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Abstract—A method to solve the Boltzmann equation is analyzed in the case when the distribution function
depends on slow and fast time and coordinate scales. Basic relationships for calculating the nonequilibrium
multiscale distribution function are shown to differ substantially from those found in the framework of the
Chapman–Enskog method: the transfer equations are complemented by the contributions of relaxation pro-
cesses. The heat and momentum transfer equations derived from the general solution to the Boltzmann equation
involve additional terms accounting for relaxation effects. The relaxation effects included in the energy equa-
tion result in both a hyperbolic heat conduction equation and a finite rate of heat transfer. In the viscous stress
tensor, the Newtonian term of the transfer equation turns out to be supplemented by relaxation terms. © 2003
MAIK “Nauka/Interperiodica”.
(1) As is known [1], the Chapman–Enskog method
for solving the Boltzmann equation is based on the
assumption that the distribution function f(t, r, c) of gas
molecules depends on time t and coordinates r only via
local macroscopic parameters of a nonequilibrium gas:
the molecule concentration (gas density) n(t, r), tem-
perature T(t, r), and flow velocity v(t, r). This approach
implies that the space–time behavior of the molecule
nonequilibrium distribution function is defined only by
the spatial and temporal scales of macroscopic pro-
cesses.

However, the actual nonequilibrium distribution
function involves implicitly such characteristic micro-
scopic variables as the collision radius (interaction), the
mean free path of molecules, the impact time, and the
mean time between collisions. Accomodating to the
space–time variations of the macroscopic parameters,
the distribution function varies (relaxes) with a rate that
depends on the type of molecular interaction and
molecular collision frequency. Therefore, one may
expect that the dependence of the molecule distribution
function f(t, r, c) on time t and coordinates r exhibit,
generally speaking, more complicated (multiscale)
behavior.

Below, we consider an approach to solving the Boltz-
mann equation based on the above considerations. It is
shown that an algorithm for calculating the nonequilib-
rium distribution function differs noticeably from that
used in the Chapman–Enskog method and that the
transfer equations are complemented by the contribu-
tions of relaxation processes.
1063-7842/03/4810- $24.00 © 21221
(2) In order to solve the Boltzmann equation (in the
standard notation, see [1–3])

(1)

(2)

(3)

we will use the method of multiple scales from the exci-
tation theory [4], which is applied to the problems of
physical kinetics in [2, 3].

Let the dependence of the distribution function f(t, r, c)
on time t and coordinates r be defined by two pairs of
scales: slow (t1 and l1) and fast (t2 and l2), with t2 ! t1
and l2 ! l1. Then,

(4)

Slow scales are usually comparable to the character-
istic time of a macroscopic process and to the size of a
spatial inhomogeneity in a nonequilibrium system. Fast
scales may be associated with the radius and time of
molecular collisions, the mean free path and mean time
between collisions, or other variables of the same order
of magnitude.
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The dependence of the distribution function on the
molecule velocity c is assumed to be one-scale, with the
scale depending on the molecular mean thermal veloc-
ity c. The spatial and temporal scales may be consid-
ered, without loss of generality, to be related by the evi-
dent relationship

Let us introduce the slow,  = t/t1 and  = r/l1, and

fast,  = t/t2 and  = r/l2, dimensional variables and

the molecule dimensionless velocity  = c/ . The indirect
differentiation of the distribution function, in view of (4),
yields Liouville term (2) of Boltzmann equation (1):

In order to write the Boltzmann equation in dimen-
sionless form, we introduce the dimensionless distribu-
tion function

where n is the numerical gas density. Collision integral
(3) is reduced to dimensionless form with another lin-
ear scale, which is collision (interaction) radius rc:

In addition, we use the scale F0 to make the external

force dimensionless,  = F/F0.
On transformations, the dimensionless Boltzmann

equation takes the form

(5)

Here, 

(6)

where

is the Knudsen number;

is the Froude number; and

(7)

is the scale ratio.
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(3) Further, we will formally consider two kinds of
dependences of distribution function (4) on fast vari-
ables: (i) the parameter ε given by (7) is not equal to
Knudsen number (6) and is independent of it, in which
case the scale l2 can, for example, be equal to the colli-
sion (interaction) radius rc; and (ii) the parameter ε is
equal to Knudsen number (6) and the scale l2 is equal to
the molecule mean free path .

It is clear that generally one may deal with several
parameters of form (7). A more detailed discussion of
physical conditions for particular situations to occur is
beyond the scope of this paper.

(i) The parameter ε is not equal to Knudsen number
(6) and is independent of it. From dimensionless Bolt-
zmann equation (5) we find at Kn = 0

(8)

A solution to (8) is known to be a locally equilib-
rium distribution function f [0](t, r, c). Hence, one may
look for a solution to dimensionless Boltzmann equa-
tion (5) in the form of Enskog series

(9)

Substituting (9) into (5) and equating the coeffi-
cients by the same powers of Kn, we arrive at linear
integral equations for the coefficients of this series:

(10)

(11)

etc. As is easily seen, the derivatives in the parentheses
by ε–1 in (10) vanish. Indeed, the locally equilibrium
distribution function f [10](t, r, c) depends on time and
coordinates only through field parameters, such as the
molecular concentration (gas density) n(t, r), tempera-
ture T(t, r), and flow velocity v(t, r). Hence, it depends
on the slow variables  and  rather than on the fast

 and . Therefore, Eq. (10) and its solution f [1](t, r,
c) actually have the same form as the standard first-
order solution to the Boltzmann equation obtained by
the Chapman–Enskog method. Thus, effects caused by
the presence of two scales may appear only in solving
Eq. (11) for f [2](t, r, c).

In the Bhatnagar–Gross–Krook (BGK) model, the
collision integral is given by (see, e.g., [2])
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where τ = l/  is the mean time between two collisions
(Kn = τ/t1). In this case, instead of (10) and (11), we
find

(13)

(14)

etc.
From (14), we obtain

(15)

Substituting (15) into (14), we calculate , etc.

Equations (11) and (14) can be solved by expanding
into the power series in ε. In the zero order approxima-
tion, a solution will coincide with that in the Chapman–
Enskog method. However, the study of this issue is
beyond the framework of this paper.

(ii) The parameter ε is equal to the Knudsen param-
eter. At Kn = 0, dimensionless Boltzmann equation (5)
yields

(16)

where

 = t/τ and  = r/ .

The locally equilibrium distribution function
f [0](t, r, c) is a solution to both Eqs. (16) and (8): it
reduces both left- and right-hand sides of (16) to zero,
since it is independent of the fast variables.

Thus, in the case under consideration, one can look
for the distribution function in the form of Enskog
series (9). However, in this case, the coefficients of
these series are solutions not to integral but to linear
integro-differential equations

etc.
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In the BGK approximation, we find the first-order
partial differential equations for the same functions

Passing in these equations back to the dimensional

variables in view of the fact that f [1] = Kn  and f [2] =

Kn2 , we have for f [1]

(17)

and similarly for f [2].
(4) In the general case, the coefficients of Enskog

series (3) can be found from the above integro-differen-
tial equations, which is an intricate problem.

However, the form of the transfer equations can be
found in the BGK approximation without solving
Eq. (17).

The expression for the second term on the right of
(17) is well known [1]. It is found by calculating the
required derivatives of the locally equilibrium distribu-
tion function and eliminating the time derivatives of the
molecular concentration, temperature, and flow veloc-
ity with the help of the local balance equations for
mass, energy, and momentum that follow from the
solution to the Boltzmann equation in the zero-order
(locally equilibrium) approximation of the Chapman–
Enskog method (i.e., from the equations of Euler non-
dissipative dynamics):

(18)

Here, U is the molecule dimensionless thermal velocity
[with respect to the local flow velocity v(t, r)] C = c –
v(t, r):

UU is the tensor of the dyadic product of the vector U
by itself; 1 is the unit vector; and ∂v/∂r is the strain rate
tensor.

In view of (17) and (18), the heat flux density is
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Assuming, for the sake of simplicity, that τ is inde-
pendent of the molecule velocity, we obtain after sim-
ple calculations 

or

(19)

Here,

is the thermal conductivity coefficient; cp is the specific
heat at constant pressure; and Λ is the tensor describing
the dissipative part of the flux of the dynamic variable
CC2:

This tensor does not appear in the known relationships
of physical kinetics.

The first term on the right of (19) corresponds to the
conventional Fourier law of heat conduction; the sec-
ond one, to the relaxation effect that provides a finite
heat transfer rate, which is described by the well-
known hyperbolic heat conduction equation (see
below); and the third term, to an as yet unstudied relax-
ation contribution to the heat flux.

A similar relationship can be found for the viscous
stress tensor: the Newtonian term of the corresponding
transfer equation turns out to be supplemented by addi-
tional relaxation terms

(20)
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is the dynamic viscosity, and

is the tensor describing the dissipative part of another
flux that so far has not appeared in physical kinetics
either.

The first term on the right of (19) corresponds to the
standard Newton law of shear viscosity; the second
one, to the relaxation effect responsible for a finite heat
transfer rate; and the third term, to a relaxation contri-
bution of unknown nature to the heat flux. As far as the
authors know, the relaxation effects mentioned above
have not been described in the literature.

(5) Let us assume that the gas is at rest and the con-
tribution of the last term in (19) can be neglected:

(21)

Below, expression (21) will be referred to as the
generalized Fourier law in the relaxation approxima-
tion.

If Kn ! 1 or τ ! t1 (slow process), the relaxation
term in (21) makes an infinitesimal contribution to heat
transfer, and (21) is the usual Fourier law.

Let us now derive a heat conduction equation that
takes into account heat relaxation given by (21). We
will use a local equation of enthalpy balance that rigor-
ously follows from Boltzmann equation (1) and assume
the gas is at rest and the pressure is constant:

(22)

where ρ = mn is the density and cp, the specific heat at
constant pressure.

Differentiating (22) with respect to time, multiply-
ing the result by τ, and adding to (22) termwise, we
arrive at

Substituting generalized Fourier law (21) into this
relationship, we find the desired heat conduction equa-
tion
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If both the specific volumetric heat ρcp and the ther-
mal conductivity λ are independent of temperature,
Eq. (23) takes the form
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This equation is hyperbolic and describes the prop-
agation of thermal excitations with a finite velocity

This value is smaller than the speed of sound in a
rarefied monatomic gas

This fact is physically meaningful and agrees with
experimental data.

If Kn ! 1, i.e., τ ! t1 (slow process), the relaxation
term in (24) makes an infinitesimal contribution to heat
transfer and (24) turns into the usual hyperbolic heat
conduction equation with an infinite heat transfer rate
in a heat-conducting medium.

(6) The propagation of temperature excitations in a
material has long been the subject of theoretical
debates. The hyperbolic heat conduction equation
describing the propagation of excitations with a finite
velocity has been discussed at length (see, e.g., [5] and
Ref. therein). To our knowledge, however, this equation
is proposed without any substantiation and the deriva-
tion of excitation propagation velocity is lacking.

Although the type of the equation under consider-
ation is defined by the presence of the second time
derivative of temperature, the term involving the first
time derivative of temperature in (24) also is of impor-
tance. The absence of this term means that the excita-
tion, when propagating along the characteristic of the
equation, keeps the shape. On the contrary, its presence
in (24) strongly distorts the excitation shape during sig-
nal propagation because of velocity dispersion.

It should be noted that these effects show up not
only in fast processes but also under normal conditions
at the front of the wave that describes the propagation
of a temperature excitation. While away from the lead-
ing edge, the excitation evolution is described well by
the parabolic heat conduction equation, the vicinity of
the leading edge can be described only with hyperbolic
equation (24).

Note that hyperbolic heat conduction equation (24)
follows from the parabolic Boltzmann equation, which
involves only the first time derivative of the distribution
function, and has nothing to do with the so-called gen-
eralized Boltzmann equation, which contains the sec-
ond time derivative of the distribution function [3].

(7) Analysis of nonstationary heat transfer processes
with more general equation (19) and momentum with
Eq. (20) without the above simplifications is beyond the
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scope of this paper. We will briefly note the problems
for which the effects considered are essential.

First of all, analysis of heat transfer processes in
terms of hyperbolic heat conduction equations (23) and
(24) is of crucial importance for fast processes, e.g., the
irradiation of a material by nano- and femtosecond
laser pulses, the explosion of cathodic whiskers, etc. In
slower processes, such as heat transfer in composite
materials, where the approximations of effective ther-
mal diffusivity aeff and effective relaxation time τeff are
often used (especially in engineering calculations), the
effects mentioned above may show up over times t ≈ τeff
that are much longer than nanosecond intervals. 

However, in the classical problem of heat transfer
from a temperature excitation localized at the initial
instant of time, the finiteness of heat transfer rate is of
importance near the leading edge of a wave moving
with the velocity of sound. The problem of heat transfer
should be solved in this case by the method of multi-
scale expansions; the general solution consisting of
inner and outer expansions will be different in different
regions [4]. From Eq. (24) written in the dimensionless
form, it follows that, near the leading edge of excita-
tion, one has to solve the hyperbolic equation, which
describes finite-velocity signal propagation. Away from
the leading edge, Eq. (24) becomes the conventional
parabolic heat conduction equation and the temperature
variation is described by well-known relationships
available from textbooks. In the method of multiscale
expansions, the solutions are joined together by means
of asymptotic series (as in the problem of boundary
layer).

An even more complicated problem is to abandon
the BGK approximation in Boltzmann equation (12)
and develop a method to solve integro-differential
equations for nonequilibrium corrections to a locally
equilibrium molecular distribution function in view of
different time and coordinate scales.
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Abstract—The method of integral equations is generalized for the case of solar magnetohydrodynamics. In the
new statement, it is not only based on the use of Green’s functions in an MHD medium but also involves the
principle of cancellation as applied to the same medium. The application of these equations is demonstrated
with a model nonstationary diffraction problem. © 2003 MAIK “Nauka/Interperiodica”.
As is known, matter in the Universe is mostly in the
fourth state (the terrestrial ionosphere, the solar atmo-
sphere, etc.). As Priest figuratively writes [1], “… we
on the Earth represent a tiny enclave of solid, liquid,
and gas immersed in the outflow of solar wind plasma,
like a pebble in a stream of water.” Like other stars, the
Sun is a massive plasma ball which retains its shape and
is compressed under the action of its own gravity. The
latter half of the 20th century is called “the golden era”
of solar physics. In fact, over this period of time, many
impressive fundamental discoveries in this field of sci-
ence were made. In particular, the fine structure and
basic importance of the solar magnetic field was found,
the heating of the solar corona was shown to be associ-
ated with a magnetic field, the decisive role of a mag-
netic field in various forms of solar activity was proved,
etc. This turned out to be possible because the solar
plasma was treated as a unified hydrodynamic medium
and MHD approaches were invoked to describe pro-
cesses of interest, which culminated in the creation of a
new domain of science, solar magnetohydrodynamics.

A plasma is a medium where oscillations and waves
are readily excited. Wave processes are also observed in
the Sun. The Sun is an extremely dynamic system: its
structural constituents are in continuous motion and the
space–time scales of this motion lie over a wide range.

Mathematically, a wave motion in a homogeneous
medium is considered following the standard scheme.
First, the equilibrium state with density ρ, velocity U,
pressure p, and magnetic field B is analyzed. Then, a
small perturbation is introduced and the problem as to
whether the resulting perturbation propagates as a wave
is solved.

In considering waves, one usually uses the continu-
ity equations for mass, momentum, and energy, as well
1063-7842/03/4810- $24.00 © 21226
as the equation for induction:

(1)

Here,

is the material derivative related to the motion of the
medium and z0 is the unit vector in the z direction,
which is normal to the solar surface. Equations (1) are
written in the coordinate system related to the Sun and
rotating (relative to the inertial coordinate system) with
a constant angular velocity Ω.

Introducing small perturbations of the parameters
listed above, ρ = ρ0 + , U = U0 + u, p = p0 + , and
B = B0 + b, and linearizing Eqs. (1) yields a set of linear
differential equations for , u, , and b:

(2)

Dρ
Dt
-------- ρ∇ U⋅+ 0,=

ρDU
Dt

--------- ∇ p– ∇ B×( ) B/µ× ρgz2– 2ρ Ω U×( ),–+=

D
Dt
------ p

ρv
------ 

  0,=

∂B
∂t
------ ∇ U B×( ), ∇ B⋅× 0.= =

D
Dt
------ ∂

∂t
----- U ∇⋅+≡

ρ̃ p̃

ρ̃ p̃

∂ρ̃
∂t
------ ρ0∇ u⋅+ 0,=

ρ0
∂u
∂t
------ ∇̃ p ∇ b×( ) B/µ× ρ̃gz0– 2ρ0 Ω u×( ),–+=

∂p
∂t
------ u ∇⋅( )p0 Vs

2 ∂ p̃
∂t
------ u ∇⋅( )ρ0+ 

 –+ 0,=
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After straightforward transformations, we arrive at a
general wave equation for the velocity u:

(3)

The difficulty encountered in this situation is that
there exist two factors, the gravity force and the mag-
netic force, that contribute to the inhomogeneity of the
Sun. The former increases the pressure toward the cen-
ter of the Sun, while the latter and the associated
Lorentz force often produce the plasma pressure (i) in
the direction normal to the magnetic field and (ii) away
from the regions where the magnetic flux concentrates.
This causes inhomogeneities in the Sun; accordingly,
boundaries between these inhomogeneities appear
(such as magnetic tubes of force, plane-parallel inter-
faces, etc.). On the other hand, under certain physical
conditions, for example, when the solar wind meets the
terrestrial magnetic field or two gaseous objects collide
with each other, not only the spatial and time deriva-
tives of MHD parameters but also the parameters them-
selves become highly discontinuous. The jumps of
MHD parameters at the surface of discontinuity are
found from the integral laws of conservation or integral
balance equations, which imply the continuity of
energy flux (∆Wn = 0), mass (∆ρUn = 0), momentum
(∆π = 0, as well as tangential (∆Et = 0) and normal
(∆Bn = 0) components of the magnetic field.

In this situation, differential equations of solar mag-
netohydrodynamics (2) do not hold because of the non-
differentiability of the quantities at the surface of dis-
continuity. However, they can be represented in integral
form, which is totally equivalent to differential equa-
tions (2) and the laws of conservation listed above.
When linearized, these laws become the edge condi-
tions for the field parameters desired.

It should be noted that the specific nature of waves
in the solar plasma, the possibility of their interconver-
sion, and the need for taking into account ways of form-
ing the movable boundary (or, in other terms, the sur-
face of discontinuity of MHD parameters) make the
study of MHD wave scattering by various obstacles dif-
ficult, especially in view of the nonstationarity of the
process. The study of nonstationary processes requires
initial conditions to be set; that is, one must know the
zero time of nonstationarity. This is particularly true for
the solar plasma, since the nonstationarity is its basic
property. Therefore, the integral statement of bound-
ary-value problems, which automatically involves ini-
tial conditions (and not only edge conditions mentioned
above), becomes of special importance.

∂b
∂t
------ ∇ U0 b×( ) ∇ u B0×( ), ∇ B⋅×+× 0.= =

∂2u

∂t2
-------- Vs

2∇ ∇ u⋅( ) γ 1–( )gz0 ∇ u⋅( ) g∇ uz––=

– 2Ω ∂u
∂t
------ ∇ ∇ u B0×( )×( )×[ ] /µρ0.+×
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Statement of the Boundary-Value Problem

Let an inhomogeneity (a geometrically uniform
domain) be characterized by the following parameters:
B2, the undisturbed magnetic field; VA2 and VS2, the
Alfvén velocity and the velocity of sound; and ρ2, the
density. The inhomogeneity has a volume V(t) with a
mobile (generally time-dependent) boundary. This
object is placed in an infinite MHD medium, which is
characterized (in the undisturbed state) by B1, VA1, VS1,
and ρ1. A disturbing field is defined by the vector of
state Y0(x) = {u0(r, t), b0(r, t), ρ0(r, t), p0(r, t)}. The
state vector of the MHD medium, Y(x) = {u(r, t), b(r,
t), ρ(r, t), p(r, t)}, represents a set of the deviations of
the velocity, u(r, t); magnetic field, b(r, t); density, ρ(r,
t); and pressure, p(r, t), from their undisturbed values,
which describe the MHD state of the solar plasma.

Omitting the derivation of equations involved in the
boundary-value problem posed (for details, see [2, 3]),
we give the final form of the integro-differential equa-
tion for the vector Y(r, t):

(4)

Here, x = {r, t} is the four-dimensional space–time vec-
tor; the symbol * means convolution, that is, the inte-
gral operator

W(x) is a discontinuous function (written in the class of
generalized function) that uniquely describes the MHD
medium inside and outside the inhomogeneity and
includes all the parameters of the inhomogeneity;
G0(x – x') is the Green’s function for the infinite MHD
medium (free space), which is defined by the parame-
ters B1, VA1, VS1, and ρ1 (or, in other terms, a fundamen-
tal solution to wave equation (3) of solar magnetohy-
drodynamics with the delta-like right-hand side):

(5)

and ε is the affinor.

Hence, it follows that the Green’s function, which is
a tensor function of the positions of two points (the
point of observation, x = {r, t}, and the source point,
x' = {r', t'}) has the form

where G = ||Gij ||i, j = 1, 2, 3 is the differential operator that
is given in matrix form in a specially selected basis and

Y x( ) Y0 x( ) G0 x x'–( ) * W x'( ).+=

f  * g( ) x( ) t' f x x'–( )g x'( ) r';d

∞
∫d

∞–

∞

∫=

∂2G0

∂t2
----------- VS1

2 ∇ ∇ G0⋅( )– γ 1–( )gz0 ∇ G0⋅( )+

+ g∇ G0 2Ω
∂G0

∂t
----------×+

– ∇ ∇ G0 B1×( )×( )×[ ] /µρ1 εδ x x'–( );=

G0 x x'–( ) G0 r r'– t t'–,( ) G I r r'– t t'–,( ),⋅= =
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(6)

is the Fourier–Laplace transform depending on the shift
of the space, r – r', and time, t – t', variables.

From (6), it is seen that all the integrals in the space–
time representation of the Green’s function are taken in
infinite terms. To do this, it is necessary to get around
singular points. These points (usually poles) may occur
if p and q meet the dispersion relations for waves actu-
ally existing in the solar plasma:

In particular, the dispersion relation δ(q, p) = 0 is
related to Alfvén waves; ∆(q, p) = 0, to magnetic atmo-
spheric waves; and ι (q, p) = 0, to inertial waves.

Since convolution in (4) is an integral operator,
expression (4) is the integro-differential equation for
the state vector Y. The very existence of convolution
allows one, owing to its properties, to transfer differen-
tiation from the second factors to the Green’s function;
then, (4) can be written in operator form as

(7)

where the operator  is the Volterra integral operator.
The above approach is possible because the kernel

of the integral operator, when written as the matrix  =
||Kij ||i, j = 1, 2, 3, is integrable in four-dimensional space.
In space–time representation, it is treated as the inter-
section of the domain of inhomogeneity, which is
bounded by the function

and the characteristic cone with the vertex at the point
of observation (in the electrodynamic problem [4], the
characteristic cone is a light cone).

Since generalized wave equation (3) of solar mag-
netohydrodynamics is a differential equation of hyper-
bolic type, one can construct for it a cone,

I r r'– t t'–,( ) iq t t'–( )–[ ]exp qd

∞– iσ0+

∞ iσ0+

∫=

× ip r r'–( )[ ]exp
δ q p,( )∆ q p,( )ι q p,( )
---------------------------------------------------- pd∫

∞
∫∫

δ q p,( ) q2 VA1
2 s1p( )2– 0,= =

∆ q p,( ) q4 q2 VA1
2 VS1

2+( )p2–=

+ VS1
2 N2 Θgp2 VA1

2 VS1
2 s1p( )2p2+sin

2
0,=

ι q p,( ) q2 2 pΩ( )2/ p± 0.= =

Y x( ) X x( ) K̂Y( ) x( ),+=

K̂

K̂

χ x( )
1, x V t( )∈
0, x V t( ),∉




=

t t0–( )2 Aij xi xi
0–( ) x j x j

0–( )
i j, 1=

3

∑– 0,=
at any point in the space. This cone divides the space
into two inner and one outer region. From the general
theory of differential equations [5], it follows that a sec-
ond-order partial differential equation that is linear in
higher derivatives may be linearly transformed into
canonical form at any point in the space; accordingly,
the canonical equation of a characteristic cone in the
four-dimensional space of the zero integrals (x1, x2, x3, it)

with the vertex at a point ( , , , it0) has the form

Thus, the characteristic surface is a cone with the
vertex at the point of observation. However, the “direc-
trix” of this cone is not necessarily a sphere as in elec-
trodynamics [4]. It may have a more intricate shape
because of the triple anisotropy of the problem, which
is related to the preferential directions of the undis-
turbed magnetic field, angular velocity, and the force of
gravity of the Sun.

Formally, Eq. (7) may be considered as a linearized
equation of solar magnetohydrodynamics with nonlo-
cal boundary conditions, which are written in the labo-
ratory coordinate system in the general case. It should
be noted that, when the boundary-value problem is
solved in the differential statement, the uncertainty
arises as to whether one or several wave modes will sat-
isfy local boundary conditions. In the integral state-
ment, this uncertainty is eliminated automatically
because of the physics of the phenomenon. Scattered
waves appear in the medium when the fundamental
mode with a state vector Y0 induces secondary wave
sources. The interference of the secondary waves pro-
vides desired oscillation modes. This is an analogue of
the theorem of cancellation as applied to solar magnetohy-
drodynamics. Mathematically, the secondary waves are
described by the integral terms on the right of (7).

There are two variants of selecting the initial condi-
tion. One of them is based on the simplifying assump-
tion that nonstationarity originates at an infinitely dis-
tant time instant; that is, adiabatic switching at infinity
takes place. In this case, the initial condition to Eq. (7)
is not needed. As for Eq. (7), it is defined in the entire
range (space) of field definition but its meaning
depends on the position of the point of observation.
Integration in this case is always limited by the charac-
teristic function χ(x), which is related to the domain of
inhomogeneity. Hence, relationship (7) is a proper inte-
gral equation only at points in the domain V(t). Outside
this domain, relationship (7) is a quadrature that allows
one to calculate the external field from the internal field
determined earlier. Hence, an algorithm for the solution
of the boundary-value problem of diffraction is split
into two steps: (i) finding the internal field by solving
the integral equation and (ii) finding the external field
from the internal field already found. With this algo-

x1
0 x2

0 x3
0

t t0–( )2 aij xi xi
0–( )2

i j, 1=

3

∑– 0.=
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rithm, boundary-value problems of magnetohydrody-
namics were solved in [6].

In the second variant of selecting the initial condi-
tion, time is counted from the (finite) time instant t = 0.
Let us consider the model problem that follows in terms
of work [4].

Assume that the inhomogeneity at t < 0 is described
by a variety of parameters H1. At the time instant t = 0,
the state of the inhomogeneity changes and is described
by a variety of parameters H2.

Now we turn back to relationship (7). As before, it
depends on the position of the point of observation x =
(t, r). However, this point is now defined in the four-
dimensional domain of the space of events. As in the
stationary problem (the previous case), (7) is an integral
equation if this point belongs to the inhomogeneity. It
is known that the solution of an integral equation
depends considerably on the equation kernel. As was
noted above, the kernel here is defined as the intersec-
tion of the characteristic cone with the domain bounded
by the function

Therefore, it is reasonable to consider the projection
of this intersection onto the coordinate plane (x, t) in
greater detail (Fig. 1).

Note that the solution algorithm for the boundary-
value problem remains the same and also consists of
two steps. However, the first step (finding the internal
field) now implies the solution of a chain of integral
equations that are related to each other in an evolutionary
way for three time intervals: t < 0, 0 ≤ t ≤ t1, and t ≥ t1.

In the first one (t < 0), the four-dimensional (space–
time) domain of integration in the integral terms of (7)
is infinite; that is, prior to the zero time, an incident field
Y0(r, t) generates an internal field Y1(r, t), where

is a state vector (with an appropriate set of parameters)
that describes a solution to the undisturbed problem,
which may be viewed as stationary.

Of greatest interest is the interval t > 0, where the
inhomogeneity is in a new state. In this case, the
domain of integration in the same integral terms of (7)
is bounded by the hyperplane t' = 0. The analysis of
intersections of that part of the characteristic cone cor-
responding to positive t' with the domain bounded by
the surface χ(x) = 1 of the inhomogeneity makes it pos-
sible to distinguish two qualitatively different domains
of integration Γ1 and Γ2 (Fig. 1a). These are the inter-
vals 0 ≤ t ≤ d(r)/u and t > d(r)/u, where d(r) is the least
distance between the point of observation r and the
boundary of the volume V(t) at t = 0. In the former (Γ1),
the section of the cone by the plane t' = const (0 ≤ t' ≤ t)
does not go beyond the surface χ(x) = 1 and remains

χ x( )
1, x V t( )∈
0, x V t( ).∉




=

Y1 x( ) u1 r t,( ) b1 r t,( ) ρ1 r t,( ) p1 r t,( ), , ,{ }=
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entirely within the inhomogeneity-containing four-
dimensional domain of the space of events. In this
interval, the inhomogeneity boundaries have no effect,
so that the “pure” variation of the properties of the
medium is taken into account. When extended to the
entire four-dimensional space, expression (7) describes
the field in an infinite medium with the same properties
as the medium inside the object. This is a consequence
of the natural time delay because of the wave velocity
finiteness and formally appears as if the MHD field
interacts with the infinite medium in the domain V(t).
Hence, the problem of finding the MHD field is
reduced to the initial problem for an infinite medium.
Note that we are dealing with the case where the veloc-
ity of the boundary does not exceed u; that is, the slope
of the world lines of the domain boundary is smaller
than that of the characteristic cone generatrices.

Thus, once the inhomogeneity has changed the state
at zero time, its boundary has no effect and the incident
field does not contribute directly to the internal field.
However, it is “memorized” in the medium; that is, the
field Y2(r, t) sought at the second step is directly gen-
erated by the field Y1(r, t) inside the inhomogeneity
before its state has changed and indirectly by the field
Y0(r, t). In other words, a solution of the disturbed
problem without including the edge effect is sought at
the second step.

(a)
x '

d(r)

r

0

Γ1 Γ2
V(t ')
χ(x ') = 1

t2t1 d r( )
u

---------- t '

(b)x '

0

(t, r)

t '

V(t ')
χ(x ') = 1

Fig. 1. Intersection of the characteristic cone and domain
bounded by the function

χ(x) = 

(a) Inner and (b) outer problem.

1, x V t( )∈
0, x V t( ).∉



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Starting from the time instant t1 = d(r)/u (domain
Γ2), the cone crosses the boundary of the four-dimen-
sional domain χ(x) = 1 and the effect of the boundary
of the domain V(t) cannot be rejected; that is, we come
directly to the boundary-value problem for the field
Y3(r, t). This field is generated by the field Y1(r, t),
incident field Y0(r, t) passed through the boundary, and
the field Y2(r, t). Thus, at the third step, the field is
determined in view of the edge effects and a solution
can be constructed by only using solutions found in the
previous intervals. It is the last-found solution that con-
tains all information on the variation of the medium
inside the domain V(t).

If the point of observation is beyond the domain
V(t), expression (7) is a quadrature with which the
external field is found from the known internal field
(Fig. 1b).

While the problem of wave packet scattering by any
interface between two MHD media in the solar plasma
is theoretically understood and can be considered in
steps, the mathematical description of the phenomenon
is a challenge. First of all, wave interconversion at the
interface, which is typical of the solar plasma, greatly
complicates the problem. The difficulty shows up even
in considering the 3D problem of diffraction by the
simplest inhomogeneity, namely, half-space. When
nonstationarity is adiabatically switched off at infinity,
the interconversion is elegantly analyzed in terms of
integral equations. In [7], this problem was considered
in the pure MHD statement. The integral equations
were not separated into those describing particular
waves, for example, Alfvén or magnetoacoustic: waves
as though “mixed up” in integral terms. Taking into
account the finiteness of zero time makes the problem
much more difficult. To eliminate wave interconversion
completely, it is reasonable to begin with the 1D prob-
lem for each wave mode.

The analysis of the transmitted characteristic cone,
which, as was noted, has a complex shape, also requires
that the 1D problem be considered. It is convenient to
take advantage of the cone traces on appropriate coor-
dinate planes. To illustrate the efficiency of our method
more vividly, let us solve the model problem of Alfvén
wave scattering by the plasma half-space after it has
started moving.

Let a plane Alfvén wave

(8)

be normally incident on the plane interface (z = 0)
between two media specified by the parameters Bi, VAi,
VSi, and ρi (i = 1, 2). The inner medium (i = 2) starts uni-
formly moving with a velocity U0 normally to its
boundary at the time instant t = 0. Prior to the motion,
the inhomogeneity occupied the space z > 0. Then, the
law of motion will have the form z(t) = U0tΘ(t), where

u0 r t,( ) u0 ik0
Az iω0

At–exp ,=

b0 r t,( ) b0 ik0
Az iω0

At–exp=
Θ(t) is the Heaviside function. The characteristic cone
is defined by the expression

In such a statement of the diffraction problem, inte-
gral equations (7) for the Alfvén wave are scalar. Then,
the integral expression for the Alfvén field both passed
into the MHD inhomogeneity and reflected from it
takes the form

(9)

where

(10)

is the Alfvén Green function, δ(x) is the Dirac delta
function, and Θ(t) is the Heaviside function.

The space integral in (9) is easily reduced to a one-
dimensional integral for the inner problem,

(11)

and to a one-dimensional integral for the outer problem,

(12)

To form the inner field, it is convenient to use space–
time diagrams (Fig. 2). The field in the hatched regions
satisfies an equation all terms of which are defined only
in this region. Since motion is accomplished from left

t t'– z z'– /VA1– 0.=

ux r t,( ) u0x r t,( ) 1
B1
----- V A1

2 V A2
2–( ) ∂2

∂z∂t
-----------+=

× t' bx r' t',( )GA r r''– t t'–,( ) r'd

V t'( )
∫d

∞–

∞

∫

– VA1
2 1

B2

B1
-----– 

  ∂2

∂t2
------- t'd

∞–

∞

∫

× ux r' t',( )GA r r'– t t'–,( ) r',d

V t'( )
∫

GA r r'– t t'–,( ) 1
VA1
---------δ x x'–( )δ y y'–( )–=

× Θ t t'– z z'–
VA1

--------------– 
 
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∫

=  ux z' t',( )Θ t
z

VA1
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z
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+ ux z' t',( )Θ t
z
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to right along the time axis, the evolution of the process
may be traced by sequentially gaining information on
the field in the previous time interval. Here, M is the
world point, which bears information on the field at a
given time instant and point of the space. Let us con-
sider the inner field for t > 0 and U0 < VA1. To this end,
we substitute relationship (11) into Eq. (9) to make the
integral terms in (9) two-dimensional, that is, depend-
ing on the spatial, z', and time, t', coordinates.

Figure 2a shows the domain of integration for the
two-dimensional integral in the case when the bound-
ary of the inhomogeneity does not influence the field
formation. Solving the initial problem for the
unbounded medium, we find that the field in the range
VA1t < z does not change either the frequency or the
wavenumber. It changes only the amplitude of the
Alfvén wave, which existed prior to the motion. In
addition, a constant component due to the velocity dis-
continuity in the medium arises. The edge effects due to
the moving boundary do not affect the field, because the
disturbance propagates from the boundary with the
velocity VA1 and its effect is confined in the domain
−VA1t ≤ z ≤ VA1t.

On the domain U0t ≤ z ≤ VA1t, one should consider
separately the cases of the “outgoing” and “incoming”
boundary. The former case, where the boundary moves
away from the incident field is shown in Fig. 2b.
The latter case, where the boundary meets the incident
wave, is shown in Fig. 2c. For either of them, the
two-dimensional integral equation is reduced to the
Volterra equation of the second kind with the Fredholm
kernel. Such an equation is successfully solved by con-
structing a solution in the form of the Neumann conver-
gent series [8]:

where F(z, t) is the free term of the equation and the
integrated kernels

are polynomials in the variables τ± = t ± z/VA1.
Thus, from the results obtained it follows that the

domains where the edge effects become significant
arise on both sides of the inhomogeneity as it starts to
move. The boundaries of these domains travel with the
Alfvén velocity. When the half-space runs away from
the incident wave, the field remains continuous at the
boundaries of these domains; in the case of the counter
motion, the field experiences a discontinuity presum-
ably because of residual phenomena in the media. Sim-
ilar qualitative effects are observed upon solving the
nonstationary boundary-value problem of electromag-
netic wave propagation in the electrodynamic statement

ux z t,( ) F z t,( )=

+ λ 2
VA1–( )

n
Kn z' t',( )F z' t',( ) t'd z',d

D( )
∫∫

n 1=

∞

∑

K1 1, Kn … D1…d( ) Dn, n 1>d

D( )
∫∫

D( )
∫∫= =
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[9]. This supports the validity of the unified physical
approach to plasma problems.

The reflected field is easy to recover by quadrupole
formulas (9) and (12) provided that the inner field is
known. It should be noted that the stray field spectrum
depends considerably on the initial condition. In the
case of adiabatic switching at infinity, the transmitted
field of the stray field spectrum has only the wave mov-
ing away from the boundary. When the initial time
instant is finite, the field spectrum contains waves with
different frequencies, which propagate both from and
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Fig. 2. Geometrical interpretation of space–time domains of
integration to find the inner field after the beginning of
motion: (a) VA1t < z, (b) U0t ≤ z ≤ VA1t (U0 > 0), and (c)
U0t ≤ z ≤ VA1t (U0 < 0).

z' = VAt ' 



1232 ALEKSANDROVA, ALEKSANDROV
toward the boundary of the medium. This follows even
from the zero-order term of the Neumann series.

The superficial analysis of the boundary-edge prob-
lem as applied to the Alfvén wave alone has shown that
the method of integral equations is basically applicable
to magnetohydrodynamically describing waves in the
solar plasma. The value of rigorous mathematical solu-
tions to simple model problems, such as the diffraction
of the Alfvén wave, is that they may form the basis for
constructing approximate solutions to more difficult
boundary-edge problems where the propagation of a
number of waves in the solar plasma is considered.
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Abstract—In terms of a self-consistent approach, it is shown that taking into account velocity and elastic stress
fluctuations allows one to describe the transition of a loose medium to the fluid state in both continuous and
stick-slip regimes. In the latter case, elastic stress fluctuations favor the manifestation of self-organized critical-
ity. © 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

“Quicksand, I cried and leaned on the rifle, but it
also started to cave in … Quicksands at the seacoast,
where the surf loosens sand and hydrogen sulfide
escapes from the bottom with hissing, is a common
phenomenon … Once the sea had calmed down, sand
consolidated to the point where even footprints became
invisible.” This citation [1] gives a descriptive presen-
tation of the dual nature of loose (granulated) media:
under the action of swashing waves and a low pressure
in an ascending stream of a gas, sand behaves as a vis-
cous fluid; otherwise, its behavior resembles that of a
solid. Extensive investigations over the past 10–
15 years have shown that this duality is due to the fact
that the rms fluctuation u of the particle velocity takes
on a hydrodynamic character, causing a macroscopic
degree of freedom, the effective (granulated) tempera-
ture T ≡ mu2 (m is the mass of a particle), to appear [2–4].

The simplest case is a plane Couette flow, which is
realized when the lower boundary moves with a uni-
form velocity U along the x axis. Here, nonuniformity
developing in the perpendicular y direction obeys the
following rules [4]: (i) near the moving boundary, the
flow is confined within a thin layer, where velocity fluc-
tuations u fall off more slowly than the mean velocity
V; (ii) the spatial profile of the velocity V(y) (divided by
the maximal velocity U) is independent of V, pressure
P, and flow regime (steady or stick-slip); and (iii) the
shear stress σ = µP is constant throughout the flow vol-
ume and is characterized by a friction factor µ = µ(U),
which drops with increasing U to a value typical of dry
friction.

These rules could be accounted for in terms of the
hydrodynamic theory [3, 4], where the system’s behav-
ior is parametrized by temperature, T(y, t), and velocity,
V(y, t), fields. The former field obeys the heat conduc-
tion equation

(1)Ṫ –εT χT'( )' σV',+ +=
1063-7842/03/4810- $24.00 © 21233
which is supplemented by the flow equation σ = ηV'.
Here, ε is the parameter of dissipation due to inelastic
collisions between particles, χ is the thermal diffusiv-
ity, η is the dynamic viscosity, and σ is the stress shear
component. The dot means the total time derivative
d/dt ≡ ∂/∂t + V∇ , and the primed quantities refer to
derivatives with respect to the coordinate y. The veloc-
ity field is defined by the equation of motion

(2)

where the kinematic, ν, and dynamic, η, viscosity coef-
ficients are related through the density of the medium ρ
as η = νρ.

In the case of a plane flow, P' = 0; that is, the pres-
sure is constant throughout the volume. The set of
Eqs. (1) and (2) is closed by the equation of state

(3)

where d is the particle size and ρc is the critical density
(the density at the glass transition point).

Along with ρ, the material constants ε, χ, and ν
depend on the state parameters:

(4)

The hydrodynamic regime of velocity fluctuations
separates two qualitatively different flow conditions:
the classical flow with a finite temperature T, a low
pressure P, and a low density ρ, and the solidlike state
with negligible T, high P, and near-critical density ρ ≤
ρc. In [4], such a difference is defined a priori by
imparting necessary properties to the medium: in the
classical case, β is taken to be equal to unity, while in
the second case, it is much greater than unity β . 1.75).

Thus, the hydrodynamic theory [4] explains the flow
of a loose medium, which is observed in experiments;

V̇ νV'',=

d3 1 ρ
ρc
-----– 

  T
P
---,=

ε χ, P

T1/2
--------;   ν P

T
--- 

 
β
T1/2,   β 1.≥∼ ∼
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at the same time, the transition from the solidlike state
to the hydrodynamic regime remains uncovered.

In this work, we develop a phenomenological
approach where this transition is viewed as the self-
organization of an ensemble of particles subjected to an
external load. The approach is based on a set of Lorentz
equations that provides a simple field representation of
a self-organizing medium [5].

SYNERGISTIC PICTURE OF THE TRANSITION 
TO THE FLIUD STATE

Taking into account the nonequilibrium character of
the transition, one may assume that it can be described
in terms of the synergistic representation [6], which
generalizes the thermodynamic pattern of phase trans-
formations. As follows from the consideration of trans-
port flows [7], the problem is reduced to finding relax-
ation equations for the ordering parameter field, its con-
jugate, and a control parameter. When writing these
equations, we will proceed from the fact that a descrip-
tion will be self-consistent if each degree of freedom is
assigned a microscopic channel of dissipation (the
motion of individual particles) and a macroscopic
channel due to the cooperative motion (the flow of the
medium as a whole).

As an ordering parameter, which separates the fluid
state from the solidlike state, it is appropriate to take the

rms velocity fluctuation u ≡  instead of tempera-
ture T. Then, omitting nonlinear terms and introducing

the hydrodynamic term  ~  = νV'', we find from
Eq. (1)

(5)

The first term here stands for a microscopic channel
of dissipation due to inelastic collisions, the rate of
which (defined by the parameter ε in (1)) is inversely
proportional to the relaxation time tu. The remaining
terms describe a macroscopic channel of dissipation
due to the spatial variation of the velocity fluctuation u
(thermal contribution) and velocity mean value V
(hydrodynamic contribution). In terms of our self-con-
sistent approach, hydrodynamic equation (2) should be
supplemented by a linear term for a microscopic chan-
nel of dissipation due to the effect of shear stresses on
the velocity fluctuation:

(6)

where g is a positive constant. Equation (6) describes
the relaxation of elastic stresses σ to a value σe related
with an external action:

(7)

As above, the first term refers to a microscopic
channel of dissipation due to the local particle redistri-

T /m

u̇ V̇

u̇ –
u
tu

--- χu'' aνV'', a+ + const 0.>= =

V̇ –guσ νV'',+=

σ̇
σe σ–

tσ
--------------- gσνuV''.–=
bution with a characteristic time tσ, while the second
term includes the cooperative contribution due to the
fluctuation redistribution of particles moving with an

acceleration  ~ νV".

Synergistic equations (5)–(7) are conveniently ana-
lyzed in dimensionless variables that are obtained by
reducing the time t, coordinate y, velocity fluctuation
amplitude u, mean velocity V, and elastic stress σ to the
following scales1:

(8)

where the hydrodynamic coordinate and time are given
by

(9)

(G is the characteristic value of the shear modulus).

Eventually, the behavior of a loose medium is
described by the set of dimensionless equations

(10)

(11)

(12)

The solution of this set depends on the relationships
between the times tu, τ, and tσ, as well as between the
scales l and λ. The phase transition is dissipative when
the inelastic character of collision is so weak that the
relaxation time tu far exceeds the hydrodynamic scale
(l/λ)2τ and microscopic time tσ [6, 8]:

(13)

Since the dimensionless velocities  and  and the
rate  are of the same order of magnitude, inequalities
(13) make it possible to ignore the left-hand sides of
(11) and (12). Then, from (11) and (12), we obtain

(14)

Thus, the spontaneous growth of the velocity fluctu-
ations in the interval bounded above by u = 1 increases
the curvature V" of the mean velocity profile and causes
the internal stresses σ to relax below the level σe (σ <
σe), which is defined by external conditions. The substi-
tution of the first equality in (14) into (10) yields the

1 Under normal conditions, the kinematic viscosity ν does not
exceed the thermal diffusivity χ and the range of the mean veloc-
ity Vc exceeds the amplitude uc of its fluctuation [4].

V̇

tu, l χtu, uc ggσtσ( ) 1/2– , V c a 1– χ
ν
---uc,≡ ≡ ≡

σc agtu( ) 1– ,≡

χ2 ντ≡ η2

ρG
-------, τ η

G
----≡=

u̇ –u u'' V'',+ +=

τ /tu( ) l/λ( )2V̇ –uσ V'',+=

tσ/tu( )σ̇ σe σ–( ) uV''.–=

l/λ( )2τ  ! tu, tσ ! tu.

u̇ V̇
σ̇

V''
σeu

1 u2+
--------------, σ

σe

1 u2+
--------------.= =
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Ginzburg–Landau–Khalatnikov equation

(15)

whose form is specified by the fluctuation energy

(16)

measured in units of . When the stress σe is small, the
dependence E(u) is a monotonically increasing func-
tion with a minimum at u = 0, which correlates with the
solidlike state. As σe grows and exceeds the critical
level σc, a minimum at

(17)

appears, which corresponds to the ordered state. In this
case, the curvature of the velocity profile takes a finite
value  = u0 and internal stresses relax to the critical
value σc = 1.

In the steady state (  = 0), the first integral in
Eq. (15) has the form

(18)

Here, it is taken into account that the fulfillment of the
conditions u = u0 and u' = 0 in the ordered phase (y = –∞)
requires that the constant of integration equal the abso-
lute value of the ordering energy E0. This energy was
estimated by expanding into a series and retaining
terms quadratic in σe – 1 ! 1.

Leaving terms of orders u2 and u4 in Eq. (18), we
find the steady-state distribution of fluctuations in the
form of a kink:

(19)

Here, ξ is the correlation length, which diverges at the
critical value of the elastic stress. The constant of inte-
gration y0 @ ξ defines the width of the transition
domain where velocity fluctuations go to zero from the
steady-state value given by (17). Substituting distribu-
tion (19), which falls within the correlation length ξ,
into the second formula in (14), we see that the shear
component in the transition region grows monotoni-
cally from the critical value σc = 1 to a value σe > σc that
depends on external conditions (Fig. 1a). Such a stress
distribution leads to a critical increase in the friction
factor µ ≡ σ/P from the hydrodynamic value 1/P ≡
(gatuP)–1, which drops as the inelastic collision rate
increases and the stress dependence of the fluctuations
strengthens (see (6)), to the dry-friction value σe/P.
Note that such behavior by no means contradicts the

u̇ u''
∂E
∂u
------,–=

E
u2

2
-----

σe

2
----- 1 u2+( ),ln–=

uc
2

u0 σe 1–=

V0''

u̇

1
2
--- u'( )2 E E0 ,+=

E0 E u0( ) . 
1
4
--- σe 1–( )2 0.<–≡

u u0

y0 y–
ξ

------------- 
  , ξ2 2

σe 1–
--------------.≡tanh=
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conclusion [4] that elastic stresses in a flow cell are
constant. In fact, this conclusion is based on the macro-
scopic approximation in terms of which the interface is
assumed to be indefinitely thin, while in our case, the
elastic field varies over the correlation length ξ ≠ 0.

To avoid misunderstanding, we note that the formal
use of equality (18) at the flow boundary y = y0, where
u = 0, results in a finite velocity fluctuation gradient:

(20)

Physically, the presence of such a gradient does not
mean the appearance of a heat flux J ∝  T ', since the
temperature gradient T ' ≡ 2muu' at the flow boundary
vanishes together with the velocity fluctuations (u = 0).

The first equality in (14) combined with an expres-
sion for u'(y) that follows from (18) yields an equation
for the flow mean velocity:

(21)

u0'
u0

ξ
----- 1

2
------- σe 1–( ).≡=

2V'
1 u2+

σe 1–( ) u2–
------------------------------ .ln–=
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Fig. 1. (a) Spatial variation of the (1) rms velocity fluctua-
tion u and (2) elastic stress σ and (b) the profiles of the
(1) velocity gradient V' and (2) mean velocity V. y0 = 5,
σe = 2.
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According to Fig. 1b, the gradient of this velocity
increases monotonically from

(22)

to zero in the range 0 < y < y0. As a result, the velocity
profile V(y) splits into sections of fast (0 < y < y0 – ξ)
and slow (y0 – ξ < y < y0) fall. Since the fluctuations u(y)
vary only in the range y0 – ξ < y < y0, the mean velocity
in the basic flow region (0 < y < y0 – ξ) falls off faster
than its fluctuations [4].

The above consideration demonstrates that the set of
Lorentz equations (5)–(7) gives a self-consistent
description of the transition of a loose medium from the
solidlike to fluid state.

STICK-SLIP FLOW REGIME

Since Lorentz equations (5)–(7) are of hydrody-
namic nature, the elastic stresses are represented by the
value σ averaged over a physically small volume. Fluc-
tuations that appear over distances on the order of the
particle size must be taken into consideration by intro-

ducing a stochastic source ( /tσ)η(t) into Eq. (7). This
source is characterized by an intensity I and white noise
η(t): 〈η (t)〉  = 0, 〈η (t)η(t')〉  = δ(t – t'). Then, in adiabatic
approximation (13), the curvature V"(t) of the velocity
profile and the stress σ(t) include stochastic additions:

(23)

(24)

where the first terms in (23) have the form of (14).

V' 0( ) . – 2
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ξ
---- 1

2
-------

4 σe 1–( )
σe

----------------------ln+

I

V'' t( ) V'' V''˜ η t( ), σ t( )+ σ σ̃η t( ),+= =
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ν
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1 u2/uc
2

+
----------------------, σ̃ I
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+
----------------------,≡ ≡
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2

Fig. 2. Phase diagram of a loose medium subjected to elastic
stresses with a mean value σe and a fluctuation intensity I.
(1, 2) Boundaries between the domains of continuous flow
(C), rest (R), and stick-slip (SS) regime.
In view of (5), these equalities yield the space-
dependent Langevin equation

(25)

(26)

The steady-state distribution of homogeneous solu-
tions to (25) [8],

(27)

has a maximum at the point given by the condition

(28)

According to the phase diagram (Fig. 2), with σe
exceeding the limit σc2 ≡ (1 + 2I)σc, the most probable
fluctuations meet the condition u ≠ 0 and the flow
regime is similar to that described above. As the stress
decreases below σc2, σe < σc2, a maximum appears at
the point u = 0, which corresponds to the solidlike state.
Under the curve σc1 ≡ σe(I), which is given by

(29)

this maximum is single.

