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A formulation of the Cauchy problem for the Klein–Gordon equation in a space–time with a
wormhole is studied. It is shown that if closed time-like curves pass through the Cauchy
surface, then a global solution exists in the high-frequency~quasiclassical! limit only if the initial
data satisfy nonlocal consistency conditions. In the simplest case these conditions determine
a discrete spectrum of frequencies~energies of a quasiclassical scalar particle!. © 1998 American
Institute of Physics.@S1063-7761~98!00101-2#
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The behavior of classical and quantum fields agains
background of solutions containing closed time-like curv
of the Einstein equations has been investigated in a num
of works1,2 in connection with the possibility of the existenc
of space–time with a time machine, as proposed in R
3–5, as well as with the problem of the self-consistency
physical laws in such a space–time.6,7 The global solutions
of the dynamical equations must satisfy the ‘‘se
consistency principle,’’ which eliminates paradoxes asso
ated with the breakdown of causality in a space–time w
closed time-like curves.

The nontrivial topology of space–time as well as t
existence of closed time-like curves passing through
Cauchy surface impose constraints on the initial data
solving the Cauchy problem for the Klein–Gordon equatio
This is because any solution determined in a neighborh
of the Cauchy surface can be continued to a global solu
in all space–time.

The situation can be analyzed completely for a defin
class of solutions of the Klein–Gordon equation, specifica
for high-frequency solutions. In this case there exists a te
nique, developed by Maslov~see, for example, Ref. 8!, for
constructing solutions in the large that makes it possible
construct global solutions over geometric objects~Lagrang-
ian submanifolds! given in the phase space of a Hamiltoni
dynamical system which is naturally associated with a par
differential equation.

We take as a model space–time the solution of E
stein’s equations with a wormhole.3 Asymptotically flat re-
gions are sewn together so that the wormhole serves
‘‘perpetual’’ time machine. An identical space–time w
used in Ref. 9 to analyze the behavior of a scalar field.

Global high-frequency solutions of the Klein–Gordo
equation that are constructed by the Maslov method sa
nonlocal conditions on the Cauchy surface expressing
correlation of the phases of the solution at different points
the surface. In the case when the solution is concentr
near a closed trajectory of a classical Hamiltonian sys
~the situation corresponding in the present case to the ca
paradox!, the solution can have only a discrete set of f
quencies. This result is presented in Sec. 4. Section 2
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information on the Maslov method.

2. FORMULATION OF THE PROBLEM

We are studying the Cauchy problem for a scalar fieldF

S gmn]m]n2
m2

\2 D F~x!50, ~1!

where\ is Planck’s constant~we choose units of measure
ment such that the speed of light satisfiesc51). We are
studying the case when closed time-like curves pass thro
a three-dimensional Cauchy surfaceS3 in a space–timeM4.

Let us consider as a model space–time containing clo
time-like curves a solution of Einstein’s equations that co
tains a wormhole.1 We choose on the cylinderR23S1 a met-
ric of the wormhole type3 ~Fig. 1!, for example,

ds252dt21dl21~b0
21 l 2!~du21sin2 udf2!. ~2!

Near l @b0 and l !2b0 there exist two asymptotically fla
regions with the coordinates (X1 ,Y1 ,Z1 ,T1) and
(X2 ,Y2 ,Z2 ,T2) where the metric is virtually identical to
the Minkowski metric. We prescribe the gluing functions f
the coordinate maps (X1 ,Y1 ,Z1 ,T1) and
(X2 ,Y2 ,Z2 ,T2) as follows:

T15T21dT, X15X2 , Y15Y2 ,

Z15Z21dZ. ~3!

Closed time-like curves start at some point (X0 ,Y0 ,Z0 ,T0),
enter one mouth of the wormhole at timeT and leave the
other mouth at timeT2DT, preceding the momentT0, and
then connect up with the point (X0 ,Y0 ,Z0 ,T0) of the time-
like curve directed into the future. The metric~2! is almost
flat everywhere except near the mouths of the wormhole
the distance between the mouths is much larger than
characteristic length of the handle@b0 for metric ~2!#, then
the following model can be used as a first approximati
Two hollow cylindersC1 andC2 of the formR13B3 (B3 is
a three-dimensional sphere! ~see Fig. 2a!, whose axes are
also world lines of the centers of the mouthsX50, Y50,
Z50 andX50, Y50, andZ5dZ, are cut out of Minkowski
space–time. Then the edges of the cuts are glued togeth
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3. THE MASLOV METHOD OF CONSTRUCTING HIGH-
FREQUENCY SOLUTIONS
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that the sphereS25$(X,Y,Z,T)PC1 , T5T0% is glued to
the sphereS25$(X,Y,Z,T)PC2 , T5T01dT%.

We choose the Cauchy surface in such a space–tim
follows. Let us consider a space-like sectionT5T0. There
exist time-like curves that do not cross this surface. Th
enter the mouth of the wormhole at timeT,T0 and exit at
time T.T0 ~as, for example, the curvea does in Fig. 2a!.
Augmenting the surfaceT5T0 with part of the cylinderC1:
(X,Y,Z,T)PC1:T02dT,T,T0, we obtain the surfaceS3

through which any~complete! time-like curve passes at lea
once. We chooseS3 as the Cauchy surface. Such a Cauc
surface was studied in Ref. 1 .

Since closed time-like curves pass through the surf
S3, the Cauchy data for a scalar field cannot be chosen
bitrarily. We shall analyze this effect for the example
high-frequency solutions of the Klein–Gordon equation.

It is natural to study the high-frequency asymptotic b
havior of the solutions of the Klein–Gordon equation as
quasiclassical approximation of the quantum mechanics
scalar relativistic particle. Indeed, Eq.~1! can be interpreted
as an equation for the wavefunctionF(x) of a scalar par-
ticle. The solution is chosen in the form of a rapidly osc
lating phase term multiplied by a slowly oscillating amp
tude

F~x!5expF iS~x!

\ G (
k50

`

\kCk , ~4!

where\→0 is a small parameter.
The metric~2! is stationary. Therefore the solution ca

be expanded in modes with constant frequencyF5eivtC. In
studying the high-frequency asymptotic behavior, we sh
confine ourselves to the modes for whichv→` as\→0.

FIG. 1.
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The Maslov method8 makes it possible to construct high
frequency solutions of Eq.~1! on the manifoldM4 in the
whole based on analysis of the geometry of a class
Hamiltonian system corresponding to a partial different
equation. We present below the required information ab
this method.

The phase space of the Hamiltonian system correspo
ing to Eq.~1! is a cotangent bundleT* M to the space–time
manifold M4 with the standard simplectic formV5dpm

`dxm. The Hamiltonian has the form

H5gmn~x!pmpn . ~5!

Substituting a function of the form~4! into Eq. ~1! gives the
Hamilton–Jacobi equation to zeroth order in\:

H~x,]S/]x!52m2.

The functionS(x) prescribes in the phase spaceT* M a four-
dimensional surface according to the equati
L45$(x, p(x)5]S/]x)%. This surface possesses the pro
erty that the simplectic formV vanishes when restricted t
the surfaceS4. The four-dimensional surfaces on whichV
vanishes in an eight-dimensional phase space are said t
Lagrangian. The Lagrangian surfaceL4 determining the so-
lution of the Hamilton–Jacobi equation can be constructed
follows. It is necessary to prescribe the initial values ofS(x)
and ]S/]x0 for xPS3. This determines the surfac
L35$(x,p): xPS3, p5]S(x)/]x%. Next, extending from
the points ofL3 trajectories of the Hamiltonian system~5!
we obtain a four-dimensional surfaceL4. In some neighbor-
hood of the initial surfaceS3 the surfaceL4 can be uniquely
projected ontoR45$x%, i.e., L45$(x, p(x)5]S/]x% for
some functionS(x). However, L4 does not necessarily
project everywhere uniquely onR45$x%. Points where a
unique projection breaks down form a cycle of singularit
of the projection of the manifoldL4, and their projections
ontoR45$x% are caustics of the trajectories of the dynamic
system with Hamiltonian~5!. Thus, generally speaking, th
solution of the Klein–Gordon equation cannot be chosen
erywhere in the form~4! ~just as the quasiclassical expansi
is valid far from turning points!. Nonetheless, the solutio
can be continued beyond the caustic by constructing
Maslov operator. The solution beyond the points of the ca
tic is determined by the same Lagrangian submanifoldL4.
FIG. 2.

2 2JETP 86 (1), January 1998 A. Yu. Neronov



To construct the solution as a whole the global structure of
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the submanifoldL is important; this structure can be qui
complicated. For example, closed curves that cannot be
tracted into a point while remaining on the given Lagrang
manifold ~nontrivial cycles! can exist on this submanifold.

To first order in\ there arises for the functionC0(x) an
equation called the transfer equation. In the region whereL4

projects uniquely ontoR45$x%, the functionC0(x) can be
regarded as a function on the submanifoldL4. Let

C̃0~y!5A]y

]x
C0@x~y!#,

wherey are coordinates on the Lagrangian submanifoldL4.
The transfer equation has the formdC̃0 /]t50, the condi-
tion that the functionF̃0 is constant along the trajectory o
the system~5! (t is the time along trajectories in phas
space!. The expansion~4! is invalid at points in a neighbor
hood of and beyond caustics. However, it is possible to c
struct a functionC0 that is constant along the trajectories
the system on the entire Lagrangian manifoldL4.

To obtain the solution as a whole, it is necessary
construct a special~canonical! atlas of maps of the Lagrang
ian submanifoldL4. Part of the solution of the Klein–
Gordon equation is determined with the aid of the Mas
operator on the functionC0 on L4. For us it is important that
in matching different parts of the solution obtained in th
manner restrictions arise on the choice of the Lagrang
submanifoldL4. Specifically, the integral condition

1

2p\ R
g
padxa2

1

4
ind g5k, ~6!

which is called the quantization condition, must hold on ea
nontrivial cycleg onL4. Here indg is the index of the curve
g. It is calculated with the corresponding signs of the po
of interaction of the curveg with the cycle of singularities of
the projection of the submanifoldL4. If on each nontrivial
cycle of L4 the condition~6! holds, then it is possible to
construct an approximate~to different orders in\) solution
of the Klein–Gordon equation. The conditions~6! are mul-
tidimensional analogs of the Bohr–Sommerfeld quantizat
conditions. The Lagrangian submanifold satisfying the
conditions is called a quantum submanifold.

We shall not present the explicit form of the Maslo
operator, mapping the functionC̃0 on the quantized La-
grangian submanifoldL4 into a global approximate solutio
of the Klein–Gordon equation on the manifoldM4 ~see Ref.
8!. We are interested only in the conditions for the existen
of such a global solution, given by the expression~6!.

4. FORMULATION OF THE CAUCHY PROBLEM IN A
SPACE–TIME WITH CLOSED TIME-LIKE CURVES

The solution of the Cauchy problem in the hig
frequency limit reduces to finding an appropriate initial su
manifold L3 in the phase spaceP, projected onto the
Cauchy surfaceS3 in space–time. Extending integral traje
tories of the Hamiltonian of a vector field with Hamiltonia
~5! from the pointsL3, we obtain a four-dimensional invari
ant ~with respect to the Hamiltonian flux! Lagrangian sub-

3 JETP 86 (1), January 1998
n-
n

-

o

v

n

h

t

n
e

e

-

manifold L4. Next, it is necessary to check that the quan
zation conditions~6! hold on the basic nontrivial cycles o
this submanifold. We thereby limit the choice ofL4 and
therefore the initial submanifoldL3. This means that we
obtain restrictions on the choice of the initial data on t
Cauchy surfaceS3.

Let us consider the situation when the trajectories of
classical system enter the right-hand entrance into a wo
hole ~see Fig. 2b!. Then, leaving the left-hand entrance
time T, preceding the timeT0 at which the Cauchy surfac
S3 is given, the trajectory necessarily intersectsS3 once
again. The first simple requirement of self-consistency of
initial data is that this trajectory must return to the initi
surfaceL3. Thus, the initial submanifoldL3 cannot be arbi-
trary, as happened in the absence of closed time-like cur

Let us examine a natural method for ‘‘matching’’ th
initial surfaceL3 that makes it possible to obtain a cons
tent, in the sense indicated above, surfaceL3. We start with
an arbitrary surfaceL0

35$(x,p(x)5]S/]x,xPS3%. It is not,
generally speaking, self-consistent. Let us construct the
jectories of the Hamiltonian system~5! and study the trajec-
tories that pass through the wormhole and cross the sur
Q5$(x,p): xPS3% at some time along the trajectory. Th
behavior of the trajectories determines a Poincare´ map on the
surface Q in which L0

3 is embedded. The image
@x(t),p(t)# do not, generally speaking, belong toL0

3. This
means that there exists inQ another componentV1

35L4ùQ
that is different fromL0

3. We can ‘‘match’’ the initial data
for S3 at this step, determining a new initial submanifo
L1

35L0
3øV1

3. Repeating the above procedure for a new i
tial submanifold, we obtain a new correction of the initi
dataL2

3, and so on. In the limit this procedure yields a co
sistent initial submanifoldL`

3 .
As an illustration of the fact that the curved submanifo

L`
3 can be quite complicated, let us examine the exam

illustrated in Fig. 3. We are studying a massless scalar fi
For it p0

25upu2, so that only the spatial part of the momentu
can be shown. Let the direction ofp be the same as th
direction between the entrances into the wormhole, and
the magnitude of the vectorp on the surfacel 5$xPS3,
Z5const% be given by some functionupu25 f (X,Y). The
number of images of the pointA in Fig. 3 under a Poincare´
map is infinite, provided that the parameters of the posit
of the wormhole are not chosen in a special manner. Po
nearA have a finite number of images. However, this nu
ber increases without limit as the pointA is approached.

FIG. 3.
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submanifoldL` is quite complicated.
Let us now confine our attention to the simplest ca

where the initial submanifoldL3 consists of a single con
nected piece that projects uniquely ontoS3 and is immedi-
ately matched in the sense of the procedure described in
preceding paragraph, i.e., the images@x(t),p(t)# of the
points @x(0),p(0)# under a Poincare´ map lie inL3.

The Lagrangian submanifoldL4 constructed on the ini-
tial submanifoldL3 determines the solution of the Klein
Gordon equation if the conditions~6! are satisfied on the
basic nontrivial cycles. For the Lagrangian submanifoldL4

there exists a nontrivial cycleg3 ~see Fig. 2b!. It starts at
some pointxPL3, passes along a trajectory that enters
right-hand entrance of the wormhole, leaves the left-ha
entrance, and reaches a pointx8 of the surfaceL3, after
which it is connected by some curvea, lying onL3, with the
point x.

Let us consider the quantization condition~6! on a non-
trivial cycle g3. Let (t,l ,u,f) be coordinates in a neighbo
hood of a mouth of the wormhole and let (pt ,pl ,pu ,pf) be
the corresponding conjugate momenta. With the expl
form of the metric~2! the Hamiltonian~5! assumes the form

H52pt
21pl

21
1

b0
21 l 2

S pu
21

1

sin2 u
pf

2 D 52m2. ~7!

A Hamiltonian system with the Hamiltonian~7! is integrable.
For simplicity, let us study trajectories withu5p/2, pu50.
The first integrals are

E5pt , M5pf . ~8!

The trajectories in phase space are determined by the ex
sion

pl~ l !5AE22m22
M2

b0
21 l 2

. ~9!

Then the integral in the quantization condition~6! along the
trajectory is

R
g3

pidxi5E
a

]S

]xi
dxi1E H pt

dt

dt
1pl

dl

dt
1pf

df

dt J dt

5E
a

]S

]xi
dxi1E H 22E212pl

21
2M2

b0
21 l 2J dt

5S~x!2S~x8!2m2E
l 2

l 1 dl

pl~ l !

5S~x!2S~x8!2
m2

E
DT, ~10!

whereDT is a time shift into the past occurring as a result
propagation through the wormhole. Taking into consid
ation the explicit expression~9! for pl , we find thatDT can
be expressed in terms of an elliptic integral

4 JETP 86 (1), January 1998
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l 1 dl

AE22m̃22M2/~b0
21 l 2!

. ~11!

Substituting the expression~10! into the quantization condi-
tion ~6!, we find that this condition expresses the phase c
relation between the solutions at the image and inverse
age points under a Poincare´ map:

1

2p\FS~x!2S~x8!2
m2

E
DTG1 ind g35k. ~12!

Let us consider the case which in the present problem
an analog of the situation arising in a causal paradox. Let
solution be concentrated near a trajectory passing thro
the wormhole and let the initial pointx be close to its image
x8. This means that an observer emits quasiclassical
ticles, so that these particles, passing through the hole, re
the observer at the same moment in time. Forx5x8 the
phases of the solution are automatically identical and
quantization condition~12! gives a condition for the energ
of a quasiclassical particle

2
m2

2p\E
DT1 ind g35k. ~13!

The energyE appears in the expression~11! for DT, so that
the condition~13! is a quite complicated function ofE and
the parameters of the wormhole. In the simplest case, w
the particle propagates along a line connecting the entra
into the wormhole, the angular momentum satisfiesM50
and the integral~11! can be calculated. Then the quantizati
condition ~13! is

m2DZ

2p\AE22m2
1 ind g35k, ~14!

where DZ is the distance between the entrances into
wormhole. If the Lagrangian manifold projects everywhe
uniquely on the configuration spaceR45$x%, then the index
g3 of the curve equals zero and the quantization condit
determines a discrete energy spectrum of a quasiclas
particle

E56mA11m2
~DZ!2

4p 2\2k2
. ~15!

The interpretation of this quantization rule is as follows. A
observer can emit a particle ‘‘into the past,’’ but then the
particles must satisfy a self-consistency condition, which
the present case is that the energy spectrum be discrete

When the mass equals zero the Klein–Gordon equa
becomes a wave equation and describe propagation of l
The quantization condition~13! in this case is trivial. Thus,
in the problem studied the Maslov method does not give
restrictions on the propagation of light along closed isotro
geodesics.

4A. Yu. Neronov



5. DISCUSSION

m

se

c
he
s

ia

tio
it
th

gi
u-
ec
e

te

te
of
old

ia

tia
rm

in

The problem of constructing quasiclassical solutions of
ike
ect,

of
r a

of
the

id-
the

r,

.

n

We have studied a formulation of the Cauchy proble
for a scalar field against the background of a space–timeM4

containing closed time-like curves. The existence of clo
time-like curves passing through the Cauchy surfaceS3 im-
poses restrictions on the choice of initial data on this surfa
In order to be able to continue the local solution of t
Cauchy problem into a global solution, the initial data mu
satisfy nonlocal self-consistency conditions~12!. The geo-
metric meaning of these conditions is that the Lagrang
submanifoldL4 in the phase spaceP of a classical Hamil-
tonian system corresponding to the Klein–Gordon equa
determining a global solution in the high-frequency lim
must be quantized in the sense of the Maslov theory. In
simplest case such nonlocal self-consistency conditions
the restrictions~15! on the frequency spectrum of the sol
tions of the Klein–Gordon equation or on the energy sp
trum of a quasiclassical scalar relativistic particle describ
by this equation. Thus, signals~quasiclassical particles! sent
‘‘into the past’’ can have only a special form and a discre
energy.

We have studied only the simplest case of self-consis
initial data for S3 that corresponds to the simplest type
geometry of a Lagrangian surface: The initial submanif
L3 on S3 consists of one connected pieceL35$@x,p(x)#,
xPS3%. WhenL3 consists of more than one piece, nontriv
cycles of a more complicated form appear onL4 ~for ex-
ample, corresponding to trajectories returning to the ini
connected piece after multiple passage through the wo
hole!. The quantization conditions~6! must hold on these
cycles also. This gives new restrictions on the choice of
tial data forS3.
5 JETP 86 (1), January 1998
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the Dirac equation in a space–time with closed time-l
curves can be studied in the same formalism. The eff
observed in the present problem, of the global structure
space–time on the formulation of the Cauchy problem fo
partial differential equation can be analyzed on the basis
the Maslov method on a background of other solutions of
Einstein equations.
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Structural transition in small gas-like clusters
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We propose a model, which is an alternative to the droplet model and presumes that the number
of bonds between the atoms is a minimum, to describe highly excited clusters containing a
small number of atoms. It is shown that at sufficiently high temperatures such a structure, which
has the form of a system of spontaneously appearing chains of atoms~virtual chains!, is
realized with a greater probability than the close-packed structure. Analytic estimates are supported
by the results of numerical molecular-dynamics simulations. ©1998 American Institute of
Physics.@S1063-7761~98!01201-3#
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The difficulties in the classical theory of nucleation1,2 are
known to be related to the poor applicability of the drop
model to the description of the properties of clusters cons
ing of a small number of molecules. The classical the
poses the problem of the kinetics of the vapor–liquid tran
tion, i.e., it is assumed that the temperature is above
melting point. Such temperatures are high for the clus
found in a vapor, which are characterized by strong exc
tion of both single-particle and collective degrees of freed
for the motion of the molecules comprising a cluster.
numerical simulation has shown, the clusters do not resem
droplets and have the form of shapeless aggregates tha
similar to a dense gas~see Refs. 3 and 4!, this effect being
stronger, the smaller the cluster size~the number of mol-
ecules in it!. On the basis of the similarity to fluctuatio
clusters in a dense gas, such states are called gas-like,
the clusters cannot be characterized by a definite volume
density and since the short-range order characteristic of
uids is likewise lacking.

It is not surprising that attempts to improve the drop
model ~see, for example, Refs. 5, 6, and 7! that employed it
as a zeroth approximation for systematically calculat
small corrections in powers of the reciprocal droplet radi
and were aimed at expanding its range of applicability
include smaller radii, were ineffective. The description of t
state of clusters at relatively high temperatures require
model that is an alternative to the droplet model and is
based on perturbative methods.

This paper examines the analytically simplest case
clusters consisting of atoms whose interatomic potential is
additive short-range potential. In such a system, each a
interacts only with its nearest neighbors. The droplet mo
can be regarded as a limiting case with the maximum nu
ber of bonds in the system. The other limiting case, which
therefore, an alternative to the droplet model, is a sys
with the minimum number of bonds. In this model the clus
has the form of a set of connected chains. The sequenc
atoms in each chain varies as the atoms move; there
these chains can be called virtual.

The reason for the appearance of the structure just
scribed is the competition between states that have h
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low binding energy and high statistical weight. As the te
perature rises, the probability of the latter rises, and a tr
sition from a compact to a gas-like structure occurs in
cluster. For this to happen, the energy difference between
compact and gas-like states must not be excessive. Th
possible only for clusters containingg,10 atoms, since the
number of bonds per atom in them is significantly smal
than in a continuous liquid, as a consequence of their fin
size.

In contrast to a macroscopic system, the transition i
system with a finite number of particles occurs in a cert
temperature range. The purpose of the present work i
investigate the structure of clusters in this range and to
scribe the transition from a compact to a gas-like structure
the temperature rises. To achieve this goal, we utilize b
the analytic expression for the partition function of a gas-l
cluster based on simplified modeling ideas for the parti
interaction potential and its structure, and a numeri
molecular-dynamics simulation of the evolution of cluste
in a supersaturated vapor~an ensemble with constant tem
perature and pressure4!.

The expression for the partition function enables us
write the equilibrium size distribution of the clusters and
use it to calculate the rate of homogeneous nucleation in
supersaturated vapor. Also, since small cluster sizes are
sidered, the Frenkel–Do¨ring equations are inapplicable, an
discrete equations~in the space of sizes! of the kinetics of
nucleation must be used~see, for example, Ref. 8!.

In Sec. 2 the limiting cases of a compact cluster an
virtual chain are examined, and their partition functions a
the characteristic temperature of the structural transition
evaluated, and an interpolation formula for the potential
ergy is written. The methodology of the numerical expe
ment is discussed in Sec. 3, and its results are discusse
Sec. 4.

2. PARTITION FUNCTION OF A SMALL GAS-LIKE CLUSTER

We consider a cluster consisting ofg atoms which inter-
act by means of an additive pairwise potentialu(r ). We
evaluate the partition function of the cluster in the limitin
cases of low and high temperatures. Let

10106$15.00 © 1998 American Institute of Physics
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u~r !5H ~Mv0
2/4!~r 2a!22D0 , a2r 0<r<a1r 0 ,

0, r .a1r 0 ,
~1!

whereM is the mass of an atom,v05(2/r 0)AD0 /M is the
vibrational frequency of a dimer, andD0 is the depth of the
well. The potential~1! is finite and oscillatory in the region
where it is negative; it is assumed that the length parame
a and r 0 satisfya/r 0@1, i.e., the potential is short-range.

We assume that a cluster is a system of atoms, eac
which has at least one neighbor that belongs to the s
cluster and is located at a certain distance not exceedi
certain value. For the potential~1! the maximum distance to
the nearest neighbor should clearly be selected equa
a1r 0 . At low temperature, the cluster has the structure c
responding to closest packing of the atoms. Adopting
assumption that the motion of the atoms is classical, whic
valid for an argon-like system even at fairly low temper
tures, we estimate the partition function of a cluster withg
>3 using the model of an Einstein crystal:9

Zp
~g!5

V

|3 Zr
~g!Zv

~g!expS Dg

kBTD ,

Zr
~g!5Cr~g!S a

| D 3

, Zv
~g!5Cv~g!S kBT

\v0
D 3g26

, ~2!

where V is the volume;|5A2p\2/MkBT is the thermal
wavelength;Zr

(g) and Zv
(g) are, respectively, the rotationa

and vibrational partition functions;kB is Boltzmann’s con-
stant;Dg is the ground-state energy of the cluster; andCr(g)
and Cv(g) are numerical factors determined by the clos
packed structure~for example, for the structures of a righ
triangle and a tetrahedron we haveCr(3)5Cr(4)52p2/3,
Cv(3)5(4/3)A2/3, andCv(4)5&!.

Let us consider the other limiting case~high tempera-
tures!. We say that there is a bond between two atoms if th
interaction potential is not zero. We call any subset of ato
in a cluster a virtual chain if the atoms can be numbered
that eachi th atom, except the first and the last, is bound o
to the (i 21)th and (i 11)th atoms belonging to that subs
~and possibly to other atoms not belonging to that subs!.
The first atom is bound only to the second in a given cha
and the last is bound to the next-to-last atom. By definiti
a circular configuration is not a virtual chain. We call a
atom a branch point if it is bound not only to atoms of
own chain, but also to at least one atom belonging to ano
chain. A new chain appears when an atom is added to
atom that is not the last in a chain. It is not difficult to sho
that the cluster with the fewest of bonds is a set of virt
chains that are joined to one another by one bond at bra
points; all the chains, except the first, have one free end.
obvious that a cluster containingg atoms hasg21 bonds.

Let us assume that the probability of states with a m
than the minimum number of bonds is negligibly small. U
like polymer molecules, the sequence and number of at
in virtual chains are not constant, as a consequence of
additive interatomic potential. Therefore, we are dealing w
virtual, rather than real, chains. The assumption just m
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in which the atoms of a cluster can be found. We num
them in the following manner. We select a virtual chain w
two free ends and number the atoms in it 1,2,...,n1 from one
end to the other. Then we select one of the branch point
the first chain and assign the numbern111 to the atom of a
second chain forming a bond with that point. We contin
the numbering until we reach the free end of the seco
chain, which is given the numbern11n2 . We then select
another branch point, and so on. As a result we obtainN
virtual chains withnj atoms in thej th chain,( j 51

N nj5g.
In the virtual-chain approximation, the potential ener

of a cluster can be written in the form

Uc5 (
i 51

n121

u~r i 11 i !1u~r n111 n1
!1 (

i 5n111

n11n221

u~r i 11 i !

1...1 (
i 5g2nN11

g21

u~r i 11 i !, ~3!

wherer i 11 i5ur i 112r i u is the bond length andr i is the co-
ordinate of thei th atom.

To calculate the total partition function of a cluster
this approximation

Zc
~g!5|23gE ...E 8

expF2
Uc

kBTG dr1 ...drg , ~4!

where the prime on the integral signifies that the integrat
is carried out over the region in which only physically di
ferent states are realized, we make the replacement of v
ables

r15q1 ,

r25q11q2 ,

...

rn1115rb1
1qn111 , ~5!

rn1125rb1
1qn1111qn112 ,

...

rg5rbN21
1qg2nN111...1qg ,

whererb1
is the radius vector of the first branch point. Th

partition function~4! can be factored and expressed in ter
of the partition function of a dimerZc

(2) :

Zc
~g!5

V

|3g E ...E 8 )
i 51

g21

expF2
u~qi !

kBT G dq1 ...dqg21

5
V

|3g H E 8
expF2

u~q!

kBT GdqJ g21

5
V

|3 @Zc
~2!#g21.

~6!

In the special case of an absence of branch points, Eq~6!
corresponds to the partition function of a macromolecule
the standard Gaussian model of a polymer chain.10 It follows
from ~6! that the mean potential energy of a cluster depe
on its size:Ug5^Uc&5(g21)U2 , whereU2 is the mean
potential energy of the dimer at the same temperature.
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FIG. 1. Dependence of the mean potential e
ergy of a cluster on heat-bath temperature f
various cluster sizes:1—g55, 2—g57, 3—
g514, 4—g550. Curve—calculation based o
Eq. ~8!.
Relations~2! and~6! specify the ratio between the prob-
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abilities of structures with the minimum (Pmin) and the maxi-
mum number of bonds (Pmax):

Pmin

Pmax
5

@Zc
~2!#g21

Zr
~g!Zv

~g! expS 2
DEg

kBT D
5

pg21

CrCv
S a

r 0
D 2g25S 2D0

pkBTD g22.5

expS 2
DEg

kBT D , ~7!

where DEg5Dg2(g21)D0 and the estimate
Zc

(2).Zr
(2)Zv

(2)5p(a/|)2(kBT/\v0). It follows from ~7!
that the transition under consideration is smooth and oc
in a certain temperature range. For example, assuming
simplicity that only states with the minimum and the ma
mum number of bonds are realized and using~7!, we find the
temperature dependence of its mean potential energy

U4

3U2
511

1

11S T0

T D 3/2

expF3D0

kB
S 1

T0
2

1

TD G . ~8!

This dependence is shown in Fig. 1. It is seen that the t
sition from the compact state to the gas-like state has a
siderable width.

The characteristic temperatureT0 in ~8!, at which
Pmin5Pmax, is called the transition temperature by conve
tion. In the general case,T0 is the solution of the transcen
dental equation

ln
a

r 0
1

1

2
ln

2D0

pkBT0
1~2g25!21 ln

pg21

CrCv

5
DEg

~2g25!kBT0
. ~9!

For typical values of the parameters, the second and t
terms on the left-hand side of Eq.~9! are of order unity, but
the first term is greater than unity by virtue of the definiti
of a short-range potential. Since for the latterDEg /g
→5D0 as g→` ~Ref. 11!, it is not difficult to show for
a/r 0;10 and a temperature below the critical value th
Pmin /Pmax,1, i.e., the structure of a large cluster is compa
Since the value ofDEg for a short-range potential increas
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~Ref. 11!!, it can be expected in this case thatPmin /Pmax.1,
i.e., light clusters are gas-like, the characteristic size for
set of the structural transition beingg;10.

For a trimer, Eq.~9! reduces to

Abe2b5
8

9
Ap

3

r 0

a
, ~10!

whereb5D0 /kBT0 . For oscillations near the bottom of th
Lennard–Jones 6– 12 potential we havea/r 056, and from
~10! it follows that kBT0.0.434D0 . Wheng54, the transi-
tion temperature is also determined by Eq.~10!, with the
numerical factor (p/9)1/6 on the right-hand side. For a te
ramerkBT0.0.416D0 , which is close to the transition tem
perature for a trimer.

It follows from ~6! that any thermodynamic function of
small cluster that is a linear functional of lnZc

(g) is propor-
tional to g21. This makes it possible to construct a simp
interpolation formula for the size dependence of any therm
dynamic function that is additive for a macroscopic su
stance. For example, for the mean potential energy of a c
ter we have

Ug5~g021!~U22ū!1~g21!ū, ~11!

whereg0 is the number of atoms on the surface of the clus
and

ū5
1

2
lim
g→`

F (
j 51

i 021

u~r i 0 j !1 (
j 5 i 011

g

u~r i 0 j !G
is the potential energy of an atom in a continuous liquidi 0

is the number of the ‘‘central’’ atom, which is located close
to the center of mass of the cluster!. The expression for the
chemical potential of a cluster, which was previously pos
lated ~Eq. ~2! in Ref. 12!, can be obtained in a similar man
ner. Using the model in Ref. 12, we write
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4p

3

s0r l
2

U22ū
, ~12!

wherel5(z/V23/4)1/223/2, z is the coordination numbe
in the liquid,s05s f2T(ds f /dT), s f is the surface tension
of a plane surface of the liquid,r l5(3/4pnl)

1/3, andnl is the
concentration of atoms in the continuous liquid.

We write ~11! in the form that is characteristic of th
droplet model:

Ug54ps~g!Rg
21~g21!ū,

s~g!5
s0

3Vg2/3@g0~g!21#, ~13!

where Rg5r lg
1/3. It follows from the first relation in~13!

that

s~g!5
1

~36p!1/3 S nl

g D 2/3

@Ug2~g21!ū#. ~14!

The assumptions underlying the model in Ref. 12 and
relations obtained above can be tested by a nume
molecular-dynamics simulation.

3. NUMERICAL SIMULATION

The goal of the numerical simulation was to stu
ensemble-averaged quantities that characterize the stru
of a cluster. For this purpose we selected a realistic sh
range interatomic interaction potential withr c51.6a, which
is greater than the mean interatomic distance, but less
twice the distance:

u~r !5H v~r !1v~2r c2r !22v~r c!, r<r c,

0, r .r c ,
~15!

wherev(r )5D0@(a/r )1222(a/r )6#. The form of the poten-
tials u(r ) and v(r ) differs only in the vicinity ofr 5r c ; at
this pointu(r ) is continuous, along with the derivative. Th
small value of the cutoff parameter permits the use of
same criterion for assigning an atom to a cluster as in Se

The (P,T)-ensemble technique4 was used to simulate
the evolution of a cluster in a vapor with constant press
and temperature. As in Ref. 4, the cluster temperature
stabilized by introducing an additional Berendsen ‘‘friction
force.’’ 13 The cluster temperature was evaluated from
formula T5@M /3kB(g21)#( j 51

g (vj2vcm)2, where vcm is
the center-of-mass velocity. The evolution of a cluster w
investigated at various values of the heat-bath tempera
T* 5kBT̄/D0 . The radius of the spherical cell was 10a, and
at T* .0.42 the number of vapor atoms in the cell was se
40–50. Under these conditions the size of clusters with
initial sizeg<460 decreases as a result of the evaporatio
atoms from their surface. Each numerical realization was
peated many times. AtT* ,0.3, evaporation from the clus
ters was so insignificant that no vapor atoms were gener
at the cell boundary.

To analyze the structure of a cluster in a numerical
periment, it is convenient to introduce the concept of
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simple virtual chain if there is a way to label them so that
eachi th atom the (i 21)th and (i 11)th atoms are its neares
neighbors, and the first and last atoms each have only
neighbor at a distance not exceedingr c . If there is a closed
ring, we assume that the first and last atoms are the o
separated by the largest distance. This definition is applica
to any potential. In analogy to~3!, we can define the poten
tial energy of a system of simple virtual chains by the re
tion Usc5( iu(r i 11 i), where only the interaction energie
with the two nearest neighbors are taken into account,
interactions at the ends of the chains are disregarded.

Another important parameter of the structure isUmin ,
which is the sum of theg21 lowest ~largest in absolute
value! pairwise interaction energies, out of the total numb
g(g21)/2 of such interactions. HereUsc and Umin are the
upper and lower estimates of the total energy of the bo
when a cluster is represented as a system of virtual chain
a cluster consists of one chain, thenUsc andUmin are clearly
close to the total potential energy of the clusterUg , and
Ug /(g21)U2 is close to unity.

4. RESULTS AND DISCUSSION

The temperature dependence of the potential energyUg

obtained as a result of averaging is presented in Fig. 1
several cluster sizes. It is seen that in the temperature ra
0.25,T* ,0.5 there is a significant decrease in the ra
Ug(T)/(g21)U2(T). However, while forg*10 this ratio is
appreciably greater than unity even at high temperatures
g&10 it decreases to values close to unity. We note
satisfactory agreement between the theoretical estimate~Eq.
~8!! and the data from the numerical experiment. Thus,
high enough temperatures, the potential energy of small c
ters corresponds approximately to the minimum number
bonds.

The calculations show that atT* 50.71 andg,8 we
have (Usc2Ug)/kBT<1.4 and (Umin2Ug)/kBT<0.5, i.e., the
true potential energy can be replaced by the approxim
potential energyUc in the Hamiltonian of the system. Con
versely, at largeg we have (Usc2Ug)/kBT@1, which sug-
gests a transition to the compact structure. Figure 2 pres
the ratio of the potential energy, calculated in various a
proximations, to the energy of a system of virtual cha
(g21)U2 as a function of cluster size. At smallg this ratio
is close to unity~curves1–3!. If the energy of the inter-
atomic interaction in the droplet model~the maximum num-
ber of bonds! is estimated to beUp5U2(T)Ug(0)/U2(0),
where Ug(0)/U2(0) is the number of bonds, we find tha
(Ug2Up)/kBT@1 in the range of sizes in Fig. 2, i.e., th
energy of a close-packed cluster differs strongly fromUg

~curve4!. The calculation shows thatUg approximatesUp at
g;102. This is associated with a transition to the compa
structure. Thus, the mean potential energy of the small c
ters is far closer to the energy of a system of virtual cha
than to the energy of a macroscopic droplet.

The calculations suggest that the mean number of bo
in simple virtual chainsNc at largeg does not depend on th
cluster size, while atg,20 it increases sharply with decrea
ing g and reaches a maximum atg57, after whichNc re-
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mains close tog21. This means that at smallg the probabil-
ity of states with a single virtual chain is high. A calculatio
of the size dependence of this probability reveals that st
with a single virtual chain are dominant for small cluste
while they are essentially absent forg.9. The values of this
probability for a trimer and a tetramer are similar, in agre
ment with the estimates in Sec. 2. Typical configurations
small clusters with no more than one branch point that
observed in the numerical experiment are shown in Fig.

To test the interpolation formula~11! it is convenient to
compare the value ofs determined directly fromUg using
~14! with the value calculated from Eq.~13! ~Fig. 4!. The
following values of the parameters were used:ū53.264D0 ,
nl50.544a23, and z59. The asymptotic value
s050.904D0 /a2 is reached essentially byg5400. The pa-
rameterV was varied to achieve the best fit to the expe
mental data. The value obtained,V50.794, is typical of
many substances, and is consistent with the thermodyna
model in Ref. 12. It is clear from Fig. 4 that the curve fait
fully describes the numerical experiment. Since the iden
of ~12!, ~13!, and ~14! is a direct consequence of the inte
polation formula~11!, Fig. 4 confirms its validity.

FIG. 2. Size dependence of the potential energy of a cluster calculate
various approximations: 1—Vg5Usc, 2—Umin , 3—Ug , 4—Up .
T* 50.71.

FIG. 3. Configuration of clusters with virtual-chain structure. Two config
rations contain one branch point, and the others contain none.
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Figure 5 presents the radial distribution functionG(r )
for the central atom. We note the following special featur
For a large cluster (g5430) it has the same form as for
continuous liquid, and maxima that correspond to the fi
three coordination spheres. The size effect begins to show
at g560: the third maximum vanishes, and the height of t
first two maxima decreases. Atg,18 a plateau forms instea
of the second maximum, suggesting a rapid weakening of
correlations. At the same time, the number of atoms in
region corresponding to the first coordination sphere
creases sharply. For example, wheng56, it is 2.46. This
behavior can be attributed to the emergence of virtual cha
in which each atom correlates with only two nearest nei
bors. This phenomenon is similar to the weakening of
correlations in a freely articulated Gaussian chain.10 It would

in

FIG. 4. Size dependence of the effective surface tension atT* 50.46.
Curve—calculation based on Eqs.~12! and ~13!, points—value ofs corre-
sponding to the potential energy of the cluster determined in a nume
experiment~Eq. ~14!!.

FIG. 5. Radial distribution function for the central atoms of clusters
various sizes.T* 50.46; r * 521/6r /a. The cluster sizes are indicated ne
the curves.
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be interesting to compare the distribution functions shown in
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4D. I. Zhukhovitski�, Zh. Éksp. Teor. Fiz.109, 839 ~1996! @JETP82, 451
~1996!#.

and
Fig. 4 with the distribution functions that might be dete
mined in a real experiment.

Thus, at sufficiently high temperatures (T* .0.4), a
cluster containing no more than a dozen or so atoms exis
a special, gas-like state and has the form of a set of vir
chains. Three ranges of cluster sizes can be identified
<g,10, 10<g<300, andg.300. In the first range, clus
ters are systems of virtual chains, in the third they acquire
properties of macroscopic droplets, and the second rang
transitional.
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On the nature of turbulence

the
L. N. Pyatnitski 

Institute of High Temperatures, Russian Academy of Sciences, 127412 Moscow, Russia
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A concept of turbulence is presented that is based on the results of an investigation of the
structure of a gas flow in a tube with a square cross section in front of a nonsteady-state moving
flame front. It is shown that a region of elevated pressure, consisting of alternating
condensations, is formed in the gas flow near the tube walls. These condensations are the sources
of waves which form a distribution of velocity fluctuations in the gas flow over a wide
range of amplitudes, frequencies and directions. The dynamics of the perturbations at the walls
and the configuration of the wave in the gap make it possible to consider the fluctuations
in the flow as pseudochaotic and to use statistical methods to describe them. ©1998 American
Institute of Physics.@S1063-7761~98!01301-8#
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The turbulent flow of a gas or liquid is characterized
chaotic fluctuations of the thermodynamic parameters of
medium. Turbulence has been studied for more than a h
dred years but the basis of the phenomenon, the questio
its cause and the chaotization mechanism of the motion
still open.

