 in thickness) and a superconducting
layer (d2 in thickness); i.e., D = d1 + d2. As was noted
above, we restrict our consideration to the range of fre-
quencies ω and wave vectors k⊥  for which the superlat-
tice can be treated as a thin-layer superlattice [3, 4]. In
particular, this implies that the normal (to the surface)
component k|| of the wave vector of the shear elastic
wave in each layer forming the elementary period of the
superlattice, i.e., in the magnetic (k||, 1) and supercon-
ducting (k||, 2) layers, is considerably less than the recip-
rocal of the corresponding layer thickness (d1, d2); that
is,

 (5)

As a consequence, this acoustic superlattice can be
considered an effective spatially homogeneous
medium, which is characterized by the elastic stress
tensor components σi(〈σ i 〉) and the elastic strain tensor
components ui(〈ui 〉) averaged over the superlattice
period D. By designating the relative thicknesses of the
magnetic (medium 1) and nonmagnetic (medium 2)
layers as

 (6)

the physical quantity P averaged over the superlattice
period can be represented in the form

 (7)

The relationship between the elastic stress tensor
components 〈σ ik 〉  and the elastic strain tensor compo-
nents 〈uik 〉  (averaged with allowance made for the
acoustic continuity of the layered structure, i.e., the
continuity of σix and u at the interfaces of adjacent lay-
ers) is determined by the effective elastic moduli cik.
For the chosen geometry of propagating the elastic SH
wave (M || u || OZ, k ∈  XY, n || OX), the tensor compo-
nents 〈σ i 〉  and 〈ui 〉  satisfy the following conditions:

 (8)

Therefore, for the acoustic magnetic superlattice
whose elementary period D = d1 + d2 is formed by the

k || 1, d1 ! 1, k || 2, d2 ! 1.
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superconducting layer (medium 2) of thickness d2 and
the elastically isotropic easy-axis ferromagnetic layer
(d1 in thickness) rigidly coupled to the former layer, the
effective elastic moduli , , , and  can be
determined from the relationships

 (9)

As a result, we obtain

 (10)

By assuming that µ1 = µ2 = µ, in formulas (9) and (10)
for the easy-axis ferromagnet–superconductor acoustic
superlattice, we have

 (11)

In relationships (11), we introduced the following des-
ignations:

 (12)

Here, according to the notation used in [7], ωme ≡ gHme4
is the magnetoelastic gap, ω0 ≡ g(HA + Hme4) is the fer-
romagnetic resonance frequency, HA is the uniaxial
magnetic anisotropy field, Hme4 is the magnetoelastic
field, and g is the magnetomechanical ratio. The appli-
cation of the effective-medium method to the analysis
of the elastic dynamics in the magnet–ideal diamagnet
acoustic superlattice means that condition (4) is satis-
fied in each magnetic layer. As a consequence, the
inclusion of the magnetodipole interaction in this range
of wave numbers does not lead to additional mecha-
nisms (except for the magnetoelastic mechanism)
responsible for the generation of time dispersion of the
elastic moduli (10) and (11). For the chosen geometry
of wave propagation (k ∈  XY, u || OZ), this inclusion is
reduced to renormalizing the uniaxial magnetic anisot-
ropy constant β  β – 4π. Moreover, hereafter, we
will assume that the densities of the magnetic medium
ρ1 and the nonmagnetic medium ρ2 in the superlattice
are equal to each other: ρ1 = ρ2 = ρ. As a result, within
the effective-medium approximation, the spectrum of
the elastic SH wave that propagates in the infinite
acoustic superlattice of the easy-axis ferromagnet–
ideal superconductor type at k ∈  XY, n || OX, and u || OZ
with due regard for the magnetoelastic and magnetodi-
pole interactions for both magnetic configurations is
described by the expression

 (13)
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where  ≡ µ/ρ,

 (14)

Therefore, unlike the elastic moduli , , and

 calculated disregarding the magnetodipole interac-
tion for the infinite ferromagnet (M || OZ),

 (15)

the effective moduli (14) for the acoustic magnetic
superlattice not only possess the time dispersion but
also depend substantially on the relative thicknesses of
the magnetic and nonmagnetic layers (f1, f2).

It is easy to demonstrate that, without regard for the
magnetoelastic interaction [upon the formal changeover
in relationships (14) to the limit γ  0, the obtained
effective elastic moduli (14) coincide with the corre-
sponding elastic moduli of the two-layer nonmagnetic
superlattice [3].

From relationships (13) and (14), it follows that the
shear elastic wave, with allowance made for the magne-
toelastic and magnetodipole interactions, is a single
partial wave characterized by the elastic tensor

 (16)

The condition  > 0 (  ≡ – ) corresponds to
the propagating volume (trigonometric) elastic SH

wave. On the other hand, at  < 0, only the hyperbolic
shear elastic wave with

  0, x  ∞ (17)

can propagate along the surface of the magnetic super-
lattice if it occupies the upper half-space x > 0.

When the quantities ω and k⊥ in expressions (13),
(14), and (16) are treated as specified external parame-
ters, it is possible to determine the necessary conditions
under which the propagating shear elastic wave can be
localized in the vicinity of the surface of the magnetic
sublattice.

The calculations demonstrate that the surface
(hyperbolic) single partial elastic SH wave described
by relationships (13), (14), and (16) can propagate only
at α2 > 0, i.e., if the frequency ω and the wave number
k⊥ of this wave satisfy one of the following relation-
ships:
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 (18)

where  ≡ ω0(ω0 – ωme) + f1 f2,  ≡  –

f2ω0ωme,  ≡  – ω0ωme, (k⊥ ) ≡ 0.5PA +

, PA ≡  + , and QA ≡ . It can
easily be shown that ω1 > ω3 > ω2. The wave number k∗∗
is determined from the condition ω2(k∗∗ ) = ω–(k∗∗ ).
When the quantities ω and k⊥ do not satisfy conditions
(18), the shear volume elastic wave cannot be localized
in the vicinity of the surface of the magnetic superlat-

tice [  > 0 in expression (16)].

However, relationships (18) are no more than neces-
sary conditions for the generation of the surface elastic
SH wave in the specified magnetic configuration. The
dispersion relation for this wave is determined from the
boundary conditions at the superlattice surface as the
condition for the existence of a nontrivial solution to
the corresponding boundary problem with respect to an
arbitrary amplitude A of the elastic wave (16). Let us
now assume that the surface x = 0 of the effective
medium (thin-layer magnetic superlattice) occupying
the upper half-space x > 0 is a slip boundary with the
ideal superconductor occupying the lower half-space
(x < 0); that is,

 (19)

The calculations with the use of expressions (13),
(14), and (16) demonstrate that, under these conditions,
the surface acoustic SH wave in the vicinity of the sur-
face of the acoustic magnetic ferromagnet–supercon-
ductor superlattice can be generated only if the wave
possesses an acoustic gyrotropy (c∗  ≠ 0). The corre-
sponding dispersion relation, with allowance made for
expressions (18), can be written in the form

 (20)

As follows from Eq. (20), the spectrum of the shear
surface acoustic wave Ωs(k⊥ ) is not symmetric with
respect to the inversion of the propagation direction:
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Ωs(k⊥ ) ≠ Ωs(–k⊥ ). Note that, for the same magnitude of
the wave number k⊥ , the degree of localization of elas-
tic vibrations in the vicinity of the mechanically free
surface of the superlattice appears to be different:
|k||(k⊥ )| ≠ |k||(–k⊥ )| in relationship (16). At σ = –1, the
surface acoustic wave has one branch and its dispersion
relation at all k⊥  satisfies the condition Ωs(k⊥ ) > ω2. The
corresponding dispersion curve at k⊥  = 0 emerges from
the point ω2 = ω0(ω0 – ωme) and, with an increase in k⊥ ,
asymptotically tends from below to the line described by 

 (21)

At σ = 1, the dispersion curve described by Eq. (20) for
the shear surface acoustic wave at all permissible val-
ues of k⊥  lies in the frequency range ω2 < ω0(ω0 – ωme)
and emerges from the point ω = 0 at k⊥  = 0. With an
increase in the wave number, the frequency of the wave
tends from below to the frequency Ω+ < ω2, which is
defined in the elastostatic limit (ω/stk⊥   0) as

 (22)

In the limit d2/d1  0, we have Ω+  ω0 – ωme.

Since both of the aforementioned branches of the
surface elastic SH wave (20) have only long-wave-
length (rather than short-wavelength) end points,
according to the terminology accepted in polariton
dynamics [8], they can be assigned to shear surface
acoustic waves of the first kind.

It is easy to show that the dispersion relation (20) in
the limit f2/f1  0 coincides with the dispersion rela-
tion for a Parekh wave (generated in this geometry [7])
in which formal passage to the limit 4π  0 is per-
formed (this corresponds to ignoring the magnetodi-
pole interaction):

 (23)

Now, we consider the case where the outer surfaces
of the effective medium x > 0 and the ideal semi-infinite
elastically isotropic superconductor x < 0 (density ρ∗ ,

the shear modulus µ∗ , superscript < indicates quantities

characterizing the lower half-space) at x = 0 are in con-
tinuous acoustic contact; that is,

 (24)

Then, the calculations with the use of expres-
sions (13), (14), and (16) show that the dispersion rela-
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tion for the shear surface acoustic wave generated at the
interface can be represented in the following form:

 (25)

where q2 ≡ 1 – ω2/( ) > 0,  ≡ µ∗ /ρ∗ , a ≡ µ∗ /µ,

and µ1 = µ2 = µ ≠ µ∗ .

By passing to the limit a  0 in expression (25)
(slip boundary), we find that the relationship derived
coincides with expression (20).

For the surface acoustic SH wave generated in the
vicinity of the acoustically continuous interface (x = 0)
between the nonmagnetic medium and the acoustic fer-
romagnet–superconductor superlattice with collinear
ordering of the equilibrium magnetic moments in adja-
cent ferromagnetic layers, the dispersion relation (25)
is not symmetric with respect to the inverse propagation
direction: ω(k⊥ ) ≠ ω(–k⊥ ). At both σ = –1 and 1, these
waves have one branch.

At σ = –1, the frequency of the branch of spec-
trum (25), as for spectrum (20), satisfies the inequality
ω > ω2. However, this branch can have not only a long-
wavelength end point but also a short-wavelength end
point whose wave number is determined from relation-
ship (25) at ω = (  > ω1). For σ = 1, it follows from
relationship (25) that, at a ≠ 0, the spectrum depends
significantly on the ratio between (  < ω1) and ω2

and ω3(ω2 < ω3). The analysis of relationship (25) dem-
onstrates that, as for the slip boundary, for the acousti-
cally continuous interface at σ = 1, the surface acoustic
wave has only one branch and its long-wavelength end
point is determined from formula (25) at q = 0. If  >
ω3, the dispersion curve described by expression (25) for
the surface SH wave lies in the frequency range ω > ω2.
This dispersion curve emerges from the line q = 0 and,
with an increase in the wave number at d1 > d2, asymp-

totically tends to the frequency , which, in the elasto-
static limit ω/stk⊥   0 (q  1) and a ≠ 1 (µ2 = µ∗ ,

µ1 = µ), is given by the formula

 (26)
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In the specific case where a = 1 and d1 > d2, we obtain

 = ω0 – 0.5ωme. In the limit a  0, we have

  Ω+, where Ω+ is defined by relationship (22).

For ω2 < ω < ω3 and σ = 1, the dispersion curve
under consideration has the long-wavelength end point
determined from relationship (25) at q = 0 and also the
short-wavelength end point. The wave number of this
point is determined from the formula

 (27)

Therefore, this branch corresponds to a shear surface
acoustic wave of the second kind, whereas, at  > ω3,
it corresponds to a surface acoustic wave of the first
kind.

Finally, at ω2 >  and σ = 1, according to expres-
sion (25), the dispersion curve for the considered
branch of the spectrum of the shear surface elastic wave
at all wave numbers k⊥  lies in the range ω < ω2 and the
long-wavelength end point of this curves corresponds
to the frequency ω = . In the elastostatic limit, the

dispersion curve tends to the frequency  defined by
formula (26).

Thus, at σ = 1 and –1 (ω2 <  < ω3), the dispersion
curve described by relationship (25) corresponds to a
shear surface acoustic wave of the second kind. In all
other cases, the dispersion curves have only long-wave-
length end points, which are characteristic of shear sur-
face acoustic waves of the first kind.

The relationships derived make it possible to analyze
the conditions for the localization of an elastic SH wave
propagating in the vicinity of a planar superconducting
defect embedded in an infinite acoustic magnetic super-
lattice of the type considered above (at n || OX, u || OZ,
k ∈  XY).

3. CONDITIONS FOR THE GENERATION
OF A GAP SHEAR HORIZONTAL WAVE

Let us consider the situation where a planar non-
magnetic defect in the form of an infinite layer 2d in
thickness (–d < x < d) is embedded in the superlattice
under investigation. The defect is an ideal elastically
isotropic superconductor with shear modulus µ∗ and
density ρ∗ . When the elastic boundary conditions on
both surfaces of this layer (x = ±d) correspond to con-
ditions (19) for the slip boundary, the conditions for the
generation of a shear magnetoelastic surface acoustic
wave in this structure in the long-wavelength limit do
not differ from those in the aforementioned case of the
slip boundary between a semi-infinite magnetic super-
lattice and a semi-infinite ideal superconductor with
dispersion relation (20) at x > d and x < –d.
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Now, we assume that slip conditions (19) are satis-
fied at one boundary of the superconducting layer (for
example, at x = d) and a continuous acoustic contact
[conditions (24)] occurs at the second boundary (at x =
–d). Then, in the long-wavelength limit, the conditions
for localization of the elastic SH wave are determined
by dispersion relation (20) for the semi-infinite ferro-
magnet–superconductor superlattice at x > d and dis-
persion relation (25) at x < –d with the change aq 
aq  (acoustic contact of the semi-infinite
superlattice at x < –d with a superconducting layer of
thickness 2d whose outer surface at x = d is mechani-
cally free). In both cases, the field structure of the zth
component of the elastic displacement vector u in the
shear surface acoustic wave in the semi-infinite super-
lattice is determined with due regard for the magnetic
configuration according to relationships (16), (17),
(13), and (14). Note that the shear surface acoustic
waves localized in the vicinity of the surface of the
superconducting defect (–d < x < d) are independently
generated in each half-space.

A qualitatively different situation is observed for
rigid contact of both surfaces of a superconducting
defect layer 2d thick with the surrounding acoustic mag-
netic superlattice, i.e., in the case when conditions (24)
for the acoustic continuity are satisfied at x = ±d. Here-
inafter, the system composed of the superconducting
layer S embedded in the magnetic superlattice is desig-
nated as F–S–F. The spatial structure of the lattice dis-
placement vector uz for the elastic SH wave with u || OZ
and k⊥  || OY ⊥  n is determined by the expressions

 (28)

where (  ≡ – ). In this case, the localization of the
shear elastic wave in the vicinity of the superconduct-
ing defect (–d < x < d) does not occur in each half-space
independently. This wave is referred to as a gap SH
wave. With the use of expressions (14) and (28), the dis-
persion relation for the spectrum of this localized shear
wave can be written in the form

 (29)

where α2 ≡ [c⊥  – ω2/( )]/c||.

Let us now analyze the necessary conditions for the
generation of the gap SH wave in the situation where
both surfaces of the superconducting layer (x = ±d) are
in continuous acoustic contact with a semi-infinite
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acoustic magnetic superlattice in the F–S–F configura-
tion. It follows from relationships (14) and (29) that, for
the parameters ω and k⊥  at which the inequalities

 (30)

are satisfied, the spectrum of the gap SH wave has only
one branch, provided the following relationships hold:

 (31)

In the case when

 (32)

the spectrum of the gap SH wave has two branches
according to relationships (14) and (29), but only under
the conditions

 (33)

For  < , the spectrum of the elastic SH wave
localized in the vicinity of the superconducting layer
(−d < x < d) for the parameters ω and k⊥  corresponding
to conditions (32) has only one branch.

In the limit d  ∞ (the thickness 2d of the embed-
ded superconducting layer increases infinitely), rela-
tionship (29) for the spectrum of the gap SH wave
transforms into relationship (25) for the spectrum of the
shear surface acoustic wave that travels along the
acoustically continuous interface between two half-
spaces occupied by the magnetic superlattice and the
superconductor.

4. CONCLUSIONS

Thus, the specific features in the propagation of a
shear elastic wave along the surface of a semi-infinite
acoustic superlattice of the easy-axis ferromagnet–
ideal superconductor type were considered within the
effective-medium approach with simultaneous inclu-
sion of the magnetoelastic and magnetodipole interac-
tions. The analysis was performed for parallel orienta-
tion of the equilibrium magnetic moments in adjacent
tangentially magnetized ferromagnetic layers of the
superlattice.

It was shown that, already in the case of a mechani-
cally free surface, the gyrotropy leads to the generation
of a shear surface acoustic wave of the first kind (only
with a long-wavelength end point of the spectrum).

The above analysis demonstrated that a nonmag-
netic coating characterized by a continuous acoustic
contact with the surface of the magnetic superlattice
can radically change the spectrum of the generated sur-
face acoustic wave and lead to the appearance of both
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long-wavelength and short-wavelength end points in
branches of the spectrum.

For the interface between the magnetic superlattice
and nonmagnetic medium half-spaces, all the afore-
mentioned effects upon a change in the sign of the pro-
jection of the wave vector of the elastic SH wave onto
the surface of the superlattice differ from each other
due to the gyrotropy.

It was revealed that the gap elastic SH wave can
propagate in the vicinity of a nonmagnetic layer
embedded in the magnetic superlattice under investiga-
tion and that the spectrum of this wave is symmetric
with respect to the inversion of the propagation direc-
tion.

The influence of the intralayer inhomogeneous
exchange interaction and specific features of reflection
(refraction) of a volume elastic SH wave incident on the
surface of an acoustic superlattice of the magnet–super-
conductor type will be investigated in a separate work.
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Abstract—The dispersion curves for crystal lattices of univalent mercury halides Hg2Hal2 (Hal = Cl, Br, I) are
calculated from the experimental frequencies at singular points of the Brillouin zone and the velocities of sound
in the framework of the valence–force field model. The results of calculating the dispersion branch of the TA
soft mode along the Γ−X direction of the Brillouin zone and the calculated elastic moduli are presented. The
calculated values are in good agreement with the experimental data. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Univalent mercury halides Hg2Hal2 (Hal = Cl, Br, I)
belong to a new group of materials. In 1970, C. Barta
[1], a Czech scientist, synthesized these compounds in
a crystalline state. The unique properties of univalent
mercury halides have attracted considerable research
attention. Specifically, Hg2Hal2 crystals possess very
strong elastic anisotropy (the velocities of transverse
acoustic waves in the basal plane are the lowest among
the known velocities in a condensed medium and are
comparable in magnitude to the velocity of sound in
air), well-pronounced acoustooptical properties, trans-
parency over a wide range, and a record-high optical
birefringence [2]. The above properties are of great
practical importance. Moreover, owing to their simple
crystal structure, univalent mercury halides are conve-
nient model objects for use in studying general prob-
lems in solid-state physics.

Strong anisotropy of the physical properties of
Hg2Hal2 crystals is associated with the specific features
of their structure. At room temperature, the crystal lat-
tice of univalent mercury halides consists of linear four-
atom chains –Hal–Hg–Hg–Hal– aligned parallel to
each other [3]. The Hg2Hal2 molecules form a body-

centered lattice with space group  (I4/mmm) and
two molecules in the unit cell (Fig. 1). This lattice cor-
responds to the first Brillouin zone depicted in Fig. 2.

To date, there have appeared a large number of
papers concerned with experimental and theoretical
studies of the vibrational spectra of univalent mercury
halides [4–10]. In particular, the normal lattice modes
of Hg2Hal2 crystals were classified, the eigenvectors of
the lattice vibrations at singular points of the Brillouin
zone were determined, and the selection rules for opti-
cal processes were analyzed in the framework of the
group theory [4].

D4h
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The main objective of this work was to determine
the parameters of the potential function of Hg2Hal2

crystals in the framework of the valence–force field
model with the use of the experimental frequencies at
singular points of the Brillouin zone and the velocities
of sound in the studied crystals. The elastic moduli of
the Hg2Hal2 crystals were also calculated within the
chosen model.
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Fig. 1. Crystal lattice of the univalent mercury halides
Hg2Hal2. Designations: a and c are the lattice parameters.
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2. MATHEMATICAL MODEL

The dynamic properties of Hg2Hal2 crystals were
calculated in the framework of the valence–force field
model. The algorithm for determining the frequencies
and modes of optical vibrations was constructed using
the method proposed in the monograph by Lazarev and
coauthors [11].

The eigenfrequencies and modes of vibrations can
be determined by solving the eigenvalue problem for
the matrices of the potential and kinetic energies K and
G. The matrix elements of the potential energy are the
force constants characterizing the interaction of atoms
in the crystal. The diagonal matrix elements of the
kinetic energy are determined as the inverse masses of
the lattice atoms.

In the framework of the force-field model used in
our calculations, it is expedient to construct the matrix
K in natural coordinates, whereas the matrix G has the
simplest form in Cartesian coordinates. Consequently,
we will consider both systems of coordinates. For this
purpose, we introduce the matrix B in order to change
over from the displacements in the Cartesian coordi-
nates x to the vibrations in the natural coordinates s: B =
∂s/∂x.

When solving the problem of calculating the fre-
quencies of the lattice vibrations, it is necessary to take
into account the crystal symmetry. To accomplish this,
the matrices G and K can be related to the translational
symmetrical coordinates (TSC) through the matrix T.
As a result, we obtain the matrices GTSC and KTSC:

 (1)

 (2)

The frequencies and modes of the vibrations can be
determined by diagonalizing the matrices GTSC and
KTSC specified in the translational symmetrical coordi-
nates:

 (3)

 (4)

where I is the unit matrix. The matrix Λ obtained in
such a manner contains squares of the vibrational fre-
quencies (ν2 = λ). The matrix L is the matrix of vibra-
tional modes.

The elastic constants of the crystal lattice were also
calculated in the framework of the valence–force field
model. The elastic constants were determined accord-
ing to [12].

3. CALCULATION SCHEME

The frequencies and modes of lattice vibrations in
Hg2Hal2 crystals for different values of the wave vector
were determined from relationships (3) and (4). In
order to calculate the force constants, we solved the

GTSC TGT̃*,=

KTSC T B̃*KBT̃*.=

L̃*GTSCL I ,=

L̃*FTSCL Λ ,=
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Fig. 2. The first Brillouin zone for the tetragonal lattice of
Hg2Hal2 crystals.

Fig. 3. Force constants for the lattice of the Hg2Hal2 crystal.
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Fig. 4. Dependence of the soft-mode frequency νsm on the
wave vector q along the (Γ−X) direction in the Hg2Cl2 crystal.
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Table 1.  Force constants for Hg2Hal2 crystals under normal pressure

Force
constants Bonds and angles

Hal = Cl Hal = Br Hal = I

numerical
values of

bond lengths*
and angles

numerical
values of force

constants**

numerical
values of

bond lengths*
and angles

numerical
values of force

constants**

numerical
values of

bond lengths*
and angles

numerical
values of force

constants**

k1 Hg2–Hg3 2.52 1.9 2.57 1.6 2.69 1.3

k2 Hg2–Hal1 2.51 1.15 2.56 1.10 2.68 1.02

Hg3–Hal4 2.51 1.15 2.56 1.10 2.68 1.02

k3 Hal1–Hal4 3.37 0.008 3.43 0.05 3.55 0.10

k4 Hg2–Hal4 3.1927 0.010 3.3266 0.018 3.5060 0.030

Hg3–Hal1 3.1927 0.010 3.3266 0.018 3.5060 0.030

k5 Hal1–Hal4 3.7895 0.002 3.9266 0.002 4.1460 0.001

k6 Hg2–Hg3 4.3159 0.17 4.4521 0.13 4.6760 0.10

k7 Hal1–Hal1 4.475 0.00070 4.665 0.00040 4.920 0.00035

Hal4–Hal4 4.475 0.00070 4.665 0.00040 4.920 0.00035

k8 Hg2–Hg2 4.475 0.00070 4.665 0.00040 4.920 0.00035

Hg3–Hg3 4.475 0.00070 4.665 0.00040 4.920 0.00035

h1 k4–k7 – 0.0035 – 0.0025 – 0.0017

h2 k4–k8 – 0.0035 – 0.0025 – 0.0017

b1 Hal1–Hg2–Hg3 180° 8.5 180° 4.3 180° 3.1

Hg2–Hg3–Hal4 180° 8.5 180° 4.3 180° 3.1

b2 Hal1–Hal1–Hg3 45.53° 0.09 45.50° 0.07 45.46° 0.07

Hal4–Hal4–Hg2 45.53° 0.09 45.50° 0.07 45.46° 0.07

b3 Hg2–Hg2–Hal4 45.53° 0.09 45.50° 0.07 45.46° 0.07

Hg3–Hg3–Hal1 45.53° 0.09 45.50° 0.07 45.46° 0.07

  * The lengths of the valence bonds are given in Å.
** The force constants k1–k8, h1, and h2 are given in 105 dyn/cm; and the force constants b1–b3 are expressed as 10–12 dyn/cm.
inverse problem. The force constants for Hg2Cl2,
Hg2Br2, and Hg2I2 crystals were calculated with the
Mathcad 7.0 mathematical program package and the
Project program in such a way as to achieve the best
agreement between the calculated and experimental
values of both the frequencies of the vibrational spec-
trum at the Γ, X, P, Z, and ∆ points of the Brillouin zone
and the velocities of elastic waves. The experimental
frequencies, velocities of sound, and elastic moduli
were obtained in [4–10, 13]. When constructing the
coordinate bases, we also used the CRYME program
package [14].

The numerical calculation of the force constants is
performed according to the following scheme.

(1) The matrices G, B, and T are formed as follows:
(i) the diagonal matrix G of the inverse masses is con-
structed in the Cartesian coordinates with dimensions
3NM × 3NM (where N is the number of atoms per prim-
itive cell and M is the number of primitive cells), (ii) the
matrix B is introduced to change over from atomic dis-
placements in the Cartesian coordinates to vibrations in
the natural coordinates and has dimensions S × 3NM
PH
(where S is the number of natural coordinates), and
(iii) the translation matrix T has dimensions 3N × 3NM.

(2) An initial set of force constants is specified, and
the force constants are used to form the matrix K with
dimensions S × S.

(3) The frequencies and modes of the vibrations and
the velocities of elastic waves are determined according
to relationships (1)–(4). This procedure makes it possi-
ble to determine the frequencies and modes of the
vibrations at different points of the Brillouin zone.

(4) The calculated values are compared with the
experimental data. The elements of the matrix K are fit-
ted by iterations until the best agreement between the
experimental and calculated data is achieved.

In order to determine the dispersion curves for the
vibrational spectrum of univalent mercury halide crys-
tals, we introduced the following force constants: the
force constants k1–k8, which correspond to the diagonal
two-center interactions; the force constants b1–b3,
which account for the diagonal three-center interac-
tions; and the force constants h1–h2, which characterize
the nondiagonal multicenter interactions.
YSICS OF THE SOLID STATE      Vol. 46      No. 11      2004
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Table 2.  Calculated and experimental frequencies (cm–1) of the vibrational spectrum for the tetragonal phase of Hg2Hal2
crystals at singular points of the Brillouin zone

Frequencies
of the spectrum

Hg2Cl2 Hg2Br2 Hg2I2

experiment calculation experiment calculation experiment calculation

Γ point of the Brillouin zone

ν1(Eg) 40 48 36 40 30 35

ν2(Eg) 137 1337 91 91 74 75

75 94 66 55 48 47

ν3(A1g) 167 167 135 129 113 105

ν4(A1g) 275 274 221 223 192 197

254 256 197 183 150 149

X point of the Brillouin zone

ν1(B2g) 45.5 51 40.5 41 – 36

ν2(B2g) 148 137 – 92 – 76

ν5(B3u) 72 96 52 58 – 37

ν6(B2u) 144 95 97 56 – 48

ν3(Ag) 163 163 133 127 – 104

ν4(Ag) 288 273 225 220 – 194

ν7(B1u) 265 256 176 184 – 151

TA1(B3u) 6.3 6.335 – 4.4 – 3.8

TA2(B1u) 39 47 35 38 – 30

P point of the Brillouin zone

TA1(E) 12.5 14.5 – – – –

Z point of the Brillouin zone

TA1(Eu) 25 17.8 – – – –

∆ point of the Brillouin zone

TA1(B1) 6.5 6.5 – – – –

ν5–ν6 Eu
LO–TO( )

ν7 A2u
LO–TO( )
More precisely, the force constants k1–k3 character-
ize the two-atom interactions along the chains; the
force constants k4–k6 describe the nearest neighbor
interactions in the (110) plane; the force constant b1

accounts for the interactions in the linear angles Hal1–
Hg2–Hg3 and Hg2–Hg3–Hal4 (Fig. 3a); the force con-
stants k7 and k8 describe the interactions of atoms
involved in the Hal–Hal and Hg–Hg bonds in the [010]
direction (Fig. 3b); the force constant b2 characterizes
the angular interactions Hal1–Hal1–Hg3 and Hal4–
Hal4–Hg2; b3 accounts for the angular interactions
Hg2–Hg2–Hal4 and Hg3–Hg3–Hal1 (Fig. 3c); the
nondiagonal force constant h1 describes the interactions
of the Hal1–Hal1 and Hal1–Hg3 bonds and the Hal4–
Hal4 and Hal4–Hg2 bonds, which have a common
atom; and the force constant h2 characterizes the inter-
actions of the Hg2–Hg2 and Hg2–Hal4 bonds and the
Hg3–Hg3 and Hg3–Hal1 bonds, which have a common
atom.
PHYSICS OF THE SOLID STATE      Vol. 46      No. 11      20
4. RESULTS OF CALCULATIONS

The force constants providing the best fit of the cal-
culated values to the experimental data for the Hg2Cl2,
Hg2Br2, and Hg2I2 crystals are presented in Table 1. The
calculated and experimental frequencies (Table 2),
velocities of sound (Table 3), and elastic moduli
(Table 4) are in good agreement. The dispersion curves
for the Hg2Hal2 crystals were also calculated.

Figure 4 shows the calculated dispersion branch
(TA1) of the low-frequency transverse acoustic vibra-
tions along the [110] direction for the Hg2Cl2 crystal.
The closed circles indicate the frequencies determined
from the data on inelastic neutron scattering [15]. The
dashed line represents the experimental velocities of
sound according to the data obtained in [13]. The solid
line corresponds to the calculated results.