Thus, taking into account elastic stress fluctuations
results in the appearance of the two-phase state at
σc1(I) < σe < σc2(I). In this range, the system may break
into the stick-slip regime, randomly passing from the
solidlike to fluid state. This regime may occur even in
the absence of external stresses if the fluctuation inten-

sity exceeds the value of Ic = (27/2) . Under such con-
ditions, the system behaves as in the case of self-orga-
nized criticality [9].

Since the system is of stochastic character, the
description of the stick-slip regime is reduced to finding
the distribution 3(τ) of the durations τ of flow intervals
alternating with rest intervals. This distribution is gov-
erned by the competition between negative feedback,
which diminishes the elastic stress energy ζ, and a pos-
itive contribution increasing the entropy (complexity) s
of the system. The duration τ plays the role of the order-
ing parameter, the entropy s represents the conjugate
field, and the energy ζ serves as a control parameter.
Eventually, the self-consistent behavior of the system is
described by the generalization of Lorentz equations (5)–
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(7) for the stochastic case:

(30)

Here, tτ, ts, and tζ are the relaxation times of the basic
variables; Aτ, As, and Aζ are coupling constants; Iτ, Is,
and Iζ are the fluctuation intensities of the associated
parameters; and ζe is the external action parameter. The
distinctive feature of set (30) is its fractal feedback, the
amount of which depends on the exponent a, 0 < a ≤ 1.

In the adiabatic approximation ts, tζ ! tτ, this set is
reduced to spatially homogeneous Langevin equation
(25), where the effective force and the intensity of the
stochastic source are given by

(31)

tτ τ̇ –τ Aτs Iτη t( ),+ +=

tsṡ –s Asτ
aζ Isη t( ),+ +=

tζ ζ̇ ζ e ζ–( ) Aζτ
as– Iζη t( ).+=

f –τ ζ eτ
ada τ( ), I Iτ Is Iζτ

2a+( )da
2 τ( ).+≡+≡
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Fig. 3. (a) Phase diagram of the system according to the
fluctuation intensities Iζ and Is, elastic stress energy, and
entropy (Iτ = 0, ζe = 0). The dotted, continuous, and dashed
lines correspond to the exponent a = 0.5, 0.75, and 1.0,
respectively. Rhombi 1–4 correspond to the related curves
in Fig. 3b. (b) Distributions of the flow interval durations for
a = 0.75 and fluctuation intensities shown in Fig. 3a.
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Here, da(τ) ≡ (1 + τ2a)–1 and the following scales are
used:

The steady-state distribution 3(τ) of the flow inter-
val durations is defined by expression (27), from which
it follows that the behavior of the system under the self-
organized criticality conditions can be found from the
phase diagram shown in Fig. 3a. It is seen that a
decrease in the feedback exponent a expands consider-
ably the stick-slip flow range. The curves 3(τ) in
Fig. 3b show that the power behavior, which is charac-
teristic of the self-organized criticality conditions, takes
place in the limit Iτ, Is ! Iζ, where the distribution of the
flow interval durations has the asymptotic 3 ~ τ–2a with
τ  0.

Thus, our investigation demonstrates that the stick-
slip flow regime of a loose medium under the self-orga-
nized criticality conditions is due to elastic stress fluc-
tuations
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Abstract—The method of coupled kinetic equations, which was put forward earlier to describe the passage of
fast multiply charged ions through a material, is applied for the extraction of partial (resolved with respect to
the charge state of an ion) stopping parameters from the experimental spectra of the ion energy loss at the exit
from the target. © 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The progressively expanding use of fast multiply
charged ion beams in various areas of science (atomic
and nucleus, physics, solid-state physics, materials sci-
ence, biology, medicine, etc.) poses the problem of reli-
able determination of the stopping parameters for mul-
tiply charged ions passing through a material. Unlike
protons or other elementary charged particles, multiply
charged ions exchange electrons with it, when passing
through the environment, thus stochastically changing
their charge and, hence, stopping parameters. Taking
into consideration the charge exchange effect makes
the description of the ion energy spectra at the target
exit difficult. This is especially true in the case of an ion
beam passing through thin foils, when statistical equi-
librium between different charge fractions of the beam
has no time to establish.

Currently, the conventional method of analyzing the
kinetics of multiply charged ion beams propagating in
a material, including the determination of the ion stop-
ping parameters, is Monte Carlo statistical simulation
(see [1, 2] and Refs. therein). This approach is known
to be tedious and machine-time-consuming. Another
difficulty associated with this method is that the statis-
tical simulation of the kinetics of such processes
requires that a set of input parameters related to the
effective cross section of ion–target interaction be pre-
determined. These are the rates of unit charge exchange
events and the parameters of effective ion stopping that
are related to each charge state of the ion. The theory of
ion–atom collisions, while rapidly progressing on both
the quantum and the classical basis, still cannot provide
reliable data of this sort. The impression has formed
(see, e. g., [3]) that the study of the process of multiply
charged ion stopping (complex as it is) is just the way
of finding basic stopping parameters. Here, we come to
the concept of inverse problem: how to derive the
parameters required from experimental data for ion
1063-7842/03/4810- $24.00 © 21238
beam passage and how to design experiments that fit
the statement of the inverse problem to the greatest
extent.

These questions were tackled in the fundamental
works of Landau [4] and Winterbon [5]. In a great num-
ber of cases, the quantitative description of multiply
charged ion stopping in a medium is possible without
knowing details of ion–atom interaction. It suffices to
know only several first moments of the energy loss dis-
tribution in an elementary act of inelastic ion–atom col-
lision (in the diffusion approximation, these quantities
are the effective stopping parameter Si(E) and the

energy straggling parameter (E) for each of the ion
charge states considered). Thus, the inverse problem is
reduced to the standard procedure of fitting to experi-
mental data by varying a finite (though large) number
of theoretical parameters. All one needs in this situation
is an adequate stopping theory that would correctly
describe the kinetics of ion beam passage through a
material in the conditions of intense charge exchange.

We propose to fill this gap with the previously pre-
sented [6] method of coupled kinetic equations for par-
tial (related to definite charge states) ion energy loss
distributions. Based on this technique, we analyzed the
evolution of such distributions in the case of nonequi-
librium beam propagation [7], determined the effective
charges of fast multiply charged ions in the target mate-
rial [8], included charge exchange when considering
the angular spread of an ion beam [9], and investigated
the effect of the intermediate excitations of fast multi-
ply charged ions on their stopping characteristics [10].
It was demonstrated that our approach offers advan-
tages over the Monte Carlo method.

Turning back to the inverse problem, one has to state
that experimental data on the partial energy distribu-
tions and other energy parameters of ion nonequilib-
rium passage are almost lacking; moreover, even those

Ωi
2
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available from the literature usually do not carry infor-
mation on direct measurements and error analysis,
which is imperative for these results to be used in the
inverse problem. Therefore, we will use pseudoexperi-
mental (theoretically obtained) data that simulate the
results of real experiments on multiply charged ion pas-
sage through a material.

THEORETICAL BACKGROUNDS

We proceed from the general Landau–Winterbon
equations [4, 5] for the charge-state-resolved functions
Fi(∆, x) (i = 1, …, N), which define the distribution of
the energy loss ∆ = E0 – E for an ion at a distance x from
the entrance to the target:

(1)

Here, λii is the differential rate of collision energy loss
for an ion with a charge i, λi → j(T) ≡ λij(T) is the rate of

charge exchange between two states, and  =

(T)dT is the total rate of transitions from a

state i to other charge states. Input energy parameters of
calculation are the effective stopping parameters Si =

(T)TdT and the straggling parameters  =

(T)T2dT for an ion “frozen” in each of states i. They

are the coefficients in the Taylor expansion of the distri-
butions Fi(∆ – T, x) in the vicinity of ∆. At a certain dis-
tance x from the entrance to the target, the characteristic
energy loss per collision, which is given by the distribu-
tion λii(T), becomes small compared with the mean
energy loss 〈∆〉  over this distance (diffusion approxima-

tion) and all the moments (T)TndT with n > 2, start-

ing from the skewness parameter Ni = (T)T3dT,

may be omitted from the expansion. In addition, if the
energy loss per act of charge exchange is assumed to be

constant, λij(T) = λijδ(T – )(i ≠ j), the system of
equations (1) transforms into a simpler one, which in
the integral form appears as [6]

(2)

∂Fi ∆ x,( )
∂x

----------------------- –λ i
totFi ∆ x,( ) λ ii T( )Fi ∆ T– x,( ) Td∫+=

+ λ ji T( )F j ∆ T– x,( )
j i≠
∑ T .d∫

λ i
tot

λ ijj i≠∑∫

λ ii∫ Ωi
2

λ ii∫

λ ii∫
λ ii∫

∆ij

Fi ∆ x,( ) e
λ i x–

gi ∆ ∆'– x,( )Fi ∆' x 0=,( ) ∆'d∫=

+ λ ji x' e
λ i x x'–( )–

gi ∆ ∆ji– ∆'– x x'–,( )Fj ∆' x',( ) ∆'.d∫d

0

x

∫
j i≠
∑
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This expression includes the Gaussian propagators

(3)

which are characteristic of the diffusion approximation
and describe the stopping and energy spread of an ion
beam should it stay in definite frozen-charge states i =
1, …, N.

Kinetic equations (2) are solved numerically with
the use of appropriate initial conditions at the entrance
to the target Fi(∆, x = 0). Solving (2), we obtain the
energy loss distribution functions Fi(∆, x)(i = 1, …, N);
the respective weights of the charge fractions of ions in

the beam, fi(x) = (∆, x)d∆; the corresponding mean

energy loss values 〈∆〉 i(x) = (∆, x)∆d∆/fi(x); the par-

tial straggling parameters; and the stopping power of
the material for each of the ion charge states detected in
the beam,

(4)

Knowing these parameters, we determine the mean
statistic charge of the ion beam,

(5)

and the so-called equivalent charge of the beam, which
is expressed via its energy characteristics:

(6)

where 

is the stopping power averaged over the charge frac-
tions in the beam and (–(dE/dx))p is the effective stop-
ping power for protons.

For very thin films, the stopping power of a material
should be calculated as the ratio of finite differences
(see, e.g., [1])

rather than by formula (4).
Because of this, we complement (6) by the modified

equivalent charge [8], which is denoted by Q(equiv)(x),
where 〈–(∆E/∆x)〉(x) replaces 〈–(dE/dx)〉(x) in (6).
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STOPPING AND CHARGE EXCHANGE 
FOR OXYGEN IONS Oq+ PASSING 
THROUGH A THIN CARBON FILM

We consider the process that was studied experi-
mentally and simulated with the Monte Carlo method
by Datz et al. [1] for incident beam energies between 10
and 24 MeV. Let us take the energy 24 MeV and, fol-
lowing [1], construct system (2) based on the following
set of charge states:

Oq+ = O4+, O5+, O6+, O7+, O8+. (7)

For the sake of simplicity, here we disregard inter-
mediate excited states of ions in the stopping process
(this point is considered in [10]). Using the charge
exchange rate matrix λij [1] (Table 1), we calculate the
charge fractions distribution (7) as a function of the tar-

Table 1.  Transition rates λij, [µg/cm2]–1

λi → j O4+ O5+ O6+ O7+ O8+

O4+ 0. 2.5389 0. 0. 0.

O5+ 0.0853 0. 0.8002 0. 0.

O6+ 0. 0.1338 0. 0.1281 0.

O7+ 0. 0. 0.1019 0. 0.0567

O8+ 0. 0. 0. 0.2354 0.
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6+

5+
7+
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O(4+) → C; 24 MeV

1.0

0.8

0.6

O(8+) → C; 24 MeV

0.4

0.2

50 10 15 20
Target thickness, µg/cm2

4+
8+

5+

6+

7+

Fig. 1. Fractions of charge states O4+, O5+, O6+, O7+, and
O8+ vs. the target thickness.
get thickness. Figure 1 shows that the equilibrium dis-
tribution, which is independent of the initial charge
state of the beam, is achieved in the interval (20–
25) µg/cm2; therefore, a film thickness of 7.5 µg/cm2

taken in [1] is adequate to investigate the process under
nonequilibrium conditions. Note also that, at this thick-
ness, the fraction of beryllium-like ions O4+ turns out to
be negligible not only when the beam consists of bare
(totally free of electrons) O8+ nuclei but also when O4+

ions themselves are the input charge state.
When choosing the stopping parameters for ions in

frozen charge states, we will use the effective ion

charges (E) and (E) calculated within the
framework of the dielectric stopping theory, which is
commonly used when the partial screening of an ion
nucleus by the electron shell should be taken into con-
sideration [11–14]. The corresponding values of the
stopping power Si(E) are very close to those used in [1].
They are listed in Table 2 (second column), along with

the straggling parameters (E), which are taken
according to Bohr [14].

(1) Examples of setting and solving the inverse
problem. With the given set of parameters, we will cal-
culate the energy loss spectrum for oxygen ions passing

qi
stop qi

strag

Ωi
2

→ O5+

→ O6+

→ O7+

→ O8+

O4+ →
300

200

0

N/channel

(a)

→ O5+

→ O6+

→ O7+

→ O8+

O8+ →
300

200

0

(b)

100

→ O4+

→ O4+

40 60 80 100
E, keV

Fig. 2. Results of simulation by variant 1 (O4+  Oq+

and O8+  Oq+). Symbols, Monte Carlo simulation; the
dashed and solid curves are the partial spectra calculated
with the input parameters and the parameters derived from
the analysis of the spectra, respectively.
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through a 7.5-µg/cm2-thick film in two variants. In
either of them, the computation is performed twice:
first, by the method of coupled equations (the dashed
curves in Figs. 2, 3) to compare the partial energy loss
spectra for different charge fractions and then by the
Monte Carlo technique (with the same basic parame-
ters) to simulate experimental results. The spectrum of
ions that left the film in charge states (7) is used to plot
histograms with a 1-keV/channel energy step in the
range from 0 to 100 keV. The statistical spread of the
resulting data gives an estimate of the data spread in the
corresponding experiment.

Variant 1. Let an experiment give the complete set
of the partial energy loss spectra Fi(∆) for all the charge
fractions i = O4+, …, O8+ at the exit from the target with
the states O4+ and O8+ chosen as the input ones
(Figs. 2a, 2b). In order to detect a statistically reason-
able number of events in each of the charge states at the
exit from the target (Table 3), the total number of parti-
cles in the entering beam was substantially different for
the input states O4+ (~106 particles) and O8+ (~104 par-
ticles).

These data are analyzed by the χ2 minimization
method with the system of equations (2) being solved
at each step of the fitting procedure. The obtained val-
ues of the stopping parameters, along with the associ-
ated errors, are presented in Table 4 (third column), and
the corresponding calculated spectra are shown by the
solid curves in Figs. 2a and 2b.

Variant 2. Now we simulate another experiment
that gives a set of the partial spectra Fi(∆) for ions with
the charge state at the entrance to O4+, …, O7+ or O8+

and the exit from the target (Table 2; Fig. 3). The basic
stopping parameters derived from such an “experi-
ment” are listed in Table 4 (fourth column), and the cor-
responding calculated spectra are shown by the solid
curves in Fig. 3.

(2) Discussion. Let us draw the main conclusions
that follow from the two variants of simulation consid-
ered above.

(i) The discrepancies between the input and output
stopping parameters, as well as the calculation errors,
are the greatest for the charge state 4+, which is the
lowest component in the charge fraction distribution
when the effective target thickness is 7.5 µg/cm2 (Fig. 1).

(ii) For the most intense fractions 6+ and 7+, both
variants of simulation yield satisfactory results for the

stopping parameters Si and : their values are close to
the input ones, and the statistical errors are the least.

(iii) In both variants, the theoretical partial spectra
plotted with the parameters extracted from the experi-
ment (the solid curves in Figs. 2, 3) deviate from the
curves constructed with the initial parameters (dashed
curves) only slightly.

(iv) In view of the above observation, it is of interest
to value the results in each of the variants considered:
in variant 1, the final result is based on a sample of more

Ωi
2
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than one million ion trajectories; in variant 2, the sam-
ple equals 550000. The difference is not large; so, in
our opinion, neither of the two variants is preferred.

Our experience in calculating the partial spectra
from a given set of basic parameters shows that the
method of coupled kinetic equations may be conve-
niently applied for solving the inverse problem and is
less time-consuming than the Monte Carlo method by
several orders of magnitude. For example, with the use
of an Athlon XP 1800+-based PC, the entire procedure

for determining the optimal values of Si and  by theΩi
2

O5+

O6+

O7+

O8+

Oq+ → Oq+
400

0

200

O4+

20 40 80 100
E, keV

60

N/channel

Fig. 3. The same as in Fig. 2 for variant 2 (Oq+  Oq+).

Table 2.  Number of trials (particles at the entrance to the target)
and the number of detected events Oq+  Oq+ for simula-
tion by variant 2

Number of trials Number of events 
detected

O4+  O4+ 500 000 1702

O5+  O5+ 30 000 2910

O6+  O6+ 10 000 4797

O7+  O7+ 10 000 5341

O8+  O8+ 10 000 2693

Table 3.  Number of detected events O4+  Oq+ and
O8+  Oq+ for simulation by variant 1 

Charge state
at the exit Input state O4+ Input state O8+

O4+ 1019 819

O5+ 2863 2666

O6+ 5297 3803

O7+ 3263 5139

O8+ 1303 2693
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Table 4.  Stopping parameters

Parameter Used for simulation
Derived from final spectra 

{O4+, O8+}  Oq+ Oq+  Oq+

S(q = 4+), keV/(µg/cm2) 4.02 4.450 ± 0.14 3.718 ± 0.23

S(q = 5+), keV/(µg/cm2) 5.52 5.603 ± 0.03 5.674 ± 0.04

S(q = 6+), keV/(µg/cm2) 7.10 7.060 ± 0.02 7.062 ± 0.02

S(q = 7+), keV/(µg/cm2) 8.83 8.790 ± 0.02 8.833 ± 0.02

S(q = 8+), keV/(µg/cm2) 10.9 10.928 ± 0.02 10.930 ± 0.02

Ω2(q = 4+), keV2/(µg/cm2) 5.0 10.46 ± 1.5 3.56 ± 2.0

Ω2(q = 5+), keV2/(µg/cm2) 5.0 3.35 ± 0.3 5.16 ± 0.4

Ω2(q = 6+), keV2/(µg/cm2) 5.0 5.05 ± 0.2 4.88 ± 0.2

Ω2(q = 7+), keV2/(µg/cm2) 5.0 4.71 ± 0.2 4.80 ± 0.2

Ω2(q = 8+), keV2/(µg/cm2) 5.0 4.45 ± 0.2 4.66 ± 0.2
method of χ2 minimization (Table 4) takes 20 min and
1 h in variants 1 and 2, respectively.

CONCLUSIONS

An advance in the experimental study of interaction
between fast multiply charged ions and a material and,
in particular, systematic measurements of the partial
(charge-resolved) spectra of the energy loss under non-
equilibrium stopping conditions is retarded by the lack
of a theoretical basis that would provide a means to
derive the basic stopping parameters from the results of
such measurements. We took a step forward in this
direction using the method of coupled kinetic equa-
tions, which has previously proved to be efficient for
calculating the kinetics of fast multiply charged ions
passing through a material. An algorithm was evolved,
and a computer program was worked out, which dem-
onstrates the potentialities for conveniently solving the
inverse problem in the stopping theory under the condi-
tions typical of recent experiments in this area.
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Abstract—It is shown that the intensity of acoustic radiation from a vibrating drop depends mainly on the
monopole and dipole components appearing only in the second order of smallness in vibration amplitude. The
intensity of the quadrupole acoustic radiation generated by the vibration fundamental mode in the first order of
smallness in amplitude turns out to be much weaker. This is associated with the fact that, if the acoustic wave-
length is much larger than the drop characteristic size, their ratio becomes a governing small parameter, being
lesser than the ratio of the drop vibration amplitude to the drop linear size. Analytical estimates of the ampli-
tudes of monopole, dipole, and quadrupole components of the velocity field associated with the acoustic field
of the drop. © 2003 MAIK “Nauka/Interperiodica”.
(1) Interaction between a vibrating charged drop
and an acoustic field is of interest for many scientific
and applied problems, such as the physics of aerosols,
the physics of thunderstorm electricity, and the elec-
troacoustic levitation of drops in experiments aimed at
producing superpure materials (see [1–8] and Ref.
therein).

Nevertheless, a number of points concerning
charged drop–acoustic field interaction remain poorly
understood. For example, in most applications dealing
with interaction between acoustic waves and liquid
drop systems, drops are simulated as rigid sound-scat-
tering objects without internal degrees of freedom. At
the same time, it is known [3] that the frequency spec-
trum of the capillary vibrations of drops with sizes that
are typical of rains and mists overlaps with the range of
audible frequencies. This means that such drops may
not only interact with an external acoustic field but also
generate acoustic waves.

The investigation of acoustic radiation from a
vibrating charged drop in approximations linear and
nonlinear in vibration amplitude was carried out in
[9−11].

(2) In [9], the analysis was based on the model of
capillary vibrations of a charged drop immersed in a
compressible medium and was performed in the
approximation linear in amplitude of the drop initial
deformation. It was found that acoustic waves generate
all modes of drop surface vibrations starting from the
fundamental one (that is, from n = 2) and also that the
quadrupole component due to the fundamental mode
(n = 2) has the highest intensity in the acoustic radia-
tion spectrum.
1063-7842/03/4810- $24.00 © 21243
The expression for the intensity of quadrupole
acoustic radiation from a linearly vibrating charged
drop has the form [9]

(1)

(2)

Here, ρ1 and ρ2 are the densities of the drop and envi-
ronment, V is the speed of sound in the environment, C2
is the amplitude of the fundamental mode, ω2 is the

vibration frequency, R is the drop radius, (z) are
spherical Hankel functions of the second kind, σ is the
surface tension, Q is the drop charge, and ε is the per-
mittivity of the environment.

The intensity of quadrupole acoustic radiation from
the vibrating drop vs. drop radius and the amplitude of
the initial deformation fundamental mode according to
(1) is plotted in Fig. 1.

(3) In [10], the acoustic radiation of a charged
incompressible liquid drop nonlinearly vibrating in a
compressible environment was considered. The study
was carried out in the approximation quadratic in
amplitude of the initial deformation of the equilibrium
spherical drop shape with the initially excited funda-
mental vibration mode. The acoustic radiation spec-
trum was found to have the monopole component,
which arises from the time dependence of the ampli-
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tude of the drop vibration zeroth mode. This depen-
dence is a consequence of the drop volume constancy.
The time dependence of the zeroth mode is defined by
the expression [10]

where

C2 is the initial disturbance amplitude; and ω2 and γ are
the vibration frequency and damping decrement of the
fundamental mode of the drop vibrations, which are
defined as the real and imaginary parts of the frequency
given by expression (2).

Note that the vibration frequency of the zeroth mode
is equal to the doubled frequency of the mode govern-
ing the initial deformation.

The expression for the intensity of monopole acous-
tic radiation from a nonlinearly vibrating charged drop
that is related to the zeroth mode has the form

(3)

where a0 is the zeroth mode amplitude and ω is the fre-
quency of the same mode.

The intensity of monopole acoustic radiation from a
nonlinearly vibrating drop vs. its radius and the ampli-
tude of the fundamental-mode-induced initial deforma-
tion (expression (3)) is shown in Fig. 2.
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Fig. 1. Intensity of the quadrupole acoustic radiation from a
water drop in air as a function of the drop radius and ampli-
tude of the initial deformation of the fundamental mode at
W = 1.
(4) In [11], the acoustic radiation of a nonlinearly
vibrating charged drop was considered in the case when
several modes were initially excited. It was found that,
when the initial spectrum has two modes with increas-
ing numbers, the second-order approximation in devia-
tion of the drop shape from the equilibrium (spherical)
one yields the time dependence of the translational
(first with n = 1) mode amplitude. This dependence
transforms the drop into a source of dipole acoustic
waves. The time dependence of the translational mode
amplitude has the form [4]

(4)

where N is a set of the numbers of initially excited
vibrational modes and hi are the coefficients determin-
ing the partial contribution of an ith vibration mode to
the total initial excitation:

The intensity of dipole acoustic radiation is given by

(5)

where ν is the kinematic viscosity and δ is the ampli-
tude of the initial deformation of the equilibrium drop
shape.

The dependence of the dipole acoustic radiation
intensity on the drop radius and amplitude of the initial

a1
2( ) t( )

9ihi 1– hi

2 2i 1–( ) 2i 1+( )
-----------------------------------------

i N∈
∑–=

× ωi ωi 1–+( )t[ ]cos ωi ωi 1––( )t[ ]cos+{ } ,

hi

i N∈
∑ 1.=

Is
3πν2R2

2V2
------------------ δ2R

9ihi 1– hi

2i 1–( ) 2i 1+( )
--------------------------------------hihi 1–

 
 
 

2

=

× ωi ωi 1++( )4 ωi 1+ ωi–( )4+{ } ,

6 × 10–7

2 × 10–7

0.20

0.15

0.10

0.05

0
0.20

0.15
0.10

0.05
0

C2/R

R, cm

I, erg/s

Fig. 2. Intensity of the monopole acoustic radiation from a
nonlinearly vibrating water drop in air as a function of the
drop radius and amplitude of the initial deformation of the
fundamental mode at W = 1
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disturbance of the second and third modes (expression
(5)) is shown in Fig. 3.

(5) Comparing the data presented in Figs. 1–3 shows
that the dipole and monopole acoustic radiation inten-
sities exceed the quadrupole radiation intensity, all
other things being equal. This fact looks somewhat
strange, because the zeroth and first modes, which
cause the monopole and dipole radiations, appears only
in the second order of smallness in deviation of the drop
shape from the equilibrium one, whereas the second
mode exists even in the first order of smallness. There-
fore, it would be natural to expect that the monopole
and dipole components of the acoustic radiation will be
of lesser intensity compared with the quadrupole com-
ponent. However, the actual distribution of the acoustic
radiation intensity over the mode numbers [9–11]
implies that the second-order monopole and quadru-
pole components of the radiation make a decisive con-
tribution to the total intensity.

To elucidate reasons for this phenomenon, consider
a model problem of acoustic radiation from an abstract
spherical source that may excite all modes including
the first one.

Let a sphere of radius R execute axisymmetric vibra-
tions with a small amplitude ξ(Θ, t), where |ξ|/R ! 1, in
an external ideal compressible liquid. Such a system
generates acoustic radiation. Our aim is to find the
intensities of the total acoustic radiation components
related to various modes of the sphere vibration.

Mathematically, the problem of potential motion of
a compressible medium is stated as

(6)

(7)

(8)

Here, ψ(r, t) is the velocity field potential in the envi-
ronment and is the Laplacian. The time dependence of
the velocity field potential in the environment is
assumed to be periodic: ψ ~ iωt; wave equation (6) is
then transformed into the Helmholtz equation

(9)

(6) The velocity potential of the acoustic field radi-
ated by a spherical source, which is a solution to Eq. (9)
subject to radiation condition (8), can be represented in
the form

(10)
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where (kr) are spherical Hankel functions of the
second kind and Pn(µ) are Legendre polynomials.

The deviation of the vibrating drop surface from the
spherical shape is described by the expression

(11)

Substituting (10) and (11) into (7), we express the
amplitude of the velocity field potential in the environ-
ment through the amplitude of the sphere surface vibra-
tion:

(12)

The amplitudes An of the velocity field potential for
zeroth-, first-, and second-order acoustic waves are cal-
culated by using (12) and expressing the spherical Han-
kel functions through trigonometric ones [12]:
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Fig. 3. Intensity of the dipole acoustic radiation from a non-
linearly vibrating water drop in air as a function of the drop
radius and amplitude of the initial deformation of the funda-
mental mode at W = 1 and h2 = h3 = 0.5.
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If the argument kr of the Hankel function entering
into formula (10) is large (the so-called “wave zone” of
acoustic radiation), this function can be represented as
a series in negative powers of the argument according
to the well-known relationships [12]:

(13)

In addition, at large values of the argument under
the summation sign in expression (13), only the first
term with m = 0 may be left:

Recall that such a representation is valid at large dis-
tances from the drop surface in the wave zone that is
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characterized by the conditions

In this zone, the geometry of the radiating system
does not influence the shape of waves, which become
spherical, and their amplitudes decrease with distance
as 1/r.

Thus, at distances much larger than the length of the
acoustic wave radiated, the velocity field potential in
the environment is represented by the superposition of
divergent spherical waves and may be written in the
form of the series

Since the velocity field of the environment is
defined by the potential gradient U = Re[gradψ], the
velocity field in the environment in the approximation
linear in r–1 has the form

(14)

that is, contains only the radial component.

With the complex amplitude An represented in the
form An = αnexp(iβn), (14) can be recast as

Now we determine the amplitude αn of the velocity
field for the zeroth, first, and second modes:

(15)

Let us compare the intensities of the acoustic waves
with n = 0, 1, and 2, keeping in mind that the acoustic
field intensity is proportional to the velocity field
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squared and assuming that a0 = a1 = a2, ω0 = ω1 = ω2,
and kR ! 1:

(16)

Since in these estimates the wavelength of the
acoustic wave from the range of audibility is much
larger than the drop radius, it follows that kR ! 1. Even-
tually, from expressions (16), we may conclude that the
monopole radiation is much more intense than the
dipole and quadrupole ones and the dipole radiation is
more intense than the quadrupole one, all other things
being equal.

(7) The results of comparing the acoustic radiation
intensities for the three first modes of the model spher-
ical radiator should be complemented by two estimates
concerning the amplitudes and frequencies of various
modes prior to when they can be applied to a vibrating
drop.

When making the estimates in the previous section,
we assumed that the mode frequencies of the model
radiator are equal to each other. Such an assumption is
incorrect for the drop, and the frequencies of the linear
oscillations of the fundamental mode of the drop in the
environment are defined by expression (2). Thus, this
expression gives us the frequency of the quadrupole
acoustic radiation. The frequency of the nonlinear
oscillations of the fundamental mode of the drop,
which is responsible for the monopole radiation, is
twice as high as the oscillation frequency of the mode
governing the initial deformation (of the fundamental
mode in our case); that is, ω0 = 2ω2.

Hence, according to (15), the ratio (α0/α2)2 will be
four times greater than that given by (16). Similarly,
one can refine the value of the ratio α1/α2. It will also
increase if one takes into account that, according to (5),
the frequency of the translational mode in our situation
depends on the sum of the frequencies of the fundamen-
tal and third modes of the drop oscillations and that the
frequency increases as n3/2 as the mode number
increases [3]. It is easy to calculate that, with the depen-
dence of the frequency on the mode number taken into
consideration, the ratio (α1/α2)2 increases approxi-
mately by one order of magnitude. Thus, if the actual
dependence of the frequencies of the drop zeroth, trans-
lational, and fundamental modes on the mode numbers
is included, estimates (16) strengthen.

Next, it should be noted that, when estimating the
intensity of the monopole and quadrupole components
of the acoustic radiation, we considered the initial exci-
tation of the fundamental mode alone, whereas in esti-
mating the intensity of the dipole radiation, we were
forced to consider the excitation of the second and third
modes, since only in this case the translational mode is
generated via nonlinear interaction. Strictly speaking,
to be correct, we had to evaluate the intensities of the
monopole and quadrupole components at the initial
excitation of the same two, second and third, modes. It
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is easy to check that the additional excitation of the
third mode in no way influences the intensity of the
quadrupole radiation, because in the approximation lin-
ear in drop vibration amplitude, where this component
of the radiation appears, the modes of the drop vibra-
tion do not interact with each other and energy transfer
from the third mode to the second one does not take
place. At the same time, the third mode, when excited,
changes the zeroth mode amplitude insignificantly up
to a factor of ~ 1 [13]. Since the amplitude of the veloc-
ity field of the monopole acoustic radiation, which is
related to the zeroth mode, for exceeds the amplitudes
of the dipole and quadrupole radiations, the above ratio
between the radiation intensities remains practically
unchanged.

CONCLUSIONS

Analytical estimates of the acoustic radiation inten-
sity from a vibrating drop are based on expansions of
two types: in multipoles (in inverse powers of the
dimensionless distance 1/kr to the point of observation
in the so-called wave zone of radiation) and in drop
vibration amplitudes (in powers of |ξ|/R). In natural liq-
uid drop systems, for example, in rainy clouds, the
characteristic values of the parameter |ξ|/R are on the
order of several tenths and equal (by order of magni-
tude) to 1/kr (although 1/kr may be much less at larger
distances from the drop). The multipole expansion in
the wave zone of the radiation yields the velocity field
monopole component of the acoustic radiation on the
order of a0(kR)2/(kr); the dipole component, on the
order of a1(kR)3/(kr); and the quadrupole component,
on the order of a2(kR)4/(kr), where kR ! 1, because the
acoustic wavelength from the range of audibility
exceeds the drop radius by many orders. In other words,
at equal amplitudes ai, the monopole component is the
most intense. Next, the expansion in the drop vibration
amplitude yields the peak value of the velocity field
quadrupole component on the order of a0 ~ (|ξ|/R),
while the monopole and dipole components are on the
order of a1 and a2 ~ (|ξ|/R)2, respectively. Eventually,
the orders of smallness of the velocity field multipole
components of the acoustic radiation are defined by the
relationships

From these expressions, it follows that the ratios of
the amplitude coefficients of the acoustic radiation in
the wave zone depend on the relationship between two
small parameters |ξ|/R and kR. As was mentioned
above, |ξ|/R ~ 0.1, while kR for natural liquid drop sys-
tems that radiate sound in the range of audibility is less
than unity by several orders (for example, for a coarse
rainy drop with R = 0.01 cm radiating an acoustic wave
with a frequency of 1 kHz, kR = 3 × 10–4). This fact
explains the result obtained in [9–11]: the monopole

α0 ξ /R( )2 kR( )2/ kr( ), α1 ξ /R( )2 kR( )3/ kr( ),∼∼

α2 ξ /R( ) kR( )4/ kr( ).∼
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and dipole components of acoustic radiation from a
vibrating drop in the range of audibility, which are
caused by the second-order vibration amplitude, turn
out to be more intense than the quadrupole component,
which is due to the first-order fundamental mode of the
vibration. The value of the intensity ratio will also be
the same in the ultrasonic range, where |ξ|/R > kR.
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Abstract—A flow induced by a rotating disk mounted at the top of a cubic container totally filled with a liquid
is studied experimentally. The flow pattern is visualized for Reynolds numbers in the interval 1500–6000, and
the velocity variation along the axis of the container, which coincides with the axis of revolution of the disk, is
observed by means of Doppler laser anemometry (DLA). As Re grows, the velocity axial component starts fluc-
tuating because of the vortex core precession. The breakdown of the vortex helical structure becomes pro-
nounced at Re > 4000 without the formation of the return flow region (vortex breakdown bubble) at the axis.
With the Reynolds number and the container height-to-disk radius ratio being the same, the axial flow patterns
in standard cylindrical [1] and cubic containers differ radically. In the latter vessel at low Re, the steady flow
regime and axisymmetric bubble breakdown of the vortex structure near the axis are absent. © 2003 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

Variation of vorticity is known to cause significant
structural changes in vortex flows, which reduces the
efficiency of their applications. Among these changes
are vortex breakdowns, which originate at the forward
stagnation point near the axis behind which a limited
area of return flow (a vortex breakdown bubble) forms.
Two types of vortex breakdown occur most frequently:
axisymmetric (bubble) and helical. Vortex breakdown
is observed in vortex flows, in wing leading edge flow
separations, as well as in intensely swirling flows in
pipes and closed rotating-base cylinders [2].

A flow in a closed cylinder with a rotating lid, which
generates a vortex structure coaxial with the axis of rev-
olution of the lid, is the simplest model for studying the
breakdown of an axial vortex. Structural changes in the
flow depend, in this case, only on two parameters: the
container height-to-disk radius ratio H/R and the Rey-
nolds number Re = ΩR2/ν, where Ω is the angular
velocity of the disk and ν is the kinematic viscosity of
the fluid. Having visualized the flow pattern in a wide
range of Re and H/R, Escudier [1] found regions with
various steady and unsteady axisymmetric regimes of
vortex breakdown. Figure 1 exemplifies the axisym-
metric breakdown of a bubble-like vortex structure and
shows the flow pattern in a cylindrical container.

The aim of this work is to find swirling flow regimes
and visualize (for the first time) the breakdown of an
axial vortex structure in a cubic container.

The pioneering investigation of flows in a container
of cubic geometry was accomplished by numerical
techniques [3]. The steady-state Navier–Stokes equa-
1063-7842/03/4810- $24.00 © 1249
tions were solved for Re = 500, 1000, 1500, and 2000.
In the absence of relevant experimental data, Chiang
et al. [3] assumed that the flow regimes are steady-state
and laminar like those in a cylindrical vessel [1]. How-
ever, tentative experimental data for the pulsation of a
swirling flow in a closed rectangular container with
H/R = 2 [4] suggested the dominant role of vibrations
in the flow, which indicate that the flow is unsteady,
including in the Re range studied in [3]. The precision
DLA measurements for the temporal characteristics of
the axial and tangential velocity components showed
that the frequency of the first peak of these vibrations is
proportional to (and roughly equal to 1/16 of) the fre-
quency of an external excitation (disk rotation). Exper-
imental studies of vortex breakdown in pipes also
detected considerable flow velocity variations in time.
Faler and Leibovich [5] obtained the velocity profiles
and energy spectra in the vortex breakdown region. The
particle motion in the breakdown region was found to
be unsteady with regular low-frequency vibrations. The
travel of the breakdown region made velocity field mea-
surements in its neighborhood extremely difficult. The
main vibration period in the experimental setup was
about 2 Hz at a fixed flow rate. In general, the findings
of Faler and Leibovich do not allow one to judge the
reason for the nonstationarity of a swirling flow in a
cubic container; therefore, the problem calls for a more
careful examination.

The need for studying the vortex flow in square-sec-
tion working chambers is dictated by their frequent use
in practice. Facilities of rectangular geometry are sim-
pler in design and cheaper [6, 7]. The latter factor
becomes of particular importance for large vortex
2003 MAIK “Nauka/Interperiodica”



 

1250

        

OKULOV

 

 

 

et al

 

.

                                                       
chambers, e.g., cyclone tangential furnaces used in
power engineering. Also, in the case of the rectangular
geometry, special optical means for diagnosing vortex
flows may be applied [7, 8].

It is reasonable to compare swirling flows in canon-
ical (cylindrical) and noncanonical (in the form of a
parallelepiped) vortex chambers. Alekseenko et al. [7]
studied vortex flows in a rectangular chamber with
transparent cylindrical insertions. In cylindrical and
rectangular parts, the structure of concentrated unbro-
ken axial vortices was found to be identical for several
regimes. This fact was explained by the presence of
smoothing corner vortices in a rectangular chamber,
which produce an imaginary almost cylindrical surface
inside of which the basic flow develops. However, the
flow regimes and vortex breakdown conditions were
not compared in that work and the statement that “the
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Fig. 1. (a) Flow pattern (Re = 1490) and (b) vortex evolution
diagram in a cylindrical container [1].

breakdown

breakdowns

breakdowns
flows are almost identical to each other” was not sup-
ported in a wider range of flow parameters.

The vorticity and the shape of the vortex core to a
great extent depend on its interaction with the circum-
ferential boundary layer. In rectangular and cylindrical
containers, this interaction is substantially different. In
the former, the interaction is accomplished indirectly
via smoothing corner vortices. Here, one may expect
significant changes in the flow pattern, since the vortex
breakdown is extremely sensitive to external effects.
For these reasons, one more goal of this work is to com-
pare the swirl flow patterns in canonical cylindrical [1]
and noncanonical cubic experimental chambers.

To this end, the flow pattern in a cubic container was
visualized for the first time with the technique used in
[1]. The presence of vortex breakdown bubbles appear-
ing along the container axis aligned with the axis of
revolution of the disk were judged from the velocity
axial component profiles taken with a Doppler laser
anemometer.

EXPERIMENTAL

We used closed container 1 (Fig. 2) of square sec-
tion with 120 mm on a side. Rotating disk 2 of radius
R = 59.5 mm is mounted on the upper lid of the con-
tainer. The height of the container can be varied from 0
to 140 mm. To provide cubic form, the height was set
equal to 120 mm (H/R = 2).

The constancy of the angular velocity Ω of the disk
is provided by a system of frequency–phase stabiliza-
tion. The mean angular velocity of the disk was kept
constant within 0.2% in the interval (3–100) rpm.
A water–glycerol (40%) mixture was used as a working
fluid. The kinematic viscosity of the fluid ν was 3.1 ×
10−5 m2/s at 25°C. Throughout the experiment, it was
controlled with a viscosimeter. The temperature of the
working fluid was controlled with a digital thermome-
ter. The temperature was kept constant within 0.2°C.
Since the viscosity of the water–glycerol fluid greatly
depends on temperature, the viscosity/temperature ratio
was carefully controlled so that the total error in deter-
mining Re be no more than ±10 for Re = 1000–6000.

The working section of the container was made of
transparent optical-grade resin glass. Visualization was
accomplished by introducing a dye at the container axis
[1, 9]. A small amount of a water solution of fluores-
cein, which colors the working fluid, was added to the
container from vessel 3 through 1-mm-diam. tube 4 and
then through a 0.3-mm-diam. hole at the center of the
container bottom (Fig. 2). The dye feed depends on the
position (height) of the vessel relative to the container
bottom. The height was selected in such a way that the
dye filled the lower part of the container and then was
entrained by the flow along the vortex axis. A 20-mW
He–Ne laser was applied as a light source. Flow pat-
terns in various regimes were recorded by video camera 5,
which was mounted perpendicularly to the side wall of
TECHNICAL PHYSICS      Vol. 48      No. 10      2003
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the container. The images were examined visually and
also were processed with PC 6. Such a technique pro-
vides the reliable diagnostics of flow regimes in a cubic
container.

The axial component of the flow velocity at the axis
of revolution of the disk was measured by using a DLA
optical sensor with adaptive time selection (ATS) [10].
ATS DLA sensor 7 is based on a two-frequency differ-
ential optical scheme with a carrier of 80 MHz and pro-
vides the acoustooptical switching of measuring chan-
nels. The laser radiation wavelength was 514 nm, and
the focal length of the optical system was F = 500 mm.
The probing light spot measured 0.5 × 0.05 mm. Poly-
styrene beads were used as a light-scattering medium.

A Doppler signal to be processed is sequentially
applied to low-pass filter 8, ADC 9, and the PC. The
synchronous digitization of the signal retains exact
phase relationships between the cosinusoidal and sinu-
soidal components of a quadratic pair. Filtering and fre-
quency determination were accomplished with a dedi-
cated algorithm based on fast Fourier transformation
[4]. The accuracy of velocity measurements were no
worse than 1% in the velocity range 10–4–10–1 m/s.

RESULTS AND DISCUSSION

A swirling flow was examined in the closed cubic
container (H/R = 2) fully filled with the fluid in a wide
range of Reynolds numbers.

Figure 3 shows the vortex core breakdown patterns
for different Re in the cubic container. The patterns dif-
fer significantly from those in a cylindrical container. In
all the regimes, the flow is unsteady. In the images, the
stream filament colored executes rotary motion and
precesses with an angular velocity that is lower than
that of the disk.

Figure 4 demonstrates the variation of the velocity
axial component along the axis of revolution of the disk
(vertical axis of the container) for Re = 1500–4000. On
the abscissa axis, the distance from the container bot-
tom is plotted.

The velocity axial component profiles were
recorded at random time instants relative to the phase
oscillations of the vortex structure. At each point, the
time of averaging was 10 s. From the data presented, it
follows that fluctuations of the velocity axial compo-
nent build up with Re. The maximal fluctuations are
observed 50–110 mm away from the container bottom.
However, unlike cylindrical containers, the zone of
return flow (where V is negative) does not occur in the
given interval of Re.

Figure 5 shows the images of vortex structure break-
down at Re = 5000, 5500, and 6000. In this case, fluo-
rescein filled the bottom part of the container and then
was entrained by the flow along the vortex axis, visual-
izing the core of the precessing vortex structure. With
Re = 5000 and 5500, the stable picture of the vortex
structure helical breakdown is observed; with Re =
TECHNICAL PHYSICS      Vol. 48      No. 10      2003
6000, the reconstruction of the vortex structure takes
place.

The evolution of the helical breakdown was studied
by measuring the velocity axial component for Re =
5000 and 6000 (Fig. 6). The measurements were per-
formed as follows.

(1) At each point, the axial component profile was
averaged over four measurements. The time of averag-
ing was 5 s. Averaging was made at random time
instants:

(1)

(2) In the maximal fluctuation zone (zone II in
Fig. 6), the maximal and minimal values of the axial
velocity component were measured at Re = 5000 and
6000. The time of averaging at each point was also 5 s.

Figure 6 shows the distribution of the axial velocity
at Re = 5000 and 6000. In zone II (70–100 mm), the
behavior of the axial component differs greatly from
that for Re = 1500–4000 (Fig. 4). The fluctuation
amplitude increases considerably: Vmax/Vmin ≥ 2 versus
|Vmax – Vmin| ≤ 30% of the mean velocity in zones I and
III. Comparing Figs. 6a and 6b, one may judge the
extension of the intense velocity fluctuation zone and
the growth of the fluctuation amplitudes with increas-
ing Re. In addition, at Re = 6000, local short-lived
regions of return flow (V is negative) arise. However,
stable vortex breakdown bubbles, as in the case of bub-
ble breakdown [1], do not form.
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Fig. 2. Experimental setup used with a cubic container.
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Fig. 3. Visualization of the vortex core breakdown in the closed cubic container (the dye is introduced at the geometrical center of
the container).
Thus, it has been found that the flow regimes in a
closed cubic container are unsteady in the Re range
studied. At Re > 4000, only the helical breakdown of
the vortex core is observed. The nonstationary zone of
return flow appears at only Re = 6000; however, a sta-
ble vortex breakdown bubble does not form.
FLOW EVOLUTION IN CONTAINERS
OF VARIOUS GEOMETRY

In the experiments described above, it was found
that the swirling flow patterns in cylindrical and cubic
containers differ substantially. In the latter, the bubble
TECHNICAL PHYSICS      Vol. 48      No. 10      2003
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vortex breakdown and steady flow regimes at low Re
are absent.

Visualization (Fig. 3) makes it possible to compare
the vortex core structures in a cylindrical container [1].
The absence of the bubble vortex breakdown in the
cubic container is clearly illustrated for Re = 1520–
3200. In the cylindrical container, conversely, the
steady bubble breakdown with one or two bubbles is
distinctly seen in this Re range. It is noteworthy that, as
Re increases roughly to 3200 in the cubic container, the
colored flow core near the rotating disk is progressively
deflected from the vertical axis and precesses slowly
about it with a frequency that is proportional to, but
much lower (roughly 16 times) than, the disk rotation
frequency. The unsteady flow regime is distinctly seen.

For this Re range in the cylindrical container, the
flow is steady and the bubble vortex breakdown is
observed. The diagram (Fig. 1) shows the dependence
of the number and position of breakdown bubbles in the
cylindrical container as a function of Re and H/R. With
H/R = 2, there is one breakdown bubble for Re varying
between 1450 and 1800 and between 2200 and 3000. In
the interval Re = 1800–2200, two breakdown bubbles
appear. In this range of relatively low Re, the flow pat-
terns in the central parts of the containers differ radi-
cally.
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Fig. 4. Velocity distribution along the axis of revolution of
the disk.
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In the cylindrical container, the flow becomes
unsteady only at Re > 2550, as follows from the dia-
gram in Fig. 1. With Re = 2500, only one breakdown
bubble is observed; as Re increases further, the break-
down region starts vibrating in the vertical direction but
the flow retains axial symmetry. In the cubic container,
the 3D helical structure appears at once. As Re grows,
the deflection of the breakdown region from the vertical
axis becomes more pronounced and the flow core takes
the slightly conical helical shape and make a complete
turn over the distance from the container bottom to its
top (Fig. 3, Re = 3510 and 3806).

For Re more than 4000, the flow pattern undergoes
new changes. The vortex filament exhibits a saw-
toothed kink, which rotates and vertically vibrates. It
may be assumed that the return flow zone appears and
disappears in the flow, as in the case of the bubble
breakdown of the vortex structure in the cylinder. Such
a zone appears for a very short time, which is smaller
than the swirling flow vibration period. Its appearance
and disappearance distorts the helical shape of the tra-
jectory of the dye introduced into the vortex core.

A region appears where the dye slows down in the
axial direction and, going on rotating, makes a tight
turn (the saw-toothed region for Re = 4207 in Fig. 3).
Visual observations suggest that, as Re grows, the exist-
ence time of the return flow region increases and the
region itself extends down to the container bottom. In
this situation, the dye outlines this region in Fig. 3 more
distinctly.

DLA measurements also reliably detect the return
flow region (Fig. 6b). As Re grows further, the exist-
ence time of the vortex breakdown bubble becomes
comparable to the vortex core precession period and the
bubble in the flow persists and vibrates about the verti-
cal axis. Thus, at high Re, the complicated unsteady
flow executing two types of vibration is established: the
precession of the vortex helical structure about the ver-
tical axis of the container and the vibration of the return
flow region along this axis. As the Reynolds number
increases, the amplitude of both types of vibration
grows and visualization at Re > 6000 makes no sense.
Re 5000 Re 5500 Re 6000

Fig. 5. Visualization of the vortex core breakdown in the closed cubic container (the dye covers the bottom of the container).
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Summarizing the results obtained, we may conclude
that, as Re grows, the flow pattern in cylindrical and
cubic containers undergoes essentially different space–
time changes. While the flow in a cylindrical container
is axisymmetric up to Re ≈ 4000, the flow in a cubic
container is asymmetric and unsteady even at very low
Re (Re ≈ 1500). The changes of the flow regimes in a
cubic container are as follows.

(1) Up to Re ≈ 3200, the flow exhibits a slight pre-
cession of the vortex core and return flow regions (vor-
tex breakdown bubbles) do not appear. Near the disk
rotating at the top of the container, the core is somewhat
deflected from the vertical axis.

(2) With Re exceeding 3200, the precession of the
vortex core smoothly passes into the precession of the
vortex helical structure, which occupies the entire con-
tainer. Vortex breakdown bubbles do not form either.

(3) With Re > 4200, the 3D unsteady flow prevents
the formation of a stable breakdown bubble; however,
along with the precession of the vortex helical core,
clear-cut axial vibrations appear.

(4) As Re grows further, these two types of vibration
become comparable in intensity, breakdown bubbles
are detected by DLA measurements, and the structure
becomes so complicated that flow visualization seems
to be impossible (at Re > 6000).
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Fig. 6. Velocity distribution along the axis of revolution of
the disk in the closed cubic container (H/R = 2). The veloc-
ity values are averaged over four measurements. Re = 5000
(a) and 6000 (b).
It should be noted that the flow structure variation
scenarios in a cubic container (see above) and a cylin-
drical container (see the diagram in Fig. 1b for H/R = 2)
radically differ.

