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A formulation of the Cauchy problem for the Klein—Gordon equation in a space—time with a
wormhole is studied. It is shown that if closed time-like curves pass through the Cauchy
surface, then a global solution exists in the high-frequeaesasiclassicallimit only if the initial
data satisfy nonlocal consistency conditions. In the simplest case these conditions determine
a discrete spectrum of frequencigmergies of a quasiclassical scalar pariicle 1998 American
Institute of Physics.S1063-776(98)00101-3

1. INTRODUCTION tains the formulation of the problem and Sec. 3 contains
information on the Maslov method.

The behavior of classical and quantum fields against a
background of solutions containing closed time-like curves
of the Einstein equations has been investigated in a numbé&t
of works"? in connection with the possibility of the existence ~ We are studying the Cauchy problem for a scalar fild
of space—time with a time machine, as proposed in Refs. 5
3-5, as well as with the problem of the self-consistency of ( m )(D(x)=0 1)

FORMULATION OF THE PROBLEM

. . . - Y9 ,0,— —
physical laws in such a space—tifheThe global solutions 9" 0w h2

of the dynamical equations must satisfy the “self- hereZ is Planck ¢ h its of
consistency principle,” which eliminates paradoxes associV€ren IS Fanck's consta '(t“e. CNOOSE UNits of measure-
ent such that the speed of light satisfies1). We are

ated with the breakdown of causality in a space—time Withn: dving th h losed time-lik th h
closed time-like curves. studying the case when closed time-like curves pass throug

_ . . . _ . 4
The nontrivial topology of space—time as well as theathree dimensional Cauchy surfat@ in a space—timé/4.

existence of closed time-like curves passing through the. L?t us consider asgmodel .spacg—’tlme cqntammg closed
$|me-l|ke curves a solution of Einstein’s equations that con-

Cauchy surface impose constraints on the initial data for_. . 1
solving the Cauchy problem for the Klein—Gordon equation.tf']lInS a wormholé.We choose on the cylindét’x s' a met-

This is because any solution determined in a neighborhooaC of the wormhole typ (Fig. 1), for example,
of the Cauchy surface can be continued to a global solution ds?=—dt?+dI?+ (b3+12)(d6?+sir? 6d¢?). 2
in all space—time. B . .

The situation can be analyzed completely for a definiterNee?cr)lg b‘\)thlEd I tﬁe bgotgﬁjriiaiéft)gzonasémp? t')c allgngat
class of solutions of the Klein—Gordon equation, specifically 9 T

for high-frequency solutions. In this case there exists a tec (X_,¥,Z_,T) where the metric is virtually identical to

nique, developed by Maslogsee, for example, Ref.)8for tir:e Minkowskj metric. We prescribe the gluing functions for
constructing solutions in the large that makes it possible tCE c coordinate map§ XY Ze ) and
. . : X_,Y_,Z_,T_) as follows:

construct global solutions over geometric objedtagrang-
ian submanifoldsgiven in the phase space of a Hamiltonian T,=T_+6T, X, =X_, Y,=Y_,
dynamical system which is naturally associated with a partial
differential equation. Zy=2_+oL. &)

We take as a model space—time the solution of Ein-Closed time-like curves start at some poity(Yq,Zq,Ty),
stein’s equations with a wormhofeAsymptotically flat re-  enter one mouth of the wormhole at tirffeand leave the
gions are sewn together so that the wormhole serves asather mouth at timé&l — AT, preceding the momerit,, and
“perpetual” time machine. An identical space—time was then connect up with the poiniXg,Yy,Zy,To) of the time-
used in Ref. 9 to analyze the behavior of a scalar field. like curve directed into the future. The metii@) is almost

Global high-frequency solutions of the Klein—Gordon flat everywhere except near the mouths of the wormhole. If
equation that are constructed by the Maslov method satisfthe distance between the mouths is much larger than the
nonlocal conditions on the Cauchy surface expressing theharacteristic length of the handle, for metric (2)], then
correlation of the phases of the solution at different points orthe following model can be used as a first approximation.
the surface. In the case when the solution is concentrateBwo hollow cylindersC, andC, of the formR*x B2 (B® is
near a closed trajectory of a classical Hamiltonian systena three-dimensional spherésee Fig. 23 whose axes are
(the situation corresponding in the present case to the causalso world lines of the centers of the moutks=0, Y=0,
paradoy, the solution can have only a discrete set of fre-Z=0 andX=0, Y=0, andZ= §Z, are cut out of Minkowski
guencies. This result is presented in Sec. 4. Section 2 corspace—time. Then the edges of the cuts are glued together so
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FIG. 1.

that the spheré&s®={(X,Y,Z,T)eC,, T=Ty} is glued to
the spheres®={(X,Y,Z,T)eC,, T=Ty+ 6T}

We choose the Cauchy surface in such a space—time
follows. Let us consider a space-like sectidsT,. There
exist time-like curves that do not cross this surface. The
enter the mouth of the wormhole at tinffle< T, and exit at
time T>T, (as, for example, the curve does in Fig. 2a
Augmenting the surfac® =T, with part of the cylindelC;:
(X,Y,Z,T)eCy:To— ST<T<T,, we obtain the surfacd?
through which anycompletg time-like curve passes at least

once. We choos&? as the Cauchy surface. Such a Cauchy

surface was studied in Ref. 1 .

3. THE MASLOV METHOD OF CONSTRUCTING HIGH-
FREQUENCY SOLUTIONS

The Maslov methdimakes it possible to construct high-
frequency solutions of Eg(1) on the manifoldM* in the
whole based on analysis of the geometry of a classical
Hamiltonian system corresponding to a partial differential
equation. We present below the required information about
this method.

The phase space of the Hamiltonian system correspond-
ing to Eq.(1) is a cotangent bundi€* M to the space—time
manifold M* with the standard simplectic forl=dp,
Adx*. The Hamiltonian has the form

H=g""(X)P,P, - ®

%Substituting a function of the forr®®) into Eq. (1) gives the

Hamilton—Jacobi equation to zeroth orderfin

H(x,dS/9x) = —mZ.

Yy

The functionS(x) prescribes in the phase spaceM a four-
dimensional surface according to the equation
A*={(x, p(x)=aS/9x)}. This surface possesses the prop-
erty that the simplectic fornf) vanishes when restricted to
the surface>*. The four-dimensional surfaces on whi€h

3.3, the Cauchy data for a scalar field cannot be chosen a -agrangian. The Lagrangian surfadé determining the so-
bitr’arily We shall analyze this effect for the example of ution of the Hamilton—Jacobi equation can be constructed as
high-frequency solutions of the Klein—Gordon equation. follows. It is necessary to prescribe the initial valuessf)

0 3 H H
It is natural to study the high-frequency asymptotic be—and d5/ox” for xeX”. This determines the surface

3_ . 3 — H
havior of the solutions of the Klein—Gordon equation as aA ={(x,p): xeX* p=dS(x)/ax}. Next, extending from

. 3 . . . .
guasiclassical approximation of the quantum mechanics of Iabe p& Ints OI;A t;a_qector}es ?f thf :;T'Itoman Systﬁf)
scalar relativistic particle. Indeed, E@.) can be interpreted we obtain g four-dimensional surface’. in Some neighobor-

. ey 3 4 .
as an equation for the wavefunctigh(x) of a scalar par- hood of the initial surfac& ® the surface\“ can be uniquely

H 4 _ H 4__ —
ticle. The solution is chosen in the form of a rapidly oscil- projected ontoR*={x}, i.e., A"={(x, p(x)=dS/ax} for

: . - . some functionS(x). However, A* does not necessarily
lating phase term multiplied by a slowly oscillating ampli- . ) ’ .
gp P y y g P project everywhere uniquely oR*={x}. Points where a

Since closed time-like curves pass through the Surfac?anishes in an eight-dimensional phase space are said to be

tude X - . o
unigue projection breaks down form a cycle of singularities
_ o of the projection of the manifold\4, and their projections
D)= exr{|8(x)} DER (4) onto R4={x} are caustics of the trajectories of the dynamical
=) system with Hamiltonian5). Thus, generally speaking, the

solution of the Klein—Gordon equation cannot be chosen ev-
wherezi—0 is a small parameter. erywhere in the forng4) (just as the quasiclassical expansion
The metric(2) is stationary. Therefore the solution can is valid far from turning points Nonetheless, the solution
be expanded in modes with constant frequetbeye'“'W. In  can be continued beyond the caustic by constructing the
studying the high-frequency asymptotic behavior, we shalMaslov operator. The solution beyond the points of the caus-
confine ourselves to the modes for whieh- as#—0. tic is determined by the same Lagrangian submanifofd

T = P
t+5l'—’— 7£/ﬁ M
wll/ I = 2 AN
2 / 714 ,gol FIG. 2
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To construct the solution as a whole the global structure of XY

the submanifoldA is important; this structure can be quite I~ VXD
complicated. For example, closed curves that cannot be con- P,
tracted into a point while remaining on the given Lagrangian [g — 13

manifold (nontrivial cycle$ can exist on this submanifold.
To first order in there arises for the functioff 4(x) an
equation called the transfer equation. In the region where —
projects uniquely ont®*={x}, the function¥y(x) can be L=
regarded as a function on the submanifalfl Let

FIG. 3.
~ ay
Vo(y)= \gwx(m,

wherey are coordinates on the Lagrangian submanifefd

The transfer equation has the fo¥,/d7=0, the condi- manifold A*. Next, it is necessary to check that the quanti-
tion that the function®, is constant along the trajectory of Zation conditions(6) hold on the basic nontrivial cycles of
the system(5) (7 is the time along trajectories in phase this submanifold. We thereby limit the choice af* and
space. The expansiort4) is invalid at points in a neighbor- therefore the initial submanifold\. This means that we
hood of and beyond caustics. However, it is possible to conobtain restrictions on the choice of the initial data on the

. . . . 3
struct a function¥, that is constant along the trajectories of Cauchy surface.”. o . _
the system on the entire Lagrangian manifdléi Let us consider the situation when the trajectories of the

To obtain the solution as a whole, it is necessary toclassical system enter the right-hand entrance into a worm-
construct a Speciabanonica] atlas of maps of the Lagrang_ hole (See F|g ZD] Then, IeaVing the left-hand entrance at
ian submanifoldA%. Part of the solution of the Klein— timeT, preceding the tim&, at which the Cauchy surface
Gordon equation is determined with the aid of the Maslov®® is given, the trajectory necessarily interse®t$ once
operator on the functio®, on A*. For us it is important that again. The first simple requirement of self-consistency of the
in matching different parts of the solution obtained in thisinitial data is that this trajectory must return to the initial
manner restrictions arise on the choice of the LagrangiagurfaceA®. Thus, the initial submanifold ® cannot be arbi-

submanifoldA . Specifically, the integral condition trary, as happened in the absence of closed time-like curves.
Let us examine a natural method for “matching” the
L 3§ P dx3— 1 ind y=k 6) initial surfaceA® that makes it possible to obtain a consis-
2wh J,72 4 ’ tent, in the sense indicated above, surfAce We start with

. 3_ _ 3 -
which is called the quantization condition, must hold on eact" arbitrary surfacé = {(x,p(x) = dS/dx,x e %°}. Itis not,

nontrivial cycley on A%, Here indy is the index of the curve generally speaking, self-consistent. Let us construct the tra-
v. It is calculated with the corresponding signs of the point{iﬁitgsnfsa?f tg;':?gﬂtor? I{ahr:asvil/itr?nfrﬁ])oﬂangr?(;ugr}é);zetrt]?sejr-face
of interaction of the curve with the cycle of singularities of Q={(x )_g( 3% at gome time alond the traiectory. This
the projection of the submanifold®. If on each nontrivial —1GP): XE Sy : vong ray Y-

cycle of A% the condition(6) holds, then it is possible to behavior of the trajectories determines a Poincaag on the

construct an approximatgo different orders in:) solution surface Q in which Ag is empedded. The 'mages
of the Klein—Gordon equation. The conditiot® are mul-  LX(7),P(7)] do not, generally speaking, belong Q. This

: 3_ A4
tidimensional analogs of the Bohr—Sommerfeld quantizatiormeans that there eX'St§ @ anothef‘compc’)’nehll_—_/_\ nQ
that is different fromA ;. We can “match” the initial data

conditions. The Lagrangian submanifold satisfying thesef 3 at this step. determini initial sub ifold
conditions is called a quantum submanifold. A"g_A%Vg'SRS ep. i € etrhmlnlgg a new 'g' ' fsu mantlolc
We shall not present the explicit form of the Masloy ;1 “*0~ "1 épeating the above procedure for-a new Ini-
¢ g the functiof th tized L tial submanifold, we obtain a new correction of the initial
operator, mapping ‘i functiofro on the quantized *-a- dataA3, and so on. In the limit this procedure yields a con-
grangian submanifold” into a global approximate solution sistent initial submanifoldh 3
of the Kleln_—Gordon equat_lon on the r_namfdw“ (see F_Zef. As an illustration of the fact that the curved submanifold
8). We are interested only in the conditions for the eX|stenceA3 can be quite complicated, let us examine the example

of such a global solution, given by the expressi6n illustrated in Fig. 3. We are studying a massless scalar field.
For it p3=|p|?, so that only the spatial part of the momentum
can be shown. Let the direction @f be the same as the
direction between the entrances into the wormhole, and let
The solution of the Cauchy problem in the high- the magnitude of the vectqn on the surfacd ={xe 33,
frequency limit reduces to finding an appropriate initial sub-Z=cons} be given by some functiomp|?=f(X,Y). The
manifold A% in the phase spacél, projected onto the number of images of the poirt in Fig. 3 under a Poincare
Cauchy surfac& ? in space—time. Extending integral trajec- map is infinite, provided that the parameters of the position
tories of the Hamiltonian of a vector field with Hamiltonian of the wormhole are not chosen in a special manner. Points
(5) from the pointsA 3, we obtain a four-dimensional invari- nearA have a finite number of images. However, this num-
ant (with respect to the Hamiltonian fluX.agrangian sub- ber increases without limit as the poiA is approached.

4. FORMULATION OF THE CAUCHY PROBLEM IN A
SPACE-TIME WITH CLOSED TIME-LIKE CURVES
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Thus, one can see that the structure of the limiting initial f dT f JH dr
r=

submanifoldA 2 is quite complicated. AT=] ——d —— —dI
: ) ) dr ap; dl
Let us now confine our attention to the simplest case,
where the initial submanifold\® consists of a single con- Iy dl
nected piece that projects uniquely oé and is immedi- =-2E = (13)

2_2_pp2 2 2\ "
ately matched in the sense of the procedure described in the - VB =M’ M /(bg+1%)

preceding paragraph, i.e., the imageq7),p(7)] of the
points[x(0),p(0)] under a Poincarenap lie in A 3.

The Lagrangian submanifold* constructed on the ini-
tial submanifoldA® determines the solution of the Klein—
Gordon equation if the condition) are satisfied on the
basic nontrivial cycles. For the Lagrangian submanifalti 1
there exists a nontrivial cycle; (see Fig. 2h It starts at ok
some pointxe A3, passes along a trajectory that enters the
right-hand entrance of the wormhole, leaves the left-hand et us consider the case which in the present problem is
entrance, and reaches a poiit of the surfaceA®, after  an analog of the situation arising in a causal paradox. Let the
which it is connected by some curug lying on A3, with the  solution be concentrated near a trajectory passing through
point x. the wormhole and let the initial point be close to its image

Let us consider the quantization conditi) on a non-  x’. This means that an observer emits quasiclassical par-
trivial cycle ys. Let (t,1,6,¢) be coordinates in a neighbor- ticles, so that these particles, passing through the hole, reach
hood of a mouth of the wormhole and Igt(p;,Py,Ps) b€  the observer at the same moment in time. Rerx’ the
the corresponding conjugate momenta. With the expliciphases of the solution are automatically identical and the
form of the metric(2) the Hamiltonian(5) assumes the form quantization conditior{12) gives a condition for the energy

of a quasiclassical particle

Substituting the expressidi0) into the quantization condi-
tion (6), we find that this condition expresses the phase cor-
relation between the solutions at the image and inverse im-
age points under a Poincaneap:

2

S(x)—S(x")— mEAT +ind y3=k. (12

1 1
H=—pi+pi+ o+ Sl=—m2 (7 2
Pt TP bé+|2\p0 sin29p¢ (7) _zmﬁE
ar

AT+ind ys=Kk. (13)

A Hamiltonian system with the Hamiltonidid) is integrable.
For simplicity, let us study trajectories with= /2, p,=0.
The first integrals are

The energyE appears in the expressighl) for AT, so that

the condition(13) is a quite complicated function & and

the parameters of the wormhole. In the simplest case, when
the particle propagates along a line connecting the entrances
into the wormhole, the angular momentum satistiés-0

%nd the integral11) can be calculated. Then the quantization
es-" . :

condition(13) is

M? m°AZ +ind k (14
—————+ind y3=Kk,
piD= B ©) 2mhE—mE
0

_ _ o - where AZ is the distance between the entrances into the
Then the integral in the quantization conditi8) along the  wormhole. If the Lagrangian manifold projects everywhere

E=p;, M=p,. ®

The trajectories in phase space are determined by the expr
sion

trajectory is uniquely on the configuration spaBé={x}, then the index
v5 of the curve equals zero and the quantization condition
dx J' an iJFJ dt N dl N d¢}d determines a discrete energy spectrum of a quasiclassical
pidx= [ ——70X Peg-TPig-TPeg (97 article
3 a ox dr dr dr p
IS 2M?2 (AZ)?
_ 2 _ 2 \T=
_J' &dxlﬁ-f {—2E2+2p|+—b2+|2]d7 E=*xm~\/1+m PRy (15
@ 0
B , , '+ dI The interpretation of this quantization rule is as follows. An
=S(x)=S(x’)—m opi(h observer can emit a particle “into the past,” but then these
) particles must satisfy a self-consistency condition, which in
— S(x)— S(x')— EAT (10) the present case is that the energy spectrum be discrete.
B E ' When the mass equals zero the Klein—Gordon equation

becomes a wave equation and describe propagation of light.
whereAT is a time shift into the past occurring as a result of The quantization conditioil3) in this case is trivial. Thus,
propagation through the wormhole. Taking into consider-in the problem studied the Maslov method does not give any
ation the explicit expressiof®) for p,, we find thatAT can  restrictions on the propagation of light along closed isotropic
be expressed in terms of an elliptic integral geodesics.
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5. DISCUSSION The problem of constructing quasiclassical solutions of
the Dirac equation in a space—time with closed time-like
curves can be studied in the same formalism. The effect,
é)bserved in the present problem, of the global structure of
space—time on the formulation of the Cauchy problem for a
eDartiaI differential equation can be analyzed on the basis of
the Maslov method on a background of other solutions of the
Einstein equations.
| wish to thank V. A. Berezin, A. M. Boyarskiand A. I.
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We propose a model, which is an alternative to the droplet model and presumes that the number
of bonds between the atoms is a minimum, to describe highly excited clusters containing a

small number of atoms. It is shown that at sufficiently high temperatures such a structure, which
has the form of a system of spontaneously appearing chains of &untosl chaing, is

realized with a greater probability than the close-packed structure. Analytic estimates are supported
by the results of numerical molecular-dynamics simulations. 198 American Institute of
Physics[S1063-776098)01201-3

1. INTRODUCTION binding energy and low statistical weight, and states with
low binding energy and high statistical weight. As the tem-
The difficulties in the classical theory of nucleatidrare  perature rises, the probability of the latter rises, and a tran-
known to be related to the poor applicability of the dropletsition from a compact to a gas-like structure occurs in the
model to the description of the properties of clusters consisteluster. For this to happen, the energy difference between the
ing of a small number of molecules. The classical theorycompact and gas-like states must not be excessive. This is
poses the problem of the kinetics of the vapor—liquid transipossible only for clusters containing< 10 atoms, since the
tion, i.e., it is assumed that the temperature is above thaumber of bonds per atom in them is significantly smaller
melting point. Such temperatures are high for the clustershan in a continuous liquid, as a consequence of their finite
found in a vapor, which are characterized by strong excitasize.
tion of both single-particle and collective degrees of freedom  In contrast to a macroscopic system, the transition in a
for the motion of the molecules comprising a cluster. Assystem with a finite number of particles occurs in a certain
numerical simulation has shown, the clusters do not resemblemperature range. The purpose of the present work is to
droplets and have the form of shapeless aggregates that drevestigate the structure of clusters in this range and to de-
similar to a dense gasee Refs. 3 and)4this effect being scribe the transition from a compact to a gas-like structure as
stronger, the smaller the cluster sighe number of mol- the temperature rises. To achieve this goal, we utilize both
ecules in if. On the basis of the similarity to fluctuation the analytic expression for the partition function of a gas-like
clusters in a dense gas, such states are called gas-like, sindester based on simplified modeling ideas for the particle
the clusters cannot be characterized by a definite volume aridteraction potential and its structure, and a numerical
density and since the short-range order characteristic of ligmolecular-dynamics simulation of the evolution of clusters

uids is likewise lacking. in a supersaturated vap@an ensemble with constant tem-
It is not surprising that attempts to improve the dropletperature and pressije
model(see, for example, Refs. 5, 6, angdtiat employed it The expression for the partition function enables us to

as a zeroth approximation for systematically calculatingwrite the equilibrium size distribution of the clusters and to
small corrections in powers of the reciprocal droplet radiususe it to calculate the rate of homogeneous nucleation in the
and were aimed at expanding its range of applicability tosupersaturated vapor. Also, since small cluster sizes are con-
include smaller radii, were ineffective. The description of thesidered, the Frenkel-Dimg equations are inapplicable, and
state of clusters at relatively high temperatures requires giscrete equationgin the space of sizeof the kinetics of
model that is an alternative to the droplet model and is nofiucleation must be usedee, for example, Ref.)8
based on perturbative methods. In Sec. 2 the limiting cases of a compact cluster and a
This paper examines the analytically simplest case o¥irtual chain are examined, and their partition functions and
clusters consisting of atoms whose interatomic potential is afhe characteristic temperature of the structural transition are
additive Short-range potentia|_ In such a system, each atomvaluated, and an interpolation formula for the potential en-
interacts only with its nearest neighbors. The droplet mode@rgy is written. The methodology of the numerical experi-
can be regarded as a limiting case with the maximum nummment is discussed in Sec. 3, and its results are discussed in
ber of bonds in the system. The other limiting case, which isS€c. 4.
therefore, an alternative to the droplet model, is a system
with the minimum number of bonds. In thIS model the cluster2 PARTITION FUNCTION OF A SMALL GAS-LIKE CLUSTER
has the form of a set of connected chains. The sequence of
atoms in each chain varies as the atoms move; therefore, We consider a cluster consisting @atoms which inter-
these chains can be called virtual. act by means of an additive pairwise potentigr). We
The reason for the appearance of the structure just deevaluate the partition function of the cluster in the limiting
scribed is the competition between states that have highases of low and high temperatures. Let
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+ oo, r<a-—ry, imposes geometric constraints on the region of phase space
in which the atoms of a cluster can be found. We number
them in the following manner. We select a virtual chain with
0, r>a+try, two free ends and number the atoms in it 1,20, from one

(1) end to the other. Then we select one of the branch points in

whereM is the mass of an atona,=(2/r,) /—DO/M is the the first chain and assign the numlogr+ 1 to the atom of a
vibrational frequency of a dimer, aril, is the depth of the second chain forming a bond with that point. We continue
well. The potentiak1) is finite and oscillatory in the region theé numbering until we reach the free end of the second
where it is negative; it is assumed that the length parametef@@in, which is given the number,+n,. We then select
a andr satisfya/r,>1, i.e., the potential is short-range. ~@nother branch point, and so on. As a result we obkin

We assume that a cluster is a system of atoms, each dirtual chains withn; atoms in thejth chain, =L n;=g.
which has at least one neighbor that belongs to the same [N the virtual-chain approximation, the potential energy
cluster and is located at a certain distance not exceeding @ @ cluster can be written in the form
certain value. For the potentiél) the maximum distance to n—1 npt+ny—1
the nearest neighbor should clearly be selected equal to U.= 21 u(ri+1i)+u(rnl+1nl)+i n2+1 u(rissi)

-

a+rg. At low temperature, the cluster has the structure cor- =

u(r)=1{ (Mw3/d)(r—a)>-D,, a—ro<r<a+ry,

responding to closest packing of the atoms. Adopting the g-1
assumption that the motion of the atoms is classical, which is +...+ E u(risgi), 3
valid for an argon-like system even at fairly low tempera- i=g-ny+1
tureS, we estimate the partition function of a cluster Vgth Whereri+li: |ri+1_ri| is the bond |ength anq is the co-
=3 using the model of an Einstein crystal: ordinate of thath atom.
To calculate the total partition function of a cluster in
Z\9= v 797 9ex Dy this approximation
X S keT) bp
! U
3 3g-6 (@) — x—3 _ ¢
a kgT 9 zY=x gff ex;{ —=| drq...drg, 4
Zﬁg)zcr(g)(x , Z(y@);(:})@)(%) ’ ?) c keT| 1 g )
0

. ) where the prime on the integral signifies that the integration
whereV is the volume;X=277“/MkgT is the thermal s carried out over the region in which only physically dif-

wavelength;Z{ and Z{ are, respectively, the rotational ferent states are realized, we make the replacement of vari-
and vibrational partition functionsy is Boltzmann’'s con- gples

stant;Dy is the ground-state energy of the cluster; &h(g)

and C,(g) are numerical factors determined by the close- F1=0,
packed structuréfor example, for the structures of a right Fy=01+ s,
triangle and a tetrahedron we ha@(3)=C,(4)=2x?/3,
C,(3)=(4/3)\/2/3, andC,(4)=v2).

Let us consider the other limiting cagkigh tempera-
tureg. We say that there is a bond between two atoms if their
interaction potential is not zero. We call any subset of atoms
in a cluster a virtual chain if the atoms can be numbered so
that eactith atom, except the first and the last, is bound only
to the (—1)th and {+1)th atoms belonging to that subset
(and possibly to other atoms not belonging to that sybset Fg=Tby_;Tdg-ny+1t---F0g.

The first atom is bound only to the second in a given Ch""inwhererb1 is the radius vector of the first branch point. The

and. thel last |sf_bount(_j to Fhe n;ext-tc.)—tlas'lc a‘h"’T‘- Bv{ldef'r“t'on’partition function(4) can be factored and expressed in terms
a circular configuration is not a virtual chain. We call an .. partition function of a dimesz):

atom a branch point if it is bound not only to atoms of its
own chain, but also to at least one atom belonging to another oV 9t u(q;)
chain. A new chain appears when an atom is added to an Zc’ =33s f j iH1 ex;{— ﬁ} dds;...ddg-1
atom that is not the last in a chain. It is not difficult to show -

rnl+l:rb1"'qn1+1a 5

rn1+2:rbl"_in-#l"_in-%—Zv

that the cluster with the fewest of bonds is a set of virtual \ ' u(q) -l v (219-1
chains that are joined to one another by one bond at branch T X3 f Xg — _kBT dqg :F[Zc 197
points; all the chains, except the first, have one free end. It is

obvious that a cluster containirggatoms hagy—1 bonds. ©®

Let us assume that the probability of states with a mordn the special case of an absence of branch points,(&qg.
than the minimum number of bonds is negligibly small. Un-corresponds to the partition function of a macromolecule in
like polymer molecules, the sequence and number of atomhe standard Gaussian model of a polymer ch&lnfollows
in virtual chains are not constant, as a consequence of thfieom (6) that the mean potential energy of a cluster depends
additive interatomic potential. Therefore, we are dealing withon its size:Ug=(U;)=(g—1)U,, whereU, is the mean
virtual, rather than real, chains. The assumption just madpotential energy of the dimer at the same temperature.
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Relations(2) and(6) specify the ratio between the prob- sharply when the first shell of a cluster is filléd<g=<13
abilities of structures with the minimunPg,;,) and the maxi- (Ref. 11), it can be expected in this case tht,/Pmac> 1,

mum number of bondsK},.,): i.e., light clusters are gas-like, the characteristic size for on-
P [z®e1 AE set of the s.tructural transition beirgg~ 10.
mn_ 27 1 exg — —29 For a trimer, Eq(9) reduces to
Pmax Z(rg)zf,g) F< kBT>
1 a

29-5/ 2D, g—2.5F< AE, . 7,3_8 Tl 10
o] \wket) ATk @ pe "= N3 2" (10

o

- CC,

where AE;=Dy—(g—1)D, and the estimate
ZP=7072) = r(alx)%(kgT/hwe). It follows from (7)  Where=Dg/kgTy. For oscillations near the bottom of the
that the transition under consideration is smooth and occursennard—Jones 6—12 potential we ha/e,=6, and from
in a certain temperature range. For example, assuming fdd0) it follows thatkgT;=0.434,. Wheng=4, the transi-
simplicity that only states with the minimum and the maxi- tion temperature is also determined by Eg0), with the
mum number of bonds are realized and ugifigwe find the numerical factor ¢/9)® on the right-hand side. For a tet-
temperature dependence of its mean potential energy ramerkgT=0.41@,, which is close to the transition tem-
perature for a trimer.
Us =1+ - 1 (8) It follows from (6) that any thermodynamic function of a
3U; i E) exp{% (i_ E) small cluster that is a linear functional of Eﬁg) is propor-
T ks \To T
This dependence is shown in Fig. 1. It is seen that the tra

tional tog—1. This makes it possible to construct a simple
ni_nterpolation formula for the size dependence of any thermo-
sition from the compact state to the gas-like state has a co
siderable width.

(flynamic function that is additive for a macroscopic sub-
stance. For example, for the mean potential energy of a clus-

The characteristic temperatur€, in (8), at which
Pmin=Pmax 1S called the transition temperature by conven-

ter we have
tion. In the general casd,, is the solution of the transcen- Ug=(go— 1)(U2—u_)+(g—1)u_, (11
dental equation

| a N 1I 2D, t(2g-5)1] w91 whereq is the number of atoms on the surface of the cluster
n rO 2 n ’ﬂ'kBTo ( g n Cer and
"2 —A5Eng' ® T S
(29—5)kgTo u=3 lim > u(r )+ Xu(rg)
gl I= j=ig+1

For typical values of the parameters, the second and third
terms on the left-hand side of ER) are of order unity, but
the first term is greater than unity by virtue of the definition is the potential energy of an atom in a continuous liquigl (
of a short-range potential. Since for the lattAf,/g is the number of the “central” atom, which is located closest
—5Dg asg—x (Ref. 11, it is not difficult to show for to the center of mass of the clusteFhe expression for the
alro~10 and a temperature below the critical value thatchemical potential of a cluster, which was previously postu-
P min/Pmax<1, i.€., the structure of a large cluster is compact.lated(Eqg. (2) in Ref. 19, can be obtained in a similar man-
Since the value oAE, for a short-range potential increases ner. Using the model in Ref. 12, we write
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90=30Q(g—go) 7>+ 30N (g—go) Y3+ QN2 simple virtual chain. By definition, a subset of atoms forms a
5 simple virtual chain if there is a way to label them so that for
0= 4_77 ool 12 eachith atom the {—1)th and (+ 1)th atoms are its nearest
3 U,—u’ neighbors, and the first and last atoms each have only one
2 , o neighbor at a distance not exceeding If there is a closed
where\ = (/) —3/4)"*—3/2, z is the coordination number ring, we assume that the first and last atoms are the ones
in the liquid, oo =0 —T(do/dT), o is the surface tension  genarated by the largest distance. This definition is applicable
of a plane surface of the I|qU|d,=(3_/47rn|)1’?, andn,isthe 4 any potential. In analogy t8), we can define the poten-
concentration of atoms in the continuous liquid. tial energy of a system of simple virtual chains by the rela-
We write (11) in the form that is characteristic of the tion Uo==;u(r,4;), where only the interaction energies
droplet model: with the two nearest neighbors are taken into account, and
Ug=4mr(g)R§+(g—1)u_, interactions gt the ends of the chains are disregarded.
Another important parameter of the structureUs,,,
o which is the sum of theg—1 lowest (largest in absolute
o(9)= WE[QO(Q)_”’ 13 value pairwise interaction energies, out of the total number
g(g—1)/2 of such interactions. Herd. and U ,,, are the
upper and lower estimates of the total energy of the bonds
when a cluster is represented as a system of virtual chains. If
23 _ a cluster consists of one chain, theg, andU ., are clearly
o(9)= (&T)lﬂ (5) [Ug—(g—1)u]. (14 close to the total potential energy of the clustég, and

. i _ Ug/(g—1)U, is close to unity.
The assumptions underlying the model in Ref. 12 and the

relations obtained above can be tested by a numerical ResuLTS AND DISCUSSION
molecular-dynamics simulation.

where Ry=r,g"3. It follows from the first relation in(13)
that

The temperature dependence of the potential eneigy
obtained as a result of averaging is presented in Fig. 1 for
3. NUMERICAL SIMULATION several cluster sizes. It is seen that in the temperature range

. . . 0.25<T*<0.5 there is a significant decrease in the ratio
The goal of the numerical simulation was to studyU

ensemble-averaged quantities that characterize the structu g

range Interatomic mteractlpn potent!al V\."th: 1.6, which satisfactory agreement between the theoretical estifEate
is _greater t_han theT mean interatomic distance, but less tha(g)) and the data from the numerical experiment. Thus, at
twice the distance: high enough temperatures, the potential energy of small clus-
v(r)+uv(2re—r)—2v(ry), r=<rg, ters corresponds approximately to the minimum number of
un=\, (et (19  ponds.
' ¢ The calculations show that at*=0.71 andg<8 we
whereu (r)=Do[ (a/r)**~2(a/r)°]. The form of the poten-  have Uy Ug)/kgT<1.4 and Upn—Ug/ksT<0.5, i.e., the
tials u(r) andv(r) differs only in the vicinity ofr=r.; at  true potential energy can be replaced by the approximate
this pointu(r) is continuous, along with the derivative. The potentia| energwc in the Hamiltonian of the system_ Con-
small value of the cutoff parameter permits the use of theersely, at largey we have Use— Ug)/kgT>1, which sug-
same criterion for assigning an atom to a cluster as in Sec. gests a transition to the compact structure. Figure 2 presents
The (P,T)-ensemble technigfiewas used to simulate the ratio of the potential energy, calculated in various ap-
the evolution of a cluster in a vapor with constant pressurgyroximations, to the energy of a system of virtual chains
and temperature. As in Ref. 4, the cluster temperature wagy— 1)U, as a function of cluster size. At smajlthis ratio
stabilized by introducing an additional Berendsen “frictional js close to unity(curves1-3). If the energy of the inter-
force.” ¥ The cluster temperature was evaluated from thegtomic interaction in the droplet modéhe maximum num-
formula T=[M/3kg(g—1)1=f_,(V;—Vem)?, Where Ve is  per of bonds is estimated to b&J ,=U,(T)U4(0)/U5(0),
the center-of-mass velocity. The evolution of a cluster wasyhere U4(0)/U4(0) is the number of bonds, we find that
investigated at various values of the heat-bath temperaturg) ;—U,)/kgT>1 in the range of sizes in Fig. 2, i.e., the
T*=kgT/Dg. The radius of the spherical cell wasaCand  energy of a close-packed cluster differs strongly fraiy
atT*>0.42 the number of vapor atoms in the cell was set tocurve4). The calculation shows thaty approximatesJ, at
40-50. Under these conditions the size of clusters with aig~10?. This is associated with a transition to the compact
initial size g=<460 decreases as a result of the evaporation o$tructure. Thus, the mean potential energy of the small clus-
atoms from their surface. Each numerical realization was reters is far closer to the energy of a system of virtual chains
peated many times. AT* <0.3, evaporation from the clus- than to the energy of a macroscopic droplet.
ters was so insignificant that no vapor atoms were generated The calculations suggest that the mean number of bonds
at the cell boundary. in simple virtual chaind\. at largeg does not depend on the
To analyze the structure of a cluster in a numerical ex<luster size, while afj<20 it increases sharply with decreas-
periment, it is convenient to introduce the concept of aing g and reaches a maximum gt=7, after whichN,, re-
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mains close t@— 1. This means that at smalthe probabil- _ _ _
ity of states with a single virtual chain is high. A calculation FIG. 4. SllzeI OLfEPeBdenge Ong];z )effegt(ulxg sur_fatce ten|s|oﬁ':at 0.46.
. . T urve—-calculation pased on an , points—value Olo corre-

of the size depgndence pf this prob_ablllty reveals that state onding to the potential energy of the cluster determined in a numerical
with a single virtual chain are dominant for small clusters,experiment(Eq. (14).
while they are essentially absent fpr-9. The values of this
probability for a trimer and a tetramer are similar, in agree- _ . o .
ment with the estimates in Sec. 2. Typical configurations of ~ Figure 5 presents the radial distribution functiGir)
small clusters with no more than one branch point that aréor the central atom. We note the following special features.
observed in the numerical experiment are shown in Fig. 3. For a large clusterg=430) it has the same form as for a

To test the interpolation formulél1) it is convenient to ~ continuous liquid, and maxima that correspond to the first
compare the value of determined directly fronJ, using  three coordination spheres. The size effect begins to show up
(14) with the value calculated from Eq13) (Fig. 4). The a_1tg=60: the_ third maximum vanishes, and the height of the
following values of the parameters were usae: 3.26D,, first two maxima decreases. 4 18 a plateau forms instead
n=0544"3 and z=9. The asymptotic value of the second maximum, suggesting a rapid weakening of the
0o=0.90D,/a? is reached essentially ly=400. The pa- correlations. At the same time, the number of atoms in the
rameterQ was varied to achieve the best fit to the experi-'égion corresponding to the first coordination sphere de-
mental data. The value obtainef,=0.794, is typical of ~Creases sharply. For example, whgr 6, it is 2.46. This
many substances, and is consistent with the thermodynamRehavior can be attributed to the emergence of virtual chains,
model in Ref. 12. It is clear from Fig. 4 that the curve faith- In Which each atom correlates with only two nearest neigh-

fully describes the numerical experiment. Since the identity?0rs- This phenomenon is similar to the weakening of the
of (12), (13), and(14) is a direct consequence of the inter- correlations in a freely articulated Gaussian chdilt.would

polation formula(11), Fig. 4 confirms its validity.

G[x v
2.5 &
@ 2.0t
l.S-OOA
ot
top °* . o east ee,
\\\\\\\ o a . “‘Mu . e
\ 031 °::‘“‘u : o |
o°°oW18 “‘AA‘
@@ 0 Tn%lo ) . REYYW
1.0 1.5 2.0 2.5 3.0 rt

\
FIG. 5. Radial distribution function for the central atoms of clusters of
FIG. 3. Configuration of clusters with virtual-chain structure. Two configu- various sizesT* =0.46; r* =2 /a. The cluster sizes are indicated near
rations contain one branch point, and the others contain none. the curves.
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A concept of turbulence is presented that is based on the results of an investigation of the
structure of a gas flow in a tube with a square cross section in front of a nonsteady-state moving
flame front. It is shown that a region of elevated pressure, consisting of alternating

condensations, is formed in the gas flow near the tube walls. These condensations are the sources
of waves which form a distribution of velocity fluctuations in the gas flow over a wide

range of amplitudes, frequencies and directions. The dynamics of the perturbations at the walls
and the configuration of the wave in the gap make it possible to consider the fluctuations

in the flow as pseudochaotic and to use statistical methods to describe therf®98American

Institute of Physicg.S1063-776(98)01301-§

1. INTRODUCTION smaller than its length and the steady-state distribution of the
parameters is established rapidly in the transverse direction.
The turbulent flow of a gas or liquid is characterized by Meanwhile, the velocity fluctuations observed in the
chaotic fluctuations of the thermodynamic parameters of th@resence of turbulence have an arbitrary orientation. And
medium. Turbulence has been studied for more than a hursince no motion variationgor fluctuation$ in themselves
dred years but the basis of the phenomenon, the question etcur, the acting forces, which are local pressure gradients in
its cause and the chaotization mechanism of the motion arg given case, must be analyzed. It is also obvious that the
still open. pressure fluctuations originate in the boundary of the flow.
Prandtt explained this phenomenon by the formation of But the pressure perturbation appearing within a small vol-
vortices near the wall and their breakup into finer eddiesume can propagate throughout the entire flow only in the
when they are ejected into the primary flow. But the idea wasorm of a wave, for which all propagation directions are
not embodied in a specific mechanism. Another approach tequivaleth — a circumstances which is ignored in the small-
the problem is based on an analysis of the conditions for thgerturbation method when the equations are linearized. Fi-
loss of stability of the system of hydrodynamic equations bynally, the pressure distribution over the cross section be-
the small-perturbation methadee Refs. 2 and)3 comes steady-state in the time during which a sound wave is
The formalism of the small-perturbation method as ap-at least damped. This time considerably exceeds the charac-
plied to the Navier—Stokes and continuity equations makes iferistic durations of turbulent processes and therefore the dis-
possible to determine the conditions for the appearance afibution of the parameters over a cross section must be re-
turbulence but not its mechanism. Correspondingly, turbugarded as stationary. It is interesting to point out that H. A.
lence in the main flow turns out to be an abstraction that i3 orentz® attempting to explain the turbulization phenom-
not related to the physical nature of the phenomenon. Themsnon, assumed a form of perturbation consistent only with
by resorting to a number of hypotheses that take account ahe continuity equation and not necessarily satisfying the
the nonlinearity of the equations of hydrodynarfliesrbu-  original flow equations.
lence is considered as a stochastic phenomenon and statisti- A turbulence concept is presented below according to
cal methods are used to describe it. Attempts have also begvhich it is precisely small pressure gradients of arbitrary
made on this basis to describe the development of turbuerientation that are responsible for the velocity fluctuations
lence; concepts of chaotic dynamics, such as bifurcation anigh the flow. Within this model there is no need to refer to
strange attractorssee also Refs. 6 and @re used for this nonlinear interactions to understand the nature of turbulence;
purpose. it is sufficient to use the linear wave equation that describes
The small-perturbation method can probably be considthe propagation of a sound wave in the medium. In general
ered the most successful today. Variations of the thermodyfeatures it reduces to the following. The drag exerted on the
namic parametergvelocity v, pressurep, densityp, tem-  gas flow by the wall causes a reduction in the flow velogity
peratureT) are found in it in the form of a harmonic solution and, correspondingly, an increase in the pressurdlow
of the same system of hydrodynamic equations but linearizegerturbations adjacent to the wall propagate as sound waves
with respect to small variations. In this situation the questiornthroughout the entire cross section. The reflection from the
of the loss of flow stability is considered only with respect towalls of waves with different directions causes a nonuniform
the effect of perturbations along the stream lifégnoring  pressure distribution at the flow boundary, in which short-
transverse effects. The following plausible arguments servdived renewable local perturbations are formed. The waves of
at first glance, as the basis for such an assumption. The pehese perturbations fill the flow and create a network of ir-
turbations of the parameters are small compared with theiregular parameter fluctuations in it, which look chaotic. The
average values. Moreover, the diameter of the flow is muclirag can of course also produce waves of finite amplitude in
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the medium: simple or shock waves, which does not alter th: 2

overall picture. a
2 '//._-_\
2. PERTURBATION WAVE IN A BOUNDED SPACE >//,( \\

Proceeding to an analysis of the process in which we ar // 2a \\‘
interested, we compare the behavior of a local sonic pertut \
bation under the conditions of spherical symmetry and ¢
bounded space. The problem is well-known in the first

formulatiorf and it is solved in terms of the wave equation d } MW@ §

for the potential¢ of the perturbationy’ of the velocityv:

Xz x
ey | 9 )
_ o2 2 ,
— =C" = —|r°—, 1 (X,2)
a2 = 2o ar) @ ' b
wherec is the velocity of sound. We assume that the pertur-
bations of the velocity, density and other thermodynamic pa 0 t
rameters of the medium are small,<c, p'<p,...., and the
medium is at resty =0. R . . : . ;
The solution of this equation is ! ¢ >
5(Ct— r FIG. 1. Wave configuratiofa) and velocity fluctuationgb) in gap between

. , 2 walls.

whered(ct—r) is a delta function. It describes the propaga-

tion of an elementary wave, which is a spherical surface ofq, \hich the fluctuations of the parameters created by the

radiusr=ct with a decaying field moving away from the \2ye amount to significant values for the particular problem,
coordinate origin. A perturbation of arbitrary type, in the jp 0+ \which more will be said below.

form of the initial distributionf|;_y(a) or the complex pulse By knowing n, it is easy to establish the relationship

flr~o(c7) or a combination of them, for example, can be ayyeen the coordinates and the propagation directions at
composed of elementary waves. Then at a distanCgy regponding points of the wave in the half-space and in the
r>a>cr the perturbation will have the form of a spherical gap. Let us assume the point (x2+y2+ z2) 12 of a spheri-

layer whose thickness and profile are given by the function. \\ave with polam and azimuthalp angles corresponds to

f. _ .. the pointR=(X?+Y2+Z?) Y2 with 9, ande, of the wave in
Let us trace the propagation of the perturbation in a4, gap. Then

bounded space for the example of an elementary wave in a

gap of heightd, formed by two parallel walls. The-y x=X, y=Y, z,=2d In<n+1
=X, y=Y, z,= B

+(=1)"z, 4

plane coincides with the lower wall, the axis is directed 2

vertically, and the center of the perturbation is located at the

coordinate origin. In the diagram of Fig. 1a the gap walls in4g §,=(—1)" ﬁ:(_ 1)" cosd, tan ‘Pn:X:tan ¢.
the x—z plane (the bottom portion of the diagranare des- ct X

ignated by the heavy lines. ®)

The location of the elementary wave at an arbitrary in-  Note that the wave passes through the pdtntmany
stant of timet in the free half-spacén they=0 plane in the  times and the times at which this passage occurs form the
diagram is shown shaded. Within the gap the wave remainsequence,, which can be characterized by the “frequency”

spherical only until its first collision with the walGt<d. vp(R,9). We find from Eq.(3) for the nth reflection:
Then it changes its configuration first because of reflection

22 2
from the upper wall, then from the lower, etc. The regions of t = n x*+y? /1+ z,(2)
the sphere surface, filling the gap between the walls after " c cosd, c x2+y?’
each reflection, are separated by litesplane$ in the dia-

gram, located at distances that are multiplesidfom the Vn:;- (6)
upper boundary of the flow. thr1— 1ty
In traversing the path=ct the wave is reflected times |t fo|lows from this formula that the arrival of the wave at the
from the walls: arbitrary pointR is not adjustable in terms of recurrence, nor
2 in terms of amplitude, nor in terms of propagation direction.
z VctZ—x?—y? : oo .
n=In riin In —a | (3)  Thus, even a single perturbation in the gap creates a field of

irregular fluctuations.

Here the operation of taking the integer part of a number is  Let us illustrate their frequency characteristics at the
denoted by In, and the sequente 0, 1, 2,...,m constitutes  point Z=0.5d by examples for two limiting positions of the
the reflection number, wher@=0 corresponds to un- observation point—near X2+Y?)Y?<d and far (X®
bounded space and is the maximum number of reflections, +Y?)¥%>d:
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c cR 1 of reflectionsn=m, for which the fluctuations of the vari-

4 2T ddnri (7 ables can be considered to be significant. By measuriimg
units of d so that72* =r*/d, and the damping ' in frac-

In the first case the frequency of the fluctuations changegons of v’ (d), w=[v’(r*)/v’(d)], we find from Eqgs(9)

little but, as will be shown beIOW, the fluctuations damp Outand (3) a transcendental equation for and the re|ationship
quickly. In the second case in the first reflections the paramfor .72* in a given directiond:

eters fluctuate with a greater frequency; howevernds-

V1=

creases the frequency of the fluctuations decreases. Thus, the [, n cos 9 - (1=a)™ 10
fluctuations have a broad frequency spectrum. m=In| (1~ a) T (10
3. PARAMETER ELUCTUATIONS According to Eq.(10), the choice ofu determines the num-

ber of reflectionsm and the distance* =d(1—a)™u "1,

Let us now consider the behavior of the fluctuations inwithin which the velocity fluctuations " affect the fluctua-
the wave. The velocity’ (by definition and the density’  tions of the medium. It is obvious that the path lengthfor

are related to the potentigl by the expressions a particular wave will depend on the observation angle
I p 9 Let us consider an example. Takle=3 cm, ©=0.01, and
v'=—, p'=- 2 (8) a=0.1 and 0.3. We compare the length for these values

o of a for three anglesi¥=0, 45 and 89.4°. The first of these

Let us dwell on the simple case, assuming to be specific thajorresponds to the direction at right angles to the gap while
at the initial timet=0 the perturbation has the form of a the third corresponds to a direction that is nearly parallel to
bubble with the small diametera2(a<d) with its center at  the X, Y plane when the wave decays without experiencing a
the coordinate origin. Inside the bubble the gas is comsingle reflection. For the given set afand 9 we obtain:
pressed so thagt’ = A =const andy’ =0. Outside the bubble

v'=p'=0. a=0.1: m=16;14;0 and, correspondingly,

Since the wave field according to Hg) decreases quite
rapidly with distancex1/r, absorption can be ignored. How-
ever, upon reflection from a walgenerally speaking from
any surface where the impedange experiences a sudden
change additional losses appear. Without getting into details  r*~22: 29: 300 cm.
for now, we take them into account by introducing the loss
factor «, and we will look for the perturbation field for cho-
sen initial conditions with Eq(3) taken into account. At the
point R of the gap, corresponding to the poindf the spheri-
cal wave, we have

r*~56; 69; 300 cm;

«=0.3: m=7;6;0 and, correspondingly,

By introducing the loss facto& upon reflection, we elimi-
nated fluctuations near the wall from consideration. Mean-
while, at its surface we have=v’=0 and the character of
the influence of the wave on the flow is altered. Actually, as
one approaches the wall, more precisely in the region
v'=0 for 2>t>r+—a Z¢[2a,(d—2a)], the velocity fluctuations decrease but the
c C rest of the parameters, in turn, fluctuate more strongly. Esti-
mating the amplitude of the variables, let us say the pressure,
o' ~(=1)"(1—a)" cAr—ct or 2, e (9)  We use the expression for the energy density in a plane trav-
2p 1 eling wave in the forfhe = pv’2. When the losses associated
for the velocity fluctuationsy’ (to within terms of order with reflection are small and<1, the character of the fluc-

a2/r?). Equationg9) and (3)—(5) define the configuration of tuations obeys the following conditions:
the wave in the gap and the velocity fluctuatiarigt) at the , , —
center of the flowZe[2a,(d—2a)]. A single perturbation v’ =0, p'=(2-a)pv'® o9, for Z-0(Z~d),
with diameter 2 creates in the gap a moving wave layer of 1D
thickness 2. The diagram in Fig. 1a, where the layer in thei.e., near the wall the pressure fluctuations increase by almost
gap is shaded, demonstrates the unique features of its coa-factor of two. The region of thicknesaaznear the wall
figuration in the gap and in the upper half-space. plays the role of a boundary layer in which the interaction of
The character of the fluctuations at the center of the flowthe spherical incident and spherical reflected waves is not
is illustrated in Fig. 1b for the example of the velocity(t) reduced to a linear superposition.
at the pointR(X,Y=0, Z), marked in the diagram of Fig. 1a. Let us mention one other unique feature of the reflection
The velocity in the wave changes discontinuously; this isof a spherical wave related to the refracted wave. Usually the
caused by the singularity at the boundary of the artificiallyvelocity of soundc,, in the wall material is greater than its
introduced initial condition(A=const forr<a). A real per-  valuec in the gas. In this case a secondary wawith the
turbation at subsonic velocities should not contain such &urface of a truncated cone also arises in the gas in addition
singularity. In linear theory, however, this distribution has noto the spherical waves. The larger circumference of the cone
effect on the duration of the fluctuations nor on the sequencis located at the wall surface and is joined to the edge of the
of the fluctuations. front of the spherical refracted wave. The smaller circumfer-
As a result of the decay of the wave as it propagates @&nce forms a locus of points at which the conical surface of
guestion arises with regard to the distanteand the number the secondary wave is tangent to the spherical surface of the
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reflected wave. The normal to these surfaces at the tangengyocesses becomes accessible for recording in view of the
point intersects the line joining the center point of the for-nonsteady-state nature of the propagation of the flame-
ward wave(in the gag and its virtual reflection in the wall piston.

(or specular reflectiomat the angled,. It amounts to several The investigations were performed in a tube with a
degrees for a metallic wall. 28.6xX28.6 mm square cross section with polished walls. It

The secondary wave, unlike the spherical reflected wavegonsisted of standard sections, in one of which 18-cm long
decays along a given direction in inverse proportion to theoptical glass plates served as the side walls for visualizing
square of the distandeTherefore, it must have a greater the distribution pattern of optical inhomogeneities in the
influence on fluctuations near the wall than far from it, whereflow. Displacement of the sections made it possible to record
the spherical waves exert the primary influence on the flucthe flow status in any portion of the tube. Combustion was
tuational characteristics of the medium. initiated in a CH+40, mixture by a shorfl useq inductive

As seen from this analysis, the field of the fluctuations inelectric discharge. The tube had a lengttb m) for which
the variables is a complex space-time function and it is charwaves, reflected from the end opposite the ignition, had no
acterized by a broad spectrum of frequencies. It is obviousffect on the gas flow in front of the flame until the detona-
however, that the picture of the “chaotization” of the mo- tion.
tion of the medium cannot be considered to be stochastic. The flow structure was recorded by the schlieren
This set of relations for the fluctuations is rather similar tomethod. In this method the distribution of the density gradi-
the summary of rules and resembles the solution of the prokent Vp (and in the absence of chemical reactions also the
lem of cellular automatons, belonging to the class of irre-pressure gradientp) is visualized in the direction of the
ducibles. This statement is fully valid for the fluctuation field normalN to a Foucault knife edge, and the excess or defi-
produced by a single perturbation. In reality the fluctuationciency of the luminance of the image point is determined by
field is formed under the conditions of repeatedly appearinghe sign of the scalar produkst- Vp at the conjugate point of
perturbations. Therefore, it is of interest to compare the obthe object. A high-speed movie camera made it possible to
tained results with the actual process for the appearance abtain photographs of the visualized pattern of the distribu-
turbulence; this will be done in the next section. Before thistion of flow inhomogeneities at exposure times from 100 to
however, it would be advisable to mention the problem of0.5 usec. The experimental procedure and conditions have
dispersion. been described elsewhéte.

It was implicitly assumed above that dispersion is absent  The onset of combustion produces the first pressure per-
in the medium, and the dependence of the frequenofthe  turbation, traveling with the velocity of soundc
oscillations on the wave numbkrin the dispersion equation ~350 m/sec. It sets the gas into motion. The gas flow is
has the simple fornm=ck. It can turn out to be more com- bounded at the front by the first perturbation and at the rear
plicated, and the dispersion equation can have severdly the flame-piston. The equivalent velocity of the gas
branches as, for example, in a plasma. The discontinuity gbiston in the flow depends on the normal burning tatehe
the dispersion equation at the boundary of such a mediumatio of the flame surfac& to the tube cross-sectional area
will play the role of a wall, and the reflection of a wave from F, and the expansion coefficient of the gaduring combus-
such a wall can serve as the source for the appearance tén (u<c):
other wave modes, the number of which depends on the
number of branches of the dispersion equation. Thus, the U = (v—1). 12

. : o u=uU = (y—1) (12
described picture of chaotization is supplemented by a “mul- F

tiplication™ of the types of perturbations. The chosen mixture hag=10, U= 2.3 m/sec, and for a

flame with a planar fronu~20 m/sec. The shape of the
front surface duplicates the velocity distribution of the flow
4. EXPERIMENTAL BASIS in front of the flame and exactly reflects the structure of the
flow, making it possible to monitor its character. In this case
An experimental investigation has importance for check-the surface are8 of the flame and, according to Ed.2), the
ing those assumptions which were made in the analysis ofelocity u are variable quantities. Thus, iB{F)~0.02 holds
the properties of the fluctuation field formed by a single perimmediately after ignition, then at later stages, when the gas
turbation. A second aspect of the problem also exists, howis slowed down by the wall, the flame surface exceeds the
ever, that refers to the formation process itself of the primarjtube cross section by severalfold. Correspondingly, the
perturbations. Since no universally accepted method of desquivalent piston velocityi can amount to 100 m/sec and
scribing this process exists at this stage of the investigationsnore.
its experimental observation is of interest. But this has its  Fragments of the high-speed schlieren cinematography
own difficulties. They are related primarily to the possibility of the process are shown in Fig. 2. The picture-taking rate
of visualizing weak inhomogeneities in a gas flow in theand the field of view of the device were chosen in such a
initial stage of motion. It is convenient to observe this stagemanner as to ensure the temporal and spatial resolution of
in a tube while the gas flow is being established in front of athe pattern of the process. The full tube cross section in a
piston. In the experiments presented later the flow structurgegion with a length of 8 cm lies within the frames in Fig. 2.
which is created by a nonsteady-state moving fléthe ana- The crosspiece for mounting the optically homogeneous
log of a piston, is investigated where the intensity of the glass is visible within the limits of this regiotthe vertical
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FIG. 2. Oscillograms of the pressure during
flame propagation in tube.

g

dark band in the frames, denoted by the arrow in frame a of magnitude and visualization of the perturbations becomes
The timet is measured from the moment of ignition and theineffective, but the flame front reacts to them, which trans-
distancex is measured from the end cap of the tubethe forms the combustion into the turbulent regime. Thus, small-
left outside the frame in the photograph the flame front  scale fluctuations are also present in the flow in front of the
is located at the point=.2", then the extent of the gas flow flame although because of their smaller amplitude they are
in front of the flame has a lengti=ct—.%" less noticeable if not invisible.

The photographs of Figs. 2a and 2b visualize the propa- The essential feature of this experiment is that the tube is
gation process of the first perturbation produced near the enthounted with a vertical shift of the two adjacent sections so
of the tube by a weak 3-mm diameter spark. They are exthat a projection with a height of 0.3 mm is formed in the
posed at the times=52 and 165usec. The volume of the x=22cm cross section. This “irregularity” is a localized
burning gas is still small and it can be assumed th&0  source of strong waves following one another at an interval
and/~x~1.9 and 6.0 cm. Both wave configurations graphi- 7~ 15 usec. In the photographs they move from the upper
cally demonstrate that all propagation directions of the perfight corner and in frame c the first of these waves is denoted
turbation are equivalent; in this situation the variation of theby the arrow. As seen from a comparison of photographs ¢
parameters due to the action of the perturbation is a proand d, the “irregularity” drastically chaoticizes the flow.
longed process. The schlieren cinematography of this stage of flow formation

Thus, the assumptions that the perturbation exerts an ireonfirms the idea, that it is precisely the superposition of the
fluence only in the direction of the flow and the transverseforward and reflected waves that gives rise to the fluctuation
pressure gradient can be ignored are incorrect. It is also cleaelocity field in the flow.
that the wave moves almost at the velocity of soen@®% The next three photographs are obtained for the condi-
fastey and has the shape of a spherical layer with a thicknessons when the motion of the gas in front of the flame occurs
~3 mm, equal to the diameter of the spark, and the structurat a displacement’~40 cm, which makes it possible to
of the layer is preserved upon reflection from the walls. Thetrace the evolution of the development of the flow structure.
same result was obtained for air except that the wave, ndtrames e and ft~ 1.9 msec,#%=~29 cm, /'~ 37 cm) reflect
supported by the motion of a “piston,” decayed rapidly, the structure in the region where the flame is moving with a
resulting in a low-contrast image on the photographic papeconstant velocity and it generates almost no new waves.
that is difficult to discern even after the wave has moved byFrame g(t~2.05 msec,%=32 cm, /'~ 38 cm), on the other
a distance of only 4-5 cm. hand, is recorded at the moment when the flame is acceler-

Frames ¢ and d refer to the timés 1.3 and 1.4 msec ated. The different stages of flow formation demonstrate its
when.2'=13 and 15.5 cm and’~31 cm. At this time only different properties.

a portion of the length’, corresponding to 5 and 3 cm, To begin with, while the flame and the gas in front of it

enters the field of view. The accelerated propagation of thenove uniformly, as seen from photographs e and f, small-
flame creates in the flow the structure of a chaotic densitygcale fluctuations prevail in the flow. They appear in sharper
distribution, resembling large-scale turbulent fluctuationsrelief, of course, in the flame structure. Thus, here we ob-
Because of the high temperature in the combustion productserve a process which in the existing theory of turbulence
the sensitivity of the schlieren method is reduced by an ordecan be called a transfer of energy from large-scale fluctua-
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tions to small-scale. Moreover, other inhomogeneities in thesations, which, by the way, is directly related to the forma-
flow are more easily observed against such a relatively quition of thewv(Z) distribution, is still unanswered, however.
escent background: a dark region near the upper wall anilhe most important of the original parameters of the conden-
light region near the lowefdenoted by the arrows in photo- sations are not so much the geometrical shape and dimen-
graph e. sions @<sr) as their distributior¢(X,Y,Z,t) over the sur-
This important result is explained in the following man- face of the gap walls and with time. The photographs of Figs.
ner. During the exposure of frames e, f, and g the Foucaul2c and 2d showed that the “irregularity” in the fixed posi-
knife edge was positioned with a certain tilt so that the vectotion generates perturbations with a perios 15 usec. Un-
N had a vertical component in theaxis direction. For the fortunately, the equipment does not permit investigating the
chosen orientation of the Foucault knife edge the dark regiodetails of the mechanism; therefore, let us consider the pro-
corresponds to a positive value of the density gradept cess of the emission of pressure waves by an unsteady mov-
>0 and the light region to negativép<<0. Consequently, ing flame which is similar but more intense and therefore
the gas condenses near both walls. Moreover, the drastimore accessible for recording.
change in the luminance at the boundaries of both of these The oscillograms in Figs 3a—3e represent a continuous
regions means that the compon&h{dp/dz) makes the pri- recording of the excess pressysé=p,(t) at the pointsx
mary contribution to the scalar produdt Vp. And sinceN, =3, 19, 35, 51 cm. The first of these refers to the propaga-
is small, the magnitude of the gradiendp{dz) must be tion region in which the flame is still far from spanning the
large, and the density and pressure in the near-wall regiortsibe cross section and shows basically the overall increase of
are markedly higher than in the rest of the cross section. pressure in the tube during combustion. The photographs of
However, these regions are inhomogeneous and contalfigs. 2a and 2b can serve as an illustration here. The next
discrete condensations with typical size=22 mm. The dis- oscillograms are obtained for the developed flame; the pres-
tribution of inhomogeneities changes rapidly and is usuallysure peak in this case on each curve corresponds to the time
not discernible in the next frame; this makes it possible toat which the combustion zone passes through the cross sec-
estimate the upper limit of the lifetime of the near-wall con-tion in which the measuring probe is located. The strong
densation. For a picture-taking rate of 62.80° frames/sec increase of the pressure on oscillogram b is recorded in the
it does not exceed- 16 usec, whereas the sound wave will cross section where, according to the photographs of Figs. 2c
traverse the shortest path between walls in both directions iand 2d, the flame undergoes an acceleration. The oscillogram
a time that is considerably longer than 1g8ec. It can be of Fig. 3c is obtained in the region along which, as shown in
assumed that the pressure in the condensation is uniformijne photograph of Figs. 2e and 2f, the flame is moving with
distributed over the entire cross section during the wave constant velocity. Finally, the oscillogram of Fig. 3d cor-
damping, which according to E¢L0) exceeds each of these responds to the photograph of the flaffég. 2f) during the
guantities by one or two orders of magnitude. In view of thisnew acceleration.
the pressure in the near-wall condensations cannot be equal- The character of the oscillograms and a comparison of
ized over the cross section, and the waves originating fronthem yield the pattern of wave emission. The pressure maxi-
them form a conglomerate of local perturbations in the vol-mum occurs in the flame localization region. The energy
ume. release in the combustion contributes to a pressure increase
The form of the inhomogeneities near the walls is alsoin the flame localization zone, from which its excess tends to
visible in the photographs of the uniform flow. According to be concentrated over the flow in the form of compression
Eq. (9) each type of inhomogeneity, propagating as a spheriwaves. The maximum pressure increase depends on the ratio
cal perturbation, should increase in sipe diameterby 1.4  of the energy release rate to its characteristic outflow time. In
mm during the frame exposure tim@ wseg. In reality, the flame acceleration region this is also supplemented by an
however, the wave layer is deformed and acquires the shapererall intensification of the burning, as a result of which the
of elongated formations up to 3 mm long, tilted in the flow pressure increases to a maximum. Wave emission occurs
direction. This is particularly evident in frame g, where the nonmonotonically, which is evident in the discrete nature of
flame and flow start to be accelerated again and the processi® compression waves and is caused by the “fluctuations”
become more intense. The deformations of the perturbationsf energy release due to the effect of variations of the surface
are easily explained by the fact that the drift of differentS of the flame front, as follows from E12). The surface of
portions of the wave during different stages of its develop-the front, in turn, is acted upon by the flow perturbations
ment depends on the velocity distributiotfZ), which in-  propagating in the cross section; this also gives rise to fluc-
creases progressively with distance from the wall. A modeltuations in the energy release. It is a unique wide-band self-
ing of the propagation of the wave lay@) in the flowv (Z) oscillation process.
near the wall gives precisely such a perturbation contour. Let In exactly the same way a slowing of the flow is accom-
us add that acceleration of the flow produces additional companied by a pressure increase near the wall and by wave
pression waves which, forming a newZ) distribution, in-  emission. Therefore, the velocity profil€Z) develops when
tensify the boundary processes. the flow and waves interact. This, in turn, is a forward wave
It becomes obvious from the foregoing analysis of themoving along the wall. The wave arriving from the second,
results of the schlieren cinematography that the condensa&pposite, wall and after that the secondary and reflected
tions near the walls serve as sources of flow perturbationsvaves, arising at the first wall, also play a role. All waves
The question of the mechanism of formation of the condenhave different amplitudes and orientation. Therefore, in ac-
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cordance with Eq(11) the reflection conditions for them and simple (and shockwave, then the small-amplitude approxi-
individual portions of them are different. As pointed out, the mations are sufficient for describing the action of perturba-
role of the secondary wave is evident over short distancesons near the walls on the flow. It follows from a compari-
near the walls, whereas the forward and reflected sphericalon of the energy aspects of the combustion and the
waves not only take part in the formation of the sourcedeceleration of the gas by the wall, and also from the fact
Fs(X,Y,Z,t) and the profiley(Z) but also produce a fluctua- that it is hard to detect perturbations in front of the flame in
tional field in the flow itself. Then the process is repeated forthe flow, that they have a small amplitude and the proposed
each reflectionwithin the limits n=<m) but with a smaller approach is justified.
intensity.

Due to the influence of this interaction the initial 5. CONCLUSION
smoothness of the deceleration process breaks down very
quickly even for the case of an ideally smooth wall, and local =~ The experimental data and the analysis of the conditions
“flickering” perturbations form in this zone. The boundary for the propagation of a sound wave in the gap between two
perturbations themselves are sources of waves and, completalls that have been presented above make it possible to
ing the cycle of continual renewal of the source propose reasons for the nature and mechanism of turbulence.
Fs(X,Y,Z,t), undamped fluctuations of the parameters inthe = Movement of the medium arises because of a pressure
flow are thereby maintained. The intensity of each wave fallgyradient, which when flow is established in a wall-bounded
off as they propagate in the gap, and when the flow paramspace sometimes does not have a planar front, and its total
eters are constant, the fluctuation field arrives at the steadynagnitude is composed of a set of compression waves,
state condition. The level of the fluctuations depends, alpropagating at different angles to the general flow direction.
other things being equal, on the intensity of the cyclic re-  Retardation of the flow by the wall raises the pressure in
newal process of the sourde,(X,Y,Z,t), which is deter- the boundary region. The pressure distribution throughout
mined by the average flow velocity value. the entire volume occurs by means of an emission of sound

The discussions about the boundary source of pressumgaves from this region. At a sufficient distan@@mpared
fluctuations and the mechanism for its renewal are confirme@ith the source dimensiopshey assume a spherical shape
qualitatively by the results. This process has not been invessince all directions of perturbation propagation in the me-
tigated quantitatively. It is clear, however, that if the emis-dium are equivalent. The equalization time of the pressure
sion of intense waves, formed during the burning, wasover the cross section is determined by the damping of the
consideret? on the basis of the theory of the so-called perturbation wave in the medium. This time is considerably
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greater than the propagation time of the wave at right angles The distribution dynamics of the perturbations over the
to the cross section and, especially, the time involved in thevall surface and with time is apparently supported by calcu-
interaction of the waves with the flow during formation of lation and it can be considered determinate. The problem
the velocity profilev(Z) in the boundary region. Wave itself, like the problem of the emission of compression waves
propagation in the flow causes fluctuations of the thermodyby a flame, belongs to the class of irreducibles. At the same
namic parameters, including the velocity. Near the wall thetime, the character of the flow at the center of the stream
velocity fluctuations become small, but the fluctuations ofmakes it possible to consider the fluctuations as pseudocha-
the other parameters, such as pressure and density, increastic and to use statistical methods for describing them.

The primary distinction of the flow state at the flow Within the framework of this mechanism, in which an
boundary is the interaction of the forward and reflectedalternation of phases dominates because of multiple reflec-
waves, in which the reflection process plays an importantions of the waves from the boundaries, an explanation of
role. Waves producing a pressure gradient and providing &urbulence properties requires no postulates whatsoever, and
longitudinal translational movement of the medium are in-the role of such parameters as the Reynolds number, viscos-
cluded above all in this process. Forward spherical wavedy of the medium, wall roughness, the cascade process for
follow from them, which appear during the slowing of the the transfer of energy from large-scale fluctuations to small-
flow at the start of its motion. They propagate over the entirescale, the spectral characteristics of the fluctuations, the tur-
flow and, reflected from the opposite wall, return to the re-bulence of the inflowing stream acquires a natural physical
gion where they appeared. A thin layer of these waves movesxplanation.
along the wall without reflection but they interact with the
higher density medium with the distribution(p). The IL. Prandtl, Mechanics of Viscous Liquids. Aerodynamies. by V. F.
spherical reflected and secondary waves take part in the in-Durand(Oborongiz, Moscow, 1939p. 47.
teraction during the reflection of each wave. The secondary L+ D- Landau and E. M. Lishitzluid Mechanics 2nd edition(Pergamon

. . Press, Oxford, 1987; Nauka, Moscow, 1986. 3.
wave damps out quickly and does not exert a strong Inﬂu'3H. Schlichting,Formation of TurbulencéForeign Literature Press, Mos-
ence on the velocity fluctuations in the flow. cow, 1962, p. 7.

As a result, a pressure fluctuation field is formed in the :A- N. Kolmogorov, Izv. Akad. Nauk SSSR, Ser. F&.3 (1972.
boundary region. The extremal points of this field form per- 62: gf"ﬂgn?;du':s'ga;if‘iﬁmg“; ('\ig% '?2?/ 15;;31'962&11 429
turbations which create a velocity fluctuation field at the cen- (1974,
ter of the flow as well as a pressure fluctuation field at the’Mm. I. Rabinovich, Usp. Fiz. Nauk 25 123 (1978 [Sov. Phys. Usp21,
boundary of the flow, forming the velocity profite(Z) and 8ﬁ|43A\(13(7)?63]ﬁt2 Uber die Enstehung turbulenter Flussigkeitsbewegungen
sgpporting the undamped cyclicity of th.e process. Its ime_n_ uﬁd "[ber denYEianuss dieser BeV\?egungen bei der S%romung dt?rctho-
sity depends on the average flow velocity and the damping nren. Abh. theor. PhysikTeubner, Leipzig, 1907 p. 43.
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The effect of an intense electromagnetic field formed by the superposition of a constant magnetic
field and a laser-type field on nucle@rdecay and on pair production by twgrays with

different polarizations is studied. Time integral representations are obtained for the total
probabilities of these processes without restrictions on the strengths of the fields making

up the configuration. Despite the different nature of these reactions, in the nonrelativistic limit
these expressions contain similar dependences on the field characteristics and the
differences reduce to different power-law singularities in the behavior of the integrands at zero.
At low fields, complete asymptotic expansions of the probabilities of these processes,

including perturbation theory terms and oscillatory field contributions, are obtained in terms of
parameters characterizing the fields. It is shown that the oscillatory corrections can be
enhanced owing to the effect of a combination external field. The analysis of the probabilities of
the various processes given here in terms of nonlinear functions of the field is illustrated

by numerical calculations and graphs. 1®98 American Institute of Physics.
[S1063-776(198)00301-

1. INTRODUCTION In the limit y<<1 the effect of the field shows up as

) ) ] corrections to the probabilities for the unperturbed process;
As is well known, theoretical studies of the decay andhowever, here a nontrivial field dependence is also

creation of particles in intense external fields have been Unbossibled® 1213181t should be noted that a different type of

der way for a long time(See Refs. 1-7 and the nUMerous g|ectromagnetic field acting on the process generally leads to
papers cited thereThe distinctive feature of these processes, itferent value of the parameter characterizing the field.
is that they take place in the absence of a field. Thus, thgy, s in particular, in the case where a constant magnetic

contribution of an external field to these processes shows Upa|q H affects decay, the fundamental parameter has the
through invariant parameters, which, besides the field chag, ’

acteristics, include the maximum energy transferred to the
product particles. It is easy to see that, from the standpoint of o
possible experiments for isolating the effect of the field XH™ H/Hozgv )
against the background of the characteristics of the processes
in vacuq studies of nonrelativistic reactions are of the great-where u=eH/m?, and the characteristic field in the nonrel-
est interest since the role of the external field becomestivistic case is given By'°
greater as the energy is lowered. 5

Based on studies of the effect of plane wave fidtdsn H.= 2l m )
the decay of elementary particl&s®it has been established 0 e’
that in the nonrelativistic limit at sufficiently low frequencies

the fundamental parameter is The difference between the parametés and (4) can be

shown qualitatively based on the following simple consider-

xe=F/Fq, ) ations: in the case of a constant plane wave field, with an
electric component among its constituents, the paramgeter
where the characteristic field is is given by the work done by the field over a distangé (
) \q is the minimum De Broglie wavelength of the decay elec-
Fo=(2l )3/21, ) Ijron) divided by the maximum kinetic energy released in the
e ecay.

. In a constant magnetic field, which performs no work,
e andm are the charge and mass of the electron, laisdhe ¢ (gle of the analogous parameter is played by the ratio
maximum kinetic energy of a decay electron expressed iRyt the energy of the shift in the frequency of the oscillations
terms of its rest energyHere and in the following a system of the charged oscillator in the magnetic fidld,
of units withA=c=1 is used. In the regiony>1 the effect

of the field dominates, since in this case the processes de- eH

velop over characteristic times and lengths which depend on Ae= >m’ ®)
the field and their probabilities have an essentially nonlinear

dependence on the field® to the maximum energy of a decay electron.
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In the case of an electromagnetic wave field, the paramedependence in the integrands. This was explained by a dif-
eter (1) is supplemented by a parameter containing the freference in the phase volumes of the product particles from

quencyw of the field!~2° these reactions.
We have recently investigat¥tnuclear 8-decay in an
eF electromagnetic field with a complicated structure. The main
&= wm(21)12 ®  result of that paper was a relatively compact integral repre-

sentation for the total probability g8-decay taking into ac-

This parametet6) can be interpreted as the ratio of the so-count the effect of the superposition of a constant magnetic
called oscillator momentum of the electron in the whate  field and the field of a plane electromagnetic wave propagat-
the maximum momentum acquired by the electron duringng along it. It was also shown théfethat in the nonrelativ-
decay. The difference in the field parameters defined in termistic limit the total probability can be represented in the form
of the energy or momentum shows up additionally in the facof a single integral with respect to time, essentially without
that the quantitieg1) and (3) are proportional to Planck’'s restriction on the strengths of the fields included in the su-
constant, while¢ is a purely classical parameter. In view of perposition. Previously we have obtained the probability of
its definition, the role of can show up noticeably prior to electron-positron pair production by an external photon
integration over the momenta of the charged particles ofropagating counter to an electromagnetic wave in a constant
these reactions. In this sense, the dependence of the promagnetic field. The orientation of the magnetic field coin-
abilities of these processes on the param@gis limited by  cided with the propagation direction of the wave and the
their differential distributions, but the total reaction prob- probability of the process was written in the form of a double
abilities are determined exclusively kyt or by a combina- integral, in which one of the integrations corresponded to the
tion with (6), which indicates an explicit frequency depen- Fock-Schwinger proper time representation.
dence which vanishes as goes to 0. Thus, the strong The single-photoe™ e~ pair production reaction studied
dependence of the total decay probabilities in an intense ran Ref. 19 can be generalized to the case of two-photon pair
diation field on ¢ reported in some papéfs® was com-  production, so it becomes possible to make a direct compari-
pletely wrong, as first pointed out in Ref. 8. son of the probabilities of creation of a nonrelativistic pair

Evidently, for electromagnetic waves with a more com-and of nuclear3-decay in an electromagnetic field with an
plicated structure, the number of field parameters can onlgxtremely complicated structure.
increase. Thus, in particular, in the case where decay pro- In this paper we study the probabilities of processes ow-
cesses are affected by an external field containing both img to interactions of a different nature, but their field depen-
constant magnetic field and an electromagnetic wave ¥eld, dence has a number of similar features. We have studied
the probabilities of these processes also depend on the pexpressions for the probabilities of both allowed and forbid-

rameter den B-decay processes, as well as of pair formation by pho-
tons with different polarizations. The analytical expressions

eH for the probabilities are analyzed over a wide range of varia-
o=1- Mo’ tion of the parameters characterizing the field, and a number

of asymptotic expressions are obtained which illustrate the
which represents the relative detuning of the wave frequencgxistence of “monotonic” as well as “oscillatory” contri-
o from the cyclotron frequency,=eH/m. butions to the field dependences.

It is also extremely important that in electromagnetic It should be noted that forbiddes-decay in an intense
fields F<F,, besides power law expansions in terms of theelectromagnetic filed has been studied previously in Ref. 15,
small parametely, the total probabilities also contain so- which refers to yet earlier papers devoted to this topic that
called oscillatory contributiorts®9131620wjith an essential turned out to be wrong. In this paper we make a detailed
singularity at the poinE =0 that was first pointed out in Ref. analysis of the effect of a strong electromagnetic wave on the
6. Such behavior by these processes requires the use of adhique B-transitions of the first forbiddenness class and
equate methods for studying them, since these effects cannanake estimates involving two possible mechanisms for the
in principle, be obtained by perturbation theory techniquesexternal field interaction associated with direct transitions of
In this regard it should be noted that, despite the popularitghe nucleus from the initiali§ to the final § ) state, as well
of accounting for the effect of external fields using the Furryas for a transition through a virtual nuclear state. The second
representation, each specific form of the field configurationmechanism involves the removal of the prohibition owing to
in general, requires the development of specific techniquethe external field and depends strongly on the energies
for studying it.(See Refs. 1-8, for example. Ae,=e,—¢; or Ae,=e,—¢&¢, Where the excited states of

A study has been matfeof the formation of a nonrela- nuclei 1 and 2 have a momentum and parity that permit an
tivistic e*e™ pair by two y-rays in the presence of a circu- allowed g-transition. The quantitieAe , are actually on the
larly polarized wave and of low-energy-decay in an elec- order of tens or hundreds of keV and can be dominant in a
tromagnetic field with the same structure. These processessonance situation, when the energies of the wave photons
shared a dependence of their reaction probabilities on thare comparable to the transition energies. If the field is not
field characteristics prior to integration with respect to timeresonant, in the case of real laser intensities the main contri-
in the time integral representation. The differences showedtution to the total probability is from transitions of the first
up only in different power law dependences for the timetype. Retaining the approach used to examine forbidéen
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decay in Ref. 15, we have evaluated the effect of direct trantions of the y-photons are different, respectively. Equation
sitions owing to the effect of the constant field on this pro-(11) also retains its significance for=9/2 and v=11/2,
cess. which correspond to allowed and forbiddgrdecay in these
cases.
For the case of allowe@-decay(r=9/2) with a small

2. PROBABILITIES IN A MAGNETIC FIELD AND IN A WAVE energy release, the probability can be written in the #8rm

FIELD
The earlier work® examined the formation of electron- W9/2=Gg/z( ﬁ) f %’;/ﬁ e'Sdp, (12
positron pairs by circularly polarized external photons with 2/ )= p
energyw’ propagating counter to the photons in a circularly\where
polarized wave in a uniform constant magnetic field. To de- . .
rive expressions for the probability of this process it was =2 ﬂ (x(i— 1) N 1—§ sin x sin(x &)
assumed that the wave propagated along the magnetic field. NS [T € o sinx(1-9)])"
If we assume that in an electromagnetic field with this conote that in these integrals all the singularities are shifted
figuration a photon” propagates counter to the photef, iy the upper half plane, i.e., the parameters receive a small

then after the required calculations and transformations ofiegative imaginary contribution which subsequently goes to

the parameters, the basic formula for the probability of,q g in the limit.

single-photon pair creatié?ly_ields an analogous expression It is also easy to see from a comparison of E&S, (10),

for the two-photon process in the form of a double integralang (12) that in the case of an electromagnetic field with a

Let us discuss the case of pair formation near the thresm'%mplicated configuration, we are dealing, as before, with

assuming that very similar expressions for the integrands in the time repre-
o' +o"=2m+Im, (7) sentations of the probabilities for the different processes.

h bef h . Kineti These analogies become even more evident when we study
where, as befordm represents the maximum Kinetic energy y,q yarigus limiting values of the field parameters upon

released in the process, i.e., we shall consider the nonrelatiyz . .1 e probabilities depend
istic limit in accordance with <1. In this case we can take Thus, in the limitu—0 5_71' Eq.(8) corresponds to the
the integral over the energy variable essentially without re- robability of formation of a nonrelativistie* e~ pair by
strictions on the strengths of the electromagnetic fields WhiciEN

K h i . h babilitv of bai q 0 y-photons with the same polarization in the presence of
make up the con |gL_1rat|on. The proba ||_ty ol pair produc-4 circularly polarized wave and coincides with a similar ex-
tion depends significantly on the polarization of the

h Th lculati for th : hich the circul Ipression that was studied in detail in Ref. 13. There an anal-
photons. The calculations for the case in which the circu aogy was noted between the probabilities of pair formation

polarizations of the photons coincide yield the probability and low-energyB-decay of tritium in the field of an electro-

= coflpup) o magnetic wave. The field dependence under the integral sign
Wap= GS’ZMLQC —rz €7, (8  was common to both, while the difference reduced to the
characteristic replacement of the square of the chageyy
where 2e? and a change in the power-law singularity at zero on
2] 5 1 integrating with respect to time (* for pair production and
S=13 gz[ x(?— ZTﬁ) t~92 for B-decay.
It should be noted that similar substitution rules for the
2(1—6) sinx(2— 8)]sin(xd) limit u—0, 5—1 (which corresponds to the complete elimi-
5(2—6)2  sif2x(1—9)] ] nation of the constant magnetic field from this configuration

can be obtained in Eq10), but the power-law factor in the

PA o) eH time dependence for the case of pair production Jy
X=% A= BT ©) photons of opposite polarization is different:
and the remaining notation has been introduced before. Wee G A 2 0= dx 2 (1—0e2
For y-photons with opposite polarizations, the probabil- 5272502 5 L xR EXP Y X( &)
ity of pair production is given by
. Sir? x
N e'S + 282 } (13
Wsjo=Ggpou” | %S p) dp. (10
If we make the replacement
In Egs.(8) and(10) the constants in front of the integrals 5 o
are related to the corresponding vacuum probabillfigér) 28— ¢,
for the processes: then the formal dependence of the exponenf oemains the
i(v—1)m [1-v same as in the case gfdecay in the field of a circularly
GV=WV(O)eX;{ 5 } T (1=7)’ (11 polarized wave. Note that, as before, the singularity in Eq.

(13) at zero is bypassed below.
where v=3/2 andv=5/2 correspond to pair production by Another limiting case,£—0, which corresponds to
photons with the same polarizations and when the polarizaeliminating the field of the electromagnetic wave from the

13 JETP 86 (1), January 1998 V. N. Rodionov 13



superposition of electromagnetic fields, yields the probabili- otlict
ties fore*e™ pair production by twoy-photons in a constant o
magnetic field. Here if we place no restrictions on the mag-
netic field strength, Eq€$8)—(11) yield

*® CO .
W,=G,u J U1 oy, (14)

wherev=3/2 corresponds to pair formation by two photons 0.87
with identical polarizations anad=9/2, to f-decay. In this
case a qualitative convergence of the expressions is attained
by making the replacemept/2— w or substituting 2 in the 0.61
case of pair production in place effor g-decay. It is inter-
esting that in both the wave and the magnetic field, a transi-

tion to the pair production process leads to a formal increase 0.4r

in the interaction between the charge and field; however, the

degrees of increase are different. L]
Two-photon pair production in a magnetic field has been 0.2

studied previously?~2* The quantity of interest in this case,

however, is not the probability but the cross section for the

given reaction. Retaining the nonrelativistic approximation 0
(I<1), we obtain the following cross section for pair pro-

duction by photons with identical polarizations from Eq. FIG. 1. The cross section for pair production by twgphotons with iden-

(14) tical polarlzatlons;rH normalized to the vacuum cross section as a func-
tion of the magnetic field strength= /1.

0.1 02 03 04 0S5 x

© CO .
Mro\/—e—Sme %L;)elpldp, (15)
wherer is the classical radius of the electron. w? w? u® 14348
; : . +_ _+

The analogous expression for pair production by two 0-=0g{1- 122 + 484 326 + 12808+"'

y-photons with opposite polarizations has the form (22)
- dp - The first term in the expansiof1) coincid ith
—_,2 2 3ila ipl pansio(21) coincides with a
o =rgutme o p2 sir(up) e (16) result of Ref. 20 obtained by other means. It is extremely

o ] ) interesting that the root singularity in the oscillatory contri-
~ Inthe limit u<I, on expgndlng cot at zero and includ-  pytion noted previous)? can be studied numerically using
ing the contributions to the integral from th_e pobes 7n, the approach we have developed. Figure 1 shows a plot of
wheren==x1+2,.., from Eq.(15 we obtain o} /ol as a function of the parameter= /I, which mani-
oh=at+ot, 17) fe_sts the gxplicit oscillatory behgvior of the cross section
with a divergence at the pointd/2u—n—0, where
where n=1,2,--. For these values of the parametgrand| the
- o o product electron and positron have a zero component of the
2 I'(3/2)27B (ﬁ) (19  Mmomentum along the magnetic field. In this approach we
K=o (2K)!IT(3/2—2k) \ | ' have neglected the Coulomb interaction betweerethand
e, but under the conditions described here it turns out to be
the most important process, and the behavior of the cross
)1/2 | section under resonance conditions requires further study. In
fonl)

and

+
+_Y0
ol=—F

T2

2u

—_— (19 Ref. 20 the cross section for pair production in a magnetic
| field was estimated taking into account the broadening of the

Here theB,, are the Bernoulli numbers;(1/2{v}) are the Landau levels owing to synchrotron radiation. Note, also,

generalized Riemann zeta functididsju! is the fractional that at the points 2/1 —1/n+0 the cross section;/o; is

part of the numbey, finite and takes on a decreasing sequence of values with a
. 21 minimum of 0.25 at the pointe=1/2, after which the oscil-
oo =271yl (200 Jations in the cross section cease and a linear rise is observed

with increasing fiel
is the pair production cross section in vacuum in the nonrel- ith increasing field:

ativistic limit (the Breit-Wheeler cross sectiprando’ and w
o~ are the so-called monotonic and oscillatory contributions o =0g o1 (22)
to the cross section.
Limiting ourselves to a few terms in the expansids), When the photons have opposite polarizations, the easily
we obtain derived expansion
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1 - 1—-2n)22"B,, o.lg
S Y T @ T

n=0

in Eg. (16) yields
op=0_+o_, (24) 2.0

where

2°"(1-2n)By, 2n
( n)B, (Iﬁ) , 25 sl

"::"5,20 L2 Gy Ea=2n)

and

-4l

The notation follows the same principles as that employed
for ot in Egs.(24)—(26), with

oL : "

8 .
oy = w2132 27) 0.1 02 03 04 05 x

3
.. . . FIG. 2. The cross section for pair production by twghotons with oppo-
Retaining only some of the terms in the expansion in Eqsite polarizationsg, , normalized to the vacuum cross section as a function

(25), we have of the magnetic field strength= /1.
2 4 6 8
) 3u® 5Su° 231
“a2 T e oge " Ius T
41 80l 96l 1280
The expansion term x2/12 in Eq. (28) was cited previously WhereN=[1/2u] is the integral part of the number2..
in Ref. 20, in which the oscillatory contributio(®6) was 1hese last formulas indicate that, asl reaches 1/2 the
also calculated. However, that reBidoes not contain the Cross sectionr™ increases linearly as the field rises, while
term owing toZ(—1/2) {v}), whose contribution is decisive ¢ 90es identically to zero.
whenu reaches or exceedli£. In this case, the cross section

o~ goes to zero, as indicated by the plot ®f/o, as a
function ofx= /1 in Fig. 2.

(28)

o_=op|1

Asymptotic expressions for the probability gfdecay in W/ ¥ (0)
an intense magnetic field.e., the caser=9/2) were calcu-
lated in detail in our earlier pap&tHere we limit ourselves 7-107°
to illustrating the field dependence \bfy;,/Wy5(0) in Fig. 3.
The dotted curve corresponds to a calculation with rough 6.10-%
accuracy. Increased computational accuracy leads to an ex-
tremely interesting stepwise dependence. This kind of behav-
ior in the total probabilities for the processes in a magnetic 5-107°r
field is a consequence of includifwith a reduction in the
field strength for constant energy release during deeadly 4.10-%
the new channels and new partial channels characterized by
an increase in the number of Landau levels.
In this regard, it is interesting that for pair production 31077
processes by photons with different polarizations it is pos-
sible to obtain expressions which explicitly take into account 2.10-%
the appearance of new contributions as the field strength is
reduced,
N L 1-107%
N I
THZ 00|51 T T nzl (1—2un/)T2)’ 29 T
and 50 -48 -46 -44 -42
- - 3M2 N n FIG. 3. 'I;he p_robabfilitﬁWH of B-dgc?yhr;i):maliz/ed tohthcfj vachjJum prot_JabiI-
op=0, 1z nzl W’ (30 Ltgugi 2Stiunr1;tt|:.n of the magnetic field=log(u/l). The dotted curve is a
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3. PROBABILITIES FOR LOW MAGNETIC FIELDS WITH u?
ARBITRARY PLANE WAVE FIELD STRENGTHS W= Ggl 1’2)(1’3( |~ ~ 3y7,m 7 73 L1z
The region of relatively low magnetic fieldg,<I, is ut
characterized by the fact that in this case the main contribu- ~ 255,50 |(5,2)), (36)
tion to the integral$8)—(10) is from the neighborhood of the X
zero point. Given this, we expand the integrands, retainingvhere
terms up to and including’: ) )
5 | 2iA \/_q>2+ O} @37
2l -32= 523 1 | VY -
SEY X % X3+ EOCA+EXTB; (3D) Y W
—io1/3 ’
wherei=1,2. S, applies top-decay andS, to pair produc- |1 =127"ADDY, (38)
tion processes. The functiods andB; depend on the mag- and
netic field and wave frequency, which are combined in the Al _—
parameters: |(5/2)=7 (4yd D' —D?), A= 21/3\/_, (39)
2 45 1 28 45 4 7
A== et s s A= st 2 B2 while ® and®d’ are the Airy function and its derivative with
respect to the argument-(y), with y=1/(2y)?3. Thus, for
and the probability of pair production by twg-photons with the
284 48 2352 485 2 same polarizations we have
B1= " 945" 315 945 ' 315 945 Wi50) 2 ut
Wa=———{Kg — 32 K+ 90% Kot (40)
s . 685° 28457 (325 32 23 ™
27315 315 945 ' 189 945 33 where
It is quite remarkable that in Eq31) the terms proportional N 5 P2 o1 )
to x® do not contain any dependence on field parameters Ko = Vy® +Ty’ K1 =Y P, (41

other than£?. Beginning withx®, besides the dependence on

£, the parametes, which characterizes the dependence ofand

the probabilities on the frequency characteristics of the com- 1 2

bined field, “comes into play.” If we retain only the terms Ky =— ( \/3_/(1)2— — q)cb’)_ (42)

up to x3, inclusively, in the exponent while the remaining X X

terms are written in the form of an expansion, then we carNote that when the oscillatory terms are neglecteq-asd

obtain a series which contains the limit of a constant crossed

field as the zeroth approximation. Ko Kio Z, K2+—>1—5 T, (43)
Writing the trigonometric functions in the preexponen- 4 8

tial factors in the integrals of Eq¢8)—(10) as expansions in  anq Eq.(40) yields the expansioii21) characterizing two-

the neighborhood of the zero point yields yet another seriegnoton pair production in a magnetic field.

containing other parameters. It is important that both these  gimjjar calculations for=>5/2 andv=9/2 give

and the other estimates of the integr@s-(10) can be made

2
assumingu<<1 without restrictions on the parameterSince Wern= Gl 20| | i M |
the expressions obtained by simultaneous expansion of the 52 92 X| (=527 3jZ,aB 1(~1/2
exponential and trigonometric functions are so cumbersome, 4
we shall do this in two stages. First, we examine the contri- + I (44)
: : . . 483132 (»
butions to the integral of Eq8) owing to the expansion of 1514y 2 52
cotx about zero, retaining only terms up to and includilg  gnd
in the exponential. In this case the integ@) can be written )
in the form Wz Garl 7273 | __*
9/2 92l X (—9/2) W (—5/2)
© dz
Wan=God [~ S exifi(zx - 2°3)] -
o _Wl(l’z)}’ (45)
2z wtzt X
X 1_ 3| 2)(4/3_ 45| 4X8/3> . (34) Whel'e
4/3 12
Using the notation 27A ¢ /
9 |(—5/2):—3— Wd2+ —— xdd' |, (46)
o X \/9
|(V)=J dz Z exdi(zxy 2°-2%13)], (35) o2
- | 1 =AD2, | gm=A2" 1Byl Jyd2— —|.
for the probability of pair production, we shall have (-12 (32 &
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P2 y=1/(2x)%3 Thus, it is possible to compare directly the
l(—a= W Vy®? 1 + T results obtaineq by differ_ent methods for studyi_ng decay pro-
y cesses and pair production in the overlap region for the pa-

rameters of a purely plane wave field and for the parameters
characterizing the superposition of a wave field and magnetic
field. Here an analysis of pair production by two oppositely
polarized y-photons, which was not discussed in Ref. 13,
may be of independent interest.

15
X 1+ZX2)—XCI)®’ .

Finally, for the probabilities withy=5/2 and v=9/2, we

obtain
) . Without dwelling on the details of these rather lengthy
W (0) ) ot ot transformations, we write down the final results in the form
s~ | Ko~ 5z K1 =5 K (47)
2 T in.2n I'(3n+1/2)
and (=) 20y EJ DX [F(llZ)F(n+1)3”
Wo/x(0) 35 p 2 [y N
9/2= o o1 KaT o157 Kep N 2 2 -
(48) azp SIN 3x X@n+1 COS3X ) (50
where o 3
2 o2(—y)= 03 (~ume 14 > X*(6n+1)
5 2 b n=0
=x 2| Vy®@?-—=1,
Jy paqy| L3412
2 @D oy Drane

P
Ko =Ki= Jy®2+ — — ydd', K =K,= yd?

