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Ultrasound damping atT54.2 K in single crystal easy-plane antiferromagnetic KMnF3 is studied
experimentally as a function of the magnitude and direction of a constant magnetic fieldH
at frequencies of 640–670 MHz, corresponding to the frequencies of nuclear spin waves. Two
experimental situations are examined: in the first, the vectorH lies in the easy magnetization
plane~001!, and in the second,H forms an angle with~001!. For longitudinal ultrasound waves
propagating along the hard magnetization axis@001#, it is found that the damping depends
resonantly on the magnitude of the fieldH. In the first case a single damping maximum is
observed, and in the second, two damping peaks that are well resolved with respect to the
field. The angular dependence of the resonance damping signals on the direction of the constant
magnetic field is found to have a 90° periodicity in all cases. The observed effects are
explained by resonant ultrasonic excitation of nuclear spin waves. On the basis of an analysis of
the magnetoacoustic interaction energy, it is shown that in the first case, nonzero oscillations
of the antiferromagnetism vectorL occur only in the basal plane, while in the second, oscillations
of L occur both in the basal and a vertical plane, which are associated, respectively, with
two branches of the nuclear spin waves. It is also shown that the 90° periodicity in the angular
dependence of the damping signals is associated with a fourth order@001# axis. © 1997
American Institute of Physics.@S1063-7761~97!02211-7#
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The principal characteristic of nuclear spin waves,1 as of
electronic spin waves~magnons!,2 is that their frequencies
vn(q) depend on the wave vectorq, which varies within the
limits of the Brillouin zone over 0<q<Q, whereQ is the
reciprocal lattice vector. The range of variation in the fr
quencies of the nuclear spin waves~the width of the spin
wave band!,

vp5vn~Q!2vn~0!, ~1!

is determined by an indirect interaction of the nuclear m
netic momentsm through magnons3 and therefore depend
strongly on the shape of the magnon spectrumve(q).

In two-sublattice antiferromagnets, which includ
KMnF3, the magnon spectrum has two branchesve1(q) and
ve2(q) ~in accordance with the number of magnetic subl
tices!, whose spectral widths are determined by the excha
interaction~vei(Q)2vei(0)5vE;101321014 s21, i 51,2!.
Thevei(0) are related to weaker magnetic interactions~with
external magnetic fields, magnetic anisotropy fields, etc.!, so
that vei!vE . In easy-plane antiferromagnets, the ra
ve1(0)/ve2(0)'102221023 because of the large differ
ence in the magnitudes of the anisotropy fields in the ba
plane,Ha , and along the hard magnetization axis,HA .4 In
the weakly anisotropic ferromagnetic materials, cu
RbMnF3 and almost cubic KMnF3, this ratio is typically

ve1~0!/ve2~0!.1. ~2!
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and vei(0) determines the radius of the indirect interacti
of the nuclear magnetic momentsmj and mj8 through the
magnons:3

r 0~ i !5avE /vei~0!, ~3!

where a is the interatomic separation in the crystal.r 0( i )
depends on the magnon branch numberi because the inter
actions of the various components of the vectorsmj andmj8
are different. In easy-plane and cubic antiferromagnetic m
terials in constant magnetic fieldsH,104 Oe, r 0( i ) can at-
tain macroscopic sizes (r 0;(1032104)a'(1025

21024) cm), which ensures formation of nuclear sp
waves at liquid helium temperatures, when the nuclear sp
are in a disordered paramagnetic state.3

Nuclear spin waves have been studied in most detai
easy-plane antiferromagnets based on manganese a
(MnCO3, CsMnF3 etc.!.5–9 These compounds are the mo
convenient objects for such research for the following r
sons: first, as do other antiferromagnetic materials, they h
a large radiusr 0'102521024 cm ~3!; second,55Mn nuclei
have a large magnetic moment~'3.5 nuclear magnetons!;
third, strong hyperfine fieldsHn5650 kOe act on them; and
fourth, the natural abundance of the magnetic isotope55Mn is
close to 100%.

The easy-plane antiferromagnetic materials are dis
guished by the fact that only the indirect interaction throu
low frequency magnons,ve1(q), is significant because
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r 0(2)!r 0(1), soonly one branch of the nuclear spin wave
vn1(q) develops. For the other branch,vn2(q), the nuclear
spin wave band is narrower than the NMR line.

In the past, mostly the nonlinear effects produced
nuclear spin waves have been studied: the production of e
signals by frequency modulation;9 parametric excitation of
nuclear spin waves;5–8 hysteresis in stationary NMR
signals.10,11 In these papers, nuclear spin waves were exc
by a varying magnetic field. In the present paper, we rep
studies of nuclear magnetoacoustic resonances in w
nuclear spin waves are excited by the elastic field of
acoustic wave, as in the case of the electron magnetoaco
resonance with magnons.2 Although magnetoelastic interac
tions can play an important role even in ordinary NMR,12 in
the case of NMR their role can only be evaluated indirec
In the case of the nuclear magnetoacoustic resonance,
possible to intervene actively in the magnetoelastic dyna
ics, by varying the amplitude, frequency, and polarization
the sound. In addition, magnetic and magnetoacoustic fi
differ in symmetry and this shows up in the selection ru
for excitation of the different branches of nuclear spin wav

Nuclear spin waves were excited and their proper
studied in the antiferromagnetic compound KMnF3 which
has a cubic structure with a weak tetragonal distortion.
this sort of antiferromagnet, because of Eq.~2! the indirect
interaction through both magnon branches is significant
this causes both nuclear spin wave branches,vn1(q) and
vn2(q) to develop.13–15The dispersion curves for the nucle
spin wavesvn1(q) andvn2(q) and the acoustic waveV~q!
are shown schematically in Fig. 1. The intersection points
the curves

V~q!5vn1~q! and V~q!5vn2~q! ~4!

correspond to resonance conditions in the first and sec
nuclear spin wave branches. The dashed curves in Fi
represent the distortion in the nuclear spin and sound wa
in the neighborhood of these resonances, which shows u
particular, as a change in the sound speedVS that is well
known from the electron magnetoacoustic resonance.2 The
behavior ofVS in the nuclear magnetoacoustic resonance
gion was not studied there, however. The main purpose

FIG. 1. Dispersion curves for sound wavesV~q! and for the two branches o
nuclear spin wavesvn1(q) andvn2(q).
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acoustic resonance signal from both nuclear spin w
branches.

The nuclear magnetoacoustic resonance signals were
served using the fact that the width of the nuclear spin w
bands,vpi(q), which represent a dynamic frequency shift,3,9

has a strong dependence on the magnitude of the con
magnetic fieldH. Thus, the points where the branches of t
nuclear spin waves intersect can be displaced along theV~q!
curves using the magnetic fieldH to make them coincide
with the frequencyV0 of the acoustic oscillations excited i
the sample. The fieldsH at which these coincidences occ
can be determined experimentally from the absorption p
for the input acoustic power.

2. SAMPLES AND MEASUREMENT TECHNIQUE

KMnF3 has a cubic structure at room temperature wh
undergoes a weak tetragonal distortion as a result of
structural phase transitions atT15188.6 K and
T2591.5 K.16,17 Antiferromagnetic ordering occurs a
TN588.3 K. The corresponding collinear two-sublattice a
tiferromagnetic structure is determined by the antiferrom
netism vectorL5(M12M2)i@001#, where@001# is a fourth-
order axis. AtTM581.5 K there is a magnetic orientation
phase transition in whichL tilts into the basal plane and
weak ferromagnetismM5M11M2 develops.16–19The sym-
metry of all these transitions has been analyzed elsewhe20

The presence of a weak ferromagnetism in the tetrago
antiferromagnetic materials has been shown3,20 to lead to the
formation of a domain structure with four directions ofL and
M , which makes experiments more complicated. This can
avoided, however, by cooling the sample to below 100 K
a field H.8 kOe, as has been done in the present work.

The single crystals of KMnF3 on which the measure
ments were made were prepared in the form of parallele
peds from a single piece with dimensions of 43434.7 mm3

and 33334 mm3, whose edges coincided with the princip
crystallographic axes@100#, @010#, and @001#. The end sur-
faces of the crystals were made flat and mutually paralle
within 1/5 wavelength of the acoustic wave. Ultrason
waves were excited in a pulsed regime at one of the
surfaces,~001!, of the sample and detected at the oppos
end. They were polarized longitudinally and had a frequen
in the range 600–700 MHz. The acoustic wave vectorq was
always oriented along the@001# axis.

The measurements were taken atT54.2 K. The helium
cryostat with the sample was rotated about theR axis, always
perpendicular toH ~Fig. 2a and b!. The angle between theR
axis and the wave vectorq was set equal to 0°~direct orien-
tation, Fig. 2a! or 20° ~oblique orientation, Fig. 2b!. The
constant magnetic field was varied from 0 to 8 kOe.

To simplify the observations and calculations we use
single pass of the acoustic pulse through the sample.
ratio of its amplitudeU to the amplitudeU0 of the incident
sound determines the measured absorption coefficient.
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FIG. 2. Experimental geometry:~a! direct orien-
tation~H lying in the easy magnetization plane!,
~b! oblique orientation~H directed at an angle to
the easy magnetization plane!.
3. MEASUREMENT RESULTS
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Resonant damping in a constant magnetic field of ul
sonic pulses at frequencies of 630–670 MHz propaga
along the@001# direction of the crystal was observed for th
two orientations of the sample relative toR.

In the first case the vectorsH andq were perpendicular
to one another andH lay in the easy magnetization plan
~001! of the sample~direct orientation! ~Fig. 2a!. In the sec-
ond case, the angle betweenH andq was varied from 70° to
110° ~oblique orientation! ~Fig. 2b!. In the plots ofU/U0 as
a function ofH for fixed values off ~wheref is the angle
between thex axis and the direction ofH'! the following
features were observed: a single intense peak for direct
entation~Figs. 3a and 4a! and two intense peaks for obliqu
orientations~Fig. 3b and 4b!.

FIG. 3. Plots of the ratioU/U0 as a function of the constant magnetic fie
H for direct ~a! and oblique~b! orientations of the sample at a frequency
644 MHz.
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of the constant magnetic field with respect to the crysta
graphic axes~i.e., of the anglef! are shown in Figs. 5 and 6
The constant magnetic fieldsH5H1 ~direct orientation, Figs.
5a and 6a! andH5H18 andH5H28 ~oblique orientation, Figs.
5b and 6b! correspond to the acoustic absorption peaks.
can be seen from Figs. 5 and 6, the angular dependenc
U/U0 has a 90° periodicity in the direction ofH in both
cases, consistent with the fact that the@001# direction is a
fourth-order axis.

The curves in Figs. 3–6 correspond to two frequenc
644 and 655 MHz. Similar curves were obtained for oth
frequencies in the range 630–670 MHz. These anoma
vanish outside this range. Since the 630–670 MHz band
responds to NMR frequencies for KMnF3,

13–15 we have at-

FIG. 4. Plots of the ratioU/U0 as a function of the constant magnetic fie
H for direct ~a! and oblique~b! orientations of the sample at a frequency
655 MHz.
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tempted to relate the observed minima ofU/U0 in Figs. 3
and 4 to a resonant interaction of sound with the two nuc
spin wave branches near the points whereV~q! intersects
vn1(q) and vn2(q) ~Fig. 1!. This is discussed in the nex

FIG. 5. Angular dependences of the ratioU/U0 for direct ~a! and oblique
~b! orientations of the sample at a frequency of 644 MHz.

FIG. 6. Angular dependences of the ratioU/U0 for direct ~a! and oblique
~b! orientations of the sample at a frequency of 655 MHz.
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section of this article, where expressions are derived for
magnetoelastic energy corresponding to the interaction of
first, V1 , and second,V2 , branches of the nuclear spin wave
with longitudinal sound in the propagation geometry bei
examined here~qi@001#! ~see Eq.~26!:

V1;sin c sin 2w, V2;cosc sin 2w, ~5!

wherew is the angle betweenL andz (zi@100#) andc is the
angle betweenM and the basal plane~001! ~the zx plane in
Fig. 7!. Equations~5! have been derived forL oriented in the
basal plane~L'@001#! and correspond to the magnetoelas
part of the interaction responsible for the weak ferroma
netism in KMnF3.

20

It can be seen from Eq.~5! that forc50, V150, so that
one minimum should remain in theU(H)/U0 curve. Mea-
surements with direct orientation~Figs. 3a and 4a! were
made specially as a control experiment to verify Eq.~5!. The
second characteristic feature ofV1 andV2 is that they go to
zero forw50,6p/2,p. At these values ofw we should have
U(H)/U0'1, in agreement with Figs. 3 and 4.

4. DISCUSSION OF RESULTS

To describe the phenomena owing to the nuclear m
netoacoustic resonance which have been observed in the
periment, we can begin with the equations of motion of t
nuclear magnetizationsmi of the sublattices,1

dmi

dt
5gn~mi3Hni!, i 51, 2, ~6!

wheregn is the nuclear gyromagnetic ratio and theHni are
the effective magnetic fields, determined by the interactio
in which the nuclear spins participate. The strongest inter
tion, which greatly exceeds all the others, is the hyperfi
interaction:1

HN52(
i 51

2

AiE drM i~r !mi~r !, ~7!

where Ai is the hyperfine interaction constant for thei th
sublattice. In the case of crystallographically equivalent s
lattices~as in KMnF3!, the constantsA15A25A. The inter-
action HN is equivalent to the effect of an effective ma
netic field

FIG. 7. Euler anglesu, w, andc which define the orientation of the vector
L andM , whereu is the angle betweenL andz ~or y andh! in theyz plane;
w is the angle betweenz andz ~or x andj! in the zx plane;c is the angle
betweenM andj in the hj plane.
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originating in the electronic magnetizationM i on the nuclear
magnetizationmi which appears in Eq.~6!. Given these re-
marks, in the following we restrict ourselves to consideri
just this effective field~8! in Eqs.~6!.

In coordinate systems (xi ,yi ,zi) attached to the equilib
rium directions of the sublattice magnetizationsM0i

(M0i izi), Eq. ~6! take their simplest form. For small oscilla
tions in mi , when we can neglect the changes in t
z-component (mi

zi5m0) as second order quantities compar

to the variations inmi
xi andmi

yi , Eq.~6! can be written in the
form

dmi
xi

dt
5vn0mi

yi2gnDHni
yi ~r ,t !m0 ,

dmi
yi

dt
52vn0mi

xi1gnDHni
xi ~r ,t !m0 ~ i 51,2!, ~9!

wherem0 is the equilibrium value ofmi
zi , vn05gnAM0 is

the unshifted NMR frequency determined by the static p
of the hyperfine fieldHni5AM0 ~M05M015M02 is the
equilibrium magnetization of the electronic sublattices!, and

DHni~r ,t !5ADM i~r ,t !5A~M i~r ,t !2M0i ! ~10!

is the dynamic part ofHni owing to oscillations of the
M i(r ,t) near their equilibrium values. In this case, these
cillations have the form

DM i~r ,t !5DM im~r ,t !DM iu~r ,t !, ~11!

where the oscillationsDM im(r ,t), given by

DM im~r ,t !5(
j 51

2 E dr8x i j ~r2r 8!Amj~r 8!, ~12!

are caused by the hyperfine fields

Hei8 ~r ,t !5Ami~r ,t !, ~13!

acting on the electron spins from the part of the nuclei. Th
oscillations ensure the generation of nuclear spin wav3

Equation~12! includes the quantitiesx i j (r ,t), which deter-
mine the response of the magnetizationM i(r ) at the pointr
to thehj (r 8) applied to thej -sublattice at the pointr 8. The
second term in Eq.~11!, which is the principal term in the
magnetoacoustic resonance, is caused by the magnetoe
fields hju associated with the elastic deformations by t
acoustic wave:

DM iu~r ,t !5(
j 51

2 E dr8x i j ~r2r 8!hju~r 8,t !. ~14!

The fieldshju are defined as the variational derivatives of t
magnetoelastic energyVME ,3,21

hju~r 8,t !5dVME /dM i~r 8,t !, ~15!

where

VME5 (
i , j 51

2

(
a,b,g,d

E dr Bi j
abgdMi

a~r !M j
b~r !Ugd~r ,t !, ~16!
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Ugd~r ,t !5
1

2
$]Ug~r ,t !/]r d1]Ud~r ,t !/]rg%, ~17!

while U is the elastic displacement vector and theBi j
abgd are

the magnetoelastic interaction constants.
By solving Eq.~9! in conjunction with Eqs.~10!–~17!, it

is possible to calculate the spectrum and amplitudes of
nuclear spin waves excited by the elastic fieldU(r ,t). But in
order to do this, it is necessary to know the components
the susceptibilitiesx i j (r2r 8), which depend on the orienta
tion of the vectorsM0i that are determined by the magnitud
and direction of the fieldH. Unfortunately, this kind of cal-
culation can be done in analytic form completely only for
few orientations ofH along the most symmetric directions i
the crystal. Although they are free of this restriction, nume
cal calculations require knowledge of all the necessary
rameters of the substance. In addition, it would be desira
to confirm in advance that the model is applicable to solv
our problem. Such proofs have been successfully obtaine
analyzing the selection rules for excitation of nuclear s
waves by longitudinally polarized acoustic waves. To do t
we used a property of the solutions of Eq.~9! which can be
established without solving the equations themselves
turned out that one branch of the nuclear spin waves inter
only with oscillations ofL5M12M2 in the basal plane,
during which only the anglew varies.~See Fig. 7.! The other
branch of the nuclear spin waves interacts only with osci
tions of L in a vertical plane which are described by th
single angleu. Perturbations which affect the anglec do not
excite either branch of the nuclear spin waves.

This property of nuclear spin waves allows us to find t
conditions under which the interaction of sound with each
the nuclear spin wave branches goes to zero by analyzing
interactionVME ~16! and without calculatingx i j (r2r 8).

The procedure for this analysis reduces to the followin
the expression for the magnetoelastic energy~16! can be
conveniently rewritten to account for the specific symme
of crystalline KMnF3 by shifting from the magnetizationsM i

to the vectorsL and M . For tetragonal crystals, such a
KMnF3, Eq. ~16! takes the form

VME5VLL1VLM1VMM , ~18!

whereVLL only contains components of the vectorL , VLM

depends on products of components of both vectorsL and
M , andVMM is a term quadratic in components ofM . Since
the ratioM /L.vei(0)/vE'1023, VLM has a significant ef-
fect only when the corresponding terms inVLL equal zero.
Similarly, it makes sense to includeVMM only if VLM has no
effect. For longitudinal sound propagating along theyi@001#
axis, the effect ofVMM can be neglected and the expressio
for VLL andVLM can be written in the form

VLL5B1Ly
2Uyy1B2~Lz

21Lx
2!Uyy ,

VLM5B3~MxLz1MzLx!Uyy , ~19!

whereB15b33, B25b23, andB35b63.22 Subsequently, the
components ofL andM must be expressed in terms of th
anglesu, w, andc ~Fig. 7!:

1005Bogdanova et al.



Lx5L0 cosu sin w, Ly52L0 sin u,
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Lz5L0 cosu cosw,

Mx5M0 cosc cosw1M sin c sin u sin w,

M y5M0 sin c cosu,

Mz52M0 cosc sin w1M0 sin c cosw sin u, ~20!

whereL0 and M0 are the equilibrium values ofL and M ,
while the anglesu andc describe the emergence ofL andM ,
respectively, from the basal plane. The small oscillations
L and M owing to the deformation fieldU(r ,t) are deter-
mined by small changes in the anglesu and w ~du and dw,
respectively!:

u5u01du, w5w01dw, ~21!

where u0 and w0 are the equilibrium values ofu and w.
Expanding Eq.~19! in powers ofdu anddw, we obtain

VLL5V0
LL1V1

LLdu1V2
LLdw,

VLM5V0
LM1V1

LMdu1V2
LMdw, ~22!

where

V1
LL~c,u0 ,w0!5~B12B2!L0

2Uyy sin 2u0 ,

V2
LL~c,u0 ,w0!50, ~23!

V1
LM~c,u0 ,w0!5B3L0M0Uyy

3~22 cosc cosu0 sin 2w0

1sin c sin 2u0 cos 2w0!, ~24!

and

V2
LM~c,u0 ,w0!5B3L0M0Uyy

3~22 cosc sin u0 cos 2w0

1sin c cos 2u0 sin 2w0!. ~25!

Equations~23!–~25! imply that when the vectorL lies in
the basal plane (u050), only V1

LM and V2
LM are nonzero,

with

V1
LM~c,0,w0!5B3L0M0Uyy sin c sin 2w0 ,

V2
LM~c,0,w0!522B3L0M0Uyy cosc sin 2w0 , ~26!

which characterize the magnetoelastic interaction and
coupled to oscillations of the vectorL in, respectively, the
basal plane forV2

LM and a vertical plane forV1
LM . The cor-

responding components of the magnetoelastic field,h1(V1
LM)

and h2(V2
LM), obtained with the aid of Eqs.~15!–~22! and

~26!, in accordance with the above remarks, excite differ
1006 JETP 85 (5), November 1997
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experimentally observed angular dependences of the nuc
magnetoacoustic resonance signals. Since Eq.~26! have been
obtained foru050, we may assume that in the low temper
ture phase (T,81.5 K), the antiferromagnetism vectorL
lies in the basal plane. This conclusion is consistent w
some earlier papers20,23,24and contradicts another25 in which
it is assumed thatu0Þ0.
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Nonlinear magnetohydrodynamic waves in compensated metals
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Zh. Éksp. Teor. Fiz.112, 1841–1846~November 1997!

We show that if a conductor is placed in a quantizing magnetic fieldH0 , nonlinear small-
amplitude electromagnetic waves can propagate in the conductor. For compensated metals we find
the solution of the Maxwell equations when the fieldH0 is perpendicular to the direction in
which the waves propagate. ©1997 American Institute of Physics.@S1063-7761~97!02311-1#

As established by Konstantinov and Perel’1 and Kaner
2

wherec is the speed of light in vacuum, andJ5 j1c curl M
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and Skobov,when a conductor is placed in a strong unifor
magnetic fieldH0 , slowly decaying electromagnetic wave
can propagate in it, whose frequency is much lower than
cyclotron frequency of the conduction electrons. Because
the high density of charge carriers in metals, the nonlin
effects in metals are weak and have only a small influence
the wave processes. The spectrum of these waves can e
be found from the Maxwell equations linearized with resp
to the weak electric and magnetic fields of the wave. T
situation changes when a quantizing magnetic field is app
to the system: the nonlinearity may become strong enoug
have an effect even if the wave amplitude is small. If t
distance between the Landau levels is much larger than
level width and the temperature spreadb21 of the equilib-
rium Fermi charge-carrier distribution function, the amp
tude of the quantum oscillating part of the magnetic susc
tibility x may reach values of order unity.3 Here one must
bear in mind that quantization of the energy levels of
charge carriers is caused not by an exact microscopic
but by the average macroscopic value of the field, so that
magnetizationM ~B! and the magnetic fieldH5B24pM (B)
are complicated functions of the magnetic inducti
B5B01B̃, with B0 the uniform part of the induction andB̃
the field of the wave. When the values ofB0 satisfy
u124px(B0)u!1, the term in the Maxwell equation that
linear in the amplitude of the magnetic field of the wav

@124px(B0)#]B̃(x,t)/]x, may prove to be of the same o
der as the nonlinear terms, with the result that the w
process becomes decidedly nonlinear.

In compensated conductors, with equal electron and h
densities (ne5nh5n), there can be magnetohydrodynam
waves of two types: one similar to an Alfve´n wave, and the
other similar to a rapidly propagating magnetoacoustic w
in a gaseous plasma. In this paper we examine the prop
tion of waves along thex axis perpendicular to the vecto
B05(0,0,B0) on the assumption that thez axis coincides
with the crystal symmetry axis higher than the second ord
In this case there is no Alfve´n wave, while the electromag
netic field of the rapidly propagating magnetoacoustic wa
has the formE5(0,E(x,t),0) andB̃05(0,0,B̃(x,t)) and can
be found by solving the system of equations

]B̃

]t
52c

]E

]x
,

]B̃

]x
52

4pJy

c
, ~1!
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is the total current density, which consists of the conductiv
current densityj generated by the electric fieldE and the
current densityj 85c curl M induced by the magnetic field

The first order in the wave electromagnetic field, t
components ofJ are given by the following expressions:4

j i~r ,t !5E
2`

t

dt8E d3r 8Qik~r ,r 8,t2t8!Ek~r 8,t8!, ~2!

j 18~r ,t !5
1

c E d3r 8Qik~r ,r 8,0!Ãk~r 8,t !

2
e2

2c
Ãk~r ,t !TrH r̂0(

n
F ] v̂ i

] p̂nk

d~r2rn!

1d~r2rn!
] v̂ i

] p̂nk
G J , ~3!

wherer̂0 is the equilibrium statistical operator of the syste
of the conduction electrons with a dispersion«~p! and hence
a velocityv5]«/]p, pn52 i\]/]rn2A0(rn)e/c is the kine-
matic momentum,A0(r ) andÃ(r ,t) are the vector potentials
of the fieldB0 and the wave magnetic field, and the summ
tion with respect ton is over all particles with chargee.

The kernel of the integral operator in~2! and ~3! for a
homogeneous medium depends only onr 2r 8:

Qik~r ,r 8,t2t8!5Qik~r2r 8,t2t8!

5E
0

b

dz Tr@ r̂0Î k~r 8,t82 i\z! Î i~r ,t !#,

~4!

whereÎ (r ,t) is the current density operator of an unperturb
system of charge carriers in the interaction representatio

If the wavelengthl is much larger than the radiusr 0 of
the orbit of the charge carriers in the magnetic field and
wave frequency is much lower than the cyclotron frequen
vB , the integral expression for the current densityJ can be
reduced to a local one, i.e., it can be represented by a s
expansion in powers ofB̃ and E and their derivatives with
respect tox and t. In the expression for the conduction cu
rent we can ignore the gradient terms, proportional to pow
of the small parameterr 0 /l, and the quantum oscillating

1007-03$10.00 © 1997 American Institute of Physics



correction proportional toA\vB /«F, where«F is the Fermi
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energy. As a result, in the expression for the current den
we can limit ourselves to two terms,

j y5
s0

~Vt!2 S 11t
]

]t DE~x,t !. ~5!

Here s0 is the static conductivity in the absence of a ma
netic field,t is the mean free time, andV is equal~to within
a dimensionless factor of order unity! to vB5eB0 /mc,
wherem is the characteristic cyclotron mass of a conduct
electron.

On the other hand, if we wish to calculate the induc
current densityj 8, we must take into account the quantiz
tion of the energy levels of the charge carriers, since the
of the magnetic susceptibility that oscillates with the rec
rocal value of the magnetic field is significantly larger th
the smoothly varying part.

To find j 8 we write ~3! as

j 18~r ,t !5
1

c E d3r 8Qik~r 8,0!@Ãk~r2r 8,t !2Ãk~r ,t !#.

~6!

Expanding the functionÃk(r2r 8,t) in a power series inr 8
and using the symmetry propertyQik(r ,0)5Qki(2r ,0), we
arrive at an expression for the linear part of the magnet
tion current:

j y852cx~B0!
]B̃

]x
2cg~B0!r 0

2 ]3B̃

]x3 , ~7!

where

x~B0!5xzz52
1

2c2 E d3rQyy~r ,0!x2, ~8!

g~B0!52
1

24c2r 0
2 E d3rQyy~r ,0!x4. ~9!

Clearly,x andg are of the same order of magnitude.
The nonlinear correction to the magnetization is prop

tional only to the third power of the wave magnetic fiel
since the valueB0 at whichx(B0)51/4p holds is the point
of inflection of theH5H(B) curve, i.e.]2M (B)/]B250.
The terms that contain a nonlinearity and derivatives w
respect tox in the asymptotic expansion of the magnetizati
can be ignored, since they are proportional to powers of
product of two small parameters,r 0 /l andB̃/B0 . This leads
us to an expression for the current density induced by
magnetic field:

j y852cx~B0!
]B̃

]x
1

cj

B0
2

]B̃3

]x
2cg~B0!r 0

2 ]3B̃

]x3 , ~10!

wherej5a(«F /\V)2x(B0), with a a dimensionless facto
of order unity that depends on the specific form of the d
persion law of the charge carriers.

Substitution of~5! and ~10! in the Maxwell equations
yields an equation forB̃:
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]x2 H @124px~B0!#B1
B0

2 B 24pg~B0!r 0 ]x2 J
5

4ps0

~cVt!2 S 11t
]

]t D ]B̃

]t
. ~11!

In dimensionless variables this equation becomes

]2

]x1
2 S 6u12u32

]2u

]x1
2D 5

]2u

]t1
2 1

1

v0t

]u

]t1
, ~12!

where

x15
x

d
, t15v0t, d5

A4pgr 0

k
, k25u124px~B0!u,

v05
Vck

vpd
, vp

25
4ps0

t
, u5

B̃

b
, b5B0A k2

2pj
.

The ‘‘plus’’ in Eq. ~12! corresponds to the cas
x(B0),1/4p; the ‘‘minus’’ to the casex(B0).1/4p. The
physical meaning of the parametersd, b, v0 , and vp is
obvious:d.r 0 /k@r 0 is the distance on which the electro
magnetic field changes significantly,b andv0 are equal~in
order of magnitude! to the amplitude and frequency of th
wave, andvp is the plasma frequency.

Two conditions must be met if we want weakly decayi
waves to exist:«F /\V>103 and v0t.Vt(Vc/vpvF)k2

@1, wherevF is the velocity of charge carriers whose ener
is equal to the Fermi energy. The first condition guarant
that at low temperatures the magnetic susceptibility is
order unity and the second, that the dissipation term in
~12! is small. In metals where the number of charge carri
is of order one per atom the conditions are met for su
ciently pure specimens, where the collision time of t
charge carriers is greater than, or of the order of, 1029 s in
magnetic fields of order 10 T.

In the zeroth approximation in the small parame
h5(v0t)21, Eq. ~12! has a wave solution dependent on t
variableu(x1 ,t1)5x12Vt1 :

u~u~x1 ,t1!!5aAk snF a

Ak
~x12Vt1!,kG . ~13!

Herea5A]u(u)/]u at u50, k is the modulus of the elliptic
function sn, and the wave velocityV is related tok by

V25
1

k
@a2~11k2!1sk#, ~14!

wheres5sgn@124px(B0)#.
The effect of weak dissipation can easily be taken in

account by writing the solution of Eq.~12! in the form of a
series in powers ofh :

u~x1 ,t1!5u~0!~x1 ,t1!1hu~1!~x1 ,t1!1•••, ~15!

where

u~0!~x1 ,t1!5a~T!Ak snFa~T!

Ak
u~x1 ,t1!,kG , ~16!

T5ht1 is the ‘‘slow time,’’ and
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]u~x1 ,t1!
51,
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E~x ,t !5b
Vk

Aka~0!V~0!exp~2ht !
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]x1

]u~x1 ,t1!

]t1
52V~T!52Aa2~T!~11k2!1sk

k
.

The wave amplitudea(T) and velocity of propagation
V(T) are slowly varying functions of time. Inserting the s
ries ~15! for u into Eq. ~12! and collecting terms of equa
orders in the parameterh, we see that the function~16! sat-
isfies the zeroth-approximation equation, while the fir
approximation equation is

]

]u F ~2V21s!u~1!16u~0!2u~1!2
]2u~1!

]u2 G52u~0!S V1
]V

]TD
22S u~0!1u

]u~0!

]u DV
] ln a

]T
[F~u!. ~17!

The time dependence of the amplitude and velocity of pro
gation of the wave can be found from the fact that the rig
hand side of Eq.~17! is orthogonal to the solutionu* of the
conjugate equation

F ~V22s!
]u*

]u
26u~0!2

]u*

]u
1

]3u*

]u3 G50. ~18!

For a particular solution of Eq.~18! we takeu(0). Then the
orthogonality condition

E
0

K

du u~0!~u!F~u!50 ~19!

leads to

a~T!V~T!5a~0!V~0!e2T, ~20!

whereK is the period ofu(0)(u).
Doing simple calculations, we find that

a2~T!5
@ f ~k,T!2s#k

2~11k2!
, V2~T!5

f ~k,T!1s

2
, ~21!

where

f ~k,T!5A114k21~11k2!a2~0!V2~0!e22T.

The Maxwell equations~1! and the condition~20! can be
used to find the electric field of the wave:
1009 JETP 85 (5), November 1997
-

a-
-

1 1 vp
1

3snFa~T!

Ak
u~x1 ,t1 ,k!G . ~22!

The asymptotic behavior of the time-dependent magn
field ast→` depends on the sign ofs. At s521 dissipation
leads to the onset of a stationary domain structure.3 If in ~21!
we let t go to `, we get

V~`!50, a2~`!5
k

11k2 .

This implies

u~x1 ,`!5a~`!Ak snFa~`!

Ak
~x12w!,kG ,

w5E
0

`

V~ t1!dt1 ,

so that the distribution of magnetic induction is a system
periodically alternating layers. The time-dependence
u(x1 ,t1) for the case where dissipation is not weak can e
ily be established. Forh>1 the system passes aperiodica
to an inhomogeneous stationary state. Ifs511 holds, in the
limit t→` we get

a~`!50, u~x1 ,`!50,

and with the passage of time the distribution of magne
induction within the specimen becomes uniform.
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Melting of the condensed inert gases

sur-
B. M. Smirnov

Institute of High Temperatures, Russian Academy of Sciences, 127412 Moscow, Russia
~Submitted 20 May 1997!
Zh. Éksp. Teor. Fiz.112, 1847–1862~November 1997!

The melting of a macroscopic system of bound atoms with a pairwise interaction is examined as
a vacancy formation process. It is found that the existence of a liquid state is related to a
double-humped dependence of the partition function on the number of vacancies, where the peaks
correspond to the solid and liquid states and the heights of the peaks are equal at the
melting point. In order for the liquid state to form, the derivative of the vacancy interaction with
respect to energy must have a maximum. The vacancies are compressed as a result of the
interaction. In the condensed inert gases, the specific energy of vacancy formation is proportional
to the resulting empty space per atom. ©1997 American Institute of Physics.
@S1063-7761~97!02411-6#

1. INTRODUCTION state corresponds to the transport of atoms to the cluster
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Melting is a first order phase transition which occurs a
fixed temperature in macroscopic systems and is chara
ized by a certain energy expenditure per unit volume. T
kind of phenomenological description of the phenomenon
sufficient for analyzing its thermodynamics.1–4 The micro-
scopic description is much more complicated. For the s
plest macroscopic systems consisting of atoms with a p
wise interaction that are examined below, melting
accompanied by the formation of vacancies within t
material,1–4 and this leads to an increase in the volume of
system during the transition from the solid to the liquid sta
as well as to the expenditure of energy in vacancy format
Nevertheless, the liquid state is an excited state of a sys
of bound atoms and, since melting takes place when the t
mal energies of the atoms are low compared to the spe
energy of formation of the vacancies, the liquid state sho
have a large statistical weight compared to the solid stat

Recently, interesting information has been obtained
the melting of clusters, or systems consisting of a finite nu
ber of bound atoms.5–15 The basis of the analysis is the m
lecular dynamics method, in which clusters are modeled
system of interacting classical atoms so that it is possibl
account correctly for the collective processes which pla
fundamental role in phase transitions.

Experience in studying clusters with pairwise, usua
Lenard–Jones, interactions among the atoms has been u
for understanding the microscopic picture of phase tra
tions. First, the cluster analysis uses clearcut criteria for
liquid state of a system of bound atoms that are based on
correlation between the coordinates of atoms in time.
clusters with closed shells this kind of analysis reveals
existence of one or more distinct excited states, which c
stitute the liquid state of the cluster. Second, in clusters
liquid and solid phases coexist over a range of parameter
opposed to macroscopic systems of bound atoms, in w
there is no coexistence of the phases and the transition
tween them is discontinuous. These are all features of
tems with finite and infinite numbers of bound atoms. Thi
for clusters with closed shells, the transition to the liqu
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face and the formation of vacancies in the inner shells. Th
transitions are dynamic, so that at a certain time atoms
ejected toward the cluster surface and the resulting vacan
are filled in, but surface atoms can then return to the in
shells.

The molecular dynamics method is optimal for th
analysis of a phase transition, since this phenomenon is
termined by collective interactions of the atoms, which a
taken into account in this model. Nevertheless, the res
obtained for clusters have not made it possible to produce
instructive model for their melting that takes the microsco
character of the transition into account. In particular, spec
analysis of atomic motion cannot be used to extract
simple aspects of the behavior of the phase transition.

Thus, from a microscopic standpoint, the liquid state o
system of bound atoms with pairwise interactions is an
cited state of a system with vacancies inside it. This lead
a number of fundamental questions, such as why the liq
state of a system of bound atoms stands out as one o
many excited states. Likewise, what is a vacancy in the
uid state of such a system? The subject of this paper
microscopic analysis of models for melting in systems co
sisting of finite and infinite numbers of bound atoms w
pairwise interactions. The basis of this analysis is data for
condensed inert gases and molecular dynamics calcula
for clusters with pairwise atomic interactions.

2. TWO-LEVEL APPROXIMATION

We begin by examining the nature of melting in a lar
cluster with a closed structure and consisting of atoms wit
pairwise interaction. A cluster of this sort is made up of
certain number of shells or layers of atoms. Obviously
phase transition for the surface and inner layers will ta
place at different temperatures. However, if we conside
large cluster for which the number of atoms in the surfa
and near-surface layers is relatively low, then melting
volving the bulk of the atoms will be unrelated to surfa

1010-09$10.00 © 1997 American Institute of Physics



effects. Therefore, in the following discussion of macro-
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scopic systems of bound atoms, we only deal with cluster
this type.

From a microscopic standpoint, this phenomenon co
sponds to a transition of atoms from the inner layers to
cluster surface. The existence of a distinct excited state o
cluster, which we assume to be a liquid, obviously me
that the excitation probability as a function of the number
excited atoms is characterized by a sharp maximum. In o
words, the partition function of the cluster as a function
the number of excited atoms in the surface layer has a s
maximum, so that the width of this maximum encloses f
atoms compared to the average number of excited ato
Note that this conclusion follows logically from the cond
tion for the existence of a liquid state as the most proba
excited state of the cluster.

We base the mathematical description of this aspec
the excitation of the system of bound atoms on a two-le
approximation.16 Let us introduce the partition functions o
the ground~solid! Zsol and excited~liquid! Zliq states of the
system of bound atoms. Clearly,

Zliq5Zsol g exp~2DE/T!, ~1!

whereg is the ratio of the statistical weights of the liquid an
solid states,DE is the excitation energy of the liquid stat
andT is the temperature of the cluster. We assume that
probability of finding the cluster in other states makes
small contribution to the total partition function of the clu
ter, so that the probabilities of finding it in the solid an
liquid states are given, respectively, by

wsol5F11g expS 2
DE

T D G21

,

wliq5g expS 2
DE

T D F11g expS 2
DE

T D G21

. ~2!

These equations apply equally well to a cluster and t
macroscopic system of atoms as an infinite cluster.

We define the melting temperatureTm in accordance
with the formulawsol(Tm)5wliq(Tm), i.e.,

g exp~2DE/Tm!51. ~3!

Let « be the energy of formation for a single vacancy,h the
statistical weight of an isolated vacancy, andv the total num-
ber of vacancies. Takingv!n, wheren is the number of
atoms in the cluster, we obtaing;hn, and sinceDE5v«,
for the width of the phase transition region we have

DT;Tm
2 /~«v !. ~4!

One of the fundamental differences between a cluster a
macroscopic system of bound atoms follows from this eq
tion. In a cluster, which contains a finite number of vaca
cies, the solid and liquid phases can coexist over a cer
temperature range,5–15while the phase transition region for
macroscopic system contracts to a point, i.e., the phase
sition takes place at fixed temperature.

Let us turn our attention to yet another feature of t
transition, which shows up most distinctly during surfa
melting, when an atom from the surface layer is carried
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layer. A stable site on the cluster surface corresponds to fi
ing an atom in one of the troughs between surface atoms,
to carry an atom into this state requires the breaking of m
bonds than the atom has in its final state. This means tha
the atom to be transferred to its final state, it must overco
a barrier whose height is of the same order of magnitude
the bond strength of a few simple bonds, and which exce
the thermal energy of the atom undergoing the transiti
The barrier nature of atomic excitation in a cluster~see Refs.
10 and 11, for example! is of fundamental significance fo
transitions between the solid and liquid states of a cluste
implies that the characteristic time for the cluster to be fou
in the liquid or solid states greatly exceeds the character
transition time from one state to the other. Thus, the coex
ence of the solid and liquid phases in a cluster means
there is a definite probability of coming upon the cluster
the solid or liquid state, but that there is no intermedia
state.

This two-level cluster model, which forms the basis
the phenomenological theory of phase transitions in syst
with finite and infinite numbers of bound atoms, impos
certain requirements on the excited state of the syst
which in the case of a pairwise atomic interaction we sh
treat as the formation of a set of vacancies. Let us state th
requirements. We denote the partition function of a clus
consisting ofn atoms withv@1 vacancies byZv . In the
two-level system we make implicit use of the fact thatZv has
a sharp, narrow maximum for some number of vacanc
vmax. Expanding lnZv near the maximum and assuming th
the normalization of the partition function is determined by
narrow region of vacancy numbers nearvmax, we obtain an
expression for the partition functionZv in this region in the
form of the Gaussian function

Zv5Zmax exp@2~v2vmax!
2/D#, ~5!

whereZmax is the partition function forvmax vacancies and
the parameterD follows from the equation

2

D
52

d2

dv2 ln Zv~vmax!. ~6!

By definition,

vmax@D@1. ~7!

Integrating Eq.~5!, we find

Zliq5~pD!1/2Zmax, ~8!

and, according to Eq.~7!, in the phase transition region w
find

Zmax!Zsol. ~9!

Thus, Eqs.~5!–~9! follow from the two-level model for a
cluster phase transition and are a consequence of repre
ing the states of a system of bound atoms in the form of t
states, the liquid and solid.

We now illustrate the convenience of this two-lev
model using a calculation of the specific heat of the cluste
the phase transition region as an example. LetEex be the
cluster excitation energy, andh, the part of the excitation
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TABLE I. Parameters of the condensed inert gases.

pairwise

s;
Parameter Ne Ar Kr Xe Average

Re , Å 3.09 3.76 4.01 4.36 –
D, meV 3.64 12.3 17.3 24.4 –
a, Å 3.156 3.755 3.992 4.335 –
r(0)/r0 1.06 1.00 0.99 0.98 1.0160.04
rsol /r0 0.899 0.920 0.926 0.952 0.9260.02
r liq /r0 0.776 0.804 0.800 0.827 0.8060.02
rsol /rliq21 0.159 0.144 0.157 0.151 0.15360.006
Tm /D 0.583 0.585 0.576 0.570 0.57860.006
DH fus /D 0.955 0.990 0.980 0.977 0.9860.01
«0 /D 5.1 5.5 5.5 5.4 5.4 60.2

Note.HereD andRe are the depth of the potential well for a pairwise atomic interaction and the distance corresponding to the minimum of the
interaction potential19–22; the other parameters are taken from handbooks.23,24a is the crystal lattice constant;r05&/a3; r~0! andrsol are the densities of the
solid state at absolute zero and at the melting point;r liq is the density of the liquid state at the melting point;Tm is the melting temperature in energy unit
DH fus is the specific energy of fusion; and«0 is the energy of vaporization of an atom from the liquid state at the melting point.
energy contained in the kinetic energy of the atoms. For the
te
n
th

he
th
sp

ifi
s

n
a

ca
dy

o

un
o
th
a
e

3. FIXED-SITE MODEL
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In
case of atoms executing harmonic oscillations in a clus
h50.5, andh is close to this value in the excitation regio
being considered here. For the total kinetic energy of
cluster atoms we have

Ekin5hEexwsol1h~Eex2DE!wliq . ~10!

This yields the specific heat of the cluster:

Cv5
dEkin

dT
5h

dEex

dT
2hDE

dwliq

dT
5CV

01
DE2

T2 g

3expS 2
DE

T D F11g expS 2
DE

T D G22

, ~11!

whereCV
0 is that part of the specific heat not related to t

phase transition, which therefore varies smoothly over
temperature range of the phase transition. The cluster
cific heat~11! has a maximum at the melting temperature~3!
given by

CV
max5CV

01
DE2

4Tm
2 . ~12!

Since the specific heatCV
0 is proportional to the numbern of

atoms in the cluster,DE is proportional to the numberv of
vacancies in the cluster andv;n, which implies that the
contribution of the phase transition to the cluster spec
heat increases as the cluster becomes larger. This implie
particular, that the specific heat of a macroscopic system
atoms goes to infinity at the melting point. The equatio
obtained above for the specific heat of a cluster in the ph
transition region are convenient for analyzing numeri
simulations of the behavior of clusters by the molecular
namics method, and they reflect the capabilities of the tw
level scheme.

Treating the liquid state of a condensed system of bo
atoms as the excited state of a system requires that it als
described under conditions such that the system is in
solid state. This consideration is used in describing the
gregate state of condensed gas atoms or molecules ov
wide range of parameters.17,18
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The fixed-site model is the simplest model for describi
the liquid state of a cluster or macroscopic atomic system
terms of this model it is assumed that the formation o
vacancy, as through removal of an atom from a site in
crystal lattice, does not change the positions of the neighb
ing atoms. In this way, a vacancy in this model represents
empty space that develops at the site of the lost atom. We
this model to analyze the excitation of condensed inert ga
noting that it is applicable on the average, i.e., it is not su
able for analyzing the interaction among the vacanc
which is of fundamental importance for the development
the liquid state.

Here we note that the parameters of various conden
inert gases obey a scaling law in which the pairwise inter
tion of the atoms serves as the basis units. Some param
of the condensed inert gases relevant to melting are liste
Table I. The interaction potential for two inert gas atoms
known fairly well based on a number of their parameters t
depend on the pairwise atomic interaction. These parame
include the differential and total atomic scattering cross s
tions and the thermal conductivity and viscosity, as well
the self diffusion coefficients of the atoms in the gases,
second virial coefficient of the gases, the spectroscopic
rameters of the diatomic molecules, the geometric and
ergy parameters of the corresponding crystals, parame
near the critical point, etc. In this way the pairwise intera
tion potential of the inert gas atoms are known to hi
accuracy.19–22

Note, in addition, the short-range character of the int
action of the inert gas atoms in the condensed systems
that the energy of a condensed inert gas is determined by
interaction of atoms that are nearest neighbors in the sys
In fact, for the actual inert gases Ne, Ar, Kr, and Xe, t
statistical averages are a/Re51.00460.014 and
«sub/D56.460.2, wherea is the distance between neare
neighbors of the crystal lattice at absolute zero,Re is the
equilibrium distance between the atoms of the correspond
diatomic molecule,«sub is the binding energy per atom o
the atoms in the crystal, andD is the depth of the well in the
interaction potential for two atoms of the given inert gas.
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TABLE II. Parameters of the condensed inert gases related to the formation of vacancies.
Parameter Ne Ar Kr Xe Average

vmax/(nh), 1025 3.1 1.5 1.3 1.4 1.960.8
q 10.10 10.27 10.11 10.19 10.260.1
n/v0 6.3 6.9 6.4 6.6 6.660.3
j 0.96 0.93 1.02 0.96 0.9660.04
n/v liq 4.3 4.2 4.1 4.1 4.260.1
V(v liq)/D 2.0 2.3 2.5 2.4 2.360.3
A/D 2.5 2.9 3.0 3.0 2.860.2
Zrot , 104 0.24 2.3 8.0 21 –
the case of a short-range interaction potential for the atoms in
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a condensed system, these ratios area/Re51 and
«sub/D56, while for a Lenard–Jones potential,a/Re50.97
and«sub/D58.61. It can be seen that the short-range pot
tial, which only accounts for the interaction among near
neighbors, provides the better fit for a condensed inert
system. It is precisely for a short-range atomic interact
that the fixed-site model, in which the removal of an ato
from a lattice site does not change the positions of the ne
boring atoms, can be correct. Naturally, when this mode
valid, an excited state of the system corresponding to
removal of an atom from a lattice site will be characteriz
by a higher statistical weight than the system ground sta

We use the fixed-site model to find the partition functi
when vacancies are present in a macroscopic system
bound atoms with a pairwise interaction. We determine
partition function of the system as a function of the numb
of vacancies, neglecting the interaction among vacancies
us isolate a large cluster containingn atoms (n@1), for
which surface effects are negligible compared to volume
fects, from a macroscopic system. In this case, all the at
in the cluster, like all the vacancies, are in an equival
position. In the fixed-site model, the formation of vacanc
leads to expansion of the cluster, so that this cluster inclu
n1v sites, of whichn are occupied by atoms. Given this, th
partition function of the cluster is

Zv5Cn1v
v hv exp~2v«/T!Z0 . ~13!

Here Z0 is the partition function of the cluster without va
cancies, the number of combinationsCn1v

v is the number of
ways of placing the atoms and vacancies inside the clus
allowing for the indistinguishability of the atoms and of th
vacancies,h is an additional statistical weight owing to va
cancy formation, and« is the vacancy formation energy. I
the following we consider the parameter range

n@v@1 ~14!

and neglect the interaction of the vacancies in the first st
of the analysis. Using Eq.~14! in Eq. ~13! and expanding the
exponent in the partition function in powers of 1/v, we ob-
tain

Zv5Z0 exp S, S5v~11 ln h2«/T1 ln n2 ln v !.
~15!

This yields Eq.~5! with the following parameters

vmax5nh exp~2«/T!, D52vmax. ~16!
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the number of vacancies is raised, as long as the numbe
vacancies is small, and the maximum value of the expon
in the partition function is

Smax5vmax5nh exp~2«/T!@1. ~17!

The values ofvmax/(nh) for the condensed inert gases a
listed in Table II. This macroscopic limitvmax@1 applies to
systems with a large number of bound atoms. Here the m
mum in the partition function, when the number of vacanc
in the system is relatively small, corresponds to the so
state of the system. When the number of vacancies is
creased further,S(v) falls off monotonically in this approxi-
mation. The liquid state of the system of bound atoms c
responds to the next maximum ofS(v); the dependence o
this function on the number of vacancies is shown in Fig.

To describe the liquid state of a system of bound atom
it is necessary to include the interaction of vacancies in
analysis. Then the fixed-site model is no longer applicab
so that we must define the vacancies. Let us imagine a mo
vacancy as the empty closed space inside a system of b
atoms which is formed as a result of removing an inter
atom from the system. If the number of vacancies is h
enough that their interaction becomes significant, then
volume of a vacancy differs from the volume per atom in t
solid state of the system. Here the shape of the vaca
changes with time in accordance with the motion of the s
rounding atoms. Since near ordering is preserved in the
uid, i.e., the distances between nearest neighbors in the
and liquid states at the melting point are the same, it is c
venient to turn to the fixed-site model for comparison, if t
shape of a monovacancy can correspond to a unit cell of

FIG. 1. The logarithm of the partition function of a system of bound ato
with a pairwise interaction as a function of the number of vacancies.
maximum 1 corresponds to the solid state and the maximum 2, to the li
state. The interaction of the vacancies is significant to the right of the arr
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crystal lattice. In the following we use this comparison to
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determine the number of nearest neighbors in the liquid st
Here the vacancy itself as an empty space of definite sh
loses its significance, and the dependence of the part
function on the number of vacancies must be understood
dependence on the volume occupied by the given system
bound atoms under specified external conditions.

Let us isolate a cluster containingn atoms in the solid
state, so that each atom has 12 nearest neighbors. In
liquid state, this cluster containsv0 vacancies and each ato
hasq nearest neighbors on the average. Relating the cha
in volume of the cluster during the transition to the liqu
state to the change in density, we have

n1v0

n
5

rsol

r liq
,

wherersol andr liq are the densities of the macroscopic sy
tem in the solid and liquid states at the melting point. A
suming that the number of vacancies is relatively small,
find that the formation of a single vacancy leads to the bre
ing of 12 bonds. The total number of bonds in a syst
containingn1v0 atoms is 6(n1v0). If v0 atoms are then
removed from the system, then the total number of bond
it becomesqn/256(n1v0)212v056(n2v0). Hence

q512212v0 /n524212rsol/r liq . ~18!

The number of nearest neighbors for the liquid state
the inert gases found using Eq.~18! and the relative numbe
of vacancies are given in Table II. It can be seen that
transition from the solid to the liquid state takes place a
result of an expansion of the system of bound atoms. T
the bonds between the atoms are weakened, and this is
pensated by a rise in the statistical weight owing to an
crease in the volume of the system. The liquid state co
sponds to an optimal increase in the system volume.

We now determine the specific energy of the phase tr
sition under consideration. Let« be the binding energy pe
atom in the solid state at the melting point. We define it
the sum of the specific energy«0 expended in evaporating
single atom at the melting temperature and the specific
ergy of fusion,DH fus:

«5«01DH fus. ~19!

Therefore, the total binding energy of the atoms in
solid cluster containingn atoms is given byEsol5«n by
definition. Let us determine it for the liquid state. Take
cluster containingn1v0 atoms in the solid state, so that th
binding energy of the atoms is«(n1v0). Removev0 atoms
from this cluster, assuming that this number is relativ
small, i.e., neglecting the interaction of the vacancies. Gi
that each bond involves two atoms, we find that removin
single atom requires energy 2«, i.e, the binding energy of the
atoms in the liquid state obtained by removingv0 atoms
from the cluster is«(n2v0)5«0n. Then, using Eq.~19!, we
obtain

v0 /n5DH fus/«. ~20!

Note the relationship between the energy of vacancy for
tion in Eq. ~13! and the specific energy of fusion,DH fus.

1014 JETP 85 (5), November 1997
te.
pe
n

s a
of

the

ge

-
-
e
k-

in

n

e
a
n
m-
-

e-

n-

s

n-

y
n
a

a-

eter« in Eq. ~13! equals the vacancy formation energy in t
solid state of the system.

Equation~20! can be used to determine the specific e
ergy of fusion, based on Eq.~18! for the relative number of
vacancies. Let us introduce the parameter

j5
«

DH fus

v0

n
5

«

DH fus

rsol2r liq

r liq
. ~21!

If the assumptions used in determining the number of vac
cies in terms of the change in density and energy are va
then this parameter equals unity. The values ofj calculated
using Eq.~21! and listed in Table II show that these assum
tions can be used to determine the effective number of
cancies in the actual inert gases with the corresponding
curacy.

Although the equationj51, which establishes the rela
tionship between the specific energy of vacancy format
and the change in the density of a system of bound ato
has been obtained neglecting the interaction of the vacan
it can be satisfied even when this condition is violated. E
sentially, this reflects the fact that the average energy
atom is proportional to the average number of nearest ne
bors which, in turn, can be expressed in terms of the den
of the system. Given this connection, we can obtain the
lowing relationship between the excitation energyDH of a
system of bound atoms in a state with a given volume oc
pied by vacancies and the densityr of the system of bound
atoms:

DH5«~rsol/r21!. ~22!

This equation transforms toj51 for the liquid state of the
system.

4. INTERACTION OF VACANCIES IN CONDENSED ATOMIC
SYSTEMS

It follows from an analysis of the partition function o
the excited state of a system of bound atoms that the in
action of vacancies is of fundamental importance to the
uid state of that system. Thus, in the liquid state a cert
density of vacancies is realized. In particular, we show tha
more rigorous criterion is required than Eq.~14! for the
weakness of the vacancy interaction, which is violated in
condensed inert gases. In fact, in the fixed-site model,
probability that a given vacancy abuts another vaca
equals 12v/n in the limit of a small ratio of the numberv of
vacancies to the number of atoms, i.e., instead of Eq.~14! in
this model the criterion for weakness of the vacancy inter
tion has the form

n@12v. ~23!

Clearly, this criterion is not satisfied for the liquid state
the real inert gases; that is, the interaction of the vacancie
important for the liquid state of the inert gases.

An analysis shows that the fixed-site model leads to
consistencies as soon as the vacancy interaction is taken
account. Let us begin with the Stillinger–Weber model,25 in
which the vacancies are treated as quasiparticles and
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pairwise interaction is considered. Then the number of va-
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cancies in the liquid state of the system follows from t
minimum condition for the Hamiltonian. It would seem th
this model provides a good match to the fixed-site model
which the quasiparticles are the empty spaces produce
removal of atoms from lattice sites. Then the interaction
the quasiparticles corresponds to the interaction of the n
est neighbors in the system. If we use this interaction in
fixed-site model, then to obtain the observed melting para
eters of the actual condensed inert gases, it is necessa
assume the formation of cavities encompassing dozen
monovacancies inside the condensed inert gas.26

This inconsistency suggests that it is the fixed-site mo
which is not valid, rather than the Stillinger–Weber mod
which includes a quadratic interaction for the vacancies.
spite its logical consistency, however, the Stillinger–We
model is not suitable for the actual inert gases, becaus
does not yield the liquid state of a system of bound atom
a maximum in the partition function~see below!.

We now analyze the general character of the vaca
interaction. We specify it in the formvV(v/n), so that the
binding energy of the atoms in the excited state of this s
tem of bound atoms has the form

E5«~n2v !1vV~v/n!. ~24!

For largev such thatv@n, the interaction function for the
vacancies obviously has the asymptotic formV(x)5121/x,
x@1, but in analyzing the phase transition we shall be int
ested in this function for small values of the argument.
analyze its form we construct the partition function~13! in-
cluding the vacancy interaction, so that instead of Eq.~15!
for the partition function and its derivatives we have

S5 ln
Zv

Z0
5vS 11 ln h1 ln

n

v
2

«

Tm
D1

W

Tm
, ~25a!

dS

dv
5 ln h1 ln

n

v
2

«

Tm
1

W8

Tm
, ~25b!

d2S

dv2 52
1

v
1

W9

Tm
, ~25c!

whereW5vV(v/n).
The general form of the exponent in the partition fun

tion as a function of the number of vacancies is shown
Fig. 1. The first maximum corresponds to the solid state
the system and is attained for a very small number of vac
cies, when vacancy interaction can certainly be neglec
This maximum corresponds to a relative number of vac
cies consistent with Eq.~16!: vmax/n5exp(2«/T). The value
of this quantity for the condensed inert gases at the mel
point is shown in Table II, where the smallness of this ra
is evident. After the peak,S(v) decreases as the vacan
number is increased until the vacancy interaction turns
This vacancy interaction energy and the energy of vaca
formation in the solid state have opposite signs, so that as
vacancy number increases further, the vacancy interac
brings the functionS(v) to a minimum and then makes
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power law dependenceV(v) which, in particular, corre-
sponds to the Stillinger–Weber model.

Formation of the second maximum inS(v), which cor-
responds to the liquid state, requires a special form ofW, so
that the equationW85A ~whereA5«2T ln(hn/v)! or

VS v
nD1

v
n

V8S v
nD2A50, ~26!

has two solutions. For this form of the vacancy interacti
energy, the solid and liquid states of the system of bou
atoms, which correspond to the maxima in the figure, e
and are separated from one another. We have assumed tA
depends weakly on the number of vacancies. In Table II
list the value of this function for the inert gases at the me
ing point; its average value is 2.8.

Let us analyze Eq.~25! in the region of the liquid state
of the system of bound atoms. SinceS(v) is proportional to
the number of vacancies or the number of atoms in the s
tem, this quantity approaches infinity in macroscopic s
tems of bound atoms. The width of the maximum in t
partition function is of orderv1/2, i.e., in the limit of a large
number of atoms in a macroscopic system, the relative w
of the maximum approaches zero. For this reason, the w
of the maximum inS(v) is of no fundamental significance
Accordingly, at the melting point, the maxima ofS(v) for
the solid and liquid states must be equal. This leads to
following equation relating the optimal number of vacanc
v liq in the liquid state to the melting temperatureTm :

nh

v liq
expS 2

«

Tm
D511 ln

hn

v liq
2

«

Tm
2

V~v liq!

Tm
. ~27!

Hence, in particular, it is possible to obtain the vacan
interaction energyV(v liq) for the liquid state at the melting
point, i.e., the reduction in the specific energy of vacan
formation in the liquid state compared to that in the solid.
do this we use the equationDH fusn5(E2V)v liq for the spe-
cific energy of formation of the liquid state; then Eq.~27!
reduces to

nh

v liq
expS 2

«

Tm
D511 ln

hn

v liq
1

DH fus

Tm

n

v liq
, ~28!

where the right-hand side is small. In addition, this yields

V~v liq!5«2DH fusn/v liq . ~29!

Equation~28! makes clear the importance of the parame
h, which characterizes the enhancement in the partition fu
tion of an individual atom when an empty space develo
inside a system of bound atoms. When only the measu
parameters for the melting of the condensed inert gases
available, we cannot find the corresponding value ofh. We
merely note that Eq. ~28! has a solution for
ln h.DHfus/Tm21.

For concreteness we seth5100 in the following. The
corresponding solutions of Eqs.~28! and ~29! for the con-
densed inert gases are listed in Table II. In this case, vaca
interactions lead to their contraction and to a drop in
energy expended in the formation of a single vacancy. T
energy expended in the formation of an empty space insid
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system of bound atoms remains proportional to its volume;
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that is, the two effects~the contraction of vacancies and th
reduction in their energy of formation! cancel one another.

Equation ~26! is not an equation for the functio
V(v/n), but gives its value at the melting point. That is, t
behavior of this function cannot be clarified by analyzing t
equation. The general requirement for the functionV(v/n) is
that Eq. ~26! be satisfied for two values ofv. Then the
smaller valuevmin /n corresponds to the minimum ofS(v),
while the value ofS for the liquid state corresponds to th
larger value ofv liq /n that satisfies Eq.~26!. In the following
we consider, as an example, the simplest form ofV(v) that
satisfies these requirements,

V~x!5C@exp~2an/v !2exp~2kan/v !#. ~30!

With this dependence on the number of vacancies, the
cific energy of the vacancy interaction rapidly goes to z
for a small number of vacancies and approaches the ord
magnitude of the energy of vacancy formation in the so
state when the number of vacancies and the number of a
in the system are of the same order. Under the conditi
~14!, this limit is of no interest to us. For this form of th
vacancy interaction energy, Eq.~26! takes the form

~11x!exp~2x!2~11kx!exp~2kx!5A/C,

x5an/v. ~31!

Next we find the parameters in the function~30! for
k52 andk510. Given that the left-hand side of Eq.~27! is
close to zero, Eqs.~26! and~27! yield the following equation
for the argument of Eq.~30!:

11x2
~k21!x

exp@~k21!x#21
5

A

A2Tm
. ~32!

To obtain numerical solutions of this equation, we take
average values of the parameters characterizing the me
of the condensed inert gases:A52.8, Tm50.58, and
n/v liq54.2. ~We have used the parameter values taken fr
Tables I and II!. Note that the function on the left-hand sid
of Eq. ~31! has a maximum atxmax5ln k2/(k21), where it
equals 11kxmax/(k11). The larger value ofv ~or smallerx!
satisfying Eq. ~32! applies to the liquid state, while th
smaller value, which is a solution of Eq.~26!, corresponds to
the minimum ofS(v). For the liquid state of the condense
inert gases, these equations yieldx50.89, a50.22, and
C59.1 for k52 and x50.38, a50.093, andC53.3 for
k510. Continuing the functionV(v/n) with these param-
eters into the region with a smaller number of vacancies
correcting the value ofA(v) for the reduced number of va
cancies, for the minimum of the functionS(v) we find
x52.6, n/vmin512, and A(vmin)52.2 when k52, and
x51.25, n/vmin513, andA(vmin)52.1 whenk510, where
vmin corresponds to the minimum ofS(v). HereS(v)/n is
close to zero for the solid and liquid states, while its mi
mum is21.6 fork52 and21.0 fork510. These numerica
values of the parameters show that the criterion~23! fails at
the minimum ofS(v), i.e., vacancy interactions become im
portant.
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rithm of the partition function as a function of the number
vacancies must have a double-humped shape, with the
peak corresponding to the solid and the second, to the liq
state of a system of bound atoms with pairwise interactio
This shape corresponds to the two states of aggregatio
the macroscopic atomic system and requires a certain typ
interaction of the vacancies which, in particular, does
include a power-law dependence of the vacancy interac
energy on the relative number of vacancies. The interac
leads to contraction of the vacancies as their number
creases, as well as a reduction in the energy of formation
individual vacancies if they are regarded as voids left a
removal of internal atoms to the outside. At the same time
the condensed inert gases the specific energy of formatio
an empty space inside the system of bound atoms is c
served during the transition from the solid to the liquid sta
Moreover, the formation of the liquid state imposes cert
requirements on the parameterh, which characterizes the
increase in the partition function for an atom owing to v
cancy formation.

Thus, the liquid state of a system of bound atoms can
realized only under certain conditions. Relying on the para
eters of the condensed inert gases at the melting tempera
we have been able to obtain only a qualitative picture of
solid-to-liquid phase transition as the number of vacanc
within that system increases. A computer simulation o
system of bound atoms using the molecular dynam
method makes it possible to understand the details of
picture, including the type of interaction among the bou
atoms that is required to permit formation of the liquid sta
of the system.

5. INTERACTION OF STRUCTURES DURING A PHASE
TRANSITION

The transition of a system of bound atoms to the liqu
state is accompanied by the formation of vacancies insid
which leads to an increase in the volume of the system
bound atoms and creates new possibilities for the movem
of atoms. Since each atom in the system interacts wit
large number of atoms, the formation of vacancies and th
existence are determined by collective effects. Clearly, i
difficult to separate the different collective effects because
the disordered motion of a large number of atoms. One
ception is the case of structures interacting during a ph
transition,27 which we examine below.

Let us isolate from an atomic crystal lattice with clos
packed structure a cluster of 13 atoms consisting of a cen
atom and its 12 nearest neighbors with the structure o
cube–octahedron whose surface contains 8 equilateral
angles and 6 squares. This cluster is characterized by
bonds between nearest neighbors inside the cluster an
bonds between cluster atoms and atoms surrounding the
the crystal lattice. The isolated cluster of 13 atoms can h
an icosahedral structure whose surface consists of 20 e
lateral triangles. This sort of cluster has 42 bonds betw
nearest neighbors and, although the bond lengths of the c
ter, including the central atom, are 5% shorter than the b
lengths for the nearest surface atoms, the icosahedral s

1016B. M. Smirnov



ture for this cluster with pairwise atomic interactions is en-
ru
ke
th
tio
e

te
th
ve
e
re
th

tio
we

n
t

te
e
n-
y

in

n
tio

n
ion
n

i
a

al

n

d

in
to

Zrot524Tm /Bmol . ~34!

to
elt-

the
sity
of
ion

s

n-
n as
ms
elt-
p in
m-

tem
ed
ies
he
nsed
on
. A
ro-
cu-
rti-

in
g,
n a

a

ergetically more favorable than the cube–octahedron st
ture. The interaction with the surrounding neighbors ma
this transition unfavorable in the crystal lattice, but as
density of the system is reduced, the energy of the transi
decreases. A virtual transition of an arbitrary cluster insid
system of bound atoms to an icosahedral structure and
return to the initial state can lead to a rotation of the clus
and, thereby, to a change in the positions of the atoms wi
the crystal lattice. This represents a different type of mo
ment of atoms within the system than hole diffusion insid
crystal lattice. In this way, this transition mechanism cor
sponds to a liquid state whose nature differs from that in
fixed-site model.

Let us estimate the energy parameters for this transi
as a function of the density of the system. For simplicity
assume that the parameters of the isolated cluster do
depend on the lattice density, and that the distance from
central atom to the surrounding clusters of atoms is de
mined by the average atomic density. Then the binding
ergy E of the system, in which we include the binding e
ergy of the atoms in the cluster and the interaction energ
the cluster atoms with the surrounding atoms, is

E5120290~a2Re!
2U9, ~33a!

where the energy unit is taken to be the depthD of the well
in the pairwise atomic interaction potential,a is the lattice
constant,Re is the equilibrium distance between the atoms
a diatomic molecule, andU is the potential for the pairwise
interaction of the atoms and its second derivative is take
the equilibrium separation between the atoms. Equa
~33a! corresponds to the casea2Re!Re, and the densityr
of atoms is related to the lattice constant byr5&/a3. In
calculating the binding energyE8 of the atoms when the
cluster forms an icosahedral structure, we use a short-ra
potential for the atomic interaction that includes attract
only, and take the average over the position of the surrou
ing atoms on the sphere where it lies. This yields27

E8542134/~ReAU9!. ~33b!

If we use a truncated Lenard–Jones potential for the pairw
interaction potential, so that only interactions between ne
est neighbors take place in the lattice~i.e., U9572/Re

2!, then
the energy levels~33! cross fora/Re51.11 or for a system
density of 0.74r0 , wherer05&/Re

3 , while the density of
the condensed inert gases in the liquid state is typic
0.8r0 , roughly in agreement with this estimate.

We now calculate the partition functionZrot correspond-
ing to the rotation of a cluster inside a system of bou
atoms. If the rotation is free, thenZrot5T/B, whereT is the
temperature of the system in energy units,B5\2/(2I ) is the
rotational constant of the cluster, andI is its moment of
inertia. The rotational constant of the cluster can be relate
the rotational constant of a diatomic molecule,Bmol , by tak-
ing into account the equality of the equilibrium separation
the molecule and the distances between the surface a
and the central atom of the cluster. This yieldsB5Bmol/24,
so that at the melting temperatureTm we have
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Table II lists the values of the partition function owing
cluster rotation within the condensed inert gases at the m
ing point.

If we treat melting of the condensed inert gases as
result of a structural transition, so that the increased den
in the solid state creates the possibility of free rotation
these clusters within the system, then the melting condit
has the form

Zrot exp~2DE/Tm!51. ~35!

HereDE is the specific energy of the transition. If it applie
to 13 atoms, i.e.,DE513DH fus, then we find that condition
~35! is not satisfied at the melting temperature for the co
densed inert gases. This means that a structural transitio
a collective phenomenon within a system of bound ato
with pairwise interactions does not form a basis for the m
ing of the condensed inert gases, although it may show u
the properties of the liquid state, including critical pheno
ena.

6. CONCLUSION

This analysis has shown that the liquid state of a sys
of bound atoms with a pairwise interaction can be realiz
under certain conditions, including when the vacanc
within the system have a certain type of interaction. T
analysis is based on the melting parameters of the conde
inert gases, which yields two points on the partition functi
of the system as a function of the number of vacancies
more complete picture of this phenomenon might be p
vided by a computer simulation of the system by the mole
lar dynamics method which, in principle, can give the pa
tion function as a function of the system volume. Perhaps
the first stage it would be simpler to study surface meltin
where a system of bound atoms forms a layer of atoms o
substrate.
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A phenomenological approach to the theory of the isotope effect in ferromagnets is developed on
the basis of the phenomenon of magnetoelasticity. Parameters whose experimental
measurement permits a quantitative calculation of the contribution of acoustic phonons to the
isotope shift of the Curie temperature are identified. An estimate of the isotope shift of
the Curie temperature in the Invar alloy Fe0.75Pt0.25 is given. © 1997 American Institute of
Physics.@S1063-7761~97!02511-0#
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Although the question of the influence of the interacti
of electrons with lattice vibrations on magnetism has be
addressed in the literature~see, for example, Ref. 1!, the
traditional view has been that the contribution of this int
action to magnetic properties is relatively small. Support
this notion was provided by the relatively small contributi
of the electron–phonon interaction at zero temperature to
expression for the reciprocal of the spin magnetic susce
bility, which was evaluated because of the condition of ad
baticity as a small parameter of order the ratio of the De
energykBQ to the Fermi energy«F , whereQ is the Debye
temperature andkB is the Boltzmann constant.1 We note that
the change in the lattice properties caused by ferromagne
was not taken into account in this evaluation. This evaluat
corresponds, in particular, to the fact that a change of
same order appears in the Stoner exchange-enhancemen
tor

S5@112n~c1cel–ph!#
21, ~1.1!

which specifies the increase in the magnetic susceptibility
real metals in comparison with the result from the theory
a noninteracting electron gas. Heren is the electron density
of states at the Fermi level for an assigned electron s
projection,c is the interelectronic exchange coupling co
stant, andcel–ph is the contribution resulting from conside
ation of the dependence of the energy of the zero-point
tice vibrations on the electron spin polarization. Despite
relative smallness of this contribution,2

cel–ph/c;kBQ/«F;Ame /Mi , ~1.2!

whereme is the electron mass andMi is the atomic mass o
the atoms in the crystal lattice, Hopfield3 expressed an ex
pectation that the electron–phonon interaction can play
important role in the case of weakly ferromagnetic met
with strong exchange enhancement:

uSu@1. ~1.3!

The prediction made in Ref. 3 regarding the very large i
tope effect in the dependence of the Curie temperature on
atomic mass of the atoms in the crystal lattice of a we
ferromagnet such as ZrZn2 was related specifically to thi
condition. The assertion in Ref. 3 becomes obvious on
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relation for the Curie temperature:TC}uSu , whereg51/2
in the Stoner model4 andg53/4 in the paramagnetic mode
of a ferromagnetic metal~see, for example, Refs. 5 and 6!.
We then obtain~compare with Ref. 3!

I 5
d ln TC

d ln Mi
5gS

cel–ph

2c
. ~1.4!

Hopfield3 suggested using the following values of the para
eters appearing in Eq.~1.4! for ZrZn2: g51/2, S.2238,
and cel–ph/c;0.1. This leads to an estimate of the isoto
coefficientuI u@1. However, the experiment in Ref. 7 did no
confirm this prediction, but gave the valueI 520.160.3 for
the Zn isotopes andI 520.260.2 for the Zr isotopes in
ZrZn2. This disparity between theory and experiment can
attributed, in particular, to the fact that the use of the va
cel–ph/c;0.1 to estimate the isotope coefficientI in refer-
ence to ZrZn2 was not seriously substantiated in Ref.
Moreover, according to the claims of Fay and Appel2 and of
Pickett,8 attempts to theoretically calculatecel–ph lead only
to a rough estimate and do not allow us to consider
contribution made by the electron-phonon interaction to
Stoner factor~1.1! fully established. We can extricate ou
selves from this situation by devising a phenomenologi
approach to the theory of the isotope effect in ferromagn
in which the parameters of the theory can be related to
perimentally measured quantities and can thereby be
mated in reference to real ferromagnets. The usefulnes
such an approach becomes especially clear in connec
with the recent experimental discovery of a giant isoto
shift DTC.20 K of the Curie temperature in
La0.8Ca0.2MnO31y when the16O oxygen isotope is replace
by 18O, for which the isotope coefficient isI .20.85.9 This
discovery is a direct indication of the existence of ferroma
nets having magnetic properties in which the electro
phonon interaction plays an important role.

A phenomenological approach to the theory of the infl
ence of thermal acoustic phonons on the magnetic prope
of ferromagnets was proposed in Refs. 10 and 11 on
basis of the well-known phenomenon of magnetoelastic
This phenomenon is manifested as a dependence of the
tic moduli of a ferromagnet on the magnetization, whi
leads to an analogous dependence of the Debye temper
of acoustic phonons on the magnetization; therefore, the c

1019-05$10.00 © 1997 American Institute of Physics
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magnet depends on the magnetization. The latter is the
son why acoustic phonons are manifested in the magn
properties of ferromagnets. Within such an approach it w
possible to uncover a comparatively small set of experim
tally measurable parameters, which enable us to quan
tively calculate the contribution of thermal acoustic phono
to various magnetic properties of ferromagnets. These
rameters were determined in Ref. 11 for the pure metals
and nickel and for Fe–Ni, Fe–Ni–Mn, and Fe–Pt Invar
loys on the basis of an analysis of the available experime
data in the literature, enabling the formulation of quantitat
statements regarding the role of thermal phonons in the m
netic properties of these ferromagnets. In particular,
anomalously large contribution of the thermal phonons to
Curie constant of Fe–Pt Invar alloys was discovered. I
therefore natural to pose the question of the magnitude of
isotope effect in these alloys.

In this communication the isotope shift of the Curie te
perature caused by magnetoelasticity is studied on the b
of a generalization of the approach described in Refs. 10
11, and the conditions for observing this effect in ferroma
nets with high and low Curie temperatures are analyzed.
parameters whose experimental measurement enables
quantitatively calculate the contribution of acoustic phono
to the isotope shift of the Curie temperature in real ferrom
nets are identified. An estimate of the isotope shift of
Curie temperature in the Invar alloy Fe0.75Pt0.25 based on
experimental data is given.

2. GENERAL RELATIONS

Magnetoelasticity plays a fundamental role below. F
numerous ferromagnets~see, for example, Ref. 12! the de-
pendence of the elastic moduli on the magnetization ha
very simple form. The model of an isotropic elastic mediu
which is characterized by a bulk modulusK and a shear
modulusG, is frequently used to describe ferromagnets.
avoid confusion, we must follow the rules of thermodyna
ics, which require the exact determination of the thermo
namic variables on which the elastic moduli, in particul
depend. Under the conditions of a constant magnetizationM ,
for the elastic moduli we can write12

KM~T,M !5K~T!1K8M2, GM~T,M !5G~T!1G8M2,
~2.1!

whereK(T) andG(T) are the elastic moduli of the parama
netic state, which depend on the temperature owing to
usual anharmonicity of phonons. The values of the ela
moduli K(T) and G(T) are found in the ferromagnetic re
gion by extrapolation with neglect of the phase transit
from the paramagnetic region, where they exhibit a norm
temperature dependence~see, for example, Ref. 13!. It is
important to stress that, according to Ref. 12, the magn
elastic coefficientsK8 andG8 for numerous ferromagnets ar
independent of temperature over a fairly broad range
variation of the magnetization.

In experimental investigations of the elasticity of ferr
magnets the elastic moduli are usually measured at a
stant magnetic induction~or at a constant magnetic fieldH!.
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to KM by the well-known thermodynamic relation

1

KH~P,T,H !
2

1

KM~P,T,M !
5

1

xP
S ]v

]H D
P,T

2

. ~2.2!

Here xP5(]M /]H)P,T is the isothermal paraprocess ma
netic susceptibility at a constant pressureP, and
(]v/]H)P,T5V21(]V/]H)P,T is the induced magnetostric
tion, whereV is the volume of the ferromagnet. Equatio
~2.2! is presented here because of the need to disting
between the experimentally measured bulk modulusKH and
the bulk modulusKM needed for the theoretical model d
scribed below. Within the phenomenological approach re
tions ~2.1! and ~2.2! can be used to determine the depe
dence of the bulk modulusKM on the magnetization and t
find the bulk magnetoelastic coefficientK8 ~see, for example,
Refs. 11 and 13!. Experimental data for the remaining qua
tities appearing in~2.1! and ~2.2! are used for this purpose
We stress that the shear modulus at a constant magnetic
GH does not differ from the shear modulus at a const
magnetizationGM . This simplifies the determination of th
shear magnetoelastic coefficientG8 on the basis of experi-
mental data.11

It should also be noted that microscopic theories of
elasticity of ferromagnetic metals are sometimes devi
without an understanding of which bulk modulus is bei
used. As was shown in Ref. 14, such a lack of understand
is the reason for Kim’s paradoxical statements in Ref.
where, instead of the estimates~1.2! and~1.4!, quantitiesuSu
times larger appear in the conditions~1.3! in the approach
used. On the other hand, we cite Ref. 16, in which it sho
how not only the bulk moduli at a constant magnetic fie
and a constant magnetization can be distinguished, but
explicit expressions for them can be obtained within a m
croscopic treatment. We also note that since the elasticit
a lattice is associated with Debye screening of the Coulo
field in the itinerant-electron model, the Debye screening
dius at a constant magnetic fieldr H and the analogous radiu
at a constant magnetizationr M are different.

Magnetoelasticity makes the contribution of acous
phonons to the free energy of a ferromagnet depend on
magnetization. In the Gru¨neisen corresponding-states mod
we write the following expression for this contribution:17

Fph~V,T,M !5QM
l f l S T

QM
l D 12QM

t f tS T

QM
t D . ~2.3!

Here we have introduced the partial Debye temperatures
the longitudinal modes

QM
l 5

\

kBAr
S 6p2

v D 1/3AKM1
4

3
GM ~2.4!

and the transverse modes

QM
t 5

\

kBAr
S 6p2

v D 1/3

AGM ~2.5!

of the acoustic phonons, wherer is the mass density andv is
the unit-cell volume of the crystal. In our treatment we sh
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perature, i.e., we shall neglect the usual anharmonicity of
phonons. At the same time, according to~2.1!, we shall take
into account the dependence of the Debye temperatures~2.4!
and ~2.5! on the magnetization caused by magnetoelastic
Bearing in mind the smallness of the magnetoelasticity c
tribution to the moduli in~2.1!, we can write Eqs.~2.4! and
~2.5! in the form

QM
l 5Q l1Q l8M2, QM

t 5Q t1Q t8M2, ~2.6!

where

Q l8

Q l
5

3K814G8

2~3K14G!
,

Q t8

Q t
5

G8

2G
. ~2.7!

The magnetization-dependent phonon contribution to
free energy~2.3! of a ferromagnet can be written in acco
dance with expressions~2.6! in the form

DFph~V,T,M !5 (
s5 l ,t

~11ds,t!Qs8wsS T

Qs
D M2, ~2.8!

where

ws~x!5 f s~x!2x fs8~x!, ~2.9!

andds,t51 for s5t andds,t50 for sÞt.
Let us now consider the temperature range near the

romagnetic transition. Then for~2.8! we can write the fol-
lowing expansion with respect to the temperature:

DFph~V,T,M !5V (
s5 l ,t

~11ds,t!
Qs8

Qs
F 1

V
QswsS TC

Qs
D

1Cph
s ~TC!~T2TC!GM2, ~2.10!

whereCph
s (T)52(T/VQs) f s9(T/Qs) is the partial contribu-

tion of the longitudinal (s5 l ) and transverse (s5t) modes
of the acoustic phonons to the lattice specific heat at
temperatureT.18 We note here that a linear temperature d
pendence appears in~2.10! not only nearTC , but also over
the broad temperature rangeT>TC for ferromagnets with
high Curie temperatures (TC@Q l ,t/4), where the phonon
specific heatCph

s can be considered constant.18

Of course, apart from the phonon contribution to the fr
energy~2.10! of a ferromagnet, the theory should take in
account the magnetism of electrons caused by their exch
interaction as a primary factor. For the magnetizatio
dependent electronic contribution to the free energy of a
romagnet above the Curie temperature in the paramagn
state, as well as in the ferromagnetic state, but not very
from the Curie temperature, where the magnetization
small, we can use the expansion

DFel~V,T,M !

5VH 1

2
@a1~TC!1a~T2TC!#M21

1

4
a3M4J . ~2.11!

Formulas~2.10! and ~2.11! enable us to write an expressio
for the magnetic part of the free energy of a ferromagnet
general form that corresponds to the Landau theory
second-order phase transitions:18
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where the Curie temperature is specified by the follow
equation

a1~TC!1
2

V (
s5 l ,t

~11ds,t!Qs8wsS TC

Qs
D50, ~2.13!

and the Curie constantC is given by the relation

1

C
5a12 (

s5 l ,t
~11ds,t!Cph

s ~TC!
Qs8

Qs
. ~2.14!

According to Eq. ~2.13!, the influence of the acousti
phonons is manifested in the determination of the Curie te
perature, and according to~2.14! it is manifested in the pho-
non renormalization of the Curie constant. It is convenien
rewrite Eq.~2.14! in the following manner:

C5
12X~TC!

a
, ~2.15!

where the magnitude of the dimensionless parameter~com-
pare with Refs. 10 and 11!

X~TC!5Xl~TC!12Xt~TC! ~2.16!

in comparison with unity will quantitatively determine th
contribution of the acoustic phonons to the Curie consta
and the parameters

Xs~TC!52CCph
s ~TC!

Qs8

Qs
, s5 l , t, ~2.17!

will characterize the partial contributions of the respect
acoustic modes. Clearly, only thermal phonons make a c
tribution to the Curie constant~2.15!. Now, in the limit of
high Curie temperatures (TC@Q l ,t/4) the parameters

Xs5
2kBC

v

Qs8

Qs
, s5 l , t, ~2.18!

do not depend on the Curie temperature, and at low C
temperatures (TC!Q l ,t/4) they decrease as

Xs~TC!;Cph
s ~TC!;~TC /Qs!

3, s5 l , t. ~2.19!

Therefore, metals and alloys which have comparatively h
Curie temperatures were selected as examples for the q
titative determination ofX(TC) in real ferromagnets in Ref
11.

Relations~2.12!–~2.14! enable us to study the manifes
tations of acoustic phonons in various thermodynamic pr
erties of ferromagnets. Here we shall examine the con
quences of Eq.~2.13! as applied to the determination of th
dependence of the Curie temperature on the atomic mas
the atoms in the crystal lattice, i.e., the isotope effect in f
romagnets. Differentiating~2.13! with respect to the atomic
massMi and using Eqs.~2.14! and ~2.17!, we find the fol-
lowing expression for the isotope coefficient:
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d ln Mi 2 (
s5 l ,t

s,t s C

3F12
Qsws~TC /Qs!

VTCCph
s ~TC! G . ~2.20!

In deriving Eq. ~2.20! it was assumed that, according
~2.7!, the ratioQs8/Qs does not depend on the atomic ma
The main difference between~2.20! and the result in Ref. 19
is the presence of the factorsXl ,t(TC) in ~2.20!, which de-
termine the magnitude of the isotope effect to a signific
extent. This difference is attributed to the model used in R
19, according to which it was assumed during the treatm
of the isotope effect on the basis of an equation similar to
~2.13! that a15const and does not depend onTC , i.e., the
Curie temperature is determined completely by the contri
tion of the thermal phonons in such a model. In addition, E
~2.20!, unlike the results in Ref. 19, takes into account t
contribution of both the longitudinal and transverse modes
the acoustic phonons, as well as the contribution of the z
point lattice vibrations.

Let us present the expressions for Eq.~2.20! that corre-
spond to ferromagnets with high and low Curie temperatu
as well as the special case of the Debye model. For h
Curie temperatures (TC@Q l ,t/4), using an expansion of th
functions

ws~x!5 f s~0!1kBNxS 12
as

x
1

bs

x2 D , s5 l , t, ~2.21!

where N is the number of unit cells in the crystal, from
~2.20! we find the following expression for the isotope coe
ficient:

d ln TC

d ln Mi
5

1

2 (
s5 l ,t

~11ds,t!Xs

Qs

TC
S f s~0!

kBN
2as

12bs

Qs

TC
D . ~2.22!

Here the parametersXs do not depend onTC and are given
by Eq. ~2.18!. In the special case of the Debye model,
which f s(0)53kBN/8, as53/8, andbs51/20, from ~2.22!
we obtain

d ln TC

d ln Mi
5

1

20 FXl S Q l

TC
D 2

12XtS Q t

TC
D 2G . ~2.23!

In the other limiting case of low Curie temperatur
(TC!Q l ,t/4), in which

ws~x!5 f s~0!1O~x4!, s5 l , t. ~2.24!

Formula~2.20! leads to an isotope effect which is complete
determined by the zero-order lattice vibrations:

d ln TC

d ln Mi
5

1

2 (
s5 l ,t

~11ds,t!Xs

Qs

TC
S f s~0!

kBN D . ~2.25!

For the Debye model Eq.~2.25! takes the form

d ln TC

d ln Mi
5

3

16 S Xl

Q l

TC
12Xt

Q t

TC
D . ~2.26!
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signed values ofXl ,t , we can conclude that the absolu
value of the isotope effect is greater in ferromagnets w
low Curie temperatures (TC!Q l ,t/4). This conclusion dif-
fers qualitatively from the result obtained above, accord
to which the contribution of the acoustic phonons to the C
rie constant~2.15! is greater in absolute value, the higher
the Curie temperature in comparison with the Debye te
peratures of the acoustic phonons.

3. DISCUSSION OF RESULTS AND CONCLUSIONS

The treatment performed shows that the quantitative
termination of the contribution of acoustic phonons to t
isotope shift of the Curie temperature in real ferromagn
first calls for finding the dimensionless parametersXl ,t(TC)
or, in the case of the limiting expressions~2.22! and~2.23! or
~2.25! and ~2.26!, the parametersXl ,t ~2.18! on the basis of
experimental data. This requires knowledge of experime
values for the Curie constantC, the phonon specific hea
Cph

s (TC), the elastic moduliK andG, and the magnetoelas
tic coefficientsK8 and G8. Such a set of parameters wa
determined in Ref. 11~see Tables I and II therein! on the
basis of experimental data for the pure metals Fe and Ni,
iron-nickel Invar alloys Fe12xNix (0.30,x<0.45), the ter-
nary alloys Fe0.65(Ni12xMnx)0.35 (0<x<0.13), and the iron-
platinum Invar alloys Fe12xPtx ~x50.28, 0.25! with various
degrees of orderS of the atoms in the crystal-lattice sites. A
anomalously large value was found for the dimensionl
parameterX.20.51 to20.54 in the Invar alloy Fe0.75Pt0.25

with a degree of orderS50.70~see Table II in Ref. 11!. It is
natural to utilize the data in Ref. 11 in reference to this all
in estimating the contribution of acoustic phonons to the i
tope shift of the Curie temperature caused by magnetoe
ticity on the basis of the phenomenological approach de
oped in Sec. 2.

According to Table I in Ref. 11, for the Invar allo
Fe0.75Pt0.25 with a degree of orderS50.70 we have the ex-
perimental values K512.63102214.13102 kbar and
G56.9310227.03102 kbar for the elastic moduli and
K851.0310521.33105 andG8522.113105 for the mag-
netoelastic coefficients. This enables us to use formulas~2.7!
to find that Q l8/Q l varies from 23.231028 to
4.231028 G22 and Q t8/Q t varies from 215.131028 to
15.331028 G22. These parameters determine the dep
dence of the Debye temperatures~2.6! on the magnetization
The data for the Curie constantC50.29 K and the high-
temperature limit of the specific heat of thes acoustic mode
Cph

s 5kB /v50.273107 erg/cm3
•K are taken from Table II in

Ref. 11. Then Eq.~2.18! enables us to estimate the dime
sionless parametersXl.20.04 to20.07 and 2Xt.20.47,
which characterize the partial contributions of th
longitudinal-acoustic mode and two transverse-acou
modes to the isotope effect. Next, we determine the De
temperatures of the acoustic phononsQ l ,t from formulas
~2.4! and~2.5! using the data presented above for the ela
moduli K and G, the mass densityr511.7 g/cm3, and the
unit-cell volume of the cubic crystalv551.9 Å3 in accor-
dance with Table III in Ref. 20. This givesQ l.350 K and
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Q t.194 K. Since the conditionTs@Q l ,t/4 holds for the Cu-
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J.
rie temperatureTC.386 K of this alloy, as determined from
Table III in Ref. 20, Eq.~2.22! can be used for numerica
estimates of the isotope effect in this alloy. Setting the co
ficients f l(0)5 f t(0)5 f (0), a l5a t5a, and b l5b t5b in
~2.22!, which do not depend on the mode index, we find

d ln TC

d ln Mi
.2~0.1420.15!S f ~0!

kBN
2a D2~0.1620.17!b.

~3.1!

We next consider the possibility in whic
u f (0)/kBN2au;a,1 andb!a. From ~3.1! we obtain the
estimate

Ud ln TC

d ln Mi
U.0.14a, ~3.2!

or for the absolute value of the isotope shift of the Cu
temperature we have

uLTCu.~54 K!S a
DMi

Mi
D , ~3.3!

whereDMi is the isotope change in the atomic mass. For
replacement of the54Fe isotope by56Fe or by58Fe we find
DMi /Mi.3.727.4%. Then, formula ~3.3! gives
uDTCu.(224)a K. Since a,1, for an upper estimate o
the isotope shift of the Curie temperature in the Invar al
Fe0.75Pt0.25 we obtainuDTCu,2–4 K. Finally, we present an
estimate of the isotope shift of the Curie temperature for
alloy according to the Debye model whe
f (0)/kBN5a53/8 andb51/20. From~3.1! we obtain

DTC.2~0.120.2!K. ~3.4!

Thus, in contrast to the anomalously large phonon renorm
ization of the Curie constant for this alloy discovered in R
11, the contribution of the acoustic phonons to the isoto
shift of the Curie temperature is comparatively small. T
finding is not unexpected, since, according to the phen
enological approach developed in Sec. 2, the Invar a
Fe0.75Pt0.25 is a ferromagnet with a comparatively high Cur
temperature (Ts@Q l ,t/4). On the other hand, the estimat
of the dimensionless parametersXl and 2Xt presented above
allow us to advance the argument that acoustic phonons
cause a large isotope shift of the Curie temperature w
ud ln TC /d ln Miu;1 holds in ferromagnets which have ma
netoelastic coefficients of comparatively large absolute v
ues, as, for example, the Invar alloy Fe0.75Pt0.25 and simulta-
1023 JETP 85 (5), November 1997
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the Debye temperatures. Mention should also be made o
work of Karchevskiiet al.,21 who first observed the isotop
shift in the Curie temperatureTC54.060.5 K in going from
uranium hydride, UH3, to uranium deuteride, UD3, for
which the isotopic coefficient is relatively small,I .22
31022. We stress that the phenomenological approach
veloped here to the theory of the isotope effect in ferrom
nets indicates the set of parameters whose experimental
surement permits a quantitative calculation of t
contribution of acoustic phonons to the isotope shift of t
Curie temperature in real ferromagnets caused by mag
toelasticity.

In conclusion, we express our thanks to V. P. Silin a
R. Z. Levitin for a useful discussion of the question cons
ered here. This work was performed as part of project 96-
17318-a of the Russian Fund for Fundamental Research
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de Haas–van Alphen effect in superconductors

rve
M. G. Vavilov and V. P. Mineev
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A theory of the de Haas–van Alphen effect in type-II superconductors is proposed. The effect of
the electron scattering by nonmagnetic impurities in a magnetic field in the potential
produced by a nonuniform distribution of the order parameter in a mixed state is investigated.
The magnitude of the order parameter and quasiparticle density of states are determined
from the solution of the system of Gor’kov equations. It is shown that in the presence of even a
small amount of impurities, the superconducting state near the upper critical field is
gapless. In this region, the oscillatory~in the magnetic field! contribution to the density of states
and the characteristic damping of the amplitude of the magnetization oscillations in the
superconducting state are found. ©1997 American Institute of Physics.
@S1063-7761~97!02611-5#
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Quantum oscillations of the magnetization—the
Haas–van Alphen effect—are a well-studied phenomeno
the physics of normal metals. In superconductors, the m
netic fields in which it is possible to observe the dHvA effe
in practice are ordinarily much higher than the critical fie
of the phase transition from the superconducting into
normal state.

According to the standard Lifshitz–Kosevich theory1

each extremal cross section of the Fermi surface mak
contribution to the oscillatory part of the magnetization

Mosc}AH
2p2T/vc

sinh~2p2T/vc!
expS 2

p

vct
D

3sinS 2pF

H
1F D . ~1!

Here vc5eH/m* c is the cyclotron frequency
F5(c/2pe)S, S is the area of the extremal section of th
Fermi surface, andt is the electron scattering time of th
impurities. The Planck constant\ is everywhere set equal t
1. The quantity 1/2pt is the Dingle temperature. Both th
temperature and impurity factors in Eq.~1! decrease rapidly
with decreasing magnetic field, which should not exceed
upper critical fieldHc2 of the superconductor. Appreciab
oscillations of the magnetization can therefore be expecte
appear only at very low temperatures

T,
eHc2

2p2m* c
;

Tc
2

m
. ~2!

HereTc is the temperature of the transition to the superc
ducting state in zero field andm is the Fermi energy. On the
other hand, on account of impurity scattering,2 dHvA oscil-
lations are appreciable only in sufficiently pure metals,
when vct@1, which can be rewritten asl imp@Rc . Here
l imp5vFt is the mean free path length,Rc5kFl2 is the cy-
clotron radius,kF is the Fermi wave vector, andl5Ac/eH
is the magnetic length, which in a field of the order ofHc2 is
equal to the coherence lengthj(T). Therefore the require
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dHvA oscillations in fields of the order ofHc2,

l imp@kFj2, ~3!

is much stronger than the standard condition on the purity
a superconductor,l imp@j0 .

Thus, the dHvA effect in the range of fields and tem
peratures typical of type-II superconductors can be obser
only in quite rarely encountered ultrapure superconduc
with a high upper critical field. Examples of such superco
ductors are compounds with the structure A-
~V3Si, Nb3Sn!,3,4 borocarbides (YNiB2C),5 and some or-
ganic and layered superconductors~see the reviews in Refs
6 and 7!. Thus, in V3Si,3 where Hc2518.5 T, Tc517 K,
j056.3 nm, andl imp.Rc5130 nm, dHvA oscillations in
fields of the order ofHc2 can be observed at temperatures
the order of 1 K.

The dHvA effect in the materials indicated above r
mains even in a transition to a mixed state (H,Hc2). The
frequency of the oscillations remains the same, and the
plitude decreases with decreasing field more rapidly than
the normal state.

The damping of the amplitude of the magnetization o
cillations in type-II superconductors has been calcula
theoretically.8,9 It was shown that in the mixed state of th
material, the quasiparticle scattering by a spatially nonu
form distribution of the order parameterD~R! leads to addi-
tional broadening of the Landau levels

1

ts
;Amvc

Hc22H

Hc2
. ~4!

As a result, besides the Dingle factor, the amplitude of
dHvA effect acquires another, temperature-independent,
tor exp(2p/vcts) and decreases fairly rapidly away from th
phase transition lineHc2 .

The derivation of the expression~4! is unsatisfactory
from a theoretical standpoint. The problem is that in Ref
the electron spectrum and the level broadening are obta
by formally replacing the spectrum found in Ref. 10 in th
momentum representation by a corresponding quantum

1024-11$10.00 © 1997 American Institute of Physics
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ablesj5k /2m2m and the polar angleu is a good one when
the spacing between the Landau levels is small compa
with the temperatureT or the widthG51/2t of the levels. In
studying the dHvA effect we are dealing with precisely t
opposite situationvc.2p2T and vc.pG, so that the mo-
mentum representation cannot be used to calculate the s
trum. Moreover, the mean-square modulus of the order
rameter appears in Ref. 8 as a phenomenological param
whereas it should be determined from the self-consiste
equation.

The quantum approach developed by Stephen9 nonethe-
less confirmed Maki’s results.8 In Ref. 9, however, in a cal-
culation of the quasiparticle self-energy, a summation o
the principal quantum number was replaced by an integ
which is admissible only if the level widths are greater th
the spacing between the levels. This is why the same res
are obtained in Refs. 8 and 9.

Descriptions of the dHvA effect in superconductors a
also proposed in Refs. 11–13. For all the difference in
approaches, the authors used in one way or another a B
type spectrum

E5AEn
2~kz!1D2, ~5!

where

En~kz!5vc~n11/2!1kz
2/2m2m. ~6!

Stephen9 showed that the spectrum~5! is realized only in
sufficiently weak fieldsAmvc!T. By virtue of ~2!, it is
therefore impossible to observe magnetization oscillation
this region.

The spectrum~5! likewise can also formally be obtaine
in the ultraquantum limitvc;m.14 It is well known, how-
ever, that in the theory of superconductivity, the mean-fi
approximation is inapplicable in the ultraquantum limit~see
Ref. 15!. The mathematical model employed in Ref.
thereby does not yield a faithful description of supercond
tivity in strong fields.

In the present paper a self-consistent quantum theor
the effect in a mixed state is developed. It is shown that
a finite impurity concentration, despite the requirement
high purity vc.pG, which is necessary in order to obser
the dHvA effect, in the mixed state near the upper criti
field Hc2 there is a region of gapless superconductiv
where the density of states at the Fermi surface remain
nite:

N~E50!5N0S 12
2Ap3nF

L ln nF

Hc22H

Hc2
D . ~7!

Here N0 is the density of states in the normal met
nF5m/vc is the number of Landau levels below the Fer
level, andL is a numerical constant'2.

The oscillatory part of the density of states, and con
quently the oscillatory partMosc

s of the magnetization in the
mixed state, is also depressed compared with its valueMosc

n

~1! in the normal state

Mosc
s

Mosc
n 512

2ApnF

L ln nF

Hc22H

Hc2
. ~8!
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mation in the squared order parameterD ;(Hc22H)/Hc2

under the conditionsT,G,vc . Any attempt to go beyond
the linear approximation encounters substantial mathema
difficulties due to the nondiagonal nature of the self-ene
matrix, which is unavoidable as a result of the spatially no
uniform distribution of the order parameter.