CONCLUSIONS

The swirling flow pattern evolution in a closed cubic
container was experimentally studied at Re varying
from 1500 to 6000. The swirl was generated by the
rotating disk mounted on the top of the container. The
velocity distribution along the container axis, which is
aligned with the axis of revolution of the disk, was mea-
sured. Throughout the Re range, only unsteady flows
were observed. This should be taken into account in
mathematical simulation (that is, the model considered
in [3] is invalid). Based on the experimental data, we
showed that the amplitude and frequency of vortex core
vibrations grows with increasing Re. In a closed cube,
the distinct helical breakdown of the vortex core was
observed with Re > 4000. However, unlike the flow in
a cylinder, here a stable return-flow region does not
arise. While in a cylinder the axisymmetric steady flow
is known to change to axisymmetric unsteady and then
to asymmetric unsteady flow, in a cube, the asymmetric
unsteady flow is established almost at once.
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Abstract—A new equation for the small-scale polarization Fourier components of the incompressible fluid
velocity in the case of anisotropic turbulence is suggested. The principal invariant of the strain rate tensor for
the large-scale velocity is found. This invariant is of most significance for the subgrid simulation of fully devel-
oped turbulence. © 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Most researchers (among them the author) believe
that fully developed turbulence in an incompressible
fluid may be described by the Navier–Stokes equations
(see, e.g., [1, 2]). The basic difficulty in this case is that
modern computers cannot solve these equations when
a Reynolds number is large. Such a situation is widely
met in practice, since a large number of degrees of free-
dom are usually excited. Yet, reasonable results have
been obtained with semiempirical models. This is an
indirect indication that excited degrees of freedom are
not all of significance if we are interested in only the
large-scale long-term evolution of fully developed tur-
bulence. It may be assumed that if one subdivides in the
standard way the instantaneous velocity v(x, t) and
pressure p(x, t) into large-scale and small-scale compo-
nents, the energetically significant small-scale compo-
nents will accommodate the large-scale ones. One way of
closing turbulence consists in approximately solving
equations for the small-scale velocity and pressure com-
ponents by expressing them through the large-scale ones.
Such an approach is employed, for example, in the rapid
distortion turbulence (RDT) theory (see, e.g., [3]). Below,
we will derive an approximate equation for the small-
scale velocity that is simpler than that used in [3].

EQUATION FOR SMALL-SCALE POLARIZATION 
FOURIER COMPONENTS OF VELOCITY

IN THE CASE OF ANISOTROPIC TURBULENCE

Let us subdivide the pressure p(x, t) and velocity
v(x, t) into large-scale, P(x, t) and V(x, t), and small-
scale, p'(x, t) and u(x, t), components:

(1)

We assume that 〈 p'〉  = 0 and 〈u〉  = 0, where 〈…〉
means averaging over a cubic cell of edge L. Then, for

p P p'; v+ V u.+= =
1063-7842/03/4810- $24.00 © 21255
the small-scale components, we obtain the equations
[2]

(2)

where ν is the molecular kinematic viscosity and ρ is
the density of the fluid, and the incompressibility equa-
tion

(3)

(hereafter, summation goes over repeating indices).

As is known, the large-scale velocity also satisfies
the incompressibility equation:

(4)

In view of Eqs. (3) and (4), Eq. (2) may be written as

(5)

For a given cell, it is assumed that 〈uiuk〉  = const,
Vk = const, and ∂iVk = const. This approximation seems
to be first used in the model of random forces [4] (note
that the RDT theory uses the Proudman–Batchelor lin-
ear approximation of large-scale or medium-scale
velocity [3, 5]). Since the macrovariables are assumed
to be constant, the last term on the right of (5) vanishes
and the third term on the left of (5) vanishes in the coor-
dinate system moving with a velocity V. The dynamics
of small-scale turbulence will be described in this coor-
dinate system. Eventually, Eq. (5) takes the form

(6)

∂tui ∂k Viuk Vkui+( ) ρ 1– ∂i p'+ +

=  ∂k ν∂kui uiuk– uiuk〈 〉+( ),

k 1 2 3; i, , 1 2 3,, ,= =

∂iui 0=

∂iVi 0.=

∂tui uk∂kVi Vk∂kui+ ρ 1– ∂i p'+ +

=  ν∂k∂kui uk∂kui– ∂k uiuk〈 〉+ .

∂tui u j∂ jVi ρ 1– ∂i p' ν∂ j∂ jui– u j∂ jui+ + + 0.=
003 MAIK “Nauka/Interperiodica”
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Let us apply Fourier transformation to the small-
scale pressure and velocity components

(7)

where k = (2π/L)(n1, n2, n3); n1, n2, n3 = ±1, ±2, …; and
L is the edge length of the cubic cell separating large-
scale and small-scale motions.

As a result, Eq. (6) for the Fourier components takes
the form

(8)

and Eq. (3) is recast as

(9)

Multiplying both sides of (8) by kl, performing sum-
mation over l, and using Eq. (9), we come to

(10)

Substituting expression (10) into Eq. (8), we obtain
an equation for the small-scale Fourier components of
the velocity that does not involve small-scale pressure
components:

(11)

where Plq = δlq – klkqk–2.
The nonlinear terms in the brackets can be written in

a more elegant form (see, e.g. [6]):

(12)

where Plmn = kmPln + knPlm.
Since the three components of the small-scale

velocity are related through incompressibility condi-
tion (9), it is convenient to pass to two independent
components of the small-scale velocity directed along
vectors e1 and e2 that are orthogonal to each other and
to vector k, as was done in the case of isotropic turbu-
lence [7] without large-scale velocity gradients ∂V:

(13)

Here, the superscripts and subscripts run through the

values 1, 2 and 1, 2, 3, respectively; aγµ = – ∂mVj;

and Φγαβ(k, p, q) = –ikm (k) (p) (q). The vectors
appearing in these formulas have Cartesian compo-

p x t,( ) Σk p k t,( ) ik x⋅( ),exp=

u j x t,( ) Σku j k t,( ) ik x⋅( ),exp=

∂tul k t,( ) u j k t,( )∂ jVl iklρ
1– p' k t,( )+ +

+ νk2ul k t,( ) iknΣqun q t,( )ul k q– t,( )+ 0,=

klul k t,( ) 0.=

ρ 1– p' iu j∂ jVqkqk 2–=

– kmklk
2– Σ jul j t,( )um k j– t,( ).

∂tul u jPlq∂ jVq νk2ul i knΣpun p t,( )ul k p– t,( )[+ + +

– klkmk jk
2– Σpu j p t,( )um k p– t,( ) ] 0,=

∂lul u jPlq∂ jVq νk2ul+ +

=  
i
2
---Plmn k( )Σum p t,( )un k p– t,( ),–

∂t νk2+( )uγ k t,( ) aγµuµ=

+ Σp q p, , q+ k= Φγαβ k p q, ,( )uα p t,( )uβ q t,( ).

ε j
γεm

µ

ε j
γ ε j

α εm
β

nents expressed through the Euler angles [7]: k =
(kcosθcosη, ksinθcosη, ksinη), where cosθ = k1/k",

sinθ = k2/k", cosη = k"/k, and k" = .

When selecting the unit vector e = (cosθ, sinθ, 0),
we introduce the unit vectors ε1(k) = e × k/|e × k| (e1 =
(sinθ, –cosθ, 0)) and e2 = k × ε1(k)/|k × e1(k)| (e2 =
(cosθsinη, sinθsinη, –cosη)). It is easy to check that
e1 × e2 = k/k. The relationship between the normal
(subscripts) and polarized (superscripts) Fourier com-
ponents of the small-scale velocity is [7]

(14)

with

(15)

(16)

(17)

Making the change of variables u = Bv, where the
matrix B is composed of the eigenvectors of the matrix
A (B = (b1, b2) and Ab1, 2 = λ1, 2b1, 2), one can bring
matrix A to diagonal form, i.e., to matrix J with eigen-
numbers λ1 and λ2 as diagonal elements (in the general
case, matrix J is a Jordan matrix). Equation (13) then
takes the form

(18)

where

(19)

(20)

(21)

If the variable ∂V is divided into symmetric and
asymmetric parts, ∂mVj = Sjm + Ωjm, where

one can introduce the unit vector n with the compo-
nents nj = ki/k. Then, using incompressibility condition
(4) and the properties of vectors ελ, the expressions for
P and Q simplify to

(22)

(23)

where vorticity vector W is defined in the usual manner
as W = — × V or Ωi = 2εijkΩkj, where εijk is the compo-
nents of the alternating tensor.

k1
2 k2

2+

ui k t,( ) εi
µ k( )uµ k t,( ),=

k eµ× 0,=

eµ k( ) ελ k( )× δµλ ,=

εi
µ k( )ε j

µ k( ) Pij k( ).=

∂t νk2+( )v λ Jλµv µ=

+ B 1–( )λγΣp q+ k= Φγαβ Bv( )α p( ) Bv( )β q( ),

λ1 2,
P
2
---– P2

4
----- Q– ,±=

P εJ
1εm

1 ∂mV j ε j
2εm

2 ∂mV j,+=

Q = ε j
1εm

1 ∂mVj( ) εl
2εp

2∂pVl( ) ε j
1εm

2 ∂mVj( ) ε j
2ε j

1∂ jVl( ).–

Sij
1
2
--- ∂iV j ∂ jVi+( ), Ωij

1
2
--- ∂iV j ∂ jVi–( ),= =

P nin jSij,–=

Q ε j
1εm

1 Smj( ) εl
2εp

2 Slp( ) ε j
1εm

2 Smj( )2
–

1
4
--- n W⋅( )2,+=
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By eliminating auxiliary vectors eλ, one can show
that Q is directly dependent on the orientation of vector k
(or n) with respect to tensor ∂V. Expression (23) can be
recast as follows:

(24)

Defining the antisymmetric tensor as τml =  –

 and separating out terms other than zero (i.e., at
m ≠ l) from the right of (24), we obtain

(25)

It is easy to check that τ12 = n3, τ23 = n1, and τ13 =
−n2. Therefore,

In invariant form, we have

(26)

where the trace of the tensor is Tr[(n × S)2] =
εijknjSkpεpabnaSbi.

Eventually, we arrive at

(27)

where Cij = ninj and Tr(CS) = CijSji.
Thus, we derived Eq. (18), which approximates the

dynamics of small-scale polarization modes for the
case when the large-scale dynamic is anisotropic. The
linear part of the equation depends significantly on λ1
and λ2.

ANALYSIS OF THE RESULTS 
AND CONCLUSIONS

Equation (18), primarily its linear part, is simpler
than the equation used in the RDT theory (see, e.g., [3,
5]), which simplifies its analysis. According to the
Haken subordination principle [9] (the special case of
the central manifold theorem [10]), the dynamics of
nonlinear systems is governed first of all by the most
unstable modes (in our case, these are modes corre-
sponding to the directions maximizing λ1). To this

Q εm
1 εl

2 εl
1εm

2–( )ε j
1εp

2 SmjSlp
1
4
--- n W⋅( )2.+=

εm
1 εl

2

εl
1εm

2

Q

= τ12S1 jS2 p τ13S1 jS3 p τ23S2 jS3 p+ +( )τ jp
1
4
--- n W⋅( )2.+

Q n3
2

S11S22 S12S21–( ) n2
2 S11S33 S13S31–( )+=

+ n1
2

S22S33 S23S32–( ) 2n1n2 S23S13 S12S33–( )+

+ 2n1n3 S12S23 S22S13–( )

+ 2n2n3 S12S13 S11S23–( ) 1
4
--- n W⋅( )2.+

Q
1
2
---Tr n S×( )2[ ]–

1
4
--- n W⋅( )2,+=

λ1 2,
1
2
---Tr CS( )=

± 1
4
--- Tr CS( )[ ] 2 1

2
---Tr n S×( )2[ ] 1

4
--- n W⋅( )2–+ ,
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point, the subgrid simulation of turbulence has used the
Smagorinsky parametrization, where the coefficient of
subgrid turbulent viscosity νt depends solely on the

invariant of the strain rate tensor S = ; that is,
νt = c1L2S, where c1 is an empirical constant. However,
the use of the vorticity vector magnitude |Ω| in the
expression for νt, νt = c2L2|Ω| [11], where c2 is also an
empirical constant, sometimes gives more adequate
results. To parametrize the coefficient νt in terms of our
approach, it is appropriate to take the real part
(R(λ1))max of λ1:

(28)

where the maximum is taken over all directions of the
vector k.

The quantity (R(λ1))max may be termed the principal
invariant of strain rate tensor ∂V, since this quantity to
a great extent specifies the energy transfer from the
large-scale motion to the small-scale motion. Excep-
tions are regions with high vorticity of the large-scale
motion and small values of the components of tensor S
(for these components, the value of (R(λ1))max is small
in magnitude). In these regions, we deal with two com-
plex conjugates λ1 and λ2. These regions call for special
analysis. The consideration of the small-scale motion
dynamics will be continued in the next paper.
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Abstract—For metal–ammonia systems, the critical temperature and electron concentration at which the spa-
tially uniform temperature and electron distributions may become spatially periodic are found. A dispersion
relation for the excitation of the uniformly distributed electron system is derived, and conditions for sustained
excitation are found. Tests for instability correlate with conditions where the periodical structures appear. ©
2003 MAIK “Nauka/Interperiodica”.
The existence of polarons and their bound states,
bipolarons, in metal–ammonia systems has been con-
firmed by many studies of magnetic [1, 2], optical
[3, 4], and transport [3] properties of related media, as
well as by investigating metal–insulator phase transi-
tions [5]. Atoms of dissolved alkali metals are known to
dissociate in ammonia so that valence electrons and
metal cations are spatially separated. The complete
independence of the dynamic properties of metal–
ammonia systems on the nature of dissolved metals
suggests that the electron states are unrelated to elec-
tron–ion interaction. This assumption is supported by
experimental data for the conductivity and heat of solu-
tion of electrons, as well as by the fact that the optical
spectrum remains unchanged when divalent metals are
substituted for monovalent ones. The absence of elec-
tron–cation interaction is also indicated by the
extremely narrow spin resonance line with a g factor of
2.0012 ± 0.0002 [6], which almost coincides with the g
factor of a free electron (2.0023).

The electron states in metal–ammonia systems were
characterized in terms of the theory of adiabatically and
strongly coupled continual polarons [3, 5]. A polar
medium is viewed as a dielectric continuum described
by macroscopic static and high-frequency permittivi-
ties, with the inertial orientation of dipole molecules
assumed to be elastic. The strong coupling model, com-
bined with the effective mass method, is self-consistent
and macroscopically applicable if "ω0 ! "ω1 ! "ω2,
where "ω1 ≈ 0.85 eV is the energy of the first allowed
(in the dipole approximation) polaron optical transi-
tion, "ω2 ≈ 6 eV is the excitation energy of electrons of
the parent material, and "ω0 ≈ 0.025 eV is the limit
energy of long-wave optical phonons.

The possibility of bound two-electron dipole states
forming in ammonia has been indicated in [5, 7, 8]. The
study of the magnetic properties of metal–ammonia
systems has shown that paramagnetism due to the spin
1063-7842/03/4810- $24.00 © 21258
properties of electrons weakens with growing concen-
tration of a dissolved alkali metal and when the concen-
tration becomes on the order of 1020 cm–3, the system
passes into the diamagnetic state. The occurrence of
bound electron states also changes other parameters of
the electron subsystem: the equivalent conductivity, the
Knight shift, optical parameters, etc.

Detailed analysis of the bipolaron structure [9, 10]
has demonstrated that the polaron interaction potential
is attracting if the dielectric parameters of the medium
and the electron–phonon coupling constant meet cer-
tain requirements. Using the kinetic equation of self-
consistent field for the particle distribution function,
Vlasov [11] showed that the space-periodic distribution
of interacting particles may be established (under cer-
tain conditions) in multiparticle systems where the pair
potential has an attracting component. In this work, we
find conditions under which the spatially uniform dis-
tribution of polarons becomes unstable and may pass
into periodic one.

A most effective technique for studying multiparti-
cle systems is the method of equilibrium distribution
functions FN(r1, r2, …, rN) that satisfy a chain of
Bogoliubov equations [12]. The distribution functions
define the probability that a group of N particles occu-
pies positions with radius vectors r1, r2, …, rN in the
unit volume. In this method, the functions FN are suc-
cessively introduced and a set of coupled equations for
these functions is found. This set consists of N one-par-
ticle and N(N – 1)/2 two-particle functions. Of the lat-
ter, one can construct a set of equations that involves
three-particle functions, etc. In this way, a chain of sets
of equations can be constructed.

To study the probability of a uniform and isotropic
polaron system passing into a periodical structure, we
will take the first equation from the chain of coupled
integro-differential Bogoliubov equations [12] for
003 MAIK “Nauka/Interperiodica”
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asymptotic (N  ∞, V  ∞) equilibrium distribu-
tion functions of polarons,

(1a)

and metal ions,

(1b)

where

Here,

is the charge density (superscripts e and i refer to elec-

trons and ions, respectively), (r1) is the one-parti-

cle distribution function, (r1, r2) is the binary dis-
tribution function, N/V is the polaron concentration,
ϕ is the electrostatic potential (for a system of charged
polarons to be stable, its charge must be neutralized by
the uniformly distributed positive charge of metal cat-
ions; ρ(i) = const), and Φ(|r1 – r2|) is the pair potential
energy of interaction between polarons at the points r1
and r2. The interaction of each pair of particles is cen-
tral and depends on only the distance between their cen-
ters of inertia. Equation (1a) is not closed. To decouple
the coupled equations of the chain, we make a simpli-
fying assumption that the binary function may be writ-
ten in multiplicative form:

(2)

Multiplicative approximation (2) applies if the par-
ticle spacing |r1 – r2| @ Rp = 10  far exceeds the
polaron radius. This means that the one-particle func-
tions do not overlap and each of the particles moves in
the field generated by all surrounding particles.

With approximation (2), Eq. (1) can be reduced to
the N equilibrium equations of the self-consistent field
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for the one-particle distribution functions:

(3)

Integrating (3) yields the closed nonlinear Hammer-
stein integral equation

(4)

where λ is the constant of integration.

Nonlinear integral equation (4) includes the temper-
ature and concentration of the particles as parameters
and represents a one-particle distribution function that
takes into account the interaction of a given particle
with the remaining ensemble.

A trivial solution to integral equation (4) is that cor-
responding to the spatially uniform particle distribution

(  = const). At sufficiently high temperatures T, a
solution to (4) that corresponds to the spatially uniform
distribution is unique. However, from the general the-
ory of nonlinear integral equations, it follows that a
nonlinear integral equation like (4) has other solutions
if the parameter T entering into this equation is below
its critical value. Such solutions belong to the class of
ramified solutions. The method to search for ramified
solutions to Hammerstein integral equations was
described at length in [13]. This method gives an oppor-
tunity to find solution branches based on any exact solu-
tion with equation parameters continuously varying.

Let us seek nontrivial solutions to (4) in the vicinity
of its trivial solution, which corresponds to the spatially
nonuniform particle distribution, and find critical
parameters associated with the existence of the solu-
tions. Nontrivial solutions to integral equation (4) will
be found by the method of successive approximations.
Following [14], we expand F1, λ, and ϑ  into series in
the small parameter (ϑ  – ϑ0)1/2 to linearize Eq. (4):

(5)
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Here, we consider only small deviations from the spa-
tially uniform distribution: χ0 @ χ1. The temperature
T0 = ϑ0/kB is the ramification point.

Now we substitute series (5) into integral equation (4).
Collecting terms with the same powers of (ϑ  – ϑ0)1/2,
we arrive at the set of integral equations

(6)

(7)

Equation (6) corresponds to the spatially uniform
particle distribution under the condition of temperature
equilibrium and has the exact solution χ0 = const. Since
the system as a whole is electroneutral, the potential
ϕ0 = 0. In view of this condition and also the constancy

of , Eq. (1b) identically goes to zero. Thus, the
zeroth-order approximation is characterized by the neu-
trality of the system and spatially uniform polaron dis-
tribution.

Nontrivial solutions to Eq. (7) appear as solutions to
the homogeneous linear integral equation

(8)

In general, Eq. (8) has a continuous spectrum of
eigenvalues. Therefore, we additionally require that
solutions to (8) be periodic and seek them in the form

(9)

Substituting (9) into (8), we find the condition
where the spatially uniform distribution gives way to
periodic solutions:

(10)

Expression (10) can be written in the form

(11)

It is obvious that solutions to (8) exist if the inequal-
ity σ(k) < 0 is met; in other words, the interaction
potential must have an attracting component. Hence,
ramified solutions other than those corresponding to the
spatially uniform distribution arise if the requirement
N|σ(k)|/Vϑ  > 1 is imposed on the temperature, concen-
tration, and interaction forces and, in addition, the con-
dition dσ(k)/dk = 0 is met.

The interaction potential for two adiabatically cou-
pled continual polarons as a function of the distance
between their centers of inertia and macroscopic

λ0χ0( )ln
1
ϑ 0
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N
ϑ 0V
----------σ k( )– 1, σ k( ) 4π

k
------ Φ r( )r kr( )sin r.d

0

∞

∫= =
dielectric properties of a polar medium can analytically
be represented as [2, 9]

(12)

The parameters of potential (12) for polarons in
ammonia are as follows: a = –5.175 × 10–7, b = 6.885 ×
10–3 , c = –6.857 × 10–3 , d = 0.001, γ =

0.245 , δ = 0.2 ,  = (ε*m/m*)a0 is the effec-
tive Bohr radius, κ = (4πe2N/εsk<T)1/2 is the inverse
Debye screening length for long-range Coulomb inter-
action, α = (1/2ε*)(ε2/"ω0)(2m*ω0/")1/2 is the dimen-
sionless constant of electron–phonon coupling, m* =
1.73m is the isotropic effective mass of an electron at
the conduction band bottom (it was found by compar-
ing the theoretical maximum of the polaron optical
absorption band with its experimental value [9]), N is
the equilibrium number of polarons, and "ω0 is the lon-
gitudinal long-wave optical phonon energy. The first
term in potential (12) describes screened long-range
Coulomb interactions; the second one, short-range
attractive forces due to phonon exchange. The limiting
frequency ω0 is related to the elastic displacements of
molecular dipoles from their equilibrium positions and
may be found from the half-width W1/2 of the polaron
optical absorption spectrum. The absorption spectrum
represents a wide structureless band with a single peak
in the IR range [3]. At low temperatures, W1/2 =

2( "ω0ln2)1/2. The energy  of polar medium rear-
rangement refers to the most intense s  p photoin-
duced transition [15]. From the experimental value of
W1/2 = 0.46 eV [16], we estimate the limiting frequency
as ω0 = 5.5 × 1013 s–1, which falls into the interval (5.1–
6.8) × 1018 s–1 of long-wave librational vibrations of
ammonia [17]. This value of ω0 will be used below. The

effective dielectric constant is ε*–1 =  – , where
εs = 22.7 is the static permittivity of ammonia and

 = 1.325 is the refractive index on the plateau
between the IR absorption by librational vibrations of
ammonia dipole molecules and the fundamental
absorption by electrons (in the dispersion curve).

Figure 1 shows the pair polaron interaction potential
for polaron equilibrium concentrations N = 1018, 1019,
and 1020 cm–3. Potential (12) is physically realistic.
From the translation-invariant theory of adiabatically
coupled bipolarons [9, 10], it follows that the polaron
interaction potential has a fairly deep well, a “softly”
repulsing kernel, and the Coulomb asymptotics at
r  ∞. Also, it is finite at r = 0. The attracting com-
ponent of the pair potential is associated with exchange

Φ r( ) = 2α2
"ω0{ ε*/ε∞ 1–( )a0*(1
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by longitudinal optical phonons and also by the effects
of quantum-mechanical exchange, which is taken into
account by the Fermi statistics.

Figure 2 plots the curve σ(k), where k is the wave-
number. The minimum in this curve corresponds to the
stable state [11] of the polaron system with an optimal
value of the wavenumber kopt = 0.091/ , which is
found from the minimum condition for σ(k). Since the
shape of the polaron interaction potential depends on
the temperature and polaron concentration through κ,
one can, using relationships (10) and (11), find a critical
temperature (for a given concentration) below which a
periodic component appears in the distribution function

(r) against the background of the spatially uniform
polaron distribution:

(13)

At temperatures below the critical temperature ,
the polaron system exhibits periodic structures with a
node spacing (period) dopt = 2π/kopt = 69.05  > Rp,
which exceeds the mean particle spacing. The optimal
period dopt obtained validates the neglect of pair corre-
lations and use of approximation (2). Figure 3 plots the
concentration dependence of the critical temperature.
As the polaron concentration grows, so does the critical
temperature of the onset of the periodic component.
Under the phase transition line, Eq. (8) admits periodic

solutions. Above it (T > ), uniform polaron distri-
butions are only possible.

The value of kopt remains unchanged throughout the
concentration and critical temperature ranges. Thus, at

T ≤  and a given particle concentration, condition
(13) may be considered as the demarcation line
between uniform and periodic solutions. At the same
time, from (13) at k  0, one can find the instability
condition for the spatially uniform particle distribution

(14)

that is, the uniform polaron distribution becomes unsta-
ble subject to σ(0) < 0, which imposes one more condi-
tion on the particle interaction force. However, this con-
dition is necessary but not sufficient. From Fig. 2 it is
seen that, although kopt exists and σ(kopt) < 0 for the top
curve (N = 1018 cm–3) at 10 K, periodic solutions are
absent, as follows from Fig. 3 (they may appear only at
temperatures below 10 K).

It is therefore of interest to analyze the stability con-
dition for the uniform distribution by using the time
dependence of the particle distribution function with
the pair interaction potential given by (12). To do this,
we write a nonstationary equation [11] for the kinetic

a0*
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T Tcr
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one-particle distribution function (r, v, t) that dif-
fers from the associated spatially uniform distribution
only slightly:

(15)

Here, α is the electron–phonon coupling constant,

F1
e( )

∂F1
e( )

∂t
------------ v∇ rF1

e( ) 1
M
----- ∇ vF1

e( )∇ r–+

× Φ r r'–( )F1
e( ) r' v' t, ,( ) v' r'dd ϕ r( )+∫( ) 0.=

0.02

0
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Φ(r), 2α2"ω0
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Fig. 1. Pair polaron interaction potential for N = 1018 (con-
tinuous line), N = 1019 (dotted line), and N = 1020 cm–3

(dashed line). T = 10 K.
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Fig. 2. Fourier transform of the pair polaron interaction
potential for N = 1018 (continuous line), N = 1019 (dotted
line), and N = 1020 cm–3 (dashed line). T = 10 K.
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Fig. 3. Concentration dependence of the critical tempera-
ture at which the polaron distribution acquires a periodic
component.
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M is the effective translational mass of a polaron, and v
is the translational velocity of a polaron. For α @ 1, M
= 0.023α4m* @ m*.

Let us determine conditions where spontaneous
oscillations in a system of uniformly distributed
polarons are sustained and trace a correlation between
the conditions for sustained oscillations with a test for
appearance of periodic solutions to (8). If the amplitude
of a perturbation is small, the distribution function is
considered as a perturbation of the stationary spatially
uniform distribution F0(v), which depends only on the
velocity. In this case, Eq. (15) can be linearized and
brought to the form

(16)

where it is assumed that the polaron charge is neutral-
ized, on average, by the charge of positively charged
alkaline ions and ϕ(r) = ϕ0. Since (16) is a linear equa-
tion and does not contain coordinates in explicit form,
its solution will be sought in the form

where ω is the frequency of sustained acoustic waves in
the polaron system and γ is the damping decrement.

Substituting this exponential into Eq. (16) allows
one to rewrite it in operator form in the Fourier repre-
sentation:

(17)

This expression takes into account that the last term
in (16) vanishes. Using the results obtained in [18], we
find a dispersion relation that relates the frequency ω
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γ
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Fig. 4. Temperature dependence of the purely imaginary
value of the decrement γ at ω = 0 (continuous line), ω = 0.25
(dotted line), and ω = 0.5 (dashed line).
and the wavenumber k:

(18)

where

and

is the equilibrium Maxwell distribution.
Solutions to Eq. (18) give the eigenfrequencies of

oscillations in the polaron system. When deriving (18),
we used the assumption that the velocity and space dis-
tributions of the particles are statistically independent,
F(r, v) = F(r)F(v), and that the distribution function
depends on velocity only through the kinetic energy.

Using Eq. (18), one may find the instability condi-
tion for the spatially uniform distribution upon propa-
gation of the perturbation. If purely imaginary values of
the decrement γ appear in solutions to (18), oscillations
in the spatially uniform distribution will build up, caus-
ing a nonuniform structure to form. Dispersion relation
(18) shows that, at a given polaron concentration,

purely imaginary decrements γ appear only if T ≤ .
Figure 4 shows the temperature variation of γ for N =
1020 cm–3. As the temperature decreases continuously, γ
stepwise takes a purely imaginary value at T = =
172 K and reaches a maximum near 75 K. It is at these
values of the parameters that periodic components
appear in a solution to Eq. (8). As the frequency ω rises,
the purely imaginary value of γ also increases. At the

same time, at T > , the damping decrement takes
(also stepwise) a real value.

kBTV
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Fig. 5. Temperature dependence of the ratio between the
mean potential energies of the periodic and uniform polaron
distributions. N = 1020 cm–3.
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In this case, the perturbation of the spatially uniform
distribution decays with time. Thus, the stability
boundaries for a polaron system that are obtained from
nonlinear integral equation (8) and dispersion relation
(18) coincide. For T > N|σ(κopt)|/VkB, the uniform
polaron distribution with σ(κopt) < 0 is stable against
perturbations, while at temperatures and concentrations
such that T < N|σ(κopt)|/VkB, the uniform distribution
breaks.

Setting the interaction potential Φ(|r – r'|), one may
see which type of distribution is stable at parameters
given. Let us compare the internal energy of the polaron
periodic distribution,

(19)

with that of the uniform distribution,

(20)

Here, it is taken into account that the particle concentra-
tion is related to the one-particle distribution function
as ρ1(r) = NF1(r)/V and to the uniform distribution
function as ρ = N/V. Figure 5 shows the temperature
dependence of the ratio between the mean energies
〈Uperiod〉/〈U0〉 , which are involved in (19) and (20). The
mean potential energies are negative. Throughout the
range of permissible temperatures, the internal temper-
ature of the periodic state of interacting polarons is
lower than the internal energy of the uniform state of
polarons.
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Abstract—A method is proposed for calculating the cathode erosion profile in planar magnetron ion-sputtering
systems. The method uses integral characteristics of the magnetic and electric fields and does not require
detailed information on the spatial characteristics of the discharge plasma. The calculated results are compared
with experimental cathode profiles for rectangular and circular planar ion-sputtering systems. © 2003 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

One of the important characteristics of magnetron
ion-sputtering systems (MISSs), which are widely used
to deposit thin films, is the utilization ratio of the target
material [1, 2]. This parameter is defined as Km = (m0 –
mk)/m0, where m0 is the cathode mass before sputtering
and mk is the final cathode mass, which corresponds to
the maximum cathode erosion in a given MISS. This
parameter can easily be measured by weighing the
cathode. However, the experimental optimization of the
parameter Km for newly created MISSs is a very labori-
ous process, because it requires carrying out a series of
long-run experiments with various combinations of the
relative positions of magnets and with cathodes of var-
ious thicknesses and shapes until their maximum ero-
sion. In this paper, we describe a method for calculating
the profile of the erosion region. The method has been
successfully applied to circular and rectangular planar
MISSs. It allows one to estimate the efficiency of a
magnetron ion-sputtering system with respect to mate-
rial consumption as a function of the magnetic system
parameters and the integral MISS characteristics, such
as the total current Id and the discharge voltage Ud.

MODEL

The erosion region on the cathode surface in an
MISS is formed due to the sputtering of the cathode by
ions (e.g., argon ions) arriving from the discharge
region. Preliminary experiments showed that the dis-
charge voltage and the anode position only slightly
affect the shape of the erosion region and the position
of the erosion maximum. Therefore, we can assume in
calculations that the main factor determining the
parameters of the erosion region is the magnetic config-
uration of the sputtering system, i.e., the relative posi-
1063-7842/03/4810- $24.00 © 21264
tions and sizes of magnets, as well as the relationship
among the their magnetic inductions.

As a rule, the shape of the erosion region on the
cathode surface is similar to the shape of the discharge
[2]. In view of this fact, we will assume to a first
approximation that the ions move from the discharge
region toward the cathode along nearly vertical trajec-
tories. Accordingly, we will assume that the electric
field lines are also directed vertically in this region.

The ion bombardment results not only in the cath-
ode sputtering, but also in the secondary electron emis-
sion from the cathode surface. The secondary emission
coefficient depends on the energy and sort of ions and
the material, structure, and state of the bombarded sur-
face. For typical targets, sputtering gases, and ion ener-
gies, this coefficient does not exceed 0.1 electrons per
ion. Although the secondary electrons are emitted from
almost the entire cathode area exposed to the ion flow,
they arrive at the discharge region primarily from the
cathode region F (Fig. 1). In the cathode region where
the magnetic field lines are nearly parallel to the cath-
ode surface (the gap between the magnets, region S in
Fig. 1), electrons drift in the crossed electric and mag-
netic fields; i.e., they move across the magnetic field B,
describing a cycloid in the (xz) plane. The return point
of the cycloid lies practically at the cathode surface, and
the height of the cycloid is on the order of two Larmor
radii RL:

(1)

where me and e are the mass and charge of an electron;
Ez and By are the z and y components of the electric and
magnetic fields, respectively; B is the magnetic induc-
tion; and ωCe is the electron cyclotron frequency near
the cathode.

RL

Ez

By

-----
me

eB
------

Ez

By

----- 1
ωCe

--------,≈∝
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We assume that, in region S, the following condi-
tions are satisfied:

(2)

Since an electron possesses some thermal velocity
in the y direction, it also drifts along a magnetic field
line toward the central magnet or toward the periphery
(Fig. 1, region F). The electrons that have reached
region F (or originated in this region) can move along
the magnetic field lines away from the cathode and gain
the energy We that is sufficient for ionization. The
motion of the Larmor centers of these electrons is a
combination of the motion along a magnetic field line
with a subsequent reflection at the return point near the
cathode and the drift motion in the crossed electric and
magnetic fields. The calculations show that the centrif-
ugal, gradient, diamagnetic, and other kinds of drifts
[1] are negligible. At the return point, an electron can
pass with a 50% probability onto a higher magnetic line
(thus increasing the height of its drift trajectory) or a
lower magnetic line. Shifting from one magnetic line to
another at the return points, an electron after some
reflections falls into region D (Fig. 1) and, then, escapes
from the system. The electron moving along a magnetic
field line that passes through the cathode region D can
be considered free. The frequency with which such an
electron oscillates along the magnetic field line (bounce
frequency) tends to zero, and the height of its drift tra-
jectory is comparable with the system size.

THEORETICAL ANALYSIS

Let us consider the generation of ions in the dis-
charge region at an arbitrary point A(y, z) (in the MISS
symmetry plane) with coordinates y and z (Fig. 1). The
number of ionization events in unit volume per unit
time in the vicinity of this point can be written as

(3)

where ne(y, z) is the density of ionizing electrons at the
point A and νi(y, z) is the ionization frequency.

Assuming the steady ion flow in the discharge
region to be aligned with the z axis and integrating
expression (3) with respect to z, we find a quantity pro-
portional to the ion flux density Ji(y) at the cathode at a
point with the coordinate y:

(4)

Here, the integral is taken from zcat to a certain coordi-
nate z*, which is chosen such that the entire discharge
region lies within the integration limits.1

1 As will be shown below, the choice of the upper limit of integra-
tion z* is rather arbitrary; we can assume this value to be constant
and independent of y.

∂Ez/∂z RL ! Ez , ∂By/∂z RL ! By .

Ni y z,( ) ne y z,( )ν i y z,( ),≈

Ji y( ) ne y z,( )ν i y z,( ) z.d

zcat

z*

∫∝
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The erosion depth h(y) at a point with a coordinate y
is proportional to the product of the ion flux density
Ji(y) by the energy-averaged material sputtering coeffi-
cient 〈Sy(y)〉:

(5)

Here, the energy-averaged sputtering coefficient [3] is
defined as

(6)

where e is the ion charge equal in magnitude to the elec-
tron charge (the ions are assumed to be singly charged);
Mi is the ion mass; and fi(ε, y) is the ion energy distri-
bution function at the cathode, such that the integral
over energy gives the total current density,

(7)

Assuming that the current density of the sputtering
ions depends strongly on y, whereas the energy-aver-
aged sputtering coefficient depends only slightly on it,
we will assume this coefficient to be constant. Then,

h y( ) Ji y( ) Sy y( )〈 〉 Sy y( )〈 〉 ne y z,( )ν i y z,( ) z.d

zcat

z*

∫∝ ∝

Sy y( )〈 〉

e
Mi

------ f i ε y,( )Sy ε( ) εd

0

∞

∫
Ji y( )

-----------------------------------------------,=

Ji y( ) e
Mi

------ f i ε y,( ) ε.d

0

∞

∫=

z

z*

z

1

zcat

6 5

D D

1
FSF

2

10

YS
N

N
S

Y Y*

3

4

Fig. 1. Arrangement of the cathode and the magnetic system
and the configuration of the magnetic field in a MISS:
(1) cathode, (2) central magnet, (3) peripheral magnet,
(4) magnetic core, (5) magnetic field lines, and (6) dis-
charge region. The lengths are normalized to the width of
the peripheral magnet.
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expression (5) can be written in the form

(8)

Applying the mean-value theorem to the latter
expression, we obtain

(9)

where {νi(y)} is the ionization frequency averaged over
the z coordinate.

The integral on the right-hand side of formula (9) is
the effective ionization length in terms of the electron
density in section y. The plasma density rapidly
decreases with distance from the cathode [1, 2]. There-
fore, when integrating in formula (9), we can set the
upper limit to be equal to infinity and can assume that
the integral value is independent of y:

(10)

To calculate the erosion profile, the absolute value
of the constant [nl]e is of minor importance, because,
eventually, this value will only enter in the normaliza-
tion factor. Hence, we have

(11)

The ionization frequency is a function of the total
kinetic energy We (velocity Ve) of electrons and the
working-gas density. The working-gas density may be
assumed to be constant over the entire discharge region;
hence, the neutral density does not affect the shape of
the erosion profile. Assuming the mean value of the
function to be close to the function of the mean value of
the argument [4], we rewrite expression (11) in the
form

(12)

where σi(y) is the ionization cross section of the work-
ing gas, {Ve(y)} is the average electron velocity in sec-
tion y, and F({V(y)}) is a function of the average elec-
tron velocity.

To calculate the average electron velocity, we repre-
sent it in the form

(13)

where V|| is the longitudinal (with respect to the mag-
netic field) velocity component, which is determined by
the length of the accelerating gap under the discharge,
and

(14)

h y( ) ne y z,( )ν i y z,( ) z.d

zcat

z*

∫∝

h y( ) ν i y( ){ } ne y z,( ) z,d

zcat

z*

∫∝

ne y z,( ) z ne y z,( ) zd

zcat

∞

∫d

zcat

z*

∫ nl[ ] e.=

h y( ) ν i y( ){ } .∝

h y( ) σi We y( )( )Ve y( ){ } F Ve y( ){ }( ),≈∝

Ve{ } 2 V ||{ } 2 V ⊥{ } 2,+=

V ⊥
E B×

B2
--------------

EzBy

B2
-----------≈=
is the transverse velocity component.

We define the average transverse component as

(15)

The upper integration limit in this expression can be
set equal to infinity; then we obtain

(16)

Here, the average electric field [Ez] is defined as

(17)

where ϕ(y, z) is the potential at the point with coordi-
nates y and z.

We find the average electric field in the gap between
the magnets assuming that it depends only slightly on y.
In this gap, the magnetic field component parallel to the
cathode (By(z)) can be approximated to a high accuracy
by the dependence

(18)

where λβ is a constant, which depends on the relative
positions and sizes of the magnets and on the ratio
between their magnetizations.
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∫
--------------------------------------------------≈
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Since the following conditions are satisfied:

(19)

(where Ud is the total discharge voltage and Bcat is the
magnetic induction on the cathode surface), formula
(17) takes the form

(20)

Assuming in this expression that 〈ϕ〉  ≈ Ud/2 [5, 6],
we find the average electric field

(21)

Hence, the transverse velocity component is equal
to

(22)

We represent the total energy as a sum of the ener-
gies related to the motion along and across the mag-
netic field (the longitudinal and transverse energies,
respectively)

(23)

The transverse energy varies periodically with time,
because the transverse velocity component oscillates
harmonically from 0 at the lower point of the cycloid to
2{V⊥ (y)} at the upper point. Therefore, we should aver-
age it over the oscillation period,

(24)

We assume that the longitudinal electron energy is
the same throughout the entire discharge region and is
close to or slightly higher than the ionization energy of
the working gas

(25)

where Jp is in electronvolts.

ϕ y zcat,( ) Ud; ϕ y ∞,( ) 0,=
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Then, using formulas (22),2 (24), and (25), we find
the average electron energy in section y,

(26)

To calculate the dependence of the ionization cross
section on the electron energy [We(y)], we can use the
following formula [7]:

(27)

where energy is in electronvolts, Jp is the ionization
energy (15.8 eV for argon), Jn is a constant taken to be

13.6 eV, π  is a constant equal to 8.8 × 10–21 m2, and
g is the number of electrons at the upper level (g = 8 for
argon).

2 The magnetic fields By(y, z) and B(y, z), entering formula (22), are
to be calculated for a given magnetron magnetic system.

We y( )[ ] W ||
0 W ⊥ y( )[ ] .+=

σi We( ) 2.66πa0
2 Jn
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-----g
We/J p 1–( )
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The electron velocity expressed through the total
kinetic energy (26) is

(28)

Using formulas (26)–(28) and introducing the nor-
malization coefficient hnorm (which allows for the cath-
ode thickness) in expression (12), we find the cathode
erosion depth h as a function of y:

(29)

When calculating the erosion profile of a circular
magnetron, it is sufficient to make the formal substitu-
tion y  r in order to find the erosion profile as a func-
tion of radius. In numerical calculations with known
magnetic fields, the upper integration limit zcal is chosen
from the condition

(30)
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Fig. 3. Comparison of the calculated (curves) and measured
(symbols) erosion profiles for two circular magnetrons with
cathode diameters of (a) 20 and (b) 100 mm.
or

(31)

The constant λβ is determined by calculating the
magnetic field for a given magnetic configuration.

COMPARISON OF EXPERIMENT
AND CALCULATIONS

The cathode erosion profiles were measured in a
series of experiments carried out in the Module, Mavr-
2, and Mavr-3 MISS devices. The results obtained were
compared with the profiles calculated by the method
described above. The Module device operated with a
rectangular magnetic system, and, in the Mavr-2 and
Mavr-3 devices, circular systems were used. In the lat-
ter two devices, experiments were carried out with
three similar magnetic systems of different size, the
cathode diameters being 21, 65, and 110 mm. The mea-
surements and calculations for the rectangular cathode
of the Module device were carried out for one of the
MISS symmetry planes. A comparison of the results
obtained is presented in Figs. 2 and 3.

The experimental and calculated positions of the
erosion maximums are found to practically coincide to
each other. However, at the periphery, experimental and
calculated profiles are somewhat different. This differ-
ence may be explained by the defects of the calculation
model (in particular, by the assumption of a nearly con-
stant sputtering coefficient over the cathode surface),
the assembly defects of the real magnetic system
(which are most pronounced in the region above the
magnet edge), etc.

CONCLUSIONS

In this paper, we have proposed a rather simple
method for calculating the cathode erosion profile in
planar MISSs. The method has been successfully used
to design the cathode units for MISS devices. The
method proposed does not require detailed information
on the distributions of the electric potential and plasma
density in the discharge and the position of the upper
boundary of the discharge. It is only necessary to calcu-
late the magnetic configuration in a given MISS and
know the integral characteristics of the discharge, in
particular, the discharge voltage Ud. The method pro-
posed allows one to choose the optimal magnetic con-
figuration and, taking into account the design features,
to find the optimal thickness and shape of the cathode.
The implementation of the method requires a computer
program that allows one to vary the parameters of the

B2 y z,( ) zd

zcat
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∫ B2 y z,( ) zd
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∞

∫ ,≈

By y z,( ) zd
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∫ By y z,( ) zd( ).

zcat

∞

∫≈
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system when calculating the magnetic fields in a given
MISS.

The method proposed also makes it possible to find
the utilization ratio of the cathode material Km without
performing laborious measurements and to optimize
the system with respect to this parameter.
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Abstract—The mechanisms for the interaction between dust grains in a low-temperature plasma are analyzed
theoretically with the aim of describing the grain coagulation process. It is shown that the experimentally
observed coagulation process cannot be described by taking into account only electrostatic interaction between
the grains. A theoretical model is proposed that describes the interaction between dust grains by accounting for
the redistribution of the ion fluxes over the grain surfaces under the action of the electrostatic field of a neigh-
boring grain. The model is employed to analytically calculate the rate constant for the dust grain coagulation.
The theory developed is used to explain for the first time the nature of the experimentally observed coagulation
threshold and to estimate the critical grain size above which the grains stop growing by the deposition from a
gaseous phase and start to coagulate. The applicability of the model proposed to a quantitative description of
the coagulation dynamics is discussed. © 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

In recent years, rapid technological advances have
stimulated increased attention to problems associated
with various nanoscale processes and objects. Such
objects are of considerable interest because of their
importance for both the production of new materials
with special properties providing further miniaturiza-
tion of electronic devices and increasing their produc-
tivity and for the study of regular features of the funda-
mental mechanisms governing the processes that occur
on spatial scales intermediate between micro- and mac-
roscales.

Dusty plasma is an example of a system in which
nanoparticles are actively produced. It has been known
for a long time that, in most devices used in the semi-
conductor industry, submicron and micron dust grains
are produced as a by-product. The formation of dust
grains was observed in devices for plasma etching,
chemical deposition from a gaseous phase, and deposi-
tion by sputtering. Although the processes by which the
dust particles grow have been investigated both experi-
mentally [1–7] and theoretically [8–10] for many years,
a complete understanding of the driving mechanisms
for these processes is still lacking.

Based on the available experimental results, the pro-
cess of formation and growth of dust particles can be
described as follows. The process usually occurs in
three steps: the phase of the initial growth of the grains,
the coagulation phase, and the saturation phase. During
the first phase, the particles grow uniformly to sizes of
about 10 nm. The grains thus formed are nearly spher-
ical in shape and have nearly the same radii. During the
1063-7842/03/4810- $24.00 © 21270
coagulation phase, the particle growth rate rapidly
increases because of an abrupt increase in the probabil-
ity of collisions between them. The shape of the grains
formed in this phase, as well as the topology of their
surfaces, can vary over a broad range—from spherical
[1, 2] to fractal [3, 4]. In the latter case, the grains are
produced by the connected chains of the original crys-
tallites. In the saturation phase, the coagulation process
has essentially come to an end and the particles con-
tinue to grow very slowly by the material deposition
from the gaseous phase. On the whole, the cluster
growth time can vary from fractions of a second to sev-
eral hours, depending on the particular experimental
conditions; however, the average growth rate of dust
grains is substantially higher than the rate of film depo-
sition from a gaseous phase. This can be illustrated by
the data from [4], in which the dust grains were
observed to grow at a rate of 100 to 800 nm/s, while the
characteristic rate of film deposition is as low as 0.064–
0.120 nm/s [5].

Along with the growth of dust grains and the forma-
tion of clusters, the self-organization processes that
occur in dust–plasma systems are of great interest. The
existence of dust crystals, which were first observed in
laboratory plasmas [11–13], is an established fact,
although the possibility of their formation was dis-
cussed theoretically over a fairly long period of time
[14, 15]. Dust crystals are formed of dust grains whose
sizes may be as large as tens of microns, depending on
the particular experimental conditions. The lattice con-
stant of such crystals is usually much longer than the
Debye screening length and can reach hundreds of
microns. Very often, in both industrial and experimen-
003 MAIK “Nauka/Interperiodica”
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tal devices, not only dust crystalline structures were
found to form, but also dust–plasma droplets were
revealed and gas–liquid phase transitions were
observed [16–18]. An understanding of the dynamics of
the above processes is of fundamental importance for
both plasma physics and the physics of condensed
media.

One of the central problems in the physics of dusty
plasma is the nature of interaction between the dust
grains. Obviously, there are two distinctly different
types of the phenomenon under consideration. The phe-
nomena of the first type occur in experiments with
dust–plasma crystals and droplets. The dust grains in
these structures repel each other, and the structures
themselves are confined in electrostatic traps. In such
experiments, the dust density is relatively low (nd &
107 cm–3) in comparison with the ion density (ni ~
109 cm–3), the characteristic grain sizes being a * 1 µm,
and there are practically no collisions between the
grains. On the other hand, in many experiments, the
dust particles are observed to grow rapidly by coagula-
tion. In such systems, the dust density is relatively high
(nd * ni ~ 109 cm–3) and the particles grow by coagula-
tion to sizes of a ~ 10–20 nm. The above examples
show that the nature of the interaction between the
grains can be radically different, depending on the con-
ditions created in the system. In this paper, we will try
to analyze the main reasons why dust–plasma systems
exhibit such a variable behavior.

MECHANISMS FOR THE INTERACTION 
BETWEEN DUST GRAINS IN A PLASMA

The main factor causing a strong interaction
between the dust grains in a plasma is the accumulation
of an electric charge by the grain. Depending on the
experimental conditions, the grains can acquire a
charge of one to 103–104 electron charges. Since the
electrons are far more mobile than the ions, the charge
acquired by the grains is usually negative. However,
some effects like secondary electron emission and pho-
toemission can make dust particles to be positively
charged. Let us consider how this factor influences the
interaction between the grains. To begin, we assume
that the grains interact only through their electrostatic
fields. Having made this assumption, we then calculate
the rate constant for the dust grain coagulation.

The problem of finding the cross section for colli-
sions between the grains interacting through their given
spherically symmetric potentials is solved exactly. The
result is

(1)

where µ = m1m2/(m1 + m2) is the reduced mass, Ue.s(r)
is the electrostatic interaction energy, Rmin is the short-
est distance between the interacting grains, and v  is the
relative velocity.

σdd πRmin
2 1

2Ue.s Rmin( )
µv 2
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For spherical grains of radii a1 and a2, we have
Rmin = a1 + a2. We also introduce the notation σT =
π(a1 + a2)2 for the cross section for the interaction
between uncharged grains.

Now, we calculate the rate constant for the coagula-
tion of dust grains of different radii:

(2)

Here, the averaging is performed over the relative
velocities of the grains. We also assume that the collid-
ing grains stick together with a unit probability. Of
course, this assumption is actually somewhat idealized.
Moreover, the coagulation can be accompanied by a
reverse process—a partial destruction of the cluster by
a collision with another grain. In our analysis, however,
we neglect this possibility and assume that the proba-
bility of the destruction of clusters is sufficiently low.
We also assume that the grains obey a Maxwellian
velocity distribution with a temperature T0 equal to the
temperature of the neutral gas in the chamber. We will
consider two cases: the interaction between likely
charged grains and the interaction between oppositely
charged grains.

In the case of oppositely charged grains, they attract
each other, so that we have

(3)

Integrating over velocities yields

(4)

where  is the mean relative velocity of the dust grains
and the electrostatic interaction energy Ue.s is negative.

In the case of likely charged grains, they repel each
other, so that we can write

(5)

where vmin =  is the minimum relative veloc-
ity of the grains at which they can collide.

As in the previous case, we integrate over velocities
to obtain

(6)
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Let us analyze the results obtained. We can see that
taking into account the electrostatic interaction pro-
duces an additional factor in the expression for the
coagulation rate constant. In the case of oppositely
charged grains, which attract each other, the coagula-
tion rate constant increases linearly with the absolute
value of Ue.s, while, for likely charged grains, this rate
constant decreases exponentially. As was noted above,
the most typical situation in a dusty plasma is that in
which all dust grains are charged negatively. Conse-
quently, the electrostatic interaction should reduce the
coagulation rate constant in comparison with that cor-
responding to a purely thermal motion of the uncharged
grains. Note also that the expressions obtained are inde-
pendent of the functional form of the long-range inter-
action potential of the grains, in particular, the screen-
ing of the electrostatic interaction potential in a plasma.

Now, we estimate how important the difference is
between the rate constants for the coagulation of
charged and uncharged grains. The electrostatic inter-
action energy Ue.s is given by the expression
Ue.s(Rmin) = Zd1Zd2e2/(a1 + a2), where Zd1 and Zd2 are the
charges of the grains. In this expression, we also took
into account the fact that, for the shortest distance
between the interacting grains, the screening effect of
the plasma can be neglected. For estimates, we choose
the parameter values corresponding to conditions typi-
cal of experiments on coagulation, namely, nd ~ ni ~
109 cm–3 and T0 . 0.025 eV, the grain radius being a =
10 nm. The charges of the grains can be estimated from
the quasineutrality condition

(7)

where  is the mean charge acquired by the grains.

