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Abstract—Nonclassical symmetries of the fourth-order nonlinear partial differential equation with dispersion
and dissipation are obtained and are used as a basis for deriving new exact solutions that are invariant with
respect to these symmetries. The equation describes the propagation of nonlinear long-wavelength longitudinal
deformations in an elastic rod placed in an external dissipative medium, the waves at the surface of a viscous
liquid, etc. The solutions describing running waves are investigated based on the classical symmetries of a
reduced version of the basic equation. It is shown that such solutions can be constructed within the class of ellip-
tic functions. © 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The goal of the present paper is to construct new
solutions to the nonlinear quasi-hyperbolic equation
with dissipation that describes the propagation of
deformation waves in a nonlinearly elastic rod placed in
a dissipative or an active medium [1]. The new solu-
tions are constructed based on the Lie symmetries
obtained for the equation. This quasi-hyperbolic equa-
tion contains fourth-order derivatives accounting for
the dispersion and a third-order derivative describing
the dissipation of energy into the environment through
the side surface of the waveguide. In view of the fact
that this equation, which is applicable to many prob-
lems about long-wavelength waves in a waveguide, is
complicated and universal, any exact solutions are very
important for applications and numerical experiments.
Exact solutions to differential equations that are invari-
ant under groups of point transformations are often
asymptotically stable attractors (in a certain functional
norm) of solutions to the initial- and boundary-value
problems for these equations.

The classical theory of Lie point symmetries for dif-
ferential equations describes the groups of infinitesimal
transformations in a space of dependent and indepen-
dent variables that leave the manifold associated with
the equation unchanged [2–4]. The contact transforma-
tions (the Lie–Baucklund symmetries) are generaliza-
tions of such symmetries and include transformations
of derivatives [2, 3]. However, the class of partial differ-
ential equations (PDEs) possessing nontrivial point or
contact symmetries is fairly narrow, which limits the
applicability of the method of classical symmetries.
1063-7842/03/4811- $24.00 © 21359
If the equation contains free parameters or arbitrary
functions, then, in some cases, it is possible to impose
such restrictions on them that the equation will possess
a nontrivial symmetry and thereby to construct the cor-
responding invariant solution. Since the relevant calcu-
lations are usually rather laborious, they can be conve-
niently carried out by means of symbolic computations.
In our work, we used the ALLTYPES computer soft-
ware package, which was devised earlier by one of
us [5].

Along with the method of symmetries, various
methods are often used in which exact solutions to non-
linear equations are sought in a straightforward way.
Some of these methods were proposed and considered
in [1, 6–9]. Generalizations of the methods of point and
contact classical Lie symmetries were also developed
[10–12]; it was shown that these new group methods
(involving nonclassical and conditional symmetries)
can produce new invariant solutions. In particular, it
was established that any reduction of the PDE to an
ordinary differential equation (ODE) or a set of ODEs
is equivalent to the existence of a nonclassical symme-
try possessed by the PDE [6, 11, 13]. However, mathe-
matically correct relationships between the method of
symmetries and the methods based on direct integration
of nonlinear equations are as yet undetermined.

In this paper, we will show that the nonlinear equa-
tion under analysis possesses classical and nonclassical
symmetries. Nonclassical symmetries lead to a new
exact solution that can describe both the effects of
relaxation of a dynamic load to a static stress and the
parametric oscillations of elastic stresses, whereas clas-
sical invariant solutions describe the running waves. We
003 MAIK “Nauka/Interperiodica”
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will consider several methods for constructing such
solutions; in particular, we investigate the classical
symmetries of the corresponding ODE for running
waves. The invariant solutions generated by these sym-
metries are derived in terms of Jacobian elliptic func-
tions with a fixed modulus.

CLASSICAL AND NONCLASSICAL 
SYMMETRIES

We consider the following nonlinear quasi-hyper-
bolic PDE with two dispersions and with dissipation:

(1)

Here, t is the time; x is the spatial coordinate along the
longitudinal axis of a finite cross section rod; and a, b,
c, and µ are constants dependent on the properties of
the waveguide and environment. The details of the der-
ivation of Eq. (1) can be found in [1]. In the absence of
dissipation (µ = 0), this equation describes the propaga-
tion of nonlinear longitudinal deformation waves with
the amplitude u(x, t) in a nonlinearly elastic rod and is
called the equation with two dispersions. Strictly
speaking, the amplitude u(x, t) is the x derivative of the
longitudinal displacement, i.e., the component of the
displacement gradient. The first term on the right-hand
side of Eq. (1) describes the elastic nonlinearity of the
waveguide, and the second and third terms account for
the dispersion of the waves due to the small (but finite)
cross section of the rod. It is assumed that the rod is
immersed in an external elastic medium and that the
reaction force at the rod surface has a dissipative
(active) component [1, 14]. Taking into account such a
contact between the rod and the environment and per-
forming some manipulations gives rise to the dissipa-
tive (active) term with the coefficient µ in Eq. (1) [1].
Equations analogous to Eq. (1) also arise in the theory
of waves at the surface of shallow water (in which case
the coefficient µ is proportional to the water viscosity)
and in some other applications.

In order to find the operators of classical and non-
classical symmetries possessed by Eq. (1), we consider
the vector field of infinitesimal transformations in the
phase space (x, t, u):

(2)

The functions u = u(x, t), which are invariant under
the infinitesimal transformations X, are, in essence,
solutions to an equation arising as the “invariant surface
condition”:

(3)

This condition is a first-order PDE for u(x, t). Let us
consider the space J4 with the Cartesian coordinates
(x, t, u, u(4)), where the symbol u(4) denotes the x and t

utt c2uxx– u2 auxx butt+ +( )xx µuxxt–– 0.=

X ξ x t u, ,( ) ∂
∂x
------ η x t u, ,( ) ∂

∂t
----- ϕ x t u, ,( ) ∂

∂u
------.+ +=

ϕ x t u, ,( ) ξ x t u, ,( )∂u
∂x
------– η x t u, ,( )∂u

∂t
------– 0.=
derivatives of u up to the fourth order. In this space,
Eq. (1) can be thought of as belonging to a manifold E
⊂  J4 defined by the equalities

In this formula, the function F is defined as the left-
hand side of Eq. (1) and all the derivatives should be
understood as independent coordinates in J4. We
denote by M ⊂  J4 the manifold of solutions to Eq. (3)
that are invariant under the infinitesimal transforma-
tions X.

Vector field (2) in the above phase space generates
the extended vector field X(4) in J4 such that

(4)

The classical Lie symmetries are defined as solu-
tions to the following set of equations (defining equa-
tions) for the components of the operator X [3, 4]:

The nonclassical symmetries include the vector
fields X satisfying the following modified defining
equations [12]:

(5)

The nonclassical symmetries do not preserve the
entire manifold E for the equation but merely its inter-
section with the manifold M. This intersection contains
solutions to the equation that are invariant under the
infinitesimal transformations X.

Defining equations (5), which have the form of non-
linear PDEs for the functions ξ, η, and ϕ, cannot be
solved in the general case. To obtain particular solu-
tions, we had to make additional simplifying assump-
tions about the functional form of the solution to

E : F x t u u 4( ), , ,( ) utt c2uxx– 2ux
2– 2uuxx–≡

– auxxxx buxxtt– µuxxt– 0.=

X 4( ) X ζ x ∂
∂ux

-------- ζ tt ∂
∂utt

-------- ζ xx ∂
∂uxx

----------+ + +=

+ ζ xxt ∂
∂uxxt

----------- ζ ttxx ∂
∂uttxx

------------ ζ xxxx ∂
∂uxxxx

--------------,++

ζα Dαϕ uxDαξ– utDαη , α x t,{ } ,∈–=

ζ
αβ1 … βN, ,

 = Dαζ
β1 … βN, ,

uxβ1 … βN, , Dαξ– utβ1 … βN, , Dαη ,–

α β1 … βN, , , x t,{ } , s∈ 1–4,=

Dα  = ∂α uα
∂

∂u
------ uαβ1

∂
∂uβ1

----------
β1

∑ uαβ1β2

∂
∂uβ1β2

-------------- …,+
β1 β2,
∑+ + +

α β1 β2 … x t,{ } .∈, , ,

X 4( )F( ) E 0.=

X 4( )F( ) E ∩ M 0.=
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Eq. (5). After some calculations, we succeeded in find-
ing the following symmetries of Eq. (1):

(6)

where the functions f(t) and h(t) satisfy the equations

(7)

The first of Eqs. (7) is the differential equation
determining the Weierstrass elliptic function 3. The
operators X1 and X2 produce classical symmetries of the
equation, while the operator Y generates essentially
nonclassical symmetries.

NONCLASSICAL INVARIANT SOLUTIONS

By the definition of nonclassical symmetries, the
solution uY(x, t), which is invariant under the infinitesi-
mal transformations Y, also satisfies invariant surface
condition (3) for Y. The solution to Eq. (3) has the form

(8)

where the function k(t) satisfies the ODE

(9)

The solution to the equation for f(t) can be written in
the form

(10)

where α and g3 are arbitrary constants.
In order to examine the solution uY , we simplify the

function f(t) by setting the third invariant of the function
P equal to zero, g3 = 0. In this particular case, the func-
tion f(t) degenerates into a rational function,

which enables the functions h(t) and k(t) to be calcu-
lated in explicit form:

where β, γ, δ, and λ are arbitrary constants and P10 is a
tenth-degree polynomial in the variable t. The coeffi-
cients of the polynomial P10 are determined by the con-

X1
∂
∂t
-----, X2

∂
∂x
------,= =

Y
∂
∂x
------ f t( )x h t( )+( ) ∂

∂u
------,+=

f '' 6 f 2, h'' 6 fh.= =

uY x t,( ) f t( )
2

----------x2 h t( )x k t( ),+ +=

k'' 2 fk– 2h2 f c2 6bf+( ) h f '.+ +=

f t( ) P t α ; 0 g3,+( ),=

f t( ) 1

t α+( )2
------------------,=

h t( ) 1

t α+( )2
------------------=

× β γ t5

5
--- α t4 2α2t3 2α3t2 α4t+ + + ++ 

  ,

k t( )
P10 t α β γ δ λ, , , , ,( )

t α+( )2
---------------------------------------------

2µ t α+( )log
3 t α+( )

--------------------------------,+=
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stants α, β, γ, δ, and λ. The explicit expression for the
polynomial is fairly involved and is not presented here.

Setting γ = λ = 0, we arrive at one of the solutions uY

that are finite in time:

(11)

We thus see that the solution uY is a polynomial in
the spatial variable x and, at the same time, it is a com-
plicated function of time (see solution (10)). Solution (11),
which was obtained under the assumption that g3 = 0 in
solution (10), describes the relaxation of the deforma-
tion u of a nonlinearly elastic waveguide to a certain
constant deformation determined by the parameters in
the equation in question. In addition, by appropriately
choosing the displacement α in the argument of the
function P in solution (10), we can represent the func-
tion f(t) in terms of Jacobian elliptic functions, which
are finite and periodic. In this representation, the solu-
tion uY describes the deformation waves that are peri-
odic in time. Note that, physically, such regimes can
generally occur only under special boundary condi-
tions.

Another interesting feature of the solution uY in rep-
resentation (11) is that all the terms in basic nonlinear
equation (1) make independent contributions to solu-
tion (11). We can see that the first fraction in the func-
tion k(t) in representation (11) is determined only by the
coefficient b, i.e., by the mixed fourth-order derivative
in Eq. (1). The third fraction is seen to depend on the
linear term with the coefficient c. Finally, the dissipa-
tion term in the equation containing µ describes the
temporal dynamics determined by the last two fractions
in the function k. The fact that the terms of different
physical origin in the basic equation contribute addi-
tively to the solution to the nonlinear problem is rather
unusual for exact solutions to nonlinear PDEs, although
it is sometimes encountered in the asymptotic solutions
of the problem.

CLASSICAL INVARIANT SOLUTIONS

The solutions that are left unchanged by the classi-
cal symmetries X = X1 – VX2 = ∂t – V∂x with the constant
V describe running waves whose amplitudes u = u(z)
depend on the phase coordinate z = x – Vt. Under the
corresponding boundary conditions, these solutions

uY x t,( ) 1

t α+( )2
------------------ x2

2
----- βx+ 

  k t( ),+=

k t( ) 3b β2+

2 t α+( )2
---------------------- δ

t α+
-----------

c2 t
α
3
---+ 

 

2 t α+( )
----------------------–+=

+ µ 2
9 t α+( )
--------------------

2
3
---2 t α+( )log

t α+
----------------------------+ 

  .
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satisfy the nonlinear second-order ODE

(12)

where A is an arbitrary constant.
Since, in the paper by Sophus Lie [15], such dissipa-

tive ODEs were investigated probably for the first time,
Eq. (12) may be called the Lie equation.

Equation (12) can be solved explicitly either by
applying a rather general method described in [1]
(which is based on the differential substitution and the
reduction of equation to the Abelian equation) or by
using a certain special ansatz. In considering the third
approach, which is based on the theoretical group
method of seeking possible new solutions to the dissi-
pative equation under discussion and to analogous dis-
sipative equations, we investigate the classical symme-
tries of Eq. (12) in order to find the corresponding
invariant solutions.

Applying the above procedure, we can show that,
under the restrictions

Eq. (12) possesses the symmetries

(13)

with the commutator (X1, X2) = –[5/(6µV)](V2 – c2)X2.
Applying this two-parameter symmetry group in the
same manner as was described in [15], we can construct
the solutions invariant with respect to symmetries (13):

(14)

where B = (V2 – c2) and C1 and C2 are arbitrary con-
stants.

For C1 > 0, the integral in solutions (14) reduces to
an elliptic integral of the first kind. Inverting the latter
yields the elliptic function ξ as a function of z. Substi-
tuting the elliptic function so obtained into the first of
formulas (14) and performing the necessary manipula-
tions, we arrive at two solutions:

(15)

a bV2+( )u'' z( ) µVu' z( )– u' z( )2+

+ c2 V2–( )u z( ) A,=

A 0, a bV
2

+( ) V2 c2–( ) 6
25
------µ2V2,= =

X1
∂
∂z
-----, X2

5
6µV
-----------– V2 c2–( )z 

 exp= =

× 3µV

5 V2 c2–( )
------------------------ ∂

∂z
----- u V2– c2+( ) ∂

∂u
------+

u B 1 ξ 2– 5B
3µV
-----------z 

 exp– ,=

ξd

1 C1ξ
6–

------------------------∫ 5B
6µV
-----------z 

 exp C2,+=

u± z( ) B 1 C1
2 5B

3µV
-----------z 

 exp–=

× 1 3 2 3
1 CN±

SN2
-----------------+ 

  .
Here, we have introduced the notation

where sn and cn are the first and second Jacobian ellip-
tic functions (the elliptic sine and cosine, respectively).

The modulus of these functions is determined by the
formula

In these formulas, we have used, for simplicity, the
same notation C1 and C2 as in solutions (14) but for the
new arbitrary constants.

CONCLUSIONS

We have investigated the symmetries of nonlinear
equation (1) with two dispersions and with dissipation,
which may serve as a natural generalization of the
equation describing long-wavelength waves in a
waveguide with allowance for nonlinear, dissipation,
and dispersion terms. As a method of investigation, we
have utilized the method of nonclassical symmetries.
This method permitted us to show that the only classi-
cal symmetries of Eq. (1) are those generated by the
operators X1 and X2, with which Eq. (1) can be reduced
to ODE (12) for running waves. On the other hand, the
nonclassical approach makes it possible to obtain a new
symmetry generated by the operator Y and to use it to
construct invariant solution (8). We have also shown
that the solutions to Eq. (1) that describe running waves
can be derived as invariant solutions to the correspond-
ing ODE, which are expressed in terms of the Jacobian
elliptic functions with a fixed modulus.

The results obtained raise the hope that other possi-
ble generalizations of the theoretical group methods
can extend the class of known exact solutions to physi-
cally important nonlinear equations. Thus, for some
well-studied equations (e.g., the Korteweg–de Vries
equation and its modified version, the Burgers equa-
tions, the nonlinear heat-conduction equation, etc.),
fairly wide families of the nonclassical symmetries that
they possess have already been derived (see, e.g., [12,
16] and the literature cited therein). We have found that
the nonclassical method also works well for Eq. (1),
which is a physically meaningful (although not so well
studied) example of the nonlinear equations in ques-
tion. Another possible method of investigation may
consist in searching for effective ways of solving non-
linear defining equations (5) of the operators generating
nonclassical symmetries.

SN sn 2 3( )1/4C1
5B

6µV
-----------z 

 exp C2+ k, 
  ,≡

CN cn 2 3( )1/4C1
5B

6µV
-----------z 

 exp C2+ k, 
  ,≡

k
2 3–

2
-------------------- 0.26.≈=
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Abstract—The problem of choosing the best set of parameters for a given mathematical model that adequately
describes independent experimental data is formulated in terms of the optimal control theory. The sum of
squares of discrepancies between experimental data and their analogues calculated within the framework of a
given mathematical model of a process is minimized. A solution to the problem is found, and conditions for
optimally choosing the parameters of the mathematical model are established. The search algorithm is gener-
alized for the case where a penalty function is present, and an efficient way of including inequality constraints
is suggested. The algorithm was tested by finding the thermal conductivity of single crystals (Ioffe–Ioffe clas-
sical experiment), thermal diffusivity of a thin plate, and parameters of gene expression during the fruit fly
(Drosophila melanogaster) embryo evolution. © 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Let a boundary-value problem for a set of equations
with given differential operator and boundary (initial)
conditions be the mathematical model of a process. In
check experiments, the coefficients of the equations, as
well as dissimilar terms in the equations and boundary
conditions, are unknown (or partially known) and have
to be found in such a way that the model describes ade-
quately experimental data obtained independently.
Usually, a set of boundary-value problem parameters
(coefficients of equations, source functions, etc.) that
best fits experimental data under given conditions is
sought in this case. If mere interpolation fails, the prob-
lem may be solved in terms of the optimal control the-
ory. The development of such an approach to experi-
mental data processing is the aim of this work.

To find the phenomenological parameters of a
model, one may apply the least-squares method to fit
experimental data. Then, in terms of the optimal control
theory, a model quality functional to be minimized is
the sum of the squares of deviations of experimental
data from values calculated independently within the
framework of this mathematical model. The deviations
are summed at times they were determined in experi-
ments. Such a functional may have several local min-
ima and, if necessary, a penalty function. Also, inequal-
ity constraints may be imposed on some of the problem
parameters.

In the simplest statement, this problem was briefly
considered in [1]. In the work cited, an associated algo-
rithm was described and generalized for the case with a
1063-7842/03/4811- $24.00 © 21364
penalty function and an efficient way of taking into
account inequality constraints was suggested.

1. STATEMENT OF THE PROBLEM

Suppose we know the values of some vector func-
tion y(ti) = (y0(ti), …, yK – 1(ti))T that characterizes the
state of a system at different times. The superscript T
hereafter means transposition; i = 1, …, J, where J is
the total number of time instants at which independent
experimental data were obtained; and K is the number
of state variables for a system studied. We assume that
a system of first-order differential equations in the inde-
pendent variable t together with a boundary condition is
given and that this system depends on the vector of
parameters q = (q0, …, qI – 1)T, where I is the number of
parameters:

(1)

This system describes the behavior of a physical
system in experiments. The left side of (1) is the vector
of dimension K, which is composed of time derivatives
of the function v(t, q) (state variables), and the right
side of (1) is the vector function f(v, q). If necessary, a
penalty function P(q) can be introduced into the prob-
lem.

Let us introduce a set of indices of parameters Il on
which inequality constraints

(2)

are imposed.

∂v
∂t
------- f v q,( ); v 0( ) v 0.= =

qi
low qi qi

up,   ≤ ≤  i Il I⊂∈
003 MAIK “Nauka/Interperiodica”
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Optimal control in this case consists in choosing
parameters such that the quality functional (a measure
of deviation of measured data from those calculated in
terms of an independent model for a physical process)

(3)

is minimized.

Note that many problems of mathematical physics
that are stated in the form of higher order differential
equations can be reduced to the normal form, i.e., to a
system of first-order equations with additional paramet-
ric variables (Pfaffian special system) [2]. Therefore,
the selection of system (1) as the basic set of the prob-
lem stated is justified.

Finding the minimum of the quality functional
necessitates the derivation of first-order stationary con-
ditions. For system (1), which is written in general
form, they are conveniently found with the Lagrange
method of multipliers. In this case, however, one must
consider an extended quality functional that includes
inequalities (2), which impose restrictions on the con-
trol parameters. To this end, inequalities (2) must be
transformed into equivalent equalities.

2. NECESSARY CONDITIONS 
FOR MINIMUM

To derive necessary conditions for stationarity (opti-
mality) for quality functional (3), it is necessary to
introduce additional controls ui for which one can write
equivalent equalities. Since the choice of these equali-
ties is ambiguous, we will consider algebraic and trigo-
nometric transformations of the inequalities into equiv-
alent equalities.

(1) Algebraic transformation of the restricting
inequalities. Let us replace inequalities (2) with the
algebraic equalities [3]

(4)

It is obvious that the condition ui = 0 is satisfied if
the initial parameter takes on either of the two preset

extreme values, qi =  or qi = , and any ui ≠ 0 cor-
responds to an intermediate value of the control param-

eter:  < qi < .

Next, we introduce a vector function ψ(t) of
Lagrangean multipliers to include Eqs. (1) into the
functional and a necessary number µi of Lagrangean
multipliers to take into account the inequality con-
straints, which were transformed into (4). The extended

F v q,( ) = v ti q,( ) y ti( )–( )T v ti q,( ) y ti( )–( )
i 1=

J

∑ P q( )+

=  ϕ v 1 … v J, ,( ) P q( ),+

v i v ti q,( )=

ξ i qi qi
low–( ) qi

up qi–( ) ui
2– 0.= =

qi
low qi

up

qi
low qi

up
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functional of the problem can now be written in the
form

(5)

where the vectors µ = {µi} and u = {ui}, as well as the
vector function ξ(q, u) = {ξi(q, u)}, are introduced for
all i ∈  Il.

Thus, the restrictions are involved in the extended
functional and it reaches an extremum simultaneously
with (3). This allows us to use the standard procedure
for deriving the stationarity conditions.

Having calculated the first variation of the quality
functional

(6)

which is a measure of discrepancy between measured
and calculated data, and the first variation of differen-
tial constraints

(7)

which are the equations of model (1), we can write the
first variation of the Lagrangean function as

(8)

where ∂P/∂q are the components of the vector ∂P/∂qi.

Integrating (8) by parts yields

(9)

Here, ψ(ti + 0) and ψ(ti + 1 – 0) are the right- and left-
hand limits of the Lagrangean multipliers ψ(t) at inter-
mediate points where experimental data are available;
therefore, the values of Lagrangean multipliers (the
function ψ(t)) vary in steps.

Below are a set of first-order minimum conditions
for the quality functional [4] that use the stationarity
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condition δL = 0:

(10)

(11)

(12)

(13)

This set of equations solves the problem of minimiz-
ing the discrepancy between experimental data and data
calculated from a solution to the boundary-value prob-
lem.

Thus, the stationarity condition can be recast in the
form of a vector equality for the Lagrange function gra-
dient ζ:

(14)

(2) Numerical solution algorithm. Let a set of I
parameters q be given, a physical process be described
by system (1), and it be necessary to find the coeffi-
cients of the equations such that the discrepancy
between a solution to the model mathematical problem
and measurements is minimal at each point of a given
interval. Then, a solution algorithm for the problem
stated by (1)–(3) consists of the following steps.

(1) Equation (1) is integrated.
(2) Equation (10) is integrated in reverse order, i.e.,

from tJ to t0, in view of initial condition (12) and condi-
tions (11) at those intermediate points where experi-
mental data are available.

(3) The parameter gradient ζk = ζ(v k, qk) is calcu-
lated by formula (14).

(4) Condition (13) for Lagrangean multipliers that
correspond to algebraic constraints for additional con-
trols ui is satisfied as follows. If a parameter qi in (2)
meets the strict inequality, µi = 0; otherwise, ui = 0 and
µi is selected so that a new value of the parameter qi is
allowable.

(5) New values of parameters qk + 1 are found by the
formula

(15)

where k is the number of iterations and αk is a parame-
ter selected so that functional (3) diminishes at each
step.

Steps 1–5 are repeated until a desired calculation
accuracy is achieved, for example, until the value of the
functional becomes less than a preset value. A vector of

∂f
∂v
-------ψ ∂ψ

∂t
-------+ 0  t ti ti 1+ );,[∈∀=

∂ϕ
∂v i

-------- ψ ti 0–( ) ψ ti 0+( )+– 0,=

i 1 … J 1–( );, ,=

∂ϕ
∂v J
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µiui 0, i Il.∈=

ζ v q,( ) ψT ∂f
∂q
------ td

t0

tJ

∫ ∂P
∂q
------ µT ∂ξ

∂q
------+ +≡ 0.=

qk 1+ qk α kζ k,–=
parameters qN obtained at the last step specifies a solu-
tion to the problem.

(3) Trigonometric transformation of constraints.
The commonly used procedure in the optimal control
theory is the replacement of control parameters qi for
which inequality constraints (2) are imposed by new
controls ui by means of trigonometric relationships, for
example,

(16)

where the factor γ is taken so as to improve divergence
during numerical experiments and the constant α and β
are determined from the upper and lower limits of the
initial controls:

Clearly, such a transformation is not unique; there-
fore, it seems reasonable to consider another finite rep-
resentation:

(17)

The above transformations are applied only to those
qi that must satisfy conditions (2). Thus, instead of (1),
we obtain upon rearrangements

(18)

where  = {qi} for i ∉  Il and u = {ui} for i ∈  Il.

Designating {ui} as {qi}, where i ∈  Il, we can write
(18) in the form of (1), where q = {qi} and i = 0, 1, …,
I – 1.

To derive necessary minimum conditions for the
discrepancy functional, we write the Lagrangean

(19)

where ψ(t) is, as before, the vector function of
Lagrangean multipliers.

Now, there is no need for additional multipliers that
include inequality constraints into the extended func-
tional, since they are involved in the equations.

After integrating (19) by parts, the standard deriva-
tion of necessary conditions for minimum leads us to a
formula for the first variation of the Lagrangean:

(20)
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By virtue of the stationarity condition δL = 0, the
necessary conditions for minimum have the form

(21)

(22)

(23)

Thus, the stationarity conditions may be recast as
the vector equality

(24)

where ζ is the Lagrangean gradient:

(25)

(4) Numerical solution algorithm for the trigono-
metric transformation of the constraints. Let a set of
I parameters q be given, a physical process be described
by system (1), and it be necessary to find the coeffi-
cients of the equations such that the discrepancy
between a solution to the model mathematical problem
and independent measurements is minimal at each
point of a given interval. Then, a solution algorithm for
the problem stated by (1)–(3) consists of the following
steps.

(1) System (1) is integrated with a desired accuracy.

(2) Conjugate system (21) is integrated in reverse
order, i.e., from tJ to t0, in view of (22) and (23).

(3) The parameter gradient ζk = ζ(v k, qk) is calcu-
lated by formula (24).

(4) New values of parameters qk + 1 are found by the
formula

(26)

where k is the number of iterations and the step αk of the
gradient method is selected so that functional (3)
diminishes at each step.

Steps 1–4 are repeated until a desired calculation
accuracy is achieved, for example, until the value of the
functional becomes less than a preset value. A vector of
parameters qN obtained at the last step provides a solu-
tion to the problem.

Unlike Section 2.2, here there is no need for step 4,
since the constraints are taken into account in the new
extended functional.
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3. NUMERICAL EXPERIMENTS IN HEAT 
CONDUCTION PROBLEMS

A simple example of the problem studied is analysis
of temperature fields in a sample with the subsequent
determination of the coefficients of related equations.
Let us demonstrate the efficiency of our data processing
method by finding the thermal conductivity (thermal
diffusivity) of a sample from measured temperature
values.

(1) Thermal conductivity of single crystals. To
verify the method, we turn to the classical results of
Ioffe and Ioffe for the thermal conductivity of single
crystals [5]. As in [5], assume that experimental condi-
tions are such that the conventional heat conduction
equation

(27)

(τ is time; x is spatial coordinate; and T, k, and c are the
temperature, thermal conductivity, and specific heat of
the sample) is valid.

Our goal is to find the thermal conductivity coeffi-
cient k that provides the least deviation of a solution to
(27) from an experimental curve.

Ioffe and Ioffe experimented with a NaCl single
crystal sandwiched in copper blocks with the same ini-
tial temperature. The lower block was immersed in a
coolant or liquid air. One thermocouple measured the
temperature difference T1 – T2 between the blocks; the
other, the temperature T2 of the upper block relative to
room temperature T0. The readings of both thermocou-
ples were taken in 30-s intervals for the measurement
time τm = 7 min and tabulated (Table 1).

∂T τ x,( )
∂τ

--------------------
k
c
--∂2T

∂x2
---------=

Table 1.  Experimental data for the determination of the
NaCl thermal conductivity [5]

Measure-
ment no. τ, s T1 – T2 T2

1 60 7.7 0.22

2 90 10.7 1.5

3 120 12.3 3.2

4 150 13.4 5.0

5 180 13.9 6.85

6 210 14.2 8.75

7 240 15.0 10.7

8 270 15.2 12.75

9 300 16.1 14.80

10 330 16.3 16.85

11 360 16.7 18.95

12 390 16.8 21.0

13 420 16.8 23.1
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When using Table 1 [5], it is necessary to make two
assumptions. First, since in the experiment provision
was made for preventing heat losses, we may consider
the problem as one-dimensional and direct the x axis
normally to the block–sample interfaces from the warm
to cold block, i.e., from top to bottom. Second, since the
temperature gradient in the experiment varies slowly,
we may linearly interpolate in time the temperature val-
ues at the points x = 0 and L, where the measurements
were taken. The point x = 0 lies at the warm block–sam-
ple interface; the point x = L (L = 0.64 cm), at the sam-
ple–cold block interface.

The absolute temperature values are listed in Table 2
(the initial temperature was T0 = 24°C).

We discretize Eq. (27) over space, introduce a uni-
form mesh {xi = ih, h = L(K – 1)} (where i = 0, …, K –
1), take into consideration that the temperature distribu-

Table 2.  Absolute temperature values

Measure-
ment no. τ, s T2 T1

1 0 24 24

2 60 23.78 16.08

3 90 22.5 11.8

4 120 20.8 8.5

5 150 19 5.6

6 180 17.5 3.25

7 210 15.25 1.05

8 240 13.3 –1.7

9 270 11.25 –3.95

10 300 9.2 –6.9

11 330 7.15 –9.15

12 360 5.05 –11.65

13 390 3 –13.80

14 420 0.9 –15.9

–3.2

–3.4

–3.6

–3.8
–4.0

–4.2
–4.4

–4.6
–4.8

0 50 100 150 200 250 300 350
N

ln(f)

Fig. 1. Convergence for the quality functional f vs. number
N of iterations upon calculating the thermal conductivity.
tion depends parametrically on the thermal conductiv-
ity, and obtain the set of differential–difference equa-
tions

(28)

with the initial condition

(29)

and boundary conditions

(30)

(31)

The only unknown parameter in set (28) is the ther-
mal conductivity k.

The final sum of squares of discrepancies between
temperatures calculated (by model (27)) and measured
at all time points,

(32)

gives the quality functional for the problem of experi-
mental data processing.

Unfortunately, the function (τm, x) [5] is known
only at the points x = 0 and L. Since the boundary con-
ditions are approximated linearly, we may assume that
the second derivative on the left of (27) is constant and,
hence, the function is quadratic in x. For the function

(τm, x), we took a parabola ax2 + bx, since only two
coefficients can be found by two points.

Calculation was performed for 40 randomly
selected initial approximations that were uniformly dis-
tributed over the closed interval [0.005, 0.025]. The
outcome exceeded our expectations. The average calcu-
lated thermal conductivity was k = 0.012, rather than
k = 0.013, which was previously obtained by Ioffe. At
the end of the calculation, the integral deviation of the
calculated data from the quality functional (measured
data) was found to be 9 × 10–3.

Figure 1 shows a typical curve of convergence in the
problem of thermal conductivity of single crystals.

(2) Thermal diffusivity of a plate. By way of sec-
ond example, let us consider the problem of thermal
diffusivity [6] of a plate of thickness h = 10 cm. On one
side of the plate, the temperature was T0; on the other
side and at the middle of the plate, the temperature
oscillation amplitudes were ∆T1 = 10°C and ∆T2 = 8°C,
respectively. The oscillation period on the other side
was τ0 = 1 h.

In [6], the thermal diffusivity value was found by
plotting the Fourier test and turned out to be a =
0.009 m2/h.

∂T τ xi k, ,( )
∂τ

---------------------------
k
c
-- T τ xi 1– k, ,( ) 2T τ xi k, ,( )–(=

+ T τ xi 1+ k, ,( ) ); i 1 … K 2–, ,=

T 0 xi k, ,( ) T0; i 0 … K 1–, ,= =

T τ x0 k, ,( ) T2 τ( ); τ∀ 0 τm,[ ] ;∈=

T τ xK 1– k, ,( ) T1 τ( ); τ∀ 0 τm,[ ] .∈=

F k( ) T τm xi k, ,( ) T τm xi,( )–( )2
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T

T

TECHNICAL PHYSICS      Vol. 48      No. 11      2003



NEW DATA PROCESSING TECHNIQUE 1369
Let us formalize the statement of the problem to
apply our method. The temperature variation is
described by the equation

(33)

where τ is time; x is the spatial coordinate; and T and
a are the sample temperature and thermal diffusivity,
respectively.

We discretize Eq. (33) over the coordinate x, intro-
duce a uniform mesh {xi = ir, r = h/(K – 1)} (where i =
0, …, K – 1), take into consideration that the tempera-
ture distribution depends parametrically on the thermal
diffusivity, and obtain the set of differential–difference
equations

(34)

with the initial condition

(35)

and boundary conditions

(36)

(37)

The only unknown parameter in set (34) is the ther-
mal diffusivity a.

In order to write the quality functional, we must
know the time dependence of the temperature in the
middle of the sample, (τ, h/2). The period of temper-
ature oscillation at this place is unknown, and we can-
not take it to be equal to τ0, since the thermal diffusivity
would indefinitely increase in this case. Let the oscilla-
tion period at the middle be τh/2 = 2τ0 and let the mea-
surement time be τm = τ0/2. Bearing in mind that the
plate is thin and the temperature conditions are quasi-
steady-state [6], we linearly interpolate temperature
values between the points x = 0, h/2, and h and desig-
nate the temperature distribution thus obtained as

(τm, x). Then, the quality functional has the form

(38)

The results are in good agreement with those
obtained in [6]. Calculation was made for 20 randomly
selected initial approximations that were uniformly dis-
tributed over the segment [0.0006, 0.0180]. The mean
value of the thermal diffusivity was found to be a =
0.0094 versus a = 0090 in [6]. The final value of the
quality functional was 23.63.

∂T τ x,( )
∂τ

-------------------- a
∂2T

∂x2
---------,=

∂T τ xi a, ,( )
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T 0 xi a, ,( ) T0; i 0 … K 1–, ,= =

T τ x0 a, ,( ) = T0 ∆T1 2πτ
τ0
---- 

  ; τ∀ 0 τm,[ ] ;∈sin+
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2
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4. NUMERICAL EXPERIMENTS 
ON MOLECULAR BIOLOGY DATA PROCESSING

A comparatively new area of application of the algo-
rithm suggested is the processing of huge data arrays,
for example, simultaneous search for many hundreds of
phenomenological parameters in mathematical prob-
lems of biology and genetics, in particular, in the gene
chain model. Protein concentration greatly varies upon
the evolution of a biological object and is measured
with high accuracy, but finding a correlation of these
data with any of the advanced theoretical models is a
challenge. In one of them, the dynamics of a system is
described by nonlinear diffusion reaction equations
(NDREs), which contain 50 or more parameters on
most of which inequality constraints are imposed.

The molecular biology problem of segment determi-
nation in a standard biological system, the fruit fly
(Drosophila melanogaster) embryo, was stated in
detail in [1]. The mathematical statement of the prob-
lem involves the set of NDREs

(39)

where the argument of g is

The basic element of the gene chain model is the
matrix T, which characterizes a gene chain. Its elements
Taj describe the interplay between the concentration of
one protein (the product of one gene) and the concen-
tration of another protein (the product of another gene)
by using a particular number specific for any pair of a
and j.

The control actions of the protein that is the Bicoid
product of maternal gene bcd are taken into account as
an external perturbation (it is specified by the parameter
ma), and the parameter ha reflects the threshold value of
regulatory action.

Let the position of a nucleus on the longitudinal axis
of the embryo be defined by index i and let all nuclei
contain a copy of a regular chain of N genes, which is
characterized by an N × N matrix T.

The first term on the right of (39) stands for gene
regulation and protein synthesis, with the parameter Ra

defining the level of synthesis. The second term
describes gene product (protein) exchange between
neighboring nuclei, with the parameter Da standing for
the exchange rate. The parameter λa describes the half-
life period of the protein; the third term, gene product
cleavage.

Differential constraints for the function f in (1) are
given by a set of nonlinear equations like (39). Numer-
ical simulation is aimed at determining N(N + 5)

∂v i
a

∂t
--------- Rag wi

a( )=

+ Da v i 1+
a v i

a–( ) v i 1–
a v i

a–( )+[ ] λ av i
a,–

wi
a Tajv i

j mav i
bcd ha.++

j 0=

N 1–

∑=
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Table 3.  Results of calculations (see text)

Value of functional 2 3 4 5 6

<1 2(7229) – – – 100(512621)

<10 13(48840) 3(77896) – 3(449563) –

<50 41(46000) 9(31755) 21(56027) 27(96432) –

<100 50(52341) 9(31755) 39(54134) 33(123410) –

>100 50(69730) 91(69873) 61(98863) 67(301301) –
parameters of the system, where N is the number of
genes.

Observables are patterns of gene activity, which
supposedly are solutions to equations like (39). A
desired set of parameters is that providing the closest fit
of these solutions to experimental data. As before, it is
necessary to minimize the sum of squares of discrepan-
cies between the concentrations of all proteins that
were calculated by the gene chain model and found in
independent experiments. The sum is taken over all
nuclei and all time instants for which experimental data
are available.

(1) Test for efficiency of the method. Let us apply
our method to data processing and finding the phenom-
enological parameters of a model described by a set of
several hundreds of NDREs (like model (39)).

Consider a system that describes a regulatory chain
of only two genes. In this case, we have 16 equations
with 2(2 + 5) = 14 parameters.

We take a certain set of parameters and solve the
direct problem, i.e., integrate system (1). Let known
values of the function y(ti) = (y0(ti), …, yK – 1(ti))T be
quantities v (ti, q) = (v 0(ti, q), …, yK – 1(ti, q))T that were
calculated for a given number J of points over a given
time interval (i = 1, …, J) (so-called artificial data).
Now, with these data, we will try to recover the initial
set of parameters. In this case, the quality functional at
the point of global maximum is known and equals zero.

–8
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–2
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2
4
6
8

10

–10

N

ln(f)

Fig. 2. The same as in Fig. 1 upon determining phenomeno-
logical parameters in the problem of molecular biology.
This allows us to estimate the quality of a solution from
the value of the functional.

Let inequality constraints be imposed on six param-
eters linearly entering into set (39). We introduce an
exponentially increasing penalty function that depends
on a complex consisting of the remaining eight param-
eters and solve the problem of minimization numeri-
cally in the same way as before.

Calculation was performed for 100 randomly
selected initial approximations that were uniformly dis-
tributed in the parameter space. For each of the initial
points, we obtained several results by the method of
simulated annealing [7] and the gradient method. In the
latter, inequality constraints were transformed algebra-
ically and trigonometrically (sin-transformation and
tanh-transformation with various γ).

Calculation was terminated if the functional
changed by less than a specified quantity at each step
from a given number of steps. The set of parameters q
obtained at the last step was taken to be optimal.

The numerical results listed in Table 3 are totally
consistent with the theory. Columns 2–6 show the per-
centage of trials (initial points) when the functional
falls into the interval indicated in column 1. The paren-
thesized figures mean the average number of integra-
tions of the set of equations or, in other words, machine
time costs. Column 6 shows the values obtained by the
random search (simulated annealing) method; column 5,
by the gradient method with algebraic transformation
of constraints; and columns 3 and 4, by the gradient
method with tanh- and sin-trigonometric transforma-
tions, respectively.

The optimal point and the number of steps turned
out to be dependent on the initial approximation. For
each of the initial points, calculations with tanh-trans-
formations with various arbitrary coefficients γ were
performed and the best result for each of the points was
taken. These calculations are summarized in column 2.

The basic conclusions following from the calcula-
tion results are as follows.

The modified gradient method may be used to
advantage in searching for the quality functional mini-
mum when large data arrays are processed.

With the initial point selected appropriately, the
number of steps needed for this method to become con-
TECHNICAL PHYSICS      Vol. 48      No. 11      2003
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vergent is two orders of magnitude smaller than in the
random search method.

The most efficient transformation of inequality con-
straints is impossible to choose in advance; however,
the proper selection of the parameter of tanh-transfor-
mation provided the highest rate of convergence (see
Fig. 2).

DISCUSSION
Our numerical experiments show that the suggested

method of processing large data arrays for finding the
most appropriate parameters of a given mathematical
model has a number of advantages. Namely, it offers a
high rate of convergence and is applicable even if
experimental data are not independent, for example, if
the elements of the vector y(ti) (i = 1, …, J) represent a
Markovian sequence. In this case, the function ϕ(v(t1,
q), …, v (tJ, q)) in (3) takes the form

(40)
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In [7, 8], a version of the random search method (the
method of simulated annealing or the Metropolis
method) was applied to find phenomenological param-
eters that provide a global minimum of the quality func-
tional in a similar problem of mathematical biology. It
was shown that the given functional has many local
minima but simulated annealing “bypasses” them, find-
ing a global minimum.

However, the use of simulated annealing necessi-
tates multiple integration of a set of strong nonlinear
differential–difference diffusion reaction equations.
Note for comparison that, in the case of the random
search method, finding each subsequent approximation
to the entire vector of parameters requires that the qual-
ity functional be calculated as many times as the num-
ber of the parameters involved, while in the gradient
method, only once. This fact may become of special
significance when a large number of proteins (the prod-
ucts of gene activity) is considered, since the number of
integrations necessary for random search grows as the
number of proteins squared.
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Abstract—The band spectrum of natural waves in a periodic structure formed by alternating dielectric and
semiconductor layers is investigated for the propagation of waves at some angle with respect to a magnetic field
applied along the periodicity axis. A method is presented for deriving a dispersion equation, and its properties
are analyzed numerically. It is shown that, in the absence of dissipation, there are two independent spectra of
natural waves in the structure being considered, and the regions of existence of various types of such waves are
classified. It is established that the transmission bands of the two spectra may supplement one another or over-
lap. It is found that, for the chosen magnetic-field direction, there exist numerous bands of transmission of
cyclotron waves. © 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

It is well known [1, 2] that periodic layered media
may be considered as a new type of artificial material
whose properties can be efficiently controlled. The
reaction of such media to electromagnetic radiation
depends on the electrophysical parameters and thick-
nesses of layers forming the periodic structure in ques-
tion, as well as on the applied magnetic field if use is
made of semiconductors. In the last case, a solution to
the problem of finding the band spectrum of natural
waves in a periodic structure is determined by its con-
figuration and by the direction of wave propagation.
The configuration of the structure is specified by the
direction of its periodicity and by the orientation of the
applied magnetic field. For some cases that can be real-
ized in such structures, the results of investigations can
be found in the literature.

A structure where the direction of wave propaga-
tion, the direction of the applied magnetic field, and the
periodicity direction coincide was considered in [3].
We note that, in a homogeneous gyrotropic medium,
circularly polarized waves are normal waves, longitudi-
nal field components being equal to zero [4]. An exper-
imental investigation of some special features of wave
propagation in such a configuration was performed
in [5].

The case where the direction of the applied mag-
netic field is orthogonal to the periodicity direction and
the plane of wave propagation was explored in [6–8].
Two waves polarized in orthogonal planes, each of
these waves having three field components, are normal
waves of a gyrotropic medium in this case.

In the present study, we consider a situation that is
similar to that in [3] (that is, the direction of periodicity
1063-7842/03/4811- $24.00 © 21372
of the structure coincides with the magnetic-field direc-
tion), but we examine the case of wave propagation at
some angle with respect to the magnetic-field direction
(Fig. 1).

A structure whose configuration is identical to that
in the present study was investigated in [9], but, there,
a plasma-like layer was a two-dimensional electron
gas; therefore, its thickness was made to tend to zero. In
our case, a semiconductor layer has a finite thickness
that is commensurate with the wavelength of the elec-
tromagnetic wave being considered. As will be shown
below, this leads to a number of special physical fea-
tures in the formation of the spectrum of the periodic
structure.

z

x

B0

y

ky

kxy

kx

k
–

k

Fig. 1. Configuration of a periodic structure. Here, B0 is the
magnetic-field induction; the z axis is aligned with the peri-

odicity direction;  is the Bloch wave number; and k(kx, ky,

) is the wave vector.

k

k
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A feature that is particular to the problem consid-
ered here and which distinguishes this problem from
those that were mentioned above is that, in the present
case, the Maxwell equations for a semiconductor do not
separate in field components into two independent
polarizations, elliptically polarized waves, each involv-
ing six field components, being normal waves of the
medium in this case [4, 8].

We will study the band spectrum of natural waves in
a periodic semiconductor–dielectric structure of con-
figuration described above. The semiconductor layer of
the structure is considered in the cold-plasma approxi-
mation. In a hydrodynamic description, this layer is
characterized by the dielectric-permittivity tensor of
the form [10]

(1)

where

εL is the dielectric permittivity of the semiconductor lat-
tice; ωP and ωH are, respectively, the plasma and the
cyclotron frequency; and ω is the frequency of the elec-
tromagnetic field.

ε̂
ε1 iε2 0

iε2– ε1 0

0 0 ε2

,=

ε1 εL 1
ωP

2

ωH
2 ω2–

-------------------+ ; ε2

εLωP
2 ωH

ω ωH
2 ω2–( )

----------------------------;= =

ε3 εL 1
ωP

2

ω2
------–

 
 
 

;=
TECHNICAL PHYSICS      Vol. 48      No. 11      2003
The boundary conditions for the problem to be
addressed assume the continuity of the tangential com-
ponents of the electric and the magnetic field at the
layer boundaries.

METHOD OF SOLUTION

In order to derive a dispersion equation that
describes the properties of the periodic structure being
considered, we will employ the transformation-matrix
method [1], which makes it possible to reduce the order
of the set of equations by a factor of 2.

For composing the transformation matrix in one
layer, one needs independent expressions for each field
component that is transverse with respect to the mag-
netic-field direction (in our case, these are Ex, Ey, Hx,
and Hy). We note that it is these components that appear
in the boundary conditions. For a gyrotropic medium,
the procedure for their determination is given in [11]. It
consists in introducing a scalar function Ψ = Z(z)ψ(x, y)
in terms of which all field components are expressed by
means of simple differentiation operations. Assuming
that the field components depend on the coordinate z in
the direction of a constant magnetic field according to a
harmonic law, we represent this function in the form

(2)

where kz1 and kz2 are the transverse wave numbers in a
semiconductor layer. An expression that determines
their values is found from the dispersion equation for a
cold magnetoactive plasma [10]; for the configuration
considered here, this expression takes the form

Ψ A1 kz1zcos A2 kz1zsin A3 kz2zcos++(=

+ A4 kz2z ) i kxx kyy+( )[ ] ,expsin
(3)

kz1 2,
2 1

2
--- 2ε1k0

2 1
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ε3
----+ 

  kxy
2–=

± 1
4
--- 2ε1k0

2 1
ε1

ε3
----+ 

  kxy
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2

ε1 εVk0
4 kxy

4

ε3
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εV

ε3
-----+ 

  kxy
2 k0

2–+– ,
where

Substituting the function Ψ into the corresponding
expressions for the fields [11], we obtain

(4)

k0
ω
c
----, εV ε1

ε2
2

ε1
----, kxy

2– kx
2 ky

2.+= = =

Ex C1A1 kz1zcos C1A2 kz1sin z+=

+ C2A3 kz2zcos C2A4 kz2sin z ,+

Ey C3A1 kz1zcos C3A2 kz1sin z+=

+ C4A3 kz2zcos C4A4 kz2sin z ,+

Hx D– 1A1sinkz1z D1A2coskz1z+=

–D2A3sinkz2z D2A4coskz2z ,+
The coefficients Ci and Di are presented in Appendix 1,
while the coefficients Ai can be expressed in terms of
the values of the fields at the point z = 0. For the fields
in a semiconductor layer, we eventually obtain the
matrix relation

(5)

Hy D– 3A1sinkz1z D3A2coskz1z+=

– D4A3sinkz2z D4A4coskz2z .+
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where  is a 4 × 4 square matrix that relates the fields
at an arbitrary point z of the layer to the fields at z = 0.

The elements of the matrix  are given in Appendix 1.

For a semiconductor, the transformation matrix 
relating the fields at the beginning of a layer to those at

its end can be obtained by inverting the matrix  at z =
d1, where d1 is the thickness of a semiconductor layer in
the structure being considered.

Similar manipulations must also be performed for a
dielectric layer upon preliminarily obtaining, from
Maxwell equations, independent expressions for the
field components. The wave number kz characterizing
the transverse distribution of the field in a medium of
dielectric permittivity ε can be obtained from (3) upon
making the substitutions ε1 = ε3 = εV = ε and ε2 = 0. This
yields

(6)

For the field components at an arbitrary point z of a
dielectric layer that are expressed in terms of the field
at the beginning of this layer, we have

(7)

where the coefficients Fi are given in Appendix 2.
We can see that the matrix expression for the fields

in a dielectric material has the same form as relation

(5), but the matrix  is replaced there by the matrix ,
whose explicit form is given in Appendix 2. For a

dielectric layer, the transformation matrix  is

obtained by inverting the matrix  at z = d2.
Following [1] and using the condition that the fields

are continuous at the boundaries of the layers, we find
that the transformation matrix for one period of the
structure is equal to the product of the transformation
matrices for the respective superconductor and dielec-

tric layers,  = . This matrix relates the values
of the fields at the beginning of one period of the struc-
ture to their values at its end. We note that the matrices

, , and  are unimodular [12].
The condition of periodicity of the structure now

makes it possible to express the fields at z = 0 in terms

of the elements of the transformation matrix  for one

period and the phase factor exp(– ), by which,
according to the Floquet (Bloch) theorem, the fields at
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ikd
the boundary of the period at z = 0 and z = d1 + d2 = d,
d being the period of the structure, may differ. Specifi-
cally, we have

(8)

where  is the so-called Bloch wave number—that is,
the new (instead of kz1, kz2, kz) period-averaged wave
number of the periodic structure.

Relations (8) can be represented in the form of a set
of linear homogeneous equations, and this set of equa-
tions has nontrivial solutions if and only if its determi-
nant vanishes; that is,

(9)

where  is the identity matrix.
By explicitly evaluating the determinant in (9), we

obtain the dispersion equation that relates ω, , kx,
and ky.

INVESTIGATION OF THE DISPERSION 
EQUATION

We note that the dispersion equation derived from
(9) is an equation of fourth degree with respect to the
quantity ξ = exp( ); that is,

(10)

where the coefficients B0, B1, B2, and B3 are expressed
in terms of various combinations of the elements of the

matrix , the free term of the dispersion equation being

equal to the determinant of the matrix ; that is,

det  = 1. Thus, Eq. (10) reduces to the form

(11)

The explicit expressions for the coefficients B0, B1,
B2, and B3 are given in Appendix 3.

In a dispersion equation of this type, the left-hand
side can be recast into the form of the product of two
polynomials of second degree:

(12)

This becomes possible under the condition that B1 =
B3. It can be demonstrated numerically that this condi-
tion is satisfied for the configuration considered here.

It should be noted that the transition from Eq. (10)
to the form (12) is a result of a numerical analysis;
therefore, this result is not general. However, physics
considerations suggest that, in a periodic structure, the
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physical properties of the layers that constitute it must
also be reflected. It follows that, if the transverse wave
numbers can be found explicitly (for example, in a
gyrotropic medium), it is natural to assume that, owing
to the symmetry of the problem, the Bloch wave num-
bers will be determined by quadratic (or biquadratic)
equations.

The coefficients in Eqs. (11) and (12) are related by
the equations B1 = a1 + a2 and B2 = 2 + a1a2, whence it
follows that

(13)

Thus, the dispersion equation (12) has two solu-
tions; physically, this means that there are two indepen-
dent spectra of natural waves in the structure consid-
ered here, each being characterized by an individual
dispersion equation and an individual Bloch wave
number. These equations are obtained from Eq. (12)
upon substituting (13) into it and replacing ξ with
exp( ). As a result, we arrive at

(14)

(15)

They describe two band spectra of natural waves in
the structure, the transmission bands in these spectra
being specified by the conditions |a1| ≤ 2 and |a2| ≤ 2,
where a1 and a2 are real-valued numbers. The respec-

tive values of  are real. In all other cases, there is no

transmission, and  are complex-valued numbers
[13]. Since Eqs. (14) and (15) are independent of each
other, the transmission bands of these spectra may over-
lap or may be superimposed. We note that the indepen-
dence of the dispersion equations for the Bloch wave
numbers  and  is due to the disregard of dissipa-
tion processes in the problem under study.

BAND STRUCTURE OF THE SPECTRUM

The results obtained by numerically solving the
problem being considered are represented in the form
of two independent band spectra of natural waves in a
periodic structure at a fixed induction of the applied
magnetic field. For our calculations, we took an n-InSb
semiconductor layer characterized by an electron con-
centration of 3 × 1014 cm–3 and by the values of εL =
17.8 and d1 = 0.01 cm and a dielectric layer character-
ized by the values of ε2 = 2.0 and d2 = 0.03 cm.

Preliminarily, we would like to note the following:
1. In order to obtain deeper insight into the process

of formation of the band spectrum of the structure, it is
necessary to take into account the frequency depen-
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dence of the elements of the tensor  and of the Voigt
dielectric permittivity εV. For the magnetic-field-induc-
tion value of B0 = 0.05 T, such dependences are dis-
played in Fig. 2, where one can single out some charac-
teristic regions. These are regions to the left and to the
right of the cyclotron-resonance frequency, at which the
dielectric-permittivity-tensor components ε1 and ε2
diverge, changing sign. Moreover, there is a character-
istic point at the plasma frequency, where ε3 = 0; in
addition, the Voigt dielectric permittivity εV goes to
infinity at the hybrid-cyclotron-resonance frequency

ωh = . In these regions, there must arise sin-
gularities in the band structure of the spectrum as well.