\/)—/ 9 2 3x
2 - a2n+ZX2dn sm§+7
21 P’

Ko= \y®? 1+ o x|+ —= |1+ x| —x@”. 9 2
Note that in the limity—0 when the oscillatory terms are
neglected, Eqg47) and(48) also lead to the expansion for a and
purely magnetic field(See Eq.(28) and the corresponding w
formula in Ref. 16). D (= T _1yn.2n

P(-y)®'(-y)=5 2 (1)
4. ASYMPTOTIC ESTIMATES OF THE PROBABILITIES FOR o '(3n+3/2)
x<1 X T (12T (n+1)3"

We now consider the situation in which, along with con- 3 2 9
tributions ~ (u/21)%¢, wherek=0,1,2; - -, to the process ~3 xb, sin 3. |ant g X20n>
probabilities there will be contributions owing to the expan- X
sion in terms of the parameters of a plane wave field. This 2
corresponds t@g> 1 and, if we restrict ourselves in this case Xcosg , (52)

to the main contributions from the expansion in terms of _ _
/2l and expand the exponent in Eq8)—(12) beginning ~where we have introduced the notation
with terms containing the paramet&rthen, for example, for

o . 2 1 4 2
the probability of 3-decay we can obtain bn=§ Aynsq—| 2N+ 3)2n. G322 n+ 3)
N2 e dx 21 £x8
Wo=Gar 5 I X | X 16 28 16 2
_Oc dn: ? n+§ Aontr1— 3 n+ 3+8n aon ,
'2| 205 7
X|1+i ~ E(X°A1+x'By) |. (49 2 2
fa=— 8n+§ aZn+§a2n+1-

The characteristic integrals in E9) can also be re-
duced to Airy functions, whose properties in this limit have
been analyzed in detail elsewhéfdn our earlier papéf a On=" (3n+2)(n+1)az. 1,
method was developed for investigating similar integrals for
the case of3-decay in an intense electromagnetic field basedand the coefficients,, are calculated using the formdfa
on using integral Mellin transforns’816:2% Using that

2
method, we can obtain closed formulas for the asymptotic _ Er:n (2k—1)!! I'(3m—k+1/2)
behavior of the bilinear combinations of Airy functions =) 32Mk2m—k)! (2K)!! I'1/2)
D*(~y), ®'*(—-y), andd(—y)d'(~y) asy—», where (53
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With these expressions it is easy to calculate the Wj)o 1, 105 . 25025 . A, (105
asymptotic variations in the probabilities of the processes,\m:1+ g X~ 128X + 1024 X + ? P X
being studied here. In particular, for the casegsflecay,

4

Egs.(31) and(49) imply that 45045 6) B, 10395 | 2
————Xx°|— =1 —=z— x°+cos—
4 256 & 28 3x
Wo»(0) 2 2 105 x
92~ W2 1+ - P+ 4 By g 1, 1225 , 57482425 . A,
2XT 576 X T Tgo5328 X T &2
15 ) (1)12 XZ
X 5 1+0| — XD’ 17 1225 ) B[ 59
y 24X 20736% | " & | 24X
105y> 105y ) 1925 2 [ 17 ., 199115
X| 1+ "5 Aj+ — "2 By 1. (54) 742 L L
8 ¢ 8 ¢ T 20736" || T3y | T 22X 20736
On substituting the expansiofB0)—(52) in Eq. (54), for the A, (1 35 86975 B,
limit y<1 we obtain X x*+ r (§+ ﬁ;xz— 995328X4) + I
Wy 35 35 352 105x*
Wos0) 18 X 128X |3 Xz A x| 5 oo ot e 58
912(0) ¢ 2~ 576X " 995328" ||’
6
+ 275)(_4 Bﬁ(g‘:’le_ @SXG Note that, as in the case gfdecay, for6=1 Eq.(58) yields
128 ¢ 16 1536 a result that characterizes the effect of the electromagnetic
35,4 175 v4 wave field. These corrections to the probability for the un-
X X o .
"2 1+ 51 & Bl) perturbede™e™ pair production process by twg-photons
3 3 with identical polarizations in this limit in the first terms of
2 3115 . 105 x° the expansiorimonotonic contributions up tg*/¢2 and os-
Xsin 3y aal 64 X + 16 &2 A1 cillatory to y) also agree with the analogous results from Ref.
13. It should, however, be emphasized that the transition to
105 3 2 the pair production case is characterized by an enhanced field
T By €oS3y (59 effect owing to the specific features of the integral depen-

] N dence in Eq(12) compared to that in Eq8). This shows up
Note that foré=1, which corresponds to a transition to the y,rqygh the fact that the oscillatory contributions exceed the
case of the field of an electromagnetic wave, &) yields  hertyrhation theory corrections, as noted in Ref. 13. Includ-
an expression which reproduces the results of R(zf. 13 in thxg the total field in this case leads to a still clearer demon-
first terms of the expansiofup to and includingx®). For  ggration of the possibility of separating the oscillatory contri-
fixed values ofé equal to 1/2 and 0, Eq55) transforms o signs; since it follows from Eq(58), in particular, that for
the analogous expansions qf Ref. 16. Here we point oyt themwg the term proportional to sin(243 can, in general, be
for |8|>1 the parameters increase as> with magnetic dominant.
field, while theB; increase as*. This may mean that for Similar calculations for the case of pair production by

| 8| = & the main contribution to the oscillatory terms will be two photons with different polarizations yield the result
determined by corrections containing the frequency charac-

teristics of the field. Ws)o _ x> 35 4 5005 6 A, 45 4
By analogy, for pair production we obtain Ws(0) “ g " 128X T 1024X + AT X
~ Wy0) J. A By (7, 1] @2 10395 |\ B, 2835 2 [35
32— = \/y(l) 1+2—§2—? ZX —z +Ty -‘FWX +?mx +COS§ 1—6)(
805805 . A 3 25
A, B, 3A, B, _ 805805 . 2(__ LB 5
_ 2 P2 (202 P2 Xt = X X
9625 B 3 35
and _ 5|, 22(_2 =Y 3
663552% )+ & ( 4 X" 382X
Ws/»(0 3A, x*> 21B, x?| ®'?
= Vel 0) &@2(1—72%(2—%%%— 80425 ) 2[ 3, 3745
Wy 663552¢ | | TSNz | T2 X T 388 X
158, xz) ( 3A, 382) A, 15 575 B,/ 35
X1+ ———"%|—x®P0'| 1—- =—=— =% . 222y U0 A 22 2T 2
g & X 28 2¢ M= ( 16X " 13824X )+ g“( 16X
(57 . 665 5
When y<1, Eq.(56) yields 13824% || (59

18 JETP 86 (1), January 1998 V. N. Rodionov 18



W/, W/ Wi

1.2

102}
LI

1.00
1.0 I
0.98
0.9} i
0.8 0.96
0.7p 094}
0'6:' 0.92
i F
05 . N N 090’ N N L L L
-1.0 -0.5 0 0.5 1.0 08 -06 -04 -02 O 0.2
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3. 1(3).

2 212 2
A comparison of Eqs(58) and (59) reveals clearly the 2 “H ﬂ: H_ (64)

decreasing oscillatory field dependenge<1) of the prob- W BT B

ability for »=5/2 compared to'=3/2. Thus, in particular, in - Thus, in this limity is independent of the frequency charac-
the limit 6—1 (electromagnetic wave fieldve can see that teristics of the field, but is determined by the ratio of the
if the main term characterizing the oscillatory behavior forstrength of the constant magnetic field to the field amplitude

v=3/2 is proportional to of the electromagnetic wave. From the standpoint of possible
1 2 .
— = x COS5—,
2 3x
%%, (0
then forv=>5/2 we have [
3 . 2 sk
—— x%sin— (61) i

4 3x°

Including the dependence on the characteristics of the total
field has shown that wheA?~ £2>1 the main oscillatory
dependence for=5/2 is concentrated in the term propor-

tional to I
1.3

3 A, 2 o
_ZX?COSQ. ( )
Figures 4, 5, and 6 show plots of the probabilities 120

W, /W, (0) for v=3/2, 5/2, and 9/2 as functions of the plane
wave field parametey for different values of §/£)2. It

should be noted that fd¥|>1 andé>1 a new parameter, 1
2 [
’}’2:5_2, (63 '
3 ol
arises which characterizes the complete probabilities of all 08 -07 -06 -05 -04 -03 -02
these processes. It is easy to see that| &1 the new d

parameter represents the ratio of twice the energy of the frqflG. 6. The normalized probability g8-decay,Wq,, as a function of the

guency shift of the charged oscillator in the magnetic field tOharametet = (2/3)log(2y) for different values ofy; y2=0(1), 10 (2), 10-5
the work of the field at the electron Compton wavelength, (3).
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experiments, there may be special interest in the region
E~H, where the oscillatory contributions increase and may
greatly exceed the perturbation theory corrections. A com-
parison of the probabilities for the processes with 3/2,
5/2, and 9/2 also shows that those with lower values afe
more subject to the influence of the field. This is also indi-
cated by the graph in Fig. 4, which correspondste™ pair
production by two photons with identical polarizations.
There is also interest in making an asymptotic expansion
of the probabilities for the different values efand y<<1
using Eqs.(40), (47), and (48). With the aid of the expan-
sions(50)—(52) it is easy to obtain a representation\Wf, in
the form of a series in powers of with coefficients that

( 35u?

1435.% ) , (105
~ 642 T 2211844/ X

16

13107%%) , 603575
+ 2 - x°

18432 1536
. 2 [ 35u° 1225u2

oS3, |9216% X | 7682

159005\ , 3115
_79626244)X “ 64 X (67)

With the aid of these formulas we can see that the ex-
pansions in terms of the parametgr&nd w/l are in com-

depend on the parametgr|. Limiting ourselves to the first plete agreement with the corresponding terms in the expan-

terms of the expansion, we have

sions in a constant plane wave field, as well as in a constant
magnetic field, taken separately. Furthermore, in E65.—

Wi, . w®  w* (1 35u% 77u*| , (105  (67) there are combination terms which in the monotonic
W35(0) 1- 1212 + 4812 §+ 9612 128%)X " \128 part of the expansion have a regular character with respect to
) 4 ) the parametey for all three processes considered here. The
n 5005 4+sini [:“_ i_ B oscillatory contributions to the pair production processes, on
5122 | X 3x | 2184 x* 722 the other hand, contain terms which are proportional to in-
11544 17 31152 verse powers of the plane wave paramegtetrl:
2
T 186624% | 24" 622087>X _3 M4( L S 2) 68
. ) P=2 T oo %3y T 2162 %" 3y
199115 2 | w1 M
* 20736 X | 70053, [WF* 612 and
4
s\ 1 [ 1 3542\ 1225 _3. “_(_L 2 1 i)
51g42) =+[-3 17222)X+ﬁ)(3}, V=5t 3 20,2 sm3X 240x COSSX (69
65) Thus, we conclude that in a combination field when the
allowable values of the parameteis<| andy<<1 are taken
) 4 ) 4 into account, situations may arise in which the oscillatory
Ws)» oM 3L+< _ }Jr Sut %) \2 contributions will predominate over the perturbation theory
Ws5(0) 41% " 8ol 8 32° 128* corrections, but the character of the enhancement in the con-
35 1115.2 45045 . tributions (68) and (69) is different from that of Eqs(58)
+(128 5127 ' 2048° )X and(59).
+sini{—ﬂ—4i—ﬂ—2+ w! 5. FORBIDDEN B-DECAY IN A PLANE WAVE
3x | 201% x* 41° 57604 ELECTROMAGNETIC FIELD
205M2 2, 3745 2 Forbiddeng-decay in an intense electromagnetic wave
( 4 11522 ) 384 x* +005§ field has been examined previousiTwo mechanisms for
the reduction in the decay half life of nuclei in an external
ut 1 [5u? 133u? 35 field were evaluated, one owing to an increase in the phase
~240% y "\ 4812 414727 X+ 16 volume of the states of the product electron and the other
owing to absorption by the nucleus of photons from the wave
B 227153) - 805805 5} 66) and a change in the selection rules for a forbidden transition
414722 )X " 13824 X into an allowed one. It was showtthat, despite a number of
previous estimatédin which it was predicted, for example,
and that the probability of the forbidden transitidh®Cd—113n
should increase by 12 orders of magnitude, at the currently
W), 3Bu?  Tut 35 35u2 attainable electromagnetic field intensities the removal of the
Wo(0) =1+ 482 7694 +(§— 3842 prohibition by the external field would not lead to any no-
ticeable reduction in the half life of the nuclei. Nevertheless,
35u? , [ 35 122542 it was established that for forbiddghdecay the effect of an
+ W) Xt (@Jr 61442 external field on the product electron is more significant than
in the case of alloweg@-transitions.
2695“«“) 4, . 2 7ut In this regard, it is interesting to estimate the probability
~32768%)X "SN3, | T 7687 of forbidden g-decay in a plane wave electromagnetic field

20 JETP 86 (1), January 1998

V. N. Rodionov 20



for the case in which the frequency dependence is unimpor- W, o

tant. It is easy to see that in this limiw(-0) the main

contribution to the probability will originate in the influence
of the external field on the electron. If we limit ourselves to
the case of the uniqué-transitions of the first forbiddenness
class and assume that the interaction of the parent and
daughter nuclei with the external field can be neglected en-
tirely, after a number of transformations the probability re-

duces to a form that was studied in detail in Section 3:
9/2. 3 2i
Wi10= Gy X7 (12— 3 l(—52) s (70

where

2i
_ —2
l—11=— 9 ['(—5/2)_)( /3|(—9/2):|-

Substituting the expression$_s;) and | (_gp) in Eq. (70),
we finally obtain the following for the forbidde-decay
probability:
W, 1,40) 161 d'?
Wigo=——— [y ®? 1+ —= x?

=

+

4

X . (71)

155
1+ —- x?| — x®D'(1+35x?)

Using Eqgs.(500—(52), from Eg.(71) for y<1 we have

Wy 315 , 525 , 8575 2
Wy 0) — ' 8 X 128X T 1024X T3,
[ 315 , 26425 | 2 (1785
16X " 512 X ) T3 | T6a
s, 29904875 | -
X7 T1gaz2 X ) (72

The correction of ordeg? is consistent with the result ob-
tained in Ref. 15. The oscillatory contributions indicate a
similar field dependence for the probabilities of forbidden
and allowedB-transitions. In both cases the oscillations show
up only in terms~ x*. A comparison of the expansions of
W, for different values ofv=23/2, 5/2, 9/2, and 11/2 demon-
strates clearly an enhancement in the numerical coefficient of
x? with increasingv. Here, however, the contribution of the
oscillatory corrections decreases. Figures 7 and 8 show plots 10006k
of the probabilities of pair production by photons with dif-
ferent polarizations, as well as of the probabilities of allowed
and forbiddengB-processes, as functions of the crossed field 1.0004
parametery which also confirm our conclusions regarding I
the monotonic and oscillatory behavior of the probabilities

for these processes.

6. CONCLUSION

This study of different processes in external electromag-
netic fields with rather complicated configurations including
a constant magnetic field and a circularly polarized electro-

L ;. ) A

-0.5 0 0.5 1.0 t

FIG. 7. The normalized probabilitied/,, (curve 1) and W5, (curve 2) as
functions of the plane wave field parameter(2/3)log(2y).

over wide ranges of variation in the field parameters, almost
without restrictions on the field strengths involved in the
superposition.

1. The probabilities of these processes, which are differ-
ent in nature, nevertheless have a similar field dependence in
the time integral representations for the nonrelativistic limit.
The distinguishing features in this case essentially reduce to
different power law dependences for the functions of time,
t™7, in the integrands, where in the absence of a field we
haver=3/2 for pair production by two photons with identi-
cal polarizations,»=5/2 for pair production by twoy-
photons with different polarizations;=9/2 for allowed -

u{)/Z, 12
1.0010]

1.0008

1.0002

1.0000

L

-26 -22 -18 -14 -10

FIG. 8. The normalized probabilities gfdecay for allowedWy,, (curvel),

magne.tic wave prOV_ideS a basis for ia-r.lumber of conclusiongng forbiddenw,,, (curve2), p-transitions as functions of the plane wave
regarding the behavior of the probabilities of these processetld parametet=(2/3)log(2y).
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decay, andv=11/2 for the uniqueB-transitions in the first abilities for pair production near these points require special
forbiddenness class. These analogies make it possible tmnsideration, which with a more rigorous statement of the
study all these processes in an external electromagnetic fiefatoblem should, of course, eliminate these singularities.
with a complicated configuration via a single approach emWith increasing magnetic field fqe=1/2 the oscillatory be-
ploying integral Mellin transform3° havior in the probabilities and cross sections for pair produc-
2. In the case of sufficiently weak magnetic fields<| tion ceases and fqu>1/2 the cross section rises linearly for
the processes are mainly shaped by the plane wave field and=3/2, while when the photons are oppositely polarized
for frequencieso<Im the leading term is a field dependence (v=>5/2) their intersection cross section goes identically to
in a form characteristic for a constant crossed field. It should&ero.
be noted that this case has been analyzed in detail B&fore 4. The asymptotic expansions of the probabilities for the
for processes withv=3/2 andr=9/2. However, in an elec- processes witw=23/2, 5/2, and 9/2 fox<| andx<1 have
tromagnetic field consisting of the superposition of a con-been written in the form of series in powers pfvith coef-
stant magnetic field and a wave field, when the conditiorficients depending on the paramegefi. In this case, along
wy> o is satisfied, even when each of the parameters in thwith the combination terms, which are regular for all three
inequality is not large as before, the character of the fieldrocesses in the monotonic part of the expansion, the inter-
dependence can change significantly. In particular, for théerence contributions in the pair production processes con-
processy=5/2 it can be seen that if interference processedain terms proportional to inverse powersyok 1: ~ x =2 for
are of ordery? in a constant crossed field, then the combi-»=3/2 and ~ x~? for v=>5/2. This sort of behavior also
nation field leads to a reduction in the order of the correctiorindicates that in a combination field for certain values of the
in x by unity, i.e., it already shows up in termsy. A parameters the role of interference effects may be enhanced

similar reduction in the order of appearance of the oscillatorycompared to the case of a purely plane wave field.
corrections is also observed in the case of the process 5. The numerical calculations of the prObabi”tieS of the
v=9/2. In this case the reduction in the order of the depenprocesses with=3/2, 5/2, 9/2, and 11/2 shown in the fig-
dence ony is from x* to x°. It is known that forr=3/2ina  ures clearly illustrate the reduced contribution of interference
plane wave fieldy<1, the oscillatory correctionénterfer-  effects with increasing, which characterizes one or another
ence effectsexceed the perturbation theory corrections and®rocess and simultaneously leads to an enhancement of the
already show up in terms of ordet In the case of super- Monotonic dependences.
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Electric currents of excitations in the one-dimensional attractive Hubbard model
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We have calculated electric currents of various types of excitations in the Hubbard model. Both
spin and charge excitations carry the electric current. The electric charge is a continuous
function of the band filling and the single-site repulsion potential. 1898 American Institute of
Physics[S1063-776098)01401-3

1. INTRODUCTION U <0 and generalize some results to the-0 case.

. i 2. PROPERTIES OF THE MODEL
Electron—electron interactions have a great effect on © SO ©

properties of one-dimensional systems. This results in criti2.1 Attractive interaction
cal behavior atT=0 with algebraic decay of correlation
functions. The particle momentum distribution differs from ag i
Fermi-liquid step function. As distinct from a Fermi liquid,
such systems are called Luttinger liquids. In the framework _ + .
of the one-dimensional @) Hubbard model with attractive H= ,E(, {€),0Ci 10 XRUIY) + H'C'}+4U; MiNiL
interaction we investigate the electrical conductivity proper-

ties of the excitations. Interest in this model arises because _ E E (N —n; )— z n. (1)
the Hubbard model with attraction is the simplest one with 2 4 VT e B

dominant superconduct_lwty fluctuations. ) whereN, is the number of sites;lva,cn,g are the creation
In contrast to Fermi systems, where the electric chargg g anninilation operators for electrons with spins T, |,
of the quasiparticles can have integer vale@s 2e, we will ;- j5 the onsite attraction amplitude of particles with op-

show that the value of the electron charge of one-particlef)osite spinsh is the spin magnetic fieldy is the chemical
states can depend continuously on the system paramete

The charge of the one-particle excitations is defined by

q=jlv, wherej=—del JA is the electric current, defined as ~ ¥=27P/N,®o, P=AN,,

the derivative of the energy with respect to the magnetiap,=hc/e is the magnetic unit flux, and is the vector po-
vector potential, and = de/dp is the velocity of the excita- tential of the orbital magnetic field.

tion. We will find that the spin and particle—hole excitations The electric current by definition is

near the Fermi surface carry the electric current. This effect

is absent for models with an exactly linear electron spectrum, j— _H ) )
so that in the weak coupling regime the current is propor- Al a_o

tional to thg Fermi-velocity d|sperS|pn. i ) The ground state and excitations are described by sets of
Some time ago unusual electrical properties of excita-

) ; ! quasimoment;, and rapidities\,, which are solutions of
tions were found in @ electron—phonon Peierls systems. As o Bathe ansattBA) equationd

a result of the electron—phonon interactions a transition from N

a metallic to an insulating state with creation of a charge .

density wave takes place. It was found that excitations in the Nak;— Na”‘ﬁ; 0(2 sinkj =2\ g)=2ml;,

Peierls system(solitons, polarons?® may have fractional _

charges depending continuously on the band filling and the =1, ....N, ©)

electron—phonon coupling constant. But it is obvious that X

after integrating the Peierls model over the phonon degrees N_P,(\,)— 2N v— 2 0(2\ ,— 2 sink;)

of freedom we will have an electron model with some effec- =1

tive electron—electron interactiofttraction. For example, M

we get in the quantum limitthe ion mass tends to zgran -> O(Ny—Npg)=27d,, a=1,.,M, (4

effective “g-ology” Hamiltonian with a backscattering term p=1

due to the electron—phonon interaction. Therefore excitationghere

in the two systems may have common properties. We have

found indeed that both model excitations carry noninteger 6(x)=2arctan(x/2u); u=|U|.

electric charges. N=2M+ X is the number of particlesyl is the number of
The plan of the paper is as follows. In Sec. 2 we quotepairs, X is the number of unpaired particles, aRg(\,)

known results that are needed. In Sec. 3 we calculate the 2 Re arcsinX,—iu) is the bare momentum of a pair. We

currents and charges of excitations for the model withtreat states with a number of singlet bound pairs and a num-

The Hamiltonian for the Hubbard ring in a magnetic flux
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ber of electrons with uncompensated up-spins. In contrast to
the casdJ >0, where all wavenumbers are real in the ground

1 1 dPy(M)\T
Po(k')\)=<ﬂ,z do)\ )

state, all particles are paired and the wavenumbers are com-

plex. If the external magnetic field exceeds some critical

value h, unpaired electrons are formed. Equati¢8swith

real numbers; describe electrons with uncompensated up-
spins. Singlet bound pairs are characterized by a pair of com-

plex wavenumberk_, and a rapidity\ , connected through
the relation

sink; =\,*iu, a=1,.M.

o _(o —2 coskK(2(sink—\"))
K(k\[k',\")= —2K(2(A—sink’)) —K(\-\"))’
1 .do(x) 1

K(x)= 4u
(X)_Zﬂ- dx 2 4ul+x2”

The product® indicates the usual matrix product and inte-
gration over the common variables, fromQ to Q overk

Equations(4) are obtained from the equations of Lieb and from—A to A over\, respectively; the superscripf™

and Wi by eliminating the complex wavenumbeks .
In the ground state the numbels, J, are distributed
symmetrically about zero. They satisfy

1 _ 1
=5 (1-N+2M)+j-1, J,=5 (1-M)+a-1.

In the case of moderate fields<h., all spins are paired
(X=0).
The system energy is

W=Ej [eo<kj>—u]+§ [Eo(Ny)—2u], (5)

where

Eo(A,)=—4ReJ1—(\,—iu)?

h
€o(kj) = —2 cosk;— >

are the bare energies of pairs and unpaired electrons.
The momentum is

Pzg (kj— )+ 2 [Po(Ag)—2v].
The density functions of thke and\ distributions are usually
introduced as

1 dp(»)

dp(k) _ 1 dpv)
)= 27 dn

PO~ 27 Tak

where

1 X _
p(k)=k— = X 6(2sink—2\),
Na =1
1 X
P(N)=Pg(Ay)— = > 6(2\,—2sink;)
Na =2

! % O(Ny—Np)
N, f=1 a TA

In the thermodynamic limit Eqg3) and(4) can be writ-

ten in the matrix form
p(K,N)=po(k,\) +K®p(k',\"), (6)

where
p(k,\)=(p(k),o(\)T,
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means matrix transposition.
Equation(5) acquires the form

W=¢€i®p=p®@e,
where

€e=¢€pt K'®e,

Y

e=(e(k),e(\))" are the excitation energies of unpaired
electrons and of the pairgg=(€y(k) — u,Eq(N\) —2u)T.

It is known that for magnetic fields less than the critical
value h<h, the spectrum of paired excitations is gapless
(e(£A)=0), while unpaired electron states have a gap

e(k=0)#0,
The matrix of dressed charges is definedby
f(k.h)Z( §i(k) gz(k)>- (8
&N &N
where
1
g(k,x)z(o 1 +KT® & 9

For the casen<<h. only the functiongg()\)=2()\) is
relevant, and it satisfies the equafion

+A
z+J K(A=A")Z(\)d\' =1,
-A

Y4 0 dZ(\)
ﬁ< ' au

<Z(\)<1, >0. (10)

N| =

The solution of this equation is known in some limits:

p—1, 2Z*A)=1-

2I[Cl(1-p)]’

C—\/SI il =1, 2Z%(A)=1
“Nge'ooy) P7o (A)=1
p | 1

For magnetic fieldh>h;, the gap in the spectrum of
unpaired excitations closee(0)=0) and forh=h., the
system undergoes a transition into the saturated ferromag-
netic ground state. In the regidm.,>h>h_, the dressed
charge matrix has been found in Ref. 7 as

P 20 Ay L
p—0, =0, 2Z°(A)=1
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Kko
- 0
1+
EQ,AN)= 1 s 1]
T2 e v
where
_n2 [k
K_E' o n '
. me tdt Jy(t) - )\_Zul
"= o 1texpaut) 0 NS NI4T,

2.2. Repulsive interaction

Similar equations are valid for the model with> 0.

The matrixK differs from (6) only in the signs of the non-
diagonal terms. A density functign(k) describes the distri-

bution of particle quasimomenta and the functief\) de-

scribes the rapidities of spin-down particles. The energy and

the momentum are

W=-2 2cosk;, p=2, (kj— ).
The dressed charge matrix is

_ ( £(k) §<k>/2>

0 V22 (@)

where (k) satisfies the equation
Q _
g(k)=1+f dk’ cosk’K(sink—sink")¢(k’), (12
-Q

e— wu

~ 1 o
K= E fo m COS(w)\)d)\.

The solution & £(Q)<v2 is known in some limiting cases:

sinQ/u<l, &(Q)=1+sinQ In 2/(7u);

Q=m, &Q)=1,
p—1, &Q)=1+In2(1—p)f(u)lu,

p=1, O<u<;

f(u)=1—j dx Jo(x)exp(—ux)/coshxu;
0

p<<lu, &(Q)=1+p In2u;
ux>1, &(Q)=1+sinmp In2/(wu);

u<sinQ, &(Q)=v2[1—-u/(27 sinQ)].

3. ELECTRIC CURRENTS
3.1. Attractive interaction

3.1.1. Gapless paired excitationth<<h; ). In the

The particle—hole excitations of pairs are described by a
set of numbersl,=J%+@(a—ap) (for hole excitationy
where{J%} and{\°} are the ground-state sets. HO¢x) is
the usual step-function.

From (3) we find an equation for the functioo(\ )
=Nao(N,) O\, :

A - 20
K(A=N)o(N)dN' =@ (A —Ng) + =—,
A Do

(13

’&()\)+f

where S\ =\, —\? is the shift of a numbek , due to the
excitation ando(\) is the ground-state solution.

Taking the derivative with respect tewe havedo/dv
=N,é5(N\)/ 7. The energy is

W=2 Eq(Ag)+ 2 Ea(xamw%E Eg(Aa)(8N)?2

—fE'~ d 1JE" o d 14

Then the currenf=—JdW/ /A equals

n~

2 f Ego(N)&x(N)

i~ oo O (15)

The momentum ip= [P{(\)a(\)d\, whereq is the solu-
tion of Eq.(13) for ®=0.

For excitations with small momentax(A —\,) we can
easily see that the curreptcpEg(A) is proportional to the
dispersion of the Fermi velocity. In the limit—0 we find

T=0(N—\g)2, o(N\)=12, Z=1/2,

j= (7l Po)Eo(pa)p.

As we showed in the case of repulsii’the current would
be absent in the linear-spectrum approximation.

3.1.2. States with added particlad/e now calculate the
currents of states obtained by adding an electron pair or un-
paired electron. The simplest way to calculate the current is
to include the magnetic vector-potential in théNl/correc-
tions of the energy, found

2
SW=—— > v {(Z 'AN)2+(ZTD)2+17 +1,}.
Na nSi2
(16)

where v,=09€e(Q)/dp(Q) and v,=de(A)/Ip(A) are the
Fermi velocities of unpaired and pair excitations, respec-
tively, andZ;; = ¢;(Q,A). Note that forh<h. unpaired ex-
citations have a gap, so for this case=0. In the case
h>h, both singlet and pair excitations are gapless, that is,
vy, v,#0. Here ANT=(AN, AN,), ANy, AN, are the
numbers of added unpaired electrons and bound pairs, re-
spectively; D'=(D,,D,), 2D,, 2D, are differences in the
numbers of positive and negative, J, numbers, respec-

ground state all particles are bound into singlet pairs. Theively; |7 =321, I, =3J; are sums of quantum numbers of
lowest excitations are gapless excitations of bound pairs. Fgrarticle—hole states near the right) and left (—) Fermi

a sufficiently strong magnetic fielcth{>h.) unpaired elec-

tron excitations are gapless too.
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points of thek and\ seas. To include the vector potential we
substitute
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N,v N,v =Nap(k) 5, p(Kk) is a known function for the ground state,
>, D2oDat——. and 8k; is the shift of a numbek; due to the excitation. For
the energy, momentum and current we find

D1—>D1+

By varying (16) over the vector potentid we obtain for the

electric current w=> Go(kj)=2 Eo(k?)+2 eb(k;) ok;
=2 2 0n(Z1nD 1+ Z50D ) (Z1n+2Z50). (17) erp 2
n=1,2

1 1
+§2 eo(kj)(ﬁkj)zaif molk,

For pair excitations we havel®»=1, D;=0, o
where ep= — 2 cosk;, and 6k= p(k)/N,p(k), and

j=20,Z5A). (18) —
. - 1 (@ €op&(K)
Therefore, the charge is equal to p=| p(kdk, j=-— (21
, Qo J o p(K)

where £(K) is the solution of Eq(12). In accordance with
As follows from (10), the charge may acquire any value in the result€=1° we havejopej(pg). In the limit u—0 we
the interval 1/2q=<2. In the casp—1 we have from(10)  again findj=2p cos(@p/2). Equation(21) supplements the

1 results of Refs. 8 and 9.
gq=1- m p=1, q=1, O<u<oo, 3.2.2. S_tates with added pamcleé. similar tregtment
P can be carried out for the repulsive modet 0. In this case
In the limit p—0, p/u—0 the subscripts 1.2 in Eq16) correspond to charge and spin
degrees of freedom, respectively,ispandv, are the charge
q= l 1+ P 1+ 1_ _ and spin excitation velocities. In contrast to thet0 case
2 2 u both types of excitations are gapless. To include the orbital
In the limitu<1, A>u K(x)~8(x), Z—1#2 andg—1. In  Magnetic field we substitute
the limit u—o, A<<u we haveZ~1, g~2. In strong mag- N,v
netic fieldsh>h, we obtain D1—=Dyt 5.
q=|1+ u |2 By varying with respect to the vector potential we obtain for
27\ the electric current

For unpaired added particles the current and charge are  j=2y,(Z;,D;+Z»D5)Z1;=v1(2D;+D,)£%(Q). (22

found by substitutin =1,D,=0 in Eq.(16): . .
y 951 2 a.(16 Here 2D, (2D,) denotes the difference in the numbers of

j=v10, 9=Z11(Q)[Z12(Q) +2Z5(Q)]=1 positive and negative; (J,), respectively. Changing the
number of spin-up and spin-down electrons AW, and
—4J K(2(sink—N\))&x(N)dN. AN/, i.e., changing the total number of particles by,

=AN;+AN; and the number of spin-down particles by
In the caseu—0 we haveq—0, that is, the excitations do AN,=AN,, is equivalent to addingemoving AN, extral
not carry an electric current. By using the Wiener—HopfandAN, extraJ, values. The valuek,, J, may be integer

technique we find in the limif\/u>1, u<1 that or half-integer, depending on the parity of the numbegs
N,. Therefore the numbed,, D, depend omAN;, AN,
8 Am nontriviall th
g~ —exp ——]. Y, SO at
e 2u
AN;+AN, AN,
In the opposite limit u—e, A<u we obtain q~1 DIZT (mod 1), DzzT (mod 1).

— 4A/(mu).
Note that in this linear-spectrum approximation we find Adding a spin-up particle to the systelN; =1, AN,=0 we
that particle—hole excitations do not carry curreptQ), in ~ obtainD;=*1/2,D,= 5 1/2. Similarly, adding a spin-down

accordance with previous results. particle corresponds tdN;=AN,=1, D;=0, D,=+1/2.
- . In both cases we find for the electric current
3.2. Repulsive interaction 5
. - . j= N ES 2. 23
3.2.1. Hole and particle stateA. similar expressions can J=Qu1, q=&(Q) (23
be derived for the case > 0. For spin single—triplet excita- Substituting solutions of Eq(12) into (23) we find
tions or particle—hole states we derifled 1/2<qg=<1 and
N o sinQ/u<l, q=1/2+sinQIn 2/(wu);
~ v ~ — _ _ _ .
p(k)= == +f(k)+f p(k")cosk’K p=1, Q=m q=12, 0O<u<e;
2m -Q p—1, q=1/2+In2(1—p)/uf(u);

p<<1lu; q=1/2+p In2/u;

X (sink=sink’)dk’, (20 u>1, q=1/2+sinwpln2/(mu);
wheref (k) == (1/)tan Yexd 2m(sin k—\;)/u]} for spin ex- u<sinQ, q=1-u/(47 sinQ).
citations and f(k)=6(k—k;) for hole states, p(k;) These results complement our earlier restits.
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The magnetostriction of Invar alloys
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The principles of the theory of a phase transition into a magnetically ordered state are formulated
for Invar alloys and other similar inhomogeneous ferromagnets, for which the concept of a

local Curie temperature distribution corresponding to the experimentally observed broadened
temperature interval of the transition into the ferromagnetic state has existed for 10 years.

A method is proposed for obtaining information about the local temperature distribution from
experimental data on the change in the properties of magnets in response to a change in
temperature. For iron—nickel-chromium alloys it is shown how to obtain the temperature
dependence of the magnetostrictional susceptibility of the paraprocess from data on the
magnetic contribution to the thermal expansion coefficient. This confirms the important role of
the local Curie temperature distribution, and it also indicates a need for new analysis of
experimental data on temperature-broadened magnetic ordering phase transitioh898 ©
American Institute of Physic§S1063-776(98)01501-7

1. INTRODUCTION of the inhomogeneity in Invar alloys. For example, Refs. 13
and 14 report a small differendseveral degreg¢setween

The unflagging interest in Invar alloys, which were dis- the temperatures of the peak in the specific heat, the peak in
covered one hundered years dgs,due, for one thing, to the the thermal expansion coefficient, and the Curie point ob-
virtually unlimited technical applications determined by thetained from magnetic measurements. On the other hand, the
unique properties of such alloys and, for another, to the staestablishment of the existence of tails in the magnetization
tus of physical investigations of Invar alloys, which is far (see, for example, Refs. 2 andl idicates a substantight
from a complete understandifdt is generally believed that least 103 high-temperature shift of the onset temperature of
the unique properties of Invar alloys are associated witta transition into the magnetically ordered ferromagnetic
magnetism, since they are manifested in the transition of thetate, as compared with the lower value of the temperature
alloys into the ferromagnetic state. For example, the uniquerdinarily called the Curie temperature. The latter is deter-
decrease of the volume thermal expansion coefficient of thenined, specifically, by the method of coefficients of the ther-
iron—nickel alloy FgsNiss appears, though in a compara- modynamic potentidi.In the face of such a conflicting view
tively wide region, near the Curie temperature of the phasef the properties of broadened phase transitions, it is neces-
transition into a magnetically ordered stitéccording to  sary to make a systematic theoretical analysis based on the
the Landau theory of second-order phase transitias approach indicated in the monograph by K. P. Bé&lov.
abrupt change in the thermal expansion coefficient and other The first step in this direction was taken in Ref. 15,
properties with the establishment of magnetic orderingwhere the problem of an approximate, in many ways quali-
should occur at the Curie temperature. In reality, howevertative, determination of the local Curie temperature distribu-
no sharply expressed abrupt changes in properties at a tratien of some Invar alloys was solved on the basis of the
sition into the ferromagnetic state are observed in Invarough scaling proposed there.
alloys® (see also, for example, Ref).Sinvestigators have In the present paper we propose an elaboration of the
become so accustomed to this state of affairs that ordinarilBelov approacli, making possible a practical quantitative
no attempt is made to give a quantitative description of maganalysis of experimental data near the broadened phase tran-
netic ordering phase transitions, broadened over a wide tensition of Invar alloys. This approach is applied to the analysis
perature interval, in Invar alloys. The present paper is deef magnetostriction. In Sec. 2 we present the theoretical as-
voted to filling this lacuna. We shall discuss here ansumptions that are required for our analysis and on the basis
important property of Invar alloys, magnetostriction. of which the temperature dependences of different phenom-

Our analysis is based on the old and well-known viewena occurring near a broadened magnetic-ordering transition
that Invar alloys are inhomogeneous with respect to theican be related to one another. Section 3 is devoted to the
structure or compositidn(see also Ref. 7-33It is thought  rough-scaling approximation indicated in Ref. 15. The re-
that such an inhomogeneity results in an inhomogeneitysults of an analysis, based on the approach developed, of the
dependent local Curie temperature distribution, which correexperimental data from Ref. 16 on the magnetostriction of
sponds to a continuous transition into the ferromagnetic station-nickel Invar alloys FgNiss_,Cr, are presented in Sec.
with a broadened temperature interval, determined by thig. We employ below the data of Ref. 16 for the thermal
distribution, Although this view is widely held, it should be expansion coefficient and for the magnetostrictional suscep-
noted that there is a definite conflict in the statements madgbility of the paraprocesginduced magnetostrictiononly
by the authors of various treatments of the quantitative effector alloys with chromium concentrations=0, 2.5, and 5,
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FIG. 1. Temperature dependence of the magnetic contribution to the therm

expansion coefficient for three alloysdgdiss_,Cr, . The dots represent the ?_JIG' 3. Functions/W(T¢)/dP for the three alloys FgNizs (Cr, . The dot
experimental results of Ref. 1& (x=0), ® (x=2.5), andx (x=5). The

ted trace corresponds xa=0, the dashed trace 10=2.5, and the solid trace
. : . . . . tox=5.

curves represent continuous approximations of the experimental points:

solid trace—x=5, dashed tracex=2.5, dotted trace-x=0.

proposed in the present paper for analyzing the experimental
since asx increases it becomes difficult to distinguish the data on the temperature dependence of the properties of In-

magnetic contribution to the thermal expansion coefficientar alloys. A general discussion of the results obtained in this
and the results are inaccurate. The corresponding discussi®&Per is given in concluding section, Sec. 5.
is given in Sec. 4. In Fig. 1, the dotted, dashed, and solid It should be underscgred t_hat the material presen.ted be-
curves are for the alloys EgNiss_,Cr, with x=0, 2.5, and 5, !ow represents the reguwed first step in understanding the
respectively, and they characterize the magnetic contributiofthomogeneity-determined properties of Invar alloys. In so
to the thermal expansion coefficient. The dots, whose sized0ing, we do not deny that magnetic fluctuations exist; we
correspond to the experimental errors, represent the dakflieve that to understand the temperature dependences in
from Fig. 1 in Ref. 16. These experimental points are repredeta" allowance must be made for magnetic fluctuations.
sented by open circlesx&0), filled circles k=2.5), and However, our main thrust is to determine the role of the
asterisks X=5). The curves interpolate the experimentaldistribution of nonuniform Curie temperatures, primarily be-
temperature dependence. As an illustration, the result of of@use even though assertions concerning this have been
analysis is presented in Fig. 2, where experimental data fofade for many years in the literature, no real attempts have
magnetostrictional susceptibility of the paraprocess are pré®en made to give a quantitative interpretation of the prop-

sented as dots taken from Fig. 3 of Ref. 16. The curves igties of Invar alloys and other ferromagnets on this basis.
Fig. 2 were constructed for the same susceptibility on the

basis of the experimental data of Fig. 1 and the approach, THEORETICAL MODEL

Our approach goes back to the ideas presented in Ref. 6,
A where it was proposed that a thermodynamic potential of the
1.0¢ oo O form
“\O O 1 o ) b 4
0.81% d. : @M(P,T,[M])=v f dr[E(T—Tc(r))M +Z M*t.
i (2.3)
0.61 \ be used to describe the properties of inhomogeneous mag-
| : nets. Here the local Curie temperatdrg(r) is a function of
0.4+ .; Q the coordinates. This dependence is the reason for the broad-
'\' ened magnetic-ordering transition. In addition to tfig(r)
ool 1 O and the coefficienta and g8 in the thermodynamic potential
i are functions of the pressufe Equation(2.1) is an exten-
® sion of the Ginzburg—Landau thermodynamic potential to
300' 00 a0 s00 500 the case of an inhomogeneous magnet. Here gradient terms
T.K

are neglected. We do this only because the effects discussed
. L below are insensitive to their presence. In the future, we

FIG. 2. Temperature dependences of the induced magnetostriction, norma}—

ized to 1. The dots represent the experimental results of Ref>X&=0),

| - .
ntend to return to a more complete description of inhomo-
® (x=2.5), and* (x=5). The curves are computational results: solid 9EN€ous ferromagnets in order to study effects that cannot be

trace—x=>5, dashed tracex=2.5, and dotted tracex=0. understood without taking the gradient terms into account.
JETP 86 (1), January 1998
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Since Eq.2.1) is a functional oM (r) and in the model The latter formula gives for the entropy
(2.1) the spatial inhomogeneity is due only to the spatial
dependence of the local Curie temperattigdr), the ther- S, =— @ J dT-W(TLIM?2 26
modynamic potential2.1) can be written in the forfit’ 2 W(Tc)M™. 29

In the limit of zero magnetic fieldid =0, Eq.(2.4) gives for

‘DM(P’T’[M]):J dTcW(Te) the spontaneous local magnetization

a b , @ ,
X E(T—T’C)M2+—M4 . (2.2 M2=— (T¢—T) for T<T¢. 2.7

4 b

Now, in contrast to Eq(2.1), the local magnetization density so that Eq.(2.6) in this limit gives
as a function of T¢, and W(T() is determined by the

. 2
relation'®

a 0
Su-0=— 55 | CATOW(TL(Te=T), @8
1

W(Te) =y J dr &(Tc=Te(r)). 23 whereT? is the maximum local Curie temperature. The fol-
lowing relation between the specific heat and the local Curie
temperature distribution function is an immediate conse-
quence:

With this definition the function(2.3) plays the role of a
local Curie temperature distribution function, normalized to
1. The average magnetization can be represented as

az T?: ’ ’
Choo(M=T % J; W(To)dTe. (2.9

1

(l\/l)=\—/ J dr’l\/l(r’)=J’ dTEW(TE)M(TE).
The approach based on the thermodynamic potef@i@)  !n Ref. 15 it was proposed that this relation be used to define
with the distribution functionWV(T() prescribeca priori was ~ W(T) on the basis of the experimental dependence of the
proposed in Ref. 6 for understanding broadened magneti¢nagnetic contribution to the specific heat, corresponding to
ordering phase transitions. The qualitative properties of th&d- (2.9). Specifically, according to Eq2.9), we have
phenomena accompanying a transition into the ferromagnetic 2b d[Cpy_o/T]
state were studied, assuming a prescribed distribution func-  w(T)= - — —LwH=0" '~
tion of the local temperature, in Refs. 12 and 17-19. @ dT

Information about the distribution functioW(Tc) Was  proceeding now to the equations required for describing
obtained in Ref: 15 using rough scaling, based on the mOd%agnetostriction, we shall make some simplifying assump-
(2.1) for analyzing experimental data. In the present reportions First and foremost, we note that it is reasonable to use
we I|,keW|se will not make any detailed assumptions aboutne expressiori2.1) itself only for comparatively small val-
W(Tc), but will take the next step following Ref. 15. Spe- a5 of the magnetization, which we shall assume is the case
cifically, we shall examine the.relatlons b(_atween the eXperigyerywhere in constructing our description of the magnetic
mental laws that make it possible to obtain the md@el).  , operties in the transitional region for the establishment of

We shall present below somewhat more consequences g romagnetism, corresponding to the temperature range
Eq. (2.1) than required to discuss magnetostriction, Whos§herew(T) is actually different from zero. Further, remem-
properties will be interpreted with the aid of the mo@@l),  pering that the magnetization is comparatively small, when
in iron—nickel—chromium Invar alloys. Equations that will gitterentiating the thermodynamic potential with respect to
aid in understanding the basis for the rough scaling, introyessyre we shall neglect the derivatives of the coefficients
duced in Ref. 15, of the temperature dependence of INValnqp, in the thermodynamc potential. This corresponds to
alloys will also be derived. _ the standard approach for studying the properties of homo-

We note that with the modern understanding of ferro-geneous magnets near the Curie temperature that employs an
magnetism of metals it should be obvious that &41) takes  assumption about the largest effect due to the pressure de-
into account to some degree the thermal magnetic fluctugsendence of the Curie temperature. In our model the latter
tions, which determine, specifically, the linear variation as orresponds to the pressure dependence of the local Curie

function of temperature beyond a narrow range of temperagmperature distribution functioW/(T4). In this approxima-

tures. _ _ _ tion Eq. (2.5 makes it possible to describe magnetostriction
Proceeding now to the equations required for what fol-by means of the relation

lows, we determine the average magnetic field intertsityy

(2.10

varying the functional2.2) with respect to the local magne- AV , IW(TE)
tization densityM (T¢): RV J CTop
H=a(T-TLM+bM?3, (2.9 w b
_ _ _ _ X{= (T=THM2+ — M*—HM ;. (2.11)
This makes it possible to use below the thermodynamic po- 2 4
tential Hence, taking account of E@2.4), we obtain for the mag-
&L (P, T,H)=® (P, T,[M])—H(M). (2.5 netostrictional thermal expansion coefficient:
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dw , IW(Te) a ) BPry—o(T) a? LN P*W(T¢)
H‘(E)PH‘f cTp 2 212 B = 222
In the limit of zero magnetic field Eq2.12 becomes d3kpy_o(T) a® PW(T)
— = o o (2.23
— o Tear, TS (T 2.1
BH:O_Zb T TS (Te=T). (2.13 Since the compressional susceptibility of the paraprocess, ac-

cording to Eq.(2.19, has the form
This formula makes it possible to use the experimentally

2 ’
determined temperature dependee o(T) to determine (‘”‘H) :f T, "W(Te) M, (2.24
P, T

the following quantities: H JP?
0 IW(TE) 2b dBy_o(T we obtain in the limitH=0
JTCdT(': (Te :__Z’BH—O(), (2.14
IP @ dT dKy a (10 FPW(T¢)
C ’ !
JW(T) _ 2b d?By_o(T) 215 Mo T J
P a?  dTZ ' Using Eq.(2.23 we find
The magnetostriction susceptibility of the paraprocéss Ky 2 b (10 _, dBrpy—o(TE) .
duced magnetostrictiorcan be found by differentiating Eq. | 55| 75 Vg JT dTc —g73— VT~ T
(2.11) with respect to the magnetic field H=0 ¢ (2.26
[ dom) _j 4T IW(T¢) M (2.16 Experiments performed in recent years on the pressure de-
| oH PT_ C 9P ' ' pendence of the elastic moduli open up the possibility of

o o _ determining the third pressure derivative of the local Curie
In the limit of zero magnetic field this formula becomes  temperature distribution function. Indeed, we have

a (19 IW(TE) IKn PW(TE) [
- _ _ ! T _ ~-°H _ _ ’ - T 2

h \/; JT dTe P Te—T. 219 IP |+ J dTe FIsR 2 (T=Te)M
If the temperature dependence of the thermal expansion co-
efficient is known, then according to E(R.15 the expres- +t7 |V|4—H|V|]- (2.27
sion (2.17) can be put in the form

) , Hence we obtain, similarly to Eq2.23),
2 b (12 _, dBu-o(Te) 3 2 .3
h:_; Z dTC?Q— TC—T. (218) d (9KH a“ d W(T) 29
T ZoH =
c ae\p), T2 e (2.28

The possibilities of the model that we used for interpreting ] . ) ) .
experiments can be understood by comparing the tempera—-he equations presented in this section show how informa-

ture dependence, calculated in this manner, of the magnetapn about the local Curie temperature distribution function
striction susceptibility of the paraprocess with the experi-and its pressure derivatives can be obtained on the basis of

mentally measured dependence. experimental data. Three curves féW(T:)/dP, which
Finally, we obtain using Eq(2.5 the magnetic contri- \Were obtained according to E(R.15 by differentiating the
bution to the compressibility curves in Fig. 1, are presented in Fig. 3 for the three alloys
FessNissCr, for x=0, 2.5, and 5.
P*W(T¢)
3. ON ROUGH SCALING
X [5 (T_T’C)M2+ 9 M4—HM . (2.19 In Ref. 15 we proposed on the basis of experimental data
2 4 a rough scaling of the temperature dependence of the prop-

In the limit of a zero magnetic field, taking into account Eq. €rties of Invar alloys in the transitional temperature range
(2.7), we have where, in the terminology of Ref. 6, magnetization tails are

present, i.e. ferromagnetism is established gradually in the
Ca? (19 PW(Te) e entire volume of the magnet. This scaling gave surprising
KH=0"7p fT dTc P2 (T=To)" (2.20 agreement with experimental data for permalloy, the iron—
) ] nickel alloy FgsNiss. In this section we shall substantiate
Hence it follows that if the temperature dependencene possibility of rough scaling, proposed in Ref. 15, of the
kn-o(T) is determined experimentally, then we have fromp,gadened phase transition of Invar alloys.
Eq. (20) To begin with, we note that if the local Curie tempera-
d ture distribution function has the form
kn=o(T) «a

2 (10 PW(TE)
_ % T C T
aT  ~ 2b L dTc —pz (T-To). (22D W(TL)=8(TL—To), (3.)
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then our analysis reduces to the standard Ginzburg—Landau f
theory of homogeneous magnets. Hérg is the ordinary 1.0
Curie temperature, information about which is contained in
many works, including data on its pressure dependence
Tc(P). In reality, for Invar alloys the ordinary Curie tem-
perature is probably not adequately defined. On the other 08F
hand, the arguments presented in the preceding section make
it possible to assume that the temperatiife of the maxi-

mum of the local Curie temperature probability distribution

is at least close to what is designated as the Curie tempera-
ture in experiments. In this connection, we state the assump-
tion that

W(Te)=wW(Te—Ti(P)), 3.2

where the strongest pressure dependence is due to the func-
tion T,(P). Then

dW(T)  dw(T—T(P)) dTp,
dP dT dp’ 33 02-

d?’W(T) _ d®w(T—=Tin(P)) ole)2
dp> dT? (dP

dw(T—T(P)) d?T,, 0 . HEE
- . (3.9 400 450 500 550 600
dT dp? T.K

Using the equation3.3), we now put Eq.(2.13 into the 5 4 Functionsf(T) obtained from the experimental data: dashed

form curve—specific heat measuremetftsjotted curve—measurements of the
thermal  expansion  coefficieft, solid  curve—compressibility
dw(T&—Tw(P)) measurements.

dTg

2 TO
Bu-o=— 55 g | FaTeTE-T)
B a® dTy, ngT’W , The satisfactory agreement of the rough-scaling formulas
T 2b dP jT cW(Te). (3.5 (3.7 and (3.9 with experiment indicates the relative small-
ness of the second term in E@.8). To illustrate the effec-
If in accordance with Ref. 15 we now use the function tiveness of rough scaling we display in Fig. 4 the experimen-
o tal temperature dependenc€s_o(T)/T (dashed cun/d),
f(T)= JTCdTéW(T’C), (3.6)  Bu—o(T) (dotted curvé), and xy_o(T) (solid curvé?), all
T normalized to 1 and characterizing the functifT) corre-
sponding to the alloy ReNis5. A discussion of the construc-

then the equation$3.5 and (2.9) can be rewritten in the = o9 . .
. 8.9 (2.9 tion of these curves is given in the next section.

rough-scaling form proposed in Ref. 15:

Cu_o(T) @a? a? dT,,
—71 55 (M Bu=oM=554p f(D- f
(3'7) 10-
Finally, if the expression(3.4) is substituted into the right- 0.8
hand side of Eq(2.20), then we obtain for the compressibil- '
ity
2 d 2 0.6
a Tm Tg ’ ’
KH:O_% (F) fT dTCW(TC) 04
(12 dZTm T‘(J: , , , r
+ 25 dpP2 fT dTe(T' —T)W(Tg). (3.8 0.2
Neglecting the second term in this equation gives a third oL .
equation of rough scalint: 200 300 400 s00° 600
Ky—o(T)= a_2 % Zf(T) (3 9) FIG. 5. Functionsf(T) obtained from Fig. 1. The symbols have the same
H=0 b\dP ' ' meaning as in Fig. 1.
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w10° h|
14f 1.0+
0.8
0.6r
0.4
0.2r
FIG. 6. Distribution functionsN(T¢) of the local Curie temperatures for
three alloys, as determined from the data in Fig. 5 ff6F). The dotted 0 . , |
curve corresponds to=0, the dashed curve to=2.5, and the solid curve 300 ' 400 500 ' 600
to x=5. T. K

FIG. 7. Temperature dependences, normalized to 1, of the magnetostriction
] ] ] ] calculated from Eqs3.10—solid curve and2.18—dashed curve.
Figure 5 displays three function§T) constructed in

accordance with Eq3.7) according to the data in Fig. 1 for
the iron—nickel—chromium alloy FEeNiss Cr, for three
chromium concentrationg=0, 2.5, and 5. Differentiating oy=—=—
the curves in Fig. 5 according to E(R.6) makes it possible 2 dP
to use the rough scaling approach to obtain the local Curigg; 45 compare this expression to the well-known Moriya—
temperature distribution function of Invar alloys. The results sami formuld3

are illustrated in Fig. 6, where the temperatufigs of the

maximum of the local Curie temperature distribution are 500  ®@=(Co/K)MZ, (4.2)

K (x=0), 440 K (x=2.5), and 320 KX=5). These values \ynhereC, is the magnetoelastic constaktjs the bulk modu-

are very close to the Curie temperatures indicated on th?us, ande is the squared magnetization averaged over ther-
plots of the temperature dependence of the thermal expaggg| flyctuations. In the standard theory of homogeneous
sion coefficient in Ref. 16: 490 Kx(=0), 430 K x=2.5),  magnets the magnetoelastic constant is proportional to the

and 300 K &=5), respectively. _ _ pressure derivative of the Curie temperature. Our analysis
The approximation(3.2) makes it possible to write Eq. yields

(2.17) in the form

dT,
e mde’CW(Té)MZ. (4.1)

CO o dTm
nr— L \/EdTm 10 dTEW(TE) (3.10 K- "2dp" 4.3
2 VbdP Jr \Te-T The combination
We now have a new possibility for describing the magneto-
striction susceptibility of the paraprocess with the aid of this f dTEW(TEM2=M3 (4.4

formula and the local Curie temperature distribution function

found from experiment on the basis of E®.7). Figure 7  arising in Eq.(4.1) is the squared magnetization averaged
presents for the alloy ReNiss the temperature dependence over the local Curie temperature distribution. It is natural to
h(T) obtained in this mannesolid curvg and according to assume that the total mean squared magnetization consists of

Eq. (2.18 (dashed curve The difference is very small. the magnetization averaged over both the thermal fluctua-
tions and the local Curie temperature distribution. For this

reason, we employ a generalization of E@s1) and(4.2) in
the form(4.2), but we shall assume that

MZ=M3+28mZ+ sm?. (4.5

4. COMPARISON OF THE EXPERIMENTAL DATA

In using the approach presented for analyzing experi-
ments it is necessary to establish the maximum local Curiélere, in contrast to the standard Moriya—Usami formMé,
temperaturél’é=Tg at which a magnetically ordered state of is determined by Eq(4.4), while ordinarily such an expres-

a ferromagnetic alloy starts to form. The corresponding arsion is taken to mean the squared average magnetization.
guments are clearest in the approach presented in Sec. 3. Faside from this, in accordance with our approach the mean
this, we employ the relatiof8.3) and write down the equa- squared transversémt2 and longitudinal 5m,2 fluctuations

tion should correspond not only to therm@ose averaging but
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also averaging over the local Curie temperature distribution5. DISCUSSION
Leaving a detailed theory of such fluctuations for subsequent . . .
9 y q The analysis performed above on the basis of the simple

publications, we shall use here some general assumptions. . . ; ;
Just as in the standard theory with one Curie temperature, iti]eorencal mode(2.1) and(2.2 made it possible to give a

- . tively simpl thod for determining th ti
the H=0 lmit the quantity M2 equals zero for comparatively simple method for determining the properties

, _ : ) > , of the local Curie temperature distribution functi¢®.3
T>(TC)maX_T??' At the same t|qumt a_nd om; .are_dlffer- from experimental data on the specific heat, magnetostric-
ent from zero in the paramagnetic region, which is why th

. Why tN&ion, and magnetoelasticity. The relations obtained make it
temperature dependencg(T) deviates from the ordinarily ,,qqjple to interrelate the temperature dependences of differ-
discussed Gmeisen extrapolation abp,(T) from the para-  ont properties of spatially inhomogeneous ferromagnets. It
magnetic temperature range located comparatively far fromy a5 shown for the example of magnetostriction how the tem-
the region of the phase transition. This signifies that the ons¢ferature dependence of the magnetostriction susceptibility of
temperature of magnetic ordering cannot be identified withne paraprocess can be determined from experimental data on
the temperature at whica(T) differs from wya(T). More-  the thermal expansion coefficient. Our model is helpful for
over, w(T) — wpa(T) cannot be identified with the magnetic jdentifying the role of the spatial inhomogeneity of ferro-
contribution wy determined by our formulas from Sec. 2, magnets such as Invar alloys, as well as other magnetic ma-
since it characterizes only the part of the magnetostrictionerials in which magnetic-ordering phase transitions are char-
that is not due to thermal fluctuations. acterized by the presence of magnetization fails.

In the quantitative analysis of experiments we employ  The possible approaches presented in Secs. 2 and 3 and
the thermal expansion coefficient. The temperature depenhe surprising agreement between the results obtained using
dence ofémt2 and 5m,2 gives the thermal-fluctuation contri- them, as demonstrated in Fig. 7, are the first steps in the
bution to the thermal expansion coefficient. On the otherconstruction of models of the properties of the local Curie
hand, their derivatives with respect to the magnetic field aréemperature distribution function. Rough scalig the sim-
equal to zero in the paramagnetic region in the limi=0.  plest method for analyzing experimental data. For this rea-
This circumstance makes it possible to assume that the tenson, the establishment of the meaning of such scaling, as
peratureT 2= (T{) max at Which local spontaneous magnetiza- proposed in Sec. 3, is important.
tion first appears equals the experimentally measured tem- In conclusion, we underscore that despite its demon-
perature at which the magnetostrictional susceptibility of thestrated success the approach proposed for analyzing experi-
paraprocess becomes different from zero. The values of sudRents requires elaboration regarding the role of magnetic
temperatures for the iron—nickel—chromium alloys of inter-thermal fluctuations in inhomogeneous ferromagnets as well
est to us were determined in Ref. 16. as other properties, requiring a more general analysis than

Determining in this manner the maximum local Curie Ed. (2.1), tak_ing_account of the spatial derivatives of the
temperature we note that, for example, according to Fig. 1 ofocal magnetization.

Ref. 16 the difference between the experimental ViﬂUEOc) Finally, we note that the situation described in the
and the Grueisen paramagnetic extrapolation present paper is characteristic not only of ferromagnets. For

Boa=(dwoa(T)/JT) for the alloy FeNiss equals example, according to Ref. 24, a general property of all
5’%”%):5_2 10" K~ This is 17% of the largest differ- ferroelectric crystals is the broadening of the phase transition

ence 63(T)=B(T) — Bpar in the region of the broadened W'thl mcrt;:asllQn% d6ef?ﬁt tdt(;nsny. It Its belclig\/tg(g), tm COT?letel
transition, equal t@5Bm.=13.1-10"% K1 In this connec- ?na qtgy ct) et. X a here ex:s S % IS ”d u |otr;] od.cic.r;
tion, we extract from the data in Fig. 1 of Ref. 16 the mag—tira:s'f'gnf erppe\r/aru(rjief? \:V n(:sie va|1 ;Jesi nepiinthonr et IISTrr; u-
netic contributionBy(T) of interest to us as follows. First, on ot detects ove erent local regions € crystal. The

: . . approach described above for explaining the properties of
we obtain §B(T) as the difference of the experimentally o

: . broadened phase transitions can be transferred not only to

measured value of the thermal expansion coefficigfi)

and the Gruoeisen extrapolatiorB,,. Second, we subtract ferroelectrics but also to other materials.

SB(TY) from &B(T). These are the values of This work was performed as part of Russian Fund for
AB(T)=5ﬂ(T)—5,B(TOC) that are presented in Fig. 1 and Fundamental Research Project 96-02-17318-a.
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Kinetics of formation and growth of antiphase domains during second-order phase
transitions
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The kinetics of the formation and growth of antiphase domains during second-order phase
transitions is investigated theoretically in the Ginzburg—Landau model using a statistical approach.
It is shown that depending on the initial conditions both uniform and polydomain-type

ordering can be realized in thermodynamic equilibrium. It is found that for small initial
inhomogeneities the ordering process can be nonmonotonic in its initial stages. It is established that
for special initial conditions long-lived ordered structures of a special type arise in the
intermediate stages of the ordering process. The characteristic formation time of the domain
structure is estimated. @998 American Institute of Physid$1063-776(98)01601-1

1. INTRODUCTION sesses two states of equilibrium which differ by the sign of
the order parameter. Such a model can be used to describe
In the study of systems which are far from thermody-the kinetics of ordering of the simplest structures encoun-
namic equilibrium, it is most important to determine thetered in a number of ordered alloys, for example, in alloys
paths of the transition to equilibrium. such asB-brass. Ordering of atoms in systems of this type is
In Refs. 1 and 2, the evolution of strongly nonequilib- characterized by how completely the sites of different types
rium systems is studied through analysis of kinetic equationgforming sublatticesare filled with atoms of different types.
derived from a microscopic treatment. These equations are In the present paper, we attempt to determine in detail
used either to study phase separation in alioys phase how ordering(for T<T,) of an initially disordered system
separation and ordering occurring simultaneogsly. develops. Will homogeneous ordering occur over the entire
In Refs. 3 and 4 we developed a statistical approach tesample(crystallite or will the sample decompose into do-
the analysis of the dynamics of nonequilibrium systems. Thisnains separated by antiphase boundaries? A preliminary re-
approach made it possible to elucidate the flow and sequengm®rt on this subject is given in Ref. 5.
of stages of phase separation in alloys and glasses. Our ob- We emphasize that the initial state of a nonequilibrium
jective in the present paper is to apply the statistical apsystem plays an important role in determining how the order
proach to determine the paths of the transition from disordeparameter evolves.
to order in systems undergoing a second-order phase transi- Of necessity, the initial state of the system must be pre-
tion. scribed statistically, since, first, inhomogeneities of the order
One or several quantities, called order parameters, amarameter which are randomly distributed in space are con-
ordinarily introduced as a quantitative characteristic of thetinuously formed in the sample when it is cooled rapidly and,
change in state of a body as it passes through the phasgecond, thermal fluctuations of the order parameter are al-
transition pointT,. The physical meaning of the order pa- ways present. The spatial scale of the corresponding inhomo-
rameter is not specified in a phenomenological theory. Thgeneities is much larger than the lattice parameter. These
system under study can be an alloy undergoing ordering, Bthomogeneities will evolve completely differently depend-
ferroelectric, an antiferromagnet, etc. If cooled rapidlying on the initial state of the nonequilibrium system, specifi-
enought from a temperature abolgto a temperature below cally, either along the homogeneous ordering path or through
T. such systems will evolve under isothermal conditionsformation of a well developed polydomain structure fol-
from a disordered to an ordered state. As a rule, the orderddwed by growth of the domains. Kinetically retarded inter-
state cannot be characterized uniquely—it can be either hanediate polydomain structures can also appear for certain
mogeneous ordering, when the order paramstsridentical  initial conditions. We shall assume that despite the closeness
throughout the entire systefsingle crystal or crystallite, if of the temperature to the critical temperature
the sample is polycrystallingor inhomogeneous ordering, ((T.—T)/T.<1) there is still a possibility of going beyond
when the system separates into domains in each of which the fluctuation region and therefore ordering of the alloy can
assumes some value from a set of equivalent values. be described within the Landau theory.
The thermodynamics of ordering has been studied in de-
tail. V\/_e.s.,hall a'ttempt to follow the.klnetlcs of restructurlng 2. FORMULATION OF THE PROBLEM
of an initially disordered system with two equivalent states
of equilibrium. For definiteness, we shall employ the termi-  Let us consider a substitution-type binary alloy consist-
nology referring to ordering of a binary alloy AB with two ing of N, atoms of type A andNg atoms of type B, where
equivalent sublattices. The alloy can be characterized by the crystal lattice, containiny sites, can be divided into two
single scalar parameter of long-range order. This alloy posequivalent sublattices. In this case, the relative concentra-
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tions of sites of each type are both equal to 1/2. Then the In the alloys studied, the order—disorder transition is a
degreey of long-range order can be determined by the ex-second-order phase transittoand near the ordering tem-

pression peratureT, it can be described in the following phenomeno-
logical model:
n=2pY -1, (1) a , 1,
fm=Te| =5 7"+ 7 7|, )

wherep=N{/N® is the probability that sites of the first
type are occupied by atoms A. Tlong-rangé order pa-
rameter» which we have introduced is proportional to the a=(T.—T)IT, 4
deviation of the probabilityp§) from its value 1/2 in the
disordered alloy. For this reason, in the disordered alloy w

hﬁvﬁ ”h: 0, alnd mtr?rdelred a!{lr?ys ttht|s q??r?t'ty W'LI ?.SSl:me dering temperaturd,. The model(3) explicitly takes into
all igher vajues the closer the state of the crystal IS 10 af .., nt the degeneracy of the energy with respect to the sign
ideal ordered state. In the limit of complete ordering theOf the order parameter. We shall describe the dynamics of

Ord(i[ ;1)a|rtqmete77, ?St f?IIO\g/s. fromthE?(ll) ' assu(;nes thelt\;]a;] such a system under isothermal conditions at temperdture
ues= t |sfctﬁmp i'ely 0 dVI?u?th a IIT acco(; ance wi q eby means of the Landau—Khalatnikov equafiéor the non-
symmetry of the initial model of the alloy undergoing order- .o <o order parameter,

ing there are two equivalent possibilities, corresponding at
T=0 to the values of the order parametef, for predomi- dn(r,t) — o®{n(r,t)} .
nant filling of sublattices with atoms A and B. However, the a7 Sy(rt) ®)

equilibrium values of the order parameter cannot be estab- . : . . I
lished in the entire macroscopic volume of the crystal where the right-hand side contains the functional derivative

even a separate crystalltever macroscopic timen the of the functional(2) with respect to the order parameter, the

order of the time over which two neighboring atoms Changecoefﬁcient of proportionality being the kinetic coefficiept

places. Over these times relaxation of the short-range orde}NhiCh is proportional to the probability of two neighboring

over the entire volume of the crystal mainly occurs. The2!O™S in 'Fhe_alloy changing _place_s. .
kinetics of this stage is quite diffiycult to des{ribe, and we Substituting the expressiof?) into Eq. (5) and taking
shall not dwell on it in detail. From the macroscopic point of account of Eq(3) gives

view, however, prescribing the initial state consists of indi- g5 ) 3

cating the spatial distribution of the long-range order param- 5y = YTcloA 7+ yTean—yTer’, (6)
eter, in other words, describing the field of the order param-

eter at some moment in time, taken as the initial momenthere we have used the fact thaican be replaced by on
Ordinarily, after relaxation of short-range order, the alloy@ccount of the redefinition afy. Equation(6) is a nonlinear
consists of intertwined fragments. Neighboring fragmentgJifferential equation of the diffusion type. Note that the ki-
differing by the sign of the order parameter are called anl1€tic coefficienty can be represented in the formTo)
tiphase domains, and the transitional regions between d(yyh.eretr is the charactenstlc_ time of an elementary restruc-
mains are called, correspondingly, antiphase boundaries. Wrng eventfor example, a displacement of a atom or neigh-
note, incidentally, that grain boundaries in polycrystals ard?0ring atoms changing plagesiccording to Ref. 6, this
also antiphase domains, since neighboring grains differ onljme is given by

where

is a dimensionless parameter characterizing the closeness of
She temperaturd to which the sample is cooled to the or-

by spatial _orignt_at_ion, an_d Fh_e energy of a crystallite_is de- t,~Q5t exp(w/T), 7
generatdwith infinite multiplicity) with respect to the orien- i o
tational parameteréEuler angles whereQ, is the Debye frequencfordinarily ~ 10" s™%), w

To construct a theoretical description of the subsequerif the activation energy, aridis the temperature of the alloy.
stages of ordering of an alloy, we shall represent the non- If To @andt, are chosen as the characteristic scales of
equilibrium correction to the thermodynamic potential in thel€ngth and time, respectively, then E6) can be rewritten in

form of the Ginzburg—Landau functional the form
anlot=An+an—7°. (8)
q):f “de:f {f(ﬂH 1 5(Vn)2}dv. (2)  HereAis the Laplacian. Note that in the simplest case, when
2 the order » is spatially uniform and we have:>0, two

equivalent stable solutions of the equation exist in the limit

wheref(#) is the free-energy density in homogeneously or-of long times (— «):
: . : ) o .

onwaniating term i the expansion b & geries i e 7(1:0= 7= ©
gradients of the order parameter and describes the contribén equation of the form(8) was obtained earlier by Allen
tion of antiphase boundaries to the free energy of the systenand Cahfi (see also Ref.)%and used to study the motion of
Here the quantity is of orderUrg, whereU is the mixing  solitary antiphase boundaries.
energy of the solid solutidnandr,, is the characteristic in- The initial condition for Eq.(8) consists of prescribing
teraction radius of the atoms of the solid solution. the function »(r,t) at t=0. Since, as underscored earlier,
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this initial function is random, the order parameter is a ran-£= = &,. For such distribution functions, a direct calculation

dom function of the coordinates &t 0 also, i.e., Eq(8) will shows that the coefficient in question is close to 1.
describe the space—time evolution of the random order- As a consequence of E8) and the assumptiond 1)
parameter fieldy(r,t). and(12), we obtain ultimately the system of equations
dgp 1 _ _
azz[aﬂ—3K(0,t)77—;3], 13
3. BASIC COMPUTATIONAL RELATIONS
It is not necessary to know the detailed distribution of aK(gtS’t) =AK(st)+[a—K(0t)—37°]K(st). (14)

the order parametey over the entire macroscopic sample in
order to construct a description of the kinetics of ordering ofThis is a system of nonlinear differential equatidiosie of
alloys. For this reason, our problem will be to find the mainwhich is a partial differential equatidpmnd cannot be solved
physically significant characteristics of this function. They analytically. But, on account of its degeneracy it can be re-
include the mean valuérn(r,t))=7(t) of the order param- duced to a system of ordinary differential equations by Fou-

eter and the correlation function rier transforming Eq(14) with respect to the variablg
([n(r,t) =7l n(r',0) = pl)=(&(r,HEr" H)=K(st), dp 1 _ _
(10) qi- 2 [an—3K(0t) n—75°], (19
wheres=r—r’, i.e., we employ the assumption that the dR(( H
order-parameter field is statistically homogeneous. av_ . 24 W K01 —3721K (0t 16
The equations fom(t) andK(s,t) can be derived from dt [=a"+a=KOH=37°]K(q,1), (16)

the basic equatio(B) both by averaging Ed8) itself and by ~ ) ) )
averaging after premultiplying both sides of the equation b%?\i:%rf}((q(,st)t)ls the Fourier transform of the correlation
n(r.t). ) : .

_ To obtain a closed system of equations for the functions_ The system of equa.t|or(9.5) and(16) for the functions
7(t) andK(st), i.e., one not containing higher-order mo- 7= 7(t) andK=K(q,t) in turn can be reduced by simple
ments, we assume that manipulations to a system of nonlinear ordinary differential

equations for the mean value of the order parametveﬁ(t)

(£(rDg(r,1)=0 1D and its variancé =D (t):
for all r andr’, and we use for the fourth-order correlation a7 1
function (£3(r,t) €(r’,t)) a distribution of the form d_7t7: 5 (a—3D—79)7, (17)
(E(r D&, 1))=(E(O)Er DEr 1) .
=K(0t)K(st). (12) H=[aeﬁ(t)—D—3?]D, (18

One justification for this procedure is that there is only . B _
one spatial scale in this problem. For this reason, it is natura‘1vhere we have introduceld =D(t) =K(0\) and
to assume that the functional dependence of the correlation aeﬁ(t)za—llrg(t). (19
function (£3(r,t)&(r’,t)) on |r’' —r| is identical to the func- e
tional dependence of the correlation function Here we have employed the natural definition of the correla-

(E(r)&(r")y=K(|r=r']) on the distance between the points tion length,

r andr’. We can refer also to the model two-point distribu- 1 quE(q t)dq
tion function proposed in Ref. 10 for the random order- == - . (20)
parameter field re(t)  SK(g,t)dg
K(r—r’) Equation (16) is constructed so that the correlation
P(&1(r),&a(r")=p(&1)(&2)| 1+ NG §162, length at an arbitrary time is determined by the Fourier trans-
form of the correlation function at=0:

where p(¢) is a one-point distribution function. It can be _
verified by direct integration that for this model the correla- 1 Jo?K(g,0)exp(—g’t)dq
tion function (£3¢,) is proportional to(¢,&,). It is known 2k 2 : (22)

162/ 1S prop 152 re(t)  JK(g,00exp—g’t)dg

that for a Gaussian random fiellthe distribution(12) is

exact. However, the coefficient of proportionality betweenLike the functionK (s,0), the functiork (g,0) must undoubt-
(&% and(&?)? is not 1, as in Eq(12), but 3. This choice of edly be prescribed. According to El9), the function
the coefficient arises because in the present problem, espez«(t) is determined completely by the character of the evo-
cially at long times, the one-point distribution function is lution of the correlation length(t) of the system undergo-
very far from Gaussian. From physical considerations, baseuhg ordering(in our case the correlation length is associated
on the equivalence of states with order parameters having theith the characteristic spatial scale of the ordered regions
same magnitude but different signs, it follows that the one-  An asymptotic analysis of the expressi®1) for non-
point distribution function at sufficiently long times pathological initial correlation functions gives a reliable in-
(t>a™1) is very close to a curve with two sharp maxima at terpolation formula

130 JETP 86 (1), January 1998 L. I. Stefanovich and E. P. Fel'dman 130



D For a<0, i.e., at a temperature above the critical tem-
0.04%, perature, there is only one singular point. Its coordinates are
\ n=0, D=0 and it is a stable point. This signifies, as one
would expect, that the system passes into a disordered state
irrespective of the initial conditions.

For «>0, i.e.,, T<T., there exists an entire system of
singular points. However, only the points located in the up-

} per half-plane of the 4,D) phase portrait are physically
0 993005 010 015 _ 020 meaningful. Moreover, we shall analyze only four singular

n points of the systeni24) located in the first quadrarnsince
the second quadrant is added by symmetry

FIG. 1. Phase portrait of an alloy undergoing ordering: broken curves— ) ] = ]
separatrices; filled dots—singular points of the asymptotic system of equa- ~ The first singular poinf»=0, D=0), corresponding to a

tions (24). The results of numerical integration of the complete system thomogeneous disordered state, is an unstable (Bigt 1).
equations(23) for «=0.04 andr (0)=10 and the following initial condi-

0.03}F

0.02f

0.01f

tions are also presented hebg;=0.03; Dy=0.0007, 0.001, 0.0015, 0.002, The second singular pointy= 7.=+a,D=0) corre-
0.003, 0.0035. sponds to a homogeneous ordered state and is a stable point
(Fig. D).
The third singular poin{#=0, D=«) corresponds to
re(t)=r2(0)+2t/3, (220 nonuniform ordering and is likewise a stable poiRtg. 1).

wherer (0) is the initial correlation length of the system 1S POint corresponds to the possibility of realizing a mul-
(t=0). The last formula confirms the well-knonresult tidomain structure. The conditiop=0 means that domains
that the domains grow in size according to a diffusion law af different signs are equally likely to2 exist. Since the vari-
Vt (i, of course,t>r2(0)). Thus, by virtue of Eqs(19) and ~ @nce of the order parameter equals 7, the volume of the

. — transitional regions(antiphase boundarigsis negligibly
gz'si)ﬁmgssiﬁéefrgr%f equatiort?) and(18) for #(t) andD(t) small compared with the total volume of the domains within

each of which the order parameter equ#lg, or — 7.

dy _ — Finally, there is a fourth singular point, a saddle point,
dat 2 7la=3Dt) =77, with the coordinatesy=\a/2, D= a/4 (Fig. 1). A pair of
dD(t) 5 1 separatri(_:es with slope angles having tang(amsar the sin-
_:{_(_Hrz(o)) +a—D(t)—37%|D(1). gular poin} equal to ya or —+a, respectively, passes
dt 3 ¢ through the saddlepoiriFig. 1). The separatrix emanating

23 from the origin of the coordinates and passing through this

saddlepoint separates the phase portrait into two parts. The
left-hand upper part is a region of attraction of the inhomo-
It is of fundamental interest to investigate the system ofgeneouspolydomain state and the right-hand lower part is a
equationiz:_?,) near the Ordering temperatu'[’%’ whena<€1 homogeneous Single—domain state. Depending on the initial
holds and the initial correlation length is not too large so thaconditions (70,Do), the phase trajectories of the system will
we haver§(0)< 1/a<d?, whered is the characteristic size lie in one of the sectors indicated above. This is illustrated in
of a crystallite(recall that we are measuring time in units of the phase portraitFig. 1), where, besides the analytically
t, and distance in units of the interatomic interaction lengthdetermined singular points and separatrices of the asymptotic
ro). Then, asymptotically, at times>1/a the system of System of equation&4), a series of results obtained by in-
equations(23) goes over to the system of equations with tegrating the complete system of equati¢®8) numerically

4. LONG-TIME ASYMPTOTIC BEHAVIOR OF THE SYSTEM

constant coefficients is presentedin the form of phase trajectorigs
_ If the mean value of the order parametgy#0 in the
dp_1—- 2 initial state and exceeds the average sii, of the inho-
nla=3D(t)— 7], " . : :
dt 2 mogeneities, then the system will evolve directly into a

dD(t) single-domain state. The sign of the order parameter in the

m =[a— D(t)—SZZ]D(t) (24) state ot[hermodynamic equilibrium will be the same as the
sign of 7 in the initial state. A deviation of the system in one
with the initial conditions direction or the other with respect to the sign of the order

— _ parameter in the initial state can be caused, generally speak-
7(0)=70, D(0)=Do. @9 ing, by different factors, both random and deterministic. Spe-
The solution of the syster(24) with initial conditions(25)  cifically, this can be the action of a field coupled to the order
makes it possible to obtain information about the last stag@arameter, the presence of definite temperature gradients, the
of the ordering process. But even this simplified system caninfluence of grain boundaries, stacking faults, and so on.

not be solved analytically. However, it can be analyzed  However, if in the initial state the inhomogeneities are
qualitatively on the basis of the concept of the phase portraiguite developed and the mean value of the order parameter
of the systert? (in this case, in the variableg andD; see  equals zero or is small\Dy> 7). then a well developed

Fig. 1). polydomain structure forms in the system over a time
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t~a L. The characteristic size of the domains, like the char- D
acteristic thickness of the transitional lay@ntiphase do- 0.04
main wal) between them, will become o~ 2 by this time,
and on the whole over the sample the volume fractions of
domains with different signs will be the same. Subsequently,
according to Eq(22), the domains will grow in size accord-
ing to the diffusion lawe Jt, while the thicknesses of the 0.01

antiphase boundaries will remain unchanged at the level

a~ Y2 In the absence of long-range action the multidomain

state is not thermodynamically stable. This state can be re- 0 0.02 0.04 0.06 i 0.08

garded as being long-lived, and its characteristic lifetime sat-

isfies @~ 1<t<d?. In the situation under study, the system FIG. 2. Phase portrait of an alloy undergoing ordering fer0.04,
does not pass directly into a thermodynamically stablef)fgg);loozjng(gg initial conditionszo=0.02, Do=0.008, 0.012, 0.016,
single-domain state but rather through a stage of domain =~~~ '

formation and growth. Domains continue to grow until their

sizes reach magnitudes on the order of the dimensions of the

crystallite, when by virtue of the boundary conditions thetions (23) is that quasistationary intermediate structures of a
system will give preference to a domain with a definite sign.SPecial type with unequal volume fractions of the corre-

We note that the process of formation of a domain structuréPonding ordered phases can form during the ordering pro-
is completed by the time~d>. cess. A similar phenomenon is described in Ref. 13, where

numerical analysis of two-dimensional models showed a vir-
tual phase at intermediate stages of separation of intermetal-
lides.

As a result of an investigation of the asymptotic system  In our case the quasistationary states corresponding to
(24) instead of the syster{23), it was found that the initial ~intermediate polydomain structures with unequal volumes of
and intermediate stages of ordering fall outside the frameordered phases occur in a very narrow range of initial con-
work of our analysis. To investigate the entire process oflitions and are manifested in the form of horizontal sections
evolution of a system undergoing ordering, it is necessary téplateaus or stepson the evolution curves for the mean
solve the complete system of equatiaq@8), where one of value (t) of the order parametdFig. 33 and the variance
the coefficients is explicitly time-dependent. This does notD(t) (Fig. 3b.
change the results of the qualitative analysis of the As the results of numerical analysis show, the metastable
asymptotic behavior of the system. Only the quantitative esintermediate structuregwith the appropriate initial condi-
timates of the relaxation time and characteristic spatial scaleons (7y,D)) are quite stable formations. Before passing
change. The analytical investigation of the systét8) be- into a thermodynamically equilibrium homogeneous state or
comes problematic at short and intermediate times. very long-lived polydomain state a system undergoing order-

To trace all stages of evolution of a system undergoingng spends an appreciable time in such a kinetically retarded
ordering, we solved the complete system of equati@®  state.
numerically. Numerical analysis was performed for different =~ Parametric plots show the ordering process especially
temperature§ and for different initial sizes of the ordered clearly. We present in Figd a phase portrait of the system
regions(i.e., the parameters andr.(0) were variegl More-  (23) for the same values of the parameters and initial condi-
over, the initial conditions of the problefm, andD,) were tions as in Fig. 3. It is clearly seen that there are two groups
varied. It was found that for sufficiently small and values of phase trajectories, corresponding to homogeneous and in-
of r.(0) close to 1 the ordering process can behomogeneous orderings. Two of these trajectories, which
nonmonotonic—at first the variand2(t) of the order pa- correspond t®,=0.0018234 and 0.0018235, are very close
rameter decreases, i.e., disordering occurs, and only after this asymptotic separatrices and pass near the saddle singular
does normal formation and growth of domains odgtig. 2). point. On the segment from the initial valuesy(,D) up to

The second interesting feature found explicitly as a rethe saddle point they practically merge with one another
sult of numerical integration of the complete system of equa€ause of the poor resolution on the numerical plot, Fig. 4

0.03

0.02

5. ANALYSIS OF THE COMPLETE EVOLUTION EQUATIONS

4 b FIG. 3. Results of numerical integration of
the system(23) for «=0.04,r.,(0)=10 and
the following initial conditions: 7,=0.03,
Dy=0.007 (1), 0.001 (2), 0.0018234(3),
0.0018235(4), 0.0025 (5), 0.0035 (6); a—
evolution of the mean valug(t) of the order
parameter; b—evolution of the varianbdt).

0.10F

0.05

0 200 400 600 800 1000 Q 200 400 600 860 1603
t t
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D the ordering time once again reaches large values. If the
0.04; temperature is assumed to be much less than the height of the
potential barrier T<w), thenw can be estimated from the
following equation according to the position of the tempera-
ture minimumT,,, of the ordering time:

w=T2/(T,—T). (27)

It should be noted thaf,, has been determined experimen-
tally for a number of alloygsee, for example, Ref.)6

0.03¢

0.02¢

0.01

0 03005 0.10 0.15 _0.20

n 6. CONCLUSIONS
FIG. 4. Phase portrait of the syste@8) for the same values of the param- The questions investigated in this paper pertain to the
eters and initial conditions as in Fig. 3. kinetics of phase transformations in systems undergoing or-

dering, where a second-order phase transition occurs. We
were not interested in the establishment of short-range order.

after the singular point they move apart toward singular' "€ Systems undergoing ordering were studied at mesos-

points corresponding to homogeneous and inhomogeneo§PIC and macroscopic times and it was assumed that all
orderings. In reality, these phase trajectories lie on differentoC@l rearrangement processes had already occurred. The
sides of the separatrix emanating from the coordinate origifuPseauent relaxation of the system is associated with the
(0, 0 and entering the saddle point. The process whereby th@PPearance of long-range order, when the appearance of su-
phase trajectories pass near the saddle lasts for a quite loRgTstructures becomes overwhelming likely. We attempted to

time. We interpret this as a kinetic retardation of the ordering@k€ account of spatial inhomogeneity, which always appears
process. even at the stage when short-range order arises, as well as the

Analysis of the system of equatioi3) makes it pos- andom character of the inhomogeneity.
sible to estimate the characteristic formation timef the 10 this end, for the theoretical description of the estab-
domain structure. If the time of an elementary restructur- iShment of long-range order we employed a statistical ap-
ing event in the system is determined by the expres&ign  Proach which we developed earl?e‘i".Thls made it possible
then for the time indicated above we have to investigate qualitatively in a continuous approximation all
stages of relaxation of long-range order in an alloy undergo-

t 1 7T w i i
— c exr{—) (26) ing ordering.
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We propose a method for deriving duality relations for two-dimensional inhomogeneous
Z(N)-symmetric models on a finite square lattice wound around a torus. The method is used to
obtain duality relations for the vector Potts model, the Berezir$kllain Z(N)-model,

the Ashkin—Teller model, and the 8-vertex model on a lattice obliquely wound around a torus, as
well as an exact relation linking the partition functions of the latter two models1988

American Institute of Physic§S1063-776(98)01701-9

1. INTRODUCTION SRR Rt VS SR

{l’[ sinh xﬂ(r)] Z(PxPY[K]
Studies of duality in models of statistical mechanics and| r.u«

field theory serve as an important method for a nonperturba- 1 s 1 o

t!ve |nves_t|gat|on of the phgse diagrams gf the models. The _ _[ H sinh K (r)} E TPxPyz(PePYIK].

first to discover the duality transformation for the two- 2| v . # Pepy=0 PPy

dimensional Ising model were Kramers and Wanhier. &)

Kadanoff and Cevageneralized the duality relation to the

inhomogeneous Ising model, in which the coupling constantéiere theZ(Px:P[K] are the partition functions of the Ising

along the horizontal and vertical bonds,(r) andK,(r), ~ model with appropriate combinations of periodimdex

are arbitrary functions of lattice site coordinates: Px,Py=0) and antiperiodig¢index p,,p,= 1) boundary con-

s ditions along thex andy axes:
[l’[ sinh z?u(?)} Z[K]

Mo

Z(px,py)[K]:[E‘1 exp(z Ky(r)o(r)VE/p»U(r) , 4

—1/4
={H sinh;KM(r)] Z[K], (1) 1 1 1 1
1 1 -1 -1

sinh (r)sinh K _,(T)=1, ™1 -1 1 -1 ©
1 -1 -1 1

sinh K (r)sinh K_(1)=1. 2
Here the subscript. takes the valueg andy, a tilde indi- The Ising spin takes two va}lues(r)z *1; the coordinates
cates that the quantity refers to the dual lattice. and?f the sites of the dual lattic coincide with the coordinates
% (V=R (T—2 A aa . ' of the centers of the plaquettes of the original latfit@nd

_u(r)=K,(r—u) (here u=x,y are unit vectors along o~ S 0V dr— h
thex andy axes. vice versasee Fig. I r =r+(x+y)/2 andr =(x,y), where

As noted by Kramers and Wannteand Kadanoff and X=1:----n andy=1,..m. The shift operators/, and v,
Ceva? for a homogeneous model this relation becomes exad@¢t 0na(r) in the following way:
in the thermodynamic limit, i.e., for the specific free energy. _ ° _ o
However, in the inhomogeneous case the very procedure of Va(n=o(r+X), V,or)=o(r+y).
passing to the thermodynamic limit is ambiguous. In Ref. 2They also satisfy the boundary conditions
the duality relation(1) was derived for spherical boundary
conditions, which for lattice models are nonphysical. The V;pX)‘T(n’y):(_)pxa(l’y)’
complexity of deriving the duality relation for a lattice (py) _
wound around a torus, say by comparing the high- and low- Vy Toxm)=(=)Mo(x1). ®)
temperature expansions for the partition function, is due to |n Ref. 3 we used the exact solution of the two-
the need to allow for closed graphs that encompass the torimensional Ising model to derive the duality relati@ for
several times. the homogeneous model, while for the inhomogeneous case
In Refs. 3 and 4 we proposed an exact duality relationthis relation was proved to be valid by perturbative tech-
for an inhomogeneous two-dimensional Ising model on aiques and was checked by direct calculations involving
square latticeR of finite dimensionsiXm wound around a small lattices. In Ref. 4 we obtained duality relations for an
torus (in Fig. 1 the dimensions of the latticés andR are  Ising model with a magnetic field applied at the lattice edges.
3X3 and the spins at the opposite edges of the lattice must In this paper we formulate a systematic method for de-
be assumed to be identigal riving the duality relations foZ(N)-symmetric spin models
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FIG. 1. Correspondence between the coordinates and coupling constants in

mutually dual latticeRR (solid lineg andR (dashed lines

on a square lattice wound around a torus. In principle, th:.-H
ere

ppoundary conditions, and it is convenient to interpret the

method can easily be generalized to lattices of large dime
sions compactified on a hypertorus and to lattice models wit
continuous global or gauge symmetry. By way of example
we derive the duality relations for the vector Potts model, th
Berezinski—Villain Z(N)-model(a Z(N)-symmetric Gauss-

ian mode),>® the Ashkin—Teller model, and the 8-vertex

model on a lattice obliquely wound around a torus, as well as

an exact relation linking the partition functions of the last

two models. The duality relations for these models were ob

tained by Zamolodchikdvand Dotsenkd (see also Refs. 9
and 10 without taking the boundary conditions into account.
Here we also show that E(B) is a special case of the duality
relation for the vector Potts model Bit=2.

Before explaining the idea of the method, we introduce

the concepts of a magnetic dislocation, “topological

H(PD[K,o] in the form of the HamiltoniartH 99K d, o]
with a magnetic dislocatiorD(™® corresponding to the
boundary conditionsf,q) and with periodic boundary con-
ditions for the spin variabler(r):

—BHPI[K,o]=—BHIO[K,d,o]

% r}‘; |K,,(r)exp{i 2Wﬂ-d(v”'q)(r)}

Xa*(NV¢(r)+c.c.
=2 KAr)cos{ZWW[AVI(r)

+ di““(r)]] : (10
AV=V§,°)— 1 is the difference derivative with periodic

vector fieldsK ,(r) andd{"¥(r) defined at the lattice edges

@s the absolute value and phase of the coupling constant

involving two neighboring spins. The magnetic dislocation
DP9 js determined by the phase
dPV(r)=(dy(r),dy(r))=(pSe,(1).q8,(r), (1D

which is finite along the boundary cycl& andBy, which
fix the spatial configuration of the dislocation on the torus:

Sg ()= 2 S(r—r'), & (=2 &r-r"),
r’ eBy r' eBy
(12

charge,” and the gauge transformation of configurations ofvhere 5(r —r') is the Kronecker delta, and
coupling constants using the example of the vector Potts

model, which possesses global discrete symmetry group
The Hamiltonian of this model can be written

_BH(p,q)[K,U]: % E {KV(r)O.*(r)V(VPV)a'(F)+C.C.},
| (7

where the spin variable takéé values:

, I(r)=0,...N—1.

2T
o(r)y=ex |Wl(r)

The indicesp,=p and py=q (p,q=0,...N—1) in the
Hamiltonian(7) denote cyclic boundary conditions:

V(xp)v(n,y)=exp< i WP)U(LY),

V(yq)a(x,m)zexp(iWq)o(x,l), (8)
and accordingly, for the variablér) we have

I(n+1y)=I(Ly)+p, I(x,m+1)=I(x,1)+q. 9

Periodic boundary conditions correspondpte 0 andg=0.
If we use the explicit form(8) of the boundary condi-
tions, it is convenient to represent the Hamiltonian
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By={(x,m),x=1,...n},

By={(n,y),y=1,...m}.

The phasal"9(r) can be interpreted as the density of the
“topological” charge Q, of the magnetic dislocation. For
instance, for the dislocatiob (P9 this charge is

Q,> dP¥(r)=(pn,gm). (13)

We call theD (P9 (with p,q=0,... N— 1) the magnetic basis
dislocations. Note that periodic boundary conditions along
all torus cycles p=q=0) actually correspond to the case
without magnetic dislocations. Nevertheless, for the sake of
convenience we have introduced the notafifi® for such
boundary conditions.

The Hamiltonian(7) is invariant under locaZy-gauge
transformation’s:

o(r),

, 2T
o' (r)y=ex |W¢(r)

. (14

, 2 2 -
K, (r)=ex |W¢>(r) K, (r)ex |W¢(r+,u)
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where ¢(r) has periodic boundary conditions. This invari- Z(N)-model, which is self-dual for any value &f. We dis-
ance leads to the following expression for the partition func-cuss in detail the case whexe=4, which corresponds to the
tion Z,, of the vector Potts model: Ashkin—Teller model with subsystems of spingr) and

s(r) interacting in a special manner at the boundaries of the
lattices wound around a torus. In Sec. 4 we derive the duality
relations for the inhomogeneous Ashkin—Teller model and
the inhomogeneous 8-vertex model on a lattice obliquely
wound around a torus, and the exact relationship between the
partition functions of these models.

ZPO[K]= % exp{— BHPI[K, o]}

=2 exp{—BHPI[K o' }=ZPV[K'].
[a]’
The gauge transformations of the variatlég andd,(r) in
the Hamiltonian(10) have the form

'(N=1r)+¢(r), d,(r)=dPP(r)+A,é(r). (15
) ] . We begin by deriving the duality relation for the vector
These transformations lead to a deformation of magnetic basgits model. To this end we use the standard méttiaaf

sis dislocatio,ns and to the emergence of new closed dislocgyjity transformation in spin models. The partition function
tions. Thend ,(r) describes the field of closed magnetic dis- of this model can be written

locations on a torus and is the density of the topological
charge of such a field. Obviously, the total topological-p,q) K dl= (p.q)

! o ) . d]= exp{— BH'PY[K,I
charge of such a field of magnetic dislocations is unalteregV [K.d] % A-p (K1}
by gauge transformations. For instance, for the Hamiltonian
HOOK d,o] with dislocationD®% we have

2. VECTOR POTTS MODEL

:% exp{ % KM(Y)CO{ZWW[A#I(”_Fde,q)

o

:% % exp(— BH[t])ex

Q=2 d,(N=2 dPN+2 A,e(N).
r r r (16)
Here the periodic boundary conditions for the phasge)
nullify the second term, with the result th@;L:QM. This
implies that the set of configurations of the coupling con-
stants[K,d] (containing closed dislocationsan be divided
into gauge-inequivalent class€5P9, with each class hav-
ing its own topological charg® ,=(pn,qm). The elements
of a classQ (P9 are generated by the gauge transformations
(14) from the magnetic basis dislocati@®®.

The idea behind the proposed method consists in the
following. In deriving duality relations via Fourier transfor-
mation, delta functions arise. The condition that the argu-
ment of the delta function must vanish leads to a system of
equations that determine the relationship between the origj-

2T
p{lw%tﬂ(r)
X[A,Ll<r>+d;‘”q><r>]] (17
= exp —pA+ S
_[t] exp{ BH[t] IWr,u t,(r)

xdif"”(r)]]:[ NSN(A ,t,(r—p)), (18

) : . ! where
nal spin variables and the dual spin variables. Usugabe,
e.g., Ref. 9 the boundary conditions are not taken into ac- NT1 NT1
count, and only one solution of this system of equations is % :H |<;o ' Et] :I}IL G0 |
Z w o\t (0=

written. However, for the model on a torus there are many _ _
solutions, which can be divided into gauge-inequivalentn (17) we took the Fourier transform of the vector field

classed)(P9 of the configurations of coupling constants for t.(r), where at each sitg,(r)=0,1,...N—1, and— SH[t]
the dual model, with each class having a well-defined valuds the Fourier transform of the Hamiltonidf0):

of the dual topological charg®, = (pn,qm). Hence, in es-
tablishing the duality transformation of the partition function
we must sum over all the gauge-inequivalent classes on the
dual lattice with coefficients dependent on the boundary conHereM =N/2 if N is even andM =(N—1)/2 if N is odd. In

. (19

21
Wtﬁ(r)

M
—ﬁﬁ[t]=k§=)O r% g\ (K)cos

ditions on the original lattice. For instance, fdr=2 there
are four gauge-inequivalent classé8;0), (1,0), (0,1), and
(1,1). The four terms on the right-hand side of the duality
relation (3) for the Ising model reflect this situation.