The force constants k1, k2, and b1 corresponding to
the intramolecular interactions considerably exceed the
other force constants, which suggests a covalent char-
acter of the intramolecular bond and a weak intermo-
04
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lecular interaction [16]. The force constant k6 corre-
sponding to two-atom Hg–Hg interactions in the (110)
plane was found to be one to two orders of magnitude
greater than the force constants k4 and k5. This can be
explained by the fact that one of the specific features of
univalent mercury halides is the stable Hg–Hg bond,
which is rare in occurrence. The force constants k7, k8,
b2, b3, h1, and h2 predominantly affect the acoustic
vibrations in the (001) plane. The nondiagonal force
constants h1 and h2 indicate mutual influence of the

Table 3.  Calculated and experimental velocities of sound
(105 cm/s) in Hg2Hal2 crystals

Veloci-
ties of 
sound

Hg2Cl2 Hg2Br2 Hg2I2

experi-
ment

calcula-
tion

experi-
ment

calcu-
lation

experi-
ment

calcu-
lation

3.343 3.384 3.487 3.484 3.725 3.678

2.054 2.011 1.914 1.801 1.790 1.736

0.347 0.348 0.282 0.283 0.253 0.253

1.622 1.6279 1.487 1.448 1.361 1.351

1.305 1.261 1.249 1.188 1.204 1.176

1.084 0.905 1.008 0.860 0.871 0.946

v [001
001]

v [110
110]

v [110
110]

v [100
100]

v [010
100]

v [001
100]

Table 4.  Calculated and experimental elastic moduli
(1010 dyn/cm3) of Hg2Hal2 crystals

Elastic
moduli

Hg2Cl2 Hg2Br2 Hg2I2

experi-
ment

calcula-
tion

experi-
ment

calcu-
lation

experi-
ment

calcula-
tion

C11 18.92 19.03 16.16 15.3 14.26 14.05

C33 80.37 82.20 88.85 88.7 104.11 104.16

C44 8.46 5.88 7.45 5.40 5.84 6.89

C66 12.25 1140 11.19 10.30 11.17 10.65

C12 17.12 18.16 15.00 14.7 13.28 13.56

C13 15.63 23.70 18.88 17.20 24.06 15.00
PH
bonds Hal1–Hal1 and Hal1–Hg3, Hal4–Hal4 and
Hal4–Hg2, Hg2–Hg2 and Hg2–Hal4, and Hg3–Hg3
and Hg3–Hal1.
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Abstract—The complete morphological diagram of a spherical nucleus growing from a solution under non-
equilibrium conditions at a local growth rate as a quadratic function of supersaturation is calculated for the first
time on the basis of a linear analysis for morphological stability and the principle of maximum entropy produc-
tion. The results of calculations are compared with those obtained previously for a spherical particle in the case
of a linear dependence of the growth rate on the supersaturation. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The problems associated with the morphological
stability and coexistence of different crystalline phases
during nonequilibrium crystallization are important
from both the theoretical and technological standpoints
[1–3]. One of the interesting problems that has arisen
recently is the development of a method for calculating
and predicting complete morphological phase diagrams
(with the boundaries of metastable and labile regions).
In our earlier works [4, 5], we proposed solving this
problem on the basis of a linear analysis for morpholog-
ical stability and the principle of maximum entropy
production. The key idea in these works lies in the fact
that the principle of maximum entropy production [6–
8] allows one to determine the binodal of a nonequilib-
rium morphological transition (the point of instability
with respect to small but finite perturbations) rather
than the spinodal (the point of instability with respect to
infinitesimal perturbations).

In [4, 5], such an approach was applied to solving
the simplest problem concerning the growth of spheri-
cal and cylindrical crystals under the assumption of
infinitely fast kinetic processes occurring at the surface
(diffusion regime). Subsequently, this approach was
generalized to crystallizing systems with an arbitrary
kinetics of surface processes and a linear dependence of
the local growth rate on the supersaturation for spheri-
cal [9] and cylindrical [10, 11] geometries. It was found
that the crystal growth conditions substantially affect
the type of morphological diagram. In particular, the
number of phases coexisting under identical crystalli-
zation conditions can be infinitely large when a spheri-
cal particle grows in the kinetic and intermediate
regimes and appears to be limited to two phases in the
case of the diffusion regime.
1063-7834/04/4611- $26.00 © 22115
However, apart from the linear dependence of the
growth rate on the supersaturation, a quadratic depen-
dence of the growth rate is rather frequently observed in
the course of crystallization (for example, for the dislo-
cation mechanism at small supersaturation) [12, 13]. In
this respect, investigating the morphological stability in
the case of a quadratic dependence of the growth rate on
the supersaturation is an important and interesting
problem.

The purpose of the present work was to perform a
morphological analysis of a spherical crystal growing
under nonequilibrium isotropic conditions at an arbi-
trary rate of kinetic processes at a crystal–solution
interface for a quadratic dependence of the local growth
rate on the supersaturation.

The paper consists of four sections. In the second
section, we carry out a classical linear analysis for mor-
phological stability. This analysis has not been previ-
ously performed for the problem of crystal growth from
a solution. In the third and fourth sections, we calculate
the entropy production upon crystallization for the first
time and construct morphological phase diagrams of a
crystal growing under nonequilibrium conditions.

2. LINEAR ANALYSIS FOR MORPHOLOGICAL 
STABILITY

A linear analysis for morphological stability in the
case of a quadratic dependence of the growth rate on the
supersaturation was earlier performed only for the
growth of a spherical particle from a melt [14]. The
solution of the problem for the growth of a weakly dis-
torted spherical particle from a solution has specific
mathematical features and, hence, will be briefly
described below.
004 MAIK “Nauka/Interperiodica”
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Let us consider the growth of a spherical particle
from a solution under the assumption that the free sur-
face energy and the kinetic coefficient are isotropic
quantities. The mass transfer is described by the
Laplace equation (i.e., it is assumed that the driving
forces are weak) [15]

 (1)

where C is the density of the crystal, C∞ is the solute
concentration far from the crystal, Cint is the solute con-
centration in the vicinity of a surface of an arbitrary
shape, and C0 is the equilibrium concentration at the
plane boundary.

It is assume that an arbitrary small distortion of the
sphere can be expanded into a series in terms of spher-
ical harmonics. Now, we consider the behavior of the
sole spherical harmonic Ylm.

The solute concentration c(r, ϕ, θ) satisfies the fol-
lowing boundary conditions:

 (2)

 (3)

where ρ = R(t ) + δ(t )Ylm(ϕ, θ) is the equation of the
surface of the perturbed sphere, R is the radius of the
unperturbed particle, δ is the perturbation amplitude,

V is the local growth rate,  ≡ dR/dt,  ≡ dδ/dt, ϕ and
θ are the spherical coordinates, D is the diffusion coef-
ficient, β2 is the kinetic coefficient of crystallization,
Cint eq = C0(1 + ΓK) is the equilibrium solute concentra-
tion at the surface of an arbitrary shape (in linear order
of the perturbation theory, this concentration is deter-
mined to be C0[1 + 2Γ/R + (l – 1)(l + 2)ΓδYlm(ϕ, θ)/R2]
[15]), Γ is the capillary length proportional to the sur-
face tension, K is the surface curvature, and Cint ≡ c |ρ.

The boundary condition (3) is written under the
assumption that the solute concentration is negligible as
compared to the crystal density. This assumption sig-
nificantly simplifies the solution of the problem and is
satisfied well for many real systems crystallizing from
solutions.

By solving the formulated problem, we obtain

 (4)
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PH
Here, we introduced the following dimensionless
parameters:

 

 

R* = 2Γ/∆ is the radius of the critical nucleus of a new
phase [15], and ∆ = (C∞ – C0)/C0 is the relative super-
saturation.

From relationships (3) and (4), we have

 (5)

 (6)

Then, we equate the parameter  to zero. In this
case, as can be seen from expression (6), the perturba-
tion increases when the crystal radius becomes greater
than the critical size:

 (7)

Taking into account the method of derivation, rela-
tionship (7) is an equation of the spinodal (the point of
stability loss with respect to infinitesimal-amplitude
perturbations of the shape) of the morphological transi-
tion from stable (spherical) growth to unstable (den-
drite-like, skeletal) growth.

The difference between the critical size RS for the
quadratic growth kinetics and the radius at the spinodal
point in the case of linear growth kinetics (according to
the data obtained in [9]) is illustrated in Fig. 1. It can be
seen from this figure that the nonlinearity in relation-
ship (3) leads to an increase in the radius of stability
loss RS. This behavior can be explained as follows: at a
relatively small supersaturation (considered in our
case), the growth rate that is linearly dependent on the
supersaturation is higher than the growth rate character-
ized by a quadratic dependence on the supersaturation.
Since the local growth rate is the main destabilizing
factor responsible for the loss of morphological stabil-
ity [14, 15], the crystal in the case of the quadratic
dependence of the growth rate on the supersaturation
can remain stable for a longer time.
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3. THERMODYNAMIC ANALYSIS
FOR MORPHOLOGICAL STABILITY

Now, we analyze the formulated problem within the
thermodynamic approach.

The local entropy production in a volume element
r2dΩdr, which is immediately adjacent to the crystal
boundary ρ and is bounded by the solid angle dΩ , can
be written in the form [5, 9]

 (8)

Let us determine the difference ∆Σ between the
entropy productions in the cases of growth of perturbed
and unperturbed spherical crystals. As follows from
expression (8), the difference ∆Σ can be represented in
the following form:

 (9)

where CR is the solution concentration in the vicinity of
the spherical particle. According to relationship (4),
this concentration is equal to C0 + (C∞ – C0)(1 +
0.5α2χ)R*/R.

Substituting relationships (5) and (6) into expres-
sion (9) gives

Σ C
2
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2
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2
drdΩ.∼

∆Σ C
2

D
------ V

2ρ2

Cint
------------ Ṙ
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Fig. 1. Differences between the crystal radii at the spinodal
point ∆RS/R* (solid line) and the crystal radii at the binodal
point ∆Rb/R* (dashed line) as a function of the parameter α2
for the quadratic and linear dependences of the growth rate
on the supersaturation. l = 2.
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Numerical analysis of relationship (10) demon-
strates that the difference ∆Σ in the region of definition
[R*, RS] is an increasing function and vanishes when
the size of the spherical crystal becomes equal to Rb.
Therefore, for crystals with sizes larger than Rb, the
local entropy production at the perturbed surface turns
out to be greater than that in the vicinity of the unper-
turbed crystal surface. According to [4, 5, 9–11], this
point will be referred to as the binodal point of the mor-
phological transition under investigation.

The dependence of the radius Rb on the parameter α2

is plotted in Fig. 2. This dependence is constructed by
numerically solving the equation ∆Σ = 0 with the Math-
CAD software package. It can be seen from Fig. 2 that,
as the parameter α2 increases, the radius Rb at the bin-
odal point varies over a relatively narrow range. Note
that the largest changes in the radius Rb are observed for
parameters α close to unity.
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Fig. 2. Dependences of the radius Rb (in terms of R*) on the
parameter α2. The solid line indicates the numerical solu-
tion of the equation ∆Σ = 0, where ∆Σ is determined by
expression (10). The dashed line is constructed according to
the analytical relationship (11). ∆ = 0.02, l = 2.
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In the limit ∆ ! 1, the third term in expression (10)
can be ignored and the radius Rb on the interval [R*, RS]
can be determined in explicit form:

 (11)

As can be seen from Fig. 2, the approximate expres-
sion (11) makes it possible to describe the exact numer-
ical solution of the equation ∆Σ = 0 at small supersatu-
rations with good accuracy. Indeed, at ∆ ≤ 0.1, the dif-
ference between the radius Rb determined from
relationship (11) and the radius obtained from numeri-
cal solution of the equation ∆Σ = 0 does not exceed 4%.
Note that the largest difference is observed for higher
perturbing harmonics in the diffusion regime of crystal
growth.

It should also be noted (Fig. 1) that, as in the case of
stability loss with respect to an infinitesimal perturba-
tion, the nonlinearity in the growth kinetics results in an
increase in the radius at the binodal point (according to
the data taken from [9]).

In the approximation of an infinitely high rate of
surface reactions (α2  0), Eq. (11) can be rearranged
to the form

 

This radius at the binodal point coincides with the
radius determined in our previous work [5].

In the kinetic regime of crystal growth (α2  ∞),
the radius Rb at the binodal point reaches the asymptotic
value
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Fig. 3. Dependences of the crystal radius (in terms of R*) at
the binodal (dashed lines) and spinodal (solid lines) points
on the parameter α2 for different l.
PH
4. MORPHOLOGICAL DIAGRAMS 
OF A SPHERICAL CRYSTAL GROWING 

UNDER NONEQUILIBRIUM CONDITIONS

The equations obtained for the spinodal [expres-
sion (7)] and the binodal [expression (11)] can be used
to construct complete morphological diagrams (see, for
example, Fig. 3). It can be seen from Fig. 3 that, in the
diffusion regime (α2 < 0.1), the metastable regions cor-
responding to different harmonics do not intersect. In
the intermediate regime (0.1 < α2 < 1), the binodal of
the (l + 1)st harmonic intersects the spinodal of the lth
harmonic and the metastable regions of the neighboring
harmonics overlap. A further increase in the parameter
α2 can lead to the overlapping of three or more metasta-
ble regions. As a consequence, in the intermediate and
kinetic regimes of crystal growth, a large number of crys-
tals with different shapes (morphological phases) can
coexist and grow from a spherical nucleus (for example,
the number of coexisting morphological phases is equal
to six for α2 = 150 and nine for α2 = 1000).

Now, we examine the change in the crystal mass in
the vicinity of the morphological transition from the
spherical particle to a particle with developing pertur-
bations. For this purpose, we consider the difference
between the increments of the crystal mass (or, in other
words, the flows of the material arriving at the crystal
surface from the solution) for the perturbed (dN/dt)p
and unperturbed (dN/dt)n crystals. As in the preceding
case, this increment is calculated for the volume ele-
ment r2dΩdr near the crystal surface per unit time. As a
result, we have

 (12)

This difference is an increasing function of the crys-
tal radius R and becomes equal to zero at the point

 (13)

It is interesting to note that, unlike the case consid-
ered in [9], the radius RI does not depend on the growth
regime and is a function only of the perturbing har-
monic.

The dependences of the radii RS, Rb, and RI on the
parameter α2 are depicted in Fig. 4. As can be seen from
this figure, in any growth regime, the size at which the
mass increment rate for the crystal with the perturbed
surface becomes higher than that for the crystal with the
unperturbed surface is always smaller then the radius at
the binodal point. As a consequence, the increment rate
of the crystal mass can only undergo a jumpwise
increase at the morphological transition point lying in
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the range from Rb to RS depending on the perturbation
amplitude.

Figures 5 and 6 show the dependences of the mass
increment rate on the supersaturation and the crystal size
in the vicinity of the morphological transition point (bin-
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Fig. 4. Dependences of the radii RS (solid line), Rb (dashed
line), and RI (dotted line) on the parameter α2. l = 2.
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Fig. 5. Dependences of the mass increment rate dN/dt  on
the supersaturation ∆ in the vicinity of the morphological
transition point. l = 2.
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odal point). These dependences are constructed with the
use of formulas (11) and (12) for a constant amplitude δ.
Such diagrams enable one to make inferences regarding
the behavior of the jump in the crystal growth rate with a
variation in the main parameters of the solution and to
determine the parameters of the transition. Direct (even
qualitative) comparison of these dependences with the
corresponding dependences obtained in [9] for the linear
growth kinetics is complicated, because the dimen-
sionless parameters characterizing the growth regime
differ from each other. The parameter α used in [9]
and the parameter α2 are related by the expression α =
α2β2(C∞ – C0)/β, where β is the kinetic coefficient of
crystallization. The dimension of this coefficient, which
was introduced in [9], differs from that of the coefficient
β2. The above expression makes it possible to compare
the behavior of dependences similar to those plotted in
Figs. 5 and 6. Figures 7 and 8 show the dependences of
the jump in the mass increment rate on the parameters
α2 and l at the binodal point for the linear and quadratic
surface kinetics in the case when the dimensionless coef-
ficient β2(C∞ – C0)/β is equal to unity (the same coeffi-
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Fig. 6. Dependences of the mass increment rate dN/dt  on
the crystal size R in the vicinity of the morphological tran-
sition point. l = 2.
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cient was used for constructing the dependences
depicted in Fig. 1). It can be seen that the jumps in the
mass increment rate depend substantially on the mecha-
nism of surface kinetics.
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Fig. 7. Dependences of the jump in the mass increment rate
(dN/dt)p – (dN/dt)n on the parameter α2 for the morpholog-

ical transition at point Rb for the quadratic (solid line) and
linear (dashed line) dependences of the growth rate on the
supersaturation.
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monic l for the morphological transition at point Rb for the
(1) quadratic and (2) linear dependences of the growth rate
on the supersaturation.
PH
5. CONCLUSIONS

Thus, the results of the above investigation demon-
strated that nonlinear (quadratic) behavior of the depen-
dence of the local growth rate on the supersaturation
leads to considerable quantitative corrections to the
morphological transition points (radii) and the jumps in
the crystal growth rate obtained for linear behavior.
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Abstract—The evolution of the phase stresses induced in the course of the γ ⇒ α  transformation in polycrys-
talline iron is analyzed in the framework of the elastoplastic model of a spherical inclusion. The isolated regions
of the α phase (ferrite) and the γ phase (austenite) are treated as inclusions at the initial and final stages of the
transformation, respectively. The stresses are calculated with due regard for the plastic flow in a spherical layer
(matrix) around these inclusions. The calculated dependence of the hydrostatic phase stresses on the volume
fraction of ferrite suggests that these stresses retard the initial stage and promote the final stage of the transfor-
mation. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In iron and its alloys, the mean relative increase in
volume upon the γ  α transformation in the charac-
teristic temperature range (600–800°C) is approxi-
mately equal to 0.015 [1]. The stresses induced in this
case are very strong and, consequently, lead to plastic
flow of one of the phases (depending on the transforma-
tion stage). At the initial stage, when isolated nuclei of
the α phase (ferrite) are subjected to uniform (hydro-
static) compression, considerable shear stresses and
plastic flow predominantly occur in the surrounding
layers of the γ phase (austenite). By contrast, at the final
stage of the transformation, when “islands” of residual
austenite appear to be isolated and are subjected to
hydrostatic tension, shear stresses and plasticity are
characteristic of the surrounding ferrite layers [1–3]. It
should be noted that, at any stage, the magnitude of the
stresses in both phases is controlled by the local flow
stress in the phase forming a continuous matrix.

The hydrostatic stresses arising in the interacting
phases change in the course of the transformation and
can affect the relative thermodynamic stability of these
phases and, hence, the kinetics of the transformation as
a whole. This effect was indirectly confirmed in the
experiments on the strong influence of external pres-
sure on the rate of the γ  α transformation in iron
and its alloys [1]. Moreover, according to recent exper-
imental data [4], the specific features of the transforma-
tion kinetics cannot be explained without regard for the
elastic energy associated with the phase stresses. How-
ever, up to now, no reliable correct estimates had been
obtained for these stresses with allowance made for
their variation depending on the morphology and the
volume fraction of the transformed phase. This prob-
lem is important not only from the theoretical stand-
1063-7834/04/4611- $26.00 © 22121
point but is also of considerable practical interest due to
the crucial role played by the γ  α transformation
in the formation of steel structures under heat treat-
ment.

In this work, we analyzed the phase stresses in the
course of the γ  α transformation in the framework
of a quantitative model that allows for their plastic
accommodation depending on the morphological fea-
tures of the two-phase structure at different stages of
the transformation. For simplicity, we restricted our
consideration to the specific case of the formation of the
ferrite phase with polygonal (equiaxed) grains that pre-
dominantly nucleate at boundary junctions and bound-
aries between the original austenite grains.

2. STRESSES AND PLASTIC ACCOMMODATION 
IN THE SPHERICAL-INCLUSION MODEL

When simulating the morphology of a two-phase
structure, we take into account that the ferrite phase
predominantly nucleates at boundary junctions of aus-
tenite grains (Fig. 1a). The subsequent nucleus growth
(proceeding at an increased rate along the grain bound-
aries) leads to the formation of a continuous ferrite
framework with islands of residual austenite (Fig. 1b).
Therefore, at the initial and final stages of the transfor-
mation, the structure of the material can be represented
as a set of two-phase cells containing ferrite and auste-
nite inclusions, respectively. By assuming that these
cells are identical (Figs. 1c, 1d), we ignore their inter-
action; i.e., each cell is considered to be free. Further-
more, for simplicity, the cells are assumed to be spher-
ical in shape (Figs. 1e, 1f). The stresses calculated for
the model cells under consideration (Figs. 1e, 1f)
should be matched for some volume fraction of the fer-
rite phase f * at which the initially continuous austenite
004 MAIK “Nauka/Interperiodica”
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α αγ γ

Fig. 1. Schematic two-dimensional representation of the
morphology of the two-phase structure formed in the course
of the γ ⇒ α  transformation in an iron polycrystal: (a) initial
and (b) final stages of the transformation (thin straight lines
indicate the boundaries of austenite grains), (c, d) two-
phase structural cells (straight lines), and (e, f) computa-
tional cells of the model two-phase structure.

R

rp

r0

Fig. 2. Schematic drawing of the spherical two-phase cell
consisting of an inclusion and the matrix with a zone of
plastic accommodation of phase stresses. r0, rp, and R are
the radii of the inclusion, the plastic accommodation zone,
and the matrix, respectively.
PH
matrix is separated into isolated quasi-spherical
regions. According to an approximate geometric esti-
mate, we have f * ≈ 0.2.

Let us consider a model spherical cell of radius R
(Fig. 2). This cell contains a concentric inclusion of
radius r0, which was subjected to inelastic dilatation δ.
The induced stresses can lead to plastic deformation of
the matrix material in a spherical layer adjacent to the
inclusion (Fig. 2). By virtue of the symmetry of the
problem, the spherical stress components obey the fol-
lowing equalities: σϕ = σθ = σr (0 ≤ r < r0) and σϕ = σθ
(r0 ≤ r ≤ R). Moreover, the plasticity condition σeq =
σϕ – σr = σs (where σeq is the equivalent deforming
stress and σs is the yield stress of the matrix material)
[5] is satisfied in the plastic zone (r0 ≤ r ≤ rp). With due
regard for these relationships, the hydrostatic stresses

σ0 = (σϕ + σθ + σr)/3 inside the inclusion ( ) and in

the plastic zone ( ) can be written in the form

 (1)

 (2)

Now, we determine the stresses in the inclusion and
the matrix layers adjacent to the inclusion with allow-
ance made for their plastic accommodation. Under the
plasticity condition, it follows from expressions (1) and
(2) that, for all the stress components, the differences
between their values at the boundary of the plastic zone
and on the inclusion surface are identical: σϕ(rp) –
σϕ(r0) = σr(rp) – σr(r0) = σ0(rp) – σ0(r0) = ∆σ. According
to [5], in order to calculate ∆σ, the equation of elastic
equilibrium in the plastic zone can be written in spher-
ical coordinates in the following form:

 (3)

From this equation, we have ∆σ = 2σsln(rp/r0). On the
basis of this result and relationships (1) and (2), we find
the uniform stresses in the inclusion (0 ≤ r < r0),

 (4)

and the local stresses at the inner boundary of the plas-
tic zone (r = r0 + 0),

 (5)

Therefore, the problem regarding the stresses in the
vicinity of the matrix–inclusion interface can be
reduced to determining the radial stresses σr(rp) at the
outer boundary of the plastic zone.

As the volume fraction of the inclusion f = (r0/R)3

increases, the boundary of the plastic zone approaches
the outer boundary of the cell under consideration and
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reaches it (rp = R) at f = f1. Thereafter (f ≥ f1), taking into
account relationships (4) and (5) and the absence of
radial stresses on the free surface, the stresses in the
vicinity of the inclusion boundary can be given by the
expressions

 (6)

 (7)

It remains to find the quantity f1 and to determine the
stresses in the volume fraction range 0 ≤ f < f1. For this
purpose, the elastoplastic region of radius rp is treated
as an inclusion in the sphere of radius R. According to
[6], the following expression holds in the vicinity of
this inclusion (r = rp + 0):

 (8)

From expression (8) with allowance made for the plas-
ticity condition, we obtain

 (9)

On the other hand, σr(rp) can be expressed through the
dilatation δ* of the effective inclusion of radius rp as
follows [6]:

 (10)

From formulas (9) and (10), we have

 (11)

The total dilatation δ* of a free sphere with radius rp
[σr(rp) = 0] is equal to the sum of the inelastic strain δ
in the range 0 ≤ r ≤ r0 and the nonuniform elastic strain
over the entire range 0 ≤ r ≤ rp. The radial elastic strain
in the spherical layer r0 ≤ r ≤ rp can be represented in
the form

 (12)

The average value of this radial elastic strain is defined
as

 (13)
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According to relationship (4), the uniform radial elastic
strain in the inclusion (0 ≤ r ≤ rp) has the form

 (14)

Taking into account the elastic strains determined by
relationships (13) and (14) and the inelastic dilatation
of the inclusion, the dilatation δ* can be represented in
the following form:

 (15)

From formulas (11) and (15), we find that the relative
extent of the plastic zone can be described by the rela-
tionship

 (16)

The sought expression for the volume fraction f1, at
which the boundary of the plastic zone reaches the
outer surface (rp = R), has the form

 (17)

By substituting relationship (11) into formula (10) and
allowing for expression (5), we obtain

 (18)

Therefore, the stresses at the inclusion boundary in
the volume fraction range 0 ≤ f ≤ f1 are determined by
the relationships

 (19)

 (20)

Note that the main results [relationships (6), (7),
(19), (20)] were obtained under the assumption that the
yield stress σs is constant, i.e., that the plasticity of the
material is ideal. This assumption seems to be reason-
able, because the accommodation plastic strain upon
transformation does not exceed δ = 0.01–0.02 and,
hence, can be disregarded from the standpoint of strain
hardening. It is worth noting that the quantity δ and the
elastic constants of the material affect the stresses only
at small volume fractions of the inclusion (0 ≤ f ≤ f1),
because the parameter f1 depends on these quantities.
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When the volume fraction of the inclusion is large
enough (f > f1) for the plastic zone to reach the free sur-
face, the stresses under consideration, according to
expressions (6) and (7), at a given volume fraction f
depend only on the yield stress of the matrix.

3. RESULTS OF CALCULATING THE PHASE 
STRESSES AND DISCUSSION

The stresses arising in the course of the transforma-
tion will be calculated from the formulas obtained in
the previous section. At a volume fraction of ferrite in
the range 0 ≤ f < f * ≈ 0.2, when the austenite phase is

continuous (Fig. 1a), the yield stress of austenite 
should be used as σs in formulas (6), (7), (19), and (20).
At f * < f ≤ 1, isolated austenite regions appear to be
embedded in the continuous ferrite matrix; i.e., the
inelastic dilatation of inclusions changes the sign and
becomes negative. In this case, it is necessary to replace

σs by the yield stress of ferrite , to change the signs
of all the stress components, and to use 1 – f (volume
fraction of austenite) instead of f in the aforementioned
formulas. As a result, the expressions for the phase
stresses in the vicinity of the interface in the four char-
acteristic ranges of volume fractions of ferrite take the
following form:

 (21)

for 0 ≤ f ≤ f1;
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Fig. 3. Dependences of the hydrostatic phase stresses in fer-
rite (α phase) and austenite (γ phase) in the vicinity of the
interface on the volume fraction of the ferrite.
PH
 (22)

for f1 ≤ f < f *;

 (23)

for f * ≤ f < f2; and

 (24)

for f2 ≤ f ≤ 1. The values of f1 and (1 – f2) are determined

from expression (17) at σs =  and σs = , respec-
tively.

Now, we quantitatively estimate the phase stresses
from the relationships derived. As follows from formu-
las (21)–(24) and (17), doing this requires that the yield
stresses and the shear moduli of the phases in the tem-
perature range of the γ  α transformation be deter-
mined. The flow stresses can be estimated from the
Ashby deformation maps [7] for polycrystalline iron
and the low-alloy steel. In the transition temperature

range (700–800°C), we have  ≈ 100 MPa and  ≈
200 MPa at strain rates of 10–4–10–3 s–1. Note that the
local flow stresses of the phases can turn out to be
higher than the aforementioned macroscopic yield
stresses. Therefore, the case in point is the lower bound
estimate. The shear moduli can be obtained from the
experimental data on the temperature dependences of
the Young modulus for ferrite and austenite [8]. At the
Poisson ratio ν = 0.3, we find the following shear mod-
uli of the phases at 750°C: Gγ = 5.7 × 104 MPa and Gα =
6.0 × 104 MPa. The volume effect of the transformation
δ is assumed to be equal to 0.015 [1].

The volume fractions f1 and f2 calculated from for-
mula (17) are equal to 1.3 and 94%, respectively. This
means that the phase stresses can be calculated from
relationships (22) and (23) virtually over the entire
range of transformation fractions.

The evolution of the hydrostatic stresses in the
vicinity of the interface in the course of the γ  α
transformation is illustrated in Fig. 3. The jumps in the
stresses at f = f * result from the use of the simplifying
assumption regarding the spherical shape of ferrite
regions up to their coalescence into the continuous
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matrix. However, it should be noted that the stress jump
is pronounced for the austenite phase and insignificant
for the ferrite phase. It can be seen from Fig. 3 that, at
the initial stage, both phases are subjected to consider-
able hydrostatic compression. However, once the con-
tinuous ferrite matrix is formed, isolated austenite
regions appear to be in the state of hydrostatic tension.
During the transformation, the stresses increase and
exceed the yield stress of ferrite at the final stage (f >
0.8). The hydrostatic stresses in ferrite remain compres-
sive approximately half-way through the transforma-
tion and change sign only at f ≈ 0.6. Note that signifi-
cant gradients of hydrostatic stresses occur in the
course of the transformation and can induce vacancy
flows and, hence, additional relaxation of phase
stresses. However, such effects call for separate consid-
eration.

Let us evaluate how the phase stresses affect the

effective driving force of the transformation ∆
with due regard for the work Aσ done by the hydrostatic
stresses in austenite due to the volume effect of the
transformation. The effective driving force can be writ-
ten in the following form:

 (25)

where ∆  is the chemical driving force (∆  <

0) and  is the hydrostatic stress in austenite in the
vicinity of the interface. Taking into account the behav-

ior of  during the transformation (the upper curve in
Fig. 3), from analysis of expression (25), we can make
the inference that the stresses under consideration
retard the initial stage of the transformation (f < f *) and,
conversely, promote the transformation at the interme-
diate and final stages (f > f *).

The magnitude of the effect can be estimated from
the calculated data taken from [4] on the chemical driv-
ing forces in an alloy Fe + 2% Mn. At a cooling rate of

0.5 K/s, we have ∆ ( f = 0.1) ≈ –31 J/mol and
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∆ ( f = 0.9) ≈ –123 J/mol. On the other hand, at
δ = 0.015, the works of the hydrostatic stresses at the cor-
responding volume fractions of ferrite are determined to
be Aσ( f = 0.1) ≈ 22 J/mol and Aσ( f = 0.9) ≈ 35 J/mol.
According to the above estimates, the relative contribu-
tions of the phase stresses to the effective driving force

of the transformation ( ) are approximately
equal to 70 and 30% for ferrite volume fractions of 10
and 90%, respectively.