2. Expressions (3) and (6) for  and , respec-
tively, depend on the wave-vector components kx and ky

only through the combination  =  + . There-
fore, one can assume that the spectrum will also be
determined by the quantity kxy exclusively. Indeed,
numerical calculations reveal that, under the condition
kxy = const, identical values of ω = f(kx, ky) are obtained
for different values of the ratio ky/kx. From the physical
point of view, this means that the rotation of the plane
spanned by the z axis and the vector kxy—this is the
plane in which the propagation of waves occurs along
the z axis (see Fig. 1)—does not change the pattern of
the spectrum. It follows that the use of the quantity kxy

(more precisely, kxyd) for a variable parameter is quite
reasonable.

3. In the periodic structure being considered, four
partial waves—those that have the transverse wave
numbers kz1 and kz2 in a semiconductor layer and those

ε̂

ωH
2 ωP

2+

kz1 2,
2 kz

2

kxy
2 kx

2 ky
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Fig. 2. Frequency dependence of the elements of the tensor
 and of the Voigt dielectric permittivity εV for a semicon-

ductor layer of the periodic structure under consideration.
ε̂
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that have identical transverse wave numbers kz but dif-
ferent (orthogonal) polarizations in a dielectric layer—
are involved in the process of formation of the band
spectrum of natural waves. We note that, as follows
from expressions (3) and (6), kz1 and kz2 may be real-
valued, pure imaginary, or complex-valued quantities,
while kz may be a real-valued or pure imaginary quan-
tity. Various combinations of these possibilities for
these three transverse wave numbers determine the pos-
sible existence of one type of natural wave in a given
section of the band spectrum or another, as well as the
distribution of electric and magnetic fields in the layers
of the structure. In analyzing the band spectra, it is
therefore of importance to know positions of the
boundaries between regions where the transverse wave
numbers are of different complex character. By using
Eq. (3), we can show that, in a semiconductor layer, the
boundary between real and pure imaginary values of
kz1, 2 are determined by the relations

(16)

(for frequencies above ωP) and

(17)

The boundaries between complex and real or pure
imaginary values of kz1, 2 are specified by the relations

(18)

They occur in the region of frequencies for which
ω > ωP, ωH. For ω @ ωH, relation (18) for one of the

kxy k0 ε3=
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Fig. 3. Regions where the transverse wave numbers kz1 and
kz2 in the semiconductor layers of the structure are of differ-
ent complex character (C* stands for complex conjugate
quantities).
transverse wave numbers (with a minus sign in front of
the square root) reduces to (16).

For the structure under study, the boundaries
between the regions where kz is of different complex
character are shown in Fig. 3 at B0 = 0.05 T. For a semi-
conductor, these regions are bounded by the displayed
curves and the dashed lines corresponding to the fre-
quencies ωP, ωSP, and ωH. For a dielectric layer, the
light-propagation line kxyc/ω = ε1/2 appears as the
respective boundary, with kz values being real to the left
of it and pure imaginary to the right.

The total spectrum of our periodic structure is
shown in Fig. 4a according to calculations at the mag-
netic-field-induction value of B0 = 0.05 T and ky/kx = 2.
This spectrum was obtained by taking the sum of two
independent spectra corresponding to the Bloch wave
numbers  and  that are determined by the disper-
sion equations (14) and (15) and which are shown in
Figs. 4b and 4c. The spectrum consists of alternating
transmission and nontransmission bands whose width
is a function of kxyd. In the structure of the spectrum,
there are several specific regions characterized by the
corresponding types of natural waves in our periodic
structure. We will now consider some of them.

Region of collective surface waves. It includes two
transmission bands occurring in the region of frequen-
cies below the plasma frequency and also existing in the
absence of a magnetic field. This property of a periodic
medium—that is, the property of being transparent to
electromagnetic waves at frequencies where the semi-
conductor layers entering into its composition are not
transparent—was indicated in [1]. Such waves can be
classified as unusual waves. A feature that is peculiar to
the present case and which distinguishes it from the
case considered in [1] is that, now, four partial waves
(rather than two) determining the topology of the spec-
trum (in this region inclusive) are involved in the for-
mation of the bands. This leads both to a change in the
shapes of transmission bands and to a change in the
character of the field distributions over the layers.

At large kxyd, the width of these transmission bands
decreases; they approach a horizontal asymptote corre-
sponding to the surface-plasmon frequency ωSP =

. In this region of frequencies, the
transverse wave numbers are pure imaginary (see
Fig. 3) and correspond to partial waves whose fields
decrease from the boundaries of each layer according to
an exponential law. We also note that, at the uppermost
boundary of this transmission band, there exists a seg-
ment of negative group velocity. The shape of the trans-
mission bands depends on the induction of the applied
magnetic field.

Region of waveguide plasma waves. It is repre-
sented by a narrow transmission band having an asymp-
tote at the plasma frequency. This region does not exist
in the absence of a magnetic field. For partial waves in

k1 k2

εLωP
2
/ εL ε2+( )
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a semiconductor layer, the transverse wave numbers are
real-valued (see Fig. 3); that is, these are waves of the
waveguide type in each layer. In a dielectric layer, the
wave numbers are pure imaginary, while the fields are
of a superficial character; that is, their amplitudes
decrease from the boundaries of dielectric layers
according to an exponential law.

Region of cyclotron waves. The region consists of
a number of bands lying below the cyclotron frequency;
the bandwidth decreases as one approaches the cyclo-
tron frequency, tending to zero in the limit. This is
because, in the vicinity of this frequency, the wave
numbers kz1 and kz2 can take indefinitely large values in
view of the divergence of the components of the tensor

. Since trigonometric functions of the arguments kz1d1
and kz2d1 appear in the dispersion equation, this leads to
the emergence of an infinite number of transmission
and nontransmission bands. In [6], a similar effect was
found in the case of a “transverse” propagation of
waves at frequencies below the hybrid-resonance fre-
quency. It goes without saying that such a fragmenta-
tion of bands is possible only if dissipative processes
are disregarded. In the presence of dissipation, the
width of transmission and nontransmission bands on
the frequency axis cannot be less than the dissipation
frequency.

In the frequency region ω ≤ ωH being considered,
the expressions for the transverse wave numbers in the
layers under the condition kxy @ k0 assume the form

(19)

(20)

Here, we have taken into account the frequency depen-
dence in the components of the tensor  of the semi-
conductor dielectric permittivity (see Fig. 2). From the
above relations, it follows that, in the approximation
used here, one partial wave in a semiconductor layer,
that of wave number kz1, has a waveguide character,
while the other, that of wave number kz2, has a surface
character. This situation, in which volume waves must
be “admixed” to surface waves in order to satisfy the
boundary conditions, was classified in [14] as that in
which there emerge pseudosurface modes.

In the upper part of the band spectrum, the trans-
verse wave number in the dielectric material to the left
of the light-propagation line is real-valued; in the same
region, one transverse wave number is real-valued,
while the other is pure imaginary (see Fig. 3), that is,
this is also the region of pseudosurface modes. Here,
there exist a few broad transmission bands correspond-
ing to Bloch wave numbers . As can be seen from

ε̂
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---- kxy,±≈

kz2 kz ikxy.±≈ ≈
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k1 2,
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Fig. 4, these bands partly overlap, forming a transmis-
sion band common to  and .

CONCLUSION

The band spectrum of a periodic layered semicon-
ductor structure placed in a magnetic field aligned with
the periodicity axis has been calculated for the case of
wave propagation at some angle with respect to the
magnetic field. A method for deriving the dispersion
equation is given. It has been shown numerically that,
for the periodic-structure configuration being consid-
ered, the left-hand side of the dispersion equation can
be represented as the product of two polynomials of
second degree, and an analysis of the properties of such
an equation has been performed.

It has been established that, in this structure, there
are two independent spectra of natural waves in the
absence of dissipation. It has been shown that the band
spectrum consists of collective plasma waves and
numerous bands of cyclotron waves.

The regions of the existence of natural waves of this
spectrum have been classified. It has been found that
the transmission bands of the two independent spectra
of the periodic structure in question can be superim-
posed and supplement one another.

APPENDIX 1

The coefficients Ci and Di in expressions (4) for the
field components in a semiconductor are given by

For the elements of the matrix  for a semiconduc-

k1 k2

C1 2, iky ε1 k0
2 kxy

2

ε3
------– 

  kz1 z2,
2–





=

– ε2kx k0
2 kxy

2

ε3
------– 

 




e
i kx x kyy+( )

,

C3 4, i– kx ε1 k0
2 kxy

2

ε3
------– 

  kz1 z2,
2–





=

– ε2ky k0
2 kxy

2

ε3
------– 

 




e
i kx x kyy+( )

,

D1 2,

= kz1 z2,
ky

k0
---- ε1 k0

2 kxy
2

ε3
------– 

  – kz1 z2,
2





– iε2k0ky




e
i kx x kyy+( )

,

D3 4,

= kz1 z2,
ky

k0
---- ε1 k0

2 kxy
2

ε3
-------– 

  kz1 z2,
2

– iε2k0kx+
 
 
 

e
i kx x kyy+( )

Ŝ

tor, we have

where α = k1z, β = kz2z, C5 = (C1C4 – C2C3)–1, and D5 =
(D1D4 – D2D3)–1.

APPENDIX 2

The coefficients Fi in expressions (7) for the field
components in a dielectric material are given by

The matrix  for a dielectric material has the form

S11 C5 C1C4 αcos C2C3 βcos–( ),=

S21 C3C4C5 αcos βcos–( ),=

S12 C1C2C5 αcos βcos–( ),–=

S22 C5 C2C3 αcos C1C4 βcos–( ),–=

S13 D5 C1D4 αsin C2D3 βsin–( ),=

S23 D5 C3D4 αsin C4D3 βsin–( ),=

S14 D5 C1D2 αsin C2D1 βsin–( ),–=

S24 D5 C3D2 αsin C4D1 βsin–( ),–=

S31 C5 D1C4 αsin D2C3 βsin–( ),–=

S41 C5 D3C4 αsin D4C3 βsin–( ),–=

S32 C5 D1C2 αsin D2C1 βsin–( ),=

S42 C5 D3C2 αsin D4C1 βsin–( ),=

S33 D5 D1C4 αcos D2D3 βcos–( ),=

S43 D3D4D5 αcos βcos–( ),=

S34 D1D2D5 αcos βcos–( ),–=

S44 D5 D2D3 αcos D1D4–( ),–=

F1 kzz, F2cos i
kxky

k0kz

--------- kzz,sin= =

F3 i
kxky( )2 ε k0kz( )2+

k0kz ky
2 εk0

2–( )
------------------------------------------ kzz,sin=

F4 i
ky

2 εk0
2–

k0kz

------------------ kzz.sin=

D̂

D̂

F1 0 F2/ε F3/ε–

0 F1 F4/ε F2/ε–

F2– F3 F1 0

F4– F2 0 F1 
 
 
 
 
 
 

.=
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APPENDIX 3

The coefficients in the dispersion equation that are

expressed in terms of the transformation matrix  for
one period of the structure are given by
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Abstract—A dispersion equation is derived for nonaxisymmetric capillary vibrations of a spatially charged jet
of a viscous dielectric liquid. It is shown that the critical conditions with respect to the instability of nonaxisym-
metric jet modes are less stringent than those for axisymmetric modes, this effect being more pronounced for
liquids characterized by lower values of the dielectric permittivity. © 2003 MAIK “Nauka/Interperiodica”.
1. Investigation of capillary vibrations in charged
jets of an electrically conducting or a dielectric liquid
and of its stability and conditions of its disintegration
into drops is of interest in connection with numerous
application of these phenomena in various fields of
technical physics and technology (see [1, 2] and refer-
ences therein). In view of the aforesaid, the physical
object in question has been repeatedly studied experi-
mentally and theoretically, both within a linear and
within a nonlinear formulation of the problem [1–12].
Despite this, some questions concerning the stability of
jets have yet to be clarified conclusively. In particular,
this is so for an analysis of stability of nonaxisymmetric
vibrational modes and is due to the fact that the major-
ity of the previous investigations were aimed, in order
to meet requirements of practice, at obtaining fluxes of
monodispersed drops [2]. Nonetheless, one has to con-
sider the disintegration of nonaxisymmetric jets into
drops in exploring the spontaneous fragmentation of
jets ejected from the vertices of freely falling drops [13]
and from meniscuses of liquids at the end faces of cap-
illaries [14, 15] and in dealing with the instabilities of
jets with respect to their surface charge. General regu-
larities of the loss of stability were analyzed in [12] for
nonaxisymmetric modes of superficially charged jets
formed by ideally conducting liquids, and it was found
there that the critical conditions for the realization of
the instability of nonaxisymmetric modes are less strin-
gent than those for axisymmetric modes, this effect
becoming more pronounced with increasing viscosity.
In this connection, it is of interest to examine stability
of nonaxisymmetric modes for another limiting case,
that of spatially charged jets of ideally conducting liq-
uids. This situation is of importance in connection with
creating electrically controlled jets of charged liquid-
hydrogen drops for laser-induced thermonuclear fusion
[16], accelerators of macroscopic particles [17, 18], and
neutrino detectors [19].
1063-7842/03/4811- $24.00 © 21380
2. Suppose that we have an infinite cylindrical jet
formed by a viscous incompressible liquid of mass den-
sity ρ, kinematic viscosity ν, dielectric permittivity ε,
and the coefficient of surface tension σ and that the jet,
which has a radius R, moves at a constant velocity U0
along the symmetry axis. Within the frozen-charge
model, we assume that the charge is distributed uni-
formly and denote its density by µ. Since we consider
an infinite jet, we go over, in order to simplify the prob-
lem, to inertial reference frame comoving with the jet.
It is obvious that, in this reference frame, the velocity
field U(r, t) for the flow of the liquid in the jet is com-
pletely determined by possible capillary vibrations (of
thermal origin, for example) of the jet surface and is of
the same order of smallness as the amplitude of vibra-
tions. We will seek critical conditions for the realization
of the instability of capillary vibrations of the drop sur-
face.

All the ensuing calculations will be performed in the
system of cylindrical coordinates with the z axis
aligned with the jet symmetry axis, the respective unit
vector nz being directed along the velocity vector U0.
We represent the equation of the jet surface perturbed
by a capillary wave motion in the form

The mathematical formulation of the problem of
calculating capillary vibrations of a jet includes the
equations of fluid dynamics and electrostatics (under
the assumption that the velocity of the motion of the
liquid in the jet is much less than relativistic velocities),

r R ξ z φ t, ,( ), ξ  ! R.+=

dU
dt
------- –

1
ρ
--- ∇ P ν∆U; ∇ U⋅+ 0;= =

∆Φin 4πµ
ε
---; ∆Φex– 0;= =
003 MAIK “Nauka/Interperiodica”
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the conditions of boundedness,

and the boundary conditions at the free jet surface

Here, Ur, Uφ, and Uz are the components of the velocity
field in the system of cylindrical coordinates; P(r, t) is
a hydrodynamic pressure; P0 is atmospheric pressure;
Pe is the electric-field pressure (see Appendix); Pσ is the
pressure of the surface-tension forces (Pσ = σdivn);
n is a unit vector orthogonal to the jet surface; and Φin

and Φex are the electrostatic potentials within and
beyond the jet, respectively.

The solution to the above problem will be sought in
the form of an expansion in the small parameter |ξ|/R.

In the zeroth approximation, we obtain an immobile
column of a liquid and the well-known expression for
the electric field pressure at the surface of a uniformly
charged infinite cylinder with a fixed radius.

3. Going over to a system of dimensional variables
where R = 1, ρ = 1, and σ = 1 and preserving the former
notation for all physical quantities, we write the prob-
lem under consideration in the linear approximation in
|ξ| as

(1)

(2)

(3)

(4)

(5)

(6)

(7)

r 0: Φin const; U const ∞;<=

r ∞: ∇Φ ex 0;

r R ξ : Φin+ Φex, ε∂Φin

∂n
----------- ∂Φex

∂n
-----------;= = =

–
∂ξ
∂t
------ U — r R ξ z φ t, ,( )+( )–[ ]⋅+ 0;=

∂Uz

∂r
---------

∂Ur

∂z
---------+ 0;=

∂Uφ

∂r
----------

1
r
---

∂Ur

∂φ
--------- 1

r
---Uφ–+ 0;=

P r t,( ) P0– 2ν
∂Ur

∂r
--------- Pe– Pσ+ +– 0.=

r 1 ξ φ z t, ,( ); ξ  ! 1;+=

∂U
∂t
------- —P ν∆U;+–=

—U 0;=

∆ϕ in 0; ∆ϕex 0;= =

r 0: ϕ in 0, U ∞,<

r ∞: ϕex 0;

r 1: ϕ in ∂Φ0
in

∂r
-----------ξ+ ϕex ∂Φ0

ex

∂r
-----------ξ ;+= =
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(8)

(9)

(10)

(11)

(12)

In Eqs. (1)–(12), ϕin, ϕex, p, pe, and pσ are correc-
tions to, respectively, the electric potential within the
liquid, the electric potential beyond the liquid, the
hydrodynamic pressure, the pressure of electric forces,
and the pressure of surface-tension forces from capil-
lary vibrations of the jet surface.

Expanding the Laplace pressure and the electric-
field pressure at the jet surface in the small quantity |ξ|,
we can easily obtain expressions of the first order of
smallness for the quantities pe and pσ. Specifically, they
are given by (see Appendix; see also [12])

(13)

(14)

4. We will solve the set of Eqs. (2) and (3) by the
method of operator scalarization (for details, see [20];
see also [12]), expanding the velocity field U(r, t) in the
sum of three orthogonal vector fields with the aid of dif-
ferential vector operators Ni,

(15)

that satisfy the orthogonality conditions

(16)

and commute with the Laplace operator:

(17)

In expressions (15) and (16), ψi(r, t) are unknown

scalar functions and  are the Hermitian conjugates

of .
Since the equilibrium shape of the jet is axisymmet-

ric, it is convenient to take the operators  in the form

ε ∂ϕ in

∂r
----------

∂2Φ0
in

∂r2
-------------ξ+

 
 
  ∂ϕex

∂r
----------

∂2Φ0
ex

∂r2
-------------ξ ;+=

–
∂ξ
∂t
------ Ur+ 0;=

∂Uφ

∂r
----------

∂Ur

∂φ
--------- Uφ–+ 0;=

∂Uz

∂r
---------

∂Ur

∂z
---------+ 0;=

– p 2ν
∂Ur

∂r
--------- pe– pσ+ + 0.=

pσ ξ ∂2ξ
∂φ2
-------- ∂2ξ

∂z2
--------+ + 

  ;–=

pe 2πµ2 1 ε 1–
2ε

-----------– 
  ξ µ ϕ ex ε 1–

2ε
-----------∂ϕex

∂r
----------+ 

  .–=

U r t,( ) N̂iψi r t,( ) i 1 2 3, ,=( ),
i 1=

3

∑=

N̂ j
+
N̂i 0 for  i j; i j 1 2 3, ,=,≠( )=

∆N̂i N̂i∆.=

N̂ j
+

N̂ j

N̂i

N̂1 —; N̂2 — ez; N̂3× — — ez×( ).×= = =



1382 SHIRYAEVA et al.
From (15), it follows that, in the system of cylindri-
cal coordinates, the expressions for the components of
the velocity field U(r, t) in terms of the scalar function
ψi(r, t) are given by

(18)

Substituting expressions (15) and (18) into the set of
Eqs. (2) and (3) and using the operator properties (16)
and (17), we obtain the set of scalar equations

(19)

(20)

With the aid of relations (13), (14), (18), and (20),
we transform the boundary conditions (9)–(12) into the
following boundary conditions for the unknown func-
tions ψi and ε:

(21)

Ur

∂ψ1

∂r
---------

1
r
---

∂ψ2

∂φ
---------

∂2ψ3

∂z∂r
-----------;+ +=

Uφ
1
r
---

∂ψ1

∂φ
---------

∂ψ2

∂r
---------

1
r
---

∂2ψ3

∂z∂φ
------------;+–=

Uz

∂ψ1

∂z
--------- 1

r
--- ∂

∂r
----- r

∂ψ3

∂r
--------- 

  1

r2
----

∂2ψ3

∂φ2
-----------+ .=

∆ψ1 0; ∆ψi
1
ν
---

∂ψi

∂t
--------– 0 i 2 3,=( );= =

p
∂ψ1

∂t
---------.–=

r 1: 
∂ξ
∂t
------

∂ψ1

∂r
---------

1
r
---

∂ψ2

∂φ
---------

∂2ψ3

∂z∂r
-----------+ +– 0;= =

2
∂

∂φ
------

∂ψ1

∂r
--------- ψ1–

 
 
  ∂2ψ2

∂r2
-----------

∂ψ2

∂r
---------

∂2ψ2

∂φ2
-----------––

 
 
 

–

+ 2
∂2

∂z∂φ
------------

∂ψ3

∂r
--------- ψ3–

 
 
 

0;=

∂
∂r
-----

∂ψ1

∂z
---------

1
r
--- ∂

∂r
----- r

∂ψ3

∂r
--------- 

  1

r2
----

∂2ψ3

∂φ2
-----------+–

 
 
 

+
∂
∂z
-----

∂ψ1

∂r
---------

1
r
---

∂ψ2

∂φ
---------

∂2ψ3

∂z∂r
-----------+ +

 
 
 

0;=

∂ψ1

∂t
--------- 2ν ∂

∂r
-----

∂ψ1

∂r
---------

1
r
---

∂ψ2

∂φ
---------

∂2ψ3

∂z∂r
-----------+ +

 
 
 

+

– 2πµ2 1 ε 1–
2ε

-----------– 
  ξ µ ϕ ex ε 1–

2ε
-----------∂ϕex

∂r
----------+ 

 +

– ξ ∂2ξ
∂φ2
-------- ∂2ξ

∂z2
--------+ + 

  0.=
Since the functions ξ, ϕex, ϕin, and ψi describe small
deviations from the equilibrium state, we assume, in
order to analyze its stability, that the time dependence
of all small quantities has the exponential form

where s is the complex-values frequency.
For Eqs. (19) and (4), solutions satisfying the

boundedness conditions (5) and (6) will then be sought
in the system of cylindrical coordinates in the form of
expansions in waves running over the unperturbed
cylindrical surface of the jet along the z axis:

(22)

(23)

The function ξ(z, φ, t) will be represented in the
form of the analogous expansion

(24)

In expressions (22)–(24), k is the wave number; l2 ≡
k2 + s/ν; m is the azimuthal number characterizing the
deviation of the solutions from axial symmetry; Im(x)
and Km(x) are modified Bessel functions of the first and
the second kind, respectively; and Ci (where i = 1, 2, 3,
4, 5) and D are expansion coefficients, which depend on
m and k.

Using the solutions given by (23) and (24) and con-
sidering that the functions exp(imφ) and exp(ikz) are
orthonormalized,

(25)

where  is the Kronecker delta symbol and δ(k1 –
k2) is a Dirac delta function, we can easily derive, from
the boundary conditions (7) and (8), the relations

ξ ϕ ex ϕ in ψi, , , st( ),exp∼

ψ1 C1Im kr( ) imφ( ) ikz( ) st( )expexpexp
m 0=

∞

∑ k;d

0

∞

∫=

ψi CiIm lr( ) imφ( ) ikz( ) st( )expexpexp
m 0=

∞

∑ kd

0

∞

∫=

i 2 3,=( );

ϕex C4Km kr( ) imφ( ) ikz( ) st( )expexpexp
m 0=

∞

∑ k;d

0

∞

∫=

ϕ in C5Im kr( ) imφ( ) ikz( ) st( )expexpexp
m 0=

∞

∑ k.d

0

∞

∫=

ξ z φ t, ,( ) = D imφ( ) ikz( ) st( )expexpexp
m 0=

∞

∑ k.d

0

∞

∫

i m1 m2–( )φ[ ]exp φd

0

2π

∫ δm1 m2, ;=

i k1 k2–( )z[ ]exp zd

∞–

∞

∫ δ k1 k2–( ),=

δm1 m2,
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between the coefficients C4, C5, and D. Specifically, we
have

(26)

Substituting solutions (22) and (23) with allowance
for (26) and expansion (24) into the boundary condi-
tions (21) and using relations (25), we arrive at the fol-
lowing set of equations for the unknown coefficients D
and Ci (i = 1, 2, 3):

(27)

Here, primes denote the derivatives of Bessel functions
of order m with respect to the argument; these deriva-
tives can be expressed in terms of Bessel functions of
order m and (m + 1) with the aid of the recursion rela-
tions

We recall that the set of homogeneous equations
(27) has a nontrivial solution only if its determinant is
equal to zero, det[aij] = 0, where the elements aij are

C4
2πµD
Km k( )
---------------2 ε 1–( )kh k( )+

εk h k( ) g k( )–[ ]
---------------------------------------;=

C5
2πµD
Im k( )
---------------2ε ε 1–( )kg k( )+

ε2
k h k( ) g k( )–[ ]

------------------------------------------;=

h k( ) Im' k( )/Im k( ); g k( ) Km' k( )/Km k( ).≡ ≡

Ds C1kIm' k( ) C2imIm l( )– C3iklIm' l( )–– 0;=

C12im kIm' k( ) Im k( )–( ) C2 lIm' l( ) m2Im l( )–(+

– l2Im'' l( ) ) C32mk Im l( ) lIm' l( )–( )+ 0;=

C12ik2Im' k( ) C2mkIm l( )– C3 l3Im''' l( ) l2Im'' l( )+(–

+ l k2 m2– 1–( )Im' l( ) 2m2Im l( ) )+ 0;=

D k2 m2 1– 2πµ2 1
ε 1–
2ε

-----------––+




– 
2 ε 1–( )kh k( )+( ) 2ε ε 1–( )kg k( )+( )

2ε2k h k( ) g k( )–[ ]
--------------------------------------------------------------------------------------------





+ C1 sIm k( ) 2νk2Im'' k( )+( ) C22νim lIm' l( ) Im l( )–( )+

+ C32νikl2Im'' l( ) 0.=

Im' x( ) Im 1+ x( ) m
x
----Im x( )+ Im 1– x( ) m

x
----Im x( );–= =

Im'' x( ) 1
x
---Im 1+ x( )– 1 m m 1–( )

x2
----------------------+ 

  Im x( );+=

Im''' x( ) 1 m2 2+

x2
---------------+ 

  Im 1+ x( )=

+
m 1–

x
------------- 1 m m 2–( )

x2
----------------------+ 

  Im x( );

Km' x( ) m
x
----Km x( ) Km 1+ x( ).–=
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given by

(28)

5. Evaluating explicitly the fourth-order determi-
nant formed by the elements in (28), we obtain a disper-
sion equation that relates the frequencies s of jet-sur-
face vibrations to the azimuthal number m and the wave
number k; that is,

a11 s; a21 a31 0;= = =

a41 k2 m2 1– 2πµ2 1
ε 1–
2ε

-----------
---
---––+=

–

2 ε 1–( )m ε 1–( )kFm k( )+ +( ) 1
ε 1–
2ε

----------- m kGm k( )–[ ]+ 
 

ε 1–( )m εk Fm k( ) Gm k( )–( )+
---------------------------------------------------------------------------------------------------------------------------- ;

Fm x( )
Im 1+ x( )
Im x( )

------------------; Gm x( )
Km 1+ x( )
Km x( )

---------------------;≡ ≡

a12 kIm 1+ k( ) mIm k( )+( );–=

a22 2im kIm 1+ k( ) m 1–( )Im k( )+( );=

a32 2ik kIm 1+ k( ) mIm k( )+( );=

a42 s 2ν k2 m m 1–( )+( )+[ ] Im k( ) 2νkIm 1+ k( );–=

a13 imIm l( );–=

a23 2lIm 1+ l( ) l2 2m m 1–( )+( )Im l( );–=

a33 mkIm l( );–=

a43 2νim lIm 1+ l( ) m 1–( )Im l( )+( );=

a14 ik lIm 1+ l( ) mIm l( )+( );–=

a24 2mk lIm 1+ l( ) m 1–( )Im l( )+( );–=

a34 l2 k2+( ) lIm 1+ l( ) mIm l( )+( );–=

a44 2νik l2 m m 1–( )+[ ] Im l( ) lIm 1+ l( )–( ).=

s2 m l2 l2 k
2

+( ) 2m m 1–( )l2+[ ] Fm l( )l l2 k
2

+( )[+{

× l
2

4m–( ) 2l2m2 ] 2l2 l2 k2+( )Fm
2 l( ) }–+

+ 2sν ml2 l
2

k2–( ) k2 m m 1–( )–( )–{

+ Fm l( )l l2k2 l2 k2+( )[ l2m m 1–( ) l2 2m m 1+( )–( )+

+ l2k2m 3m 1+( ) 4k2m k
2

m m2 1–( )–( ) ]–

– 2l2 k2 l2 k
2

+( ) m m2 1–( ) l2 k2–( )+[ ] Fm
2 l( )

– Fm k( )k 2l2 l2k2 m2 m2 1–( ))+(( l2m l2 k2 4m 5–( )+( )+

+ Fm l( )l l4 5l2k2– 4m m2 1–( ) l2 k2–( )+[ ]

+ 2l2 m2 1–( ) l2 k2–( )Fm
2 l( ) ) }
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=  f m µ k, ,( ) m l2m l2 k2–( ) Fm l( )l l2 l2 k2–( )[+({

– 2m l2 2k2–( ) ] 2l2 l2 k2–( )Fm
2 l( ) )–
+ Fm k( )k m l2 l2 k2–( ) 2ml2–[ ] l l2 k2–( ) l2 4m–( )+(

× Fm l( ) 2l2 l2 k2–( )Fm
2 l( ) ) } ;–
(29)

f m µ k, ,( ) 1 k2– m2– 2W 1
1
2ε
----- ε 1---––





+≡

+
2 ε 1–( )m ε 1–( )kFm k( )+ +( ) 2ε ε 1–( )m ε 1–( )kGm k( )–+( )

ε 1–( )m εkFm k( ) kGm k( )+ +
-----------------------------------------------------------------------------------------------------------------------------------------------------------





;

W πµ2.=
An analysis of Eq. (29) is very difficult in the gen-
eral case and calls for the application of numerical
methods.

In the limiting case of ε  ∞ and µ = 2κ, where
κ is the surface charge density of a jet formed by an
electrically conducting liquid, we arrive at the disper-
sion equation obtained in [12] for nonaxisymmetric
vibrations of a charged jet of an electrically conducting
viscous liquid (in this transition, it is assumed that the
charge per unit jet length remains unchanged).

The dispersion equation for axisymmetric vibra-
tions of a charged jet—various simplified versions of
this equation were discussed in [3, 5, 7]—can easily be
derived from (29) by setting m = 0. The result is

At µ = 0, this equation coincides with the dispersion
equation for a neutral jet of the viscous liquid [21]; that
is,

For a jet formed by a liquid of low viscosity, in
which case the condition l @ k is satisfied, Eq. (29)
takes a simpler form,

(30)

In the ideal-liquid limit (ν  0), Eq. (30) reduces
to the form

(31)

s2 2νk2s 1 F0 k( ) 2kl

l2 k2+( )F0 l( )
-------------------------------- l2 k2–

k l2 k2+( )
----------------------+

 
 
 

–+

=  k
l2 k

2
–

l2 k2+
---------------F0 k( ) f 0 µ k, ,( ).

s2 2νk2s 1 F0 k( ) 2kl

l2 k2+( )F0 l( )
-------------------------------- l2 k2–

k l2 k2+( )
----------------------+

 
 
 

–+

=  k 1 k2–( ) l2 k
2

–

l2 k2+
---------------F0 k( ).

s2 2sν k2 m m 1–( ) kFm k( )–+( )+

=  f m µ k, ,( ) m kFm k( )+( ).

s2 f m µ k, ,( ) m kFm k( )+( ).=
6. From Eq. (31), it can be seen that, for f > 0, the
frequencies s are real-valued and that this equation has
two roots. One of them is negative and determines the
decrement of decay for the corresponding motion of the
liquid; therefore, it is of no interest for the present
investigation. The other root is positive and determines
the increment of growth of the instability of a cylindri-

cal wave, s = (m + kFm(k))1/2. Equating to zero the
first derivative of the increment with respect to the wave
number, one can find the wave number of the capillary
wave corresponding to the maximum value of the incre-
ment; substituting thereupon this wave number into
(31), one obtains the relevant increment itself. The
results of such calculations based on Eq. (30) that were
performed with the aid of the Matematica package for
analytic calculations are given in Figs. 1 and 4 in the
form of the dependences s = s(W) and k = k(W) for the
first five values of the azimuthal number m for various
values of the dielectric permittivity ε.

From a comparison of the data presented in Fig. 1
for ε  ∞, Fig. 2 for ε = 20, and Figs. 3 and 4 showing
the results of our calculations for liquid hydrogen (ε =
1.241), one can easily see that, as the dielectric permit-
tivity of liquids decreases, the absolute values of the
instability increments and the wave numbers of the
most unstable waves also become smaller. Moreover,
the region of W values where instability is realized is
shifted toward greater values of W, and this is seen most
clearly from a comparison of Figs. 2–4.

The most interesting result obtained previously in
[12] in studying the instability of superficially charged
nonaxisymmetric jets of electrically conducting liquids
is that, at rather large values of the parameter W, the
increments of the instability of nonaxisymmetric
modes become commensurate with the increments for
axisymmetric modes, while the wave numbers of the
most unstable waves fall below their counterparts for
the axisymmetric case. This means that, at the final
stage of the realization of instability, which is mani-
fested in the fragmentation of a jet into drops, the drop
will disintegrate into drops of different dimensions;
therefore, preferential conditions must be created for
the axisymmetric mode—for example, by artificially

f
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Fig. 1. (a) Dimensionless increment and (b) dimensionless
wave number of the most unstable wave versus the dimen-
sionless parameter W characterizing the surface charge
according to calculations at ν = 0.1 for ε  ∞. The fig-
ures on the curves correspond to the values of the azimuthal
number m.
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Fig. 2. As in Fig. 1, but for ε = 20.
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increasing its amplitude, as is done in the induced cap-
illary decay of jets [2]—in order to solve the practical
problem of obtaining fluxes of monodispersed drops.

In the above situation of spatially charged dielectric
jets, the increments of the instability of nonaxisymmet-
ric modes prove to be even greater than those for axi-
symmetric modes. This is seen most clearly from
Figs. 3a and 4a, which display the results obtained by
calculating, for a liquid-hydrogen jet, the instability
increments for the axisymmetric mode (the number on
a curve coincides with the number of the mode) and the
next four nonaxisymmetric modes in the ascending
order of the azimuthal number m. It is interesting to
note that, for low values of the dielectric permittivity,
the region of W values at which the wave numbers of
the most unstable modes take reasonable values for
m ≥ 2 modes from the point of view of the disintegra-
tion of jets into drops in practice is shifted toward
greater values of W. This is seen from a comparison of
the regions of W values corresponding to the realization
of jet-surface instability in Figs. 3a and 3b, as well as in
Figs. 4a and 4b. In Figs. 3b and 4b, the curves have seg-
ments parallel to the abscissa (they are nearly coinci-
dent with it) that correspond to unstable waves charac-
terized by very low wave numbers. Physically, this
implies the instability of very long waves. In the sense
of jet fragmentation into parts, the realization of such
an instability would lead to the disintegration of a jet
into large pieces rather than into small drops. Such an
instability was experimentally observed in [13, 14], and
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Fig. 3. As in Fig. 1, but at m = 0, 1, and 2 for liquid hydrogen
at ε = 1.241.
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this entails a significant complication of the spectrum
of modes of the electrostatic dispersion of a liquid [14,
15, 22, 23].

From Fig. 3a, it can be seen that, for a jet of liquid
hydrogen characterized by a rather low dielectric per-
mittivity (ε = 1.241), the curve representing the depen-
dence s = s(W) for m = 0 first descends to zero with
increasing W; after that, there are no unstable solutions
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Fig. 4. As in Fig. 3, but at m = 2, 3, and 4 for a wider range
of W values.
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Fig. 5. Factor f(k, m, W) as a function of the parameter W
and the dimensionless wavenumber k (coarse grid). The fine
grid shows the plane f = 0
to Eq. (30) in some range of W values, but they then
again appear, with the result that the general form of the
dependence s = s(W) becomes identical to that which is
displayed by the other curves. This type of behavior of
the function s = s(W), with a minimum in the region of
low values of W, was previously observed in [12] at
high values of viscosity (at ν = 3) and is due to the non-
monotonic character of the function f(k, m, W) at small
k and W, as can be seen from Fig. 5, which shows the
calculated dependence f = f(k, m, W) for a dielectric jet
with ε = 1.241 at m = 0. The same figure also displays
the f ≡ 0 plane represented by a denser coordinate mesh.
If one recalls that positive values of the function f(k, m,
W), which rise above the f ≡ 0 plane, correspond to
unstable states of charged jets, it can be seen that, at
small values of k and W, there is a locus in which unsta-
ble solutions are absent. It is this circumstance that
leads to the dependence of the increment of instability
of the axisymmetric (m = 0) mode on the parameter W
in Fig. 3a.

The effect of viscosity on the regularities of realiza-
tion of jet instability is qualitatively similar to that in
the case of a superficially charged conducting jet,
which was investigated previously in [12]: the instabil-
ity increments and the wave numbers of the most unsta-
ble waves decrease with increasing viscosity. In view of
this, we will not pay special attention to this issue.

CONCLUSIONS

The increments of instability of nonaxisymmetric
modes of spatially charged jets become smaller with
decreasing dielectric permittivity of liquids, this effect
being more pronounced for smaller values of the azi-
muthal number m (which characterizes the degree of
deviation from axial symmetry). As a result, the incre-
ments of instability of nonaxisymmetric modes in
dielectric liquids of small dielectric permittivities may
become substantially greater than the increment of
instability of the axisymmetric mode, all other condi-
tions being the same, and this will affect the regularities
of jet fragmentation into drops.
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APPENDIX

The electrostatic-field pressure at the surface of a
charged dielectric jet, Pe, is given by

(A1)

where the potentials of the electric field within and
beyond the liquid—Φin and Φex, respectively—are

Pe –µΦin ε 1–
8πε
----------- ∂Φex

∂n
----------- 

 
2 ε 1–

8π
----------- ∂Φex

∂τ
----------- 

 
2

,+ +=
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obtained by solving the boundary-value problem

(A2)

We represent the potentials Φin and Φex in the form
of the expansions

(A3)

where  and  are the respective electric-field
potentials at the unperturbed jet surface, while ϕin and
ϕex are the first-order corrections in the perturbation
ξ(z, φ, t) of the surface to these potentials. Separating
the above problem according to orders of smallness, we
obtain the following:
in the zeroth order,

(A4)

while, in the first order,

(A5)

In the first order of smallness, the potentials  and

 of the electric field within and beyond the jet are
given by

(A6)

The solution to the first-order problem has the form

(A7)

∆Φin 4πµ
ε
---; ∆Φex– 0;= =

r 1 ξ : Φin+ Φex; ε∂Φin

∂n
----------- ∂Φex

∂n
-----------;= = =

r 0: Φin 0.

Φin Φ0
in ϕ in, Φex+ Φ0

ex ϕex,+= =

Φ0
in Φ0

ex

∆Φ0
in 4πµ

ε
---; ∆Φ0

ex– 0;= =

r 0: Φ0
in 0; r ∞: ϕex 0;=

r 1: Φ0
in Φ0

ex; ε
∂Φ0

in

∂r
-----------

∂Φ0
ex

∂r
-----------,= = =

∆ϕ in 0; ∆ϕex 0;= =

r 0: ϕ in 0; r ∞: ϕex 0;

r 1: ϕ in ∂Φ0
in

∂r
-----------ξ+ ϕex ∂Φ0

ex

∂r
-----------ξ ;+= =

ε ∂ϕ in

∂r
----------

∂2Φ0
in

∂r2
-------------ξ+

 
 
  ∂ϕex

∂r
----------

∂2Φ0
ex

∂r2
-------------ξ .+=

Φ0
in

Φ0
ex

Φ0
in πµr2

ε
-----------; Φ0

ex– –
πµ
ε

------- 2πµlnr.–= =

ϕex C4Km kr( ) imφ( ) ikz( ) st( )expexpexp
m 0=

∞

∑ k;d

0

∞

∫=

ϕ in C5Im kr( ) imφ( ) ikz( ) st( )expexpexp
m 0=

∞

∑ k,d

0

∞

∫=
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where the coefficients C4 and C5 are expressed in terms
of the coefficient D appearing in the integral represen-
tation (24) of the perturbation function ξ (see Eq. (26)).

The distortion of the equilibrium cylindrical surface
of the jet by the wave motion ξ(z, φ, t) entails a change
in the pressure Pe. Since the perturbation ξ is small, we
represent Pe, upon the substitution of expansions (A3)
into (A1), in the form of a series in the small quantities
ϕin, ϕex, and ξ, retaining terms to the first order inclu-
sive; that is,

(A8)

where n and t are unit vectors along, respectively, the
normal and the tangent to the jet surface.

In deriving the last expressions, we used the rela-
tions

From (A8), it can be seen that the expressions for the
electric-field pressure at the unperturbed surface of a

charged dielectric jet, , and for the first-order correc-
tion in the small perturbation of the equilibrium jet sur-
face to the electric-field pressure, pe, are given by

Taking into account the zeroth-order solution (A6)
and relation (A5) between the potentials ϕin and ϕex at

Pe r 1 ξ+= –µ Φ0
in ϕ in+( ) ε 1–

8πε
-----------

∂Φ0
ex

∂n
----------- ∂ϕex

∂n
----------+ 

 
2

+




=

+
ε 1–
8π

-----------
∂Φ0

ex

∂τ
----------- ∂ϕex

∂τ
----------+ 

 
2





r 1 ξ+=

O ξ2( )+

≈ µ– Φ0
in ξ

∂Φ0
in

∂r
----------- ϕ in+ + 

  ε 1–
8πε
-----------

∂Φ0
ex

∂r
----------- 

 
2


+





+
ε 1–
8πε
----------- ∂

∂r
-----

∂Φ0
ex

∂r
----------- 

 
2

ξ ε 1–
4πε
-----------

∂Φ0
ex

∂r
-----------∂ϕex

∂r
----------






r 1=

O ξ2( ),+ +

∂Φ0
ex

∂n
-----------

∂Φ0
ex

∂r
----------- O ξ2( ),

∂ϕex

∂n
---------- ∂ϕex

∂r
----------- O ξ2( ),+≈+≈

∂Φ0
ex

∂τ
----------- 0.=

Pe
0

Pe
0 µΦ0

in ε 1–
8πε
-----------

∂Φ0
ex

∂r
----------- 

 
2

+–
 
 
 

r 1=

;≈

pe µ
∂Φ0

in

∂r
-----------ξ ϕ in+ 

  ε 1–
8πε
----------- ∂

∂r
-----

∂Φ0
ex

∂r
----------- 

 
2

ξ
+–





≈

+
ε 1–
4πε
-----------

∂Φ0
ex

∂r
-----------∂ϕex

∂r
----------






r 1=

.
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the jet surface, we obtain

Substituting for the functions ξ and ϕex their integral
representations (23) and (24) and taking into account
(25) and (26), we obtain a final expression for the pres-
sure of the electric field associated with the perturba-
tion of the jet-surface shape. The result is

where h(k) and g(k) are defined in (26).
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of a Weakly Charged Drop Executing Nonlinear Vibrations
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Abstract—An analytic expression for the electric-field strength in the vicinity of a charged drop of an electri-
cally conducting liquid is obtained for the case where the initial shape of the drop executing nonlinear vibrations
is specified by a virtual excitation of an arbitrary single mode of capillary vibrations. It turns out that, even at
small charges (such that the Rayleigh parameter for the drop is equal to one-tenth of the critical value associated
with stability against the intrinsic charge), the electric-field strength at the drop surface in the case of an initial
excitation of one of high modes is sufficient for the ignition of a corona discharge. © 2003 MAIK “Nauka/Inter-
periodica”.
1. According to currently prevalent concepts, the
discharge of a linear lightning may be initiated by a
corona discharge in the vicinity of a drop or a flooded
(melting) hail freely falling in a stormy cloud [1–3].
However, measurements of charges carried by drops in
stormy clouds in nature reveal that these charges are
rather small, and the dimensionless Rayleigh parame-
ter, which characterizes the stability of a drop against
the intrinsic charge, does not exceed, for a drop of
radius 1 mm, one-tenth of the critical value according
to Rayleigh [4]. Moreover, the charges of drops are not
sufficient for the strength of the electric field generated
by the intrinsic charge to reach, at the spherical-drop
surface, a value of E+ ≈ 20 kV/cm, at which the ignition
of a corona discharge is possible [5]. At the same time,
it is well known that the amplitude of vibrations of
rainy and large (R ≈ 100–1000 µm) cloudy drops may
be as large as the drop radius itself [6]. In view of this,
it seems advisable to calculate the strength of the elec-
tric field of the intrinsic charge at the vertices of a drop
executing nonlinear vibrations, since it is clear from
general physical considerations that the field strength
must grow with increasing amplitude of vibrations.

We note that vibrations of large (R ≈ 100–1000 µm)
drops freely falling in a stormy cloud are intensified
owing to their collisions with smaller drops of radius
R ~ 10 µm, which form the bulk of the cloudy-drop
concentration [4]. Thus, the vibrational energy of a
drop is accumulated in high modes of its vibrations. As
was shown in [7, 8], nonlinear resonance interaction in
a drop of a perfect liquid (only in this model is it pres-
ently possible to perform a correct calculation of non-
linear vibrations) does not lead to vibrational-energy
transfer from high modes to the lowest mode (n = 2),
but this transfer from high modes to the third and fourth
modes of vibrations proceeds quite efficiently [7, 8]. In
1063-7842/03/4811- $24.00 © 21389
view of the aforesaid, we will calculate the electro-
static-field strength at the surface of a drop executing
nonlinear vibrations, assuming an initial excitation of
one of the modes that is higher than the lowest one.

2. Suppose that we have a nonlinearly vibrating drop
of a perfect, incompressible, and ideally conducting
liquid of density ρ. We denote by σ the coefficient of
surface tension of the liquid. We assume that the drop
occurs in a vacuum and has a total charge Q; we also
assume that the volume of the drop is determined by the
volume of a sphere of radius R and that, by the initial
instant of time t = 0, the equilibrium spherical shape of
the drop has undergone a virtual axisymmetric pertur-
bation of fixed amplitude ε (which is much smaller than
the radius of the drop), this perturbation being specified
in terms of a Legendre polynomial of order m. Below,
we will use a system of dimensionless variables in
which R = p = σ = 1.

In the system of spherical coordinates whose origin
is taken to be coincident with the center of mass of the
drop, the equation of the drop surface can be repre-
sented in the form

We assume that the motion of the liquid in the drop
has a potential character and that the velocity field there
is completely determined by the velocity-field potential
ψ(r; t); that is, V(r; t) = ∇ψ (r; t). A mathematical
formulation of the problem being considered is then
given by

r Θ t,( ) 1 ξ Θ t,( ), ξ  ! 1.+=

∆ψ r; t( ) 0; ∆Φ r; t( ) 0;= =

r 0: ψ r; t( ) 0; r ∞: ∇Φ r; t( ) 0;
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Here, ψ(r; t) and Φ(r; t) are the potentials of, respec-
tively, the velocity field in the liquid and the electro-
static field; ∆p is the pressure drop in the equilibrium
state between the interior of the drop and the region
outside it; ε is the amplitude of the initial perturbation
of the drop-surface shape; and ξ0 is a constant that is
determined from the requirement of invariability of the
drop volume and which, to second-order terms in the
small amplitude ε inclusive, is given by

Solving the above problem by the multiscale
method, as was previously done in [8–10], we obtain an
analytic expression for the generatrix of the drop shape.
The result is

r 1 ξ Θ t,( ): Φ+ ΦS t( );
∂ξ
∂t
------ ∂ψ

∂r
-------

1

r2
---- ∂ξ

∂Θ
-------∂ψ
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-------;–= = =

∆p
∂ψ
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-------–

1
2
--- ∇ψ( )2–

1
8π
------ ∇Φ( )2+ ∇ n;⋅=

t 0: ξ Θ t,( ) ξ0 εPm Θcos( ) m 2≥( );+= =

∂ξ Θ t,( )
∂t

-------------------- 0;=

1
4π
------ n ∇Φ⋅( )dS

S

∫°– Q, S

r 1 ξ Θ t,( )+=

0 Θ π≤ ≤
0 φ 2π;≤ ≤






= =

r2 r Θsind Θd φd

V

∫ 4
3
---π, V

0 r 1 ξ Θ t,( )+≤ ≤
0 Θ π≤ ≤
0 φ 2π;≤ ≤






= =

er r3 r Θ Θ φddsind⋅
V

∫ 0.=

ξ0 ε2 1
2m 1+( )
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ξ Θ t,( ) 1 ε ωmt( )cos Pm µ( )+=

– ε21
2
--- 1

2m 1+( )
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



+ λm m 2 j, ,
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m

∑
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Here, Pm(µ) are Legendre polynomials of order m, and

 and  are Clebsch–Gordan coefficients [11].

3. Since the problem at hand consists in calculating
the strength of the electric field generated by the intrin-
sic charge of a drop executing nonlinear vibrations, we
will write explicitly the electrostatic problems of the
zeroth, first, and second orders for determining the
electrostatic potential of the drop. The original electro-
static problem has the form

We seek a solution in the form of the expansion

Substituting this expansion into the above electro-
static problem, we arrive at relevant problems of vari-
ous orders in the perturbation amplitude.

In the zeroth order in ε, we have

λ ikn
±( ) γikn ωiωkη ikn±[ ]

ωn
2 ωi ωk±( )2–[ ]

-----------------------------------------;≡

γikn Kikn ωi
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+ α ikn
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2 n
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1
i
--- 1 n

2k
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n0[ ] 2
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n0 Ci 1–( )k1

n0
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1
4π
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In the first order in ε, the problem is given by

In the second order in ε, the problem assumes the
form

Solving the above electrostatic problems by stan-
dard methods, we obtain the following expression for
the electrostatic potential in the vicinity of a charged
drop executing nonlinear vibrations:
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The electric-field strength E(r; t) ≡ –∇Φ (r; t) in the
vicinity of a charged drop executing nonlinear vibra-
tions has the form

(1)

where nr and nΘ are unit vectors of the system of spher-
ical coordinates.

Immediately at the drop surface, the strength com-
ponent Eτ tangential to the surface of an ideally con-
ducting liquid vanishes, while the normal component
En has the form

(2)

For various instants of time, the polar-angle depen-
dence of the electric-field strength at the surface of a
nonlinearly vibrating drop for which the Rayleigh
parameter is an order of magnitude less than the critical
value of W = 0.4 is shown in Fig. 1 according to our cal-
culations for the cases where (a) the tenth or (b) the
sixth mode is excited at the initial instant of time.

The shapes of the generatrix of a nonlinearly vibrat-
ing drop at various instants of time are displayed in
Fig. 2 for the same cases of initial excitation as in
Fig. 1. Figure 3 presents the electric-field strength at
the drop surface as a function of time for various values
of the polar angle. It is interesting to note that the field
strength on the drop symmetry axis attains a maximum
value after a lapse of some time rather than at the initial
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instant; specifically, this occurs when the energy of the
initial deformation is redistributed among nonlinearly
excited modes in such a way that their superposition at
the vertex lying on the symmetry axis ensures the min-
imum curvature of the vertex. It can also be seen that
the characteristic time of the redistribution of energy
between nonlinearly interacting modes grows with
increasing number of the initial-deformation mode.

0
0

π/4 π/2 3π/4 Θ

2

E
(c)

2

0
0

4

π/4 π/2 3π/4 Θ

(a)

2

0
0

4

E

π/4 π/2 3π/4 Θ

(b)

E

Fig. 1. Polar-angle dependences of the electric-field
strength at the surface of a nonlinearly vibrating drop at W =
0.4 for the initial excitation of (a) the tenth mode with
amplitude ε = 0.1 at (thin curve) t = 0 (initial instant), (mod-
erately thick curve) t = 7.0045 (in which case the field on the
symmetry axis is maximal), and (thick curve) t = 2.4171 (in
which case the field on the symmetry axis is minimal);
(b) the sixth mode with amplitude ε = 0.1 at the characteris-
tic instants of time (thin curve) t = 0, (moderately thick
curve) t = 0.891, and (thick curve) t = 1.899; and the fourth
mode with amplitude ε = 0.2 at the characteristic instants of
time (thin curve) t = 0, (moderately thick curve) t = 1.26,
and (thick curve) t = 0.1971.
In terms of the dimensionless variables used, the
critical electrostatic-field strength for the ignition of a
corona discharge in the vicinity of a large water drop of
radius R = 1 mm is about 2.5. In Figs. 1 and 3, the cor-
responding field-strength value is indicated by a

1.0

0.5
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(a)
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Fig. 2. Shapes of the generatrix of a nonlinearly vibrating
drop at the same instants of time as in Fig. 1 for the initial
excitation of the (a) tenth, (b) sixth, and (c) fourth modes.
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straight line parallel to the abscissa. It can be seen that,
over a considerable part of time of nonlinear vibrations,
the field strength at the vertices of the drop is suffi-
ciently high for the ignition of a corona discharge. It is
interesting to note that, in contrast to traditional inter-
pretations [2, 11, 12] within which the possibility of
corona-discharge ignition in the vicinity of a drop was
associated with the growth of the amplitude of the low-
est mode (n = 2), a local increase in the electrostatic-
field strength is in fact due to the excitation of higher
modes.

4. In our consideration, we disregarded the possibil-
ity of resonance energy transfer between modes, but it
is well known from [8, 12, 13] that, at W < 4, for exam-
ple, there is a degenerate three-mode resonance interac-
tion between the fourth and sixth modes of capillary
vibrations. In general, the number of resonance situa-
tions is rather large: for the first hundred vibrational
modes at W < 4, it is as great as a few thousand [8, 14,
15]. In connection with the aforesaid, we consider the
situation where the fourth mode is excited at the initial
instant of time. We recall that the resonance interaction
of the fourth and sixth modes is asymmetric: in the case
of an initial excitation of the sixth mode, there is no res-
onance transfer of energy to the fourth mode, while, in
the case of an initial excitation of the fourth mode, there
occurs a resonance transfer of its energy to the sixth
mode [13]. As a result, the evolution in the case where
the initial deformation is due to a virtual excitation of
the fourth mode leads to the following: the amplitudes
of both the fourth and the sixth mode are of the first
order of smallness, although the internal resonance
interaction of the modes itself is an effect that is real-
ized only in the second order [8].

Thus, we consider a degenerate three-mode reso-
nance, in which case two modes are involved in a reso-
nance interaction—that is, a relationship of the form
ω6 = 2ω4 is valid.