Under the conditions adopted, the electron density
is, as a rule, much lower than the ion density, in which
case we have  . ni/nd. Substituting all the above val-
ues into expression (6) for the coagulation rate con-
stant, we obtain k/k0 ~ 3 × 10–3, where k0 = 2 σT is the
rate constant for the coagulation of uncharged grains.
Therefore, even a slight charge on the dust grains
should suppress the coagulation process. However,
practical experience shows that this conclusion contra-
dicts the experimentally observed coagulation process:
the growth of charged grains is not suppressed but
rather occurs at a much faster rate in comparison with
that for uncharged grains.

In the literature, several models have been proposed
that solve this problem. The so-called ballistic model
assumes that dust grains coagulate into clusters due to
collisions between charged and uncharged grains [8] or
collisions between slightly charged grains [9, 10]. An
argument supporting this assumption is based on the
fact that, in the initial coagulation stage, the dust den-
sity is usually higher than the electron and ion densities
in the plasma; hence, according to the quasineutrality

Zdnd ne+ Zini,=

Zd

Zd

v

condition, most of the grains are uncharged. The ballis-
tic model is capable of explaining such a distinctive
feature of the process as the termination of coagulation
at a certain time, followed by the saturation phase. The
explanation is that, as the grains grow to a certain size,
the dust density decreases and becomes lower than the
ion density; as a result, almost all of the grains turn out
to be charged; as a result, according to the ballistic
model, the coagulation process comes to an end. How-
ever, this model fails to explain the existence of a cer-
tain initial critical grain size below which coagulation
does not occur. In addition, it was often pointed out
[4, 6] that the experimentally observed high growth
rates of the clusters cannot be explained in terms of the
collision frequency corresponding to the cross section
for the interaction between thermal dust grains. Hence,
we arrive at the conclusion that there should exist an
additional attractive force between the grains.

An anomalously high coagulation rate can be
explained by assuming that some of the grains acquire
a positive charge and collisions occur predominantly
between the grains carrying charges of opposite sign.
The authors of the corresponding model [19, 20]
pointed out the following circumstance: since the mean
grain charge in the initial coagulation stage is small and
fluctuates about a zero value and since the bombard-
ment of the grains by high-energy electrons can give
rise to secondary electron emission from the grain sur-
faces, any of the grains indeed carries a positive charge
for a time. However, this hypothesis is unlikely to be
productive because it assumes that, in the plasma vol-
ume, there should be a sufficient number of high-
energy electrons (with energies *100–300 eV) which
are capable of ensuring high secondary-emission yields
from the grain surfaces. Nevertheless, practical experi-
ence shows that dust clusters grow actively even when
such electrons are present in negligible amounts.

It should also be emphasized that it is more correct
to consider the evolution of the charge of an individual
grain rather than the evolution of the positively charged
dust in the plasma volume. The characteristic time of
fluctuations of the grain charge is usually much shorter
than the time between its collisions with other grains.
The grain charging time is determined primarily by the
rate at which its surface is bombarded by the electrons;
consequently, for estimates, we can write τe/τd ~
ndv d/nev e, where ne and nd are the densities of the elec-
trons and dust grains, respectively, and v e and v d are
their thermal velocities. At room temperature, the
velocity of 10-nm silicon grains is about v d ~ 102 cm/s.
The velocity of electrons with a temperature of Te ~
3 eV (which is typical of many experiments) is about
v e ~ 108 cm/s. Under these conditions, the grain-to-
electron velocity ratio is about v d/v e ~ 10–5–10–6. In the
overwhelming majority of cases, the grain-to-electron
density ratio nd/ne is no larger than 102–103. As a result,
TECHNICAL PHYSICS      Vol. 48      No. 10      2003
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we obtain τe/τd ! 1. This indicates that binary colli-
sions between the grains should be considered in terms
of the mean (rather than instantaneous) grain charge.

Hence, we are forced to conclude that the coagula-
tion phenomena cannot be described satisfactorily in
terms of only the electrostatic interaction between dust
grain. Therefore, the coagulation model should be con-
structed by taking into account a wider range of pro-
cesses.

Along with the electrostatic interaction between the
charged dust grains, the plasma can give rise to other
mechanisms by which the grains interact with each
other. In the literature, the interaction models that take
into account the fluxes of ions and neutral gas particles
to the grain surfaces have been studied for a long time
[21]. In the most widely accepted model, effective
attraction between the dust grains is assumed to origi-
nate from the screening of the plasma fluxes by a neigh-
boring grain. This interaction mechanism was
described in detail in [22, 23]. Here, we restrict our-
selves to a brief description of the main aspects of the
model.

In this model, the dust grains are treated as spherical
macroparticles immersed in a plasma. Since the grain
surfaces are assumed to be absorbing, each of the grains
produces an isotropic plasma flow in which the ions or
neutral gas particles move toward its center. If a neigh-
boring grain occurs within the flow created by a test
grain, it absorbs the ions or neutral gas particles in the
corresponding conical part of the flow to the test grain
and, thereby, partially screens it. As a result, some
amount of momentum is transferred from the plasma to
the test grain. The energy of the interaction between the
grains through the screening of the plasma fluxes can
be written in the form

(8)

where n and T are the density and temperature of the
absorbed particles.

Let us consider the main features of the interaction
mechanism provided by this model. First, we can
readily see that, because of the screening of the fluxes,
the grains are subject to an effective attraction with a
Coulomb-like potential. Another distinguishing feature
of this interaction mechanism is that the action and
reaction forces between each pair of grains are equal
and opposite. Formally, this feature follows immedi-
ately from expression (8); actually, however, it is a con-
sequence of one of the assumptions underlying the
model, specifically, the assumption that the plasma flux
absorbed by each individual grain is isotropic. We can
easily determine the momentum transferred from the
plasma to the dust subsystem for the cases when we
treat one or two particles. In the first case, the momen-
tum transferred is equal to zero because of the spherical
symmetry of the plasma flow to the grain. In the second
case, the neighboring grain screens (absorbs) some part

U r( ) 3
4
---πnT

a1
2a2

2

r
----------,–=
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of the plasma flow to the test grain. In this case, how-
ever, the total momentum transferred to a dust system
consisting of two grains does not change because it is
independent of which of the grains the momentum has
been transferred to. As a result, the total momentum
transferred is again zero, which yields the equality of
the action and reaction forces. However, the analogy
with the Coulomb interaction cannot be pursued fur-
ther. As was shown by Ignatov [22], the screening
mechanism, by its essence, results in the fundamentally
non-pairwise nature of the interaction between the
grains and thereby cannot be described using a field
approach.

According to the above considerations, an important
point in the model in question is that the forces should
be calculated under the assumption that the plasma
flows to the dust grains are isotropic and are directed
toward the grain centers. In the case of dust grains car-
rying electrostatic charges, this assumption generally
fails to hold for ions and, as was pointed out in [22], is
only partly justified for grains whose sizes are much
larger than the Debye screening length, a @ λd. For
dusty plasmas, this situation is very exotic because,
usually, λp * 10 µm and because the grains having
sizes of tens of microns are regarded as being too large
to be involved in the coagulation process.

For nanometer dust grains, the approach described
above should be somewhat modified by taking into
account the fact that the trajectories of charged plasma
particles are curved by the electric fields of the grains.
Consequently, the additional effect of the plasma fluxes
is associated not so much with their screening by a
neighboring grain but more with the redistribution of
the absorbed ion flux over the grain surface under the
action of the electric fields of the nearest neighbors. In
this case, under the conditions of dynamic equilibrium
between the ionization and ion loss processes in the
plasma, the mean number of the ions absorbed by each
of the grains remains unchanged.

The interaction model that accounts for the redistri-
bution of plasma fluxes over the grain surfaces was pro-
posed in our earlier paper [24]. The main idea of the
model is that, when a test grain is subjected to the elec-
tric field of the neighboring grain, it becomes polarized
and redistribute the ion fluxes over its surface (see
Fig. 1). The resulting asymmetry of the fluxes gives rise
to an additional force exerted on the grain in the direc-
tion of the electric field. The main distinguishing fea-
ture of the model proposed in [24] is that the force
exerted by the plasma fluxes on the dust grains turns out
to be proportional to the electric field strength, as is the
case with the Coulomb repulsive force. The expression
derived in that paper for the force exerted by the ion
fluxes on the grains makes it possible to calculate the
pairwise interactions by parametrically taking into
account the effect of the plasma. Under certain condi-
tions in the system, this effect can become dominant
and give rise to effective attraction between dust grains.
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The model was used to calculate the forces in the
approximation in which the electric field produced by
the neighboring grains was assumed to be uniform.
Hence, the expressions obtained are applicable when
the sizes of the grains are much smaller than the mean

distance between them, a ! . In the next section,
we will calculate the rate constant for coagulation of the
dust grains with allowance for the above-described
additional effect of the plasma fluxes.

RATE CONSTANT FOR THE COAGULATION
OF DUST GRAINS

In [24], we obtained an expression for the force
exerted by an electric field on a dust grain whose sur-
face is affected by an ion flux. In deriving this expres-
sion, we assumed for simplicity that all the grains in the
system are of the same size. However, this assumption
fails to hold for growing dust grains, in which case, in
the expression for the interaction force, it is necessary
to take into account the distribution of the grains over
their sizes. Generalizing the expression derived in [24]
to dust grains of different radii yields

(9)

where Zd is the grain charge, E0 is the electric field
strength, Zi is the ion charge,  is the ion density in the
vicinity of the grain surface, nd is the dust density, n0 is
the density of neutral gas particles, δ0 is the cross sec-
tion for the interaction of ions with neutral gas parti-

cles, a is the grain radius,  is the mean square radius
of the grains, and

(10)
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Fig. 1. Redistribution of the plasma fluxes over the surface
of a grain in an external electric field.
(11)

In expression (11), Ti is the ion temperature and ϕ0
is the electric potential at the grain surface. The poten-
tial at the surface of a spherical grain is related to its
radius by

(12)

We consider two dust grains of radii a1 and a2 that
interact with one another through the forces f12 and f21,
where f12 is the force exerted by the second grain on the
first grain and f21 is the force exerted by the first grain
on the second grain. We describe the force acting on
each of the grains by expression (9) in which the elec-
tric field is assumed to be produced by the other grain.
As a result, we are dealing with a system of two grains
the interaction between which is pairwise and is char-
acterized by a spherically symmetric potential. The
effect of the plasma in this system can be described
parametrically. The task now is to solve the problem of
scattering of the grains by one another.

It should be stressed, however, that, although the
problem of the interaction of two dust grains in a
plasma has much in common with the conventional
problem about the pairwise interaction between two
particles, there is one essential difference. Specifically,
when ion fluxes to the surfaces of the grains are taken
into account, Newton’s third law for the interaction
forces fails to hold; in other words, for grains of differ-
ent sizes, we have f12 ≠ –f21. This conclusion is not sur-
prising because, in the presence of plasma, the system
of two grains is open. As a result, in some situations,
one grain can “move away” from the other grain
(because its size is such that the electrostatic repulsive
force exceeds the force exerted by the ion flux), while
the other grain “catches up” with the first one. As a con-
sequence, the plasma can transfer a portion of its
energy to the grains, thereby heating the dust sub-
system. Dust heating effect was actually observed
experimentally [25].

We introduce the radius vector r = r2 – r1, connect-
ing the first and second grains, where r1 and r2 are the
position vectors of the first and second grains in the rest
frame. The time evolution of the radius vector so
defined is described by the equation

(13)

Substituting the expressions for the forces into
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Eq. (13), we obtain

(14)

where the numerical subscripts denote the parameters
of the first and second grains and fe.s is the electrostatic
repulsive force between two grains in the absence of
plasma.

We thus see that the original problem is equivalent
to the problem of the motion of a particle in a spheri-
cally symmetric field with the interaction potential
energy U(r), which is equal to

(15)

where Ue.s(r) is the energy of the electrostatic repulsion
between the grains and the parameter χ has the form

(16)

Now, we reduce expression (16) to a simpler form.

For spherical grains, we have m1, m2 ~ , . We will
also assume that, on the average, the potential at the
surfaces of all grains is the same, ϕ0 = const. This
assumption is based on the fact that the grains are
immersed in a conducting medium, in which induced
currents rapidly reduce the potential differences
between them to zero.

The ion densities  and  in the vicinities of the
grains are determined by the grain radii and the poten-
tials at the grain surfaces and may vary considerably
depending on the particular plasma conditions. The
main factor that influences the spatial distribution of the
plasma ions near the grains is that the ions are absorbed
by the grain surfaces. This circumstance is important
primarily for large grains, because, for a * λi (where λi
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is the ion mean free path), the lifetime of the ions in the
vicinity of an absorbing grain is much shorter than that
far from the grain, and, accordingly, the ion density
near the absorbing grain is much lower. Nevertheless,
under the conditions typical of experiments on the
growth of dust grains through the deposition from a
gaseous phase, the opposite case prevails, namely, that
in which the density can be correctly estimated by the
Boltzmann exponent:

(17)

where ni is the volume-averaged ion density.
However, if we consider conditions such that the

sizes of the dust grains are much smaller than the char-
acteristic ion mean free path in the plasma, a ! λi, then
we can see that, most of the time between their colli-
sions with neutral gas particles, the ions move along
finite trajectories in the fields of the grains. Conse-
quently, we cannot assume that the ion velocity distri-
bution is equilibrium because, in the vicinities of the
grains, the mean kinetic energy of the ions is much
higher than that in the surrounding plasma. In the
model developed here, this circumstance is taken into
account by correcting the ion temperature parameter
under the assumption that, on the average, the kinetic
energy of the ions increases proportionally to the
energy acquired by them in the fields of the grains,

(18)

where ζ & 1 is a dimensionless parameter.
Of course, we were forced to make this assumption

(which is, however, justified by the results of our earlier
calculations [26] based on the methods of molecular
dynamics) because, in the parameter range under con-
sideration, an exact expression for the ion distribution
function is unlikely to be obtained analytically.

Now, we consider the expression for ξ. The required
estimates will be obtained for conditions typical of
experimental devices [3]. We set the neutral gas density
and dust density to n0 . 3.25 × 1015 cm–3 (which corre-
sponds to the pressure P = 13 Pa) and nd . 1.5 × 109 cm–3,
respectively. We also estimate the cross section for the
interaction of ions with neutral gas atoms by the value
σ0 . 0.5 × 10–14 cm2, in which case the condition

n0σ0/ndπ  @ 1 is well satisfied up to mean square
grain radii of a ~ 0.8 µm. For these parameter values,
we arrive at the approximate expression

(19)

This indicates that, for the grain sizes in the range
10–100 nm, which is of interest to us, and for dust den-
sities of about nd ~ 109 cm–3, the inequality ξ2 ! 1 is, as
a rule, satisfied. We also take into account the fact that,
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for small ζ values, the function Φ(ξ) behaves asymptot-
ically as

(20)

Then, substituting expressions (17) and (20) into the
formula for χ, using expressions (18) and (19), and

employing the condition n0σ0/ndπ  @ 1, we obtain

(21)

Now, we determine how the account of the ion flux
and electrostatic interaction changes the expression for
the coagulation rate constant. Expression (15) shows
that, in comparison with the case of purely electrostatic
interaction, the problem contains an additional factor
that parametrically takes into account the contribution
of the plasma to the pairwise interaction. It turns out
that this factor, which has been denoted above by χ,
plays a governing role in the calculation of the rate con-
stant for the coagulation of dust grains, because it, in
fact, determines the nature of the effective interaction
between two grains. Specifically, for χ > 0, the grains
attract one another, while, for χ < 0, the grains repel. In
terms of this factor, expressions (4) and (6), which were
obtained above for the coagulation rate constant, can be
rewritten as

(22)

(23)

where the energy Ue.s corresponds to electrostatic
repulsion and has the form

(24)

Now, we consider how the parameter χ depends on
the radii of two interacting dust grains. To be specific,
we denote by a1 the radius of the smaller grain, in
which case the radius of the larger grain is naturally
denoted by a2. We also denote by α the ratio between
the radii, α = a2/a1 ≥ 1. In this notation, the part of
expression (21) that includes the grain radii takes the
form

(25)

The function f(α) in expression (25) lies in the range
1 ≤ f(α) ( 1.1. We thus see that the character (sign) of
the interaction between two dust grains of different
radii is almost completely determined by the radius of
the smaller grain.

Now, we consider the stage preceding coagulation,
namely, the growth phase of dust grains, and determine
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how the coagulation rate constant depends on the radii
of the growing grains. The potential at the grain sur-
faces can be evaluated from expression (12) and
quasineutrality condition (7). To do this, we assume
that the distribution of grains over their radii is suffi-
ciently narrow. This characteristic feature of the grow-
ing dust particles is typical for the initial stage of dust
production in a plasma, when the particles grow by the
deposition from a gaseous phase. In this case, we can
assume that all the grains carry almost the same charges
equal to . We also introduce the notation P = ne/ni.

Then, we carry out the necessary manipulations to
arrive at the relationship

(26)

where we have also introduced the notation

(27)

When the dust function in the volume is high, i.e.,
when the dust density is comparable with the ion den-
sity (as is almost always the case for the variety of the
problems under consideration), we have P ! 1, so that
this parameter can be neglected in further calculations.

Relationship (26) is the main relationship determin-
ing the rate of grain coagulation. If the radius of the
dust particles is smaller than a certain critical radius
(which we denote by a∗ ), then the parameter χ is nega-

tive and, according to expression (23), the coagulation
rate constant decreases exponentially as the ratio Ue.s/T0

increases. However, as the radii of the growing particles
exceed the critical radius, the coagulation rate increases
very rapidly because the energy of the electrostatic
interaction between the grains is much higher than their
thermal energy. Figure 2 shows the rate constant 

for the coagulation of dust grains in units of the rate
constant associated with their thermal collisions. One
of the axes is the grain radius, and the other is the ion
density. The dependence shown in Fig. 2 was obtained
under the assumption that the distribution of the grains
over their sizes is monodisperse, which is characteristic
of the initial stage of the coagulation process. The cal-
culations were carried out for the above values of the
dust density and the density of neutral gas particles.
The parameter ζ was set equal to 0.13. For the critical
grain radius, we obtained the estimate a∗  . 4.8 nm.

Figure 2 shows that, as the radii of the grains increase
above this critical value, the cross section for their
interaction rapidly increases. In the next section, we
will discuss the results obtained.
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DISCUSSION

Let us summarize the main results obtained in this
study and make some remarks on their possible appli-
cations.

In the previous sections, we showed that the experi-
mentally observed pattern of the coagulation process in
a dusty plasma cannot be described adequately by tak-
ing into account only the electrostatic interaction
between the grains and that the coagulation problem
can be solved by accounting for additional forces
exerted on the grains by the ion fluxes absorbed by the
grain surfaces. When these forces are taken into
account, the coagulation rate constant depends not only
on the properties of the grains but also on a wide variety
of additional factors responsible for the interaction of
plasma ions with neutral gas particles and with the dust
subsystem. We thus can conclude that, during the coag-
ulation process, the conditions favorable for the growth
of the dust particles in a plasma can also change
dynamically. This change is associated not only with
the accumulation of an electric charge by the dust but
also with other effects. As a consequence, the dust com-
ponent can form in a variety of ways, depending on par-
ticular experimental conditions, so that the coagulation
process may also proceed in vastly different manners.

Let us consider in more detail the dependence of the
coagulation rate constant on the main parameters of the
system. As may be seen from Fig. 2, the probability for
small grains to coagulate is fairly low. However, after
the grains have grown to a certain critical radius, the
coagulation rate rapidly increases and may become
200 times higher than that for uncharged grains. Hence,
we can conclude that a transition from the phase of the
initial growth to the coagulation phase is definitely
threshold in nature, which agrees completely with
many experimental observations of the phenomenon in
question. Note also that, up to the present, there were no
theoretical models that took into account this distin-
guishing feature.

Another distinctive feature of the model proposed
here is accounting for the effect of the electrostatic field
when describing the coagulation process. Up to now, it
was generally believed that the role of the electrostatic
interaction is to stop the coagulation process as the
grains acquire like electrostatic charges. In the litera-
ture, this stage of the process is called the saturation
phase. In our model, however, the electrostatic interac-
tion plays an opposite role. The reason is that the forces
exerted on the dust grains by ion fluxes are proportional
to the electrostatic field strength, as is the case with
electrostatic repulsive forces. From Fig. 2, we can dis-
tinctly see that the coagulation rate constant rapidly
increases as the ion density grows (or, equivalently, as
the grains acquire the charge). This conclusion is con-
firmed experimentally by the fact that the rate of dust
grain coagulation is observed as increasing with
increasing applied power, which, in turn, determines
the ionization rate in the discharge plasma [7]. As for
TECHNICAL PHYSICS      Vol. 48      No. 10      2003
the saturation phase, our model gives a radically differ-
ent explanation for its onset. However, before proceed-
ing to a more detailed description of the onset of the
saturation phase, we need to consider some features of
the growth of clusters in a dusty plasma.

Practical experience shows that the structures of
clusters observed in dusty plasmas may be very differ-
ent. Nascent clusters may possess fairly regular struc-
tures resembling that of a compact hard head cabbage
or may develop into branched fractal structures. When
determining the way in which dust clusters form, it is
very important to analyze the properties of the crystal-
lite material that serves as a starting material for the for-
mation of dust structures. It turns out that the higher the
conductivity of the material, the larger the degree to
which the growing structures are fractal. On the whole,
it is this tendency that was observed in a number of
experimental papers [16, 17] aimed at investigating the
growth of dust structures from different substances
(Fig. 3).

The formulas that have been derived above for the
coagulation rate constant describe the interaction of
two spherical conducting dust grains of arbitrary radii.
However, these formulas are inapplicable for calculat-
ing the interaction between the clusters formed through
the sticking together of dust grains and thus need to be
further generalized. Here, in order to understand the
main mechanisms for the coagulation-related growth of
clusters and its main features, we restrict ourselves to
considering merely a qualitative pattern of the coagula-
tion phenomenon.

In order to model the interaction between branched
clusters, it is necessary to take into account the follow-
ing basic feature of their formation: each such cluster
consists of a certain number of fractal chains. If a clus-
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ter can be regarded as being conducting, then the charge
acquired by it will concentrate at the ends of the chains;
as a result, the ion fluxes will exert directed forces only
on very limited sites on the cluster surface. Since, in
spherical geometry, the drag force exerted by the ion
fluxes on a particle is proportional to the particle sur-
face area, we can see that the effective attraction
between fractal structures is weaker than that between
spherical particles of equivalent size.

For large fractal structures, the number of chains
increases far more gradually than the number of macro-
particles forming the chains. Consequently, the effi-
ciency of attraction between large clusters decreases
sharply as their sizes increase. In this case, the coagu-
lation rate constant is determined completely by elec-
trostatic repulsion. We thus arrive at the conclusion that
fractal clusters can only grow by gaining the smallest
macroparticles, i.e., the macroparticles that serve as a
starting material in the coagulation phase. Taking into
account the fact that the force by which macroparticles
are attracted to a cluster is proportional to the electric
field strength and assuming that the charges in the clus-
ter concentrate at the ends of the chains, we see that the
ends will be the most probable places for gaining new
particles. It is this result that explains the typical pattern
of the formation of such fractal structures, specifically,
the fact that, in a growing cluster, the number of chains
remains nearly constant while the chains themselves
increase rapidly in length.

Turning to the question about the causes for the
onset of the saturation phase of the coagulation process,
note again that the main source of material for the
growing clusters is provided by the smallest crystal-
lites, i.e., by the dust grains that have grown in the ini-
tial phase through the deposition from a gaseous phase
rather than by the grains that have been produced as a
result of coagulation of the smaller grains. Recall also
that the coagulation phase can occur only when the
original crystallites grow to sizes larger than a certain
critical size, in which case the probability of collisions
between them increases manyfold. However, through-
out the entire stage of the subsequent cluster formation,
the sizes of the original crystallites remain close to the

0.5 µm 0.5 µm

Fig. 3. Dust structures grown in a plasma: a cluster com-
posed of aluminum grains (left) and clusters composed of
carbon grains (right). In experiments, the clusters were
grown from the products of electrode erosion [16].
critical size. In turn, the critical size is highly sensitive
to the global parameters of the system and may become
larger or smaller, depending on how the values of these
parameters change. It is this circumstance that plays a
critical role in the coagulation process and severely
restricts the possibility of a continuous growth of the
dust particles. The reason is that the higher the electric
potential at the surfaces of the dust particles, the larger
the size to which they should grow in order to evolve
into the coagulation phase. As a result, the parameters
of the bulk of the crystallites involved in the formation
of clusters occur in the range in which the probability
of collisions between them is low. This conclusion also
agrees with estimate (27), which was obtained above
for the critical grain radius and implies that this radius
should increase as the dust density decreases. The
above mechanism by which the coagulation process
comes to an end may have a number of consequences.
In particular, based on the description of this mecha-
nism, we can conclude that, some time after the begin-
ning of coagulation, all clusters fall into two groups,
distinguished by their sizes. The first group includes the
original crystallites that will not take part in the coagu-
lation process, while the second group consists of large
dust agglomerates, which will grow progressively by
gaining small clusters of several original crystallites
until this source of building material is also exhausted.
Such a behavior of the distribution function of the clus-
ters over their sizes is indeed typical of many experi-
ments [1–4].

Hence, we can conclude that the model proposed
here for describing the interaction of dust grains in a
plasma provides a qualitative explanation of many
characteristic features of the coagulation process and
can serve as a basis for constructing a quantitative the-
ory of the coagulation phenomenon. The conclusions
obtained in this study are confirmed by the results of
numerical calculations of the dynamics of the coagula-
tion process and by their direct comparison with the
experimental data. At present, these numerical results
are being prepared for publication.
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Abstract—The energies of surface defects in the basal and prismatic planes, as well as in the planes of type I
and type II pyramids, are calculated by using N-particle interaction potentials for the Ti3Al intermetallic with
the D019 superlattice. The core structure of 2c + a edge and screw glissile and sessile (barrier-forming) dislo-

cations in pyramidal planes of type I, { }, and type II, { }, in Ti3Al is analyzed. © 2003 MAIK
“Nauka/Interperiodica”.
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INTRODUCTION

Titanium aluminides TiAl, Ti3Al, Ti3(Al, Nb), etc.
offer a unique set of strength properties at elevated tem-
peratures, good corrosion resistance, and high fatigue
properties, which makes them promising for space
technology, automotive industry, and other applica-
tions. The Ti3Al intermetallic with the D019 ordered
hexagonal superlattice (α2 phase) is the basic constitu-
ent of several single- and two-phase alloys (including
those with a lamellar structure). Room-temperature
mechanical tests show [1] that polycrystalline Ti3Al has
a high yield stress (500–800 MPa) and an elongation at
fracture of 0.3–5.0%. Thus, a disadvantage of Ti3Al and
other titanium aluminides is low-temperature brittle-
ness. As follows from electron microscopy data, the
deformation of the α2 polycrystalline phase occurs
largely through the motion of a dislocations with the

Burgers vector 1/3〈 〉  in the (0001) basal planes

and { } prismatic planes.

Recent investigations of single-crystal Ti3Al [2–5]
revealed the strong orientation dependence of the yield
stress σy and the presence of a complex dislocation
ensemble including superdislocations with a variety of
Burgers vectors and slip planes. According to experi-
mental conditions (temperature, strain rate, etc.), a, c +
a, and 2c + a superdislocations may glide in the basal,
prismatic, or pyramidal planes. It was found [2–5] that
the yield strength at room temperature equals 1000–
1300 MPa (the ductility is ε < 10%) for deformation
axes close to the [0001] c direction. For other directions
of deformation, σy = 40–250 MPa (the ductility is ε ≥
20%). It was shown that, in the former case, deforma-
tion is due to the glide of 2c + a superdislocations with

1120
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the Burgers vector 1/3〈 〉  in the type I, { },

and type II, { }, pyramidal planes. In the latter
case, where the yield stress is much lower, deformation
is accomplished through the glide of a superdisloca-
tions in the basal and prismatic planes, as in Ti3Al poly-
crystals.

These two cases also differ in the temperature
dependence of the yield stress. For the basal and pris-
matic slip planes, σy has a normal slowly decreasing
temperature dependence. In the temperature range
studied, the basal-slip ductility is somewhat lower than
in the case of prismatic slip. For the pyramidal planes,
the temperature dependence of the yield strength exhib-
its peaks at T ≈ 500°C [4] and ≈850°C [2, 3]. In the
range from room temperature to the temperature of the
peak, anomalous rise in the yield stress is observed,
which is typical of many intermetallics with the L12,
L10, and D019 superlattices.

From electron microscopy data [6], it follows that a
superdislocations in the basal and prismatic planes dis-

sociate into two superpartial dislocations 1/6〈 〉
with an antiphase boundary (APB) in between. How-
ever, in experiments made in situ, a superdislocations in
basal planes dissociated with the formation of a super-
lattice intrinsic stacking fault (SISF). It was also noted
[7] that a/2 superpartial dislocations may dissociate
into two partial ones; however, the Burgers vectors of
the partial dislocations were not identified.

Weak-beam electron microscopy studies performed
in [2] showed that 2c + a superdislocations in Ti3Al dis-

sociate into two superpartial dislocations in the ( )
plane, which are spaced at ≤16 nm. In Ti3(Al, Nb), this
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spacing is about 50 nm. The related APB energies in
type II pyramidal planes are  ≈ 240 and

74 mJ/m2, respectively. Unfortunately, detailed experi-
mental data for the fine structure of the core of c + a/2

superdislocations in { } and { } planes are
lacking. Therefore, a mechanism of dislocation trans-
formations that are responsible for the deformation
behavior of single-crystal Ti3Al in pyramidal slip
planes remains unclear. Computer-aided simulation of
dislocation motion in various slip planes makes it pos-
sible to study the dislocation core structure and find
lowest energy dislocation configurations. We per-
formed such simulation [8–11] for a superdislocations
in the basal and prismatic planes by the molecular
dynamics method.

In this work, we determine the core structure and

energy characteristics of a 1/6〈 〉  superpartial dis-
location in the pyramidal planes of types I and II by the
molecular dynamics method using N-particle interac-
tion potentials found for Ti3Al with the embedded atom
technique [12, 13]. We analyze γ surfaces and isenergic
contoured maps [12–14], from which one can infer the
presence of stable surface defects (APBs and stacking
faults) and reveal possible dissociations of a 2c + a
superdislocation in pyramidal planes. Here, we study
the core structure of screw and edge 2c + a superdislo-
cations.

RESULTS OF COMPUTER-AIDED
SIMULATION

The computer simulation of the dislocation core in
various structures demonstrates that final results may
depend on the initial configuration. If the Burgers vec-
tor of a superpartial dislocation is large, the dissocia-
tion of this dislocation into two or more partial disloca-
tions is energetically favorable (the greater the Burgers
vector and the lower the stacking fault (SF) energy, the
higher the energy gain upon dissociation).

The choice of the initial configuration depends on
the shape of the γ surface for a given plane. To construct
this surface, one should cut a model crystallite along a
crystallographic plane selected and displace the upper
part relative to the lower one by a vector f that is parallel
to the cut plane. The energy difference between the
parts of the crystallite with and without a planar defect
per unit surface area is the energy corresponding to the
vector f (the energy of a generalized stacking fault). If
the γ surface has a deep local minimum corresponding
to a low-energy stacking fault, the Burgers vector coin-
cides, as a rule, with the displacement vector of this
defect. If local minima on the γ surface are absent, it is
necessary to consider several initial configurations that
differ by the number and Burgers vector of partial dis-
locations, as well as by the position of their axes, in
order to find the core structure that has a minimal
energy after relaxation.

ξ
2111( )

2021 2111

2116
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The core structure of c + a/2 screw (the axis

[ ]) and edge (the axes [ ] and [ ]) super-

partial dislocations with the Burgers vector 1/6[ ]
in the type I and type II pyramidal planes were studied.
The choice of such orientations was dictated by elec-
tron microscopy data for the dislocation structure of
strained single-crystal Ti3Al. In [3], 2c + a edge dislo-
cation bands were observed in strained Ti3Al single
crystals of [0001] c orientation at temperatures ranging
between from the room value to ≈700°C. In [15–17],
both edge and screw 2c + a superdislocations in

{ } and { } pyramidal planes were observed
when the deformation axis was deflected from the exact
c orientation through angles within ≈30°. The feature of

the 1/6[ ] orientation of the superpartial disloca-
tions taken as model objects in this work is that the axis

[ ] of the screw dislocation belongs to the type II

pyramidal plane ( ), type I pyramidal plane

( ), and the prismatic plane ( ); for the edge

dislocation, the axis [ ] belongs to the type I pyra-

midal plane ( ) and basal plane (0001) and the axis

[ ] belongs to the type II pyramidal plane ( )
and basal plane (0001) (Fig. 1). Thus, as the initial con-
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Fig. 1. (a) Unit cell and (b) its projection onto the basal
plane for the D019 superlattice. Large atoms (circles) lie in
the basal plane; small ones are the projections of atoms
located at a distance of c/2 onto the basal plane.
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figuration of the superpartial dislocation upon the sim-
ulation, one must consider its dissociation in the initial
pyramidal plane (which contains the APB) and also in
the intersecting pyramidal, prismatic, and basal planes.
Figure 2 schematically shows the dissociation of the
2c + a superdislocation in the type I and type II pyrami-
dal planes. In all the configurations, the superdisloca-
tion is split into two superpartial c + a/2 dislocations

with the Burgers vector 1/6[ ], which bound the
APB.

Upon the simulation, one of the superpartial dislo-
cations was placed at the center of the crystallite, while
the other (marked by c + a/2) was at a distance calcu-
lated in terms of the elasticity theory for the interatomic
interaction potential chosen and had an effect on the
crystallite through its displacement fields. In the config-
uration shown in Figs. 2a and 2b, the superpartial dislo-
cation inside the crystallite is split into two partials with
the Burgers vectors b1 and b2 lying in the same pyrami-
dal plane. The magnitudes of b1 and b2 depend on the

shape of the γ surfaces in the ( ) and ( ) pyra-
midal planes. The dissociation of the edge superpartial
dislocation simultaneously in the pyramidal and basal
planes is shown in Figs. 2c and 2d; the dissociation of
the screw superpartial dislocation in the pyramidal and
prismatic planes, in Figs. 2e and 2f; and the dissociation
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–
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Fig. 2. Dissociation of the (2c + a) superdislocation with the

Burgers vector 1/3[ ] in pyramidal planes of type I,

( ), and type II, ( ). (a, b) Glissile configurations
and (c–h) dislocation barriers formed when superpartials
are split simultaneously in (c, d) pyramidal and basal
planes, (e, f) pyramidal and prismatic planes, and (g, h)
planes of different pyramids. — APB; - - - SF.
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of the screw dislocation in the intersecting type I and
type II pyramidal planes, in Figs. 2g and 2h. The mag-
nitudes of the Burgers vectors b1 and b2 depend on the
shape of the γ surface in the pyramidal, prismatic, and
basal planes. For the configuration in Figs. 2a and 2b,
all the partial dislocations and planar defect bands
belong to one pyramidal plane; therefore, such config-
urations are gliding. For the configurations in Figs. 2c–
2h, the partial dislocations and planar defect bands
belong to two intersecting planes; therefore, such dislo-
cations cannot glide readily in the pyramidal planes and
pile up, forming barriers. Which of the configurations is
energetically favorable depends on the energy of inter-
action between the partial dislocations and planar
defects incorporated into the superdislocations. The
most favorable configuration is found during the relax-
ation procedure in computer-aided simulation.

1. γ Surfaces in the Basal, Prismatic, and Pyramidal 
Planes: The Choice of the Initial Configuration

Figures 3a and 3b depict the isenergic lines on the γ
surfaces in the type I and type II pyramidal planes [12–

14]. In the type I pyramidal plane ( ), there exist
two different sections, for either of which the depen-
dence of the surface defect energy on the displacement
vector in this plane has been obtained. For the section

that corresponds to closely spaced { } planes, the
surface defect energies are much higher than for the
other. This means that the elastic energy of the super-
partial dislocation in this section is also high; therefore,
we will consider the dissociation of the dislocation in
only the section corresponding to widely spaced

{ } planes. The surface defect energy vs. displace-
ment vector in this section is plotted in Fig. 3a. Here,
the vector OA corresponds to the APB with the vector
displacement a/2; the vector OB, to the APB with the
displacement c + a/2. The respective APB energies are

(a/2) = 78 mJ/m2 and (c + a/2) =

205 mJ/m2. Along with the minima corresponding to
the APBs, the γ surface has one more minimum (the
vector OC in Fig. 3a) that is associated with the gener-
alized stacking fault with the displacement vector b1 =

OC = (1 – α)/12[ ] + β/4[ ], where α = 0 and
β = 0.475. The hatched region near point C in Fig. 3a is
the domain of displacements on the γ surface where the
stacking fault energy is low. This domain covers the
Burgers vectors of partial dislocations into which the
c + a/2 superpartial dislocation may dissociate. Point E,
which belongs to the hatched region, determines the
symmetric dissociation of the c + a/2 superpartial dis-
location, based on which we calculated the activation
energy for the formation of dislocation barriers [18].
Thus, as the initial configuration of the superpartial dis-

2021

2021

2021

ξ
2021( ) ξ

2021( )
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TECHNICAL PHYSICS      Vol. 48      No. 10      2003



SUPERDISLOCATION CORE STRUCTURE IN TYPE I AND TYPE II PYRAMIDAL PLANES 1283
location in the type I pyramidal plane, we take the dis-
sociation by the reaction

(1)

where

The coefficients α and β take the values α = 0, β =
0.475 and α = 0.5, β = 0.5.

In Fig. 3b, the only minimum of the γ surface in the

type II pyramidal plane ( ) corresponds to the APB
with the displacement vector c + a/2 (the vector AB).
The APB energy is  = 228 mJ/m2. In this plane,
only the metastable dissociation of the c + a/2 disloca-
tion into partial ones is possible. The lowest SF ener-
gies are obtained for displacement vectors lying along

the [ ] direction from point A to point C (Fig. 3b).
This suggests that the dissociation into partial disloca-
tions with a Burgers vector parallel to the initial c + a/2
superpartial dislocation is the most plausible; however,
the type of dissociation cannot be established with cer-
tainty. The number n of partial dislocations varied from
two to ten. For n = 10, the dislocation spacing was on
the order of the dislocation core radius. Varying n from
two to ten, we, in essence, effect the transition from the
discrete to continuous distribution of partial disloca-
tions. Thus, as the initial configuration of the superpar-
tial dislocation in the type II pyramidal plane, we con-
sider three versions of dissociation by the reactions

(2)

(3)

(4)

Reaction (2) describes the dissociation into partial
dislocations with equal Burgers vectors: b1 = b2 =

1/12[ ] (Fig. 2a); reaction (3), the dissociation into
partial dislocations with b1 = AC and b2 = CB (Fig. 3b),
where vector AC corresponds to the minimal energy of

the generalized SF along the [ ] direction; and
reaction (4), the continuous distribution of partial dislo-
cations.

The γ surface in the basal plane is similar to those
found earlier [16] and is characterized by three local
minima corresponding to the APB, complex SF (CSF),
and SISFs that are associated with the displacement

vectors 1/6[ ], 1/6[ ], and 1/3[ ]. The
energies of these defects are, respectively, 161, 197,

1/6 1126[ ] b1 SF b2,+ +=

b1
1 α–

12
------------ 1210[ ] β

4
--- 1014[ ] ,+=

b2
α
12
------ 1210[ ] 1 β–

4
------------ 1014[ ] .+=

1121

ξ
1121( )

1126

1/6 1126[ ] 1/6 0.5 1126[ ] SF 0.5 1126[ ]+ +( ),=

1/6 1126[ ] 1/6 0.4 1126[ ] SF 0.6 1126[ ]+ +( ),=

1/6 1126[ ]

=  1/6 0.1 1126[ ] SF … 0.1 1126[ ]+ + +( ).

1126

1126

2110 0110 1010
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and 78 mJ/m2. The three local minima on the γ surface
define three possible dissociation scenarios for the
superpartial dislocation:

(5)

(6)

1/6 1126[ ] b1 b2+=

=  0001[ ] APB 1/6 1120[ ] ,+ +

1/6 1126[ ] b1 b2+=

=  1/6 1016[ ] CSF 1/6 0110[ ] ,+ +
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(7)

Reaction (7) is energetically unfavorable, since the
partial dislocations with b1 and b2 are attracted
together; reaction (5) is energetically neutral; and reac-
tion (6) is energetically favorable. Therefore, for the

basal-plane dissociation, b2 = 1/6[ ] or b2 =

1/6[ ] in the initial configuration.

Superlattice D019 may be obtained by translating
four prismatic planes of type II, I, I', and I, which differ
by arrangement of atoms of two sorts and are variously

spaced, in the direction 〈 〉  (Fig. 1b). It was shown
[12] that the APB energy in the type II prismatic plane
(section II in Fig. 1b) is 318 mJ/m2, whereas in the type
I prismatic planes (sections I and I' in Fig. 1b), this
energy equals 6 mJ/m2. For the three sections I, I', and
I in Fig. 1b, the APB energy is the same but the shapes

1/6 1126[ ] b1 b2+=

=  1/6 1106[ ] SISF 1/3 1010[ ] .+ +

1120

0110

0110

(a)

APB

[0001]

–
[1010]

–
(2021)

(b)

a 3

a
9 4---

c2 a2-----
+

a 3

a
9 4---

c2 a2-----
+

APB

[0001]

–
[1010]

–
(2021)

Fig. 4. Core structure of the edge superpartial with the

Burgers vector 1/6[ ], which dissociates (a) in the

( ) pyramidal plane of type I (glissile configuration)

and (b) in the ( ) pyramidal plane of type I and basal
plane with the formation of a CSF (dislocation barrier). The
displacement edge components are shown.

2116

2021

2021
of the γ surface and, accordingly, the surface defect
energies for sections I and I' differ. Earlier [10, 11], we
considered various ways of dissociation of the a super-

dislocation with the Burgers vector 1/3〈 〉  in the
prismatic planes of types I, I', and II. For all of the ways
studied, it was found that the post-relaxation energy
values in type I' prismatic planes turn out to be much
lower than in the prismatic planes of type I and II. As
the initial configuration in type I' planes, two ways of
dissociation of the screw (or edge) superpartial disloca-

tion with the Burgers vector 1/6〈 〉  were consid-
ered. One variant is the dissociation into n screw (edge)
partial dislocations with the same Burgers vectors bn =

(1/6〈 〉 )/n. The second one is the dissociation into
two groups of partial dislocations. For n = 2, the related

reactions of dissociation of the 1/6〈 〉  superpartial
dislocation have the from

(8)

(9)

where x = 1.038.
The analysis of the core structure of edge and screw

superpartial dislocations in type I' prismatic planes
indicates that the core is planar; that is, the region of
maximal displacements is localized near a type I' plane
that contains the APB. It appeared that, for the initial
configuration with the same Burgers vectors (reaction
(8)), the energy is somewhat lower than for the other
initial configuration (reaction (9)). For each number n
of partial dislocations, the distribution of displacements
characterizing the superpartial dislocation core is non-
uniform along type I' prismatic planes and may be
viewed as the dissociation into two partial dislocations.
Thus, for a dislocation barrier (Fig. 2d), the Burgers
vector b2 of the partial dislocation in type I' planes was

set equal to b2 = 1/12[ ].

2. Glissile and Sessile Configurations of an Edge 
Superdislocation in Pyramidal Planes of Type I and II

As the initial configuration of a glissile superpartial
dislocation in type I planes, we took its dissociation
according to reaction (1). For this dislocation, the dis-
sociation scheme in the planes considered is similar to
that shown in Fig. 2a. Figure 4a shows the core struc-
ture of the superpartial dislocation with the Burgers

vector 1/6[ ] and axis [ ] that is split into two
partial dislocations according to (1) with α = 0.5 and
β = 0.5.1 When imaging the core structure, we used the
method of differential displacements [20]. The circles

1 For the dislocation with the axis [ ], the angle between the
axis and Burgers vector equals 85.08°. Therefore, this dislocation
will be considered as an edge dislocation.
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2110

1/6 1120[ ] 1/12 1120[ ] SF 1/12 1120[ ] ,+ +=
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are the projections of atoms of the crystallite studied

onto the plane ( ), which is perpendicular to the
axis of the edge dislocation considered. We computed
atomic positions providing the lowest energy of the
crystallite with a dislocation. Displacements not
exceeding 0.05a (a is the Ti3Al lattice parameter) are
shown by the arrows between two neighboring atoms.
From the spatial distribution of the arrows, one can
judge the dislocation core structure. The core is planar,
since most of both the edge and screw components of

the displacement lie near the plane ( ), which con-
tains an APB. For α = 0 and β = 0.475, the post-relax-
ation core is similar to that shown in Fig. 4a; however,
the energy of this configuration turned out to be consid-
erably higher.

For the dislocation with the Burgers vector

1/6[ ] and axis [ ] in type I pyramidal planes,
we considered two types of dislocation barriers that
appear when the superpartial dislocation overdissoci-
ates in the basal plane with the formation of an APB or
a CSF (reactions (5) and (6)). The Shockley partial dis-

location with the Burgers vector 1/6[ ] and the
superpartial dislocation with the Burgers vector

1/6[ ] bound the CSF and APB in the basal plane.
The core structure of the dislocation barrier forming by
reaction (6) is shown in Fig. 4b. Both the edge and
screw components of the displacements are distributed
along one basal plane. For the dislocation located on
the line of intersection of type I planes, the displace-
ments are distributed along the pyramidal, prismatic,
and basal planes.

For type II pyramidal planes, we studied three ways
of dissociation of the edge superpartial dislocation with

the Burgers vector 1/6[ ] and axis [ ]. Its ini-
tial configuration is defined by reactions (2)–(4). As
follows from the results of simulation, the initial con-
figuration has a minor effect on the post-relaxation
energy and core structure of both edge and screw dislo-
cations in this case.

The core structure of the glissile edge dislocation

with the Burgers vector 1/6[ ] in the type II planes
is, in general, planar, since the displacements concen-

trate mainly near the plane ( ), which contains the
APB (the displacements are distributed as in Fig. 4).
For the edge dislocation with the Burgers vector

1/6[ ] and axis [ ] in type II planes, also two
kinds of dislocation barriers with the formation of an
APB and a CSF were considered. For a barrier with an
APB band in the basal plane, the superpartial disloca-
tion dissociates into two partials as before, although the
split in the basal plane somewhat increases, reaching
4a, and the displacements are localized mainly in those
planes where the initial configuration was split. The
energy of the dislocation barrier with the CSF band in
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1010
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1126 1100

1126

1121
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the basal plane is slightly below than for the case con-
sidered above, which reflects the fact that reaction (6) is
more favorable than reaction (5). After relaxation, the
dissociation into two partials in the basal plane persists
but the spatial distribution becomes more complicated.
For the dislocation with the Burgers vector b2 =

1/6[ ], which bounds the CSF in the basal plane,
the core is planar: both the edge and screw components
are distributed in the basal plane. The core of the dislo-

cation with the Burgers vector b1 = 1/6[ ] is non-
planar: the screw component of the Burgers vector b1 is
distributed over several parallel pyramidal and basal
planes.

Thus, as follows from the simulation of edge dislo-
cations in type I and type II pyramidal planes, the
energy of a glissile dislocation configuration is higher
than that of a dislocation barrier.

3. Glissile and Sessile Configurations of the Screw 
Superdislocation in Type I and Type II Pyramidal 

Planes

For the glissile screw configuration in type I pyrami-
dal planes, we considered three ways of dissociation of
the superpartial dislocation in its initial configuration
(reactions (2)–(4)). For type II planes, one version
according to reaction (1) was studied. The analysis of
the post-relaxation displacement distribution near the
core of the screw superpartial dislocation with the

Burgers vector 1/6[ ], which is split into two par-
tials in the type I plane according to (1) with α = β =
0.5, shows that the screw component of the partial dis-
placements is distributed in the pyramidal plane

( ), as well as in the prismatic plane ( ) and

pyramidal plane ( ), which have the line of inter-

section parallel to the [ ] axis of the superpartial.
The edge component of the displacements is distributed

in four neighboring pyramidal planes { }; there-
fore, the core of this configuration may generally be
viewed as nonplanar. As for the edge dislocation, the
core of the screw superpartial with α = 0 and β = 0.475
has a higher energy.

Figure 5 demonstrates the core of the glissile screw

dislocation with the Burgers vector 1/6[ ] in the
type II pyramidal plane after the relaxation of its initial
configuration by reaction (3). The distribution of the
screw component is shown on the plane that is normal

to the screw dislocation axis 1/6[ ]. Although the
displacements are the greatest near the pyramidal
plane, the configuration is generally nonplanar (in

Fig. 5, the normal to the pyramidal plane ( ) coin-

cides with the direction [ ]). The displacement dis-
tribution is nonuniform along the pyramidal plane, and
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1016
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1126
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the situation may be considered as the dissociation into
two partials. The displacements around either of the
partials are located not only near the pyramidal planes

but cover a range of (6–7)a in the plane ( ). Such
a dissociation occurs when the energy of the SF in the
initial plane (in our case, in the pyramidal plane

( )) is high and the SF overdissociation in the
plane that passes through the dislocation line and has a

1100
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–
[1122]

–
[1100]

a 3

a
9 4---

c2 a2-----
+

Fig. 5. Core structure of the screw superpartial with the

Burgers vector 1/6[ ], which dissociates in the ( )
pyramidal plane of type II.
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Fig. 6. (a) Core structure of the screw superpartial with the

Burgers vector 1/6[ ] (dislocation barrier), which (a)

dissociates and (b) does not dissociate in the ( ) pyra-

midal plane of type I and in the ( ) pyramidal plane of
type II.

2116
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2111
lower SF energy (the prismatic plane ( ) in our
case) becomes energetically favorable.

In the type I pyramidal plane ( ), three kinds of
dislocation barriers for the screw superpartial with the

Burgers vector 1/6[ ] were considered. In the first
case, the superpartial is split in the type I pyramidal

plane and in the type I' prismatic plane ( ); in the
second case, in the type I pyramidal plane and in the

type II pyramidal plane ( ); and in the third case,

in the type I pyramidal planes ( ) and ( ). For
the screw dislocation in type II pyramidal planes, two
kinds of dislocation barriers were studied. In the first
case, the superpartial dislocation is split in the type II
pyramidal plane and in type I' prismatic plane; in the
second case, in the type I and type II prismatic planes
(Figs. 2f–2h). All the planes listed intersect along the

[ ] direction, which coincides with the Burgers
vector and axis of the dislocation.

In the former case (overdissociation in the type I or
type II pyramidal plane and in the type I' prismatic
plane), the energy of the dislocation barrier turns out to
be higher than the energy of the glissile configuration
and the energy of dislocations in the two other kinds of
dislocation barriers; therefore, the formation of such
barriers is unfavorable. Figure 6a shows the core struc-
ture of the screw superdislocation that is split in type I
and type II pyramidal planes. As a whole, the core
structure of these configurations is nonplanar: the dis-
placements are distributed in pyramidal planes of both
types and in prismatic planes simultaneously. The core
of the dislocation barrier that is formed by extending
the superpartial dislocation in two intersecting type I
pyramidal planes (Fig. 2g) is the same. In the final con-
figuration, the displacements are basically distributed
largely in those type I pyramidal plane where the initial
dissociations of the superpartial dislocation were pre-
set. Figure 6b shows the core structure of the screw
superdislocation that arises from the nondissociated
superpartial dislocation with the Burgers vector

1/6[ ]. The resulting configuration may be charac-
terized as nonplanar, since the displacements are simul-
taneously distributed in pyramidal and prismatic
planes. Estimates show that the energies of all the bar-
riers are close to each other (for the configuration in
Fig. 6b, the energy is slightly lower) and that the core
of the c + a/2 screw superpartial is nonplanar.