Prandtl1 explained this phenomenon by the formation
vortices near the wall and their breakup into finer edd
when they are ejected into the primary flow. But the idea w
not embodied in a specific mechanism. Another approac
the problem is based on an analysis of the conditions for
loss of stability of the system of hydrodynamic equations
the small-perturbation method~see Refs. 2 and 3!.

The formalism of the small-perturbation method as a
plied to the Navier–Stokes and continuity equations make
possible to determine the conditions for the appearanc
turbulence but not its mechanism. Correspondingly, tur
lence in the main flow turns out to be an abstraction tha
not related to the physical nature of the phenomenon. Th
by resorting to a number of hypotheses that take accoun
the nonlinearity of the equations of hydrodynamics4 turbu-
lence is considered as a stochastic phenomenon and sta
cal methods are used to describe it. Attempts have also b
made on this basis to describe the development of tu
lence; concepts of chaotic dynamics, such as bifurcation
strange attractors5 ~see also Refs. 6 and 7! are used for this
purpose.

The small-perturbation method can probably be cons
ered the most successful today. Variations of the thermo
namic parameters~velocity v, pressurep, densityr, tem-
peratureT! are found in it in the form of a harmonic solutio
of the same system of hydrodynamic equations but linear
with respect to small variations. In this situation the quest
of the loss of flow stability is considered only with respect
the effect of perturbations along the stream lines,2 ignoring
transverse effects. The following plausible arguments se
at first glance, as the basis for such an assumption. The
turbations of the parameters are small compared with t
average values. Moreover, the diameter of the flow is m
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parameters is established rapidly in the transverse direct
Meanwhile, the velocity fluctuations observed in th

presence of turbulence have an arbitrary orientation. A
since no motion variations~or fluctuations! in themselves
occur, the acting forces, which are local pressure gradien
a given case, must be analyzed. It is also obvious that
pressure fluctuations originate in the boundary of the flo
But the pressure perturbation appearing within a small v
ume can propagate throughout the entire flow only in
form of a wave, for which all propagation directions a
equivalent — a circumstances which is ignored in the sma
perturbation method when the equations are linearized.
nally, the pressure distribution over the cross section
comes steady-state in the time during which a sound wav
at least damped. This time considerably exceeds the cha
teristic durations of turbulent processes and therefore the
tribution of the parameters over a cross section must be
garded as stationary. It is interesting to point out that H.
Lorentz,8 attempting to explain the turbulization phenom
enon, assumed a form of perturbation consistent only w
the continuity equation and not necessarily satisfying
original flow equations.

A turbulence concept is presented below according
which it is precisely small pressure gradients of arbitra
orientation that are responsible for the velocity fluctuatio
in the flow. Within this model there is no need to refer
nonlinear interactions to understand the nature of turbulen
it is sufficient to use the linear wave equation that descri
the propagation of a sound wave in the medium. In gene
features it reduces to the following. The drag exerted on
gas flow by the wall causes a reduction in the flow velocityv
and, correspondingly, an increase in the pressurep. Flow
perturbations adjacent to the wall propagate as sound w
throughout the entire cross section. The reflection from
walls of waves with different directions causes a nonunifo
pressure distribution at the flow boundary, in which sho
lived renewable local perturbations are formed. The wave
these perturbations fill the flow and create a network of
regular parameter fluctuations in it, which look chaotic. T
drag can of course also produce waves of finite amplitude

10708$15.00 © 1998 American Institute of Physics



the medium: simple or shock waves, which does not alter the
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2. PERTURBATION WAVE IN A BOUNDED SPACE

Proceeding to an analysis of the process in which we
interested, we compare the behavior of a local sonic per
bation under the conditions of spherical symmetry and
bounded space. The problem is well-known in the fi
formulation2 and it is solved in terms of the wave equatio
for the potentialf of the perturbationv8 of the velocityv:

]2f

]t2 5c2
l

r 2

]

]r S r 2
]f

]r D , ~1!

wherec is the velocity of sound. We assume that the pert
bations of the velocity, density and other thermodynamic
rameters of the medium are small,v8!c, r8!r,...., and the
medium is at rest,v50.

The solution of this equation is

f5
d~ct2r !

r
, ~2!

whered(ct2r ) is a delta function. It describes the propag
tion of an elementary wave, which is a spherical surface
radius r 5ct with a decaying field moving away from th
coordinate origin. A perturbation of arbitrary type, in th
form of the initial distributionf u t50(a) or the complex pulse
f ur 50(ct) or a combination of them, for example, can
composed of elementary waves. Then at a dista
r .a@ct the perturbation will have the form of a spheric
layer whose thickness and profile are given by the funct
f .

Let us trace the propagation of the perturbation in
bounded space for the example of an elementary wave
gap of heightd, formed by two parallel walls. Thex–y
plane coincides with the lower wall, thez axis is directed
vertically, and the center of the perturbation is located at
coordinate origin. In the diagram of Fig. 1a the gap walls
the x–z plane~the bottom portion of the diagram! are des-
ignated by the heavy lines.

The location of the elementary wave at an arbitrary
stant of timet in the free half-space~in they50 plane in the
diagram! is shown shaded. Within the gap the wave rema
spherical only until its first collision with the wall,ct,d.
Then it changes its configuration first because of reflec
from the upper wall, then from the lower, etc. The regions
the sphere surface, filling the gap between the walls a
each reflection, are separated by lines~or planes! in the dia-
gram, located at distances that are multiples ofd from the
upper boundary of the flow.

In traversing the pathr 5ct the wave is reflectedn times
from the walls:

n5InS z

dD5InSA~ct!22x22y2

d D . ~3!

Here the operation of taking the integer part of a numbe
denoted by In, and the sequencen50, 1, 2,...,m constitutes
the reflection number, wheren50 corresponds to un
bounded space andm is the maximum number of reflections
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for which the fluctuations of the parameters created by
wave amount to significant values for the particular proble
about which more will be said below.

By knowing n, it is easy to establish the relationsh
between the coordinates and the propagation direction
corresponding points of the wave in the half-space and in
gap. Let us assume the pointr 5(x21y21z2)1/2 of a spheri-
cal wave with polaru and azimuthalw angles corresponds t
the pointR5(X21Y21Z2)1/2 with qn andwn of the wave in
the gap. Then,

x5X, y5Y, zn52d InS n11

2 D1~21!nZ, ~4!

cosqn5~21!n
zn

ct
5~21!n cosq, tanwn5

y

x
5tan w.

~5!

Note that the wave passes through the pointR many
times and the times at which this passage occurs form
sequencetn , which can be characterized by the ‘‘frequency
nn(R,q). We find from Eq.~3! for the nth reflection:

tn5
zn

c cosqn
5

Ax21y2

c
A11

zn
2~Z!

x21y2,

nn5
1

tn112tn
. ~6!

It follows from this formula that the arrival of the wave at th
arbitrary pointR is not adjustable in terms of recurrence, n
in terms of amplitude, nor in terms of propagation directio
Thus, even a single perturbation in the gap creates a fiel
irregular fluctuations.

Let us illustrate their frequency characteristics at t
point Z50.5d by examples for two limiting positions of the
observation point—near (X21Y2)1/2!d and far (X2

1Y2)1/2@d:

FIG. 1. Wave configuration~a! and velocity fluctuations~b! in gap between
walls.
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In the first case the frequency of the fluctuations chan
little but, as will be shown below, the fluctuations damp o
quickly. In the second case in the first reflections the para
eters fluctuate with a greater frequency; however, asn in-
creases the frequency of the fluctuations decreases. Thu
fluctuations have a broad frequency spectrum.

3. PARAMETER FLUCTUATIONS

Let us now consider the behavior of the fluctuations
the wave. The velocityv8 ~by definition! and the densityr8
are related to the potentialf by the expressions

v85
]f

]r
, r852

r

c2

]f

]t
. ~8!

Let us dwell on the simple case, assuming to be specific
at the initial time t50 the perturbation has the form of
bubble with the small diameter 2a (a!d) with its center at
the coordinate origin. Inside the bubble the gas is co
pressed so thatr85D5const andv850. Outside the bubble
v85r850.

Since the wave field according to Eq.~2! decreases quite
rapidly with distance}1/r , absorption can be ignored. How
ever, upon reflection from a wall~generally speaking from
any surface where the impedancerc experiences a sudde
change! additional losses appear. Without getting into deta
for now, we take them into account by introducing the lo
factor a, and we will look for the perturbation field for cho
sen initial conditions with Eq.~3! taken into account. At the
point R of the gap, corresponding to the pointr of the spheri-
cal wave, we have

v850 for
r 2a

c
.t.

r 1a

c

v8'~21!n~12a!n
cD

2r

r 2ct

r
for

r 2a

c
,t,

r 1a

c
~9!

for the velocity fluctuationsv8 ~to within terms of order
a2/r 2!. Equations~9! and~3!–~5! define the configuration o
the wave in the gap and the velocity fluctuationsv8(t) at the
center of the flowZP@2a,(d22a)#. A single perturbation
with diameter 2a creates in the gap a moving wave layer
thickness 2a. The diagram in Fig. 1a, where the layer in th
gap is shaded, demonstrates the unique features of its
figuration in the gap and in the upper half-space.

The character of the fluctuations at the center of the fl
is illustrated in Fig. 1b for the example of the velocityv8(t)
at the pointR(X,Y50, Z), marked in the diagram of Fig. 1a
The velocity in the wave changes discontinuously; this
caused by the singularity at the boundary of the artificia
introduced initial condition~D5const forr<a!. A real per-
turbation at subsonic velocities should not contain suc
singularity. In linear theory, however, this distribution has
effect on the duration of the fluctuations nor on the seque
of the fluctuations.

As a result of the decay of the wave as it propagate
question arises with regard to the distancer * and the number
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ables can be considered to be significant. By measuringr in
units of d so thatR* 5r * /d, and the dampingv8 in frac-
tions of v8(d), m5@v8(r * )/v8(d)#, we find from Eqs.~9!
and ~3! a transcendental equation form and the relationship
for R* in a given directionq :

m5InS ~12a!m
cosq

m D , R* 5
~12a!m

m
. ~10!

According to Eq.~10!, the choice ofm determines the num
ber of reflectionsm and the distancer * 5d(12a)mm21,
within which the velocity fluctuationsv8 affect the fluctua-
tions of the medium. It is obvious that the path lengthr * for
a particular wave will depend on the observation angleq.
Let us consider an example. Taked53 cm, m50.01, and
a50.1 and 0.3. We compare the lengthr * for these values
of a for three angles:q50, 45 and 89.4°. The first of thes
corresponds to the direction at right angles to the gap w
the third corresponds to a direction that is nearly paralle
theX, Y plane when the wave decays without experiencin
single reflection. For the given set ofa andq we obtain:

a50.1: m516;14;0 and, correspondingly,

r * '56; 69; 300 cm;

a50.3: m57;6;0 and, correspondingly,

r * '22; 29; 300 cm.

By introducing the loss factora upon reflection, we elimi-
nated fluctuations near the wall from consideration. Me
while, at its surface we havev5v850 and the character o
the influence of the wave on the flow is altered. Actually,
one approaches the wall, more precisely in the reg
Z¹@2a,(d22a)#, the velocity fluctuations decrease but th
rest of the parameters, in turn, fluctuate more strongly. E
mating the amplitude of the variables, let us say the press
we use the expression for the energy density in a plane t
eling wave in the form2 «5rv82. When the losses associate
with reflection are small anda!1, the character of the fluc
tuations obeys the following conditions:

v8→0, p8→~22a!rv82 cos2q, for Z→0~Z→d!,

~11!

i.e., near the wall the pressure fluctuations increase by alm
a factor of two. The region of thickness 2a near the wall
plays the role of a boundary layer in which the interaction
the spherical incident and spherical reflected waves is
reduced to a linear superposition.

Let us mention one other unique feature of the reflect
of a spherical wave related to the refracted wave. Usually
velocity of soundcw in the wall material is greater than it
value c in the gas. In this case a secondary wave2 with the
surface of a truncated cone also arises in the gas in add
to the spherical waves. The larger circumference of the c
is located at the wall surface and is joined to the edge of
front of the spherical refracted wave. The smaller circumf
ence forms a locus of points at which the conical surface
the secondary wave is tangent to the spherical surface o
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point intersects the line joining the center point of the fo
ward wave~in the gas! and its virtual reflection in the wal
~or specular reflection! at the angleq0 . It amounts to severa
degrees for a metallic wall.

The secondary wave, unlike the spherical reflected wa
decays along a given direction in inverse proportion to
square of the distance.2 Therefore, it must have a greate
influence on fluctuations near the wall than far from it, whe
the spherical waves exert the primary influence on the fl
tuational characteristics of the medium.

As seen from this analysis, the field of the fluctuations
the variables is a complex space-time function and it is ch
acterized by a broad spectrum of frequencies. It is obvio
however, that the picture of the ‘‘chaotization’’ of the mo
tion of the medium cannot be considered to be stocha
This set of relations for the fluctuations is rather similar
the summary of rules and resembles the solution of the p
lem of cellular automatons, belonging to the class of ir
ducibles. This statement is fully valid for the fluctuation fie
produced by a single perturbation. In reality the fluctuat
field is formed under the conditions of repeatedly appear
perturbations. Therefore, it is of interest to compare the
tained results with the actual process for the appearanc
turbulence; this will be done in the next section. Before th
however, it would be advisable to mention the problem
dispersion.

It was implicitly assumed above that dispersion is abs
in the medium, and the dependence of the frequencyv of the
oscillations on the wave numberk in the dispersion equation
has the simple formv5ck. It can turn out to be more com
plicated, and the dispersion equation can have sev
branches as, for example, in a plasma. The discontinuit
the dispersion equation at the boundary of such a med
will play the role of a wall, and the reflection of a wave fro
such a wall can serve as the source for the appearanc
other wave modes, the number of which depends on
number of branches of the dispersion equation. Thus,
described picture of chaotization is supplemented by a ‘‘m
tiplication’’ of the types of perturbations.

4. EXPERIMENTAL BASIS

An experimental investigation has importance for che
ing those assumptions which were made in the analysi
the properties of the fluctuation field formed by a single p
turbation. A second aspect of the problem also exists, h
ever, that refers to the formation process itself of the prim
perturbations. Since no universally accepted method of
scribing this process exists at this stage of the investigati
its experimental observation is of interest. But this has
own difficulties. They are related primarily to the possibili
of visualizing weak inhomogeneities in a gas flow in t
initial stage of motion. It is convenient to observe this sta
in a tube while the gas flow is being established in front o
piston. In the experiments presented later the flow struct
which is created by a nonsteady-state moving flame~the ana-
log of a piston!, is investigated where the intensity of th
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nonsteady-state nature of the propagation of the fla
piston.

The investigations were performed in a tube with
28.6328.6 mm square cross section with polished walls
consisted of standard sections, in one of which 18-cm lo
optical glass plates served as the side walls for visualiz
the distribution pattern of optical inhomogeneities in t
flow. Displacement of the sections made it possible to rec
the flow status in any portion of the tube. Combustion w
initiated in a CH414O2 mixture by a short~1 msec! inductive
electric discharge. The tube had a length~1.5 m! for which
waves, reflected from the end opposite the ignition, had
effect on the gas flow in front of the flame until the deton
tion.

The flow structure was recorded by the schlier
method. In this method the distribution of the density gra
ent ¹r ~and in the absence of chemical reactions also
pressure gradient¹p! is visualized in the direction of the
normal N to a Foucault knife edge, and the excess or d
ciency of the luminance of the image point is determined
the sign of the scalar productN•¹r at the conjugate point o
the object. A high-speed movie camera made it possible
obtain photographs of the visualized pattern of the distri
tion of flow inhomogeneities at exposure times from 100
0.5 msec. The experimental procedure and conditions h
been described elsewhere.9

The onset of combustion produces the first pressure
turbation, traveling with the velocity of soundc
;350 m/sec. It sets the gas into motion. The gas flow
bounded at the front by the first perturbation and at the r
by the flame-piston. The equivalent velocityu of the gas
piston in the flow depends on the normal burning rateU, the
ratio of the flame surfaceS to the tube cross-sectional are
F, and the expansion coefficient of the gasg during combus-
tion (u!c):

u5U
S

F
~g21!. ~12!

The chosen mixture hasg510, U52.3 m/sec, and for a
flame with a planar frontu;20 m/sec. The shape of th
front surface duplicates the velocity distribution of the flo
in front of the flame and exactly reflects the structure of
flow, making it possible to monitor its character. In this ca
the surface areaS of the flame and, according to Eq.~12!, the
velocity u are variable quantities. Thus, if (S/F);0.02 holds
immediately after ignition, then at later stages, when the
is slowed down by the wall, the flame surface exceeds
tube cross section by severalfold. Correspondingly,
equivalent piston velocityu can amount to 100 m/sec an
more.

Fragments of the high-speed schlieren cinematogra
of the process are shown in Fig. 2. The picture-taking r
and the field of view of the device were chosen in such
manner as to ensure the temporal and spatial resolutio
the pattern of the process. The full tube cross section i
region with a length of 8 cm lies within the frames in Fig.
The crosspiece for mounting the optically homogeneo
glass is visible within the limits of this region~the vertical
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FIG. 2. Oscillograms of the pressure durin
flame propagation in tube.
dark band in the frames, denoted by the arrow in frame a!.
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The timet is measured from the moment of ignition and t
distancex is measured from the end cap of the tube~to the
left outside the frame in the photographs!. If the flame front
is located at the pointx5X , then the extent of the gas flow
in front of the flame has a lengthl 5ct2X .

The photographs of Figs. 2a and 2b visualize the pro
gation process of the first perturbation produced near the
of the tube by a weak 3-mm diameter spark. They are
posed at the timest552 and 165msec. The volume of the
burning gas is still small and it can be assumed thatX '0
andl 'x'1.9 and 6.0 cm. Both wave configurations grap
cally demonstrate that all propagation directions of the p
turbation are equivalent; in this situation the variation of t
parameters due to the action of the perturbation is a p
longed process.

Thus, the assumptions that the perturbation exerts an
fluence only in the direction of the flow and the transve
pressure gradient can be ignored are incorrect. It is also c
that the wave moves almost at the velocity of soundc ~3%
faster! and has the shape of a spherical layer with a thickn
;3 mm, equal to the diameter of the spark, and the struc
of the layer is preserved upon reflection from the walls. T
same result was obtained for air except that the wave,
supported by the motion of a ‘‘piston,’’ decayed rapidl
resulting in a low-contrast image on the photographic pa
that is difficult to discern even after the wave has moved
a distance of only 4–5 cm.

Frames c and d refer to the timest51.3 and 1.4 msec
whenX 513 and 15.5 cm andl '31 cm. At this time only
a portion of the lengthl , corresponding to 5 and 3 cm
enters the field of view. The accelerated propagation of
flame creates in the flow the structure of a chaotic den
distribution, resembling large-scale turbulent fluctuatio
Because of the high temperature in the combustion prod
the sensitivity of the schlieren method is reduced by an or
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ineffective, but the flame front reacts to them, which tran
forms the combustion into the turbulent regime. Thus, sm
scale fluctuations are also present in the flow in front of
flame although because of their smaller amplitude they
less noticeable if not invisible.

The essential feature of this experiment is that the tub
mounted with a vertical shift of the two adjacent sections
that a projection with a height of;0.3 mm is formed in the
x522 cm cross section. This ‘‘irregularity’’ is a localize
source of strong waves following one another at an inter
t;15msec. In the photographs they move from the upp
right corner and in frame c the first of these waves is deno
by the arrow. As seen from a comparison of photograph
and d, the ‘‘irregularity’’ drastically chaoticizes the flow
The schlieren cinematography of this stage of flow format
confirms the idea, that it is precisely the superposition of
forward and reflected waves that gives rise to the fluctua
velocity field in the flow.

The next three photographs are obtained for the con
tions when the motion of the gas in front of the flame occ
at a displacementl ;40 cm, which makes it possible t
trace the evolution of the development of the flow structu
Frames e and f~t'1.9 msec,X '29 cm, l '37 cm! reflect
the structure in the region where the flame is moving with
constant velocity and it generates almost no new wav
Frame g~t'2.05 msec,X '32 cm, l '38 cm!, on the other
hand, is recorded at the moment when the flame is acce
ated. The different stages of flow formation demonstrate
different properties.

To begin with, while the flame and the gas in front of
move uniformly, as seen from photographs e and f, sm
scale fluctuations prevail in the flow. They appear in shar
relief, of course, in the flame structure. Thus, here we
serve a process which in the existing theory of turbulen
can be called a transfer of energy from large-scale fluct

111L. N. Pyatnitski 



tions to small-scale. Moreover, other inhomogeneities in the
qu
a
-

n-
au
to

io

s
e

io
.
ta

ll
t

n-

ill
s

rm
av
e
is

qu
o
ol

ls
to
er

a
w
he
s
io
n
p

e

L
om

he
ns
n

en

sations, which, by the way, is directly related to the forma-
r.
en-
en-

gs.
i-

the
ro-
ov-
re

ous

ga-
e
e of
s of
next
res-
time
sec-
ng
the
. 2c
ram
in
ith
r-

of
axi-
gy
ease

to
ion
ratio
. In
y an
he
curs
of

ns’’
ace

ns
uc-
elf-

m-
ave

ve
d,
ted

es
ac-
flow are more easily observed against such a relatively
escent background: a dark region near the upper wall
light region near the lower~denoted by the arrows in photo
graph e!.

This important result is explained in the following ma
ner. During the exposure of frames e, f, and g the Fouc
knife edge was positioned with a certain tilt so that the vec
N had a vertical component in thez axis direction. For the
chosen orientation of the Foucault knife edge the dark reg
corresponds to a positive value of the density gradient¹r
.0 and the light region to negative¹r,0. Consequently,
the gas condenses near both walls. Moreover, the dra
change in the luminance at the boundaries of both of th
regions means that the componentNz(]r/]z) makes the pri-
mary contribution to the scalar productN•¹r. And sinceNz

is small, the magnitude of the gradient (]r/]z) must be
large, and the density and pressure in the near-wall reg
are markedly higher than in the rest of the cross section

However, these regions are inhomogeneous and con
discrete condensations with typical size 2a'2 mm. The dis-
tribution of inhomogeneities changes rapidly and is usua
not discernible in the next frame; this makes it possible
estimate the upper limit of the lifetime of the near-wall co
densation. For a picture-taking rate of 62.83103 frames/sec
it does not exceed;16msec, whereas the sound wave w
traverse the shortest path between walls in both direction
a time that is considerably longer than 170msec. It can be
assumed that the pressure in the condensation is unifo
distributed over the entire cross section during the w
damping, which according to Eq.~10! exceeds each of thes
quantities by one or two orders of magnitude. In view of th
the pressure in the near-wall condensations cannot be e
ized over the cross section, and the waves originating fr
them form a conglomerate of local perturbations in the v
ume.

The form of the inhomogeneities near the walls is a
visible in the photographs of the uniform flow. According
Eq. ~9! each type of inhomogeneity, propagating as a sph
cal perturbation, should increase in size~or diameter! by 1.4
mm during the frame exposure time~2 msec!. In reality,
however, the wave layer is deformed and acquires the sh
of elongated formations up to 3 mm long, tilted in the flo
direction. This is particularly evident in frame g, where t
flame and flow start to be accelerated again and the proce
become more intense. The deformations of the perturbat
are easily explained by the fact that the drift of differe
portions of the wave during different stages of its develo
ment depends on the velocity distributionv(Z), which in-
creases progressively with distance from the wall. A mod
ing of the propagation of the wave layer~9! in the flowv(Z)
near the wall gives precisely such a perturbation contour.
us add that acceleration of the flow produces additional c
pression waves which, forming a newv(Z) distribution, in-
tensify the boundary processes.

It becomes obvious from the foregoing analysis of t
results of the schlieren cinematography that the conde
tions near the walls serve as sources of flow perturbatio
The question of the mechanism of formation of the cond
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tion of the v(Z) distribution, is still unanswered, howeve
The most important of the original parameters of the cond
sations are not so much the geometrical shape and dim
sions (a!r ) as their distributionFs(X,Y,Z,t) over the sur-
face of the gap walls and with time. The photographs of Fi
2c and 2d showed that the ‘‘irregularity’’ in the fixed pos
tion generates perturbations with a periodt'15msec. Un-
fortunately, the equipment does not permit investigating
details of the mechanism; therefore, let us consider the p
cess of the emission of pressure waves by an unsteady m
ing flame which is similar but more intense and therefo
more accessible for recording.

The oscillograms in Figs 3a–3e represent a continu
recording of the excess pressurep85px8(t) at the pointsx
53, 19, 35, 51 cm. The first of these refers to the propa
tion region in which the flame is still far from spanning th
tube cross section and shows basically the overall increas
pressure in the tube during combustion. The photograph
Figs. 2a and 2b can serve as an illustration here. The
oscillograms are obtained for the developed flame; the p
sure peak in this case on each curve corresponds to the
at which the combustion zone passes through the cross
tion in which the measuring probe is located. The stro
increase of the pressure on oscillogram b is recorded in
cross section where, according to the photographs of Figs
and 2d, the flame undergoes an acceleration. The oscillog
of Fig. 3c is obtained in the region along which, as shown
the photograph of Figs. 2e and 2f, the flame is moving w
a constant velocity. Finally, the oscillogram of Fig. 3d co
responds to the photograph of the flame~Fig. 2f! during the
new acceleration.

The character of the oscillograms and a comparison
them yield the pattern of wave emission. The pressure m
mum occurs in the flame localization region. The ener
release in the combustion contributes to a pressure incr
in the flame localization zone, from which its excess tends
be concentrated over the flow in the form of compress
waves. The maximum pressure increase depends on the
of the energy release rate to its characteristic outflow time
the flame acceleration region this is also supplemented b
overall intensification of the burning, as a result of which t
pressure increases to a maximum. Wave emission oc
nonmonotonically, which is evident in the discrete nature
the compression waves and is caused by the ‘‘fluctuatio
of energy release due to the effect of variations of the surf
S of the flame front, as follows from Eq.~12!. The surface of
the front, in turn, is acted upon by the flow perturbatio
propagating in the cross section; this also gives rise to fl
tuations in the energy release. It is a unique wide-band s
oscillation process.

In exactly the same way a slowing of the flow is acco
panied by a pressure increase near the wall and by w
emission. Therefore, the velocity profilev(Z) develops when
the flow and waves interact. This, in turn, is a forward wa
moving along the wall. The wave arriving from the secon
opposite, wall and after that the secondary and reflec
waves, arising at the first wall, also play a role. All wav
have different amplitudes and orientation. Therefore, in

112L. N. Pyatnitski 



a-
FIG. 3. Oscillograms of the pressure during flame prop
gation in tube.
cordance with Eq.~11! the reflection conditions for them and
he
ce
ric
ce
-
fo

al
ve
ca
y
p

ce
th
al
am
ad
a

re

su
e
e

is
a
d

simple ~and shock! wave, then the small-amplitude approxi-
a-

ri-
the
act
in

sed

ons
two
e to
nce.
ure
ed
total
es,

on.
in

out
und

pe
e-
ure
the
bly
individual portions of them are different. As pointed out, t
role of the secondary wave is evident over short distan
near the walls, whereas the forward and reflected sphe
waves not only take part in the formation of the sour
Fs(X,Y,Z,t) and the profilev(Z) but also produce a fluctua
tional field in the flow itself. Then the process is repeated
each reflection~within the limits n<m! but with a smaller
intensity.

Due to the influence of this interaction the initi
smoothness of the deceleration process breaks down
quickly even for the case of an ideally smooth wall, and lo
‘‘flickering’’ perturbations form in this zone. The boundar
perturbations themselves are sources of waves and, com
ing the cycle of continual renewal of the sour
Fs(X,Y,Z,t), undamped fluctuations of the parameters in
flow are thereby maintained. The intensity of each wave f
off as they propagate in the gap, and when the flow par
eters are constant, the fluctuation field arrives at the ste
state condition. The level of the fluctuations depends,
other things being equal, on the intensity of the cyclic
newal process of the sourceFs(X,Y,Z,t), which is deter-
mined by the average flow velocity value.

The discussions about the boundary source of pres
fluctuations and the mechanism for its renewal are confirm
qualitatively by the results. This process has not been inv
tigated quantitatively. It is clear, however, that if the em
sion of intense waves, formed during the burning, w
considered10 on the basis of the theory of the so-calle
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mations are sufficient for describing the action of perturb
tions near the walls on the flow. It follows from a compa
son of the energy aspects of the combustion and
deceleration of the gas by the wall, and also from the f
that it is hard to detect perturbations in front of the flame
the flow, that they have a small amplitude and the propo
approach is justified.

5. CONCLUSION

The experimental data and the analysis of the conditi
for the propagation of a sound wave in the gap between
walls that have been presented above make it possibl
propose reasons for the nature and mechanism of turbule

Movement of the medium arises because of a press
gradient, which when flow is established in a wall-bound
space sometimes does not have a planar front, and its
magnitude is composed of a set of compression wav
propagating at different angles to the general flow directi

Retardation of the flow by the wall raises the pressure
the boundary region. The pressure distribution through
the entire volume occurs by means of an emission of so
waves from this region. At a sufficient distance~compared
with the source dimensions! they assume a spherical sha
since all directions of perturbation propagation in the m
dium are equivalent. The equalization time of the press
over the cross section is determined by the damping of
perturbation wave in the medium. This time is considera

113L. N. Pyatnitski 



greater than the propagation time of the wave at right angles
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to the cross section and, especially, the time involved in
interaction of the waves with the flow during formation
the velocity profile v(Z) in the boundary region. Wave
propagation in the flow causes fluctuations of the thermo
namic parameters, including the velocity. Near the wall
velocity fluctuations become small, but the fluctuations
the other parameters, such as pressure and density, incr

The primary distinction of the flow state at the flo
boundary is the interaction of the forward and reflec
waves, in which the reflection process plays an import
role. Waves producing a pressure gradient and providin
longitudinal translational movement of the medium are
cluded above all in this process. Forward spherical wa
follow from them, which appear during the slowing of th
flow at the start of its motion. They propagate over the en
flow and, reflected from the opposite wall, return to the
gion where they appeared. A thin layer of these waves mo
along the wall without reflection but they interact with th
higher density medium with the distributionv(r). The
spherical reflected and secondary waves take part in the
teraction during the reflection of each wave. The second
wave damps out quickly and does not exert a strong in
ence on the velocity fluctuations in the flow.

As a result, a pressure fluctuation field is formed in t
boundary region. The extremal points of this field form p
turbations which create a velocity fluctuation field at the c
ter of the flow as well as a pressure fluctuation field at
boundary of the flow, forming the velocity profilev(Z) and
supporting the undamped cyclicity of the process. Its int
sity depends on the average flow velocity and the damp
time of the wave perturbation in the medium. From th
viewpoint the boundary layer corresponds to a region
which the pressure fluctuations prevail over velocity fluctu
tions.
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wall surface and with time is apparently supported by cal
lation and it can be considered determinate. The prob
itself, like the problem of the emission of compression wav
by a flame, belongs to the class of irreducibles. At the sa
time, the character of the flow at the center of the stre
makes it possible to consider the fluctuations as pseudo
otic and to use statistical methods for describing them.

Within the framework of this mechanism, in which a
alternation of phases dominates because of multiple refl
tions of the waves from the boundaries, an explanation
turbulence properties requires no postulates whatsoever,
the role of such parameters as the Reynolds number, vis
ity of the medium, wall roughness, the cascade process
the transfer of energy from large-scale fluctuations to sm
scale, the spectral characteristics of the fluctuations, the
bulence of the inflowing stream acquires a natural phys
explanation.
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Nuclear b-decay and photoproduction of e1e2 pairs in intense electromagnetic fields

s

with a complex configuration
V. N. Rodionov

Moscow State Geological Prospecting Academy, Department of General Physics, 117873 Moscow, Russia
~Submitted 19 May 1997!
Zh. Éksp. Teor. Fiz.113, 21–42~January 1998!

The effect of an intense electromagnetic field formed by the superposition of a constant magnetic
field and a laser-type field on nuclearb-decay and on pair production by twog-rays with
different polarizations is studied. Time integral representations are obtained for the total
probabilities of these processes without restrictions on the strengths of the fields making
up the configuration. Despite the different nature of these reactions, in the nonrelativistic limit
these expressions contain similar dependences on the field characteristics and the
differences reduce to different power-law singularities in the behavior of the integrands at zero.
At low fields, complete asymptotic expansions of the probabilities of these processes,
including perturbation theory terms and oscillatory field contributions, are obtained in terms of
parameters characterizing the fields. It is shown that the oscillatory corrections can be
enhanced owing to the effect of a combination external field. The analysis of the probabilities of
the various processes given here in terms of nonlinear functions of the field is illustrated
by numerical calculations and graphs. ©1998 American Institute of Physics.
@S1063-7761~98!00301-1#
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As is well known, theoretical studies of the decay a
creation of particles in intense external fields have been
der way for a long time.~See Refs. 1–7 and the numero
papers cited there.! The distinctive feature of these process
is that they take place in the absence of a field. Thus,
contribution of an external field to these processes show
through invariant parameters, which, besides the field c
acteristics, include the maximum energy transferred to
product particles. It is easy to see that, from the standpoin
possible experiments for isolating the effect of the fie
against the background of the characteristics of the proce
in vacuo, studies of nonrelativistic reactions are of the gre
est interest since the role of the external field becom
greater as the energy is lowered.

Based on studies of the effect of plane wave fieldsF on
the decay of elementary particles,6–16 it has been establishe
that in the nonrelativistic limit at sufficiently low frequencie
the fundamental parameter is

xE5F/F0 , ~1!

where the characteristic field is

F05~2I !3/2
m2

e
, ~2!

e andm are the charge and mass of the electron, andI is the
maximum kinetic energy of a decay electron expressed
terms of its rest energy.~Here and in the following a system
of units with\5c51 is used.! In the regionx@1 the effect
of the field dominates, since in this case the processes
velop over characteristic times and lengths which depend
the field and their probabilities have an essentially nonlin
dependence on the field.1–5
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corrections to the probabilities for the unperturbed proce
however, here a nontrivial field dependence is a
possible.6,9,12,13,16It should be noted that a different type o
electromagnetic field acting on the process generally lead
a different value of the parameter characterizing the fie
Thus, in particular, in the case where a constant magn
field H affects decay, the fundamental parameter has
form

xH5H/H05
m

2I
, ~3!

wherem5eH/m2, and the characteristic field in the nonre
ativistic case is given by10,16

H052I
m2

e
. ~4!

The difference between the parameters~2! and ~4! can be
shown qualitatively based on the following simple consid
ations: in the case of a constant plane wave field, with
electric component among its constituents, the parametexE

is given by the work done by the field over a distanceld/2 ~
ld is the minimum De Broglie wavelength of the decay ele
tron! divided by the maximum kinetic energy released in t
decay.

In a constant magnetic fieldH, which performs no work,
the role of the analogous parameterxH is played by the ratio
of the energy of the shift in the frequency of the oscillatio
of the charged oscillator in the magnetic field,1

D«5
eH

2m
, ~5!

to the maximum energy of a decay electron.
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In the case of an electromagnetic wave field, the param-
fre

o

in
rm
ac

of

o
r

b-

n-
g

r

m
n

pr
th
ld,

nc

tic
h
-

.
f
nn
es
ri
rry
on
u

-
-

ss
t
e
e
e

dependence in the integrands. This was explained by a dif-
om

ain
re-

etic
at-

rm
ut

su-
f
on
tant
in-
he
le
the

d
pair
ari-
ir
n

w-
n-
ied

id-
ho-
ns

ria-
ber
the

15,
hat
led
the
nd
the
of

ond
to
ies
f
an

n a
tons
not
ntri-
st
eter ~1! is supplemented by a parameter containing the
quencyv of the field:1–20

j5
eF

vm~2I !1/2. ~6!

This parameter~6! can be interpreted as the ratio of the s
called oscillator momentum of the electron in the wave1 to
the maximum momentum acquired by the electron dur
decay. The difference in the field parameters defined in te
of the energy or momentum shows up additionally in the f
that the quantities~1! and ~3! are proportional to Planck’s
constant, whilej is a purely classical parameter. In view
its definition, the role ofj can show up noticeably prior to
integration over the momenta of the charged particles
these reactions. In this sense, the dependence of the p
abilities of these processes on the parameter~6! is limited by
their differential distributions, but the total reaction pro
abilities are determined exclusively byxE or by a combina-
tion with ~6!, which indicates an explicit frequency depe
dence which vanishes asv goes to 0. Thus, the stron
dependence of the total decay probabilities in an intense
diation field on j reported in some papers17,18 was com-
pletely wrong, as first pointed out in Ref. 8.

Evidently, for electromagnetic waves with a more co
plicated structure, the number of field parameters can o
increase. Thus, in particular, in the case where decay
cesses are affected by an external field containing bo
constant magnetic field and an electromagnetic wave fie16

the probabilities of these processes also depend on the
rameter

d512
eH

mv
,

which represents the relative detuning of the wave freque
v from the cyclotron frequencyvH5eH/m.

It is also extremely important that in electromagne
fields F!F0 , besides power law expansions in terms of t
small parameterx, the total probabilities also contain so
called oscillatory contributions1–6,9,13,16,20with an essential
singularity at the pointF50 that was first pointed out in Ref
6. Such behavior by these processes requires the use o
equate methods for studying them, since these effects ca
in principle, be obtained by perturbation theory techniqu
In this regard it should be noted that, despite the popula
of accounting for the effect of external fields using the Fu
representation, each specific form of the field configurati
in general, requires the development of specific techniq
for studying it.~See Refs. 1–8, for example.!

A study has been made13 of the formation of a nonrela
tivistic e1e2 pair by twog-rays in the presence of a circu
larly polarized wave and of low-energyb-decay in an elec-
tromagnetic field with the same structure. These proce
shared a dependence of their reaction probabilities on
field characteristics prior to integration with respect to tim
in the time integral representation. The differences show
up only in different power law dependences for the tim
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ference in the phase volumes of the product particles fr
these reactions.

We have recently investigated16 nuclearb-decay in an
electromagnetic field with a complicated structure. The m
result of that paper was a relatively compact integral rep
sentation for the total probability ofb-decay taking into ac-
count the effect of the superposition of a constant magn
field and the field of a plane electromagnetic wave propag
ing along it. It was also shown there16 that in the nonrelativ-
istic limit the total probability can be represented in the fo
of a single integral with respect to time, essentially witho
restriction on the strengths of the fields included in the
perposition. Previously19 we have obtained the probability o
electron-positron pair production by an external phot
propagating counter to an electromagnetic wave in a cons
magnetic field. The orientation of the magnetic field co
cided with the propagation direction of the wave and t
probability of the process was written in the form of a doub
integral, in which one of the integrations corresponded to
Fock-Schwinger proper time representation.

The single-photone1e2 pair production reaction studie
in Ref. 19 can be generalized to the case of two-photon
production, so it becomes possible to make a direct comp
son of the probabilities of creation of a nonrelativistic pa
and of nuclearb-decay in an electromagnetic field with a
extremely complicated structure.

In this paper we study the probabilities of processes o
ing to interactions of a different nature, but their field depe
dence has a number of similar features. We have stud
expressions for the probabilities of both allowed and forb
denb-decay processes, as well as of pair formation by p
tons with different polarizations. The analytical expressio
for the probabilities are analyzed over a wide range of va
tion of the parameters characterizing the field, and a num
of asymptotic expressions are obtained which illustrate
existence of ‘‘monotonic’’ as well as ‘‘oscillatory’’ contri-
butions to the field dependences.

It should be noted that forbiddenb-decay in an intense
electromagnetic filed has been studied previously in Ref.
which refers to yet earlier papers devoted to this topic t
turned out to be wrong. In this paper we make a detai
analysis of the effect of a strong electromagnetic wave on
unique b-transitions of the first forbiddenness class a
make estimates involving two possible mechanisms for
external field interaction associated with direct transitions
the nucleus from the initial (i ) to the final (f ) state, as well
as for a transition through a virtual nuclear state. The sec
mechanism involves the removal of the prohibition owing
the external field and depends strongly on the energ
D«15«12« i or D«25«22« f , where the excited states o
nuclei 1 and 2 have a momentum and parity that permit
allowedb-transition. The quantitiesD«1,2 are actually on the
order of tens or hundreds of keV and can be dominant i
resonance situation, when the energies of the wave pho
are comparable to the transition energies. If the field is
resonant, in the case of real laser intensities the main co
bution to the total probability is from transitions of the fir
type. Retaining the approach used to examine forbiddenb-

12V. N. Rodionov



decay in Ref. 15, we have evaluated the effect of direct tran-
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cess.