Performing an analysis similar to that in [8], we
obtain, for the amplitudes of the fourth and sixth modes
as functions of time, expressions of the first order of
smallness that have the form

(3)

(4)

where the functions (εt), (εt), (εt), and

(εt) satisfy the set of differential equations
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Fig. 3. Time dependences of the field strength at the surface
of a drop at the same parameter values as in Fig. 1 for the
initial excitation of (a) the tenth mode (field-strength values
at the drop symmetry axis, Θ = 0; the amplitude of vibra-
tions reaches a maximum beyond the graph at t = 7.0045);
(b) the sixth mode at (thin curve) Θ = 0, (moderately thick
curve) Θ = π/2, and (thick curve) Θ = π/4; (c) the fourth
mode at (thin curve) Θ = 0, (moderately thick curve) Θ =
π/2, and (thick curve) Θ = π/4.
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with δ being a detuning parameter that is determined
from the relation

The relations for amplitudes of the second order of
smallness are derived in the same way as in the absence
of a resonance [8]. The expressions for the electric-field
strength in the vicinity of such a drop in the presence of
a resonance transfer of energy between the fourth and
the sixth mode will still have the form specified by

Eqs. (1) and (2), but the coefficients (t) there will
take the form given by (3)–(5).

The results of the calculations based on Eqs. (2) and
(3)–(5) and performed for the situation under analysis
are given in Figs. 1c, 2c, and 3c. There are no qualita-
tive changes in relation to the data in Figs. 1a, 1b, 2a,
2b, 3a, and 3b for the situation where there is no reso-
nance transfer of energy between the modes, so that all
of the above conclusions on the possibility of corona-
discharge ignition in the vicinity of a drop executing
nonlinear vibrations remain in force.

From a comparison of curves in Figs. 1 and 3, one
can see that, irrespective of the presence or absence of
an internal nonlinear resonance interaction of modes,
the electric-field strength at the drop surface grows with
increasing number of the mode that determines the ini-
tial deformation of the equilibrium spherical shape of
the drop. Figure 2 also shows that an increase in the
number of the initially excited mode leads to the growth
of the curvature of outliers at the drop surface. Since the
charge of the drop is set to the same value in all cases,
the obvious conclusion from the above is that it is the
growth of the curvature of the surface in the case of the
excitation of high modes that leads to an increase in the
field strength at the surface of the drop executing non-
linear vibrations.

Under actual conditions of a stormy cloud, nonlin-
ear vibrations of freely falling large (R ≈ 100–1000 µm)
drops are excited owing to their collisions with smaller
drops of radius R ~ 10 µm, which correspond to the
maximum of the size distribution of cloudy drops [4].
In such collisions, nonlinear vibrations of modes whose
numbers m lie in the range between 10 and 100 are
excited in large drops. If a drop carries an electric
charge such that the Rayleigh parameter W reaches
one-tenth of the critical value with respect to the insta-
bility of the lowest vibrational mode, Wcr = 4, the
strength of the electric field generated by this charge
becomes sufficiently for corona-discharge ignition in
the vicinity of the drop.

Λ ikn
±( ) γikn γkin+( ) ωiωk η ikn ηkin+( );±=

a6
1( ) 0( ) 0; β6

1( ) 0( ) π/2; a4
1( ) 0( ) 1/2;= = =

b4
1( ) 0( ) 0; T1 εt,≡=

2ω4 ω6 1 εδ+( ).=

Mn
1( )
An analysis of expressions (1) and (2) for the field
strength at the surface of a drop executing nonlinear
vibrations reveals that, as the number of the mode
responsible for the initial deformation is increased, the
asymptotic expansion for E becomes uniform at ever
smaller values of the small parameter ε. By way of
example, we indicate that, in the case where the fourth
mode is initially excited, the expansions in (1) and (2)
are asymptotic for ε ≤ 0.2, while, for the initial excita-
tions of the sixth and tenth modes, this is so only for ε ≤
0.1. The reason for this is that the energy introduced in
the vibrating system by an initial deformation of the nth
mode with an amplitude ε is proportional to n2, all other
conditions being the same. At rather large values of ε,
the redistribution of this energy between modes that are
excited in the second order of smallness owing to a non-
linear interaction leads to a considerable growth of
amplitudes for some modes of low number and to a
breakdown of uniformity in the relevant expansions. A
significant increase in the electrostatic-field strength at
the vertices of the drop with increasing number of the
mode determining the initial deformation (this is illus-
trated by the figures in the article above) is also due to
the increase in the energy introduced in the vibrating
system.

In the above arguments, we did not take into account
the effect of an external electrostatic field that is always
present in a stormy cloud, reaching a value of about
10 kV/cm [4], and which polarizes drops. The emer-
gence of an additional polarization charge in a drop
may lead to a significant increase in the field strength in
its vicinity.

CONCLUSIONS

The electric-field strength at the vertices of a weakly
charged drop executing nonlinear vibrations may
exceed the critical value for corona-discharge ignition
in the vicinity of this drop and becomes greater as the
number of the mode responsible for the initial deforma-
tion of the spherical shape of the drop is increased.
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Abstract—A correct solution to the problem of periodic-wave propagation along the charged surface of a deep
viscous liquid in the second-order approximation in the wave amplitude is given for the first time. It is shown
that the second-order correction in the amplitude to the profile of the wave being considered plays a decisive
role in the realization of the instability of a liquid with respect to its intrinsic charge. © 2003 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

The theory of waves at the surface of a liquid is one
of the oldest and well-developed fields of classical fluid
dynamics. The earliest achievements in this field are
compiled in the textbook of Lamb [1]. As far back as
the beginning of the twentieth century, there arose the
trend toward exploring nonlinear effects associated
with wave motion. The first successful investigations of
nonlinear waves were performed for a perfect liquid
[2, 3]. Studies devoted in that period to the effect of vis-
cosity on nonlinear waves [4, 5] were less fundamen-
tal—they contained inaccuracies and even errors.
Because of the presentation in terms of coordinates,
which was adopted at that time in fluid dynamics, a
detailed account of the full mathematical formulation
of the problem of nonlinear waves in a viscous liquid (it
is rather cumbersome even in modern notation) could
not be given, along with a clear explanation of the
essence of key points in constructing relevant solutions,
within the scope of a scientific article in a journal. In
view of this, the opinion then prevalent among the sci-
entific community was that investigations of nonlinear
waves in the perfect-liquid approximation provide ade-
quate information about special features of a nonlinear
wave motion; moreover, such investigations made it
possible to obtain unique results by using much more
modest means, since these were actually the first steps
in nonlinear physics. As a result, it became common
practice to give priority to the perfect-liquid approxi-
mation in studying the properties of nonlinear waves at
the surface of a deep liquid.

The avalanche of articles devoted to analytic inves-
tigations of waves at the surface of a perfect liquid (see,
for example, [1–13]) considerably exceeds the number
of attempts at constructing a correct analytic descrip-
tion of the effect of viscosity on the time evolution of a
nonlinear surface wave. The majority of studies dealing
with waves in a viscous liquid were performed in the
1063-7842/03/4811- $24.00 © 21396
approximation of low viscosity within the boundary-
layer theory [14–16], which is valid only at large values
of the Reynolds number. Only in recent years did there
appear studies [17, 18] in which a correct expression for
the profile of a nonlinear periodic wave at the surface of
a deep liquid of finite viscosity was found correctly in the
second-order approximation in the wave amplitude.

Following [17, 18], we propose here a rigorous
asymptotic solution to the problem of determining the
profile of a nonlinear periodic wave that propagates
along the charged surface of a deep liquid of arbitrary
viscosity. This solution, which was not known in the lit-
erature until the present time, is of considerable interest
for various applications of the electric dispersion of a
liquid [19].

MATHEMATICAL FORMULATION 
OF THE PROBLEM

We assume that, in the system of Cartesian coordi-
nates with the z axes directed vertically upward in the
gravity-force field, g || –ez, an incompressible Newto-
nian liquid characterized by a kinematic viscosity ν, a
density ρ, and the coefficient of surface tension γ fills
the half-space z ≤ 0 and borders on a vacuum. We also
assume that this liquid is an ideal conductor carrying a
uniformly distributed surface charge such that, in the
limit z  ∞, the electric field above the liquid surface
distorted by wave motion tends to a uniform field of
strength E0ez. We will investigate the time evolution of
the initial deformation of a free liquid surface.

We denote by u = u(x, z, t) and v  = v(x, z, t), respec-
tively, the horizontal and the vertical component of the
velocity field of wave motion in the liquid and assume,
for the sake of simplicity, that they are independent of
the coordinate y; we also denote by ex and ez the unit
vectors along the x and z axes, respectively. The devia-
tion ξ = ξ(x, t) of the free liquid surface from the equi-
003 MAIK “Nauka/Interperiodica”
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librium shape z = 0 in the gravity-force field, the veloc-
ity field U = u · ex + v  · ez, and the electric potential Φ
above the liquid then satisfy the relations

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

Here, t is time; p is the pressure within the liquid; ∂t and
∂x are the partial derivatives with respect to time and the
coordinate x, correspondingly; and t and n are the unit
vectors along, respectively, the tangent and the normal
to the surface. The explicit expressions for these unit
vectors are given in Appendix A, along with the expres-
sion for the divergence of the normal, ∇ ⋅ n.

In order to close up the mathematical formulation of
the problem, the above relations must be supplemented
with initial conditions that preset the initial deviation of
the surface and the initial velocity field. In just the same
way as in [18], the initial conditions will be specified in
solving the problem; this will be done in such a way as
to arrive at the simplest (in the sense of an analytic
description) forms of free-surface vibrations and to
reveal the properties of a wave that are associated with
its nonlinearity.

METHOD FOR SOLVING THE PROBLEM

Suppose that the initial perturbation ξ(x, t) is peri-
odic in x and that it forms a wavy relief of wavelength
λ = 2π/k (k is the wave number) and amplitude a. As a
small parameter, we take ε = ka.

In the second-order approximation in ε, the solution
to the problem specified by Eqs. (1)–(9) is sought in the
form of the expansions

(10)

z ξ : ∆Φ> 0;=

z ξ : ∂tU ∇ U( )⋅( ) U×+<

=  –∇ 1
ρ
--- p

U2

2
------ gz+ + 

  ν∆U;+

∇ U⋅ 0;=

z ξ : ∂tξ u∂xξ+ v ;= =

p 2ρνn n —⋅( )U( ) 1
8π
------ —Φ( )2+– γ∇ n;⋅=

t n —⋅( )U( ) n t —⋅( )U( )+ 0;=

Φ 0;=

z +∞: —Φ E0ez;–

z –∞: U 0.

U U1 U2 O ε3( ); U1 O ε( ); U2 O ε2( );∼ ∼+ +=

p p0 p1 p2 O ε3( );+ + +=

p0 O 1( ); p1 O ε( ); p2 O ε2( );∼ ∼ ∼

Φ Φ0 Φ1 Φ2 O ε3( );+ + +=
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Upon substituting (10) into (1)–(3), we arrive at the
zeroth-, first-, and second-order problems in the above
small parameter. In Appendix B, we present relations
that arise upon separating the boundary conditions (4)–
(7) at the free surface into relations for quantities of dif-
ferent order of smallness. A detailed derivation of these
relations can be found in [18].

In the zeroth-order approximation in ε, the problem
reduces to determining the distribution of the hydro-
static pressure in the liquid,

As in [18], we will use below a special notation for
linear differential operators,

and for matrix-columns with relevant conventions for
constituent elements,

In applying the operator @ to objects of the Yj type,
one successively performs matrix operations, differen-
tiations, and arithmetic operations and then sets z = 0.
The result of applying the operator @ to a column of
four functions depending on the variables x, z, and t is
a column of four functions independent of z.

The above special notation was introduced in order
to ensure, without violating space limitations for an

Φ0 O 1( ); Φ1 O ε( ); Φ2 O ε2( );∼ ∼ ∼

ξ ξ 1 ξ2 O ε3( ); ξ1 O ε( ); ξ2 O ε2( ).∼ ∼+ +=

u0 = 0; v 0 = 0; p0 = 
E0

2

8π
------– ρgz; Φ0–  = E0z.–

+

≡

∂t ν ∂xx ∂zz+( )– 0 1/ρ( )∂x 0

0 ∂t ν ∂xx ∂zz+( )– 1/ρ( )∂z 0

∂x ∂z 0 0

0 0 0 ∂xx ∂zz+

;

5

∂t

–ρg γ∂xx+

0

E0–

;≡

@

0 1– 0 0

0 2ρν∂z– 1 E0/ 4π( )∂z–

∂z ∂x 0 0

0 0 0 1 z 0=

,≡

0̂

0

0

0

0

; Ŷ j

u j

v j

p j

Φ j

;

Y j 1[ ] u j;≡
Y j 2[ ] v j;≡
Y j 3[ ] p j;≡
Y j 3[ ] p j.≡

≡=
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article in a journal, the clarity of presentation of key
steps in solving the problem.

In the first-order approximation, we obtain a homo-
geneous linear differential problem, while, in the sec-
ond-order approximation, we are dealing with the same
linear differential problem in the presence of a nonho-
mogeneity whose form is determined in terms of the
solutions derived in the zeroth- and first-order approxi-
mations.

FIRST-ORDER PROBLEM

For quantities of the first order in ε, the complete
mathematical formulation of the problem in the above
notation has the form

(11)

(12)

(13)

(14)

(15)

For an initial deformation in the first approximation,
we chose a cosine function for the sake of simplicity.

The functions  ≡ (x, z) and  ≡ (x, z) describ-
ing the initial velocity distribution will be specified
below. We note that initial conditions must be formu-

lated only for the first two elements of  rather than
for all elements of this column of unknown quantities.
For p1 and Φ1, one needs no initial conditions. For p1,
this fact can be explained as follows: The linearized
Navier—Stokes equation (the first equation in the set of
Eq. (11)) can be recast into the form

Applying the div operation to both sides of this
equation and considering that the liquid is incompress-
ible (that is, ∇ ⋅ U1 = 0) and that the successive partial
derivatives are commutative, we can easily find that p1
satisfies Laplace’s equation

The linearized boundary condition for the normal
tensions and the condition that the gradient of the first-
order correction to pressure vanishes at a large depth
have the form

It can be seen that, if the velocity field is known at
the surface and within the interior of the liquid and if
the expression for ξ1 is preset, the pressure p1 satisfies

+Ŷ1 0̂;=

@Ŷ1 5ξ1+ 0̂;=

z +∞: Φ1 Y1 4[ ] 0;≡

z ∞– : u1 Y1 1[ ] 0; v 1 Y1 2[ ] 0;≡ ≡

t 0: ξ1 a kx( );cos= =

z 0: Y1 1[ ] t 0=≤ u1
0; Y1 2[ ] t 0= v 1

0.= =

u1
0 u1

0 v 1
0 v 1

0

Ŷ1

∂tU1 –∇ 1
ρ
--- p1 

  ν∆U1.+=

∆ p1 0.=

z = 0: p1 = 2ρν∂zv 1 ∂xxξ1; z ∞: ∇ p1 0.–+
the Dirichlet problem within an unbounded region, the
solution to this problem existing and being unique. No
initial condition is imposed on Φ1 for a similar reason.
The aforesaid can be qualitatively explained as follows:
within the model used here (that of an ideally conduct-
ing incompressible liquid), any variation in the velocity
field and in the perturbation of the surface, ξ1, instanta-
neously affects the form of the scalar fields p1 and Φ1.

For the first-order problem, the solution described
by relations that differ from the analogous ones con-
structed in [18] only by the dispersion equation where
there appears a term proportional to the square of the

electrostatic-field strength, , can easily be obtained
by traditional methods [20]. This yields

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)

In these relations, the quantity q is calculated as that
root of the dispersion equation (21) which satisfies con-
ditions (22). As in [18], these are conditions for select-
ing the root that corresponds to wave motion at a veloc-
ity that vanishes for z  –∞ (see condition (14)) and
to which a progressive wave propagating to the right
corresponds. Conditions (22) ensure the uniqueness of
the procedure for calculating the complex frequency S.

With the aid of the solution specified by Eqs. (16)–
(20), the substitution

reduces (11)–(15) to a problem where there is no initial
perturbation of the surface; that is,

E0
2

ξ1* a θ( ) T( );expcos=

u1* = a S2 kz( )exp 2νk q2 q2z( )cos q1 q2z( )sin+( )–((
× q1z( )) θ( )cosexp D kz( )exp 2νk q1 q2z( )cos(–(+

– q2 q2z( ) ) q1z( ) ) θ( ) ) T( );expsinexpsin

v 1* = a D kz( )exp 2νk2 q2z( ) q1z( ) ) θ( )cosexpcos–((

– S2 kz( )exp 2νk2 q2z( ) q1z( )expsin–( ) θ( )) T( );expsin

p1* aρk 1– –S1D S2
2+( ) θ( )cos(=

+ 2S2 S1 νk2+( ) θ( ) ) kz( ) T( );expexpsin

Φ1* aE0 θ( ) T( );expcos=

ν2 k2 q2+( )
2

4ν2k3q– k g
k2γ
ρ

--------
k
ρ
---

E0
2

4π
------–+ 

 + 0;=

q1 Req 0; q2≥ Im q( ) 0;≥= =

S ν q2 k2–( ); S1 ReS; S2 ImS;= = =

θ S2t kx; T– S1t; D S1 2νk2.+= = =

ξ ξ 1* ξ1**; Y1+ Y1* Y1**+= =

+Ŷ1** 0̂; @Ŷ1
** 5ξ1**+ 0̂;= =

z +∞: Φ1** Y1 4[ ] 0;≡
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(25)

The shape of a free surface is represented as a super-
position of the function , which, at t = 0, coincides
with the initial distortion of the surface, and the func-
tion , which, at the initial instant, coincides with

the equilibrium surface (  = 0 at t = 0). In order to
obtain the least cumbersome solution, we assume that,
in the problem described by Eq. (25), the velocity of all
points of the liquid at the initial instant satisfies the con-
ditions

(26)

It follows that the solution to the problem specified
by Eq. (25) is trivial and that relations (16)–(24) pro-
vide the solution to the first-order problem with the ini-
tial condition (26).

SECOND-ORDER PROBLEM

Owing to isolating relations for quantities of differ-
ent orders in (1)–(9) (see Appendix B) and subse-
quently substituting the solution obtained in the first-
order approximation into the resulting expressions
dependent on first-order quantities, the second-order
problem with initial conditions that have yet to be spec-
ified can be formulated as

(27)

(28)

(29)

(30)

z ∞: u1
** Y1 1[ ] 0; v 1

** Y1 2[ ] 0;≡ ≡–

t = 0: ξ1** = 0; z 0: Y1** 1[ ] t 0=≤  = u1
0 Y1* 1[ ] t 0= ;–

Y1** 2[ ] t 0= v 1
0 Y1* 2[ ] t 0= .= =

ξ1*

ξ1**

ξ1**

z 0: u1
0 Y1* 1[ ] t 0=–≤ 0; v 1

0 Y1* 2[ ] t 0=– 0.= =

+Ŷ2 a2Re
Â1

0
2q1z( )exp

Â2

0
2kz( )exp+



=

+
Â3

0
k q+( )z( )exp 

 2T( )exp

+
Â4

0
k q+( )z( ) 2 T iθ+( )( )expexp 

 ;

@Ŷ2 5ξ2+ a2Re
Â5

1
2
---kE0

2T( )exp





=

+
Â6

1
2
---kE0

2 T iθ+( )( )exp





;

z +∞: Φ2 Y2 4[ ] 0;≡

z ∞– : u2 Y2 1[ ] 0; v 2 Y2 2[ ] 0,≡ ≡
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where , , , , , and  are three-element
columns with complex-valued coefficients that do not
depend on the coordinates and time.

The expressions for these columns are given in
Appendix C.

Since the above problem is linear, we can find its
complex-valued solution and then obtain, after taking
its real part, the physical solution. Following the
method of solution described in detail in [18], we find
that the sets of nonhomogeneous equations

(31)

(32)

which are formulated for unknown quantities that form
the columns  and , have the particular solutions

(33)

(34)

where , , , and  are three-element columns
with coefficients that have yet to be determined.

A direct substitution of the solutions given by (33)
and (34) into Eqs. (31) and (32) leads to a set of nonho-
mogeneous linear equations for the coefficients of the

columns . For them, we obtain

(35)

where , , , and  are square matrices with
coefficients that are independent of the coordinates and
time and which are presented in Appendix C.

Further, we use standard methods as in [18] to seek
solutions to the homogeneous problem

(36)

Â1 Â2 Â3 Â4 Â5 Â6

+ ŷa a2 Â1

0
2q1z( )exp

Â2

0
2kz( )exp+

=

+
Â3

0
k q+( )z( )exp 

 2T( );exp

+ ŷb a2 Â4

0
k q+( )z( ) 2 T iθ+( )( ),expexp=

ŷa ŷb

ŷa a2 Ĉ1

0
2q1z( )exp

Ĉ2

0
2kz( )exp+

=

+
Ĉ3

0
k q+( )z( )exp 

 2T( );exp

ŷb a2 Ĉ4

0
k q+( )z( ) 2 T iθ+( )( ),expexp=

Ĉ1 Ĉ2 Ĉ3 Ĉ4

Ĉi

C1 Π̂1
1–
Â1; C2Π̂2

1–
Â1;=

C3 Π̂3
1–
Â3; C4 Π̂4

1–
Â4,= =

Π̂1 Π̂2 Π̂3 Π̂4

+ ŷc( ) 0=
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in the form

(37)

Irrespective of the choice of constants λ, H, and R,
which are in general complex-valued, and functions f(t)
and ^(t), expression (37) represents a solution to the
homogeneous problem in question.

The values of H, λ, R, and ζ are chosen in such a
way that the quantities

(38)

satisfy the relations

(39)

Upon substituting (39) into (38), it appears that such
values of λ, R, and ζ are obtained as solutions to a linear
nonhomogeneous set of algebraic equations and are
given by

(40)

The expression for the square matrix  is given in
Appendix C.

Since the columns  and  =  +  identically
satisfy relations (31), (32), and (39), the substitution

(41)

in (27)–(30) leads to the problem

(42)

ŷc a2

0

0

f t( )
^ t( )

2T( )exp a2 2

ik–

k

ρS–

0

λ 2kz( )exp








+=

+

r–

2ik–

0

0

H z 2 k2 q2+( )( )exp

+

0

0

0

1

R 2kz–( )exp








2 T iθ+( )( ).exp

ξ* ζ 2 T iθ+( )( ); ŷbcexp ŷb ŷc+= =

+ ŷbc 5ξ*+ a2
Â6

1
2
---kE0

2 T iθ+( )( ).exp=

H

λ
ζ
R

= L̂
1–

C4 2[ ]
2C4 2[ ]ρν k q+( ) C4 3[ ]–

2iC4 2[ ] k C4 1[ ] k q+( )–

0

Â6

1
2
---kE0

+

 
 
 
 
 
 

.

L̂

ŷa ŷbc ŷb ŷc

Ŷ2 ŷα ŷ*; ŷ*+ ŷa ŷb ŷc; ξ+ + ξ*= = =

+ ŷα 0;=
(43)

(44)

(45)

If we set

(46)

relations (43) are simplified to become

(43a)

We can now easily find (for details, see [18]) that

(47)

is the solution to the problem specified by Eq. (43)–(45)
for the initial condition

It can easily be verified that the substitution

(48)

where

(49)

with ,  and , and  and ζ being calculated on
the basis of, respectively, (47); (33)–(35); and (37),
(40), and (46), reduces the second-order problem spec-
ified by Eqs. (27)–(30) to a homogeneous problem sim-
ilar to that which is obtained in the first-order approxi-

@ ŷα  = a2
Â5

1
2
---kE0

0

f t( ) C1 3[ ] C2 3[ ] C3 3[ ]+ + +

2C1 1[ ] q1 C3 1[ ] k q+( )+

^ t( )

–

× 2T( );exp

z        +∞: Φα yα 4[ ] 0;≡

z ∞: uα yα 1[ ] 0; v α yα 2[ ] 0.≡ ≡–

f t( ) Â5 2[ ] C1 3[ ]– C2 3[ ]– C3 3[ ] ;–=

^ t( ) 1
2
---kE0 2T–( ),exp=

@ ŷα a2

0

0

A5 3[ ] Λ–

0

;=

Λ 2C1 1[ ] q1 C3 1[ ] k q+( ).+=

ŷα a2

A5 3[ ] Λ–

0

0

0

ν
π
---=

× z2

4ν t τ–( )
---------------------– 

  2S1τ( )expexp τd

0

t

∫

t 0:  ŷα 0̂.= =

Ŷ2 ŷ* ŷ*,+=

ŷ* ŷα ŷa ŷb ŷc;+ + +=

ξ2 ξ* ζ 2 T iθ+( )( ),exp+=

ŷα ŷa ŷb ŷc
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mation; that is,

Going over to the physical solution and considering
that  is constructed in such a way that, at the initial
instant, all its elements are equal to zero, we can state
that the real parts of the quantities forming the column

 defined in (49) are the solutions to the second-order
problem for the case where the initial conditions for
these quantities are

The solution  obtained here does not become less
significant because of the fact that it satisfies specific
initial conditions. It is much more important that  is
a key link of the substitution in (48), which reduces a
nonhomogeneous second-order problem to a homoge-
neous one. The very fact that the new problem is homo-
geneous does not depend on the form of functions that
specify the initial conditions for the second-order quan-
tities. Therefore, the arbitrariness of formulation of ini-
tial conditions for these quantities affects only the ini-
tial conditions for the homogeneous problem to which
the substitution in (48) reduces the original nonhomo-
geneous problem. But a homogeneous problem is the
subject of investigations within well-developed linear
wave theory.

PROFILE OF A NONLINEAR WAVE

If Re( ) is added to the solution Re( ) to the sec-
ond-order problem, the resulting expression will again
be a solution to the second-order problem. But the
homogeneous problem of determining  coincides
with the first-order problem specified by Eqs. (11)–
(14). It follows that, if any solution of the form speci-
fied by (16)–(24) and characterized by different values
of the wave number and the amplitude (the product of
these quantities must be of higher order of smallness
than ε) is added to Re( ), we again arrive at a solution
to the second-order problem. With allowance for the

+ ŷ* 0̂;=

@ ŷ* 5ξ2+ 0̂;=

z +∞: Φ2* y* 4[ ] 0;≡

z ∞– : u2* y* 1[ ] 0; v 2* y* 2[ ] 0;≡ ≡

t 0: ξ* ξ2 ζ 2ikx( )exp ;–= =

z 0: y* 1[ ] t 0=≤ u2
0 y* 1[ ] t 0= ;–=

y* 2[ ] t 0= u2
0 y* 2[ ] t 0= .–=

ŷα

ŷ*

t 0: ξ2 Re ζ 2ikx( )exp[ ] ;= =

u2
0 Re ya 1[ ] yb 1[ ] yc 1[ ]+ +( )t 0= ;=

v 2
0 Re ya 2[ ] yb 2[ ] yc 2[ ]+ +( )t 0= .=

ŷ*

ŷ*

ŷ* ŷ*

ŷ*

ŷ*
TECHNICAL PHYSICS      Vol. 48      No. 11      2003
possibility of additions of this kind, the profile of the
wave that runs along free charged surface of a deep vis-
cous liquid can be described by the expression

(50)

where arctan(x) is that branch of the arctangent func-
tion which maps the numerical axis into the segment
(−π/2, π/2). The expression for the phase β is con-
structed in such a way that its value lies within the
range 0 ≤ β < 2π. The symbol ζ stands for a complex-
valued quantity that, together with λ, H, and R, is deter-
mined by formula (40).

For the corrections considered in the preceding
paragraph, we have adopted the notation LWS (linear
wave solution), which is used in linear theory. This can
be any superposition of running cosine waves
ηcos(Σ2t – κx + ϕ)exp(Σ1t) whose amplitude η and
whose wave number κ ≠ k are such that κη  = o(ka) (o is
the symbol of smallness). The complex-valued fre-
quency Σ = Σ1 + iΣ2 of these waves and their wave num-
ber κ are related by the same dispersion equation (21)
as the quantities S and k in terms of which the variables
θ = S2t – kx and T = S1T are expressed. Being solutions
to a homogeneous linear problem, LWSs propagate
without interaction, each wave having its own phase
velocity.

The terms in the braced expression on the right-hand
side of (50) are interacting wave solutions. The coeffi-
cients A and β depend nontrivially on the wave number
k corresponding to the wave acos(θ) propagating along
the free surface in the first approximation. Thus, the
amplitude and the phase of the second wave addition in
the braced expression on the right-hand side of (50)
depend on the properties of the first wave addition.
Both wave components in the braces have the same
phase velocity. Because of this, their sum is an individ-
ual periodic wave having the same phase velocity. For
the length of this wave, it is natural to take the spatial
period in x common to both terms—that is, λ = 2π/k.
Obviously, k can be treated as the wave number corre-
sponding to this new wave. In contrast to the wave solu-
tions obtained by solving the problem in the linear

ξ a θ( ) S1t( )expcos{=

+ a2A 2θ β+( ) 2S1t( ) }expcos LWS;+

ζ1 Re ζ( ); ζ2 Im ζ( ); A ζ1
2 ζ2

2+ ;= = =

β

ζ2

ζ1
----- 

  . if ζ1 0 and ζ2 0<>arctan

ζ2

ζ1
----- 

  2π+ , if ζ1 0 and ζ2 0<>arctan

ζ2

ζ1
----- 

  π+ , if ζ1 0<arctan

π/2, if ζ1 0 and ζ2 0<=

3π/2, if ζ1 0 and ζ2 0,>=













=
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approximation, the profile of the new wave greatly
depends on its wave number k and, as can be seen from
(50), varies with time (in the case where S1 ≠ 0). Varia-
tions in the profile are of the second order of smallness.

As a result, we have found a solution to the problem
of determining the profile of a nonlinear wave such that
it involves two terms: a nonlinear wave proper whose
profile depends on its wavelength and the LWS back-
ground that propagates according to the laws of linear
wave theory. It is obvious that, in order to investigate
nonlinear effects of the simulated phenomenon, it is not
necessary to take into account the LWS noise in (50).

In the limit of a perfect liquid, in which case ν 
0, β tends either to zero or to π. Noticing that, instead
of β = π we can set β = 0 and change the sign of A
simultaneously, the profile of the wave in this approxi-
mation can be recast into a form that is instructive for
investigations; that is,

(51)

where α is the capillary constant and W is the dimen-
sionless Tonks–Frenkel parameter characterizing the
stability of the charged surface of a liquid with respect
to the intrinsic charge. It is well known from linear the-
ory that, at a preset value of αk, the condition

(52)

ensures the positivity of the parameter S1 ≡ ReS appear-
ing in (50). In this case, the free charged surface of a
liquid is unstable [20]; the quantity S1 here has the
meaning of the increment of growth of the amplitude of

ζ  = a θ( )cos a2kΛ 2θ( ); Λcos+  = 
1
4
--- 1 α2k2 2αkW–+( )

0.5 α2k2–
--------------------------------------------;

W
E0

2

4π ρgγ
---------------------; α γ

ρg
------,≡ ≡

W αk
1

αk
------+>

0 2 αk3

1

3

W

1/ 2

Fig. 1. Regions of the realization of various modes of a non-
linear wave motion. The region above the curve L corre-
sponds to unstable solutions. In the shaded regions bounded

by the curve Γ and the straight line αk = 1/ , waves have
sharpened vertices, while, in the unshaded regions, waves
have flattened vertices.

2

the term that appears in the braced expression on the
right-hand side of (50) and which is linear in a, while
2S1 has the meaning of the increment for the nonlinear
term. If the value of W is not sufficient for the condition
in (52) to be satisfied, then S1 < 0. In this case, S1 char-
acterizes the decrement of an exponential decay of the
term that appears in the braced expression on the right-
hand side of (50) and which is linear in a, while 2S1
characterizes the decrement for the nonlinear term.

At W = 0, expression (50) coincides with the wave
profile constructed in [9]. If, in addition to this, we set
γ = 0, the well-known Stokes wave approximation qua-
dratic in the amplitude will then be obtained. That non-
linear profile of a wave at the surface of a perfect liquid
which is referred to as a Stokes wave was constructed
more than a century ago. In the second-order approxi-
mation in the amplitude, expression (50) is nevertheless
the first correct generalization of this concept to the
case of a liquid that is characterized by a finite viscosity
and a finite surface tension and which has a free
charged surface. Thus, expression (50) itself is a new
result for the theory of waves at the surface of a deep
liquid and is a solution to a classic fluid dynamics prob-
lem that could not be solved for more than a century.

From (51), it follows that, in a perfect liquid at k =

k∗  = (α )–1, the denominator of the amplitude of the
second-order correction to the wave profile vanishes,
while the correction itself tends to infinity at finite val-
ues of the numerator of Λ. This fact, which is associated
with the nonlinear resonance interaction of waves, was
partly discussed in [18]. In a viscous liquid, the ampli-
tude of the wave remains finite [18], as may have been
expected.

EFFECT OF AN ELECTRIC CHARGE 
ON THE PROFILES OF NONLINEAR WAVES

At a supercritical value of the surface charge den-
sity, electric forces have a more pronounced effect than
Laplace forces, with the result that, at the charged sur-
face, there appear outliers (Taylor cones), the charge
being removed through their vertices via the emission
of strongly charged drops [19, 21].

The condition in (52) specifies the region of unsta-
ble wave numbers (the region above the curve L in
Fig. 1) in the plane of the dimensionless parameters αk
and W. The value of W∗  = 2, which corresponds to the
value of αk = 1 on the curve L, is the smallest value of
W on the stability boundary. The wave ζ = acos(S2t –
kx)exp(T) characterized by the wave number k = α–1

becomes unstable at W = W∗ . This wave is referred to
as the main mode. The greater the value of W, the
broader the spectrum of unstable sinusoidal wave solu-
tions to the linearized problem. With increasing W, the
spectrum of unstable waves broadens both toward low
and toward high wave numbers. Within the concepts of
linear theory, all unstable waves participate in the for-

2
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mation of emission outliers. This means that, within
linear theory, the bases of emission outliers must
expand with increasing W, but this is not confirmed by
a comparison of the experimental results reported in
[21, 22], where the formation of emission outliers was
observed at significantly different values of the field
strength (different values of W). As a matter of fact, the
mechanism through which long waves are involved in
the process of formation of emission outliers obviously
has some limitations that cannot be formulated within
linear theory.

The nonlinear solution in (50) provides an alterna-
tive view of the formation of emission outliers. The
main idealization employed by linear theory consists in
the assumption that the superposition principle is valid.
As a matter of fact, an emission outlier is formed not
only owing to the summation of wave solutions to the
linear problem but also owing to the growth of the
amplitudes of nonlinear waves described by expres-
sions similar to the first term in (50). It can easily be
seen that, for S1 > 0, the increment of growth of the
amplitude of the term that is nonlinear in a with
increasing time is twice as great as that for the term that
is linear in the amplitude. Within a short time interval,
it is not the solution to the linear problem but the cor-
rection to it corresponding to a nonlinear character of
the wave that plays a decisive role in the formation of
outliers.

The solution in (50) can be considered as a model
one in which, at the initial instant of time, the wave pro-
file is described in the first approximation by only one
harmonic solving the linear problem. In the general
case where the initial profile is determined by a super-
position of a number of such harmonics, the solution
will become much more complicated; instead of the
second term in the braced expression on the right-hand
side of (50), there then arises the sum of all possible
waves generated by the three-mode wave interaction
[23]. Their increments are determined by pair products
of the increments of original waves. It follows that the
rate of their growth is higher than that for the first-
approximation waves and that the formation of emis-
sion outliers is determined by waves generated by a
nonlinear interaction.

Yet another interesting property of a wave having
the profile described by the braced expression on the
right-hand side of (50) manifests itself if, in the (αk, W)
plane, where we have already constructed the stability
boundary for solutions to the linear problem, we depict
one more curve Γ, that which is determined by the
equation

(53)

From (51), it follows that the amplitude of the sec-
ond order of smallness vanishes on this curve, Λ = 0; to
third-order terms inclusive, the profile of a periodic
wave for (k, W) ∈ Γ in the limit of a perfect liquid is

1
2
--- αk

1
αk
------+ 

  W– 0.=
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exactly sinusoidal (without any correction). Calcula-
tions by formula (50) reveal that, in the case of a vis-
cous liquid, the quantities A as functions of the param-
eters αk and W attain a local minimum on this curve
(they are close to zero at this minimum).

The next point that deserves particular attention is
associated with the role of the phase β appearing in
(50). From (50) and (51), it follows that, at A ≠ 0, a
wave that, owing to the fact that acos(θ) and the short-
wavelength nonlinear correction A cos(2θ + β) are
cophased, has a greater curvature of the vertex than the
first-approximation wave (in the nonlinear approxima-
tion, the vertex of the wave becomes sharper) corre-
sponds to a phase value close to β = 0. At β = π and
A ≠ 0, the vertex takes on the contrary a more rounded
shape.

In analyzing the expression for the amplitude of the
nonlinear correction Λ, one can easily see that Λ > 0 if

or

and Λ < 0 if

or

This means that the intersecting curve Γ and straight

line αk = 1/  divide the plane of the parameters k and
W into four regions restricted by the angles, each hav-
ing a straight-line and a curvilinear side (see Fig. 1). In
the limit ν  0, the pairs of opposite angles bound
regions where the phase β takes identical values. Within
the shaded regions, the phase vanishes, β = 0, and non-
linear waves have sharp vertices (see Figs. 2a, 2c). The
phase value of β = π corresponds to the other pair of
regions where the vertices of nonlinear waves are
smoothed (Figs. 2b, 2d).

In the limit ν  0, the phase β undergoes jumplike
changes on the sides of the angles. If the viscosity is
taken into account, the sides of the angles in the (αk, W)
plane are smeared into bands where the phase β
changes smoothly.

From Fig. 1, it can be seen that the region where the
solutions to the linearized problem are unstable (the
region above the curve L) is divided into two parts by

k2 0.5<

W 0.5 αk αk( ) 1–+( )<



k2 0.5>

W 0.5 αk αk( ) 1–+( )>



k2 0.5<

W 0.5 αk αk( ) 1–+( )>



k2 0.5>

W 0.5 αk αk( ) 1–+( ).<



2
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Fig. 2. Profiles of nonlinear waves of different types in
dimensionless variables where ρ = g = γ = 1 for ν = 10–2 at
the instants of time t = (1) 0, (2) 30, and (3) 60: (a, b) profiles
of the waves whose amplitudes decrease with time because
of viscous damping for the Tonks–Frenkel parameter taking
the subcritical value of W = 1.5 [k = (a) 1, (b) 0.6] and (c, d)
profiles of the waves whose amplitudes increase with time
owing to the realization of instability with respect to the sur-
face charge for W = 2.5 [k = (c) 1, (d) 0.6].
the straight line αk = 1/ . For a wave of the type in
(50), the development of instability is accompanied by

the formation of a sharp point at the vertex if αk > 1/
(see Fig. 2c) and by the flattening of the vertex if αk <

1/  (see Fig. 2d). At the vertices of the outliers, the
electric field tears off drops of characteristic linear
dimension about the radius of curvature of the vertex
[18, 21]. Therefore, the emission of drops from a sharp-
ened vertex due to the separation of smaller and more
strongly charged drops is more probable than the sepa-
ration of drops from the flattened vertex of a wave.
After the commencement of emission, the time evolu-
tion of waves follows new regularities that must be
explored individually. Thus, an analysis of the nonlin-
ear solution to the problem leads to a natural limitation
from the side of long waves at wavelengths that are
involved in the formation of emission outliers.

In the second-order approximation used here, nei-
ther viscosity nor nonlinearity affects the conditions for
the realization of instability of the charged surface of a
liquid. Their effect will manifest itself in the calcula-
tions of the next order of smallness as corrections to the
frequencies of the waves (we recall that the critical con-
ditions for the realization of instability of the charged
surface of a liquid are determined by the vanishing of
the frequency squared [19]).

The surface-charge and viscosity effect on the fre-
quencies of the waves that follows from a linear analy-
sis is illustrated in Fig. 3.

CONCLUSIONS

An analysis of the solution obtained here for the
problem of nonlinear periodic waves propagating along

2

2

2

0

1

2
0

1

2
0

0.5

1.0

ν

W

ω

Fig. 3. Dimensionless frequency of wave motion as a func-
tion of the dimensionless viscosity ν and the dimensionless
parameter W according to calculations at k = 1.
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the charged surface of a conducting viscous liquid has
revealed that the main contribution to the process of
formation of emission outliers that arise upon the real-
ization of instability of the charged surface comes not
from the entire set of instabilities of waves whose
wavelengths take values in the interval predicted by lin-
ear theory but only from that part of them for which the
nonlinearity of the process manifests itself in the sharp-
ening of the vertices. The wave numbers of such waves

satisfy the condition k > k∗  = .

APPENDIX A

At each point z = ξ(x, z, t) of the flat free liquid sur-
face distorted by wave motion, we define the following
quantities:

(i) the unit vectors n and t along, respectively, the
external normal and the tangent,

(ii) the mean curvature of the surface,

APPENDIX B

(i) In the generally adopted notation, the kinematic
boundary conditions for quantities of different order of
smallness can be derived from (4) [18] and are given by

(ii) For the quantities of different order of smallness,
the conditions for the tangential tensions at a free sur-
face can be derived from (6) [18] and are given by

(iii) The condition in (5) for the pressure at the dis-
turbed surface differs from that considered in [18] by
the presence of the term (8π)–1(—Φ)2 on the right-hand
side. For this term, the expansion in ξ in the vicinity of
z = 0 has the form

If we consider that ξ = ξ1 + ξ2 + O(ε3), where
ξ1 ~ O(ε) and ξ2 ~ O(ε2), Φ = Φ0 + Φ1 + Φ2 + O(ε3),
where Φ1 ~ O(ε) and Φ2 ~ O(ε2), and —Φ0 = –E0ez and
∂z(—Φ0) = O, relations similar to those in [18] can eas-
ily be derived for quantities of different order from the
condition in (5) for the pressure at a free surface. Owing

ρg/ 2γ( )

n — z ξ–( )
— z ξ–( )
-----------------------

–ex∂xξ ez+

1 ∂xξ( )2+
----------------------------; t

ex ez∂xξ+

1 ∂xξ( )2+
----------------------------;= = =

div n( )
∂xxξ

1 ∂xξ( )2+( )3/2
----------------------------------– –∂xxξ O ξ3( ).+= =

z = 0: ∂tξ1 v 1–  = 0; ∂tξ2 v 2–  = ξ1∂zv 1 u1∂xξ1.–

z 0: ∂xv 1 ∂zu1+ 0;= =

∂xv 2 ∂zu2+ –4∂zv 1∂xξ1 ξ1∂z ∂xv 1 ∂zu1+( ).–=

z ξ : 
1

8π
------ —Φ( )2 2ξ —Φ ∂z —Φ( )⋅( )+(=

+ ξ2 ∂z —Φ( )( )2 ξ2 —Φ ∂zz —Φ( )⋅( )z 0= O ε3( ).+ +
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to the appearance of the electric-field pressure in the
present case, they become

(iv) To the required degree of precision, the expan-
sion of the condition in (7) in the vicinity of the undis-
turbed surface of a liquid has the form

Upon substituting ξ = ξ1 + ξ2 + O(ε3), where ξ1 ~
O(ε) and ξ2 ~ O(ε2), Φ = Φ0 + Φ1 + Φ2 + O(ε3), where
Φ1 ~ O(ε), Φ2 ~ O(ε2), and Φ0 = –E0z, into this expan-
sion, we can easily obtain the following relations for
quantities of different order of smallness:

APPENDIX C

The quantities S, S1, S2, q, q1, q2, and D are calcu-
lated with the aid of expressions (23) and (24).

(i) The matrix-columns , , , , , and

 appearing in (27) and (28) are given by

z 0: p0

E0
2

4π
------;= =

–ρgξ1 p1 2ρν∂zv 1– γ∂xxξ1
1

4π
------E0∂zΦ1–+ + 0;=

–ρgξ2 p2 2ρν∂zv 2– γ∂xxξ2+ +

–
1

4π
------E0∂zΦ1 2ρνξ1∂zzv 1 ξ1∂z p1–=

– 
1

8π
------ ∂xΦ1( )2 ∂zΦ1( )2+( ) 1

4π
------E0ξ1∂zzΦ1.+

z 0: Φ ξ∂zΦ
1
2
---ξ2∂zzΦ+ + 0.= =

z = 0: Φ0 = 0; Φ1 E0ξ1–  = 0; Φ2 E0ξ2–  = ξ1∂zΦ1.–

Â1 Â2 Â3 Â4 Â5

Â6

Â1 4ν2k3q1

q2

k

0

; Â2–

0

k S2
2 D2+( )–

0

;= =

Â3 νk

2 S 2νk2+( )q1q2 S2 iD+( ) q2
2 q1

2– k2+( )+

2ik k q+( ) S2 iD+( )–

0

;=

Â4

iνk q k–( )2 S 2νk2+( )–

0

0

;=

Â5

0

N0

M0

; Â6

Ω
N

M

;

Ω Ω1 iΩ2;+=

N N1 iN2;+=

M M1 iM2,+=

= =
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where  is the complex conjugate of S and N1, N2, Ω1,
Ω2, M1, and M2 are calculated by the formulas

(ii) The quadratic matrices , , , and 

S

Ω1 k D 2νkq1–( ); Ω2 k S2 2νkq2–( );= =

N0
1
2
---ρ S2

2 S1
2– 4νk2S1 4ν2k2 k2 q1

2– q2
2+( )+ +( );=

N1 N0
1
2
---k2 E0

2

4π
------; N2+ ρ S2D 4ν2k2q1q2–( );= =

M0 k kS2 q2 3k2 q2
2 3q1

2–+( )–( );=

M1 k 3kS2 q2 5k2 q2
2– 3q1

2
+( )ν–( );–=

M2 k 3kS1 ν 6k3 5k2q1– 3q2
2q1 q1

3–+( )+( ).=

Π̂1 Π̂2 Π̂3 Π̂4
appearing in (35) can be written as

Π̂1

2 S1 2νq1
2–( ) 0 0

0 0 2q1ρ
1–

0 2q1 0

;=

Π̂2

2 S1 2νk2–( ) 0 0

0 0 2kρ 1–

0 2k 0

;=

Π̂3

2S1 ν k q+( )2– 0 0

0 0 k q+( )ρ 1–

0 k q+ 0

;=
Π̂4

2S ν 3k2 2kq– q2–( )+ 0 2ikρ 1––

0 2s ν 3k2 2kq– q2–( )+ k q+( )ρ 1–

2ik– k q+ 0

.=
(iii) The matrix  appearing in (40) has the form
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Abstract—A simplified description of small-scale anisotropic turbulence is developed in the form of a set of
three integrodifferential equations in one-dimensional momentum space or in the form of a set of three partial
differential equations in a modified one-dimensional physical space. In the first case, the unknown functions
are three coefficients in the Taylor expansion of an unstable polarization Fourier harmonic of the pulsating com-
ponent of the velocity near the most unstable direction, the independent variables being time and the absolute
value of the wave vector. © 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The problem of reducing the Navier–Stokes equa-
tions that describe well-developed turbulence to a set of
equations with a smaller number of degrees of freedom
is important not only from a theoretical standpoint but
also for practical calculations of turbulent flows in var-
ious devices. Small-scale turbulent processes (from
energetic to dissipative vortices) possess an especially
large number of degrees of freedom. Modern physical
approaches to describing small-scale turbulence can be
found in [1, 2].

One possible approach to constructing the models of
large-scale turbulence in an incompressible fluid is to
separate the velocity and pressure fields into large- and
small-scale components (pulsations). If we could solve
the equations for small-scale components at least
approximately, then, by substituting the solutions
obtained into the equations for large-scale turbulent
components, we would arrive at equations exclusively
for large-scale components. This approach has so far
been implemented in the linear approximation only by
using the concept of “random force” [3, 4], whose
parameters are to be specified in advance.

Although the approach proposed here does not
allow the pulsating components to be expressed
through large-scale fields, this is, to the best of the
author’s knowledge, the first approach that makes it
possible to reduce the three-dimensional problem of the
turbulence closure to a quasi-one-dimensional prob-
lem.

DERIVATION OF THE BASIC EQUATIONS 
IN MOMENTUM SPACE

We start with the following basic equation for Fou-
rier harmonics of the polarization components of the
1063-7842/03/4811- $24.00 © 21407
velocity [5]:

(1)

Here, k, p, and q are the wave vectors whose three Car-
tesian coordinates take on the values ki, pi, qi = ±2πn/L
(where i = 1, 2, 3 and n = 1, 2, 3, …); L is the scale sep-
arating large- and small-scale motions; the upper polar-
ization indices α, β, γ, and λ take on the values 1 and 2;
ν is the kinematic molecular viscosity coefficient; v is the
two-dimensional polarization velocity vector, v(k, θ, η, t),
that is sought in the spherical coordinate system used in
[6], in which case the wave vector has the form k =
(kcosθcosη, ksinθcosη, ksinη); J is a diagonal
matrix; and B is the matrix of transformation of the
polarization components of the small-scale velocity.

The diagonal elements of the matrix J are the eigen-
values λ1, 2 of the matrix A of the linear (without the vis-
cous terms) basic equations [5]:

(2)

Here, n = k/k; the large-scale velocity gradient tensor S

with the elements Sij = (∂iUj + ∂jUi); Uj (with j = 1, 2,

3) are the components of the large-scale velocity vec-
tor; ∂jUi is the partial derivative of the ith velocity com-
ponent with respect to the jth Cartesian spatial coordi-
nate; tr is the trace of the matrix; and W is the large-
scale vorticity vector, W = ∇  × U.

The elements of the matrix A are defined by the rela-

tionship Aγµ = – ∂mUj with summations over
repeated indices. In this relationship, e1 and e2 are two
unit polarization vectors that are perpendicular to the
wave vector k and are defined as e1 = (sinθ, –cosθ, 0)

∂t νk
2

+( )v λ Jλα v α=

+ B 1–( )λγΣα β p q+, , k= Φαβγ Bv( )α p t,( ) Bv( )β q t,( ).

λ1 2, n Sn/2⋅=

± n Sn⋅( )2/4 tr k S×( )2[ ] n Ω⋅( )2/4–+ .

1
2
---

ε j
γεm

µ
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and e2 = (cosθsinθ, sinθsinη, –cosη), satisfying the
equalities e1(–k) = –e–1(k) and e2(–k) = e2(k), which
yield the relationships v 1(–k) = –v 1*(k) and v 2(–k) =
v 2*(k) by virtue of the fact that the velocity is a real
quantity. The rest of the notation in Eq. (1) is

In the approach proposed here, the large-scale
velocity is characterized by a constant component,
which is eliminated by a Galilean transformation, and a
constant velocity gradient tensor dU in considering the
dynamics of the small-scale velocity. This is in contrast
to the approach developed in [4], in which the large-
scale velocity is assumed to be linear. That is why these
two approaches yield different equations for the small-
scale velocity (see [5] for details).

According to the Haken slaving principle [8], the
unstable modes, which are the order parameters of the
problem, predominate over the stable modes. We can
even go beyond the Haken principle and assume that
the main contribution to the energetics of the process
comes from the most unstable modes, which thus
should be described with the highest accuracy. In [8], it
was also assumed that the suppression of unstable
modes should be described by cubic terms and that the
most unstable modes are singled out by a kind of Lapla-
cian operator. In comparison with this approach, the
method proposed in the present paper is simpler: it con-
sists in expanding both dependent and independent
variables in Taylor series in two angular variables about
the points corresponding to the fastest growing Fourier
harmonics of the velocity.

In order to illustrate the method, we consider a Cou-
ette flow such that the large-scale velocity gradient ten-
sor has the only nonzero component S12 = ∂1U2. In this
case, we have λ1 = 1/2sin(2θ)cos2η and λ2 = 0. The
quantity λ1 takes on the same maximum value at the
two points (θ1 = π/4, η1 = 0) and (θ2 = 5π/4, η2 = 0).
Retaining several first terms in the Taylor series expan-
sions of the function λ1 near these points, we arrive at
the expansion

(3)

with i = 1, 2.
Accordingly, the expansions of the elements of the

matrices B and B–1, which are composed of the eigen-
vectors of the original matrix A, have the form b11 = 1
and b22 = 1 (the matrix B can be chosen with a certain
amount of freedom because the eigenvectors are
defined to within a numerical factor) and also b21 =
−(η – η3/6)[1 + 2(θ – θ1)] and b21 = –(η – η3/6)[1 –
2(θ – θ1)].

The elements of the inverse matrix B–1 are equal to

Φγαβ ikmε j
γ k( )ε j

α p( )εm
β q( ).–=

λ1
S
2
--- 1 2 θ θ1–( )2– η η 1–( )2–[ ] ,=

b11
1– 1 η2, b22

1–+ 1 η2,+= =
The sum in the basic equation (1) for the polariza-
tion Fourier harmonics of the velocity v, which are
modified by the matrix B, contains the wave vectors k,
p, and q (such that q = k – p), whose components in
spherical coordinates are (k, θk, ηk), (p, θp, ηp), and
(q, θq, ηq), respectively.

It is easy to show that, in the spherical coordinate
system adopted here and in [7], the following relation-
ships are satisfied:

(4)

(5)

where

In this case, the expansions of θq and ηq about the
directions determined by the angles θi and ηi have the
form

From physical considerations, it is clear that q = |k –

p| ≤ 2π /L and p ≤ 2π /L, where the scale L sepa-
rates small-scale pulsations from large-scale motions.

In numerical modeling involving large-scale vorti-
ces, the scale L can be thought of as the spacing of the
numerical grid. The form of the above terms in the Tay-
lor series expansions and the subsequent terms, which
have been discarded, leads us to the conclusion that the
approximation proposed here is poor for large values of
the ratio k/(k – p); moreover, it is very poor for kL @ 1,
i.e., for small-scale vortices whose sizes are much less
than the grid spacing. Fortunately, from experiments, it
is known that, in the range of scales in question (such
that the grid spacing L is smaller than the global scale
of turbulence), the spectra of turbulent Reynolds
stresses and the energy spectra in the inertial interval
decrease according to power laws (the power indices
being close to –5/3 and –2, respectively), and, for dissi-
pative vortices, the spectra decrease exponentially
[1, 2]. Consequently, when the contribution of solu-
tions to the model equations to the spectra of the energy
and Reynolds stresses are not too large, the above poor
approximation does not significantly worsen the

b12
1– η 7

6
---η3+ 

  1 2 θ θi–( )–[ ] ,=

b21
1– η 7

6
---η3+ 

  1 2 θ θi–( )+[ ] .=

θqtan
k θk ηksinsin p θp η pcossin–
k θk ηkcoscos p θp η pcoscos–
-----------------------------------------------------------------------,=

ηqsin k ηksin p η psin–( )/q,=

q

= k2 p2 2kp ηk ηp θk θp–( )coscoscos– –2kp ηk ηpsinsin+ .

θq θi
k

k p–
------------ θk θi–( ) p

p k–
------------ θp θi–( ),+ +=

ηq
l

k p–
---------------ηk

p
k p–
---------------η p.–=

3 3
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description of the dynamics of the largest of small-scale
vortices, which make the main contribution to subgrid
Reynolds stresses.