CONCLUSIONS

In this work, γ surfaces in the pyramidal, prismatic,
and basal planes are constructed for Ti3Al by using N-
particle potentials of interatomic interaction. These sur-
faces exhibit local minima corresponding to APBs. The
APB energies, ξ(0001) = 161 mJ/m2,  = 6 mJ/m2,
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1100( )
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 = 228 mJ/m2, and  = 225 mJ/m2, are close
to the experimental values [10].

Local minima are also observed on the γ surface cor-
responding to the superlattice intrinsic and complex
stacking faults. The energies of the defects, γSISF =
197 mJ/m2 and γCSF = 78 mJ/m2, also agree with exper-
imental data. It was shown that, in prismatic planes and
type I and type II pyramidal planes, deep local minima
associated with stable SFs are absent.

When simulating the core structure of superdisloca-
tions in type I and type II pyramidal planes, we
assumed that they are split into two superpartials with

the Burgers vectors 1/6[ ] with an APB in
between. Such a configuration of superdislocations is
related to deep minima on the γ surfaces in type I and
type II pyramidal planes (Figs. 3a, 3b) with the dis-

placement vector 1/6[ ]. For the superpartial dislo-
cation in its initial configuration, several versions of
dissociation in type II pyramidal planes and only one
way of dissociation in type I pyramidal planes were
studied, since there are no other deep minima on the γ
surface in pyramidal planes of type I. The analysis of
the post-relaxation core structure of the edge glissile
superpartial showed that the core as a whole is planar
(Fig. 4a) and the displacement distribution may be
viewed as the dissociation of the dislocation with the

Burgers vector 1/6[ ] into two partials, since the
displacements around the partials are localized largely
near the pyramidal plane. For the screw dislocation

with the axis [ ], the core of the superpartials is
nonplanar (Figs. 5, 6), since the displacements around
either of the partials are distributed not only near the
pyramidal plane containing the APB but also in the
prismatic planes and other intersecting pyramidal
planes.

To date, the computer-aided simulation of the dislo-
cation core structure in pyramidal planes for the D019
superlattice has not been performed; dislocations have
been simulated in only basal and prismatic planes [21].
Let us compare our results with the simulation of the
dislocation core structure in hcp metals [20–22] that

was carried out for the slip system 1/3〈 〉 { }
using Lenard–Jones pair potentials. The slip system

1/3〈 〉 { } for hcp crystals is equivalent to the

system 1/6〈 〉 { } for the ordered superlattice
D019. The simulation of the screw dislocation core
showed that the final result depends on the initial con-
figuration for both the hcp lattice and D019 superlattice.
For the glissile configuration, the results for the hcp lat-
tice and D019 superlattice are similar. For hcp crystals,
only one barrier for a dislocation split simultaneously
in pyramidal planes of type I and type II. For the D019
superlattice, we considered several kinds of barriers for
a screw superpartial dislocation (Figs. 2c–2h). One of

ξ
1121( ) ξ

2021( )
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them (Fig. 2h) is equivalent to that considered for the
hcp lattice; in the others, the superpartial is split simul-
taneously in pyramidal and prismatic planes. The ener-
gies of the barriers considered are close to each other.

For an edge dislocation, the simulations of the hcp
lattice and D019 superlattice gave different results.
Based on experimental data for a number of hcp metals,
Minonishi et al. [23, 24] simulated an edge dislocation,
assuming that its initial configuration results from the

dissociation into a two-layer twin in a { } plane

and a three-layer SF in a { } plane. Experimental
data for Ti3Al and other crystals with the superlattice
D019 suggest that twinning is observed at only very
high deformation temperatures. At moderate tempera-
tures close to the operating temperatures of these mate-
rials, twinning is absent and slip is accomplished
through the motion of superdislocations.

We compared the glissile configurations of the
superpartial dislocation with dislocation barriers. For
the edge dislocation with the Burgers vector

1/6[ ], the displacements around its core are dis-
tributed mainly in pyramidal planes of type I and type
II. After relaxation, the energy of the superpartial glis-
sile configuration turns out to be higher than that of the
dislocation barrier. For screw superdislocations with

the axis [ ], three kinds of dissociation barriers
were considered. The barriers form when the superdis-
locations overdissociate from initial pyramidal planes
of type I or type II into other planes (prismatic planes
of type I' or other pyramidal planes of type I and type
II) that intersect in the initial one along the direction
parallel to the Burgers vector of the dislocations. Also,
the nondissociated configuration of the superpartial in
pyramidal planes was considered. The energies of the
dissociated configurations of the screw superpartial
(glissile configurations and dislocation barriers) were
found to be close to each other.

Thus, by applying computer-aided simulation of the
core structure for edge and screw superpartials in pyra-
midal planes of type I and type II, we established that,
for the edge dislocation, the glissile configuration has a
higher energy than the dislocation barrier; for the screw
dislocation, the energies of both configurations are
nearly the same. A lower energy of the dislocation bar-
rier is a prerequisite for the thermally activated trans-
formation of a glissile configuration to a dislocation
barrier. This, in turn, may explain thermal hardening
observed experimentally in Ti3Al. Mechanisms of ther-
mally activated superdislocation reconfiguring and the
deformation behavior of Ti3Al are the subject of our
next report [25].
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Abstract—For Ti3Al intermetallic with the D019 superlattice, the computer-aided simulation of the superdis-
location core structure in the basal, prismatic, and type I and type II pyramidal planes is performed. A model of
thermally activated transformation of 2c + a glissile edge superdislocations into dislocation barriers in the pyra-
midal planes is used to account for the anomalous temperature dependence of the yield stress of single-crystal
Ti3Al compressed in the [0001] direction. © 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

In [1], we studied the core structure of glissile and
sessile (barrier-forming) 2c + a superdislocations in

type I, ( ), and type II, ( ), pyramidal planes.
The core structure of a superdislocations in basal and
prismatic planes was visualized in [2–5]. The com-
puter-aided simulation of the cores of various disloca-
tions was carried out by the molecular dynamics meth-
ods using N-particle atomic interaction potentials for
Ti3Al. The need for computer simulation stems from
the fact that a large body of experimental data for the
strong orientation dependence of the yield stress σy,
complex slip geometry, and temperature dependence of
strain characteristics for single-crystalline Ti3Al have
been obtained to date. In particular, the normal run of
the σy(T) curve for the basal and prismatic planes and
the anomalous run of this curve (with a peak) for pyra-
midal slip were observed. Yet, available experimental
data cannot provide a detailed information on the fine
core structure for a and 2c + a superdislocations in the
basal, prismatic, and pyramidal planes and cannot shed
light on the mechanism of dislocation transformations
that are responsible for the deformation behavior of
Ti3Al.

The presence of glissile and sessile edge and screw
dislocations in type I and type II pyramidal planes have
been confirmed by electron microscopy data [6–9]. It
was shown that, during deformation, sessile 2c + a
superdislocations in these planes are observed in the
temperature range where the yield stress σy(T) exhibits
an anomalous rise. As in other superlattices, such as L12
and L10 [10–12], the anomalous temperature depen-
dence of the Ti3Al strain characteristics seems to be
associated with the thermally activated transformation

2021 1121
1063-7842/03/4810- $24.00 © 21289
of glissile dislocations, which are responsible for plas-
tic deformation, into dislocation barriers. The theory of
plasticity for ordered alloys, where several types of
transformations in a dislocation ensemble [13] are con-
sidered, suggests the following prerequisites for a peak
in the σy(T) curve. First, the sessile configuration must
be energetically more favorable than the glissile one
and, second, the activation energy of the glissile–sessile
transformation must be lower than the energy of barrier
breakdown.

The aim of this work is to analyze the computer sim-
ulation results for the core structure of superdisloca-
tions forming glissile and sessile configurations in
basal, prismatic, and type I and type II pyramidal
planes. A correlation between the superdislocation core
structure and anomalous temperature dependence of
the Ti3Al strain characteristics is considered in view of
energy relationships between these dislocation config-
urations. Experimentally observed features of plastic
deformation in Ti3Al oriented for basal, prismatic, and
pyramidal slips are discussed.

DISLOCATION ENSEMBLE AND STRAIN 
BEHAVIOR OF Ti3Al

The experimentally observed high orientation
dependence of the yield stress σy for single-crystal
Ti3Al reflects a variety of the Burgers vectors and slip
planes of superdislocations. The analysis of the slip
geometry indicates that a and 2c + a superdislocations
may glide in the basal, prismatic, or pyramidal planes
according to the experimental conditions. The com-
puter-aided simulation of the superdislocation core
structure in these planes has shown that each of the slip
systems, which are characterized by the Burgers vector
and slip plane, may form both glissile configurations
003 MAIK “Nauka/Interperiodica”
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and dislocation barriers. The complex dislocation
ensemble may be divided into several groups of dislo-
cations depending on the deformation direction in sin-
gle-crystal Ti3Al. Figure 1 shows the standard stereo-

graphic triangle [0001]–[ ]–[ ], where basal-,
prismatic-, and pyramidal-slip regions are marked. In
region I (bounded by the solid line) within 20°–25°

1100 2110
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–

[3211]
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–
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–

[2110]
–

[2111]
–
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[2113]
–

[2114]
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[2116]
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[2117]
–

[2118]
–

[0001]
[1108]
–

[1103]
–

[1102]
–

[1101]
–

[2201]
–

[1101]
–

III

I II

Fig. 1. Stereographic triangle [0001]–[ ]–[ ] for
the hcp lattice. In regions I–III, pyramidal, basal, and pris-
matic slip, respectively, prevails.
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–
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b2 b1
b1b2

(1100)
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(0001)

b1 = 1/12[1120]
–

b2 = 1/12[1120]
–

b1 = 1/6[1010]
–

b2 = 1/6[0110]
–

b1 + b2 = 1/12[1120]
–

(a) (b)

Fig. 2. Dissociation of an a superdislocation in the (a)

type I' prismatic ( ) and (b) basal (0001) planes and the
dissociation of a 2c + a superdislocation in the (c, e, g)

type I ( ) and (d, f, h) type II ( ) pyramidal planes.
(a–d) Glissile configurations, (e, f) dislocation barriers that
form when an edge superpartial dissociates in pyramidal
and basal planes simultaneously, and (g, h) nonplanar core
of a screw superpartial in pyramidal planes. — APB; - - - SF.

1100

2021 1121
from the [0001] direction, the dislocations in the single
crystal glide largely in the type I and type II pyramidal
planes. For the single crystals with the deformation axis
within this region, the Schmid factors f (f = (b ⋅ t)(b ⋅ n),
where b, n, and t are the unit vector along the Burgers
vector, unit normal to the slip plane, and unit normal to
the deformation axis t) in pyramidal planes,

 and , are close to 0.5, while in
the prismatic and basal planes, they approach zero. In
region II in Fig. 1, which is also bounded by solid lines,
the deformation axis orientation favors basal slip (the
Schmid factor  is maximal). Finally, in
region III, slip is primarily prismatic (the Schmid factor

 is maximal).

To begin with, we will consider the dislocation
ensemble in the prismatic and basal planes, where the
yield stress is low and the deforming stress shows a nor-
mal temperature dependence (i.e., decreases with
increasing temperature) [14, 15]. Next, we will analyze
the dislocation ensemble in the type I and type II pyra-
midal planes, for which the σy(T) curve has a peak, the
yield stress is much higher, and the stress at fracture is
low [6, 16, 17].

1. Prismatic and Basal Slip

Experimental data [15] show that the room-temper-

ature critical resultant shear stress1 is  = 50–

150 MPa in the prismatic planes and  = 180–
260 MPa in the basal planes; that is, the yield stress in
the basal planes is roughly twice as high as that in the
prismatic planes. One can easily explain this fact by
comparing experimental data with our simulated
results for the core structure of a superdislocations in
the basal and prismatic planes (Figs. 2a, 2b). In [18–
20], we studied the shape of the γ surface and the core
structure of the superdislocation with the Burgers vec-

tor 1/3[ ] in prismatic planes of types I, I', and II
(for details, see [1]). It turned out that the post-relax-
ation energies of the antiphase boundary (APB), stack-
ing faults (SFs), and dissociated a superdislocation in
the type I' prismatic plane are lower than in the type I
and type II prismatic planes. The core of both edge and
screw superpartials in the type I' prismatic plane is pla-
nar; that is, the displacements concentrate largely near
the type I' prismatic plane that contains the APB
(Fig. 2a). This is the reason why the Peierls force,
which triggers the motion of the superdislocation, pro-
viding its high mobility in type I' prismatic planes, is
low and, accordingly, the experimentally found yield
stress in these planes of Ti3Al is also low. When the axis
of deformation of single-crystal Ti3Al is within region

1 The critical resultant shear stress is the component of the shear
stress σbn acting on a dislocation with a Burgers vector b and a
normal n to the slip plane.

f
2021{ } 1126〈 〉 f

1121{ } 1126〈 〉

f
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1100{ }
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0001{ }
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SUPERDISLOCATION CORE STRUCTURE 1291
III of the standard stereographic triangle (Fig. 1), the
Schmid factor is maximal in the prismatic plane; there-
fore, the yield stress is bound to be the lowest.

The simulation of a superdislocations in basal
planes that dissociate with the formation of an APB
demonstrated that the core structure of the 30° and edge
dislocations remains planar. For the 60° and screw
superdislocations, as well as for Shockley partials
forming the superpartial with the Burgers vector

1/6[ ], considerable relative displacements in the
prismatic plane of cross slip are observed (Fig. 2b). As
a whole, the core region of the a superdislocation is
localized near the basal plane and the Peierls force is
relatively low; therefore, the yields stress in the basal
plane is not too high but is still higher than in the pris-
matic plane. Also note that the nonplanar character of
Shockley partials shows up in the jerky movement of
superdislocations in the basal plane, which was
observed in in situ experiments [21].

When the axis of deformation falls into region II of
the stereographic triangle, the Schmid factor is the
highest in the basal plane. With  <

0.5  (the unhatched part of region II), the

reduced shear stress is higher than the yield stress in the
basal plane but lower than the shear stress in the pris-
matic plane. Thus, in this range of compression axis
orientations, deformation will be accomplished through
the dislocation motion in the basal plane alone. In the
hatched part of region II of the stereographic triangle,
0.5  <  < ; therefore,

basal and prismatic slips will proceed simultaneously.
This situation may not considerably increase the yield
stress compared with the other orientations in region II.
However, the interaction between these two slip sys-
tems may produce indestructible dislocation barriers
and reduce the ductility of Ti3Al single crystals with the
above orientations.

For example, for the [ ] orientation (Table 1,
Fig. 1), the Schmid factors in the primary prismatic and
basal planes meet the inequality  >

0.5 . Therefore, one may expect that defor-

mation will proceed in these slip systems. It should be
noted that secondary slip systems in the basal and pris-
matic planes (Table 1) have much lower Schmid factors
and do not take part in deformation. Attracting disloca-
tions lying in the primary prismatic and basal slip sys-
tems may react to form barriers at the line of intersec-
tion of these planes.

As follows from the simulated results [18–20], a
superdislocations in the prismatic and basal planes dis-

2110

f
1100{ } 2110〈 〉

f
0001( ) 2110〈 〉

f
0001( ) 1120〈 〉 f

1100{ } 1120〈 〉 f
0001( ) 1120〈 〉

4315

f
1010{ } 1210〈 〉

f
0001( ) 2110〈 〉
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sociate into two superpartials with an APB in between:

(1)

(2)

In both the basal and prismatic planes, either of the
superpartials is split into two partials. In the basal
plane, the partial dislocation bounds a complex stack-
ing fault (CSF). The displacement vector that is equal
to the Burgers vector corresponds to a local minimum
on the γ surface in the basal plane. The computer simu-
lation determined the Burgers vectors of partials in the
type I' prismatic plane, which were found to be associ-
ated with a metastable SF. In the basal plane, the disso-
ciation of the superpartials has the form

(3)

in the prismatic plane,

(4)

Figure 3 illustrates the stages of formation of dislo-
cation barriers on superdislocations interacting in the

(0001) basal plane and in the ( ) prismatic plane.
The axes of barrier-forming dislocations coincide with

the line [ ], which is the line of intersection of
these planes. Thus, the dislocations involved in the
reaction are the screw a superdislocation in the pris-
matic plane and the 60° a superdislocation in the basal
plane. The analysis shows that, for all the orientations
in the hatched part of region II in Fig. 1, dislocation bar-
riers forming as a result of interaction between the a
superdislocations in the primary prismatic and basal
planes are equivalent to those represented in Figs. 3c
and 3g. Two types of barriers form according to the
sequence of dislocation reactions between the partials
that constitute the a superdislocations in the basal and

1/3 1210[ ] 1010( ) 1/6 1210[ ] 1010( )=

+ APB
1010( ) 1/6 1210[ ] 1010( ),+

1/3 2110[ ] 0001( ) 1/6 2110[ ] 0001( )=

+ APB 0001( ) 1/6 2110[ ] 0001( ).+

1/6 2110[ ] 0001( ) 1/6 1100[ ] 0001( )=

+ CSF 0001( ) 1/6 1010[ ] 0001( );+

1/6 1210[ ] 1010( ) 1/12 1210[ ] 1010( )=

+ SF
1010( ) 1/12 1210[ ] 1010( ).+

1010

1210

Table 1.  Maximal Schmid factors f in basal and prismatic

slip systems for the orientation [ 315]

No. Slip system f

1 [ 110] (0001) 0.44

2 [1 10] ( 010) 0.35

3 [1 10] (0001) 0.33

4 [ 110] (0 10) 0.19

4

2

2 1

2

2 1
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Fig. 3. Formation of barriers when superdislocations react in basal and prismatic planes. — APB; - - - SF.
prismatic planes. In view of (3) and (4), the partials

with the Burgers vector 1/12[ ], which lie in the
prismatic plane, may react either with the dislocation

with the Burgers vector 1/6[ ] or with the disloca-

tion with the Burgers vector 1/6[ ], which lie in the
basal plane. In the former case, the barrier formation
stages are shown in Figs. 3a–3c; in the latter case, in
Figs. 3d–3g. The partials with the Burgers vectors

1/6[ ] and 1/12[ ] are attracted together, pro-
ducing a stair-rod dislocation with the Burgers vector

1/12[ ] (Fig. 3b). This stair-rod dislocation is
repelled from the second basal partial with the Burgers

vector 1/6[ ] but may react with the prismatic par-

tial with the Burgers vector 1/12[ ] to form the
configuration shown in Fig. 3c. The stress field of the
prismatic superpartial with the Burgers vector

1/6[ ] causes the recombination of the dislocations

with the Burgers vectors 1/12[ ] and 1/12[ ].
Similarly, the stress field of the dislocation with the

Burgers vector 1/6[ ] generates a stair-rod disloca-

tion with the Burgers vector 1/12[ ] (Figs. 3d, 3e)
at the initial stage of formation of the second barrier.
The resulting stair-rod dislocation is repelled from the

prismatic partial with the Burgers vector 1/12[ ]
but is attracted to the basal partial with the Burgers vec-

tor 1/6[ ]. Their recombination results in the for-

1210

1100

1010

1100 1210

1010

1010

1210

1210

1010 1210

1210

1230

1210

1100
mation of the stair-rod dislocation with the Burgers

vector 1/4[ ] (Fig. 3f). At the last step, the disloca-

tions with the Burgers vectors 1/4[ ] and

1/12[ ] recombine in the stress field of the super-

partials with the Burgers vectors 1/6[ ] and

1/6[ ], which lie in the basal and prismatic planes,
respectively, and produce a dislocation barrier
(Fig. 3g).

The configurations shown in Figs. 3c and 3g are
indestructible dislocation barriers and may consider-
ably reduce the ductility of the single crystals with
deformation axis orientations within the hatched part of
region II in the stereographic triangle (Fig. 1) because
these barriers are crack nuclei.

2. Pyramidal Slip

Experimental data suggest that the yield stress
anomaly in Ti3Al is related to the motion of 2c + a dis-
locations in type I and type II pyramidal planes. After
deformation at 600 and 700°C, Minonishi and Yoo [16]
and Minonishi [17] observed slip bands of sessile edge
and near-edge 2c + a dislocations in the range of anom-
alous rise in σy. Extended straight-line screw 2c + a
superdislocations after room-temperature deformation
and extended straight-line edge superdislocations after
deformation at 400°C were found in [7–9].

Thus, from experiments, it follows that sessile screw
2c + a superdislocations are observed in the range

1010

1010

1210

2110

1210
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where the yield stress depends on temperature only
slightly (before the anomalous rise in σ(T)). In the
range of anomalous rise, edge and near-edge sessile
2c + a superdislocations appear in type I and type II
pyramidal planes. It is well known that the anomalous
behavior of σy(T) in ordered alloy with the L12 super-
lattice [12, 13] is due to the thermally activated trans-
formation of glissile superdislocations into Kear–Wils-
dorff dislocation barriers. We believe that the anoma-
lous behavior of σy(T) in Ti3Al is also related to
thermally activated dislocation transformations.

Let us consider the simulated results for the core
structure of 2c + a superdislocations in type I and
type II pyramidal planes in order to explain the anoma-
lous temperature dependence of the yield stress in
Ti3Al. Figures 2c and 2d show the core structure of glis-
sile superdislocations in type I and type II pyramidal
planes. According to [1], the core of edge superdisloca-
tions in type I and type II pyramidal planes is planar;
that is, the displacements are localized largely near
type I and type II pyramidal planes containing APBs.
Figures 2e and 2f depict the structure of barriers made
up of edge superdislocations. It is seen that one of the
superpartials is split in the basal plane, while the other
and the APB lie in the pyramidal plane. The thermally
activated transformation of superdislocations implies
the presence of glissile and sessile dislocation configu-
rations. Also, the barrier energy must be lower than the
glissile dislocation energy. Our calculations show that
the latter condition is met for 2c + a superdislocations
in type I and type II pyramidal planes.

Table 2 gives energy gains per unit dislocation
length when edge glissile and sessile (barrier-forming)
2c + a superdislocations dissociate in type I and type II
pyramidal planes.2 The lowest values of the barrier
energy are listed. In type I and type II pyramidal planes,
dislocation barriers are produced when the superpartial
dislocation overdissociates into the basal plane with the
formation of a CSF (Figs. 2e, 2f).

In [24], we calculated the activation energy of bar-
rier formation in type I and type II pyramidal planes
using approximations made in [22, 23]. Prerequisites
for the formation of the barriers are the recombination
of the c + a/2 superpartial in the pyramidal planes and

the sag of the partial with the Burgers vector 1/6〈 〉
toward the basal plane. Figure 4 shows the dependence
of the activation energy of barrier formation on the
applied shear stress. The activation energies in the
type I and type II pyramidal planes are close to each
other. Thus, if the c + a/2 superpartial may be pinned in
one of the pyramidal planes, it may also be pinned in
the other. It is reasonable to compare the computed val-
ues of the activation energy of barrier formation with
those extracted from the temperature dependence of the

2 The energy gain is defined as the difference between the super-
partial dislocation energy after relaxation and the energy of the
unsplit dislocation.

1100
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yield stress for Ti3Al [8, 9, 16, 17], which can be repre-
sented by the empirical formula σ ~ exp(–W/kT) (k is
the Boltzmann constant). From available experimental
curves σy(T) (σy ≈ 1.2 GPa), one may estimate the acti-
vation energy in the temperature interval 300–650°C as
W = 0.07–0.15 eV. For barriers made up of edge dislo-
cations, the curves in Fig. 4 give the activation energy
values, which are very close to those found experimen-
tally.

The analysis of the slip geometry shows that, with
the deformation axes located within region I of the ste-
reographic triangle in Fig. 1, the deformation of single-
crystal Ti3Al involves both type I and type II pyramidal
planes. An important result of the computer-aided sim-
ulation is that thermally activated dislocations move in
both slip systems. Otherwise, the anomaly in the curve
σy(T) would disappear, which comes into conflict with
the experiment. The anomaly is not observed for those
orientations making the glide of a superdislocations in
prismatic and basal planes possible (regions II and III
of the stereographic triangle). The presence of two pin-

Table 2.  Energy gain upon splitting glissile and barrier-
forming c + a/2 superdislocations

Slip system,
dislocation axis

Glissile confi-
guration, eV/nm

Dislocation
barrier, eV/nm

[ 26](11 1), [ 010] 27.14 30.15

[2 6]( 021), [1 10] 46.48 46.86

1 1 2 1

1 1 2 2

1

2

125

120

115

110

105

100

95
0 10 20 30 40 50

σy

W, meV

σ/µ, 104

Fig. 4. Activation energy of formation of barriers from edge
superdislocations vs. applied stress (µ is the shear modu-
lus). The curves refer to barriers in the (1) type I pyramidal

plane ( ) and (2) type II pyramidal plane ( ).2021 1121
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ning mechanisms for superdislocations sheared by var-
ious slip systems reflects the complexity of the disloca-
tion ensemble in Ti3Al and similar intermetallics.

As follows from the electron microscopy examina-
tion of the dislocation structure [7, 8], the deformation
of single-crystal Ti3Al at room temperature produces
extended screw 2c + a superdislocations in the type I
and type II pyramidal planes. The pinning of edge
superdislocations takes place at higher temperatures
(T > 300°C) in the range of anomalous rise of σy(T).
For pyramidal slip in the temperature range from room
temperature to T ≈ 300°C, the yield stress is roughly
five times as high as the yield stress for prismatic and
basal slips. Our calculations show that the core struc-
ture of the screw c + a/2 superpartial in the type I and
type II pyramidal planes is nonplanar both in the initial
glissile configuration and in the barrier configuration
(Figs. 2g, 2h). The displacements here are distributed in
pyramidal planes of both types and in prismatic planes
simultaneously. Thus, the computer-aided simulation
suggests that screw superpartials in pyramidal planes
are subjected to spontaneous pinning. The nonplanar
structure of the screw dislocation core has also been
found for fcc lattices [25], bcc lattices [26], and hcp lat-
tices [27], as well as ordered alloys with the L12 [25]
and D019 [28] superlattices. This feature of the screw
superpartial core may be an explanation for a high yield
stress of Ti3Al single crystals in pyramidal planes when
the axis of deformation falls into regions II and III.

When the deformation axis of the single crystals lies
in region I of the stereographic triangle (Fig. 1), usually
several, rather than one, pyramidal slip systems are
involved. If the deformation axis coincides exactly with
the direction [0001], the Schmid factors are maximal

for 24 slip systems 〈 〉 { }. If the deformation
axis is offset from the direction [0001], the number of
slip systems decreases while remaining relatively large.

For example, for the orientation [ ], which also
belongs to region I of the stereographic triangle, two

primary slip systems, [ ]( ) and

[ ]( ), have the Schmid factors f = 0.49 and

two secondary slip systems, [ ]( ) and

[ ]( ), have nearly the same Schmid factors
f = 0.46. Thus, for the deformation axis in the direction

[ ], deformation may proceed in four slip systems.
The multiplicity of pyramidal slip systems causes (as in
the case of interaction between basal and prismatic slip
systems) indestructible dislocation barriers to arise
upon the interaction of dislocations from different slip
systems. These barriers significantly raise the yield
stress at pyramidal slip and may act as crack nuclei.
Furthermore, because of a low mobility of both edge
and screw superdislocations in pyramidal planes, origi-
nating cracks open up in a brittle manner without form-
ing a plastic zone. This explains the low ductility of the

1126 2201

2118

1216 2201

1126 2021

2116 2201

2116 2111

2118
material in experiments where the axis of deformation
lies in region I [7–9, 16].

CONCLUSIONS

Based on the simulated results for the core structure
of a and 2c + a superdislocations in prismatic, pyrami-
dal, and basal planes of Ti3Al, one can draw the follow-
ing conclusions.

(1) The core of both edge and screw a/2 superpar-
tials in type I prismatic planes is nonplanar, which pro-
vides a low “prismatic” yield stress. The fact that a
“basal” yield stress is higher is related to the nonplanar
core of the Shockley partial as a component of both
screw and 60° a/2 superpartials.

(2) The energy of barriers made up of edge c + a/2
dislocations dissociated in pyramidal and basal planes
simultaneously is lower than the energy of the disloca-
tions in the glissile configuration.

(3) Screw c + a/2 superpartials in type I and type II
pyramidal planes have a nonplanar core. In this case,
the displacements are distributed in one prismatic and
several pyramidal planes.

(4) A dislocation theory of deformation of single-
crystal Ti3Al at pyramidal, basal, and prismatic slips is
developed based on the computer-aided simulation of
the superdislocation core structure.

(5) The anomalous temperature dependence of the
yield stress, which is observed in single-crystal Ti3Al
compressed in the direction [0001], is explained by the
thermal model of transformation of glissile edge 2c + a
superdislocations into a dislocation barrier.
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Abstract—The relaxation of an electromagnetic field inside low- and high-temperature superconductors in the
case when the magnetic flux occupies the cross section incompletely is studied theoretically in the self-similar
approximation. On the macroscopic level, creep is described by phenomenological equations for exponential
and power I–V characteristics. A relation between the nonlinearity of the I–V curves and the magnetic relaxation
process is found. The range of low electric fields is shown to be of considerable importance for the relaxation
in high-temperature superconductors. In this range, the equations for exponential and power I–V curves may
differ substantially from those at high fields. Complete analytical solutions are contrasted with a numerical
solution to the problem. © 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

By studying relaxation processes in superconduc-
tors, one can shed light on pinning mechanisms and
transients in superconducting devices operating in rap-
idly varying magnetic fields. Therefore, magnetic
relaxation has been the subject of much investigation
(see, e.g., [1–7] and Refs. cited therein). Yet, in spite of
extensive theoretical efforts, the results obtained up to
now are incomplete. In particular, comparative analysis
of vortex macrodiffusion in view of various creep mod-
els has not been performed. In the diffusion approxima-
tion, creep models are described by equations for I–V
characteristics. In the simplest case, these equations
have the form [8, 9]

(1)

(2)

Here, JC is the current density determined at an electric
field strength EC, n is an exponent defining the steep-
ness of the curve, and Jδ is the rise rate constant of the
curve.

In this work, we compare in a macroscopic approx-
imation the magnetic relaxation processes in supercon-
ductors for which I–V equations (1) and (2) are valid.
The rules formulated in this work follow from a set of
solutions to the problems of electromagnetic field
relaxation inside a cooled superconductor. These solu-
tions agree with experimental measurements of the
magnetic moment in the case when an external mag-
netic field B(x, t) = B0 + Bi (B0 is the large constant com-
ponent and Bi is the small variable component, B0 @ Bi)
takes a constant value B0, i at t = ti. Without loss in gen-
erality, it is assumed that the external magnetic field is
applied parallel to the boundary surface of a semi-infi-
nite superconductor. Therefore, according to the Max-

E EC J /JC( )n,=

E EC J JC–( )/Jδ[ ]exp .=
1063-7842/03/4810- $24.00 © 21296
well equations, the relaxation of an electric field
induced by an external perturbation in the Cartesian
coordinate system is described by the equations [6]

with the boundary and initial conditions

(5)

Here, E0(x) is the distribution of the induced electric
field at the instant the external magnetic field ceases to
rise. The second boundary condition assumes that the
image current occupies completely the cross section of
the superconductor irrespective of the form of the I–V
curve. This assumption forms the basis for the numeri-
cal analysis of the electrodynamic states of supercon-
ductors with creep (see, e.g., [7]).

Below, we will also use the condition of conserva-
tion of the magnetic flux introduced:

(6)

It will be shown that this condition is necessary for
the correct characterization of relaxation under creep.

As in [3], relaxation processes taking place under
creep are studied with self-similar approximations.

∂2E

∂x2
--------- µ0

JC

nE
------- E

EC

------ 
  1/n∂E

∂t
------ for I–V  curve 1( ),

Jδ

E
-----∂E

∂t
------ for I–V  curve 2( ),









=

3( )

4( )

∂E/∂x 0 t,( ) 0, E ∞ t,( ) 0,= =

E x ti,( ) E0 x( ).=

µ0 J x t,( ) xd

0

∞

∫ B0 i, , t ti.≥=
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RELAXATION OF THE ELECTROMAGNETIC 
FIELD INSIDE A SUPERCONDUCTOR 

WITH A POWER I–V CURVE

Let us introduce the dimensionless variables

A solution to the problem given by (3), (5), and (6)
will be sought in the form

where τ0 is a constant to be determined.

Passing from differentiation with respect to the
independent variables to differentiation with respect to
Z, we obtain

(7)

Problem (7) has an analytical solution in the form

(8)

where Z0 is an unknown constant.

An interesting feature of the invariant W(Z) is note-
worthy. According to (8), the allowable values of W(Z)
lie within the segment 0 ≤ Z ≤ Z0 with W(Z0) = 0. Hence,
condition (6) relative to the self-similar variables
should be written as

(9)

Substituting (8) into (9) yields

The existence of the finite value Z0 at which the
function W(Z) vanishes defines its specific behavior in
the vicinity of Z = Z0, since, according to (8), dkW/dZk =
0 (k = 1, 2, 3, …) at Z = Z0.

Thus, an internal electromagnetic field in a super-
conductor with a power I–V curve decays within a finite
region. In dimensional form, the decay is described by

e E/EC, X x/Lx, τ t/tx,= = =

Lx B0 i, / µ0JC( ), tx B0 i,
2 / µ0JCEC( ).= =

e τ τ 0+( )qW Z( ), X τ τ 0+( )pZ ,= =

q n/ n 1+( ), p– 1/ n 1+( ),= =

n 1+( )d2W

dZ2
---------- Z

n
---W 1 n–( )/ndW

dZ
-------- W1/n+ + 0,=

dW /dZ 0( ) 0, W ∞( ) 0.= =

W Z( ) n 1–
2n n 1+( )
----------------------- Z0

2 Z2–( )

n
n 1–
-----------

,=

W1/n yd

0

Z0

∫ 1.=

Z0
2n n 1+( )

n 1–
-----------------------

1/ n 1+( ) 1
Ψ1
------ 

 
n 1–
n 1+
------------

,=

Ψ1 1 y2–( )
1

n 1–
-----------

y.d

0

1

∫=
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the expressions

(10)

where

(11)

This solution is determined up to the constant t0. We
will find it by setting the electric field strength on the
superconductor surface, E0, i = E0(0), at a time instant ti.
As a result, we have

where te is the characteristic time of magnetic flux
relaxation.

Figure 1 shows the distribution of the magnetic field
induction inside the domain of magnetization versus
the exponent of the I–V curve. The region of the smooth
transition from the disturbed to undisturbed state is
seen to be negligible. Moreover, the condition n > 10
adequately describes the states where the image current
relaxation is characterized by the almost linear distribu-
tion of the magnetic field induction inside the supercon-
ductor. This observation substantiates the use of simpli-
fied approaches to analyzing relaxation in supercon-
ductors (for example, that suggested in [5]).

E x t,( ) Ea t( ) 1 x2/x0
2–( )

n
n – 1
------------

,=

B x t,( ) B0 i, 1
1

x0Ψ1
------------ 1 y2

x0
2

-----–
 
 
 

1
n 1–
-----------

yd

0

x

∫– ,=

Ea t( ) EC

tn

t t0+
----------- 

 
n

n 1+
------------

, tn
n 1–

2n n 1+( )
-----------------------

tx

Ψ1
2

------,= =

x0 t( )
B0 i,

µ0JCΨ1
-------------------

EC

Ea t( )
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1
n
---

.=

t0 te ti, te– tn EC/E0 i,( ) n 1+( )/n,= =

1.0

0.8

0.6

0.4

0.2

0

B(x, t)/B0, i

0.2 0.4 0.6 0.8 1.0
x/x0(t)

n = 80

n = 10

n = 5

n = 2

n = 3

Fig. 1. Self-similar distribution of the magnetic field in the
domain of magnetization as a function of the exponent n of
I–V characteristic (1).
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Thus, the relaxation in a superconductor with the
power I–V curve generates the particular state. It fea-
tures a finite extent of the domain of magnetization with
the mobile boundary, at which the values of induced
electric and magnetic fields match smoothly with their
unperturbed values:

The image current penetrates into the material with
a finite rate

This solution allows one to judge whether creep-
related processes in superconductors with the logarith-
mic current dependence of the potential barrier are
described correctly [3, 4]. As was indicated [5], the esti-
mator [3] for the magnetic moment of a superconduct-
ing plate in the case of incomplete image current pene-
tration is in error. Moreover, as follows from the above
solution, the induced and unperturbed values of the
electric and magnetic fields match smoothly at the
mobile boundary of the domain of magnetization. It is
easy to check that this matching condition must also be
met in the problem stated in [3]. However, the solution
found in [3] does not satisfy this condition. The mistake
made in [3] is that unknown constants appearing in the
solution are found not by (9) but with the additionally
introduced condition

Because of this, the self-similar solution found in
[3, 4] fails not only to estimate the magnetic moment of
the plate but also to calculate the magnetic field during
the relaxation process.

Using the above self-similar solution, we will find
the time variation of the magnetic moment of a super-
conducting plate with a half-width a for states preced-
ing the complete penetration of the image current into
the plate. According to (10) and (11), we have

or

Here, M(ti) is the magnetic moment of the plate at t = ti,

M1 = /( aJCΨ1),

∂kE/∂xk 0, ∂kB/∂xk 0, k 1 2 3 …., , ,= = =

dx0

dt
--------

B0 i,

n 1+( )µ0JCΨ1
------------------------------------

Ea t( )
EC

------------.=

J x t,( ) x 0= t 0=, JC.=

µ0M t( )/B0 i,– 1 ϕnx0 t( )/a–=

M t( ) M ti( ) M1

t ti– te+
tn

-------------------- 
 

1
n 1+
------------

+=

× 1
te

t ti– te+
-------------------- 

 
1

n 1+
------------

– ϕn, t ti.≥

B0 i,
2 µ0

2

ϕn 1
1

ψ1
------ ψ η( ) η ,  and  ψ η( )d

0

1

∫– 1 y2–( )
1

n 1–
-----------

y.d

0

η

∫= =
From these expressions, it follows that the relax-
ation of the magnetic moment of a superconductor in
the case when the image current partially occupies its
cross section depends on the dynamics of the mobile
boundary of the magnetized domain. The fact that the
magnetization of a superconductor is directly related to
the penetration depth of the magnetic flux is of particu-
lar importance, since such a conclusion, which is drawn
for the first time, allows one, based on relevant experi-
mental data, to directly analyze the finiteness of creep-
related processes.

Differentiating M(t) with respect to time yields

From this formula, we can estimate typical values of
the magnetic relaxation rate. With t – ti ! te, the mag-
netic moment relaxes virtually with a constant rate:

If t – ti @ te, the magnetic moment relaxes with a
monotonically decreasing rate:

or

that is, for long times, the relaxation is described by a
logarithmic function up to a factor (t/tn)1/(n + 1), as was
expected.

This complete analytical solution to the problem of
magnetic flux relaxation inside a superconductor with a
power I–V characteristic gives a clear qualitative
description of attendant effects. First of all, it shows
that magnetic relaxation depends primarily on the
behavior (decay) of the electric field on the surface.
Specifically, all other things being equal, an increase in
the exponent n cuts the decay time of Ea(t). Accord-
ingly, the penetration rate of the image current and the
relaxation rate of the magnetic moment of the super-
conductor decrease, since dM/dt ~ dx0/dt ~ EC/(n + 1).
In the limit n  ∞, we have Ea  0, dx0/dt  0,
dM/dt  0, and x0  B0, i/µ0JC. These relationships
are easy to explain. They immediately follow from an
increase in the differential resistance of the supercon-
ductor: ρd  ∞ for n  ∞. As is known, this is also
the reason for the radical difference in the relaxation
times in low- and high-temperature superconductors.

The results obtained with the self-similar approxi-
mation were verified by comparing with numerical cal-
culations. Figure 2 shows the time variation of the elec-

dM
dt

--------
M1ϕn

n 1+( ) t ti– te+( )
------------------------------------------

t ti– te+
tn

-------------------- 
 

1
n 1+
------------

.=

dM
dt

--------
M1ϕn

n 1+( )te

---------------------
te

tn

--- 
 

1
n 1+
------------

.≈

dM
dt

--------
M1ϕn

n 1+( ) t ti–( )
--------------------------------

t ti–
tn

---------- 
 

1
n 1+
------------

, t ti @ te–≈

dM
d tln
----------

M1ϕn

n 1+
------------- t

t ti–
----------

t ti–
tn

---------- 
 

1
n 1+
------------

,≈
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tric field strength on the surface of the Nb–Ti low-tem-
perature superconductor for various ti. The associated
parameters were assumed to be EC = 10–4 V/cm, JC =
4 × 109 A/m2, and n = 80. The continuous curves depict
a numerical solution to the problem given by (3), (5),
and (6). The distribution of the electric field E0(x) at t =
ti was set based on the image current penetration calcu-
lated by numerically integrating Eqs. (3) subject to

(12)

for the case when the magnetic induction of the surface
rises with a rate dB/dt = 1 T/s.

The curves depicted, together with similar calcula-
tions made for high-temperature superconductors,
demonstrate that the analytical solution suggested
makes it possible to describe adequately the entire
relaxation process in a superconductor with a power I–
V characteristic and not only its asymptotics at long
times.

RELAXATION OF THE ELECTROMAGNETIC 
FIELD INSIDE A SUPERCONDUCTOR 
WITH AN EXPONENTIAL I–V CURVE

Let a superconductor have the I–V characteristic in
the form (2). Stated in the dimensionless variables

problem (4)–(6) is reduced to integrating the equation

(13)

with the boundary condition

(14)

and the condition of conservation of the induced cur-
rent with a density j = 1 + δlne (j = J/JC, δ = Jδ/JC):

(15)

The latter condition assumes that there exists a
finite-size domain of magnetization and that e(X0, τ) = 0
at the mobile boundary.

Problem (13)–(15) falls outside the scope of the
class of self-similar problems. Therefore, its solution
will be described in greater detail than before.

The desired distribution of the electric field will be
sought in the form

E x 0,( ) 0, ∂E/∂x 0 t,( ) dB/dt,–= =

E x0 t,( ) 0=

e E/EC, X x/Lx, τ t/tx,= = =

Lx B0 i, / µ0Jδ( ), tx B0 i,
2 / µ0JδEC( ),= =

∂e/∂τ e∂2e/∂X2=

∂e/∂X 0 τ,( ) 0=

j Xd

0

X0

∫ δ.=

e T τ( )W Z( ), Z X/X0 τ( ).= =
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Then, Eq. (13) may be recast as

(16)

Since the functions T(τ) and X0(τ) are assumed to be
arbitrary, we require that they satisfy the equation

where α is a constant to be determined.
This equation provides the relationship between the

functions T(τ) and X0(τ),

(17)

which can be determined up to an arbitrary factor γ.
In view of (17), the variables in (16) can be sepa-

rated; that is,

(18)

From (17) and (18), it is easy to find (up to the con-
stant τ0) that

where

dT
dτ
------W

dX0

dτ
--------- Z

X0
------T

dW
dZ
--------–

T2

X0
2

------W
d2W

dZ2
----------.=

dX0

dτ
--------- T

X0
------ αdT

dτ
------,–=

X0 τ( ) γT α– τ( ),=

T2

X0
2

------dT
dτ
------

W
d2W

dZ2
----------

W αZ
dW
dZ
--------+

---------------------------- β– const.= = =

T τ( ) T1 τ( )/β, X0 τ( ) γ1 τ τ 0+( )
α

1 2α+
----------------

,= =

T1 τ( ) γ1
2/ 1 2α+( ) τ τ 0+( )

1
1 2α+
----------------

,=

1
2

3

10–7

10–8

10–9

10–10

10–4 10–3 t, s

Ea, V/m

Fig. 2. Time variation of the electric field strength on the
surface of Nb–Ti superconductor with the power character-
istic. The continuous curves depict the numerical solution to
the problem of introduction and relaxation of image current;
dashed curves show the self-similar solution. ti = (1) 2 ×
10−4, (2) 3 × 10–4, and (3) 4 × 10–4 s.
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In terms of the new variable W1 = W/β, the desired
solution takes the form

which does not depend on β. The problem is then
reduced to integrating the equation

(19)

with the boundary conditions

Let us study the variation of W1(Z). According to
(19) and in view of the boundary condition at Z = 1, the
first and all higher order derivatives of the invariant
W1(Z) vanish at the right-hand boundary. In addition,
Eq. (19) yields two integral equalities

Since physically W1 ≥ 0 and dW1/dZ ≤ 0, these
equalities are valid only if 0 < α < 1.

Thus, after the integration of Eq. (19), the desired
distribution of the electromagnetic field inside a super-
conductor with an exponential I–V characteristic is
determined up to the three constants α, γ, and τ0. For-
mally, α and γ can be found from condition (15). How-
ever, it is impossible to directly write the solution in the
self-similar approximation from this condition. In
physical terms, this means the violation the self-simi-
larity conditions in the variation of the sought solutions
throughout the relaxation. At the same time, as the pro-
cess develops, the self-similar state may be asymptoti-
cally approached. This allows the determination of the
constants α and γ. To this end, we simplify I–V charac-
teristic (2) by expanding it into the exponential series.
Using the linear term of this expansion, we will seek α
and γ for the I–V curve in the form J ≈ JC(E/E0)δξ,
where E0 = ECexp(–1/δ) and ξ < 1 is a correction factor
for this linear approximation. To define this factor, we
take advantage of the condition E = EC at J = JC. Then,
ξ = (E0/EC)δ. Within this approximation, condition (15)
transforms into

γ1 γβα 1 2α+( )α[ ]
1

1 2α+
----------------

.=

e T1W1 γ1
2W1/ 1 2α+( ) τ τ 0+( )

1
1 2α+
----------------

,= =

W1

d2W1

dZ2
------------- αZ

dW1

dZ
---------- W1+ + 0=

dW1/dZ 0( ) 0, W1 1( ) 0.= =

1 α Z
W1
-------

W1d
Zd

---------- Zd

0

1

∫+ 0,=

W1d
Zd

---------- 
 

2

Z α 1–( ) W1 Zd

0

1

∫+d

0

1

∫ 0.=

δ γ1
1 2δ+ τ τ 0+( )

α δ–
1 2α+
----------------

1 2δ+( )δ----------------------------- W1
δ Z( ) Z .d

0

1

∫=
Taking into account that the right of this expression
must not depend on time, we may write

(20)

Since δ ! 1, γ1 can be approximated by the expres-
sion

(21)

To determine W1(Z), we transform differential equa-
tion (19) into an equivalent integral equation. Straight-
forward mathematics gives

Since α is small, the desired invariant W1(Z) can be
approximated with a good accuracy by the zero-order
solution of the above integral equation:

Therefore, in terms of the approximations used, the
decay of an electromagnetic field in a superconductor
with an exponential I–V characteristic is described by
the expressions

(22)

where

In this case, according to the self-similar approxi-
mation, the coordinate of the mobile boundary varies as

(23)

At the same time, according to (15), this coordinate
grows by the law

(24)

The constant t0 is defined by appropriately setting
the electric field strength E0, i on the superconductor
surface at t = ti. Then,

α δ, γ1 δ 1 2δ+( )δ
/ W1

δ Z( ) Zd

0

1

∫
1

1 2δ+
---------------
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.≈
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In view of the approximate solution obtained, the
magnetic moment of a superconducting plate with a
half-width a relaxes by the law

Thus, as in the case of superconductors with a power
I–V characteristic, the relaxation of the magnetic
moment of a superconductor with the exponential char-
acteristic directly depends on the coordinate of the
mobile boundary of the magnetization domain. In its
turn, the position of the mobile boundary is influenced
by the electric field on the surface. However, unlike
superconductors with the power characteristic, the
relaxation in superconductors with the exponential
characteristic exhibits three stages. At t – ti ! te, the ini-
tial stage of relaxation takes place. Then, the relaxation
passes to the so-called quasi-self-similar regime. The
duration of this stage depends primarily on the super-
conducting properties: in low-temperature supercon-
ductors, it is much longer than in high-temperature
ones. At both stages, the coordinate of the mobile
boundary varies almost as in the self-similar regime.
Therefore, one can use the self-similar approximation
and determine the characteristic rates of the relaxation
at the three stages. For the initial stage (t – ti ! te), the
rate is practically constant and can be estimated by the
formula

The relaxation rate in the quasi-self-similar state
drops with time. With t – ti @ te, the decay of the mag-
netic moment approaches the logarithmic law

At the third stage, the relaxation process falls out-
side the scope of the self-similar approach: the mag-
netic flux penetrates with a rate that is higher than that
following from the self-similar approximation.

To verify the analytical solutions obtained, we com-
pare them with the computational results for the relax-
ation of the electric field strength on the surface of the
Nb–Ti low-temperature superconductor (Fig. 3a). The
parameters of the I–V characteristic were taken to be as
follows: EC = 10–4 V/m, JC = 4 × 109 A/m2, and Jδ = 4 ×
107 A/m2. The external magnetic field increased at a rate
of dB/dt = 1 T/s and ceased to grow at t = 2 × 10–4 s.
The continuous curves depict the numerical solution to
the problem of introduction and relaxation of the image
current; the dashed and dotted curves show the analyti-
cal solutions that use the value of E0, i determined by
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solving the problem given by (4) and (12). Figure 3b
compares the numerical and analytical results obtained
for the YBCO high-temperature superconductor with
the parameters

(25)

It was assumed that, at t < 2 × 10–4 s, the supercon-
ductor is in an external magnetic field that grows with a
rate dB/dt = 7.5 × 10–3 T/s and ceases to grow at t = 2 ×
10–4 s.

THE EFFECT OF THE SHAPE OF THE I–V 
CHARACTERISTIC ON THE RELAXATION 

PROCESS

The solutions obtained show that the relaxation in
hard superconductors with I–V characteristics of both
types (see (1) and (2)) proceeds in a similar way. The
spatial profile of the electric field (which decreases with
time) is described by a parabolic law, while the distri-
bution of the magnetic field is almost linear. However,
the equivalence in the description of the electrody-
namic states of superconductors with power and expo-
nential characteristics depends on the exponent n. In
general, the difference in the behavior of the systems
grows with decreasing n. If n < 10, creep greatly affects
the distribution of the magnetic field throughout the
domain of magnetization of a superconductor with the
power characteristic and this distribution deviates
markedly from linearity.

EC 10 8–  V/cm, JC 1.15 105 A/cm2,×= =

Jδ 8.686 103 A/cm2.×=

10–8

10–11

10–14

10–17

10–20

Ea, V/m

10–5 10–3 10–1 101 103 105

t, s

1
2
3

1

23

10–6

10–9

10–12

10–7 10– 4 10–1 10–2

t, s

Ea, V/cm
(a) (b)

Fig. 3. Time variation of the electric field strength on the
surface of (a) Nb–Ti and (b) YBCO superconductors with
the exponential characteristic. (1) Numerical solution to the
problem of introduction and relaxation of image current;
(2) self-similar solution described by formulas (20), (22),
and (23); and (3) solution described by formulas (21), (22),
and (24).
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In addition, the qualitative difference between the
relaxation processes is also related to the variation of
the electric field on the surface of the superconductor,

10810510210–1

t/ti
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M/Mi
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Fig. 4. Variation of the magnetic moment of superconduct-
ing plates with the different characteristics upon the intro-
duction and relaxation of image current. (1) Nb–Ti with
characteristic (1): EC = 0.6522 × 10–2 V/m, JC = 3.5 ×
109 A/m2, and n = 87.5; (1') Nb–Ti with characteristic (2):
EC = 0.6522 × 10–2 V/m, JC = 3.5 × 109 A/m2, and Jδ = 4 ×
107 A/m2; (2) YBCO with characteristic (1): EC = 1.778 ×
10–2 V/m, JC = 2 × 109 A/m2, and n = 23; and (2') YBCO
with characteristic (2) and the parameters given by (25).
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Fig. 5. Effect of the I–V characteristic of high-temperature
superconductors on the (a) electric field strength on the sur-
face and (b) dynamics of the mobile boundary of magneti-
zation upon the introduction and relaxation of image cur-
rent. (1) Superconductor with characteristic (1): EC =

1.778 × 10–2 V/m, JC = 2 × 109 A/m2, and n = 23 and
(2) superconductor with characteristic (2) and the parame-
ters given by (25).
since the surface state directly influences the travel of
the mobile boundary of magnetization. The relaxation
dynamics also depends on the type of the I–V character-
istic. In the case of the power characteristic, the relax-
ation is a two-stage process, these stages being approx-
imated well by the self-similar solution. In the case of
the exponential characteristic, the process has three
stages. The first two are qualitatively similar to those
observed in superconductors with the power character-
istic. However, the third stage of the relaxation in
superconductors with the exponential characteristic
cannot be described in terms of self-similar states. At
this stage, the velocity of the mobile boundary of mag-
netization exceeds the rate of its penetration into a
superconductor with the power characteristic.