4. CONCLUSIONS

Thus, the phase stresses considered in this work can
substantially affect the kinetics of the γ  α transfor-
mation and, therefore, should be taken into account in
quantitative simulations of this transformation.
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Abstract—The quasi-classical method for estimating the structural and energy parameters of crystals is justi-
fied. In the initial approximation, the charge-density and potential distributions are represented by step func-
tions. As a result, the energy of the ground state of the crystal and the matrix elements of the secular equation
determining its electronic structure can be expressed through finite sums. This approach makes it possible to
avoid uncontrollable errors introduced in the truncation of infinite series, and the error of the approach itself
does not exceed a few percent. The lattice constant a = 2.64 Å and the band gap Eg = 6.22 eV for two-dimen-
sional boron nitride are determined by the quasi-classical method. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The development of theoretical approaches that do
not require considerable computational effort but pro-
vide a reasonable accuracy in the prediction of physical
parameters is particularly important for the study of
materials that form different structural modifications.
This is especially true for boron nitride. Boron nitride
can exist in the form of diatomic molecules; two-
dimensional nanotubes and fullerene-like structures;
three-dimensional hexagonal (h-BN), rhombohedral
(r-BN), cubic sphalerite-like (c-BN), and wurtzite-like
(w-BN) crystals; and amorphized films. A number of
structural and energy characteristics of BN molecules
[1, 2] and h-BN [2, 3], c-BN [4], and w-BN [5] crystals
were calculated by a new method based on the use of
the quasi-classical approximation. In the present work,
this approach was used to predict the lattice constant
and the band gap of a two-dimensional infinite layer
that has the lowest molar energy among the two-dimen-
sional structures formed by boron nitride. Investigation
of this hypothetical object is of special interest because
the structures of h-BN and r-BN crystals are formed by
similar layers and, moreover, fullerene molecules and
nanotubes are bounded by flat or curved fragments of
such a layer.

This paper consists of three sections. In Section 2,
we justify the quasi-classical method. In Section 3, we
calculate the binding energy and the density of states
for a two-dimensional boron nitride crystal within the
initial quasi-classical approximation and compare the
estimated structural and energy parameters with the rel-
evant data available in the literature for other modifica-
tions of boron nitride.
1063-7834/04/4611- $26.00 © 22126
2. THE QUASI-CLASSICAL METHOD 
FOR CALCULATING THE CRYSTAL 

STRUCTURE AND ELECTRONIC STRUCTURE

2.1. Matter as a Quasi-Classical Electronic System

Since the advent of the Bohr model for a hydrogen
atom, semiclassical models of light atoms have been
constructed to advantage [6]. The effectiveness of this
approach to the description of the periodic motion of
electrons in small-sized molecules was demonstrated
by Popa [7]. For many-electron systems, a reasonable
accuracy can be achieved in terms of the self-consistent
field approximation within which an extremum of the
total energy is sought in the class of quasi-classical
wave functions [8]. As is known, heavy atoms can be
calculated in the framework of the density-functional
theory using a quasi-classical expansion of the energy
functional. A similar method appears to be appropriate
for atomic clusters and condensed phases [9].

However, atomic, molecular, and crystal potentials
do not satisfy the standard Wentzel–Kramers–Brillouin
quasi-classical condition due to singularities at nuclear
sites and electron shell effects. The success of the above
approaches can be explained on the basis of the quasi-
classical expressions obtained by Maslov [10] for the
energies of bound electron states. It follows from these
expressions that the exact and Wentzel–Kramers–Bril-
louin spectra are similar to each other irrespective of

the potential smoothness at 2Φ0  @ 1, where Φ0 and
R0 are the characteristic values of the potential and its
effective range, respectively (hereafter, all relationships
will be given in the atomic system of units).

Since atomic orbitals at long distances are charac-
terized by an exponential decay, the use of the modified
Thomas–Fermi models makes it possible to parame-
trize the electron density distribution in an atom by

R0
2
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introducing the atomic radius R < ∞ (which is consid-
erably larger than the Bohr radius, i.e., R @ 1) such that,
at larger distances, the electron density is assumed to be
zero [11]. This is equivalent to the initial approximation
in quasi-classical atomic models where the partial elec-
tron densities are ignored in classically forbidden
regions. The potential Φi(r) of the effective field acting
on the ith electron in the atom with the number Z ≥ 1
can be represented in the form Φi(r) =
(Z/R)Fi(r/R)/(r/R), where 0 ≤ r ≤ R is the distance from
the center and 0 ≤ Fi(r/R) ≤ 1 is the factor that charac-
terizes screening of the nucleus by the other electrons.
Consequently, we have Φ0 ~ Z/R and R0 ~ R, and the
quasi-classicality condition for the electron energy
spectrum of the atom takes the form 2ZR @ 1. There-
fore, atoms and the molecules and crystals formed by
the atoms are actually quasi-classical electronic sys-
tems in accordance with the Maslov criterion.

2.2. Quasi-Classical Parametrization of the Electron 
Density and Potential Distributions in an Atom

The potential energy of the ith electron (with energy
Ei < 0 and orbital quantum number li) is equal to –Φi(r).

Therefore, the radii  and  of the classical turning

points (  < ) can be found as the roots of the equa-
tion Ei = –Φi(r) + li(li + 1)/2r2 (i = 1, 2, 3, …, Z).

Let (r) be the potential of the field induced by the
ith electron. Then, the potential of the field induced by
the electron cloud of the atom can be written as the sum

of the potentials (r); that is,

 (1)

The potential of the field acting on an arbitrary ith
electron of the atom is equal to the sum of the potentials
of the Coulomb field of the nucleus and the field
induced by all the electrons of the atom, except for the
potential of the field of the electron under consider-
ation:

 (2)

Now, we sum up these potentials over electrons. As
a result, the terms independent of the number of the
electron on the right-hand sides are multiplied by the
total number Z of electrons in the atom and the sum of

the potentials (r) gives (r). The solution of the

obtained equation with respect to (r) has the form

 (3)

ri' ri''

ri' ri''

Φ̃i

Φ̃i

Φ̃ r( ) Φ̃i r( ).
i 1=

Z

∑=

Φi r( ) Z/r Φ̃ r( ) Φ̃i r( ),–+=

i 1 2 3 … Z ., , , ,=

Φ̃i Φ̃
Φ̃

Φ̃ r( ) 1
Z 1–
------------ Z

2

r
----- Φi r( )

i 1=

Z

∑–
 
 
 

.–=
PHYSICS OF THE SOLID STATE      Vol. 46      No. 11      20
This relationship makes it possible to determine the

potential energy Z (r) of the interaction between the
nucleus of the atom and the electron cloud. Since, in the
ground state, their relative motion corresponds to a zero
orbital quantum number, the radius of one classical
turning point for this system is equal to zero and the
radius  of another classical turning point is the root of

the equation  = Z (r), where  is the eigenvalue of
the energy associated with the relative motion of the
electron cloud and the nucleus.

The quasi-classical parametrization of the electron
density and potential distributions in the atom can be
performed in analytical form if the effective fields act-
ing on the electrons are represented by Coulomb-like

potentials Φi(r) = Zi/r, where Zi =  are the
effective charges dependent on the principal quantum
numbers ni of the states. As a result, we obtain

 (4)

In this case, the effective field of the interaction
between the nucleus and the electron cloud also turns
out to be a Coulomb-like field. Then, under the assump-
tion that the nucleus has an infinite mass and, hence, is
stationary (i.e., the reduced mass of the nucleus–elec-
tron cloud system is equal to the total mass of Z elec-
trons in the atom), the radius of the turning point for the
motion of the electron cloud with respect to the nucleus
is given by the formula

 (5)

The initial quasi-classical approximation implies
that exponentially decaying partial electron densities
are disregarded in the classically forbidden regions and
that oscillations of these densities are ignored in classi-
cally allowed regions. As a result, the radial depen-
dence of the direction-averaged partial charge density
of the ith electron state in the atom is represented by a
piecewise constant function, which is equal to zero in
the classically forbidden regions: 

 (6)

A similar averaging for the motion of the electron cloud
as a whole with respect to the nucleus is equivalent to
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averaging the nuclear charge over a sphere of radius ;
that is,

 (7)

Summation of similar contributions gives the distri-
bution of the total density of the electric charge in the
atom in the form of a step radial function,

 (8)

where ρk are constants determined from the radii of the
classical turning points and rk coincide with these radii.
Here, 0 ≡ r0 < r1 < r2 < … < rq < rq + 1 < ∞, q ≤ 2Z is the
number of layers with uniform charge densities, and rq
plays the role of the quasi-classical atomic radius (the
charge density is equal to zero at r > rq). Mathemati-
cally, this representation is equivalent to the volume
averaging in layers rk – 1 ≤ r < rk.

Next, we calculate the fields induced by the charged
layers with densities ρk on the basis of the Gauss theo-
rem and sum these fields. Then, the atomic potential
can be written in the form of the continuously differen-
tiable piecewise analytical function

 (9)

However, since the energy of the electronic system
is a single-valued functional of the electron density, it is
expedient to approximate the above potential by a step
function. This can be adequately performed by averag-
ing over the volume:

 (10)

2.3. Quasi-Classical Energy of a Crystal 
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Let us assume that d(i) are the basis vectors of a unit
cell of a crystal. In this case, the point d(i) + t corre-
sponds to the equilibrium position of the center of an
(i)-type atom belonging to the unit cell with transla-
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tional vector t. Therefore, the total density of the
nuclear and electronic charge in the atom and the total
density of the potential of the field induced by this
charge at the point r in the adiabatic approximation
can be represented by the functions ρ(i)(r – d(i) – t) and
ϕ(i)(r – d(i) – t). The potential energy of the (t)th atom
of the central unit cell (t = 0) can be calculated as 1/2 of
the volume integral of the product of the corresponding
charge density ρ(i)(r – d(i)) into the superposition of the
potentials ϕ(k)(r – d(k) – t) for all (k)th atoms of the crys-
tal. The subsequent summation over the basis of the
central unit cell with N atoms gives the potential energy
of the cell. When calculating the static energy of the
crystal (which is the system with Coulomb interaction)
per unit cell, one more factor of 1/2 appears according
to the virial theorem; that is,

(11)

Let r(i)j (j = 1, 2, 3, …, q(i)) be the outer radii of uni-
form layers in the (i)th atom (q(i) is the number of lay-
ers). Then, the volume of the intersection of the jth
layer in the (i)th atom of the central unit cell with the lth
layer in the (k)th atom of the cell displaced by the vec-
tor t is given by the formula

 (12)

Here, r(ik)t = d(k) + t – d(i) is the radius vector of the (i)th
atom with respect to the (k)th atom and V(R1, R2, D12)
is the universal continuously differentiable piecewise
analytical algebraic function determining the volume of
the intersection of two spheres with radii R1 and R2
whose centers are spaced at D12 (this function was
derived in an explicit form in [12] when formulating the
problem regarding the quasi-classical calculation of the
band structure of a crystal). By introducing the charge
density ρ(i)j and the potential density ϕ(i)j in the atomic
layers, the static energy of the unit cell of the crystal
within the initial quasi-classical approximation can be
written in the following form:

 (13)

If the interacting atoms are fixed at their sites (this is
equivalent to the time averaging of their vibrations), the
potential energy of the (i)th atom of the central unit cell
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1
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displaced by the vector t from the equilibrium position
is defined as

(14)

The prime on the summation sign indicates that the
term with t = 0 and (k) = (i) is omitted. The above for-
mula is symmetrized with respect to the contributions
of interacting charges, because the approximations not
related by the Poisson equation were used upon quasi-
classical parametrization of the charge and potential
densities.

The central-field approximation for the constituent
atoms permits us to represent the aforementioned
potential energy as the sum of the contributions that
depend only on the squares of the distances from the
point r + d(i) to the point d(k) + t; that is,

U i( ) r( )

=  
1
2
--- ' r' ρ i( ) r' d i( )– r–( )ϕ k( ) r' d k( )– t–( )(d∫

k( ) 1=

N

∑
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∑
+ ρ k( ) r' d k( )– t–( )ϕ i( ) r' d i( )– r–( ) ).
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 (15)

In order to estimate the energy of small-amplitude
lattice vibrations, we expand each contribution into a
power series of the variable parts of the arguments and
retain only constant and linear terms. In these series, the
terms responsible for the vibrations are as follows:

 (16)

In quasi-classical schemes, the pair potential ener-
gies U(ik)t(r(ik)t) are linear combinations of the functions
V(r(i)j , r(k)l , r(ik)t), which determine the volumes of the
intersection of the layers with uniform charge and
potential densities in the interacting atoms. Conse-
quently, the frequencies of lattice vibrations are
expressed through the partial derivatives ∂V(R1, R2,
D12)/∂D12. Specifically, if M(i) is the mass of the (i)th
atom, the molar energy of zero-point vibrations in the
crystal can be written in the form
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2.4. Quasi-Classical Calculation of the Electronic 
Structure of a Crystal

In the initial quasi-classical approximation, the
potentials ϕ(κ)(|r – d(κ) – t |) [(κ) = 1, 2, 3, …, N] of the
atoms forming the crystal are expressed through radial
step functions with centers at the lattice sites. The crys-
tal potential

 (18)

which is represented as their superposition, is a three-
dimensional piecewise constant function. Here, (κ) and t
are the indices of summation over the atoms of the unit
cell and the unit cells of the crystal, respectively. In the
same approximation, the basis functions for the LCAO
(linear combination of atomic orbitals) method can be

ϕ r( ) ϕ κ( ) r d κ( )– t–( ),
κ( ) 1=

N

∑
t
∑=
approximated by the square roots of the partial electron

densities: ψ(i)j(|r – d(i) – t|) = . These
functions differ from zero only in the corresponding

classically allowed regions  ≤ |r – d(i) – t| ≤ 

[  and  are the radii of the inner and outer clas-
sical turning points for the jth electron of the (i)th atom,
respectively; j = 1, 2, 3, …, Z(i); Z(i) is the charge number
of the atom]. Undeniably, such a basis set does not rep-
resent the angular dependence and a sign-changing
character of the atomic orbitals but provides the calcu-
lation of the electron density distribution in the atom
within the initial quasi-classical approximation.

The matrix elements of the one-electron Hamilto-
nian H of the crystal
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∑– ipt( )exp=
between the Bloch sums of the aforementioned piece-
wise constant basis functions are reduced to the matrix
elements of the potential energy of the electron ϕ(r)
and can be written as linear combinations of the vol-
umes of the intersections of triads of the spheres cen-
tered at the lattice sites with radii equal to the radii of
4
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the classical turning points for particles in the atoms
forming the crystal. Here, p is the electron quasi-
momentum and
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Fig. 1. Crystal structure of two-dimensional boron nitride.
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Fig. 2. The first Brillouin zone of two-dimensional boron
nitride.
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 (20)

 

 

 

 

is the volume of the intersection of the jth layer in the
(i)th atom with the lth layer in the (k)th atom and the λth
layer in the (κ)th atom of the unit cells, which are dis-
placed by the vectors t and t, respectively. In the above
expressions, V(R1, R2, R3, D12, D13, D23) is a universal
function that determines the volume of the intersection
of three spheres with radii R1, R2, and R3 whose centers
are spaced at D12, D13, and D23. This function is a con-
tinuously differentiable piecewise analytical combina-
tion of algebraic and inverse trigonometric functions
(the corresponding geometric problem was solved in an
explicit form in [13]).

The elements of the matrix S of the overlap integrals
between the Bloch sums of the piecewise constant basis
functions can be represented in the form

 (21)

Now, the dispersion laws E = E(p) for the electron
energy bands and the density of states can be deter-
mined by solving the secular equation det(H – ES) = 0
with the use of the parameters ρ(i)j and ϕ(i)j for individ-
ual atoms as the initial approximation for these param-
eters in the self-consistent procedure.

It should be emphasized that, within the initial
quasi-classical approximation, the matrix elements of
the secular equation determining the electronic struc-
ture of the crystal and its ground-state energy are given
by sums containing a finite number of nonzero terms
due to the finiteness of atomic radii. For this reason, the
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Quasi-classical parameters of the charge-density and potential distributions in boron and nitrogen atoms (in atomic units)

j r(B)j ρ(B)j ϕ(B)j r(N)j ρ(N)j ϕ(N)j

1 2.759 × 10–2 +5.687 × 104 2.105 × 102 9.446 × 10–3 +1.983 × 106 8.785 × 102

2 5.098 × 10–1 –3.611 8.882 3.577 × 10–1 –1.045 × 10 2.023 × 10

3 7.441 × 10–1 –7.342 × 10–3 3.653 5.498 × 10–1 –1.939 × 10–2 8.465

4 4.021 –1.028 × 10–2 2.061 × 10–1 2.909 –4.127 × 10–2 5.097 × 10–1

5 4.337 –2.941 × 10–3 6.135 × 10–4 3.204 –2.188 × 10–2 3.993 × 10–3
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approach under consideration is free of the uncontrolla-
ble errors that arise in the truncation of infinite series.

3. CALCULATION OF STRUCTURAL 
AND ELECTRONIC CHARACTERISTICS

FOR A TWO-DIMENSIONAL BORON NITRIDE 
CRYSTAL IN THE INITIAL QUASI-CLASSICAL 

APPROXIMATION

3.1. Crystal Structure of Two-Dimensional Boron 
Nitride and Quasi-Classical Parameters 

of Its Constituent Atoms

A two-dimensional boron nitride crystal is repre-
sented as a planar layer composed of regular hexagons
with vertices alternately occupied by boron and nitro-

gen atoms (Fig. 1). In this crystal, t1 = a(1/2, ) and

t2 = a(–1/2, ) are the basis vectors, where a is the
lattice constant determined as the shortest distance
between like atoms. The bond lengths between the

adjacent unlike atoms are equal to d = a/ . The unit
cell contains one B atom and one N atom with radius

vectors d(B) = a(0, 1/ ) and d(N) = a(0, –1/ ) with
respect to the center of the corresponding hexagon. The
first Brillouin zone of two-dimensional boron nitride is
also hexagonal in shape (Fig. 2).

The quasi-classical parameters (necessary for calcu-
lations) for individual boron and nitrogen atoms were
calculated within the scheme of Coulomb-like effective
atomic potentials (see table). The quasi-classical radii
were determined to be R(B) = 2.30 Å and R(N) = 1.70 Å.

3.2. Quasi-Classical Binding Energy 
of Two-Dimensional Boron Nitride

The molar binding energy Ebind for two-dimensional
boron nitride in the initial quasi-classical approxima-
tion was calculated as the difference between the sum
of the energies of individual boron and nitrogen atoms
and the sum of the static and vibrational energies per
unit cell. The calculated dependence of the binding
energy on the lattice constant (Fig. 3) exhibits a maxi-
mum Ebind = 23.0 eV at the lattice constant a = 2.64 Å,
which should correspond to the equilibrium state for an
isolated layer. The correction introduced by zero-point
vibrations was estimated as Evibr = 0.242 eV.

It is expedient to analyze the correctness of these
predictions (obtained in terms of the quasi-classical
approach) by comparing them with the data available in
the literature on the cohesion characteristics of h-BN
layered crystals. As follows from the standard thermo-
chemical data, the binding energy of h-BN is equal to
13.0 eV [14]. The binding energies of 14.5, 16.0, and
14.4 eV were determined from semiempirical calcula-
tions performed using two variants of the LCAO
method and an approach based on a periodic small-
sized cluster [15]. Within the model potential of a clas-

3/2

3/2

3

3 3
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sical force field, the lower semiempirical estimate of
11.5 eV was obtained in [16]. In the framework of the
density-functional theory, optimization of the structural
parameters led to the theoretical binding energy of
12.5 eV [17]. Therefore, it should be expected that the
molar binding energy for h-BN layered crystals lies in
the range from 11.5 to 16.0 eV. The binding energy
Ebind = 23.0 eV obtained by the quasi-classical method
for the isolated layer is considerably higher. However,
when comparing these energies, it should be taken into
account that interlayer bonds are substantially weaker
than intralayer bonds and that each atom in layered
boron nitride structures is involved in the formation of
five bonds, of which only three bonds are intralayer
bonds. Consequently, if the interlayer energy is ignored
as compared to the intralayer energy, we can assume
that the molar binding energy of similar modifications
is equal to 3/5 of the molar binding energy of the iso-
lated layer. With the use of our result (23.0 eV), we find
the binding energy of 13.8 eV for layered boron nitride
crystals. This energy is close to the midpoint of the
aforementioned energy range. On the other hand, the
vibrational energies of the isolated layer and layered
crystals can be directly compared, because the atoms of
the low-dimensional system can execute vibrations in
three independent directions in the physical space. Our
quasi-classical result Evibr = 0.242 eV for two-dimen-
sional boron nitride agrees well with the semiempirical
estimate of 0.225 eV for the energy of zero-point vibra-
tions in h-BN [16] and coincides in order of magnitude
with the estimate (0.35 eV) made from the theoretical
phonon spectrum [17].

The equilibrium lattice constant determined for two-
dimensional boron nitride within the initial quasi-clas-
sical approximation corresponds to the B–N bond
length d = 1.52 Å. This bond length is in reasonable
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Fig. 3. Calculated dependence of the molar binding energy
on the lattice constant for a two-dimensional boron nitride
crystal in the quasi-classical approximation.
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agreement (a deviation of 4.6%) with the bond length
d = 1.45 Å observed in layers of real h-BN crystals. At
first glance, the surprising thing is that the result for the
isolated layer is in better agreement (deviations of 2.6–
3.8%) with the bond lengths in tetrahedrally coordi-
nated modifications c-BN (1.57 Å) and w-BN (1.56,
1.58 Å). However, it is worth noting that, in some
respects, two-dimensional boron nitride resembles
three-dimensional crystals c-BN and w-BN: these
structures do not contain interlayer bonds, which occur
in the h-BN layered modification.

Owing to the finiteness of the energy sums, the ini-
tial quasi-classical approximation enabled us to deter-
mine the equilibrium bond length for an infinite boron
nitride layer. It is of interest to compare this bond length
with the results of ab initio calculations carried out with
the use of several variants of the Hartree–Fock method
and the density-functional theory for a planar molecule
B12N12 consisting of seven six-membered rings [18].
This structure is a fragment of two-dimensional boron
nitride, but the geometry of the fragment appears to be
somewhat distorted because of finite sizes. As should
be expected, the smallest deviations of the bond angles
from an ideal value of 120° are observed for the bonds
of the atoms forming the central hexagon: –(2.52°–
2.65°) for the B atoms and +(2.52°–2.65°) for the N
atoms. The corresponding bond lengths (1.52–1.54 Å,
1.55–1.58 Å) are also in good agreement with the
quasi-classical result d = 1.52 Å obtained for an ideal
infinite boron nitride layer.
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Fig. 4. Calculated density of states for a two-dimensional
boron nitride crystal in the quasi-classical approximation.
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3.3. Density of States for Two-Dimensional Boron 
Nitride

When calculating the electronic structure of two-
dimensional boron nitride by the LCAO method in the
initial quasi-classical approximation, the piecewise
constant approximations of the 2s and 2p valence orbit-
als of the B and N atoms served as the basis set. The lat-
tice constant was taken equal to 2.64 Å. Within the
approximation under consideration, this value should
correspond to the equilibrium state. The calculated den-
sities of states in the valence and conduction bands are
depicted in Fig. 4 with respect to the Fermi level.
According to these results, two-dimensional boron
nitride, like its three-dimensional crystalline modifica-
tions, is a dielectric: the band gap is determined to be
Eg = 6.22 eV.

The calculated density of states for the isolated
boron nitride layer should be compared with the corres-
ponding data for the h-BN layered modification: the
densities of states in the valence and conduction bands
were calculated by the orthogonalized-plane-wave
method [19], in the tight-binding approximation [20],
by the full-potential linear augmented-plane-wave
method [21], and in the framework of the local-density
approximation with the use of orthogonalized LCAOs
[22]. Moreover, the theoretical results were corrected
with due regard for the experimental data on x-ray pho-
toemission spectroscopy [23] and x-ray photoelectron
spectroscopy [24]. In [2], the density of states for h-BN
was also calculated by the quasi-classical method but
with a different parametrization scheme. A comparison
of the above results suggests that, in general terms, the
density of states for two-dimensional boron nitride is
identical to the density of states for h-BN crystals.
However, the data available for h-BN three-dimen-
sional crystals do not allow us to interpret specific fea-
tures of the density of states for the two-dimensional
boron nitride layer or to estimate characteristic energy
ranges.

The calculated electronic structure of two-dimen-
sional boron nitride can also be compared with the elec-
tronic structure of nanotubes, which are characterized
by their own specific features. According to calcula-
tions, multiwall boron nitride nanotubes are also dielec-
trics [25]. For example, the band gap was estimated at
5.5 eV within the local-density approximation. Note
that the band gap only slightly depends on the radii of
curvature, the chirality, and the number of layers. One
more class of boron nitride structures somewhat related
to the isolated layer is represented by fullerene mole-
cules BmNm, which are approximately spherical in
shape and are faceted by flat rings comprising B and N
atoms. For the B12N12, B24N24, and B60N60 fullerenes,
the so-called HOMO–LUMO band gap, which is
defined as the energy interval between the highest occu-
pied molecular orbital and the lowest unoccupied
molecular orbital, was calculated by the MNDO (mod-
ified neglect of diatomic overlap) method in [26]. The
YSICS OF THE SOLID STATE      Vol. 46      No. 11      2004
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calculated HOMO–LUMO band gaps were equal to
7.98, 8.34, and 8.73 eV, respectively. Therefore, the
inference can be made that, with an increase in the
number m of atoms, when the angles between adjacent
molecular faces increase, the HOMO–LUMO band gap
is stabilized at approximately 9 eV. This estimate of the
band gap for two-dimensional boron nitride is some-
what larger than that obtained in the present work.
However, the former band gap should be overestimated,
because, when changing over to the infinite periodic
structure, the HOMO and LUMO levels are split into
the valence and conduction bands, respectively. Fur-
thermore, the error introduced in such an assignment of
molecular states to crystalline states is associated with
the fact that not only six-membered rings can serve as
faces of the BmNm fullerenes.

In their recent work [27], Évarestov and Tupitsyn
calculated the parameters of the electronic structure of
two-dimensional boron nitride in the framework of the
standard Hartree–Fock method, the Hartree–Fock
method with inclusion of the weighting function in the
exchange part of the Fock matrix, and the density-func-
tional theory. The band gap is equal to 13.7 eV for both
variants of the Hartree–Fock method and 4.30 eV in the
case of the density-functional calculations. In [27], it
was emphasized that the density-functional calcula-
tions systematically underestimate the band gap. This
circumstance is most likely one of the two possible rea-
sons for the discrepancy in the results. The second rea-
son is that the value of 13.7 eV determined by the Har-
tree–Fock method seems to be extremely overestimated
for the band gap in any boron nitride modification.

In conclusion, it should be noted that all the above
calculations of the electronic structure of h-BN, boron
nitride nanotubes, BmNm fullerenes, and the two-dimen-
sional boron nitride layer were performed using the
intralayer bond lengths d corresponding to the real
h-BN structure. This bond length is approximately 5%
shorter than the bond length obtained in the present
work for two-dimensional boron nitride by the quasi-
classical method. According to the Harrison interpola-
tion scheme for energy parameters of solids, we can
assume that Eg ~ 1/d2. Then, substitution of the quasi-
classical bond length leads to a decrease in the afore-
mentioned estimates by ~10%.
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Abstract—Valence states of metal ions and the phase composition of nanocrystalline Al2O3 (of the original
oxide and the oxide irradiated by high-energy Fe+ ions) are studied by using x-ray emission Al L2, 3 and O Kα
spectra. It is established that the shape of the Al L2, 3 spectra strongly changes as one goes from the original
(bulk) Al2O3 to nanocrystalline oxide, while the O Kα spectra remain practically unchanged. Moreover, irradi-
ation by high-energy Fe+ ions results in slight additional changes in the x-ray spectral characteristics of the alu-
minum oxides under study. The obtained experimental data are compared with the results of theoretical calcu-
lations of the electronic structure of α and γ phases of Al2O3 performed using the LDA formalism. Using the
results of x-ray spectral studies, electronic structure calculations, and x-ray diffraction analysis, it is shown that
the revealed spectral differences between the nanocrystalline state of aluminum oxide and the bulk material can
be interpreted as a phase transition from the α phase to the γ phase of Al2O3 with an addition of bayerite. ©
2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In recent years, nanocrystalline materials have
drawn attention from both fundamental and applied
points of view, due to their unusual properties (high
hardness, high electrical resistance, high specific heat,
etc.) as compared to common bulk materials [1]. The
existence of unusual properties of materials in the
nanocrystalline state is usually associated with various
size effects in nanoparticles. Another important feature
of nanocrystalline materials is the possibility of sub-
stantially modifying their properties under the action of
various external factors, since such materials are in the
nonequilibrium state in some cases. The latter fact
restricts industrial applications of these materials. In
this respect, nanocrystalline oxides look most promis-
ing because of their higher chemical and thermal stabil-
ity as compared to other nanomaterials; indeed, the
structure and the grain size of nanocrystalline oxides do
not change even after annealing at temperatures of
about 600–800 K [2]. Aluminum oxide Al2O3 belongs
to this group of materials.

To date, two widespread stable phases of Al2O3 are
known: corundum α-Al2O3 and γ-Al2O3 defect spinel
[3–5]. These phases can be transformed into each other,
and this transformation strongly depends on the method
of sample synthesis, the presence of foreign ions
(impurities) in the lattice, and/or the presence of chem-
1063-7834/04/4611- $26.00 © 2134
ical catalysts and external factors [3]. Irradiation by
charged particles is a convenient method for changing
the phase structure of a material [6, 7]. Therefore, we
can expect that, after irradiation by high-energy ions,
the transition from α-Al2O3 to γ-Al2O3 or even the for-
mation of lower forms of aluminum oxides can take
place. Using CuO as an example, it has been shown that
similar phase transitions are clearly seen in x-ray emis-
sion spectra [6, 7].