2. PROBABILITIES IN A MAGNETIC FIELD AND IN A WAVE
FIELD

The earlier work19 examined the formation of electron
positron pairs by circularly polarized external photons w
energyv8 propagating counter to the photons in a circula
polarized wave in a uniform constant magnetic field. To d
rive expressions for the probability of this process it w
assumed that the wave propagated along the magnetic
If we assume that in an electromagnetic field with this co
figuration a photonv9 propagates counter to the photonv8,
then after the required calculations and transformations
the parameters, the basic formula for the probability
single-photon pair creation19 yields an analogous expressio
for the two-photon process in the form of a double integr
Let us discuss the case of pair formation near the thresh
assuming that

v81v952m1Im, ~7!

where, as before,Im represents the maximum kinetic ener
released in the process, i.e., we shall consider the nonrel
istic limit in accordance withI !1. In this case we can tak
the integral over the energy variable essentially without
strictions on the strengths of the electromagnetic fields wh
make up the configuration. The probability of pair produ
tion depends significantly on the polarization of theg-
photons. The calculations for the case in which the circu
polarizations of the photons coincide yield the probability

W3/25G3/2mE
2`

` cot~mr!

r1/2 eiSdr, ~8!

where

S5
2I

ld
j2H xS d

j22
1

22d D
1

2~12d!

d~22d!2

sin@x~22d!#sin~xd!

sin@2x~12d!# J ,

x5
rl

2
, l5

v

m
, m5

eH

m2 , ~9!

and the remaining notation has been introduced before.
For g-photons with opposite polarizations, the probab

ity of pair production is given by

W5/25G5/2m
2E

2`

` eiS

r1/2sin2~mr!
dr. ~10!

In Eqs.~8! and~10! the constants in front of the integra
are related to the corresponding vacuum probabilitiesW0(n)
for the processes:

Gn5Wn~0!expF i ~n21!p

2 G I 12n

2G~12n!
, ~11!

wheren53/2 andn55/2 correspond to pair production b
photons with the same polarizations and when the polar
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~11! also retains its significance forn59/2 and n511/2,
which correspond to allowed and forbiddenb-decay in these
cases.

For the case of allowedb-decay~n59/2! with a small
energy release, the probability can be written in the form16

W9/25G9/2S m

2 D E
2`

` cot~mr/2!

r7/2 eiSdr, ~12!

where

S5j2
2I

ld H xS d

j221D1
12d

d

sin x sin~xd!

sin@x~12d!#J .

Note that in these integrals all the singularities are shif
into the upper half plane, i.e., the parameters receive a s
negative imaginary contribution which subsequently goes
zero in the limit.

It is also easy to see from a comparison of Eqs.~8!, ~10!,
and ~12! that in the case of an electromagnetic field with
complicated configuration, we are dealing, as before, w
very similar expressions for the integrands in the time rep
sentations of the probabilities for the different process
These analogies become even more evident when we s
the various limiting values of the field parameters up
which the probabilities depend.

Thus, in the limitm→0, d→1 Eq.~8! corresponds to the
probability of formation of a nonrelativistice1e2 pair by
two g-photons with the same polarization in the presence
a circularly polarized wave and coincides with a similar e
pression that was studied in detail in Ref. 13. There an a
ogy was noted between the probabilities of pair format
and low-energyb-decay of tritium in the field of an electro
magnetic wave. The field dependence under the integral
was common to both, while the difference reduced to
characteristic replacement of the square of the charge,e2, by
2e2 and a change in the power-law singularity at zero
integrating with respect to time (t23/2 for pair production and
t29/2 for b-decay!.

It should be noted that similar substitution rules for t
limit m→0, d→1 ~which corresponds to the complete elim
nation of the constant magnetic field from this configuratio!
can be obtained in Eq.~10!, but the power-law factor in the
time dependence for the case of pair production byg-
photons of opposite polarization is different:

W5/25G5/2S l

2D 3/2E
2`

` dx

x5/2 expH i
2I

l Fx~122j2!

12j2
sin2 x

x G J . ~13!

If we make the replacement

2j2→j2,

then the formal dependence of the exponent onj remains the
same as in the case ofb-decay in the field of a circularly
polarized wave. Note that, as before, the singularity in E
~13! at zero is bypassed below.

Another limiting case,j→0, which corresponds to
eliminating the field of the electromagnetic wave from t

13V. N. Rodionov



superposition of electromagnetic fields, yields the probabili-
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ties fore e pair production by twog-photons in a constan
magnetic field. Here if we place no restrictions on the m
netic field strength, Eqs.~8!–~11! yield

Wn5GnmE
2`

` cot~mr!

rn21 eirIdr, ~14!

wheren53/2 corresponds to pair formation by two photo
with identical polarizations andn59/2, to b-decay. In this
case a qualitative convergence of the expressions is atta
by making the replacementm/2→m or substituting 2e in the
case of pair production in place ofe for b-decay. It is inter-
esting that in both the wave and the magnetic field, a tra
tion to the pair production process leads to a formal incre
in the interaction between the charge and field; however,
degrees of increase are different.

Two-photon pair production in a magnetic field has be
studied previously.19–23 The quantity of interest in this case
however, is not the probability but the cross section for
given reaction. Retaining the nonrelativistic approximati
(I !1), we obtain the following cross section for pair pr
duction by photons with identical polarizations from E
~14!:

s15
1

2
mr 0

2Ape23p i /4E
2`

` cot~mr!

r1/2 eirIdr, ~15!

wherer 0 is the classical radius of the electron.
The analogous expression for pair production by t

g-photons with opposite polarizations has the form

s25r 0
2m2Ape3p i/4E

2`

` dr

r1/2 sin2~mr!
eirI . ~16!

In the limit m!I, on expanding cotx at zero and includ-
ing the contributions to the integral from the polesx5pn,
wheren561,62,•••, from Eq. ~15! we obtain

sH
15s2

11s;
1 , ~17!

where

s2
15s0

1 (
k50

`
G~3/2!22kB2k

~2k!!G~3/222k! S m

I D 2k

, ~18!

and

s;
15

s0
1

2 S 2m

I D 1/2

zS 1/2,H I

2mJ D . ~19!

Here theB2k are the Bernoulli numbers,z(1/2,$v%) are the
generalized Riemann zeta functions,24 $v% is the fractional
part of the numberv,

s0
152pr 0

2I 1/2 ~20!

is the pair production cross section in vacuum in the non
ativistic limit ~the Breit-Wheeler cross section!, ands2

1 and
s;

1 are the so-called monotonic and oscillatory contributio
to the cross section.

Limiting ourselves to a few terms in the expansion~18!,
we obtain

14 JETP 86 (1), January 1998
-

ed

i-
e
e

n

e

l-

s

s2
15s0

1H 12
m2

12I 2 1
m4

48I 42
m6

32I 6 1
143m8

1280I 8 1•••J .

~21!

The first term in the expansion~21! coincides with a
result of Ref. 20 obtained by other means. It is extrem
interesting that the root singularity in the oscillatory cont
bution noted previously20,21can be studied numerically usin
the approach we have developed. Figure 1 shows a plo
sH

1/s0
1 as a function of the parameterx5m/I , which mani-

fests the explicit oscillatory behavior of the cross sect
with a divergence at the pointsI /2m→n20, where
n51,2,•••. For these values of the parametersm and I the
product electron and positron have a zero component of
momentum along the magnetic field. In this approach
have neglected the Coulomb interaction between thee1 and
e2, but under the conditions described here it turns out to
the most important process, and the behavior of the cr
section under resonance conditions requires further study
Ref. 20 the cross section for pair production in a magne
field was estimated taking into account the broadening of
Landau levels owing to synchrotron radiation. Note, al
that at the points 2m/I→1/n10 the cross sectionsH

1/s0
1 is

finite and takes on a decreasing sequence of values w
minimum of 0.25 at the pointm5I /2, after which the oscil-
lations in the cross section cease and a linear rise is obse
with increasing field:

sH
15s0

1
m

2I
. ~22!

When the photons have opposite polarizations, the ea
derived expansion

FIG. 1. The cross section for pair production by twog-photons with iden-
tical polarizations,sH

1 , normalized to the vacuum cross section as a fu
tion of the magnetic field strengthx5m/I .
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n50
~21!

~2n!!
z , ~23!

in Eq. ~16! yields

sH
25s2

21s;
2 , ~24!

where

s2
25s0

2 (
n50

4

G~5/2!
22n~122n!B2n

~2n!!G~5/222n! S m

I D 2n

, ~25!

and

s;
25s0

2
3

4 F S 2m

I D 1/2

zS 1

2
,H I

2mJ D2S 2m

I D 3/2

3zS 2
1

2
,H I

2mJ D G . ~26!

The notation follows the same principles as that emplo
for s1 in Eqs.~24!–~26!, with

s0
25

8

3
pr 0

2I 3/2. ~27!

Retaining only some of the terms in the expansion in E
~25!, we have

s2
25s0

2S 12
m2

4I 2 1
3m4

80I 42
5m6

96I 6 1
231m8

1280I 8 1••• D . ~28!

The expansion term;m2/I 2 in Eq. ~28! was cited previously
in Ref. 20, in which the oscillatory contribution~26! was
also calculated. However, that result20 does not contain the
term owing toz(21/2),$v%), whose contribution is decisive
whenm reaches or exceedsI /2. In this case, the cross sectio
s2 goes to zero, as indicated by the plot ofsH

2/s0
2 as a

function of x5m/I in Fig. 2.
Asymptotic expressions for the probability ofb-decay in

an intense magnetic field~i.e., the casen59/2! were calcu-
lated in detail in our earlier paper.16 Here we limit ourselves
to illustrating the field dependence ofW9/2/W9/2(0) in Fig. 3.
The dotted curve corresponds to a calculation with rou
accuracy. Increased computational accuracy leads to an
tremely interesting stepwise dependence. This kind of beh
ior in the total probabilities for the processes in a magne
field is a consequence of including~with a reduction in the
field strength for constant energy release during decay! all
the new channels and new partial channels characterize
an increase in the number of Landau levels.

In this regard, it is interesting that for pair productio
processes by photons with different polarizations it is p
sible to obtain expressions which explicitly take into acco
the appearance of new contributions as the field strengt
reduced,

sH
15s0

1F m

2I
1

m

I (
n51

N
1

~122mn/I !1/2G , ~29!

and

sH
25s0

2
3m2

I 2 (
n51

N
n

~122mn/I !1/2, ~30!
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where N5@ I /2m# is the integral part of the numberI /2m.
These last formulas indicate that, asm/I reaches 1/2 the
cross sections1 increases linearly as the field rises, whi
s2 goes identically to zero.

FIG. 2. The cross section for pair production by twog-photons with oppo-
site polarizations,sH

2 , normalized to the vacuum cross section as a funct
of the magnetic field strengthx5m/I .

FIG. 3. The probabilityWH of b-decay normalized to the vacuum probab
ity as a function of the magnetic fieldt5 log(m/I). The dotted curve is a
rough estimate.
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3. PROBABILITIES FOR LOW MAGNETIC FIELDS WITH
ARBITRARY PLANE WAVE FIELD STRENGTHS
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f

W 5G I 1/2x1/3 I 2
m2

I

The region of relatively low magnetic fields,m!I , is
characterized by the fact that in this case the main contr
tion to the integrals~8!–~10! is from the neighborhood of the
zero point. Given this, we expand the integrands, retain
terms up to and includingx7:

Si5
2I

l S x2
j2

3
x31j2x5Ai1j2x7Bi D , ~31!

where i 51,2. S1 applies tob-decay andS2 to pair produc-
tion processes. The functionsAi andBi depend on the mag
netic field and wave frequency, which are combined in
parameterd:

A152
d2

45
1

4d

45
2

1

45
, A252

2d2

15
1

4d

15
2

4

45
, ~32!

and

B152
2d4

945
1

4d3

315
2

23d2

945
1

4d

315
2

2

945
,

B252
17d4

315
1

68d3

315
2

284d2

945
1

32d

189
2

32

945
. ~33!

It is quite remarkable that in Eq.~31! the terms proportiona
to x3 do not contain any dependence on field parame
other thanj2. Beginning withx5, besides the dependence o
j2, the parameterd, which characterizes the dependence
the probabilities on the frequency characteristics of the co
bined field, ‘‘comes into play.’’ If we retain only the term
up to x3, inclusively, in the exponent while the remainin
terms are written in the form of an expansion, then we c
obtain a series which contains the limit of a constant cros
field as the zeroth approximation.

Writing the trigonometric functions in the preexpone
tial factors in the integrals of Eqs.~8!–~10! as expansions in
the neighborhood of the zero point yields yet another se
containing other parameters. It is important that both th
and the other estimates of the integrals~8!–~10! can be made
assumingm!I without restrictions on the parameterx. Since
the expressions obtained by simultaneous expansion of
exponential and trigonometric functions are so cumberso
we shall do this in two stages. First, we examine the con
butions to the integral of Eq.~8! owing to the expansion o
cotx about zero, retaining only terms up to and includingx3

in the exponential. In this case the integral~8! can be written
in the form

W3/25G3/2I
1/2x1/3E

2`

` dz

z3/2 exp@ i ~zx22/32z3/3!#

3S 12
m2z2

3I 2x4/32
m4z4

45I 4x8/3D . ~34!

Using the notation

I ~n!5E
2`

`

dz zn exp@ i ~zx22/32z3/3!#, ~35!

for the probability of pair production, we shall have
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3/2 3/2 H ~23/2! 3I 2x4/3 ~1/2!

2
m4

45I 4x8/3 I ~5/2!J , ~36!

where

I ~23/2!5
2iA

22/3x1/3 S AyF21
F82

Ay
D , ~37!

I ~1/2!5 i21/3AFF8, ~38!

and

I ~5/2!5
Ai

2
~4yFF82F2!, A5

4eip/4

21/3Ap
, ~39!

while F andF8 are the Airy function and its derivative with
respect to the argument (2y), with y51/(2x)2/3. Thus, for
the probability of pair production by twog-photons with the
same polarizations we have

W3/25
W3/2~0!

p H K0
12

m2

3I 2 K1
11

m4

90I 4 K2
1J , ~40!

where

K0
15AyF21

F82

Ay
, K1

15
1

x
FF8, ~41!

and

K2
15

1

x2 SAyF22
2

x
FF8D . ~42!

Note that when the oscillatory terms are neglected asx→0

K0
1→p, K1

1→
p

4
, K2

1→
15

8
p, ~43!

and Eq.~40! yields the expansion~21! characterizing two-
photon pair production in a magnetic field.

Similar calculations forn55/2 andn59/2 give

W5/25G5/2I
3/2xH I ~25/2!1

m2

3I 2x4/3 I ~21/2!

1
m4

15I 4x8/3 I ~3/2!J , ~44!

and

W9/25G9/2I
7/2x7/3H I ~29/2!2

m2

12I 2x4/3 I ~25/2!

2
m4

720I 4x8/3 I ~21/2!J , ~45!

where

I ~25/2!52
24/3A

3x S AyF21
F82

Ay
2xFF8D , ~46!

I ~21/2!5AF2, I ~3/2!5A221/3AyS AyF22
F82

Ay
D .
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y51/(2x)2/3. Thus, it is possible to compare directly the
ro-
pa-
ters
etic
ly
3,

hy
m

I ~29/2!5105 22/3x7/3 FAyF S 11
4

x D1
Ay

3S 11
15

4
x2D2xFF8G .

Finally, for the probabilities withn55/2 and n59/2, we
obtain

W5/25
W5/2~0!

p H K0
22

m2

2I 2 K1
22

m4

20I 4 K2
2J , ~47!

and

W9/25
W9/2~0!

p H K01
35

12 S m

2I D
2

K12
7

24 S m

2I D
4

K2J ,

~48!

where

K2
25x22S AyF22

F82

Ay
D ,

K0
25K15AyF21

F82

Ay
2 xFF8, K1

25K25AyF2,

K05AyF2S 11
21

4
x2D1

F82

Ay
S 11

15

4
x2D2xFF8.

Note that in the limitx→0 when the oscillatory terms ar
neglected, Eqs.~47! and~48! also lead to the expansion for
purely magnetic field.~See Eq.~28! and the corresponding
formula in Ref. 16.!

4. ASYMPTOTIC ESTIMATES OF THE PROBABILITIES FOR
x!1

We now consider the situation in which, along with co
tributions ;(m/2I )2k, where k50,1,2,•••, to the process
probabilities there will be contributions owing to the expa
sion in terms of the parameters of a plane wave field. T
corresponds toj@1 and, if we restrict ourselves in this cas
to the main contributions from the expansion in terms
m/2I and expand the exponent in Eqs.~8!–~12! beginning
with terms containing the parameterd, then, for example, for
the probability ofb-decay we can obtain

W9/25G9/2S l

2D 7/2E
2`

` dx

x9/2 expF i
2I

l S x2
j2x3

3 D G
3F11 i

2I

l
j2~x5A11x7B1!G . ~49!

The characteristic integrals in Eq.~49! can also be re-
duced to Airy functions, whose properties in this limit ha
been analyzed in detail elsewhere.13 In our earlier paper16 a
method was developed for investigating similar integrals
the case ofb-decay in an intense electromagnetic field bas
on using integral Mellin transforms.5,7,8,16,24 Using that
method, we can obtain closed formulas for the asympt
behavior of the bilinear combinations of Airy function
F2(2y), F82(2y), andF(2y)F8(2y) as y→`, where
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results obtained by different methods for studying decay p
cesses and pair production in the overlap region for the
rameters of a purely plane wave field and for the parame
characterizing the superposition of a wave field and magn
field. Here an analysis of pair production by two opposite
polarizedg-photons, which was not discussed in Ref. 1
may be of independent interest.

Without dwelling on the details of these rather lengt
transformations, we write down the final results in the for

F2~2y!5
p

2Ay
(
n50

`

~21!nx2nH G~3n11/2!

G~1/2!G~n11!3n

1a2n sin
2

3x
2xa2n11 cos

2

3xJ , ~50!

F82~2y!5
pAy

2 (
n50

`

~21!nx2nH F11
3

2
x2~6n11!

3~2n11!G G~3n11/2!

G~n11!G~1/2!3n

2S a2n1
9

4
x2dnD sin

2

3x
1

3x

2

3S f n2
9

4
x2gnD cos

2

3xJ , ~51!

and

F~2y!F8~2y!5
p

2 (
n50

`

~21!nx2n

3H x
G~3n13/2!

G~1/2!G~n11!3n

2
3

2
xbn sin

2

3x
2S a2n1

9

4
x2cnD

3cos
2

3xJ , ~52!

where we have introduced the notation

bn5
2

3
a2n112S 2n1

1

3Da2n , cn5
4

3
a2n11S n1

2

3D ,

dn5S 16

3
n1

28

9 Da2n112S 16

3
n1

2

3
18n2Da2n ,

f n52S 8n1
2

3Da2n1
2

3
a2n11 ,

gn5
16

9
~3n12!~n11!a2n11 ,

and the coefficientsam are calculated using the formula16

am5 (
k50

2m
~2k21!!!

32m2k~2m2k!! ~2k!!!

G~3m2k11/2!

G~1/2!
.

~53!
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With these expressions it is easy to calculate the
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by
asymptotic variations in the probabilities of the proces
being studied here. In particular, for the case ofb-decay,
Eqs.~31! and ~49! imply that

W9/25
W9/2~0!

p H AyF2S 11
21

4
x21

105

16
B1

x4

j4 D
1

15

4
x2

F82

Ay
S 11OS x2

j6 D D2xFF8

3S 11
105

8

x2

j2 A11
105

8

x2

j4 B1D J . ~54!

On substituting the expansions~50!–~52! in Eq. ~54!, for the
limit x!1 we obtain

W9/2

W9/2~0!
511

35

8
x21

35

128
x42S 35

32D
2

x62
105

32

x4

j2 A1

1
1575

128

x6

j4 B11S 105

16
x42

603575

1536
x6

2
35

64

x4

j2 A11
175

64

x4

j4 B1D
3sin

2

3x
1S 2

3115

64
x51

105

16

x3

j2 A1

1
105

16

x3

j4 B1D cos
2

3x
. ~55!

Note that ford51, which corresponds to a transition to th
case of the field of an electromagnetic wave, Eq.~55! yields
an expression which reproduces the results of Ref. 13 in
first terms of the expansion~up to and includingx4!. For
fixed values ofd equal to 1/2 and 0, Eq.~55! transforms to
the analogous expansions of Ref. 16. Here we point out
for udu@1 the parametersAi increase asd2 with magnetic
field, while theBi increase asd4. This may mean that for
udu.j the main contribution to the oscillatory terms will b
determined by corrections containing the frequency cha
teristics of the field.

By analogy, for pair production we obtain

W3/25
W3/2~0!

p H AyF2F11
A2

2j22
B2

j4 S 7

4
x22

1

2D G1
F82

Ay

3S 12
A2

2j22
B2

2j4D1xFF8S 3

2

A2

j2 15
B2

j4 D J , ~56!

and

W5/25
W5/2~0!

p H AyF2S 12
3A2

4

x2

j22
21B2

8

x2

j4 D1
F82

Ay

3S 11
15B2

8

x2

j4 D2xFF8S 12
3A2

2j22
3B2

2j4 D J .

~57!

Whenx!1, Eq. ~56! yields
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W3/2~0! 8 128 1024 j2 S 32

2
45045

256
x6D2

B2

j4

10395

28
x61cos

2

3x

3F2
1

2
x1

1225

576
x32

57482425

995328
x51

A2

j2

3S 2
17

24
x2

1225

20736
x3D1

B2

j4 S 2
59

24
x

1
1925

20736
x3D G1sin

2

3x F2
17

24
x21

199115

20736

3x41
A2

j2 S 1

2
1

35

576
x22

86975

995328
x4D1

B2

j4

3S 1

2
2

385

576
x21

9625

995328
x4D G . ~58!

Note that, as in the case ofb-decay, ford51 Eq.~58! yields
a result that characterizes the effect of the electromagn
wave field. These corrections to the probability for the u
perturbede1e2 pair production process by twog-photons
with identical polarizations in this limit in the first terms o
the expansion~monotonic contributions up tox4/j2 and os-
cillatory to x! also agree with the analogous results from R
13. It should, however, be emphasized that the transition
the pair production case is characterized by an enhanced
effect owing to the specific features of the integral dep
dence in Eq.~12! compared to that in Eq.~8!. This shows up
through the fact that the oscillatory contributions exceed
perturbation theory corrections, as noted in Ref. 13. Incl
ing the total field in this case leads to a still clearer dem
stration of the possibility of separating the oscillatory cont
butions, since it follows from Eq.~58!, in particular, that for
udu;j the term proportional to sin(2/3x) can, in general, be
dominant.

Similar calculations for the case of pair production
two photons with different polarizations yield the result

W5/2

W5/2~0!
512

x2

8
1

35

128
x42

5005

1024
x61

A2

j2 S 2
45

32
x4

1
10395

256
x6D1

B2

j4

2835

128
x61cos

2

3x F35

16
x3

2
805805

13824
x51

A2

j2 S 2
3

4
x1

25

384
x3

2
9625

663552
x5D1

B2

j4 S 2
3

4
x2

35

384
x3

2
89425

663552
x5D G1sin

2

3x F2
3

4
x21

3745

384
x4

1
A2

j2 S 2
15

16
x21

575

13824
x4D1

B2

j4 S 2
35

16
x2

1
665

13824
x4D G . ~59!
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A comparison of Eqs.~58! and ~59! reveals clearly the
decreasing oscillatory field dependence (x!1) of the prob-
ability for n55/2 compared ton53/2. Thus, in particular, in
the limit d→1 ~electromagnetic wave field! we can see tha
if the main term characterizing the oscillatory behavior
n53/2 is proportional to

2
1

2
x cos

2

3x
, ~60!

then forn55/2 we have

2
3

4
x2 sin

2

3x
. ~61!

Including the dependence on the characteristics of the t
field has shown that whend2;j2@1 the main oscillatory
dependence forn55/2 is concentrated in the term propo
tional to

2
3

4
x

A2

j2 cos
2

3x
. ~62!

Figures 4, 5, and 6 show plots of the probabiliti
Wn /Wn(0) for n53/2, 5/2, and 9/2 as functions of the plan
wave field parameterx for different values of (d/j)2. It
should be noted that forudu@1 andj@1 a new parameter,

g25
d2

j2 , ~63!

arises which characterizes the complete probabilities of
these processes. It is easy to see that forudu@1 the new
parameter represents the ratio of twice the energy of the
quency shift of the charged oscillator in the magnetic field
the work of the field at the electron Compton wavelength

FIG. 4. The normalized probability of pair production,W3/2 as a function of
the parametert5(2/3)log(2x) for different values ofg: g250(1), 0.1 ~2!, 1
~3!.
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g2.
vH

2

v2

v2m2

e2E2 5
H2

E2 . ~64!

Thus, in this limitg is independent of the frequency chara
teristics of the field, but is determined by the ratio of t
strength of the constant magnetic field to the field amplitu
of the electromagnetic wave. From the standpoint of poss

FIG. 5. The normalized probability of pair production,W5/2, as a function of
the parametert5(2/3)log(2x) for different values ofg; g250 (1), 0.1 ~2!,
1 ~3!.

FIG. 6. The normalized probability ofb-decay,W9/2, as a function of the
parametert5(2/3)log(2x) for different values ofg; g250(1), 10 ~2!, 101.5

~3!.
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experiments, there may be special interest in the region
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E;H, where the oscillatory contributions increase and m
greatly exceed the perturbation theory corrections. A co
parison of the probabilities for the processes withn53/2,
5/2, and 9/2 also shows that those with lower values ofn are
more subject to the influence of the field. This is also in
cated by the graph in Fig. 4, which corresponds toe1e2 pair
production by two photons with identical polarizations.

There is also interest in making an asymptotic expans
of the probabilities for the different values ofn and x!1
using Eqs.~40!, ~47!, and ~48!. With the aid of the expan-
sions~50!–~52! it is easy to obtain a representation ofWn in
the form of a series in powers ofx with coefficients that
depend on the parameterm/I . Limiting ourselves to the first
terms of the expansion, we have

W3/2

W3/2~0!
512

m2

12I 2 1
m4

48I 4 1S 1

8
1

35m2

96I 2 2
77m4

128I 4Dx22S 105

128

1
5005m2

512I 2 Dx41sin
2

3x F m4

216I 4

1

x22
m2

72I 2

2
115m4

186624I 4 1S 2
17

24
1

3115m2

62208I 2Dx2

1
199115

20736
x4G1cos

2

3x F m4

90I 4

1

x3 1S m2

6I 2

2
5m4

5184I 2D 1

x
1S 2

1

2
1

35m2

1728I 2Dx1
1225

576
x3G ,

~65!

W5/2

W5/2~0!
512

m2

4I 2 1
3m4

80I 4 1S 2
1

8
1

5m2

32I 22
63m4

128I 4Dx2

1S 35

128
2

1115m2

512I 2 1
45045m4

2048I 4 Dx4

1sin
2

3x F2
m4

20I 4

1

x22
m2

4I 2 1
m4

5760I 4

1S 2
3

4
1

205m2

1152I 2Dx21
3745

384
x4G1cos

2

3x

3F2
m4

240I 4

1

x
1S 5m2

48I 22
133m4

41472I 4Dx1S 35

16

2
22715m2

41472I 2 Dx32
805805

13824
x5G , ~66!

and

W9/2

W9/2~0!
511

35m2

48I 2 2
7m4

768I 4 1S 35

8
2

35m2

384I 2

1
35m4

6144I 4Dx21S 35

128
1

1225m2

6144I 2

2
2695m4

32768I 4Dx41sin
2

3x F2
7m4

768I 4
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S 64I 2 221184I 4D S 16

1
131075m2

18432I 2 Dx42
603575

1536
x6G

1cos
2

3x F 35m4

9216I 4 x1S 1225m2

768I 2

2
159005m4

7962624I 4Dx32
3115

64
x5G . ~67!

With the aid of these formulas we can see that the
pansions in terms of the parametersx and m/I are in com-
plete agreement with the corresponding terms in the exp
sions in a constant plane wave field, as well as in a cons
magnetic field, taken separately. Furthermore, in Eqs.~65!–
~67! there are combination terms which in the monoton
part of the expansion have a regular character with respe
the parameterx for all three processes considered here. T
oscillatory contributions to the pair production processes,
the other hand, contain terms which are proportional to
verse powers of the plane wave parameterx!1:

n5
3

2
:

m4

I 4 S 1

90x3 cos
2

3x
1

1

216x2 sin
2

3x D , ~68!

and

n5
5

2
:

m4

I 4 S 2
1

20x2 sin
2

3x
2

1

240x
cos

2

3x D . ~69!

Thus, we conclude that in a combination field when t
allowable values of the parametersm!I andx!1 are taken
into account, situations may arise in which the oscillato
contributions will predominate over the perturbation theo
corrections, but the character of the enhancement in the
tributions ~68! and ~69! is different from that of Eqs.~58!
and ~59!.

5. FORBIDDEN b-DECAY IN A PLANE WAVE
ELECTROMAGNETIC FIELD

Forbiddenb-decay in an intense electromagnetic wa
field has been examined previously.15 Two mechanisms for
the reduction in the decay half life of nuclei in an extern
field were evaluated, one owing to an increase in the ph
volume of the states of the product electron and the ot
owing to absorption by the nucleus of photons from the wa
and a change in the selection rules for a forbidden transi
into an allowed one. It was shown15 that, despite a number o
previous estimates18 in which it was predicted, for example
that the probability of the forbidden transition113Cd→113In
should increase by 12 orders of magnitude, at the curre
attainable electromagnetic field intensities the removal of
prohibition by the external field would not lead to any n
ticeable reduction in the half life of the nuclei. Neverthele
it was established that for forbiddenb-decay the effect of an
external field on the product electron is more significant th
in the case of allowedb-transitions.

In this regard, it is interesting to estimate the probabil
of forbiddenb-decay in a plane wave electromagnetic fie
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for the case in which the frequency dependence is unimpor-
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tant. It is easy to see that in this limit (v→0) the main
contribution to the probability will originate in the influenc
of the external field on the electron. If we limit ourselves
the case of the uniqueb-transitions of the first forbiddennes
class and assume that the interaction of the parent
daughter nuclei with the external field can be neglected
tirely, after a number of transformations the probability r
duces to a form that was studied in detail in Section 3:

W11/25G11/2I
9/2x3F I ~211/2!2

2i

3
I ~25/2!G , ~70!

where

I ~211/2!52
2i

9 @ I ~25/2!2x22/3I ~29/2!# .

Substituting the expressionsI (25/2) and I (29/2) in Eq. ~70!,
we finally obtain the following for the forbiddenb-decay
probability:

W11/25
W11/2~0!

p FAyF2S 11
161

4
x2D1

F82

Ay

3S 11
155

4
x2D2xFF8~1135x2!G . ~71!

Using Eqs.~50!–~52!, from Eq. ~71! for x!1 we have

W11/2

W11/2~0!
511

315

8
x22

525

128
x41

8575

1024
x61sin

2

3x

3S 2
315

16
x42

26425

512
x6D1cos

2

3x S 1785

64

3x51
29904875

18432
x7D . ~72!

The correction of orderx2 is consistent with the result ob
tained in Ref. 15. The oscillatory contributions indicate
similar field dependence for the probabilities of forbidd
and allowedb-transitions. In both cases the oscillations sh
up only in terms;x4. A comparison of the expansions o
Wn for different values ofn53/2, 5/2, 9/2, and 11/2 demon
strates clearly an enhancement in the numerical coefficien
x2 with increasingn. Here, however, the contribution of th
oscillatory corrections decreases. Figures 7 and 8 show p
of the probabilities of pair production by photons with d
ferent polarizations, as well as of the probabilities of allow
and forbiddenb-processes, as functions of the crossed fi
parameterx which also confirm our conclusions regardin
the monotonic and oscillatory behavior of the probabilit
for these processes.

6. CONCLUSION

This study of different processes in external electrom
netic fields with rather complicated configurations includi
a constant magnetic field and a circularly polarized elec
magnetic wave provides a basis for a number of conclus
regarding the behavior of the probabilities of these proces
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over wide ranges of variation in the field parameters, alm
without restrictions on the field strengths involved in t
superposition.

1. The probabilities of these processes, which are dif
ent in nature, nevertheless have a similar field dependenc
the time integral representations for the nonrelativistic lim
The distinguishing features in this case essentially reduc
different power law dependences for the functions of tim
t2n, in the integrands, where in the absence of a field
haven53/2 for pair production by two photons with ident
cal polarizations,n55/2 for pair production by twog-
photons with different polarizations,n59/2 for allowedb-

FIG. 7. The normalized probabilitiesW3/2 ~curve1! andW5/2 ~curve2! as
functions of the plane wave field parametert5(2/3)log(2x).

FIG. 8. The normalized probabilities ofb-decay for allowed,W9/2 ~curve1!,
and forbidden,W11/2 ~curve2!, b-transitions as functions of the plane wav
field parametert5(2/3)log(2x).
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decay, andn511/2 for the uniqueb-transitions in the first
e
fie
m

a
ce
u
r

-
n

io
th
el
th
se
bi
io

or
e
en

n
-

a
th
th

o
te
he
e

d
he
ec
ri
ns
-
u

te
or
th

s
ld

f
ze
t i
fo
le
r
ob

abilities for pair production near these points require special
the
es.

uc-
r
ed
to

he

ee
ter-
on-

he
ced

he
-
ce

er
f the

V.
e
nter

of
ers-

-

.
iya

h.
forbiddenness class. These analogies make it possibl
study all these processes in an external electromagnetic
with a complicated configuration via a single approach e
ploying integral Mellin transforms.5,16

2. In the case of sufficiently weak magnetic fieldsm!I
the processes are mainly shaped by the plane wave field
for frequenciesv!Im the leading term is a field dependen
in a form characteristic for a constant crossed field. It sho
be noted that this case has been analyzed in detail befo13

for processes withn53/2 andn59/2. However, in an elec
tromagnetic field consisting of the superposition of a co
stant magnetic field and a wave field, when the condit
vH@v is satisfied, even when each of the parameters in
inequality is not large as before, the character of the fi
dependence can change significantly. In particular, for
processn55/2 it can be seen that if interference proces
are of orderx2 in a constant crossed field, then the com
nation field leads to a reduction in the order of the correct
in x by unity, i.e., it already shows up in terms;x. A
similar reduction in the order of appearance of the oscillat
corrections is also observed in the case of the proc
n59/2. In this case the reduction in the order of the dep
dence onx is from x4 to x3. It is known that forn53/2 in a
plane wave fieldx!1, the oscillatory corrections~interfer-
ence effects! exceed the perturbation theory corrections a
already show up in terms of orderx. In the case of super
posed fields subject to the conditionvH /v>j@1, the analo-
gous contributions no longer depend onx!1. Under these
conditions a new parameter arises which in this approxim
tion is independent of the frequency characteristics of
field but is determined by the ratio of the strengths of
fields constituting the configuration. Note that in the case
the unique transitions of the first forbiddenness class, in
ference effects in show up in the total probability for t
process in a constant plane wave field, as in the cas
allowed b-decay, in terms;x4. We might expect that for
transitions in the higher forbiddenness classes this tren
the behavior of the corrections to the total probability for t
process owing to the effect of the field on the product el
tron would be retained. In this case the degree of singula
at zero in the time integral representatio
(n513/2, 15/2...), would increase, which leads to an in
crease in the monotonic contributions and a relative red
tion in the role of interference effects. Then, as no
previously,15 the corrections to the transition probabilities f
the higher forbiddenness classes owing to removal of
prohibition in an external field can only become smaller.

3. Representing the total probabilities for these proces
in the form of expansions in terms of the magnetic fie
parameterm/I shows that in this case forn53/2, 5/2 there
are root singularities at the pointsI 52mn, wheren51,2... ,
which have been pointed out before.20,21 For these values o
the parameter the product electron and positron have a
component of the momentum along the magnetic field. I
easy to see that the divergence in the total probability
certain values of the parameter is a consequence of neg
ing the interaction of thee1 ande2 and shows up when thei
velocities are smallest. Studies of the behavior of the pr
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consideration, which with a more rigorous statement of
problem should, of course, eliminate these singulariti
With increasing magnetic field form5I /2 the oscillatory be-
havior in the probabilities and cross sections for pair prod
tion ceases and form.I /2 the cross section rises linearly fo
n53/2, while when the photons are oppositely polariz
(n55/2) their intersection cross section goes identically
zero.

4. The asymptotic expansions of the probabilities for t
processes withn53/2, 5/2, and 9/2 form!I andx!1 have
been written in the form of series in powers ofx with coef-
ficients depending on the parameterm/I . In this case, along
with the combination terms, which are regular for all thr
processes in the monotonic part of the expansion, the in
ference contributions in the pair production processes c
tain terms proportional to inverse powers ofx!1: ;x23 for
n53/2 and ;x22 for n55/2. This sort of behavior also
indicates that in a combination field for certain values of t
parameters the role of interference effects may be enhan
compared to the case of a purely plane wave field.

5. The numerical calculations of the probabilities of t
processes withn53/2, 5/2, 9/2, and 11/2 shown in the fig
ures clearly illustrate the reduced contribution of interferen
effects with increasingn, which characterizes one or anoth
process and simultaneously leads to an enhancement o
monotonic dependences.
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Éksp. Teor. Fiz.94~1!, 56 ~1988! @Sov. Phys. JETP67, 30 ~1988!#.

11M. B. Voloshchin, Yad. Fiz.38, 814 ~1983!.
12A. I. Nikishov and V. I. Ritus, Zh. E´ ksp. Teor. Fiz.85, 24 ~1983! @Sov.

Phys. JETP58, 14 ~1983!#.
13A. I. Nikishov and V. I. Ritus, Zh. E´ ksp. Teor. Fiz.85, 1544~1983! @Sov.

Phys. JETP58, 898 ~1983!#.
14E. Kh. Akhmedov, Zh. E´ ksp. Teor. Fiz.85, 1521~1983! @Sov. Phys. JETP

58, 883 ~1983!#.
15E. Kh. Akhmedov, Zh. E´ ksp. Teor. Fiz.87, 1541~1984! @Sov. Phys. JETP

60, 884 ~1984!.

22V. N. Rodionov



16V. N. Rodionov, Zh. E´ ksp. Teor. Fiz.111, 3 ~1997! @JETP84, 1 ~1997!#.
17W. Becker, W. H. Louisel, J. D. McCullen, and M. O. Scully, Phys. Rev.

21B. A. Lysov, O. S. Pavlova, and A. F. Zhuravlev, Vestnik MGU. Fizika.
Astronomiya12~5!, 557 ~1971!.

a

Lett. 47, 1262~1981!.

18H. Reiss, Phys. Rev. C27, 1199~1983!.
19A. E. Lobanov, V. N. Rodionov, and V. R. Khalilov, Yad. Fiz.32, 174

~1980! @Sov. J. Nucl. Phys.32, 90 ~1980!#.
20A. E. Lobanov and A. R. Muratov, Zh. E´ ksp. Teor. Fiz.87, 1140~1984!

@Sov. Phys. JETP60, 651 ~1984!#.
23 JETP 86 (1), January 1998
22Yee Jack Ng and Wu-yang Tsai, Phys. Rev. D16, 286 ~1977!.
23O. F. Dorofeev and V. N. Rodionov, Vestnik MGU. Fizika. Astronomiy

23~3!, 90 ~1982!.
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Electric currents of excitations in the one-dimensional attractive Hubbard model

S. I. Matveenko

Landau Institute for Theoretical Physics, Russian Academy of Sciences, 117940 Moscow, Russia
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We have calculated electric currents of various types of excitations in the Hubbard model. Both
spin and charge excitations carry the electric current. The electric charge is a continuous
function of the band filling and the single-site repulsion potential. ©1998 American Institute of
Physics.@S1063-7761~98!01401-2#

1. INTRODUCTION U,0 and generalize some results to theU.0 case.
o
rit
n
a
,

or

er
u
ith

rg

ic
te
b
s
ti

ns
fe
um
or

ita
s

om
rg
th

th
ha
re
c

on
a
ge

ot
t
it

x

p-

ts of

e
um-

5-
Electron–electron interactions have a great effect
properties of one-dimensional systems. This results in c
cal behavior atT50 with algebraic decay of correlatio
functions. The particle momentum distribution differs from
Fermi-liquid step function. As distinct from a Fermi liquid
such systems are called Luttinger liquids. In the framew
of the one-dimensional (1D) Hubbard model with attractive
interaction we investigate the electrical conductivity prop
ties of the excitations. Interest in this model arises beca
the Hubbard model with attraction is the simplest one w
dominant superconductivity fluctuations.

In contrast to Fermi systems, where the electric cha
of the quasiparticles can have integer valuese or 2e, we will
show that the value of the electron charge of one-part
states can depend continuously on the system parame
The charge of the one-particle excitations is defined
q5 j /v, wherej 52]e/]A is the electric current, defined a
the derivative of the energy with respect to the magne
vector potential, andv5]e/]p is the velocity of the excita-
tion. We will find that the spin and particle–hole excitatio
near the Fermi surface carry the electric current. This ef
is absent for models with an exactly linear electron spectr
so that in the weak coupling regime the current is prop
tional to the Fermi-velocity dispersion.

Some time ago unusual electrical properties of exc
tions were found in 1d electron–phonon Peierls systems. A
a result of the electron–phonon interactions a transition fr
a metallic to an insulating state with creation of a cha
density wave takes place. It was found that excitations in
Peierls system~solitons, polarons!1,2 may have fractional
charges depending continuously on the band filling and
electron–phonon coupling constant. But it is obvious t
after integrating the Peierls model over the phonon deg
of freedom we will have an electron model with some effe
tive electron–electron interaction~attraction!. For example,
we get in the quantum limit~the ion mass tends to zero! an
effective ‘‘g-ology’’ Hamiltonian with a backscattering term
due to the electron–phonon interaction. Therefore excitati
in the two systems may have common properties. We h
found indeed that both model excitations carry noninte
electric charges.