Following the Haken subordination principle [8],
we can set v 2 = 0 for the stable and neutrally stable
modes under consideration. Near the most unstable
directions determined by the angles θi and ηi, the larg-
est contribution comes from nonlinear terms with the
coefficients

the remaining coefficients Φα, β, γ being polynomials of
higher orders in the angular variables. As in [7], in the
limit L  ∞, we can switch from summation to inte-
gration over the wavenumbers in Eq. (1):

Using the above Taylor series expansions, we obtain
the following approximate equation for the first veloc-
ity component v 1 of unstable modes:

(6)

where  are the angles corresponding to the unstable
modes,

and

The spherical coordinate system [7] that was conve-
niently used up to this point can be changed into a
“hemispherical” coordinate system in which the com-
ponents of the wave vector are related to those in the
Cartesian coordinate system in the above manner, k =
(kcosθcosη, ksinθcosη, ksinη), but, in the lower half-

Φ111
ik

p
p k–
------------ θk θp–( ),≈

Φ112 ik
k

k p–
---------------ηk

p
k p–
---------------η p– ηk– 

  ,–≈

2π/L( )3Σk d3k.∫

∂t νk2+( )v 1 λ1v
1 ik

L
2π
------ 

 
3

p2 pd

2π/L

∞

∫+=

× η pcos η p θpZv 1 p( )v 1 q( ),d

θp'

∫d

π/2–

π/2

∫

θp'

θp' 0
π
2
---,  ∪ π 3π

2
------, ,∈

λ1
S
2
--- 1 2 θ θj–( )2– η η j–( )2–[ ] ; j 1 2;,= =

Z –
p

k p–
------------ θk θ j–( ) p

k p–
------------ θp θ j–( )–=

+
k

k p–
---------------ηk

p
k p–
---------------η p– ηk– 

  k
k p–
---------------ηk

p
k p–
---------------η p– 

  .
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plane, the quantity k is negative, the angle η spans the
same range,

and the range spanned by the angle θ is two times
shorter, θ ∈  [0, π]. In this hemispherical coordinate sys-
tem, the function λ1 has a maximum only at one point,
namely, at (θ1, η1). In this case, the integration limits in
Eq. (6) change as follows:

(7)

Since we seek the small-scale velocity, we assume
that the large-scale velocity components are identically
zero:

The method for solving an integral equation by
expanding its kernel and the unknown function in Tay-
lor series about a certain point (see, e.g., [9]) is known
but has not become widely used. Here, this method is
applied to an integrodifferential equation and with
respect to only some of the variables (in the case at
hand, the angular variables). Assuming that the velocity
v 1 has a maximum with respect to the angular variables
at the same point at which λ1 is maximum, namely, at
(θ1, η1), we arrive at the following expansions:

(8)

and, accordingly,

(9)

We substitute the above Taylor series expansions
into approximate equation (6), integrate over the angu-
lar variables, and equate the coefficients of the powers
of the angular variables ηk and (θk – θ1) on both sides of

η π
2
--- π

2
---,– ,∈

∂t νk2+( )v 1 λ1v
1 ik

L
2π
------ 

 
3

p2 pd

∞–

∞

∫+=

× ηcos η θZv 1 p( )v 1 q( ).d

0

π/2

∫d

π/2–

π/2

∫

v 1 p( ) 0, p
2π
L

------; v 1 q( )< 0, q
2π
L

------;<= =

v 1 k( ) 0, k
2π
L

------.<=

v 1 k θk ηk t, , ,( ) v 0 k t,( ) c k t,( ) θk θ1–( )2+=

+ d k t,( )ηk
2 f k t,( )ηk θk θ1–( )+

v 1 q θq ηq t, , ,( ) v 0 q t,( )=

+ c q t,( ) p
p k–
------------ θp θ1–( ) k

k p–
------------ θk θi–( )+

2

+ d q t,( )d q t,( ) k
k p–
---------------ηk

p
k p–
---------------η p– 

 
2

+ f q t,( ) p
p k–
------------ θp θ1–( ) k

k p–
------------ θk θ1–( )+

kηk pη p–
k p–

------------------------.
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the resulting equations to obtain a set of integrodiffer-
ential equations for the unknown functions v 0(k, t),
c(k, t), d(k, t), and f(k, t) (it follows from the equation
for f that f ≡ 0):

(10)

(11)

(12)

Here,

or, equivalently, α1 ≈ 0.93, α2 ≈ 0.96, α3 ≈ 1.29, β1 ≈
0.32, and β3 ≈ 0.12. If m = (2π/L)  is the absolute

∂t νk2 S
2
---–+ 

  v 0 ik
L

2π
------ 

 
3

=

× p
πα1

2
---------v 0 p( )v 0 k p–( ) p4

k p–( )2
-------------------d

∞–

∞

∫

+ α1β1c p( )v 0 k p–( ) p4

k p–( )2
-------------------

+
π
2
---α2d p( )v 0 k p–( ) p4

k p–( )2
-------------------

+ α1β1v 0 p( )c k p–( ) p6

k p–( )4
-------------------

+ α1β2c p( )c k p–( )
p6

k p–( )4
----------------- α2β1d p( )c k p–( )

p6

k p–( )4
-----------------+

+
π
2
---α2v 0 p( )d k p–( )

p6

k p–( )4
----------------- β1α2c p( )d k p–( )

p6

k p–( )4
-----------------+

+
π
2
---α3d p( )d k p–( ) p6

k p–( )4
------------------- ,

∂t νk2 S
2
---–+ 

  C Sv 0+ ik3 L
2π
------ 

 
3

=

× p
p6

k p–( )6
------------------- α1

π
2
---v 0 p( )c k p–( )d

∞–

∞

∫

+ α1β1c p( )c k p–( ) π
2
---α2d k( )c k p–( )+ ,

∂t νk2 S
2
---–+ 

  d
S
2
---v 0+ ik3 L

2π
------ 

 
3

=

× p
p6

k p–( )6
------------------- π

2
---α1c p( )d k p–( )d

∞–

∞

∫

+ α1β1c p( )d k p–( ) π
2
---α2d k( )d k p–( )+ .

α i η2i ηcos η , βid

π/2–

π/2

∫ θ π
4
---– 

  2i

θ,d

0

π/2

∫= =

3

value of the smallest wavenumber, then it is clear from
physical considerations that the range of wavenumbers
determined by the inequalities |k – p| < m and |p| < m
should be excluded from the interval of integration
because it corresponds to large-scale motions. The
amount of computer time required to solve this set of
equations is far less than that for the basic equation,
because the problem in wavenumber space is one-
dimensional even when the grid Reynolds number
ReL = SL2/ν is very large. The above set of integrodif-
ferential equations can be nondimensionalized by the
transformations K = kL, T = tS/L, D = d/(SL), V(K) =
v 0/(SL), and C(K) = c/(SL). If we also introduce the new
variables G = D/k4, Q = C/k4, and F = V/k2, then we can
eliminate the wavenumbers from the denominators in
the integrands:

(13)

(14)

(15)

We have thus derived the desired set of three inte-
grodifferential equations for the unknown functions
F(K, T), Q(K, T), and G(K, T).

∂T
1

ReL

--------K2 1
2
---–+ 

  K2F iK 2π( ) 3–=

× P
π
2
---α1F P( )F K P–( )P6 α1β1Q p( )F k p–( )p8+d

∞–

∞

∫

+
π
2
---α2 p8G p( )F K P–( ) α1β1P8F P( )Q K P–( )+

+ α1β2P10Q P( )Q K P–( )α2β1P10G P( )Q K P–( )

+
π
2
---α2P8F P( )G K P–( ) β1α2P10Q P( )G K P–( )+

+
π
2
---α3P10G P( )G K P–( ),

∂T
1

ReL

--------K2 1
2
---–+ 

  K
2
Q F+ iK 2π( ) 3–=

× π
2
---α1P6F P( )Q K P–( ) α1β1P8Q P( )Q K P–( )+

∞–

∞

∫

+
π
2
---α2P8G P( )Q K P–( ) ,

∂T
1

ReL

--------K2 1
2
---–+ 

  K
2
G

1
2
---F+ iK 2π( ) 3–=

× π
2
---α1P6F P( )G K P–( ) α1β1P8Q P( )G K P–( )+

∞–

∞

∫

+
π
2
---α2P8G P( )G K P–( ) .
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DERIVATION OF THE BASIC EQUATIONS 
IN PHYSICAL SPACE

We take the Fourier transformation of the functions
F(K, T), G(K, T), and Q(K, T) in the variable K accord-
ing to the formula [10]

(16)

The inverse Fourier transformation is defined as

(17)

The convolution can be defined as

(18)

According to the familiar convolution theorem, we
obtain the relationship [10]

(19)

It is known [10] that multiplying the original func-
tion by –iK reduces to differentiation of its Fourier
transform:

(20)

Applying Fourier transformation (15) to both sides
of each of Eqs. (12)–(14) and using the above two prop-
erties of the Fourier transform, we arrive at the follow-
ing set of partial differential equations:

(21)

(22)

(23)

where Φ(F) = X(ξ, t), Φ(Q) = Y(ξ, t), and Φ(G) = Z(ξ,
t) are unknown functions.

Φ F( ) g ξ( )≡ F K( )e iξK– K .d

∞–

∞

∫=

F K( ) 2π( ) 1– g ξ( )eiξK ξ .d

∞–

∞

∫=

F K( ) F1 K P–( )F2 P( ) P.d

∞–

∞

∫=

Φ F( ) Φ F1( )Φ F2( ).=

∂ξΦ F( ) Φ iKF K( )–( ).=

∂T
1

ReL

--------∂ξ
2– 1

2
---– 

  ∂ξ
2X 2π( ) 3– ∂ξ=

× –
π
2
---α1X∂ξ

6X α1β1X∂ξ
8Y

π
2
---α2X∂ξ

8Z+ +


+ α1β1Y∂ξ
8X α1β2Y∂ξ

10Y– α2β1Y∂ξ
10Z–

+
π
2
---α2Z∂ξ

8X β1α2Z∂ξ
10

Y–
π
2
---α3Z∂ξ

10Z– 
 ,

∂T
1

ReL

--------∂ξ
2– 1

2
---– 

  ∂ξ
2Y X– 2π( ) 3– ∂ξ=

× –
π
2
---α1Y∂ξ

6X α1β1Y∂ξ
8Y

π
2
---α2Y∂ξ

8Z+ + 
  ,

∂T
1

ReL

--------∂ξ
2– 1

2
---– 

  ∂ξ
2Z

1
2
---X– 2π( ) 3– ∂ξ=

× –
π
2
---α1Z∂ξ

6X α1β1Z∂ξ
8Y

π
2
---α2Z∂ξ

8Z+ + 
  ,
TECHNICAL PHYSICS      Vol. 48      No. 11      2003
On the one hand, the absolute value of the dimen-
sionless wavenumber of turbulent pulsations satisfies

the inequality |k| ≥ 2π ; on the other hand, we have

|K| = (2π/l) , where nx = 1, 2, 3, …, ny = 1,
2, 3, …, and nz = 1, 2, 3, …. Consequently, we get |K| =
(2π/l) , which yields l = 1; i.e., in Eqs. (20)–(22), we
have ξ ∈  [0, 1].

Equations (20)–(22) should probably be supple-
mented with the boundary conditions

(24)

(25)

Since, under boundary conditions (24) and (25),
Eqs. (20)–(22) are degenerate at the boundary, there is
no need to impose additional boundary conditions on
the higher order derivatives.

The problem of formulating periodic boundary con-
ditions requires separate consideration because
Eqs. (21)–(23) have been derived by using Fourier
series expansions.

CONCLUSIONS
In the present work, it has been shown that three-

dimensional equations for the pulsating components of
the velocity can be reduced to a set of one-dimensional
approximate equations. As is the case with the familiar
original Burgers equation (with a source) [11], the
equations obtained can be expected to possess several
attractors. In order for the model to be noncontradic-
tory, among these attractors, it is necessary to choose
those that maximize the velocity v 1(k, t) of unstable
modes in angular variables. Then, it can be hoped that
the spectra obtained of the energy and Reynolds
stresses will agree with the experimental spectra and
that the approach proposed here will be helpful for sub-
grid simulation of well-developed turbulence. The
author also hopes that the solutions derived will con-
firm or reject the hypothesis of the “negative diffusion”
of the specific rate of dissipation of the turbulent energy
[12]. In the limit ReL  ∞, which corresponds to
well-developed turbulence, the above model equations
and their asymptotic behavior can be investigated
numerically. It is possible that the renormalization
group methods [13], which are effective in solving
problems concerning isotropic turbulence, will also be
useful in constructing approximate solutions to the
model equations for anisotropic turbulence. Taking into
account the second component of the small-scale veloc-
ity, v 2, will not considerably complicate the model
equations and, presumably, will be needed to describe
the cores of coherent vortices—the regions in which the
large-scale vorticity predominates over the shear [14].

3

nx
2

ny
2 nz

2+ +

3

X 0 T,( ) Y 0 T,( ) Z 0 T,( )= =

=  X 1 T,( ) Y 1 T,( ) Z 1 T,( ) 0,= = =

∂ξ X 0 T,( ) ∂ξY 0 T,( ) ∂ξZ 0 T,( ) ∂ξ X 1 T,( )= = =

=  ∂ξY 1 T,( ) ∂ξZ 1 T,( ) 0.= =
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The approach proposed here can naturally be general-
ized to magnetohydrodynamic flows and, possibly, to
other types of turbulent flows, including those in com-
pressible fluids and gases.
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Abstract—A one-dimensional mathematical model is proposed for calculating the characteristics of a dis-
charge in crossed electric and magnetic fields. In particular, the model can be applied for calculating electric
propulsion engines with closed (azimuthal) drift of electrons. © 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Electric propulsion engines (EPEs) with closed (azi-
muthal) drift of electrons are based on the concept of
acceleration of ions by a self-consistent electric field
generated in a plasma because of a sharp decrease in the
transverse electron mobility in a magnetic field. A char-
acteristic feature of electric discharge in EPEs is that
the discharge is excited in crossed electric and magnetic
fields (E ⊥  H) and the ion component of the plasma is
not magnetized. The longitudinal component is domi-
nant in the magnetic field, whereas the transverse com-
ponent is dominant in the electric field (Fig. 1). The
Hall current in this case is closed in the azimuthal direc-
tion. The presence of this current can cause the external
magnetic field to be completely pushed out of the
plasma. It is easy to verify that the electron dynamics in
the boundary layer between the magnetic field and the
cathode plasma is collisionless because, for a character-
istic density of neutral atoms on the order of 1013 cm–3

and a total collision cross section of 3 × 10–15 cm2, the
electron mean free path is about 30 cm, whereas the
length of the EPE channel is usually no longer than
5 cm (the electron Larmor radius is ~0.34 cm for a dis-
charge voltage of 100 V and magnetic field of 100 Oe).

FORMULATION OF THE PROBLEM

We consider a quasi-collisional model of a space-
charge layer in crossed electric and magnetic fields. A
similar problem was first investigated in [1]. In that
paper, the case was considered in which all of the
plasma particles entering the boundary layer had the
same initial velocity directed perpendicular to the layer.
However, in contrast to anode-layer engines (ALEs),
the ions moved together with the electrons from the
cathode plasma, rather than from the anode. The distri-
butions of the potential, magnetic field, and charged
particle density and velocity across the layer were
found. In particular, it follows from the solutions
1063-7842/03/4811- $24.00 © 21413
obtained that the particle density becomes infinite at the
anode boundary.

A distinctive feature of ALEs is that the current den-
sity of the accelerated ion beam is not limited by the
space charge, as was demonstrated in [2]. In [3], the
problem was considered of the formation of a space-
charge layer in a transverse magnetic field with ions
injected from the anode and electrons injected from the
cathode. In this case, the current is limited by the space
charge and two types of solution are possible that differ
in the spatial profiles of the electron velocity and the
parameter values of the cathode plasma, from which the
electrons arrive at the layer. The first type of solution
(E-layer) is characterized by the longitudinal accelera-
tion of electrons near the cathode and their deceleration
near the anode. A characteristic feature of the second
type of solution (H-layer) is that the electrons are decel-
erated in the longitudinal direction throughout the
entire layer (from the cathode to the anode). The cath-
ode plasma density in the E-layer is higher than that in

the H-layer by a factor of , where ϕ0 is the volt-
age drop across the layer and ϕn is the initial energy
with which the electrons arrive at the layer from the
cathode plasma.

ϕ0/ϕn

K

E Hy

x

z

jer

jed

A

0

Fig. 1. Space-charge layer.
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In addition, when the ion and electron current den-
sities far exceed the Langmuir current density, the
E-layer turns out to be much shorter than the electron
Larmor radius. The H-layer is close in size to the elec-
tron Larmor radius. We note that in [3] the influence of
collisions and ionization on the electron and ion motion
was ignored. This study is a continuation and further
development of [3].

MATHEMATICAL MODEL

Let us consider a space-charge layer formed
between a metal anode at a potential ϕ0 and a plasma at
a zero potential (Fig. 1). An electron flow with an initial
electron energy ϕn and current density j0 arrives at the
layer from the cathode plasma.

A metal (equipotential) anode is located immedi-
ately near the cutoff point, at which the longitudinal

electron velocity is zero (  = 0) and the transverse
electron velocity is

(1)

where c is the speed of light, e is the electron charge,
and m is the electron mass.

The electrons that are “cut off” under the action of
the transverse magnetic field and have not undergone
collisions return to the cathode, thus producing the cur-
rent density jc. The electrons undergoing collisions are
assumed to be ejected onto the anode [3] and are not
taken into account.

A gas flow with the current density Vg (where

 and Vg are the density and velocity of the neutral
particles, respectively) enters the layer through the
anode. The gas flow is ionized due to collisions with
electrons. As a result, an ion flow and a gas flow with

the current density Vg enter the cathode plasma

(here,  is the neutral density at the cathode plasma
boundary). The magnetic field at the anode is equal to
the external field H0 and decreases toward the cathode
because of the presence of a transverse (Hall) electron
current. The electric field at the cathode is zero, because
the cathode is the boundary of the quasineutral plasma.

Unlike [3], we will consider the continuity equa-
tions for the charged particle flows and the gas flow.
Moreover, the integration of the equations derived will
be performed starting from the anode, which will
require the equations describing the problem to be
somewhat modified.

The electron flow arising at the cathode reaches the
anode and then moves in the opposite direction. There-
fore, we can consider two electron flows: the direct flow
with the current density jed and the reverse flow with the
current density jer. We assume that the x axis is directed

V x
e

Vy
e c2 1 1

γa
2

-----– 
  , γa 1

e ϕ0 ϕn+( )
mc2

-------------------------,+= =

ng
0

ng
0

ng
c

ng
c

along the reverse electron flow; accordingly, the direct
flow is antiparallel to the x axis.

In the one-dimensional problem under study, all
variables depend on x only; hence, the continuity equa-
tions for jed and jer take the form

(2)

where zt is the electron–neutral collision frequency,
v e is the electron velocity, zk is the Coulomb collision
frequency, σt is the cross section for electron–neutral
collisions, σk is the cross section for Coulomb colli-
sions of electrons, and Ve(x) is the mean electron veloc-
ity at the point x.

By virtue of the energy conservation law and the
reversibility of the electron motion in electric and mag-
netic fields, the electron velocities in the direct and
reverse flows at a given point x are the same in magni-

tude, the velocity components  coincide in magni-

tude and direction, and the velocity components  dif-
fer only in direction. With this fact taken into account,
it follows from Eqs. (2) that

because the densities of the direct and reverse electron
flows coincide at x = 0.

When solving the problem, we will specify the val-
ues of the functions at the anode. However, the value of

the total electron current density at the anode (0) is
not known in advance. It is only known that the elec-
trons arrive at the layer from the cathode plasma with
the flow density j0. By solving the set of Eqs. (2), we

can relate the quantities j0 and (0) through a solution

for a given value of (0), which corresponds to a cer-
tain value of the reverse electron current density at the

cathode, (xc).

It follows from the above considerations that the
total electron density at the point x is equal to

(3)

d
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where 

Thus, the continuity equation for the reverse elec-
tron flow is sufficient to close the set of equations.

In [3], ions were assumed to arrive at the layer from
the anode surface. Here, we will assume that the gas
flow arrives at the layer from the anode surface and is
then ionized by electrons.

Due to ionization, the gas flow density decreases as
the gas moves from the anode to the cathode. This
decrease can be found by integrating the continuity
equation

(4)

where jg(x) is the gas flow density, ne(x) is the electron

density, and  is the gas flow density at the anode.

The ions produced by the gas ionization in the layer
move toward the cathode under the action of the electric
field and do not undergo collisions. We also assume that
the magnetic field does not affect the ion motion. In this
case, the ion space-charge density at a given point is
expressed by the integral from the point at which the
ions are generated to the observation point.

To simplify the problem and reduce it to solving the
set of ordinary differential equations (instead of solving
a set of integrodifferential equations), we consider the
ion motion using the well-known current tube method.
To solve the problem, it is also necessary to use the
equations of motion for electrons, Poisson’s equation,
and equation for the magnetic field. We also make the

substitution of variables in the form  = dx/dt. The
problem under consideration is time-independent;

hence, when writing (x) = dx/dt, it should be remem-
bered that t is not the time in its usual sense. The ions
pass the distance dx over a much longer time than elec-
trons do. So, if dx in the equations for ions and electrons
is the same, then we have

(5)

where (x) is the ion velocity and dt+ is the “ion”
time.

This relation must be used when solving the equa-
tion of motion for ions. We used the following normal-
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ization:

(6)

Under the above assumptions, the problem under
study can be described by the following set of first-
order differential equations:

(7)

where
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Fig. 2. Simulation results for a Xe flow rate of 0.57 A, U =
150 V, H = 282 Oe, Te = 1.85 eV (Ip = 0.94 A), and L0 =
0.148 cm.
Here,  and  are the x and y components of the
electron velocity, respectively; v e is the total electron
velocity; H and h are the magnetic field and the demag-
netization, respectively; ex is the x component of the
electric field; i is the electron current; i0 is the reverse
electron current specified at the anode; jg is the gas flow

density; η is the potential; (x) is the ion current den-

sity in the kth current tube; (x) is the ion velocity in
the kth current tube at the observation point; and n+(x)
is the ion density.

The transport cross section was specified by a
spline, the Coulomb cross section was specified as a
function inversely proportional to the square of energy,
and the ionization cross section was specified through
the Lotz approximation [4]:

(8)

where aα, bα, and cα are constants depending on the
type of gas; qα is the number of equivalent electrons at
the shell α; and E is the electron energy.

The mathematical model created on the basis of the
above set of equations reduces to numerically solving
the set of 2n + 8 differential equations, where n is the
number of the current tubes. The boundary-value prob-
lem with the boundary conditions imposed at the anode
and cathode was solved using the MathCad package.

The basic input data were the magnetic field
strength, the gas flow rate, and the applied voltage. It
was also necessary to specify the initial electron veloc-
ity and the electron density at the cathode boundary of
the layer. The electron velocity is chosen from physical
considerations, namely, that the electrons arrive from
the cathode plasma with the thermal velocity. Calcula-
tions show that variations in Te within the range 1–5 eV
are inessential for the chosen regime of the engine. The
electron density is specified using relation (2) through
the reverse (originating at the anode) electron current.
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Using the shooting method, we seek a solution that sat-
isfies the initial conditions at the cathode; namely, both
the electric field and the transverse electron velocity
should vanish at the same point (which determines the
boundary of the cathode plasma) at a given initial elec-
tron energy and an excess negative charge. The electric

Fig. 3. Simulation results for a Xe flow rate of 0.75 A, U =
95 V, H = 282 Oe, Te = 2.1 eV (Ip = 1.54 A), and L0 =
0.12 cm.
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field at the anode is a variable parameter too. Its maxi-
mum value is easy to estimate from the stringent condi-
tion of the magnetron cutoff for electrons at the anode,

(9)

The model was tested using the well-known analyt-
ical vacuum solution for the case when collisions and
ionization in the layer are absent.

ANALYSIS OF CALCULATED RESULTS

The results of calculations for different regimes are
shown in Figs. 2 and 3. The relative length of the layer
is plotted on the abscissa. For the parameters used in the
calculations, this length is close to the electron Larmor
radius.

Figure 2 shows the results of calculations for xenon,
which correspond to the following experimental
parameters: q = 0.57 A, U = 150 V, H = 282 Oe, I =
2.2 A, and pk = 4.8 × 10–4 torr. It can be seen from the
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Fig. 4. Discharge current as a function of the Xe flow rate
for U = 200 V and H = 282 Oe.

3

10050 150 200 250 300 350 400 450 500 550

4

5

6

2

Itheory

Iexper

H, Oe

I, A

Fig. 5. Discharge current as a function of the magnetic field
for U = 200 V, Xe flow rate of 1 A, and Te = 1.2 eV.
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figure (curve jg) that the decrease in the gas flow density
is only ~40% and the demagnetization does not exceed
several percent. In this case, the calculated density of
the cathode plasma is 1.4 × 1011 cm–2.

Figure 3 presents the results of calculations corre-
sponding to the layer parameters used in the analytical
collisionless solution [1] and in [3] for the H-layer
regime, in which the longitudinal electron velocity
decreases from the cathode to the anode. In this case,
the degree to which the gas is “burnt out” attains 100%,
the entire ionization region is located near the anode,
and the demagnetization at the cathode boundary
reaches 60%.

The difference between the solutions presented in
Figs. 2 and 3 consists in different lengths of the region
of efficient gas ionization (curves jg), the degree to
which the gas is burnt out, the demagnetization h in the
layer, and the layer length. All these results indicate that
the solution is of the H-layer type.

The calculated and measured dependences of the
discharge current on the gas flow rate are shown in
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Fig. 6. Calculated and measured current–voltage character-
istics for a Xe flow rate of 0.75 A and H = 282 Oe.
Fig. 4. Figure 5 shows the calculated and measured
dependences of the discharge current on the magnetic
field, and Fig. 6 shows the calculated and measured cur-
rent–voltage characteristics of the discharge. The cal-
culated dependences in Figs. 4–6 agree qualitatively
with the experimental ones. The difference is explained
by the fact that doubly ionized ions and scattered elec-
trons were ignored in the model.

CONCLUSIONS

The elaborated one-dimensional quasi-collisionless
mathematical model of a space-charge layer formed
between a metal anode and plasma in crossed electric
and magnetic fields correctly describes the H-layer and
allows one to calculate its parameters.

The model predicts that, under certain operating
conditions, the electric field can almost (but not com-
pletely; otherwise, the model is no longer correct) van-
ish inside a layer near the anode (x = 0). This testifies to
the possibility of the generation of the anode plasma,
which can be a criterion that the H-layer regime
changes to the E-layer regime.

For more correct calculations, it is necessary to take
into account the influence of scattered electrons.
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Abstract—The effect of the impact energy and duration on the parameters of the electromagnetic response
from concrete is studied. These two parameters are shown to affect the spectral characteristics of the response.
The duration of the first pulse of the response reflects the duration of the impact excitation active stage. An
impact excitation energy above 5 × 10–2 J causes irreversible residual strains in concrete. © 2003 MAIK
“Nauka/Interperiodica”.
It is known [1] that the mechanical excitation of
insulators generates an electromagnetic signal. Experi-
mental and theoretical data for sources and mecha-
nisms of mechanoelectrical transformations in con-
cretes are summarized in [2, 3]. The electromagnetic
signal generated by the impact excitation of composites
has been shown to have two components: material elec-
trification at the point of impact and mechanoelectrical
transformation at the matrix–filler interface. Both com-
ponents are bound to depend on the impact excitation
energy and duration. Our aim is to find this dependence.

Experiments were performed as follows. A test
object was struck by a steel ball falling from a certain
height. A capacitive sensor was used as a detector. The
signal from the detector was applied to a special device
interfaced with a PC. This device digitized the signal
with a certain step of discretization. The materials
under investigation were cement stone and heavy con-
crete.

As is known [3], when a spherical body of any
radius strikes a plane, the nonlinearity coefficient n of
the force characteristic α = bPn, where α is the size of
the indentation and b is the compliance of the material,
is close to unity. Therefore, when describing impact
excitation, one can use the formula for the linear force
characteristic with a high degree of accuracy.

As follows from the impact theory [3], the duration
τa of the impact active stage in the case of the linear
force characteristic is found by the formula

(1)

where E0 is the kinetic energy of colliding bodies, b is
the compliance of the material, and V0 is the impact
velocity.

In our case, the kinetic energy of collision is defined
by the potential energy of the ball. Hence, by varying

τa
π
2
---

2E0b
V0

----------------,=
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the height of the fall, one can vary the impact energy
over wide limits with the impact duration remaining the
same, since the duration of the impact active stage does
not depend on the impact velocity in the case of the lin-
ear force characteristic. The duration τa of this stage
depends on the mass of the ball, since it follows from
formula (1) that

(2)

where m is the mass of the ball.
When two dissimilar materials are brought into con-

tact, the double electrical layer forms at the contact
boundary. The efficiency of its formation depends on
the amount of positive and negative charges separated
at the boundary. The properties of the double electrical
layer, in turn, depend on the properties of contacting
materials, the condition of their surfaces, and the con-
tact area. When the ball is indented into the surface, the
contact surface area is equal to the surface area of the
ball segment indented into the specimen: S = 2πRh,
where R is the radius of the ball. Hence, if the indenta-
tion depth varies linearly, so does the contact surface
area. However, during indentation, the contact force
increases and reaches a maximum at the end of the pro-
cess. Therefore, the contact area and, accordingly, the
charge of the double electrical layer are bound to grow
rapidly at the active stage.

Since we record the variable electric current, that is,
the rate of change of the charge at the contact,

the time variation of the charge itself can be found by
integrating the electromagnetic response:

τa
π
2
--- mb,=

I t( ) dQ t( )
dt

--------------,=

Q t( ) I t( ) t.d∫=
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Let us analyze the electromagnetic response from a
cement stone without a filler in which internal sources
of mechanoelectrical transformations (double electrical
layers) are weak. To relate the electromagnetic
response parameters to the impact excitation duration,
we carried out the following experiment. Aluminum
foil was laminated on the specimen surface covered by
a dielectric lubricant (Litol). The foil was grounded,
and the ball and one input (channel) of the measuring
device were under a low voltage applied from the
power supply. At the instant the ball touches the
grounded surface, the voltage dropped to zero and
remained zero up to the instant the ball left the surface.
In other words, one of the channels measured the total
duration of the exciting impact (i.e., the duration of its
active and passive stages), while the other measured the
electromagnetic response. Figure 1 shows the electro-
magnetic response (curve 1) measured synchronously
with the total duration of the impact (curve 2) for the
cement stone. The response was numerically integrated
to obtain the charge variation at the lubricant–specimen
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Fig. 1. (1) Electromagnetic response to the impact excita-
tion of cement stone, (3) its integrated characteristic, and
(2) variation of the ball potential at the instant of contact
with the grounded surface.
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Fig. 2. Typical electromagnetic response to the impact exci-
tation of heavy stone.
interface (curve 3). The leading edge time is associated
with the separation of positive and negative charges at
the contact when the ball is indented into the surface
and specifies the active stage duration τa. During this
(loading) stage, the contact force grows. The time inter-
val τa is the duration of the first pulse of the response
(curve 1). Note that the impact in the absence of the foil
would generate a solitary response (pulse) of similar
shape but slightly different amplitude because of the
different electrical properties of concrete and Litol.

The loading stage is followed by the stage of relief
(passive stage). In the course of the passive stage (its
duration is τp), the contact force diminishes and the
pulse amplitude drops, since the decrease in the contact
surface area changes the width and charge of the double
electrical layer. That is, the shape of the pulse obtained
by integrating the electromagnetic response reflects the
variation of the force characteristic of the impact exci-
tation.

From Fig. 1, it is seen that the rise time of the inte-
grated signal, which is related to the active stage dura-
tion, equals 64 µs. Let us estimate the passive stage
duration and compare a predicted value with that found
from the electromagnetic response parameters. To do
this, we will use the basic formulas from the impact the-
ory [3]. From the duration of the first pulse of the elec-
tromagnetic response, we find the passive stage dura-

tion with the formula τp = 1.65 , where Pm =

V0  is the maximal load and b is the compliance,
which is determined from formula (1) for a given τa.
The calculated and experimental values of τp are found
to be 27 and 29 µs, respectively, which is one more ver-
ification of our reasoning.

Impact excitation not only causes electrification due
to the triboelectric effect but also acoustically generates
double electrical layers at the boundaries between
internal inhomogeneities [5]. Figure 2 shows a typical
electromagnetic response from impact-excited heavy
concrete with large-area adhesive boundaries between
the cement matrix and the binder, where extended dou-
ble electrical layers may form. Unlike binder-free
cement stone (Fig. 1), the electromagnetic response
from heavy concrete is of distinct oscillatory character
because of the acoustic generation of double electrical
layers. In Fig. 2, the period T1 of the first pulse differs
from that of subsequent oscillations (T2). This is
because the first pulse is related to the impact parame-
ters, while the subsequent variation of the electromag-
netic response is due to natural acoustic oscillations,
which generate double electrical layers at the matrix–
binder interface.

To trace the effect of the impact duration on the
response parameters, we used steel balls weighing 0.73,
1.45, 3.26, and 7.41 g. To exclude the effect of the exci-

Pm
1/6– mb

m/b
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tation energy, the balls fell from different heights so
that the excitation energy was the same.

The first pulse duration vs. square root of mass
dependence for heavy concrete struck by balls of differ-
ent mass is demonstrated in Fig. 3. This dependence is
seen to be linear in complete accordance with the the-
ory of impact with linear force characteristic:

This corroborates the assumption that the duration
of the first pulse of the response defines the active stage
duration.

It should be noted that wave processes may be dis-
regarded in the case of light balls. For a ball of diameter
7 mm, the time of contact by means of an excitation
wave is estimated as 3 µs, while the active stage for the
same ball lasts 36 µs.

However, after the ball has bounced back from the
surface and even at the passive stage of impact, charge
separation may partially persist; then, the trailing edge
of the pulse obtained by numerical integration
describes the force characteristic at the passive stage
inadequately.

We believe that mechanoelectrical transformations
in impact-excited composites occur when an acoustic
wave changes the width of the matrix–inclusion inter-
face. This, in turn, changes the dipole moment of the
double electrical layer at the interface, i.e., generates a
displacement current, which is recorded by the measur-
ing system. The displacement is due to impact-induced
acoustic vibrations.

Thus, the variation of the excitation duration and,
hence, of the excitation spectrum is bound to change
the spectral characteristics of the electromagnetic
response. The spectral characteristics of the electro-
magnetic responses from the same specimen of heavy
concrete, which was struck by steel balls of various
masses, are shown in Fig. 4. The electromagnetic
response spectrum is seen to vary with impact duration,
which counts in favor of the above-suggested mecha-
nism behind mechanoelectrical transformations in the
materials.

The effect of the impact energy on the electromag-
netic response parameters was studied by throwing a
steel ball of weight 7.41 g from various heights. It was
found that the first pulse duration does not depend on
the impact energy, while the efficiency of mechanoelec-
trical transformations is energy dependent. This also
supports our basic ideas.

Figure 5 shows the dependence of the first pulse
amplitude on the impact energy. As the energy grows,
so does the amplitude of the response. The dependence
is first linear but deviates from linearity after the energy
has reached 3.5 × 10–2 J (curve 1). The nonlinearity may
be attributed to microplastic strains. It turned out that
impact energies exceeding 5 × 10–2 J (curve 2) cause

τa
π
2
--- mb.=
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irreversible residual strains in concrete, as demon-
strated by hysteresis in the energy dependence of the
electromagnetic response amplitude.

Figure 6 shows the spectral characteristics of the
electromagnetic responses that correspond to the linear

0.5 1.0 1.5 2.0 2.5 3.0
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Fig. 3. First pulse duration vs. square root of ball mass for
the heavy concrete specimen.
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Fig. 4. Spectral characteristics of the electromagnetic
response under impact excitation by a ball of mass (1) 7.41,
(2) 3.26, (3) 1.75, and (4) 0.73 g.
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(curve 1) and nonlinear (curve 2) strain portions of the
energy dependence, which is shown in Fig. 5. In the lat-
ter portion, the response amplitude grows, which is
accompanied by the appearance of additional peaks,
which may be related to material failure at the point of
impact.
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Fig. 6. Amplitude–frequency characteristics of the electro-
magnetic response that correspond to the (1) linear and
(2) nonlinear strain range for concrete.

10

100 80 90 100706040 5020 30

20

30

40

50

60

70 (a)

1

2

10

100 80 90 100706040 5020 30

20

30

40

50

60

70
(b)

1

2

Frequency, kHz

A
m

pl
itu

de
, a

rb
. u

ni
ts

Fig. 7. (1) Electromagnetic response spectra and (2) excita-
tion spectra calculated from the first pulse duration. The ball
mass is (a) 0.73 and (b) 7.41 g.
Let us trace the effect of the first pulse duration on
the spectral characteristics of the response. Note that all
tests were made on the same heavy concrete specimen
and with the same geometry of the experiment. Under
the assumption that the impact duration equals the
duration of the leading edge of the integrated electro-
magnetic pulse, we calculated the excitation spectrum,
approximating the exciting pulse by an irregular trian-
gle. The passive stage duration was calculated theoreti-
cally with the approach mentioned above, since the
superposition of the electromagnetic pulse due to the
triboelectric effect and the signal from internal sources
makes an estimate of the passive stage duration ambig-
uous.

Figure 7 shows the electromagnetic response spec-
tra (curve 1) and the excitation spectra calculated from
the first pulse duration (curve 2) for balls weighing
(a) 0.73 and (b) 7.41 g. It is seen that the electromag-
netic response spectrum falls into the range of the exci-
tation spectrum calculated from the first pulse duration.
As the excitation duration decreases, higher frequency
peaks arise in the electromagnetic response spectrum.
If the leading edge duration remains the same and the
excitation energy grows, the amplitudes of the peaks in
the electromagnetic response spectral characteristic
increase. Consequently, changes in the impact energy
and duration modify the spectral characteristics of the
electromagnetic response from concrete.

The results presented in this paper may be used for
determining the dynamic properties of the collision
process, such as the compliance of the material and the
nonlinearity coefficient of the force characteristic in
view of dynamic loading. The nonlinearity coefficient n
is found by approximating the leading edge of the inte-
grated electromagnetic response by a power function
using a routine computer program. The exponent of this
power function gives the coefficient n. The coefficient b
is given by the formula

where τ is the duration of the electromagnetic response
first pulse and m is the mass of the ball.

Thus, basically one can find the empiric coefficients
characterizing the material’s elastoplastic properties
from the electromagnetic response to impact excitation.

At present, a method for nondestructive inspection
of the material’s strength is being developed in the
Tomsk Polytechnical University. This method is based
on the use of the amplitude–frequency characteristics
of the electromagnetic response to impact excitation. It
follows from our study that the accuracy of this method
can be improved if the energy and spectrum of the
exciting pulse is taken into consideration. Further

b
4τ2

mπ2
----------,=
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investigation will be aimed at working out an algorithm
for the electromagnetic inspection of material quality in
view of the above experimental data.
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Abstract—The modulation instability of plane finite-amplitude nonlinear waves with the Josephson frequency
is studied for a Josephson contact in thin nonmagnetic and magnetic (two-dimensional) superconducting films.
Dispersion relations for the increments of small-amplitude perturbations are derived. Modulation instability is
shown to develop in the finite range 0 < Q < Qb of the wavevectors of amplitude perturbations for the nonmag-
netic films and for any perturbation wavevector 0 < Q < ∞ for the magnetic films. © 2003 MAIK “Nauka/Inter-
periodica”.
1. Despite a large number of magnetic superconduc-
tors with unique properties [1–3] known today, they are
continuing to attract researchers’ attention. A combina-
tion of magnetism and superconductivity has been
found not only in ternary compounds [4] but also in
HTSCs, such as REBaCuO, RECuO, etc., where RE is
a rare-earth ion. A basic property of HTSCs is the
strong antiferromagnetic correlation of copper spins in
CuO2 planes in the superconducting state [5].

Wave instability in various nonlinear systems and
media has been studied over a long period of time but
continues to be of interest to the present day [6, 7]. It is
known that a nonlinear wave can be compressed in both
the transverse and longitudinal direction with respect to
the direction of wave propagation. Examples are self-
focusing of light predicted by Askar’yan [8] and the
splitting of a wave into packets with the subsequent
self-compression of the packets (modulation instabil-
ity), which was first investigated by Lighthill [9]. The
modulation instability of electromagnetic waves in
optical fibers is described by the instability of solutions
to the nonlinear Schrödinger equation [10] and, in dis-
tributed Josephson junctions, by the instability of solu-
tions to the sine-Gordon equation [11, 12]. The phenom-
enon of modulation instability is of both theoretical and
applied interest. For example, it is used for generating a
chain of ultrashort optical pulses with a high repetition
rate [10] and developing advanced logic [13].

Upon studying modulation instability, it is often
necessary to consider spatial nonlocal modifications of
the nonlinear Schrödinger equation [14] and sine-Gor-
don equation [15–26].

It has been shown [15, 16] that the effects of spatial
nonlocality may be essential even in Josephson con-
tacts made in thick superconductors (d @ λ, where d is
1063-7842/03/4811- $24.00 © 1424
the film thickness and λ is the London penetration
depth), i.e., in the situations that were previously ana-
lyzed in the local approximation. In the opposite case
(very thin films: d ! λ), the local limit is absent, while
the spatial nonlocality is significant, thereby becoming
the decisive factor. Associated equations have been
derived and analyzed in [17–20]. As was demonstrated
in [21–23], temporal nonlocality is also of significance,
along with spatial nonlocality, for the Josephson elec-
trodynamics of thin (both two- and three-dimensional)
magnetic superconducting films. Josephson junctions
between two superconducting layers that have a finite
thickness in the direction orthogonal to the magnetic
field of vortices have been studied in [24]. In [25, 26],
Josephson junctions made in butted films and beveled
junctions that have a finite thickness in the direction of
the magnetic field of vortices have been studied for an
arbitrary ratio d/λ.

Because of the different geometries considered in
[15–26], the equations of Josephson electrodynamics
differ in the form of the kernel of an integral operator
that describes the effect of spatial nonlocality. How-
ever, in all the works cited, the spatial nonlocality of the
equations for phase difference arises because of the
field nonlocal joining at the interface and in the super-
conductor. This is a common reason for spatial nonlo-
cality in the electrodynamics of Josephson contacts,
where nonlocality becomes a rule rather than an excep-
tion.

Modulation instability in the spatially nonlocal
Josephson electrodynamics of a contact between bulk
superconductors was first considered in [15]. It was
shown that the growth of small amplitude and phase
perturbations leads to the modulation instability of an
electromagnetic wave with a constant (finite) ampli-
tude, causing a nonlinear frequency shift and a linear
2003 MAIK “Nauka/Interperiodica”
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mode dispersion. Spatial nonlocality was found to sup-
press modulation instability. The modulation instability
of a plane nonlinear electromagnetic wave with a finite
amplitude and Josephson frequency for a Josephson
contact between bulk superconductors was studied in
[27]. The instability was caused by the growth of small
amplitude perturbations and led to the splitting of the
wave into wave packets.

2. One nonlinear system where modulation instabil-
ity may be observed is a Josephson junction in an
ultrathin magnetic (two-dimensional) superconducting
film (d ! λ). In this system, the phase difference ϕ(x, t)
across the junction is described by the nonlinear inte-
gro-differential sine-Gordon equation with spatial and
temporal nonlocality [21, 22]:

(1)

Here, ωJ is the Josephson frequency, β is the dissipation

factor, IJ = /λ, λJ is the Josephson penetration depth,
λeff = λ2/d is the effective penetration depth, and the
nonlocal (in spatial and temporal variables) integral
kernel

has the form

(2)

where J0(qx) is the zero-order Bessel function. The
temporal nonlocality of Eq. (1) is due to the frequency
dispersion of the permeability µ(q, ω) and, in essence,
is related to delay processes.

Since λ @ a, where a is the lattice constant, it is nat-
ural to describe the magnetic subsystem in hydrody-
namic terms. In the paramagnetic range of temperature,
the permeability is given by [28]

(3)

where χ0 is the static magnetic susceptibility,

is the coefficient of spin diffusion for two-dimensional
Heisenberg magnetics [29], J is the intralayer exchange
parameter, and s is the spin.
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Consider the evolution of nonlinear waves with the
Josephson frequency ωJ and a small but finite amplitude
(like a breather) in the junction. We represent the phase
difference ϕ(x, t) as

(4)

In the nondissipative limit (β = 0), we take into
account only the lowest nonlinearity order at the funda-
mental frequency ωJ and assume that the amplitude
u(x, t) slowly varies with time. Then, the following ine-
quality is valid:

By substituting field (4) into Eq. (1), we obtain an
expression for the amplitude u(x, t):

(5)

This equation is a nonlinear Schrödinger equation
with spatial and temporal nonlocality. It has an exact
solution in the form of a plane nonlinear wave with a
constant (in space and time) amplitude A:

(6)

Let us analyze the stability of this solution. The
decomposition of plane wave (6) can be judged from
the growth of its small perturbations. To do this, we
assume that a random small amplitude perturbation

(7)

arises.
From Eq. (5), we obtain a linear equation for the

small perturbation ψ(x, t):

(8)

Assuming that in (8) ψ(x, t) = v(x, t) + iw(x, t), we
find a set of equations for the real and imaginary parts
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of the perturbation:

(9)

For perturbations of the form (arbitrary perturba-
tions can be represented as a superposition of such
fields)

(10)

that propagate along a Josephson junction with a
wavevector Q and frequency Ω , we obtain from (9) a

dispersion relation  = ( ):

(11)

where

(12)

In (11) and (12),  = 2Qλeff,  = Ω/ωJ, L = IJ/2λeff,
η = ωJ/Ωeff, and Ωeff = D/(2λeff)2.

Dispersion relation (11), which involves ( ) in
implicit form, has, in view of (12), a complex solution:

( ) = Re ( ) + iIm ( ). With Im ( ) > 0,
small perturbations of amplitude (10) will grow with
time, causing the modulation instability of plane non-
linear electromagnetic wave (6).

3. In the case of a nonmagnetic superconducting
film with χ0 = 0, integral (12) is the function of only the
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wavevector  (see also [20]):

(13)

In this case, dispersion relation (11) passes into an

expression that involves ( ) in explicit form:

(14)

If (14) has a positive solution Im ( ) > 0 in the

finite range of wavevectors 0 <  < , the perturba-
tion grows and modulation instability develops in this

range. For  ≥ , Im ( ) ≡ 0 and the wave is sta-

ble. The boundary wavevector  is found from the
expression

(15)

By the range of modulation instability, we mean the
range of the wavevectors of small amplitude modula-

tions where the amplitude increment Im ( ) is non-
zero and positive.

Fig. 1a shows the numerically calculated finite
ranges 0 < Q < Qb of modulation instability (in terms of
the wavevector Q of small amplitude modulations) for
plane nonlinear electromagnetic wave (6), which oscil-
lates with the Josephson frequency ωJ, in the case of a
Josephson junction made in a thin nonmagnetic super-
conducting film for a fixed amplitude A and three values
of the parameter L.

As follows from numerical analysis, for a χ0 ∝  10–2

(such values of the static magnetic susceptibility are
typical of ternary compounds and HTSCs containing
rare-earth ions near the magnetic ordering temperature
TN ∝  1K) and η = 1, dispersion relation (11) in view of

(12) always (i.e., for any value of the wavevector )

yields a positive perturbation increment Im ( ). Fig-
ure 1b shows the wavenumber dependence of the
amplitude perturbation increment for plane nonlinear
electromagnetic wave (6), which oscillates with the
Josephson frequency ωJ, in the case of a thin magnetic
film for a fixed amplitude A and three values of the

parameter L. In a narrow wavevector range near  =

, the dependence Im ( ) has a crossover. There-
fore, two ranges of modulation instability that turn into
each other can be distinguished: the range of strong
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instability 0 <  < , where Im ( ) ∝  10–3 for A =

0.1, and the range of weak instability  > , where

Im ( ) ≤ 10–4. As the wavevector grows, the pertur-

bation increment tends to zero: Im ( )  0 with

  ∞.

The maximal value of the perturbation increment for
both magnetic and nonmagnetic films,

(16)

is achieved when  = , where  is a root of the
equation

(17)

As modulation instability develops, plane nonlinear
wave (6) with the Josephson frequency turns into a
chain of pulses, small-amplitude breathers, whose rep-
etition rate depends on the modulation period L0 = 2π/Q
of the initial wave.

Thus, in the nondissipative limit for a Josephson
junction in a thin nonmagnetic superconducting film,
modulation instability caused by the growth of small
amplitude modulations develops in a finite range of
wavevectors 0 < Q < Qb. In the same limit for a mag-
netic superconducting film, temporal nonlocality due to
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Fig. 1. (a) Reduced amplitude perturbation increment vs.
reduced wavevector for plane nonlinear electromagnetic
wave (6) in a thin nonmagnetic superconducting film for
A = 0.1 and L = (1) 0.5 × 10–2, (2) 0.75 × 10–2, and (3) 1 ×
10–2. (b) The same for a thin magnetic (two-dimensional)
superconducting film.
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the frequency dispersion of the permeability and spin
wave diffusion in the magnetic subsystem causes the
modulation instability of plane nonlinear electromag-
netic waves in the range Q > Qb, where they are stable
when propagating in the nonmagnetic film.

It should be noted that the frequency ω(k) in the the-
ory of the Josephson junction must be lower than the
limiting frequency, which depends on the energy gap
width ∆(T).

Experimentally, modulation instability can be
observed in long Josephson junctions consisting of thin
nonmagnetic or magnetic superconducting films upon
the excitation of waves with a small but finite amplitude
that oscillate with the Josephson frequency.
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Abstract—Plastic strain localization in single crystals of pure metals and alloys is studied on the yield plateau
and at the easy glide stage with a zero or small strain hardening coefficient. The difference between localization
patterns in the two cases is explained, and strain localization mechanisms are suggested. At these stages of plas-
tic deformation, various types of autowaves are observed. © 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

In a number of recent works [1–3], a unique corre-
spondence between the strain hardening law Θ =
dσ/dε = Θ(ε) and the strain localization pattern at vari-
ous stages of plastic deformation has been established.
Detailed analysis of plastic strain patterns has shown
[3] the presence of specific localization patterns at Θ =

0, Θ = const ≠ 0, and Θ ~ .

The evolution of strain autowaves has been compre-
hensively analyzed under the intense extension of sin-
gle-crystalline metals and alloys [3–7]. It was found in
these works that, for the three-stage stress–strain curve,
a solitary zone of localized strain (switching autowave)
propagates along the sample at the easy glide stage and
on the yield plateau; several equidistant localization
zones (phase autowave) move with a constant velocity
at the stage of linear hardening; and a set of periodically
arranged immobile local strain maxima, between which
the material is virtually unstrained (steady-state dissi-
pative structure), arises at the parabolic stage. The
absence of any of the stages in the flow curve implies
the related deformation type.

In the above scenario (when we deal with clearly
defined process stages, such as linear or parabolic),
strain pattern identification is straightforward. How-
ever, the difference (if any) between the localization
types on the yield plateau and at the easy glide stage is
sometimes hardly discernible for single crystals, since
the strain hardening coefficient in the latter case is close
to zero (0 < Θ ≈ 10–4G, where G is the shear modulus
of a crystal). This makes it difficult to distinguish
between the yield plateau and the easy glide stage (θ = 0).
The situation is aggravated by the fact that, in a number
of materials, the yield plateau follows the easy glide
stage, the transition between them being vague [8].
Glide traces may not shed light on the stage of plastic
flow especially in the case of heavily doped single crys-

ε

1063-7842/03/4811- $24.00 © 21429
tals [8]. In this work, we perform comparative analysis
of strain localization on the yield plateau and the easy
glide stage in order to find the difference in the plastic
flow stages.

Such a problem stems from the fact that the localiza-
tion is not a random process. Being spatially and tem-
porally ordered, it is of autowave character. The type of
strain autowaves is defined by the dependence of the
strain hardening coefficient Θ on the total strain, i.e., on
the loading stage in the stress–strain curve [3].

MATERIALS AND INVESTIGATION 
TECHNIQUES

The objects of investigation were Cu and Ni single
crystals, single-crystalline Fe- and Cu-based alloys,
and NiTi intermetallic (Table 1). Cu and Ni are
deformed by dislocation glide. In Fe-based alloys, one
can induce dislocation glide or twinning by varying the
concentration of interstitial impurities (C and N) and
orientation of the extension axis. NiTi single crystals of
the composition given in Table 1 are deformed through
the B2  B19' phase transformation at 300 K.

All the single crystals were grown by the Bridgman
method in an inert atmosphere. Samples in the form of
double blades were prepared from homogenized ingots
by arc cutting. The working surface area of the samples
was 28 × 5 mm (20 × 5 mm for titanium nickelide), and
their width was varied from 1.3 to 1.5 mm (the width of
the Cu single crystals was 3 mm). The alloy samples
were quenched in cold water after 1-h keeping at the
homogenization temperature. The samples thus pre-
pared were extended with an Instron-1185 machine.
Simultaneously, the field of displacement vectors r(x, y)
for points on the sample surface were recorded by the
method of speckle interferometry, starting from the
yield point up to rupture [1]. By numerically differenti-
ating these fields with respect to the coordinates x and
003 MAIK “Nauka/Interperiodica”
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Table 1.  Chemical composition of the metals and alloys (wt %)

Material Cu Ni Fe Ti Cr Mn Sn Mo C N

Copper 99.98 – – – – – – – – –

Nickel – 99.98 – – – – – – – –

Cr–Ni austenite, AI – 12.4 65.5 – 18.0 2.3 – 1.2 0.013 0.35

High-manganese
austenite, AII

– – 85.96 – – 13.0 – – 0.9–1.0 –

3

Cu–Ni–Sn alloy 84.0 10.0 – – – – 6.0 – – –

Titanium nickelide (at. %) – 50.3 – 49.7 – – – –
y, the longitudinal, εxx, transverse, εyy, shear, εxy = εyx,
and rotational, ωz, components of the plastic strain ten-
sor

[9] for the sample surface was calculated. The spatial,
εxx(x, y), and spatial–temporal, εxx(x, t), distributions of
local elongations εxx = du/dx (where u is the component
of the vector r in the direction of the extension axis x)
were analyzed. This allowed us to locate strain localiza-
tion zones and trace their evolution with time.

The additional microscopic investigation of steps on
the surface made it possible to refine the indices of slip
and twinning systems.

STRAIN LOCALIZATION DYNAMICS IN 
CRYSTALS WITH VARIOUS DEFORMATION 

MECHANISMS

The micro- and macromodels of plastic flow in
alloys and pure metals differ markedly. In alloys, usu-
ally one slip system is observed even in samples ori-
ented for multiple slip. This causes the easy slip stage

∇ r x y,( ) εxx εxy

εyx εyy

ωz+=
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Fig. 1. Initial stages of the plastic flow curve for the copper
single crystal and the space–time evolution of localized
strain zones at stage I.
and sometimes the appearance of Lüders bands. There-
fore, the extension of all the single crystals gave a set
of stress–strain diagrams the initial portion of which
had a zero or a very small slope (strain hardening coef-
ficient Θ).