X-ray emission spectroscopy is an effective method
of studying similar systems. This method allows one to
determine charge (valence) states of ions and provides
information on the partial densities of states of atomic
components in the valence band of a compound, the
changes in the character of chemical bonding, etc. In
this paper, we report on a complete x-ray emission
investigation of the valence states of metal ions and the
phase structure of nanocrystalline Al2O3 (the original
oxide and the oxide subjected to irradiation by high-
energy iron ions). In addition, we describe calculations
of the electronic structure of aluminum oxide in the
framework of the LDA formalism [8]. Attention is
mainly focused on the difference in x-ray spectra
between the bulk and nanocrystalline states of alumi-
num oxide. The reasons and possible mechanisms of
such spectral differences are discussed.
2004 MAIK “Nauka/Interperiodica”
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2. SAMPLE PREPARATION TECHNIQUE 
AND DESCRIPTION OF THE EXPERIMENT 

AND CALCULATIONS

Nanocrystalline Al2O3 powders were synthesized by
the method of electric explosion of a metal aluminum
wire in air with subsequent sedimentation in water [9].
As a reference sample, an α-Al2O3 single crystal was
used.

Samples were irradiated by iron ions at the Institute
of Electrophysics, Ural Division, Russian Academy of
Sciences. An ion source of the MEVVA type [10] based
on a vacuum arc with a cathode spot was used. This
source operated in a periodic-pulse mode with a pulse
duration of 0.4 ms and a pulse repetition frequency of
25 Hz (ion energy 30 keV, ion flux 1017 cm–2, current
density 3 mA/cm–2).

X-ray emission Al L2, 3 spectra (valence transition Al
3d3s–Al 2p3/2, 1/2) of irradiated, nonirradiated, and ref-
erence aluminum oxide samples were measured using
an ultrasoft x-ray emission spectrometer [11] (diffrac-
tion grating with 600 lines per millimeter having a
bending radius of 2 m) and electron excitation with an
energy resolution of 0.3 eV. X-ray emission O Kα spec-
tra (electronic transition O 2p–O 1s) were obtained
using a JEOL-733 electronic microanalyzer specially
adapted for measurements of the fine structure of x-ray
spectra [12]. The x-ray tube operated at 5 kV and
100 nA. In this case, the instrumental broadening of O
Kα spectra was approximately 0.5 eV.

X-ray diffractograms of the samples were taken
using a DRON-4 diffractometer (Cu Kα excitation)
with a graphite monochromator. Interpretation of x-ray
diffractograms and estimation of the phase composition
were performed using the ASTM database and the
PowderCell program. The Scherrer method was used to
estimate the average grain size from the integral width
of the (118) δ-Al2O3 reflection.

The band structure was calculated in the frame-
work of the local density functional formalism (LDA)
using the first-principles method of linearized MT
orbitals in the tight-binding approximation (TB
LMTO) [8]. The experimental crystal lattice parame-
ters of α-Al2O3 and γ-Al2O3 [13, 14] were used.
According to Verwey’s data [14], γ-Al2O3 has a defect
structure of inverted spinel with space group Fm-3m
and lattice parameter a = 3.95 Å. The filling factors for
aluminum atoms occupying crystallographically non-
equivalent positions were 0.4665 and 0.0999. The unit
cell contains 1.333 formula units (Al2O3). Since the
simulation technique employed does not take into
account the filling factors and cannot operate with non-
integral numbers of atoms per unit cell, calculations for
γ-Al2O3 were performed for a model structure having
the γ-Al2O3 symmetry; atoms occupied the same posi-
tions as in γ-Al2O3, but the unit cell contained three alu-
minum atoms and four oxygen atoms (therefore, there
were 0.334 extra aluminum atoms per unit cell).
PHYSICS OF THE SOLID STATE      Vol. 46      No. 11      20
3. RESULTS AND DISCUSSION

It is well known that x-ray emission spectra of the
valence band are related to electron transitions between
the valence band and a core hole. Since the wave func-
tion of a core electron is strongly localized and the
angular momentum symmetry is fixed, the x-ray spec-
tra reflect the partial densities of states of the constitu-
ent atoms (due to the dipole selection rules). In our
case, we measured x-ray Al L2, 3 and O Kα emission
spectra, which reflected the densities of Al 3d3s and O
2p states in the valence band, respectively.

Figure 1 shows x-ray emission Al L2, 3 spectra of α-
Al2O3 (reference sample), of 17-nm nano-Al2O3, and of
iron ion–irradiated 17-nm nano-Al2O3. Two bands
located at 64 and 67.9 eV (denoted by A and B, respec-
tively) are clearly seen in the spectra. The A band
mainly reflects the contribution of Al s electrons to the
valence band, and the B band reflects the mixture of
aluminum s and d states [15]. On the whole, the shape
of the spectrum and energy positions of the main lines
in the Al L2, 3 spectrum of the reference sample are prac-
tically identical to those reported by ⁄imunek for α-
Al2O3 [15]. In Fig. 1, we can see that the main distinc-
tion between the spectra of bulk α-Al2O3 and 17-nm
nano-Al2O3 is the location of the A band at 64 eV; this
band has a much higher intensity in the spectrum of
17-nm nano-Al2O3 than in the reference spectrum. The
spectrum of 17-nm nano-Al2O3 irradiated by iron ions
shows a similar behavior of the A band; however, the
intensity of the A band is somewhat lower than in the
spectrum of nonirradiated 17-nm nano-Al2O3.

Since the A band reflects the “pure” contribution of
aluminum s states to the valence band, we can normal-
ize x-ray emission Al L2, 3 spectra of samples by the
spectral intensity of this band (Fig. 2) assuming that the
degree of hybridization of the d–s states changes as one
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Fig. 1. X-ray Al L2, 3 emission spectra (XES) from (1) bulk
α-Al2O3 (reference sample), (2) a 17-nm nanopowder of α-
Al2O3, and (3) a 17-nm α-Al2O3 nanopowder irradiated by
iron ions.
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goes from bulk α-Al2O3 to 17-nm nano-Al2O3. Here,
the intensity of the (d + s)-like band in the x-ray Al L2, 3
emission spectrum is maximum for the reference
α-Al2O3 sample, is medium for the irradiated sample,
and becomes minimum for the spectrum of 17-nm
nano-Al2O3. We did not reveal any significant changes
in the x-ray emission Kα spectra of oxygen for any
samples (Fig. 3). This means that there is no difference
in the 2p states of oxygen between the reference, origi-
nal nanocrystalline, and irradiated nanocrystalline
Al2O3 samples and the difference between the bulk (ref-
erence) and nanocrystalline aluminum oxide samples is
only in the partial densities of d–s states of the metal.

One of the most probable reasons for the described
behavior may be the formation of a different phase of
aluminum oxide having a similar chemical composition
in the nanocrystalline state. This phase is expected to be
extremely stable, since only slight changes in the Al
L2, 3 spectra of nanocrystalline samples are observed
even after irradiation. At present, many of the structural
modifications of Al2O3 are known: α, β, γ, δ, ρ, χ, η,
and θ. However, only the α and γ phases of Al2O3 are
considered independent, since in the absence of special
chemical additives all other modifications of aluminum
oxide are unstable and/or represent a mixture of phases
[3]. Therefore, we can assume that a change in the
intensity of the (d + s)-like band observed as we pass
from the bulk to nanocrystalline state indicates the for-
mation of the γ-Al2O3 phase. With this assumption, we
can interpret a small variation in the intensity of the B
band in the spectrum of the irradiated sample as the
beginning of the reverse transition from the γ phase to
α-Al2O3 (Fig. 2).

To check the above assumptions, we calculated the
partial densities of s and d states of aluminum atoms for
α and γ phases using the LDA formalism (Fig. 4). In
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Fig. 2. X-ray Al L2, 3 emission spectra (normalized to the A-
band intensity) from (1) bulk α-Al2O3 (reference sample),
(2) a 17-nm α-Al2O3 nanopowder, and (3) a 17-nm α-
Al2O3 nanopowder irradiated by iron ions.
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Fig. 4, we see that the partial densities of states for
γ-Al2O3 are shifted to the higher energy region of the
band of occupied states as compared to the density of
states of α-Al2O3. To perform calculations for the γ
phase, we used a model Al2O3 structure (see the
description of the calculations), which could be one of
the reasons for the energy shift mentioned above. The
top panel in Fig. 4 shows the (d + s) states for aluminum
atoms. The peak in the density of states closest to the
Fermi level in the α phase has a d character, whereas
the peak located at 5 eV is formed by Al s states. As one
goes from the α phase to the γ phase, the intensity of the
d peak of aluminum states decreases sharply. At the
same time, the intensity of the s peak does not change
substantially. As a result, the intensity of the d peak in
the density of (d + s) states for the γ phase is at least half
its value in the α phase (top panel in Fig. 4). Therefore,
we may conclude that the main difference between the
electronic structures of the α and γ phases of Al2O3 con-
sists in a different degree of hybridization of the s and
d states of aluminum atoms, due to the smaller contri-
bution of d states in the γ phase. This conclusion does
not contradict the above-mentioned experimental
results.

At the final stage, we performed an x-ray diffraction
analysis of the original (nonirradiated) and irradiated
samples. Figure 5 shows x-ray diffractograms of the
original and iron ion–irradiated nanocrystalline Al2O3.
From the diffractograms, it is seen that the original
nanocrystalline sample consists of a mixture of alumi-
num oxide and aluminum hydroxide Al(OH)3. The lat-
ter has bayerite and gibbsite structures (their main
reflections are marked with the symbol β in the bottom
panel in Fig. 5) and accounts for approximately 30% of
the sample composition. The oxide component consists
of a mixture of the γ and δ phases of Al2O3. X-ray dif-
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Fig. 3. X-ray O Kα emission spectra from (1) bulk α-Al2O3
(reference sample), (2) a 17-nm α-Al2O3 nanopowder, and
(3) a 17-nm Al2O3 nanopowder irradiated by iron ions.
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fractograms of the γ-phase defect spinel structure
(shown by symbol γ in Fig. 5) fully overlap the reflec-
tions from the tetragonal δ phase and can be separated
only by simulation methods. The ratio of these phases
is 1 to 1. The x-ray diffractogram of the irradiated sam-
ple (the upper panel in Fig. 5) differs from that for the
original nanocrystalline Al2O3 only in the absence of
the hydroxide lines; the remaining part of the diffracto-
gram is very similar to the diffractogram of the nonirra-
diated Al2O3, and the ratio of γ and δ phases remains the
same. Moreover, we should note that there are no traces
of the high-temperature θ and α phases of Al2O3 in the
diffractograms. The average grain size did not change
after irradiation of the sample and remained the same
(17 nm). Thus, the assumption that there is a transfor-
mation of the γ phase into the α phase in a nanocrystal-
line sample after irradiation is not confirmed by the x-
ray diffraction data. The small change in the intensity of
the B band mentioned above can be caused by the dis-
appearance of the bayerite phase.
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Fig. 4. Comparison of the partial densities of states for the
α and γ phases of Al2O3 calculated in the framework of the
LDA formalism.
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From the above discussion, it is clear that the transi-
tion from the bulk to nanocrystalline state for Al2O3 is
accompanied by the transformation of the α phase into
the γ and, possibly, δ phase with a partial addition of
bayerite. Irradiation by iron ions leads to the disappear-
ance of bayerite, so that, in a finite sample, only low-
temperature forms of Al2O3 are present. Thus, we may
assume that the x-ray emission spectrum of the irradi-
ated aluminum oxide is the spectrum of the “pure” γ
phase of Al2O3. The results of our x-ray diffraction
analysis agree well with the results of calculations in
the framework of the LDA formalism and with the x-
ray emission spectroscopy data.

4. CONCLUSIONS

We have studied the original nanocrystalline alumi-
num oxide Al2O3 and iron ion–irradiated Al2O3 using x-
ray emission spectroscopy and x-ray diffraction. We
have found that the transition from the bulk to nanoc-
rystalline state is accompanied by the appearance of γ-
Al2O3 and bayerite. Irradiation does not change the
grain size and aluminum atom valence but results in the
disappearance of the bayerite phase, so that there is a
pure γ phase of Al2O3 in an irradiated sample. The
results of our study agree well with the results of calcu-
lations of the electronic structure in the framework of
the LDA formalism.
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Fig. 5. X-ray diffractograms of (a) the original and (b) iron
ion–irradiated 17-nm Al2O3 nanopowder.
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Abstract—The electrical characteristics of the relaxed isotype n-Si1 − xGex/n-Si heterojunction are studied for the
case of a misfit-dislocation network formed in the vicinity of the heterointerface. The data obtained are used to
analyze the energy bands of the heterostructure. The band structure of the crystal near the interface is shown to be
formed by a charge at lattice defects. The potential-barrier parameters are estimated by analyzing the temperature
dependences of the J–U and C–U characteristics of the system. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION
The properties of relaxed silicon–germanium hetero-

structures containing a well-developed misfit-dislocation
network in the bulk have been discussed recently in the
literature. These heterostructures serve as base crystals
for creating field-effect transistors with a two-dimen-
sional silicon channel in a solid-solution layer, and they
are being extensively studied [1]. In most works dealing
with this problem, researchers studied the structural
characteristics of Si1 − xGex buffers; the mechanisms of
nucleation and multiplication of misfit dislocations,
which form a dislocation network at the heterointerface;
and the depth distribution of the dislocation density [2].
Recent practical interest in relaxed heterostructures has
promoted the development of contactless nondestructive
methods for controlling dislocations in layers by using
mainly photo- and cathodoluminescence [3]. The light-
emitting luminescence properties of plastically
deformed Si/Si1 − xGex heterostructures [4] came to the
attention of researchers due to the characteristic D1–D4
dislocation lines that are present in their photolumines-
cence spectra and whose intensity increases with dislo-
cation density.

Among these spectral lines, the D1 line (0.804 eV)
is of special interest (in particular, for optoelectronics),
since it can be used to apply some IV–IV compounds in
the optical spectral region (along with rare-earth ele-
ments and germanium nanoclusters in Si). However,
despite the fact that dislocation lines in the photolumi-
1063-7834/04/4611- $26.00 © 22139
nescence spectra of Si/Si1 − xGex heterostructures have
been extensively studied in recent years [5], the mech-
anism of dislocation-induced photoluminescence and
the nature of each band in the spectra are still unknown.
Moreover, the emissive power of all light-emitting sili-
con structures is still rather weak, which necessitates
further detailed analysis of both the characteristics of
these systems and the mechanisms of radiative recom-
bination in them.

Many researchers are now discussing the potential
of relaxed Si/Si1 − xGex heterostructures as possible
light-emitting sources in silicon optoelectronics. It is
difficult to solve the problem of creating effective emit-
ters based on dislocation Si/Si1 − xGex structures
because it is difficult to prepare high-quality diode
matrices. For a structurally imperfect heterojunction,
the matrices must have good injection properties and a
low efficiency of nonradiative transitions at the hetero-
interface. The purpose of this work is to study the elec-
trical characteristics of the isotype n-Si1 − xGex/n-
Si(100) heterojunction under the conditions of a high
efficiency of electron–hole recombination through
defect states in the vicinity of the heterointerface.
Energy band diagrams of the relaxed heterojunction are
also of interest; its barrier properties are most likely
controlled by charge states in the region of a three-
dimensional misfit-dislocation network rather than by a
band discontinuity at the heterointerface, as is often
suggested [6].
004 MAIK “Nauka/Interperiodica”
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2. EXPERIMENTAL

Si/Si1 − xGex heteroepitaxial structures were grown
using a modified method of molecular-beam epitaxy
with a sublimating silicon source and gaseous germa-
nium hydride source. This epitaxial method is
described in detail in [7, 8]. Some properties of grown

0.2 µm Si

SiGe

Fig. 1. Appearance of the Si1 − xGex/Si heterointerface with
a regular dislocation network.
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Fig. 2. Photoluminescence spectra recorded at 5 K from
Si1 − xGex/Si structures for various values of the solid-solu-
tion layer parameters: (a) dSiGe = 0.6 µm and (1) x = 0.11,
(2) 0.095, and (3) 0.06; (b) x = 0.09 and (1) dSiGe = 1.2,
(2) 0.9, and (3) 0.12 µm.
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solid-solution layers are given in [9, 10]. The structures
grown were relaxed; i.e., their thickness exceeded a
critical thickness. The layers grown were 0.1–1µm
thick, and the germanium content in them was lower
than 20 at. %, which provided the conditions for plas-
tic-deformation localization in the vicinity of the het-
erointerface. Near the heterointerface, a dense three-
dimensional dislocation network was formed with a
surface density of extended defects of 105–109 cm–2.
The density of threading dislocations in the solid-solu-
tion layer was estimated metallographically to be 104–
105 cm–2. The mechanisms of misfit-dislocation nucle-
ation and multiplication at the Si1 − xGex/Si heterointer-
face were discussed in [2, 10]. A characteristic trans-
mission electron microscopy image of the Si1 − xGex/Si
heterointerface with a regular dislocation network is
shown in Fig. 1.

3. RESULTS AND DISCUSSION

The photoluminescence spectra of the relaxed het-
erostructures contain traditional lines induced by the
radiation of free excitons in both the silicon and
Si1 − xGex layers (the exciton lines from the latter layers
overlap with the TO-phonon replicas of radiative
recombination in silicon and, hence, are often weakly
pronounced) and additional, rather strong D1–D4 lines
(Fig. 2), which are absent in the unrelaxed structures
(Fig. 2b, curve 3). The spectra were recorded at 5 K
with a standard grating spectrometer with argon-laser
excitation. A cooled germanium diode was used as a
detector. In the heterostructures subjected to large plas-
tic deformation (h = xdSiGe > 0.1), the intensity of the
D1–D4 lines exceeds the intensity of the TO-phonon
replica of the radiative exciton recombination line from
the silicon. Moreover, in some cases, the efficiency of
the D1 and D2 lines, which are of most interest in opto-
electronics, is fairly close to the radiation efficiency of
erbium atomic complexes in silicon up to liquid-nitro-
gen temperature [4]. The nature of the spectral lines in
question is related to the presence of dislocations in the
material; however, the mechanisms and details of the
radiative recombination at the frequencies of these lines
are not completely understood. In particular, the nature
of radiative-recombination centers is still unknown. It
is most often related to localized states in dislocations
having a certain configuration (D1, D2 lines) [6].

Since the nature of radiative recombination centers
in dislocation structures is not fully understood, addi-
tional studies of localized states at heterointerfaces
using electrophysical techniques are important. This
problem becomes even more important in studying the
electroluminescence characteristics in relaxed hetero-
structures and in using the effect of electrolumines-
cence to develop silicon-based light-emitting devices.

In this work, we try to reveal the character of elec-
trically active charge centers located in the vicinity of
the dislocation network and their effect on the shape of
energy band diagrams in the semiconducting hetero-
YSICS OF THE SOLID STATE      Vol. 46      No. 11      2004
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structure. In turn, the character of the energy bands
determines the passage of current through the hetero-
structure and its injection properties. Preliminary Hall
effect studies of the electrophysical properties of
charge carriers in the relaxed structure indicate the
appearance of an additional shunt layer (which often
has purely p-type conduction) between the solid-solu-
tion layers and the silicon doped with donor impurities.
The conclusion that a charged region exists in the vicin-
ity of the dislocation network is also supported by CU
profiling of structures during electrolytic etching of
samples and by studying the structures by cathodolumi-
nescence at different energies of exciting electron
beams [3].

To measure the electrical characteristics of the
relaxed heterojunction, we used a structure (no. 347)
grown at 700°C by the method described above. The het-
erostructure contained an epitaxial Si1 − xGex (x ≈ 0.11)
layer of thickness dSiGe ≈ 0.20–0.25 µm grown through a
buffer Si sublayer of thickness dSi ≈ 0.5–0.6 µm on a
Si(100) wafer. According to the CV profiling data, the
level of doping of the Si and Si1 − xGex layers was close
to that [N2 ≈ (2–3) × 1016 cm–3] of the sublimating sili-
con source (KÉM-0.1) in the device reactor. The Si
wafer also had n- type conductivity (phosphorus con-

centration  = 1 × 1019 cm–3). The isotype n–n+ junc-

tion height in silicon, ∆ , can be estimated from the
difference in the Fermi levels at the interface between
the Si layer and the wafer and is found to be

 (1)

Figure 3 schematically shows the energy bands of the
isotype n-Si1 – xGex /n-Si/n+-Si heterojunction at T =
300 K; its electrical characteristics will be described
below.

The energy band discontinuity ∆  at the
Si1 − xGex/Si heterointerface, which is caused by the dif-
ference in the work functions, can be estimated from
the difference between the band gaps in the silicon and
solid-solution layer. This difference can easily be deter-
mined from, for example, the photoconductivity spec-
trum of this system. For the layers with x = 0.1, the opti-
cal spectra measured at room temperature give Eg(Si)–
Eg(Si0.9Ge0.1) ≈ 60 meV. According to [11, 12], this value

corresponds to band discontinuities ∆  ≤ ±10 meV

for the conduction band and ∆  ≈ 50–70 meV for the
valence band, depending on the elastic stresses at the
heterointerface. However, experiments show that the
barrier related to the conduction-band discontinuity at
the heterointerface is substantially lower than the actual
barrier of the isotype heterojunction.
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The true height of the potential barrier that is formed
by charge centers located on misfit dislocations in the
vicinity of the heterojunction can be determined by
studying the diode characteristics of the heterostructure.
To study the potential barrier of the heterojunction,
ohmic Al contacts having an area S = 0.8 × 0.8 mm2 were
applied onto the Si1 − xGex layer from the outer and oppo-
site surfaces of the structure treated in an H2SO4 + H2O2
etchant by using a special technology [13]. The forward
and reverse branches of the current–voltage (J–U) char-
acteristic measured on one of the mesa structures
(no. 1E5) at various temperatures are shown in Fig. 4a
(see also [14]).

Our attempt to describe the experimental character-
istics of the isotype heterojunction using the simple tra-
ditional model of a single or double Schottky barrier
(the Kanerva–Opdorp model [6, 15]) failed to yield sat-
isfactory agreement between the calculated and experi-
mental curves [16]. A problem is caused by the pres-
ence of leakage currents along threading dislocations
that shunt the heterojunction. By taking this fact into
account, we can adequately describe both the forward
and reverse branches of the J–U characteristic using a
barrier model with one type of charge carrier. For posi-
tive voltages at the upper contact, the dependence of the
current on the applied voltage can be described to a
high accuracy in terms of the thermal field emission
model, according to which

 (2)

or

 (3)

Here, R is the ballast resistance of the structure, which
consists of the resistance of the ohmic contacts and the
wafer resistance and is placed in series with the hetero-

J J0 e U UR–( )/nkT[ ]exp 1–{ } , J UR/R,= =

U JR nkT /e( ) J /J0 1+( ).ln+=

n-Si0.9Ge0.1 n-Si n+-Si

Ec

EF

Eg = 1.0 eV

Ev

eϕMD = 0.13 eV

e∆ϕc = 0.15 eV

Eg = 1.06 eV

Dislocation network

Fig. 3. Energy bands of the relaxed isotype
n-Si1 − xGex/n-Si/n+-Si heterojunction.
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junction; UR is the voltage drop across the ballast resis-
tor; and n is the imperfection coefficient of the potential
barrier related to recombination currents in the hetero-
junction.

The reverse current in the structure (at U < 0) can be
fairly accurately described by the relation

 (4)

where the second term is the stray current density that
shunts the heterojunction along dislocations growing
from the wafer into the layer. The surface density of
such dislocations in both the wafer and the upper epi-
taxial layer was estimated metallographically to be 2 ×
104–2 × 105 cm–2.

For each experimental curve, we can determine the
parameters R, J0, and n for the forward current and the
parameters σ and m for the reverse current by using the

J J0 eU/nkT( )exp 1–[ ] σ U
m

,–=
PH
method of finite differences to fit theoretical depen-
dences (3) and (4) to the corresponding experimental
curves. The values of these parameters for mesa struc-
ture 1E5 in the temperature range 300–160 K are given
in Table 1. Figures 4c and 4d show the forward and
reverse branches of the J–U characteristic, respectively,
measured on mesa structure 1E5 (Fig. 4a) at T = 300 K
and the corresponding curves calculated by Eqs. (3) and
(4) using the parameters given in Table 1.

An analysis of the J–U characteristic of the sample
indicates that the values of each parameter vary from
mesa to mesa in a certain range. For example, for the J–
U characteristic measured at room temperature, J0  var-
ies in the range 1–15 mA, n varies in the range 1.0–1.5
(Table 2), R = 22–25 Ω for a series of mesa structures
with j = 0, and R = 3.4–3.7 Ω for mesa structures with
j ≠ 0; m = 0.5–0.9, and σ = 0.0004–0.0011. The scatter
of the diode parameters across the area of the structure
YSICS OF THE SOLID STATE      Vol. 46      No. 11      2004
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is caused by both different contact areas and natural
factors related to different densities of threading dislo-
cations and misfit dislocations across the sample area,
which has been confirmed by numerous studies using,
e.g., photoluminescence and metallography.

Given J0, we can estimate the potential-barrier
height at the heterojunction. In particular, the applica-
tion of the simplest formula for an emission model
gives

 (5)

Here, we assumed that mSi ≈ mSiGe = m = 0.26m0, where
m is the effective conduction-electron mass. This rela-
tion, however, results in a strongly overestimated value
(about 0.4 eV), since it does not take into account many
factors that affect the heterojunction; these factors are
taken into consideration in more complex models for a
Schottky barrier that make allowance for the diffusion
and generation–recombination components of the cur-
rent density across the heterojunction.

A more accurate value for the contact potential dif-
ference eϕb can be obtained by analyzing the tempera-
ture dependence of J0. The characteristic J0(T) depen-
dence for mesa structure 1D9 is shown in Fig. 5a, where
points I correspond to the values of J0  obtained from
the forward branch of the J–U characteristic, points II
correspond to reverse currents measured at U = –1 V, and
points III correspond to currents calculated by Eq. (5) at
A* = 0.0225 and ϕb = 0.274 eV.

A comparison of the curves in Fig. 5a shows that the
calculated curves agree well with the experimental data
at T > 200 K. In this range, the generation–recombina-
tion currents that specify the reverse current J0  in the
heterojunction are about an order of magnitude higher
than the currents flowing along dislocations (which
dominate at temperatures below 200 K). At T < 200 K,
an increase in the bias voltage results not only in a lev-
eling off of the reverse currents in the heterojunction (as
shown in Fig. 4a) but also in an increase in the current
J0 because of a decrease in the barrier height, most
likely, due to the freezing out of charge carriers at dis-
locations.

The Richardson constant A* and the contact poten-
tial difference eϕb for mesa structure 1D9 and some
others are listed in Table 3. A nonuniform dislocation-
density distribution over the sample area is seen to
cause a significant scatter of the potential-barrier
heights at the heterointerface.

Let us estimate the position of the conduction-band
bottom in the silicon sublayer with a dislocation net-
work using the relation

 (6)

J0 A*T
2

eϕb/nkT–( )exp=

=  4πme kT( )2
h

3–
S eϕb/nkT–( ).exp

N
+
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The thickness of the buffer silicon layer is usually com-
parable to the thickness of the layer disturbed in the
region of the dislocation network and to the electron
shielding length. Therefore, the total barrier height ϕb is
the sum of the barrier heights at the n-Si1 − xGex/n-Si
heterojunction and the n–n+ junction in silicon, i.e.,
ϕb = ϕMD + ∆ϕc. The position of the conduction-band
bottom in the barrier layer with respect to the Fermi
level corresponds to ϕb and is given in Table 3 for vari-
ous mesa structures. The conduction-band bottom rises
because of electrons captured by traps localized in the
region of plastic deformation and, therefore, deter-
mines the values of NMD(Si) (the electron concentration
near the dislocation network) listed in Table 3. The data
from Table 3 indicate that the concentration of traps at
dislocations in the heterojunction can vary within one
or two orders of magnitude over the area of the struc-
ture (or from mesa to mesa).

Table 1.  Fitting parameters obtained from the J–U charac-
teristics of the mesa 1E5–based structure depending on the
measurement temperature

T, K R, Ω J0, mA n m σ × 106

300 3.03 1.698 1.366 0.769 640

293 3.73 1.326 1.202 0.571 898

280 3.89 0.616 1.101 0.542 564

260 3.89 0.223 1.101 0.542 265

240 3.89 0.0639 1.101 0.542 112

220 3.89 0.0158 1.101 0.542 43.9

200 3.89 3.78 × 10–3 1.101 0.542 26.8

180 3.89 9.45 × 10–4 1.101 0.542 18.1

160 3.89 1.45 × 10–5 1.101 0.542 14.2

Table 2.  Saturation current and the imperfection coefficient
at T = 293 K for various mesa structures

Para-
meter

Mesa structure

A0 B0 C0 D0 D9 E4 E5

J0, mA 1.43 1.48 0.87 0.98 13.9 1.63 1.33

n 1.402 1.404 1.064 1.0 1.402 1.358 1.202

Table 3.  Richardson constant, contact potential difference,
and trap density in the dislocation network region

Mesa structure A* eϕb, eV NMD, cm–3

1D9 0.0225 0.274 2.6 × 1014

1E4 0.00682 0.215 2.5 × 1015

1E5 0.00573 0.180 1.0 × 1016

2C3 0.01663 0.85 3.0 × 1016
04
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When analyzing the measured J–U characteristics,
we assumed the nature of the contacts applied onto the
outer side of the wafer according to a special technol-
ogy to be ohmic. However, the possible appearance of
a Schottky barrier at the Al/Si1 − xGex interface must not
be ruled out. Measurements performed on this structure
with an Al Schottky contact applied onto the upper
layer of the Si1 − xGex solid solution showed a substan-
tially different J–U characteristic of the system. The
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Fig. 5. Temperature dependences of the current J0  in the J–
U characteristics for (a) 1D3 and (b) 2E5 mesa structures
with ohmic Al and Schottky contacts, respectively. (I) Val-
ues of J0  obtained from the forward branch of the J–U char-
acteristic; (II) reverse currents measured at (a) U = –1 and
(b) –2 V; and (III) values of J0  calculated by Eq. (5) at
(a) A* = 0.0225, eϕb = 0.274 eV, and n = 1.4 and (b) A* =
0.0116, eϕb = 0.85 eV, and n = 2.
PH
typical J–U characteristic for structure 347 with a
Schottky contact is shown in Fig. 4b (see also [14]).
The appearance of a barrier at the metal–semiconductor
interface decreases reverse currents by several orders of
magnitude and, simultaneously, increases the breakdown
voltage for the structure. An analysis of the temperature
dependences of the reverse current and J0 (Fig. 5b)
reveals that the reverse current is also determined by
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Fig. 6. (a) C–U characteristic at T = 300 K for (1) mesa struc-
ture 2C4 with a Schottky contact and mesa structures (2) 1D9
and (3) 1E4 with an ohmic Al contact. The solid lines are cal-
culated by Eq. (7) using the parameters C0/C(0), C1/C(0), s,
and n given in Table 4. (b) Temperature dependences of the
J–U characteristic coefficients (1) C0/C(0), (2) C1/C(0),
(3) s, and (4) n plotted for mesa structures 1D9 (solid lines)
and 1E5 (dashed lines) and for mesa structure 2C4: (I)
C0/C(0), (II) C1/C(0), (III) s/10, and (IV) n.
Table 4.  Fitting parameters of the C–U characteristic for several mesa structures measured at T = 300 K

Mesa structure C0/C(U = 0) C1/C(U = 0) s n

1D9 0.02233645 0.9676168 2.5934766 1.602602

1E4 0.00746530 0.99260988 1.6705343 1.606153

1E5 0.0171715 0.982764 1.9959967 1.6304558

2C4 0.2763548 0.69646187 7.34365559 1.8935072
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currents flowing along dislocations [J(U < –1) > J0] that
pass through the structure and reach the outer surface.