The plan of the paper is as follows. In Sec. 2 we qu
known results that are needed. In Sec. 3 we calculate
currents and charges of excitations for the model w
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2. PROPERTIES OF THE MODEL

2.1 Attractive interaction

The Hamiltonian for the Hubbard ring in a magnetic flu
F is

H52(
j ,s

$cj ,s
† cj 11,s exp~ in!1H.c.%14U(

j
nj ,↑nj ,↓

2
h

2 (
j

~nj ,↑2nj ,↓!2m(
j ,s

nj ,s , ~1!

whereNa is the number of sites,cn,s
† ,cn,s are the creation

and annihilation operators for electrons with spinss5↑,↓,
U,0 is the onsite attraction amplitude of particles with o
posite spins,h is the spin magnetic field,m is the chemical
potential,

n52pF/NaF0 , F5ANa ,

F05hc/e is the magnetic unit flux, andA is the vector po-
tential of the orbital magnetic field.

The electric current by definition is

j 52
]H

]AU
A50

. ~2!

The ground state and excitations are described by se
quasimomentakj , and rapiditiesla , which are solutions of
the Bethe ansatz~BA! equations3

Nakj2Nan2 (
b51

M

u~2 sin kj22lb!52pI j ,

j 51, ...,N, ~3!

NaP0~la!22Nan2(
j 51

X

u~2la22 sin kj !

2 (
b51

M

u~la2lb!52pJa , a51, ..., M , ~4!

where

u~x!52 arctan~x/2u!; u5uUu.

N52M1X is the number of particles,M is the number of
pairs, X is the number of unpaired particles, andP0(la)
52 Re arcsin (la2iu) is the bare momentum of a pair. W
treat states with a number of singlet bound pairs and a n

11505$15.00 © 1998 American Institute of Physics
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the caseU.0, where all wavenumbers are real in the grou
state, all particles are paired and the wavenumbers are c
plex. If the external magnetic field exceeds some criti
valuehc, unpaired electrons are formed. Equations~3! with
real numberskj describe electrons with uncompensated u
spins. Singlet bound pairs are characterized by a pair of c
plex wavenumberska

6 and a rapidityla connected through
the relation

sin ka
65la6 iu, a51,...,M .

Equations~4! are obtained from the equations of Lie
and Wu4 by eliminating the complex wavenumberska

6 .
In the ground state the numbersI j , Ja are distributed

symmetrically about zero. They satisfy

I j5
1

2
~12N12M !1 j 21, Ja5

1

2
~12M !1a21.

In the case of moderate fieldsh,hc, all spins are paired
(X50).

The system energy is

W5(
j

@e0~kj !2m#1(
a

@E0~la!22m#, ~5!

where

E0~la!524 ReA12~la2 iu !2,

e0~kj !522 coskj2
h

2

are the bare energies of pairs and unpaired electrons.
The momentum is

P5(
j

~kj2n!1(
a

@P0~la!22n#.

The density functions of thek andl distributions are usually
introduced as

r~k!5
1

2p

dp~k!

dk
, s~l!5

1

2p

dp~l!

dl
,

where

p~k!5k2
1

Na
(
b51

M

u~2 sin k22lb!,

p~l!5P0~la!2
1

Na
(
j 51

X

u~2la22 sin kj !

2
1

Na
(
b51

M

u~la2lb!.

In the thermodynamic limit Eqs.~3! and~4! can be writ-
ten in the matrix form3

r~k,l!5r0~k,l!1K ^ r~k8,l8!, ~6!

where

r~k,l!5~r~k!,s~l!!T,
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d
m-
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0 S 2p 2p dl D
K~k,luk8,l8!5S 0 22 coskK~2~sin k2l8!!

22K~2~l2sin k8!! 2K~l2l8!
D ,

K~x!5
1

2p

du~x!

dx
5

1

2p

4u

4u21x2 .

The product^ indicates the usual matrix product and int
gration over the common variables, from2Q to Q over k
and from2L to L overl, respectively; the superscript ‘‘T’’
means matrix transposition.

Equation~5! acquires the form

W5e0
T

^ r5r0
T

^ e,

where

e5e01KT
^ e, ~7!

e5(e(k),e(l))T are the excitation energies of unpaire
electrons and of the pairs,e05(e0(k)2m,E0(l)22m)T.

It is known that for magnetic fields less than the critic
value h,hc the spectrum of paired excitations is gaple
(e(6L)50), while unpaired electron states have a g
e(k50)Þ0.

The matrix of dressed charges is defined by3,5

j~k,l!5S j1
1~k! j1

2~k!

j2
1~l! j2

2~l!
D , ~8!

where

j~k,l!5S 1 0

0 1D 1KT
^ j. ~9!

For the caseh,hc only the functionj2
2(l)5Z(l) is

relevant, and it satisfies the equation6

Z1E
2L

1L

K~l2l8!Z~l8!dl851,

1

2
<Z~l!<1,

]Z

]L
,0,

]Z~l!

]u
.0. ~10!

The solution of this equation is known in some limits:

r→1, 2Z2~L!512
1

2 ln@C/~12r!#
,

C5A 8

pe
I 0S p

2uD , r51, 2Z2~L!51,

r→0,
r

u
→0, 2Z2~L!5

1

2 S 11
r

2
A11

1

u2D .

For magnetic fieldsh.hc1 the gap in the spectrum o
unpaired excitations closes (e(0)50) and for h5hc2 the
system undergoes a transition into the saturated ferrom
netic ground state. In the regionhc2.h.hc1 the dressed
charge matrix has been found in Ref. 7 as
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The particle–hole excitations of pairs are described by a
0
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j~Q,L!5S 2

2
1

2
2kk0 S 11

u

2pl0
D 1

&

D ,

where

k5
ln 2

2u
, k05Ah2hc

h
,

h5122E
0

` tdt J1~ t !

11exp~2ut!
.0, l05

2u

p
ln

C

12r
.

2.2. Repulsive interaction

Similar equations are valid for the model withU.0.
The matrixK differs from ~6! only in the signs of the non
diagonal terms. A density functionr(k) describes the distri-
bution of particle quasimomenta and the functions~l! de-
scribes the rapidities of spin-down particles. The energy
the momentum are

W52( 2 coskj , p5( ~kj2n!.

The dressed charge matrix is5

j5S j~k! j~k!/2

0 &/2 D , ~11!

wherej(k) satisfies the equation

j~k!511E
2Q

Q

dk8 cosk8K̃~sin k2sin k8!j~k8!, ~12!

K̃5
1

2p E
0

` e2vu

cosh~vu!
cos~vl!dl.

The solution 1<j(Q)<& is known in some limiting cases:5

sin Q/u!1, j~Q!511sin Q ln 2/~pu!;

r51, Q5p, j~Q!51, 0,u,`;

r→1, j~Q!511 ln 2~12r! f ~u!/u,

f ~u!512E
0

`

dx J0~x!exp~2ux!/coshxu;

r!1,u, j~Q!511r ln 2/u;

u@1, j~Q!511sin pr ln 2/~pu!;

u!sin Q, j~Q!5&@12u/~2p sin Q!#.

3. ELECTRIC CURRENTS

3.1. Attractive interaction

3.1.1. Gapless paired excitations(h,hc1). In the
ground state all particles are bound into singlet pairs. T
lowest excitations are gapless excitations of bound pairs.
a sufficiently strong magnetic field (h.hc) unpaired elec-
tron excitations are gapless too.
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d

e
or

set of numbersJa5Ja1Q(a2a0) ~for hole excitations!,
where$Ja

0% and$la
0% are the ground-state sets. HereQ(x) is

the usual step-function.
From ~3! we find an equation for the functions̄(la)

5Nas(la)dla :

s̃~l!1E
2L

L

K~l2l8!s̃~l8!dl85Q~l2l0!1
2F

F0
,

~13!

wheredl5la2la
0 is the shift of a numberla due to the

excitation ands(l0) is the ground-state solution.
Taking the derivative with respect ton we have]s̃/]n

5Naj2(l)/p. The energy is

W5( E0~la
0 !1( E08~la!dla1

1

2 ( E09~la
0 !~dl!2

5E E08s̃~l!dl1
1

2 E E09
s̃ 2

Nas~l!
dl. ~14!

Then the currentj 52]W/]A equals

j 5
2

F0
E E09s̃~l!j2~l!

s~l!
dl. ~15!

The momentum isp5*P08(l)s̃(l)dl, wheres̃ is the solu-
tion of Eq. ~13! for F50.

For excitations with small momentap}(L2l0) we can
easily see that the currentj }pE09(L) is proportional to the
dispersion of the Fermi velocity. In the limitu→0 we find

s̃5Q~l2l0!/2, s~l!51/2, Z51/2,

j 5~p/F0!E0~pL!p.

As we showed in the case of repulsion,8–10 the current would
be absent in the linear-spectrum approximation.

3.1.2. States with added particles.We now calculate the
currents of states obtained by adding an electron pair or
paired electron. The simplest way to calculate the curren
to include the magnetic vector-potential in the 1/Na correc-
tions of the energy, found in11:

dW5
2p

Na
(

n51,2
vn$~Z21DN!n

21~ZTD!n
21I n

11I n
2%.

~16!

where v15]e(Q)/]p(Q) and v25]e(L)/]p(L) are the
Fermi velocities of unpaired and pair excitations, resp
tively, andZi j 5j j

i (Q,L). Note that forh,hc unpaired ex-
citations have a gap, so for this casev150. In the case
h.hc both singlet and pair excitations are gapless, that
v1 , v2Þ0. Here DNT5(DN1 , DN2), DN1 , DN2 are the
numbers of added unpaired electrons and bound pairs
spectively; DT5(D1 ,D2), 2D1, 2D2 are differences in the
numbers of positive and negativeI j , Ja numbers, respec
tively; I 1

65(I j
6 , I 2

65(Ja
6 are sums of quantum numbers

particle–hole states near the right~1! and left ~2! Fermi
points of thek andl seas. To include the vector potential w
substitute
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By varying ~16! over the vector potentialA we obtain for the
electric current

j 52 (
n51,2

vn~Z1nD11Z2nD2!~Z1n12Z2n!. ~17!

For pair excitations we have 2D251, D150,

j 52v2Z22
2 ~L!. ~18!

Therefore, the charge is equal to

q52Z22
2 ~L!. ~19!

As follows from ~10!, the charge may acquire any value
the interval 1/2<q<2. In the caser→1 we have from~10!

q512
1

2 ln@C/~12r!#
, r51, q51, 0,u,`.

In the limit r→0, r/u→0

q5
1

2 S 11
r

2
A11

12

u D .

In the limit u!1, L@u K(x)'d(x), Z→1/& andq→1. In
the limit u→`, L!u we haveZ'1, q'2. In strong mag-
netic fieldsh.hc we obtain

q5S 11
u

2pl0
D 2

.

For unpaired added particles the current and charge
found by substituting 2D151, D250 in Eq. ~16!:

j 5v1q, q5Z11~Q!@Z11~Q!12Z21~Q!#51

24E K~2~sin k2l!!j22~l!dl.

In the caseu→0 we haveq→0, that is, the excitations do
not carry an electric current. By using the Wiener–Ho
technique we find in the limitL/u@1, u!1 that

q'A 8

pe
expS 2

Lp

2u D .

In the opposite limit u→`, L!u we obtain q'1
24L/(pu).

Note that in this linear-spectrum approximation we fi
that particle–hole excitations do not carry current (j 50), in
accordance with previous results.

3.2. Repulsive interaction

3.2.1. Hole and particle states.A similar expressions can
be derived for the caseU.0. For spin single–triplet excita
tions or particle–hole states we derived8

r̃~k!5
Nan

2p
1 f ~k!1E

2Q

Q

r̃~k8!cosk8K̄

3~sin k2sin k8!dk8, ~20!

where f (k)5((1/p)tan21$exp@2p(sink2li)/u#% for spin ex-
citations and f (k)5u(k2ki) for hole states, r̄(kj )
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re

f

anddkj is the shift of a numberkj due to the excitation. For
the energy, momentum and current we find

W5( e0~kj !5( e0~kj
0!1( e08~kj !dkj

1
1

2 ( e09~kj !~dkj !
2→

1

2 E e09r̃
2

Nar~k!
dk,

wheree0522 coskj , anddk5 r̄(k)/Nar(k), and

p5E r̃~k!dk, j 5
1

F0
E

2Q

Q

dk
e09r̃j~k!

r~k!
. ~21!

wherej(k) is the solution of Eq.~12!. In accordance with
the results,8–10 we have j }pe09(pF). In the limit u→0 we
again find j 52p cos(pr/2). Equation~21! supplements the
results of Refs. 8 and 9.

3.2.2. States with added particles.A similar treatment
can be carried out for the repulsive modelu.0. In this case
the subscripts 1.2 in Eq.~16! correspond to charge and sp
degrees of freedom, respectively, sov1 andv2 are the charge
and spin excitation velocities. In contrast to theu,0 case
both types of excitations are gapless. To include the orb
magnetic field we substitute

D1→D11
Nan

2p
.

By varying with respect to the vector potential we obtain f
the electric current

j 52v1~Z11D11Z21D2!Z115v1~2D11D2!j2~Q!. ~22!

Here 2D1 (2D2) denotes the difference in the numbers
positive and negativeI j (Ja), respectively. Changing the
number of spin-up and spin-down electrons byDN↑ and
DN↓ , i.e., changing the total number of particles byDN1

5DN↑1DN↓ and the number of spin-down particles b
DN25DN1 , is equivalent to adding~removing! DN1 extraI j

andDN2 extraJa values. The valuesI  , Ja may be integer
or half-integer, depending on the parity of the numbersN1 ,
N2 . Therefore the numbersD1 , D2 depend onDN1 , DN2

nontrivially, so that

D15
DN11DN2

2
~mod 1!, D25

DN1

2
~mod 1!.

Adding a spin-up particle to the systemDN151, DN250 we
obtainD1561/2,D2571/2. Similarly, adding a spin-down
particle corresponds toDN15DN251, D150, D2561/2.
In both cases we find for the electric current

j 5qv1 , q5j2~Q!/2. ~23!

Substituting solutions of Eq.~12! into ~23! we find
1/2<q<1 and

sinQ/u!1, q51/21sinQ ln 2/(pu);
r51, Q5p, q51/2, 0,u,`;
r→1, q51/21 ln 2(12r)/u f(u);
r!1,u; q51/21r ln 2/u;
u@1, q51/21sinpr ln 2/(pu);
u!sinQ, q512u/(4p sinQ).
These results complement our earlier results.8–10
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with
We have considered the electron currents of excitati
in the one-dimensional Hubbard model. We found that
particle–hole excitations with a small momentum the curr
is proportional to the momentum and to the dispersion of
Fermi velocity. Therefore, this current is absent in the lin
spectrum approximation. We have calculated the curre
and charges of states with added particles~unpaired or paired
bound electrons in the caseu,0!. We found that the charge
is noninteger and depends continuously on the band fil
and the onsite potentialu. Note that a spin–charge deco
pling has no place in the case of the Hubbard model in
magnetic field. The contributions of spin- and charge-den
waves cannot be described by two independent effec
Hamiltonians. Charge- and spin-density waves interact.
physical values~the spectrum of conformal operator dime
sions, the electric charges in question, etc.! are determined
by the 232 dressed charge matrix rather than two sca
coupling constants. As a result both spin and charge exc
tions cary the electron current.
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The magnetostriction of Invar alloys

13
A. Yu. Romanov and V. P. Silin
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The principles of the theory of a phase transition into a magnetically ordered state are formulated
for Invar alloys and other similar inhomogeneous ferromagnets, for which the concept of a
local Curie temperature distribution corresponding to the experimentally observed broadened
temperature interval of the transition into the ferromagnetic state has existed for 10 years.
A method is proposed for obtaining information about the local temperature distribution from
experimental data on the change in the properties of magnets in response to a change in
temperature. For iron–nickel–chromium alloys it is shown how to obtain the temperature
dependence of the magnetostrictional susceptibility of the paraprocess from data on the
magnetic contribution to the thermal expansion coefficient. This confirms the important role of
the local Curie temperature distribution, and it also indicates a need for new analysis of
experimental data on temperature-broadened magnetic ordering phase transitions. ©1998
American Institute of Physics.@S1063-7761~98!01501-7#

1. INTRODUCTION of the inhomogeneity in Invar alloys. For example, Refs.
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The unflagging interest in Invar alloys, which were d
covered one hundered years ago,1 is due, for one thing, to the
virtually unlimited technical applications determined by t
unique properties of such alloys and, for another, to the
tus of physical investigations of Invar alloys, which is f
from a complete understanding.2 It is generally believed tha
the unique properties of Invar alloys are associated w
magnetism, since they are manifested in the transition of
alloys into the ferromagnetic state. For example, the uni
decrease of the volume thermal expansion coefficient of
iron–nickel alloy Fe65Ni35 appears, though in a compar
tively wide region, near the Curie temperature of the ph
transition into a magnetically ordered state.3 According to
the Landau theory of second-order phase transitions4 an
abrupt change in the thermal expansion coefficient and o
properties with the establishment of magnetic order
should occur at the Curie temperature. In reality, howev
no sharply expressed abrupt changes in properties at a
sition into the ferromagnetic state are observed in In
alloys2 ~see also, for example, Ref. 5!. Investigators have
become so accustomed to this state of affairs that ordina
no attempt is made to give a quantitative description of m
netic ordering phase transitions, broadened over a wide t
perature interval, in Invar alloys. The present paper is
voted to filling this lacuna. We shall discuss here
important property of Invar alloys, magnetostriction.

Our analysis is based on the old and well-known vi
that Invar alloys are inhomogeneous with respect to th
structure or composition6 ~see also Ref. 7–13!. It is thought
that such an inhomogeneity results in an inhomogene
dependent local Curie temperature distribution, which co
sponds to a continuous transition into the ferromagnetic s
with a broadened temperature interval, determined by
distribution, Although this view is widely held, it should b
noted that there is a definite conflict in the statements m
by the authors of various treatments of the quantitative ef
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and 14 report a small difference~several degrees! between
the temperatures of the peak in the specific heat, the pea
the thermal expansion coefficient, and the Curie point
tained from magnetic measurements. On the other hand
establishment of the existence of tails in the magnetiza
~see, for example, Refs. 2 and 6! indicates a substantial~at
least 10°! high-temperature shift of the onset temperature
a transition into the magnetically ordered ferromagne
state, as compared with the lower value of the tempera
ordinarily called the Curie temperature. The latter is det
mined, specifically, by the method of coefficients of the th
modynamic potential.6 In the face of such a conflicting view
of the properties of broadened phase transitions, it is ne
sary to make a systematic theoretical analysis based on
approach indicated in the monograph by K. P. Belov.6

The first step in this direction was taken in Ref. 1
where the problem of an approximate, in many ways qu
tative, determination of the local Curie temperature distrib
tion of some Invar alloys was solved on the basis of
rough scaling proposed there.

In the present paper we propose an elaboration of
Belov approach,6 making possible a practical quantitativ
analysis of experimental data near the broadened phase
sition of Invar alloys. This approach is applied to the analy
of magnetostriction. In Sec. 2 we present the theoretical
sumptions that are required for our analysis and on the b
of which the temperature dependences of different phen
ena occurring near a broadened magnetic-ordering trans
can be related to one another. Section 3 is devoted to
rough-scaling approximation indicated in Ref. 15. The
sults of an analysis, based on the approach developed, o
experimental data from Ref. 16 on the magnetostriction
iron-nickel Invar alloys Fe65Ni352xCrx are presented in Sec
4. We employ below the data of Ref. 16 for the therm
expansion coefficient and for the magnetostrictional susc
tibility of the paraprocess~induced magnetostriction! only
for alloys with chromium concentrationsx50, 2.5, and 5,

12008$15.00 © 1998 American Institute of Physics
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lid
since asx increases it becomes difficult to distinguish t
magnetic contribution to the thermal expansion coeffici
and the results are inaccurate. The corresponding discus
is given in Sec. 4. In Fig. 1, the dotted, dashed, and s
curves are for the alloys Fe65Ni352xCrx with x50, 2.5, and 5,
respectively, and they characterize the magnetic contribu
to the thermal expansion coefficient. The dots, whose s
correspond to the experimental errors, represent the
from Fig. 1 in Ref. 16. These experimental points are rep
sented by open circles (x50), filled circles (x52.5), and
asterisks (x55). The curves interpolate the experimen
temperature dependence. As an illustration, the result of
analysis is presented in Fig. 2, where experimental data
magnetostrictional susceptibility of the paraprocess are
sented as dots taken from Fig. 3 of Ref. 16. The curves
Fig. 2 were constructed for the same susceptibility on
basis of the experimental data of Fig. 1 and the appro

FIG. 1. Temperature dependence of the magnetic contribution to the the
expansion coefficient for three alloys Fe65Ni352xCrx . The dots represent the
experimental results of Ref. 16:s (x50), d (x52.5), and* (x55). The
curves represent continuous approximations of the experimental po
solid trace—x55, dashed trace—x52.5, dotted trace—x50.

FIG. 2. Temperature dependences of the induced magnetostriction, no
ized to 1. The dots represent the experimental results of Ref. 16:s (x50),
d (x52.5), and* (x55). The curves are computational results: so
trace—x55, dashed trace—x52.5, and dotted trace—x50.
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proposed in the present paper for analyzing the experime
data on the temperature dependence of the properties o
var alloys. A general discussion of the results obtained in
paper is given in concluding section, Sec. 5.

It should be underscored that the material presented
low represents the required first step in understanding
inhomogeneity-determined properties of Invar alloys. In
doing, we do not deny that magnetic fluctuations exist;
believe that to understand the temperature dependence
detail allowance must be made for magnetic fluctuatio
However, our main thrust is to determine the role of t
distribution of nonuniform Curie temperatures, primarily b
cause even though assertions concerning this have
made for many years in the literature, no real attempts h
been made to give a quantitative interpretation of the pr
erties of Invar alloys and other ferromagnets on this bas

2. THEORETICAL MODEL

Our approach goes back to the ideas presented in Re
where it was proposed that a thermodynamic potential of
form

FM~P,T,@M # !5
1

V E dr H a

2
~T2TC~r !!M21

b

4
M4J .

~2.1!

be used to describe the properties of inhomogeneous m
nets. Here the local Curie temperatureTC(r ) is a function of
the coordinates. This dependence is the reason for the br
ened magnetic-ordering transition. In addition to this,TC(r )
and the coefficientsa andb in the thermodynamic potentia
are functions of the pressureP. Equation~2.1! is an exten-
sion of the Ginzburg–Landau thermodynamic potential
the case of an inhomogeneous magnet. Here gradient te
are neglected. We do this only because the effects discu
below are insensitive to their presence. In the future,
intend to return to a more complete description of inhom
geneous ferromagnets in order to study effects that canno
understood without taking the gradient terms into accoun

al

ts:

al-

FIG. 3. Functions]W(TC8 )/]P for the three alloys Fe65Ni352xCrx . The dot-
ted trace corresponds tox50, the dashed trace tox52.5, and the solid trace
to x55.
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on
~2.1! the spatial inhomogeneity is due only to the spa
dependence of the local Curie temperatureTC(r ), the ther-
modynamic potential~2.1! can be written in the form6,17

FM~P,T,@M # !5E dTC8 W~TC8 !

3H a

2
~T2TC8 !M21

b

4
M4J . ~2.2!

Now, in contrast to Eq.~2.1!, the local magnetization densit
as a function ofTC8 , and W(TC8 ) is determined by the
relation15

W~TC8 !5
1

V E dr d~TC8 2TC~r !!. ~2.3!

With this definition the function~2.3! plays the role of a
local Curie temperature distribution function, normalized
1. The average magnetization can be represented as

^M &5
1

V E dr 8M ~r 8!5E dTC8 W~TC8 !M ~TC8 !.

The approach based on the thermodynamic potential~2.2!
with the distribution functionW(TC8 ) prescribeda priori was
proposed in Ref. 6 for understanding broadened magne
ordering phase transitions. The qualitative properties of
phenomena accompanying a transition into the ferromagn
state were studied, assuming a prescribed distribution fu
tion of the local temperature, in Refs. 12 and 17–19.

Information about the distribution functionW(TC8 ) was
obtained in Ref. 15 using rough scaling, based on the mo
~2.1! for analyzing experimental data. In the present rep
we likewise will not make any detailed assumptions ab
W(TC8 ), but will take the next step following Ref. 15. Spe
cifically, we shall examine the relations between the exp
mental laws that make it possible to obtain the model~2.1!.

We shall present below somewhat more consequence
Eq. ~2.1! than required to discuss magnetostriction, who
properties will be interpreted with the aid of the model~2.1!,
in iron–nickel–chromium Invar alloys. Equations that w
aid in understanding the basis for the rough scaling, in
duced in Ref. 15, of the temperature dependence of In
alloys will also be derived.

We note that with the modern understanding of fer
magnetism of metals it should be obvious that Eq.~2.1! takes
into account to some degree the thermal magnetic fluc
tions, which determine, specifically, the linear variation a
function of temperature beyond a narrow range of tempe
tures.

Proceeding now to the equations required for what f
lows, we determine the average magnetic field intensityH by
varying the functional~2.2! with respect to the local magne
tization densityM (TC8 ):

H5a~T2TC8 !M1bM3. ~2.4!

This makes it possible to use below the thermodynamic
tential

FH~P,T,H !5FM~P,T,@M # !2H^M &. ~2.5!
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SH52
a

2 E dTC8 W~TC8 !M2. ~2.6!

In the limit of zero magnetic field,H50, Eq.~2.4! gives for
the spontaneous local magnetization

M25
a

b
~TC8 2T! for T,TC8 . ~2.7!

so that Eq.~2.6! in this limit gives

SH5052
a2

2b E
T

TC
0

dTC8 W~TC8 !~TC8 2T!, ~2.8!

whereTC
0 is the maximum local Curie temperature. The fo

lowing relation between the specific heat and the local Cu
temperature distribution function is an immediate con
quence:

CH50~T!5T
a2

2b E
T

TC
0

W~TC8 !dTC8 . ~2.9!

In Ref. 15 it was proposed that this relation be used to de
W(T) on the basis of the experimental dependence of
magnetic contribution to the specific heat, corresponding
Eq. ~2.9!. Specifically, according to Eq.~2.9!, we have

W~T!52
2b

a2

d@CH50 /T#

dT
. ~2.10!

Proceeding now to the equations required for describ
magnetostriction, we shall make some simplifying assum
tions. First and foremost, we note that it is reasonable to
the expression~2.1! itself only for comparatively small val-
ues of the magnetization, which we shall assume is the c
everywhere in constructing our description of the magne
properties in the transitional region for the establishment
ferromagnetism, corresponding to the temperature ra
whereW(T) is actually different from zero. Further, remem
bering that the magnetization is comparatively small, wh
differentiating the thermodynamic potential with respect
pressure we shall neglect the derivatives of the coefficiena
and b in the thermodynamc potential. This corresponds
the standard approach for studying the properties of ho
geneous magnets near the Curie temperature that emplo
assumption about the largest effect due to the pressure
pendence of the Curie temperature. In our model the la
corresponds to the pressure dependence of the local C
temperature distribution functionW(TC8 ). In this approxima-
tion Eq. ~2.5! makes it possible to describe magnetostricti
by means of the relation

DV

V
5vM5E dTC8

]W~TC8 !

]P

3H a

2
~T2TC8 !M21

b

4
M42HM J . ~2.11!

Hence, taking account of Eq.~2.4!, we obtain for the mag-
netostrictional thermal expansion coefficient:
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b 5
]v

5 dT8
]W~TC8 ! a

M2. ~2.12!

ll

.

c
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q

c
m

d2kH50~T!
5

a2
TC

0

dT8
]2W~TC8 !

, ~2.22!
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H S ]T D
P,H

E C ]P 2

In the limit of zero magnetic field Eq.~2.12! becomes

bH505
a2

2b E
T

TC
0

dTc8
]W~TC8 !

]P
~TC8 2T!. ~2.13!

This formula makes it possible to use the experimenta
determined temperature dependencebH50(T) to determine
the following quantities:

E
T

TC
0

dTC8
]W~TC8 !

]P
52

2b

a2

dbH50~T!

dT
, ~2.14!

]W~T!

]P
5

2b

a2

d2bH50~T!

dT2 . ~2.15!

The magnetostriction susceptibility of the paraprocess~in-
duced magnetostriction! can be found by differentiating Eq
~2.11! with respect to the magnetic field

h5S ]vM

]H D
P,T

52E dTC8
]W~TC8 !

]P
M . ~2.16!

In the limit of zero magnetic field this formula becomes

h52Aa

b E
T

TC
0

dTC8
]W~TC8 !

]P
ATC8 2T. ~2.17!

If the temperature dependence of the thermal expansion
efficient is known, then according to Eq.~2.15! the expres-
sion ~2.17! can be put in the form

h52
2

a
Ab

a E
T

TC
0

dTC8
d2bH50~TC8 !

dTC8
2 ATC8 2T. ~2.18!

The possibilities of the model that we used for interpret
experiments can be understood by comparing the temp
ture dependence, calculated in this manner, of the magn
striction susceptibility of the paraprocess with the expe
mentally measured dependence.

Finally, we obtain using Eq.~2.5! the magnetic contri-
bution to the compressibility

kH52E dTC8
]2W~TC8 !

]P2

3H a

2
~T2TC8 !M21

b

4
M42HM J . ~2.19!

In the limit of a zero magnetic field, taking into account E
~2.7!, we have

kH505
a2

4b E
T

TC
0

dTC8
]2W~TC8 !

]P2 ~T2TC8 !2. ~2.20!

Hence it follows that if the temperature dependen
kH50(T) is determined experimentally, then we have fro
Eq. ~20!

dkH50~T!

dT
5

a2

2b E
T

TC
0

dTC8
]2W~TC8 !

]P2 ~T2TC8 !. ~2.21!
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dT2 2b E
T

C ]P2

d3kH50~T!

dT3 52
a2

2b

]2W~T!

]P2 . ~2.23!

Since the compressional susceptibility of the paraprocess
cording to Eq.~2.19!, has the form

S ]kH

]H D
P,T

5E dTC8
]2W~TC8 !

]P2 M , ~2.24!

we obtain in the limitH50

S ]kH

]H D
H50

5Aa

b E
T

TC
0

dTC8
]2W~TC8 !

]P2 ATC8 2T. ~2.25!

Using Eq.~2.23! we find

S ]kH

]H D
H50

52
2

a
Ab

a E
T

TC
0

dTC8
d3kH50~TC8 !

dTC8
3 ATC8 2T.

~2.26!

Experiments performed in recent years on the pressure
pendence of the elastic moduli open up the possibility
determining the third pressure derivative of the local Cu
temperature distribution function. Indeed, we have

S ]kH

]P D
H,T

52E dTC8
]3W~TC8 !

]P3 H a

2
~T2TC8 !M2

1
b

4
M42HM J . ~2.27!

Hence we obtain, similarly to Eq.~2.23!,

d3

dT3 S ]kH

]P D
H50

52
a2

2b

]3W~T!

]P3 . ~2.28!

The equations presented in this section show how inform
tion about the local Curie temperature distribution functi
and its pressure derivatives can be obtained on the bas
experimental data. Three curves for]W(TC8 )/]P, which
were obtained according to Eq.~2.15! by differentiating the
curves in Fig. 1, are presented in Fig. 3 for the three allo
Fe65Ni352xCrx for x50, 2.5, and 5.

3. ON ROUGH SCALING

In Ref. 15 we proposed on the basis of experimental d
a rough scaling of the temperature dependence of the p
erties of Invar alloys in the transitional temperature ran
where, in the terminology of Ref. 6, magnetization tails a
present, i.e. ferromagnetism is established gradually in
entire volume of the magnet. This scaling gave surpris
agreement with experimental data for permalloy, the iro
nickel alloy Fe65Ni35. In this section we shall substantia
the possibility of rough scaling, proposed in Ref. 15, of t
broadened phase transition of Invar alloys.

To begin with, we note that if the local Curie temper
ture distribution function has the form

W~TC8 !5d~TC8 2TC!, ~3.1!
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then our analysis reduces to the standard Ginzburg–Landau
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theory of homogeneous magnets. HereTC is the ordinary
Curie temperature, information about which is contained
many works, including data on its pressure depende
TC(P). In reality, for Invar alloys the ordinary Curie tem
perature is probably not adequately defined. On the o
hand, the arguments presented in the preceding section m
it possible to assume that the temperatureTm of the maxi-
mum of the local Curie temperature probability distributi
is at least close to what is designated as the Curie temp
ture in experiments. In this connection, we state the assu
tion that

W~TC8 !5w~TC8 2Tm~P!!, ~3.2!

where the strongest pressure dependence is due to the
tion Tm(P). Then

dW~T!

dP
52

dw~T2Tm~P!!

dT

dTm

dP
, ~3.3!

d2W~T!

dP2 5
d2w~T2Tm~P!!

dT2 S dTm

dP D 2

2
dw~T2Tm~P!!

dT

d2Tm

dP2 . ~3.4!

Using the equation~3.3!, we now put Eq.~2.13! into the
form

bH5052
a2

2b

dTm

dP E
T

TC
0

dTC8 ~TC8 2T!
dw~TC8 2Tm~P!!

dTC8

5
a2

2b

dTm

dP E
T

TC
0

dTC8 W~TC8 !. ~3.5!

If in accordance with Ref. 15 we now use the function

f ~T!5E
T

TC
0

dTC8 W~TC8 !, ~3.6!

then the equations~3.5! and ~2.9! can be rewritten in the
rough-scaling form proposed in Ref. 15:

CH50~T!

T
5

a2

2b
f ~T!, bH50~T!5

a2

2b

dTm

dP
f ~T!.

~3.7!

Finally, if the expression~3.4! is substituted into the right
hand side of Eq.~2.20!, then we obtain for the compressibi
ity

kH505
a2

2b S dTm

dP D 2E
T

TC
0

dTC8 W~TC8 !

1
a2

4b

d2Tm

dP2 E
T

TC
0

dTC8 ~T82T!W~TC8 !. ~3.8!

Neglecting the second term in this equation gives a th
equation of rough scaling:15

kH50~T!5
a2

2b S dTm

dP D 2

f ~T!. ~3.9!
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The satisfactory agreement of the rough-scaling formu
~3.7! and ~3.9! with experiment indicates the relative sma
ness of the second term in Eq.~3.8!. To illustrate the effec-
tiveness of rough scaling we display in Fig. 4 the experim
tal temperature dependencesCH50(T)/T ~dashed curve20!,
bH50(T) ~dotted curve21!, andkH50(T) ~solid curve22!, all
normalized to 1 and characterizing the functionf (T) corre-
sponding to the alloy Fe65Ni35. A discussion of the construc
tion of these curves is given in the next section.

FIG. 4. Functions f (T) obtained from the experimental data: dash
curve—specific heat measurements,20 dotted curve—measurements of th
thermal expansion coefficient,21 solid curve—compressibility
measurements.22

FIG. 5. Functionsf (T) obtained from Fig. 1. The symbols have the sam
meaning as in Fig. 1.
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Figure 5 displays three functionsf (T) constructed in
accordance with Eq.~3.7! according to the data in Fig. 1 fo
the iron–nickel–chromium alloy Fe65Ni352xCrx for three
chromium concentrationsx50, 2.5, and 5. Differentiating
the curves in Fig. 5 according to Eq.~3.6! makes it possible
to use the rough scaling approach to obtain the local C
temperature distribution function of Invar alloys. The resu
are illustrated in Fig. 6, where the temperaturesTm of the
maximum of the local Curie temperature distribution are 5
K (x50), 440 K (x52.5), and 320 K (x55). These values
are very close to the Curie temperatures indicated on
plots of the temperature dependence of the thermal ex
sion coefficient in Ref. 16: 490 K (x50), 430 K (x52.5),
and 300 K (x55), respectively.

The approximation~3.2! makes it possible to write Eq
~2.17! in the form

h~T!52
1

2
Aa

b

dTm

dP E
T

TC
0 dTC8 W~TC8 !

ATC8 2T
. ~3.10!

We now have a new possibility for describing the magne
striction susceptibility of the paraprocess with the aid of t
formula and the local Curie temperature distribution funct
found from experiment on the basis of Eq.~3.7!. Figure 7
presents for the alloy Fe65Ni35 the temperature dependen
h(T) obtained in this manner~solid curve! and according to
Eq. ~2.18! ~dashed curve!. The difference is very small.

4. COMPARISON OF THE EXPERIMENTAL DATA

In using the approach presented for analyzing exp
ments it is necessary to establish the maximum local C
temperatureTC8 5TC

0 at which a magnetically ordered state
a ferromagnetic alloy starts to form. The corresponding
guments are clearest in the approach presented in Sec. 3
this, we employ the relation~3.3! and write down the equa
tion

FIG. 6. Distribution functionsW(TC8 ) of the local Curie temperatures fo
three alloys, as determined from the data in Fig. 5 forf (T). The dotted
curve corresponds tox50, the dashed curve tox52.5, and the solid curve
to x55.
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vM52
a

2

dTm

dP E dTC8 W~TC8 !M2. ~4.1!

Let us compare this expression to the well-known Moriy
Usami formula23

v5~C0 /K !ML
2, ~4.2!

whereC0 is the magnetoelastic constant,K is the bulk modu-
lus, andML

2 is the squared magnetization averaged over th
mal fluctuations. In the standard theory of homogene
magnets the magnetoelastic constant is proportional to
pressure derivative of the Curie temperature. Our anal
yields

C0

K
52

a

2

dTm

dP
. ~4.3!

The combination

E dTC8 W~TC8 !M25M0
2 ~4.4!

arising in Eq.~4.1! is the squared magnetization averag
over the local Curie temperature distribution. It is natural
assume that the total mean squared magnetization consis
the magnetization averaged over both the thermal fluc
tions and the local Curie temperature distribution. For t
reason, we employ a generalization of Eqs.~4.1! and~4.2! in
the form ~4.2!, but we shall assume that

ML
25M0

212dmt
21dml

2. ~4.5!

Here, in contrast to the standard Moriya–Usami formula,M0
2

is determined by Eq.~4.4!, while ordinarily such an expres
sion is taken to mean the squared average magnetiza
Aside from this, in accordance with our approach the me
squared transversedmt

2 and longitudinaldml
2 fluctuations

should correspond not only to thermal~Bose! averaging but

FIG. 7. Temperature dependences, normalized to 1, of the magnetostri
calculated from Eqs.~3.10!—solid curve and~2.18!—dashed curve.
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also averaging over the local Curie temperature distribution.
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Leaving a detailed theory of such fluctuations for subsequ
publications, we shall use here some general assumpt
Just as in the standard theory with one Curie temperatur
the H50 limit the quantity M0

2 equals zero for
T.(TC8 )max5TC

0 . At the same timedmt
2 anddml

2 are differ-
ent from zero in the paramagnetic region, which is why
temperature dependencev(T) deviates from the ordinarily
discussed Gru¨neisen extrapolation ofvpar(T) from the para-
magnetic temperature range located comparatively far f
the region of the phase transition. This signifies that the on
temperature of magnetic ordering cannot be identified w
the temperature at whichv(T) differs from vpar(T). More-
over,v(T)2vpar(T) cannot be identified with the magnet
contribution vM determined by our formulas from Sec.
since it characterizes only the part of the magnetostric
that is not due to thermal fluctuations.

In the quantitative analysis of experiments we emp
the thermal expansion coefficient. The temperature dep
dence ofdmt

2 anddml
2 gives the thermal-fluctuation contr

bution to the thermal expansion coefficient. On the ot
hand, their derivatives with respect to the magnetic field
equal to zero in the paramagnetic region in the limitH50.
This circumstance makes it possible to assume that the
peratureTC

0 5(TC8 )max at which local spontaneous magnetiz
tion first appears equals the experimentally measured t
perature at which the magnetostrictional susceptibility of
paraprocess becomes different from zero. The values of s
temperatures for the iron–nickel–chromium alloys of int
est to us were determined in Ref. 16.

Determining in this manner the maximum local Cur
temperature we note that, for example, according to Fig. 1
Ref. 16 the difference between the experimental valueb(TC

0 )
and the Gru¨neisen paramagnetic extrapolatio
bpar5(]vpar(T)/]T) for the alloy Fe65Ni35 equals
db(TC

0 )52.2•1026 K21. This is 17% of the largest differ
ence db(T)5b(T)2bpar in the region of the broadene
transition, equal todbmax513.1•1026 K21. In this connec-
tion, we extract from the data in Fig. 1 of Ref. 16 the ma
netic contributionbM(T) of interest to us as follows. First
we obtain db(T) as the difference of the experimental
measured value of the thermal expansion coefficientb(T)
and the Gru¨neisen extrapolationbpar. Second, we subtrac
db(TC

0 ) from db(T). These are the values o
Db(T)5db(T)2db(TC

0 ) that are presented in Fig. 1 an
used in our analysis when comparing the results of the the
described above with the magnetostriction susceptibility d
for the paraprocess. A discussion of such a compariso
given in the concluding section.