Our presentation is organized as follows. In the ne
section, the Gor’kov equations for the electron Green’s fu
tion in the mixed state of a superconductor are written o
Next, the wave functions that define the magnetic-sublat
representation—the best representation for solving the p
lem of Landau quantization in the field of the periodic p
tential of the order parameter—are determined in expl
form. In the next two sections, the order parameter of
superconductor and the solutions of the self-consiste
equations for the impurity self-energy part are presented
Sec. 6 the electron density of states near the Fermi surfa
calculated and the thermodynamic potential and magn
moment of the superconductor are calculated according
the known density of states.

2. ELECTRON GREEN’S FUNCTION IN AN IMPURE
SUPERCONDUCTOR

The Gor’kov equations for an impure superconductor

~ iv2Ĥ0~r !2D̂~r !2û~r !!Ĝ~r ,r 8,v!5 l̂d~r2r 8!, ~9!

where

Ĥ0~r !5S H0~r ! 0

0 2H0* ~r !
D ,

D̂~r !5S 0 D~r !

D* ~r ! 0 D ,

û~r !5u~r !t̂35S u~r ! 0

0 2u~r !
D ,

u(r ) is the impurity scattering potential,

H0~r !5
1

2m S 2 i
]

]r
1

e

c
A~r ! D 2

2m ~10!

is the single-particle Hamiltonian of electrons in a magne
field, andm is the chemical potential. The magnetic field
assumed to be uniform and oriented along the external fi
which is certainly justified forH;Hc2 in superconductors
with a large Ginzburg–Landau parameterk in which the
dHvA effect is observed~k'17 in V3Si!. To simplify the
calculations we neglect the effect of the magnetic field on
electron spins.

The eigenfunctionsf l(r ) of the operatorH0(r ) are Lan-
dau wave functions, written in an appropriate gauge, or
linear combinations of these functions satisfying the orth
normality condition. The explicit form of the functionsf l(r )
and the gauge for the magnetic field will be given in the n
section. The matrixĜ(r ,r 8,v), containing both the norma
and anomalous Green’s functionsG(r ,r 8,v) andF(r ,r 8,v),
can be written in both the coordinate representation and
f l(r ) representation:

1025M. G. Vavilov and V. P. Mineev



Ĝ~r ,r 8,v!
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Ĝ~r ,r 8,v!5ĝ~r ,r 8,v!

ncy

a

f

5S G~r ,r 8,v! F~r ,r 8,v!

F1~r ,r 8,v! 2G~r 8,r ,2v!
D

5(
l l 8

S f l~r !Gll 8~v!f l 8
* ~r 8! f l~r !Fll 8~v!f l 8~r 8!

f l* ~r !Fll 8
1

~v!f l 8
* ~r 8! 2f l 8~r 8!Gl 8 l~2v!f l* ~r !

D .

~11!

The order parameterD~r ! can be determined from the sel
consistency equation

D* ~r !5uguT(
v

F1~r ,r ,v!, ~12!

whereg is the attractive potential between electrons near
Fermi surface.

For isotropic impurity scattering in the approximation
low impurity density (l imp@kF

21), we assume that the ave
age of the productu(r1)u(r2) over all possible impurity con-
figurations is

u~r1!u~r2!5nimpu
2d~r12r2!. ~13!

Hereu is the characteristic strength of the impurity scatter
potential andnimp is the impurity density. Furthermore, w
neglect multiple scattering by a single impurity~Born ap-
proximation!. Under these assumptions, retaining the no
tion ~11! for the Green’s function averaged over the positio
of the impurities, we obtain16
.

lv
e

-
s

1E dr1ĝ~r ,r1 ,v!D̂~r1!Ĝ~r1 ,r 8,v!

1E dr1ĝ~r ,r1 ,v!Ŝimp~r1!Ĝ~r1 ,r 8,v!.

~14!

The impurity self-energy part satisfies the self-consiste
equation

Ŝimp~r ,v!5S Ḡ~r ,v! F̄~r ,v!

F̄1~r ,v! 2Ḡ~r ,2v!
D

5nimpu
2t̂3Ĝ~r ,r ,v!t̂3 . ~15!

The matrix Green’s function of a pure normal metal in
magnetic field has the form

ĝ~r ,r 8,v!5S g~r ,r 8,v! 0

0 2g~r 8,r ,2v!
D . ~16!

The Green’s functiong(r ,r 8,v) can be expressed in tems o
the eigenfunctions of the operatorH0 as

g~r ,r 8,v!5(
l

f l~r !gl~v!f l* ~r 8!, ~17!

where

gl~v!5~ iv2j l !
21. ~18!

We shall also rewrite Eq.~14! in the f l(r ) representation:
ers
S Gll 8~v! Fll 8~v!

Fll 8
1

~v! 2Gl 8 l~2v!D 5S gl~v!d l l 8 0

0 2gl~2v!d l l 8
D

1(
l 1

S gl~v!~Ḡl 1l~v!Gl 1l 8~v!1D̃l l 1
Fl 1l 8

1
~v!! gl~v!~Ḡl 1l~v!Fl 1l 8~v!2D̃l l 1

Gl 8 l 1
~2v!!

2gl~2v!~D̃l l 1
* ~v!Gl 1l 8~v!1Ḡll 1

~v!Fl 1l 8
1

~v!! 2gl~v!~D̃l l 1
* ~v!Fl 1l 8~v!2Ḡll 1

~v!Gl 8 l 1
~2v!!

D . ~19!

Here we have introduced the notation while the second is the next term in the expansion in pow

of D. Denoting the power ofD by a corresponding index, we

f
g-
Ḡll 85E dr f l~r !f l 8~r !Ḡ~r ,v!. ~20!

F̄ ll 8~v!5E dr f l* ~r !f l 8
* ~r !F̄~r ,v!, ~21!

D l l 85E dr f l* ~r !f l 8
* ~r !D~r !, ~22!

D̃~r ,v!5D~r !1F̄~r ,v!. ~23!

The quantitiesḠ(r ,v) and F̄ (r ,v) are determined by Eq
~15!.

Our goal is to calculate the density of states and to so
the self-consistency equation forD to second order inD. To
do so, we represent all functions in Eq.~19! as a sum of two
terms, the first of which contains the lowest power ofD,
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have

Gll 8~v!5Gll 8
~0!

~v!1Gll 8
~2!

~v!, ~24!

Fll 8~v!5Fll 8
~1!

~v!1Fll 8
~3!

~v!, ~25!

Ḡll 8~v!5Ḡll 8
~0!

~v!1Ḡll 8
~2!

~v!. ~26!

We note thatḠll 8
(0)(v) is simply the self-energy part o

the Green’s function of an impure normal metal. The ma
nitude of Ḡ(0)(r ) does not depend on the coordinater , and
since the wave functionsf l(r ) are orthonormal, we have
Ḡll 8

(0)(v)5d l l 8Ḡ
(0)(v).

The following relations can be obtained from Eq.~19!:
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~0! ~0!
d l l 8

rit

f a

a

th

e

a

te
nc

f ~r !5Aa
exp~ ik z! exp~2 iq am!

ice

the

-

n
te
Gll 8
~v!5d l l 8Gl ~v!5

gl
21~v!2Ḡl

~0!
, ~27!

Gll 8
~2!

~v!5Gl
~0!~v!Ḡl 8 l

~2!
~v!Gl 8

~0!
~v!

1(
l 1

Gl
~0!~v!D̃l l 1

~v!Fl 1l 8
1~1!

~v!, ~28!

and for the anomalous Green’s function

Fll 8
1~1!

~v!52Gl
~0!~2v!D̃l l 8

* ~v!Gl 8
~0!

~v!, ~29!

Fll 8
1~3!

~v!52(
l 1

Gl
~0!~2v!D̃l l 1

* ~v!Gl 1l 8
~2!

~v!

2(
l 1

Gl
~0!~2v!Ḡll 1

~2!~v!Fl 1l 8
1~1!

~v!. ~30!

The solution of the self-consistency equation for the impu
self-energy part for a normal metal isḠl

(0)(v)
52 iG imp signv, where G imp5pnimpu

2N0 . The second-
order correction inD is given by

Ḡll 8
~2!

~v!5nimpu
2(

pp8
E drf l~r !fp~r !

3fp8
* ~r !f l 8

* ~r !Gpp8
~2!

~v!. ~31!

In the next section we present the functionsf l(r ) and the
matrix elementsD l l 8 in explicit form.

3. MAGNETIC-SUBLATTICE REPRESENTATION

The mixed state in type-II superconductors consists o
Abrikosov vortex lattice with one flux quantumf05pc/e
per unit cell. To simplify the calculations, we choose
square vortex lattice with edge lengtha such thata25pl2.
The form of the lattice can influence the dependence of
amplitude of the order parameterD on the strength of the
field and the temperature. All other results are independ
of the type of lattice.

The solution of the linearized equation for the order p
rameter is the function

D~r !5D f 0~r !, ~32!

where

f 0~r !5A4 2 (
n

expS i
2pn

a
yDexpF2S x

l
1

pn

a
l D 2G

~33!

in the Landau gaugeA(r )5(0,Hx,0).
To calculate the matrix elements of the order parame

D~r !, it is convenient to choose a complete set of eigenfu
tions of the HamiltonianH0 in the form of the following
linear combinations of Landau functions~magnetic-
sublattice representation17!:

1027 JETP 85 (5), November 1997
y

n

e

nt

-

r
-

l l z (
m

x

3expF i S qy1
pm

a D yGwnS x

l
1S qy1

pm

a Dl D ,

~34!

where

wn~s!5
1

A2nn!Ap
expS 2

s2

2 DHn~s!, ~35!

and

Hn~s!5~21!nes2 dn

dsn e2s2
~36!

are Hermite polynomials. In the magnetic-translation latt
there are two flux quantaf0 per unit cell ~the charge of a
Cooper pair is twice the electron charge!. For this reason we
choose a lattice in the form of a rectangle with edgesax5a

and ay52a. Then l 5$n,kz ,qW % and the vectorqW lies in the
first Brillouin zone: 2p/a,qx,p/a and 2p/2a,qy

,p/2a. The summation over the quantum numbers in
preceding section is to be interpreted as

(
l

5 (
n50

` E dkz

2p E
2p/a

p/a dqx

2p E
2p/2a

p/2a dqy

2p
. ~37!

The energy levels of the single-particle Hamiltonian~10! are

j l5jn~kz!5vc~n11/2!1kz
2/2m* 2m. ~38!

The functionsgl(v) andGl
(0)(v), defined by Eqs.~18! and

~27!, do not depend on the wave vectorqW .
The matrix elementD l l 8 in the magnetic-sublattice rep

resentation has the form~see Appendix A!

D l l 85~2p!3d~kz1kz8!d~qW 1qW 8!Dnn8~qW !, ~39!

Dnn8~qW !5~21!n8DAA2p
~n1n8!!

2n1n811n!n8!

3(
n

exp~2inqxa!

3wn1n8S&S qyl1
pln

a D D . ~40!

4. SOLUTION OF THE EQUATIONS FOR THE IMPURITY
SELF-ENERGY PART

We seek the functionD̃(r ,v), defined in Eq.~23!, in the

form D̃(r ,v)5D(r )@11a(v)#. Substituting the expressio
for D l l 8 into ~29! and transforming back to the coordina
representation~see Appendix B!, we obtain
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1~1!
1 dkz

o
-

h
r
r

rm
ve
e

e

e

re

E` dn E dkz
5E 2pk'dk' E dkz

5E dk

he
m
ti-

a-
F ~r ,r ,v!52D* ~r !@11a~v!#
&pl2 E 2p

3(
nn8

F ~n1n8!!

2n1n811n!n8!

3Gn
~0!~2v,kz!Gn8

~0!
~v,kz!G . ~41!

Comparing this expression with Eq.~23!, we obtain

a~v!5
b~v!

12b~v!
, ~42!

where

b~v!5nimpu
2

1

&pl2 E dkz

2p (
nn8

F ~n1n8!!

2n1n811n!n8!
Gn

~0!

3~2v,kz!Gn8
~0!

~v,kz!G . ~43!

Stirling’s formula gives the estimate

~n1n8!!

2n1n811n!n8!
'

1

A4pn
expS 2

~n2n8!2

4n D . ~44!

Let m5n82n, and let us replace, according to the Poiss
formula, the summation overn by the corresponding integra
tion

b~v!52nimpu
2

1

&pl2

3E dkz

2p (
m

E dn
1

A4pn

3expS 2
m2

4nD(
r

e2iprn

3
1

iv1jn~kz!1 iG impsign v

3
1

iv2jn~kz!2vcm1 iG impsign v
. ~45!

Then in the sum overr we can neglect oscillatory terms wit
rÞ0, which contain an additional small facto
Avc /rm exp(22prGimp /vc). This factor arises because fo
rÞ0, only the region near the extremal section of the Fe
surface makes a significant contribution to the integral o
kz , while for r 50 the entire Fermi surface contributes. W
do not present here the calculations for terms withrÞ0,
since they are entirely analogous to the calculations mad
Sec. 6 for the oscillatory density of states.

In the remaining term withr 50, we transform from in-
tegration overn to integration over the coordinates of th
two-dimensional vectorkW', so thatvc(n11/2)5k'

2 /2m* ,
and then we integrate over the components of the th
dimensional vectork, treatingk as a vector comprised ofkW'

andkz :
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n

i
r

in

e-

0 2pl2 2p ~2p!2 2p ~2p!3

5N0E djE
0

p/2

sin u du. ~46!

For v!G imp!vc it is sufficient to retain them50 term
in the sum overm. The integration yields

b~v!5Apvc

8m
. ~47!

The semiclassical approximation is applicable in t
limit v.vc . Therefore the summation over the quantu
numbern85n1m can be replaced by integration. To es
mate the integral we set exp(2m2/4n)'1. As a result, we
find that for largev the quantityb~v! does not exceed

Ap3vc

8m

G imp

vc
. ~48!

Therefore, whennF5m/vc@1, b~v! is small. In the follow-

ing calculations we ignore the difference betweenD̃(r ,v)
andD~r !.

It will be seen from the calculations below~see Sec. 6!
that to find the density of states to orderD2 it is sufficient to
know the impurity self-energy part integrated over the qu
simomentumqW :

Ḡ~2!
nn8~v!5E dqW

~2p!2 Ḡnn8
~2!

~kz ,qW ,v!.

We integrate the right- and left-hand sides of Eq.~31!

over the quasimomentumqW and, using Eqs.~28! and ~29!,
obtain ~see Appendix B!

Ḡ~2!
nn8~v!5

dnn8nimpu
2

2pl2 (
m

E dkz

2p

3H @Gm
~0!~kz ,v!#2Ḡ~2!

mm~v!

2
D2

2pl2 @Gm
~0!~kz ,v!#2(

m1
F ~m1m1!!

2m1m111m!m1!

3Gm1

~0!~kz ,2v!J . ~49!

In deriving Eq.~49! we employed the fact that

E dqW

~2p!2 fnqW kz
~r !fn8qW kz

* ~r !5
1

2pl2 dnn8 , ~50!

where the integral extends over the first Brillouin zone.
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Subsequent calculations are similar to the calculation of

l-
n

.
in

tio

ur
ss

e

en

am
e

of

h

e

Let us calculate the first term in~54!, which contains
(1)1

ust

ther
that

he

he

the
e,
der

ing
r

b~v!. Specifically, we employ the relation~44!, transform
from summation overm to integration, and drop small osci
latory terms. In the nonoscillatory term, we use the relatio
~46! to transform from integration overm andkz to integra-

tion over j5jm(kz). SinceḠ(2)
mm(v) does not depend on

m, the integral of the first term in Eq.~49! over j equals

zero. Therefore the quantityḠ(2)
nn8(v) is determined by the

second term in Eq.~49!. In the casev!G imp!vc , retaining
only them15m term in the sum overm1 , we obtain

Ḡ~2!
mm~v!'

i

16pl2 Apvc

m

D̃2

G imp
. ~51!

If v.vc , the nonoscillatory part ofḠ(2) equals zero, since
in this limit the summation overm1 in the second term in Eq
~49! can be replaced by integration, and the subsequent
gration overm yields zero.

5. SOLUTION OF THE SELF-CONSISTENCY EQUATION FOR
THE ORDER PARAMETER

The order parameter of a superconductor is the solu
of the self-consistency equation~12!. Equation~12!, linear-
ized with respect toD~r !,

D~r !52uguT(
v

E dr 8

3G~0!~r ,r 8,v!G~0!~r ,r 8,2v!D~r 8!, ~52!

determines the metal–superconductor phase transition c
as a function of temperature and magnetic field. It posse
an infinite number of solutionsf N(r ), which are eigenfunc-
tions of the Schro¨dinger equation for a particle with charg
2e in a magnetic fieldH.18 SubstitutingD(r )5 f N(r ) into
Eq. ~52! yields an equation for the upper critical fieldHN in
which superconductivity might appear with a spatial dep
dence of the order parameter given byf N(r ). The highest
value of the upper critical fieldHc2 is reached forN50 in
the functionf 0(r ) given by Eq.~33!.

Any solution of the self-consistency equation~12! can be
represented as a linear combination of the functionsf N(r ):

D~r !5D (
N50

`

aNf N~r !. ~53!

To find the dependence of the amplitude of the order par
eter on the deviation of the magnetic field from the upp
critical field, we multiply both sides of Eq.~12! by D f N(r )
and integrate overr . The result is an algebraic system
equations for the coefficientsaN . Let a051. It is easy to
verify, from the structure of the system of equations for t
coefficients aN, that all aN with NÞ0 are small as
(Hc22H)/Hc2 . It is therefore sufficient to retain only th
equation withN50, which to terms of orderD4 has the form

D25uguT(
v

(
nn8

E dqW

~2p!2 E dkz

2p
Dnn8~qW !

3@Fnn8
~1!1

~kz ,qW ,v!1Fnn8
~3!1

~kz ,qW ,v!#. ~54!
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Fnn8
(kz ,qW ,v), for fieldsH less than the upper critical field

Hc2. Using the result of Appendix B and Eq.~44!, we write
it in the explicit form

2uguTD2(
v

1

2pl2 (
nn8

exp@2~n82n!2/4n#

A4pn

3E dkz

2p
Gn

~0!~kz ,2v!Gn8
~0!

~kz ,v!. ~55!

In this expression, the divergent sum over frequencies m
be cut off at a frequency of orderec—the characteristic
thickness of the layer where electrons attract one ano
near the Fermi surface. The divergence actually means
large valuesv;ec make the main contribution in Eq.~55!.
Therefore, to calculate the first term in Eq.~54! we can re-
place summation over the quantum numbersn and m by
integration overk'

2 52m* vcn and p'
2 52m* vcn8, respec-

tively. We perform the integration as follows: we replace t
integral overp' by an integral overp̃'5p'2k' and trans-
form from integrals overkz and kW' to an integral over the
components of the three-dimensional vectork5(kW', kz)
~compare with Eq.~46!!. We obtain

2p i
D2uguN0

A2p
lT(

v
E

0

p/2

sin udu

3E 1

p̃'vF sin u22i ~ uvu1G imp!
expS 2

p̃'
2 l2

2 Ddp̃' .

~56!

Substituting the Fourier transforms for both factors in t
integral overp̃' , we find

uguN0D22pT(
v

E
0

p/2

sin uduE ldr

vF

3expF2
~r sin u!2

2 GexpF2
2~ uvu1G imp!lr

vF
G . ~57!

As expected, the resulting expression is identical to
semiclassical result. Next, following a standard procedur19

we arrive at an expression for the amplitude of the or
parameterD2 in the limit T→0:

N0D2 lnAHc2

H
5T(

v
(
nn

mm8

E dkz

2p
Gn

~0!~kz ,2v!

3Gm
~0!~kz ,v!Gn8

~0!
~kz ,2v!

3Gm8
~0!

~kz ,v!Ymm8
nn8 , ~58!

where

Ymm8
nn8 5E dqW

~2p!2 Dnm~qW !Dnm8
* ~qW !Dn8m~qW !Dn8m8

* ~qW !.

We took account of the fact that the two terms contain
Ḡll 8

(2) that appear inFnn8
(3)1(kz ,qW ,v) cancel one another afte

summation over frequencyv. In the limit G imp!vc , we re-

1029M. G. Vavilov and V. P. Mineev



tain the term corresponding ton5m5n85m8 and neglect
th

1
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to
s

e
fo

s

n-

N~E!52
1

Im G ~E!,

per

tal.
n be

rs,
the
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tor
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ap-
the remaining terms, which are small to the degree that
ratio G imp /vc is small. Hence,

N0D2 lnS Hc2

H D 1/2

5T(
v

(
n
E dkz

2p

1

@~v1G imp!
21jn

2~kz!#
2 Ynn

nn .

~59!

We rewrite the integralYnn
nn in the form

Ynn
nn5

1

2pl2 (
QW

sn~QW !sn~2QW !, ~60!

and the Fourier transformssn(QW ) are

sn~QW !52pl2E dqW

~2p!2 eiqW QW Dnn~qW !Dnn* ~qW !. ~61!

The vectorsQW 5(2aNx, 2aNy). The quantity~61! is calcu-
lated in Appendix D. Substituting the expression forsn(QW )
into Eq. ~60!, we find

Ynn
nn5

D4

2pl2 Sn , ~62!

where

Sn5S ~2n!!

22n11n!n! D
2

(
Nx ,Ny

exp@2p~Nx
21Ny

2!#

3L2n
2 ~p~Nx

21Ny
2!!. ~63!

Here theLn(s) are Laguerre polynomials.
If in Eq. ~63! the summations overNx and Ny are re-

placed by integration, then the value of the integral will be
for all n. The sum, however, depends onn and assumes
values approximately equal to 2 with a variance of so
10%. For subsequent calculations, we neglect the de
dence of the sum onn and set the value of the sum equal
some numberL'2. Dropping, as usual, the oscillating term
in the Poisson series, we perform the integration in Eq.~59!
overjn(kz). In the low-temperature limit the sum overv can
be replaced by an integral. The integral over the anglu
diverges nearu50. Since the expressions above are valid
nF@1, we have the natural cutoffuc'1/kFl. Finally, we
obtain

D2~H !'
16pnF

L ln nF
G imp

2 Hc22H

Hc2
, ~64!

wherenF5m/vc . Here ln(Hc2 /H) is replaced by its serie
expansion in powers ofHc22H.

We emphasize that the result~63! is valid when
T,G imp!vc .

6. DENSITY OF STATES

The density of statesN(E) can be expressed in the sta
dard manner in terms of the Green’s function
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e
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r
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l

l l

Gll 8~E!5Gl
~0!d l l 81Gll 8

~2! . ~65!

We write an explicit expression for the density of states
unit volume to first order inD2:

N~E!52
1

p
Im

1

2pl2 (
n
E dkz

2p
Gn

~0!~kz ,E!

2
1

p
Im (

n
E dkz

2p
Gn

~0!2~kz ,E!S Ḡ~2!
nn~E!

2
1

2pl2 D2(
n8

~n1n8!!

2n1n811n!n8!
Gn8

~0!
~kz ,2E!D .

~66!

The first term is the density of states of the normal me
One can see that the correction to the density of states ca

expressed in terms of the quantityḠ2(T) found in Sec. 4.
We use the Poisson formula

(
n

•••5(
r
E dn e2p irn•••

to perform the summation over the Landau level numbe
and we obtain for the density of states an expression of
form

N~E!5(
r

N~r !~E!.

The r 50 term corresponds to the nonoscillatory ‘‘ave
age’’ value of the density of statesN(0)(E). To calculate this
term it is convenient to transform from integration overn to
integration over the coordinates of a two-dimensional vec
kW' such thatkW'

2 52mvcn. TreatingkW andkz as components
of a three-dimensional vectork we arrive at a semiclassica
integral, which can be computed by making the substitut

~46!. The first term, containingḠ(2), on the right-hand side
of Eq. ~66! vanishes after an integration overj. We perform
the integration overj andu in the last term in Eq.~66!, just
as in the calculations of Eqs.~47! and~51! for E,G imp!vc,
using the relation~44! and retaining only then85n term in
the sum overn8.1! The result is

N~0!~E!5N0S 12
Ap

8AnF

D2

G imp
2 D . ~67!

We substitute the value ofD determined in Eq.~64!

N~0!~E!5N0S 12
2Ap3nF

L ln nF

Hc22H

Hc2
D . ~68!

From this expression we find the region of existence of g
less superconductivity:2!

Hc22H

Hc2
,

L ln nF

2p3/2AnF

. ~69!
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We now examine the oscillatory corrections to the den-
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sity of states. We transform from integration overn to inte-
gration overjn(kz)5j. The integrations overj and kz are
performed independently. Then

E dkz

2p
expS 22p i

kz
2

2mvc
r D 5

1

2plAr
expS 2 i

p

4 D .

For ther th term of the Poisson series (rÞ0) we obtain the
expression

N~r !~E!5
Am3vc

2p2

~21!r

Ar
Ar~D!Im expF i

2pr

vc
~E1m!

2 i
p

4 GexpS 2
2prG imp

vc
D , ~70!

where

Ar~D!5S 12
D2

A4pnF

1

4G imp
2 D . ~71!

In the derivation of Eq.~70! we dropped terms that are sma
to the degree thatG imp /vc is small. Then the oscillatory
correction to the density of states is damped at the trans
to the superconducting state compared with its value in
normal state.

7. MAGNETIZATION OSCILLATIONS

The thermodynamic potential is

V522TE dE N~E!ln~11e2E/T!.

Integrating by parts, we have for ther th oscillating harmonic
V (r )

V~r !5
Am* 3vc

5

~2p2!2

~21!r

r 3/2 Ar~D!cosS 2pm

vc
r 2

p

4 D
3

2p2T/vc

sinh~2p2Tr/vc!
expS 2

2prG imp

vc
D , ~72!

where the factorAr(D) is defined in Eq.~71!. Hence the
oscillatory part of the magnetization is

M ~r !52
]V~r !

]H

5
1

2p3 S e

cD 3/2

AHm
~21!r

r 1/2 Ar~D!sinS 2prm

vc
1

p

4 D
3

2p2T/vc

sinh~2p2Tr/vc!
expS 2

2prG imp

vc
D . ~73!

To calculate]V (r )(E)/]H it is sufficient to differentiate only
the factor exp(2ip rm/vc). We note that the density of state
can be determined in terms of the quantities such
G(2)

nn(E) and D2, which in turn likewise contain rapidly
oscillating corrections. Nonetheless, when differentiating
density of states with respect to the magnetic field they
be neglected, since their contribution to the derivative of
density of states compared with the contribution indica
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corrections toḠ andD compared with their average va
ues.

In contrast to a normal metal~see Eq.~1!!, the answer
has an additional factorAr(D), corresponding to the damp
ing that quasiparticles acquire as a result of scattering by
nonuniform distribution of the order parameter. Substituti
the expression~64! into Eq. ~71!, we obtain

Ar~H !512
2ApnF

L ln nF

Hc22H

Hc2
. ~74!

8. CONCLUSIONS

The results of this work are reminiscent of the resu
obtained in Refs. 8 and 9. Indeed, to first order inD2, the
suppression of the magnetization oscillations that was fo
in Refs. 8 and 9 is proportional to

12
p3/2D2

Amvc
3

512aAm

vc

Hc22H

Hc2
, ~75!

wherea is of the order of 1, which qualitatively agrees wit
Eq. ~74!. We note, however, that in Refs. 8 and 9, Eq.~75!
was derived under the implicit assumption that the width
the levels in the normal state is greater than the spac
between Landau levels. We now discuss this question
greater detail.

We first examine the expression for the order parame
obtained with various relationships among the quantitiesT,
G imp , andvc . Stephen9 showed that in the weak-field limi
Amvc,T the amplitude of the order parameter has the fo

D2~H !}Tc
2S 12

H

Hc2
D . ~76!

Since scattering by impurities broadens the levels simila
to the temperature, fields for whichAmvc,G imp can like-
wise be treated as weak. In such fields, Eq.~76! determines
the amplitude of the order parameter. In intermediate fie
where Amvc.T, G imp but neverthelessvc,T, G imp, the
discrete structure of the spectrum is inconsequential and
magnitude of the order parameter assumes the form

D2~H !}mvcS 12
H

Hc2
D . ~77!

In Ref. 9 it is assumed that the result~77! is also valid in the
strong-field limit, where magnetization oscillations are o
served. In the present paper it is shown~see Eq.~64!! that in
the region of strong fields (vc@G imp.T), the order param-
eter is determined by the expression

D2}mvcFS G imp

vc
D S 12

H

Hc2
D ,

where, according to Eq.~64!, F(x)5x2 for x!1. The form
of the functionF(x) for arbitraryx can be determined from
Eq. ~58!. The functionF(x) increases withx and reaches a
constant value of the order of 1 atx;1. This leads to
Stephen’s result Eq.~77!. Similar characteristic ranges o
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magnetic fields also occur in calculations of the electron
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Green’s function in the superconducting states~see footnote
1!.

We also note that the exponential damping of the de
ties of states indicated in Refs. 8 and 9 falls outside the lim
of accuracy of the theory. The problem is that the calcu
tions in Refs. 8 and 9 neglected the detailed spatial struc
of the order parameter, which is a valid procedure only wh
terms no higher than the first power ofD2 are studied. For
arbitraryD2, the indicated simplification is achieved by a
eraging over a random arrangement of vortices,9 and a num-
ber of unconvincing arguments are presented as justifica
Moreover, in calculations of higher orders inD2, the self-
consistency equation must be solved to the same degre
accuracy.

We now summarize the main results. The condition

T,G imp!vc , ~78!

under which the results of the present work were obtai
means that, specifically, the superconductor is highly pu

l imp@kFl2.

Nonetheless, the presence of even such a small quanti
impurity results in the formation of a gapless supercondu
ing state nearHc2 . The region~69! of existence of this state
in ordinary type-II superconductors, where the number
Landau levelsnF5m/vc fitting below the Fermi level is
enormous, reduces to a vanishingly small neighborhood
the upper critical field. However,nF is not so large in super
conductors with low Fermi energy and highHc2 . For ex-
ample, in V3Si ~Ref. 3! nF only ranges into the dozens, an
the magnetic field intervalHc22H where gapless supercon
ductivity exists can equal some tenths ofHc2 . In this region
Landau quantization is preserved, and therefore in a m
netic field there is an oscillatory contribution to the magn
tization of the sample; its amplitude~73! rapidly decays as
the field decreases.

We thank A. I. Larkin for a discussion of the resul
obtained in this work, and also M. I. Kagan and L. A
Fal’kovski�, who read the manuscript and made a numbe
useful remarks.

This work was supported in part by the Ministry of Sc
ence of the Russian Federation~‘‘Statistical Physics’’ pro-
gram! and the Russian Fund for Fundamental Resea
~Grant No. 96-0216041!.

APPENDIX A

We calculate an element of the order parameterD l l 8 de-
termined by the expression~32! in the magnetic-sublattice
representation~34!. We write the explicit expression fo
D l l 8 :

D l l 85D
a

l E dre2 i ~kz1kz8!z (
n,n8,m

exp~ iqxan!exp~ iqx8an8!

3expF2 i S qy1
pn

a
yD GexpF2 i S qy81

pn8

a D yG
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i-
ts
-
re
n

n.

of

d
:

of
t-

f

of

g-
-

f

h

S a D nS l S y a D D
3wn8S x

l
1S qy81

pn8

a Dl DexpS 2S x

l
1

pm

a
l D 2D .

~79!

The integration is performed over each coordinate se
rately:

E dz exp@2 i ~kz1kz8!z#52pd~kz1kz8!. ~80!

E dy expF2 i S qy1
pn

a D yGexpF2 i S qy81
pn8

a D yG
3expS 2p imy

a D52pd~qy1qy8!dn1n8,2m . ~81!

Here we took account of the fact thatqW andqW 8 are vectors in
the first Brillouin zone. Since the sumn1n85m is an even
number, the differencen2n8 is also an even number.

In the integral over the coordinatex we replace the in-
tegration variable by

x̃

l
5

x

l
1

pm

a
l.

Using the fact thatn1n852m, the integrand can be rewrit
ten in a form containing only the differencen2n8, which we
denote by 2k, wherek is an integer. Using the Kronecke
delta symbol, we now transform from summation overn, n8,
andm to summation overm andk and perform the summa
tion overm. Since

exp~ iqxan!exp~ iqx8an8!5expF i ~qx1qx8!~n1n8!a

2 G
3expF i ~qx2qx8!~n2n8!a

2 G ,
and the integral overx does not depend onm, we have

(
m

exp@ i ~qx1qx8!ma#5
2p

a
d~qx1qx8!, ~82!

where qx and qx8 are components of a vector in the fir
Brillouin zone.

It remains to perform the integration over the coordina
x. We introduce the variablep5(qy1pk/a)l. The integral
has the form

lE ds e2s2
wn~s1p!wn8~s2p!.

Using the explicit form of the functionwn(s) ~35! we arrive
at the integral

~21!n1n8ep2E dsS dn

dsn e2~s1p!2D S dn8

dsn8
e2~s2p!2D .

Here we have dropped the normalization coefficients of
functionswn(s). The equality
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e2s2
5ApE dj

ei jse2j2/4,

th
x

e

and we substitute the functionswn(s) from Eq. ~35! into the
ion

ing

r in

s-
2p

makes it possible to rewrite the integral as

~21!npe2p2E dj

2p
~ i j!n1n8e2i jpe2j2/2.

Calculating the inverse Fourier transform we arrive at

~21!n8A p

2n1n811
e2p2

Hn1n8~&p!. ~83!

The expressions~80!, ~81!, and~82! make it possible to
represent the matrix element of the order parameter in
form ~39!. Collecting all factors together and using the e
pression~83!, we arrive at Eq.~40!.

APPENDIX B

To derive the expression~41! it is necessary to calculat
the integral

E dqW

~2p!2 fnkzqW
* ~r !fn8,2kz ,2qW

* ~r !Dnn8
* ~qW !

5AA2p
~n1n8!!

2n1n811n!n8!
D

a

l E dqW

~2p!2

3 (
n,n8,k

exp@ iqxa~n2n8!#expF2 i S qy1
pn

a D yG
3expF2 i S 2qy1

pn8

a D yGexp~22ikqxa!

3wnS x

l
1S qy1

pn

a Dl Dwn8S x

l
1S 2qy1

pn8

a Dl D
3wn1n8S&S qyl1

pkl

a D D . ~84!

The integration overqx is trivial

E
2p/a

p/a dqx

2p
exp@ iqxa~n2n822k!#5

1

a
dn2n8,2k .

To calculate the integral overqy we employ the equality
n2n852k, transform from summation overn, n8, andk to
summation overn2n852k and n1n852m, and regroup
terms in the arguments of the functionswn(s) so as to obtain

~21!n8AA2p
~n1n8!!

2n1n811n!n8!

1

l (
k
E

2p/2a

p/2a dqy

2p

3(
m

expS 2
2p imy

a Dwn1n8S&qyl1
pkl

a D
3wnS qyl1

pkl

a
1j Dwn8S qyl1

pkl

a
2j D ,

wherej5x/l1pml/a. We note that

(
k
E

2p/2a

p/2a dqy

2p
f S qyl1

pkl

a D5E
2`

` dqy

2p
f ~qyl!,

~85!

1033 JETP 85 (5), November 1997
e
-

integrand. Furthermore, we employ the explicit express
for the Hermite polynomialHn1n8(&s) ~see Eq. ~36!!.
Dropping the factors, we present the form of the result
integral:

E ds Hn~s1j!Hn8~s2j!
dn1n8

dsn1n8
e2s2

.

Integrating by partsn1n8 times and using the fact that

dn1n8

dsn1n8
Hn~s1j!Hn8~s2j!52n1n8~n1n8!!,

we arrive at the integral*ds exp(2s2)5&. Finally, we find

E dqW

~2p!2 fnkzqW
* ~r !fn8,2kz ,2qW

* ~r !Dnn8
* ~qW !

5
1

&pl2

~n1n8!!

2n1n811n!n8!
D* ~r !, ~86!

whereD~r ! is given by Eq.~32!.

APPENDIX C

The derivation of Eq.~49! requires the integral

I 5E dqW

~2p!2 Dnn8~qW !Dnn8
* ~qW !.

We substitute the matrix element of the order paramete
the form ~40!

I 5A2pD2
~n1n8!!

2n1n811n!n8!
(
n,n8

E
2p/a

p/a dqx

2p

3exp@2iqx~n2n8!a#E
2p/2a

p/2a dqy

2p

3wn1n8S&S qyl1
pln

a D Dwn1n8S&S qyl1
pln8

a D D .

Carrying out the integration overqx , we find thatn85n, and

I 5A2pD2
~n1n8!!

2n1n811n!n8!
(

n
E

2p/2a

p/2a dqy

2pa

3w2nS&S qyl1
pln

2a D Dw2nS&S qyl1
pln

a D D .

Using Eq.~85!, we find

I 5
D2

2pl2

~n1n8!!

2n1n811n!n8!
. ~87!

APPENDIX D

We now calculate the Fourier transform in the expre
sion ~61!. We substitute into Eq.~61! the matrix element of
the order parameter in the form~40!:
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s ~QW !5A2p
~2n!! Ep/a dqx

in

The integral on the right-hand side of this expression is cal-

. To
on the

and

el,

, K.
n 22n11n! 2 (
n,n8 2p/a 2p

3exp@2iqx~Nx1n2n8!a#

3E
2p/2a

p/2a dqy

2p
exp~2iNyqya!

3w2nS&S qyl1
pln

a D Dw2nS&S qyl1
pln8

a D D .

~88!

Here we setQW 5(2aNx, 2aNy). Carrying out the integration
over qx , we find thatn82n5Nx , and

sn~QW !5A2p
~2n!!

22n11n! 2 (
n
E

2p/2a

p/2a dqy

2pa

3exp~2iNyqya!w2nS&S qyl1
pln

2a D D
3w2nS&S qyl1

pln

a
1

plNx

a D D .

We now use Eq.~85! and replace the integration variable
the integral overqy by

q̃yl5qyl1
plNx

2a
.

We arrive at

sn~QW !5
&

24nn! 2

1

2al
exp~2 ipNxNy!expS 2

pNx
2

2 D
3E dqy

2pa
exp~2iNyqya!exp~22qy

2l2!

3H2nS&S qyl2
plNx

2a D D
3H2nS&S qyl1

plNx

2a D D .
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culated in Ref. 17. Finally, we find

sn~QW !5
~2n!!

22n11n! 2

exp~2 ipNxNy!

2pl2

3expF2
p

2
~Nx

21Ny
2!GL2n~p~Nx

21Ny
2!!, ~89!

where theLn(s) are Laguerre polynomials.

1!This is the point where Stephen9 performs the integration overn8, which is
admissible only forG imp.vc , i.e. outside the region where the dHvA
effect is observable.

2!The damping of the density of states can be observed experimentally
do so, it is necessary to measure the dependence of the specific heat
magnetic field intensity at sufficiently low temperatures.
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Investigation of the hyperfine interaction in the antiferromagnetic CsMnI 3

ec-
L. A. Prozorova, S. S. Sosin, D. V. Efremov, and S. V. Petrov

P. L. Kapitsa Institute of Physical Problems, Russian Academy of Sciences, 117334 Moscow, Russia
~Submitted 17 June 1997!
Zh. Éksp. Teor. Fiz.112, 1893–1898~November 1997!

The lower branch of the resonance spectrum of the quasi-one-dimensional triangular
antiferromagnetic CsMnI3 has been investigated experimentally. This branch possesses a gap due
to the dynamic hyperfine interaction. The temperature dependence of the energy gap was
studied in detail at several frequencies. A theoretical calculation of the corresponding spectrum
of coupled electron-nuclear spin oscillations was performed in the ‘‘hydrodynamic
approximation’’ with an empirical correction for thermal fluctuations of the antiferromagnetic
system. The good agreement between the calculation and experimental data makes it
possible to determine the zero-point spin reduction in the antiferromagnetic. ©1997 American
Institute of Physics.@S1063-7761~97!02711-X#

1. INTRODUCTION netic contributions to the temperature evolution of the sp
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35
The dynamical properties of antiferromagnetics a
strongly affected by the interaction of the electronic a
nuclear magnetic subsystems. Specifically, the NMR sp
trum of the magnetic ions depends strongly on the type
exchange ordering of the electronic spins. It was noted
in Ref. 1 that the nuclear spins associated with the triang
exchange structure occupy inequivalent positions with
spect to an external magnetic field so that their resona
spectrum should consist of three branches. Later, suc
spectrum of coupled electronic–nuclear oscillations w
studied experimentally for the easy-plane antiferromagn
CsMnBr3.

2,3 Three branches with different magnetic-fie
dependences were indeed observed in the NMR spect
and a temperature-dependent gap due to the dynamical i
action with the nuclear spins appeared in one of the acou
branches of the AFMR spectrum. Thus, the results were
sically in agreement with the theoretical prediction me
tioned above and with calculations3 performed on the basi
of the phenomenological approach of Ref. 4.

However, a more detailed analysis of the experimen
data reveals large deviations from the theory. There can
several reasons for these deviations. Above all, the excha
structure of CsMnBr3 is strongly influenced by quantum
fluctuations and is strongly distorted by a magnetic field
plied in the easy-plane of the crystal. These circumstan
make the approach used to describe the spectrum of os
tions less accurate. Finally, the analysis of the tempera
dependences of the magnetic-resonance spectrum is pro
complicated by the characteristic behavior, the nature
which remains unknown,5 of this antiferromagnetic abov
T;3 K.

The properties of the easy-axis antiferromagne
CsMnI3 investigated in the present work make it possible
eliminate most of the difficulties listed above. Furthermo
similar AFMR spectrum and its temperature depende
have been investigated in detail in nickel compounds~for
example, in RbNiCl3 ~Ref. 6!!, where there is essentially n
hyperfine interaction with the nuclear subsystem. This ma
it easier to distinguish the antiferromagneticic and param
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2. EXPERIMENTAL RESULTS

In the present work, the low-frequency part of the res
nance spectrum of the antiferromagnetic CsMnI3 in a mag-
netic field oriented perpendicular to the six-fold axis of t
crystal was investigated at different temperatures. The
periments were performed in the frequency range 3.3–
GHz with a direct-amplification spectrometer. Quasitoroid
resonators withQ5500– 800 were employed as the abso
ing cell in the lower part of this range and high-Q square
resonators (Q.1500) were used at frequencies of 9 GH
and higher. A superconducting solenoid generated the ex
nal magnetic field, which could be continuously varied up
10 kOe. The experimental cell was located inside a heli
dewar, whose temperature~from 4.2 to 1.3 K! was measured
to within 0.02 K according to the saturated vapor pressu
The experimental crystal was glued to a binary plane, m
ing it possible to orient the six-fold axisC6 perpendicular to
the field to within60.5°.

A single 0.5–1 kOe wide absorption line was observ
at all frequencies. The line shifted in the direction of low
fields with decreasing temperature~see Fig. 1! and the rela-
tive shift increased strongly with decreasing frequency.
the frequencies 5.7, 4.3, and 3.3 GHz there existed a rang
temperatures~below 1.7 K, 2.5 K, and 3.9 K, respectively! at
which the resonance line shifted to zero field and then v
ished. These data attest to the presence of a gap, whic
creases with temperature, in the resonance spectrum.

The characteristic features listed above are illustrated
Fig. 2, which displays the temperature dependence of
resonance field at different frequencies. Here it is clea
seen that the change in the resonance field with decrea
temperature becomes sharper at low frequencies; this co
sponds to the gap gradually approaching the given
quency. A series of curves of the lower ‘‘AFMR branch’’ a
a function of the field was constructed from the results of
measurements for several temperatures. Two of these cu
~at the beginning and end of the interval! are presented in

1035-04$10.00 © 1997 American Institute of Physics
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FIG. 1. Variation of the resonance ab
sorption lines with temperature at fre
quencies 5.7 GHz~a! and 7.2 GHz~b!.
Fig. 3. A theoretical description of the data obtained and a
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discussion of the agreement between theory and experim
are given in the next section.

3. DISCUSSION AND MAIN CONCLUSIONS

The resonance properties of the electronic spin sys
are most easily studied in a phenomenological approa4

which is the most convenient method for describing the lo
wavelength dynamics of antiferromagnetics with a comp
cated exchange structure and weak relativistic interactio
The exchange symmetry of a triangular antiferromagneti
given by the transformation of two orthogonal unit vecto
according to the same irreducible representation:

S~r !5^S&@ l1 cos~k–r !1 l2sin~k–r !#, ~1!

wherek5(1/3,1/3,1) in reciprocal lattice units. The susce
tibility tensor of such an antiferromagnetic has two princip
valuesx' and x i with respect to the vectorn5 l13 l2 per-
pendicular to the plane of the spins. The macroscopic
namics of the system is determined by a Lagrangian w
density

Le5
x'

2g2 ~V1gH!21
hx'

2g2 ~n•~V1gH!!22Ua , ~2!

whereh5(x i2x')/x' , V is the angular rotation velocity
in spin space, andUa is the anisotropy energy, whose form
discussed in detail in Ref. 7. The parameterization of
rotation of the spin system for obtaining linearized equatio

FIG. 2. Resonance field of the experimental branch versus temperatu
different frequencies.
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angular velocity vectorV up to second-order in the rotatio
angleu:

s5s01u3s01
1

2
u3~u3s0!, V5u̇1

1

2
u3u̇, ~3!

where the equilibrium values of the vectorss0 are deter-
mined from the condition that the Lagrangian has a ma
mum at V[0. Specifically, in the case at hand, when t
field H is perpendicular toC6 , the vectorn0 is directed
along the field.

The paramagnetic nuclear system is treated as a co
tion of free magnetic moments at finite temperature wh
are located in different effective fieldsHeff(r i)5AS(r i)1H
(A is the hyperfine interaction constant!.

Since the characteristic relaxation times of the nucl
spins of Mn21 are much longer than the period of the micr
wave oscillations (vt@1), we can neglect the thermody
namic coupling of the magnetization of the paramagnet
fields H i

eff with the rest of the system and describe the m
netization in the form of conserved spontaneous magn
moments. This description is similar to the model of ferr
magnetic sublattices. For this reason the corresponding
grangian can be represented as a sum forN56 independent
ferromagnets~see Ref. 4!:

Ln5
1

N (
r 51

N
1

gn
~M i•~Vi1gnH i

eff~u!!!. ~4!

at
FIG. 3. Field dependence of then2 branch at two temperatures. Soli
lines—fit of the expression~7!; dashed lines—AFMR spectrum without th
hyperfine interaction.
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The magnetic moments and angular frequencies of the
m

te

. 3
d

fie

The complete Lagrangian of the system of electronic and

led
o-
ing
motion of each sublattice near equilibrium can be para
etrized in terms of small rotation anglesw i similarly to Eq.
~3!, the total magnetization of the sublattices being de
mined from the conditions of equilibriumM0i5xnH i

eff . This
approach is obviously different from the one used in Ref
since it does not assume that the conditions of thermo
namic equilibrium of the nuclear subsystem are satis
while the subsystem is in motion.
l
t

th
r

e
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p

t

-
n

-

r-

,
y-
d

nuclear spins can be written as

L5Le1Ln . ~5!

Varying the Lagrangian with respect tou,u̇ and w i ,ẇ i

we obtain a system of 21 equations describing the coup
spin oscillations. Eliminating from this system the comp
nents of the nuclear-spin angles, we obtain the follow
characteristic equation for the frequencies:
U S n

g D 2

2h~H21Hc
2!2

D2~n22gn
2H2!

2g2~n22nn
2!

inH

g
~11h!

2
inH

g
~12h! S n

g D 2

2hH22
D2~n22gn

2H2!

2g2~n22nn
2!

U50, n22ne3

2 2
1

11h

D2n2

n22nn
2 50, ~6!

where nn5gnAA2^S&21H2 is the unshifted nuclear fre- ferromagnetic, can be determined from the value ofD. The
o-

d

x-

nce

on-

er-

on
quency,D5gA^S&Axn /x' is the width of the dynamica
gap in the mixed spectrum, andne3

is the field-independen

branch of the initial AFMR spectrum. Assumingn2@nn
2 and

neglecting in weak fields the off-diagonal elements of
characteristic equation~6!, we obtain simple expressions fo
the ‘‘antiferromagneticic’’ modes:

n1
25ne1

2 1
D2

2
, n2

25ne2

2 1
D2

2
, and n3

25ne3

2 1
D2

11h
, ~7!

where ne1
5gAh(H21Hc

2) and ne2
5gAhH are approxi-

mate expressions for the initial antiferromagneticic branch
As one can see from Fig. 3, Eq.~7! for n2 describes the

experimental data well at low temperature. The two ot
branches were not investigated, since in the caseH'C6 the
n3 branch is unobservable because of the absence of dis
sion with respect to the field and the branchn1 lies at fre-
quencies above 100 GHz and is essentially insensitive to
hyperfine interaction.

The mean valuê S& of the electronic spins, which is
lower than the classical valueS55/2 on account of fluctua
tions of the ground state of the quasi-one-dimensional a

FIG. 4. h versus temperature. Solid line—calculation of (x i2x')/x' from
the results of magnetostatic measurements.9
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hyperfine interaction constantA521565 kOe can be taken
from the investigation of the EPR spectrum of the solid s
lution of CsMnI3 in CsMgI3,

8 and the antiferromagneticic
susceptibility x' at T!TN was measured in Ref. 9 an
equals 7.5•1023 emu/mole. The nuclear spin of Mn21 is
I 55/2 and the nuclear magnetic momentm2gn\I 53.47mn

~mn is the nuclear magneton!. Substituting all available val-
ues into the equation forD2, we obtain

D25
~gn\!2I ~ I 11!NA

3kTx'

~gA^S&!2.
30̂ S&2

T
GHz2

~x' /NA is the antiferromagneticic susceptibility per spin!.
The value ofD at temperaturesT!TN can be determined

quite accurately from existing experimental data. For e
ample, the second of the equations~7! with h50.88 and
D57.660.3 GHz describes well the measured resona
spectrum atT51.7 K ~see Fig. 3!. The valuê S&51.860.1
calculated hence is essentially identical to the neutr
diffraction value^S&51.8560.05.9

Thus, despite strong quantum fluctuations in the antif
romagneticic system CsMnI3, a calculation of the spectrum
of coupled oscillations in the hydrodynamic approximati

FIG. 5. Gapn2(0) versus temperature plotted as the functionn2(1/T).
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shows excellent agreement with experiment. This can be ex-
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V.
plained by the fact that the contribution of zero-point vibr
tions to the resonance spectrum at low frequenciesn!nex is
determined mainly by their effect on the ground state of
antiferromagnetic, i.e. it reduces to the same renormaliza
of the order parameter and static susceptibility as in the s
case. Since they are phenomenological constants in this
proach, they need not be calculated starting from the cla
cal model, but rather they can be replaced by their exp
mental values, as shown above.

The lower magnetic-resonance branch can be descr
in exactly the same way in the entire experimental tempe
ture rangeT<TN/2. This requires taking account of the tem
perature dependences of not only the nuclear susceptib
xn but also the static parametersx i , x' , and ^S& of the
electronic system which appear in the second of the eq
tions ~7!. The self-consistency of this approach is eas
checked by comparing the values of the parameters de
mined by fitting the spectrum at different temperatures~see
Fig. 3! and the corresponding data from magnetostatic
neutron experiments.9 The results of such a comparison f
the parameterh are presented in Fig. 4. Figure 5 shows t
temperature dependence of the gap in then2 branch. In ad-
dition, all characteristics of the antiferromagnetic which a
pear in the gap are renormalized in such a manner a
eliminate their temperature contribution inD. The function
so obtained and plotted asn2(1/T) reflects the Curie law for
the paramagnetic susceptibility of the nuclei, confirming
fact that this branch can be described in the mean-field
1038 JETP 85 (5), November 1997
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ture interval. It also follows from Fig. 5 that the contributio
of the magnetoelastic interaction to the dynamic gap in
spectrum falls within the experimental error.
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Nonsingular skyrmions for Landau levels with odd occupation number in a two-

of
dimensional system
S. V. Iordanski  and S. G. Plyasunov

L. D. Landau Institute of Theoretical Physics, Russian Academy of Sciences, 142432 Chernogolovka,
Moscow Region, Russia
~Submitted 19 June 1997!
Zh. Éksp. Teor. Fiz.112, 1899–1914~November 1997!

The number of particles, energy and other physical parameters in the presence of a skyrmion
vortex have been calculated using the gradient expansion technique. Unlike other
researchers, we have not used the approximation of functions projected on a single Landau level.
If other Landau levels are included in the scheme, we have a simple physical model and a
substantially modified expression for the skyrmion energy. Generation of one skyrmion is
thermodynamically favorable, so they should emerge spontaneously near odd-integer
filling factors. © 1997 American Institute of Physics.@S1063-7761~97!02811-4#
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The theory of macroscopic skyrmion-type spin exci
tions in the neighborhood Landau levels with odd occupat
number in two-dimensional systems under quantum Hall
fect conditions has been developed in a number of theore
treatments. Sondhiet al.1 employed the Chern–Simons ph
nomenological approach, showed that such excitati
should exist, and calculated the energy. Then Fertiget al.2

numerically calculated the energy and wave function us
the Hartree–Fock technique and approximation of functi
projected on a single Landau level. Moonet al.3 operated
within the framework of the same model and applied
gradient expansion technique to a skyrmion of large dim
sions so that to derive analytically expressions for the ene
and number of particles. Their results were revised by By
kov et al.,4 who developed a technique for calculations
any order of the gradient expansion. This model was a
used in calculating the effective action5 with a topological
term ~see also the discussion in Ref. 6!. Experimental obser-
vation of such excitations has remained a pressing prob
because the first report that skyrmions had been dete
using NMR techniques7 were questioned in a late
publication.8

The approximation of functions projected on a sing
Landau level is usually justified by the large cyclotron e
ergy \vc in comparison with the Coulomb energy, which
of the order ofe2/klH , where l H

2 5c\/eH and k is the
dielectric constant. Calculations published to date are v
involved and based on assumptions that are difficult
prove. The final expressions for the energy and density
obtained after lengthy calculations and do not permit a c
physical interpretation of the results. In this paper we sh
that the approximation of projected functions is insufficie
for an adequate description of a skyrmion. The inclusion
adjacent Landau levels gives rise to a substantial chang
the energy and allows us to present an easily understand
physical model for interpretation of basic results. Our p
liminary results were published earlier,9 and this paper pre
sents a more detailed report containing results based o
appropriate gradient expansion.
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spinors, i.e., second-quantization operators for electrons,
ing a nonuniform rotation matrixU(r ). The initial spinorsc
are expressed in terms of new spinorsx through the expres-
sion c(r )5U(r )x(r ). The matrixU(r ) is parametrized us-
ing the three Euler angles:

U~r !5Uz~g~r !!Uy~b~r !!Uz~a~r !!,

where

Uz~a!5cos
a

2
1 i sin

a

2
sz ,

Uy~b!5cos
b

2
1 i sin

b

2
sy ,

and sx , sy , sz are the Pauli matrices. At large distanc
from the core and with a finiteg-factor for the electrons, the
average spin should be aligned with the applied magn
field. Therefore the angleb, which is measured with respec
to the magnetic field vector, should rapidly~as can be shown
exponentially! drop to zero asr→`. The matrix U(r ) is
assumed to have no singularities for allr , which is equiva-
lent to the absence of singularities of the matrix

Ak52 iU 1
]U

]xk
5Vk

l ~r !s l ,

wherek5x,y and l 5x,y,z, and the Pauli matrices are

sx5S 0 1

1 0D , sy5S 0 2 i

i 0 D , sz5S 1 0

0 21D .

The expressions forVk
l can be easily derived by directl

differentiatingU(r ):

Vk
z5

1

2
~]ka1cosb ]kw!

Vk
x5

1

2
~sin b cosa ]kw2sin a ]kb!, ~1!

Vk
y5

1

2
~cosa ]kb1sin b sin a ]kw!.

1039-09$10.00 © 1997 American Institute of Physics



The nontrivial topology generated by the matrixU(r ) is re-

pi

th
u

or
-
a

ia
ky
of
e

s
.

ti

a

b
ic
a
n
in
b
a
t

Coulomb energy, and beyond this range it does not change.
en-
pin

de-
to
s

am-
our
s,

or

es-
he

oth
ted

e

e–
ion
er
al-
ap-

the
all

o a

the
ur
the
-
.

or-
all

sily
that
of
As
lated to properties of the mappingsa~r ! and w~r !, wherer
traverses a circle of large radius. The degree of the map
of a plane to a sphere and parametrized by anglesw and b
equals the degree of the circle-to-circle mapping, i.e.,
winding number, which is a characteristic of a vortex sing
larity in w~r !. In order to makeVk

l (r ) nonsingular, the point-
like singularity in w~r ! should coincide with the singularity
in a~r ! and be located at a point where cosb521. Thus, the
matrix U should contain all three Euler angles, and the c
responding spinorc~r ! has a vortex singularity at large dis
tances with an integer quantum number because the w
functions are single-valued. Therefore a more appropr
term is nonsingular vortices whose core is defined by a s
mion, analogous to3He,10 although, in contrast to the case
3He, winding numbers are arbitrary integers, not only ev
numbers. The integral

1

2p E curl Vzd2r 5Q

is a topological invariant and can be expressed in term
the phase change in the spinorc on a contour of large radius

In a transformation defined by the matrixU, the original
Lagrangian of electrons with a pair interaction in a magne
field, i.e.,

L5E F ic1
]c

]t
2

1

2m
c1~2 i ]k2A0k!

2c Gd2rdt

1
1

2 E V~r2r 8!c1~r !c1~r 8!c~r 8!c~r !d2r 8d2rdt

2gHE c1szcd2rdt, ~2!

goes over to a Lagrangian for the spinorsx :

L85E ix1F]x

]t
2V t

ls lx2
1

2m
~ i ]k2A0k

1Vk
l s l !

2xGd2rdt2
1

2 E V~r

2r 8!x1~r !x1~r 8!x~r 8!x~r !d2r 8d2rdt

1gHE U1szUxd2rdt. ~3!

We assume that the matrixU is also a function of time,V t
l is

a variable similar to that defined by Eq.~1! but contains
differentiation with respect to time, andA0 is the vector po-
tential of a constant magnetic field. The Lagrangian~3! can
be readily derived through direct differentiation using deriv
tives of the identityU1U51.

The dimensions of the skyrmion core are determined
the competition between the Coulomb interaction, wh
tends to enlarge the region with a variable charge density
large derivatives ofU, and the Zeeman energy, which, o
the contrary, tends to contract the region containing sp
with the unfavorable orientation. Almost all of the Coulom
energy is the contribution from the region within the range
which the change in the Zeeman energy is comparable to
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At larger distances the only contribution is the Zeeman
ergy and the energy due to the nonuniformity of the s
alignment, and the competition between them causes the
parture of the spin direction from its optimum value to go
zero exponentially. If theg-factor is small, the core region i
fairly large, so derivatives ofU are small, which allows us to
use the gradient expansion in calculating the physical par
eters. In this paper, we discuss such a situation, and
attention is focused on the topologically invariant term
whose contribution is not changed when the matrixU is
deformed. This allows us to ignore the Zeeman energy
take it into account in first-order perturbation theory.

The effective action, which depends onU, is calculated
by integrating over the fermions the corresponding expr
sion for the partition function and is expressed by t
formula11 S5 iTr ln G, where G is the electron Green’s
function, and the trace is calculated by summing over b
spin and space-time variables. This action will be calcula
using an expansion in terms of the gradients ofU and the
Hartree–Fock approximation, whose applicability will b
justified below.

2. GREEN’S FUNCTION IN THE HARTREE–FOCK
APPROXIMATION

In calculating the Green’s function, we use the Hartre
Fock approximation, which is accurate when the occupat
number of the Landau levels is odd within an error of ord
Vint /\vc , which is assumed to be small. This approach
lows us to express the Hamiltonian in the Hartree–Fock
proximation:

H5E x1FV t
ls l1

1

2m
~2 i ]k2A0k1Vk

l s l !
2Gxd2r

1E V~r2r 8!^x1~r 8!x~r 8!&x1~r !x~r !d2r 8d2r

2E V~r2r 8!^x1~r 8!s lx~r !&x1~r !s lx~r 8!

3d2rd2r 8 ~4!

~the term responsible for the interaction is transformed to
sum of the exchange and direct interactions, and the sm
Zeeman energy is neglected!. In the direct interaction, the
Fourier component of zero momentum corresponding t
neutralizing background charge can be omitted~see, for ex-
ample, Ref. 11!.

We will assume that all mean values are close to
uniform values of parameters for a filled Landau level. O
analysis is limited to the case of uniform exchange, when
difference r2r 8 can be neglected, which formally corre
sponds to a range ofV(r ) smaller than the magnetic length
The exclusion of nonlocal exchange is probably not imp
tant and does not affect topological terms, but it makes
calculation significantly easier. The final results can be ea
generalized to the case of nonlocal exchange. Note also
a model with a similar Hamiltonian arises in calculations
the energy of electrons which belong to one Landau level.
a result, we obtain a model with the Hamiltonian
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For the Hamiltonian~6! the matricesgs(v) can be easily

gy

n

r in

of
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t

H5E Fx V ts lx 1
2m

x ~2 i ]k2A0k1Vks l ! x

2grx1s lnlx
11V0rx1xGd2r , ~5!

whereg andV0 are the constants of the exchange interact
and direct interaction, respectively,n is the unit vector
aligned with the average spin direction, andr is the mean
density. Assuming that the rotation velocitiesVm

l and their
derivatives ]V;V2 are small, we calculate the Green
function using perturbation theory. The Hamiltonian can
expressed in the formH5H01H11H2 , where

H05E x1F 1

2m
~2 i ]k2A0k!

22grs lnl2m Gxd2r , ~6!

H15
1

m E x1@Vk
l s l~2 i ]k2A0k!1V t

ls l #xd2r , ~7!

H25
1

2m E x1F ~Vk
l s l !

22 i
]Vk

l

]r k
s l Gxd2r . ~8!

We employ the grand canonical ensemble and introduc
chemical potentialm. The unimportant constant of direct in
teraction is set to zero, as in the case of Coulomb interact

The Green’s function for the bare Hamiltonian is t
Green’s function for noninteracting electrons in a const
magnetic field, where, we assume that in the highest oc
pied Landau levels only the lower-spin sublevel is filled. In
what follows, we consider for simplicity the case when t
lowest level withs50 is occupied, so that the Green’s fun
tion has the form

G0~r ,r 8,t,t8!52 i ^Tx~r ,t !x1~r 8,t8!&

5(
p,s

E gs~v!eiv~ t82t !Fsp~r !Fsp* ~r 8!
dv

2p
.

~9!

Here T is the time-ordering operator for fermion operato
summation is performed over alls and p, and the spin ma-
trices gs(v) correspond to the filling of the sublevels50
with spins directed along the average spin aligned with
z-axis. All the other states are vacant. The normalized fu
tions Fsp(r ) correspond to eigenfunctions of Landau leve
Here we use the Landau gauge. We select a system of
in which the applied magnetic field isH51, the magnetic
length isl H51, and\51.
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calculated:

g0~v!5
1

v1~gr2 id!sz1m
, ~10!

gs~v!5
1

v1grsz2s/m1m1 id
, ~11!

whered→0 and the chemical potential includes the ener
1/2m of the lowest level.

Expression ~9! allows us to develop a perturbatio
theory for the full Green’s functionG5G01G11G21...
The corresponding graphs for the actionS are shown in Fig.
1. In calculations it is convenient to express the operato
Eq. ~7! in the form

1

m
Vk

l s l~2 i ]k2A0k!5
1

m
~V1

l p21V1
l p1!s l . ~12!

The operatorp1Fsp5A2(s11)F (s11)p raises the Landau
index, and the operatorp2Fsp5A2F (s21)p lowers the Lan-
dau index, which is a direct consequence of properties
oscillator functions, for which

V1
l 52

iVx
l 1Vy

l

2
, V2

l 5
iVx

l 2Vy
l

2
. ~13!

Let us calculate the correction to the first order inV to
the Green’s function:

G1~r ,r 8,t,t8!5E e2 iv~ t2t8!gs~v!Fs,p~r !Fs,p* ~r1!

3H 1

m
@V1

l ~r1!p21V2
l ~r1!p1#

1V t
l~r1!J s lgs8~v8!e2 iv8~ t12t8!

3Fs8p8~r1!Fs8p8
* ~r 8!

dv

2p

dv1

2p
d2r 1dt1 .

~14!

We are interested in the Green’s functionG(r ,r ;t,t1d),
which determines the density. In this case only terms w
s50, s851, s51, s850, ands5s850 are nonzero, the res
vanish because of analytical properties ofgs for s.0. In
addition, the difference betweent andt8 can be neglected to
within terms of orderm owing to the fast oscillations of one
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of the Green’s functions. In the initial stage, we also neglect
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the term withV t , which can be easily calculated. The int
grand in Eq.~14! decays rapidly as a function ofur2r1u
larger then the magnetic length, so we can expandV(r1) in
powers of the differencer2r1 and retain only linear terms
Summation overp yields the following expression:

G1~r ,r ,t,t1d!

5
A2

m E g0s lg0eivd
]V2

l

]r k
R00~r ,r1!R10~r1 ,r !d2r 1

dv

2p

1
&

m E g0~v!s lg1eivd
dv

2p E R00~r ,r1!R01~r1 ,r !

3~r 12r !k

]V2
l

]r k
d2r 11

1

m E g1~v!s lg0~v!eivd
dv

2p

3E R11~r ,r1!R10~r1 ,r !~r 12r !k

]V1
l

]r k
d2r 1 . ~15!

We have introduced the functions

R00~r ,r1!5
1

2p
expF2

~r2r1!2

4 G , ~16!

R11~r ,r1!5
1

2p F12
~r2r1!2

2 GexpF2
~r2r1!2

4 G , ~17!

R10~r1 ,r !5
1

2p

x12x2 i ~y12y!

&

expF2
~r2r1!2

4 G ,
~18!

R01~r1 ,r !5
1

2p

x2x12 i ~y12y!

&

expF2
~r2r1!2

4 G .
~19!

When we integrate with respect tor1 , the term that does no
contain derivatives ofV vanishes because its integrand is
odd function. The integrals in Eq.~15! are easily calculated
and we obtain, using Eqs.~13!, ~11!, and~10!,

G18~r ,r ,t,t1d!5
1

4mg

s l2szs lsz

2
~div Vl2 icurl Vl !

1
1

2p Fszs l2s lsz

4
div Vl

2 i
~11sz!s l1s l~11sz!

4
curl Vl G ,

which includes only the main, spin-independent partg1;m.
In Eq. ~14! for G1 the term containingV t

l should take into
account only the cases5s850, since all other combination
yield values of orderm, which can be neglected. Only th
terms with poles of first order inv contribute, and this con
tribution is easy to calculate:

G1952
i

2p
V t

l s l2szs ls l

4gr
.

The final expression has the form
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1 2p F 4

2 i
~11sz!s l1s l~11sz!

4
curl Vl G

2 iV t
l s l2szs lsz

8pgr

1
1

4mg

s l2szs lsz

2

3~div Vl2 i curl Vl !. ~20!

For the densityr52 i Tr G(r ,r ,t,t1d) we obtain

r~r ,t !5
1

2p
~12curl Vz!. ~21!

This result was first obtained from phenomenologic
considerations.1 In the case of nonprojected functions, th
result has a clear physical interpretation: the lowest Lan
level is fully occupied in the effective local magnetic fie
Heff512curl Vz, which corresponds to the densit
r51/2p l 2(Heff), where l (Heff) is the magnetic length in
the effective field.

Although the calculations have been performed in
first order in V, the result, however, contains derivative
which means that second-order terms are present. There
we should calculate a second-order correction to the Gre
function expressed in the symbolic notation as

G2~r ,r ,t,t1d!5
1

m2 G0~V1
l p21V2

l p1!s lG0~V1
l 8p2

1V2
l 8p1!s l 8G01G0H2G0 .

Since it is a second-order correction, derivatives ofV can be
neglected. The contribution due to the last term is zero
cause in this approximation only states withs50 should be
taken into account in the expression forG2 , as a result, we
have a second-order pole in the density, and integration o
v yields zero. The first term contains contributions prop
tional tog0g1g0 andg1g0g1 , whereg corresponds to one o
the three Green’s functions in this expression. The integ
over the spatial variables andp are easily calculated, and w
obtain

G25
1

m22p E @g0s lg1s l 8g0V1
l V2

l 8

1g1s lg0s l 8g1V2
l V1

l 8#eivd
dv

2p
d2rdt.

The second-order correction to the density includes the tr
of this expression. Transposing the matrices under the tr
we get in the first term in brackets the square of the diago
matrix g0

2(v), which has a second-order pole. Using t
usual rule for calculating a residue due to a pole in the up
half-plane, we obtain

Tr G25
1

2pm2 E @22g1
2V1

l V2
l 12g1

2V1
l V2

l #d2rdt50.
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Thus, including terms of up to the second order, the density
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is expressed by Eq.~21!, which is identical to the resul
obtained in Ref. 3.

3. CALCULATION OF ACTION, ENERGY, AND NUMBER OF
PARTICLES

We shall calculate the action by the formulaS5 iTr ln G
using the perturbation theory forG and retaining only the
part which depends on the rotation operator:

S5 i TrFH1G01
1

2
H1G0H1G01H2G01

1

2
~H2G0H1G0

1H1G0H2G0!1
1

3
H1G0H1G0H1G01...G .

In this section, we limit our calculations to the second ord
of the perturbation theory. The calculations are similar to
calculation of the Green’s function. The action in the fi
order has the form

S15 i TrE V t
ls lg0~v!eivd

d2rdt

2p

dv

2p

1 i TrE s lg0~v!eivd
dv

2p
~V1

l p2

1V2
l p1!F0p~r !F0p* ~r !d2rdt.

The second integral is evaluated using integration by pa
and we finally have

S152
1

2p E V t
zdrdt2

1

2p

1

2m

3E ~ i div Vz2curl Vz!d2rdt. ~22!

The action in the second order is composed of t
terms, one of which contains a product of twoH1 :

S285
i

2m2 TrE ~V2
l p11V1

l p2!s lgs~v!Fsp~r !Fsp* ~r 8!

3~V2
l 8p11V1

l 8p1!s l 8gs8~v!Fs8p8~r 8!Fs8p8
*

3~r !eivdd2r 8d2rdt
dv

2p
.

In this expression, we neglect derivatives ofV. Only terms
with s50, s851 ands51, s850 are nonvanishing. Using
the properties of the operatorsp1 and p2 and calculating
the integral, one can easily obtain an expression for the
second-order action~the contribution of the term withH2 is
calculated similarly!:

S25
1

4p E Tr@s l 8s l~11sz!1s ls l 8#

3~11sz!V2
l V1

l 8d2rdt2
1

2p

3E F ~Vl !2

2m
2

i

2m

]Vk
z

]r k
Gd2rdt.
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to the casel 5 l 8 and is cancelled out by the second integr
The remaining asymmetrical part contains onlyl ,l 85x,y
and can be rewritten using the identity curlVz

52(Vx
xVy

y2Vy
xVx

y), which can be derived by differentiatin
the identityU1U51. As a result, we have an expression f
the action in second order:

S25
1

2m E curl Vz
d2rdt

2p
1 i E div Vz

d2rdt

2p
. ~23!

The full expression for the action including terms up to se
ond order with due account of Eq.~22! has the form

S5E V t
z d2rdt

2p
1

1

m E curl Vz
d2rdt

2p

2mE curl Vz
d2rdt

2p
, ~24!

where we have added the term with the chemical potent
These results are in full agreement with those reporte

our preliminary publication9 and have a simple physical in
terpretation. The electrons locally fully occupy the lowe
spin sublevel in the local effective magnetic fie
Heff512curl Vz, and the electron density equals the loc
density of states. This circumstance justifies the use of
Hartree–Fock approximation with an accuracy of ord
Vint/\vc in the same manner as it does for the fully fille
Landau level. The effective magnetic field is lower than t
applied field for skyrmions with positiveQ. Note that the
gap between local spin levels is determined by the excha
energy. Electrons with spins aligned in the direction oppos
to the mean spin ‘‘see’’ the effective magnetic fie
Heff511curl Vz.

Let us analyze in detail the expression for energy in
steady state with due account of the interaction terms. In
case of Coulomb interaction, one must take account of
neutralizing positively charged background, which elim
nates the zeroth Fourier component, so the expression fo
direct interaction does not contain a term linear in dens
but only the quadratic expression

Epot5
1

2 E e2

ur2r 8u
curl Vz~r !curl Vz~r 8!

d2rd2r 8

~2p!2 .

The leading term in the exchange energy is linear in
density perturbation. In order to calculate this term,
should obtain the exchange energy density as a functio
magnetic field for the density of a fully occupied Landa
level, 2(e2/2p l H

3 )Ap/2, differentiate it with respect to
magnetic field, and multiply by the correction to the effecti
magnetic field, which yields the perturbation of the exchan
energy

Eex5E 3e2

4A2p l H

curl Vzd2r .

Moreover, we must take into account the correction d
to nonuniformity of the mean spin direction
(1/2)J*(]ni /]r k)

2d2r , where J5(1/16A2p)e2/ l H .3,4 We
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must also include the Zeeman energy. The resulting equation
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22pJl2
]nl 2

2gH•n. ~27!
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yields the change in the thermodynamic energy due to
mation of a vortex:

F5d^H2mN&52
\vc

2
Q1

3e2

2l H

Ap

2
Q

1
e2

2 E curl Vz~r !curl Vz~r 8!

~2p!2ur2r 8u
d2rd2r 8

1E F1

2
JS ]ni

]r k
D 2

1gH•n
1

2p l H
2 Gd2r . ~25!

The chemical potential in this equation is set tom5\vc/2,
which corresponds to filling of the lower spin sublevel a
large distance from the vortex core. As we assumed at
beginning, the cyclotron energy is much larger than the
teraction energy. For this reasonF is negative at positive
topological numberQ, which determines the change in th
electron number,dN52Q, due to vortex formation. Thus
generation of nonsingular vortices is thermodynamically
vantageous at the chemical potential corresponding to
occupation of the lower Landau spin sublevel, and vorti
should be generated spontaneously. The gain in the the
dynamic potential increases withQ.

One can also calculate the energy of a one-particle e
tation in the presence of a vortex. This can be done by stu
ing the poles of the Green’s functionG(r ,r ,v), but a more
convenient approach is based on the fact that this en
corresponds to a variational derivative of the full energy w
respect to the local density of electrons with different s
orientations. By presentingF in the form of a functional of
the densitiesr1 andr2 , where the signs correspond to th
spin alignments parallel and opposite to the local mean s
we obtain

F5E H \vc~Heff
1 !r11\vc~Heff

2 !r2

2
2m~r11r2!

2
1

2
~r12r2!2Fg82J8S ]nl

]r k
D 2G J d2r

1E e2

2ur2r 8u Fdr1~r1dr2~r !#@dr1~r 8!

1dr2~r 8!#d2rd2r 81E gH•n~r12r2!d2r . ~26!

In this expression

g8r1
2 5

e2

2p l H
3 Ap

2
2

3e2

4p l H

Ap

2
curl Vz, J8r1

2 5J.

By varying with respect tor1 and r2 , we obtain the hole
energy in the fully occupied state:

eh52
dF

dr1
5

2e2

l H

Ap

2 S 12
3

2
l H
2 curl VzD

1
\vc

2
curl Vz1E e2

ur2r 8u
curl Vz~r 8!

d2r 8

2p
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Similarly, the energy of an electron with reversed spin is

ee5
2e2

l H

Ap

2 S 12
3l H

2

2
curl VzD 1

\vc

2
curl Vz

2E e2

ur2r 8u
curl Vz~r 8!

d2r 8

2p
12pJlH

2 S ]nl

]r k
D 2

2gH•n. ~28!

These results are valid when the perturbation theory inV
applies, which means that the energy correction for o
particle excitations are small in comparison with the init
energy gap separating the lower spin sublevel from the up
one. Thus, the perturbation theory applies only if the sm
additional term in the expression for the one-particle ener
(\vc/2)l H

2 curl Vz;(\vc/2)l H
2 /Lc

2 is small in comparison
to the leading term, namely, the exchange energy;e2/ l H .
Hence the vortex core dimension should be sufficiently lar
Lc@ l HA\vc /e2. This condition requires that theg-factor
should be sufficiently small, since the core dimension is
termined by the competition between the Zeeman and C
lomb energies,gHrLc

2;e2/Lc . It follows that the condition

Lc
3;e2l H

2 /gH@ l H
3 ~\vcl H /e2!3/2

should hold.
Note that addition of an electron with inverted spin ad

the exchange energy to the thermodynamic energy and
tracts the energy of Coulomb interaction with the skyrmi
charge~if Q is positive!, while all other terms are much
smaller because the gradients are small. In this case, the
lomb energy increases with the total core charge, while
exchange energy is determined locally, and its leading te
is independent of the vortex charge. This permits format
of both metastable and bound states below the chemical
tential level. In this case the total number of electrons w
‘‘wrong’’ spin orientations in magnetic field is a unit les
than for a vortex without a bound electron. The formation
a vortex still lowers the thermodynamic potential. In re
experimental conditions the ratio between the cyclotron a
Coulomb energies is not very high, and theg-factor is not
too small, so the statements above should be confirmed
numerical calculations.

4. HOPF’S INVARIANT IN THE ACTION

In addition to the topological numberQ, which is the
degree of the mapping, there is the Hopf topological inva
ant corresponding to the degree of linking of lines of co
stant n(r ,t) for the time-dependent matrixU ~see, for ex-
ample, Ref. 12!. This invariant should be included in th
expression for the action, and the coefficient in front of
should determine the skyrmion statistics or, to be exact,
phase change due to interchange of two skyrmions.13 This
coefficient was calculated by Apel and Bychkov5 in the ap-
proximation where functions are projected on a single L
dau level. This calculation, however, is based on several
sumptions that are difficult to check, and the result w
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questioned in the discussion in Ref. 6. The authors of the
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Similarly we calculate the terms withs50, s851; s51,
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is
latter publication refer to their earlier quasiclassical calcu
tion of the Green’s function, which uses the frequency a
momentum as ‘‘good’’ quantum numbers, and quote th
result. In this section, we present a direct calculation of t
factor in the limit of a high magnetic field without any add
tional assumptions. To do this, one needs to find the actio
third order inV, retaining only the terms linear inV t

l , which
are included in the Hopf invariant.

Using the perturbation theory for Green’s function, o
can easily obtain an expression for the action in the th
order of the perturbation theory:

S5 i TrFH1G01
1

2
H1G0H1G01H2G01

1

2
~H1G0H2G0

1H2G0H1G0!1
1

3
H1G0H1G0H1G0G . ~29!

The terms of up to second order were calculated in the
vious section, but one should keep in mind that in the ter
formally of second order the time derivatives were not tak
into account; they should be included in the third-order
pression for the action. We will calculate systematically t
various third-order terms.

Consider the term of second order inH1 containingV t
l ,

which was neglected in the previous section since we
sumedV t;V2. After simple calculations, we have

S2
15

i

m E Tr s lgs~v!s l 8gs8~v!eivdV t
l~r ,t !

3Fsp~r !Fsp* ~r1!@V1
l 8~r1 ,t !p2

1V2
l 8~r1 ,t !p1#Fs8p8~r1!

3Fs8p8
* ~r !d2rd2r 8dt

dv

2p
. ~30!

Given the required accuracy prescribed above, ther
only one term withs5s850 and terms withs51, s850;
s50, s851. By introducing the variablesR5(r1r1)/2 and
r5r12r , and expandingV t(r ) and V(r1) in powers ofr
through first order, we obtain

S200
1 5

iA2

2m E Tr s lg0~v!s l 8g0~v!eivdFV t
l~R!

]V2
l 8

]Rk

2V2
l 8~R!

]V t
l

]Rk
GR00~2r!R10~r!rkd

2rd2Rdt
dv

2p
.

After taking into account Eqs.~10! and ~11! and integrating
with respect tov andr, we have

S200
1 5

1

4mg

3E @ iV t
l div Vl2 i ~Vl¹!V t

l

2V t
l¹3Vl2Vl¹V t

l #
d2rdt

2p
. ~31!
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s850, where it is only necessary to retain one pole cor
sponding to filled states in the expression forg0:

S201
1 5

1

2 E @V t
l¹3Vl1Vl3¹V t

l #
d2rdt

2p

1
1

4
Tr s ls l 8szE @2 iV t

l div Vl 8

1 i Vl 8¹V t
l #

d2rdt

2p
. ~32!

In addition to these terms, there is a second-order c
tribution with two Vl discussed in the previous section, b
without time derivatives. We calculate these derivativ
similarly to the space derivatives by introducing the va
ables T5(t1t8)/2 and t5t82t, noting that for our pur-
poses only terms withs51, s850 ands50, s851 are im-
portant since all the rest contain too many derivatives. Af
omitting the term without time derivatives, we have

S2
25

i

m2 E Tr s lg0~v!s l 8g1~v8!eivdt exp@ i ~v

2v8!t#FV2
l

]V1
l 8

]T

2V1
l 8

]V2
l

]T
G dv dv8

~2p!2 dt
dTd2r

2p
.

By replacingt with the derivative of the corresponding ex
ponential function and integrating by parts, we obtain, us
Eq. ~16!,

S2
252

1

2 E Vl3
]Vl

]t

d2rdt

2p
2

i

4
Tr s l 8s lsz

3E S Vl
]V l 8

]t
2Vl 8

]Vl

]t
D d2rdt

2p
.

In the calculation of the third-order terms, all term
should be expressed similarly through the derivatives ofVl .
Using the identity] tVk

l 2]kVk
l 52el jmV t

jVk
m , whereel jm is

the absolutely antisymmetrical unit tensor of the third ran
one can easily transform this expression to

S2
252

1

2 E ~Vl3¹V t
l1el jmVl3VmV t

j !
d2rdt

2p

2
i

2
Tr s l 8s lszE ~Vl¹V t

l 8

12el 8 jmVlVmV t
j !

d2rdt

2p
. ~33!

Among the terms of the third order properly, the simplest
that containingH2 andH1 :

S215
i

2m
TrE @~Vl !2

2 is l div Vl #V t
l 8g0~v!s l 8g0~v!eivd

dv

2p

d2rdt

2p
. ~34!
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the divergence contributes to the action:

S2152
i

2mg (
lÞz

E V t
l div Vl

d2rdt

2p
. ~35!

The remaining terms of third order contain onlyH1 with
two spatial componentsVk

l and one time componentV t
l :

S35
i

m2 E V t
lFsp~r !Fsp* ~r1!~V

1

l 1p2

1V
2

l 1p1!Fs1p1
~r1!Fs1p1

* ~r2!~V
1

l 2p2

1V
2

l 2p1!Fs2p2
~r2!Fs2p2

* ~r !d2rd2r 1d2r 2dt

3E Tr s lgss l 1
gs1

s l 2
gs2

eivd
dv

2p
.

Contributions of the required order come only from term
with s5s250, s151 ands5s251, s150, and derivatives
of V can be omitted.

The calculation in the first case is similar to that of Eq
~31! and~35!. Using the standard formula and expressing
summands in terms ofV t

l andV l , we obtain

S3
052

i

mg (
lÞz

Tr s ls l 1
s l 2E V t

lVl 1

3Vl 2
d2rdt

2p
1

i

4
Tr szs l 1

s l 2E V t
zVl 1Vl 2

d2rdt

2p

1
1

2 (
lÞz

E V t
z~Vl !2

d2rdt

2p
. ~36!

The result for the cases5s251, s150 is derived in the
standard manner using the expressions for traces of prod
of Pauli matrices:

S3
152

1

2 E V t
z~Vz!2

d2rdt

2p
1

1

2 (
lÞz

E @V t
z~Vl !2

2V t
lVzVl #

d2rdt

2p
1

i

4
Tr s ls l 1

s l 2E V t
lVl 1

3Vl 2
d2rdt

2p
. ~37!

The final expression for the part of the action contain
the Hopf invariant is obtained by adding the calculated ter
of Eqs. ~31!–~33! and ~35!–~37!. Let us explain this sum
The terms with 1/g in the expressions forS3

0, S2
0, and S21

reduce to an integral of a total derivative:

1

4mg (
lÞz

E @2 i div~V t
lVl !2¹3~V t

lVl !#
d2rdt

2p
50

since Vl decays exponentially at large distances whel
Þz. Similarly, the term containing

2
i

4
Trs lsmszE $V t

l div Vm1~Vm¹!V t
l%

d2rdt

2p
,

reduces to a vanishing integral over an infinitely distant s
face.
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which can be proved using the algebraic identities forS2. As
a result, only skew-symmetric terms remain in the actionS3 :

S35
i

4
Tr s ls l 1

s l 2E V t
lVl 13Vl 2

d2rdt

2p
1

1

2 E V t
l¹

3Vl
d2rdt

2p
2E el jmV t

jVl3Vm
d2rdt

2p
.

After calculating the trace and using the formula for¹3Vl ,
we finally have

S35el jmE V t
lVj3Vm

d2rdt

2p
. ~38!

According to Refs. 12 and 13, the Hopf integer-valued
variant can be expressed in terms ofV:

h5
1

2p2 E el jmV t
lVj3Vmd2rdt.

Thus, the Hopf term in the expression for action has the fo

Sh5ph. ~39!

This result coincides with that given in Ref. 6 and is differe
from that of Ref. 5. Thus, skyrmions, in the accept
terminology,12 are fermions.

One should keep in mind, however, that the Ho
integer-valued invarianth corresponds to a mapping of th
sphereS3 onto the sphereS2 , which requires in our case tha
V should go to zero at larger andt, i.e.,Q50. If skyrmions
exist for all t, the integer-valued topological invariant cha
acterizing the linking of curvesn5const is slightly
modified.14,15 Nonetheless, the relation betweenS3 and h
given above still holds, as well as the statement about
‘‘fermion’’ nature of skyrmions.

5. CONCLUSIONS

In this paper we have presented a theory of nonsing
skyrmions for two-dimensional electron systems in a stro
magnetic field. In our calculations, we have not used a
assumptions except the small value of the Coulomb ene
e2/ l H in comparison with the cyclotron energy\vc and the
smallness of theg-factor. We have shown that the widel
used approximation of wave functions projected on a sin
Landau level is not sufficient for an adequate descripti
The effect of adjacent Landau levels is important and le
to a modification of the expression for the thermodynam
energy of a skyrmion, namely, it reduces it by\vc/2, which
is assumed to be a large value. This should lead to spo
neous formation of skyrmions with positive degree of ma
ping at occupation numbers close to odd integers. If
g-factor is small, and the skyrmion core dimension is acco
ingly large, the process has a simple physical interpretatio9

the vortex core contains an additional effective magne
field, whose total magnetic flux contains a number of fl
quanta equal to the topological invariant, namely the deg
of the mapping. Locally the Landau level is fully occupied
the total magnetic field~external plus effective magneti
fields! and separated by a gap from states with higher en
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gies. The total number of particles is different owing to the
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variation in the density, which is equal to the local density
states. As a result, an electric charge develops due to e
nation of a number of electrons equal to the number of
fective magnetic flux quanta for positive degree of the m
ping. This positive local charge can create bound elect
states. Their energy with respect to the chemical potentia
determined by the negative energy of interaction with
core charge and the positive exchange energy, since all l
spin states with the lower energy are already occupied. S
the exchange energy is of ordere2/ l H and independent o
the core dimension, unlike the direct Coulomb energye2/Lc ,
whereLc; l H(e2/ l HgH)1/3, which decreases with the cor
dimension, the bound state level in our approximation sho
be higher than the chemical potential. In real experimentsLc

is not very different froml H , and numerical calculations ar
required for clarifying this situation. Note that the appe
ance of bound states reduces the total spin due to vo
formation. The Hopf topological term in the expression f
action has also been calculated. The value of the coeffic
of the Hopf invariant is identical to the quasiclassical res
given in Ref. 6. Thus, skyrmions should behave like ferm
ons. All this makes skyrmions very like the ‘‘composite
fermions introduced phenomenologically in Ref. 16.
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Theoretical study of b-decay of a negative tritium ion
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A calculation of the probability of the mainb-decay channel of a negative tritium ion is
described as one of the processes that can affect theb-spectrum of a tritium source near the end
point. The appropriate energy parameters have been calculated. This process should be
taken into account in interpreting measuredb-spectra near the end point in connection with
determining the neutrino rest mass. ©1997 American Institute of Physics.
@S1063-7761~97!00111-X#
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The first theoretical studies of the effect ofb-decay in a
nucleus on the electron shell of an atom were undertaken
Migdal and Fainberg.1,2 Later restructuring of electron shel
caused byb-decay was theoretically investigated by ma
authors~see, for example, the review in Ref. 3!. In the case
of b-decay of a nucleus within a molecule, the physical p
cess is complicated sinceb-decay may generate both ele
tron and vibration–rotation excitations, and even lead to d
sociation of a molecule. Onlyb-decay of the simplest HT
molecule was investigated in detail.4–7 The most accurate
calculation was performed by Wolniewicz.7 The effect of
tritium b-decay on excitation of electron shells of OH
NH2T, and CH3T molecules was studied by Ikutaet al.8

Restructuring of electron shells of molecules due tob-
decay of one of their nuclei attracted researchers’ attentio
connection with the problem of determining the neutrino r
mass. This is because measurement of theb-spectrum shape
near its high-energy edge is the most accurate technique
determination of the neutrino rest mass. Such experim
have been carried out using tritium sources because trit
has the lowestb-electron cut-off energy,Eb,max518.6 keV,
which provides the best energy resolution.

In the first publication by Hanna and Pontecorvo9 the
upper limit on the neutrino mass was set at about 1 k
which corresponded to the energy resolution of their te
nique. All further progress in experimental studies was c
nected with improvements in the resolution of measur
devices. A degree of success in this field was achieved
Bergkvist,10,11 who obtained an upper limit on the neutrin
mass of about 55 eV at the 90% level of confidence usin
magneticb-spectrometer with a resolution of about 50 eV
the tritium b-spectrum edge. Bergkvist was the first
achieve an energy resolution comparable to the excita
energy of helium ions produced as a result ofb-decay and
indicated the importance of these excitations for theb-
spectrum shape description and hence for estimates o
neutrino mass.

In 1980 a lower limit of the neutrino rest mass was d
termined for the first time by processing results of a set
experiments done at the Institute of Theoretical and Exp
mental Physics~ITEP!.12,13 The doubly tritiated aminio acid
(C5H11NO2) was used as a source ofb-electrons. Measure
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with an energy resolution of about 45 eV and a backgrou
intensity fifteen times as low as in Bergkvist’s spectromet
Since the excitation spectrum of theb-source was unknown
the authors suggested processing the data in two limi
cases:

~a! a spectrum with one final state, which is equivalent
the absence of excitations in the source; the estimated in
val for the neutrino mass with 99% confidence is

14<mn<26 eV;

~b! atomic tritium in Bergkvist’s two-level
approximation;10 the resulting mass interval is

24<mn<46 eV.

These results indicate that the neutrino mass obtaine
processing the experimental data essentially depends on
the b-decay energy is redistributed among electron degr
of freedom of theb-source. Thus the issue of the effect
the source chemical structure on theb-spectrum was put on
the agenda.

After the publications of the ITEP group,12,13 some
authors15–18 attempted to take into account the effect of t
b-decay energy lost to the electronic channel in neutr
mass measurements. In particular, Kaplanet al.18 consis-
tently took account of the effect of the source molecu
structure on theb-spectrum shape and calculated probab
ties of excitations in different molecules containing a tritiu
nucleus. The multiplicity ofb-decay channels and their e
fect on the reliability interval for the neutrino rest mass we
discussed.

In the experiment performed by the INR RAS–INP K
~Institute for Nuclear Research, Russian Academy of S
ences, and Institute of Nuclear Physics at Kurchatov In
tute! collaboration~Troitsk! in 1994 theb-spectrum of tri-
tium was measured near the end point.19 The experimental
facility was an integrating electrostatic spectrometer w
adiabatic magnetic collimation and a gaseous tritium sou
of electrons. After processing the experimental data, t
obtained

mn
2521866 ~eV!2.

An investigation of theb-spectrum in the region 7–15 eV
below the end point indicated that the resulting negat

835-03$10.00 © 1997 American Institute of Physics



TABLE I. Probability of the main channel ofb-decay of T2 tritium ion and energy characteristics of decay reaction.
Set of
basis

T2 He

functions Etot , a.u. «, a.u. Eion , eV Etot , a.u. «, a.u. Eion , eV DE, eV W00

3-21G 20.4004 0.0774 22.11 22.8357 20.9036 24.59 66.3 0.55
4s/2s 20.4481 0.0232 20.63 22.8552 20.9141 24.87 65.5 0.46
5s/3s 20.4868 20.0450 1.22 22.8599 20.9169 24.95 64.6 0.33
6s/4s 20.4876 20.0455 1.24 22.8611 20.9177 24.97 64.6 0.33
Experimental
data - - 0.75 - 24.59 64.6
mass squared could be ascribed to a peak in the differential
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spectrum corresponding to a total decay probability
6•10211. The upper limit formn was set to 4.5 eV with a
95% level of confidence.

These experimental results attract attention to the na
of the peak in the tritiumb-spectrum. One of noise source
distorting theb-spectrum shape can be negative tritium io
in the gas target. This paper reports on a calculation of
probability of the mainb-decay channel of a negative tritium
ion and its energy characteristics.

2. CALCULATIONS OF PROBABILITY OF b-DECAY OF A
NEGATIVE TRITIUM ION AND ENERGY CHARACTERISTICS
OF THE PROCESS

Theb-decay of a negative tritium ion is described by t
equation

T2→3He1eb
21 ñ e , ~1!

in which a b-electron, antineutrinoñ e , and a helium atom
3He are created. The helium atom can be created in var
electronic states, i.e., Eq.~1! describes a mutlichannel pro
cess. Here we consider the case when the helium atom
the ground state, i.e., the 0→0 channel of reaction~1!.

In this calculation, one can assume with reasonable
curacy that the probability of obtaining the final3He atom in
the ground state of its electron shell is described by
Migdal theory of sudden perturbations20 and equals

W005u^C0~He!uC0~T2!&u2, ~2!

whereC0(T2) and C0(He) are the wave functions of th
T2 ion and3He atom in their ground states, respectively.

It is well known that wave functions of systems wi
many electrons can be calculated only approximately.
have used the Hartree–Fock–Roothaan~HFR! method.21,22

Note that this method does not take account of electron
relation effects. In this connection, the most reliable res
were obtained by Kaplanet al.,18,23 who consistently took
into account the effect of an electron correlation in so
molecules containing a tritium atom. It was shown that,
the simplest case of the diatomic HT molecule, the proba
ity of obtaining the electron shell of the (HHe)1 complex in
the ground state after the tritiumb-decay is overestimate
within 7% if an electron correlation is neglected. The calc
lations reported in these papers indicated a small contr
tion from the electron correlation to the probability of pr
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justifying the application of the HFR method.
The probability of the T2 ion b-decay via the main

channel of reaction~1! in the HFR approximation is deter
mined by the formula

W005u^w1s
T2

~r !uw1s
He~r !&u4, ~3!

wherew1s
T2

(r ) andw1s
He(r ) are 1s-orbitals of the T2 ion and

3He atom, respectively. We calculated the matrix elemen
Eq. ~3! using various basis sets of Cartesian functions
Gaussian form.22 The exponents and contraction coefficien
for s-functions of He and T atoms were taken from Refs.
and 25. The exponents of diffuses-functions for the T2 ion
were calculated by minimizing its total energy. The var
tional coefficients and energy characteristics of the T2 ion
and3He atom were computed using the MICROMOL code26

adapted to AT 386/486 personal computers.27

The energy characteristics under consideration are
following: Etot is the total energy of the ground state of th
two-electron system,« is the orbital energy~Hartree–Fock
one-electron energy!, Eion is the ionization potential of the
two-electron system, andDE is the chemical shift for the
main channel ofb-decay. The ionization potential was ca
culated using the Koopmans theorem,22 according to which
Eion52«. The chemical shiftDE is determined by the ex
pression

DE5E0~T2!2E0~3He!, ~4!

whereE0(T2) is the total energy of the T2 ion ground state
andE0(3He) is the total energy of the3He ground state.

3. RESULTS AND DISCUSSION

We have calculated the probability of the main chan
of process~1!, in which a tritium ion undergoesb-decay, and
the corresponding energy characteristics. The results of th
calculations are summarized in Table I.

In calculations by the Roothaan method, we used vari
sets of basis functions. Our calculations indicate a tende
to obtain a lower probability of the process under investig
tion when the set of basis functions is enhanced and yield
asymptotic valueW0050.33. As was noted above, the HF
method does not take into account the electron correlat
whose contribution to the probability is small. Therefore
improved value of this probability is not the main goal of o
study. Table I indicates that the ionization potential of t
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tritium ion tends to a positive value as the set of basis func-
ri
o
a

l f
e
d

r

s
u

e
u
r

e
o

er

e

rc
uc
ro

in

th

positive helium ion, an energy of about 41 eV is emitted,
2

the

le
eu-

lat-
A.

R

Y.
tions is enhanced, but it is slightly different from the expe
mental value due to the electron correlation neglected in
model. At the same time, the results for the more comp
3He atom and for the chemical shift of reaction~1! are in fair
agreement with experimental data.

It is noteworthy that the 0→1 channel, in which the3He
atom is produced in the first excited state, is not essentia
interpretation of theb-spectrum of the HT molecular sourc
in the INR RAS–INP KI experiment, which can be justifie
as follows.

The chemical shift in the 0→1 channel equals

DE0→15E0~T2!2E1~3He!544.0 eV.

Kaplanet al.23 obtained the following chemical shift fo
the process HT→~HHe!1:

DE5E0~HT!2E0~HHe1!549.1 eV.

This means that the energies produced in these reaction
close and differ substantially from the chemical shift calc
lated by us for the main channel 0→0:

DE5E0~T2!2E0~3He!564.6 eV.

Thus, the calculations of probability reported in the pap
indicate the necessity of taking into account the process
der investigation in interpretation ofb-spectrum curves nea
the end point in the experiment.19

4. CONCLUSIONS

In this paper we have discussedb-decay of a negative
tritium ion T2 and calculated the probability of creating th
resulting He atom in the ground state. This process is
interest in connection with experiments currently being p
formed by the INR RAS–INP KI collaboration with a view
to determining the neutrino rest mass through precise m
surements of the high-energy region of the spectrum ofb-
electrons generated in decay of tritium in a gaseous sou
The error in the limits on the neutrino mass obtained in s
experiments is a few electronvolts. For this reason, all p
cesses that can change the cut-off energy ofb-electrons by a
value of this order should be taken into account in process
the experimental data. One source of such errors can
negative tritium ions in the gas target. Specifically, when
tritium electron shell transitions to the ground state~GS! of a
837 JETP 85 (5), November 1997
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whereas in a similar transition of a Tion to the ground state
of a He atom an energy of about 65 eV is released. Thus,
probability of the T2→He~GS! transition in b-decay of a
tritium nucleus is important for an estimate of a possib
effect of negative tritium ions on measurements of the n
trino rest mass.