The C–U characteristic of the structure has a typical
form and is demonstrated in Fig. 6a for several mesa
structures. The experimental dependences are
described with high accuracy by the relation

 (7)

The calculated C(U) dependences are shown by solid
lines in Fig. 6a. The corresponding values of the param-
eters C0, C1, s, and n are given in Table 4. It should be
noted that we did not detect any features in the C(U)
dependences related to deep centers near the disloca-
tion network for this structure at any temperatures. The
temperature dependences of the coefficients C0, C1, s,
and n are shown in Fig. 6b.

With a reverse bias, the decrease in the system
capacitance is caused by the extension of the space-
charge region (SCR) in the vicinity of the heterojunc-
tion. However, the voltage dependence of the capaci-
tance for the heterostructure cannot be described by
simple dependences of the type C(U) ~ C1/(Ub – U)m

with m = 0.3–0.5 that are typical of a simple barrier
model. This is likely due to a more complex character
of charging of centers located near the dislocation net-
work and to the presence of currents that flow along dis-
locations and shunt this capacitance. As was shown
above in analyzing the J–U characteristic, the voltage
dependence of these currents is more complex than the
Ohm law. An analysis of the values of C0 at U = 0 and
in the range of saturation of reverse currents allows cer-
tain conclusions to be drawn about the SCR width at a
zero and a high negative bias voltage applied to the
structure. For estimation, we use the simple relation

 (8)

where S is the contact area of the structure and W(U) is
the width of the SCR, which determines the measured
value of the structure capacitance at a given voltage
across the diode. In the case of ohmic contacts (mesa
structure 1D9), we obtain the following values for
W(U) at T = 300 K: W(0) = 0.067 µm and W(–4 V) =
0.85 µm. At a zero bias voltage, the capacitance is
determined by the region with a high resistance in the
vicinity of the dislocation network (Fig. 3) and W(0)
gives the values of the actual width of a disturbed layer
near the heterojunction. At a high negative bias voltage,
the depletion layer expands over the whole width of the
epitaxial structure, W(–4 V) = dSiGe + dSi ≈ 0.8 µm. In
the structure where the upper contact is a Schottky bar-
rier (mesa structure 2C4), W(0) = 0.27 µm; that is, the
SCR associated with the Schottky contact covers the
entire solid-solution layer and the adjacent portion of
the epitaxial Si layer with a dislocation network. At U =
–4 V, we have W(–4 V) = 0.9 µm, which corresponds to

C U( ) C0 C1/ 1 sU
n

+( ).+=

C U( ) Sε/W 0.672 10
14–

/W U( ),×= =
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the situation considered above, where the SCR covers
the entire epitaxial structure.
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Abstract—The electrical properties of (Co45Fe45Zr10)x(Al2O3)1 − x  granular nanocomposites have been stud-
ied. The concentration dependences of electrical resistivity are S-shaped (in accordance with the percolation
theory of conduction) with a threshold at a metallic component concentration of ~41 at. %. An analysis of the
temperature behavior carried out in the range 300–973 K revealed that structural relaxation and crystallization
of the amorphous phase are accompanied by a decrease in the electrical resistivity of the composites above the
percolation threshold and by its increase below the percolation threshold. For metallic phase concentrations
x < 41 at. %, variable range hopping conduction over localized states near the Fermi level was found to be dom-
inant at low temperatures (77–180 K). A further increase in temperature brings about a crossover of the con-
duction mechanism from Mott’s law ln(σ) ∝  (1/T)1/4 to ln(σ) ∝  (1/T)1/2. A model of inelastic resonance tunnel-
ing over a chain of localized states of the dielectric matrix was used to find the average number of localized
states involved in the charge transport between metallic grains. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Extensive experimental effort is being devoted to
the study of composite materials with metallic nanopar-
ticles embedded in a dielectric matrix. The interest in
these materials stems both from their application poten-
tial in electronics and from the possibilities they offer in
addressing basic problems in solid-state physics. In
particular, granular composites made up of ferromag-
netic nanoparticles in a dielectric matrix possess unique
physical properties, including giant magnetoresistance
[1–3], a considerable magnetorefractive effect [4],
good magnetooptical characteristics [5], high absorp-
tivity of electromagnetic radiation in the RF and micro-
wave ranges [6], a broad range of electrical resistivity
variation, etc. [7–10].

On the scientific side, the interest in nanocomposites
is spurred by the possibility of studying various quan-
tum mechanisms of electrical conductivity, magnetiza-
tion, and other properties over a broad range of compo-
sitions, both above and below the percolation threshold.
For instance, above the percolation threshold, the
metallic grains in a composite form a network through
which metallic conduction sets in, with its magnitude
being determined by the fractal structure of the con-
ducting metallic-phase channels. Grains present in
composites with a low metallic phase concentration are
electrically insulated from one another in the matrix;
therefore, the electrical conductivity in such compos-
ites is determined primarily by the dielectric compo-
nent, while the question of the temperature behavior
remains open in this case. Experimentally, the temper-
ature dependence of electrical conductivity in this con-
1063-7834/04/4611- $26.00 © 22146
centration range at low temperatures obeys, in most
cases, the “one-half power law” [11]

 (1)

which can be related to various mechanisms. In the
model of activated tunneling (model of Sheng–Abeles),
charge transport is assumed to occur by electron tunnel-
ing directly from one grain to another through dielectric
barriers [12, 13] and Eq. (1) is treated as a manifesta-
tion of a Coulomb gap in the electron density of states
on the grains [14]. The model of thermally activated
hopping conduction assumes the one-half power law to
be a consequence of the broad scatter in grain size, a
feature characteristic of real composites [15]. In an
attempt to account for the experimental relations, Lut-
sev invokes a theoretical model of inelastic tunneling
[16, 17] by relating the one-half power law to resonance
tunneling over a chain of localized states in an amor-
phous dielectric layer sandwiched between grains [18,
19]. In this conduction mechanism, one should expect
the onset of variable range hopping conduction at lower
temperatures [20]; it has indeed been observed in some
composites [21, 22].

Our goal was to study the conduction mechanisms
in (Co45Fe45Zr10)x(Al2O3)1 − x amorphous nanocompos-
ites over a broad range of metallic phase concentrations
and temperatures.

2. SAMPLES AND EXPERIMENTAL 
TECHNIQUES

Granular amorphous nanoclusters of a Fe45Co45Zr10
alloy distributed randomly in an Al2O3 amorphous

σ T
1/2–

–( ),exp∝
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dielectric matrix were obtained by ion beam sputtering
[23]. The choice of metallic grains of the complex com-
position Fe45Co45Zr10 was motivated by the need to sta-
bilize the amorphous structure of the ferromagnet
(which is stable at room temperature). To favor the
amorphous state, we added 10 at. % zirconium to ferro-
magnetic iron and cobalt atoms. In addition, the amor-
phous alloy Fe45Co45Zr10 has a comparatively high sat-
uration magnetostriction (λs ≈ 28 × 10–6), which is an
important factor for studies of the magnetoresistance
and magnetooptical properties of composites. The
material of the matrix (Al2O3) was chosen because it is
thermally stable over a broad temperature range.

Metal–dielectric nanocomposites were deposited
from a composite target, which was a cast base of a metal
alloy of appropriate composition 270 × 80 × 20 mm in
size with twelve aluminum oxide plates ~2 mm thick
and ~9 mm wide fixed to its surface. The distance
between the plates varied smoothly from 4 mm at one
end of the target to 44 mm at the other. This composite
target permitted fabrication, in one operational cycle, of
composites over a broad range of concentrations of the
metallic and dielectric components, depending on the
position of the component relative to the substrates in
the deposition chamber. The substrates were five glass-
ceramic plates measuring 60 × 48 mm.

Using x-ray microprobe analysis, the composition
of the composites was determined from five measure-
ments made on different parts of the substrates, with
subsequent polynomial extrapolation of the composi-
tion along the substrate length. The samples obtained
by deposition were films 5- to 10-µm thick. The film
thickness was measured with a MII-4 interferometer.
The temperature dependence of electrical resistivity
was studied using 2-mm-wide, 9-mm-long samples
deposited on a glass-ceramic substrate.

Electrical resistivity measurements were carried out
by the two-probe potentiometric method. A cryostat
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10–4

10–5

10–6
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ρ,
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Fig. 1. Electrical resistivity of granular
(Co45Fe45Zr10)x(Al2O3)1 − x  composites plotted vs. metal-
lic phase concentration x (1) in the original state and (2)
after annealing at T = 400°C for 30 min.
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was employed to study the properties of the composites
in the temperature interval 77–300 K. The absolute
error of temperature measurement was ±1 K, and the
relative error of electrical resistivity measurements was
0.5%.

3. EXPERIMENTAL RESULTS AND DISCUSSION

Figure 1 plots the dependence of electrical resistiv-
ity of (Co45Fe45Zr10)x(Al2O3)1 − x composites on the con-
centration of the metallic component at room tempera-
ture in the original state and after thermal treatment at
T = 400°C for 30 min. When in the original state, an
increase in x from 28 to 65 at. % causes the electrical
conductivity of the systems under study to vary by
more than three orders of magnitude (curve 1). After
treatment (curve 2), the behavior of the electrical con-
ductivity above and below x ≈ 41 at. % follows different
patterns; i.e., one can isolate a dielectric and a metallic
region, a feature characteristic of percolation systems.
Note that the thermal treatment brings about an increase
in electrical resistivity for compositions below the perco-
lation threshold and a decrease for compositions above
the percolation threshold. The electrical resistivity of
composites close to the percolation threshold is ρ ~ 3 ×
10–4 Ω m and is determined by the fractal structure of
metal-grain conducting channels. The reciprocal value of
this electrical resistivity, σmin ~ 33.3 Ω–1 cm–1, may be
considered the minimum metallic conductivity at the
metal–insulator transition (the Anderson transition) for
this system.

To study thermal stability of the amorphous state of
the nanocomposites, temperature dependences of the
electrical resistivity were measured (Fig. 2). In one group
of composites (with the metallic phase content below the
percolation threshold), the electrical resistivity varies
only slightly over the range from room temperature to
750 K, while at higher temperatures it grows noticeably
up to T ≈ 923 K, with a subsequent small falloff. In the
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Fig. 2. Temperature dependences of the electrical resistivity
of granular (Co45Fe45Zr10)x(Al2O3)1 − x  composites mea-
sured at different metallic phase concentrations x: (1) 31.7,
(2) 34, (3) 36.3, (4) 38.7, (5) 40.8, and (6) 43.7 at. %.
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crystalline state, such composites also have a negative
temperature coefficient of electrical resistivity.

In another group of composites, whose metal con-
tent is in excess of 41 at. %, the electrical resistivity
decreases slightly throughout the temperature range
covered, with a sharper falloff in the region of the crys-
tallization temperatures. Charge transport in this group
occurs over the amorphous metallic phase forming a
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(b)
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Fig. 3. Temperature dependences of electrical resistivity of
(Co45Fe45Zr10)x(Al2O3)1 − x  composites plotted in the

coordinates (a) ln(σ/σ0) vs. (1/T)1/2 and (b) ln(σ/σ0) vs.

(1/T)1/4 in the temperature regions (a) 180–290 K and
(b) 80–180 K for different metallic phase concentrations x:
(1) 31.7, (2) 34, (3) 36.3, (4) 37.3, and (5) 38.7 at. %.

Parameters of the (Co45Fe45Zr10)x(Al2O3)1 – x composites
derived from temperature dependences of electrical con-
ductivity

x, at. % B, K
(see Eq. (2))

g(EF),
eV–1 cm–3

R, nm
(T = 100 K)

31.7 14.654 8.2 × 1020 1.4

34 12.24 1.7 × 1021 1.16

36.3 9.034 5.7 × 1021 0.85

37.3 6.454 2.2 × 1022 0.61
PH
continuous network of inclusions in the dielectric
matrix. The electrical resistivity of the composite is
governed in this case by the concentration and structure
of the metallic phase, as well as by the morphology of
the composite as a whole. An increase in temperature
gives rise to a decrease in the electrical resistivity of
such composites as a result of structural relaxation and
subsequent crystallization of the disordered structure, a
feature characteristic of amorphous metal alloys.

In an attempt to establish the mechanisms of electri-
cal conductivity in the (Co45Fe45Zr10)x(Al2O3)1 − x com-
posites below the percolation threshold, a study of the
temperature dependences of electrical resistivity was
made in the temperature interval 78–300 K and the
results were plotted as ln(σ/σ0) vs. (1/T)1/4and ln(σ/σ0)
vs. (1/T)1/2 graphs, where σ0 is the room-temperature
electrical conductivity. Our low-temperature studies
showed that both the ln(σ/σ0) vs. (1/T)1/4 and ln(σ/σ0)
vs. (1/T)1/2 plots of all the compositions studied exhibit
a pronounced break at a temperature of 180 ± 10 K,
which indicates a change in the mechanism of electrical
conduction. It was established that, in the low-temper-
ature region, the electrical conductivity obeys the one-
fourth power law and, in the range 180–300 K, the one-
half power law, as shown in Fig. 3.

The fact that Mott’s law holds in the range 80–180 K
implies that charge transport in the composites under
study is dominated by variable-range electron hop-
ping over localized states in a narrow energy band
near the Fermi level, with the conductivity taking on
the form [20]

 (2)

where

 (3)

e is the electronic charge, R is the hopping range, νph is
the spectral factor of the phonons involved in interac-
tion, T is the absolute temperature, g(EF) is the density
of states at the Fermi level, a is the electron wave-func-
tion localization length, and  k is the Boltzmann con-
stant.

Figure 3b was used to determine the values of the
quantities B for four compositions of the composites,
which were found to vary from 6.454 to 14.654 K (see
table). Knowing B and assuming that a ≈ 0.8 nm for the
localization length, we obtain values for the density of
states at the Fermi level g(EF) ranging from ~ 8.2 × 1020

to ~2.2 × 1022 eV–1 cm–3 for different compositions of
the composites. The estimated densities of states are
very high because localized states can derive not only
from structural defects of the dielectric matrix but also
from the matrix–grain boundaries. Note that, as the
concentration of the metallic phase increases and
approaches the percolation threshold, the density of
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states approaches the values characteristic of amor-
phous metal alloys. In particular, the Fermi level in
amorphous alloys of transition metals with zirconium
may fall at the maximum in the valence band density of
states (primarily of the d states) and the density of states
may amount to a few states/eV atom [24]. As the con-
centration of the dielectric phase grows, the density of
states at the Fermi level is observed to decrease and to
approach the values typical of amorphous semiconduc-
tors prepared by sputtering in the gas phase [25].

Using the expression [20]

 (4)

we estimated the carrier hopping range at a temperature
of ~100 K (see table).

The average hopping range is about 1 nm and
decreases with increasing metallic phase concentration.
This trend correlates with the decrease in the grain sep-
aration.

The presence of localized states in the dielectric
matrix should also affect the mechanism of conduction
at higher temperatures where the lnσ ∝  (1/T)1/2 law
holds and where the phonon energy becomes important
in the charge transport. Therefore, the temperature
dependence of electrical conductivity in this tempera-
ture interval was described in terms of the model of
inelastic resonance tunneling [16, 17] assuming the
transport to occur over a finite number of channels with
an average number of localized states 〈n〉; the number
of these states was determined by the technique elabo-
rated in [18, 19]. According to this model, the tempera-
ture dependence of conductivity in a channel contain-
ing n localized states is described by the power law

 (5)

where a is the radius of a localized state, l is the aver-
age separation between grains, γn = n – 2/(n + 1), βn =
2n/(n + 1), P is a coefficient, Λ is a deformation poten-
tial constant, d is the density of the matrix material, c is
the velocity of sound, g is the density of localized
states, and E is the energy depth of a localized state in
the barrier region. The average electrical conductivity
between grains can be given by the sum of the conduc-
tivities over several channels:

 (6)

The total conductivity σ of a granular structure below
the percolation threshold is determined by the tunnel-
ing conductivity between grains σ(gr) or (if the grains
form finite conducting clusters) by the conductivity of
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the clusters and that between the clusters. Because the
cluster conductivity is much higher than the tunneling
conductivity, one can assume, as a first approximation,
that the main contribution to the total σ of a granular
structure in Eq. (6) in the temperature interval [Tn,
Tn + 1] is due to one term, σn. This will result in a power-
law dependence of σ on temperature determined by
σ(gr) with n = 〈n〉  (the structure-averaged number of
localized states in tunneling channels between grains),
and the temperature dependence of the electrical con-
ductivity will be described by the relation

 (7)

By fitting the experimental σ(T) curves by power-law
relations with an exponent γ and using Eq. (1), it
became possible to determine the average number of
localized states 〈n〉  between the grains involved in elec-
tron transport over a granular structure at a given tem-
perature as [18, 19]

 (8)

Taking into account the power law in Eq. (5), the exper-
imental σ(T) dependences were plotted in ln(σ0/σ) ver-
sus ln(T0/T) coordinates with T0 = 300 K (Fig. 4). An
analysis of the experimental relations revealed that
these data can be fitted to a power law within a fairly
broad temperature interval (where the lnσ ∝  (1/T)1/2

law holds). In this way, one could determine the expo-
nent γ of the temperature dependences of conductivity
and calculate the average number of localized states 〈n〉
in the tunneling channels between isolated conducting
grain clusters from Eq. (8).

Calculations showed that the average number of
localized states between grains decreases practically
linearly as the metal fraction in the composite is
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Fig. 4. Relative temperature dependences of the conductiv-
ity of (Co45Fe45Zr10)x(Al2O3)1 − x  samples in original state
plotted for different concentrations of the metallic phase x:
(1) 31.7, (2) 34, (3) 36.3, (4) 37.3, and (5) 38.7 at. %.
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increased (Fig. 5). At high concentrations of the dielec-
tric component in composites with an Al2O3 matrix, the
values of 〈n〉  are almost the same as those for SiO2-
matrix composites [26]. For the conduction mechanism
under consideration, the temperature dependence satis-
fying the one-half power law holds for T above a tem-
perature T* given by the relation [19]

 (9)

Assuming T* ≈ 180 K (i.e., the temperature at which
the mechanism of conduction crosses over from the
lnσ ∝  (1/T)1/4 to lnσ ∝  (1/T)1/2 relation) and accepting
a ≈ 0.8 nm and l ≈ 2 nm, we estimated the density of
localized states as g ≈ 1.3 × 1022 eV–1 cm–3, which coin-
cides, in order of magnitude, with the data obtained
using Eq. (2).
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Fig. 5. Average number of localized states plotted vs. con-
centration of the metallic component for
(Co45Fe45Zr10)x(Al2O3)1 − x  composites in original state.
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An analysis of the temperature dependences of elec-
trical resistivity of prepercolation composites presented
in Fig. 1 revealed that, above room temperature, these
dependences deviate from the one-half power law and
become linear in ln(ρ/ρ0) versus T–1 coordinates within
a certain temperature interval, where ρ0 is the electrical
resistivity at T = 333 K (Fig. 6). By fitting the tempera-
ture dependences by the relation for thermally activated
hopping conductivity

 (10)

(where w is the hopping activation energy, which is on
the order of the bandwidth of localized states) and
determining the slope of the corresponding straight
lines for the (Co45Fe45Zr10)x(Al2O3)1 − x composites
under study (Fig. 6), we find w = 0.030 ± 0.005, 0.066 ±
0.007, and 0.09 ± 0.01 eV for x = 34, 28, and 23 at. %,
respectively. In this temperature interval, one can also
use the inelastic resonance tunneling model and assign
the deviation from the one-half power law to the
switching of additional tunneling channels, which
should give rise to an increase in electrical conductivity.

Thus, additional studies would be needed prior to
drawing a convincing conclusion on the conduction
mechanism operating in this temperature interval.

A further increase in temperature reveals a deviation
from a linear course in the ln(ρ/ρ0) versus (T–1) depen-
dence (Fig. 6), and ρ starts to grow slowly at T > 600 K
(Fig. 2). This suggests that metal grains begin to affect
charge transport. In these conditions, the conductivity
in the matrix reaches the same order of magnitude as
that in the grains and electron scattering from phonons
becomes a dominant process in this temperature inter-
val. For temperatures T > 700 K, structural relaxation
followed by crystallization sets in in the amorphous
structure of the composites, which gives rise to irrevers-
ible morphological changes and is accompanied by a
strong increase in electrical resistivity.

Thus, at low and moderate temperatures, charge
transport in prepercolation (Co45Fe45Zr10)x(Al2O3)1 − x
composites is determined by the dielectric matrix, with
the major conduction mechanisms being variable-range
hopping and inelastic resonance tunneling over local-
ized states near the Fermi level. The experimentally
revealed high densities of localized states should be
assigned to technological aspects of the fabrication of
nanocomposites. The sample preparation procedure
entails a partial oxidation of metal grains, which results
in a deficiency of atomic oxygen in the dielectric matrix
and in a predominant formation of Al2Oy, where y may
assume values less than 3. Hence, such a matrix
abounds in defects at which an electron can become
localized at low temperatures.

If structural defects in the amorphous dielectric
matrix are responsible for the formation of localized
states, thermal treatment should reduce the number of
these states. To confirm this assumption, a series of iso-
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thermal anneals in a vacuum of ~10–4 Torr for 30 min
were carried out at temperatures T ranging from 293 to
893 K and Eq. (8) was used to calculate the average
number of localized states 〈n〉  in the tunneling channels
connecting isolated conducting clusters as a function of
the anneal temperature.

Figure 7 plots the dependences of the average num-
ber of localized states 〈n〉  on the temperature of isother-
mal anneals of (Co45Fe45Zr10)x(Al2O3)1 − x composites
determined for different compositions. Thermal treat-
ment performed at temperatures of up to 550 K was
found to reduce the average number of localized states
between grains for all metallic phase concentrations. In
composites with concentrations of the metallic phase
x < 37 at. %, however, increasing the anneal tempera-
ture brings about an increase in 〈n〉 . Such dependences
of 〈n〉  on Tann suggest the operation of two relaxation
processes. One of them leads to a decrease in the aver-
age number of localized states 〈n〉 , and the other, to an
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Fig. 7. Average number of localized states in
(Co45Fe45Zr10)x(Al2O3)1 − x  composites plotted vs. iso-
thermal-annealing temperature for different metallic phase
concentrations x: (1) 31.7, (2) 34, (3) 36.3, (4) 37.3, and
(5) 38.7 at. %.
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increase in 〈n〉 . It is quite possible that the decrease in
〈n〉  is associated with the annealing of defects in the
dielectric matrix, because the matrix is responsible for
the localized states.

The simplest defect in covalently bonded structures
is a dangling bond [27]. Point defects in an amorphous
structure turn out to be more diverse than those in a
crystal lattice. They may be simple (single dangling
bonds) or more complex, combining several dangling
bonds. At low temperatures of thermal treatment,
defects in the amorphous structure may become
annealed through decay of the complex defects into
simpler species, with their subsequent migration to the
grain–matrix interface, as shown schematically in Fig. 8.
Defect migration toward interfaces at low temperatures
is the dominant mechanism in the composites under
study, and it leads to a fairly small decrease in the aver-
age number of localized states 〈n〉 . As the annealing
temperature is increased to above 700 K, structural
relaxation followed by crystallization brings about irre-
versible changes in the morphology of the structure and
a certain growth of the average number of localized
states 〈n〉  in composites with a high concentration of the
dielectric phase.

4. CONCLUSIONS
Thus, we have experimentally studied concentration

and temperature dependences of the electrical conduc-
tivity of the (Co45Fe45Zr10)x(Al2O3)1 − x composites and
determined the concentration of the components corre-
sponding to the percolation threshold: xc ≈ 41 at. %.
The dominant mechanism of charge transport at metal-
lic phase concentrations x < 41 at. % and low tempera-
tures (77–180 K) was found to be variable-range hop-
ping conduction over localized states near the Fermi
level. A further increase in temperature results in a
crossover of the conduction mechanism from Mott’s
law, lnσ ∝  (1/T)1/4, to a dependence lnσ ∝  (1/T)1/2. The
model of inelastic resonance electron tunneling was
applied to the (Co45Fe45Zr10)x(Al2O3)1 − x composites to
(c)

A

B

C

(b)(a)

C

B

Fig. 8. Illustration of the decay of (a) defect A in an amorphous structure into (b) the simplest defects B and C and (c) the migration
of defect C to the grain/matrix interface (schematic).
04



2152 KALININ et al.
find the average number of localized states in the
dielectric matrix between the metal grains involved in
electron transport and its dependence on the tempera-
ture of isothermal annealing. It was established that
increasing the thermal treatment temperature brings
about a decrease in the average number of localized
states in the dielectric matrix.

The studies of the temperature dependence of ρ in
prepercolation composites at high temperatures
revealed a strong growth of electrical resistivity long
before the crystallization temperature is reached; this
growth is caused by the merging of metal grains, an
increase in the thickness of the dielectric spacers
between grains, and a decrease in the average number
of localized states between grains. The electrical resis-
tivity of postpercolation composites decreases with
increasing temperature as a result of the formation of
additional conducting metallic channels and relaxation
of the amorphous structure of the metallic phase.

ACKNOWLEDGMENTS

The authors are indebted to L.V. Lutsev for helpful
discussions and valuable comments.

This study was supported by the Russian Founda-
tion for Basic Research (project no. 03-02-96486) and
the Ministry of Education of the Russian Federation.

REFERENCES

1. S. Honda, J. Magn. Magn. Mater. 165, 153 (1997).

2. K. Yakushiji, S. Mitani, and K. Takanashi, J. Magn.
Magn. Mater. 212, 75 (2000).

3. N. Kobayashi, S. Ohnuma, T. Masumoto, and H. Fuji-
mori, J. Appl. Phys. 90 (8), 4159 (2001).

4. I. V. Bykov, E. A. Gan’shina, A. B. Granovskiœ, and
V. S. Gushchin, Fiz. Tverd. Tela (St. Petersburg) 42 (3),
487 (2000) [Phys. Solid State 42, 498 (2000)].

5. A. V. Kimel’, R. V. Pisarev, A. A. Rzhevskiœ, Yu. E. Kali-
nin, A. V. Sitnikov, O. V. Stogneœ, F. Bentivegna, and
Th. Rasing, Fiz. Tverd. Tela (St. Petersburg) 45 (2), 269
(2003) [Phys. Solid State 45, 283 (2003)].

6. N. E. Kazantseva, A. T. Ponomarenko, V. G. Shev-
chenko, I. A. Chmutin, Yu. E. Kalinin, and A. V. Sitnikov,
Fiz. Khim. Obrab. Mater., No. 1, 5 (2002).

7. O. V. Stogneœ, Yu. E. Kalinin, A. V. Sitnikov, I. V. Zolo-
tukhin, and A. V. Slyusarev, Fiz. Met. Metalloved. 91 (1),
24 (2001) [Phys. Met. Metallogr. 91, 21 (2001)].

8. B. A. Aronzon, A. E. Varfolomeev, A. A. Likal’ter,
V. V. Ryl’kov, and M. V. Sedova, Fiz. Tverd. Tela (St.
PH
Petersburg) 41 (6), 944 (1999) [Phys. Solid State 41, 857
(1999)].

9. Yu. E. Kalinin, A. V. Sitnikov, O. V. Stognei, I. V. Zolo-
tukhin, and P. V. Neretin, Mater. Sci. Eng. A 304–306,
941 (2001).

10. H. R. Khan, A. Granovsky, F. Brouers, E. Ganshina,
J. P. Clerc, and M. Kurmichev, J. Magn. Magn. Mater.
183, 127 (1998).

11. J. C. Denardin, A. B. Pakhomov, M. Knobel, H. Liu, and
X. X. Zhang, J. Phys.: Condens. Matter 12, 3397 (2000).

12. B. Abeles, R. W. Cohen, and G. W. Cullen, Phys. Rev.
Lett. 17, 632 (1966).

13. P. Sheng, B. Abeles, and Y. Arie, Phys. Rev. Lett. 31 (1),
44 (1973).

14. E. Cuevas, M. Ortuño, and J. Ruiz, Phys. Rev. Lett. 71
(12), 1871 (1993).

15. E. Z. Meœlikhov, Zh. Éksp. Teor. Fiz. 115 (4), 1484
(1999) [JETP 88, 819 (1999)].

16. L. I. Glazman and K. A. Matveev, Zh. Éksp. Teor. Fiz. 94
(6), 332 (1988) [Sov. Phys. JETP 67, 1276 (1988)].

17. L. I. Glazman and R. I. Shekhter, Zh. Éksp. Teor. Fiz. 94
(1), 292 (1988) [Sov. Phys. JETP 67, 1462 (1988)].

18. L. V. Lutsev, T. K. Zvonareva, and V. M. Lebedev, Pis’ma
Zh. Tekh. Fiz. 27 (15), 84 (2001) [Tech. Phys. Lett. 27,
659 (2001)].

19. L. V. Lutsev, Yu. E. Kalinin, A. V. Sitnikov, and O. V. Stog-
neœ, Fiz. Tverd. Tela (St. Petersburg) 44 (10), 1802
(2002) [Phys. Solid State 44, 1889 (2002)].

20. N. F. Mott and E. A. Davis, Electronic Processes in Non-
Crystalline Materials (Clarendon, Oxford, 1971; Mir,
Moscow, 1974).

21. S. Weng, S. Moehlecke, and M. Strongin, Phys. Rev.
Lett. 50 (22), 1795 (1983).

22. M. A. S. Boff, J. Geshev, J. E. Schmidt, W. H. Flores,
A. B. Antunes, M. A. Gusmao, and S. R. Teixeira,
J. Appl. Phys. 91 (12), 9909 (2002).

23. I. V. Zolotukhin, Yu. E. Kalinin, P. V. Neretin, A. V. Sit-
nikov, and O. V. Stogneœ, Al’ternativ. Énerget. Ékol.,
No. 2, 7 (2002).

24. P. Olhafen, in Glassy Metals II: Atomic Structure and
Dynamics, Electronic Structure, Magnetic Properties,
Ed. by H. Beck and G. Güntherodt (Springer, Heidel-
berg, 1984; Mir, Moscow, 1986).

25. W. Heywang et al., in Amorphen und Polykristallinen
Halbleiter, Ed. by W. Heywang (Springer, Heidelberg,
1984; Mir, Moscow, 1987).