Consider strain localization in pure single-crystal-
line metals. The extension axis of Cu samples was ori-

ented along the direction [ ], and the surface under

study had indices ( ). With such an orientation, the

(111)[ ] slip system appeared once the yield point
was reached. The strain rate was 5.5 × 10–5 s–1. The
strain fields were recorded during loading in 36-s inter-
vals (the total strain increment was δεtot = 0.2%).

The stress–strain curves obtained under such condi-
tions had three stages [10, 11]. Figure 1 (curve 1) shows
the part of the loading diagram corresponding to the
easy slip stage (I), a part of the linear stage (II), and the
transition zone between them. The parameters of plas-
tic flow, namely, the critical shear stress τ0, the strain γ1
at the end of the easy slip stage, and the strain harden-
ing coefficients at the easy slip stage (ΘI) and linear
stage (ΘII), are listed in Table 2. For the crystals with
the given orientations, they are close to those reported
in [10, 11].

The distribution of local elongations at the easy slip
stage of the Cu single crystals had the form of three
wide equidistant zones moving synchronously along
the sample (Fig. 2). Curves 2–4 demonstrate the varia-
tion of the positions of these zones with time. The strain
localization zone velocity estimated from the slope to
the t axis was found to be ≈5.3 × 10–5 m/s.

The single-crystalline Ni samples with the surface

( ) were extended in the direction [ 67]. With this

orientation, the slip system (111)[ ] was observed.
The strain rate and the interval over which the strain
fields were recorded were the same as for the Cu sam-
ples. The flow curves for Ni also have three stages. The
initial portion of a typical curve (curve 1) is shown in
Fig. 3. The parameters of the loading curves for Ni
(Table 2) also agree with [10, 11].

139
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101
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101
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At the easy slip stage (I), two deformation fronts
move toward each other. Their positions during defor-
mation are shown in Fig. 3 (curves 2, 3). The velocities
of the fronts were +3.6 × 10–5 and –2.2 × 10–5 m/s (the
plus and minus signs mean that the fronts move in
opposite directions). The point of their meeting corre-
sponds to the end of stage I.

In single-crystalline Cu- and Fe-based alloys, which
are deformed by slipping, flow curves and strain local-
ization patterns are more diversified. The Cu–Ni–Sn
alloy were quenched in water starting from 1203 K in
order to fix the homogeneous solid solution of Ni and
Sn in Cu. The extension axis was aligned with the

[ ] direction, and the surface had indices ( ). In

this case, the three slip systems (111)[ ], ( )[011],

and ( )[ ] are equivalent, and starting from the
yield point, one might expect multiple slip. However,
when these samples were extended with a rate of 6.6 ×
10–5 s–1, the (111)[ ] slip system alone was
observed and the strain–stress curve (Fig. 4, curve 1)
exhibited both the sharp yield point and yield plateau
(stage I) followed by the extended stage of linear hard-
ening (stage II). The material hardening parameters are
listed in Table 2. The localized strain field was recorded
in 0.2% increments of the total strain in the interval
from 0.7 to 7.3%. Immediately after the appearance of
the sharp yield point, a solitary strain localization front
is observed near the movable tension grip. This front
travels along the sample throughout the yield plateau
(Fig. 4, curve 2) with a velocity of ≈6.7 × 10–5 m/s.

The samples of Cr–Ni austenite are also deformed
by dislocation glide. They were saturated by nitrogen
with the thermobaric method at 1473 K, kept in a vac-
uum for 1 h, and then quenched in water in order to fix
the homogeneous substitutional Fe-based solid solu-
tion. Nitrogen in this solid solution acts as an interstitial
impurity without forming nitrides. The samples with
the (110) surface were extended along the direction
[111]. With such an orientation, three slip systems,

( )[101], ( )[011], and ( )[ ], have a
Schmid factor of 0.27. However, the presence of the
overequilibrium interstitial hardening impurity leads to
a substantial increase in the deforming stress and the
degree of dissociation of dislocations. The latter fact, in
turn, restricts slip localization to the system

( )[011], which dominates over the other two at the
early stage of deformation. The strain rate and the time
instants of strain recording were the same as for Cu and
Ni. Under these conditions, the loading curve also has
three stages, as in the case of Cu and Ni single crystals
which were oriented for single slip, but, unlike Cu and
Ni, has a sharp yield point.

Figure 5 (curve 1) shows the part of the stress–strain
diagram covering the easy slip portion (I), transition
region, and the beginning of the linear stage (II). The

111 358

011 111

111 011

011

111 111 111 101

111
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basic parameters of the hardening curve are listed in
Table 2. Once the sharp yield point had been reached,
deformation proceeded with a small but nonzero hard-
ening coefficient (Table 2). The positions of the local
strain peaks are shown by curves 2–4 in Fig. 5. Up to
the value of the shear strain γ ≈ 0.04, the local elonga-
tion distribution was random; then, three strain zones
formed. One traveled with a constant velocity of ≈3.5 ×
10–5 m/s throughout the easy slip stage; the other two
first moved faster than the first zone but then stopped.
During stage I, the entire sample was covered by these
moving strain localization zones. The strain zone
passed along each section of the sample once.

The homogenization of high-manganese austenitic
steel samples with a carbon content of ≈1 wt%, which
were deformed by twinning, was performed by keeping

Table 2.  Characteristics of plastic flow in single crystals
deformed by dislocation glide

Material τ0, MPa ΘI/G × 10–4 ΘII/G × 10–3 γ1

Cu 6.2 7.5 2.6 0.14

Ni 23.0 11 2 0.06

Cu–Ni–Sn 44.8 0 1.1 0.037

AI 76.0 2.3 1.2 0.15
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Fig. 2. Distribution of the localized strain zones in the cop-
per single crystal at the easy slip stage (stage I).
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Fig. 3. Initial stages of the plastic flow curve for the nickel
single crystal and the space–time evolution of localized
strain zones at stage I.
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at 1373 K for 1 h. Then they were quenched in water.

The extension axis had two directions: [ ] and

[ ]. The working surface of the samples was (011)
in both cases. The samples were extended at room tem-
perature with a strain rate of 1.2 × 10–4 s–1. Starting
from the yield stress, the displacement fields were
recorded every 15 s (in 0.2% increments of the total
strain) or every 36 s (in 0.4% increments).

In the single crystals oriented along [ ], the basic
plastic deformation mechanism under room-tempera-

ture extension is twinning in the system (111)[ ]
[8], which is observed after the yield point. The length
of the yield plateau (stage I) together with the sharp
yield point was about 30%. Subsequent loading leads to
the stage of linear hardening (stage II), which extends
up to rupture at ≈45% of the total strain. In single crys-
tals of such an orientation, the parabolic hardening
stage is absent.
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Fig. 4. Initial stages of the plastic flow curve for the Cu–Ni–
Sn single crystal and the motion of the localized strain zone
at stage I.

Fig. 6. Initial stages of the plastic flow curve for the single
crystal AII (the extension axis [ ]) and the motion of
localized strain zones at stage I.

377
Figure 6 (curve 1) shows the part of the strain–stress
diagram for the high-manganese austenitic single crys-

tal with the extension axis [ ]. This part of the dia-
gram covers stage I and a part of stage II. Since plastic
flow in this case is due to twinning, the diagram is plot-
ted in the σ–ε, rather than τ–γ, coordinates. The harden-
ing parameters are listed in Table 3. In this case, the
plastic strain front travels along the sample throughout
the yield plateau (stage I in the strain–stress curve) with
a constant velocity of ≈9 × 10–6 m/s (Fig. 6, curve 2).

The strain pattern on the samples with the extension

axis [ ] is more complicated. It is known [4] that,
when the C content in single-crystalline Hadfield steel

is ≈1 wt% and the extension axis is [ ], multiple

twinning in the systems (111)[ ], ( )[ ], and

( )[ ] takes place and the loading diagram has
only the linear hardening stage up to rupture. The direc-
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Fig. 5. Initial stages of the plastic flow curve for the single
crystal AI and the space–time evolution of localized strain
zones at stage I.

Fig. 7. Initial stages of the plastic flow curve for the single
crystal AII (the extension axis [ ]) and the space–time
evolution of localized strain zones at stages I and I'.
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tion (orientation) [ ] falls into the standard stereo-
graphic triangle and lies between two extreme cases:

[ ] and [ ]. Therefore, the strain–stress curve for
such samples has both the sharp yield point and yield
plateau (stage I) before the linear hardening stage and
plastic deformation starts from twinning in the system

(111)[ ].

The transition to multiple twinning and to linear
stage II, which has a high hardening coefficient ΘII,
involves one more linear portion (stage I') with a much
lower hardening coefficient ΘI' (Table 3; Fig. 7,
curve 1). The analysis of the local strain distribution
indicated that a solitary strain zone travels from the
fixed tension grip with a velocity of ≈1.9 × 10–5 m/s on
the yield plateau (stage I). The variation of the position
of this localization zone is depicted in Fig. 7 (curve 2).
At stage I', another front separates from the primary
strain zone (Fig. 7, curve 3). The primary strain local-
ization zone continues to move along the unstrained
part of the sample with the same velocity, while the new
one travels over the strained part with a velocity of
−5.5 × 10–5 m/s. Such a situation occurs at stage I' twice
(Fig. 7; curves 3, 4). Stage I' is complete when the pri-
mary front passes through the entire sample (Fig. 7).

The composition of titanium nickelide single crys-
tals (Table 1) provides the smooth phase transition
B2  B19' [12] at 300 K. The extension axis of the

(110) sample was aligned with the direction [ ] in
the B2 lattice. The strain rate was 8.3 × 10–5 s–1. Under
these conditions, the strain–stress curves exhibit a
sharp yield point and a yield plateau several percent
long. The latter is followed by a short transition region
and the parabolic stage of strain hardening. As is known
[12], it is the phase transition B2  B19' that is
responsible for a yield plateau and the parabolic stage
corresponds to the deformation of already formed mar-
tensite.

Figure 8 (curve 1) shows the part of the σ–ε diagram
for the TiNi sample covering the sharp yield point and
yield plateau (stage I) and the transition region. The
plastic flow parameters are given in Table 3. From the
analysis of the local strain distribution, it follows that a
strain front ≈2 mm wide travels along the sample with
a constant velocity of ≈3 × 10–5 m/s during the yield
plateau. The variation of its position in the course of
deformation is shown in Fig. 8 (curve 2). As in all the
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111 377
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cases described above, the yield plateau is complete
when the localized strain front passes through the
whole sample.

RESULTS AND DISCUSSION

The analysis of the results obtained in this paper
allows us to establish a qualitative correlation between
the initial stages of the plastic flow curve for single-
crystalline materials and the space–time local strain
distributions. The basic conclusions are as follows.

(1) If the flow curve of a single crystal has a sharp
yield point and a yield plateau (ΘI = 0), a traveling sol-
itary front separating elastically and plastically strained
regions is observed (Cu–Ni–Sn, Fig. 4; Mn austenite

with the extension axis aligned with the [ ] direc-
tion, Fig. 6, and TiNi, Fig. 8) irrespective of the compo-
sition, crystal structure, and orientation of the material,
as well as of plastic flow micromechanisms.

(2) If the stress–strain curve exhibits the linear stage
with a small but nonzero hardening coefficient (ΘI =
const > 0, easy glide in fcc single crystals with the dis-
location mechanism of deformation), several traveling
strain localization zones are observed in all the samples
studied (Figs. 1, 3, 5). They may move in the same or
opposite directions, and their velocities may differ or
equal each other.

(3) If the yield plateau is followed by the linear stage
with a small strain hardening coefficient, secondary

377

Fig. 8. Initial stages of the plastic flow curve for the NiTi
single crystal and the motion of localized strain zones at
stage I.
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Table 3.  Characteristics of plastic flow in single crystals with nondislocation mechanisms of deformation

Material σ0, MPa ΘI/G × 10–4 ΘI'/G × 10–4 ΘII/G × 10–3 εI εI'

AII, [ 77] 314.5 0 – 6.6 0.25 –

AII, [ 55] 469.4 0 40 12.9 0.04 0.1

NiTi 119.5 0 – – 0.03 –
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fronts separate out from the traveling primary strain
zone. They move in the opposite direction over the plas-
tically strained part of the sample (Mn austenite with

the [ ] extension axis, Fig. 7).

In the first case of localization, the traveling front
originating at the upper yield point turns the material
from one state into another (Lüders band [13]). This is
clearly observed in TiNi, where the phase transition
B2  B19' occurs at the deformation front. Such a
front may pass through the material only once. If sev-
eral such fronts originate, they cancel each other out
when meeting. The flow proceeds without hardening
until all elements of a deforming volume become
strained.

In the second case of localization, several strain
zones travel along the sample at stage I. They originate
prior to this stage from randomly distributed localiza-
tion zones. In pure metals (Cu and Ni), the random dis-
tribution corresponds to the smooth transition from
elasticity to fully developed plasticity; in concentrated
solid solutions additionally strengthened by interstitial
impurities (Cr–Ni austenite), to a sharp yield point.
Hence, the strain fronts become regularly arranged and
move in the deformed, though slightly, material. Of
most interest is the situation when the linear stage with
a small hardening coefficient (stage I') follows the yield

plateau (Mn austenite with the [ ] extension axis).
Here, secondary strain localization zones move oppo-
sitely to the primary front. It should be emphasized that
each of the strain localization maxima (fronts) passes
through the sample once. This is clearly seen in Figs. 5
(curves 2–4) and 7 (curves 3, 4).

The knowledge of the velocity of strain localization
zones at the material loading stages considered is
important for the elaboration of an autowave model of
plastic flow. It has been shown [3] that the velocity Vaw
of plastic strain autowaves at the easy slip stage in a
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Fig. 9. Localized strain autowave velocity vs. reduced hard-
ening coefficient for the single crystals at stage I. h, yield
plateau; j, easy slip.
number of single crystals is given by

(1)

While the plastic flow localization patterns on the
yield plateau and at the easy slip stage are similar, for-
mula (1) yields Vaw  ∞ with Θ = 0, which is typical
only of the yield plateau. To improve the situation, one
should take into account the effective friction stress D
of mobile dislocations at the yield stress. According to
Gilman [14], this effective stress controls the mobility
of dislocations:

Following Gilman [14], the denominator of the sec-
ond term in Eq. (1) is replaced by Θ + D/γp:

(2)

With D ≈ 2τ0 [14], τ0 ≈ 2.5 × 10–5G for most fcc sin-
gle crystals, and 5 × 10–3 < γp < 5 × 10–2 [8] at the easy
slip stage, we may estimate the value of Vaw0, which is
the velocity of autowaves at Θ = 0.

The results of processing the data for the front
velocities at the easy slip stage and on the yield plateau
that are estimated by formula (2) are summarized in
Fig. 9. The correlation factor for the variables is ≈0.75,
that is, significant [15]. In the case of linear hardening,
Θ @ D/γp and the conventional relationship Vaw ~ 1/Θ
[7] is valid.

CONCLUSIONS

Thus, the type of localized strain autowaves at the
initial stages of plastic flow in single crystals depends
on a relationship between the stress applied and the
total strain. With ΘI = 0, a switching autowave in the
form of a strain localization zone is generated. When
traveling along the sample, this wave switches it to
another state. In this case, stage I is complete when the
entire sample passes to a new plastically strained state.
When ΘI = const > 0, an autowave comprises several
strain localization zones which travel in already
strained volume. Each of the strain localization maxima
(zones) passes through a certain part of the sample only
once. This suggests the propagation of an excitation
autowave.
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Abstract—Single-walled carbon nanotubes (SWCNTs) are synthesized by the ablation of a catalyst-containing
carbon target with a cw CO2 laser. Emphasis is on ablation conditions that are favorable to self-organized
SWCNT synthesis. It is shown that the graphite target intensely evaporates with the formation of fractal-like
tubes at the edge of the jet when the laser power density exceeds 105 W/cm2. Still more favorable conditions
for carbon nanotube synthesis are set if the power density lies within 2 × 104–5 × 104 W/cm2. Under these con-
ditions, both individual SWCNTs and their bundles of diameter from 1.1 to 1.5 nm are produced, as shown by
Raman scattering and electron microscopy studies. In this series of experiments, the maximal fraction of
SWCNTs reaches 20%. A mechanism of SWCNT fast growth in the laser torch is suggested. © 2003 MAIK
“Nauka/Interperiodica”.
The search for effective procedures for the synthesis
of carbon nanostructures, including nanotubes [1], and
the elucidation of underlying mechanisms is a very
important scientific problem of current interest.

A perfect SWCNT is known to be a jointless
graphene sheet folded into a cylinder with a wall thick-
ness on the order of the carbon atom size. Experiments
on SWCNT synthesis by using an electric arc, pyrolysis
of hydrocarbons, and laser ablation of carbon [2]
(a review of SWCNT synthesis methods is given else-
where [3, 4]) suggest that carbon nanotubes can be syn-
thesized by low-temperature methods, which involve
mostly the pyrolysis of hydrocarbons, and by high-tem-
perature ones (where the temperature exceeds the upper
limit of graphite thermal stability, 2600 K), which are
associated with the evaporation of a catalyst-containing
graphite target. The latter are of special significance
because the process goes under more refined conditions
with the participation of carbon and inductor (catalyst)
vapors in the molecular state. This provides the possi-
bility of tracing the mechanism and kinetics of subse-
quent processes: the condensation of vapor and the self-
organized nucleation and growth of molecular associ-
ates, compact clusters, and carbon nanostructures.

In this paper, we report the results of pioneering
experiments in which laser ablation conditions pro-
vided the self-organized synthesis of carbon nanotubes
in the expanding flux of a carbon–catalyst target. We
were interested in irradiation power densities such that
the temperature of an absorbing target layer does not
1063-7842/03/4811- $24.00 © 21436
exceed the critical value and the solid–liquid–vapor
phase transition takes place.

LASER SETUP FOR NANOSTRUCTURE 
SYNTHESIS

The laser ablation of carbon nanotubes was accom-
plished on the modernized setup (Fig. 1) that was
applied earlier in experiments on the propagation of
pyrolysis wave along a laser beam [5]. The radiation of
a 2-kW cw CO2 laser with a beam divergence of 8 ×
10−4 rad was focused by a KCl lens with a focal length
of 20 cm, passed through a salt window inside the
51-cm-long quartz reaction tube of inner diameter 7.1
cm, and was concentrated on the end face of a cylindri-
cal graphite target. With a laser beam density of 1–2 kW,
the target temperature falls into the interval 3500–

2
3

4
5

6
1 3 8

7

Fig. 1. Experimental setup for laser synthesis of carbon nan-
otubes: (1) CO2 laser, (2) He–Ne laser, (3) reflectors,
(4) lens, (5) reactor, (6) graphite target, (7) optical pyrome-
ter, and (8) diaphragm.
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4000 K, where radiation losses prevail, if the target
diameter is smaller than 5 mm, as follows from calcu-
lations. Therefore, the diameter of the target, which was
flowed about by helium at a pressure of 400–760 torr,
was varied between 3 and 5 mm in our experiments.
The helium flow rate through the reaction tube was kept
at a level of 0.5 l/min. Helium was used because it is a
good relaxant of the vibrational energy of the resulting
nanostructures. The diameter of the laser spot on the
end face of the target was 2 mm. The brightness temper-
ature of the target surface was monitored with an opti-
cal pyrometer.

The laser radiation enhanced the target vaporization,
forming an ablation product jet directed toward the
laser beam and helium flow. The optics at the entrance
was protected against this jet with a special diaphragm,
which was mounted inside the reaction tube. The dia-
phragm turned the ablation product jet, directing it
along the wall toward the exit from the reactor. Particles
formed in the peripheral (colder) regions of the jet con-
densed on the diaphragm, reactor walls, and special
substrates placed throughout the reactor length. Sub-
strate deposits were examined by Raman spectroscopy
[6], as well as by (transmission and scanning) electron
microscopy combined with the JEOL JSM-5410 +
XLink Oxford Detector X-ray microanalyzer.

LASER ABLATION REGIMES

The laser power density is the basic factor control-
ling the process of material ablation. Carboniferous tar-
gets exposed to laser radiation are usually porous.
Therefore, laser radiation first disperses and then heats
the target, forming a polydisperse particle flux, which
evaporates in the laser beam. Yet, the radiation–target
interaction is an essentially steady process, although
the flux density of target vaporization products is sig-
nificant. One might expect that soot and metal particles
contained in target vaporization products shield the
radiation. However, this does not happen because the
particles in the laser beam have time to heat up to the
boiling point and sublimate. Due to the subsequent
expansion of the vapor–gas jet and also its mixing with
the cold helium flow, the jet cools down and the vapor
becomes saturated at some moment. Then, the vapor
condenses and clusters start to form. The number and
size of condensate nanoparticles depend on the conden-
sation kinetics during the expansion and cooling of the
jet. The finely dispersed condensate deposits on the dia-
phragm, cold walls of the reactor (due to thermophore-
sis), and substrates. The diaphragm was made of stain-
less steel, and the substrates had the form of 1-cm-high
metallic (copper or brass) cylinders with a diameter of
1 cm and grids made of stainless steel and Nichrome
wire.

The morphology of the deposits was found to signif-
icantly depend on the optical radiation power (inten-
sity), all other things being equal. With a high beam
power density (1.5–2.0 kW) and a small target diameter
TECHNICAL PHYSICS      Vol. 48      No. 11      2003
(3 mm), the target was rapidly heated to temperatures
above 3500 K and, accordingly, the carbon vapor den-
sity increased substantially. This, in turn, causes the
density of compact clusters, which form at the periph-
ery of the vapor–gas jet upon condensation, to grow,
and the clusters start to aggregate into fractal micro-
structures. These structures were detected on all the
substrates and in the circumference of the diaphragm.

As the laser radiation threshold intensity for the for-
mation of fractal structures, one may take that provid-
ing the intense evaporation of the graphite target, or, in
other words, that at which a crater on the target appears
fairly rapidly. In our experiments, the crater depth
reached about 5 mm for 10 s of irradiation. One could
observe that, with the laser power remaining the same,
the target heats up further as the crater increases in
diameter presumably until the triple point is achieved
and the carbon melts.

According to [7], the triple point of carbon is
achieved at pt = 1 atm and Tt = 4000 K. These values
merit special attention, since they imply that the liquid
phase of carbon is difficult to obtain at a close-to-nor-
mal pressure. We observed the traces of the liquid phase
in the form of the solidified flow with characteristic
steel color in the throat of and immediately at the exit
from the crater. The latter case is depicted in Fig. 2. One
can also judge the formation of the carbon liquid phase
in the crater from a number of solidified spheroidal
droplets near the crater’s outlet channel on the end face
of the target (see also Fig. 2).

It seems reasonable to examine the structure of the
solidified liquid phase of carbon. Without going into
detail, we only note that valuable data on the solidified
carbon structure may be extracted from Raman spectra.
Such a spectrum is shown in Fig. 3 in comparison with
the spectrum of the carbon deposit on the diaphragm. It
follows that Raman spectra of carbon generally have

Fig. 2. Micrograph of the solidified liquid phase of carbon
at the exit from the crater (×25).
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two modes: G (line shift ∆ν = 1580 cm–1) and D (∆ν =
1350 cm–1). Their widths and relative intensities bear
information on the carbon structure.
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Fig. 3. Raman scattering spectral intensity I vs. shift ∆ν of
the Raman spectral line: (1) solidified liquid phase of car-
bon, (2) carbon deposit on the diaphragm, and (3) deposit in
the form of fibrous structure on the stainless steel grid.

~20 µm

Fig. 4. SEM image of the carbon fibrous deposits on the
stainless steel grid.
In the spectrum of the solidified liquid phase, the
mode D is totally absent and the mode G is narrow. The
latter fact indicates that the structure is highly ordered.
So, it seems quite plausible that the carbon solidifies to
form either carbon crystals or a crystalline carbyne–
graphite mixture, since it is known [8] that, at tempera-
tures above 2600 K, carbon turns into carbyne. This
compound has chain molecules, which basically may
also play a certain role in nanotube synthesis.

We believe that the aforementioned evaporation
conditions with the formation of fractal clusters are
inefficient in terms of SWCNT synthesis. Therefore,
the laser power was decreased to 0.5–1.5 kW and the
diameter of the target was increased to 5 mm. In this
way, the laser power density was decreased to (2–5) ×
104

 W/cm2; accordingly, the evaporation became less
intense. Under these conditions, the deposit on the sub-
strate was rather dense but fractals did not form for the
irradiation time (10 s). The deposits had a fibrous struc-
ture, as follows from Fig. 4, which shows the SEM
image of the deposit on the stainless steel grid. This
deposit was obtained when the 800-W laser radiation
evaporated a purely graphite target in the helium atmo-
sphere under a pressure of 760 torr. In this case, the
Raman spectrum (Fig. 3) is typical of a deposit with
doubled-walled and multiwalled nanotubes (the G
mode is narrow and the D mode is of small intensity).

SYNTHESIS OF SINGLE-WALLED CARBON 
NANOTUBES

In order to provide more favorable synthesis condi-
tions, a 3.5-mm-diam. channel was made in the graph-
ite target on the irradiated side. The channel was filled
with a graphite : nickel catalyst = 19 : 1 mixture. The
catalyst was composed of nickel powder and Y2O3 addi-
tive. The Raman spectra of the deposits on the sub-
strates placed in different parts of the reactor showed
that nearly all of them contain single-walled carbon
nanotubes.

It should be noted that the rate of target evaporation
in these experiments was roughly 10 g/h, which is
50 times higher than the evaporation rate used in [2]. Such
a high evaporation rate might adversely affect the growth
of nanotubes. The final result was therefore very surpris-
ing: the SWCNT maximal concentration was observed on
the substrate nearest (2.0 cm) to the target. This means that
nanotubes in the laser torch are produced very rapidly and
also indicates that the part of the torch adjacent to the
evaporation zone on the target has a decisive effect on the
nucleation and growth of single-walled nanotubes; hence,
the reactor dimensions may be minimized.

A typical Raman spectrum taken from the deposit
obtained in these experiments is shown in Fig. 5. Note
that the analysis of carbon nanotubes with Raman spec-
troscopy is a well-developed technique [6]. Its basic
advantage is that the presence of nanotubes in the
deposits and their characteristics may be established
TECHNICAL PHYSICS      Vol. 48      No. 11      2003



        

SYNTHESIS OF SINGLE-WALLED CARBON NANOTUBES 1439

                                                                   
immediately during the experiments. As follows from
Fig. 5, the SWCNT Raman spectrum in this case con-
sists of two modes: tangential and radial. The absence
of the D mode (∆ν = 1350 cm–1) means the absence of
the amorphous phase in the deposit. The tangential
mode (∆ν = 1580 cm–1) has a split typical of single-
walled nanotubes. Basically, from the temperature shift
of this mode, one can find the SWCNT concentration in
the ablation products. The associated results obtained
in two experiments with laser radiation powers of 600
and 800 W are shown in Fig. 6, which demonstrates
that, all other things being equal, the SWCNT concen-
tration depends markedly on the radiation power under
normal helium pressure. It also follows from Fig. 6 that
the increase in the laser power by as little as 200 W
results in the fourfold increase in the SWCNT concen-
tration (20 vol.% at 800 W).

The radial (or, otherwise, breathing) mode occupies
the range ∆ν = 150–200 cm–1 and contains important
information on the diameters of SWCNTs in the
deposit. The SWCNT diameter d may be estimated by
the frequency shift of the radial mode from the relation-
ship [9]

where ∆ν is the frequency shift in inverse centimeters
and d is the SWCNT diameter in centimeters. From the
radial mode spectrum, which represents a set of peaks
(Fig. 5), one can estimate the SWCNT diameter distri-
bution. With a radiation power density on the target sur-
face of 5 × 104 W/cm2, which was used in our experi-
ments, synthesized single-walled nanotubes had a
diameter from 1.1 to 1.5 nm. The maximum in this dis-
tribution lies at 1.2 nm; thus, it follows that nanotubes
with a chirality index of 9.9 prevail in the deposits. In
the high-frequency part of the Raman spectrum, the
position of the fundamental peak of the tangential mode
lies at 1587 cm–1, which also indicates the presence of
small-diameter SWCNTs in the deposit [10].

The structure of carbon nanotubes produced by self-
organized synthesis may be clarified by taking HRTEM
images of the deposit (Fig. 7). They show that individ-
ual single-walled nanotubes combine into bundles
(with several tens of nanotubes per bundle in our exper-
iments). The diameter of individual nanotubes, which
can be estimated from this image, correlates well with
its value obtained from the Raman spectrum. It is
remarkable that both single and paired nanotubes are
rather pure, while the surface of the bundles contains
spheroidal nanoparticles of diameter 1–2 nm, which
apparently consist of amorphous graphite or catalyst.
The appearance of these particles may be associated
with the nonuniform distribution of graphite powder
grains and catalyst in the target.

To conclude this section, we observed an interesting
effect: the formation of extremely thin carbon fila-
ments, which form a weblike macrostructure. This
occurred, as a rule, upon grid condensation, as well as

d 223.75/∆ν ,=
TECHNICAL PHYSICS      Vol. 48      No. 11      2003
in the stagnant zones of the reaction tube, where the
flow velocity is low. Figure 8 demonstrates the micro-
graph of such a structure formed on the stainless steel
grid. It appears that the filaments, which were 3 to 4 cm
long in a number of experiments, consist of a large
number of bundles of single-walled tubes.

MECHANISM OF SINGLE-WALLED CARBON 
NANOTUBE SYNTHESIS

The elucidation of an SWCNT formation mecha-
nism and the elaboration of an adequate model of the
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Fig. 5. Typical Raman spectra taken from the deposit with
SWCNTs: (1) tangential mode and (2) radial mode.
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process at high temperatures in a dense vapor–gas
plasma environment are of great interest both for fun-
damental science and for the development of efficient
growth technologies of nanostructures. We believe that,
upon the laser ablation of the graphite target in the pres-
ence of the catalyst, SWCNTs nucleate and grow
directly in the vapor–gas phase. The following experi-
mental findings form the basis for the elucidation of the
SWCNT formation mechanism in a laser torch.

(1) Note first of all that high-power-density laser
radiation acting on condensed media causes intense
evaporation with the characteristic expansion of abla-
tion products and the formation of a vapor–gas plasma
jet. In this jet (torch), electrons are readily produced
primarily through the ionization of graphite, which has
a low ionization potential (3.8 eV). Initially, the jet con-
tains ions and atoms of all elements entering into the
target composition, as well as molecular radicals and
associates. In the peripheral (colder) parts of the jet, the
radicals and associates are polymerized forming com-
pact clusters. This is confirmed by mass spectrometry
studies of the molecular composition of the saturated
vapor of carbon, which revealed a set of molecules
from C2 to C10 [11]. In subsequent experiments on laser
evaporation of carbon [12, 13], an even higher degree of
carbon polymerization was observed. It was found that
Cn macromolecules (n is an even number) are linear if
n < 8, are cyclic if 12 < n < 28, and form spherically
closed structures (fullerenes) with n > 50. It should be
noted that polymerization also takes place upon the
laser evaporation of metal oxides. When yttria was
exposed to pulsed laser radiation [14], (Y2O3)n(YO)+

ions, where n varies from 0 to 18, were detected.
(2) Graphite may easily dissociate with the forma-

tion of gaslike clusters (–C≡C–)n, since a single bond in
the graphene sheet breaks at high temperatures and the
electron shifts toward a double bond, thereby inducing
the break of the neighboring single bond. This, in turn,

20 nm

Fig. 7. HRTEM image of SWCNTs.
produces a triple bond in place of the former double
bond. Similarly, an acetylene molecule with triple
bonds is more stable against high temperatures.

(3) Next, it should be noted that any particle that is
in contact with the plasma in the vapor–gas torch
acquires a charge. Molecular associates and compact
clusters may be viewed as large molecules, and their
charge, which is apparently defined by the processes of
electron attachment, ionization, and recombination, is
no more than several elementary charges. A charged
particle generates an electric field and induces the elec-
tric dipole moment in surrounding particles. If dipole–
dipole interaction between particles is strong and the
temperature is not too high, the effect of directed segre-
gation may occur, causing interacting particles to align
with the field and produce ordered linear structures.

Thus, the formation of a single-walled carbon nano-
structure in our experiments may be considered as fol-
lows. When acting on a condensed medium, the intense
laser radiation generates a vapor–gas plasma jet, which
contains atoms, radicals, and carbon and catalyst mole-
cules. At the edges of the jet, where the temperature is
lower, the vapor condenses, forming molecular associ-
ates Cn and ionizing gaslike clusters that contain nickel,
carbon, and yttrium. The resulting ions aggregate upon
collisions, generating charged particles of a porous
polymer cluster. The porous structure of an incipient
cluster is seen in Fig. 7. From this figure it also follows
that the porous structure of the cluster possibly with
dangling bonds at the edges of the pores provides the
formation of SWCNT bundles, which originate at the
cluster surface. It seems that the diameter of nanotubes
depends on the characteristic size of the porous struc-
ture.

In an alternative process, compact clusters forming
at the periphery of the vapor–gas jet consist of carbon
and catalyst atoms and molecules. According to a cur-
rent point of view, Y2O3, when added to the catalyst,

2 µm

Fig. 8. SEM image of carbon webs deposited on the stain-
less steel grid.
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prevents the clusters from increasing in size; therefore,
they remain small and the resulting single-walled nan-
otubes have a small diameter. Since the temperature at
the edges of the vapor–gas jet is lower, these clusters
contain the supersaturated solution of carbon in nickel.
As a result, excess carbon is precipitated on the cluster
surface and serves as a seed for SWCNT growth.

The nanotubes grow in length through the interac-
tion of a charged cluster nucleus with molecular associ-
ates provided that a sufficient quantity of building
blocks is available in the environment. C2 radicals, their
associates, and chain structures mentioned above all
may serve as building blocks being stable at high tem-
peratures. In the field of a nucleus, molecular associates
take an induced electric dipole moment and interact
with the nucleus, producing strong chemical bonds due
to the overlap of the carbon atom valence orbitals. Such
bonding is typical of the graphene structure.

Also, a certain density of structure elements may
trigger the mechanism of microscopic percolation due
to dipole–dipole interaction between molecular associ-
ates. This mechanism produces an indefinitely long
(critical) cluster (nanotube in our case). The occurrence
of the mechanism is favored by sp2 hybridized orbitals
of carbon atoms located on the end face of a growing
nanotube, which are extended normally to the nanotube
axis. It is also obvious that the growth of SWCNTs may
be interrupted at any instant because of the fluctuation
formation of a defect (such as a pentagon with the sub-
sequent formation of a fullerene-like “cap”) in the crys-
tal structure of the nanotube being synthesized.

To conclude, our results convincingly indicate that a
laser power density of 5 × 104 W/cm2 is optimal for the
synthesis of single-walled carbon nanotubes under
atmospheric pressure. The efficiency of the process nat-
urally grows with increasing radiation power, and the
fact that the process may go under atmospheric pres-
sure greatly facilitates the synthesis. Note that various
transition metals introduced into graphite (Fe, Co, Ni,
etc.) perhaps should be named inductors, rather than
catalysts (in view of their effect on the process), since
they induce the synthesis in a definite direction.

A further series of experiments is aimed at optimiz-
ing the synthesis process and improving the quality of
TECHNICAL PHYSICS      Vol. 48      No. 11      2003
single-walled carbon nanotubes. Our goal is to use in
full measure the advantage of the SWCNT laser synthe-
sis, that is, the feasibility of the directed synthesis of
carbon nanotubes with desired structure parameters.
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Abstract—Porous silicon (por-Si) is prepared by the electrochemical etching of single-crystal n-silicon in an
aqueous–alcoholic solution of hydrofluoric acid in the presence of hydrogen peroxide oxidizer. The dependence
of the high-frequency C–V characteristics of Al/por-Si/Si heterostructures on the relative humidity is studied.
A model of capacitor structure is proposed, and a method of analyzing its capacitance as a function of the water
vapor partial pressure in terms of the adsorption isotherm is elaborated. Within the framework of this model,
the porosity of the material, the effective fraction of silicon dioxide in the por-Si, the fraction of intercommu-
nicating porosity, the micropore-to-mesopore volume ratio, and the mesopore size distribution are determined.
The porous silicon prepared in this work seems promising as a sensitive layer in capacitance-type humidity sen-
sors. © 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION
Integrated microelectronic sensors represent an

advanced component basis for measuring, information,
and control systems. Growing interest in this area of
research is due to the fact that the efficiency of existing
computerized systems is limited by the performance of
data acquisition and processing devices rather than by
the hardware and software capabilities.

Humidity sensors occupy a prominent place among
pickups of various types. The measurement of the
humidity of gas mixtures, for example in air, is of great
importance for scientific, industrial, and medical appli-
cation [1].

High-end silicon technology makes it possible to
produce integrated sensors. Silicon cannot be consid-
ered as the best material for sensitive elements; how-
ever, it allows for integration with other electronic ele-
ments on a single chip, which offers considerable
advantages over the traditional approaches.

Porous silicon has attracted considerable attention
mainly owing to its luminescent properties [2]. The
subsequent extensive study of this material has demon-
strated its promise for biotechnology, solar cells, and
sensors [3].

The adsorption properties of porous silicon may be
optimized by electrochemical etching. The effects of
adsorption of various gases, including water vapor, on
the electrical characteristics of por-Si and the use of
these effects in resistive-, diode-, and capacitance-type
sensors were investigated in [4–8].

In this work, we study the response of a capacitance-
type sensor to a change in the relative humidity and also
consider the inverse problem, namely, the determina-
1063-7842/03/4811- $24.00 © 21442
tion of structural and phase parameters of por-Si (the
oxide phase fraction, the porosity, and the pore size dis-
tribution) from the variation of the capacitance of an
Al/por-Si/c-Si heterostructure with water vapor pres-
sure.

ADSORPTION CAPACITANCE 
POROSIMETRY

The features of real porous systems as objects for
structural–phase analysis, the present concepts of their
structure, and the progress in the methods of their pro-
duction allow one to consider porosimetry as a separate
area of structural analysis. Nowadays, about sixty
methods for studying the porous structure of solids are
known (pycnometry, mercury porosimetry, adsorption
structural analysis, microscopic methods, calorimetry,
etc.) [9]. They provide much information, offer a high
sensitivity, and have a wide range of application [10].
All of them handle macroscopic amounts of analytes
and provide information on the integral porosity. For
studying highly porous materials with a considerable
fraction of micropores, adsorption structural analysis,
which uses the adsorption isotherm as the initial source
of information, is the method of choice.

In recent years, much attention has been given to
porous films of anodic oxides of metals (Al2O3 [11])
and semiconductors (e.g., por-Si [3]), which are of con-
siderable scientific and practical interest. The nature of
these films does not allow the wide use of volumetric or
gravimetric adsorption methods; however, the electrical
parameters of heterostructures with a porous anodic
layer of a metal or semiconductor are highly sensitive
003 MAIK “Nauka/Interperiodica”
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to external factors, in particular, to the adsorption of
water vapor.

The choice of water vapor was dictated by the
anomalously high permittivity of water (ε = 81) rather
than by a small kinetic diameter (d = 0.264 nm [9]) and
small water molecule adsorption area (S = 0.125 nm2

[12]). The first circumstance is bound to change signif-
icantly the effective permittivity of the porous layer
after water vapor adsorption.

A c-Si/por-Si heterostructure forms during the
growth of the porous layer in a natural way. Therefore,
to make a capacitor only requires the deposition of a
metallic contact of a given size. At the same time, a
large dipole moment of a water molecule increases the
energy of water–por-Si interaction and allows one to
neglect the adsorption of N2, CO2, and O2 molecules
from the air.

The measurement of the capacitance of a metal–
anodic layer–metal structure (combined with the mea-
surement of the high-frequency C–V characteristic for
a semiconductor–anodic layer–metal structure) as a
function of the water vapor pressure not only enables
one to determine the properties of the porous anode film
but also provides for the otherwise impossible locality
of analysis.

The dependence of semiconductor properties on the
atmospheric composition was noted in a number of
studies. Those investigations were aimed mainly at ana-
lyzing the modification of the properties due to the
material–environment interaction. The inverse idea is
to determine the composition of the gaseous atmo-
sphere around semiconductors through changes in their
electrical characteristics [13]. Our technique also tack-
les the third aspect of the problem: studying the proper-
ties of a semiconductor adsorbent itself by analyzing its
response to a change in the ambient air. Let us discuss
this technique, which may be given the name adsorp-
tion capacitance porosimetry, in detail.

According to the model representation of the porous
silicon structure formation [14] and to the experimental
data on the morphology of por-Si layers [15], the
porous layer may be considered (under certain anodiz-
ing conditions and with insignificant simplifications) as
an irregular network of cylindrical pores that have the
same diameter but differ in length. The pores pierce the
silicon matrix. Note that, for cylindrical pores, the def-
initions of surface and volume porosity coincide.

It is known that porous silicon obtained by anodic
oxidation contains unoxidized silicon and silicon in the
oxidation states Si2+ and Si4+, i.e., the SiO and SiO2
compounds [16, 17], with the oxide fraction decreasing
from the surface to the bulk of the layer. The deposition
of a metallic electrode (for example, aluminum) on the
porous silicon surface forms an Al/por-SiOx/por-Si/c-Si
capacitor heterostructure.

At a relative humidity RH = 0, the capacitance of

this structure in the enhancement mode, , asymp-Cmax
0
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totically tends to the geometrical capacitance of a
porous insulating layer with an effective permittivity
εeff and has two components: the capacitance of the
matrix with a permittivity  and that of air-filled
pores with a permittivity εair . Therefore, under the
assumption that  = , the effective permittivity
of a porous insulating layer is given by

(1)

where P = Spor/S is the porosity ratio, S is the gate
dielectric surface area, and Spor is the surface area of
pores on the por-Si surface under the electrode. The

geometrical capacitance  of the capacitor depends
on the effective thickness deff and effective permittivity
εeff of the gate dielectric:

(2)

In the depletion mode, the total high-frequency (HF)
capacitance of the structure decreases, since the capac-
itance of the space charge region in the silicon connects
in series to the geometrical capacitance of the insulat-
ing layer, and achieves a minimum Cmin under strong
inversion:

(3)

Here,

(4)

is the minimal HF capacitance of the space charge
region (SCR) in the silicon and Wm is the SCR maximal
width at a given impurity concentration N [18]:

(5)

where q is the electron charge, k is the Boltzmann con-
stant, T is absolute temperature, εSi is the absolute per-
mittivity of silicon, and ni is the intrinsic carrier con-
centration.

Using the experimental values of  and Cmin and
of the impurity concentration N in the silicon, we find
from equations (3)–(5) the porosity ratio P. Substituting
the obtained value of P into Eq. (1) yields the effective
permittivity εeff of the insulating layer. Finally, substi-
tuting εeff into Eq. (2), we find the effective thickness
deff of the insulator.

In the presence of water vapor, the total capacitance
Cmax of the enhancement-mode heterostructure can be
represented as the sum of three terms: the capacitance
of the matrix with the permittivity , the capaci-
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tance of air-filled pores with the permittivity εair, and
that of condensate-filled pores with the permittivity

 (in view of the partial penetration of the water
vapor under the metallic electrode):

(6)

Here, η = Sfill/Spor is the fill of pores with the conden-
sate, Sfill is the surface area of condensate-filled pores
on the por-Si surface under the electrode at a given
vapor pressure, and k is the ratio between the surface
area of pores accessible for the water vapor and the total
surface area of pores under the electrode (the pore
accessibility factor).

The capacitance of the structure at 100% humidity
increases because of the capillary condensation of the
vapor in micro- and mesopores at the aluminum elec-
trode boundary. At RH = 100% (η = 1), expression (6)
becomes

(7)

A relation between the maximal capacitance of the

structure at RH = 0 ( ) and that at RH = 100%

( ),

(8)

enables one to determine the coefficient k (0 < k < 1),
which depends on the surface area-to-perimeter ratio of
the electrode, total porosity, fraction of intercommuni-
cating porosity, and, possibly, on the relative humidity.
This coefficient is the upper estimate of the intercom-
municating porosity, since adsorption in a system of
interconnected pores results in the filling of all pores
under the electrode; i.e., k = 1 whatever the capacitor
geometry.

The fill of pores with a condensate, η, can be deter-
mined from Eq. (6), which, in view of Eqs. (8) and (2),
takes the form

(9)

Thus, from experimental data for the high-fre-
quency capacitance of an enhancement-mode Al/por-
Si/c-Si structure with RH = 0, 100%, and 0 < RH <

100% ( , , and Cmax, respectively), as well as
of the inversion-mode structure (Cmin), one can calcu-

εH2O

Cmax
S

deff
------- εSiO2

1 P–( )[=

+ εair Pk 1 η–( ) P 1 k–( )+( ) εH2OPkη ] .+

Cmax
100 S
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1 P–( ) εairP εH2O – εair( )Pk ]+ +[=
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S
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Cmax
0
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100 Cmax

0 1
εH2O εair–
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0 Cmax

100 Cmax
0–( )η+=

=  Cmax
0 εH2O εair–( )S

deff
-------------------------------Pkη .+

Cmax
0 Cmax

100
late the total porosity P, the fraction k of intercommuni-
cating porosity, and the effective parameters εeff and deff
of the oxide phase in the porous layer.

Now let us turn to the analysis of the pore size dis-
tribution. Depending on the nature and production of
solid adsorbents, they may contain pores of different
size and morphology. The transverse size of the pores is
of special interest in most cases. The classification of
pores by size that is currently adopted by the Interna-
tional Union of Pure and Applied Chemistry (IUPAC)
assigns each range of pore sizes to a specific mecha-
nism of adsorption [19]. According to this classifica-
tion, porous silicon may be microporous (a pore diam-
eter D < 2 nm, the mono- and polymolecular adsorption
mechanisms), mesoporous (2 < D < 50 nm, capillary
condensation), and macroporous (D > 50 nm, the
adsorption properties are different from those of the
nonporous material only slightly). Today’s technology
allows the formation of por-Si layers with different
pore size distribution; therefore, the pickups may be
made sensitive to different ranges of humidity [6].

The amount of water adsorbed in micropores can be
estimated with the BET equation [19]

(10)

Here, n is the absolute amount of an adsorbate (in
moles), nm is the amount of the adsorbate per mono-
layer (in moles), Q ≈ exp[(q – qL)/RT] (where q is the
heat of adsorption and qc is the heat of condensation;
i.e., q – qc is the pure heat of adsorption), R is the gas
constant, T is the temperature, p is the pressure, and
p0 is the saturation vapor pressure. Equation (10)
describes polymolecular adsorption and defines the
number of layers adsorbed at a given pressure.

The adsorption mechanism typical of mesopores is
capillary condensation, which is described by the
Kelvin equation [19]

(11)

where p0 is the saturation vapor pressure at a tempera-
ture T, σ is the surface tension coefficient of the liquid
phase (water), Vm is the molar volume of the liquid
phase, and r is the capillary radius (negative in the case
of a wetting liquid).

This equation implies that, for a given relative pres-
sure p/p0, there is a critical radius rcr such that all pores
with a radius smaller than rcr are filled.

One may expect that the pore radius r correlates
with the porous layer formation conditions. In simulat-
ing the pore size distribution f(r), one most often uses

n
nm
------ 1

1 p/ p0–
--------------------

1
1 p/ p0( ) Q 1–( )+
-------------------------------------------.–=

p p0

2σVm

rRT
-------------- 

 exp ,=
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the logarithmically normal distribution [19]

(12)

where rg is the geometric mean of r and lnσg is the stan-
dard deviation of lnr (the spread in the values about the
mean).

Let us find the pore size distribution within the
framework of the capacitance porosimetry method (dis-
cussed in this study) from the experimental dependence
of capacitance Cmax (6) on the relative humidity p/p0.
Note that the relative humidity p/p0 enters (6) only
through the parameter η defined as

(13)

Here, rcr = rcr(p/p0) is the critical pore radius, which is
calculated from the Kelvin equation and specifies the
maximum size of condensate-filled pores at a given
humidity, and f(r) is the pore size distribution.

Differentiating dependence Cmax(p/p0) (6) as a com-
plex function in view of Eqs. (11) and (13), we have

(14)

From (14), one finds the exponential mesopore (r >
1.2 nm) size distribution

(15)

by graphically differentiating the experimental depen-
dence Cmax(p/p0).

The remaining part of the function f(r) (for
micropores) is found with model distribution (12) nor-
malized to the total porosity and BET equation (10).

Thus, the physical adsorption of water vapor in
micropores and its capillary condensation in mesopores
increase the permittivity of the porous layer, which can
be utilized in capacitance-type humidity sensors. The
analysis of the capacitance of such a sensor vs. relative
humidity in terms of the adsorption isotherm makes it
possible to find the ratio between the concentrations of
micro- and macropores in silicon, as well as the size
distribution of the latter.

RESULTS AND DISCUSSION

The objects of investigation were porous silicon
samples whose electrical characteristics responded to
the relative humidity variation in the range from 0 to
100%.
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To form the porous layer, a phosphorus-doped sin-
gle-crystal (100)Si wafer with an electron concentration of
1.3 × 1016 cm–3 was rinsed in distilled water and then
cleaned in an HF + HNO3 + CH3COOH etchant. Anodiz-
ing was carried out in an HF/H2O : C3H8O : H2O2 =
2 : 2 : 1 electrolyte at a current density of 15 mA/cm2

for 5 min. The samples anodized were rinsed in butyl
alcohol and dried. The surface of the anodized wafers
remained mirror, thus indicating the absence of
micropores. Finally, 2-mm2 aluminum contacts were
thermally evaporated.

An electron micrograph from the transverse cleav-
age surface of the structure is shown in Fig. 1a. The por-
Si layer has a uniform columnar structure and a thick-
ness of about 10 µm, and the transition layer at the por-
Si/c-Si interface is about 10% of the total thickness.

Stationary HF C–V characteristics were taken with a
computerized setup [20] (the frequency and amplitude
of a test signal were 1 MHz and 20 mV). Each curve
was taken for about 5 min. The leakage current was
estimated as no more than 1 mA. The wiring capaci-

10 µm00000

Al

SiOx

n-Si

In–Ga

(b)

(a)

Fig. 1. (a) Electron micrograph of the transverse cleavage
surface and (b) schematic of the Al/por-Si/c-Si heterostruc-
ture.
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tance (≈1 pF) was automatically subtracted from the
measurements. The test sample was placed into a pres-
sure-tight measuring cell, which was dried out with
ShSM silica gel, and heated for 30 min at T = 343 K.
The residual water vapor pressure was assumed to cor-
respond to zero relative humidity (RH = 0). The vapor
saturation regime (RH = 100%) was established in
equilibrium with the open distilled water surface.

The RH values (30, 57, 80, and 100%) were set with
an aqueous solution of glycerol taken in an appropriate
proportion. This technique is simpler and more flexible
than the techniques using the saturated solutions of
salts [21]. The amount of the solution was chosen such
that one may neglect the variation of its concentration
during gas exchange with the measuring cell volume.

The HF C–V characteristics of the Al/por-Si/n-Si
structure for different RH values are shown in Fig. 2.
Their shape is typical of MIS structures with a low den-
sity of surface states and a small amount of charge built
in the insulator. The physical adsorption of water may
affect neither the built-in charge nor the effective con-
centration of free carriers in the silicon matrix. Indeed,
at a negative bias, the capacitance changes (increases)
only slightly and the C–V curve does not shift along the
voltage axis. At a positive bias, the capacitance grows
with RH because of an increase in the effective permit-
tivity of the porous layer due to the water vapor adsorp-
tion. The slight deviation of the C–V curve from the
general run at RH = 100% is related to the fact that this
curve is essentially nonequilibrium because of a higher
conductivity of the structure in this case.

–10

50

Cmax
0

150

250

Cmin

100Cmax

–5 0 5 10
Voltage, V

C, pF

100%

80%
57%
30%

0%

p/p0

Fig. 2. High-frequency C–V characteristic of the Al/por-
Si/n-Si structure with the relative humidity varying in the
range 0–100%.
Using the experimental values of the enhancement-

mode capacitances  and , the value Cmin mea-
sured under inversion (Fig. 2), and formulas (1)–(7),
one can calculate the total porosity (P = 0.5) and effec-
tive parameters of the oxide phase in the porous layer:
the thickness (deff = 0.4 µm) and relative permittivity
(εeff = 2.4). Then, the fraction k of intercommunicating
pores is found from (8). Our calculation yields k = 0.06;
i.e., most pores in the por-Si do not communicate. The
adsorption capacitance porosimetry data show the

Cmax
0 Cmax

100

1

2

p/p0

1.00 0.2 0.4 0.6 0.8
100

120

140

160

180

200
C, pF

Fig. 3. Capacitance of the sensor vs. the relative humidity.
(m) Experiment and (1, 2) calculation for the exponential
(see (15)) and model (see (12)) pore size distribution.
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Fig. 4. Pore size distribution: (1) calculation by formula (15)
and (2) logarithmically normal model distribution.
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spread in the structural–phase parameters of the porous
silicon over the wafer surface: the porosity ranges from
50 to 70% and the effective thickness of the oxide phase
(SiO2) varies between 0.3 and 0.4 µm (i.e., within 3–
4% for a 10 µm-thick porous layer).

The porous layer capacitance in the positively
biased structure (enhancement mode) versus the rela-
tive humidity is shown in Fig. 3. Calculation of the pore
size distribution from the experimental dependence
C(p/p0) is possible for only capillary condensation in
mesopores, since the Kelvin equation does not describe
adsorption in micropores. Therefore, only when the
volume (and capacitance) of micropores is subtracted
from the total volume of pores can the mesopore size
distribution and the fraction of micropores in the total
porosity be determined. For water, the minimal meso-
pore radius equals 1.2 nm, which corresponds to con-
densation at a relative humidity of 35% [19]. The
dashed curve in Fig. 3 shows the capacitance–humidity
dependence calculated with regard for the circumstance
mentioned above.

The general form of the pore size distribution found
from (12) and (15) and taking into account the fraction
of micropores is presented in Fig. 4. Under our anodiz-
ing conditions, the diameter of most pores falls into a
narrow range between 1 and 4 nm and the fraction of
micropores accounts for 40% of the total volume of
pores. Macropores, if any, give a minor contribution to
the statistics of water vapor adsorption and desorption;
however, their transporting role remains crucial for the
kinetic parameters of humidity sensors [6]. The appear-
ance of the simulated por-Si surface with the pore size
distribution obtained for P = 0.5 is depicted in Fig. 5.

0 25 50 nm

Fig. 5. Simulated porous silicon surface for a porosity of
50% and pore size distribution shown by curve 1 in Fig. 4.
Pores are shown black.
TECHNICAL PHYSICS      Vol. 48      No. 11      2003
Note that investigation into the kinetic characteris-
tics of capacitance-type sensors goes beyond the scope
of this study. However, it should be mentioned that
physical adsorption is a fast process and capillary con-
densation is characterized by hysteresis. The optical
properties of porous silicon suggest that radiations with
different wavelengths may be used to selectively excite
por-Si electron subsystems and, thus, control the
response and relaxation of structure [22]. Thus, many
properties of porous silicon can be optimized, which
makes it a candidate for microelectronic sensors.