The authors are grateful to S. S. Gershtein for stimu
ing our interest in this research, and to S. P. Alliluev and
L. Barabanov for valuable critical remarks.
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Quantum-electrodynamic processes in a strong nonclassical electromagnetic field
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O. B. Prepelitsa
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Quantum-electrodynamic processes that take place in the presence of a squeezed electromagnetic
field are discussed. Integral formulas are derived that make it possible to express the
probability of any process in a squeezed electromagnetic field in terms of the probability of the
same process in a classical electromagnetic field. The main laws that govern processes of
first order in the fine-structure constant as functions of the number of photons involved and the
quantum fluctuations are examined. Tunneling formulas for the probability of a photon
producing an electron–positron pair in a strong squeezed field are derived. Also, resonant
electron–electron scattering is examined and the scattering cross section as a function of the
statistical properties of the field~the way the field has been squeezed! is investigated. It is
found that the quantum fluctuations of the squeezed electromagnetic field give rise to an increase
in the scattering cross section, with the probability of the process in a phase-squeezed
electromagnetic field always being higher than the probability of the process in an amplitude-
squeezed electromagnetic field. ©1997 American Institute of Physics.
@S1063-7761~97!00211-4#
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For a long time the quantum electrodynamics of ph
nomena that occur in the presence of a strong electrom
netic field has been the object of intense theoret
study.1–18 These studies produced a number of interest
results. In particular, it was found that electron and pho
states in the field of a wave cease to be stationary~if one
allows for the electromagnetic-field vacuum!. As result, pro-
cesses of first order in the fine-structure constanta0 become
possible,1–4 such as the emission of a photon by an elect
and the creation by a photon and annihilation~followed by
emission of radiation! of an electron–positron pair. Anothe
important theoretical result is the possibility of resonant p
cesses of higher order ina0 , e.g., scattering of a photon b
an electron,5 electron–electron scattering,6 and generation of
harmonics when an electron is decelerated by a Coulo
center.8 The resonant behavior of the cross section is due
the emergence of the intermediate particle on the mass s
In this case we are dealing with a chain of successiv
coupled processes that are first-order ina0 .

Note that in all the above papers it is assumed that
external electromagnetic field is classical or coherent~which
actually means classical if we ignore radiative corrections!. It
would be interesting to study quantum-electrodynamic p
cesses in the presence of a nonclassical electromagnetic
which is essentially quantum in nature and possesses
trivial statistical properties.

This paper is a study of the effect of quantum fluctu
tions of the applied electromagnetic field on quantu
electrodynamic processes. For the external quantized ele
magnetic field we take a squeezed electromagnetic field.
explanation of this choice lies in the unusual statistical pr
erties of such a field,19 which are known to vary within broad
limits: from bunching to antibunching of photons. Th
makes it possible to study how pair correlations of photo
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cross sections of quantum mechanical reactions. What is
portant is that a squeezed electromagnetic field exhibits
nonclassical properties in its interaction with matter. Th
happens in the strong fields,20 which are usually needed in
quantum-electrodynamic processes. If there is the possib
of building high-power sources of squeezed light~with a
photon concentration of 1020 cm23; see Ref. 21!, it would
seem interesting to study the effect of the photons of s
light on processes studied by quantum electrodynamics.

Here is a possible definition of a squeezed state of
electromagnetic field:19

us&k5Tk~a!Dk~h!u0&k , ~1!

whereu0&k is the vacuum state of modek,

Tk~a!5exp~aak
†2a* ak!,

Dk~h!5exp@ 1
2h* ~ak!22 1

2h~ak
†!2#

are the translation and contracting operators, and

a5uauexp~ iwa!, h5r exp~ iw r !

are complex-valued parameters, with 0<uau, r ,`, 0<wa ,
andw r,2p; ak

† andak are the electromagnetic field creatio
and annihilation operators, which satisfy the ordinary co
mutation relations for bosonic operators.

If we apply the translation and contracting operators
the electromagnetic field operator, the latter are transform
in the following manner:19

Tk8
†

~a!ak
†Tk8~a!5ak

†1dkk8a* , ~2!

Dk8
†

~h!ak
†Dk8~h!5ak

†@11dkk8~coshr 21!#

2dkk8ak sinh r exp~2 iw r !. ~3!

In this paper we will derive general formulas that w
allow us to express the probability of any quantum

838-08$10.00 © 1997 American Institute of Physics



el
e

-
o-
ry
nc
o

r o
t

ne
an

ic
–

ne
in
n

ra
i

on
fi
e
uc
th
rn
ld
ca
n

th
w

he

in
e
th

po

wherevk andel are, respectively, the frequency and polar-

de
is
re-

ion

p-
he
tly,

s,
p-

and
ich

he
to

n

electrodynamic process in the presence of a squeezed
tromagnetic field in terms of the probability of the sam
process in a classical electromagnetic field. We use them
examine processes of first order ina0 in a squeezed electro
magnetic field~Fig. 1a!. The general properties of such pr
cesses are studied for the region where perturbation theo
the external field is applicable. We find that the depende
of the probability of a process on the statistical properties
the applied field begins to manifest itself when the numbe
photons involved in the process is greater than one. Here
probability of processes in a phase-squeezed electromag
field is higher than the probability of processes in
amplitude-squeezed electromagnetic field, which in turn
always higher than the probability of processes in a class
field. We study in detail the production of an electron
positron pair in the presence of a squeezed electromag
field of high intensity, i.e., when tunneling is the ma
mechanism. We also show that in this case the functio
dependence of the probability of a process on the ave
intensity of the field in a squeezed electromagnetic field
quite different than it is in a classical field. Electron–electr
scattering in the presence of a squeezed electromagnetic
is examined ~Fig. 1b!. In the nonresonance region, th
electron–electron scattering cross section in a field is m
smaller than when the colliding electrons are free. In
resonance region, the probability of scattering in an exte
field may exceed the probability of scattering without a fie
by several orders of magnitude. We study by numeri
methods the dependence of the reaction cross section o
statistical properties~the way squeezing was achieved! of the
squeezed electromagnetic field. A general feature here is
the probability of quantum-electrodynamic processes gro
with the intensity of field strength fluctuations and with t
intensity of the squeezed electromagnetic field.

2. PROBABILITY OF QUANTUM-ELECTRODYNAMIC
PROCESSES IN THE PRESENCE OF A SQUEEZED
ELECTROMAGNETIC FIELD

Let us examine the behavior of an electron interact
with a single-mode squeezed electromagnetic field. The fi
is assumed fixed, i.e., we ignore the effect produced by
photons re-emitted into an excited mode.

The external electromagnetic field is described by a
tential of the form

Aext5A 1

2vk
@elak

† exp~ ikx!1el* ak exp~2 ikx!#, ~4!

FIG. 1.
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ization of a photon with a wave vectork. Here and in what
follows we use a system of units withc5\51, a notation
x5(t,r ), k5(vk ,k), and defineab5a0b02a–b as the sca-
lar product of the four-vectorsa5(a0 ,a) andb5(b0 ,b).

Note that formula~4! has been used to separate the mo
k, while the fact that at the time when the interaction of th
mode with an electron was switched on the mode was p
cisely in the squeezed state~1! will be taken into account
later, when we calculate the matrix elements of the evolut
operator. What is important here is that the modek is highly
excited, so that it is convenient to go over to the Furry re
resentation. This will make it possible to account for t
interaction of the electron and the external field exac
while the interaction of the electron and the other modesk8
(k8Þk) will be taken into account perturbatively.

In the Furry representation the scattering matrix is

S5T expF2 i E d4x j~x,ak
† ,ak!A~x!G , ~5!

j ~x,ak
† ,ak!5eN~ c̄~x,ak

† ,ak!gc~x,ak
† ,ak!!,

c~x,ak
† ,ak!5(

p
@bpu~«p!1dp

†u~2«p!#wp~x,ak
† ,ak!,

A~x!5 (
k8Þk

A 1

2vk8
@el8ak8

† exp~ ik8x!

1el8
* ak8 exp~2 ik8x!#, ~6!

wheree is the electron charge,g stands for the Dirac matri-
ces, bp and dp are the electron–positron field operator
which satisfy the anticommutation relations for fermion o
erators,

u~«p!5H 1, «p>0,

0, «p,0

is the Heaviside function, and«p5up0u is the absolute value
of the particle energy.

The function wp(x,ak
† ,ak) is a solution of the Dirac

equation with potential~4!:

S ig
]

]x
2eAext2mDwp~x,ak

† ,ak!50 ~7!

~the functionwp(x,ak
† ,ak) is known explicitly,7 but we will

not write it because it is extremely cumbersome!.
Note that the sign of the normal ordering in~6! refers

only to the operators of the electron–positron system
does not involve the electromagnetic field operators, wh
are present inwp(x,ak

† ,ak).
Let us examine the amplitude of the transition from t

initial stateu i & of the photon and electron–positron system
the final stateu f &:

Af i5k^ l u^ f uSu i &us&k

~the photon subsystem consists of all the modesk8Þk!. Here
we have allowed for the fact that initially the modek was in
the squeezed stateus&k ~Eq. ~1!!, and then evolved into the
stateu l &k . At this point we must mention the difference i
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netic field and for a quantized electromagnetic field. T
function wp(x,ak

† ,ak) is a solution of Eq.~7! ~see Ref. 7!,
which has been considered separately from the corresp
ing Maxwell equation for the field, i.e., we have ignored t
interaction with photons re-emitted by charged particles i
the modek. In this sense the field of the modek is fixed, but
the quantum-statistical state of the modek is not. Indeed, in
the process of quantum transitions an electron draws en
~photons! from an excited mode, with the result that th
quantum state of the mode changes. Hence, in the form
for the transition amplitudeAf i , the stateu l &k is generally not
identical to the stateus&k .

Let us square the absolute value of the amplitudeAf i and
sum over all possible statesu l k&. Using the partition of unity

(
l

u l &kk^ l u51,

and Eqs.~5! and ~6!, we can write the transition probabilit
as follows:

Wsq5k^suŴ~ak
† ,ak!us&k , ~8!

Ŵ~ak
† ,ak!5 K iUT expF i E d4x j~x,ak

† ,ak!A~x!GU f L
3K fUT expF2 i E d4x j~x,ak

† ,ak!A~x!GU i L .

~9!

Since Ŵ(ak
† ,ak), like any function of operators, is

symbolic notation for a power series, we can use the ge
ating function

G~z,z* !5exp~zak
†!exp~z* ak! ~10!

to write Eq.~9! in the form

Ŵ~ak
† ,ak!5ŴNS ]

]z
,

]

]z* DG~z,z* !uz5z* 50 .

Here byŴN(]/]z,]/]z* ) we denote the normal imag
of the function Ŵ(ak

† ,ak), in which we have replaced
ak

†→]/]z andak→]/]z* . ~Here we do not discuss the prob
lem of the convergence of series, e.g., the perturbation se
in a0 , and interpret series as formal quantities.!

Bearing in mind the last expression, we can write t
probability ~8! as

Ŵsq5ŴNS ]

]z
,

]

]z* DGsq~z,z* !uz5z* 50 , ~11!

whereGsq(z,z* )5k^suG(z,z* )us&k .
Thus, all the information about the dependence of

probability of the process on the quantum-statistical prop
ties of the external electromagnetic field is contained in
average value of the generating function.

Using Eqs.~1!–~3! and performing simple transforma
tions, we find the average value of the generating functi

840 JETP 85 (5), November 1997
e

d-

o

gy

la

r-

ies

e

e
r-
e

:

sq H 2

3Fz expS 2
iw r

2 D2z* expS iw r

2 D G2J . ~12!

Equation~12! was derived in the approximationn̄@1,
where n̄ is the average number of photons in the modek,
and we also assume that sinhr coshr'sinh2 r, which is true
in two cases: when the external electromagnetic field is i
coherent state (r 50), and when it is strongly squeeze
(r @1).

We transform the above expression to a more conven
form. To this end we use the Poisson integral:

E
2`

`

dj exp~2aj21 ibj!5Ap

a
expS 2

b2

4aD ,

Re a.0.

After performing obvious transformations, we arrive
the final expression for the generating function averag
over the state of the squeezed electromagnetic field:

Gsq~z,z* !5
1

A2p sinh2 r
E

2`

`

dj expS 2
j2

2 sinh2 r D
3expH z exp~2 iwa!FUaU1 i j

3expF i S wa2
w r

2 D G G1z* exp~ iwa!

3FUaU2 i j expF2 i S wa2
w r

2 D G G J . ~13!

Note that Eq.~13! contains the phase parameterswa and
w r , which determine the dependence of the functi
Gsq(z,z* ) on the way in which the applied electromagne
field was squeezed and hence on the quantum-statis
properties of the field.19 Below we discuss the two mos
interesting cases: amplitude squeezing (2wa2w r50), and
phase squeezing (2wa2w r5p).

Returning to formula~11! and allowing for~13!, we can
write the probability of the process as

Wsq5
2

A2p sinh2 r
E

uau

` dj j

Aj22uau2

3expS 2
j22uau2

2 sinh2 r DWcl~j!, 2wa2w r50,

Wsq5
2

A2p sinh2 r

1

2 E
2`

`

dj

3expS 2
~j2uau!2

2 sinh2 r DWcl~ uju!, 2wa2w r5p,

~14!

where

Gcl~z,z* !5exp~zje2 iw1z* jeiw!,
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cl NS ]z ]z* D cl z5z* 50

Note that the expression forGcl(z,z* ) differs from the
general formula~10! in that the operatorsak

† and ak are
replaced byc-numbersj, which means thatGcl(z,z* ) is a
generating function for the case of a classical electrom
netic field with an amplitudej ~herew is the initial phase of
the classical electromagnetic field!. HenceWcl(j) is the cor-
responding probability of a transition in the presence o
classical electromagnetic field.

We have developed a general method for calculating
probability of any quantum-electrodynamic process in
presence of a squeezed electromagnetic field via the exp
sion for the probability of the same process in a class
field. This makes it possible to divide the problem of calc
lating the cross section of a reaction in a squeezed elec
magnetic field into two stages: the calculation of the cr
section in a classical electromagnetic field, and the avera
of the result via~14!.

The form of Eqs.~14! and the condition of their appli
cability, n̄@1, or more preciselyn̄11' n̄ , suggest that the
derived expressions for the probability are, in a certain se
of quasiclassical nature. Note that the quasiclassicality
~14! does not mean that we must completely ignore the qu
tum fluctuations of the squeezed electromagnetic field—
this were so, further research in this area would lose
meaning. Indeed, consider the relationship

Ln5k^su~ak
†!2n~ak!2nus&k2k^su~ak

†!n~ak!nus&k
2 ,

which describesn-photon correlations in an electromagne
field. We can show that the approximationn̄11' n̄ takes
into account the quantum fluctuations resulting from corre
tions between photons of the squeezed electromagnetic
but, in the process, the contribution from correlations
tween the photons of the applied field and the zero-po
vacuum oscillations inLn gets lost. Thus, the approximatio
is true at least in two cases: when the photons of
squeezed electromagnetic field are strongly correla
(r @1), and when the state~1! degenerates into a cohere
state, whose quasiclassicality is well-known.

Note that expressions similar to~14! were obtained in
Refs. 20 and 22, where the interaction of a hydrogen
system and a strong squeezed electromagnetic field wa
vestigated, and also in Ref. 23. Now it is clear that Eqs.~14!
are of a general nature and reflect the objective quant
statistical properties of a squeezed electromagnetic fi
Note that they can be applied to a much broader clas
problems than this paper examines. Clearly, the probab
of transitions, initiated by a squeezed electromagnetic fi
of a bound electron, an electron in an external magnetic fi
etc., can be expressed in terms of the probabilities of tra
tions in a classical electromagnetic field, in accordance w
Eqs.~14!. To prove this statement we must include the ter
that describe the corresponding interactions in the zer
approximation Hamiltonian and repeat the line of reason
that brought us to~14!.
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when the external field can be assumed classical, and a
limit a50, when the electromagnetic field in in the squeez
vacuum state:

Wsq,v5
1

A2p sinh2 r
E

2`

`

dj

3expS 2
j2

2 sinh2 r DWcl~ uju!. ~15!

The results we arrived at in this section are of a gene
nature. Below we will use them to study specific quantu
electrodynamic processes that take place in a squeezed
tromagnetic field, which for the sake of simplicity is a
sumed to be circularly polarized.

3. QUANTUM VACUUM EFFECTS IN AN EXTERNAL
SQUEEZED ELECTROMAGNETIC FIELD

Below we examine processes of first order in the fin
structure constant, represented by the diagram in Fig.
Such process are known to be energetically forbidden~for
free particles! and can occur only in the presence of an e
ternal field.

According to Ref. 4, the probabilities of quantum
electrodynamic processes in the field of a classical elec
magnetic wave with a strengthEcl5E0 sin(vkt) depend on
the invariant parameter

xcl
2 5

2e2Ecl
2

m2vk
2 , ~16!

wherem is the electron rest mass, and the bar denotes
average over the period of the wave.

The regionxcl!1 corresponds to a weak electroma
netic field, for which perturbation theory is valid. In this ca
the probability of a process calculated per unit volume
unit time can be written as follows:4

wcl~n!5P~n!xcl
2n . ~17!

Heren is the number of photon involved in the process, a
P(n) is a function of the momenta of the initial and fin
particles.

Using the correspondence principle, we can easily sh
that when the applied electromagnetic field is a squee
field, the analog of the parameter~16! is the quantity

xsq
2 5

2e2
k^suE2us&k

m2vk
2 , ~18!

where

E5 iAvk

2
@elak

† exp~ ikx!2el* ak exp~2 ikx!#

is the electromagnetic field operator.
Consider the case of a weak squeezed electromagn

field, xsq!1. Plugging~17! into ~14! and ~15! and perform-
ing elementary integration, we obtain
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wsq~n!5
wcl~n!

~11m!n 5
(

m50 m! ~n2m!!
m ,

2wa2w r50,

(
m50

n
~2n!! ~2m21!!!

~2m!! ~2n22m!!
mm,

2wa2w r5p,

~19!

wsq,v~n!5~2n21!!! wcl~n!.

The parameter

m5
k^suE2us&k2k^suEus&k

2

k^suEus&k
2

5
sinh2 r

uau2
~20!

describes the quantum fluctuations of the strength of
squeezed electromagnetic field and can be interpreted a
measure of the field’s nonclassical behavior.

Equations~19! are the general expressions for the pro
ability of various processes, described by the diagram in
1a, in a weak squeezed electromagnetic field (xsq!1),
where the processes involving the smallest possible num
of quanta of the external electromagnetic field have the h
est probability of occurring. Note that the conditionxsq!1
corresponds to a real experimental situation, since it enc
passes the intensity of all optical-frequency fields.

Equations~19! imply that the probabilities of processe
involving a single quantum of the external electromagne
field are the same for classical and squeezed electromag
fields: wsq(1)5wsq,v(1)5wcl(1). Differences emerge whe
the process involves more than one photon,n.1, with the
probabilities being nonlinear functions of the strength of
applied field. For instance, the probability of a transition w
n.1 becomes highest when the field is the squeez
vacuum state. Equations~19! also imply that the dependenc
on the way in which the field was squeezed~amplitude-
squeezed or phase-squeezed! manifests itself most vividly
when the fluctuations in the strength of the applied elec
magnetic field are of the same order as the average stre
value,m'1/2. Here the probability of a process in a phas
squeezed electromagnetic field (2wa2w r5p) is always
higher than in an amplitude-squeezed field (2wa2w r50).
This is a reflection of the well-known fact that the probab
ties of multiphoton processes strongly depend on the st
tical properties of the applied electromagnetic field. In p
ticular, more heavily bunched light~phase-squeezed! is
absorbed more strongly than less heavily bunched l
~amplitude-squeezed!, a fact that results in an increase in th
probability of the process in the presence of the correspo
ing type of electromagnetic field.

So far we have studied the general laws governing p
cesses of first order ina0 . Let us now investigate in greate
detail the process of electron–positron pair production in
ated by a gamma quantum in the presence of a sque
electromagnetic field. Pair production requires an energy
order 2m. Hence there exists a threshold in the number
photons absorbed from the applied electromagnetic field
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wherex is determined by Eq.~16! or ~18!, depending on the
type of applied field, andk andk8 are, respectively, the wav
four-vector of the photon of the external field and the in
dent gamma quantum. Pair formation is possible only
n>nmin . For an electromagnetic field in the optical range t
parameternmin proves to be very large within a broad ener
range of the incident quantum, with the result that pair p
duction is accompanied by absorption of an extremely la
number of photons from the wave. Let us assume that
squeezed electromagnetic field is strong, so thatxsqksq*1
and ksq!1, whereksq5(kk8/m2)xsq. For our calculations
we use the formula for the differential probability of pa
production in a classical electromagnetic field:4

wcl
g→e2e1

5Z~k08!kcl expS 2
8

3kcl
D ,

kcl!1, xcl
2kcl*1, kcl5

kk8

m2 xcl . ~21!

We substitute~21! in ~14!. Bearing in mind~20!, we
obtain

wsq
g→e2e1

5Z~k08!A 11m

2pmksq
2 E

2`

`

dzAz21
ksq

2

11m

3expF2
~11m!z2

2mksq
2 2

8

3Az21ksq
2 /~11m!

G ,

2wa2w r50,

wsq
g→e2e1

5Z~k08!A 11m

2pmksq
2 E

2`

`

dzuzu

3expF2
11m

2mksq
2 S z2

ksq

A11m
D 2

2
8

3uzuG ,

2wa2w r5p.

If we allow for the fact thatksq!1, we can use the
Laplace method24 to calculate the integrals. Establishing th
points of maxima of the expressions in the square brac
and performing elementary transformations, we find
asymptotic expressions for the probability of photon p
production in the presence of a squeezed electromagn
field:

wsq
g→e2e1

5Z~k08!
ksq

A11m
S 11

4

3

mA11m

ksq
D

3expS 2
8

3

11m

ksq
D ,

2wa2w r50,

wsq
g→e2e1

5Z~k08!ksqS 11
16m

ksq
D
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3expF2
8

3ksq
S 11

4m

ksq
D G ,

2wa2w r5p, ~22!

if ksq@(8/3)mA11m, and

wsq
g→e2e1

5
4

3
Z~k08!F mksq

2

3~11m!
G1/3H 11

1

8 F 9ksq
2

m2~11m!
G1/3J

3expF2
1

2m
26S 11m

9mksq
2 D 1/3G ,

2wa2w r50,

wsq
g→e2e1

5
4

3
Z~k08!F mksq

2

3~11m!
G1/3H 11

1

4 F ksq
2

81m2~11m!
G1/3J

3expH 26S 11m

9mksq
2 D 1/3F12S ksq

9mA11m
D 1/2G J ,

2wa2w r5p, ~23!

if ksq!(8/3)mA11m.
These expressions~and Eq. ~21!! describe electron–

positron pair production due to the tunneling effect. Equ
tions ~22! are true for a weak squeezed field, which diffe
little from a coherent~classical! electromagnetic field. Ac-
cordingly, the expressions~22! constitute a correction to
~21!. Equations~23! are true for a strongly squeezed fiel
Here, obviously, the probability of a process has a quite
ferent dependence on the average intensity of the app
field than in the case of a classical field~Eq. ~21!!, which is
a consequence of the fact that the squeezed electromag
field is nonclassical.

Equations~23! lead to the limita→0 (m→`), i.e., to
the case where the electromagnetic field is in a squee
vacuum state:

wsq,v
g→e2e1

5
4

3
Z~k08!S ksq

2

3 D 1/3

expF26S 1

9ksq
2 D 1/3G .

An analysis of~22! and ~23! shows that as the intensit
of the squeezed electromagnetic field increases, the de
dence of the probability of a process on the way the field w
squeezed becomes stronger~Fig. 2!, and so does the depen

FIG. 2. Differential probability of a photon producing an electron–positr
pair in the presence of a phase-squeezed~curve 1!, amplitude-squeezed
~curve 2!, and classical~curve 3! electromagnetic field;k5ksq or kcl de-
pending on type of field, andm53/2.
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if we compare~21!, ~22!, and~23!, we see that an increase i
the fluctuations of the external electromagnetic field is
companied by an increase in the probability of the proce
In other words, pair correlations between photons, which
responsible for fluctuations in the intensity of the squee
electromagnetic field, facilitate electron–positron pair p
duction.

4. ELECTRON–ELECTRON SCATTERING IN THE
PRESENCE OF A SQUEEZED ELECTROMAGNETIC FIELD

To manifest processes that are first-order in the fi
structure constant, the electromagnetic field must be
tremely strong. Hence, from the viewpoint of the possibil
of experimental verification, the most interesting proces
are those of higher orders ina0 , which in certain condition
are of a resonant nature.5,6,8–13

According to ~14!, the differential cross section o
electron–electron scattering in a squeezed electromagn
field can be written as

dssq~n!

dV
5A2~11m!

pmxsq
2 E

xsq/A11m

` dz z

Az22xsq
2 /~11m!

3expF2
11m

2mxsq
2 S z22

xsq
2

11m D G dscl~n!

dV
,

2wa2w r50, ~24!

dssq~n!

dV
5A 11m

2pmxsq
2 E

2`

`

dz expF2
11m

2mxsq
2

3S z2
xsq

A11m
D 2G dscl~n!

dV
,

2wa2w r5p. ~25!

We limit ourselves to the nonrelativistic approximatio
upu/m!1 andxsq!1. Then, using the results of Refs. 6, 1
and 13, we can expressdscl (n)/dV as follows:

dscl~n!

dV
5S 4e2

munf i uv2D 2

@ uM u~n!u21uM u2p~n!u2

2Re~M u~n!M u2p~n!!#, ~26!

M u~n!5
p2

vk
2 (

s52`

`
Js~A1z!Jn2s~A2z!

~2s2n2b!21a2 , ~27!

A15A1B, A25A2B, A52
upu
vk

unf i usin q,

B5
upuv
vk

~ni~ni–next!2nf~nf–next!!' ,

b5
upu
vk

unf i ucosq,

a25
p2

vk
2 unf i u2sin2 q14i

upuG
vk

2 unf i ucosq,
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in the

eezed
center-of-mass system,v5upu/m, nf i5nf2ni , with ni and
nf the unit vectors pointing in the direction of particle m
tion in the center-of-mass system before and after scatte
next5k/uku, and u is the angle betweennf and ni ,
G5(e2v2/6)xsq

2 is the width of electron states in the fie
~the probability of electron emission per unit time!, and the
subscript' indicates the projection of the respective vec
on the polarization plane of the applied electromagnetic fie
Using the integral representation of the Bessel function25

we transformM u(n) into

M u~n!5
p2

4p2avk
2 E

2p

p

dwE
0

`

dt exp@ iA1z sin~w12t !

1 iA2z sin w1 in~w1t !2 ibt2at#1c.c. ~28!

If we now allow for ~24!, ~25!, and~28!, we can easily
see that in weak fields, for whichA1,2xsq!1, the scattering
cross sections in squeezed and classical electromag
fields are related through formulas similar to~19!. In the
general case the expressions~24!, ~25!, and~28! can be stud-
ied only numerically~see below!.

Let us examine the nonresonant case Rea@1 ~A1,2'A
andqÞ0,p!. Approximate integration of Eq.~28! yields

M u
nonres~n!'

Jn~2Az!

unf i u2
.

Since uJn(x)u<1, we can show that in the nonresona
scattering region at a fixedn the cross section is alway
smaller than the cross section of free-electron scatter
both in a classical electromagnetic field and in a quanti
electromagnetic field. Bearing in mind that there exists
certain analogy between multilevel optical systems and
energy spectrum of an electron in a field,4 we can assume
that the effect is of the same origin as in atomic systems
which a strong electromagnetic field is capable of comple
suppressing processes occurring in the presence of su
field ~absorption of probing radiation,26 spontaneous deca
of an excited level,27 and the like!.

We now turn to the case of resonant scattering. Form
~27! shows that resonance occurs whenq50, p and the
differencen2b is an even number. HereuA1,2u'B and the
expression forM u(n) becomes

M u
res~n!5

upu
2iGunf i u

J~n1b!/2~Bz!J~n2b!/2~2Bz!.

Note that, the conditions for resonance that are met fo
given scattering angleu are not met for the angleu2p ~ex-
cept for particular spatial arrangements of the vectorsni ,
next, andnf!. HenceuM u

res(n)u@uM u2p(n)u, and the contri-
bution of the exchange interaction to~26! can be ignored.
Thus, nonrelativistic electrons in the resonance region
scattered as spinless particles. A numerical analysis of~24!
and ~25! shows that the differential scattering cross sect
near a resonance exceeds by many orders of magnitud
differential scattering cross section of free electrons~here we
do not consider forward scattering,u50, where there is a
singularity due to the properties of the Coulomb potentia!.
There is a common feature of scattering in the nonreson
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and resonant regions~Fig. 3!: the probability of the process
in a strongly fluctuating electromagnetic field is alwa
higher than the probability in a coherent field.

In conclusion several remarks are in order. The appro
mation of quasistationary states~with width G! adopted in
this section is equivalent to the idea that the interaction of
electron an the external electromagnetic field is switched
adiabatically. This leads to the requirementt@1/G, wheret
is the switch-on to switch-off time of the pulse, or the tim
that the electron spends in the field of the wave. MoreoveG
imposes the following restriction on the spectral widt
Dvk , of the source of the squeezed electromagnetic fie
G@Dvk . Otherwise, in conditions of the present proble
we cannot assume that the external electromagnetic is sin
mode.
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Radiation of slow electromagnetic waves in an isotropic medium with spatial dispersion

ete
M. V. Marmazeev and M. I. Ryazanov
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This paper discusses the distinctive features of radiation of electromagnetic waves with
anomalously large values of the wave vector and small phase velocity that exist near narrow
absorption lines. The distribution of radiated energy with respect to angle and frequency is
calculated for Cˇ erenkov radiation and bremsstrahlung of the slow waves. It is shown that
the angular distribution of the slow-wave bremsstrahlung exhibits a characteristic maximum in
the direction perpendicular to the plane of motion of the particles. ©1997 American
Institute of Physics.@S1063-7761~97!00311-9#

1. INTRODUCTION iliary waves exist it becomes possible to obtain a compl
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It is well known that in many physical situations th
effects of spatial dispersion lead only to small quantitat
corrections; however, near a narrow absorption line spa
dispersion can give rise to large changes and even alte
physical picture qualitatively.1 Addition of terms with pow-
ers of the wave vector to the dielectric permittivity increas
the order of the dispersion equation, leading to the app
ance of new roots of this equation. Far from the absorpt
line these roots lie outside the region of applicability of t
theory and are fictitious. However, near the absorption a
tional roots can appear that have real physical meaning,
new auxiliary waves appear.2,3 In particular, experimenta
study of the reflection of light from crystals of CdS and Zn
confirms that the dielectric permittivity near the exciton a
sorption line has the form4–8

«~v,k!5«01
4pa0v0

2

v0
22v21~hk2v0 /M !22iGv

, ~1!

whereM is the exciton mass andG is the line width. It is not
difficult to see that the real part of this dielectric permittivi
reaches its largest value whenv andk satisfy the relation

uv0
22v21~hk2v0 /M !u;Gv, ~2!

which allows values ofk that are large compared tov/c but
small compared to an inverse interatomic distance. In
frequency range where the dielectric permittivity has
form Eq. ~1!, the dispersion equation for small absorpti
can be written in the form

~ck/v!41G~ck/v!21F50,

F54pa0~Mc2/hv0!~v0 /v!22«0@~v0 /v!221#,

G5~Mc2/hv0!@~v0 /v!221#2«0 . ~3!

The existence of a second solution to the dispers
equation implied by Eq.~3!, i.e., the existence of auxiliary
waves, is also confirmed by experiment. Thus, whereas
measurements of the reflection of light from CdS cannot
explained even qualitatively if it is assumed that the disp
sion equation has only one solution, by postulating that a
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quantitative explanation for the experimental data.It is
convenient to transform Eq.~3! to the form

$~ck/v!22K1
2%$~ck/v!22K2

2%50, ~4!

where

K1,2
2 5~1/2!$2G1~2 !@G214F#1/2%. ~5!

It follows from Eq. ~5! that large values of the wave vecto
are possible whenG andF are large, i.e., when the inequal
ties

Mc2u~v0 /v!221u>hv, Mc24pa0~v0 /v!2>hv0
~6!

are satisfied.
In many materials the exciton mass is comparable

order of magnitude to the mass of an electron4–8; therefore,
Mc2;105 eV, and for\v0 of order of a few eV these in-
equalities can be satisfied. This implies that electromagn
waves can really exist whose wave vectork is large com-
pared tov/c but small compared to inverse interatomic d
tances. Such waves have low phase velocity, but phen
enological macroscopic electrodynamics remains a us
way to describe them. Thus, for example, for CdS,7 with
v052.55 eV, 4pa051022, G52•1024 eV, «058, and
M50.9m ~herem is the mass of a free electron!, ck/v@1
over a rather narrow frequency range~for frequencies
v;1.01v0 the ratiock/v;15!.

2. SLOW ELECTROMAGNETIC WAVES NEAR AN
ABSORPTION LINE

Let us consider electromagnetic waves in the freque
range near a narrow absorption line where the dielectric p
mittivity can be written in the form Eq.~1! and dispersion
equations~3!, ~4! are valid. In the region of interest to us
i.e., largeck/v, the pole term is large and the constant te
can be dropped, and becausev2v0@G we can neglect the
imaginary part of«(v,k). Then in this frequency range th
Maxwell equations connect the Fourier transforms of
magnetic fieldH~q,v! and current densityj ~q,v! by the re-
lation (Q1(2)5(v/c)K1(2))

846-04$10.00 © 1997 American Institute of Physics



~q22Q1
2!~q22Q2

2!H~q,v!
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5~4p i /c!~g1q2!~q3 j ~q,v!!, ~7!

whereg52M (v2v0)/h. From Eq.~7! it is not difficult to
obtain

H~q,v!5H1~q,v!1H2~q,v!,

H1~2!~q,v!5
~4p i /c!~g1q2!~q3 j ~q,v!!

$Q1~2!
2 2Q2~1!

2 %~q22Q1~2!
2 1 i0!

. ~8!

If Q1 is a real quantity andQ2 is complex, then at large
distancesH2 disappears and we need only considerH1 . In
this case the dependence of the field on coordinates at l
distances has the form

H1~r ,v!

5
~4p i /c!

$Q1
22Q2

2%
E d3q

~g1q2!~q3 j ~q,v!!exp~ iq–r !

~q22Q1
21 i0!

.

~9!

Using the well-known relation

E d3pF~p!exp~ ip–r !~p22k21 i0!21

5~2p2/r !F~kr /r !exp~ ikr !, ~10!

which is correct forkr@1 to within small corrections of
order 1/kr, it is not difficult to obtain an expression for th
field at large distances whenQ1r @1:

H~r ,v!5~2p!3~ i /cr !

3exp~ ikr !~k3 j ~k,v!!~g1k2!/~Q2
22Q1

2!21,

~11!

wherek5Q1(r /r )5Q1n.

3. RADIATION OF SLOW ELECTROMAGNETIC WAVES

Using Eq.~11! it is not difficult to obtain the following
relation for the distribution of radiated energy with respect
angle and frequency at large distances from the source:

d2E~n,v!/dv dV

5~2p!6~«~k,v!!21/2u~k3 j ~k,v!!u2Y~k,v!/c, ~12!

in which Y(k,v) contains all the deviations from the usu
expression caused by inclusion of spatial dispersion:

Y~k,v!5~g1k2!2/~g214 f !, ~13!

where

f 52pa0v0~M /h!~v/c!2. ~14!

The reason why an additional solution for the field appe
when spatial dispersion is included can ultimately be tra
to the presence of this factor. If the equation of motion o
charged particler5R0(t) is known, then the angular an
frequency distribution of the energy it radiates can be writ
in the form (V5dR/dt)
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3E E dT dt@n–V~T1t/2!#

3@n–V~T2t/2!#exp$ ivt2 ik–b~T,t !%,

~15!

whereb(T,t)5R(T1t/2)2R(T2t/2). It follows from Eq.
~13! that the factorY(k,v) does not depend on the angle
Then the angular integration can be carried out in the us
way, which leads to a spectrum of the radiation that can
written in the form

dE/dv5~e2v2/pc3!«1/2~k,v!Y~k,v!E E dT dt

3$c22V~T1t/2!•V~T2t/2!«~v,k!%

3~1/kub~T,t !u!$sin@vt2kub~T,t !u#

2sin@vt1kub~T,t !u#%. ~16!

4. ČERENKOV RADIATION OF SLOW WAVES

Let us consider Cˇ erenkov radiation of slow waves by
chargee moving uniformly with velocityv in a material.
Substituting the law of motion in the formR5vt into Eq.
~15! gives the distribution of radiated energy with respect
angle and frequency:

d2E/dv dV5T~e2v2/2pc3!«1/2~k,v!~n3v!2Y~k,v!

3d~v2k–v!, ~17!

whereT is the total time of flight. The delta function enterin
into Eq.~17! rigorously connects the angle of emission of t
radiationu with its frequency and the velocity of the partic
through the relation

2c25v2 cos2 u$@G214F#1/22G%. ~18!

Energy and momentum conservation permit the ex
tence of this radiation only if the velocity of a particle
larger than a threshold valuev0 determined by the equation

v0
252c2/$@G214F#1/22G%. ~19!

5. RADIATION OF SLOW WAVES BY A CHARGE MOVING IN
ARBITRARY FASHION WITH VELOCITY BELOW THE
THRESHOLD FOR ČERENKOV RADIATION

Radiation of slow waves by a particle moving in an a
bitrary fashion at velocityv,v0 can be treated as ordinar
radiation in a medium, with the sole difference that the a
ditional factorY(k,v) appears. An interesting case is whe
the velocityv@v02v.0. Here the situation is analogous
radiation of ultrarelativistic particles in vacuum. The leng
of that segment of the particle’s path from which radiat
waves arrive at the detector with phases that are clos
value ~i.e., the generation length of the radiation or the c
herence length! is in this case much larger than the wav
length of the wave field, and the distinctive features that a
in the process of radiating slow waves here are analogou
well-known features of the radiation of ordinary waves
ultrarelativistic particles.9–12 This allows us to simulate the

847M. V. Marmazeev and M. I. Ryazanov



radiation of ordinary waves at high energies by using radia-
le
n

tte
e
it

di
hi
s,
n

on

co
a
x

as
o

f

ke
in

e
it

o

nc
,

sum, so that the contribution of these regions of frequency
in-

for
the
ong

in

ion
the
e
ve

ter-

all
e
es
tri-
all.

ith
can
g

he
e-
g-
g-

nes
in
rin-

ga-
tion of slow waves by nonrelativistic particles. For examp
if the coherence length, i.e., the length of particle path alo
which radiation is generated, is much larger than the sca
ing amplitude of the particle by an atom of the material, th
we can use the approximation that the particle veloc
changes suddenly during the collision. In the case of ra
tion of ordinary waves whose frequency is not too high, t
approximation is applicable for ultrarelativistic particle
while for radiation of slow waves this approximation ca
also be used for nonrelativistic particles. The law of moti
of a particle in this approximation has the form

r ~ t !5vt, t,0, r ~ t !5ut, t.0,

and substituting this into Eq.~15! yields

d2E/dv dV

5~e2v2/4p2c3!«1/2~k,v!Y~k,v!u~n3v!/~v2k–v!

2~n3u!/~v2k–u!u2. ~20!

6. RADIATION OF SLOW WAVES DURING THE COLLISION
OF A RELATIVISTIC CHARGE PARTICLE WITH AN
ATOM

For a relativistic particle, Cˇ erenkov radiation of slow
waves always takes place; however, when the particle
lides with an atom its velocity changes, so that bremsstr
lung appears as well. Taking into account that the appro
mation of a sudden change in the velocity is valid in this c
as well, and substituting the corresponding law of motion
the particle into Eq.~15!, we can find the distribution o
radiated energy in the form

d2E/dv dV5~d2E/dv dV!Ch1~d2E/dv dV!br , ~21!

~d2E/dv dV!Ch5~T/2!~e2v2/2pc3!«1/2~k,v!Y~k,v!

3$~n3v!2d~v2k–v!

1~n3u!2d~v2k–u!%, ~22!

~d2E/dv dV!br5~e2v2/4p2c3!«1/2~k,v!Y~k,v!

3H ~n3v!~v2k–v!

~v2k8•v!21~k9•v!2

2
~n3u!~v2k–u!

~v2k8•u!21~k9•u!2J . ~23!

Here T is the total observation time, andk5k81 ik9; ab-
sorption in the medium is assumed to be small, and is ta
into account only when necessary for integration. Compar
Eqs. ~22! and ~17!, it is not difficult to verify that Eq.~22!
consists of the sum of the energy of the Cˇ erenkov radiation
emitted by the particle before and after the sudden chang
its velocity. The energy radiated as a result of the veloc
change of the particle is determined by Eq.~23!. An impor-
tant difference, which is connected with the existence
Čerenkov radiation, is the fact thatv2k–v andv2k–u can
have any values. In particular, in those regions of freque
and angle where these quantities have opposite signs
difference of the two fractions in Eq.~23! is replaced by their
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and angle to the total energy radiated is considerably
creased.

Let us discuss under what conditions it is possible
this increase in the intensity of the radiation to occur. Let
z axis of a spherical system of coordinates be directed al
v, the direction of the vectork be given by anglesu andf,
and the anglef be measured from the plane of the vectorsv
andu. Then

k–v5kv cosu,

k–u5ku$sin a sin u cosf1cosa cosu%,

where a is the angle betweenv and u, so that
u–v5uv cosa. The range of angles in which the increase
intensity takes place is determined by the inequalities

cosu,v/kv,

cosa cosu1sin a sin u cosf.v/kv ~24!

or

cosu.v/kv,

cosa cosu1sin a sin u cosf,v/kv. ~25!

Then the characteristic maximum in the angular distribut
of slow waves lies near the direction perpendicular to
plane of the vectorsv andu, i.e., near the normal to the plan
of motion of the particle. Let us consider as a qualitati
example radiation in the direction for which cosf50. Then
the increase in intensity occurs in that range of angles de
mined by the inequalities

cosu.v/kv.cosa cosu. ~26!

Because the characteristic angles of deviation are sm
during the collision of a relativistic particle with an atom, w
havea!1 and the increase in intensity of the radiation tak
place in a rather narrow region of angles, while the con
bution of this region to the spectrum of the radiation is sm
The radiated energy in the angular region Eq.~26! takes the
form

~d2E/dv dV!br

5~e2v2/4p2c3!«1/2~k,v!Y~k,v!v2a2~v2kv !2. ~27!

7. DISCUSSION OF RESULTS

The distinctive features of the radiation of waves w
anomalously small phase velocity demonstrated above
be of interest in connection with the possibility of simulatin
radiation by ultrarelativistic particles in vacuum using t
radiation of slow waves by nonrelativistic particles in a m
dium. In addition, this constitutes a new type of electroma
netic interaction in matter. Anomalously slow electroma
netic waves can exist not only near narrow absorption li
in an isotropic medium with spatial dispersion but also
noncubic crystals for frequencies close to zeroes of the p
cipal values of the dielectric permittivity tensor13 within
rather narrow ranges of frequency and directions of propa

848M. V. Marmazeev and M. I. Ryazanov



tion. In the latter case, the radiation of slow waves turns out
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Spectral properties of backward stimulated scattering in liquid carbon disulfide

.
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The spectral structure of backward stimulated scattering from a 10 cm-long CS2-liquid cell is
investigated by usingQ-switched 10-ns and 532-nm laser pulses with different spectral
linewidths. Under a narrow spectral line (;0.1 cm21) pump condition, very strong sharp lines
near the pump wavelength (l0) position and the first-order stimulated Raman scattering
(ls1) position can be observed. However, under a wide line ('1 cm21) pump condition, only a
strong and superbroadening spectral band can be observed mainly in the red-shift side of
the pump wavelength. The different spectral features under these two conditions can be explained
by a competition between stimulated Brillouin, Raman, and Rayleigh–Kerr scattering.
Under both pump conditions, the broadening spectral distributions are not consistent with the
predictions given by stimulated Rayleigh-wing scattering theories, but can be interpreted
well utilizing the theoretical model of stimulated Rayleigh–Kerr scattering. ©1997 American
Institute of Physics.@S1063-7761~97!00411-3#
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Early observations of spectral broadening~up to
;15 cm21! of the backward stimulated scattering from
Kerr liquid cell were reported in the mid-1960s and inte
preted phenomenologically as stimulated Rayleigh-w
scattering~SRWS!.1–3 According to SRWS theories,1–4 the
normalized exponential gain profile is given by

gSRWS~Dn5n02n!}uE0u2~2pDnt!/@11~2pDnt!2#,
~1!

wheren0 andn are the frequency of the pump line and t
frequency of SRWS respectively;t is the molecular reorien
tational relaxation time of a given Kerr liquid comprised
anisotropic molecules, andE0 is the amplitude of a mono
chromatic incident optical electric field. For the same opti
intensity level~in units of W/cm2!, a smaller spectral line
width will yield a greaterE0 value and a higher gain value
According to Eq.~1! one can find that there will be attenu
tion on the anti-Stokes side of the pump line, and gain on
Stokes side, respectively. In particular, the location of
gain maximum on the Stokes side will be determined by

Dnmax51/2pt. ~2!

For CS2 the measured value oft is about 1.5–2 ps, so tha
the value ofDnmax should be;3 cm21. During the early
SRWS studies, it was difficult to accomplish a reliable qua
titative comparison between experimental measurements
theoretical predictions due to the influence from stro
stimulated Brillouin scattering, poor spectral resolution, a
the overexposure effect of the photographic films or pla
employed.1,2

Since the mid-1980s, superbroadening (.400 cm21)
forward stimulated scattering from a Kerr-liquid-filled ho
low fiber system has been reported and systematic
investigated.5–10 The main features of this kind of spectr
broadening behavior can not be simply interpreted by eit
SRWS theories,1,3,11 stimulated thermal Rayleigh
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However, they can be explained well based on the theore
model of stimulated Rayleigh–Kerr scattering~SRKS!.5–9

According to this model a much broader gain curve on
Stokes side of the pump line should be observed, and ca
expressed as5,6

g~Dn>0!5l0
2Ns~Dn!I 0 /@4phn0~dn0!#. ~3!

Herel0 is the pump wavelength,N is the molecular density
of the scattering medium,I 0 is the pump intensity,h is
Planck’s constant, anddn051/2pt is the spectral linewidth
of the elementary Rayleigh–Kerr scattering process. Fina
the scattering cross sections~Dn! is given by

s~Dn!5~2p/c!4n0
4~a i

22a'
2 !cos2@ f ~Dn!#, ~4!

wherec is the speed of light,a i and a' are the maximum
and minimum molecular polarizabilities of a given Kerr liq
uid, andf (Dn) is an increasing function ofDn which can be
experimentally determined for a given scattering medium
trial function such as

f ~Dn!5~aDn!b ~5!

can be used to fit the experimental data of the forward stim
lated scattering spectra from a CS2-liquid-filled fiber system.
Here,Dn is in units of cm21, and f (Dn) is in units of angu-
lar degrees. The best fitting parameters for CS2 liquid were
a57.5•109 andb50.148.5

It is different from the SRWS theory that on the an
Stokes side of the pump line, an observable spectral bro
ening is also predicted by the SRKS theory. In this case,
gain curve on the anti-Stokes side of the pump wavelen
can be expressed as5,6

g~Dn<0!5g~0!@1/~2pt!2#/@~Dn!211/~2pt!2#, ~6!

whereg(0) is the maximum stimulated scattering gain val
at Dn50, andt is still the molecular reorientational relax
ation time. The experimental results for forward superbro

850-07$10.00 © 1997 American Institute of Physics



s of
ng
FIG. 1. The experimental setup for spectral measurement
forward and backward stimulated scattering from a 10 cm-lo
CS2-liquid cell.
ening stimulated scattering from a CS2 liquid-filled hollow-
ov
ne
ity
ib
tte
fo
ce
s

t

re
n

h

te

s
as
in
bl

se
ll
,

ie
ca
g.
th
ec
ar

and forward stimulated emission from the liquid-cell sample

e
n

the
ured

the

ed

-

inly
sly

han

ed

aker
as

an

ed
ted
fiber system were basically in agreement with the ab
theoretical description.5–10 In these cases, however, someo
might not be entirely convinced by thinking that the intens
of the transmitted pump beam is so high, that the poss
small-red-shifted SRWS may be covered by the transmi
pump signal, and, also, a cascade effect may take place
long hollow-fiber sample. For these reasons, it seems ne
sary to pursue a thorough study of the spectral propertie
backward stimulated scattering in a shorter CS2-liquid cell,
in which case the intense pump beam background and
spatial cascade effect can be eliminated.

2. EXPERIMENTAL SETUP

In this work, we report the spectral-broadening measu
ments of backward stimulated scattering from a 10 cm-lo
CS2-liquid cell pumped with either a narrow (;0.1 cm21)
532-nm laser line or a wide (;1 cm21) 532-nm laser line.
The experimental setup is schematically shown in Fig. 1. T
pump source was a frequency-doubled andQ-switched
Nd:YAG laser with a;10 ns pulsewidth,;1-mrad beam
divergence,;3-mm beam size, and 10-Hz repetition ra
The spectral width of the output laser pulses was;1 cm21

when a Pockels cell was used as aQ-switching element.
When a BDN dye-doped acetate sheet was employed a
Q-switching element, the output spectral linewidth w
;0.1 cm21, measured by a Fabry–Perot etalon. Exchang
the Q-switching element did not cause any considera
change of the output pulse duration and profile.7

The incident 532-nm pump laser beam was focu
through af 1530 cm lens into a 10 cm-long quartz liquid ce
filled with CS2. The liquid sample was specially purified
i.e., glass-distilled twice and then filtered through a 0.2mm
filter. Therefore, linear absorption due to residual impurit
in the liquid and possible stimulated thermal scattering
be neglected. A special feature of the setup shown in Fi
is that the forward beam and the backward beam from
CS2 liquid-cell can be measured simultaneously by a sp
trographic device. The spectral distributions of the backw
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could be measured by three different systems:~i! a low-
spectral-resolution (;9 cm21) system consisting of a singl
grating ~1800 lines/mm!, a f 3560 cm focusing lens, and a
ordinary camera;~ii ! a medium-resolution (21.8 cm21) sys-
tem consisting of a grating spectrograph~Triplemate from
SPEX! in conjunction with a vidicon-OMA~optical multi-
channel analyzer! III device ~from EG&G Princeton Applied
Research!; and ~iii ! a high-resolution (;0.48 cm21) system
consisting of a double-monochromator~Jobin–Yvon! in con-
junction with the same vidicon-OMA III device.

The temporal profiles of the pump laser pulse and
backward stimulated scattering pulse can be easily meas
using a 350-MHz oscilloscope~Tektronix 2467 with C1001
video camera!.7 At pump intensity levels 150– 400 MW/cm2,
the pulse width of backward stimulated scattering from
10-cm long CS2-liquid-filled cell measured 4–6 ns.

3. RESULTS AND DISCUSSION

Typical spectral photographs of backward stimulat
scattering from the 10 cm-long CS2-liquid-filled cell are
shown in Fig. 2 by using the spectral measurement system~i!
with a spectral resolution of;9 cm21 at a pump intensity
I 0'150 MW/cm2. The photograph shown in Fig. 2a is ob
tained using the wide (;1 cm21) pump line, which shows a
smoothly decreasing and superbroadening spectrum ma
on the Stokes side of the pump wavelength and is obviou
broader than the previously reported SRWS by more t
one order of magnitude.1,2

In contrast, the photograph shown in Fig. 2b is obtain
using a narrow (;0.1 cm21) pump line, and exhibits two
strong sharp spectral lines accompanied by a much we
broadening component. In Fig. 2b the first sharp line w
nearly located at the pump line (l0) position, and the second
line was located at the first-order Stokes stimulated Ram
scattering line (ls1) position with a Raman shift of
;656 cm21. A Fabry–Perot etalon measurement show
that the first sharp line in Fig. 2b is the backward stimula

851He et al.
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FIG. 2. Spectral photographs of backward stimulat
scattering from the CS2-liquid sample pumped bya
;1 cm21-wide 532-nm line~a! and ;0.1 cm21-wide
532-nm line ~b!, respectively. The pump intensity is
I 0'150 MW/cm2 and the spectral resolution is
;9 cm21.
Brillouin scattering line accompanied by a weaker broad
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wing mainly on the red side.
The substantial difference between Fig. 2a and Fig.

can be explained by a competition effect among three m
stimulated scattering processes in a CS2-type transparent liq-
uid: stimulated Brillouin scattering~SBS!, stimulated Raman
scattering~SRS!, and stimulated Rayleigh–Kerr scatterin
~SRKS! ~or possible SRWS scattering?!. For different pump
conditions, the relative threshold requirements for vario
stimulated scattering processes may be considerably di
ent, even for a given sample. Under the same pump p
duration and intensity level, the threshold requirements
SBS and SRS quite sensitively depend on the spectral w
of the pump line. For instance, the reported experime
results show that the SBS threshold increases following
increase in the pump linewidth.15–17 In fact, the threshold
increase~or efficiency decrease! of SBS becomes more se
vere if the pump linewidth is much greater than the f
quency shift of the backward SBS.18,19 For liquid CS2, this
shift is about;0.25 cm21, so the pump condition in Fig. 2
is an example of the latter case.

It is reasonable to assume that in the case of Fig. 2a
backward SBS and SRS were suppressed due to their h
threshold requirements under wide line excitation. Therefo
the backward SRKS process became the dominant me
nism contributing to the observed superbroadband spe
distribution. In contrast, in the case of Fig. 2b, the SBS a
SRS were the dominant processes contributing to the
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requirements under narrow line excitation.
Figure 3 shows photographs of the spectra for both

forward and backward stimulated emission from the sa
10-cm long CS2-liquid cell sample pumped with the 532-nm
line of ;1 cm21 width at three different pump intensity lev
els. In Fig. 3 for each photograph the upper spectrum co
sponds to forward emission, comprising the transmit
pump line and the forward stimulated scattering, while t
lower spectrum corresponds to backward stimulated sca
ing only. It can be seen in Fig. 3 that at lower pump intens
~Fig. 3a!, the forward emission is mainly composed of
transmitted pump line (l0) and the first-order Stokes stimu
lated Raman scattering line (ls1); whereas at higher pump
intensity ~Fig. 3c!, there is also a considerable red-shift
broadening component added to thel0 line. This is under-
standable because at a lower pump level, forward broade
stimulated scattering takes only a very small percentage
the total forward beam. As the pump intensity is increas
the ratio between forward broadening scattering and tra
mittedl0 emission becomes greater, and the red-spread w
looks broader and stronger. This behavior is essentially
same as that of the forward SRKS observed in a CS2-liquid
cell sample.5,9

In addition, it should be noted that the spectral struct
of the forward emission shown in Fig. 3 is quite similar
that of the backward stimulated emission shown in Fig.
This similarity is understandable because in the latter ca

852He et al.
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FIG. 3. Spectral photographs of the forward stimulat
emission~upper track! and backward stimulated scatterin
~lower track! pumped by the;1 cm21-wide 532-nm line at
various pump intensity levels:I 0'170 ~a!, 250~b!, 400~c!
MW/cm2.
instead of the pump line, backward SBS is the predominant
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component excited by the narrow (;0.1 cm21) pump line,
so that the entire backward SRKS feature is partially cove
by the intense SBS line, as shown in Fig. 2b. On the ot
hand, in Fig. 3 one can see that the spectral feature of b
ward stimulated scattering remains basically unchange
the three different pump intensity levels. This fact can ea
be understood because there is no competition with the o
predominant sharp line.

We should now further clarify which mechanism, SRK
or SRWS, is mainly responsible for the observed spec
broadening of backward emission pumped with either
;0.1 cm21 line or the;1 cm21 line. For this purpose, quan
titative spectral measurements with higher spectral resolu
are needed. To observe the detailed spectral distribu
pumped with a narrow line (;0.1 cm21), spectral measure
ment system ~iii !, with much higher resolution
(;0.48 cm21), was employed to record the incident pum
line profile, as well as the backward stimulated scatter
line profile nearl0.

The measured results are shown in Figs. 4 and 5.
ensure a reliable linear display of the spectral intensity d
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the double monochromator was attenuated by neutral den
filters with various attenuation ratios. For the incident pum
beam alone~with the sample removed!, Fig. 4 shows a
nearly symmetric spectral distribution at the base of
pump line under different attenuation ratios. In contrast,
the backward stimulated scattering beam, Fig. 5 show
strong sharp line attributed to the backward SBS~its wave-
length shift was less than the apparatus resolution!, as well as
asymmetrically broadened components in the two wings.

One can see two features in Fig. 5: 1! although the spec-
tral distribution on the Stokes side is stronger and broad
there is still a measurable spectral broadening componen
the anti-Stokes side; and 2! no spectral maximum was ob
served at a red-shifted position of;3 cm21 ~predicted by the
SRWS theories1–4!. These two features cannot be interpret
by the SRWS theories; however, they might well be e
plained by the superposition of a strong SBS sharp line an
relatively weak SRKS band.

This assumption can be further supported by spec
measurements of backward stimulated scattering pum
with a wide (;1 cm21) laser line using the spectral mea

853He et al.
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FIG. 4. Detailed spectral distribution of the;0.1
cm21-wide 532-nm pump line at various attenuation r
tios: 1/80 ~a!, 1/90 ~b!, 1/30 ~c!, 1/6 ~d!, 1/1 ~e!. The
spectral resolution is;0.48 cm21.
surement system~ii !. In this case, no SBS component is ex-
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pected and the backward SRKS process becomes domi
the measured spectral distribution at various pump inten
levels is shown in Fig. 6 with a spectral resolution
;1.8 cm21. It can be seen in Fig. 6 that once the pum
intensity is high enough (>200 MW/cm2), the relative spec-
tral distribution does not change much, which means that
full-scale spectral distribution characteristic of SRKS h
been established. These results are basically consistent
that shown in Fig. 3 for backward stimulated scattering. A
other feature shown in Fig. 6 is that still there are detecta
spectral components on the anti-Stokes side ofl0.

Based on the measured spectral distribution data
backward stimulated scattering, the corresponding spe
exponential gain curve can be obtained by taking appropr
logarithms.5 As a result, the normalized spectral gain cur
for backward stimulated scattering obtained with 0.48 cm21

resolution is given in Figs. 7 and 8 by the solid line; t
small random negative spikes were due to a poorer sig
noise ratio near the zero-point. The pump linewidth w
;1 cm21 and the pump intensity;500 MW/cm2.

In Fig. 7 the Stokes gain curve predicted by the SR
theory is given by a dash-dotted line, using Eqs.~3!, ~4!, and
~5! with the same fit parameters used in Ref. 5, while
anti-Stokes gain curve predicted by Eq.~6! is shown by a
dashed line using a fit parameter oft51.77 ps.5 One can see
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theoretical fit is quite good. In contrast, the normalized g
curve predicted by the SRWS theory is shown in Fig. 8 b
dashed line, using Eq.~1! with a fit parameter oft51.5 ps.
In this case, the negative section of the theoretical cu
implies an attenuation of the anti-Stokes components, so
anti-Stokes component would be observed. One can
clearly in Fig. 8 that the predictions of SRWS theory are n
consistent with our experimental results.

Finally, one might consider the possibility of spectr
broadening due to self phase modulation of possible s
pulse structure within the;10 ns pulse envelope, whic
would not be resolved by our 350-Mz oscilloscope syst
with ;1-ns resolution. However, this possibility is not like
to be true, based on the following considerations.

First, according to the uncertainty principle (DnDt
'1), the duration of possible subpulses would not be l
than 300 ps and 30 ps, limited by spectral linewidt
0.1 cm21 and 1 cm21, respectively. If the self phase modu
lation plays an essential role, spectral broadening beha
should strongly depend on pump pulse duration. Under si
lar experimental conditions, we did use a;100 ps laser
pulse and a;0.5 ps laser pulse to pump a liquid CS2 sample
separately, and observed no evidence of self phase mod
tion in the forward emission, except for spectral broaden
behavior similar to that shown in Fig. 2a or Fig. 6.7–10 Thus,
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FIG. 5. Detailed spectral distributions of backwar
stimulated scattering from the CS2-sample pumped by
the ;1 cm21-wide 532-nm line with various attenua
tion ratios: 1/180~a!, 1/90~b!, 1/30~c!, 1/6 ~d!, 1/1 ~e!.
The pump intensity isI 0'150 MW/cm2, and the arrow
indicates the maximum gain position predicted by t
stimulated Rayleigh-wing scattering theory with an a
sumed value oft51.5 ps.

FIG. 6. Normalized spectral distributions of th
backward stimulated scattering from th
CS2-sample pumped with the;1 cm21-wide
532-nm line at various intensity levels:I 0'30 ~b!,
75 ~c!, 150 ~d!, 475 ~e! MW/cm2. The spectrum of
the incident pump line is shown in~a!, and the spec-
tral resolution is;1.8 cm21.
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the spectral broadening behavior of CS2 is not sensitively
dependent on pump pulse duration under our experime
conditions.

Second, if self phase modulation is the major mechan
causing the observed spectral broadening, there should
periodically modulated spectral structure, as demonstrate
early self-focusing experiments.20–23 Our spectral measure
ments with various resolutions~;9 cm21, ;1.8 cm21, and
;0.48 cm21! reveal no discrete or modulated spectral str
ture.

Lastly, if self phase modulation is the predomina
mechanism, the same spectral broadening should occur i
transmitted pump line that takes the highest percentage o
forward emission. However, as shown in Fig. 3, spec
broadening in the backward direction is much greater tha
the forward direction. All these considerations are unfav
able for the self phase modulation assumption.

FIG. 7. Normalized gain curves for backward stimulated scattering base
measured data~solid line! and fits~dashed line and dash-dotted line! given
by stimulated Rayleigh–Kerr scattering theory. The pump intensity isI 0

'500 MW/cm2, the pump linewidth;1 cm21, and the spectral resolution
;0.48 cm21.

FIG. 8. Normalized gain curves for backward stimulated scattering base
measured data~solid line! and fits~dashed line! predicted by the stimulated
Rayleigh-wing scattering theory with an assumed value oft51.5 ps. The
pump intensity isI 0'500 MW/cm2, the pump linewidth;1 cm21, and the
spectral resolution;0.48 cm21.
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We have accomplished a thorough measurement of
spectral structure of backward stimulated scattering from
10 cm-long CS2-liquid cell pumped by;10-ns and 532-nm
laser pulses with linewidths of;1 cm21 and ;0.1 cm21.
Under the;1 cm21 line pump condition, only a strong su
perbroadening spectral band is observed in the backw
stimulated scattering. However, under the;0.1 cm21 line
pump condition, a strong SBS sharp line and a relativ
weak broadening component can be observed together.
differing spectral structure of backward stimulated scatter
under different pump linewidths can be explained by cons
ering the threshold dependence of SBS on pump linewid
Under both pump line conditions, spectral broadening beh
ior cannot be interpreted by either the SRWS theory or
self-modulation assumption, but can be explained well by
SRKS theory.

This work was supported by the US Air Force Office
Scientific Research through contract No F4962093C0017
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Interference in the photodecomposition of negative atomic hydrogen ions in an electric

m-
field
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The quantum interference of electron waves in the photodecomposition of negative hydrogen
ions in an external uniform electric field is examined. The structure of the
photodetachment amplitudes is discussed. A simple analytic expression for the electron flux
distribution is derived. Finally, it is shown that the structure of the electron flux is affected by the
angular dependence of the wave function. ©1997 American Institute of Physics.
@S1063-7761~97!00511-8#

1. INTRODUCTION Earlier the theory of the effect was developed in a nu
1–4,25,27–29
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Photodecomposition of atoms and negative ions in
presence of a constant uniform electric field has been stu
by many theoreticians and experimenters. Attention has u
ally been focused on finding the total cross section of
process as a function of the field strength and photon
quency. A remarkable feature of photoionization of neut
atoms is the presence of singularities in the above-thres
region.1–7 In contrast, photodecomposition of negative io
in the presence of a constant electric field does not lead to
formation of resonance structures; instead the cross secti
characterized by a slowly modulated dependence on the e
tric field strength.8–13

The total cross section of the photodecomposition
negative ions in thes state has been thoroughly studied in t
approximation in which the electron in the final state is
sumed free.8–13 The approximation is based on the fact th
without an external electric field the detachment of a sin
electron that was initially bound in thes state results in the
electron passing into a finalp state, which is only weakly
distorted by the atomic potential.

The situation is different when we are dealing with neg
tive ions of halogens, where the ground state is ap state.
Here one of the main photodetachment channels is thep-s
transition. Hence the zero-potential approximation canno
applied even in the absence of an electric field,14–19 and the
free-electron approximation20 is unsatisfactory.21,22The com-
mon approach to solving the problem in this case is to
expand the transition amplitude in cylindric
coordinates,5,6,23,24which allows for a transition from the in
tratomic region to the region of free motion in a consta
uniform electric field and allows one to calculate the cro
section of the process.

Photodecomposition of a negative ion in the presenc
a constant electric field makes it possible to monitor
wave properties of an electron in the final state. Class
electron trajectories in such a field become two-valu
which leads to interference of the corresponding quan
amplitudes. Demkovet al.25 were the first to formulate the
important idea of a ‘‘photoionization microscope.’’ Rece
experiments have shown that for Br2 a ring structure does
indeed exist.26
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ber of papers. It allows, at least in principle, calcu
lation of the electron distribution and hence the interferen
pattern. At the same time, it must be noted that the appr
mations discussed in Refs. 25, 28, and 29 were of a se
classical nature and can be used only in the classically
cessible region. A quantum mechanical calculation for
negatively charged ion of atomic hydrogen was done
Fabrikant.30 The result was an expression for the wave fun
tion in the form of an integral of a rapidly oscillating func
tion, which, however, is of little use when numerical calc
lations in the range of the experimental parameters are d
and makes the problem less perspicuous. Earlier an ana
formula applicable for all distances from the center of t
interference pattern was derived by Kondratovich a
Ostrovsky,4 but it can be used only near the threshold of t
process for negative ions of halogens with an init
p-electron.

The present paper derives a simple analytic formula
plicable at all distances from the center of the interferen
pattern for the case where a negative ion of the hydro
atom is the source.

2. THE PHOTODECOMPOSITION AMPLITUDE

The formation of the interference pattern by photoele
trons in an electric field is a result of two physically distin
processes: photodecomposition and the propagation of
electron wave in the presence of an external field. We be
by studying the photodecomposition amplitude, followin
the method developed by Du and Delos.8

We will assume that the laser field that causes photo
composition is weak, so that the interaction of an elect
with the light can be considered a perturbation. To allow
the effect of a static electric field we will use Airy function
to build a complete orthogonal set of the final states.

The interaction of an electron and the light can be w
ten as~here we use the atomic system of unitse5me5\51!

W52
iA

c
exp~ ikph–r !~e–“ !, ~1!

whereA is the amplitude of the vector potential of the las
field, c is the speed of light in vacuum,kph is the photon
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momentum,e is the polarization vector, andv is the photon
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provides the greatest contribution to the integral in~9!. Since
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on
frequency. The expression for the cross section is

s5
4p2

cv E uM f i u2d~Ei1v2E!dqxdqydh, ~2!

where E5(qx
21qy

2)1h is the electron energy in the fina
state, andh is the energy of thez-component of electron
motion in the continuum. The matrix element between
initial stateu i & and the final stateu f & in the continuous spec
trum can be written as follows:

M f i5^c f~h!u2 i exp~ ikph–r !~e–“ !uc i&. ~3!

The final statec f can be expressed in terms of Airy fun
tions:

c f5
exp~ iqxx!

A2p

exp~ iqyy!

A2p
S 4

F D 1/6

Ai ~j!, ~4!

where

j52~a1z!b, a5
h

F
, b5~2F !1/3, ~5!

with F the strength of a constant uniform field pointing
the direction opposite to that of thez axis.

The initial state of the negative ion of the hydrogen ato
can be represented to good accuracy by the follow
expression:31,32

c i~r !5B
e2kr2e2br

r
,

k50.236, b50.75, B50.325. ~6!

A useful approach to calculating the matrix elementM f i is to
introduce in Eq.~3! the Fourier transforms of the initial wav
function ~6! and the wave function of the final state~4!:

c i~p!5BS 2

p D 1/2

a~p!, a~p!5
1

k21p2 2
1

b21p2 , ~7!

c f~p!5
d~qx2px!d~qy2py!

A2pF
expF i

F S pz
3

6
2hpzD G . ~8!

We write the expression~3! for the matrix elementM f i in
integral form:

M f i5M ~k!2M ~b!,

M ~k!5
B

pF1/2

3E
2`

`

dpz

q–e1ezpz

k21~qx2kph,x!
21~qy2kph,y!21~pz2kph,z!

2

3expF i

F S pz
2

6
2hpzD G , q5~qx ,qy!. ~9!

The region near the pointpz of stationary phase, which sa
isfies the equation8

pz
2

2
5h, ~10!
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the initial state is described by the functionc i(p), which
slowly varies in the vicinity of the point of stationary phas
the value of the function at this point can be taken outs
the integral sign. This yields the following expression:

M ~k!5 iB324/3F5/6

3
2 i ~q–e!/F1ez]/]h

k21~qx2kph,x!
21~qy2kph,y!21~pz2kph,z!

2

3Ai F2S 2

F2D 1/3

h G , ~11!

which determines the value of the differential scatteri
cross section.

To estimate the retardation correction to the total sc
tering cross section near the threshold, we point the polar
tion vector e parallel to the constant fieldF (q–e50) and
employ the asymptotic behavior of~6! in the form
B exp(2kr)/r. Then

M ~k!5
C

k21~q2kph!
212h

]

]h
Ai F2S 2

F2D 1/3

h G , ~12!

whereC5 iB21/3F5/6.
Plugging~12! into ~2!, we get

s5
4p2uCu2

cv~p21kph
2 1k2!2 E

2`

F

dhE
0

2p

dw

3U ]

]h
Ai F2S 2

F2D 1/3

h GU2S 12
2kph q cosw

p21kph
2 1k2 D 22

.

~13!

Now we use the relation

E
0

2p dw

~12« cosw!2 5
2p

~12«2!3/2 ~14!

and write~13! as

s5
64p3

cv

B2F

~p21kph
2 1k2!2 Dr S 21/3E

F2/3 D , ~15!

where

Dr~u!5E
2`

u 1

~12«2!3/2U d

dv
Ai ~2v !U2

dv,

«5
2kphq

p21kph
2 1k2 , q252FE2S F2

2 D 1/3

v G . ~16!

At «50, i.e., ignoring all retardation effects, we arrive at t
result in the dipole approximation.8

Using only the first two terms in the expansion
(12«2)23/2 in a Taylor series, i.e., (12«2)23/2'113«2/2,
makes it possible to separate the contribution of retarda
effects. An estimate yields«2'v/c2'1025 for processes
near the threshold. Figure 1 depicts the functi
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D(u)5Dr(u)u«50 without allowance for retardation,8 and
the correctionDr(u)2D(u). The correction is small, which
agrees with the above estimate.

When the direction of the electric field coincides wi
the direction of the polarization vector and we take into
count the more exact wave function~6!, the total cross sec
tion becomes

s5
64p3

cv
a2~p!B2DS 21/3E

F2/3 D . ~17!

Near the threshold the correction to the result obtained
Ref. 8 roughly amounts to (k/b)4'0.01, but increases with
the photon energy.21

3. THE INTERFERENCE PATTERN

Consider the problem of the interference of electr
waves in the final state in the photodecomposition of a ne
tive ion of the hydrogen atom. We will ignore retardatio
effects and use the asymptotic expression for the initial w
function. We start with the equation for the wave function
the final state:

~¹2/21Fz1E!c5Wc i . ~18!

Here the operatorW was taken in the dipole approximation
i.e., W'2 i (A/c)(e–¹) ~kph→0 and exp(ikph–r )'1!.

To solve the inhomogeneous equation~18!, we use the
Green’s function which is the solution of the equation

~¹2/21Fz1E!GE~r ,r 8!5d~z2z8!d~x2x8!d~y2y8!.
~19!

We look for the solution of~19! in the form

GE~r ,r 8!5
1

~2p!2 E exp~ iq–~r'2r'8 !!gE~q,z,z8!d2q,

~20!

wherer'5(x,y) is the component ofr perpendicular to the
z axis. The arrangement of the vectorse, q, r' is shown in
Fig. 2.

The functiongE(q,z,z8) satisfies the equation

S 1

2

d2

dz2 1Fz1h DgE~q,z,z8!5d~z2z8!. ~21!

FIG. 1. The modulating factorD(u) ~curve 1! and the correction to it
~multiplied by 105! due to the retardation effect~curve2!.
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Using the linear change of variables~5!, we can write the
Green’s function in terms of the Airy functions:33–35

gE~q,z,z8!52
2p

b
Ci~j,!Ai ~j.!, ~22!

wherej.,5(j1j86uj2j8u)/2, Ci~j!5Bi~j!1 iAi( j), and
the asymptotic behavior~asj→2`! of the functions Ai and
Bi is36

Ai ~j!.p21/2uju21/4 sinS f1
p

4 D ,

Bi~j!.p21/2uju21/4 cosS f1
p

4 D , f5
2uju3/2

3
. ~23!

This asymptotic behavior holds when the distance to
classical turning pointz52h/F is large.

When calculating the electron flux, we are interested
regions far from the ion, in which the large and small arg
ments of the Green’s function in~22! are essentially sepa
rated and Eq.~18! becomes

c.2
2iABFa~p!

bc

3E
0

`E
0

2p

dw qdq Ci~2~a1z!b!

3exp~ iq–r'!S ez

]

]h
2 i

q–e

F DAi F2S 2

F2D 1/3

h G , ~24!

where the matrix elementM f i is taken from~9! and ~11! at
kph50.

In ~24! we first integrate with respect tow in the plane
perpendicular to the direction of the electric field. He
q–e5sinu0(cosw cosw02sinw sinw0) and ez5cosu0,
wherew andw0 are the angles in thexy plane, andu0 is the
angle between thez axis and the polarization vectore. Inte-
grating with respect tow in Eq. ~24! amounts to calculating
integrals of the form

I n5E
2p

p

exp~ iqr cosw!sn~w!dw, ~25!

FIG. 2. Arrangement of the electric field vectorF, the polarization vectore,
the transverse projectionr' of the radius vector, and the transverse proje
tion q of the electron momentum.
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integral ~25! yields Bessel functions of order zero and th
derivatives:36

I 052pJ0~qr !, I 1522ipJ08~qr !. ~26!

For n52 the integral vanishes because the integrand is
odd function. Bearing all this in mind, we can write

c.2
4ipABFa~p!

bc E
0

`

qdq Ci~2~a1z!b!

3Fm0J0~qr!
]

]h
2

m1

F

]J0~rr !

]r G
3Ai F2S 2

F2D 1/3

h G , ~27!

wherem05cosu0, m15sinu0 cosw0, andr5ur'u.
Let us evaluate the integral with respect toq by employ-

ing the asymptotic expression for Ci at large positive valu
of z. According to~23!, we can write

c.QE
0

`

qdq expS 2 i
tq2

2 D
3S m0J0~qr!

]

]h
2

m1

F

]J0~rr !

]r D
3Ai F2S 2

F2D 1/3

h G , ~28!

where

Q52
4ip1/2ABFa~p!

bc~zb!1/4 exp~ i f̃ !,

f̃5tS 2z

3
1

E

F D1
p

4
,

and t5(2z/F)1/2 is the classical time of electron motio
from source to screen.

When the argument of the Bessel functions is large,
asymptotic behavior of the functions is given by the follo
ing expression:

Jn~u!.S 2

puD 21/2

cosS u2
np

2
2

p

4 D
~see Ref. 36!, and the integrand in~28! has a stationary poin
corresponding to the classical value of the transverse c
ponent of momentum,qc5r/t. Hence we can plug in the
value of the Airy function at the stationary point. The resu
ing integral can now be easily calculated. Atn50 we have37

J ~r!5E
0

`

expS 2 i
tq2

2 D J0~rq!qdq5
1

t
exp

ir2

2t
. ~29!

The derivative of this expression yields the term withn51:

]

]r E
0

`

expS 2 i
tq2

2 D J0~rq!qdq5
ir

t
J ~r!. ~30!

Thus, at the point on the screen where an electron
detected we have
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c.QJ ~r!Fm0

]

]h
2m1

ir

tF GAi F2S 2

F2D 1/3

hGU
q5qc

. ~31!

The analytic expression~31! for the wave function of the
final state contains all the information needed for calculat
the electron current density along thez axis,
j z.2 i (c* ]c/]z2c.c.), and determines the details of th
interference pattern. We see that to calculate the elec
current we need to know thez-derivative ofc. However, for
a screen that is far from the source the motion of an elec
in a uniform electric field becomes semiclassical. Then
can putc.exp(iS) ~see Ref. 38!, whereS is the classical
action. Hencej z.pz(z,r)ucu2 within the accuracy of the
semiclassical approximation, which is determined by the
rameterd(p21(z,r))/dz!1 for F2t3@1. Actually, the semi-
classical formula for the electron flux proves to be high
accurate.

This makes it possible to write the final expression
the two characteristic polarizations. For the polarizati
along the external field we have

j z
l ~r!. j 0S 2

tF2D 2/3U d

dx
Ai ~2x!U2

, ~32!

and for the transverse polarization we have

j z
'~r!. j 0S cosw0

tF D 2UrAi ~2x!

t U2

, ~33!

where j 05pzuQu2, and x5(n/2)2/3(12r2/rmax
2 ), with

n5p3/F andrmax5pt the classical size of the pattern. For a
arbitrary orientation of the polarization vector we have

j z~r!5 j z
l ~r!cos2 u01 j z

'~r!sin2 u0 . ~34!

Figure 3 depicts the results of calculating the interf
ence pattern for H2 for two different polarizations. The nor
malized value of the flux is chosen atj 051. The pattern is
cylindrically symmetric when the polarization is alongF,
while for transverse polarization the angular structure of
electron current corresponds to the angular structure of
wave function of the electron in the continuum immediate

FIG. 3. Quantum interference pattern for H2: curve 1 corresponds to the
caseeiF, and curve2 to the case ofe'F andw050. The electron energy in
the continuous spectrum is 0.4 cm21, the electric field strength is
100 V m21, and the distance isz50.5 m ~Ref. 26!.
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and M. H. Nayfeh~eds.!, Plenum Press, New York~1990!, p. 61.
7V. V. Kolosov, JETP Lett.44, 588 ~1986!.

D.

a

55,

l

what was said in Ref. 29, the flux minima reach zero, exa
just as they did in Refs. 25, 28, and 30. This can be attribu
to the fact that Du29 matched the solutions in different spati
regions semiclassically but did not allow for the phase of
quantum amplitude.

The study of the interference patterns that emerge in
photodecomposition of negative halogen ions, for which
perimental data are only now appearing,26 means taking into
account the finiteness of the scattering length of thes-wave
and the hyperfine structure of the atom. This problem
considerably outside the scope of the paper and will be
topic of a future study.

4. CONCLUSION

The interference pattern that emerges when photoe
trons move in a uniform electric field reflects both the inte
sity and the phase structure of the wave. The central pa
the pattern can be obtained in the semiclassical approx
tion. However, near the classical turning point this appro
mation has a nonphysical singularity. The proposed quan
description makes it possible to obtain an analytic solution
large distances from a negative ion of the hydrogen atom
the entire transverse distribution region, including the reg
beyond the classical turning point. Thus it becomes poss
to investigate quantum mechanically the effect of the mic
scopic wave function of a photoelectron on the macrosco
interference pattern. This supports the main conclusion
Demkov et al.25 concerning the possibility of building a
‘‘photoionization microscope.’’ It also makes it possible
directly observe the penetration of a barrier by the wa
function.

The work was done in association with C. Blondel a
C. Delsart of the Aime´ Cotton Laboratory of Atomic and
Molecular Physics at the Center d’Orsay~France!. I am
grateful to Yu. N. Demkov for his assistance in the statem
of the problem and to I. Yu. Kiyan for fruitful discussions
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Structure of a collisionless shock front with relativistically accelerated particles

and
I. N. Toptygin

St. Petersburg State Technical University, 195251 St. Petersburg, Russia
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Zh. Éksp. Teor. Fiz.112, 1584–1602~November 1997!

A nonlinear self-consistent analytic theory is developed to describe the front structure of a strong
magnetohydrodynamic~MHD! collisionless shock wave that generates accelerated particles
~including ultrarelativistic particles!. The theory is used to predict the degree of compression of
matter at the plane front of such a wave, which can greatly exceed compression at an
ordinary gas-dynamic front, and also the velocity, density, and pressure profiles. The energy
spectrum of the accelerated particles, which is produced by the complex velocity profile at the
shock transition, is determined self-consistently. New nonlinear effects are predicted that
have not been discussed previously in the literature: a strong dependence of the particle
acceleration regimes on the rate of injection; the existence of several regimes within a
certain range of injected powers with differing spectra of accelerated particles, shapes of the
shock transition profile, and magnitudes of compression of the medium; and the possibility of
spontaneous jumps between different states of the shock transition. The question of stability
of these states is discussed. For the values of the system parameters used here, the nonlinear
regimes correspond to extremely low injection rates, of order 1022210210 of the plasma
flux density advancing into the front, and to exponents of the power-law spectra of accelerated
particles between 5 and 3. ©1997 American Institute of Physics.@S1063-7761~97!00611-2#

1. INTRODUCTION AND STATEMENT OF THE PROBLEM spectrum, the maximum energy they are accelerated to,
ed
.
th

th
o

ce
n
d
bu
ric

ws

s
s
tu
le
el
l in
a
c

ts
a
c
s
o

at
k

e
er

gy
wn
pha-
.
he
ld
can
eth-
ith

e—
.
ic

am-
l
tial

the
k

tep
r-
to

and
ock
the

ts of
ions
tor-

nal

62
The structure of collisionless shock fronts in a rarefi
plasma has long attracted the attention of investigators1–3

This problem has acquired a new facet ever since
discovery4,5 that magnetohydrodynamic~MHD! collisionless
shock waves in a turbulent medium efficiently transform
energy of mechanical motion of the plasma into energy
accelerated particles. The primary mechanism for this ac
eration is provided by first-order Fermi acceleration. Whe
magnetic field is present with a component that is longitu
nal with respect to the front, there is also a certain contri
tion from the drift acceleration of the particles by the elect
field.6

An estimate of the efficiency of this conversion sho
that for strong shock waves~with Mach numberM@1! the
energy of the accelerated particles is of the same order a
energy of the advancing hydrodynamic flux, which sugge
that accelerated particles have a strong effect on the struc
of the shock front. This implies that the problem of partic
acceleration by a strong shock front must be solved s
consistently, because the profile of the transition layer wil
turn affect the efficiency of acceleration and the rate of p
ticle injection from the ambient thermal plasma into the a
celeration regime.

The complexity of this problem comes not only from i
nonlinear character, but also from the need to combine m
roscopic and kinetic approaches to solve it. Whereas lo
properties of a shock wave can be investigated using con
vation laws for macroscopic quantities, the computation
the basic macroscopic parameters of the acceler
particles—their pressure and energy density—requires a
netic approach. This is because the pressure of the acc
ated particles depends strongly on the shape of their en
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the injection power. In fact, a computation of the ener
spectrum of accelerated particles is of interest in its o
right. For these reasons, researchers have primarily em
sized numerical methods in solving the problem as posed7–9

However, numerical calculations cannot always clarify t
physical picture to a sufficient degree, nor do they yie
overall dependences on key physical parameters, which
lead to erroneous conclusions. Furthermore, numerical m
ods require further development before they can deal w
situations more complicated than an isolated shock wav
for example, involving an ensemble of strong shock fronts10

In this paper we use a combination of the hydrodynam
and kinetic approaches. In Sec. 2 we derive the basic par
eters of the shock transition~the magnitude of the therma
velocity jump, the shape of the precursor, and the spa
pressure distribution of the accelerated particles! from the
conservation laws in terms of two global parameters—
degree of compressions of the thermal plasma in the shoc
wave and the conversion coefficienth of the plasma flux
energy into energy of relativistic particles. Our second s
~Sec. 3! is to calculate the distribution function of accele
ated particles at the distorted shock front, which allows us
close the system of equations for a given injection rate
determine self-consistently both the structure of the sh
transition and the spectrum, and also the total energy of
accelerated particles. In the last section we present resul
a numerical solution of the resulting transcendental equat
and a summary of the basic features of the nonlinear dis
tion of the shock front by accelerated particles.

We use an isotropic distribution functionN(z,p) to de-
scribe the energetic particles, which in the one-dimensio
stationary case satisfies the equation6
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and the normalization condition

E
0

`

N~p,z!p2dp5nc~z!.

Here nc(z) is the number density of accelerated particl
Q(p,z) is the density of the source of accelerated partic
u(z) is the hydrodynamic velocity of the medium, an
k(z,p) is the diffusion coefficient for energetic particle
arising from the fine-scale electromagnetic fields of
plasma. Note that Eq.~1! holds at the surfacez5z0 as well,
where there is an abrupt velocity jumpDu. In this case

du

dz
52Dud~z2z0! ~2!

and Eq.~1! can be used to derive boundary conditions for
distribution function and flux density of accelerated particl

By using Eq.~1!, we postulate that the plasma is turb
lent and that the energetic particles undergo frequent sca
ing that gives rise to the diffusive character of their motio
This scattering of the energetic particles also ensures
their motion couples to the background plasma. Howev
with increasing energy this interaction with the plasma w
in general become weaker, and there is a certain energ
which it becomes negligible. These particles become f
and leave the system, taking their energy with them a
thereby giving rise to the phenomenon of ‘‘de-excitation,’7

analogous to de-excitation of excited atoms in strong g
dynamic shock waves. The escape of particles with th
energies can be taken into account by including a ‘‘sink’’
particles with appropriate energies on the right side of
~1! along with the source.

The turbulence can be generated both by external en
sources and by the accelerated particles themselves, w
can generate, for example, Alfve´n waves due to flow insta
bility. In the latter case, the turbulence can derive from
energy of the shock wave, and turbulent pulsations will
one of the dynamic factors that affect the structure of
shock transition.11 However, in a strong shock wave, most
the energy is energy of hydrodynamic motion and acce
ated particles, so that the dynamic role of turbulence is sm
For this reason, here we consider turbulence in the vicinity
the shock transition to be specified by an external factor.
will also not take into account the dynamic role of larg
scale magnetic fields. This is entirely legitimate when
shock wave propagates along the magnetic field~longitudinal
shock wave!. However, even for an arbitrary direction of th
field its effect on the energetics of a strong shock wave is
large, because only a small portion of the total energy of
system is allotted to it.

Written in hydrodynamic form, Eq.~1! becomes the
equation of energy balance of the accelerated particles6

dqc

qz
5u

dPc

dz
1E

0

`

Q~p,z!T~p!p2dp. ~3!

Here
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is the pressure of the energetic particles, andqc is their en-
ergy flux, which can be expressed in terms of the press
and kinetic energy density

w~z!5E
0

`

T~p!N~p,z!p2dp ~5!

by means of the relation

qc~z!52k̄~z!
dw

dz
1u~w1Pc!, ~6!

where k̄ (z) is the diffusion coefficient averaged over th
particle spectrum. We use the well-known relation betwe
pressure and energy density of noninteracting particles

Pc5~gc21!w, ~7!

wheregc55/3 and 4/3 in the nonrelativistic and relativist
cases, respectively. Simple expressions forgc at intermediate
semirelativistic energies will be presented below.

The use of the hydrodynamic equations~3!–~6! to de-
scribe the energetic particles implies a description of
plasma at this stage based on a two-fluid model, in which
two ion species~thermal-gas ions and accelerated particl!
differ significantly both in their average energies and ene
distributions~spectra!, and also in their mean free pathsL
(Lc@Lg , where the labelg is used for the thermal compo
nent! and the character of their interaction with the discon
nuity. Energetic particles, in contrast to thermal particles, c
cross the shock discontinuity many times, acquiring cons
erable energy as a result.

2. CALCULATION OF SHOCK TRANSITION PARAMETERS
FROM CONSERVATION LAWS

At low pressures of the accelerated particles~weak in-
jection!, the structure of a collisionless MHD shock front
determined by the properties of its thermal component
depends considerably on the orientation of the large-s
magnetic field in front of it. In sufficiently strong~supercriti-
cal! quasilongitudinal shock waves with an Alfve´n Mach
number somewhat greater than unity, the thermal front c
sists of a transition region whose thickness is some dozen
ion inertial lengthsc/vpi, occupied by fluctuations of the
magnetic field withdB/B'1 and frequencies below the gy
rofrequency of an ion.12,13 The origin of these oscillations is
related to ion kinetic instability. In this paper we do n
attempt to describe this region, which we refer to as
thermal discontinuity, although its structure and propert
are very relevant to the problem of injection of ions a
electrons into the acceleration regime by the shock wave9,14

As the pressure of accelerated particles increases, a
from an upstream thermal jump, a region appears in wh
the plasma is smoothly decelerated. This region, known
the precursor,7,9 owes its existence to the effects of accele
ated particles. The extent of this region can greatly exc
the thickness of the thermal discontinuity~by several orders
of magnitude! and is determined by a parameterL'vLc /u.
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As the pressure of energetic particles increases, the ma
tude of the thermal jump decreases, and the hydrodyna
theory allows it to disappear completely.

In Fig. 1, we illustrate schematically the variation
macroparameters within the shock transition. We set
thickness of the thermal jump equal to zero, and assume
the pressure of accelerated particles is continuous acro
because their range between scattering events exceed
thickness, so that they can freely pass through the front.
also assume that the shock wave is nonrelativistic and
the mechanism under discussion for the acceleration le
the particle injection energies nonrelativistic. It is natural
assume that the injected particles are drawn from the amb
plasma, and that their source is located in the region of
mary acceleration, i.e., at the thermal jump. On the right s
of Eq. ~1! we also include a sink that describes the escap
particles from the system:

Q~p,z!5Q0p0
22d~p2p0!d~z!2Qm~p! f ~z!. ~8!

The quantitiesp0 andQ0 should be determined by the injec
tion mechanism. The choice ofp0 and an estimate ofQ0 are
given in Sec. 4. The choice of the sink functionQm(p) will
be made in Sec. 3 when we compute the distribution func
of the accelerated particles.

The function f (z) describes the spatial distribution o
sources of escaping particles. We normalize this function
the condition*2`

0 f (z)dz51. Escaping particles are gene
ated throughout the region in which acceleration takes pla
i.e., atz<0. Since the maximum off (z), like the injection
maximum, is located in the region of strongest accelerat
we replacef (z) by d(z) whenever this does not lead to si
nificant error.

Conservation of mass fluxj , momentum fluxPzz, and
energy fluxq can be written in the form

j 5r~z!u~z!5r1u1 , r5rg1rc , ~9!

Pzz5 ju~z!1Pg~z!1Pc~z!5 ju11Pg1 , ~10!

q5
ju2~z!

2
1

gg

gg21
u~z!Pg~z!1

gc

gc21
u~z!Pc~z!

FIG. 1. Schematic illustration of the behavior of plasma parameters
shock transition.
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~11!

Here we have used the well-known expression for the ene
flux of a nonrelativistic monatomic gas (gg55/3) of nonin-
teracting particles, and Eqs.~6! and~7! for the flux of kinetic
energy of the gas of accelerated particles. The viscosity
thermal conduction of the primary plasma are not taken i
account over the region in which the parameters v
smoothly. The quantity

qm5E
0

`

Qm~p!K~p!p2dp ~12!

is the energy flux carried by particles departing the syste
the function

Q~z!5H E
2`

z

f ~z!dz for z<0,

1 for z.0

describes the increase in the flux of escaping particles in
acceleration region. In all the cases discussed here, esca
particles make a negligible contribution to the mass and m
mentum balance, and will not be included in Eqs.~9! and
~10!.

In the absence of accelerated particles, the velocity v
ies only within the thin thermal front, and the conservati
laws ~9!–~11! enable us to expressr2 ,u2 ,Pg2 behind the
front in terms of the parameters of the advancing fl
j ,u1 ,Pg1 . In the presence of acceleration, these equati
are not enough to find the unknown quantities behind
front, u2 ,Pg2 ,Pc2 ~as well asgc andqm!. This is because the
conservation laws do not contain information about the fr
tion of particles shunted into the accelerated component f
the advancing flux, nor about the energy they acquire dur
acceleration. These parameters themselves depend on
global structure of the shock front, including its smooth pa
We therefore solve the problem self-consistently, choos
as the self-consistency parameters the quantities

s5
r2

r1
5

u1

u2
, h5

Pc2

ju1
. ~13!

The first is the global compression of the material at
shock front, while the second is that fraction of the dynam
pressure at the system input that is converted into pressu
the accelerated particles. We express the profile of the sh
transition and the velocity at the thermal jumpu* in terms of
these quantities; then, after calculating the distribution fu
tion of accelerated particles, we close the system of eq
tions, which enables us to find all the system parameters
a given injection power.

Applying Eqs. ~10! and ~11! to the regionz.0 and
eliminatingPg2 from them, and also using the notation~13!,
we find the relation

a
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gg2gc1ks~gg21!~gc21! F 2 2s

2gg1
s21

M2 G>0. ~14!

Here we have introduced the dimensionless parame
k5qm /u1Pc2 for the energy flux of escaping particles an
M25 ju1 /ggPg1.1 for the square of the Mach number
the advancing nonrelativistic plasma flux.

When gc5gg ~acceleration up to nonrelativistic ene
gies! there cannot be any escaping particles, i.e.,k50.
Therefore, the expression in square brackets reduces to
which yields the well-known compression for gas-dynam
waves:

smin
215

gg21

gg11
1

2

M2~gg11!
. ~15!

The degree of compressionsmin does not exceed 4 for an
Mach number in nonrelativistic plasma withgg55/3. How-
ever, forgc,gg the compression increases.

We can obtain a bound on the pressure of the acceler
particles with the help of Eq.~10!. Applying it to the region
behind the frontz.0, we have

Pc25 j ~u12u2!1Pg12Pg2 . ~16!

The ratioPg2 /Pg1 cannot be less than that value which co
responds to pressure variations that conform to the Pois
adiabat Pg;rg

gg , for a given compressions, i.e.,
Pg2 /Pg1>sgg. Equality corresponds to the absence of
thermal jump, in which case the entropy of the thermal co
ponent~per particle! does not change. That is, the total e
tropy increases at the shock transition exclusively becaus
particle acceleration. Note, however, that the latter poss
ity can only be realized when no sources of additio
plasma heating are present in the precursor region. One
didate for such a source, in particular, is the aforementio
turbulence generated by accelerated particles and dissip
in the thermal plasma. We do not include processes of
kind here. From Eq.~16! we obtain

0<h<hm512s211
12sgg

ggM2 , ~17!

which, combined with Eq.~14!, bounds the possible value
of parameters of the problem. The equality on the right s
of Eq. ~17! defines the dimensionless pressurehm of accel-
erated particles over the front.

Equation~14! and inequality~17! can be used to find the
maximum changes in the compression within the shock w
and the energy flux of the escaping particles for a giv
Mach number. By using the left-hand inequality~17! and the
fact that forh50, we must also necessarily havek50, we
find a lower bound on the compressions>smin , wheresmin

is given by Eq.~15!. The right-hand inequality~17! bounds
the compression from above. As already noted, equality
responds the case in which all the excess energy of the
dent flux is transmitted to accelerated particles. In this c
there is no thermal jump, and the energy of the accelera
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denoting the corresponding compression bysm , we obtain

1

2 S 12
1

sm
2 D 1

12sm
gg

~gg21!M2

5Fk1
gc

sm~gc!21GF12
1

sm
1

12sm
gg

ggM2 G . ~18!

We can regard this equation as a generalization of
Hugoniot adiabat to the case of a shock wave with acce
ated particles and a degraded front without a thermal jump
connects four quantities—the Mach number, the energy
of escaping particles, the compression, and the adiabatic
ponent for accelerated particles. Of these four quantities,
Mach number must be specified as an external paramete
the problem. The energy fluxk is primarily ~but not
completely—see below! determined by the injection power
which is also an independent quantity. The quantitiesgc and
k can be calculated self-consistently at the kinetic stage
solution ~see Eqs.~38! and ~65!!. The last parameter—the
maximum compressionsm—can be expressed in terms o
the other three using Eq.~18!. Depending on their relative
magnitude, it can vary over wide limits.

Let us consider the most important case of strong sh
waves, i.e.,M@1. We can obtain consistent consequenc
from Eq. ~18! if sgg/M2→0 asM→`. The compression is
easily determined:

sm5
gc11

~gc21!~122k!
. ~19!

If nonrelativistic particles predominate among the acce
ated particles and the escape effect is small, thengc'gg and
k→0. We then havesm'4, which coincides with Eq.~15!
as M→`. Note that although we have assumed that
acceleration leads primarily to nonrelativistic energies, t
does not rule out the possibility of the front spreading. A
celerated nonrelativistic particles must inevitably have la
transport lengths compared to thermal particles, which a
determines the width of the front if the pressure of acce
ated particles exceeds the pressure of thermal plasma.

Another limiting case is where relativistic particle
dominate the spectrum. Heregc→4/3, and the escape effec
has its maximum possible magnitude. This extreme situa
corresponds tok→1/2, for whichsm→` andhm→1. In this
limit, which cannot be realized in nature, the gas behind
front would be motionless and infinitely compressed, and
the energy of the incident plasma flux would be transfer
to escaping particles:

qm5ku1Pc25khmju1
25 ju1

2/2.

Thus, depending on the injection power and accelera
efficiency, and also the particle escape conditions, the
lowing values are possible for a shock wave with a spre
out front:

0<k<1/2, 4,sm,`. ~20!

These parameters vary within the same limits for waves w
a finite thermal jump as well.
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s}M for a strong shock wave with accelerated particl
From our discussion it is clear that a dependence of this k
cannot be universal in character, and at best can corres
only to a certain specific choice of injection power and oth
parameters of this system. In our case this value of the c
pression corresponds to maximum pressure of the acc
ated particles for a given finite Mach number.

In light of these results, asM→` we have the following
theoretical bounds on the compression, encompassing
shock waves with finite thermal jumps and shock waves w
degraded fronts:

gg11

gg21
<s<sm5

gc11

~gc21!~122k!
. ~21!

For finite values ofM the interval~21! can be narrowed. It
can be found numerically.

Let us now find the velocity jump in the plasma acro
the thermal front by invoking conservation of momentu
flux to the thermal jump. Taking into account that the acc
erated particles pass freely through the thermal front, so
their pressure is the same on both sides of it, we fi
Pg25Pg* 1 j (u* 2u2). In the regionz,0 the velocity of
the plasma varies smoothly, and the pressure of the the
component must follow the Poisson adiabatPg* 5Pg1y

*
2gg ,

wherey* 5u* /u1 . Substituting these relations into Eq.~16!
and using Eq.~14!, we find

y* 1
1

ggM2y
*
gg

511
1

ggM2 2h. ~22!

These equations enable us to write the compressio
the plasma at the thermal front in terms of the Mach num
and other parameters introduced previously. Recall tha
equations from Eq.~14! onward are meaningful only fo
relativistic accelerated particles, i.e., forgc,gg . However,
when gc5gg the global compression is given by~15!, and
the right side of Eq.~22! becomes ambiguous. This ambig
ity arises from the fact that the compression at the ther
discontinuity can acquire different values 1<s* <4, de-
pending on the relation between the thermal and acceler
components.

In solving Eq. ~22! we must take the root for which
y* >s21. In the strong shock wave limitM→`, the range
of values Eq.~21! for the global compression corresponds
1 <s* <sm . At the right-hand end of the interval,s* co-
incides withs, and consequently there is no thermal jump
this ~unique! case. Fors,sm we always haves* <s, i.e.,
the thermal jump is nonzero, although it can be extrem
small for largeM .

An equation that describes the velocity profileu(z) over
the smooth segment2`,z<0 can be obtained using th
conservation laws~10! and~11!. We first obtain this equation
for the case in which the number of escaping particles
negligible, i.e.,k'0. Using Eq.~10!, we eliminatePc(z)
from Eq. ~11! and expressPg(z) in terms of the velocity
using the Poisson adiabat

Pg~z!5Pg1S u1

u~z! D
gg

. ~23!
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tion for u(z). In the dimensionless variablesx(z) and
y(x)5u(x)/u1 , wheredx5u1dz/2k̄ (z), this equation takes
the form

dy

dx
52

~gc11!~12y!

12M 22y2gg21 Fy2
gc21

gc11
2

2gc

gg~gc11!M2

2
2~gg2gc!~y12gg21!

gg~gg21!~gc11!~12y!M2G , ~24!

and must be integrated with the boundary conditi
y(0)5y* . The latter quantity~and also the exponentgc for
the adiabat of the accelerated particles! can take on different
values for a givenM , as follows from Eqs.~14!, ~21!, and
~22!. Note that in our treatment the velocity discontinuity
isolated and localized; therefore, Eq.~24! has no singular
points in the domain of our variables, in contrast to Refs.
and 7.