The curvebH50(T) presented in Fig. 4 corresponds
the magnetic contributionDb(T) obtained by the procedur
described here. A similar procedure of subtracting the fl
tuation contribution atT5TC

0 is used for the magnetic con
tribution, presented in Fig. 4, to the specific heat and co
pressibility. This distinguishes Fig. 4 from Fig. 1 of Ref. 1
since our new determination of the onset of the region o
broadened transition narrows the temperature range w
spatial variation of the local Curie temperatures appears
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The analysis performed above on the basis of the sim
theoretical model~2.1! and ~2.2! made it possible to give a
comparatively simple method for determining the propert
of the local Curie temperature distribution function~2.3!
from experimental data on the specific heat, magnetos
tion, and magnetoelasticity. The relations obtained mak
possible to interrelate the temperature dependences of di
ent properties of spatially inhomogeneous ferromagnets
was shown for the example of magnetostriction how the te
perature dependence of the magnetostriction susceptibilit
the paraprocess can be determined from experimental da
the thermal expansion coefficient. Our model is helpful
identifying the role of the spatial inhomogeneity of ferr
magnets such as Invar alloys, as well as other magnetic
terials in which magnetic-ordering phase transitions are ch
acterized by the presence of magnetization tails.6

The possible approaches presented in Secs. 2 and 3
the surprising agreement between the results obtained u
them, as demonstrated in Fig. 7, are the first steps in
construction of models of the properties of the local Cu
temperature distribution function. Rough scaling15 is the sim-
plest method for analyzing experimental data. For this r
son, the establishment of the meaning of such scaling
proposed in Sec. 3, is important.

In conclusion, we underscore that despite its dem
strated success the approach proposed for analyzing ex
ments requires elaboration regarding the role of magn
thermal fluctuations in inhomogeneous ferromagnets as
as other properties, requiring a more general analysis t
Eq. ~2.1!, taking account of the spatial derivatives of th
local magnetization.

Finally, we note that the situation described in t
present paper is characteristic not only of ferromagnets.
example, according to Ref. 24, a general property of
ferroelectric crystals is the broadening of the phase transi
with increasing defect density. It is believed, in comple
analogy to Ref. 6, that there exists a distribution of loc
transition temperatures whose values depend on the dist
tion of defects over different local regions in the crystal. T
approach described above for explaining the properties
broadened phase transitions can be transferred not on
ferroelectrics but also to other materials.
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Kinetics of formation and growth of antiphase domains during second-order phase

of
transitions
L. I. Stefanovich and É. P. Fel’dman

Donetsk Physicotechnical Institute, Ukrainian National Academy of Sciences, 340114 Donetsk, Ukraine
~Submitted 22 October 1996!
Zh. Éksp. Teor. Fiz.113, 228–239~January 1998!

The kinetics of the formation and growth of antiphase domains during second-order phase
transitions is investigated theoretically in the Ginzburg–Landau model using a statistical approach.
It is shown that depending on the initial conditions both uniform and polydomain-type
ordering can be realized in thermodynamic equilibrium. It is found that for small initial
inhomogeneities the ordering process can be nonmonotonic in its initial stages. It is established that
for special initial conditions long-lived ordered structures of a special type arise in the
intermediate stages of the ordering process. The characteristic formation time of the domain
structure is estimated. ©1998 American Institute of Physics.@S1063-7761~98!01601-1#
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In the study of systems which are far from thermod
namic equilibrium, it is most important to determine th
paths of the transition to equilibrium.

In Refs. 1 and 2, the evolution of strongly nonequili
rium systems is studied through analysis of kinetic equati
derived from a microscopic treatment. These equations
used either to study phase separation in alloys1 or phase
separation and ordering occurring simultaneously.2

In Refs. 3 and 4 we developed a statistical approach
the analysis of the dynamics of nonequilibrium systems. T
approach made it possible to elucidate the flow and sequ
of stages of phase separation in alloys and glasses. Ou
jective in the present paper is to apply the statistical
proach to determine the paths of the transition from disor
to order in systems undergoing a second-order phase tr
tion.

One or several quantities, called order parameters,
ordinarily introduced as a quantitative characteristic of
change in state of a body as it passes through the ph
transition pointTc . The physical meaning of the order p
rameter is not specified in a phenomenological theory. T
system under study can be an alloy undergoing orderin
ferroelectric, an antiferromagnet, etc. If cooled rapid
enought from a temperature aboveTc to a temperature below
Tc such systems will evolve under isothermal conditio
from a disordered to an ordered state. As a rule, the ord
state cannot be characterized uniquely—it can be either
mogeneous ordering, when the order parameterh is identical
throughout the entire system~single crystal or crystallite, if
the sample is polycrystalline!, or inhomogeneous ordering
when the system separates into domains in each of which
assumes some value from a set of equivalent values.

The thermodynamics of ordering has been studied in
tail. We shall attempt to follow the kinetics of restructurin
of an initially disordered system with two equivalent sta
of equilibrium. For definiteness, we shall employ the term
nology referring to ordering of a binary alloy AB with tw
equivalent sublattices. The alloy can be characterized b
single scalar parameter of long-range order. This alloy p
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the order parameter. Such a model can be used to des
the kinetics of ordering of the simplest structures enco
tered in a number of ordered alloys, for example, in allo
such asb-brass. Ordering of atoms in systems of this type
characterized by how completely the sites of different typ
~forming sublattices! are filled with atoms of different types

In the present paper, we attempt to determine in de
how ordering~for T,Tc! of an initially disordered system
develops. Will homogeneous ordering occur over the en
sample~crystallite! or will the sample decompose into do
mains separated by antiphase boundaries? A preliminary
port on this subject is given in Ref. 5.

We emphasize that the initial state of a nonequilibriu
system plays an important role in determining how the or
parameter evolves.

Of necessity, the initial state of the system must be p
scribed statistically, since, first, inhomogeneities of the or
parameter which are randomly distributed in space are c
tinuously formed in the sample when it is cooled rapidly an
second, thermal fluctuations of the order parameter are
ways present. The spatial scale of the corresponding inho
geneities is much larger than the lattice parameter. Th
inhomogeneities will evolve completely differently depen
ing on the initial state of the nonequilibrium system, spec
cally, either along the homogeneous ordering path or thro
formation of a well developed polydomain structure fo
lowed by growth of the domains. Kinetically retarded inte
mediate polydomain structures can also appear for cer
initial conditions. We shall assume that despite the closen
of the temperature to the critical temperatu
((Tc2T)/Tc!1) there is still a possibility of going beyon
the fluctuation region and therefore ordering of the alloy c
be described within the Landau theory.

2. FORMULATION OF THE PROBLEM

Let us consider a substitution-type binary alloy consi
ing of NA atoms of type A andNB atoms of type B, where
the crystal lattice, containingN sites, can be divided into two
equivalent sublattices. In this case, the relative concen

12806$15.00 © 1998 American Institute of Physics



tions of sites of each type are both equal to 1/2. Then the
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degreeh of long-range order can be determined by the
pression

h52pA
~1!21, ~1!

wherepA
(1)5NA

(1)/N(1) is the probability that sites of the firs
type are occupied by atoms A. The~long-range! order pa-
rameterh which we have introduced is proportional to th
deviation of the probabilitypA

(1) from its value 1/2 in the
disordered alloy. For this reason, in the disordered alloy
haveh50, and in ordered alloys this quantity will assum
all higher values the closer the state of the crystal is to
ideal ordered state. In the limit of complete ordering t
order parameterh, as follows from Eq.~1!, assumes the val
ues61. It is completely obvious that in accordance with t
symmetry of the initial model of the alloy undergoing orde
ing there are two equivalent possibilities, corresponding
T50 to the values of the order parameter61, for predomi-
nant filling of sublattices with atoms A and B. However, t
equilibrium values of the order parameter cannot be es
lished in the entire macroscopic volume of the crystal~or
even a separate crystallite! over macroscopic times~on the
order of the time over which two neighboring atoms chan
places!. Over these times relaxation of the short-range or
over the entire volume of the crystal mainly occurs. T
kinetics of this stage is quite difficult to describe, and w
shall not dwell on it in detail. From the macroscopic point
view, however, prescribing the initial state consists of in
cating the spatial distribution of the long-range order para
eter, in other words, describing the field of the order para
eter at some moment in time, taken as the initial mome
Ordinarily, after relaxation of short-range order, the all
consists of intertwined fragments. Neighboring fragme
differing by the sign of the order parameter are called
tiphase domains, and the transitional regions between
mains are called, correspondingly, antiphase boundaries
note, incidentally, that grain boundaries in polycrystals
also antiphase domains, since neighboring grains differ o
by spatial orientation, and the energy of a crystallite is
generate~with infinite multiplicity! with respect to the orien
tational parameters~Euler angles!.

To construct a theoretical description of the subsequ
stages of ordering of an alloy, we shall represent the n
equilibrium correction to the thermodynamic potential in t
form of the Ginzburg–Landau functional

F5E wdV5E F f ~h!1
1

2
d~¹h!2GdV. ~2!

where f (h) is the free-energy density in homogeneously
dered regions of the solid solution~alloy!; d(¹h)2 is the first
nonvanishing term in the expansion off in a series in the
gradients of the order parameter and describes the cont
tion of antiphase boundaries to the free energy of the sys
Here the quantityd is of orderUr 0

2, whereU is the mixing
energy of the solid solution6 and r 0 is the characteristic in-
teraction radius of the atoms of the solid solution.
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second-order phase transitionand near the ordering tem
peratureTc it can be described in the following phenomen
logical model:

f ~h!5TcS 2
a

2
h21

1

4
h4D , ~3!

where

a[~Tc2T!/Tc ~4!

is a dimensionless parameter characterizing the closene
the temperatureT to which the sample is cooled to the o
dering temperatureTc . The model~3! explicitly takes into
account the degeneracy of the energy with respect to the
of the order parameter. We shall describe the dynamics
such a system under isothermal conditions at temperatuT
by means of the Landau–Khalatnikov equation7 for the non-
conserved order parameter,

]h~r ,t !

]t
52g

dF$h~r ,t !%

dh~r ,t !
, ~5!

where the right-hand side contains the functional derivat
of the functional~2! with respect to the order parameter, th
coefficient of proportionality being the kinetic coefficientg,
which is proportional to the probability of two neighborin
atoms in the alloy changing places.

Substituting the expression~2! into Eq. ~5! and taking
account of Eq.~3! gives

]h

]t
5gTcr 0

2Dh1gTcah2gTch
3, ~6!

where we have used the fact thatU can be replaced byTc on
account of the redefinition ofr 0 . Equation~6! is a nonlinear
differential equation of the diffusion type. Note that the k
netic coefficientg can be represented in the form (t rTc)

21,
wheret r is the characteristic time of an elementary restru
turing event~for example, a displacement of a atom or neig
boring atoms changing places!. According to Ref. 6, this
time is given by

t r;VD
21 exp~w/T!, ~7!

whereVD is the Debye frequency~ordinarily ;1012 s21!, w
is the activation energy, andT is the temperature of the alloy

If r 0 and t r are chosen as the characteristic scales
length and time, respectively, then Eq.~6! can be rewritten in
the form

]h/]t5Dh1ah2h3. ~8!

HereD is the Laplacian. Note that in the simplest case, wh
the orderh is spatially uniform and we havea.0, two
equivalent stable solutions of the equation exist in the lim
of long times (t→`):

h~r ,t !5he56Aa. ~9!

An equation of the form~8! was obtained earlier by Allen
and Cahn8 ~see also Ref. 9! and used to study the motion o
solitary antiphase boundaries.

The initial condition for Eq.~8! consists of prescribing
the functionh(r ,t) at t50. Since, as underscored earlie
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this initial function is random, the order parameter is a ran-
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dom function of the coordinates attÞ0 also, i.e., Eq.~8! will
describe the space–time evolution of the random ord
parameter fieldh(r ,t).

3. BASIC COMPUTATIONAL RELATIONS

It is not necessary to know the detailed distribution
the order parameterh over the entire macroscopic sample
order to construct a description of the kinetics of ordering
alloys. For this reason, our problem will be to find the ma
physically significant characteristics of this function. Th
include the mean valuêh(r ,t)&[h̄(t) of the order param-
eter and the correlation function

^@h~r ,t !2h̄#@h~r 8,t !2h̄#&[^j~r ,t !j~r 8,t !&[K~s,t !,
~10!

where s5r2r 8, i.e., we employ the assumption that th
order-parameter field is statistically homogeneous.

The equations forh(t) andK(s,t) can be derived from
the basic equation~8! both by averaging Eq.~8! itself and by
averaging after premultiplying both sides of the equation
h(r ,t).

To obtain a closed system of equations for the functio
h̄(t) and K(s,t), i.e., one not containing higher-order m
ments, we assume that

^j2~r ,t !j~r 8,t !&50 ~11!

for all r and r 8, and we use for the fourth-order correlatio
function ^j3(r ,t)j(r 8,t)& a distribution of the form

^j3~r ,t !j~r 8,t !&5^j2~ t !&^j~r ,t !j~r 8,t !&

[K~0,t !K~s,t !. ~12!

One justification for this procedure is that there is on
one spatial scale in this problem. For this reason, it is nat
to assume that the functional dependence of the correla
function ^j3(r ,t)j(r 8,t)& on ur 82r u is identical to the func-
tional dependence of the correlation functio
^j(r )j(r 8)&[K(ur2r 8u) on the distance between the poin
r andr 8. We can refer also to the model two-point distrib
tion function proposed in Ref. 10 for the random orde
parameter field

P~j1~r !,j2~r 8!!5r~j1!~j2!F11
K~r2r 8!

^j2&2 j1j2G ,
where r~j! is a one-point distribution function. It can b
verified by direct integration that for this model the corre
tion function ^j1

3j2& is proportional to^j1j2&. It is known
that for a Gaussian random fieldj the distribution~12! is
exact. However, the coefficient of proportionality betwe
^j4& and^j2&2 is not 1, as in Eq.~12!, but 3. This choice of
the coefficient arises because in the present problem, e
cially at long times, the one-point distribution function
very far from Gaussian. From physical considerations, ba
on the equivalence of states with order parameters having
same magnitude but different signs, it follows that the o
point distribution function at sufficiently long time
(t@a21) is very close to a curve with two sharp maxima
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shows that the coefficient in question is close to 1.
As a consequence of Eq.~8! and the assumptions~11!

and ~12!, we obtain ultimately the system of equations

dh̄

dt
5

1

2
@ah̄23K~0,t !h̄2h̄3#, ~13!

]K~s,t !

]t
5DK~s,t !1@a2K~0,t !23h̄2#K~s,t !. ~14!

This is a system of nonlinear differential equations~one of
which is a partial differential equation! and cannot be solved
analytically. But, on account of its degeneracy it can be
duced to a system of ordinary differential equations by F
rier transforming Eq.~14! with respect to the variables:

dh̄

dt
5

1

2
@ah̄23K~0,t !h̄2h̄3#, ~15!

dK̃~~q,t !

dt
5@2q21a2K~0,t !23h̄2#K̃~q,t !, ~16!

where K̃(q,t) is the Fourier transform of the correlatio
function K(s,t).

The system of equations~15! and ~16! for the functions
h̄5h̄(t) and K̃5K̃(q,t) in turn can be reduced by simpl
manipulations to a system of nonlinear ordinary different
equations for the mean value of the order parameterh̄5h̄(t)
and its varianceD5D(t):

dh̄

dt
5

1

2
~a23D2h̄2!h̄, ~17!

dD

dt
5@aeff~ t !2D23h̄2#D, ~18!

where we have introducedD5D(t)[K(0,t) and

aeff~ t ![a21/r c
2~ t !. ~19!

Here we have employed the natural definition of the corre
tion length,

1

r c
2~ t !

[
*q2K̃~q,t !dq

*K̃~q,t !dq
. ~20!

Equation ~16! is constructed so that the correlatio
length at an arbitrary time is determined by the Fourier tra
form of the correlation function att50:

1

r c
2~ t !

[
*q2K̃~q,0!exp~2q2t !dq

*K̃~q,0!exp~2q2t !dq
. ~21!

Like the functionK(s,0), the functionK̃(q,0) must undoubt-
edly be prescribed. According to Eq.~19!, the function
aeff(t) is determined completely by the character of the e
lution of the correlation lengthr c(t) of the system undergo
ing ordering~in our case the correlation length is associa
with the characteristic spatial scale of the ordered region!.

An asymptotic analysis of the expression~21! for non-
pathological initial correlation functions gives a reliable i
terpolation formula
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r c~ t !5Ar c
2~0!12t/3, ~22!

where r c(0) is the initial correlation length of the syste
(t50). The last formula confirms the well-known11 result
that the domains grow in size according to a diffusion law
At ~if, of course,t@r c

2(0)!. Thus, by virtue of Eqs.~19! and
~22!, the system of equations~17! and~18! for h̄(t) andD(t)
assumes the form

dh̄

dt
5

1

2
h̄@a23D~ t !2h̄2#,

dD~ t !

dt
5F2S 2

3
t1r c

2~0! D 21

1a2D~ t !23h̄2GD~ t !.

~23!

4. LONG-TIME ASYMPTOTIC BEHAVIOR OF THE SYSTEM

It is of fundamental interest to investigate the system
equations~23! near the ordering temperatureTc , whena!1
holds and the initial correlation length is not too large so t
we haver c

2(0)!1/a!d2, whered is the characteristic size
of a crystallite~recall that we are measuring time in units
t r and distance in units of the interatomic interaction len
r 0!. Then, asymptotically, at timest@1/a the system of
equations~23! goes over to the system of equations w
constant coefficients

dh̄

dt
5

1

2
h̄@a23D~ t !2h̄2#,

dD~ t !

dt
5@a2D~ t !23h̄2#D~ t ! ~24!

with the initial conditions

h̄~0!5h0 , D~0!5D0 . ~25!

The solution of the system~24! with initial conditions~25!
makes it possible to obtain information about the last st
of the ordering process. But even this simplified system c
not be solved analytically. However, it can be analyz
qualitatively on the basis of the concept of the phase por
of the system12 ~in this case, in the variablesh̄ andD; see
Fig. 1!.

FIG. 1. Phase portrait of an alloy undergoing ordering: broken curve
separatrices; filled dots—singular points of the asymptotic system of e
tions ~24!. The results of numerical integration of the complete system
equations~23! for a50.04 andr c(0)510 and the following initial condi-
tions are also presented here:h050.03; D050.0007, 0.001, 0.0015, 0.002
0.003, 0.0035.
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perature, there is only one singular point. Its coordinates

h̄50, D50 and it is a stable point. This signifies, as o
would expect, that the system passes into a disordered
irrespective of the initial conditions.

For a.0, i.e., T,Tc , there exists an entire system o
singular points. However, only the points located in the u

per half-plane of the (h̄,D) phase portrait are physicall
meaningful. Moreover, we shall analyze only four singu
points of the system~24! located in the first quadrant~since
the second quadrant is added by symmetry!.

The first singular point~h̄50, D50!, corresponding to a
homogeneous disordered state, is an unstable point~Fig. 1!.

The second singular point~h̄5he5Aa,D50! corre-
sponds to a homogeneous ordered state and is a stable
~Fig. 1!.

The third singular point~h̄50, D5a! corresponds to
nonuniform ordering and is likewise a stable point~Fig. 1!.
This point corresponds to the possibility of realizing a m
tidomain structure. The conditionh̄50 means that domain
of different signs are equally likely to exist. Since the va
ance of the order parameter equalsa5he

2 , the volume of the
transitional regions~antiphase boundaries! is negligibly
small compared with the total volume of the domains with
each of which the order parameter equals1he or 2he .

Finally, there is a fourth singular point, a saddle poi
with the coordinatesh̄5Aa/2, D5a/4 ~Fig. 1!. A pair of
separatrices with slope angles having tangents~near the sin-
gular point! equal to Aa or 2Aa, respectively, passe
through the saddlepoint~Fig. 1!. The separatrix emanatin
from the origin of the coordinates and passing through t
saddlepoint separates the phase portrait into two parts.
left-hand upper part is a region of attraction of the inhom
geneous~polydomain! state and the right-hand lower part is
homogeneous single-domain state. Depending on the in
conditions (h0 ,D0), the phase trajectories of the system w
lie in one of the sectors indicated above. This is illustrated
the phase portrait~Fig. 1!, where, besides the analyticall
determined singular points and separatrices of the asymp
system of equations~24!, a series of results obtained by in
tegrating the complete system of equations~23! numerically
is presented~in the form of phase trajectories!.

If the mean value of the order parameterh0Þ0 in the
initial state and exceeds the average sizeAD0 of the inho-
mogeneities, then the system will evolve directly into
single-domain state. The sign of the order parameter in
state of thermodynamic equilibrium will be the same as
sign of h̄ in the initial state. A deviation of the system in on
direction or the other with respect to the sign of the ord
parameter in the initial state can be caused, generally sp
ing, by different factors, both random and deterministic. S
cifically, this can be the action of a field coupled to the ord
parameter, the presence of definite temperature gradients
influence of grain boundaries, stacking faults, and so on.

However, if in the initial state the inhomogeneities a
quite developed and the mean value of the order param
equals zero or is small (AD0.h0), then a well developed
polydomain structure forms in the system over a tim

a-
f
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acteristic thickness of the transitional layer~antiphase do-
main wall! between them, will become;a21/2 by this time,
and on the whole over the sample the volume fractions
domains with different signs will be the same. Subsequen
according to Eq.~22!, the domains will grow in size accord
ing to the diffusion law}At, while the thicknesses of th
antiphase boundaries will remain unchanged at the le
a21/2. In the absence of long-range action the multidom
state is not thermodynamically stable. This state can be
garded as being long-lived, and its characteristic lifetime s
isfies a21!t!d2. In the situation under study, the syste
does not pass directly into a thermodynamically sta
single-domain state but rather through a stage of dom
formation and growth. Domains continue to grow until the
sizes reach magnitudes on the order of the dimensions o
crystallite, when by virtue of the boundary conditions t
system will give preference to a domain with a definite sig
We note that the process of formation of a domain struct
is completed by the timet;d2.

5. ANALYSIS OF THE COMPLETE EVOLUTION EQUATIONS

As a result of an investigation of the asymptotic syst
~24! instead of the system~23!, it was found that the initial
and intermediate stages of ordering fall outside the fram
work of our analysis. To investigate the entire process
evolution of a system undergoing ordering, it is necessar
solve the complete system of equations~23!, where one of
the coefficients is explicitly time-dependent. This does
change the results of the qualitative analysis of
asymptotic behavior of the system. Only the quantitative
timates of the relaxation time and characteristic spatial sc
change. The analytical investigation of the system~23! be-
comes problematic at short and intermediate times.

To trace all stages of evolution of a system undergo
ordering, we solved the complete system of equations~23!
numerically. Numerical analysis was performed for differe
temperaturesT and for different initial sizes of the ordere
regions~i.e., the parametersa andr c(0) were varied!. More-
over, the initial conditions of the problem~h0 andD0! were
varied. It was found that for sufficiently smalla and values
of r c(0) close to 1 the ordering process can
nonmonotonic—at first the varianceD(t) of the order pa-
rameter decreases, i.e., disordering occurs, and only afte
does normal formation and growth of domains occur~Fig. 2!.

The second interesting feature found explicitly as a
sult of numerical integration of the complete system of eq
f
y,
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tions ~23! is that quasistationary intermediate structures o
special type with unequal volume fractions of the cor
sponding ordered phases can form during the ordering
cess. A similar phenomenon is described in Ref. 13, wh
numerical analysis of two-dimensional models showed a
tual phase at intermediate stages of separation of interm
lides.

In our case the quasistationary states correspondin
intermediate polydomain structures with unequal volumes
ordered phases occur in a very narrow range of initial c
ditions and are manifested in the form of horizontal sectio
~plateaus or steps! on the evolution curves for the mea
valueh̄(t) of the order parameter~Fig. 3a! and the variance
D(t) ~Fig. 3b!.

As the results of numerical analysis show, the metasta
intermediate structures~with the appropriate initial condi-
tions (h0 ,D0)! are quite stable formations. Before passi
into a thermodynamically equilibrium homogeneous state
very long-lived polydomain state a system undergoing ord
ing spends an appreciable time in such a kinetically retar
state.

Parametric plots show the ordering process especi
clearly. We present in Fig. 4 a phase portrait of the system
~23! for the same values of the parameters and initial con
tions as in Fig. 3. It is clearly seen that there are two gro
of phase trajectories, corresponding to homogeneous an
homogeneous orderings. Two of these trajectories, wh
correspond toD050.0018234 and 0.0018235, are very clo
to asymptotic separatrices and pass near the saddle sin
point. On the segment from the initial values (h0 ,D0) up to
the saddle point they practically merge with one another~be-
cause of the poor resolution on the numerical plot, Fig.!;

FIG. 2. Phase portrait of an alloy undergoing ordering fora50.04,
r c(0)510 and the initial conditionsh050.02, D050.008, 0.012, 0.016,
0.02, 0.024, 0.028.
f
FIG. 3. Results of numerical integration o
the system~23! for a50.04, r c(0)510 and
the following initial conditions: h050.03,
D050.007 ~1!, 0.001 ~2!, 0.0018234 ~3!,
0.0018235~4!, 0.0025 ~5!, 0.0035 ~6!; a—

evolution of the mean valueh̄(t) of the order
parameter; b—evolution of the varianceD(t).
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after the singular point they move apart toward singu
points corresponding to homogeneous and inhomogen
orderings. In reality, these phase trajectories lie on differ
sides of the separatrix emanating from the coordinate or
~0, 0! and entering the saddle point. The process whereby
phase trajectories pass near the saddle lasts for a quite
time. We interpret this as a kinetic retardation of the order
process.

Analysis of the system of equations~23! makes it pos-
sible to estimate the characteristic formation timet of the
domain structure. If the timet r of an elementary restructur
ing event in the system is determined by the expression~7!,
then for the time indicated above we have

t5
t r

a
5

1

VD

Tc

Tc2T
expS w

T D ~26!

i.e., t is a nonmonotonic function of temperature. This no
monotonicity has been observed, specifically, in experim
tal investigations of the temperature dependence of the re
ation time in the initial stage of ordering of the allo
AuCu3.

14

The transition of the alloy into an ordered state is as
ciated with redistribution of atoms over the lattice sites~the
exponential factor in Eq.~26!!. These processes are chara
terized by definite activation energiesw, and they are ex-
tremely slow at low temperatures. As the isothermal hold
temperature increases, the ordering time at first decre
rapidly. As this temperature approaches the ordering t
peratureTc , for thermodynamic reasons another factor b
comes important in connection with the fact that the order
process slows down as the difference of the free energie
the ordered and disordered phases corresponding to a g
temperature decreases. At temperatures close to the ord
temperature the pre-exponential factor in Eq.~26! becomes
substantial, and for this reason ordering occurs slowly,

FIG. 4. Phase portrait of the system~23! for the same values of the param
eters and initial conditions as in Fig. 3.
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temperature is assumed to be much less than the height o
potential barrier (T!w), thenw can be estimated from th
following equation according to the position of the tempe
ture minimumTm of the ordering time:

w5Tc
2/~Tc2T!. ~27!

It should be noted thatTm has been determined experime
tally for a number of alloys~see, for example, Ref. 6!.

6. CONCLUSIONS

The questions investigated in this paper pertain to
kinetics of phase transformations in systems undergoing
dering, where a second-order phase transition occurs.
were not interested in the establishment of short-range or
The systems undergoing ordering were studied at me
copic and macroscopic times and it was assumed tha
local rearrangement processes had already occurred.
subsequent relaxation of the system is associated with
appearance of long-range order, when the appearance o
perstructures becomes overwhelming likely. We attempte
take account of spatial inhomogeneity, which always appe
even at the stage when short-range order arises, as well a
random character of the inhomogeneity.

To this end, for the theoretical description of the esta
lishment of long-range order we employed a statistical
proach which we developed earlier.3,4 This made it possible
to investigate qualitatively in a continuous approximation
stages of relaxation of long-range order in an alloy under
ing ordering.
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Duality in two-dimensional Z„N…-symmetric spin models on a finite lattice
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We propose a method for deriving duality relations for two-dimensional inhomogeneous
Z(N)-symmetric models on a finite square lattice wound around a torus. The method is used to
obtain duality relations for the vector Potts model, the Berezinski�–Villain Z(N)-model,
the Ashkin–Teller model, and the 8-vertex model on a lattice obliquely wound around a torus, as
well as an exact relation linking the partition functions of the latter two models. ©1998
American Institute of Physics.@S1063-7761~98!01701-6#

1. INTRODUCTION
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Studies of duality in models of statistical mechanics a
field theory serve as an important method for a nonpertu
tive investigation of the phase diagrams of the models. T
first to discover the duality transformation for the tw
dimensional Ising model were Kramers and Wannie1

Kadanoff and Ceva2 generalized the duality relation to th
inhomogeneous Ising model, in which the coupling consta
along the horizontal and vertical bonds,Kx(r ) and Ky(r ),
are arbitrary functions of lattice site coordinates:

H)
r̃ ,m

sinh 2K̃m~ r̃ !J 21/4

Z̃@K̃#

5H)
r ,m

sinh 2Km~r !J 21/4

Z@K#, ~1!

sinh 2Kx~r !sinh 2K̃2y~ r̃ !51,

sinh 2Ky~r !sinh 2K̃2x~ r̃ !51. ~2!

Here the subscriptm takes the valuesx and y, a tilde indi-
cates that the quantity refers to the dual lattice, a
K̃2m( r̃ )5K̃m( r̃ 2m̂) ~here m̂5 x̂,ŷ are unit vectors along
the x andy axes!.

As noted by Kramers and Wannier1 and Kadanoff and
Ceva,2 for a homogeneous model this relation becomes ex
in the thermodynamic limit, i.e., for the specific free energ
However, in the inhomogeneous case the very procedur
passing to the thermodynamic limit is ambiguous. In Ref
the duality relation~1! was derived for spherical boundar
conditions, which for lattice models are nonphysical. T
complexity of deriving the duality relation for a lattic
wound around a torus, say by comparing the high- and lo
temperature expansions for the partition function, is due
the need to allow for closed graphs that encompass the t
several times.

In Refs. 3 and 4 we proposed an exact duality relat
for an inhomogeneous two-dimensional Ising model on
square latticeR of finite dimensionsn3m wound around a
torus ~in Fig. 1 the dimensions of the latticesR and R̃ are
333 and the spins at the opposite edges of the lattice m
be assumed to be identical!:
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H
r̃ ,m

J
5

1

2 H)
r ,m

sinh 2Km~r !J 21/4

(
px ,py50

1

Tpx ,py

p̃x , p̃yZ~px ,py!@K#.

~3!

Here theZ(px ,py)@K# are the partition functions of the Isin
model with appropriate combinations of periodic~index
px ,py50! and antiperiodic~index px ,py51! boundary con-
ditions along thex andy axes:

Z~px ,py!@K#5(
[s]

expH(
r ,n

Kn~r !s~r !¹n
~pn!

s~r !J , ~4!

T̂5S 1 1 1 1

1 1 21 21

1 21 1 21

1 21 21 1

D . ~5!

The Ising spin takes two values:s(r )561; the coordinates
of the sites of the dual latticeR̃ coincide with the coordinates
of the centers of the plaquettes of the original latticeR and
vice versa~see Fig. 1!: r̃ 5r 1( x̂1 ŷ)/2 andr 5(x,y), where
x51,....,n and y51,...,m. The shift operators¹x and ¹y

act ons(r ) in the following way:

¹xs~r !5s~r 1 x̂!, ¹ys~r !5s~r 1 ŷ!.

They also satisfy the boundary conditions

¹x
~px!

s~n,y!5~2 !pxs~1,y!,

¹y
~py!

s~x,m!5~2 !pys~x,1!. ~6!

In Ref. 3 we used the exact solution of the tw
dimensional Ising model to derive the duality relation~3! for
the homogeneous model, while for the inhomogeneous c
this relation was proved to be valid by perturbative tec
niques and was checked by direct calculations involv
small lattices. In Ref. 4 we obtained duality relations for
Ising model with a magnetic field applied at the lattice edg

In this paper we formulate a systematic method for d
riving the duality relations forZ(N)-symmetric spin models

13412$15.00 © 1998 American Institute of Physics
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H (p,q)@K,s# in the form of the HamiltonianHD
(0,0)@K,d,s#
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on a square lattice wound around a torus. In principle,
method can easily be generalized to lattices of large dim
sions compactified on a hypertorus and to lattice models w
continuous global or gauge symmetry. By way of examp
we derive the duality relations for the vector Potts model,
Berezinski�–Villain Z(N)-model~a Z(N)-symmetric Gauss-
ian model!,5,6 the Ashkin–Teller model, and the 8-verte
model on a lattice obliquely wound around a torus, as wel
an exact relation linking the partition functions of the la
two models. The duality relations for these models were
tained by Zamolodchikov7 and Dotsenko8 ~see also Refs. 9
and 10! without taking the boundary conditions into accou
Here we also show that Eq.~3! is a special case of the dualit
relation for the vector Potts model atN52.

Before explaining the idea of the method, we introdu
the concepts of a magnetic dislocation, ‘‘topologic
charge,’’ and the gauge transformation of configurations
coupling constants using the example of the vector P
model, which possesses global discrete symmetry groupZN .
The Hamiltonian of this model can be written

2bH ~p,q!@K,s#5
1

2 (
r ,n

$Kn~r !s* ~r !¹n
~pn!

s~r !1c.c.%,

~7!

where the spin variable takesN values:

s~r !5expF i
2p

N
l ~r !G , l ~r !50,...,N21.

The indices px5p and py5q (p,q50,...,N21) in the
Hamiltonian~7! denote cyclic boundary conditions:

¹x
~p!s~n,y!5expS i

2p

N
pDs~1,y!,

¹y
~q!s~x,m!5expS i

2p

N
qDs~x,1!, ~8!

and accordingly, for the variablel (r ) we have

l ~n11,y!5 l ~1,y!1p, l ~x,m11!5 l ~x,1!1q. ~9!

Periodic boundary conditions correspond top50 andq50.
If we use the explicit form~8! of the boundary condi-

tions, it is convenient to represent the Hamiltoni

FIG. 1. Correspondence between the coordinates and coupling consta

mutually dual latticesR ~solid lines! and R̃ ~dashed lines!.
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with a magnetic dislocationD corresponding to the
boundary conditions (p,q) and with periodic boundary con
ditions for the spin variables(r ):

2bH ~p,q!@K,s#52bHD
~0,0!@K,d,s#

5
1

2 (
r ,n

H Kn~r !expF i
2p

N
dn

~p,q!~r !G
3s* ~r !¹n

~0!s~r !1c.c.J
5(

r ,n
Kn~r !cosH 2p

N
@Dnl ~r !

1dn
~p,q!~r !#J . ~10!

HereDn5¹n
(0)21 is the difference derivative with periodi

boundary conditions, and it is convenient to interpret t
vector fieldsKn(r ) anddn

(p,q)(r ) defined at the lattice edge
as the absolute value and phase of the coupling cons
involving two neighboring spins. The magnetic dislocati
D (p,q) is determined by the phase

dn
~p,q!~r !5~dx~r !,dy~r !!5~pdBX

~r !,qdBY
~r !!, ~11!

which is finite along the boundary cyclesBX andBY , which
fix the spatial configuration of the dislocation on the toru

dBX
~r !5 (

r 8PBX

d2~r 2r 8!, dBY
~r !5 (

r 8PBY

d2~r 2r 8!,

~12!

whered2(r 2r 8) is the Kronecker delta, and

BX5$~x,m!,x51,...,n%,

BY5$~n,y!,y51,...,m%.

The phasedn
(p,q)(r ) can be interpreted as the density of t

‘‘topological’’ charge Qn of the magnetic dislocation. Fo
instance, for the dislocationD (p,q) this charge is

Qn(
r

dn
~p,q!~r !5~pn,qm!. ~13!

We call theD (p,q) ~with p,q50,...,N21! the magnetic basis
dislocations. Note that periodic boundary conditions alo
all torus cycles (p5q50) actually correspond to the cas
without magnetic dislocations. Nevertheless, for the sake
convenience we have introduced the notationD (0,0) for such
boundary conditions.

The Hamiltonian~7! is invariant under localZN-gauge
transformations11:

s8~r !5expF i
2p

N
f~r !Gs~r !,

Km8 ~r !5expF i
2p

N
f~r !GKm~r !expF i

2p

N
f~r 1m̂ !G , ~14!

s in
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wheref(r ) has periodic boundary conditions. This invari-
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the
lity
nd
ely
the

or

n

ld

be
ance leads to the following expression for the partition fu
tion ZV of the vector Potts model:

ZV
~p,q!@K#5(

[s]
exp$2bH ~p,q!@K,s#%

5 (
@s#8

exp$2bH ~p,q!@K8,s8#%5ZV
~p,q!@K8#.

The gauge transformations of the variablesl (r ) anddm(r ) in
the Hamiltonian~10! have the form

l 8~r !5 l ~r !1f~r !, dm8 ~r !5dm
~p,q!~r !1Dmf~r !. ~15!

These transformations lead to a deformation of magnetic
sis dislocations and to the emergence of new closed disl
tions. Thendm8 (r ) describes the field of closed magnetic d
locations on a torus and is the density of the topologi
charge of such a field. Obviously, the total topologic
charge of such a field of magnetic dislocations is unalte
by gauge transformations. For instance, for the Hamilton
HD

(0,0)@K,d,s# with dislocationD (p,q) we have

Qm8 5(
r

dm8 ~r !5(
r

dm
~p,q!~r !1(

r
Dmf~r !.

Here the periodic boundary conditions for the phasef(r )
nullify the second term, with the result thatQm8 5Qm . This
implies that the set of configurations of the coupling co
stants@K,d# ~containing closed dislocations! can be divided
into gauge-inequivalent classesV (p,q), with each class hav
ing its own topological chargeQm5(pn,qm). The elements
of a classV (p,q) are generated by the gauge transformatio
~14! from the magnetic basis dislocationD (p,q).

The idea behind the proposed method consists in
following. In deriving duality relations via Fourier transfo
mation, delta functions arise. The condition that the ar
ment of the delta function must vanish leads to a system
equations that determine the relationship between the o
nal spin variables and the dual spin variables. Usually~see,
e.g., Ref. 9! the boundary conditions are not taken into a
count, and only one solution of this system of equations
written. However, for the model on a torus there are ma
solutions, which can be divided into gauge-inequivale

classesṼ( p̃, q̃) of the configurations of coupling constants f
the dual model, with each class having a well-defined va
of the dual topological chargeQ̃m5( p̃n, q̃m). Hence, in es-
tablishing the duality transformation of the partition functio
we must sum over all the gauge-inequivalent classes on
dual lattice with coefficients dependent on the boundary c
ditions on the original lattice. For instance, forN52 there
are four gauge-inequivalent classes:~0,0!, ~1,0!, ~0,1!, and
~1,1!. The four terms on the right-hand side of the dual
relation ~3! for the Ising model reflect this situation.

In Sec. 2 we derive the duality relation for the vect
Potts model on a square lattice wound around a torus.
discuss in detail the cases of self-duality for this mod
N52, the Ising model; andN53 andN54, two Ising sub-
systems interacting via the edge spins. In Sec. 3 we ob
the duality relations for the Berezinski�–Villain
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cuss in detail the case whereN54, which corresponds to the
Ashkin–Teller model with subsystems of spinss(r ) and
s(r ) interacting in a special manner at the boundaries of
lattices wound around a torus. In Sec. 4 we derive the dua
relations for the inhomogeneous Ashkin–Teller model a
the inhomogeneous 8-vertex model on a lattice obliqu
wound around a torus, and the exact relationship between
partition functions of these models.

2. VECTOR POTTS MODEL

We begin by deriving the duality relation for the vect
Potts model. To this end we use the standard method7–9 of
duality transformation in spin models. The partition functio
of this model can be written

ZV
~p,q!@K,d#5(

[ l ]
exp$2bH ~p,q!@K,l #%

5(
[ l ]

expH(
r ,m

Km~r !cosF2p

N
@Dml ~r !1dm

~p,q!

3~r !#G J ~16!

5(
[ l ]

(
[ t]

exp~2bH̃@ t# !expH i
2p

N (
r ,m

tm~r !

3@Dml ~r !1dm
~p,q!~r !#J ~17!

5(
[ t]

expH 2bH̃@ t#1 i
2p

N (
r ,m

tm~r !

3dm
~p,q!~r !J)

r
NdN~Dmtm~r 2m̂ !!, ~18!

where

(
[ l ]

5)
r

S (
l ~r !50

N21 D , (
[ t]

5)
r ,m

S (
tm~r !50

N21 D .

In ~17! we took the Fourier transform of the vector fie
tm(r ), where at each sitetm(r )50,1,...,N21, and2bH̃@ t#
is the Fourier transform of the Hamiltonian~10!:

2bH̃@ t#5 (
k50

M

(
r ,m

gm
~k!~K !coskF2p

N
tm~r !G . ~19!

HereM5N/2 if N is even andM5(N21)/2 if N is odd. In
~18!, dN(s) is the Kronecker delta moduloN: it is equal to
unity if s5NL ~hereL in an integer!, and zero otherwise.

To get rid of the delta functions in~18! we must solve
the equation

Dmtm~r 2m̂ !50 ~mod N!. ~20!