To illustrate the aforesaid, Fig. 4 compares the mag-
netization curves for a superconducting plate with a
half-width a. The calculation was performed for Nb–Ti
(a = 10–5 m) and YBCO (a = 5 × 10–6 m) superconduc-
tors with power and exponential characteristics. The
parameters of the superconductors were selected so that
the power characteristic touched the exponential char-
acteristic at a given point (JC, EC). This takes place with
n = JC/Jδ. Such a selection of the parameters of the char-
acteristics makes it possible to contrast the calculated
values of E(J). For the superconductors under study,
these are given in the caption to Fig. 4. The current val-
ues of the magnetic moments were normalized to those
reached at the instant the magnetic field is switched off
(ti = 2 × 10–4 s). For t ≤ ti, the magnetic moment of the
plate was found by numerically evaluating the penetra-
tion of the image current induced by a varying magnetic
field into a superconductor. At t > ti, the magnetic
moment was found in the self-similar approximation.
The rate of rise of the external magnetic field was set
equal to dB/dt = 1 T/s for Nb–Ti and 7.5 × 10–3 T/s for
YBCO. The formation of the electrodynamic states in
YBCO is shown in Fig. 5.

Thus, power and exponential I–V characteristics
basically describe the relaxation dynamics of electro-
dynamic states in a superconductor with creep in a dif-
ferent manner. The smaller is the exponent of the power
characteristic, the greater are quantitative and qualita-
tive discrepancies. The reason is that the curves vari-
ously run in the range of low electric fields. As follows
from (1) and (2), at the same value of the current den-
sity, the differential resistance of a superconductor with
the exponential characteristic is always lower than that
of a superconductor with the power characteristic when
E < EC. Since the rate of electric field decay grows with
the differential resistance, the field on the surface of the
former will fall less rapidly than on the surface of the
latter. Because of this, when the same current is intro-
duced into superconductors with power or exponential
I–V characteristics, the diffusion of the mobile bound-
ary of magnetization proceeds at a higher rate in the lat-
ter, all other things being equal. Since the above-men-
tioned difference in differential resistances is greater in
high-temperature superconductors, their behavior is
TECHNICAL PHYSICS      Vol. 48      No. 10      2003
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more sensitive (on both the qualitative and quantitative
level) to the shape of the I–V characteristic (Figs. 4, 5).
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Abstract—The possibility of semiconductor surface activation, which shows up as a long-term increase in the
adsorption capacity in response to a short exposure to a pulsed magnetic field, is demonstrated for the first time.
Magnetic-field-induced surface activation is studied on silicon, germanium, and gallium arsenide crystals. The
effect revealed extends the capabilities of thin-film growth on the semiconductor surface. © 2003 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

It has been reported that the exposure of semicon-
ductor crystals to weak pulsed magnetic fields (PMFs)
causes long-term nonmonotonic changes in their struc-
ture and structure-dependent properties. The near-sur-
face layers of semiconductors, especially silicon, are
highly sensitive to such a treatment. The following
PMF-induced effects have been observed: the long-
term nonmonotonic relaxation of the silicon conductiv-
ity at the Si–SiO2 interface [1], the nonmonotonic vari-
ation of the lattice parameter near the silicon surface
[2], the gettering of surface defects and the recrystalli-
zation of amorphized surface layers [3], the enrichment
of surface layers by oxygen being released from the
bulk [4], and the change in the sorption properties of the
silicon surface [5]. However, systematic research on the
kinetics of these processes in different semiconductor
materials has not been carried out and a correlation
between them has not been established.

The aim of this study is to find ways of semiconduc-
tor surface activation to make advanced technologies
feasible.

EXPERIMENTAL

The object of study was Czochralski-grown plane-
parallel polished (111) Si wafers doped by phospho-
rous to ≈5 × 1015 cm–3, (100) Ge wafers doped by anti-
mony to ≈2 × 1016 cm–3, and (110) GaAs wafers doped
by tellurium to ≈1017 cm–3. 

The samples were exposed to a PMF with an ampli-
tude B0 = 0.4 T, pulse duration τ = 1–4 × 10–5 s, and a
pulse repetition rate f = 50 Hz. The treatment time was
varied from 30 to 60 s. The samples were treated and
stored at room temperature. The surface topology,
microstructure, and sorption properties of the samples
were examined.
1063-7842/03/4810- $24.00 © 21304
The surface topology was studied by scanning tun-
nel microscopy (STM), which images the sample sur-
face and allows the surface parameters to be measured
with the atomic resolution. The samples were freed of
surface oxide by chemical treatment, rinsed in deion-
ized water, and dried. Surface imaging was carried out
with the SKAN-8 scanning tunnel microscope at the
Advanced Technology Center (Moscow State Univer-
sity) in the constant tunnel current mode.

Figure 1 shows the variation of the surface topology
for the silicon crystal under the PMF action. At the first
stage of aging (Fig. 1b), the surface becomes less regu-
lar compared with the original surface (Fig. 1a): it
becomes uneven, patterned, and rough. In ≈200 h after
the PMF action, these changes are the most pro-
nounced. With an increase in the aging time, the surface
smoothes out (Fig. 1c) and in ≈400 h becomes even
smoother than the initial one. In the caption to Fig. 1,
we give the average surface roughness parameter Rz
(the ten-point height [6]) measured over two mutually
perpendicular cross sections 10 nm from each other.

The modifications of the surface topology and
cross-sectional relief due to the PMF treatment are
accompanied by the variation of the sorption properties
of the semiconductor surfaces. The adsorption capacity
of the crystal surface exposured to the PMF was studied
by microwave spectroscopy, which is highly sensitive
to the presence and state of water molecules in the stud-
ied medium [7]. We recorded the reflection spectra in
the frequency range from 26 to 37 GHz.

Sorption experiments were carried out as follows.
The sample cut from the central part of the wafer was
placed in a measuring cell of a wave duct. The sample
size was matched to the internal size of the duct. The
cell with the sample was urged by dry air for 30 min,
and then the reflection spectra were measured (Fig. 2,
curves 1). Air was dried by passing through a column
filled with silica gel. Repeat purging by dry air did not
003 MAIK “Nauka/Interperiodica”
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change the spectra. Next, the cell was purged by air of
100% humidity (Fig. 2, curves 2). To reach 100%
humidity, air was passed through a bubbler where it
was saturated by water vapor. The no-condensation
conditions of purging the measuring cell were pro-
vided. The humidity was measured by a hygrometer.

Purging by humid air decreased the coefficient of
microwave radiation reflection, which appeared as a
shift of the spectra (almost without distortion) along the
intensity scale. The shift depended on the wet purging
time and reached a maximum at a purging time of
≈5 min, when the moisture adsorption capacity of the
surface became the highest.

The reversibility of moisture adsorption–desorption
processes on the semiconductor surface made it possi-
ble to trace the time variation of the sorption properties
by multiply repeating the cycle with the same sample.

The spectra of the as-prepared samples did not
change with time. The short PMF treatment resulted in
the long-term variation of the reflection spectra (Fig. 2;
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Fig. 1. STM images of the Cz–Si crystal surface: (a) as-
grown (the roughness parameter Rz is 1.34 nm), (b) 200,
and (c) 400 h after the exposure to the PMF (Rz is 5.81 and
0.92 nm, respectively).
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curves 3, 4), indicating a change in the sorption capac-
ity of the surface.

Common to the PMF-induced changes in the micro-
wave radiation reflection spectra for all the crystals is
the nonmonotonic variation of the spectral shift ∆RS
(Fig. 3). First, ∆RS increases markedly, reaching a max-
imum in several hundreds of hours, decreases, and
takes the steady-state value in ≈350 h after the PMF
exposure.

At the same time, there are differences in the behav-
ior of samples exposed to the PMF: first, silicon and
germanium have a latent period (≈50 h), over which the
spectra do not change, whereas GaAs does not have
such a period; second, the time over which ∆RS reaches
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Fig. 2. Microwave radiation reflection spectra for (a) Si,
(b) Ge, (c) and GaAs. (1, 2) Before exposure to the PMF
(purging by dry and humid air, respectively); (3) 200, 150,
and 120 h after the exposure for Si, Ge, and GaAs, respec-
tively (purging by humid air); and (4) 350 h after the expo-
sure (purging by humid air).
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a maximum is ≈200 h for silicon, ≈150 h for germa-
nium, and ≈120 h for gallium arsenide; third, the scales
of ∆RS variation are different.

Our experimental data indicate that the PMF action
results in the nonmonotonic variation of the chemical
activity of the crystal surfaces. The increase in the
adsorption capacity is changed to the steady reduction
of the surface capability to moisture adsorption either
below (silicon and germanium) or to (gallium arsenide)
the initial value. The modification of the sorption prop-
erties lasts several hundreds of hours at room tempera-
ture.

It is noteworthy that, as a result of the PMF action,
the sorption capacity of silicon, germanium, and gal-
lium arsenide increases more than four, two, and three
times, respectively.

The reduction of the silicon surface hydrophobicity
under the PMF action was used to form thin films of
metal oxides and sulfides by thermally spraying aque-
ous solutions of thiocarbamide complexes [5].
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Fig. 3. Time variation of the microwave reflection coeffi-
cient ∆RS for the Si, Ge, GaAs crystals after exposure to
the PMF.
Thus, STM and microwave spectroscopy studies of
the semiconductor crystals exposed to a PMF revealed
the nonmonotonic long-term variation of surface phys-
icochemical properties. The surface adsorption capac-
ity first increases and then declines to the initial value
(for gallium arsenide) or to a level below the initial
value (for silicon and germanium crystals). The
increase in the sorption capacity of the semiconductor
crystal surface goes in parallel with the modification of
its topology. This effect is observed at room tempera-
ture and shows up most vividly several hundreds of
hours after the treatment.

The PMF-induced increase in the chemical activity
of the semiconductor surface may be applied to
improve different process steps, e.g., to reduce the tem-
perature of oxidation and increase the rate of chemical
reactions on the semiconductor surface, in thin-film
technology.
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Abstract—The parameters of a slot-type electromagnetic system that can be used in ultrahigh-frequency wide-
band optical modulators are studied. Analytical expressions for the bandwidth of the device are obtained, and
this parameter in prototypes is estimated. Experiments on optical radiation modulation by microwave signals
show that these electromagnetic systems are promising for volume optical modulators. © 2003 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

External modulators of optical radiation play an
important role in extending the capabilities of commu-
nication by improving the data rate, functionality, and
level of miniaturization. Usually, ultrahigh-frequency
wide-band modulators with a low control voltage are
built on microelectronic guiding systems in which the
propagation velocities of optical and microwave radia-
tions are synchronized [1]. The fabrication technology
of the device is complex. It is made of a large lithium
niobate single crystal cut along appropriate crystal
axes. A controllable half-wavelength phase shift of
optical radiation is achieved along the crystal, which
must as long as several centimeters.

We consider the microwave electrodynamic system
of an external ultrahigh-frequency volume modulator
where a lithium niobate single crystal is placed in a sec-
tion of a below-cutoff waveguide. The system is
intended for a high control voltage across the lithium
niobate crystal to provide a required half-wavelength
phase shift of optical radiation. The crystal length
determines the operating range of modulation frequen-
cies and is chosen according to an allowable phase mis-
match between microwave oscillations at the entrance
to the crystal, where an optical ray enters into the
device, and at the end, where the ray leaves the crystal.
The transverse size of the crystal specifies the ampli-
tude of microwave oscillations excited in the crystal:
the smaller the transverse size, the lower the voltage at
which a required half-wavelength phase shift is
achieved. The minimum transverse size of the crystal
depends primarily on the power of the optical radiation
that carries information. The power of the optical radi-
ation is limited by depolarization, which occurs in non-
linear crystals [2]. Next, the transverse size of the crys-
tal depends on the crystal growing process and on the
technology of fabricating an electromagnetic system
for which the crystal is intended. Also, the transverse
1063-7842/03/4810- $24.00 © 21307
crystal size cannot be too small; otherwise the electro-
magnetic radiation applied to the crystal may produce
electrical breakdown in air. It should be noted that the
breakdown voltage in the crystal is much higher than in
air. This allows designers to find new ways of separat-
ing the crystal from air, for example, by covering it with
appropriate insulating materials outside the metallic
electrodes.

In this paper, we study the parameters of an electro-
magnetic system that is based on below-cutoff
waveguides and is a part of an optical modulator.
Below-cutoff transmission lines were used in beyond-
cutoff attenuators and in dielectric resonator filters
placed into evanescent waveguides [3–5]. Inserted into
a waveguide section, low-loss dielectric materials (alu-
mina, teflon, or single crystals, including those with
dielectric anisotropy, such as quartz or lithium niobate)
make it possible to create high-Q resonators (Q >
1000). Such resonators may be used not only in hybrid
microwave integrated circuits as filters but also in
microwave optical modulators [6]. An advantage of
these modulators is that the microwave power neces-
sary to produce a nearly 100% modulation index is low.
However, their bandwidth is narrow. This drawback
may be eliminated by designing wide-band electro-
magnetic systems, for example, short sections of
below-cutoff waveguides (diaphragms) placed into a
regular waveguide.

AMPLITUDE–FREQUENCY RESPONSE
OF A SLOT-TYPE ELECTROMAGNETIC SYSTEM

Short sections of dielectric-filled transmission lines
may be analyzed by the method of equivalent wave
impedances [3]. Consider a section of an a × b rectan-
gular waveguide of length L that is filled with a dielec-
tric material of permittivity ε and butt joint to a section
of an a0 × b0 rectangular waveguide. We assume that a0
003 MAIK “Nauka/Interperiodica”
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and b0 are smaller than a and b, respectively, and also
that the length of the diaphragm and the width b of the
slot are small. The latter assumption follows from the
smallness of the cross section of the crystal. To simplify
calculations, we put L = b.

To obtain the amplitude–frequency response of this
electromagnetic system, we will calculate its power
transmission coefficient [3]

(1)

Here, Γ is the electric field reflection coefficient at the
junction of the waveguides of different cross sections:

(2)

where Zin is the input impedance at the junction and
Z0 is the equivalent wave impedance of the a0 × b0 rect-
angular waveguide. In turn,

(3)

where Z1 is the equivalent wave impedance of the a × b
rectangular waveguide filled with a dielectric of permit-
tivity ε and λw is the wavelength in this waveguide.

For the H01 wave, the parameters Z0, Z1, and λw have
the form

(4)

where k is a constant factor depending on the definition
of the equivalent parameters [3] (it commonly equals
480πΩ) and λ is the wavelength of the electromagnetic
radiation generated by a microwave source;

(5)

(6)

Since L is small (L ! λw), expression (3) can be rep-
resented as

(7)

Since (L/λw)2 ! 1, this expression can be reduced to

(8)

The substitution of (4), (5), and (6) into (8) yields

(9)

Substituting (9) into (2) and then (2) into (1), we
obtain

k 1 Γ 2.–=

Γ
Z in Z0–
Z in Z0+
------------------,=

Z in Z1

Z0 Z1 2πL/λw( )tanh+
Z1 Z0 2πL/λw( )tanh+
-----------------------------------------------------,=

Z0

kb0

4a0
2 λ2–

------------------------,=

Z1
kb

4a2ε λ2–
---------------------------,=

λw
2aλ

4a2ε λ2–
---------------------------.=

Z in Z1

Z0 jZ12πL/λw+
Z0 jZ02πL/λw+
---------------------------------------.=

Z in Z0 j2πL/λw( ) Z1 Z0
2/Z1–( ).+=

Z in
kb0

4a0
2 λ2–

------------------------
jkb0

2πL 4a2ε λ2–( )
baλ 4a0

2 λ2–( )
----------------------------------------------.+=
(10)

To simplify the analysis of expression (10), we set

L = b and a0 = a . Formula (10) gives

(11)

As can be seen from (11), at λ = λ0 = 2a0, k = 1,
while the condition k = 0.5 is met at λ = λ1, which is
determined from the relationship

(12)

Thus, we have

(13)

The half-power bandwidth is given by

(14)

As follows from formula (14), the waveguide height
b0 is the most important parameter among those that
define the bandwidth of the electromagnetic system:

the smaller b0, the greater ∆λ. When  ! , formula
(14) gives

(15)

Expression (15) shows that the crystal permittivity ε
significantly affects the bandwidth of the device: the
greater ε, the narrower the bandwidth of the electro-
magnetic system.

Let us estimate the bandwidth of the electromag-
netic system based on standard a0 × b0 = 28.5 ×
12.5-mm waveguides butt joint to an a × b = 5.4 ×
0.5-mm waveguide. The value a = 5.4 mm follows from

the relationship a = a0/ , where ε = 28 is the permit-
tivity of a Z-cut lithium niobate single crystal when the
electric field is perpendicular to the cut plane. The value
b = 0.5 mm is chosen because it is much smaller than
λ0 = 2a0 = 57 mm. Also, crystals with such cross-sec-
tional dimensions are easy to grow. Formula (14) yields
∆λ = 2.03 mm. Since the transmission coefficient k
equals unity when the source frequency is 5263 MHz,
we find that the half-bandwidth is ∆f = 195 MHz. At
b0 = 5 mm, ∆λ = 9.99 mm and ∆f = 1120 MHz; at b0 =
1 mm, ∆λ = 41.0 mm and ∆f = 13 500 MHz. Thus, the
bandwidth of the electromagnetic system increases
with decreasing b0.

It should be noted that, in the frequency range con-
sidered, the electromagnetic system is a resonance sys-
tem and, as follows from expression (5), Z1 approaches

k 1
π2L2b0

2 4a2ε λ2–( )2

4a2b2λ2 4a2 λ2–( ) π2L2b0
2 4a2ε λ2–( )2

+
--------------------------------------------------------------------------------------------------.–=

ε

k 1
π2b0

2 4a0
2 λ2–( )

4a0
2λ2/ε π2b0

2 4a0
2 λ2–( )+

-------------------------------------------------------------.–=

4a0
2λ1

2/ε π2b0
2 4a0

2 λ2–( ).=

λ1

2a0πb0

4a0
2/ε π2b0

2+
----------------------------------.=

∆λ λ 0 λ1– 2a0 1
πb0

4a0
2/ε π2b0

2+
----------------------------------–

 
 
 

.= =

b0
2 a0

2

∆λ 2a0 1 πb0 ε/2a0–( ).=

ε
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infinity near the cutoff frequency. This allows us to
expect that the efficiency of the optical modulator will
be high. One should keep in mind that the value of Z0 of
the a0 × b0 waveguide sections increases without bound
in this frequency range; therefore, the effect of evanes-
cent propagation is undoubtful in this case [4].

To design a highly efficient electromagnetic system,
the resonance excitation conditions must be provided
even for an electromagnetic system with small-size sin-
gle crystals. However, the bandwidth of such a resona-
tor must be wide enough. This condition is met by opti-
mizing the dimensions of the waveguide diaphragms
with crystals chosen according to the calculations pre-
sented above. The bandwidth is controlled with tunable
coupling elements (evanescent waveguide sections
similar to those described in [4]) inserted into the elec-
tromagnetic system.

EXPERIMENTAL RESULTS

We studied the electromagnetic system without and
with a dielectric insert.

In the former case, the parameters of the electro-
magnetic system according to its dimensions were
examined. As was noted above, the length of the dia-
phragm determines the resonance frequency of the
electromagnetic system. The height of the diaphragm,
with its thickness being fixed, specifies the bandwidth.
The material of the conductor of which the diaphragm
is made defines the unloaded Q factor Q0 of the resona-
tor.

To characterize the transfer of the microwave energy
to the crystal placed in the electromagnetic system, one
must know the basic parameters of resonators: the
unloaded Q factor (Q0), which is associated with losses
due to a finite conductance of the walls and the pres-
ence of the dielectric insert, and the coupling Q factor
(Qcoup), which is related to radiation losses in a resona-
TECHNICAL PHYSICS      Vol. 48      No. 10      2003
tor coupled with a transmission line. With Q0 and Qcoup
known, the loaded Q factor Ql, which is measured in
experiment, can easily be evaluated.

The relationships used to calculate Q0, Qcoup, and Ql
in experiments are given below [3, 7]. The first param-
eter is calculated as

(16)

Here, f0 is the resonance frequency of the microwave
resonator and 2∆f is the resonator bandwidth found at a
level of the transmission coefficient k1:

(17)

where k0 is the resonator’s power transmission coeffi-
cient at resonance when coupling apertures are identi-
cal. 

The parameter Qcoup is given by

(18)

where β is the factor of coupling between the resonator
and the transmission line.

The coupling coefficient β is defined as

(19)

The loaded Q factor can be calculated as

(20)

The bandwidth of the loaded resonator, 2∆fl, is
determined as

(21)

The table lists the parameters of typical 17-mm-long
diaphragms versus their height h at different thick-

Q0 f 0/ 2∆f( ).=

k1

k0

k0 1–( )2
1+

----------------------------------,=

Qcoup Q0/β,=

β
k0

2 1 k0–( )
--------------------------.=

Ql QcoupQ0/ 2Q0 Qcoup+( ).=

2∆ f l f 0/Ql.=
Aperture parameters

Material d, mm h, mm Q0 Qcoup Ql 2∆fl, GHz

Copper 0.5 0.3 110 13 6.1 1.5

Copper 0.5 0.4 200 16 7.7 1.2

Brass 0.3 0.1 110 21 9.7 0.93

Brass 0.3 0.2 190 18 7.7 1.2

Brass 0.3 0.3 190 14 6.6 1.4

Brass 0.3 0.4 260 12 5.9 1.5

Brass 0.3 0.5 320 10 5.6 1.6

Aluminum 0.1 0.1 100 20 8.7 1.0

Aluminum 0.1 0.2 300 13 6.4 1.4

Steel 0.02 0.1 18 15 5.3 1.7

Steel 0.02 0.2 22 14 5.3 1.7

Steel 0.02 0.4 42 10 4.6 2.0
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nesses d of the conductor. The resonance frequency is
close to 9 GHz.

It is seen that the bandwidth of all but two dia-
phragms is greater than 1 GHz (in one case, it is even
2 GHz) and Q0 and Qcoup are such that the coupling
between the electromagnetic system and the resonator
is always greater than unity.

At the second stage, we studied the diaphragms par-
tially filled with lithium niobate single crystals. With a
2.0 × 0.5 × 0.5-mm crystal inserted into a and 17-mm-
long diaphragm, the results were as follows: the fre-
quency is 5.8 GHz, Q0 = 60, Qcoup = 36, and Ql = 13.3.
For a 2.0 × 0.3 × 0.3-mm crystal, the frequency is
5.9 GHz, Q0 = 40, Qcoup = 38, and Ql = 12.6. The band-
width is seen to narrow to 0.45 and 0.43 GHz, respec-
tively.

Thus, these resonators are promising for ultrafast
optical modulators with a bandwidth as high as several
hundreds of megahertz.

In further experiments, we studied the modulation
of optical radiation by microwave signals. A prototype
of the microwave optical modulator was built around a
lithium niobate crystal and used the transverse elec-
trooptical effect. The crystal measuring 2.0 × 0.5 ×
0.5 mm was inserted into a 0.5-mm-thick 17-mm-long
copper diaphragm with a 0.5-mm-wide slot. Two 17 ×
8 × 1-mm silver-plated brass evanescent diaphragms
were used as coupling elements. The device was fixed
between two standard waveguide-to-coaxial (28.5 ×
12.5 mm) adapters. The microwave radiation was gen-
erated by the signal source of an R2-42 standard stand-
ing-wave indicator. The block diagram of the device is
shown in the figure. As an optical source, we used a
0.63-µm LGN-208A laser, which emitted circularly
polarized radiation. The microwave modulator was
placed between crossed polarizer and analyzer. A short-
focus lens focused the optical radiation on the central
part of the crystal. The signal was recorded by a low-
frequency photodetector at 6 kHz. Therefore, the signal
from the microwave source was also modulated at this
frequency by an external audio-frequency generator.
The signal from the photodetector versus microwave

105

6

1 2 3 4 7 8 9

Block diagram of the setup: (1) laser, (2) polarizer, (3) lens,
(4) sample in diaphragm, (5) GKCh-42 signal source,
(6) G3-56/1 audio-frequency generator, (7) analyzer,
(8) photodetector, (9) selective amplifier, and (10) Ya2R-19
standing-wave indicator.
modulator frequency was measured. At 6025 MHz, we
managed to pick up a 30-µV signal with a noise level of
less than 1 µV. The 3-dB bandwidth of the modulator
was 2∆f = f1 – f2 = 6155 – 5790 = 365 MHz. The fre-
quency dependence was nonmonotonic: three resonant
peaks were observed within 2∆f. This is because the
microwave radiation power varied from 50 to 150 mW
in this frequency range.

The tuning of the microwave system to resonance
provides the signal as high as 85 µV. However, the
bandwidth reduced to 120 MHz.

By varying the angle between the polarizer and ana-
lyzer, one may suppress the unmodulated signal down to
500 µV and achieve a depth of modulation of about 15%.

CONCLUSIONS

(1) A technique for analyzing a slot-type electro-
magnetic system intended for an ultrafast external
wide-band volume optical modulator is proposed.

(2) The method of equivalent wave impedances is
used to calculate the transmission coefficient and band-
width of microwave waveguides with short dielectric
inserts. It is found that slot-type inserts with small slot
heights provide a wide bandwidth of about 1–2 GHz. A
dielectric insert narrows the bandwidth; however, with
a small slot height, a sufficiently wide band of about
1 GHz can be achieved.

(3) The transfer of the microwave energy to the crys-
tal is studied by considering the slot systems as cavity
resonators. This theoretical method is verified with
slots that have various dimensions and are made of dif-
ferent materials.

(4) The testing of optical modulator prototypes will
make simple and cheap devices feasible.
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Abstract—The amplification of an optical signal in an erbium- and ytterbium-doped fiber saturation-mode
amplifier is considered. Analytical distributions of the inverse population, pump power, and signal intensity
along an active light guide are derived. Spectral dependences of the saturation power and amplification thresh-
old are obtained for different mode sizes of the radiation and ytterbium-to-erbium active ion ratios. The optimal
active-fiber length is calculated. © 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Erbium- and ytterbium-doped fiber amplifiers oper-
ating in the 1.5 µm range offer a number of advantages
over conventional erbium amplifiers. The concentration
of erbium atoms in the core of an Yb–Er light guide
may reach 1025 m–3 without noticeably reducing the
energy efficiency of the amplifier because of weak up-
conversion. Furthermore, ytterbium transmits a part of
the energy to erbium via the radiationless transfer of
excitation. Ytterbium ions have a wide absorption band
between 850 and 1100 nm (the absorption band of
erbium ions near 980 nm is much narrower). Yb–Er
amplifiers are pumped by multimode semiconductor
(InGaAs) laser diodes with an output exceeding 1 W.
Ytterbium–erbium active optical fibers pumped by sev-
eral high-power laser diodes are widely used in booster
amplifiers and fiber lasers with an output of 5 W or
more in the 1535–1565 nm range.

Early theoretical works [1–5] considered amplifica-
tion by active fibers doped by similar rare-earth ions
such as Yb3+, Nd3+, Er3+, Tm3+, or Pr3+. In active media
consisting of dissimilar rare-earth ions, excitation may
be transmitted between the ions nonradiatively. An
example of such a medium is a quartz fiber doped by
ytterbium and erbium where the former serves as a
donor and the latter, as an acceptor. The numerical sim-
ulation and optimization of an Yb–Er fiber amplifier
were made in [6]. However, analytical data for the opti-
cal performance of the amplifier are lacking. In this
work, we derive analytical relationships for the optical
characteristics of an Yb–Er saturating fiber amplifier in
which self-saturation due to enhanced spontaneous
self-luminescence is absent.
1063-7842/03/4810- $24.00 © 21311
RATE EQUATIONS

In an Yb–Er system, the concentrations of active
ions are usually taken such that each Er atom is sur-
rounded by 15 to 50 Yb atoms. Such screening mark-
edly diminishes the up-conversion effect for Er ions
compared with the “all-erbium” medium [7, 8]. There-
fore, we ignore up-conversion mechanisms associated
with the excitation of a metastable Er level to higher
energy levels. The energy level diagram for Yb3+ and
Er3+ ions is shown in Fig. 1. Ytterbium in the ground
state 2F7/2 absorbs a pump radiation. An Yb3+ ion
excited to the level 2F5/2 transmits the energy to a neigh-
boring Er3+ ion, which passes from the state 4I15/2 into
the state 4I11/2. Excited erbium quickly and nonradia-
tively relaxes to the longer lived metastable 4I13/2 level.
A lasing transition at a wavelength of about 1550 nm
occurs between the levels 4I13/2 and 4I15/2. Let the num-
bers 1, 2, and 3 be assigned to the erbium levels 4I15/2,
4I13/2, and 4I11/2, respectively, and 4 and 5, to the ytter-
bium levels 2F7/2 and 2F5/2. The related populations will
be designated by n1, n2, n3, n4, and n5. The lifetimes of

1.4 ms
n5

2F5/2

0.98 µm

n4
2F7/2

Yb3+

n1

n2

n3
1 µm

10 ms

Er3+

4I15/2

1.55 µm

4I13/2

4I11/2

4I9/2

Fig. 1. Energy level diagram for Yb3+ and Er3+ ions.
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levels 2, 3, and 5 are τ2 = 10–2 s, τ3 = 10–6 s, and τ5 =
1.4 × 10–3 s. We introduce three spatial cylindrical coor-
dinates: z, coordinate along the fiber; r, magnitude of
the radius vector across the fiber; and ϕ, angle of rota-
tion of the radius vector. In our model of active
medium, all equations for pump power, fundamental
mode power in the fiber, and energy level population do
not depend on the angle ϕ; accordingly, the associated
functions are also ϕ independent. Rate equations for the
populations are given by (see, e.g., [6])

(1)

where ni and wij (i, j = 1–5) are functions of only z and r.

In (1), ccr is the coefficient of excitation transfer

between Yb and Er ions1; wij is the rate of induced tran-
sitions from level i to level j:

h is the Planck constant; c is the speed of light;

are the mode sizes of the signal and pump in the fiber;
ψs, p(r) are the signal and pump distribution functions
over the cross section (ψs, p(0) = 1); σij are the cross sec-
tions of the induced transition (via absorption or lumi-
nescence) from level i to level j for the signal wave-
length λs and pump radiation wavelength λp; and
Ps, p(λ) is the power spectral density.

1 In thermal equilibrium, the rates of excitation transfer from Yb to

Er, , and from Er to Yb, , are related as /  =

exp{−(E5 – E3)/kBT}, where E5 – E3 is the transfer energy loss
[8]. Since the energy levels of Er and Yb are close to each other,

we put  =  ; ccr.

∂
∂t
-----n2 –

1
τ2
----n2

1
τ3
----n3 w12n1 w21n2,–+ +=

∂
∂t
-----n3 –

1
τ3
----n3 ccrn1n5 ccrn3n4,–+=

∂
∂t
-----n5 –

1
τ5
----n5 w45n4 – w54n5 ccrn3n4 ccrn1n5,–+ +=

ccr
+

ccr
–

ccr
–

ccr
+

ccr
–

ccr
+

w12 r( )
ψs r( )
hcπωs

2
---------------- λσ12 λ( )Ps λ( )λ ,d∫=

w21 r( )
ψs r( )
hcπωs

2
---------------- λλσ 12 λ( )Ps λ( ),d∫=

w45 r( )
ψp r( )
hcπωp

2
---------------- λλσ 45 λ( )Pp λ( ),d∫=

ωs p, 2 rrψs p, r( )d

0

+∞

∫=
The distributions of the pump and signal along the
fiber are given by the differential equations

(2)

(3)

where αs, p are the coefficients of passive losses due to
scattering by inhomogeneities and impurity centers
(their typical values are αs ≈ 0.1 dB/m and αp ≈
0.2 dB/m). The spontaneous luminescence power P0 =
hνδν depends on one noise photon in a frequency band
δν, and factor two before P0 takes into account two
orthogonal states of polarization.

SOLUTION AND ANALYSIS
Using the relationships a = n1 + n2 + n3 and d = n4 +

n5 (a and d are the concentrations of erbium and ytter-
bium atoms, respectively), one easily obtains a steady-
state solution to system (1):

(4)

(5)

(6)

where

(7)

(8)

(9)

Let us introduce a number of simplifications. In phos-
phate fibers, the transfer rate ccrd exceeds 107 s–1 [9].2

2 According to [9], if the interaction between higher multipoles is
taken into account and the minimal spacing between Er and Yb
atoms is assumed to be less than 4 Å, the excitation transfer rate
exceeds 107 s–1. Such spacings in optical fibers are possible if
rare-earth atoms form clusters [7].

d
dz
-----Pp z( ) 2

ωp
2
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Therefore, one may consider the limiting case ccr 
+∞ (see formulas (4)–(6), (9)). We also put τ3 = 0, since
the radiationless transition of excitation from the third
to second level of Er proceeds much more rapidly than
spontaneous and induced lasing transitions. With this
approximation, we arrive at two steady-state solutions

to Eqs. (1). If dw45 ≤ a(  + w21), we have

(10)

(11)

The other solution (at dw45 > a(  + w21)) corre-
sponds to the complete inversion of the active medium;
that is,

(12)

To provide a high output power, a booster amplifier
usually operates in the high saturation mode. In this
case, the steady-state solution to the rate equations is
given by formulas (10) and (11).

Let us introduce the saturation power

and the threshold power

The plots of Psat(λ) and Pth(λ) for a phosphate fiber
are depicted in Figs. 2 and 3. To simplify algebraic
expressions, we normalize the optical powers of the
signal and pump: s = Ps/Psat and p = Pp/Pth. Then, the
rates of induced transitions will have the form

Substituting formulas (10) and (11) into (2) and (3)
and neglecting the spontaneous luminescence power P0
yields

(13)

(14)
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× aσ12Θ r0 r–( )
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sψs r( ) 1+
-------------------------- α s– 

  ψs r( ),
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where

is the unit step function and r0 is the fiber core radius.
We assume that the fundamental mode LP01 of the

signal radiation has the Gaussian distribution over the

cross section of the fiber; that is, ψs(r) = exp(–r2/ ).
For multimode pumping, we may put ψp(r) = Θ(ωp – r),
where ωp is the outer radius of the fiber cladding. In
(14), the integral represents the integral overlap factor,
which depends on the signal and pump powers:

Θ x( )
1, x 0≥
0, x 0<




=

ωs
2

Γ s p,( ) 2

ωs
2

------ rrΘ r0 r–( )ψs r( )
pψp r( ) 1–
sψs r( ) 1+
--------------------------.d

0

+∞

∫=
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Fig. 2. Spectral dependences Psat(λ) for different mode
sizes of the signal in the fiber.

200

160
140
120
100
80
60
40
20
0

Pth(λ), mW
a : d = 1 : 15

1520 1530 1540 1550 1560 1570 1580 1590 1600
λ, nm

180 1 : 20
1 : 25
1 : 30
1 : 35
1 : 40
1 : 45
1 : 50

Fig. 3. Spectral dependences Pth(λ) for different concentra-

tions of Er3+ and Yb3+ ions. ωp = 110 µm, σ45 = 1.7 ×
10−25 m2.
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This factor includes the overlap of the signal and
pump modes with the active fiber core and inverse pop-
ulation variation across the fiber. It differs from the

overlap factor Γs = 1 – exp(– / ) [1], which is valid
for the unsaturated operating regime and reflects the
partial overlap of the signal with the activated core.
Integrating over r in formulas (13) and (14), we obtain

(15)

(16)

Equation (15) has the solution

(17)

where p+ is the pump power applied to the entrance into
the fiber (z = 0) in the direction of signal propagation,
p– is the pump power applied to the exit from the fiber
(z = L) in the direction opposite to the signal propaga-

tion, and γ = dσ45 + αp is the pump absorption
coefficient.

Equation (16) is readily integrable over z if s @ 1:

(18)

Substituting expression (17) into (18) yields the sig-
nal power at the output of the amplifier:

(19)

From (19), one can find the optimal length of the
fiber, i.e., the length providing the maximal output at a
given pump power. For αs = 0, we have

(20)
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The corresponding output power is

(21)

Let us evaluate the output power of a single-stage
amplifier pumped from the exit. With λs = 1550 nm,
Ps(0) = 20 mW, a = 1.336 × 1025 m–3, a/d = 1/25, Pp =
2 W, σ12 = 2.394 × 10–25 m2, σ21 = 3.6 × 10–25 m2, σ45 =
1.7 × 10–25 m2, r0 = ωs = 7 µm, σp = 110 µm, and L =
5 m, formula (19) yields the output of the amplifier
Ps(L) = 815 mW.

CONCLUSIONS

Our model is based on the following assumptions:
(i) the signal exceeds the power of enhanced spontane-
ous luminescence, Ps(0) @ GP0 (G is the gain, P0 ~
1 µW within the 30-nm-wide band), and (ii) the ampli-
fier operates in the saturation regime with the incom-
plete inversion of the active medium: Ps(0) @ Psat and

The analytical expression obtained for the output
power of the amplifier makes it possible to optimize the
waveguide characteristics of an active fiber and calcu-
late its optimal length, which depends on both the
absorption coefficient and total pump power applied to
the fiber. We used the integral overlap factor that is a
function of the signal and pump powers, adequately
describes the active erbium medium in the saturation
mode, and differs from the overlap factor Γs for the
unsaturated regime.
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Abstract—The variations of the electroacoustic parameters (Q factor, electromechanical coupling coefficient,
and capacitance) of lithium niobate piezoelectric transducers with increasing high-frequency excitation voltage
are studied experimentally. The relative acoustic strain is found to reach a maximum of about 10–4 in the fre-
quency range from 2 to 3 MHz. The Q factor of the transducers may increase by 100% in the range of acoustic
strains studied. This increase is accompanied with acoustic emission. The reason for this effect is the block
structure of the lithium niobate crystal. © 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Lithium niobate (LiNbO3) piezoelectric, one of the
basic materials of modern acoustoelectronics and opto-
electronics [1–3], is widely used in sources of ultra-
sonic surface and bulk waves, where the high-fre-
quency voltage that excites ultrasonic waves is often
high. However, the variation of the transducer parame-
ters due to its vibration has been studied insufficiently.
It has been found that the Q factor of piezoelectric
transducers decreases with increasing vibration ampli-
tude [4]. Therefore, the study of such effects in LiNbO3
plates is of current interest. In this paper, we experi-
mentally investigate the variations of the electroacous-
tic parameters of lithium niobate piezoelectric trans-
ducers (Q factor, electromechanical coupling coeffi-
cient, and capacitance) with growing amplitude of the
high-frequency electric voltage that excites the trans-
ducer.

MEASURING TECHNIQUE

The parameters that define the operation of a piezo-
electric transducer are its capacitance C, Q factor, and
electromechanical coupling coefficient K. Tradition-
ally, these parameters are determined by [5] (i) measur-
ing the capacitance C at a frequency much lower than
the transducer resonance frequency, (ii) calculating the
Q factor from the resonance width of the frequency
dependence of the admittance at a level of 0.707, and
(iii) calculating the electromechanical coupling coeffi-
cient squared, K2, from the measured resonance, fr, and
antiresonance, fa, frequencies of the admittance:

(1)

It should be noted that, at sufficiently high vibration
amplitudes, the parameters of piezoelectric transducers

K2 πf r

2 f a
--------

πf r

2 f a
-------- 

  .cot=
1063-7842/03/4810- $24.00 © 21315
start depending on the electric voltage applied. In this
case, the accuracy with which the parameters are mea-
sured is limited by the fact that the loading conditions
of the transducer under which C, Q, and K2 are mea-
sured may differ. In this paper, we propose a technique
that allows one to find all three parameters at a given
amplitude of the applied voltage in one measurement
cycle. This is achieved by using a composite two-fre-
quency exciting signal given by

(2)

where Ur is the voltage amplitude at the resonance fre-
quency fr; Ua is the voltage amplitude at the antireso-
nance frequency fa; and ∆ϕ is a constant phase shift,
which is insignificant in our measurements.

With the use of such a signal, the transducer imped-
ance can be measured at its resonance and antireso-
nance frequencies simultaneously.

Let us find relationships between the impedance of
a piezoelectric transducer at the resonance and antires-
onance frequencies and its parameters. The wave prop-
agation coefficient γ is defined as

(3)

where ω = 2πf is the angular frequency, v  is the velocity
of sound; j is the imaginary unit; and α is the ultrasound
attenuation factor, which is related to the Q factor of the
transducer as

(4)

Here, λ is the acoustic wave wavelength, which may be
taken as twice the transducer thickness in this case.

U Ur 2πf r( )sin Ua 2πf a ∆ϕ+( ),sin+=

γ α j
ω
v
----,+=

Q
π

αλ
-------.=
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The transducer admittance can be represented as [6]

(5)

where C is the transducer capacitance and d is its half-
thickness.

Expanding admittance Y (5) into the series in 1/Q
near the antiresonance frequency and leaving only the
linear term yields an expression that relates the trans-
ducer resistance Ra at its antiresonance frequency fa to
the Q factor:

(6)

It can be seen that the transducer resistance at the
antiresonance frequency is directly proportional to its
Q factor. Next, we expand 1/Y given by (5) into the
series in 1/Q near the resonance frequency, leave the
linear term alone, and take into account that K2 is small
to obtain a relationship between the transducer resis-
tance Rr at its resonance frequency fr to its Q factor:

(7)

From (6) and (7), we find the expressions for the
transducer capacitance,

(8)

and its Q factor,

(9)

When the length and width of a plated piezoelectric
resonator are much smaller than its thickness, the strain
ε induced in the transducer by the high-frequency volt-

Y
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Fig. 1. Block diagram of the setup for measuring the trans-
ducer parameters: G1 and G2, signal sources; Sum, power
combiner; A, attenuator; S, sample (LiNbO3 plate);
M, metal layer; D, acoustic detector; r, 1- to 10-Ω resis-
tance; and F, spectrum analyzer.
age U applied can be calculated in terms of the standard
one-dimensional model [7]. The calculations yield [6]

(10)

where m is the transducer weight and z is the coordinate
along its thickness.

The strain is seen to be maximal at the center of the
transducer (z = 0) at the resonance frequency. Using the
expansion in 1/Q and leaving its linear term, we obtain
from (10), (3), and (4) the expression for the strain

(11)

The block diagram of the setup for measuring the
parameters of the resonator excited by an amplitude-
modulated signal is shown in Fig. 1. Let Vr and Va be the
voltages at the resonance, fr, and antiresonance, fa, fre-
quencies across the resistor of value r. Then,

(12)

The voltages Ur, Ua, Vr, and Va, as well as the fre-
quencies fr and fa, were measured directly by the spec-
trum analyzer F. The resonator parameters were calcu-
lated from formulas (1), (8), and (9), and the strain was
evaluated from (11).

To detect internal mechanical processes (e.g., the
motion of dislocations and grain boundaries) that
accompany the high-amplitude vibration of the piezo-
electric resonator, we applied the acoustic emission
method. Acoustic noise attendant on these processes
was recorded using an AF-15 instrument and filters that
suppress spurious signals at the excitation frequency.
We also used standard acoustic emission detectors of
the AF-15. When the dimensions of the sample were
much smaller than those of the detector, we employed
industrial PZT-based piezoelectric transducers (D in
Fig. 1). The sensitivity of the acoustic emission detec-
tor is maximal near its antiresonance frequency. Under
the assumption that the acoustic signal is due to longi-
tudinal waves, the amplitude of acoustic emission
pulses can be estimated from the expression [6]

(13)

where V is the voltage generated by the detector under
the action of an acoustic wave of amplitude A and h33 is
the piezoelectric coefficient of the detector.

The coefficient h33 is related to other parameters of
the detector as

(14)
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where md, Kd, and Cd are the weight, electromechanical
coupling coefficient, and capacitance of the detector,
and fa is the antiresonance frequency.

We studied eight X- and Y-cut LiNbO3 plates. Below
are the results for three Y-cut samples marked LNY1,
LNY2, and LNY4. The length and width of the samples
were varied from 6 to 11 mm, and their thickness was
1 mm. The dislocation structure of the LiNbO3 crystals
was revealed by etching in an HNO3 : HF = 2 : 1 selec-
tive etchant for several tens of minutes at 110°C (the
boiling temperature of the etchant). The etched surface
of the plate was examined under an MIM metallo-
graphic microscope.

RESULTS AND DISCUSSION

In some of the X- and Y-cut samples, we discovered
a significant increase in the Q factor with increasing
acoustic strain. This effect is illustrated in Fig. 2 as the
evolution of the frequency dependence of the admit-
tance, Y( f ), with growing amplitude of the excitation
voltage U. The slight decrease in the resonance fre-
quency fr (and in the antiresonance frequency fa not
shown in Fig. 2) is associated with the extension of the
sample heated by ultrasound. At the same time, the res-
onance curve narrows substantially, which shows that
the Q factor increases. It is important that this effect
cannot be reproduced by merely heating the sample
when curve 1 in Fig. 2 is taken at a low excitation level.
Therefore, the increase in the Q factor (curve 2 in
Fig. 2) is not a purely thermal effect, as also demon-
strated by the insignificant increase in Q of LiNbO3
crystals from another group (see below).

The parameters Q, C, and K2 calculated as a func-
tion of the acoustic strain from data similar to those
shown in Fig. 2 are plotted in Fig. 3 (curves 1, 2, 4, and
5). It can be seen that the capacitance C and the electro-

fr

2

1

5

4

3

2

1

2100 2200 2300 2400
f, kHz

Y × 103, Ω–1

Fig. 2. Admittance Y of the LNY2 sample versus frequency
f at U = (1) 1 and (2) 30 V. The resonance vibration fre-
quency fr for curve 1 is indicated by the arrow.
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mechanical coupling coefficient squared, K2, remain
almost unchanged (curves 4, 5), while the Q factor
starts growing from strains of about 10–5 and increases
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Fig. 3. (1) Q factor, (4) electromechanical coupling coeffi-
cient squared K2, and (5) capacitance C versus strain for the
LNY2 sample. (2, 3) Strain dependences of Q for the (2)
LNY4 and (3) LNY1 samples. Curve 1 is shifted 50 units
upwards. (6, 7) Acoustic emission versus strain for the
LNY1 and LNY4 samples, respectively.

Fig. 4. Micrograph of the etched surface for the LNY4 sam-
ple. The size of the region shown is 480 × 320 µm.
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by almost 100% at ε ≈ 10–4 (curves 1, 2). With the exci-
tation level increasing further, Q goes down (not shown
in curves 1 and 2).

Note that the above effect depended on which group
of LiNbO3 crystals was used as the resonator. In a num-
ber of cases, the increase in the Q factor was not
observed (curve 3 in Fig. 3). The study of etch patterns
on the selectively etched surfaces made it possible to
find the nature of this effect. The etched surface of one
of the crystals that exhibit the increase in Q is shown in
Fig. 4. Etch pits (dark spots elongated in the vertical
direction) appear at the sites where individual disloca-
tions cross the surface. Such pits of variable density
were observed in all the crystals studied irrespective of
the behavior of Q. At the same time, the surfaces of the
samples that exhibited the effect of increasing Q had pit
chains characteristic of grain boundaries (three inclined
pit chains in Fig. 4). X-ray examination revealed a sub-
block structure in such LiNbO3 crystals.

Thus, we may assume that the decrease in the Q fac-
tor with increasing excitation level (curve 3 in Fig. 3) is
of dislocation nature similar to that described earlier
[4]. The growth of Q observed may be associated with
the presence of grain boundaries in the LiNbO3 crys-
tals, as also corroborated by the strain dependence of
the acoustic emission amplitude (curves 6, 7 in Fig. 3).
In the sample where the density of dislocations is low,
the emission is very weak and appears only if ε ≥ 10–4

(curve 6). In this case, the emission may also be of dis-
location nature [8]. By contrast, in the other samples,
the behavior of the emission amplitude as the excitation
level increases correlates with the growth of the Q fac-
tor, as demonstrated by curve 7 and curve 2 (Fig. 3),
which are plotted for the same sample. Thus, the acous-
tic emission signal in this case is apparently generated
by the motion of grain boundaries and the increase in
the Q factor corresponds to the orientation of subblocks
in the acoustic field. The latter effect reduces the acous-
tic losses (the factor alpha in formula (4)) and, conse-
quently, increases Q.

CONCLUSIONS

It is shown that the Q factor of LiNbO3 piezoelectric
transducers may rise significantly (by about 100%)
with increasing excitation level. The other parameters
of the transducer (electromechanical coupling coeffi-
cient and capacitance) vary insignificantly. The
increase in Q is related to the block structure of LiNbO3
crystals. This effect must be taken into account when
designing and manufacturing high-intensity LiNbO3-
based ultrasound sources.
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Abstract—A method and algorithm for numerical analysis and optimization of the basic parameters of elec-
troacoustic surface waves propagating in multilayer piezoelectric structures are described. Combinations of
layer materials and piezoelectric substrates for which an electroacoustic surface wave has optimal parameters
of propagation (low dispersion, high electromechanical coupling coefficient, high thermal stability, low diffrac-
tion losses, etc.) are found. © 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Basic parameters of electroacoustic surface waves
(EASWs) are [1] wave velocity V, electromechanical
coupling coefficient K2, power flux angle pfa, anisot-
ropy parameter β, temperature coefficient of delay tcd,
velocity dispersion γ in the case of layer systems, prop-
agation losses δ for pseudosurface electroacoustic
waves [2], etc.

The parameters of EASWs propagating in multi-
layer structures depend on material properties of the
substrate and individual layers. When the total thick-
ness of the layers is comparable to or greater than the
wavelength λ, the EASW structure is rather complex
and, in addition, contains higher order modes. If H ! λ,
the parameters and structure of propagating EASWs
are governed largely by the properties of a semi-infinite
piezoelectric substrate. Layers applied on its surface
generally modify the EASW parameters only slightly.
Nevertheless, even if H ! λ, the wave parameters may
be considerably improved by using film–piezoelectric
substrate structure [3, 4]. For example, if the piezoelec-
tric substrate is of poor thermal stability in terms of
EASW propagation, the thermal stability and simulta-
neously the electromechanical coupling coefficient
may be improved by applying an appropriate layer of
certain thickness. In the case of pseudosurface acoustic
waves (PSAWs), an applied film of certain thickness
may sometimes greatly decrease the propagation losses
δ [5].

However, unlike bare piezoelectric substrates, the
layer systems suffer from EASW velocity dispersion.
With even one layer of finite thickness h applied on the
substrate surface, the EASW velocity starts depending
on the frequency. One may try to eliminate this draw-
back with multilayer structures. Let two layers be
applied on a piezoelectric surface. If one layer
increases the wave velocity and the other, conversely,
decreases, the combination of both (with appropriate
1063-7842/03/4810- $24.00 © 21319
thicknesses) will help to eliminate dispersion and
simultaneously improve the thermal stability of the
wave.

Thus, varying the material and thickness of layers
applied on a piezoelectric substrate of certain orienta-
tion, one can solve the problem of parameter optimiza-
tion for EASWs propagating in multilayer structures by
using numerical experiment. This work is devoted to
the solution of this problem. A general method of
numerical analysis and EASW parameter optimization
by using multilayer piezoelectric structures is sug-
gested.