If we neglect terms of orderM 22, the equation simpli-
fies and admits an analytic solution. Introducing the notat
y05ymuk505(gc21)/(gc11), we write it in the form

dy

dx
52

2

12y0
~12y!~y2y0!. ~25!

We now include escaping particles. A particle can e
cape only when accelerated by a strong shock wave; th
fore, in what follows we neglect terms of orderM 22. We
again use the conservation laws~9!–~11!. Since the exact
form of the functionQ(z) in the regionz,0 is unknowna
priori , we resort to interpolation. Whenz→2` the function
Q(z)→0, while whenz→0 we haveQ(z)→1. Withn these
two limits, it follows from Eqs.~10! and~11! that the deriva-
tive dy/dz takes the corresponding values

dy

dz
52

2u1

2k̄~z!
~12y!

and

dy

dz
52

~gc11!u1

2k̄~z!
~12y* !~y2ym!.

It is natural to use an interpolation equation similar to E
~25! over the entire domain of the variable 0>z.2`:

dy

dx
52

2

12ym
~12y!~y2ym!, ~26!

in which the constanty0 is replaced byym , which takes into
account escaping particles, and a new independent vari
has been introduced:

dx5
~12ym!u1

2k̄~z! H 11
gc21

2

3expF2E
z

0 u1dz8

2k̄~z8!G J dz, x~0!50. ~27!

Equations~25! and~26! have a solution that satisfies th
boundary conditiony(0)5y* . The solution fory* .ym can
be written in various forms:
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y~x!5
1

~11y !2
1

~12y !tanh x1
1
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12y*
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C~a!'
~1/3!ln~2pm /mc!, a54,

. ~34!

om
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e
y,
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ol-
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m

2 m 2 m F 2 y* 2ym
G

5
y* ~sm21!1@22y* ~11sm!#tanhx

sm211~sm1122smy* !tanhx
, x<0.

~28!

In the region behind the shock transition the velocity of t
plasma, like that of an ordinary shock wave, is a consta
y(x)5u2 /u1 for x.0. The solution~28! generalizes the re
sult of Axford et al.15 to the case of a shock wave with
thermal jump.

For y* 5ym there is no thermal jump and the shock tra
sition is completely washed out. The solution~28! is no
longer valid in this case, because the region in which
change in velocity takes place~the degraded front! is carried
off to 2`. Equation~26! must be solved again, changing th
boundary conditions toyux→`→1, yux→2`→ym , which
leads to the usual solution

y~x!5
1

2
~11ym!2

1

2
~12ym!tanhx, ~29!

for a smooth transition between two stationary states.15,16For
shock waves of intermediate strength with a finite value
M , it is not difficult to solve Eq.~24! numerically.

3. SELF-CONSISTENT DETERMINATION OF THE SHAPE OF
THE SPECTRUM AND PRESSURE OF ACCELERATED
PARTICLES

In the macroscopic theory developed above, the four
rameterss, h, k, and gc are still unknown. They must be
calculated from the kinetic equation~1!, which enables us to
find the shape of the spectrum of accelerated particles.
in turn determines the exponent of the Poisson adiabatgc , as
well as the total energy and energy flux of the accelera
particles for a given injection powerQ0 , which will be de-
termined by the global structure of the shock transition.

Under reasonable assumptions about the diffusion c
ficient ~see below!, Eq. ~1! yields power-law solutions inp.
Therefore, it is useful to first find the relation between t
adiabatic exponentgc and the spectral indexa of the distri-
bution function:

N~p!5~a23!ncp0
23~p0 /p!a, a.3, p>p0 , ~30!

wherenc is the number density of accelerated particles a
p0!mc is the injection momentum. Calculating the pressu
Pc and energy densityw according to Eqs.~4! and ~5! and
determining the adiabatic exponent according to Eq.~7!, we
find

a.5, Pc'
2~a23!

3~a25!

p0
2

2m
nc , gc5

5

3
; ~31!

a<5, Pc5C~a!cp0nc , ~32!

where

C~a!'H ~2p0/3mc!ln~2mc/p0!, a55,

~~a23!/6Ap!G~a/222!

3G~5/22a/2!~p0 /mc!a24, 5.a.4

, ~33!
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H
~~a23!/3~42a!!~p0 /pm!a24, 4.a.3

We also find that

gc5H 5/32g~5! for a55,
4/31g~a! for a,4,
a/31g~a! for 5.a>4

, ~35!

where

g~a!

'5
~~a23!2/9C~a!!@~p0 /pm!a242p0/2mc#,
5>a>4

~~42a!/3Ap~a23!!~mc/pm!42a

3G~a/221!G~5/22a/2!,
4.a.3

. ~36!

Here we denote the cutoff momentum bypm (pm@mc),
which bounds the energy of the accelerated particles fr
above. Under real conditions this bound stems from the fin
extent of the shock wave front, its finite lifetime, and th
increase in the diffusion coefficient with particle energ
which leads to escape of high-energy particles from the fr
and an end to acceleration. In order that Eq.~1! automati-
cally yield solutions with bounded energy, we take the f
lowing steplike energy dependence of the diffusion coe
cient:

k~z,p!5H k~z!, p,pm ;

`, p.pm .
~37!

This dependence corresponds to the assumption that a
ticle becomes free once it has achieved a momentumpm and
departs the system, i.e., the distribution function satisfies
condition

N~z,p!50 for p.pm ~38!

for any z.
The diffusion coefficient~37! corresponds to a sink func

tion

Qm~p!5Qmpm
22d~p2pm! ~39!

in Eq. ~8!, which we localize atz50, i.e., we assume
f (z)5d(z). The strength of the sinkQm must be chosen in
such a way that~38! is satisfied. We consider the limiting
momentumpm to be an external parameter of the proble
determined from other considerations~the real extent of the
front, intensity of turbulence and magnetic field!.

We can solve Eq.~1! with the diffusion coefficient~37!
in analytic form if the velocity profileu(z) is given by the
solutions~28! and~29!. Taking the right side of Eq.~1! in the
form Eqs.~8! and ~39! and carrying out a Mellin transform
with respect to the variablep,

N̄~s,z!5E
0

`

N~p,z!ps21dp, ~40!

we obtain
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d
k z

dN̄
2u z

dN̄
2

sdu
N̄5 Q ps232Q ps23
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when 1>z>z* .0, and

t
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rmal
ted
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ion
dz
~ !

dz
~ !

dz 3dz S m m 0 0

2
s

3
~u* 2u2!N̄D d~z!, ~41!

where we have extracted the singular part at the ther
discontinuity from the derivativedu/dz.

We next transform to the independent variab
z5(y2ym)/(12ym), using a simplified relation~compared
to Eq. ~27!! between dx and dz of the form
dx/dz5(gc11)(12ym)u1/4k(z), which yields the correct
result in the region of highest acceleration near the ther
jumps, and somewhat overestimates the derivativedx/dz for
z@2k/u1 , where the acceleration is very small. This leads
a hypergeometric equation in the standard form17:

z~12z!
d2N̄

dz2 1@c2~a1b11!z#
dN̄

dz
2abN̄50. ~42!

Here

a1b115
2gc

gc11
, ab52

2s

3~gc11!
,

c511
2ym

~gc11!~12ym!
. ~43!

The functionN̄(s,z) satisfies the boundary conditions

N̄uz5150, ~44!

S dN̄

dz
1

2s~y* 2s21!~12ym!

3~gc11!~12y* !~y* 2ym!
N̄D

z5z
*

5
2~12ym!~Qmpm

s232Q0p0
s23!

~gc11!~y* 2ym!~12y* !u1
. ~45!

The second condition incorporates the right side of Eq.~41!
~equality of flux on the two sides of the thermal discontin
ity!. Despite the fact that the quantitiesa andb contain radi-
cals, the symmetry of the coefficients of Eq.~42! results in a
solution in the form of a rational function of the variables.

The solution of the equation that satisfies the bound
conditions~44! and~45! can be expressed in terms of hype
geometric functions16 as

N̄~s,z!5
4~Q0p0

s232Qmpm
s23!

u1~gc11!2~g* 2ym!~12y* !F~s!

3~12z!c2a2bF~c2a,c2b;c2a2b11;12z!,

~46!
al

al

o

-

y

F~s!5~12z* !c2a2b11

3Fc2a2b2
2s~y* 2s21!

3~gc11!~y* 2ym!G
3F~c2a,c2b;c2a2b11;12z* !

1~12z* !c2a2b
~c2a!~c2b!

c2a2b11

3F~c2a11,c2b11;c2a2b12;12z* !. ~47!

The solution~46! refers to the precursor regionx<0. Behind
the thermal frontx.0, the distribution function does no
depend on position, and by virtue of continuity at the boun
ary x50 (z5z* ) its valueN̄2(s) is determined by Eq.~46!

evaluated atz5z* : N̄2(s)5N̄(s,z* ).
When z*→0 (y*→ym), the hypergeometric series d

verges and solution~46!, ~47! is no longer meaningful. In
this case, which corresponds to the absence of a the
jump, solution ~28! also becomes meaningless, as no
above. It should be replaced by the solution~29!.

To determine the spectrum of accelerated particles
this limit, we must solve Eq.~42! again for the region
1>z>0 with boundary conditions

N̄uz5150, N̄uz50 bounded,

N̄uz51/2105N̄uz51/220 ,

]N̄

]z
U

z51/210

2
]N̄

]z
U

z51/220

5
4~Qmpm

s232Q0p0
s23!

u1
. ~48!

These boundary conditions correspond to injection and
cape of particles with the highest energies forz51/2 (x50),
i.e., at the point of largest curvature of the shock transit
profile.

The solution of Eq.~42! with boundary conditions~48!
has the form

N̄~s,z!5
2c2a2b12~Q0p0

s232Qmpm
s23!F~a,b;c;1/2!

u1F~s!F~c2a,c2b;c2a2b11;1/2!

3~12z!c2a2bF~c2a,c2b;c2a2b11;12z!

~49!

for 1>z>1/2, and

N̄~s,z!5
4~Q0p0

s232Qmpm
s23!

u1F~s!
F~a,b;c;z! ~50!

for 1/2>z>0, where now
F~s!5
ab

c
F~a11,b11;c11;1/2!1~c2a2b!F~a,b;c;1/2!

3F21
~c2a!~c2b!F~c2a11,c2b11;c2a2b12;1/2!

~c2a2b!~c2a2b11!F~c2a,c2b;c2a2b11;1/2!G . ~51!
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The spectrum of accelerated particles can be calculated

on
th
th

r-

i

Qm5Q0~p0 /pm!a23. ~54!

ce
der
cel-

ck

les

on:
by inverting the Mellin transform,

N~p,z!5
1

2p i E2 i`

1 i`

N̄~s,z!p2sds. ~52!

For p.pm@p0, the contour of integration can be closed
an arc of infinite radius in the right-hand half-plane, and
value of the integral will be determined by the residues of
expression under the integral sign at the polesa whose po-
sitions are given by the equation

F~a!50, ~53!

where the values ofa are the exponents of individual powe
law terms. In the problem under discussion~see below!, Eq.
~53! always has exactly one real root.

We now return to determining the intensityQm of the
flux of escaping particles. Since the solutions~46! and ~49!,
~50! are proportional to the differenceQ0p0

s232Qmpm
s23 ,

the corresponding distribution functionN(p,z) for p.pm

and in the presence of exactly one roota will be proportional
to the differenceQ0(p0 /p)a232Qm(pm /p)a23, and ~38!
enables us to relate the flux of escaping particles to the
jection power:
~33!–~36!, and v is the velocity of the injected particles.
-
n

ly

m
es
it

le
e
e

n-

Another useful relation can be obtained from the balan
equation for the number of accelerated particles. Un
steady-state conditions, the particles injected into the ac
eration regime generate a flux of accelerated particlesnc2u2,
which is carried off by the turbulent plasma behind the sho
transition, and a flux of escaping particlesQm . Using Eqs.
~54! and ~13!, we find

Q05
nc2u1

s@12~p0 /pm!a23#
. ~55!

For the dimensionless energy flux of escaping partic
k5qm /u1Pc2, we find, using Eqs.~54!, ~39!, and~12!, that

k5
cp0Q0

u1Pc2
S p0

pm
D a24

. ~56!

Combining Eqs.~55!, ~56!, and ~14!, we can relate the di-
mensionless injection parameterQ5Q0 /ng1u1 and the en-
ergy fluxk to the spectral index and the global compressi
the
Q5
u1

2~gc21!~114/s225/s!

cv0$~523gc!C~a!@12~p0 /pm!a23#12~gc21!~p0 /pm!a24%
, ~57!

k5
~p0 /pm!a24

sC~a!@12~p0 /pm!a23#
. ~58!

Heregc andC(a) depend on the spectral index through Eqs.half-plane, where there are no poles. This is because

mechanism that acts at the shock transition is first-order

nly

e

tities
to

i-

-

e,
ing
e

0

Relations~55!–~58! are valid for any finite value of the ther
mal jump. If, however, there is no jump and the shock tra
sition is washed out, the compressions5sm is given by Eq.
~21!, and Eqs.~57!, and~58! simplify:

Q5
u1

2

cv0
S pm

p0
D a24S 12

1

sm
D km , ~59!

km5H 21~gc11!C~a!S pm

p0
D a24

3F12S p0

pm
D a23G~gc21!21J 21

. ~60!

An estimate of the parameterk using Eqs.~58!, ~60! and
~33!–~36! shows that for spectra witha>4 andpm@mc, the
escape effect is small, and will be only important for mild
sloping spectra witha,4.

We now calculate the spectral index and other para
eters of the shock transition. We begin with the simpl
situation, where there is no thermal jump and the veloc
profile is given by Eq.~29!, while the distribution function is
specified by Eqs.~49!–~52!. For pm.p.p0 the term with
Qm can be integrated along a contour that is closed in the
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Fermi acceleration, for which the injected particles can o
increase in energy. The term withQ0 is integrated along the
right half-circle and yields a power-law contribution with th
previous indexa determined from Eq.~53!.

In this case the indexa and dimensionless pressurehm

of accelerated particles Eq.~17! depend only onsm . There-
fore, it is convenient to specify the compressionsm as an
independent parameter and express the remaining quan
in terms of it, including the injection power necessary
sustain a given compression according to Eq.~59!. In this
case the distribution function can also be simplified:

N2~p!5~a23!S 12
1

sm
D u1

2ng1

cv0p0
3 S p0

p D a

, p<pm .

~61!

Values of the spectral indexa can be calculated by numer
cally finding roots of the function~51! for various values of
the global compressionsm . The injection power is deter
mined from Eqs.~59! and ~60!.

In a situation where the thermal jump has a finite valu
it is necessary to determine the spectral index by requir
that the function~47! vanish. As an independent variable w
can use either the global compressions again, expressing the

869I. N. Toptygin



TABLE I. Spectral indices of accelerated particles and required injection power for various values of the global compression.
1 s 4.05 4.25 4.5 5.0 6.0 7.0
2 a 3.99 3.95 3.91 3.85 3.73 3.63
3 Q 5•1026 2.0•1025 2.45•1025 1.73•1025 4.6•1026 1.1•1026

4 a 4.97 4.85 4.71 4.50 4.20 4.00
5 Q 5.2•1022 4.3•1022 2.9•1022 1.2•1022 2.4•1023 3.1•1024

6 s 10 15 21 50 100 300
7 a 3.45 3.29 3.20 3.078 3.033 3.010
8 Q 7.4•1028 6.2•1029 1.5•1029 1.9•10210 8.7•10211 5.9•10211

9 a 3.67 3.45 3.33 3.16 3.11 3.07
10 Q 3.7•1026 9.5•1028 1.3•1028 8.2•10210 3.2•10210 1.7•10210
parametersk andQ in terms of it according to Eqs.~57! and
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~58!, or the injectionQ. In the latter case we must expre
the compression in terms of the injection. Furthermore,
both cases we must fix the external parameters of the p
lem: the velocityu1 and densityng1 of the advancing plasma
flux, as well as the injection momentump0 and limiting mo-
mentumpm .

4. DISCUSSION OF RESULTS AND CONCLUSIONS

The results of numerical calculations are given in Ta
I. They are obtained under the assumptionsv05u151022 s
and pm /mc5106, which coincide in order of magnitud
with an ‘‘optimistic’’ type of particle acceleration by a
strong shock wave from the explosion of a superno
(M@1). Lines 2, 3 and 7, 8 refer to a shock transition w
a thermal jump, lines 4, 5 and 9, 10 to a degraded front.
s→` the equations given above allow us to obtaina→3
and Q→T1 /Tm'5•10211, where T is the kinetic energy.
We now note some characteristic features of these resu

1. At global compressionss>4 there exist two branche
of the solution, corresponding to a wave with a thermal ju
and a completely degraded front. Both branches merge
s→`, where the thermal discontinuity disappears.

2. For a given compression of the medium, the regi
with a thermal jump creates a harder spectrum of acceler
particles~smallera! and requires lower injection power tha
the regime with a degraded front. This is explained by
fact that a flow profile with a large velocity gradient~thermal
jump! accelerates particles more efficiently~Fig. 2!.

3. All acceleration regimes shown in Table I require lo
relative injection powerQ<5•1022.

4. The branch with a thermal jump exists only over
bounded interval of injection power, 0<Q<Qmax'2•1025;
it corresponds to a spectral index for accelerated particle
the range 4>a>3 ~Fig. 3!.

5. The branch with a degraded front exists for injecti
power 1.Q>Qmin5T1 /Tm'5•10211; in this case the spec
tral index varies froma'5 to a53 ~Fig. 3!.

6. An increase in compression is accompanied by a
crease in spectral index and a decrease in injection~with the
exception of the initial segment of the branch with the th
mal jump!. The decrease in injection is explained by the fa
that as the indexa decreases, the relative number of partic
with maximum energy increases, and the prespecified in
tion is provided entirely by fewer and fewer ultrarelativist
particles. For the parameters chosen, the limits→` corre-
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versely, as injection increases, the relative number of rela
istic particles in the spectrum decreases, since the orig
energy of the plasma flow is distributed over an increas
number of particles. A natural consequence of this is
increase in the spectral index and decrease in the comp
sion.

7. The fraction of energyh transferred to the accelerate
particles on the branch with the degraded front is very la
and increases from 0.75 fors→4 to 1 for s→`. On the
branch with the thermal jump it varies for the same compr
sions from 0 to 1.

These results show~Fig. 2! that the solution to this non
linear problem in the time-independent formulation has s
eral branches. In particular, three values of compression
the medium are possible, as well as three values of the s
tral index of the accelerated particles if the injection pow
lies in the rangeQmin,Q,Qmax. Therefore, questions of sta
bility of these states and their realizability must be a
dressed.

To study stability by traditional methods, it is necessa
to go beyond the limits of the steady-state formulation of
problem, which leads to considerable difficulties. Howev
we can make arguments of a general character that favo

FIG. 2. Relation between the plasma compressions and the rateQ of
particle injection into the acceleration regime forp0 /mc51022 and
pm /mc5106. The upper curve describes a shock wave with a degra
front, the lower curve a state with a thermal jump.
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realization of the state with the smallest compression fo
given rate of injection.

The shock transition can be regarded as a certain stag
approximation to the equilibrium state of a strongly noneq
librium initial system~a flux of cold nonrelativistic plasma
with a large excess of energy of directed motion!. The relax-
ation of this system is accompanied by an increase in
tropy. According the Boltzmann principle, the state that
most probable is the one with the highest entropy~i.e., which
is realized by the largest number of microstates!. Therefore,
in nature we should expect those realizations of such a s
~combined with the conservation laws and dynamic law
i.e., the equations of motion! that correspond to the highe
entropy per particle. Of the three statesA, B, andC corre-
sponding to the admissible solutions, only stateA possesses
these properties, because it corresponds to the highest
age energy of the primary particle mass behind the sh
transition. In stateB the thermal jump is smaller than in sta
A, so that the heating of the primary plasma and its entr
turn out to be smaller; moreover, although the higher ene
of a smaller faction of accelerated particles is accompan
by an increase in their entropy, this does not bring abou
decrease in the entropy of the most numerous compon
This tendency is manifested in stateC, in which the entropy
of the primary plasma remains constant, to an even stron
degree. It is not difficult to estimate this effect quantitative
the entropy difference per particle for statesA andC is given
by

sA2sC5 ln~M3/32!1O ~sQ/4!.

Starting with these considerations, we can propose
following sequence of plasma states at a shock transi
with large Mach number for slow~quasistatic! growth of the
level of injection. ForQ50 there are no accelerated pa
ticles, and we have a thermal jump withs* 5s54. As the
injection increases from 0 toQmin5T1 /Tm only one state can
exist, with a thermal density jump close to 4. The appeara
of relativistic particles increases the compression somew
while the spectral index is smaller than its original val

FIG. 3. Accelerated particle spectral indexa as a function of global com-
pressions. The upper curve corresponds to the absence of a thermal ju
the lower curve to the presence of a thermal jump.
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most stable one is realized—the one lying on the init
branch with the thermal jump.

As injection is further increased aboveQ5Qmax, the
only states that are compatible with the equations of mot
and conservation laws are those with a degraded front; th
fore, a jump should occur in the system to a different bran
of the solution. This jump is accompanied by an increase
compression~by almost a factor of 2 for the parameters w
have chosen! and according to what was said above, a d
crease in entropy. However, there are no other states
levels of injectionQ.Qmax; therefore, realizations of the
structure with a degraded front are inevitable under th
conditions. The jump is also accompanied by a decreas
spectral index, and consequently an increase in the rela
number of relativistic particles.

The behavior of the system in this range of injecti
power recalls that of a phase transition, accompanied b
change in some ‘‘order parameter’’—here the relative nu
ber of relativistic particles. Furthermore, in the neighborho
of Qmax there is also a region of fluctuations, in which sm
changes in injection lead to large changes in the state of
shock transition, which is analogous to the fluctuation reg
near the Curie point.

Further increases in injection lead to a decrease in c
pression and an increase in spectral index. When the in
tion increases toQ>3•1024, which corresponds to com
pressions<7, the spectral index increases toa.4, and
monotonically increases after that as the rate of inject
increases. Although in this case the fraction of energy tra
ferred to the accelerated particles remains high,h. 0.75,
since the number of accelerated particles increases thei
erage energy decreases and the relative numbers of rela
tic particles drops. The theory developed here is no lon
valid at a'5, where this fraction becomes negligible.

As the rate of injection changes in the opposite directi
we might expect the reverse sequence of states. For injec
Q,Qmax, there will most likely be a jump in the system t
the branch with a thermal jump. This does not exclude
possible appearance of a ‘‘superheated’’ state and hyste
loops connected with possible stability within certain lim
of the upper branch shown in Fig. 2 against small fluctu
tions, but ultimately this system will transition to the mo
stable state on the original branch of the lower curve.

Recall that the observed spectral index for galactic c
mic rays is a'4.7 in the energy range 10 GeV
<T<106 GeV. In a model where particles are accelera
by a single shock wave, this index can be generated in
linear regime by a shock wave of moderate stren
(s'2.76, M'2.58! and by a stong shock in the extrem
nonlinear regime~s'4.5, M@1!. The main difference be-
tween these cases is the magnitude of the efficiency, i.e.
fraction of the energy transferred to accelerated partic
h!1 in the linear regime andh'0.78 in the nonlinear re-
gime. It is likely that intermediate nonlinear regimes wi
M.2.58 are possible as well; these are not considered in
paper.

We will also not discuss the rate of particle injection in
the acceleration regime from the ambient medium in t

p,
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paper. Several estimates of this quantity were given in Ref.
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pression.10! are unstable, and the possibility of their real-

-

18 which indicate that under natural conditions any requi
injection can be realized within practically any regime. T
consequences of the nonlinear effects discussed here
strong shock waves in astrophysical objects can be ver
in principle by observing synchrotron radiation of the acc
erated particles~the spectral indexa! and thermal radiation
due to the front, which strongly depends on the effect
plasma temperature.

In conclusion, we present a brief summary of the ove
properties of our model, which can be exhibited by oth
similar systems, for example shock waves with a spher
front.8,19

It has been shown that within a certain range of inject
powers there exist certain states of the shock transition w
correspond to the same injection, but which differ apprec
bly in their global compression, profile shape, and spectr
accelerated particles. The presence of several branches o
solution is a characteristic feature of many very differe
nonlinear systems.

There exist stable states of the shock transition fr
which the system is capable of executing transitions to o
states that differ strongly from the original state. In this ca
a small change in injection power can lead to considera
changes in the observed parameters—global compres
and accelerated particle spectrum.

In nonlinear regimes of particle acceleration, a decre
in injection leads to an increase in compression. High val
of global relative compression at the shock transition~by
factors of tens or hundreds! correspond to very low levels o
injection. It is probable that such states~with relative com-
872 JETP 85 (5), November 1997
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ization in nature is not clear.
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Equilibrium configuration of a nematic liquid crystal confined to a cylindrical cavity

S. V. Burylov* )
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A nematic liquid crystal confined to a cylindrical capillary with homeotropic anchoring to the
sidewalls is considered. An analytic description of the planar polar director field
configuration is proposed for arbitrary values of the system material parameters. Conditions for
orientational transitions between planar radial, planar polar, and escaped radial structures
are determined, with a discussion of similar considerations for planar-circular anchoring. ©1997
American Institute of Physics.@S1063-7761~97!00711-7#
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Equilibrium configurations of nematic liquid crysta
~NLC! in a cylindrical cavity have been studied for approx
mately thirty years. Some dozens of papers have been w
ten about this problem; therefore, the bibliographical ci
tions listed below will naturally not encompass all of th
available experimental and theoretical investigations. T
reader can acquaint himself with additional information
e.g., the review by Saupe1 or the book by Kleman,2 and for
the results of more recent investigations the works of
lender and his coauthors.3,4

Here we will address some particular questions tha
our view are of important practical interest. We note abo
all that the most convenient geometry in which to study ne
atic liquid crystals, after a geometry of plane-parallel cells
the cylindrical geometry, both from a theoretical and an
perimental point of view. In this case, essentially all expe
mentally observed3–13and theoretically possible14,15configu-
rations of the director fieldn in a cylindrical cavity admit
either a complete or approximate analytic description. T
circumstance allows us to predict with some accuracy
transition points between configurations, starting with a s
cific set of material parameters of the system. On the o
hand, values of the material parameters such as the N
modulus of elasticity have been determined3,4,11–13by ana-
lyzing experimentally observed oriented structures.

The possible equilibrium configurations of a nematic in
cylindrical cavity depend primarily on how the directorn is
anchored to the lateral surface of the cylinder. The type
anchoring is specified by the unit vectorP for easy orienta-
tion of n at the walls of the liquid crystal sample. In esse
tially every experiment to date, the anchoring is of home
tropic type: the directionP of easy orientation of the directo
is perpendicular to the lateral surface of the cylinder. T
three theoretically possible configurations of an NLC cor
sponding to these boundary conditions are shown in Fig
These structures are conventionally referred to in Refs. 3
4 as planar radial~PR!, planar polar~PP!, and escaped radia
~ER!. The first two configurations belong to the class of p
nar ~two-dimensional! distortions of the director field, while
the last belongs to the class of bulk~three-dimensional! de-
formations.

As shown in Refs. 3, 4, when the moduli of elasticity f
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different, the minimum in the total free energy of this syste
in the class of two-dimensional distortions corresponds to
PP structure. However, this result cannot be extended to
bitrary values ofK11 andK33. This can be demonstrated fo
the example of liquid-crystal materials that exhibit not on
the nematic but also the smecticA phase. In fact, near the
point of transition to the smectic phase, whereK33@K11, the
molecules of the nematic tend to be located in ‘‘smect
like’’ layers parallel to one another and of equal thickness
this case, it is clear even on qualitative grounds that a
structure~see Fig. 1a! with a line defect along the axis of th
cylinder can allow a similar restructuring of the NLC, i.e
smectic-like layers forming concentric circles of equal thic
ness. At the same time, the internal restructuring of a ne
atic in the PP configuration~Fig. 1b! unavoidably leads to
deformation of the layers along the thickness, which is
tremely disadvantageous energetically. Consequently, t
may be a certain relation between the elastic moduliK11 and
K33 for which the minimum total free energy in the class
planar distortions turns out to correspond to the PR confi
ration. For a deeper analysis and quantitative estimates
require additional theoretical investigations.

The three-dimensional ER deformation~Fig. 1c! arises
when a line defect in the planar radial configuration u
formly ‘‘escapes’’ in the third direction. Escape in the opp
site energetically equivalent direction leads3–13 to a more
complicated three-dimensional structure with point defe
~escaped radial with point defects, or ERPD!. For infinitely
long cylinders, which we discuss below, the ERPD config
ration is metastable: point defects either attract and ann
late one another, or separate and disappear at infinity.16 As a
result, the ERPD structure is converted into a uniform E
configuration possessing lower energy in the class of th
dimensional distortions. We add that the ER configuration
also more energetically favorable than the ERPD struct
for cylinders of finite length with absolutely degenerate e
boundary conditions for the directorn.

Optical5–8,13 and nuclear magnetic resonan
experiments3,4,9–12 show that in cylinders with radii
R50.5– 200mm and homeotropic anchoring at the later
surface, escape~ER or ERPD! structures are realized, whil
in cylinders with radiiR50.05– 0.4mm, depending on the

873-14$10.00 © 1997 American Institute of Physics
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FIG. 1. Configurations of the director fieldn
corresponding to homeotropic anchoring
a—planar radial~PR!; b—planar polar~PP!;
c—escaped radial~ER!.
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ERPD or PP configurations can occur. The observed st
ERPD structures are associated with the presence of no
generate end boundary conditions~for example, of the same
homeotropic nature!. These boundary conditions are difficu
to control and may differ from experiment to experime
The existence of PR configurations in the cylindrical volum
of an NLC has not been confirmed experimentally at t
time; however, many authors~see, for example, Refs. 4, 5
10, 15! assume that this structure can occur near
nematic–smecticA transition point in cylinders of radius
R<0.1mm. Note that such structures are seen fairly often
the pure smecticA-phase.17,18

Let us touch briefly on theoretical studies of the config
rations shown in Fig. 1. The PR structure was complet
described by Dzyaloshinski�.14 The analytic solution for the
ER configuration for so-called rigid~see below! anchoring
was obtained by Cladis and Kleman,15 and in a more genera
form by Allender and his coauthors.3,4 As for the PP struc-
ture, the exact solution obtained by the latter authors co
sponds only to the two-constant approximationK115K33.
Numerical calculations for this structure whenK11ÞK33

were recently carried out in Ref. 19.
In this paper we present an analytic description of the

configuration for a system with arbitrary material para
eters. The system always consists of a cylinder with infin
length; by analyzing exact solutions we find conditions
orientational transitions between PR, PP, and ER structu
For completeness of the theoretical investigation, along w
homeotropic conditions we discuss in detail the cylindri
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tion of the director is perpendicular to the cylinder axis a
tangent to its lateral surface. The circular type of anchor
has yet to be realized in practice. In order to do so it
necessary not only to fix the vectorP in the plane tangentia
to the lateral surface of the cylinder, as shown, e.g., in R
20, but also to lift the degeneracy with respect to directio
of P in this plane; in other words, to orient the vectorP in
the tangent plane that is perpendicular to the cylinder a
For planar cells in an NLC, the problem of lifting the dege
eracy in this way has been successfully solv
experimentally;21,22 therefore, we assume that in the future
will be solved for samples of cylindrical form as well. Thre
equilibrium structures analogous to those described ab
for the director field when the anchoring is of circular typ
are shown in Fig. 2. We refer to them in the following wa
planar circular~PC!, circularly planar polar~CPP!, and es-
caped circular~EC!. Of these three structures only the P
configuration admits even a semblance of a complete th
retical treatment;14 the EC structure for rigid anchoring i
treated in Ref. 15.

The sequence of exposition of the material in this pa
is as follows. In Sec. 2 we present expressions for the t
free energy functional of the NLC and describe the equil
rium equations for a cylindrical geometry. In Sec. 3 we fo
mulate a general approach to describing plane oriented
tures and briefly investigate the PR and PC configuratio
The results of calculations for the polar PP and CPP str
tures are contained in Sec. 4. The escaped configuration
discussed in Sec. 5, in which we briefly describe the
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FIG. 2. Configurations of the director fieldn
corresponding to circular anchoring: a—
planar circular~PC!; b—circular planar po-
lar ~CPP!; c—escaped circular~EC!. For the
EC structure~c! the director on the cylinder
axis lies in the plane of the figure, while nea
the walls of the capillary it is perpendicula
to this plane.
structure, give a general calculation for the EC configuration,
n
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ing. The divergence contribution of the coefficientK24 in the
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and discuss the ‘‘total escape’’ conditions that lead to a u
form axial structure with directorn parallel to the cylinder
axis. In Sec. 6 we analyze the conditions for orientatio
transitions among the possible configurations of the NLC
each of these types of anchoring. The conclusions are
sented in Sec. 7.

2. CONTINUUM APPROACH TO THE DESCRIPTION OF NLC

2.1. Total free energy functional

In the static regime, and in the absence of external~mag-
netic or electric! fields, the total free energyF of a uniaxial
NLC contains two contributions: the elastic free energyFEL

and the anchoring free energyFA . Let us consider each o
these contributions in detail.

According to Saupe,23 the elastic free energy functiona
of the NLC, which is quadratic in the derivatives of the d
rector, can be written in the following way:

FEL5E
V
dVH f V2

1

2
K24 “•@n3~“3n!1n~“•n!#J .

~1!

Here dV is the volume element andf V is the total free en-
ergy of Frank24:

f V5
1

2
$K11~“•n!21K22@n~“•n!#21K33@n3~“3n!#2%.

~2!

The coefficientK22 is referred to as the torsion modulu
while the coefficientsK11 andK33, as mentioned above, ar
respectively the moduli of transverse and longitudinal be
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functional ~1!, by Gauss’s theorem, can be written as a s
face integral with energy density

f 2452
1

2
K24s•@n3~“3n!1n~“•n!#, ~3!

wheres is the outward unit normal to the surfaceS of the
sample. Since the coefficientK24 contributes only to the sur
face elastic energy of the NLC, it is referred to as the surf
elastic modulus. Note that in the literature the constantK24

has been described in various ways; our choice of defini
of this modulus follows from Eq.~1!. We also note that, like
the authors of Refs. 4, 9–13, 25, we neglect the influence
the other surface contribution*VdVK13“•@n(“•n)#, and
assume that inclusion of this term in the functional~1! con-
fers excessive accuracy. The results of individual exp
ments attest to this fact; see, for example, Ref. 26.

The functional~1! for the elastic free energy should hav
a minimum (FEL50) for a uniform distribution of the direc-
tor field. This condition imposes natural restrictions27 on the
elastic modulus of the NLC: the constantsK11, K22, andK33

must be positive, and the constantK24 must lie in the interval
0<K24<min$2K11,2K22%.

Let us turn to the anchoring free energy functional; it c
be written as a surface integral

FA5E
S
dS fA .

Here the anchoring energy densityf A is defined to be the
anisotropic part of the surface tension at the walls~or bound-
aries! of the liquid crystal sample.21,22 The walls, which are
formed by mechanical means or with the help of surfa
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fashion on the NLC molecules, and thereby specify the t
of anchoring, i.e., the directionP of easy orientation of the
director. In general, the unit vectorP at any point of the
surface is described by two angles,a andb. The meridional
anglea lies in the plane perpendicular to the surface, and
defined as the angle betweenP and the normals. The azi-
muthal angleb lies in the tangent plane and is defined as
angle between the projection ofP on this plane and som
direction of the polar axis. The actual direction of the dire
tor n at the surface of the liquid crystal sample is in tu
given by two other angles,a8 and b8. In the
Rapini–Papoular28 standard form, the anchoring free ener
density, which depends on the mutual orientation ofn and
P, is given by

f A5
1

2
~Wu sin2 «1Wf sin2 d!, ~4!

where«5a2a8, d5b2b8; the positive constantsWu and
Wf characterize the energies of the out-of-plane~meridional!
and in-plane~azimuthal! perturbations of the director, re
spectively.

Thus, the total free energy of the system consisting
nematic plus bounding surface has the form

F5FEL1FA5E
V
dV fV1E

S
dS ~ f 241 f A!, ~5!

where the expressions forf V , f 24, and f A are given by Eqs.
~2!, ~3!, and~4!, respectively.

2.2. Equilibrium equations for a cylindrical NLC sample

Consider an NLC located in an infinitely long cylindric
capillary of radiusR with prespecified~homeotropic or cir-
cular! anchoring at the lateral surfaceS. We introduce a
cylindrical coordinate system with a right-handed triad
unit vectorser , ew , ez , with the z axis directed along the
cylinder axis. For homeotropic anchoring, the direction
easy orientation at the surfaceS is given by P(H)5er . In
terms of the anglesa andb entering into the anchoring en
ergy density Eq.~4!, we havea (H)50, while the value of
b (H) is degenerate. This implies that azimuthal surface p
turbations do not occur for homeotropic anchoring, andf A

depends only on the term associated withWu . For anchoring
of circular typeP(C)5ew , i.e.,a (C)5p/2 andb (C)50; here
the angleb is reckoned from the direction ofew . Since the
anglesa (C) andb (C) are fixed in this case, both meridion
and azimuthal perturbations can enter the problem thro
Wu andWf respectively. A qualitative analysis of the stru
tures shown in Fig. 2 leads us to conclude immediately t
the PC configuration is unrelated to deviations of the direc
from the direction ofP(C), i.e., f A50, while the CPP and
EC structures correspond to the simplest type of surface
turbations: for the CPP structuresf A depends only onWu

~meridional perturbations!, while for the EC configurationf A

depends only onWf ~azimuthal perturbations!.
The equilibrium director field of the NLC can be dete

mined by minimizing the functional~5! for the total free
energy, following the usual variational procedures. The
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1: the slopeV~r ! and the torsion angleF~r !. In our system of
coordinates,

n5sin V~r !cos@F~r !2w#er

1sin V~r !sin@F~r !2w#ew1cosV~r !ez . ~6!

In the bulk of the NLC this minimization procedure yield
the usual Euler equations:

] f F

]x
2

1

r
]nr

] f F

]]nx
50, ~7!

wherex5V, F; ]n5]/]n; n5r , w, andz.
The boundary conditions for Eqs.~7! require more infor-

mation about the anchoring of NLC molecules to the bou
ing surface than simply its type. Two other anchoring su
types are distinguished: ‘‘hard’’ and ‘‘soft.’’ For hard
anchoring, the director at the surfaceS is strictly parallel to
the direction of easy orientation, and in general the bound
condition for the anglesV andF has the form

nus56P. ~8!

This is the situation when the specific energiesWf and/or
Wu corresponding to homeotropic or circular anchoring fro
Eq. ~4! are infinitely high. For soft anchoring, in which th
corresponding specific energies are finite, the boundary c
ditions at the surfacer 5R of the cylinder can be written in
the form

]~ f A1 f 24!

]x
1

] f F

]] rx
2]w

] f 24

]]wx
2]z

] f 24

]]zx
50. ~9!

Note that although Eqs.~7! and the boundary condition~8!
are general in form, and are valid for any geometry of t
liquid crystal sample with a prespecified surfaceS, the
boundary conditions~9! are here written in a simplified form
that corresponds only to a cylindrical region.

3. REPRESENTATION OF A PLANAR DIRECTOR FIELD
USING ANALYTIC FUNCTIONS

We consider a planar distortion of the director field

n5cos~F2w!er1sin~F2w!ew , F5F~r ,w!. ~10!

This representation follows from Eq.~6! after making the
substitution F(r )5F(r ,w), and choosing the extremum
V(r )5p/2 of the corresponding Euler equation from th
system~7!. We note that in the planar case, the surface te
associated with the constantK24 makes no contribution to the
functional ~1!: “•@n3(“3n)1n(“•n)#50. Moreover,
there is no torsion deformation (n•(“3n)50); therefore,
the Frank free energy density~2!, and consequently the Eule
equation~7! for the angleF, include only terms associate
with the elastic moduliK11 and K33. We now analyze the
general solution of the equilibrium Eqs.~7! for F(r ,w).

3.1. Two-constant approximation

At typical temperatures where the nematic phase exi
the elastic moduli K11 and K33 are comparable in
magnitude29; therefore, in preliminary calculations the two
constant approximation is often used:
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In this case byK we mean the average value of the tr
elastic moduliK11 andK33.

Substituting relations~10! and ~11! into ~7! yield the
Laplace equation for the angleF:

¹2F5
]2F

]r 2 1
1

r

]F

]r
1

1

r 2

]2F

]w2 50. ~12!

From this equation it follows that there exists an irrotation
and solenoidal fieldE such thatE52¹F; the minus sign is
introduced by analogy with electrostatics.30 Indeed,“3E
52“3“F50 and“•E52“

2F50. The first relation im-
plies that the angleF plays the role of a scalar potential fo
the field E. The second condition enables us to introduc
vector potentialC that satisfiesE5“3C. Since the fieldE
is planar, the vectorC can always be chosen to be parallel
the z axis, i.e.,C5Cez ; hereC5C(r ,w). Then the com-
ponents of the fieldE can be expressed in the form of d
rivatives ofF or C:

Er52
]F

]r
5

1

r

]C

]w
, Ew52

1

r

]F

]w
52

]C

]r
. ~13!

The relations ~13! are the Cauchy–Riemann condition
which are well known in the theory of functions of a com
plex variable~see, e.g., Eq.~31!!. These conditions imply
that the expression

G5F2 iC1A, ~14!

which is determined up to a certain complex const
A5F02 iC0 , is an analytic function of the complex var
ableZ(r ,w)5r exp(iw). We refer to the functionG(Z) as
the complex potential of the fieldE, or simply the complex
potential.

It is well known31 that the real and imaginary parts o
any analytic function are both solutions of the Laplace eq
tion. Therefore, as a solution of the equilibrium Eqs.~12!, we
can take both the real and imaginary parts of the comp
potential. In the latter case, we have in place of~14!

G5C1 iF1 iA.

For definiteness, in this paper we seek a complex potenti
the form ~14!, and take the real part ofG(Z) for the angle
F. It follows from ~12! and~14! that the functionF(r ,w) is
determined up to a constantF0 , which can be found from
some supplementary conditions, e.g., boundary conditio
Using the relations

er5cosw1 i sin w, ew52sin w1 i cosw

the director field Eq.~10! can be reconstructed using th
known complex potential in the following way:

n5cosF1 i sin F5expF i
G~Z!1G* ~Z!

2 G ,
whereG* (Z) is the complex conjugate function.

Since the functionF(r ,w) is dimensionless, the argu
mentZ must enter into the complex potential,G in the form
Z/D, whereD is a characteristic dimension of the syste
We must take for the characteristic dimension some gen
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length. In an unbounded volume of NLC, where there are
dimensionless parameters,F(r ,w) can depend only on som
angular variablew8. In this case, the following function is a
example of the complex potential:

Gm~Z,Z0!52 im ln~Z2Z0!1A, ~15!

whose real part

F5Re@Gm~Z,Z0!#5mw81F0 ~16!

specifies the director distribution around the disclinati
line29,32that passes through the pointZ05Z0(r 0 ,w0). Here
w8 is the polar angle in a coordinate system centered at
point Z0 ; m is the topological charge, andF0 is the initial
phase of the disclination. By virtue of the single-valuedne
conditionn(w812p)56n(w8), the quantitym can take on
only integer or half-integer values, i.e.,m50,
61/2,61, . . . . The existence of disclination lines at th
point Z0 reflects the fact that this is a singular point, i.e.,
that point the conditions of analyticity of the complex pote
tial ~15! are violated.

If the NLC is in a finite volume, boundary condition
like ~8! or ~9! are imposed on the real part of the compl
potentialG(Z). Then for our specific sample geometry, th
problem of determining the equilibrium planar field of th
director reduces in the two-constant approximation to find
an analytic functionG(Z) whose real part satisfies th
specified boundary conditions. In constructing the funct
G(Z) we can use the well-developed method of conform
mapping.31 This method is especially useful for hard ancho
ing in samples with complex geometry. In special cases
possible to construct the functionG(Z) as a simple super
position of analytic functions. This procedure is correct b
cause the resulting complex potential obtained will also
an analytic function. For example, we can use the requ
number of functions of the form Eq.~15!. If as a result of
constructing the functionG(Z) the specific pointZ0

( j ) turns
out to be within the NLC, it will correspond to a real lin
defect; if it is outside the NLC, it is a fictitious disclinatio
line.

3.2. The general case K 11ÞK 33 . PR and PC configurations

In the general caseK11ÞK33, substituting the distribu-
tion ~10! into the equilibrium Eq.~7! yields

¹2F1kL~F!50. ~17!

Here

k5
K332K11

K111K33
,

L~F!5F 1

r 2 S ]F

]w D 2

2S ]F

]r D 2

1
2

r

]2F

]w]r

2
2

r 2 S ]F

]w D Gsin~2F22w!1F]2F

]r 2 2
1

r

]F

]r

1
2

r

]F

]r

]F

]w
2

1

r 2

]2F

]w2 Gcos~2F22w!. ~18!
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FIG. 3. Scheme for constructing a solutio
for polar structures with hard anchoring. I
the upper half of the circlew15w/21p/2,
w25w/2~a!; in the lower half of the circle
w15w/21p/2, w25w/22p~b!.
Equation~17! does not allow us to introduce a fieldE and
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complex potentialG in a simple way, as we did above. Ne
ertheless, several special planar distortions of the dire
field can be described by the analytic function~14!. Similar
situations occur when the solutions of Eqs.~12! and ~17!
coincide with each other, i.e., when the operator funct
L(Re(G(Z))) from condition ~18! is identically equal to
zero. We note two cases that are of practical importance
this paper.

1. A distortion given by a single disclination line wit
topological chargem51. According to Eq.~15!, the complex
potential of such a distortion is

G152 i ln~Z2Z0!1A.

Substituting this expression into Eq.~18! yields

L15L@Re~G1!#52
sin~2F0!

l 2 , ~19!

wherel 5uZ2Z0u is the distance from the current pointZ

to the disclination axis. Expression~19! shows that the equi
librium state (L150) of a disclination line with topologica
chargem51 corresponds to a phaseF0 that is a multiple of
p/2. Distributions with phasesF05F01 j p, where j 50,
61,62, . . . , give the same distribution of the directorn.
Therefore, only the two phasesF050 andp/2 are indepen-
dent. This result, which was first obtained in Ref. 14,
directly related to the PR and PC configurations of the N
in a cylindrical volume~see Figs. 1a and 2a, respectively!. If
the disclination withm51 is on the axis of the cylinder, the
the director field Eq.~10! with the functionF5w1F0 from
Eq. ~16! describes the PR structure forF050 and the PC
structure forF05p/2. The expressions obtained from rel
tion ~5! for the total free energy of these structures per u
length of cylinder have the form

FPR5pK11 ln~R/r!, FPC5pK33 ln~R/r!, ~20!

wherer is the radius of the disclination core.
2. Planar distortions given by two disclination lines wi

the same topological chargem15m251. If the disclination
lines pass through the pointsZ1 andZ2 , then the complex
potential~see Eq.~15!! is

G11152 i ln@~Z2Z1!~Z2Z2!#1A.
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direction of the line joining the pointsZ1 and Z2 , we ob-
tain

L1115L~Re~G111!!52
d2 sin~2F0!

l 1
2l 2

2 , ~21!

wherel j5uZ2Z j u is the distance from the current pointZ

to the axis of the j th disclination (j 51,2); and
d5uZ12Z2u is the distance between the disclination
From Eq.~21! it follows that for two separate (dÞ0) line
defects the conditionL11150 is realized if the total phase
F0 is a multiple of p/2; the valuesF050 and p/2 are
independent. We use this result in the next section.~We add
here thatL11150 for d50 as well, i.e., the case of a
isolated disclination with chargem52; see Ref. 14.!

4. PP AND CPP CONFIGURATIONS

4.1. Two-constant approximation

As noted above, the PP and CPP configurations~see
Figs. 1b and 2b, respectively! belong to the class of plana
distortions of the director field. The authors of Refs. 3 and
treated the PP structure in the two-constant approximat
Let us trace how this solution can be obtained using a r
resentation involving the complex potential. We will als
discuss the CPP configuration simultaneously with the
structure.

The director field of the PP and CPP structures can
described by Eq.~10!; the direction of easy orientation at th
surfacer 5R of the cylinder is determined by the function

FS~w!5H w1
p

4
~12q!, 0,w,p,

w2
p

4
~31q!, p,w,2p.

~22!

Here q561: the valueq51 corresponds to homeotropi
anchoring, whileq521 corresponds to circular anchoring
the directions of the director given by the function~22! are
shown in Fig. 3~the solid arrows correspond toq521, the
dashed toq51!. If the character of the anchoring is rigid
then the boundary condition~8! for the equilibrium Eq.~12!
has the form

878S. V. Burylov



F~R,w!5FS~w!. ~23!
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It is clear from Eq.~22! that at pointsZ15Z(R,0)5R
and Z25Z(R,p)52R on the surface of the cylinder th
boundary functionFS(w) undergoes a discontinuity. If th
equilibrium Eq. ~12! holds everywhere in the bulk of th
NLC, then at these boundary points there must exist dis
nation lines with certain topological chargesm1 andm2 re-
spectively. Let us construct a trial complex potential as
sum of potentials~15! of the individual disclination lines:

G~Z!52 im1 ln~Z2R!2 im2 ln~Z1R!1A. ~24!

The real part of this expression defines the trial function

F5Re@G~Z!#5m1w11m2w21F0 ;

the anglesw1 andw2 are shown in Fig. 3. In order that th
function F(r ,w) be single-valued in the region occupied b
the NLC, we will make a cut in theZ plane along the rays
@2`,2R# and @R,1`#. Then the anglesw1 and w2 can
vary over the intervals 0<w1,2p and2p<w2,p.

We now find the phaseF0 and the topological charge
m1 and m2 from the boundary conditions~23!. Expressing
the anglesw1 and w2 from geometric considerations at th
surface of the cylinder in terms of the anglew ~see Fig. 3!
and using the function~22!, we obtain a system of simpl
linear equations:

1

2
w~m11m2!1

1

2
pm11F05w1

1

4
p~12q!,

1

2
w~m11m2!2pS m22

1

2
m1D1F05w2

1

4
p~31q!.

These equations can be satisfied for any value ofw; this is
true if

m15m251, F052
1

4
p~11q!. ~25!

Thus, the equilibrium state of the NLC corresponds t
distortion which in theZ half-plane is given by two discli-
nation lines with identical topological charges equal to un
Homeotropic anchoring corresponds to a pha
F0(q51)52p/2, and circular anchoring to
F0(q521)50. Substituting~25! into the function~24! and
calculating its real part, we finally obtain an expression1! for
the angle:

F5arctan
r 2 sin 2w

r 2 cos 2w2R2 1
p

4
~32q!. ~26!

As follows from ~25! and~26!, the functionsF(r ,w) for
PP and CPP structures differ only by a phasep/2. In this
case the overall pattern of the corresponding current li
comprises the orthogonal grid of a bipolar coordinate syst
whose poles are located at the pointsZ1,256R.

In the two-constant approximation, the phasep/2 does
not affect the total free energy Eq.~5!; therefore, the total
energies for the PP and CPP structures coincide with
another. They have the following form taken per unit leng

FPP5FCPP5p K ln~R/2r!. ~27!
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(0<Wu,`) anchoring. The equilibrium state of the NLC
described by the Laplace equation~12! with boundary con-
dition ~9!, which in our case takes the form

F2KR
]F

]r
1qWu R sin~2F22w!G

r 5R

50. ~28!

Rather than solve this problem, we note that the scale~con-
formal! transformation31,33

r 85cr, w85w, ~29!

wherec is an expansion coefficient, transforms the Lapla
equation~12! into a solution of the same equation. Cons
quently, a function of the form~compare with Eq.~26!!

F5arctanF r 2 sin 2w

r 2 cos 2w2~cR!2G1
p

4
~32q! ~30!

is also a solution of the equilibrium equation~12!. Indeed,
the function ~30! corresponds to two disclination lines lo
cated atZ15cR andZ252cR.

Substitution of the expression~30! into the boundary
condition~28! enables us to determine the equilibrium val
of c. This substitution leads to an equation that does
depend on the parameterq, i.e.,

sin 2w@Wu Rc424Kc22Wu R#

c422c2 cos 2w11
50. ~31!

From this it follows that

c5A11A11w2

w
,

wherew5Wu R/2K. For any finite value ofw, c.1. Con-
sequently, the equilibrium field of the director within th
cylindrical capillary corresponds to a distortion specified
two fictitious disclination lines. In other words, for soft an
choring, the effective radius of a particle increases by a f
tor of c ~see the scale transformation~29!!. Whenw50 ~the
totally degenerate type of anchoring!, the effective radius
grows without bound, the fictitious disclination lines depa
to infinity, and the field of the director becomes unifor
within the capillary.

Substitution of the distribution~10! with the function
~30! into Eq. ~5! gives the total energy of the PP and CP
structures per length of cylinder:

FPP5FCPP5pKF2 lnS c421

c4 D1wS c221

c2 D G
5pKF2 ln~2gj!1

12g

j G . ~32!

The latter expression is written in the notation used in Re
3 and 4: herej51/w52K/Wu R, g51/c25Aj2112j. It
follows from Eqs. ~27! and ~32! that in the two-constan
approximation the PP and CPP structures are energetic
completely equivalent.

879S. V. Burylov



4.2. The general case K 11ÞK 33
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In Sec. 3.2 we showed that a distortion field specified
two disclination lines with topological chargesm15m251
and phaseF0 that is a multiple ofp/2 satisfies the genera
equilibrium equation~17! for K11ÞK33. Therefore, for rigid
anchoring, where the boundary conditions for the an
F(r ,w) have the form~23!, the solution of the problem is
determined by Eq.~26!. Despite this coincidence, the PP a
CPP structures are no longer energetically equivalent in g
eral; the expressions obtained from Eq.~5! when K11ÞK33

for the total free energy per unit length of cylindrical cap
lary have the form

FPP5pK33 ln~R/2r!2p~K332K11!~12 ln 2!,

FCPP5pK11 ln~R/2r!1p~K332K11!~12 ln 2!. ~33!

It can be shown that these equations transform into Eq.~27!
whenK115K33.

For soft anchoring, the boundary condition~9! for the
equilibrium equation~17! can be written

H 2KR
]F

]r
1qWu R sin~2F22w!

12KkFR
]F

]r
cos~2F22w!

1
]F

]w
sin~2F22w!G J

r 5R

50. ~34!

Recall that in the general caseK5(K111K33)/2. By analogy
with the solution of this problem in the two-constant a
proximation, we can use the scale transformation~29!, and a
trial function F(r ,w) can be found in the form~compare
with Eqs.~26! and ~30!!

F5arctanF r 2 sin 2w

r 2 cos 2w2~pR!2G1
p

4
~32q!, ~35!

where p is the expansion coefficient corresponding to t
caseK11ÞK33. The validity of this approach also follow
from the fact that the general equilibrium equation~17!, like
the Laplace equation~12!, is invariant under scale transfo
mations~29!.

Substitution of Eq.~35! into the boundary condition~34!
yields an equation~compare with~31!! for the equilibrium
value ofp:

sin 2w@Wu Rp424Kp22Wu R24qKk#

p422p2 cos 2w11
50.

From this equation we find

p5A11A11w212qkw
w

. ~36!

Let us discuss Eq.~36! and consider the behavior of th
disclination lines whenK11ÞK33. The general behavior o
the expansion coefficientp as a function of the dimension
less anchoring energyw for various values ofqk is shown in
Fig. 4; the asymptotic expansion of the functionp(w) is
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p5H ~41qkw2!/A8w, w<1,

11~11qk!/2w, w>1.
~37!

From Fig. 4 and Eq.~37! it is clear that compared to th
two-constant approximation (p(w,k50)5c(w)), the be-
havior of the disclination lines is qualitatively unchange
for the rigid type of anchoring, wherew5`, the lines are
located at the lateral surface of the capillary (p51); for
finite values ofw they disappear from the surface and b
come purely fictitious (1,p,`); as w tends to zero, the
lines recede to infinity (p→`). The difference shows up in
the actual value of the expansion coefficientp, which must
depend on the sign and magnitude of the productqk, i.e., on
the type of anchoring of the director to the lateral surface
the capillary and on the ratio of elastic moduliK11 andK33.
For ordinary nematicsK33.K11, i.e., k. 0. Therefore,
other things being equal, we expect~see Fig. 4! that when the
anchoring is homeotropic (qk.0), the expansion coefficien
will be larger, i.e., the fictitious disclination lines will b
farther from the capillary surface than in the case of circu
(qk,0) boundary conditions. Note, in particular, that for
specified type of anchoring, the distortion of the direc
field, which in experiments is the ‘‘observed quantity,’’ d
pends only on the expansion coefficientp, and does not de-
pend on the specific set of parameters$w,k% responsible for
this value. In other words, any pair of parameters$w,k%
corresponding to the same value ofp ~see, e.g., the lines o
the horizontal grid in Fig. 4! yields a completely equivalen
distribution of the director within the cylindrical capillary.

Substituting the director distribution~10! with the func-
tion F(r ,w) from Eq.~35! into Eq.~5! enables us to find the
general expression for the energy per unit length of cylin
of the PP and CPP structures; this expression has the fo

Fq5pKH 2 lnS p421

p4 D2qkF lnS p221

p211D1
2

p2G
1w

p221

p2 J .

Here Fq515FPP, Fq5215FCPP, and the function
p5p(q,w,k) is defined by Eq.~36!. Asymptotic expansion
of Fq for w!1 yields

FIG. 4. Dependence of the expansion coefficientp on the dimensionless
parameterw for qk5 0.9 ~1!, 0.45 ~2!, 0 ~3!, 20.45 ~4!, 20.9 ~5!.
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As shown in Refs. 3 and 4, the form of the function
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q S 4 12 D
5

pWu R

2 F12
1

4 S Wu R

K111K33
D

1
q

12 S K332K11

K331K11
D S Wu R

K111k33
D 2G , ~38!

and forw@1

Fq'pKH ~11qk!lnS w

11qk D
1~12qk!~12 ln 2!1

1

2w
~114qk13q2k2!J

55
pK33 lnS WuR

2K33
D1pK11~12 ln 2!

2
pK33~2K332K11!

Wu R
, q51,

pK11 lnS WuR

2K11
D1pK33~12 ln 2!

2
pK11~2K112K33!

Wu R
, q521.

~39!

From Eqs.~33! and ~39! it follows that the transition from
soft to hard anchoring takes place at values of the spe
energy Wu;2K33/er and Wu;2K11/er for the PP and
CPP structures, respectively. The various elastic moduli
tering into these estimates correspond to the dominant
tortions for each of the structures under discussion: for
PP structure the dominant deformation is longitudinal be
ing, which is associated with the constantK33, while for the
CPP configuration it is transverse bending associated
the constantK11.

5. ‘‘ESCAPED’’ CONFIGURATIONS

5.1. The ER configuration and axial structure

For hard anchoring, the ER structure~Fig. 1c! was de-
scribed in Ref. 15~see also Ref. 34!. The case of soft an
choring was considered in Refs. 3 and 4. Let us discuss
results obtained in Refs. 3 and 4 briefly.

The field of the director for the ER configuration is d
termined by the expression

n5sin V~r !er1cosV~r !ez , ~40!

which follows from Eq. ~6! after the substitution
V(r )5V(r ) and the choice of the extremumF(r )5w of
the corresponding Euler equation from system~7!. The di-
rection P of easy orientation of the director at the cylind
surface corresponds to an angleVS5p/2. The distribution
V(r ), as usual, is found from the equilibrium equation~7!
with the boundary condition~9! when r 5R. Moreover, the
absence of disclinations on the cylinder axis correspond
an additional boundary condition atr 50:

V~0!50, limr→0u]V~r !/]r u,`.
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V(r ) is governed by the dimensionless parameter

s5
Wu R

K11
1

K24

K11
21,

which characterizes the surface interaction in the system.
s.1, the equilibrium distributionV(r ) is given by the im-
plicit function

r

R
5As11

s21

D21

D11
expSAh21 arctan

Ah21~D2s!

Ds1h21 D .

~41!

Here D5A11h tan2 V(r), h5K33/K11, 0<V(r )<p/2.
Equation~41! is valid both forh>1 and for 0,h,1; in the
latter case, we must use the following identity in the exp
nent:

Ah21 arctan@Ah21m~h,...!#

[A12h arctanh@A12hm~h,...!#, ~42!

wherem~h,...! is a function determined up to a sign for an
value ofh.0.

For s<1, the complicated functionV(r ) from Eq. ~41!
is replaced by a uniform distributionV(r )5const50 with
director n parallel to thez axis. This latter structure is a
qualitatively new~compared to the escaped radial! configu-
ration of the director field; we refer to it as an axial structu
~AX !. In principle, the solutionV(r )50 corresponding to
the AX structure satisfies the equilibrium equation w
given boundary conditions for anys. However, fors.1 this
structure is energetically less favorable than the ER confi
ration, and can exist only in a metastable state.

Hence, in considering deformations of the form~40! it is
advisable to consider two NLC configurations: the esca
radial, which corresponds tos.1, and the axial, which is in
fact realized fors<1. Using Eq.~41!, we can show that as
s→11 the escaped ER configuration smoothly transfor
~total escape! to the uniform axial structure. Expressions f
the free energy per unit length of cylinder of the each
these structures have the form

FER5pK11

3H 21
h

Ah21
arctanFAh21~s21!

s1h21 G2
K24

K11
J , s.1,

~43!

FAX5pRWu , s<1. ~44!

For h,1 we must use the identity~42! in relation ~43!.

5.2. The EC configuration and axial structure

An analytic description of the EC structure~Fig. 2c! for
hard anchoring was given in Ref. 15. We now examine t
configuration for the case of soft anchoring.

We seek a director field in the form

n5sin V~r !ew1cosV~r !ez . ~45!
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This distribution follows from Eq.~6! if we make the substi-
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tution V(r )5V(r ) and use the extremumF(r )5w1p/2.
The directionP of easy orientation of the director at th
surface of the cylinder is given by the angleVS5p/2. In the
case of a distortion of the form Eq.~45!, the surface anchor
ing energy density~4! contains only an azimuthal part (Wf),
while the Frank surface energy~2! depends only on the elas
tic moduli K22 and K33, since the contribution associate
with the constantK11 is identically zero (“•n50). The
equilibrium equation~7! and the boundary condition~9! take
the form

r 2
]2V~r !

]r 2 1r
]V~r !

]r

2sin V~r !cosV~r !@112~ h̃21!sin2 V~r !#50,

~46!

RS ]V~r !

]r D
r 5R

2s̃ sin V~R!cosV~R!50, ~47!

whereh̃5K33/K22, s̃5(Wf R1K242K22)/K22.
From ~46! and~47!, it is clear that three solutions to th

problem exist.
1. A solutionV (1)(r )5V (1)5p/2 corresponding to the

planar PC configuration.
2. A distributionV (2)(r )5V (2)50 corresponding to the

uniform AX structure.
3. A third solutionV (3)(r ) corresponding to the nonun

form EC configuration. Let us obtain this configuration
explicit form; for the sake of brevity, the upper index th
denotes the order number of the solution will be omitted

The Euler equation~46! has a first integral

S r
]V~r !

]r D 2

2sin2 V~r !@cos2 V~r !1h̃ sin2 V~r !#5const.

~48!

It is obvious that total escape of the line defect of the
structure in the third direction is realized whenV(0)50 and
limr→0u]V(r )/]r u,`; therefore, the constant is zero.

Substituting Eq.~48! into the boundary condition~47!
yields an equation for the angleV(R):

sin V~R!cosV~R!$A11h̃ tan2 V~R!2s̃%50. ~49!

Note thath̃.0; therefore, the solution withV(R)Þ0 exists
only for s̃.1. In this case

V~R!5arctanAs̃221

h̃
. ~50!

For s̃<1 the boundary angleV(R)50 ~see Eq.~49!! and
the general solutionV(r )5V (2)50 corresponds to a uni
form AX structure.

Integrating~48! while taking into account the boundar
value ~50! yields

S r

RD 2

5
s̃11

s̃21

A11h̃ tan2 V~r !21

A11h̃ tan2 V~r !11
.

Writing the function V(r ) resulting from this in explicit
form, we obtain the distribution
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F h̃ R2~ s̃11!2r 2~ s̃21!
G

corresponding to a values̃.1. From Eq.~51! it is clear that
when s̃→11 the escaped circular configuration transform
smoothly into the axial structure. Relations for the total fr
energy of the EC and AX structures coincide, upon mak
the replacementsK11→K22 and Wu→Wf ~i.e., h→h̃ and
s→s̃!, with Eqs. ~43! and ~44! respectively. The EC con
figuration is energetically more favorable whens̃.1.

6. ORIENTATIONAL TRANSITIONS BETWEEN
CONFIGURATIONS

6.1. Homeotropic anchoring

Final expressions for the free energy corresponding
homeotropic anchoring for the structures discussed above
listed in Table I. Figure 5 shows the overall behavior of the
energies as a function of the dimensionless param
wu5Wu R/K11 for various relations between the elast
moduli K11, K33, andK24. Note that the constantK22 makes
no contribution to the energy of even one of the configu
tions discussed, while only the energy of the ER struct
depends on the constantK24. Let us discuss the values of th
system material parameters for which a given configurat
of the NLC is realized~i.e., which is energetically most fa
vorable!.

When the bulk elastic moduliK11 andK33 are equal, the
relations listed in Table I for the energy coincide complete
with analogous expressions obtained in Refs. 3 and 4. In
case the energy of the PP configuration is always lower t
the energies of the PR and AX structures:

FPP2FPR,2pK ln 2,0, FPP2FAX,2
Wu R

2K
,0.

~52!

The latter estimate is obtained from Eq.~38!, from which it
follows that the initial slope of the functionFPP(Wu) is half
the slope of the linear functionFAL(Wu); see Table I. From
the behavior of curve5 in Fig. 5, it is clear that as the spe
cific energyWu ~i.e., the dimensionless parameterwu! in-
creases, the slope of the functionFPP(Wu) decreases; there
fore, the second condition in~52! is fulfilled for any value of
Wu . Thus, forK115K33 the equilibrium configuration of the
NLC is determined by the balance of the energies of the
and ER structures~compare curve5 with curves1 and 2,
which were obtained for different values of the consta
K24!.

In the general caseK11ÞK33, the same consideration
lead us to conclude that the AX structure will always have
higher energy than the PP configuration. Consequently,
homeotropic anchoring of a purely axial distribution, the d
rector field should not be observed experimentally~except,
of course, in the trivial caseWu50 corresponding to com
pletely degenerate anchoring!.

At the same time, the PR configuration can occur wh
certain relationships hold among the system material par
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eters. For examp

TABLE I. Total free energy per unit cylinder length of structures corresponding to homeotropic anchoring.
Structure

Anchoring type

Hard Soft

PR pK11 ln(R/r) pK11 ln(R/r)

PP pK33 ln(R/2r)2p(K332K11)(12 ln 2)
pKH2lnSz221

z2 D1w
z21

z
2kFlnSz21

z11D1 2

zGJ,
z5

11A11w212wk

w
,

K5
K111K33

2
, k5

K332K11

K331K11
,

w5
Wu R

K111K33

ER
pK11F22

K24

K11
1

h

Ah21
arctanAh21G , pK11H 22

K24

K11
1

h

Ah21
arctan

Ah21~s21!

s1h21 J ,

h5K33 /K11 , s5Wu R/K111K24 /K1121,
h>1* s.1, h>1*

AX – pRWu ,
s<1

Note.*For h,1 we must use an identity of the form Eq.~42!.
le, when the anchoring is hard (Wu5`), the
ha

where we must setR@r ~or in any caseR.er! as in the
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ur
PR configuration becomes energetically more favorable t
the PP structure if

h5
K33

K11
.11

ln 2

ln~R/r!21
, ~53!

FIG. 5. Dependence of the total free energy on the dimensionless para
wu for homeotropic anchoring. The energy of the ER structure is shown
the solid curves, the PP configuration by the dashed curves, the ER con
ration by the dotted-dashed curves, and the AX structure by the dots. C
1 corresponds toh51, K245K11 ; for 2, h51, K2450; for 3, h56,
K245K11 ; for 4, h56, K2450; for 5, h51; for 6, h56 For the energy of
the ER structure we have chosen a ratioR/r5100.
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nexpressions forFPP andFER in Table I. Note that in the limit
R→`, ~53! coincides with the results of Ref. 35: a lin
radial disclination withm51 is stable against planar pertu
bations whenh.1. As the radiusR of the cylinder de-
creases, Eq.~53! shows that the energy of the PR structure
the class of planar distortions is minimized at larger valu
of h. It is natural that stability of the PR configuration als
requires thatFPR,FER. The expression for the energyFER

contains a complicated function ofh, so this condition is
unsuitable for a qualitative analysis. A more complete rep
sentation of the regions of existence of each of the th
structures discussed here can be obtained from the diag
in Fig. 6, which shows the orientational states correspond
to K2450 andK2451.5K11.

From Fig. 6 it is clear that for cylinders of large radiu
(ln(R/r)>6), the energy minimum corresponds to the E
structure over a wide range of values ofh, a conclusion that
is essentially independent of the value ofK24. This situation
is relevant to the optical experiments described in Refs. 5
and 13, in which capillaries of radiusR520– 200mm were
used. In these experiments the ER~or ERPD! configurations
were observed, and just this type of hard anchoring was
alized. In fact, a comparison of the expressions for the
structure energy corresponding to various anchoring ty
~see Table I! leads us to conclude that the transition from s
to hard anchoring takes place ats@h. A cruder form of this
estimate isR@b3 , whereb35K33/Wu is the extrapolated de
Gennes–Kleman length2,29 corresponding to the elasti
modulusK33. Using the fact that for typical temperature
where the nematic phase existsK33;1026 dynes~see Ref.
29! and Wu;102221021 erg/cm2 ~see Ref. 36!, we obtain
the estimateb3;0.1– 1mm, i.e., the condition for hard an
choring is satisfied in the experiments of Refs. 5–8 and
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y
u-
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FIG. 6. Orientational states of an NLC, plot
ted in coordinates ln(R/r) andh for homeo-
tropic boundary conditions and hard ancho
ing. The calculated values of the elast
modulus areK2450 ~a! and 1.5K11 ~b!. The
insets show the regions of large coordina
values.
Theoretically, orientational transitions to PR and PP con-
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larger values ofh, while for R/r,100 it shifts to smaller
ses,
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the
figurations should occur in cylinders of small radius~see Fig.
6!. However, in thin capillaries, the condition for hard a
choring R@b3 ceases to hold; takingr;5•1027 ~Refs. 9–
12!, we find thatR is always smaller than or of the sam
order asb3 for ln(R/r)<3. Thus, in order to assess the o
entational stability of configurations in thin capillaries, it
necessary to use more general expressions for the en
corresponding to soft anchoring.

Diagrams for the orientational states of NLC for so
anchoring and valuesK2450 andK2451.5K11 are shown in
Fig. 7. On the whole, these diagrams show that the co
tions for transitions between configurations depend stron
on the value of the surface elastic modulusK24. Thus, the
region of existence of the ER structure whenK2451.5K11

~Fig. 7b! is considerably broader than for the caseK2450
~Fig. 7a!. This is entirely natural, because asK24 increases,
the energy of the ER configuration decreases~compare
curves2 and4 with curves1 and3 in Fig. 5!. The PP con-
figuration essentially always occurs~even forK2452K11! for
small values of the dimensionless energywu . For example,
this configuration is observed in experiments3,4 using cylin-
ders with radiiR50.3 and 0.4mm; theoretical analysis of the
experimental data yields the estimateswu51.8 and 2.4 re-
spectively.

The PR structure, on the other hand, can occur only
large values ofh. Note that the region of existence of th
configuration shown in Fig. 7 is somewhat provisional, a
corresponds to a ratioR/r5100, i.e., to cylinders with radi
R;0.5mm. For R/r.100 this region is shifted toward
rgy

i-
ly

at

d

values. Consequently, as the radius of the cylinder decrea
and near the nematic–smecticA transition whereh is con-
siderably larger than unity, the probability of experimenta
observing the PR structure increases.

6.2. Circular anchoring

Let us briefly consider the conditions for transitions b
tween configurations that correspond to circular anchori
The final expressions for the free energies of these struct
are listed in Table II. The set of material parameters t
correspond to these configurations is broader than the co
sponding set for homeotropic anchoring, and includes val
of the torsion modulusK22 and specific anchoring energ
Wf . Increasing the number of material parameters com
cates the qualitative analysis of the system as a whole.
spite this fact, we are at least able to find necessary existe
conditions for individual structures such as the PC and
configurations.

The PC configuration can occur only when it corr
sponds to an energy minimum in the class of planar dis
tions. For hard anchoring the requirementFPC,FCPP leads
to the condition

h5
K33

K11
,

ln~R/r!

ln~2R/er!
'11

0.3

ln~R/r!
, ~54!

which in cylinders of large radius (R@r) coincides with the
relation obtained in Ref. 35,h,1. For soft anchoring, the
energy of the CPP configuration is reduced; therefore,
-

f
f

FIG. 7. Orientational states of NLC, plot
ted in the coordinateswu andh for homeo-
tropic boundary conditions in the case o
soft anchoring. The calculated values o
the parameters areR/r5100, K2450 ~a!
andK2451.5K11 ~b!.
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region of existence of a PC structure with constant energ
shifted towards smaller values ofh. Note that even in the
case of hard anchoring the restriction~54! is a strong one,
because in real NLC at typical temperatures where the n
atic phase exists, the parameterh usually lies in the range
1<h<2.

The AX structure can only exist fors̃,1, and only
when the slope of the linear functionFAX(Wf) is less than
the initial slope of the functionFCPP(Wu); see Eq.~38!. This
occurs whenWf /Wu,1/2.

As an example, Fig. 8 shows the orientational states
an NLC with soft anchoring and valuesh̃51, K24/K1151,
Wf /Wu50.4, R/r520. Theoretically, in this case all fou
configurations of the NLC can occur. The region of existen
of the PC structure, however, corresponds to values ofh that
are unrealistic in practical terms. Therefore, we assume

FIG. 8. Orientational states of the NLC, plotted in coordinateswu andh for
circular boundary conditions in the case of soft anchoring. The comp

values of the parameters areh̃51, K24 /K1151, Wf /Wu50.4, R/r520.
TABLE II. Total free energy per unit cylinder length

885 JETP 85
is
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e

at

course, the circular anchoring is realized in practice. T
conclusion is all the more obvious because as the radiu
the cylinder increases, the region of existence of the
structure narrows and corresponds to smaller values ofh. It
follows from Fig. 8 that in cylinders with large radius, th
energy minimum corresponds to the EC structure, while
thin capillaries it corresponds to the AX or CPP configu
tions. Numerical calculations show that the region of ex
tence of this CPP structure broadens ash̃ increases andK24

decreases.

7. CONCLUSION

Although our discussions have involved infinitely lon
cylinders, the results remain valid for capillaries who
lengthL@R as well. In the latter case, the ratio of the ener
associated with end effects to the overall free energy of
system is of orderR/L. Therefore, deviations of the directo
near the ends of the cylinder can be neglected, and we
use the expressions from Tables I and II for the energy of
structures described above.

The situation changes considerably for the ERPD str
ture ~and also for the theoretically possible EC structure w
point defects!. The ERPD configuration is stable in capilla
ies of finite length. As shown in Ref. 16, point defects attra
one another and annihilate only for distances between th
h<0.25R. For distancesh.0.25R, the defects repel one an
other. However, they cannot leave the liquid crystal samp
because near the ends of the cylinder point defects, like
disclinations,29 repel each other and repel their mirror im
ages. These repulsive forces cause real point defects t
located along the cylinder axis at the same distance from

d

of structures corresponding to circular anchoring.
885. Burylov
Structure

Anchoring type

Hard Soft

PC pK33 ln(R/r) pK33 ln(R/r)

CPP pK11 ln(R/2r)1p(K332K11)(12 ln 2)

pKH2lnS z̃221

z̃2
D1w

z̃21

z̃
1kFlnSz̃21

z̃11
D1 2

z̃
GJ,

z̃5
11A11w222wk

w
,

K5
K111K33

2
, k5

K332K11

K331K11

w5
Wu R

K111K33

EC
pK22F22

K24

K22
1

h̃

Ah̃21
arctanAh̃21G , pK22F22

K24

K22
1

h̃

Ah̃21
arctan

Ah̃21~ h̃21!

s̃1h̃21 G ,

h̃5
K33

K22
s̃5

WfR

K22
1

K24

K22
21,

h̃>1* s̃.1 h̃>1*

AX – pRWf ,
s̃<1

Note.*For h̃,1 we must use the identity Eq.~42!, replacingh with h̃ .
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another. Since all directions of escape are equally probable,
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1!Naturally this result can be obtained by a number of other methods, for
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in real situations the ERPD structure is observed more o
than the uniform ER configuration. Moreover, the conditio
described in Sec. 6 for transitions between planar and es
structures remain valid on the whole. ForL@R these condi-
tions, which are in fact associated with instability of one
the planar structures, should depend weakly on which of
three-dimensional configurations~ER or ERPD! undergoes
escape.

The authors of Refs. 3 and 4 observed a transition fr
the PP structure to the ERPD configuration, and used
fact to estimate the surface elastic modulusK24. We note
that for the constantK24 the amount of experimental data
the literature is extremely limited~see, e.g., Refs. 37 and 38!.
This is because the surface elastic modulus always en
into the defining relations in combination with at least one
the specific anchoring energiesWu or Wf . Separating these
parameters in a single series of experiments is a complic
and not always soluble problem. In Refs. 3 and 4 this se
ration was made in a rather sketchy fashion. The objec
investigation was the liquid crystal 5CB placed in cylindric
pores of lengthL'10mm. The PP structure, as we hav
already mentioned above, was observed in pores of r
R50.3 and 0.4mm; the transition to the ERPD configuratio
occurred atR50.5mm. The method of separating the co
tributions associated withWu and K24 was based on direc
determination of the quantityWu by analyzing experimenta
data corresponding to the PP configuration. Recall that
structure does not depend on the elastic modulusK24. In
using the two-constant approximation (h51) an estimate
Wu /K'6•104 cm21 was obtained. From the conditio
FPP'FER at R50.5mm the valueK24'1.7K was found.
Starting with the real value of the parameterh51.4 ~see
Refs. 12 and 39!, and based on the results of this paper,
can refine the values ofWu andK24. Using the average spe
cific energies to estimateWu , which are found by equating
the expansion coefficientsp(h51.4)5p(h51) at R50.3
and 0.4mm, and following the same method to determi
K24, we obtainWu /K11'7.7•104 cm21 andK24'1.61K11.
The latter estimate, of course, is not definitive, becaus
does not follow from a direct comparison of theory with t
experimental data: we have used the theoretical va
p(h51) in place of ‘‘experimental’’ values. In this case th
value K2451.61K11 is closer to the valueK2451.1K,
which was obtained in the same papers by fitting the exp
mental data corresponding to the ERPD configuration. In
latter case, we used for the angleV(r ,z) a trial function that
qualitatively describes the real distribution of the direc
n~r ! when h51 ~the two-constant approximation!. For a
more accurate estimate of the quantityK24 and verification of
the results of this paper, further experiments would be v
desirable.

The author is grateful to Yu. L Ra�kher for discussing
these results and to K. M. Morozov for a number of use
comments.

The work was carried out with the partial financial su
port of NPK ‘‘ISTA.’’
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example, by substituting the boundary function~22! into the Poisson inte-
gral, as is usually done in problems of mathematical physics. In this p
cedure, however, when we directly compute the function~26!, we
would not be able to determine the exact charge of the disclination li
i.e., we would lose the qualitative character of the field distribution of
directorn.
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20R. J. Ondris-Crawford, M. Ambrozˇič, J. W. Doane, and S. Zˇ umer, Phys.

Rev. E50, 4773~1994!.
21L. M. Blinov, E. I. Kats, and A. A. Sonin, Usp. Fiz. Nauk152, 449~1987!

@Sov. Phys. Usp.30, 604 ~1987!#.
22Zh. Kon’yar, Orientation of Liquid Crystals and their Mixtures@in Rus-

sian#, University Press, Minsk~1986!.
23A. Saupe, J. Chem. Phys.75, 5118~1981!.
24F. C. Frank, Discuss. Faraday Soc.25, 19 ~1958!.
25E. I. Kats and V. V. Lebedev,Dynamics of Liquid Crystals@in Russian#,

Nauka, Moscow~1988!, p. 18.
26S. Stallinga, J. A. M. M. van Haaren, and J. M. A. van den Eerenbee

Phys. Rev. E53, 1701~1996!.
27J. L. Eriksen, Phys. Fluids9, 1205~1966!.
28A. Rapini and M. Papoular, J. de Phys.30, C4-54~1969!.
29P. G. de Gennes,The Physics of Liquid Crystals, 2nd ed., Clarendon

Press, Oxford~1993!.
30L. D. Landau and E. M Lifshitz,Electrodynamics of Continuous Media,

2nd ed., Pergamon Press, New York~1984!.
31M. A. Lavrent’ev and E. B. Shabat,Methods in the Theory of Functions o

a Complex Variable@in Russian#, Nauka, Moscow~1982!.
32M. V. Kurik and O. D. Lavrentovich, Usp. Fiz. Nauk154, 381 ~1988!

@Sov. Phys. Usp.31, 196 ~1988!#.
33J. Ericsen,Research on the Mechanics of Continuous Media@Russian

translation#, Mir, Moscow ~1977!.
34L. D. Landau and E. M Lifshitz,Theory of Elasticity, 3rd Engl. ed., Per-

gamon Press, Oxford~1986!.
35S. I. Anisimov and I. E. Dzyaloshinski�, Zh. Éksp. Teor. Fiz.63, 1460
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Theory of parametric excitation of acoustic waves

av-
A. R. Muratov
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A theory of parametric excitation of acoustic waves is constructed. It is shown that nonlinear
attenuation is the main restriction mechanism for a parametrically generated sound wave.
The intensity of generated waves is directly proportional to the differencee between the value of
pumping and bare attenuation. The calculated proportionality coefficient depends on the
shape of the generated sound wave. Why an ordinary pattern does not form for acoustic waves is
explained. The structure of the spectrum of excited waves was studied. It is shown that this
structure has exponential asymptotic behavior at the frequency. The width of the intensity
distribution depends on the shape of a wave. For different cases it behaves asea with
a51, 8/7, and 4/3. The results are compared with the experimental data of Ref. 5. ©1997
American Institute of Physics.@S1063-7761~97!00811-1#
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Parametric excitation of waves is observed in a w
class of dynamical systems for waves with different disp
sion relations.1 These dispersion relations can be divided in
two groups: nondecaying and decaying. As an example f
the first group we have spin waves and from the sec
group waves on the free surface of a liquid. For spin wa
conservation laws of frequency and wave vector, as a r
do not permit three-wave interactions. The behavior of sp
wave systems in those cases is determined by four-wave
teractions. The corresponding theory is well developed an
described elsewhere.2,3 The main mechanism for saturatio
of the amplitude of generated wave in these systems is
so-called dephasing mechanism, i.e., renormalization of
pumping due to the interaction between secondary wa
Capillary waves on the free surface of a liquid have the d
persion relationv}k3/2, wherev is the frequency andk is
the wave vector of the wave. Three-wave interaction is
lowed for this dispersion relation. The pattern selection a
amplitude saturation for surface waves are determined b
nonlinear attenuation, as has been shown in Ref. 4.

The case of acoustic dispersion relationv}k is the mar-
ginal case between these two possibilities. In this case
conservation laws allow three-wave interactions but only
the waves with collinear~parallel or antiparallel! wave vec-
tors. This case, which we will consider in this paper, was
studied at all. We will show that nonlinear attenuation is t
main mechanism for restriction of amplitude of a parame
cally generated sound wave. The intensity of genera
waves is directly proportional to the difference between
value of pumping and the bare attenuation. The proporti
ality coefficient depends on the shape of the excited so
wave.

Three-wave interaction of sound waves is allowed o
if their wave vectors are almost collinear. This special int
action destroys the long-range order at an angle between
directions of propagation of waves; therefore, ordinary p
tern formation does not occur in the case of acoustic wa
We will find the fine structure of the spectrum of genera
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ior at the frequency which is known for the other nonline
systems.3 The behavior of the width of the spectrum fo
acoustic waves differs from the one known for spin wav
The width of the intensity distribution depends on the sha
of the wave. For different cases it behaves asea with a
51, 8/7, and 4/3. The results of this paper were compa
with many data obtained in experiments with parametric
citation of the second-sound waves in liquid helium by t
first-sound wave.5,6 We obtained good qualitative and qua
titative agreement with the experimental results.

2. THE EFFECTIVE ACTION

It is suitable to use the Hamiltonian approach to descr
nonlinear dynamics of waves. It is not a simple problem
find the corresponding canonical variables in general.3,7 We
will assume that this problem has already been solved.
the dynamics of liquid helium the canonical variables we
found in Ref. 8. In canonical variables the Hamiltonian o
system can be written as

H5E d3r ~b* ~ t,r !v~¹!b~ t,r !

1U@a* ~ t,r !b~ t,r !b~ t,r !1c.c.#

1V@b* ~ t,r !!b~ t,r !b~ t,r !1c.c.#). ~1!

Hereb(t,r ) is the wave variable which describes the excit
sound wave,v5cA2¹2 is its dispersion relation, andc is
the phase velocity of the sound wave. We will study pa
metric excitation of the sound waveb(t,r ) by the external
wave fielda(t,r ) ~pumping wave!. The parameterU in Eq.
~1! is the vertex of the three-wave interaction of the pump
wave and the excited waves, andV is the vertex of the three
wave self-interaction.

Equation~1! is simply an expansion over the value of th
excited wave; it can be used only if the amplitude of t
excited wave is small, i.e., not far from the excitation thres
old. In general, we can prolong expansion~1! and take into

887-11$10.00 © 1997 American Institute of Physics



account four-wave interaction of the excited waves. It is nec-
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essary if the three-wave interaction is not allowed due to
conservation laws of frequency and wave vector. As will
shown below, for the sound waves we can consider only
three-wave interaction.

It is useful to make Fourier transform of the wave fie

b~ t,r !5E d3k

~2p!3 b~ t,k!eikr . ~2!

We can then write the Hamiltonian as

H5E d3k

~2p!3 Fv~k!b~k!b* ~k!1E d3q

~2p!3 ~U~k,q!

3@a* ~k!b~q!b~k2q!1c.c.#1V~k,q!

3@b* ~k!b~q!b~k2q!1c.c.# !G . ~3!

Herev andk are the frequency and the wave vector of t
sound wave, andv(k) is its dispersion relation. The expan
sion in ~3! is an ordinary hydrodynamic expansion and
parameter isAvb. It means that the verticesU and V are
proportional to

Av~k1!v~k2!v~k3!. ~4!

We will use complex canonical variables, in which th
dynamic equations have the form

i ] tb~k!5
dH

db* ~k!
, 2 i ] tb* ~k!5

dH

db~k!
. ~5!

In our case we have

i ] tb~k!5v~k!b~k!1E d3q

~2p!3 ~2Ua~k1q!b* ~q!

1V@2b~q!b* ~q2k!1b~q!b~k2q!# !. ~6!

The second equation is a complex conjugated equation~6!.
Equation~6! is a conservative equation to which a dis

pative term must be added. In general, this term is prop
tional to

¹2
dH

db* ~ t,k!
~7!

and small in the hydrodynamic parameter in comparis
with the termvb in Eq. ~6!. It means that we can ignor
nonlinear terms in the dissipation part of the dynamic eq
tion. Thus, to take into account the dissipation terms it
necessary to replace in Eq.~6! v(k)→v(k)2 ig0(k), where
g0(k)5Dk2.

It is suitable to use for our problem the dynamic-diagra
technique proposed by Wyld9 and developed by the d
Dominicis10 and Jannsen.11 Textbook description of this
technique can be found in Ref. 12. The corresponding ef
tive action can be written in the form

I 5 i E dtd3k

~2p!3 H S p* ~k!@v~k!2 i ] t2 ig0~k!#b~k!

1l exp~2 i2v0t !p* ~k!b* ~2k!
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~2p!3 D
1c.c.1T

g0~k!

v~k!
p* ~k!p~k!J . ~8!

Here we have introduced an auxiliary fieldp(t,r ), which is
conjugated to the wave fieldb(t,r ); l[2aU is the pumping
field, andT is the temperature in units of energy. We a
sumed that the pumping wave is a monochromatic wave w
a frequency 2v0 . For simplicity, we will ignore below the
nonzero value of the wave vector of the pumping wave. T
can be done if the velocity of the pumping wave is sign
cantly greater than the velocity of excited waves.

The equations of motion~6! with dissipation terms can
be obtained as the extremum conditions for the effective
tion:

dI

dp* ~ t,k!
50,

dI

dp~ t,k!
50.

Various averages can be found as

^ f ~ t,k!&5E DpDp* DbDb* f ~ t,k!eiI . ~9!

3. THE CORRELATION FUNCTIONS

The quadratic part of the effective action~8! determines
the bare correlation functions. There are three types of c
relation functions in the Wyld diagram technique. The fi
^pb& is the Green’s function, which is a response function
the external field. The second^bb& is the correlation func-
tion. The last averagêpp& equals zero. In our system ther
are normal Green’s and correlation functions, which are
termined by the term with the coefficientv2 ig0 , and the
abnormal functions, which are determined by the term w
the pumpingl52aU. Let us write the Fourier transform
over time:

b~ t,k!5E dv

2p
b~v,k!e2 ivt.

Further, for simplicity we introduce the notation

k[$v,k%, ¸̃[$2v02v,2k%, ṽ5v2v0 .

It is suitable to determine the Green’s functions^bp& in
the following way:

G~k!5S G1~k! G2~k!

G2* ~ ¸̃ ! G1* ~ ¸̃ !
D , ~10!

where

^b~k!p* ~k1!&5~2p!4d~v2v1!d~k2k1!G1~v,k!,

^b~k!p~k1!&5~2p!4d~ṽ1ṽ1!d~k1k1!G2~v,k!.
~11!

For the Green’s functionŝpb& we have

G̃~k!5S G1* ~k! G2~ ¸̃ !

G2* ~k! G1~ ¸̃ !
D . ~12!

The bare Green’s functions can be found as

888A. R. Muratov



G21~k!5
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l* ck1v22v01 ig0~k!

D
~13!

whereg0(k) is the bare attenuation rate of the sound wave
is easy to obtain the following expressions for the b
Green’s functions from~13!:

G10~k!5D21~k!@ck1v22v01 ig0~k!#,

G20~k!52lD21~k!. ~14!

Here

D~k!5~ck2v0!22@v2v01 ig0~k!#22ulu2,

D~¸̃!5D* ~k!. ~15!

The off-diagonal components of the Green’s function are
sential only forv;v0 andk;k0[v0 /c. Far from this re-
gion it is possible to use for the Green’s function the expr
sion

G1~k!5@ck2v2 ig0~k!#21. ~16!

The full Green’s function can be found as a solution
the Dyson equation in the form

G21~k!5G0
21~k!2S~k!, ~17!

whereS~k! is a self-energy function. The self-energy matr
has the same properties asG; i.e., it can be written in the
form

S~k!5S S1~k! S2~k!

S2* ~ ¸̃ ! S1* ~ ¸̃ !
D . ~18!

The bare value ofS~k! equals zero.
The correlation functionF has a matrix structure also.

can be determined as

F~k!5S F1~k! F2~k!

F2~ k̃ ! F1* ~ k̃ !D , ~19!

where

^b~k!b* ~k1!&5~2p!4d~v2v1!d~k2k1!F1~v,k!,

^b~k!b~k1!&5~2p!4d~ṽ1ṽ1!d~k1k1!F2~v,k!.

It is easy to see thatF1* (k)5F1(k) and F2(¸̄)5F2(k).
Therefore, we can write

F~k!5S F1~k! F2~k!

F2* ~k! F1~ ¸̃ !
D . ~20!

The Wyld correlation functions can be calculated as

F~k!5G~k!F~k!G̃~k!, ~21!

whereḠ(k) is determined by~12!, andF~k! is a force func-
tion. Its bare valueF0 is determined by the casual forc
correlator, i.e.,

F0~k!5G0E, G05T
g0~k!

v~k!
, ~22!

whereE is a unit 232 matrix. For the bare correlation func
tions we obtain
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F10~k!5G0

~ck1v22v0!21g0
2~k!1ulu2

D~k!D* ~k!
,

F20~k!52G0

2l@ck2v01 ig0~k!#

D~k!D* ~k!
. ~23!

The force functionF~k! can be written in the form

F~k!5S F1~k! F2~k!

F2* ~k! F1~ ¸̃ !
D . ~24!

The force functionsF~k!, by analogy withF(k), have the
propertiesF1(k)5F1* (k) andF2(k)5F2(¸̄).

4. SATURATION OF THE EXCITED WAVE

In this section we omit the term proportional to the tem
perature. In this case the fluctuations of the phase of
parametrically excited wave can be ignored and we can
sume that there appears a nonzero value of average^b& if the
pumping is over the threshold. The equations for this n
zero average coincide with~6!. If we disregard the nonlinea
terms onb, these equations will be linear equations wi
zero right-hand side:

G21S b~k!

b~ ¸̃ ! D50. ~25!

They can have a nonzero solution only if the main deter
nant of the systemD~k!, which is determined by~15!, equals
zero:

D~k!5~ck2v0!22@v2v01 ig0~k!#22ulu250. ~26!

This equation can first be satisfied for waves withv5v0 and
k5k05v0 /c. The threshold value of pumping isulu
5g0(k0)[g0 ; i.e.,

uau5g0/2U. ~27!

If ulu.g0 , the nonzero value of average^b& appears. In
order to determine its value, we must consider the nonlin
corrections. In a tree approximation it is necessary to t
into account the corrections for the self-energy functio
shown in Fig. 1. The solid lines in Fig. 1 correspond to t
field b, the dashed lines correspond to the fieldp, and the
points correspond to the vorticesV. This diagram fork8
.k gives the contribution to the diagonal part of the se
energy function and determines the nonlinear correction
the attenuation rateg. The diagram in Fig. 1 fork8.2k
corrects the off-diagonal terms of the self-energy function
renormalizes the pumpingl.

The Green’s function of the diagram in Fig. 1 has
frequency near 2v0 only if k8.k.k1 and has a frequency
near zero for all other cases. Using Eq.~4!, it is easy to see
that in the first case the correction is greater than that in
second case by a factor ofv0 /g0 . In particular, this means

FIG. 1. Tree correction for the self-energy function.
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that for acoustic waves the nonlinear attenuation is signifi-
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cantly more important than renormalization of pumpin
This result agrees with the corresponding conclusion for
surface waves, where the three-wave interactions
allowed.4

In general, the average of the wave fieldb(t,r ) has the
form

^b~ t,r !&5E dVB~u,w!exp~2 iv0t1 ik0er!, ~28!

wheree[e(u,w) is the unit vector in the direction which i
determined by the anglesu, w, anddV[dudw sinu. We see
that it is possible to disregard the renormalization of
pumping for the sound waves. We also see that there is
standard pattern formation for sound waves. This means
we can choose a real amplitudeB and a real pumpingl. The
correction for the self-energy function in Fig. 1 can be wr
ten as

S~v0 ,k!54E dv1dk1

~2p!4 V2F1~k1!G1~k1k1!

54E dudw
V2~u,w!B2~u,w!sin u

v~k1k1!22v02 ig~k1k1!
.

~29!

In Eq. ~29! u is a polar angle between the wave vectorsk and
k1 , and w is the azimuthal angle. Since we use the tr
approximation in this section, it is possible to replace

^b~k!b* ~k1!&5^b~k!&^b* ~k1!&.

It is easy to see that the integral in~29! is determined by the
small region at an angleu, Du.4Ag0 /v0. In this region it
is possible to replaceV(u,w) andB(u,w) by their values for
u50 and use instead of sinu the approximate expressio
sinu.u. As a result, we obtainv(k1k1).2v0(12u2/8).
The real part and the imaginary part ofS are of the same
order of magnitude. Sincev0@g0 , it is possible to ignore
the real part ofS, which gives a small correction for th
sound velocity. The imaginary part ofS gives the correction
for the attenuation rateg:

g5g01Im S. ~30!

For the imaginary part ofS we have

Im S~v0 ,k0e![mn~e!, n~e!5B2~e!,

m54V2E dudw
g0~2k0!sin u

@v~k1k1!22v0#21g0
2~2k0!

, ~31!

whereV[V(u50). The equilibrium value of the amplitud
of the excited wave is defined as

l[g0~11e!5g01mn, n5g0e/m. ~32!

Therefore, the equilibrium densityn of the parametrically
excited wave propagating in a given directione is propor-
tional to e.

In further calculations it is necessary to make some
sumptions about the shape of parametrically excited wav
we ignore the nonzero value of the wave vector of the pum
ing wave and if the system is isotropic~in particular, if the
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excited waves depends only slightly on the angles!, the ex-
cited wave will be a spherical wave~three-dimensional!:

^b~ t,r !&35BE dV exp~2 iv0t1 ik0er!. ~33!

In this case the coefficientm is

m358p2V2v0
21. ~34!

The total density of the excited wave is

N354pB25
2

p

g0v0

4V2 e. ~35!

It is interesting to compare this result with the corr
sponding result for spin waves.2 Saturation of the amplitude
of the excited spin wave occurs due to the renormalization
pumping by the four-wave interaction~dephasing mecha
nism!. The corresponding result for the density of the wa
is n}Ae. Estimate for the proportionality coefficient in thi
equation coincides with the estimate for the coefficient
~34!, but it turns out that the coefficient for the four-wav
interaction is larger numerically. Besides, near the thresh
e!Ae, so the nonlinear attenuation due to the three-wa
interaction is more important than the renormalization
pumping by the four-wave interaction.

If the system has axial symmetry or if the pumping wa
is a standing wave, as is the case in Ref. 5, it is possible
the excited wave will be a cylindrical wave:

^b~ t,r !&25BE dw exp@2 iv0t1 ik0

3~x cosw1y sin w!#. ~36!

In this case the coefficientm and the total density of the
wave are

m2523/2
pV2

Av0g0

, N252pB2523/2Ag0

v0

g0v0

4V2 e.

~37!

A further decrease of the symmetry can render an exc
wave flat. In this case the corresponding equations will b

^b~ t,r !&152B exp~2 iv0t !cos~k0x!, m154
V2

g0
,

N15B25
g0

v0

g0v0

4V2 e. ~38!

For the last two cases the restriction of the sound-wave
plitude by nonlinear attenuation is stronger than the co
sponding saturation due to the dephasing mechanism b
factor of Ag0 /v0 for a cylindrical wave and by a factor o
g0 /v0 for a flat wave.

The total intensity of parametrically excited sound wa
is maximal for a spherical wave and minimal for a flat wav
This situation for sound waves is quite different from t
situation for spin waves, where the integral intensity of pa
metrically excited wave depends only slightly on its sha
In general, it is natural to expect that a nonlinear system w
try to have maximal full intensity and corresponding dissip

890A. R. Muratov
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tion. This means that it is possible to expect transitions fr
a less symmetric shape to a more symmetric shape of
sound wave~for example, flat→ cylindrical→ spherical! as
the intensity of the pumping wave increases. This means
it is necessary to expect the appearance of a sound wave
the maximum possible symmetry near the threshold.

Sound waves interact essentially only if the angle
tween their wave vectors is smaller thanDu.4Ag0 /v0.
This peculiar property of the interaction destroys the lon
range order at an angle between the sound waves and
to the absence of an ordinary pattern formation. Specific
terns which must appear over the threshold of excitation
sound waves have approximately equal intensities of
waves propagating in the range from2Du to Du. In an
anisotropic system the shape of parametrically excited w
is determined mainly by the shape of the pumping wave,
the properties of the interaction vertex between the pump
wave and the excited waves, and by the boundary conditi

5. THERMAL BROADENING

Let us consider the influence of thermal fluctuations
the spectrum of a parametrically generated sound wave.
necessary to take into account the diagram in Fig. 2, wh
contributes to the self-energy functionS1(k). Analytical ex-
pression for this diagram is determined by~29!, where now
the functionF1 is irreducible. The matrix structure of th
correlation functions is essential only for the frequenc
nearv0 . For the diagram in Fig. 2 it is therefore necessary
take into account the nondiagonality of the functionF1 and
use for it the expression~23!. The Green’s functionG has
the frequencyv;2v0 , so we can use for it the expressio
~16!. Equation~29! now can be rewritten as

S1~v,k!54V2E dv1dk1

V~2p!4 G0~k1!