In Sec. 2 we derive the duality relation for the vector

Potts model on a square lattice wound around a torus. We
discuss in detail the cases of self-duality for this model:

N=2, the Ising model; ant=3 andN=4, two Ising sub-

(18), 5n(s) is the Kronecker delta moduld: it is equal to
unity if s=NL (hereL in an integey, and zero otherwise.

To get rid of the delta functions ifil8) we must solve
the equation

At (r—p)=0 (modN). (20)

The nontrivial solutions of this equation on a torus can be
written

systems interacting via the edge spins. In Sec. 3 we obtain

the duality relations for the BerezingkiVillain

136 JETP 86 (1), January 1998

t(r)=€,,A,T(r =v)+e,,d (T -v), (22)
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where « labels the solutions] (r)=0,1,..,N—1 is speci- wherep,q=0,1,..,N— 1. Since the duality relations link the
fied at the sites of the dual lattice, ad§f”’(T) is the density ~ partition functions of the two models—functions that are
of the topological chargécorresponding to a giventh so- ~ gauge-invariant quantities—in removing the delta functions
lution) of the field of closed magnetic dislocations on thein (18) one should sum over the gauge-inequivalent solutions
dual lattice, of Eq. (20):

AM=3 89 3 eualr)er-r), GV =€, T(F=)+e, (-0, 23

ez, "eT; ~5 ) - . . . ..
rel whered P9 is defined on the dual lattice by relations simi-

s9=0,1,..N—1. (22)  lar to (11)—(13). Plugging these solutions inid8), we ob-
o tain

Here, by analogy witt11) and(12), the functiond () is

defined on the edges of the dual lattice. For the sake of _ . :i aTrA TSR

convenience we have written the dislocations on the dual ZyIK.d] N Z [Z e~ BHLA LT +d,T])

L o . p.q [I]
lattice in terms of closed patHs on the original lattice. In )
(22), Z, denotes the subset of paths corresponding to solu- LET (p,q) T~
tion @ out of the sefl’ of all closed paths on the original “exp iy rE;/, €udy T (DIA T =)
lattice (I'jeI"). The vectora,(r) is equal toe,(r) if the
detour direction of patf'; at siter (counterclockwisgis the +a<yﬁ,a>(7_ ;)]}_
same as that of the unit vecte;;(r)=,& at that site; other-

wise iﬂ(r):_eﬂ'(r)'zz v be obtained if Here the factor M must be introduced because Hg3)
The expressior{22) can easily be obtained if we Eote leads to a situation in which the sum over the configurations

that the solutior(21) formally satisfies Eq(20) at the siter [17is N times the sum over the configuratiof§. Noting
provided that that

€, 037 (T —n—v)=0, .
o o N €., AP (NA,T(T=1)=0,
which becomes an identity if one of the three following pairs  r.x

of conditions is met we can write(18) in the more compact form

T T _N=d@ (7 _y—v
dy(r —y)=d,“(r =x-y),

1 2
— e m el ZPArK d]= — exp[i— Evd(DQ) r
4T 30 =TT %), VUK 2 exp i 2 e
GRS A | 2F R

Ay (r=x=y)=d(r —x-y);
AT -§)=-TAIT-%-9), o
(T -3 =T -%-9). xZPIR 4], (24)
For these solutions to be valid simultaneously at a set of siteghere
we must require that the sites lie on closed pdth®n the
torus, i.e., these solutions must be “matched” in suchaway =@ 9ry 51 =ShOrT S
. . Zy VK, d]= xp(— BHP I
that they form closed magnetic dislocations. v K. d] [ET% exp— 5 [1.dD
We denote a configuration of the coupling constants on

the dual lattice corresponding to the soluti@®) by [d®]. is the partition function of the model on the dual lattice. The

Depending on the number labeling the solution, these Conc_iuahty relatlon(24) shows that the vector P_otts model is not
elf-dual for arbitrary values dfi. Here we discuss the cases

figurations contain both closed dislocations not encompasss-. . . .
ing the cycles of the torugheir topological charge is zero with N:2’3'4.‘ for_ which this mode_l IS self-d_u%l. .
and dislocations encompassing the cycles. Dislocations of _The Hamlltonlz_in(?) atN=2 CO_mC'deS with th‘? Hamil-
the first type can be eliminated via gauge transformationéom"’ln (4) of the Ising model. In this case E(L9) yields
(15) on the dual lattice, while dislocations of the second type B 0, e B
can be transformed into magnetic basis dislocatibfs? —BHY” [I]:rzv (9,7 (K)+g, (K)cog mA 1 (r))].
on the dual lattice. This means that all the configurations '
[a(a)] can be divided into gauge-inequivalent Clasgﬁéa) To find the coefficientgg)(ﬁ) we take the inverse Fourier
with topological charge transform:

20 ~

N tn)
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Q,=2 dP¥@=(pn,qm), exp{ > g(K)cod
r k=0




—nt,

N , MFV.

1§E K 2
N: » CO Wl’l

At N=2 (M=1) this relation readily yields
exp(2g ()} =13 sinh X,(r),

)_iZW -

(29

exp{— 29 ()} =tanhK,(r)=exg —2K_ (1)1,

where the second equation coincides wi#. Using these
expressions, we can write the duality relati@4) as

—~1/4
(1’[ sinhZ(V(r)} Z(P K]

v

r,v

—-1/4
{H sinh ZKV( r )J

exgli m(pg—qp)}ZP VK],

XZ

p.q=0

(26)

cos{wA“’vH (1]

N
©
2
=

Il
=M
(¢

x
©
\|
=
—<z

=S exp S R (F)a(T)VPo(T),

ando(T) == 1. Clearly,(26) coincides with the duality re-

lation (3), since the exponential on the right-hand side of Eq.

(26) is nothing more than the matrik in (3):

pxapy
[

T2Y=explim(pa—ap)}. (27)

The Hamiltonian(7) at N=3 corresponds to the three-

position vector Potts model. In this ca&k) yields

exp(gV(T) =3 (exp(K (r)+2

KD
Xexy{— 5 )} [exp(K,,(r))
2/3
_ex;{—KVZ(r))} exp{—%gi})(?))
2 sinj 3K (r)/4]

~ 3 cosli3K,(r)/4]—sint 3K ,(r)/4]

3. ~
=exp<—§KM(r)),

and the duality relatiori24) assumes the form

ZPI[K]= % H exp(gilo)(T))
o
2 ~—
><~Z ex I—(pq qp)} ZP K],
p.q=0

At N=4 the partition function of the model7) with

cyclic boundary condition§9) can be written as the product
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of the partition functions of two Ising models interacting via
boundary spins. Indeed, if we replace the spin variable via
the relation

T
zr(r):ex;{lgl(r)

1
:E{Tl(r)+Tz(r)"‘i[Tl(r)_Tz(r)]}, (29)

which each valuel

(1) (7i(r)=

the form

=0,1,2,3 uniquely assigns,(r) and
+1), the Hamiltonian(7) can be written in

—,BHE‘p'q):rE KV(r)cos{ gAipV)l(r)]

|_\

K (1) 7(N)VPD7(r). (29)

T2

Herep,g=0,1,2,3, and in view of the boundary conditions

(8) for o(r) and Eq.(28), the operatow " satisfies the
boundary conditions

VP @ri(ny)=n(n+1y)
=l cos ™2 ()i sin 2 7.1 30
=|cos—-+(—) sin—=7j(1y), (30
VPO (x,m)=ri(x,m+1)
7q | i TP
=| cos—=+(=) sin—|7(x.1), (3D

which generate the interaction of spingr) and=,(r) at the
boundary (#]).

Using (25), we can calculate the coefficients in the
Hamiltonian(29):

_ 1
exp(—g\V(1)) = 5 sinhK,(r),

exp(—g'”(T))=tanh

K,(r) ~ ~
5 —exp(—K,(r)),
g,.(r)=

From (24) we obtain the duality relation for two Ising mod-
els on a torus that interact via boundary spins:

—-1/2
{H sinh Kﬂ(r)} ZP9I[K]

ru

:%fﬂ

T

o —-1/2
sinh KM(r)J

PIIK],

ex I—(pq QE)]
p.q=0

where for this model

sinh K, (r)sinhK_,(T)=1,
sinhKy(r)sinh K_,(T)=1.
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3. BEREZINSKIT-VILLAIN Z(N)-MODEL 20 N
+ —d (r) +i—s(r)0(r)] (35
We now derive the duality relations for the Bereziriski N ¥ 2
Villain Z(N)-modeP® (a Z(N)-symmetric Gaussian model N 12
The partition function of this model can be writféh = H R
tu 27K, (1)
Z(P,Q)[K]:E exp — H(p'q)[KJ]) t2
BV 1 p(—BHg XEEH expl — (1)
K.(r)[2 8 T rw 2K (1)
ry|2m
> >T11 exp{— “2 ~ A () o
M ™ re i tu(rd,(r)
2
=2k, (r) ] (32 R
. xH 5(2 Aﬂt#(r—,u)—Ns(r)), (36)
where :
No1 where
R 1 (] w oe
M r o S :H( D ) fDa:Hf ().
[t] f \t(n=—o r Jo 2

-nf,z
[ kM(r):—OC

Here the quantity(r)=0,...

(K]

N—1 is specified at the sites of
a square lattice, the superscrit,€) specifies the boundary
conditions(9), and the sum ovek, ensures the periodicity
of the Hamiltonian under shifts—I(r)+NL(r), whereL is

In deriving (34), (35), and (36) we used, respectively, the
summation formula

277%15 I)
N =0

the equality

E elea

S=—x

0<=60<2m,

an integer. By analogy with the vector Potts model, the par-

tition function (32) can be written in terms of the basis dis-

locationsD (P-9):

Ku(r)
Z8MV[K,d]= exp{
SUKd=2 2 11 >
|

—[A I(r)

+dPP(r)] =27k, (1)

wherel(r) satisfies the periodic boundary conditions, and

(33

the topological charge densit, (r) is defined in(11)—(13).

To derive the duality relation we transfor(83) as fol-

lows:
K, (r)
Z(p.9) K,d]= p[_'“_
2 2
X | [Aul (D) +du(r)]—2mk,(r)
1/2
N) 5> [odl exp[
e i 2

2
X

2
A,o(r)+ Wd/‘(r) —27k,, (1)

N
+i Es(r)e(r)}

N 1/2
= — D6
HL 277KN>> 8 T f

)
XHL exp{—zé“ﬂ(r)ﬂ—ltﬂ(r)(Aﬂﬂ(r)
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Ku(r)

(34

> exp[ - %K(f—Zwk)z}

k=—

= ;{ —+|tf
Kt——oc

and the definition of the Kroneckers delta

27 dé(r)
fo 2

To remove the delta functions i(86) we must solve the
equation

|€| 5(”

> ALt (r—p)=Ns(r).
M

The analysis of the solutions of this equation is similar to the
analysis of Eqs(20)—(23), and leads to the following expres-
sions for the gauge-inequivalent solutions:

PO =)

tPO(r)=e,,A,T(T—7)+e

—Ne,, K, (T =),

s(N=¢,,A,k,(T—v—p).

These solutions are the magnetic basis dislocafiffs? on

the dual lattice in the corresponding gauge-inequivalent
(}E":‘) with  topological ~ charge Q,=(pn,qm)
(p,q=0,1,..,N—1). To remove the delta functions {86),

we must then sum over all such solutions. As a result we
arrive at the duality relation for the BerezinskVillain
Z(N)-model:

A. I. Bugril and V. N. Shadura 139



W= 2 exp(— 272K, m?),

1 . 27T m=—w
== > expli—(pg—qp)
N N o 2
p.q 1
14 W= wy= 2 eX[{—ZWZK,,(m— —) },
ZWKM(r) ~(~a)~~ m=—o 4
<1 ——| ZRIK.4], (37) . ,
ru 1
w3= 2 ex;{—ZWZKV<m— —) .
where m=— 2
o 2 This implies thatl ,=J,. Using this relation and37), we
KM(r)K_V(r)=<E) . MF. can easily obtain the self-duality relation for the Ashkin—

Teller model:
As shown in Ref. 7, atN=2 the Z(N)-symmetric
Gaussian model corresponds to the Ising model, which ngT’Q)[PaJ'L]— z

r —~ ~
exp i= -
agrees with our resulB37), which in turn agrees witli3) in 2 (Pd qp)]

455
this case, while al=4 it corresponds to the Ashkin—Teller ShaE
model?? xZW&9P,I,L], (39
We now discuss the latter case in greater detail. Thgypere
Hamiltonian of the inhomogeneous Ashkin—Teller model
can be written ZEP= 3 expl— BHE 7y, 721}
[1].[72]
(Py9y) _ (p,) . .
—BH Y E [PL(N)+1,(N) 7NV 7y(r) Here the HamiltoniarH{%® has the same structure as the
- Hamiltonian(38), but the shift operatorﬁ(p”) andV(qV) are
+3,(1) (1) V7 7p(r) replaced byV{%® (p,q=0....,3) with the boundary condi-

(p,) (a,) tions (30) and (31) which Ieads to the interaction of spin
LN 7NV, 7a(1) 7NV, 7a(1)]. variablesr,(r) andr,(r) at the boundaries. As noted earlier,
(38)  these boundary conditions emerge because of the boundary
conditions(9) on the variabld (r) and the relatior(28).

In (39) the dual coupling constants are related to the
original coupling constants:

Here at each site of a squarenxX m lattice R there are two
spin variablesg(r) ands(r), which take the values 1; the
subscriptv=x,y labels thex andy coordinate axes, and the

indicesp,=0,1 andg,=0,1 (v=Xx,y) describe the boundary tanhJ_ (T)[1+tanhT_,(T)]
conditions(6) on the spin variables(r) ands(7), respec- exp(—2J,(r)—2L,(r))= = —
tively; 1,, J,, andL, are the coupling constants along the 1+tantf J_,(r)tanhL_,(Tr)
corresponding axes. _ - -

The statistical weight of the Ashkin—Teller model is re- exp(—43. (1)} = tantf J_,(r)+tanhL_,(T)
lated to the statistical weight of th&(4)-symmetric Gauss- # 1+tan® J_,(F)tanhT_(T) '
ian modet? s g

exf P, (1) +1,(r)7y(N)V,71(r)+3,(r)mo(r)V,75(r) %exp(PlﬁZJ,ﬁ L,)=expP_,)[costt J_, coshL_,

LN 7NV, 72 (1) 72(r)V, 75(r) ] Fsin? T, sinhT_.]

= > exp[ — 272K (1) These equalities constitute a special case of the relations to
Ky (r)=—o be obtained in Sec. 4, where we derive more general self-
1 2 duality formulas for the Ashkin—Teller model with the
X Z(AJ(f)“‘dy(f))—kv(r) } Hamiltonian(38).

wherel(r) is related to the spin variableg(r) andr,(r) by 4. ASHKIN-TELLER MODEL AND 8-VERTEX MODEL
(28). This leads to the following parametrization of the cou-

pling constants of the Ashkin—Teller model in terms of the ~ Consider the partition function

constantX,:
) zi\p;’q”[P,l,J,L]:[ %51 exp(— BH ) (40)
Wow3 7l
PAP,) = wowswze; k)= w103 of the inhomogeneous Ashkin—Teller model onrexm fi-
nite lattice R wound around a torus with the Hamiltonian
exp(4l,)= wowl, exp(4d,) = 0“’2, (38) and the boundary condition®) on the spin variables
w3 w103 o(r) ands(r).
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For a duality transformation of the partition function
(40) we can use the duality relatiai3) for the Ising model.
To this end we factor the four-spin term i@0) via the
simple identity

exdL,(r)o(r)a(r+v)s(r)s(r+v)]
= % o, eXp (1) 7,(r)

X[o(r)o(r+v)+s(r)s(r+ )]},

where the spin variable,(r)==*1 is on the edges of the
lattice (r,r+v), and

exd2L,(r)]=cosh 2y,(r), exd—L,(r)]=2a,(r).

(41)

After factorization we arrive at the following representation
of the partition function(40), of a linear combination of

products of two partition functions of inhomogeneous Ising

models:

(Py.0,) _
ZApT q _E

2 H {a,(Nexp(P,(r))}

xZ PPz W), (42

where

200110= 3 TT exl o) 7o),

29w 31=> T1 exga(r)s(n)vi*s(r)],

[s] r,v

and the coupling constants are
L) =1,(r)+y,(r)7,(r),

J(N)=3,(r)+y,(r)7,(r). (43
Since the duality relatiofB) is valid for an arbitrary configu-
ration of the coupling constan{¥K], we can use it for the
duality transformation of the partition functiorléqx'qy) and
Zfrpx’py). Here, performing the duality transformation only
for Z% % for example, we find the relation between the
partition functions of the Ashkin—Teller model and the 8-

where by7(r) we denote the spin variable dualgfr), and
tanhJ’ (r)=exgd —2J,(r)], wn#v, (45)

with T designating the sites of the dual lattiedinked to the
coordinates of the sites of the original lattice via the relation-
shipT =r+(x+y)/2, andJ’ (t)=J(r—v). Thus, on the
right-hand side of(44) we have the partition function in

which the spin variables are given on two latticBsandR.

Using (45) and the identity
quKO'iO'j):COShK‘f'SinhK(TiO'j, (46)

we can write the sum ovérr,] in (44) in the following form:

I >

[exp(J;)coshl !
r,v T,,:il
+exp(J.)sinh 1o (r)V'Po(r)
+exp(—3))coshl ,r(T)V @) 7(T)
+exp(—J.)sinh 1o (1) VP a(r)7(T)
XV ()],
MF V.

After summing overr, we obtain
_ Ly edlPu L)

273 V2

1
X Z exfi W(qxay_qyax)]

qvay:O

x > [l expd,+L,)coskl,+L,)

[7,0] 1r,v
x| 1+tanh(l,+L,)o(r)V P e (r)

coshll,—L,)
coshll ,+L,)

sinh(l ,—L,)
coshll ,+L,) 7

+exp(—2J,) (T)V (T

+exp(—2J,) (r)

vertex model, while the simultaneous transformation of

2L %) and zPP¥) leads to the partition function of the
Ashkin—Teller dual model.

We start with the first case. Using relatid®) for the
duality transformation oZiqx’qy), we obtain

1
2y =5 I {aunexaPy(r) 2, 22 %01

1
X Z exdi 77'((:1x‘ay_an'x)]

qx ny:O
X % [I {sinh 23" (T)}*2
xexd 37 ,(1)r(T)V'¥ =(T)], (44)
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XV P (1) 7(T)V ) 7(T) .

(47)

The partition function of the 8-vertex model can be rep-
resented in the form of the partition function of a spin model

consisting of two Ising sublattice® andR coupled by four-
spin interactiort® In general form, it is convenient to write
the Hamiltonian of such a model as

—BHY =2 [PYUN) +ID) (D) Y o(r)
+3°, (N (V% 7(T)

+LYN) (N Vo (r) (1) V% 7(T)],

LFEV, (48)
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FIG. 2. g The two-sublattice Ising model and the
° 8-vertex model with the lattice obliquely wound
. = /’/ o«F 2) (" around a torus. YaThe relationship between the spin
AT g 7 1 - variableso(r), 7(t), anday .
AN T‘/; |, (), (1) N
i /) % Dt
AN
’_—- o e

X S
e l\. e l\ . o(r)

where again the sping(r)=*1 belong to the original lat- 1 - -

. . ~ _ . . Z(purqu): 2 1 = _ = Z(vapyvqxvqy)

tice R, and the spins(T)=*+1 are at the sites of the lattice ZaT _ 2 exdim(gqy—0ayd,)1Z,, :

R dual to the original lattice(see Fig. 2a The partition dxdy=0 (54

function of such a model is the same as the partition function

(47) for certain relations between the coupling constants of |t s easy to show that the partition function of the model

these models. Indeed, usigf), we find that with Hamiltonian (48) is related to the partition function of
the inhomogeneous two-sublattice 8-vertex model:

N| -

(P,.0,) _ (Py.9,)
ZPr W= > exp(—BHE M)

[7].[] Zl(\r/)wqw:zzéri/ﬁqx,pwqy)_ (55)
=> 11 EV[1+|_V(T(V)V(Vp”)0(r) Indeed, as Fig. 2 showshe edges of the lattice for the 8-
[rAle] v vertex model are depicted by short dashed lingss model
+J_Vr(7)V(f/‘)7-(7)+L_,,o(r)V(Vp”)a(r) is_define(_j on a square Iatticg _obliquely wound around gtorus
" with toroidal boundary condition&) for the model(48) (in
X T(T)Vif‘“)r(?)], (49 Fig. 2a the sublatticeR andR are 3x 3, and spins situated

. ) _on opposite edges of the sublattices must be assumed to be
and the coupling constants are determined below. CompanqgamicaI when the lattice is wound around the toruEhe

(47) and (49), we obtain equations that relate the COUpIIngspin variables in the 8-vertex model are usually represented

constant_s of the Ashkm_—TeIIer model to those of the SIO'noy arrows at the edges of the lattice, and take two values. For
model with the Hamiltoniart48), the sake of convenience, we denote them by Ising spin vari-
exd P,(r)+J,(r] ablesa that take values- 1, located at sites in the middle of
the corresponding edges. Then Fig. 2a clearly shows that in
v2 order to allow for the toroidal boundary conditions in the
8-vertex model on a lattice obliquely wound around the
torus, it is convenient to represent the model as a square
+sinh1%(r)sinh JU,M(T)sinh LY(r)]=P,, (500 lattice of dimensions @x2m (th_e lattice being w_ound di-
rectly around the torgswith a lattice constant that is half the
lattice constant of the original lattidg, on which the spins

=exg P, (r)][coshl ’;(r)coshJU_M(?)cosh Lo(r)

tanh1%(r)+tanhJ” ,(T)tanhL’(r)

tani(l,+L,)= = . = N :|_w o(r) are specified. At the sites of such a lattice there are spin
L1+ tanhl,(r)tanhJ- ,(r)tanhL,(r) (51) variablesa) = = 1 satisfying the boundary conditions
[ [
coshl,—J,) V(X/x2>a2n,|:(—1)|xa1,|1 V;/yz)ak,Zm:(—l)lyak,l.
exp—23,) ———————~
coshl ,+J,) ..
wherel,,l,=0,1 denote the boundary conditions, and the
tath”_M(7)+tanhI§(r)tanhL’,j(r) — pairs k1), k=1,...,2, I=1,...,2n label the sites of the
= . — —=1J,, (52)  |attice. The relationship between the spin variabtgs),
1+tanhli(r)tanhJ’  (r)tanhL(r) ~ . o . .
" 7(r), andey, is shown in Fig. 2b and is specified by
0] sinh(l,—J,) . N~
XN =230 ookt 13, =0T %), 1=t +(7),
_ tanhLyn+tanhlintanhd® (1) - agi+1= 0 (T +Y)7(F=%), @y =o(n)n(T).  (56)
L+ tanhl,(rjtanhJZ (v )tanhL (1) We can therefore write the partition function of the 8-vertex
and one that relates the partition functions: model on such a lattice as
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1
(Ixly) (Ix.ly) . _ ~
Zgx' —[E exp(— BHgy ") 2P WP L= Y exdin(ady,—a,0,0]

CY

qx,qy=0
n,m _ _
(Px* Ay Py +dy)
_; |H1 w1(ay - 1,2 - 1a2|21|a2| 1,2 1 &2i 2§ — 1) ><ZB\/X VIR ITL,
where the coupling constants are related(5§)—(53).
X (i g, @i+ 15+1] @21 541, @21+ 1.2), (57) We now returen to deriving the duality relation for the
where Ashkin—Teller model, for which we must u$b) and carry
s ) out the duality transformations of the partition functiohs
w1=exp{a 2Py +1{( @151V 5 azi-15-1 andZ, in (42) simultaneously. As a result we have
(I 1
+agi 19V, 5 @i-17) 1 . - - - -
() ngp{yqy):ZN Z eXF[HT(poy_ pypx+qqu_qux)]
+I%(azi—15-1V h azi-15-1 Py.d,=0
(Iy)
taigi-1V b agigj—1) T Ly(@si— 15122 5 [T {e,(r)expP,(r)}
r,v
+ azi—1,2j012i,2j—1)]}5(a2i—1,2j—1(12i,2j d2i—1,9
1/2
X agiz-1—1), XX X H [(sinh 21 (7))~
(7] [o]
[
(1)2:eXp{%[2P>li+|;(0[2iyzjv;l}é)a’2i’2j Xexml (r)o’(r)va) r)}]

(y) v ()
Tagit19V b aiv1) +I0 (@i oV 5 asi o o~
Y X x>, [T [(sinh Z3(T))~ 12

[s) "

xexp(J(T)s(MV'¥s(T)}],

(Iy) v
+agioj+1V 5 @i 2j+1) T Li( @i 15— 100 o

+ g 1,510 5 1) 1} (@i 2j Q21 11,2 + 1020 +1.2
X agjgj+1—1). wherel (r) andJ, (r) have been defined i#3), and

Here w, and w, describe the statistical weights of the two tanhJ” (T)=exd —2J3.(r)],
sublattices in the 8-vertex model. Obviously, at a ’

Pi=Pi=PY, I5=J" 1b=J" Li=LS=L" (59 tanhT’,M(?)=eXp[—2l,',(r)].

—X -y
the statistical weights; and w, coincide, and we have the Now, repeating the calculations used to deri¥&), we can
usual modet? For the sake of comparison we show the re-easily obtain the following representation for the partition
lationship betweemo, and the usual vertex notation for the function of the Ashkin—Teller model:

statistical weights in the 8-vertex model:

1 & - - -
a=w1(++|++)=exr[P”(r)+I;(r)+l§(r)+L”(r)], Z,(Ap'li,’qu):Z~ Z o exqiW(pxpy_pypx+qqu_qux)]
Py G,=
b:w1(++|——)ZEXF[PU(r)_|>U<(r)—|§),(r)+|-v(f)].
c=wy(+—|=+)=exg P’(r)+15(r)—Iy(r)—L"(n)], [7 “ H exd P, (r)+1,(r)+J3,(r)+L,(r)]

d=wy(+ =+ =) =exg PU(r) =1 +1y(n =L*(r) . X {L+exi —21,(1) — 2L (1) ]o(F)V P25 (F)

(59

The relation between the boundary conditions on the +exp[—2Jv(r)—2LV(r)]As'('r")V(_a;:)§('r”)
spin variabless(r), #(r), and ay is given by(56), from o~
which it follows that +exp[—2|v(r)—2JV(r)]a(r)vﬂp:)a(r)s(r)

) X X q Y~ o~
Vi @ =V, oDV (), X V5. (6
) (py) (ay) 7 . o - .
Vi,/yz “k,I:Vypy U(r)quy 7(r). Using the identity(46), we reduce the partition function of

We see that the boundary condition indices are related by the dual model,

=Pt ly=py+ay, ®0  Zpan_ > exp[E[’ﬁﬁ)
[ol.[3]

r,v

where the sum is assumed to be mod 2. Bearing this in mind,

we obtain(55). Now, allowing for (54), (55), and (60), we — (B

can easily obtain the exact relation that between the partition H1(r)o(r)V, " a(r)
functions of the Ashkin—Teller model and the 8-vertex (G~
model with the lattice obliquely wound around the torus: +3,(r)s(r)v,s(r)
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e (B e e () a lattice wound obliquely around a torus and the two-
+L(r)a(r)V, " a(r)s(r)v,s(r)l;, sublattice Ising model, and the relationsk@®) between the
boundary condition indices in these models, we can easily
to a form similar to(49), and comparing the coefficients of obtain the duality relation for the 8-vertex model:
the products of dual spins with the coefficients of the corre—zux,.y)[Pv 10 3v,L°]
sponding products if61), we can relate the original and dual —8v voTe
1

coupling constants: 1

== S(Pyt Gy — 1) 8(py+qy—1
ex —23,(1)— 2L ()] 4%%20 (PxtGx— 1) 8(py+ay—1y)
~ ~ —~ —~ ~ —~ 1
_ tanhJ_(r)+tanhT_,(r)tanhL _ () xi S ety
1+tanhT_(F)tanhT_,(F)tanhT (7)) Budu=0 PxPy ety
ex — 21 (1)~ 2L ,()] X Z Pt o Pyt Be To Jo Tvy, (64)

where the partition functions of the original and dual models

— tanh1_,(r)+tanhJ_,(r)tanhL_ (1) have the form(57), summation of the boundary condition

1+tanhJ_,(r)tanhT_,(T)tanhL_(T) ' indices is assumed to be mod 2, and the coupling constants
are related by(62). Simple algebraic manipulations show
exd —21,(r)—2J3,(r)] that the relation$62) are the same as the duality relations of
the 8-vertex model given in Ref. 10 if conditioiS8) and
tanhL _,(r)+tanhT_,(t)tanhJ_ (1) (59) are met:

1+tanhT_,(F)tanhT_(F)tanhT_(T) S NN

1
SEXRP, 1, + 3,4 L,)

'E=%(a—b+c—d), E=%(a—b—c+d).
=exp(P_,)(coshT_, coshJ_, coshL_,
+sinhT_, sinhJd_, sinhT_,), (62) 5 CONCLUSION
and we obtain the self-duality relation for the Ashkin—Teller  1he duality relations obtained in the present paper for
model: Z(N)-symmetric models on a square lattice wound around a
torus are of a general topological origin. Hence the proposed
Z(ApT”’q”)[P,I J,L] method can be generalized to spin models with a continuous
1 symmetry group—for example, thé¢Y-model on a torus.
_ 1 z PPy 7%y ’Z<5x Py ,5y>['|5 T3 _ Note that the duality relation®4) were obtained for the
4 B, =0 Py:Py Gy.Gy AT R inhomogeneous 8-vertex model. Using the method suggested

in Ref. 4, we can cut the torus along its cycles and obtain the
(63 duality relations for the model on a plane with different
The matrixT is defined in(5) and (27). boundary conditio_ns on the plane’s .edges. Moreover, u§ing
Using these results, we can easily obtain the duality re(64), we can obtain the duality relations for the_ correl_at|on
lations for the 8-vertex model on a lattice wound obliquely functions of the 8-vertex model on a square lattice obliquely
around the torus. Indeed, &38) and (48) show, the Hamil- Wc')und.around the to'ru's,. relathns that generalize those ob-
tonians of the Ashkin—Teller model and the two-sublatticef@ned in Ref. 13 for infinite lattices.
Ising model with four-spin interaction have the same struc- W€ thank M. A. Lashkevich, S. Z. Pakulyak, and S.
ture of the interaction of the spin variables. Such a duality<noroshkin for useful discussions. One of (¥.N.Sh)
relation for the latter model can be derived in the same way2nks A. A. Belavin for his support and A. Yu. Morozov for
as for the Ashkin—Teller model. As a result we arrive at aniS hospitality at the Institute of Theoretical and Experimen-
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Order parameter quantum fluctuations in a two-dimensional system of mesoscopic
Josephson junctions
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The boson lattice Hubbard model is used to study the role of quantum fluctuations of the phase
and local density of the superfluid component in establishing a global superconducting

state for a system of mesoscopic Josephson junctions or grains. The quantum Monte Carlo method
is used to calculate the density of the superfluid component and fluctuations in the number

of particles at sites of the two-dimensional lattice for various average site occupation numpbers
(i.e., number of Cooper pairs per graifror a system of strongly interacting bosons, the

phase boundary of the ordered superconducting state lies above the corresponding boundary for
its quasiclassical limit—the quantuKiY-model—and approaches the lattermgsincreases.

When the boson interaction is weak in the boson Hubbard maéel the quantum fluctuations

of the phase are smalithe relative fluctuations of the order parameter modulus are

significant whemy<<10, while quantum fluctuations in the phase are significant when3;

this determines the region of mesoscopic behavior of the system. Comparison of the

results of numerical modeling with theoretical calculations show that mean-field theory yields a
qualitatively correct estimate of the difference between the phase diagrams of the quantum
XY-model and the Hubbard model. For a quantitative estimate of this difference the free energy
and thermodynamic averages of the Hubbard model are expanded in poweng okihgy

the method of functional integration. @998 American Institute of Physics.
[S1063-776(98)01801-7

1. INTRODUCTION hilation) of a boson at site=1,... N?, and are subject to the
o _usual Bose commutation relations. The first term in the
The development of microlithography has led to consid-pamijtonian corresponds to the “kinetic” energy of the par-
erable progress in the investigation of mesoscopic sys’cemsﬂdes; the hopping energyfor a particle of massn can be
the development of single-electron deviéemd the elucida- written t=#2/md. The summatior®, . is over all nonre-
tion of new fundamental concepts in the theory of SUPercoNyeating pairgi,j) of adjacent lattice sites. The second term
ducting phase transitions in quantum dotShere is also Eq. (1) describes the interaction between particles, with
much interest in the study of properties of extended systeMgharacteristic energy >0. Qualitatively this Hamiltonian
made up of mesoscopic objects. Among these systems argap 150 approximately describe a system of mesoscopic su-
for example, arrays of mesoscopic Josephson junctions, SySgrconducting grains; in this formulation of the problem we
tems of ultrfe\fmae grains, and superconducting helium in &,,5iq the question of how an individual grain enters the su-
porous mediun: perconducting state, a problem of interest in its own right
As a rule, granular superconductors and systems of Jo('see, for example, Ref. 5 and the citations theraimich

sephson junctions are described by using various modificggca)is the problem of superfluidity in atomic nuclei in many
tions of the quantunXY-model (see below, Eq(2)). How- ways.

ever, this description is only correct when fluctuations in the  ~ 5 system with Hamiltonian(1) has a rich phase
modulus of the superconducting or superfluid order paraMgiagranf’ containing a Mott insulator phasat T=0),58 a
eters are not significafit.In order to investigate the role of normal metal, and a superconducting phase. In this paper we
fluctuations in the modulus of the order parameter in mesox e interested in systerti) for integer-valued occupation,
scopic systems it is necessary to use other models that are ii_ré_, where the average number of bosons pem@ite(afao

a certain sense more general. is a whole number. Under these conditionsTat0 the bo-

In this paper, a system of interacting bosons on a squarg, Hybhard model belongs to the same universality class
NX N lattice with a distance between lattice sites is used as see Refs. 6-9as the quantunX Y-model:

such a generalized model. In this model one site corresponds

to one helium-filled pore, etc. The Hamiltonian of the system | u g \2
is chosen in the form Hxy=J2, (1—COS(<Pi—qu))—§E (—) : 2
(i T\ de;
~ t U
H=3 %:) (Za?ai—a;raj—a;rai)Jr > Z (ala;—ng)2. where the phases of the order parametgs [0,27]. At fi-

1) nite temperature, the requirement that the average occupation
numberny=k be an integer is weakened. In this case, the
Here the operatorafr (a;) are operators for creatiofanni-  behavior of the system will depend continuously on the av-
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erage occupation number; its critical properties remain un- In Sec. 4 we discuss and compare the results of our
changed in a bandy=Kk+ éngy, whose width &n, should theoretical investigation with numerical models.
decrease with decreasing temperature.
The state of systert?), which has superconducting and
normal (metallic phases at finite temperature, is described2. THEORETICAL ESTIMATES OF SIMILARITY BETWEEN
by two dimensionless control parameters: the temperature ihRHE BOSON HUBBARD MODEL AND THE QUANTUM
units of the coupling constaift=k,T/J, and the dimension- X Y-MODEL
less quantum parameter=U/J, which determines the 2.1. Mean-field approximation
characteristic zero-point fluctuations of the phase. The corre- Th field imatiah ists of relacing th
sponding dimensionless control parameters for the Hubbard . . € mean-nield approximationconsists of replacing the
model (1) when J=tn, are the dimensionless temperatureor'g'nal Hamiltonian of the system, which can be written in

T=k,T/tng and quantum parametgr= yU/tn,. the form(see Eqs(1) and (2))
Model (2) can be obtained from Eql) by neglecting ~ N A

relative fluctuations in the modulus of the order parameter H:Z HiO’L<i2j> Vi )

®;=A;e'%, which is correct(for U# 0) at high particle o o _ _

densitiesn, (see below Thus, the lattice boson Hubbard Py the mean-field Hamiltonian, which depends on a varia-

model can actually be regarded as more general when tHional parameterv.

effects of ordering in systems of granular superconductors, . - -

thin films, etc. are being investigated. For this reason there is Hmi(a)=2> Hl+ a2, Vi, (4)

interest in first-principles studies of how quantum fluctua- ' '

tions in the order parameter affect the establishment of ahere the mean-field operatdris governed by the condition

global superconducting state and, in particular, comparison -

of the phase diagrams of the two model systémsand (2) Tr(Vjj EXp(_:?Hmf)

in the{q, T} plane. Tr(exp(— BHms))
Another question of considerable interest involves the

possibility of observing the phenomenon of reentrant super--rhe constank depAends on the specific form of the interac-

conductivity in a system of typél), that is, the appearance ton energiesV;;, V;. The parametern is determined by
of disorder not only with increasing but also with decreasingUSing the variational Gibbs—Bogolyubov principle from the
temperaturel within a certain range of the quantum param- eduirement that the trial energy
eterq. With@n the framework of the quaptuMY-modeI th_e Fi(a)= me(a)+<|:| _ |:|mf(a)>mf
possible existence of reentrant effects is associated with the
accurate specification of the domain of definition of the ordef€ @ minimum. Vanishing of the variational parametein-
parameter phas¥;elsewhere it involves the effects of leak- dicates that the system is disordered, and in the mean-field
age or inclusion of mutual capacitance of grains in the@PProximation the curver(q,T)=0 can be regarded as an
bulk *2In this paper we show that inclusion of fluctuations €stimate of the boundaries of the ordered phase.
of the modulus within the framework of modél) does not Simple calculations show that at the boundary of the
lead to reentrant behavior, at least over the range of contrdlfdered state the following general relation holds:
parameters that we investigate. 7 (B~ . ~ ..

This paper is organized in the following way. 1=-7 J dt(V(H)V(0))ms, V(D)=eVe ™ (5

In Sec. 2 we compare the phase diagrams of syst&ms 0
and (2) obtained in the mean-field approximation. By ex- wherez is the number of nearest neighbdrs=4 for a two-
panding the free energy, the mean-square fluctuations, ardimensional square lattize
the density of the superfluid component for the boson Hub-  For the quantunXY-model with Hamiltonian(2), it is
bard model in the parametern}/, we obtain corrections to natural to choose
the analogous quantities calculated within the framework of -~
the quantumXY-model and determine quantitative criteria ~ Yi~ ~ZJ COS ¢il2
for the possibility of separating fluctuations in the moduluswhere
of the order parameter from fluctuations in its phase.

In Sec. 3 we present a short description of the quantum K=-32/4, a=2(cos¢)mt
Monte Carlo method used to simulate the boson lattice sysFhe use of Eq(5) yields the well-known equatidf for the
tem and the quanturdY-model. boundaries of the ordered phake T.(q):

RN R
=<Vij>mf_E<Vi>mf<Vj>mf-

9> Sr_lexp—g%n?/2T) —exp(—g?(n+1)%/2T)]/(2n+1)

z sr . exp(—g%n?/2T)

(6)
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The solution of this equation is shown in Fig. 1 as a solidand u is the chemical potential of the system. The choice
curve.

In order to apply the method described above to the lat-
tice Hubbard model, it is necessary to treat the system within
the framework of the grand canonical ensemble, where

Vi=—zt(a +a)/4

0 . leads to
- z
HP=> (afaj—ng)?+ - ala;— uala,

0_—
2 2 K=—tz%/4, a={(al+a)m;.

t
—— _(afa.—ata
Vi 2 (8723 —ajaj), ™ In this case, Eq(5) takes the form

2 35 (n+net 1)[exp—q?(n—7)?%2T)—exp(—g?(n+1— 5)%/2T)]/(2n+1—27)

a_
z NoZa- o X~ GAN— 7)%/2T) ’
_K_Z
n= U 2q2no' (8)

The chemical potentiglk can be found from the equation t ) )
+§<2> (|22 +]®)|* - df @ -} D))
i

oo

> nexp—g*(n—7)%2T)=0, ) U
n=-ng +EE (|¢)i|2_n0)2 dr.
I
which corresponds to choosing the average number of par-
ticles at a site to bag. Note that in the liming— o we have O =di(1), PF=0f(7). (10)
7=0, and it is not difficult to show that Eq8) reduces to .
Eq. (6). Making the variable substitutio®;=+/ny+ n;e!¢ in Eq.

Solving Egs.(8) and (9) simultaneously, we obtain the (10), wheren, is an integer, and taking into account the
estimate of the ordered phase boundary shown in Fig. 1. Fdreriodicity of the functionsD;(7), ®;(7) with respect to
comparison we show plots for the average occupation nummaginary time, we have
bersnyg=1,2,6. It is clear from Fig. 1 that for any interaction
energyU the mean-field theoretical estimate of the ordered thf D(8n,p)eSene),
state boundary for the Hubbard model lies above the corre-
sponding boundary for thXY-model, and approaches the
latter as the average site_occupation_ nur_nb@rincreases. S(6n, )= IB B E (5ni)2+T 2 P
Calculations in the mean-field approximation show that ap- 0|2 5 i
proximate agreement of the two phase diagrams is obtained

for ng=25. on; + on;
+tngD, [ 1+ ————
K 2Ng
5ni 5”1
2.2. Computation of corrections by the method of functional - 1+ N 1+ . cog ¢ — SDj) dr.
integration 0 0
We now attempt to refine the qualitative estimate of the 1D
difference between phase diagrams of mod@jsand (2) Increasing the average number of particles per site while
obtained in the mean—ﬂeld approximation. For this we will fixing J=tn, and U reduces Eq(11) to the partition func-
use the method of functional integration. tion for the quantunXY-model. In fact, asi,—o we have

The partition function of mode(l) can be written in

terms of a functional integral over the components of the B~ 2 .
Bose field® in the forn? Zp— | D(én,p)exp — ol on; @i

zh=Tr<e*S)=J D(®,d*)e S®7), +J2> (1—codpi—¢)))+ % > (n)?

(i [ dT)
S((D,q)*):foﬁ[ i Cbiq)i* =an D(QD)GX%—f: %
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+J<IEJ (1-cog ¢~ ¢)))d7=ZZxy,
where the factoZ, results from integrating11) over fluc-
tuations in the order parameter modulus. In the current ap
proximation, this can be done separately from the integration
over phase. It is clear from E@L2) that the critical behavior
of the system of interacting bosons on a lattizethe limit
ng—) is determined by fluctuations of the phasgs and
coincides with the critical behavior of the quantum
XY-model.

Since we are interested in how close the boson Hubbard
model is to the quanturXY-model (12) for large but finite
average occupation numberg, we expand the free energy,
density of superfluid component, and mean-square fluctua-
tions in the number of particles for modél) in powers of
1/ny to second order. The corrections we obtain to the cor-
responding quantities for the quantuX-model (12) can
serve as a quantitative measure of the difference between the
phase diagrams of the two systems.

The following relations hold for the free enerdy the
mean-square fluctuations in particle numb#?, and the
fraction of superfluid componen; (the helicity modulusy
in the case of th&X'Y-mode):

12

1 1
v = INZ)+ =5 FP+..

Fh:FX B 2

13

The first-order corrections vanish by virtue of the invariance
of Eq. (12) of the XY-model under “time” reversal.

After integrating over the variabledn; and discretizing
the “time,” we obtain expressions for the correctioR§,
¥ T@ in Eq. (13) that are suitable for subsequent esti-
mation by the trajectory quantum Monte Carlo method based
on the quantunXY-model(2). For the correction to the free
energy we have

PT

(F2), :< EE}[(Z —Z(ﬁDl

pF?=

2

_<P,) )005(% - 4q4 E

2 <Ppr
i

(14)

Xy

Once we have determmeﬁihzy (\If) (see Eq(26)), we
obtain the following expression for the correcti®i? to the

- —_— 1 P
):<F>xy<F>xy_<FF>xy_ mZP_qZ < pz

W(2)=(¥

Introducing a quantityl’ such thaty= (F}Xy (see Eq.

(23)), we have for the correctioRi?

1
2 YFDP>
0 i Xy

PT .
%( —?(w.—qﬂj)) >

xy
P—1 2
-
+ PSP
4N2q2 <L=O Z Pr= >Xy
Ly > (S)?
AN’PQ? \ 5= 4 S "
T P-1 P-1
q p=0 i p=0 i Xy
Xf =cod o — ) — 2 sin(eP - ¢f)
ij P pT R

X E 2 sin(of — ¢P),

=0 (i,j)

s

520 25 30 35¢

1.0

A It
0.5

FIG. 1. Phase diagrams for the Hubbard model and the quantum
XY-model (2). S—superconducting stat®j—normal state. Results of cal-

mean-square fluctuations in particle number within theculations based on mean-field theong=1 (1), 2 (2), 6 (3); 4—quantum

XY-model:

XY-model (ng=«). Results of the 1, expansionng=

6 (5), 14 (6). Here

and in what follows the following symbols denote results of quantum Monte
Carlo calculations: emptyN=6, filled in—N=4, with dots inside-N

y2)= <¢'>xy<";(2)>xy_ <{I_}E(2)>xy_

149 JETP 86 (1), January 1998

=10; squares-fp=1, triangles—y=2, circles—y=3, rhombi—y=4,
inverted triangles—r,=

6, stars—quantunXY-model.
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YP=XR ot Xt XEy 4 XEy,
SP=sin(ef — P, ) +sin(eP — P ) +sin(¢P — ol y)

+sin(gP—gf,). (16)

Henceforth we use the notation 10.90
P=leP =Pl mm ol =00,
OP=4—cod ¢ — ¢f,) —cos ol — ol ,) 0.88
—cog ¢ —¢f,,)—cogeP— ol ), (17)

where|f|,,) denotes the reduction of the quantityto the
interval[a,b).

Once we know the value of the coefficiefit?) in the
expansion(13) for the fraction of superfluid component of
the Hubbard model as a function of the control parameter,
i.e., I@=1®)(q,T), we can estimate the correction to the
curveTﬁy(q) for phase transitions of the quantutyy-model
at large but finite average occupation numheys The cor-
responding estimate from above for the superconducting
transition temperaturdy(q;ny) in the Hubbard model is

0.86

10.84

given by the curve FIG. 2. Comparison of theoretical estimateslid curve for fluctuations in
c c the order parameter modul#n?® (1) and fraction of superfluid component
Cron. c Vs(QaTxy) - 7(q1Txy) vs (2) obtained from the expansidid3) with the results of quantum Monte
h( OB no) = Txy( g1+ %4, Tiy) Carlo calculationsq= 0.5, T=0.6. Statistical errors that are not shown were

smaller than the size of the corresponding symbol.

=Ty | 1+ — o o (18)

nOTxy(Q)

771“<2)(q,T§y))

. . . . . calculating the functional integrals over fluctuations in the
An estimate of Ecq(18) 'S easﬂy obtained by assuming that order parameter modulus. In order to justify the assertion
on the_ curvesTy,(q) and Th(q;.r.]") of the to_pologma] that the results of this section can be compared with the
KosterI!tz_—ThouIess phgse transition, _the. foII_owmg relat,'onsresults of Monte Carlo calculations, it is necessary to show
are SatISer'd for the “universal discontinuity” in the fraction that the deviation of the average number of particles at a site
of superfluid componefit calculated fromng is small compared taoy, itself under the
’y(qu)C<y):2T§y/7Ta vy(q,Th)=2Tp/ 7. conditions mentioned above. To first order imglthis de-

viation has the form
SinceI'®(q,T) and y(q,T) are averages based on the

guantum XY-model, they can easily be estimated from a 5n=iA(1)+... (19)
guantum Monte Carlo calculatiofsee Sec. BY which en- Ng '

ables us to determine a family of phase diagrams for th‘\?vhere we can use for the quantity®) the following expres-
boson Hubbard model Eq1) for various average boson gjqn which is convenient for subsequent estimation by the

number_s per graimg. The corresponding results are pre- trajectory quantum Monte Carlo method within the quantum
sented in Fig. 1. Estimates based on &@) show thatinthe  yv_1odel:

range 0.£q<1.5, the phase transition curve for the Hub-

bard model reaches its limiting position—the phase transi- W_ T Pil S o Pil S oPoP

tion curve for the quantunXY-model—for np=8=+1. At T2NZ\ | & 4 Pi = P

larger values of the quantum parameter

q>1.7, the correctiod (®) increases significantly, so that in q° Pl o

this approximation the phase diagrams approximately coin- =) pZO Z ) (20)
cide whenny>16=2; however, direct numerical calculation Xy

of the model Eq(1) leads to the conclusiofsee belowthat Calculations show that in the rangg>0.7, T<1, the
this estimate is much too large. quantityA(*) does not exceed 0.08. Consequently, use of the

To conclude this section, it is necessary to make thegrand canonical distribution with zero chemical potential is
following comment. It is easy to see that for all of thesejustified in deriving the coefficients of the expansid®). As
calculations, starting from representatid®) of the partition  an illustration, Fig. 2 shows a comparison of the theoretical
function of the boson Hubbard system within the grand caestimates for the mean-square fluctuations in particle number
nonical ensemble, the chemical potential equals zero. Thii§nﬁ(n0) and the fraction of superfluid componenf(ng)
enables us to make all of the required estimates analyticallycalculated using Eqg13)—(16) with the results of calcula-
avoiding the fact that the total number of particles is fixed intion by the quantum Monte Carlo method at the point
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{q,T}={0.5,0.8, at whichA®®=—0.5+0.1. From the fig- by 4P-fold replication(P-fold for the case of th&Y-mode)
ure it is clear that fomy>5 the experimental data obtained of an arbitrary configuration of boson®r phases in the
by using computer simulation are satisfactorily described byXY-mode) on aN XN lattice.
the expansior{13).

Conversely, in the regiog< 0.4, which corresponds to
small fluctuations in phase and large fluctuations in the orde$-1- Measurable quantities
parameter modulus, estimates based on @) yield a Our attention was primarily focused on calculating the
larger deviationsn of the average number of bosons at lat- density of superfluid component . For the lattice Hubbard
tice sites fromny, and the approach described above is in-model this quantity can be found by two methods.

appropriate. 1) In terms of fluctuations of the “winding number*&
2 2
3. THE QUANTUM MONTE CARLO METHOD. MEASURABLE ” :T(Wx+Wy)h
QUANTITIES s 2 ’
The quantum trajectory Monte Carlo method is imple- 4P N

mented by applying Trotter discretization, in which all ther- W, = Z E (—1)x*PpP,

modynamic averages of operators ddadimensional quan- pP=0iy=1

tum system are estimated by using a classical 4P N

D + 1-dimensional quantum system generated by replicating W,= > >, (—1)¥PnP, (21)

the original system along the imaginary-time axis; the prod- P=01x=1

uct of matrix elements of the high-temperature density mawheren? denotes the number of bosons at sitgvith coor-

trix, which are calculated approximately, serves as the BOltdinates{ix ,iy}) of layerp in the discretized classical system.

zmann weight of a configuration of the corresponding  2) In terms of the correlation function for the paramag-

classical systert In this case, considerations of conve- netic currentj® (see Ref. 19

nience dictate the choice of the representation in which the

matrix elements are estimated, as well as the way the Hamil- _ - s

tonian is partitioned. YsT T N2 {Thn— n2NZTP &%
To investigate the properties of the Hubbard modsgl

over the control parameter plafq,T}, we used the quan- T } S (al..a+ala,)

tum Monte Carlo method in its “chessboard” modification X 2 4 RSO R

(a detailed explanation of Trotter discretization and the orga- ~

nization of Monte Carlo steps when a partition of the type 3= _ J 2 (al,.a—a'a,,)

discussed here is used can be found in Re). 117 this X 25 TEXE S S

method, the degrees of freedom of the discretized system are

P-1 .
(IP (1) IP(0))y,,

the occupation numbeifsP} of sites of a three-dimensional IP () =exp( 7BHIP)IP exp( — 7BHIP). (22)
NXNX4P lattice formed by a ®-fold replication of the  \ye found that the results of calculations based on E2.
original NX N lattice along the imaginary-time axis. and (22) coincided within the limits of statistical error over

_ The properties of the quantuiY-model(2) are conve- e entire range of control parameters we investigated.
niently studied in a phase representation where the degrees pte that when the replacemeat— \nye'* is made

of freedom of the discretized three-dimensional classical SYSEq. (22) becomes the expression for the “helicity modulus”
2 18,19 H H '
tem areN°P of the phaseg¢P}. To increase the effi- ¥ of the quantumX Y-model’:

ciency of the calculation, we organized the Monte Carlo step L
by using a multigrid modification of the Metropolis proce- _ = 0 0
dure (see Ref. 19 and citations therkin r=Dy=Rz <§.: COL @ix— @i )>
The Trotter discretization procedure can be used when
the numberP is large enough that all the thermodynamic 1 Fl 0 i p 0
averages calculated in the discretized system have errors of ~ N2pT pzo - SIN( @i’y x— @) SIN(@ — ¢])
orderO(P~?2). It is not difficult to show that the dimension- ' Xy
less parameters that determine the discretization error are the As the authors of Ref. 20 have noted, the temperature
quantities e,=max1/(T?P2ny,q%/(T?P?)} for system(1)  derivative of the density of superfluid componetBv.)/JB
and e,,=q%/(T?P?) for system(2). At each computation vyields additional information about the nature of the phase
point {g,T} the number of partition® is chosen in such a transition at temperaturé=T¢(q): within the framework of
way thatep, , €,,<0.05. To monitor the convergence we com- Kosterlitz—Thouless transition, the quanti#ySvs)/Jg be-
pared the calculated results for variddsWe found that the haves like a Dirac delta-functiof(T—T€) as the size of the
discretization error did not exceed 3% over the full range ofsystem increases. Consequently, the position of the peak in
parameters under study. the derivative of the density of superfluid component should
We studied the properties of this system along the linesiot depend on the dimensionality of the system. This obser-
g=const andTl = const, thereby moving from the ordered to vation is very useful, because its computational complexity
the disordered phase. The results presented in this paper wemsstricts our study of the Hubbard model to low-dimensional
obtained by averaging over 3-5 initial configurations formedsystems N~4—-10).

Xy
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FIG. 3. g Dependence of the fraction of super-
0.2 : . :
fluid componenty (helicity modulusy in the
0 case of theXY-mode) on temperaturel for
g=0.2. The broken line shows the function
Vi ¥ 2T/ar. The curves are joined for convenience of
Lot representation.)bPlots of the fraction of super-
: fluid componentyg (helicity modulusy for the
0.8 case of theX'Y-mode) as a function of tempera-
’ ture T for g=2.0.
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To find the derivatived(Bvg)/dpB it is necessary to esti- strongly interacting bosongy& 2.0), the results of numeri-
mate the difference in average energies for systems that dital modeling are in qualitative agreement with the theoretical
fer by a phase shift ofr/2 (along one of the directionst the  calculations in Sec. 2. In fact, it is clear from Fig. 1 and Fig.
boundary: 3b that the boundary of the ordered superconducting phase

_ for model(1) approaches the corresponding boundary for the

AE(m2)~E(©) ~ v % (24  quantumXY-model from the high-temperature side. The lo-

Nopt B cation of this boundaryi.e., the temperaturd®(q) for a
It can be shown that if the lattice bosons in the Hubbardransition to the normal statean be estimated from the uni-
model are assumed to be Cooper pairs with chasgaithin ~ versal jump relation for the fraction of superfluid component
superconducting grains, this shift in phase is realized in dthe helicity modulus in the case of thXY-mode):
“flux quantization” scheme, where 1/8 of a flux quantum is v¢(T®)=2T% 7. The Kosterlitz—Thouless transition tem-
emitted through the center of a torus on whose surface thperature determined according to this universal discontinuity
system is located, leading to the appearance of a gaugeis in good agreement with the position of the peak in the

phase for the Cooper paifS. temperature derivative of the superfluid dengizg), which
One other observable quantity is the mean-square flucdoes not depend on the size of the systarithin the limits
tuation of the number of bosons at a lattice site of statistical errors in the calculationsand decreases with
L 4P—1 increasing average occupation numipgr as is clear from
onl=—— (nP—ng)?) . (25) Fig. 4.
4PN < pzo El P h Once we have calculated the helicity modulus and frac-
. . . tion of superfluid component for a system of finite size, we
The corresponding quantity for the quantat-model is can obtain a more precise estimate of the topological phase
, o~ P-1 PT transition temperaturd® by using the scaling procedure
5anE<‘I’>xy:N2—qz = Z - q_ (¢P)? along with the Kosterlitz renormalization groépWithin the
= Xy framework of this procedure we map the original system

(26) onto a two-dimensional Coulomb gas with an effective tem-

peratureT cg=T/(27v)(T), wherev)(T) is the fraction
of superfluid component in a region with no vorti¢es., the
Figure 3 shows the temperature dependence of the fradraction of local superfluid density Thus, it is necessary to
tion of superfluid componenty(T) for the Hubbard model at know »{*) as a function of the control parametéis T} in
values of the quantum parameig+ 0.2 (Fig. 3a, classical order to extrapolate to a system of infinite size and determine
region for theX Y-mode) andgq=2.0 (Fig. 3b). For compari- the true transition temperatur€®(q). This problem was
son, we also show the dependence of the helicity modulusolved in Ref. 22 for the two-dimensional classical
(23) of the quantumXY-model in this figure. Analysis of XY-model, where the relation{")=(cosf—¢;,)) holds.
data obtained for systems with various dimensibhsand We may assume that this relation remains valid in the quan-
mean occupation numberg, reveals that for the system of tum XY-model for small enough values af. However,

4. DISCUSSION OF RESULTS
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FIG. 4. Results of calculating the temperature derivative of the superfluid

density(24) in the flux quantization method fay=0.2, 2.0. q

FIG. 5. Dependence of the fraction of superfluid componenthelicity
modulusy in the case of theXY-mode) on the value of the quantum pa-

wheng=1, quantum fluctuations play a significant role, andrameterg for T=0.5. The broken line shows the line7d/ The inset shows

this relation is incorrect, if only because simulations ShOWthe res_ults of calculatlng_the_temperature derivative of the superfluid density
that (24) using the flux quantization method.
a

lim ve/v®=lim y/(cog ¢;— @,y #1.

T—0 T—0 tions of the quantum parameterfor T=0.5, N=6. Having
Analogous considerations can be derived for the boson Huflétermined the phase transition poiift according to the
bard model as well. intersections of the functionsg(q) and y(q) with the line

In using the scaling procedure described above for thes@ !/ 7= 1/, we find that the boundary of the superconduct-
quantum models, the customary approaches require that d['9 State for the Hubbard model penetrates the |argegion
ther 4 the fraction of local superfluid density be set equal to21d @pproaches the phase transition curve foxtiemodel
unity’ »O(T)=1, or b it is postulated that »© with increasing occupation numbag.

— i ; The inset of Fig. 5 shows the results of calculating the
X(T)=Ilim T). Obviously, these two approaches are 2 ) :
(1) -0 vs(T) y PP temperature derivative of the superfluid den$tg) obtained

valid only at low temperature$<1. We therefore assume ,ccording to the “flux quantization” scheme. The position
that it is more fundamental to estimate the position of theys ihe peak in the derivativegi=2.35 forn,=3) is in fairly
boundary for an ordered superconducting state either by Ugjood agreement with the critical poigf|, _s~2.4 based on
ing the universal discontinuity of the superfluid den:sity,[he universal jump in the superfluid de(r)lsity

(which yields fairly good results even for a system with di- The dependence of the relative quctuétions in particle

gggslgpfﬁf lecgksiiei ttheef?ﬁ 1;;3?3(?;;\?;?\?: Eggfhg?;henumber at lattice sites of the system on temperature is shown
b . P L in Figs. 6 and 7. In particular, Fig. 7 illustrates the important
latter method results in a much larger statistical efs@e

Figs. 3 and 4 role played by interactions between bosons in the transition
9S. < ) . . from the Hubbard mod€(l) to the quantunXY-model(2).
Itis clear fro”.‘ Fig. 3a that the transition temp_erature .tOIn fact, for finite occupation numbers, the spectrum of the
the superconducting state of a system of weakly mteraCtm%peratorﬁ ~ng may be treated as unbounded if the relative
i 0

bosons (=0.2) is lower than the ordering temperature of s . 4 2 2
the quantumXY-model. This tendency is maintained as the fluctuations in particle number are smadin“/ng<1. Then

size of the system increases. The theoretical approach us& particle number operato; —n, may be assumed to be
above does not help us to understand the reason for thionjugate to the phase operatgr, as is usually done in
behavior, because as we pointed out in Sec. 2.2, in the regiaffiscussing Josephson and granular systems in terms of the
g<0.4, where the interaction only weakly suppresses flucmodel(2). Increasing the boson interactiGre., the quantum
tuations of the order parameter modulus, the theoretical estparameten]) leads to suppression of the relative fluctuations
mates(13)—(20) work badly, as evidenced by the large val- in the order parameter modulus, which is confirmed by Fig.
ues of the correction® ), I'® andA®). 7. Note that for largey the fluctuations in the number of
Figure 5 shows the results of calculating the fraction ofparticles for the Hubbard modé&25) are larger than the cor-
superfluid component, for the boson Hubbard model and responding fluctuations for the quantufiy-model(26), and
the helicity modulusy of the quantumXY-model as func- approach the latter as the occupation numfgincreases.
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With increasing temperaturé at a fixed value of the
T e guantum parametey, we observe an increase in the relative
fluctuations in particle numbésee Fig. §that is typical of a
§ transition to the normal statenetallic in the case of the grain
bulk). As is clear from the figure, a{=0.2 the occupation
numberny=4 is insufficient for appreciable suppression of

’—/-N’N—‘ the relative fluctuations in the order parameter modulus, but

I by q=2.0 we observe a sharp drop-off in the relative fluc-
0.8F . tuations due to the increasing role of the interaction.

| In conclusion, we mention once more that at finite tem-

i peratures the critical behavior of our boson lattice Hubbard

0.6f model coincides with the critical behavior of the quantum
XY-model over a certain range of mean occupation number
ny for the system sitegin contrast to theT=0 systen).
Consequently, the results of experiments on systems of su-
perconducting grains on an insulating substrate should not
1 differ qualitatively from experiments on a granular system
within the framework of the grand canonical ensemble,
) . where the chemical potential of a pair can be controlled, e.g.,
0.5 1.0 15 1 by applying a voltage to a conducting substrate.

. o We now summarize the basic results of this paper.
|FIG‘. 6. _Dependence of the reIatlv_e fluctua_tlons_ in the boson number %Vithin the framework of the boson lattice Hubbard model
attice sites on temperatur€ for q=0.2 (N=4, filled-in symbol$ and A .
q=2.0 (N=6, open symbols we have analyzed the effect of quantum fluctuations in the

phase and modulus of the order parameter on the character of
ordering in two-dimensional mesoscopic Josephson and
Vgranular systems. Theoretical calculations based on the

fluctuationsénﬁ/né on the quantum parametgrfor T=0.5. mean-field method and using the method of functional inte-

The figure shows that increasing the interaction and Occupagratlon show that the models under consideration have iden-

tion numbern, significantly suppresses the relative fluctua-tic@l critical behavior in the{q,T} plane of dimensionless
tions in the order parameter modulus. control parameters; the quantudiy-model (2) may be re-

garded as the semiclassical limit of the boson mddgfor
ny>1 andU# 0. In this case suppression of relative fluctua-
tions in the modulus of the order parameter by the interaction

The inset to Fig. 7 shows the dependence of the relati

5";2,' 5"x2y enables us to treat the particle number operat@nd phase
' - — N '”; {oi as approximately canonically conjugate in this region:
2.5 1'0-\ Onfor™ 14 n,—ng=]jdld¢;. Estimates arrived at using the quantum
i Monte Carlo method show that in the regigr<1, which is

“classical” for the quantumXY-model and a region of

n strong fluctuations in the order parameter modulus for the
Hubbard model(1), the latter reduces to the quantum
XY-model (2) for np=10, whereas in the regiog~2 of

. significant quantum fluctuation in the phase of the order pa-
rameter, the corresponding limit is reached my~8. The
effects of reentrant superfluidifguperconductivity or low-

20

1.5

1.0F 4 temperature instability were not observed over the entire
range 0.2.g<3.8, 0.2 T<1.6 of the control parameters we
investigated.

This work was partially supported by a grant from the
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“Physics of Solid-State Nanostructures.”
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4

0 1 2 3 DThey are still easy to estimate theoretically, for example, when a different
type of self-consistent approximation is uséd.

2 . ) o . .
FIG. 7. Dependence of the mean-square fluctuations in the order paramete)?-husv in order to find the derivative of the density of superfluid component

-

modulus on the value of the quantum parameteor T=0.5. The inset it is necessary to calculate the mean energy of sys¢ignm a field of the
shows the relative fluctuations in the modulus for various average occupa- form A=(A,0,0). We have developed the algorithm necessary to imple-
tion numbers,. ment this modification.
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Accumulated photon echoes have been used to investigate the mechanisms of optical dephasing
in Cak, crystals activated by Nid ions. Tunable picosecond laser radiation, which permits

the selective excitation of various Ridoptical centers in thél o, *Gsg),,%G, transition, is used.

The optical phase relaxation times measured at temperatures from 9 to 50 K permit
determination of the homogeneous widths of the transitions between the low?lyjagtark

level and three excitetiGs/,,%G-, levels, and calculation of the constants of the inter-

Stark relaxation transitions in the ground and excited multiplets for the rholsiond M Nd®*

centers in Cafcrystals. An analysis of the temperature dependence of the homogeneous
linewidth of the transitions between low-lying Stark levels of the ground and excited states shows
that the mechanism of optical dephasing in the crystals investigated is described well by

direct relaxation processes with resonant inter-Stark absorption of one phonon in the ground and
excited states. AT=9 K, the homogeneous linewidif, in CaF, crystals is almost an

order of magnitude smaller thdr, in disordered Caj~YF; crystals. This difference can be
attributed to the significantly greater spectral phonon density of states in disordered crystals.
© 1998 American Institute of Physids$1063-776(98)01901-3

1. INTRODUCTION 2. INHOMOGENEOUS SPLITTING AND BROADENING OF
THE ABSORPTION LINES OF Nd** IN CaF,
The investigation of fundamental optical dephasing pro-CRYSTALS
cesses in organic and inorganic glasses and crystals activated

by trivalent rare-earth ions has been the subject of numerous The Cal:Nd®* crystals were grown by a modified
investigationd? since understanding the relaxation pro- Bridgeman method in a metered fluorine atmosphere_ln the
yabsence of oxygen-bearing compoundghe concentration
Rf NdF; was varied from 0.1 to 7 wt. %. In the cubic fluorite
structure Nd" ions can be distributed among sites of differ-
ing structure, which have different spectrd.According to
tals was investigated using accumulated photon echbes. Ref. 7, triply charged N%f lons replace doubly charged
Cc&* ions during growth in a fluorinating atmosphere, and

The structure of the optical Nd centers in Cafcrys- . . - > L
. . . . : the crystal is saturated by interstitial fluorine ions to maintain
tals was fully investigated in earlier studies. In Refs. 5-7 the . .
. . _ electroneutrality. At very low N concentrations, the
concentration method and selective laser excitation were suc;

cessfully employed to elucidate the composition of thé Nd charge .compgrjsano.n can be nonlogatan be effgcted bY
ters in C d to determine th i f the St kdls:tant interstitial F ions) and can leave the original cubic

centers in Cafand to determine the positions of the Star symmetry of the ligand field around each Ndion un-

sublevels for each type of center. In Refs. 8 and 9 the sym-

. e . changed. As the concentration of impurity Ndions and,
metry of the principal Nd" centers in Caf crystals was therefore, of the F ions compensating them rises, they are

investigated using ESR. o attracted to one another to form dipoles, and the symmetry of
Accumulated photon echoes permit direct measuremenfg |ocal environment of each Ridion changes from cubic

of the phase relaxation kinetics and determination of the hog, tetragonalan L center forms, in which the Fion occu-
mogeneous linewidt’y, of a transition, which is not dis- pnies a nearby interstitial site As the concentration is further
torted by the inhomogeneous broadening of the spdtffa  increased, the mutual attraction of the 3NeF dipoles

In the present work we investigate the temperature depeneads to the formation of dimeric (N8—F ), clusters oM
dence of the homogeneous linewidth of thllg,  centers and tetrameric (Rit-F ), clusters orN centers
—*Gs),°Gy, transition in the dimeric and trimeric N8 with rhombic symmetry. In these clusters téar four) Nd®*
cluster centers in the temperature range 9-50 K. The expefions replace twdor four) C&" ions. In this case two or four
mental plot ofl",(T) can be described within terms of direct fluorine ions occupy nearby free interstitial sites to achieve
relaxation transitions between Stark sublevels of the grountbcal charge compensation.

and excited states, with the absorption and emission of one The relative concentration of particular optical centers in
phonon. CaF,:Nd®*" crystals depends primarily on the total concen-

cesses of excited states of impurity ions in a solid is not onl
a very important scientific problem, but also a necessary co
dition for creating efficient solid-state lasers. In the presen
work the optical phase relaxation of Ridions in Cak crys-
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tration of NdF, introduced into the Cafcrystal during its tion are already comparable, and teandN cluster centers
synthesis. Figure 1 presents the absorption spectra of neod§nlarge, possibly forming tetrameric, pentameric, and more
mium ions between the low-lying Stark sublevels of theaggregated clusters. The symmetry of the new clusters can be
4 90— *Gsp,2G4), transition in a Caf crystal atT=9 K. lower than that of theM and N cluster centers, and the
According to Refs. 5-7, absorption at these wavelengths costatistics of the N states in crystal fields of different sym-
responds to a transition between the grodhgh level and metry and strength lead to considerable inhomogeneous
the first three Stark sublevels of thés,,%G-, multiplets of ~ broadening of the linescomparable to glassgsamounting
the M and N centers. It is clear from the figure that the ~30 cnmi* (Fig. 1, curve d.
absorption associated witti centers dominates at an NgF Figure 2 presents the absorption spectra of the
concentration equal to 0.1%. Increasing the Ndéncentra- CaR:Nd** crystals investigated in th8l g,—*Gs/p,%°Gyp,
tion from 0.1 to 1.0 wt. % results in an increase in the con-transition between the low-lying Stark levels as the NdF
centration of the tetramerld centers in comparison with the concentration is varied from 0.1 to 1 wt. %&£ 9 K, which
dimeric M centers. When the Ndg concentration is in- were recorded with a resolution of 0.22 ch As seen from
creased significantlto more than 1 wt. % the system the figure, the absorption spectra consist of two groups of
should be treated as a crystalline solid solution. In this casbnes withA =579.4 and 579.0 nm. The minimum values of
NdF; is regarded not as an impurity, but as one of the comthe linewidth in Fig. 2 are determined by the spectral reso-
ponents of the solid solution. lution. It can be seen from the figure that varying the NdF
Solid solutions are characterized by statistical disorderconcentration from 0.1 to 1 wt. % results in variation of the
under which it becomes difficult to speak about order inspecific concentrations of th&l and N centers toward the
distant coordination spheres. A significant increase in thenore aggregate centers, while the relative splitting of the
concentration of Ndfto 7 wt. % is manifested by an in- absorption coefficients within each group of lines remains
crease in the number of centers, and passage from inhomoenstant. In the figure, each of these groups corresponds to
geneous line splitting to inhomogeneous broadening of théour lines with splitting for theV centers ranging from 0.9 to
spectra(Fig. 1, curve o, where weakly structured broad 4.3 cm! (between the outermost lineand splitting for the
bands appear instead of sets of narrow lines. In this case, th¢ centers ranging from-1.8 to 6 cmi. The lack of similar
concentrations of the various components of the solid solusplitting in the absorption spectra in other transitions sug-
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gests that the complex structure of each group of lines is a

consequence of the splitting of th&,,2G,, excited state CaF,: Na*
of the Nd* ion in the dimeric and tetrameric cluster centers. E, cm’
This conclusion is supported by Ref. 6, in which splitting of 17343(17362) ~————p— 3
_ . 2 . +
the low-lying levels of thé'Gs,,2Gj, multiplet of the Nd 17320(17328) 2 6%,

ions inN andM centers was observed with a magnitude of
the order of~1cm! (the first three sublevels for thil
centers and the first two for thd center$. In Ref. 10 we 17259(17268) 1
showed that the splitting of the levels can be attributed to a
coherent interaction of paired Ridions inM andN cluster
centers. Figure 3 presents energy diagrams of the Stark levels
of an N&* ion, which were obtained from the absorption
spectra of the crystals investigated. The positions of the lev-
els are consistent with the data presented in Refs. 5-7.

3. ACCUMULATED PHOTON ECHOES IN CALCIUM
FLUORIDE CRYSTALS

Accumulated photon echoé$which are based on non-
linear resonant four-wave mixing, were used to measure the
phase relaxation tim&,. The resonant excitation of Nd
ions was effected in th8l o/,— *Gs»,2G, transition using a

Rhodamine 6G dye laser that is tunable in the range 560— 150(141) 3
600 nm. The dye laser was synchronously pumped by the

second-harmonic emission\ (=532 nm) of a YAG:Nd* 36(40.5) ) Y
laser operating in an active mode-locking regime with a fre- o2
guency of 82 MHz. Compression of the pump laser pulses 0 1

using a fiber-grating compressor was employed to shorten M (N) center

the duration of the output pUI_SeS of the dye laser fromil8 FIG. 3. Energy diagrams of the low-lying Stark levels of thg, and
to 0.5 ps. Wher_] the duration of the output pulses Wasg,, 2G,, multiplets of N&#* ions in theM and N centers in a CaF
=18 ps, the width of the spectrum of the pulses wascrystal.
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Av=1cm?, and for7=0.5 ps it wasAv=40 cm . The function of the delay between the probe pulses and pump
emission of the 20—100 mW dye laser was divided into orpulses. In the experimental geometry, the echo signal decays
thogonally polarized pump beams and a probe beam in a 7:according toSx<exp(—2t;,/T,), wherety; is the delay be-
ratio. The probe pulses were delayed relative to the pumpveen the probe and pump pulses, dids the phase relax-
pulses by a time,, ranging from 0 to 3.4 ns using an optical ation time (T,=1/(7I'y)).3
delay line. The pump beam was modulated by an acousto- Figure 4 presents the dependence of the accumulated
optical modulator with a modulation frequency of 4 MHz. photon-echo signal on the delay, for a Cak, crystal con-
The pump beam and the probe beam then converged at a 1.8tining 0.3 wt. % Ndk at T=9 K and an excitation wave-
angle and were focused onto the sample. The amplitude déngth A=579.36 nm. This wavelength falls between the
the photon echo pulses was recorded in the direction of thivo strongest absorption peaks assigned to Nhecenters
probe beam using synchronous detection at the modulatioffig. 2). As we see from the figure, the kinetics of the accu-
frequency of the pump beam. mulated photon-echo signal exhibit pronounced amplitude
After excitation, the Nd" ions undergo rapid radiation- modulation. The oscillations with a period of 37 ps corre-
less relaxation through several multiplets to the metastablepond to the splitting between the absorption peaks ofthe
4F ), level. The lifetime of the metastabfé, level in the  centers (0.9 cm'), which can be seen in the absorption
crystals investigated is lonhundreds of microsecondn spectrum(Fig. 2). Oscillations at a longer period correspond
comparison with the time between pairs of exciting pulsego smaller splitting values and cannot be seen in the absorp-
(12 n9. This very relationship is responsible for accumula-tion spectrum due to the inhomogeneous broadening of the
tion of the echo signal. In the experiment, the amplitude ofines and the limited spectral resolution of the monochro-
the accumulated photon-echo signal was investigated as mator. As we showed in Ref. 10, such modulation of the
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TABLE |. Phase relaxation time§, and homogeneous linewidttid’,  table, there is a sharp increase in linewidth in the transitions

=(mT,) '] of the *lg,—"Gpp, “Gyp, transitions of Nd* ions in theM 4 the high-lying Stark sublevels. For example, the linewidth
N [ . e :

andN centers in a CaFerysta of the transition to the third Stark subleu& GHz for theM

Transition Wavelength, center$ is more than two orders of magnitude greater than

(centey T,, ps Iy, GHz nm T, K the width of the line corresponding to the transition between
1) 6300 0.05 579.43 9 the IOV\_/-_Iymg Stgrk su_bleveléO.QS GHz for theM centers.
11/ (M) 1200 0.27 579.43 18 In addition, a slight difference is observed between the val-
1-1'(N) 3500 0.09 579.09 9 ues ofl"}, for the N andM centers.

1-1"(N) 1000 0.32 579.09 18 The dependence of the decay time of the kinetics of the
1-2'(M) 110 3.0 577.29 9 4 o1 Ggjp,2G)p transition between the low-lying Stark
1—2'(N) 150 21 577.00 9 levels in a CaE:Nd®* | ; . din thi K
1-3'(M) 45 70 576 54 9 levels in a ak:Nd" crystal was investigated in this wor
1-3'(N) 30 10 575.91 9 in the temperature range 9-50 K. Figures 5 and 6 show the

experimental kinetics of the accumulated photon echoes for
the excitation ofM and N centers in a Cafcrystal (with
excitation wavelengths\ =579.09 nm andA=579.43 nm

accumulated photon-echo signal is due to fine Splittingfor the N andM centers, respectivelywith a concentration

—1 4 N 2 of NdF; equal to 0.3 wt. % aT =9 (a) and 18 K(b). Mea-
(0.1-1cm™) of the ground®ly, and excited*Gg, G5 f the dephasing fi dth | fthe h
multiplets as a result of the coherent exchange, magneti%urements of the dephasing time and the values of the homo-

dipole—dipole, and electric quadrupole—quadrupole interacJENeOUS width of _the spectrum calculated from them are pre-
tions of the N&" ions in the dimericM and tetramericN sented as a function of temperature for th@ndM centers

centers. The beat contrast in the kinetics depended on tH Cak, in Fig. 7. As is seen from the figure, the widths of

excitation wavelength and decreased with increasing temt- eN andM lines are similar over the measured temperature

perature or increasing concentration of the’Nibns. At the rangeAtatr;]d mcreast_e mo_r:otﬁnlcﬁlll))/ W'tht w(;ctrﬁa;;%(;elr(npera-
same time, no variation of the decay time of the accumulate%ﬁre'h € same |Ir_ne, '_dstﬁouf tehn(‘)‘Ie fG 26 ’
photon-echo signal was noted in the present experinféoits ¢ NOMogeneous finewidtli, or the 1o “35/2," G772

o Al . - :
concentrations of Ndfequal to 0.3 and 1.0 wt. % The tr|an3|t|on o SI& |fons n _CZE (I:rystals Ch g'og.GH;) 'Sd
decrease in the oscillation amplitude as the impurity-ion con@iMmost an order of magnitude less thEpin the disordere

N3+ - . .
centration increases might result from variation of the finecaFZ_YF3'Nd crystals €'s~0.05 GHz) that we investi

splittings in the centers that emerges as the inhomogeneoﬁ’é‘ted in Ref. 12.

linewidth increases. Variation of the splittings leads to varia-

tion of the ogcillation peripds and,_as aresult o_f_averaging, 19 MECHANISM OF OPTICAL DEPHASING IN CALCIUM

a decrease in the oscillation amplitude. In addition, as can bg, orIDE CRYSTALS

seen from Fig. 4, the high-frequency modulation depth de-

creased as the delay, increased. To ascertain the mechanism of optical dephasing in these
The echo kinetics measured in the experimerta® K~ media, we analyzed the temperature dependence of the ho-

were not exponential. The reasons for this nonexponentidnogeneous linewidtiiFig. 7) in direct relaxational transi-

behavior were discussed in Refs. 11 and 12, and might béons between Stark sublevels involving the resonant absorp-

associated with saturation effects at high laser pump powetion and emission of one phonon. In this approximation, the

as well as with the simultaneous excitation of several opticaggquation for the homogeneous linewidth,, of the *Ig),

centers having different values 3. To minimize the in- —“Gs;»,°Gy, transition between the low-lying Stark levels

fluence of saturation effects, we selected a low radiate@®f the ground and excited multipletsig. 6) can be written

pump power of~20 mW. In particular, we controlled and in the form™

monitored the excitation selectivity of the centers and the Wo WO

transitions by varying the width of the laser excitation spec- T, = 12 + 13

trum. exp(AE/kT)—1  exp(AE;3/kT)—1
The influence of the optical density can also lead to dis- s WP

tortion of the initial stage of decay of accumulated photon + Ve + vy

echoes? It is difficult to determine the optical density of exp(AE;, /kT)—1 = exp(AE;/3 /kT)—1

CaF, crystals, since the spectral width of the absorption line 1

at T=9 K (Fig. 1) is less than the spectral resolution of the o T 1)

monochromator. Taking into account all the facts just cited, !

we measured the dephasing tirfie in the final stage of whereW?,, WY, \/\/(1’2 and\l\/(1),3, are amplitude param-

decay of the accumulated photon-echo signal. In addition, teters that characterize the rates of radiationless relaxation

minimize the influence of oscillations and reduce the influ-between levels 1 and 2 and between levels 1 and 3 of the

ence of optical density, thl andN centers were excited at ground *l4, multiplet and between levels’land 2 and

the edge of the absorption band of each ce(f. 2). between levels Land 3 of the excited*Gg,,2G7), multip-
Table | listsT, and the linewidtH™,, for transitions from  let; AE;; is the energy gap between the corresponding Stark

the ground-statél o, multiplet to the low-lying Stark sublev- sublevels(Fig. 3); and T, is the relaxation time of the popu-

els of the*Gg,,%G,;, multiplet. As can be seen from the lation of the excited level. It was shown in Ref. 15 that the
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multiphonon relaxation rate ¢2T,) ! varies only slightly We confined ourselves to transitions between three low-
between liquid helium and liquid nitrogen temperatures. Follying Stark sublevels, whose transition rates can dominate
this reason, we assume that the multiphonon relaxation ratie relaxation process a<50 K. In analyzing Eq(1) we
(27T,) ! is the same for the first three Stark sublevels ofalso neglected transitions within the system of the fine-
the *Gs,,2G5,, multiplet. Thus, in Eq(1) the temperature- structure splitting of thél andN centers wittAE<1 cm 2,
dependent terms describe only processes involving the alsince the phonon density of states at energies

sorption of a phonon. hv=AE<1cm !is low. While we only consider processes
04}

0.3+
3
g FIG. 6. Kinetics of the accumulated photon-echo signal upon
g- 02t excitation of the N centers [£=579.09 nm) in a
g CaF,:Nd®**(0.3 wt. 99 crystal atT=9 K (a) andT=18 K (b).
% The solid lines correspond to exponential decay of the accumu-
w lated photon-echo signarl;,=3.5 ns(a) andT,=1.0 ns(b).
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T, GHz 3). In particular, all terms except the third (8) and the third

' and fourth in(3) can be neglected. In this approximation,
I'1» is equal tovvf,z,, since the ratio between the exponen-
tial terms in the third term iri2) for T=9 K and the energy
gaps given is 1.

Hence, using the data in Table I, we at once obtain the
radiationless relaxation constar\Aﬁ,z, =3 GHz (for the M
center$ and \/\/(1),2,=2.1 GHz (for the N center$. For this
same reason, from(3) we obtain the expression
I3 =W,,,,+W),,,. For subsequent evaluations we need
the relationship betweewg,l, and\/\/g,z,. According to the

theory of electron—phonon interactions; is proportional
0'010 30 20 60 30 to the product of the square of the matrix element of the
T,K electron—phonon interaction and the spectral phonon density
of states. In the Debye approximation, the latter is propor-
41 g1p—*Ggpp, %Gy, transition between low-lying Stark sublevels of the Flonfal to the CUbe. of the fre.quenc.y of the phonon part|C|pat_-
andN Nd®* centers(O and #, respectively in a CaF, crystal. The solid  INg in the interaction. On this basis we can estimate the ratio
curves are theoretical plots obtained withéait and with (b) consideration Wg,z,/Wg,l, =(AE,3 /A Elr3r)3, which is equal to 0.02
of Wis. and 0.06 for thevl andN centers, respectively. As a result of
the evaluations made, {i8) we can neglect the term contain-
ing W3,,, and determine the constanté),,, =T ;5 , which
involving the absorption of a single phonon when a low-are 7 and 10 GHz for thk! andN centers, respectively. The
lying Stark sublevel of thédGs,,%G;, state is excited, we ratios between the resulting values and, /W, =2.3
should take processes that entail phonon emission whe@.3) for the M (N) centers. A comparison of these ratios
high-lying Stark sublevels of this compound are excited intowith the ratio (AEg 1/ /AE,1,)3=2.7 (4.3) exhibits good
account. For example, for the-12' transition to the second agreement with the Debye approximation.

10f

0.1F

FIG. 7. Temperature dependence of the homogeneous lineWjddf the

Stark component, we can write The significant difference betweehE,;, (~35 cm})
and AE; (~150 cm'Y) for the ground-statél 5, multiplet
B 12 13 causes the second term(ib) to be negligible in comparison
oo Wi . Wi th d term (@ to be negligible i i
1277 exp(AE;,/kT)—1  expAE 5/kT)—1 with the first atT<20 K. It should be noted that the deter-
mination of\/\l‘l’2 from (1) at T=9 K is very sensitive to the
W2, eXp(AE; o /KT) - :
2'1 accuracy of the measurements. First, the maximum delay
exp(AE 5 /kT)—1 between the pump pulses and probe pulses in the experimen-
WP tal system ist;,=3.4 ns, and this complicates the determi-
2’3’ 1 nation of a damping decrement of an accumulated photon-
+ + . (2 X . Ay
expAE, i3 /kT) =1 27T, echo signal that is comparable to this time. Second, the

Here. along with terms that describe processes involvin thvalues ofT, obtained in Ref. 16 were 7.2 ns and 3.3 ns for
, g wi b€ p INVOVING e e M and N centers in a CafENd®' crystal, respectively;

absorption of a single phonon, the third term describes th?herefore a difference between two similar valiffss ex-

spontaneous and stimulated emission of one phonon in the _ _
2’ =1’ transition. The expression for the homogeneous "ne_ample, T(M)=7.2 ns andT,(M)=6.3 ns, see Table)|

~ = _1 -
width I';3 upon excitation of the third Stark componétite must be taken to calculaid’, (Fl.l .(ZWTl) ). Conse
y oy " . quently, we used the results of kinetic measurements of the
1'—3' transition, Fig. 3 has the form

decay of the accumulated photon-echo signall at18 K,
sz ng whereT,(M)=1.2 ns, to calculaté’/\lgz. The value ofl"
+ in these experiments was 0.20.30 GH2 for the M (N)
expAE,/kT)—1 exp(AE;3/kT)—1
AEL/KT) AE,/KT) centers. As a result)/?9, calculated from Eq(1) was 3.4 and

I'izy=

Wg,l, exp(AE; 5 /KT) 5.9 GHz for theM andN centers, respectively.
In Fig. 7 (curve a the solid line shows the dependence
exXp(AE; 5 /kT)—1
MAELs ) of I'(T) obtained from Eq.(1) for the M centers in a
Wg,z, exp(AE, 3 /KT) 1 CaFR,:Nd®* crystal with exact consideration of the transitions
exp(AE, 5 /KT)— 1 + 27T, 3 to the second and third Stark levels of the excited state and to

the second level of the ground state, but without considering
In Egs. (1), (2), and(3), the energy gaps and the amplitude the relaxation processes associated with phonon absorption
terms are symmetric under interchange of the level indiceshetween levels 1 and 3 of the ground stamf{g: 0). The
W;;=W;; . This greatly simplifies the solution of the prob- figure reveals a sharp increase in the difference between the
lem. Because of the exponentially small termexperimental points and the theoretical curveTat30 K.
1[expAE/KT)—1] at T=9K (kT=6.3 cn’}), Egs.(2) and  This difference may be associated with neglect of relaxation
(3) can be simplified for Stark splitting§E>30 cmi ' (Fig.  processes between levels 1 and 3 of the ground state, which
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becomes unjustified as the temperature rises. In order to takgound and excited multiplets. An analysis of temperature
these processes into account, we determm@gby assum- dependence has shown that optical dephasing in the ground
ing that the phonon density of states has a Debye distribuand excited states of the ordered crystals investigated is de-
tion. This assumption enables us to determine the relatiorscribed well by direct relaxation processes that involve reso-
ship betweenW?, and W2, as W0,=W,(AE;3/AE;»)®  nant inter-Stark absorption of one phonon. &9 K, the
(W3,=260 (270 GHz for theM (N) center$. A theoretical homogeneous linewidth',, in the disordered crystals is al-
curve that takes these parameters into account is depicted imost an order of magnitude greater than the analogous value
Fig. 7 (curve b. The experimental values clearly correspondin the ordered crystals. This difference can be accounted for
to a direct relaxational dephasing process in the temperatulgy a significantly higher spectral phonon density of states in
range considered. the disordered crystals.

Thus, the mechanism of optical dephasing in multicenter ) _
ordered crystals over the range=10—50 K is described This research was performed with support from the
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Long-range correlations upon wave propagation in random media under the conditions
of strong internal reflection from their boundaries
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The large-scale behavior of the spatial distribution of radiation in a random medium is
investigated under the assumption of strong internal reflection from its boundaries. The qualitative
variations of the angular coherent backscattering spectrum and long-range spatial intensity
correlations in the transmitted and reflected radiation fluxes are predicted99® American

Institute of Physicg.S1063-776198)02001-0

1. INTRODUCTION tion of the boundary conditions on the diffusion equation for
the case of specular internal reflection was given in Ref. 10,
The long-range correlations of multiply scattered wavesyhere the correlation function of the scattered waves was
resulting from interference are manifested in numerous uncalculated and it was shown that consideration of internal

usual effects, which are observed when electrons and lighteflection significantly improves agreement between theory
are transported in media with random inhomogeneities. Theynd experiment.

other kinetic coefficients in metals and semiconductofs, conditions of internal reflection have been determined ex-
universal fluctuations of the total conductivity of samples Ofperimentally using the approach in Ref. (@e Refs. 10, 15,
small dimensioné;?® and enhanced backscattering and strong| g, and 20. Long-range intensity correlations in the pres-
ﬂUCtE‘%tl?”S upon propagation of coherent light in randomgnce of strong internal reflection were considered in Refs. 16
media: _ . ~and 17. The results in Refs. 16 and 17 were obtained by
‘One of the factors which strongly influences the distri- yitterent methods. A comparison reveals that they contradict
bution of radiation in a medium is the internal reflection of ;. 21other. The conclusions of both studies are based on
waves from its boundari€s’ The appearance of a radlat!on incorrect starting relations for the intensity correlation func-
flux reflected from a boundary can be caused by Ordlnar3fions, and should therefore be revised. This applies, in par-

chresn(faI r?lect_m;_, Whlcfht';‘ a reZL.'lt of thg dlffereL?Gcrj(reiL t_)ritwee'ficular, to the frequency dependence of the correlations of the
€ refractive indices ot the medium and a vac 1N " radiation fluxes transmitted through a layer.

limiting case of strong reflection is achieved when scatterers In the present work the effects caused by the long-range

are sn_uated in a specular respneit:b‘ m e_|ther ca_?,,e internal correlations of multiply scattered waves, viz., coherent back-
reflection leads to the effective “confinement” of waves . o . .
scattering and long-range spatial intensity correlations, are

within a scattering layer. In addition, the internal reflection : o . .
coefficientr becomes—along with the layer thickndssthe considered under the conditions of strong internal reflection
9 Y from the boundaries of a random layer. The influence of

mean free patft, and the absorption length —one more internal reflection on the distribution of radiation in a me-
parameter that controls the dynamics of wave propagation ig. O . ) . o
ium is investigated in detail, and it is shown that the wave-

a medium. . . . : o
propagation regime is determined by the competition be-

The analysis of the influence of internal reflection on o " .
radiation transport in a scattering medium has been the sufjveen the transmissive capacities of the boundaries and the
random medium itself. The various approacfedto solv-

ject of numerous publicatior’s?* This question has been ' (OPF : :
considered within the ordinary theory of radiative "9 the problem of wave propagation in a medium in the
transpor®12Land it has recently been treated in investiga-Présence of |n.tern'al reflection are compargd. Exact expres-
tions of coherent phenomeh%2° sions for the diffusion asymptote of the distribution of radia-
The problem of reflecting boundaries was addressed ifOn in @ medium and for the angular dependence in the
the context of an analysis of the form of the angular coherenicinity of the coherent backscattering peak are found in the
backscattering spectrum for the first time in Ref. 13. A newlimit of strong internal reflection. The qualitative variation of
form of boundary conditions for the diffusion equation, in the dependence of the form of the peak on the thickness of
which internal reflection from the boundaries of the layer isthe scattering sample is found. It is also shown that the
taken into account qualitatively, was proposed in Ref. 13. An‘confinement” of radiation in the presence of strong internal
approach differing from the one in Ref. 13 to the descriptionreflection leads to significant alteration of the form of the
of wave propagation with internal reflection was proposed irfluctuation spectrum of the transmitted and reflected inten-
Refs. 14 and 18. The radiation distribution within the me-sity. A maximum corresponding to reversal of the sign of the
dium was not considered in Refs. 14 and 18, and fluxegntensity correlation function appears in the spectrum. The
undergoing different numbers of reflections from the bound-asymptote of the frequency-dependent intensity correlations
aries were summed at the very beginning. A correct derivafound here differs from those obtained in Refs. 16 and 17
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and is described by a\(w) ~%? law under the conditions of strong internal reflection, where the exact solution found un-
strong internal reflection. der the assumption of diffusely reflecting boundaries can be
The results obtained in the present work are of interestitilized.

for investigations of the transport properties of dense random We go over to the diffusion approximation in E€L)

systems by optical methods. according to the usual procedffe?® Under the assumption
that the angular distribution of the radiation is weakly aniso-
tropic, i.e.,

2. INFLUENCE OF INTERNAL REFLECTION ON RADIATION 1

PROPAGATION IN A RANDOM MEDIUM |(I’,Q)= E(F(r)—’_BQ.J(r))’ (3)

As we know®?2Zthe angular distribution of radiation in
the presence of coherent backscattering and the spectrum §fere
long-range intensity correlations can be expressed in terms
of ladder propagators, i.e., solutions of the linear transporF(r)=f I(r,Q") dQ’, J(r)ZJ Q'l(r, Q') dQ’,
equationt?+25 e am
from Eq.(1) we obtain the relatiod= — (1/3)VF(r) and the

1
(Q-V)I(r, Q)+ I—I(r,Q) diffusion equation for the radiation energy dendyr) in
tot the medium,
~ 2 [ ene)der+sio) (1) L 3 ,
A7l Jan ' TR AF(r)—l—z—F(r)+|—5(r—r )=0, (4)
D

wherel (r,Q) is the radiation intensity at the pointin the
direction Q, S(r,Q) is the distribution of sources,
loi=(172+17Y), | is the elastic mean free path, ahdis the
absorption length. For simplicity, in Eql) we assume that
single scattering is isotropic.

In the case of the internal reflection of radiation from the
boundaries of a layer located between theO andz=L
planes, the distribution of sources can be written in the formf(n.m«)dQ n-QI(r,Q)[-0,

wherelp = (Il /3)2 is the diffusion length.