STATEMENT OF THE PROBLEM

To determine the EASW basic parameters in multi-
layer structures, it is necessary to solve piezoacoustic
equations [6, 7] that describe the EASW propagation in
piezoelectric crystals and a set of equations of wave
propagation in a separate layer [7]. For an arbitrary
number of layers applied on a piezosubstrate of arbi-
trary crystal symmetry, the EASW parameters can be
evaluated only numerically. When solving these equa-
tions, one may invoke the Farnell–Jones [7] or Adler [2]
approach. To find the EASW phase velocity and the
other parameters listed above, it is also necessary to
state appropriate mechanical and electrical boundary
conditions at the interfaces and outer boundaries of the
layers and substrate. In the case of multilayer systems,
three components of mechanical displacements uj,
three normal components of the mechanical stress ten-
sor T3j, the electrical potential ϕ, and the normal com-
ponent of the electric field induction D3 must satisfy the
continuity conditions at the interfaces [7]. Clearly, as
the number of layers applied increases, so does the
number of mechanical and electrical boundary condi-
tions. Furthermore, electrical boundary conditions vary
003 MAIK “Nauka/Interperiodica”
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according to the material of the layers (metal, insulator,
or piezoelectric).

Generally, the phase velocity of an EASW in a mul-
tilayer medium can be found with any method of
searching a global extremum of a boundary objective
function Φ [8]. In the Farnell–Jones approach, Φ is
taken to be the boundary condition determinant [7]; in
the Adler approach, it is the effective permittivity func-
tion [2]. Upon searching solutions for surface acoustic
waves (SAWs), a global extremum of the boundary
objective function Φ is found by scanning the wave’s
phase velocity V, which serves as a parameter. Upon
searching for solutions for PSAWs, a global extremum
of Φ is found by simultaneously scanning the phase
velocity V and propagation losses δ. The phase velocity
V found depends on the material properties of each of
the layers and the piezoelectric substrate, as well as on
the crystal orientation and wave propagation direction,
which are usually described by the Eulerian angles φ,
Θ, and Ψ [7]. Then, one can calculate all the other
parameters of the wave (electromechanical coupling
coefficient, temperature coefficient of velocity (delay),
anisotropy parameter, and so on) [6].

SEARCH FOR MULTILAYER CONFIGURATIONS 
OPTIMAL FOR EASW PROPAGATION

Consider the mechanism of decreasing the disper-
sion of EASWs propagating in multilayer structures in
greater detail. If one layer is applied on a piezoelectric
substrate, the velocity of the acoustic wave changes,
depending on the layer thickness, compared to the bare
surface and becomes a function of frequency (wave-
length λ). Using the above methods, we calculated the
phase velocities of an SAW propagating in langasite
(LGS) of orientation (0, 140°, 24°) with various isotro-
pic films covering its surface (Figs. 1, 2). From Fig. 1,
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Fig. 1. SAW velocity vs. h/λ in (0, 140°, 24°) LGS covered
by isotropic SiO2, Al, Cr, and MgO films.
it follows that applied films of fused quartz (SiO2), alu-
minum, chromium, and magnesia increase the SAW
velocity with increasing h/λ (the film thickness h is nor-
malized to the wavelength λ). Nickel, gold, molybde-
num, lead, platinum, tungsten, and copper films, con-
versely, decrease the velocity. The material constants
for these films were taken from [9, 10].

If two films variously changing the EASW phase
velocity are applied on a piezosubstrate, their effects
may compensate each other if the thicknesses of the
films are appropriately selected. In this case, the disper-
sion may be considerably reduced and the wave veloc-
ity becomes virtually frequency (wavelength) indepen-
dent. From Figs. 1 and 2, one can see that the EASW
phase velocity vs. h/λ (h ! λ) curves run in the opposite
manner when the SiO2 and nickel films are applied on
(0, 140°, 24°) LGS piezocrystal. In both cases, the run
is linear up to h/λ ≈ 0.1. Therefore, with both films
applied on the LGS surface, the EASW velocity will be
virtually dispersionless.

Let us find a dispersionless solution for an EASW
propagating in a multilayer system. When the films are
thin (hi ! λ), the phase velocity varies with h/λ linearly
in most cases (Figs. 1, 2). Therefore, in a first approxi-
mation, one may introduce a factor γ that characterizes
the dispersion properties of a layer system. Then, the
relative change in the EASW phase velocity can be
written as

(1)

Here, V0 is the phase velocity in the absence of the
layer, V(h) is the velocity in the presence of the layer,
and ω is the frequency. Generally, the law of EASW
velocity variation with layer thickness may be nonlin-
ear; therefore, the factor γ may vary with layer thick-
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Fig. 2. The same as in Fig. 1 for Al, Au, Mo, Pb, Pt, W, and
Cu films.
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ness. Its value depends on the material of the layer (of
thickness h) and piezosubstrate orientation.

Figures 3 and 4 show the values of γ calculated for
(0, 140°, 24°) LGS piezocrystal covered by films of
various materials. It is seen that γ may be both positive
(Fig. 3) and negative (Fig. 4).

If many layers are applied so that the condition

(2)

is met (N is the number of layers and γi and hi are the
dispersion factor and thickness of an ith layer, respec-
tively), one may again argue that the EASW velocity is
dispersion-free.

Figure 5 shows the values of the parameter G =
(γ1h1 + γ2h2) calculated for the case when an SAW prop-
agates in the SiO2/Ni/(0, 140°, 24°) LGS system with
various h1/λ and h2/λ (h1 and h2 are the thicknesses of
the lower, Ni, and upper, SiO2, films, respectively). A
family of curves corresponding to the SAW dispersion-
less velocity is seen. For example, if the Ni film is h1=
0.04λ thick, the SAW velocity dispersion is absent (G =
0) for a SiO2 film thickness h2 = 0.05λ (the curve h2/λ =
0.05 in Fig. 5). The SAW phase velocities calculated for
each of the curves were as follows (in km/s): 2.7345 for
the bare (0, 140°, 24°) LGS surface, 2.6844 for the Ni
(h1/λ = 0.04)/LGS system, 2.7908 for the SiO2/Ni/LGS
system, and 2.7305 for the SiO2/Ni/LGS system. With
the nickel film h1 = 0.015λ thick, the dispersion will be
absent when the SiO2 thickness is h2 = 0.02λ (the curve
h2/λ = 0.02 in Fig. 5), etc.

One can also eliminate the velocity dispersion when
PSAWs propagate in multilayer systems. Figure 6
shows the values of G = (γ1h1 + γ2h2) calculated for the
Al/Cr/(0, –48°, 0) LiTaO3 system. Here, again, the
PSAW velocity has no dispersion at certain relation-
ships between the Al and Cr film thicknesses. For

G γihi

i 1=

N

∑ 0= =

4.5

4.0

3.0

2.5

2.0

1.0

0.5

0 0.02 0.04 0.06 0.08 0.10 h/λ

γ

Ni
Au

Pb
Pt

1.5

3.5

W

Cu

Fig. 3. Factor γ vs. h/λ for SAWs propagating in (0, 140°,
24°) LGS covered by isotropic Ni, Au, Pb, Pt, W, and Cu
films.
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example, G = 0 if the chromium thickness is h1 = 0.03λ
and the aluminum thickness is h2 = 0.04λ, etc. The
PSAW parameters calculated for each of the cases were

0
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h/λ

γ

SiO2

Al
Cr

MgO
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Fig. 4. The same as in Fig. 3 for SiO2, Al, Cr, and Mo films.
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Fig. 5. Parameter G vs. h1/λ at different h2/λ for SAWs
propagating in the SiO2/Ni/(0, 140°, 24°) LGS system.
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Fig. 6. The same as in Fig. 5 for PSAWs propagating in the
Al/Cr/(0, –48°, 0) LiTaO3 system.
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as follows (V in km/s, δ in dB/λ: Vm = 4.11485, δm =
0.012, Vb = 4.226, δb = 0.00075, K2 = 5.6%, pfa = 0, β =
–2.7, and tcd = 63.2 × 10–6 /°C for bare (subscript b) and
metallized (m) (0, –48°, 0) LiTaO3, respectively; Vm =
4.1366 and δm = 0.04 for the one-layer Cr(h1/λ =
0.03)/LiTaO3 system; Vm = 4.0829 and δm = 0.01 for the
one-layer Al(h2/λ = 0.04)/LiTaO3 system; and Vm =
4.1099, δm = 0.04, pfa = 0, β = –2.56, and tcd = 63.7 ×
10–6 /°C for the two-layer Al/Cr/LiTaO3 system. The
material constants for LiTaO3 were taken from [11].

Thus, using the method described above and carry-
ing out a numerical experiment, one may select a piezo-
substrate of certain orientation, layer materials, and
their thicknesses such that the EASW velocity is dis-
persionless.

It should also be noted that, when selecting the layer
materials and thicknesses that minimize the EASW
velocity dispersion, one can simultaneously find their
combinations optimizing other EASW parameters. To
this end, it is necessary to write the objective function
Φ as a linear combination of EASW parameters with
individual weighting coefficients ai, which specify the
contribution of each of the terms to the objective func-
tion [12]:

(3)

By applying the procedure of searching a global
extremum of the objective function Φ of many vari-
ables [12], one can, by exhaustively searching the
objective function variables φ, Θ, Ψ, hi/λ, and γ with a
minimal step in a cycle, optimize the EASW parame-
ters in a multilayer system by means of numerical
experiment.

Using such an approach, we constructed an
Al/Ni/(0, 90°, 0) YX piezoquartz multilayer system
where a propagating SAW is temperature compensated
(tcd ≈ 0) and dispersion free (G ≈ 0). Note that the Ni
film applied on the YX cut of piezoquartz reduces mark-
edly the SAW velocity in this system (the phase veloc-
ity is V = 2.86 km/s at h1 = 0.05 λ) compared with the
bare surface of piezoquartz (Vb = 3.16 km/s, Vm =
3.157 km/s, tcd = –22 × 10–6 /°C. On the contrary, the
Al film on the YX cut of piezoquartz somewhat
increases the SAW velocity (V = 3.1602 km/s at h1 =
0.05λ). In constructed two-layer Al(h2 = 0.05λ)/Ni(h1 =
0.09λ)/YX piezoquartz (the phase velocity V =
2.706 km/s, tcd = 0.9 × 10–6/°C, G = 0) and Al (h2 =

Φ φ Θ Ψ hi/λ γ, , , ,( )
=  min a1 pfa a2tcd a3 β 1+( ) a4G …+ + + +{ } .
0.05λ/Ni(h1 = 0.005λ)/YX piezoquartz (the phase
velocity V = 3.13 km/s, tcd = –0.2 × 10–6 /°C, G =
0.001) systems, a propagating SAW has no velocity dis-
persion and is temperature compensated.

CONCLUSIONS

We suggest a numerical method of EASW parame-
ter analysis and optimization in multilayer structures.
Particular combinations of films that optimize the char-
acteristics of propagating electroacoustic waves are
found. The efficiency of the approach suggested is
demonstrated with lithium tantalate, piezoquartz, and
langasite (new promising piezoelectric crystal) sub-
strates.
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Abstract—A method for numerically calculating the parameters of surface and pseudosurface electroacoustic
waves propagating in multilayer piezoelectrics is suggested. The feasibility of wave parameter optimization
by using various materials of the layers and piezoelectric substrate is demonstrated with particular examples.
© 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The application of various layers on a piezoelectric
substrate is a way of improving the parameters of prop-
agating surface acoustic waves (SAWs). For example, a
metal film of certain thickness may thermally suppress
the SAW propagation when the orientation of the sub-
strate provides a high piezoelectric coupling. Using the
overlayer, one can vary the wave propagation velocity
and, hence, the operating frequency of a piezoelectric
device. The effect of the environment (gas or liquid) on
the properties of the wave and overlayer is used in
related sensors. Finally, the layer may protect the piezo-
electric surface against undesired external impacts.
One more advantage of multilayer compositions is the
reduction of a velocity dispersion, which is observed in
single-layer structures. Therefore, analysis and optimi-
zation of the SAW parameters in multilayer structures
seems to be topical. Various aspects of this problem are
discussed elsewhere [1–4].

In this paper, we formulate boundary conditions for
insulating, metallic, and piezoelectric insulating over-
layers and for a piezoelectric substrate of any crystal
symmetry. Also, a general method for numerically cal-
culating the parameters of SAWs propagating in multi-
layer piezoelectric crystal structures is reported.

STATEMENT OF THE PROBLEM
AND BOUNDARY CONDITIONS

The parameters of SAWs propagating in the multi-
layer structures depend on the properties of the sub-
strate and each of the layers. It is necessary to solve the
set of piezoacoustic equations [5]

(1)

ρ
∂2u j

∂t2
---------- cijkl

∂2uk

∂Xi∂Xl

-----------------– ekij
∂2ϕ

∂Xk∂Xi

------------------,=

εik
∂2ϕ

∂Xi∂Xk

------------------ eikl

∂2uk

∂Xi∂Xl

-----------------; i j k l, , , 1 2 3,, ,= =
1063-7842/03/4810- $24.00 © 201323
where Xi are coordinates; cijkl, eijk, and εij are the tensors
of the piezoelectric, elastic, and dielectric constants;
ρ is the density of the medium; ui are mechanical dis-
placements; ϕ is the electrical potential; and t is time.
The set of Eqs. (1) must be solved for each of the sys-
tem’s component (Fig. 1). A solution to set (1) is sought
in the form

(2)

Here, αj are the mechanical displacement amplitudes,
α4 is the electric potential; k is the wavenumber; v  is the
wave velocity; and b1 and b3 are the coefficients that
relate the wave amplitude to the coordinates X1 and X3,
respectively. In the general case, the coefficient b1 may
be represented as b1 = 1 + iδ, where δ is a real positive
quantity that has the meaning of the decay of the wave
along the propagation direction. For surface acoustic
waves, the decay δ = 0; for pseudosurface acoustic
waves, δ > 0 [6]. In the general case, substituting (2)
into (1) yields a set of Christoffel equations, from
which one, knowing the wave velocity V and the decay

coefficient δ, can find eight complex roots  (n = 1–

u j α j ikb3X3( ) ik b1X1 v t–( )[ ]exp ,exp=

ϕ α 4 ikb3X3( ) ik b1X1 v t–( )[ ] ;expexp=

j 1 2 3., ,=

b3
n( )

X3

hM

h2

h1

X1
Piezoelectric substrate

0

Layer M

Layer 2
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~~

Fig. 1. Multilayer structure.
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8) and the associated set of complex amplitudes ,

, , and . For each of the structure constitu-
ents, a general solution is represented as a linear com-
bination of partial waves in this constituent:

(3)

Here,  = 1 + iδ,  = 0,  is a set of the roots of
the polynomial equation (specific for each of the
media), Nm = n0 + n1 + … + nm, nm is the number of par-
tial modes in a medium of number m (m = 0 refers to the
substrate; m = 1, to the first layer, etc.; N0–1 = n0–1 = 0),
and Cn are unknown amplitude coefficients.

When analyzing surface or pseudosurface acoustic

waves, one must properly select the roots  for the
substrate. For the layers, the rule of root selection is
straightforward: for each of them, a solution must be
constructed as a linear combination of the partial
modes. The unknown coefficients Cn of the linear com-
bination in (3) are found from boundary conditions at
the interfaces and at the outer boundary of the top layer.
Unfortunately, general boundary conditions that are
applicable to any combination of the substrate and layer
materials cannot be stated in principle.

1. PIEZOELECTRIC LAYERS
ON A PIEZOELECTRIC SUBSTRATE

In this case, three components of mechanical dis-
placements uj, three normal components of the mechan-
ical stress tensor T3j, the electrical potential ϕ, and the
normal component of the electric field induction D3

must satisfy the continuity conditions at the interfaces.
The conditions at the boundary between mth and (m +
1)th media are as follows:

(4a)

α1
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α2
n( ) α3

n( ) α4
n( )

u j
m( ) Cnα j

n( ) ik bi
n( )Xi Vt–( )[ ] ,exp

n Nm 1– 1+=

Nm

∑=

ϕ m( ) Cnα4
n( ) ik bi

n( )Xi Vt–( )[ ] ;exp
n Nm 1– 1+=

Nm
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i j, 1 2 3., ,=

b1
n( ) b2

n( ) b3
n( )

b3
n( )

Cnα j
n( ) ikb3

n( )X3
m( )[ ]exp

n Nm 1– 1+=

Nm

∑

=  Cnα j
n( ) ikb3

n( )X3
m( )[ ] ,exp

n Nm 1+=

Nm 1+

∑

(4b)

(4c)

(4d)

Here, m = 0, 1, 2, …, M – 1, where M is the number of

layers;  = h1 + h2 + … + hm; and  = 0. Equa-
tions (4a)–(4d) are the continuity conditions for
mechanical displacements, stresses, potential, and elec-
tric field induction.

If any surface X3 =  is covered by a metal layer
of infinitesimal thickness and short-circuited, Eqs. (4c)
and (4d) change. The right of (4c) and the left of (4d)
vanish, and the right of (4d) is replaced by the right
of (4c).

The potential ϕ(f) in free space must meet the
Laplace equation and decrease down to zero with
X3  ∞. These conditions are satisfied if ϕ(f) is taken
in the form

(5)

Here, ϕ(M) is the potential at the outer boundary of the

top layer (X3 = ). Eventually, for the top surface
uncovered, we obtain the electrical boundary condition

(6)

For the short-circuited top boundary, the electrical
boundary condition may be derived from Eq. (4c) with
m = M and zero on the right.
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When all the constituents of the system are piezo-
electrics, the complete set of boundary conditions con-
tains n0 + n1 + n2 + … + nM equations for the same num-
ber of the unknowns Cn. For such a system, n0 = 4 and
n1 = n2 = … = nM = 8 in the general case.

2. METALLIC LAYERS ON A PIEZOELECTRIC 
SUBSTRATE

The situation where the first layer is metallic and the
others are either metallic or insulating in any combina-
tion may also be assigned to this case. Here, the
mechanical boundary conditions at the interfaces
remain the same as above and the electrical boundary
conditions simplify to

(7)

3. ISOTROPIC INSULATING LAYERS
ON A PIEZOELECTRIC SUBSTRATE

Let a piezoelectric substrate support M isotropic
insulating layers with permittivities εm. Then, electric
boundary conditions become awkward, since any of the
interfaces may by either open or short-circuited. In the
general case, the electrical potential inside an mth layer
depends on X3 as follows:

(8)

Having defined all the coefficients Am and Bm

through the interfacial potentials, one may then, using
the continuity conditions for the potential and normal
component of the electric induction vector at each of
the interfaces, eliminate the interfacial potentials and
obtain the X3 dependence of the potential ϕ(1) (ϕ(1) is the
potential of the first layer) that involves only ϕ(0)(X3 =
0), which is the potential on the substrate surface. The
potential ϕ(1) appears in the expression for the normal
component of the electric field induction in the first
layer:

(9)

The induction calculated by (9) for X3 = 0 should
now be set equal to the induction calculated for the sub-
strate at the same X3. This yields a single electrical
boundary condition for isotropic insulating layers on a

Cnα4
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D3
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dϕ 1( )

dX3
------------.–=
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piezoelectric substrate. Its shape will depend consider-
ably on the number of layers and on the electrical state
of the interfaces (open or short-circuited).

3.1. All interfaces are open. If there is a single
layer, electrical boundary conditions have the form

(10a)

where

(10b)

In (10b),

(11)

is the recursive coefficient that makes it possible to
derive a formula for two layers from the formula for
one layer; that is, for two layers, the electrical boundary
condition takes the form

(12a)

where

(12b)

The recursive coefficient

(13)

allows one to obtain a formula for three layers from the
formula for two layers; that is, for three layers, we have

i Cn e3 jkα j
n( )bk

n( ) ε3 jα4
n( )b j

n( )–( )
n 1=

n0

∑

=  
b1ε1ε0

kb1h1( )sinh
-----------------------------S1 Cnα4

n( ),
n 1=

n0

∑

S1 kb1h1( )cosh=

–
ε1

ε1 kb1h1( )cosh R2 kb1h1( )sinh+
-----------------------------------------------------------------------------.

R2

ε2

kb1h2( )sinh
-----------------------------S2=

i Cn e3 jkα j
n( )bk

n( ) ε3 jα4
n( )b j

n( )–( )
n 1=

n0

∑ b1ε1ε0

kb1h1( )sinh
-----------------------------=

× kb1h1( )cosh
ε1

ε1 kb1h1( )cosh
ε2 kb1h1( )sinh

kb1h2( )sinh
-------------------------------S2+

----------------------------------------------------------------------------–

× Cnα4
n( ),

n 1=

n0

∑

S2 kb1h2( )cosh=

–
ε2

ε2 kb1h2( )cosh R3 kb1h2( )sinh+
------------------------------------------------------------------------.

R3

ε3

kb1h3( )sinh
--------------------------S3=



1326 CHEREDNICK, DVOESHERSTOV
(14)

(14b)
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An electrical boundary condition for (m + 1) isotro-
pic insulating layers with open boundaries can be
derived from a formula for m layers with a recursive
coefficient Rm + 1. If the number of layers is M, RM + 1 =
1. To derive an electrical boundary condition for M lay-
ers, it is necessary to sequentially derive expressions
for one, two, etc. layers until a formula for M layers is
derived.

3.2. Short-circuited interface. If one of the inter-

faces, X3 = , is covered by a metallic layer of infin-
itesimal thickness and short-circuited, the electrical
states of all interfaces further from the substrate are of
no significance, since the electric field beyond the

short-circuited interface (X3 > ) is zero. The result
will be the same if m layers counted from the substrate
are insulating, the (m + 1)th layer is metallic, and all
other more distant layers are both insulating and metal-
lic in any combination.

If the substrate surface is short-circuited (X3 = 0),
the electrical boundary condition is defined by expres-
sion (7). If any other interface is short-circuited, X3 =

, the electrical boundary condition can be easily
obtained as follows. Using the recursive coefficients Ri

(i = 1, 2, 3, …, m), one obtains an expression for m insu-
lating open-boundary layers as was done above. Then,
the first term cosh(kb1hm) in the expression for Sm (i.e.,
for the layer preceding the short-circuited interface) is
left, while the second term with Rm + 1 in the denomina-
tor is set equal to zero. The resulting expression corre-

sponds to the zero potential on the surface X3 = .
For example, if the outer boundary of the second layer

is short-circuited, X3 =  (that is, ϕ(2) = 0), we find
that the electrical boundary condition coincides with
(12a) but (12b) should be replaced by S2 = kb1h2).
The total number of isotropic layers M > m in this case,

X3
m( )

X3
m( )

X3
m( )

X3
m( )

X3
2( )

(cosh
and the electrical states of all more distant surfaces are
of no significance for electrical boundary conditions.

SOLUTION OF EQUATIONS FOR BOUNDARY 
CONDITIONS

Having stated all the boundary conditions, we come
to a set of linear homogeneous equations for the
unknown coefficients Cn:

(15)

The number of equations and the number of
unknowns (N) equal to the total number of partial
modes in all the system’s components. Set (15) may
have a nontrivial solution only if the complex determi-
nant made up of the coefficients of this set equals zero.
To find the zero of the boundary condition determinant,
we applied the global search method [6] to find an
extremum of a function of two variables (velocity V and
coefficient δ). As an objective function, we used the
absolute value of the boundary condition determinant
squared (|d|2).

The velocity V and coefficient δ can also be deter-
mined by the Adler technique [7], which is based on
effective permittivity analysis. Let all the layers are
piezoelectric. Then, the electric boundary condition at
the outer boundary of the top layer (of number M) is
stated either as the continuity of the normal component

 of the induction vector for the open surface or as
the continuity (vanishing) of the potential ϕ(M) for the
short-circuited surface. The induction and potential

a11C1 a12C2 … a1NCN+ + + 0,=

a21C1 a22C2 … a2NCN+ + + 0,=

…………………………………
aN1C1 aN2C2 … aNNCN+ + + 0.=

D3
M( )
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may be combined into one quantity as [7]

(16)

The wavenumber k here is added to match the
dimensions of the left- and right-hand sides. The coef-
ficient b1 appears if pseudosurface waves are consid-
ered. In such a representation, the continuity condition
for the induction or potential is replaced by the equiva-
lent continuity condition for the effective permittivity.
For an open surface, the effective permittivity is ε0; for
a short-circuited one, it is infinitely large (the permittiv-
ity of a metal). Having substituted potential (3) and
induction (9) for the Mth layer into (16), we arrive at

(17)

The upper equality in (17) is totally equivalent to
Eq. (6). The lower one is equivalent to Eq. (4c) if m =
M and the right-hand side is set equal to zero. The abso-
lute value of (17) squared is used as an objective func-
tion in searching for the velocity V and the decay coef-
ficient δ. For an open surface, the solution corresponds
to the zero (minimum) of this function; for a short-cir-
cuited surface, to the pole. With piezoelectric layers,
the use of the effective permittivity is valid not only for
the outer surface of the top layer but also for any inter-
face. In the latter case, when considering an open sur-
face, one must take equal values of the effective permit-
tivity on both sides of the surface. For a short-circuited
surface, the potential of this surface should be set equal
to zero. Then, for the construction of the effective per-
mittivity, it is necessary to use the appropriate equation
from set (15). An objective function for isotropic insu-
lating layers can be constructed in the same way. In this
case, we have only one equation of electrical boundary
conditions, which is the continuity equation for the nor-
mal component of the induction on the substrate sur-
face. This equation is found in view of the continuity of
both electrical parameters (potential and field) on all
other surfaces (for the open substrate surface) or in
view of the zero potential on the short-circuited sub-
strate surface.

COMPUTATIONAL RESULTS

Based on the above approach, we implemented an
algorithm for computing the basic parameters of elec-
troacoustic surface waves propagating in multilayer

εeff

D3
M( )

kb1ϕ
M( )------------------.=

i Cn e3 jkα j
n( )bk

n( ) ε3 jα4
n( )b j

n( )–( ) ikb3
n( )X3

M( )[ ]exp
n NM 1– 1+=

NM

∑

b1ε0 Cnα4
n( )

ikb3
n( )X3

M( )[ ]exp
n NM 1– 1+=

NM

∑
------------------------------------------------------------------------------------------------------------------------------

=  
ε0

∞.


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structures. Figures 2 and 3 demonstrate the effect of
individual layers of various metals on the temperature
dependences of piezoquartz with the second Eulerian
angle [5] Θ ranging from 70° to 150° and the first and
third Eulerian angles being zero. These ranges of Eule-
rian angles correspond to piezoquartz orientations (YX,
AT–X, ST–X, et al.) that are most widely used in related
devices. Specifically, the two-dimensional depen-
dences of the temperature coefficient of delay (tcd) on
Θ and on the normalized (to the wavelength λ) Al and
Au layer thickness h are shown. The material constants
for Al and Au were taken from [8]. From Figs. 2 and 3
it follows that negative values of tcd can be compen-
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sated for by a metal layer of certain thickness. For
example, the orientation YX (Θ = 90°) can be stabilized
by applying an Al layer about 0.06λ thick on the quartz
surface. Figure 4 shows the effect of an isotropic insu-
lating fused quartz layer on the temperature behavior of
the same crystal orientations. The effect is seen to be
insignificant: the related isolines are arranged largely
normally to the Θ axis. This means that fused quartz is
promising as a protective layer against undesired envi-
ronmental (mechanical and chemical) impacts that
almost does not change the temperature properties of
the system (in particular, the thermal stability of the ori-
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entation ST–X, Θ = 132.75°, remains practically the
same).

A thin metal layer applied on an isotropic insulator
provides protection against electrical fields. The com-
bined effect of an isotropic fused quartz layer covered
by an aluminum layer is illustrated in Fig. 5, which
shows the two-dimensional dependence of the tcd on
the thicknesses of the fused quartz layer and aluminum
overlayer in the crystal–fused quartz–aluminum sys-
tem. The effect of the Al layer is significant; therefore,
its thickness must be small so as not to break the ther-
mal stability of the given orientation. Figure 6 plots the
wave velocity V0, temperature coefficient of delay tcd,
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and electromechanical coupling coefficient K2 (an
interdigital transducer on the layer surface) vs. the
thickness of lithium niobate LiNbO3 (0, 38°, 0) applied
on the open-surface quartz substrate (0, 100°, 0). It is
seen that K2 reaches a value of 3.85% and tcd goes to
zero near h/λ = 0.26. Thus, a LiNbO3 layer on quartz
may provide a combination of high K2, which is typical
of lithium niobate, and a high thermal stability, which
is inherent in quartz. Finally, let us consider the influ-
ence of a metal layer on the properties of pseudosurface
waves propagating in LiNbO3 (0, –49°, 0). For this ori-
entation, a second-order pseudosurface wave has the
following parameters: Vs = 7.9576 km/s, V0 =
8.3144 km/s, δs = 2.865 dB/λ, δ0 = 0.531 dB/λ, and K2 =
8.58%. The subscripts 0 and s refer to the open and
short-circuited surfaces, respectively. An aluminum
layer of finite thickness decreases losses. The depen-
dences of δs and Vs on the Al layer thickness are shown
in Fig. 7. As h/λ grows from zero to 0.047, the losses
decrease from 2.865 dB/λ to about 10–3 dB/λ. It appears
that the metal layer changes the wave propagation con-
ditions so that the angle at which the wave goes inward
to the crystal diminishes.

CONCLUSIONS
A general method for numerically calculating the

parameters of surface and pseudosurface acoustic
waves propagating in multilayer structures is sug-
gested. The structures involve piezoelectric, insulating,
TECHNICAL PHYSICS      Vol. 48      No. 10      2003
and metal layers on a semi-infinite substrate of any
crystal orientation. The effect of layers of different
materials on electroacoustic surface wave propagation
is studied. In a number of special cases, the thermal sta-
bility, electromechanical coupling coefficient, and
propagation losses for pseudosurface waves may be
improved. Various coatings in various combinations
may improve considerably the characteristics of acous-
toelectron devices.
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Abstract—Electron beams in storage rings of third-generation synchrotron radiation sources feature a low
emittance and extended lifetime. The provision of such characteristics requires a detailed study of higher order
effects related to magnetic fields and cooperative effects associated with beam density. Fringing fields, being
an unavoidable attribute of magnets of any type, may significantly affect the beam dynamics, since they appear
in equations of particle motion of first and higher orders. A simple technique for evaluating the effect of fringing
fields on the beam dynamics is suggested. Numerical results obtained with this technique for the quadrupoles
of the CANDLE storage ring [1] are reported. © 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

In this work, a new approach to studying the effect
of fringing fields on the beam dynamics is suggested. In
designing large accelerator rings, the fringing fields of
dipole and quadrupole magnets are usually ignored;
i.e., the so-called hard-edge model is used. The matrix
description of the beam dynamics provide vast infor-
mation on the particle motion and makes it possible to
estimate basic dynamic parameters. While mathemati-
cally correct, such an approach fails from the physical
point of view, since magnetic fields do not satisfy the
Maxwell equations in this case. More detailed investi-
gations show that fringing fields may cause aberrations
of different orders, have an adverse effect on the
dynamic aperture, shift the betatron oscillation fre-
quency, etc. This accounts for recently sharpened inter-
est in exploring fringing fields in accelerators (see [2]
and references cited therein).

Upon studying the beam dynamics in accelerators,
fringing fields in real magnetic systems are taken into
account with various simulation methods. In [3], the
magnet was split into small segments and matrix anal-
ysis was applied to each of them. In a more rigorous
analysis of fringing fields [4], they were simulated by
the Enge function and calculated in terms of differential
algebra. Finally, in [5], the study was based on the Lie
algebra. Each of the approaches has its own domain of
applicability, advantages, and disadvantages. Here, we
apply the canonical–variational method of analysis,
which involves the direct integration of canonical path
equations and the solution of a related set of variational
equations.

COMPUTATIONAL METHOD

The components of the magnetic field of a quadru-
pole that are obtained from the scalar potential (from a
1063-7842/03/4810- $24.00 © 21330
solution to the Laplace equation in the natural coordi-
nate system) can be represented in the form

(1)

where the primes mean differentiation with respect to
the longitudinal coordinate s.

A magnetic field gradient along the magnet axis is
described by the function [6]

(2)

where the fitting functions are given by

(3)

Here, R is the radius of a circle inscribed into a quadru-
pole magnet, I is the current in the magnet winding, and
L is the magnet half-length.

By properly choosing these parameters, one can
fairly exactly describe the field gradient of a real mag-
net with (2).

In view of the Hamiltonian of the problem in the
curvilinear coordinate system (x, y, s) related to the ide-
ally flat orbit of an equilibrium particle, the path equa-
tion for the particle can be represented in the matrix
form

(4)

Bx x y s, ,( ) G s( )y
1
12
------G'' s( ) 3x2y y3+( )– …;+=

By x y s, ,( ) G s( )x
1
12
------G'' s( ) x3 3y2x+( )– …;+=

Bs x y s, ,( ) G' s( )xy
1
12
------G''' s( ) x3y xy3+( )– …,+=

G s( )
µ0I

R2
-------- 9

8
--- f 1 t( ) f 3 t( )–

3
8
--- f 5 t( )+
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R2 t2+
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where Z t = [x, x', y, y'], F t = [F1, F2, F3, F4], and s is an
independent variable.

In the absence of solenoids in the magnetic systems,
the generalized velocities x' and y' play the role of
canonical momenta. The canonicity of set of Eqs. (4)
provides the simplecticity of their solutions. This
makes it possible to judge the stability of the particle
motion during many turns by integrating over one turn
of the particle in the ring. Below, we will follow the
method used in [7].

Set (4) is intimately related to a set of 16 linear vari-
ational equations

(5)

with the unit boundary conditions B(0) = I, where I is
the unit matrix.

The matrix of coefficients in (5) is found from (4) as

For one turn, the transition matrix B0 = B(s = L0) of
set (5) coincides with the Jacobian matrix for set (4).
This fact can be used to check the simplicticity of a
solution to (4). Solving the problem for the eigenvalues
of the matrix B0, one can calculate phase advances, the
fractional part of betatron oscillations, and other
dynamic parameters. The accuracy of calculation can
be checked by comparing the results obtained in the
hard-edge approximation with those of the matrix anal-
ysis.

NUMERICAL RESULTS

The magnetic system of the CANDLE (Center for
Advancement of Natural Discoveries using Light
Emission) storage ring allows for three types of quadru-
pole magnets. Their basic characteristics are listed in
the table.

Figure 1 shows the distributions of the normalized
gradients of these magnets where fringing fields are
simulated by a characteristic function like (3). Since the
quadrupole magnets of the CANDLE storage ring are
still under development, below we will use the distribu-
tion of the quadrupole lens gradients that is defined by
function (3). After magnetic measurements are com-
plete, the calculations will be applied to real magnets.

The working point of the betatron oscillation fre-
quency in the CANDLE, which was obtained based on
the data listed in the table, corresponds to (13.22, 4.26).
With the fringing-field effect taken into consideration
by using the canonical–variational method, the working
point shifts to (13.08, 4.11). The tracking of particles in
the ring showed that the position of the working point
is recovered to (13.22, 4.26) if the gradient of the cen-
tral quadrupole is increased by 0.39%; those of the hor-
izontally focusing outer quadrupoles, by 0.67%; and

B' s( ) A s( )B s( )=

A s( ) ∂Fi

∂Z j

-------- x 0; y 0,= = =

i j, 1 … 4., ,=
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that of the 0.16-m-long vertically focusing quadrupole,
by 1.48%. The relatively large increase in the gradient
of the quadrupole that focuses in the vertical direction
may be explained by two reasons. First, during the par-
ticle tracking, the gradient of the dipole magnet with
combined functions remained constant and the vertical
correction of the working point was accomplished by
the quadrupole magnet. Second, a short length of the
magnet (or, in other words, its large aspect ratio) causes
the extension of the fringing field region outside the
magnet and decreases the peak value of the gradient
(Fig. 1).

The horizontal and vertical chromaticities calcu-
lated in view of fringing fields were estimated as
−18.43 and –14.11, respectively. For the new quadru-
pole lens gradients that correspond to the recovered
working point, the respective chromaticities are –18.87
and –14.72, respectively. These values are slightly
lower than –18.91 and –14.86, which were obtained
without considering fringing fields.

To estimate the effect of fringing fields on the beam
dynamics in the ring, we compared the phase portraits
of horizontal oscillations with and without considering
the fields prior to increasing the gradients of the qua-
drupoles (Fig. 2).

Tracking was accomplished for one thousand parti-
cles per turn. This is equivalent to one thousand turns of

Basic parameters of quadrupoles NC CANDLE

Type L, mm K, m–2 G, T/m R, mm I(A)

QF 380 1.6497 16.5 35 82

QFC 500 1.703 17.0 35 84

QD 160 1.2896 12.9 35 64
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0.2

0

A

–0.4 –0.2 0 0.2 0.4
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Gqd

Fig. 1. Longitudinal distributions of the normalized quadru-
pole gradients: continuous line, quadrupole focusing cen-
tral; dashed line, quadrupole focusing; and dotted line, qua-
drupole defocusing.  qfc; – – qf; - - - qd.
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one particle. Bearing in mind that the damping time of
betatron oscillations in a storage ring is several milli-
seconds, we may assume that one thousand turns would
suffice to judge the stability of the motion over a longer

0.4

0.2

0

–0.2

–0.4

X, mrad
(a)

0.4

0.2

0

–0.2

–0.4
–2 –1 0 1 2

X, mm
–3 3

(b)

Fig. 2. Phase portraits of horizontal oscillations (a) without
and (b) with considering fringing fields at an amplitude of
10σ and zero energy spread.
time period. The diffused form of the phase portrait
when the fringing fields of the quadrupoles are taken
into account reflects the fact that the number of hori-
zontal oscillations approaches an integer resonance.

CONCLUSIONS

Our method of evaluating the effect of fringe fields,
which is based on the direct integration of canonical
path equations combined with the associated varia-
tional equations (canonical–variational method), makes
it possible to find a shift of the working point, as well
as the dynamic aperture, chromaticity, and other char-
acteristic parameters of the beam.

The numerical results obtained for the CANDLE
storage ring indicate that an increase in the quadrupole
magnet gradients by roughly 1% will recover the work-
ing point desired.
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Abstract—As shown for the first time by Rapis [7, 8], cracks appearing on the surface of an aqueous protein
solution upon its dehydration under normal conditions usually form the same pattern. In this work, a model of
processes responsible for the formation of this pattern is proposed. © 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION
In recent decades, the drying of various liquid sub-

stances, including colloidal suspensions, under normal
conditions (i.e., at normal temperature and pressure)
has been extensively investigated [1–6]. Such studies of
drops or films of substances differing in composition,
with their dimensions varying from several microns to
several centimeters, are necessary for solving a number
of technological problems. Drops of biological fluids,
however, have been studied inadequately in this
respect. The data presented in this paper concern the
behavior of aqueous solutions of various proteins, as
well as blood, upon natural drying. In other words, we
describe the behavior of this open system under natural
conditions.

As was indicated in [7], the drying of protein solu-
tions, including the complex of blood proteins, is little
understood. Namely, it remains unclear why the crack
pattern appearing on the surface of a drying protein film
acquires a quasi-cellular structure and why a helical
pattern of defects (fractures) is then formed within each
cell.

Such a behavior of protein films upon drying under
natural conditions has not been explained to date. Here,
we propose a model accounting for these observations.

EXPERIMENTS ON DEHYDRATION
OF PROTEIN SOLUTIONS

Experiments were performed with a variety of pro-
teins, including albumin, globulin, hemoglobin, cyto-
chrome, lysozyme, crystallin, etc. A protein solution
(water–protein system) was placed on solid substrates
made of wettable materials (glass, plastic, etc.). A total
of 8000 samples of protein films were studied [8]. It is
noteworthy that the general parameters of dehydration
depended mainly on the protein concentration in the
solution, while the qualitative characteristics of cracks
1063-7842/03/4810- $24.00 © 21333
were independent of the protein type: even the protein
complex of the normal blood serum produced phenom-
enologically the same crack pattern. However, this pat-
tern changed significantly in the case of disturbances in
the protein structure (denaturation) or other forms of
pathology.

These experiments with the protein solutions
(including the normal blood serum) allowed us to dis-
tinguish the following stages of their dehydration.

(1) Dehydration begins at the periphery of a drop
(film), and the vitrification front moves toward its cen-
ter. An example of a protein film at this stage is shown
in Fig. 1. The concentric rings observed may be associ-
ated with the formation of the stagnation point (see [2])
and its displacement in the course of drying or with the
generation of concentration standing autowaves [9].

(2) As the water evaporates, a daisy-like pattern
begins to form (Figs. 2–4). The daisy consists of cracks

Fig. 1. Initial stage of the natural dehydration of the film
formed by an aqueous protein solution.
003 MAIK “Nauka/Interperiodica”
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Fig. 2. Initial stage of daisy formation.

Fig. 3. Subsequent stage of daisy formation.

Fig. 4. Daisy pattern (final stage) and the initial stage of cell
formation.
that originate at the periphery of the drop and extend
toward its center, crossing the annular structures.

(3) At the next stage, the crack pattern acquires a
quasi-cellular configuration (Fig. 5) and this process
also goes from the periphery to the center.

(4) Next, helical fractures appear in each of the
cells. There may be both double (countertwisted,
Fig. 6) and single helices (Fig. 7).

Let us consider each of the stages separately.
(1) The initial stage of the dehydration of the aque-

ous protein solution takes approximately 10–20 min,
depending on the concentration, mass, and temperature
[7, 8]. In our experiments, the protein concentration N
ranged from 0.001 to 20%. The formation of the con-
centric circles at this stage is virtually independent of
N, and the sol behavior can be considered in terms of
the general approach to dehydration of such drops. As
was shown in [2], the field of hydrodynamic flow forms
in the drop, which is generally a shear flow with the
stagnation point (see [2], Fig. 12). Once the stagnation
point has formed, stagnation zones appear in its vicin-
ity, where sol particles are accumulated. As the drop
dries up, the stagnation point moves toward its center,
producing concentric circular areas with the increasing
concentrations of these particles.

On the other hand, such a distribution of the sol par-
ticle density may be due to the generation of standing
autowaves [9] as a result of interaction between the
direct flow (from the center to the periphery) and the
flow reflected from the drop edge or the surface flow
(from the stagnation point). Apparently, both processes
could be responsible for the formation of the concentric
pattern shown in Fig. 1.

Asymmetric particles, such as protein molecules or
protein clusters, present in sol solutions are eventually
aligned with the shear flow [10]. Therefore, the gel
resulting from the dehydration of a protein solution is
bound to possess the properties of a liquid crystal
because of a director appearing in it. Since protein mol-
ecules and clusters lack the center of symmetry, this liq-
uid crystal is a cholesteric or a C-type smectic [11].

(2) As the protein film is dehydrated, it cracks and
the cracks eventually form the daisy pattern shown in
Figs. 2–4. Such behavior of colloidal suspensions
(which our protein solutions are) upon dehydration is
described elsewhere [12]. The authors of [12] observed
daisy-like cracking at an ionic strength I below the crit-
ical value I = 0.18 mol/l at which the characteristic dry-
ing time is much shorter than the drop gelation time.
Since the conditions of protein film dehydration in our
work are similar to those in [12], we may assume that
the daisy in both cases forms in the same way: sol par-
ticles concentrate near the three-phase line, where the
highest stresses are generated. These stresses increase
with time (i.e., proportionally to the degree of dehydra-
tion), eventually leading to the formation of the charac-
teristic crack pattern. Note that, in protein solutions,
TECHNICAL PHYSICS      Vol. 48      No. 10      2003
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this process develops much more slowly than in the sols
studied in [12].

So far, we have considered the initial stages of pro-
tein film dehydration and compared our data with the
results of other experiments where the properties of
suspension drops at these stages have already been
observed and analyzed. However, the behavior of pro-
tein films at subsequent stages of dehydration is
described only in our publications [7, 8].

(3) Quasi-cellular structure. Experimental data
show that, after the daisy has formed (this process takes
approximately 25 min), secondary fracturing begins in
its petals and the pattern of cracks eventually acquires
the quasi-cellular structure (Fig. 5). Like at the previous
stages of dehydration, this process goes from the
periphery to the center.

The formation of the quasi-cellular structure can be
explained as follows (note that, according to the exper-
imental data, the daisy remains unchanged, so that each
its petal may be studied separately). As was noted in
[12], the highest stresses in an evaporating suspension
drop arise at the three-phase line (point). During the
evaporation, the lower part of the drop begins to shrink
and simultaneously the film strongly adheres to the sub-
strate [8]. This causes stresses to arise at the petal
boundaries, leading to the formation of the quasi-cellu-
lar cracking.

(4) Helical fracturing within quasi-cells appeared in
all the experiments on drying films from the protein
solutions (with an initial protein concentration exceed-
ing 5%). The only difference is in the topological den-
sity of these structures: depending on the protein con-
centration, the number of helical “nuclei” per cell may
vary considerably (Figs. 6, 7).

The formation of helical structures in biological
media is an important problem. It should be noted,
however, that the scope of this problem is not limited to
biological media (see, e.g., [13]). Pseudoscalars that
emerge when describing systems with violated mirror
symmetry play a certain role in the generation of helical
macrostructures, and this role is now becoming clearer.
As follows from numerous sources (see [13] and Refs.
therein), media characterized by helicity or chirality
(one of the key features of nonlinear dynamics) are
unstable: when subjected to weak external distur-
bances, they pass to a new state with the formation of
large-scale structures. It may well be that the dehydra-
tion of protein solutions is also governed by the helicity
parameter, which is responsible for the helical crack-
ing. As was noted above, protein clusters in the pres-
ence of a fluid flow from the center to the periphery
become aligned with this flow. The medium acquires
liquid crystal properties and apparently retains them as
the solvent (water) evaporates, although it is known that
large-scale helical structures may be initiated by small
helical or chiral nuclei (see [14] and Refs. therein).

It is also very important that, in the case described,
neither protein molecules nor their conglomerates pos-
TECHNICAL PHYSICS      Vol. 48      No. 10      2003
sess mirror symmetry. All protein molecules are of
either right-handed or left-handed helices in this case;
however, their conglomerates may be of either type
(both right- and left-handed but, naturally, with vio-
lated symmetry). Thus, we distinguish patterns formed
on the microscale, where the symmetry of protein mol-
ecules is of crucial importance, and on the macroscale,
where the symmetry of protein conglomerates becomes
of significance. Therefore, the type of protein used in
the experiments is of minor concern.

MODEL OF SELF-ORGANIZATION

Let us consider a model of self-organization in pro-
tein solutions. Since protein conglomerates have no
mirror symmetry, small disturbances, which always

Fig. 5. Quasi-cellular pattern with incipient helical nuclei.

Fig. 6. Typical pattern of helical nucleus formation.
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occur in the system, make them unstable and this insta-
bility leads to the formation of helical structures in the
areas with the quasi-liquid-crystal properties. The free
energy of deformation in the case of a cholesteric liquid
crystal can be described as

(1)

where χi are Franck’s moduli, n is a director (a unit vec-
tor with a certain direction at a given point), and q is the
helicity parameter (in units of inverse length). In equi-
librium (Φ = 0), the director components have the form
[15]

(2)

i.e., they form a helical structure with the axis aligned
with z.

However, this is an equilibrium structure. Below, we
consider its transition to the helical state by analyzing a
nematic that lacks the symmetry plane for some rea-
sons. The equation of motion of the director has the
form [15]

(3)

Let the nematic be at rest; that is, its velocity V
equals zero or affects the motion of the director only
slightly. The quantity N = h/γ describes the director
relaxation in the molecular field, and γ is a coefficient
that has the dimension of viscosity. The molecular field
h has the form

(4)

Φ 0.5χ1 divn( )2 0.5χ2 n curln⋅ q+( )2+=

+ 0.5χ3 n curln×[ ] 2,

nx qz( ), nycos qz( ), nzsin 0,= = =

dni/dt Ni.=

h H n H n⋅( ),–=

Fig. 7. Another type of helical nuclei.
where

(5)

In equilibrium, h = 0. For a cholesteric, H is deter-
mined as follows:

(6)

Consider small fluctuations of the director: n = n0 +
n', where |n'| ! 1 (consequently, n0 · n' = 0) and n0 is
the undisturbed director, which remains constant
throughout the medium. In the linear approximation,
h' = H' – n0(H' · n0), where, as follows from Eq. (6),

(7)

For the fluctuation part of Eq. (3),

(8)

Assume that χi = const. Then, if n' corresponds to a
plane wave exp(iωt – ikr), the formula for h' takes the
form

(9)

where β = (n0 · k) (cf. [15]; problem 3 in Sect. 42).

Scalarly multiplying Eq. (8) by k and taking into
account Eq. (9), we obtain the dispersion relation

(10)

Here, two variants are possible.
(1) (k · n') = 0; hence, k ⊥  n'. Then, we find from

Eqs. (8) and (9) that

(11)

Note that β is parallel or antiparallel to n'. Therefore,
if n' = n'e (where e is the unit vector),

(12)

where θ is the angle between k and n0.

Let us choose the coordinate system where the
wavevector k is aligned with e3; in this case, the vector e

Hi ∂ ∂Φ/∂ ∂ni/∂xk( )[ ] /∂xk ∂Φ/∂ni.–=

H ∇ χ 1divn( )=

– χ2 n curln⋅ q+( )curln{
+ curl χ2 n curln⋅ q+( )n[ ] }

+ χ3 n curln×( ) curln× curl χ3n n curln×( )×[ ]+{ } .

H' = ∇ χ 1divn'( )
– χ2qcurln' curl χ2 n0 curln'⋅( )n0 qn'+[ ]+{ }

+ curl χ3n0 n0 curln'×( )×{ } .

∂ni'/∂t hi'/γ.=

h' χ1 k n0 n0 k⋅( )– } k n'⋅( ){–=

– χ2 β βn'( ) iq k n'×( )+{ } χ 3 n0 k⋅( )2n',–

iω χ1/γ( ) k2 n0 k⋅( )2–[ ]+{

+ χ3/γ( ) n0 k⋅( )2 } k n'⋅( ) 0.=

iωn' χ2/γ( ) β βn'( ) iq k n'×( )+{ }–=

– χ3/γ( ) n0 k⋅( )2n'.

iω k2/γ( ) χ2 θsin
2 χ3 θcos

2
+( )+{ } e

=  – iχ3/γ( )q k e×( ),
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has two components, which meet the relationships

(13)

It follows from Eqs. (13) that

(14)

hence, iω is an increment only if

(15)

It is apparent that, depending on the orientation of k
and n0, the boundary of the instability zone will vary
from k < qχ2/χ3 to k < q at θ = 0 and π/2.

(2) If (k · n') ≠ 0, we have

(16)

As the second and third terms of this equation are
positive, these modes decay. Thus, the appearance of
helicity makes the system unstable against the genera-
tion of large-scale structures in the director field. Note
that the extremum of the instability increment corre-
sponds to the modes with θ = 0 and π/2. With these val-
ues, the dependence of iω on the angle θ has a maxi-
mum at χ3 < χ2 and a minimum at χ3 > χ2. This fact may
be important when films of blood serum from sick per-
sons are analyzed. Helical structures in such films

iω k2/γ( ) χ2 θsin
2 χ3 θcos

2
+( )+{ } e1 = iχ2/γ( )qke2,

iω k2/γ( ) χ2 θsin
2 χ3 θcos

2
+( )+{ } e2 = iχ2/γ( )– qke1.

iω qχ2k/γ( )± k2 χ2 θsin
2 χ3 θcos

2
+( )/γ,–=

k qχ2( )/ χ2 θsin
2 χ3 θcos

2
+( ).<

iω χ1/γ( ) k2 k n0⋅( )2
–[ ] χ 3/γ( ) k n0⋅( )2+ + 0.=

Fig. 8. Film formed by the drying blood serum of a patient
with cancer.
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(Fig. 8) are formed very rarely, if at all. This can be
explained by different ratios of Franck’s coefficients χ2
and χ3, which may vary considerably in such films.