3
~ck11v122v0!21g21l2

u~v12 ig!22~ck12v0!21l2u2 E dVG1~k!.

~39!

The last integration in Eq.~39! must be made over all angle
For a flat wave it is absent, for a cylindrical wave it is a
integral over an angleu, and for a spherical wave it is a
integral overdV5dudw sinu. In Eq.~39! the first integral is
real and the imaginary part of the second integral is de
mined by~31!. The integral from the correlation functionF
over k1 determines the spectral density of excited sou
waves. This density can be determined from the equatio

n5E dv n~v!5
1

V E dvdk

~2p!4 F1~v,k!. ~40!

FIG. 2. One-loop correction for the normal self-energy function.
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sound waves, which propagate in a given direction. The f
tor V in ~39! and~40! depends on the shape of the wave. F
a spherical waveV54p, for a cylindrical waveV52p,
and for a flat waveV51. The spectral density of a wave
introduced in such a way that the total densityN of the sound
wave is

N5Vn.

The first integral in Eq.~39! contains the functionF,
which is singular onv1 , k1 , and the smooth function
*dVG. It is possible to write instead of the second integ
the expression~31! and consider it as a constant. Thus t
renormalized attenuation rate of the sound wave is

g5g01Im S, Im S5mn. ~41!

Here n is the total spectral density of the excited sou
waves, which propagate in a given direction, obtained w
allowance for thermal broadening. Calculating the first in
gral in ~39!, we obtain the equation for the damping rateg.
We can consider this equation as self-consistent equation
g, which means that we have summed the set of diagram
Fig. 2:

g5g01KG0 /n, n[Ag22l2. ~42!

For simplicity it is useful to choose reall. The coefficientK
is

K5m
k0

2~g21l2!

16p2cg
. ~43!

Now the value ofg must be found from Eq.~42!. We see
that g.0 for all values of the pumpingl. The width of the
distributionn(v) is determined by the position of the singu
larity nearest to the real axis in the integral*dv1F1 . For
l.g0 this width is of the order ofn. If l@g0 , the value of
g can be determined from the equation

g.
KG0

Ag22l2
. ~44!

We see that thermal width of the spectrum leads to zer
l→`. It is easy to determine the spectral distributionn(v).
We have

n~v!5G0

k0
2~g21l2!

~2p!3c
J,

J5E dk

uc2k21~g1 iv!22l2u2
. ~45!

The poles of the integrated function arek56 ia6 , where
a65A(g6 iv)22l2. If v,n2/2g, then these poles lie nea
the real axis at a distance of the order ofn. If v.n2/2g, the
corresponding distance is aboutgv/Ag21l2. The main part
of the integral is produced from the first region. Calculati
this part, we obtain

J5
p

2n3f ~ṽ !
, f ~x!5

r 2

&

Ar 2112x2n22,

r 25A~12x2n22!214g2x2n24. ~46!
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For spectral distribution of the sound waves we have

n~v!5
k0

2

~2p!3c

p~g21l2!

2n3

G0

f ~ṽ !
. ~47!

Let us compare Eq.~41! and Eq.~32!, which was ob-
tained for the distribution of zero width. Let (Dv)T be the
thermal width of the spectrum. Forl2g0@(Dv)T we have
g2l!g0 . Therefore, integrating the distributionn(v) over
v, we obtain the integral intensity of excited sound wav
which coincides with the previous result~32! for the inten-
sity.

In a one-loop approximation it is necessary to take i
account the correction for the force function, which can
represented by the diagram in Fig. 3. The analytical exp
sion for this correction is

~F1~k!!1;
V2

V E dv1dk1

~2p!4 F1~k1!F1~k1k1!. ~48!

Here the first functionF1 has a frequency nearv0 and the
second functionF1 has a frequency near 2v0 . We can cal-
culate~48! as an analogous expression forS1 . For the sec-
ond functionF1 we can use the expression

F1~k1k1!5
2Tg0

v0$@v~ uk1k1u!2v2v1#21g0
2~2k0!%

.

~49!

We can then write Eq.~48! in the form

~F1~k!!1;
V2

V E dv1dk1

~2p!4 F1~k1!E dVF~k1k1!.

~50!

The first integral was found in~39!; for the second integra
we have

E dVF~k1k1!5
Tm

v0V2 . ~51!

Thus, for the force function we have

~F1!1;V2
Tn

v0Av0g0

~52!

and

FIG. 3. One-loop correction for the normal force function.
s,
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This correction is small near the excitation threshold. The
fore, in a one-loop approximation it is possible to consid
only the broadening of parametrically excited waves due
the thermal fluctuations. Thermal width of the spectrum
very small, and its dependence on pumping does not ag
with the experiment. This means that it is necessary to us
two-loop approximation in order to describe experimenta
observed broadening of the spectrum.

6. TWO-LOOP CORRECTIONS

To study the broadening of excited sound waves due
their scattering we must take into account the two-loop c
rections for the mass operators: the self-energy functionS
and the force functionF. These corrections forS1 and S2

can be represented by the diagrams in Fig. 4.
Their analytical representation is

S1~k!58V4E d4k1d4k2

~2p!8 @G1* ~k1!F1~k2!F1

3~k11k2k2!G~k1k1!G* ~k1k1!

12G1~k1!F2~k2!F2* ~k11k22k!G

3~k11k2!G~k2k2!#,

S2~k!58V4E d4k1d4k2

~2p!8 @G2* ~k1!F2~k2!F2

3~k11k2k2!G~k1k1!G~2k2k1!

12G2~k1!F1~k2!F1~k11k22k!G

3~k11k2!G* ~k22k!#. ~54!

The corresponding diagrams forF1 and F2 are pre-
sented in Figs. 5 and 6. Analytically, we have

F1~k!58V4E d4k1d4k2

~2p!8 @F1~k1!F1~k2!F1

3~k11k2k2!G~k1k1!G* ~k1k1!

12F1~k1!F2~k2!F2* ~k11k22k!G

3~k11k2!G* ~k2k2!#,

F2~k!58V4E d4k1d4k2

~2p!8 @F2* ~k1!F2~k2!F2

3~k11k2k2!G~k1k1!G~2k2k1!
l
FIG. 4. Two-loop corrections for the norma
self-energy function.
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l
FIG. 5. Two-loop corrections for the norma
force function.
12F2~k1!F1~k2!F1* ~k11k22k!G
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g0~k!→g~k!5g0~k!1mn1Im S1~k!)2 ~58!

t
ig.
ns

o
the

p

the

nd

-
the
the
ning
is
3~k11k2!G~k22k!#. ~55!

It is easy to verify that the expressions forF1(k) andF2(k)
satisfy the propertiesF1(k)5F1* (k) andF2(k)5F2(¸̄).

The corrections for the Green’s functions and for t
correlation functions, represented by the second term
Eqs.~54! and~55!, can be disregarded. In fact, it is necessa
to take into account only the diagrams which contain
correlation functionsF(v) with v;v0 and the Green’s
functionsG(v) with v;v0 or v;2v0 . It is impossible to
satisfy these conditions for the corrections mentioned abo
The first correction term forF2(S2) will then be signifi-
cantly smaller than the corresponding term forF1(S1), be-
cause the distance between the poles of the correspon
Green’s functions is of the order of 2v0 in the first case and
of the order of 8g0 in the second case. This means that
can rewrite Eqs.~54! and ~55! in the form

S1~k!58V4E d4k1d4k2

~2p!8 G1* ~k1!F1~k2!F1

3~k11k2k2!G~k1k1!G* ~k1k1!,

S2~k!.0 ~56!

and

F1~k!58V4E d4k1d4k2

~2p!8 F1~k1!F1~k2!F1

3~k11k2k2!G~k1k1!G* ~k1k1!,

F2~k!.0. ~57!

Here and below the functionsG(k) have the frequenciesv
;2v0 ; therefore, we can use for them the expression~16!.

Equations~56! and ~57! mean that in a two-loop ap
proximation we have a situation similar to a one-loop a
proximation. It turns out that the corrections for the abn
mal self-energy and for the abnormal force functions
significantly smaller than the corresponding corrections
the normal functions. The corrections for the self-ene
functions can be used if we replace
in
y
e

e.

ing

e

-
-
e
r
y

and if we use Eqs.~14! and~15!. Here we took into accoun
the tree correction for the self-energy function, shown in F
1. Analogously, the corrections for the correlation functio
can be taken into account if we replace

G0~k!→G~k!5G0~k!1F1~k! ~59!

and if we use Eq.~23!. In the last equation it is possible t
ignore both the first term and the one-loop correction for
force functionF1 , because they are very small.

Thus, we obtain the following equation for the two-loo
correction for the self-energy functions:

~Dg!2528V4E d4k1d4k2

~2p!8

~ck11v122v0!21g22l2

D~k1!D* ~k1!

3g~k1!F1~k2!F1~k11k2k2!G~k1k1!G*

3~k1k1!. ~60!

The corresponding equation for the force function has
form

G~k!58V4E d4k1d4k2

~2p!8 F1~k1!F1~k2!

3F1~k11k2k2!G~k1k1!G* ~k1k1!. ~61!

First, let us consider the case in which the excited sou
wave is spherical. It is easy to integrate in~60! and~61! over
the anglesq(k1 ,k) and w(k1 ,k). The only factor in these
expressions, which depends on the angleq, is G3(k
1k1)G* (k1k1). For the integral we have

E dq~k1 ,k!dw~k1 ,k!sin q

@v~k1k1!2v2v1#2116g0
2 5

p2

2v0g0
. ~62!

Note that it is proportional tog0
21 and therefore this expres

sion is significantly greater than the analogous term for
direct fourth vertex. This statement is true irrespective of
shape of the excited sound wave. This means that broade
of the spectrum of parametrically excited acoustic wave
determined by the three-wave interaction.
l
FIG. 6. Two-loop corrections for the abnorma
force function.
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Substituting expression~62! in ~60! and ~61!, we obtain
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g~k!5g01mn2C

3E dv1dk1dv2dk2du sin u

~2p!8 g~k1!

3
ck11v122v0)21g22l2

D~k1!D* ~k1!
F1~k2!F1

3~k11k2k2!,

G~k!5CE dv1dk1dv2dk2du sin u

~2p!8

3F1~k1!F1~k2!F1~k11k2k2!, ~63!

whereu[u(k11k,k2), andC5m3V2k0
4/2g0 .

As we will see below, the two-loop correction for th
damping rateg is not very important. Let us, therefore, fir
consider the correction for the force function. It is necess
to use the integrals overk1 , k2 , and u. Experiment shows
that broadening of parametrically excited waves is sign
cantly smaller thang;l. Therefore, we can write

g2~k!2l2[n2, n!l,

D~k!5~ck2v0!22ṽ21n222igṽ. ~64!

The characteristic value ofck2v0 is of the order ofn and
the characteristic value ofṽ is of the order ofn2/2g!n. It is
easy to see that the dependence ofG(v,k) on the wave vec-
tor k is smooth, while its dependence on the frequencyv is
singular. Therefore, integrating in~63! over k1 , k2 , andu,
we can assumeG to be a constant, and the correspondi
integrals are determined by the poles ofD(k)D* (k). The
integral over the angledV5dudf sinu is

E dV F1~k11k2k2!5
p2~g21l2!

2v0n3

G~v11v2v2!

f ~z!
,

z5v11v2v22v0 , ~65!

where f (z) and r are determined by~46!. For z;n2/2g the
function f can be written as

f ~z!5
1

&

A11~2gzn22!2AA11~2gzn22!211).

~66!

It is easy to see thatf (z) is an even function and thatf (0)
51.

The integral overk1 gives

E dk1F1~k!5
p~g21l2!

2cn3

G~v1!

f ~ṽ1!
. ~67!

Thus we obtain the following equation forn(v):

f ~ṽ !n~v!5C3E dv1dv2n~v1!n~v2!n~v11v2v2!,

C35
m3

2~g21l2!

8g0n3 , ~68!

wherem3 is determined by~34!.
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parametrically excited spin waves.It is easy to solve this
equation forf (x)511(x/h)2. In this case the solution is

n~v!5~A2C3h cosh~pṽ/2h!!21.

General consideration shows that for our functionsf (x),
which have no singularities in the immediate vicinity of th
real axes, the solution of Eq.~68! has a symmetrical form
with the center atṽ50 and exponential frequency asym
totics. The characteristic width of the distribution can be
timated in the following way. Sincen5*dvn(v).A2/C3,
using the equation for equilibrium density of the sound wa
~32!, we obtain

m3n5eg0.A16g0n3

g21l2. ~69!

Numerical coefficient in this equation cannot be found a
lytically; it is of the order of unity. Thus,

n.S g0e2

8

g21l2

2 D 1/3

. ~70!

We obtain

~Dv!3.
1

4pg S g0e2
g21l2

2 D 2/3

. ~71!

Analogously, it is possible to obtain the correspondi
equations for the excited cylindrical sound wave. The eq
tion for n is

f ~ṽ !n~v!5C2E dv1dv2n~v1!n~v2!n

3~v11v2v2! f̃ ~z!,

C25
m2

2~g21l2!

16Ag0n7
, f̃ ~z!5A1

r
1

guzu
n2f ~z!

, ~72!

wherem2 is determined by~37!, andr is determined by~46!.
Equation ~72! has the same asymptotic form as the cor
sponding Eq.~68! for a spherical wave. This means that th
asymptotic properties of the solution of this equation are
same as for Eq.~68!. By analogy with Eqs.~69!–~71!, we
can obtain for an excited cylindrical sound wave

m2n5eg0.4~g0n7!1/4A 2

g21l2,

~Dv!2.
n2

pg
.

~g0
6e8!1/7

4pg S g21l2

2 D 4/7

. ~73!

Let us consider the one-dimensional case of a flat so
wave. In this case the dependence ofG on k is not smooth.
We can obtain the following equation forn(v,k):

f̃ ~v,k!n~v,k!5C1E dk1dv1dk2dv2n~v1 ,k1!

3n~v2 ,k2!n~v11v2v2 ,k11k2k2!,

f̃ ~v,k!n~v,k!5F11S ck2v0

n D 2G2

1S 2gṽ

n2 D 2

,
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C 5
m1

2 g21l2

, ~74!
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wherem1 is determined by~36!. Equation~74! means that

m1n5eg0.8n2A 1

g21l2. ~75!

For the width of a sound spectrum we have

~Dv!1.
g0e

8pg
Ag21l2. ~76!

Note that numerical coefficients in expressions~71!, ~73!,
and ~76! are not correct; these equations are only estima
for the corresponding widths. It is necessary to solve
corresponding nonlinear equations numerically in order
determine accurate values of the coefficients.

Let us now estimate the two-loop correction for the se
energy function. It is easy to obtain from the first equation
~63!:

~Dg!2

~Dg!1
;

1

16
e1/7. ~77!

We see that the two-loop correction is small numerica
and that it materially does not change the general pict
This result is logical, because the conservation laws allow
to obtain a not small one-loop correction for the self-ene
function. It turns out that the corresponding two-loop corre
tion is not essential. For the force function the one-loop c
rection is small. It is therefore necessary to take into acco
the two-loop corrections.

7. COMPARISON WITH THE EXPERIMENT

Let us compare the theory with the experiment.5,6 Ex-
perimental studies5,6 were performed for parametric gener
tion of a second-sound wave by a first-sound wave in liq
helium near the superfluid transition temperature. The
nonical variables for this system were found by Pokrovs
and Khalatnikov,8 who calculated the triple vertexU of the
first- and second-sound interaction~the correct vertex is
greater than that found by Pokrovskii and Khalatnikov by
factor of 2, in agreement with the result of Lebedev13!. The
correct expression for this vertex is

U5
1

c1
A v1

3

32r F1

r

Pss

Ts
2

r

rs
S ]rs

]r D
s
G . ~78!

Here r and rs are the total and the superfluid density
liquid helium,P andT are the pressure and temperature,v1

is the frequency of the first sound,c1 its velocity, s5S/r;
Ts5(]T/]s)r , etc. For experimental conditions of Refs.
and 6, it is possible to ignore the weak dependence of
vertex on the angle between the wave vectors, which is sm
asrs /r. Expression~78! can be rewritten in the variablesP,
andT in the following way:

U5
1

c1
A v1

3

32r
~U11U2!, ~79!

where
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1 Jf S T ]P r ]T D
U25r21S ]c

]T
1

bP

kT

]c

]PD . ~80!

Here we introduce the notation

f5
rs

r
, c5

rbP

J
, J5

rkTCP

T
2bP

2 ,

kT5
1

r S ]r

]pD
T

, CP5TS ]s

]TD
P

,

bP52rS ]s

]PD
T

52
1

r S ]r

]TD
P

. ~81!

Here v2 and c2 are the frequency and the velocity of th
second sound. These equations permit us to use the resu
Ref. 14 to calculate this vertex.

Using the Pokrovskii–Khalatnikov equations for the c
nonical variables, we obtain the following expression for t
triple vertex of the second-sound interaction:

V~u!5A v2

16rTs
H Tss

Ts
1

1

rs
S ]rs

]s D
r

@cos~2u!22 cosu#J ,

~82!

whereu is the angle between the wave vectors of the seco
sound waves. This vertex can be written in the variablesP,
andT as

V~u!5A v2
3

16r
X,

X5AxH 1

x
D̂~x!1

1

f
D̂~f!@cos~2u!22 cosu#J , ~83!

where

x5
rkT

J
, D̂5

]

]T
1

bP

kT

]

]P
.

It is possible to compare the experimental results w
theory for three parameters: the threshold of the sec
sound excitation, the equilibrium intensity of the secon
sound over the threshold, and the form of the spectrum of
excited waves. The ratio of the velocities of the pumpi
first-sound wave and the excited second sound waves
about 1022 in Ref. 5. The pumping wave was a standin
wave. These results lead to a generation of cylindrical~or
perhaps flat! but not spherical second-sound waves. It is p
sible to see that an accurate comparison of the data on
excitation threshold with Eqs.~27!, ~79!, and ~80! gives a
good agreement, significantly better than that in Ref. 5. I
necessary to point out, however, that for the experiment5 Eq.
~27! must be modified. A special geometry of the experime
tal cell and pumping by a standing wave lead to the follo
ing modified equation for the excitation threshold:

uau5g0 /&U.

A correlation of the second-sound waves for intermedi
angles between the wave vectors was not observed ex
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mentally. This result agrees with our assertion about the ab-
e

st

ity

y

ak

ru
b

ex
a

ve
ifi

, i
de
a

in
al
ar

on
o

e-
e

un
e
te
th
av

Three-wave interaction between sound waves is essential
an
he
ordi-
lly
the
a
the

ion
It is

l be
uliar

is
ing
6.
es
of a

of
of

ela-
ith
he

f the

the
flat

in

s-
G.
the

ar
r

er-
sence of long-range order at the angle for parametrically g
erated sound waves.

The thermal width near the threshold can be easily e
mated for a given experiment.5 In fact,

~Dv!T5
KG0

Ag22l2
;m

v0g0T

4p2c2
3 ;g0

v0g0T

4p2c2
3n

. ~84!

The value ofn can be found from the second-sound intens
Ĩ :

Ĩ 5c2v2n,

and we have

~Dv!T5g0

v0
2g0T

4p2c2Ĩ
;g0

g0T

l2
2Ĩ

. ~85!

For the values

g0;25 s21, l2;1024 m, I;1025 W/m2,

kT;3310223 J

we obtain

~Dv!T

g0
;1028,

which is negligible. In a real experiment there are alwa
other sources of noise except temperature. Estimate~85! de-
termines the condition under which it is necessary to t
into account such noise source.

Experimental shape of the second-sound spect
strongly fluctuates. For good experimental results it can
universally described as a symmetrical spectral line with
ponential tails. The width of this spectral line is proportion
to ea with a;1 – 1.2. This result agrees well with Eqs.~73!–
~76!.

The results for the intensity of the second-sound wa
are not yet fully understood. Experimental values are sign
cantly smaller than theoretical expressions~37! and~38!. The
reason for this discrepancy is not known. It was shown
particular, that the intensity of the excited sound wave
pends strongly on its shape. The excited second-sound w
in Ref. 5 is not spherical due to the pumping by a stand
wave. Unfortunately, experimental information does not
low us to draw definite conclusion about the shape of a p
metrically generated sound wave.

8. CONCLUSIONS

The theory of parametric excitation of sound waves c
sidered by us differs significantly from the standard theory
spin waves.3 The most important difference is that thre
wave interaction is allowed for sound waves. This thre
wave interaction produces nonlinear attenuation of the so
wave and determines the saturated value of the amplitud
an excited wave. The intensity of a parametrically exci
sound wave is proportional to the difference between
value of pumping and bare attenuation rate of a sound w
e5l/g021.
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only if the angle between their wave vectors is smaller th
4Ag0 /v. This property destroys long-range order over t
angle between waves and accounts for the absence of
nary pattern formation. The total intensity of a parametrica
excited sound wave crucially depends on the shape of
wave. It is maximal for a spherical wave and minimal for
flat wave. The shape of an excited wave is determined by
symmetry of the system~boundary conditions!, by the shape
of the pumping wave, and by the properties of the interact
vertex between the pumping wave and the sound waves.
expected that the symmetry of an excited sound wave wil
the same as the symmetry of a system due to the pec
interaction between sound waves.

The spectrum of parametrically excited sound waves
similar to the spectrum of other waves. Thermal broaden
of the spectrum is negligible for the experiment in Ref.
Significant broadening of the spectrum of excited wav
takes place as a result of their scattering. The structure
nonlinear integral equation, which determines the shape
the spectrum of sound waves, is similar to the structure
analogous equations for waves with other dispersion r
tions. This fact leads to universal shape of the spectrum w
exponential asymptotic behavior over the frequency. T
width of the spectrum essentially depends on the shape o
wave. Roughly, it is estimated asDv;g0ea/4p. Hereg0 is
the bare damping rate of a sound wave, and the value of
parametera depends on the shape of the wave. For a
wavea51, for a cylindrical wavea58/7, and for a spheri-
cal wavea58/6, whereas the corresponding index for sp
waves is equal to 2/3.
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The renormalization group in the problem of turbulent convection of a passive scalar

l

impurity with nonlinear diffusion
N. V. Antonov* )

St. Petersburg State University, 199034 St. Petersburg, Russia
~Submitted 7 August 1996!
Zh. Éksp. Teor. Fiz.112, 1649–1663~November 1997!

The problem of turbulent mixing of a passive scalar impurity is studied within the renormalization-
group approach to the stochastic theory of developed turbulence for the case where the
diffusion coefficient is an arbitrary function of the impurity concentration. Such a problem
incorporates an infinite number of coupling constants~‘‘charges’’!. A one-loop calculation shows
that in the infinite-dimensional space of the charges there is a two-dimensional surface of
fixed points of the renormalization-group equations. When the surface has an IR-stability region,
the problem has scaling with universal critical dimensionalities, corresponding to the
phenomenological laws of Kolmogorov and Richardson, but with nonuniversal~i.e., depending
on the Prandtl number and the explicit form of the nonlinearity in the diffusion equation!
scaling functions, amplitude factors in the power laws, and value of the ‘‘effective Prandtl
turbulence number.’’ ©1997 American Institute of Physics.@S1063-7761~97!00911-6#
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The stochastic formulation of the theory of an isotrop
developed turbulence in an incompressible viscous liq
uses the Navier-Stokes equation with an external rand
force ~see the monographs of Monin and Yaglom1 and
McComb2 and the review by Adzhemyanet al.3!:

D tw i2n0]2w i1] i p2 f i50, D t[] t1~w•]!. ~1!

Here D t is the Galilean-covariant derivative,w is the trans-
verse ~in view of the incompressibility condition] iw i50!
vector velocity field,p and f are the pressure and the tran
verse random force per unit mass~all these quantities depen
on x[(t,x)!, n0 is the kinematic viscosity coefficient, and]2

is the Laplacian. The forcef i is assumed to have a Gaussi
distribution with a zero mean and a correlator

^ f i~x! f j~x8!&5
d~ t2t8!

~2p!d E dkPi j ~k!dw~k!eik–~x2x8!,

~2!

wherePi j (k)5d i j 2kikj /k2 is the transverse projector,d.2
is the arbitrary~for the sake of generality! dimensionality of
the spacex, anddw(k) is a function ofk[uku and the model
parameters. This function can be chosen in the form

dw~k!5D0k42d22ehS m

k D , h~0!51, D0[g0n0
3 , ~3!

whereg0.0 is the bare coupling constant~‘‘charge’’!, h is a
fairly smooth but otherwise arbitrary function,m[1/L is the
reciprocal external turbulence scale,e>0 is the
renormalization-group expansion parameter, similar
e542d in the theory of critical phenomena,4 with a loga-
rithmic valuee50. The random force models the interactio
with large-scale (k;m[1/L) movements, so that its phys
cal range of values ise>2 ~for more details see Refs. 3 an
5!. For e.2 the problem arises of studying the depende
of the correlation functions onm, which proves to be quite
nontrivial because of the presence in the theory of ‘‘dang
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dimensionalities. Hence in what follows we limit our dis-
cussion to the region 0,e<2, taking the limite52 of ‘‘IR-
pumping’’ as the physical value ofe, as is done in the ma
jority of papers on the renormalization-group theory
turbulence. Note that ate52 the function~3! can be inter-
preted as a power model of the functiond~k!.

De Dominicis and Martin6 used the renormalization
group method to prove the existence in the problem~1!–~3!
of IR scaling with exactly known critical dimensionalities

Dw512
2e

3
, Dw85d211

2e

3
,

D t52Dv5221
2e

3
, Dm51, ~4!

which at e52 coincide with the well-known Kolmogorov
values

Dw52 1
3, Dw85d1 1

3, D t52Dv52 2
3, Dm51

~5!

~the auxiliary fieldw8 appears in the quantum-field formula
tion of the problem; see Sec. 2!. The ‘‘freezing’’ of the
dimensionalities6 at their Kolmogorov values over the entir
physical rangee>2 and the fact that the correlation func
tions are independent of viscosity in the inertial interv
~Kolmogorov’s second hypothesis! were proved by Adzhe-
myanet al.5

Adzhemyan et al.7 applied the renormalization-grou
technique to the problem of turbulent convection of a pass
scalar impurity. In this case the problem~1!–~3! is supple-
mented by a diffusion equation~or by a heat equation in the
heat transfer problem! of the form1,2

D tu5] iJi1 f u, ~6!

where u[u(x) is the random component of the impurit
concentration field~temperature!. Adzhemyanet al.7 consid-
ered a simplified version of the problem~6! without the ran-

898-09$10.00 © 1997 American Institute of Physics
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form Ji5u0n0] iu, whereu0 is the reciprocal Prandtl num
ber. For such a problem Adzhemyanet al.7 proved the exis-
tence of IR scaling, justified Richardson’s phenomenolog
4
3-law,1 and obtained the following expression for the effe
tive reciprocal Prandtl numberu* in the IR asymptotic limit:

u* 5
1

2 S 211A11
8~d12!

d D 1O~e!.

In the papers8–16 that followed, the results of Ref. 7 wer
reproduced and augmented, in particular, by calculation
the Batchelor constant in the passive impurity spectrum,8–10

by studies of chemically decaying impurities,13,14 and by al-
lowing for anisotropy.15,16

In the present paper we will study the problem~6! in the
presence of a random force and a currentJi of general form.

In view of the isotropy we havêf i f
u&50 and the cor-

relator

^ f u~x! f u~x8!&5
d~ t2t8!

~2p!d E dkdu~k!eik–~x2x8! ~7!

can be written in the form~we will justify this later!

du~k!5D08k
2~k21m2!2d/22ae. ~8!

The exponent in~8! is selected in such a way that ate50
both nonlinearities~‘‘interactions’’! in ~6! are logarithmic
~see Sec. 2!, since otherwise one nonlinearity would b
‘‘weaker’’ ~from the standpoint of the renormalizatio
group! than the other and would provide only corrections
IR scaling, corrections which should be ignored in the le
ing term of the IR asymptotic limit~similar ideas were de
veloped in Refs. 13 and 17!. The most ‘‘realistic’’ value of
an additional new parametera.0 should be considere
equal to 1/2; then ate52 we will havedw,du}k2d simulta-
neously fork@m. The parameterm guarantees IR regular
ization of perturbation diagrams.

Like the forcef i in Eq. ~1!, the random contributionf u

to ~6! models the interaction between thek@m modes~for
which the statistical model~1! and ~6! is assumed meaning
ful! and the large-scale regionk<m. In the case at hand th
substance of the impurity ‘‘disappears’’ in the regions w
f u,0 and ‘‘appears’’ in the regions withf u.0, passing in
the process through the long-wave region withk<m. Here
the conservation of the total amount of impurity~with allow-
ance for the amount present in the long-wave region! is en-
sured by the conditiondu(k)50 atk50. The parametersD0

and D08 in the correlators~3! and ~8! of the random forces
can be expressed, via exact relationships, in terms of q
tities that have direct physical meaning, namely, the aver
rates of energy and impurity-concentration dissipation~see
Sec. 5!. In analyzing the critical dimensionalities, we ca
eliminate the ‘‘superfluous’’ parameterD08 in ~8! by re-
stretching the fields, so that below~with the exception of
Sec. 5! we putD0851.

Moreover, the choice of the correlators in the for
^ f u(t) f u(t8)&}d(t2t8) is typical of problems of Brownian
movement and critical dynamics type~see, e.g., Ref. 4!. Of
course, the physics of developed turbulence is far from c
cal dynamics, but here too there are certain argument
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entropy principle ~see Ref. 18!, and second, because o
strong IR singularities the two-time correlation function ra
idly ~superexponentially! increases with the increasing di
ferencet2t8, the rate of decrease growing with the extern
turbulence scaleL ~see, e.g., Refs. 19 and 20!, and if we are
not interested in the dependence of these functions onL, we
can replace them by the functiond(t2t8).

In the expansionJi5] iV0(u)1O(]2) of the currentJi

in powers of the gradient] we can immediately ignore the
contributions containing more than one], as being IR-weak.
For the same reason we can ignore the lower boundu on the
value of the field, a bound that follows from the fact that t
total impurity concentration is positive. However, we w
see that in the expansion

V0~u!5 (
n51

`
ln0un

n!
~9!

we can ignore contributions of higher orders inu in compari-
son to the first-order contributionV0}u. Hence the corre-
sponding quantum-field model is ‘‘infinitely charged’’~here
the parametersln0 reduced to dimensionless form act
coupling constants, or ‘‘charges’’!. This essentially sets ou
problem apart from ordinary models of the theory of critic
behavior of thew4 type,4 where contributions with highe
orders of derivatives and fields are found to be I
unessential. Such an infinitely charged problem has rece
been studied in Ref. 21 in the renormalization-group analy
of the stochastic model of a growing phase boundary, p
posed in Ref. 22.

The main result achieved in this paper is the proof
multiplicative renormalizability of the quantum-field infi
nitely charged model corresponding to the problem~1!–~3!
and ~6!–~9!, which makes it possible to apply th
renormalization-group technique in the analysis of the
behavior of the problem. The renormalization constants
the renormalization-group functions are found explicitly
the one-loop approximation by using the functional tec
nique developed in Ref. 21. The correspondingb-functions
in the infinite-dimensional space of charges have a tw
dimensional surface of fixed points. When this surface has
IR-stability region, the problem has IR scaling with univers
critical dimensionalities of fields and parameters, coincid
with those in Refs. 6 and 7 and corresponding to Kolmo
orov scaling and the Richardson law ate52, but with non-
universal~i.e., depending on the choice of the fixed point o
in other words, on the value of the Prandtl number and
explicit form of the nonlinearity in the diffusion equation!
scaling functions, amplitude factors in the power laws~such
as the Batchelor constant in the passive impurity spectru!,
and value of the ‘‘effective Prandtl turbulence number’’u* .

2. QUANTUM-FIELD STATEMENT OF THE PROBLEM:
ANALYSIS OF ULTRAVIOLET DIVERGENCES

In accordance with a general theorem~see, e.g., Ref. 3!,
the stochastic problem~1!–~3! and ~6!–~9! is the equivalent
of the quantum theory of a double set of field
F[w,w8,u,u8 with an action functional

899N. V. Antonov



TABLE I.
F w w8 u u8 m,m n,n0

dF
k 21 d11 12ae d211ae 1 22

dF
v 1 21 21/2 1/2 0 1

dF 1 d21 2ae d1ae 1 0

F ln0 ln g0 gn0 gn ,g

dF
k 2(n11)1(n21)ae 2(n11) 2e (n21)ae 0

dF
v (n11)/2 (n11)/2 0 0 0

dF (n21)ae 0 2e (n21)ae 0
u duu
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S~F!5Sw~w,w8!1
8 8

2
1u8@2D tu1]2V0~u!#,

~10!

whereV0(u) is specified in~9!, andSw(w,w8) is the action
functional6 for a liquid without an impurity:

Sw~w,w8!5
w8dww8

2
1w8@2D tw1n0]2w#. ~11!

The nonlocal contribution of the random forces is writte
symbolically; in what follows the required summation ov
the field indices and integration over the argumentsx5(t,x)
in ~10!, ~11!, and similar formulas are implied.

The action~10! is assumed to be unrenormalizable a
its parameters to be bare; they are labeled by a zero, in
trast to their renormalizable counterparts~see below!. The
correlation functions ~the Green’s functions!
Gn5^F(x1)...F(xn)& of the model~10! are functional av-
erages with a weight equal to expS(F). They have standard
representations in the form of Feynman diagrams; the li
in the diagrams stand for the bare propagators^FF&0 deter-
mined by the free~quadratic in field! part of the action~10!,
while the leading~in F! terms inS(F) determine the verti-
ces.

As is well known,23 the analysis of UV divergences i
related to the analysis of dimensionalities. In a dynami
model of the form~10!, for each quantityF two independent
canonical dimensionalities can be introduced, the momen
dimensionalitydF

k and the frequency dimensionalitydF
v . Us-

ing these two dimensionalities, we can find the total dime
sionality dF5dF

k 12dF
v ~see Refs. 3 and 24!. By definition,

dx
k5dt

v521 anddt
k5dx

v50, while the dimensionalities of
the other quantities are found from the requirement that
terms in the action~10! be dimensionless~in momentum and
frequency, separately!. The data on dimensionalities ar
listed in Table I~it also lists the parameters of the renorma
ized theory, which we will need later!.

We see that all the interactions in~10! and~11! become
logarithmic simultaneously (dg0

5dln0
50) ate50, with the

result that they must all be included in the analysis of the
behavior of the model.

The UV divergences have the form of poles ine in the
Green’s functions. The total canonical dimensionality of
arbitrary 1-irreducible diagram~the ‘‘formal divergence in-
dex’’! is
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dFNF ,

where the sum is over all types of field, andNF is the num-
ber of the corresponding external legs in the diagram. T
counterterms are generated by ‘‘surface-divergent’’
irreducible diagrams; a diagram is surface-divergent if
real divergence index~see below! in the logarithmic theory
~i.e., ate50! is a nonnegative integer, withd(e50! deter-
mining the degree of homogeneity of a counterterm in m
menta and frequencies. When analyzing the divergence
the model~10! and ~11!, the following additional consider-
ations must be taken into account~cf. Refs. 6 and 24!:

~1! In view of the passiveness of the impurity, the reno
malization of the Green’s functions in which only the field
w and w8 participate is done in same way as for the mod
without an impurity. It is well known that the renormaliza
tion in this case amounts to introducing a counterterm of
form w8]2w or, what is the same thing, to introducing
single renormalization constantZn into the corresponding
term in the action~11!.

~2! All the 1-irreducible Green’s functions with
Nw85Nu850 vanish.

~3! The operator]2 at a vertex of~10! can be shifted to
the field u8 via integration by parts. Hence in any 1
irreducible diagram, with each external legu8 attached to
such a vertex there is associated the square of the co
sponding external momentum, and the ‘‘real divergence
dex’’ d8 ~see Ref. 24! will be smaller than the formal diver-
gence indexd by the appropriate number of units. Since th
field w is transverse, the derivative] at the vertexu8(w])u
can be shifted to the fieldu8. Hence each external legu or u8
attached to such a vertex is associated with a single mom
tum. Thus, in any 1-irreducible diagram, each external legu8
is associated with at least a single momentum, and the in
d8 obeys the conditionsd22Nu8<d8<d2Nu8 .

~4! The Galilean invariance of the model~10! and ~11!
also implies that the necessary counterterms are invaria
In particular, the covariant derivativeD t must enter into the
counterterms as single entity.

Taking these considerations into account, we can ve
that in our model surface divergences in the Green’s fu
tions with impurity fields can appear only in the 1-irreducib
diagramsu8u•••u with any finite number of fieldsu. For all
these diagrams we haved52 and d850, and the corre-
sponding counterterms are sure to contain] iu8 and thus can
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ment of gradients or the participation ofD t and m are for-
bidden!. Hence renormalization of the model~10! and ~11!
generates counterterms only in the form of the structu
already present in the action functional, which means that
theory under consideration is multiplicatively renormal
able.

3. RENORMALIZATION-GROUP EQUATIONS: CALCULATING
THE RENORMALIZATION-GROUP FUNCTIONS IN THE
ONE-LOOP APPROXIMATION

The results of Sec. 2 yield the following formula for th
renormalized action of the model~10! and ~11!:

SR~F!5SwR~w,w8!1
u8duu8

2
1u8@2D tu1]2VR~u!#,

~12!

where

VR~u!5 (
n51

`
Znlnun

n!
, ~13!

andSwR is the renormalized action of the problem without
impurity,

SwR~w,w8!5
w8dww8

2
1w8@2D tw1nZn]2w#. ~14!

All the functionals ~12!–~14! depend on the variable
$g,n,ln%, which are the renormalized analogs of the ba
parameters$g0 ,n0 ,l0n%, and the renormalization massm,
which is an additional arbitrary parameter in the renorm
ized theory. The correlatordw in ~14! can be expressed i
terms of g, n, and m through: g0n0

35gn3m2e. The bare
charges$gn0 , n51,2,3,...% and their fully dimensionless
renormalized counterparts@gn; n51,2,3,...} can be ex-
pressed in terms of the parametersln0 andln in ~9! and~13!
by the following relationships:

ln05gn0n0
~n11!/2, ln5gnn~n11!/2m~n21!ae, ~15!

with g1[u in the notation used in Ref. 7. The renormaliz
tion constants in the minimum subtraction~MS! scheme de-
pend on the totally dimensionless charges$g,gn% ~Zn de-
pends only ong! and on the parameterse, a, andd.

The action~12! can be obtained from~10! via the fol-
lowing renormalization of the parameters~it is unnecessary
to renormalize the fields and the ‘‘mass’’m05m!:

n05nZn , g05gm2eZg , gn05gnm~n21!aeZgn
. ~16!

The constantsZ in ~12! and~16! are linked by the following
relationships:

Zg5Zn
23 , Zgn

5ZnZn
2~n11!/2 , ~17!

with the first equality being a consequence of the absenc
renormalization in the contribution withdw in ~12!.

The relationS(F,e0)5SR(F,e,m) ~e0 is the set of bare
variables, ande is the set of renormalized variables! for the
Green’s functionsGn5^F•••F& of the model~10! yields
the renormalization-group equation
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DRG[Dm2gnDn1bg]g1 (
n51

`

bgn
]gn

, ~18!

where we have used the notationDx[x]x for any variablex.
For any renormalization constantZi , the corresponding

anomalous dimensionalityg i is defined asg i[D̃m ln Zi ,

where D̃m is the operationDm for fixed e0 , and theb-
functions for all charges are defined by the expressions

bg[D̃mg5g@22e13gn#,

bgn
[D̃mgn5gn@2~n21!ae2ggn

#5gn@2~n21!ae

1~n11!gn/22gn#. ~19!

The last equality in~19! follows from the relationship be-
tween the renormalization constants in~17!. Note thatDRG

in ~18! is the operationD̃m in the variablese andm. We also
note that because there is no field renormalization the in
Green’s functionsGn(e0) and the renormalized Green’
functions GnR(e,m) coincide ~the difference lies in the
choice of variables! and can equally be used to analyze t
IR asymptotics.

The expressions for the constantZn and the
renormalization-group functionsbg and gn for the problem
without an impurity in the one-loop approximation can
found in Refs. 3 and 24:

Zn512
ag

2e
1O~g2!,

gn~g!5ag1O~g2!, a5
d21

4~d12!

Sd

~2p!d , ~20!

whereSd[2pd/2/G(d/2) is the surface area of a unit sphe
in d-dimensional space. It is known6,24 that the functionbg

in ~19! has an IR-stable fixed pointg* 52e/3a1O(e2) at
which bg(g* )[0 and bg8(g* ).0. The relation
bg5g(22e13gn), which follows from~17!, makes it pos-
sible to determinegn* [gn(g* )52e/3 exactly~with e2, e3,
and higher-order corrections!. The critical dimensionalities
of simple fields and time can be expressed in terms o
single anomalous dimensionalitygn* and can also be deter
mined exactly~their explicit form is given in~4!!.

Let us calculate the constantsZn in ~12! in the one-loop
approximation by using the method developed earlier in R
21. In the expansion of the generating functionalGR(F) of
1-irreducible functions of the model~12! in p ~the number of
loops!,

GR~F!5 (
p50

`

G~p!~F!, G~0!~F!5SR~F!, ~21!

the loop-free~‘‘tree’’ ! contribution is the renormalized ac
tion ~12!, and the one-loop contribution is given by the e
pression~see, e.g., Ref. 25!

G~1!~F!52
1

2
Tr ln

W

W0
, ~22!

whereW is a linear operator with a kernel
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d2SR~F!
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For the subsequent discussion it is important to note that
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dF~x!dF~y!

and W0 is a similar expression for the free~quadratic in
fields! part of the action~12!. Both quantities,W and W0 ,
are 4-by-4 matrices in the fieldsF[w,w8,u,u8, and the in-
verse ofW0 represents lines~propagators! in the diagrams of
the model~12!.

The constantsZn can be found from the condition tha
UV divergences~poles ine! in Eq. ~21! must be cancelled; if
the additional condition thatZ equals unity plus only poles in
e ~the MS scheme!, the constants can be determin
uniquely. To calculate the constantsZn we need only the
matrix ~23! at w,w850 ~see below!; for single-loop calcula-
tions in ~22! we must putZ51, and in the loop-free contri
bution in ~12! we must allow for terms of orderg in the
constantsZ. Thus, for the nonzero elements of the mat
~23! we have~for the sake of brevity we drop indices o
fields and derivatives!

W~uu!52]2u83V9~u!, W~u8u8!52du,

W~uu8!5LT, W~u8u!5L, W~wu!5u8],

W~uw!52]u8, W~u8w!5]u, W~wu8!52u],

W~ww8!5MT, W~w8w!5M ,

W~w8w8!52dw. ~24!

Heredw anddu are the correlators~3! and ~8!, the function
V(u) can be obtained fromVR(u) by replacingZn with unity
~here and in what follows,V8 and V9 stand for the deriva-
tives of V with respect to the single variableu(x)!, we have
written L5] t2]2V8 andM5] t2n]2, andLT52] t2V8]2

andMT52] t2n]2 are the transposed operations.
To find theZn we need not the entire exact expressi

~22! but only its divergent part~see Sec. 2!

E dx]2u8~x!R~u~x!!,

with R(u) similar toV(u). This implies that it is sufficient to
know the trace of the logarithm of the matrix~23! to first
order in the matrix elements~uu!, ~uw!, and ~wu! that are
linear in u8 ~see Eqs.~24!!. Using the well-known formula
d(Tr ln K)5Tr(K21dK), from ~24! we find ~with the neces-
sary accuracy! that Tr ln(W/W0).2I112I2, where

I 15E dx D~uu!~x,x!V9~u~x!!]2u8~x!,

I 25E dxE dy ] iu~x!D ~u8u!~x,y!Di j
~ww!~x,y!] ju~y!,

~25!

and D (FF) are the corresponding elements of the mat
W21 at w,w8,u50. By their very meaning,D (ww) is the or-
dinary bare propagator of the model~14! with Z51, and
D (uu) and D (u8u) are the propagator and the response fu
tion of the model~12! with Z51 in the ‘‘external field’’
u(x).
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after the derivatives] have been shifted to the external fa
tors u(x) and u8(x), the expressions that remain inI 1,2 di-
verge only logarithmically, and in calculating the diverge
parts of the diagrams~25! all the external momenta can b
set equal to zero~here IR regularization is ensured by th
‘‘mass’’ m!. This means that in selecting the pole~in e! part
in ~25! we can ignore the inhomogeneity of]2u8(x) and
u(x) in I 1 and of] iu(x), ] iu8(x), andu(x) in I 2 , i.e., they
can be considered constants. Then the necessary inte
can easily be calculated by passing to the momentu
frequency representation:

D ~uu!~x,x!5E E dvdk

~2p!d11

du~k!

v21@k2V8~u!#2

5
m22ae

2ae

2a1V9~u!

V8~u!
1••• ,

E dyD~u8u!~x,y!Di j
~ww!~x,y!

5E E dvdk

~2p!d11

Pi j ~k!dw~k!

~v21n2k4!~ iv1V8~u!k2!

5d i j

m22e

2e

a2gn2

2~n1V8~u!!
1••• , ~26!

where we have introduced the quantitiesa1[Sd/4(2p)d and
a2[(d21)Sd/2d(2p)d.

After the derivative inI 2 has been shifted to the fieldu8
via integration by parts and~25! and ~26! have been substi
tuted into~22!, we arrive at the following expression for th
divergent partG (1)(F) with the necessary accuracy:

G~1!~F!5
a1m22ae

2ae E dxF1~u!]2u8

1
a2m22e

2e E dxF2~u!]2u8. ~27!

The relationships

F1~u!5
V9~u!

V8~u!
5 (

n50

`
mae~n11!n~n11!/2r nun

n!
,

F2~u!5E
0

u

dq
gn2

n1V8~q!
5 (

n50

`
mae~n11!n~n11!/2snun

n!
~28!

determine the functionsF1,2 in ~27! and the totally dimen-
sionless coefficientsr n andsn ~polynomials in the chargesg
andgn!. The value of the lower limit of integration inF2 is
indeed unimportant, since the coefficientsr 0 and s0 in ~28!
obviously contribute nothing to~27!. From the above re-
quirement of cancelling poles ine and with allowance for
~15! we obtain

Zn512
a1r n

2aegn
2

a2sn

2egn
1••• . ~29!

When doing calculations that involve the renormaliz
tion constants of renormalization-group functions, we m
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form ~29! which depend only on the chargesg and gn as-
sumes the form

D̃m5bg]g1 (
n51

`

bgn
]gn

.

Here, to the adopted accuracy, it is sufficient to keep only
first terms in theb-functions~19!, which yields

D̃m522eDg2ae (
n51

`

~n21!Dgn
. ~30!

Then we can use~29! to obtain an expression for the anom

lous dimensionalitiesgn[D̃m ln Zn ,

gn5
a1r n1a2sn

gn
,

which yields the following expression for theb-functions in
~19!:

bgn
5gnF2~n21!ae1

~n11!gn

2 G2@a1r n1a2sn#.

~31!

From the definition~28! we can find the first coefficient
r n andsn :

r 15
g3

u
2S g2

u D 2

, r 25
g4

u
2

3g2g3

u2 1S g2

u D 3

,

r 35
g5

u
2

4g2g4

u2 23S g3

u D 2

1
12g2

2g3

u3 26S g2

u D 4

,

s15
g

u11
, s252

gg2

~u11!2 ,

s352
gg3

~u11!2 1
2gg2

2

~u11!3 , ~32!

etc. ~recall thatu[g1!.

4. FIXED POINTS; INFRARED SCALING

The renormalization-group fixed points$g* ,gn* % are
determined by the conditions

bg~g* !5bgn
~g* ,gn* !50

for all n51,2,3,. . . ; here the known valuesg* ,gn* 52e/3
for a liquid without an impurity must be used in Eq.~31! ~see
the text after~20!!. The explicit form of the functions~31!
and ~32! implies that in defininggn* the quantitiesu[g1*
and g2* can be chosen arbitrarily, while the othergn* for
n>3 are then uniquely determined from the equatio
bgn

50 with n>1. This means that in the infinite
dimensional space of the chargesgn the renormalization-
group equations~18! have a two-dimensional surface o
fixed pointsgn* parametrized by the valuesg1* andg2* .

A complete study of the stability of these points is
difficult task. According to the general rule~see, e.g., Ref. 4!,
a fixed point is IR-stable if the real parts of all the eigenv
ues of the matrixv[]b/]g ~for a complete set of charge
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triangular block nature of the matrixv for our model~the
function bg is independent of the chargesgn!, one of the
eigenvalues is known—it coincides with the diagonal e
ment ]bg /]g52e1O(e2) and is positive. The necessar
condition for IR-stability is the positiveness of the other d
agonal elementsvnn[]bgn

/]gn , which from ~28! can be
found explicitly for all values ofn,

vnn5~12n!ae1
~n11!e

3
1

a2g*
~u* 11!2

1
a1n~n11!

2u
*
2 S g3* 2

2g2*
2

u*
D , ~33!

whereg3* must be expressed in terms ofu[g1* and g2*
via the conditionbg1

50:

g3* 5
2u

*
2 e

3a1
2

a2g* u*
a1~u* 11!

1
g2*

2

u*
.

An analysis of~33! shows that for 0,a<1/3 all thevnn

are positive in the regionu>u1* and for small values of
g2*

2 /u
*
3 , where

u1* 5
1

2 S 211A11
8~d12!

d D
is the positive root of the equation

u~u11!5
2~d12!

d
,

which root coincides with the asymptotic value of the effe
tive Prandtl number obtained in Ref. 7. This region also c
tains the pointu5u1* , gn* 50, n>2, corresponding to the
simplified model withV(u)}u studied in Refs. 7–9. Fo
a>1/3 the point becomes IR-unstable, but in the reg
1/3,a<2/3, which incorporates the ‘‘physical’’ value
a51/2 ~see Sec. 1!, all thevnn are positive foru>u2* and
small values of the ratiog2*

2 /u
*
3 , whereu2* is the positive

root of the equation

u~u11!5
2~d12!

d~223a!
.

Although this is only a necessary condition, we can exp
that ata51/2 the surface of the fixed points has a region
IR-stability. If this is the case, the model~10! has scaling
with the same~as for a liquid without an impurity! dimen-
sionalities~4! of the quantitiesw, w8, v, and m ~this is a
consequence of the passivity of the impurity!; in the general
case the dimensionalityD@F#[DF of a quantity F for a
dynamical model of type~10! can be found from the follow-
ing relationship:3,24

D@F#[DF5dF
k 1DvdF

v1gF* 5dF2gn* dF
v1gF* , ~34!

wheregF* 5gF(g* )5D̃m ln ZFug5g
*

is the anomalous dimen

sionality of the quantity if the quantity is renormalizabl
F5ZFFR . In view of the absence of renormalization of th
field u andu8, we can writegu5gu850. This together with
~34! and the data of Table I yields
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As in ~4!, the result~35! is exact, i.e., contains no correction
of ordere2, e3, etc.

5. SOLVING THE RENORMALIZATION-GROUP EQUATIONS
FOR CORRELATORS: THE RICHARDSON AND
KOLMOGOROV LAWS

The second equation in~35! corresponds to Richardson
empirical 4

3-law for the rate of spread of a cloud of impurit
particles in a turbulent atmosphere.1 Indeed, if the field
u(x,t) is the concentration of impurity particles, the effecti
radius R at time t.0 of a cloud of such particles that a
t850 started at the originx850 is given by the following
expression:

R25E dx x2^u~x,t !u8~0,0!&. ~36!

Combining ~35! and ~36! and allowing for the fact tha
DR521, we find thatD@dR2/dt#5222D t , and from~4!
at e52 we haveD t522/3, so thatdR2/dt}R4/3, which is
just what Richardson’s law states.1

From the first equation in~35! with the real valuese52
and a51/2 we find thatDu521/3, which corresponds to
Kolmogorov’s phenomenological5

3-law for the spectrum of a
passive impurity.1 To clarify this we note that the critica
dimensionality of an arbitrary Green’s function in th
(t,x)-representation is simply the sum of the dimension
ties of the constituent fields, while in the momentum
frequency representation it can be obtained from Four
transformation formulas. In particular, for the correlators

Du~v,k!5^uu&~v,k!, Dst
u ~k!5

1

2p E dvDu~v,k!

~37!

we obtain

D@Du~v,k!#52Du2d2Dv , D@Dst
u ~k!#52Du2d.

~38!

Usually one studies not the static~single-time! correlator
Dst

u (k) but the one-dimensional spectrum of the passive
purity, Eu(k)}kd21Dst

u (k) ~see below!. Here, from Eqs.~35!
and ~38! and the fact that Du521/3 we find that
D@Eu#5d211D@Dst

u #525/3, i.e.,Eu(k)}k25/3, as stated
by the 5

3-law.
The critical dimensionalities of the field,~4! and ~35!,

and as result the exponents in the power laws of the Kolm
orov and Richardson type prove to be universal in the mo
~10!, i.e., independent of the choice of a fixed point in t
IR-stability region or, in other words, of the model param
eters$g,gi%. However, the scaling functions~and hence the
amplitude factors in the power laws! are not universal, in
contrast to the simplified model withV0}u in ~10!. Let us
clarify this by using the example of the Batchelor constan
the spectrum of a passive impurity.
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the passive impurity,E (k), are related to the single-tim
pair correlatorsDst

u (k) of ~37! and^w iw j&(k)5Pi j Dst
w (k) as

follows:

Eu~k!5
Sd

2~2p!d kd21Dst
u ~k!,

Ew~k!5
~d21!Sd

2~2p!d kd21Dst
w ~k! ~39!

~the additional factord21 in Ew originates from the trace o
the transverse projector, which is absent inDst

u !. The phe-
nomenological53-laws for the spectra~39! have the form1

Eu~k!5Ba NW21/3k25/3, Ew~k!5K W2/3k25/3, ~40!

where Ba and K are the Batchelor and Kolmogorov co
stants,W is the average energy-dissipation rate, andN is the
average impurity-concentration rate. In the statistical mo
~1! and ~6!, the two rates are linked to the random-for
correlators~3! and~8! via the exact relationships~see Refs. 2
and 3!

W5
d21

2~2p!d E dkdw~k!, N5
1

2~2p!d E dkdu~k!

~41!

~UV cutoff is implied at a value ofk of the order of the
reciprocal dissipation lengthkd; l d

21!. At the real values
e52 anda51/2 we have the following expressions for th
correlators ~3! and ~8! with allowance for the fact tha
kd /m@1:

W5D0

~d21!Sd

2~2p!d ln
kd

m
, N5D08

Sd

2~2p!d ln
kd

m
~42!

~here we have reintroduced the factorD08 in the correlator~8!
for proper normalization of the fieldu!.

From dimensionality considerations~see Table I!, the
correlatorsDst can be expressed in terms of renormaliz
variables as

Dst
u ~k!5D08n

21k2d22aeRu~s,g,gi ,z!,

Dst
w ~k!5n2k22dRw~s,g,z!, ~43!

with s[k/m andz[k/m, whereRu andRw are functions of
totally dimensionless~with respect to momenta and freque
cies! variables.

The correlators in~43! satisfy the renormalization-grou
equations~18!, which lead to the following renormalization
group representation of the correlators:

Dst
u ~k!5D08~ n̄ !21k2d22aeRu~1,ḡ , ḡ i ,z!,

Dst
w ~k!5~ n̄ !2k22dRw~1,ḡ ,z!, ~44!

where the ‘‘invariant variables’’ ḡ5 ḡ (s,g),
ḡ i5 ḡ i(s,g,gk), and n̄ 5 n̄ (s,g,n) are the solutions of Eqs
~18! normalized ats51 to g, gi , andn, respectively~see,
e.g., Refs. 3 and 5!. The identity z̄5z is a consequence o
the absence of a contribution ofDm to the operatorDRG of
Eq. ~18!. In the IR asymptotic limits→0, the invariant
chargesḡ and ḡ i tend to a fixed point of the renormalizatio
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group in the IR-stability region~see Sec. 4!, ḡ→g* and
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ḡ i→gi* , while for the invariant viscosity we have

n̄ 5S g0n0
3

ḡk2eD 1/3

→
D0

g*
k22e/3. ~45!

This yields the following expressions for the correlators~43!:

Dst
u ~k!5D08D0

21/3k2d22ae12e/3Ru~1,g* ,gi* ,z!g
*
1/3,

Dst
w ~k!5D0

2/3k22d24e/3Rw~1,g* ,z!g
*
22/3. ~46!

Combining ~40!, ~42!, and ~43!, we arrive at an expressio
for the ratio of the constants Ba and K:

Ba

K
5

g* Ru~1,g* ,gi* ,z!

Rw~1,g* ,z!
. ~47!

In the lowest order in thee-expansion withz!1 ~the inertial
interval! we haveRw5g* /2 and Ru51/2u* , so that~47!
yields

Ba/K5u* 1O~e!. ~48!

The valueu* for Ba/K at d53 ande52 was obtained ear
lier in another way for the model withV0}u by Yakhot and
Orzsag,10 who assumed it to be exact, although this is ob
ously not the case if we allow for~47!.

Equation~47! implies, among other things, that the co
stant Ba, in contrast to the dimensionalities~4! and~35! and
the constant K, is not universal, i.e., it depends on the fi
points$gn* % or, in other words, depends on the Prandtl nu
ber and the type of nonlinearity in the initial equation~6!.
Possibly, this explains the much larger~in comparison to K!
spread of the experimental values of Ba~see, e.g., Ref. 26!.
Setting K51.5 ~Ref. 26! and assuming thatu* >u1* 52.13
at a51/2 andd53 ~see Sec. 4!, we arrive at the estimate
Ba<0.704, with the experimental values Ba lying in th
0.3–1.2 range~Ba5BT

(1) in the notation used in Ref. 26!.
This is not bad, considering that~47! is only the first term in
the e-expansion for the realistic valuee52.

6. CONCLUSION

The general conclusion that can be drawn from t
study is that the renormalization-group method for the pr
lem of turbulent mixing of a passive scalar impurity with
diffusion coefficient that is an arbitrary function of the im
purity concentration points to the presence of IR scaling w
exactly known universal critical dimensionalities, corr
sponding to the phenomenological laws of Kolmogorov
Richardson, and nonuniversal~i.e., depending on the choic
of the fixed point in the IR-stability region or, in other word
on the type of nonlinearity and the value ofu0 in the initial
equation~6!! values of the effective chargesgn* ~including
the effective Prandtl numberu* [g1* !, the amplitudes in the
scaling laws~such as the Batchelor constant!, and scaling
functions. This sets the problem apart from the case of lin
diffusion, where the scaling functions and the amplitudes
universal,7 and from the problem of turbulent mixing of
chemically decaying impurity, where the theory predic
small deviations from Richardson’s law.14 Note, finally, that
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problem, the model of a randomly growing phase bounda
which was proposed in Ref. 22. This model also has a tw
dimensional surface of fixed points, but even the critical
mensionalities of the fields and parameters prove to
nonuniversal.21 This means that infinite-charge problems e
hibit different types of critical behavior uncharacteristic
ordinary models with a finite number of coupling constan
such as the standardw4-theory of critical behavior,4 so that
the renormalization-group technique can be effectively u
to study such problems. In particular, we can expect that
functional technique developed in this paper for calculat
counterterms and renormalization-group functions will
useful in studying such interesting infinite-charge proble
as the completeUN-symmetric 4-fermion model with the di
mensionalityd521e ~Ref. 27! and the problem of true ran
dom walks with self-avoidance.28
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Fluctuation background due to incompressible disturbances in laminar shear flows

ese
G. D. Chagelishvili* ) and G. R. Khudzhadze

Abastumani Astrophysical Observatory, Georgian Academy of Sciences, 380060 Tbilisi, Georgia;
Space Research Institute, Russian Academy of Sciences, 117810 Moscow, Russia
~Submitted 4 October 1996!
Zh. Éksp. Teor. Fiz.112, 1664–1674~November 1997!

The incompressible fluctuation background in laminar shear flows with a smooth velocity profile
is investigated. Concrete calculations are performed for parallel Couette flow using nonmodal
analysis of the linear dynamics of the disturbances. Nonmodal analysis makes it possible to grasp
phenomena that could not be grasped in the early investigations, and thereby makes it
possible to represent the fluctuation background in a completely new light: In incompressible
shear flows the spatial spectral energy density of the fluctuation background is
anisotropic, and furthermore in certain regions of wave-number space it is higher than that of the
thermal noise. It is also shown that in the stationary state of the nonequilibrium system
studied there exists a new, indirect channel for thermalization of the energy of the mean flow—
energy is constantly transferred from the mean flow into the spatial Fourier harmonics of
vortex pertubations and ultimately into heat. Possible manifestations of the fluctuation background
described in this paper are listed. ©1997 American Institute of Physics.
@S1063-7761~97!01011-1#
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The standard method of investigating linear processe
spectral expansion in time of disturbances followed by
genvalue analysis—in shear flows cannot make sense o
energy-intensive processes occurring in such flows.1–4 More-
over, some phenomena of paramount importance~which will
be listed below! remain hidden from view. The reasons f
these difficulties were rigorously described mathematica
in the 1990s.1 The essence of the difficulties is as follows:
the standard~modal! analysis of linear processes in she
flows, the operators appearing in the equations are not
adjoint, and in consequence the eigenfunctions of the p
lem are not orthogonal to one another—they strongly in
fere with one another. As a result, the information obtain
from an analysis of individual modes~eigenfunctions and
eigenvalues! is far from complete. These circumstanc
make it necessary to calculate accurately the results of
interference of the eigenfunctions in order to describe
phenomena correctly, which at present is a problem of ins
mountable difficulty.

There exists another method, the so-called nonmo
method,2 dating back to Kelvin5 and Orr,6 for analyzing lin-
ear processes in shear flows. In this approach the orig
problem is solved by following the temporal evolution of th
spatial Fourier harmonics of the disturbances.7–23 The effec-
tiveness of the second approach is confirmed by the prog
made in the last few years with its help in understanding
diversity of processes occurring in shear flows: many n
and unexpected results concerning the evolution of b
vortex7–13 and acoustic14 disturbances have been obtaine
This method is also used successfully to study MH
waves15–18; a new concept of the transition to turbulence
shear flows has been formulated13,19–22; and, a new mecha
nism of the linear transformation of waves in shear flows
been discovered.18,23,24In short, the nonmodal approach, r
vealing new features in different aspects of the linear dyna
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aspects. This experience suggests that nonmodal ana
might be useful in studying hydrodynamic fluctuations
shear flows. Indeed, the first steps taken in this direction
the present paper have cast the incompressible~vortex! fluc-
tuation background disturbances in laminar Couette flow i
completely new light:

1! The spatial spectral energy density of incompressi
fluctuations in laminar Couette flow~SEDCF! is strongly
anisotropic and in certain regions ofk space it is much
higher than that of the thermal noise.

2! In a stationary state of the nonequilibrium syste
which we investigated there exists a new, indirect chan
for thermalization of the energy of the mean flow—und
constant fluctuation background conditions energy is c
stantly transferred from the mean flow into the spatial Fo
rier harmonics and ultimately into heat.

These features of the fluctuation background are
plained by the fact that besides random~Langevin! and dis-
sipative forces two other physical phenomena, which mo
analysis describes inadequately or not at all, play a deci
role in its formation: a! linear drift of the spatial Fourier
harmonics ink space and b! energy transfer between th
mean flow and the spatial Fourier harmonics.

This paper is organized as follows. In Sec. 2 the p
nomena a and b are described phenomenologically on
basis of Refs. 7–9 and 13. In Sec. 3, the dynamical equa
for the SEDCF is obtained, allowing for Langevin and dis
pative forces in the equations of incompressible hydro
namics, by nonmodal analysis. The calculations are p
formed for two-dimensional disturbances in the line
approximation. The simplicity and clarity of the equatio
obtained make possible a detailed interpretation of the p
cess leading to the formation of the fluctuation backgrou
This is done in Sec. 4. In addition, computational results
the SEDCF in the three-dimensional case are presente

907-07$10.00 © 1997 American Institute of Physics



Sec. 4. In the concluding Sec. 5, a new, indirect channel of
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thermalization of the energy of the mean flow is discus
and possible manifestations of the fluctuation backgro
that is described in the paper are indicated.

2. LINEAR DYNAMICS OF SPATIAL FOURIER HARMONICS

The processes a and b are described well in works
cultivate nonmodal analysis. Their essence consists of
following.

a! In Couette flow, the wave number of the spatial Fo
rier harmonic along an axis orthogonal to the flow~i.e., along
the velocity shear! changes in time. In the linear approxim
tion the spatial Fourier harmonics undergo ‘‘drift’’ ink
space.

Indeed~see Refs. 5–24!, in parallel flows with a linear
velocity shear~Couette flow!

U05U0~Ay,0,0! ~1!

~A is the shear parameter, assumed to be positive! distur-
bances do not have the form of a simple wave because
wave crest curves as a result of the nonuniform characte
the flow. In such a case the wave number of the spa
Fourier harmonic depends on the time:7–24 If the spatial Fou-
rier harmonic with wave numberskx , ky(0), andkz is dis-
turbed initially, i.e.

vx~0!5 ṽx~kx ,ky~0!,kz,0!exp@ ikxx1 iky~0!y1 ikzz#,
~2!

then the evolution of its phase at timest.0 is determined by
the equations

vx~ t !}exp@ ikxx1 iky~ t !y1 ikzz#,

ky~ t !5ky~0!2kxAt, ~3!

which describe linear drift of the Fourier harmonic in wav
number space. The values of the spatial characteris
(kx ,ky(t),kz) largely determine the intensity of energy tran
fer between the spatial Fourier harmonics and the shear fl
Therefore linear drift changes the intensity of this transfe

b! Not all spatial Fourier harmonics can draw ener
from the shear and be amplified. Only harmonics from
definite region ink space~called in what follows the region
of amplification! are amplified. Each harmonic is amplifie
for a finite time until it leaves the region of amplification a
a result of linear drift. Furthermore, the fact that spatial Fo
rier harmonics are located in this region imposes mainl
condition on the direction of their wave vector. Therefo
energy transfer between vortex disturbances and the s
flow is strongly anisotropic ink space.

Thus, at the linear stage of evolution incompressible v
tex spatial Fourier harmonics can draw energy from the sh
and be amplified for only a finite time, undergoing tempora
growth. The dynamics of two-dimensional Fourier harmo
ics (kz50) is substantially different from that of three
dimensional Fourier harmonics (kzÞ0). This difference can
be easily traced by comparing the evolution of their ene
~see Fig. 1!. Spatial Fourier harmonics initially satisfying th
inequality ky(0)/kx530@1 were studied. With time,ky(t)
starts to decrease as a result of linear drift, but as long
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ky(t)@kx little energy is transferred between the flow a
spatial Fourier harmonics. At times whenky(t)'kx both
two- and three-dimensional Fourier harmonics start to dr
energy from the shear intensively and grow. The amplifi
tion of two-dimensional harmonics stops whenky(t)50 ~in
Fig. 1, whenAt530! and whenky(t)/kx,0 they return en-
ergy back into the medium~lower curve in Fig. 1!. The
three-dimensional Fourier harmonics continue to grow e
when ky(t)/kx,0. In reality, this growth continues unti
ky(t)'2kx ~the dashed curve in Fig. 1!, i.e., the region of
amplification in k space is wider for three- than for two
dimensional Fourier harmonics. Moreover, the energy of
three-dimensional harmonics, in contrast to that of tw
dimensional harmonics, does not decrease after the harm
ics pass through the region of amplification~the three-
dimensional Fourier harmonics do not return energy b
into the flow!, but rather it saturates and approaches a va
much greater than the initial value. These arguments
valid when viscous and random forces are neglected. I
easy to understand that in reality, asuky(t)u increases
(uky(t)u→`), viscous dissipation becomes important a
converts the energy of the three-dimensional Fourier h
monics into heat.

3. DERIVATION OF THE DYNAMICAL EQUATION FOR THE
SEDCF

Looking ahead somewhat, the dynamical equation
tained for the SEDCF in this section clearly describes
basic processes~random and dissipative! of the Landau–
Lifshitz theory as well as the processes a and b. This is w
this equation makes it possible to understand quite deeply
physics of the formation of the fluctuation background
shear flows. Specifically, it makes it possible to delimit t
regions ink space where each process dominates; it make
possible to show that the processes a and b do more
play a significant role in the formation of the fluctuatio
background—they determine its peculiar character.

In nonequilibrium systems~which nonuniform flows
are!, hydrodynamic fluctuations are best calculated on
basis of the Landau–Lifshitz theory25—the fluctuation–
dissipation theorem. A discussion of this is given in Ref. 2

FIG. 1. Evolution of the energy, normalized to the initial value, of two- a
three-dimensional Fourier harmonics. The solid curve is for a tw
dimensional Fourier harmonic~with ky(0)/kx530 andkz50!. The dashed
curve is for a three-dimensional Fourier harmonic~with ky(0)/kx530,

kx /kz51, and v̄ x(0)/ v̄ y(0)5220).
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flow ~see Eq.~1!!. We confine ourselves to subcritical valu
of the Reynolds number, for which the flow is still lamina
In this case the fluctuations are considered to be so weak
the linear dynamical equations are sufficient.26 The nonlinear
terms become important only when the medium is in a s
close to a critical point, after which the flow becomes turb
lent ~a detailed discussion is given in Ref. 27!. To achieve
the objective of the present section~derivation of the dy-
namical equation for the SEDCF!, we impose one more
constraint—we study two-dimensional disturbances. We
cuss the fluctuation background of three-dimensional dis
bances in the next section.

Thus, we base our investigation on the fluctuatio
dissipation theory, we study incompressible disturbanc
and we limit ourselves to an approximation that is linear
the these disturbances. Then, in the two-dimensional cas
can start with the following equations:25,28,29

]vx

]x
1

]vy

]y
50, ~4!

S ]

]t
1Ay

]

]xD vx1Avy

52
1

r0

]p

]x
1nS ]2

]x2 1
]2

]y2D vx1
1

r0
f x , ~5!

S ]

]t
1Ay

]

]xD vy52
1

r0

]p

]y
1nS ]2

]x2 1
]2

]y2D vy1
1

r0
f y ,

~6!

wherer0 is the undisturbed density;p, vx , andvy are, re-
spectively, the disturbances of the pressure and velo
components; and,n is the kinematic velocity of the medium
The componentsf x and f y of the random force are given b
the spontaneous stress tensorSi j (r ,t):

f i5
]Si j

]xj
, i , j 5x,y. ~7!

Since we are concerned with two-dimensional disturban
we assume that they do not depend on the coordinatez. In
accordance with the fluctuation–dissipation theory, the
tistical properties of the spontaneous stress tensor are
scribed by the following correlation function:25,28,29

^Si j ~ t,r !Skl~ t8,r 8!&

52Tr0nS d ikd j l 1d i l dk j2
2

3
d i j dklD d~r2r 8!d~ t2t8!.

~8!

For simplicity, we consider liquids whose second viscos
coefficient j equals zero. In Eq.~8! and below, angular
brackets denote averaging over an ensemble. Proceedi
the spirit of the nonmodal approach, we expand the dis
bances in a Fourier integral with respect to the spatial co
dinates only:
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Si j

J 5E
2`

`

dkxdky

3H ṽx~kx ,ky ,t
ṽy~kx ,ky ,t !
p̃~kx ,ky ,t !

S̃i j ~kx ,ky ,t !
J exp~ ikxx1 ikyy!, ~9!

and then follow the temporal evolution of the SEDC
(ek(t)). A relation between the SEDCF and the average
ergy ^e& of a disturbance is obtained using the followin
chain of equations:

^e&5K r0

vx
21vy

2

2 L 5
1

2 E dkxdky@r0~ uṽxu21uṽyu2!#

5
1

2 E dkxdkyS r0

kx
21ky

2

ky
2 uṽxu2D[E dkxdkyek~ t !.

~10!

Substituting the expression~9! into Eqs.~4!–~8!, we obtain,
after tedious but simple manipulations, the following d
namical equation forek(t):

]ek

]t
5Akx

]ek

]ky
1

2Akxky

kx
21ky

2 ek

22n~kx
21ky

2!ek12n~kx
21ky

2!T. ~11!

The four terms on the right-hand side of Eq.~11! corre-
spond to the four processes that participate in the forma
of the SEDCF. The first term describes ‘‘linear drift’’ of th
spatial Fourier harmonics ink space, i.e., the process a, d
scribed by Eq.~3!. The second term describes energy trans
between the mean flow and the spatial Fourier harmon
~process b!. The third and fourth terms describe the effect
dissipative and random forces, respectively.

4. PHYSICS OF THE FORMATION OF THE FLUCTUATION
BACKGROUND

In the absence of shear (A50), the first two terms in Eq.
~11! identically equal zero, and therefore the last two ter
are the only ones that form the fluctuation background.
this ~equilibrium! case, as expected~see, for example, Refs
25, 28 and 29!, dissipative and random forces lead in th
stationary limit (]ek /]t50) to white noise

ek5T. ~12!

To describe the SEDCF withAÞ0, it is convenient to
transform to dimensionless variables:

ek

T
[EK, At[t, kn[A V0

L0n
[A4

n
,

kx

kn
[Kx ,

ky

kn
[Ky , Kx

21Ky
2[K2, ~13!

where the relation between the shear parameterA and the
width L0 of the Couette flow channel and the flow veloci
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differential V0 (A[V0 /L0) is taken into account in the ex
pression forkn . In the notation~13!, Eq. ~11! assumes the
form

]EK

]t
5Kx

]EK

]Ky
12

KxKy

K2 EK22K2EK12K2. ~14!

It is easy to see from the last equation that these four p
cesses, leading to the formation ofEK , operate with different
efficiencies in different regions ofK space. The last two
terms dominate for spatial Fourier hamonics with large wa
numbers (K>1), and the first two terms dominate forK,1.
The process b is more efficient at moderate values of
ratio Ky /Kx . This last circumstance determines the pecu
character of the fluctuation background that we
studying—its anisotropy inK space and the strong deviatio
of EK from white noise.

The solution of Eq. ~13! in the stationary limit
(]EK /]t50) is shown in Figs. 2 and 3~for clarity, plots of
the function logEK are presented!. The plots in these and a
subsequent figures are constructed for positiveKx . For nega-
tive Kx the plots can be constructed using the iden
E2K[EK* , which follows from the condition that the distur
bances are real (v* 5v). Figure 2 displays curves of consta
log EK in the (Kx ,Ky) half-plane withKz50. As one can see
from this figure, for smallKx and Ky the contour lines are
symmetric. The maximum~peak! value logEK51.8 is
reached nearKy50. Figure 3 also shows a plot of logEk
versusKx andKy for Kz50.

It would seem that the channel width determines
minimum value of the wave number of the fluctuation bac
ground (kmin;1/L0). In addition, this minimum value refer
only to the wave number along thex axis, sinceky also
easily ‘‘passes’’ through zero on account of linear drift~see
Eq. ~3!!. Therefore we can write in dimensionless units~Eqs.
~13!!

uKxu.Kx,min;A n

V0L0
[

1

AR
, ~15!

whereR is the Reynolds number.

FIG. 2. Curves of constant logEk ~for the two-dimensional fluctuation back
groundKz50! in the (Kx ,Ky) plane forKx.0. The maximum~peak! value
log EK51.8 is reached nearKy50.
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We describe the physics of the formation of the fluctu
tion background for the example of the two-dimension
Fourier harmonics. For clarity, we present a qualitative p
ture in Fig. 4. In this figure, in the horizontally hatched r
gion, whereK>1, the random and dissipative forces produ
a spectrum of spatial Fourier harmonics that is close to w
noise (EK'1) over quite a short time interval (t8'1/K2

'1). These harmonics serve as the initial ‘‘data’’ for th
formation of the spectrum in the regionK,1. Indeed, on
account of ‘‘linear drift’’ ~process a!, the spatial Fourier har-
monics drift inK space in the direction of smallKy ~Kx does
not change during drift!. The direction of drift in Fig. 4 is
shown by the vertical arrows pointing downward. Ener
transfer between the flow and the spatial Fourier harmon
comes into play asKy decreases, and the ratioKy /Kx be-
comes of the order of 1~the region with the inclined hatching
in Fig. 4!. This transfer process is weak for harmonics w
Kx of the order 1~since viscous dissipation dominates f
K'1! and dominates for harmonics with smallKx . As Ky

decreases, the latter spatial Fourier harmonics draw more
more energy from the shear~see paragraph b above!. This
outflow of energy causesEK to deviate strongly from white
noise and leads to formation of a peak for smallKx andKy

~see Fig. 3!. The peak value is the greater, the smaller
value ofKx,min , i.e., the larger the Reynolds number.

It is clear from paragraph b above that the maximum
log EK should be larger for the three- than the tw
dimensional Fourier harmonics, and it should be reache

FIG. 3. LogEK versusKx andKy for a two-dimensional fluctuation back
ground (Kz50) in the (Kx ,Ky) plane forKx.0.
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the regionKy /Kx,0. Calculations of the three-dimension
problem confirm these facts quantitatively. The thre
dimensional calculations are not complicated, but they
very tedious. For this reason we shall not present them h
The results of the three-dimensional calculations are p
sented in Figs. 5, 6, and 7. For comparison, the result
two- and three-dimensional calculations are presented
gether in Fig. 5. The solid curve refers to the tw
dimensional Fourier harmonicKx50.03,Ky50—this is the
section of the surface presented in Fig. 2~but not for the
logarithm!. The dashed curve describes the thre
dimensional fluctuation backgroundEK as a function ofKy

FIG. 4. Qualitative diagram describing the dynamics of the spatial Fou
harmonics inK space. The horizontal and inclined hatching distingu
regions where the individual basic processes dominate. Random and
pative forces dominate in the horizontally hatched region. Energy tran
between the flow and the spatial Fourier harmonics comes into play in
region with inclined hatching. The arrows indicate the direction of drift
the Fourier harmonics inK space.

FIG. 5. The functionEK(Ky). The solid curve represents a section of t
surface presented in Fig. 2 forKx50.03 ~but not for the logarithmic func-
tion!. The dashed curve describes the three-dimensional fluctuation b
groundEK as a function ofKy for Kx5Kz50.03.
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for Kx5Kz50.03. The drop in the three-dimensional flu
tuation background toEK'1 asKy→21 is due to viscosity.

The three-dimensional fluctuation background is mo
clearly shown in Figs. 6 and 7. Figure 6 displays curves
constant logEK in the (Kx ,Ky) plane forKz50.03. One can
see from this figure that in the three-dimensional case,
peak value of logEK is strongly shifted, compared with th
two-dimensional case, into the regionKy /Kx,0, i.e., the
real, three-dimensional fluctuation background in shear flo
is strongly anisotropic inK space. As one can see from Fi

r

si-
er
e

k-

FIG. 6. Curves of constant logEK ~for the three-dimensional fluctuation
background! in the (Kx ,Ky) plane forKx.0 andKz50.03. The maximum
peak value logEK52.37 is reached nearKy520.14, i.e., it is substantially
shifted into the regionKy,0.

FIG. 7. LogEK versusKx andKy for a three-dimensional fluctuation back
ground in the (Kx ,Ky) plane forKx.0 andKz50.03.
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dimensional than for two-dimensional Fourier harmoni
and the plot itself is more spread out along theKy axis.

Note that the form of the fluctuation background sho
in Figs. 2–3 and 5–7 remains outside the purview of Ref.
Even though a rather general problem is investigated th
~using, just as we do, the Navier–Stokes–Langevin eq
tions in the linear approximation!, Fourier analysis of the
disturbances in time is ultimately performed to obtain co
crete results, and as noted in the introduction, this is a s
optimal procedure which describes the processes a an
inadequately.

5. CONCLUSIONS

The most important results obtained in this paper are
the spatial spectral energy density of incompressible fluc
tions in laminar Couette flow is anisotropic and diffe
strongly from white noise. Specifically, in certain regions
k space it is much higher than that of the thermal noi
Moreover, it follows directly from the dynamics of the sp
tial Fourier harmonics~see Fig. 4! that in a real three-
dimensional case, energy is constantly transferred from
mean flow to the background~incompressible, vortex! distur-
bances and ultimately into heat.

It is easy to see that this new, indirect, channel of th
malization of the flow energy depends on the rate at wh
energy is drawn from the mean flow by background dist
bances. This intensity of this channel increases with R
nolds number.2,7,8 Therefore the efficiency of this chann
should increase~!!, and not decrease, with increasing Re
nolds number. Concrete quantitative estimates that wo
make it possible to judge the system parameters for wh
this process can become effective~comparable to other pro
cesses that lead to the production of the mean entropy! fall
outside the scope of the present work—such estimates
quire detailed numerical calculations of the thre
dimensional problem.

Note that the characteristics of the fluctuation ba
ground described in the present paper are also typica
other shear flows. They should be manifested when hyd
dynamic processes are important, for example, in the Bro
ian motion of small macroscopic particles. The significan
of macroscopic~hydrodynamic! processes for the Brownia
motion of small macroscopic particles is discussed in de
by Klimontovich.28,29 The anisotropy of the Brownian mo
tion of macroparticles in shear flows at high Reynolds nu
bers is most likely due to the anisotropy that we have fou
and the high level of the fluctuation background~as com-
pared with the thermal noise!.

In conclusion, we briefly discuss the possible sign
cance of the fluctuation background, described in this pa
for the transition to turbulence in some shear flows. It
known, for example, that in Couette flow the transition
turbulence occurs only as a result of finite disturbances
accordance with a concept developed in the last few ye
~see Refs. 13 and 19–22!, Couette flows become turbulent a
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eration of spatial Fourier harmonics drawing energy from
mean flow! due to nonlinear phenomena. Therefore the tr
sition to turbulence requires the presence of finite dist
bances in the flow. It is obvious that such disturbances
be produced externally. But, according to the results of
investigations, finite disturbances can also originate in fl
tuations. Indeed, at high Reynolds numbers fluctuations w
small wave numbers can be strong, far exceeding the the
noise level~see the discussion and figures in the preced
section!. This in turn results in the ‘‘turning on’’ of nonlinea
phenomena at certain Reynolds numbers, and leads to tu
lence in the presence of ‘‘positive feedback.’’13,19–22
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Fluctuations in liquid crystals in the presence of a flexoelectric effect

od
V. P. Romanov and G. K. Sklyarenko

St. Petersburg State University, 198904 St. Petersburg, Russia
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Zh. Éksp. Teor. Fiz.112, 1675–1693~November 1997!

We examine director fluctuations in nematic liquid crystals in an electric field in the presence of
a flexoelectric effect. For the planar and homeotropic orientations we calculate the
correlation functions and analyze these functions near the Freedericksz transition and the
flexoelectric instability threshold. For both geometries we calculate the angular dependence of
the intensity of light scattered by director fluctuations and examine its behavior at electric
field strengths close to critical. ©1997 American Institute of Physics.@S1063-7761~97!01111-6#
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Thanks to the anisotropy of the dielectric constant a
the magnetic susceptibility, liquid crystals~LCs! undergo
various structural transformations when placed in exter
electric and magnetic fields.1–3 Here, as a rule, one dea
with the instability of a homogeneously oriented state of
LC at field strengths above the threshold value. Physic
such a change in the macroscopic orientation of a structu
equivalent to a second-order phase transition.1,4 The thresh-
old nature of these phenomena is due to the finite size of
liquid crystal layer and to a certain rigidity in the bounda
conditions, which causes finite-gradient orientational per
bations to emerge, perturbations that are admissible o
when the values of the external field strength are finite.

The best-known and most thoroughly studied effect
an orientational phase transition in a nematic liquid crys
~NLC! is the Freedericksz effect.1–3 This transition, which
occurs both in static fields and in light,5–9 have been studied
for different boundary conditions and orientations of t
NLC.10–14 Different types of distortions, periodic and ape
odic, that occur at field strengths higher than the thresh
value have been investigated.14–16

Several groups of researchers~see Refs. 10–12, and 14!
studied the various dynamical aspects of the effect of ex
nal fields on NLC behavior. Here the pre-transition proces
were studied by analyzing the most unstable mode, wh
amplitude increases substantially when the strength of
external field approaches the threshold value.

In 1969, Meyer17 found that NLCs with a center of sym
metry can exhibit a special piezoelectric effect, which b
came known as the flexoelectric effect. This linear effect
formation of a modulated structure induced by a unifo
electric field is related to the highly anisotropic shape
molecules with constant dipole moments.1–3

In the present paper we study the thermal fluctuation
a limited NLC in the presence of the flexoelectric effect. T
standard approach to studying fluctuations in nematic liq
crystals is to expand the fluctuations in natu
modes.10–16,18–20The solution is given in the form of an in
finite series, and finding each terms in the series invol
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that makes it possible to derive closed expressions for
correlation functions of the director fluctuations in the cas
of weak and strong adhesion to the substrate was propos
Refs. 21 and 22. Here we use this approach to calcu
thermal fluctuations in NLCs with solid-wall boundary co
ditions in an external electric field in the presence of t
flexoelectric effect and the dielectric-constant anisotropy
fect. As a result we arrive at expressions for the correlat
functions of director fluctuations and the scattered-light
tensity for homeotropic and planar orientations of the ne
atic. We find that the angular distribution of the scatter
light intensity depends on the strength of the applied fie
Finally, we analyze the results near the Freedericksz tra
tion and near the flexoelectric instability threshold.

2. THE CORRELATION MATRIX IN THE PRESENCE OF AN
ELECTRIC FIELD

Suppose that a nematic liquid crystal where the fle
electric effect can occur is contained in a cell of thicknessL
placed between two plane-parallel plates with rigid bound
conditions in an external electric field. We introduce a C
tesian system of coordinates with its origin at the cell cen
and thez axis directed at right angles to the plates~Fig. 1!.

The variation of the free energy,DF, consists of the
elastic contribution,DFel , the contributionDFE related to
the director orientation in the external field, and the con
bution DFflex due to flexoelectric polarization:1–3,14

DF5DFel1DFE1DFflex5
1

2 E d3r H K1~n div n!2

1K2~n–curl n!21K3~n3curl n!22
«a

4p
~n–E!2

22E–~e1 n div n1e3~curl n3n!!J , ~2.1!

whereK1 , K2 , andK3 are the Franck moduli,n is the di-
rector vector,E is the electric field strength,«a5« i2«' is
the anisotropy of the dielectric constant~for the sake of defi-
niteness we assume that«a is positive!, with « i and«' the
dielectric constants parallel to the nematic axis and perp
dicular to it, respectively, ande1 ande3 are the flexoelectric
coefficients.

914-11$10.00 © 1997 American Institute of Physics
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Let us examine the contribution to the free energy
lated to director fluctuations. We write the vectorn as
n5n01dn, wheren0 is the equilibrium director orientation
anddn is the director fluctuation. Because of the solid-w
boundary conditions at the boundary of the region,

dn~x,y,z56L/2!50. ~2.2!

Assuming that the director deviationdn5n2n0 is small, in
the dn-linear approximation we can writen25n0

212n0–dn,
i.e., n0–dn50. This means that the vectorsn0 and dn are
orthogonal. Integration~2.1! by parts with allowance for the
boundary conditions~2.2!, we can Eq. ~2.1! to within
second-order terms indn as follows:

DF5
1

2 E d3rdn~r !ÂdnT~n!, ~2.3!

where Â is a differential operator, and the superscriptT
stands for ‘‘transposed.’’

It is known that the director-fluctuation correlation m
trix Ĝ(r ,r 8)5^dn(r )dnT(r )& must satisfy the following
relationship:4

ÂĜ~r ,r 8!5kBTÎd~r2r 8!, ~2.4!

whereÎ is the identity matrix,T stands for temperature, an
kB is Boltzmann’s constant. It is convenient to write the flu
tuationdn(r ) in the form of a two-dimensional Fourier inte
gral:

dn~r !5
1

~2p!2 E d2q exp@2 i ~q–r'!#dn~q,z!, ~2.5!

wherer5(r' ,z), andq is the wave vector in thexy plane,
q5(q cosw, q sinw), with w the angle betweenq and thex
axis. Then the variation~2.3! of the free energy can be writ
ten as

DF5
1

~2p!2 E d2qDFq , ~2.6!

where

DFq5
1

2 E
2L/2

L/2

dz dn* ~q,z!ÂqdnT~q,z!, ~2.7!

FIG. 1. The geometry of a cell with a liquid crystal.
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operatorÂ in the (q,z)-representation. After we pass to th
Fourier representation, Eq.~2.4! becomes

ÂqĜ~q,z,z8!5kBTÎd~z2z8!. ~2.8!

Hence to find the correlation matrix, we must find th
inverse of the operatorÂq with allowance for the boundary
conditions

Ĝ~q,z56L/2, z8!50. ~2.9!

Let us examine the solution of this problem for two orien
tions of the NLC; homeotropic and planar.

3. DIRECTOR FLUCTUATIONS IN A HOMEOTROPICALLY
ORIENTED CELL

When the cell is oriented homeotropically, the equili
rium direction of the director has the formn05(0,0,1) and
the director fluctuation has the formdn(r )5(nx ,ny,0), with

nx~x,y,z56L/2!5ny~x,y,z56L/2!50

at the boundaries.
Suppose that the cell is placed in a uniform electric fie

directed along thex axis, E5(E,0,0). Then, to within
second-order terms indn, the free-energy variation~2.1! as-
sumes the form

DF ~h!5
1

2 E d3r H K1~]xnx1]yny!21K2~]xny2]ynx!
2

1K3@~]znx!
21~]zny!2#2

«a

4p
E2nx

222E

3@e1nx~]xnx1]yny!1e3~]znx2ny]xny

1ny]ynx!#J , ~3.1!

where ] j ( j 5x,y,z) stands for the partial derivative with
respect to the corresponding coordinate.

After integrating by parts and passing to the tw
dimensional Fourier spectrum, we can write~3.1! in the form
~2.7!:

DFq
~h!5

1

2 E
2L/2

L/2

dz~nx* ,ny* !Âq
hS nx

ny
D , ~3.2!

whereni[ni(q,z), i 5x,y, and

Âq
h5S K1qx

21K2qy
22K3]z

22
«a

4p
E2

~K12K2!qxqy1 i ~e12e3!Eqy

~K12K2!qxqy2 i ~e12e3!Eqy

K1qy
21K2qx

22K3]z
2

D .

The matrix Âq
h is diagonalized by a transformation of th

form Û21Âq
hÛ, whereÛ is a matrix consisting of the eigen

vectors ofÂq
h :
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~K12K2!qxqy1 i ~e12e3!Eqy

f-
el

e

Solving the system~3.12! and inserting the values of
(1) (2)

the

-

Û5S ~K12K2!qxqy1 i ~e12e3!Eqy

1

2 F «a

4p
E21~K12K2!~qy

22qx
2!1gG

1

2 F «a

4p
E21~K12K2!~qy

22qx
2!2gG D ,

with

g5F ~K12K2!2q41S «a

4p
E2D 2

14~e12e3!2E2qy
2

1
«a

2p
E2~qy

22qx
2!~K12K2!G1/2

.

Equation~2.8! can be written in the equivalent form

Û21Âq
hÛÛ21ĜhÛ5kBTÎd~z2z8!. ~3.3!

Using the explicit expression for the matricesÂq
h , Û, and

Û21, we get

S ]z
22P~h!

2 0

0 ]z
22Q~h!

2 D X̂52
kBT

K3
Îd~z2z8!, ~3.4!

where

X̂5Û21ĜhÛ, ~3.5!

P~h!
2 5

1

2K3
F ~K11K2!q22

«a

4p
E21gG , ~3.6!

Q~h!
2 5

1

2K3
F ~K11K2!q22

«a

4p
E22gG . ~3.7!

The boundary conditions~2.9! imply

X̂~z56L/2, z8!50. ~3.8!

Thus, Eqs.~3.4! and ~3.8! constitute a system of closed di
ferential equations with boundary conditions for the four
ements of the matrixX̂. Obviously,

X12~z,z8!5X21~z,z8!50. ~3.9!

Finding the diagonal elements ofX̂ amounts to solving a
boundary-value problem of the form

]z
2Xii ~z,z8!2aii

2Xii ~z,z8!5bii d~z2z8!,
~3.10!

Xii ~z56L/2, z8!50, i 51,2.

Its solution is

Xii ~z,z8!5H Xii
~1 !5C~1 ! sinh@aii ~z2L/2!#, z.z8,

Xii
~2 !5C~2 ! sinh@aii ~z1L/2!#, z,z8,

~3.11!

whereC(1) andC(2) are constants. They can be determin
from the conditions imposed on the solutionsXii

(1) andXii
(2)

at the pointz5z8

Xii
~1 !~z5z8!5Xii

~2 !~z5z8!,
~3.12!

]zXii
~1 !~z5z8!2]zXii

~2 !~z5z8!5bii .
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C andC into ~3.11!, we get

Xii ~z,z8!5
bii

aii sinh~aii L !

3H sinh@aii ~z2L/2!#sinh@aii ~z81L/2!#, z.z8,

sinh@aii ~z1L/2!#sinh@aii ~z82L/2!#, z,z8.

~3.13!

This formula can be written in the compact form

Xii ~z,z8!5
bii

2aii sinh~aii L !
$cosh@aii ~z1z8!#

2cosh~aii L !cosh@aii ~z2z8!#

1sinh~aii L !sinh~aii uz2z8u!%. ~3.14!

Now if we substitute the corresponding expressions for
coefficientsaii andbii taken from~3.4! in ~3.14!, we get

X11~z,z8!5
kBT

2K3P~h! sinh~P~h!L !
$2cosh@P~h!~z1z8!#

1cosh~P~h!L !cosh@P~h!~z2z8!#

2sinh~P~h!L !sinh~P~h!uz2z8u!%

[2
1

K3
J~P~h!!, ~3.15!

X22~z,z8!5
kBT

2K3Q~h! sinh~Q~h!L !
$2cosh@Q~h!~z1z8!#

1cosh~Q~h!L !cosh@Q~h!~z2z8!#

2sinh~Q~h!L !sinh~Q~h!uz

2z8u!%[2
1

K3
J~Q~h!!. ~3.16!

Equation~3.5! implies that the correlation matrix satis
fies Ĝh5ÛX̂Û21. If in this expression we insert~3.9!,
~3.15!, and~3.16!, we arrive at the following formulas for the
matrix elements ofĜh:

G11
h 5^nx~q,z!nx* ~q,z8!&

5
1

2K3
H 1

g F «a

4p
E21~K12K2!~qy

22qx
2!G

3@J~P~h!!2J~Q~h!!#2@J~P~h!!1J~Q~h!!#J ,

G22
h 5^ny~q,z!ny* ~q,z8!&

52
1

2K3
H 1

g F «a

4p
E21~K12K2!~qy

22qx
2!G

3@J~P~h!!2J~Q~h!!#1@J~P~h!!1J~Q~h!!#J ,
~3.17!

G12
h 5^nx~q,z!ny* ~q,z8!&

916V. P. Romanov and G. K. Sklyarenko



52
1

@~K 2K !q q

e
o

i-
th

th
-

o

o
a

K3qx
21K1qy

2 i ~e12e3!Eqy
gK3
1 2 x y

1 i ~e12e3!Eqy#@J~P~h!!2J~Q~h!!#,

G21
h 5^ny~q,z!nx* ~q,z8!&

52
1

gK3
@~K12K2!qxqy2 i ~e12e3!Eqy#

3@J~P~h!!2J~Q~h!!#.

Note that atE50 these correlation functions coincid
with those obtained in Refs. 18, 19, and 21 in the limit
strong adhesion to the substrate (W→`).

4. DIRECTOR FLUCTUATIONS IN A PLANAR-ORIENTED
CELL

When the cell orientation is planar, the equilibrium d
rection of the director and the director fluctuation have
form n05(1,0,0) anddn(r )5(0,ny ,nz), with

ny~x,y,z56L/2!5nz~x,y,z56L/2!50. ~4.1!

Suppose that a uniform electric field is directed along
z axis, E5(0,0,E). In this geometry the free-energy varia
tion ~2.1! can be expressed, to within second-order terms
dn, as

DF ~p!5
1

2 E d3r H K1~]yny1]znz!
2

1K2~]ynz2]zny!21K3@~]xny!2

1~]xnz!
2#2

«a

4p
E2nz

222E@e1nz~]znz1]yny!

1e3~]xnz1ny]ynz1nz]znz!#J . ~4.2!

Integrating by parts and passing to the two-dimensional F
rier spectrum, we obtain

DFq
~p!5

1

2 E
2L/2

L/2

dz~ny* ,nz* !Âq
pS ny

nz
D ,

wherenj[nj (q,z), j 5y,z, and

Âq
p5S K3qx

21K1qy
22K2]z

2

2 i ~K12K2!qy]z1 i ~e12e3!Eqy

2 i ~K12K2!qy]z2 i ~e12e3!Eqy

K3qx
21K2qy

22K1]z
22

«a

4p
E2

D .

In contrast toÂq
h , the matrixÂq

p cannot be diagonalized
by an appropriate similarity transformation, since it is n
self-adjoint. Hence Eq.~2.8! must be transformed in such
way so that its left-hand side contains an operatorB̂q

p that
allows for diagonalization. To this end we write~2.8! in the
form

~Â01 iĈ]z1D̂]z
2!Ĝp5kBTÎd~z2z8!, ~4.3!

where
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f

e

e

in

u-

t

Â05S 2 i ~e12e3!Eqy K3qx
21K2qy

22
«a

4p
E2D ,

Ĉ5S 0 2~K12K2!qy

2~K12K2!qy 0 D ,

D̂5S 2K2 0

0 2K1
D .

Multiplying both sides of~4.3! by D̂21 and separating out a
perfect square, we obtain

F S Î ]z1
i

2
D̂21ĈD 2

1Ĥ GĜP5kBTD̂21d~z2z8!, ~4.4!

where

Ĥ5
~D̂21Ĉ!2

4
1D̂21Â0 . ~4.5!

Passing to the new variable

Ĝ0
p5expS i

2
D̂21ĈzD Ĝp ~4.6!

and allowing for the boundary conditions~2.9!, we get

~Ĥ81 Î ]z
2!Ĝ0

p~q,z,z8!

5kBT expS i

2
D̂21ĈzD D̂21d~z2z8!, ~4.7!

Ĝ0
p~q,z56L/2, z8!50, ~4.8!

where

Ĥ85expS i

2
D̂21ĈzD Ĥ expS 2

i

2
D̂21ĈzD . ~4.9!

The operatorB̂q
p[Ĥ81 Î ]z

2 has the following form~see the
Appendix!:

B̂q
p5S 2a sin2 a2b cos2 a1 f sin 2a1]z

2

iAK1

K2
S a2b

2
sin 2a2 f cos 2a D

2 iAK2

K1
S a2b

2
sin 2a2 f cos 2a D

2a cos2 a2b sin2 a2 f sin 2a1]z
2

D , ~4.10!

where

a5
K3

K1
qx

21S 1

2
1

3

4

K2

K1
2

1

4

K1

K2
Dqy

22
«a

4pK1
E2,

b5
K3

K2
qx

21S 1

2
1

3

4

K1

K2
2

1

4

K2

K1
Dqy

2 , ~4.11!

f 5
e12e3

AK1K2

Eqy , a52
1

2

K12K2

AK1K2

qyz.
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This operator is diagonalized by the transformation
21 p rs

r

r

S 5
1 1

2
1

~w2p!u cosa

a-
V̂ B̂qV̂, where the matrixV̂ composed of the eigenvecto
of the operatorB̂q

p is given by the following expression:

V̂5S u u

AK2

K1
~w2p! AK2

K1
~w1p!D ,

with

u5 i S b2a

2
sin 2a1 f cos 2a D ,

w5 f sin 2a1
a1b

2
2a sin2 a2b cos2 a, ~4.12!

p5AS a2b

2 D 2

1 f 2.