The boundary conditions for the diffusion equation ex-
press the balance between the fluxes on a boundary of the
medium®® With consideration of the surface part of the
source(2) they have the form

S(r,Q)=8(r—r')5(Q— Q')+ 8(2) H(Q,Q) :f dﬂf 40
(n-Q)>0 (n-0)<0 (n-0')>0
X(n- Q") (p,z=002)dQ"+ S(L—2) X(n'Q’)r(Q:Q’)|(r:Q’)|z=0,L- (5)
X f(nlﬂlpor(ﬂ,n’)(n-ﬂ’)l(p,z:L,Q’)dQ’, Substituting(3) into (5), we obtain
@ (EF(r)+|—n~VF(r))
wherer (€2,€) is the reflection coefficient of the surfaae, 2 3 7=0L
is the exterior normal to a boundary of the layer, and the 1 |
component of the vectarthat is parallel to the boundaries of — (—r(l’F(r)— —r@np. VF(r)) ) (6)
the layer. 2 3 z=0L
The first term in(2) corresponds to a source of radiation here
of unit power in the bulk of the medium, and the second andN
third terms describe radiation reflected from the boundaries. ") 1 R,
Finding the radiation intensity from Egl) with source r :(””Ll)fo d,ufo du'w
(2) and with an arbitrary reflection coefficient is a compli-
cated mathematical problefi:?*?>An analytic solution can ar do (27 o
be obtained for it only in certain limiting cases, specifically JO 27 Jo de'r(u.p’.e.0"),

in the case of diffuséor Lamber} reflection(see Appendix

A). u=1Q,, u'=|Q.|, andg and ¢’ are the azimuthal angles
To elucidate the qualitative features that internal reflecof the vectorsQ2 and Q.

tion imparts to the spatial distribution of radiation with the ~ Equation(6) generalizes the usual boundary conditions

intention of subsequently considering long-range correlation&r the diffusion equatioff-*°to the case of an arbitrary re-

(over distances much greater than the mean freelpathe  flection coefficient.

use the simplesi.e., diffusion approximation in(1). Under If radiation is reflected specularly from the surfagéer

the conditions of weak absorptioh,&1) this approximation ~€xample, according to Fresnel's Ipvie., if

yields the correct qualitative description of the intensity on

spatial scales exceedithig The results obtained in the diffu-

sion approximation will be refined later on in the limit of the boundary condition&) take the form

ru,p' o0 )=r(u)é(u—un")dle—¢'), (7)
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IF(z,p) .3 z+27' —|z-7'|
F(Z:P)+ZOnZT|z:O,L:0: 8 F(a,z,2")= ] coshy| ————
where z+7' +|z—-7'|
xexp —y————1]. (14)
2 14r@ 1 ) 2
Z°:§I 1—ro ' =(n+1)f0 rlp)pidu. ©  Froma physical standpoint, the transition (e} describes
N _ the confinement of radiation in a medium with strong reflec-
Conditions(8) and(9) were proposed in Ref. 10. tion from its boundaries. The probability of leaving through
If the boundary of the scattering medium is a diffusely 3 houndary becomes appreciable only after many reflections.
reflecting, rough surface, then Therefore, close to the sourcp{q 1<zy), where the ef-
r 2 14t fective number of reflections from the boundary is small, the
r(u,u e, )=—u, 20:§| 17 (100  radiation distribution corresponds to an opaque boundary.
p _

In the absence of absorption, Ed.2) leads to the fol-
wherer is the albedo of the diffusely reflecting surfaghe  lowing spatial dependence of the dendffz,z’,p) near the

ratio of the total reflected flux to the incident flux boundary:

As follows from (6) and(8)—(10), in the diffusion wave- 3 (1p |<p<z
propagation regime the boundary conditions are insensitive F(z<|, z'<l p)=>—1 , '3 ) (15)
to the detailed character of internal reflection from the sur- 2wl | zg/p®, zo<p

face and depend only on the integrated characteristics of thﬁccording to(15), at smallp the value ofF does not depend
reflection coefficient. In the case of strong internal reflectionOn 2, and is determined by the same expression as in a me-
—_r(ng i . . .

(1~r /<|1/) (IlE)qs.I © ) and (1|(,)) . Yield  Giym with a perfectly reflecting boundary. At largethe
zo~(AR)I(/(1—r i )>1. I t e opposite limiting case ¢ ofF js (zo/1)?>1 times greater than in the absence of
(r=0), zy=21/3 is the familiar value of the extrapolated internal reflection
length in the d|ffu5|on approxma.tl.o%‘i‘. . , In the case of a finite layer, new effects appear for large

In Eq. (4) W_'th boundary cor_1d|t|0m8) Itis convenientto 4,65 of the reflection coefficient, for which the inequality
take the Fourier transform with respect to the dlfferencezo>|_ holds. Wherz,>L under the assumption that there is
p—p'. Then this solution can be represented in the form ,, hsarption, expressidail) can be written in the range of

. small spatial frequencieg<L ~* in the following form:
F(q,z,Z’)=f d(p—p') exp(—iq-(p—p'))F(p—p'.2,2") 3y 1
0

F(9,2,2' )~ 5 ——5. (16)
3 P((z+2' ~|z=Z'|)2)P(L—(z+2' +|z=Z'|)12) q I 1+q°zL/2

Yl [(72o)*+1]sinh yL +2yzy coshylL ' It can be seen at once from this formula that the long-
(11 range asymptotic behavior of the spatial distribution of the
whereP(2) = sinh yz+ vz, coshyz and y2=q2+lllé. In the den;ity is altered gnder the conditions of _strong internal re-
case of a semi-infinite mediunt (<), it follows from (11) flection. Whereas in the absence of reflectlgFl(ZI/3),_th.e
that law F(z,z',p) ~exp(—mp/L) follows from (11), in the limit
Zo>L relation(16) gives

.31 2
F(Z,Z P %IEKO —-p ZO_L . (17)

z+27'+|z— 27| _ _
><exp( —yf). (12 Dependencg17) is a consequence of the confinement of
radiation in the medium in the case of strong reflection from
When there is weak internal reflectiory&|), the result  its boundaries.
(11) transforms into the formula obtained without consider- ~ Using(11), we can calculate the transmission coefficient
ation of the reflecting boundari¢see, for example, Refs. 26 of a radiation flux through a layer of a random medium in the
and 27: usual mannefsee, for example, Ref)8In the case of elastic
scattering with normal incidence of the waves at the surface

3 1
F(q,z,2')=—

'yl 1+ ‘}/ZO 2

z+z’—|z—z’|)

c .3 1 z+2' —|z—27'|
(4.2.2) = S+ 22) 2 _ 1+ 18)
L+2z°
z+7' +|z—-27'|
xexg L- ————|, (13)  The reflection coefficient is determined in this case from the
flux conservation conditiorR+T=1. According to(18), un-
where P(z) = sinh y(z+z). der the conditions of strong internal reflectiop$L) the

Under the conditions of strong internal reflection andtransmission and reflection coefficients are equal to one an-
large values of, (zo>1), a new region (gl<q<l 1y can other: T=R=1/2. Under these conditions, radiation repeat-
be isolated in the behavior §12), where the distribution of edly crosses the scattering layer before leaving it, and “for-
F behaves as in a medium with a perfectly reflecting surfacegets” through which boundary it entered the medium.
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It follows from (11)—(14) that in the diffusion approxi- gime in a medium with a perfectly reflecting boundary is
mation the structure of the expressions for the propagatorsffectively realized, and20) transforms into the inequality
has a universal character, and the reflectivity of the boundarg,>L, under which the strong confinement of radiation in
influences only the value df,. In addition, under the con- the resonator is observed.
ditions of strong internal reflectiorzy=41/3(1—r) does The expressions fdF(z,z',q) in Appendix A have ex-
not depend on whether reflection from the boundary isactly the same structure é61) and(12). In fact, if we sub-
specular or diffusécompare(9) and(10)). Thus, under the stitute the corresponding quantities calculated in the thick-
conditions of strong internal reflection, where the scatteredayer approximatior(see, for example, Refs. 8 and)Z8to
flux is reflected repeatedly from the boundary, the angulatA15) and (A16), we arrive at formulas which coincide in
distribution of the radiation becomes nearly isotropic andform with (11) and(12). The differences are of the next order
ceases to be sensitive to the details of the interaction of theith respect to the small parameteys and I/L, and are
waves with the boundary of the medium. The same phenombeyond the range of accuracy of the diffusion approximation,
enon was noted in Ref. 28, in which numerical calculationswithin which Eqgs.(11) and(12) were derived.
of resonant radiation transport in a flat resonator were per-
formed.

In the case of diffuselLamber} reflection from the
boundaries, in addition to the solution in the diffusion ap-

proximation (11) an exact analytic solution of the problem  One of the most striking manifestations of the long-
can be foundsee Appendix A If we compare it to solution  range correlations of waves in coherent transport in a random
(11), we can, on the one hand, evaluate the accuracy of thgedium is enhanced backscatterffgThe peak in the angu-
diffusion approximation, and, on the other hand, we canjar spectrum of the backscattered radiation appears as a con-
more importantly, understand the mechanism of the inf|u-sequence of the exact matching of the phases of waves
ence of internal reflection on the distribution of radiation in apropagating in the medium along identical trajectories, but in
medium. mutually opposite directions. The calculation of the coherent

Unlike the diffusion solution(11), the rigorous solution  backscattering intensity reduces to summation of a series of
of the transport equation obtained in Appendix A enables Usnaximally crossed or “fan” diagram$’?2
to separate the contributions due to waves that do or do not The contribution of coherently scattered radiation to the
undergo internal reflection from the boundaries, and to eXangular spectrum can be written in the form
press the distribution of radiation in a medium with reflecting
boundaries in terms of the solution of the transport equation 1 3 3, .
in the absence of internal reflection. The latter can be foundc(k:Ko) = 7—2x f d rf d*r "W (r, —k)W* (r,ko)F
exactly, without any additional assumptions regarding the
conditions on the boundaridanlike, for example, the solu- X(r,r YW (r',=k)W(r’ ko), (21
tion of the diffusion equation(4) with an approximate
boundary condition likg6)).

In solutions (A15) and (A16), the contribution of the
terms that appear because of internal reflection becomes si
nificant when

3. COHERENT BACKSCATTERING

whereF(r,r") is the radiation energy densitgee Eq.(3)),
W (r,kp) is the mean field within the medium when a plane
gg_ave with the wave vectdk, impinges on itk, andk are

e wave vectors of the incident and backscattered waves,
respectively, and\ is the surface area of the scattering me-
dium. The integration ir{21) is carried out over the volume
of the medium.

We confine ourselves to consideration of normally inci-
dent radiation, in which the effects of refraction at the
boundary are negligible, and everything is determined by the

2l wave propagation dynamics within the medium. The features
1—f<Tq=§ sinh yL (20 associated with oblique incidence are discussed in Ref. 29.
For normal incidence and small deviation angefsom

in the case of the passage of radiation through a finite layeihe “packward” direction, Eq(21) takes the form
(see(A16)), whereR, and T, are the reflection and trans-

4
1—r<Rq=1—§yI coth yL (19

in the case of reflection from a semi-infinite mediusee
(A15)), or when

mission coefficient$for a medium without reflecting bound- 1-r (L L z+27' ,
aries for the gth harmonic of the spatial distribution of the I(0)= 72 JO dZJO dz’exp — ——|F(z.2",0),
radiation. The expressions f&; andT, in (19) and(20) are (22)

valid for yl<1.

Thus, the mechanism for the influence of internal reflecwhere F(z,z',q) is the Fourier transform of the radiation
tion on the wave-propagation regime in a medium is clearlyenergy density(3), q=|(k+ ko)u| =ko0, ko) andk are the
seen from solutiongA15) and (A16). The regime is gov- components ok andk that are parallel to the boundaries of
erned by the competition between the reflectioetransmis-  the layer,ko=2#/\, X\ is the wavelength of the radiation,
sive) capacities of the boundaries and the random mediunandr=r(u=1) is the specular reflection coefficie(r) for
itself. In the absence of absorptiail9) is equivalent to the normal incidence. The distributioi22) is normalized to unit
conditionqz,>1, under which the radiation propagation re- incident flux passing through the boundary.
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Substituting the propagat¢t 1), which was calculated in  dependencd.(6) similar to that discussed in Ref. 13 is ob-
the diffusion approximation, intq22), for a semi-infinite  served. In the limit of strong reflection from the boundary

medium we obtain (1—-r<1), the formula
3 (14+2z9/1)—v(2+3zy/1) 1-r
=—(1— J()=——mMM—
where v=Kkql #<1. This generalizes previous resfitg*2° 1 4 v
to the case of finite internal reflection. In the vicinity of the T3] v<l-r
peak (vzy/1<1), the backscattering spectrum has the form =\ 3 1-¢ (25
3(1—r z z 2 —_— , v>1—r
J(0)~ (877 ) 1+2|—°—2V 1+|—° ) (24) am v

is asymptotically accurate with respect to the large parameter
and does not differ in structure from the results obtained if(1—r)~*.*! This can be seen by comparing the result with
the absence of reflectidif.?22529t follows from (24) thatin  the solution in Appendix A and the exact result for an infinite
the case of strong reflection {Ir<1), wherez is propor- medium®

tional to (1—r) %, the height of the peak does not vary, The expression for the angular coherent backscattering
while the coefficient ofv (i.e., the slope of the angular de- spectrum from a layer of finite thickness with strong internal
pendencel (6)) increases. Thus, narrowing of the angularreflection has the form

1-r (1—r)sinn(vL/1)+ (4/3)v cosivL/l)
7 ((1—r)°+(4v/3)%)sinh vL/1)+(8/3)v(1—r)coshvL/I)"
In (26) it is assumed that/I>1.

According to(26) the finite character of the layer is manifestedval/L. In this region the expression fdg(») can be
written

J(0)=

(26)

1-r ((L=r)L/1+4/3)+ v?(LN%)((1—r1)L/1 +4)/6

Je(6)= am (1-r)((1—r)L/1+8/3)+4v°L((1—r)L/I+4/3+(1—r)?(L/1)%/8)/3l @7

When L/1>1/(1-r), the linear dependence df on vis  between the probabilities of the emergence of radiation

replaced av<I/L<1—r by the quadratic law through the front and rear boundaries of the medium under
the conditions of strong internal reflection. The variation of
_i _ 4 _f , L the form of the angular coherent backscattering spectrum
J.(6)= 1 v +...]. (28 ) , X ) : X
3(l-rL 9 (1-n)l with decreasing thickness of the scattering layer is shown in
Fig. 1.

In the limit of strong internal reflection(1 <1/(1—r)), the
linear portion ofJ.(v) is totally absent, since the dependence
J.(v)~1/v can be replaced at<|/L by a dependence of the
form

We assumed above that there is no absorption. To take
weak absorption in the medium into accountnust be re-
placed by\»?+3(1—w)<1, wherew=ly/l is the albedo
for single scattering;’ in the results obtained above.
148)= 1-r 1

o(0)= 27 (1—r)+2v°L/3

4. LONG-RANGE SPATIAL INTENSITY CORRELATIONS

1 2L 2 (1-1)l

o 1- 31 1—r oo < L Let us now consider the long-range correlations between
= . the radiation intensities reflected or transmitted through a

i l_ l__zi l_ > /(1_ Dl layer. Like coherent backscattering, long-range intensity cor-

4w L v’ L L relations are sensitive to the confinement of waves in the

(290  medium under the conditions of internal reflection from the

boundarieg®17:23
In the case under consideration, truncation of the coher- e define the intensity correlation function using the

ent backscattering peak occurs at-+/(1—-r)I/L<I/L, relation

which is associated with the confinement of radiation in the )
medium and the resultant lengthening of the wave propaga- C(#:21)=(E(p,2=2)E(0,2=2;))—(E(0,2=2))",

tion trajectories. Another manifestation of radiation confine- (30
ment is the doubling of the scattering intensity exactly in thewhereE(p,z;) is the flux density through the surface at the
backward direction. This can be attributed to the equalitypoint (p,z), z; is the coordinate of the plane of observation:
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J spectrunt! The values of the “outgoing” propagato(&;)

in Eq. (32) are taken outside the medium in immediate prox-
imity to its boundary. The values di;) are normalized to
unit incident flux after passage through the boundary of the
medium.

Equation(32) simultaneously takes into account the con-
tributions of short-range and long-range intensity
correlations>3! As was shown in Refs. 23 and 31, owing to
the conservation of radiation flux upon elastic scattering, the
contributions of short-range and long-range correlations to
the fluctuation spectrum partially cancel, and as a result the
spectrum(32) is determined by integration over scales of
variation of the variable that exceed the mean free path

0.10}

0.05

0 . . . The diffusion approximationi3) can be used to calculate the
2 4 k0 6 spectrum. Repeating the transformations made in Refs. 23
-7 and 31, but with consideration of the boundary conditi8)s

and (9), we obtain the following expression for the fluctua-

FIG. 1. Angular coherent backscattering spectrum from a layer of a randongjqn spectrum in the diffusion approximation:
medium under the conditions of strong internal reflection. The numbers on

the curves correspond to different values of the layer thickhélss 10 (1), 2m(l+z )2| 3 2
50 (2), and 100(3); the internal reflection coefficient of the boundaries M(q Zf) —_— _ —F(q Z Z)
r=0.99. For comparison the angular spectrum in the absence of internal ' 27k 0z 9z '
reflection is shown in the insét =0 andL/I=5 (1), 10 (2), and 100(3)). ,
2

T F(9,z;,2) )
z;=0 for reflection andz;=L for transmission. The angle f
brackets in(30) denote averaging over the disposition of the (34)

scatterers.
The Fourier transform of the correlation function, i.e.,
the fluctuation spectrum

where the functionF(q,z,z’) is defined by(11). It is as-
sumed in(34) thatql<1.
Below we analyze the spectrukh(q,z;) for purely elas-
i ) tic scattering under the conditions of strong internal reflec-
M(q,zf)=J C(p.zr)exp(—ig-p) dp, (D tion (1—r<1 orzy>I). The result of the integration i(84)
for the general case, in which the incident waves differ in

obeys the relaticft frequency and absorption occurs in the medium, is presented

2m\? 1 in Appendix B.
M(q,z¢)= k| Al In the case of reflection from a semi-infinite nonabsorb-
ing medium, the intensity fluctuation spectrum has the form
L =7, =
><J dzJ dQJ dQ'|[(Eq(z;,q|2,Q)) (z=2=0)
0 47 4 2
677' ql 35
—(Ex(z,4|z,.2))|%(1i(z,Qz Mr(d)= '3 I_ (1+qz)%" (35

=0,020))(1i(z.Q'[z=00)), (32 At q=0 Eq. (35) specifies the dispersion of the reflection
where(l;(z,92|z;=0,0)) is the mean intensity in the direc- coefficient?® ((5R)z>= Mgr(a=0)/A, and vanishes because
tion Q at depthz for radiation incident upon the surface of of the conservation of flux upon elastic scattering. The spec-

the medium at;=0 in the directionQ, trum (35) peaks, With M g) max—372/(2K3l), atq=1/z,, and
decays as y at q>1/z;. In the range ,<q<1/ the de-
(E¢(z,0|2,Q))= f d2p exp(—iq- p)j dQ, cay of the spectrum is described by the relation
(n-Q7)>0
' Mr(q) =6m/k3q|, (36)

X(n'ﬂl)“f(przf!Ql|zrﬂ)>1 (33)

(1¢(p,z; ,Q4|2,Q)) is the mean intensity in the directidi,
at the point p,z;) on the surface at; from a point source
located at depttz emitting in the direction{). The mean
intensity satisfies the transport equatidn with appropriate
sources. [
Equation(32) was derived in Ref. 23 in the Born ap- 3 2| 3
proximation for the amplitude of one-center scattering, in Cr(p)=— (ﬁ) 0
which only pairwise correlations of the wave fields are taken ko \ 1 | 57
into account. For isotropic scattering centers of small radius, 3 p=2%0
Eq. (320 makes the main contribution to the fluctuation (37)

which characterizes the intensity fluctuations in a medium
with a perfectly reflecting boundary.

The correlation function corresponding to the spectrum
(35) is

P<Zg
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According to(37), under the conditions of strong inter- 1 /L\2
nal reflection, the main contribution to the correlation func- 16 (Z_o (1+(9z0)?), q<l/zy
tion for I<p<z, does not depend on z;: X ) .
Cr(p)~31/(k3I2p). At such values op the probability of 1 qL sinh L 4> 1z
photons leaving the medium is negligible. Wher z,, the 8 (2 coshqL+qz, sinhgL)?’ °
probability of leaving the medium after multiple reflections (41)

becomes appreciable, and the correlation function begins to _ )
decay according to the same law as in the absence of reflefccording 15(27(41)' the spectlr/gnMR(q) has a maximum at
tion at the boundar§® However, because of the large num- 4= (2/zL) . At g>(2/zoL)"* the spectrum decays accord-
ber of reflections of the radiation from the boundary, thelnd to
amplitude of long-range intensity correlations increaggsa .
factor of (zo/1)2~(4/3(1—r1))251 for p>z,). Mo(q)= o L sinh AL 42
: RA)= 22 gl sinf gL *
In the case of the reflection of waves from a layer of o gl sinfq

finite thickness, the intensity fluctuation spectrum takes theCmd does not depend ag. Equation(42) describes the fluc-

form tuation spectrum in a layer of a medium bounded by per-
67 (25|21 fectly reflecting walls. It is noteworthy that the dependence
Mr(Q)= 17 (T) [ FrlaL.az), (B8 Mg(q)=~3n/(2k2ql), which is distinguished fron(36) only
0 by the additional factor 1/4, follows fror#2) atg>1/L. It
where is fairly simple to understand the origin of this factor. When
X Zo>L, radiation is reflected repeatedly from the boundaries
Fr(X,Xo)= = 5 — 5 and “forgets” through which boundary it entered the me-
2 (X+2x0)*((1+xp)sinh x+2x, coshx) dium; the reflection and transmission coefficients both equal
1 1/2. Likewise, the fluctuation spectrum of the reflected inten-
x{ (X+Xg)2+ > ((1+x§)sinh X+ 2Xq sity atq> 1/L should coincide with the analogous expression
for a semi-infinite medium, which, however, corresponds to
X cosh X)— (x+ xo)((1+xg)cosh X the incident intensity diminished by a factor of 2.
The correlation function corresponding to the spectrum
+2x, sinh 2()_)(8}_ (39 (41) behaves in the following manner:
. _ Cr(p)
In the limit of large layer thicknesd €zy<L), the depen- p
dence ofMg(q) on L is significant only at low spatial fre- 11 | <
. -, p<lL
guencies (X 1/L), where 4p
2 11 2zl
MR(q)=2k—727(?) l[ 1+i—§(qL)2+... : (40) 3 ) gLn 7 L<p<vzl/2 .
° (kol)? —
Equation(40) is distinguished from the analogous equation _ } '_ mp exp( _ /i)
obtained with neglect of internal reflzection at the boundry 8L \/TZO p Lz’
only by the enhancement factazy(1)“. It describes the en- —
hancement of the amplitude of long-range correlations, \ P~ ZoL /2.

which has been noted above. @t 1/L the spectrunMg(d) A comparison with the results in Ref. 23 shows that the
beha}ves just as in the case of reflection from a semi-infinitgapavior ofCr(p) is totally different from that which we
medium. observed in the absence of internal reflection at the bound-
Such behavior of the fluctuation spectrum means that thgyies. The regions of positive and negative intensity correla-
intensity correlations for the reflection of radiation in the tjons are interchanged.
thick-layer limit behave as in a medium with a perfectly At relatively short distance$<p<L, Cr(p) behaves in
reflecting boundary, ip<zo, while for p>zo, they mimic  accordance with the laws discussed above. At lapge
the dependence obtained in the absence of internqlp> L), the correlation function decreases smoothly,
reflection;® enhanced by a factozg/1). changes sign ap~Lz, passes through a minimum at

.In the case of_ strong inFernaI refle_ction, a situation inp~1_7\/g, and then tends to zero exponentially, remaining
which the lengtle, is the maximum spatial scalé<€L <zy) negative all the time, in contrast to Ref. 23.

is possible. It is possible, if the transmission of the bound- “\ve now discuss the influence of strong internal reflec-

ariest=1—r is significantly lower than the diffuse transmis- (5 on the fluctuation spectrum of the intensity transmitted
sion of the medium itsel=41/3L (see inequality(20)). In through a layefz =0, z;=L)

this case the character of the correlations is radically altered.

The spectrum can be represented in the form 67 20\ 1
) Mr(@)==z (7] FrlaL.az), (44)
M ( ) 67 (Zo I 0
q —_— | —
R kg \ 1/ L where
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- X koM
2 (x+2x0)2((1+ xg)sinh x+2x, coshx)? 307

.

+ Xo((1+x3)cosh X+ 2x, sinh X)

Fr(X,Xo) =

((1+x3)sinh 2+ 2x, cosh X)

1

2
+_
XO 2

—(1+x§)(x+xo)—2xo(x+x0)2—xo].

(49)

In the thick-layer limit {<zy<L), from (44) and (45) we
obtain

! ( 1 2 L)%+ <1/L
Ta)= ké | L 1 (q20)2 ' FIG. 2. Fluctuation spectra of reflectgdolid curve$ and transmitted
2qL 1+ (1+ qzo)2 ) q>1/|— (dashed curvesradiation for various values of the internal reflection coef-

(46) ficient (r=0.5(1), 0.9(2), and 0.953)). The layer thicknes&/I =10.

The amplitude of intensity correlations of the transmitted

radiation is increased by a factor afy(1)? in comparison to Expression (48) depends nonmonotonically on the layer

the case in which internal reflection at the boundaries ispicknessl . WhenL<z,, the dispersion increases linearly
insignificant?”*>**This is a consequence of multiple reflec- \ith the thickness

tion from the boundaries of the layer. In addition, at lacge
(g>1/zp) the amplitude of the spectrum is additionally in-
creased by a factor of 2, since a correlation regime as in a
medium with a perfectly reflecting boundary sets in. At
g>1/z, the calculations can be described by the appropriat
equation, which is discussed above for the reflection geom- ) o 2T (29 21
etry (see Eq.(36)), with the sole difference being that the ((6R)%)=((4T) >”m L
power of the “source” must be taken into account in it, i.e., . . . .
it must be additionally multiplied by the square of the trans-The dispersion reaches its maximum value when2z,:
mission coefficient through the lay@rz,/L (see Eq(18) -
for |<zy<L). ((BR)%)=((oT)*)~
In the limiting case of strong internal reflection
(I<L<zy), as noted above, the transmission of the scatterAs for the relative magnitude of fluctuations in the transpar-
ing medium itselfwithout the boundari@exceeds the trans- ency of the medium{(8T)?)/(T)? increases linearly with
mission of the boundaries of the layer. During repeated trathicknessL :

) ) 37 L
(R)=((ST?)~ 5ata T

gvhile in the thick-layer limit the dispersion decreases:

Zy
5AKZ T

versals pf the layer, photons forget thr_ough wh_|ch of the (5T 27 (L L2+3Lzo+3zS
boundaries they penetrated the scattering medium. There- = |- .
fore, fluctuations at both boundaries display the same behav- (T) 2Akg | | (L+22,)
ior (compare(44) and (45) with (41)—(43)). 3
Qualitative variations in the form df1z(q) andM+(q) 27 (L 7 L<z,
as the internal reflection coefficient increases are shown in = m T . (49
Fig. 2. 1, L>»z

Now consider fluctuations in the total reflection and We have thus far assumed that waves incident upon the
transmission coefficients of the medium. The dispersion of\.4ium are monochromatic. However. this condition does
thesezaparameters is specified py the yalue pf the spectrum ak+ hold in many experimenfss The correlations between
q=0."In purely elastic scattering, with which we are con- jiation fluxes at different frequencies have been a subject
cerned,R+T=1, and therefore of investigation

) 1 If the frequencies of the incident waves differ iy, the
((BR)%)=((eT)*)= 2 Mg r(q=0). (47)  corresponding expression for the fluctuation spectrum can be
obtained from(32) by substituting into(32) “incoming”
Substituting the expressiori88) and (39) or (44) and (45  propagators of the form

into (47), we obtain |
27l 2(L )3 3 (11(z2,9|2;=0,Q0,Aw)){1i(2,Q'|2,=0,Qy,— Aw)),
T ZO +ZO —ZO

(SR =((sT)H =" (_) = 2 (48) where(l;(z,Q|z;=0,Q,,*iAw)) satisfies a transport equa-
< )= ) Akg | 1 (L+2z9)* tion like (1) for a signal modulated at frequeneyA w. The
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corresponding equation is obtained fraf) after replacing

I byl ' +iAw/c.” At small values ofAw (Aw<c/l), the
intensity propagators can be calculated in the diffusion ap-
proximation. In this approximation one obtains an expression
for the spectrum that differs fror{84) only in that the “in-
coming” F functions must be takefsee Eq(11)) for com-
plex absorption I *+iAw/c).

An investigation of the frequency dependence of the cor-
relation between the total reflected or transmitted fluxes
would be of great interet'®’In the case of purely elastic
scattering in the medium, the correlations between the trans-
mitted and reflected radiation fluxes coincide:

ClA0)={(Tuy+ a2z (Tug+rw2)

X(Twg-202(Twg-202))

=((Rog+ 202~ (Rug+202) (R - 2w

— <Ro)07Aw/2>)>' (50) FIG. 3. Frequency‘-depende‘qt flux correlation function for various values of
the internal reflection coefficiertt =0 (1), 0.5 (2), 0.9 (3), 0.95(4), and

This is a consequence of flux conservati®: T=1. 0.99(5)). The layer thickness i/l = 10.

WhenAw<c/l, we obtain the following expression for
C(Aw) in the diffusion approximation:

I
C A . 677 ZO 2 L L ZO 51 2 %, ZO<IAw
(Bo)=ge\trzz,) T/ T) 6D _37( %
AKZ\L+270) | 13 ®4
where 1,,=(2lc/3Aw)?, and the universal function ﬁz ls0<Zo
0

®(x,y) has the form

D(x,y) ={2x2y%(sinh -+ sin 2) + (sinh X~ sin 2) According to(54), when internal reflection is not very strong

(or the frequency shifAw is not very large, the behavior of

+ 2xy(cosh X—cos X)}{2x[4xy(sinh X the correlation functiorC(Aw) is qualitatively the same as
_ _ _ when there is no internal reflectid’**33The behavior of
+ sin ) + 8x3y3(sinh Z—sin ) C(Aw) does, however, change at lar§e. The correlations
+8x2y2(cosh X+ cos X) + (1+4x%y%) between fluxes at differing frequencies decrease with in-
creasingA w according to aA w2 law. This result differs
X (cosh X—cos X)]} 2. (52)  from the conclusions in Refs. 16 and 17, where other laws,

—1/2

viz, Aw ! andAw 2 respectively, were predicted.

The | hi i h h hich th Ik . . . .
e lengthl,,, determines the depth to which the bu The disparity with Refs. 16 and 17 can be explained as

speckle structure produced by interference of the inCideanOHOWS In Ref. 16 “surface” sources of radiation fluctua-

waves penetrates. Plots 6{ A w) for various values of the i introduced oh logically i . ¢
internal reflection coefficient are shown in Fig. 3. EquationsIons were introduced phenomenologically In an ncorrec

(51) and(52) can be simplified in two limiting cases. mannetr. Ihe'thw?ly in which tTS was donle I? Ref. ttl6.|s |n|—
WhenL<l,, , the dependence & on the frequency is consistent with flux conservation upon elastic scattering. In

. . : . Ref. 17, the expression for the intensity correlation function
appreciable only with very strong internal reflecti L). S ) . . .
bp y y 9 @t L) obtained in that work is also inconsistent with flux conserva-

In this case : . . )
tion. In deriving the correlation function, van Rossum and
37 (L 11, 37 (L Nieuwenhuizel assumed that it is symmetric under inter-
C(Aw)mgAkg T |4A +L22328Ak§ T change of the “incoming” and “outgoing” propagators.
¢ Such symmetry exists only for correlations of diffusion
1, VLzg<<ly, fluxes in an infinite homogeneous medidfrin the case of a
4 finite geometry, the symmetry of the intensity correlation
X lAw y (53) . 4
——, L<l,,<yLzg function becomes more complicat&tOnly part of the total
Lz, correlation function derived in Ref. 33 contributes to the

i.e., the frequency dependence is manifested fgr< Lz, frequency-dependent flux correlation function. It does not
and the correlations weaken As increases according to a Nave the indicated symmetry.

Aw 2 law.
Whenl, <L, the relationg51) and(52) take the form 5 CONCLUSIONS
2 3
C(Aw)~ 3_77 %0 30 We have shown that internal reflection from the bound-
AR L2 1((1 2422 - _ _
ko Zg) ((lxot20)°+25) aries of a random system alters the wave propagation regime
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on scales exceeding the mean free path, and has an appARPENDIX A
ciable influence on effects due to long-range correlation of
multiply scattered waves.

Under the conditions of strong internal reflection
(1-r<1), significant restructuring of the spatial distribu-
tion of the radiation in the medium occurs. This is evidence
by calculations performed both in the diffusion approxima-
tion and under the assumption of diffusely reflecting bound-
aries. In the limit of strong internal reflection, the two ap-
proaches yield identical results. The structure of the exact Xj do’ | dom©
relations enables us to understand on a qualitative level that 4 4m
the radiation propagation regime in the medium is deter-
mined by the competition between the reflectivity trans-

In a semi-infinite medium with a diffusely reflecting
boundary, transport equatidf) with source(2) and reflec-
tion coefficient(10) can be solved exactly. We writd) in
(J'ntegral form®

1
L(r,Qr",Q)=19(r,Q|r", Q")+ — f d3r”
47l

X(r,ﬂ|r",ﬂ”)|(I’",Q'"|r',ﬂ')

missivity) of the boundaries, and of the scattering medium 1 2 e(0) ,
itself. When 1-r<1, two situations can be distinguished. T f d*p"EP)(r, Q|2
In the thick-layer limit, where the transmission of the
boundaries is higher than that of the scattering medium itself =0p")E(Z"=0,p"r",Q"), (A1)

(1—r>1/L), internal reflection simply increases the effec-\yhere
tive length of the path that waves traverse before leaving the ,
medium. The propagation of radiation along comparatively 1O(r,Q|r’ 9')=5(Q—Q’)5<Q— r—r )

short trajectoriegshorter tharl/(1—r)) takes place as in a Ir—r’|
medium with a perfectly reflecting boundary. 1 Ir—r'|
Qualitative changes in the radiation distribution appear X—,zex;{ - ) (A2)
in the opposite limiting case, where the transmission of the r=r'l ot
boundaries is lower than the transmission of the scattering
medium itself (I-r<I/L). Radiation crosses the layer E<°>(r,ﬂlz”=0,p”)=f o dQ’|n- Q'
many times from one boundary to the other, and as a result, (n@7=0
“forgets” from which side it entered the medium. The dif- x19(r,Q|2"=0,p",Q"), (A3)
ference between the reflection geometry and the transmission
geometry vanishes. Before leaving the medium, the waves E(z”=0,p”|r’,.(),’)=f dQ"(n- Q")
traverse a path of the order afL((1—r))¥%>L. (n-27)>0
The features of the large-scale behavior of the radiation X1(2'=0,0",Q"|r", Q). (A4)

distribution are reflected in the shape of the angular coherer?% is convenient to rewrite the solution of EGAL) in terms
backscattering spectrum. The spectrum narrows as a whole, o~ ) T ' )
However, in the limit of strong internal reflection, the shape®f the solution| that is valid in the absence of internal
of the spectrum differs qualitatively from that observed in'efléction from the boundary:
the absence of reflecting boundaries. _ 1

Internal reflection also leads to appreciable variation of (T, €&2[r",Q")=1(r,Q[r", Q")+ ;rf d2p”
the spatial dependence of the long-range intensity correla-
tions in the reflected and transmitted radiation fluxes. When XE(r,Q|z"=0,p")E(Z’=0,p"|r",Q"),

1-r<I/L, regions of positive and negative intensity corre-

lation are interchanged, compared with those for the case in _ (A5)
which there is no reflection from the boundaries. The shapwhere| satisfies Eq(A1l) with r=0, and

of the fluctuation spectrum also changes. The spectrum for

g+ 0 exhibits a maximum, which corresponds to reversal of E(r,ﬂ|z"=0,p")=f dQ’|n- Q|

the sign of the correlation function. New qualitative features (n-0")<0

appear in the correlations between fluxes of coherent radia- XT(r,Q|2'=0p",Q"). (A6)

tion at different frequencies. In the limit of strong internal ) N
reflection (1-r<I/L), the correlations weaken more rapidly ~ Physically, the transition frorAl) to (AS) corresponds
as the frequency shift increases than in the absence of refled the separation of multiple scattering within the medium
ing boundaries: they go as Aw 2 when and reflection from the surface. . .
c(1-r)/L<Aw<cl/L?, and ash w32 whenAw>cl/L2, Solving Eq.(A5) iteratively, we can easily obtain a se-
ries expansion of the intensity in the multiplicity of reflection
We thank E. E. Gorodnichev and A. |. Kuzovlev for from the boundary. Summation of a series of a similar type
their interest in this work and valuable comments. This rewas employed in Refs. 14 and 18 to find the total reflected
search was carried out with partial support from the Internaand transmitted flux under the conditions of multiple internal
tional Science Foundatioi@Grant N3UOOO and N3U30Gnd reflection from the boundaries of the medium.
the Russian Fund for Fundamental ResedRioject 95-02- Taking the Fourier transform with respect to the coordi-
05530. nate differencep—p’,
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I(ZIQ!Q|Z,19,): j d(p_p,)
xXexp{—ig-(p—p")}
X1(z,Q,p—p'|Z,Q"), (A7)
Eqg. (A5) takes the form
1(z,Q,q2',.Q")=T(z,Q,9|2',Q")

1 -
+ ;rE(z,Q,q|0)E(O,q|z’,Q’).
(A8)
With consideration ofA4), the solution of Eq(A8) is
1(z,Q,9)z,Q")=1(z,2,q/z',Q")

r E(z,Q,q/0)E(0q/z",Q")
o 1-rR, ’
(A9)

+

where

1
R=_

q dQ|n- Q|
T J(nQ")>0

1
T ==

q dQ(n- Q)
™ J(n-Q)>0 (n-

dQ/|n- Q|
Q')<o0

xT(z'=L,Q,q|2’=0Q") (A14)

is the qth spatial harmonic of the transmission coefficient
through a scattering layer for a diffuse point source.

Equationg(A9) and(A12) specify the radiation intensity
within a scattering medium at any distarcfom the bound-
ary. If we setq=0, z'=0, andz=L in (A9) and(A12), we
obtain the familiar relatiorfs for the reflected or transmitted
intensity for radiation of infinite extent in they plane that is
incident upon a layer of a medium.

Integrating (A9) and (A12) over  and ', we can
easily obtain expressions for the radiation energy density
F(q,2,2'):

D= r ®(z,q/0)(04g|z")
F(z,z',0)=F(z,2',q)+ p 1-1R,

(A15)
in a semi-infinite medium, and
- 1
F(z,z',9)=F(z,z',q)+ m{rdb(z,qu)

X[®(0,0]z')(1-rRy) +rT@(L,q|z")]
+r®(z,q|L)[P(L,q|z")(1-TRg)

xf dQ’'|n-Q'|T(z=0,0,q9/z'=0,0") (A10)
(n-Q")<0 +rT,®(04a]z')1}, (A16)
i; theqth _spatial harmonic_of_the reflection coefficient for a in a finite layer, respectively, where
diffuse point source of radiation located on the surface.

Generalization of the resufA9) to the case of a finite
layer does not present any difficulty. It calls for supplement-

ing Eq.(A8) with a term corresponding to reflection from the

F(z,z’,q):f4 d.(zf4 dQ’l(z,Q,q/z',Q"), (A17)

boundary of the layer at=L:
1(z,Q,9)z,Q")=1(z,2,9/z',Q")
1 -
+;rE(z,Q,q|0)E(0,q|z’,Q’)

1 -
+ —rE(z,Q,q|L)E(L,q|Z', Q).

3

(A11)
The solution of(A11) can be written in the form

1(z,Q,q2",.Q")=T(z,Q,q|z',Q")
1 - -
+ —{rE(z.Q,q/0)[E(00]z", Q)

X(1-rRg) +rTE(L,qlz',Q")]
+rE(z,Q.qlL)[E(L,qlz",2)
X(1-rRy) +rT4E(09|2',Q")]},
(A12)
where
N=(1—rRq)2—r2T2, (AL3)

and
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q>(z,q|0):f4 dﬂf(nn,)<odﬂ’|n-ﬂ’|

xT(z,Q,02=0Q"), (A18)
cb(o,q|z’)=f dﬂ’f dQ(n-Q)
47 (n-Q)>0
xT(z=00,q/z',Q"). (A19)

Formulas(A15) and(A16) enable us to express the radiation
energy density in the medium in terms of a kno(or ex-
ample, in the case of point scatteféyssolution obtained in
the absence of internal reflection on the boundaries.

APPENDIX B

In the general case, where the layers of the medium ab-
sorb radiation and the incident waves differ in frequency, the
integration in Eq(34) with consideration of11) leads to the
following results for the fluctuation spectrum. The spectrum
can be represented in the form

67 (I+20)?
M(q)= Fl—zQ(Q), (B1)
0
where the functiorQ(q) is
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1 1
QR(Q):AZ(,yq) |A(')’A )|2{M1(Q)F(7q)
+M2(q)G(yq) +M3(Q)F(y4=0)} (B2)
in the case of reflection and
1 1
QT(q):AZ(,yq) |A(7A )|2{Nl(q)F(7q)

—Na(q)G(vg) + Na(a)F(vq=0)} (B3)

in the case of transmission. The quantities appearin@)
and(B3) are

1
Mi(a)= §(1+(7q20)2)((|Q)2+(| Y9)?),
M,(q)= Vqu((|Q)2+(| 7q)2)a
1
M3(a)=N3(q)= 5(1_(7’q20)2)((| ¥e)?—(19)?),

N;(q) =M3(qg)cosh 2y4L +M,(q)sinh 2y,L,
N2(q)=My(q)sinh 2y,L +M;(q)cosh 2L, (B4)
A(X)=(1+(xZ)?)sinhxL+ 2xz, coshxL,

_ /2+3 3 1+_Aw
Ya= \a m, Yro™ [RIN =

The functionsF(x) andG(x) in (B2) and(B3) are

(1+Z5(a?+ B?))

1
F(X)Z E

X

X
N sinh XL cosh ZL

o
R cosh XL sinh 2aL)
X - .
+2Zoa(m sinh XL sinh 2oL

o
- ;2_—a2(cosh XL cosh 21L—1))

X
X%+ B2

—(1—z§(a2+32))( sinh XL cosh L

J’_

Ny cosh XL sin 2,8L)

X
X2+ pB?

+22,8 sinh XL sin 28L

—%%}(cosh XL cos %L—l))], (B5)

G<x>=%[<1+z§(a2+,82>>

X
X(xz— az(cosh XL cosh 2vL—1)
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(¢4
7 a2 sinh XL sinh 2aL)

+ ZZOCU

X
>—> cosh XL sinh 2oL
X°—a

@ : 2, 2
v sinh XL cosh:sz)—(l—zo(a
1 82)| <y (cosh &L L-1

B9)| sz gz (cosh &L cos BL-1)
+—2—ZB sinh XL sin 28L
X2+
X .
+2zy8 XZTEZCOSh XL sin 28L

_W(Si”h XL cos 28L—1))], (B6)

In (B5) and(B6) a=Rey,,, andB=Imy,,,.
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Crystal-field induced mixing of electron states in C 60 Crystals at high pressure
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Optical absorption spectra of thin fullereneggfCcrystals in the range 1.7 to 3.8 eV have been
measured al =300 K and at pressures up to 2.5 GPa. The spectrum shifts toward the

red with pressure, and the electron absorption intensity is redistributed among its bands. The
intensity of the band associated with the lowest direct electron interband transition monotonically
increases with pressure, whereas the intensity of the upper interband feature decreases.

Bands related to weak edge absorption in the range between 1.7 and 2.2 eV gradually merge
with the band associated with the lowest interband transition, whose intensity rises with
pressure. A similar redistribution of intensity among electron transition bands has been observed
when comparing the spectrum of an isolateg @olecule and that of a g crystal. The

results indicate that the crystal-field induced mixing of electron states is present in gglidn@

they can be discussed in terms of the Craig—McClure model, which was suggested to

describe crystal-field induced mixing of electron states in anthracene and naphthalene molecular
crystals. ©1998 American Institute of Physids$1063-776(98)02101-3

1. INTRODUCTION Meanwhile, intensities of absorption bands in spectra of
Cgo Crystals and g, molecules in both gas-phase and solid
Electronic spectra of g molecules and g crystals  solutions are notably differeff. The major difference is a
have been discussed in numerous theoretical and experimeproad absorption band between 2.2 and 3.1 eV in the crystal
tal works. The first calculations of gg molecule electron spectrum. Its intensity is notably higher than those of weak
spectra were reported soon after the discovery of stable largsige features, but, it is weaker than the dipole-allowed ab-
all-carbon molecules in products of graphite lasersorption features on the high-energy side.
ablation! =3 Then followed more accurate quantum mechani-  Attention has been focused on the origin of this band in
cal models of the g molecular structure, electron and pho- several studies, and the most common view is that the band
non spectrd8 Experimental study of the ¢ electron spec- s due to direct transitions between the valence and conduc-
trum became a real possibility after the efficient techniqueion bands. The considerable width of the band is thought to
for synthesizing fullerenes in a graphite arc had come intde due to splitting of degenerate electron states of both va-
being?~!? Detailed measurements of;omolecular absorp- lence and conduction bands of the crystal. Note that pres-
tion spectra and their vibrational analysis were performed foently we have no convincing evidence that would allow us to
solid solutions of G in argon and hexane matrices by meansattribute the band to a specific transition in the molecular
of high-resolution Fourier-transform spectroscdpy’ This  spectrum. Since there are no transitions of such intensity in
research indicated that the range of weak edge absorption this range of the electron spectrum, the band is thought to be
the G molecular spectrum, 1.78 to 3.04 eV, is due toconnected with forbidden molecular transitions that are al-
electron—phonon replicas of dipole-forbidden electron traniowed in the crystal due to a change in molecular positional
sitions. These transitions, assisted by non-totally-symmetriGgymmetry.
phonons are due to the Hertzberg—Teller and Jahn—Teller We suggest, however, that this band is due to a weak
effects, and also show up in absorption spectra &filns  dipole-allowed transition in the molecular spectrum whose
and G, thin crystals'>® Dipole-allowed electron transitions intensity increases considerably in a crystal owing to its mix-
have been detected above 3 eV, and the most intense of theing with a stronger electron transition on the high-energy
generate spectral features at 4.84 and 5.88%V. side. Similar mixing of the molecule electron states due to
The recorded absorption spectrum of thg @olecule is  the crystal field was detected in exciton absorption spectra of
in very good agreement with theoretical calculations of itsanthracene and naphthalene molecular crystals, and de-
electron spectrum, although certain differences in numericacribed by Craiff and McClure and Schnepp.Later re-
parameters are preséht' Optical absorption spectra ofs&  search demonstrat&tthat the band intensity in this case is
crystals are similar to theggmolecule absorption spectrum, also changed considerably by hydrostatic pressure applied to
overall, which is quite common in molecular crystals. Essena crystal, since it intensifies the interaction between mol-
tially all features of the g, crystal absorption spectrum can ecules and the effect of the crystal field.
be also seen in the molecule spectrum, but shifted to the In view of this, we have investigated in detail the band
low-energy side. This shift in molecular crystal spectra isintensities in electron absorption spectra gf €rystals un-
called a crystalline shift, and its value, which is proportionalder hydrostatic pressure. We have recorded absorption spec-
to the transition intensity, can be up to hundreds of millielec-tra of Gsg thin crystals in the 1.7-3.8 eV range &t 300 K
tronvolts. and at pressures up to 2.5 GPa. Alongside the red shift of
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molecule C,

~ . : : : : . — . = FIG. 1. Absorption spectra of aggcrystal with a thickness of
less than 1um and of G solution in toluene aT =77 K and
El standard pressure.

Intensity

crystal C S

2.0 25 30 35 40
Energy, eV

spectral features due to pressure, which was detected earligpality achromatic quartz optics. The image of a crystal
notable redistribution of their intensities has been observedlaced into a high-pressure cell was magnified by a factor of
The intensity of the band corresponding to the lowest direcabout 80, processed to an intermediate plane defined by two
interband transition rises monotonically with the pressurecrossed 208200 um optical slits, and projected to the
whereas the intensity of the interband transition of the highemonochromator input slit. The crystal optical density was
energy decreases. Similar changes in the intensities of theskerived from transmission spectra normalized to the trans-
features were detected in the absorption spectrum of gge Cmission spectra of the diamond anvils, which were measured
molecules dissolved in toluene in comparison with that of theat all pressures. Thus the contribution from the edge absorp-
Cgo Crystal. These results will be discussed in terms of theion of the diamond anvils, which notably changed with the
crystal-field induced mixing of molecular electron states sug{pressure, could be eliminated.

gested by Craig and McClure. High-pressure experiments were performed using a high-
pressure diamond anvil cell of the Merril—-Basset tyhb&he
2. EXPERIMENT working area of the anvils had a diameter of o, and the

aperture diameter of the stainless steel gasket wasu230

Absorption spectra were measur_ed using Qin crys- The pressure-transmitting medium was a 1:4 mixture of eth-
tals grown from either a toluene solution or a gaseous phase, "

- . . . nol and methanol. The pressure gauge was the position of
The initial material purity was higher than 99%. We selecteda o .

. : the R, line in the ruby luminescence spectrdm.

for measurements crystals shaped as thin plates with latera
dimensions of about 100100 um and a thickness less than
1 wm. The crystal thickness was derived from the optical
density obtained by comparison to the optical density gf C The absorption spectrum at standard pressureTand/
thin films1® K of a Cgo crystal with a thickness less tharumn is given in

Absorption spectra were recorded on a computerthe lower half of Fig. 1. On the low-energy edge, one can see
controlled spectrometer built around an MDR-23 gratinga weak absorption band ranging between 1.78 and 2.2 eV
monochromator. Measurements were taken in a broad spe¢A-band with clearly defined fine structure. Next is a more

tral region in the visible and ultraviolet light using high- intense absorption band running from 2.2 to 3.0 eV

3. RESULTS AND DISCUSSION
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(B-band, and on the high-energy side there is an intense
C-band peaking at 3.4 eV. The two most intensive bands are
in the region of a diamond anvil self-absorption, its lower L
bound being at-4 eV. !
The upper half of Fig. 1 shows an absorption spectrum
of Cgp dissolved in toluene plotted on the same scale. The
graph clearly shows that the two spectra are, by and large,
similar, although there are notable differences between them.
Above all, the molecular spectrum is shifted to the high-
energy side with respect to the crystal spectrum. The shift is
about 0.04 eV for the fine structure of the relatively weak -
A-band, and about 0.4 eV for the strofigband. Moreover,
the C-band is considerably broader in the crystal spectrum L ! bar |
than in the molecule spectrum. The most striking difference

Intensity

between the two spectra is that the crystal spectrum contains | ¢ ]
the B-band, which peaks at 2.8 eV, whereas no such feature B l ]
can be seen in the molecule spectrum. [ l

In this spectral range, the molecule shows the weak and 30 25 30 35 40

narrow feature marked by an asterisk in Fig. 1. The intensity Energy, eV
distributions are also notably different: tliizband intensity
in the crystal spectrum is much lower than in the moleculd™!G- 2. Absorption spectra of acgcrystal with a thickness of less than 1
spectrum. Thus, the intensity is substantially redistributed™ atT=300 K and pressures of up to 2.5 GPa.
among the absorption bands in the transition from isolated
molecules to the crystal: that of t&-band drops consider- . . - - .
. o . total intensity was the sum of their intensities. Empty circles
ably, and theB-band intensity increases. Note that this fact. . . . "
. : . ) : . in Fig. 3 represent the ratio of the total intensitiés/| g,
was discussed in earlier studies of,®ptical absorption : ; . h
. : easured under increasing pressure, and filled circles show
spectra. Several interpretations have been suggested, and me :
. . .méasurements taken as the pressure was decreased. The in-
most popular of them is the hypothesis that electron transi-_ . :
. . ) tensity ratiol - /15 drops by a factor of more than two as the
tions forbidden by molecular symmetry are partially allowed

) X ) ressure grows to 2.5 GPa, but returns to its original value
in the crystal, since the molecule is deformed by the Ioca\Fl)vhen the pressure is lifted.

crystal field. Unsuccessful attempts were also made to simu- The intensity of theA-band in the region of weak edge
late this effect in absorption spectra ofgSolutions by tak- absorption is essentially independent of pressure. This is

ing solvents with a higher polarity. ard to see in the absorption spectra of the thin crystal shown

Detailed measurements of optical absorption spectra 9 Fig. 2, since théA-band intensity is very low in this case.

Ceo thin cr.yst'als n the.V'S'ble. and UV at high pressure Sr.]f)WAbsorption spectra of a crystal with a thickness of 218 at
that a redistribution of intensity among the electron transition

bands also occurs when crystals are compressed hydrostati-
cally. Figure 2 shows absorption spectra of @ Bin crystal !
at T=300 K, at pressures ranging from one atmosphere in 2C 5
the lower graph to 2.5 GPa in the upper diagram. The
C-band intensity gradually decreases with pressure, and the
B-band intensity increases. The spectrum is simultaneously
shifted toward lower energies, and the bands become appre-
ciably wider. These changes are reversible, and when the 2.0F &
pressure is lifted, all typcial features of the initial spectrum
come back. Note that the red shift of theyGibsorption
bands due to high pressure was previously investigated in o
several experiment§:224In those experiments, a notable
increase in thé-band intensity in absorption spectra of,C 1.5+ o
thin crystals was detectéfias in independent measurements
of Cgg thin film spectra at high pressuféUnfortunately, this
effect was not given due attention in either of these works.

Figure 3 shows the ratio between the total intensities of Lo (o)
the C- andB-bands,| /I, due to electron absorption in a 00 05 10 15 20 25
Ceo Crystal as a function of pressure. In ascertaining this Pressure, GPa

behavior, we isolated the bands, fitting a Gaussian to each. _ , N _
The B-band has a side band on its Iow-energy edge aroun IG. 3.' Ratio of total intensities of the- anq B-bands,|c/lg, in the

. . absorption spectrum of theggcrystal. Empty circles show measurements
2.5 eV under standard pressure. To obtain a better fit, Wgyen under increasing pressure, and filled circle corresponds to decreasing

approximated th®&-band as a sum of two Gaussians, and itSpressure.
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In(1/T) the C-band intensity drops further, while tH&-band inten-

10 ”' sity, simultaneously increases; these changes are reversed
o when the pressure is lifted. The behavior qf,€rystal ab-
sorption spectra can be interpreted in terms of the crystal-
field-induced configurational mixing of electron states in mo-
lecular crystals. As shown by Craig and McClure, this effect
shows up most clearly when electron states with close ener-
gies and substantially different oscillator strengths of the re-
spective optical transitions are mix&4:° This is the case in
the electron absorption spectrum of thg,@olecule, where
the lowest allowed electron transition between states with
symmetrylAg—>1Tu , whose energy is 3.04 eV and oscillator
strengthf =0.015(*-band, is much weaker than the higher-
energy transition at 3.78 eV and oscillator strength
f=0.371* The information concerning classification of elec-
tron transitions in the £ molecule given above is based on
the analysis of electron—phonon spectra of frozgp ®lu-
tions in hexane and trimethylpentaneTat 77 K,** and is in
good agreement with the most detailed calculations of the
molecule’s electron spectrufn.

We now examine in more detail Craig’s discussion of
the effect!® The wave function of the lowest excited electron
state of the crystal is described in the first order of perturba-
tion theory with respect to the crystal field by the expression

Wi=0+{HZ(H1-HP)} DI+ ...

1.6 1.8 2.()‘ — .2.2. = ‘2.4
Energy, eV +{le/(Hll—H”)}CD?+..., )

FIG. 4. Absorption spectra of aggcrystal with a thickness of 2.8m in the whered)‘f. . .<I>? are unperturbed wave functions of the vari-

region of theA-band atT=300 K and various pressures} 1 bar, 3 0.9 ous electron states of the same symmdﬂ% ..H™ are the

ii?n%éiﬁegpsz’ujr‘g?;ﬁS_Egﬁg?:n'];f;rctifg}g;vjspgrs:;‘;:fe"f the edges of g nargies of these states, aHd2..H" are the energies of
' interaction due to the crystal field. Equati@ holds if

Hrr_Hll>H1r’ (2)

T=2300 K and pressures up to 2.4 GPa are plotted in Fig. 4.
They clearly show theA-band and the low-energy edge of Which is a prerequisite for perturbation theory to be appli-
the B-band, whereas the peak of tBeband and theC-band  cable, and holds fortiori for most electron transitions in
are in the region of total absorption. At room temperature thénolecular crystals. In this case the energy of the lowest ex-
fine structure of the\-band is essentially invisible, and only cited state in first-order perturbation theory is
a sideband can be seen in this spectral region. Btand
intensity increases with pressure, and its high-energy edge AE= Hll+2 "(H2/(HM—H™). 3
shifts towards thé\-band and suppresses it. The high-energy
edge of theA-band shifts to the red much more slowly than
the corresponding edge of tlieeband. Positions of the edges
of the A- andB-bands vs pressure are shown in the insert to
Fig. 4. The empty symbols correspond to the foand T 0
edge, defined as the crossing point between the tangent to the Ml M +2 {HY/(HZ=H")IM, (4)
spectral profile and the horizontal axis. Filled symbols cor-
responds to thd-band edge, which is defined similarly. At a whereM$...M? are the matrix elements of electron transi-
pressure of 3 GPa, th&-band is not observable, and edge tions between unperturbed states. It follows from &g that
absorption is due entirely to tH&-band. These results indi- the effect of the crystal-field-induced configurational mixing
cate different origins of thé- andB-bands in the absorption of electron states on the intensity and energy of electron
spectrum of @ crystals. A similar conclusion was derived transition is the stronger, the higher the interaction energy
earlier from analysis of electron—phonon bands in the abH!" between electron states, the larger the difference be-
sorption spectra of & moleculest® tween matrix elementmg and M?, and the smaller the dif-

Thus, the distinctive feature of absorption spectra gf C ference between the energies of the electron transitions,
crystals is the broad and intenBeband, which has no ana- H!—H'. This effect determines the changes in the intensi-
log in the molecular absorption spectrum. At the same timeties of electron transitions within a molecule when a molecu-
the C-band intensity in the crystal spectrum is much lowerlar crystal is formed, and subsequent changes when the crys-
than in the molecular spectrum. Under hydrostatic pressureal undergoes hydrostatic compression. In the latter case, the

The transition matrix element in first-order perturbation
heory is
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interaction energyH!" increases an#i''—H' drops owing Russian Fund for Fundamental Reseaf€hoject 96-02-

to the difference between the rates of pressure-induced shifts7489 for partial support of this work, and to theullerenes

of electron absorption bands. and Atomic Clusterstate-sponsored prografRroject No.
Note that first-principles calculations of the electrong7.01 and NATO Research Committee for support within

spectrum of the g crystal indicate that similar changes ine collaboration Researcprogram(Grant No. 96-0556
should occur in electron absorption bands of the moletule.

The calculations also predict an intense and wiiband,
which has not been detected in the molecule absorption spec-
tra. Its calculated intensity is much higher than &and
intensity in experimental absorption spectra @f tin films,
whereas theC-band is absent in the calculations. The inten-
sities of two electron absorption bands above@hband are
considerably lower than in experimental absorption spectra.
Calculations of the £, crystal abS_OI’I_DtIOI’l spectrum a_t high 'H. M. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, and R. E. Smalley,
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energies should continuously decrease. 3M. Ozaki and A. Takahashi, Chem. Phys. L&i27, 242 (19886.

Our aggregate results suggest that the lowest interbangs- Larsson, A. Volosov, and A. Rosen, Chem. Phys. &, 501(1987.
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molecular absorption, to electron—phonon replicas of forbid- 232 (1992).
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Thermopower of (BEDT-TTR)X, organic conductors has been studied using a dedicated
measurement technique in the temperature range of 4.2 to 300 K. It turned out that some features
of the thermopower in quasi-two-dimensional metals, namely the presence of a peak in the
thermopower ofa-(BEDT-TTF),MHg(SCN), and a plateau in-(BEDT-TTF),Cu(NCS), in the
temperature interval between 10 and 50 K, are probably due to the phonon drag effect.

Similar temperature dependences of the Seebeck coefficient can be satisfactorily interpreted in
terms of a simple model taking into account the real experimental curve of the phonon

heat capacity versus temperatu@sx T2, which is not described by the Debye formula. One

feature distinguishing organic superconductors from magnetically ordered metals is a stronger
temperature dependence of the characteristic electron—phonon scattering _tifi€).

Phonon drag effects also determine the behavior of the thermopower in the
(BEDT-TTF)5Cl,-2H,0 organic conductor, which is characterized by a metal—insulator transition
at T~150 K. An analysis of measurements of the conductivity and thermopower vs.

temperature taken together indicates that the transition in this compound has a complex nature:
first (at T~ 150 K) a metal—insulator transition occurs, which produces an energy gap in

the band spectrum, then at a lower temperatire 20 K) a transition to a charge-density wave
state takes place. @998 American Institute of Physids$$1063-776(98)02201-X

1. INTRODUCTION Refs. 13 and 14 and discussion of experimental results was
usually limited to determination of the effect sign. Note that

In recent years, physical properties of (BEDT-TEK),  the progress in this field is impeded largely by technical
organic  conductors (where  BEDT-TTF  denotes difficulties deriving from small dimension and frangibility of
bis(ethylenedithig-tetrathiafulvalene, and X is an anjon single crystals of organic conductors.
have been studied intensely using a variety of experimental At the same time, it is well known that measurements of
techniques. One feature of these materials is the presence thie Seebeck coefficient as a function of temperat8(&,),
the complex-structure layers of the BEDT-TTF moleculesyield important information concerning not only parameters
separated by anion layers, with electrons confined to BEDTef charge carriers, but also the nature of the electron—phonon
TTF layers forming an essentially perfect two-dimensionalscattering in the systef; '’ which is especially interesting
gas (at low temperatures the in-plane conductivity can bein the case of organic conductors, where strong Fermi-liquid
several orders of magnitude higher than the conductivity ireffects have been anticipatéd:?
the perpendicular directior Therefore the aims of the reported work were, firstly, to

Depending on the form of the anion in develop atechnique of precision thermopower measurements
(BEDT-TTF),X,, various types of ground states occur atwith due account of specific features of organic conductors
low temperatures. Apart from normal metals and superconand, secondly, to measure the Seebeck coefficient vs. tem-
ductors with one- or two-dimensional Fermi surfaéékere  perature in various species of (BEDT-TTH,, including
are materials in the (BEDT-TTEX,, group that are charac- superconductors, magnetically ordered metals, and systems
terized by low-dimensional instabilities like charge-densitythat undergo a metal—dielectric transition.
waves, which lead to an insulator ground stateor spin-
density waves, which modify the metallic ground state owing, ExPERIMENTAL TECHNIQUES
to magnetic orderin§.’

Until the present time, efforts in the field of electron
properties have been largely focused on characterization of For our experiments, we selected
Fermi surfaces and studies of interaction in the electron sUUBEDT-TTF,MHg(SCN), (where M=TIl, Rb, NHy),
system using quantum oscillation technictié8or the cy-  (BEDT-TTF),Cu(NCS),, and(BEDT-TTF);Cl,-2H,0 single
clotron resonanct;'? whereas their superconducting prop- crystals. All organic conductors were synthesized by M. Kur-
erties and metal—insulator transition due to charge-densitynoo at the Royal Institution, UK. We investigated five single
waves were studied mostly by traditional galvanomagneticrystals of each composition with typical lateral dimensions
methods>® of 1.5 to 2 mm. Measurements of thermopower and resistiv-

Thermoelectric effects in (BEDT-TTEX, have not ity were conducted along axes of the largest grogeiong
been studied systematically as yet, and publications on thidie b-axis for (BEDT-TTF),Cu(NCS), and c-axis for
topic have appeared only occasionallsee, for example, (BEDT-TTF),;MHg(SCN),). The samples of

2.1. Samples
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FIG. 1. Diagram of the low-temperature section of the facil-
1 < 4 ity for thermopower measurements.

(BEDT-TTF),MHg(SCN), with M=TI, Rb are organic met- sample holder. Note that single crystals of organic conduc-
als whose Fermi surfaces contain both one- and twotors have very small dimensions, so we had to select single
dimensional sectiorsand the presence of one-dimensionalcrystals that were as long as possible—about 1.5-2.5 mm.

sections leads to instabilities like spin-density wa¥e$,so Another serious difficulty is conducting measurements
that atT<10 K these metals are magnetically ordered. Thestrictly in the range of linear response, which can be difficult
samples of (BEDT-TTF),NH4Hg(SCN), and in the case of a metal-like sample, whose thermopower de-

(BEDT-TTF),Cu(NCS), are superconductors with,~1 K!8  creases with temperature. When the conventional technique
andT,~11 K,**°respectively, the latter being a record for is used, one has to increase the temperature differafce
quasi-two-dimensional organic conductors. Note that theacross the sample in order to achieve the required voltage
(BEDT-TTF),MHg(SCN), compounds belong to a single sensitivity.
structure clasgso-calleda-phasep with identical molecule We used in the thermopower measurements a low-
packing patterns in the BEDT-TTF layers, whereas the sutemperature helium cryostat in which a sample was mounted
perconductorBEDT-TTF),Cu(NCS), belongs tox-phases. on a cold plate in the vacuum jacket. By varying the liquid-
Note also that essentially all organic conductors undergdelium flow rate, we could tune the temperature in the range
structural changes arouffd~ 100 K associated with changes between 1.5 and 300 K, and an electronic control system
in BEDT-TTF molecule packing patterns in the correspond-driving a heating system stabilized the prescribed tempera-
ing layers. For this reason, a metallic state often comes dtire to within 0.05 K. A diagram showing the design of the
T<100 K, and in discussing the metallic systems we will cell for measuring thermopower is given in Fig. 1.
focus our attention on this temperature range. The cell temperature was measured by resistance ther-
One feature of théBEDT-TTF);Cl,-2H,0 organic con- mometer 1. Organic metal sample 2 was glued to electrically
ductor is that metallic conductivity &> 150 K is replaced insulated Z-shaped stripes 3 of thin indium foil, which main-
by semiconducting conductivity at lower temperatures; retained the sample in a strain-free state during alteration of the
ducing the temperature ~10 K increases the resistivity cell linear dimensions due to temperature variations. A tem-
by a factor of about 102 It was suggested in early publica- perature gradient across the sample was generated by a small
tions that the reason for the metal—insulator transition in thidieater 4. In order to reduce the heat flow, a large opening
material is a change in the energy band pattern in the originavas milled in the copper cold plate supporting the assembly
semimetallic state, leading to formation of a band gap atFig. 1). The thermopower generated in the sample was
T~150 K2° A detailed analysis of the temperature depen-picked up using two copper and two constantan contacts.
dence of the conductivity and magnetoresistahoeywever, The sites where copper wires were soldered to the contact
allowed the researchers to attribute the metal—insulator trarpads were attached to the sample holder by a thermally con-
sition to formation of charge-density waves, which was laterducting glue and electrically insulated by thin capacitor pa-
supported by structural analy$is. per. This allowed us to minimize the temperature difference
between the constantan/copper junctions and thereby get rid
of parasitic thermopower. In order to obtain equal tempera-
ture gradients between copper and constantan contacts on the
From the technical viewpoint, the major problem in sample, the free ends of the wires were soldered pairwise
measurements of thermopower in organic conductors is fablone copper wire to one constantan Wjreressed to the
rication of good thermal contacts with two opposite sample*hot” and “cold” edges of the sample, and cemented by an
faces, which is @ine qua norfor accurate measurements of electrically conducting glue. This technique yielded highly
the temperature gradient. Since samples of organic conduceliable electric and thermal contacts to the sample, and in
tors are very brittle, we had to design a dedicated fixture fotesting experiments the assembly withstood no less than ten
supporting samples that would allow us to cool samplesooling/heating cycles without a notable degradation of
down without destruction due to thermal contraction of thesample properties and parameters of electric contacts. Mea-

2.2. Thermopower measuring technique
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surements on different single crystals of the same material s, pvik
demonstrated that the thermopower could vary by 5-10% 160}
which is also an indication of fairly good reproducibility and
reliability of thermal and electric contacts fabricated by this
method.

The electric signals were picked up and experimental 120;
parameters were driven by a dedicated facility build around &
computer. All electric voltages were measured by Shch31 100}
digital voltmeters with an input impedance of at least 100
MQ, and after data processing the signal amplitude sensitiv 80r
ity was about 10 nV. The thermopower was measured a:
follows. Initially the plate temperature was stabilized at a 60}
prescribed value. Then a constant current, whose magnitud
could be varied by the computer code, was fed to the heatel 40}
When a steady temperature gradient was obtained, thel
mopower signals from the coppéi,, and constantar), 20t
contacts were simultaneously recorded, after which a nev
heater current amplitude was set, and the measurement cyc 0*
repeated. In the linear range of the thermoelectric respons¢
the measurement data plotted in coordinatks, vs. Uy 0
formed a straight line, whose slope was calculated using thi
least squares method. The number of measurement cycle
and maximum heater current were selected so that, firstly —jo
the response was linear in the temperature gradient,

140}

-5

~AT, and, secondly, the number of points was sufficient to ~!3]
keep the maximum absolute error in the least squares methc_>¢ ., ., .., — N
within 3—5%. Under these conditions, the temperature differ- 10 100 T.K

ence across the sample was 1.5-2 K and decreased consid- ) ) ) ) )

erably in the range close to the liquid-helium temperatureggbia?uhreer_m(’powernm Var'OU(SB%?TSI‘T“?E)'%T'eSZgSI\DOfga”'C me;‘?ls Ve
Note that the time required to accumulate data needed fQBepT.TTF . RbHSCN, 3  (BEDT-TTH,THG(SCN.  4)
plotting the curve ofU=f(AT) around the liquid-helium (BEDT-TTF),Cu(NCS),. The insert shows typical curves of resistivity vs.
temperature was several tens of minutes. The total time dgmperature, labeled with the same numbers as in the main graph.

the heating/cooling cycle during which &{T) curve was

plotted was about fifteen hours.

Since the slope is given by 3. EXPERIMENTAL RESULTS

3.1. Organic conductors with metallic conductivity

Scu— Seaml Thermopower measurements for organic metal samples
tan o= %e, with metallic conductivity are shown in Fig. 2. It is notewor-
et Ssample thy that a-phase samples demonstrate peak$(df) in the

low-temperature region about 20 K, the peak amplitude be-
ing small for (BEDT-TTF),NH,Hg(SCN), (curve 1), and
the Seebeck coefficient of the samg, e With respectto  most easily seen in curves2 and 3 for
one contacfin this specific case, coppecan be calculated, (BEDT-TTF),RbHgSCN), and (BEDT-TTF),TIHg(SCN),,
given the calibration curve of the difference between therespectively.
thermopowers of two contact materidla fact, the calibra- The sample conductivity vs. temperature was measured
tion of the copper/constantan thermocoypl&he copper using the traditional four-terminal configuration along the
contacts were fabricated from high-purity wire, whose ther-same crystal axis as the thermopower. The curve(®) for
mopower atT<6 K was additionally tested using a lead a-phases has the typical shape shown in the insert to Fig. 2
sample as a referendave used materials manufactured by (curve 2). In the high-temperature regiop, increases with
Goodfellows, Great Britain decreasing temperature, and only below 150 K the conduc-
Note that this experimental technique has certain advartivity has clearly metallic nature since drops as the tem-
tages over the traditional differential method, since it allowsperature is lowered. Our data are in agreement with previ-
one to get round the unknown temperature difference besusly published results®=1°
tween the temperature gradient sensor and the sample-wire Unlike a-phases(BEDT-TTF),Cu(NCS), exhibits me-
contact and to check that measurements are performed in th&llic properties much more explicitly: the high-temperature
linear signal range. A similar technique was suggested bpeak of its resistivity is considerably lower, i&T) curve
Laurentet al,?! but they did not vary the temperature gradi- has no peak in the low-temperature region, &(#) ~const
ent, as was done in the reported paper. aroundT~ 20 K (see curved in the main diagram of Fig. 2
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and the inseit It was reported in literatufé%??that a su-  TABLE |. Parameters of power functions in Eq$) and(2) approximating
perconducting transition to the state wjth-0 was detected hermopower maximum in organic conductors.

at T=11 K in «-(BEDT-TTF),CUNCS),. Note also that .- B P

throughout the studied temperature inter@l) >0 for a-

phase samples, whereas  S(T)<0 in EEEBI'EBZEEQZQS(E%’\% 1?2 ;5

x-(BEDT-TTF),CU(NCS), in 'Fhe range'_l'_> 11 K. (BEDT-TTF)zTIHg(SCN): 176 51
Near the superconducting transition &t-10 K, the  gepT.TTR.Cl,-2H,0 3.9 2.7

thermopower of BEDT-TTF),Cu(NCS), abruptly decreases,
passes through zero @t=10 K, and saturates at a level of
+1.5 uVIK (Fig. 2, curved). It is generally recognized that
in the superconducting staBe=0,"® but this assertion applies It is clear that the values af for all tested materials are
only to an isotropic superconductor. In the anisotropic caseglose and range between approximately 1.5 and 1.8, whereas
which occurs in organic superconductors, theory preticts B is spread over a wider interval between 1.2 fo=MH,

that valuesS# 0 are possible, which was observed in experi-and 2.7 for M=Rb.

ments(Fig. 2. Note that the absolute value of the copper

thermopower forT<10 K is at most of order 0.xV/K (in

accordance with published data for pure copperso the  3.2. Organic conductor undergoing a metal—insulator

positive S(T) cannot be attributed to superconducting short-transition

circuiting via the organic conductor. Thus, the behavior of  \1oocirements of the thermopower and resistivity of a
thermopower inx-(BEDT-TTF),CUNCS), is natural for an  gepT.17F)Cl,-2H,0 sample versus temperature are plot-
anisotropic metal with a superconductor transition aroungqq i, Fig. 3. In the rang@> 150 K the temperature depen-
T 10. K, . dence of the conductivity has a metallic nature, 8Gd)>0.

It is of interest to compare our thermopower measure- At anout T~ 150 K a metal—insulator transition occurs
ments ink-(BEDT-TTF),CUNCS), with measurementSof (BEDT-TTF)4Cl,-2H,0, accompanied by reversal of the
crysta!s of the same composition fabricated {it the Institute Ogign of the thermopower. At lower temperatures the absolute
Ch_emlcal Physics in Chernogolovka, Ru35|_an Acade_my O{/alue of S(T) grows, and this trend persists down to 40 K
Sciences. The overall sh_ape of tﬁ_(eT) curve in the.reg|on (Fig. 3). As the temperature is lowered to 20—30 K, the ther-
above_ the_superconductlng tra_mgn(jﬁg. 2) is similar to mopower drops sharply in absolute value, 8(d@)~0 for
Fhat given in Ref..14, but the minimum value $fn Ref. 14 T<20 K to within the experimental accura¢§ig. 3. Note
is —27 pVIK, in contrast to our measurement Of ya¢ in this temperature rangeBEDT-TTF),Cl,-2H,0
—17 pVIK. This discrepancy can be attributed either t0 spe-gypjeq have extremely high resistivity, about four orders of
cific features of organic conductors fabricated in d'fferentmagnitude higher thap(T~ 150 K), and the uncertainty in
laboratories or to possible methodological errors: the stans(-l-) increases to 3—BV/K. ’
dard thermopower measurement technique employed in Ret." 'y s notaple that there is a correlation between features

14 can lead to significant measurement errors in the tempergz e curves ofp(T) andS(T): the bendp(T) at T~60 K
ture gradient across a small sample, hence to systematic er- '

rors in the Seebeck coefficient. According to our data, the
thermopower changes sign below the superconducting tran-

sition, T<11 K, and settles a=+1.5 xV/K, whereas in So VK p. Qom
Ref. 14 the observed valug=0 is reported. The reason for -~ l \ 10°
this discrepancy remains unclear and requires further inves- LS
tigation. | S
It is clear that unlike x-(BEDT-TTF),Cu(NCS),, a- _sol ., 4102
phases show an anomalous peals(ii) (Fig. 2). In order to E
analyze this effect in quantitative terms, let us consider the ]
asymptotic behavior T 12— < expEm) ELLH
BEEES 5 3
S(T)ocTe, @ TP e-wr 2 10
~200F ]
which is valid at temperatures below the peak, and 1
- 410
-250r 3
S(T)cT 4, ) ; :
_300F 4: {107
which describes the curve in the high-temperature region I :
(T>30 K). Solid lines in Fig. 2 show fits ofl) and(2) to 0L N i > Kw"

experimental data, and values of the indicesand 8 are

listed in _Table 1. Th_e qncertainty in parameters obtained by g, 3. Resistivity and thermopower BEDT-TTF);,Cl,-2H,0 versus tem-
the nonlinear analysis is 6—10%. perature. Curves 1—4 are plots of different theoretical functions.
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corresponds to the point of inflection 8{T), and the low- mopower due to two carrier groupshat S>0 in a degen-
temperature bend ip(T) at T~20 K to S(T)~0 (Fig. 3, erate semimetal corresponds to the conditigh 7., where
cited temperatures marked by arrgws 7o and 7, are relaxation times for electrons and holes, respec-
For comparison with measurements of samples with metively. In the dielectric case, for which transport is due to
tallic conductivity, we processed measurementsSEF) in activation processe§<0 if the effective masses and relax-
the regions both below and above the peak using Ef)s. ation times satisfy the condition,<7.m,/m,. Combining
and (2) (curves3 and4 in Fig. 3. The resulting indicesx  these two conditions, we obtain the condition for sign rever-
andg are listed in Table 1. Whereas indgxs about 2.7 and sal in the formr < r,<7sm,/m, which can be easily satis-
close to the corresponding values for fied if me<<m,,.
(BEDT-TTH,RbHgSCN), and (BEDT-TTF),TIHg(SCN),, It follows from the discussion above that the model of
the value ofa is larger,a~3.9, i.e., the drop ir§(T) for  the metal—insulator transition iBEDT-TTF);Cl,-2H,0 can
(BEDT-TTF);Cl,-2H,0 is significantly steepefFigs. 2 and be more complicated than that suggested in Refs. 3 and 5,
3). The temperature dependenceS§T) will be discussed in  which is based solely on the charge-density wave concept.

detail in the next section. At T~150 K, the band structure changes, and a gap is prob-
ably opened in théBEDT-TTF)5Cl,-2H,0 spectrum, which
4. DISCUSSION OF RESULTS leads to higher resistivity and a larger absolute value of ther-

mopower; atT~20 K, the system then forms a charge-
density wave, and as a result the Seebeck coefficient van-
ishes andp(T) acquires a break in the low-temperature
For  (BEDT-TTF),MHg(SCN, a-phases and region (Fig. 3. Note that the suggested model is in full
(BEDT-TTF),Cu(NCS),, the thermopower signs are oppo- agreement with available structural déta.
site (Fig. 2, although, according to published daf'*** At the same time, the observed temperature dependence
their transport propertiegelating, for example, to quantum of the thermopower in the temperature range below the tran-
oscillations are controlled in either case by hole sections ofsjtion at T~150 K is stronger(with asymptotic behavior
their Fermi surfaces. Recall that the thermopower of coppeg«=1/T%7) thanS«1/T which corresponds to thermal activa-
is positive and fofT<300 K its magnitude is less than 1.5 tion across a band gdff For this reason, we have to assume
uV/IK, 2 so the thermopower features illustrated by Figs. 2that some features of théBEDT-TTP)4Cl,-2H,0O ther-
and 3 must be associated specifically with organic conducmopower are due to phonon dray®
tors. The data in Fig. 2 indicate that in An accurate calculation of phonon-drag effects is a
(BEDT-TTF),Cu(NCS), the contribution of electron sections rather complex problem and requires detailed information
of the Fermi surface is larger than generally accepted, howabout the variance of relaxation tim&sUsually theoretical
ever, further research and more accurate measurements &lculations for the degenerate case predict dependences like
the band structure parameters are needed in order to have 881/T* or Sx1/T2. The latter corresponds to the Herring
ultimate judgement about the thermopower sign in tested orrelaxation mechanistfiand is close to the experimental data

4.1. Sign of thermopower in quasi-two-dimensional organic
conductors

ganic conductors. for some organic conductofJable 1. In the case of carrier
activation, a simple estimate of the phonon drag effect as a
4.2. Features of thermopower in the region of the function of temperature can be obtained using the
metal—insulator transition in ~ (BEDT-TTF)5Cl,-2H,0 expressiofr
Data on(BEDT-TTF)5Cl,-2H,0 thermopower vs. tem- C(T) 1
i iti ' i T)= , 3
perature yield additional information about the nature of the ~ S(T) n(Me | T+ re_p{ T/ 7(T) ()

metal—insulator transition in this material. It is know®ec.

2.1) that there are two alternative interpretations of this phewhereC(T) is the phonon heat capacity(T) ande are the

nomenon. The first is based on a transformation of the origiconcentration and charge of carrierse_o(T) is the

nal semimetallic spectrum to a dielectric spectrum. The otheelectron—phonon relaxation time, an{IT) is the relaxation

model relates the metal—insulator transition to formation of aime of the phonon gas.

charge-density wave. According to Gruféthe behavior of It follows from Eq. (3) that in the case of thermal acti-

the resistivity as a function of temperatutieig. 3) derives vation of carriers, the temperature dependence of the ther-

from the fact that in the highly anisotropic two-dimensional mopower is determined, to a first approximation, by the ex-

case, partial ordering first takes place along an easy axis abnential temperature dependence of the concentration,

T~150 K, while a charge-density wave for the entire con-whereas all other parameters in E®) are described by

ducting plane is finally generated & 20 K.3-° power laws, i.e., one should expect thatTat. 150 K the
One can se€Fig. 3) that in factS(T)~0 atT<20 K, as  (BEDT-TTF)sCl,-2H,0 resistivity should be described by

it should be for a collective mode like a charge-density orthe formulapo SecexpE,/T). We have derived from the re-

spin-density wave, or a superconductdiReversal of the sistivity measurements the activation energy~500 K

thermopower sign near the metal—insulator transition is moréFig. 3, curvel), and from the approximation of the initial

easily ascribed to opening of a gap in the electron spectrunsection of theS(T) curve (Fig. 3, curve2) E,~490 K,

For example, in the simplest model with isotropic bands andvhich is the same to within the experimental accuracy of

equal number densities of electrons and hatesp, one can  ~15 K. One can see in Fig. 3, however, that the exponential

easily derive from the standard expression for the therasymptotic behavior describes thermopower data only up to
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80r (BEDT - TTF),RbHg(SCN), g0} (BEDT - TTF),NH, Hg(SCN),
601 6oF FIG. 4. Switching between two different theoretical
temperature dependences of heat capacity in quasi-
40+ two-dimensional organic metalét) Debye formula
401 CxT3 (2) CxT? wheres=2. Experimental data
are taken from Ref. 27.
200
0L4 N
20 20
T,K T,K

T~80 K, i.e., on the upper half of the(T) activation sec- «T~ %216 Therefore the ratiare_p/ 7 drops with decreasing

tion, and at lower temperatures the thermopower magnitudeemperature, and “high-temperature” asymptotes, when

is lower than expected. This discrepancy can be ascribed, fat,_,/ 7> 1, can be derived from Eq3),

example, to the temperature dependence of the phonon heat T

capacity, sinceC(T) drops with decreasing temperature. S(T)<C(T) (
Note that the fit of the high-temperature section of the TepH T)

S(T) curve (T>80 K) by Eq.(2) yields S(T)<1/T*%, which ¢ well as “low-temperature” asymptotes, o,/ 7<1:

corroborates the stronger temperature dependence in this re- P

gion. Moreover, this result, as well as the approximation  S(T)xC(T). )

27 . - .
S(T)e1/T™", which is the best over a wider temperature.l_he traditional interpretatidi of the S(T) peak is that

interval (Fig. 3, curve3), is in disagreement with the theo- C(T)=const in the high-temperature region and, given the
retical dependenc8«1/T, which describes activation trans- elaxation times selected abowg(T) « 1/T72 wherez;s in the
port in the abser_we of phpnon drag. Thus, the data in Fig. bw-temperature rangS(T)ocC(T’)ocT‘?. Th’us the interpre-
ﬁglcgteetrhz;;[;h;}_;ng;ea?ek;n tIESED:;TFé&IZ‘(ZjHéotéheL'onotation of thermopower as a function of temperature in terms
drag VI\:Iurthergde:cureasZ in \':\rqe tenaprer:trurz II?aadus to f(g)rmatiqr(])ﬁc the phonon-drag model requires information about the
of a charge-density wave and, as a resii0. The peak in emperature dependence of specific heat in real samples.

B : . Published data or©(T) of quasi-two-dimensional or-
the S(T) curve in Fig. 3 is due to this change of the transportganic conductoR-Psuggest that for all organic conductors

4

regime. studied, the heat capacity curve plotted in the standard man-
ner, C/T=1(T?), is highly nonlinear afr>10 K.2’~* This

4.3. Low-temperature peak in thermopower of quasi-two- means that temperature dependence of the phonon compo-

dimensional organic metals nent of heat capacity is significantly different from that pre-

We now consider possible mechanisms leading to forscribed by the Debye lawCe T3, and the change in this
mation ofS(T) peaks i(BEDT-TTF),MHg(SCN), samples. temperature dependence should occur at abdut 10 K.
Since these samples are in a metallic state at least at We have calculated the exponehtn the heat capacity
T<100 K,2671224 the most probable cause of the ther- versus temperature,
mopower growth with decreasing temperature, as in the case C(T)ocT? ©6)
of (BEDT-TTF);Cl,-2H,0, is the phonon-drag effect, al- '
though the measured indgk(Table 1 is less than the the- separately in each temperature range; T* and T>T*,
oretical values3=3—-4 for degenerate systerfslt is note-  using the data from Refs. 27—-29. Typical curves are given in
worthy that the values o# for all tested samples are close, Fig. 4, and they clearly indicate that at*~10 K the
a~1.5-1.75, and considerably less than in the case ofsymptoticC(T) power index actually does change for or-
(BEDT-TTF);Cl,-2H,0, wherea~3.9 (Table 1. Thus, the ganic conductors. The resulting exponetsare listed in
drop inS(T) at T<15 K (Fig. 2) can hardly be ascribed to a Table 2, and their uncertainty is about 0.05.
transition to a state with a charge-density wave since as was It follows from Table 2 that the temperature dependence
shown for(BEDT-TTF)5Cl,-2H,0, the thermopower should of the heat capacity is universal for quasi-two-dimensional
drop more rapidly in this casgig. 3). We suppose that this organic conductors. AT<T* the heat capacity is described
drop can also be described in terms of the phonon-drafy the Debye formula to within the experimental errors, and
model®® 5~3, while atT>T* § drops to6~1.7—2.0. Thus, the lat-

In the degenerate cases- const and the thermopower as tice specific heat dominates the electronic contribution in the
a function of temperature is determined by temperature detemperature rang€>2 K, which was studied in Refs. 27—
pendences of the heat capacity and relaxation times. In th29, and measurements at lower temperatures are needed to
three-dimensional casexT 5, irrespective of the features properly isolate the electronic heat capacity. As a result,
of the dispersion curvé® and the electron—phonon scattering measurement52° of C(T) can be used in analysis of the
time is a slower function of temperature, for examptg,;,  thermopower due to phonon drag using E@—(5).
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TABLE II. Parameters derived from measurements of heat capacity as i deriving Eqs.(7) and(8) we took into account corrections
function of temperature in quasi-two-dimensional organic conductors giverbf the first order inr h/T and /7 h in the respective
in Refs. 27—29 and calculations by the phonon-drag model. emp . e .

yihep 9 temperature ranges. Comparison of the data in Tables 1 and

5 2 shows that conditiorx~ 6, which is usually included in
Material T —— ) (TTZS'E)/ TK) the standard approa({Eq. (5)_), is satisfi_ed only to low ac-
curacy, so the correction t@ is substantial.
(BEDT-TTF),NH,Hg(SCN), 3.00 191 311 0.13 We now estimate parameters of the phonon-drag model
(BEDT-TTF),RbHYSCN), 3.05 2.03 4.73 0.06 in Egs. (7) and (8) for Samp|es of
(EEB?EF){’;EQ(?S%M“ 3.09 1.84 39‘4 062 (BEDT-TTF),MHg(SCN),. Since no data on the specific
ETMTS;:)ZPF;Z 9(SCN. 204 170 . - heat for M=TI in the temperature range of interest are avail-

able, we have used results for its closest isostructural ana-
logue M=K, whose electronic properties and magnetic order
pattern are essentially identical:*? In addition, we assume
that the phonon-drag correction in E) is negligible; then
vy=§6+ B, and in the temperature range below the ther-
mopower peak (T<20K in Fig. 2
Te—ph T7~(0—a)/(a+ B). The parametersy and 7e_py/7
calculated in this way are listed in Table 2. Using these data
to extrapolater._,/7 to the temperature range above the
peak, we can show that the correctiomtds at most 1-8%,
gvhich justifies our estimation procedure.

Unfortunately, the relatively high superconducting tran-
sition temperature ok-(BEDT-TTF),Cu(NCS), and the en-
suing additional contribution t&€(T) make an accurate de-
termination ofé difficult in this case. Our estimate éfbased
on the curv&’ of C(T) in a magnetic field b5 T yields
2.45+0.05. Since the curve dE(T) in Ref. 30 is plotted
over the temperature range 6—12 K, this valuedofost

likely corresponds to the intermediate temperature rang Thus, it follows from our analysis that the electron—

(T~T*), and additional information is needed for aCcuratephonon interaction time divided by the phonon relaxation
gzt/?cr?matlon of high- and low-temperature asymptotic be—time in superconducting(BEDT-TTF,NH,Hg(SCN); is

It is interesting that a similar change of the regime Was?éeE%? P I;[/IhHan(SCl\l) |?M_Rbm_?_gnetlca:ly d ?r:dered
theoretically analyzed by Kosevithfor the heat capacity of i 2MHg 4 W=D, ') Samples, and e pa-

layered crystals with tight bonds within one layer and Iooserameter% on the contrary, is smaller. It is known that the

bonds between layers. According to Ref. 26, the anisotropWaX'Tum possible value o is 5, which corresponds to

24 : .
of elastic constants is negligible at low temperatures, and thge‘BhgzconSt' Stap sf? 5? scattering theory yieldse_pn
o or Te_pn* T~ 75" and in the presence of a strong

traditional formulaC=T?2 applies. As the temperature in- random potential the bhonon ttering time it should b
creases, the contribution of high-frequency bending modes o _lzl)oe 1al the pnonon scattering € 1t shou N
T~ 7, so it is feasible that real systems are character-

C(T) becomes important, and their dispersion curve, al-"e-p

though three-dimensional, contains a dominant term qua'—Zed by yranging between 3.5 and 5, which is in satisfactory

dratic in the quasimomentum, and as a result the Debye fmqgreement with Table 2. Moreover, the sironger th_e tempera-
mula should be replaced witgT2.2 According to the ture dependence af,_,,at low temperatures, the higher the

standard model of quasi-two-dimensional organic conduc'—mijsex ; aer:d,tr?z fg;%vrz f:;g:i:)ﬁzﬁmeng 2?;?,;358&? l)nr
tors, they are composed of sets of organic molecule Iayertg1 paper, 9 g sup 9

(BEDT-TTF in our specific cageseparated by anion poly- ganic metals from magnetically ordered ones is probably the
mer layers-? It is obvious that the anisotropy of elastic stee?er furlCt'OWe—plf(T),; i d and hat th
moduli should be strong and the heat capacity vs. temper%—. hl Whe extrapo z;te t't 'St trer.1. an assutme ttr?t the i
ture should be an anomalous function. To the best of ouf'% er the superconducting transition temperature, e stron
knowledge, however, the applicability of the theoretical 9" the temperature dependencergfyy, then we can give a

result€® to the specific heat of organic conductors as a func_quahtatlve Interpretation of S(T) for

tion of temperature has not been discussed ad’yét. «-(BEDT-TTF),CUNCS), (Fig. 2). If the temperature de-
Comparison between Figs. 2 and 4 demonstrates that tH)eendence Ofre_pn S described by a power law with an ex-
thermopower ofa-phases peaks in the temperature rang

onent of up to 3, we havee_ph/rocT*Z and, as follows
where s~ 2. Given Eqgs(3) and(6), one can easily show that rom Eq. (8), the phonon contribution is, in a way, compen-
in the “low-temperature” limit (re_py/ 7<1)

sated for, so thgB~0 and the thermopower has a plateau as
a function of temperature. Precisely this behavior is observed

B Te-ph in k-(BEDT-TTF),CUu(NCS), in the range 15 KT<50K,
==y T’ @) i.e., near the peak position in other materigiigg. 2, curve
4).
and in the “high-temperature” range, wherg_p/ 7>1, )
T 5. CONCLUSIONS
Te—p In this paper, we have shown that some features of ther-

where the indexy determines the power-law dependence: MOPOWer in the studied samples of quasi-two-dimensional
organic conductors, namely the peaks for

Te—phoc_l_y ) a-(BEDT-TTF,MHgQ(SCN, and the plateau for
T ' k-(BEDT-TTF),Cu(NCS), in the temperature range 10-50
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The thermopower coefficient as a function of temperat8(&), has been measured in
nonequilibrium superconductors, such as_Ai, substitutional solid solutions and Al-Si alloys
on various decay stages. When aluminum is substituted with silicon, the contribution to the
thermopower due to phonon-drag effects, which are dominant in pure aluminum at low
temperatures, is suppressed, and low-temperature anomalig&T)ndetected in

compositions near lattice instability limit are determined by the diffusion component of the
thermopower. The low-temperature anomalies in the thermopower and the notable increase in the
coefficient in front of the linear term i8(T) are attributed to effects of thermopower
renormalization due to the electron—phonon interaction enhancement with “soft modes” in the
face-centered cubid=CC) lattice of Al, _,Si, solid solutions. The nature of these anomalies

in S(T) is analyzed in terms of the Kaiser and Reizer—Sergeev modelsl998 American
Institute of Physicg.S1063-776(98)02301-4

1. INTRODUCTION Al;_,Si, and Al,_,Ge, compounds are metastableyhich,
together with the enhancement of the superconductivity by

In recent years, a lot of attention has been attracted byne order of magnitudésince T (Al) ~1.18 K) and persis-
theoretical and experimental studies of the thermopower caence of the FCC lattice structure, makes these materials con-
efficient as a function of temperatur&(T), in various  venient models for studying superconductivity.
metal-ike systems, such as glasSesigh-temperature Attention was focused on the nature of the superconduc-
superconductorsfullerenes; etc. This interest is caused by tivity enhancement in these nonequilibrium materials in our
high “susceptibility” of this parameter to the electron spec- previous research'’ The stability region and decay kinetics
trum of a material and the character of quasiparticle scatteiof supersaturated AL,Si, solid solutions on early and late
ing, in particular, to features of electron—phonon interactiorstages of their phase transformations have also been
in the normal state. According to some researchieldea-  studied™2Our previous resear@n2indicated that the ori-
tures of the electron—phonon interaction and their effect orjin of the increase i, of Al,_,Si, compounds is the en-
the thermopower in the temperature range above the supefiancement of the electron—phonon interaction due to cluster
conducting transition may supply a clue to which of the su-modes generated in the Al-based FCC lattice in approaching
perconductivity mechanisms is realized in a specific materiaihe lattice instability limit or spinodal. To the best of our
and also yield information about the Eliashberg function ofknowledge, no measurements of the thermopower coefficient
studied materials. Moreover, the enhancement factor obf Al, ,Si, metastable solid solutions witk=0.01 have
electron—phonon interaction can be derived directly frombeen performed as yet. Since a considerable enhancement of
thermopower measurements in metals with substitutionathe electron—phonon interaction in ;ALSi, has been de-
impurities®® tected in this range of Si concentratiorfthe electron—

At the same time, important properties of most oxidephonon interaction constant(Al o o,Sip 0 =0.9,:° whereas
high-temperature superconductors, fullerenes, and organic(Al) =0.38), it is of interest to studys(T) in compositions
superconductors are determined by proximity to the strucapproaching the lattice instability.
tural lattice instability. This is, on one hand, one of the fac-  Thus, the aim of the reported research was to investigate
tors of superconductivity enhancemérmin the other hand, it in detail the thermopower coefficient versus temperature and
makes difficult an investigation of these multicomponent ma-establish its relation to the enhancement of electron—phonon
terials. interaction and charge carrier scattering in nonequilibrium

Al; _,Si, substitutional solid solutions synthesized underAl,_,Si, model solid solutions over wide ranges of the sili-
high pressureare among the most simple metal-like systemscon content and temperature.
from the viewpoint of both lattice structure, electron spec-
trum, and chemical composition. Substitution of Al with Si
without breaking the FCC lattice configuration in the solid
solution leads to an increase in the superconducting transi- 1. From the technical viewpoint, the major problem in
tion temperatureT, up to ~11 K at x~0.2. Note that measurements of thermopower of small metallic samples

2. EXPERIMENTAL TECHNIQUE
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with relatively low resistivities is fabrication of reliable ther- stantan contacts, they were soldered to one another pairwise
mal contacts on two opposite sample faces in an evacuatddopper to constantgneach pair was pressed to either the
volume, without which accurate measurements of the tem“hot” or “cold” end of the sample and cemented by an
perature gradient are impossible. In addition, owing to theelectrically conducting glue. This assembly assured good
high thermal conductivity of such materials, there is a probthermal and electric contact with the sample, and in quality-
lem of detecting weak signals in measuring both the temassurance measurements the samples withstood more than
perature gradient and thermopower in the sample. In order ten heating/cooling cycles without notable degradation of
reduce the shunting effect of the sample on the temperaturtheir properties and parameters of electric contacts.
gradient, we polished disk-shaped samples with a diameter Electric signals were picked up and the experiment was
no larger than 3.5 mm to a thickness of about 100, after  controlled by a dedicated electronic unit. At the initial mo-
which comb-shaped patterns of slits were made on both sidesent, the holder temperature was set at a fixed value. Then a
of the disk using an electric-erosion facility in order to in- current of a fixed amplitude, which was determined by the
crease the effective distance between the two potential corcomputer code, was fed to the small heater. When the tem-
tacts on the samplesee the insert to Fig.)1 perature difference across the sample settled, thermopower
Measurements were performed in a low-temperaturesignalsUc, andU from the copper and constantan contacts,
sealed-off tube with a cold plate supporting the sample in theespectively, were recorded simultaneously. A new heating
evacuated volume, the whole assembly being inserted into aturrent amplitude was fixed thereafter, and the measurement
STG-25(40) helium transport Dewar with a volume of 25 or cycle was repeated. Steady-state thermopower measurements
40 liters. By pumping liquid helium from the transport plotted in U¢, vs U coordinates were on a straight line,
Dewar through a sintered copper throttle to the cold plate, wevhose slope was calculated using the least squares method.
could control the sample holder temperature throughout aithe number of measurement cycles and the maximum heat-
interval of 1.5 to 300 K, and an electronic circuit driving the ing current amplitude were selected so that the uncertainty of
heaters maintained the temperature at a prescribed value tioe least squares method was at most 3—5%. Since the slope
within 0.05 K. A schematic drawing of the assembly de-is

signed for measuring thermopower is given in Fig. 1. Sey—Se
The plate temperature was measured by resistance ther- tan o= S“—amp'e, (1)
mometer 1. Sample 2 was glued to two sapphire substrates 3, ot Ssample

which electrically insulated the disk sample mounted forand the calibration curve of the thermopower for the contact
measurements from the copper support. A temperature granaterials is knowrthis is, in fact, a calibration curve of the
dient across the sample was generated by small electrimopper/constantan thermocoupléhe sample thermopower
heater 4. In order to reduce the heat flow between the samptefficientSg,peWith respect to one contadn this specific
ends via the holder, an opening was milled in the coppecase, coppércan be calculated. Note that this technique has
plate (Fig. 1). The thermopower signal was picked up from an advantage over the standard differential metfiode-

two copper(5) and two constantaf) contacts. Junctions cause in our method the unknown temperature difference be-
between copper signal wires and the contacts made godween the temperature pickup and the sample-wire contact
thermal contact with the copper plate through thin capacitocancels. A similar technique was described by Laurent
paper and heat-conducting glue, which made it possible tet al,* but they did not vary the temperature gradient at a
equalize the copper—constantan junctions and thereby elimfixed temperature, as we did in our experiments.

nate spurious thermopower measurements. In order to have In some cases thermopower measurements were checked
equal temperature differences between the copper and cousing the standard differential technique for measu8D),
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FIG. 2. Test measurements of Lg(BaSr)CuQ, thermopower with re-

spect to goldsee text FIG. 3. Thermopower of AL,Si, versus temperature for the following

compounds: Lpure aluminun®; 2) aluminum thermally processed at high
pressure; Bx=2 at. %; 4 x=4 at. %; § x=6 at. %; § x=8 at. %.

the temperature gradient across the sample being measured

by a small Cu—Cu:Fe thermocouple. Measurements based on ) ] -

various experimental techniques performed on differenfOn content below the point of absolute instability of the

samples of the same composition demonstrated that absol @ minum-based FCC lattice are given in Fig. 3. The graph

value ofS(T) varied by 5 to 10%, which is a clear indication &/S0 shows for comparison curves $(T) for pure alumi-

of good reproducibility and reliability of the experimental NUM (99.9% thermally processed at high pressure in condi-

method. tions similar to those of the high-pressure synthesis and the
2. Samples of AJ_,Si, supersaturated substitutional S(T) curve for aluminum taken from Ref. 16.

solid solution withx<0.08 were fabricated by quenching 1€ comparison between curves 1 and 2 in Fig. 3 clearly

under a high pressure of 8 GPa in a Toroid chambdihe shows that thermal treatment of aluminum at hlgh pressure

synthesis scheme, methods of, A|Si, sample preparation leads to a notable reduction of the down-peak in the ther-

and characterization were similar to those described in Ref§foPower afl ;;~80 K (curve 1 in Fig. 3, which is ascribed
7 and 9-12. to phonon-drag effects in aluminum. As the silicon content

3. The experimental facility shown in Fig. 1 was cali- in the Al, _,Si, solid solution with the FCC lattice increases

brated and tested using a sample of SirCa ,CuQ, oxide N the range of up to 4 at. %, the down-peak in &)
high-temperature superconductor, whose parameters wef&TVe is restoredcompare curves 2, 3, and 4 in Fig. 3\t
measured by the differential method over a temperature inthe Same time, this feature in t¥T) curves is broadened,
terval of 4.2 to 300 K. Measurements of thermopower with@"d the peak position fox=0.02 andx=0.04 is notably
respect to gold are plotted in Fig. 2, which, in addition to Shifted to lower temperatures.