The nontrivial solutions of this equation on a torus can
written

tm
~a!~r !5emnDn l̃ ~ r̃ 2 n̂ !1emn d̃n

~a!~ r̃ 2 n̂ !, ~21!
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wherea labels the solutions,l̃ ( r̃ )50,1,...,N21 is speci-
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wherep̃, q̃50,1,...,N21. Since the duality relations link the
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fied at the sites of the dual lattice, andd̃n ( r̃ ) is the density
of the topological charge~corresponding to a givenath so-
lution! of the field of closed magnetic dislocations on t
dual lattice,

d̃m
~a!~ r̃ !5 (

i PZa

si
~a! (

r 8PG i

emnan~r 8!d2~r 2r 8!,

si
~a!50,1,...,N21. ~22!

Here, by analogy with~11! and~12!, the functiond̃m
(a)( r̃ ) is

defined on the edges of the dual lattice. For the sake
convenience we have written the dislocations on the d
lattice in terms of closed pathsG i on the original lattice. In
~22!, Za denotes the subset of paths corresponding to s
tion a out of the setG of all closed paths on the origina
lattice (G iPG). The vectoram(r ) is equal toem(r ) if the
detour direction of pathG i at siter ~counterclockwise! is the
same as that of the unit vectorem(r )5m̂ at that site; other-
wise am(r )52em(r ).

The expression~22! can easily be obtained if we not
that the solution~21! formally satisfies Eq.~20! at the siter̃
provided that

emnDm d̃n
~a!~ r̃ 2m̂2 n̂ !50,

which becomes an identity if one of the three following pa
of conditions is met:

d̃y
~a!~ r̃ 2 ŷ!5 d̃y

~a!~ r̃ 2 x̂2 ŷ!,

d̃x
~a!~ r̃ 2 x̂!5 d̃x

~a!~ r̃ 2 x̂2 ŷ!;

d̃y
~a!~ r̃ 2 ŷ!5 d̃x

~a!~ r̃ 2 x̂!,

d̃y
~a!~ r̃ 2 x̂2 ŷ!5 d̃x

~a!~ r̃ 2 x̂2 ŷ!;

d̃y
~a!~ r̃ 2 ŷ!52 d̃x

~a!~ r̃ 2 x̂2 ŷ!,

d̃x
~a!~ r̃ 2 x̂!5 d̃y

~a!~ r̃ 2 x̂2 ŷ!.

For these solutions to be valid simultaneously at a set of s
we must require that the sites lie on closed pathsG i on the
torus, i.e., these solutions must be ‘‘matched’’ in such a w
that they form closed magnetic dislocations.

We denote a configuration of the coupling constants
the dual lattice corresponding to the solution~22! by @ d̃ (a)#.
Depending on the number labeling the solution, these c
figurations contain both closed dislocations not encomp
ing the cycles of the torus~their topological charge is zero!
and dislocations encompassing the cycles. Dislocation
the first type can be eliminated via gauge transformati
~15! on the dual lattice, while dislocations of the second ty
can be transformed into magnetic basis dislocationsD̃ ( p̃, q̃)

on the dual lattice. This means that all the configuratio

@ d̃ (a)# can be divided into gauge-inequivalent classesṼ( p̃, q̃)

with topological charge

Q̃n5(
r̃

d̃n
~ p̃, q̃ !~ r̃ !5~ p̃n, q̃m!,
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partition functions of the two models—functions that a
gauge-invariant quantities—in removing the delta functio
in ~18! one should sum over the gauge-inequivalent soluti
of Eq. ~20!:

tm
~ p̃, q̃ !~r !5emnDn l̃ ~ r̃ 2 n̂ !1emn d̃n

~ p̃, q̃ !~ r̃ 2 n̂ !, ~23!

where d̃m
( p̃, q̃) is defined on the dual lattice by relations sim

lar to ~11!–~13!. Plugging these solutions into~18!, we ob-
tain

ZV
~p,q!@K,d#5

1

N (
p̃, q̃

(
[ l̃ ]

exp~2bH̃@Dm l̃ 1 d̃m
~ p̃, q̃ !# !

3expH i
2p

N (
r ,m

emndm
~p,q!~r !@Dn l̃ ~ r̃ 2 n̂ !

1 d̃n
~ p̃, q̃ !~ r̃ 2 n̂ !#J .

Here the factor 1/N must be introduced because Eq.~23!
leads to a situation in which the sum over the configuratio
@ l # is N times the sum over the configurations@ t#. Noting
that

(
r ,m

emndm
~p,q!~r !Dn l̃ ~ r̃ 2 n̂ !50,

we can write~18! in the more compact form

ZV
~p,q!@K,d#5

1

N (
p̃, q̃

expH i
2p

N (
r ,m

emndm
~p,q!~r !

3 d̃n
~ p̃, q̃ !~ r̃ 2 n̂ !J Z̃V

~ p̃, q̃ !@K̃, d̃#

5
1

N (
p̃, q̃

expH i
2p

N
~p q̃2q p̃!J

3 Z̃V
~ p̃, q̃ !@K̃, d̃#, ~24!

where

Z̃V
~ p̃, q̃ !@K̃, d̃#5(

[ l̃ ]

exp~2bH̃ ~ p̃, q̃ !@ l̃ , d̃# !

is the partition function of the model on the dual lattice. T
duality relation~24! shows that the vector Potts model is n
self-dual for arbitrary values ofN. Here we discuss the case
with N52,3,4, for which this model is self-dual.8

The Hamiltonian~7! at N52 coincides with the Hamil-
tonian ~4! of the Ising model. In this case Eq.~19! yields

2bH̃2
~ p̃, q̃ !@ l̃ #5(

r ,n
@gn

~0!~K̃ !1gn
~1!~K̃ !cos~pDn

~ p̃n! l̃ ~r !!#.

To find the coefficientsgm
( i )(K̃) we take the inverse Fourie

transform:

expH (
k50

M

gm
~k!~K !coskS 2p

N
t̃ mD J
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1
N21

2p 2p
˜
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of the partition functions of two Ising models interacting via
via

s

e
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5
N (

n50
expFKn cosS N

nD2 i
N

n t nG , mÞn.

~25!

At N52 (M51) this relation readily yields

exp$2gm
~0!~ r̃ !%5 1

2 sinh 2Kn~r !,

exp$22gm
~1!~ r̃ !%5tanhKn~r !5exp@22K̃2m~ r̃ !#,

where the second equation coincides with~2!. Using these
expressions, we can write the duality relation~24! as

H)
r ,n

sinh 2Kn~r !J 21/4

Z~p,q!@K#

5
1

2 H)
r̃ ,n

sinh 2K̃n~ r̃ !J 21/4

3 (
p̃, q̃50

1

exp$ ip~p q̃2q p̃!% Z̃~ p̃, q̃ !@K̃#, ~26!

where

Z̃~ p̃, q̃ !@K̃#5(
[ l ]

exp (
r̃ ,n

K̃n~ r̃ !cos@pDn
~ p̃n! l̃ ~r !#

5(
[s]

exp (
r̃ ,n

K̃n~ r̃ !s̃~ r̃ !¹n
~ p̃n!

s̃~ r̃ !,

and s̃( r̃ )561. Clearly,~26! coincides with the duality re-
lation ~3!, since the exponential on the right-hand side of E
~26! is nothing more than the matrixT̂ in ~3!:

T
p̃x , p̃y

px ,py 5Tp̃, q̃
p,q

5exp$ ip~p q̃2q p̃!%. ~27!

The Hamiltonian~7! at N53 corresponds to the three
position vector Potts model. In this case~16! yields

exp~gm
~0!~ r̃ !!5

1

3 H exp~Kn~r !!12

3expS 2
Kn~r !

2 D J 1/3H exp~Kn~r !!

2expS 2
Kn~r !

2 D J 2/3

expS 2
3

2
gm

~1!~ r̃ ! D
5

2 sinh@3Kn~r !/4#

3 cosh@3Kn~r !/4#2sinh@3Kn~r !/4#

5expS 2
3

2
K̃m~ r̃ ! D ,

and the duality relation~24! assumes the form

Z3
~p,q!@K#5

1

3 )
r̃ ,m

exp~gm
~0!~ r̃ !!

3 (
p̃, q̃50

2

expH i
2p

3
~p q̃2q p̃!J Z̃3

~ p̃, q̃ !@K̃#.

At N54 the partition function of the model~7! with
cyclic boundary conditions~9! can be written as the produc
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.

boundary spins. Indeed, if we replace the spin variable
the relation

s~r !5expS i
p

2
l ~r ! D

5
1

2
$t1~r !1t2~r !1 i @t1~r !2t2~r !#%, ~28!

which each valuel 50,1,2,3 uniquely assignst1(r ) and
t2(r ) (t i(r )561), the Hamiltonian~7! can be written in
the form

2bH4
~p,q!5(

r ,n
Kn~r !cosH p

2
Dn

~pn!l ~r !J
5

1

2 (
r ,n,i

Kn~r !t i~r !¹̄n
~p,q!t i~r !. ~29!

Here p,q50,1,2,3, and in view of the boundary condition

~8! for s(r ) and Eq.~28!, the operator¹̄n
(p,q) satisfies the

boundary conditions

¹̄x
~p,q!t i~n,y!5t i~n11,y!

5Fcos
pp

2
1~2 ! j sin

pq

2 Gt j~1,y!, ~30!

¹̄y
~p,q!t i~x,m!5t i~x,m11!

5Fcos
pq

2
1~2 ! j sin

pp

2 Gt j~x,1!, ~31!

which generate the interaction of spinst1(r ) andt2(r ) at the
boundary (iÞ j ).

Using ~25!, we can calculate the coefficients in th
Hamiltonian~29!:

exp~2gm
~0!~ r̃ !!5

1

2
sinh Kn~r !,

exp~2gm
~1!~ r̃ !!5tanh

Kn~r !

2
5exp~2K̃m~ r̃ !!,

gm
~2!~ r̃ !50.

From ~24! we obtain the duality relation for two Ising mod
els on a torus that interact via boundary spins:

H)
r ,m

sinh Km~r !J 21/2

Z2I
~p,q!@K#

5
1

4 H)
r̃ ,m

sinh K̃m~ r̃ !J 21/2

3 (
p̃, q̃50

3

expH i
p

2
~p q̃2q p̃!J Z̃2I

~ p̃, q̃ !@K̃#,

where for this model

sinh Kx~r !sinh K̃2y~ r̃ !51,

sinh Ky~r !sinh K̃2x~ r̃ !51.
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3. BEREZINSKI ¢–VILLAIN Z„N…-MODEL

f
y

a
s-

nd

1
2p

d ~r ! 1 i
N

s~r !u~r ! ~35!

e

the
-

ent

we
We now derive the duality relations for the Berezinski�–
Villain Z(N)-model5,6 ~a Z(N)-symmetric Gaussian model!.
The partition function of this model can be written7,8

ZBV
~p,q!@K#5(

[ l ]
exp~2bHG

~p,q!@K,l # !

5(
[ l ]

(
[k]

)
r ,m

expH 2
Km~r !

2 F2p

N
Dml ~r !

22pkm~r !G2J , ~32!

where

(
[ l ]

¯5)
r

S (
l ~r !50

N21

¯ D ,

(
[k]

¯5)
r ,m

S (
km~r !52`

` D .

Here the quantityl (r )50,...,N21 is specified at the sites o
a square lattice, the superscript (p,q) specifies the boundar
conditions~9!, and the sum overkm ensures the periodicity
of the Hamiltonian under shiftsl→ l (r )1NL(r ), whereL is
an integer. By analogy with the vector Potts model, the p
tition function ~32! can be written in terms of the basis di
locationsD (p,q):

ZBV
~p,q!@K,d#5(

[ l ]
(
[k]

)
r ,m

expH 2
Km~r !

2 F2p

N
@Dml ~r !

1dm
~p,q!~r !#22pkm~r !G2J . ~33!

where l (r ) satisfies the periodic boundary conditions, a
the topological charge densitydm(r ) is defined in~11!–~13!.

To derive the duality relation we transform~33! as fol-
lows:

ZBV
~p,q!@K,d#5(

[ l ]
(
[k]

)
r ,m

expH 2
Km~r !

2

3F2p

N
@Dml ~r !1dm~r !#22pkm~r !G2J

5S)
r ,m

ND 1/2

(
[s]

(
[k]

E Du)
r ,m

expH 2
Km~r !

2

3F S Dmu~r !1
2p

N
dm~r ! D22pkm~r !G2

1 i
N

2
s~r !u~r !J ~34!

5S )
r ,m

N

2pKm~r ! D 1/2

(
[s]

(
[ t]

E Du

3)
r ,m

expH 2
tm
2 ~r !

2Km~r !
1 i t m~r !S Dmu~r !
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r-

N m D 2 J
5S )

r ,m

N

2pKm~r ! D 1/2

3(
[s]

(
[ t]

)
r ,m

expH 2
tm
2 ~r !

2Km~r !

1 i
2p

N
tm~r !dm~r !J

3)
r

dS (
m

Dmtm~r 2m̂ !2Ns~r ! D , ~36!

where

(
[ t]

¯5)
r ,m

S (
tm~r !52`

`

¯ D , E Du5)
r
E

0

2p du~r !

2p
.

In deriving ~34!, ~35!, and ~36! we used, respectively, th
summation formula

2p

N (
l 50

N21

dS u2
2p

N
l D5 (

s52`

`

eiNsu, 0<u<2p,

the equality

(
k52`

`

expF2
1

2
K~ f 22pk!2G

5
1

A2pK
(

t52`

`

expS 2
t2

2K
1 i t f D ,

and the definition of the Kroneckers delta

E
0

2p du~r !

2p
eiu l5d~ l !.

To remove the delta functions in~36! we must solve the
equation

(
m

Dmtm~r 2m̂ !5Ns~r !.

The analysis of the solutions of this equation is similar to
analysis of Eqs.~20!–~23!, and leads to the following expres
sions for the gauge-inequivalent solutions:

tm
~ p̃, q̃ !~r !5emnDn l̃ ~ r̃ 2 n̂ !1emn d̃n

~ p̃, q̃ !~ r̃ 2 n̂ !

2Nemn k̃ n~ r̃ 2 n̂ !,

s~r !5emnDm k̃ n~ r̃ 2 n̂2m̂ !.

These solutions are the magnetic basis dislocationsD̃ ( p̃, q̃) on
the dual lattice in the corresponding gauge-inequival

Ṽ( p̃, q̃) with topological charge Q̃m5( p̃n, q̃m)
( p̃, q̃50,1,...,N21). To remove the delta functions in~36!,
we must then sum over all such solutions. As a result
arrive at the duality relation for the Berezinski�–Villain
Z(N)-model:

139A. I. Bugri  and V. N. Shadura



2pKm~r ! 1/4

Z~p,q!@K,d#

ic

r

h
e

e
y

e

e-
-

u
he

where

–

e

-
n
r,
dary

he

s to
elf-
e

n

S )
r ,m N D BV

5
1

N (
p̃, q̃

expH i
2p

N
~p q̃2q p̃!J

3S )
r̃ ,m

2pK̃m~ r̃ !

N D 1/4

Z̃BV
~ p̃, q̃ !@K̃, d̃#, ~37!

where

Km~r !K̃2n~ r̃ !5S N

2p D 2

, mÞn.

As shown in Ref. 7, atN52 the Z(N)-symmetric
Gaussian model corresponds to the Ising model, wh
agrees with our result~37!, which in turn agrees with~3! in
this case, while atN54 it corresponds to the Ashkin–Telle
model.12

We now discuss the latter case in greater detail. T
Hamiltonian of the inhomogeneous Ashkin–Teller mod
can be written

2bHAT
~pn ,qn!

5(
r ,n

@Pn~r !1I n~r !t1~r !¹n
~pn!t1~r !

1Jn~r !t2~r !¹n
~qn!t2~r !

1Ln~r !t1~r !¹n
~pn!t1~r !t2~r !¹n

~qn!t2~r !#.

~38!

Here at each siter of a squaren3m lattice R there are two
spin variables,s(r ) ands(r ), which take the values61; the
subscriptn5x,y labels thex andy coordinate axes, and th
indicespn50,1 andqn50,1 (n5x,y) describe the boundar
conditions~6! on the spin variabless(r ) and s(t), respec-
tively; I n , Jn , andLn are the coupling constants along th
corresponding axes.

The statistical weight of the Ashkin–Teller model is r
lated to the statistical weight of theZ(4)-symmetric Gauss
ian model12:

exp@Pn~r !1I n~r !t1~r !¹nt1~r !1Jn~r !t2~r !¹nt2~r !

1Ln~r !t1~r !¹nt1~r !t2~r !¹nt2~r !#

5 (
km~r !52`

`

expH 22p2Kn~r !

3F1

4
~Dnl ~r !1dn~r !!2kn~r !G2J ,

wherel (r ) is related to the spin variablest1(r ) andt2(r ) by
~28!. This leads to the following parametrization of the co
pling constants of the Ashkin–Teller model in terms of t
constantsKn :

exp~4Pn!5v0v1v2v3 , exp~4Ln!5
v0v3

v1v2
,

exp~4I n!5
v0v1

v2v3
, exp~4Jn!5

v0v2

v1v3
,
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h

e
l

-

v05 (
m52`

`

exp~22p2Knm2!,

v15v25 (
m52`

`

expF22p2KnS m2
1

4D 2G ,
v35 (

m52`

`

expF22p2KnS m2
1

2D 2G .
This implies thatI n5Jn . Using this relation and~37!, we
can easily obtain the self-duality relation for the Ashkin
Teller model:

ZAT
~p,q!@P,J,L#5

1

4 (
p̃, q̃50

3

expH i
p

2
~p q̃2q p̃!J

3 Z̃AT
~ p̃, q̃ !@ P̃, J̃ , L̃ #, ~39!

where

ZAT
~p,q!5 (

[ t1],[ t2]
exp$2bHAT

~p,q!@t1 ,t2#%.

Here the HamiltonianHAT
(p,q) has the same structure as th

Hamiltonian~38!, but the shift operators¹n
(pn) and¹n

(qn) are

replaced by¹̄x,y
(p,q) (p,q50,...,3) with the boundary condi

tions ~30! and ~31!, which leads to the interaction of spi
variablest1(r ) andt2(r ) at the boundaries. As noted earlie
these boundary conditions emerge because of the boun
conditions~9! on the variablel (r ) and the relation~28!.

In ~39! the dual coupling constants are related to t
original coupling constants:

exp~22Jm~r !22Lm~r !!5
tanh J̃ 2n~ r̃ !@11tanh L̃ 2n~ r̃ !#

11tanh2 J̃ 2n~ r̃ !tanh L̃ 2n~ r̃ !
,

exp$24Jm~r !%5
tanh2 J̃ 2n~ r̃ !1tanh L̃ 2n~ r̃ !

11tanh2 J̃ 2n~ r̃ !tanh L̃ 2n~ r̃ !
,

1

2
exp~Pm12Jm1Lm!5exp~ P̃2n!@cosh2 J̃ 2n cosh L̃ 2n

1sinh2 J̃ 2n sinh L̃ 2n#.

These equalities constitute a special case of the relation
be obtained in Sec. 4, where we derive more general s
duality formulas for the Ashkin–Teller model with th
Hamiltonian~38!.

4. ASHKIN–TELLER MODEL AND 8-VERTEX MODEL

Consider the partition function

ZAT
~pn ,qn!

@P,I ,J,L#5 (
[s],[ s]

exp~2bHAT
~pn ,qn!

! ~40!

of the inhomogeneous Ashkin–Teller model on ann3m fi-
nite lattice R wound around a torus with the Hamiltonia
~38! and the boundary conditions~6! on the spin variables
s(r ) ands(r ).
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For a duality transformation of the partition function

on

ng

ly

he
8-
o

e

where byt( r̃ ) we denote the spin variable dual tos(r ), and

n-

p-
el
~40! we can use the duality relation~3! for the Ising model.
To this end we factor the four-spin term in~40! via the
simple identity

exp@Ln~r !s~r !s~r 1 n̂ !s~r !s~r 1 n̂ !#

5 (
tn~r !

an exp$gn~r !tn~r !

3@s~r !s~r 1 n̂ !1s~r !s~r 1 n̂ !#%,

where the spin variabletn(r )561 is on the edges of the
lattice (r ,r 1n), and

exp@2Ln~r !#5cosh 2gn~r !, exp@2Ln~r !#52an~r !.
~41!

After factorization we arrive at the following representati
of the partition function~40!, of a linear combination of
products of two partition functions of inhomogeneous Isi
models:

ZAT
~pn ,qn!

5(
[ tn]

)
r ,n

$an~r !exp~Pn~r !!%

3Zs
~px ,py!

@ I m8 #Zs
~qx ,qy!

@Jn8#, ~42!

where

Zs
~px ,py!

@ I m8 #5(
[s]

)
r ,n

exp@ I n8~r !s~r !¹n
~pn!

s~r !#,

Zs
~qx ,qy!

@Jn8#5(
[s]

)
r ,n

exp@Jn8~r !s~r !¹n
~qn!s~r !#,

and the coupling constants are

I n8~r !5I n~r !1gn~r !tn~r !,

Jn8~r !5Jn~r !1gn~r !tn~r !. ~43!

Since the duality relation~3! is valid for an arbitrary configu-
ration of the coupling constants@K#, we can use it for the
duality transformation of the partition functionsZs

(qx ,qy) and

Zs
(px ,py) . Here, performing the duality transformation on

for Zs
(qx ,qy) , for example, we find the relation between t

partition functions of the Ashkin–Teller model and the
vertex model, while the simultaneous transformation
Zs

(qx ,qy) and Zs
(px ,py) leads to the partition function of th

Ashkin–Teller dual model.
We start with the first case. Using relation~3! for the

duality transformation ofZs
(qx ,qy) , we obtain

ZAT
~pn ,qn!

5
1

2 )
r ,n

$an~r !exp~Pn~r !!%(
[ tn]

Zs
~px ,py!

@ I 8#

3 (
q̃x , q̃y50

1

exp@ ip~qxq̃y2qyq̃x!#

3(
[ t]

)
r̃ ,n

$sinh 2J̃ 2n8 ~ r̃ !%1/2

3exp@ J̃ 2n8 ~ r̃ !t~ r̃ !¹2n
~qn!t~ r̃ !#, ~44!
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f

tanh J̃ 2n8 ~ r̃ !5exp@22Jm8 ~r !#, mÞn, ~45!

with r̃ designating the sites of the dual latticeR̃ linked to the
coordinates of the sites of the original lattice via the relatio
ship r̃ 5r 1( x̂1 ŷ)/2, andJ̃ 2n8 ( r̃ )5 J̃ n8(r 2̃ n̂). Thus, on the
right-hand side of~44! we have the partition function in
which the spin variables are given on two lattices,R andR̃.
Using ~45! and the identity

exp~Ks is j !5coshK1sinh Ks is j , ~46!

we can write the sum over@tn# in ~44! in the following form:

)
r ,n

(
tn561

@exp~Jn8!coshI n8

1exp~Jn8!sinh I n8s~r !¹n
~pn!

s~r !

1exp~2Jn8!coshI n8t~ r̃ !¹2m
~ q̃2m!t~ r̃ !

1exp~2Jn8!sinh I n8s~r !¹n
~pn!

s~r !t~ r̃ !

3¹
2m
~ q̃m!t~ r̃ !#,

mÞn.

After summing overtn we obtain

ZAT
~pn ,qn!

5
1

2 )
r ,n

exp@Pn~r !2Ln~r !#

&

3 (
q̃x , q̃y50

1

exp@ ip~qxq̃y2qyq̃x!#

3 (
[ t,s]

)
r ,n

exp~Jn1Ln!cosh~ I n1Ln!

3F11tanh~ I n1Ln!s~r !¹n
~pn!

s~r !

1exp~22Jn!
cosh~ I n2Ln!

cosh~ I n1Ln!
t~ r̃ !¹2m

~ q̃m!t~ r̃ !

1exp~22Jn!
sinh~ I n2Ln!

cosh~ I n1Ln!
s~r !

3¹n
~pn!

s~r !t~ r̃ !¹2m
~ q̃m!t~ r̃ !G . ~47!

The partition function of the 8-vertex model can be re
resented in the form of the partition function of a spin mod
consisting of two Ising sublatticesR andR̃ coupled by four-
spin interaction.10 In general form, it is convenient to write
the Hamiltonian of such a model as

2bH IV
~pn ,qn!

5(
r ,n

@Pn
v~r !1I n

v~r !s~r !¹n
~pn!

s~r !

1J2m
v ~ r̃ !t~ r̃ !¹2m

~qm!t~ r̃ !

1Ln
v~r !s~r !¹n

~pn!
s~r !t~ r̃ !¹2m

~qm!t~ r̃ !#,

mÞn, ~48!
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FIG. 2. a! The two-sublattice Ising model and th
8-vertex model with the lattice obliquely wound
around a torus. b! The relationship between the spi

variabless(r ), t( r̃ ), andak,l .
where again the spinss(r )561 belong to the original lat-
e

tio
o

ri
ng
pi

~p ,q ! 1
1

~p ,p , q̃ , q̃ !

el
f
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rus

o be

ted
For
ari-
f
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e

he
are

e

pin

he

ex
tice R, and the spinst( r̃ )561 are at the sites of the lattic
R dual to the original lattice~see Fig. 2a!. The partition
function of such a model is the same as the partition func
~47! for certain relations between the coupling constants
these models. Indeed, using~46!, we find that

ZIV
~pn ,qn!

5 (
[ t],[ s]

exp~2bH IV
~pn ,qn!

!

5 (
[ t],[ s]

)
r ,n

P̄n@11 Ī ns~r !¹n
~pn!

s~r !

1 J̄nt~ r̃ !¹2m
~qm!t~ r̃ !1L̄ns~r !¹n

~pn!
s~r !

3t~ r̃ !¹m
~qm!t~ r̃ !#, ~49!

and the coupling constants are determined below. Compa
~47! and ~49!, we obtain equations that relate the coupli
constants of the Ashkin–Teller model to those of the s
model with the Hamiltonian~48!,

exp@Pn~r !1Jn~r !#

&

5exp@Pm
v ~r !#@coshI n

v~r !coshJ2m
v ~ r̃ !coshLn

v~r !

1sinh I n
v~r !sinh J2m

v ~ r̃ !sinh Ln
v~r !#5 P̄n , ~50!

tanh~ I n1Ln!5
tanh I n

v~r !1tanhJ2m
v ~ r̃ !tanhLn

v~r !

11tanh I n
v~r !tanhJ2m

v ~ r̃ !tanhLn
v~r !

5 Ī n ,

~51!

exp~22Jn!
cosh~ I n2Jn!

cosh~ I n1Jn!

5
tanhJ2m

v ~ r̃ !1tanh I n
v~r !tanhLn

v~r !

11tanh I n
v~r !tanhJ2m

v ~ r̃ !tanhLn
v~r !

5 J̄n , ~52!

exp~22Jn!
sinh~ I n2Jn!

cosh~ I n1Jn!

5
tanhLn

v~r !1tanh I n
v~r !tanhJ2m

v ~ r̃ !

11tanh I n
v~r !tanhJ2m

v ~ r̃ !tanhLn
v~r !

5L̄n , ~53!

and one that relates the partition functions:
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n
f

ng

n

ZAT
n n 5

2 (
q̃x , q̃y50

exp@ ip~qxq̃y2qyq̃x!#Z2I
x y x y .

~54!

It is easy to show that the partition function of the mod
with Hamiltonian~48! is related to the partition function o
the inhomogeneous two-sublattice 8-vertex model:

ZIV
~pn ,qn!

52Z8V
~px1qx ,py1qy! . ~55!

Indeed, as Fig. 2 shows~the edges of the lattice for the 8
vertex model are depicted by short dashed lines!, this model
is defined on a square lattice obliquely wound around a to
with toroidal boundary conditions~6! for the model~48! ~in
Fig. 2a the sublatticesR and R̃ are 333, and spins situated
on opposite edges of the sublattices must be assumed t
identical when the lattice is wound around the torus!. The
spin variables in the 8-vertex model are usually represen
by arrows at the edges of the lattice, and take two values.
the sake of convenience, we denote them by Ising spin v
ablesa that take values61, located at sites in the middle o
the corresponding edges. Then Fig. 2a clearly shows tha
order to allow for the toroidal boundary conditions in th
8-vertex model on a lattice obliquely wound around t
torus, it is convenient to represent the model as a squ
lattice of dimensions 2n32m ~the lattice being wound di-
rectly around the torus!, with a lattice constant that is half th
lattice constant of the original latticeR, on which the spins
s(r ) are specified. At the sites of such a lattice there are s
variablesak,l561 satisfying the boundary conditions

¹x/2
~ l x!a2n,l5~21! l xa1,l , ¹y/2

~ l y!ak,2m5~21! l yak,1 ,

where l x ,l y50,1 denote the boundary conditions, and t
pairs (k,l ), k51,...,2n, l 51,...,2m label the sites of the
lattice. The relationship between the spin variabless(r ),
t( r̃ ), andak,l is shown in Fig. 2b and is specified by

ak,l5s~r !t~ r̃ 2 x̂!, ak11,l 115s~r 1 ŷ!t~ r̃ !,

ak,l 115s~r 1 ŷ!t~ r̃ 2 x̂!, ak11,l5s~r !t~ r̃ !. ~56!

We can therefore write the partition function of the 8-vert
model on such a lattice as
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Z~ l x ,l y!
5 exp~2bH ~ l x ,l y!

!

o

e
re
e

th

y

in

tio
ex

~pn ,qn!
1

˜ ˜

e

on

f

8V (
[a]

8V

5(
[a]

)
i , j 51

n,m

v1~a2i 21,2j 21a2i ,2j ua2i 21,2j ,a2i ,2j 21!

3v2~a2i ,2j ,a2i 11,2j 11ua2i ,2j 11 ,a2i 11,2j !, ~57!

where

v15exp$ 1
2@2Py

v1I y
v~a2i 21,2j 21¹x/2

~ l x!a2i 21,2j 21

1a2i 21,2j¹x/2
~ l x!a2i 21,2j !

1J2x
v ~a2i 21,2j 21¹y/2

~ l y!a2i 21,2j 21

1a2i ,2j 21¹y/2
~ l y!a2i ,2j 21!1Ly

v~a2i 21,2j 21a2i ,2j

1a2i 21,2ja2i ,2j 21!#%d~a2i 21,2j 21a2i ,2ja2i 21,2j

3a2i ,2j 2121!,

v25exp$ 1
2@2Px

v1I x
v~a2i ,2j¹y/2

~ l y!a2i ,2j

1a2i 11,2j¹y/2
~ l y!a2i 11,2j !1J2y

v ~a2i ,2j¹x/2
~ l x!a2i ,2j

1a2i ,2j 11¹x/2
~ l x!a2i ,2j 11!1Lx

v~a2i 21,2j 21a2i ,2j

1a2i 21,2ja2i ,2j 21!#%d~a2i ,2ja2i 11,2j 11a2i 11,2j

3a2 j ,2j 1121!.

Here v1 and v2 describe the statistical weights of the tw
sublattices in the 8-vertex model. Obviously, at

Px
v5Py

v5Pv, I x
v5J2x

v , I y
v5J2y

v , Lx
v5Ly

v5Lv ~58!

the statistical weightsv1 andv2 coincide, and we have th
usual model.10 For the sake of comparison we show the
lationship betweenv1 and the usual vertex notation for th
statistical weights in the 8-vertex model:

a5v1~11u11 !5exp@Pv~r !1I x
v~r !1I y

v~r !1Lv~r !#,

b5v1~11u22 !5exp@Pv~r !2I x
v~r !2I y

v~r !1Lv~r !#,

c5v1~12u21 !5exp@Pv~r !1I x
v~r !2I y

v~r !2Lv~r !#,

d5v1~12u12 !5exp@Pv~r !2I x
v~r !1I y

v~r !2Lv~r !#.
~59!

The relation between the boundary conditions on
spin variabless(r ), t( r̃ ), andak,l is given by ~56!, from
which it follows that

¹x/2
~ l x!ak,l5¹x

~px!
s~r !¹x

~qx!t~ r̃ !,

¹y/2
~ l y!ak,l5¹y

~py!
s~r !¹y

~qy!t~ r̃ !.

We see that the boundary condition indices are related b

l x5px1qx , l y5py1qy , ~60!

where the sum is assumed to be mod 2. Bearing this in m
we obtain~55!. Now, allowing for ~54!, ~55!, and ~60!, we
can easily obtain the exact relation that between the parti
functions of the Ashkin–Teller model and the 8-vert
model with the lattice obliquely wound around the torus:
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ZAT @P,I ,J,L#5 (
q̃x , q̃y50

exp@ ip~qxqy2qyqx!#

3Z8V
~px1 q̃x ,py1 q̃y!

@Pv,I v,Jv,Lv#,

where the coupling constants are related by~50!–~53!.
We now returen to deriving the duality relation for th

Ashkin–Teller model, for which we must use~5! and carry
out the duality transformations of the partition functionsZs

andZs in ~42! simultaneously. As a result we have

ZAT
~pn ,qn!

5
1

4 (
p̃n , q̃n50

1

exp@ ip~pxp̃y2pyp̃x1qxq̃y2qyq̃x!#

3)
r ,n

$an~r !exp~Pn~r !!%

3(
[ t̃ ]

(
[ s̃ ]

)
r ,n

@~sinh 2Ĩ n8~ r̃ !!21/2

3exp$ Ĩ n8~ r̃ !s̃~ r̃ !¹n
~pn!

s̃~ r̃ !%#

3(
[ s̃ ]

)
r ,n

@~sinh 2J̃a8 ~ r̃ !!21/2

3exp$ J̃ n8~ r̃ ! s̃~ r̃ !¹n
~qn! s̃~ r̃ !%#,

whereI n8(r ) andJm8 (r ) have been defined in~43!, and

tanh J̃ 2m8 ~ r̃ !5exp@22Jn8~r !#,

tanh Ĩ 2m8 ~ r̃ !5exp@22I n8~r !#.

Now, repeating the calculations used to derive~47!, we can
easily obtain the following representation for the partiti
function of the Ashkin–Teller model:

ZAT
~pn ,qn!

5
1

4 (
p̃n , q̃n50

1

exp@ ip~pxp̃y2pyp̃x1qxq̃y2qyq̃x!#

3 (
[ s̃ ],[ s̃ ]

)
r ,n

exp@Pn~r !1I n~r !1Jn~r !1Ln~r !#

3$11exp@22I n~r !22Ln~r !#s̃~ r̃ !¹2m
~ p̃m!

s̃~ r̃ !

1exp@22Jn~r !22Ln~r !# s̃~ r̃ !¹2m
~ q̃m! s̃~ r̃ !

1exp@22I n~r !22Jn~r !#s̃~ r̃ !¹2m
~ p̃m!

s̃~ r̃ ! s̃~ r̃ !

3¹
2m
~ q̃m! s̃~ r̃ !%. ~61!

Using the identity~46!, we reduce the partition function o
the dual model,

Z̃AT
~ p̃n , q̃n!

5 (
[ s̃ ],[ s̃ ]

expH(
r̃ ,n

@ P̃n~ r̃ !

1 Ĩ n~ r̃ !s̃~ r̃ !¹n
~ p̃n!

s̃~ r̃ !

1 J̃ n~ r̃ ! s̃~ r̃ !¹n
~ q̃n! s̃~ r̃ !
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1 L̃ ~ r̃ !s̃~ r̃ !¹
~ p̃n!

s̃~ r̃ ! s̃~ r̃ !¹
~ q̃n! s̃~ r̃ !# ,
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to a form similar to~49!, and comparing the coefficients o
the products of dual spins with the coefficients of the cor
sponding products in~61!, we can relate the original and du
coupling constants:

exp@22Jm~r !22Lm~r !#

5
tanh J̃ 2n~ r̃ !1tanh Ĩ 2n~ r̃ !tanh L̃ 2n~ r̃ !

11tanh J̃ 2n~ r̃ !tanh Ĩ 2n~ r̃ !tanh L̃ 2n~ r̃ !
,

exp@22I m~r !22Lm~r !#

5
tanh Ĩ 2n~ r̃ !1tanh J̃ 2n~ r̃ !tanh L̃ 2n~ r̃ !

11tanh J̃ 2n~ r̃ !tanh Ĩ 2n~ r̃ !tanh L̃ 2n~ r̃ !
,

exp@22I m~r !22Jm~r !#

5
tanh L̃ 2n~ r̃ !1tanh Ĩ 2n~ r̃ !tanh J̃ 2n~ r̃ !

11tanh J̃ 2n~ r̃ !tanh Ĩ 2n~ r̃ !tanh L̃ 2n~ r̃ !
,

1

2
exp~Pm1I m1Jm1Lm!

5exp~ P̃2n!~cosh Ĩ 2n cosh J̃ 2n cosh L̃ 2n

1sinh Ĩ 2n sinh J2n sinh L̃ 2n!, ~62!

and we obtain the self-duality relation for the Ashkin–Tel
model:

ZAT
~pn ,qn!

@P,I ,J,L#

5
1

4 (
p̃m , q̃m50

1

T
p̃x , p̃y

px ,py T
q̃x , q̃y

qx ,qy Z̃AT
~ p̃x , p̃y , q̃x , q̃y!

@ P̃, Ĩ , J̃ , L̃ #.

~63!

The matrixT̂ is defined in~5! and ~27!.
Using these results, we can easily obtain the duality

lations for the 8-vertex model on a lattice wound oblique
around the torus. Indeed, as~38! and ~48! show, the Hamil-
tonians of the Ashkin–Teller model and the two-sublatt
Ising model with four-spin interaction have the same str
ture of the interaction of the spin variables. Such a dua
relation for the latter model can be derived in the same w
as for the Ashkin–Teller model. As a result we arrive at
expression similar to~63!:

ZIV
~pn ,qn!

@Pv,I v,Jv,Lv#

5
1

4 (
p̃m , q̃m50

1

T
p̃x , p̃y

px ,py T
q̃x , q̃y

qx ,qy

3 Z̃ IV
~ p̃x , p̃y , q̃x , q̃y!

@ P̃v, Ĩ v, J̃ v, L̃ v#,

where the coupling constants of the original and dual mod
are related by~62!. If we now use this equation and Eq.~55!,
which relates the partition functions of the 8-vertex model
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sublattice Ising model, and the relationship~60! between the
boundary condition indices in these models, we can ea
obtain the duality relation for the 8-vertex model:

Z8V
~ l x ,l y!

@Pv,I v,Jv,Lv#

5
1

4 (
pm ,qm50

1

d~px1qx2 l x!d~py1qy2 l y!

3
1

4 (
p̃m , q̃m50

1

T
p̃x , p̃y

px ,py T
q̃x , q̃y

qx ,qy

3 Z̃8V
~ p̃x1 q̃x , p̃y1 q̃y!

@ P̃v, Ĩ v, J̃ v, L̃ v#, ~64!

where the partition functions of the original and dual mod
have the form~57!, summation of the boundary conditio
indices is assumed to be mod 2, and the coupling const
are related by~62!. Simple algebraic manipulations sho
that the relations~62! are the same as the duality relations
the 8-vertex model given in Ref. 10 if conditions~58! and
~59! are met:

ã5
1

2
~a1b1c1d!, b̃5

1

2
~a1b2c2d!,

c̃5
1

2
~a2b1c2d!, d̃5

1

2
~a2b2c1d!.

5. CONCLUSION

The duality relations obtained in the present paper
Z(N)-symmetric models on a square lattice wound aroun
torus are of a general topological origin. Hence the propo
method can be generalized to spin models with a continu
symmetry group—for example, theXY-model on a torus.

Note that the duality relations~64! were obtained for the
inhomogeneous 8-vertex model. Using the method sugge
in Ref. 4, we can cut the torus along its cycles and obtain
duality relations for the model on a plane with differe
boundary conditions on the plane’s edges. Moreover, us
~64!, we can obtain the duality relations for the correlati
functions of the 8-vertex model on a square lattice obliqu
wound around the torus, relations that generalize those
tained in Ref. 13 for infinite lattices.
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Order parameter quantum fluctuations in a two-dimensional system of mesoscopic

Josephson junctions

A. I. Belousov, S. A. Verzakov, and Yu. E. Lozovik* )

Institute of Spectroscopy, Russian Academy of Sciences, 142092 Troitsk, Moscow Region, Russia
~Submitted 18 June 1997!
Zh. Éksp. Teor. Fiz.113, 261–277~January 1998!

The boson lattice Hubbard model is used to study the role of quantum fluctuations of the phase
and local density of the superfluid component in establishing a global superconducting
state for a system of mesoscopic Josephson junctions or grains. The quantum Monte Carlo method
is used to calculate the density of the superfluid component and fluctuations in the number
of particles at sites of the two-dimensional lattice for various average site occupation numbersn0

~i.e., number of Cooper pairs per grain!. For a system of strongly interacting bosons, the
phase boundary of the ordered superconducting state lies above the corresponding boundary for
its quasiclassical limit—the quantumXY-model—and approaches the latter asn0 increases.
When the boson interaction is weak in the boson Hubbard model~i.e., the quantum fluctuations
of the phase are small!, the relative fluctuations of the order parameter modulus are
significant whenn0,10, while quantum fluctuations in the phase are significant whenn0,8;
this determines the region of mesoscopic behavior of the system. Comparison of the
results of numerical modeling with theoretical calculations show that mean-field theory yields a
qualitatively correct estimate of the difference between the phase diagrams of the quantum
XY-model and the Hubbard model. For a quantitative estimate of this difference the free energy
and thermodynamic averages of the Hubbard model are expanded in powers of 1/n0 using
the method of functional integration. ©1998 American Institute of Physics.
@S1063-7761~98!01801-0#
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The development of microlithography has led to cons
erable progress in the investigation of mesoscopic syste1

the development of single-electron devices,2 and the elucida-
tion of new fundamental concepts in the theory of superc
ducting phase transitions in quantum dots.3 There is also
much interest in the study of properties of extended syst
made up of mesoscopic objects. Among these systems
for example, arrays of mesoscopic Josephson junctions,
tems of ultrafine grains, and superconducting helium in
porous medium.4a

As a rule, granular superconductors and systems of
sephson junctions are described by using various modifi
tions of the quantumXY-model ~see below, Eq.~2!!. How-
ever, this description is only correct when fluctuations in
modulus of the superconducting or superfluid order para
eters are not significant.4b In order to investigate the role o
fluctuations in the modulus of the order parameter in me
scopic systems it is necessary to use other models that a
a certain sense more general.