We can write Eq.~4.7! in an equivalent form:

V̂21B̂q
pV̂V̂21Ĝ0

pV̂5kBTF V̂21 expS i

2
D̂21ĈzD D̂21V̂G

3d~z2z8!. ~4.13!

If we introduce the notation

Ŵ5V̂21Ĝ0
pV̂, Ŝ5V̂21 expS i

2
D̂21ĈzD D̂21V̂,

~4.14!

P~p!5Aa1b

2
1p, Q~p!5Aa1b

2
2p,

then, combining~4.8! and~4.13!, we arrive at an equation fo
Ŵ,

S ]z
22Q~p! 0

0 ]z
22P~p!

D Ŵ5kBTŜd~z2z8!, ~4.15!

with

Ŵ~z56L/2, z8!50. ~4.16!

The matrixŜ can be obtained through multiplication of fou
matrices, with the expression for exp@(i/2)D̂21Ĉz# taken
from the Appendix. The result is

S115
1

2pu F S w2p

K1
2

w1p

K2
Du cosa

1 i S 1

K1
2

1

K2
Du2 sin a G ,

S225
1

2pu F S w2p

K2
2

w1p

K1
Du cosa

1 i S 1

K2
2

1

K1
Du2 sin a G ,

~4.17!

S125
1

2pu F S 1

K1
2

1

K2
D ~w1p!u cosa

1 i S ~w1p!2

K1
2

u2

K2
D sin aG ,
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21 2pu F S K2 K1
D

1 i S u2

K2
2

~w2p!2

K1
D sin a G .

Equations~4.15! and ~4.16! constitute a system of four
differential equations with boundary conditions for the m
trix elements ofŴ. They are similar to Eqs.~3.10! and have
the following solutions:

Wi j ~z,z8!5Si j Yii , i , j 51,2, ~4.18!

where

Y115
kBT

2P~p! sinh~P~p!L !

3$cosh@P~p!~z1z8!#2cosh~P~p!L !

3cosh@P~p!~z2z8!#1sinh~P~p!L !

3sinh~P~p!uz2z8u!%5J~P~p!!, ~4.19!

Y225
kBT

2Q~p! sinh~Q~p!L !

3$cosh@Q~p!~z1z8!#2cosh~Q~p!L !

3cosh@Q~p!~z2z8!#1sinh~Q~p!L !

3sinh~Q~p!uz2z8u!%5J~Q~p!!, ~4.20!

with the functionJ defined in~3.15!.
Combining~4.6! and~4.14!, we can write the correlation

matrix in the following form:

Ĝp5expS 2
i

2
D̂21ĈzD V̂ŴV̂21.

If we use Eqs.~A5!, ~4.17!, and ~4.18!, we can write the
following expression for the matrix elements ofĜp:

G11
p 5^ny~q,z!ny* ~q,z8!&

52
1

2K2
H 1

p
@w cos 2a1 iu sin 2a#

3@J~P~p!!2J~Q~p!!#1@J~P~p!!1J~Q~p!!#J ,

G22
p 5^nz~q,z!nz* ~q,z8!&

5
1

2K1
H 1

p
@w cos 2a1 iu sin 2a#

3@J~P~p!!2J~Q~p!!#2@J~P~p!!1J~Q~p!!#J ,
~4.21!

G12
p 5^ny~q,z!nz* ~q,z8!&

5
1

2AK1K2
H 1

p
@w cos 2a1 iu sin 2a#

3@J~P~p!!2J~Q~p!!#J ,
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G21
p 5^nz~q,z!ny* ~q,z8!&52G12

p .

lid

c
ld

-

lim
1

~cosh@Q~z1z8!#

n-

ri-
As in the case of homeotropic orientation, atE50 the
results coincide with those of Refs. 18, 19, and 21 for so
wall boundary conditions.

5. CORRELATION FUNCTIONS NEAR THE INSTABILITY
THRESHOLD

We see that for both orientations the correlation fun
tions of the director fluctuations in an external electric fie
Eqs. ~3.17! and ~4.21!, have simple poles~if we adopt the
notation ~3.15!, ~3.16!, ~4.19!, and ~4.20!!. In the single-
constant approximation,Ki5K, i 51,2,3, the poles are at

Q~h!5Q~p!56 i
p

L
m, m51,2,... .

Note that atQ(h)5Q(p)50 the expressions for the correla
tion functions are finite since
oi
c-

t
a

ck
o

gt
s
y

a
m
el
le
ob
-

-
,

Q→0
H Q sinh~QL!

2cosh~QL!cosh@Q~z2z8!#

1sinh~QL!sinh~Quz2z8u!!J
52

L

2
1

2zz8

L
1uz2z8u. ~5.1!

If we considerQ(h) and Q(p) as functions of the field,
i.e., assumeq fixed, we see that the number of poles i
creases withE. Let us find the valuesE0

(h) and E0
(p) corre-

sponding to the first pole. For the case of homeotropic o
entation,E0

(h) can be found from the relationship
Q~h!5Aq22
«a

8pK
~E0

~h!!22
1

2K AF «a

4p
~E0

~h!!2G2

14~e12e3!2~E0
~h!!2qy

256 i
p

L
. ~5.2!

Solving ~5.2! for E0
(h) yields The minimum inE(qy) determines the threshold valuesEc
of
If

tial
imit
c-

d
ola

-

E0
~h!5

K~q21p2/L2!

A~e12e3!2qy
21~«a/4p!K~q21p2/L2!

. ~5.3!

Similarly, if we use~4.11!, ~4.12!, and ~4.14!, for the
case of planar orientation we arrive at an equation that c
cides with~5.2!. Hence the first pole in the correlation fun
tions for both orientations appears at

E5E0
~h!5E0

~p![E0~qx ,qy!.

Equation~5.3! implies thatE0(qx ,qy) monotonically in-
creases withqx . Hence qx50 corresponds to the lowes
value of the field at which the correlation functions have
pole. There are two reasons for such a pole: the Freederi
transition and the flexoelectric instability threshold in cells
finite thickness.3,14 This instability manifests itself in the
emergence of a specific domain structure at field stren
above the critical valueEc . This type of transition depend
on the parameters of the nematic liquid crystal and the s
tem geometry.

A detailed discussion of the flexoelectric effects in
planar-oriented cell can be found in Ref. 3. Using the sa
method, we can easily calculate the critical value of the fi
strength for a homeotropically oriented cell. In the sing
constant approximation, the value coincides with that
tained in Ref. 3 for a planar-oriented cell:

E~qy!5
K@qy

21~p/L !2#

A~e12e3!2qy
21~«a/4p!K@qy

21~p/L !2#

5E0~qx50, qy!. ~5.4!
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n-

sz
f

hs

s-

e
d
-
-

andqc :

qc5
p

L
A~e12e3!22~«a/4p!K

~e12e3!21~«a/4p!K
,

~5.5!

Ec5
p

L

2K~e12e3!

~e12e3!21~«a/4p!K
.

We see that flexoelectric instability occurs only if

«a,
4p~e12e3!2

K
. ~5.6!

The other minimum inE(qy) is at qy50,

Ec5
p

L
A4pK

«a
,

which corresponds to the Freedericksz transition.
Thus, our formulas describe the correlation functions

director fluctuations at field strengths below the critical.
E>Ec holds, the analysis becomes invalid, since the ini
orientation cannot be considered homogeneous. In the l
E→Ec , the correlation functions of modes whose wave ve
tors are close toq5(0,qc) substantially increase. A detaile
analysis of critical-mode behavior was done by Galat
et al.14

6. LIGHT SCATTERING BY DIRECTOR FLUCTUATIONS IN
THE PRESENCE OF AN ELECTRIC FIELD

A nematic liquid crystal is an optically anisotropic me
dium, with the dielectric constant tensor«ab linked to the
director field through the following relationship:
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«ab~r !5«'dab1«ana~r !nb~r !.

iu

o

of

s.
it
.e

t,
e

-

-
e

e.

s

qsc5k~sin u cosw,sin u sin w,cosu21!,

in-

a-
or
and

hat
ain
ust
The director fluctuationsdn(r ) change the tensor«ab(r ):

d«ab~r !5«a@nadnb~r !1nbdna~r !#. ~6.1!

This in turn causes the light propagating through the med
to scatter.

The intensityI of the scattered light is proportional t
^Ea8 (r )Eb8* (r )&, where E8 is the field of the scattered
wave.23 If a plane wave with an amplitudeE0 and a wave
vector k i is propagating in the medium, the value
^Ea8 (r )Eb8* (r )& for singly scattered wavesE8 is determined
by an integral over the scattering volume:23,24

^Ea8 ~r !Eb8* ~r !&5
v4

c4 E d3r 8d3r 9Tag~r ,r 8!Tbl* ~r ,r 9!

3^d«gm~r 8!d«ln~r 9!&Em
0 En

0

3exp$ ik i–~r 82r 9!%, ~6.2!

wherev is the circular frequency,c is the speed of light, and
Tab(r 8,r 9) is the Green’s function of the Maxwell equation

To simplify the description of light scattering we lim
ourselves to the approximation of an isotropic medium, i
we assume that at large distances

Tab~r !5
1

4pr
eik–r~dab2sasb!, ~6.3!

wherek5(v/c)A«, with « the average dielectric constan
ands5r /r is the unit vector pointing in the direction of th
observer.

Substituting~6.3! in ~6.2!, we obtain

^Ea8 ~r !Eb8* ~r !&5
v4V

c4~4p!2r 2 ~dag2sasg!~dbl2sbsl!
1

L

3E
2L/2

L/2

dz8E
2L/2

L/2

dz9 exp@2 iqsc,z~z

2z8!#^d«gm~qsc
' ,z8!d«ln* ~qsc

' ,z9!&Em
0 En

0 ,

~6.4!

whereV is the scattering volume,qsc5sk2k i is the scatter-
ing vector, andqsc

' 5(qsc,x ,qsc,y,0) is the transverse compo
nent ofqsc .

According to~6.1!, the correlation functions of the fluc
tuations of the dielectric2constant tensor are linked to th
director fluctuations by the following relationship:

^d«gm~qsc
' ,z8!d«ln* ~qsc

' ,z9!&

5«a@ng
0nl

0^dnm~qsc
' ,z8!dnl~qsc

' ,z9!&

1nm
0 nn

0^dng~qsc
' ,z8!dnl~qsc

' ,z9!&

1ng
0nn

0^dnm~qsc
' ,z8!dnl~qsc

' ,z9!&

1nm
0 nl

0^dng~qsc
' ,z8!dnn~qsc

' ,z9!&#. ~6.5!

Let us take the case of normal incidence, i.
k i5(0,0,k). If the scattering is in the direction
s5(sinu cosw,sinu sinw,cosu), the scattering vector ha
the form
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m

.,

,

qsc52k sin
u

2
. ~6.6!

By combining~6.4!, ~6.5!, ~3.17!, and~4.21! we can find the
scattered light intensity for both director orientations.

Suppose that the light propagating in the medium is l
early polarized along they axis, i.e., in~6.4! and ~6.5! we
must putm5n5y. Then in the single-constant approxim
tion Ki5K, i 51,2,3, we have the following expressions f
the scattered light intensity for the cases of homeotropic
planar orientations, respectively:

I ~h!~u,E!5I 0

v4

c4

V«a
2

~4p!2r 2

1

L
sin2 uE

2L/2

L/2 E
2L/2

L/2

dz8dz9

3exp@2 iqsc,z~z82z9!#G22
h ~qsc

' ,z8,z9!, ~6.7!

I ~p!~u,E!5I 0

v4

c4

V«a
2

~4p!2r 2

1

L
~12sin2 u cos2 w!

3E
2L/2

L/2 E
2L/2

L/2

dz8dz9 exp@2 iqsc,z~z82z9!#

3G11
p ~qsc

' ,z8,z9!. ~6.8!

Here

G22
h ~qsc

' ,z8,z9!5G11
p ~qsc

' ,z8,z9!5
1

4K H 2
«aE2

4pg
@J~P!

2J~Q!#1@J~P!1J~Q!#J ,

g5EAS «aE

4p D 2

14~e12e3!2qsc,y
2 , ~6.9!

P5Aqsc
'21

g

2K
2

«aE2

8pK
, Q5Aqsc

'22
g

2K
2

«aE2

8pK
.

Here we are interested in the fluctuation modes withqx50
(w5p/2), since in our geometry they are the modes t
increase most rapidly near the instability threshold. To obt
the expressions for the scattered light intensity we m
evaluate the integrals in~6.7! and ~6.8!. The integrals are

E
2L/2

L/2 E
2L/2

L/2

dz8dz9 exp@2 iqsc,z~z82z9!#

3cosh@g~z81z9!#5
2

g21qsc,z
2

3@cosh~gL !2cos~qsc,zL !#,

E
2L/2

L/2 E
2L/2

L/2

dz8dz9 exp@2 iqsc,z~z82z9!#

3cosh@g~z82z9!#5
2

~g21qsc,z
2 !2 $~g22qsc,z

2 !

3@cosh~gL !cos~qsc,zL !21#

12gqsc,z sinh~gL !sin~qsc,zL !%, ~6.10!
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FIG. 2. Angular dependence of the scatter
light intensity in a planar-oriented NLC cel
for different values of the dielectric-constan
anisotropy and different electric field
strengths:~a! «a50.1 ~curve 1 corresponds
to U50, curve2 to U54.5 V, curve3 to
U55.4 V, curve4 to U56.03 V, and curve
5 to U56.12 V!; ~b! «a50.7 ~curve 1 cor-
responds toU50, curve 2 to U53.15 V,
curve 3 to U53.312 V, curve 4 to
U53.339 V, and curve5 to U53.3408 V!.
L/2 L/2

c
ct
tr

tr
n

from ~5.6!: «a54p(e12e3)2/K50.52. The specimen thick-
e

are

sity

sity
ri-
if-

to

rm
E
2L/2

E
2L/2

dz8dz9 exp@2 iqsc,z~z82z9!#

3sinh~guz82z9u!5
2

g21qsc,z
2

3H 2gL1
1

g21qsc,z
2 @~g22qsc,z

2 !

3sinh~gL !cos~qsc,zL !

12gqsc,z cosh~gL !sin~qsc,zL !#J ,

whereg is a constant. Combining Eqs.~3.6!, ~3.7!, ~3.15!,
~3.16!, and~6.7!–~6.10!, we obtain

I ~h!5
1

2
I 0C

sin2 u

L
F~P,Q!, I ~p!5

1

4
I 0C

1

L
F~P,Q!,

~6.11!

where

F~P,Q!52S 11
«aE2

4pg D
3H 2P@cosh~PL!2cos~qsc,zL !#

~P21qsc,z
2 !2 sinh~PL!

2
L

P21qsc,z
2 J

1S «aE2

4pg
21D H 2Q@cosh~QL!2cos~qsc,zL !#

~Q21qsc,z
2 !2 sinh~QL!

2
L

Q21qsc,z
2 J , ~6.12!

C5
v4

c4

V«a
2kBT

~4p!2r 2K
, qsc,z5k~cosu21!,

qsc
' 5qsc,y5k sin u.

Since the expressions forI (h) andI (p) differ in the angu-
lar factors, we examine the angular dependence of the s
tered light intensity in the planar orientation. Figure 2 depi
this dependence for different strengths of the external elec
field and for typical values of NLC parameters:1–3

e12e350.57310211 C m21 and K50.731026 dyn. The
type of transition depends on the anisotropy of the dielec
constant. The limiting value of the anisotropy can be fou
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at-
s
ic

ic
d

ness is set equal toL51023 cm and the length of the wav
vector, tok5105 cm21.

Figure 2a corresponds to«a50.1 ~flexoelectric instabil-
ity!. In this case the critical values of the parameters
Uc5EcL56.5 V andqsc

' 5qc52.63103 cm21.
Figure 2b depicts theI (p) vs. u dependence at«a50.7.

In this case we haveqc50, and atUc53.341 V we have the
Freedericksz transition.

Figures 2a and b show that the scattered light inten
has a peak nearqsc

' 5qc , with its height increasing as
E→Ec . The existence of such a sharp peak in the inten
of the scattered light provides a good possibility for expe
mental verification of the results and for measuring the d
ference of the flexoelectric coefficients,e12e3 .

Note that near the transition point Eqs.~6.9!, ~6.11!, and
~6.12! can be made much simpler if we restrict ourselves
an approximation that is linear inE2Ec . Then atqsc

' 5qc

we have

gc'H 2p~e12e3!3

@~e12e3!21«aK/4p#L
1

~«a/4p!2K

~e12e3!2 ~E2Ec!J E,

~6.13!

Qc' i FpL 1
«aK/4p1~e12e3!2

2K~e12e3!
~E2Ec!G , ~6.14!

Fc~P,Q!'F «aK

4p~e12e3!2 21G
3H 2Qc@cosh~QcL !2cos~qsc,zL !#

~Qc
21qsc,z

2 !2 sinh~QcL !

2
L

Qc
21qsc,z

2 J . ~6.15!

Plugging~6.14! into ~6.15! yields

Fc~P,Q!'
4pK@11cos~qsc,zL !#

~qsc,z
2 2p2/L2!2L2~e12e3!

3F«aK24p~e12e3!2

«aK14p~e12e3!2G~E2Ec!
21. ~6.16!

Note that atqsc,z5p/L the expression forFc(P,Q) re-
mains finite. In this case we cannot ignore the te
L/(Qc

21qsc,z
2 ) in ~6.15!, and in view of the fact that
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qsc,z→2 iQc

H 2Qc@cosh~QcL !2cos~qsc,zL !#

~Qc
21qsc,z

2 !2 sinh~QcL !

2
L

Qc
21qsc,z

2 J 5
L@QL cosh~QL!1sin~QL!#

4Q2 sinh~QL!
,

we have

Fc~P,Q!'2
KL2

2p~e12e3! F«aK24p~e12e3!2

«aK14p~e12e3!2G
3~E2Ec!

21. ~6.17!

Figure 3 depicts the field dependence of the normali
reciprocal scattered light intensity,I m

(p)(0)/I m
(p)(E), at the

maximum pointqsc,z5qc :

I ~p!~0!

I m
~p!~E!

5
Fc~0!

Fc~P,Q!
, ~6.18!

whereI m
(p)(0) is the scattered light intensity in the absence

a field, and

Fc~0![F~P,Q!uqsc,z5qc ,E50

5
2

qsc
2 H L2

2qsc
' @cosh~qsc

' L !2cos~qsc,zL !#

qsc
2 sinh~qsc

' L ! J .

We see that within a fairly broad neighborhood ofEc the
reciprocal intensities calculated via the exact formula~6.12!
and in the linear approximation~6.16! coincide. At E'Ec

the slopej of the curve representing the field dependence
I m

(p)(0)/I m
(p)(E) is

juE5Ec
5b~e12e3!F«aK24p~e12e3!2

«aK14p~e12e3!2G ,
where

b5
~qsc,z

2 2p2/L2!2L2Fc~0!

4pK@11cos~qsc,zL !#
.

By measuringj we can calculate the difference of the flex
electric coefficients,e12e3 .

FIG. 3. The normalized reciprocal scattered light intensity at the maxim
point qsc

' 5qc52.63103 cm21 as a function of the applied electric field fo
the case of planar orientation of the director, whereI (p)(0) is the scattered
light intensity atqsc

' 5qc andE50. Curve1 represents the results of calcu
lations via~6.12! and ~6.18! and curve2 the results of calculations via the
linear-approximation formula~6.16!. Here we used the same parameter v
ues as in Fig. 2a, which correspond tob5553.7 cm dyn21 and
Fc(0)510210 cm3.
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We have examined the correlation functions of the dir
tor fluctuations in a nematic liquid crystal placed an exter
electric field with allowance for the flexoelectric effect wit
rigid boundary conditions, i.e., with a fixed director orient
tion at the surface. In this case the formation of spatia
periodic flexoelectric structures is of a threshold nature, w
the fluctuation mode corresponding to the period of the str
ture increasing without limit as the external field streng
approaches the critical value. In an optical experiment suc
pattern corresponds to the emergence of a peak in the an
dependence of the scattered light intensity.

In real liquid crystals the energy of adhesion to the su
strate,W, is finite. A consistent analysis of the correlatio
functions in this case requires a separate investigation. H
ever, some qualitative conclusions concerning the beha
of the director fluctuations can be drawn if we compare
results of two limiting cases: a fixed orientation at the s
face, which is considered in this paper, and an infinitely la
specimen, when the surface effects play no role. The co
lation matrix of the director fluctuations in an external ele
tric field for an infinite medium can easily be calculated v
the method used in Secs. 3 and 4. If for the sake of defin
ness we assume that the nematic is oriented along thex axis,
n05(1,0,0), and that the external field is directed along
z axis, E5(0,0,E), the Fourier transform of the correlatio
matrix Ĝ` of the fluctuationsdn5(0,ny ,nz) can be written
as

Ĝq
`5

kBT

K2q42@~«a/4p!Kq21~e12e3!2qy
2#E2

3S Kq22
«a

4p
E2 2 i ~e12e3!Eqy

i ~e12e3!Eqy Kq2
D , ~7.1!

whereq5q(sinu cosw,sinu sinw,cosu).
We see that in this case for any value of the electric fi

strength there are wave vectors

q5EH «a

4pK
1F ~e12e3!sin w sin u

K G2J 1/2

,

for which the correlation functions have a pole. This cor
sponds to Meyer’s well-known result,3,10 which states that
there is a periodic director distribution with a wave numb

q;
e12e3

K
E.

The formation of a spatial structure becomes a threshold
fect when the surface contribution to the free energy beg
to exceed the bulk contribution:W.K/L ~see Refs. 25 and
26!. ForW!K/L, as in an infinite medium, the effect has n
threshold, which corresponds to the limit in whichEc→0
and qc→0. This suggests that as the adhesion energy
creases, bothqc andEc increase, tending to the limit value
~5.5! asW→`.
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In an optical experiment, the transition fromW5` to a
th
as

0 2tAK1

,

A

finite value of the adhesion energy shifts the peak in
scattered light intensity toward smaller angles and decre
the value of the critical field.

APPENDIX

Let us derive Eq.~4.10! for the matrix

B̂q
p5Ĥ81 Î ]z

2 . ~A1!

Substituting~4.5! in ~4.9!, we get

Ĥ85expS i

2
D̂21ĈzD F1

4
~D̂21Ĉ!21D̂21Â0G

3expS 2
i

2
D̂21ĈzD . ~A2!

If we now insert the explicit expressions for the matricesÂ0 ,
D̂, andĈ that enter into~A2!, we get the following formulas
for the combinations of matrices in~A2!:

D̂21Ĉ5S 0
K12K2

K2
qy

K12K2

K1
qy 0

D ,

D̂21Â0

5S 2
K3

K2
qx

22
K1

K2
qy

2 2 i
e12e3

K2
Eqy

i
e12e3

K1
Eqy 2

K3

K1
qx

22
K2

K1
qy

21
«a

4pK1
E2
D ,

~A3!

1

4
~D̂21Ĉ!21D̂21Â0

5S 2
K3

K2
qx

22S 1

2
1

3

4

K1

K2
2

1

4

K2

K1
Dqy

2

2 i
e12e3

K2
Eqy

i
e12e3

K1
Eqy

2
K3

K1
qx

22S 1

2
1

3

4

K2

K1
2

1

4

K1

K2
Dqy

21
«a

4pK1
E2

D .

The rotation matrix exp(6(i/2)D̂21Ĉz) has the follow-
ing form

expS 6
i

2
D̂21ĈzD5exp@M̂3~6z!#

5T̂S exp~6l1z! 0

0 exp~6l2z!
D T̂21,

~A4!

where
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e
es M̂5S K2

2tAK2

K1

0
D ,

t5
1

2i

K12K2

AK1K2

qy ,

T̂5S 1 1

2AK2

K1
AK2

K1

D ,

T̂ a matrix composed of eigenvectors, andl1,256t are the
eigenvalues ofM̂ .

Plugging these expressions into~A4!, we obtain

expS i

2
D̂21ĈzD5T̂S etz 0

0 e2tzD T̂21

5S cosa 2 iAK1

K2
sin a

2 iAK2

K1
sin a cosa

D ,

expS 2
i

2
D̂21ĈzD

5S cosa iAK1

K2
sin a

iAK2

K1
sin a cosa

D , ~A5!

where

a52 i tz52
1

2i

K12K2

AK1K2

qyz.

Inserting~A3! and~A5! into ~A2! and multiplying the matri-
ces, we arrive at the expression~4.10! for B̂q

p .
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Optical and magneto-optical properties of Fe/Cu multilayered films: influence of the

can
modulation period and the bcc-fcc phase transition in iron
M. M. Kirillova, I. D. Lobov, V. M. Maevski , L. V. Nomerovannaya, A. A. Makhnev,
G. A. Bolotin, and F. A. Pudonin

Institute of the Physics of Metals, Russian Academy of Sciences, Ural Branch, 620219 Ekaterinburg, Russia
~Submitted 11 June 1996!
Zh. Éksp. Teor. Fiz.112, 1694–1709~November 1997!

The optical and magneto-optical properties of multilayered film samples of the Fe/Cu system
prepared by high-frequency sputtering on an Si~100! substrate are studied by ellipsometry
and by measuring the equatorial Kerr effect~the dp effect! in the spectral range 0.25–7mm. The
optical characteristics, the plasma frequencyvp and the relaxation frequencyg0 of the
conduction electrons, and thedp effect are found as functions of the modulation period
D512.52100 Å. Anomalous behavior of the optical and magneto-optical characteristics is
discovered in short-period Fe/Cu structures. The results are discussed within a
phenomenological theory of optical and magneto-optical properties for layered structures. Several
factors, such as the indirect exchange interaction between the iron layers, the presence of a
transition layer on the internal boundaries, the possible ‘‘magnetizing’’ of copper, and the
formation of an fcc iron phase in the thin layers, are taken into account in the analysis of
the experimental data. ©1997 American Institute of Physics.@S1063-7761~97!01211-0#
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The interest in investigating metallic superlattices w
alternating ultrathin magnetic and nonmagnetic layers
been stimulated by the search for new electronic phenom
associated with lowering of the dimensionality of the laye
~the 3D→2D transition! and the need to deepen our unde
standing of their magnetic state. Giant magnetoresista
due to the antiferromagnetic type of indirect exchange in
action between magnetic layers has been discovered in t
superlattices~see Refs. 1–3 for Fe/Cr and Co/Cu!. The char-
acter of the interlayer exchange interaction also has a d
sive influence on the magneto-optical properties of laye
systems.4 The most important feature of structures of th
class is the enhancement of the magneto-optical activit
the ultraviolet region of the spectrum@for example, in Pt/Co
~Ref. 5!#. A resonant increase in the Kerr effect in the visib
region has been observed in Fe/Ag/Fe and Fe/Au
sandwiches.6,7 The nature of these phenomena has not b
conclusively ascertained and is being actively discussed

In recent years a great deal of attention has been focu
on the study of Fe/Cu thin-film systems, particularly th
magnetic characteristics. It has been established by struc
investigations that as the thicknessdFe of the layer adjacen
to copper decreases, the iron crystal lattice changes from
bcc ~a! to the fcc~g! phase, and the critical thickness for th
a→g transformation is estimated asdFe<1.5 nm.8,9 The ex-
perimental information on the magnetic state ofg-Fe ob-
tained by different methods, including neutron diffractio
analysis and Mo¨ssbauer spectroscopy, are extremely con
dictory ~see Refs. 10 and 11, as well as the review in R
12!. It is already clear that there is a difference between
magnetic states ofg-Fe obtained in the form of particles in
copper matrix and in the form of thin films in a layere
system with copper. In the former case an antiferromagn
state with a Ne´el temperatureTN569 K forms.13 In the latter
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form, and, according to Ref. 14, the Curie temperature
reach values of 400–578 K. Bennettet al.15 observed a polar
Kerr effect on an epitaxially growng-Fe/Cu/g-Fe sandwich
at l50.63mm and room temperature. Along with enhanc
ment of the effect, they also noticed its oscillatory depe
dence ondCu. Enhancement of the Kerr effect in ana-Fe/Cu
multilayered film atl50.56mm ~the ‘‘plasma’’ absorption
edge in copper! was also noted in Ref. 16. There is a scho
of thought which holds that the increase in magneto-opt
activity is attributable to induction of a magnetic moment
the d and p subshells of the copper atoms adjacent to
ferromagnetic iron, i.e., to the ‘‘magnetizing’’ of copper un
der the influence of the Fe–Fe exchange interaction. A g
deal of attention has been focused on the search for evid
in support of the spin polarization of copper in Fe/Cu a
Co/Cu systems.17–19On the other hand, an active theoretic
search is being conducted for the changes in the electr
structure of thin layers that are associated with the lower
of their dimensionality. The available experimental data
this subject are very limited.

In the present work the optical and magneto-opti
properties of an Fe/Cu periodic multilayered structure w
studied by several methods on a single system of samp
The main purpose of the work was to study the evolution
the electronic characteristics and magnetic state in resp
to variation of the modulation period of the layered structu
and to thea2g phase transition in the iron layers. Anoth
objective was to theoretically analyze the optical a
magneto-optical spectra of Fe/Cu within a phenomenolog
theory that takes into account multiple reflections from t
interface.

2. EXPERIMENT

We investigated a system of Fe/Cu multilayered film
with a fixed ratio dFe/dCu52/3 between the layer thick

925-09$10.00 © 1997 American Institute of Physics



nesses: (Fe 40 Å/Cu 60 Å)10, (Fe 30 Å/Cu 45 Å)14,
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(Fe 20 Å/Cu 30 Å)20, (Fe 15 Å/Cu 22.5 Å)27,
(Fe 10 Å/Cu 15 Å)40, (Fe 8 Å/Cu 12 Å)50, and
(Fe 5 Å/Cu 7.5 Å)80. The modulation periodD5dCu1dFe

in these structures varied in the range 12.5–100 Å. T
samples were prepared at room temperature by h
frequency sputtering in an argon atmosphere with a pres
equal to 1.131023 Torr in the apparatus described in Re
20. The deposition rate for iron was 54.7 Å/min, and the r
for copper was 36.4 Å/min. Silicon~100! wafers served as
substrates. In all cases the uppermost layer was an iron
Pure Fe and Cu films withd51000 Å were also deposited i
the same chamber. The thicknesses of the layers were d
mined from the deposition rate and time. An investigation
transverse sections of several samples by transmission
tron microscopy confirmed the periodicity of the multila
ered films across their thickness.

The crystal structure of the samples was studied by x-
diffraction analysis on a DRON-3M diffractometer in CuKa

radiation. The investigations showed that the crystalline s
of Fe and Cu is manifested fairly clearly in all the sampl
In ultrathin layers (d<10 Å) the grain size is strongly re
duced, and partial destruction of the long-range order ta
place. However, a halo, which would attest to the presenc
an amorphous phase, was not discovered on the x-ray
fraction patterns. The form of the diffraction reflections i
dicates the presence of stresses in the iron crystal lat
which grow as the thickness of the layers decreases. The
that we obtained confirmed the results of the earlier x-
diffraction studies, which revealed that the copper lay
have a well defined fcc lattice with a very small distortio
that does not depend on the thickness of the layers or
ratio dFe/dCu and that the iron crystal lattice undergoes
bcc-fcc phase transition as the layer thickness decrease
has been reported11 that stabilization of theg phase of Fe in
the Fe/Cu system is largely determined by the deposi
conditions, including the substrate temperature. Our anal
showed that there are only ‘‘traces’’ ofg-Fe in
(Fe 15 Å/Cu 22.5 Å)27. The fractions of thea and g
phases in the (Fe 10 Å/Cu 15 Å)40 and (Fe 8 Å/
Cu 12 Å)50 phases are almost equivalent, and
(Fe 5 Å/Cu 7.5 Å)80 the contribution of g-Fe becomes
dominant (;80%).

The effective refractive index (neff) and absorption coef
ficient (keff) were measured on an automatic ellipsome
with one (l50.2522.5 mm) and two (l52.527 mm) re-
flections from the sample. The angle of incidence of lig
onto the sample wasw1576° at wavelengthsl,1.5 mm
andw2581° for l.1.5 mm. The optical properties of iron
and copper were measured on the same instrument. The
in the measurements ofneff andkeff was 2–5%. The values
of neff andkeff were used to calculate the effective values
the real («eff8 ) and imaginary («eff9 ) parts of the dielectric
constant, as well as the optical conductivityseff .

Measurements of the equatorial Kerr effect~an effect
which is odd with respect to the magnetization and ass
ated with the relative variation of the intensity of the r
flected light DI /I upon equatorial magnetization of th
sample andp polarization of the incident wave! were per-
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range 0.3–2.4mm when light was incident on the sample
an anglew570°. The field dependence of the equator
Kerr effect was studied atl50.6 mm and fields H
<9 kOe.

3. DISCUSSION

3.1. Optical properties

As we know, the ellipsometric determination of the o
tical constants and the dielectric constant of a metal is ba
on the difference between the reflection coefficients for lig
polarized in the plane of incidence~p polarization! and per-
pendicularly to it ~s polarization!. When light is reflected
from a metal boundary at an anglew, the amplitude reflection
coefficientsr p andr s are given by the Fresnel formulas, an
the complex refractive indexN is expressed in terms of th
ratio r p /r s :

N5sin wF11tan2 wS 12r p /r s

11r p /r s
D 2G1/2

. ~1!

If the medium is continuous, Eq.~1! defines the effective
complex refractive indexNeff in terms of the measurabl
quantity r p /r s .22

The experimental data on the frequency dependenc
the effective dielectric constant«eff5Neff

2 (v) will be dis-
cussed within a theory derived from a simple model o
superlattice consisting of alternating layers of two met
with the possible inclusion of a transition layer on the boun
ary between them. Regardless of the value of the modula
period, the optical properties of a periodic multilayer can
described with consideration of the macroscopic dimensi
of the samples across their thickness by introducing a m
roscopic characteristic, viz., the dielectric constant«(z),
wherez is the coordinate transverse to the plane of the l
ers. In solving the reflection problem, it is permissible to
over to the simulation of an inhomogeneous medium wit
periodic dependence of the dielectric constant onz and to
treat the repeating fragment of the periodic multilayer a
set of layers with individual dielectric constants« j . The
thicknessesdj of the layers so distinguished should corr
spond to regions of relatively uniform« j (z). If we start out
from the simplest case of a periodic bilayer structure, a c
culation of the reflection coefficientsr p and r s with consid-
eration of multiple reflections on the interfaces and the ph
shifts across the thickness of the layers22 using Eq.~1! under
the condition that the dielectric constants are large and
thicknesses of the layers are small compared with the s
depth in the material under consideration, i.e.,

u« j u@1,
v

c
uA« j udj!1 ~2!

~v is the frequency andc is the velocity of light in vacuum!,
leads to the following expression for the effective refracti
index:

Neff5F 1

D
~«1d11«2d2!G1/2

1
iv

2c
~«12«2!

d1d2

D
, ~3!
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where D5d11d2 is the period of the bilayer superlattice
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and i is the unit imaginary number. The second term in~3!,
which is determined by the difference between the dielec
constants of the layers, is a small correction because of
inequalities~2!, and in the approximations indicated~layer
thickness small in comparison to the skin depth! a metallic
superlattice is an effective optical medium with a thickne
weighted dielectric constant

«eff~v!5
1

D (
j

« jdj ~4!

regardless of the number of layers in the repeating fragm
Therefore, the real («eff8 ) and imaginary («eff9 ) parts of the
dielectric constant, as well as the optical conductivity

seff~v!5
v

4p
Im «eff , ~5!

are weighted means.
We now proceed to a discussion of the experimen

data. Let us consider the optical response of the Fe/Cu
tem in the infrared regionl5327 mm, where monotonic
increases in«eff8 and «eff9 with increasingl are observed.
Under conditions such that the electron mean free path in
field of a light wave is comparable to or greater than
thickness of the layers (l>dj ), size effects have an influenc
on « j . Therefore, the use of the bulk values of the dielec
constants of Fe and Cu in Eq.~4! is now incorrect. For this
reason, we did not simulate«eff in the infrared region. How-
ever, the Drude character of the spectral dependence o«eff8
and «eff9 makes it possible to estimate the parameters of
conduction electrons, viz., the plasma frequencyvp and the
relaxation frequencyg0 , and to trace their evolution as th
modulation periodD varies. We obtained the values ofvp

from the linear segment of a plot of

1/~12«eff8 !5v2/vp
21g0

2/vp
2

~the contribution from the virtual electronic transition w
neglected here!. As expected, the variation ofvp with de-
creasing D is insignificant. For thick-layered bcc-Fe/C
samples (D5502100 Å) the average value of\vp is 4.4
eV. In structures with ultrathin layers (D<37.5 Å), in
which the fraction of fcc Fe amounts to 50–80%,\vp de-
creases to 3.8 eV. The dependence of the relaxation
quencyg0(D) has a significantly different character~Fig. 1!.
The observed sharp increase ing0 is an indication of addi-
tional scattering of electrons from the internal interlay
boundaries, whose number within the skin depth increase
the period of the multilayered structure decreases. An
crease ing0 also promotes additional scattering of electro
from the grain boundaries because of the sharp drop in t
grain size, especially in the samples withD<20 Å. Figure 1
also presents data on the optical resistivityropt54pg0 /vp

2 ,
which is calculated in the low-frequency limitv→0 from
the values ofvp andg0 . It can be concluded that the cha
acteristic dependence ofropt on D in thin-layer periodic mul-
tilayers is determined mainly by processes involving
scattering of conduction electrons.
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Let us now turn to a discussion of the optical response
the Fe/Cu system in the spectral range 0.5–5 eV. The
persion curves ofseff for Fe/Cu samples and the optical co
ductivities of pure iron and copper are presented in Figs.
and 2b. In the spectral region considered the optical prop
ties of iron are determined by the interband mechanism
optical absorption. The optical spectrum of bcc Fe conta
an intense absorption band with a maximum at 2.2 eV. N
merical calculations of the optical properties of ferroma
netica-Fe performed in the one-electron approximation~see,
for example, Refs. 23 and 24! established that this band i
formed by the superposition of several partial contributio
from interband transitions within the 3d subband with orien-
tation of the spin opposite to the magnetization~↓! ~d2d, p
transitions!. The contribution of interband transitions in th
system of bands with spins oriented with the magnetizat
~↑! to sFe is insignificant because of the almost complete
filled state of the 3d↑ band and the sharp contraction of th
phase volume for electron excitation. In copper the opti
properties are determined by an intraband mechanism of
tical absorption at photon energiesE,2 eV. The interband
absorption edge atE'2.1 eV is caused by the excitation o
electrons from the top of the 3d band into the conduction
band @the L3→L28(EF) transition#. Within the effective-
medium model considered above@expression~4!#, the high
optical conductivity ofa-Fe will be ‘‘diluted’’ by contribu-
tions to sCu(v) of small magnitude as the thickness of th
copper layer increases. Because of the strong contrast
tween the optical properties of these metals, the resul
spectra ofseff acquire new dispersion features. In particul
as has already been noted in Ref. 25, the absorption pea
2.4–2.6 eV, which is formed by the superposition of cont
butions from interband transitions of electrons in both t

FIG. 1. Dependence of the relaxation frequency of the conduction elect
~1! and the optical resistivity~2! on the modulation period in an Fe/C
system withdFe/dCu52/3.
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FIG. 2. Dispersion of the optical con
ductivity seff : a! 1—(Fe 30 Å/Cu
45 Å)14 , 2—(Fe 20 Å/ Cu 30 Å)20 ,
3—(Fe 8 Å/Cu 12 Å)50 , 4—
(Fe 5 Å/Cu7.5 Å)80 . Inset: 1—
optical conductivity of g-Fe, 2—
histogram of the density of optical in-
terband transitions ing-Fe. b! 1—
Experimental data for seff , 2—
calculation in the sharp-boundar
model, 3—calculation based on a
model with a transition layer of thick-
nessd054 Å.
iron and copper layers, becomes the dominant feature on the
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The results of the simulation of the optical spectra

periodic multilayers using Eq.~4! and the values of the op
tical constants that we obtained in thick-film samples of ir
and copper are presented in Fig. 2b. It can be seen tha
theory which takes into account the multiple reflections o
light wave from a sharp boundary between media provide
fully satisfactory description of the dispersion ofseff by a
layered system with ‘‘thick’’ metallic layers. The
(Fe 40 Å/Cu 60 Å)10 sample is an example. However, fo
the samples with thinner layers of bcc iron and copper the
between the experimental and simulatedseff curves is main-
tained only at photon energiesE>2 eV. As an example we
present the simulated optical conductivity curves for
(Fe 15 Å/Cu 22.5 Å)27 sample. Figure 2b shows that fo
E<1.5 eV the calculated curves predict optical absorpt
lower than the experimentally observed value. It is perfec
reasonable to attribute this disparity to the presence in
systems of a transition layer between iron and copper, wh
can be a mixture of the bcc and fcc iron fractions and copp
It was found that consideration of a transition layer of thic
nessd054 Å having optical constants that correspond to
data for the (Fe 5 Å/Cu 7.5 Å)80 sample improves the
agreement between the experimental and simulatedseff

curves in the spectral region indicated, although the dispa
between the absorption amplitudes persists. AsD decreases
the differences in the dispersion of the experimental a
simulatedseff curves increases significantly.

It might be expected that the enhancement of the lo
energy absorption in short-period Fe/Cu structures is cau
by the influence of the intraband absorption mechani
However, estimates of the contributionss intra obtained using
the values ofvp and g0 presented above showed that th
influence is insignificant in the spectral regionE50.522 eV
of interest to us. For example, at a photon energyE51 eV,
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100<D<12.5 Å varies from 1731014 to 631014 s21,
while the experimentally observed increase in the opti
conductivity isDseff52631014 s21.

In our opinion, one of the causes of the appearance
additional low-energy absorption is the modification of t
electronic structure in thin layers of iron and copper, partic
larly the formation of surface electronic states near the Fe
level EF . This question was thoroughly investigated f
Fe/Cu bilayers and Cu/Fe/Cu sandwiches in Ref. 12 via s
consistent calculations of the energy bands of iron by
linear APW method. In thick films the role of the surfac
states in shaping the optical spectra is small; however, as
layers thin, the contribution of the electronic surface state
the low-energy interband excitation processes increases
siderably. Just such a tendency can be traced in the beha
of the optical spectra of Fe/Cu~Fig. 2a!.

We noticed an even more significant transformation
the optical conductivity curve associated with thea2g
phase transition in iron layers. For example, t
(Fe 8 Å/Cu 12 Å)50 sample with almost equivalent frac
tions of a andg-iron exhibits enhancement of the interban
absorption in the near-infrared region of the spectrum~Fig.
2a, curve3!, as a result of which the fundamental absorpti
peak is centered atE50.721.4 eV. The further increase in
the g-Fe fraction in (Fe 5 Å/Cu 7.5 Å)50 leads to an in-
crease in the intensity of that peak~Fig. 2a, curve4!. We
applied Eq.~4! to two thin-film samples withD512 and 20
Å to determine the spectral dependence of the optical c
ductivity of g-Fe. Although the procedure for subtracting th
contributions ofsCu andsa2Fe from the resultantseff curve
is approximate, the spectral profile ofsg2Fe is practically
identical in both cases. Thus, in thea2g phase transition,
which is accompanied by an approximately 26% increase

928Kirillova et al.
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the crystal lattice parameter of iron, the maximum of t
fundamental interband absorption band shifts from 2.2 eV
1.1 eV. The shape of thesg2Fe curve correlates with the
energy dependence of the density of optical transitionsNopt

obtained using Spicer’s formula.26 To calculateNopt we used
the data on the electronic density of statesN(E) in thin fer-
romagnetic fcc Fe layers having two-dimensional trans
tional symmetry.27 We shall address the question of the ch
acter of the magnetic ordering of theg phase in our sample
when we discuss the magneto-optical data in the next
tion.

3.2. Magneto-optical properties

a) Theory of the equatorial Kerr effect for a period
multilayer. A diagram of the observation of the equator
Kerr effect is shown in Fig. 3. We assume that all the me
in the periodic multilayer have symmetry no lower than c
bic and are uniformly magnetized. For an assigned thickn
dj in the approximation that is linear with respect to t
magnetization each layer is described by a dielectric ten

«̂5« jS 1 2 iQ j 0

iQ j 1 0

0 0 1
D , j 51,2, ~6!

where « j is the diagonal dielectric constant andQj is the
magneto-optical parameter of the medium, which is prop
tional to its saturation magnetization (uQj u!1). In the sharp-
boundary model the magnitude of the equatorial Kerr eff
for the reflection ofp-polarized light from an infinite peri-
odic multilayered structure~with a number of periodsN→`!
is found, according to Ref. 22, from the expression

FIG. 3. Diagram illustrating the measurement of the equatorial Kerr ef
in a periodic multilayer. The electric intensity vectorE of the incident beam
lies in thexy plane~p polarization!. The magnetizing fieldH is parallel to
the z axis, andw is the angle of incidence of the light.
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p I ~cos2 w2G2!~G1
22G2

2!
~7!

wherew is the angle of incidence of the light,

Gj5
gj

« j
, aj5

Qj cosb j

« j
, gj5A« j2sin2 w, ~8!

andb j is the angle between the magnetization vector of
j th layer and thez axis ~the equatorial angle!. The parameter
G in ~7! is defined by the expression

G5
~12r p!cosw

11r p
, ~9!

where r p is the reflection coefficient from a periodi
multilayer in the absence of magnetization, which can
calculated using the formulas presented in Refs. 22 and
We note that the infinite character of the periodic multilay
actually means that its total thickness exceeds the thickn
of the effective skin layer.

Let us consider periodic multilayers~Fig. 3! in which the
ratio d2 /d1 between the thicknesses of the layers is const
The conditionsdj /l!1, wherel is the wavelength of the
optical wave in a vacuum, usually hold in periodic multila
ers. If we confine ourselves in expansions of differences
the form 12exp(2i4pgj dj /l) in powers ofdj /l to the lin-
ear and quadratic terms, Eq.~7! can be represented in th
form

dp5ImS (
j 51

2
dj

D
AjQj cosb j1

D

l (
j 51

2

BjQj cosb j D ,

~10!

whereD is the period of the structure, and the coefficientsAj

and Bj are functions of the dielectric constants«1 and «2 ,
the angle of incidencew of the light, and the ratiod1 /d2 .
Explicit expressions forAj andBj were presented in Ref. 22
Thus, in the linear approximation with respect todj /l ~the
Drude approximation! the expression for the equatorial Ke
effect contains a term that does not depend onD and a cor-
rection that is linear with respect toD/l ~or dj /l!.

However, it can be expected that a more complica
dependence of the equatorial Kerr effect onD can appear in
real objects because of the variation of the electronic str
ture and the magnetic characteristics in thin-layer perio
structures.

b) Field and spectral dependence of thedp effect.Fig-
ures 4 and 5 present the field dependence of the equat
Kerr effect, which characterizes the magnetizing process
an Fe/Cu structure in a magnetic fieldH parallel to the plane
of the film. Note that the samples withdFe.10 Å containing
iron in the bcc phase are magnetized to saturation in w
fields of ;50 Oe, in analogy to a thick (d'1000 Å) layer
of bcc Fe. At the same time, in the sample withdFe58 Å, in
which iron is present in a mixture ofa and g phases, the
saturation field increases to 300 Oe. The field dependenc
the (Fe 5 Å/Cu 7.5 Å)80 sample, which contains iron pre
dominantly in theg phase, has a unique form~Fig. 5a!. The
magnetization curve has three clearly distinguishable
gions: an initial segment at 0–30 Oe, where thedp effect is

t
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slightly nonzero, the range from 30 to 60 Oe, where
effect increases sharply, and, finally, a segment with a ge
sloping increase indp(H) up to complete saturation a
H51600 Oe.

Let us discuss the results obtained on the basis of
hypothesis that the indirect exchange interaction between
ferromagnetically ordered iron layers influences the m
netic structure of a particular sample. The existence of s
an interaction in Fe/Cu periodic multilayered systems is c
firmed by the results of magnetoresistance measuremen29

In addition, it was shown in Ref. 4 within a biquadratic e
change model that in magnetic superlattices~of the Fe/Cr
type! the indirect exchange interaction~which depends on
the thickness of the intervening nonmagnetic layer! leads to
noncollinear ordering of the magnetic moments in neighb
ing ferromagnetic layers, i.e, to their misalignment by
angleu0 differing from 0° and 180°, in a certain range o
values of the exchange coupling constants. Ustinovet al.4

also proposed a method, which was used to determine va
of u0 lying in the range 80°2144° from measurements o
the equatorial Kerr effect in Fe/Cr superlattices with ea
plane magnetization. We shall use a similar approach to
count for the shape of the magnetization curve of
(Fe 5 Å/Cu 7.5 Å)80 sample. Figure 5b is a schematic re

FIG. 4. Dependence of the equatorial Kerr effect for Fe/Cu samples~curves
1–5! and for a thick film of bcc iron on the magnetizing fieldH: 1—
(Fe 30 Å/Cu 45 Å)14 , 2—(Fe 20 Å/Cu 30 Å)20 , 3—(Fe 10 Å/Cu
15 Å)40 , 4—(Fe 8 Å/Cu 12 Å)50 , 5—(Fe 5 Å/Cu 7.5 Å)80 .
e
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sample in the ground state (H50) and its variation during
the magnetizing process in a fieldH applied along thez axis
~Fig. 3!. WhenH50 holds, the magnetic momentsM1 and
M2 of neighboring layers of fcc iron are at an angleu0 ,
which depends on the exchange coupling energy. It can
assumed that the difference between the vectorsM1 andM2

lies in a plane parallel to they axis. The cones drawn in th
figure illustrate the fact that the mean magnetization vec
M5(1/2)(M11M2) for different domains has directiona
isotropy atH50, so that the projection of the resultant ma
netizationMR onto thez axis equals zero. This model i
based on the data obtained for periodic multilayered str
tures andg-Fe/Cu/g-Fe three-layer structures in Refs. 6, 1
and 30. It was shown in those studies that thin layers ofg-Fe
(dFe<5.5 Å) are ferromagnetic forT<400 K and have per-
pendicular anisotropy. In addition, the plots of the polar K
effect and the saturation field (Hs) versus the thickness o
the intervening copper layer in the three-layer structures
hibited maxima, which were interpreted as a manifestation
an indirect exchange interaction of the antiferromagne
type between the magnetic moments of neighboring iron l
ers. In weak fields between 0 and 30 Oe, which are low
than the magnetic anisotropy fieldHA , this structure is basi-
cally preserved~only a small componentMRz appears!, and
the values of the equatorial Kerr effect in this region a
close to zero. In the range of fields 30–60 Oe (H.HA) the
vectorsM of all the domains turn rapidly about they axis, so
that atH560 Oe they are all directed along the fieldH. If
the exchange coupling energy significantly exceeds the m
netic anisotropy energy, it can be assumed in a first appr
mation that this turning takes place without variation of t
angleu0 . In the last range from 60 to 1600 Oe an increase
the field results only in a decrease in the misalignment an
u of M1 andM2 from the value ofu0 at 60 Oe to 0° at the
saturation field of 1600 Oe. According to Ref. 4, the mag
tude of the equatorial Kerr effect on this portion of the ma
netization curve is specified by the expression

dp~H !5A cos
u~H !

2
, ~11!

where the coefficientA does not depend onH. Formula~11!
was used to find the value ofu0 for the
l

-

g

FIG. 5. Dependence of the equatoria
Kerr effect for the (Fe 5 Å/
Cu 7.5 Å)80 sample on the magnetiz
ing field H ~a! and model of the mag-
netic structure of the sample durin
the magnetizing process~b!.
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FIG. 6. Spectral dependence of the equatorial Kerr eff
for Fe/Cu structures~curves1–7! and for a thick film of bcc
iron: 1—(Fe 40 Å/Cu 60 Å)10 , 2—(Fe 30 Å/Cu 45 Å)14 ,
3—(Fe 20 Å/Cu 30 Å)20 , 4—(Fe 15 Å/Cu 22.5 Å)27 ,
5—(Fe 10 Å/Cu 15 Å)40 , 6—(Fe 8 Å/Cu 12 Å)50 , 7—
(Fe 5 Å/Cu 7.5 Å)80 .
(Fe 5 Å/Cu 7.5 Å)80 structure from the values of
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pure bcc iron. This means that the form of thedp(l) curves
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rt-
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tical
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The
dp(60 Oe) anddp(1600 Oe). It was found to be equal t
120°.

The results of spectral measurements of the equato
Kerr effect in Fe/Cu structures in saturation fields atw570°
are presented in Fig. 6, in which a plot ofdp(l) for a thick
(d'1000 Å) film of bcc iron is also presented. It can b
seen that the spectral curves for the four long-period perio
multilayered structures withdFe.10 Å, which contain iron
only ~or mainly! in the a phase (D537.52100 Å), form a
separate group. These curves are similar to one another
their characteristic features~a minimum atl50.3 mm, a
maximum in the region 0.55–0.60mm, passage through
zero, and a second weakly expressed maximum at 1.5mm!
mimic the spectral behavior of the equatorial Kerr effect
ial

ic

nd

r

for Fe/Cu structures is determined mainly by the dispers
of the off-diagonal dielectric constant«xy(l) of iron. The
spectral plots of the equatorial Kerr effect for the sho
period samples withdFe<10 Å (D512225 Å), in which
theg phase of iron is present in considerable amounts, di
significantly from the group just described.

This difference is especially noticeable when the expe
mental curves are compared with the results of a theore
calculation of the equatorial Kerr effect. Figure 7 compa
the experimental curves with theoretical curves calcula
from Eq. ~7! using the bulk values of«Cu(l), «Fe(l), and
QFe(l) found from measurements performed on thi
(d;1000 Å) films of the metals for two structures, whic
represent the long-period and short-period samples.
d
ial

t
-

FIG. 7. Comparison of the measure
spectral dependences of the equator
Kerr effect for (Fe 30 Å/Cu 45 Å)14

~a! and (Fe 8 Å/Cu 12 Å)50 ~b! with
theory:1—experiment,2—calculation
based on Eq.~7!, 3—calculation with
consideration of a transition layer,4—
calculation under the assumption tha
copper is magnetized in the free
electron model.
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FIG. 8. Dependence of thedp effect and seff of
Fe/Cu structures on the modulation periodD for
l50.7 mm ~a! andl51.5 mm ~b!: 1—dp effect ~ex-
periment!, 2—seff ~experiment!, 3—calculation of
the dp effect using Eq.~7!, 4—calculation of thedp

effect using Eq.~12! with consideration of the values
of seff .
comparison shows that while the first group exhibits fairly
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good agreement between the calculation and experiment
experimental data for the short-period samples significa
exceed the calculated values ofdp .

There are several possible reasons for this dispa
Among them we mention the following: reorganization
the electronic structure of the metals when we go over
ultrathin layers, the formation of an fcc phase of iron, t
‘‘magnetizing’’ of copper, and the formation of a transitio
layer on the iron-copper boundaries. We attempted to ev
ate the influence of the last two factors. To this end
calculated the equatorial Kerr effect for th
(Fe 8 Å/Cu 12 Å)50 sample with consideration of the po
sible magnetizing of copper, for which we introduced t
magneto-optical parameter of copperQCu5 i«xy /«xx into Eq.
~7!. Here the off-diagonal dielectric constant«xy of copper
was calculated on the basis of the free-electron model
was done, for example, in Ref. 31 in an analysis of
magneto-optical spectra of Fe/Ag films. The calculation
sults presented in Fig. 7b show that the hypothesis that
copper layer is magnetized~in the free-electron model! leads
to sharp disparity with the experimental data. The introd
tion of a transition layer likewise does not provide for com
plete agreement with experiment, especially in the visi
portion of the spectrum.

In conclusion, let us examine the thickness depende
of the optical and magneto-optical properties of the Fe
system in the spectral range that we investigated. Figu
presents the values of the equatorial Kerr effect and the
fective optical conductivityseff as a function of the modula
tion periodD for two wavelengths. The figure also presen
dp(D) curves calculated from Eq.~7! using the bulk values
of «Cu, «Fe, and QFe. An analysis of the results obtaine
reveals that the experimentaldp(D) curves differ signifi-
cantly from the theoretical curves and have a sharply n
monotonic~oscillating! form in the wavelength range 0.3–
mm ~Fig. 8a!. At l.1 mm the oscillations are smoothed, an
the dependence of the equatorial Kerr effect onD takes on a
monotonically decreasing character~Fig. 8b!. We have al-
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sandwiches~X5Au, Ag! revealed oscillations of the pola
Kerr effect with variation of the thickness of the X layer
the spectral rangesE52.523.8 eV and E52.824.5 eV,
respectively.7 A similar thickness dependence of the pol
Kerr effect was observed by Bennettet al.15 in a g-Fe/Cu/
g-Fe sandwich atl50.628mm. The anomalous behavior o
the magneto-optical effect in iron sandwiches with nob
metals has recently been attributed to the formation
quantum-well states in the band spectrum of ultrat
films.7,32 The influence of the latter on the total density
states and the oscillating dependence of the magnetic
ment in the paramagnetic space of copper in the Fe/Cu
system was considered in Ref. 32 on the basis of fi
principles calculations. This approach to the interpretation
magneto-optical data is probably the most preferable. T
results of the present work show that in the Fe/Cu system
oscillatory thickness dependence is also characteristic of
optical parameters~Fig. 8, curve2!. Since the values of the
equatorial Kerr effect were measured at magnetic saturat
it can be theorized that the thickness dependence of thedp

effect reflects~at least partially! the nonmonotonic depen
dence of the optical properties of the Fe/Cu structure on
modulation period. To test this hypothesis, we calculated
equatorial Kerr effect of Fe/Cu using the formula for
monolithic sample,

dp524 Im
«eff QFe tan w

~«eff21!~«eff2tan2 w!

dFe

D
, ~12!

whereQFe is the bulk magneto-optical parameter ofa-iron.
The results of the calculation~Fig. 8, curve4! confirm the
validity of the hypothesis. A more general conclusion is th
the nonmonotonic character of the thickness dependenc
magneto-optical effects is clearly related to the variation
the entire dielectric tensor of the layered system.
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4. CONCLUSIONS
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3D. H. Mosca, F. Petroff, A. Fert, P. A. Schroeder, W. P. Pratt Jr., and R.
Loloel, J. Magn. Magn. Mater.94, L1-L2 ~1991!.
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A combined analysis of the experimentalseff(D,l) and
dp(D,l) curves for Fe/Cu samples and a comparison w
the results of calculations within a phenomenological the
for metallic superlattices imply that the entire dielectric te
sor ~the diagonal component«xx and the off-diagonal com
ponent«xy! of a layered system varies as the modulat
period decreases. This variation is associated both with
presence of fractions of iron in the fcc phase in samples w
D,25 Å and with a general reorganization of the electro
structure of the metallic layers as a consequence of the
ering of their dimensionality and the influence of quantu
size effects.

Let us enumerate the main results of this work.
1. No decrease in the magnitude of the equatorial K

effect in short-period Fe/Cu structures has been noted in
nection with the bcc-fcc phase transition in iron laye
which implies that the fcc-Fe fraction obtained has ferrom
netic ordering.

2. The plasma frequencyvp of the conduction electron
depends weakly on the modulation period and the struct
state of iron. In short-period multilayered structur
(D,37.5 Å) there is an increase in the relaxation frequen
g0 , which indicates enhancement of the scattering of
conduction electrons on the interlayer and intergrain bou
aries.

3. Nonmonotonic~oscillating! dependences of both th
magneto-optical~the dp effect! and optical (seff) properties
of Fe/Cu on the periodD have been discovered for the fir
time in the broad spectral rangel50.321.5 mm. The analy-
sis of the magneto-optical data that we performed in the fr
electron model did not support the conception of unifo
‘‘magnetizing’’ of the copper layers in these objects. T
nature of the enhancement of the magneto-optical activit
Fe/Cu with ultrathin layers and the oscillatingseff(D) and
dp(D) curves requires further investigation.

4. We have interpreted the special form of the field d
pendence of the equatorial Kerr effect for th
(Fe 5 Å/Cu 7.5 Å)80 sample as a manifestation of an ind
rect exchange interaction, which leads to noncollinear ord
ing of the magnetic momentsM1 andM2 in neighboring iron
layers. The initial misalignment angle of these magnetic m
ments u05120° has been determined on the basis of
proposed model of the magnetic structure of the sample

We thank V. A. Sazonova for performing the x-ra
structural analysis of the samples.

This work was performed with financial support fro
the Russian Fund for Fundamental Research~Project No.
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Anomalous behavior of the electrical conductivity tensor in strong magnetic fields

A. Ya. Mal’tsev* )

L. D. Landau Institute of Theoretical Physics, Russian Academy of Sciences, 142432 Moscow, Russia
~Submitted 27 March 1997!
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The behavior of the electrical conductivity tensor in strong magnetic fields in the presence of
unclosed quasiclassical electron trajectories of complex form near the Fermi surface is
considered. It is shown that the asymptotic behavior of the conductivity tensor in the limitB→`
differs in this case from the picture previously described for trajectories of simpler form.
The possibility of blocking the longitudinal conductivity in strong magnetic fields at low
temperatures in the case of a Fermi surface of special form is also treated theoretically.
© 1997 American Institute of Physics.@S1063-7761~97!01311-5#

1. INTRODUCTION In the presence of a strong uniform magnetic fieldB,
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This paper is a continuation of Refs. 1 and 2 and
devoted to the galvanomagnetic phenomena in metals
complicated Fermi surfaces. The study of the galvanom
netic phenomena in metals with a complex Fermi surf
was begun in Refs. 3–5, in which the influence of unclos
quasiclassical electron trajectories lying at the Fermi surf
on the electrical conductivity tensor in strong magnetic fie
was studied. In particular, Refs. 4 and 5 presented calc
tions of the contribution to the conductivity tensor that do
not vanish in the limitB→` from an unclosed electron tra
jectory which lies in a band of finite width in a planeP~B!
perpendicular to the magnetic field and passes comple
through it. It was shown that the contribution of such traje
tories tosab in the limit b→` is a degenerate tensor with
kernel coinciding with the mean direction of the trajecto
This situation was subsequently utilized to experimenta
investigate complicated Fermi surfaces of metals.6–9 A de-
tailed presentation of the theoretical and experimental res
previously obtained in this area can be found in Refs. 10–
The topological problem of classifying unclosed electron t
jectories in a strong uniform magnetic field for an arbitra
Fermi surface was then posed in Refs. 14–17 and inve
gated in Refs. 18–24. The topological theorems obtaine
those papers provide a complete picture of the various s
ations that arise for an arbitrary direction ofB on an arbitrary
level surfacee(p)5const, wheree~p! is the dispersion law.
We shall describe this picture here.

2. FORMULATION OF TOPOLOGICAL THEOREMS

The presence of a periodic potential causes the stat
an electron in a single crystal to be characterized by
numbers of the allowed energy band and the value of t
quasimomentump determined to within the reciprocal lattic
vectors. The value of the electron energyes(p) is then a
periodic function in quasimomentum space with perio
equal to the reciprocal lattice vectors. Thus, from the to
logical standpoint,es(p) is a function on a three-torusT 3

~which we shall identify with the first Brillouin zone! ob-
tained from the Euclidean spaceR3 by factorization with
respect to the reciprocal lattice vectors.
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quasiclassical electron trajectories are described as a fun
of time by the solutions of the system of equations

dxi

dt
5] ies~p!, ~1!

dpi

dt
5

e

c
@¹es~p!B# i . ~2!

The system of equations~1! and~2! is a Hamiltonian system
relative to the Poisson brackets$xi ,xj%50, $xi ,pj%5d j

i , and
$pi ,pj%5eBi j /c, where B235B1, B315B2, etc., with the
HamiltonianH5es(p).

The electron trajectories in quasimomentum space
are specified by the solutions of system~2! are given by the
intersections of the 3-period level surfaceses5const with
planes that are orthogonal to the magnetic fieldB. In the
three-torusT 3 obtained from the Euclidean spaceR3 by
factorization with respect to the reciprocal lattice vectors,
electron trajectories on the level surfacees(p)5const are
given by the level lines of the 1-form
v5B1dp11B2dp21B3dp3 confined to that surface. Below
following Ref. 21, for the set of pointsA in T 3 @for ex-
ample, trajectories or parts of the level surfacee(p)5const#
we shall useÂ to denote its complete progenitor inR3 under
the mappingR3→T 3 and thus establish the correspo
dence between these objects.

Here we shall presume that the magnetic fieldB has a
direction of irrationality 3, i.e.,P~B! does not contain recip
rocal lattice vectors. In this case for closed and open tra
tories in the three-torusT 3 there will be corresponding pe
riodic sets of closed and open trajectories, respectively
R3. It is easy to see that any closed trajectory inT 3 can be
pasted over by a disk perpendicular to the magnetic field
this case, i.e., it is homologous to zero inT 3. In the general
case we shall assume that the restriction of the formv to the
energy levelses(p)5const has a Morse character, i.e., w
shall assume that after restriction, all of its critical points@the
points at which the tangent plane to the surface coinci
with P~B!# are nondegenerate. The critical points ofv are
then trajectories of system~2!. We shall call these trajecto
ries, as well as the trajectories directly adjacent to them
the case of the saddle points~see Fig. 1!, singular trajecto-

934-09$10.00 © 1997 American Institute of Physics
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ries. The remaining trajectories, which do not pass thro
singular points ofv, will be called nonsingular or regula
trajectories.

Each constant-energy surfacees(p)5const can now be
divided into connected components, each of which cons
entirely of closed or open trajectories. The compone
bound one another along singular cycles~see Ref. 21!. The
images of these components will consist entirely of closed
open trajectories, respectively, and will bound one anot
along closed singular trajectories~see Fig. 2!.

Next, together with the energy surface
F e :e(p)5const, for the fieldsB having a direction of irra-
tionality 3 we shall also consider the reduced surfacesF e

† in
the torusT 3, which are obtained fromF e by removing
components consisting of closed trajectories and pasting
disks that are perpendicular to the magnetic fieldB over the
resulting openings. Thus, an arbitraryF e

† is a piecewise
smooth, generally unconnected, non-self-intersecting@see
Ref. 21! surface, which depends on the direction of the m
netic fieldB.

The open trajectories inR3 will now be prescribed by

the intersection of the imageF e
† , F̂ e

† with planes that are
orthogonal toB ~the disks pasted on lie in such planes!. Each
of the connected components ofF e

† in the torusT 3 is a
compact two-dimensional oriented surface and thus has
form of a sphere withg arms pasted on it~g is the kind of
the surface! enclosed~see Ref. 21! in T 3. We note thatg

FIG. 1. Singular trajectories.

FIG. 2. Portion of a Fermi surface containing closed and open trajecto
separated by singular cycles.
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since in that case the corresponding image surface wo
consist of compact components and would therefore be
to contain only closed trajectories.

Let us now formulate the topological theorems~see
Refs. 18–24! which describe families of the surfacesF e

† for
different directions of the magnetic field.

Let there be an arbitrary 3-period functiones(p) with
periods equal to reciprocal lattice vectors, which takes val
in the rangeemin<e(p)<emax. Then

1! For any direction of the magnetic field unclosed tr
jectories exist either at all the energy levels belonging t
certain connected intervale1(B)<e(p)<e2(B), where
e1(B).emin and e2(B),emax, or at a single energy leve
corresponding to a certain valuee0(B). ~In particular, it can-
not happen that there are no unclosed trajectories at an
the levels.!

2! In the former case the setF e
† for any value ofe,

e1(B)<e<e2(B), is an unconnected union of nonintersec
ing two-tori T 2, which are nonhomologous to zero inT 3

@for fields B having a direction of irrationality 3, so tha
P~B! does not contain reciprocal lattice vectors#, i.e., g51
for any connected component ofF e

† . Two-tori lying at dif-
ferent energy levels likewise do not intersect one another
R3 the map of such components is a family of parall
periodically deformed integer~i.e., generated by two recip
rocal lattice vectors! surfaces. All the open trajectories lie i
bands of finite width, whose direction is assigned by t
intersection ofP~B! with the planes described above, an
pass completely through them~see Ref. 21!. In addition,
there is a stability zone near the direction ofB in the form of
a region of finite size with a piecewise smooth boundary
the unit sphereS 2, which is such that the same situation
observed from this zone for a direction ofB of irrationality
3. The homology class of each of the two-tori remains u
changed, although the values ofe1(B) ande2(B), as well as
the measure of the open trajectories at each energy l
generally vary. On the boundaries of the stability zone
values ofe1(B) ande2(B) coincide; however,F e1

† (e15e2)

consists, as previously, of two-tori with the same homolo
class. The physical effects associated with the situation c
sidered above were described in Refs. 1 and 2.

However, generally speaking, in the other case, i
when open trajectories exist at a single energy level, t
may also not lie in a band of finite width22–25 ~then the di-
rection of the magnetic field does not lie on the boundary
any of the stability zones!, and, in addition, for directions o
B of irrationality 3 ~see Refs. 22–24! they will then not have
an asymptotic direction. This situation corresponds to
case where all the connected components ofF e0

† are of a

kind greater than or equal to 3~see Refs. 21 and 24!. Here
we are interested in physical effects associated specific
with such a situation.

We note here that the unit sphereS 2 ~see Ref. 22!,
which parametrizes the directions of the magnetic fieldB,
can either consist entirely of one stability zone or contain
infinite number of such zones and that in the latter case
two stability zones can have no more than one comm
boundary point. The picture then appearing is quite n

es
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trivial. More specifically, on the unit sphereS 2 there is an
infinite number of stability zones with piecewise smoo
boundaries, which tightly fillS 2 everywhere, and an infinite
number of smaller zones adjoin the boundary of each zon
an infinite number of points~Ref. 22, see Fig. 3!. The union
of all the zones densely fillsS 2, but it is still not known
whether their total measure is equal to the measure ofS 2.
The addition to the union of zones on the sphere has the f
of an everywhere dense set of continual capacity, wh
measure has not yet been established. In addition, there
theorem~see Refs. 22–24!, which states that each of th
directions ofB on the unit sphere at which the situation
interest to us is observed~open trajectories existing at
single energy level and not lying in bands of finite width! is
a point for the accumulation of directions having this sa
property. In addition, all such directions near the origin
direction under consideration have the property that o
trajectories exist at the same energy levele0 as for the origi-
nal direction and lie on a certain smooth curve onS 2,
which passes through the original directionB0 . @This is due
to the need for the special topological characteristic to van
when the situation of interest to us is observed~see Refs.
22–24! and thus locally specifies a one-submanifold a
fixed energy level~near the Fermi level in the present cas!.
We note that this condition is not sufficient and directions
interest to us do not lie at all points on the curve describe#.

The situation described thus allows us to state that in
case of fairly complicated Fermi surfaces it is possible,
principle, to observe the second of these situations, wh
corresponds to high genera for the associated componen
F eF

† and will also be of interest to us, by specially selecti

the magnetic fieldB.
As we have already noted above, in the case just in

cated there are unclosed trajectories at only one energy
~we shall assume that the direction ofB has been selecte
such that this level would coincide with the Fermi leveleF or
lie very close to it!. Each of these open trajectories lacks
asymptotic direction and fills the entire plane correspond
to it, which is orthogonal to the magnetic field, so that t
motion of an electron in that plane is reminiscent of ordina
diffusion ~see Fig. 4!. The existing analytical examples o
such trajectories~see Ref. 22!, however, allow us to state tha
in the general case the laws of ordinary diffusion are

FIG. 3. Arrangement of the stability zones corresponding to the cas
trajectories which lie in straight bands of finite width and pass comple
through them on a two-sphere.
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placed by more general behavior, i.e., there are two dir
tions ~they can be considered orthogonal! in P~P! such that
the mean~in absolute value! deviations from the initial po-
sition over the course of time along each of these directi
are proportional topF( l /pF)a and pF( l /pF)b, respectively
~in all planes perpendicular toB!, wherel is the length of the
portion of the trajectory traversed,pF is the Fermi momen-
tum, and 0<a, b<1. From the condition that the area co
ered by the trajectory increases linearly with time, it can th
be concluded that

a1b51. ~3!

In the subsequent treatment we shall start out from this g
eral assumption and retain the term diffusion for the traj
tories just described. The valuea5b51/2 corresponds to
the case of ordinary diffusion, while in the general case
region in P~B! covered by a diffusion trajectory become
increasingly more extended in one direction with the pass
of time.

At energy levels not coinciding with the Fermi leve
there are only closed trajectories. The mean length of
trajectories that lie near the Fermi level and are obtain
from open trajectories on the Fermi surface as a result of
rearrangements of the latter shown in Fig. 5~see Ref. 21! in
planes perpendicular toB upon departure from the Ferm
surface can be estimated as

Le;pF

eF

ue2eFu
, ~4!

wheree is the energy of the level. The mean length of su
trajectories corresponding to the temperature spreadingT can
accordingly be estimated aspF(eF /T), whereeF /T;104 for
ordinary metals. Thus, for magnetic fieldsB that are consid-
ered strong in the theory of galvanomagnetic phenom
~the condition for this isvBt@1, wheret is the electron

of
yFIG. 4. Trajectory of the ‘‘diffusion’’ type that we considered. The plus a
minus signs denote regions of relatively large and small energy values

FIG. 5. Rearrangement of trajectories near saddle points when the en
level or the direction of the magnetic field is varied.
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vBt!eF /T, trajectories of the type just described behave
open trajectories, since the transit time along such a tra
tory significantly exceeds the electron mean free transit ti
The contribution of such trajectories to the conductivity te
sor differs significantly from the contribution of the prev
ously known trajectories which lie in bands of finite wid
and pass completely through them~Refs. 4 and 5; see als
Ref. 1!. We shall now proceed to an investigation of th
contribution.

3. PROPERTIES OF A SINGLE-PARTICLE DISTRIBUTION
FUNCTION AS A FUNCTION OF THE TOPOLOGY OF
THE OPEN TRAJECTORIES

Let us briefly describe the physical assumptions wh
we shall use below. We shall assume that the state of e
trons is described well within the quasiclassical approxim
tion by a single-particle distribution functionf (x,p,t), which
satisfies the Boltzmann equation1!

f t1vgr
i ~p!

] f

]xi 1Fext
i ] f

]pi
5I @ f #~x,p,t !, ~5!

wherevgr(p)5¹es(p) is the value of the electron group ve
locity, Fext is the external force, andI @ f # is the collision
integral. In a state of thermodynamic equilibrium the ele
tron distribution function is given by the expression

f 0~p!5
1

exp@~es~p!2eF!/T#11
. ~6!

As can easily be seen, the application of a uniform magn
field B does not alter the distribution function~6!, since it
generates a flux in quasimomentum space which maintai
volume elementd3p and does not alter the electron energi

We are interested in the properties of the stationary, s
tially homogeneous distributions that appear in such a si
tion when a weak electric field is applied, i.e., we are int
ested here in the conductivity tensor in strong magn
fields. We assume, as is usually done in such cases, th
first order inE

f ~p,E!5 f 0~e!2
] f 0

]e
Fic i~p!, ~7!

and take the collision integralI @ f #(p) ~in the case of elastic
scattering on impurities! in the form

I @ f #~p!5
2pnimp

\ E uwpp8u
2@ f ~p8!~12 f ~p!!2 f ~p!

3~12 f ~p8!!#d~es~p!2es~p8!!
d3p8

~2p\!3 V

5
2pnimp

\ E uwpp8u
2@ f ~p8!2 f ~p!#d~es~p!

2es~p8!!
d3p8

~2p\!3 V, ~8!

wherenimp is the concentration of impurities andwpp8 is the
scattering amplitude on an isolated impurity center. It is
difficult to obtain the following relation forc~p!:
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c gr ]pk gr

5
2pnimp

\ E uwpp8u
2@c i~p!2c i~p8!#d~es~p!

2es~p8!!
d3p8

~2p\!3 V, ~9!

In the case of strong magnetic fields~see Refs. 4 and 5! it is
usually assumed~we shall now consider the case of clos
trajectories only! that

c i~p,B!5 (
k50

`

c~k!
i ~p!B2k. ~10!

Assuming that the collision integral does not depend on
magnetic field in the quasiclassical approximation, for t
functionsc (0)

i (p) we obtain

@vgr~p!B#k
]c~0!

i ~p!

]pk 50, ~11!

i.e., thec i(p) are constant on the trajectories of the syst
~2!. For the next terms in the series~10! we obtain~see Refs.
4 and 5! the relations

2
e

Bc
@vgr~p!B#k

]c~1!
i ~p!

]pk 1evgr
i ~p!

5
2pnimp

\ E uwpp8u
2@c~0!

i ~p8!2c~0!
i ~p!#d~es~p!

2es~p8!!
d3p8

~2p\!3 V, ~12!

2
e

Bc
@vgr~p!B#k

]c~m!
i ~p!

]pk

5
2pnimp

\ E uwpp8u
2@c~m21!

i ~p8!

2c~m21!
i ~p!#d~es~p!2es~p8!!

d3p8

~2p\!3 V, m.1.

~13!

Averaging Eqs.~12! and ~13! over the action of the one
parameter group generated by system~2!, we obtain

e^vgr
i ~p!&5

2pnimp

\ K E uwpp8u
2@c~0!

i ~p8!

2c~0!
i ~p!#d~es~p!2es~p8!!

d3p8

~2p\!3 VL ,

~14!

K E uwpp8u
2@c~m!

i ~p8!2c~m!
i ~p!#d~es~p!

2es~p8!!
d3p8

~2p\!3 VL 50, m.0. ~15!
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on the trajectories of system~2!.
Equation ~14! permits the determination ofc (0)

i (p)
@which is constant on the trajectories of system~2!# as the
solution of a linear inhomogeneous integral equation~see
Refs. 4 and 5!, and afterwards the functionsc (m)

i (p),
m>1, can be found@with consideration of~14! and ~15!#
from the differential equations~12! and ~13! to within func-
tions that are constant on the trajectories of system~2! and
can be found from Eq.~15! ~we recall that we are conside
ing the case of closed trajectories!. Thus, Eqs.~12!–~15! en-
able us to find the functionsc i(p,B) defined by the series
~10!.

As is easily seen, the functionsc (m)
i (p) are determined

from ~12!–~15! to within functions which depend only on th
energy. This is a property of the model of elastic scatter
on impurity centers we have adopted and is, generally sp
ing, not observed for collision integrals of a more gene
form. Since such additions do not influence the value of
electric currentj , here we shall construec (m)

i (p) as the dif-
ference between the function and its mean value at the
spective energy level. As is easily seen, this does not a
the system of equations~12!–~15! except for imposing a nor
malization condition onc (m)

i (p). Henceforth we shall no
use a specific form of the collision integral and shall estim
only its order of magnitude.

On the basis of Eqs.~13!, the ratio of the (m11)th term
of the series~10! to themth term can be estimated as

1

B

c~m11!

c~m!
;

L

~e/c!vFBt
, ~16!

whereL is the length of the closed trajectories in quasim
mentum space, andt is the previously introduced electro
mean free transit time. SettingL;pF for ‘‘short’’ closed
trajectories~i.e., which have dimensions of the order of th
dimensions of the first Brillouin zone!, we obtain

c~m11!

Bc~m!
;~vBt!21, ~17!

and, thus, (vBt)21 plays the role of a small expansion p
rameter. The asymptotic behavior of the conductivity ten
in the limit B→` can now be written~see Refs. 4 and 5! as

s ik;S ~vBt!22 ~vBt!21 ~vBt!21

~vBt!21 ~vBt!22 ~vBt!21

~vBt!21 ~vBt!21 1
D , ~18!

and, accordingly, the resistivity tensor is

r ik;S 1 vBt 1

vBt 1 1

1 1 1
D ~19!

~see also Ref. 13!.
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width of order pF and pass completely through them~see
Refs. 4 and 5!, the same treatment2! gives

s ik;S ~vBt!22 ~vBt!21 ~vBt!21

~vBt!21 1 1

~vBt!21 1 1
D , ~20!

r ik;S ~vBt!2 vBt vBt

vBt 1 1

vBt 1 1
D . ~21!

As can be seen from~19! and ~21!, the resistivity in a
plane perpendicular toB reaches saturation in the lim
vBt@1 andB→`, if there are only closed short trajecto
ries, and it obeys the lawr;B2 cos2 w, wherew is the angle
between the direction of the current and thex axis, in the
presence of open trajectories lying in narrow~of width ;pF!
bands parallel topx .

In our case, however, as we have already indicat
L;pFeF /ueF2eu, and the estimate~17! is thus inapplicable.
SettingueF2eu;T, from ~16! we obtain

c~m11! /Bc~m!;~eF /T!~vBt!21,

and, thus, the range of magnetic fields satisfying the con
tion

t21!vB!
eF

T
t21, ~22!

requires a separate treatment in our case. For example,
~14! we obtain

c~0!
x ~p!5c~0!

y ~p![0,

after which, taking into account Eq.~2!, from ~12! we can
easily find that

maxuc~1!
x ~p!2c~1!

x ~p8!u5c maxupy2py8u;cpF~L/pF!b

;cpF~eF /T!b,

maxuc~1!
y ~p!2c~1!

y ~p8!u5c maxupx2px8u

;cpF~eF /T!a.

We shall henceforth use the so-called mean free p
concept~see Refs. 12 and 13!. More specifically, neglecting
the dependence of the mean free path on the quasimom
tum, we assume that the fraction of electrons which unde
their first scattering act after the beginning of observation
the time interval~t, t1dt! equals

n5
1

t
e2t/t. ~23!

We usev(t,p) to denote the value of the group veloci
at the point obtained fromp by shifting system~2! by the
time (2t) along the trajectory, and we introduce the quant

S~ t,p!5E
0

t

v~ t8,p!dt8, ~24!
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which is equal to the integral ofv(t,p) over the correspond-
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ing portion of the trajectory ending at the pointp. The quan-
tity

W~ t,p!5eES~ t,p! ~25!

will then characterize the energy~to first order inE! gained
by an electron as it moves during the timet along the portion
of the trajectory ending at the pointp. Now, assuming tha
the election moves along a trajectory of system~2! between
two scattering acts, acquiring or losing energy in the elec
field and thereby escaping to higher or lower energy lev
while electrons from more filled lower levels or less fille
higher levels arrive in its place, and that scattering sub
quently occurs in some other element of quasimomen
space, we can write a correction to the distribution funct
that is linear inE in the form

f 1~p!52
] f 0~e!

]e

1

t E
0

`

e2t/tW~ t,p!dt, ~26!

and, accordingly, the value of the current densityj equals

j52e2E vgr~p!
] f 0~e!

]e

3F1

t E
0

`

e2t/tE
0

t

Ev~ t8,p!dt8dtG d3p

~2p\!3

52e2E vgr~p!
] f 0~e!

]e

3E
0

`

e2t8/t~Ev~ t8,p!!dt8
d3p

~2p\!3 . ~27!

With no loss of generality, we shall next assume that thz
axis coincides with the direction of the magnetic fieldB. In
this case, following Refs. 4 and 5, it will be convenient for
to introduce new coordinates at each of the energy le
near the Fermi level. More specifically, since there are o
closed trajectories at each of the levels witheÞeF , singular
closed trajectories cut each of the levels into cylinders
height hi , which consist of nonsingular closed trajectori
~here we consider only essentially different cylinders, wh
are not obtained from one another by displacement by a
ciprocal lattice vector!. The bases of some of the cylinde
can then be constricted into a point~see Fig. 6!.

We take the values ofpz and s5teB/c, wheret is the
transit time along the trajectory of system~2!, as the coordi-
nates in each such cylinder. The sum of the heights of
cylinders consisting of trajectories obtained by rearrang
open trajectories lying on the Fermi surface~apart from
them, in the general case there are also ‘‘short’’ trajector
which were previously excluded from the treatment! then
tends to zero ase→eF and can be estimated in order
magnitude as

H5( 8 hi;pF

ueF2eu
eF

,
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while the mean length alongs of such trajectories is of orde

pF

vF

ueF2eu
eF

;m*
ueF2eu

eF
,

wherem* is the electron effective mass. Taking into accou
the fact that the Jacobian for passing from the coordina
(px ,py ,pz) to (e,pz ,s) equals unity~see Refs. 4 and 5!, the
contribution of such trajectories to the conductivity tens
can be written, using~27!, in the form

s ik52e2S c

eBD E8 ] f 0~e!

]e F E
0

`

vgr
i ~e,pz ,s!

3expS 2
cs8

eBt D vgr
k ~e,pz ,s2s8!ds8G dedpzds

~2p\!3 ,

~28!

where the prime on the integral sign means that for e
energy value the integration is performed along the cylind
described above of long trajectories obtained from open
jectories lying on the Fermi surface. We note that after
replacement ofB by 2B, which entails the replacemen
s→2s, it is not difficult to obtain the relation
s ik(B)5ski(2B) in accordance with the Onsager princip
from Eq. ~28!.

Expanding the functionsvgr(e,pz ,s), which are periodic
in s, into a Fourier series

vgr~e,pz ,s!5 (
n52`

`

vgr~e,pz ,n!expS i
2pn

S0
sD , ~29!

whereS05S0(e,pz) is the length~alongs! of the respective
closed trajectory, we can rewrite Eq.~28! in the form

s ik52e2S c

eBD E8 ] f 0~e!

]e

3F (
n52`

` vgr
i ~e,pz ,n!vgr

k ~e,pz ,2n!

c/eBt1 i2pn/S0
G dedpz

~2ph!3 ,

~30!

FIG. 6. Portion of a Fermi surface separated by singular cycles into cy
ders of closed trajectories.
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where the componentsvgr(e,pz ,n) are of the same order of
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jectories it is then natural to use relations that are analogous
x y
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so
magnitude up ton0;S0 /m* ~note thats has the dimensions
of mass and thatm* corresponds to the size of the Brilloui
zone!, after which they begin to decrease. From~22! we now
haveS0 /m* @cS0 /eBt@1.

To evaluate the integrals~28!, we replace the quantity

E
0

`

e2cs8/eBtvgr
k ~e,pz ,s2s8!ds8

by

E
0

eBt/c

vgr
k ~e,pz ,s2s8!ds8, ~31!

and we replacevgr
i (e,pz ,s) by the quantity averaged over th

intervaleBt/c @in order to discard the higher harmonics th
are orthogonal to~31!#:

vgr
i ~e,pz ,s!→

c

eBt E
0

eBt/c

vgr
i ~e,pz ,s2s8!ds8. ~32!

We now note that fori ,k51,2 the quantities~31! and ~32!
can be expressed by virtue of~2! in terms of the differences
betweenpx and py at the ends of a trajectory segment
lengtheBt/c, which, in turn, can~when thepx andpy axes
are appropriately selected! be estimated in order of magn
tude according to the foregoing aspF(eBt/m* c)a and
pF(eBt/m* c)b. For the corresponding componentss ik we
thus have the estimates

sxx;e2S c

eBD 2 1

t
pF

2~vBt!2b
pFm*

~2p\!3

eF

ueF2eu
ueF2eu

eF

;
ne2t

m*
1

~vBt!222b , ~33!

wheren;pF
3/(2p\)3 is the electron density. Similarly,

syy;
ne2t

m*
1

~vBt!222a , ~34!

sxy;syx;
ne2t

m*
1

~vBt!22a2b 5
ne2t

m*
1

~vBt!
~35!

~so thata1b51!.
Let us now consider the values forvgr

z corresponding to
~31! and ~32!. We assume that the setFeF

† described above

consists in our case of one connected component~otherwise,
the Fermi surface must be of genus no less than 6!. In this
case the part ofFeF

† covered by open trajectories is a co

nected surface that is invariant to the replacementp→2p,
and, thus, the mean value ofvgr

z (p) on any open nonsingula
trajectory on the Fermi surface is equal to zero. As we m
away from the Fermi surface, however, the mean value ofvgr

z

on the closed trajectories obtained from open trajector
unlike vgr

x andvgr
y , is, generally speaking, not equal to ze

and can be estimated in order of magnitude asvFueF2eu/eF .
For the quantityvgr

z (e,pz ,s)2^vgr
z &(e,pz) on each of the tra-
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to the correspondingvgr andvgr and to write within an order
of magnitude

E
0

eBt/c

~vgr
z ~e,pz ,s!2^vgr

z &~e,pz!!ds8;vFS eBt

m* cD g

,

~36!

where 0,g,1.
After the assumptions made, the remaining compone

of the conductivity tensor can be estimated from Eq.~28! as

szz;e2S c

eBD E 8 1

4T cosh2~e2eF!/2T

3
eBt

c
vF

2 ~e2eF!2

eF
2

dedpzds

~2p\!3

1e2S c

eBD 1

t E 8 ] f 0~e!

]e
pF

2

3S eBt

m* cD 2g dedpzds

~2p\!3

;e2t
T2

eF
2 vF

2 pFm*

~2p\!3

1e2S c

eBD 2 1

t
pF

2~vBt!2g
pFm*

~2p\!3

;
ne2t

m*
T2

eF
2 1

ne2t

m*
1

~vBt!222g ; ~37!

@Formula ~37!, like ~33!–~35!, can be regarded only as a
estimate, in which we have distinguished the two princip
terms, one of which corresponds to nonzero values ofvgr

z

near the Fermi surface and decreases with decreasinT,
while the other corresponds to diffusive motion and d
creases with increasingB#:

sxz;szx;
ne2t

m*
1

~vBt!22b2g ; ~38!

syz;szy;
ne2t

m*
1

~vBt!22a2g . ~39!

Equations ~33!–~35! and ~37!–~39! thus describe the
contribution to the conductivity tensor of the long traject
ries that we considered. Comparing it to the contribution~18!
of ordinary trajectories, we readily see that because of
slower decay ofsxx andsyy, as well as, possibly~although
not necessarily!, sxz, szx, syz, andszy, with increasingB in
the range~22! considered here in comparison to the usu
case, the case considered here can be distinguished ex
mentally from other cases. For the resistivity tensorrab ,
a,b51,2, in a plane perpendicular toB we can easily obtain
~when there is also a contribution from short trajectories,
that szzÞ0 holds forB→` andT→0! the estimate
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vBt ~vBt!2bD

in the range~22!, and, thus, the resistivity in a plane orthog
nal to the magnetic field increases in the principal term p
portionally tor;Bn cos2 w, 1,n,2 ~heren52 max$a,b%,
and w is the angle between the direction of the current a
the direction of maximum resistivity!.

We now note that formulas~33!–~35! and ~37!–~39!,
which follow from the general formula~28! after the as-
sumptions which we made, can also be used in the range~22!
and in the previously described cases4,5 of short~with length
;pF! closed trajectories and open trajectories which lie
bands of finite width~also of orderpF! in P~B! and pass
completely through them. In the former case, as is ea
seen, we must seta5b50 andg51 ~the integrals ofvgr

x

and vgr
y are constrained during motion along a trajecto

while the integral ofvgr
z increases linearly with the distanc

traversed!, and in the latter case we must setb50 and
a5g51 ~assuming that motion in quasimomentum spa
occurs along thepx axis!. As for the case where the length
L of the closed trajectories or the minimum widtha of the
band containing the open trajectories satisfy the conditio

pF,L, a,pF~eF /T!, ~41!

the motion of an electron along trajectories in quasimom
tum space in the range of magnetic fields~22! can be re-
garded in such a situation as diffusive motion only f
1!vBt!L/pF , while the expansion~10! can be used for
vBt@L/pF . Thus, a more general dependence ofs ik on B
will be observed in the range~22!, so that theBd(ln sik)/dB
@which play the role of the exponents in formulas~33!–~35!,
and ~37!–~39!# will vary smoothly from the values corre
sponding to the case of electron diffusion inp-space to the
case in which Eq.~18! or ~20! holds. Formulas~33!–~35! and
~37!–~39! can be considered valid in this more general ca
if we assume thata, b, and g are already arbitrary@not
related by Eq.~3!# functions ofB that vary slowly in range
~22!. This argument is important, since the treatments p
sented above, unlike the previously mentioned general c
~see Refs. 1 and 2!, which correspond to stability zones o
directions ofB, correspond to the situation observed wh
the direction of the magnetic field is fixed. In this case t
maximum angle of deviation allowing the trajectories d
scribed above to be rearranged so that the mean length o
trajectory segment in which rearrangements do not oc
~see Fig. 5! is equal to L can be estimated a
;(pF /L)11max$a,b% and is thus very small under the cond
tion that the regime described is maintained with the sama,
b, and g in the range~22! @this requires fulfillment of the
condition L;pF(eF /T)#. Let us now consider the situatio
corresponding to the physical case in which because of
nonuniformity of B the measured value of the conductivi
tensors ik ~or r ik , depending on the conditions of the e
periment! is averaged over a certain neighborhoodOd near
the direction of the field under considerationB0 , the dimen-
sions of Od exceeding the value indicated above for t
angle of deviation. As was noted above, the addition to
set of directions ofB in which the situation that we describe
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of the stability zones in which open trajectories exist in
energy interval@e1 ,e2# of nonzero length and lie in bands o
finite width in planes perpendicular to the magnetic fieldB,
passing completely through them. The union of stabil
zones densely fills the unit sphereS 2 everywhere, and,
thus, the neighborhoodOd will be tightly filled by such
zones everywhere. The dimensions of the zones conver
toward B0 tend to zero, and the values of the limits of th
energy ranges corresponding to theme1 and e2 converge
toward the value ofe0 , at which there are open trajectorie
for the direction ofB0 . The widtha of the bands in which
open trajectories lie tends to infinity. The situation that w
described will be observed for directions ofB from Od that
do not lie in any of the stability zones, the energy values
which there are open trajectories also tending toe0 asB→B0

~we note that we assume that the direction ofB0 was selected
such thate02eF,T!. Thus, if B belongs toOd , the trajec-
tories lying near the Fermi surface can be either closed
open. In addition, if the maximum angle of deviation fro
B0 ~because of nonuniformity of the field, crystal defec
etc.! is equal todu, the lengths of the segments of the orig
nal trajectories in which intersections did not occur are

L;pF /~du!1/~11max$a,b%!.

The value ofL thus determined is a lower estimate either f
the lengths of the closed trajectories obtained or for
widths of the bands of open trajectories and, on the basi
reasonable experimental estimates fordu, satisfy~41!. On the
basis of the foregoing it can thus be expected that, if
magnetic field in a metal with a complicated Fermi surface
specially selected~so that the diffusive motion of electron
takes place on the Fermi surface inp-space in the magnetic
field!, the behavior ofs ik described by~33!–~35! and~37!–
~39! can be observed witha priori unknown values ofa, b,
andg @which, generally speaking, are not related by~3! due
to averaging overOd , if du is not so small that the regim
observed forB5B0 is maintained#. The behavior of the re-
sistivity in a plane perpendicular to the magnetic field is th
described by Eq.~40!.

Here we note that a description of such behavior w
given in a report of experimental work,9 in which the depen-
dence of the resistivityr in a plane perpendicular to a mag
netic fieldB on its direction was investigated in a gold sing
crystal. More specifically, the measurements revealed p
nounced anisotropy~as a function of the direction ofB! of
the resistivity, and maximum points were discovered,
which the resistivity increases withB according to the law
r;Bn, wheren varies from 1 to 1.8. In addition, it can b
seen from an angular diagram that groups of such maxima
on one-dimensional curves on the unit sphereS 2 in accor-
dance with our previous statements~see Sec. 2!, allowing us
to state that the situation which we described is proba
observed on the Fermi surface in a gold single crystal
these directions of the magnetic field.

As we have already mentioned, mathematical theore
allow us to state that the situation described can be obse
for a fairly extensive list of metals with complicated Ferm
surfaces when the direction ofB is specially selected.
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1!We shall carry out the treatment for a model of noninteracting electrons
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ds
2,
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ity,
~37!–~39!, the contribution of the diffusion trajectories de
scribed here to the longitudinal conductivityszz ~in the case
of a Fermi surface of a low genus, so thatF eF

† consists of

one connected component in our situation! vanishes when
T→0 andB→`. Moreover, if the Fermi surface is of genu
3 and has a negative~more precisely, nonpositive! Gaussian
curvature at all of its points, there cannot be any closed
jectories on it in our situation. In fact, in this case the
cannot be any closed trajectories demarcating a t
dimensional diskD2 on the Fermi surface, since there mu
be a singularity of the pole type within such a disk in th
case, in contradiction to the nonpositive Gaussian curva
of the surface. As for closed trajectories of any other type
is easily seen, after they are removed and the open
formed are pasted over by disks perpendicular to the m
netic field, the Fermi surface breaks up into components
lower genus, and the previously described surfaceF e

† will
thus not contain components of genus 3, in contradiction
our original assumptions regarding the situation. In this c
Eqs. ~33!–~35! and ~37!–~39! will describe the complete
conductivity tensor, and whenT→0 andB→`, the conduc-
tivity tensor ~including szz! becomes equal to zero, i.e., th
substance will behave as an insulator in the limitT→0 in
strong magnetic fields for special directions ofB. It should,
however, be noted that the condition described for a Fe
surface~which must be unique! is quite strong, so that the
known metals with complicated Fermi surfaces~for example,
Au!, which are such that there is a possibility of observi
the contribution of~33!–~35! and ~37!–~39! described in
them for special directions of the magnetic field, will n
satisfy it, and contribution~18! will always be present in
them in addition to~33!–~35! and ~37!–~39!. It is possible,
however, to observe a sharp decrease inszz for special di-
rections of the magnetic field in metals with complicat
Fermi surfaces, if the area covered by closed trajectories~of
length;pF! on the Fermi surface is small compared with t
total area of the Fermi surface.

In conclusion, we thank S. P. Novikov and L. A
Fal’kovski� for formulating the problem, and I. A. Dynnikov
and the participants in the Theoretical Seminar of the L.
Landau Institute of Theoretical Physics of the Russian Ac
emy of Sciences for some fruitful discussions.
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with a prescribed dispersion law. As can be shown~see Ref. 13!, consid-
eration of the Fermi-liquid effects, i.e., the dependence of the form of
dispersion law on the electron distribution, does not influence the re
when the conductivity tensor is calculated.

2!The validity the of expansion~10! in the range~22! can be proved sepa
rately in this case, and we shall not dwell on it here.
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ESR millimeter-band spectroscopy of magnetic ordering in the low-dimensional magnet

CuGeO3
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Resonant absorption of microwaves in CuGeO3 single crystals in a frequency band of 40 to 120
GHz, in magnetic fieldB<15 T, at temperatures ranging between 0.5 and 300 K, and in
the configurationBia has been investigated. Several absorption lines~S0 , Sa , andSb! whose
parameters strongly depend on temperature have been detected close to ESR. The
temperature dependence of the total absorption in the main lineS0 with the Lande´ g-factor
g052.154 at temperatures above the spin-Peierls transition temperature is in good agreement with
Bonner and Fisher’s theoretical prediction for a one-dimensional Heisenberg spin chain. In
addition to the main resonance, a resonance of smaller amplitude,Sa , with theg-factor ga52.72
has been detected at temperatures ranging down to a characteristic temperatureT.1 K,
below which the amplitude of this feature drops to zero. A radical restructuring of the
magnetoabsorption spectrum occurs at the temperature of the spin–Peierls transitionTSP'14 K. At
T,12 K new features emerge in the spectrum, namely, a broad absorption line overlapping
with the narrow linesS0 and Sa , and a lineSb with gb51.83, which is not detected at
temperatures aboveTSP. An analysis of amplitudes and total absorption of ESR lines as
functions of temperature has shown that the temperature range below 1 K is anomalous, which
may be caused by an additional ordering in the CuGeO3 magnetic subsystem at low
temperatures. ©1997 American Institute of Physics.@S1063-7761~97!01411-X#

1. INTRODUCTION Since the CuGeO3 magnetic susceptibility is relatively
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Since the pioneering research by Haseet al.,1 the low-
dimensional magnet CuGeO3 has attracted considerable a
tention from investigators as a sample of nonorganic mate
with a spin–Peierls instability. The common viewpoint
that Cu21 ions (S51/2) arranged along thec axis form an-
tiferromagnetic Heisenberg chains, which are known to
unstable against dimerization.1 At temperatures below the
spin–Peierls transition,TSP, the spectrum of magnetic exc
tations of a one-dimensional Heisenberg chain is sign
cantly changed, namely, the singlet ground state is separ
from the excited triplet state by an energy gap.2 As a result,
one should expect an abrupt drop in the magnetic susc
bility in the temperature range below the spin-Peierls tran
tion.