26. Yu. E. Kalinin, A. N. Remizov, A. V. Sitnikov, and
N. P. Samtsova, Perspekt. Mater., No. 3, 62 (2003).

27. Yu. R. Zakis, Defects in Vitreous State of Material
(Zinatne, Riga, 1984) [in Russian].

Translated by G. Skrebtsov
YSICS OF THE SOLID STATE      Vol. 46      No. 11      2004



  

Physics of the Solid State, Vol. 46, No. 11, 2004, pp. 2153–2162. Translated from Fizika Tverdogo Tela, Vol. 46, No. 11, 2004, pp. 2083–2091.
Original Russian Text Copyright © 2004 by Averkiev, Berezovets, Mikhailova, Moiseev, Nizhankovski

 

œ

 

, Parfeniev, Romanov.

                                                      

LOW-DIMENSIONAL SYSTEMS
AND SURFACE PHYSICS
Energy Spectrum and Quantum Magnetotransport 
in Type-II Heterojunctions

N. S. Averkiev1, V. A. Berezovets1, 2, M. P. Mikhailova1, K. D. Moiseev1, 
V. I. Nizhankovskiœ2, R. V. Parfeniev1, and K. S. Romanov1

1 Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, St. Petersburg, 194021 Russia
e-mail: const@stella.ioffe.rssi.ru

2 International Laboratory of High Magnetic Fields and Low Temperatures, Wroclaw, Poland
Received March 19, 2004

Abstract—Specific features of the energy spectrum of a separated type-II heterojunction in an external mag-
netic field are studied theoretically and experimentally. It is shown that, due to hybridization of the states of the
valence band of one semiconductor and the conduction band of the other semiconductor at the heterointerface,
there are level anticrossings, which produce quasigaps in the density of states in a nonzero magnetic field. The
experimental results of magnetotransport studies for the GaInAsSb/p-InAs quaternary solid solutions with dif-
ferent doping levels are shown to agree well with the results of simulation, and specific features of the energy
spectrum of separated type-II heterojunctions are established. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Recently, heterostructures with separated type-II
junctions, which are distinguished by the presence of
an overlap in energy between the valence band of one
of the contacting semiconductors and the conduction
band of the other, have been intensively studied. A typ-
ical pair of the materials forming such a junction is
InAs and GaSb [1].

The presence of the energy overlap results in the
appearance of some specific features. For example, the
fact that the mobile carriers are electrons on one side of
the interface and holes on the other side should result in
strong hybridization of the states of the conduction
band of one semiconductor and of the valence band of
the other. Band bending and deformation at the hetero-
junction bring about the formation of two two-dimen-
sional potential wells on different sides of the interface,
one for holes and the other for electrons. For example,
for a GaSb–InAs heterojunction, a quantum well for
holes is formed on the side of GaSb and a quantum well
for electrons, on the side of InAs [2, 3]. In addition to
single heterojunctions, structures consisting of two het-
erojunctions and a quantum well between them have
also been widely studied [3]. A single type-II hetero-
junction with self-consistent quantum wells has analo-
gous properties, but the specific form of the energy
band bending near the heterointerface depends on the
carrier concentration and can be changed by doping the
contacting bulk materials.

A self-consistent calculation is necessary for exact
quantitative description of the electronic structure of a
separated type-II heterojunction. However, qualitative
description of the character of hybridization and the
positions of confinement energy levels can also be
obtained by using simpler analytical models. In this
1063-7834/04/4611- $26.00 © 22153
study, we consider a single quantum well with infinitely
high walls, which is divided into two parts for each of
which the band parameters are constant (Fig. 1). More-
over, the band gaps are located such that there is an
overlap between the valence band of one material (in
our case, GaSb) and the conduction band of the other
(InAs). For III–V semiconductors and their solid solu-
tions forming heterojunctions of the type considered,
the Kane model provides the most appropriate band
diagram. In this model, we can take into account the
boundary conditions and the actual values of the effec-
tive masses relatively simply (by integrating the origi-
nal Hamiltonian). A magnetic field is included in this
model in the standard way, by passing to generalized
momenta and adding a term describing the g factor. In
our calculation, we take into account only the electron
g factor (|g | = 10) as the most essential.

The aim of this study is to calculate the energy spec-
trum of separated type-II heterojunctions both in a zero
magnetic field and in a homogeneous magnetic field
normal to the heterojunction plane and to compare the
results with experimental data on magnetotransport in
the GaInAsSb/InAs system using more consistent lat-
tice parameters than those for the GaSb/InAs system.

2. MODEL

The energy structure of our model of the heterojunc-
tion is shown in Fig. 1. In our notation, the energy is
measured from the midgap of one of the semiconduc-
tors forming the heteropair. The band gap of this semi-
conductor is 2∆, and the band gap of the other is V1–V2,
where V1 is the upper and V2 is the lower boundary of
the band gap of the latter semiconductor. The layer
thicknesses are a and b, respectively, and the overlap is
004 MAIK “Nauka/Interperiodica”
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V2–∆. We describe the band structure of each of the
semiconductor materials using the Kane model. For the
bulk case, in the framework of the six-band Kane model
with allowance only for terms linear in momentum, the

Hamiltonian  describing the behavior of a free parti-
cle is the 6 × 6 matrix

 (1)

Here,  = α(  + ),  = α(  – ),  = 
(  are the projections of the momentum operator onto
the corresponding coordinate axes), α is the Kane fac-
tor determining the values of the effective masses of
electrons and light holes, and Eg is the band gap of the
semiconductor (we choose the system of units in which
" = c = 1). The wave function is a six-component col-
umn. The eigenfunctions of the Hamiltonian (1) are

 (2)

where a and b are functions of the coordinates x, y, and
z. The equations for a and b are
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In the Kane model, the magnetic field is introduced
by replacing the momentum operator  by the general-
ized momentum operator  = – eA, where A is the
vector potential and e is the elementary charge. Since
the vector potential depends on the coordinates, differ-
ent projections of the vector π do not commute. There-
fore, the operators  and  also do not commute in
the presence of a magnetic field. In the case of zero
magnetic field, the operators  and  commute and
we can simplify Eqs. (3). They are reduced to one equa-
tion, which has the form

 (4)

Solutions to this equation are functions of the type a =
Cexp(ikr), where k = (px , py , k).

Now, we consider the case of a homogeneous mag-
netic field B directed along the z axis. The vector poten-
tial can be taken in the form A = eyxB. Using Eqs. (2),
the total wave functions can be found to be

 (5)

where |k, n〉  = exp(ikz + ipyy)Ψn(x – py/(eB)) and Ψn is
the wave function of the nth state of a one-dimensional
harmonic oscillator.
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The dispersion equations for these states are

 

for |k, n, ↑〉  and

 

for |k, n, ↓〉 .

Now, we consider the quantum well in a zero mag-
netic field. As a boundary condition, we choose the con-
tinuity of the total wave function. To avoid complica-
tions with infinite barriers at the boundaries of the well,
we attribute a finite band gap to the external regions
(placing the midgap at E = 0) and then make the gap
tend to infinity. Due to the axial symmetry in the plane
of the well, we can set px = 0 without loss of generality.
Then, the total wave function in the regions not contain-
ing heterointerfaces assumes the form

 (6)

We note that spinors (6) are mutually orthogonal and,
therefore, can be used to classify the states of the sys-
tem. We also note that not all of the components of
spinors (6) are linearly independent.

Due to the translational symmetry along the well,
we can consider the wave function in each of the
regions of the heterostructure as a state with a definite
longitudinal momentum of the particle. Therefore, in
each of the regions of the quantum well, it is natural to
choose the component a as a superposition of two
waves, exp[i(kz + py)] and exp[i(–kz + py)]. Moreover,
we should take into account that, in the region outside
the well, there are only exponentially decaying solu-
tions exp(–κ|z | + ipy).

After performing all the necessary calculations, we
find the dispersion equation for the system:
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where k in the region 0 < z < a and s in the region –b <
z < 0 are determined from Eq. (4) and α and β are the
Kane coefficients in the regions z < 0 and z > 0, respec-
tively.
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Fig. 1. Energy diagram of a type-II heterojunction consist-
ing of two quantum wells with infinite walls. The vertical
dashed line denotes the heterointerface, and the shaded
regions correspond to the band gaps of the contacting semi-
conductors. The layer widths of the two semiconductors are
a and b, and the band gaps are 2∆ and V1–V2, respectively.
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We now turn to the case of a nonzero magnetic field
perpendicular to the plane of the structure. In this case,
as for B = 0, in different regions of the heterostructure,
we choose the component a of the wave function to be
a superposition of plane waves. However, in contrast to
the case of zero magnetic field, where states with differ-
ent electron spin projections do not mix, here the states
|n + 1, ↓〉  and |n, ↑〉  have the same symmetry and are
mixed. Thus, each state is a superposition of “plane
waves”

 
ψ A k n 1 ↓,+,| 〉 B k– n 1 ↓,+,| 〉+=

+ C s n ↑, ,| 〉 D s– n ↑, ,| 〉 .+
PH
Because the dispersion equations for the spinors are
different, the wave vectors k and s are different,
although there is a strict correspondence between them.
The subsequent calculations include matching of the
wave functions at the interfaces and making the band
gaps outside the well tend to infinity. As a result, we
obtain the dispersion equation

 (8)

where A, B, C, and D are 4th-order matrices
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Solutions to Eqs. (7) and (8) can be found only numer-
ically.

In this model, there is no dispersion of heavy holes
and, accordingly, there is no quantization of heavy hole
levels in a magnetic field. Below, we discuss the results
of the experiments in which the quantization of heavy
holes can be of importance. To this end, we introduce
quantization of heavy holes in the GaSb layer formally,
YSICS OF THE SOLID STATE      Vol. 46      No. 11      2004
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attributing a quadratic dispersion law to them. We also
assume that heavy holes of one material do not pene-
trate into the depth of the other.

We turn to the discussion of the results of simulation
for the GaSb/InAs heterostructure. As an example, we
consider a GaSb layer 100 Å thick and an InAs layer
150 Å thick, since approximately such dimensions of
the confinement regions are realized experimentally.
Figure 2 shows the electron and light hole dispersion
curves calculated from Eq. (7) for the case of zero
magnetic field. The band gap of GaSb is chosen to be
0.813 eV, the band gap of InAs is 0.415 eV, and the
energy gap is 0.15 eV [4]. The effective masses are
taken to be me = mlh = 0.025m0 and mhh = 0.41m0 in InAs
and me = mlh = 0.045m0 and mhh = 0.4m0 in GaSb (m0 is
the free electron mass). The energy is measured from
the midgap of the bulk InAs.

We see that the energy spectrum of the heterojunc-
tion outside the region of the overlap of the conduction
band of InAs and the valence band of GaSb qualita-
tively coincides with the spectrum of a single quantum
well with infinite walls. Spin splitting of quantum con-
finement levels is due to the noninvariance of the sys-
tem with respect to the reflection in the xy plane. In con-
trast to the energy spectrum of a single quantum well,
there is no band gap in the spectrum considered. This
means that our heterojunction behaves like a semi-
metal.

We must also note that there are so-called “bound-
ary” states in the spectrum (in Fig. 2, they are denoted
by numerals 1, 2, 3). These states appear in calculations
for the Kane model. When using other boundary condi-
tions, these states may be absent. For the first time, the
presence of such states was indicated in [5]. Experi-
mental detection of boundary states can serve as proof
of the physical adequacy of the choice of the boundary
conditions of the model. The dispersion laws for
boundary states differ strongly from the dispersion laws
for conventional states. We see that the energy of the
boundary state designated by 2, at zero longitudinal
momentum, coincides with the top of the valence band
of GaSb and, therefore, this state lies above the confine-
ment levels for holes.

Near the region of the energy overlap of the bands,
a number of anticrossings of the dispersion curves is
observed. Comparing the calculations from Eq. (7) with
the results of the study of boundary states, we can assert
that states 2 and 3 are due to the presence of the hetero-
interface between InAs and GaSb and that state 1 is
related to the well boundaries.

Figure 3 shows the magnetic field dependence of the
positions of Landau levels calculated from Eq. (8) for
the region of the energy overlap of the InAs conduction
band and the GaSb band gap.

A specific feature of the behavior of the system in a
magnetic field is the existence of quasigaps in the spec-
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trum, where the density of levels sharply falls com-
pared to the neighboring regions. Such a decrease in the
density of states is caused by level anticrossings in a
nonzero magnetic field.

The described results agree well with the results of
simulation based on different models of quantum-con-
fined structures [6–8].

3. COMPARISON WITH EXPERIMENTAL DATA

We compare the results of our theoretical cal-
culations with the experimental data obtained for a
GaInAsSb/InAs heterostructure, in which the In con-
tent in the quaternary solid solution determines the
overlap of the valence band and the conduction band at
the interface.

Earlier, an electronic channel with high mobility (µ >
50000–70000 cm2/V s) was observed in single separated
type-II heterojunctions, such as p-GaInAsSb/p-InAs,
with self-consistent quantum wells at the heterointer-
face; its luminescence and magnetotransport properties
have been studied in detail [9–12].

Layers of Ga1 – xInxAsySb1 – y solid solutions in the
interval of compositions corresponding to an In content
0.08 < x <0.16 and to y = x + 0.06 with a good growth
morphology were obtained by liquid-phase epitaxy on
InAs (100) substrates. A melt solution was prepared
from the pure components: atomic In and Sb of purity
5 and 3 N, respectively, and undoped binary com-
pounds InAs and GaSb with intrinsic carrier concentra-
tions n = 2 × 1016 cm–3 and p = 5 × 1016 cm–3, respec-
tively. The mismatch of the crystal lattice parameters
between the epitaxial layer and the substrate was
∆a/a < 4 × 10–4. The layer thickness was about
1.0 µm. The grown GaInAsSb layers were not inten-
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Fig. 2. Energy structure of a GaSb (100 Å)/InAs (150 Å)
heterojunction in the region of overlap of the InAs conduc-
tion band and the GaSb valence band in the absence of a
magnetic field with allowance for light holes and electrons
only. Horizontal dashed lines denote the edges of the InAs
conduction band and of the GaSb valence band.
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tionally doped and showed p-type conductivity with a
hole concentration p = 2 × 1016 cm–3 at T = 77 K. Epi-
taxial GaInAsSb layers were prepared under the condi-
tions of planar two-dimensional growth with planar
interfaces sharp in composition. In such structures, pla-
narity of the lower interface was determined by the
roughness of the InAs (100) surface. The thickness of
the transition layer at the Ga0.84In0.16As0.22Sb0.78/InAs
interface was 10–12 Å.

For an In content of 16%, the overlap is 70 meV
[13]. By doping the melt solution with donor impuri-
ties, the chemical potential can be shifted both into the
overlap interval and to the region outside it. The energy
structure of the n-Ga0.84In0.16As0.22Sb0.78/p-InAs hetero-
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Fig. 3. Energy spectrum of Landau levels of electrons and
light holes at the GaSb (100 Å)/InAs (150 Å) heterojunction
in the region of overlap of the InAs conduction band and the
GaSb valence band (from 0.207 to 0.357 eV).
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heavy holes are shown by dashed lines, and electronic sub-
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junction in a zero magnetic field calculated using
Eq. (7) is shown in Fig. 4, where, in accordance with
Fig. 1, V1 = 277.5 meV, V2 = 907.5 meV, ∆ = 207.5 meV,
a = 125 Å, and b = 100 Å. Figure 4 also shows the posi-
tions of the Fermi levels (dashed lines ξ1 and ξ2) of the
two samples under study, determined from Shubnikov–
de Haas oscillations. We note that the dispersion law
outside the anticrossing regions is actually parabolic, in
spite of the fact that we kept only the linear terms in the
Hamiltonian. The reason for this feature is that the
energies considered (in the overlap region) are small
compared to the band gaps of both semiconductors.

Figures 5 and 6 show Shubnikov–de Haas and Hall
effect oscillation patterns (ρxx, ρxy) in the structures
under study with different tellurium doping levels of
the solid solution. The data reveal the existence of sev-
eral periods of oscillations characteristic of a multisub-
band system of confinement levels. The oscillation pat-
tern is analogous to that for a simple quantum well with
two occupied confinement subbands, since in both fig-
ures two oscillation periods are observed in the fields
up to 4 T. The transition to oscillations of ρxy and ρxx
under the conditions of the quantum Hall effect (QHE)
occurs in fields B ≥ 6 T, where mainly the Landau levels
of one subband remain.

For sample MK513/1 with a tellurium concentration
in the solid solution NTe ≅  1 × 1016 cm–3, the minimum
oscillation period is ∆1 = 4.6 × 10–2 T–1 (at temperature
T = 1.5 K), from which we can calculate the electron
concentration in the confinement subbands responsible
for oscillations. Estimations give nRo ≅  5.2 × 1011 cm–2

(for one spin projection). Similarly, for sample MK527/4
with a tellurium concentration NTe ≅  1 × 1017 cm–3, using
the minimal period of oscillations ∆1 = 2.75 × 10–2 T–1,
we can estimate the electron concentration to be nRo ≅
8.8 × 1011 cm–2 (also for one spin projection). Both of
these values agree well with the results of measure-
ments of the Hall coefficient in weak magnetic fields
(B  0), from which we obtain estimates nRo ≅  3.4 ×
1011 cm–2 for sample MK513/1 and nRo ≅  1.15 × 1012 cm−2

for sample MK527/4.
Once the electron concentrations are known, we can

calculate the position of the Fermi level by assuming that
the dispersion law for the electron confinement subbands
is close to parabolic. With the electron effective mass at
the Fermi level in InAs taken to be  = 0.03m0, we
find that the Fermi energy for sample MK513/1 is ξ ≅
54 meV. Similarly, for sample MK527/4, the Fermi
energy is estimated to be ξ ≅  91.4 meV. For these values
of the Fermi energy in the presence of the overlap ∆E =
70 meV between the conduction and valence bands, the
Fermi level lies in the overlap region in sample
MK513/1 and above this region in sample MK527/4.

Under the conditions of the quantum Hall effect, the
maxima of ρxx correspond to the crossings of the Fermi

me*
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Fig. 5. Experimental magnetic field dependences of (a, b) the Hall resistance ρxy and (c, d) magnetoresistance ρxx for sample

MK513/1 at T = 1.5 K (ρ0 = 136.2 Ω, RB → 0 = 1.85 × 107 cm2/Q, Rσ = 1.36 × 105 cm2/V s). (b, d) Enlarged portions of the curves
in (a) and (c) obtained from the experimental data for ρxy(B) and ρxx(B) by subtracting the smooth background (polynom) and dou-
bly differentiating with respect to the field. Vertical lines denote different series of Shubnikov–de Haas oscillations and the transition
region from one series to another. Numerals near curves correspond to the ratio of the positions of the maxima on the 1/B scale to
the average period ∆(1/B) for a given series. A series of oscillations in weak fields B < 1 T with indices 1–3.1 corresponds to bulk
Shubnikov–de Haas oscillations from a Te-doped (≅ 1 × 1016 cm–3) epitaxial layer of the solid solution.
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level with Landau levels. For both samples, we com-
pared the maxima of ρxx with the crossings between the
chemical potential and the calculated Landau levels
under the assumption that the position of the chemical
potential does not depend on the magnetic field applied
to the structure. The best agreement between the model
of a composite quantum well and the experimental data
was achieved for the width of the electronic channel a =
125 Å and the width of the hole channel b = 105 Å.
The band overlap at the interface was taken to be ∆E =
70 meV; the band gap parameters for
Ga0.84In0.16Sb0.78As0.22 and InAs were Eg = 0.63 and
0.41 eV, respectively; the effective masses of electrons
and holes were me = 0.023m0, mlh = 0.026m0, and mhh =
0.41m0 [4]; and the electron g factor was |g | = 10.

In Fig. 7, vertical lines correspond to the experimen-
tal maxima of ρxx, which arise at crossing of the
extended states of the hybridized Landau levels of dif-
ferent subbands with the Fermi level for each of the
subbands. The best agreement between the positions of
the maxima of ρxx and the crossings of the chemical
potential with Landau levels is achieved if we assume
that the chemical potential is located in the interval
PHYSICS OF THE SOLID STATE      Vol. 46      No. 11      20
0.266–0.268 eV for sample MK513/1 and in the inter-
val 0.293–0.295 eV for sample MK527/4. These values
correspond to the following energy distances from the
edges of the corresponding subbands denoted by E1 and
E2 in Fig. 4: εF1 = 52.4 meV and εF2 = 4.9 meV for sam-
ple MK513/1 and εF1 = 80.4 meV and εF2 = 30.9 meV
for sample MK527/4.

According to Fig. 4, two hole subbands for sample
MK513/1 are partially filled, namely, the interface hole
states and the first confinement subband of heavy holes
(the energy distances from the edges of these subbands

to the chemical potential level are  = 10.6 meV and

 = 8.9 meV, respectively). In fields of up to 5 T
(Fig. 7a), the crossings of Landau levels of heavy and
interface holes with the chemical potential are not seen
in the experiment, since Ωτh ! 1 for these carriers. Only
the maxima of ρxx corresponding to the crossings of the
chemical potential with Landau levels of electron sub-
bands with positive and negative “pseudospin” projec-
tions are observed experimentally.

εF
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ε1F
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Fig. 6. Experimental magnetic field dependence of (a, b) the Hall resistance ρxy and (c, d) magnetoresistance ρxx for sample

MK527/4 at T = 1.5 K (ρ0 = 91.4 Ω , RB → 0 = 5.4 × 106 cm2/Q, Rσ = 5.9 × 104 cm2/V s). (b, d) On the right-hand side, enlarged
parts of curves from (a) and (c) obtained from experimental curves by subtracting the smooth background and doubly differentiating
with respect to the field are shown. Vertical lines with different indices and without indices denote different series of Shubnikov–de
Haas oscillations and also the transition region from one series to another. Numerals correspond to the ratio of the positions of the
maxima on the 1/B scale to the average period for a given series. A series of oscillations in weak fields B ≤ 1 T with indices 2.1–4.1
corresponds to bulk Shubnikov–de Haas oscillations from a Te-doped (~3 × 1016 cm–3) epitaxial layer of the solid solution.
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In fields of up to 1 T, both samples exhibit bulk Shub-
nikov–de Haas oscillations independent of the angle
between the magnetic field B and the current J and
related to doping of the Te layer of the solid solution
(Figs. 5d, 6d). For sample MK527/4, these oscillations
have indices 2.1, 3.2, and 4.1 (Fig. 6d), which correspond
to an electron concentration of n3D ≅  1.2 × 1016 cm–3 as
determined from the period ∆(1/B). The 2.1 maximum
overlaps oscillations of the two-dimensional electron
subband with a positive pseudospin projection.

Thus, for both samples, the oscillations of the mag-
netoresistance (ρxx) are caused by all electron subbands
that lie in the overlap region ∆. From the calculations,
it follows that, for fields B ≥ 6 T, the Fermi level for
sample MK527/4 is crossed only by Landau levels hav-
ing electronic character (Fig. 7a) and for sample
MK513/1 by Landau levels having electronic and hole
character. The presence of the contribution from hole
confinement subbands to magnetoresistance accounts
for the fundamental difference between samples
MK513/1 and MK527/4. The minima of ρxx in sample
PH
MK527/4 lie below the minima of ρxx in sample
MK513/1 with the same filling factor, since ρxx in sam-
ple MK513/1 is limited from below by the conductivity
in hole states.

For the Hall resistance ρxy of sample MK513/1, the
positions (on the magnetic field scale) of the QHE pla-
teau are determined by electron Landau levels, whereas
the monotonic part of ρxy substantially depends on the
degree of filling of extended hole states and sharply
decreases (by a factor of 3) as the temperature increases
from 1.5 to 4 K.

It is seen in Fig. 7b that, for high-field magnetoresis-
tance, the maxima of ρxx are observed as the Fermi level
crosses the Landau levels of the deep electronic sub-
band with both pseudospin projections. The anticross-
ings of the zeroth Landau level originating from the E2
subband (Fig. 4) with the first Landau level of interface
holes Hi result in the pinning of the chemical potential
for B > 10 T at the zeroth Landau level of the E2 sub-
band. The additional maxima of ρxx in this field region
plotted in Fig. 5c as a dotted line can be explained by
YSICS OF THE SOLID STATE      Vol. 46      No. 11      2004
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the fact that Landau levels of heavy holes cross the
chemical potential level simultaneously with an elec-
tron level.

A plateau of the QHE on the B dependence of ρxy

occurs if the Fermi level lies between Landau levels
when filling one confinement subband. In the presence
of two subbands for electrons or for electrons and
holes, giving different contributions to the background
component of ρxy (B), the concentration in a subband
changes when Landau levels of this subband (or of both
subbands) cross the Fermi level from below; therefore,
the plateau of QHE in ρxy is distorted (see the curves for
ρxy in Figs. 5a and 6a in the QHE region, where the min-
ima of ρxy are observed as electronic Landau levels
cross the Fermi level). This effect is seen most clearly
in sample MK513/1 (even at T = 4.2 K) at simultaneous
crossing of the chemical potential by Landau levels of
electrons and holes. Indeed, if the electron and hole
Landau levels approaching the chemical potential are
located close to the crossing, the density of extended
states at the Fermi level increases, resulting in an
increase in Hall conductivity σxy (a minimum in ρxy).
This character of the crossings of the chemical potential
with Landau levels of heavy holes is manifested as
additional maxima of the magnetoresistance ρxx in the
region 10–14 T, marked by dotted arrows in Fig. 5c. In
higher fields (B ≥ 30 T), an energy gap is formed
between the lowest electron and hole Landau levels and
a transition to intrinsic semiconductor conductivity
occurs (in the absence of impurity states); in this case,
the number of carriers occupying extended states at
diverging Landau levels of electrons and holes
decreases exponentially with increasing magnetic field
at a given temperature.

4. CONCLUSIONS

Thus, we have for the first time experimentally estab-
lished the features of the charge carrier spectrum in the
region of overlap of the conduction and valence bands in
a separated type-II heterojunction GaInAsSb/InAs on
the basis of solid solutions enriched by GaSb. The
appearance of energy gaps has been revealed resulting
from anticrossings of the branches of the energy spec-
trum with different pseudospin projections both in zero
and in nonzero magnetic fields. A simple analytical
model of a type-II heterojunction was suggested, which
describes well the experimental data on quantum mag-
netotransport in single GaInAsSb/p-InAs heterostruc-
tures.

A fundamental difference between quantum oscilla-
tions of magnetoresistance and the quantum Hall effect
has been experimentally demonstrated for the cases
where the chemical potential lies outside and inside the
region of the energy band overlap at the heterointerface.
It was shown that this difference is due to hybridization
of states of the valence band of one semiconductor and
the conduction band of the other in the overlap region.
PHYSICS OF THE SOLID STATE      Vol. 46      No. 11      20
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Abstract—The optical and magnetooptical properties of the new granular nanocomposites (CoFeB)/(SiO2) and
(CoFeZr)/(Al2O3), which are grains of amorphous ferromagnetic alloys embedded in dielectric matrices, have
been studied. The dependence of the optical, magnetooptical, and magnetic properties of the nanocomposites
on their qualitative and quantitative composition, as well as on the conditions of their preparation, was investi-
gated. Spectra of the dielectric functions ε = ε1 – iε2 were obtained by the ellipsometric method in the range
0.6–5.4 eV. Above 4.2 eV, the absorption coefficient of the (CoFeB)/(SiO2) composites was found to be close
to zero for all magnetic-grain concentrations. The polar Kerr effect measured at a photon energy of 1.96 eV in
dc magnetic fields of up to 15 kOe reaches values as high as 0.25°–0.3° for these nanocomposites and depends
only weakly on the conditions of preparation. On the other hand, the (CoFeZr)/(Al2O3) nanostructures reveal a
considerable difference in the concentration dependences of the Kerr effect between samples prepared in a dc
magnetic field and in zero field. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In recent years, there has been an increasing interest
in the area of the physics of condensed matter that deals
with investigating various structures on the nanometer
and even smaller scales. Structures that are made up of
grains a few nanometers in size embedded in nonmag-
netic metallic or dielectric matrices are materials that
border between classical physics of the solid state and
nanophysics.

Interest in granular nanostructures has experienced
explosive growth due to a number of their physical
properties that have scientific significance and also
application potential. Among them the magnetoresis-
tance effect [1], inverse or positive magnetoresistance
[2], spin-dependent electron tunneling, high dielectric
losses in the microwave range [3], the anomalous Hall
effect [4], and the large magnetorefractive effect [5]
should be mentioned. A number of papers aimed at
revealing and investigating possible correlations
between the magnetic properties, magnetotransport,
and linear and nonlinear optical and magnetooptical
properties of granular nanostructures have appeared
[5–7]. Particular attention centers presently on the
behavior of nanostructures near the percolation thresh-
old, because in this region the most pronounced
changes in their characteristics are observed.

By studying the optical properties of materials, one
can gain valuable information on their electronic struc-
ture, an approach widely employed in optics of the
1063-7834/04/4611- $26.00 © 22163
solid state. Magnetooptical phenomena (in particular,
the Kerr and Faraday effects) can also yield information
on the magnetic properties of materials. At the same
time, certain features observed in the optical and mag-
netooptical properties of granular nanostructures are
still not fully understood [8, 9].

Until recently, most studies of the properties of
granular films dealt with crystalline grains of a metal or
alloy. Nanocomposites with grains of amorphous mate-
rials have attracted less interest [10]. Compared to
grains with crystal structure, amorphous grains have a
lower anisotropy energy, whose magnitude noticeably
affects the main magnetic properties of nanocompos-
ites [11]; in some cases, this influence may become a
favorable factor, for instance, for the manifestation of
magnetoresistive properties [12]. This accounts for the
increasing interest over the past several years in the
magnetoresistive characteristics of such structures [2,
12], as well as in their properties in the microwave
range [4].

As for the optical and magnetooptical properties of
structures with amorphous grains, there are only a few
reports on relevant studies. The steady-state and
dynamic Kerr effects in (CoNbTa)/(SiO2) nanocompos-
ites are investigated in [13], where a correlation
between the dynamic and steady-state magnetooptical
properties of these structures was revealed. A study of
the correlations between the magnetorefractive effect
and magnetoresistance in (CoFeZr)/(SiO2) is given in
004 MAIK “Nauka/Interperiodica”
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Parameters of the nanocomposites under study

Series Grain alloy Matrix Grain
concentration, at. % Preparation conditions

I-1 Co41Fe39B20 SiO2 From 34 to 68 Ar, PAr = 8.0 × 10–4 Torr

I-2 Co41Fe39B20 SiO2 From 34 to 68 Ar + N2,  = 1.8 × 10–4 Torr

I-3 Co41Fe39B20 SiO2 From 34 to 68 Ar + O2,  = 2.8 × 10–5 Torr

II-1 Co45Fe45Zr10 Al2O3 From 21 to 54 Ar + O2,  = 2.8 × 10–5 Torr

II-2 Co45Fe45Zr10 Al2O3 From 21 to 54
Ar + O2,  = 2.8 × 10–5 Torr; in-plane

magnetic field, forced substrate cooling

PN2

PO2

PO2

PO2
[14]. A comparative investigation of the equatorial Kerr
effect and magnetoresistance in SiO2 matrices with
embedded FeCoB, CoFeZr, and CoNbTa nanoparticles
is discussed in [15].