In this paper, a system of interacting bosons on a squ
N3N lattice with a distanced between lattice sites is used a
such a generalized model. In this model one site correspo
to one helium-filled pore, etc. The Hamiltonian of the syst
is chosen in the form

Ĥ5
t

2 (
^ i , j &

~2ai
†ai2ai

†aj2aj
†ai !1

U

2 (
i

~ai
†ai2n0!2.

~1!

Here the operatorsai
† (ai) are operators for creation~anni-
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Hamiltonian corresponds to the ‘‘kinetic’’ energy of the pa
ticles; the hopping energyt for a particle of massm can be
written t5\2/md2. The summation( i , j is over all nonre-
peating pairŝ i , j & of adjacent lattice sites. The second ter
in Eq. ~1! describes the interaction between particles, w
characteristic energyU.0. Qualitatively this Hamiltonian
can also approximately describe a system of mesoscopic
perconducting grains; in this formulation of the problem w
avoid the question of how an individual grain enters the
perconducting state, a problem of interest in its own rig
~see, for example, Ref. 5 and the citations therein! which
recalls the problem of superfluidity in atomic nuclei in ma
ways.

A system with Hamiltonian ~1! has a rich phase
diagram6,7 containing a Mott insulator phase~at T50!,6,8 a
normal metal, and a superconducting phase. In this pape
are interested in system~1! for integer-valued occupation
i.e., where the average number of bosons per siten05^ai

†ai&
is a whole number. Under these conditions, atT50 the bo-
son Hubbard model belongs to the same universality c
~see Refs. 6–9! as the quantumXY-model:

ĤXY5J(
^ i , j &

~12cos~w i2w j !!2
U

2 (
i

S ]

]w i
D 2

, ~2!

where the phases of the order parameterw iP@0,2p#. At fi-
nite temperature, the requirement that the average occupa
numbern05k be an integer is weakened. In this case,
behavior of the system will depend continuously on the

14610$15.00 © 1998 American Institute of Physics
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In Sec. 4 we discuss and compare the results of our

in

ia-

c-

e

field
n

he
changed in a bandn05k1dn0 , whose width 2dn0 should
decrease with decreasing temperature.

The state of system~2!, which has superconducting an
normal ~metallic! phases at finite temperature, is describ
by two dimensionless control parameters: the temperatur
units of the coupling constantT5kbT/J, and the dimension-
less quantum parameterq5AU/J, which determines the
characteristic zero-point fluctuations of the phase. The co
sponding dimensionless control parameters for the Hubb
model ~1! when J5tn0 are the dimensionless temperatu
T5kbT/tn0 and quantum parameterq5AU/tn0.

Model ~2! can be obtained from Eq.~1! by neglecting
relative fluctuations in the modulus of the order parame
F i5D ie

j w i, which is correct~for UÞ 0! at high particle
densitiesn0 ~see below!. Thus, the lattice boson Hubbar
model can actually be regarded as more general when
effects of ordering in systems of granular superconduct
thin films, etc. are being investigated. For this reason ther
interest in first-principles studies of how quantum fluctu
tions in the order parameter affect the establishment o
global superconducting state and, in particular, compari
of the phase diagrams of the two model systems~1! and ~2!
in the $q,T% plane.

Another question of considerable interest involves
possibility of observing the phenomenon of reentrant sup
conductivity in a system of type~1!, that is, the appearanc
of disorder not only with increasing but also with decreas
temperatureT within a certain range of the quantum param
eterq. Within the framework of the quantumXY-model the
possible existence of reentrant effects is associated with
accurate specification of the domain of definition of the or
parameter phase;10 elsewhere it involves the effects of lea
age or inclusion of mutual capacitance of grains in
bulk.11,12 In this paper we show that inclusion of fluctuatio
of the modulus within the framework of model~1! does not
lead to reentrant behavior, at least over the range of con
parameters that we investigate.

This paper is organized in the following way.
In Sec. 2 we compare the phase diagrams of system~1!

and ~2! obtained in the mean-field approximation. By e
panding the free energy, the mean-square fluctuations,
the density of the superfluid component for the boson H
bard model in the parameter 1/n0 , we obtain corrections to
the analogous quantities calculated within the framework
the quantumXY-model and determine quantitative criter
for the possibility of separating fluctuations in the modu
of the order parameter from fluctuations in its phase.

In Sec. 3 we present a short description of the quan
Monte Carlo method used to simulate the boson lattice s
tem and the quantumXY-model.
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theoretical investigation with numerical models.

2. THEORETICAL ESTIMATES OF SIMILARITY BETWEEN
THE BOSON HUBBARD MODEL AND THE QUANTUM
XY-MODEL

2.1. Mean-field approximation

The mean-field approximation10 consists of replacing the
original Hamiltonian of the system, which can be written
the form ~see Eqs.~1! and ~2!!

Ĥ5(
i

Ĥ i
01(

^ i , j &
V̂i j , ~3!

by the mean-field Hamiltonian, which depends on a var
tional parametera:

Ĥm f~a!5(
i

Ĥ i
01a(

i
V̂i , ~4!

where the mean-field operatorV̂ is governed by the condition

Tr~Vi j exp~2bĤm f!!

Tr~exp~2bĤm f!!
[^V̂i j &m f5

1

K
^V̂i&m f^V̂j&m f.

The constantK depends on the specific form of the intera
tion energiesV̂i j , V̂i . The parametera is determined by
using the variational Gibbs–Bogolyubov principle from th
requirement that the trial energy

Ft~a![Fm f~a!1^Ĥ2Ĥm f~a!&m f

be a minimum. Vanishing of the variational parametera in-
dicates that the system is disordered, and in the mean-
approximation the curvea(q,T)50 can be regarded as a
estimate of the boundaries of the ordered phase.

Simple calculations show that at the boundary of t
ordered state the following general relation holds:

152
z

K E
0

b

dt^V̂~ t !V̂~0!&m f , V̂~ t !5etĤV̂e2tĤ, ~5!

wherez is the number of nearest neighbors~z54 for a two-
dimensional square lattice!.

For the quantumXY-model with Hamiltonian~2!, it is
natural to choose

V̂i52zJ cosw i /2

where

K52Jz2/4, a52^cosw i&m f.

The use of Eq.~5! yields the well-known equation10 for the
boundaries of the ordered phaseT5Tc(q):
q2

z
5

(n52`
` @exp~2q2n2/2T!2exp~2q2~n11!2/2T!#/~2n11!

(n52`
` exp~2q2n2/2T!

. ~6!
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The solution of this equation is shown in Fig. 1 as a solid

la
th

andm is the chemical potential of the system. The choice

curve.

In order to apply the method described above to the
tice Hubbard model, it is necessary to treat the system wi
the framework of the grand canonical ensemble, where

Ĥ i
05

U

2
~ai

†ai2n0!21
zt

2
ai

†ai2mai
†ai ,

Vi j 52
t

2
~ai

†aj2aj
†ai !, ~7!
pa

F
m

n
e
rr
e

p
in

h

il

h

t-
in

V̂i52zt~ai
†1ai !/4

leads to

K52tz2/4, a5^ai
†1ai&m f .

In this case, Eq.~5! takes the form
q2

z
5

(n52n0

` ~n1n011!@exp~2q2~n2h!2/2T!2exp~2q2~n112h!2/2T!#/~2n1122h!

n0(n52n0

` exp~2q2~n2h!2/2T!
,

h5
m

U
2

z

2q2n0
. ~8!

The chemical potentialm can be found from the equation t
2 2 * *
1 ~ uF u 1uF u 2F F 2F F !

e

ile
(
n52n0

`

n exp~2q2~n2h!2/2T!50, ~9!

which corresponds to choosing the average number of
ticles at a site to ben0 . Note that in the limitn0→` we have
h50, and it is not difficult to show that Eq.~8! reduces to
Eq. ~6!.

Solving Eqs.~8! and ~9! simultaneously, we obtain the
estimate of the ordered phase boundary shown in Fig. 1.
comparison we show plots for the average occupation nu
bersn051,2,6. It is clear from Fig. 1 that for any interactio
energyU the mean-field theoretical estimate of the order
state boundary for the Hubbard model lies above the co
sponding boundary for theXY-model, and approaches th
latter as the average site occupation numbern0 increases.
Calculations in the mean-field approximation show that a
proximate agreement of the two phase diagrams is obta
for n0>25.

2.2. Computation of corrections by the method of functional
integration

We now attempt to refine the qualitative estimate of t
difference between phase diagrams of models~1! and ~2!
obtained in the mean-field approximation. For this we w
use the method of functional integration.

The partition function of model~1! can be written in
terms of a functional integral over the components of t
Bose fieldF in the form9

Zh5Tr~e2S!5E D~F,F* !e2S~F,F* !,

S~F,F* !5E
0

bF(
i

ḞiF i*
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i j i j j i

1
U

2 (
i

~ uF i u22n0!2Gdt.

F i5F i~t!, F i* 5F i* ~t!. ~10!

Making the variable substitutionF i5An01dnie
j w i in Eq.

~10!, where n0 is an integer, and taking into account th
periodicity of the functionsF i(t), F i* (t) with respect to
imaginary time, we have

Zh5E D~dn,w!e2S~dn,w!,

S~dn,w!5E
0

bFU

2 (
i

~dni !
21 j̃ (

i
dni ẇ i

1tn0(
^ i , j &

S 11
dni1dnj

2n0

2AS 11
dni

n0
D S 11

dnj

n0
D cos~w i2w j ! D Gdt.

~11!

Increasing the average number of particles per site wh
fixing J5tn0 and U reduces Eq.~11! to the partition func-
tion for the quantumXY-model. In fact, asn0→` we have

Zh→E D~dn,w!expH 2E
0

bF j̃ (
i

dni ẇ i

1J(
^ i , j &

~12cos~w i2w j !!1
U

2 (
i

~dni !
2GdtJ

5ZnE D~w!expH 2E
0

bF(
i

ẇ i
2

2U
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1J ~12cos~w 2w !!dt5Z Z , ~12!
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C~2!5^C̃

-

nte
(
^ i , j &

i j n XY

where the factorZn results from integrating~11! over fluc-
tuations in the order parameter modulus. In the current
proximation, this can be done separately from the integra
over phase. It is clear from Eq.~12! that the critical behavior
of the system of interacting bosons on a lattice~in the limit
n0→`! is determined by fluctuations of the phasesw i , and
coincides with the critical behavior of the quantu
XY-model.

Since we are interested in how close the boson Hubb
model is to the quantumXY-model ~12! for large but finite
average occupation numbersn0 , we expand the free energy
density of superfluid component, and mean-square fluc
tions in the number of particles for model~1! in powers of
1/n0 to second order. The corrections we obtain to the c
responding quantities for the quantumXY-model ~12! can
serve as a quantitative measure of the difference betwee
phase diagrams of the two systems.

The following relations hold for the free energyF, the
mean-square fluctuations in particle numberdn2, and the
fraction of superfluid componentns ~the helicity modulusg
in the case of theXY-model!:

Fh5Fxy2
1

b
ln~Zn!1

1

2n0
2 F ~2!1...,

dnh
25dnxy

2 1
1

2n0
2 C~2!1...

ns5g1
1

2n0
2 G~2!1... ~13!

The first-order corrections vanish by virtue of the invarian
of Eq. ~12! of the XY-model under ‘‘time’’ reversal.

After integrating over the variablesdni and discretizing
the ‘‘time,’’ we obtain expressions for the correctionsF (2),
C (2), G (2) in Eq. ~13! that are suitable for subsequent es
mation by the trajectory quantum Monte Carlo method ba
on the quantumXY-model~2!. For the correction to the free
energy we have

bF ~2![^F̃ ~2!&xy5K 1

4q2 (
p50

P21

(
^ i , j &

F S 22
PT

q2 ~ ẇ i
p

2ẇ j
p!2D cos~w i

p2w j
p!G1

1

4q4 (
p50

P21 S (
i

ẇ i
ph i

pD 2

2
1

4PTq2 (
p50

P21

(
i

~h i
p!2L

xy

. ~14!

Once we have determineddnxy
2 [^C̃& ~see Eq.~26!!, we

obtain the following expression for the correctionC (2) to the
mean-square fluctuations in particle number within
XY-model:

C~2!5^C̃&xy^F̃
~2!&xy2^C̃F̃ ~2!&xy2

4T

q2N2 ^F̃ ~2!&xy
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Introducing a quantityG̃ such thatg[^G̃&xy ~see Eq.
~23!!, we have for the correctionG (2)

G (2)5^G̃&xy^F̃&xy2^G̃F̃&xy2
1

4N2Pq2 K (
p50

P21

(
i

Yi
ph i

pL
xy

2
T

8N2q2 K (
p50

P21

(
^ i , j &

S 22
PT

q2 ~ ẇ i
p2ẇ j

p!2DXi j L
xy

1
T

4N2q2 K F (
p50

P21

(
i

ẇ i
pSi

pG2L
xy

2
1

4N2Pq2 K (
p50

P21

(
i

~Si
p!2L

xy

1
T

4N2q4K F (
p50

P21

(
i

ẇ i
pYi

pGF (
p50

P21

(
i

ẇ i
ph i

pG L
xy

Xi j
p 5cos~w i

p2w j
p!2

2

PT
sin~w i

p2w j
p!

3 (
p50

P21

(
^ i , j &

sin~w i
p2w j

p!,

FIG. 1. Phase diagrams for the Hubbard model~1! and the quantum
XY-model ~2!. S—superconducting state,N—normal state. Results of cal
culations based on mean-field theory:n051 ~1!, 2 ~2!, 6 ~3!; 4—quantum
XY-model (n05`). Results of the 1/n0 expansion:n056 ~5!, 14 ~6!. Here
and in what follows the following symbols denote results of quantum Mo
Carlo calculations: empty—N56, filled in—N54, with dots inside—N
510; squares—n051, triangles—n052, circles—n053, rhombi—n054,
inverted triangles—n056, stars—quantumXY-model.

149Belousov et al.



Yi
p5Xii 1x

p 1Xii 2x
p 1Xii 1y

p 1Xii 2y
p ,

f
te
e

tin

at

n
n

e
a

th
n
e-

b-
s

te
n
oin
n

th
se

ca
h

al
in

he
ion
the
ow
site

the
m

the
is

cal
ber

int

t

re
Si
p5sin~w i

p2w i 1x
p !1sin~w i

p2w i 2x
p !1sin~w i

p2w i 1y
p !

1sin~w i
p2w i 2y

p !. ~16!

Henceforth we use the notation

ẇ i
p5 bw i

p112w i
pc @2p,p! , w i

P5w i
0,

h i
p542cos~w i

p2w i 1x
p !2cos~w i

p2w i 2x
p !

2cos~w i
p2w i 1y

p !2cos~w i
p2w i 2y

p !, ~17!

where b f c @a,b) denotes the reduction of the quantityf to the
interval @a,b).

Once we know the value of the coefficientG (2) in the
expansion~13! for the fraction of superfluid component o
the Hubbard model as a function of the control parame
i.e., G (2)5G (2)(q,T), we can estimate the correction to th
curveTxy

c (q) for phase transitions of the quantumXY-model
at large but finite average occupation numbersn0 . The cor-
responding estimate from above for the superconduc
transition temperatureTh

c(q;n0) in the Hubbard model is
given by the curve

Th
c~q;n0!<Txy

c ~q!S 11
ns~q,Txy

c !2g~q,Txy
c !

g~q,Txy
c !

D
5Txy

c ~q!S 11
pG~2!~q,Txy

c !

4n0
2Txy

c ~q!
D . ~18!

An estimate of Eq.~18! is easily obtained by assuming th
on the curvesTxy

c (q) and Th
c(q;n0) of the topological

Kosterlitz–Thouless phase transition, the following relatio
are satisfied for the ‘‘universal discontinuity’’ in the fractio
of superfluid component13:

g~q,Txy
c !52Txy

c /p, ns~q,Th
c!52Th

c/p.

SinceG (2)(q,T) and g(q,T) are averages based on th
quantumXY-model, they can easily be estimated from
quantum Monte Carlo calculation~see Sec. 3!,1! which en-
ables us to determine a family of phase diagrams for
boson Hubbard model Eq.~1! for various average boso
numbers per grainn0 . The corresponding results are pr
sented in Fig. 1. Estimates based on Eq.~18! show that in the
range 0.7,q,1.5, the phase transition curve for the Hu
bard model reaches its limiting position—the phase tran
tion curve for the quantumXY-model—for n05861. At
larger values of the quantum parame
q.1.7, the correctionG (2) increases significantly, so that i
this approximation the phase diagrams approximately c
cide whenn0.1662; however, direct numerical calculatio
of the model Eq.~1! leads to the conclusion~see below! that
this estimate is much too large.

To conclude this section, it is necessary to make
following comment. It is easy to see that for all of the
calculations, starting from representation~10! of the partition
function of the boson Hubbard system within the grand
nonical ensemble, the chemical potential equals zero. T
enables us to make all of the required estimates analytic
avoiding the fact that the total number of particles is fixed
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calculating the functional integrals over fluctuations in t
order parameter modulus. In order to justify the assert
that the results of this section can be compared with
results of Monte Carlo calculations, it is necessary to sh
that the deviation of the average number of particles at a
calculated fromn0 is small compared ton0 itself under the
conditions mentioned above. To first order in 1/n0 this de-
viation has the form

dn5
1

n0
D~1!1..., ~19!

where we can use for the quantityD (1) the following expres-
sion, which is convenient for subsequent estimation by
trajectory quantum Monte Carlo method within the quantu
XY-model:

D~1!5
T

2N2q4 K F (
p50

P21

(
i

ẇ i
pGF (

p50

P21

(
i

ẇ i
ph i

pG
2

q2

P (
p50

P21

(
i

h i
pL

xy

. ~20!

Calculations show that in the rangeq.0.7, T,1, the
quantityD (1) does not exceed 0.08. Consequently, use of
grand canonical distribution with zero chemical potential
justified in deriving the coefficients of the expansion~13!. As
an illustration, Fig. 2 shows a comparison of the theoreti
estimates for the mean-square fluctuations in particle num
dnh

2(n0) and the fraction of superfluid componentns(n0)
calculated using Eqs.~13!–~16! with the results of calcula-
tion by the quantum Monte Carlo method at the po

FIG. 2. Comparison of theoretical estimates~solid curves! for fluctuations in
the order parameter modulusdn2 ~1! and fraction of superfluid componen
ns ~2! obtained from the expansion~13! with the results of quantum Monte
Carlo calculations.q50.5,T50.6. Statistical errors that are not shown we
smaller than the size of the corresponding symbol.
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$q,T%5$0.5,0.6%, at whichD (1)520.560.1. From the fig-
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nal
ure it is clear that forn0.5 the experimental data obtaine
by using computer simulation are satisfactorily described
the expansion~13!.

Conversely, in the regionq,0.4, which corresponds to
small fluctuations in phase and large fluctuations in the or
parameter modulus, estimates based on Eq.~20! yield a
larger deviationdn of the average number of bosons at la
tice sites fromn0 , and the approach described above is
appropriate.

3. THE QUANTUM MONTE CARLO METHOD. MEASURABLE
QUANTITIES

The quantum trajectory Monte Carlo method is imp
mented by applying Trotter discretization, in which all the
modynamic averages of operators of aD –dimensional quan-
tum system are estimated by using a class
D11-dimensional quantum system generated by replica
the original system along the imaginary-time axis; the pr
uct of matrix elements of the high-temperature density m
trix, which are calculated approximately, serves as the B
zmann weight of a configuration of the correspondi
classical system.16 In this case, considerations of conv
nience dictate the choice of the representation in which
matrix elements are estimated, as well as the way the Ha
tonian is partitioned.

To investigate the properties of the Hubbard model~1!
over the control parameter plane$q,T%, we used the quan
tum Monte Carlo method in its ‘‘chessboard’’ modificatio
~a detailed explanation of Trotter discretization and the or
nization of Monte Carlo steps when a partition of the ty
discussed here is used can be found in Ref. 17!. In this
method, the degrees of freedom of the discretized system
the occupation numbers$ni

p% of sites of a three-dimensiona
N3N34P lattice formed by a 4P-fold replication of the
original N3N lattice along the imaginary-time axis.

The properties of the quantumXY-model~2! are conve-
niently studied in a phase representation where the deg
of freedom of the discretized three-dimensional classical s
tem areN2P of the phases$f i

p%.18,19 To increase the effi-
ciency of the calculation, we organized the Monte Carlo s
by using a multigrid modification of the Metropolis proc
dure ~see Ref. 19 and citations therein!.

The Trotter discretization procedure can be used w
the numberP is large enough that all the thermodynam
averages calculated in the discretized system have erro
orderO(P22). It is not difficult to show that the dimension
less parameters that determine the discretization error ar
quantities eh5max$1/(T2P2n0 ,q2/(T2P2)% for system ~1!
and exy5q2/(T2P2) for system ~2!. At each computation
point $q,T% the number of partitionsP is chosen in such a
way thateh ,exy,0.05. To monitor the convergence we com
pared the calculated results for variousP. We found that the
discretization error did not exceed 3% over the full range
parameters under study.

We studied the properties of this system along the li
q5const andT5const, thereby moving from the ordered
the disordered phase. The results presented in this paper
obtained by averaging over 3–5 initial configurations form
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of an arbitrary configuration of bosons~or phases in the
XY-model! on aN3N lattice.

3.1. Measurable quantities

Our attention was primarily focused on calculating t
density of superfluid componentns . For the lattice Hubbard
model this quantity can be found by two methods.

1! In terms of fluctuations of the ‘‘winding number’’7,16:

ns5
T~Wx

21Wy
2!h

2
,

Wx5 (
p50

4P

(
i y51

N

~21! i x1pni
p ,

Wy5 (
p50

4P

(
i x51

N

~21! i y1pni
p , ~21!

whereni
p denotes the number of bosons at sitei ~with coor-

dinates$ i x ,i y%! of layerp in the discretized classical system
2! In terms of the correlation function for the parama

netic currentĴ(p) ~see Ref. 19!:

ns52
1

n0N2 ^T̂x&h2
1

n0
2N2TP (

t50

P21

^Ĵx
~p!~t !Ĵx

~p!~0!&h ,

T̂x52
1

2 (
i

~ai 1x
† ai1ai

†ai 1x!,

Ĵx
~p!52

j̃

2 (
i

~ai 1x
† ai2ai

†ai 1x!,

Ĵx
~p!~t !5exp~tbĤ/P!Ĵx

~p! exp~2tbĤ/P!. ~22!

We found that the results of calculations based on Eqs.~21!
and ~22! coincided within the limits of statistical error ove
the entire range of control parameters we investigated.

Note that when the replacementai→An0ej w is made,
Eq. ~22! becomes the expression for the ‘‘helicity modulus
g of the quantumXY-model17:

g[^G̃&xy5
1

N2 K (
i

cos~w i 1x
0 2w i

0!L
xy

2
1

N2PT K (
p50

P21

(
i , j

sin~w i 1x
0 2w i

0!sin~w j 1x
p 2w j

p!L
xy

As the authors of Ref. 20 have noted, the temperat
derivative of the density of superfluid component](bns)/]b
yields additional information about the nature of the pha
transition at temperatureT5Tc(q): within the framework of
Kosterlitz–Thouless transition, the quantity](bns)/]b be-
haves like a Dirac delta-functiond(T2Tc) as the size of the
system increases. Consequently, the position of the pea
the derivative of the density of superfluid component sho
not depend on the dimensionality of the system. This obs
vation is very useful, because its computational complex
restricts our study of the Hubbard model to low-dimensio
systems (N;4 – 10).

151Belousov et al.



r-

n
of
FIG. 3. a! Dependence of the fraction of supe
fluid componentns ~helicity modulusg in the
case of theXY-model! on temperatureT for
q50.2. The broken line shows the functio
2T/p. The curves are joined for convenience
representation. b! Plots of the fraction of super-
fluid componentns ~helicity modulusg for the
case of theXY-model! as a function of tempera-
ture T for q52.0.
To find the derivative](bns)/]b it is necessary to esti-
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strongly interacting bosons (q52.0), the results of numeri-
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ase
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mate the difference in average energies for systems that
fer by a phase shift ofp/2 ~along one of the directions! at the
boundary:

b~E~p/2!2E~0!!

n0bt
;ns1b

]ns

]b
. ~24!

It can be shown that if the lattice bosons in the Hubb
model are assumed to be Cooper pairs with charge 2e within
superconducting grains, this shift in phase is realized i
‘‘flux quantization’’ scheme, where 1/8 of a flux quantum
emitted through the center of a torus on whose surface
system is located,2! leading to the appearance of a gau
phase for the Cooper pairs.20

One other observable quantity is the mean-square fl
tuation of the number of bosons at a lattice site

dnh
25

1

4PN2 K (
p50

4P21

(
i

~ni
p2n0!2L

h

. ~25!

The corresponding quantity for the quantumXY-model is

dnxy
2 [^C̃&xy5

T

N2q2 K (
p50

P21

(
i

F12
PT

q2 ~ ẇ i
p!2G L

xy

.

~26!

4. DISCUSSION OF RESULTS

Figure 3 shows the temperature dependence of the f
tion of superfluid componentns(T) for the Hubbard model a
values of the quantum parameterq50.2 ~Fig. 3a, classical
region for theXY-model! andq52.0 ~Fig. 3b!. For compari-
son, we also show the dependence of the helicity modu
~23! of the quantumXY-model in this figure. Analysis of
data obtained for systems with various dimensionsN and
mean occupation numbersn0 reveals that for the system o

152 JETP 86 (1), January 1998
if-

d

a

e

c-

c-

s

cal modeling are in qualitative agreement with the theoret
calculations in Sec. 2. In fact, it is clear from Fig. 1 and F
3b that the boundary of the ordered superconducting ph
for model~1! approaches the corresponding boundary for
quantumXY-model from the high-temperature side. The l
cation of this boundary~i.e., the temperatureTc(q) for a
transition to the normal state! can be estimated from the un
versal jump relation for the fraction of superfluid compone
~the helicity modulus in the case of theXY-model!:
ns(T

c)52Tc/p. The Kosterlitz–Thouless transition tem
perature determined according to this universal discontin
is in good agreement with the position of the peak in t
temperature derivative of the superfluid density~24!, which
does not depend on the size of the system~within the limits
of statistical errors in the calculations!, and decreases with
increasing average occupation numbern0, as is clear from
Fig. 4.

Once we have calculated the helicity modulus and fr
tion of superfluid component for a system of finite size, w
can obtain a more precise estimate of the topological ph
transition temperatureTc by using the scaling procedur
along with the Kosterlitz renormalization group.21 Within the
framework of this procedure we map the original syste
onto a two-dimensional Coulomb gas with an effective te
peratureTCG5T/(2pns

(0)(T), wherens
(0)(T) is the fraction

of superfluid component in a region with no vortices~i.e., the
fraction of local superfluid density!. Thus, it is necessary to
know ns

(0) as a function of the control parameters$q,T% in
order to extrapolate to a system of infinite size and determ
the true transition temperatureTc(q). This problem was
solved in Ref. 22 for the two-dimensional classic
XY-model, where the relationns

(0)5^cos(wi2wi1x)& holds.
We may assume that this relation remains valid in the qu
tum XY-model for small enough values ofq. However,
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whenq>1, quantum fluctuations play a significant role, a
this relation is incorrect, if only because simulations sh
that

lim
T→0

ns /ns
~0!5 lim

T→0
g/^cos~w i2w i 1x!&Þ1.

Analogous considerations can be derived for the boson H
bard model as well.

In using the scaling procedure described above for th
quantum models, the customary approaches require tha
ther a! the fraction of local superfluid density be set equal
unity21: ns

(0)(T)51, or b! it is postulated7 that ns
(0)

3(T)5 lim
T→0

ns(T). Obviously, these two approaches a

valid only at low temperaturesT!1. We therefore assum
that it is more fundamental to estimate the position of
boundary for an ordered superconducting state either by
ing the universal discontinuity of the superfluid dens
~which yields fairly good results even for a system with d
mensionsN.10; see Refs. 17 and 18!, or based on the po
sition of the peak in its temperature derivative. Note that
latter method results in a much larger statistical error~see
Figs. 3 and 4!.

It is clear from Fig. 3a that the transition temperature
the superconducting state of a system of weakly interac
bosons (q50.2) is lower than the ordering temperature
the quantumXY-model. This tendency is maintained as t
size of the system increases. The theoretical approach
above does not help us to understand the reason for
behavior, because as we pointed out in Sec. 2.2, in the re
q,0.4, where the interaction only weakly suppresses fl
tuations of the order parameter modulus, the theoretical e
mates~13!–~20! work badly, as evidenced by the large va
ues of the correctionsC (2), G (2), andD (2).

Figure 5 shows the results of calculating the fraction
superfluid componentns for the boson Hubbard model an
the helicity modulusg of the quantumXY-model as func-

FIG. 4. Results of calculating the temperature derivative of the super
density~24! in the flux quantization method forq50.2, 2.0.
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tions of the quantum parameterq for T50.5, N56. Having
determined the phase transition pointqc according to the
intersections of the functionsns(q) and g(q) with the line
2T/p51/p, we find that the boundary of the supercondu
ing state for the Hubbard model penetrates the large-q region
and approaches the phase transition curve for theXY-model
with increasing occupation numbern0 .

The inset of Fig. 5 shows the results of calculating t
temperature derivative of the superfluid density~24! obtained
according to the ‘‘flux quantization’’ scheme. The positio
of the peak in the derivative (q'2.35 forn053! is in fairly
good agreement with the critical pointqcun053'2.4 based on
the universal jump in the superfluid density.

The dependence of the relative fluctuations in parti
number at lattice sites of the system on temperature is sh
in Figs. 6 and 7. In particular, Fig. 7 illustrates the importa
role played by interactions between bosons in the transi
from the Hubbard model~1! to the quantumXY-model ~2!.
In fact, for finite occupation numbersn0 the spectrum of the
operatorn̂i2n0 may be treated as unbounded if the relati
fluctuations in particle number are small:dn2/n0

2!1. Then
the particle number operatorn̂i2n0 may be assumed to b

conjugate to the phase operatorŵ i , as is usually done in
discussing Josephson and granular systems in terms o
model~2!. Increasing the boson interaction~i.e., the quantum
parameterq! leads to suppression of the relative fluctuatio
in the order parameter modulus, which is confirmed by F
7. Note that for largeq the fluctuations in the number o
particles for the Hubbard model~25! are larger than the cor
responding fluctuations for the quantumXY-model~26!, and
approach the latter as the occupation numbern0 increases.

id

FIG. 5. Dependence of the fraction of superfluid componentns ~helicity
modulusg in the case of theXY-model! on the value of the quantum pa
rameterq for T50.5. The broken line shows the line 1/p. The inset shows
the results of calculating the temperature derivative of the superfluid den
~24! using the flux quantization method.
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The inset to Fig. 7 shows the dependence of the rela
fluctuationsdnh

2/n0
2 on the quantum parameterq for T50.5.

The figure shows that increasing the interaction and occu
tion numbern0 significantly suppresses the relative fluctu
tions in the order parameter modulus.

FIG. 6. Dependence of the relative fluctuations in the boson numbe
lattice sites on temperatureT for q50.2 ~N54, filled-in symbols! and
q52.0 ~N56, open symbols!.

FIG. 7. Dependence of the mean-square fluctuations in the order para
modulus on the value of the quantum parameterq for T50.5. The inset
shows the relative fluctuations in the modulus for various average occ
tion numbersn0 .

154 JETP 86 (1), January 1998
e

a-
-

quantum parameterq, we observe an increase in the relati
fluctuations in particle number~see Fig. 6! that is typical of a
transition to the normal state~metallic in the case of the grain
bulk!. As is clear from the figure, atq50.2 the occupation
numbern054 is insufficient for appreciable suppression
the relative fluctuations in the order parameter modulus,
by q52.0 we observe a sharp drop-off in the relative flu
tuations due to the increasing role of the interaction.

In conclusion, we mention once more that at finite te
peratures the critical behavior of our boson lattice Hubb
model coincides with the critical behavior of the quantu
XY-model over a certain range of mean occupation num
n0 for the system sites~in contrast to theT50 system!.
Consequently, the results of experiments on systems of
perconducting grains on an insulating substrate should
differ qualitatively from experiments on a granular syste
within the framework of the grand canonical ensemb
where the chemical potential of a pair can be controlled, e
by applying a voltage to a conducting substrate.

We now summarize the basic results of this pap
Within the framework of the boson lattice Hubbard mod
we have analyzed the effect of quantum fluctuations in
phase and modulus of the order parameter on the charact
ordering in two-dimensional mesoscopic Josephson
granular systems. Theoretical calculations based on
mean-field method and using the method of functional in
gration show that the models under consideration have id
tical critical behavior in the$q,T% plane of dimensionless
control parameters; the quantumXY-model ~2! may be re-
garded as the semiclassical limit of the boson model~1! for
n0@1 andUÞ0. In this case suppression of relative fluctu
tions in the modulus of the order parameter by the interac

enables us to treat the particle number operatorn̂i and phase

ŵ i as approximately canonically conjugate in this regio

n̂i2n05 j̃ ]/]w i . Estimates arrived at using the quantu
Monte Carlo method show that in the regionq,1, which is
‘‘classical’’ for the quantumXY-model and a region of
strong fluctuations in the order parameter modulus for
Hubbard model ~1!, the latter reduces to the quantu
XY-model ~2! for n0>10, whereas in the regionq;2 of
significant quantum fluctuation in the phase of the order
rameter, the corresponding limit is reached byn0;8. The
effects of reentrant superfluidity~superconductivity! or low-
temperature instability were not observed over the en
range 0.2,q,3.8, 0.2,T,1.6 of the control parameters w
investigated.

This work was partially supported by a grant from th
Russian Fund for Fundamental Research and the prog
‘‘Physics of Solid-State Nanostructures.’’

* !E-mail: lozovik@isan.troitsk.ru
1!They are still easy to estimate theoretically, for example, when a diffe

type of self-consistent approximation is used.14

2!Thus, in order to find the derivative of the density of superfluid compon
it is necessary to calculate the mean energy of system~1! in a field of the
form A5(A,0,0). We have developed the algorithm necessary to imp
ment this modification.
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Optical echo spectroscopy and phase relaxation of Nd 31 ions in CaF 2 crystals
T. T. Basiev, A. Ya. Karasik, and V. V. Fedorov
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Accumulated photon echoes have been used to investigate the mechanisms of optical dephasing
in CaF2 crystals activated by Nd31 ions. Tunable picosecond laser radiation, which permits
the selective excitation of various Nd31 optical centers in the4I 9/2→4G5/2,2G7/2 transition, is used.
The optical phase relaxation times measured at temperatures from 9 to 50 K permit
determination of the homogeneous widths of the transitions between the low-lying4I 9/2 Stark
level and three excited4G5/2,2G7/2 levels, and calculation of the constants of the inter-
Stark relaxation transitions in the ground and excited multiplets for the rhombicN andM Nd31

centers in CaF2 crystals. An analysis of the temperature dependence of the homogeneous
linewidth of the transitions between low-lying Stark levels of the ground and excited states shows
that the mechanism of optical dephasing in the crystals investigated is described well by
direct relaxation processes with resonant inter-Stark absorption of one phonon in the ground and
excited states. AtT59 K, the homogeneous linewidthGh in CaF2 crystals is almost an
order of magnitude smaller thanGh in disordered CaF2–YF3 crystals. This difference can be
attributed to the significantly greater spectral phonon density of states in disordered crystals.
© 1998 American Institute of Physics.@S1063-7761~98!01901-5#

1. INTRODUCTION 2. INHOMOGENEOUS SPLITTING AND BROADENING OF
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The investigation of fundamental optical dephasing p
cesses in organic and inorganic glasses and crystals activ
by trivalent rare-earth ions has been the subject of nume
investigations,1,2 since understanding the relaxation pr
cesses of excited states of impurity ions in a solid is not o
a very important scientific problem, but also a necessary c
dition for creating efficient solid-state lasers. In the pres
work the optical phase relaxation of Nd31 ions in CaF2 crys-
tals was investigated using accumulated photon echoes.3,4

The structure of the optical Nd31 centers in CaF2 crys-
tals was fully investigated in earlier studies. In Refs. 5–7
concentration method and selective laser excitation were
cessfully employed to elucidate the composition of the Nd31

centers in CaF2 and to determine the positions of the Sta
sublevels for each type of center. In Refs. 8 and 9 the s
metry of the principal Nd31 centers in CaF2 crystals was
investigated using ESR.

Accumulated photon echoes permit direct measurem
of the phase relaxation kinetics and determination of the
mogeneous linewidthGh of a transition, which is not dis-
torted by the inhomogeneous broadening of the spectraG ih .
In the present work we investigate the temperature dep
dence of the homogeneous linewidth of the4I 9/2

→4G5/2,2G7/2 transition in the dimeric and trimeric Nd31

cluster centers in the temperature range 9–50 K. The exp
mental plot ofGh(T) can be described within terms of dire
relaxation transitions between Stark sublevels of the gro
and excited states, with the absorption and emission of
phonon.
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CRYSTALS

The CaF2:Nd31 crystals were grown by a modifie
Bridgeman method in a metered fluorine atmosphere in
absence of oxygen-bearing compounds.5 The concentration
of NdF3 was varied from 0.1 to 7 wt. %. In the cubic fluorit
structure Nd31 ions can be distributed among sites of diffe
ing structure, which have different spectra.5–7 According to
Ref. 7, triply charged Nd31 ions replace doubly charge
Ca21 ions during growth in a fluorinating atmosphere, a
the crystal is saturated by interstitial fluorine ions to maint
electroneutrality. At very low Nd31 concentrations, the
charge compensation can be nonlocal~it can be effected by
distant interstitial Fi

2 ions! and can leave the original cubi
symmetry of the ligand field around each Nd31 ion un-
changed. As the concentration of impurity Nd31 ions and,
therefore, of the Fi

2 ions compensating them rises, they a
attracted to one another to form dipoles, and the symmetr
the local environment of each Nd31 ion changes from cubic
to tetragonal~an L center forms, in which the Fi

2 ion occu-
pies a nearby interstitial site7!. As the concentration is furthe
increased, the mutual attraction of the Nd31–Fi

2 dipoles
leads to the formation of dimeric (Nd31–Fi

2)2 clusters orM
centers and tetrameric (Nd31–Fi

2)4 clusters orN centers
with rhombic symmetry. In these clusters two~or four! Nd31

ions replace two~or four! Ca21 ions. In this case two or four
fluorine ions occupy nearby free interstitial sites to achie
local charge compensation.

The relative concentration of particular optical centers
CaF2:Nd31 crystals depends primarily on the total conce

15608$15.00 © 1998 American Institute of Physics



FIG. 1. Absorption spectra of theM andN Nd31 centers in
CaF2 crystals in the4I 9/2→4G5/2 ,2G7/2 transition atT59 K
for various concentrations of NdF3, wt. %: a! 0.1, b! 0.3, c!
1, d! 7.
tration of NdF3 introduced into the CaF2 crystal during its
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synthesis. Figure 1 presents the absorption spectra of ne
mium ions between the low-lying Stark sublevels of t
4I 9/2→4G5/2,2G7/2 transition in a CaF2 crystal at T59 K.
According to Refs. 5–7, absorption at these wavelengths
responds to a transition between the ground4I 9/2 level and
the first three Stark sublevels of the4G5/2,2G7/2 multiplets of
the M and N centers. It is clear from the figure that th
absorption associated withM centers dominates at an NdF3

concentration equal to 0.1%. Increasing the NdF3 concentra-
tion from 0.1 to 1.0 wt. % results in an increase in the co
centration of the tetramericN centers in comparison with th
dimeric M centers.7 When the NdF3 concentration is in-
creased significantly~to more than 1 wt. %!, the system
should be treated as a crystalline solid solution. In this c
NdF3 is regarded not as an impurity, but as one of the co
ponents of the solid solution.

Solid solutions are characterized by statistical disord
under which it becomes difficult to speak about order
distant coordination spheres. A significant increase in
concentration of NdF3 to 7 wt. % is manifested by an in
crease in the number of centers, and passage from inho
geneous line splitting to inhomogeneous broadening of
spectra~Fig. 1, curve d!, where weakly structured broa
bands appear instead of sets of narrow lines. In this case
concentrations of the various components of the solid s
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enlarge, possibly forming tetrameric, pentameric, and m
aggregated clusters. The symmetry of the new clusters ca
lower than that of theM and N cluster centers, and th
statistics of the Nd31 states in crystal fields of different sym
metry and strength lead to considerable inhomogene
broadening of the lines~comparable to glasses!, amounting
;30 cm21 ~Fig. 1, curve d!.