An abrupt drop in the magnetic susceptibility of CuGe3

~by almost an order of magnitude! was detected for
T,TSP'14 K, and X-ray diffraction measurements pr
duced evidence in favor of dimerization.3 Neutron diffraction
measurements demonstrated, however, that the nature o
magnetic interactions in CuGeO3 is more complicated.4,5

First, in addition to the antiferromagnetic exchange along
chains characterized by an exchange integralJc561.5 K,
there is a fairly strong antiferromagnetic coupling betwe
chains in thebc plane withJb56.8 K.5 Second, the aniso
tropic antiferromagnetic interaction in thebc plane occurs
alongside an antiferromagnetic interaction between pla
along thea-axis with an exchange integralJa50.7 K.5
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low, the ESR technique is the most efficient tool in stud
of magnetic ordering. In the general case, formation o
collective spin mode or antiferromagnetic order, when in
vidual spins are frozen, should lead to a decrease in the E
signal, which is due to uncoupled spins. Seve
publications6–11 were dedicated to ESR studies of CuGeO3.
It has been established that the ESR line amplitude dr
with the temperature aboveTSP in qualitative agreement with
the behavior of the magnetic susceptibility. On the oth
hand, it is noteworthy that the susceptibility and ESR amp
tude cannot be described using the theoretical formulas f
Heisenberg chain~see, for example, Ref. 1!. Below the spin–
Peierls transition, the ESR line amplitude drops rapidly w
decreasing temperature in the range betweenTSP'14 K and
T'6 K.6–11

The published data on the ESR line width forT,TSPare
very controversial. Some authors have observed a tende
toward linewidth saturation as the temperature decreased6,8,9

whereas others10 detected a nonmonotonic dependence w
a maximum about 6 K in the case when the magnetic fiel
was aligned with thec-axis (Bic). Note that, even in the
case of theBic configuration, which has been studied mo
thoroughly, the fine structure of the ESR absorption in
rangeT,TSP has not been interpreted. Hondaet al.10 de-
tected narrow lines of small amplitude which were resolv
in spectra at temperaturesT,6 K and arranged symmetri
cally about the main resonance, whose amplitude was m

943-06$10.00 © 1997 American Institute of Physics



than ten times the amplitude of the weaker lines. Smirnov
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et al., on the contrary, forT,TSP recorded a wide absorp
tion line overlapping with up to four spectral componen
and two lines of comparable amplitudes were located ab
the main resonance. Neither group of researchers10,11 mea-
sured in detail the parameters of the spectral compone
except the main resonance corresponding tog'2.

The substantial ESR signal forT,TSP indicates that the
spin–Peierls phase cannot include 100% of the spins, w
is, naturally, ascribed to defects in the CuGeO3 crystalline
structure and/or internal disruptions of the magnetic orde
the spin–Peierls state. The subsystem of uncoupled s
which are not included in the collective mode, can also
ordered; in particular, experimental data of Ref. 11 prov
evidence in favor of antiferromagnetic order coexisting w
the spin–Peierls dimerization at low temperatures. Thus,
magnetic order in real CuGeO3 crystals is fairly complicated
and new effects can be expected in the temperature ra
below 1 K, where the temperature is comparable to the th
exchange integral. This temperature range, however,
been little investigated.

The aim of the present work derives directly from t
above discussion of available experimental results. Sign
cant changes in ESR parameters at temperatures abov
spin–Peierls transition and tentative changes in the ESR
sorption spectrum below the transition require a deta
quantitative analysis of ESR line shapes as functions of t
perature. It is obvious that the most interesting tempera
range is below 1 K, in which new effects of magnetic ord
ing could be expected.

Note that most of the earlier measurements were p
formed at frequenciesn,35 GHz,6,10 i.e., in the conven-
tional ESR band, or at frequencies ranging between 90
1600 GHz.7–9 But the magnetic ordering can be destroyed
frequenciesn.200– 300 GHz, because the resonant m
netic field is too high.7–9 The importance of experiments i
the intermediate band was demonstrated in a rec
publication11 reporting on an anomalous low-temperature b
havior of ESR absorption at frequenciesn522– 75 GHz and
Bic. Note that this is the configuration that has been stud
most comprehensively, unlike, for example, the case ofBia.
For this reason, we have undertaken an experimental s
of resonant microwave absorption near the ESR line
CuGeO3 single crystals at temperaturesT50.5– 300 K, in a
frequency band of 40 to 120 GHz, and in theBia configu-
ration.

2. EXPERIMENTAL TECHNIQUES

CuGeO3 single crystals were synthesized at M.
Lomonosov Moscow State University. Their quality w
checked using X-ray diffraction, and the absence of tech
logical impurities in the prepared crystals was checked
chemical analysis. A detailed description of the sample s
thesis technique is given elsewhere.12

Microwave absorption in a magnetic field of up to 15
in the frequency band of 40 to 120 GHz was measured u
two techniques. The first was direct measurement of abs
tion in the magnetic field. Millimeter waves were generat
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~BWO! and conducted via a waveguide into the cryostat w
a superconducting magnet generating a field of up to 7 T
single crystal with typical dimensions of 33330.1 mm was
set on a copper diaphragm, whose temperature could be
ied between 1.8 and 4.2 K with a stability within 0.05 K. Th
microwave radiation transmitted through the sample was
tected by a carbon bolometer. This facility was used in
tailed measurements of resonant features of spectra at d
ent frequencies at temperatures below the spin-Pe
transition. A detailed description of this facility can be foun
in an earlier publication.13

A second facility was employed in studies of the ES
spectrum as a function of temperature. A sample was pla
in a tunable cavity withQ58•103, and the signal transmit
ted through the cavity was recorded as a function of m
netic field. A special device allowed us to shift the cav
bottom inside the bore of the superconducting solenoid g
erating a field of up to 15 T and thus roughly tune the re
nant frequency between 50 and 75 GHz. Fine tuning to
resonance was performed by varying the microwave
quency. The loaded cavity transmission was measured
millimeter-wave vector network analyzer~MNVA ! manufac-
tured by ABmm ~France! and using solid-state generato
and detectors.14 Measurements in the 1.5–300-K temperatu
range were performed in a cryostat with a continuous flow
a cooling agent, and forT,1.5 K in a 3He cryostat.

At temperatures below the spin–Peierls transitio
namely in the range of 1.8 K to 4.2 K, the two experimen
facilities recorded similar spectra of resonant absorption i
magnetic field. In magnetic fields of up to 15 T, only featur
near the ESR withg'2 were detected in all samples, and n
additional resonances whatever were recorded. The reso
frequencies of all detected features in absorption spe
were linear in the magnetic field within the experimen
error.

Since defects in CuGeO3 crystals could affect shapes o
ESR spectra, we checked spectra of the samples cle
from different parts of the ingot. Samples cleaved from t
central part, in which minimal impurity contents were d
tected by chemical analysis, produced a single main E
line alongside weaker spectral components both above
below the spin-Peierls transition temperature, and the sp
trum shapes were reproducible from sample to sample.
spectra of the samples from the ends of the bar, where
impurity content was higher, contained a doublet in the
gion of the main resonance and satellites of smaller am
tudes. As an additional check of the sample quality, we
corded ESR spectra of samples fabricated at Universite´ de
Paris Sud by G. Dhalenne and A. Revcolevschi. They w
identical to spectra of single crystals cleaved from the cen
section of the bar. In this paper we specifically discuss m
surements of samples of the highest quality.

3. EXPERIMENTAL RESULTS

3.1. Resonant magnetoabsorption of CuGeO 3

Typical normalized transmission spectraTr(B) at
n566.3 GHz are given in Fig. 1. They are normalized
that Tr(B)51 holds far from resonances.

944Demishev et al.
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At temperatures above that of the spin–Peierls transit
the ESR spectrum consists of two components, namely,
main lineS0 with a Lorentzian shape and the weaker lineSa .
The amplitude and width of theS0 line strongly depend on
temperature. As the temperature is lowered to the transi
temperature, its amplitude increases, while its width dr
~Fig. 1, curves1 and2!. In this temperature range the param
eters of theSa line are almost constant with temperature.

For T,TSP'14 K theS0 line amplitude drops abruptly
~Fig. 1, curve3!, and the shape of the magnetoabsorpt
spectrum near the ESR changes radically. In contrast to
rangeT.TSP, the linesS0 andSa at temperaturesT,12 K
are superposed on a new broad absorption line~see also Fig.
2, where details of the transmission spectrum are plotted
an enhanced scale!. Moreover, the spectrum contains a ne
narrow line~Fig. 2!. The broad line was first reported in Re
11 for the configurationBic, but our absorption spectra, un
like those in Ref. 11, do not have an asymmetric pattern
narrow ESR lines. With the exception of the broad line,
recorded spectra~Figs. 1 and 2! are similar to those in Ref
10 for the configurationBic, where two weaker lines wer
also detected around the central absorption peak. It is
markable that in the low-temperature range the mainS0 ab-
sorption line is accompanied by two weak satellitesa andb,
which are clearly seen forT,1.5 K ~Fig. 2!.

All the components detected at temperatures both ab
and below the spin–Peierls transition, namelyS0 , Sa , and
Sb , and the broad line, depend sensitively on temperature
detailed description of this dependence will be given in
following sections.

3.2. Positions and amplitudes of resonances

Positions of different resonances expressed in term
g-factors are plotted in Fig. 3. One sees that theg-factors of
S0 , Sa , and Sb lines are constant with temperature. T

FIG. 1. Normalized transmission spectra around ESR in CuGeO3 at
n566.3 GHz and various temperatures:~1! T5256 K; ~2! T578 K; ~3!
T54.2 K.
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main resonance corresponds tog052.15460.002, in agree-
ment with the published data for the configurationBia.6 The
g-factors of theSa andSb lines reported for the first time in
this paper arega52.7260.01 andgb51.8360.01 ~Fig. 3!.

The standard procedure of ESR spectrum analysis
cludes calculation of the total absorption, which is prop
tional to the susceptibility of the free spins:15

I ~T!5E
0

`

@12Tr~B!#dB}x0~T!. ~1!

In the case of CuGeO3, I (T) can be calculated forS0 and the
broad line, whereas the uncertainty in this integral for t
weak Sa and Sb lines is too large. Therefore, let us firs

FIG. 2. Fine structure of CuGeO3 transmission spectra around ESR
n566.3 GHz and below the spin–Peierls transition:~1! T512 K; ~2!
T51.35 K; ~3! T50.53.

FIG. 3. g-factors of CuGeO3 resonances versus temperature. The notati
for the resonances in Figs. 1–5 are identical. The vertical dashed lin
Figs. 3–5 shows the temperature of the spin–Peierls transition.
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consider the amplitudes of the absorption maxima ver
temperature, which can be measured for all component
the ESR spectra.

Unlike the resonance positions, their amplitudes stron
depend on temperature~Fig. 4!. The amplitude of theS0 line
monotonically increases as the temperature drops, then d
abruptly by a factor of about 13 aroundTSP'14 K ~a detailed
description of this region will be given in the next section,
which we will discuss the total absorption as a function
temperature!.

In the temperature range below the spin–Peierls tra
tion, theS0 line amplitude increases by a factor of about tw
as the temperature drops from 4.2 to 1.3 K, and then
T'0.5 K it decreases by about 30% with respect to the lo
maximum~Fig. 4!. A similar nonmonotonic behavior is dis
played by theSb line and the broad line, whose amplitud
have maxima around 1.3 K~Fig. 4!.

It is remarkable that the relative change in the amplitu
due to the temperature drop toT'0.5 K is larger for the
broad line than for theS0 line andSb line. Figures 2 and 4
clearly demonstrate that the broad line amplitude decre
substantially~by a factor of almost three! as the temperature
drops from 1.3 to 0.5 K.

TheSa line amplitude has a different temperature dep
dence~Fig. 4!. This parameter gradually decreases in
rangeT,100 K, and nearTSP it is about 2.5 times smalle
~recall that theS0 line amplitude varies in this range by mo
than an order of magnitude!. In the temperature range dow
to 1 K theSa line amplitude decreases further, and at low
temperatures this feature is not detected in the magnet
sorption spectra~see also Fig. 2!.

3.3. Total absorption and line widths

The total absorptionI (T) was calculated by numericall
integrating the transmission curves~Figs. 1 and 2!. One can
see in Fig. 2 that the broad line andS0 line can be resolved
below the spin–Peierls transition temperature, so forT,TSP

I ~T!5I 0~T!1I 1~T!, ~2!

FIG. 4. Amplitudes of CuGeO3 absorption lines as functions of temperatur
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whereI 0(T) and I 1(T) are the total absorptions in the ma
S0 line and broad line, respectively. The processing of th
lines is illustrated by the middle graph in Fig. 2, where t
dashed line shows the suggested contour of the broad li

Calculations of the total absorption are plotted in Fig.
For T.TSP the experimental curves ofI (T)5ax0(T)
should, obviously, be compared with the magnetic susce
bility of a one-dimensional Heisenberg spin chain calcula
by Bonner and Fisher.16 The feature of the Bonner–Fishe
model is that the exchange integral along the chain and
g-factor unambiguously determine both the temperat
scale and amplitude of the effect, i.e., the model is free fr
adjustable parameters. In our calculations, we have u
Jc561.5 K5 and theg-factor of the main resonance~Fig. 3!.

Theoretical calculations using this model are shown
Fig. 5 ~curve1!. It is clear that forT.TSP measurement data
for I (T) are approximated by the theoretical curve to with
.5% for an ideal one-dimensional spin chain. The mo
adequately describes the drop in the total absorption by a
25% atT5TSP as compared to its peak value correspond
to T.80 K. Note that measurements ofI (T) by Ohtaet al.,8

who also studied the configurationBia, had an uncertainty
of 30–40% for T.TSP, and the uncertainty of measure
ments in the configurationBic in Ref. 10 was about 20%
i.e., the accuracy of those measurements8,10 was insufficient
for checking theoretical predictions. To the best of o
knowledge, the data in Fig. 5 illustrate the first-ever succe
ful application of the Bonner–Fisher model to properties
CuGeO3, since all previously reported measurements
magnetic susceptibility differed considerably from theore
cal calculations1,17 in both the effect amplitude and shape
the x(T) curve. Possible reasons for such discrepancies
be discussed in the next section.

FIG. 5. Integral absorptionI and line widthsg for features of ESR absorp
tion spectra of CuGeO3 versus temperature. Solid lines1 and 2 for I (T)
show calculations by different models:~1! Bonner–Fisher model;~2! Bu-
laevskii model. The rest of the lines are plotted in accordance with exp
mental data.

946Demishev et al.



Bonner and Fisher did not take into account the spin–
ith
el

e

a
p
he
e

tib

re

th
-
.

e
e

an
a

zi

-

-

he

d

in

o
.
re

a
e

de
tr

e

the third exchange integral,T;Ja'0.7 K,5 so changes in
in–
n be
a

ible
f
rst,
e
can
e to

his
am-
s

an-
-

cep-
d
fer-
sult
ins,
ierls

the

tion

eto-

e
the

are
x-
are
etic
is

ave
-

tion

ree-
e-

a
d

n–
b-
. A
Peierls instability in their calculations. In accordance w
Refs. 6 and 10, the total absorption versus temperature b
TSP is well described by the Bulaevskii formula18

I ~T!}
1

T
e2m/T, ~3!

wherem546 K @calculations made with Eq.~3! are shown
by curve2 in Fig. 5#.

The total absorptionI (T) has a minimum atT;4 K. A
further decrease in the temperature leads to an increas
I (T), and the curves ofI 0(T) andI 1(T) are similar~Fig. 5!.
Such behavior should be expected if most spins in chains
assumed to be dimerized, and the remaining uncoupled s
due to defects in the crystal lattice or irregularities in t
spin-Peierls phase, which are not included in on
dimensional ordered structures, have a magnetic suscep
ity described by the Curie law. A similar behavior ofI (T)
for Bic was qualitatively described earlier,11 but without dis-
tinguishing contributions from the broad and narrow featu
of the ESR spectrum. Measurements by Hondaet al.10 for
the same configuration produced a different result: in
rangeT,6 K the susceptibilityx(T) increased with decreas
ing temperature, while the total absorption was constant

Below T51 K the total absorption drops~Fig. 5! largely
due to a large drop in the contribution from the broad lin
I 1(T), and I 0(T) changes similarly, although the amplitud
of its change is considerably smaller.

Given the measured values of the total absorption
amplitudes, we can calculate line widths. Assuming that
lines have Lorentzian shapes, we can derive the Lorent
width g in units of magnetic field from the formula

g5
I ~T!

pA~T!
, ~4!

where A(T)512min$Tr(B,T)% is the amplitude of an ab
sorption line with total intensityI (T). This approximation is
perfectly suitable for theS0 line, whereas it yields a reason
able estimate for the broad line.

Calculated line widths are plotted in Fig. 5. Note that t
gradual decrease ing for the main lineS0 is in agreement
with previously reported results.6,8,9 The width of the broad
line as a function of temperature is nonmonotonic, an
broad minimum can be seen ong(T) curve aroundT.1 K.

3.4. Low-temperature anomaly in CuGeO 3

Experimental data described in the previous sections
dicate a low-temperature anomaly in CuGeO3. As can be
seen in Figs. 1–5, the amplitude and total absorption of b
the broad line andS0 line drop considerably below 1 K
Moreover, theSa line amplitude vanishes in this temperatu
range.

These qualitative and quantitative changes in ESR
sorption spectra allow us to suggest that additional magn
ordering occurs in CuGeO3 at temperaturesT,1 K, since in
this case the susceptibility of uncoupled spins should
crease. Note also that these changes in the ESR spec
occur in the region where the temperature is comparabl
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the magnetic subsystem of spins not included in the sp
Peierls phase can be expected, namely, these spins ca
ordered at lower temperatures or ‘‘frozen’’ by forming
spin–glass phase.

A comprehensive study and interpretation of the poss
low-temperature anomaly in CuGeO3 is beyond the scope o
this publication. Here we only make several remarks. Fi
in our opinion, the formation of the broad line below th
spin–Peierls transition should be taken into account. One
see in Figs. 4 and 5 that this feature is most susceptibl
changes in temperature aroundT.1 K. Usually broadening
of an absorption line can be attributed to disorder, in t
specific case, in the spin subsystem, so, the drop in the
plitude of this feature~Figs. 4 and 5! can be interpreted a
additional ordering of spins in CuGeO3 at T.1 K.

Second, in addition to the possible order–disorder tr
sition, the conditionT;Ja may be important. Since the ex
change interaction along thea-axis is ferromagnetic, and a
purely ferromagnetic interaction cannot decrease the sus
tibility, it is likely that an additional interaction should lea
to some change in the magnetic ordering, while the anti
romagnetic spin alignment should largely persist. As a re
of the change in the magnetic structure, a fraction of sp
for example, can be redistributed between the spin–Pe
phase and the phase of free spins, and the number of
latter can decrease.

Third, we can see that measured total ESR absorp
and static magnetic susceptibility in CuGeO3 diverge. It
seems likely that only free spins contribute to ESR,I;x0 ,
whereas the magnetic susceptibility measured by a magn
meter also includes a contributionxc of the collective mode,
so thatx(T)5x0(T)1xc(T). As a result, on one hand th
ESR technique can be more susceptible to changes in
magnetic ordering of a sample~especially in the subsystem
of free spins!, and on the other hand, ESR measurements
difficult to check independently. For this reason, more e
periments on the magnetic susceptibility and ESR spectra
required for elucidating the nature of the suspected magn
anomaly in CuGeO3 indicated by our measurements, and th
will be the subject of our future research.

4. CONCLUSIONS

The main results of our research in resonant microw
absorption around ESR in CuGeO3 single crystals in the con
figurationBia can be summarized as follows.

~1! The temperature dependence of the total absorp
in the main resonance withg052.154 in the temperature
range above the spin–Peierls transition is in a good ag
ment with Bonner and Fisher’s calculations for a on
dimensional Heisenberg chain.

~2! In addition to the main resonance, a new line of
smaller amplitude and withga52.72 has been detecte
throughout the temperature range above the pointT.1 K,
below which its amplitude is zero.

~3! When the temperature drops below that of the spi
Peierls transition,TSP'14 K, the shape of the magnetoa
sorption spectrum in a magnetic field changes radically

947Demishev et al.
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trum with narrow lines superposed on it, including a new li
with gb51.83 not observed aboveTSP.

~4! The quantitative analysis of ESR spectrum para
eters indicates that the region below 1 K is anomalous, which
may be caused by additional magnetic ordering in the m
netic subsystems of CuGeO3.

The character of the ESR spectrum restructuring due
the transition throughTSP for theBia configuration is differ-
ent from those described in Refs. 10 and 11 forBic, and our
picture is intermediate between those reported in these
publications. As in Ref. 11, we have observed a broad f
ture in the ESR absorption spectrum, but the pattern of n
row resonances is closer to that in Ref. 10. The cause
such discrepancies remain unclear, although difference
the defect structures of samples investigated by differ
groups should be taken into account.

It also seems interesting to clarify the nature of the we
Sa line detected at temperatures both above and below
spin–Peierls transition. Our data do not allow us to ascr
this line to a chemical impurity, because it is highly unlike
that an impurity contributing to the ESR spectrum in a te
perature range of 1 to 300 K could lose its ESR activity
T,1 K. Given the strong temperature dependence of
line and the section with the abrupt change in its amplitu
nearTSP, theSa line can be tentatively attributed to intrins
structural irregularities in the copper chains. An addition
ordering in the subsystem of free spins forT,1 K can
‘‘heal’’ defects of the spin–Peierls phase and thus supp
the corresponding feature in ESR spectra~Fig. 4!. Unfortu-
nately, the problem of defects in CuGeO3 is far from its
ultimate solution at present as regards both technology
structural research, on one hand, and models of electr
structure, on the other. The results of our research indi
that defects of different nature determine the complica
structure and fine features of low-temperature ESR abs
tion, so studies of structural irregularities in undop
CuGeO3 single crystals assume primary importance.
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Chain ordering in molecular dynamics and kinetics
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A. É. Filippov
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The molecular dynamics method is used to study ordering processes in a two-component two-
dimensional Coulomb gas consisting of equal numbers of positively and negatively
charged particles, a gas that models the behavior of a system of interacting vortices. It is found
that as the system temperature decreases, starting from the well-known Kosterlitz–Thouless
transition point the system exhibits additional vortex-chain ordering. This process is found to
stimulate the production of vortex chains, which can be observed in real superfluids,
magnetic materials, and superconducting systems. The results are compared with those obtained
by modeling the kinetics in similar systems via the time-dependent continuum
Heisenberg–Landau model. ©1997 American Institute of Physics.@S1063-7761~97!01511-4#
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In recent decades the dynamics of the ordering of s
tially inhomogeneous structures and phase separation
attracted the attention of researchers. During this time
development of computational techniques refined the
proximations needed to solve the problem. As a rule, s
approximations of the problem amounted to transforming
into one that originated in the multiparticle dynamical pro
lem of the motion of an ensemble of interacting subsyste
i.e., a continuum description on the base of collective fie
~densities!. The current level of computational techniqu
makes possible direct numerical modeling of fairly comp
cated systems with long-range interaction. On the one h
this method makes it possible to verify the result of co
tinuum theories, and on the other, to detect the struct
features of the system that are sure to be lost in the appr
mation process.

Many publications~see, e.g., Refs. 1–12! give examples
of both directions of research. For instance, computer si
lation of phase separation and spinodal decay in simple
binary liquids1–3 is to great extent aimed at reproducing t
results of the analytical theory,4 while the tangled dipole
chains obtained by numerical methods5–7 are extremely dif-
ficult objects for detection via analytical methods. By var
ing the dynamical scenarios it is possible to predict not o
the structures proper but also ways of attaining them thro
experiments. Here the model incorporates fairly realistic
tentials, as is the case, say, with modeling the crystalliza
of molecular liquids.8,9

In turn, the nontrivial results of modeling by the molec
lar dynamics method stimulates the search for similar str
tures by using methods based on the analysis of contin
fields and through experiments. For instance, proof of form
tion of orientation-ordered structures in liquids obtained
the molecular dynamics method for a system of dipoles w
a hard spherical core5,6 facilitated studies of long-range orde
in dipole liquids based on the idea of the dens
functional.10 The numerical experiments in the quasicryst
lization of vortices in two-dimensional turbulence10,11 have
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the chaotic motion of magnetized electrons, which reprod
an almost ideal two-dimensional liquid, to a vortex crystal12

2. DIPOLE AND VORTEX CHAINS

In this paper we give some results of modeling the d
namics of a two-dimensional electron gas as applied to
description of a system of vortices. Starting with the we
known papers of Berezinski�

13 and Kosterlitz and
Thouless,14,15 the model of a two-dimensional Coulomb ga
has been widely used to describe the thermodynamics
various systems~see Ref. 16!. Under certain assumptions
the description of superfluids, the melting of crystals, and
two-dimensionalx–y model for spin lattices can be reduce
to this model. This has made it possible to define the idea
topological order for two-dimensional systems, for which
accordance with the Mermin–Wagner–Hohenbe
theorem17,18 an ordered state in the ordinary sense of
word is impossible. A phase transition in such systems w
compared to a dissociation of vortex pairs in which the a
erage vortex–antivortex distance in an emerging fluctua
pair of excitations grows without limit. Bearing in mind th
spatial dependence of the interaction between vortices,
use the model Hamiltonian

H5(
iÞ j

U~r i j !SiSj ,

where Si are Coulomb charges and the potentialU(r i j ) is
defined as

U~r i j !5E dr 8dr 9 f ~ ur 82r 9u!V~ ur 82r 9u! f ~ ur 9u!,

with f (ur2r 8u) the normalized density of the spatial distr
bution of charge, and has the following limits:

U~r !. ln
l

z
for r !z!l,

U~r !.2 ln
r

l
for z!r !l,

949-10$10.00 © 1997 American Institute of Physics
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FIG. 1. Fragments of two characteristic stru
tures ~containingN5103 particles each! that
occur for T!TKT and have a chaotic initial
distribution of vortices:~a! chains consisting
of vortex pairs (r 0!a), and ~b! a quasicrys-
talline vortex structure (r 0.a). Particles be-
longing to different species~vortices and an-
tivortices! are depicted by dots of differen
sizes. The inset shows the distribution of th
maxima of the Fourier transform of the corre
lation function.
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the
U~r !;r expS 2
l D for l!r ,

which ensures the proper UV and IR cutoff.16 A similar cut-
off procedure can be used in numerical experiments.

The corresponding dynamical equation for such syste
can be derived from the description of the motion of a
perfluid ~superconducting! liquid.19,20 In the lowest kinetic
approximation~in particular, in the approximation that ig
nores the electrostatic contribution to energy!, vortices are
inertialess.16 In this approximation the vortex motion is de
termined by the condition that the total force acting on
vortex ~and consisting of2]U(r i j )/]r i , noise, and relax-
ation! vanishes, so that the equation of motion has
Langevin form16

dr i

dt
52g

]U~r i j !

]r i
1j~r i ,t ! ~1!

with delta-correlated noisej

^j~r ,t !&50,

^j~r ,t !j~r 8,t !&52Dd~r2r 8!d~ t2t8!. ~2!

In the general case the equation also containsd2r i /dt2:

d2r i

dt2
52g

dr i

dt
2

]U~r i j !

]r i
1j~r i ,t !. ~3!

In this form the model can be applied to a much broa
class of objects. For instance, we can expect that by com
ing into pairs the charged particles form a dipole molecu
liquid with properties similar to those discussed in Refs. 5
and yet retain all degrees of freedom~rotational, vibrational,
ability to dissociate and recombine, etc.! inherent in real
molecules. The last feature opens broader possibilities
does the traditional modeling of long-range orientational
der in dipole systems that is based on a combination
Lennard–Jones potentials,5–7,21

wLJ~r !54«F S s

r D 12

2S s

r D 6G , ~4!
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rying a dipole!, and the dipole potential

wdip~r !52
3~m2r !–~m1r !

r 5 1
m2m1

r 3 , ~5!

wherem is the dipole moment.
Moreover, the equations in which the elementary int

actions have the simplest structure can be solved m
faster, so that all process can be observed on a displa
‘‘real time’’ for fairly large data arrays~about 103 particles
moving in three or two dimensions!.

In modeling dipole moments, the repulsive core at sm
distances must be modeled by an appropriate short-ra
correction to the potential,DU(r i j ). However, at room tem-
perature (DÞ0), because of the Coulomb contribution to th
energy,

DU~r i j !; 1/r i j
2 , ~6!

which sets the average scale of the energy minimum
r 0;D, this effect appears even in a purely Coulomb pro
lem with the an initial potentialU(r ).2 ln(r/l). For the
given number density of particles~vortices! r;1/a2, the
r 0-to-a ratio determines the type of the emerging structur

Direct experiments make it possible to verify that wh
the noise is intense~i.e., exceeds the temperatu
T;D5TKT'min@U(r i j )1DU(r i j )#), all vortices move in-
dependently; they form stable pairs only when the tempe
ture is belowTKT , so that the model reproduces in a stab
manner the well-known topological transition. Below we d
cuss only the new results related to the formation of fi
structure in the system when the molecular dynamics met
is employed, results absent from an approximate theory.

Figure 1 depicts fragments of two characteristic stru
tures ~containing N5103 particles each! that occur for
T!TKT and have a chaotic initial distribution of vortices fo
respectively, r 0!a and r 0.a. The directly observable
chains consisting of vortex pairs can be described by
parameter
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FIG. 2. The temporal evolution of the pa
rametersA5$( j@1/ur j j 8u#1( i @1/ur i i 8u#%/2
2( i j @1/ur i j u# and B5(k@1/ur kk8u#. The in-
set depicts the same curves plotted on t
log–log scale.
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1

2 H(
j

F 1

ur j j 8u
G1(

i
F 1

ur i i 8u
G J 2(

i j
F 1

ur i j u
G , ~7!

which characterizes the difference in the average distan
within the vortex subsystem (r i i 8PR(1)) and the antivortex
subsystem (r j j 8PR(2)) and between the two subsystem
(r i j 5r i2r j ) on the small scale.

The curve representing the parameterA in Fig. 2 shows
thatA rapidly increases in the early stages of the evolution
the system~randomly distributed at timet50!, when pairing
leads to rapid screening of the Coulomb interaction. La
the system is slowly attracted to the attractor, at which
correlation of the pairs in the chains increases and the ch
combine. The structures related to this transformation lea
temporary bursts in the value ofA, which are especially
evident in systems with a relatively small number of partic
~to make the pattern more dramatic, the curves in Fig
correspond to the caseN5102!. Here the parameter charac
terizing the distance between vortices of the two signs,

B5(
k

F 1

ur kk8u
G , ~8!

wherer kk8PR(1)
% R(2), changes more smoothly and tend

to the equilibrium value according to the power la
uB2B0u}t1/3 ~see the inset in Fig. 2, where the same curv
are plotted on the log–log scale!.

At r 0.a the system forms a vortex~quasi!crystal ~see
the second structure in Fig. 1!, whose periodic structure is
reflected in the maxima of the Fourier transform of the c
relation function,

G~q!5E dr dr 8exp~ i r–q!^r~r !r~r1r 8!&, ~9!

for finite wave vectors,qjÞ0. These nontrivial maxima are
clearly seen in Fig. 3 both in the total functionG(q), calcu-
lated by summing the discrete density over both subsyste

951 JETP 85 (5), November 1997
es

f

r
e
ns
to

s
2

s

-

s,

r~r !5r1~r !1r2~r !5(
k

d~r2r k!, r kPR~1 !
% R~2 !,

~10!

and in the partial form factors

S1,2~q!5E dr dr 8exp~ i r–q!@^r1,2~r !r1,2~r1r 8!&

2u^r1,2~r !&u2#, ~11!

calculated for each subsystem separately. By way of an
ample, Fig. 3 depicts the section of one of the form facto
S1(q), along the directionqy50 normalized to the same
value asG(q), so it is convenient to compare the two.

Visually, the distribution of vortices in thexy plane re-
sembles a sixth-order lattice, but the typical distribution
the maxima ofG(q) in theqxqy plane depicted in the inset to
Fig. 1 has a symmetry that is closer to rhombic. Periodic
occurs only on the average. The distribution of the maxim
of the functionsG(q) andS1,2(q) resembles a fractal, so tha
the periods are pronounced only for averaged values ofG(q)
andS1,2(q) ~the heavy curves in Fig. 3!.

The structure that develops in time usually consists
several rhombuses rotated relative to one another. Visu
one can detect sixth-, fifth-, and fourth-order local axes
such a structure, which makes the structure look more lik
two-dimensional quasicrystal22–24 than like a ‘‘slightly
melted’’ crystal. This can be confirmed if we construct th
distribution function in angle for pairs of vectors that conne
each site of the structure with its two nearest neighbors. T
distribution has pronounced maxima at certain values of
angles~instead of a single smooth maximum atp/6!.

In free space, a finite number of particles~vortices! of
the same sign, being stabilized by the total field of the p
ticles of the opposite sign, form a spot consisting of fra
ments of a rhombic lattice and the chains correlated with
fragments. The pattern that develops in time is close to
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FIG. 3. ~a! The Fourier transforms
~light curves! of ~a! the total correlation
function, G(q)5*dr dr 8 exp@i(r–q)#
3^r(r )r(r1r 8)&Þ0, calculated by
summing the discrete density over th
two subsystems, r(r )5r1(r )1r2(r )
5(kd(r2r k), and ~b! the partial form
factor, S1(q)5*dr dr 8 exp@i(r–q)#
3@^r1(r )r1(r1r 8)&2u^r1(r )&u2#, cal-
culated for one subsystem~the first!. The
heavy curves depict the same quantiti
averaged over ten neighboring wav
vectors.
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positive column of a glow discharge in Ne~see Ref. 25!.
Here the Coulomb quasicrystal was formed by spher
glass particles under conditions close to those of the
scribed numerical experiments. To model the process the
periment can be simplified somewhat by replacing the c
lective field of one subsystem with an external potential.

By itself, the appearance of vortex chains in an orde
state constitutes nothing new. For instance, vortex ch
have been studied by Grishinet al.,26 who investigated the
magnetic structure of vortices in superconductors w
single-axis anisotropy. They described the phenomenon
magnetic field inversion, related to the fact that in cert
directions inside the anisotropic crystal the magnetic field
directed opposite to the total magnetic flux of the vortic
Because of this the vortices attract each other and f
chains oriented along the crystal symmetry axis. This p
nomenon became especially important when highly an
tropic high-Tc superconductors were discovered27,28 and
chains were actually observed.

Note that the multicomponent nature of the order para
eter in the new superconductors, systems with heavy fe
ons, and other superfluid systems can in itself be the rea
for the emergence of vortex chains.29–32 In this case low-
dimensional regions~channels! with a reduced total magni
tude are formed in the order parameter. Singular vorti
~containing a puncture of the modulus of the order param
to zero! is attracted to these regions and become orde
vortex chains inside the regions. Lately it has been es
lished that this phenomenon occurs in superfl
systems29–31 and in superconducting systems.32

The molecular dynamics method has certain limitatio
that may become important when it is used to describe
systems. The phenomena detected within this approach
be related, in principle, to such features of the method as
fixing of the number of vortices or the specific type of inte
action. At present there is no way in which these difficult
can be resolved. Yet we can try to obtain similar effe
within other approaches and interpret them as indirect v
fication of the results of molecular dynamics.

Ordinarily ~and this is also true of Refs. 29–32!, the
evolution of structures formed by interacting vortices is stu
ied within the framework of the kinetic theory based on t
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gauge-invariant form this model is based on the analysis
system of several interacting, fluctuating fields~the compo-
nentsw j of the order parameter and the vector potentialA!,
with noise and relaxation taken into account.34–37The gradi-
ent expansion within this approach reduces the problem
system of local equations, which can be written in terms
the real-valued components of the complex-valued order
rameterC5@w1 ,iw2# as follows:

1

g1

]w1

]t
5Dw11g~2A–¹w21w2¹A!2w1@~t1g2A2!

1b~w1
21w2

2!#1j1~r ,t !,

1

g2

]w2

]t
5Dw22g~2A–¹w11w1¹A!2w2@~t1g2A2!

1b~w1
21w2

2!#1j2~r ,t !,

1

g3

]A

]t
5u@DA2A¹A#2g~w1¹w22w2¹w1!

2g2A~w1
21w2

2!1j3~r ,t !. ~12!

It is assumed that all field fluctuate independently, so tha

^j j~r ,t !&50, ^j j~r ,t !jk~r 8,t !&5d jkd~r2r 8!d~ t2t8!.
~13!

In the discrete version of the TDGLM equations the i
teractions between only a few nearest neighbors are ta
into account. This coarsening of the description reduces
number of necessary computational operations~makes it pro-
portional to the number of array elements! and allows one to
reproduce the ordering of a system with a large numbe
vortices fairly rapidly. At the same time the coarseni
wipes out all information about long-range interaction in t
system, which if taken into account leads, at the least, to
essentially nonlocal addition to the quadratic part of the g
erating TDGLM functional,

dF @w#5(
j
E dr 8dr 9w j~r 8!L~r 82r 9!w j~r 9! ~14!

with the logarithmic kernel
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FIG. 4. Vortex structure in TDGLM. The cur-
rent density distribution~18! is indicated by dif-
ferent shades of gray for a typical stage in th
evolution of a fluctuating two-component sys
tem.
L~r 82r !} lnur 82r u. ~15!

w
er
o

lt
c

he
th
le
in

nt
f

s
th
th

Formally we are dealing with two order parameters, whose

the
er
pa-

a
the

ed

na-

of
o-
ices

re-

tion
and

.

If this additional term is taken into account, we must allo
for the interaction of all points of the array with each oth
which makes all the computational merits of the meth
worthless.

However, if one has in mind a comparison of the resu
obtained by the methods of molecular dynamics and mole
lar kinetics, it would be interesting to find some proof of t
existence of the chains mentioned earlier at least within
local approach. As noted in Refs. 36, 38, and 39, the simp
topological reason for such vortices to emerge with
TDGLM is the intersection of the zero curves for differe
components of the order parameter. The generation o
gauge magnetic field by the current

1

g3

]A

]t
52g~w1¹w22w2¹w1!1...

manifests itself only at the later stages in the kinetics a
contribution to the vortex interaction. This means that in
kinetic approach the vortex chains must appear even in
simplest nontrivial version of the model:

1

g1

]w1

]t
5Dw12w1@t1b~w1

21w2
2!#1j1~r ,t !,

1

g2

]w2

]t
5Dw22w2@t1b~w1

21w2
2!#1j2~r ,t !. ~16!
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interaction

dF int@w#5bE dr
w1

2~r !w2
2~r !

2
~17!

is such that a large fluctuation of one of the fields at
given point in space interferes with the ordering of the oth
field. Their ordered domains grow along the boundary se
rating them, and the smallest~fluctuation! local symmetry
breaking in the given mesoscopic region is enough to form
chain of domains of one field along the long boundary of
other field.

The vortex structure of such ordering can be describ
by the curl of the currentJ5g(w1¹w22w2¹w1), which in
the two-dimensional case amounts to the following combi
tion of components of the order parameter:

curl J52gS ]w1

]y

]w2

]x
2

]w2

]y

]w1

]x D . ~18!

In Fig. 4 this combination is indicated by different shades
gray for a typical stage in the evolution of a fluctuating tw
component system. One can clearly see chains of vort
and antivortices.

Figure 5 shows how the vortex chains of Fig. 4 are
lated to the quantityM5uw2w1u, which is a reflection of
both the intersection of the zero curves and the localiza
of the regions where these components are both nonzero
hence where their contribution to the current is not small
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FIG. 5. Relationship between theM5uw2w1u
and the vortex chains in Fig. 4.
3. CHAIN MEMORIZING IN PHASE SEPARATION
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Mathematically, the above problem is a particular ca
of phase separation. Its subsequent kinetic scenario con
of the growth of large domains and disappearance of sm
domains.34,35This process is accompanied by a merger of
points of intersection of zero curves. Vortices and antivo
ces ‘‘attract’’ and annihilate each other. If the net curl
nonzero, the fluctuation-generated ‘‘antivortices’’ are su
pressed and there remains a system of vortices of a g
density and of the same sign. This, in particular, is the c
with a superconductor in an external magnetic field.38 When
there is pinning, the vortices remain localized near the po
where they form in the chains.

Actually we are dealing with the mutual overlap of th
large-scale properties of fluctuating fields,37 which generate
low-dimensional structures from density folds, and localiz
topological excitations in multicomponent system of vario
nature~see Ref. 40 and the literature cited therein!. Hence,
the kinetic memory of low-dimensional structures, includi
vortex chains, is a fairly universal feature of systems of t
kind. For instance, recently Bogdanov and Hubert40,41 found
that, in addition to one-dimensional order-parameter str
tures, two-dimensional vortices can form in systems with
Dzyaloshinski�–Morya interaction

WD5Jj–
]Jk

]r
2Jk–

]Jj

]r
. ~19!

However, Bogdanov and Hubert40,41 assumed that the mag
netic vortices form a regular hexagonal lattice. In Ref. 42
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ously from the paraphase; rather, its formation can be stim
lated by a specially organized kinetic scenario. Here the c
tinuum can be described in terms of the equation

]m

]t
5aDm2b curl m1h2

dF@m#

dm
1j~r ,t !, ~20!

where the three-component vectorm5$mx ,my ,mz% can as-
sume arbitrary values in the ordering process, and the fi
tion of the absolute value atm251 is guaranteed by the
appropriate choice of the local part of the free-energy fu
tional, dF@m#. In numerical experiments involving such
system it is indeed possible to obtain fragments of a clo
packed hexagonal vortex structure and a correlation func
with a sixth-order axis.42 However, the large-scale structur
that is formed by the system usually contains a large num
of chains. Figure 6 depicts a fragment of a typical vort
structure that the mechanism described in Ref. 42 is abl
produce. Clearly visible are fragments of a compact struct
close to the hexagonal one and many vortex chains sepa
by voids that emerge as a result of ‘‘memorizing’’ the kine
stage in the evolution. Several stages of the memorizing p
cess are depicted in Fig. 7. It is evident that at the fluctua
stage~when the energy regions with opposite values ofmz

are close to each other! the regions with positivemz , which
precede cylindrical vortices of the given sign, are captu
along the domain boundaries of the space with negativemz .
The energy of the vortex structure that emerges later dif
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little from the energy of the regular lattice, while adding ne
topological excitations requires surmounting a high barrie

This scenario of chain freezing coincides with t
mechanism of virtual-phase formation described in Refs.
and 44. At an early stage the system rapidly equalizes
various nonlocal contributions to the energy. Here the tim
increasing correlation radius,z(t)→`, successively reache
the scales at which each interaction drops off, and this de
mines the spatial structures. In the given case these scale
the domain surface energyJ5a(¹–m)2/2 and the long-
range Dzyaloshinski�–Morya energyWD5bm–curl m. The
subsequent process is logarithmically slow and is termina
by any manifestation of nonideal behavior~in numerical cal-
culations the boundary conditions are sufficient!.

The competition of interactions with different radii ma
be enough to generate an effectively multicomponent st
ture ~as, for instance, in a system of competing ferro- a
antiferromagnetic interactions45!, so that chains of one typ
of domains at the boundaries of domains of another type
be observed for any number of fluctuating fields, even fo
single scalar field. For the scalar densityf~r ! the essence o
the process manifests itself in a purer form. As an exam
Figs. 8a and b depict two stages of memorizing such st
tures in a scalar magnetic field, with the nonlocal part

dF @f~r !#5E drE dr 8
f~r !L~r 82r 9!f~r 8!

2

5E drE dr 8
f~r !La~r 82r 9!f~r 8!

2

1E dr
~¹f~r !!2

2
~21!

of the free-energy functional

FIG. 6. Fragment of a typical vortex structure obtained by the met
described in Ref. 42 on the basis of the equation]m/]t5aDm
2b curl m1h2dF@m#/dm1j(r ,t).
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F @f~r !#5E d r F E dr 8
f~r !L~r 82r 9!f~r 8!

2

1
tf2~r !

2
1

bf4~r !

4 G ~22!

containing ferromagnetic,

d

FIG. 7. Generation of a vortex chain in the structure depicted in Fig.
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FIG. 8. ~a! First stage in memorizing a virtual phase in a sca
system.~b! Second stage in memorizing a virtual phase in
scalar system.
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FIG. 9. Intermediate stage of phas
separation in molecular dynamics. Pa
ticles belonging to different species ar
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dF ferro@f~r !#5E dr
2

,

and antiferromagnetic,

dF anti@f~r !#5E drE dr 8
f~r !La~r 82r 9!f~r 8!

2
,

contributions (dF ferro@f(r )#>dF anti@f(r )#). As z(t)→`,
antiferromagnetic domains appear earlier in the kinetics
localize the more advantageous homogeneous domains a
boundaries. WhendF ferro@f(r )#.dF anti@f(r )# ~the case
depicted in Figs. 8a and b!, this virtual phase43,44 becomes
stable.

Similar processes have been observed in molecular
namics in the presence of phase separation.1–3 This approach
is even more suitable when the average densities are
served, since it does not require special measures to en
flux balancing. The main goal of these researchers wa
reproduce the scaling~known from analytical approaches! of
the growth of the average radius (^R(t)&→` ast→`! of the
domains during phase separation. At the same time,
method made it possible to detect more subtle effects.

Here we will mention only one such effect that is
interest in the context of the present study, i.e., the orde
of subsystems in each others’ self-consistent field, accom
nied by formation of a crystal lattice. Figure 9 depicts t
intermediate stage in phase separation~for more details see
Refs. 1–3!. Clearly visible are the ‘‘whiskers’’ that connec
domains of one type near the boundaries of the domain
the other subsystem. Also clearly visible inside such doma
are lattice fragments that have already formed. The inse
Fig. 9 depicts the Fourier transforms of the total correlat
function calculated over all particles,Gtot(q)5*drdr 8
3exp(ir–q)^r(r )r(r1r 8)&, and of the correlation function
of one of the subsystems,G1(q) ~the light and heavy curves
respectively!. In addition to the maxima at smallq5q0 j

Þ0, which are the same for both functions and correspon
large-scale domains in real space, the curve represen
G1(q) also exhibits peaks at largeq5q1 jÞ0, which corre-
spond to the fine structure forming inside the domains. W
a short-range interaction, the two subsystems can be in
preted as boundary conditions imposed on each ot
Strictly speaking, however, the crystallization of each s
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as it does in the ordering of the~anti!vortex system described
above.

One promising application of direct modeling of pha
separation in dynamical systems is the effect of giant m
netoresistance in lanthanum manganites and other mag
conductors, an effect that is being actively discussed by
scientific community. Experimental data46 suggest that the
state of these materials with an unsaturated spontan
magnetic moment is of the two-phase ferro
antiferromagnetic type, and the possible phase-separa
mechanism is of the electron type. The more advantage
ferromagnetic state is realized only when the carrier conc
tration becomes high. If the concentration is insufficient,
carriers may coalesce into localized ‘‘ferromagnetic drops
A magnetic field facilitates the transition of the entire crys
into a ferromagnetic state, so that percolation of regions w
such ordering becomes possible. Nagaev46 believes that giant
magnetoresistance is responsible for this process.

In 1996 Krivoruchko47 discussed a phenomenologic
model of a magnetic non-single-phase state and fou
among other things, that a macroscopic description can
used if the fraction of the ferromagnetic phase in the antif
romagnetic matrix is small. In the general case there is
way in which one can obtain an expression for the cond
tivity, although the physics of the phenomenon is retain
and hence the effect of electron flow in a magnetic field c
be reproduced by direct numerical modeling.
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Scattering of electrons by a potential step in a magnetic field
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The scattering of two-dimensional electrons drifting in crossed electric and magnetic fields by an
abrupt step in the external potential is discussed. The problem is reduced to solving a
system of ordinary differential equations. It is shown that for moderate electric fields scattering
with a change of Landau level numbers becomes appreciable. ©1997 American Institute
of Physics.@S1063-7761~97!01611-9#

1. INTRODUCTION wheree,0 is the electric field.
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Two-dimensional electrons in a strong magnetic fie
have been the subject of a multitude of theoretical and
perimental studies. Due to the discreteness of the spec
and macroscopic degeneracy of the Landau levels, the a
physical properties of these systems are determined by
mechanism that lifts the degeneracy, because otherwise
electron velocity vanishes and charge transport is imposs
In particular, the quantum Hall effect is closely related to t
existence of a random potential caused by impurities.

For the same reason, the problem of electron scatte
also cannot be formulated for free electrons, because the
locity of the electrons again equals zero. However, in
presence of an external potential a drift velocity of the el
trons appears in crossed electric and magnetic fields, a
scattering problem can be formulated. The most stud
problem is one in which electrons are scattered by a sa
point potential~near the intersection of two potential co
tours!, which can be solved exactly in the quadra
approximation.1

In this paper we investigate scattering of electrons by
abrupt step in the external potential of the form

U52U0u~y!, u~y!5H 1, y.0,

0, y,0,
~1!

which is an idealization of the edge of an abrupt nonunif
mity with dimensions that greatly exceed the magne
length l H

2 5c\/eH, whereH is the external magnetic field
directed along the normal to the two-dimensionalxy plane.

Such a nonuniformity can be created artificially by a
plying control electrodes, or it can arise for internal reaso
that cause an abrupt varying distribution of localized el
trons, as is postulated in a number of explanations for
destruction of the dissipationless state in the quantum H
effect.2,3 Far from the step we will assume that a unifor
electric field exists along thex direction, which leads to a
finite velocity vy.0 for electron drift in the direction to-
wards the step. This field can either be an idealization o
smooth random potential or may be created intentiona
Then the problem that arises is one where an electron
magnetic field is scattered by the potential

U52ex2U0u~y!, ~2!
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Note that all the electrons, both incident and scatter
move in the same direction (vy.0), which is provided by
the corresponding direction of the magnetic field. The sc
tering results in a change of the Landau level number an
shift of the position of the wave along thex axis subject to
the law of conservation of energy~elastic scattering!, as
shown schematically in Fig. 1. This type of scattering can
of interest as a way to create nonequilibrium populations
Landau levels and generate monochromatic cyclotron ra
tion.

In what follows we will use a system of units wher
l H51, \vc5e\H/mc51.

2. REDUCTION OF THE PROBLEM TO A SYSTEM OF
ORDINARY DIFFERENTIAL EQUATIONS

The Schro¨dinger equation for this problem takes th
form

H 1

2 S i
]

]xD 2

1
1

2 S i
]

]y
1xD 2

1@2ex2U0u~y!#J c5Ec,

~3!

wherec is the wave function of an electron and the Land
gauge is chosen. The energy of the electronE is determined
by the incident wave asy→2`, where

c'Ase
iksyFs~x2ks2e!,

E5s1
1

2
2kse2

e2

2
, ~4!

s labels the Landau level, andFs(x) are normalized oscilla-
tor functions. Here we have used the solution to Eq.~3! for
U050; the quantitiesks , As are given by the incident wave

Without loss of generality we can setks5 0, As51. The
caseksÞ0 is reduced to the caseks50 by a corresponding
shift along thex axis. We limit ourselves to the cases50,
where the incident wave is in the lowest Landau level,
though the problem can be solved without any particu
changes for anys.

Equation~3! does not allow separation of variables.
order to solve it we Fourier-transform Eq.~3! with respect to
the variabley:

959-04$10.00 © 1997 American Institute of Physics
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S i
]

]xD 2

ck1~x2k!2ck22exck22Eck52U0ck
2 , ~5!

whereck5ck
11ck

2 and

ck
25E

0

`

e2 ikyc~x,y!dy, ck
15E

2`

0

e2 ikyc~x,y!dy.

According to the well-known properties of the Fouri
transform, the functionck

2 is an analytic function in the
lower half of the complexk plane, and can be written as th
integral

ck
252

1

2p i E 1

k82k1 id
ck8dk8, ~6!

where the integral runs along the real axis, andd→10. The
left side of Eq.~5! can be transformed using the Green
function for the oscillator equation:

Gk~x,x8!5(
s

1

Es~k!2E
Fs~x2k2e!Fs~x82k2e!,

~7!

where

Fs~x!5e2x2/2Hs~x!
1

AAp2ss!
, ~8!

andHs is a Hermite polynomial:

Hs~x!5ex2S 2
d

dxD
s

e2x2
. ~9!

The energyE contains a positive and small imaginary part
accordance with the Sommerfeld conditions.

As a result we obtain an integral equation for the fun
tion ck(x):

ck~x!52
U0

2p i E Gk~x,x8!
1

k82k1 id
ck8~x8!dx8dk81c0 ,

~10!

wherec0 describes the incident wave. If we use the exp
sion

ck~x!5(
s

cs~k!Fs~x2k2e!,

which follows from the completeness of the system of fun
tionsFs , then Eq.~10! is converted to a system of equatio
for the coefficientscs(k):

FIG. 1. Schematic illustration of the scattering process. The arrows s
the positions of waves with different Landau numbers, accurate to with
magnetic length. The direction of the arrows corresponds to the directio
motion at the waves. The scattering zone is cross hatched.
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s s 2p i k82k1 id s8

~11!

where

Gss8~k!5E Fs~x2k!Fs8~x!dx. ~12!

Because according to Eq.~4! Es(k) is a linear function
of k, these equations can be converted to a system of dif
ential equations for the quantities

fs~y!5E cs~k!eiky
dk

2p
, ~13!

which have the form

S i e
]

]y
1s1

1

2
2EDfs~y!5(

s8
Vss8~y!fs8~y!. ~14!

The coefficients Vss8 are determined by the function
Gss8(k):

Vss8~y!5U0E
2`

y

dyE Gss8~k!eiky
dk

2p
. ~15!

In what follows we will assume thatU0.0. The incident
wave should correspond to a current of electrons fr
y→2` up to the step aty50. The magnitude of this curren

j y5E e2 ikyS 2 i
]

]y
2xDeikyFs

2~x2k2e!dx52e.0

requires thate,0. This result can be obtained from the Som
merfeld condition as well.

The behavior offs(y) asy→2` is determined by pre-
scribing the incident wave in the formfs5exp(iksy)ds,s0

,
while the asymptotic behavior asy→1` gives the ampli-
tude of the scattered wave:

fsuy→1`5Ass0
eiksy,

where As,s0
is the scattering amplitude for a transitio

s→s0 . As for the oscillator functions, they enter as facto
into the asymptotic behavior of the total wave function

c~x,y→1`!5(
s

Ass0
eiksyFs~x2ks2e!,

and also, according to Eqs.~12!–~15! determine the coeffi-
cientsVss8(y).

The integral~15! can be expressed in terms of Hermi
polynomials, because

E eikyFs~x2k!Fs8~x!dx dk5
1

2p
F̃s* ~y!F̃s8~y!,

where F̃s* (y)5A2p i 2sFs(y) and F̃s8(y)5A2p i s8Fs(y).
Thus, we obtain according to Eq.~15!

Vss8~y!5U0i s82sE
2`

y

Fs~y!Fs8~y!dy. ~16!

This expression fors5s8 has the form

w
a
of
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l 50

l 5s21
e2y2

2ss!Ap
Hs2 l~y!S d

dyD
l

Hs~y!

1
1

Ap
E

2`

y

e2y2
dyG , ~17!

while for s.s8

Vss85U0

i s82s

A2ss!2s8s8!p
(
l 50

l 5s8

e2y2
Hs2 l 21~y!

3S d

dyD
l

Hs8~y!. ~18!

For s,s8,

Vss85Vs8s
* . ~19!

Equations~14! combined with Eqs.~17!–~19! give an
infinite system of ordinary differential equations for th
functionsfs(y) in accordance with the specified asympto
behavior asy→2`. By finding these functions we solve th
scattering problem.

FIG. 2. Level lines for the probabilityuf0u2 of a transition without change
in the Landau level fors050 in the (e,U0) plane.
TABLE I. Probability for scattering of various waves

961 JETP 85
3. DETERMINING THE SCATTERING AMPLITUDE

Equations~14! contain the electric fielde as a coefficient
in front of the derivatives. Therefore, in the case of sm
electric fields and finiteU0 the quasiclassical approximatio
can be used. We can show that the matrix of coefficie
does not have multiple roots. Therefore, in this case ther
only the diagonal scatterings0→s0 to exponential accuracy
with respect to 1/e, and the probability of other processes
small, which corresponds to above-barrier reflection or
adiabatic approximation. Electrons sense this step at la
distances from it and are slowly turned in the direction of t
step, gradually intersecting it. In the opposite limiting ca
U0!e, the step may be treated as a perturbation, and
principal term in the scattering amplitude corresponds to
diagonal processs0→s0 . Between these two limiting case
there is a maximum for nondiagonal scattering. The cor
sponding scattering amplitude can be determined num
cally by finding the solutionfs(y) to the system~14!. It is
found that the amplitudesAss0

fall off rapidly ass deviates
from s0 , which allows us to replace the infinite system
equations by a finite system with high accuracy.

The system of differential equations was solved nume
cally by the Runge–Kutta and Berlitz–Steuner metho
Subprograms from the ‘‘Numerical Recipes’’ package we
used. The maximum number of waves was chosen to e
five, which is enough to ensure sufficient accuracy. A len

FIG. 3. Amplitude for a transitionufs(y)u for five valuess5 1, 2, 3, 4, 5 as
a function ofy whenU051 ande50.4.
forU 51.
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of 10 for they interval on which the system of equations was
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after scattering. Possibly this mechanism can explain the ap-
re-

ing
The
ntal
solved ensured a good approximation. The scattering am
tude was calculated for an incident wave withs050 as a
function of electric fielde and height of the stepU0 . Figure
2 shows contours for the probability of diagonal scattering
the (e,U0) plane. Figure 3 shows the magnitude offs(y) for
variouss whenU051, e50.4. The good convergence wit
respect tos is evident. In these tables we show the probab
ity of scattering for various waves whenU051 and for dif-
ferent e. We see that the diagonal amplitudeA00 and the
amplitudeA01 have the largest values; the others are mu
smaller. The transition probabilityuA01u for a moderate field
e50.4 andU051 is quite appreciable, and comes to arou
0.1 of the probability for the diagonal transition. This impli
a fairly high efficiency for obtaining population inversio
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pearance of cylotron radiation when the dissipationless
gime of the quantum Hall effect is disrupted.4
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Theory of the electronic structure and spin susceptibility of La 22xSrxCuO4

ten-
M. V. Eremin,* ) S. G. Solov’yanov, and S. V. Varlamov

Kazan State University, 420008 Kazan, Russia
~Submitted 19 February 1997!
Zh. Éksp. Teor. Fiz.112, 1763–1777~November 1997!

We solve the problem of the effect of strong electron correlations on the homogeneous spin
susceptibility of current carriers in CuO2 planes. We show that the dependence of the spin
susceptibilityx(T) of high-Tc superconductors of the La22xSrxCuO4 type on temperature
and the doping indexx can be explained fairly well by the two-band model suggested earlier~the
singlet-correlated oxygen band plus the lower Hubbard band of copper!. The model has
features in common with the phenomenologicalt –J model but cannot be reduced to the latter
completely. In contrast to thet –J model, the density of states of the oxygen holes has a
peak near the bottom of the band. It is the presence of this peak together with the non-Fermi-
liquid properties that explain the unusual behavior of the spin susceptibility of
La22xSrxCuO4. © 1997 American Institute of Physics.@S1063-7761~97!01711-3#
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The temperature dependence of the spin susceptibilit
La22xSrxCuO4 has been analyzed by a number of research
~see, e.g., Refs. 1–7!. The interest in this dependence is gre
because it carries information about the specific feature
the spectrum of elementary excitations in the supercond
ing CuO2 planes. Immediately after the first studies it b
came evident that the strong dependence of the spin sus
tibility of La22xSrxCuO4 on temperature and compositio
can be explained by the ordinary Fermi-liquid theory, p
vided that the following assumption is true: the energy sp
trum of elementary excitations of the CuO2 plane has a peak
in the density of states of an unknown origin, with th
chemical potential being, for some reason, independen
temperature.8 Generally speaking, geometry consideratio
for two-dimensional systems lead quite naturally to the f
lowing dispersion law for the quasiparticle
«k52t@cos(kxa)1cos(kya)#, which has a peak in the densit
of states~the Van Hove peak! at the center of the energ
band. Some researchers9–11 who adopted this hypothesis ca
culated the magnetic susceptibility and found that it expla
many magnetic properties of the normal phase of cupra
However, this scenario~the Van Hove scenario; a detaile
review can be found in Ref. 12! meets with serious problem
in the ordinary Fermi-liquid theory:~1! for a half-filled band
the number of current carriers per copper site must be
order unity (x'1), which completely disagrees with th
chemical composition of La22xSrxCuO4; ~2! it is not known
why the chemical potential close to the extremely sharp p
in the density of states is independent or almost indepen
of temperature, although by rights this dependence shoul
exponential;~3! the scenario is unable to describe a meta
insulator transition at low doping levels; and other problem

According to photoemission data,13,14 the Fermi level in
La22xSrxCuO41d with 0,x,0.3 is at the bottom of the ban
rather than at its center. In this connection, to explain
behavior of spin susceptibility, Ruvaldset al.15,16 phenom-
enologically introduced a peak in the density of states p
cisely near the bottom of the hole band of CuO2. To get rid
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tial, the existence of another broad band near the Fermi le
in addition to the CuO2 band, is allowed. The assumptio
that such an additional band can exist seems to be q
natural, since the CuO2 plane is not the only fragment of th
unit cell of La22xSrxCuO4. Levin and Quader17,18 used a
similar phenomenological model of a step in the density
states near the Fermi level to explain the scaling of the te
perature dependence of the magnetic susceptibility, the
cific heat, the Hall coefficient, and other characteristics
double-layer cuprates.

The goal of the present research is to show that m
problems of the above Fermi-liquid description of the ma
netic susceptibility in the normal phase of La22xSrxCuO4 are
solved if we allow for strong electron correlations. In a bri
communication~Ref. 19! we remarked that the peak in th
density of states near the bottom of the conduction band
CuO2 can appear quite naturally as a result of hybridizat
of singlet-correlated oxygen holes and copper states.
noted in Ref. 19, this hybridization peak will be the first
be populated by holes in La22xSrxCuO4. The numerical cal-
culations in Ref. 19 were done with the four-band appro
mation~the lower Hubbard copper band, two oxygen ban
and the copper–oxygen singlet band!. Since the occurrence
of a hybridization peak is due primarily to the mixing of on
the two lowest bands, in this paper we develop and augm
the more simple~but still equivalent to that used in Ref. 19!
two-band model proposed in Ref. 20 and independently
Ref. 21. As in Ref. 20, we describe the singlet state b
linear combination of Zhang–Rice singlets, neutral oxyg
and Cu31 (S50) states. To make the calculation model
close to reality as possible, we allow for hole hopping fro
copper to oxygen and in the oxygen sublattices. In Ref.
the Cu31 (S50) states and the holes hopping between po
tions in the oxygen sublattice were not taken into account
contrast to Ref. 20, however, we employ a variant of t
method used in decoupling the equations that is better t
the Hubbard-I variant, as was done in Ref. 21~see a similar
method of decoupling equations in the Hubbard model
Refs. 22 and 23!.

963-08$10.00 © 1997 American Institute of Physics



We relate the results of our calculations to the data on
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are tpd51 eV, t (xx)5t (yy)50.1 eV, andt (xy)50.25 eV. The
-

ba-
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hy-
al-
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real La22xSrxCuO4 by comparing calculated and measur
homogeneous spin susceptibilities for different temperatu
and doping indicesx. As in Ref. 24, we calculate the effec
of strong electron correlations~non-Fermi-liquid effects! on
the spin susceptibility in the rapid spin fluctuation mode, i
when the average value of the spin projection on a cop
site, ^Sz&, is much smaller than 1/2.

2. THE MODEL HAMILTONIAN

To describe the electronic structure of the CuO2 plane
we use the hole representation. In La2CuO4 there is one hole
to each copper ion. In La22xSrxCuO4 there are additiona
holes in the oxygen positions. We select the hole state wi
a single unit cell of CuO2 in the form

usd&5ds
† u0&, udd&5d↑

†d↓
†u0&,

usp&5ps
† u0&, upp&5p↑

†p↓
†u0&,

upd&5
1

&

~p↑
†d↓

†2p↓
†d↑

†!u0&, ~1!

where u0& is the vacuum state, which corresponds
Cu1(d10), andds

† andps
† are the creation operators for hole

in the copper and oxygen positions, respectively. As in R
25, from the atomics-orbitals of oxygen holes we constru
the Wannier functions

upis&5
1

N (
k, j

bkPj s
s exp~ ik –Ri j !, ~2!

where Pj s
s is an antisymmetric combination of oxyge

s-orbitals.25 In the Zhang–Rice approximation we have

bk5$120.5@cos~kxa!1cos~kya!#%21/2.

The Hamiltonian for a separate plane has the form

H5(
i

H0i1H1 , ~3!

where the operator

H0i5«d(
s

dis
† dis1«p(

s
pis

† pis

1
I dd

2 (
s

dis
† di s̄

†
di s̄dis1

I pp

2 (
s

pis
† pi s̄

†
pi s̄pis

1Vpd(
ss8

dis
† dispis8

† pis81t0(
s

~dis
† pis1pis

† dis!

~4!

refers to one cell in the CuO2 plane, and the operatorH1 in
~3! describes the hopping of holes in the plane. In accorda
with the data from the literature, we select a standard se
parameters. The energy difference between the statesudis&
andupis& is «p2«d51 eV. The Coulomb repulsions of hole
in copper and oxygen positions are, respectively,I dd55 eV
andI pp51 eV. The parameterVpd of the Coulomb repulsion
of copper and oxygen holes is zero. The hopping integ
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hopping parametert0 is expressed in terms of the hybridiza
tion parametertpd by t051.9164tpd .

Using the well-known expansion

f 5(
p,q

^pu f uq&Xp,q, ~5!

whereXp,q are Hubbard operators constructed using the
sis functions~1!, and f is an arbitrary operator, we find tha

ds
†5Xsd,01~21!1/22sdS Xdd,s̄d1

1

&

Xpd,s̄pD ,

ps
†5Xsp,01~21!1/22spS Xpp,s̄p1

1

&

Xpd,s̄dD , ~6!

with the result that the HamiltonianH0i can be written as
follows:

H0i5«d( Xi
sd ,sd1«p( Xi

sp ,sp1~ I dd12«d!Xi
dd,dd

1~ I pp12«p!Xi
pp,pp1~Vpd1«d1«p!Xi

pd,pd

1Hhop. ~7!

Let us now study the structure ofHhop within one cell. After
carrying out the transformations~6!, we get

Hhop5t0( ~ds
†ps1ps

†ds!5t0( ~Xsd,0X0,sp

1Xsp,0X0,sd!1&t0~Xpd,pp1Xdd,pd1Xpd,dd

1Xpp,pd!. ~8!

The right-hand side of this equation shows that there is
bridization of both one- and two-particle states. To diagon
ize the Hamiltonian within a single cell we must do one mo
canonical transformation of the form

csd,05cdXsd,01cpXsp,0,

cpd,05cddX
dd,01cppX

pp,01cpdX
pd,0. ~9!

Here the relationship between the operatorsds
† and ps

† and
the operatorscp,q is determined by expansions of the form

ds
†5c1dcsd,01c2dcsp,01~21!1/22s~c3dcdd,s̄d

1c4dcpp,s̄d1c5dcpd,s̄d1c6dcdd,s̄p1c7dc pp,s̄p

1c8dc pd,s̄p!, ~10!

ps
†5c1pcsd,01c2pcsp,01~21!1/22s~c3pcdd,s̄d

1c4pc pp,s̄d1c5pcpd,s̄d1c6pcdd,s̄p1c7pcpp,s̄p

1c8pc pd,s̄p!,

The Hamiltonian~7! diagonalized in this way becomes

H0i5Ed( c i
sd ,sd1Ep( c i

sp ,sp1Eddc i
dd,dd

1Eppc i
pp,pp1Epdc i

pd,pd ~11!
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Ed5
«d1«p

2
2

1

2
A~«p2«d!214t0

2,

Ep5
«d1«p

2
1

1

2
A~«p2«d!214t0

2, ~12!

while Edd , Epp , andEpd can be found by solving the equa
tion

detU I dd12«d2E 0 &t0

0 I pp12«p2E &t0

&t0 &t0 Vpd1«d1«p2E
U50.

~13!

From ~11!–~13! we see that the lowest quasiparticle exci
tion energies areEpd2Ep , «d5Ed , and «pd5Epd2Ed .
The energy«d corresponds to the lower Hubbard band
copper, while«pd corresponds to the singlet-correlated ox
gen band filled in the process of doping. The quasipart
band with the energyEpd2Ep lies below«d . It is always
filled and is not considered in our discussion.

In our treatment the singlet states of the hole band«pd

are linear combinations of the Zhang–Rice singlet, the C31

(S50) state, and the neutral-oxygen state. These states
mixed, and the proper combination is determined by
secular equation~13!. In particular, with the above choice o
the set of parameters we arrive at an expression for the
glet creation operator:

cpd,050.9Xpd,010.35Xpp,010.28Xdd,0. ~14!

Clearly, the ground singlet state is 80% Zhang–Rice sing
12% neutral oxygen, and 8% Cu31 (S50). At first glance
the fraction of the Cu31 (S50) state seems to be muc
smaller than the value found from cluster calculations.26 The
explanation lies in the different definitions of the Cu31 state.
To be able to compare our results with those of Mosk
et al.,26 we must transform the basis~1! and write the state
~14! as a molecular-orbital~MO! expansion. The procedur
of such a transformation has been discussed by Mart27

With it we can easily see that the MO method26 is equivalent
to the above description.

The adopted model with two bands near the Fermi s
face has much in common with the well-known Hubba
model.28 In particular, the equation for the number of hol
per cell can be written as

n511d5( ds
†ds1( ps

†ps5( csd ,sd12cpd,pd,

~15!

whered is the number of additional holes. The anticomm
tator relations are similar to the Hubbard relations:

$cpd,sp,csp ,pd%5cpd,pd,

$cpd,sd,csd ,pd%5cpd,pd1csd ,sd5
1

2
1

d

2
5Ppd ,

$csd,0,c0,sd%5c001csd ,sd5Pd . ~16!

If we take into account the completeness condition
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~for now this condition is approximate!, we find that

Pd5
1

2
2

d

2
~18!

in the absence of magnetization. Atd50 we have an insu-
lator state~just as we do in the Hubbard theory!. The singlet
correlated band is similar to the upper Hubbard band.
instance, with an increasing hole concentrationd the statisti-
cal weight of the band grows as 2d/(11d). But there is also
an important difference. The subband splitting energy
roughly ten times smaller than it is in the Hubbard model.
the two-band representation of the Hubbard model ther
no spin–spin coupling of the formJi j @2(SiSj )2ninj /2#.
Such coupling appears only in the one-band representatio
a result of allowing for the effect of the upper subband~in
our case theEpd subband! in second-order perturbatio
theory. In our case the superexchange interaction of cop
spins is present in the two-band variant, too. It allows for
effect of the high-lying singlet statesEdd and Epp on the
lower subbands«d and«pd , resulting from the virtual hop-
ping of holes to neighboring lattice sites. However, we w
see that the effect is much weaker than in the one-band v
ant. This fact is important to the theory because it becom
possible to properly account for the superexchange inte
tion of copper spins even at low doping levels, when t
width of the singlet bandEpd is relatively small.

3. THE HOPPING OPERATOR AND THE SUPEREXCHANGE
INTERACTION

The operator representing the hopping of holes from
to site in the CuO2 plane in the representation of the Wanni
functionspj s is

H152t ~pd!(
iÞ j

Ci j ~dis
† pj s1pj s

† dis!1(
iÞ j

~ t ~xy!Si j

2t ~xx!Di j !pis
† pj s , ~19!

where the coefficientsCi j , Si j , and Di j are given by the
expressions

Ci j 5
2

N ( bk
21 exp~ ik–Ri j !,

Si j 5
1

N ( @cos~kxa!1cos~kya!

22 cos~kxa!cos~kya!#bk
2 exp~ ik–Ri j !,

Di j 5
1

2N ( @cos~kxa!1cos~kya!

2cos~2kxa!2cos~2kya!#bk
2 exp~ ik–Ri j !. ~20!

The calculated values of these coefficients are listed in Ta
I. Substituting~10! in ~19! and leaving only the operators o
the two bands closest to the Fermi level, we get
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TABLE I. The values of the coefficientsCi j , Si j , andDi j calculated via~20!.
i \ j 0 1 2 3 4

Ci j

0 0
1 20.2747 20.0461
2 20.0269 20.0134 20.0064
3 20.0069 20.0051 20.0032 20.0020
4 20.0027 20.0023 20.0017 20.0012 20.0008

Si j

0 0
1 0.5357 20.2393
2 0.1252 20.0341 20.0206
3 0.0331 20.0015 20.0072 20.0048
4 0.0103 0.0022 20.0019 20.0023 20.0016

Di j

0 0
1 0.4446 0.2393
2 20.1252 0.0340 0.0206
3 20.0332 0.0014 0.0071 0.0047
4 20.0104 20.0022 0.0018 0.0023 0.0016
~1! pd,s̄ s̄ ,pd ~2! s,0 0,s

l
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third neighbors when analyzing the band structure near the
r of
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are
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sion

ob-
the
H15(
iÞ j

t i j c i c j 1(
iÞ j

t i c i c j

1(
iÞ j

t i j
~12!~21!s2s~c i

s,0c j
s̄ ,pd1c j

pd,s̄c i
0,s!

2(
i . j

Ji j ~21!12s2s8c i
s,s8c j

s̄ ,s̄8 . ~21!

Here and in what followss has the meaning of the symbo
sd . The effective hopping integrals in~21! are related to the
copper–oxygen hopping integralt (pd) and the oxygen–
oxygen hopping integralst (xy) and t (xx), as follows:

t i j
~1!52c5dc5p~2t ~pd!Ci j !1c5p

2 ~ t ~xy!Si j 2t ~xx!Di j !,

t i j
~2!52c1dc1p~2t ~pd!Ci j !1c1p

2 ~ t ~xy!Si j 2t ~xx!Di j !,

t i j
~12!5~c1dc5p1c1pc5d!~2t ~pd!Ci j !

1c1pc5p~ t ~xy!Si j 2t ~xx!Di j !. ~22!

Note that in contrast to the well-knownt –J model, the hops
between second and third neighbors are effective. The
portance of taking into account the hops between second
-
nd

Fermi surface has recently been stressed by a numbe
investigators.29–31 The reason is that the ratio of the corr
sponding hopping integrals affects the shape and positio
the peak in the density of states that is near the Fermi le
Nevertheless, all calculated values must be interpreted a
timates. The point is that singlet copper–oxygen states
coupled with vibrational modes even more strongly th
copper states.32 This fact must lead to the appearance
polaron factors of the form33

expS 2g
Epol

\v D , ~23!

which may be several times smaller than unity. Since t
problem has yet to be studied, in what follows we use o
the relative values of the hopping integrals~22!, while the
absolute values are chosen in accordance with photoemis
data,34 i.e., the width of the band. The factor~23! estimated
in this way is set equal to 1/3.

The last sum on the right-hand side of Eq.~21! repre-
sents the superexchange interaction of copper spins. It is
tained in second-order perturbation theory, as it is in
Anderson theory,35 via the excited singletsEdd andEpp . The
expression forJi j is
Ji j 52H @2~c1dc3p1c1pc3d!t ~pd!Ci j 1c1pc3p~ t ~xy!Si j 2t ~xx!Di j !#
2

Edd22Ed

1
@2~c1dc7p1c1pc7d!t ~pd!Ci j 1c1pc7p~ t ~xy!Si j 2t ~xx!Di j !#

2

Epp22Ed
J . ~24!
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Numerical estimates for the nearest copper sites show that
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^c j
↓,↓1c j

pd,pd&Ei j ↓
~dp!5^$@c i

0,↑ ,H#,c j
pd,↓%&. ~31!

u-

s,
s

rage
n

e

b-
J52Ji ,i 11'0.03 eV. Note that in the one-band represen
tion the expression~24! would have an additional term of th
form

2~ t i ,i 11
~12! !2

Epd22Ed
'0.05 eV. ~25!

The sum of the contributions~24! and ~25! must be com-
pared with the value of the superexchange integ
2Ji ,i 1150.13 eV, determined from neutron-scatteri
experiments.36

4. SPIN SUSCEPTIBILITY

The energy operator of the spin system in an exter
magnetic field directed along thez axis is

Hz52gdbH( dis
† ^suSd

zus&dis

2gpbH( pis
† ^suSp

zus&pis , ~26!

whereSd
z andSp

z are spin operators of holes distributed ov
copper and oxygen positions, respectively. Using~10!, we
obtain

Hz52gbH( Szi . ~27!

Here theg factor is given by the expression

g5gduc1du21gpuc1pu2 ~28!

and we have introduced the notation

Szi5
1

2
~c i
↑,↑2c i

↓,↓!. ~29!

The value of theg factor does not depend on the dopin
level. Hence we can assumegi52.360.1 and
g'52.160.05, as in the case of lightly doped cuprates.
calculate the average value^Szi& we use a method propose
in Ref. 24. However, in contrast to Ref. 24, we employ
variant of the method for the decoupling of Green’s eq
tions that is better than the Hubbard-I variant, as was don
Refs. 21–23.

The elementary excitations spectrum with allowance
the energy of spins in an external field has the form

«1k↑,2k↑5
Ek↑

~dd!1Ek↓
~pp!

2

6
1

2
A~Ek↑

~dd!2Ek↓
~pp!!214Ek↓

~dp!Ek↑
~pd!, ~30!

whereEk↑
(dd) , Ek↓

(pp) , Ek↑
(pd) and Ek↓

(dp) are the Fourier trans
forms of the corresponding coefficientsEi j ↑

(dd) , Ei j ↓
(pp) , Ei j ↑

(pd) ,
andEi j ↓

(dp) determined by the equations

^c j
0,01c j

↑,↑&Ei j ↑
~dd!5^$@c i

0,↑ ,H#,c j
↑,0%&,

^c j
↓,↓1c j

pd,pd&Ei j ↓
~pp!5^$@c i

↓,pd ,H#,c j
pd,↓%&,

^c j
0,01c j

↑,↑&Ei j ↑
~pd!5^$@c i

↓,pd ,H#,c j
↑,0%&,
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The square brackets on the right-hand sides of~31! denote
commutators with the Hamiltonian

H5H01H11Hz ~32!

~see~11!, ~21!, and~27!!, and the braces denote anticomm
tators.

Using the equation for the chemical potential~15!, the
completeness condition~17!, and the definition of̂ Szi&, for
the site averages we have

^c i
pd,pd1c i

↑,↑&5
11d

2
1^Szi&,

^c i
pd,pd1c i

↓,↓&5
11d

2
2^Szi&,

^c i
↑,↑1c i

0,0&5
12d

2
1^Szi&,

^c i
↓,↓1c i

0,0&5
12d

2
2^Szi&. ~33!

The interstitial averages on the right-hand sides of~31! can
easily be expressed in terms of the number of doped holed,
the average valuêSzi&, and the spin correlation function
^SiSj&; in particular,

^~c i
↓,↓1c i

pd,pd!~c j
↓,↓1c j

pd,pd!1c i
↓,↑c j

↑,↓&5S 11d

2 D 2

1^SiSj&2S 11d

2 D ~^Szi&1^Sz j&!, ~34!

etc. Substituting~33! and ~34! in ~31! and ~30!, we see that
the quasiparticle excitation energies depend on the ave
values^Szi&. In the rapid spin fluctuations mode, i.e., whe
^Szi& is independent ofi and is much smaller than 1/2, w
have

«1k↑5«k
~1!2

1

2
gbH2F1k

^Sz&
2

,

«2k↑5«k
~2!2

1

2
gbH2F2k

^Sz&
2

, ~35!

where«1k and «2k are the quasiparticle energies in the a
sence of a magnetic field:

«1k,2k5
Ek

~dd!1Ek
~pp!

2

6
1

2
A~Ek

~dd!2Ek
~pp!!214Ek

~dp!Ek
~pd!. ~36!

Here we have used the following notation:

Ek
~dd!5«d1tk

dd1
2Jk

dd

12d
, Ek

~pp!5«pd1tk
pp1

2Jk
pp

11d
,

Ek
~pd!5(

l
F12d

2
2

2

11d
^SiSl&G t i l

~12! exp~ ik–Ri l !,
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E~dp!5
11d

2
2

^S S & t ~12! exp~ ik–R !,

st

a
, a

o
ef
an
is

-
th
sin
i
t

t

d5
1

^cpd,↑c↑,pd&

for

ep-

of

s
ds,
k (
l

F 2 12d i l G i l i l

tk
dd5(

l
F12d

2
1

2

12d
^SiSl&G t i l

~2! exp~ ik–Ri l !,

tk
pp5(

l
F11d

2
1

2

11d
^SiSl&G t i l

~1! exp~ ik–Ri l !,

Jk
dd5

1

2
J@4^SiSj&

~1!21#2J^c i
↓,0c i 11

0,↓ &@cos~kxa!

1cos~kya!#,

Jk
pp5

1

2
J@112d24^SiSj&

~1!#2J^c i
pd,↑c i 11

↑,pd&@cos~kxa!

1cos~kya!#, ~37!

with ^SiSj&
(1) the spin correlation function for the neare

copper spins. The functionsF1k and F2k are given by the
expressions

1

2
F1k,2k5tk

p2tk
d2Tk

p1Tk
d

6
1

«1k2«2k
H ~Ek

~pp!2Ek
~dd!!@ tk

p1tk
d2Tk

p2Tk
d#

22d
Ek

~pd!Ek
~dp!

12d2 J , ~38!

where

Tk
p5

Ek
pp12dJ2«pd

11d
, Tk

d5
Ek

dd2«d

12d
,

tk
p5(

l
t i l
~1!exp~ ik–Ri l !, tk

d5(
l

t i l
~2! exp~ ik–Ri l !.

~39!

Equations~35! show that the energy of quasiparticles in
magnetic field differs considerably from the Fermi energy
which both F1k and F2k would vanish. This is one of the
most important reasons for the non-Fermi-liquid nature
the spin susceptibility. Each quasiparticle is in a kind of
fective magnetic field generated by the other particles,
this field does not vanish when spin–spin coupling
switched off, i.e., whenJ50. Another reason for the non
Fermi-liquid behavior is related to the special behavior of
spectral weight. For instance, the spectral weight of the
glet band varies under doping not asd ~the case of a Ferm
liquid! but as 2d/(11d), i.e., the band is completely filled a
d51 and is half-filled already atd51/3.

There are different calculational techniques that lead
the same self-consistent equation for^Sz&. Since from the
viewpoint of applications the most interesting case isd.0,
i.e., when the chemical potential is in the band«1k , it is
convenient to use the following chain of equalities:
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N ( k k

5
1

N ( ^ck
pd,↓ck

↓,pd&5
1

N S 11d

2
2^Sz& D

3(
k

F«1k↑2Ek↑
~dd!

«1k↑2«2k↑
f ~«1k↑2m!

1
Ek↑

dd2«2k↑

«1k↑2«2k↑
f ~«2k↑2m!G , ~40!

where

f ~«1k↑2m!5F11exp
«1k↑2m

Q G21

is the Fermi function,m is the chemical potential, and
Q5kT.

Expanding the right-hand side of Eq.~40! in ^Sz& and
allowing for ~35!, we arrive at an expression for^Sz& as a
function of the magnetic field and hence at an expression
the magnetic susceptibilityx(Q,d) per copper site:

x~Q,d!5
~11d!2

@4d1L~Q,d!1Z~Q,d!#
xp~Q,d!. ~41!

This is the typical expression for the Pauli–Lindhard susc
tibility in the two-band model:

xp~Q,d!52
1

2N
~gb!2(

k
F«1k2Ek

~dd!

«1k2«2k

] f ~«1k!

]«1k

1
Ek

~dd!2«2k

«1k2«2k

] f ~«2k!

]«2k
G . ~42!

The functionsZ(Q,d) andL(Q,d) are

Z~Q,d!5
~11d!2

2N ( F«1k2Ek
~dd!

«1k2«2k
F1k

] f ~«1k!

]«1k

1
Ek

~dd!2«2k

«1k2«2k
F2k

] f ~«2k!

]«2k
G ,

L~Q,d!5
~11d!2

2N ( Fk@ f ~«1k!2 f ~«2k!#. ~43!

The origin of the functionFk is related to the dependence
the coefficients of the Fermi functions in~40! on the spin
direction. This function is given by the formula

Fk5
2

«1k2«2k
~ tk

p1tk
d2Tk

p2Tk
d!

1
2~Ek

~pp!2Ek
~dd!!

~«1k2«2k!
3 F4dEk

~dp!Ek
~pd!

12d2 2~Ek
~pp!2Ek

~dd!!

3~ tk
p1tk

d2Tk
p2Tk

d!G . ~44!

Since both~43! and ~44! contain the difference in energie
and the difference in the Fermi functions of different ban
the contribution to susceptibility represented in~41! by the
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FIG. 1. Density of states atT5300 K: ~a!
at x50.15, and~b! at x50.25. The verti-
cal dashed lines indicate the position o
the chemical potential.
functionL~Q,d! resembles the mixed susceptibility in Fermi
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2liquid theory. Thus, the occurance of such a correction
quite natural. Our numerical estimates show that the func
L~Q,d! is relatively unimportant and that for a detailed com
parison with the mixed susceptibility it is sufficient to wri
this correction to susceptibility in additive form after e
panding the denominator in~41! in a Taylor series. We also
note that attk

(12)50 the functionL~Q,d! vanishes.
As noted in the Introduction, the behavior ofxp(Q,d)

has been thoroughly studied for different variants of the d
sity of states~see, e.g., Refs. 8, 16, and 17!. The implicit
dependence of this function on the degree of dopingd is
related to the different density of states on the Fermi level
different values ofd.

The denominator in~41! shares features with the we
known Stoner factor in Fermi-liquid theory. In particular,
we temporarily drop the second band and p
^SiSj&

(1)523/4 ~the maximum value of antiferromagnet
correlations! in ~37!, we find that

Z~Q,d!52~11d!2@2tk
p~m!14J#xp~Q,d!, ~45!

wheretk
p(m) is the value oftk

p at the Fermi level. Depending
on the nature of band filling,tk

p(m) can be either positive o
negative. Generally, the temperature dependencesZ(Q,d)
andxp(Q,d) are the same whenF1k(m) is negative and are
opposite whenF1k(m) is positive. The latter case is realize
in the limit of strong doping, sincetk

p(m).0. Here, how-
ever, the denominator in~41! does not change its sign, a
ways remaining positive. The functionx~Q,d! is the para-
magnetic spin susceptibility~for all positive values ofd!.

5. NUMERICAL RESULTS AND DISCUSSION

The density of states of the bands«1k and«2k is depicted
in Fig. 1 for two values ofx, 0.15 and 0.25~at T5300 K this
corresponds tod50.02 and 0.09, respectively!. The position
of the chemical potential atT5300 K is depicted by a
dashed vertical line. The lower Hubbard copper band co
sponds to the«1k band~in the range from21.0 to20.5 eV!.
It is completely filled. The holes that form as a result
doping populate the singlet band«2k ~in the range from
20.15 to 0.3 eV!. Since the unit cell of La22xSrxCuO4 does
not only contain a CuO2 fragment, as in Refs. 15–18, w
allow also for the existence of an additional relatively bro
band near the Fermi level. This band is introduced phen
enologically in the form of a background band about 1.25
wide. As Fig. 1b shows, there are two peaks in the densit
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is due to the hybridization of the states«d and«pd , and for
0.15,x,0.25 the chemical potential is near this peak. T
second peak in the high-energy region is due to the geom
cal features of the two-dimensional lattice. This is the V
Hove peak, which att (12)50 ~see~21!! is approximately at
the band’s center. The dependence of the spin correla
functions ^SiSj& on the doping index was specified in th
same way as in Ref. 21. Atd50, 0.2, and 0.4 the function
for the first neighbors werêSiSj&

(1)520.25,20.10, and 0,
respectively; for the second neighbors they we
^SiSj&

(2)50.15, 0.06, and 0. Note that atd50 the factors
that determine the dependence of the effective hopping i
grals on the spin correlation functions^SiSj& in the expres-
sions fortk

dd andtk
pp can be reduced to the form1212^SiSj&,

found in Ref. 37, via an exact calculation of the spectrum
one-particle excitations of a hole in the Ising lattice.
^SiSj&520.25 the widths of the bands vanish, which
known ~see, e.g., Ref. 28! to be needed for a meaningfu
description of the boundary region in insulator–metal tran
tions. In this sense our variant of describing a singlet ban
equivalent to the variant in Ref. 38 but does not requ
auxiliary bosons.

The temperature curves of the spin susceptibility cal
lated via formula~41! for x50.15, 0.18, 0.22, and 0.25 ar
depicted in Fig. 2. The corresponding values ofd were cal-
culated in accordance with the density-of-states pattern~Fig.

FIG. 2. The temperature curves of the spin susceptibility calculated
formula ~41!: filled squarej correspond to the experimental data of Re
39. Curve1 corresponds tox50.25, curve2 to x50.22, curve3 to x50.18,
and curve4 to x50.15.
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1!, and atT5300 K were found to bed50.02, 0.04, 0.06,
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3R. Yoshizaki, N. Ishikawa, H. Sawadaet al., Physica C166, 417 ~1990!.
4M. Oda, T. Nakano, Y. Kamadaet al., Physica C183, 234 ~1991!.

lids.

.

m.

.

.

and 0.09. Figure 2 shows that formula~41! is a good repre-
sentation of the strong dependence of the spin susceptib
on temperature and doping level observed
experiments.1–6,39The spin susceptibility of the broad bac
ground band, as suggested by the density of states, is low
depends neither onT nor on d. At low doping levels the
chemical potential is just in front of the hybridization peak
the density of states of the singlet band~Fig. 1a!. The energy
interval between the chemical potential and the position
the peak in the density of states acts as a ‘‘pseudogap.’
the temperature increases, the quasiparticles are ‘‘flung’’
the region of high densities of states, with the result t
susceptibility increases. As the degree of dopingd increases,
the Fermi level enters the peak in the density of states,
pseudogap narrows, and spin susceptibility increases.
nally, as the chemical potential passes the peak in the de
of states, the system finds itself in the narrow-band mod
in the local-level mode, which naturally leads to a decre
in spin susceptibility with increasing temperature, which
sembles the Curie law.

The denominator in~41! plays an interesting role. A
small values ofd the functionZ(T,d) decreases both as
function of d and as a function of temperature. As a resu
this denominator facilitates a better description of abso
values and the asymptotic behavior of spin susceptibility
high temperatures than the classical Pauli–Lindhard the
with the same density-of-states pattern.40

In conclusion, here is one more argument in favor of
density-of-states pattern used in this paper. From neu
scattering studies it is known~see, e.g., Ref. 41! that the
La22xSrxCuO4 compounds have spatial dynamic spin cor
lations that are incommensurable with the lattice period. T
is quite natural from the viewpoint of the density-of-stat
pattern of Fig. 1, since the chemical potential is near the p
in the density of states, which means that the system is
deed unstable with respect to formation of charge- and s
density waves. In this connection the results of our calcu
tions exceed the limits of this paper and, in particular, m
serve as a real basis for studies of the instability and fluc
tions in such~and related! compounds.

The authors are grateful to K. A. Kikoin and R. Hayn f
the useful remarks. This work was partially supported by
Russian ‘‘High-temperature Superconductivity’’ Progra
~Project No. 94029! and the Soros Graduate Student Intern
tional Program.

* !
E-mail: Mikhail.Eremin@ksu.ru

1D. C. Johnston, Phys. Rev. Lett.62, 957 ~1989!.
2J. B. Torrance, A. Bezinge, A. I. Nazzalet al., Phys. Rev. B40, 8872
~1989!.
970 JETP 85 (5), November 1997
ity

nd

f
s

to
t

e
i-
ity
or
e
-

,
e
t

ry

e
n

-
is

k
n-
n-
-

y
a-

e

-

5Y.-Q. Song, M. A. Kennard, K. R. Poeppelmeieret al., Phys. Rev. Lett.
70, 3131~1993!.

6H. Y. Hwang, B. Batlogg, H. Takagiet al., Phys. Rev. Lett.72, 2636
~1994!.

7V. Barzykin, D. Pines, and D. Thelen, Phys. Rev. B50, 16 052~1994!.
8V. V. Moshalkov, Physica B163, 59 ~1990!.
9P. Benard, L. Chen, and A.-M. S. Tremblay, Phys. Rev. B47, 15 217
~1993!.

10K. Levin, Q. Si, and Y. Zha, Physica C235–240, 71 ~1994!.
11J. Bok and J. Bouvier, Physica C244, 357 ~1995!.
12R. S. Markiewicz, cond-mat/9611238, submitted to J. Phys. Chem. So
13H. Romberg, M. Alexander, N. Nuckeret al., Phys. Rev. B42, 8768

~1990!.
14Z.-X. Shen, Physica B197, 632 ~1994!.
15J. Thoma, S. Tewari, J. Ruvaldset al., Phys. Rev. B51, 15 393~1995!.
16J. Ruvalds, Supercond. Sci. Technol.9, 1 ~1996!.
17G. A. Levin and K. F. Quader, Physica C258, 261 ~1996!.
18K. F. Quader and G. A. Levin, Philos. Mag. B74, 609 ~1996!.
19M. V. Eremin, S. G. Solov’yanov, S. V. Varlamov, D. Brinkman, M

Mali, R. Markendorf, and J. Roos, JETP Lett.60, 125 ~1994!.
20M. V. Eremin, S. G. Solovjanov, and S. V. Varlamov, J. Phys. Che

Solids56, 1713~1995!.
21N. M. Plakida, R. Hayn, and J.-L. Richard, Phys. Rev. B51, 16 599

~1995!.
22L. M. Roth, Phys. Rev.184, 451 ~1969!.
23J. Beenen and D. M. Edwards, Phys. Rev. B52, 13 636~1995!.
24M. Eremin, S. Solovjanov, S. Varlamovet al., in Proc. 10th Anniv. Work-

shop on Physics, Material, and Applications of HTS~Houston, TX, March
1996!, World Scientific, River Edge, N.J.~1996!, p/ 517.

25F. C. Zhang and T. M. Rice, Phys. Rev. B37, 3759~1988!.
26A. S. Moskvin, N. N. Lozhkareva, Yu. P. Sukhorukov, M. A. Sidorov, A

A. Samokhvalov, Zh. E´ ksp. Teor. Fiz.105, 967 ~1994! @JETP 78, 518
~1994!#.

27R. Martin, Phys. Rev. B53, 15 501~1996!.
28E. V. Kuz’min, G. A. Petrakovski�, Z. A. Zavadski�, Physics of Magneti-

cally Ordered Substances@in Russian#, Nauka, Moscow~1976!, p. 97.
29R. Hayn, A. F. Barabanov, J. Schulenberget al., Phys. Rev. B53, 11 714

~1996!.
30V. I. Belinicher, A. L. Chernyshev, and V. A. Shubin, Phys. Rev. B53,

335 ~1996!.
31L. F. Feiner, J. H. Jefferson, and R. Raimondi, Phys. Rev. Lett.76, 4939

~1996!.
32M. V. Eremin, Z. Naturforsch.49a, 385 ~1994!.
33K. I. Kugel’ and D. I. Khomski�, Zh. Éksp. Teor. Fiz.79, 987~1980! @Sov.
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Nonlinear time-independent and time-dependent propagation of light in direct-gap

semiconductors with paired excitons bound into biexcitons

A. Kh. Rotaru

State University of Moldova, 277000 Kishinev, Moldova

V. Z. Tronchu

Institute of Applied Physics, Academy of Sciences of Moldova, 277028 Kishinev, Moldova
~Submitted 3 March 1997!
Zh. Éksp. Teor. Fiz.112, 1778–1790~November 1997!

We study a new class of nonlinear cooperative phenomena that occur when light propagates in
direct-gap semiconductors. The nonlinearity here is due to a process, first discussed by
A. L. Ivanov, L. V. Keldysh, and V. V. Panashchenko, in which two excitons are bound into a
biexciton by virtue of their Coulomb interaction. For the geometry of a ring cavity, we
derive a system of nonlinear differential equations describing the dynamical evolution of coherent
excitons, photons, and biexcitons. For the time-independent case we arrive at the equation
of state of optical bistability theory, and this equation is found to differ considerably from the
equations of state in the two-level atom model and in the exciton region of the spectrum.
We examine the stability of the steady states and determine the switchover times between the
optical bistability branches. We also show that in the unstable sections of the equation of
state, nonlinear periodic and chaotic self-pulsations may arise, with limit cycles and strange
attractors being created in the phase space of the system. The scenario for the transition
to the dynamical chaos mode is found. A computer experiment is used to study the dynamic optical
bistability. Finally, we discuss the possibility of detecting these phenomena in experiments.
© 1997 American Institute of Physics.@S1063-7761~97!01811-8#
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The paper written by Elesin and Kopaev,1 on the optical
hysteresis of excitons was followed by numerous theoret
and experimental investigations.2–9

The interest in optical bistability caused by excitons a
biexcitons in condensed media is due the interest in the g
optical nonlinearities at the long-wave intrinsic absorpti
edge of the crystal spectrum, short relaxation times, and
switchover energies and short switchover times between
optical bistability branches.

More than that, in the unstable sections of the opti
bistability curve, regular and chaotic self-pulsations m
arise in the system of excitons, photons and biexcitons.
of this opens possibilities for studying essentially new op
cal phenomena that involve excitons and biexcitons and
using these phenomena for practical purposes, primarily
optical processing of data and for building new-generat
computers with optical logical circuits.

In Refs. 10–22 we constructed a theory of optical bis
bility, optical switchover, and regular and stochastic osci
tions accompanied by the formation of classical and stra
attractors in the phase space of excitons, photons, and b
citons.

The possibility of optical multistability in a system o
coherent excitons and biexcitons being induced by noise
predicted in Refs. 23 and 24.

It must be noted, however, that in Refs. 5, 6, 18 and
optical bistability was studied only with allowance for th
huge oscillator strength of the exciton–biexcito
transition,25–27 i.e., only the process of creation of a biexc
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to show that there is also another process, determined by
term

1

AV
M ~p,q!bp

†aqap2q ,

which describes direct binding of two excitons,p2q andq,
into a biexciton by virtue of the Coulomb attraction of th
excitons. Actually, in Refs. 28 and 29 an essentially n
mechanism of the exciton–biexciton transformation of t
semiconductor spectrum was proposed, i.e., the formatio
a biexciton through direct Coulomb binding of two exciton
In particular, it was found that this mechanism effective
shifts both exciton and biexciton levels toward the lon
wave part of the spectrum.

The present paper studies time-independent and ti
dependent optical bistability, the phenomena of optical s
oscillations and switchover when the exciton–photon int
action and the Coulomb binding of two excitons into a sing
biexciton introduced in Refs. 28 and 29 are taken into
count. The Heisenberg equations of motion for excitons a
biexcitons and a wave equation for the field are used to
rive a system of nonlinear differential equations describ
the dynamical evolution of the system. In the tim
independent~stationary! case we derive an equation of sta
of the optical bistability theory. We also study the stability
time-independent solutions and predict the formation
regular and chaotic self-pulsations. The scenario of the tr
sition to dynamic optical chaos is established, and we disc

971-08$10.00 © 1997 American Institute of Physics



the possibility of optical turbulence. Finally, we examine the
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switchover times between the optical bistability branches
the phenomenon of dynamic optical bistability for the ca
where external pumping is a function of time having pa
bolic form.

2. THE HAMILTONIAN AND THE BASIC EQUATIONS OF
THE PROBLEM

A distinctive feature of the present stage in studying o
tical bistability is that the geometry of the experiment is
decisive factor. Suppose that a monochromatic cohe
electromagnetic wave is incident on a ring cavity with
semiconductor specimen of lengthL and that the wave gen
erates excitons that are Bogolyubov-coherent. Owing to
Coulomb interaction,28,29 the excitons may form biexcitons
This process, which ensures that the problem is nonlinea
determined by the term (1/AV)Db†aa.