AS= Sgisrcacuo~ Sau (curve 1), also shows the negative gold These changes in t&T) curve caused by thermal pro-
thermopower(curve 3 and S(T) for the studied ceramic C€SSiNg and' substitution of aIummum with silicon in
sample directly derived from these two sets of measurefl1-xSk are in good agreement with the results of Refs. 17
ments. Note thal,~80 K obtained in this experiment is in 2nd 18, which reported on disordering of the aluminum lat-
good agreement with resistance and magnetic susceptibili%ﬁ through either substitution of Al W{t?h Ag, Zn, and Mg at
measurements performed on the same sample. The data Y Impurity concentrationsx<0.005," or generation of
SeisrcacudT) (curve 3 in the low-temperature range, where V&rious types of vacancies under a fl_ow of neutrons with
the ceramic is in the superconducting state, allow us to est€nergies higher than 0.1 MeV Tendencies characteristic of

mate the absolute error of measurements, which is at moShanges in the thermopower of aluminum-based alloys were
0.2 uVIK in this case. qualitatively analyzed in Ref. 19, and it turned out that the

increase in scattering due to structural defects was accompa-
nied not only by a suppression of the down-peak in the alu-
minum thermopower &I ,;,~80 K, which is due to phonon-

Measurements of thermopower of ;ALSi, solid solu- drag effects, but also by the emergence of an additional
tions using samples of four different compositions with sili- negative diffusion component in the thermopower.

3. EXPERIMENTAL RESULTS
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A further increase in the silicon content in nonequilib- S, UVIK S, UVIK

rium Al, _,Si, solid solutions near the FCC lattice instability A *0
limit leads to a notable increase in the amplitude of the low- . . ]
temperature feature in tH&T) curve(curves 5 and 6 in Fig. a \. oee 1-1
3). Note that, apart from an increase in the down-peak am- - S A‘: aas
plitude in alloys withx=0.06 and 0.08, the absolute ther- 0_‘% M 5 v,va" -2
mopower at room temperature also increases significantly a7 B o0 ol
(Fig. 3. b Aw I3
With a view to elucidating the nature of these anomalies (D m_f,:FtbQP ]
in the Al,_,Si, thermopower, it seems interesting to study A _ﬁ 9 o _1_4
changes in the thermopower coefficiéd{fl) due to a step- -2f w T 3‘ ]
by-step isothermal annealing, which initiates decay of super- r o, At “W ]
saturated solid solutions. Given specific features of phase =3[ oa, 3
transitions in A} _,Si, ,'°*?it is possible to stabilize succes- O‘.:A} & ‘-.-'--.
sive intermediate metastable states by fast quenching from i T éiy-l'l'- 1 Memg
the annealing temperature and to measure thermopower as a L °
function of temperature in Al-Si alloys with various silicon -5r
contents in the solid-solution phase. I %
In terms of the phase composition, Al-Si metastable al- ‘60 — 1(‘)0‘ — *250* 300
loys in intermediate stages of decay are metal matrices of T, K

Al _,Si, solid solutions with submicron silicon inclusions.

Measurements of small-angle neutron scattering in ABe, F'%ﬁ“-r;?fi‘ﬁ:rsnfggg SOSFt’gt";zfoc;ftﬁizssi;?ﬁ Vlifsaunsn;rl?rﬁf atuée40l<t’_t‘512i;“3d

demqnstrate?t? that the decay of an aluminum-based sqlld{:'s_eo K; 3 T,=4.05 K; 4 T,=3.75 K: 5 g0:3.18 K; QG)OTi:.l-Sf K;

solution leads to formation of dielectric inclusions with 7)1 —1 5 k.

shapes close to spherical in the metallic matrix, and their

dimension in late stage&oalescendeis about 40—60 A.

Changes in the thermopower of an aging alloy containingsamples withl ;~2.5—3 K (x~0.04—0.05, curve 4 in Fig. 3

either noncoherent or spherical coherent inclusions arand curve 5 in Fig. ¥show close values of thermopower and

largely controlled by the depletion of the solid-solution have similar behavior. At the same time, changes in the am-

matrix ??whereas formation and growth of inclusions haveplitude and shape of th§(T) curve for Al _,Si, and aging

not any noticeable effect on the thermopower coefficientAl-Si alloys in the late stages of decay, when the impurity

S(T) magnitude in such a multiphase system. content in the solid solution and number and dimensions of
Thus, the results of earlier research indié&t#that one  inclusions increase, are quite considerable. These differences

should expect that submicron semiconducti8g Ge inclu-  must probably be attributed to effects of boundary regions

sions generated in the process of; AlSi, and Al,_,Geg,  around submicron Si inclusions in the Al-based matrix,

decay in the Al-based solid solution matrix have little influ- where the FCC structure of the solid solution is notably dis-

ence on the changes in the alloy thermopower due to a phaserted.

transformation. As a result, the evolution $fT) should be

largely controlled by the thermopower of the solid-solution4. DISCUSSION OF RESULTS

matrix, i.e., the Si content in AL,Si. . .
We selected for measurement with the step-by-step iso- One of the_ _key_factors in the analysis of th_e ther-

. : o mopower coefficient in the low-temperature range is selec-
thermal annealing a pbSiyog Sample, whose composition i £ th q ; i tributi
was very close to the region of the FCC lattice instability lon of the ‘proper procedure for separating contributions

o o L .- from the phonon-drag effectS§,(T), and diffusion compo-
g?;gw;:gf éﬁ)rvovchesnuf :efvitign?gn?tgf tﬁgnﬁelahsr}g;Iige;g_”be%rent,sdﬂ). The diffusion thermopower is usually estimated
" XX

lution was obtained in the sample, it was cooled down toby the Mott formula
room temperature, after whicg(T) was measured over a w?kgT [ 9 In o(E)
temperature interval of 4.2 to 300 K. The measurement data Su= 3e JE
are given in Fig. 4the numbers of the curves correspond to
the real-time sequence of studied intermediate states wherekg is Boltzmann's constang is the electron charges;
In each intermediate state, the resistiyiyT) and Hall  is the conductivity, andEg is the Fermi energy.
constantR,; were measured independently at room and  Theoretical studies of the diffusion thermopower at high
liquid-helium temperatures. These data allow us to ascribe tand low temperatures have led to the conclu&idhat in
each sample state both a superconducting transition temperdeese limiting cases the corrections $g due to effects of
ture T, and silicon content in the AL,Si, solid solution’ electron—phonon interaction, including nonelastic electron—
In considering the set d&(T) curves in Fig. 4, note the phonon scattering, are inessential, and &).is asymptoti-
similarity between curve 3 in Fig. 4 and curve 5 in Fig. 3, cally exact. The most difficult region for interpretation of
which correspond to states with clo3g~4.1 K and the thermopower measurements in metallic systems is the range
same silicon contenk=0.06. Similarly, S(T) curves of of intermediate temperatures, where, along with phonon-drag

, 2

E=Ep
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effects® in materials with strong electron—phonon interac- AS, pVIK
tion, nonmonotonic behavior of the diffusion thermopower
has been detectédAmong the widely known materials in
which the relation between electron—phonon interaction and
anomalies inSy(T) has been well established, the most no-
table examples are metallic glas$és® Chevrel's
phases;?’ fullerenes?® and some oxide high-temperature
superconductord?® An important point is that most of these
materials are superconductors in which the proximity to a
structural instability, hence the enhancement of the electron—
phonon interaction, is a major cause of emergence and
strengthening of superconductivity.

Using Kaiser’s approach, we can describe the anomalies
in the diffusion thermopower at low and intermediate tem-
peratures by the expressfoh

S S,—Sg=ang(T), &)

where S is the diffusion thermopower without taking into
account an electron—phonon interaction, which is a linear
function of temperature) is the dimensionless constant of

electron—phonon interaction: AF(w), 10 mev™! AF(w), 10 meVv™!
4
dw ) 6+ © 3 iy
A=2 Y (w)F(w), (4) ."
3t -~ 'IJ 2000 [
. o . o
\g is the normalization factor describing the enhancement of -..I' ooo° w2
electron—phonon interaction, which is a function of tempera- Ohm = nemaua®® BPEEAA‘ 1
re:
ture -3 Anmoo s 1 0
dow 0 5 10 w, meV

FIG. 5. Parameters of intermediate states gf5$ij o5 VS. temperature(a)
AS(T)=SPIT) at (1) T,=5.4 K, (2) 4.05 K, (3) 3.75 K, (4) 3.18 K; (b)
Gg(hw/kgT) is a known universal functioff, a?(w)F (w) is  A(dp/dT) at(1) T,=5.4 K, (2) 3.75 K, (3) 1.87 K; (c) phonon density of
the Eliashberg function. states:(1) pure aluminum;(2) AlgoeSios; (3) changes in the density of
In this connection, a correct incorporation 8§(T) and ~ StAtesAF(«) taken from Ref. 31.
Spr(T) is sufficient for separating:*". Relying on the ar-
guments about the effect of structural scattering on the
phonon-drag thermopower in Al and results of Refs. 1 and 5,
we will use measurements &T) in aluminum thermally The parametelS‘d*‘ph as a function of temperature ob-
processed under high pressymirve 2 in Fig. 3 as esti- tained using the separation procedure described above is
mates of the sum 08g(T) and Sy(T) in separatings‘g'ph. plotted in Fig. 5a for several AlL,Si, compounds. Figure 5b
Really, the thermopower due to phonon dftte down-peak showsA(dp/dT) vs. temperature, which is a change in the
at T,in=80 K in Fig. 3 is suppressed by the structural dis- resistivity temperature coefficient for several intermediate
order in Al due to structural defects generated by thermastates of A} 9,Siy ggObtained in the process of annealing with
treatment under pressure. When Al is substituted with Sifespect todp/dT for the ultimate, equilibrium state of the
additional disorder is introduced into the FCC lattice of theAl-Si alloy. We emphasize that the curves®fdp/dT) in
solid solution because of this doping. In this case, one shoulllig. 5b show low-temperature anomalies in the diffusion
expect a further drop irg,,(T) for Al,_,Si, owing to a component of the resistivitysee also Ref. 10 whose posi-
decrease in the carrier mean free path. tion and amplitude correlate with featuresSﬁTphin Fig. 5a.
Moreover, spectra of ,_;, X-ray emission from alumi- Within the framework of the model based on E(®—
num, NMR Knight shift measurements, and data on the low{5) the emergence of the down-peaksﬁ‘phmust probably
temperature specific heat of Rlindicate that the Fermi en- be attributed to features of the parametg(T), and in par-
ergy Er and electron density of statd(Eg) change only ticular, of the Eliashberg function®(w)F(w). On the other
slightly if the FCC structure persists in Al,Si,. Given that hand, studies of inelastic neutron scattering in, _ABi,
Eq. (2) holds, this means that changesSg(T) should be revealed" that substitution of aluminum with silicon leads to
small in Al _,Siy. softening of phonon modes in the solid solution, but no radi-
Thus, the suggested estimate of the sunSg{T) and  cal changes in the phonon density of states were detected
Sg(T) in the thermopower of AL ,Si, based on measure- (see Fig. 5& In this case, the emergence of the low-
ments ofS(T) (curve 2 in Fig. 3 yields the upper limit for temperature feature i8SP" of Al,_,Si, (Fig. 53 can be
this sum. ascribed to the enhancement of the electron—phonon interac-

_ dw 2 h(l) 2
xs—f W CWF@Gs </ | Caw)F(w), §
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FIG. 6. Parameters of AL,Si, solid solutions
vs. concentration(a) residual resistivitypy(T)

taken from Ref. 10(b) thermopoweS(T) at(1)

room temperature an) in the vicinity of the
S(T) minimum in Fig. 3;(c) Hall coefficient
Ry(x) at room temperaturgd) reciprocal fre-
quency of atomic motiofht

10 12 10 12
x, at. % Si x, at. % Si

tion with “soft” modes generated in the FCC lattice owing proposed recentl§#~6It was showr?* in particular, that the
to substitution effects. effect of electron—phonon—impurity interference must be
We stress that a higher densiyw) of phonon states in  taken into account, along with the thermopower renormaliza-
the low-frequency band of the spectrum is not a decisivaion due to electron—phonon interaction in all orders of the
factor in superconductivity enhancement of aluminum-basegerturbation theory. As a result, both the magnitude and sign
solid solutions. For example, the emergence of a localizedf S(T) strongly depend on the impurity scattering amplitude
mode in Al _,Ge, caused by substitution of aluminum with of electrons; moreover, contributions to the impurity ther-
germanium results in a considerably smaller growthTin  mopower due to the electron—phonon interaction and
than in the case of AL,Si, at an equal content of silicon in electron—phonon—impurity interference have similar struc-
the FCC matrix of the solid solutioff. ture and cannot be separated by processing experimental
An estimate of the change in in Al;_,Si, from  data®* % The calculations described in Refs. 34 and 35 have
N(Al) =0.38 toA (Al o-Sip 09 =0.9 given in Ref. 10 allows been applied recently t§(T) in oxide high-temperature su-
us to interpret the increase in the magnitude of the negativperconductors and solid substitutional solutions based on tin
thermopower of A]_,Si, at room temperature in terms of and leacf®
Egs.(3)—(5) (Figs. 3—35. Since both the dimensionless factor On the other hand, our preliminary analysis based on the
\ of the electron—phonon interaction defined by Et).and  approach of Refs. 34—36 indicates that, if integral equations
the temperature-dependent parametgiT) given by Eq.(5) (1)—(5) of Ref. 36 are applied to the quantitative description
change considerably when the concentration Al, _,Si, is  of the experimental data plotted in Figs. 3 and 4, there is a
varied, it seems reasonable to relate not only the enhanceroblem discussed previously in connection with the inter-
ment of superconductivity, but also the emergence angretation ofS(T) in terms of Kaiser's model. If the Debye
growth of low-temperature features of the diffusion ther-phonon spectrum, which was used in Ref. 36, is replaced
mopower to changes in the electron—phonon interaction pawith the real phonon density of stat€éqw) for Al,_,Si,
rametera®(w). At the same time, integral equatiot®—(5)  solid solution®! it has little impact on the result. As a result,
show little promise for an accurate quantitative descriptionthe issue of accurate quantitative interpretation of low-
of the relation between the low-temperature anomalies of theemperature anomalies in the diffusion thermopower in non-
diffusion thermopower and parametef(w,T). It is prob-  equilibrium Al,_,Si, interstitial solid solutions in close
able that these difficulties are caused by the limits of thgroximity to the lattice instability has remained unsettled.
approximation of weakly nonequilibrium states of metallic Note that, in addition to the anomalous behavior of the
systems used in deriving Eg8)—(5). Al; _,Si, thermopower near the lattice instabililyig. 6b), a
Interestingly enough, similar anomalies @f(w) were  significant nonlinearity in the residual resistivipy(T) (Fig.
predicted by WebéFf for oxide high-temperature supercon- 6a) has been detected in the range of concentration
ductors La_,(Ba,Sr),CuQ, using the model of nonorthogo- x=5-8 at. %, as well as a maximum in the Hall coefficient
nal tight binding in lattice dynamics. In this ca¥ethe de-  Ry(x) (Fig. 69. Thus far, all the anomalies of kinetic coef-
velopment of a strong Peierls instability in the ficients listed above, which are caused by the proximity to
La,_(Ba,Sr)}CuQ, lattice due to changes in its composition the spinodal, and hence, related to high atomic mokikiy.
leads to emergence of a relatively small number of phonoi®d) in the FCC lattice of model AL,Si, solid solutions,
modes in the spectrurf(w), which are characterized by have not found their adequate theoretical interpretation.
anomalously strong interaction with conduction electrons.
A different approach to the thermopower in disordered® CONCLUSIONS
metallic systems with strong electron—phonon interaction In this paper, we have shown that some features of ther-
based on solutions of the quantum kinetic equation has beanopower in nonequilibrium Al ,Si, substitutional solid so-
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The NMR spectrum of the quasi-one-dimensional easy-plane antiferromagnetic GsMiiBrh

has trigonal spin lattice, is investigated in detail. The measurements were performed on a
wide-band NMR decimeter microwave-band spectrometer over a wide range of magnetic fields at
temperatures 1.3—4.2 K. All three branches of the NMR spectrum previously found by us

[JETP Lett.64, 225(1996)] are severely distorted because of the dynamic interaction with the
Goldstone mode in the antiferromagnetic resonance spectrum. The experimental results in
fields up to 40 kOe are described satisfactorily by an equation obtained by ZaliehghKJETP

Lett. 64, 473(1996]. Formulas are obtained in our work that agree very well with experiment

at all fields up to the “collapse” fieldH. of all sublattices. The unbiased NMR

frequency in CsMnByis determined to be, =416 MHz (T=1.3 K) in zero external magnetic

field, and in this way the reduction in the spontaneous moment due to the quasi-one-
dimensional nature of the system of Kinspins, which according to our data amounts to 28%, is
determined more accurately. The field dependences of the directions of the magnetic
sublattices with respect to the magnetic field are obtained from the NMR spectra, confirming the
equations of Chubukold. Phys. Condens. Matt@d, 441(1988]. The results on the field
dependence of the width and intensities of the NMR lines are discussed, along with three observed
anomalies: La strong increase in the NMR frequency for nuclei in sublattices that are
perpendicular to the magnetic field; the nonmonotonic temperature dependence of the resonance
field for the lower branch of the spectrum); e presence of two branches of the NMR

spectrum in largeH. fields, in which the CsMnBr must be a quasi-one-dimensional
antiferromagnetic. ©1998 American Institute of PhysidsS§1063-776098)02401-9

1. INTRODUCTION relatively weak fields at very high frequenciégp to 700
MHz).

The quasi-one-dimensional antiferromagnetic CsMnBr A strong anisotropy of the exchange interactitime ra-
(Ty=8.3K) has been vigorously investigated in recenttio of the exchange integrals along the chains to their value
years, both theoretically and experimentally. A number ofperpendicular to the chains500) is preserved in CsMnBr
extremely interesting properties have been found in the eleslespite the establishment of three-dimensional ordering.
tron spin system of this material: quasi-one-dimensional exI herefore, a considerable reduction must occur in the mean
change interaction and trigonal magnetic structuaephase ~ SPIN(S) of the Mr** magnetic ion because of the presence
transition to a quasicollinear structure in a comparativelyo! 1arge quantum fluctuations induced by the guasi-one-
weak magnetic fiefl H., and the electron susceptibility dimensional nature of. the exchange. mteras:ﬂon. The NMR
anisotropy* associated with the latter, a large reduction infrequency at the nuclei of the magnetic ions in zero magnetic

the electron spin moment and the presence of the Gold- field, as we have pointed out, is determined(!$y. There-

stone mode in the antiferromagnetic resonafd&MR) :;)ges’t 22(3'3;??;%?&?3 dgfo;hdeetzxn?nzi%fz[:éimafcgrrgj?nolf the
spectrunt,® the frequency of which is proportional to the ’ gy,

oL ) . - _the reduction in the spin moment. Determination of the elec-
cube of the magnetic field. This paper is devoted to an in; P

. . ron spin reduction in CsMnBmwas one of the goals of this
vestigation of the unique features of the NMR spectrum o{N P B g

the “HC!e' OfSSMr_]2+ magnetic lons, a br|ef7 observational CsMnBg; is an easy-plane antiferromagnetic with trigo-
description of which has been given elsewhere. nal magnetic structure. When an external magnetic field is
There are several distinctive features of NMR in the NU-applied in any direction in the easy plane, the NMR spectrum
clei of magnetic ions in antiferromagnetit@he NMR fre-  myst split into three branches. By investigating the depen-
quency of the nuclei of magnetic ions is determined primagence of the resonance frequencies of these branches on the
rily by the magnitude of the hyperfine field, which for thé 3  applied field, one can trace the transition of the trigonal an-
elements is proportional to the average electron ¢Bjn In  tiferromagnetic structure into quasi-collinear. The second
particular, for>®Mn?* ions this field can amount to 600—700 goal of our work was to investigate this process and to com-
kOe. Accordingly, NMR is observed iRMn?* nuclei in  pare the data obtained with the prediction of the Chubukov
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FIG. 1. Magnetic structure of the CsMnan-
tiferromagnetic (a—unit magnetic cell; b—
orientation of spins in hexagonal plane with re-
spect to the applied fielt).

theory® It must be pointed out that CsMnRis the first ments on the elastic scattering of neutrérBecause of the

antiferromagnetic in which NMR could be observed in thefact that the distance between adjacent Mn atoms along the
nuclei of all sublattices forming the trigonal magnetic struc-Ce axis is one-half that in the plane, the exchange interaction
ture. integral J=214 GHz determined in neutron scattering
Another unique feature of the resonance properties oXxperiments? which characterizes the energy of the antifer-
antiferromagnetics is associated with the strong correlatiofomagnetic exchange interaction along the hexagonal axis, is
of the vibrations of the nuclei with the vibrations of the several hundred timed', which characterizes the antiferro-
electron system. The effect of this correlation on the AFMRMagnetic interaction in the perpendicular plane. The value
was first established by Heeger, Portis, Teaney and Witt,J'=0.46 GHz is obtained from neutron diffraction déta
who found a strong temperature dependence for the locatioand J'=0.5 GHz from AFMR dat&. At Ty=8.3 K, three-
of the AFMR line in the KMnFk antiferromagnetic and ob- dimensional antiferromagnetic ordering occurs in the’Mn
served a double electron-nuclear resonance. A thorough thépin system. The anisotropy energy, characterized by the
oretical analysis was performed by de Genaeal’® and it ~ constantD (D=2.9 GHZ and 2.4 GH3), establishes the di-
was shown that the strong dependence of the AFMR on theections of all spins in the chains perpendicular to the sixth-
temperature of the nuclear magnetic system is direct eviorder symmetry axis. The weak exchange interacfioibe-
dence of the interaction of the nuclear and ionic spins, leadtween spins lying in one plane leads to the appearance of
ing to a dynamic frequency shifDFS): to a pulling of their ~ trigonal 120-degree magnetic structure. Thus, the magnetic
spectra. structure of CsMnBy can be considered a set of one-
Since CsMnBs is an easy-plane antiferromagnetic, onedimensional antiferromagnetic chains, elongated along the
could expect the appearance of a pulling effect in this mateCe axis and interacting weakly among themselves. The unit
rial too. After we had found the strong distortions of the magnetic cell is shown in Fig. 1a.
NMR spectrum due to the dynamic interaction of the elec-  Six sublattices form the magnetic structure. Since anisot-
tron and nuclear spinéve reported this elsewhéje zal- ropy is essentially absent in the basis plane, all of thé™n
iznyak and Zorif* found that in the AFMR spectrum there is magnetic moments are expanded even in a small constant
a gap, which is also caused by a pulling of the spectramagnetic fieldH, applied in the plane, so that the magnetic
branches. In this paper we compare the results obtained kﬂﬂd direction coincides with one of the bisectors of the tri-
the NMR and AFMR methods. angle (see Fig. 1b and Fig. 2ai.e., the magnetizations
Greater absorption of a radio-frequency field, associated!1,M4 will be perpendicular to the field while the other two
with an amplification of the amplitude of the pumping field pairs of sublatticeSM,g and M3g) will form angles of
at the nuclei of the magnetic ions because of the dynami¢ /6 with the field direction. On the whole, however, the
componentH,; of the hyperfine field,is observed in mag- angles between the directions of adjacent?Mapins in the
netically ordered crystals. The magnitude of this amplifica-Plane will remain close to 120°. Increasing the valueHof

tion depends on the form of the AFMR spectrum. will lead to a decreasing angtebetween the sublatticed ,
and M; (the same as foMs and Mg), as shown by
2. CRYSTALLINE AND MAGNETIC STRUCTURE OF THE Chubukov?
ANTIFERROMAGNETIC CsMnBr 5 2
a 1 H
CsMnBr, belongs to the large family of binary halides of ~ €955 = 5=+ 27 HZ’ @

type ABX3, whereA is an alkali metalB is a 3d metal, and

X is a halogen. The crystal structure is described byDé,e with a vanishing in a fieldH.=(481J")?S~61 kOe (ex-

spatial symmetry group with lattice parameters 7.61 A perimental valu®of H.~64 kOe forT=1.8 K). Moreover,

andc=6.52 A2 The Mn atoms in the plane perpendicular in each chain a very slight rotation of all spins occurs toward

to the Cg axis form a hexagonal lattice. the directionH, which is due to the finiteness of the magni-
The crystal lattice determines the specific magnetidude of the large exchange interaction fie#it, which is

structure of this substance, which is determined in experiHg=8JS~1500 kOe. Thus, in the magnetic fiett}, a col-
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FIG. 2. Schematic representation of the mag-
netic structure of CsMnBr(a—H<H,; b—H
>H,).

lapse of two pairs of sublattices occyesphase transition of a a
the second king and the magnetic structure is transformed  €OS #3= —sin §+ He cos 2 +o
from six-sublattice to quasi-two-sublatti¢Eig. 2b). E

The difference between the anglgsind y is negligible. Thus, the NMR frequency in CsMnBin the absence of
A further increase in the magnetic field should lead to a@ dynamic shift is
rotation of all spins toward the direction of the veckbuntil @nio=YnHnio- (6)
there is a complete breakdown of the antiferromagnetic ) )
structure through a spin-flip transition. Measurements of the ~ Figure 3 shows the NMR spectrum in CsMpi4) pre-
magnetic moment of CsMnBas a function of the magnetic dicted by theory(ignoring pulling. For the assumptions

field (in fields up to 80 kOin Refs. 3 and 4 agree for the Made previously, the NMR spectrum in fieldd<H
most part with theory. (HL Cg) will consist of three branches. In a field>>H_ the

The hyperfine interaction energy ped #n2* ion in the NMR spectrum should consist of one branch because of the
magnetically ordered state can be written in the fagee Very small difference between the anglésand y (the ap-
Ref. 8§ pearance of the dashed curve 1 in place of the theoretical 1

will be explained below

5
He) 5

Thi=A(1)(S), 2

where(S) and(l) are the mean spin of the electron and 3. SAMPLES
nucleus of the®™Mn?" ions andA is the hyperfine interaction

constan{A<0 for Mn?"). The static field at the nuclei of the Fab
55Mn2* jon (in the absence of an external magnetic fiésd

The samples were prepared by the Bridgeman method.
rication of the CsMnBrcrystals has been described in
detail elsewheré. The CsMnBg crystals grown by this
A method are transparent and are easily cleaved along planes
Hpe=— m (S), ) perpendicular to the binary axes. Thg axis uniquely de-
termines the intersection of the cleavage planes. The
v, is the nuclear gyromagnetic ratig,= 1.06 MHz/kOe for

55
Mn).
Assuming the hyperfine constaftis independent of the ©/wng
sublattice numbefand taking into consideration thAt<0), Lop T T
the magnitudes of the local fieldd,,, which act on the H, = 64 kOe /
nuclei of the magnetic ions for all six sublattices, have the
form L.05F y 1
H2 H 112 A J//"
Huio=|Hni+H|=Hp¢ 1+ —2—2H— cosé,| , 4 T 7
His ht 1,00 mmmz=2 ]
where 6; is the angle between the external magnetic field
vector and the sublattice magnetization. The nuclei of the
ions of the sublatticem; and M, correspond ta=1, M, 0.95f 2 .
and Mg to i=2, andM3; and Mg to i=3. Let us write the i
cosines of the angleg in explicit form:
H 0.90 R 1 . L . I 1 ,
COS f=— 0 20 40 60 80
1 He' Magnetic field, kOe
a H a H FIG. 3. NMR spectrum of CsMnBrignoring DFS.1’, 2, 3—branches of
cos 02=sin —+—cof—+0 —), NMR spectrum according to Chubukov's angular dependehces;
2 Hg 2 He empirical relationship for unshifted frequency of middle bratede below
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with differing slot geometry 8the size of the gap in the slot

is ~0.09 mm), in which mica plates were placed to reduce

the frequency, were used to cover the range from 500 to 200

MHz. By moving plate 2 one can change the capacitance
e between plate 2 and cavity (the insulator 3 is a 5-1pm
thick film of polyethylene terephthalatgtrade-named
Lavsan, thereby changing the resonant frequency. Micro-
wave power is supplied by the coaxial line 6. Coupling to the
resonator is accomplished by means of single-turn coils, one
of which is the transmitting loop 4, while the other is the
receiving loop 5. The diameter of the coupling loops is 5
mm. The direction of the external magnetic figt] pro-
duced by a superconducting solenoid, is indicated in Fig. 4.
The Cg axis of the CsMnBysingle crystal 7 was perpendicu-
lar to H. The alignment accuracy of th&g; axis with respect
to the solenoid axis was-+=3°, which did not greatly in-
crease the error in determining the resonant field. The sample
was mounted on a special fluoroplastic substrate. The entire
system was immersed in a helium bath.

Figure 5 is a block diagram of the spectrometer. The

frequency of the microwave oscillat@ (a Kh1-43 instru-

CsMnBr, crystalline samples are extremely hygroscopic andnent for studying frequency respofseas modulated by the
are hydrated quite rapidly in open air, turning into a white!oW-frequency (=45 kHz) reference oscillator of the syn-
powder that is probably CsMnB®2H,O. Therefore, single- chronous detector SDEPAR 5110 lock-in amplifier This
crystal samples cleaved from a large crystal were coated witAccurred by mixing the low-frequency signal with the con-
a resin cement. The protective cladding produced in thidrol voltage Ucon that sets the frequency of the microwave
manner made it possible to work with one CsMgBingle ~ ©scillator. An automatic frequency contr@hFC) system,
crystal for a long period of time. tuned to the first harmonic of the modulation signal, was
used to maintain the oscillator frequency at the resonance
peak. The AFC system consists of synchronous detector SD1
and a cavity resonance tracké&TC) with proportional and

In view of the strong dependence of the NMR signal onintegral feedback channels.
the magnitude of the fieltl, a wideband cw decimeter spec- The output power of the microwave oscillator was less
trometer of the type described in Ref. 14 with a hileav- than 3 mW. Absorption in the resonance channel was re-
ity was built to investigate nuclear resonance in CsMnBr corded at the second modulation harmaddig ; by means of
The Q of the resonant section in the frequency range invesSD2. The depth of the frequency modulati@h3—-3 MH2

FIG. 4. Resonant circuitl—cavity; 2—plate; 3—thin PETE film; 4,5—
coupling loops;6—coaxial feed lines7—sample;8—narrow slot.

4. NMR APPARATUS AND MEASUREMENT PROCEDURE

tigated was 300—400. was chosen so that it did not greatly broaden the resonant
The copper cavityl in Fig. 4) was a modified version of absorption line; it was typically-1.5 MHz.
a tunable cavity of the “split-ring” typé> Three cavities Attenuators At1(10 dB) and At2 (10 or 3 dB were
AFC
F G Usont ETC e
D ]
N SD1 FIG. 5. Block diagram of spectrometer: RC—resonant circuit;
DC [/| G—microwave oscillator; D—detector; SD1—synchronous de-
tector (UNIPAN 232B); SD2—synchronous detectdlock-in
PAR 5110; F—Ch3-63/1 frequency meter; Atl, At2—
f attenuators; DC—directional coupler; ETC—electronic track-
SD2 - ing circuit; U ,,—control voltage;U ,p—signal from Hall de-
At 1 At 2 ] tector; U, ; —second harmonic signal.
I T USZf
RC Ucont
- UHD
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corrected to the input and output of the low-temperature por- For an easy-plane two-sublattice antiferromagnetic, it is
tion of the spectrometer in order to smooth its amplitude—known that its low-frequency vibration occurs with essen-
frequency characteristi®AFC). The frequency of the oscil- tially no escape of spin magnetic moments from the easy
lator G was monitored by the frequency metefCh3-63/1, plane: the ratio of the amplitude of the magnetization vibra-
which was connected to the transmitter channel via the ditions of the sublattices perpendicular to the plane to the am-
rectional coupler DGattenuation of the reflected wave was plitude in the plane i$1/Hg. A similar relationship must be
at least 25 dR satisfied in the case of CsMnBrLimiting consideration to
Thus, the NMR spectrum could be measured in twoonly this vibration, the Lagrangian of the electron spiis

modes: by scanning the magnetic field at fixed oscillator fre.can be written in the ford?
guency, or by scanning the frequency at fixed magnetic field.
Unfortunately, because of the nonlinearity and poor repeat- _E X2 2 2

" Y, : y P PS Zeo=5 2 ("~ wer(H) §), ®
ability of the input line frequency response, this operating 2 vyg

mode c;]f the sp'e.ct.rom?ter: could not be fully ”t'l';ed' Mori'where¢ is the small deviation of each spin in the basis plane
over, the sensitivity of the spectrometer turned out 10 b, the equilibrium direction, ang, is the susceptibility

perfec'FIy adequate in the field-scanning mode. For the ﬁrsélong theC, axis. The quantityw,(H) cannot be given in
operating mode the error in frequency measurement due 9, tic form. It is the solution of a 6th-degree equation,

frequency instability of the resonant circifig. 4) was no which can be solved numerically. The form of the given

greater than 0.1 MHz. The temperature was monitored bx.agrangian, strictly speaking, is valid as long as no serious

means of the resistance of a germanium reS|st_0_r and the €AYeformation of the trigonal magnetic structure occurs. We
librium saturated vapor pressure te. Its stability was no return to a discussion of this question below

Worseh than+0.05 Kf: i , 4 with . Typical longitudinal ;) and transverseT,) relaxation
The magnetic field intensity was measured with @ Hallgo,eq tor the nuclei of the Mt ions areT,~1—10 msec

detector(Uy,p in Fig. 5), which together with the CsMnBr andT,~ 10 usec. These values are clearly several orders of

sample were Iocat_ed a equwal_ent pos't'F’r?s inside a SUp_eFﬁagnitude greater than the period of the natural vibrations of
conducting solenoid. The error in determining the magnetiGy . nuclear magnetization 8Mn2", which is~ 2 nsec. For

field |ntens_|ty did not excee(?jl/o. btain th ) this reason the magnetizations of the nuclear sublattices can
T.O. ex.C|te resonance and to 0 tain the maximum NMRy ¢ . hsidered as conserving the magnetic moments, and the

amphflcathn, the sample_was oriented SO that the fi¢ldf Lagrangian corresponding to their precession in the fielg

the solenoid and the radio frequency fi¢ldvere mutually can be represented in the form proposed for ferromagnetics

perpehndicular infthﬁ hexagonallpla;ne. s i i in the theory of the macroscopic dynamics of magnetic
The mass of the CsMnBisingle crystals investigated substance¥’ In this case the Lagrangian for the nuclei of

ranged from 50 to 100 mg. one subsystem becomes

1
Ln=— (M) XQ+ yHer), 9)
5. SPECTRUM OF COUPLED VIBRATIONS IN CsMnBr 4 n
where{(m) is the paramagnetic moment of the sublattice nu-

il ly the eff f ici i f th ) . . )
Until recently the effect of dynamic interaction of the clei, Hug=H+Hp, according to Eq.(4) (the dipole field,

electron and nuclear systems of the ¥Miions on the AFMR . .
spectrum was completely ignored during the investigation o hich dpe; not exceed 2 kOg as a calculation ha}s ?m‘”‘?‘
the low-frequency resonance properties of the electron sy _eonv), Is ignored here, ang is the angular velocity in spin
tem in small-size noncollinear CsMnr RbMnBr; and rotation space. .
CsMnl; antiferromagnetics. It was only after the experimen- By_addlng Eq.(8)_ and the sum 0f_Eq(9) for all six

tal discovery of the pulling of the spectra in CsMpEse- sublattices, we obtained the Lagrangian of the system of

verely distorted NMR spectrufrand gap in the Goldstone electron and nuclear spins of the antiferromagnetic being
branch of the AFMR spectruth in Ref. 11 that the spec- considered with the hyperfine interaction taken into account:

trum of joint nuclear—electron vibrations was calculated un- 6

der the assumption that the exchange trigonal structure is not Ze,= ZeOJrE L - (10

distorted by the field. This condition is satisfied in fields up =1

to ~40 kOe. In these fields the formulas of Ref. 11 describe  The characteristic equation of the linearized systam

our experimental results satisfactorily. terms of the small angle of deviation of the spins from equi-
For a comprehensive description of the results obtainedbrium) of Lagrange equations determines the spectrum of

by us over the entire field range up lth, =64 kOe, we cal- joint vibrations. This equation has the following form for the

culated the NMR spectrum using the low-frequeri@old-  CsMnBr magnetic structure:

ston@ AFMR mode wg (H) calculated by Chubukov,

3
which is s, 1ok o (Pt ehi—who)on
W= W =35 5 2 2 _ 2 )
3 HS 3 wpo =1 (@pip— ©°)
wel(H)_’Ye\[Zm- (7) H2 H
(o4

whio= Ya(Hno)f| 1+ W_Z(H—hf)i cosé; |,

asH—0. ht)i
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=
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$0.3
3
w T=13K
0.42
0.2t H A A .
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Magnetic field, kOe 0.40
FIG. 6. NMR spectrum of CsMnBr points—experimental NMR spectrum
at T=1.3 K, lines—result of calculation using E€L1).

0.38

0 20 40 60 80
Magnetic field, kOe

wﬁi=7§(th)i2(1 cos ;| (11)

(th)' FIG. 7. NMR spectrum of CsMnBr (high frequencies points—
where the index of the spin orientation of the M ion experimental NMR spectrum &t=1.3 K, solid lines—result of calculation
with respect to the applied field runs through values from 1using Eq.(11), dashed lines—unbiased NMR spectr(@h and (12).
to 3, (Hys)i is the value of the hyperfine field for nuclei at
theith position, which at some points, as an experiment has
shown, depends on the magnitude of the applied magnetic The behavior of the middle branch clearly does not agree
field, wno= wnio(H)|n-o is the unbiased NMR frequency for with the expression fow,, (6), represented by curve in
any i=1, 2, 3, andwto=veHnsVxn/x; is the gap in the Fig. 3. In order to describe the behavior of this branch it is
AFMR spectrum(the formula is exactly the same as in Ref. necessary to assume thdy; for ions of the sublattices per-
11). pendicular to the applied field depends on the magnitude of

As already indicated, the Lagrangian of the electrons cathis field. Best agreement with experiment is obtained if this
apply rigorously only below 40—45 kOe. However, as will be dependence is represented in the form
seen from our experimental results, in fields greater than 50 1 5
kOe the dynamical interaction of the electron and nuclear Hipr=Hie(1+cH, (12
systems almost completely vanishes, and it makes no contrivherec=1.9x 10 ° kOe 2. In Figs. 3 and 7 this empirical
bution whatsoever to the solution of E@.1). Accordingly,  dependence is represented by cutvét agrees with experi-
the form of the electron Lagrangian exerts no influence whatment only up toH=H.. We return to a discussion of pos-
soever on these solutions in strong fields. Thus, the expresible reasons for this anomaly below.
sions for the NMR frequencies calculated from Edd) are Below 45 kOe the NMR spectrum is distorted by strong
rigorous in fields below 40 kOe and in fields greater than 5dynamical interaction. Our experimental data for all three
kOe, but between these values they must be considered emranches of the spectrum are described very well by the the-
pirical approximations. oretical curves calculated from Egéll) and depicted in

Figs. 6 and 7 by the solid curves. Equatidrd) contains two

parameterso,q and
6. EXPERIMENTAL RESULTS AND DISCUSSION

We observed the NMR lines in a CsMnBingle crystal ®T0= Ye ©no \/E (13
over the very wide frequency range 200—450 MHz, in Yoo T X
magnetic fields from 20 to 80 kOe. The basic experimentaln this formulay,, is easily calculated by using the Curie law
data were obtained at temperatures of 1.3 and 1.780K-  for nuclear moments. Using the valug,=(1.2+0.1)
servations of the lower branch were also madé=a®.5, 3.0, X102 cgs units/mole from Ref. 4, we see that just one un-
3.5 and 4.2 K. The spectrum aT=1.3 K is shown by the known, w,, remains in the formula fow. This single
points in Figs. 6 and 7. parameter was determined from the best fit of the theoretical
a) Shape of NMR spectrum at=11.3 and 1.7 KlIn the  curves for all three branches of the spectr(bl) to the
existence region of the trigonal structure the NMR spectrumexperimental results. As a result, we obtained,=416
splits into three branches, which agrees qualitatively with the-t4 MHz at T=1.3 K; this frequency corresponds tdy;
form of the spectrum assumed abadigee Fig. 3. In fields =392+ 4 kOe. Using the value of the hyperfine constant
below 45 kOe, the experimental points indicate that all three= — (1.53+0.04)x 10" '8 erg obtained in Ref. 20 from the
branches are severely distorted by the dynamical interactiomalue of the hyperfine splitting of the EPR line of the #n
with the low-frequency AFMR mode. At fields above 50 ion introduced into CsMgBr we determined the mean spin
kOe, where the dynamical shift can be ignored, the uppeof the Mrf*, (S)=|hwno/A|=1.80=0.05. Uncertainty in
and lower branches of the spectrum convincingly describ¢he value ofA, makes the major contribution to the error.
the collapse of the trigonal structure, which is completed From magnetization measureméntt T=1.8K, (S)=1.7
according to other authors, at a field laf =64 kOe. +0.1, which agrees well with our data. From neutron scat-
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FIG. 9. Experimental low-frequency branch of NMRTat 1.3 K at several
FIG. 8. Example of NMR spectrum at frequency of 418.1 MHzTat frequencies.

=1.3 K. The numbers denote the centers of absorption litkesmiddle
branch,2—upper branch3—signal from collapsing sublattices.

MHz. The left line corresponds to the middle branch of the
spectrum near maximum intensity. The middle line is the

tering work} (S)=1.5+0.15 atT=4.2 K; this also agrees : . .
iof v with lue if the diff . absorption signal of the upper branch near the phase transi-
safisfactorily with our value if the difference in temperaturesjo, ‘The right line is the signal from two pairs of collapsed

is takep into account. sublattices. Note the abrupt increase in absorption intensity
Using Eq.(13) and our value ofw,o, we have the fol- ¢, ihis branch at a field- H
. . _ c-

lowing relationship for the temperature dependenegy The lower limit of observations of the low-frequency

=(7.9+0.4) T GHz (temperatureT in K). Note that the . anch was 197 MHzthe low-frequency limit of the spec-
va_Iue of wrg calt_:ulated in this manner agrees sausfactonlytromete); this corresponds to a resonant field of about 20
with thi experimental AFMR gap forT=12 and T e (1=1.7K). Figure 9 shows a set of experimental scans
=2.0K. , , of the low-frequency branch at different frequencies. All

The lower branch 2 undergoes the greatest distortion dug,e 55 rements were made at a fixed modulation amplitude
to dynamical coupling. The frequency of this branch in the_ 4 4 ppHz andQ ~400. Figure 9 convincingly demon-
20-35 kOe interval of magnetic fields varies drasticélly  gyates the sharp increase in absorptipnmore than a factor
thg order of 10 MHz/kOe The pulling effgct IS muph Ie;s of 10) of this branch with frequency. Our analysis of the
evident on the two upper branches, but it is still quite nOt'Ce'experimental data witldew/dH taken into account shows a
able. This result agrees qualitatively with the results obtaine(gtrongl frequency dependence of the width of the resonance
in Refs. 18 and 19, in which collinear antiferromagnetics”ne: at about 210 MHz, the width of the absorption line is
with two pairs of Mrf* ions located at crystallographically ~4MHz, and at about 360 MHz it drops to approximately
nonequivalent positions were investigated. 0.5 MHz.

The experimental points foF=1.7 K for all branches of Note that no peculiarities in the line intensities were ob-

the spectrum are essentially identical to the data Tor gopeq at the intersection point of the upper and middle
=1.3 K. Only the lower branch at fields below 30 k@® to .o 1 hes.

0.4 kOg is shifted slightly toward weaker fields; this is a
consequence of the temperature dependence;gf

b) Width and intensity of NMR lineShe intensity of the
absorption lines depends strongly on the magnetic field for  a) Difference in hyperfine fields for different sublattices.
all NMR branches. We have already pointed out that in sublattices oriented per-

The signal of the middle branch falls off abruptly with pendicular to the applied field, the behavior of the hyperfine
decreasing magnetic field, and-aR5 kOe it completely dis- field differs from that in other sublattices, even in relatively
appears; the same thing also occurs with the upper branciyeak fields. A similar effect in strong fields is even more
but at fields below~35 kOe. Such an abrupt falloff in NMR  surprising. According to the existing thectjn fields greater
intensity was observed earlier for the upper NMR branch inthan H, CsMnBr; is transformed into the quasicollinear
CsMnFR;'® and CsMnCJ.*° This can be explained by the fact state, in which all six sublattices are perpendicular to the
that the nuclear magnetizations precess in antiphase in thaplied magnetic field, albeit tilted very slightly toward the
different magnetic sublattices. It is quite possible that thdatter(cosine of the tilt angle-H/Hg). Therefore, one might
same thing also occurs in CsMnBr expect that the resonant frequency of the nuclei would be the

Figure 8 shows an example of the spectrum at 418.5kame in all sublattices. Our results show that this is not the

7. ANOMALOUS NMR FEATURES IN CsMnBr 3
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case. We observed two branches of the NMR spectrum in 0.40
fields aboveH.. The lower branch lies in the frequency
range in which one should expect(itear w,10), extending, 0.35¢
as it were, the nonexistent brangh, although a tendency
toward an excess increase beydfid is also evident. The
upper branch is located 30 MHz abol/e It extends curvd
but with a much smaller slope. The presence of two branches
means that abovél., the productA(S) is 10% higher for
ions in sublattices 1, 4 than in sublattices 2, 6 and 3, 5. Two
possible reasons for a changeAgS) can be considered: 0.20+
1. (S) can increase with the field because of a decrease ) ) ) . )
in spin reduction, as shown elsewhétadt is difficult to ex- 20 25 30 35 40
plain, however, why the effect of the field on spin reduction Magnetic field, kOe
is different for different sublattice groups, even though theyFIG. 10. Temperature dependence of lower NMR branch. Solid lines—
all lie in the same plane and are perpendicular to the appliegsult of calculation using Eq11) with empirical F(T) function taken into
field. account.
2. A change iPA may be due to a change in the symme-
try of the positions of the magnetic ions of sublattices 1, 4. In
fields aboveH, in each hexagonal layer the spins of one of ~ The results indicate that besides the free paramejgr
these sublattices belong to 1/3 of the magnetic ions and arfé@vhich depends weakly on temperatuaad the quantityoro
directed opposite the spins of 2/3 of the magnetic ions, whickthe temperature dependence of which is rigorously defined
belong to the other two sublattice pairs. As a result, the spin@nd shifts the lower NMR branch in the opposite directjon
of the first third of the ions are directed opposite the spins oPnly one quantity—the AFMR frequencywe;—which
all adjacent ions. For the other two thirds of the ions, the spirshould depend on the temperature, remains in(Ef), from
directions of adjacent ions alterngend sum to zejo More- ~ Which the shape of the branches of the NMR spectrum was
over, each of the layers has nonzero magnetization. Thus, ti&|culated. We have proposed the following temperature de-
hexagonal symmetry of each layénd of the crystal as a Pendence for it:
whole) breaks down, and this should be accompanied by wer(H)
magnetostriction. However, at the present time it is difficult ~ @ (H,T)= F(T) (14
to assess the magnitude of this effect and its influence on the
constantA. These symmetry considerations might in prin-whereF(T) is an empirical function. Then, looking for the
ciple also explain the anomalous behavior of the frequencyest agreement with the experimental curves obtained for the
of the middle branch at fields less thih . six temperatures stated above using iterative methods, we
We also estimated the possible effect of a change in thebtainedw,, and F(T) for these temperatures. Figure 11
dipole field at the nuclei. As numerical calculations showedshows the functiorF(T) for various temperatures from 4.2
the dipole field at the nuclei is nearly unchanged during thd0o 1.3 K. As a result, we have
collapse of the sublattices. Its total value amounts to about f(T)=1 0+ 0.172.

1.7 kOe, whereas a field of the order of 30 kOe is required to ) ) _ )
explain the anomaly being considered. The equation fow.;(H,T), of course, is only valid for fields

b) Temperature dependenc#Ve also found an ex- in whic_:h p_ulling is strong. Th_e_tempe_ratur_e at which the
tremely unusual change in the behavior of the lower brancf\MR line is located at the minimum field i$y,~1.8 K.
of the NMR spectrum with increasing temperature. If, for a1 his i thoroughly confirmed by experiment.
temperature increase from 1.3 to 1.7 K, the lower branch is
shifted, albeit slightly, but in the “required” direction, the
lower branch will accordingly be displaced toward weaker 3"" 0
fields in accordance with the general prediction that the
amount of pulling should decrease with increasing tempera-
ture. This effect was observed in all previously investigated 2.5
collinear antiferromagnetics.

We investigated the behavior of the lower branch of the 20
spectrum at 1.3, 1.7, 2.5, 3.0, 3.5 and 4.2 K. As an example,
Fig. 10 shows the experimental data at three temperatures. It
is seen that together with the reduction of the NMR fre-
guency at 25 MHz, associated with a 6% decrease in the
spontaneous magnetic moment of ¥nthe lower branch is 1.0
shifted by about 3 kOe toward larger fields with a tempera- 0 3 10 15 2 2
ture increase from 1.7 to 3.5 K. Moreover, the intensity of

t_he NMR signal decreased appreciably, and the resonangfg, 11. EmpiricalF(T) function. Dark points—experimental NMR data,
line was broadened. open triangles—fit to AFMR data from Ref. 11.

e

w
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v

Frequency, GHz

vy -1.7
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{m), pg 6. It is possible that the unexpectedly large increase in
® MR resonant frequency with magnetic field at the nuclei of this

0%¢§+¥+ W, O-newen pair of sublattices, which is perpendicular to the field, is

related to the anomaly described in the previous paragraph.
7. The temperature dependence of the location of the
low-frequency branch of the spectrum turned out to be more
complicated than in three-dimensional magnetic materials.
We were able to explain it only by assuming the existence of
a rather strong temperature dependence of the frequency of
the low-frequency AFMR branclcubic in the field.

L)
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Figure 12 shows the behavior ef,;, demonstrating the
temperature dependence that we derived for the magnetiz
tion of antiferromagnetic sublattices. The data of two neutron
diffraction investigations?? are shown for comparison.
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The structure of the attraction zones of the final states associated with dynamical period doubling
bifurcations is investigated. It is found that on the “initial value—transition rate” plane the
attraction zones of the two possible final states alternate with each other and that a subdivision of
the attraction regions occurs with a decrease in the transition rate. It is shown that the
boundaries of the attraction zones are smeared out because of the effect of noise and in this
situation the fine structure of the attraction zones is destroyed. As analytical and numerical
calculations have shown, the critical value of the noise variance, corresponding to the

boundary between the dynamidak predictabl¢ and stochasti¢or unpredictablemodes, has a
power-law dependence on the transition rate with a typical exponent value of one. The

existence of “noise” invariants is also observed: the integrdtaer all initial value$ probability

of achieving the final state is invariant with respect to the noise level1988 American

Institute of Physicg.S1063-776198)02501-3

1. INTRODUCTION boundary between the stochastar unpredictablgand dy-
namical(or predictablg modes.

Bifurcations in systems, whose parameters change at a This paper investigates another important aspect of the
finite rate, are customarily called dynamic. It is known thatperiod-doubling type of dynamical bifurcations: the exis-
in the absence of noise the final state of a nonlinear systetence of fine structure of the attraction zones of the final
experiencing a dynamical bifurcation is completely deter-states. The distinguishing feature of these zones is the alter-
mined by the initial conditions. This important feature of nation of the attraction intervals to the first and to the second
dynamical “noise-free” bifurcations was first pointed out by states not only along the initial value axis but also along the
Shishkova, and subsequently was investigated in detail in@xis representing, the rate of variation of the control pa-

many papers, in particular in Refs. 2 and 3, which contain dameterr. The initial model (noisy nonstationary logistic
voluminous bibliography. mapping is described in Sec. 2, and the structure of the

The presence of even a small amount of noise radicallftraction zones in Sec. 3.

alters the character of the dynamical bifurcation transition; = Another goal of this paper is an analysis of the smearing
for a high noise level or, what is equivalent, for a small rateOf the boundaries and destruction of the fine structure of the

of change of the parameters the transition loses its determﬁttracuon zones due to the effect of noiSec. 4. A second-

. . ary but important result of this analysis was a more exact
nate(or dynamical character and becomes stochastic. If, as a, 7. . . :
result of the bifurcation, two energetically equivalent statesdeInItlon of the boundary between the stochastic and dy-
) ) ' _g y €q e hamical modegSecs. 5 and J6compared with our previous
arise, as occurs in parametrditsin systems experiencing

10
: S e L% papers:
period doubling bifurcatiofi,in polarization-unstable lasefs, Finally, the existence of “noise” invariants, i.e., prob-

and in a number of other systems, then with an increase igpjjiry characteristics that are invariant with respect to the
the noise level the system becomes unpredictable, and thgise intensity, is established in Sec. 7.

probability of coming to one of the two final states ap-
proaches 50%. The very same situation also occurs with a
decrease in the transition rate, i.e., in the quasistatistiral
adiabati¢ limit.

The number of papers that have been devoted to thé INITIAL MODEL: NONSTATIONARY NOISY LOGISTIC
effect of noise on dynamical bifurcations is relatively small. MAPPING
In particular, it was shown in Refs. 2, 3 and 8 that a delay
occurs in the loss of stability after passing through the bifur-
cation point due to the effect of noise. We have foufldhe  x(n+1)=F(x(n))+f(n), RXx(n))=r(n)[1-x(n)]. (1)

The nonstationary noisy logistic mapping
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r curs at the critical value=r.;=3.0. Forr>r the initial
r branchx* (r) becomes unstablghe dotted line in Fig. 2a
T Ar and the the system enters one of the two possible stationary
n . statesx or x, which are stable fixed double mapping points
! (Fig. 2b:
0 1 N r
x(n+2)=F(F(x(n))). (5)

FIG. 1. Piecewise-linear variation of control parametewith time: r,

_ B The quantityx* serves as the unstable point of this mapping.
=r,+s(n—1).

Forx>x*, the system arrives at the stat@nd forx<x* at
the statex. A determination of the attraction zones of the
is chosen as the object of our investigation. He(&) is the  statesx andx constitutes the subject of our investigation in
noise-free logistic mapping andn) is the control param- this paper.

eter, which varies from the initial valug, to the final value

rIn a piecewise-linear mannéig. 1) 3. FINE STRUCTURE OF ATTRACTION ZONES IN ABSENCE

lo, n=1, OF NOISE

r(n)=y rots(n—1), 1=n<N, 2 Figure 3 shows the “initial coordinatérates” plane,

Mt n>N. on which the attraction regions of the statare depicted as

The discrete tima assumes values of 1, 2, ... The rate of black and the attraction regions of the statas white. This
change of the control parameter is denotedsbyAr/An,  figure was obtained by a numerical solution of EL.in the
and the number of steps through which the intetval=r;  absence of noisef(n) =0) for r,=2.8 andr;=3.2, so that

—ro passes is denoted Y. The quantityN is 1 greater than Ar=r¢—ro=0.4.
the integer part of the fractioar/s: The black and white attraction zones alternate with each

other in Fig. 3 along both thé axis and thes axis. These
N=Ar/s+1=(ri—ro)/s+1. (3 Zones form a cellular structure, which is parametrized by the
The initial (n=1) value of the sequencgn) is denoted by number of steps N through which the interval
& Ar=r¢—rgy passes. This number is related to the matef
_ variation of the control parameterby Eq. (3). For 0.4<s
X =§. (4) <o the transition fronr to r; is accomplished in one step,
The first period-doubling bifurcation for the logistic N=1. Initial values of¢ within the interval 6<¢<4.3 and
mapping occurs at values exceeding the critical valug,  0.57<¢<1.0 lead to the state (black region¥ while values
=3, and the second occurs tr.,=3.4. Therefore, it is from the interval 0.43£<0.57 lead to the statg (white
advisable to choose the initial valug somewhat less than regions. Only for s>0.4 are there three intervals: two black
r.1, and the final valueg; somewhat greater than,; but  and one white. For a two-step transitidfis= 2, when the rate
smaller thanr,. In the calculations below we will work s varies within the interval 02 s<0.4, the number of inter-
with the values of ;=2.8 andr,=3.2. vals amounts to five. As the number of jumisincreases,
The bifurcation diagram of the logistic mapping for a the number of alternating black and white intervals increases
variation ofr within the interval fromr,=2.8 tor,=3.2 is as 2N+ 1. For anN-jump transition the thicknesssy of the
shown in Fig. 2a. The first period-doubling bifurcation oc- attraction intervals along the axis decreases as

x(r) i ' i xn+2)
a b l/
/s
I’
0.8} = 98 4
p /
x'(r) /4
061 : 0.6} y 1
X ¥ FIG. 2. Bifurcation dynamics of the logistic
% mapping in the interval 28r<3.2 (a) and
04t /" double logistic mappingb). The pointsx
i 0.4 v ] andx are stable final states of the systedh,
yd is unstable state.
0.2F . 0.2 l/’
/'II
0 . . ol
28 3.0 3.2 0 X x* % 1
N T i
r x(n)
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FIG. 3. Division of the “initial coordinateé—rates” plane into
attraction regions of the statas(black cells andx (white cells.

The regions subjected to action of noise are gray. These include the
destroyed fine cells and smearing of cell boundaries.

A Ar Ar 4. SMEARING OF THE ATTRACTION ZONE BOUNDARIES
— = . (6)  AND DESTRUCTION OF THEIR FINE STRUCTURE
N N+1 N(N+1) DUE TO THE EFFECT OF NOISE

Asy=sy—Sn+1=

We use very simple assumptions in the noisy logistic
As a result, the pattern of attraction zones acquires a ﬁmranappmg(l) W't.h respect to the nms_é(_n): the_ fluctuations
. ; . ) . of f(n) are uniformly distributed within the interval-(a,
structure with an increase M, i.e., for a decrease & This +a):
structure is shown on a larger scale in Fig. 4 than in Fig. 3
for greater clarity. fy= l2a, |f|<a,
T . w(f )= 0 If|>a (7)
Our partitioning of the £,s) plane into zones of attrac- ' '
tion to the statex andx represents a modification of ti2  and the values of (n) and f(m) at neighboring instants of
partitioning in the theory of dynamical systems. In the prob-time are uncorrelated:
Iem bglng considered the quantﬂpharacterlze.s the rate of (f(n)f(m))zo-fzé(m,n), of=a2/3.
variation of the control parameter in a nonstationary system, )
whereasD partitioning is usually done on the plane of the Hereoy is the variance of the fluctuations aa@im,n) is the
parameters characterizing a stationary state of the systedtronecker symbol. Other assumptions about the distribution
Generalization of th® partitioning method to a nonstation- functionw(f ) and the correlation functiorf (n)f(m)) lead
ary system is perfectly natural. The key point in this methodt© qllilal.ltatwe!y S'T'lar results. ¢ the sharb boundaries b
is the formal determination of the boundaries of the region% OIS primarly smears out the sharp boundaries be-
. . o ) . tween the black and white attraction regions. We will arbi-
of a nonlinear system with qualitatively different behavior., . . . . . o
. . . . “trarily depict the transition regions, for which the probabili-
The physical meaning of the partitioning parameters is im-. Lo — S
) . . ties P and P of going into the statex andx lie within the
portant only in the interpretation step.

) _ N interval (1/4, 3/4), by gray. The gray regions differ in prob-
. Thg unique feature of thB partitioning .|s that the cell ability from the purely black and purely white regions by
dimensions decrease as the number of skepreases. The |ess than 1/4. The interval 1#4P<3/4 is symmetrical with

newly formed black and white regions are narrower both i”respect to the poinP=1/2, which corresponds to an equal
width and thickness than the previous regions and they afprobability of attaining states andx.

pear in the lower portion and at the peripheries of Figs. 3and  The gray zones in Fig. 3 are calculated for a noise level
4. A reduction in the thickness and width of the regionsg?=10"%. The probabilitiesP and P were calculated by
creates the prerequisites for the destruction of the fine strucveraging the data obtained from 500 realizations of the pro-
ture of the attraction zones due to the action of noise. cessx(n) for more than 10,000 points on thég,6) plane. A
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FIG. 4. Fine structure of attraction re-
gions of the statex (black cell3 andx
(white celly for small ratess.

p ol g gl gl g

I
|

0 02 04 0.6 0.8 1.0

black (or white) color is retained in this figure for the regions P(O)(¢|N) and to the noise distribution probability density
for which the probabilityP (or correspondinglyP) differ ~ w(f ). In the absence of nonlinear distortions of the noise
from unity by less than 1/4}1—P|<1/4 for the black re- component this relationship is given by a convolution trans-
gions and 1— P|=<1/4 for the white regions. formation. For a single-step transitioN&1) we have the

It follows from Fig. 3 that the noise action has com- obvious relation
pletely destroyed the fine structure of the attraction regions at
small rates(s<0.001 for o} 2-107% and has noticeably
smeared some boundaries between the white and black re- P(€]1)=
gions. The latter effect is only partially evident in Fig. 3 in
view of the limited resolution capability of the chosen
method of presenting the data.

PO(& | 1)w(£—¢)de, 8)

©

which smooths the distributioE(O)(§|1) with the weighting
functionw. For a two-step transition the noise acts twice on

5. CONDITIONS FOR SMEARING OF BOUNDARIES AND the variablex. In the first step the unperturbed probability

DESTRUCTION OF FINE STRUCTURE OF ATTRACTION PO)(¢]2) is transformed into the intermediate distribution
ZONES P()(£]2) in accordance with a transformation of the type

(8):

Due to the action of the external noisgn) the probabil-
ity of going into the statex andx now becomes different )
from 1 and/or 0, so that the abrupt transition, let us say, from 51 :f 500)/ £ JPTIN
the regionP=1 to the regionP=0 now becomes smooth. PHE2) 0 PRE2w(e—¢nae’, ©
Considering the smearing of the attraction zone boundaries
due to the effect of noise, let us give the unperturedhe and in the second Std%(l)(glz) is transformed to
absence of noigadistribution of the probability?(?)(£|N) of
going into the statex from the initial state¢ after N steps. o . 1
According to Eq(1), the noise component shifts the variable  P(2)(¢2)=P(¢2)= f PUE2)w(é—¢)dE . (10
x(n+1) by f(n) in each step. Assuming the noise is quite 0
weak, i.e., ignoring nonlinear noise distortion effects, we re-
late the probabilityP(&|N) to the unperturbed distribution Similarly, for P(§|N) we have the series of convolutions
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FIG. 5. Evolution of the probabilit?(£]1) of single-step transi-
tion to the statex as the noise level increases: a—unperturbed
“noise-free” probability distributions ¢;=0), b—smearing of
boundaries in presence of weak noisg € o), c—smoothing of
probability distribution in presence of high noise level & o).

o 1_(0) , o Increasing in width, the gray transition zones gradually
PR(EIN) = fo PO IN)w(g—¢")d¢", squeeze out the black and white regions and the probabilities
of the two final states finally equalize:

P(¢-£N)~P(¢- £*|N)~0.5.

This occurs when the width of the transition zoA& is
comparable to the width of the attraction zohé™ :

— — 1—
PN(gN)=P(£N)= JO PN=D(£/N)w(£—¢')dé". A= o (N=~AE* (14
1D SinceN~Ar/s, we obtain the estimate
Based on these formulas, let us consider the smearing of ) ) )
the sharp boundary located &t £*. To do this we assume oo~ (A" ) N~s(AE*)/Ar. (15

PO(&N)=0(&— &%), where §(¢—£*) is the unit Heavi-
side function. In view of Eq(8), for a uniform distribution
law (7) the probabilityP(£é— ¢*|1) for a one-step transition
is given by the piecewise-linear function

for the critical noise leveb?, corresponding to equalization
of the probabilitiesP and P and the destruction of the fine
structure of the attraction zones. According to this estimate
the critical noise level is proportional to the first power of the

B 0, E< & —a, rates: o2«s.
P(é—¢*|1)=1 (é-& +a)l2a, ¢ —a<e<ét +a, The process for the smearing of the boundaries and de-
1, £ +a. struction of the fine structure of the attraction zones is illus-

(12 trated in Fig. 5 by a numerical calculation example. The
According to Eq.(12) the width A, of the transition zone unperturbedin the absence of noig@robability distribution
: ' ! o P(¢) (Fig. 53, the probability distribution P(¢) for
(—a,+a) is comparable to the rms deviation;=a/v3. h ding t liaht . f the boundari
Each subsequent step broadens the transition zone. By usiffg =~ ¢ corresponding to §1IS|g. S,me,armg ot the boundaries
the arguments on which the derivation of the law of Iarge( 9. 5_b)' and the prob'ablllty dIStrIbutIOIﬁ’(f) fF’r ‘,7f>‘rc’
numbers is based, one can prove that the total width of th@hich is close to 1/2Fig. 50, are shown in this figure.

transition zoneA ¢y, for anN-step transition increases in pro- O very small rates (i.e., for a very large number of
portion to yN: stepsN) the assumption of no nonlinear distortions ceases to
be valid sooner or later, and the broadening will occur more
Aéy=~arN. (13)  rapidly than the power lawl5).
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6. BOUNDARY BETWEEN STOCHASTIC AND DYNAMICAL s
MODES OF BIFURCATION TRANSITION 1.000F

In the purely dynamical mode when noise is absent, the
probabilities of the system entering the stater x are equal
to 1: P(£§)=1 or P(£)=1. In other words, for a dynamical
transition the final state of the system is completely predict-
able. In the opposite case of severe noise the stochastic mo¢ 0.100
is realized, in which the final states are equally probable,
P(£)=P(£)=0.5 and, consequently, unpredictakimore
precisely, predictable with a probability of 0.5

As the arbitrary boundary between the dynamical and
stochastic modes we take the intermediate mode, for whicl
the probabilities of going into statesandx amount to 75%: ~ 0.010f
P(&)=P(£)=0.75. The boundary between the stochastic
and dynamical modes chosen in this manner corresponds 1 L
the boundary of the gray regions in Fig. 3. r

Let us examine the configuration of this boundary in
greater detail. According to Eq15), at the middle of the

. . . . - 0-001 e AL n 1 a 1 1 i 1 A 1 J " i A 1 n
(¢,s) plane, i.e., for=1/2, the critical noise level satisfies a 0 02 0.4 06 08 10
power law of the form 3
o =As", (16) FIG. 6. Schematic representation of boundaries between dynamical and sto-

_ . %12 x_ chastic modes ong(s) plane. The curvé corresponds to the destruction of
where a=1 and AN(A&O) /Ar. For A§0 =0.3 and Ar the fine structure of the attraction zones, whereas the cireders to the

=0.4 we haveA~0.25. At the periphery of Fig. 3, i.e., @S smeared boundaries of the black and white cells.
£—0 and é—1, the alternating black and white attraction
zones narrow: their widtlhA £* decreases approximately by

the factorN=Ar/s. Thus, ast—0 andé—1, exponents up tax~5-7, as was established previoust)
Agt g for the special initial valug¢=0.67, which coincides with the
Ag* = ﬁ ~ ﬁ s stationary valuec* (Fig. 2.
N Ar 7

so that we again arrive at a power law of the fofb®), but 7. NOISE INVARIANTS
now with the exponenta=3 and the -coefficient

Let us consider the quantit
A,=Al(Ar)2: quantty

. 1—
23 —
R s.g 4 e Pede 19
which represents the probability, integrated over all initial
states¢, of going into the final statg, i.e., the area bounded
by the curveP(&|N). The unique feature of this quantity is
its independenceéwithin the linearized model of the effect of

(for a f|_xed noise levebry) n Fig. 6. This bour_1dary rises at noise of the noise intensity?, and it can therefore be called
the periphery compared with the central portion of ti§es) a noise invariant.

plane since the fine structure of the attraction zones is de- . L .
In order to prove the existence of noise invariants, for
stroyed more rapidly at the periphery. example, forN=2, we integrate Eq(9) with respect toé¢
The smooth curvé in Fig. 6 refers to the bulk of initial xample, N 9 q P
. with the normalization
values of ¢ and characterizes the lower boundary for the
onset of the stochastic mode for most poiéitBesides the o ¢ \dfe
boundary 1, corresponding to the destruction of the fine _xW( )df=1.
structure of the attraction zones, the stochastic mode arises at ) )
the boundaries of the wide attraction zones where even EKen into account. Then we obtain the relation

The parameter values adopted above y#e|e=0.04.
The overall character of the boundary between the sto;
chastic and dynamical modes on th&d) plane is shown

small noise can make the final states equally probable. A _

high sensitivity to noise is typical of all boundaries between 1§ Lf P(g2)de= | PU(¢g2)de
the black and white cells. Only the most smeared boundaries,

corresponding to the gray regions in Fig. 3, are depicted by 1—(0) ~0)

the curves2 in Fig. 6. The rest of the boundaries of the f (§[2)dé=15",

attraction zones are subjected to a somewhat smaller smear-

ing (the smearing of these boundaries is not shown in Big. 6 which attests to the invariance of the quantlgvath respect
For the smeared boundaries the dependence of the critie the noise intensity. The invariance of the quantityis

cal noise Ievelag on the rates is characterized by higher proved similarly.
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TABLE I. Values of noise invariants. First of all, it has been established that the attraction
N 1 > 3 7 c rgg_ipns of two posgiple final stat@sand x aI}erngte on the
N 0.86 04 064 045 054 initial state ¢-transition rates” plane, forming fine struc-
ture ass—O0.

Secondly, it has been shown that noise smears the
boundaries of the attraction zones and thereby destroys their
fine structure.

Thirdly and finally, the existence of noise invariants has
been discovered, i.e., the integrat@yer all initial value$
probabilities of going into states andx are independent of
the noise intensity.

Invariance of the quantityy means that noise neither
increases nor decreases the area beneath the B&/a)
but only redistributes the probability along tlgeaxis. One
interesting property of bifurcation transitions of the type be-
ing considered follows from this, which has yet to be men-

tioned in the literature as far as we know. Consider the quan- The authors are grateful to I. . Minakova and M. V.
tity Kapranov for critical comments and valuable advice. This
. 1 work was performed with the partial financial support of the
I(NO)ZJ PO(¢IN)dE, Ministry of General and Special Education of the Russian
0 Federation under Grant 95-0-8.3<GB 107/96.

which characterizes the probability of going into the state
in the absence of noise. If this quantity is larger smallejy
than 0.5, i.e., if the stat& is reached mordor less fre-
uently thanx, then this property is also preserved in the
9 y f . property P *)E-mail: butr@vpti.vladimir.su
presenpe of noise. . . **)E-mail: kravtsov@asp.iki.rssi.ru
This property can have practical value at relatively small+ E-mail: elena@marine.kamchatka.su
values ofN whenl  is still markedly different from 0.5. For
example, foN<5 the difference ofy from 0.5 amounts to
at least 0.04or 8%, as follows from the table below.
¢ The Eystelm cop5|d(:]r_eﬁ IS an example of a}_ pecrl:har gl_lM. A. Shishkova, Dokl. Akad. Nauk SSSE09, 576 (1973.
ur'c.a_tlon roulette, in which noise Ca.nnOt eq_u"?‘ ize t e Prob-2p | Neishtad and V. V. Sidorenko, Preprint No. 86stitute of Applied
abilities of the outcomes andx. Physically this is explained  Mathematics, Russian Academy of Sciences, Moscow, 1995
by the symmetrical action of the noise: the noise, facilitating jC- Baesens, Physica 88, 319(1991).
an increase in transitions from the statdo x, induces the & 00 Proc. IREA7, 1304(1959. . .
. L. — A. R. Kaplan, Yu. A. Kravtsov, and V. A. RylowRarametric Oscillators
same number of inverse transitions from the skate x. Of and Frequency Divider§Sovetskoe Radio, Moscow, 1966
course, alN—, the noise invariant$y and | approach 8H. G. SchusterDeterministic ChaogPhysik-Verlag, Weinheim, 1984;
: e Mir, Moscow, 1988.
0.5, S_O that the mtegrated prOb.abllltleﬁ ?nd Iy do not "E. Arimondo, D. Dangolane, C. Grabbanini, E. Menchi, and F. Papoff, J.
equalize because of an increase in the noise but as a result ofpt soc. Am. B4, 892 (1987.

a decrease in the rate(or increase in the number of steps ®L. Kapral and P. Mandel, Phys. Rev. 32, 1076(1985.

N). 0. Ya. Butkovski, J. S. Brush, and Yu. A. Kravtsov, iredictability of
Complex Dynamical Systemsd. by Yu. A. Kravtsov and J. B. Kadtke
(Springer Verlag, Heidelberg, 1996. 143.

8. CONCLUSION 10J.'S, Brush, O. Ya. ButkovskiYu. A. Kravtsov, and E. D. Surovyatkina,

. . . . Zh. Eksp. Teor. Fiz109, 2201 (1 ETP82, 1186(1996)].
The above analysis of dynamical period doubling bifur- sp. Teor. Fiz106, 2201(1996 [JETP82, 1186(1996]
cations has explained several previously unknown featuresTranslated by Eugene R. Heath
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We study the quantum theory of nonlinear interaction of charged particles and a given field of
plane-transverse electromagnetic radiation in a medium. Using the exact solution of the
generalized Lamequation, we find the nonlinear solution of the Mathieu equation to which the
relativistic quantum equation of particle motion in the field of a monochromatic wave in

the medium reduces if one ignores the spin—spin interagtlom Klein—Gordon equatignWe

study the stability of solutions of the generalized Laegpiation and find a class of

bounded solutions corresponding to the wave function of the particle. On the basis of this
solution we establish that the particle states in a stimulated Cherenkov process form bands.
Depending on the wave intensity and polarization, such a band structure describes both
bound particle—wave statésapture and states in the continuous spectrum. It is obvious that in
a plasma there can be no such bands, since bound states of a particle with a transverse
wave whose phase velocity,, is higher tharc are impossible in this case. The method developed
in the paper can be applied to a broad class of problems reducible to the solution of the
Mathieu equation. ©1998 American Institute of Physids$1063-776(198)00401-4

1. INTRODUCTION (ay is the amplitude of the four-dimensional vector potential

o o .. of the wave, then according to the results of Ref. 1, for
While in spontaneous processes of emission of radlatlo%>§ where
crs

by charged particles the medium acts as the third body
needed for the conservation of energy and momentum, in vo)?
processes where particles interact with an external field of fcr:<1_”_)
electromagnetic radiation new phenomena that are essen-
tially nonlinear manifest themselvés® For instance, in an the wave field becomes a potential barrier from which a par-
insulator, where the refractive index= @> 1, there is the ticle is (inelastically “reflected.” Here the expression for
Vavilov—Cherenkov effectheree and u are the dielectric the critical-intensity parameter has been written for the case
constant and permeability of the mediunn a plasma me- where the initial electron velocity, (electron energy,) is
dium, wheren<1, such processes are impossibMhich is  directed along the field’s wave vectér (|k|=nw/c), i.e.,
also true of a vacuum, whene=1), but in this case the when the initial Cherenkov angle with the external wave is
plasma can act as the third body for energy and momenturrero. If 6+ 0 (wave polarization is unimportant in this case
conservation in the creation and annihilation of electron-and the interaction angles are not too snalh 6|E,/mcé>¢
positron pairs by the photon fiefd® (see Ref.  we have
The interaction of electrons and electromagnetic radia- ) mc
tionina dl_electrlc medl_um, i.e., a stimulated Cherenkov pro- §§r( 0)= ( 1— n@ cos 0) (n2— 1)(_
cess, has its own special features due to the threshold nature Eo
of spontaneous Cherenkov radiatithe electron velocity 1.3
must be higher than the phase velodty of the wave emit-
ted in the given mediuf) or to the requirement that a cer-

mc?
Eo

21-1
(n2—1)( } , (1.2

2 -1

‘sin 0

In this case stimulated Cherenkov interaction is nonlinear in
) ”» ; the field strength itself, and “reflection” occurs from the

tain coherence conqnlon be met,cos 0_=c/n_, wheregis the corresponding phase planes, while the electrons that initially
Cherenkov angldc is the speed of light in vacuumThe were in the wave can be captured by it. This nonlinear “re-

existence of a threshold velocity in the spontaneous Procesfsction” or capture of electrons by the radiation field has a

leads to a threshold value of the field strength in the Stlmu'straightforward physical interpretation in the reference frame

lated process, and, depending on whether the strength of tt}:\es.sociated with the wavincen>1, we havev ;y<c, and

external field is greater or smaller than this critical value, th_esuch a reference frani does indeed exi®). In this refer-

interaction of charged particles and the radiation field Mani, e frame there can only be(rmonuniform) magnetic field
fests itself differently(see Ref. 12’ If we introduce a dimen- which, beginning with a valug> &, reverses the particle’s
sionless Lorentz invariant parameter of the intensity of th%otioﬁ (0——p), i.e., the particlecri,s elastically reflected
given radiation field, This phenomenon, i.e., the existence a critical field
strength, dramatically changes the behavior of electromag-

2.2 . ) : .
£2=— € a a2=a.al (1.1) netic processes in a medium. In particular, we can speak of
mect’  ©0T “0i% ' the Compton effect in a dielectric medium only when the

24 JETP 86 (1), January 1998 1063-7761/98/010024-08%$15.00 © 1998 American Institute of Physics 24



field strength of the wave does not exceed this valliais  and the above phenomena cannot be studied by perturbation-
value determines the width of the Cherenkov resonance, i.etheory techniqués or the eikonal approximatiotf,in Sec. 3

the closeness to the Cherenkov cone, which in linear theorwe develop a new approach: under certain conditions the
is limited only approximately by the condition for the appli- Mathieu equation can be replaced by the generalized Lame
cability of perturbation-theory techniques. The exact solutiorequation, which can be solved exactly. We study the class of
of the classical problem shoWwsthat there is a minimum bounded solutions. In Sec. 4 we study the stability of the
width of the Cherenkov resonance determined by thavave functions and show that particle states form a system of

strength of the field, allowed and forbidden bandm the reference framR asso-
ciated with the wave this system corresponds to the band
Vo COS O— ¢ =A(8), struc_ture of the particle energy spectpurinally, in Sec. 5
np . we discuss the results.

min

and that linear theory can be applied only if

2. KLEIN-GORDON EQUATION FOR A PARTICLE IN THE

2

+m?c? |, (2.1

~ €
2[p_ %
C(p A

c

vo cosf— >A(8), FIELD OF A PLANE MONOCHROMATIC WAVE IN A
min MEDIUM, REDUCIBLE TO THE MATHIEU EQUATION

or in other words¢<¢&.,. But &, as Egs.(1.2 and (1.3 . . L . .

show, can be arbitrar?irly smallcrnear tr?e Cherenkov cone, It we Ignore: spin—spin mteractlon,.the KIem—Gord_oq

which means that the Cherenkov process is highly nonlinea?’,v"’we equatlpn descrlbe§ the. interaction of a rel.at|V|st.|c

no matter how weak the field is. In this connection it must b qharged particle and a given field of electromagnetic radia-

said that the results of studies in the stimulated Cherenkol/o"™"

effect obtained by perturbation techniques and reported in 2,92qr

the reviews in Refs. 11 and 12 were erroneous. These results —7" 52> =

have been analyzed in detail in Ref. 13.

The nonlinear dynamics of the Cherenkov process anavheree andm are the particle’s charge and mags; —i%V
the features of this process mentioned earlier have been stud- the particle’s generalized momentum operator, and
ied largely in classical terms. The solution of the quantumA=A(t—nx/c) is the vector potential of a plane wave
problem, which could, at least in principle, describe thepropagating along th& axis. We assume that the wave is
guantum dynamics of the nonlinear interaction of an electrormonochromatic with frequency and polarization
and an electromagnetic field in the medium, has been found
only in the special case in which=0 and the wave is cir- A:[o' A, sir{w(t—ni . 9A cos{w t—nf) ]
cularly polarized'* And, as noted earlier, when the field is c c
turned on and off adiabatically, the electron can only be “re- 22
flected” from the wavefrontfrom the envelope of the wave Hereg=0 corresponds to linear polarization age +1 to
pulse due to the intensity effecttf>¢£2). As result of such  right- and left-hand polarization, respectively.
(classical “reflection” and because of the wave properties  In solving Eq.(2.1) it is convenient to replace the vari-
of the particle, there occurs an essentially quantum phenonables x and t by the wave coordinates=t—nx/c and
enon: modulation of the electron probability density at hard;y=t+nx/c. Then, ag2.2) shows, the variables, y, andz
x-ray frequencies due to the superposition of the incident andre cyclic, so that the eigenvalues of the operators
“reflected” electron waves.It is still unclear what role the
guantum phenomena play in the general case and how im- f\z—iﬁi P =—ihi p,= —ihi
portant the formation of bound electronic states in the cap- an’ Y ay' * Jz
ture mode is. Here we are forced to deal with a qualitative, A — _ _
manifestation of the quantum nature of the particle—wave?hr:t fﬁgstmecdoAm const, py=const, andp, con;t. Note_

: ponents, and p, of the generalized mo
system, when the expected discrete spectrum of bound statgs,tum are conserved because the presence of a plane wave
of a particle are influenced in a quantum manner by the Othe(’joes not destroy the homogeneity of space inytaglane
potential wells, which are infinite in numbéa situation re- the polarization plane of the wave (=const). Clearly, i;1
sembling the pattern of electronic states ina olid o free particle solution of E42.1), A is the constant of the

In this paper we study the quantum theory of the inter-ion well known from classical electrodynamics,
acti_on_ of a charge_d particle and_coherent e_IectromagnetiE_CpX/n:COnst (A=(nE—cp,)/2n), only here, in the
ra_d|at|on in a med_lum. Our goal is to e_stabhsh an OVera"quantum cas@)=1{p,.,p,} andE must be interpreted as the
picture of the nonlinear quantum dynamics of a stlmulateqnitial momentum and total energy of a free particle.
Cherenkov process and to fill, in this way, the gaps men- Thus, we can look for a solution of E.1) in the form
tioned earlier.

In Sec. 2 we discuss the nonlinear interaction of charged [ [
particles and the given field of a wave on the basis of the W(r,t)z@(r)ex;{ — A0t Epi'r)’ 2.3
relativistic Klein—Gordon equation. We classify the cases in
which such equations can be reduced to the Mathieu equa- , _ _( E——p
tion. Since the Mathieu equation cannot be solved exactly 2 n"x

=const, p, =const, (2.339
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and for the functionb(7) we have an ordinary second-order i i i n2+1
differential equation: W(r,t)= F(T)exp(gpl Mg Ay AT,
2

P22 ldq> o A (2 1d<I> 2.7
(n — )F‘F | (n + )E—

2 e ?
Co PL— EA(T)

with F(7) the solution of Eq(2.6).
Thus, establishing the interaction of a scalar particle and
®=0. (2.4  a given field of electromagnetic radiatid®.2) reduces to
solving Eq.(2.6). The form of the latter depends on the po-
This equation can be reduced to a one-dimensional Schraarization of the wave. In the general case of elliptic polar-

+A%(n°-1)+m?c*

dinger equation with a “potential energyJ(7) if we elimi-  jzation this equation is the well-known Hill equation; for a
nate the term with the first derivative. To this end we con-circularly polarized wave E¢2.6) is the Mathieu equation,
duct the following transformation: and for a linearly polarized wave the equation is again of the
i n2+1 Hill type. Here we examine all cases of interacti@md the
(D(T):F(T)GX[{—%WAT) (2.5 dependence on the wave intengiiym which the Klein—

Gordon equation reduces to the Mathieu equation
Then for the unknown functiof (7) we have the following

equation: d’F .
——=(B+D sir? a)F. 2.9
d2F da

R T 2A2_(n2_ 2 _ E )2
a? " A%(n*—1) [4n ATmnt= e (pL A In the case of a circularly polarized wayg= *+1 in (2.2)),
there is azimuthal symmetry about the direction of wave
—(n2—1)m2c4]F=0, (2.6)  propagation(the x axis), so that we can, without loss of
generality, select the particle’s initial momentum in the
and the solution of the Klein—Gordon equati¢hl) can be  plane (p,=0), i.e.,p, =p,in (2.6) and(2.7), anda= w7/2.

written Then for the coefficients of Eq2.8) we have

4(n?—1)m?c*+4(n?—1)c?p2— 16n2A2—8ecp,Ay+ 4€?A’
c ﬁ2w2(n2_1)2 ’

16ecpAy

=R (1) @9

When the wave is linearly polarized, in the general case If the conditions are opposite to those @£.10, e.g.,
of arbitrary intensity and interaction angle Eg.6) does not  #=0, the interaction is due to the wave intensity, and for the
reduce to the Mathieu equatid@.8). But in realistic cases coefficients of Eq(2.8) we have
where the interaction angles are not too snéi, essentially

2_ 2~4 272 272
always much smaller tharE(mc?)sin ¢, and in Eq.(2.6) we B _(n"=Dme = an"A D, o= eAo
] . . . . 1,0 hZ 2(n2_1)2 ' 1,0 h?w?(nz_l)'
can ignore, with accuracy still remaining high, the term pro- @
portional to the wave intensity<{A?) in comparison to the (212

term proportional tgp, -A=pA sin 6, where ¢ is the angle
between the particle momentumand the wave vectdk of
the given radiation field2.2). Thus, if

3. BUILDING AN APPROXIMATE SOLUTION OF THE
MATHIEU EQUATION FROM THE EXACT SOLUTION OF THE
LAME EQUATION

. As noted in Sec. 2, in the present paper we examine all
m& sin 6>¢ (2.10 cases in which the relativistic equations of particle motion
are reducible to the Mathieu equati¢n8). As is known?’
and the particles interact with a linearly polarized wavefor k<1 Jacobi's elliptic function Snf,k) tends to the or-
(g=0 in (2.2), Eq. (2.6) reduces to the Mathieu equation dinary sine function:

(2.8) with SN @,K) |ge1— Sin a. 3.1
4(n?—1)m?c*+4(n%— 1)02p§_ 16n2A2— 8ecp Ao Using this property of the doubly periodic function 3nk),
B o= 7202(N—1)2 , we can replace the Mathieu equati@g) by the generalized
Lame equation’
16ecp,Aq d?U

DLFm. (2.11) Wz[BJrN(NJrl)kZSnz(a,k)]U, (3.2
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where the coefficienN(N+ 1)k? of Srf(a,k) is a constant
quantity that depends on the parameters of the particle and Mz=—imk  z=-imK Z=-in/K
the field (see Eqs(2.9), (2.11), and (2.12). For arbitrary
values ofB, Eg. (3.2 can be solved exactly for positive
integersN.

Thus, passing to the lim{8.1), we can build an approxi- iK'’
mate solution of Eq(2.8) by employing an exact solution of
Eqg. (3.2. Mathematically, when the passage to the limit
(3.1) is completed, the divergence along the imaginary axis Z=0 Z=0 Z=0
of the ordinary sine function at the infinitely distant pofint 0 K 2K x
the analytic continuation into the complex planensforms
into a removable divergence in the form of a simple pole in
the elementary cell of the doubly periodic function Sn. In
terms of the classification of algebraic equations, €98
has two regular points and one irregular point, while Eq.
(3.2) has four regular points. When the Mathieu equation is 0'(a)
replaced by a generalized Laraquation, the irregular point Z(a) o)’ 3.9
of the Mathieu equation transforms into two regular points of
the Lamieequation, with the result that the latter allows anWwhere

Z = joo Z=-int/2K |Z = joo

FIG. 1. Nodal values of the functiod(«) in the elementary cell of the
complex variablex.

exact solutior(since Eq.(3.2) transforms intd2.8) in such a 9,(8,9) =2q sin B—2q%* sin 33+ 2%/

way thatN(N+ 1)k?=D ask—0 andN—o, in the Mathieu _

equation two regular points actually merge into one irregu- XsingB—---,

lar). o4 o4 25/4
Physically, the approximate solution of the Mathieu 2(B,q)=2q7" cos f+2q7" cos P+2q

equation(2.8) found in this manner means that we allow for Xcos B+,

the poles of “Bragg” resonances in the field of the mono-

chromatic wave(Cherenkov resonances in the reference  93(8.4)=1+2q cos +2q* cos 48+2¢°
frame comoving with the waye and there are infinitely X oS @B+,

many such resonances. Hence such an essentially nonlinear
solution will describe, at least in principle and to arbitrarily 94(B,q)=1—2q cos B+2q* cos 48— 2q°

high accuracy, the nonlinear interaction of charged particles

with a wave in the mediunino matter how weak the wave XCoS g8+ . (3.6

may bg. This corresponds ti=1 in Eq.(3.2). The solution  Obviously, 9;(8,q) is an odd function and}, ; 4 8,0) are
for strong fields corresponds > 1. This means, however, even functions. The arguments of tiiefunctions incorpo-
that any process becomes nonlinear and, on the other handte 9,=94(0,q) (9=9,(0,g), generally speaking and
that its quantum nature is suppressed and the interaction paj= exp(w{), where( is an arbitrary complex number with a
tern approaches the classical one. Hence we study in detgibsitive imaginary part, so thag|<1. On the other hand,

the case in whiclN=1, which corresponds to extremely the parameteq is related to the argumeiit of Sn(a,k) in

weak fields D<1), and which reveals the fundamental non- the following manner:

linearity of the process and the quantum features of stimu- )

lated interaction noted in Sec. 1. K= 9>(00) 3.7)
The exact solution of Eq.3.2) in this case has the fol- ﬁg(o,q) ' '

lowing form:’ _ . . .
9 Since the solution of Eq.3.2) is the wave function of a

H(a+ a;) particle and thus must be boundet{,a;) in (3.3) must be
U(a)=Cy o) exd —Z(a)a] either purely imaginary or zeraZ(«;)=0. The function
Z(«) has the following properties:
H(a—ay)

0(a)

where ¢, is determined by the equation

Z(a+2K)=Z(a), Z(a+2iK’)=Z(a)—|%.

Hence, it is enough to study the functi@f«) in the rect-
Crfe;-drfa; 1 angle[2K; 2iK'] of the complex planéFig. 1). Equations
Srfa;  Srfa; =B. (34 (3.5 imply thatZ(«) is either purely imaginary or vanishes
on the straight linex=0 andx=K.
Now let us determine the range of valuesBofor a fixed

Here Cna; and dna; are also Jacobi’s elliptic functiofthe

cosinus amplitudinis and the delta amplitudini§, andC,  \a1ue of K satisfying the condition of boundedness of the
are normalization constants, an_d the functiéfisr), &(@),  \wave function(3.3). To this end we employ the relationship
andZ(«) are defined as follows: betweena; andB given by Eq.(3.4). The latter yields

H(a)=91(a9370), 6(a)=04ad3?0), k2SrPa,;=B+k2+1, 3.9
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y H(a—K—-iK") T
F=0 F=1 F=0 +Cp—————ex .

2iK o(a) "2k
Allowing for the fact thatH(«) is an odd function and
= —0c0 = 2 = —00 . . m —
= F=1k F H(a+K+iK')=q ¥ exr{lﬁa)ﬂs(aﬁs ),
we find that
F=0 F=1 F=0 93
0 K 2K x U(a)=C’q’1’4? dna(C'=C;—C,).
4

FIG. 2. Nodal values of the functidi(«)=Sr? « in the elementary cell of
the complex variabler. 4. BAND STRUCTURE OF PARTICLE STATES IN A
STIMULATED CHERENKOV PROCESS

The existence of well-defined ranges Bfin Eq. (3.2),

i.e., we must find all the values @ satisfying (3.8) for  \yhich atk?<1 becomes Eq(2.8), restricts the region over
which «, varies along the straight lines=0 andx=K. To  \hich a charged particle can move in the field of a transverse
this end we build the nodal values in the elementary celg|ectromagnetic wave in the medium. Indeed, the conditions
[2K; 2iK'] of the complex variabley, since SA(a,k) is @  (3.9) and (3.12 determine the admissible values &f (see
doubly periodic function with real () and imaginary gq. (2.33) and the transverse componenpts of the gener-
(2K") periods(Fig. 2). alized momentum, i.e., the initial values of the energy and

Figure 2 shows that on the straight lines 0 andx=K  momentum of a free partickthe velocity and the Cherenkov
the function SA(a,k) varies within the half-closed region angle at which the particle remains in the wave. Thus, in the
(==,0] and the interval1,1k?]. From Eq.(3.8) in the  field of a plane-transverse wave in the medium there are

(—,0] region we obtain allowed and forbidden regions of motion, or bands, for the
B+k2+1<0. (3.9 charged pa_rtlcle. Below_we will see that _such a band str_uc-
ture of particle states exists only in a medium with refractive

In the interval[ 1,1k?] at ;=K we obtain index n>1, due to the nonlinear Cherenkov interaction.