CONCLUSIONS

The electrochemical etching of n-type single-crystal
(100) silicon in an aqueous–alcohol solution of hydrof-
luoric acid in the presence of an oxidizer produces a
porous silicon layer where micro- and mesopores
occupy 70% of the volume. Three to four percent of the
volume is accounted for by the oxide phase. The phys-
ical adsorption of water vapor in micropores and the
capillary condensation in mesopores increase the per-
mittivity of the layer, which opens a way to the produc-
tion of capacitance-type humidity sensors that respond
to RH = 0–100%. Analyzing the por-Si capacitance as
a function of the relative humidity in terms of the
adsorption isotherm, one gains information on the
phase–structural characteristics of porous silicon, even
if the layer has a more complex morphology.
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Abstract—Quantum-chemical open-shell method with parametrization INDO is used to construct the model
of a large unit cell for the [Si–V]0 impurity complex in diamond. It is shown that the ground spin-triplet state
of the complex exerts tunnel (rather than Jahn–Teller) splitting associated with off-center shift of Si atom along
the trigonal axis of the fully symmetric atomic configuration D3d. Therefore, this complex, being a source of
electron spin resonance KUL1 S = 1, may appear to be the known optical 1.68-eV center with a typical (≈1 meV)
splitting of the zero-phonon line. The intracenter optical excitation occurs from the filled orbital doublet local-
ized at Si to the orbital doublet localized at three of six carbon atoms neighboring Si and has a multiplet struc-
ture. © 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The impurity silicon–vacancy (V) complex in dia-
mond was first identified in [1]. Studying the fine struc-
ture of its optical absorption and luminescence (this
center acquires the spectroscopic denotation of 1.68-eV
center in reference to the line of 737-nm zero-phonon
electron transition) revealed the splitting by values of
0.20 and 1.07 meV, which are typical of tunnel behavior
or of the dynamic Jahn–Teller effect [2], although the
spin–orbit interaction [3] cannot be excluded from pos-
sible causes of splitting. Available experimental data
are yet insufficient to determine the symmetry of the
center; the measurements of the excited-state lifetime
yield only implicit information on the structure of the
center’s closest neighborhood in diamond films [4, 5].

The 1.68-eV center is responsible for one of the
main peaks in the optical spectra of CVD diamond
films. However, in spite of considerable theoretical and
experimental effort, it is not clear whether it is also an
“S = 1” center, where S is the total spin of localized
electrons. With the use of the density functional theory
[6], it is predicted that the neutral charge state of the
complex [Si–V]0 is spin-triplet; i.e., this is an S = 1 cen-
ter. It is only recently that the optical absorption and
luminescence measurements, along with the electron
spin resonance (ESR) spectroscopy [7], allowed one to
establish the two characteristic signals with the deter-
mined principal values of spin Hamiltonian tensor [8]:
these are the KUL1 (S = 1, C3v) signal for the neutral
state and KUL8 (S = 1/2) signal for the state with charge
–1. Similar calculation [6] also suggests that the fully
symmetric D3d and orbitally nondegenerate 3A2g [Si–V]0

center cannot be split by optical excitation; i.e., it is not
the 1.68-eV center. In contrast, when the center is in the
–1 state, the energy of 2Eg  2Eu transition calculated
1063-7842/03/4811- $24.00 © 21449
in [6] is close to 1.68 eV and the Jahn–Teller effect
takes place; as a result, it was concluded that the
[Si−V]– complex may appear to be the 1.68-eV center.

STATEMENT OF THE PROBLEM

In order to interpret the experimental properties of
[Si–V], let us calculate the singlet–triplet splitting and
the structural barriers in terms of quantum-chemical
approach, that is, by the method of molecular orbitals
(MOs) in a restricted open-shell Hartree–Fock (ROHF)
approximation with intermediate neglect of differential
overlap (INDO) semiempirical parametrization [9].
Formally, the calculation of the electron and atomic
structure of this complex closely resembles that in the
case of divacancy [10] (Fig. 1a).

(1) Fully symmetric D3d state results from the loca-
tion of an impurity Si atom at the saddle point of
vacancy migration, so that the center may be called “Si
half-vacancy”; the same is implied when this complex
[8] is referred to as VSiV.

(2) In the presence of six broken bonds of carbon
and four broken bonds of silicon, the calculation yields
(the same result is obtained with other calculation tech-
niques and defect models, e.g., [6]) an open electron

shell  with ROHF coefficients (see table). These
coefficients are included in the self-consistent calcula-
tion of the total energy of terms or diagonal Slater sums
E'' by the open-shell method [10].

(3) The resulting possibilities for the ground state of
[Si–V]0 are as follows: (a) Jahn–Teller effect for zero-
spin electron doublet reduces the symmetry of the cen-
ter to C2h with the splitting of doubly degenerate levels;
(b) the exchange interaction between two electrons of

eg
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the open shell is sufficiently strong to remove the
orbital degeneracy, and the ground state is the totally
symmetric spin triplet 3A2g; and (c) Si atom shifts along
the trigonal axis, the symmetry reduces to C3v , but the
open-shell degeneracy is retained (off-center position
[11]).

CALCULATION OF MULTIPLET 
STRUCTURE

The simulation is carried out for a 31-atom large
unit cell (LUC). The main result of this calculation, the
self-consistent energies of many-electron terms (see
table), is shown in Fig. 2. The equilibrium relaxation of
the six nearest neighbors of silicon is very small (0.04–
0.05 Å) and depends on the term (1A1g, 1Eg, 3A2g), which
can be attributed to a large covalent radius of impurity
Si and the strength of the diamond crystal bonds. The
open-shell molecular orbitals are entirely composed of
six broken carbon bonds; i.e., Si impurity acts as a
chemical acceptor when it transfers eight of total ten
electrons of dangling bonds to the valence band. The
corresponding resonance levels including no less than
10% (by density) of Si atomic orbitals (AO) are marked

A'

B'
B

AC3

(a)

(b)
3A2

Band

Si

–6.3 eV

–7.3 eV
–7.6 eV

–8.1 eV

Fig. 1. (a) The structure of the complex: circles and squares
stand for carbon atoms and carbon vacancies at crystal sites,
Si atom is shown by concentric circle in the vicinity of the
saddle point in the migration path from an empty site (semi-
vacancy) to the nearest site (the other half-vacancy) along
the selected [111] trigonal axis; (b) scheme of the optical
intracenter excitation; this scheme semiquantitatively corre-
sponds to the absorption and luminescence at 1.68 eV.
by triangles in the electron spectrum of the valence
states (Fig. 3).

Figure 2 shows the dependence of the multiplet
structure on the off-center shift of the impurity Si as it
shifts along the trigonal axis towards the three nearest
neighbors: in quantum chemistry terms, this is a reso-
nant bonding with the reduction of symmetry D3d 
C3v . Total-energy minimization was performed via the
relaxation of these three neighboring carbon atoms and,
then, the other three atoms from which the Si atom
moves away, to “their” half-vacancy.

In fully symmetric atomic configuration, the lowest
term is spin-triplet: 3A2g ≈ 1Eg – 1.2 eV. Like in the cal-
culations for other vacancy-containing centers
(vacancy, divacancy), the value of the spin-triplet split-
ting ∆st obtained by the MO method is overstated
because of a lower correlation energy of spin-triplet state
as compared to that of a single state. In a center with the
same symmetry of a half-vacancy [12], ∆st ≈ 1.5 eV,
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Fig. 2. Multiplet structure of the center. Abscissa shows the
shift of Si atom along trigonal axis (arbitrary units times the
factor 6.3 gives the value in angstroms). Different stages of
energy minimization via the relaxation of carbon atom tri-
ads to Si and to half-vacancies are shown. The larger and
darker symbols denote the energies of totally symmetric
configuration.
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The multiplet structure and the coefficients of half-filled doubly degenerate open shell [10]
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C3v , D3 S6
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3Ag e'e''αα , e'e''ββ, e'e''(αβ + βα) 1 2 0

1Ag e'e''(αβ – βα) 1 –2 –4
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1A1 (e'e' + e''e'')αβ 0 –2 0

1Eg e'e'αβ, e''e''αβ 0 0 2

1Eg
1E [(e'e' – e''e'')αβ ± e'e''(αβ – βα)] 0 0

(1Ag + 21Eg) 0

(1Ag + 21Eg + 33Ag) 0

Note: e' and e'' are the partner orbitals of 2D representations in Slater determinants, and α and β are the basis spin functions.
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which apparently turns out to be the ultimate accuracy
of this method as far as the system of dangling bonds in
diamond is concerned. In calculations by the density
functional method, the systematic error of correlation
energy has the opposite sign, which is the main cause
of the discrepancy between calculated ∆st ≈ 1.2 eV
shown in Fig. 2 and the value 0.25 eV found by the den-
sity functional theory [6]. Other causes are related to
the parametrization and the specific features of the
model; in particular, the representation of band struc-
ture disturbed by a point defect in terms of the cluster
model [6] differs from that in terms of the LUC model
used in this study.

Both approaches lead us to the conclusion that the
total spin of the ground state is S = 1; however, the
actual value of ∆st can be estimated only from an exper-
iment, such as that proposed below. However, the above
discussion has still left unspecified the main difference
between the restricted open-shell Hartree–Fock method
ROHF and the calculations with violation of spin sym-
metry, when the many-electron state is not an eigen-
function of the squared total spin, of which the polar-
ized-spin functional method [6] is an example.

REBONDING EFFECT

Even at a small off-center shift of a Si atom, the
energy of the spin–triplet term exerts a stepwise
decrease by 1.3 eV, as is shown by an arrow in Fig. 2;
in contrast, no step in the energy of a singlet terms is
observed. Such an “instability” of the fully symmetric
atomic configuration can be attributed neither to the
Jahn–Teller effect (term 3A2g is orbitally nondegener-
TECHNICAL PHYSICS      Vol. 48      No. 11      2003
ate) nor to a change in the type of the open shell filling
[12, 13]. The actual reason lies with the chemical-bond
switching (rebonding) effect [11], which may be
explained in the context of the open-shell model.

In a fully symmetric atomic configuration, it is only
the a1g, a2u, and eu molecular orbitals that include a con-
tribution from Si atomic orbitals and bind the atom to
the diamond. Even a small off-center shift of a Si atom
C3v allows the involvement of Si AOs (3s, 3p) in any
binding MOs except a2 but including the open-shell
molecular orbital e. The electron-density maps indicate
a considerable difference in the structure of the open-
shell terms with different spin when Si is at an off-center
position. Thus, the structure of 3A2 comprises three dan-
gling bonds of the carbon atoms from which Si moves
away; in contrast, the structure of the 1E term remains
nearly what it is with the Si atom at the central position,
i.e., contains all the six dangling carbon bonds. For the
spin-triplet term, the allowance for the Si AOs contribu-
tion to open-shell MOs appears to be energetically
favorable: as a result of transition from 3A2g to 3A2,
approximately 3% of density falls to the Si AOs after
the self-consistency is settled. In contrast, in case of the
spin-singlet term, the allowance for the involvement of
Si AOs in the open-shell MOs for 1Eg to 1E transition
yields no energy benefit and the self-consistency yields
only a very small contribution from Si AOs to the open-
shell MOs (about 0.01%). This implies the continuous,
without rebonding, transformation of the MOs of the
fully symmetric atomic configuration into the MOs of
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the off-center configuration; accordingly, no step in the
total energy is expected.1

For one of the terms of the ROHF multiplet, a for-
mal explanation of the energy step accompanying the
transition to the off-center position can be obtained
from the single-open-shell approximation [13]. Since
the involvement of Si orbitals is symmetry-forbidden in

the open shell  but is energetically favorable for the
triplet term of the fully symmetric atomic configura-
tion, the correlation correction from the electron con-

figurations involving Si AOs, for example, from , for
the triplet term is larger than that for a singlet term.
Thus, the rebonding effect for off-center impurities in
semiconductors may be described not only empirically
(as a dependence of separate contributions to the total
energy on interatomic spacing) [11], but also via the
configuration interaction by the MO method.2 As a
result, the ground state of the center is the spin triplet
3A2(C3v) separated from the spin-singlet state by more
than 2.5 eV, and the ESR spectrum KUL1 [8] may be
related to the ground state of the [Si–V]0 complex.

THE ATOMIC CONFIGURATION 
TUNNELING

The adiabatic behavior of all terms with Si in an off-
center position suggests that their stabilization energies
are negligibly small and, hence, may be characterized
as tunneling barriers. Even at small shifts of Si
(≈0.01 Å), total energy changes insignificantly and sta-
bilizes when the relaxation of the carbon triad which is
approached by Si moves to reduces by approximately
this value and the relaxation of the other neighboring
triad increases by the same value. Within the accuracy
of quantum-chemical calculation, one may contend that
the off-center position stabilizes the total energy of cen-
ter in the triplet state. In addition, it is hardly possible
to assert that such a shift does not stabilize the total
energy of singlet states, as is shown in Fig. 2; however,
whatever the case, the energy barriers are low and the
corresponding shifts may be thermally activated and
lead to the tunnel splitting of all of the terms.

1 The different behavior of the singlet and the triplet terms can be
qualitatively explained by the Hand’s law. The electrons of a trip-
let term share the same space; hence, even a small addition of Si
AOs to their molecular orbitals enables a greater variation of their
total density and, therefore, decreases the correlation energy. The
attainment of self-consistency results in the Si AOs transfer from
the valence MOs into the open shell, which process appears as the
rebonding effect. Unlike this situation, the electrons of a singlet
term are spatially separated, their density in the center is lowest,
and the introduction of additional Si AOs gives no gain in the cor-
relation energy.

2 The rebonding effect is not only a feature in the behavior of an
impurity atom but also an indication for the calculation method: it
signifies that the correlation corrections to different terms are
unequal. Clearly, this indication is present only if both the spin and
the orbital symmetry are retained throughout the calculation and is
absent if the spin-polarized density functional with the self-coordi-
nation procedure common for all terms is employed [6].

eg
2

eu
2

Attempts to trace the adiabatic behavior of the spin-
triplet state to the end failed, since, when the shift of the
Si atom is larger than that shown in Fig. 2, the number
of neighbors that are included in the lattice summation
changes and the total energy undergoes a jump compa-
rable to the small value of stabilization energy. How-
ever, the adiabatic character of the curve clearly sug-
gests that stabilization is reached at a shift of ≈0.06 Å.

No energy stabilization was also revealed by the
simulation of Jahn–Teller distortion D3d  C2h of the
singlet 1Eg state. Like in the case of divacancy, this dis-
tortion is responsible for the dangling carbon bonds
pairing.

Such a behavior is consistent with the model of
dynamic tunneling [2] of the 1.68-eV center between
two atomic configurations, when Si is shifted to either
of the carbon triads.

DISCUSSION AND CONCLUSIONS

The most important result of this study is the find-
ings that the ground spin-triplet state of the complex in
the neutral charge state is subjected to the tunnel (not
Jahn–Teller) splitting related to the off-center position
of the Si atom on the trigonal axis of fully symmetric
atomic configuration D3d. Because of this, the [Si–V]0

complex may turn out to be the optical 1.68-eV center
with the characteristic (≈1 meV) splitting of the zero-
phonon line [2]. The calculated energy level of spin
triplet 3A2 is so much lower than the level of the spin
singlet 1Eg that the ground state of the center may be
assumed to be of the spin-triplet type, despite the pos-
sible perturbations from the neighboring lattice defects,
elastic stress, and the proximity of surface in CVD dia-
mond films. Thus, the two tabulated spectra, the optical
1.68-eV spectrum and the ESR spectrum KUL1 [8]
may originate from the same [Si–V]0 complex.

It is not improbable that this conclusion is consistent
with the results of the density functional calculation by
Goss et al. [6], who reconed that it is sufficient to prove
that the central position of Si is more favorable than the
substitutional position at a vacancy site (Fig. 1a). Along
with the conclusion that the ground state of the neutral
complex is of spin-triplet type, another result that qual-
itatively correlates with this study is that the filled
molecular orbitals localized at Si appear to be responsi-
ble for the intracenter 1.68-eV optical transition. Figure
1b shows the calculated main contribution to the lowest
single-particle excitations of the neutral complex: the
electron transport is shown with an arrow starting from
the open shell e that transforms into eg for the central
position of Si and pointing to the other e shell that is
highly localized at Si and transforms into eu for the cen-
tral position. The two shells that are resonant with the
transition turn out to be band shells (labeled as “band”),
since they are delocalized. With the involvement of
these shells in the intracenter transition disregarded, the
TECHNICAL PHYSICS      Vol. 48      No. 11      2003
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transition energy can be estimated from the difference
between orbital energies at the arrow ends at a value of
≈1.8 eV. Due to the involvement of other states in sin-
gle-electron excitation, primarily, of localized ones (tri-
angles in Fig. 3), the energy of the transition decreases.
In contrast to the case of a closed shell, the determina-
tion of the intrinsic energy of transition by the ∆SCF
(self-consistent field) [10] method is difficult here;
however, the agreement with the 1.68-eV optical spec-
trum is evident anyway. Optical transition with the
involvement of MOs of the same origin as in this study
(an open shell eg and a closed shell eu) has been calcu-
lated using the density functional method [6], but only
for the [Si–V]– state. The same transition, 2Eg  2Eu,
was suggested to be responsible for the optical 1.68-eV
spectrum (nonpolarized transition).

The scheme of the optical excitation in Fig. 1b

implies that the transition is multiplet: , 3E* 
3A2. Hence, it follows that, by measuring the polariza-
tion of 1.68-eV spectrum, one could determine its
charge state. Furthermore, the lines of the center (737,
756, 767 nm, etc.) are considered as phonon replicas
[4]; however, this concept fails to explain the absence
of multiple overtones even for such an intensive line as
767 nm, which corresponds to the 515 cm–1 phonon.
The presumed role of this phonon as an indicator of a
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Fig. 3. One-electron spectra of the center and the defect-free
crystal: expt, experimental data for diamond; bcc32, calcu-
lation in terms of 32-atom LUC {Γ + 12Σ + 3X} of diamond
[12]. Lines connect energy values in the same valence band;
triangles mark the Si-to-crystal bonding orbitals; and rhom-
buses show the open-shell orbitals. Enclosed orbitals are
those corresponding to the scheme in Fig. 1b.
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Si−Si pair present in the composition of the center also
lacked confirmation.

Let us finally draw some conclusions concerning the
singlet terms of the neutral complex. The dipole-forbid-
den optical intracenter transition 1Eg  1A1g is esti-
mated at a value of ≈0.7 eV (Fig. 2). Optically simu-
lated ESR or IR absorption measurements, which imply
the light-induced nonequilibrium population of 1Eg

term may turn out to be a convenient means for the fur-
ther investigation of the center itself. In particular, for
future advances in the electron theory of defects in dia-
mond, it is desirable to determine the value of singlet–
triplet splitting in the neutral state and to reveal the pos-
sible role of a spin-singlet orbital doublet in the optical
1.68-eV transition.
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Abstract—The relation between the spatial growth rate of a traveling wave and the temporal growth rate of the
corresponding standing wave is examined. It is shown that, when radiation propagates in a gain medium with
a sufficiently narrow gain line and a high amplification coefficient in the line center, the frequency dependences
of the spatial and temporal growth rates of the field amplitude can differ significantly. In particular, at a fixed
population inversion, the unbounded narrowing of the gain line, which results in an unbounded increase in the
spatial growth rate and the narrowing of its frequency profile, is accompanied by neither an unbounded increase
in the maximum value of the temporal growth rate nor an unbounded narrowing of the frequency profile of this
growth rate. © 2003 MAIK “Nauka/Interperiodica”.
1. It is well known that the amplitude of a wave
propagating in an active medium (a medium with pop-
ulation inversion) increases with time and/or distance.
This increase is usually characterized by one of the
two closely related medium parameters, namely, the
spatial or temporal growth rate of a monochromatic
wave. The main purpose of this study is to examine the
relation between these two different parameters of the
same medium. We note that this relation has a form of
a trivial linear dependence only when the frequency
dependence of the growth rate is fairly smooth; how-
ever, we consider the opposite case in which the
growth rate is a sharp function of the frequency (a nar-
row gain line).

In particular, we are interested in the growth rate of
the field amplitude in the cavity of a laser operating in
the giant pulse mode after Q-switching. The point is
that the spectral width of the laser pulse is generally
believed not to significantly exceed the gain line width
[1, 2]. However, it follows from the conventional theory
of giant pulse generation [1, 2] (which is based on solv-
ing equations describing the growth of the field ampli-
tude and does not take into account the finite width of
the gain line) that, when the gain line width decreases
without bound at a fixed population inversion or, the
more so, when the lifetime of the excited state increases
at a fixed pump power, which results in an increase in
the equilibrium inversion, an unbounded increase in the
spatial growth rate at the center of the spectral line [3]
should lead to an unbounded increase in the temporal
growth rate of the field in the cavity, which contradicts
the above statement.
1063-7842/03/4811- $24.00 © 21454
Studying the relation between the spatial and tem-
poral growth rates allows one to examine how the above
contradiction is resolved, i.e., what happens when the
narrowing of the gain line (or an increase in the popu-
lation inversion) leads to so large a growth rate of the
field amplitude after Q-switching that the spectral
width of the generated pulse should become wider than
the gain line width.

In the general case, the amplitude of a plane wave
that is inhomogeneous in space and time [4–6] can be
represented in the form exp(–iωt + ikz)exp(αz + βt),
where ω and k are the real-value frequency and wave-
number, which characterize the temporal and spatial
variations in the wave phase, and α and β are the spatial
and temporal growth rates, which describe the change
in the wave amplitude in space and time, respectively.
In a dispersive medium, the complex wavenumber k –
iα and the complex wave frequency ω + iβ obey a dis-
persion relation [4–6]

(1)

Relation (1) can be treated as either one complex or
two real equations that reduce the number of the inde-
pendent real parameters of an inhomogeneous plane
wave from four to two. When the real part of the fre-
quency ω and the real part of the wavenumber k are set
independently, a plane wave satisfying the dispersion
relation is inhomogeneous in both space (α(ω, k) ≠ 0)
and time (β(ω, k) ≠ 0). In this case, the wave is periodic
neither in space nor in time.

By demanding (based on certain physical reasoning,
e.g., assuming steady-state lasing) the wave monochro-
maticity (i.e., its homogeneity in time, β = 0), the num-
ber of independent parameters can be reduced to one.
For instance, the wave real frequency can be regarded

D ω iβ+ k iα–,( ) 0.=
003 MAIK “Nauka/Interperiodica”
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as a single independent characteristic of a plane wave.
Then, resolving the equation D(ω, k – iα) = 0 with
respect to k and α, one can express the real wavenum-
ber and the spatial growth rate through the frequency of
the monochromatic wave: k = k(ω) and α = α(ω).

Quite similarly, when it is physically clear that the
imaginary part of the wavenumber should be zero (i.e.,
the wave is standing1 and periodic in space, α = 0), one
can express (by solving the equation D(ω + iβ, k) = 0)
the real wavenumber and the temporal growth rate of
the standing wave through its real frequency: k = k(ω)
and β = β(ω).2 

It is important that both linear gain characteristics
(α(ω) and β(ω)) belong to the same medium and can be
found from the same dispersion relation (1). However,
they characterize the growth of the field amplitude
under quite different conditions; therefore, the relation
between them is generally nonlocal (with respect to fre-
quency) and nonlinear. Namely, knowledge of the spa-
tial growth rate α(ω) and the wavenumber k(ω) at a
given wave frequency ω does not allow one to find the
temporal growth rate β(ω) for the same frequency (non-
locality with respect to frequency) and a severalfold
increase in the spatial growth rate does not lead to the
same increase in the temporal growth rate (nonlinear-
ity). The point is that, strictly speaking, a standing wave

1 For example, when a laser operates in the giant pulse mode [1–3],
the wave in the cavity after Q-switching can be considered to be
standing as long as the energy gain in the cavity (due to inversion
dumping) dominates over the radiative energy loss into the sur-
rounding space. Therefore, in this case, it is the temporal growth
rate of a standing wave that determines the inversion dumping
time (i.e., the rise time of the giant pulse).

2 Strictly speaking, the field in the cavity can be considered to be a
superposition of plane waves with real wavenumbers only if the
active medium resides in a cavity without energy losses (includ-
ing the radiative loss). Thus, in the case of a one-dimensional
cavity with flat mirrors (a Fabry–Perrot cavity [1, 2]), each cavity
mode consists of two counterpropagating plane waves and the
boundary conditions are cos(2kl) = 1, where l is the cavity length.
These boundary conditions can be met only when the wavenum-
ber k is real. In laser cavities of a more sophisticated design, the
boundary conditions are more complicated; however, if there is
no radiative energy loss into outer space and no energy absorp-
tion in the mirrors, these conditions result in denumerable set
(numbered with index n) of modes, each of which is a superposi-
tion of plane waves with a definite real wavenumber k and defi-
nite complex frequency ω + iβ. Hence, each mode (standing
wave) is characterized by four parameters (ω, β, k, and n), only
one of which is independent, whereas all the others are its func-
tions. Usually, the mode index n is taken as an independent
parameter and the mode index functions ω = ωn, β = βn, and k =
kn (n = 1, 2, 3, …) are considered. In this study, we will not spec-
ify the cavity geometry and will consider the field real frequency
ω to be the independent parameter; hence, we will study the func-
tion β(ω) instead of the two functions βn and ωn. The advisability
of such a choice stems from the universal character of the β(ω)
function—the temporal growth rate of an arbitrary standing wave
in a given medium, which is defined by Eq. (3) and does not
depend on the cavity geometry. Of course, it is necessary to
remember that, for any specific cavity, the field frequencies ω
corresponding to the integer mode numbers n (rather than arbi-
trary field frequencies) are of physical meaning. The spectrum of
the possible ωn values is determined by both the active medium
parameters and the cavity geometry.
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that grows in time exponentially is not monochro-
matic.3 Hence, its temporal growth rate depends on the
properties of the medium within a certain frequency
interval (nonlocality), rather than at a certain single fre-
quency. The width of this interval increases with
increasing temporal growth rate, which leads to the
nonlinear dependence between the spatial growth rate
of a propagating wave and the temporal growth rate of
a standing wave.

Let us assume that dispersion relation (1) is resolved
with respect to the complex wavenumber; i.e., it is writ-
ten in the form

(2)

where K(x) is a known function.4

Then, we have an explicit expression for the spatial
growth rate:

(3)

whereas to find the temporal growth rate, we need to
solve the equation

(4)

which determines the temporal growth rate β(ω) as an
implicit function of the real frequency ω.

2. Let us consider Eq. (4). Assuming the parameter
β to be sufficiently small, the function K(ω + iβ) in
Eq. (4) can be linearized with respect to β (see, e.g.,
[5]) so that Eq. (4) becomes linear with respect to this
variable. The general solution to this equation has the
form

(5)

where v gr(ω) is the conventional group velocity of a
wave packet in a medium [4–6].

Sometimes, the less exact relation

(6)

is used instead of relation (5).
It is important that Eqs. (5) and (6) are approximate

relations, which are valid only for a sufficiently low
wave amplification or absorption. These relations are
sometimes (see, e.g., [1, 2]) interpreted based on the
identification of the wave group velocity with the
energy transfer velocity. Strictly speaking, such an
identification is justified only for a medium with no
absorption or amplification, i.e., without both spatial
and temporal growth of the wave amplitude [7].

For this reason, let us consider the relation between
the spatial and temporal growth rates of a wave in an

3 The wave can be quasi-monochromatic by itself (at β ! ω) but,
at the same time, can be regarded as substantially nonmonochro-
matic for the given medium if β ~ ∆Ω , where ∆Ω is the frequency
interval over which the medium refractive index changes signifi-
cantly.

4 For example, K(ω) = (ω/c)n(ω), where n(ω) is the complex
refractive index of the medium.

k iα– K ω iβ+( ),=

α ω( ) Im K ω( )( ),–=

Im K ω iβ+( )[ ] 0,=

β ω( ) = α ω( )v gr ω( ), 1/v gr ω( ) ∂ReK ω( )/∂ω,≡

β ω( ) α ω( )v ph ω( ), v ph ω( ) c/n ω( )≡=
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active medium when relation (6) is no longer appli-
cable.

For the sake of definiteness, we consider the propa-
gation of light in a medium with the refractive index
n(ω) = n0 + ∆n(ω) [4–6], where ∆n(ω) is a complex
additive caused by the finite width of the gain line with
the central frequency ω0 and n0 is the background (non-
resonant) refractive index, which depends slightly on
the light frequency in the vicinity of ω0. We introduce
the amplitude amplification coefficient α0 at the center
of the spectral line ω0,

(7)

and the complex form factor of the line g(Ω), normal-
ized to unity at the central frequency ω0 (here, Ω is the
detuning of the wave frequency from the central fre-
quency, ω ≡ ω0 + Ω),

(8)

Then, Eqs. (3) and (4) can be rewritten in the form

(9)

and

(10)

respectively, where we have introduced the dimension-
less frequency

(11)

the dimensionless temporal growth rate

(12)

and the dimensionless parameter

(13)

In Eq. (11), ∆Ω1/2 is the full width at half-maximum
(FWHM) of the spectral line, τl is the characteristic
coherence time of the spectral line (τl ≡ 2/∆Ω1/2), and
g(x) is the complex form factor of the spectral line,
whose width is normalized so that Re[g(1/2)] = 1/2.

The parameter γ in Eq. (13) is the ratio of the tem-
poral growth rate at the central frequency, α0cl/n0, cal-
culated by formula (6), to the spectral line width ∆Ω1/2.
Hence, this parameter reflects the degree to which a
wave exponentially growing in time is nonmonochro-
matic with respect to the line width.

It can be seen that Eq. (10) is a consequence of
Eq. (9) and an extra linearization of the function g(x +
iy) with respect to y in the vicinity of the point y = 0.
Such a linearization is justified only if y ! 1, or, in other
words, when the temporal growth rate of a standing
wave is small as compared with the spectral line width
(i.e., at γ ! 1).

For this reason, let us analyze relation (9) itself. It
can be solved only numerically; hence, we first write

α0 ik0∆n ω0( ), k0 ω0/c,≡ ≡

g Ω( ) ikα0
1– ∆n ω0 Ω+( ).≡

y γRe g x iy+( )[ ]– 0=

y
γRe g x( )[ ]

1 γ∂Im g x( )[ ] /∂x+
----------------------------------------------,=

x 2Ω/∆Ω1/2≡ Ωτl,=

y β x( )τ l,≡

γ α0cτ l/n0.≡
out simpler equations for the parameters characterizing
the dependence of the dimensionless temporal growth
rate on the dimensionless frequency, y(γ, x), for differ-
ent values of the nonlocality parameter γ. From Eq. (9),
we obtain the following equation for the dimensionless
temporal growth rate y0 ≡ y(0) at the center of the spec-
tral line:

(14)

For the FWHM x1/2 of the function y(x1/2/2) = y0/2,
we have

(15)

3. For the Lorentz form factor of the spectral line,

(16)

Equations (14) and (15) can be solved analytically.
In this case, instead of Eq. (9), we have

(17)

and the solution to Eq. (14) is

(18)

whereas the solution to Eq. (15) is

(19)

If γ ! 1, then, instead of Eqs. (17)–(19), we obtain

(20)

It is this (and only this) case in which the frequency
dependence of the temporal growth rate β(Ω) of a
standing wave coincides with the frequency depen-
dence of the spatial growth rate α(Ω), the maximum
temporal growth rate depends linearly on the maximum
spatial growth rate, and the width of the frequency
dependence of the temporal growth rate coincides with
the spectral line width.

In the opposite limiting case (γ @ 1), instead of
Eqs. (17)–(19), we have

(21)

It can be seen from these relations that, at γ @ 1 (i.e.,
when either the growth rate at the center of the spectral
line is high enough or the spectral line is sufficiently
narrow), the frequency dependence of the temporal
growth rate differs substantially from the form factor of
the spectral line. In particular, instead of a Lorentz pro-
file, we have a semicircle profile.5 At a fixed width of
the spectral line, the width of this profile increases in
proportion to the square root of the spatial growth rate
at the center of the spectral line. The maximum value of

5 Remember that the first of formulas (21) describes a circle with

the center in the coordinate origin and the radius .

y0 γRe g iy0( )[ ]– 0.=

y0/2 γRe g x1/2/2 iy0/2+( )[ ]– 0.=

g x( ) 1/ 1 ix–( ).=

x2 1 y+( )2+ γ 1 1/y+( ),=

y0 1 4γ+ 1–( )/2,=

x1/2 1/2( ) 12γ 10 1 4γ+ 6+ + .=

y γ/ 1 x2+( ), y0 γ, x1/2 2.= = =

x2 y2+  = 
γ, x2 γ<

0, x2 γ,>
y0





 = γ, x1/2 = 3γ.

γ
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the temporal growth rate increases with increasing spa-
tial growth rate in the same way.

The results obtained are shown in Fig. 1, which pre-
sents the frequency dependences of the growth rates of
a standing wave for γ = 0.1, 1, and 10. The same results
for the cases of a Gaussian and time-of-flight form fac-
tor of the spectral line are shown in Figs. 2 and 3,
respectively. It can be seen that, in all three cases, the
situation is qualitatively the same.

Thus, we can conclude that the temporal growth of
the field amplitude in an active medium is governed by
the parameter γ ≡ α0cτl/n0, which is small for the low
amplification coefficient and broad spectral line and
large for the high amplification coefficient and narrow
spectral line.

When the parameter γ is small, the frequency depen-
dence of the temporal growth rate coincides with the
line profile, the width of the frequency dependence of
the temporal growth rate is equal to the spectral line
width, and the maximum value of the temporal growth
rate of a standing wave increases linearly with increas-
ing the spatial growth rate at the center of the spectral
line and is independent of its width.

When the parameter γ is large, the frequency depen-
dence of the temporal growth rate of a standing wave
has a characteristic semicircle shape; namely, it slightly
varies near the center of the spectral line and sharply
increases near certain boundary frequencies. In this
case, the width of the frequency dependence of the tem-
poral growth rate, as well as its maximum value, is pro-
portional to the square root of the product of the spec-
tral line width by the spatial growth rate at the line
center.

4. The physical meaning of the results obtained is
easy to understand taking into account that the rapid
growth of the amplitude of a monochromatic wave
breaks its monochromaticity. Strictly speaking, only a
wave with a constant (in time) amplitude can be consid-
ered monochromatic. Hence, a wave that behaves in
time as ~exp[–i(ω + iβ)t] can be regarded as a wave
with the carrier frequency ω and a nonzero spectral
width on the order of β. This circumstance does not
affect the growth of the field amplitude if the temporal
growth rate of the wave is small as compared to the
spectral line width (β ! ∆Ω1/2).

6 Otherwise (β @
∆Ω1/2), if the wave grew with a growth rate exceeding
the gain line width, only a small fraction of the wave
spectrum would fall within the gain bandwidth; thus,
the wave should grow at a much lower growth rate than
that corresponding to the spatial growth rate at the cen-
ter of the line. The self-consistent temporal growth rate
near the line center can be estimated as β =
α0(c/n0)(∆Ω1/2/β), where it is taken into account that,
for β larger than the spectral line width ∆Ω1/2, only a
fraction (proportional to ∆Ω1/2/β) of the wave spectrum
falls within the spectral line. It is this fraction of the

6 We note that, in this case, γ ! 1.
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spectrum that determines the field growth rate. Thus,
the temporal growth rate near the line center can be esti-

mated as βmax ~ , which agrees with
formula (21). To estimate the width of the frequency
dependence of the temporal growth rate, it is sufficient
to take into account that, when Ω ≤ β, the detuning of
the wave frequency from the central frequency is of
minor importance because the width of the wave spec-
trum exceeds this detuning. Consequently, the width of

the frequency dependence of the growth rate ∆  ≡
x1/2/τl is approximately equal to the maximum value of

α0 c/n0( )∆Ω1/2

Ω1/2
t( )
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Fig. 1. Frequency dependence of the temporal growth rate
for γ = 0.1, 1, and 10 and a Lorentz profile of the spectral
line. The solid curves show the results calculated using
Eq. (4) without any additional approximations; the dashed
curves show the results calculated using the “phase-velocity
approximation” (by formula (6)); and the dotted curves
show the results calculated using the “group-velocity
approximation” (by formula (5)).
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the temporal growth rate;7 i.e., ∆  ~ βmax, in accor-
dance with formula (21).

The sharp increase in the temporal growth rate at the
boundaries of the amplification band for γ @ 1 is related
to a trigger nature of the broadening of the spectrum of
a monochromatic wave when its amplitude exponen-
tially grows in time. If, for a certain “seed” growth rate
of a wave, the broadening of the wave spectrum leads
to an increase in the growth rate, then it will cause the
further broadening of the spectrum and the further
increase in the growth rate8 and so on, until the wave

7 Actually, there are two different frequency dependences: the fre-
quency dependence of the spatial growth rate α(Ω) and the fre-
quency dependence of the temporal growth rate β(Ω). Therefore,

there are two different spectral line widths, ∆Ω1/2 and ∆ .
8 Of course, this is only a hypothetical iterative procedure rather

than a real increase in time.
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Fig. 2. Same as in Fig. 1 but for a Doppler profile of the
spectral line.
spectrum covers the central region of the spectral line.
After that, the broadening of the wave spectrum leads
to a decrease (rather than an increase) in the growth rate
and, thus, comes to an end.

It should be noted that, in the case of an unbounded
narrowing of the spectral line (∆Ω1/2  0) and the
corresponding increase [1–3] in the amplification coef-
ficient at the center of the spectral line (α0  ∞) (at a
fixed inversion, we have α0∆Ω1/2 = const), the fre-
quency dependence β(Ω) of the temporal growth rate of
a standing wave significantly differs from the frequency
dependence α(Ω) of the spatial growth rate of a travel-
ing wave. In this case, the temporal growth rate at the
line center, βmax, and the width of the frequency depen-

dence of this growth rate, ∆ , tend to certain finite
values that depend on the inversion level attained and
the transition parameters and do not depend on the

Ω1/2
t( )
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Fig. 3. Same as in Fig. 1 but for a time-of-flight profile of
the spectral line.
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spectral line width.9 For example, for a Lorentz form
factor and γ @ 1, we find, according to the formulas for
the amplification coefficient from [3], that

(22)

where  is the transition matrix element corresponding
to the spectral line under study and ∆N is the inversion.

Note that, when the spectral line is sufficiently nar-
row and intense (γ @ 1), neither the maximum value of
the temporal growth rate nor the width of the frequency
dependence of this growth rate depend on the spectral line
width. The line width affects only the parameter γ, which
determines the applicability range of relations (22). How-
ever, there is a certain restriction—the inversion ∆N can-
not exceed the atomic density in the medium; therefore,
there is a certain limiting growth rate. Thus, an
unbounded narrowing of the spectral line at a fixed
inversion leads to neither an unbounded increase in the
maximum growth rate βmax nor an unbounded decrease

in the width of the frequency dependence ∆  of this
growth rate. The narrowing of the spectral line at a con-
stant pump power leads to an increase in the inversion,
which results in an increase in the temporal growth rate
and the spectral width of the generated pulse.

The result obtained can be interpreted as a specific ver-
sion of the time-of-flight mechanism for the spectral line
broadening [3]. Here, the limited time of the interaction of
radiation with matter (on the order of 1/β) stems from the
rapid growth of the field amplitude with the rate β. In
turn, the growth rate β depends on this interaction time,
which results in the square-root dependences of the
amplification bandwidth and the maximum value of the
temporal growth rate on the inversion.

In some widely used laser systems [1–3], the param-
eter γ is on the order of unity10 and, hence, the above

9 We emphasize that the spectral line width itself (defined as a
width of the α(ω) function) does not vanish at all, and the same
medium continues to be “a narrowband amplifier” of a small sig-

nal. Nevertheless, the spectral width ∆  of the pulse gener-
ated by this medium turns out to be much larger than the spectral
width of the gain line ∆Ω1/2. This situation is quite natural because
these two widths are associated with very different processes that can
occur in the same medium, depending on the external conditions.
The spectral width ∆Ω1/2 is related to the amplification of a travel-
ing wave that grows in space and, thus, can be steady in time (i.e.,

monochromatic). The spectral width ∆  is related to a stand-
ing wave that retains its spatial distribution during amplification and,
thus, varies in time; i.e., it is nonsteady (nonmonochromatic).

10For instance, in a low-pressure CO2 laser with λ = 10.6 µm,
2a0 = 4 dB/m, and ∆νD = 50 MHz, we have γ = 0.88; in a He–Ne
laser with λ = 3.39 µm, 2a0 = 20 dB/m, and ∆νD = 280 MHz, we

have γ = 0.79; and in a YAG-laser with λ = 1.06 µm, α0 = 20 cm–1,

∆ν = 6 cm–1, and n0 = 1.82, we have γ = 0.58.

Ω1/2
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Ω1/2
t( )

βmax 2πω0 d0
e( ) 2∆N( )/ n0"( ),=
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e( )

Ω1/2
t( )
TECHNICAL PHYSICS      Vol. 48      No. 11      2003
mechanism for the spectral line broadening should be
taken into consideration when analyzing the time dur-
ing which a steady-state lasing is established, as well as
when examining nonsteady lasing.

The results obtained can be summarized as follows:
(i) Generation of giant laser pulses is feasible for a

single-mode operating mode because the nonsteady
nature of the laser output signal in the regime of giant
pulse generation is not related to the interference of
several quasi-monochromatic modes (as is the case of
mode-locking regime) but stems from the inherent
unsteadiness of an individual standing wave in a gain
medium.

(ii) The spectral width (and, consequently, the
inverse rise time) of a giant pulse can significantly
exceed not only the inverse lifetime of photons in the
cavity (which fact was noted in [1, 2]) but also the width
of the gain line. When the inversion is sufficiently high, the
spectral width of the giant pulse does not depend on the
gain line width and is proportional to the square root of the
inversion reached up to the instant of Q-switching (or,
in other words, the spectral width of the giant pulse is
proportional to the square root of the product of the spa-
tial growth rate by the spectral line width).

(iii) At a constant pump power, the increase in the
lifetime of the upper laser level leads to an increase in
the inversion. Hence, under these conditions, the nar-
rowing of the gain line width will finally lead to an
increase (rather than a decrease) in the spectral width of
a giant pulse: this width turns out to be inversely pro-
portional to the gain line width. Certainly, to obtain a
giant pulse whose rise time is small compared with the
inverse spectral line width, one needs to enable a suffi-
ciently high cavity Q factor not only within the narrow
spectral width of the gain line but within a wider spec-
tral width of the giant pulse.
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Abstract—The application of integrated statistics in the space–time plane to laser speckle velocimetry is con-
sidered. A new approach to determining the contrast function is proposed. This approach makes it possible to
considerably improve the stability of the solution to the problem under nonideal conditions. The results of
experimental investigations are presented. © 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The objective of the present study was to develop a
precision velocimeter for an independent robotized
vehicle (“snow cat”) under the conditions of the Ant-
arctic region. Interest in this problem was generated by
difficulties encountered in attempts at precisely mea-
suring velocities by standard methods under the condi-
tions of a probable skid and the absence of unambigu-
ous reference points over extensive snow or ice fields in
the Antarctic region. The choice of speckle velocimetry
was motivated by its high precision and by the opportu-
nity of operation under these conditions.

By the present time, we have performed a series of
theoretical and experimental investigations, the results
of these being quite good and promising.

HISTORY OF THE USE OF THE SPECKLE 
EFFECT IN VELOCIMETRY

The use of the speckle effect in velocimetry has
been repeatedly discussed in the literature. Various
approaches were proposed that were based on invoking
either time or spatial statistics for both the time-differ-
entiated and the time-integrated intensity function.

In 1980, Fercher [1] proposed employing the time
statistics of a time-differentiated function. This made it
possible to obtain quite accurate experimental results in
measuring the velocity of a Plexiglas sample, the mea-
sured velocities ranging between 1 µm/s and 1 mm/s.
The formulas given in Fercher’s article that relate the
sought velocity to statistical quantities determined
experimentally are quite simple and clear.

A different approach that employed the spatial sta-
tistics of the time-integrated intensity function was
described in [2], where the root-mean-square spatial
1063-7842/03/4811- $24.00 © 21460
deviation σs(T) of the speckle intensity function over
the averaging (exposure) time T was related to the aver-
aging time and the characteristic “correlation time” by
the simple equation

(1)

where I is the intensity of the speckle picture.
Here, the correlation time was a quantity that

directly determined the velocity of motion of scatterers
that generated speckles. In more recent studies, the
method was refined both theoretically and experimen-
tally [3–6].

The simplicity and clarity of information derived by
this method is its basic advantage. With the aid of the
method in question, one can straightforwardly estimate
the spatial distribution of the velocities of scatterers.
Moreover, the mathematical formalism underlying the
method made it possible to achieve a rather high preci-
sion. Yet another feature inherent in this method was
that it measures velocity irrespective of direction—
more specifically, a calculation of the velocity on this
basis provides no way either to determine its direction
or, in general, to distinguish between a translational and
a vibrational motion. Thus, the procedure described
above found some successful applications—for exam-
ple, in medical diagnostics—but it is hardly optimal in
our problem.

In [7, 8], we therefore proposed somewhat modify-
ing an analysis of the integrated statistics of the spatial
and time dependence of the recorded speckle-picture
intensity I(x, t), namely, we proposed to perform,
instead of set of averagings for various periods T, the
averaging for a set of angles in the space–time plane at
a single value of T. Previously, a similar approach was
successfully used to interpret the experimental spatial

σs/ I〈 〉 τ c/2T( ) 1 e
2T /τc–

–( ),=
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and time dependence of the intensity of spontaneous
radiation associated with an electric breakdown [9, 10].

In this way, we obtained a transformation that is
similar to the Radon transformation [9], but which
involves fixed limits in a quasiuniform space–time
plane; that is,

(2)

where (s, φ) are the normal coordinates of the Radon
transformation, p is a variable with respect to which
integration is performed, and v 0 is the ratio of the time
resolution of the measuring system used to its spatial
resolution.

If time is measured in the number of frames and if x
is measured in the number of pixels (as is shown in
Fig. 1), then v 0 = 1; nevertheless, we must take this
coefficient into account in eventual calculations.

In the case being considered, the parameter s
appears as an analog of a spatial parameter that can be
used in evaluating the spatial root-mean-square devia-
tion of the speckle-intensity function; that is,

(3)

The maximum value of the spatial root-mean-square
deviation of the speckle-intensity function must be
observed at the angle that corresponds to the sought
velocity of the object being considered:

(4)

In [7, 8], we reported the results of our investiga-
tions where actual motion was simulated by finite fixed
steps that were recorded on individual frames. Under
these idealized conditions, the method yielded quite
promising results.

FORMULATION OF THE PROBLEM

Developing the proposed approach, we addressed
the problem of determining not only the absolute values
of velocities but also the direction of motion—in other
words, the vector v  = (v x, v y).

The creation of an automated working facility that is
able to measure the two-dimensional velocity of a mov-
ing object was yet another important problem.

An implementation of steady and precision veloci-
metry under nonideal conditions was the final objective
of the present study.

g s φ,( )

=  I s φ( )cos p φ( )sin–
s

v 0
------ φ( )sin

p
v 0
------ φ( )cos+, 

  p,d

Tv 0–

Tv 0

∫

σs
2 φ( ) g s φ,( ) g s φ,( )〈 〉 s–( )2〈 〉 s.=

v v 0 φ σs( )max( ) π
2
---– 

  .tan=
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DESCRIPTION OF THE EXPERIMENTAL 
FACILITY

The layout of the experimental facility that we used
to perform our tests is depicted in Fig. 1. A beam from
a Siemens LGK 7621 (Q 4001-K7 654) helium–neon
laser (1) was directed through a system of mirrors (2)
and lenses (3) to a moving object (4), which was taken
in the form of a white-paper screen on which there was
a weakly contrasted picture imitating an actual surface.
The translation motion of the screen was ensured by
electric motors.

After that, light scattered by the screen was recorded
through a system of lenses (5) by a JVC TK-S350EG
camera (6) connected through an IMAQ PCI-1408 ana-
log-to-digital converter to an IBM-compatible com-
puter. The visualization, saving, and primary automa-
tion of the experiment were performed by an original
software package in C++, the IMAQ LabVIEW librar-
ies (National Instruments) being used in this package.

BASIC RESULTS AND THEIR DISCUSSION

Since, in the presence of an orthogonal velocity
component, the traces of speckles quickly leave the
region under study, we propose performing integration
in (2) over the orthogonal direction. In this way, we find
for the x and y components of the velocity that

(5)

(6)

gx s φ,( ) Ix s φ( )cos p φ( ),sin–


Tv 0–

Tv 0

∫
Tv 0–

Tv 0

∫=

s
v 0
------ φ( )sin

p
v 0
------ φ( )cos 

 p y,dd+

gy s φ,( ) Iy s φ( )cos p φ( ),sin–


Tv 0–

Tv 0

∫
Tv 0–

Tv 0

∫=

s
v 0
------ φ( )sin

p
v 0
------ φ( )cos 

 p x,dd+

1

23
4

5

6

2

Fig. 1. Layout of the experimental facility.
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where Ix(y, t) and Iy(x, t) are the coordinate- and time-
dependent intensities of the recorded speckle picture
for, respectively, the x and the y component of the
velocity.

A further treatment of the signal was performed by
using Eqs. (3) and (4) for each direction.

Even the first experiments revealed, however, that, if
use is made of the procedure proposed previously, a
precision determination of the velocity is possible only
in directions close to the true direction of the motion.

1 2 3 4 5 6 7 8
0

V
υ

5

4

3

2

1

–1

–2

–3

–4

–5
0 π 2π

Fig. 2. Velocity as a function of the angle α of chamber rota-
tion (that is, the angle between the x axis and the direction
along which the velocity is measured): (solid curve) veloc-
ity (v) calculated on the basis of the procedure described in
the main body of the text and (dotted curve) actual velocity
values (V).
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Fig. 3. Maximum of  as a function of φ (vertical axis)

and the angle α of rotation (horizontal axis).
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In this connection, we have examined velocity as a
function of the angle α of chamber rotation—that is, the
angle between the x axis and the direction along which
velocities are measured. For each angle α, we thereby
obtained a local system of coordinates (x', y') that was
rotated through the angle α about the system of coordi-
nates (x, y) and for which we calculated the velocity in
the x' direction.

A typical result is given in Fig. 2. It can be seen that
a precise calculation of velocities (with a relative error
less than 2%) was indeed accomplished only within
rather narrow segments close the true direction of the
motion.

In order to analyze this effect, we address Fig. 3,

which displays the maximum of  as a function of φ
(vertical axis) and the angle α of rotation (horizontal
axis). It can be seen that, although the line associated
with the sought velocity can be traced rather well, it
does not yield an absolute maximum within segments
where there are significant errors.

It follows that, in principle, a precision 2D velocim-
etry on the basis of recorded experimental data is pos-
sible, but this would call for evaluating velocities for a
wide set of angles; in turn, this would require overly
great computational powers for real-time applications
in practice.

In this connection, we addressed the question of
revealing the factors responsible for the emergence of
maxima not associated with the velocity of the motion.

An analysis of the dependence (φ, α) showed that
these maxima are due to low-frequency components of
the spectrum of the function g. In view of this, we pro-
posed determining the sought value of φ not on the

σs
2

σs
2
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basis of the root-mean-square deviation in (3) but on
the basis of the function calculated by the formula

(7)

The function (φ) greatly depends on the parame-
ter ∆s. For ∆s  0, it also tends to zero. At a nonzero
value of ∆s, however, it enables us to cut off low fre-
quencies.

For the experiment described above, the results

obtained by calculating the maximum of  as a func-
tion of φ (vertical axis) and the angle α of rotation (hor-
izontal axis), as well as the velocity as a function of the
angle α, by using this modified algorithm are illustrated
in Figs. 4 and 5.

It can be seen from Fig. 5 that, for any angle, a deter-
mination of the velocity to a high precision (ε < 2%) is
fitted to a sine curve. In order to find the vector v = (v x,
v y), we can restrict ourselves to two calculations of the
velocity in orthogonal directions within any angular
segment; but this was impossible without going beyond
the previous algorithm.

It should be emphasized that the results presented in
Figs. 2–5 are typical and were reproduced in all exper-
iments where we changed the measured velocity and
the surface of the screen.

σs
'2 φ( ) g s ∆s+ φ,( ) g s φ,( )–( )2〈 〉 s.=

σs
'2

σs
'2

1

10

2

–1

–2

2 3 4 5 6 7 8

υ

π 2π0

Fig. 5. Velocity calculated on the basis of the modified algo-
rithm as a function of the angle α of chamber rotation (that
is, the angle between the x axis and the direction along
which the velocity is measured).
TECHNICAL PHYSICS      Vol. 48      No. 11      2003
CONCLUSIONS

In contrast to algorithms applied previously, the pro-
posed algorithm for determining velocities from exper-
imental data makes it possible to improve significantly
the accuracy of measurements under nonideal condi-
tions and to reduce the required computational powers
considerably, the latter being of importance for real-
time applications of the procedure. Thus, our present
results are of great methodological value and are of
importance for applications.

A detailed mathematical validation of formula (7)
and the construction of a mobile velocimeter are pres-
ently under way. The relevant results will be published
later.
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Abstract—An original method of determining residual stresses by using probing holes and measuring the dif-
ference in the holographic interference fringe orders for two sets of pairs of points taken on the principal strain
axes is suggested. The optical scheme of the interferometer is based on the use of reflection holograms. The
principal residual strains are found by solving an overdetermined set of linear equations. The effect of rigid dis-
placement on the fringe pattern is taken into account. The method is experimentally verified by measuring elas-
tic stresses in uniaxially and biaxially strained specimens. © 2003 MAIK “Nauka/Interperiodica”.
The method of probing holes finds extensive appli-
cation today for measuring residual stresses in structure
elements [1]. Small holes are made in an area of interest
on the surface to record a strain response of the mate-
rial. Subsequent analysis consists in solving the inverse
problem in mechanics of rigid body, i.e., in recovering
initial residual stresses (which are zero on the free sur-
face) from strains measured.

The local strain parameters near a probing hole are
usually measured with an array of small-base resistance
strain gauges. However, input information thus
obtained is often limited and excludes comprehensive
interpretation in terms of residual stresses. One cannot
invoke statistical methods in this case and is unable to
estimate the adequacy of a given mechanical model to
the real strain pattern.

It seems reasonable therefore to determine residual
stresses by field methods that measure strains or dis-
placements. Such methods provide a virtually unlim-
ited body of information. An example of field methods
is the application of optically sensitive coatings [2].
However, this method, like the strain gauging method,
requires special surface conditioning (application of the
coating). A promising alternative in this respect is the
contactless high-sensitivity method of holographic
interferometry, for which surface conditioning is
unnecessary.

In early works, the method of holographic interfer-
ometry was used mainly to measure displacements that
are normal to the surface [3–5]. In such a configuration,
information on the isotropic (spherical) stress tensor is
lost, which is undesirable in most cases. Later, it was
suggested that residual stresses be determined from the
tangential components of displacements of points lying
immediately on the hole circumference [6]. Ideally, the
absolute displacements here are maximal; hence, so is
the sensitivity of the method. Actually, however, the cir-
cumference experiences the highest destructive forces
1063-7842/03/4811- $24.00 © 21464
during drilling, which may distort the interference pat-
tern up to its complete breakdown.