The system Hamiltonian is the sum of three Hamil
nians~the Hamiltonian of the free excitons, the Hamiltonia
of the free biexcitons, and the field Hamiltonian! and the
interaction Hamiltonian, which consists of a term responsi
for the interaction of coherent excitons and the electrom
netic field and a term responsible for the interaction of
herent excitons and coherent biexcitons. In our model
interaction Hamiltonian can be written as follows:

H int5 i\g~aE12a†E!1 i\D~ba†a†2b†aa!, ~1!

wherea† andb† are the exciton and biexciton creation o
erators,g is the exciton–photon coupling constant,D is the
constant of direct binding of two excitons into a biexcito
andE1 is the positive-frequency part of the electric field
the electromagnetic wave. Here and in what follows we
sume that the system has unit volume and drop the w
vector labels.

The equations of motion for the exciton amplitudea and
the biexciton amplitudeb are

da

dt
52 ivexa2gE12Dba†2gexa, ~2!

db

dt
52 ivbiexb2Daa2gbiexb, ~3!

where\vex and \vbiex are the energy of exciton and biex
citon formation, andgex andgbiex are the decay constants fo
excitons and biexcitons, respectively, which determine
rate at which the quasiparticles leave the coherent mode
the incoherent. These constants were introduced into
equations phenomenologically. Note that the equations w
obtained strictly within the quantum theory of fluctuatio
and dissipation from the flux part of the respective Fokke
Planck equation.30

The equation of motion of the componentE of the elec-
tromagnetic field is equivalent to the wave equation

c1
2 ]2E

]z2 2
]2E

]t2 524ip\g
]2a

]t2 , ~4!

wherec1 is the speed with which the field propagates in t
semiconductor.
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We write the exciton, biexciton, and field amplitudes
the form of modulated plane waves:

a~z,t !5A8~z,t !ei ~kz2vt !,

b~z,t !5B8~z,t !e2i ~kz2vt !, ~5!

E~z,t !5E8~z,t !ei ~kz2vt !,

wherev andk are the carrier frequency and the wave vect
andA8(z,t), B8(z,t), andE8(z,t) are slowly varying ampli-
tudes.

Below in our calculations we use the truncated equat
approximation, which is valid if

U]E8

]t U!vuE8u, U]E8

]z U!kuE8u,... .

Substituting~5! in ~2!–~4!, using the approximation o
slowly varying amplitudes, and ignoring the effects of spat
dispersion of excitons and biexcitons~which are unimportant
in the region of the spectrum of interested to us!, we get

dA8

dt
5 i ~v2vex!A82gE812DB8A8†2gexA8, ~6!

dB8

dt
5 i ~2v2vbiex!B82DA8A82gbiexB8, ~7!

]E8

]t
1

kc1
2

v

]E8

]z
52p\vgA81

v22c1
2k2

2v
E8. ~8!

In what follows it is convenient to introduce dimensionle
variables:

X5
E8

Es
, B5

B8

Bs
, A5

A8

As
,

Es5
gbiex

2

gD
, As5Bs5

gbiex

D
,

andC5aL/4T is the optical bistability constant, with

a5
4p\g2v2

c1kgex
,

andT the transmission coefficient of the cavity mirrors~Fig.
1!; d5gex/gbiex is the relative decay of an exciton in com
parison to a biexciton;d05(2vex2vbiex)/gbiex is the re-
duced biexciton energy;d15(v2vex)/gbiex is the dimen-
sionless detuning from an exciton level;s5C1

2kT/Kgbiexv

FIG. 1. Ring cavity diagram:EI , ER , and ET are the amplitudes of the
incident, reflected, and transmitted fields, respectively; andT is the trans-
mission coefficient of the cavity mirrors.
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is the damping of the electric field amplitude in the cavity
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~the cavity’sQ-factor!; t5gbiext is the dimensionless time
variable; and

D15
v22c1

2k2

2vgbiex
.

With allowance for the normalized quantities, the syst
of equations~6!–~8! becomes

dX

dt
5 iD1X2

sL

T

]X

]z
12CsA, ~9!

dA

dt
5 id1A1 iX22iBA* 2dA, ~10!

dB

dt
5 i ~2d11d0!B2 iAA2B. ~11!

As noted earlier, the semiconductor is placed inside a r
cavity between two mirrors with a transmission coefficie
T. The other two mirrors are assumed ideal. The bound
conditions for the ring cavity are

E~0,t !5ATEI1RE~L,t2Dt !eiF ,

ET5ATE~L,t !,

whereEI is the amplitude of the pump field~at the entrance
to the cavity!, ET is the field amplitude at the the cavity’
exit, R512T is the reflection coefficient of the cavity mir
rors,Dt5(L12l )/c0 is the time lag introduced by feedbac
with c0 the speed of light in vacuum, andF5kL
1k0(2l 1L) is the phase increment of the field in the cavi
with k0 the wave vector of the field in vacuum.

Introducing the dimensionless input and output field a
plitudes,

EI5
Y

Es
AT, ET5

X

Es
AT,

we arrive at the boundary conditions for the normalized a
plitudes:

TY1R@X1~L,t2Dt!

3cosF2X2~L,t2Dt!sin F#5X1~0,t!,

R@X1~L,t2Dt!sin F1X2~L,t2Dt!cosF#5X2~0,t!,
~12!

whereX1 andX2 are the real and imaginary parts of the fie
strength.

Below we employ the widely used mean-fie
approximation.2 Meystre was the first to propose th
model31 in studying optical bistability in a system of two
level atoms inside a ring cavity. We assume that all functio
describing optical bistability are weakly dependent on
spatial variable, so that for the entire space within the ca
they are assumed constant, i.e., independent of position.
validity of the mean-field approximation for a Fabry–Pe
cavity was discussed by Bischoferger and Shen.32 In particu-
lar, it was found that at large values of the optical bistabil
constant and small values of the transmission coefficient
results of the mean field theory are equivalent to the ex
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mean-field method was employed in Refs. 5, 6, and 15–1
study optical bistability in a system of excitons and biex
tons.

Using the mean-field approximation

E
0

L

E8~z!dz'@E8~L !2E8~0!#L ~13!

and the boundary conditions~12!, from Eqs. ~9!–~11! we
obtain a system of nonlinear differential equations describ
the temporal evolution of coherent photons, excitons, a
biexcitons:

dX1

dt
52D1X22

s~12R cosF !

T
X12

sR sin F

T
X2

12CsA11sY, ~14!

dX2

dt
5D1X12

s~12R cosF !

T
X21

sR sin F

T
X1

12CsA2 , ~15!

dA1

dt
52dA12d1A22X112~B1A11B2A2!, ~16!

dA2

dt
52dA21d1A11X212~B2A12B1A2!, ~17!

dB1

dt
52~2d11d0!B22B12A1

21A2
2 , ~18!

dB2

dt
5~2d11d0!B12B222A1A2 , ~19!

where we have allowed for the fact thatX, A, and B are
complex-valued quantities:X15ReX, X25Im X, A15ReA,
A25Im A, B15ReB, andB25Im B.

At present there is no standard algorithm for solvi
general nonlinear differential equations, so that obtain
analytic solutions of the system of equations~14!–~19! is an
extremely difficult~if not impossible! problem. In this con-
nection we did a numerical experiment and analyzed the
bility of time-independent states.

Note that our system of equations~14!–~19! is a particu-
lar case of the theory of evolution of a system of ty
Ẋ5F(X), whereX is a vector in theRn space (n.1), with
each component ofX describing a single mode, andF~X! is
the vector field of the system.

For dissipative systems the volume of the phase sp
decreases, since the divergence ofẊ is negative:

div Ẋ5div F5(
i 51

n
]Fi

]X i
,0.

The evolution of the system of equations~14!–~19!
largely depends on the evolution of a small volume of t
phase space of this system. If we consider the motion
points in the phase space as that of a liquid with a diverge

]Ẋ1

]X1
1

]Ẋ2

]X2
1

]Ȧ1

]A1
1

]Ȧ2

]A2
1

]Ḃ1

]B1
1

]Ḃ2

]B2
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522 11d1
s~12R cosF !

,
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whereZe5A1
21A2

2 is the exciton density,Zb5B1
21B2

2 is the
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we conclude that any small volume of the phase space o
system of equations~14!–~19! tends to zero ast→` at a
rate equal to@212d12s(12R cosF)/T#21. If the station-
ary states of the system are unstable, the attractors in
phase space can be a limit cycle, a torus, and a strang
tractor. They correspond, respectively, to nonlinear perio
quasiperiodic, and stochastic self-oscillations in the syste

In the stationary case, from Eqs.~14!–~19! we obtain
equations that relate the densities of the coherent exci
and biexcitons to the field intensity,

ZeF S d1
2Ze

11d2
2D 2

1S 2d2Ze

11d2
2 2d1D 2G5Xst

2 , ~20!

Zb5
Ze

2

11d2
2 , ~21!

and the equation of state of optical bistability theory, whi
relates the field intensities at the entrance to, and exit fr
the cavity,

Yst
2 5Xst

2 H F12R cosF

T
1

2CQ1

Q G2

1FD1

s
1

R

T
sin F2

2CQ2

Q G2J , ~22!
ts
di
rb
w

tu

is
-

a
on
he

he
at-
c,
.

ns

,

biexciton density,Xst5AX11X2 is the field amplitude in-
side the crystal,d252d11d0 , and

Q15d1
2Ze

11d2
2 , Q25d12

2d2Ze

11d2
2 , Q25Q1

21Q2
2 .

Equation~22! is the equation of state of optical bistabi
ity theory in a system of coherent excitons and biexcito
with paired excitons bound into biexcitons due to the Co
lomb interaction. It is an analog of the equations of state
the theory of two-level media and the exciton region of t
spectrum,6,15,33 but differs considerably from the latter. I
contrast to Eqs.~20! and~21!, which determine the nonlinea
dependence between the densities of coherent excitons
excitons and the electromagnetic field and lead to bistab
ties of the density–light type, Eq.~22! describes the depen
dence of the light intensity at the exit from the cavity on t
light intensity and the entrance. Under certain conditions t
equation leads to a bistability of the light–light type.

3. COMPUTER EXPERIMENT: STATIONARY AND
NONSTATIONARY OPTICAL BISTABILITY AND SELF-
PULSATIONS

It is interesting to study the stability of stationary stat
in connection with the possibility of optical nonlinear se
pulsations emerging in a system of coherent quasiparticl

The characteristic equation for the Jacobian of the s
tem is
ulE2Ju5U2l2P1 2P2 2Cs 0 0 0

P2 2l2P1 0 2Cs 0 0

21 0 2l2d12B1 2d112B2 2A1 2A2

0 21 d112B2 2l2d22B1 22A2 2A1

0 0 22A1 2A2 2l21 2d2

0 0 22A2 2A1 d2 2l21

U ,

where
P15
s~12R cosF !

T
, P25D11

sR sin F

T
,

andE is the identity matrix. If the real parts of all the roo
of the characteristic equation are negative, the correspon
stationary states are stable with respect to small pertu
tions. If we use the Routh–Hurwitz criterion, we can sho
that a section of theXst vs. Yst curve is unstable. Figure 2
depicts the stationary nonlinear dependence of the ampli
Xst of the transmitted field on the amplitudeYst of the inci-
dent field atd055, C55, F52pn, D150, andd1510. The
figure shows that at such values of the parameters there
optical bistability of the light–light type. The resulting insta
bility window is depicted by a dashed curve. At pointA,
corresponding to the beginning of the instability region in
system of coherent quasiparticles, periodic self-pulsati
emerge, and the phase trajectory becomes a limit cycle~Fig.
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FIG. 2. Stationary dependence of the amplitudeXst of the transmitted field
on the amplitudeYst of the incident field for the following values of the
parameters:d055, C55, F52pn, D150, andd1510 ~bothXst andYst are
measured in volts per centimeter!.
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FIG. 3. Oscillations in a ring cavity~left! and their
phase portraits in theX–Ze plane~right! atd055, C55,
F52pn, D150, d1510, s51, d50.1, T50.01 for
different values of the pump field:~a! Y582.5, ~b!
Y583, and~c! Y585 ~X is measured in volts per cen
timeter,t in 10212 s, andZe in 1014 cm23.
3a!. As the representative point moves closer to the center,
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the oscillation instability windows become more comp
cated. One can observe a cascade of bifurcations
oscillation-period doubling~Fig. 3b!, as a result of which a
stochastic self-oscillation mode emerges in the middle s
tion of the instability window. This leads to optical turbu
lence in the system of coherent excitons, photons, and b
citons. Figure 3c depicts a stochastic self-modulating proc
and the corresponding projections of the phase trajecto
onto theX–Ze plane at a pump amplitudeY585. The sur-
face in the phase space to which the phase trajectories
verge varies with pump intensity. In contrast to the famo
Lorentz dynamic chaos, where stochastic oscillations and
creation of a strange attractor are related to hops betwee
corresponding equilibrium states, in the present case the
chasticity is related to the creation of a strange attractor
six-dimensional phase space, which is filled in a complica
manner by nonintersecting phase trajectories.

As the pump intensity is increased, the strange attra
finally becomes unstable and transforms into a stable l
cycle, with nonlinear regular periodic self-pulsations sett
in in the system.

As the detuningd1 from resonance between the fr
quency of the external electromagnetic field and the exc
frequency increases, the stationary dependence betwee
amplitude of the transmitted field on the amplitude of t
incident ~pump! field, Xst(Yst), changes substantially. Fo
small values ofYst the dependence is linear and unique.
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values of the parameters, multivalued.
Figure 4a depicts the stationary dependence of the

plitude Xst of the transmitted field on the amplitudeYst of
the incident field at cosF51, C55, D150, d1530, d055,
ands510. Clearly, at such values of the parameters a thr
valued region develops, in which for one value ofYst there
are three values ofXst . WhenYst is low, the amplitude if the
transmitted field increases withYst along the upper branch o
the hysteresis curve. At a certain value ofYst the systems
jumps to the lower branch of the curve along whichXst

increases withYst . If we decrease the amplitude of the inc
dent field, the representative point moves along the low
branch of the hysteresis curve and then jumps to the up
branch, along whichXst decreases further asYst decreases.
The dashed section of the curve depicts the unstable pa
the Xst vs. Yst dependence. Thus, stationary optical bistab
ity emerges in the system of coherent excitons, photons,
biexcitons. In contrast to the model of two-level atom
where optical bistability is realized in counterclockwis
movement, here optical bistability is realized in clockwi
movement. Research has shown that at such values o
parameters both optical bistability branches are stable. He
it is interesting to study the switchover time between the t
branches. Such a study is based on the system of equa
~14!–~19!. We have done a computer experiment in whi
the initial conditions are chosen so that they correspond
the value of the pump field amplitudeYst near the downward

975A. Kh. Rotaru and V. Z. Tronchu
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FIG. 4. ~a! Stationary dependence o
the amplitudeXst of the transmitted
field on the amplitudeYst of the inci-
dent field atd055, C55, F52pn,
D150, d1530, s51, d50.1, and
T50.01; ~b! shape of incident pulse;
~c! dynamic optical bistability; and~d!
shape of pulse at the exit from the cav
ity.
switchover threshold. At timet50 we specify the jump in
or
ot
l

th

i-
-
e
ca

bistability mechanism for designing high-speed optical

r
ef-

the
i-

ot
y,
Yst so thatYst1DY decreases on the other side of the c
responding switchover threshold. Figure 5 depicts b
switchover modes:~a! from the upper branch of the optica
bistability curve to the lower, and~b! from the lower branch
to the upper. We see that the switchover times are of
same order of magnitude and amount to 4gbiex. Since the
relaxation timest of excitons and biexcitons are approx
mately 10210–10212 s, optical switchover times in the sys
tem of coherent excitons and biexcitons are in the picos
ond range, which makes it possible to use this opti
-
h

e

c-
l

memory cells.
When theQ-factor of the cavity is lowered, switchove

becomes accompanied by oscillations, which reduces the
fectiveness of operation of the bistable element.

At F5p/212pn, C55, D150, d15230, d055, and
s51, a hysteresis in the form a figure-eight develops in
system~Fig. 6a!. For this to happen the strength of the inc
dent field must be high.

In optical bistability experiments one often observes n
stationary optical bistability but dynamic optical bistabilit
r
FIG. 5. Optical switchover from the uppe
branch of the optical bistability curve to the
lower branch~a!, and vice versa~b!.
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FIG. 6. ~a! Stationary dependence of th
amplitudeXst of the transmitted field on the
amplitudeYst of the incident field atd055,
C55, F5p/212np, D150, d15230,
s51, d50.1, andT50.01; ~b! shape of in-
cident pulse;~c! dynamic optical bistability;
and ~d! shape of pulse at the exit from th
cavity.
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field with the corresponding response of the system. Bisch
erger and Shen32 were the first to study optical bistability o
this type. They studied both theoretically and experimenta
the behavior of a nonlinear Fabry–Perot interferometer fil
with a Kerr medium to which pulses of different shape we
applied. The agreement between theoretical and experim
tal data was perfect.

We solved the system of nonlinear differential equatio
~14!–~19! numerically with allowance for the boundary co
ditions for a ring cavity whereY(t) is parabolic function of
time. The results of the computer experiment are depicte
Figs. 4b–4d forF52pn, C55, D150, d1530, d055,
s510, d50.1, and T50.01 and in Figs. 6b–6d fo
F5p/212np, C55, D150, d15230, d055, s51,
d50.1, andT50.01. Figures 4b and 6d display, respe
tively, the temporal shape of the incident and transmit
electromagnetic fields, with the pulse lengtht being equal to
100 (t5100310212 s). Figure 4d shows that the pulse
deformed after it has travelled through the cavity. Figure
displays the dependence of the amplitude of the transm
field on the amplitude of the incident field. We see that
this case dynamic optical bistability emerges in the system
coherent excitons, photons, and biexcitons, with the direc
of bistability being clockwise. If the pulses are made shor
the system is unable to react to their passage, with the re
that they are not deformed.

In conclusion we discuss the possibility of observi
these effects in experiments. Here are numerical estimate
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\g50.1 eV cm21/2 V21, \v52 eV, \c0k0'2 eV,
\gex51025 eV, \gbiex51024 eV, T50.01, L51026 m,
and\(2v2vbiex)520.0.4 eV. The critical power at which
it is possible to observe these nonlinear phenomena
P;403103 W cm22. Here the exciton and biexciton dens
ties are of order 1016 cm23 and 1014 cm23, respectively. The
upward switchover timet↑ is approximately 2310212 s, the
downward switchover timet↓ is approximately 4310212 s,
and the switchover energy is of order 50310212 J.

Thus, our numerical estimates suggest that optical h
teresis loops, switchover, and self-pulsations in the system
excitons and biexcitons in semiconductors with paired ex
tons bound into biexcitons can indeed be observed.

Note that these chaotic self-oscillations, which occur b
cause of the instability of the stationary states, are one m
example of the formation of temporal structures in nonline
dynamical systems. At the same time, the initial equatio
are nonlinear partial differential equations describing
space–time evolution of coherent quasiparticles in c
densed media. As is known, equations of this type allow
the development of spatial turbulence.34 Aransonet al.34 dis-
covered a new class of transitions of the ‘‘order–chaos’’ ty
in the form of moving transition fronts. Similar phenomen
can occur in a system of coherent excitons, photons,
biexcitons. In addition to dynamic optical turbulence, spa
turbulence can develop and ‘‘order–chaos’’ and ‘‘chao
order’’ structures can emerge.
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Magnetoexciton absorption in coupled quantum wells
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Zh. Éksp. Teor. Fiz.112, 1791–1808~November 1997!

A Mott exciton in coupled quantum wells in a transverse magnetic fieldH is considered. An
expression for the exciton spectrum in an arbitrary magnetic field for large separations
D between quantum wells containing an electron (e) and a hole (h) is given. The exciton spectrum
in a strong magnetic field for different Landau levels at arbitraryD has been calculated.
Changes in the parameterD/ l , wherel 5A\c/eH is the magnetic length, cause rearrangement of
the magnetoexciton dispersion curvesE(P), whereP is the conserved ‘‘magnetic’’
momentum, which is a function of the separation between the electron and hole in the plane of
the quantum wells. Off-center~‘‘roton’’ ! extrema occur only forD/ l ,(D/ l )cr , where
(D/ l )cr is a function of the exciton quantum numbersn andm. The magnetoexciton effective
mass in states with magnetic quantum numberm50 monotonically increases withH
andD, while in states withmÞ0 it is a nonmonotonic function ofD/ l . The probability of
generating an exciton in coupled quantum wells increases withH. Absorption of electromagnetic
radiation due to transitions between excitonic levels in coupled quantum wells is discussed.
For an exciton containing a heavy hole the oscillator strengthsf n1m

n2m11 increase withH and the

oscillator strengthsf n1m
n2m21 decrease. ©1997 American Institute of Physics.
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Exciton systems containing electrons (e) and holes (h)
in different quantum wells in a structure with coupled we
have attracted considerable attention recently,1–7 in particu-
lar, owing to predictions of superfluidity ofe–h pairs that
should manifest itself as persistent electric currents.8–10 In-
teresting Josephson-like effects have also been predicted~see
Refs. 11–14 and references therein!.

Very interesting properties have been displayed by tw
dimensional exciton systems in strong magnetic fields.15–21

Theoretical studies15,17–20have shown, in particular, that th
ground state of such systems is an ideal gas of exciton
any density. This result is in good agreement with expe
mental data~see Refs. 22 and 23 and references there!.
Moreover, exact solutions for the ground state~which corre-
sponds to a Bose condensate of nonbosons! and for some
excited states of planare–h systems on one Landau level17

have been obtained using the supersymmetry of the stu
system.17,19,20In the case of spatially separatede–h systems,
the supersymmetry is broken, and an interesting questio
the system phase diagram arises~see Refs. 10, 24–27 an
references therein!.

Pairs composed of spatially separated electrons
holes~indirect excitons! can condense in a liquid phase a
for other phases,10,24–27some of which are similar to phase
of three-dimensional exciton systems.28–31 These phases ca
exists only under the condition that the exciton lifetime
much longer than the thermalization time. This condition c
be satisfied in excitons containing electrons and holes in
ferent quantum wells, since recombination of electrons
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hole wave functions. An electric field perpendicular to t
semiconducting layers also leads to a smaller overlap
tween electron and hole wave functions, and hence a slo
recombination rate. Recent experimental studies of exc
spectra in double and coupled quantum wells6,7 have also
stimulated investigation of properties of an isolated exci
composed of spatially separated electron and hole as a
step in developing the theory of such systems.

In Sec. 2 an exciton spectrum in an arbitrary magne
field at large separations between quantum wells~when the
size of thee–h bound state in the quantum well plane
smaller than the separationD between the wells! is derived
analytically. The exciton energy in a strong magnetic field
arbitraryD as a function of the magnetic momentum,E(P),
is also calculated. It turns out that sideband~‘‘roton’’ !
minima at nonzero momenta,PÞ0, previously detected in
the case of a two-dimensional magnetoexciton,16 occur only
at separations between quantum wells smaller than a cri
value. The critical parameters (D/ l )cr , wherel 5A\c/eH is
the magnetic length, are calculated. In Sec. 3 the exc
spectrum in degenerate states is calculated. A changeD
leads to a similar rearrangement of dispersion curves.
effect of the quantum well width on the magnetoexcit
spectrum is also discussed~Sec. 4!. In Sec. 5 the probabili-
ties of magnetoexciton creation and transitions between m
netoexciton levels with absorption~or emission! of a photon
are discussed. The results of our work and proposed exp
ments for studying the magnetoexciton dispersion are
cussed in the Conclusion.

979-10$10.00 © 1997 American Institute of Physics



2. TWO-DIMENSIONAL EXCITON COMPOSED OF A
SPATIALLY SEPARATED ELECTRON AND HOLE IN
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Consider an exciton containing a spatially separa
electron and hole in coupled quantum wells in transve
magnetic fields. Suppose that the separation between ex
levels is considerably smaller than the characteristic ene
of size quantization (;p2\2/2me,h

' de,h
2 ) in the quantum

well, whereme,h
' are the electron and hole effective mass

in the magnetic field direction andde,h is the quantum well
width. Then we can take into account only the motion of t
electron and hole in the plane of the quantum wells:

Ĥ5
1

2me
S \

i
“e1

e

c
AeD 2

1
1

2mh
S \

i
“h2

e

c
AhD 2

2
e2

eAD21~re2rh!2
, ~1!

where re,h are the two-dimensional vectors of the electr
and hole positions in the well plane,me,h are the electron and
hole effective masses in the plane of the wells, a
e5(e11e2)/2, ande1,2 are background permittivities of ma
terials surrounding the quantum wells.

The Schro¨dinger equation for an exciton in a magne
field H is invariant with respect to a translation of the ele
tron and hole through the same vector in the plane of
wells and a simultaneous gauge transformation ofA~r !. This
invariance leads to conservation of the exciton magnetic
mentum P, which is identical to the usual center-of-ma
momentum atH50. The existence of an integral of motio
in a magnetic field makes the theoretical analysis of thre32

and two-dimensional16 magnetoexcitons considerably easi
Below we use magnetic momentum conservation in calcu
ing the spectrum of an indirect two-dimensional magneto
citon.

The operator of the exciton magnetic momentum is
pressed as

P̂5
\

i
“e1

e

c
Ae1

\

i
“h2

e

c
Ah2

e

c
H3~re2rh!. ~2!

Here we use the symmetrical gauge of the vector poten
A5(1/2)H3r .

Using the commutative property@Ĥ,P̂#50, we seek the
exciton wave functions in the form of eigenfunctions of t
operatorP̂:

C~re ,rh!5expH i
R

\
•S P1

e

2c
H3r D J Fp~r !, ~3!

where P is an eigenvalue ofP̂, R5(mere1mhrh)/M ,
M5me1mh , andr5re2rh .

The wave functionsFp(r ) of the relative motion are
solutions of the equation

S 2
\2

2m
D1

e\

2imc
gH3r•“1

e2

8mc2 H2r 21
e

cM
H3r•P
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1
2M

2
eAD21r 2D Fp~r !5EFp~r !, ~4!

wherem5memh /M is the exciton reduced mass in the pla
of the quantum wells andl 5A\c/eH is the magnetic length

1. First let us consider the case when the separationD
between the quantum wells is considerably larger than
exciton dimensionu^re2rh&u in the plane of the wells. Then
the operator of the Coulomb interaction between the elec
and hole can be approximately expressed by the formula

2
e2

eD
1

e2~re2rh!2

2D3e
. ~5!

Let us seek the wave functionFp(r ) in the form

Fp~r !5F~r2ar0!expS i
r•P

2\
ga D , ~6!

wherer05cH3P/eH2, g5(mh2me)/M , anda is a func-
tion of H andD defined in order to eliminate the terms line
in P3r and containingP•¹ in Eq. ~4! @with due account of
Eq. ~5!#.

Using ansatz~6! and

a~H,D !5
4m

M

1

b22g2 ~7!

we transform Eq.~4! to

S 2
\2

2m
D1

e\

2imc
gH•r3“

1
e2

8mc2 H2r 2b2DF~r !5EF~r !, ~8!

where

E5E1
P2

2M
~12a!2

e2

eD
, ~9!

b5A11 l 4/aD3, anda5e\2/e2m is the effective Bohr ra-
dius of the exciton. Thus, we obtain forF~r !

Fnm~r !5A n!b

2p~n1umu!!
exp~ imf!

l

3SAb

2

r

l D
umu

Ln
umuS br 2

2l 2 DexpS 2
br 2

4l 2 D , ~10!

whereLn
m are Laguerre polynomials. The spectrum of Eq.~8!

is fully quantized:

Enm5\vcbFn1
1

2
~ umu11!G1

m

2
g\vc , ~11!

wherevc5eH/mc is the cyclotron frequency.
For g50 the levels defined by Eq.~11! are degenerate in

the quantum numberN52n1umu. Each state except~0,0! is
(N11)-fold degenerate. The states (nÞ0,0) and (0,mÞ0),
in which g/b5(2n2umu)/m, are also degenerate.

The approximate expression~5! applies in the limit
D2@^(r1ar0)2&, i.e., when
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Condition ~12! applies to the case of small and intermedia
fields for D@a, and in the case of strong magnetic fiel
( l !a) under the weaker conditionD@ l . Condition ~13!
holds for small magnetic momentumP.

At H50 we derive from Eqs.~9! and ~11!

Enm52
e2

eD F12Aa

D
~2n1umu11!G1

P2

2M
~14!

in accordance with the result of Ref. 33. In the case o
strong magnetic field, whenl 4!aD3 holds, we obtain the
spectrum of an indirect magnetoexciton:

Enm5\vcFn1
1

2
~ umu1gm11!G2

e2

eD F12
l 2

D2 ~2n

1umu11!G1S 12
l 4

aD3

M

m D P2

2

c2

eD3H2 . ~15!

The spectrum~9! yields an exciton effective mass in th
form

Mexc5S ]2Enm

]P2 D 21

5M1H2
eD3

c2 . ~16!

2. Now let us consider a magnetoexciton composed o
spatially separated electron and hole in coupled quan
wells in strong magnetic fields at arbitraryD. We assume
that the spacingeH/mc between excitonic levels with adja
cent Landau quantum numbers~see below! and between
size-quantized levels are much larger than the mean en
of the Coulomb interaction between the electron and h
i.e., the magnetoexciton energy. Then we will show that
D! l the characteristic Coulomb energy of ane–h pair ~or
the magnetoexciton band width! is ;e2/ l e, and forD@ l it
is ;e2l 2/D3e. Hence, the conditions formulated above le
to the inequalities

l !ae,h , de,h
2 !ae,h

' l ~17!

for the barrier width between the quantum wells withD! l
and

l 4!ae,hD3, de,h
2 l 2!ae,h

' D3 ~18!

for D@ l , where ae,h5e\2/me,he2 are the effective Bohr
radii for electrons and holes in the plane of the quant
wells andae,h

' 5e\2/me,h
' e2 are the effective Bohr radii in

the magnetic field direction.
In this case, it is more convenient to seek exciton wa

functions in the form

C~re ,rh!5expH i

\
R•S P1

e

2c
H3r D J

3expS 1

2
igr•PDF~r2r0!. ~19!
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S 2
\2

2m
D1

e\

2imc
gH•r3“1

e2

8mc2 H2r 2

2
e2

eAD21~r1r0!2D F~r !5EF~r !. ~20!

In accordance with conditions~17! and ~18!, let us cal-
culate the exciton energy by treating the Coulomb interact
as a perturbation. In the first order of perturbation theory
the parameterl /ae,h in the case ofD! l or the parameter
l 4/ae,hD3 in the case ofD@ l , one can ignore transitions t
other Landau levels. Thus,F~r ! can be described by Eq.~10!
at b51. The spectrum unperturbed by the Coulomb inter
tion is independent ofP:

Enm
0 5\vcFn1

1

2
~ umu1gm11!G , ~21!

wheren5min(n1,n2), m5un12n2u, andn1,2 are the electron
and hole quantum numbers.

For g561 the spectrum is degenerate in the angu
momentumm,0 (m.0). In real quantum wells, the quas
particle effective masses are finite, so we haveugu,1, and
there is no degeneracy in the angular momentum of the r
tive motion.

For some values of the ratiome /mh the excitonic levels
defined by Eq.~21! can also be degenerate. For example
me5mh , the levels with quantum numbersn50, m51 and
n50, m521 coincide. Wheng5(22umu)/m, the level
n51, m50 coincides with the levelsn50, umu>2 ~we will
discuss this case in detail in Sec. 3!.

The unperturbed spectrumEnm
0 is independent of the

magnetic momentumP. The operator of thee–h interaction

V̂~r !52
e2

eAD21r 2
~22!

commutes withP̂, so it can be made diagonal with respect
P. Thus, in the nondegenerate case, the magnetoexc
spectrumEnm(P) can be expressed in the first order of pe
turbation theory as

Enm~P!5Enm
0 1Enm~P!,

where

Enm~P!52K nmPU e2

eAD21r 2UnmPL , ~23!

andEnm
0 is the unperturbed spectrum given by Eq.~21!.

The dispersion of a two-dimensional magnetoexciton
D50 ~i.e., the spectrum of a direct exciton! was analyzed in
Ref. 16. Below we will show that the exciton spectrum co
sists of bands whose width monotonically decreases withD
~the bandwidth of the direct exciton is;e2/ l !. At small D
~see below! the dispersion curves are nonmonotonic in
states exceptn5m50. In states (n,m) the dispersion curves
haven11 minima, and in the casem50 the first and deep-
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mÞ0 the dispersion curves have a maximum atP50.
Using the method of Ref. 16, we transform Eq.~23! to

Enm~P,D !52
e2

2p l 2

n!

~n1umu!!

3E Fnm* ~r2r0!Fnm~r2r0!
d2r

AD21r 2

52const•E Nnm~r !
d2r

A~r1r0!21D2
. ~24!

This expression can be interpreted as an energy of interac
between a two-dimensional charge distribution with dens
2eNnm(r ) and a point chargee with coordinates (2r0 ,D).
The functionNnm(r ) is symmetrical about the center and h
Nmax5n11 maxima with width; l and Nmin5n112d0,m

minima. The first maximum has the largest amplitude at
bitrary quantum numbersn andm. There is a maximum of
Nnm(r ) at the center~0,0! for m50 and a minimum form
Þ0. The main contribution to the integral in Eq.~24! is,
obviously, due to the overlap region of the disk of radiusD
~with the point charge at its center! and the rings correspond
ing to the maxima of the functionNnm(r ).

Using the electrostatic analogue described above, le
analyze qualitatively the dispersion of the magnetoexciton
states with quantum numbersn50 andmÞ0. The function
N0m(r ) has the only maximum with the radiusr max5A2umu l
and a minimum atr min50. By varyingr0 we simultaneously
move the point charge and change the overlap region of
disk and ring corresponding to the maximum inN0m(r ).
When Pl!\ and D! l hold, this region is small and, b
virtue of the central symmetry of the charge distribution, t
integral has a minimum atP50. Therefore the momentum
P50 for D! l corresponds to the maximum on the disp
sion curve. The overlap region in largest forP'r max\/l2 and
D! l so the momentumP5r max\/l2 corresponds to a mini
mum on the dispersion curve~the ‘‘roton’’ minimum!. Fur-
ther increase in the momentum leads to a decrease in
overlap region, which means that the exciton energy dro

Now let us consider the effect of changes inD on
Enm(P,D). At P50 the overlap region increases withD
from zero atD50 to Scr52p lr max for D>r max1l/2, i.e., at
Dcr;r max the extremum type changes from a maximum
minimum, and the roton minimum disappears at the sa
time. A further increase inD leads to a larger separatio
between the point-like charge and the ring center, henc
smaller minimum amplitude.

Similar considerations apply to a magnetoexciton in
arbitrary state (n,m). The dispersion curves always have e
trema atP50 shaped as minima at arbitraryD if m50. For
mÞ0 the extremum atP50 is a maximum in the caseD! l
and a minimum forD@ l . For D! l the dispersion curve ha
n11 minima, and forD@ l @to be exact, forD@r max

n11 , where
r max

n11 is the largest radius of the maximum of functio
Nnm(r )# the only minimum is located atP50. There is a
certain order in which roton extrema disappear, and this
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The dispersion of an indirect magnetoexciton is det
mined by the two dimensionless parametersP 5Pl/\ and
D5D/ l . Our calculations indicate that the width of the in
direct exciton bands (DÞ0) decreases withD ~Fig. 1!. The

FIG. 1. Dispersion curvesE~P ,D! of a magnetoexciton:~a! in state
n5m50 at D50, 1, and 5~curves1, 2, and3, respectively!; ~b! in states
n50, m561 at D50, 0.25, 0.5, and1 ~curves1, 2, 3, and4!; ~c! in states
n51, m50 at D50, 0.1, 0.3, 0.5, and 1~curves1, 2, 3, 4, and5!.
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shapes of the extrema on the dispersion curves in the l
D!1 are the same as in the case of a direct exciton. One
derive from Eq.~24! expressions for the exciton energy wi
momentumP 50 in an arbitrary state (n,m), for example,

E00~D !52E0 expS D2

2 DerfcS D

&

D ,

E0,61~D !52E0F S 1

2
2

D2

2 DexpS D2

2 D
3erfcS D

&

D 1
D

A2p
G ,

E10~D !52E0F S 3

4
1

D2

2
1

D4

4 DexpS D2

2 DerfcS D

&

D
2

D

2A2p
2S D

&

D 3
1

Ap
G , ~25!

whereE05(e2/e l )Ap/2, and erfc is the complementary e
ror function. The absolute values of the functionsE00(D),
E0,61(D), andE10(D) decrease monotonically withD .

The dispersion curves always have extrema atP50, so a
magnetoexciton effective mass can be defined as usual:

1

Mnm
5

]2Enm~P!

]P2 U
P50

.

For states with quantum numbers~0,0!, (0,61), and ~1,0!
we obtain~Fig. 2!

M00~D !5M0F ~11D2!expS D2

2 DerfcS D

&

D
2DA2

pG21

,

M0,61~D !5M0F ~31D2!
D

A2p
2S 1

2
12D2

FIG. 2. Effective massesM of a magnetoexciton in states (n,m)5(0,0),
(0,61), ~1,0! as functions ofD . The effective masses are measured in un
of M0523/2\2/e2lAp, which is the direct magnetoexciton mass on lev
~0,0!.
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it
an

1
2 DexpS 2 DerfcS

&

D G ,

M10~D !5M0F S 7

4
1

25D2

4
1

11D4

4

1
D6

4 DexpS D2

2 DerfcS D

&

D 2S 17

2
15D2

1
D4

2 D D
1

A2p
G21

. ~26!

Here M0523/2e\2/e2lAp is the direct exciton mass in th
lowest level (n5m50). The magnetoexciton effective mas
in high magnetic fields depends only on the magnetic fi
and parameterD/ l ~it is independent of the bare effectiv
masses of electrons and holes!. Note also that the defined
effective mass is determined by the effective interaction
tween electrons and holes, so thatM (H)→` ase/e→0.

Below we will calculate the dispersion curve
Enm(P ,D) and effective massesMnm(D) of a magnetoex-
citon as functions of the parameterD . We will show that the
magnetoexciton effective mass in the statem50 increases
with the magnetic field and separationD between quantum
wells, whereas in states withmÞ0 the magnetoexciton ef
fective mass~at the central minimum! is a nonmonotonic
function of D .

In the limit of small momenta,P !1, and D!1, the
dispersion curves are described by the formula

Enumu>1~P ,D !52
e2

e K 1

r L
n,umu>1,P50

1
P2

2Mnumu>1~D !

1E0
D2

4Ap

~n1umu!!
n!

3 (
s1s250

n

Qs1s2

nm GS umu1s11s22
1

2D ,

~27!

where

Qs1s2

nm 5
Cn

s1Cn
s2~21!s11s2

~ umu1s1!! ~ umu1s2!!
,

Cn
s is the number of combinations ofn elementss at a time,

and ^r 21&nm,P505^nm,0ur 21unm,0&.
It is remarkable that atm50 the changes in all disper

sion functions are linear inD , i.e., they are not analytica
functions ofD2, which is included in the interaction Hamil
tonian:
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En0~P ,D !52
e K r L

n0,P50

1E
Ap

D

1E0
D2

4Ap
(

s1s250

n

Qs1s2

n0 GS s11s22
1

2D
1

P2

2Mn0~D !
. ~28!

The effective mass of an indirect magnetoexciton in
limit D!1 increases withD in accordance with the formu
las

1

Mnm~D !

5

{
1

Mn0
2D

~2n11!23/2

ApM0

1
9

8
D2

1

ApM0

3 (
s1s250

n

Qs1s2

n0 G~s11s223/2!, m50,

1

Mn,61
1D

~n11!23/2

ApM0

1
9

8
D2

~n11!

ApM0

3 (
s1s250

n

Qs1s2

n1 G~s11s221/2!, umu51,

1

Mnumu>2
1

9

8
D2

1

ApM0

~n1umu!!
n!

3 (
s1s250

n

Qs1s2

nm G~ umu1s11s223/2!, umu>2,

where Mnm is the direct magnetoexciton mass~when the
electron and hole are in the same layer!:

1

Mnm
52

1

2ApM0

~n1umu!!
n!

3 (
s1s250

n

Qs1s2

nm GS umu1s11s22
1

2D . ~29!

At m50 and arbitraryn the effective masses of direct an
indirect excitons are positive~the dispersion curves hav
minima!, and for mÞ0 the effective masses are negati
~correspond to dispersion maxima!. The effective mass of an
indirect exciton in the staten50, umu@1 is expressed as

M0m522ApM0S umu2
1

2D 3/2S 12
9

4

D2

umu21/2D
21

.

At small separationsD between quantum wells containin
electrons and holes, the dispersion curves~including those in
the state n5m50! are nonmonotonic and haven11
minima. Our calculations indicate that all off-center rot
minima on the dispersion curvesEnm(P ,D) gradually dis-
appear asD increases, in conformity with the qualitativ
analysis given above~see Fig. 1a,b!, and forD.Dcr there is
only one minimum at zero momentum. The type of ext
mum at P 50 changes ifMnm

21(Dcr)→0. The electrostatic
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Dcr;r max for n50. At m51 andm52 we haveDcr 50.756
andDcr

0251.233.
For D@1 andP !1 the dispersion is described by th

formula

Enm~P ,D !52
e2

De S 12
^r 2&nm,P50

2D2 D1
P2

2Mnm~D !
.

~30!

On the three lowest levels~at P50! we have^r 2&0052l 2,
^r 2&0,6154l 2, and^r 2&1056l 2.

The magnetoexciton effective mass increases in
rangeD@1:

Mnm~D !5D3
Ap

23/2M0S 12
3^r 2&nm,P50

2D2 D 21

.

For n50 andumu@1 we derive from the latter expression

M0m~D !5D3
Ap

23/2M0S 12
3

D2 ~ umu11! D 21

.

For P @1 andP @D the dispersion functions have th
following asymptotic forms:

Enm~P ,D !52
e2

eP l S 12
D2

2P 2 1
^r 2&nm,P50

4P 2l 2 D . ~31!

The mean separation between the electron and hole in
plane of the quantum wells,^r &nmP5 l 2H3P/\H, increases
with the magnetic momentum, and the energy of Coulo
interaction between electrons and holes,Enm(P ,D), de-
creases. Therefore, at sufficiently large separationsD be-
tween coupled quantum wells, the magnetoexcitonic eff
can be suppressed owing to the strong interaction with
purities and terraces in quantum wells compared to the C
lomb interaction between electrons and holes. Interac
with a random field may cause localization of th
magnetoexciton,34 and in highly disordered system disa
pearance of magnetoexcitonic effects.

3. SPECTRUM OF AN INDIRECT MAGNETOEXCITON:
EFFECTS OF DEGENERACY

In some cases, the unperturbed spectrum is qu
degenerate, i.e., the spacing between unperturbed leve
smaller than the characteristic energyEnm(P) of the interac-
tion between electrons and holes.16 For example, in the case
g50 the levels with quantum numbers (n,mÞ0) and
(n,2m) are degenerate. Wheng5(2n2umu)/m holds, the
levels (nÞ0,0) and (0,m) coincide if umu.n. Hence, owing
to the possible quasi-degeneracy, the applicability of the
mulas derived in the previous section is limited by the co
ditions

g@
l

ae,h
, U2 gm1umu

2
1nU@ l

ae,h

for D/ l !1 and

g@
l 4

ae,hD3 , U2 gm1umu
2

1nU@ l 4

ae,hD3

for D/ l @1.
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FIG. 3. Dispersion curves of a magne
toexciton in a degenerate stateN51;
N52 min(n1,n2)1un12n2u, where n1

and n2 are Landau quantum number
of electrons and holes:~a! D50,
curve 2 has a roton minimum;~b!
D53.
At me5mh the energy given by Eq.~21! is a function of

he

e

se

e

p M0 33

h

p-
the quantum numberN52n1umu, and all levels are
(N11)-fold degenerate~the ground state withN50 is non-
degenerate!.

In the first order of perturbation theory, we have t
dispersion functions of levelN51:

E1
1,2~P,D !5\vc1E01~P ,D !

6U K 021PU e2

eAD21r 2U01PL U . ~32!

At P50 the level is still degenerate sinc
^0210ue2/(eAD21r 2)u010&50. At PÞ0 the magnetoexci-
ton energy splits into two branches with effective mas
~Fig. 3!

1

M1,2~D !
5

1

M01~D !
6a~D !, ~33!

1

a~D !
5M0F2~51D2!

D

2

1

A2p
1S 3

4
1

3

2
D2

1
D4

4 DexpS D2

2 DerfcS D

&

D G21

. ~34!

In the limit D!1 andP !1 we have

E1
1,2~P ,D !5\vc2

1

2
E0S 12

D2

2 D2
P2

2M1,2~D !
, ~35!

where

M1~D !54M0S 11
3

2
D2D ,

M2~D !52
4

5
M0S 11

16

5
A2

p
D2

33

10
D2D .

An increase inD results in the disappearance of th
roton minimum inE1

2. For D@1 we obtain

E1
1,2~P ,D !5\vc2

e2

De S 12
2

D2D1
P2

2M1,2~D !
~36!

and effective masses
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M1~D !5D3A
2 2 S 12

8D2D ,

M2~D !5D3Ap

2

M0

2 S 11
129

8D2D .

For P @1 we have

E1
1,2~P ,D !;2E0A2

p

1

P
.

Similarly, level N52 splits into three branches wit
quantum numbersn51, m50, andn50, m562:

E2
1,2~P ,D !

5
3

2
\vc1

1

2
$E10~P ,D !1E02~P ,D !1D2~P ,D !

6A@E10~P ,D !2E02~P ,D !2D2~P ,D !#218D1~P ,D !2%,

~37!

E2
3~P ,D !5

3

2
\vc1E02~P ,D !2D2~P ,D !, ~38!

where

K 10U e2

eAD21~r1r0!2U062L 5e62if0D1~P ,D !,

K 022U e2

eAD21~r1r0!2U02L 5e4if0D2~P ,D !, ~39!

andf0 is the polar angle of vectorr0 . At P 50 we obtain
D1(0,D)5D2(0,D)50, so the levelsE2

2 andE2
3 are still de-

generate atP 50. The off-center extrema gradually disa
pear asD increases, and forD@1 we only have the mini-
mum atP 50.
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4. EFFECT OF QUANTUM WELL WIDTH

al
ns
t
he

th
ti

th

n

n

o
d

on
at
4
n
or
m
it
le
el

to

lls

ith

o-
di-

ob-

ne

ells
s
ntum
Now let us consider a more realistic model with a sm
but finite width of the quantum wells containing electro
and holes. We assume, as in the previous sections, tha
well width is the smallest characteristic dimension of t
system. Given the inequalities~17! and ~18!, we can apply
the adiabatic approximation. The transverse motion in
quantum well is the fastest, so the electron–hole poten
can be averaged over the wave functions

A2

d
sinS pk1

d
z1D , A2

d
sinFpk2

d
~z22d!G

describing size quantization of electrons and holes in
quantum wells.

The resulting changes in the dispersion curves do
qualitatively modify the exciton spectrum. ForD! l and
P 50 we have

dEnumu>1~0,D !

5E0
1

4Ap
FD212D

d

l

1
7d2

6l 2 2
d2

2p2l 2 S 1

k1
2 1

1

k2
2D G ~n1umu!!

n!

3 (
s1s250

n

Qs1s2

nm GS umu1s11s22
1

2D ~40!

~k1 andk2 are quantum numbers of quantization of electro
and holes! and

dEn0~0,D !5E0A2

p S D1
d

l D1E0
1

4Ap

3FD212D
d

l
1

7d2

6l 2 2
d2

2p2l 2 S 1

k1
2 1

1

k2
2D G

3 (
s1s250

n

Qs1s2

n0 GS s11s22
1

2D
at m50. In the caseD@1 we obtain

dEnm~0,D !;E0
dl

D2

1

A2p
.

As an illustration, we have plotted dispersion curves
an exciton composed of an electron and a hole localize
neighboring quantum wells with a width ofd50.5l each.
Figure 4 shows calculations for states~00!, (0,61), and~10!
compared to the dispersion functions of magnetoexcit
composed of an electron and hole in two different planes
distanceD50.5 from one another. As can be seen in Fig.
the dispersion curves are different, but the difference is
great. The discrepancy between the dispersion curves c
sponding to these two cases decreases with the exciton
mentum. This is quite natural because the magnetoexc
momentum is proportional to the separation between e
trons and holes measured in the plane of the quantum w
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5. MAGNETOEXCITON PHOTOABSORPTION AND
TRANSITIONS BETWEEN EXCITONIC LEVELS

As is well known,35,32 the probability of generating an
exciton is proportional to the factoruC(0)u2. In order to
obtain simple analytical expressions we limit our analysis
the case of largeD. According to Eqs.~3!, ~6!, and~10!, the
probability of creating an exciton in coupled quantum we
in the staten5m50 when Eqs.~12! and ~13! hold is pro-
portional to

uC~0!u25
b

2p l 2 expS 2
ba2r0

2

2l 2 D . ~41!

The probability of magnetoexciton generation increases w
magnetic fieldH in accordance with the formula

uC~0!u25
e

2p\c
AH214H0

2 m

M

3expS 2
2p2\c

el2

H2AH214H0
2m/M

~H21H0
2!2 D , ~42!

whereH05AMc2/eD3, andl is the photon wavelength.
Now let us consider the problem of the long-wave ph

ton absorption due to a transition between levels of an in
rect magnetoexciton in coupled quantum wells. The pr
ability of interexcitonic transitions with absorption~or
emission! of a photon is

W52pu^2uF̂u1&u2d~E22E17\v!, ~43!

whereE1,2 are excitonic levels determined by Eqs.~9! and
~11!,

F̂5
e

c
@Ã~re!• v̂e2Ã~rh!• v̂h#, ~44!

Ã~r ,t !5(
ka
A2p\c

Vk
eakaei ~k•r2vt !1H.c.,

ea are vectors of the photon circular polarization in the pla
of the quantum wells,

FIG. 4. Dispersion curves of magnetoexcitons in coupled quantum w
with widths de5dh50.5l ~solid lines!. The wells with electrons and hole
have a common surface; for comparison the case of two separated qua
wells of small thickness atD50.5l ~dashed lines! is also presented.
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e,h me,h
S i e,h 2c e,hD

are the operators of the electron and hole velocities in m
netic field. The matrix element of the transition operatorF̂ in
terms of the center-of-mass coordinatesR and relative
electron–hole coordinatesr has the form

e

c K n2m2P2 ;1U Ãe2Ãh

M

\

i

]

]R
1S Ãe

me
1

Ãh

mh
D S \

i
¹ r

1
e

2c
H3RD1

e

2Mc
H3r S mh

me
Ãe

2
me

mh
ÃhDU0;n1m1P1L , ~45!

whereunmP& is the exciton state ket-vector, andu l & and u0&
are the states of electromagnetic field with population nu
bers 1 and 0. In what follows, we will discuss only dire
transitions between magnetoexciton states with momen
P50. After integration with respect toR, we have

^n2m2P;1uF̂u0;n1m1P&5 K n2m2 ;1U e

mc
Ã~0!S e

2c
gH

3r1
\

i

]

]r D U0;n1m1L . ~46!

Given this expression, we can calculate the oscilla
strength of a transition between the levels determined by
~21!, which is defined by the formula36

f 1→25
2m

\2 ~E22E1!u^2ur 6u1&u2, ~47!

wherer 65(x6 iy)/2. Integration of Eq.~47! over the angu-
lar variable yields the standard set of magnetic moment
lection rules: m→m61. The transitionm→m11 corre-
sponds to absorption of a photon with right-hand polarizat
(e152 i /&(ex1 iey)), and the transitionm→m21 corre-
sponds to absorption of a photon with left-hand polarizat
@e25(e1)* #. The oscillator strength defined by Eq.~47! of
the transition (n1 ,m)→(n2 ,m61) is expressed as

f n1m
n2m61

5S n22n11
um61u2umu

2
6

g

2b D ~Dn1m
n2m61

!2,

~48!

where

Dn1m
n2m61

5A n1!n2!

~n11umu!! ~n21um61u!!

3E e2xx~ umu1um61u11!/2Ln1

umu~x!Ln2

um61u~x!dx.

~49!

For m>0, n15n250 the oscillator strength is

f 0m
0m115

~m11!

2 S 11
g

b D , ~50!
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cillator strength

f 0m
0m215

~2m11!

2 S 12
g

b D . ~51!

Let us consider the transitions from the ground st
~0,0!. The transitions (0,0)→(nÞ0,61) are forbidden since
D00

n,6150. The oscillator strengths of the transitions betwe
the lowest levels are given below:

f 00
015

1

2
f 10

115
1

2
1

g

2b
, ~52!

f 00
0215 f 01

105
1

2
f 10

1215
1

2
2

g

2b
. ~53!

The oscillator strength given by Eq.~48! is a monotonic
function of H:

f n1m
n2m61

5~Dn1m
n2m61

!2S n22n11
um61u2umu

2

6
gH

2AH214H0
2m/M

D , ~54!

f n1m
n2m11 increases~decreases! with H for an exciton with a

heavy ~light! hole, andf n1m
n2m21 decreases~increases! in this

case.

6. CONCLUSIONS

We have investigated the spectrum of a two-dimensio
magnetoexciton in coupled quantum wells. The spectr
consists of separate bands, whose widths decrease whe
separationD between the quantum wells increases. T
shapes of the dispersion curvesE~P ,D!, where P is the
conserved magnetic momentum, proportional to the exc
size in the quantum well plane, depend sensitively on
separationD between the quantum wells. In the limitD!1
the dispersion curves are nonmonotonic in all nondegene
states, except the ground state (n5m50). In states (n,m)
the dispersion curves haven11 minima. Atm50 and alln,
zero momentumP 50 corresponds to a minimum in
Enm(P ,D), and formÞ0 to a maximum. Side-band extrem
corresponding to momentaP Þ0 gradually disappear asD
increases, and forD.Dcr only one extremum~i.e., a mini-
mum atP 50! survives. For largeD and smallP dispersion
functions have been calculated analytically in an arbitr
magnetic field.

The spectra of magnetoexcitons in degenerate st
have been calculated. Atg50 (me5mh) the spectrum de-
pends on the quantum numberN52n1umu, and each level
is (N11)-fold degenerate~the stateN50 is nondegenerate!.
Off-center extrema corresponding to momentumP Þ0
gradually disappear with an increase inD , and for D@1
there is only one minimum atP 50 in states withN51 and
N52.

Note that it would interesting to detect roton excito
states with momentaP Þ0. They could be detected usin
layers with high Miller indices or artificial superlattices a
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Klyuchnik and Yu. E. Lozovik, Zh. E´ ksp. Teor. Fiz.76, 670~1979! @Sov.

nn
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of nanotechniques. Roton magnetoexcitons can also re
from relaxation of a magnetoexciton from maxima with m
mentum P 50 to an off-center minimum on a dispersio
curve. Since the momentum of such a minimum satis
P r}AH, this state can be metastable in strong magn
fields. In this connection, it would be interesting to inves
gate collective properties of roton excitons.

We have also calculated the probability of magnetoex
ton photogeneration in coupled quantum wells and the os
lator strengths of the transition between magnetoexciton
els in coupled quantum wells with absorption~or emission!
of electromagnetic radiation.
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~1967! @Sov. Phys. JETP26, 449 ~1968!#.
33Yu. E. Lozovik and V. N. Nishanov, Fiz. Tverd. Tela~Leningrad! 18,

3267 ~1976! @Sov. Phys. Solid State18, 1905~1976!#.
34Zh. S. Gevorkyan and Yu. E. Lozovik, Fiz. Tverd. Tela~Leningrad! 27,

1800 ~1985! @Sov. Phys. Solid State27, 1079~1985!#.
35R. J. Elliott and R. Loudon, J. Phys. Chem. Solids15, 196 ~1960!.
36H. Hasegawa and R. E. Howard, J. Phys. Chem. Solids21, 179 ~1961!.

Translation provided by the Russian Editorial office.
988Yu. E. Lozovik and A. M. Ruvinski 



Galvanomagnetic properties of Hg 12xMnxTe12ySey semimagnetic semiconductors

rom
V. A. Kul’bachinski , I. A. Churilov, P. D. Mar’yanchuk, and R. A. Lunin

M. V. Lomonosov Moscow State University, 119899 Moscow, Russia
~Submitted 2 April 1997!
Zh. Éksp. Teor. Fiz.112, 1809–1815~November 1997!

The galvanomagnetic properties of single crystals of the semimagnetic semiconductors
Hg12xMnxTe12ySey with 0.01,y,0.1 andx50.05 and 0.14 in the temperature range 4.2–300
K are investigated. The features of the temperature dependence of the Hall coefficientRH

and the complicated behavior ofRH in a magnetic field are attributed quantitatively to the existence
of three groups of current carriers, viz., electrons and two types of holes, for which the
temperature dependences of the densities and mobilities are obtained. A transition fromp-type to
n-type conductivity is observed as the Se content is increased, and the negative
magnetoresistance simultaneously gives way to positive magnetoresistance. ©1997 American
Institute of Physics.@S1063-7761~97!02011-8#
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Semimagnetic semiconductors, or magnetically dil
semiconductors, are solid solutions in which one of the co
ponents is replaced by an atom of a transition elemen
with an uncompensated magnetic moment. Among the c
pounds A12x

II MxB
VI ~AII and BVI are group-II and group-VI

elements, respectively, and M is a metal!, the Hg12xMnxTe
and Hg12xMnxSe semimagnetic semiconductors have b
studied quite thoroughly.1–3 It has been established th
Hg12xMnxTe hasp-type conduction,4 while Hg12xMnxSe
always hasn-type conduction with a high electron density5

The type of conduction is related to the appearance
charged defects in the crystals: in Hg12xMnxTe the acceptor
defects are vacancies in the mercury sublattice, and
Hg12xMnxSe the donors are mercury atoms in interstit
positions and vacancies in the selenium sublattice. It wo
be of interest to investigate Hg12xMnxTe12ySey semimag-
netic semiconductors. It can be theorized that specific c
pensation of the different defects occurs as the concentra
is varied, making it possible to regulate the type and den
of charge carriers in the quaternary compound. The galva
magnetic properties of Hg12xMnxTe12ySey were previously
studied as a function of the Mn content in Refs. 6–8, and
addition, transitions to a spin-glass state were investigate
Refs. 7 and 8.

In the present work the galvanomagnetic properties~in
the temperature range 4.2–300 K! of single crystals of the
solid solutions Hg12xMnxTe12ySey with x50.05 and 0.14

TABLE I. Parameters of the samples of Hg0.86Mn0.14Te12ySey investigated
at 4.2 K.

N y
n, 1014

cm23
me , 104

cm2/V•s
p1 , 1017

cm23
mp1 ,

cm2/V•s
p2 , 1015

cm23
mp2 ,

cm2/V•s

1 0.01 0.3 26.0 2.7 820 9.0 3000
2 0.05 0.003 26.0 0.9 130 0.46 4800
3 0.075 2.5 23.0 7.8 850 25.0 5300
4 0.10 1.1 21.2 42.0 60 0.52 4100

989 JETP 85 (5), November 1997 1063-7761/97/1109
e
-

-

n

f

in
l
ld

-
on
ty
o-

n
in

y50.01 toy50.10.

2. SAMPLES

Single crystals of Hg12xMnxTe12ySey were grown by
the Bridgman method from chemically pure componen
Samples with the characteristic dimensions 0.630.635 mm3

were cut from the ingots by electroerosion for the measu
ments. The manganese content was precisely determine
ing x-ray probe microanalysis and measurements of the
solute value of the magnetic susceptibility at roo
temperature, which gave identical results to within the m
surement error. The Se content in the samples is indica
according to these data. The absence of inclusions of o
phases in the samples and their homogeneity were es
lished as a result of electron probe microanalysis and m
netic measurements. The homogeneity of the samples
also monitored by measuring the Hall coefficientRH at dif-
ferent points along the samples.~The differences between th
values ofRH was less than a few percent, attesting to t
high homogeneity of the samples investigated.!

The electrical measurements were carried out on fres
prepared samples at a constant current by the four-p
probe technique. Samples of Hg12xMnxTe12ySey with
x50.05, 0.14 andy50.01, 0.05, 0.075, 0.10 were invest
gated. Several parameters of the single crystals investig
at T54.2 K are presented in Tables I and II. In the tablesn,
p1 , andp2 are the electron and hole densities, respective

TABLE II. Parameters of the samples of Hg0.95Mn0.05Te12ySey investigated
at 4.2 K.

n, 1014 me , 104 p1 , 1017 mp1 , p2 , 1015 mp2 ,
N y cm23 cm2/V•s cm23 cm2/V•s cm23 cm2/V•s

1 0.01 5.3 21.5 2.8 715 7.2 2000
2 0.10 72.0 20.56 8.2 80 4.8 5700

989-05$10.00 © 1997 American Institute of Physics
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FIG. 1. Dependence of the resistivity o
the reciprocal temperature for samples
Hg12xMnxTe12ySey with different Mn
and Se contents: a—x50.05, 1—
y50.01, 2—y50.10; b—x50.14, 1—
y50.01, 2—y50.05, 3—y50.075,4—
y50.10.
me , mp1 , andmp2 are the electron and hole mobilities, andy
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is the Se concentration in the samples.
It has been reported that the near-surface region h

significant influence on the electric and galvanomagn
properties of semiconductor solid solutions based on m
cury telluride.9 To eliminate this effect, the samples we
etched immediately before the measurements. Special in
tigations showed that holding the etched samples in air
several days does not alter their electrophysical proper
particularly the complicated behavior of the Hall coefficie
in a magnetic field at different temperatures, i.e., the ne
surface region does not influence the results obtained.

3. RESULTS OF MEASUREMENTS OF THE
GALVANOMAGNETIC PROPERTIES AND DISCUSSION

As the temperature is lowered, the resistivity of all t
samples increases, demonstrating activation behavior wit
activation energy of about 30 meV at temperatures ab
.100 K ~Fig. 1!. The samples with the smallest seleniu
content exhibit negative magnetoresistance at tempera
below T530 K, which increases with decreasing tempe
ture. As the selenium content increases, the negative ma
toresistance decreases, and at the Se concentrationy50.10
the magnetoresistance becomes positive even at liq
helium temperatures. As an example, Fig. 2 presents the
pendence r(B) of the resistivity for samples o
Hg0.95Mn0.05Te12ySey with y50.01 ~Fig. 2a! and y50.10
~Fig. 2b!. Figure 3 presents the relative variation of the
a
ic
r-

s-
r
s,

t
r-

an
e

res
-
e-

d-
e-
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five samples investigated. The negative magnetoresistan
large magnetic fields can be attributed to the increase in c
ductivity within an impurity band, which is typical o
Hg12xMnxTe,1–3 due to overlap of the wave functions on th
acceptors in a magnetic field, i.e., the so-called magn
boil-off of holes.10–14 As the Se concentration increases, t
role of conduction within the acceptor impurity band d
creases, and the samples even change their type of con
tion from p to n; therefore, the negative magnetoresistan
gives way to positive magnetoresistance.

3.1. Determination of the mobilities of different groups of
carriers from Hall measurements

The behavior of the Hall coefficientRH at different tem-
peratures as a function of the magnetic field is very com
cated~Fig. 4!. The samples of Hg0.86Mn0.14Te12ySey with a
direct band gap at 4.2 K have a positive Hall coefficie
RH.0 ~see Figs. 4a and 4b!. As the temperature increase
the sign ofRH in weak fields becomes negative. An increa
in the selenium concentration leads to an increase in the e
tron density and to reversal of the sign of the Hall coefficie
in weak magnetic fields. This effect is more pronounced
the gapless samples. As an example, Figs. 4c and 4d pre
plots of the dependence ofRH on the magnetic field at dif-
ferent temperatures for the samples of Hg0.95Mn0.05Te12ySey

with y50.01 ~c! andy50.10 ~d!.
A satisfactory quantitative description of theRH(B)
n
f

FIG. 2. Dependence of the resistivity o
the magnetic field for the samples o
Hg0.95Mn0.05Te12ySey with y50.01 ~a!
and y50.10 ~b! at various temperatures
T, K: a! 1—83, 2—40, 3—16, 4—4.2;
b! 1—88, 2—61, 3—42, 4—21, 5—4.2.
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curves in Fig. 4 can be obtained only if we take into acco
three types of carriers: band electrons and two types of h
with different densities and mobilities, of which some a
intrinsic while others correspond to an acceptor impur
band.7,8 The Hall coefficient depends on the magnetic field
the following manner~the Hall factor for all the groups bein
equal to unity!:

RH~B!5N~A21N2B2!21, ~1!

where we have introduced the notation

FIG. 3. Relative magnetoresistance atT54.2 K in samples of
Hg12xMnxTe12ySey with various compositions:1—x50.05, y50.01, 2—
x50.05, y50.1; 3—x50.14, y50.01; 4—x50.14, y50.075; 5—
x50.14, y50.10.
nt
les
e
ty
in

N5
11me

2B2 1
11mp1

2 B2 1
11mp2

2 B2 , ~2!

A5
enme

11me
2B2 1

ep1mp1

11mp1
2 B2 1

ep2mp2

11mp2
2 B2 . ~3!

In Fig. 4 the lines areRH(B) curves calculated with consid
eration of the three groups of carriers cited. Tables I and
present the electron and hole densities and mobilities at
K obtained from fitting theRH(B) curves. Fitting the experi-
mental RH(B) curves for different temperatures permitte
the determination of the mobilities and densities of the th
groups of carriers, which are presented in Tables I–III. A
the mobilities decrease with increasing temperature. The
ues of the electron mobility are highest, as is typical
Hg12xMnxTe. In addition, the electron density increases
the selenium content in the samples is increased until
type of conduction changes fromp to n ~the samples with
x50.05!. The mobilities increase with decreasing tempe
ture in all three groups, while the carrier densities decrea

3.2. Determination of the mobilities of different groups of
carriers from the positive magnetoresistance

The classical magnetoresistance was also utilized to
the mobilities of the different groups of carriers in th
samples investigated. Beck and Anderson15 proposed a
method which transforms the dependence of the resisti
on the magnetic field into a so-called mobility spectru
n
f

i-
FIG. 4. Dependence of the Hall coefficient o
the magnetic field for samples o
Hg12xMnxTe12ySey with x50.14 and
y50.01~a!, x50.14 andy50.10~b!, x50.05
andy50.01 ~c!, andx50.05 andy50.10 ~d!
at various temperaturesT, K: a! 1—42, 2—
17, 3—8.5, 4—4.2; b! 1—79, 2—53, 3—42,
4—21, 5—4.2; c! 1—81, 2—59, 3—36, 4—
15, 5—4.2; d! 1—95, 2—61, 3—39, 4—20,
5—4.2. Points—experimental data; lines—
results of calculations for three types of carr
ers using Eq.~1! ~see text!.
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TABLE III. Mobilities of the charge carriers in samples of Hg12xMnxTe12ySey determined from mobility spectra~column 1! and from Hall measurements
~column 2! at various temperatures.
me , cm2/V•s mp1 , cm2/V•s mp2 , cm2/V•s

Sample T, K 1 2 1 2 1 2

Hg0.86Mn0.14Te0.90Se0.10 79 25700 26500 70 60 2400 -
Hg0.86Mn0.14Te0.90Se0.10 42 26600 25000 75 50 - 800
Hg0.86Mn0.14Te0.90Se0.10 4.2 210 000 212 000 50 60 3100 4100
Hg0.95Mn0.05Te0.90Se0.10 4.2 24500 25700 60 80 3400 5700
which gives the maximum conductivity as a function of the
it
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mobility. It is assumed in this method that the carrier dens
n is a continuous functionn(m) of the mobilitym, so that the
transverse conductivity tensor elements can be written in
form of integrals, which sum the contributions of each of t
groups of carriers to the conductivity:

sxx~B!5E
2`

` s~m!dm

11~mB!2 ,

sxy~B!5E
2`

` s~m!mBdm

11~mB!2 , ~4!

wheres(m)dm5en(m)dm is the contribution of the carrier
having a mobility fromm to m1dm to the mobility when
B50. It is assumed in these equations that the electrons h
negative mobility and the holes have positive mobility.
there areN types of carriers with discrete densitiesni and
mobilities m i ( i 51,...,N), the mobility spectrum will dis-
play N peaks, whose centers are located atm i and whose
amplitudes equalenim i . The mobility-spectrum method i
applicable, if 1! there is no quantization of the energy spe
trum in the magnetic fields,16 i.e., the magnetic fields ar
weak; 2! the magnetic fields do not significantly bend t
trajectories of carriers in the region where they interact w
scattering centers~vacancies in the mercury sublattice, inte
stitial mercury atoms, vacancies in the selenium sublatt
etc.!.

FIG. 5. Mobility spectrum of Hg0.86Mn0.14Te0.90Se0.10 at 79 K. The three
maxima correspond to three groups of carriers~the mobility is negative for
electrons!.
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range from 0.2 T to 5 T for different samples were trans
formed into mobility spectra. Figure 5 presents the mobil
spectrum of Hg0.86Mn0.14Te0.90Se0.10 at 79 K. This figure
shows that there are three groups of carriers with differ
mobilities: two groups of holes and a group of electrons. T
mobility values obtained from the mobility spectra agr
well with the values calculated from the magnetic-field d
pendences of the Hall coefficient in all the samples. T
electron densities and mobilities determined from t
maxima in the mobility spectrum are presented in Table

4. CONCLUSIONS

Thus, in Hg12xMnxTe12ySey semimagnetic semicon
ductors the transport properties, reversal of the sign of
Hall coefficient as the temperature increases, and its com
cated behavior in a magnetic field are determined by
electrons and two groups of holes. As the selenium conc
tration is increased, the electron density rises, and the typ
conduction changes fromp to n. At 4.2 K the samples of
Hg12xMnxTe12ySey with y,0.1 exhibit negative magne
toresistance, which is attributed to alteration of the over
of the wave functions of the acceptors in a magnetic field a
goes over to positive magnetoresistance at a high Se con
The temperature dependence of the mobilities and dens
as a function of the selenium content has been obtained
the three groups of carriers, viz., electrons and two types
holes.
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Spin diffusion and relaxation in three-dimensional isotropic Heisenberg antiferromagnets
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A theory is proposed for kinetic effects in isotropic Heisenberg antiferromagnets at temperatures
above the Ne´el point. The scaling behavior of the generalized coefficient of spin diffusion
and relaxation constant in the paramagnetic phase is studied in terms of the approximation of
interacting modes. It is shown that the kinetic coefficients in an antiferromagnetic system
are singular in the fluctuation region. The corresponding critical indices for diffusion and relaxation
processes are calculated. The scaling dimensionality of the kinetic coefficients agrees with
the predictions of dynamic similarity theory and a renormalization group analysis. The proposed
theory can be used to study the momentum and frequency dependence of the kinetic
parameters, and to determine the form of the scaling functions. The role of nonlocal correlations
and spin-fluid effects in magnetic systems is discussed. ©1997 American Institute of
Physics.@S1063-7761~97!02111-2#
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Recent heightened interest in the critical dynamics
antiferromagnetic materials1–6 has been stimulated by activ
experimental and theoretical research on quasi-t
dimensional magnetic correlations in high-temperature
perconductors, and on the anomalous magnetic propertie
heavy-fermion compounds.6–8 In particular, critical spin
fluctuations have been invoked to explain the non-Fe
fluid behavior of the specific heat and resistance at low te
peratures in the compounds7,8 CeCu62xAux and
Ce12xLaxRu2Si2 near the concentration critical point. In ad
dition, a proposed9,10 spin-fluid approach to the Heisenbe
model, based on introducing resonating valence bonds
Fermi statistics for excitations in the magnetic sublatt
~spinons!, may, in turn, also serve as a scenario for desc
ing the behavior of cerium compounds with hea
fermions.11,12 Here it turns out that critical spin fluctuation
play an important role in the formation mechanism of a s
fluid. The behavior of the kinetic coefficients in this case c
deviate substantially from that predicted by dynamic simil
ity theory.13

In this paper we develop a microscopic approach
studying the scaling behavior of the spin diffusion coefficie
and the relaxation constant of an isotropic Heisenberg a
ferromagnet in the fluctuation region above the Ne´el tem-
perature. The scaling dimensionality of the kinetic coe
cients in magnets was predicted by Halperin a
Hohenberg,14,15 who developed a hypothesis of scale inva
ance based on the idea that the values of the dynamic cri
indices are conserved on both sides of the phase transi
Maleev then made a microscopic study of spin diffusion
the paramagnetic phase of ferromagnets.16,17 He, in particu-
lar, established the approximations required to satisfy
requirements of the hypothesis of scale invariance, and s
ied the momentum and frequency dependence of the
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magnets will be examined in the present paper.
It is known14 that in the neighborhood of a phase tran

tion, two regions can be distinguished in the momentu
temperature plane: a hydrodynamic region determined
long-wavelength fluctuations in the ordering parame
N5N12N2 , the difference in the moments of the subla
tices, with characteristic wave vectorsqj!1, where
q5uk2Qu describes the deviation of the moment from t
antiferromagnetic vectorQ and j is the correlation length,
and a critical region, with wave vectorsqj@1. Here the
concept of a correlation length is related to the characteri
behavior of the ordering parameterN. In an antiferromagnet
however, there is an additional conserved quantity, the v
tor M5M11M2 , the sum of the moments of the sublattice
Nevertheless, we shall also refer to the long-wavelength fl
tuation region for the vectorM , kj!1, as hydrodynamic. In
this paper we examine the behavior of the spin correlat
functions in the paramagnetic phase and establish the
tionship between the kinetic coefficients in the fluctuati
region of the phase diagram.

In the hydrodynamic regime, the dynamics of the flu
tuations in the magnetization have a diffusive character,
the variation in the magnetic moment with time obeys t
macroscopic van Hove diffusion equation:

]M

]t
5D0¹2M , ~1!

whereD0 is the spin diffusion coefficient. This behavior o
the fluctuations is related to the conservation of the magn
moment; the operator corresponding to it commutes with
Hamiltonian.

A different pattern is observed in the critical region. Th
nonconservation of the ordering parameter determines

994-07$10.00 © 1997 American Institute of Physics
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the dynamics of this vector obey the relaxation equation

]N

]t
52

G0

x
N, ~2!

where x is the susceptibility and the kinetic coefficie
G0.0. We note also that, in contrast to the diffusion equ
tion ~1!, relaxation~2! can be uniform; the gradient correc
tions omitted from Eq.~2! are proportional toq2 in this case.
Although the average value of the magnetization vectorM is
zero on both sides of the phase transition point, fluctuati
occur in the magnetization vector near the zero value. Un
in a ferromagnet, however, the diffusion mode is not critic

In the following we shall be interested in the dynam
susceptibility of a cubic Heisenberg antiferromagnet loca
in zero magnetic field above the Ne´el temperature:

H52(
^ i , j &

Vi j Si•Sj . ~3!

We also neglect dipole forces.17

The susceptibility is known to be related to the retard
spin Green function by the equation

l~k,v!5~gm0!2KSS
R ~k,v!, ~4!

whereg is the Lande´ g factor,m0 is the Bohr magneton, an

KSS
R ~k,v!5 i E

0

`

dt eivt^@Sk
z~ t !,S2k

z ~0!#&,

Sk5
1

AN
(

i
e2 ik–RiSi ,

M5^S0&, N5^SQAFM
‹. ~5!

Proceeding from Eqs.~1! and~2!, we can obtain the form o
the correlation functionsKR in the diffusion

KSS
R ~k→0,v!5K ~k,v!5G0~k!

iDk2

v1 iDk2 ~6!

and relaxation regions

KSS
R ~q5~k2Q!→0,v!5L~q,v!5

1

2 iv/G1G0
21~q!

.

~7!

HereG0 is the static susceptibility.
In the fluctuation regiont5uT2Tcu/Tc!Gi ~Gi is the

Ginzburg number, which characterizes the limits of appli
bility of the Landau theory!, when the fluctuations becom
large, the fluctuation dynamics obey the Halperi
Hohenberg similarity law, according to which the dynam
susceptibilityx and, therefore, the functionKSS

R can be ex-
pressed in terms of the scaling functionF:

KSS
R ~k,v!5G0~k!FS kj,

v

Tct
nzD , ~8!

i.e., the dynamic indexz which characterizes the energ
scale of the critical fluctuations,v}kz, can be related to a
static indexn'2/3 which determines the variation in th
correlation length,j}t2n. For small deviations from the an
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G0(q)}j . In the following discussion the Fisher inde
h, which characterizes the so-called anomalo
dimensionality,18 will be set equal to zero. This approxima
tion is valid for three-dimensional systems.18 It is necessary
to introduce two scaling functionsF 1 andF 2 to describe the
fluctuation regions in an antiferromagnet:

K ~k,v!5G0~k!F 1S kj,
v

Tct
nzD ,

L~q,v!5G0~q!F 2S qj,
v

Tct
nzD . ~9!

Here, however, the kinetic coefficientsD0 and G0 can, in
turn, themselves be correlation lengths. Furthermore, a
renormalization group analysis shows,14,19 the kinetic coeffi-
cients are singular in the fluctuation region of an antifer
magnet.

The theory developed in this paper is a variant of t
interacting mode theory of Kawasaki.20 We have tried to
generalize the theory proposed by Maleev16 for spin diffu-
sion in ferromagnets to antiferromagnetic systems. In m
regards, we follow the style and spirit of that paper. As no
before, our problem involves a study of the form of the sc
ing functionF ~see Eqs.~8! and~9!! and a determination o
the frequency and momentum dependences of the kin
coefficients in the fluctuation region, as well as establish
those approximations which must be made in a microsco
approach in order to satisfy the requirements of scaling
variance.

2. GENERALIZED KINETIC COEFFICIENTS

We therefore study the dynamic susceptibility of a cub
Heisenberg antiferromagnet located in zero magnetic fi
above the Ne´el temperature in the fluctuation region. Equ
tions ~6! and ~7! can be rewritten in the more general form

KSS
R ~k,v!5

ig~k,v!

v1 iG0
21~k!g~k,v!

, ~10!

while in the diffusion region

D05 lim
k→0

lim
v→0

k22g~k,v!G0
21~k!, ~11!

and in the relaxation region the generalized kinetic coe
cient g(k,v)5G(k,v). The limit of Eqs. ~6! and ~7! for
k→0 and v→0 depends strongly on the relationship b
tweenk andv, similarly to the way it does in the theory o
Fermi fluids.21 In the following we shall be interested in th
quasistatic limit, i.e.k→0 anduvu/k2→0.

As Maleev shows,16 it is possible to go beyond the linea
response theory and express the kinetic coefficients in te
of the Kubo function22 of the operatorsS and Ṡ ~the dot
denotes differentiation with respect to time!:

g~k,v!5
F ṠṠ~k,v!

11G0
21~k!F ṠS~k,v!

, ~12!

where
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AB iv AB AB

KAB
R ~k,v!5 i E

0

`

dt eivt^@Ak~ t !,B2k~0!#&.

Equation ~12! is exact and accounts for the nonline
nature of the relaxation forces. In the case of a purely
change interaction in the long wavelength limitṠk;k, i.e.,
g5FSS(k,v), the denominator equals unity and Eq.~11! is
the same as the result from the linear response theory. G
erally speaking, however, the functions in the denomina
cannot be neglected in a study of the frequency and mom
tum dependence of the kinetic coefficients.

It is easy to show that the retarded Green functio
KSS

R (k,v), KṠS
R (k,v), andKṠṠ

R (k,v) are related in the para
magnetic phase by simple formulas which follow from t
dispersion relations:23

KSS
R ~k,v!52 ivKSS

R ~k,v!,

KSṠ
R

~k,v!52KSS
R ~k,v!5 ivKSS

R ~k,v!,

v2KSS
R ~k,v!5@KṠṠ

R
~k,v!2KṠṠ

R
~k,0!#. ~13!

It is clear from these relations, in particular, thatKṠS
R (k,v) is

analogous toKṠṠ
R (k,v) in its properties and symmetry.16

Combining Eqs.~11! and ~13! with the equation of mo-
tion for the spin operators,

Ṡk
a52

1

AN
(

p
@V~p1k!2V~p!#eabgSp1k

b S2p
g ~14!

~hereV(p) is the Fourier transform of the exchange integr!
and transforming to ‘‘imaginary’’ time, we can obtain th
relation between the Kubo functions and the correlators
the spin currents at the Matsubara frequencies:

KṠṠ~k,vn!5
~a2Tca!2

6N E
0

1/T

dteivnt (
p1,p2

~¹V~p1!k!

3~¹V~p2!k!

3^Tt~Sp11k
m S2p1

r !t~S2p22k
m Sp2

r !0&. ~15!

In retaining only the first gradients of the potentia
¹V(p)'pTca

2a, we limit ourselves to the lowest orde
terms in an expansion inka, wherea is the lattice constant
the constanta'1. It will be clear from the following analy-
sis that the corrections to the kinetic coefficients will be e
pressed in the form of series in powers ofkj and, since
j@a, it is valid to neglect the higher derivatives of the e
change integral. Therefore, the problem of finding the kine
coefficients has been reduced to calculating four-spin c
elators with a current vertex. This problem can be solved
analytic continuation of the temperature diagrams with
upper semiaxis into the complexv plane. A graphical ex-
pression for the current correlator is shown in Fig. 1.

The ‘‘seed’’ poles for the spin Green functions~6! and
~7! lie on the imaginary axis, i.e., if we set up some fictitio
quasiparticles to correspond to these poles, their ener
will be purely imaginary. Introducing quasiparticles of th
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sort, e.g., ‘‘diffusons’’ and ‘‘relaxons’’, allows us to obtain
closed expressions for the kinetic coefficients and to de
mine their scaling dimensionality.

For the static susceptibility in the critical region we u
the Ornstein–Zernike law:

G0~q!5KSS
R ~q,0!5

A

Tct
2n

1

~qj!211
, ~16!

where A is a constant (A;1) and t!1. In the diffusion
region the static susceptibility has no singularities a
G0'A/2Tc .

The following sections are devoted to analyzing the d
gram series for the spin current correlator in the fluctuat
regions, finding the dynamic critical indices for the kinet
coefficients, and determining the momentum and freque
dependence of the spin diffusion coefficient and relaxat
constant.

3. RELATIONSHIPS AMONG THE KINETIC COEFFICIENTS

To analyze the diagram series we introduce the conc
of an irreducible self-energy part as a diagram which is c
tinuous along one interaction line. Using the definition ofg
and the properties of the functionsK, we rewrite the expres-
sion for the generalized kinetic coefficient in terms of irr
ducible self-energy parts:

g~k,v!5
1

iv FS ṠS
R

~k,v!2S ṠṠ
R

~k,0!

1
RṠS

R
~k,v!g~k,v!RSṠ

R
~k,v!

2 iv1G0
21~k!g~k,v!

G
3F11G0

21
RṠS

R
~k,v!g~k,v!

iv~2 iv1G0
21~k!g~k,v!!

G21

.

~17!

Equation~17! can also be obtained by analyzing the diagra
series for the spin current correlator,16 as well as directly
from the Larkin equation.12,23 In the following we use the
following notation:

KṠS
R

~k,v!5RR~k,v!KSS
R ~k,v!;

andSAB
R for the irreducible self-energy parts. The graphic

expression for the irreducible partS ṠṠ
R corresponds to replac

ing a complete vertex in Fig. 1 by an irreducible verte
EstimatingR in self-consistent field theory16,24 yields

R;~kj!~ka!!~kj!2. ~18!

In addition, its analytic properties imply thatRR;v. We
assume that the expression forR in the critical region also
contains a term of ordera/j in smallness, and for smallv we
neglect this contribution. Thus, the generalized kinetic co

FIG. 1. Diagram series for the current correlator.
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g~k,v!5
1

iv
~S ṠṠ

R
~k,v!2S ṠṠ

R
~k,0!!. ~19!

We now consider diagrams of a general form for t
irreducible self-energy partSSS at imaginary frequencies
These diagrams, in turn, can be classified in terms of
number of intermediate states. To begin with, we limit o
selves to diagrams with two-frequency intermediate sta
~Fig. 2a and b!:

S ṠṠ
~2!

~k,iv!5
~Tca

2a!2

AN

3T(
e

(
p

~kL~2!~p,k,iv,i e,i ~v2e!!!

3~kL~2!†
~p,k,i e,i ~v2e!,iv!!

3KSS~p,i e!KSS~k2p,iv2 i e!. ~20!

In replacing the sum over the vectorsp by an integral, we
usep;j21 as an upper bound. Here the functions are in
grated near the singularities~small p and p;q1Q in the
neighborhood of the antiferromagnetic vectorQ!.

The vertex partsL are analytic functions of all three
frequencies, each of which has cuts along the real ax25

Vertex parts of this type have no other singularities in
complex v planes.25 Because of this property, the vertice
can be resolved into a static part, which transforms into
vector vertex of static similarity theory, and a dynamic co
rection, which vanishes in the limitv→0. We now study the
static part in more detail.

The static vertices in the diagrams~Fig. 2a! describe the
long-wavelength processes of creating ‘‘diffuson’
‘‘diffuson’’ and ‘‘relaxon’’–‘‘relaxon’’ pairs, i.e., identical
modes interact. As we know, however, the static Green fu
tions are independent of the direction of the momentum,
diffuson and relaxon scattering processes contain the s
vertex parts as do pair creation processes. This means
for these vertices, the Ward identity18,21 holds ~Fig. 3!:

L~2!~p,k,0!;]G0
21/]p. ~21!

FIG. 2. Diagrams for the kinetic coefficients when two-particle intermed
states are included. A wavy line corresponds to the diffusion mode, a da
line, to the relaxation mode. A dot denotes the vertex part of the s
similarity theory.
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Here, in the second term the region of integration with
spect to the momenta is concentrated near the pointsp'Q.
The contribution of critical fluctuations to spin diffusion ca
be calculated by making the substitutionp5q1Q and using
the property]G0

21/]p5]G0
21/]q.

We now consider the diagram of Fig. 2b. Without loss
generality we can set the external momentum equal to
antiferromagnetic vector. In this case, we must consider
interacting modes of different kinds: a diffusion mode wi
short wave vectors and a relaxation mode with small dev
tions from the antiferromagnetism vector. Thus, the diagr
of Fig. 2b describes ‘‘diffuson’’–‘‘relaxon’’ pair production
Thus, we cannot use the Ward identities for this vert
However, the seed vertex~Fig. 3! has the scaling dimension
ality

L0
~2!~p,Q,0!;]V/]p;p.

It is also known that in the antiferromagnetic phase th
is a doubling of the lattice, and the Brillouin zone of th
ordered phase equals half the Brillouin zone of the dis
dered phase. This means that the points 0 andQ become
equivalent in the antiferromagnetic phase. Given this fact
well as the lack of a dependence on the direction of
momentum for the interacting modes, we may assume
rescattering by the static field does not change the sca
dimensionality of the static vertex at the antiferromagne
vector, which can also be written in the form~21!.1!

Continuing the diagrams shown in Fig. 2 analytically21

we obtain expressions for the kinetic coefficients:

D0
~2!5ÃTcE

2`

` d«

2p
cothS «

2TD(
p

~¹G0
21~p!!2

3F Im H~p,«!
]

]«
Im H~p2k,«!

1Im L~p,«!
]

]«
Im L~p2k,«!G , ~22!

and

G0
~2!5B̃E

2`

` d«

2p
cothS «

2TD(
p

~¹G0
21~p!Q!2

3F Im K ~p,«!
]

]«
Im L~p2q,«!

1Im L~p,«!
]

]«
Im H~p2q,«!G . ~23!

Here the index~2! indicates that only processes with two
particle intermediate states have been taken into account
a ferromagnet it is necessary to restrict ourselves to just

e
ed
ic

FIG. 3. The equations for a two-particle vertex part.
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Equations~22! and~23! can be rewritten in a somewhat di
ferent form. Settingk50 and q50 in the integrands and
integrating by parts, we obtain

D0
~2!5

Ã

4 E
2`

` d«

2p
sinh22S «

2TD(
p

~¹G0
21~p!!2

3@~ Im K ~p,«!!21~ Im L~p,«!!2# ~24!

and

G0
~2!5

B̃

2Tc
E

2`

` d«

2p
sinh22S «

2TD(
p

~¹G0
21~p!Q!2

3Im K ~p,«!Im L~p,«!. ~25!

These expressions can be regarded as a generalizati
the equations obtained by Maleev16 from the unitarity condi-
tion for the self-energy parts to the case of two interact
modes.

The region for integrating by parts is concentrated n
the singular points of the scaling functions~9!. Here because
of the ‘‘critical retardation’’ in the neighborhood of th
phase transition points, the characteristic energies of the
tuations satisfy the conditionv* !Tc , which makes it pos-
sible to retain only the first term of the expansion of t
hyperbolic tangent~Eqs. ~22! and ~23!! or hyperbolic sine
~Eqs.~24! and~25!!. Evaluating the integrals with respect
the frequencies and momenta in Eqs.~22! and~24! and sepa-
rating out the scaling dimensionality, we obtain a relatio
ship between the spin diffusion coefficient and the relaxat
constant:

D05b1Tc
2a4S j

aD 23 1

D0
1b2Tca

2S j

aD 1

G0
. ~26!

Note that in order to obtain Eq.~26!, it suffices to substitute
the retarded Green spin functions in the form of Eqs.~6! and
~7! into Eqs.~22! and ~24!. After integrating with respect to
the frequency, the remaining integrals over the mome
contain only the static correlatorG0 . The first term is deter-
mined by a two-diffuson intermediate state, and the sec
by a two-relaxon intermediate state.

The integrals in Eqs.~23! and ~25! can be calculated in
similar fashion. The relaxation constantG0 and the spin dif-
fusion coefficient are related by the equation

G05c1S j

aD 1

G0
1c2S j

aD D0 /Tca
2

G0
2 . ~27!

The coefficientsb1,2, c1,2;1 in Eqs.~26! and ~27! de-
pend on the form of the dynamic and static scaling functio
and in general cannot be calculated using this appro
Solving the closed system of algebraic equations~26! and
~27! yields the following scaling dimensionality for the k
netic coefficients:2!

D0 /Tca
2}G0}~j/a!21/2. ~28!

This sort of behavior is entirely consistent with that predic
by the dynamic scaling invariance hypothesis14,15 and a
renormalization group analysis.15,19 Therefore, first, the ki-
netic coefficients for an antiferromagnet are singular in
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termined by intermediate relaxation processes. The cor
tion to the coefficientD0 owing to self-diffusion is of small-
nessdD0 /D0}(j/a)24}t8/3!1. That is, diffusion is not
intrinsically a critical mode in an antiferromagnet. The d
namic critical index~see Eq.~8!! is z53/2.

The simple physical considerations which will allow u
to describe diffusion and relaxation in the fluctuation regi
are based on the idea that regions of sizej with near ordering
will develop asT→Tc . In these regions the excitations a
antiferromagnetic magnons with an acoustic dispersion c
acter. Estimating the spin diffusion coefficient a
D0;j2/tdiff , where tdiff;j/c is the characteristic diffusion
time and c;j21/2 is the ‘‘sound’’ speed,14 we obtain
D0;j1/2. Given the dynamic similarity hypothesis, accor
ing to which the dynamic critical indexz, which determines
the scale of the characteristic fluctuation energies, is inv
ant, we obtainG0;j1/2.

Despite the singularity of the kinetic coefficients, th
relaxation time for the ordering parameter approaches in
ity, which ensures the existence of macroscopic states co
sponding to incomplete equilibrium.27 The same applies to
the characteristic spin diffusion times.

It should be noted that in introducing Eq.~26! we do not
formally assume knowledge of the character of the exc
tions in the ordered phase. However, the conservation of
total moment and nonconservation of the ordering param
actually determine the magnetic ordering properties in fu

4. FREQUENCY AND MOMENTUM DEPENDENCE OF THE
KINETIC COEFFICIENTS

We shall now consider the generalized kinetic coe
cients as functions of frequency and momentum. To do
we use the relationship between the retarded spin Gr
functions and the Kubo functions~see Eqs.~12! and ~17!!.
Based on these equations, it is clear that the corrections
sociated with the frequency and momentum dependenc
the kinetic coefficients are determined, first of all, by t
frequency and momentum dependence of the irreduc
self-energy parts, and second, by the nonlinear characte
the relaxation forces. According to the estimate of Eq.~18!,
the momentum and frequency dependence of the kinetic
efficients can be studied in terms of the linear respo
theory, i.e., the nonlinearity of the relaxation forces can
neglected.

Let us first investigate the static renormalization of t
kinetic coefficients. Equations~22! and~23! transform to the
usual series expansion of the functions in the powers (kj)2n

and (qj)2n from the static theory:

D ~2!~k,0!5D0~0,0!@11a8~kj!21...#,

G~2!~q,0!5G0~0,0!@11b8~qj!21...#.

This expansion is related to the existence of singularities
the correlators of the static theory at the pointski52n2j22

~Ref. 26!, wheren is an integer. The coefficientsa8 andb8
depend only on the form of the static correlation function
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the kinetic coefficients. Using Eq.~19!, we obtain the follow-
ing expressions for the real and imaginary parts ofg(k,v):

Re g~k,v!5
Im S ṠṠ

R
~k,v!

v
,

Im g~k,v!52
Re S ṠṠ

R
~k,v!2Re S ṠṠ

R
~k,0!

v
. ~29!

Since Img is an odd function ofv and Reg is an even
function of v, the regular expansion of the kinetic coef
cients in powers of the frequency begins withv2.

We introduce an effective generalized kinetic coefficie
g* according to the definition

g* 5

]

]v
Im S ṠṠ

R
~k,v!uv50

11G0
21~k!

]

]v
Re S ṠṠ

R
~k,v!uv50

. ~30!

This expression for the effective generalized kinetic coe
cient is analogous to the definition of effective mass in
theory of quantum liquids. The role of theZ factor is played
by the renormalization constant on the mass shell:

Z5
1

11G0
21~k!

]

]v
Re S ṠṠ

R
~k,v!uv50

.

Calculations ofZ in the hydrodynamic and critical region
yield the following expressions for the renormalization co
stant:

Z~k→0!5
1

11e8~kj!2 ,

Z~q→0!5
1

11d81d9~qj!2 , ~31!

where the constantse8, d8!1 can also be expressed in term
of integrals of the static correlatorG0 .

Extending the definition~30! to small but nonzerov, we
obtain an expansion for the real generalized spin diffus
coefficientD* and the relaxation constantG* :3!

D ~2!* ~k,v!5D0~0,0!@11a8~kj!21akj9 ~v/v* !21...#,

G~2!* ~q,v!5G0~0,0!@b1b8~qj!21bkj9 ~v/v* !21...#.
~32!

Here it must be noted that we do not claim to describe
behavior of the kinetic coefficients in the regionv;v* ,
k,q;j21. This range of frequencies and energies c
scarcely be subject to detailed analysis at the present t
We therefore neglect the irregular corrections to the kine
coefficients resulting from the generation in the higher ord
of perturbation theory of an infinite sequence of poles in
retarded spin Green function, which contract to the real a
and cover the pole that produced them. We shall also
discuss the phenomena associated with the loss of a
through a cut, etc.16,17 All these corrections are small in th
region ofk andv of interest to us and can be discarded.
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particle (m.2) intermediate states. As noted above, we
only interested in the regular contribution:

Im S ṠṠ
R~m!

v
;~ka!2(

p1

...(
pm

L~m!~k,p1 ,...,pm!

3L~m!†~k,p1 ,...,pm!d~p11...pm2k!
1

pm21

3E
2`

`

...E
2`

` d«1 ...d«m Im KSS
R ~p1 ,«1!...Im KSS

R ~pm ,«m!

«1 ...«m

3d~«11...1«m2v!, ~33!

where the functionsK describe both the ‘‘diffusons’’ and the
‘‘relaxons,’’ and the integrals with respect to frequency a
taken near the singular points of the scaling function. F
m52, Eq. ~33! transforms into Eqs.~24! and ~25!.

As k→0, there are generalizations of Ward’s identity16

for the vertex partsL (m) analogous to Eq.~21!, as a result of
which the vertex can be expressed in terms of a sum
derivatives of the ordinarym-particle vertices of the static
similarity theory. Using the ‘‘dimensionality’’ estimate fo
static vertices,26 according to whichGm}p32m/2, in the limit
k→0 we see that replacing the diagrams with two-parti
intermediate states in the creation channel for ‘‘diffuson
and ‘‘relaxons’’ by diagrams withm-particle intermediate
states does not change the scaling dimensionality of the
ducible self-energy parts. As for the behavior of the ver
parts at the antiferromagnetic vector, here the arguments
vanced for diagrams with two-particle intermediate states
also valid. Thus, considering intermediate states with m
than two particles does not change the scaling dimension
of the kinetic coefficients, but only affects the values of t
constants, which in any event cannot be calculated using
approach described here. The same can be said of the
rections associated with the energy dependence of the ve
parts.16

In conclusion, we note that the corrections associa
with the frequency and momentum dependence of the kin
coefficients can be investigated experimentally using neu
scattering, for which the scattering cross section is de
mined by the quantity ImKSS

R (k,v)/v, where the imaginary
part of the retarded spin Green function satisfies Eqs.~6! and
~7! with the coefficients~32!.

5. CONCLUSION

In this paper we have studied the scaling behavior of
generalized kinetic coefficients in a three-dimensio
Heisenberg antiferromagnet. By means of an analysis ba
on a modified version of the interacting mode theory,
have found approximations in a microscopic approach
satisfying the requirements of the scaling invariance hypo
esis. Specifically, it has been shown that in order to de
mine the scaling dimensionality of the kinetic coefficients,
sufficient to limit ourselves to processes with two-partic
intermediate states, with the vertex parts being given
static similarity theory.
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the spin diffusion coefficient and relaxation constant ha
been determined in a pole approximation. We have in
duced the concept of effective kinetic coefficients, analog
to the definition of effective mass in the theory of quantu
liquids. Including the renormalizations associated with m
tiple scattering of ‘‘diffusons’’ and ‘‘relaxons’’ has made
possible to write explicit series expressions for the sca
function in the frequency and momentum rangev!v* and
k,q!j21.

The static and dynamic similarity laws, as well as t
assumed existence of just two modes~two singularities at
low frequencies owing to the existence of the hydrodynam
and critical regimes!, underlie the results obtained in th
paper. The existence of diffusion and relaxation in an a
ferromagnetic system is, in turn, related to the existence
conserved quantity in the Heisenberg model and to the n
conservation of the ordering parameter in this model. Th
all the formulas depend only to a small extent on the spec
features of Heisenberg antiferromagnets and will be valid
any system with a nonconserved ordering parameter whe
additional integral of the motion exists.

In more complicated physical systems, such as he
Fermion compounds with integral filling of thef -shell ~com-
pounds based on Ce are an example of such materials! in the
Kondo lattice model, for which the Heisenberg spin intera
tion is mediated by indirect exchange via conduction el
trons, there may be a substantial deviation from the sca
behavior of Heisenberg magnets owing to the existence
additional modes that interact with paramagnons. Mode
this sort can develop, for example, as a result of spin-liq
correlations, which inhibit growth of the magnetic correl
tion length. In other words, a test for the existence of sp
liquid correlations may be to measure the generalized kin
coefficients by neutron scattering. Other objects to which
methods described in this paper may be applied include
tems with nearly zero or even negative temperatures of a
ferromagnetic ordering,6,28,29anisotropic ferri-, and antiferri-
magnets, and systems with dipole interactions.

The study of the kinetic coefficients near the Ne´el tem-
perature carried out in this paper shows that diagram te
niques for describing kinetic effects in antiferromagnets h
many advantages over existing methods14,15,20 and can be
used to analyze unrenormalizable Hamiltonians, as wel
for problems with nonlocal interacting modes.

In conclusion, we thank D. N. Aristov, Yu. M. Kagan
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comments, constructive criticism, and interest in this wo
We would like especially to thank S. V. Maleev for discu
sions which stimulated the writing of this article. This wo
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002!, and the Russian Fund for Fundamental Resea
~Project 95-02-04250a!.

1!Recall that the anomalous dimensionality index~Fisher index! is assumed
equal to zero.

2!In a ferromagnet, the spin diffusion coefficient is not a singular functi
D0 /Tca

2}(j/a)21/2.
3!v* ;Tct

nz is the characteristic energy of the fluctuations, withz53/2.
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