Physically this means that a particle may be in a bound state

B+1=0, (310 with the transverse wave, i.e., is captured by the wave, which
and ata;=K+iK’, in any case is impossible in a plasma<(1), where the
5 phase velocity of the wave,,,,, is higher tharc.
B+k-=0, (3.11 Let us now study the quantum dynamics of stimulated

Cherenkov interaction. We wish to display the band structure
of the particle state mentioned earlier as a function of the
wave’s intensity and polarization and of the interaction angle
—1<B<=-k2 (3.12 0.

i.e., in the interval 1,1k?] the admissible values of the pa-
rameterB lie within the region

Thus, the bounded solutions of the generalized Lame Suppose that we are deah.n.g with a circularly polarized
equation(3.2) lie in the range€3.9) and(3.12 of variation wave. If we combine the conditior8.9), (3.12, and(2.9),
9 ' . gess. ' . we have(with such a wavgthe following band structure for
of parameteB, i.e., there are allowed and forbidden bands.

Let us show that at the edges of these bands the two Iinearf)t/1e conserved quantitk =(nE-cpy)/2n:

independent solutions i(8.3) coincide and are transformed, |2 5.2 >4l 2D
respectively, into the doubly periodic functions ank), NE—cp=| (n"—1)(cpz + mc™+eAg)
Cn(a,), and dna,. The latter agrees with the general prop- ) 0o 2112
erty that at the edges of the allowed bands, a particle’s wave n (N"-Dh°w
function must be periodic. 4 '

Thus, ata;=0 the solution(3.3) yields [(n2— 1)(c2p2+ mech+ c2AZ)] 2

Uy =c @ 2 g ic—c e

=C——=C—3S9n = .
(@) 6(a) Vg a( 1+C2) <nE-cp,=<|(n?-1)(c?p2+m?c*

At @1=K we have 112

(n2_1)2ﬁ2w2

H(a+K) H(a—K) 1'}2 +92AS_ZGA0CDZ)+ 4 (41)
U(a)=C, o) ) =C19—Cna.
4 Such a band structure of the particle states has a simple
At a;=K+iK’ we have physical explanation in the reference frarRemoving to-
) gether with the wave\(=c/n). Since in such a reference
U(a)=C H(a+K+iK") exp( i la> frame there can only be a static magnetic field, the problem
! 0(a) 2K is steady-state, with the result that the particle energy is con-
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served. Then the conditiori4.1) imply that the energy spec- shows that the edges of this band determine the critical value

trum of the particle also has a band structure: (1.2) of the wave intensityat 6= 0), above which the wave
n2524' 2|12 becomes a potential barrier for the particle and “reflects”
E'=|c2p2+ m2ct+e?A2+ ——| it. The other two forbidden bands are related to the stimu-
4 lated Cherenkov interaction in the field, i.e., when the inter-

[c2p§+mzc4+e2AS]1’z$E’ acti(_)n anglee is nonzero. In this case finite _motion_ of the
particle in the wave(captur¢ becomes possible, with the
interaction of the charged particle and the transverse electro-
magnetic wave in the medium being entirely of a quantum
nature. Here, because of the periodic structure of the field,

4.2 the discrete levels of the bound states of the particle in the
capture mode are transformed into bands, and structure simi-

lar to the band structure of electronic states in solids

<|c?p2+mPct—2eAcp,

n2ﬁ2w/2 1/2

272
4

rHe?;?ea:];(fg:])R‘n ~ 1 is the frequency of the wave in the emerges. The forbidden bands, which appeat#0, are

To establish the physical pattern of the band structure O§ymmetrically disposed about the phase velocity of the wave,

the particle states in the laboratory reference frame, we o2/, and have the same widihy (¢, 6) = A5(£,0)=A(¢, 0):

press the conserved quantitiésand p, in terms of the ini- c mc2\2 p _
tial detuning of the Cherenkov resonange;os #—c/n. Then A(§,0)~ ﬁ(ﬂz— 1)(?> met siné
the conditiong4.1) yield the following band structure for the

(n*-1)

(4.3p  that the parameter of the problekd is much smaller than

initial longitudinal velocity of the particle: mc*\? o [he 2|12
c cl ma\ 2 ho 21112 x E §+E(n —b 4.9

v COSO<——— (n2—1)(—) £+ —(nz—l)} } , , _
n nj E 2E 439 The presence of such forbidden bands leads to “reflection”
c ¢l mc2\ 2 o 2112 of the particle from the corresponding phase planes and to

v COS 0= — + — (n2—1)(—) £+ _(n2_1)} } : the possibility of formation of bound states in the wave,
n o ni E 2E which are already first-order effects in the field strength; in
c cf ma\2 v the classical limit this agrees with our previous restifts.

v COS 0= —+ o (nz—l)(?) &l Note that formula(4.5 was written on the assumption

c ¢ , mc?\? Y2 unity, which is a condition for the validity of the above re-
v cosos —— | (n"=1)| =] & | sults. This condition can also be written
c cf nec2\ 2 8eAjcp sin @
v COsfs—+ (n2—1)<?) £2—(n?-1) m<l- (4.9
mc?\22p sin 6 b 27112 If (4.6) holds, Egs.(2.7) and (3.3) together with(2.9)
?) “me {E(nz— 1)} } ; determine the final form of the wave function of a particle

(4.30  with spinS=0 in the field of a plane-transverse monochro-
matic wave in a medium:
X
- — nt) }
c

H((w/2)(t—nx/c)+ a;)
L 9((wl2)(t—nx/c))

2

2
<n2—1>(%) £ (n2-1)

ch2
E

c ¢
cosf=———
n n

c

i i bE—cpy
2}1/2 P (r,t)=ex 5pﬂ+gﬁ

22p sin @ . ho L
mc ¢ 2E (n )
We see that due to the effect of the wave intensity in the
stimulated Cherenkov process there is a forbidden band
whose width depends neither on the interaction angle nor on _ w nx
. " ) . Xexpg —Z(aq) =\t
guantum recoilcondition(4.3b), and hence is of a classical 2 C
nature and is always present, no matter how weak the radia-
tion field. For this reason we call it the main forbidden band,

H((w/2)(t—nx/c)— a)

with a width 2 9((wl2)(t—nx/c))
2 1/2
AO(§2)=2% (n?—1) g) &2 (4.4) Xexr{z(al)g(t—g( ] 4.7

This constitutes the characteristic feature of a coherent spon- Let us now discuss the case in which the wave is linearly
taneous process, which leads to a substantial nonlinearity ipolarized. The condition§3.9), (3.12, and(2.11) determine
the corresponding stimulated procdsge footnote Bdis-  the following regions of particle motion in the wave as func-
cussed in Sec. 1. Because of the forbidden @l there is  tions of the particle’s initial velocity and the interaction
nonlinear “reflection” of the particle from the leading edge angle (provided that condition(2.10 is met, i.e., that the

of the plane-transverse wave. Indeed, the condif®B8b  effect of wave intensity is negligible
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C Chw N H((0/2)(t—nxic)+ a;
v cosasﬁ—ﬁﬁ(nz—l), X1{Cy. (w/2)( — )+ )
(4.89 i1 0((0/2)(t—nx/c))
C Chw nx
UCOS@?E‘FHE(nZ_l); Xex%_Z(ai);(t_F)
2
v cosf= -+ h—w(nz—l)} —(n%-1) ﬁ H((w/2)(t—nX/c) — )
n n||2E 215 0((w/2)(t—nx/c))
mc2>2 2p sin 6 ]1’2
— ——¢&; ® nx
E mc (4.8 Xex;{Z(ai) ) t_F) J (4.11
c cflthw 2 . .
v cosf=———1|==(n?-1)| —(n®-1) where theq; (i=1,...N) can be determined from the fol-
n{l2E lowing system of equations-
2 H 1/2
x(ﬁ) 2p sin 95] | EN: Sn ;Cn a;dn a;+Sn ;Cn aidnai_0
E mc j=1)#i Snzah—Snzai e
At =0, or in conditions opposite t2.10, when the inter- N PR (4.12
action is due to the wave intensity, we have dna; _ 1
2 Cn i 2 ?——B
c mR\2&2 [ 2) 112 i=1 Sna;| =1 Srra;
U$__ﬁ[(n2_ ) ?) 5+ f(”z_l)} } : Equation(4.11) is valid if
(4.93 ,
c o m2\2&2 [ho 2y 112 16eAjcp sin 6 3
v=ath “‘2‘“(?) ZHEM™ Y| N(N+ D)%’ =1) 413
2\2 2112 which shows that foN>1 the wave functior{4.1]) is valid
U>E+E (nz_l)(m_> g_} , in the most highly refractive media possible, and in laser
n n E/) 2 fields. This equation also shows that the discussed results for
c ¢ me2\ 2 £2]12 the main bands in the field of a circularly polarized wave are
v ——— (n2—1)(—> = (4.9p  also valid in the cas&l=1 in strong fields at small interac-
n.n E/J 2 tion angles,0<1.
C Cho c 0
vs_+t o (-1, v=o—o (071, 5. DISCUSSION

(4.99 Achieving a quantum description of the interaction of a
Here, if we examine the two opposite limits of the interactioncharged particle and a plane-transverse electromagnetic wave
angle or field strength, we see that the stimulated Cherenkawn a medium, based on the relativistic equation of motion,
process directly depends both on wave intensity and on wavean be reduced to finding the solution of the Mathieu equa-
polarization. In contrast to the case of a circularly polarizedtion (a one-dimensional problem in the wave coordipate
wave, in the field of a linearly polarized wave the boundThe method of building a nonlinear approximate solution of
particle stategcapture also form due to the intensity effect the Mathieu equation developed in the present paper is based
at #=0. In this case the results are valid if on the exact solution of the generalized Lagguation for
62A2 small values of the modulus of Sn when the latter tends to
0 (4.10 the ordinary sine functiofsee(3.1)). Using this property of
2(n*~1)h’w? the doubly periodic function Sa(k), we replace the

The disappearance of the first forbidden band near thMathieu equation by the generalized Lamguation, which
Cherenkov velocity ab+ 0 can be related to the fact that the Nas the same basic properties as the Mathieu equation, but in
condition (2.10 ignores the wave intensity effect. As shown contrast to the latter allows for an exact solution. We have
earlier, this main forbidden band for a charged particle in thestudied the class of bounded solutions of the Lamgaation
field of a transverse wave in a refractive medium does noftnNd used them to build the particle wave function. According

depend on the interaction angle, is always present no mattép the latter, the spectrum of eigenvalues of the quantities
how weak the field intensity may be, and is of purely classi-Characterizing a state of a particle in the field of a transverse
cal origin. monochromatic wave in a dielectric medium has band stric-

Up to this point we studied the main bands, which cor-fure. In the reference frame attached to the wave there can
respond toN=1 in the solution of the generalized Lame ONly be a static magnetic field, i.e., the problem is steady-

equation. In the general case, for arbitrafythe wave func-  State, with the result that energy is conseryadd so is the
tion of a scalar particle has the form generalized momentum of the particle in the polarization

_ . plane of the plane-transverse wavend the particle energy

I I NE—cpy (X spectrum consists of bands. In the laboratory reference frame
P(rt)y=expp, r++———=-—nt "

h A n°—=1 \c the conserved quantities are
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1 C quantum effects of tunneling origin or above-barrier reflec-

A= 5 ( E- ﬁpx) =const, p, =const tion from an infinite number of shallow “potential wells of
the wave.” In the field we consider in this pap@ee(4.6)),

(see Eqgs(2.33), a situation that leads to band structure inthe probabilities of such effects in each well are extremely
the initial longitudinal particle velocity. This velocity deter- |ow, But due to the coherent nature of the Cherenkov process
mines the admissible width of the Cherenkov resonance, qﬂNthh has, at least in princip|e’ an infinite coherent |eD‘|gth
the proximity of the Cherenkov cone to an external wave ingnd the translational symmetry of the field of a monochro-
the stimulated Cherenkov process. This is a typically nonlinmatic wave, there is a resonant increase in the probabilities
ear resonance in forced oscillations, wherein the resonangs these effects, which leads to band stricture. The method
width is a nonlinear function of the amplitude of the eXternaldeve|oped in this paper allows for simultaneous contribu-
periOdiC force—in our case the field Strength in the WwavVveiions of infinite po|es of the “Bragg resonance” type
The admissible width of the nonlinear Cherenkov resonance  As for spin—spin interaction, the problem involving the
is determined by the condition@l.3) and (4.8), (4.9 for  Dirac equation will be discussed in a separate paper.
circular and linear polarization of the wave, respectively. For
smaller values of this width, i.e., as we approach closer thaHActuaIIy, the spectrum of spontaneous Cherenkov radiation is determined

e the di ion of th iunn,= . But since in thi
a certain “critical” value from the initial Cherenkov cone by the dispersion of the medium=n(«). But since in this paper we
study the stimulated Cherenkov effect in an external field of monochro-

(the limits of these conditionsa particle is unable to pen-  (asic radiation, of which laser light is a good example rbwe mean the
etrate the wave further, i.e., there are forbidden regions forrefractive index of the medium at the frequency of the stimulated wave.
the motion of the particle in the field of the wave. Dependingz’The same coherence conditions as in Cherenkov process are applicable to
on the interaction ang|e wave intensity and polarization thestimulated Compton and undulator processes, so that these processes have
! ' o .1 all the features we have just describ@dsulting in an interaction with a
presence of these forbidden bands leads to “reflection” of retarded interference wa)y&® which can be generalized to include stimu-
the particle from the respective phase planes and to formadated interaction of particles and a wave propagating with a phase velocity
tion of bound states, or the capture of the particle by the ven<c.
transverse wave. The latter, in particular, means that the%n a plasma, whera<1, an inertial reference frame moving with velocity
can be no band structure in plasma-like media, since bound’~ ¢ as physical meaning, being associated with the center of r3ss (
. . . of the particle—antiparticle system in pair production by the photon field in
states of a particle and a transverse wave propagating withy,. plasma:10
phase velocity ,,>c are impossible.
The nonlinear solutions of the Mathieu equation ob-"iy M. Arutyunyan and G. K. Avetisyan, Kvant. ElektrofMoscow No.
tained in this paper on the basis of an exact solution of the 7, 54(1972 [Sov. J. Quantum Electro®, 39 (1972].
Lam'eequation are valid if the modulus of Sn is Smkﬂ,< 1, 2V. M. Arutyunyan and G. K. Avetisyan, Zh.Ksp. Teor. Fiz.62, 1639

- Z - . (1972 [Sov. Phys. JETRS5, 854 (1972].
WhereUpon the generahzed Langguation turns into the 3V. M. Haroutunian and H. K. Avetissian, Phys. Lett.44, 281 (1973.

Mathieu equation. This is the only approximation used in 4. k. Avetisyan and S. G. Oganesyan, Izv. Akad. Nauk Arm. SSR &iz.
building the nonlinear solution of the Mathieu equation on 12(1973.
the basis of the method developed in this paper. When theH- K. Avetissian, Phys. Lett. /9, 399 (1978.

.. lar] larized. th fi f ticl ti G. K. Avetisyan, A. K. Avetisyan, and Kh. V. Sedrakyan, Zrksﬁ. Teor.
wave is circularly polarized, the equation of particle motion g, 94 No. 4, 21(1989 [Sov. Phys. JET®7, 660 (1983]

has the form of the Mathieu equation, so that the results ar€y. M. Haroutunian and H. K. Avetissian, Phys. Lett.58, 115(1976.

valid if k?<1, which amounts to4.6) for the first band  ®H. K. Avetissian, A. A. Jivanian, and R. G. Petrossian, Phys. Lei6A
= i i 161 (1978. )

(N=1) a,nd to(4:13)_for .a k.)and with an arpltrarw' \N.hen °G. K. Avetisyan, A. K. Avetisyan, and Kh. V. Sedrakyan, ZlksR. Teor.

t_he wave's polarization |s_I|near, thg equation of particle mo- ¢, g9 50 (1991 [Sov. Phys. JETR2, 26 (1991)].

tion reduces to the Mathieu equation if we ignore the termi®«. Avetissian, A. K. Avetissian, A. Kh. Bagdasarian, and Kh. V. Se-

proportional to wave intensiticondition (2.10), so that our lldfakian, Phys. Rev. 34, 5509(1996. _

results hold in this case if the conditigd.6) is augmented E’ﬁxéA{J“;ggr;yal’égg?lgéj]' Oganesyan, Usp. Fiz. Na6k, 1089(1994

by (2.10. However, in realistic cases for the Cherenkov pro-izy . Harutunian and S. G. Oganesyan, Phys. REif, 217 (1996.

cess, the conditioi2.10 (whereby the equation of motion *2G. K. Avetisyan, Usp. Fiz. Naull67, 793 (1997 [Phys. Usp.40, 755

reduces to the Mathieu equatjcmost always holds, so we _ (1997]

. . .
are again left with?<1 (condition(4.6). At 0=0, instead 3, 0, O91eYan and G. K. Avetisyan, 2v. Akad. Nauk Arm. SSR iz
of (4.6) we have(4.10. 154, K. Avetissian, Phys. Lett. 43, 9 (1977.

The above equations for the first banN=£1) corre-  °H. K. Avetissian, Phys. Lett. 58, 144 (1976.
spond to extremely weak fields. The essential nonlinearity ot E- T Whittaker and G. N. Watsow Course of Modem Analysi€am-
the stimulated Cherenkov process was established in pre-2rdge Univ. Press, Cambridg@oad.
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We develop a quantitative theory of the effect of multiple scattering on the bremsstrahlung of
ultrarelativistic electrons in a thin layer of matter. The effect is an analog of the
Landau—Pomeranchuk—Migd@dlPM) effect of suppression of the radiation emitted by high-

energy particles in an infinite amorphous medium, but certain differences do exist. On

the basis of our approach we analyze the data recently obtained at §-A@9 in experiments

set up to verify the LPM effect. We show that in addition to the LPM effect, this experiment
exhibited the suppression of bremsstrahlung in a thin layer of matter, theoretically predicted in our
earlier papers. ©1998 American Institute of Physid$S1063-776(98)00501-0

1. INTRODUCTION essary experimental statistiésee Refs. 22 and 23 and the
literature cited therejn Anthony et al® studied the spec-
The process of emission of radiation by high-energytrum of radiation emitted by electrons in the range of photon
electrons develops in a broad spatial region in the directionergies extending from fractions of MeV to several hundred
of the particle’s momentum. If within this regiofwhich is  MeVs. The measurements were done with targets ranging
known as the coherence length of the emission prddess  from carbon to uranium. The target thickness varied from
electron collides with a large number of atoms, the interacfractions of one percentage point of the radiation length to
tion with these atoms differs from the interaction with sepa-several percentage points. Comparison of the experimental
rate distant atoms. results with the results of Monte Carlo calculations using the
Landau and Pomeranchifound that the multiple scat- Migdal formulas demonstrated good agreement of theory and
tering of high-energy electrons in an amorphous mediunexperiment for relatively thick targets. With a thin target,
leads to a decrease in the spectral radiation density in thikowever, significant discrepancy between the experimental
low-frequency range in comparison to Bethe and Heitler'sresults and Migdal’s predictions was discovered in a number
result*® Landau and Pomeranchllestablished the condi- of cases, especially for gold targets with a thickness of 0.7%
tions needed for this effect to appear and estimated the speof the radiation length in the gamma-photon region below 30
tral radiation density in the frequency range where the effecMmeV.
is significant. What is important is that the effect develops on  The experiment of Anthonet al® aroused significant
a scale much smaller than the radiation length. interest and stimulated the development of nhew approaches
A quantitative theory of the effect of multiple scattering in studying the LPM effect based on the eikonal approxima-
on electron bremsstrahlung in an amorphous medium wation in investigating the emission procé8€*on applying to
developed by Migdal, who used the kinetic-equation the present problem the results of the theory of Mofieamd
method. The work done by Landau and Pomerantiank  Bethe® of multiple scattering of particles in matt€rand on
Migdal® stimulated a great deal of research by other scienfurther development of the functional integration metfdd.
tists, who studied the effect of the medium on bremsstrahThe interest in this problem is also related to the search for
lung at high energies. Among the areas of interest were thanalogs of the LPM effect in QCD and in other areas of
effect of polarization of the medium on radiatibthe allow-  physics(see, e.g., Refs. 29 and )30
ance for recoil in emissiofthe effect of absorption of ra- In this paper we analyze the above-mentioned experi-
diation by the mediun the spectral-angular distributions of mental data that do not agree with the predictions of the
radiation!®!! and the emission of radiation in finite- Migdal theory of the LPM effect. We show that deviations
thickness target$ (see the reviews in Refs. 1, 2, 13—16 andfrom the predictions of the Migdal theory observed in the
the literature cited thereinLaskinet al!” proposed and de- experiment of Anthonyet all® are present when the coher-
veloped a method of functional integration to describe theence length of the emission process is large compared to
effect of multiple scattering on the radiation emitted by high-target thicknessl¢>L), i.e., when the condition for appli-
energy electrons in matter. At present the effect of multiplecability of the Migdal theory are not met. We considered the
scattering on electron bremsstrahlung in an amorphous measel .>L earlier, in Refs. 31 and 32, where we found that
dium is known as the Landau—Pomeranchuk—Migd&M)  the spectrum of the radiation emitted by electrons in a thin
effect18-2 target may differ considerably from the spectrum specified
A detailed experimental study of the LPM effect has by the Migdal formula or by the Bethe—Heitler formula. In
been done only recently at SLAC for electron energies up tdref. 31 we also derived asymptotic formulas for the radia-
25 GeV (see Ref. 19 In earlier experiments the accuracy tion spectrum that are valid for ultrahigh electron energies,
was low due to the difficulties involved in gathering the nec-when the effect is significantSimilar asymptotic formulas
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were also obtained by Ternovsi on the basis of the 2. THE LANDAU-POMERANCHUK-MIGDAL EFFECT
kinetic-equation methofl.However, direct application of . . .
these asymptotic formulas in the analysis of the experimental 1 1€ SPectral density of the radiation emitted by an elec-
data of Ref. 19 leads to absurd results, since at SLAC eneHQn maoving 1n an external f|eId_anng a patft) is deter-
ned in classical electrodynamics by the fornfdla

gies the asymptotic behavior used in Refs. 12 and 31 is ndt"

reached. Hence analysis of the experimental ‘daequires de 2
developing a quantitative theory of the process of emission do =272 J dolkx 12, (2.1

of radiation by relativistic electrons traveling through a thin

layer of amorphous matter, a theory that would lead to exaGjherek andw are the wave vector and the frequency of the
results. The present paper is devoted to this problem. emitted wave/k|=w, do is the solid-angle element in the
In Sec. 2 we discuss the main results of the Migdalgjrection of the radiation’s propagation, and

theory of the LPM effect.
Section 3 develops a general theory of the process of x )

emission of radiation by high-energy electrons traveling I=fﬁxdtv(t)exm(wt—k-r(t))].
through a thin layer of matter. We show that if the coherence
length of the emission process exceeds the target thicknesdere we use a system of units in which the speed of light is
the entire target acts as a single object with which the elecunity.
trons interact and emit radiation. Here the radiation spectrum In an amorphous medium a particle’s path is random,
is determined solely from the distribution of the particleswith the result that Eq(2.1) must be averaged over the vari-
over the angles through which they are scattered by the tapus paths of the electron:
get. The distribution function in turn depends on the type of 5
target (an amorphous medium or a crystaWe derive <d_8> _ & f d 2

. : =— o [k 1]2). 2.3
simple asymptotic formulas for the average value of the do/ 47
spectral radiation density, which make it possible to analyze
qualitatively the emission process in a thin layer of amor-
phous matter.

(2.2

The emission of radiation by a relativistic electron trav-
elling in matter is a process that develops in a large and

In Sec. 4 we develop a quantitative theory of the effect’@Pidly growing(with energy spatial region along the direc-
tion of the particle’s motiort:?> The length of this region is

of multiple scattering on the emission of radiation by ul- lled th h | b of th o 2232
trarelativistic electrons in a thin layer of amorphous matter ¢2/1€d the coherence length of the emission pro n

The theory is based on the exact expression for the distribu‘ﬁlaSSical electrodynamics the coherence length is defined as
tion of particles over the scattering angles in matter obtained | _, 2 2.4

) &Y ) =2y w, 4
by Moliere”® and Beth&® The distribution function takes
into account both multiple scattering of particles in an amor-wherey is the electron Lorentz factor. On the basis of quali-
phous medium and single scattering. Generally it differs contative estimates, Landau and Pomeranchuk fddinalt if the
siderably from the Gaussian distribution of particles over theaverage value of the square of the angle of the electron de-
scattering angles commonly used in the theory of the LPMiection due to multiple scattering over the coherence length
effect. Here we discuss various limits when emissionis larger than the square of the characteristic angle of emis-
strongly depends on the effects of single and multiple scatsion of radiation by a relativistic electron},~ y~ 1, the
tering of particles by the atoms of the medium. We obtainbremsstrahlung of an electron propagating in matter is sup-
several terms of the asymptotic expansion of the expressiopressed in comparison to the results of Bethe and Heitler's
for the average value of the radiation spectrum in powers otheory?
the parameters determining the effect of multiple scattering  The first quantitative results concerning this effect were
on the emission process. obtained by Migdaf. His reasoning was based on a proce-

Finally, in Sec. 5 we make a quantitative comparison ofdure (which he proposedor averaging Eq(2.1) that used a

the result of our theory and the experimental data of Ref. 19kinetic equation for the angular distribution function of par-
We show our results and the results of the experiment agrelécles in the medium. Migdal succeeded in carrying out the
well. We point out that the asymptotic expressions for theprocedure for an infinite amorphOUS medium in the limit of
radiation spectrum obtained earlier in Refs. 31 and 32 aréMall scattering angle§n this case multiple scattering can
insufficient for a quantitative description of the given experi-Pe interpreted as a Gaussian progeb also found that
ment. q
All the results of our research have been obtained by <_8> =Dy (9) (2.5
describing the emission process within the classical electro-

dynamics approach. Such a description is valid when the

energy of the gamma photons is low in comparison to thavhere @e/dw), is the radiation spectrum without allowance
energy of the emitting particle, which means we can ignorefor the effect of multiple scattering on emission of radiation,

de
do

the quantum recoil effects in emission. The conditions of the d 2

. 19 . . to Ze
experiment conducted by Anthory al.™ obey this require- <_) =——+%qL, (2.6)
ment. do/, 3m
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S= (1/4')/2) ‘/w/q (q is the average value of the mu|t|p|e scat- . Note that formul.d2.5) can alsq be derived via the path
tering angle per unit lengthand®,(s) is the Migdal func- mtggral method, which was d_one in Ref. 17. Herg the aver-
tion, which takes into account the effect of multiple scatter-aging procedure can be carried out analytically via integra-

ing on emission of radiation: tion over random paths, since the scattering is assumed to be
a Gaussian process and the functional that must be averaged
CDM(S)=2452’ fxdx e~ 25X coth x sin(25x)—; _ is an exponential expression for relativistic particles.
0
(2.7 3. EMISSION OF RADIATION IN A THIN LAYER OF MATTER
This function exhibits simple asymptotic behavior for small  The above theory of the LPM effect is valid if condition
and large values dd: (2.10 is met, i.e., if we can ignore the effect of the edges of
1, if s>1, the target on the emission of radiation. We now study the
(Dm(S):[ . opposite case, where the emission process develops over
6s, if s<Il. lengths much greater than the target thickndss (). The

The quantitys? is the ratio of the square of the charac- €ffect of the polarization of the medium on the emission and
teristic angle at which radiation is emitted by a relativistic the transition radiation are ignored, which is justified if
electron,92~ y~2, to the average value of the square of the®> yw, holds, wherew,, is the plasma frequency.

Y o . . . .
electron deflection due to multiple scattering over the coher-  In our case of >L it is convenient to writd in (2.1) in

ence length®?=ql,. the form
When s>1 holds, Eq.(2.5 coincides, within logarith- % d vt
mic accuracy, with the corresponding results of Bethe and |=if dt exgi(wt—k-r(t))] am. (3.1

Heitler:

<ds> _4 L
do/ .. 3Lg

whereLp, is the radiation length,

1 This expression was obtained frof®.2) via integration
1+ —(In 183z~ 13)~1|, (2.8 by parts. The exponential factor {8.1) can be set to unity,

12 since for I.;>L the difference wAt—k-r(At) is much
smaller than unity(At=L/v is the time interval during
) which the electron interacts with the platéntegration with

e’n respect ta in (3.1 yields
o In(183Z~13). P Dy

Lel=
v/ Y,
wo—k-v' w—-k-v/)’

| ~i (3.2

Heren is the atom number density in the mediufhg| is the
nuclear charge, anah is the electron mass. wherev andv’ are the electron velocities before and after the

creaiztilr: ?rilshggféltzzﬂs?f Cg;dtlk?g rtg:i'ii)tit:: r:rr:istt:dd(ta)- aﬁcattering by the target. Pluggig.2) into (3.1), we arrive
Spe 1ty . y fat the desired spectral density of the radiation emitted by an
electron moving in matter in comparison to the results o

Bethe and Heitler: electron in a thin target. Allowing for the fact that at high
’ energies the characteristic angles of electron scattering in a
de de thin target are small, we can easily integratédrl) over the
<%> <<@> W (2.9 emission angles. This yields
2 2
This effect became known as the Landau— d_8: Zi 2641 In(£+ \/.;:ZTl)—l 3.3
Pomeranchuk—Migdal effedg 22 do 7 | gf2+1 '

Formula(2.5) is valid if the medium in which the emis- _ o .
sion of radiation occurs is infinite. More precisely, the thick- whereg— y9/2, andd=(v' —v)/v is the angle of electron
pcattering by the target¥<1).

nessL of the target must be large compared to the lengt . . .
g g b g Note that formulga3.3) was derived without using a spe-

within which the emission process develops: . . . o .
cific law of particle—target scattering. Hence it is valid for

L>I.. (2.10 scattering of particles in both an amorphous medium and in a
crystal, as well as for the emission of radiation by a particle
in a given external field. The only conditions are that the
emission process must develop over a length greater than the
size of the region where the external field acts on the particle
and that the angle of particle—target scattering must be small
compared to unity. Here, however, the ratio of the character-

Formula(2.5) was derived to within logarithmic corrections.
The reason for such accuracy is tlipis assumed to be a
constant independent of the pdthon which scattering oc-
curs. On the other hand, for small paths the valug @ a
logarithmic function oft (see Ref. 3B

— sﬁ t istic angle of emission of radiation by a relativistic electron,
V== Ia 1+0.038 |”|_—R : (213 9 ~y71, to the electron scattering anglecan be arbitrary.

Formula (3.3) has a simple asymptotic behavior for

(See also Refs. 1, 2, and 13, which discuss other aspects &fnall and large values of the parameger
the problem related to the necessity of refining the values of (242 )

multiple scattering angles important for the emission of ra- d_8: Zi LA it yd<1, (3.4)
diation) do 37 |3[In y?9%—1], if yo>1. '
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The term with —1 in the asymptotic expression for df(9)
y9¥>1 is the first-order correction to the logarithmic term T:nf do([f(I—x.t) —f(I,1)], (4.1
(the discarded terms are of ordey) ~2).

The scattering angles for different particles are differentheredo(x) is the cross section of particles scattered by an
with the result that3.3) must be averaged over the distribu- individual atom through the anglg. For a screened Cou-

tion of the particles ejected by the target in the angles ~ lomb potential,
de de{9} do(x)=(2m) " xdxdeo(x),
- :j d2of () ——, (3.5 ) )
do do where y and ¢ are the polar and azimuthal scattering angles

where 9= (9,,9,) is the two-dimensional angle through and we have introduced(y) used in Ref. 26

which the particles are scattered by the target in the plane 8mwz%e* 1
orthogonal to the initial electron velocity. The distribution o(x)= 2 2, 22"

; . . (pv)° (x +Xx3)
functionsf () are different for different target@morphous
media, crystals, nonuniform external fieldThis leads to Herep is the electron momentum, ang,=#/pR, with R
various effects in the emission of radiatidoremsstrahlung the Thomas—Fermi radius of screening of the atomic poten-
in an amorphous medium, coherent radiation in a crystal@'aL
etc). But despite this difference, there are general laws that The general solution of E¢4.1) satisfying the condition
govern the emission of radiation by a particle traveling in af (9:0)= 8(9), where&(d) is a two-dimensional delta func-
thin target, laws due to the asymptotic behavid®). Spe-  tion, has the form
cifically, if in (3.4) we replaced? by the average value of the 1
square of the particle—target scattering andlg, we arrive  f(9,t)= 2m)2 f d?z exp{ i9-p—nt
at the following estimates for the average value of the spec-

tral density of radiation: .
o o X | do(x)(1—eXm)t, (4.2
<ds> 22| y* 92, it y?9%<1, 39 _ _ _
do! 3 3[In yzy_ 1], if 72?>1. . This formula forf(9,t) describes both single and mul-

tiple scattering of a particle in a medium. In the linht0,
We see from(3.6) that if 92 increases with target thick- i.e., when we are dealing only with single scattering of a

ness(e.g., in an amorphous mediuﬁ~L), aty?9%~1 the particle in a medium, we can expafl2) in powers oft. In

nature of emission of radiation by a particle traveling in mat-the first approximation we find that fa # 0,

ter changes. Here the linear dependence of the radiation f(9)=ntda (). 4.3

spectrum ond? (for an amorphous medium, on) is re- . o o _

placed by the weaker logarithmic dependence. Such a change NSerting this distribution function if8.5), we find (after

in the nature of emission is characteristic of both amorphoudtégrating over scattering ang)es radiation spectrum that
media and crystalgIn a crystal thed? vs. L dependence is coincides(if we ignore the recoil effegtwith the correspond-

generally more complicated than in an amorphous medium.Ng result of Bethe and HeitléEq. (2.8)). Here the screening

There are conditions such that in a cryst@L also holds 'adius R of the Coulomb potential must be set to
Ay 4 R=0.81RgZ " (see Refs. 1 and 34whereRg=%%/mé€ is
with 9> 9<; see Ref. 2. the Bohr radius
. Th? co(;]_dlt_|onyb1‘} L at- V:'h'(.:h ther?_atL:re of thfe emis The expansion in powers df in (4.2) is valid if the
s;:)n ot ra 'athg y 'ah pra]\rtlc N (;n a ; n hayligl\g g‘atterftarget is thin compared to the mean free path of a particle in
changes, coincides with the condition for the efect o the materialty~1/no, whereo, is the total electron—atom

suppression of emission of radiation in a thick target. At thescattering cross sectidfor a screened Coulomb potential we
same time, the formulas that describe the effect of multipl

o i and thick | ; i .d Saveo,=47RY(Ze¥/Hv)?).
scattering In thin and thick layers of matter differ consider- In the limit t>t, the multiple scattering of a particle by

ably. For instance, in the case of the LPM effect the radiatiorhifferent atoms of the medium becomes important. The an-

spectrum depends on the frequency of the emitted phototy o gistribution function of the particles in this case can be
while (3.6) are independent of. Only the conditions for r‘%’ransformed intéf P

applicability of (3.6) depend onw.
! fde i p(”2| 7 772)
27Bx2 Jo 70O\ B TR as" 4 4 )

4. EMISSION OF RADIATION IN A THIN LAYER OF (4.9
AMORPHOUS MATTER where y2=4mntZ%e*/(pv)?, andB can be found from the
To find the average value of the spectral density of thdellowing equation:

f(9)=

radiation emitted by a relativistic electron in a thin layer of Xg
matter(Eq. (3.5), we must know the scattering-angle distri- B—In B=In —+1-2C. (4.5

bution function for the particles. The scattering-angle distri- Xa
bution function for fast particles traveling in an amorphousHere C=0.577 is Euler's constant. Since fort, we have
medium is specified by the following kinetic equatit¥?® the inequalityx.> x., B is large compared to unity. Keep-
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ing the first two terms in the expansion of the exponential in F
(4.4) in powers ofB~1, we can write the distribution func-
tion as

t0)=—— | 2o Lpw[ LV 4
2792 B \/E

where92= XﬁB is the mean square multiple scattering angle
of a particle in matter, and

=f ndndg
0

7P I S T R B
4\ 4 '

0

f(1)
Vo

0
N =
A /192
4.7 FIG. 1. The function$y(a) andF,(a) obtained by numerically integrating
the expression$4.9) (solid curve$, calculated by the asymptotic formulas

The first term on the right-hand side of E@.6) is a (4.10 (dashed curvgsand calculated by the asymptotic formu(dsl2?) and
Gaussian distribution of particles over the angles, related t&"13 (dot-dash curves
multiple scattering. The second term is the first-order correc-
tion to the Gaussian distribution fat?< 9. However, for Now we examine the cas#> 1. If we introduce a new
92> 92 this term becomes the leading one and determineyariable y= ¢+ €2+ 1 into the expression foFy(a), we
the probability of single scattering. In this range of angles, get
T

(4.1)

For a?>1 we can easily obtain the first terms in the
eries expansion of this integral in powersaof?:

y’-1
ay

4ntz2e _ 4 f* dy , r{
~— 25, 92 Fo(a)=— —(y*+1DIny exg —
9) (00170 92> 92, (4.9 o(@)= 22 ) y3(y )Iny

Plugging the distribution functiori4.6) into (3.5, we
arrive at an expression for the radiation spectrum that allows
for the effect of multiple scattering on emission of radiation: S

de B 2e?
do/ T
1
where + ¥+O(a*4). (4.12

a%= 9292,

1 2
Ina?~C+ —+-- (1+—2
a a

Fi(a) Fo(a)~

Fo(a)+ B -1}, 4.9

Reasoning along similar lines, we can obtain the first term in
the series expansion &f;(a):

8 (= 28+1 2 —4¢2(a?
Fo(@)= 22 fo dfﬁ'n(fﬂf +t1)e , F,(a)~C+0(a2). 4.13

2¢241 We have k(gpt only the first term of the expansiorFof

* + —— in powers ofa™“ sinceF4(a) enters into the radiation spec-

Fl(a)=¥ fo dgmln(§+ e+ 1fh2da). trum (4.9) with a small factorB™*. In deriving the latter
formula we used the result obtained by integratiidg?),

Let us first examine two limiting cases of formulk9  which can be represented in the following foffn:

corresponding t@?<1 anda®>1. In the case whera®<1 .

we introduce a&¢, such thata<¢y<<1. Then in the region F(9)=2e%(x—1)| C+ fxdt e'-1

where ¢< &, holds we use the appropriate asymptotic for- 0 t

mula in (3.4) for the radiation spectrum, while in the region

where £¢> ¢, we use the asymptotic formul@.8) for the

distribution function. Here

—2(1—2e™%),

wherex= y?9?/a.
As a result we arrive at the following expression for the

radiation spectrum witta®>1:

2

a d 2e? 2 C
Fo(a)~1+ 3 +0(£&), <—8>=—[(In a2—C)| 1+ — +—2+——1].
(41@ dw o a a B
1 13 (4.19
Fi(@)~3 a’|2(C-1)—Ina*+ 3 +0(&)|. We see that foa?>1, i.e., y292> 1, the spectral density

of the radiation emitted by electrons in a thin layer of matter
Plugging(4.10 into (4.9) and employing4.5), we arrive at  differs considerably from the Bethe—Heitler result.
a formula that coincides with the resyR.8) of Bethe and In the general case whege is arbitrary, the functions
Heitler. Thus, both fot<t,, where multiple scattering can Fy(a) and Fy(a) can be found by numerically integrating
be ignored, and fot>t, but y?9?<1, the spectrum of the the relations determining these functions. The results of such
radiation emitted by electrons traveling in a thin layer of calculations and their relationship to the asymptotic formulas
matter is given by the Bethe—Heitler formula. (4.10 and(4.12 are depicted in Fig. 1.
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5. ANALYSIS OF THE RESULTS OF THE EXPERIMENT dN 1
DESCRIBED IN REF. 19 d(logw) o

>

Anthony et al1° observed a decrease in the spectral den-
sity of the radiation emitted by 25-GeV electrons in a gold
target of thickness =0.7%L in the low-frequency range 90.10
(w=20 MeV) in comparison to the corresponding results of
Bethe and Heitler. In this frequency range the coherence
length |, is large compared td, i.e., the condition of the
above theory are met. As applied to the given experiment
the values ofa? andB in (4.9) area?~7.61 andB~8.46. 005
Here, according t¢4.14), if we allow for terms of orden ™2 L
andB™1, we get

ada ) 1 L PR S |

10 100 hw, MeV
de
— ) ~0.00538. (5.1 FIG. 2. Spectral density of the radiation emitted by 25-GeV electrons in a
dow gold target whose thickness is 0.7% of the radiation length.fldesignate

the experimental data taken from Ref. 19; the?aLPM and B—H histograms

_This asymptotic value of the radiation spectrum coin-Zoeet T TRl S O R 28 heory: and the soid
cides to within a few percent with the results of exact CaICU'S—F line represents the results of our calculations by forrf8iB with the
lations by formulag3.5) and(4.4). Note that the asymptotic distribution function(4.4).
formula(4.14) and the result of exact calculations agree well

if in (4.14 we keep several expansion terms, including the
terms of ordera™2? andB~1. If in (4.14 we keep only the de de

logarithmic term, the result for the radiation spectrum will be <d_w> <(d_w) :

1.4 times larger than the exact result. If the first-order cor- BH

rection is kepfi.e., terms of ordea™ 2 andB ! are ignored When the thicknesk decreases further, the mean square
the results will be lower by a factor 2 than the exact resultmultiple scattering angle3?, also decreases. Beginning with
Hence the conditions of the experiment conducted by Ana thickness.~10 3L, the spectrum of radiation emitted
thony et al!® correspond to an intermediate case, where thdy electrons in a thin layer of matter transforms into the
Bethe—Heitler formula(2.8) ceases to be valid but the corresponding Bethe—Heitler result.

asymptotic formuldg3.6), in which only the logarithmic term Note that forl ;> L the entire target acts as a single ob-
is taken into account, is still insufficient for describing the ject with which the electrons interact and emit radiation. This
emission process. means that the interference of the electromagnetic waves

Comparing the value established by form(8al) for the ~ emitted by an electron from different sections of its path in
spectral density of radiation with the Bethe and Heitler'sthe target is important. Here the target cannot be separated

result{de/dw)gy~0.0093, we find that into several layers, since the radiation emitted in one layer
cannot be assumed to be independent from that emitted in
de de another layer. If we were to partition a target of thicknkess
w w BH

which is in good agreement with the experimental re@ée dw
Fig. 2. 0.08 Au£=250 Gev / ms

Thus, the experiment of Anthongt al!® confirms not 0.07 o
only the Landau—Pomeranchuk—Migdal effect but also the 0.06 B-H - o .
effect of suppression of electron bremsstrahlung in a thin 0.05 LPM2
layer of matter predicted in Ref. 31. 0.04 o /,/"

As the electron energy increases, the frequency range S e

: . . 0.03 - LPM 1
and the range of target thicknesses in which the proposed 0.02 S I
theory is valid rapidly grow. Figure 3 depicts the dependence e
- . . 001} 7,2 st S-F

of the average spectral density of the radiation emitted by P e
250-GeV electrons on target thickness. It also presents the 0 2 4 6 8 10
results of calculations of the radiation spectrum for different L, %Ly

frequenmes by the Mlgdal formuig.5). . FIG. 3. Dependence of the spectral density of radiation on target thickness.
The results show that as the target gets thinner, all th@he dot—dash line B—H represents the results of calculations by the Bethe—

LPM lines corresponding to different frequencies transformHeitler theory(formula(2.8)). The dashed lines LPM represent the results of
into the result of calculations of the radiation spectrum bycalculations by Migdal's theory of the LPM effediormula (2.5) for dif-

; o ferent values of the energies of the emitted gamma quantd.2 GeV(1),
formula (4.9), which is Independent 0b. Only the range of 1 GeV(2), and 5 GeV(3). The solid curve S—F represents the results of our

applicability of the |atter_reSU|t im-dependent, and within &  cajcylations by formula3.5 with the distribution function(4.4), which
broad range of target thicknesses we have describes the effect of bremsstrahlung suppression in a thin layer of matter.
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the electron path to distances exceeding the coherence lengtland External Fieldslin Russiaq Nauka, Moscow1987.
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Weak-pulse transparency enhancement in an optically dense three-level medium
induced by a 2 r pulse in a neighboring transition  (V-scheme)

N. V. Denisova, V. S. Egorov, V. V. Kozlov, N. M. Reutova, P. Yu. Serdobintsev,
and E. E. Fradkin

Physics Research Institute, 198904 St. Petersburg, Russia
(Submitted 15 April 199y
Zh. Eksp. Teor. Fiz113 71-88(January 1998

The coheren¥/-configuration interaction between an optically dense resonantly-absorbing three-
level medium(neon) and two ultrashort superradiance pulses with converging wave fronts

is investigated experimentally and theoretically. Both separate and combined propagation of pulses
with wavelengths\; =614.3 nm(strong field,#,= 7) and\3=594.5 nm(weak field,

05~ w/20) are studied. For propagation of a separate strong-field pulse, supertransparency of the
absorbing medium was observed, which is associated with the generation of a soliton-like

pulse at the difference frequencg ¢~1700 MHz) and the dispersion—diffraction stabilization
effect. Under these conditions a weak-field pulse is completely absorbed. Combined

propagation of the pulses leads to novel effects. A below-threshold puésak field was

observed to pass through the absorber while interacting coherently with a strong-field pulse at a
neighboring transition. It is shown theoretically that absorption of the weak pulse is

reduced for two reasons: first, as a result of incoherent transparency of the resonance transition
caused by emptying of the lower level by the field of the strong pulse, and second, as a

result of coherent transfer of polarization between the upper levels via the two-photon processes.
When the conditions for combined propagation are met, the latter mechanism ensures
inversionless amplification of a weak pulse over a wide band of frequencies. In this case, the
gain can even exceed the linear absorption coefficient in absolute value. A difference in
propagation velocities of the weak and strong pulses was recorded experimentally, along with a
shift in the carrier frequency of the weak field towards the re®Q0 MHz). A mechanism

for transfer of phase modulation from a strong pulse to a weak pulse via the common lower level
is discussed theoretically. @998 American Institute of Physids$S1063-776(198)00601-5

1. INTRODUCTION and 1 (i.e., with area greater that) is injected into the
medium. A weak pulse of the neighboring high-frequency
The possibility of light amplification and laser oscilla- transition with intensityZ; then enters the absorbing me-
tion without population inversion, due to interference be-dium after a certain time delay; this pulse is too weak to
tween atomic transitions leading to suppression of resonanashange the population of leval Experimentally, an abrupt
absorption, was predicted by Kocharovskaya and Khanin imttenuation of the absorption for the weak field is observed.
their 1988 papetsee Ref. 1, and independently by Harfis We have proven theoretically that when the weak pulse is
and Scullyet al®> Among the systems that admit inversion- shorter than the strong pulse, there exists a wide band of
less amplification, those that exhibit the most striking behav{requencies for which the spectral components of the weak
ior are systems with\ -type transition sequences, as a con-field can undergo amplification.
sequence of coherent population trapping. In contrast, we
know of no papers, either theoretical or experimental, thab pesScCRIPTION OF EXPERIMENT
deal with inversionless amplification of ultrashort light
pulses by three-level media with\&type configuration. In
fact, the only discussions of pulse propagation for neighbor- Two superradiance pulses, a long-wavelength pulse
ing transitions in the/-scheme have been from the point of (A;=614.3 nm, 2s—1s; transition, referred to as the
view of generating two-frequency solitosimultong.*® “red” pulse) and a short-wavelength pulgk;=594.5 nm,
In this paper we investigate theoretically and experimen2p,— 1s; transition, referred to as the “yellow” pulggarise
tally the combined propagation of two ultrashort light pulsesessentially simultaneously when high-voltage nanosecond
(i.e., pulses whose durations are shorter than all relaxatiodischargegwhose voltage growth rate is 6x 10'* V/s) are
times of the atomic systemproduced by neighboring tran- excited in a narrow thick-walled glass capillary with internal
sitions, through an optically dense three-level medium withdiameterd=0.4 mm and length. =27 cm. The geometric
the V-configuration and an inhomogeneously broadened abparameters of the capillary were chosen in such a way as to
sorption line. Before the arrival of such pulses, all atoms inensure high spatial coherence of the radiation field: the
the medium are in the lower statsee Fig. 1. First, a pulse Fresnel numbers; ;= d2/L)\1,3 for both wavelengths are
that is resonant with the lower-frequency transition and has-1. In this system, the gas is excited by an ionizing potential
intensity £ sufficient to create an inversion between le\&ls gradient wave. We described and investigated the superradi-

2.1. Source of superradiance
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3 1sg5 is common to the two transitions, so the arrangement of
the three levels corresponds to a medium with the
V-configuration.

The light beam passing through the absorbing medium

f3=0.056 was focused by a lens in such a way that it converged di-
65 rectly behind the output window of the absorbing cell. This
beam geometryi.e., with a nonplanar wave frontreates
1 conditions that can lead to a supertransparency regime; see
Refs. 8-10.

If the interaction between the light and the resonant ab-
sorbing medium is to be coherent, the conditio’ T4, T,
must be fulfilled, wherer is the duration of either of the
ant operating regime of this source in Ref. 6; however, in thispulses. In dilute atomic gases and low-pressure discharges,
paper we also obtained simultaneous “single-mode oscillathis inequality is fulfilled for the nanosecond regime of pulse
tion” at the two wavelengths discussed above, a first in suclyrations. Under the conditions of our experiment
a narrow capillary. The optimal neon pressure was(|<gmA), the phase memory time of the medium for the
p~0.7-0.9 Torr. The durations of the red superradiance s—1ss and 2p,—1s; transitions isT,=11 ns, according
pulse and the yellow superradiance pulse were 1-1.5 ns ang oyr estimates. In calculatif, we included radiative and
0.5-0.8 ns respectively. The maximum power of the redyg|jisional relaxation processes in the absorbing medium;
pulse was 0.7 W; depending on the excitation conditions¢o|jisions with electrons were not taken into account due to
that of the yellow pulse was approximately 10—40 times lessheijr low concentration in the discharge under the conditions
For this reason, in what follows we will refer to these as thegtated above, namelp,<102cm 3 (see Ref. 11 The
strong-field (red) pulse and weak-fieldyellow) pulse. The popylation relaxation tim@; for the transitions we used was
yellow pulse appears 0.5 ns later than the red pulse, buheasured in Ref. 12 and is approximately 19 ns. These es-
because the red pulse is wider than the yellow, the twqjmates show that the duration of the pulses under study here
pulses overlap completely in time. The carrier frequency ofs shorter than the relaxation time by more than an order of
the red pulse is shifted toward the violet end of the spectrumnagnitude, and hence the interaction of these pulses with the
by ~200 MHz ~1/7A vpqpp,, While that of the yellow pulse o transitions will be coherent in nature. The temporal co-
is shifted toward the red end by 300 MHz. The spectralherence of the interaction is supplemented by the condition
widths were~1.2 GHz for the red pulse and 1.4 GHz for  f gpatial coherence, which is ensured by the single-mode
the yellow pulse. character of the light source.

It is important to note that in our experiments we used
the same two transitions in neon both for generation and for
2.2. Absorbing medium absorption. Therefore, both the yellow and red pulses satisfy
pihe condition for resonant interaction.

A, =594.5 nm

A, = 6143 nm

£, =012
f)

FIG. 1. Three-leveV-scheme with notation used in the text.

Pulses from the light source were directed into the a
sorbing medium, which was the plasma of a positive glow-
discharge neon column containing metastable neon atoms in ,
the 1sg(2p°3s) state with a maximum concentration of 2.3. Experimental setup
about 182 cm3. The discharge was created in a glass tube  Because of the high time resolution of our experimental
of length 30 cm and diameter 10 mm at a working pressureetup(~300 p3, a general sketch of which is shown in Fig.
of 1.6 Torr, a current of 2—7 mA, and a tube voltage of abou2, we were able to make measurements of the spectral—
1.5 kV. The input windows of the tube were sealed into it attemporal characteristics of both pulses, and also to monitor
Brewster's angle. To measure the concentration, a mirrothe optical density of the absorbing layer as these measure-
was fastened behind a holder oriented perpendicular to thments were made. We investigated both combined and sepa-
tube axis. The reflection coefficient of the mirror was mea-rate interactions of the pulses with the three-level medium in
sured at a wavelength=585.2 nm. The concentration of the V-configuration. To ensure that the pulses propagated
metastable neon atoms in the, lsvel was measured using a independently, the beams were offset from one another at the
mirror behind the tubleat wavelengths.=614.3 and 594.5 input to the medium by the prism @ee Fig. 2 the separa-
nm with an FEU-38 photomultiplier and a digital voltmeter. tion was approximately 2 mm, which equalled their diam-
Since the distribution of metastable atoms over the tube dieters. This enabled us to create individual interaction chan-
ameter is nonuniform in a positive glow-discharge coluibn nels for the red and yellow pulses in the absorption cell.
is described by a zero-order Bessel functjan reality we To make the timing measurements, we directed the fun-
measured the mean of the concentration over the diameterdamental beams passing through the prism and the absorbing
Before a pulse arrives at the medium, the population igells into an optical delay line and then recorded them using
already distributed in a certain way among the three levels od photodiode(LFD-2) and an S7-8 sampling oscilloscope.
the V-configuration. However, the populations of levels,2 The second light beam reflected from the input surface of the
and g are quite low—of order 1§ cm~3—which is much  prism served to synchronize and trigger the oscilloscope; as a
lower than the population of levels}; therefore, we neglect light detector we used an RCA photomultiplier with time
these in the following discussion. The lower metastable levetesolution~1 ns.
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FIG. 2. Experimental setup for observing indi-
vidual propagation of the pulses.
M;—Mg—mirrors, L—L,—lenses, P—prism,
PD—LFD-2 photodiode, S7-8—stroboscopic os-
cilloscope, V—digital  voltmeter, mA—
milliammeter, |—iris diaphragm, FPl—Fabry—
Perot interferometer, C—camera.

L6
FPI L,

MG!\ M,
= TP Nk
\%‘/ P M
LASER L‘l :

The spectral characteristics of the pulses were investiWWe noted a red shift in the carrier frequency of the strong-
gated using an 1T28-30 Fabry—Perot interferometer with a 3@ield pulse away from resonance, with a value of order
mm ring brace and planar wideband mirrors with dielectric~Avpqp,, Which is typical of the supertransparency effect.
coatings(the free spectral range was 5000 MHz, the half-  The oscilloscope traces shown in Fig. 3 allow us to com-
width of the system feedback loop was 260 MHEor pre-  pare the temporal shapes of the input pulse and the red pulse
liminary dispersion, we used an MUM monochromator. Thepassing through the absorbing medium. The maximum delay
interferometer operated with diverging beams. In order teexperienced by the pulse as it passed through the absorbing
eliminate the effect of spontaneous emission we used an iri;miedium was 1.5 ns, at which point the combined oscillo-
diaphragm at the output of the absorbing tube, and the tubscope trace shows that the red pulse has completely emerged
itself was blackened. The detecting system was entirelyrom the profile of the incident pulse. Pulses with high input
screened from external sources of light. amplitude were delayed less than pulses with low input am-

To bring about the combined propagation of red andplitude, and passed through with less absorption.
yellow pulses in the absorbing medium, the beams emitted For concentrations of absorbing atoms of approximately
by the source were directed by a mirror into one propagatiori0*? cm™3, the red pulse was attenuated by about a factor of
channel. The prism P that separated the yellow and re8—20(depending on the input amplitudéAt lower concen-
beams was positioned behind the absorbing cell, which ertrations (=3x 10'* cm™3) the pulse passed through with al-
abled us to tune the recording system by rotating this prisnmost no attenuation.
and thereby measure the parameters of the yellow and red When the yellow pulse propagated through the optically
pulses.

3. EXPERIMENTAL RESULTS
3.1. Independent pulse propagation

In the geometry we used to observe independent propa-
gation of the pulses, the beams did not overlap at the input to
the medium. By investigating experimentally the temporal
and spectral characteristics of the red and yellow pulses be-
fore and after interacting with the absorbing medium, we
were able to compare the results of the interaction for various
input parameters of the pulses.

Our studies of the propagation of the red pulse through
the absorbing medium showed that this pulse entered a re-
gime of supertransparency when its pulse energy exceeded a

; - 8,10 ; FIG. 3. Oscilloscope traces of the input red pulapper tracg and trans-
certain threshold &1/ 77)' .e., the pU|Se was observed to mitted pulse through the absorbing medidiower trace, obtained for in-

propagate over an anomalously long distance compared t®pendent propagation of the pulses. The time scale is 0.5 ns/div,
the classical limits associated with self-induced transparency,=1.3 ns.
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1 FIG. 4. Spectral and temporal characteris-
T T T T T » tics of the yellow pulsda,b and red pulse
-1.5 -1 -0.5 0 0.6 1Av,GHz (c,d at the input to the absorbing medium
b (1) and at the output from i2), obtained
I for combined propagation of the two
pulses. The time scale is 0.5 ns/div. In Fig.
4c, the input pulseleft-hand tracgis at-
tenuated by a filter.

_J 1
-2.5-2 -1.5-1-0.5 0 0.5 14Av,GHz
d

dense absorbing layer, we observed an entirely different picspontaneous emission line of neon with wavelength
ture. In a medium with concentratior 5x10'* cm™3, the A =594.5 nm served as a reference for the yellow line. Spec-
pulse was attenuated so strongly that we were unable to déral analysis of the yellow pulse showed that after passing
tect the pulse at all at the output of the absorbing cell, everthrough the absorbing medium, its carrier frequency was red-
with the sensitivity of the detection system set to maximumshifted by ~600 MHz; in this case the offset of the carrier

It is obvious that in this case the energy of the yellow pulsefrequency of the vyellow pulse from resonance was
at the input to the medium is insufficient to overcome thea y,,~300 MHz.

threshold for self-induced transparencys{- 7/20), in Analogous spectral and temporal measurements were
which case it is completely absorbed. also made for the red pulse. Oscilloscope traces of the red

pulse at the input and output to the medium are shown in
3.2. Combined propagation of two resonance pulses Fig. 4c.

. . . The peak of the pulse passing through the medium is
During the combined propagation of red and yellow obviously delayed relative to the peak of the incident pulse

pulses in the absorbing medium we noticed that they mterby ~1 ns, which is typical of an input pulse whose ampli-

with one another. This interaction was reveal ; . . .
acted t. one anothe s te actq as revea ed b)(ude is not too high. Noteworthy is the fact that in the pres-
changes in how the pulses interacted with the medium com- )
ce of the yellow pulse, there is somewhat more energy

E?;\EI%J(S) ;Zit:ggfependent propagation case described in tIﬁl\élradiated by the red pulse a_t its trailing edge than is the case
The most striking proof that the pulses interacted wadVen the pulses propagate independently.
the fact that in this regime of propagation the yellow super- 1 he spectra of a red input pulse and a red pulse trans-
radiance pulse passing through an absorbing medium Witm!tted_through the absorbing cell are compared in Fig. 4d. In
optical densityksL of 15 (whereks is the linear absorption this figure, the spontaneous line center for neon at
coefficient for transitiori-3) was attenuated by only a factor A =614.3nm is shown as a reference. The red shift of the
of 8, which enabled us to identify changes in its temporaIpU|Se carrier frequency at the output of the absorbing me-
and spectral profile since they lay within the resolution limitsdium relative to the spectrum of spontaneous emission of
of our detection system. neon is the same as for the case in which the red pulse
In Fig. 4a we show an oscilloscope trace of the yellowPropagates independentlyr~1700 MHz. The initial offset
pulse passing through the absorbing medium against thef the red pulse carrier frequency from resonanca ig;~
background of the input signal. There is clearly no temporat—200 MHz.
delay in the pulse compared to the incident pulse as the The abrupt decrease in absorption of the weak field ob-
former passed through the medium, which corresponds to $erved in these experiments can be explained theoretically by
velocity of the pulse in the medium close to the velocity of solving the combined Maxwell-Bloch equations for a three-
light. level medium. This model, which we describe below, cannot
Figure 4b shows changes in the spectrum of the yellovinclude all the peculiarities of the experiment, and in particu-
pulse relative to the spectrum of the input pulse caused by itir is built around the plane-wave approximation. Neverthe-
passage through the absorbing medium. The center of tHess, even within the framework of this simple model we will

42 JETP 86 (1), January 1998 Denisova et al. 42



be able to describe the fundamental regularities of the effecpopulation difference between levedsandl, y, and y; are
and thereby achieve the double goal of finding amplificatiorpolarization relaxation times, ang andns are the nonreso-
mechanisms in a situation that is maximally close to experinant refractive indices.

ment and at the same time arriving at concrete recommenda- The total field is related to its envelopes by the expres-
tions for optimizing the experimental setup. sions

Zi(t,z)= dﬁ Zi(t,z)exd —i(wjt—=K;2)], j=1.3,
4. THEORETICAL DISCUSSION ]
4.1. Fundamental equations of the model whereK; = wj/c are the wave numbers for the corresponding
frequencies in vacuum. In these field equations, angle brack-
"bts indicate averaging over the resonant frequencies for the
entire ensemble of atoms:

Our theoretical discussion is based on the joint solutio
of the two equations for the fields in transitioris-2
(#1(t,2)) and1-3 (#5(t,z)) and the system of Bloch equa-
tions for the three-level systefW-scheme (see Fig. 1 The
experimental results clearly indicate that the strong field (--->:f f(Q) dQ.
plays a dominant role in the dynamics of pulse propagation
for the yellow transition. On the other hand, the feedback An important step in deriving Eqg1) and (2) is the
from the weak field is small and causes only an insignificanheglect of relaxation effects in the density matrix equations
change in the temporal profile at the trailing edge of the redor transition1-2 while including their effect on the atomic
pulse. In our theoretical model we assume that the shortvariables for transitiordl—3. At first glance this may appear
wavelength puls&;(t,z) is weak, so that its interaction with strange, since the duration of the yellow pulse in our experi-
transition1-3 can be treated in the linear approximation. Wements was equal to or even somewhat shorter than that of the
also neglect its effect on the conditions for propagation ofred pulse. Actually, the situation we are dealing with here
the strong long-wavelength pulse, thereby abandoaipg- involves a manifestation of the fundamental property of self-
ori any attempt to describe secondary effects exerted by thduced transparency, in which a short pulse that satisfies the
weak field on the strong field. The system of Maxwell-threshold conditions for this effect phases an entire ensemble
Bloch equations then separates into two subsystems, one of atoms with a wide inhomogeneously broadened absorp-
which describes the interaction of pulgg(t,z) with the tion line. For an ensemble of dipoles with differing carrier

transition1-2: frequencies distributed over a wide inhomogeneously broad-
ened absorption line, attenuation of the macroscopic polar-
Jd ng, d B N L . .
— £ =— < U Z1+ ki(A1(1,2,Q)), ization takes place within a time of ord&f . In this case the

polarization of each individual dipole is preserved at the
9 micro-level for a much longer time, up tga[l (wherevy; is
3u Pr=—i1QP+ &7, (1)  the rate of attenuation of the polarizatiofy).

u McCall and Hahn were the first to ndfethat a pulse

s 1 i ) whose duration satisfies the conditidit <r<1y;*, and
U J1==3 (AP +E177), whose area at the input to the absorbing medium exceeds
propagates with low absorption due to this same ability to
while the other subsystem induce phasing of the dipole oscillations of the entire en-
9 semble of atoms; its energy is significantly attenuated only
ng d , ST .
- La=— < U L3t ka(5(1,2,Q)), when the propagation time through the thickness of the ab-
z u

sorbing medium is greater tha;n_‘l. On the other hand, for

9 i weak pulses in the same range of duration, the pulse energy

U D= —10P3— Y393+ &3/ 3+ > &1, 2 is incoherently scattered due to dephasing of the dipole os-

cillations over times of ordef*. Under our experimental

F ) i conditions, we estimate the difference in attenuation rates for

52 T vt 5 (Z1Pa+E377), the strong and weak field to b&(T*) ~1/y,~15. This esti-

mate proves that we are correct in including relaxation ef-
describes the interaction of pulsg with transition1-3. In  fects for the weak field and neglecting these effects for the
writing these equations we use the notation strong field.

It is known (see, e.g., Ref. 24that when a pulse enter-
ing the medium has a sufficiently smooth envelope profile
whered; is the dipole moment of transitioh—2, d; is the  whose area exceeds in traversing a distance equal to ap-
dipole moment of transition—3, N is the concentration of proximately 2—3 absorption lengths it is transformed into a
atoms in levell, 7 is the polarization of transitioh—2, &%  self-induced transparency soliton with area. 2Jnder our
is the polarization of transitioB—3 (more precisely2—1-3,  experimental conditions, the optical density of absorbing at-
since the transitio2-3 is forbidden in the dipole approxima- oms for transitionl-2 was 30, and effective interaction of
tion), 7% is the polarization of transitiol-3, ./; is the  both pulses took place over essentially the entire length.
population difference between levelsand 1, ./; is the  From a physical point of view, the most transparent results

K1:27Tw1diN/n1Cﬁ, K3:27Tw3d§N/n3CfL,
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are obtained when we choose the shape of the field envelopes, _ C(u
at transition1-2 to be a self-induced transparency soliton, ——-= 3| exd —(iQ+y)u] fsf ‘3

Z1(t,z)=Aq secli(t—tg—z/v)/r]exdi(st—kz)], (3) Xex;{(iQ-Fy)u]du—% F;’l;@/’l*fuj'u%’g

in which case the polarization and inversion will have the

form _ }>
Xexd (iQ2+y)uldu du; ), 9
B [((Q7+ 671)— 79l du]sech(t—ty—2z/v)/ 7]

71(t,2,Q2)=2 11 (Qrt 072 where in place of time we introduce the wave variable

u=t—2z/(c/ng). In deriving Eq.(9) we have used the fact

Xexdi(st—kz)], (4)  that the duration of puls&;(t,z) is small compared with

Agl, and have sey,= y3=y. We note immediately that the

i secR[(t—ty—2z/v)/ 7] polarization 75(t,z), which controls the evolution of the
Stz =1t e s (3 field, has two components. The first describes the linear in-

teraction of the field with a medium whose concentration of

We will return to the question of how correct it is to choose&toms./ "3 is modulated in time by the field of the self-
the field in the form of a self-induced transparency soliton ininduced transparency soliton. We can tentatively call this
discussing the results. Substituting the expression for thétteraction between the pulses incoherent. The presence of

field in the form (3) into Eq. (1) determines the relation the second component of the polarizatieR is due to the
between the pulse amplitude and its durafishereA,r=2 coherent transfer of the interaction between the two transi-

and the pulse velocity is), tions via the polarization?,. It is this transfer of coherence
that essentially distinguishes this model from the two-level

1 n 1 system.
v ¢ T KT <m> : (6) The wave equatiof®) describes the propagation of non-
monochromatic waves through a dispersive medium irzthe
and the dispersion relation direction. Let us assume that a wave is excited at the bound-
ary of the medium by an incident pulse

7) Z3(z=0}t)=ep(u) (10)

1 Q7+ 67
k(8)= c KlT<1+(QT+57‘)2>'
with frequency spectrum
Here & is the offset of the carrier frequency of the self- 1
induced transparency soliton from the center of transition F(@)= > f
1-2, and k is a correction to the wave numbé&tr,. The mJ-

parency soliton at the input to the medium relative to thegne another in a linear medium, the behavior of the wave is
position of the “weak™ pulse. It is convenient to choose for gjven by a superposition of harmonic waves

to the initial delay of pulseZ; compared to the solito#; .

+ oo

eo(u)e'eidu. (12)

+ o0
4.2. Evolution of the weak field Za(z,u)= f F(w)exd —iou+ik(w)z]dw. (12

We now consider the system of equations for a weak _
field. The evolution of the inversian; entering into Eq(2) ~ The relationk(w) for this dispersive medium can be found
is entirely determined by the dynamics of the self-inducedrom Eqg.(9):
transparency soliton, because we assume that thedfigld
so weak that it cannot cause any change in the population k(’d‘))=K3<
difference. Thus,/ 3 can be written in the form

(Q-3)+iy

(Q-3)%>— Y+ 2iy(Q—B)
[(Q—B)°+ ¥y

The imaginary part of the dispersion relation reveals that the
14 sech[(t—to—2/v)/7] (g field-medium system is not conservative, so that either am-
1+(Qr+6m)° plification (Im[k(w)]<0) or attenuation (lik(w)]>0) of the
field are possible within certain frequency ranges.
The simplest and physically most transparent results are ob-  wyithin the broad line for the red pulser¥T*), and
tained if we assume that the duration of the puls€t,z) i when conditions ensure that this pulse propagates at exact
much shorter than that of the self-induced transparencyesonance with transitioti—2, we can calculate the absorp-
soliton’ We can then neglect the time derivatives 6f, tion coefficient of the field for the yellow transition:
71, A3, and./; compared to derivatives of the more rapid
variables”;, 7% and%%. In this approximation the equation IM[K()]= x5 T* 1
for the evolution of the weak field reduces to the form 3 1+ (@Tr)?

[1—.173(t,2,Q)] —4'—1 P > (13)

A3(t,2,Q)=— 5
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1 (@72
— |1+ m (1—-tanH (t—ty—2/v)/7])

+oo g B
<53(Z)>u: J_x % QD(U,Z)‘(gg(U,Z)dU/

COShZ[(t—tO—Z/U)/T])

EY (14) f :é?fg(u,z)du, (16)

. where ¢(u,z) is the phase of the pulse. In the previous ex-
In deriving Eq.(14) we have taken advantage of the small- 5 assion for the field we separated out a factor that oscillates
ness ofyr and have chosen the averaging functi¢fl) in o the optical frequency, so E€L6) is written not for the

the form average frequency, but rather 85, the average offset from
the frequencyw;. Using the spectral representatid®) and
fQ) T* 1 15 integrating overtime, we obtain
™ 1+ (55(2)),4

o - ~ ~
The larger value of the second term in Et4) is responsible =_ ~-0F (@) expIml k() ]z}cog Re k(@) 2]} da

for the smaller absorption coefficient of the weak field. It is JIZF(@)exp{Im[k(@)]z}coRe k(®)z]}dw
important to note that the strong field always leads to a de- (17)
crease in the absorption coefficient of the yellow pulse. For -

those spectral components of the weak field that lie within avhere the expression fd(w) is obtained from Eq(13) by
interval whose width equals that of the strong-field spectruninaking the substitution=2z/(c/ny). In deriving Eq.(17),
(wr<1), the polarization; at the leading edge of the red We assumed that the weak pulse is not phase modulated at
pulse increases the gain, while at the trailing edge it reduce§e input to the medium. We also assume the spectrum of the
it. Conversely, for the remaining spectral componentgnPut pulse is symmetric. These two conditions taken to-
(wr>1), the gain is less pronounced at the leading edge angether reflect the fact that the carrier frequency of the field
more so at the trailing edge. We also note that when the ling0incides with the center frequenay of the transition.

is homogeneously broadenéfbr which case we substitute In the approximation we used above (*>7>T*) and
f(Q)=5(Q) into Eq.(13)), depending on the relative posi- for moderate offsSts§(5r< 1), we obtain the following ex-
tions of the pulses, both amplification of the weak field andpression for Rik(w)]:
attenuation of the latter are possible. The decrease in absorp-

oT* 11
tion due to emptying of level occurs for all spectral com- REK(®)]=k3T*{ ———==—+cosh 2| to+| —— —)z
ponents of the weak field at any instant in time. On the other 1+(@T7) v ¢
hand, the contribution of the polarization to amplification of 1 3(@r)2—-1

. . 71 . _
a weak pulse is approximatelyy¢) - times smaller than X| o7 T @02 °[1r @0’

that due to the dynamics of the population difference, and in
contrast to inhomogeneous broadening lines, it is always
negative at the leading edge of the red pulse, the strong
field draws energy from the weak figldnd positive at its . )
trailing edge(the strong field delivers energy to the weak Heréni=ns=1. The antisymmetry of E¢18) with respect
field). to w at =0 and the symmetry of expressi¢td) under the

We now discuss the phase characteristics of the pulse§ame conditions makes the right-hand side(f) vanish.
In Ref. 10 we described supertransparency, which occurhat is, we conclude that the carrier frequency of the
when a coherent pulse with a converging wave front propa-weak” field does not shift if the red pulse propagates in
gates through a dense resonant absorbing medium. The pulg¥act resonance with the transititr2 (6=0). Conversely,
is propagated over an anoma|ous|y |ong distance because tB8 offset in the red pulse carrier necessarily |mplles a shiftin
pulse carrier frequency is driven toward the low-frequencythe frequency of the yellow pulse.
end of the spectrum beyond the limits of the inhomoge-
ne_ously broadened I|_ne. In Ref. 10 we were able_to explau%_ DISCUSSION OF EXPERIMENTAL RESULTS
this phenomenon by invoking the mechanism of dispersive—
diffractive stabilization. In this paper our interest centers on  Rather than proceed directly to a discussion of the inter-
the dynamics of the yellow-transition pulse, so we regard thection of a two-frequency pulse with the three-level medium,
phase characteristics of the strong field as given, and concewme first touch briefly on the distinctive features of the regime
trate our attention on how they affect the spectrum of theof individual pulse propagation. Up to now there have been
weak pulse. fairly detailed studies of the numerous coherent phenomena

In these experiments we detected a shift in the spectrurthat occur when short light pulses interact with a two-level
of the field for the yellow transition. The most faithful mea- medium!* These phenomena can be classified as either lin-
sure of this effect is the pulse frequency averaged over thear and nonlinear. In our experiments we have found both
pulse spectrum, or equivalently the modulation frequencytypes of phenomena: the interaction of the yellow pulse with
averaged over time and normalized by the field amplituddransition1-3 is linear, while the interaction of the red pulse
spectrum: with transition1-2 is nonlinear.

1 2
1+(6T*)2+[1+(m)2]ZM' (18)

—oT
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The yellow pulse power was approximately 0.02 W. 0.4

Knowing the beam diameter at the input of the absorption :
cell D~1 mm and the value of the@®—1ss transition di- g.az—
pole momentd;~3x10 ! cgs electrostatic units, we can § —0.4F
estimate the value of the input area of the yellow pulse: g _05_
03=0373~5X% 10 27. In this case, the inverse absorption 3 '
length can be estimated by the magnitude of the inverse lin-< - f.zg P 7 %
ear absorption coefficient :
distance

2 In2 mwe?
— — fN~1.152x10 2N cm™{,

k3 =
A VDoppl T MgC

wheref is the oscillator strength of the transition aNds the
concentration of absorbing atoms in thg; ktate. When the
concentration of absorbing atoms N~5x10"cm3,
ksL=~15. Calculations like those of Ref. 15, for example,
that take into account classical anomalous absorption result
ing from the large width of the pulse spectrum, show that the
energy of a pulse traversing a layer with optical thickness
ksL~15 should be attenuated by more than a factor of 1000,
which surely explains the absence of the yellow pulse at the
output of the absorbing medium.

For the red pulse, the propagation is qualitatively differ-
ent in character. At a power of about 0.7 W, its input area
0= 7. Because the duration of the pulse is much less Than
andT,, we might expect generation of ar2pulse in the red
transition. However, it is not possible to completely identify
the experimentally observed pulse dynamics with self-
induced transparency, because the use of a converging bea
geometry gives rise to new effects when light interacts with
two-level systems. These novel effects are manifestations o
a common phenomenon—supertransparéficyhis phe-
nomenon, which is fundamental in nature, can be said to
generallze th,e effect of self-induced tr‘,”l.nSparenCy to the Ca%—%G. 5. Absorption coefficient of the weak field at the short-wavelength
of three spatial measurements. In addition to the well-knoWRansition as a function of the normalized frequenay and the distance
dynamics of self-induced transparency solitons, in which atiraversedin units of the Beer absorption length for transitibn3) for the
oms of the medium are excited to the upper state and subsfllowing values of the parameterd™* =0.35ns, 73=0.4ns, 7=0.7 ns,
quently return their excess energy to the field pulse by stimu:-j".zo"LS ns. Projections of the surface are shown in three mutually perpen-

L. . icular planes. Individuallyabove we present plots of the gain at the cen-
lated emission, supertransparency also exhibits a newa) frequency of transitiori-3 as a function of distance traversed by the
mechanism—dispersive—diffractive stabilization—which yellow pulse in the medium.
further stabilizes the self-induced transparency pulse.

Since our analysis of the red-pulse propagation dynam-
ics is similar in general outline to what we published in ourtion of the pulses, which is in fact detected experimentally.
previous paper Ref. 10, it will not be discussed in detail hereHowever, the most important effects, namely the sharp de-
We merely note that although the carrier frequency of the readrease in absorption of the yellow pulse and the shift of its
pulse is shifted from the resonance frequency toward longetarrier frequency, find their explanation within the frame-
wavelengths, our value of this shift turns out to be somewhatvork of the approximations used. The theory set forth above
smaller than that found in the experiments of Ref. 8 since thenakes it possible to make both qualitative and quantitative
parameters of the source and focusing of the beams weksstimates of these phenomena.
different in our case. To explain the most striking result of the experiment,

Now let us return to our discussion of the distinctive i.e., the fact that a weak pulse can propagate through a dense,
features of the interaction of a weak pulse with transitionstrongly absorbing resonant medium, we turn to the expres-
1-3 in the presence of a strong pulse in the adjacent transiion for the absorption coefficient of the yellow pulse in the
tion 1-2, i.e., the three-leveV/-scheme. We mentioned be- presence of a red pulse in a neighboring transition. The latter
fore that the large difference in pulse energies allows us t@s calculated using Eq14) with the substitution of Eq(15)
neglect in first approximation the effect of the weak field onfor values of the field and medium parameters used in the
the strong field and regard the interaction between fields asexperiment. The results of this calculation, which are shown
unilateral effect. Within this approach it is impossible to de-in Fig. 5, demonstrate that the absorption coefficient at tran-
scribe the larger reradiation of energy of the red pulse at thsition 1-3 depends on the frequency and distance travelled
trailing edge compared to the case of independent propagéy the weak-field pulse in the absorber. It should be noted
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that under optimal conditions this absorption is replaced byess pronounced than for the “ideal” case illustrated in Fig.
amplification in the case of the central spectral component 05. Nevertheless, the experiments recorded an anomalously
the yellow pulse, since the amplification coefficient exceeddow loss of energy by the weak pulgey a factor of 8 in all,
the absolute value of the linear unperturbed absorption coefahich indirectly confirms the significance of these effects.
ficientk;=2x,T* by a factor of 1.11. A coefficient of field In stressing the special role of the self-induced transpar-
amplification this large cannot be achieved even for totakncy soliton in the dynamics of coherent amplification pro-
inversion of thel-3 transition. In other words, the efficiency cesses, we must emphasize that this same formalism can be
of the interaction between the fields turns out to be higherpplied to calculate the characteristics of the yellow pulse as
than that of the medium with each of the fields taken indi-it interacts with a red pulse of arbitrary shapeance this
vidually. As we should expect, the red pulse influences thehape is given at any instant in time at any point of the
yellow pulse most strongly in the region where the strongmedium. It is only important that the red pulse be strong
field is a maximum, and the affected frequency componentenough to pass through the optically dense medium without
of the yellow-pulse spectrum lie within a band whose widthappreciable absorption. The specific shape of the strong-field
is the same as that of the red-pulse spectrum. envelope determines only the degree of coherent amplifica-
The amplification effect under discussion here is purelytion and incoherent brightening, not the qualitative dynamic
coherent, and is caused by a two-quantum process in whidigatures of the combined propagation of the coherent pulses.
the interaction is transferred via the polarizatigh, which ~ Our approach allows us to estimate the optimal optical thick-
couples levelsl and 3 by way of the common lower level. ness of absorbing medium that ensures maximum gain for
This is easy to verify if we neglect the second term in Eq.the weak field at its center frequency, the optimum relative
(13), saving only the first term arising from changes in theposition of the pulses at the input to the medium at the center
population of the lower level, which is./ 5. In this case, frequency, optimal relations between their durations, etc.
the maximum achievable effect is complete transparency d¥oreover, the theory does not distinguish transitidrs?
the medium at the central spectral component of the yellowtnd 1-3; therefore, propagation of the strong pulse on tran-
pulse. If we add to this effect, which decreases the absorgsition 1-3 and the weak pulse on transitida-2 in no way
tion, the contribution from the polarizatios,, we obtain a  affects the dynamics of amplification of the weak pulse by
net field gain in thel—3 transition, which occurs over a wide the strong pulse.
range of frequencies against a background of no inversion
between leveld and3 at all times. This leads us to identify 6 CONCLUSION

the effect as inversionless amplification. However, this does  \we obtained these results, which are novel both from a
not lead to amplification of the weak pulse as a whole. Theheoretical and an experimental point of view, in the course
amplification effect, which occurs because the interaction inof our investigations of the coherent interaction of light
volves a common lower level, is not disrupted for times ofpulses with a three-level medium in theconfiguration. We
orderT*, due to the phasing of all the atomic oscillators of experimentally observed combined propagation of a yellow
the ensemble induced by the strong pulse. The simultaneoythd red pulse for neighboring transitions in an absorbing
phasing of the two polarizations”;) and(.7’) for all the  medium, and recorded how they affected one another. The
three-level atoms of the ensemble follows directly from themost remarkable feature to emerge from this work is the
theory developed here, and as far as we know has not beeibility of the yellow pulse to pass through the absorbing cell
discussed previously. with anomalously small absorption, especially since this

Our fundamental theoretical conclusions are based opulse is completely absorbed when it propagates “indepen-
the assumption that the shape of the field envelope for trardently.” In order to explain this abrupt decrease in the ab-
sition 1-2 is that of a self-induced transparency soliton. Thissorption of a pulse generated by thp,2-1s; transition we
choice was determined by two factors. The first of these isnvoke a mechanism involving two factors. The first factor is
the tendency for a short high-power pulse to acquire the fornhe efficient lowering of the population of the lowessl
of a self-induced transparency soliton as it propagates in alevel, which is emptied by the passage of thg2-1s; red
absorber. The second is connected with the fact that a selpulse. The nature of this process leads us to describe it as
induced transparency soliton generates a deep modulation isfcoherent brightening of the adjacent transition. The second
the population difference between levéland2, up to com-  factor, which is purely coherent in nature, is connected with
plete emptying of the lower level, which thereby ensuresthe transfer of the interaction via polarizatiori,, which
optimal conditions for amplification of the weak pulse. Thus,interferes constructively with the field of the yellow pulse
the self-induced transparency soliton is essentially ideal as and leads to enhancement of the spectral components of the
pump pulse. weak field over a wide band of frequencies.

The conditions for pulse propagation were by no means We experimentally detected a shift in the carrier fre-
optimal in our experiment. Because the strong pulse waguency of the yellow pulse away from resonance toward
focused by a lens, which led to expulsion of its carrier fre-longer wavelengths, caused by modulation of the refractive
quency from the inhomogeneously broadened absorptiomdex of the medium in the presence of the strong field of the
line, the delay was decreased, the efficiency of the resonameighboring transition of th&-scheme, whose carrier fre-
interaction lowered, and the modulation depth for the popuguency in turn is redshifted. We have shown theoretically
lation of level 1 less marked. Under these conditions thethat if the carrier frequency of the red pulse does not deviate
decrease in absorption, and hence the amplification, beconfieom exact resonance with the transitiompg2Z—1s; as it
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We develop an entirely quantum mechanical analytical description of scattering of atoms with
angular momentdy,— j—j.=]j (j is an integer by a pulsedo, —o_ field. In the

stationary-atom approximation with exact accounting for recoil effects, we solve the problem of
the change in the distribution of atoms among the internal and translational degrees of
freedom initiated by a single pulse fpg=1, 2. We find in analytical form recurrence formulas
that make it possible to calculate the distribution of the atoms after an arbitrary sequence

of pulses has acted on the system. We show that for dis(metenantvalues of the time interval
between the pulses, the actionMfpulses leads to effective formation and narrowing of

peaks at discrete points in momentum space and to a broadening of the envelope of these peaks.
In the case of a broad initial momentum distribution we derive explicit formulas for the

peaks and the envelope and study their asymptotic behavidtsfat. Finally, in the weak-field

limit we study numerically the dependence of the contrast of the scattering diagram on

pulse length. ©1998 American Institute of Physids$S1063-776198)00701-X

1. INTRODUCTION tervals than in the case of continuous irradiation. Generaliz-

ing the discussions in Refs. 17 and 18, we discuss the phys-
The pioneering works of Aspeet al.”< initiated inten- ics of the laser pulse cooling method. During the timghe

sive studies of the kinetic manifestations of coherent popupulse length of ther . — o _ field) the atoms are pumped into

lation trapping(CPT). Today we know of various methods of the dark state

laser cooling of atoms below the one-photon recoil energy by

veIogty—sequnvg coheren't popqlaﬂon trgpplng in fields with |Wye) = B 2 . l!fﬂg|p—ﬁkﬂg dgikg)s

spatial polarization and intensity gradients. The methods mg=—lg.,—ig*t2 g

have been developed theoreticAlfyand to a certain extent

experimentally°~12°The idea of these cooling methods is

as follows. Atoms in a stationary inhomogeneously polarizede ¢oyrse of the time interval the field is switched off and

field are trapped into a CPT statdark statg [¥yc) that e atoms move freely. Here, in view of the dephasing of the

does not interact with the field. The state is a coherent SUitterent components of the superposition, there is a transi-

perposition of the wave functions of the magnetic sublevelgjon from the CPT state to states that can interact with the
of the ground state with different momentum valdesy., in  fig|q:

a o,—o_ field the momentum values are

| 1,2

wherejy and u4 are the quantum numbers representing the
round-state angular momentum and its projection. Then, in

p.pxthk, px2hk,---, known collectively as the Wy, T)= E y
p-family?). When the atoms are in free motion, the compo- N g1 g2y 0
nents of this superposition acquire different phases. As a _ )
result, if the atom was in the CPT state at a certain moment, Xexp( _ E (P—fikpg)
at subsequent times the CPT state usually disintegrates due h 2M

to the translational motion of the atoms, and the atoms begin X |p— kg j )
to interact with the field. However, the degree of this disin- P CRERTA
tegration and the intensity of the atom—field interaction areThis formula shows that if the time interval between pulses
selectively dependent on the momentpmFor instance, the is chosen to b= mn/4w, (here w,=#k?/2M is the fre-
population of the excited state, considered as a function ofjuency corresponding to the recoil energy, anis a non-
momentum, has a dip ne@=0. Due to random kicks in zero integer, for certain discrete values of momentum
absorbing and emitting photons, the atoms gather in this rep,=2%km/n for j; odd andpy,=(2m/n+1)%k for jq
gion of momentum space, where the interaction with theeven the state$W¥yc,T) and|¥ ) differ only in a general
field is at its minimum. Thus, cooling in this case is a con-phase factor. Thus, for discrete values of tifig, and mo-
sequence of a special diffusion procé$g® mentum, p,,,, the CPT state is restoredAn exception is
Recently two groups of researchers proposed a newy=1, when there are no restrictions on the tiffig with
method of pulsed coolifg (or Ramsey coolint), which as  p,=27#km/4w,T.) If at the end of the time interval, a
shown by the results of experimetftsand quantum second light pulse is switched on, the atoms with the selected
simulation$” makes it possible to obtain narrower structuresmomentap,, do not interact with the field, while the other
in the velocity distribution of atoms and in shorter time in- atoms scatter with a change in momentum due to spontane-
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ous and stimulated recoil effects. As a result the momenturd. STATEMENT OF THE PROBLEM

representation acquires a well-defined comblike structure. ] ) ) ]

By using a sequence of light pulses one can increase the L€t US examine one-dimension@long thez axis) mo-
contrast of the atomic scattering diagrifnNote that the tion of atoms whose ground and excited states form an opti-

sharp selectivity in atomic momentum in this case is ensure§@! transitionjg=j—j.=] (j is an integerin the interaction
by the large value ofT, by analogy with Ramsey between the system of atoms and a pulsed-o_ field.

resonancey’ We also note that the transverse motion of theWitthin the pulse of lengthr the field is assumed monochro-
atic:

atoms(in relation to the wave vectpteads to the emergence m
of a common phase factor in the functipfiyc,T) (the fac- E(z,t)=e(2)Ey exp—iwt)+c.C.,
tor contributes nothing to dephasjrand therefore in no way 1
affects our reasoning. 1 ] ]

In this paper we develop a quantum theory for atoms 2= E(e—l exp(ikz) — e,y exp(—ikz)),
with angular momentg,=j—j.=j (j is an integer scat-
tered by ac, —o_ field. Our goal is to give a complete Wheree.,==(e*ig)/v2 are unit cyclic vectors. At each
analytical description of Ramsey cooling. The main approxiJointin space the fieldl) is linearly polarized. The direction
mation that we employ is that the lifetime of the atoms in theof the polarization vectog(z) at pointz=0 coincides with
dark state, limited by the translational motion effect, is muchthex axis, and for an arbitrary the vector is rotated through
longer that the pulse length In perturbation-theory terms an anglekz, i.e., the field is a linearly polarized helix. In
this condition can be written agr(kv/Q)?<1 (hereyisthe  view of this it is convenientas shown in Ref. 16to shift
radiation width of the excited leveky is the Doppler shift, from the laboratory reference frame to the local reference
and() is the Rabi frequendy?”*® which means that either we frame in which thex’ axis rotates together with(z). The
must use precooled atoms or the laser field must be strongorresponding transformation formulas are
Moreover, we assumg@xcept in Sec. bthat the interaction A A PO
in stationary, i.e., yr>1 and ySr>1, with Otap=U(2) 01U (2),
_S:QZI (v?14+ 6%) the saturation parameter andhe detun- Oee=U7(2)0,,0(2), 7
ing from resonance. In these conditions the density matrix of
the atoms after a light pulse has acted on the system has the O(Z)Zexp(_ikzjz),
following form: .

whereJ, is the operator of the projection of angular momen-
;): |V YW el tum, anddab and(ﬂ)|OC are matrices representing an arbitrary
operator in the laboratory and local reference frames, respec-

The functionW depends on the initiglbefore the first light tively. In particular, the Hamiltonian of a free atom in the
pulse has acted on the systedensity matrix and can be rotating reference frame is
found exactly(outside the scope of the expansion in recoll A A A
momentum by a method described in Ref. 16. The evolution 10~ HkFwolle, &)
of the density matrix of the atoms that are in the ground statevhere
and propagate freely is determined by the kinetic-energy op-
eratorHy . The solution of the problem of calculating the |:|K=(_— (4)
corresponding unitary operator epoKT/ﬁ) is well-
known. Applying the above transformations in the appropri-is the kinetic-energy operatdwhich now depends on the
ate order, we can calculate the atomic distribution after avalues of the projection of angular momentun, is the
arbitrary sequence of field pulses. transition frequency, and

In the present paper we solve this problem for two val- i
ues of angular momentunj,=1, 2. We find in analytical - . .
form recurrence formulas Iirgl]king the distributio™* 1) af- He_ﬂe;,je lie:pe){ie, e ©

ter N+1 pulses have acted on the system withY), the . . .
is the projector operator on the excited state, Wjth ue)

distribution afterN pulses. We show that a sequence of h " £ th i blevels. In the local ref
pulses applied to the system leads to the formation and naf'€ Wave vectors of the magnetic sublevels. In the local ref-

rowing of peaks at discrete points in the momentum Spacgrence frame the Hamiltonigd) of the resonant atom—field

and to a broadening of the envelope of these peaks. In thlgteractlon is spatially homogeneous:

case of a broadin comparison to the photon momentum Ha r=5QV exp(—iwt)+H.c., (6)
initial momentum distribution, which is important for practi-

cal reasons, we derive explicit formulas for the peaks andvhere(l is the Rabi frequencywhich without loss of gen-
envelope. We also examine the asymptotic behavior of th&rality can be assumed positiy@nd the dimensionless op-
solution forN>1. Moreover, for weak saturatio®<1, we eratorV is defined in terms of Clebsch—Gordan coefficients
study the dependence of the contrast of the scattering dias follows(the quantization axis is directed along thaxis):
gram on the parameterSr. Finally, we compare our results A A

with those of Refs. 17 and 18 and discover that qualitatively — — *1_V+l, )

the results coincide. V2
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translational degrees of freedom is due in this case to the fact
that the semiclassical expansion in powersk{d; —z,) is
invalid.

A remark is in order concerning the necessity to justify
the model of one-dimensional motigoften used in prob-
lems dealing with the mechanical action of a plane electro-
magnetic wave on atoms; see, e.g., Rej. Zbviously, due
to the interaction with the vacuum modes of the field, the
Cartesian coordinates in the equations of motion generally
cannot be separated. However, these correlations, which are
due to the spontaneous recoil effect, are small if the variation
FIG. 1. Diagrams representing the radiative transitions between the Zeemacr)1f the transverse momentum in an elem.ema.lry emISSI(:m actis
sublevels of the ground and excited states. The solid and dashed lines repMall. This case, when the transverse kinetic energy is much

resent stimulated transitions between the sublevels ofAttsystem, and  higher than the one-photon recoil enerdgg 1, >t w,), is
between the sublevels of the V-system, respectively. The wavy arrows destydied in the present paper.
pict spontaneous transitions.

=,  —i¥l -j 2

—jg+l —;g+2

3. SOLUTION FOR IMMOBILE ATOMS

If while a light pulse(of length 7) acts the atoms are, on
Vo= > e me)iclipD telig igi1A)(ig ttgl. (® the average, displaced by a distance much shorter than the

b kg wavelength of the light,

The transitions induced by the fie{dl) are depicted in Fig. 1. vT<N\, (17
We see that there are two independent systems of interacti
sublevels® One consists of\-segments and begins with the
lig.—jg) sublevel. The other consists of V-segments an
begins with thgj.,—je) sublevel. We call these systems the
A- and V-system, respectively.

Separating in the usual way the fast time dependence at -~ P
the frequency of the field, we obtain a quantum kinetic equapf‘lvf‘z(zl’ZﬂH = mE,vZ ./,3#111:2(21,22| Pvy (21, 22]0),
tion that describes the evolution of the slow components of (12
the density matrix in the rotating reference frame:

rlﬂey can be assumed to be immobile, so that the first term on
he right-hand side of Eq9) can be dropped. As a result we
rrive at a system of first-order ordinary differential equa-
tions dp/dt=_%p, whose solution can be written as

where .7 is the matrix exponential function of the corre-
sponding Liouville operator72(7) = exp(r¥). For large val-

- i~ .
EP(Zlyzz):_g[HK,P(Zl.Zz)] ues of7, i.e.,
yr=1, ySr>1, (13
e e y
—iQ[(V+V1),p(21,25)]— ( (§—|5> whereS=Q?/(y?/4+ §%) is the saturation parameter, the at-

oms are pumped completely into the dark state, with the

A v oo\a ~ corresponding steady-state solutighe limit 7—oo in (12))
XMep(21,2) +| 5 +18|p(21,29) e A
p(21,25) =V o) W(2Z1,22)( P Nl (14
+y 2 Qq(k(zl_ZZ))\A/;;)(zlaZZ)\A/qa The atom—field interaction operator annihilates the CPT state
g==*=1,0 |\I}NC>
©) |:|A—F|‘I’NC>:0’ (15)

where 6= w— w, is the detuning from resonance, and thewnhich is a superposition of ground-state Zeeman wave func-
functionsQ(k(z,—2z,)) describe the stimulated and sponta-tions:

neous recoil effects:

[Wne) =2 g k) (16)
exp(Fikz), H9
(10) The simplest way to find the coefficien[lt;g is to direct the

coskz sinkz quantization axis along the field polarization vector. Then the
Qo(kZ)=3( - WJF W) dark state coincides with the Zeeman subldygl0). If we
then carry out a rotation through/2 about they axis (thus

In (9) we used the standard notation for commutatorsyeturning to the original choice of the quantization axjs
[A,B]. Equation(9) accounts exactly for quantum effects We find thaty, —can be expressed in terms of Wigner
due to momentum transfer from field to atoms in radiatived-functions(elements of the rotation matjix*
processes and to the translational motion of atoms. Note that " — glo (m/2) 17
the convenience of using the coordinate representation for "#g “#g0 '

K _3 sinkz coskz sinkz
Qu1(k2) =3\ 7 k7 ~ &2)°
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The functionW(z,;,z,) has the meaning of a two-point Since theA- and V-systems of magnetic sublevels are inde-
distribution function in the local reference frame. In our casependent(there is no coherence between thethis matrix
the relationShip betweelV and the Ordinary distribution égg can be represented in b|ock-diagona| form:
function F in the laboratory reference frame is given by the J.
following expressions: A 5 A A
g exp Co9= W\ N ¥ncl+ 2 |\I’iA>Ci,ir<q’if|

ii’=1

F(21,22) =Tr{0(20)p(21,22) 0" (2)} = (¥ dl y
X exp( —ik(z;—2,)3,) | ¥ ne)W(2Z1,2), + > |\I,iv>ci\{i'<qfiv/|v (22)

ii'=1
(18 where

where the trace is over the internal atomic degrees of free- 1

dom. The value ofV is determined by momentum transfer in |‘I’iA>:2 —(d's (w/2)+d' (112)]jg.1g) (23)
spontaneous and stimulated photon scattering in the course ng V2 Ho to!

of a field pulse and by the initiglprior to the light pulsg and

distribution over the internal and translational degrees of

freedom. According to Ref. 16, after the pulse has acted, we . 1 iy iy )
have A2 >—§g (4 (T2 =2 (712)]ig.mg) (29
W(zy,2,|t+ 1) =Tr{C(z, - 2,) p(21,25|1)}, (19 are the eigenvectors of the operatiV with eigenvalues

~ 12
where the matrixC(z;—2z,) is the left eigenvector of# :

=, =1, 4. 2
corresponding to a zero eigenvalue: “ Jgligt1) o @3

The method used to determine the coefficient28) and
(24) is similar to that used in derivin@l7). The superscripts
L A A and V indicate that the vector belongs either to the
—i0)CIM)+y 2 QqkdV,C(DV]. (200  system or to the V-system of the Zeeman subletsge Fig.
q==1,0 . .
1). For instance, in(23) ug runs through the values

—Jjg:—ligt2:jg and in (24), through the values
—jgt1—ig+3: g1

(PnlE(2)| Pye) =1. 1) We found the explicit form of the matrices® and CY

for two transitionsj4=1,2.