In this work, we consider a method where the differ-
ence in the holographic interference fringe orders for
two sets of pairs of points taken on the principal strain
axes some distance away from the hole is used as pri-
mary information. Residual stresses in this case are
found by solving an overdetermined set of linear equa-
tions. Experimental data for elastic stresses in beams
and thick-walled tubes support the efficiency of our
method.

Holographic interferograms visualizing the 3D
deformation of the surface around a probing hole were
recorded according to the procedure described in [6]. It
should be recalled that double-exposed holograms are
recorded with an optical scheme using intersecting
beams and collimated illumination normal to the sur-
face. A photoplate is placed in a special device that
makes it possible to remove the photoplate from the
interferometer scheme after the first exposure and
return to its position (after a probing hole has been
made) with a high precision.

At the first stage of reconstruction of double-
exposed holograms, the vector of observation is aligned
with the normal to the object’s surface (the axis x3 of the
Cartesian laboratory coordinate system Ox1x2x3). In this
case, interference fringes are the loci of points of equal
displacements W from the surface. If the hole diameter
is small, the local stressed state may be assumed to be
uniform with a fairly high accuracy; then, the field W
has two axes of symmetry, which coincide with the axes
of principal residual strains (the axes x1 and x2 of the
coordinate system). Once the principal axes have been
visually set, two pairs of interferograms are recorded
with vectors of observation oriented independently in
the planes Ox1x3 and Ox2x3. Points in the half-space of
observation are usually specified in the spherical coor-
003 MAIK “Nauka/Interperiodica”
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dinate system (r, ψ, ϕ), where r is polar radius, ψ is lat-
itude, and ϕ is longitude. With r  ∞, the observation
of the probing hole is collimated. On the reconstructed
holographic image, the center of this system coincides
with the center of the hole on the surface. These pairs
of interferograms correspond to the direction angles of
the vector of observation (0, ψ1), (π, ψ2) and (π/2, ψ3),
(3π/2, ψ4). The optical scheme of illumination and
observation of points 1 and 2 on the surface in the plane
Ox1x3 is shown in Fig. 1.

After a probing hole has been made, each point on
the surface of a test object is displaced along the princi-
pal axes x1 and x2 by D(x1) = [U(x1), 0, W(x1)] and
D(x2) = [0, V(x2), W(x2)], respectively. Let a pair of
points with the coordinates (x1i, 0, 0) and (x1j, 0, 0) that
lie on the principal axis x1 be observed at an angle ψk

(i = 1, 2, …, I; j = 1, 2, …, J; k = 1, 2, …, K). From the
basic relationship of holographic interferometry [7], we
obtain for either of the points (Fig. 1) two equations

(1)

(2)

where λ is the laser radiation wavelength and N(x1i) and
N(x1j) are the absolute orders of fringes at the points
with the coordinates (x1j, 0, 0) and (x1j, 0, 0), respec-
tively.

Subtracting Eq. (2) from Eq. (1) yields

(3)

Equation (3) can be recast as

(4)

where (∆U1ij) and (∆W1ij) are the differences between
the components of the displacements U and W and
∆N(x1ij) is the difference in the absolute orders of
fringes at the points with the coordinates (x1i, 0, 0) and
(x1j, 0, 0).

An equation for points with the coordinates (0, x2m,
0) and (0, x2n, 0) that lie on the principal axis x2 can be
obtained in a similar way:

(5)

where m = 1, 2, …, M and n = 1, 2, …, N.
Generally, the functions U(x1), W(x1) and V(x2),

W(x2) are the sums of the strain-induced local displace-
ments u(x1), w(x1) and v (x2), w(x2) and generalized
rigid displacements U0, V0, and W0 relative to the
recording medium:

(6)

U x1i( ) ψksin W x1i( ) 1 ψkcos+( )+ λN x1i( ),=

U x1 j( ) ψksin W x1 j( ) 1 ψkcos+( )+ λN x1 j( ),=

U x1i( ) U x1 j( )–( ) ψksin

+ W x1i( ) W x1 j( )–( ) 1 ψkcos+( ) = λ N x1i( ) N x1 j( )–( ).

∆U1ij( ) ψksin ∆W1ij( ) 1 ψkcos+( )+ λ∆N x1ij( ),=

∆U2mn( ) ψ1sin ∆W2mn( ) 1 ψ1cos+( )+  = λ∆N x2mn( ),

U x1( ) u x1( ) U0; W x1( )+ w x1( ) W0;+= =

V x2( ) v x2( ) V0; W x2( )+ w x2( ) W0.+= =
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The rigid displacements, in turn, can be represented
as the sum of translational and rotational components.
It follows from Eqs. (4) and (5) that translations in the
surface plane cancel out. Contributions from rotations
about the axis normal to the surface are also absent,
since their projections onto the coordinate axes at a
small angle of rotation are independent of the coordi-
nate x1 and x2. Translations that are normal to the sur-
face only change the position of holographic interfer-
ence fringes.

Finally, small rotations about the axis lying in the
surface plane can be written as

(7)

where A and B are unknown constants.
In view of (7), the differences between the displace-

ments that are normal to the surface take the form

(8)

For an arbitrary point on the surface with coordi-
nates (x1, x2), the displacements W(x1, x2) is found from
the holographic interferogram obtained for ψ ≈ 0°:

(9)

With formulas (6), (8), and (9), we arrive at the rela-
tionship

(10)

In the case of a through hole of radius R drilled in a
plate of thickness t, the quantity w(x1, x2) depends on
the difference in the principal stresses σ1–σ2 and in

W0 Ax1 Bx2,+=

∆W1ij ∆w1ij A x1i x1 j–( ),+=

∆W2mn ∆w2mn B x2m x2n–( ).+=

W x1 x2,( )
λN x1 x2,( )
1 ψcos+

--------------------------.=

λN x1 x2,( )
1 ψcos+

-------------------------- w x1 x2,( )– Ax1 Bx2.+=

x3

x10
U(x12)

U(x11)

D(x12) W(x12) D(x11)W(x11)

12

ϕ = π,
ψ = ψ2

ϕ = π,
ψ = ψ1

Fig. 1. Optical scheme of a holographic interferometer.
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each point of the surface is given by [5]

(11)

where ν and E are the Poisson’s ratio and the elastic
modulus of the plate material.

For a blind hole, the value of w(x1, x2) is found by
numerically solving a related problem from the theory
of elasticity. The set of Eqs. (10) and (11), which is
based on calculated data, allows one to find the field of
rotations and separate out the axes of principal residual
stresses.

To raise the reliability of results, it is recommended
to successively increase the diameter of the holes and
record a hologram for each of the diameters. In this
case, each of the holograms has its own field of rigid
displacements, which makes it possible to determine
the principal axis directions at small rotations.

In terms of the conventional linear elastic model,
which is commonly used in such problems, the distribu-
tions of the differences in the strain components of the
displacements u(x1), u(x2), v(x1), v(x2), w(x1), and w(x2)
for pairs of points along the principal stress directions
are written in the form

(12)

w x1 x2,( )
νtR2 x1

2 x2
2–( ) σ1 σ2–( )

E x1
2 x2

2+( )2
-------------------------------------------------------,=

∆uij σ1∆Fij σ2∆Gij,+=

∆wij σ1∆Hij σ2∆Qij,+=

∆v mn σ1∆Gmn σ2∆Fmn,+=

F0(x1) × 104; G0(x2) × 104

_4
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Fig. 2. Basis functions of unity displacement fields.

H0(x1) × 104; Q0(x2) × 104

Q

H

F

G

where ∆F, ∆G, ∆H, and ∆Q are the differences in calcu-
lated functions F, G, H, and Q of displacements caused
by the unity stress acting sequentially along the direc-
tions x1 and x2.

For through holes, these functions are expressed
analytically from solutions to a relevant problem in the
theory of elasticity [5, 8].

For blind holes, these functions were obtained by
the finite-element technique on a test object (a cube of
edge a) placed in the uniform stress field σ(x1) = 1. The
drilling of holes of diameter 2R = a/10 and depth h0 =
3R was simulated in the same way as in [9]. The basis
distributions of the tangential longitudinal, F0(x1),
transverse, G0(x2), and normal, H0(x1) and Q0(x2), dis-
placements are given in Fig. 2. The functions F, G, H,
and Q involved in Eq. (12) are found by merely multi-
plying the basis functions by the actual probing hole
diameter 2R and taking into the oddness of F and G and
evenness of H and Q.

With expressions (4), (5), (8), and (12), a set of
equations for principal residual stresses can be written
in the matrix form

(13)

where

S = {σ1σ2AB}T is the vector of desired quantities (the
superscript T means transposition), and N =
{∆N1ij∆N2mn}T is the vector of fringe relative orders.

The solution of the set of Eqs. (13) by the least
squares method yields (in matrix form)

(14)

The sign of displacements and, hence, residual
stresses is found from interferograms by analyzing the
trajectories of a fringe reaching a probing hole [6].

The error in determining residual stresses is esti-
mated with the computer simulation of experimental
data. To this end, experimental data are statistically pro-
cessed by the Monte Carlo method for a given inaccu-
racy of measuring the displacement vector components.
It has been shown [6] that the tangential components of
displacements are reliably and reproducibly deter-
mined at angles of observation between 40° and 60°.

∆wmn σ1∆Qmn σ2∆Hmn,+=

Z S⋅

= 
Z11 Z12 ∆x1 1 ψkcos+( ) 0

Z21 Z22 0 ∆x2 1 ψ1cos+( )
S⋅  = λN,

Z11 ∆Fij ψksin ∆Hij 1 ψkcos+( ),+=

Z12 ∆Gij ψksin ∆Qij 1 ψkcos+( ),+=

Z21 ∆Gmn ψ1sin ∆Qmn 1 ψ1cos+( ),+=

Z22 ∆Fmn ψ1sin ∆Hmn 1 ψ1cos+( ),+=

S ZT Z⋅( ) 1–
ZT N.⋅ ⋅=
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Our method was tested on an elastically strained
18 × 36 × 160-mm cantilever beam (its free end was
subjected to a bending moment) made of St 40 steel.
Under these conditions, the surface of the beam under-
goes elastic uniaxial compression.

First, two holograms were taken when the surface
was in the initial state. Either of two photoplates was
mounted on a special device that makes it possible to
remove the plates from the interferometer and return
back to their position with high precision. Then, a hole
2 mm deep and 2 mm in diameter was drilled and one
of the plates was exposed. Next, the diameter and depth
of the hole were increased to 2.9 mm and the other plate
was exposed.

Thus, two double-exposed holograms were
recorded for two holes with various diameters. Figure 3
shows fringe patterns corresponding to the given
stresses σx1 = –100 MPa and σx2 = 0. The angle of
observation was ψ = 50° in both cases. Even a cursory
examination allows us to unambiguously separate out
the principal axis. Fringes due to a rotation of the pho-
toplate relative to the object are absent. The stresses
found from overdetermined set (14) are σx1 = (–97 ±
20) MPa and σx2 = (0.17 ± 20) MPa; the unknown coef-
ficients, A = 3 × 10–2 µm/mm and B = –2.5 ×
10−3 µm/mm. The elastic stresses measured coincide
with the given values within the computational error.

The method was also verified on a thick-walled flat-
bottom pressurized tube. The tube was in the state of
biaxial stress with a circumferential-to-axial stress ratio
σx1 : σx2 = 2 : 1. Typical holographic interferograms of
the surface near the probing hole for the given elastic
stresses σx1 = 61 MPa and σx2 = 30.5 MPa are demon-
strated in Fig. 4. Fringes due to a displacement or rota-
tion of the plate relative to the object are absent. In the
holograms, the axes of symmetry are aligned with the

x1 x2

x2x1

(a) (b)

(c) (d)

Fig. 3. Holographic interferograms of the surface near the
probing hole in the steel beam strained by perfect bending.
ϕ = (a) 0, (b) 90°, (c) 180°, and (d) 270°.
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principal stress axes and the way the fringes reach the
hole corresponds to biaxial extension. The stresses
were measured to be σx1 = (60 ± 12) MPa and σx2 =
(31 ± 12) MPa, which agrees well with the given values
and ratio.

Our technique may be useful in practice, e.g., for
determining residual stresses after welding. The holo-
grams provide much information and allow one to find
the direction, sign, and value of principal stresses.

ACKNOWLEDGMENTS

This work was supported by the Interindustry
Research Center (project no. 774).

REFERENCES
1. Handbook on Experimental Mechanics, Ed. by A. Koba-

yashi (Prentice-Hall, Englewood Cliffs, 1989; Mir, Mos-
cow, 1990), Vol. 2.

2. M. T. Flaman, Exp. Mech. 30, 352 (1990).
3. A. A. Antonov, A. I. Bobrik, V. K. Morozov, et al., Mekh.

Tverd. Tela, No. 2, 41 (1980).
4. E. M. Beaney, Strain 12 (3), 99 (1976).
5. V. N. Bakulin and A. A. Rassokha, Finite-Element

Method and Holographic Interferometry in the Mechan-
ics of Composites (Mashinostroenie, Moscow, 1987).

6. V. S. Pisarev, V. P. Shchepinov, and A. Yu. Shchikanov,
Zh. Tekh. Fiz. 66, 99 (1996) [Tech. Phys. 41, 50 (1996)].

7. Yu. I. Ostrovskiœ, V. P. Shchepinov, and V. V. Yakovlev,
Holographic Interference Methods of Strain Measure-
ment (Nauka, Moscow, 1988).

8. D. G. Kurnosov and M. V. Yakutovich, Zavod. Lab. 12,
960 (1946).

9. L. A. Antonov, A. I. Bobrik, V. K. Morozov, et al., Mekh.
Tverd. Tela, No. 2, 182 (1980).

Translated by V. Isaakyan

x1 x2

x2x1

(a) (b)

(c) (d)

Fig. 4. Holographic interferograms of the thick-walled tube
surface near the probing surface. (a–d) The same as in
Fig. 1.



  

Technical Physics, Vol. 48, No. 11, 2003, pp. 1468–1474. Translated from Zhurnal Tekhnichesko

 

œ

 

 Fiziki, Vol. 73, No. 11, 2003, pp. 111–117.
Original Russian Text Copyright © 2003 by Kudashov, Plachenov, Radin.

                                                                                                                     

OPTICS,
QUANTUM ELECTRONICS 
Modes of Optical Cavities Containing Selecting Components
V. N. Kudashov, A. B. Plachenov, and A. M. Radin

St. Petersburg State University of Low-Temperature and Food Technologies, St. Petersburg, Russia
e-mail: amradin@mail.ru

Received May 20, 2003

Abstract—A model of the field mode structure in optical cavities containing selecting components is sug-
gested. The cavity also contains field-attenuating or field-enhancing media where elements of the 4 × 4 sym-
plectic detour matrix of the cavity become complex. The model makes it possible to determine the stability of
the cavity, non-Hermiticity of higher modes, and the complex astigmatism of the eigenmode field. Conditions
for unilateral (unidirectional) and bilateral (bidirectional) stability are formulated. A cavity showing unilateral
stability at the first transverse mode is described. © 2003 MAIK “Nauka/Interperiodica”.
NOTATION AND DEFINITIONS

A four-dimensional complex column vector

(1)

(q and p are two-dimensional column vectors) will be
referred to as positive (negative) [1, 2] if such (positive
or negative) is the quantity

(2)

where the superscript t means transposition and the
asterisk, complex conjugation.

A subspace all nonzero vectors of which are positive
(negative) will also be called positive (negative).

A 4 × 4 matrix T is called symplectic [3] if the equal-
ity

(3)

where

(4)

is the skew-symmetric product, is valid for any pair of
vectors Y1, 2 of form (1).

Vectors whose components appear in the columns of
a symplectic matrix form a symplectic basis.

Two vectors Y1, 2 are called skew-orthogonal if their
skew-symmetric product (4) equals zero. A two-dimen-
sional subspace all vectors of which are pairwise skew-
orthogonal is called the Lagrangean plane [3].

PROPAGATION OF GAUSSIAN BEAMS 
IN FIRST-ORDER OPTICAL SYSTEMS

(1) Consider a first-order optical system [4, 5] where
the Z axis is aligned with the optical axis of the system
and the transverse coordinates are combined into a two-
dimensional vector r = (x, y)t. Let, in a basic approxi-

Y
q

p 
 =

Im ptq*( ),

σ TY1 TY2,( ) σ Y1 Y2,( ),=

σ Y1 Y2,( ) p1
t q2 p2

t q1–=
1063-7842/03/4811- $24.00 © 21468
mation, functions describing the state of the light field
near the optical axis have the form

(5)

where

(6)

and H(z) is a 2 × 2 symmetric matrix. The time depen-
dence is assumed to be harmonic.

In (5), signs “+” and “–” correspond to forward and
backward waves propagating in the positive and nega-
tive Z directions, respectively, provided that τ0(z) is an
increasing function of z. It is assumed that the initial
field-describing equations allow for the substitution of
–k for k, so that the functions u(±) simultaneously satisfy
these equations with the same τ(z, r) and a(z, r). The
forward wave will have the form of a concentrated
Gaussian beam if the matrix H(z) has a positive definite
imaginary part for any z. The backward wave is concen-
trated if the imaginary part of H(z) is negative definite.

We also assume that the initial equations allow for
solutions (in the form of (5) and (6)) such that the pre-
exponential a in the basic approximation is r-indepen-
dent, i.e., the dependence on the transverse coordinates
is defined by the matrix H alone.

(2) The propagation of such beams is conventionally
described in terms of ABCD ray matrices [6, 7]. Matri-
ces Hin, out = H(zin, out) that correspond to different values
of the variable z are related as

(7)

where A, B, C, and D are 2 × 2 matrices that are the
blocks of a 4 × 4 symplectic ABCD transformation

u ±( ) z r,( ) a x r,( )e ikτ z r,( )± ,=

τ z r,( ) τ0 z( ) 1
2
---rtH z( )r,+=

Hout C DH in+( ) A BH in+( ) 1– ,=
003 MAIK “Nauka/Interperiodica”
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matrix

In the absence of field attenuation or field enhance-
ment, the elements of the A, B, C, and D matrices are
real. In optical systems containing selecting compo-
nents (like Gaussian apertures), as well as field-attenu-
ating (field-enhancing) media, the matrices become
complex, with the T matrix remaining symplectic [8].

It is said that a beam has simple astigmatism if H is
a diagonal matrix with different eigenvalues and com-
plex astigmatism if H is nondiagonal. We a fortiori deal
with complex astigmatism if the matrices A, B, C, and
D are nondiagonal.

Field transformations when the matrix H in (5) and
(6) is transformed according to (7) (ABCD transforma-
tion) may be generally represented (up to a factor) as a
combination of elementary transformations: replace-
ment of variables, multiplication by a Gaussian func-
tion, and Fourier transformation in one or both trans-
verse coordinates. If the block B is a nondegenerate
matrix, the representation may be in the form of inte-
gral operator [8]

(8)

where the kernel is

Note that the symplecticity of T means the symme-
try of the matrices B–1A and DB–1.

The product of ABCD matrices corresponds to a
combination of operators U, which also is an integral
operator of form (8) if the block B of the resultant
matrix is nondegenerate.

(3) ABCD transformations are defined by the matrix
T up to a factor, which does not depend on the form of
the function. If the dependence of u(±) on the transverse
coordinates is known for a given zin, for an arbitrary zout
we have

(9)

Here, the operators U(±)(zout, zin) correspond to ABCD
matrices T(zout, zin) and are represented as combinations
of the elementary transformations mentioned above. If
the block B is nondegenerate, they can be represented
as (8). Formula (9) involves, along with the eikonal fac-
tor exp{±ik(τ0(zout) – τ0(zin))}, functions η(±) the specific

T A B

C D 
 
 

.=

U ±( )u( ) r( ) U ±( ) r r',( )u r'( ) r',d

R
2

∫=

U ±( ) r r',( ) k±
2πi detB
------------------------e ikΦ r r',( )± ,=

Φ r r',( ) 1
2
--- r'tB 1– Ar' 2r'tB 1– r– rtDB 1– r+( ).=

u ±( ) zout r,( ) η ±( ) zout zin,( )e
ik τ0 zout( ) τ0 zin( )–( )±

=

× U ±( ) ) zout zin,( )u ±( ) zin r,( ).
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form of which depends on the statement of the problem.
These functions are by no means related to the trans-
verse distribution form and can be calculated in the
short wave approximation. The obvious properties of
the functions η(±) are

(10)

Later on, we assume that η(±)(zout, zin) can be repre-
sented as

(11)

with

(12)

The function η1 describes the dependence of the
field on local properties of the medium. By virtue of our
assumption that the initial equations are symmetric
with respect to the substitution of –k for k, the function
η1(z) does not depend on the wave propagation direc-
tion.

The function η2 describes additional phase and/or
amplitude steps (independent of the field transverse dis-
tribution) which arise when optical elements are
located between zin and zout, for example, upon reflec-
tion from mirrors (the amplitude experiences a discon-
tinuity if the mirror is not perfect). Relationship (11)
means that waves propagating in opposite directions
and passing through these optical elements suffer the
same losses and exhibit the same phase shifts. In this

respect, the behavior of the functions  is akin to that
of the eikonal factor exp{±ik(τ0(zout) – τ0(zin))}.

MATRICES H±(z) IN THE CASE 
OF A BILATERALLY STABLE RING CAVITY
(1) In a ring optical cavity, the field u after complete

detour transforms into itself:

(13)

(l is the total length of the cavity).
For functions like (5) and (6), this means, in partic-

ular, that

(14)

that is, if zout = zin + l, the matrix H is reproduced by
transformation (7): Hout = Hin = H. Hence,

(15)

where A, B, C, and D are the blocks of the detour matrix
of the cavity (monodromy matrices [9]).

Monodromy matrices for different z are related to
each other by similarity transformation. The presence
of a solution u(+) or u(–) (see (5), (6)) concentrated at the

η ±( ) z z,( ) 1,=

η ±( ) z2 z1,( )η ±( ) z1 z0,( ) η ±( ) z2 z0,( ).=

η ±( ) zout zin,( )
η1 zout( )
η1 zin( )
------------------η2

±( ) zout zin,( ),=

η2
+ zout zin,( ) η2

–( ) zin zout,( ).=

η2
±( )

u z l+ r,( ) u z r,( )=

H z l+( ) H z( );=

H C DH+( ) A BH+( ) 1– ,=
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axis of the cavity suggests, in particular, the presence of
a matrix H(z) that satisfies (14) and has the imaginary
part that is positive or negative definite for any z. We
will restrict our consideration to bilaterally stable cavi-
ties, which are of most practical interest because of the
presence of concentrated solutions u(±) simultaneously
satisfying (13). It should be noted that, if the mono-
dromy matrix is not real, unilateral stability may occur.
In this case, only one of oppositely propagating waves
concentrates at the cavity axis [2], while the field of the
other builds up with distance from the axis (instability).
The physical reason for unilateral stability is field non-
reciprocity. Earlier, field nonreciprocity was observed
only in bilaterally stable cavities (see, e.g., [10]). How-
ever, the fact that it may cause unilateral stability has
escaped the attention of the researchers. Figures 1 and
2 show a cavity that exhibits unilateral stability at the
first transverse mode.

As follows from (9), the transverse distributions of
the fields of the forward and backward waves over an
arbitrary section z are eigenfunctions of the operators
U(±) = U(±)(z + l, z), which correspond to the mono-
dromy matrix T(z + l, z).

(2) As was shown [2], the bilateral stability of the
cavity implies that the matrix T has two (positive and

R1

R3 R4

R2

Z

X

O

L

dd
n1n2

Fig. 1. Schematic of a ring cavity that has unilateral (unidi-
rectional) stability at the wavelength λ = 0.6328 µm. The
length of the cavity’s arm is L = 10 cm. Mirrors R1, R2, R3,
and R4 have radii of curvature of 34, 70, 100, and 200 cm,
respectively. Absorbing apertures on the mirrors attenuate

the field by a factor of , where x is the transverse
coordinate and a = 10 mm is the aperture width. Attenuating
and enhancing media of length 4 cm each have refractive
indices n1 = 1.01 + 0.05i and n2 = 1.01 – 0.05i, respectively,
and are located symmetrically about the center of the arm.
The origin O is placed at the entrance to the absorbing
medium. The number of the longitudinal mode is N =
633375.

e
x

2/a2
negative) invariant Lagrangean planes. The q and p
components of vectors belonging to these planes are
related by the relationships p = H±q, where H± are
desired symmetric solutions to Eq. (15) with imaginary
parts of fixed sign. In this case, the matrix T allows for
the representation as the product of three symplectic
matrices:

(16)

where M± are 2 × 2 matrices related as  = 
because of symplecticity.

The first two, , and the last two, , columns
of the matrix W belong to the negative and positive
invariant Lagrangean planes of the matrix T, respec-
tively. Let us represent W in block form:

(17)

Then, desired matrices H± can be written as

(18)

(3) If the matrix T is diagonalizable, M± may be
taken in the form

where  are the eigenvalues of the matrix T and the

columns  of the matrix W are the eigenvectors of T.

Generally, the quantities θ1, 2 are complex. If θ1 =
−θ2, invariant Lagrangean planes and, accordingly, the
matrices H± are determined ambiguously: Eq. (15) has
a continuous family of solutions [2, 11].

If the matrix T cannot be diagonalized,

provided that W is properly selected. In this case, the
columns of W are both the eigenvectors and attached
vectors of T.

(4) Let representation (16) apply to a monodromy
matrix Tin that corresponds to a section z = zin. Then, a
matrix Tout for an arbitrary section z = zout has a similar
representation with the same matrix ϒ and the matrices
Win, out are related to each other through the relationship

T WϒW 1– , ϒ M– 0

0 M+ 
 
 

,= =

M–
1–

M+
t

Y1 2,
– Y1 2,

+

W
Q– Q+

P– P+ 
 
 

.=

H± P±Q±
1– .=

M±
e

iθ1±
0

0 e
iθ2±

 
 
 
 

,=

e
iθ1 2,±

Y1 2,
+

M+
eiθ eiθ

0 eiθ
 
 
 
 

, M–
e iθ– 0

e iθ–– e iθ–
 
 
 
 

,= =

Wout T zout zin,( )W in,=
TECHNICAL PHYSICS      Vol. 48      No. 11      2003



MODES OF OPTICAL CAVITIES CONTAINING SELECTING COMPONENTS 1471

 

where T(zout, zin) is ABCD transition from the plane z =
zin to z = zout.

Matrices

are related by equality (7). In a bilaterally stable cavity,
the imaginary parts of H±(z) have definite sign at any z.

(5) If zout = zin + l, T(z + l, z) is a monodromy matrix.
Then, according to (16),

and

Equality (14) will obviously be satisfied, since the
common factor of the matrices Q± and P± does not
affect the resultant matrix H± given by (18).

(6) Consider the functions

(19)

For any fixed z, the functions  and  satisfy the
condition

(20)

where 〈 , 〉  means the real scalar product over the trans-
verse coordinates.

Also, at z = zin, out, , being the functions of the
transverse coordinates, are related as

After the complete detour of the cavity (zout = zin + l),
the matrices Q± acquire factors M± and functions (19),

factors  = (detM±)–1/2. Clearly,

(21)

Thus, for an arbitrary z, functions (19) are the eigen-
functions of the detour operators U± with eigenvalu-
es (21).

From (9), it follows that waves counterpropagating
at the fundamental mode are described by functions
like

(22)

where the function η±(z) equals the function η±(z, z')
multiplied by a numerical factor for any z' (by virtue of
(10), z' may take any value).

Possible values k determined from (13) will be given
below.

H± zin,  out ( ) P ± z in,  out ( ) Q ± 
1–

 z in,  out ( ) =

W z l+( ) W z( )ϒ,=

Q± z l+( ) Q± z( )M±, P± z l+( ) P± z( )M±.= =

ψ0
± z r,( ) i

2π
------ 

 
1/2 k

detQ± z( )
--------------------------e

±ikr
t
H± z( )r/2

.=

ψ0
+ ψ0

–

ψ0
+ z r,( ) ψ0

– z r,( ),〈 〉 ψ 0
+ z r,( )ψ0

– z r,( ) rd

R
2

∫ 1,= =

ψ0
±

ψ ±( ) zout r,( ) U ±( ) zout zin,( )ψ ±( ) zin r,( ).=

λ0
±

λ0
± e

i θ1 θ2+( )/2+−
or λ0

± e iθ+− .= =

u0
± z r,( ) η± z( )e

ikτ0 z( )±
ψ0

± z r,( ),=
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BIRTH–DEATH OPERATORS

(1) Let us apply the operators U(±) to the vector func-

tions ± ∇ u (∇  is the two-dimensional gradient

along the transverse coordinates) and ru. Differ-
entiating (8) and then integrating by parts in view of the
symplecticity of the matrix T, we arrive at the relation-
ships

or, otherwise,

(23)

Note that commutation relationship (23) is general:
it is valid for any operators U(±), including those repre-
sented otherwise than (8).

(2) Let Y be a vector of form (1). Consider the oper-
ators

These operators are conjugate in terms of real scalar
product (20):

(24)

Performing left-sided multiplication of (23) by Yt,
we obtain

(25)

If Y1, 2 =  are vectors and  are their asso-

ciated operators, the commutator of these operators sat-
isfies the equality

(26)

(3) Let { , , , } be a symplectic basis. The
operators

(27)

satisfy the relationships

(28)

i/k

k/i

U ±( ) i/k∇ u±( )

=  At i/k∇ U ±( )u±( ) Ct k/irU ±( )u±( ),+

U ±( ) k/iru( )

=  Bt i/k∇ U ±( )u±( ) Dt k/irU ±( )u( ),+

U ±( ) i/k∇±

k/ir 
 
 

u Tt i/k∇±

k/ir 
 
 

U ±( )u.=

ΛY
±( ) i/k qt∇( )± k/i ptr( ).+=

ΛY
+( )u v,〈 〉 u ΛY

–( )v,〈 〉 .=

U ±( )ΛY
±( )u ΛTY

±( )U ±( )u.=

q1 2,

p1 2,
 
  ΛY1 2,

±( )

ΛY1

±( ) ΛY2

±( ),[ ] σ Y1 Y2,( ).±=

Y1
– Y2

– Y1
+ Y2

+

Λ j± Λ
Y j

±
±( ), Λ j±* Λ

Y j
+−
±( )–= =

(i) Λ j± Λ i±,[ ] Λ j±* Λ i±*,[ ] 0,= =

(ii) Λ j± Λ i±*,[ ] δ ij,=

(iii) Λ j±
t Λ j+−* ,=
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which follow from (24), (26), and symplecticity condi-
tion (3). The operators  and Λ±j will be called,
respectively, the birth and death operators.

HIGHER MODES

(1) Let { } be the columns of the matrix W given

by (17) and  and Λ±j be their associated birth and
death operators (see (27)). Applying the birth and death

operators to the functions  (see (19)) yields the
equalities

(29)

Let us introduce functions

(30)

They satisfy the real biorthogonality condition

(31)

(2) Consider eigensubspaces of the operators U(±).
First, we assume that the monodromy matrix T is diago-

nizable. Then, the vectors  are eigenvectors for T and

we obtain U(±)  = U(±) from (25). From this
equality and (30), it follows that

(32)

Thus, the functions  are eigenfunctions for the

operators U(±) with the eigenvalues . Since the val-
ues of θ1, 2 may be arbitrary (not only real) unlike the
real case, eigenvalues (32) may not lie on the unit cir-
cle. Expression (32) implies the coincidence of the
eigenvalues of the operators U(+) and U(–)–1, which
describe the transformation of the forward and back-
ward waves after the detour of the cavity in directions
coinciding with the directions of their propagation.

Multiple eigenvalues arise when either at least one
of the values of θ1, 2 is real and rationally comparable to
π (or equals zero) or the arguments of θ1, 2 coincide (or
differ by π) and the moduli of θ1, 2 are rationally com-
parable to each other.

(3) Let us elaborate on the case when the values of
θ1, 2 coincide up to sign, θ1 = ±θ2 = θ, and the matrix T
has two two-dimensional eigensubspaces (at θ ≠ 0, π)
corresponding to the eigenvalues e±iθ. The eigenvectors

 are then determined ambiguously, which, in turn,

Λ j±*

Y1 2,
±

Λ j±*

ψ0
±

Λ j± ψ0
± r( ) 0.=

ψn1n2

± 1

n1!n2!
------------------Λ 1±*

n1Λ 2±*
n1ψ0

±.=

ψn1n2

+ ψm1m2

–,〈 〉 δ n1m1
δn2m2

.=

Y j
+

Λ j±* e
iθ j+− Λ j±*

U ±( )ψn1n2

± λn1n2

±( ) ψn1n2

± ,=

λn1n2

+( ) i n1
1
2
---+ 

  θ1 n2
1
2
---+ 

  θ2++−
 
 
 

.exp=

ψn1n2

±

λn1n2

±( )

Y j
+

causes ambiguity in the determination of the operators
 and Λ±j, as well as functions (30) (and also func-

tions (19) if θ1 = –θ2). Of course, such an ambiguity
does not affect the structure of the eigensubspaces of
the operators U(±).

(i) θ1 = θ2 = θ. Subspaces , the linear shells of the

functions { , n1 + n2 = N} (N is nonnegative), are
the (N + 1)-dimensional eigensubspaces of the opera-
tors U(±) with the eigenvalues exp{ (N + 1)θ}.

(ii) θ1 = –θ2 = θ. Subspaces , the linear shells of

the functions { , n1 – n2 = N} (N is arbitrary), are
the infinitely dimensional eigensubspaces of the opera-
tors U(±) with the eigenvalues exp{ Nθ}.

With the basis vectors  taken otherwise, the func-

tions { } change but belong to the same invariant
subspaces. In particular, the continuous families of the

functions  (see (19)) belong to the subspaces  if
θ1 = –θ2.

An additional expression arises if θ is real and ratio-
nally comparable to π.

(4) Let the matrix T be nondiagonizable. In this

case, the functions  are the eigenfunctions of the
operator U(+). It is easy to find that

(33)

Let us designate the linear shell of the functions

{ , , …, } as . From (33), it follows

that the subspace  is invariant for the operator U(+)

and the matrix of contraction into this subspace, U(+), in
the basis selected has the upper triangular shape.

The functions  are the eigenfunctions of the
operator U(–). In addition,

(34)

Similarly, designating the linear shell of the func-

tions { , , …, } as , we see that the

subspace  is invariant for the operator U(–) and the
matrix of contraction into this subspace, U(–), in the
basis selected has the lower triangular shape.

Λ j±*

X±
N

ψn1n2

+

i+−

X̃±
N

ψn1n2

±( )

i+−

Y j
±

ψn1n2

±( )

ψ0
± X̃±

0

ψ0n
+

U +( )ψn N n–,
+

=  e i N 1+( )θ– 1–( )n j–

n j–( )!
------------------ n! N j–( )!

j! N n–( )!
------------------------ψ j N j–,

+ .
j 0=

n

∑

ψ0 N,
+ ψ1 N 1–,

+ ψN 0,
+ X+

N

X+
N

ψn0
–

U –( )ψn N n–,
–

=  ei N 1+( )θ 1
j n–( )!

------------------ j! N n–( )!
n! N j–( )!
------------------------ψ j N j–, .

j n=

N

∑

ψ0 N,
– ψ1 N 1–,

– ψN 0,
– X–

N

X–
N
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EIGENFUNCTIONS OF THE CAVITY 
AND EIGENVALUES OF WAVENUMBERS

(1) Above, we constructed a set of eigenfunctions
and eigenvalues of the operators U(±), which describe
(up to a factor) the transformation of the forward and
backward waves after the detour of the cavity in the
positive Z direction. Now we may proceed to a con-
struction of solutions satisfying condition (13).
According to (9), the transverse field distribution in a
given section is bound to satisfy the condition

from which one can find, in particular, the eigenvalues
of the wavenumbers k of the cavity. Here, ∆t = τ0(z + l) –

τ0(z) and c± = η±(z + l, z) = (z + l, z) (the functions η1

do not contribute to c± by virtue of (11)). Note that c– =

, as follows from (12).

The functions u(±) are the eigenfunctions of the oper-
ators U(±); that is, they coincide with functions (30) (or
their linear combinations if the eigenvalues coincide)
up to a factor. Then, if the matrix T is diagonizable,

(35)

Since c– =  and  = , expressions (35)
specify the same set of conditions, which, in view of
(32), can be represented in the form

where c = c+ and N is a natural number.
Now we can determine a discrete set of k:

(36)

If T is nondiagonizable,

(37)

(2) Let { (z0, r)} be a set of functions (30) that
are constructed in the section z = z0. Using the operators
U(±)(z, z0), we extend them throughout the cavity:

(38)

For any section z, functions (38) are represented in

the form of (30), where the operators  (z) are given
by the columns of the matrix W(z). The biorthogonality
condition over the transverse coordinates (see (31))
also remains valid:

(3) In view of the aforesaid, we finally obtain a set

u ±( ) r( ) c±e ik∆τ± U ±( )u ±( )( ) r( ),=

η2
±

c+
1–

c±e ik∆τ± λmn
±( ) 1.=

c+
1– λmn

–( ) λmn
+( ) 1–

i cln– k∆τ m
1
2
---+ 

  θ1 n
1
2
---+ 

  θ2+–+ 2πN ,=

kNmn = 2πN m
1
2
---+ 

  θ1 n
1
2
---+ 

  θ2+ i cln+ +
 
 
 

/∆τ .

kNm 2πN 2m 1+( )θ i cln+ +{ } /∆τ .=

ψnm
±

ψnm
±( ) z r,( ) U ±( ) z z0,( )ψnm

±( ) z0 r,( ).=

Λ j±*

ψnm
+ z r,( ) ψst

– z r,( ),〈 〉 δ nsδmt.=
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of the cavity’s eigenfunctions (that correspond to kNnm):

where the functions η±(z) is defined in the same way as
in (22).

If T is nondiagonizable, the eigenfunctions corre-
sponding to kNn are

(39)

(4) Generally, the values of k given by (36) and (37)
are complex. Then, strictly speaking, a fixed sign of the
imaginary part of the matrix kH, rather than H, should
be taken as the condition that the solutions u(±) are con-
centrated. Furthemore, the fact that k is not real will
affect the time dependence of the wave field: the har-
monic component will be imposed on the exponential
growth (if the field is enhanced) or decay (if the field is
attenuated). For the growth (decay) not to be too fast,
the imaginary part of k (at sufficiently large N) must be
much smaller than the real part. Then, the complexity
of k will have a minor effect on the concentration of the

unm
± z r,( ) η± z( ) ikNnmτ0 z( )±( )ψnm

± z r,( ),exp=

un
+ z r,( ) η+ z( ) ikNnτ0 z( )( )exp ψ0n

+ z r,( ),=

un
– z r,( ) η– z( ) ikNnτ0 z( )–( )ψn0

– z r,( ).exp=
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Fig. 2. Transverse distribution of the relative intensity of the
first transverse mode for waves propagating in the (a) posi-
tive and (b) negative Z direction. In panel (a), the wave is
stable in the active region of the cavity and, hence, through-
out the cavity. In panel (b), the wave becomes locally unsta-
ble over the length between 3.7 and 4.3 cm. Since the
counter wave (panel (a)) is stable throughout the cavity, the
cavity is unilaterally (unidirectionally) stable (panel (b)).
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solution (the imaginary parts of H and kH will have
fixed sign simultaneously).

CONCLUSIONS

Thus, we (i) represented higher modes of counter-
propagating waves in terms of birth–death operators
and established a relationship between the birth and
death operators for these waves, (ii) established the
biorthogonality of the mode sets for counterpropagat-
ing waves in terms of real scalar product, (iii) found the
eigenvalues of the wavenumbers of ring optical cavities
in terms of the eigenvalues of ABCD matrices, and
(iv) gave an example of a cavity that exhibits unilateral
stability at the first transverse mode (Figs. 1, 2).
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Abstract—Diffraction of light by acoustic waves that are generated in the acoustooptic cells of piezoelectric
transducers with complex geometry is studied. The diffraction by acoustic beams with triangular, quadrangular
(rhombic), hexagonal, etc., cross sections, when the lengths of light–sound interaction in the cross-sectional
area of the light beam are different, is considered in the plane wave approximation. The difference in the length
of interaction affects the instrument function of acoustooptic devices and provides the suppression of the side
lobes in their transmission function. The advantages of using cells with complex-geometry transducers in tun-
able acoustooptic filters that are incorporated into fiber-optic communication lines with wavelength-division
multiplexing (WDM) are discussed. © 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Acoustooptic interaction in glasses and crystals is of
both scientific and applied interest [1–5]. Diffraction of
light by ultrasound attracts special attention, because
light–ultrasound interaction is widely used for control-
ling optical beams. Acoustooptic modulators, deflec-
tors, and filters, as well as optical data processing
devices, have found a wide utility in optics and spec-
troscopy, laser physics and technology, and data trans-
mission and processing systems [3–10].

An acoustooptic cell is a glass or crystalline unit
where piezoelectric transducers generate acoustic
waves [1, 2]. Usually, the transducers have the form of
thin rectangular plates. The size of the light–sound
interaction region in the cell depends on the transverse
size of an acoustic column (beam). The cross section of
an acoustic column is a rectangle of length l and width
d, both nearly coinciding with the sizes of a driving
(converting) electrode. As a rule, the width d of the col-
umn exceeds the light beam diameter to provide the
maximal efficiency of diffraction over the cross section
of the light beam, suppress edge effects, and decrease
the divergence of ultrasound. As for the acoustic col-
umn length l, it is constant for all partial light rays
within the cross section of the light beam in the light
propagation direction [1–3].

If the ultrasound power is uniformly distributed over
the transducer’s aperture, the general directivity of
acoustic energy is described by the function z = sinc2ξ
[4–6]. This function has a main lobe and symmetrically
arranged side lobes with decreasing intensity. The side
directivity of acoustic energy depends on the transducer
length l. The transfer function of an acoustooptic cell,
i.e., the dependence of the diffracted intensity Id on the
1063-7842/03/4811- $24.00 © 21475
angle of incidence θ and optical wavelength λ (or ultra-
sonic frequency f), also has a main maximum and side
maxima [4, 6–9].

If the diffraction efficiency is maximal, Id/Ii = 1.0,
where Ii is the intensity of incident light, the optical
energy in side lobes may be significant. For example,
with Id/Ii = 1.0, the intensity escaped into side maxima
with the numbers ±1 exceeds 10%. The presence of side
lobes in the transfer function is an obvious disadvan-
tage of acoustooptic devices [7–10]. In acoustooptic
signal-selecting filters used in fiber-optic communica-
tion lines, the presence of side maxima adversely
affects the spectral characteristics of the device and
rises the crosstalk level [10].

CONTROL OF THE INSTRUMENT FUNCTION 
OF ACOUSTOOPTIC CELLS

To date, several ways of reducing the intensity of
side lobes in the instrument function of acoustooptic
cells have been devised [3–5]. Side lobes may be sup-
pressed, i.e., by applying sectional transducers with
apodization [4, 5, 7]. Transducers with unequal lengths
of sections are also efficient in this respect [7]. How-
ever, such ways of controlling the transmission (instru-
ment) function of acoustooptic cells appear to be very
complex. A simpler approach is the use of piezoelectric
transducers with driving electrodes having the shape of
a rhombus, hexagon, trapezoid, ellipse, etc. in the cross
section [8, 9]. In this work, side lobes are suppressed by
using acoustooptic filter cells that have a nonuniform
length of acoustooptic interaction over the cross section
of the light beam [3–5]. If the acoustooptic interaction
length l is unequal for partial rays in an incident light
beam, conditions for the side lobe appearance for each
003 MAIK “Nauka/Interperiodica”
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of the rays will also differ. Therefore, the position of the
side lobes of the cell instrument function relative to the
main (central) lobe will depend on the length of inter-
action. Thus, the transmission function at the exit from
such devices will have another shape compared with
that in the case of a conventional rectangular electrode.

Unlike known examples of applying complex-
geometry transducers in acoustooptic devices [4, 8, 9],
we consider the case where the maximal length l and
width d of the transducer are fixed. It is assumed that
the shape of the driving electrode is varied within the
sizes of a rectangular transducer. In practice, this
restriction arises, i.e., when the length l of a piezoelec-
tric plate is limited by the size of an acoustooptic crys-
tal, its optical homogeneity, or light absorption condi-
tions and the width of the plate is limited by the light
beam aperture (that is, d ≥ a).

INTENSITY OF DIFFRACTED LIGHT

In an acoustic cell with a rectangular transducer
(Fig. 1a), the diffracted intensity varies with incident
light intensity by the law

(1)

where η is the mismatch parameter and q is the acous-
tooptic coupling coefficient, which depends on the elas-
tic strain, photoelastic properties of the medium, opti-
cal wavelength, Bragg angle, acoustooptic figure of
merit M2, acoustic power P, and cross-sectional area
S = ld of an acoustic column [1–4].

With the phase matching condition satisfied, η iden-
tically equals zero. It can be shown that the diffraction
intensity in this case is given by

(2)

Id I i
q2

q2 η2+
----------------- q2 η2+

l
2
--- ,sin

2
=

Id I i
πl

λ θcos
---------------

M2P
2S

----------- .sin
2

=

l
d I0

θ

Id

Ii

(a) (b)

Fig. 1. Acoustooptic cell and piezoelectric transducers with
(a) rectangular and (b) other possible configurations of driv-
ing electrodes.
From (1) and (2), it follows that, if the control power
P = P0, where P0 = 0.5Sλ2cos2θ/M2l2, the diffracted
light intensity is maximal. The product of the acous-
tooptic coupling coefficient and the length of interac-
tion is ql = π in this case. Clearly, the condition ql = π
is valid for all partial rays in the cross section of the
optical beam shown in Fig. 1a, since the length of inter-
action for them is the same.

DIFFRACTION EFFICIENCY 
FOR A NONUNIFORM LENGTH 

OF INTERACTION

When the cross section of an acoustic column gen-
erated by the piezoelectric transducer is other than rect-
angular, the diffraction pattern is different. Some of the
driving electrode configurations in the transducers are
shown in Fig. 1b (note once again that the maximal
sizes of driving electrodes are limited by the sizes of a
rectangular transducer). In experiments, we studied
electrodes of different configurations; here, results on
the diffraction efficiency are given for only triangular,
rhombic, and hexagonal electrodes. These results are
easy to generalize for transducers of more intricate
shape, e.g., elliptic and Gaussian.

A piezoelectric transducer with a rhombic electrode
is shown in Fig. 2a. Here, the length of acoustooptic
interaction is seen to depend on the coordinate x when
the light beam is directed along the y axis. If the driving
electrode is of triangular shape (Fig. 2b), the interaction
length is given by l(x) = l0 – |x| , where |x| ≤ 0.5d.
In this formula, the angle α defines the shape of the
driving electrode. This formula is also valid for trans-
ducers in the form of a trapezoid, rhombus, hexagon,
etc., which immediately follows from the symmetry of
the problem considered. Thus, in view of (1), the dif-
fracted intensity for each partial optical ray within the
acoustic column aperture is given by

(3)

With the phase matching condition satisfied, rela-
tionship (3) yields the diffracted intensity for each par-
tial ray in the light beam cross section. The diffraction
resulting efficiency  at the exit from the cell is the
sum of the intensities of all diffracted rays in the light
beam cross section of diameter a = d:

(4)

As follows from (4), a cell with a nonuniform length
of acoustooptic interaction basically cannot provide the
maximal diffraction efficiency  = 1.0. This is
because, with the coupling factor q fixed, the product
ql(x) equals π only if |x| = (l0 – π/q) . For all other

αcot

Id I i
q2

q2 η2+
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l0 x αcot–
2

--------------------------- .sin
2

=

Id

Id = 
1
d
--- Id x( ) xd

/2d–

/2d
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values of x, this product is other than π. Therefore, the
total diffracted intensity is less than maximal.

Our study also supports the fundamental inference
that the diffraction resulting efficiency  depends on
the driving electrode shape for a given ultrasound
power P. As follows from (4), the diffraction efficiency
is a function of the angle α. Figure 3 shows a family of
total diffracted intensity vs. normalized ultrasound
power (P/P0) curves for various α. The diffraction effi-
ciency is maximal,  = 1.0, only in the case of a rect-
angular electrode. As α decreases, so does the diffrac-
tion efficiency.

Figure 3 suggests that cells with nonrectangular
transducers provide the maximal values of  if the
ultrasound power P exceeds the power P0 that is typical
of acoustic waves generated by a rectangular trans-
ducer. Calculations show that a decrease in the angle α
causes the acoustic power to grow compared with the
conventional (rectangular) case. For example, at α = α4
(Fig. 3, curve 4), the resulting intensity turns out to be
smaller than unity:  = 0.85. The control signal power
in this case rises to P = 1.6P0.

Thus, if the transducer in the cell is nonrectangular,
the maximal diffraction efficiency somewhat drops,
while the control acoustic power increases.

To conclude, it should be noted that the limits of
integration in (5) may be changed if the light beam
diameter is smaller than the transducer’s width. Then,
relationship (5) also applies to the analysis of diffrac-
tion efficiency in the case of transducers with pentago-
nal, hexagonal, etc., electrodes. If the driving electrode
shape is such that the interaction length vs. coordinate
is described by the elliptical, Gaussian, or any other
dependence, appropriate substitutions in expression (4)
make it possible to estimate the diffraction parameters
in these cases too.

DIFFRACTION EFFICIENCY UNDER THE PHASE 
MISMATCH CONDITION

The dependence of the diffracted intensity on the
angle of incidence on ultrasound and ultrasound fre-
quency (or optical wavelength) defines the form of the
transfer function of an acoustooptic cell. The transfer
function and the intensity of side lobes can be found by
analyzing acoustooptic interaction when the phase
matching condition is violated. Formula (3) yields the
following expression for the total diffraction efficiency

 at the exit from an acoustooptic cell:

(5)

Id

Id

Id

Id

Id

Id I i
q2

2 q2 η2+( )
-------------------------=

× 1
l0 q2 η2+( )sin l0 d αcot–( ) q2 η2+[ ]sin–

d α q2 η2+cot
------------------------------------------------------------------------------------------------------------–

 
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 

.
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The diffraction efficiency vs. mismatch parameter
for various powers and angles α is presented in Fig. 4.
The calculations were performed for the maximal inter-
action length 1.0 cm. At small α, the transmission func-
tion of an acoustooptic cell becomes smooth, i.e., does
not exhibit oscillations. Side lobes smooth out to the
greatest extent, minimizing the possibility of signal
escape through one of the side lobes of the instrument
function.

l0

d
y

0

dx

l(x)

x

(‡)

(b)

l0

l

0–d/2 d/2 x

α

Fig. 2. (a) Estimation of the effective interaction length for
transducers with the rhombic shape of the electrode.
(b) Pentagonal and triangular shapes of the electrode.

1.0

0.5

0 1 3 5 7
P/P0

1
2

3

4

Id/Ii

Fig. 3. Diffraction efficiency vs. normalized acoustic power.
α = (1) 90°, (2) 75°, (3) 60°, and (4) 45°.



1478 VOLOSHINOV, KNYAZEV
Earlier, it was shown [9] that the smoothing out of
side lobes is coincident with the broadening of the main
lobe by a factor of no more than 1.5–2.0 compared with
the case of a rectangular transducer. This is also true for
electrodes whose shape is described by a Gaussian,
sinusoidal, or step function.

As follows from Fig. 4, a change in the driving elec-
trode shape suppresses noticeably the side lobes of the
transfer function of a cell. With the electrode shape
properly selected, the intensity of each of the side lobes
may be halved compared with that for a rectangular
transducer. Side lobes may be suppressed still further if
no restrictions are imposed on the electrode maximal
dimensions. To this end, one should decrease the width
d of the piezoelectric transducer keeping the piezoelec-
tric plate length l0 fixed or, conversely, increase the
length of the plate for a given width d [8, 9].

CROSSTALK SUPPRESSION AT THE EXIT
FROM FILTERS

Tunable optical filters intended for the spectral
interval ∆λ = 1532–1565 nm are promising acoustoop-
tic devices for WDM fiber-optic communication lines
[10]. The wavelength spacing δλ between neighboring
channels and the total number of channels N = ∆λ/δλ in
a fiber-optic communication line depend on the
crosstalk level at the exit from an acoustooptic device.
It is known that the crosstalk level in communication
lines must not exceed –20 dB. This means that, if η = 0
and an acoustooptic filter is tuned to transmit radiation
with a wavelength λ0 through one of the channels, the
stray transmission of the filter at a wavelength λ1 = λ0 ±
δλ must be less than 1%; that is, Id/Ii ≤ 0.01 [10].

For an acoustooptic filter incorporated into a WDM
communication line, it is important that the spectrum of
light incident on the device be discrete, since all optical
signals in the fiber are monochromatic. Therefore, the

Id/Ii

1.0

0.5

0–10–20 10 20
η, cm–1

1 2
3

4

Fig. 4. Diffraction efficiency vs. mismatch parameter for
transducers with different configurations. (1) α = 90°, P =
P0; (2) α = 75°, P = 1.3P0; (3) α = 60°, P = 1.4P0; and
(4) α = 45°, P = 1.5P0.
crosstalk level at the exit from the filter does not
directly depend on the width of its passband: it is
defined by a value of the transmission function at the
wavelength of the neighboring channel. For the trans-
ducer with the rectangular electrode length l = 1.0 cm,
calculations by formula (1) yield a diffraction efficiency
Id/Ii ≤ 0.01 at a mismatch parameter |η| ≥ 35 cm–1. If the
driving electrode of the transducer has the shape of a
triangle, rhombus, or hexagon, then, as follows from
formula (6), a filter with l0 = 1.0 cm has a transmission
coefficient of less than 1% at a mismatch parameter η ≥
20 cm–1. Thus, for the same stray signal level (1%), the
mismatch parameter in the filter with the complex-
shape electrode is roughly half as large as in the device
with the rectangular transducer because oscillations in
the spectral characteristic are absent.

It is known that the mismatch due to acoustooptic
interaction equals the optical wavelength difference
δλ = λ0 – λ1 [3, 4]. Therefore, the less the spectral spac-
ing δλ between neighboring channels, the lower the
mismatch. Thus, the use of complex-shape transducers
in the filters makes it possible to decrease the spectral
spacing of optical carriers and, thereby, raise the total
number of signals in fiber-optic communication lines.
Therefore, the performance of acoustooptic filters with
complex-shape transducers is superior to that of con-
ventional filters with rectangular transducers.

CONCLUSIONS

In this work, we studied acoustooptic cells with
nonrectangular electrodes of piezoelectric transducers.
The use of complex-geometry transducers allows one
to suppress side lobes in the transmission function of
the cells. Accordingly, the crosstalk level at the exit
from acoustooptic filters incorporated into WDM fiber-
optic communication lines may be substantially
reduced compared with filters using transducers of con-
ventional rectangular geometry.