We report here on a study of granular nanocompos-
ites based on CoFeB and CoFeZr amorphous ferromag-
netic alloys. Their optical and magnetooptical proper-
ties were investigated over a broad range of concentra-
tions, both below and above the percolation threshold.
We also investigated the effect of various conditions of
nanocomposite preparation on their properties, namely,
the presence of oxygen or nitrogen in the preparation
process, the substrate temperature, and the magnetic
field. We are not aware of any publications on either the
spectra of dielectric functions of such granular struc-
tures or the polar Kerr effect.

2. EXPERIMENT

All samples were prepared by ion beam sputtering
[10]. Two groups of nanostructures were investigated.
Group I included structures based on grains of a
Co41Fe39B20 amorphous ferromagnetic alloy embedded
in amorphous dielectric SiO2 films. Nanocomposites of

35 40 45 50 55 60 65 70
Concentration, at.%
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Fig. 1. Electrical resistivity of (CoFeB)/(SiO2) nanocom-
posites plotted vs. grain concentration.
PH
group II were films of amorphous dielectric Al2O3 with
embedded nanograins of a Co45Fe45Zr10 amorphous fer-
romagnetic alloy. The main characteristics of these
groups are listed in the table. Samples of the first group
differed in that part of them were prepared in an argon
environment (subgroup I-1), while the other part was
grown in an atmosphere with nitrogen (I-2) or oxygen
(I-3). The magnetic-phase concentration varied from 34
to 68 at. %. Samples of the second group were fabri-
cated in an argon or oxygen environment. Some of
them were prepared in a dc magnetic field under
forced cooling of the substrate (subgroup II-2), and the
remainder, in zero magnetic field without forced cooling
(I-1). The concentration of ferromagnetic grains in sam-
ples of this group varied from 21 to 54 at. %. The nano-
composite film thicknesses ranged from less than 1 µm
for the (CoFeB)/(SiO2) samples to 5–10 µm for
(CoFeZr)/(Al2O3). The (CoFeB)/(SiO2) films were
deposited on glass substrates, and the
(CoFeZr)/(Al2O3) films, on ceramic substrates. The fer-
romagnetic particles grew in size from 2 to 7 nm with
increasing content of the magnetic phase. Such grain
sizes are less than the typical critical diameters separat-
ing the superparamagnetic regime from the regime with
blocked particles in granulated structures for specific
temperatures and measurement times [11, 16]. Primary
characterization of the samples was accomplished by
measuring their electrical resistivity. Figure 1 shows the
electrical resistivity of (CoFeB)/(SiO2) structures as a
function of grain concentration. This shape of the con-
centration dependences of electrical resistivity is typi-
cal of percolation systems [10].

The optical properties of granular nanocomposites
were studied by reflection ellipsometry. The choice of
reflection geometry was motivated by the strong
absorption in nanocomposites with high grain concen-
trations. The essence of the method, which is discussed
in detail, e.g., in [17], consists in measuring the ellipso-
metric angles ψ and ∆. The physical meaning of these
angles can be readily grasped from the main relation of
reflection ellipsometry

 (1)ψ i∆( )exptan rpp/rss,=
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where rpp(rss) is the amplitude reflectance for light
polarized parallel (perpendicular) to the plane of inci-
dence. Assuming the simplest model of a semi-infinite
isotropic sample in a medium with a real refractive
index of unity (air), the real and imaginary parts of the
dielectric function ε = ε1 – iε2, as well as the refractive
index n and absorption index k [(n – ik)2 = ε], can be
determined from measured ellipsometric angles using
the relation

 (2)

where ϕ is the angle of incidence.
The ellipsometric angles ψ and ∆ were measured on

a spectroscopic ellipsometer at photon energies ranging
from 0.6 to 5.4 eV. The spectral responses of the dielec-
tric functions and of the indices of refraction and
absorption were calculated from Eqs. (1) and (2).

A magnetooptical investigation of the nanocompos-
ites was performed using the linear magnetooptical
Kerr effect in polar geometry and the Faraday effect.
These phenomena are of the same nature and consist in
rotation of the plane of polarization and the appearance
of ellipticity of the light reflected (in the case of the
Kerr effect) from a medium magnetized perpendicular
to the surface or of the light transmitted through such a
medium (in the case of the Faraday effect). The angle
of rotation of the plane of polarization is determined by
both diagonal and off-diagonal elements of the permit-
tivity tensor of the medium (in the isotropic case) [18]:

 (3)

In particular, the rotation of the plane of polarization in
the polar Kerr effect, θK, can be found from the relation

 (4)

where εxy =  + , A = n3 – 3nk2 – n, and B = k3 –
3kn2 + k.

In the case of transmitted light, the rotation of the
plane of polarization is given by

 (5)

where l is the layer thickness and λ is the wavelength of
light.

Measurements were performed at photon energies
of 1.96 and 2.54 eV (helium–neon and argon lasers) in
a dc magnetic field of ±15 kOe applied perpendicular to
the sample surface. The angle of rotation of the polar-
ization plane θ of the light reflected from a magnetized
sample was measured with a polarimeter setup (Fig. 2)

ε ϕ 1 ϕ
1 rpp/rss–
1 rpp/rss+
------------------------ 
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2
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2
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using a modulation technique. All the studies were per-
formed at room temperature.

3. RESULTS AND DISCUSSION

3.1. Optical Properties

Figure 3 plots spectral responses of the real and
imaginary parts of the dielectric function of
(CoFeB)/(SiO2) nanocomposites with magnetic-phase
concentrations below (35 at. %) and above (62 at. %)
the percolation threshold. The absence of absorption at
energies above 4.2 eV is a remarkable feature observed
at all concentrations of the magnetic phase. The inset to
Fig. 3 displays the dependences of the indices of refrac-
tion n and absorption k on the concentration of CoFeB
nanograins at 3 eV. The refractive index for these nano-
structures is n ≈ 1.5 and does not depend on the mag-
netic phase concentration or photon energy. The
absorption index k and the imaginary part of the dielec-
tric function ε2 undergo the most pronounced changes
with increasing concentration in the energy range
below 4.2 eV. The nonmonotonic pattern of the spectral
response of the optical parameters observed at low
energies should apparently be assigned to the interfer-
ence occurring in nanocomposite films with a thickness
less than 1 µm. This assumption is borne out by the fact
that this effect is most clearly pronounced in samples
with a low concentration of the magnetic phase (Fig. 3a)
and, hence, with low absorption.

We calculated the spectral response of the dielectric
functions for the CoFeB alloy from the spectral
response of these functions obtained for the nanocom-
posite and available optical parameters of the matrix.
The calculation was based on the effective-medium
approximation [19] and showed that the increased
transparency observed above 4.2 eV is accounted for by
the properties of the alloy rather than of the nanocom-
posite (Fig. 4). The fact that the calculations performed

Laser Polarizer

Sample Electro-
magnet

Mirror

Faraday
modulator

Analyzer

Photo-
detector

H

PC

Fig. 2. Experimental setup for measurement of the magne-
tooptical Kerr effect. PC stands for computer.
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for different magnetic phase concentrations yielded the
same results corroborates the validity of the spectra dis-
played in Fig. 4.

The spectral and concentration relations of the
(CoFeZr)/(Al2O3) nanocomposites followed a different
pattern. Figure 5 presents graphs of the real and imagi-
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Fig. 3. Spectral response of the real (ε1) and imaginary (ε2)
parts of the dielectric function for (CoFeB)/(SiO2) nano-
composites (samples I-1) with a magnetic phase concentra-
tion of (a) 35 and (b) 62 at. %. Inset: concentration depen-
dences of the refractive index n and absorption index k for
(CoFeB)/(SiO2) nanocomposites at a photon energy of 3 eV.
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Fig. 4. Spectral response of the real, ε1 (filled symbols), and
imaginary, ε2 (open symbols), parts of the dielectric func-
tion for a Co41Fe39B20 alloy. Plotted for comparison are
spectral responses for pure iron and cobalt [20].
PH
nary parts of the dielectric function obtained for nano-
composites of series II-1 and II-2 with a grain concen-
tration of 51 at. %. It should be stressed that the absorp-
tion index of these nanocomposites does not vanish at
any concentration of the magnetic phase, which sets
this situation apart from the one observed in the
(CoFeB)/(SiO2) nanocomposites. This fact probably
indicates that the matrix plays an essential role in form-
ing the optical properties of a nanocomposite. Note that
the spectral response of (CoFeZr)/(Al2O3) is more
monotonic than that of (CoFeB)/(SiO2) samples. The
principal feature of the dielectric function spectral
responses is a clearly pronounced structurization of
spectra in the region of 3.5 eV at magnetic phase con-
centrations higher than 45 at. %. On the whole, the
spectral responses of the dielectric functions of the
nanocomposites prepared in a dc magnetic field under
substrate cooling (samples II-2) and in zero field with-
out cooling (II-1) are similar. In our opinion, the main
difference lies in that the above-mentioned structuriza-
tion of dielectric function spectra is more distinct in
samples fabricated in zero field without cooling, which
is demonstrated convincingly by Fig. 5. It should be
pointed out that, in contrast to (CoFeB)/(SiO2), the
refractive index of the (CoFeZr)/(Al2O3) nanocompos-
ites turns out to be dependent on photon energy,
decreasing slightly with an increase in this energy,
while remaining practically independent of concentra-
tion for the samples obtained in a magnetic field. Note
that, at low energies, the spectra of nanocomposites II-
1 are nonmonotonic, but this feature disappears as the
particle concentration increases. We explain this feature
in the same way as in the case of the (CoFeB)/(SiO2)
samples; namely, we assign it to interference. The
smaller interference period in the samples of
(CoFeZr)/(Al2O3) compared to that in the
(CoFeB)/(SiO2) nanocomposite correlates well with
the larger thickness of the (CoFeZr)/(Al2O3) films.
There is no interference, however, in samples II-2.

3.2. Magnetooptical Properties

Figure 6 displays concentration dependences of the
Kerr effect obtained in a field of 15 kOe with a photon
energy of 1.96 eV (solid lines) for the three types of
(CoFeB)/(SiO2) nanocomposites. Obviously, the pres-
ence of oxygen or nitrogen impurities does not have a
noticeable effect on the maximum magnitude of the
Kerr rotation angle, which is 0.25° for nanocomposites
I-1 and I-2 and 0.3° for I-3. The concentration depen-
dences also retain their general pattern for all samples.
Note the presence of a sharp maximum at concentrations
of 37, 40, and 37.5 at. % for samples I-1, I-2, and I-3,
respectively. Because the percolation threshold for these
nanocomposites was found to be about 46 at. % [12], the
observed maximum is not related to percolation pro-
cesses. This maximum lies in the range of magnetic-
grain concentrations where the spectral responses of
optical parameters behave nonmonotonically; there-
YSICS OF THE SOLID STATE      Vol. 46      No. 11      2004
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fore, this behavior may originate from an interference
phenomenon. The maximum is not associated with a
change in an off-diagonal element of the permittivity
tensor in Eq. (3), because the Faraday effect measured
by us in this concentration range has the expected
monotonic dependence on concentration (dashed line
in Fig. 6c). Faraday rotation measurements could be
performed only at magnetic-grain concentrations less
than 42 at. % because of strong absorption of light set-
ting in at higher concentrations.

The concentration dependence of the Kerr effect
measured at a photon energy of 2.54 eV (dashed curve
in Fig. 6a) is of the same character as the one observed
for 1.96 eV but is shifted relative to the latter; in other
words, the observed maximum is frequency-dependent
and, thus, is not related to variation of the magnetic
properties of the nanocomposites in the concentration
range considered.

We calculated the concentration dependence of the
rotation of the plane of polarization in reflection from a
thin nanocomposite film (Fig. 7). The calculations were
made in terms of the effective-medium approximation
[21] using Eqs. (4) and (5) and included not only the
Kerr effect for the ray reflected from the upper bound-
ary of the nanocomposite film but also the Faraday
effect for the ray transmitted through the film and
reflected from the film/substrate interface. The calcu-
lated concentration dependence of the rotation of the
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Fig. 5. Spectral response of the real, ε1, and imaginary, ε2,
parts of the dielectric function for (CoFeZr)/(Al2O3) nano-
composites obtained (a) without a magnetic field and cool-
ing (II-1) and (b) in a magnetic field under cooling (II-2).

D
ie

le
ct

ri
c 

fu
nc

tio
ns
PHYSICS OF THE SOLID STATE      Vol. 46      No. 11      20
plane of polarization revealed that interference effects
do indeed give rise to a strong enhancement of the mag-
netooptical effect at low magnetic-grain concentra-
tions. The above appears to provide a convincing argu-
ment for the observed nonmonotonic behavior of the
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netic grain concentration for (CoFeB)/(SiO2) nanocompos-
ites in a magnetic field of 15 kOe. (a) Kerr rotation for series
I-1 measured at a photon energy of 1.96 eV (solid line, filled
symbols) and 2.54 eV (dashed line, open symbols); (b) Kerr
rotation for series I-2 measured at a photon energy of 1.96 eV;
and (c) Kerr rotation (solid line, dark symbols) and Faraday
effect (dashed line, open symbols) for series I-3 measured
at a photon energy of 1.96 eV.
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concentration dependences below the percolation
threshold being closely related to the interference
effect.

Another remarkable feature was revealed in the con-
centration dependences of the Kerr effect for the
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netic field (samples II-2; solid line, open symbols) and with-
out a magnetic field (samples II-1; dashed line, filled sym-
bols).
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(CoFeZr)/(Al2O3) nanocomposites (Fig. 8). We believe
the concentration dependence of the Kerr rotation for
nanocomposites II-2, which has only one maximum
near the percolation threshold, to be typical of nano-
composites. At the same time, samples II-1 reveal a
reversal of sign of the effect at magnetic phase concen-
trations above 52 at. %. No such behavior is observed
in nanostructures of the same composition but fabri-
cated in a dc magnetic field under substrate cooling
(samples II-2). As already mentioned, the optical spec-
tra of these nanocomposites do not exhibit any radical
differences; therefore, the observed difference in the
magnetooptical properties may be assigned to a differ-
ence between the off-diagonal elements of the permit-
tivity tensor in Eq. (3) for nanocomposites prepared in
a magnetic field and without one.

It should be pointed out that the concentration
dependences for samples II-1 reveal oscillations at low
concentrations, which are not observed for samples II-
2. This behavior reminds one of the case already dis-
cussed in connection with the optical properties of
nanocomposites and is also related to interference
effects.

3.3. Magnetic Properties

Figure 9 presents magnetic field dependences of the
polar magnetooptic Kerr effect obtained on
(CoFeB)/(SiO2) and (CoFeZr)/(Al2O3) nanostructures
for magnetic phase concentrations below and above the
percolation threshold. The pattern of the field depen-
dences measured at low concentrations (in particular,
the absence of hysteresis and of saturation in a field of
15 kOe) is typical of an ensemble of superparamagnetic
particles. Magnetization curves of a superparamagnet
are described, similar to the case of a paramagnetic
material, by the Langevin function [11] with the mag-
netic moment of a paramagnetic atom replaced by the
magnetic moment of a grain given as a single-domain
ferromagnetic particle:

 (6)

where µ is the magnetic moment of the grain, H is the
magnetic field strength, and T is the temperature.

Using function (6), we described the field depen-
dences of the Kerr effect for all types of nanocompos-
ites under study for concentrations below the percola-
tion threshold. Thus, within this concentration region,
these nanocomposites can be considered as an ensem-
ble of noninteracting ferromagnetic single-domain par-
ticles with a negligible size dispersion for each concen-
tration. At higher nanoparticle concentrations, the dis-
tances between the particles decrease, thus increasing
the role of interactions between them and favoring the
formation of clusters and chains, as a result of which
the nanocomposites are no longer superparamagnets.
The appearance of a weak hysteresis and saturation,
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which become particularly pronounced in nanocom-
posites I-1, supports the existence of ferromagnetism in
the nanocomposites above the percolation threshold.

We used Eq. (6) to analyze the field dependences of
the Kerr rotation for samples with grain concentrations
below the percolation threshold. The analysis showed
that an increase in the magnetic phase concentration
brings about an increase in the magnetic moment of the
grains, which is caused by their growth in size. The
presence of oxygen or nitrogen impurities in the
(CoFeB)/(SiO2) nanocomposites affects the grain mag-
netic moment substantially by reducing it. Because
hysteresis and saturation at high concentrations are
more pronounced in samples that are free of impurities,
one may conclude that the presence of impurities also
weakens intergrain interaction.

4. CONCLUSIONS

The main results of our study of the optical, magne-
tooptical, and magnetic properties of (CoFeB)/(SiO2)
and (CoFeZr)/(Al2O3) nanocomposites can be summed
up as follows.

(i) It has been established that, at photon energies
above 4.2 eV, (CoFeB)/(SiO2) nanocomposites are
transparent, irrespective of the magnetic-grain concen-
tration. The CoFeB alloy was also shown to be trans-
parent in this energy region. The spectral responses of
the dielectric functions of the (CoFeZr)/(Al2O3) com-
posites are more smooth, with a distinct structure
appearing in them only above the percolation threshold.

(ii) A feature has been revealed in the concentration
dependences of the Kerr effect in (CoFeB)/(SiO2)
nanocomposites, both containing oxygen and nitrogen
impurities and without them; this feature can be reli-
ably related to interference effects.

(iii) The diagonal elements of the permittivity tensor
of the medium for the (CoFeZr)/(Al2O3) composite
samples prepared in a magnetic field and without one
have similar spectra. Therefore, the observed difference
in behavior of the concentration dependences of the
Kerr rotation between the two types of
(CoFeZr)/(Al2O3) nanocomposites suggests a substan-
tial change in the off-diagonal elements of the permit-
tivity tensor. More comprehensive information can be
obtained from a study of the spectral response of the
Kerr effect for these nanocomposites.

(iv) The maximum magnitude of the Kerr effect in a
field of 15 kOe is 0.2°–0.3°. This should be compared
with the saturated Kerr effect in pure Co and Fe, which
is about 0.32° and 0.43°, respectively [22]. In all nano-
composites, the Kerr rotation reaches a maximum (if
we neglect local interference maxima in the region of
low concentrations) in the concentration region corre-
sponding to the percolation threshold.

(v) Below the percolation threshold, the nanocom-
posites under study behave like superparamagnets with
no appreciable dispersion in grain size. Above the per-
PHYSICS OF THE SOLID STATE      Vol. 46      No. 11      200
colation threshold, the interaction between grains plays
a substantial part, with the presence of oxygen and
nitrogen impurities reducing the strength of this inter-
action. Impurities also reduce the magnetic moment of
the grains.
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Abstract—In the framework of a model of zero-range potential, the problem of bound states of an electron in
the field of two D0 centers (a two-center problem) in a semiconductor quantum wire is considered in the pres-
ence of a longitudinal magnetic field. It is shown that the magnetic field produces a significant shift of g and u
terms and stabilizes the  states in quantum wires. It is found that, in the case of transverse polarization of
light, the spectral dependence of the photoionization cross section of a  center exhibits the quantum-con-
fined Zeeman effect with strongly pronounced oscillations of interference nature. © 2004 MAIK “Nauka/Inter-
periodica”.
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1. INTRODUCTION

Experiments show [1] that, in low-dimensional sys-
tems under certain conditions, reactions of the type
D0 + e  D– are possible; as a result, neutral shallow
donors bind an additional electron to form so-called D–

states. In the presence of a confinement potential, such
states open new possibilities for studying correlation
effects in low-dimensional systems [1]. In this study,
we consider a situation where not all D0 positions can
be effectively filled by the electron transfer from the
barrier. In this case, negative molecular ions  can be
formed depending on the distance R between the D–

centers. We should note that the system of a weakly
bound electron in the field of two identical potential
centers is also encountered in alkali halide crystals [2],
where it is called an M– color center and is formed by
an electron in the field of a neutral M center (two close
F centers). It is known [3, 4] that a D– center can be
modeled by an electron in the field of a zero-range
potential. We have shown previously [5, 6] that, by
using the method of zero-range potential, we can obtain
an analytical solution for the wave function and binding
energy of an electron localized on a D0 center and also
investigate the impurity magnetoabsorption of light in a
quantum wire (QW) with a parabolic confinement
potential. Modeling of the negative molecular ion 
and investigation of its magnetooptical properties in a
QW are also of interest. Since the  system is sym-
metric with respect to its center, the electron states for
a fixed distance R between the D0 centers must be either
symmetric (g terms) or antisymmetric (u terms). Obvi-
ously, the splitting of g and u terms, degenerate at large
R, is determined by R and, as a consequence of lower
dimensionality, by the parameters of the QW. A mag-
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D2
–

1063-7834/04/4611- $26.00 © 22171
netic field applied along the QW axis plays the role of
a variable parameter, which can be used to change the
confinement geometry of the system and, hence, to con-
trol both the magnitude of the splitting and the energies
of optical transitions [6].

The aim of this study is to trace, in the context of the
model of zero-range potential, the evolution of terms
with varying longitudinal magnetic field and also to
investigate the structure of the magnetooptical spec-
trum of a QW related to electron optical transitions
from the state of the g term to hybrid quantized states
of the QW. We assume that the QW has the form of a
circular cylinder whose base radius L is much smaller
than its length Lz (L ! Lz). To describe one-electronic
states in a QW, we use a parabolic confinement poten-
tial

 (1)

where ρ ≤ L; ρ, φ, and z are cylindrical coordinates;
m* is the effective electron mass; and ω0 is the charac-
teristic frequency of the confining potential of the QW.

For the vector potential A(r) of the magnetic field
longitudinal with respect to the QW axis, we choose the
symmetric gauge, so that A = (–yB/2, xB/2, 0). To
describe the one-electron states (unperturbed by impu-
rities) in a longitudinal magnetic field, we write the
Hamiltonian of the model considered (in the cylindrical
system of coordinates) as [6]

 (2)

V ρ( ) m*
2

-------ω0
2ρ2

,=

Ĥ
η2

2m*
----------- 1

ρ
--- ∂

∂ρ
------ ρ ∂

∂ρ
------ 

  1

ρ2
----- ∂2

∂φ2
--------+ 

 –=

–
iηωB

2
------------ ∂

∂φ
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2
------- ω0

2 ωB
2

4
-------+ 

  ρ2
Ĥz.+ +
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Here, ωB = |e |B/m* is the cyclotron frequency, e is the

elementary charge, and  = (–η2/2m*)∂2/∂z2.
A two-center potential is modeled by a superposition

of zero-range potentials of strengths γi = 2πη2/αim*
(i = 1, 2):

 (3)

where Ri = (ρi , φi , zi) are the coordinates of the D0 cen-
ters and αi is determined by the energy Ei of the elec-
tron state localized on the same D– center in the bulk
semiconductor.

The bound states in a one-dimensional system in the
presence of a longitudinal magnetic field are consid-
ered in Section 2. Section 3 contains the results of cal-
culating the photoionization cross section of a  cen-
ter in a longitudinal magnetic field and the magnetic
field–dependent impurity absorption.

2. TERMS OF A  MOLECULAR ION 
IN A LONGITUDINAL MAGNETIC FIELD

The electron wave function Ψλ(r, R1, R2) localized at
the  center and satisfying the Lippmann–Schwinger
equation for the bound state can be written as a linear
combination,

Ĥz

Vδ r R1 R2, ,( ) γiδ r Ri–( ) 1 r Ri–( )∇ r+[ ] ,
i 1=

2

∑=

D2
–

D2
–

D2
–

0.2

0.1

0 0.15 0.30 0.45 0.60

5

6

3

4

1

2

|E
λ(Q

W
) |,

 e
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R*12 = R12/ad

Fig. 1. Dependence of the electron binding energies on the
distance between the D0 centers at L = 65 nm, U0 = 0.1 eV,
and Ei = 0.01 eV for (1, 3, 5) the g term and (2, 4, 6) the u
term; B is equal to (1, 2) 0, (3, 4) 10, and (5, 6) 20 T.
PHY
 (4)

where G(r, ri; Eλ) is the one-electron Green function
corresponding to a source at the point ri and to the
energy Eλ = –η2λ2/(2m*) (Eλ is the bound state energy
of an electron in the field of two D0 centers in the pres-
ence of a longitudinal magnetic field and is measured
from the bottom of the two-dimensional oscillator well)
[5]. From the mathematical point of view, this two-cen-
ter problem is reduced to finding nontrivial solutions of
a homogeneous system of algebraic equations for the
coefficients ci [2], which leads to a transcendental equa-
tion for Eλ. In the case where γ1 = γ2 = γ, this equation
is separated into two equations, which determine a
symmetric (g term) and an antisymmetric (u term) elec-
tron state. With allowance for an explicit form of the
one-electron Green function in a cylindrical system of
coordinates [5] (the D0 centers are located on the QW
axis, Ri = (0, 0, zi)), these equations can be written in
the form

(5)

where the plus sign corresponds to symmetric states (g
term) and the minus sign, to antisymmetric states (u

term); η2 = |Eλ |/Ed; β = L*/( ); U0 = m* /2 is
the amplitude of the confinement potential of the QW;

 = U0/Ed; L* = 2L/ad;  = |Ei |/Ed; w =

;  = R12/ad; R12 = |z1 – z2 |; and a* =
aB/ad (ad is the effective Bohr radius, Ed is the effective

Bohr energy, and aB =  is the magnetic
length).

The dependence of the terms on the magnetic field
B for an InSb-based QW as obtained from Eqs. (5) is
shown in Fig. 1 for the case of Eλ < 0 (binding energy

 of an electron localized at a  center in a QW

is defined as  = E0, 0 + |Eλ |, where E0, 0 =

ηω0  [5]). In Fig. 1, we see that, in the

case of the g term,   ∞ as   0; i.e., a
sort of “falling to the center” is observed [27]. On the
contrary, for a state with a smaller binding energy (u

term),  decreases as   0. Thus, with

Ψλ r R1 R2, ,( ) ciγiG r ri; Eλ,( ),
i 1=

2
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decreasing , g and u terms (degenerate at  ≥ 1)
are split. In Fig. 1, we can also trace the evolution of the
g and u terms as the magnetic field is varied (compare
curves 1, 2 and 5, 6): with increasing magnetic field, the
binding energy of the  center grows and the condi-
tions of existence of a g state become more restrictive
(compare curves 1, 5). Figure 2 shows the magnetic
field dependence of the splitting |Eλg – Eλu | between the
g and u terms. The sensitivity of the splitting to a mag-
netic field is important for experimental studies of the
structure of the absorption band due to electron transi-
tions between g and g states of the  center. We see
that the magnetic field stabilizes  states in a QW. The
possibility of controlling the energies of optical transi-
tions in a magnetic field is of interest for the technology
of laser structures and also for photodetectors with con-
trolled sensitivity in the region of impurity optical
absorption.

3. CALCULATION OF THE PHOTOIONIZATION 
CROSS SECTION OF A MOLECULAR ION 

Now, we consider the photoionization of the 
center related to an electron optical transition from the
g state of the QW to states of the quasidiscrete spectrum
in a longitudinal magnetic field. The effective Hamilto-

nian of the interaction with the field of a light wave 
in the case of longitudinal polarization eλs (with respect
to the direction of the magnetic field) is given by

 (6)

where λ0 is the local field factor, α* is the fine structure
constant including the permittivity ε, I0 is the intensity
of light, ω is the frequency of light, q is the wave vector,
and p is the electron momentum operator. According to
Eq. (4), the electron wave function in the g state of the

 center can be written as

 (7)

where z1 and z2 are the coordinates of the D0 centers on
the QW axis. The normalizing factor C is defined as

R12
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Here, ζ(s, ν) is the generalized zeta-function, 2F1(α, β;
γ; z) is the Gauss hypergeometric function, and Φ(z, s,
ν) =  + n)–szn (|z | < 1, ν ≠ 0, –1, –2, …) [8].

The matrix element  determines the oscillator
strength of the dipole optical transition from the g state
Ψg(ρ, z; z1, z2) to states of the quasidiscrete spectrum of
the QW Ψn, m, k(ρ, φ, z) and can be written as

 (9)

where n = 0, 1, 2,… is the quantum number specifying
Landau levels and k is the projection of the quasimo-
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Fig. 2. Magnetic field dependence of the splitting between
g and u terms for L = 65 nm, U0 = 0.1 eV, Ei = 0.01 eV, and
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mentum vector of an electron in the QW on the z axis.
Applying a standard calculation procedure [6], the pho-
toionization cross section in the dipole approximation
can be found to be

 (10)

where fn(X, η) = , X = ηω/Ed,

σ0 = 26π3α*λ0 , and N = [A] is the integer part of the
number A = β(X – η2)/(2w) – 1/2.

Figure 3 shows the spectral dependence of  cal-
culated by using Eq. (10) for an InSb-based QW. We
see that, for the longitudinal polarization of light, the
magnetoabsorption spectrum contains resonant peaks
with strongly pronounced oscillations, which are asso-
ciated with the interference distribution (9). Simulation
shows that the oscillation period increases linearly with
decreasing distance between the D0 centers and weakly
depends on the magnetic field. The resonant peaks
exhibit periodicity determined by the hybrid frequency

σg
s( )

 = σ0w
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2
4X
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,

X η2
– β 1–

w 2n 1+( )–

ad
5

σg
s( )
PH
Ω =  and correspond to optical electron
transitions from the g state of the  center to a state of
the quasidiscrete spectrum of the QW with a magnetic
quantum number m = 0. In a magnetic field, the absorp-
tion edge is shifted to the short-wave region of the spec-
trum (compare curves 1, 2). It is seen in Fig. 3 that, in
the case of B = 20 T, this shift exceeds 0.05 eV and

obeys the law XS =  + β–1w. The oscillation ampli-
tude appreciably decreases, and the period of the
appearance of peaks increases. We consider the absorp-
tion of light by the system QW–  center in the case of
B ⊥  eλ (eλ is the unit vector of light polarization). The
effective Hamiltonian of interaction with the field of an

optical wave  in the cylindrical system of coordi-
nates is written as

(11)

where θ is the polar angle of the unit vector of trans-
verse polarization eλt in the cylindrical system of coor-
dinates and q = (0, 0, qz).

In the dipole approximation, the matrix element 
of the optical transition considered can be written as
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Calculating the matrix element in Eq. (12) involves
calculation of an integral of the type

 (13)

which determines the selection rules for the magnetic
quantum number m. In Eq. (13), δm, ±1 is the Kronecker
delta, the minus sign in the exponent in exp(µiθ) cor-
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m = –1. The photoionization cross section  of the
 center in the case of transverse polarization of light

(with respect to the direction of the magnetic field) in
the dipole approximation can be written as

 (14)
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where fn, m(X, ηg) = X –  – ma*–2 – β–1w(2n + |m | +

1), σ0 = 27π3α* , and N = [D] is the integer part of

the number D = β(X –  + a*–2)/(2w) – 1.