If we ignore the translational motion of the atoms,

Tr{C(z,—2,)p(21,25]t)} is a constant of motion fok9).

0=iQ[(V+V1),C(2)]—((y/2) +i8)1.C(2)+ (/2

We select the normalization condition f@rin the form

3.1. The jg=1—j,=1 transition

Calculating its value before and after the pulse with allow-  In this case
ance for(14) and(21), we arrive at(19). Equationg20) and + 2
. ~ A Ql Q*l \V QO
(21) lead to four fundamental properties of the mattifz), C 10,0’ C ~2-0,-0., (26)
which are valid for all integral values of angular momentum roxnt roxnt
i are independent of detuning and saturation, which is a spe-

(1) Cp,,u,(0)=6,, ., Which corresponds to conserva- cific feature of this transition.

tion of the total population of the atomic sublevels in optical

pumping.
(2) Asymptotically (for |kzj>1) the functionQq(kz)  3-2. The jy=2—/.=2 transition

specified in(10) vanishes and the solution ¢20) assumes Here A and &Y can be represented as the symmetric

the formC () = |Wc)(¥nc|. This property allows, at least anq antisymmetri¢with respect toQy,) parts,
in principle, for correlations between arbitrarily distant

pointsz, andz, . Cr=M(Qp)+M(=Qg), CY=M(Qy)—M(—Qy),
(3) The propertyCT(z)=C(—2) ensures that the mo- (27)
mentum distribution of the atoms is positive definite. of the matrix
(4) In contrast to the above three properties, the fourth 5 m m
propertyC, . (2)=C_, _,.(—2) is specific to the con- M(Qq) = W 1.1 1'2)_ 28)
figuration of theo, —o_ field considered here and mani- Mz1 M2

fests itself in the symmetry of the scattering diagram withThe explicit expressions for the coefficierllsand m;; are
respect to zero. given in the Appendix.

In our problem, prior to the field pulse the atoms are in As Egs.(A1)—(A5) show, the dependence on detuning
the ground state, so that to find the functidhwe only need  and field amplitude is due to the finite off-diagonal elements
to know the matrix elements o between the wave func- my , andm, ;. This coherence is induced by the recoil effect
tions of the magnetic sublevels of the ground Iei/pgl,ugy and is proportional to the differend@ _,—Q,, which van-
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Q_,=0Q,=0, we arrive at a reduced matrix, which is inde- p(Z1,25[t+T)=ex

ishes at kz=nw (see Egs. (10)). Assuming that [{ i
pendent ofé and ()

p 7 |:|KT) |V NcYW(Z1,2[t) (P ]

i
a 3(Qu+Q) xex;{% HKT). (33
0 36-Q§—2Q0Q~30Q+3Q’

By combining(33) and(19) we can derive a recurrence for-

3—-2Q 0 mula that relates the distribution afteN¢1) pulses,
X . (29 (N+1) (N) P :
0 (Qo+Q)/2 w , to WV the distribution afteN pulses
On the other hand, as EqR0) and(28) show, the coherence WN*Y(r,z)= > Cy gDy
between the statg23) and(24) can be ignored in two lim- Hg:"g
iting cases: a strong laser fiefd>+, and a large detuning Xexp[—ier(vé—,ué)]
|8|>y. In both cases (28) becomes (29) with _
Q=(Q 1 +Qy/2. a9 9
Let us now discuss the range of applicability of solution xexp ot k 5z Y9 P i

(14). In the local reference frame the translational motion of 20 T(vae o) 9
atoms in described by the operatdi given by (4). The ><exp{M

—WN(r,z), (39
diagonal element k iz

where we have introduced the variables (z;+2z,)/2 and
z=27,—127,. The reader will recall that the Fourier transform
in the differencez is a Wigner distribution function in the
phase space:

has the meaning of the effective energy of an atom in the .

dark state. The_ se_cond term on the rig_ht-hand side_, the Cor- {(r,p) = i fx exp( _ ﬁ) W(r,z)dz.

rection to the kinetic energy due to the inhomogeneity in the 27h ) -w h

field’s polarization, is on the order of the recoil effect and is
independent of coordinates. Thus, in the homogeneous ca;
considered here the diagonal elemé&fd) contributes noth-
ing to the dynamics of the atomic ensemble. The finite off-
diagonal elements,

~ l32 ho,
<WNC|HK|\PNC>:W+TJQ(JQ+1) (30)

Iréthis paper we do not account for spatial localization ef-
fécts. We assume that the distribution is homogeneous,
W(r,z) =W(z), with the result that34) becomes

wiN+D(z)= > Crag oy DU g

~ Mgy
~ hkp —

(WA Wne)y =~ v Valigt 1), xex —iw T(v3—ud)]

XWN(z+ 20, T(vg— ug)/K). (35

w

7 “VigligTD(jg—1D(g+2), (3D  we define the initial conditions for the recurrence formula
(35) as follows. Suppose that before the first pulse has acted

describe nonadiabatic states, which lead to a finite lifetime oPn the atomic system the atoms are in the ground state and

the atoms in the CPT state. If we employ the perturbatiorfiave an isotropic distribution over the magnetic sublevels:

theory in the atomic velocit,kv <min(y,yS), this lifetime 5

can be estimated at™*(Q/kv)? (see Refs. 2 and 16The p0 (2)= L FO)(z)

corrections due to translational motion are negligible if this Ha" 2jgt+1 ’

Iifetimez is much longer than the pulse length i.e., if  \yherer(9)(z) is the initial distribution in the laboratory ref-
(Q2/kv)“>y7. Summing up all the restrictions, we can writé grance frame. After the first pulse has acted, we get

2 A . FO9z)
<1. (32 WD (2)=Tr{C9(z)exp(ikzJ,)} 251
g

f

<‘I’9||:|K|‘I’Nc>:

min(y,yS)™>1, kv<<min(y,yS), vy7 (36)

precooled atoms or a strong laser field. The natural scale of length i35) and(36) is the wave-
length A\ =2x/k. If the spread in momentum in the initial
distribution is considerably greater than the photon momen-

4. SOLUTION FOR FREE PROPAGATION OF ATOMS; THE tum, the functionF)(2) is finite in a smallin comparison
ACTION OF A SEQUENCE OF LIGHT PULSES to A) neighborhood o=0. In the zeroth approximation we
can approximate it by a “unit delta function”:

After the field is switched off, the atoms are in the
ground state, with the result that their evolution in free FO)(z)=
propagation is determined by the kinetic-energy oper@por

1 if z=0,

0 if z#0. @7
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In the same approximation, aftdr pulses have acted on the the sign of the odd harmonics coincides with that of
system the distribution function constitutes a regular systengos 4w, T. For cos 4, T positive the principal maximum is

of peaks at the point &,4w, T/K, = 8w, T/K,---: at pointp=0 (see Fig. 2l while for cos 4», T negative the
principal maximum is at poinp= 7% k/dw, T (see Fig. 2&
V\/<N>(z):2 ¢|<N>|:(0)(z_4er|/k), (39) Moreover, in contrast to the cagg=1, at moderate values
[

of N an additional maximum manifests itself at point
The amplitudes of the peaksy(V), satisfy the recurrence P=77k/4wT if cos 4w T is positive or at poinp=0 if

formula cos 4, T is negative(see Figs. 2b and)cIn the additional
maximum the even and odd harmonics interfere destruc-
¢|(N+l): E c (4o, TIK) G, O tively, so that the maximum disappears as the number of

Kgwg 99 g7 g pulses increases. The case casB=0 requires special

_ 2 211 a(N) treatment. Here the period df(N)(p) is w7 k/4w,T and the

XexH —ioT(vg= ug)Ibrsi - ugre (39 principal maximum (within the periodicity interval is at

with the initial condition point p=0 (see Fig. 2l The number of harmonics i#1)
and their amplitudes increase with the number of pulses.
¢|(1):5|,o- This, obviously, leads to an increase in the height of the

principal maximum of the functio®™)(p) and a decrease
in the width (see Fig. 3.

Generally speaking, the comblike structure in the mo-
mentum distribution is formed for arbitrary values of the

In view of the symmetry ofC (see Sec. B the coefficients
#V) are real and symmetriap™) =™ . The momentum
representation corresponding (88) has the form of the

product, time lagT. However, forj =2 the effectiveness of this pro-
WN(p)=dMN(p)EO@(p), (40)  cess reaches its maximum|abs 40, T|=1, i.e., at the reso-
S . , nant values
of the periodic(with a period 27 k/4w, T) and symmetric
(with respect top=0) function n
jg(N—1) Tp=7. 44
(N) B Jg( ] p (N) n 4wr ( )
dN(p)= > expg —ido,Tl—|d (42)
1=—g(N-1) fik

o __ Equations(42) and (43) yield values of (V) that differ
and a smooth envelope, which in the present approximatioBomewhat from(39). Nevertheless, the main features of peak
coincides with the initial momentum representation. formation are reflected correctly.

Let us examine the process of formation of a comblike  angther important fact should be mentioned. At resonant
structure in the momentum space qualitatively using an apyajyes(44) of the time interval between pulses in a sequence

proximate expression for the matré we haveQ (4w, T;)=Q;(4w,T,). In this case(see(29))
5 it 1=0 the matrixC99 and hence the amplitudes™ are indepen-
Mg Vg’ ' ; ;
C. v (4erI/k)={ . dent of detuning and saturation. In other words, when the
9e Crgvg(®)=tu by, if 1#0, initial momentum distribution is broad, at resonant values of

the time lag the formation of the comblike structure is inde-
pendent on the field parametes and () (provided, of
course, that the condition(82) are met.

which is valid for large values of the time interval between
pulses,w, T>1. In this casg39) becomes

pNTV=1, 42 When we used the approximatid87), we entirely ig-
1 1 (42) nored the variation of the envelope of the peaks in the mo-
SHNFD=Z pMNp = (p(N) 1 (N mentum representation. Now we take this fact into account
1#0 2 | 4 I+1 1-1

by writing, instead of(38),
for j;=1 and

N1, W(N)(z)=§|: NV AN (z2— 4w, TIIK), (45)

(43

‘75{231):3_2 ¢+ 16 cog 4w, T) (41 + i) where the functiong ™) are equal to unity at zero, are finite
in a small neighborhood af=0, and describe the variation
n 3 (N + N of the envelope at each step. The amplitug€¥ still satisfy
64 71t2T V-2 (39). Let us examine the evolution ¢fJ¥(0)=1, which is
for j 4=2. Within the interval — /i k/4w, T, fik/4w, T] the equivalent to the envelope of the momentum distribution as a
function (41) describes the formation of the principal maxi- whole,
mum at the point where all the harmonics interfere construc-

tively, amplifying each other. As Eq$42) imply, atj =1 ZNTD(z7) = s C (D, s eX[{ier(vé—,ué)]
9’79 9 9

the amplitudes of all the harmonics are positive. Hence the Hg Vg
principal maximum is at the poimi=0 (see Fig. 2a When N) SN 4
jg=2, the amplitudes of the even harmonics are positive, and X d’(vg—ug)/Z :)(Vg_:ug)/z(z)' (46)
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® @
) )

a b
27 2
FIG. 2. Formation of a comblike structure in the
0 L 1 ) 1 0 . 1 . velocity distribution of atoms after five light
-2 -1 0 1 2 -2 -1 0 1 2 pulses have acted on the system. The periodic
@ plhk plhk function®(p) of (41) is depicted for the follow-
4£p) ?ﬁp) ing four cases:(a) jg=1 and 4o, T=m; (b)
jg=2 and 4o, T=; (C) jq=2 and 4o, T=2;
c d (d) jg=2 and 4o, T=/2.

[
[\
T

1
plhk pihk

The right-hand side of this equation contains the functiongiepends on the behavior 6(z) near zero and the values of
AN : i i -

“MN(2) with 1#0. <—,I(rrl) the limit ‘/1(‘:‘11-1?1 in (46) we 4N calculating the second derivative 6{z) at zero, we
can approximate £\.4(z) by &y (z). Then for  ggtaplish explicitly that

#MN(2)=2M(2) to within (k2)2 we have

71— 81")

ZINtD(2)— 2N (2)=(—kz)2DN N (2) A7) D =——— (49
with the initial condition(36): for jo=1 and

ZW(z)=W(z). oo 9(347-260 cosdw, T) 1 —8765")
The first-order terms ikz vanish in view of the symmetry 1600

N — N AP H H ” .
»N=¢MN . The “diffusion” coefficient 2(11+9(Q/7)?)(1— cog 4o, T) V) -
w1 |11+ 9(Q/ y)?+18i 61 y|? (50
D :—E#QEYVQ Cﬂg,yg(o)lpvglpp.g fOf jg:2.
) The solution of Eq(47) can be represented in the form
_ 2_ 21 4(N)
Xexg —lo T(vg= ug)1b( - 48 of a finite product:
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0.3

0.1r

20 30 40 50
N

FIG. 3. Dependence of the halfwidth of the peak in the momentum repre-

sentation on the number of light pulsesjgt=1 and 40, T=. The dots
correspond to the results of calculations by E9) and (41), and the
dashed curve represents the asymptotic curve g8/

N—-1

#N(z)=]1 (1-(k2)’DM)F(2), (51)
=0

whereD for i positive is determined by Eq&t9) and(50),

and expanding36) in powers ofkz, we arrive at the follow-
ing expressions fob(®):

11
D(0)=§) at jg=1,

D(O):1_7

5

16(11+9(Q/ v)?)
15/11+ 9(Q/ y)?+ 18 6/ y|?

at jg=2.
(52)

Obviously, Eq.(51) describes the broadening of the en-

velope of the peaks in the momentum distribution, with the
number of peaks increasing and the fraction of atoms within

each peak decreasing in the process. When2 holds, the
coefficientD depends on the field parametefand () and
reaches its minimum af=0 andQ <y (here, in view of
(32), 2 must be much larger thakw). Thus, the envelope

3WN(p+2%k) +2WN(p) +3WN(p—27k)

FN(p) = -

for jg=2, (55

which follow from (18) and describe the splitting of each
peak in the local reference frame injg+1 peaks in the
laboratory reference frame.

4.2, Asymptotic behavior for N>1

The approximate Eqg42) and(43) make it possible to
analyze the asymptotic behavior of the solution when the
number of pulses is large. Fo¥>1 the dependence of
|q5,(N)| onN andl can be approximated by a smooth function
¢(N,I) and Egs.(42) and (43), by the second-order differ-
ential equation
i N,I)= i N, I
N PN )=a 2 (N, ) (56)

with the boundary and initial conditions
#(N,0)=1, &(0l)=0.

Thus, the problem reduces to a heat equation for a semi-
bounded rod whose end is kept at a constant temperature.
The solution of this problem has the form

I

where the “thermal conductivity” coefficiena is equal to

3 atjy=1. Forjy=2 the situation is more complicated. For-
mally at |cos 4o, T|=1 the “thermal conductivity” a is
equal to3, but the first coefficientss{V)| differs consider-
ably from (57) because of the transition over point0, a
process that cannot be described by &#). For this coef-
ficient the asymptotic behavior is

¢(N,I)=1—Erf<

|1 ~1~

W
For1>1 formula(57) becomes valid if we interpred as a

fitting parameter close t§ and weakly dependent dx.
Equation(57) shows that the width of the peaks in the

broadening effect can be diminished by a quantity of order ofnomentum representation decreases likéNL(see Fig. 3.

a few percent by using a weak resonant field.

The asymptotic behavior of the “diffusion” coefficiem (™)

The final expression for the momentum distributionin Eq.(47) for the envelope of the peaks also obeys théNL/
function in the local reference frame in the case of a broadaw_ Hence the width of the enve|ope increases %4,

initial momentum distribution is

JgN-1) 0
WN(p)y= > ex;{—i4erl—> (NZN(p),
1=—g(N-1) fik

(53
whereZ(N)(p) is the Fourier transform of{\)(z). The ob-

served distribution function(in the laboratory reference

frame is expressed in terms &V (p) by the following
formulas:

WN(p+ak) +WN (p—7ik)
2

FN(p)= for jo=1, (54)
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while the relative fraction of atoms within each peéke
area of the pegkdecreases liké& ™4,

Interestingly, a similar asymptotic behavior for the width
and area of the peaks is observed in the problem of cooling
by velocity-selective coherent population trapping in a sta-
tionary o, —o_ field™ if N is interpreted as the time of
interaction with the field.

4.3. Scattering in the general case

Let us examine the general case where the de Broglie
wavelength\pg of the atom(the characteristic length over
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W(z) by diffraction and the CPT effect prove to be suppressed. But

1.0 for 40w, T=2nm, the effects interfere constructively, ampli-
0.8+ fying each other.
0.6+ 4.4, Ramsey cooling of atoms precooled by velocity-
selective coherent population trapping
0.4}
It is appropriate at this point to compare the results of
0.2 the theory developed in the present paper with quantum
0.0 simulations of Ramsey cooling of helium atortibe j =1
020 , , . _ —je=1 transition.!’” The following situation was examined
-100 50 0 50 100 in Ref. 17. The atoms were precooled by velocity-selective

coherent population trapping in a resonant— o _ field be-
low the quantum limiti , (the full width at half-maximum

of the peaks in the momentum representation was#kB4
Then, in the course oT =500y ! the atoms were left to
themselves, after which a second pulse of light of length
=100y~ ! was sent through the system. Here we will not
consider the precooling process—we model it by a mixture
of Lorentzian(for atoms in the| W) state and Gaussian
(for atoms in thg W) staté distributions(the | ¥Y) state is

= ) > 4 " T assumed empjy
P ~
p(2)=A exp(—ak|z])| U nc)(Wncl +B
FIG. 4. Diagram of atomic scattering after five light pulses have acted on _ 2 A A
the system aj,=1 and 4», T= 10 in the case of a narrow initial momen- xexp(—b(kz) )|1[/1 ><\P1 | '
tum distribution,F(©(p) < exp(—p/p), with po=7K/5. The following values of the parameters correspond to the

data given in Ref. 17.2=0.17, A=1.25, b=7.78, and
B=4.75. Since the atoms in th# ) state do not participate
in Ramsey cooling, the initial condition fdB5) should be
taken in the form of a Lorentzian peak:

W (z)=A exp(—ak|z|).

(58)  According to(35),

which the functionF(©)(z) is finite) is not necessarily small
compared to the wavelengthof the light. If

ApB

4o, T> N

2-Q_41(k2)—Qq(k2)

the formulas(35) and (36) still describe the formation of W2 (z)=W®(z)+
(=W * 5720 (ko —2Qu(ka)

well-resolved peaks at 84w, T/k,*8w,T/k,---, whose

amplitudes are described 6$9) and, as a consequence, of a X (WD(z+ 4w, TIK) + WD (z— 4w, TIK)
comblike structure in momentum space. However, the simple

representation51) for the envelope becomes invalid. For —2W(2)).

Apg>\ the shape of the envelope differs qualitatively from We found the Fourier transfori/(p), added to it a broad

fche ?ase\DB<)‘ discussed apove. As the.scattermg Ollagra.r.'background corresponding to the Gaussian distribution, and
in Fig. 4 shows, each peak in the coordinate representation

2 : o . ; - ~used the peak splitting formul®4). The result was the dis-
exhibits spatial oscillations corresponding to the diffraction_ . = P _ b g . &4 : o
of atoms on a standing wav¢he Kapitza—Dirac resonance tr|_but|on functionF(p) in Fig. 5, V.Vh'Ch agrees qua_lltatlvely
effect. In the momentum representation this feature manjWith the result of Ref. 17. For instance, according to our
fests itself in the peak envelope, which demonstrates quar?—a

tum diffraction feat di din Ref. 16. In th itd= i_ﬁk was 0.0&k (the totgl width at halfheight with_out
I;:nTt V\I/h:earce lon features discussed in ke N the oppos allowing for backgrouny while the data of Ref. 17 yield

0.04:k. The discrepancy can be explained by the fact that
\og condition (32) was not met in Ref. 17w~ vS, and during
4er$T, (59 the second field pulse there was additional cooling due to
selective coherent population trapping.
the very property(53) of factorization of the distribution
function into a periodic function®(p) and an envelope
Z(p) becomes invalid. WheRpg>\ holds, the two effects,
Ramsey cooling proper and the Kapitza—Dirac resonance e
fect, may influence each othémay interfere with each In view of the experiment of Sandest all® in pulsed
othen. For 4w, T=(2n+ 1), their interference is destruc- cooling on thej,=2—j.—2 in the D;-line of 8Rb, we
tive. The action of two light pulses reduces to broadening theonsider a situation in which the pulse length is not suffi-
momentum distribution, while the quantum features inducediently large for the atoms to switch to the dark state com-

5. DEPENDENCE OF THE CONTRAST OF THE SCATTERING
PIAGRAM ON THE PARAMETER ¢S~
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F(p) N+1 < vy, v : 2.2
Nt D= > A2 (2] r)exil — i T(v]=v))]

2.0r Py Z_
Vy,V= Jg
5 xpg’j>V2(z+ 20, T(vi—v,)/K), (60)
1.5f ’
where u,, and v, , label the magnetic sublevels of the
ground statdthe density matrix of the excited state and the
1.0t off-diagonal elements can be expressed in terms of the den-
sity matrix of the ground state in tHe<1 limit). The initial
conditions also change appropriately:
0.5f .
L Jg 7 = 2)
Pl (D= 2 Ayt w2 T explikzy) 5. (61)
0.0 R . T o
-4 -2 0 4 Figures 6a, b, and c depict the results based on the nu-

herent population trapping.

saturation,S<1, only one of the two conditions ifil3) is

met, i.e.,

yr=1,

ySr<1.

plhk

formula for the density matrix of the atoms:

merical calculation of the matrix exponential functiofi for
FIG. 5. Diagram of scattering of atoms precooled by velocity-selective coth€ jg=2—]e=2 transition for6=7y, N=28, T=n/4w,

(in accordance with the data of Ref.)18nd for different
values of theySr parameter: 0.4, 0.8, 1.6, and 16. The initial
distribution  is

pletely. More precisely, we assume that in the event of weak(2) =exp(-b(k?) with b=1.45 (the corresponding
Gaussian halfwidthr at e~ 2 of the maximum of the mo-

mentum distribution is 1#k). Table | shows that the enve-

lope halfwidtho, and the contrast of the scattering diagram

(the peak-to-peak ratib (% k)/F(0)) increase withySr, but

In this case instead ¢B5) we have the following recurrence the peak halfwidtho, decreases. The value ofSr can be

increased by increasing the pulse length and the field inten-

assumed to be

GaussianfF(©

Fip) F
0.4t 0.4({{)
a b
03r 0.3
0.2r 0.2r
0.1 0.1}
0 0 FIG. 6. Dependence of the scattering diagram
N ) L A " L A for jg=2 and 4o, T= on the parameteySr.
-20 -10 0 10 20 =20 -10 0 10 20 Shown is the momentum distribution function
ﬁ(p) plhk I?(p) plhk for the atomsF(p), in the laboratory reference
0.4+ 0.4+ frame after 28 light pulses have acted on the
system at(a) ySr=0.4, (b) ySr=0.8, (¢)
c d yS7=1.6, and(d) ySr=16.
0.3r 0.3r1
02 0.2r
0.1+ 0.1 U
0 0
-20 -10 0 10 20 -20 -10 0 10 20
plhk plhk
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TABLE |. Dependence of the characteristics of the scattering diagram on (1) the formation (after a moderate number of |ight
the parameteySr. pulses have acted on the sysjesh additional maximd(.e.,
in addition to the principal maximum

ySt odhk opltik F(#k)/F (0 . . .
i (RI/F 0 (2) the lack of dependence in the cage=1 (provided
0.4 3.2 0.15 15 that conditiong32) are met of the scattering diagram on the
2'2 431'2 8'12 g? field parameters; and
16 6.6 0.05 21 (3) the dependence in the cagg=2 of the scattering
% 6.6 0.05 55 diagram in the field intensity and detuning. However, in the

case of a broadon the photon momentum scaliitial dis-
tribution at resonant values of the time interval between two
consecutive light pulsedq. (44)) this dependence manifests

sity or by decreasing the detuning from resonance. The e)tSelf only in the peak envelope in the momentum distribu-

perimental data correspond §B7= 1.6, which is far from tion. i i )

the optimum values determined by the following qualitative We_examln_ed the scatFerlng OT atoms with angular mo-

considerations. Only the atoms trapped into a CPT state coﬁn nta 19:_ 1-je=1 and jg=2—j.=2 by a resonant

tribute to formation of the comblike structure, so that the?+ — ¢~ field. The method can be applie@fter proper

maximum contrast is observed when all the atoms are tranénodlflcatmr) to transitions with larger values of angular mo-

ferred into| W yc). The condition for almost complete clear- menta and to more complicated field configuratiénsiud-

ing of the medium can be written a&Sr>1/a, where« is ing two- and three-dimensional

the minimum eigenvalu€25) (in our casea=1/6). For in- The authors are grateful to Dr. Frank Sander from

stance, decreasing the detuning by a factor/d® we find ~ Garching, who read the manuscript and made useful remarks

that ySt= 16, which yields a scattering amplitude close toand clarifications.

the analytical results achieved in the previous sections of this

paper(see Fig. 6d and Tablé.INote that here one can speak APPENDIX

only of qualitative agreement between our results and those The coefficient and m; ; have the following form:

of Ref. 18. In particular, atySr=1.6 our data yield 52 (0
o 2[5

Y Y

o.~4.0hk, while the data of Ref. 18 yield,~4.4%k; for D=81l
+60Q;~6Q-1Q1~3Q7+4Q_1Q0+4Q1Qo

4
—144+60Q_,—3Q%
the peak halfwidth we have,~0.2fik, while Ref. 18 yields )( 0Q-173Q%

=0.31k. Here are some factors that lead to these discrep-
ancies. First, the interaction in the experiment of Ref. 18 did

not consist only of the closed transitipg=2— j=2, since ) 2 )

there was an additional field that pumped the atoms from the +4Qp) — 18 > (2160-11880_,+225Q%,

hyperfine component withj;=1. This “depleting” field . ,

acted continuously, and in the interval between light pulses —18Q7,-11889,;+210Q_,Q;—6QZ;Q,

in the active transition atoms returned to the sublevel with 2 2 3

the angular momenturj,= 2, with the momentum distribu- +22501-6Q-;Q1~18Q1-60Q-1 Q0 60Q:Qo

tion being further broadened because of the recoil effect. +32Q_,Q,Q,— 60Q2+8Q_;Q2+8Q,Q3) — (15

Second, the finite momentum resolution of the detecting sys-

tem made it impossible to observe structures narrower than —3Q_1—3Q;+2Q))(2160-1044Q_; +225Q2,

0.%:k. Finally, our main assumption that the atoms remain _ 3 _ 2

immobile when a light pulse acts on the system works poorly 27Q%,~ 104400, ~30Q;Q; +15Q%,Q,

in conditions corresponding to those of the experiment, +225Q2+15Q _;,Q%— 27Q3 - 288Q,+60Q_;Q,

wherekv 7~ ySt~ 1. , ,
—18Q7,Q¢+60Q1Q0+28Q_1Q:Q¢—18Q1Q0
—60Q5+12Q_,Q5+12Q,Q5+8Q5), (A1)

6. CONCLUSION 5

Q 4
5 )(—3+Q—1+Q1)

By assuming that the translational motion of atoms can My 1= 972<4 -

+ JE—
be completely ignored while a light pulse acts on the system Y
we were able to develop a fairly simple analytical description 2
of Ramsey cooling of atoms. The method accounts exactly _216< ) (45-21Q_;+3Q% 1721Q,
for the quantum effects that are due to the recoil in the ab-
sorption(emission of photons and the free motion of atoms +2Q_1Q;+3Q%) —12(15-3Q_;+2Q,—3Q,)

in the absence of a field. We found that the interaction of _ 2 _

atoms and light pulses in CPT conditions may generate cor- X(45-18Q 1 +3Q%,76Q0+2Q-1Q0~ 18Q,

relations between arbitrarily distant poirggs andz,, a fact —2Q_,Q;+2QQ;+ 3Qi), (A2)

of fundamental importance for atomic optics and atomic in-

terferometry. We also discovered features of the scattering _ o
: : ; 8 m, ,= —243 4| —

diagram not detected in earlier studté<® namely,

2 4

(Q-1+2Q¢+ Q1)
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Ultrahigh-energy cosmic rays: possible origin and spectrum
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The complicated shape of the cosmic ray spectrum recorded by giant arrays in the energy range
10— 10 eV is analyzed. It is shown that in the energy regien0'®— 10'° eV the

spectrum probably coincides with the injection spectrum whose exponent is equal approximately
to 3.2—3.3. The flatter component in the energy region (3520)x 10*° eV is due to

braking of extragalactic protons on primordial photdtiee cosmic background radiatiprit

energies exceeding 3x2L0'° eV the spectrum does not have a blackbody cutoff. The

possibility of determining the distances at which cosmic rays originate and investigating the
evolution of their sources on the basis of ultrahigh-energy cosmic ray data is discussé8980©
American Institute of Physic§S1063-776(98)00201-7

1. INTRODUCTION galactic in the energy regioB<10' eV and extragalactic
for E>10'° eV. In the second model they are assumed to be

The origin of cosmic rays of ultrahigh-energg;>10""  extragalactic for energieg>10'7 eV. Using these two mod-

eV, is still unclear. The experimental data indicate that cosels the paper discusses the possibility of investigating the

mic rays with energie§>4x 10'° eV are probably extraga- evolution of sources of ultrahigh-energy cosmic rays.

lactic in origin} =3 If this is so, then their spectrum may have

a blackbody cutoff:> the recorded particle flux with energy > ExXPERIMENTAL DATA

6x10'° eV will be twice as small as expected from the _ _ ,

power-law extrapolation of the spectrum as a consequence of | 1€ COSMIC ray spectrum n the energy regl?-)]:r 10"

the interaction of the cosmic rays with primordial photons®V has a complicated shap@:® for E~5x10'" eV the

(the cosmic background radiatipin intergalactic space. SIoP€ Of the spectrumy grows from y~3.0-3.1 to

However, if the proton sources are not farther away from ug~32-3.3 (th? error in the detgrmlnatlgn Ofy 1S

than 4050 Mpc the blackbody cutoff will be absent since9:02~0.06), while in the energy regioB~10'° eV it de-

protons of energies up B~ 1072 eV traverse such distances Créases ty~2.6-2.7, i.e., a flatter component appears in
almost freely In Ref. 7 it was shown that the main proton the spectrum. The error in the determination of the slope of

sources with energieE>E,,~3.2x 101 eV are probably the flatter component is 0.{Spectral slopes are not provided

the nuclei of active galaxies no farther from us than 40 Mpcin Refs. 11-13. Cosmic ray spectra measured at different

if the Hubble constant is equal to 75 km/(s Mpc). In this detector™** and eperg_y-normalized in the same way as in
case the proton spectrum does not have a blackbody cutoi’ﬁef' 3 are plotied in Fig. 1.
At present the experimental data obtained at different
detectors—Yakutsk,Akeno and AGASA? “Fly’s Eye,” 10 3. COSMIC RAY SPECTRUM FOR E<10' eV IN THE
Haverah ParR!, Sydney'? and Volcano Rancfi—neither ~GALACTIC MODEL
confirm nor refute its presence. The propagation of cosmic particles in the Galaxy can be
The origin of cosmic rays in the energy region described in the diffusion approximation if their energy does
10t"<E<10" eV is determined not only on the basis of not exceed 1H—10'8 eV (Ref. 18. In addition, it was
their spectrum, but also their anisotropy and chemicakhown in Refs. 20—22 that particles with cha@eease to
composition.® However, the available experimental data propagate diffusively if their energy exceeds some value
are not sufficiently unequivocal to determine whether cosmi&,z, such that in the energy regios>E,Z the particle
rays of such energies are galactic or extragalactic. spectrum coincides with the injection spectrum and the
Different models have been considered in attempts tglopes of the spectra are equahte y,. (Note that this result
explain the shape of the spectrum in the energy regionvas obtained in Refs. 20—-22 by different methods: in Refs.
E>10' eV. According to the results of Refs. 14—17, the 20 and 21 it is due to drift of ultrahigh-energy cosmic rays in
spectrum can have a complicated shape if it is formed byarge-scale magnetic fields, while in Ref. 22 it is due to a
extragalactic protons whose sources are hundreds of meggansition to collisionless propagation of particles in a me-
parsecs from us. On the other hand, modeling of chargeddium where they excite MHD wavesAn estimate of the
particle trajectories in galactic magnetic fields has showrenergyE, was obtained by numerical simulation of the par-
that cosmic rays in the energy region*1010'® eV are ga- ticle trajectories in the Galactic magnetic fi¢lg,~ 2x 108
lactic or are of mixed origin—they are accelerated in theeV.
Galaxy and in the Local Superclustért® The chemical composition of cosmic rays in the energy
The present paper proposes two models to explain theegion 13%— 10 eV is still unclear. According to the results
proton spectra. The first model assumes that cosmic rays acé measurements reported in Ref. 23, the proton fraction in-
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FIG. 1. Cosmic ray spectrum fd&>10'" eV, energy-normalized in

] the same way as in Ref. 3; measurement dat#@at— Yakutsk®

X — Akeno and AGASA’ + — “Fly's Eye,” 1 O — Haverah
Park!! Solid line — theoretical spectrum calculated in the galactic
{ model forE<E,, and in the extragalactic model f&>E,,.
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creases systematically, starting froml0' eV, so that for interval 3.1< y<3.3. The calculated values of, are listed
energiesE > 10" eV protons predominate. According to the in Table I. The energy range of the flatter component with
data of Ref. 10, the composition varies in the energy rangeallowance for the 30% error in the determination of the en-
4x10'"-4x 10" eV in the following way: to start with, ergy iSE~(2—5)x 10" eV. It agrees with the measurement
iron nuclei predominate, and at the other end there are onlgesults of Refs. 8, 9, 11-13 and does not contradict the

protons. single-measurement data of Ref. 10.

We will assume that at energigs=10'® eV protons The possible existence in the spectrum of a flattened
predominate. Then the spectrum of the protons coincidesomponent of such a nature was predicted in Refs. 14-16.
with their injection spectrum at energi&s=2x 10 eV. The theoretical spectrum based on the proposed model is

The regionE=2x10'® eV is the region in which the plotted in Fig. 1. It is normalized to the measured intensity at
slope of the measured spectrum grows. This means appdE~10'° eV. In addition, the calculations assumed that the
ently that at energieE>10' eV the slope of the proton energy region of the flatter component s
injection spectrum vy, is roughly equal to 3.23.3: E~(3.2-5.0)x10' eV. The theoretical spectrum agrees
Yo~3.2—3.3. with the measurements within the limits of error.

Particles with energf > E,, probably accelerate mainly Let us consider the slopes of the spectra in the region
from sources no farther away from us than 40-50 Mft2> E=10'° eV. It is clear from the table that the proposed
and as a consequence their spectrum does not have a blackedel yields values oy, in agreement with the slope of the
body cutoff. If this is so, then the exponent of the spectrunflatter component.
in this region coincides with the exponep of the injection To estimate the slope of the measured spectrum in the
spectrum. We assume that in the regior E|, the injection  region E>E,, we make use of the summary of the experi-
spectrum is the same as fBE=2x 10'8 eV. Then the slope mental data in Ref. 3: in 1993 only 881 events with energy
of the spectrum in the regiorE>E,, is equal to E=10"eV were recorded, and only 7 wite=10° eV and
y=3.2—-3.3. 2 with E=2x 10?° eV. For a power-law spectrum wheke

Particles with energiesE>E,,, propagating from is the number of particles with energy greater than
sources closer than 40 Mpc, will interact with the cosmicN(=E), the relation N;(=E;)/N,(=E,)=(E,/E;)?*?!
background radiation until their energy falls to holds, and from it we obtairy=3.1ﬁ8€ for E;=10" eV,
E~(3.2-5.0)x 10'° eV. Particles with such energies cannot E,= 10 eV.
undergo any interactions in intergalactic space since their Some of the 881 events have energy in the interval
mean free paths in the cosmic background radiation field is=(1.0—3.2)x 10" eV and make up the flattened compo-
quite large:\>1000 Mpc(Ref. 6. This leads to the result nent. Therefore, in the regida>3.2x 10'° eV the exponent
that protons with energieE>3.2x 10" eV “pump” into of the spectrum will be greater than the estimate:3.1 and,
the regionE~(3.2—5.0)x 10'° eV, and as a result the slope consequentlyy,>3.1.
of the spectrum in this region changes from 3.1 to a value

v, such that _
TABLE I. Calculated exponent, of the flatter component for different
B Es values(within the limits of experimental errprof its upper limitE; and
. E " YdE= E~"dE, spectral slopey.
bb

Epbb
whereE; is the upper limit of the energy range of the flatter ” Es eV "
component. We find, from the experimental dat£-*The 3.0 4.9¢10° 26
measured value dE4 is approximately 4 10'° eV, and the ~ 3.05 4.8<10' 2.65
energy of the particles is determined with an error of ap-3-0° 4-9<1g2 2.7
proximately 20—30%Refs. 8 and 1D Therefore we esti- . j:ziolg 23
mated the exponent, for several values oEj; in the inter- 33 4.2 1019 27

val 4X 101%<E;<5x 10* eV and several values af in the
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If the blackbody cutoff is absent, then the proton spec-background radiation they lose energy as a consequence of
trum coincides with the injection spectrum in two regions:the red shift, in processes @f e pair formation if their
2X 10"¥<E<10%eV andE>3.2x 10" eV. Estimates of the energy satisfieE<10'° eV, and by photo-generation of
slope of the spectrum in these intervals agree with eacpions forE>E,,. As a result, the differential spectrum of
other: y=3.2—-3.3 andy>3.1; consequently, the measured the protons emitted by an isolated source can exhibit a hump
spectrum apparently does not have a blackbody cuttffe ~ and a valley frome*e™ pair formation, a photo-pion hump,
authors of Ref. 3, on the basis of these same experimentahd a blackbody cutoff. However, if the sources uniformly
data, concluded that its existence was possible. They agil the Universe, the hump and valley froe" e~ pair for-
sumed that if there is no cutoff, then the slope EbrE,, = mation will be weakly expressed. The sources should fill a
must coincide with the slope of the flatter component. sphere of radius corresponding to the red shi#t0.2. The
photo-pion hump(without a valley will be present in the
spectrum if the proton sources uniformly fill a sphere of ra-
Let us consider how the cosmic ray injection spectrumdius corresponding ta<0.085.
varies between the different energy intervals, making use of Hence we may assume that for a nonuniform source dis-
the results presented above. tribution the spectrum will have not only a photo-pion hump,
In the regionE< 10’ eV the proton spectrum is related but also other peculiarities. Thus, the measured spectrum
to the injection spectrum by the relatioN(>E)=<E~ 7 #,  could be explained by varying the shape of the source distri-
where the parametegr describes the dependence of the dif- bution. Observation data indeed indicate that the nuclei of
fusion coefficient on the energy«E*. The measurements active galaxies are distributed nonuniformly on scales reach-
of Ref. 26 yield a value of. the range 0.3 0.7 for energies ing ~10°> Mpc (Ref. 31 and that they are most likely the
of a few GeV/nucleon, the measurements of Ref. 27 yieldnain sources of ultrahigh-energy protdrfs.
n=0.6 for energies=1 TeV/nucleon, and analysis of the Let us analyze the spectrum in accordance with this hy-
diffusion modet® yields x=0.15-0.20 in the energy range pothesis. If, in accordance with Refs. 7, 24, and 25, the par-
E=10°-10' eV. The slopey of the cosmic ray spectrum ticles with E>E,, are accelerated mainly in sources sepa-
for E<3x 10" eV is equal to approximately 2.75 and hencerated from us by distances not exceeding-4D Mpc, then
the exponent of the injection spectrum in this region istheir spectrum does not have a blackbody cutoff. Thus, the
vo~2.2 for u=0.6 andyy=~2.6 for u=0.15-0.2. exponent of the spectrum in this region is equal to
The spectral index in the region 3<10™°-10%eVis  y~3.0-3.1. This is just the rough estimate of the slope in
hard to determine since it is still not clear for what reasonghe regionE>E,, obtained above. It coincides with the
the slope of the cosmic ray spectrum varies For 3 X 10'° slope for E~(1—5)x 10" eV and, consequently, in this
eV. Particles with chargeZ are accelerated to energies model the measured spectrum does not have a blackbody
E<10'Z"! eV, apparently, in supernova burdfsAccord-  cutoff.
ing to Refs. 18, 29, and 30, the slope of the spectrum varies  The shallow component at energigs- (3.2—5.0)x 10'°
as a consequence of the propagation and subsequent acagl¢ in this model is also due to “pumping” of protons into
eration of the particles in the Galaxy. In addition, it is this region having energie&>E,,. Values of the spectral
possiblé that high-energy protons accelerate in otfleot  index v, of the flattened component foy~3.0—3.1 are
yet established processes, and their injection spectrumshown in the table.
changes. In the spectrum of particles accelerated in sources with
Thus, if protons predominate in the composition of cos-z~0.2, a notch can appear in the regiBr<10*° eV as a
mic rays in the energy regida>10"® eV (Ref. 23, thenitis  result of particles with energieE~2x 10'8—3x 10" eV
possible that the slope of the injection spectrum varies in th¢osing energy by creating™e™ pairs in the background ra-
following way: it increases to a valuegy,~3.2—3.3 for  diation field!®

Cosmic ray injection spectrum

E>10'® eV in comparison with the regioB<3x 10" eV, This model can be verified by calculating the proton
where the slope does not exceed 2.6=23<2.6. spectra of sources distributed nonuniformly at distances

r>40 Mpc from us with a nonuniformity scale of up to
4. EXTRAGALACTIC MODEL OF THE ORIGIN OF COSMIC ~100 Mpc.

RAYS IN THE ENERGY REGION E>10Y eV

In this model we assume that the particles with energys' POSSIBLE CONSTRAINTS ON COSMIC RAY SOURCES

E>10' eV are mainly extragalactic, that their spectrum has  Particles with energieE>10'® eV probably propagate
the single exponenty~3.0—3.1, found in the region along straight-line paths in the Gal&y??and beyond if?
E~(2—4)x10" eV 389 and that for energieE>10' eV The energy of a proton emitted at the epoch with red
the spectrum is distorted as a result of interaction of theshift z falls as it propagates in intergalactic space due to the
particles with the fossil radiatiofcosmic background radia- red shift and formation oé* e~ pairs and pions.Let Eq(z)
tion) in intergalactic space. be the energy that a proton should have at its epoch of gen-
A possible change in the shape of the spectrum in theration in order for its energy at=0 to beE. We note that
region E<3.2x10' eV was noted in Ref. 14 and investi- the luminosity and density of sources in the accompanying
gated in Refs. 15-17. According to the results of these studvolume increase with growth of their red shift Thus, the
ies, the spectrum can have a complicated shape if it is formeenergy density of extragalactic particles in the interval
by extragalactic protons: by interacting with the cosmic(E,E+dE) is equal to
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Zmax not only in the region of the flattened component, but also
Weg(E)d E=f Neg(Z)LcrlEo(2)]7(2)dE dz for E~2x 10— 10 eV, where the experimental errors are
“min significantly less.
where ng,(z) is the density of extragalactic sources,
Lcr(Eg)dE is their cosmic-ray luminosity in the interval
(Eq,Ep+dE), andr(z) is the propagation time of such par-
ticles. The lower integration limit,;, corresponds to the
distance the particles can traverse essentially without losses. | have proposed two models of the origin of ultrahigh-
According to Ref. 6, this distance is10 kpc, and therefore energy cosmic rays. In the first model the cosmic rays are
Zrmin=0.003. The upper liMity.y is probably~3—4 333 assumed to be extragalactic =3 10'° eV and galactic
The energy densityveo(>E) can be found from the at |ower energies. In the second model they are assumed to

6. CONCLUSION

cosmic ray spectrum: be extragalactic starting &>10'7 eV. It follows from both
A models that the measured spectrum has apparently no black-
Weo(>E)=— f (E)EdE, body cutoff and that the flattened component in the energy
¢ region (3—5)x 10'° eV is due to braking of protons on pri-
wherel (>E) is the total intensity of cosmic rays with ener- mordial photons.
gies>E andc=3Xx10'" cm/s is the speed of lightEnergy Moreover, it follows from the first model that there is a
requirements on ultrahigh-energy particle sources are digpossible changeover from galactic to extragalactic rays in the
cussed in Ref. ]. region of the notch. The data on anisotropy and chemical

At the present time, models of the cosmological evolu-composition in this energy region are still not sufficiently
tion of sources are not exact enody?f to allow one to  definite to reliably confirm this conclusion.
extract from them estimates of the density and luminosity of  In the first model we also found that the injection spec-
sourcesney(z) and Lcg(2). It is also unclear whether the trum of cosmic rays with energieS> 108 eV is different
energetics of the sources is not connected in some way witliom that at lower energies. Its exponent is larger:
the efficiency of the particle acceleration. It has still not beenyo~3.2— 3.3 whereas for 19<E<3x10% eV it lies in the
possible to identify the most powerful extragalactic sourcesnterval 2.2<vy,=<2.6. The proton spectrum has exponent
as possible sources of cosmic protons Vit 102° eV (Ref.  yo~3.2—3.3 in the energy region 10'8—10'8 eV. This re-
32). On the contrary, in Ref7 | identified the nuclei of active sult was obtained from the measurements of Ref. 23, from
galaxies, emitting moderate fluxes in the radio and x-raywhich it follows that forE=10'8 eV protons predominate in
ranges, as the sources of such protons. From the propos#te composition of cosmic rays.

models we obtain the estimate To check the second model it is necessary to calculate
the spectra of protons with> 10" eV from sources at dis-
Weg(>E):f Neg(Z)Ler Eo(2)]7(2)dz. tancesr >40 Mpc from us and nonuniformly distributed on
scales up to~100 Mpc.
For example, according to Fig. 1, f&E=E,, we have From the ultrahigh-energy cosmic ray data it is possible
| (Epp) ESp~ 10745 (mP-s-sr-eV=2) 71, and hence to form a picture of the evolution of the sources and estimate

Weo(>Epp) ~4X 10 2! erg/cn?. In the second model the distances from which cos_mic rays are arriving. CaICI_JIa—
Weo(>E) can be estimated at lower energies: from Fig. 1 ittions of the proton spectra with allowance for the evolution

follows for E~2x 108 eV that Of the sources were performed in Refs. 1 and 16. A simple
I-(2X 108 eV)-(2x 108 eV)3~10%*7 (m?-s-sr-ev-2)~1 dependence of the source density and luminosity avas
and hencewg,(>E)~1x10"* erg/cn?. adopted. It was then shown that the evolution of the sources

It is possible that the slope of the flattened componenfias @ more complicated forift* It follows from the pro-
reflects how distant the proton sources are that form it. Th@0sed models that the evolution of the sources can be inves-
farther the source is located from us, the larger the energ§fgated employing the extragalactic particle spectrum
that the proton loses on average traversing intergalactic .
space. The dimensions of the voids between galaxies amount [(>E)—E= f Neg(Z)Lcrl Eo(2)]7(2)dz.
to (2.5~ 100)h ! Mpc, and between clusters of galaxies are ¢
(100-2500h~* Mpc for the Hubble constant The distances from which the cosmic rays are arriving
H=100h km-s '-Mpc ! (Ref. 31. Therefore, if the can be estimated by analyzing the slope of the flattened com-
sources beyond the Local Supercluster are located at a diponent. The dimensions of the voids between galaxies is
tancesr =100 Mpc, then the slope of the flattened compo-(2.5—-100)h~! Mpc, and between clusters of galaxies
nent will be greater than far<100 Mpc. Thus, by studying (100—250)h~! Mpc (Ref. 31). The slope of the flattened
the flattened component it is possible to estimate the discomponent will be greater if the distance to the sources be-
tances from which the protons are arriving. So far such aryond the Local Supercluster exceeds 100 Mpc than in the
analysis has been difficult to carry out because of the largeaser <100 Mpc. However, so far it has been difficult to
experimental error in the slope of the spectrumHBorE,, . carry out such an analysis due to the large error in the slope
If the second model is confirmed, then it will be possible toof the measured spectra f&r>E,,,. If the second model is
obtain from it an estimate of the distances from which theseonfirmed, then it can be used to obtain an estimate of the
ultrahigh-energy cosmic rays are arriving using the spectrundistances from which cosmic rays are arriving using the
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spectrum not only in the region of the flattened component!“A. M. Hillas, Can. J. Phys21, 1016(1968.
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We examine the dynamics of a wave packet that initially corresponds to a coherent state in the
model of a quantum rotator excited by a periodic sequence of kicks. This model is the

main model of quantum chaos and allows for a transition from regular behavior to chaotic in the
classical limit. By doing a numerical experiment we study the generation of squeezed states

in quasiclassical conditions and in a time interval when quantum—classical correspondence is well-
defined. We find that the degree of squeezing depends on the degree of local instability in

the system and increases with the Chirikov classical stochasticity parameter. We also discuss the
dependence of the degree of squeezing on the initial width of the packet, the problem of

stability and observability of squeezed states in the transition to quantum chaos, and the dynamics
of disintegration of wave packets in quantum chaos. 1898 American Institute of Physics.
[S1063-776(98)00801-4

1. INTRODUCTION cavity in a dynamical regime close to the separatfix.

At present the problem of generating squeezed quantum . The foIIowmg-S|mpIe argu_ment s usgd to explain the
states draws a lot of attention, both from the standpoint oPUllduP of squeezing near a bifurcation point: quantum fluc-
both pure knowledge and possible applicatibisMost of- tuations build up for the physical variable that is unstable
ten the topic is squeezed states of the electromagnetic fiel€r the threshold. As a result there is nothing to stop the
If in the simplest case we take a single-mode quantum ﬁekﬁrong squeezing of fluctuations of the conjugate variable

which is described by the creation and annihilation operatofiN€ in @ nondissipative system phase volume is consérved.
a’ and a, the variances of the quadrature field operators It must be noted at this point that a number of research-

a,—a+a' anda,= —i(a—a') satisfy the uncertainty rela- _ers(se_e_ Refs. 3—)66tl_Jdied _the buildup of _squeezing near the
tion Aa;Aa,=1, where the equality holds for a coherent msta_blhty threshold_ in optical systems with only regulr_:tr dy-
state or vacuum. Then, in these simple terms, a squeezé@mics. However, it is well known that strottgxponential
state is a state for which the variance of one of the quadratur@eformation of the phase volume is one of the main mani-
components is less than unity. Quantum fluctuations, detefestations of dynamical chaos in classical systérfe
mined by the uncertainty relation, are represented diagranhysical reason for such strong deformations of the phase
matically in thea,a, plane of the quadrature components byVvolume is the local instability of motion, which usually
a circle for a coherent state or by an ellipse for a squeezefanifests itself within a wide range of values of the control
state. In a more systematic description of squeezing, thearameter of the dynamical system and not near the bifurca-
quantum-noise ellipse is determined in terms of the projection point. According to the correspondence principle, in the
tion onto the same plane of the horizontal section of thejuasiclassical limit a quantum system must manifest the
Wigner distribution function, which gives the quasiprobabil- properties of a classical system. Thus, it is quite natural to
ity distribution for measuring the quadratic field expect buildup of squeezing in the transition to quantum
components. chaos, too. On the other hand, in a quantum mechanical de-

A typical situation in experiments in generation of Scription we speak only of the dynamics of wave packets,
squeezed states is one in which a large number of photoshose center moves almost along a classical trajectory in the
participate in a nonlinear interaction and the amplitude ofcourse of a certain time interval. Hence in the quasiclassical
quantum fluctuations is small compared to the mathematicdimit the strong deformations of the phase volume, which
expectations of the observabfesin this case the common accompany the transition to chaos, must manifest themselves
approach in explaining squeezing is to use the semiclassic#l squeezing along a certain direction up to the point when
setting, where the Wigner quantum function is actually assoguantum effects produce strong smearing of the wave packet.
ciated with a classical distribution function and instead of  As far as we know, the generation of squeezed states in
examining the dynamics of the guantum-noise ellipse on@ system with chaotic dynamics was first examined in Refs.
considers the evolution of the classical phase voldthe. 8-10. By employing the N-expansion meth&d! (hereN

For quite a long time it has been known that squeezings the number of quantum states participating in the dynam-
of light is amplified in systems close to the bifurcation pointics of the systemit was found in Refs. 8 and 9 that the
between two different dynamical regim&€. Buildup of  squeezing of light increases significantly in the transition to
squeezing in such conditions was considered, e.g., for thehaos during the time interval for which quantum—classical
parametric interaction of light waveand for the interaction correspondence is well-definé@dThis result was illustrated
of Rydberg atoms with an electromagnetic mode in a lfigh- in Refs. 8 and 9 by the example of the generalized Janes—
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Cummings model, which allows a transition from regularwave packet in chaos consists of two stages: the initial
dynamics to chaotic dynamics in the classical liiiThen  spread of the packet, and the catastrophic disintegration of
this result was generalized to the case of arbitrary singlethe packet into many small subpackets. Here our results
mode quantum-optical systems in Ref. 14. The squeezing afgree on the whole with the results of Casati and Chirfov.

wave packets in quantum chaos was also briefly discussed in Note that earlier the dynamics of narrow Gaussian pack-
Ref. 10. ets in the quasiclassical region was studied numerically for

However, the main results of Refs. 8, 9 and 14 werethe model of a quantum rotator with kicks?®and also the
obtained by using a form of perturbation theofthe model of a kicked quantum tépand for the quantum-cat—
1/N-expansioh In this connection it should be interesting to Arnold modef® in connection with the problem of quantum—
study the generation of squeezed states in the numerical solassical correspondence in quantum chaos. However, in
lution of the Schrdinger equation proper for a simple quan- these papers the generation of squeezed states was not con-
tum system that allows a transition to quantum chaos. sidered.

In the present paper we study the generation of squeezed The model of a quantum rotator is extremely popular in
states in the time evolution of an initially Gaussian wavetheoretical studies of quantum chaos. On the other hand, re-
packet in the model of a quantum rotator excited by a pericently possibilities of implementing variants of this model in
odic sequence of kicks, called the kicked quantum rotatoroptical systems have been discus&&Moreover, the quan-
The model was first introduced by Casafiall® and at tum rotator model has been realized in experiments in the
present is the main model in studies of quantum chaee, interaction of laser light and cooled atoffsHence our re-
e.g., the review in Refs. 16—1L8The quantum rotator model sults on the buildup of squeezing in the transition to quantum
is attractive mainly for two reasons: first, the classical limitchaos in a rotator are also related to experimentally realiz-
for this model is a well-studied standard midm@nd second, able systems.
in numerical calculations it is fairly easy to study the dynam-  The plan of this paper is as follows. In Sec. 2 we discuss
ics of the model in the quasiclassical region with a largethe quantum map of the rotator model and find how to cal-
number of quantum levels. culate principal squeezing. The method used in numerical

We examine the dynamics of narrow Gaussian packetsalculations is developed in Sec. 3, and the main results in
in a rotator with 27 (~10P) levels. We define squeezing for the dynamics of squeezing are given in Sec. 4. Finally, in

the generalized quadrature operator Sec. 5 we draw the main conclusions and consider the pos-
] N ] sibility of verifying our results in experiments on squeezing
Xg=a exp —if)+a'expib), buildup.

where@ is a real parameter. It is this type of squeezing that is

observed in the homodyne detecting scheme, wHhasede-

termined by the phase of the reference béame will see 2. THE QUANTUM ROTATOR MODEL AND SQUEEZED
that as long as the wave packet is localized, the degree &TATES

squeezing correlates well with the degree of local instability
in the system. Here the greater the instability, the stronger
the squeezing achieved in a shorter time interval. Squeezi
is much stronger in quantum chaos than it is in regular mo-
tion. We will also see that the narrower the initial wave p ) 2
packet, the higher the degree of squeezing that can be H= 552~ %(t/T)MLwg cosx,
achieved. We attribute this to the fact that a narrow wave

Let us examined the model of a quantum rotator with
eriodic delta-function kicks. Here we follow the notation of
ef. 23. The Hamiltonian for such a model is

2

packet is closer in its evolution to the classical trajectory _ § _

than a broad one, with the result that it is more sensitive to 59(“1—)_].:_30 8(j—tT), @
local instabilities in the motion, which leads to strong ) _ ) ) ) _
squeezing. wherex is the cyclic variable with a period2 L is the

We will also consider the problem of stability and ob- characteristic size of the rotatan is the rotator mass, and
servability of squeezing in the transition to chaos. More pre«o IS the frequency of linear vibrations. The function
cisely, we will study the time dependence of the optimum&(t/T) describes a periodic sequence of kicks with a period
values of the phasesof the generalized quadrature operator T» Where(x) is the Dirac delta function. Let us introduce
X, for which the squeezing is at its maximu(this is known ~ New variables
as principal squeezifg?). We will show that in strong
chaos and in long time intervals the optimum values of the ~a=mL2w3T, B=
phases change dramatically even under a small perturbation )
of the parameters of the initial Gaussian packet. Such &nd measure time in units @f i.e.,t—t/T. Then the Schro
squeezing regime is unstable and difficult to observe. On théinger equation assumes the form
_othe_r hand, our results suggest that in weak chaos squeezing W h28 2w
is fairly stable. =——

We will also briefly discuss the dynamics of disintegra- 2 X
tion of wave packets in chaos. Here we will show that aDue to the periodicity of’(x) in x the solution of Eq(3)
typical scenario of disintegration of an initially localized can be written as follows:

2

mL?’

i = — Jp(t)a cosx- V. 3
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FIG. 1. Phase portrait of the classical standard map for

K=0.8.
1 whereJ,(z) is the Bessel function of ordérand argument,
V(X)=— E e A (1), and the superscripn) on the variabléA stands for the num-
NLASES ber of the kick. Bearing in mind that the Bessel functions
) with |I|=z rapidly decrease with increasing we see from
Ad(t) = 1 f W\I,(X)efikxdx. (4) (?) that, Wi}h exponential accuracy, in the course of a single
V27 Jo kick 2af~* unperturbed rotator levels are captured. Below

we consider the case wheté# is large, which is typical of
gquantum chaos problems.
In the classical limit the Hamiltoniafil) reduces to the

Y, 1=U U, ¥, standard map

Using the standard proceduf®? we obtain the quantum
map in the form

IB ~ ia R Pn+1=Pn_K SianH_l, Xn+1=Xn+Pn (mOd 277'),
Up=exg — 52 p*|,  Ux=exg - codX)|, (5) (8)

) ] whereP,= Bp,, with the subscriph denoting the values of
where ¥, is the value of the wave function at the tome y and p immediately after thenth kick, andK =« is the
immediately after thenth kick. The time evolution of the  Chirikov parametet! Strong and global chaos sets in for
wave function in the maji5) is determined solely by two K ~1 Fork<1 the larger part of the phase plane is filled
parametersp/f and ph. SinceU, is diagonalized in the yjth regular trajectories, although small regions with local
p-representationt), is diagonalized in the-representation, chaos exist no matter how smafl may be!® The phase
and the tran_sition between_ andp-representations is given norirait for the mag8) at K=0.8 is depicted in Fig. 1. The
by the Fourier transformatiofd), the map(5) actually re-  chaotic layer lies near the separatrix of the main resonance,

duces to which passes through the hyperbolic pointss#,0). In our
W, () =UF U FW (%), (6)  calculations we usually take a wave packet whose center of
gravity lies near a hyperbolic point.
whereF and F ! are the direct and inverse Fourier trans- For the initial state of the quantum m#&p) we take the
forms. Gaussian wave packet
Sometimes it proves useful to use the quantum map writ- )
ten in terms of the probability amplitudes, of transitions W (x)= (2mo?) 14 ex;{ _ (X=X%o) +iko(X—xo)
between the unperturbed levels of the rotafoEombining 40° 0 o)
(4) and (5), we obtain 9
o where
(n+1) _ (n)
A= 2 P 0=x0, (BF)=0¢) (2=,
C o iem ih,@mz) a , Po=(P)=fiko, (8p*)=rh%40?,
km=(~1) ex 2 k=m\ 7 ) 0 andk, is an integer. The packet is assumed narrow:
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o<Xg, (6p?)<tiky. - [(5a?)
e = m (18)

Note that in view of its periodicity irx the wave packet9)

is generally not a state that minimizes the uncertainty relagor our discussion it is convenient to expr& terms of

tion. But in the case of a narrow packet it is_essentiallythe cumulants of the operatoxsandp. Using the definition
indistinguishable from a minimum-uncertainty st&te?* (10) of operatora and Eq.(17), we obtain

A typical initial quantum state in studies of light squeez- 5
ing is a coherent stafe® Such a state is an eigenfunction of S— 1 (<5D ) +(5x2)
the annihilation operata, which in the present notation can h Y
be written as

1 " f) a

=— | Vyx+i—=], :(—

ar \ T e

The fact that the annihilation operator has such an appear- c=3({(xp+px))—2(x){(p)).

ance can easily be understood if we consider the followin
limiting case of the harmonic oscillator that follows frd®):

172 —((X®)y— (8p?) y)*+4c? |, (19
(10

where

gClearly each Gaussian packet satisBesi /202y, while for
a coherent state we have, in view(@P), S=1. Hence a state

AL 2B PV ax? is squeezed if
ih—=—— ——+ —W. (11)
ot 2 X 2 S<1. (20)
Now we can show that the wave functi¢®) is a coherent The condition determines the principal squeezing attainable
state, i.e., an eigenfunction ¢£0), if we put in homodyne detectin®’
% The maximum of the varianggsX3) in 6 can be defined
02:2_. (12)  in the same way the minimum was defined(16). We de-
Y note it byS. Then we can show that the dependenc& oh
Let us now turn to the problem of squeezing. the cumulants differs frong19) only in the sign in front of

In light squeezing experimentshe observable quantity the square root, so that we have

is the variance of the generalized quadrature operator —
SS=1. (21

om0y aTaif
Xp=ae THater, (13 Thus, squeezing i8 (Eq. (20)) is accompanied by dilation in

where# is the phase of the reference beam in the homodyng,

detecting scheme. In the particular cases whereO or Note that in contrast to the quadrature squeeZitfy,
6=m/2 Eq. (13) yields the following expressions for the the definition(19) of principal squeezing contains quadrature
generalized position and momentum operators: correlators of thexp) type. This is very important for sys-

tems with discrete time, to which the model of a quantum
rotator excited by kicks belongs. The thing is that the quadra-
with the uncertainty relatiogsX2)( 5X3)=1, where averag- ture squeezing15) is essentially unobservable in such sys-
ing is done over an arbitrary quantum state and equality iééms, although the principal squeezif@d) and (20) may
achieved for a coherent state. The standard definition opccur? In Sec. 4 we discuss the time dependenc&.of
quadrature squeezing is the conditidn

min((8X3),(6X3))<1, (15)

X,=a+al, X,=-i(a—a"), [X;,X,]=2i, (14

3. THE NUMERICAL METHOD

i.e., the variance of one of the quadrature components is )
smaller than for the coherent state. Several features of the numerical method must be men-

In a more general case we consider the varian®e) tioned. The interval irx from O to 2 is partitioned intoN
of the operator13), and the state is assumed squeezed if thé@gmentsix=2=/N, and the wave functio’(x) is repre-
value of (6X2) in this state for some value af is smaller ~ Sented by a discrete sequence of valleesumn vecto¥))
than in the coherent stat&?! Experiments actually deter- Of lengthN, so that¥,=W(1Ax), 1€[0,1; -+, N—1]. Ac-
mine the minimums of this variance as a function of the cordingly, in the sum ir(4) k varies from 0 toN—1. In our

angle 6; numerical methodN is an integral power of two. Here the
operatorF in (6) is interpreted as the fast Fourier transform,
S= min (8X3). (16 which induces the following transformations:
6e[0,27]
F: ¥, —A, FLA—-Y,. (22)

Using the definition(13) of X,, we can sho#f*' that . o .
To determine the principal squeezing, we must calculate

S=1+2(sa'sa)—2(sa?)(sa'?), (17 (89%), (p?), and(xp) (see Eq.(19). For instance, the

and the minimum of 5X2) is reached at an optimum phase calculation of(xp) proceeds along the following lines:

value 6= 6* defined as follow$! (xp)=(¥|xF~'pF|¥),
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where(W| is obtained by transposing the vectd) and then  We fixed the initial widtho of the wave packet and the
finding the complex conjugate of the result, whdeandp  Chirikov parameteK, in terms of which the parametets

are vectors that initially have the form and g in the evolution operatof5) are expressed as follows:
X:[O, AX, ZAX,..',ZW—AX], K1/2 K1/220.2 93
p=[0, 1, 2;--, N—1]. a=KTo52 BEKTS (23

The fact thaix is defined modulo 2 requires following  These formulas are obtained by combining the definition
the wave packet and ensuring that it is defined correctly durk — 4, 5 and Eqs(10) and (12).
ing the passage through the end-points of the intefoal In Sec. 2 we found that the number of unperturbed-
2m]. We set up the process in the following manner. Whenyotator levels captured in one kick is roughlyv. From
the center of the wave packet in therepresentation ap- (23) it follows that in our case this number Y% o and

proaches an edge of the half-intery@) 2x], the wave func-  amounts to several tens of thousands for the adopted widths
tion W(x) is examined on a new intervgli- 7, 7], with a 5 of the wave packet.

new vector In our calculationK was varied between 0.2 and 2 with
X=[0AX,- -, 7, — 7+ AX,— 7 a step of 0.02. We found the time dependence of the squeez-
ing S (19) and the optimum value of the phagé at which
+2Ax,--+,—2Ax%,—AX], (6X3) is at its minimum. To demonstrate the correlation that

since (—kAx)mod 27= (27 —kAx)mod 27, wherek is an  €Xists between the degree of squeezing and the chaos
) st Q14
integer. The transition fronfi—, 7] to [0,27] is treated ~characteristics' we calculated

similarly. _ 2 N2
Calculations in thep-representation have their own spe- d=[{x%)+({opT)]"™ (24)
cial features. For instance, although for the Hamiltorian It can be showh#28that in the classical limit and while

the momentum is defined in the interval from to +%,in e wave packet is well-localized, i.d.( ox2)]Y2<x, and

numerical calculations we deal only_ Wlth a finite range of[<5pz>]1/2< Po, thed of (24) corresponds to the following

values of momentunp, a range specified by the numbgr separation in phase space:

of Fourier transforms in the expansiof). To avoid the pos-

sible problem of reflection of the wave packet from an edge  dy(t)=[(Ax)%+(Ap)?]Y¥2 (25)

of the given interval in the-representatior, we select this

interval in each iteration of mafb) in such a way that the Where @Ax(t), Ap(t)) is the solution of the linear small-

maximum of the absolute value of the wave function of thePerturbation equations near the classical trajectory

packet is always at the center of the given intertattually, ~ (X(t), p(t)). The quantityd(t) characterizes the diver-

we renumber the vectq). gence of two initially close trajectories and enters into the
The process of calculating the next iteration of the quandefinition of the largest classical Lyapunov exponent

tum map(6) is terminated as soon as the packet ceases to be

sufficiently localized either in th&-representation or in the A= lim w (26)

p-representation, i.e., when the number of Fourier transforms tow L

actually involved in the calculation process is smaller than

needed. We write the conditions for packet delocalizatiorFor a classical standard map with strong ch&os1 we

mentioned earlier. To this end we introduce the notation ~have the simple dependenge=In(K/2) (see Ref. 18 The

Lyapunov exponent26) is an asymptotic characteristic of

§:[YJTST>]<|‘1’(X)|’ x=max|Aql,|Azf,- .| A}, chaos. For finite time intervdis

and Ajr and Aigr are the values of\, belonging, respec- dg(t)~exp(h(x,p)t), (27)
tively, to the left and right edges of the finite interval in ] ) o

which the wave function in momentum space, the finitenes¥/nere the exponerit is a function of a point in phase space
being due to the finite numbe¢ of Fourier transforms in the @nd coincides, in order of magnitude, with the Lyapunov
expansior(4). The calculation is terminated when one of the ©XPONeNtA, but in some time intervals the difference be-

two inequalities, tween the two may be significant. The latter fact can be
explained by the strong inhomogeneity in the statistical prop-

X[M |Arightl] —e or |‘1’(Z)|>8 erties of the phase space of chaotic systems and, correspond-
X X £ ' ingly, by the different rates of divergence of trajectories in

different regions of phase space through which the system
passes in its time evolution. It must be noted at this point that
the dependence df on the parameteK is extremely com-
plicated. What is important, however, is only the property of
the strong(exponentigl increase ofd,, specified by(27) in

For the initial wave function in our calculations we took the presence of chaos, a property often called local
the coherent statéa Gaussian wave packewith #=10"° instability.” When the motion is regular, the time dependence
and ko=10 000, ando was varied between 0.04 and 0.07. of d,, is much weaker—it follows a power functidn.

is valid (herez=0 if xe[0,27] or z=7 if xe[—,7]. In
this paper we used the valiae=0.002.

4. THE MAIN RESULTS
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FIG. 2. Time dependence of the logarithm of squee8rithe upper part of
the figurg and Ind defined in Eq(24) (the lower half of the figurg xo=m
and o=0.006.

On the other hand, it i that determines the rate of
phase-volume deformation: the stronger the local instability,
the greater the phase-volume deformation in a given time
interval.

Since in our case quantum—classical correspondence and
the concept of chaos are well-defined only in a very short
time interval, while the wave packet remains localized, it is
meaningful to consider the correlations existing between the
time dependence of the squeezing and that of the quahtity
(see(24)), which in the classical limit becomek, (see(25)).

Figure 2 depicts the time dependence of the logarithm of
squeezingS and Ind for different values ofK, when the
center of gravity is of the wave packet is initially at the point
Xo= 1, Po="ko=0.01. This initial condition is close to a
hyperbolic point through which the chaotic layer passes even
whenK is small(see Fig. 1. Figure 2 shows that the larger
the squeezindgthe smaller the value @) the larger the local
instability (the larger the values of Id) up ton~4, when the
packet spread becomes so large that purely quantum effects
become important.

For another initial conditionxy= /2 and py=0.01,
which is closer to an elliptic point and hence lands in the
chaotic region only at large values &f, the dynamics of
squeezing is depicted in Fig. 3. We see that in this cas

ind, InS

e ——
-’ "~

0 0.5 1.0

L5 20

EIG. 4. Logarithm of the squeezin§ (solid curve$ and Ind (dashed
curves as functions of the Chirikov parameté&r for a fixed number of

squeezing is stronger by a factor of almost two than undefjcys: () n=3, (b) n=4, and(c) n=5; x,= = ande=0.007.

the conditions of Fig. 2 in the same time interval. On the

In$

FIG. 3. The same as in Fig. 2 but fag= /2.
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other hand, both Fig. 2 and Fig. 3 exhibit an increase in
squeezing as a function of the parameferwhich controls
the development of chaos in the system.

Let us study the correlation between squeezing and the
degree of local instability in the system for different values
of K in greater detail. Th&-dependence of the degree of
squeezing calculated after a fixed number of kickggat =
and py=0.01 is depicted in Fig. 4. After the third kick the
correlation between I8 and Ind become very evidenig.

43). However, small discrepancies in this dependence may
appear as the number of kicks grows. Such discrepancies
become evident, for instance, after the fourth kick for
1.1=K=1.4(Fig. 4b. After five kicks,n=5, the correlation
between IS and Ind is restored(Fig. 49. Note that this
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crease is replaced by growth when the wave packet departs
from the classical limit and the dynamics is of an essentially
quantum nature.

Now let us examine the problem of stability and observ-
ability of squeezing in chaos. The figures mentioned earlier
can serve to illustrate the statement that the stronger the
chaos the stronger the principal squeezing. However, the
definition (19) of principal squeezing is related to fixing the
phase,f= 6*. Here 6* is time-dependent even for exactly
integrable system. When chaos is strong, the time depen-
dence of6* (t) in the classical limit may be extremely com-

0 0.5 1.0 s 20 plicated. Indeed, in addition to dilation and squeezing, the
K main feature of chaos in classical systems with a bounded

. - . . phase space is the multiple formation of folds of the phase
FIG. 5. Logarithm of the minimum squeeziigy,;, (solid curve$ and of the | h VéH th f findi th
local instabilityd, . (dashed curvesas functions of the Chirikov parameter volume as chaos evolvesdience the process of Tinding the

K after seven kicks. The parameters and initial conditions are the same as i{NiNimum width” of a phase drop, which actually amounts
Fig. 4. to finding the#* vs.t dependence in the quasiclassical limit,
becomes unstable for large time intervals.

Basing our reasoning on a similar semiclassical picture,
behavior pattern is quite typical. Hence, to establish the corwe examined the stability of the time dependence of the op-
relation between local instability and squeezing more clearlytimum phasef* (t) calculated quantum mechanically with a
a certain procedure of coarsenif@veraging these quanti- small perturbation of the initial position of the wave packet.
ties in the given time interval is needed. In our study weMore precisely, we found the time dependence of the opti-
determine the minimum squeezir®y,, in a time interval mum phased; with the initial conditionx,== and, simi-
during which the packet remains well-localized for most val-larly, 65 (t) with the initial conditionx,=7—0.05. We de-
ues ofK considered here, and hence the maximdyp, in  note the difference of these phases by
the same time interval. We found that there is a distinct D(t)= 6% (1) — 0% (1)
correlation betweerS,,, and d,.«: the larger the value of 1 23
dmax the smaller the value o®,,,, and vice versa. An ex- Since #* is periodic with a periodr (see Eq.(18)), it is
ample of such a dependence is depicted in Fig. 5, wBgte  natural to take sin2 as the quantity of interest, since in this
and dp,a Were calculated after six kicks. Note that the dia-way we avoid breaks in the diagrams related to the period-
grams do not go farther that>1.7 because after six kicks icity of §*. The dependence of sib2on the Chirikov pa-
the wave packet becomes delocalizedKor 1.7 and calcu-  rameterK for different fixed numbers of kicks is depicted in
lating averages and local instability becomes meaningless. Figs. 7a—7c. After two kickéFig. 78 the maximum value of

We also studied the dependence of the dynamics ofsin 2D| does not exceed 0.035 Kt=2. After three kicks
squeezing on the initial widthr of the wave packet. The (Fig. 7b the value ofD becomes significant a&€=1.2. Fi-
results are depicted in Fig. 6. Clearly, the narrower thenally, after four kicks(Fig. 79 the process of measuring
packet the stronger the squeezing achieved in a fixed timgqueezing becomes essentially unstabl&atl. Indeed, in
interval. This dependence arises because a narrow wavBese condition with a small perturbation of the initial posi-
packet travels farther along its classical trajectory than ajon of the wave packet, the difference of the optimum
wide packet, so that it undergoes stronger deformations rgshases reaches a value of orderin Ref. 9 such generation
lated to nonlinear classical dynamics. The exponential deef squeezed states was called unstable squeezing. As Fig. 7

implies, unstable squeezing is observed when chaos is strong
and the time intervals are such that semiclassical description
InS is valid. On the other hand, for short time intervals and small

-6 . . N

K’s the squeezing is strong and stable.
To conclude this section we will briefly touch on the
-1 6=0007  _ 0006 | problem of the dynamics of disintegration of coherent states
in chaos, a problem that is of interest by itself. Figures 8a
-2 ) and 8b depict the dependence|®#f on x and of |A,| on k
(see Eq.(4)). Actually, Fig. 8 gives the shape of the
-3 ) wave function in the coordinate and momentum representa-
tions for an initially narrow wave packet with
-4f  0=0005 [(5x3)]¥%(t=0)=0c=0.006 and [(6p?)]“(t=0)=1
5 .0 =0.004 X103, The relatively small valu& = 1.2 makes it possible
0 1 2 3 4 to examine the fairly long evolution of the wave packet up to
" the point of its total disintegratiofi.After six kicks (Fig. 8a
FIG. 6. Time dependence of the logarithm of squeezinépr different ~ the wave packet spreads out significantly, but on the whole
initial widths o of the wave packet at fixell =0.8; xo= 1. retains its bell-shaped structure. What follows is a
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second, the emerging subpackets are extremely small. Hence
the process of disintegration of wave packets in strong chaos
resembles an explosion. On the whole, the pattern being de-
scribed agrees well with the pattern obtained from the analy-
sis of the behavior of the Wigner functidh,although we
observed some anomalies. In particular, for fairly narrow
wave packets¢=4x10"%) we observed the disintegration
of the initial packet into two fairly large subpackets. Ripples
then appeared on the subpackets, and the two disintegrated
into many small packets.

A more detailed description of the disintegration of co-
herent states in chaos requires further investigations.

5. DISCUSSION AND CONCLUSION

Thus, in this work we have used a numerical experiment
to study the dynamics of generation of squeezed states in the
evolution of a Gaussian packet in the quasiclassical limit for
the model of a quantum rotator excited by kicks. We show
that within the time interval where the packet is well-
localized the squeezing becomes stronger in the transition to
chaos. For strong chaos and in long time intervals the
squeezing process becomes unstable. These results, obtained
through direct numerical simulation, are in good agreement
with the results obtained by perturbation-theoretic techniques
and for other model&9*

In the final stages of preparing the manuscript for press
we became acquainted with two recent papraatso devoted
to the problem of generating nonclassical stassieezing
and antibunching in quantum chaos. Rui-Hue Xie and
Gong-ou X&#° presented the results of numerical experi-
ments on the dynamics of quadrature squeezing in simple
quantum models that allow a transition to chaos in the clas-
sical limit: the Lipkin—-Meshkov—Glick mod& and the
Belobrov—Zaslavski-Tartakovski model®! In contrast to
our approach, Rui-Hue Xie and Gong-ou Xwvere inter-
ested in the long-time limit, when the wave packets are de-
localized and this sense the quantum-classical correspon-
dence is completely violated. They found that quadrature

0 0.5 L0 L5 % 20 squeezing disappears in the transition to quantum chaos, al-

though to some degree squeezing is always present in regular
FIG. 7. The differenc® of optimum phases as a function of the parameter motion. It must be noted at this point that Rui-Hue Xie and
K ato=0.006,x=, and a fixed number of kicksa) n=2, (b)) n=3,and  Gong-ou Xi#° noticed the existence of nonzero squeezing of

(©) n=4. some sort in the short-time limit and for quantum chaos, but

they did not observe the buildup of squeezing described in

the present paper, probably because in their numerical
disintegration of the packet into many small packets, withexperiment® the quasiclassicality parameter was not suffi-
the characteristic shape of the wave function depicted in Figciently large: only several hundred quantum levels partici-
8b (after 18 kick$. Finally, very soon the wave function pated in the dynamics of the system. Thus, their results do
becomes so dissected that evel{ Bourier harmonics are not contradict ours and augment them in another limiting
insufficient to describe the evolution correcflfipr the data  case, the limit of long times of motion. The description of the
of Fig. 8 this happens approximately at the 20th kicguali-  dynamics of squeezing in the case intermediate between the
tatively, the same pattern of the evolution of the wave packebne described in the present paper and the one studied in
was observed at higher valuesKf first the broadening, or Ref. 29 merits a separate investigation.
“swelling,” of the wave packet, and then its rapid disinte- In conclusion we would like to make several remarks
gration into many very small subpackets. The differences irconcerning the possibility of experimentally observing
packet disintegration for large values Kf in comparison squeezing in quantum chaos on a time scale corresponding to
with the caseK=1 (Fig. 8) boil down to two facts: first, the a well-defined quantum-—classical correspondence. At
swelling of the packet and the disintegration occur very rappresent essentially all squeezed-light experiments are done in
idly (it takes only several kicks to complete the progeand  the stationary regime. Squeezing in the transition to quantum
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chaos builds up only over finite time intervals and in this?In conducting numerical experiments in the dynamics of the disintegration
sense is a transient dynamical phenomenon. The first experiof wave Pac::ets we did not use thﬁ pricedMESCfribeq in Sec.)3of |

ments in light squeezing in transient regimes are only in the gl?;g];t'”g the counting process when the wave function becomes delo
preliminary stagé? We hope that the development of effec-

tive experimental methods for observing squeezed states of —

light in transient dynamical regimes will also make it pos-

sible to observe the buildup of squeezing in the transition to

guantum chaos.
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Dissociation dynamics of the simplest molecular systems, suchyasDy , and HD' ions, in an

intense IR laser field has been investigated by numerical modeling-t#&mm approximation

has been developed to describe the molecular system dynamics in an intense electromagnetic field.
Calculations by then-term approximation have been compared to an accurate numerical

solution of the two-particle problem. The dissociation probability as a function of the frequency
and intensity of radiation for different isotopes in a molecular hydrogen ion is discussed.

A quasistatic model of molecule dissociation in an IR field has been suggested, and limits of its
applicability have been determined. ®98 American Institute of Physics.

[S1063-776(198)00901-9

1. INTRODUCTION 2. MOLECULAR HYDROGEN ION. ONE-DIMENSIONAL
MODEL

Research in the dynamics of simple molecular systems

_ . . L In this paper, we limit our discussion to a one-
in intense optical fields has attracted a lot of attention in,. . . .

3 A~ . dimensional model of a molecular system, in which electron
recent yeard® Given the relatively complex structure of

i - ) can move only along the molecule axis and the nuclei are
molecular systems in comparison with atoms, the range ofoed only to oscillate in this direction

effects in molecules exposed to powerful laser pulses is quite | the reference frame with origin at the center of mass,
considerable, in particular, because of the large differencéhe molecule Hamiltoniaii, has the form
between resonant frequencies of electron and nuclear sub- 52 2 2 g2 o2
systems in a moleculg. _ . Ho=—5——5— > oR? +Ve(X,R) + 7 (1)

Theoretical description of molecules is usually based on ©r
the Born—Oppenheimer adiabatic approximation, which alwherex is the electron coordinat® is the internuclear dis-
lows one to decouple electron and nuclear variables of &ance,u=£¢M is the molecule reduced mad4, is the proton
molecule. The possibility of applying this approximation to mass,¢ is a factor equal to 1/2, 2/3, or 1 for,H HD™, or
the dynamics of molecules under intense laser fields, howP; ions, respectively. As in Ref. 6, the expression for the
ever, has never been sufficiently investigated. Therefore glectron potential energye(x,R) was taken in the form
numerical solution of the problem of laser pulse action on e
the simplest molecular system, the hydrogen molecular ion  V(x,R)=— il ="
H, , beyond the adiabatic approximation is, undoubtedly, V(R2-x)*+a®  (RI2+X)*+a
very interestind® Such calculations performed on modern wherea=0.943,, anda, is the Bohr radius.
computers, however, require a lot of CPU time, and therefore  Using the adiabatic approximation based on the small-
cannot be routinely used in modeling molecules, even th@ess ofm/M, one can construct a complete set of eigenfunc-
simplest ones, under intense electromagnetic fields. For th#ons for the HamiltoniarH, in the fornf
reason, development of app.roxir-nate mgdels that would al- @y (%, R)= by (R)@n(X,R), 3)
low us to adequately describe interaction between strong
electromagnetic fields and molecules is a topical issue. ~ Whereéen(x,R) (n=1,2,3,..) is theelectron wave function

In the reported work, we have investigated dissociationObta',nEd _by solving the eigenvalue problem with the electron

. N + Hamiltonian:

of several hydrogen molecular ions, namely HD, , and
HD*, by an intense IR laser field. The applicability of the He<pn(x,R):Efan)(R)gon(x,R),
adiabatic approximation to the simplest molecules has been 2 g2
mvestugated. The dI.SSOCIatIOH .probablllf[y ofHD;, and He=— — —5 + Vo(X,R), (4)
HD™" ions as a function of the field amplitude and frequency 2m Jx
has been calculated in tiresurface approximation. A qua- and ¢,,(R) is the nuclear wave function in the state corre-
sistatic model of molecule dissociation by an IR field, whichsponding to thenth potential surfacgelectron termy ob-
could allow us to interpret the intensity dependence of thdained by solving the equation
dissociation probability, has been suggested, and its applica- 52 52
bility limits have been determined.

2 2

e

2

_ﬂﬁ_'—vgf]f)(R) B0 (R)=Eny o (R). ®)
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Varb In the reference frame with origin at the center of mass,
in the case of homonuclear moleculéd, and Dj), the
8ot nuclear dipole moment is identically zero, and the electric
field acts only on the electronic subsystem:
6of 4 D=d,=—ex, dy=0. 9)
Therefore transitions between various vibrational states of
40+ 3 . ) . .
one electron term are forbidden, and higher vibrational states
can be populated only through cascade transitions via other
20¢ electronic states. In the HDheteronuclear molecule, the
2 center of positive charge is displaced with respect to the
0 W 8‘0 2 .A center of mass, so the nuclear dipole moment is nonzero, and
1 ’ the electric field acts directly on the nuclear subsystem. Tak-
-20¢ ing into account the smallness/M <1, one can easily ob-

) ) ) ) - tain the dipole moment of the nuclear subsystem for'HD
FIG. 1. Effective potential energy of interaction between nuclei in the model

hydrogen molecular ion in electronic staies1,2,3,4. dy=eR/3. (10

In our calculations, we have assumed that the electric
field amplitude can be described by the following function of

Here .
time:
() € o
n _ - n t
Verl(R)= 5 TE"(R) (6) ot t<.
T

is the effective potential energy of interaction between nu- = . r<t< i g
clei, including the energy of electrons in the system, and ()= o = f
v=0,1,2,... is the vibrational quantum number. t—(7+7¢)

€0 T+ H<t<7+27;,

Figure 1 shows several curves ‘ojg}%(R) for the lowest Tf
potential surfaces calculated using E@$) and (6), and (12)

Table | lists energie€,, of the ground-state potential sur- herer, is the width of the leading and trailing edges of the
face (h=1) for the three molecular ions studied. The full pulse, andr is the plateau width.

number of vibrational states in the discrete spectrum for this  The photon energy of the electromagnetic wave was var-
surface is 19, 22, and 25 for;H D; , and HD', respec-  jed between: w=0.12 and 0.96 eV, such that the times

tively. and 7 were multiples of the wave perici=27/w. In par-
ticular, for Aw=0.12 eV, which is the photon energy of a
3. INTERACTION WITH ELECTROMAGNETIC WAVES CO, laser, we tookr;=2T and 7=5T.

In the dipole approximation, the interaction between a
molecule and electromagnetic wave is described by the. RESULTS AND DISCUSSION

Hamiltonian 4.1. Approximation of n potential surfaces. Comparison
H=Hy—De(t)cos wt, (7) with exact calculations
where D is the dipole moment operatog(t) is the wave In our model, the dynamics of a molecule in the field of
electric field amplitude, which is a slow function of time, and an electromagnetic wave is described by a two-particle wave
w is the wave frequency. function ¥ (x,R,t) which can be derived by solving the
In the general case, the dipole moménof a molecule time-dependent Schdinger equation
can be expressed as AW (KR
D=d,+dy, ®) IﬁT—[Ho—Ds(t)COSwt]‘I’(X,R,t). (12
whered, anddy are the dipole moments of the electron andit was shown previousfythat stationary functions of the sys-
nuclear subsystems, respectively. tem can be approximated to high accuracy by the wave func-

tions obtained in the adiabatic approximation. Therefore the

initial condition for Eq.(12) was defined as
TABLE I. Energy levelsE,, (eV) of modeled H , HD™, and D} molecular

ions on the ground-state potential surface. ¥(x,R,t=0)= ¢1U(R)QD1(X'R): (13

v HE HD* D} which corresponds to the electron ground state and vibra-
tional state with index . In most cases we toak=0.

(1’ *1222 *1-223 *1-2’;2 A numerical solution of Eq(12) with initial condition

2 _1120 _1158 _1204 (13 for laser pulses in the visible and IR, obtained without

3 ~1.009 ~1.060 ~1.123 resorting to the Born—Oppenheimer approximation, was cal-

culated earlief. In the visible, there is competition between
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FIG. 2. Populations of various vibrational states
of the molecule(»=0,1,2 on the ground-state
potential surface as functions of time during a
laser pulse  with P=2x10" Wicn?,
hw=0.12 eV, 74=2T, and 7=5T: a) four-
surface approximation; )b exact calculation
(high-frequency oscillations are averaged out in
exact calculations The dashed line shows the
envelope of the laser pulse.

ionization and dissociation, whereas in the IR radiation therdonization probability is negligible in comparison with the

is a range of field amplitudes in which the ionization prob-dissociation probability, so transitions to electron-continuum

ability is negligible in comparison with the dissociation states can be ignored in Eq44) and (15).

probability. The initial conditions for Eq(15) equivalent to Eq(13)
The calculation of an exact solution, however, requires are expressed as

great deal of CPU time, so it seems reasonable to develop

various approximate models. One of them is theurface “1(R*tzo)=¢lv(R)* (16)
model. ai(R,t=0)=0, i=234,...

We expand the full wave function of a molecule |f jonization can be neglected, the following normalization
¥ (x,R,t) in electron wave functionge;(x,R)} of different  gndition holds:

potential surfaces:
> Wi=1,

Y(xRH=2 a(RU@I(XR). (14 i
| where
Then one can easily obtain the following equation system for
the expansion coefficientse;(R,t) in the adiabatic W= J lai(R,1)|2dR (17)
approximation:

is the probability of detecting the molecule on ttie poten-

_ da h? 52 : ,
i —==| - Z—WJFVQ%(R)—st(t)cosm Y tial surface. _ .
K In order to determine the number of expansion terms that
should be retained in Eq14), we have calculated the evo-
+J§1 a;Wi, (15  Ilution of the Hy molecule in the field generated by a €O

laser @w=0.12eV) at intensities P=4x10%-2
whereW;; = —d;;(R)e(t)cosat, d;; is the matrix element of ¥ 10" \./V/sz in the n-surface approximationn(=2,3,..),

the electron dipole moment, which contains the nuclear cond using a more accurate model described in Refs. 6 and 8.
ordinate as a parametar(), is the effective potential energy The comparison between calculations by the exact two-

of interaction between the nuclei in the electroth state  Particle m30d9| and in then-surface approximation for

system dipole moment, which is nonzero only for HD be taken into account in Eql4). Only in this case did we
The set of functiong«;(R,t)} contains nuclear wave have reasonable agreement between the results.
functions of nonstationary states for various potential sur- An important point is that although the population of
faces in the molecule, and the last term in Eif) describes excited states of the molecule with=3,4 is low throughout
transitions between different electron states of the molecul€ laser pulse action, they are important for accurate calcu-
(transitions between different surfagesduced by the elec- lations of the populations in states=1, 2. Figure 2a shows
tromagnetic field. If the summation in E€L4) includes in- calculated populations in the lowest vibrational states of the
tegration over electron-continuum states, Eds) will be ~ ground potential surface vs. time. The probabilités,
equivalent to the initial equatiofl2) as long as the adiabatic Were calculated by expanding the functiep(R,t) in eigen-

approximation is valid. functions¢,,(R), v=0,1,2,..:
The possibility of truncating the syste(h5) and retain- 2
ing a small number of electron states in expangib#) al- le(t):j ai (Rt)¢1,(RAR] , (19

lows us to simplify the problem considerably. It was shown
in the earlier study of Bl and Dj ionization and and they are also in good agreement with similar exact cal-
dissociatiofi that at IR intensities of about ¥W/cn?, the  culations.
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TABLE I1. Probability of vibrational state population of the;Hnolecule at w.l
the end of the laser pulse calculated in thesurface approximation and b
exact two-particle model & =2- 10" W/cn?.
Y% n=2 n=3 n=4 Exact model 107"
0 0.869 0.641 0.488 0.430
1 4.64(-2) 6.25(—2) 7.43(-2) 7.17(-2) 1072 2
2 1.85(-3) 2.19(-3) 1.34(-3) 1.41(-3)
3 3.07(-3) 7.34(-3) 7.81(-3) 6.90(-3)
>, Wy, 0.924 0.761 0.595 0.537 1073k
]0‘4' 1 " i i N 1

: o . , 5 10 15 P, TW/cm?
Table Il listsW,, derived in the exact calculation and in

the n-surface approximation n=2,3,4) for  FIG. 3. Dissociation probability of JIH; , 2) HD*, and 3 D; molecules
P=2x10" W/cn? and%w=0.12 eV at the moment when Vs. radiation intensity at»=0.12 eV.
the laser pulse terminates. These data also illustrate insuffi-
ciency of the twotthreejsurface approximation for calculat-
ing populations of molecule vibrational states. Table 2the repulsive potential surface. On the other hand, the direct
clearly shows that the inclusion of the third and fourth po-effects of the electromagnetic field on the nuclear subsystem
tential surfaces leads to a higher probability of molecule disin HD* leads to a higher dissociation probability than in H
sociation at the end of the laser pulse. and D, homonuclear molecules. These effects are especially
To sum up, in the approximation suggested for molecuimportant, since the CQlaser frequencyiw=0.12 eV is
lar ions, a solution of the exact two-particle Safirmer close to  the molecular  vibration frequency
equation on a two-dimensional mesh can be replaced with 8()=E,—E,;~0.104 eV. However, the strong anharmonic-
solution of n one-dimensional equations, which makes theity of the moleculgTable 1 should lead to a reduction in the
problem much easier ifi is small. The number of potential resonant effect at high vibrational quantum numbers.
surfaces that should be taken into account depends, naturally, The importance of the direct effects on the electronic
on the laser-field parameters. Note, however, that in the studiegrees of freedom of HD in addition to the nuclear vari-
ied range of parameters the two-surface approximation is i@ables, was demonstrated by omitting the electron dipole mo-
good agreement with exact calculations at such power derment. This is equivalent to the analysis of the H&ynamics
sities (P<7x 10" W/cn¥) that the probability of molecule in the one-surface approximation. In this case the dissocia-
dissociation and its vibrational excitation are small. tion probability is 0.059 at the radiation intensity
Note also that in then-surface approximation the mol- P=2x 10" W/cn?, which is even lower than the dissocia-
ecule ionization presents a specific problem that is not distion probability of D; . Therefore, we can assert that the high
cussed in this paper. An important point is that there is alissociation probability of the HD heteronuclear molecule,
range of field intensities in which ionization processes can bas compared to that of Hand Dj , is a result of the com-
ignored. bined action of the electromagnetic field on the electron and
4.2. Dissociation probability as a function of field intensity nuclear subsystems. L .
and frequency Note also a characteristic step in the curvégf(P) for

) . . H, . Its cause will be discussed in the following section in
Hereinafter dynamics of molecular systems will be anaerms of a quasistatic dissociation model.

lyzed in the four-surface approximation. The dissociation  \ye now proceed to the dissociation probability as a

probability was calculated by the formula function of laser frequency. This function was studied at
hw=0.12-0.96 eV, for a constant shape and width of the
Wozl—E Wy, , laser pulse such that the pulse edges and plateau contained
v

an integral number of field oscillations. Calculations fof H
where the sum is calculated over all vibrational states of theand HD" at P=1.4x 10'* W/cnm? are shown in Fig. 4. For
ground-state potential surface. Here we have taken into adoth of these molecules, the dissociation probability at
count the exact calculations, which indicate that the probabils v=0.5 eV grows rapidly with laser frequency, which
ity W5, of populating states of the discrete spectrum of themight be due to the smaller number of photons needed for a
excited bound-state term is negligible. This fact derives fronmultiphoton transition between the ground and first excited
the Frank—Condon principle and large difference betweemlectron states of the molecule. For HDhe dissociation
internuclear separations for the two surfa¢ese also Ref. probability also rapidly grows @ w<0.2 eV, possibly due
8). to the proximity to the vibration frequency of the nuclear

Curves ofW(P) for Hy , D; , and HD' and the quan- subsystem. In the H molecule, W, also increases in this
tum energyh w=0.12 eV are given in Fig. 3. It is clear that frequency band, and the population of vibrational states of
the dissociation probability for P, whose nuclear mass is the ground potential surface is also significéfig. 2). Since
greater than that of ¥, is smaller because of the lower dipole transitions in the homonuclear molecules &hd Dy
velocity of the nuclear wave packet when the molecule is orwithin one potential surface are forbidden, these states can be
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W, | The solution of Eq(19) is a set of statese’)(x,R,t)}
and corresponding energi€&(®)(R,t)}, which contain both
the nuclear coordinate and time as parameters.