The improvement of the device performance by
using complex-geometry transducers is attendant with
the broadening of the passband and a decrease in the
diffracted intensity. However, the inevitable degrada-
tion of these parameters is insignificant and virtually
does not affect filtration parameters in WDM fiber-
optic communication lines. Therefore, the way of
improving the acoustooptic device performance that is
presented in this work may be applied in fiber-optic
technology owing to its simplicity and versatility.
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Abstract—The cheapening of solar energy reception and concentration is of primary importance for its effec-
tive use. Conventional preformed parabolic reflectors are too bulky and heavy for the shape of their surface to
be maintained by load-bearing frameworks. The fabrication of elastically deformed thin-film or thin-sheet
reflectors is considered in terms of the classical elasticity theory. It is shown that the solar energy concentration
ratio achievable in receivers made by this technology is comparable to that in present-day collectors used in
solar power plants; however, collectors made by the new technology may be much cheaper. © 2003 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

The startup of nine high-power (from 30 to 80 MW)
solar electric generating systems (SEGSs) in the last
decade in California has stimulated interest in solar
power. The cost of SEGS-generated energy has
approached that of energy from thermal stations. How-
ever, high capital costs, up to 50% of which are spent
on solar energy concentrators and receivers, still do not
allow SEGSs to compete with nuclear and thermal sta-
tions on nonrenewable fuels, although the latter are a
certain environmental hazard. Below, we invoke the
theory of elasticity [1] to analyze elastically deformed
thin-film (thin-sheet) solar concentrators, which are
cheaper and less material-consuming.

STATEMENT OF THE PROBLEM

The surfaces of solar concentrators are currently
composed of rigid parabolic metallic or glass fragments
[2–4]. At the same time, near-parabolic or near-cylin-
drical surfaces may also be produced by deforming thin
films or sheets. This work is aimed at estimating (i) the
deviation of the reflecting surface of elastically
deformed sheets or metallic films from the ideal para-
bolic or cylindrical shape and (ii) a related change in
the solar energy concentration ratio in the reflector–
receiver system.

ELASTICALLY DEFORMED PARABOLIC 
CONCENTRATORS

Let us consider three ways of thin-sheet deforma-
tion that give a shape approaching the shape of the stan-
dard parabolic concentrators most closely: (i) a sheet is
fixed at one end and loaded by uniformly distributed
transverse moments with a linear density Mz at the other
end, (ii) a sheet is fixed at one end and loaded by uni-
formly distributed transverse forces with a density Ky,
1063-7842/03/4811- $24.00 © 21480
and (iii) a sheet is hinged at both ends and longitudi-
nally loaded by forces with a density Kx that deform the
plane shape of the sheet. Let the sheet be fixed along the
z axis, the neutral line of the undistorted sheet be
aligned with the x axis, and bending occur along the y
axis. Then, according to [1], the respective differential
equations for the line of bend for the three variants of
deformation will have the form

(1)

(2)

(3)

where D = Eh3a/12(1 – µ2) is the cylindrical stiffness of
the sheet, h is the sheet thickness along the y axis, a is
the size of the sheet in the z direction, µ is the Poisson’s
ratio, and E is the Young’s modulus of the sheet.

The solution of Eq. (1) yields

(4)

This is a canonical equation of parabola yp = /2p
in the coordinates (xp, yp) with the parabolic vertex at
the origin (p = p1 = D/Mza is the focal parameter). Solv-
ing Eq. (2) yields

(5)

where p2 = D/Kyal and l is the sheet length along the x
axis.
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At small x, line of bend (5) closely approximates a
parabola. To retain the parabolic shape, one may
decrease the sheet thickness h = f(x) as x grows. Solving
Eq. (3), we find that the line of bend after the initial
shape of the sheet has lost stability at Kx ≥ π2D/al2 is
described by

(6)

with k =  (kl = π).

If the origin of the coordinate system (x, y) is trans-
ferred from the hinge to the center of the sheet, Eq. (6)
in the new coordinate system (x1, y1), where kx1 = π/2 –
kx and y1 = A – y, takes the form

(7)

From (7), it follows that the line of bend closely
approximates a parabola when kx1 is small.

Equations (1)–(3) describe a small bend of the sheet;
i.e., they are applicable when the bend y is much
smaller than the sheet length: y/l ! 1. In parabolic
trough concentrators, the ratio of the focal length p/2 ≈
y, which describes the “depth” of a parabola, to the
length l of the sheet usually equals or exceeds 0.25.
Therefore, a fill-scale concentrator may be composed
of fragments that are weakly bent sheets having the
same radii of curvature as the parabolic segments being
implanted. As is known, the radius of curvature Ri of an
ith parabolic segment related to the focal parameter p of
this parabola, at a point with the coordinate ypi also
related to the focal parameter p, y0i = ypi/p, is given by

(8)

where u0i is the angle between the tangent to the parab-
ola at the point y0i and the parabola axis (the yp axis).

If the origin is coincident with the point (xpi, ypi) and
the x axis is directed along the tangent to the parabola
at this point, the tangent angle is given by

(9)

where u0i is defined above and uei is the angle between
the tangent at the end of the segment and the yp axis.
Accordingly, the tangent angles for the first, ϕ1
(Eq. (4)), and second, ϕ2 (Eq. (5)), variants of loading,
as well as the associated radii of curvature R1 and R2,
are expressed as

(10)
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(11)

From Eqs. (8)–(11), it follows that, if the radii of
curvature and the focal parameters of the parabola and
sheets equal each other at the point (xpi, ypi) (Ri = R1 =
R2, p = p1 = p2), the radius of curvature R1 of the sheet
loaded by the moments Mz (see (10)) will be smaller
than the radius of curvature Ri of the parabola (see (8))
at the end of this segment. At the same time, the radius
of curvature R2 of the sheet loaded by the forces Ky (see
(11)) will be greater than Ri, with the end portion of the
sheet being straight (unbent). Accordingly, the angle of
inclination ϕ1 to the abscissa axis at the end of the
moment-loaded sheet will be greater than the angle ∆ui

of the parabola, while the angle ϕ2 for the force-loaded
sheet will be smaller than ∆ui. The lines of bend for the
sheets implanted by the first (curve 1) and second
(curve 2) variants of loading, as well as the ith segment
of the parabola (curve 3), are schematically shown in
Fig. 1.

According to the position of the sheet implanted and
the parabolic segment, one may try various combina-
tions of loading in order to bring the sheet shape as
close to the truly parabolic one as possible. For exam-
ple, near the vertex of a parabola with the focal param-
eter p, sheets of length l should be loaded by moments
Mz in view of (4), (8), and (10):

(12)

where ∆x0i = x0i + 1 – x0i, ∆y0i = y0i + 1 – y0i, and p1 =
Ri + 1 = p(1 + 2y0i + 1)3/2.

The shape of fragments that are farther from the ver-
tex will approach the line of bend for the sheet loaded
by forces Ky, according to (5), (8), and (11). For these
fragments, an equation similar to (12) will be valid. The
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Fig. 1. Bend of plane sheets fixed at one end and loaded by
(1) distributed moments of forces and (2) transverse forces
at the other end versus (3) parabolic segment.
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shorter the sheet, the smaller the deviation from the par-
abolic shape.

FILM EVACUATED CYLINDRICAL 
CONCENTRATORS

In the previous section, the sheet was deformed by
pure bending, and tensile or compressive deformations
were absent: one or both ends of the sheet either were
free or freely rested on a support. The potential energy
of a deformed element of the sheet was the energy
absorbed in bending, and the energy of tension could be
neglected. Now we will consider the other extreme
case, where the potential energy of bending is small
compared with the potential energy of tension. This is
the case of film evacuated ferroconcrete concentrators.

Let a rectangular film be fixed between two rectilin-
ear parallel supports and let its surfaces experience a
gas pressure difference ∆p. We assume that the z and x
axes of the Cartesian coordinate system (x, y, z) with the
origin middled between the rectilinear supports are
directed, respectively, parallel and normally to them.
Let the load in the z-axis direction be absent. Then, in
the direction normal to the z axis, balance equations for
a film element of length dl and width a will be similar
to those for torsion fiber [1]:

(13)

(14)

where dF and dM are the increments of the force and
moment of forces due to internal stresses in a section ah
at a distance dl and t is the unit vector in the direction
to dl.

It should be noted that the statement of the problem
is free of prior conditions, e.g., that the film between the
supports is under tension or, conversely, has overlaps
uniformly distributed along the x axis.

Let the moment of forces throughout the film and on
the supports be absent: M = 0. Then, the vector t is par-
allel to the vector F (see (14)) and they lie in the plane
(xy). Taking into account that the gas pressure vector
∆p is always perpendicular to the film surface and,
hence, the vector t and that the tension F is constant
throughout the film length, we find from (13) relation-
ships for the projections of the vectors:

hence, it follows that

(15)
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Squaring expressions (15) and summing the results,
we obtain

(16)

where d = C2/∆pa and b = C1/∆pa.

The constants of integration C1 and C2 are found as
follows. Since the film is uniformly loaded by the gas
pressure and the supports are arranged symmetrically
about the plane (yz), the deformation of the film may be
assumed to be symmetric about this plane. Then, the
derivative dy/dl or the slope of the deformation line
changes sign on the z axis at x = 0 and y = 0; that is,
dy/dl = 0 and dx/dl = 1. Therefore, C1 = F and C2 = 0 in
expressions (15).

Let the film have overlaps; i.e., let its initial length l
be greater than the spacing L between the supports.
Then, designating the central angle in the plane (xy) as
ϕ0 and assuming that this angle is measured from the y
axis toward the radius vector R drawn from the center
of the arc to the support, we can find a relationship
between the parameters that follows from the Hooke
law and the geometry of deformation lines (see (16)):

(17)

where h is the thickness of the film.
In this special case of deformation, the film is

unstressed in the z direction. If an initial stress σ0z in the
z direction is present and also if the gas pressure ∆p
generates an additional stress σz, the term σ/E in (17)
should be replaced by the term (σ – µ(σ0z + σz))/E,
which takes into account tensile strains in two axes. In
this case, the shape of the film is defined by the super-
position of two deformations: in the plane (xy) (see
(17)) and in the plane (yz). In the latter plane, the
parameters are related by expressions similar to (17):

(18)

where β0 is the angle between the y axis and radius vec-
tor Rz in the plane (yz) and Fz is the z component of the
tension due to the gas pressure ∆p.

The first equations in (17) and (18) are consistent
with the Laplace law, which defines capillary pressure
as the superposition of pressures along the principal
radii of curvature in orthogonal planes.
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The reflecting surface of evacuated parabolic or
cylindrical trough concentrators may be made of a
metallic film, foil, metallic ribbon, or their combina-
tions. In parabolic concentrators, the reflecting surface
is composed of a parabolic lattice framework. The
radius of curvature of film (ribbon) segments between
straight rigid legs placed along the trough axis is kept
constant and given by (16). The leg spacing depends on
an allowable angular deviation of the segment at the
legs. For an ith parabolic segment, this deviation equals
the angle between the tangents to the parabola and to
the arc at the (i + 1)th leg:

(19)

Here, it is assumed that M = 0 at the legs. For a metallic
ribbon, M > 0 at intermediate legs; therefore, the devi-
ation calculated by (19) will be somewhat overesti-
mated.

Under service conditions, the pressure difference ∆p
may be very small (∆p ≈ 1.5 kPa), which provides the
stability of the film shape at a most plausible flow
velocity ν = 8 m/s, which generates an extra pressure
∆p1 = 40 Pa. The reflecting surface must be covered by
a protective metal oxide (like Al2O3) or polymer (mylar
or kapton) coating, which also may act as a sealer in
structures with metal ribbons or sheets.

CONCENTRATOR DESIGN 
AND TECHNOLOGY

Structurally, an elastically deformed parabolic
trough concentrator is a metal frame on which sheets or
ribbons covered by a reflecting coating are mounted.
The frame is assembled of arched ribs to which straight
stringers are fastened. The coordinates of the stringers
coincide with those of some points located on a given
parabola with a focal parameter p. The film-bearing
surfaces of the stringers and the tangents to the parabola
at these points lie in the same planes. One end of the
sheet or ribbon is rigidly fixed on the bearing surface of
each of the stringers, while the other end is mounted
with a slide fit on the neighboring stringer. The stringer
spacing is equal to the width of the ribbon: l = (0.1–
0.2)p. A correcting stringer may be placed between
bearing stringers at a distance x0 = (0.6–0.8)l from the
fixed end, where the deviation ∆ of the deformed sheet
from the parabolic shape is the greatest: ∆ = (0.5–1.0) ×
10–3p. The angular inaccuracy in the area of greatest
deviation is no higher than several angular minutes, and
the angular inaccuracy averaged over the entire surface
between stringers is δ ≈ 2'. The analysis of the elastic
line of the sheet and its deviation from the parabolic
shape is described below.
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An evacuated cylindrical trough film concentrator is
a hermetically sealed arched cavity. On the inside, it is
bounded by the reflecting surface of the film rested on
straight stringers; on the outside, by the U-shaped rigid
metallic surface mounted on the stringers and ribs. The
shape of the reflecting surface of the metallic film
depends on the gas pressure and the arrangement of
supports along the circumference. The pseudofocal
length of the cylindrical reflector is kept constant by
controlling the gas pressure inside and outside the cav-
ity with a focus position sensor [5].

Let us perform comparative analysis of these two
designs. The parabolic concentrator used in the SEGS-
VIII has the focal parameter p = 3m and is made of
3-mm-thick self-supported square glass mirrors of side
a = 0.5p. The width and length of the concentrator
accommodate four and six to seven mirrors, respec-
tively. An equivalent concentrator can be made of elas-
tically deformed metallic (aluminum alloy or steel) rib-
bons 0.1 mm (or more) thick, (0.1–0.2)p wide, and as
long as the concentrator module. With such a geometry,
the number of reflecting elements is the same as in the
previous example by order of magnitude. However, the
weight of the reflecting surface of the thin-walled con-
centrator is one order of magnitude lower. Because of
this, the frame of the bearing pivoted system may be
made much lighter than that of the system with self-
supported mirrors. Under rotation, gas-dynamic loads
introduce nearly the same optical errors as the weight of
3-mm-thick corner-anchored glass mirrors [2].

CALCULATION

The shape of the elastic line of a sheet implanted
into an ith segment of the parabolic surface is found by
jointly solving two equations. The former, which is the
sum of Eqs. (4) and (5),

determines the coordinates of the elastic line under the
simultaneous action of the moment Mz and force Ky.
The latter allows one to find the angles of rotation of
sheet sections and is the sum of Eqs. (10) and (11):

(20)

Designating the final displacement (at xi = li) of
points on the sheet as ∆yi = yi/li and the final angle of
rotation of a section as ϕi = ∆ui, we eliminate p1 and p2
to obtain

(21)
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where 

Here,

(22)

Equating the final displacement of points to the dif-
ference in the ordinates and the final angle of rotation
of the section, to the angle between the tangents drawn
at the beginning and end of the ith parabolic segment,
we come to equations for coefficients (21):

where xp0i and xpei are the abscissas of the beginning and
end of the ith parabolic segment to be replaced in the
coordinate system (xp, yp) of a parabola with the vertex
coinciding with the origin and u0i and uei are the angles
the tangents at the beginning and end of the ith segment
make with the coordinate axis.

Moments and forces that must be applied to the end
of the sheet in accordance with Eqs. (4) and (5) and the
parameters p1 and p2 in (22) are given by

The deviation of the line of bend from the ith para-
bolic segment can be found by expressing the coordi-
nates of the ith segment in the coordinate system of the
sheet and determining the difference in the coordinates
of these curves and associated tangent angles in the two
coordinate systems. In the coordinate system of the
sheet, the coordinates xp, yp of the parabola have the
form

Hence, the deviation of the line of bend of the sheet
from the parabolic segment and the angular deviations
of the tangents to them are

Analytically, a relationship between the coordinates
is hard to establish; therefore, this problem is more eas-
ily and vividly solved graphically.
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SOLAR ENERGY CONCENTRATION 
RATIO

Solar energy concentration in the receiver is a most
important property of a solar concentrator. It is esti-
mated by the mean concentration ratio C, which equals
the ratio of the total sunshine power incident on the
concentrator surface to the power received by the focal
area of the receiver. In other terms, it is equal to the
ratio between the exposed surface area S0 of a concen-
trator and the focal surface area S1 of the receiver times
the reflection coefficient ηr: C = ηrS0/S1.

Taking into account that real surfaces of reflectors
locally depart from perfect geometrical (parabolic or
cylindrical) surfaces by an angle δ, one should add 2δ
to the maximal angle of divergence (nonparallelism) of
the solar radiation reflected, i.e., to the solid semi-angle
of the Sun α0, as follows from the laws of geometrical
optics. Then, at the normal incidence of solar radiation
on the exposed surface of a parabolic trough concentra-
tor with an aperture Θ0 and focal parameter p, the mean
concentration ratio is given by

(23)

for a plane receiver (like a photoelectric transducer) or

(24)

for a cylindrical receiver (like a heat exchanger tube).

Figure 2 shows dependences (23) and (24) for a0 =
32' and various δ.

Based on the conclusions drawn in [6, 7] for spher-
ical concentrators, one may show that the mean concen-
tration ratio in the focal plane R/2 of a cylindrical
trough concentrator, where R is the radius of the cylin-
der, is given by

(25)

where ϕm ≈ Θ0/2 + /16 is the central angle of the cyl-
inder.

Function (25) is shown in Fig. 2 (curve 6). It is seen
that Cnc ! Cn. The concentration ratio of a cylindrical
reflector can be raised if the plane of reception is shifted
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from the plane R/2 toward the reflector by a distance
[6–8]

In this case, the concentration ratio increases to

(26)

Dependence (26) is shown in Fig. 2 (curve 5). The
maximal value of Cnw is higher than Cne, Cnw ≈ 1, 2Cne,
but smaller than the concentration ratio for parabolic
reflectors (Fig. 2; curves 1, 2). The concentration ratio
of parabolic reflectors can be reached if V-shaped con-
trareflectors [5] with a reflection coefficient  are
installed on the receiver. Then, the concentration ratio
is expressed as

(27)
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Fig. 2. Mean concentration ratios for (1–4) thin-walled par-
abolic trough concentrators and (5–7) film cylindrical
trough concentrators. (1) δ = 0, plane receiver; (2) δ = 2',
plane receiver; (3) δ = 0, cylindrical receiver; (4) δ = 2',
cylindrical receiver; (5) the plane of reception at a distance
of R/2 – ∆l; (6) the focal plane at a distance of R/2; and
(7) receiver with contrareflectors.
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where ϕk ≤ 6° is the angle that makes a parabolic arc
virtually indistinguishable from a circular one. Depen-
dence (27) is shown in Fig. 2 (curve 7) for ηr =  = 0.9.

The best parabolic trough concentrations (LUZ Co.)
are assembled from 3-mm-thick self-supported rigid
mirror-polished sheets with a reflection coefficient ηr =
0.94 and offer a concentration ratio C = 0.61–0.71 [9].
These values are comparable with the ultimate value for
cylindrical receivers (Fig. 2; curves 3, 4). The concen-
tration ratio of elastically deformed thin-sheet concen-
trators (Fig. 2, curve 7) also approaches this level.

At the same time, the cost and weight of concentra-
tors made of thin sheets or films (0.1 to 0.3 mm thick)
are two to five times lower than those of self-supported
rigid reflectors made of sheets thicker than 3 mm [9].

CONCLUSIONS

(1) Solar energy trough concentrators made of elas-
tically deformed sheets or films may offer concentra-
tion ratios approaching those of preformed rigid mir-
rors (Cn ≤ 80%).

(2) Solar energy collectors consisting of elastically
deformed reflecting sheets and/or films and receivers
with contrareflectors are two to five times lighter and
cheaper than collectors based on rigid self-supported
concentrators.
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Abstract—Nonlinear dynamics of the thermal and electromagnetic perturbations in composite superconduc-
tors is studied. © 2003 MAIK “Nauka/Interperiodica”.
It is known that, at the linear stage, the evolution of
thermomagnetic perturbations exhibits exponential
(increasing or decreasing) behavior [1]. This stage
implies that the ohmic power is either temperature-
independent or is a linear function of temperature.
However, at the stage of nonlinear instability, some
electrical and thermal characteristics, including the
heat-release power, depend heavily on temperature.
Therefore, the analysis of the critical state stability
should be performed with regard for nonlinear temper-
ature dependence of heat release.

This study is concerned with the dynamics of the
thermomagnetic perturbations that develop in compos-
ite superconductors.

Let us consider the main equations that describe the
evolution of thermal and electromagnetic perturbations
in a superconductor in the critical state. The propaga-
tion of heat is given by nonlinear heat-conduction equa-
tion

(1)

where ν and k are heat capacity and thermal conductiv-
ity, respectively.

The last term in Eq. (1) corresponds to the power of
Joule heat release in the region of the normal phase.
Both quantities ν and k may be considered temperature-
independent if the cooler operates at a temperature
close to the critical value Tc.

The evolution of electromagnetic field perturbations
is described by the system of Maxwell equations

(2)

(3)

In order to close the system of Eqs. (1)–(3), one
should establish the relation between j, E, H, and T. Let

ν T( )dT
dt
------ ∇ k T( )∇ T[ ]⋅ j E,⋅+=

curlE
1
c
---dH

dt
--------,–=

curlH
4π
c

------ j.=
1063-7842/03/4811- $24.00 © 21486
us assume that the values of E, H, and T lie on the so-
called resistive surface

(4)

In a wide range of the electric-field strengths E, the
current–voltage (I–V) characteristic of superconductors
can be represented in the form

(5)

As is well known [1], at j ≤ jc, the vortices start their
motion, which is a viscous flow across the applied
transport current. Such flow is possible only for the
electric fields E ≤ Ef. Here, Ef is the boundary of the lin-
ear section in I–V characteristic. In the specified region,
the dependence jr(E) is linear: jr ~ σfE [2]. With varia-
tion of electric field E, the I–V characteristic rapidly
becomes linear (at E ≤ Ef), while the actual values of E
in superconductor meet the condition σfE ! jc; i.e., the
density of the vortex current σfE is small as compared
to that of the critical current jc. This circumstance
enabled Bean to formulate the critical-state concept [3].
According to this concept, any effect that gives rise to
electric field E results in the establishment of a critical
state with density jc. The critical state concept provides
a basis for the macroscopic electrodynamics of high-
current superconductors.

For superconductors, the linear dependence jr(E)
holds true only in the region E ≤ Ef; outside this region,
the differential conductivity σ is heavily E-dependent:
σ(E) = dj/dE (flux creep) [4]. The I–V characteristics of
superconductors in the creep mode have universal char-
acter and can be described by the same formula in a
wide range of temperatures and magnetic fields:

(6)

Here, E0 and j1 are constants. The last formula implies
that the differential conductivity grows with a decrease

j j T H E, ,( ).=

j T E H, ,( ) jc T H,( ) jn E( )+[ ] E
E
----.=

j T E H, ,( ) jc T H,( ) j1 E( ) E
E0
-----.ln+=
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in E, i.e., σ(E) = j1/E. The causes and mechanisms
behind the nonlinearity of I–V characteristics of super-
conductors in weak fields are discussed in detail in [2].
One possible mechanism is the thermally activated flux
creep. In the range of very low fields (E  0), the I–
V characteristic may again be linear: jn ~ σdE, with
σd ! σj.

The dependence of the critical current density on the
temperature of a superconducting material in the criti-
cal state is defined by the following equation:

(7)

where jc(T0) is the critical current density at T0.
Let us consider a planar semi-infinite sample (x > 0)

subjected to magnetic field H = (0, 0, He) that increases
at a constant rate dH/dt = const. The vortex electric
field E = (0, Ee, 0) arising from the magnetic flux
motion is parallel to the plane of current E || j [5].

Thermal and electromagnetic boundary conditions
to Eqs. (1)–(4) have the form

(8)

Here, L is the characteristic magnetic flux penetration
depth. This quantity can easily be found from Maxwell
equation (3) with the boundary conditions H(0) = He

and H(L) = 0 and is defined as

It is known [2] that the propagation of magnetic flux
and heat flow is characterized by the corresponding dif-
fusion coefficients: the magnetic diffusion coefficient

associated with the normal currents in the resistive
superconducting mode and the thermal diffusion coef-
ficient Dt = k/ν. The ratio of these quantities τ = Dt/Dm

governs the dynamics of the development of thermal
and electromagnetic perturbations in composite super-
conductors with τ @ 1. For the sake of simplicity, the
following discussion is restricted to the approximation
of slight heating T – T0 ! T0. Within this approxima-
tion, the coefficients ν and k may be considered as inde-
pendent of the temperature profile.

The effective conductivity of composite supercon-
ductors σf is appreciably higher than that of the hard
superconductors. Therefore, we may assume that the
induced normal current σfE compensates the drop of
the temperature-induced critical current jc(T) and thus
hinders the magnetic flux penetration into the sample.
Within such formulation of the problem, the magnetic-
flux motion may be disregarded: Dm ! Dt or τ =

jc T( ) jc T0( ) 1
T T0–
Tc T0–
-----------------– ,=

dT 0( )
dx

--------------- = 0, T L( ) = T0,  
dE 0( )

dx
--------------- = 0,  E L( ) = 0.

L
cHe

4πj0
-----------.=

Dm
c2

4πσf

------------=
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Dt/Dm @ 1. In other words, the development of mag-
netic instability in composites is accompanied with
“slow” perturbations with characteristic rise time tj @ tk

or tj ! tm, where tk = L2/Dt and tm = L2/Dt are the times
of thermal and magnetic diffusion, respectively. Then,
according to Maxwell Eqs. (2) and (3), the current den-
sity in each point of the sample remains constant
dj/dt = 0, and the system of Eqs. (2) and (3) yields a lin-
ear relation between the temperature and the electric
field:

(9)

Substituting this expression into Eq. (1) yields the
equation for the electric field distribution E(x, t) in the
form

(10)

where Eν = σfν/a is a constant parameter.
Performing the separation of variables in Eq. (10)

and taking into account the boundary conditions, we
have

(11)

Now, the expression for temperature (9) becomes

(12)

The solutions obtained above suggest that, under the
condition

(13)

both the temperature and the field perturbations expo-
nentially grow. The critical thickness value lc corre-
sponding to the onset of the avalanche build-up of per-
turbations is given by

(14)

The critical-field value Hj starting from which the
magnetic flux penetrates into the superconductor bulk
is expressed as

(15)

It can be seen that, within the time interval

(16)

the results obtained provide for a highly accurate
description of the evolution of thermomagmetic pertur-
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bations that take place in hard superconductors in the
critical state.

Finally, it should be noted that the values of Hj and
lc depend heavily on the properties of the composite
material. Our results are valid only if j is a linear func-
tion of E. As was mentioned above, the I–V character-
istics of composite superconductors are distinctly non-
linear at small values of electric field E < Ef. Strong E-
dependence of differential conductivity σ in this region
should affect the criterion of stability of the critical
state and, hence, influence the values of Hj and lc. Such
a problem goes beyond the scope of this study and pre-
sents a subject for future investigation.
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Abstract—The propagation of intense microwave radiation in a water column is studied experimentally. The
effect of induced transparency of water is discovered. The effect is related to the successive heating of water
layers from the surface deep into the water column. The interaction of intense microwave radiation with water
is simulated with account of variations in the electrophysical water parameters. The simulation results are com-
pared with the experimental data. © 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The propagation of low-power microwaves through
liquids obeys the Bouguer law [1]

(1)

which is well known in linear electrodynamics. Here, α
is the absorption coefficient of microwaves incident
onto a half-space willed with water, I0 is the microwave
intensity, and Z is the coordinate counted from the
water surface deep into water along the normal to the
surface.

The coefficient α depends on neither Z nor the
microwave intensity. The reciprocal of α determines
the penetration depth of an electromagnetic wave into
water, d0 ≈ 1/α.

For low-power microwaves, the absorption and
reflection characteristics of liquids were studied in
great detail (see, e.g., [2, 3]). Here, of interest may be
only the determination of the absorption and reflection
coefficients for specific media for which data are either
crude or lacking.

The situation is quite different when the intensity of
an electromagnetic wave is so high that it changes the
state of a liquid. In this case, the penetration of radia-
tion into the liquid cannot be described by linear elec-
trodynamics.

The objective of this paper is to investigate the pen-
etration of high-power microwave radiation into water
and its solutions.

EXPERIMENTAL SETUP AND MEASUREMENT 
RESULTS

A schematic of the experimental setup is shown in
Fig. 1. Magnetron 1 is connected to standard waveguide

I I0e αZ– ,=
1063-7842/03/4811- $24.00 © 21489
2. The waveguide output of the magnetron is connected
to two conical transitions 4 and 9 through matched
flanges. Transition 9 is connected to a measuring sys-
tem consisting of directional coupler 12 and calibrated

1 2
3

4

5

6
7

8
9
10

11

12 13 14 15

16 17

18

Fig. 1. Schematic of the experimental setup: (1) magnetron,
(2) rectangular waveguide, (3, 10) Teflon gaskets, (4, 9,
11) conical transitions, (7) gasket, (12) directional coupler,
(13) calibrated attenuator, (14) detector, (15) oscilloscope,
(16) waveguide flexure, (17) water cell (a component of the
matched load), and (18) base of the low part of the setup.
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attenuator 13 connected to detector 14. A signal from
the detector is fed to oscilloscope 15.

The upper part of the setup (enclosed by a dotted
line) has the connection in flanges 5 and can be lifted
and taken aside. This allows us to place cylindrical
glass cell 6 on Teflon bottom 8. The cell is filled with a
fixed amount of water, through which microwave sig-
nals pass.

The magnetron generated a train of microwave
pulses with a duration of about 8 ms and repetition rate
of 50 Hz. The average microwave power was 480 W,
and the peak power attained 1.8 kW. The magnetron
wavelength was 12.4 cm. Copper gasket 7 was placed
around a water cell in order to prevent the direct pene-
tration of the magnetron radiation into the measuring
system.

The experimental setup makes it possible to mea-
sure the absorption coefficient and investigate the pen-
etration of microwaves into a liquid medium both under
conditions corresponding to the Bouguer law [relation
(1)] and when linear electrodynamics is inapplicable
because of the change in the electrical properties of the
irradiated liquid under the action of intense microwave
radiation. One regime was changed to another by vary-
ing the irradiation time t of the liquid. At short irradia-
tion times (t < 1 s), the propagation of electromagnetic
waves is consistent with that described by linear elec-
trodynamics; hence, this regime can be classified as
irradiation by low-power microwaves. When the irradi-
ation time is long enough (t > 10 s), the character of
microwave penetration into the liquid changes radi-
cally. This regime can be classified as the propagation
of high-power microwave radiation.

First, we consider the regime of irradiation by low-
power microwaves. The measurements were carried out
with distilled water, whose conductivity is negligibly
small; tap water with a conductivity of 380 µS/cm; and
water solution of salt with a conductivity of
2000 µS/cm.

0.5
0.4
0.3
0.2
0.1

0.6
0.7
0.8
0.9
1.0

0 0.5 1.0 1.5 2.0 2.5 3.0
Z, cm

I, arb. units

1

2
1/e

d1 d2

Fig. 2. Penetration of low-power microwave radiation into
(1) water and (2) water solution of salt.
Figure 2 shows the measurement results. Curve 1
corresponds to the measurements with distilled and tap
water (in both cases, the results completely coincide).
The absorption coefficient is α = 2 cm–1. Accordingly,
the depth d2 at which the intensity decreases by a factor
of e is 5 mm. When we added salt in water and
increased the solution conductivity to 2000 µS/cm, the
absorption coefficient increased to 4 cm–1 (curve 2) and
the absorption depth d1 was 2.5 mm.

The regime in which the propagating microwave
radiation substantially changed the dielectric properties
of the liquid (the regime of nonlinear electrodynamics)
was studied in the same experimental device.

Magnetron 1 was switched on for a time that was
substantially longer than 1 s (for 10, 20,…, 120 s).
Then, the upper part of the setup was taken aside and
the temperature in several water layers was measured.
For this purpose, a small-size thermocouple immersed
in the water column was displaced along the column
axis (from the water surface to the cell bottom) and the
temperature was measured in different layers (the total
measurement time was several seconds; i.e., the tem-
perature was measured over the time interval during
which the axial temperature profile remained essen-
tially unchanged).

After every run of the measurements, the water in
the cell was mixed by a dielectric rod and the average
temperature was measured. From this value, we calcu-
lated the power absorbed by the water column by the
formula

(2)

where T1 and T0 are the final and initial temperatures,
respectively; cp is the water specific heat; and ρ is the
water mass density.

For any irradiation time t, the mean absorbed power
was about 480 W. The power passed through the water
was measured by detector 14.

The measurement results are shown in Fig. 3. The
set of the experimental curves demonstrates how the
temperature of the water column irradiated by high-
power microwaves varies with time at different dis-
tances Z from the water surface. The time of the tem-
perature propagation by heat conduction was substan-
tially longer than the irradiation time (this was checked
directly by placing an ohmic heater into water near its
surface). Therefore, the time evolution of the tempera-
ture propagation along the Z axis reflects the time evo-
lution of the microwave energy penetration into the
water column. The observed effect of microwave pene-
tration into water to depths substantially larger than the
absorption depth d2, corresponding to the regime of lin-
ear electrodynamics (according to Fig. 2, this depth is
about 5 mm for low-conductivity water), can be classi-
fied as the effect of the induced transparency of water
under the action of high-power radiation. The propaga-
tion velocity of the “transparency wave” (determined

Iab ρcp T1 T0–( )/t,=
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from the curves in Fig. 3) as a function of Z is shown in
Fig. 4. The velocity is maximal (on the order of
0.1 cm/s) near the water surface and decreases with Z.

DISCUSSION OF THE EXPERIMENTAL 
RESULTS

Thus, the effects of the induced transparency of
water under the action of intense microwaves have been
discovered. Microwave radiation absorbed in a narrow
surface layer with a thickness d0 determined by the
Bouguer law [see (1)] heats this layer. The absorption
coefficient of microwaves α is a function of the water
temperature T. The temperature dependence of this
coefficient for low-conductivity water (distilled or tap
water) is given in the table (the data are taken from [2]).
It can be seen that the absorption coefficient decreases
from 2.2 to 0.4 cm–1 as the temperature T increases
from 2 to 65°C. Hence, the heating of the surface layer
is accompanied by the increase in its transparency, and
the radiation penetrates deeper into water. As a result,
the penetration depth progressively increases as succes-
sive water layers are heated one after another.

The propagation velocity v z of the transparency
wave can be estimated from the obvious approximate
relation

(3)

where I0 is the intensity of microwave radiation inci-
dent onto a water column, αT is the absorption coeffi-
cient in the heated (transparent) layer (according to [2],
we take αΤ ≈ 0.4 cm–1 at Th ≅  65°C), and ∆T = Th – T0
is the difference between Th and the initial water tem-
perature.

The propagation velocity of the transparency wave
estimated by Eq. (3) agrees with the experiment results
in both the order of magnitude and the character of its
decrease deep into the water column (Fig. 4).

The experimental results were compared with com-
puter simulations performed by the following algo-
rithm. The water column was divided into identical lay-
ers with a thickness of d = 1 mm. The time step was
chosen to be equal to ∆t = 1 s. It was assumed that the
axial profile of the microwave intensity did not change
within this time interval. The intensity profile was
recalculated at each time step. Assuming that the initial
temperature was the same for each layer (consequently,
the absorption coefficient α was assumed to be constant
along the water column at the first time step ∆t1), we
calculated the intensity profile by the formula

where In is the intensity at the entrance to the layer, n is
the layer number, and dn is the layer thickness. The
quantity ∆I = In – 1 – In is the power absorbed in the nth
layer. Using the relation ∆I = ρcp(T1 – T0)/∆t1, we cal-
culated the temperature distribution over the layers

v z I0 αT Z–( )/ρcp∆T ,exp≅

In In 1– αdn( ),exp=
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after the first time step (∆t1). This temperature distribu-
tion corresponded to a new axial intensity profile calcu-
lated using the dependence α(T) taken from [2]. This
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Fig. 3. Temperature of the water column at different depths
vs. irradiation time.
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Fig 4. Propagation velocity of the transparency wave in a
water column vs. depth Z.
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Fig. 5. Calculated temperature of the water column at dif-
ferent depths vs. irradiation time.
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distribution was assumed to be unchanged throughout
the second time interval ∆t2. Using this distribution, we
calculated the temperatures of all the layers after the
second time step ∆t2. From this temperature distribu-
tion, we again found a new axial intensity profile after
the second time interval ∆t2. Thus, the procedure was
repeated step by step many times and a series of curves
was plotted as is shown in Fig. 5. One can see that the
calculated curves are similar to the experimental curves
shown in Fig. 3. A certain difference can be explained
by the fact that the time step in simulations was not
small enough; we also ignored the cooling of the upper
water layers, evaporation, etc.

Experiments with water solutions of salt showed
that, in comparison with the distilled or tap water, the
character of penetration of both low- and high-power
microwaves into the solutions begins to change starting
from conductivities as high as 1500–2000 µS/cm (see,
e.g., Fig. 2, curve 2). This fact implies that the induced

Table

T, °C α, cm–1

2 2.2

6 1.66

14 1.38

25 0.82

36 0.64

46 0.46

56 0.42

65 0.40

75 0.35

85 0.30

95 0.30
transparency observed in our experiments will appar-
ently take place not only in pure water, but also in a
wide class of waste waters and water solutions.

CONCLUSIONS

The effect of the induced transparency of water
under the action of high-intensity (Ip ≈ 5 W/cm2) con-
tinuous (or quasi-continuous) microwave radiation (λ ≅
12 cm) has been discovered. It is shown that the pene-
tration depth of high-power microwaves substantially
increases as compared to low-power microwave radia-
tion (which penetrates into water no deeper than 5 mm)
because of the generation of a transparency wave,
whose velocity attains 10–1 cm/s near the surface and
decreases to ~10–2 cm/s as the wave propagates along
the water column.

The results obtained can be used in various technol-
ogies and industrial processes involving microwave
heating of liquid flows (purification of waste water,
sterilization of liquid food, etc.).
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Abstract—Electronic switching in poly(diphenylenephthalide) due to the thermal ionization of electron traps
is studied. The method of thermally stimulated current and the method of thermally stimulated depolarization
current are used. A correlation between spectra obtained by the two methods is established. The results are inter-
preted by using the temperature dependence of IR absorption spectra taken under conditions similar to those
under which thermally stimulated phenomena are observed. Comparing data obtained, we assign electron traps
to specific molecular groups of the polymer and infer the importance of the surplus space charge critical con-
centration for the onset of the high-conductivity state in the polymer. © 2003 MAIK “Nauka/Interperiodica”.
The phenomenon of charge instability discovered in
several electroactive polymers [1–4], which causes an
anomalously high local conductivity, is of great theo-
retical and applied interest. Yet, a generally accepted
mechanism behind this phenomenon is lacking despite
a variety of available models [5–8].

Available experimental data for the switching effect
in metal–polymer–metal systems, which was initiated
either by applying pressure [9] or electric field [10] or
by varying the boundary conditions [11], suggest that
the transition to the high-conductivity state follows the
stage of nonequilibrium space charge accumulation.
The variation of the electron energy spectrum in poly-
mer films as a result of charge injection has been theo-
retically predicted and experimentally confirmed else-
where [12, 13].

However, injection is not the only way of changing
the space charge in polymer films. For example, the
space charge concentration was varied by irradiation of
the film by an electron beam [14].

The possibility of measuring the thermally stimu-
lated current (TSC) has been demonstrated in [15, 16].
However, a reliable correlation between electron traps
and the molecular structure of a polymer cannot be
found from these data.

In this work, we study the TSC spectra and the ther-
mally stimulated depolarization (TSD) spectra in poly-
mer films for various film thicknesses and rates of
change of temperature. Another goal is to find a relation
between the thermally stimulated phenomena and elec-
tron switching effect.

The object of investigation was polymers from the
class of poly(phthalidylidenearylene)s [17], in which
intriguing effects related to the transition to the high-
1063-7842/03/4811- $24.00 © 21493
conductivity state have been observed [18, 19]. The
sample, a polymer film sandwiched in metal films, was
applied on a polished glass substrate with a planar elec-
trode [11]. The TSC and TSD spectra were taken by the
standard techniques [20].

Typical measurements of the thermally stimulated
currents passing through the polymer film at a given
rate of change of temperature are given in Fig. 1. Three
portions can be distinguished in this figure. In the first
one, 150–250 K, small-amplitude current fluctuations
are observed. In the second portion (250–300 K), the
slope of the curve I(T) increases, the fluctuation ampli-
tude grows, and a local current maximum is observed.
In the third portion (>300 K), the current through the
sample rises in an avalanche-like manner and the sam-
ple passes to the high-conductivity state. As the temper-
ature grows further, the polymer conductivity remains
almost constant. In the thinner polymer film (Fig. 1,
curve 2), the current increases insignificantly through-
out the temperature range and the temperature of tran-
sition to the high-conductivity state slightly lowers. For
a lower rate of heating (curve 3), the transition to the
high-conductivity state does not occur. Thermally stim-
ulated processes in these polymer films may be associ-
ated not only with the ionization of electron states in the
energy gap but also with a change in the mobility of
molecular fragments in the range of characteristic tem-
peratures.

To substantiate the latter reason, we took the depo-
larization current spectra from the same samples
(Fig. 2). Here, three portions similar to those in the tem-
perature dependence of the TSC (Fig. 1) are also seen.

From Figs. 1 and 2, it follows that, at low tempera-
tures (below 250 K), the mobility of molecular chains,
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which is clearly seen in the TSD spectrum, makes a
minor contribution to the TSC. At temperatures
between 250 and 300 K, the TSD signal is virtually
absent and the TSC spectrum exhibits a local maxi-
mum. Presumably, this indicates the ionization of elec-
tron states unrelated to mobile fragments of molecular
chains. The best coincidence between the spectra is
observed at temperatures above 300 K and a low rate of
change of temperature. As follows from the tempera-
ture dependence of the IR absorption spectra for
poly(phthalidylidenearylene)s [15], the modification of
the spectra are the greatest near ν ~ 1600 cm–1 at tem-
peratures close to 250 and 300 K. In this range, a 1595–
1608 cm–1 doublet is observed, which is typical of
vibrating C=C bonds in the phenyl ring of a side phtha-
lide fragment [21–23]. The observed variation of the IR
absorption spectrum for poly(phthalidylidenebipheny-
lilene) is apparently related to the vibration of these
bonds.

From the aforesaid, one may conclude that the
“high-temperature” type of thermally stimulated depo-
larization is due to the thermal activation of a side

–4

–6

–8

log(I/A)

150 200 250 300 T, K

I II III

1

2

3

32
1

–10

Fig. 1. Temperature dependence of the TSC. The rate of
heating is 5 K/min. The film thickness if (1) 1.5 and
(2) 1 µm. Curve 3 shows the behavior of sample 2 for a rate
of heating of 1 K/min.
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I II III

I, nA

–4

–6

–8

–10

Fig. 2. Temperature dependence of the TSD current. The
rate of heating is 5 K/min.
phthalide fragment of a macromolecule. This process is
accompanied by the ionization of electron traps; there-
fore, the TSC spectrum has a peak. When the rate of
heating is high, the film passes to the high-conductivity
state at the temperature of the TSC maximum.

As follows from our results, the transition to the
high-conductivity state in the polymer film results in
anomalously high intramolecular excitation, which
shows up as an increase in the amplitude of the macro-
molecule vibrational spectral lines. This excitation
takes place in a side phthalide fragment. It is accompa-
nied by the occurrence of peaks in both the TSC and
TSD spectra. Such a correlation can be explained in
terms of quantum-mechanical calculations of the elec-
tron state density and also by taking into account the
optimized configuration of a poly(diphenylenephtha-
lide) molecule (the optimization was accomplished in
[24]). It was shown in [24] that the capture of an excess
electron by a side phthalide fragment may carry the
molecule to a new energetically stable state of another
configuration with the formation of deep electron states
in the forbidden energy range. It seems that a sharp
increase in the intensity of vibrational spectrum lines
for a side phthalide fragment of the polymer reflects the
transition of the molecule to a new state via the capture
of an electron by a molecular trap. Therefore, the tem-
perature interval where the IR spectrum lines have
maximal amplitudes correlates well with temperature
intervals II and III in the TSC and TSD spectra.

Thus, it was experimentally shown that electronic
switching from the low- to the high-conductivity state
in poly(diphenylenephthalide) films is due to the ther-
mal ionization of deep traps. As a result, the amplitude
of intramolecular vibrations in side phthalide fragments
grows substantially. This means that such an electronic
transition leads to the reconfiguration of the macromol-
ecule’s electronic spectrum.
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Abstract—The effect of the anharmonic phase dependence of the supercurrent on I–V hysteresis in a Josephson
junction is studied in terms of a modified resistive model. © 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

In [1], a Josephson junction with an antiferromag-
netic spacing of thickness d between superconductors
was reported. As the thickness of the antiferromagnetic
spacing decreases, the current–phase dependence
becomes nonsinusoidal. Calculations show [2] that the
distortion of the current–phase dependence is estimated
through the parameter δ = d/dc, where dc = πξa is a crit-
ical thickness and ξa is the antiferromagnetic coherence
length. Note that anharmonicity in the current–phase
dependence arises in SNS or SINS systems (S, super-
conductor; N, normal metal; and I, insulator) based on
low-temperature superconductors at room temperature
[3, 4] and in superlattices consisting of alternating insu-
lating and superconducting layers [5]. The order
parameter symmetry in high-temperature superconduc-
tors greatly influences the value and shape of the super-
current in Josephson junctions. It has been shown [6]
that the sign of the Josephson tunnel current in d-wave
superconductors depends on the order parameter orien-
tation relative to the junction plane [7]. The properties
of various Josephson junctions based on d-wave super-
conductors have been covered elsewhere [8, 9]. It is
now clear that reasons for and types of anharmonicity
in the current–phase dependence differ. The I–V char-
acteristics of such junctions are poorly understood. In
this work, the effect of the anharmonic current–phase
dependence on the I–V characteristic is studied with a
Josephson junction having an antiferromagnetic spac-
ing. To this end, a term proportional to phase φ squared
is introduced into the equation of Josephson junction
dynamics instead of φ, which describes the current
through a normal resistance. This is equivalent to intro-
ducing a quadratic resistance. The advantage of this
model is that the equation for Josephson junction
dynamics can be solved analytically. Such a consider-
ation retains generality, since our main goal is to see
how the anharmonicity of the current–phase depen-
dence influences I–V hysteresis.
1063-7842/03/4811- $24.00 © 21496
BASIC EQUATIONS

It was shown [10] that the nonsinusoidal variation of
the supercurrent takes place in the presence of the self-
inductance of the junction. In this case, the supercurrent
j(φ) is given by

(1)

where l = 2πLIc/Φ0 is the dimensionless (normalized)
inductance, Ic is the critical Josephson current, and
Φ0 is a fluxon.

With l ≥ 1, the dependence j(φ) becomes ambiguous;
in the opposite limit, the dependence is unique. Exper-
imental data suggest that this dependence in Josephson
junctions with an antiferromagnetic spacing is unique.
This indicates that the normalized self-inductance is
small, l ≤ 1. This parameter is evaluated by the formula
[10]

(2)

From experimental data [1], we find that the self-
inductance normalized varies between 0 and 3: 0 < l <
3. Note that it increases with decreasing δ. Unfortu-
nately, this relationship may be judged only on a quali-
tative basis, since a microscopic theory of Josephson
junction with antiferromagnetic spacing is lacking. The
thickness d of the antiferromagnetic spacing (and,
hence, the parameter δ) is involved in the normalized
self-inductance l. An analytical relationship between l
and d remains to be found. Since l is small, j(φ) in (1)
can be approximated as

(3)

that is, the presence of a small self-inductance l causes
the second harmonic to appear. Later on, instead of
Eq. (1) for Josephson junction dynamics, we will use
expression (3). First, let us consider a small-capaci-
tance junction. In this limit, the Josephson junction

j φ( ) φ lj φ( )–( ),sin=

l maxφ I φ( ) I π φ–( )–( )/2Ic.=

j φ( ) φsin l 2φ( )/2;sin–=
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dynamics is described by the first-order differential
equation

(4)

Here, time is measured in Φ0/2πVch, where Vch is the
characteristic voltage across the junction.

A solution to Eq. (4) has the form

(5)

Note that the effect of anharmonicity in this case is
quadratically small. The I–V characteristic calculated
analytically is given by

(6)

where v  = V/Vch is the voltage normalized to the char-
acteristic voltage across the junction.

Thus, the effect of anharmonicity on the I–V charac-
teristic of hysteresis-free Josephson junctions may be
neglected.

Now we turn to a large-capacitance junction. In this
case, the McCumber parameter is greater than unity
[11] and it is therefore of interest to consider a junction
with hysteresis. The associated dynamics equation
includes a term related to displacement current. An ana-
lytical solution can, however, be obtained only with a
quadratic resistance [12]. Since the issue is treated on a
qualitative basis, we consider an equation in the form

(7)

The substitution  = z transforms Eq. (7) into

(8)

where a = b = β–1 and c = –l/2β.

The stationary solution to this equation is

(9)

where the coefficient A depends on the initial condi-
tions and the term Aexp(–2aφ) decays.

Thus, the steady-state solution has the form of
expression (9) without the term Aexp(–2aφ). The other
coefficients are B = 2β–1/(1 + 2β–2)0.5 and C = c/(1 +
β−2)0.5 . For a large capacitance, Eq. (9) may be solved
in quadratures [13]:

(10)

where scu = snu/cnu is the Jacobian elliptic function
with the argument u, modulus κ, and period T and E =

φ̇ j φ( )+ i.=

φ 2 i2 1 i2l2+( )–[ ] 1/2
/i l 1–( )[ ]{ }arctan=

× 1 i2l2+( ) i2 1 i2l2+( )–[ ] 1/2τ /2{ }tan i 1 l–( )( ) 1– } .+

i 1 v 2/2+( ) 1 3l2–( ) 1–
,=

βφ̇̇ φ̇
2

j φ( )+ + i.=

φ̇
2

dz/dφ 2az 2b φsin 2c 2φsin+ + + 2i/β,=

φ̇ i Ae 2aφ– B φ 2β 1–( )arctan+( )cos+ +(=

+ C 2φ β 1–arctan+( ) )1/2
,cos

φ 2 b0sc a0E0.5 t t0–( )/2.1/κ( )( ),arctan=
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i – B + C. Also,

(11)

The phase oscillation period is expressed as [14]

(12)

where κ = /(  – ) > 1 is the Jacobian function
modulus and K(1/κ) is the complete elliptic integral of
first kind.

The resistive branch of the I–V characteristic is
found by the time averaging of the derivative

(13)

The final form of the I–V characteristic appears as

(14)

DISCUSSION

The figure shows the I–V characteristics of a Joseph-
son junction for different McCumber parameters β and
the inductances l = 0 and 0.2. The solid curves corre-
spond to the harmonic phase dependence of the super-
current (l = 0). As the current through the junction
grows, the junction switches from the superconducting
to resistive state at the critical current Ic irrespective of
the McCumber (inductance) parameter β and induc-
tance l (the horizontal arrow pointed rightward from the

a0
2 i 3C– B2 8C(i– C–( )+( )0.5 )/E,=

b0
2 i 3C– B2 8C(i– C–( )–( )0.5 )/E.=

T 4K 1/κ( )/a0E0.5,=

a0
2 a0

2 b0
2

ν φ̇〈 〉 2π/T .= =

ν πa0 i B– C+( )0.5 2K 1/κ( )( ) 1– .=

IR

IR

IR

IR

2.0

1.5
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I

0 0.4 0.8 1.2 1.6
v

1

2

3

4

5

I–V characteristic of a Josephson junction with the har-
monic (l = 0, solid curves) and anharmonic (l = 0.2, dashed
curves) phase dependence of the supercurrent for a
McCumber parameter β = (1) 0, (2) 1, (3) 20, (4) 50, and
(5) 100.
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point I = Ic). With an increase in β, hysteresis in the I–
V curve becomes more pronounced; that is, the reverse
switching of the junction from the resistive to supercon-
ducting state (the horizontal arrows pointed leftward)
takes place at a return current Ir, which is lower than the
critical current. The return current Ir is described well in
the framework of the resistive model [11] by the for-
mula

(15)

Formula (15) determines the amount of hysteresis in
the I–V characteristic and fits well experimental data.
Our calculations in terms of the model with quadratic
resistance are in qualitative agreement with this for-
mula: as the McCumber capacitance parameter β
decreases from one hundred to zero, the return current
grows from zero to the critical current.

The dashed lines correspond to the Josephson junc-
tion with the anharmonic dependence (l = 0.2). The
inclusion of the term sin2φ into the expression for the
supercurrent diminishes hysteresis. A low self-induc-
tance of a Josephson junction suppresses the capaci-
tance-related inertial effect and ultimately decreases
the amount of hysteresis in the I–V curve. The amount
of hysteresis depends on the self-inductance value. In
the case of a Josephson junction with an antiferromag-
netic spacing, the explicit dependence of the self-induc-
tance on the spacing thickness is unknown because a
comprehensive microscopic theory of this object is
lacking.

An attempt to work out a microscopic theory has
been made in [15] for SNS and SIS structure. When
theoretically simulating such structures, one usually
considers a potential barrier at the interface between the
superconductor and another material. The physical
properties of such superlattices depend on the micro-
structure of interfaces between alternating layers, i.e.,
on the properties of contacting media (S–S, S–N, S–I,
S–F, and S–Sc interfaces, where F and Sc are ferromag-
net and semiconductor, respectively) [16, 17]. An
explicit expression for the second harmonic of the
supercurrent in S–I superlattices was given in [5].
According to [5], the supercurrent in such structures
can be generally represented as the sum of all harmon-
ics, sinnφ, and the amplitude of the second harmonic
(sin2φ) varies as the interface barrier penetrability
squared. Finding the detailed phase dependence of the

Ir Ic
4

πβ1/2
------------.=
supercurrent in superconducting structure goes beyond
the scope of this work.

Thus, the anharmonic phase dependence of the
supercurrent, which is observed in Josephson junctions
with an antiferromagnetic spacing and in similar struc-
tures, should be taken into account upon analyzing their
dynamic properties.
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Erratum: “Transition Radiation from an Extended Bunch 
of Charged Particles” 
[Tech. Phys. 47, 1 (2002)]

B. M. Bolotovskiœ and A. V. Serov

The plots of the angular dependence of the transition radiation intensity (Figs. 3a–3d) are in error. For
the wavelength-to-bunch radius ratio taken in this paper, the intensity maxima at large angles turn out to be
less pronounced.

Below, the correct versions of Figs. 3a–3d are given. Note that the discrepancy between the angular dis-
tributions of the intensity from the bunch and point source will be much greater for other wavelength-to-
bunch radius ratios.

We thank A.P. Potylitsyn who noticed the error.
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Fig. 3. Angular dependences of the transition radiation intensity at λ/r0 = (a) 1.5, (b) 0.85, (c) 0.35, and (d) 0.2.
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