CONCLUSIONS

The model proposed in this paper describes the nat-
ural dehydration of films of aqueous protein solutions.
To date, this process has been poorly studied. While its
initial stages resemble the drying of sols and gels, the
formation of the quasi-cellular structure with helical
nuclei at its final stage has remained unclear. Our sim-
ple model separates out processes responsible for the
cracking pattern in a drying protein film. The point in
the model is the development of instability in the liq-
uid-crystal phase due to the helicity factor. The pattern
of cracks observed in the experiments depends appar-
ently on the ratio between the Franck’s parameters.
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Abstract—The operating principles, design, and characteristics of an ion source with a cold magnetron cathode
and magnetic plasma compression are described. The source is intended for the injector of a linear proton accel-
erator. © 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The ion source known as a duoplasmatron was
designed by Ardenne in 1949 [1]. Up to the present, the
duoplasmatron is one of the most widely used types of
ion sources. The reason for this is the following two
factors: the outstanding characteristics of this source
(the unsurpassed plasma density, low working-gas con-
sumption, and high efficiency) and the possibility of
further modifying it. The latter factor allowed one to
substantially improve the parameters of the source over
the past decades. A specific feature of the duoplasma-
tron is a two-stage plasma contraction: the geometric
contraction by means of narrowing the intermediate
electrode and the magnetic contraction by applying a
nonuniform magnetic field near the anode. All this
results in a substantial contraction of the discharge and
the production of a dense plasma. This feature provides
the higher ion emissivity and the lower working-gas
consumption of the duoplasmatron in comparison with
other ion sources.

A substantial modification in the duoplasmatron
was the employment of an expander [2] to extract an
ion beam from a large-area plasma surface, which
allowed one to substantially increase the beam current.
The next step in increasing the beam current was the
introduction of electron oscillations in the duoplasma-
tron in order to achieve an even denser plasma and a
higher gas efficiency, which made it possible to enlarge
the emission aperture [3]. The use of a three-electrode
ion-optical acceleration–deceleration system in such a
duoplasmatron allowed one to form hydrogen ion
beams with currents about one ampere [4]. The apply-
ing of permanent magnets (instead of electromagnets)
made it possible to reduce the energy consumption and
mass of the duoplasmatron [5].

Further, the duoplasmatron was modified to prolong
the time of its continuous operation, which is primarily
determined by the service life of the heater cathode. To
do this, attempts were made to replace the hot cathode
with a cold one. The use of different types of hollow
1063-7842/03/4810- $24.00 © 21338
cathodes made it possible to substantially prolong the
service time of the device [6, 7]. On the other hand,
those studies revealed serious disadvantages of a hol-
low-cathode duaplasmotron, such as the low gas effi-
ciency and the high breakdown potential. The use of a
multipin cathode [8] did not solve the problem of the
high breakdown potential, but raised the new problem
of the high impurity content in the generated ion beam,
because the ionization of the cathode-erosion products
attained 90%. Many of these problems were overcome
in a duoplasmatron with a cold magnetron cathode [9].
The studies on such a duoplasmatron have led the
authors to a new version of an ion source with a cold
magnetron cathode and magnetic plasma compression.
This type of ion source is intended for the injector of a
linear proton accelerator [10].

PHYSICAL PROCESSES IN THE SOURCE

The ion source with a cold magnetron cathode and
magnetic plasma compression consists of two main
units: a plasma generator (Fig. 1) and a system for
extracting and forming an ion beam. The plasma gener-
ator can be conventionally divided into three regions:
the magnetron (cold-cathode) region, the main-dis-
charge (magnetic-compression) region, and the
plasma-expansion region (the expander).

Glow discharge in secondary-emission cold cath-
odes is characterized by gamma-processes occurring
on the emitting metal surface when it is bombarded
(predominantly) by positive ions. This type of dis-
charge is self-controlled and self-sustained [11]. At a
fixed gas flow rate and fixed input power, the discharge
current and voltage are self-adjusted due to variations
in the emissivity of the plasma surface: when there is a
deficit of electrons maintaining the discharge, the dis-
charge current decreases and the discharge voltage
increases, and vice versa when there is an excess of
electrons maintaining the discharge. This effect allows
one to produce both high-voltage (a few kilovolts) and
003 MAIK “Nauka/Interperiodica”
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low-voltage (a few tens of volts) glow discharges. To
create an ion source with a low energy consumption, it
is necessary to minimize the discharge voltage. This
can be achieved in two ways: by increasing the number
of particles bombarding the emitting surface or by
enlarging the emitting surface itself. Both these meth-
ods were realized in a cylindrical reversed magnetron
cathode [12]. By introducing diaphragms into the cav-
ity of the reversed magnetron cathode and, thus, divid-
ing it into several cells, it became possible to enlarge
the emitting surface, increase the gas efficiency, and
achieve a more stable cathode operation [9]. The
tapered end of the magnetron cathode in the form of a
truncated cone transforms the annular beam into a
cylindrical one. This enables one to solve two prob-
lems: to further increase the gas efficiency and to equal-
ize and increase the density of the plasma flow entering
the main-discharge region from the cold-cathode
region.

In the main-discharge region, the plasma is com-
pressed into a thin column by a strong magnetic field,
so that it can penetrate through a millimeter aperture
into the expander. It should be noted that, near the inter-
mediate contracting electrode of the duoplasmatron, a
bubble-shaped electric double layer arises, which is a
source of fast electrons. Being accelerated in the field
of the double layer, the flow of these electrons substan-
tially increases the plasma density [13]. In sources with
a cold magnetron cathode, such a bubble does not form.
There, the double layer arises near the negative elec-
trode of the magnetron and accelerates the electrons
produced by secondary electron emission from the
cathode. For this reason, in this type of ion source, the
intermediate contracting electrode was excluded as
useless. It is known [14] that, in plasma ion sources
employing low-pressure discharges, charged particles
recombine primarily at the walls of the gas-discharge
chamber. The reduction in the area of the chamber
walls due to the exclusion of the intermediate electrode
led to an increase in the plasma density in the source.

After passing through the magnetic-compression
region, the plasma enters the expander, where it
expands. The plasma expander [2] is applied because
an intense high-quality ion beam cannot be extracted
from a high-density plasma. As the plasma expands, its
density decreases. In the course of expansion, a menis-
cus plasma boundary is produced, which forms the
extracted beam. The expander is a part of the plasma
generator and, at the same time, a part of the ion-optical
system (IOS) for extracting and forming the beam. In
the expander, the particle flow leaving the plasma gen-
erator is matched to the ion flow forming the beam. The
ion beams are best formed with a concave plasma sur-
face, and they are worst formed with a convex plasma
surface. There is a variety of expanders with different
sizes and designs. Among those are expanders with
conical or cylindrical geometry, with grids stabilizing
the plasma boundary, with flaps cutting the plasma
coat, etc.
TECHNICAL PHYSICS      Vol. 48      No. 10      2003
In the ion source described in this paper, we used a
conical expander with a smoothly varied angle. A con-
ical insert (Fig. 2) introduced in the expander served the
following purposes: (i) to form and stabilize the accel-

Fig. 1. External view of the plasma generator.

Fig. 2. Design of the ion source: (1) annular ferrite–barium
magnets, (2) electromagnetic valve for gas puffing,
(3) annular ceramic insulator, (4) magnetron anode, (5) cas-
ing of the magnetron cathode, (6) annular centering support,
(7) cathode diaphragms, (8) conical insert of the magnetron
cathode, (9) anode diaphragm, (10) protecting shield,
(11) collimating diaphragm, (12) emission electrode,
(13) conical insert of the expander, and (14) extraction elec-
trode.
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erating electric field and the concave plasma boundary;
(ii) to cut the plasma coat; and (iii) to reduce the area of
the plasma ion emitter, thus improving the beam emit-
tance. From the peripheral region of the conical insert,
the excess gas was removed in the radial direction,
which resulted in a substantial reduction in breakdown
events in the high-voltage gap. A magnetic field of
150 G in the expander hampered electron recombina-
tion at its walls; as a result, a negative space charge neu-
tralizing the positive space charge of the beam was pro-
duced in the high-voltage gap. Such an expander design
allowed us to form and extract 300-mA neutralized pro-
ton beams with the help of a two-electrode IOS. The
same IOS allowed us to extract partially neutralized
proton beams with a current above 1 A.

In the immediate future, a three-electrode accelera-
tion–deceleration IOS and a double-focusing electro-
static system will be applied in this ion source. The
three-electrode IOS (expander–extracting electrode–
decelerating electrode) creates a potential barrier for
the beam-plasma electrons drifting toward the source.
The barrier produces a virtual cathode for electrons
neutralizing the positive space charge of the ion beam.
This makes it possible to increase the intensity of a neu-
tralized ion beam. We note that, with a two-electrode
IOS, the return flow of the beam-plasma electrons was
accelerated in the high-voltage gap and melted down
the collimating copper diaphragm of the expander.

The double-focusing lens consists of two matched
lenses with different focal lengths. An advantage of this
lens is that it operates more efficiently that a single lens.
At the same time, this lens can also be supplied from
one power source.

The concept discussed above was implemented in
an ion source with a cold magnetron cathode and mag-
netic plasma compression, whose design will be
described below.

DESIGN OF THE SOURCE

Exclusion of the intermediate electrode from the
duoplasmatron allowed us to significantly simplify the
design of the new ion source (see Fig. 2). The magnetic
field is produced by three 16-mm-thick annular ferrite–
barium magnets. Two of these magnets have the same
polarity and produce a longitudinal field in the magne-
tron-cathode region. The third annular magnet has the
opposite polarity and produces a strong nonuniform
magnetic field, which causes the discharge to contract
near the emission aperture. As a cold cathode, we use a
reversed multicell cylindrical magnetron [9]. Its design
is the same as in the last version of the magnetron cath-
ode of the duoplasmatron. The cathode unit is a stain-
less-steel casing, into which the cathode components
(nonmagnetic washers and tubes) are inserted. The
washers act as diaphragms, and tubes serve as cross-
bars. They divide the casing cavity into six cells. The
casing is ended with an insert, which is a truncated cone
with an aperture 4 mm in diameter in its smaller base.
The casing is inserted into a centering annular support
made of a nonmagnetic material. The magnetron anode
is attached to the annular support through an annular
ceramic insulator. The anode is a cylindrical metal rode
tapered at the end. The working gas is supplied through
it by using an electromagnetic valve [15]. The cathode
unit is in the longitudinal magnetic field. The third
annular magnet, whose polarity is opposite to that of
the two first annular magnets, and the iron emission
cathode form the magnetic compression region. Such a
design allows us to produce a strong nonuniform mag-
netic field in a narrow contraction gap. The destination
of this field is the same as in a duoplasmatron. Figure 3
shows the longitudinal profile of the magnetic field pro-
duced with the help of the annular magnets described
above and the iron emission cathode. The emission
electrode serves the following three functions: (i) it
forms the magnetic field of a required configuration,
(ii) it acts as a main anode of the source, and (iii) it pro-
duces the conical cavity of the plasma expander. The
emission electrode is an iron disk of complicated
shape; it is attached to the third magnet. Its central con-
ical part is buried in the cavity of this magnet by 6 mm.
The central region of the opposite side of the disk forms
the conical cavity of the expander. The diameter of an
aperture in the cone vertex of the emission electrode is
2 mm. The cone vertex is adjacent to a 1-mm-thick cir-
cular copper insert (a collimating diaphragm) with a
1-mm-diameter collimating aperture. Another function
of the collimating diaphragm is to remove heat toward
the emission electrode. This diaphragm is joint to a
metal shield protecting the magnets from the plasma
particles and discharge radiation. In the conical cavity
of the expander with a smoothly broadening angle, a
conical insert is placed. Between the cavity and the
insert, there is a clearance to remove a portion of the gas
from the expander. The conical insert is attached via
three supports to the emission electrode and is at the
electrode potential. The insert follows the shape of the
expander cavity and, then, smoothly transforms into a
plane ring. The diameter of the insert aperture is
0.8 mm, and the length of the insert (from its end to the
collimating hole in the copper insert) is 9 mm. The
extracting electrode is attached through three ceramic
insulators to the emission electrode of the plasma gen-
erator. The diameter of the aperture in the extraction
electrode is 9 mm. The length of the accelerating gap
was varied from 8 to 11 mm.

DIAGNOSTIC FACILITY

The parameters of the ion beam generated by the
source were measured using a specific diagnostic facil-
ity.

To estimate the beam emittance, we used an angular
gauge of the following design. A 15-mm-diameter
metal tube with a base length of 350 mm was inserted
in a sectioned Faraday cup (FC) [16] with the entrance
TECHNICAL PHYSICS      Vol. 48      No. 10      2003
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aperture 60 mm in diameter. On the source side, the
tube was tapered and had a 0.1-mm slit, which cut out
a narrow jet from the beam. On the opposite end of the
tube, we placed a grid made of 0.2-mm wires. The
interwire distance was 0.2 mm, so that the grid step was
0.4 mm. The grid was specially shaped to facilitate
visual counting (Fig. 4). The grid was tight against a
quartz glass doped with some lanthanide [17]. The
glass served as an optical detector of the accelerated
ions, whose action manifested itself by bright strips on
the glass. From the number of these strips and the
known base length, we determined the angular diver-
gence of the ion jet. Behind the doped quartz glass, an
optical lens was placed for convenience of visual obser-
vation and counting of the bright strips.

The beam current was measured with the same sec-
tioned FC.

The current density profile was measured by a small
FC with the entrance aperture 1.1 mm in diameter.

The beam portrait was observed and measured with
the help of a glass doped with some lanthanide and cov-
ered with a grid for removing the accumulated electric
charge.

L, mm

48 mm

B B B

2000

1000

0

–1000

B, G

Fig. 3. Longitudinal profile of the magnetic field in the
source.
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The mass composition of the beam was measured
by a Dempster mass spectrometer [18]. A magnetic
field of up to 6 kG was produced by an electromagnet.

All diagnostic devices were mounted on a mobile
platform in a 1-m3 vacuum chamber. The platform
could be moved by electric motors in two orthogonal
directions (Fig. 5).

EXPERIMENTAL RESULTS

We investigated the performance of the ion source
with a cold magnetron cathode and magnetic plasma
compression in the pulsed operation mode. The pulse
duration varied from 1 to 100 µs, and the repetition rate
varied from 1 to 10 Hz.

As can be seen from the source design described
above, the magnetron cathode of this source differs
from the magnetron cathode described in [9]. The cath-
ode length was doubled, which allowed us to increase

4 
m

m

10.2 mm

∅ 15 mm

Fig. 4. Measuring rule at the end of the angular gauge: the
number of slits is 21, the slit width is 0.2 mm, the grid-wire
thickness is 0.2 mm, and the meander step is 0.4 mm.

Fig. 5. Arrangement of the source and the angular gauge
inside the vacuum chamber.
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the number of cells from three to six. The longitudinal
magnetic field was produced by two magnets instead of
one. The cathode diameter was increased from 19 to
22 mm. All this made it possible to considerably
enlarge the emitting area of the cathode and strengthen
the longitudinal magnetic field. As a result, the dis-
charge voltage was lowered from 400–500 to 250–
300 V and the working-gas flow rate was reduced from
10–12 to 7–9 torr cm3/pulse. The conical extension at
the end of the cathode unit, which serves as a dia-
phragm between the magnetron region and the main-
discharge region, allowed us to further decrease the gas
flow rate (from 7–9 to 5–7 torr cm3/pulse). Gas mea-
surements were carried out using the technique
described in [9].

1 2 3 4 5 6 7 8 9 10

S To scope

N

BM +_– _–+

Fig. 6. Power supply diagram of the source and the measur-
ing circuit: (1) magnetron anode, (2) magnetron cathode,
(3) modulator of the discharge power supply, (4) ballast
resistor of the auxiliary discharge, (5) ballast resistor of the
main discharge, (6) high-voltage rectifier, (7) source anode
(emission electrode), (8) extraction electrode, (9) sectioned
cone of the FC with a shield, and (10) angular gauge with
an optical lens.
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Fig. 7. Main-discharge current vs. ballast resistance in the
main-discharge circuit at a fixed ballast resistance in the
auxiliary-discharge circuit.
 Figure 6 shows the electric circuit of the ion source.
The negative terminal of the discharge modulator was
connected to the magnetron cathode, and its positive
terminal was connected through two parallel-connected
variable ballast resistors to the magnetron anode and
the emission electrode. The discharge excited by the
modulator operated in different regimes in different
regions of the plasma generator. The ion-source emis-
sivity depended exclusively on the parameters of the
contracted discharge, whose characteristics, in turn,
depended on the parameters of the discharge in the
magnetron cathode. For this reason, the contracted dis-
charge was called the main discharge and the magne-
tron discharge was called the auxiliary discharge. Vari-
ations in the ratio between the ballast resistances
resulted in variations in the ratio between the main and
auxiliary discharge currents. As was mentioned above,
both the amplitude and duration of the ion-beam cur-
rent extracted from the source were governed by the
main discharge. Varying the currents in the circuits of
the auxiliary and main discharges with the help of the
resistors, we could affect the source operation and the
ion-beam parameters. Thus, we revealed the following
feature: when the current in the magnetron circuit was
higher than the current in the main discharge Im > Ich,
we observed quiescent discharges with ion-beam cur-
rents up to 100 mA. For beam currents above 100 mA,
the optimum condition was Im < Ich. For this reason, the
operating conditions were chosen such that the resis-
tance in the auxiliary-discharge circuit was fixed and
equal to RM = 32 Ω , whereas the resistance in the main-
discharge circuit varied over a wide range (Fig. 7). The
required value of the beam current in the injector under
construction is 200–300 mA, which corresponds the
range of ballast resistances in the main-discharge cir-
cuit from 5 to 20 Ω.

At the minimum flow rate of the working gas (H2),
the auxiliary discharge in the magnetron was excited at
a potential of 400–600 V. As the working-gas flow rate
or the input power was increased, the main discharge
was excited; as a result, the distribution of the potentials
over the electrodes (i.e., the voltage and current distri-
butions along the discharge) changed. After the main
discharge was excited, the plasma filled the expander
and the ion-beam current began to be extracted (Fig. 8).
When intense ion beams were extracted, we usually
observed steplike initial distributions of the voltage and
current along the discharge. These steps are associated
with transitions from one form of a glow discharge to
another. The ion beam was extracted and formed when
the main discharge operated in anyone of its possible
forms, each corresponding to a “shelf” in the current
and voltage waveforms (Fig. 8). The source operation
can easily be adapted to the required form of the dis-
charge by changing the ballast resistances, regulating
the working-gas rate, or changing the power deposited
in the discharge with the help of the modulator. In this
case, the waveforms of the discharge and beam currents
acquired a rectangular (i.e., single-shelf) shape. The
TECHNICAL PHYSICS      Vol. 48      No. 10      2003
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auxiliary-discharge current could reach 100 A; how-
ever, under the optimum operating conditions of the
plasma generator, its value was in the range 5–30 A.
The main-discharge current could reach 200 A; how-
ever, for ion beams with currents of 200–300 mA, its
value was in the range 20–60 A. For low-current (below
50 mA) beams, the voltage across the main discharge
was maintained in the range 250–300 V. As the ion-
beam current increased, the voltage across the main dis-
charge decreased and the discharge current increased.
The increase in the discharge current was accompanied
by the change in the glow color from pale rose to red-
orange. At currents of the main-discharge above 100 A,
the voltage across it could decrease to 50 V. This corre-
sponds to an anomalous glow discharge rather than an
arc discharge. The transition of the magnetron dis-
charge into an arc was always accompanied by bright
blue bursts, which occurred very rarely in a multicell
magnetron cathode.

From the extensive literature devoted to duoplasma-
trons, it is known that, as the discharge current increases,

the percentage of H+ and  ions increases, whereas

the percentage of  ions decreases. The ion percent-
age also depends on the distance from the intermediate
electrode to the anode [19]. In the ion source under
study, this tendency was also observed, with the only
difference that the ion percentage depended on the dis-
tance between the emission electrode and the end of the
magnetron cathode (i.e., on the length of the main-dis-
charge region). With a 1-mm gap, the proton content in
the beam reached 40–45%. With a gap length of 6–
8 mm, the proton content in the beam reached 75–85%,
the other discharge parameters being the same. When
the distance between the anode and the magnetron cath-
ode was less than 3 mm, the plasma freely flowed out
from the magnetron region into the main-discharge
region of the plasma generator. When the distance
between these electrodes was longer than 3 mm, the
plasma flow was impeded and the plasma generator
operated unstably. This fact provides indirect evidence
that the plasma bubble does not form in the cone of the
magnetron cathode. To provide the stable operation of
the ion source, a diaphragm with an inner diameter of
4.5 mm was placed at a distance of 1 mm from the cone
end of the magnetron cathode. The diaphragm was at
the anode potential. Due to this diaphragm, the electric
field in the gap between the magnetron cathode and the
anode diaphragm was sufficient to maintain a stable
plasma flow from one region to another. This provided
stable ion-source operation at any distance between the
magnetron cathode and the emission electrode. Under
certain operating conditions, relaxation oscillations of
the current and voltage of the main discharge arose. The
frequency of these oscillations was several tens of kilo-
hertz, and their modulation depth attained 10%. These
oscillations gave rise to the beam-current oscillations
with the same frequency. These oscillations were sup-
pressed by changing the operating conditions of the

H3
+

H2
+
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main discharge. It should be noted that, when the dis-
tance between the magnetron cathode and the emission
electrode was longer than 3 mm, the main discharge
was often unstable and the discharge current exhibited
relaxation oscillations. This can be attributed to the
change in the strength and distribution of the electric
field. Applying the above diaphragm led to the stabili-
zation of the main discharge.

The conical expander that was used previously in
the duoplasmatron operated unsatisfactorily. The
improvement of various components of the duoplasma-
tron, including the expander, resulted in the creation of
a new type of ion source. The design of the modified
conical expander and the physical principles underly-
ing its operation were described above. Here, we only

MDAD
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Fig. 8. Waveforms of the (a) discharge voltage, (b) dis-
charge current, and (c) ion-beam current; AD and MD stand
for the auxiliary and main discharge, respectively.
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Table

Main-discharge 
current, A

Beam current 
measured by
an FC, mA

Beam
diameter, mm

Number
of bright strips
in the angular 

gauge

Length of two 
opposite sides, 

mm

Divergence 
angle of an ion 

jet, rad

Normalized
ε, m rad

18 120 20 3 1.4 4 × 10–3 2 × 10–7

22 150 22 4 1.8 5.1 × 10–3 2.85 × 10–7

40 200 31 8 3.4 9.7 × 10–3 7.5 × 10–7

60 300 43 11 4.6 13.1 × 10–3 1.4 × 10–6
point out one of its advantages over the expander
employed previously in the duoplasmatron. With the
previous expander, it was impossible to apply an
extraction voltage higher than 45 kV to the high-volt-
age gap because of frequent breakdowns. In contrast,
with the modified expander, we could apply the extrac-
tion voltage as high as 70 kV to the high-voltage gap.
The two-electrode system for extracting and forming
the beam with the previous expander produced highly
diverging beams, whose diameter at a distance of 15 cm
from the source reached 180 mm. The two-electrode
system for extracting and forming the beam with the
modified expander allows one to produce weakly
diverging beams, whose diameter at a distance of 15 cm
from the source does not exceed 45 mm. This fact evi-
dences that a concave meniscus does form in this type
of expander. The parameters of the ion beam were mea-
sured in four different operating modes of a source with
a two-electrode IOS at an extraction voltage of 45 kV.
The aim of these measurements was to estimate the
main characteristic of the source, namely, the beam
emittance. The beam emittance was estimated roughly;
in fact, it was somewhat overestimated, because the
beam cross-sectional area was assumed to be equal to
the area of a rectangle circumscribing the ellipse,
instead of the area of the ellipse itself. In the center of
the beam, in one transverse phase plane, a small jet was
cut out from the beam with the help of a slit. Then, the
jet divergence and the beam diameter were measured.
The beam emittance was calculated by multiplying the
jet divergence by the beam diameter and dividing the
product by 4. In this manner, we estimated the emit-
tance of the total current of the axially symmetric beam.
The normalized emittance is given in the table.

We also conducted an experiment intended to esti-
mate the maximum source emissivity. At a main-dis-
charge current of 100 A, the beam current measured by
an FC was about 2 A; however, the beam had a rather
poor quality and exhibited strong current oscillations,
which were accompanied by strong breakdowns in the
source. This result is still to be verified.

When the source operated in a repetitive mode with
an off-duty factor of 1000, no cooling was needed.
However, when this factor was decreased to 100, it was
necessary to cool the source.
At magnetron-discharge currents lower than
500 mA, the plasma generator could also operate in a
continuous mode without cooling. The generator was
powered from a BP-100 power source of a magnetic
electric-discharge pump. We expect that, at higher input
powers, but with a proper cooling, the ion source with
a cold magnetron cathode and magnetic plasma com-
pression will be able to generate continuous intense ion
beams.

CONCLUSIONS

The ion source with a cold magnetron cathode and
magnetic plasma compression is more advantageous
than a duoplasmatron with the same cathode, because it
has a simpler design, the higher gas efficiency, the
higher emissivity, and the higher quality of the
extracted ion beam.

The study of this ion source is still in progress. We
plan to test the source with a new three-electrode accel-
eration–deceleration IOS and a double-focusing lens.
Our estimates show that, in this case, the quality of the
beams extracted from the source will improve and it
will be possible to extract more intense beams with sat-
isfactory parameters. In order to extract more intense
beams, it will also be necessary to optimize the sizes of
the expander and the conical insert. The optimization of
magnetic fields in the plasma generator can lead to a
more stable operation of the source in the regime of
extracting intense ion beams.
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Abstract—A method of acoustic response analysis to identify an echo signal source is suggested. It is based
on the construction of the echo signal image in the phase space and on contrasting the dynamic process with a
discrete set of states. A test for identity is worked out by comparing the discrete states of the echo signal from
an object to be identified and the states typical of the echo signal from a known object. © 2003 MAIK
“Nauka/Interperiodica”.
The composition of an acoustic echo signal is usu-
ally analyzed by the methods of Fourier and wavelet
expansions. In this case, a test of identity of object, i.e.,
sources of response, is found by comparing the coeffi-
cients of the echo signal expansion for given parame-
ters of external excitation. In this paper, we suggest a
method of object identification from an echo signal that
is based on the analysis of a discrete set of dynamic sys-
tem states [1, 2] and work out a test for identity.

We use the method to work out a test of identity of
or difference between objects that are the sources of an
acoustic echo signal. Let there be necessary to find the
qualitative difference between two blades of the inter-
mediate stage of a high-pressure compressor (Fig. 1a).
The parts have standard dimensions but different geom-
etries. An acoustic signal is generated when a striker
hits the blade. The striker represents an inclined trough,
in which a steel ball rolls down (Fig. 1b). The blade is
mounted in a suspension, which reproducibly returns
the blade to the same position relative to the striker and
has a low damping factor.

The collision of the ball with the fixed blade gener-
ates acoustic vibrations, which are perceived by a
capacitance microphone connected to the sound card of
a computer. The power spectra of the acoustic signals
from the first and second blades had the same structure
but separated from each other along the frequency axis
(Fig. 2).

THE FUNCTION OF NUMBER 
OF DYNAMIC SYSTEM STATES

To investigate an acoustic signal carrying informa-
tion about an object, the function of number of dynamic
system states is applied [1, 2]. Let us consider the
image of a dynamic process u(t) in the phase space
using two dimensions for the sake of simplicity. The
1063-7842/03/4810- $24.00 © 21346
values of the function u(ti) at discrete time moments ti
are plotted along the longitudinal axis, and the differ-
ence u(ti) – u(ti – 1), along the transverse axis [1, 2]. In

1
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(a)

(b)

4

3

1

2

5

Fig. 1. (a) Compressor blades and (b) scheme of the exper-
iment: (1) blade, (2) suspension, (3) trough, (4) steel ball;
and (5) microphone.
003 MAIK “Nauka/Interperiodica”
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the general case, the dimension of the phase space of
embeddings is determined by the Hausdorff dimension
of the attractor.

Let us introduce a set of states of the dynamic pro-
cess considered and cover the attractor projection onto
the phase plane by a grid with J and K meshes in the X
and Y directions, respectively (Fig. 3). The mesh sizes
are ∆X and ∆Y [1, 2]. The attractor point in a mesh (j, k)
is assigned to a system state with the number (k – 1)J + j.
Thus, a state of the dynamic system is described by a
range ∆X of the function values and, up to a factor, by a
range of rate of function variation ∆Y. A state of the system
in the multidimensional phase space is specified by the
attractor point falling into a certain cell of the hyper-
cube. To render our analysis efficient, the cells must be
out of the regions of saturation and poor statistic [3].

We construct the function of number of dynamic
system states as follows: at a current time instant, the
function increases by unity if the state being analyzed
is outside some base set. Depending on the depth of
analysis, by a state we mean either a state N(ti) at a cur-
rent instant of time ti or a set of states (N(ti), N(ti – 1),
N(ti – 2), …, N(ti – n)) that includes a number of preced-
ing instants of time. The function of number of states
thus defined responds to a change in the amplitude and
frequency of a series realization in values in the base
set. The sensitivity of the function may be varied in a
wide range by appropriately selecting the dimension of
a phase curve being analyzed (a phase curve in the
space of embeddings or its projection) and the mesh
sizes in the grid covering the area occupied by the phase
curve. The sensitivity of the function also depends on
the depth of the analysis, which may vary in time.

FORMATION OF THE BASE SET

A base set, with reference to which a new current
state is defined, is formed during the analysis of the
series realization of the signal and is complete if all (or
almost all) its possible states are exhausted within a
finite interval of time. When investigating an acoustic
response to an external excitation, we will form a base
set from states occurring in a number of blade-striker
collisions. Consider how the rate of increase of the
number of new states depends on the number of colli-
sions. Let the function of number N of states increase
by unity at a time instant ti if a new state was previously
absent. Otherwise, the function N remains unchanged.
Simultaneously with the function, a base set, to where
the current new state is added if it causes N to increase,
is constructed.

ANALYSIS RESULTS

The function of number of states and the signal from
the microphone in a series of collisions with blade 1
(the first eleven strikes) are shown in Fig. 4a. The rate
of increase of the number N of new states decreases
with every strike; i.e., new states are added to the base
TECHNICAL PHYSICS      Vol. 48      No. 10      2003
set, training the system. The relation between the num-
ber of new states and the serial number of a strike was
obtained by the least squares method as applied to a
power function. It turns out that the rate of system train-
ing is described by the Zipf law ∆N ≈ A/n(1 + α) [4],
where A = 573, α = 0.38, and n is the strike serial num-
ber (Fig. 4b). In this case, the Zipf alphabet is formed
by a set of system states in the discrete phase space.
Each of the states has its own repetition rate, which
specifies the state rank in the base set [4].

The autoregressive scheme of increase of the state
number, ∆N = A/n(1 + α) + ε(n), where ε(n) is the noise
term, allows one to estimate the rate of system training
[5]. If the increment of the number of states that are new
for the basic set differs considerably from the value pre-
dicted by the autoregressive scheme, one can conclude
that properties of the object have changed or its
attributes do not fit the base set. For example, in Fig. 4a,
the last strike was on blade 2 with the previously estab-
lished parameters of excitation and fixing; as a result,
the increment of the number of new states is much

4.12

3.12

2.12

1.12

1

F, arb. units

2 3 4 5
f, kHz

0.12
6 7 8 9

Fig. 2. Vibration power spectra for blades 1 and 2. The spec-
tral lines of blade 2 (solid lines) are shifted to the left from
those of blade 1 (dashed lines).

k

K

j J

1

Fig. 3. States space of the dynamic system. (1) State (k – 1)J + j.
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greater than predicted by the autoregressive scheme for
blade 1 (Fig. 4b).

The results of system training aimed at recognizing
the attributes of blade 2 are shown in Fig. 5a. The rate
of training is given by the relationship ∆N ≈ A/n(1 + α),
where A = 610 and α = 0.37 (Fig. 5b). After the system
training has been complete (this means that the number
of new strike-induced states decreased), blade 2 was
replaced by blade 1. This led to a sharp increase in the
number ∆N of new states, which is inconsistent with the
autoregressive scheme (Fig. 5a).

Thus, a function defined on a discrete set of states in
the phase space of a dynamic system may be used to
construct a system for recognizing objects with differ-
ent geometric or structural features. In this case, the test
for identity of or difference between objects is an incre-
ment of the number of acoustic response states that are
new for the base set. The resolution of this function
depends on the dimension of the space where the anal-
ysis is carried out; the depth of analysis, which may
vary with time; and mesh size of the grid covering the
area occupied by the phase curve. With the state-defin-

1000

500

0 1.8 3.6 5.4 t, s

N, arb. units
(a)

400

0 2 6 8 n

∆N, arb. units
(b)

4

*

*

* * * * * * *

∆N = 574/n1.38

Fig. 4. (a) Function of number of states and a series of
strikes on blade 1; (b) number of new states as a function of
the strike number.
ing parameters properly adjusted, this function reveals
the number of states that are new for the base set of
states and also time instants at which the number of
states increases. This allows one to find qualitative dif-
ferences in the properties of objects responding to
external excitation.
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Abstract—Modifications in the structure and electrophysical properties of ZnSe crystals subjected to a high
alternating electric field of industrial frequency are investigated. It is established that such an action changes
their defect structure and dielectric parameters. The latter exhibit different dependences on temperature and
photoexcitation wavelength. The modifications are caused by ionic conduction, which is associated with local
anomalies in the electric and elastic subsystems of the crystals. © 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Investigation of external actions on the properties of
solids may help in the understanding of the attendant
processes, elucidation of the mechanisms behind phe-
nomena observed, and control of the physical proper-
ties. Despite extensive research on the electrophysical
properties of different materials, the effect of strong
electric fields on the structure and properties of real
crystals still remains little studied. In any case, we are
not familiar with relevant works concerning II–VI com-
pounds. This paper is an attempt to fill the gap in this
field.

EXPERIMENTAL

The samples used were 5- to 6-mm-thick plates
cleaved from bulk ZnSe crystals along the (110) planes.
The ZnSe crystals were grown from melt in the argon
atmosphere under a high pressure. The surface area of
the samples was 500–700 mm2. To these surfaces, an
alternating electric field of industrial frequency was
applied for 8 h. The intensity of the field reached 4 ×
104 V/cm.

The permittivity ε' and loss tangent tan δ were mea-
sured by R571 and R589 standard ac bridges in the fre-
quency range of 102–104 Hz.

The crystal perfection was investigated by the X-ray
diffraction method. Diffraction curves were taken using
CuKα1 radiation. We used both the symmetric (220)
and (440) reflections, which do not broaden in the pres-
ence of stacking faults, and {111} reflections, which
are sensitive to stacking faults, on the condition that h +
k + l = 3N ± 1, where N = 0, 1, 2, … [1].
1063-7842/03/4810- $24.00 © 21349
If a ZnSe crystal represents a polysynthetic twin, its
(110) stereographic projection also contains traces of
two extra (111) planes. The rotation of the inclined
sample about the normal to the sample surface enables
us to take all four (111) diffraction reflections. From
their relative intensity, one can judge the concentration
of blocks of a certain orientation, whereas the total
width of a diffraction curve, β = IR/Im (IR is the integral
intensity and Im is the maximum intensity), is a measure
of the misorientation of mosaic blocks and concentra-
tion of stacking faults. The diffraction geometry used in
[2] (the rotation of a crystal about the diffraction vector
in the case of asymmetric Bragg reflection) makes it
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Fig. 1. β and IR parameters (without corrections for the dif-
fraction spread of the primary beam) of diffraction curves as
functions of the glancing angle α of the primary beam.
Curves 1, 3 and 2, 4 are taken from the crystal in the initial
state and after the action of the alternating electric field,
respectively. (110) ZnSe, (111) reflection, CuKα1 radiation.
003 MAIK “Nauka/Interperiodica”
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Fig. 2. Diffraction pattern from twins in the (110) ZnSe crystal ((111) reflections). The crystal is fixed, α ≈ 1°, and the detector scans
the crystal within 2θ. Panels (a, c) and (b, d) refer to twin interlayers in the initial state of the crystal and after the action of the field,
respectively. Angles ϕ are measured on the scale of a GP-14 attachment (CuKα1 radiation).
possible to vary the thickness of a layer being analyzed.
At glancing angles of the X-ray beam (α ≈ 1°), a con-
siderable part of the sample surface is irradiated and
one can obtain an analog of the twin structure topogram
by scanning a narrow-slit detector.

RESULTS
The X-ray examination showed that the application

of the alternating electric field adversely affects the
crystal perfection of the ZnSe samples, as demon-
strated by an increase in IR and β for all the (111) reflec-
tions. In a number of cases, the value of IR increases by
60% and β by 160% compared to their initial values.
The dependences IR(α) and β(α) which characterize the
distributions of these quantities across the layer being
analyzed are shown in Fig. 1. However, for other (111)
reflections, IR and β vary nonmonotonically. This sug-
gests that, both near the surface (1–5 µm) and at a depth
TECHNICAL PHYSICS      Vol. 48      No. 10      2003
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of 20–30 µm, which is accessible for CuKα radiation,
the competing processes of generation and annihilation
of defects take place. 2θ scanning made it possible to
detect new stacking faults and also the migration of
twin interlayers. The migration shows up in a shift of
the peaks and in the redistribution of the reflection
intensity from separate blocks forming the polysyn-
thetic twin. This is shown in Fig. 2.

The transformation of the defect structure in the
crystals that were subjected to the alternating electric
field is accompanied by the modification of their elec-
trophysical properties: the low-frequency values of ε'
and tan δ increase by 50 and 120%, respectively. The
run of the temperature dependences of these parameters
also changes (Fig. 3), but their weak frequency depen-
dences in the frequency range mentioned above
remains unchanged.

The alternating electric field also changes the photo-
electric properties of the ZnSe crystals in the entire
spectral range of photosensitivity. As a rule, one may
observe a shift not only of the intrinsic maximum
(λm1 = 0.470–0.485 µm) but also of the impurity maxi-
mum (λm2 = 0.535–0.575 µm) in the spectral depen-
dences of the permittivity and dielectric loss factor ε" =
ε' ×  (Figs. 4 and 5, respectively). However, the
features of the photodielectric effect in the sample are
more evident in the dependences ε'(λ) and ε"(λ) repre-
sented in the form of a diagram on the complex plane
[3]. Curvilinear or linear sections on the diagram corre-
spond to the relaxation oscillator groups specified by
the configuration of internal electric fields and distribu-
tion of nonequilibrium carriers over the crystal volume.
Our experiments indicate that the application of the
alternating electric field changes the sequence of the
curvilinear and linear sections in this diagram, as well
as the wavelengths at their edges (Fig. 6).

DISCUSSION

Initially, all the samples subjected to the alternating
field were characterized by a high concentration of twin
boundaries, dislocations, and stacking faults, which
broaden considerably both the symmetric, (220), and
asymmetric, (111), reflections. The defects formed dur-
ing the growth and subsequent cooling of the ingots.
Here, the basic source of the defects seems to be ther-
moelastic stresses, the nonuniform distribution of
which on cooling generates a nonuniform field of resid-
ual mechanical stresses. For a number of reasons (the
piezoelectric effect among them), large-scale fluctua-
tions of the electric potential (internal electric field)
also arose in the crystal. Note that these fluctuations are
not screened by free carriers at the test temperature
because of the large energy gap (Eg = 2.6 eV).

The dissipation of the alternating electric field
energy near the dielectric strength limit causes a num-
ber of interrelated processes associated with charge and
mass transfer (ionic current). These processes increase

δtan
TECHNICAL PHYSICS      Vol. 48      No. 10      2003
the general disorder in the system, including the num-
ber of defects in the crystals. Since structural defects
have a decisive effect on these processes, the quantita-
tive consequences of the action of the alternating elec-
tric field (residual changes in the elastic and electric
subsystems) are bound to be different in different sam-
ples. However, common to all the samples is the signif-

15

10

0 300 400
T, K

ε'

0.4

0.2

tanδ × 102

1

2

3

4 0.6

Fig. 3. Temperature dependences of ε' and tan δ in the initial
state of the crystal and after the action of the field (curves 1,
2 and 3, 4, respectively). f = 1 kHz.
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Fig. 4. Spectral dependences of ε' (1) in the initial state of
the crystal and (2) after the action of the field. f = 1 kHz.
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icant effect of local anomalies in both subsystems on
the processes occurring in them.

For example, in the case of the migration of intersti-
tial ions, the hopping frequency of an ion from one
equilibrium position to another is given by the expres-
sion [4]

ω ν ∆g/kT–( ),exp=

5

1

λ, µm

tanδ × 102

1

2

0.550.50

9

3

7

Fig. 5. Spectral dependences of tan δ (1) in the initial state
of the sample and (2) after the action of the field. f = 1 kHz.
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1
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Fig. 6. Spectral dependences of ε' and ε" on the complex
plane. Curves (1) and (2) were taken before and after apply-
ing the alternating electric field, respectively. The light
wavelength is (s) 465, (⊕ ) 470, (e) 475, (×) 490, (n) 510,
(m) 530, (*) 570, and (d) 590 nm.
where ν is the hopping frequency of an ion, ∆g is the
Gibbs free energy of activation, k is the Boltzmann con-
stant, and T is absolute temperature.

The elastic and electric fields near an inhomogene-
ity, influencing ∆g, may rise the hopping frequency of
ions in a certain direction. As a result, the ions migrate
(perhaps, in several hops) to the position where the
value of ∆g is much greater in any direction. In essence,
the case in point is the trapping of an ion by a defect. As
a result, the defect changes its configuration. Note that
other physical processes associated with the ion migra-
tion (be it diffusion due to elastic stresses [5] or an elec-
tric field [6] or energy transfer by the relay-race mech-
anism [7]) are also responsible for the transformation of
the defect structure. The motion of twin boundaries also
becomes possible if we give up the assumption that the
interface between blocks is atomically smooth. Indeed,
a section oblique to the (111) plane that is normal to the
[111] twinning axis showed curved (i.e., steplike)
traces of twin boundaries on the surface.

As was mentioned above, because of different
defect structures, as well as different internal electric
and elastic field configurations, in the ZnSe crystals, the
modifications of their physical properties under the
action of the alternating electric field also differ. Com-
mon to all the samples is an increase in the dielectric
loss factor and, correspondingly, in the rate of the alter-
nating electric field energy dissipation. This fact testi-
fies to a relation between the transformation of the
defect structure and the modification of the electro-
physical properties, since it appears quite natural that,
as the structural disorder grows, so do the dielectric
losses in the crystal. The increase in the electrical per-
mittivity, the stronger temperature dependence of the
dielectric loss factor, and the changed spectral depen-
dences of these parameters, reflect a new state of the
defect structure and internal fields after the external
action. In this state, the density of levels in the energy
gap rises and the interaction energy of traps changes.
One may suggest with caution that this new state is
related to a different phonon spectrum.

CONCLUSIONS

The application of a strong alternating electric field
to ZnSe crystals results in the transformation of the
defect structure and, as a consequence, modifies many
of their physical properties. However, the participation
of a variety of defects in the transformation makes it
difficult to separate out the dominating mechanism in
this process. An important problem to be tacked is the
instant the transformation of the defect structure is
complete. In a number of experiments, such an action
caused the formation of a conducting surface film,
which, screening the field in the bulk of the crystal, pre-
vented further transformations.
TECHNICAL PHYSICS      Vol. 48      No. 10      2003
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Abstract—Cleavage near microhardness indentations on the surface of corundum is found to appear long (20–
30 days) after unloading. © 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Microhardness testing is widely applied to study the
properties of corundum. Indentations, their variation,
and the behavior of the material around them have been
analyzed to investigate deformation mechanisms upon
loading [1–3], deformation anisotropy [4], the temper-
ature dependence of deformation [5], and acoustic
emission [6]. It has been repeatedly noted that indenta-
tions produced by a diamond pyramid on the surface of
corundum may contain cracks [2, 6–8]. Cracks appear
at many indentations when the load is 80–100 g; at
loads of 150–200 g, each indentation usually has sev-
eral cracks. The basic types of cracks detected are
shown in Fig. 1. If an internal crack running at an angle
to the indenter axis reaches the surface, cleavage is
observed near the edge of the indentation. Vertical
cracks decrease the strength of the material, whereas
inclined cracks cause cleavages; material separation;
and, thus, erosion of the surface.

In the works cited above, either the behavior of the
material was studied during loading or the indentation
was examined immediately after unloading. In this
work, we investigate the formation of cracks and cleav-
ages in corundum with emphasis on cleavage arising
near the indentation long after unloading.

EXPERIMENTAL 

The material under test was 8 × 1.4-mm single-crys-
tal corundum ribbons grown from melt by the Stepanov
method. The as-grown (1000) face of the crystal and the
(1000) surface prepared by grinding and polishing to a
depth of 0.2 mm were indented. A PMT-3 microhard-
ness meter with a Vickers pyramid was used to indent
15 × 8 × 1-mm corundum plates at a load of 200 g.
Microindentation was performed in air at room temper-
ature and normal humidity. Indentation, holding under
load, and unloading were carried out by the standard
method for 30–35 s. The length of the indentation diag-
onal was ≈14 µm at an indentation depth of 1.8–2.0 µm.
Vertical cracks and sometimes cleavage appear near the
indentations immediately after unloading. Visual
1063-7842/03/4810- $24.00 © 21354
observation and photos showed that new cleavages
arise continuously within 20–30 days after unloading.

Figure 2 illustrates the cleavage evolution in time
near six indentations after unloading. Early after inden-
tation, cleavage is detected near indentation 6 alone.
After 0.5 h, the only change in the pattern is the
increase in the cleavage area. Within 16 h, cleavage
near indentation 2 appears and the size of the cleavage
are near indentation 6 increases. In 17 days, cleavage
near indentation 5 appears and the shape of the cleav-
age area near indentation 6 changes further.

From Fig. 2, we may draw the conclusion that the
crack formation after unloading is to a great extent a
probabilistic process. Under the same load, cleavages
appear only near some of the indentations. From the

1

2

3
4

5

6

Fig. 1. Schematic of cracks forming near an indentation.
1, indentation; 2, radial cracks running normally to the sam-
ple surface; 3, lateral inclined crack; 4, median crack;
5, cleavage; 6, apparent contour of cleavage on the crystal
surface. 
003 MAIK “Nauka/Interperiodica”
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Fig. 2. Cleavage evolution on the surface of the corundum single crystal near the edges of indentations after unloading: (a) imme-
diately after unloading, the initial stage of cleavage near indentation 6; (b) 0.5 h after unloading, the size of cleavage near indentation
6 increases; (c) 16 h after unloading, cleavage near indentation 2; and (d) 17 days after unloading, cleavage near indentation 5 and
the change of the cleavage contour near indentation 6.
appearance of the initial indentation, one cannot predict
whether it will induce cleavage or not. For example,
bright regions, which are likely to be caused by stresses
or by incipient cracks, are visible near indentations 1
and 4 immediately after unloading; however, these
indentations do not produce cleavages with cracks
reaching the surface. On average, only 15–20% of
indentations induce cleavage after unloading.

Analysis of a large number of indentations allowed
us to construct the sequence of events involved in
cleavage after unloading (Figs. 3a–3d). At the initial
stage, radial cracks originating most often at the cor-
ners of the indentation are observed. Then, the crack
paths bend, and the cracks move toward each other.
Finally, the cracks meet each other to form a closed
cleavage contour. Later on, the region bounded by this
contour may separate from the crystal. Note that usu-
ally three cracks are involved in cleavage; one inclined
crack and two vertical ones, and the development of
only the latter two may be observed on the surface.

After unloading, usually one cleavage forms near
one indentation; however, two (Fig. 3f) and even three
cleavages may appear. Separating corundum particles
have the shape of a plate with a maximum thickness
(0.5–2.0 µm) in the region adjacent to the indentation
and a minimum thickness (tending to zero) away from
the indentation. The length of this plate is different for
different indentations and varies from 0.1–0.2 to 2–
2.5 times the indentation diagonal; i.e., it is at most 30–
35 µm. A large cleavage is shown in Fig. 3e. Here, one
comment is necessary. Before cleavage, this indenta-
tion was identical to its neighbors and had a standard
size of ≈14 µm. After cleavage, its apparent diagonal
grew to ≈18 µm. It is likely that the residual elastic field
near the indentation sharply changes upon cleavage,
TECHNICAL PHYSICS      Vol. 48      No. 10      2003
which leads to a change (increase) in the indentation
size.

The fracture (cleavage) surface was never mirror-
smooth. It had steps and breaks of random orientation
over a large area. The fracture surface near the thin edge
was often wavy, with “waves” propagating from the
indentation (Fig. 4).

Most of our observations of cleavage near indenta-
tions produced by the diamond pyramid were made on
Stepanov-grown corundum crystals. Some of the
experiments were carried out on the crystals annealed
in a vacuum at 1800°C. Also, we examined corundum
crystals grown from melt by the method elaborated in
the State Optical Institute (St. Petersburg). In all the
cases, the cleavage pattern long after unloading was the
same.

DISCUSSION 

Upon indentation, the energy of external forces is
partially spent to alter the material shape (indentation
formation) and to rupture the material (crack forma-
tion). The remaining part evolves as heat and is stored
as the energy of the residual elastic field. With corun-
dum, it was shown that the energy stored may do work
in the region adjacent to an indentation long after
unloading.

Since cleavage studied in this work can be consid-
ered as material fracture, two remarks are needed.

(1) Any fracture is known to follow plastic deforma-
tion [9], which is also true for such a brittle material as
corundum [5, 10]. However, a high binding energy in
Al2O3 (5–7 eV [11]) and a high activation energy of dis-
location motion (≈5 eV [12]) prevent the restructuring
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Fig. 3. Various cleavages formed near the indentations on the surface of the corundum single crystal after unloading. (a–d) The
stages of cleavage: (a) an indentation with many straight cracks originating at the indentation corners, no cleavage; (b) two cracks
bend toward each other; (c) the two cracks meet to form a closed cleavage contour; and (d) two indentations, the material at the
upper indentation separated from the crystal. (e) An example of a large cleavage (≈35 µm in size) and (f) indentations with one and
two cleavages.
of dislocation cores and dislocation motion at room
temperature.

(2) Water adsorbed on the crystal surface signifi-
cantly looses bonds in corundum. It was noted [10, 13–
17] that the hydrolytic mechanism of fracture is mostly
responsible for cracking in corundum upon loading at
near-room temperatures. This mechanism consists in
breaking Al–O bonds on the surface under the action of
atmospheric moisture. For example, the strength of
corundum in a vacuum at 10°C is higher than that in
humid air by 32% [10]. Water vapor affects the fracture
kinetics. Chen and Knapp [13] established that the
average service time of corundum ceramics in dry

10 µm

Fig. 4. Indentation with a wavy cleavage surface.
argon exceeds that in air of 50% humidity by four
orders of magnitude at the same stresses. In experi-
ments on cyclic loading of single-crystal synthetic
corundum, the fracture activation energy was found to
be 1.3 eV [14], which led them to assume that water
adsorbed upon fracture is of crucial importance. The
anomalous microcreep of corundum at room tempera-
ture [15] is related to moisture present on the surface of
the samples.

In view of the aforesaid, we may believe that crack-
ing and cleavage after unloading is due to residual ten-
sile elastic stresses at the crack tips. The plastic defor-
mation of the material is facilitated by the hydrolytic
mechanism of fracture in this case.

From our results, it follows that when analyzing the
microindentation of materials that are considered as
brittle, one should take into account the kinetics and
aftereffect of the process.

To conclude, one additional remark regarding the
abrasive treatment of corundum is necessary. The pol-
ishing of corundum diamond pastes or powders pro-
duces scratches, which cause cracks and cleavages on
the surface. It is natural to suppose that, as for indenta-
tion, cleavage with the separation of corundum parti-
cles near the scratches is also a long-term process; that
is, the final microrelief of the surface is established
within a certain time after the mechanical treatment.
For scratches ≈2 µm in depth, this time is about one
month.
TECHNICAL PHYSICS      Vol. 48      No. 10      2003
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