In moderate fields, mixing of all eigenstates of the elec-
107 2 tron Hamiltonian except the lowest two can be neglected in
calculations of the molecule’s ground potential surface. Then
the energies of these states are determined, if we assume that
the field is quasistatic, by the expression

1073
(&) 1
Er2(R) =5 [Ea(R) +Ex(R)] =70,
10—3' 1 1 1 1 A1
0 02 04 06 hw, eV where
FIG. 4. Dissociation probability ofl) H; and(2) HD* molecules vs. op- 1 1
tical photon energy aP=1.4x 10% W/crznz. Og= % \/Z[El( R) —E( R) 1%+ dfzsz(t)cosz ol

determines the characteristic time of the systeml/Q g,
populated only through multiphoton transitions via excitedand E;(R) andE,(R) are the energies of electron states at
potential surfaces. But dtw=0.12 eV the number of pho- zero field amplitude. The quasistatic condition for the field is
tons needed for the transition between the two lowest surequivalent to
faces is about thirty. Given so high a number of photons
needed for excitation and dissociation, we need an alterna- ©@<r. (20
tive approach to transitions between potential surfaces in %he resulting states
low-frequency electromagnetic field.

Two regions of intense dissociation of HDmolecules
in the IR and UV bands were also detected by other authors

)(x,R,t) are quasistationary. We as-
sume that the field intensity is sufficiently weak that the state
decay time is larger than the laser pulse width. In the case
under discussion, this condition is satisfied because molecule
ionization can be ignored.

4.3. Quasistatic model of molecule dissociation in IR field As noted above, it is assumed in obtaining the set of

In this section, we discuss a quasistatic model of moI-anCti°n${¢$18)(X'R't)} that the electric field is a slow func-
ecule dissociation in IR field that enables us to considerabljion of time, so that the electron wave function tunes up in
simplify calculations of molecular dynamics in a low- accordance with the instantaneous strength of the wave elec-
frequency IR field and, in particular, interpret features in thelfiC field. This leads to the conditiodQg/Qg<1, where
dissociation probability of the Hion as a function of field AQg is the change inlg over the characteristic time, and
intensity and frequency. yields, if the laser pulse envelope is a slow function,

Above all, note that the expansion of the molecular wave 7203
function ¥(x,R,t) in the system of electron states unper- @< — .

ic field i |d1d%e%(t)
turbed by the electromagnetic field is not the only way of 12

simplifying the problem(12). From the mathematical view- Note that this condition is a criterion of the validity of the
point, this can be done using any set of orthonormal funcsemiclassical approximation with respect to time, and this
tions, and its selection is a matter of mathematical conveapproximation can be used in solving the problem analyti-
nience and physical insight. In intense fields at opticalca"y_
wavelengths, the preferable technique for describing molecu- The combination of condition&0) and(21) in a strong
lar states is based on states modified by the fif@his electromagnetic fieldXE/2<|d;,|(t)) yields the condition
concept yields satisfactory interpretations of various feature§w<|d12|80’ i.e., the photon energy should be less than the
of the above-threshold dissociation detected inseparation between modified potential surfadég. 5). But
experiments? 3 condition(21) does not hold when the field intensigft) is

In a low-frequency IR field, perturbation of potential gmost zero. In this case, the quasistatic condition can be
surfaces of a molecule can be described by a quasistatic aperpreted as the smallness of the probabilities of Landau—

proximation based on the smaliness of the laser field in comzener transitions between surfaces. On the basis of the esti-
parison with the characteristic frequency of electron motionnate in Refs. 15 and 16, we obtain

within the molecule.

The set of molecule electron states in a low-frequency (AE(R))?
field can be derived by solving the time-independent Schro = |diAR)|eg”
dinger equation

(21)

(22)
) This estimate limits the range & in which the quasistatic
[He—dee(t)cos ot (X, R,t) model holds. In this specific case, conditi®) is satisfied
—EP (RO (R, ag TR=SA.

The complete wave functio¥ (x,R,t) of the system can
whereHy, is the electron Hamiltonian of the molecule. be expanded in the set of functiofik9),
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FIG. 5. Two lowest potential surfaces of thg Itholecule in the presence of FIG. 6. Ground potential surface of the, Hnolecule modified by electro-

an electromagnetic field. magnetic field of a wave with intensitgn W/cn?) (1) 5.0x10'% (2)
1.2x10'% (3) 2.0x10'% These curves correspond to maximum electric
field intensity.

T (xR =2 ol (Rt (x,Rt), (23)
! lidity and physical convenience of this approach is provided

wherea(®)(R,t) is the nuclear wave function of the molecule by the low population of excited electronic states with 3

on thei-th potential surface modified by the slow field and 4, and by the fact that the population of all excited states

e(t)coswt. By substituting expansiof23) into Eq.(12) and  is much lower than that of the molecule’s ground-state po-

using the Born—Oppenheimer adiabatic approximation, wéential surface by the end of the laser pulse.

obtain the following equation system for functions  The full set of term&/y(R) can be obtained by solving

(R Eq. (190 at different moments in time. The function
i (R.t) :
VI(R1) has the form
dal® dgl®) eff
(9t n n I (9t eff( ,t)—e +E1 (R,t) (26)

In a strong field, wheA E<|d;,e|, we derive from Eq(26)

2 (92 ]

B ) _ &)

‘[ 25 gre Vet RO~ dne(Dcosotal® . (24 VRH=eR+E\(R)~|die(ticosot]. (27
Here Veg(RY)=€/R+E®(RY) is the molecule’s potential N the opposite case, whedy,e|<Ex(R)—E;(R), we ob-
surface modified by the low-frequency field. tain from the Eq(26)

Thus, we have obtained the equation describing the mo- 2 |dy,|262(t)cog wt

tion of a nuclear wave packet in the effective potential modi- ~ V{H(R,t)= R +E1(R)— E,(R)—E.(R) (28
fied by the slow electromagnetic field of the wave. The sec- 2l 1 ‘
ond term on the left of Eq24) describes transitions between It is clear that in both cases the effective poten\l@f(R,t)
surfaces induced by the field. oscillates at a frequency that is twice the laser frequency.
Under certain conditions imposed on the field frequencyThis effect® leads to repulsion of the nuclei during both

the second term on the left of E4) can be neglectetsee  half-periods of the field optical cycle.

Appendix for details In this case we have Figure 6 shows the ground-state potential surface of the
Jal®) 52 g2 molggule in thze optical electromagnetic field at various in-
ih—'=[— — —+VU(R1) tensitiesP=ce/87 calculated by Eq(26). In the range of
ot 2u gRZ - e small radiation intensitied?<9x 10'2 W/cn?, the curve of

V(R contains a section corresponding to classical finite
ai(8>(R,t), (25 motion, i.e., there is a possibility of quasistationary vibra-

tional states of the molecule, which can decay as a result of
i.e., the Schrdinger equation for a nuclear wave packet in atunneling across the potential barrier. At an intensity
time-dependent potentiat®}. The elimination of the term P~1.0x 10" W/cn? the potential barrier vanishes, and the
mixing potential surfaces in Eq24) is similar to the Born— curve ofVSﬁ)(R,t) has a platea(curve?2), i.e., a region where
Oppenheimer approximation, since this enables us to dehe force acting between the two nuclﬁ,:—&vglleﬁR, is
couple the equations of motion for nuclei in the absence ofpproximately zero. At higher field intensities the plateau
an external field. disappeargcurve 3), which means that the nuclei repel one

The advantage of the approach discussed here is the pagnother at all separatior® between them.

sibility of replacing Eqs(15) for the nuclear wave functions Figure 7 shows calculations of the dissociation probabil-
with the single equatiori25). Indirect evidence for the va- ity of H, as a function of the radiation intensity obtained in

—dye(t)cos wt
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W, L tions. At the same time, the agreement between these two
models in the case of Dis far from satisfactory because the
nuclei in this molecule move more slowly, and the quasi-
static condition(A6) does not hold.

5. CONCLUSIONS

In this paper, we have discussed dissociation of various
isotopes of the molecular hydrogen ion in an intense IR laser
field. Exact two-particle calculations have been compared
with the results of then-surface approximation. The disso-

. ciation probability has been calculated as a function of the
5 10 15 P, TW/em® field intensity and frequency. The quasistatic model of dis-
o _ L sociation has been discussed. This model provides a fairly
FIG. 7. Dissociation probabilities of Hin (1,3 ground vibrational state - . . .
(v=0) and(2) excited vibrational state with=1 as functions of radiation accurate de.SCI’IptIOI’l of interaction betwee.n the laser,ﬁeld and
intensity. Curvesl and 2 are obtained in the four-surface approximation, @ Molecule in the band of lower frequencies and an interpre-
and curve3 in the quasistatic approximation. tation of the curve of dissociation probability versus field
intensity.

o _ We thank V. P. Krainov for useful discussions of issues
the quasistatic model and in the four-surface model. One cagygdied in this work. This work was supported by the Rus-

see that these curves are fairly close in the ranggjan Fund for Fundamental Reseat@rant 96-02-19286
P<1.5x 10" W/cn?. At higher intensities the quasistatic

model is no longer validsee Eq.(A6)), and the effect of
higher-energy surfaces perturbed by the laser field must peP PENDIX
taken into account. We now derive the condition relating parameters of a

This model allows us to interpret the main features onmolecule and laser field such that equation syst24h sepa-
the curve of Wp(P). For example, at intensities rates into a system of decoupled equations describing motion
P<10" W/cn? the H; molecule dissociates as a result of on quasistatic potential surfaces modified by the external
tunneling of the nuclear wave packet across the potentigield. To this end, we estimate the terms Wa'ih(f)/at and
parner(curve 1. in Flg_. ). Tr_le pro_bab|I|ty of this process a(1€)<¢(18)|(9¢(28)/(9t> on the left of Eq.(24).
increases  with field intensity. In the range Assuming
P~(1.0—1.5)x 10" W/cn? the nuclear wave packet is on
the plateau of th&/$)(R) curve, and the dissociation prob-
ability depends weakly on the field intensity. At higher in- at
tensities the dissociation probability again increases with in
tensity owing to the growth in the repulsive force
F=—oV{/R on the protons throughout the laser pulse.

If the H; molecule is initially in an excited vibrational dp Igy”
state, tunneling will probably occur in the range of lower ot ge Z0¢
field intensities. The effect of the plateau on W&?(R) curve
should also be less pronounced owing to the greater width
the nuclear wave packet. Such properties ofhg P) func-
tion were detected in calculations of the molecule vibrational h9>ﬁw80< <P(18)
statev =1 (Fig. 7). o )

The model also enables us to understand the shape of the In the two-surface approximation wave functions
Wp(hw) curve for H in the low-frequency band @12(XRit) can be expressed as
(hw=0.12 eV). In partiCL_lIar, the incr_ease in_the fie_ld fre- <p<f§=C(ll’z)(R,t)gol(x,R)+C(21'2)(R,t)<p2(x,R), (A2)
qguency leads to shortening of the time during which the
nuclear wave packet is in the region of infinite motion, hencevhere ¢1(x,R) and ¢,(x,R) are unperturbed electron wave
the dissociation probability decreases. Thus, the dissociatiofnctions, and the coefficien&{*?(R,t) andC§"?(R,t) are
probability for a molecule should increase with decreasingiven by

where () is the molecule oscillation frequency, and taking
into account

(e)
1

0\%\/e reformulate the adiabatic condition as

(&)

dp;
e > . (A1)

field frequency. C W =11+ (a/2— Ja2/a+ 1)2] 12
If the photon energy is higher thainw~0.25 eV, which 1 =[1+(a “ e
corresponds to the minimum in tMé, (% ) curve, the qua- CP=[1+(al2+Ja?4+1)?]" 2
sistatic condition(A6) is violated and the model under dis-
cussion no longer holds. CV=(al2— o214+ 1)C",
Application of the quasistatic model to the dissociation C(22)=(a/2+ Jm)cglk (A3)

of the HD" molecule under these conditions also yields re-
sults that are in good agreement with four-surface calculaHere
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Eo(R)—E4(R)
di(R)e(t)

AE(R)
~dip(R)e(t)”

a(R,t)= (Ad)

E,(R) andE,(R) are the electron energies of the two lowest

unperturbed states of the molecule.

Using Eqgs.(A2) and(A3), we can easily obtain the fol-
lowing estimate foK {9’/ ot):
()

()| 992 o al2
¢1 ~— ——
at 2 a’l4+1
_v AE(R)/2 4R
2 AEXR)/4+]dAR)|%e 1AR)&g.

(A5)

After estimating the matrix element defined by E45) in
the localization region of nuclear wave functions in a mo-
lecular bound state, we derive from Hé1) the condition

|Ex—E4?

ho<<h()
|d12|8

: (AB)

which determines the limit on the external field frequency.
It is clear that conditiofA6) is more rigorous at higher

laser frequencies and masses of atoms in the molecule owir}gf

to the lower oscillation photon energy).
In the case under discussiaf)l~Aw~0.1 eV. There-

Taking |E,—E4|~1eV and d;,~ea,, we obtain
P* ~ 10" W/cn?, which is in fair agreement with our nu-
merical calculations.
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Effect of four-photon interactions on coherent population trapping in A-systems
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The resonance fluorescence spectrum afsystem excited by two resonant light fields is
calculated using a Markov analysis. Analytical formulas are derived in the strong-field limit within
and beyond the rotating wave approximation. It is shown that the resonance fluorescence of

the system does not vanish during coherent population trapping. Its spectrum consists of two
multiplets which are similar to a triplet in the resonance fluorescence spectrum of a two-

level atom and lie at the electronic transition frequencies, together with two triplets located at the
frequencies of four-photon processes involving the optical excitation fields. The latter are
fundamental in character and impose limits on the lower bound of the dephasing rate for the
Raman resonance owing to the effect of radiative decay of the dipole transitions on the
dynamics of the ground state. The effect of four-photon dephasing on the absorption spectrum of
a A-system is analyzed and found to lead to a substantial reduction in the depth of a dip in

the absorption spectrum which vanishes as the laser field strength is increas&898@merican
Institute of Physicg.S1063-776(98)01001-4

1. INTRODUCTION resonance fluorescence spectrum is and how deep the dip in
the Raman absorption spectrum is. A rough estimate of the
The interaction of electromagnetic fields with atoms isintensity of resonance fluorescence in&ystem during co-
one of the most fundamental problems in quantum optics. Iherent population trapping has been made in the rotating
is known that a much wider range of effects occur in multi-wave approximatiohwhich yields zero fluorescence inten-
level atoms than in two-level atoms owing to field-inducedsity for two-level atoms. The same result can be seen in Fig.
coherence between the atomic states and quantum interfe§e of Narducciet al,* which shows a calculated fluorescence
ence. The three-level systems realizedAn E-, and V-  spectrum for a\-system. This indicates that during coherent
configurations play an important role in research on thes@opulation trapping &-system does not radiate and the dark
effects, as they are of intermediate complexity between twoline is entirely absent in its resonance fluorescence spectrum.
level and multilevel atoms. A whole series of new effects  Our calculations, presented in this paper in the
have been observed in them; coherent population trapping @symptotic limit of a strong field, show, however, that the
one of the most intriguing and has been studied intenselyresonance fluorescence of a system does not vanish during
both experimentally and theoreticall{See the reviews by coherent population trapping. Its spectrum consists of two
Agap’ev et all and Arimondd and the references cited multiplets, similar to the triplet in the resonance spectrum of
there) Coherent populating trapping shows up most clearlytwo-level atoms and located at the electronic transition fre-
in a three-level system with two close long-lived levels and aquencies, together with two triplets located at the frequencies
third level which lies far from theniA- or V-systemgthat  of four-photon processes involving the pump light fields. The
have been excited by two cw laser fields, so that the distariatter are fundamental in character and impose limits on the
level is optically coupled to the two others. Tuning the driverlower bound of the dephasing rate of the Raman resonance
fields to resonance with its dipole transitions leads to trapewing to the contribution to the dynamics of the ground state
ping of the populations of the system in a coherent superpdrom radiative decay of dipole transitions. The effect of the
sition of the two close levels. In Raman absorption spectrdour-photon dephasing mechanism on the absorption spec-
this effect shows up as a very narrow dip against the backirum of a A-system is analyzed and found to lead to a sub-
ground of an absorption line and in resonance fluorescencstantial reduction in the depth of a dip in the absorption
spectra it is observed as the absence of emission, which hapectrum that vanishes as the laser field intensity is in-
led to its being referred to as a “dark(or “coherent popu- creased.
lation trapping”) resonance. This article is organized as follows: Section 2 is devoted
In this article we study the question of how four-photonto a description of the complete Liouvillian of an atom inter-
interactions affect the coherent population trapping effect iracting with a laser radiation field. The specific features of the
a A-system excited by two cw laser fields, in particular, howexcitation of two-level atoms and A&-system are analyzed.
“dark” the coherent population trapping resonance in theln Sec. 3 the resonance fluorescence spectrumAekgstem
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is calculated in the rotating wave approximation, as well asThus, we can treat it as a universally small perturbation rela-
outside the range of validity of this approximation. The ef-tive to the resonant excitation contribution for the amplitude
fect of four-photon interactions involving the driver light of driver waves smaller than the amplitude of the intra-

fields on coherent population trapping and their role in theatomic field. In a first-order approximation with respect to

formation of the absorption resonance and in the dispersiothis parameter, the evolution superoperator has the form

of the A-system are analyzed in Secs. 4 and 5, respectively.

Most of the voluminous mathematical calculations are car- t

ried out in the Appendix. In the Conclusion we discuss an S(OI)=S(0I)Rw{l+J 0Zy(r)dr
experiment for detecting the calculated structure of the reso- 0

nance fluorescence spectrum of\ssystem.

e”l, (6)

Note that this approximation is valid if the value of the inte-
gral is less than of order unity.
We now consider the specifics features of the excitation

2. LIOUVILLIAN OF AN ATOM BEYOND THE RANGE OF of a two-level atom and &-system.

VALIDITY OF THE ROTATING WAVE APPROXIMATION;
DYNAMICAL TRANSFORMATIONS USED TO CALCULATE
THE FLUORESCENCE SPECTRUM

The complete Liouvillian of an atom, which describes 2-1 Excitation of a two-level atom
changes in the atomic variables according to the equation For a two-level atom excited by a laser field

dA/dt= #(t)A in Markov theory, has the form E, cos.t), Eq. (5) takes the form
L) = Lo+ L+ Lot LL(1). (1)

0o ., .
8L p(7) =i 7[0 exp—2iwt)

Here ¥, is the unperturbed Liouvilliani(#)[.7,,®], in- )
cluding the free precession of the atom at the laser frequen- +o” exp2iot),O], (7)
cies according to EqA4) of Appendix A.(The symbol® .
denotes a place for substituting a transformed opejatey. Where (), is the Rabi frequency and~ are the standard
and ; determine the dynamics of the atom owing, respecPauli matrices. Applying Ed7) to the complex polarization
tively, to relaxation and nonzero detuning of the frequencie@mplitudes® and using Eq(6), we find thatS(t)o* deter-
of the driver laser fields from the resonance transition fremines the structure of a triplébecause of the presence of
guencies in the atonresonance excitation is described by the termS(t)rwa) in the resonance fluorescence spectrum of
%), while Z| (t) describes the laser excitation. a two-level atom at a frequency ofs3 ,° which is analogous

In terms of the interaction representation the transformato the known triplet at the laser excitation frequefidyinte-
tion S(0t) corresponding to the Liouvilliar{l) takes the grating with respect ta in Eq. (6), we can easily show that
form the ratio of the corresponding amplitudes of the spectral

components at the frequencies of the third harmonic and the

S(O,t)=SRWA(O,t)§0(0,t)e%0t, ?) laser light is proportional to the small quantiy, /2w, .

where the superoperators

2.2. Excitation of a A-system

S oY) =exp Zrwa), Lrwa=Fst+ % +%, (3 . . .

rwA O0) = eXH Zrwa) RwA= L5t Lt Ly () Let us consider a-system consisting of three electronic

determine the system dynamics in the rotating wave approxi€Vels ~with  transition  frequencies among them of
mation (RWA) w1y w13, wo3 (Fig. 1). Two coherent field€ cos, t) and
E’ cos(,t) act, respectively, on the transitions—13 and

2+ 3. These fields interact with the complete dipole moment
(4)  of the system determined by the operatQgo s+ dys0s3,
Where&13,23 are the Pauli matrices; for the corresponding
rﬁtomic transitions. As a result, the induced dipole moment of
the system oscillates at frequencies, and *+ o) .

As opposed to the case of two-level atoms, where both
driver fields interact with one and the same atomic transition,
during excitation of a\-system each field interacts with two
transitions. Thus, the Liouvillian corresponding to bihar-
monic laser excitation with a frequency detuning
né:“’i_“’L takes(according to Eq(B3)) the form

Sy(0t)=T exp[ fotazp(f)dr

is the evolution superoperator for the dynamics of the syste
owing to the nonresonant excitation component, and

8L y(t)=e 0 7 (e “ot— )

is the deviation from the average valtg, of the Liouvillian
for the laser excitation.The symbol T used in Eq4) de-
notes the time ordering of the superoperator taken in qual
tum mechanics. "
The deviations%,(7) in Eq. (5) oscillates at the fre- IMOA o~ iat, ~4 —iAt
. P . . . . . (; = +
qguencies of the laser drive fields and their combinations. 07p(7) 2 [(re Te )0l ®
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FIG. 1. A A-system(a) and a typical arrangement for
the experimental measurement of resonance fluores-
cence induced by two monochromatic laser fields with
frequenciesw, and @ (b). 7, y', and y,, are the re-
laxation rates of the populations in the upper levels;

L I'13, I'p3, andl'y, are the dephasing rates; amdis the
s rate of pumping to level 2. The fluorescence spectrum

of the atoms is analyzed using a Fabry-Perot interfer-
2 ometer(FP) and a photodiodéPD) in a direction per-

pendicular to the directions of the lasgb) and atom
(Ab) beams.

whereg,=0?+9'?, g=d;sE’, g’ =d,3E, and the opera- where o*(t) are the Heisenberg positivénegative fre-

tor 7 is defined as quency operators. These operators have a time dependence
only in the form of high-frequency oscillations at optical
}zgxl(ga{?‘_’_gr&g?). (9) frequencies. The superoperatd§0t) and S(t,t+7) de-

scribe the relaxation and interaction of the atoms with the

In deriving Eq.(8) we have neglected terms containing sumseXxciting laser fields during the time intervals t)0,and
with higher frequencies. (t,t+7), andpS(0}) is the density matrip(t) at timet. It
Equation (8) obviously determines additional spectral follows from Eq. (3) that the superoperator§(0t) and
components at frequencies, =A and o/ =A, of which  S(t,t+ 7) are simple exponentials of the form ¢xXprwA],
only the components ab, —A and o +A are new. The according to the rotating wave approximation.
correspond to four-photon processes and should show up for The termo~(t)[ S(t,t+ 7)o" (t+ 7)] in Eq. (10) is sim-
a symmetricA-system as a mirror reflection of the virtual ply the product of the two operato{s‘(t) and (}+(t+7)
levels of the subsystem of lower levelig. 2) owing 10 averaged over the fluctuations in the time intervat € 7).
modulation of the 1-3 and 2- 3 transitions by the intrinsic  Thjs averaging is carried out with the aid of the transforma-
oscillatory frequencyA ~ w,, of the lower level subsystem. tion g(t,t+7), which determines the conditional atomic
It is known that four-photon frequency mixing leads to gen-quantum mechanical probability distribution function at time
eration of a coherent signal at the Stokes and anti-Stokes. - relative to timet. The emission spectrum of the atom
frequencies. Our later calculations show, however, that can then be calculated as the Fourier transform of the corre-
these nonlinear resonances are also accompanied by sidgrion function(10).
bands because of incoherent scattering processes. In the stationary case the density matrix in the vector
The above analysis shows that the important differencgepresentation is simply the zero vect6f of the matrix of
between exciting a two-level atofsee Eq.(7)) and aA-  the evolution superoperatoimys. Then we can obtain the
system(Eqg. (8)) is that excitation in the case of tlesystem  stationary correlation function from ELO) by averaging it
is mainly determined by the biharmonic frequency detuningyyer the temporal oscillations. This averaging leads to the

A. In experiments this detuning is usually much smaller thanepjacement of the bilinear combination of the complete op-
the frequencies of the laser systems that are exciting the Sy@'rators&i(t) by two combinations:

tem. This means that the intensity of the additional compo-
nents in the fluorescence spectr(fime structure which is
determined by the exponential factors in EG8.and (8), is
substantially higher for aA-system than for a two-level 3
atom.

3. CALCULATING THE FLUORESCENCE SPECTRUM OF A 20 - @
A-SYSTEM L L

The spectral density of the emission from an excited
atom(resonance fluorescence spectjusrdetermined by the
normally ordered two-time correlation function of the light
emitted by the atomt!® Assuming that the atomic fluctua- — 9 )
. . . . 20- o
tions are Markovian, i.e., they are independent of one an- ———_,4 L L
other at timeg andt+ 7, we can write down the correlation
function for the atomic fluorescence in the form . —

R R R FIG. 2. A A-resonance and additional resonances which determine the fine
T(1)=(peS(0) |0~ (O)[S(t,t+ 7)o" (t+ 7)]), (10 structure of the resonance fluorescence spectrum.
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A _ ~ 4 ~ ~ 4 ~ AN 1 mea——

o (X0 (t+7) = 013X 013(T) @ 05X 05(7). +9A/2/4 +9A/21;l
Similarly, we have ‘-‘7/\’2\‘ —g ,2‘:‘

LY A
SEN
TT)— T (7)+ T 7). | & SIS
) + [ = &

When we calculate the resonance fluorescence spectrum of SN 2 3‘_'5 3‘2' 8’-"
the atom in the rotating wave approximation the correlation ! F
functions .72, () correspond to the frequencies;s~w *9/2 0 +g"/2,’
and w3~ | and when we calculate the fine structure of the / { !
spectrum beyond the range of validity of this approximation -g,/2} ! —gAIZ\‘
they correspond, respectively, to the frequencies -t T
o, —A=2w —w andew +A=20 -, . (See Sec. 2.2. i a b

On descrlblng thm-SyStem with the aid of the Liouvil- FIG. 3. The formation of Rabi nutations in a two-level at¢an and in a

lian in the rotating wave approximation and expanding it in;.system(b). Only a minimum set of transitions between the quasienergy
terms of the eigen-projectors, we obtain the following rela-states, corresponding to the set of all possible lines in the fluorescence
tively simple expression: spectrum, is shown,

8
n)= 2, {0161 [K)) (K| o exd (M=) 7]
N are proportional to the coefficient in front of the correspond-
+(0]op3 [K))(Kk|ospexd (A\—iw[)7]}, (11)  ing exponent in Eq(11), while their width and frequency
shift are determined by the real and imaginary parts of the
where the symbol *’ means that the operators are multi- eigenvalues., . In general, the fluorescence spectrum can be

plied in accordance with the multiplication rules for opera-cajculated numerically. In an asymptotically strong field,
tors and the result is presented in the form of a ket-vectorj,g\wever. as we shall show belo@nd has been demon-

)\.'" [k), and (k| are the ellgenrvyalues of the matrix and thestrated previousf/for a special cagean analytic solution
eigenvectors of the LiouvilliartZzya.

Using Eq.(11) together with Appendix B we can obtain can also _be qb_tamed. . .
the following expression for the correlation function that de- ' of SImplicity let us consider A-system excited by two
scribes the structure of the resonance fluorescence spectrign-Power laser fields of equal intensity. In this case we can
of the atom outside the range of validity of the rotating wave@verage the relaxation of the system over the Rabi nutations,
approximation: while the Hamiltonian corresponding to the laser-induced

precession operator,= (i/f’z)[ﬁ’/p ,©] takes the form

R e . _
A= g & (0101 (K {exi] —iw ~2)7]

0 1 1
+exd —i(w] +A)7]}exp(\¢7), (12 ,}Kp=ﬁ 9 P 9a 1.0 0
22 1 00

where thefrf2 are the complex conjugate amplitude of the
subsystem of lower levels which modulate the dipole mo-
ment of the transition. This modulation gives rise to new
spectral components in the fluorescence spectrum. This Hamiltoni d - ith en-

Recall that Eq(12) describes only the basic structure of Is Hamiltonian corresponds to quasi-energy states with en

the fluorescence spectrum, which is determined by the pae_rgies that ar? shifted with respect to the eigenvalues of the
rameterg, /w1,, Which, in turn, we assume to be small. Hamiltonian 77,, which equal{0,+g,/2}.** (For a two-
Here we have neglected the higher order contribution whichevel atom the eigenvalues of the Hamiltonian are equal to
makes a nonzero contribution to the coherent component df=g,/2}). The temporal dynamics of these mixed quasi-
the response in the rotating wave approximation, which comenergy states cause oscillations in the expected values of the
ponent equals zero when this correction is neglected in @hysical variables at two different frequencigs andg /2.

strong field in a first-order approximation with respect to theThe physical significance of these nutations in terms of the
parametef’/g, for detuningss, dg~0 (by analogy with the quasienergy levels is illustrated in Fig. 3.

two-level aton). The Rabi nutations between the quasi-energy levels are

3.1. Fluorescence spectrum in the rotating field described by a Liouvillian which, in the operator basis

approximation {N3,N1,N;,0%,,0%,,0%53,053,053,054) (the indicesc ands

The fluorescence spectrum determined by Ed) is the  denote the cosine and sine components, respectjviales
sum of Lorentz spectrum lines whose total spectral powerghe form
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Its eigenvaluea, (k=0, ..., 8) areequal to 0, 0, 0-igA/2, —igA/2,igA/2,i9/2, —ig,, igA , While the corresponding set
of eigenvectors is defined as

0 0 0 0 0 V2 o Ji2 o

0 -1/2 —-12 J1u2 © 0 0 0 0
V12 2732 2782 12 0 0 0 0 0

0o iz -ir 0 0 0 -12 0 12

{wt={ 0 0 0 0 V12 —irz o i/2 0
0 0 0 0 V12 iR 0 —il2 0
0 —il2 i 0 0 0 -12 0 112
12 -14 -1/4 —273%2 0 0 —il2 0 -il2

12 —-14 —-1/4 —273%2 ¢ 0 i/2 0 i/2

Let us now discuss the physical significance of the dynamig,/2. The last two eigenvectorgs; and g, describe the
cal variables corresponding to the eigenvecigs excitation of the bound state together with the populations of
The eigenvectory, describes the stationary excitation of all three levels and the polarization of the ground sté&th)

a system by two laser fields of equal intensity acting on theoscillating at a frequency of, . Therefore, the Rabi nuta-
1-3 and 2-3 transitions, respectively. The eigenvectorstions of the eigenexcitations of the system for combinations
1 and ¢, describe a two-dimensional stationary excitationof the unbound levels take place at a frequencyg@f2,
space, a combination of the polarization of the ground statevhile the bound states oscillate at a frequencygef (See
and the populations of all three levels. The eigenvecieys Eq. (A5)).

and g describe excitation which involves a combination of Using Eq.(13) for the nutation operatofZp, we can
the populations of the subsystems of the lower levels and aaverage the LiouvilliarZ s+ %, in Eq. (1) over the nutations
independent combination of the polarizations> 3® 2+ 3; and write it in the form of a sum of 8 3 matrices, two X 2,
they oscillate at half the Rabi frequenay,/2. The eigen- and two IX 1. (The last two are diagonal elementas a
vectors, and 5 describe excitations which are a combi- result, we can obtain a simplified expression for the last three
nation of three polarizationd < 2 and an independent com- terms in Eq.(1), which describe the overall dynamics of the
bination 1~ 3@® 2+ 3) which also oscillate at a frequency of system in the interaction representation, of the form
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_(F13+F23)/2 0 O

L awa= 0 2 —(y+y' +Tp)/2v2
0 TNV —(y+y T )b
oyt W) 2T 14— T pd—ig /2 —i52
® —i8J2 T 2— 14— T 4 igA/Z)
T2 T 4T fatiga/2 i 5,2
® i 5,2 — (yipt W)2—T 14— Tyt igAIZ)

®(—3y/8—37'18—T1/8—T144—T »fd—ig,)
®(—3y/8—37'/18—T 18— T144—T4+ig,),

where the total detuning i9s=26+ dr=w +w| — w3 The preceding analysis shows that in a strong field only
— w»3. The corresponding eigenvalues are given by the total detuningd;=25+ Sz appears among the eigenfre-
quencies of the system, and not the Raman detusding
( 0 \ Here for =0, relaxation in the system of lower levels does
—(y+y'+3I'y)/4 not contribute to the oscillations at half the Rabi frequency:
— (I3t 12312 .
w1 M12= — 14— T 294—ig,/2.

INJ=¢ M2 b This effect can, in principle, be used to study the contribu-
7 tion of the lower level system to the fluorescence spectrum in
us an experiment where the spectra are measured as a function

(—3y—3y' —T'1,— 2T 13— 2T »;—8ig,)/8 of the detuningsé for different intensities of the laser line.
\ (—=3y—3y'—T'1,—2T'15— 2T 55+ 8ig,)/8) The measured width of the spectral components located at

(14) half the Rabi frequency is then determined directly by the
relaxation rate in the lower level system.
where For the case of an exact resonané&dg=0), we can
obtain an analytic expression for the fluorescence spectrum
1 . > > in the rotating wave approximation. The major difference
m1z=7 [ =y W=t VA8~ (Y1 W+Tp)) compared to the spectra from two independent two-level sys-
) tems, however, is that in the case of thesystem the general
—I'13=Tp5—2ig,]. coefficient in Eq.(11), which determines the intensity of the

. . spectral components, differs from the corresponding coeffi-
Here y1, andw are the rates of relaxation and pumping of gjent for the case of a two-level atom, which is simply pro-

the lower level systend]'s, is the dephasing rate in this sys- o rtional to y. In coherent population trapping, this coeffi-
tem, y and y" are the rates of relaxation from the excited gjent for a A-system and, therefore, the intensity of the
states, andl’y3 and I';3 are the corresponding dephasing gpectral components decrease by roughly a factdtgfy,
rates. _ _ _ _ which is a small parameter. For the cesium aféras an
Let us now discuss the eigenvaluegin detail. example, it is~1.6x 1073, while for sodiunf it can be es-

Note that because the relaxation operator is not selfmated to be~4.9x 103 using published parameters.
adjoint, each eigenvalue corresponds to two eigenvectors,

one of which describes the operators acting on the physical

variables, while the other describes the density matrix. The

eigenvalue\,=0 corresponds to the stationary Sta}g 3.2. Fine structure of the fluorescence spectrum

—(0| and the operatdr— |0), which has no dynamical sig- For simplicity let us again consider the case of an exact
nificance. This eigenvalue determines the coherent line in theesonance. Using the equations from Sec. 3.1 together with
fluorescence spectrum. The eigenvalues, describe the Eg.(12), we obtain the following expressions for the coeffi-
nonoscillatory dynamics of the system and determine theientscy in front of the exponential factors:

Rayleigh scattering of the fields which excite the system.

The four eigenvalues; 4 s gdetermine oscillations at half the 72/F52 9 1+29/T,

Rabi frequencyg/2=g/v2 and describe the contribution of Co= (31271 )° €173 (312/T)°
field-induced resonances to the fluorescence spectrum. The

last two eigenvalues ;g determine oscillations at the Rabi 1 14T
frequencyg, and describe the ordinary13 and 2—-3 nu- C35=0, Cpe== #'
tations in the weak-field limit. 4 \3+29ITy,
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Eyao Tel. units Isolating the contribution ter;, and o, owing to four-
photon interactions outside the range of applicability of the

-

L0} rotating wave approximation, we can write E46) in the
osl form
0.6] ~ ~
[ o=+ 7080,

0.4F £ 4 4
0.21 ~ aoh oA ~

ol A . . i HP =§(§I5Soﬂl+3+§§550053)+H-C-,

ZmL - 0} o 20 - o,

w
G 4 Th ] vum otaysemthe 7, Ve 7Y determines the standard interaction;;™" de-

. 4. e resonance fluorescence spectrum of-system (the S,;, . . o . 5 _~
—2P,, transition in the cesium atonexcited by two intense laser fields Scnbe_s the addltlon_al contribution owing to _four phOton In
into a coherent population trapping state. teractions, anddS, is the four-photon contribution to the

dynamic transformation of th&-system. Using the final for-
mulas of Appendix B for the transformed operators and

043, We obtain the following formula for the four-photon

! L (15) contribution to the Hamiltonian:

C :_—l
"8 16 3+ 24IT,,

These coefficients multiplied by the common factor 54ph_ 90 f T oAt s _
yg4/4w3, determine the intensity of the fine structure com- <& =24 2 talnonlexd—i(o ~A)
ponents of the fluorescence spectr(if).

The complete fluorescence spectrum ok-@ystem, in-
cluding the structure in the rotating wave approximation as
well as the fine structure calculated above, is shown in FigBy calculating the commutators in E¢L7), we can write
4. Equation(15) implies that for the typically large values of down the four-photon contribution with the aid of the tran-
the ratioy/T 1, only the coefficients, andc,=cg are pro-  Sition operators for the low level subsystem as
portional to the large values of ordefy/T;,. As a result,

+ & oldexd —i(wl + Mt} +He (17

only three lines show up in each of the two fine structure = aph i - ) .

features of the fluorescence spectr(fiy. 4). One of them is = 9 E (Vexd —i(o —At]og,

coherent(i.e., has zero widthwith an intensity proportional ~

to cg, while the other two are broadened lines with an inten- +9&, (exd —i(w/ +A)t]o,t+H.c. (18

sity proportional toc, shifted to the left and right of the

coherent line at half the Rabi frequengy/2. This implies that the vacuum electromagnetic field interacts

with the lower level subsystem through four-photon pro-

cesses. The efficiency of this interaction depends on the in-

teraction constant of the laser fields with the dipole transi-
4, EFFECT OF FOUR-PHOTON INTERACTIONS ON tions of the A-system. The distinctive feature of this
COHERENT POPULATION TRAPPING interaction is that the emission of a vacuum photon by the
1+ 3 transition is accompanied by the absorption of-a2

. Using Appencﬁx B we can easily calculate the Cont“b.u'transition photon, while the emission of a vacuum photon by

tion to the relaxation of the ground state from the relaxatlon[he 2.+3 transition is accompanied by the emission of a
contributions of the dipole transitions. The nature of the '€+ . 5 transition photon. Conservation of energy in these pro-
laxation processes involves an interaction of the dipole MO- sses is ensured b;l/ the four-photon interaction of the
ments (.)f the -3 and 2-3 tran_smqns with the_vacuur_n vacuum field with the laser fields, and this is reflected in the
fluctuations of the electromagnetic field. These interaction

. L2 %xponential terms in Eq18).
are described by the Hamiltonian Following Ref. 10, we can write the relaxation operator

P for the low level subsystem, which corresponds to @),
M=% (51 o131 & ‘723) +H.c, (18 in its customary form in terms of the operator basis

{ﬁlrﬁb‘}l-&Z}:

where
~_ 1 - ~_ 1 - %
& =%fd13(r)E0(r), & =%fd23(r)Eo(r) T
L ~ Y12 Y12 0 0
are the components of the vacuum electromagnetic field W W 0 0
Eo(r) with negative frequency amplitudes integrated over = 2 2 ,
the spatial distributiond,;(r) of the dipole moments 0 0 — (vt wip)f2 0
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wherey,, is the relaxation rate of the lower level subsystem. Given that the ¢é&qo;, in Eq. (18) describes a relaxation

transition from level 1 to level 2 and the tergr&z_ (}1+2 describes a transition in the opposite direction, we obtain the following
expression for the relaxation owing to the contribution of four-photon processes:

—c®y;3 Cyis 0 0
74ph_£ c'?ys —C'%y3 0 0 (19
T2 7aA%) 0 0 —(CPy13tC'?yp9)/2 0 '
0 0 O _(02713+C,2'}/23)/2
|
wherec=g/g,, ¢c'=g'/g,, andc®+c’'?=1. When the contribution of four-photon processes to resonance

Equation (19) implies that the contribution of four- dephasing is taken into account, the relaxation operator in
photon processes to the relaxation rate constant of the lowdhe expression forZgwa must include the field-dependent

level subsysteml;, is given by correction(19). Then the results of averaging in Eq20)
and(21) with a natural choice of basis for the vector repre-
9 92 sentation of the density matrigsee Appendix Al are de-
r‘l‘ghstAz (C'2y13+ CPy,g)~ 4TAA2 v142. tscri(l?)Td simply by the corresponding components of the vec-
or {0|.

. _ Performing the corresponding analytic calculations and
This contribution leads to a fundamental lower bound on 9 b g y

. ) .expressing the concentration of active atoms in terms of the
I'15. As an example, for the Cs atom and laser field intensi- b 9

ties of ~1 W/cn?, we havel'jb"~103y,42~10" s7%. pressurep, we obtain

~2 =2 _=2T $,=27
Y ~ (977 92)'126+9g7 R
5. THE ROLE OF FOUR-PHOTON INTERACTIONS IN THE Ng—1=—0.028P\° =5 ng| 6— — T 4124432 |
FORMATION OF AN ABSORPTION RESONANCE 9k 9ali2 12 R
AND DISPERSION (22)
The simplest experimental possibility for observing theand
dark resonance is to measure the transmission and/or disper-
sion (in atomic vapoy of exciting laser waves, whose inde- ~5
pendent detection is made_ easier by th_e relatively large dif- ny=0.028P\° Z_z Ns. (23
ferenceA of the corresponding frequencieg andw, in the 9k

neighborhood of the resonancg>1". The real and imagi-

nary parts of the corresponding refractive indices are exHerens describes the population of the excited state calcu-
pressed in an obvious way in terms of the operators for théated according to the formula

corresponding dipole transitioiassuming that macroscopic

volume averaging is validas 25752 3
1 ~
Ng=|3+ =55 (1+69)+ 5
=" ol @0 o
K= m y g~ — — - ~ o~ — ey~ ~
e Xgirlz+g§/4—<g§—g§>2F1252+29i(g%—gi)aRa,l
and Gig5(0&+ T+ 1093/4) ’
PN where the tilde means that the corresponding variables are
n.—1= 9% Re(|k)(3|), (21)  normalized toI'. The argumentss and oz depend on the
e velocity of the atom owing to the single-photon and residual

_ i i Doppler effect, while the damping’,, in the lower level
wheregy andl are the corresponding Rabi frequencies andsystem is determined by the reciprocal time of flight of the
intensities of the fields, witik=1 corresponding to fre-  5iomfor a cuvette with pure vaparThus, in order to obtain
quencyw, andk=2 to o (hereg;=g andg,=9g’). To  computational data which model the experimental situation,
calculate Eqs(20) and(21) in the stationary case it is nec- Egs.(22) and(23) must be averaged over a Maxwellian ve-
essary to find the stationary density matrix in the rotatingbcity distribution, which is done numerically.
wave approximation; this matrix is represented by the corre- Figure 5 shows calculated resonance absorption curves
sponding zero eigenvect¢®| determined from the equation ¢, 23, 2Py, transitions in cesium and potassium for in-

tense pump and weak probe fields. Although four-photon

(0| Zrwa=0. dephasing is not very important for cesium, in the case of
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FIG. 5. Absorption resonances in cesigan
and potassiuntb) vapor including(smooth
curve and neglecting(dotted ling four-
photon dephasing. The dot-dashed curve in
Fig. a corresponds to a calculation taking
four-photon dephasing into account where
the separation between the lower levels was
specially reduced by a factor of 10. The field
intensities in the calculations were
I,=0.01 mW/cn? andl,=10 mWi/cnf.

-2 -1 0 1 2 -4 -2 0 2 4
Raman detuning, MHz Raman detuning, MHz

potassium, for which the splitting of the ground state for the(V.N.Z.) is indebted to the Humboldt Foundatié@ermany
isotope “IK is only 0.25 GHz, i.e., almost two orders of for support.

magnitude smaller than the splitting in cesium, with a pump  Thus work was supported in part by the Volkswagen-
field intensity of 10 mW/crhthe resonance in the absence of Stiftung (Grant No. 1/7294%and the Russian Fund for Fun-
a magnetic field is essentially unobservable. Thus, the fourdamental ReseardiGrant No. 96-03-032867

photon mechanism for dephasing of theresonance estab-

lishes a fundamental limit of “observability” for the absorp- APPENDIX A

tion resonance in strong fields, by imposing a limit either on

the pump field intensity or on the magnitude of the splittingDynam'C superoperator of & A-system

in the ground state. Let us consider a\-configuration of the quantum me-
chanical levels of an atonfFig. 1) acted on by two laser
6. CONCLUSION fields with frequencies close to a Raman resonance which is

Four-photon interactions, therefore, play a fundamentafjescrIbGd by a Hamiltonian of the form

role in the formation of fluorescence spectra, as well as of the  _ . .
absorption spectra and/or dispersion of a resonAnsgstem TON=Tlqt+ ), (A1)
during coherent population trapping.
A typical arrangement of a possible experiment for de-where
tecting a resonance fluorescence spectrum employing an
atomic beam is shown in Fig. 1b. Experiments of this SOt O = —hiwiy2)(2| + w4 3)(3]
using an atomic beam and an atom trap have been described

. . : 14 H 15 . . L . .
in detail by Gauthieret al.™ and Stalgieset al,™ respec- s the intrinsic Hamiltonian of the atorfthe energy of level

tively. The directions of the atomic and laser beams are choy js taken to be zero, so that the projection opergitpfl] is
sen to be mutually perpendicular so as to avoid the ordinargpsent in the Hamiltoniarand

Doppler effect. The fluorescence spectrum is analyzed with a
Fabry-Perot interferometer. Calculations for the fluorescence -
spectrum of two-level atoms show that for an atomic beam ~71=%9 cogw t+e)(|1)(3[+[3)(1]) +#g’

with 10° atoms/smn?, using a 5-millimeter Fabry-Perot X cod w] t+¢")(|2)(3]+]3)(2])

cavity with Q~10* one can expect more than®1photons/s -

from a volume of diameter-100,um. For aA-system, four- s the Hamiltonian of the interaction of the atomic system
photor_1 mtera_ctlons, on one hand, reduce the fluorescencgin two light fields having frequencies, andw| , includ-
Intensity rzelatlve to that of a two-level atoms by a factor ofjuq the dependence of the excitation on the phase of the field.
(gr/2w17)%, and, on the other, increase it by a factor of Thg jnteraction constants, i.e., the Rabi frequencies, depend

(v/T12) 2. As an example, for the Cs atom a saturation in-op, the amplituded, andA, of the external field an on the
tensity of 1.1 mW/cm and the corresponding paramete L L

g, =10%y are already achieved for a laser power of 30 mW
at a wavelength of 852 nm focussed into a spot with a diam-

. .
dipole matrix elementsl;; anddos:

eter of about 1 mm. For these experimentally easily realized 1 , 1
" A L= A, 9= A, (A2)
parameters, we may expect, as the calculations show, a re h L h L
duction in the scattering intensity of thesystem compared
to two-level atoms by a factor of>210° and, therefore, to Only the case when a single-photon resonance is present
detect fewer tham-100 photons/s, which is not a problem is of interest, i.e., whem, andw, are close, respectively, to
for modern detection systems. w13 and w,z. We can rewrite 7, in the form
The authors thank D. N. Klyshko, A. Schentzle, and R. R R R
Wynands for fruitful discussions. One of the authors . 7Z,=.7,+.7%5, (A3)
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where the “unperturbed” Hamiltonian 12)=g,(g€?|c)—g’e "¢ |n)),

-}%Zﬁ(wn_|3><3|—A|2)<2|), (A%) which leads to the result

2

" Jexel+

including the biharmonic  frequency  detuning N
A=w|— o ~w;,, describes free precession with the two 7=
laser frequencies. The “perturbing” Hamiltoniarr,, can be

written in the form + 8g gng [elte=¢)|c)(n|+H.c.]

Or0
o+

2 v

T s=—183)(3| +5:12)(2], figa
+ > (|C><3| +H.c.).

where

In the basis{|3),|c),|n)} the corresponding matrix has the
d=w — w13, SrR=0[~ 0~ form

describe the single-photon detuning for {i¢—|3) transi- 0 ha2 0
tion and the two-photon Raman detuning, respectively. Both | 9a
detunings can be zero with a suitable choice of laser frequen- . 7Z,=| figa/2 6 0

cies. 0 0 I

The dynamics of an atomic system with the Hamiltonian
(A3) can be characterized as a combination of fasting to s 0 0 0
7/0) and slow(owing to. 7/5) precessions, so it is appropri- + —ZR 0 g? gg’e”“’*“")
ate to shift to a representation of the interaction with the 9 0 gg’e*‘“"*“") g'2

unperturbed unitary transformation

. and, for 5g=0, can quickly be expanded in terms of the
p _ e 2X2 matrix of a two-level system “dressed” with the
/Jo(t)—exr{ %Ot}' atomic field and the X 1 matrix of a single unbound state,
i.e., the excited and bound states form an effective two-level
In the rotating wave approximatibmve can neglect the rap- system |e)@|c). For simplicity we redefine|l) as
idly oscillating terms, so that the Hamiltoni&A1) takes the exp(—i¢)|1) and|2) as expfi¢’)|2), so that we can rewrite
form Eqg. (A6) in the form

TN=T s+ Hp=h] = 83)(3|+ 6r|2)(2| +(9r/2)(|c) o) =gx'(gl1)+9'[2)), [m=-gy%(g'[1)—g[2)),
X (3|+H.c. . : .
(S[+H.c)] (AS) which does not contain the phase factors explicitly.
With this representation of the Hamiltonian in the rotat-
ing wave approximation, the corresponding dynamic part of
the Liouvillian has the form

and is the effective Hamiltonian in this approximation. Here,
we have introduced the bound state)j and the unbound
state (n)) orthogonal to it:

lcy=g, (ge '?|1)+g'e"¢'[2)), % :—[7/A,®] (A7)

Iny=—g,X(g’e'?|1)—ge ¢'|2)). (A6)  The complete LiouvillianZgya also contain a relaxation
operator which is specified phenomenologically here.
The statdc) is associated with excitation of the levelith
an effective coupling constant af,=/g?+g'2. For zero
Raman detuning §&g=0), it is easy to see that the Hamil-
tonian (A5) describes a two-level system. This can be dem-
onstrated most clearly by substituting the express®) ) o
corresponding to the inverse transformatioh6) in Eq. The initial representation of the Liouvillian in the rotat-
(A5): ing wave approximation is a matrix in the nonhermitian basis
{e =P, p=|a)(Bl, where k=(a,8) and a,=1,2,3,
-, , which can be represented by the following complex matrix
|1)=g5"(g'€'*'[c)+ge '), elements using Eq$A7):

Al. Transformation of the Liouvillian in the rotating wave
‘approximation
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At ’ 0 0 _ 2 -~ _ = -
Y=V Y Y 2 2 > 2
ig ig
0 - 0 0 — -— 0 0
Y12 Y12 2 2
0 w o o-w 0 0 0 0 8
2 2
: ig’ ig
0 0 0 og—T 0 —_— 0 0 - —
IorR—1 12 5 >
ig’ [
Fawa= 0 0 0 0 —isg-Typ, 0O 9 '9 0
2 2
i i ig’
_9 9 9 0 —i5-T4 0 0 0
2 2 2
9 _9 0 0 _9 0 i6—T 3 0 0
2 2 2
ig’ ig’ ig .
-— 0 —_— 0 — 0 0 6—T 0
2 2 2 1ol
ig’ ig’ i
9 o -9 _8 0 0 0 0 i6-Ty
2 2 2
For converting to the more convenient Hermitian bases, we can introduce two transfornvgtiangV; of the form
1 00 00O 0 0 0 0
0 1 00O 0 0 0 0
0 01 0O 0 0 0 0
0 001 O0 0 0 0 0
V.= 0 0 0 0 1 0 0 0 0o 1,
0 0 0 0 0 glgx 0 g'lga 0
0 00 0O 0 a/ga 0 ag'/ga
0 0 0 0 0 —g'lgx 0 a/ga 0
0 00 0O 0 —g'lgy 0 a/gx
1 0 O 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 12 1m2 0 0 0 0
V=] 0 0 0 —ilv2 ilv2 0 0 0 0 (A8)
0 0 O 0 0 w2 1V2 0 0
0 0 O 0 0 —ilv2 ilv2 0 0
0 0 O 0 0 0 0 w2 1INV2
0 0O 0 0 0 0 —ilv2 iv2

The transformatiorV/, introduces two pairs of polarization operatd?s, ﬁ’* and ﬁ’n,l5+ for transitions to the excited level
from the bound and unbound states whilg introduces the Hermitian cosine-sine operatarsalogs of the coordinates and

momenta or the Pauli matncesl 02 in a two-level system

qg:(Plz+ Po)/V2, pg:_i(P12_ P,)IV2,

Qc=(Pc+PIIVZ, po=—i(P.—P)IV2,

4n=(Pa+PIVI, Po=—i(Py—P;)IVa. (A9)
Here the subscriptg, ¢, andn correspond to the ground (22), bound ¢« 3), and unboundr(«3) subsystems.
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After applying the transformation@\8) to the Liouvillian %gwa in the rotating wave approximation, for the transformed
operatorl gy a= Ve Vel rwaVs Vo, we obtain

ga
-y—v y y' 0 0 0 — 0 0
V2
2
0 ~ Y12 Y12 0 0 o - 0 0 £79,
V2 V2
2
0 W o-w 0 o | o 79 o _E79
V2 V2
3 B _ 5 o 9a
0 0 0 | PP ORr 0 Enga 0 —(¢ _77)7
@ , A10
RWA 0 0 0 Sr “T,| o 0 _g?A 0 (A10)
0 0 0 0 0 | -T, 5 AT 0
2 2
O [ 0 | -6 -T. | o0 AT
V2 V2 V2
0 0 0 0 %A AT 0 | -T, 5
0 _ Engn  €mdy (52_ 7]2) g_A 0 0 AT -5 -T,
) ) 2

where we have used the following notation
£§=09lgx, 1=9'19x,
Fo=&T 13+ nTa3, Tp=9T1a+ T3,

ATl'=&n(I'13—T'z3).
The block structure of the transformed dynamic superoperiaigy, indicated by the continuous lines in EGAL0) is
discussed in more detail in Appendix A2.

As opposed to the initial complex representation, the transformed operaigr, has real matrix elements, since it
corresponds to the Hermitian bagts,!.

For a symmetricA-system, withl'13=1",3, g=g’, and, thereforeAI'=0 andé= 5, Eq. (A10) takes the form

—y—v' 0 v 0 0 0 galv2 0 0
0 ~ Y12 Y12 0 0 0 —gp/2v2 0 ga/2v2
0 w -w 0 0 0 —gapl2 0 —gp/2v2
0 0 0 -T'y, —6g| O —gp/2 0 0
L rwa= 0 0 0 o -Ip| O 0 —gp/2 0
0 0 0 0 0 =T 1) 0 0
—galv2  gpl2V2 gal2 | gul2 0 ) -T 0 0
0 0 0 0 gal2 | O 0 -T S
0 —gp/2v2 gp/2v2 | 0 0 0 0 -4 -T
|
A2. The block structure of the dynamic superoperator in the tion variables(A9). By analogy, the matrix blocks can be
rotating wave approximation numbered with a subscrigi corresponding to the popula-

The physical significance of the superoperdtgg, de- tions and by the subscripts ¢, andn corresponding to the

fined by Eq.(A10) becomes most transparent on examiningPolarizations of ground (4-2), bound (%-3), and un-
its block structure. It is convenient to break the matag0) ~ Pound (1-2) subsystems. In this notation, the matid0)

up into blocks in accordance with a definite set of polariza-2PP€ars as
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Lop O _sz —Llp where the perturbation Liouvillian has the form
0 Ly —-L&; —L; i .
Lrwa= oo e (AL1) 8L p(1)=7[87(7),0]. (B4)
ch ch Lec _an h
Lop Lng  Lnc Lon Integrating 5Sy(t) with respect tor and using Eq(B4)

It consists of nine nonzero independent blocks. The diagonr;ﬁ)gemer with Eq(B3), we obtain

block L ,, describes the dynamics of the populations n, OA ~ At A4 iat
andn,, and the blocks 44, Lcc, andL,,, the polarization 8Sp() =Sy [T€7 —77e 7, 0]S(1), (B5)
dynamics, respectively, of the ground state and of the bound

and unbound subsystems. The five nonzero nondiagonal m#hich describes oscillations at a frequenky

trices describe the dynamics of thesystem owing to cou- The superoperatdy(t) in Eq.(B5) describes the unper-
pling among the above basis variables. The antisymmetry dtirbed dynamics represented by the Hamiltoriia), which
these five blocks is a consequence of the purely oscillatoraccounts for the free precession of all thesystem transi-
character of the dynamics resulting from the interaction withtions. The latter is represented in the form

the external field, while the inner dynamics includes relax- _ ot a—iAty ot pidt g ot a—ioty oF iogt

ation so it is also represented by the matrix elements which So(D=Se TOSETeS; L MBS e
yield nonzero real components in the eigenvalues of the ma- ®She olle Shelelte Py, (B6)

triX “Zrwa-

It is easy to see from the block structure @f11) that ~ where the matrice§,; for the corresponding superoperators
there is no connection between the populations and polarizare the one-dimensional eigen-projectors on the correspond-
tions of the ground state, sincey,=0. This reflects the fact ing intrinsic precession of the variables aRglis the projec-
that the exciting field acts directly only on transitions into thetor on the three-dimensional subspace of the nonoscillatory
excited state, while single-photon excitation of the groundvariables, i.e., the populations. After substituting BBg) in
state is absent. Eq. (B5), we obtain

The block representation given here for the dynamic su-

peroperator in the rotating wave approximation is convenient  sg(t)= 9A ({7,015 exd —i(w_—A)t]

for qualitative discussions of the effect of the parameters of 2A

the A-system on its dynamics, since it reduces to changes in 5 OIS ext —i(w! + At

only the inner structure of the blocks in the representation (77, O1Sz ex i@+ At]

(A11). —[77,01Sz exdi(w, —A)t]

APPENDIX B +[7,0]S; exdi(w +A)t]}. (B7)

Superoperator calculation of the general formula for the Then substituting Eq(B7) into Eqg. (B2) and using Eq.
fine structure of the spectrum (B1) together with the relatiop,S(0,t) —(0| for t—o be-

cause of the damping of all the eigen-oscillations corre-

Let us calculate the two-time correlation functi¢fo) sponding to the nonzero eigenvalues, we can finally write the

that determines the atomic fluorescence spectrum: correlation function in the form

T =(peSOD]o~ (O[S(tt+ D  (t+7]).  (BD T+ 1) =(0]6So() 5 - XD Lrwar) 8So(t+ 1) 5,
Here the total evolution superoperatisee Eq.(2)) has the (B8)

form where the symbol “” denotes the product of transformed

S(O,t)=SRWA(t)§O(t), (B2) operators an@ = = o 3+ o3 is the sum of the complex am-

whereSgwA(t) is the superoperator in the rotating wave ap-pIItUdeS oscillating at the oE)t+|caI frequenues; . “y
If we then applyéSy to o~ and recall thar;; and o3

proximation andSy(t) is the superoperator for the perturbed : S + +
evolution owing to the nonresonant interaction. The superopz-ire eigenvectors for the eigen-project@fy and S;, we

= ; . - obtain
eratorSy(t) describes the transformation of an initial system

i ian. 7 ~_ OA g~ .
Hamiltonian.7/(t) of the form 5Sy(1) &~ = — o (7 o mlexdi (o, — A)t]
s ot sy s TN iat, sk iad
W(t)%]/o‘l‘ 575(':):]/0‘*'7(7'9' +77e™! ), +[AT,&2_3]eX[[i(w,'_+A)t], (Bg)
R B3 and
where the operator is defined by Eq.(9). In first-order
perturbation theory we can introduce a superoperagt), 5Sy(t+ 7)o" :3_2 {[7,075lexd —i(w —A)(t+1)]

corresponding to the Hamiltoniai®3), in the form
+[77,055]exd —i (o +A)(t+ 7]},

~ t
So(t)=So(t) + 6Sg(t) = So(t) + JO 0 Lp(T)d7Sp(1), (B10)

91 JETP 86 (1), January 1998 Grishanin et al. 91



where the commutators of the complex amplitudes of the Let us consider the important special case in which the
13 and 2-3 transitions withr and 7" are given by oscillations in Eq(C.2) are fast compared to the rates of all
the relaxation processes, so that it is possible to average over

oA _E N _3_1+2 these oscillations. Then the resulting effectiVeeduced”)
[7.015]= 2’ [7.023]= 2’ relaxation operator has the form
[’T a'+ ]:(}_1—2 [’T+ fr+ :@ ‘%rezzﬁ Laa,,BB|a><:8|®|ﬁ><a|
Y13 \/E’ Y23 \/5 . !
After substitution of Eqs(B9) and (B10) in Eq. (B8) and + zﬁ L op,apl@)(a|O|B)(B, (C3

leaving out terms which oscillate relative tpwith the dy-

namical representation in the rotating wave approximation inyhere it is assumed that all the frequencigg; correspond-
terms of the eigenvectors and corresponding eigenvalues Epg to the— « atomic transitions ¢ # 8) are different. The

(B8) finally takes the form of Eq(12). first term in Eq.(C.3) describes the relaxation of the popu-
lations owing to 8— « transitions from other levels §
APPENDIX C #a) and radiative decay d=«). The second term de-
Transformation of the time evolution superoperator in the scribes the relaxation of the polarization variables. The cor-
rotating wave approximation responding matrix imXn, wheren=3 is the number of

. L ... levels in aA-system.
i For a A-system with a time-independent Hamiltonian The superoperatofC3) commutes with the dynamical
A, the time evolution superoperator is unitary and is given_jouvillian, since they have an eigenbasis in common. Given
by an exponential“(t) =exp(” ;1) with a purely dynamic  this circumstance, the relaxation of the atomic oscillations is
Liouvillian of the type(A7) and can be written in the form  simply described by the corresponding damping rates

L= )= ext] —i(w, Fap=—Relapap-

xp If these guantities are all nonzero, then the statioriagyo)

—wp)t]|a)(a|O|B)(Bl, (C1)  vector(p% has nonzero components only in population re-

. : laxation space and is actually described by rtheomponent
where thew, and|a) are the Bohr eigenfrequencies and the P st y . y P
zero-vectorp,, of thenXn submatrixL ,, gs -

corresponding eigenvectors of the Hamiltonian, while the
unitary transformatiorvZ(t) is specified by the relation
i 1LBJ. D. ?gar’J\;ekalVIé B.lG;J;gy, B. G. Matisov, and Yu. V. Rozhdestvenski
p 5 SpP. Fiz. Nau .
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Stimulated scattering and wavefront conjugation in an inhomogeneous plasma
Yu. V. Rostovtsev and I. V. Khazanov
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In the context of the problem of stimulated scattering we discuss the mechanism of wavefront
conjugation in an inhomogeneous plasma proposed relatively recently, associated with a
difference in suppression of scatterifdpe to inhomogeneiti@gor the inverted and uninverted
components. We analyze the solutions of the integro-differential equations describing this
process both numerically and analytically for different sound attenuation lengti3. (It is shown
that for this effect to exist it is necessary thahot be too small. We also consider

extinction of the inverted wave in terms of this mechanism. 1898 American Institute of
Physics[S1063-776098)01101-9

Along with processes of stimulated scattering in planein the plasma densitywe define ¢;(x=0)=0; the point
waves, which have already been investigated to a significant=0 will be called below the synchronization pajnin con-
extent, analogous processes in waves with complex spatialast to the case of plane waves, here we allow the function
structure are of interest, especially those in which efficientV; to have a complex transverse struct(dependence on)
wavefront conjugation is possibté. Different methods of with characteristic scale much less than the beam width,
solution of this problem have been discussed in many worksyarying from cross section to cross secti@®pendence on
and the stimulated-scattering method of wavefront conjugax) and constant mean intensity over the cross section, i.e.,
tion (SS-WFQ is one of the main ones and possesses the
important advantage over the others that it does not require
high-power reference waves of higtiffraction) quality for
its realization. In SS-WFC, in fact, self-conjugation of the ) )
wavefront takes place. This mechanism of wavefront conju¥vheresS is the cross-sectional area, and the angular brackets
gation is sometimes also called statistical since before bein§€note averaging over the ensemble of realizations of the
directed into the activénonlineay medium, where in fact SPeckle inhomogeneity. Let us consider the process of sta-
stimulated scattering takes place, the radiation that is to bionary inverse stimulated Brillouin scatterit§BS of such
inverted is first passed through a screen with small-scale raft Wave, about which more will be said below, developing in
dom inhomogeneities, as a result of Fresnel diffraction orf€ vicinity of the synchronization point at which the well-
which the structure of the pump field in the active medium isknown conditions
formed as a set of strong inhomogeneitigse so-called
speckle structune In the classical scheme of wavefront con-
jugation in such a field local coupling is necessary between Ko~ —Kk Ko~ 2k
the amplitude of the medium density perturbation and the ! 2 3 !
amplitude of the electromagnetic waves, i.e, the condition are satisfiedthe indices 2 and 3 pertain, respectively, to the

Stokes wave and the ion acoustic wave, and the notation of

vi>1 1 . .

the corresponding quantities here and below are analogous to
must be fulfilled, wherd is the characteristic scale of the the preceding The equations describing it differ from the
pump inhomogeneitie@ongitudinal correlation length of the corresponding equations for the usual SBS in an inhomoge-
field). Kurin® addressed the possibility of substantially neous medium by the presence of additional terms with
broadening the region in which this mechanism acts andransverse Laplacias, of the amplitudes of the waves, i.e.,
avoiding the limitations of conditiof). In fact, on the basis this in fact is the parabolic equation for the amplitudes with
of comparatively simple, interesting, but not obvious esti-a quadratic nonlinearity, taking into account the
mates he concluded that this is possible for an inhomogeinhomogeneities o;(x) of the medium? Expressing from
neous plasma. The purpose of the present paper is to carone of them the amplitude of the ion acoustic wave with the
out a more rigorous examination of this question. help of the Green's functiorfor, what is the same thing,

Thus, consider a longitudinali§in the x direction) inho-  writing down its solution implicitly, it is not difficult to
mogeneous plasma with characteristic inhomogeneity lengthroceed from the system of equations to one integro-
scaleLy . We let a pump wave, whose field we assume to belifferential equation for the amplitude of the Stokes wave,
given, propagate in this direction, with amplitude which can be significantly simplified in the present case of
pump speckle structure. Specifically, we represent its solu-

1
éf |W|%d%r =(|¥,|?)=const, (3)

wl=w2+w3, k1:k2+k3, w3<w12,

a=¥a(xrexd —iea(x)], @) tion as the sum of the inverted and uninverted wave:
frequencyw, and wave numbek;. In expression2) ¢4(x) . ~ )
is the phase excursiafphase detuningdue to the variation a;=[Ax(X)WT(X,r)+Ax(x)constlexdiey(x)].  (4)
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where for the lattefuncorrelated componéntve choose a and, for definiteness, take the uncorrelated component. Then
plane wave as its “typical representative” and apply thefrom Eqgs.(6) we have the equation=1, 6=1)
well-known procedure? of statistical averaging, taking

¥, (x,r) to be a Gaussian, statistically uniform random field. d. 7 __ Jy -752(’37)6}:/ @
We thus obtain equations for the functiofs(x) andA,(x) dy 2 ()]
describing the amplification of both components: It is interesting to note that this equation is very similar to
~ ~ >~ the equation for ordinary time-independent SBS in a pre-
d(.A2y,. 2 AY), A . o L
(A2 22) =— 7B exp(—idy?) ’ M scribed pump field in a homogeneous nondissipative me-
dy -~z 1=1(y=y)o dium. Such SBS is described, as is well known, by the equa-
X ex —h(y—y)]exp(i 652)dy. (5) tion of an ordinary harmonic oscillator, which follows

directly from Eq.(7) in the absence of the imaginary term in
In Eg. (5) we have introduced the notatior,(y)=A,(x), the denominator of the kernebE&0). Thus, the solution of

oY) =As(X), Y= VX, Eq. (7) turns out to be not an exponential function, but a sum
of trigonometric functions. One can convince oneself of this
1, ; ky by substituting the trial solution
o= _2(‘Plxx+ (P2xx)|x:0~ > . ~ o~~~
2y YLy “Z(y)ccogby+d)+i sin(by+d), (8)

[here we make use of the usual simplification of replacingy, Eq. (7), whereb andd are real constants. Substituting
the phase detuning;(x) by the first term of the Taylor expression(8) on the right side of Eq(7), we obtain an
series  expansion ‘about the  synchronization  doint expression involving the sine-integi@i) and cosine-integral
B=T{/vovsy” [Ty is the temporal growth rate of the de- (¢j) functions. In this expression the terms withi(and

cay instability in the field of a plane wave with intensity ci(u) [u=B(i + Z+y)] can be neglected under the condi-
equal to the mean intensity of the speckle structure, in akons

unbounded, homogeneous plasmg; are the group veloci- _ _

ties of the Stokes and the ionic-acoustic wave, |b|<1, |b(“+y)|>1 9)
y=1"1=(k.p?) 1, h=vly, #=~L [(L,L) is the region of
nonlinear interactioriscattering centered on the synchroni-
zation pointx=0], =1, 2, and6=0, 1, 2. The values (sinu, cosu)
n=2, 6=2 in system(5) describe the inverted wave, the  Si(u), ci(u)~
valuesnp=1, =1 describe the uninverted wave. Fé+ 0

system of Eqgs(5) goes over to the “classical” equation for (see Ref. § while in the remaining terms with $i§) and

stationary SBS in a planar pump field. ~ ci(ib) given the first of condition$9) it is sufficient to keep
~ Letus analyze the solutions of this system of equationghe first few terms of their series expansidis a result, by
in different situations. To start with, consider a homogeneougomparing with the left side of Eq7) we obtain the follow-
medium. Thens=0 and Eqs(S) significantly simplify: ing equation for the period of the oscillations:

by virtue of the asymptotic expansions of these functions

u

d(. Ay, 7 ~ I I R
At ~|b|=8 O.6+In|b|—|b|+Z|b|2 el b<o0. (10

dy
y exd —h(y=Y)1[. %), Z(¥)] Hence, as can be easily seen, it follows e 8. A simi-
=-np » T-i(y—%)0 dy. (6 lar equation for the correlated compondni( =2, 6=2)

obtains analogously and has the same fornt1&s with the

Hence, in the well known strong-damping limii) substitutionb— b/2, B— B/2. Thus, the spatial frequencibs
(h>1) the integrals of the kernels in Eq$) converge rap-  andb of the oscillations of the relative amplitudes, and
idly and the unknown functions#, and. 7, can be taken "7, are roughly identical, although the first is somewhat
outside the integral at the poigt=Yy, thereby obtaining the larger. Solutions(8)—(10) are in good agreement with nu-
corresponding gainsg=2p/h (=2) and g=p/h merical calculation of Eq(7) by computer(Fig. 1). They
(7=1)1" These expressions, as can be easily seen frofreak down, as can be seen from the second condi@ipn
Egs.(6), are valid forg<h. On the other hand, this condition only near the left boundary of the interaction region. The
obtains automatically since the very procedure of statisticapecond of condition§9) implies the smallness of variation of
averaging, with the help of which we obtained E¢(®, re- .Z, and. 7, over the scale of one speckle spot, the need for
guires that the gain be small on the scale of one speckle spathich was noted earlier. Note that, as is clear from the limits
which in the given case meags<1. If these conditions are of integration infY ., numerical calculation, both of this
fulfilled, theng/g=2 holds at any point of the medium and €quationEq.(7)] and the more complicated Ed$) and(5),
thus we have the wavefront conjugation effect. simplifies substantially if we solve not the direct problem, as

In contrast to the simple situation just described, the opis customary, but the inverse problem, i.e., assign the Stokes
posite situation lf<1) is markedly more complicated and wave not at the entrance to the layer4;(.%), . Z,(/), but
requires a more detailed analysis. Let us start out WitD  at the exit from the interaction regionz,(— %), . Z.(— %).
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Rmd2 , arb. units Imd,, arb.units H2|, arb. units

100t 1001 90 FIG. 1. Relative amplitudeZ, corre-
50 sob 851 lated with the speckle-pump Stokes
80 wave in inverse stimulated Brillouin

0 0 25} scattering(the stationary problemin a
homogeneous layer without dissipation

-50¢t -50 70 versus the dimensionless coordinate

65 (along the layer 8=0.1, =2, 6=2,

-100f -100 60} §=0, h=0, =100, . Z,(— £)=T72

-150 150 55 e +72.
-100 0 100 y -100 0 100 y -100 0 100 y

Just this calculational scheme is used in this work. Thus, ag/e obtain from Eqs(6) approximately the same value for
follows from the solutions, foh=0 the intensities of the the real parts Ref g), and likewise for the imaginary parts:
scgttgred waves in the medium do not undergo S|gn|f|caq§«n(g’§)~_’3 In(1/h), which agrees with the numerical so-
variations: lutions [the period of the oscillations inZ,(y) is not much
| Zo(Y)| ~|. Z2( )], ,;7//2(y)|~|,j22(,%)|, less than in.,./%éz'(y)]. For h<b,b the gains of the Stokes
. . _ waves are significantly decreas@eg. 2).
i.e., they remain at the level of the thermal fluctuations. In" | ot s now analyze stimulated scattering of a pump with
this regard,_note that, continuing the above analogy _W'th th%peckle structure in inhomogeneous media. Such scattering
problem of inverse SBS of a planar pump wave, an instabily 5 1yrns out to be largely similar to ordinary stimulated
ity of the given §tat|c_)nary states may be expefted, which in %cattering of a plane wave. For this purpose, we need to
speckle pump field is p_robably also apso!l&é. return to the original equation&). As before, let us first
The effect of damping of the longitudingound wave - .,ngjger the situation in which we neglect dampihg-Q).
can substantially alter these solutions. To allow for it, it ISThen for 6=0 (a planar pump waveEgs. (5) are easily
necessary to return to the more general Efs. Thus, fol- 1o 4,ceq to the equation of a parabolic cylinder, and its solu-
lowing, as before, the analogy of the processes considereg s are expressed in terms of the function of a parabolic
here with ordinary SBS or with an ordinary harmonic oscil- cylinder! The gradient of the amplitude levels of the Stokes

lator, it may be expected that the oscillating solutidB5  \2ve corresponds to the well-known criterfidf
break down, transforming into exponential solutions if the

damping scale becomes less than the period of the oscilla- | 7,(— %) 7B
tions (in the absence of damping.e., forh>b or h>b (for | Zo(2)] =expmp), p=55=1 (12
the correlated componentUnder these conditions, as the
calculations show, At the same time, the absolute value of the amplitude in
- the time-independent problem falls quite slowlyZ,(y)]
—Reg=—Reg=§. 1D« 1py (herey> 5~ 2 holds, and almost the entire variation of

Note that this value corresponds to the growth rate for simithis function right up to its boundary valye7,(¥)| takes

lar processes ki,~k3) defined in other models—of one- place in this region Consequently, since the amplitude of
dimensional pump fluctuations or wide-frequency-bandthe Stokes field must grow beyond the thermal noise level by
packets—in Refs. 12 and 13. The method for solving thea factor of exp (15) as a benchmark figure in order to ob-
general equationés), proposed in Ref. 3, by simply taking serve stimulated scattering, a very large system is required.
the functions Z,(y) and.,;fz(y) outside the integral on the Therefore, in reality inverse stimulated scatterifigm the
right side of the equation gives acceptable accuracy herdhermal noise levelin nondissipative media is possible only

Indeed, taking this approach and setting as a_time—de.pe_ndent process. It ha§ been coqsidered in many
studies’'*%in just such a formulation, where it was shown
oY), Ao(y) < ex f [9(%).33)1dV, that the process of stimulated scattering begins to develop
- near the synchronization point as an absolute instability,

Rer. arb. units Imd,, arb. units l.dzl, arb. units
801 80t 120}
40} 40 1001
80 FIG. 2. The same as in Fig. 1, but for the
0 o case with dissipation;3=0.04, =2,
60 =2, 6=0, h=003, £=100,
-40 -40 40 Ao(— L) =T24+T2.
-80 -80 20
L] I 1) SR | |
-100 0 100 y -100 0 100 y -100 0 100 y
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50 80
0 FIG. 3. The same as in Fig. 1, but for an
0 601 inhomogeneous layer;3=0.1, =2,
_sol 50 a0l 0=2, =005 ~h=0, =40,
Ao(— %) =100.
~100 -100 20
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reaching the leve(12) in a narrow region, after which the of the layer, superposed on the slow variation of the ampli-
resulting Stokes wave and sound wave pulses broaden dnde (13). Therefore, setting>yj it is possible to take the
both sides, encompassing ever larger regions of plasmaenominator of the integrand outside the integral, denoting
Here, if the length of the inhomogeneous layer is finite, thethe remaining part bg,. On the other hand, for the indicated
wave amplitudes cannot reach the described stationary stat@lues ofy, as can be seen from E@L4), it is possible to
and when the pulse fronts reach the boundaries of the layalistinguish a slow and a fast part of the solution itself(y)
the process can again take on the character of an absoluby representing it as
instability, but with a different growth rate. ) s

On this plane, the situation is essentially the same fora - 72(Y) =J(Y)eXA—idy%), y>Yo. (15

pump with speckle structured(=0). In t.his case it is not  gypstituting(15) in (14) and dropping small terms, we arrive

possible to find exact solutions of ES); however, as nu- 4 5 volterra integral equation of the second kind for the
merical calculations show, they have the same fdfig. 3. fynction J(y). The solutions of such equations, as is well
The total gain of the Stokes components is described by thg,q\wn16 can be found by the method of successive itera-

same formula(12) and thus the total discrimination of the {jgns. Applying it here, already in the zeroth iteration we
uncorrelated wave relative to the correlated wave after tragptain

versing the layer is the same as in the classical tase,, it

is equal to two. For the parameters of the cases shown in Fig. pc, Yo =

3, the function Z,(y) converges to its limiting value&l2) Jo(y)= 2y2 &= Jl (//Jﬁz(y)equ sy)dy. (16)
comparatively rapidly. At the same time, the length of the

layer necessary for this grows abruptly msncreases. The Subsequent iterations have little effect, in contrast to the
values of. Z,(y) and.Z,(y) on the left side of the layer Plane wave case, where the solution can also be simplified in
(y<0) not close to the synchronization poirfy|s>s-13)  a similar way by virtue of the more rapid falloff in this case
are given roughly by the formula in this region for the Stokesof the functionJo(y) with increasingy (Ref. 16. (For a

component for a planar pump wdve planar pump wave, an additional phase factor arises in suc-
, cessive iterations that depends yn Following this discus-
kffz(Y) . 'fZ(_*%)]exp{i In[(28)¥2y|T} 13) sion and in analogy with the plane wave case, where the
oY) A= L) P il exact solution is known, we define the quantityas

although the variable period of their oscillations, while main- .|~ 512 7 (- »)|.
taining the same constant amplitude, is somewhat larger than )

in Egs.(13).2 On the right side of the layer the frequency of As a result we obtain

the oscillations grows rapidly, as in the case with planar ) ) .
pumping, and their amplitude decreases. The functional de- oY) | 2a(y) | exp(—i 6y,
pendence of the falloff of Z,(y)| and|.”Z,(y)| can be de- D
termined here as follows. Taking the correlated component ,,%Z(y)|~T
(p=2, §=2) for definiteness, we write Eq) for it in the 76"y
form (recall thath=0)

| Za(— ). (17

As can easily be seen, the same dependences also obtain for

PN the uncorrelated waven=1, §=1); however, its intensity,
28 exp(i oy”) dy in accordance with the above remarks, falls to its limit much
_ _ s _ sooner. Computer calculations agree to within an order of
_ fyo oY) expli 6y%) 5 fy.fzz(y)exm Y) magnitude with the values df Z,(y)| and|.7,(y)| found
—y 1-2i(y-Yy) vo 1—2i(y=Yy) from formulas (17), exceeding them severalfold. We also
(14) note that in the numerical solutions for a finite layer

(—%4,%) the profiles of variation of these quantities clearly
wherey,>0 is such thadyj> 1. It is probable that the main reveal oscillations about mean values corresponding to the
contribution to the first integral in EC(14) comes from the values obtained from qué]_?) However, as the |ength of
region near the synchronization poinfy(>~ 1) since rapid the layer is increased, these oscillations slowly smooth out
oscillations of the exponential are happening on the left sidand become less pronounced.
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Although the falloff of_#,(y) according to formuld17) much more varied and depends on the ratio of the parameters
is more rapid than in the case of a plane wésee abovg if B andh. Forh<(7/2)8, as will be shown below, to find the
the Stokes wave grows above the thermal noise level, thesolutions in the regioy>0 it is possible as before to repre-
the length of the layer needed to observe s(gthtionary  sent them in the form given by the first of formulék?)
stimulated scattering is still large. Time-dependent stimu{dy?>1). Then, from an equation similar to E¢l4) but
lated scattering in a speckle pump field probably also develallowing for the exponential factor of the kernel in E@S)
ops in a way similar to the above picture for a planar pumpassociated with damping, we similarly find
field. Thus, an absolute instability should develop in a small .
neighborhood of the synchronization point also in this case. A= 2oy)exp(—i8y%),
However, for an absolute instability an inverted wave is not D
formed? and therefore the previously indicated growth of | Z,(y)|~
the intensity levels of the Stokes waves with discrimination 2 n6"%y?
(in amplitude is not realized at this stage and apparently can (19
be achieved only by passing to the stationary regime, whicln contrast to the nondissipative case, here the intensity of
again requires a large system. the Stokes wave decreases much more rapidly through the

We also note here that in the case of a planar pumpayer. The same behavior is obtained for the amplitude of the
wave, as in formulg17), . Z,(y) = exp(~idy?). Therefore uncorrelated wavgas was the case for formulés7)]. The
the fact, noted in Ref. 3, that the res(d2) can be obtained results of numerical calculations in this case roughly also
in a very simple way is quite interesting. Specifically, if in a agree with formulag19), just as the corresponding results
purely formal way we take the functian,(y) outside the agree with formulag17).

, h
exp(—hy)|.Z(= )], y>=.

integral in Egs.(5) (#=0) (although, generally speaking, it For stronger damping of the ion acoustic wave
varies, as can be plainly seen, no more weakly than the ker-

nel of this equatiopn we thereby introduce forZ,(y) in Egs. h>zﬁ (20)
(5) the growth rateg(y) and integrate it iny from —o to 2

+oo (£ 72— ), thereby determining the total gain for the the amplitudes of the Stokes components oscillate on the

Stokes wave in the layer. The resu_lting do_uble in'_[egral iSright side of the layer much more slowly than indicated by
calculated immediately by transforming to different mtegra-Eqs_(lg)_ As the numerical calculations show, in the given

case the magnitudes of the amplitudles,| and|. %,/ fall off

%n the right side of the layer with growtfdampingrates
radually decreasing in magnitude with distance from the

ajnchronization pointy=0) due to the influence of the os-

with (12). No less interesting is the fact that all of the nu-
merical solutions for an inhomogeneous medium presente
here confirm the final result for the total gain of the Stokes

waves in the layer obtained by this approdch. cillation factors ex.ptiéyz) in Egs. (5). For|.%,| this influ-
Below we describe the effect of damping of the longitu- ence up to the point

dinal wave f#0) on the processes of forced scattering in 1

inhomogeneous media discussed above. For a plane wave Y~ 55 (21)

(6=0) Egs.(5), like for h=0, are easily reduced to the
equation of a parabolic cylinder, which when we transformand for|.Z,[, up to the point g, , turns out to be insubstan-
from y to independent variablgompley {=y—ih/25 takes tial and the corresponding rates on these intervals are equal
the same form as in the cake=0. Thus, here for 7, the  to approximately the same values as in a homogeneous
same solutiors with the corresponding substitution are plasma:
valid.

For a pump field with speckle structure in this situation, = Reg~— gﬁ, Reg~— gﬂ. (22
as in the above case of inverse scattering in the absence of
dissipation b=0), there are solutions that are noticeably The value of expressiof21) arises from the condition that
similar to the corresponding solutions for a plane wave. Firsthe scale of the oscillations of the given exponential factors
it must be said that the amplitudeg,(y) and.7Z,(y) onthe in Egs. (5 (#=1) at the given point, equal tar/2dy,,

left side of the layer not far from the synchronization pointshould significantly exceed the longitudinal correlation
have roughly the dependence of E(3) in which we must  length of the field Ay=1), over which, as is not hard to see,
make the indicated substitution fgr i.e., they take the form the growth rate(11) is in fact formed. At the same time,

y P since it is easy to show th#=2 for the correlated compo-
'fZ(y)} O{(':’Z( Z)]exp[ pli In[(28)Y2y|]+ LH nent in Egs.(5), the value ofy up to which it may be as-
oY) A=) 20y sumed that the growth rate fbrz,| is given by formula(22)

(18 is two times larger than the value given by formyRd).
(h/26]y|<1), but now not only are the periods of their in- Similar simple arguments, however, do not apply to the left
frequent oscillations somewhat larger than in formutsg), side of the layer, where, as was pointed out, the amplification
but the amplitudes of the latter also fall off from the left Of the Stokes waves is insignificafitThe behavior of the
boundary of the layer somewhat more slowly. On the rightfunctions. Z, and.7, themselves on the right side of the
side of the layer the behavior of the solutions of E4). is layer is somewhat more complicated. Transforming to the
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functions expiax(y)|=. 2,1 | A, and expias(y)] uncorrelated component is essentially absent. This makes the
=" /|.,,7%§2 we show that their oscillations. as was a|readyconditions necessary for wavefront conjugation more severe

noted, occur with comparatively largeariable periods. The ~than in the casé>1. S

frequencies of the oscillations are subtended between the 1N€ point is that for wavefront conjugation, generally
value[IM(g,3) Jrom~ 3 IN(1/M) (see above for the homoge- speaking, the discrimination of the gain of the uncorrelated
neous mediumg%mthe one side and values following from waves revealed above is simply inadequate. It is also neces-

formulas(18) on the other. Starting from lengthg, where sary that the_ spepklon d|§tprt|of®<t|nct|on of the correlated
i ~ component invariably arising on the scale of each spot of
the magnituded. %,| and | %,

h L 2l e h becgrge cforrr]]parap:le W'th the pump speckle structure as a consequence of amplification
those satisfying criteriofi12), the periods of the oscillations o4 e center of the spot and at its eddeg® so-called ser-

are in quite good agreement with the formu(as). This is  oniine distortions, not taken into account in the first-order

because at such lengths, as for a planar pump field, the eatment of the specklprand accumulating at the moment

plitudes of the Stokes waves are described by the same dfh'e inverted wave leaves the layer remain nevertheless sub-

pendence as on the left side of the layer divided by the eXétantially smaller than the intensity level of the inverted

ponential in Eq(12). At lengths less thag, the periods vary wave. In the well known situation treated in Refs. 1 and 2
weakly and for not too smaj§ they are equal to several of i is achieved fog<1 (small gain of the specklon on the

the periods corresponding Em(gaa)]_hom- For such lengths - scale of a spotthanks to the increasing rate of amplification
a phase lapse occurs in the oscillations in the regiog,of of the inverted component in comparison with the uncorre-
(21) (the inhomogeneity of the medium tends to INCreasqaraq distortions §/g=2). In the given case, as was de-

their period_ in compqrisqn with the“period In the homoge-gjpeqg above, at a significant distance on either side of the
NEous m_edlum, bringing it closer.to its olvn(18). As can synchronization point{=0) no such discrimination exists.
be easily seen by comparing Ref) (220 and  Even under more favorable conditions of greater damping of

[IM(9,9) Inom, several oscillations in the wave amplitudes the sound wave20) the quantities Reg and Reg up to
can occur up to the poinyt, for real values of the parameter |engthsy~y, (21) differ only weakly[see Eqs(22)] so that
p>1 (12). for them it may be assumed that specklon distortions from
It is clear from the above remarks that these solutionsgifferent speckle spoténhomogeneitiessimply add in in-
generally speaking, differ substantially from the precedingensity (by virtue of the randomness of the procesghus,

(19 and cannot be obtained by the same technique as thgyoking the well known estimate for the extinction
latter. Indeed, separating the two integrals in the applicabl@gefficienf

equation, similar to Eq(14), with the dominant contribution

coming from the first given condition@0) and (22), is in- R~ |A A2, A5(y)|?,

valid since in this case the falloff of the exponential

exd —h(y—Y)] (5) outpaces the growth df Z,(y)| in they where A.Z,(y) is the variation of the complex amplitude

direction, thereby suppressing the main contribution to the?2 OVer the correlation lengttspeckle spof we obtain the

integral from the region near the synchronization point. orfollowing estimate for the relative level of distortions on the

the other hand, the scales of the oscillations of the functionéterval (Oy.)

exdiay(y)] and expiay(y)] (see aboveare formed in the -
given case precisely as a result of the influence of the attenu- Q=.7%2y, =(§B
ation (h). Therefore its spatial scale should be less than the

scales of these oscillations, which in fact is what condition. simplicity, we have taken into account here .4 only

(20)ksays. The total fgalrt; d#ehto thed\_/v_hole I‘Zyer: of bOthvariations of|.#Z,|. From the numerical calculations it is pos-
Stokes components for both this condition and the reversgiy o 14 ohtain a more exact value for the total level of dis-

inequality corresponds to criteridd2). tortionsQs with allowance for the contribution of the region

Thus, we have analyzed inverse stimulated scattering qf e |eft of the synchronization poigt=0, and also phase
a pump field with speckle structure for different attenuations 4 riations in #

. ) . Z, (including the above-mentioned phase lapse
of the sound(ion acousti¢ wave on which the process de- in the oscillations ay~Y, ). Specifically, calculating(y)

velops. As can be seen, a substantial difference between tr&%ecﬂy for each correlation length and summing these val-

discrimination mechanisninoted in Ref. 3 and discussed : ;
ues up toy, , we find thatQs exceeds the estimaf@3) b
here connected with the difference in the gain, due to the s Qs @s3) by

inh s of th di tth lated and at least a factor of two. This means that since the fagfor
n omoge_nemes of the medium, of the corre’ated an uncorgn the rightmost side of Eq23) is the argument of the
related (with the pump Stokes waves, and the classical

hanisrh? ari b he | ; he di i exponential in criterion12) (which in order to be able to
mechanism® arises because the latter gives the direct disypqerye the inverted component must be equal approxi-

crimination of the growth ratg (g/g=2 atall points in the  mately to 15, and the distortions themselves should be small,
mediun), while in the case discussed hete<1) itis mani- Q. <1), another necessary condition here is
fested only on isolated segments and is collected together in

the total discrimination integrated over the entire layer. How-  8<0.02. (29
ever, for inverse stimulated scattering these segments are dis-

tributed less favorably so that at the final stage of amplificaThus it follows from conditiong12) that <0.005. Let us
tion of the correlated component discrimination of thenow determine the length of the layer that is required for

2 ’77,8

Yx=mP g, n=2. (23
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amplification of a specklon. Even if we assume that the(m andM are respectively the mass of the electron and the
growth rate(22) is conserved for af>0, it is easy to obtain jon, \;=2\3, and the scale of the speckle inhomogeneities
while satisfying criterion12) (»=2) that p>Ny).

ymin: 2/5
) . ) . YFor simplicity we do not take account in these equations of secondary
The decrease ifRe g| as a function of/ increases this quan-  nonlinearities such as generation of harmonics of ion sduhdssuming

tity by roughly a factor of two, so that faf<0.005 we have that the pump wave is not too strong, the more so since in the given case
this process is noticeably damped as it proceeds incoherently.

INote that the distances between the maxima and minima in the dependence
#Z5(y) in the numerical solutions for a planar pump wave are well de-
scribed by expressiond.3); however, their positions may not necessarily

Thus, at such lengths we ha@:<0.2. In the case of strong  coincide with those determined in Ref. 7, where solutions were found for

damping of the sound wave, it is easy to see that such aan unbounded layer {—c<) and the boundary condition7(y
relative level of the distortionéin intensity of the inverted ~ —*)=&xip IN[(29)"y1} [since Eqs.(5) are linear, any solution multi-

. . . . lied by an arbitrary constant factor is also a solution corresponding to the
wave as it leaves the layer' which in this case COI'I’ESpondggoundary condition of the first solution multiplied by the same coefficient

directly to the relative noise levelistortion of the wave (including complex coefficienisthis fact is taken into account in the form

amplitude on the scale of a speckle sb6i5 reached even of expressiong13)]. The number of trains of oscillations grows continu-

for a length of the layer %,,,,>70." Note also that if we ,0usly as the length of the layer is increased. _

h . ind sti lated tteri . Kle b 'We are grateful to G. A. Pasmanik for bringing this to our attention.
ave in mln stimu a €d scattering In Spef: € _ee(mg._, “0n the other hand, this picture can be explained here by employing the

focused in the mediujm where the pump intensity varies same procedufeof taking the functions #,(y) and.7,(y) outside the

smoothly over its cross section, then the discrimination of integral in Egs.(5) and introducing a growth rate calculated numerically

the growth rate of the uncorrelated components in this situ-for 1=0. .., (for example, for. 7;)

ation is decreased since the specklon must also keep its stru%-(y):,ﬁfv wdg é=y-.

ture on the periphery of the beam cross section, where the 0 1-ig

gain is weak, while the uncorrelated waves are concentratedrhe graph of the function Rg(y) (.£—¢) provided in Ref. 3 shows that

into its central part, where the gain is maximum. As a result, the interval where this quantity is not small is concentrated mainly in the

~ - . . regiony=0. This is because the given integrand expression oscillates less
the growt_h rates Rg an(_j Reg are similar in Va“_Je at _S“” in the integration region foy>0 [this region contains, in contrast to the
greater distances than in the case under consideration of &gion of values/<0, a point¢ for which d(5¢2—25¢y)/d¢=0]. It may
pump with constant mean intensity over the cross se¢8hn  be expected that taking accountgiy) of the sufficient damping assured
and therefore the lengtit,,, is also increased in comparison by satisfaction of conditiori20) leads to significantly better quantitative
with estimate(25). In this case, the arguments of the expo- ;\greement between the results obtains by this method and those presented

. o ere.

nent in criterion (12) fOI" the correlated and uncorrelated YNote that this criterion is also satisfied for the accompanying stimulated
components probably differs not by a factor of two, as pre- scattering, including, as we have verified, pump fields with speckle struc-
viously, but only by a factor of 1.4, in analogy with the ture. Some generalizations of it for two-dimensional systems were ob-

decrease in the degree of discrimination of the uninvertegt@ined in Ref. 17.

. f db in h &Qi Note also that an exact calculation of this coefficient in the given case is
wave In a tocused béam in homogeneous media. hardly possible: here it is a function gfand to find it, it is necessary to

Thus, as could be expected, the situation with Strong know the solution Z,(y) over the entire layer. Even in the simplest situ-
damping of the sound wavén¥1) (1) is more favorable for  ationhs>1 its calculation is quite involvetiput the result turns out to be
wavefront conjugation than its opposite. However, since un- in good agreement with the estimate given here.
der Ordinary gas-dynamic conditionsc k%, it becomes in- )Note that at a pump frequency moderately exceeding the electron plasma

. o . . " frequency ;~wpe) this length turns out to be much smaller than the
creasingly difficult to satisfy this condition at longer wave- inhomogeneity scale of the plasmiéy (on this segment, at leaghat is

lengths(e.g., _e\{en fora Cglqseﬂ. From thi$ pOim.Of VieW'_ necessary for the required level of scatterffigdowever, the same also

a weakly collisional plasma is more promising since an ion applies to the casg5).

acoustic wave in it attenuates mainly as described by the

Landau theory(collisionlessly and v « ks, i.e., it falls off

more slowly with decreasingj;. Larger attenuation of the B. Ya. Zel'dovich, N. F. Pilipetski and V. V. ShkunovPrinciples of

sound wave in a plasma is important for wavefront conjuga—Z\F/’hIaSBe Conlluga“%’Qgplngsf'Ve”?% Bl<_erlm, %398{-5 4 Adantive L

. 19: . . . . I. bespalov an . A. Pasmanikonlinear Optics an aptive Laser
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