Figure 4 shows the spectral dependence of the pho-

toionization cross section  of the  center calcu-
lated by Eq. (14) for an InSb-based QW. We can see
that, in a magnetic field, the resonant peaks A and B
(curve 1) are split into doublets A1, A2 and B1, B2
(curve 2). The intervals between the peaks in a Zeeman
doublet are filled with oscillations of interference
nature. The distance between the resonant peaks form-
ing a doublet is equal to ηωB; i.e., it is determined by
the cyclotron frequency. The doublets are located on the
absorption curve with a period ηΩ . Simulation shows
that the oscillation period in a doublet and between the
doublets increases exponentially with decreasing dis-
tance between the D0 centers and varies only slightly
with magnetic field.

4. CONCLUSIONS

Our results have shown that a magnetic field applied
along the QW axis acts as a variable parameter, which
can be used to effectively control both the binding
energy of  centers and their magnetooptical proper-
ties. This is important for creating photosensitive struc-
tures with controlled parameters. For a structure con-
sisting of a set of QWs without tunnel coupling
between them, the impurity magnetoabsorption coeffi-
cient K (t)(ω) for transverse polarization can be obtained
from Eq. (14) by averaging over all possible values of
the parameter . Taking into account that the contri-

bution from large values of  is exponentially small,
we can write

ηg
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Fig. 3. Spectral dependence of the photoionization cross

section of a  center in an InSb-based QW for L = 65 nm,

U0 = 0.1 eV, Ei = 0.01 eV, and R12 = 16 nm; B is equal to
(1) 0 and (2) 20 T.
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where V is the QW volume,  is the period of the
structure given in units of the effective Bohr radius,

f0(X, η) = ( ) βω–1 exp(–δT(X –
η)) is the quasiequilibrium distribution function for
electrons in a QW [9], δT = Ed/(kT), and ne is the elec-
tron concentration.

For an InSb-based QW, the spectral dependence of
the impurity magnetoabsorption coefficient for light of
transverse polarization in relative units, K (t)(ω)/K0

(where K0 = σ0/ , is shown in Fig. 5 for the optical
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Fig. 4. Spectral dependence of the photoionization cross sec-
tion of a  center in an InSb-based QW for transverse polar-
ization of light calculated for L = 65 nm, U0 = 0.1 eV, Ei =
0.01 eV, and R12 = 16 nm; B is equal to (1) 0 and (2) 20 T.
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Fig. 5. Spectral dependence of the impurity magnetoabsorp-
tion for transverse polarization of light in relative units for
the optical transition with the maximum oscillator strength
(n = 0) in the case of an InSb-based QW for L = 65 nm, U0 =
0.1 eV, Ei = 0.01 eV, B = 20 T, and T = 7 K.
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transition with the maximum oscillator strength (n = 0).
By comparing Figs. 4 and 5, we see that the resonant
peaks A1 and A2 in the doublet (Fig. 4) are broadened
into bands (Fig. 5); the oscillations in the doublet are

also broadened. To estimate (ω) in the doublet
for an InSb-based QW, we used the following numer-
ical values of the parameters (see Fig. 5): L = 65 nm,
U0 = 0.1 eV, Ei = 0.001 eV, ne = 1.4 × 1016 cm–3, B =

20 T, T = 7 K, and Lc = 70 nm. The result is (ω) ≈

3.6 × 103 cm–1 and (ω) ≈ 5.4 × 103 cm–1 in the max-
ima corresponding to m = –1 and m = +1, respectively.
In order of magnitude, these values are comparable to
the absorption coefficient for direct interband transi-
tions in a multiple quantum-well structure in the
absence of a quantizing magnetic field [10].
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Abstract—The absorption spectra (T = 295 K), photoluminescence spectra (T = 5– 295 K), and thermally stim-
ulated luminescence curves (T = 5–295 K) of poly(di-n-hexylsilane) (PDHS), poly(methyl-n-hexylsilane)
(PMHS), poly(methylcyclohexylsilane) (PMCHS), and poly(methylphenylsilane) (PMPS) films are measured.
The results obtained are analyzed within the model of random hoppings of excitons and charge carriers over
sites with a Gaussian distribution of the density of states. It is established that the variance parameters of the
density-of-state functions of excitons and charge carriers characterize the energy disorder and depend on the
chemical nature of side groups of the polymer, the conformation of segments of the main chain of the polymer
macromolecule, and the temperature. At room temperature, the energy disorder in crystalline regions of the
PDHS film is explained in terms of fluctuations in the number of monomer units in chain segments. In polymers
with nonsymmetric side groups (such as PMHS, PMCHS, and PMPS), the disorder is more pronounced due to
the formation of conformers in which silicon atoms occupy different positions in the chain. In the PMPS poly-
mer, the disorder occurs through one more mechanism associated with fluctuations of the angle between the
plane of the phenyl ring and the axis of the polymer segment due to mixing of σ- and π-electron states. © 2004
MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Polysilanes of the general formula  are orga-

nosilicon polymers in which the main chains of macro-
molecules consist of silicon atoms linked by σ bonds
and R1 and R2 are side organic groups. These com-
pounds are characterized by absorption and emission in
the near-UV and visible spectral ranges [1–4], large
quantum yields of photoluminescence (PL) [2] and
photogeneration of charge carriers [3], the high mobil-
ity of holes [3, 5, 6], and nonlinear optical properties
[2]. Polysilanes are materials used in the design of elec-
trophotographic photoreceptors for xerography [6, 7]
and photorefractive media [8]. Moreover, polysilane
films have been widely used as transferring or light-
emitting layers in different types of electroluminescent
diodes [9–11].

The lowest lying excited state of the polysilane mac-
romolecule is associated with the 1(σσ*) transition of
an electron delocalized along the segment of the main
polymer chain. The polymer segments contain different
numbers of monomer units and are separated by con-
formational defects that are formed when monomer
units are rotated about silicon–silicon single bonds [2,
4]. The chain segments of the polymer also form trans-
ferring centers for holes [5, 6]. An increase in the num-
ber of monomer units and, correspondingly, in the
length of the polymer segment leads to a decrease in the
energy of the 1(σσ*) transition and the ionization

–Si–[ ] n

R2

–
–R1
1063-7834/04/4611- $26.00 © 22177
potential [2, 4, 12]. Therefore, polysilanes are disor-
dered systems in which the distribution of energy states
of excitons and charge carriers are characterized by
density-of-state functions. It should be noted that the
deviation of the number of monomer units in a polymer
segment from the mean number is a random quantity.
On this basis, in the model proposed by Bassler [6, 13–
15], it is assumed that these functions can be repre-
sented by Gaussian distributions with the variance
parameters σex and σcc for excitons and charge carriers,
respectively. The proper choice of this type of distribu-
tion function for polysilanes is also confirmed by the
experimentally observed Gaussian shape of the absorp-
tion bands of these polymers [13, 16] and thermally
stimulated luminescence (TSL) curves [11, 17].

It is known that the photophysical and transport
properties of polysilanes depend on the conformation
of the main chain of macromolecules and the chemical
nature of the side groups [1–5]. In the present work, we
revealed and analyzed a correlation between the chem-
ical nature of side groups, the conformation of the main
chain of the macromolecule, and the variance parame-
ters σex and σcc, which characterize the energy disorder
in the polymer. For this purpose, we measured the
absorption (T = 295 K) and photoluminescence (T = 5–
295 K) spectra and thermally stimulated luminescence
curves (T = 5–295 K) of poly(di-n-hexylsilane)
(PDHS), poly(methyl-n-hexylsilane) (PMHS),
poly(methylcyclohexylsilane) (PMCHS), and
poly(methylphenylsilane) (PMPS) films.
004 MAIK “Nauka/Interperiodica”
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2. SAMPLE PREPARATION 
AND EXPERIMENTAL TECHNIQUE

Polymer films a few micrometers thick were pre-
pared by pouring toluene solutions of polymers (at a
content of 3–5 wt %) onto fused silica substrates with
subsequent drying at room temperature in air. The
absorption spectra (T = 295 K) were recorded on a
KSVU-23 spectrometric computer complex, and the
photoluminescence spectra (T = 5–295 K) were mea-
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Fig. 1. (1, 3, 5, 7) Absorption spectra and (2, 4, 6, 8) photo-
luminescence spectra of (1, 2) PDHS, (3, 4) PMHS, (5, 6)
PMCHS, and (7, 8) PMPS films at a temperature T = 295 K.
Photoluminescence spectra were excited under exposure to
light at a wavelength λex = 313 nm.

Spectral characteristics of PDHS, PMHS, PMCHS, and
PMPS films and the variance parameters of the density-of-
state functions for excitons and charge carriers (all quantities
are given in electron-volts)

Polymer σex
(295 K)

σex
(5 K) σcc

PDHS 3.35 0.10 0.10 0.04 0.05

PMHS 3.86 0.15 0.19 0.04 0.06

PMCHS 3.76 0.12 0.17 0.07 0.09

PMPS 3.67 0.15 0.20 0.08 0.10

E0
ABS E0

ABS Em
PL–
PH
sured on an SDL-1 spectrometer. The luminescence
spectra were excited with the use of a DRSh-250-3
high-pressure mercury lamp through a filter transmit-
ting a set of lines at the wavelength λex = 313 nm for an
excitation power density of less than 0.1 mW cm–2. This
made it possible to significantly reduce the photode-
struction of the polymer films at high temperatures [11,
18, 19]. The low-temperature measurements were per-
formed using an optical temperature-controlled flow
nitrogen–helium cryostat with an automatic system for
controlling and stabilizing the temperature.

The thermally stimulated luminescence curves were
measured as follows: the samples placed in the cryostat
at a temperature T = 5 K were irradiated with a DRSh-
500M mercury lamp at an excitation wavelength λirr =
313 or 365 nm for 60 s, were allowed to stand in the
dark at this temperature until the isothermal recombina-
tion luminescence decayed, and were then heated at a
constant rate of 0.15 K s–1. The integrated intensity of
thermally stimulated luminescence was measured on an
automated setup with the use of an FÉU-106 photomul-
tiplier operating in a photon-counting mode. In order to
determine the activation energies of charge-carrier
traps, continuous heating of the sample was modulated
by weak temperature oscillations. The activation ener-
gies Ea in each thermal cycle were calculated from the
relationship

 (1)

where ITSL(T) is the thermally stimulated luminescence
intensity and k is the Boltzmann constant.

3. EXPERIMENTAL RESULTS

At T = 295 K, the absorption spectrum of the PDHS
film (Fig. 1, curve 1) consists of two bands with max-

ima at  ≈ 3.35 and 3.91 eV. These bands are asso-
ciated with the 1(σσ*) transitions in chain segments that
adopt trans planar and disordered conformations,
respectively [2, 3]. Unlike the absorption spectrum of
the PDHS films, the spectra of the PMHS, PMCHS, and
PMPS films at T = 295 K contain only the band of the
1(σσ*) transition with maxima at  ≈ 3.95, 3.79,
and 3.68 eV, respectively (Fig. 1, curves 3, 5, 7) [3, 11,
19, 20]. Moreover, the spectrum of the PMPS film

involves a band at  ≈ 4.51 eV, which is assigned to
the 1(ππ*) transition in side phenyl groups. The shape
of the lowest lying absorption bands for the studied
polymers was approximated by the Gaussian function

 (2)

where D(E) is the optical density and  is the energy
at the maximum of the Gaussian function. The parame-

ters  and σex (295 K) are listed in the table.

Ea T( ) d ITSL T( )ln[ ] /d 1/kT( ),–=
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At T = 295 K, the photoluminescence spectra of the
PDHS, PMHS, and PMCHS films (λex = 313 nm) con-

sist of one band at  ≈ 3.25, 3.67, and 3.59 eV with
the half-widths Γex ≈ 0.11, 0.18, and 0.15 eV, respec-
tively (Fig. 1, curves 2, 4, 6). The photoluminescence
spectrum of the PMPS film is composed of two bands,
namely, a relatively narrow band (Γex ≈ 0.19 eV) at an

energy  ≈ 3.47 eV and a broad band with a maxi-
mum at approximately 2.60 eV (Fig. 1, curve 8). The
bands in the spectra of the PDHS, PMHS, and PMCHS
films and the narrow band in the spectrum of the PMPS
film are bathochromically shifted with respect to the
lowest lying band in the absorption spectra and corre-
spond to the luminescence of excitons localized at long

segments [11, 18, 19, 21]. The values of (  – )
are presented in the table. The band with a maximum at
approximately 2.60 eV in the spectrum of the PMPS
film is associated with the luminescence of defects
formed as a result of the cross-linking between polymer
chains [11, 18, 22].

A decrease in the temperature in the range below
room temperature leads to a shift in the maximum of
the exciton photoluminescence band (Fig. 2), a
decrease in the half-width of the band (at T = 5 K, Γex ≈
0.045, 0.047, 0.084, and 0.092 for the PDHS, PMHS,
PMCHS, and PMPS films, respectively), and the
appearance of a new broad band with a maximum at
2.99 eV in the spectrum of the PMPS film at T < 40 K.
This band is assigned to the luminescence from the
1(σπ*) state, which is formed upon transfer of a π elec-
tron from a chain segment to the π* orbital of the side
phenyl group [11].

The thermally stimulated luminescence curves for
the PDHS, PMHS, PMCHS, and PMPS films are broad
asymmetric bands with maxima at temperatures Tm ≈

Em
PL
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Fig. 2. Temperature dependences (T) for (1) PDHS,

(2) PMPS, (3) PMCHS, and (4) PMHS films.
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55, 70, 85, and 95 K (Fig. 3) and coincide with those
obtained earlier for the PMCHS [17] and PMPS [11, 17,
22] films. The activation energies of traps at the maxi-
mum of the thermally stimulated luminescence bands
were determined by the fractional thermoluminescence

technique:  ≈ 0.10, 0.13, 0.19, and 0.21 eV for the
PDHS, PMHS, PMCHS, and PMPS films, respectively.

4. DISCUSSION

Let us analyze the obtained results within the model
of random hoppings of excitons and charge carriers
over sites with a Gaussian distribution of the density of
states [6, 13–15]. In the framework of this model, it is
assumed that the hopping rate v ij between the ith and jth
sites with the energies Ei and Ej depends only on param-
eters characterizing the overlap of the electron wave
functions of the sites at an energy Ej < Ei. Moreover, an
additional factor exp[–(Ej – Ei)/kT] is introduced into
the expression for v ij at Ej > Ei. The fact that, unlike
charge carriers, excitons have a finite lifetime is taken
into account. In [6, 13–15], it was demonstrated that, at
low temperatures, excitons and charge carriers relax to
tail states and, with time, the distribution of the occupa-
tional density of states also takes a Gaussian shape with
the variance parameters σex and σcc equal to those for
the density-of-state functions of excitons and charge
carriers, respectively. The investigations performed in
[13, 16] by selective spectroscopy revealed that the lin-
ewidth of the hole burned by a laser in an inhomoge-
neously broadened absorption band for a PDHS solu-
tion is equal to 0.5 meV at 1.4 K, the intensity of bands
corresponding to the vibronic transitions in the photo-
luminescence spectra of PDHS and PMPS is relatively
low, and the shift between the maxima of the absorption
and photoluminescence bands for long segments of

Em
TSL

0.5

100 200
T, K

1.0

0

ITSL, arb. units
1 2 3 4

Fig. 3. Thermally stimulated luminescence curves for
(1) PDHS, (2) PMHS, (3) PMCHS, and (4) PMPS films.
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PDHS does not exceed 1 meV. Therefore, the shape of
the exciton photoluminescence band for polysilanes
coincides with the shape of the occupational-density-
of-state function of excitons and the following relation-
ships hold in the limit T  0 [13]:

 (3)

 (4)

At a finite temperature T0, inequality (4) is also satisfied
in the case when the dynamic equilibrium between exci-
tons and phonons is not attained, i.e., at σex(T0)/kT0 > 2
[13].

It is known that the photoirradiation of polysilane
films into the absorption band results in the generation
of electron–hole pairs [3]. In the absence of impurities
and defects with low ionization potentials, mobile
charge carriers (holes) at low temperatures are local-
ized at the longest segments of the main chain and
exhibit an energy distribution described by the occupa-
tional-density-of-state function of charge carriers. Sub-
sequent heating of the film in the dark leads to the ther-
mal release of trapped holes, and their radiative recom-
bination with electrons brings about the thermally
stimulated luminescence. In order for the hole to be
released from the trap and to reach a recombination
center, it should be thermally activated to a transport
energy Etr. According to Hartenstein and Bassler [23],
in the medium with a Gaussian distribution of the den-
sity of states, the energy Etr is less than the energy cor-
responding to the maximum of the density-of-state
function of excitons by σcc. By assuming that the acti-
vation energy at the maximum of the thermally stimu-
lated luminescence band measured after photoirradia-
tion of the sample at T = 5 K is equal to the difference
between the energy corresponding to the maximum of
the occupational-density-of-state function of charge
carriers and the energy Etr at T  0, the parameter σcc
can be determined from the formula [17]

 (5)

Here, ∆t = 103 s is the time between the photoirradiation
of the sample and the measurement of the thermally
stimulated luminescence curve and t0 ≈ 10–13 s is the
residence time of a charge carrier at a transport center
[14, 15] in an energetically ordered medium.

The table presents the parameters σex(5 K) and σcc
determined from the photoluminescence spectra and
the thermally stimulated luminescence curves with the
use of formulas (3) and (5), respectively. It can be seen
from the table that the relationship σcc ≈ 1.3σex(5 K) ≈
1.1Γex(5 K) is satisfied for all the polymers. This indi-
cates that uncontrollable impurities and structural
defects in the studied samples do not substantially
affect the parameters σex(5 K) and σcc. Note that the
parameters σcc determined in the present work for the

Γ ex 1.2σex,≈
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PDHS, PMCHS, and PMPS films by the thermally stim-
ulated luminescence method are in good agreement with
the analogous parameters (0.04, 0.08, and 0.09 eV,
respectively) obtained in [6, 13] from the activation ener-
gies of hole mobility. On the other hand, the parameters
σex(5 K) evaluated in the present work for the PDHS and
PMPS films are approximately 1.3 times larger than
those given in [13]. Most likely, this difference is associ-
ated with differences in the sample preparation condi-
tions, because the absorption and photoluminescence
spectra depend on the thickness, annealing temperature,
and annealing time of films [2, 3, 19, 22, 24].

As can be seen from the table, an increase in the
temperature from 5 to 295 K leads to an increase in the
parameter σex. This increase is explained by the broad-
ening of the absorption and photoluminescence bands
(see, for example, [1, 20, 21]). It is known that the tem-
perature broadening of the bands of the exciton transi-
tions is caused by the enhancement of the interaction
between excitons and phonons [25, 26]. Slutsker et al.
[27] investigated the mechanisms of reversible thermal
deformation in flexible-chain and rigid-chain crystal-
line polymers and showed that, with an increase in the
temperature, trans–gauche conformational transitions
in macromolecules can occur in amorphous regions of
the polymer in a devitrified state. Since the σ conjuga-
tion in polysilanes is determined by the overlap of the
sp3 orbitals of silicon atoms along the main chain, the
energy of the 1(σσ*) transition is very sensitive to
changes in the conformation of the main chain [2–4].
Therefore, the additional temperature broadening of the
absorption and photoluminescence bands of polymers
in the devitrified state can be associated with the fluctu-
ations in the energy of the 1(σσ*) transition due to ther-
mally induced rotations of monomer units about sili-
con–silicon single bonds upon the transformation of
segments into a disordered conformation.

It can be seen from the data presented in the table
that, in the PDHS, PMHS, PMCHS, and PMPS films at
295 K, dynamic equilibrium between excitons and

phonons is not attained and (  – ) = (1.0–
1.4)σex(295 K); i.e., inequality (4) is satisfied. This
implies that, in the polymers at room temperature, the
coupling of excitons with phonons is weak and the
bathochromic shift between the absorption and photo-
luminescence bands is associated with the exciton
migration over the chain fragments [1–4, 13, 15]. It was
previously demonstrated in [2, 3, 19, 20] that the loca-
tion of the lowest lying absorption band at the maxi-
mum in the spectra of the PDHS, PMHS, PMCHS, and
PMPS polymers depends on steric factors, which affect
the conformation of the main chain and the number of
monomer units in segments, and also on the mixing of
states of the σ and π electrons in PMPS. Now, we dwell
on the relation between the chemical nature of side
groups in macromolecules, the conformation of chain
segments, and the parameters σex(295 K) and σex(5 K).

E0
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As is known, the PDHS film has an amorphous–
crystalline structure (upon deposition on an oriented
substrate, the degree of crystallinity can be as high as
65% [24]) and the macromolecular chain at room tem-
perature can exhibit a trans planar or disordered confor-
mation [2, 3]. These two conformations are responsible

for the absorption bands at  ≈ 3.35 and 3.91 eV,
respectively (Fig. 1, curve 1). In segments with the
trans planar conformation, side n-hexyl groups are
characterized by a crystal packing. The transition from
the trans planar conformation to the disordered confor-
mation occurs at T ≈ 315 K and is associated with melt-
ing of the packing of side groups. Upon subsequent
cooling of the film, the side groups begin to crystallize
at T ≈ 300 K. This results in the rotation of monomer
units about the silicon–silicon bonds, the ordering of
silicon atoms in the chain, and the formation of seg-
ments with the trans planar conformation. Therefore,
the energy disorder in crystalline regions of the PDHS
film at T < 300 K is caused only by the fluctuations of
the number of monomer units in segments and the
parameter σex(295 K) has a minimum value (see table).
When one n-hexyl group in each monomer unit is
replaced by a methyl group, the van der Waals interac-
tion between the side groups becomes weaker and the
chain segments adopt a disordered conformation in the
completely amorphous PMHS film, which at room tem-
perature is in the devitrified state [20]. As a conse-
quence, compared to the PDHS film, the PMHS film is
characterized by larger fluctuations in the energy of the
1(σσ*) transition due to the disordered positions of sil-
icon atoms in the main chain of the macromolecule.
This leads to an increase in the parameter σex(295 K).
On the other hand, when the side n-hexyl groups in the
PMHS macromolecule are replaced by cyclohexyl or
phenyl groups, the interaction between the side groups
is enhanced and the chain conformation of the PMCHS
and PMPS macromolecules becomes more ordered
[19]. Note that both polymers at room temperature are
in the vitreous state [6]. As a result, the parameter
σex(295 K) for the PMCHS polymer is smaller than that
for the PMHS polymer. However, it can be seen from
the table that the replacement of the side cyclohexyl
groups in the PMCHS macromolecule by the phenyl
groups is accompanied by an increase in the parameter
σex(295 K). Most likely, this is associated with the addi-
tional fluctuations in the energy of the 1(σσ*) transition
due to the mixing of states of σ and π electrons, because
the efficiency of mixing depends substantially on the
angle between the plane of the phenyl ring and the seg-
ment axis [28].

As can be seen from the data presented in the table,
the decrease in the temperature of the PDHS, PMPS,
and PMCHS films from 295 to 5 K results in a decrease
in the parameter σex by a factor of 1.7–2.5. In this case,
the macromolecular conformations remain unchanged,

because the dependences (T) exhibit a monotonic

Em
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behavior (Fig. 2, curves 1–3) and the hypsochromic
shifts of the photoluminescence bands at the maximum
upon cooling of the PDHS film from 295 to 5 K and the
PMPS film from 295 to 95 K are close to the shifts in
the maximum of the lowest lying absorption band [3,
21]. Consequently, the aforementioned decrease in the
parameter σex is most likely caused by the weakening of
the exciton–phonon interaction with a decrease in the

temperature. Unlike the dependences (T) for the
PDHS, PMPS, and PMCHS films, this dependence for
the PMHS film is nonmonotonic. Actually, the decrease
in the temperature from room temperature to T ≈ 240 K
results in a bathochromic shift in the maximum of the
photoluminescence band, whereas a further cooling to
5 K is attended by a hypsochromic shift in this maxi-
mum (Fig. 2, curve 4). Yuan and West revealed that
cooling of the PMHS film from room temperature to
T ≈ 240 K leads to a decrease in the intensity of the

band at  ≈ 3.95 eV and to the appearance of a band

at  ≈ 3.81 eV in the absorption spectra. The pres-
ence of the isosbestic point in the absorption spectra
suggests that, in the given temperature range, segments
of the main chain of the macromolecule undergo a ther-
mally induced transition between two conformations.
Since the parameters σex(5 K) for the PMHS and PDHS
films coincide with each other (see table), we can
assume that the decrease in the temperature from room
temperature to T ≈ 240 K results in the formation of
segments with an ordered trans planar conformation in
the PMHS macromolecules, as is the case in the crystal-
lization of side n-hexyl groups in PDHS. Therefore,
upon cooling of the PMHS film from 295 to 5 K, the
parameter σex decreases to a greater extent (by a factor
of approximately four) than that for the other polymers.

5. CONCLUSIONS

Thus, it was established that the distributions of the
densities of states of excitons and charge carriers in the
PDHS, PMHS, PMCHS, and PMPS films are described
by a Gaussian function and the variance parameters of
these distributions depend on the chemical nature of
side groups of the polymer, the conformation of seg-
ments of the main chain of the polymer macromole-
cule, and the temperature. At room temperature, the
energy disorder in crystalline regions of the PDHS film
is caused by fluctuations in the number of monomer
units in polymer segments. In the PMHS, PMCHS, and
PMPS films, the disorder is more pronounced due to the
formation of conformers in which silicon atoms occupy
different positions in the chain. Moreover, in the PMPS
films, the disorder occurs through one more mechanism
associated with fluctuations of the angle between the
plane of the phenyl ring and the axis of the polymer
segment due to the mixing of states of σ and π elec-
trons. It was demonstrated that the considerable
decrease in the variance parameter σex for the PMHS

Em
PL

Em
ABS

Em
ABS
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film with a decrease in the temperature in the range
from 295 to 5 K can be associated with the transition of
macromolecular chain segments to an ordered confor-
mation.
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Abstract—The electrical conductivity of C60 single crystals is found to increase by 55–120% under β irradia-
tion with low doses. It is shown that this effect can be associated with multistage collision ionization of C60
molecules. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Investigation into the electrical conductivity of sol-
ids provides valuable information on the electronic sub-
system and interaction of charge carriers with atoms of
the material. The controlled introduction of radiation-
induced defects into semiconductors makes it possible
to change their electrical characteristics (such as the
electrical conductivity; type of conduction; and con-
centration, mobility, and lifetime of charge carriers)
over a wide range [1]. These methods are characterized
by high efficiency, as shown by the development and
extensive use of radiation technologies in electronics
[2]. The study of the electrical properties of C60 single
crystals and fullerene derivatives is an important prob-
lem, especially as these materials are promising for use
in micro- and nanoelectronics [3]. Gordeev et al. [4]
found that the energy of the HOMO–LUMO transition
(and other molecular transitions) in the C60 fullerite
changes under electron irradiation with energies rang-
ing from 100 to 1000 eV. The purpose of the present
work was to reveal and investigate the effect of β irra-
diation with low doses on the electrical conductivity of
the C60 fullerite.

2. SAMPLES AND EXPERIMENTAL TECHNIQUE

The experiments were performed with C60 single
crystals of high purity (99.95% C60). The crystals were
grown at the Institute of Solid-State Physics, Russian
Academy of Sciences (Chernogolovka, Moscow
oblast). The electric current I flowing through indium
contacts served as a measure of conductivity. The
indium contacts were fixed on one of the faces of the
sample with silver paste. The dc voltage U applied to
the indium contacts was equal to 50–70 V. In all mea-
surements, the external resistance was considerably
less than the electrical resistance of the sample, which
was approximately equal to ~109 Ω for samples with
characteristic linear sizes of 3–5 mm. The samples were
1063-7834/04/4611- $26.00 © 22183
exposed to β irradiation with the use of a radioactive
source 90Sr + 90Y with activity A0 = 14.5 MBq. The
mean energy of electrons 〈E〉  was equal to 0.536 MeV.
All measurements were carried out at room tempera-
ture.

3. RESULTS AND DISCUSSION

It was found that β irradiation affects the electrical
conductivity of the C60 fullerite. In particular, the elec-
trical conductivity of the sample irradiated with a flu-
ence F > 2 × 109 cm–2 increases by 55%. The depen-
dence of the relative increase in the electric current ∆I/I
on the irradiation time t is characterized by saturation at
a time ts1 ~ 12 min after the onset of irradiation (see fig-
ure). After irradiation is ceased, the electric current
relaxes to its initial value in a time tr1 ~ 1 h. If the same
surface of the sample is repeatedly irradiated 20 h after
the cessation of primary irradiation, the electrical con-
ductivity increases by 120%. In this case, the times of
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Dependences of the increment of the electric current ∆I on
the irradiation time t and on the fluence F: (1) primary irra-
diation and (2) repeated irradiation after 20 h. Arrows indi-
cate the instants of onset and termination of β irradiation.
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saturation and relaxation are ts2 ~ 9 min and tr2 ~ 1 h,
respectively.

The basic effect due to interaction of fast electrons
with the material is determined by the ionization of
molecules and the formation of point defects. An
increase in the electrical conductivity can be associated
with multistage collision ionization of molecules in the
lattice of the C60 crystals by relativistic electrons due to
external excitation. Under these conditions, the energy
of a conduction electron produced in the initial ionizing
event is sufficiently high for subsequent ionization of
C60 molecules. The increment of the electric current in
this case is estimated as ∆I = A0ek〈E〉/E0 ~ 0.3 × 10–8 A,
where e = 1.6 × 10–19 C is the elementary charge, E0 ~
20 eV is an energy significantly exceeding the ioniza-
tion energy of the fullerene molecule, and k = 0.05 is
the coefficient accounting for the ratio of the number of
particles impinging on the sample to the total number of
particles emitted by the source. It can be seen that the
calculated increment of the electric current lies within
the range of experimental values ∆I = 10–8–10–9 A.
However, the long times of rise and relaxation of the
radiation-induced current cast some doubt on the fact
that the observed increase in the electrical conductivity
is caused only by multistage collision ionization of C60
molecules. Proper allowance must be made both for
already existing deep-level trapping centers of free
charge carriers and for new defects arising under β irra-
diation and also serving as traps for free charge carriers.
It should be noted that, at the beginning of β irradiation,
the trapping centers are generated and filled simulta-
PH
neously. After β irradiation is ceased, the traps undergo
thermal depletion. The larger increment of the electric
current due to repeated irradiation can be explained in
terms of radiation-induced defects persisting after the
primary irradiation. The determination of the energy
location of deep-lying levels and elucidation of the
nature of radiation-induced defects in C60 single crys-
tals call for further investigation.
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