Figure 2 presents the absorption spectra of
CaF2:Nd31 crystals investigated in the4I 9/2→4G5/2,2G7/2

transition between the low-lying Stark levels as the Nd3

concentration is varied from 0.1 to 1 wt. % atT59 K, which
were recorded with a resolution of 0.22 cm21. As seen from
the figure, the absorption spectra consist of two groups
lines with l5579.4 and 579.0 nm. The minimum values
the linewidth in Fig. 2 are determined by the spectral re
lution. It can be seen from the figure that varying the Nd3

concentration from 0.1 to 1 wt. % results in variation of t
specific concentrations of theM and N centers toward the
more aggregatedN centers, while the relative splitting of th
absorption coefficients within each group of lines rema
constant. In the figure, each of these groups correspond
four lines with splitting for theM centers ranging from 0.9 to
4.3 cm21 ~between the outermost lines! and splitting for the
N centers ranging from;1.8 to 6 cm21. The lack of similar
splitting in the absorption spectra in other transitions s
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FIG. 2. Fragments of the absorption spectra of t
M andN Nd31 centers in CaF2 crystals in the4I 9/2

→4G5/2 ,2G7/2 transition atT59 K for various con-
centrations of NdF3, wt. %: a! 0.1, b! 0.3, c! 1.
gests that the complex structure of each group of lines is a
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consequence of the splitting of the4G5/2,2G7/2 excited state
of the Nd31 ion in the dimeric and tetrameric cluster cente
This conclusion is supported by Ref. 6, in which splitting
the low-lying levels of the4G5/2,2G7/2 multiplet of the Nd31

ions in N andM centers was observed with a magnitude
the order of;1 cm21 ~the first three sublevels for theM
centers and the first two for theN centers!. In Ref. 10 we
showed that the splitting of the levels can be attributed t
coherent interaction of paired Nd31 ions in M andN cluster
centers. Figure 3 presents energy diagrams of the Stark le
of an Nd31 ion, which were obtained from the absorptio
spectra of the crystals investigated. The positions of the
els are consistent with the data presented in Refs. 5–7.

3. ACCUMULATED PHOTON ECHOES IN CALCIUM
FLUORIDE CRYSTALS

Accumulated photon echoes,3,4 which are based on non
linear resonant four-wave mixing, were used to measure
phase relaxation timeT2 . The resonant excitation of Nd31

ions was effected in the4I 9/2→4G5/2,2G7/2 transition using a
Rhodamine 6G dye laser that is tunable in the range 5
600 nm. The dye laser was synchronously pumped by
second-harmonic emission (lp5532 nm) of a YAG:Nd31

laser operating in an active mode-locking regime with a f
quency of 82 MHz. Compression of the pump laser pul
using a fiber-grating compressor was employed to sho
the duration of the output pulses of the dye laser fromt518
to 0.5 ps. When the duration of the output pulses w
t518 ps, the width of the spectrum of the pulses w
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FIG. 3. Energy diagrams of the low-lying Stark levels of the4I 9/2 and
4G5/2 ,2G7/2 multiplets of Nd31 ions in the M and N centers in a CaF2
crystal.
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FIG. 4. Kinetics of the accumulated photon-echo signal~a!
upon excitation of M centers (l5579.36 nm) in a
CaF2:Nd31~0.3 wt. %! crystal atT59 K; b! sample of the
kinetics of accumulated photon echoes.
Dn51 cm21, and for t50.5 ps it wasDn540 cm21. The
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emission of the 20–100 mW dye laser was divided into
thogonally polarized pump beams and a probe beam in a
ratio. The probe pulses were delayed relative to the pu
pulses by a timet12 ranging from 0 to 3.4 ns using an optic
delay line. The pump beam was modulated by an acou
optical modulator with a modulation frequency of 4 MH
The pump beam and the probe beam then converged at a
angle and were focused onto the sample. The amplitud
the photon echo pulses was recorded in the direction of
probe beam using synchronous detection at the modula
frequency of the pump beam.

After excitation, the Nd31 ions undergo rapid radiation
less relaxation through several multiplets to the metasta
4F3/2 level. The lifetime of the metastable4F3/2 level in the
crystals investigated is long~hundreds of microseconds! in
comparison with the time between pairs of exciting puls
~12 ns!. This very relationship is responsible for accumu
tion of the echo signal. In the experiment, the amplitude
the accumulated photon-echo signal was investigated
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pulses. In the experimental geometry, the echo signal de
according toS}exp(22t12/T2), where t12 is the delay be-
tween the probe and pump pulses, andT2 is the phase relax-
ation time (T251/(pGh)).3

Figure 4 presents the dependence of the accumul
photon-echo signal on the delayt12 for a CaF2 crystal con-
taining 0.3 wt. % NdF3 at T59 K and an excitation wave
length l5579.36 nm. This wavelength falls between t
two strongest absorption peaks assigned to theM centers
~Fig. 2!. As we see from the figure, the kinetics of the acc
mulated photon-echo signal exhibit pronounced amplitu
modulation. The oscillations with a period of 37 ps corr
spond to the splitting between the absorption peaks of theM
centers (0.9 cm21), which can be seen in the absorptio
spectrum~Fig. 2!. Oscillations at a longer period correspon
to smaller splitting values and cannot be seen in the abs
tion spectrum due to the inhomogeneous broadening of
lines and the limited spectral resolution of the monoch
mator. As we showed in Ref. 10, such modulation of t
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TABLE I. Phase relaxation timesT2 and homogeneous linewidths@Gh

5(pT2)21] of the 4I 9/2→4G5/2 , 2G7/2 transitions of Nd31 ions in theM
accumulated photon-echo signal is due to fine splitt
(0.1– 1 cm21) of the ground4I 9/2 and excited4G5/2,2G7/2

multiplets as a result of the coherent exchange, magn
dipole–dipole, and electric quadrupole–quadrupole inter
tions of the Nd31 ions in the dimericM and tetramericN
centers. The beat contrast in the kinetics depended on
excitation wavelength and decreased with increasing t
perature or increasing concentration of the Nd31 ions. At the
same time, no variation of the decay time of the accumula
photon-echo signal was noted in the present experiments~for
concentrations of NdF3 equal to 0.3 and 1.0 wt. %!. The
decrease in the oscillation amplitude as the impurity-ion c
centration increases might result from variation of the fi
splittings in the centers that emerges as the inhomogen
linewidth increases. Variation of the splittings leads to var
tion of the oscillation periods and, as a result of averaging
a decrease in the oscillation amplitude. In addition, as can
seen from Fig. 4, the high-frequency modulation depth
creased as the delayt12 increased.

The echo kinetics measured in the experiment atT59 K
were not exponential. The reasons for this nonexponen
behavior were discussed in Refs. 11 and 12, and migh
associated with saturation effects at high laser pump pow
as well as with the simultaneous excitation of several opt
centers having different values ofT2 . To minimize the in-
fluence of saturation effects, we selected a low radia
pump power of;20 mW. In particular, we controlled an
monitored the excitation selectivity of the centers and
transitions by varying the width of the laser excitation sp
trum.

The influence of the optical density can also lead to d
tortion of the initial stage of decay of accumulated phot
echoes.13 It is difficult to determine the optical density o
CaF2 crystals, since the spectral width of the absorption l
at T59 K ~Fig. 1! is less than the spectral resolution of t
monochromator. Taking into account all the facts just cit
we measured the dephasing timeT2 in the final stage of
decay of the accumulated photon-echo signal. In addition
minimize the influence of oscillations and reduce the infl
ence of optical density, theM andN centers were excited a
the edge of the absorption band of each center~Fig. 2!.

Table I listsT2 and the linewidthGh for transitions from
the ground-state4I 9/2 multiplet to the low-lying Stark sublev
els of the4G5/2,2G7/2 multiplet. As can be seen from th

andN centers in a CaF2 crystal.

Transition
~center! T2 , ps Gh , GHz

Wavelength,
nm T, K

1→18(M ) 6300 0.05 579.43 9
1→18(M ) 1200 0.27 579.43 18
1→18(N) 3500 0.09 579.09 9
1→18(N) 1000 0.32 579.09 18
1→28(M ) 110 3.0 577.29 9
1→28(N) 150 2.1 577.00 9
1→38(M ) 45 7.0 576.54 9
1→38(N) 30 10 575.91 9
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to the high-lying Stark sublevels. For example, the linewid
of the transition to the third Stark sublevel~7 GHz for theM
centers! is more than two orders of magnitude greater th
the width of the line corresponding to the transition betwe
the low-lying Stark sublevels~0.05 GHz for theM centers!.
In addition, a slight difference is observed between the v
ues ofGh for the N andM centers.

The dependence of the decay time of the kinetics of
4I 9/2→4G5/2,2G7/2 transition between the low-lying Star
levels in a CaF2:Nd31 crystal was investigated in this wor
in the temperature range 9–50 K. Figures 5 and 6 show
experimental kinetics of the accumulated photon echoes
the excitation ofM and N centers in a CaF2 crystal ~with
excitation wavelengthsl5579.09 nm andl5579.43 nm
for the N and M centers, respectively! with a concentration
of NdF3 equal to 0.3 wt. % atT59 ~a! and 18 K~b!. Mea-
surements of the dephasing time and the values of the ho
geneous width of the spectrum calculated from them are
sented as a function of temperature for theN andM centers
in CaF2 in Fig. 7. As is seen from the figure, the widths
theN andM lines are similar over the measured temperat
range, and increase monotonically with increasing tempe
ture. At the same time, it should be noted that atT510 K,
the homogeneous linewidthGh for the 4I 9/2→4G5/2,2G7/2

transition of Nd31 ions in CaF2 crystals (Gh;0.05 GHz) is
almost an order of magnitude less thanGh in the disordered
CaF2–YF3:Nd31 crystals (Gh;0.05 GHz) that we investi-
gated in Ref. 12.

4. MECHANISM OF OPTICAL DEPHASING IN CALCIUM
FLUORIDE CRYSTALS

To ascertain the mechanism of optical dephasing in th
media, we analyzed the temperature dependence of the
mogeneous linewidth~Fig. 7! in direct relaxational transi-
tions between Stark sublevels involving the resonant abs
tion and emission of one phonon. In this approximation,
equation for the homogeneous linewidthG118 of the 4I 9/2

→4G5/2,2G7/2 transition between the low-lying Stark leve
of the ground and excited multiplets~Fig. 6! can be written
in the form14

G1185
W12

0

exp~DE12/kT!21
1

W13
0

exp~DE13/kT!21

1
W1828

0

exp~DE1828 /kT!21
1

W1838
0

exp~DE1838 /kT!21

1
1

2pT1
, ~1!

whereW12
0 , W13

0 , W1828
0 , andW1838

0 are amplitude param
eters that characterize the rates of radiationless relaxa
between levels 1 and 2 and between levels 1 and 3 of
ground 4I 9/2 multiplet and between levels 18 and 28 and
between levels 18 and 38 of the excited4G5/2,2G7/2 multip-
let; DEi j is the energy gap between the corresponding S
sublevels~Fig. 3!; andT1 is the relaxation time of the popu
lation of the excited level. It was shown in Ref. 15 that t
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FIG. 5. Kinetics of the accumulated photon-echo signal up
excitation of the M centers (l5579.43 nm) in a
CaF2:Nd31~0.3 wt. %! crystal atT59 K ~a! andT518 K ~b!.
The solid lines correspond to exponential decay of the accum
lated photon-echo signal;T256.3 ns~a! andT251.2 ns~b!.
multiphonon relaxation rate (2pT1)21 varies only slightly
o

ra
o

a

We confined ourselves to transitions between three low-
ate

e-

ies
s

between liquid helium and liquid nitrogen temperatures. F
this reason, we assume that the multiphonon relaxation
(2pT1)21 is the same for the first three Stark sublevels
the 4G5/2,2G7/2 multiplet. Thus, in Eq.~1! the temperature-
dependent terms describe only processes involving the
sorption of a phonon.
r
te
f

b-

lying Stark sublevels, whose transition rates can domin
the relaxation process atT,50 K. In analyzing Eq.~1! we
also neglected transitions within the system of the fin
structure splitting of theM andN centers withDE,1 cm21,
since the phonon density of states at energ
hn5DE,1 cm21 is low. While we only consider processe
on

u-
FIG. 6. Kinetics of the accumulated photon-echo signal up
excitation of the N centers (l5579.09 nm) in a
CaF2:Nd31~0.3 wt. %! crystal atT59 K ~a! andT518 K ~b!.
The solid lines correspond to exponential decay of the accum
lated photon-echo signal;T253.5 ns~a! andT251.0 ns~b!.
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3!. In particular, all terms except the third in~2! and the third
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the

ion
hich
involving the absorption of a single phonon when a lo
lying Stark sublevel of the4G5/2,2G7/2 state is excited, we
should take processes that entail phonon emission w
high-lying Stark sublevels of this compound are excited i
account. For example, for the 1→28 transition to the second
Stark component, we can write

G1285
W12

0

exp~DE12/kT!21
1

W13
0

exp~DE13/kT!21

1
W2818

0 exp~DE1828 /kT!

exp~DE1828 /kT!21

1
W2838

0

exp~DE2838 /kT!21
1

1

2pT1
. ~2!

Here, along with terms that describe processes involving
absorption of a single phonon, the third term describes
spontaneous and stimulated emission of one phonon in
28218 transition. The expression for the homogeneous li
width G138 upon excitation of the third Stark component~the
18238 transition, Fig. 3! has the form

G1385
W12

0

exp~DE12/kT!21
1

W13
0

exp~DE13/kT!21

1
W3818

0 exp~DE1838 /kT!

exp~DE1838 /kT!21

1
W3828

0 exp~DE2838 /kT!

exp~DE2838 /kT!21
1

1

2pT1
. ~3!

In Eqs. ~1!, ~2!, and ~3!, the energy gaps and the amplitud
terms are symmetric under interchange of the level indic
Wi j 5Wji . This greatly simplifies the solution of the prob
lem. Because of the exponentially small ter
1/@exp(DE/kT)21# at T59 K (kT56.3 cm21), Eqs.~2! and
~3! can be simplified for Stark splittingsDE.30 cm21 ~Fig.

FIG. 7. Temperature dependence of the homogeneous linewidthGh of the
4I 9/2→4G5/2 ,2G7/2 transition between low-lying Stark sublevels of theM
and N Nd31 centers~s and l, respectively! in a CaF2 crystal. The solid
curves are theoretical plots obtained without~a! and with ~b! consideration
of W13

0 .
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and fourth in ~3! can be neglected. In this approximatio
G128 is equal toW1828

0 , since the ratio between the expone
tial terms in the third term in~2! for T59 K and the energy
gaps given is 1.

Hence, using the data in Table I, we at once obtain
radiationless relaxation constantsW1828

0
53 GHz ~for the M

centers! and W1828
0

52.1 GHz ~for the N centers!. For this
same reason, from ~3! we obtain the expression
G1385W3818

0
1W3828

0 . For subsequent evaluations we ne
the relationship betweenW3818

0 andW3828
0 . According to the

theory of electron–phonon interactions,Wi j is proportional
to the product of the square of the matrix element of
electron–phonon interaction and the spectral phonon den
of states. In the Debye approximation, the latter is prop
tional to the cube of the frequency of the phonon particip
ing in the interaction. On this basis we can estimate the r
W3828

0 /W3818
0

5(DE2838 /DE1838)
3, which is equal to 0.02

and 0.06 for theM andN centers, respectively. As a result o
the evaluations made, in~3! we can neglect the term contain
ing W3828

0 and determine the constantsW3818
0

5G138 , which
are 7 and 10 GHz for theM andN centers, respectively. Th
ratios between the resulting values areW3818

0 /W2818
0

52.3
~4.3! for the M (N) centers. A comparison of these ratio
with the ratio (DE3818 /DE2818)

352.7 ~4.3! exhibits good
agreement with the Debye approximation.

The significant difference betweenDE12 (;35 cm21)
and DE13 (;150 cm21) for the ground-state4I 9/2 multiplet
causes the second term in~1! to be negligible in comparison
with the first atT,20 K. It should be noted that the dete
mination ofW12

0 from ~1! at T59 K is very sensitive to the
accuracy of the measurements. First, the maximum de
between the pump pulses and probe pulses in the experim
tal system ist1253.4 ns, and this complicates the determ
nation of a damping decrement of an accumulated pho
echo signal that is comparable to this time. Second,
values ofT1 obtained in Ref. 16 were 7.2 ns and 3.3 ns f
the M and N centers in a CaF2:Nd31 crystal, respectively;
therefore, a difference between two similar values~for ex-
ample, T1(M )57.2 ns andT2(M )56.3 ns, see Table I!
must be taken to calculateW12

0 ;(G1182(2pT1)21). Conse-
quently, we used the results of kinetic measurements of
decay of the accumulated photon-echo signal atT518 K,
whereT2(M )51.2 ns, to calculateW12

0 . The value ofG118
in these experiments was 0.27~0.30 GHz! for the M (N)
centers. As a result,W12

0 calculated from Eq.~1! was 3.4 and
5.9 GHz for theM andN centers, respectively.

In Fig. 7 ~curve a! the solid line shows the dependen
of G(T) obtained from Eq.~1! for the M centers in a
CaF2:Nd31 crystal with exact consideration of the transitio
to the second and third Stark levels of the excited state an
the second level of the ground state, but without consider
the relaxation processes associated with phonon absorp
between levels 1 and 3 of the ground state (W13

0 50). The
figure reveals a sharp increase in the difference between
experimental points and the theoretical curve atT.30 K.
This difference may be associated with neglect of relaxat
processes between levels 1 and 3 of the ground state, w
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becomes unjustified as the temperature rises. In order to take
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Ex-
these processes into account, we determinedW13 by assum-
ing that the phonon density of states has a Debye distr
tion. This assumption enables us to determine the relat
ship betweenW13

0 and W12
0 as W13

0 5W12
0 (DE13/DE12)

3

(W13
0 5260 ~270! GHz for theM (N) centers!. A theoretical

curve that takes these parameters into account is depicte
Fig. 7 ~curve b!. The experimental values clearly correspo
to a direct relaxational dephasing process in the tempera
range considered.

Thus, the mechanism of optical dephasing in multicen
ordered crystals over the rangeT510– 50 K is described
well by a single-phonon resonant relaxation process. We
viously showed that the temperature dependence of op
dephasing in disordered CaF2–YF3 crystals is also describe
by single-phonon processes.12 The tenfold difference be
tween the relaxation rate in disordere
CaF2–YF3~10%!:Nd31 crystals withGh50.5 GHz and in or-
dered CaF2:Nd31 crystals (Gh50.05 GHz) atT59 K can be
associated with the difference between the probabilitiesWi j

0

~Eq. ~1!!. In Ref. 17 we measured the absorption spectra
these crystals in the far infrared (10– 100 cm21), and
showed that the absorption coefficient in the frequency ra
corresponding to direct single-phonon transitio
(10– 100 cm21) increases by about an order of magnitu
upon passage from an ordered crystal of fluorite, CaF2, to
disordered crystals of yttrofluorite, CaF2–YF3~12 wt. %!. As-
suming that there is a correlation between the IR absorp
coefficient and the density of the phonon states participa
in direct single-phonon transitions~which was previously
demonstrated for amorphous semiconductors18!, we can thus
explain the indicated difference between the values of
probabilitiesWi j

0 , and therefore betweenGh and the relax-
ation rates in ordered and disordered media.

5. CONCLUSIONS

Picosecond accumulated photon echoes have been
to investigate the temperature dependence of the hom
neous width of the spectrum of the4I 9/2→4G5/2,2G7/2 tran-
sition of Nd31 ions in ordered CaF2 crystals in the range
9–50 K with selective excitation of rhombicM andN cen-
ters. The homogeneous linewidths of the transitions betw
the low-lying Stark level of the ground4I 9/2 multiplet and
three levels of the excited4G5/2,2G7/2 multiplet have been
measured, permitting calculation of the force constants of
relaxational single-phonon inter-Stark transitions in t
163 JETP 86 (1), January 1998
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dependence has shown that optical dephasing in the gro
and excited states of the ordered crystals investigated is
scribed well by direct relaxation processes that involve re
nant inter-Stark absorption of one phonon. AtT59 K, the
homogeneous linewidthGh in the disordered crystals is a
most an order of magnitude greater than the analogous v
in the ordered crystals. This difference can be accounted
by a significantly higher spectral phonon density of states
the disordered crystals.

This research was performed with support from t
Russian Fund for Fundamental Research~Project 95-02-
04328-a!.

1R. M. Macfarlane and R. M. Shelby, inSpectroscopy of Solids Containin
Rare Earth Ions, A. A. Kaplyanskii and R. M. Macfarlane~eds.!, Elsevier,
Amsterdam~1987!, Vol. 21, p. 51.

2O. K. Alimov, T. T. Basiev, and S. B. Mirov,Selective Laser Spectros
copy (Proceedings of the Institute of General Physics of the Academ
Sciences of the USSR, Vol. 9)@in Russian#, Nauka, Moscow~1987!.

3W. H. Hesselink and D. A. Wiersma, Phys. Rev. Lett.43, 1991~1979!.
4H. de Vries and D. A. Wiersma, J. Chem. Phys.80, 657 ~1984!.
5Yu. K. Voron’ko, A. A. Kaminski�, and V. V. Osiko, Zh. E´ ksp. Teor. Fiz.
49, 420 ~1965! @Sov. Phys. JETP22, 295 ~1966!#.

6T. P. J. Han, G. D. Jones, and R. W. Syme, Phys. Rev. B47, 14 706
~1993!.

7V. V. Osiko, Yu. K. Voron’ko, and A. A. Sobol, inCrystals: Growth,
Properties and Applications, Vol. 10, Springer-Verlag, Berlin–Heidelberg
~1984!, pp. 37–86.

8N. E. Kask, L. S. Kornienko, and E. G. Lariontsev, Fiz. Tverd. Te
~Leningrad! 8, 2572~1966! @Sov. Phys. Solid State8, 2058~1967!#.

9N. E. Kask, L. S. Kornienko, and M. Fakir, Fiz. Tverd. Tela~Leningrad!
6, 549 ~1964! @Sov. Phys. Solid State6, 430 ~1964!#.

10V. V. Fedorov, T. T. Basiev, A. Ya. Karasiket al., in Conference Hand-
book ICL ’96, Prague~1996!, p. 12.

11K. W. Ver Steeg, A. Ya. Karasik, R. J. Reeveset al., J. Lumin.60/61, 741
~1994!.

12K. W. Ver Steeg, A. Ya. Karasik, R. J. Reeveset al., Phys. Rev. B51,
6085 ~1995!.

13S. Saikan, H. Miyamoto, Y. Tosakiet al., Phys. Rev. B36, 5074~1987!.
14Laser Spectroscopy of Solids, W. M. Yen and P. M. Selver~eds.!,

Springer-Verlag, Berlin~1981!.
15T. T. Basiev, A. Yu. Dergachev, Yu. V. Orlovski� et al., in Kinetic Laser-

Fluorescence Spectroscopy of Laser Crystals~Proceedings of the Institute
of General Physics of the Russian Academy of Sciences, Vol. 46! @in
Russian#, Nauka, Moscow~1994!.

16Y. V. Orlovskii, S. B. Abalakin, and I. N. Vorob’ev, inAbstracts of
DPC-97: 11th International Conference on Dynamical Processes in
cited States of Solids, Mittelberg, Austria–Germany~1997!.

17A. Ya. Karasik, T. T. Basiev, A. A. Volkovet al., in Conference Hand-
book ICL ’96, Prague~1996!, p. 2.

18Light Scattering in Solids I (Topics in Applied Physics, Vol. 8), M. Car-
dona~ed.!, Springer, Berlin~1975!.

Translated by P. Shelnitz
163Basiev et al.



Long-range correlations upon wave propagation in random media under the conditions

for
of strong internal reflection from their boundaries
L. V. Korolev and D. B. Rogozkin

Moscow Engineering Physics Institute, 115409 Moscow, Russia
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The large-scale behavior of the spatial distribution of radiation in a random medium is
investigated under the assumption of strong internal reflection from its boundaries. The qualitative
variations of the angular coherent backscattering spectrum and long-range spatial intensity
correlations in the transmitted and reflected radiation fluxes are predicted. ©1998 American
Institute of Physics.@S1063-7761~98!02001-0#
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The long-range correlations of multiply scattered wav
resulting from interference are manifested in numerous
usual effects, which are observed when electrons and l
are transported in media with random inhomogeneities. T
include weak localization of the electronic conductivity a
other kinetic coefficients in metals and semiconductors1–3

universal fluctuations of the total conductivity of samples
small dimensions,4,5 and enhanced backscattering and stro
fluctuations upon propagation of coherent light in rand
media.5–7

One of the factors which strongly influences the dis
bution of radiation in a medium is the internal reflection
waves from its boundaries.8,9 The appearance of a radiatio
flux reflected from a boundary can be caused by ordin
Fresnel reflection, which is a result of the difference betwe
the refractive indices of the medium and a vacuum.10,11 The
limiting case of strong reflection is achieved when scatte
are situated in a specular resonator.12 In either case interna
reflection leads to the effective ‘‘confinement’’ of wave
within a scattering layer. In addition, the internal reflecti
coefficientr becomes—along with the layer thicknessL, the
mean free pathl , and the absorption lengthl a —one more
parameter that controls the dynamics of wave propagatio
a medium.

The analysis of the influence of internal reflection
radiation transport in a scattering medium has been the
ject of numerous publications.9–21 This question has bee
considered within the ordinary theory of radiativ
transport,9,11,21and it has recently been treated in investig
tions of coherent phenomena.10–20

The problem of reflecting boundaries was addresse
the context of an analysis of the form of the angular coher
backscattering spectrum for the first time in Ref. 13. A n
form of boundary conditions for the diffusion equation,
which internal reflection from the boundaries of the layer
taken into account qualitatively, was proposed in Ref. 13.
approach differing from the one in Ref. 13 to the descript
of wave propagation with internal reflection was proposed
Refs. 14 and 18. The radiation distribution within the m
dium was not considered in Refs. 14 and 18, and flu
undergoing different numbers of reflections from the bou
aries were summed at the very beginning. A correct der
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the case of specular internal reflection was given in Ref.
where the correlation function of the scattered waves w
calculated and it was shown that consideration of inter
reflection significantly improves agreement between the
and experiment.

Various parameters of a scattering medium under
conditions of internal reflection have been determined
perimentally using the approach in Ref. 10~see Refs. 10, 15
19, and 20!. Long-range intensity correlations in the pre
ence of strong internal reflection were considered in Refs
and 17. The results in Refs. 16 and 17 were obtained
different methods. A comparison reveals that they contra
one another. The conclusions of both studies are base
incorrect starting relations for the intensity correlation fun
tions, and should therefore be revised. This applies, in p
ticular, to the frequency dependence of the correlations of
radiation fluxes transmitted through a layer.

In the present work the effects caused by the long-ra
correlations of multiply scattered waves, viz., coherent ba
scattering and long-range spatial intensity correlations,
considered under the conditions of strong internal reflect
from the boundaries of a random layer. The influence
internal reflection on the distribution of radiation in a m
dium is investigated in detail, and it is shown that the wav
propagation regime is determined by the competition
tween the transmissive capacities of the boundaries and
random medium itself. The various approaches10,14 to solv-
ing the problem of wave propagation in a medium in t
presence of internal reflection are compared. Exact exp
sions for the diffusion asymptote of the distribution of rad
tion in a medium and for the angular dependence in
vicinity of the coherent backscattering peak are found in
limit of strong internal reflection. The qualitative variation o
the dependence of the form of the peak on the thicknes
the scattering sample is found. It is also shown that
‘‘confinement’’ of radiation in the presence of strong intern
reflection leads to significant alteration of the form of t
fluctuation spectrum of the transmitted and reflected int
sity. A maximum corresponding to reversal of the sign of t
intensity correlation function appears in the spectrum. T
asymptote of the frequency-dependent intensity correlati
found here differs from those obtained in Refs. 16 and

16413$15.00 © 1998 American Institute of Physics



and is described by a (Dv)23/2 law under the conditions of
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strong internal reflection.
The results obtained in the present work are of inter

for investigations of the transport properties of dense rand
systems by optical methods.

2. INFLUENCE OF INTERNAL REFLECTION ON RADIATION
PROPAGATION IN A RANDOM MEDIUM

As we know,6,22,23the angular distribution of radiation in
the presence of coherent backscattering and the spectru
long-range intensity correlations can be expressed in te
of ladder propagators, i.e., solutions of the linear transp
equation:8,24,25

~V•¹!I ~r ,V!1
1

l tot
I ~r ,V!

5
1

4p l E4p
I ~r 8,V8!dV81S~r ,V!, ~1!

whereI (r ,V) is the radiation intensity at the pointr in the
direction V, S(r ,V) is the distribution of sources
l tot

215(la
211l21), l is the elastic mean free path, andl a is the

absorption length. For simplicity, in Eq.~1! we assume tha
single scattering is isotropic.

In the case of the internal reflection of radiation from t
boundaries of a layer located between thez50 and z5L
planes, the distribution of sources can be written in the fo

S~r ,V!5d~r2r 8!d~V2V8!1d~z!E
~n•V8!.0

r ~V,V8!

3~n•V8!I ~r,z50,V!dV81d~L2z!

3E
~n•V8!.0

r ~V,V8!~n•V8!I ~r,z5L,V8!dV8,

~2!

wherer (V,V8) is the reflection coefficient of the surface,n
is the exterior normal to a boundary of the layer, andr is the
component of the vectorr that is parallel to the boundaries o
the layer.

The first term in~2! corresponds to a source of radiatio
of unit power in the bulk of the medium, and the second a
third terms describe radiation reflected from the boundar

Finding the radiation intensity from Eq.~1! with source
~2! and with an arbitrary reflection coefficient is a comp
cated mathematical problem.8,9,21,25An analytic solution can
be obtained for it only in certain limiting cases, specifica
in the case of diffuse~or Lambert! reflection~see Appendix
A!.

To elucidate the qualitative features that internal refl
tion imparts to the spatial distribution of radiation with th
intention of subsequently considering long-range correlati
~over distances much greater than the mean free pathl !, we
use the simplest~i.e., diffusion! approximation in~1!. Under
the conditions of weak absorption (l a@ l ) this approximation
yields the correct qualitative description of the intensity
spatial scales exceedingl . The results obtained in the diffu
sion approximation will be refined later on in the limit o
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utilized.

We go over to the diffusion approximation in Eq.~1!
according to the usual procedure.24,25 Under the assumption
that the angular distribution of the radiation is weakly anis
tropic, i.e.,

I ~r ,V!5
1

4p
~F~r !13V•J~r !!, ~3!

where

F~r !5E
4p

I ~r ,V8! dV8, J~r !5E
4p

V8I ~r ,V8! dV8,

from Eq.~1! we obtain the relationJ52( l /3)¹F(r ) and the
diffusion equation for the radiation energy densityF(r ) in
the medium,

DF~r !2
1

l D
2 F~r !1

3

l
d~r2r 8!50, ~4!

wherel D5( l l a/3)1/2 is the diffusion length.
The boundary conditions for the diffusion equation e

press the balance between the fluxes on a boundary o
medium.8,9 With consideration of the surface part of th
source~2! they have the form

E
~n•V!,0

dV un•VuI ~r ,V!uz50,L

5E
~n•V!,0

dVE
~n•V8!.0

dV8

3~n•V8!r ~V,V8!I ~r ,V8!uz50,L . ~5!

Substituting~3! into ~5!, we obtain

S 1

2
F~r !1

l

3
n•¹F~r ! D U

z50,L

5S 1

2
r ~1!F~r !2

l

3
r ~2!n•¹F~r ! D U

z50,L

, ~6!

where

r ~n!5~n11!E
0

1

dmE
0

1

dm8m8n

3E
0

2p dw

2p E
0

2p

dw8r ~m,m8,w,w8!,

m5uVzu, m85uVz8u, andw andw8 are the azimuthal angle
of the vectorsV andV8.

Equation~6! generalizes the usual boundary conditio
for the diffusion equation24,25 to the case of an arbitrary re
flection coefficient.

If radiation is reflected specularly from the surface~for
example, according to Fresnel’s law!, i.e., if

r ~m,m8,w,w8!5r ~m!d~m2m8!d~w2w8!, ~7!

the boundary conditions~6! take the form

165L. V. Korolev and D. B. Rogozkin



F~z,r!1z n
]F~z,r!

u 50, ~8!

ly

itiv
ur
f t
io

d

c

er
6

nd

c

F~q,z,z8!5
3

coshg
z1z82uz2z8u

c-
h

ons.

he
.

me-

of

rge
ity
is
f

g-
he
re-

of
m

nt
he

ace

the

an-
at-
or-
0 z ]z z50,L

where

z05
2

3
l
11r ~2!

12r ~1! , r ~n!5~n11!E
0

1

r ~m!mndm. ~9!

Conditions~8! and ~9! were proposed in Ref. 10.
If the boundary of the scattering medium is a diffuse

reflecting, rough surface, then

r ~m,m8,w,w8!5
r

p
m, z05

2

3
l
11r

12r
, ~10!

wherer is the albedo of the diffusely reflecting surface~the
ratio of the total reflected flux to the incident flux!.

As follows from ~6! and~8!–~10!, in the diffusion wave-
propagation regime the boundary conditions are insens
to the detailed character of internal reflection from the s
face and depend only on the integrated characteristics o
reflection coefficient. In the case of strong internal reflect
(12r (n)!1) Eqs. ~9! and ~10! yield
z0'(4/3)l (/(12r (1))@ l . In the opposite limiting case
(r 50), z052l /3 is the familiar value of the extrapolate
length in the diffusion approximation.24,25

In Eq. ~4! with boundary condition~8! it is convenient to
take the Fourier transform with respect to the differen
r2r8. Then this solution can be represented in the form

F~q,z,z8!5E d~r2r8! exp~2 iq•~r2r8!!F~r2r8,z,z8!

5
3

g l

P~~z1z82uz2z8u!/2!P~L2~z1z81uz2z8u!/2!

@~gz0!211#sinh gL12gz0 coshgL
,

~11!

whereP(z)5sinhgz1gz0 coshgz andg25q21 l / l D
2 . In the

case of a semi-infinite medium (L→`), it follows from ~11!
that

F~q,z,z8!5
3

g l

1

11gz0
PS z1z82uz2z8u

2 D
3expS 2g

z1z81uz2z8u
2 D . ~12!

When there is weak internal reflection (z0< l ), the result
~11! transforms into the formula obtained without consid
ation of the reflecting boundaries~see, for example, Refs. 2
and 27!:

F~q,z,z8!5
3

g l

1

sinh g~L12z0!
PS z1z82uz2z8u

2 D
3expS L2

z1z81uz2z8u
2 D , ~13!

whereP(z)5sinhg(z1z0).
Under the conditions of strong internal reflection a

large values ofz0 (z0@ l ), a new region (z0
21!q! l 21) can

be isolated in the behavior of~12!, where the distribution of
F behaves as in a medium with a perfectly reflecting surfa
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g l S 2 D
3expS 2g

z1z81uz2z8u
2 D . ~14!

From a physical standpoint, the transition to~14! describes
the confinement of radiation in a medium with strong refle
tion from its boundaries. The probability of leaving throug
a boundary becomes appreciable only after many reflecti
Therefore, close to the source (r;q21,z0), where the ef-
fective number of reflections from the boundary is small, t
radiation distribution corresponds to an opaque boundary

In the absence of absorption, Eq.~12! leads to the fol-
lowing spatial dependence of the densityF(z,z8,r) near the
boundary:

F~z< l , z8< l ,r!5
3

2p l H 1/r, l ,r,z0

z0
2/r3, z0,r

. ~15!

According to~15!, at smallr the value ofF does not depend
on z0 and is determined by the same expression as in a
dium with a perfectly reflecting boundary. At larger the
value ofF is (z0 / l )2@1 times greater than in the absence
internal reflection.

In the case of a finite layer, new effects appear for la
values of the reflection coefficient, for which the inequal
z0@L holds. Whenz0@L under the assumption that there
no absorption, expression~11! can be written in the range o
small spatial frequenciesq!L21 in the following form:

F~q,z,z8!'
3z0

2l

1

11q2z0L/2
. ~16!

It can be seen at once from this formula that the lon
range asymptotic behavior of the spatial distribution of t
density is altered under the conditions of strong internal
flection. Whereas in the absence of reflection (z052l /3), the
law F(z,z8,r)'exp(2pr/L) follows from ~11!, in the limit
z0@L relation ~16! gives

F~z,z8,r!'
3

lL

1

2p
K0S 2rA 2

z0L D . ~17!

Dependence~17! is a consequence of the confinement
radiation in the medium in the case of strong reflection fro
its boundaries.

Using ~11!, we can calculate the transmission coefficie
of a radiation flux through a layer of a random medium in t
usual manner~see, for example, Ref. 8!. In the case of elastic
scattering with normal incidence of the waves at the surf

T5
l 1z0

L12z0
. ~18!

The reflection coefficient is determined in this case from
flux conservation condition,R1T51. According to~18!, un-
der the conditions of strong internal reflection (z0@L) the
transmission and reflection coefficients are equal to one
other: T5R51/2. Under these conditions, radiation repe
edly crosses the scattering layer before leaving it, and ‘‘f
gets’’ through which boundary it entered the medium.
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It follows from ~11!–~14! that in the diffusion approxi-
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mation the structure of the expressions for the propaga
has a universal character, and the reflectivity of the bound
influences only the value ofz0 . In addition, under the con
ditions of strong internal reflection,z0.4l /3(12r (1)) does
not depend on whether reflection from the boundary
specular or diffuse~compare~9! and ~10!!. Thus, under the
conditions of strong internal reflection, where the scatte
flux is reflected repeatedly from the boundary, the angu
distribution of the radiation becomes nearly isotropic a
ceases to be sensitive to the details of the interaction of
waves with the boundary of the medium. The same phen
enon was noted in Ref. 28, in which numerical calculatio
of resonant radiation transport in a flat resonator were p
formed.

In the case of diffuse~Lambert! reflection from the
boundaries, in addition to the solution in the diffusion a
proximation ~11! an exact analytic solution of the proble
can be found~see Appendix A!. If we compare it to solution
~11!, we can, on the one hand, evaluate the accuracy of
diffusion approximation, and, on the other hand, we c
more importantly, understand the mechanism of the in
ence of internal reflection on the distribution of radiation in
medium.

Unlike the diffusion solution~11!, the rigorous solution
of the transport equation obtained in Appendix A enables
to separate the contributions due to waves that do or do
undergo internal reflection from the boundaries, and to
press the distribution of radiation in a medium with reflecti
boundaries in terms of the solution of the transport equa
in the absence of internal reflection. The latter can be fo
exactly, without any additional assumptions regarding
conditions on the boundaries~unlike, for example, the solu
tion of the diffusion equation~4! with an approximate
boundary condition like~6!!.

In solutions ~A15! and ~A16!, the contribution of the
terms that appear because of internal reflection becomes
nificant when

12r !Rq512
4

3
g l coth gL ~19!

in the case of reflection from a semi-infinite medium~see
~A15!!, or when

12r !Tq5
4

3

g l

sinh gL
~20!

in the case of the passage of radiation through a finite la
~see~A16!!, whereRq and Tq are the reflection and trans
mission coefficients~for a medium without reflecting bound
aries! for the qth harmonic of the spatial distribution of th
radiation. The expressions forRq andTq in ~19! and~20! are
valid for g l !1.

Thus, the mechanism for the influence of internal refl
tion on the wave-propagation regime in a medium is clea
seen from solutions~A15! and ~A16!. The regime is gov-
erned by the competition between the reflective~or transmis-
sive! capacities of the boundaries and the random med
itself. In the absence of absorption,~19! is equivalent to the
conditionqz0@1, under which the radiation propagation r
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effectively realized, and~20! transforms into the inequality
z0@L, under which the strong confinement of radiation
the resonator is observed.

The expressions forF(z,z8,q) in Appendix A have ex-
actly the same structure as~11! and ~12!. In fact, if we sub-
stitute the corresponding quantities calculated in the thi
layer approximation~see, for example, Refs. 8 and 23! into
~A15! and ~A16!, we arrive at formulas which coincide in
form with ~11! and~12!. The differences are of the next orde
with respect to the small parametersg l and l /L, and are
beyond the range of accuracy of the diffusion approximati
within which Eqs.~11! and ~12! were derived.

3. COHERENT BACKSCATTERING

One of the most striking manifestations of the lon
range correlations of waves in coherent transport in a rand
medium is enhanced backscattering.6,7 The peak in the angu
lar spectrum of the backscattered radiation appears as a
sequence of the exact matching of the phases of wa
propagating in the medium along identical trajectories, bu
mutually opposite directions. The calculation of the coher
backscattering intensity reduces to summation of a serie
maximally crossed or ‘‘fan’’ diagrams.6,7,22

The contribution of coherently scattered radiation to t
angular spectrum can be written in the form

Jc~k,k0!5
1

4p l 2A E d3r E d3r 8C~r ,2k!C* ~r ,k0!F

3~r ,r 8!C* ~r 8,2k!C~r 8,k0!, ~21!

whereF(r ,r 8) is the radiation energy density~see Eq.~3!!,
C(r ,k0) is the mean field within the medium when a pla
wave with the wave vectork0 impinges on it,k0 andk are
the wave vectors of the incident and backscattered wa
respectively, andA is the surface area of the scattering m
dium. The integration in~21! is carried out over the volume
of the medium.

We confine ourselves to consideration of normally in
dent radiation, in which the effects of refraction at th
boundary are negligible, and everything is determined by
wave propagation dynamics within the medium. The featu
associated with oblique incidence are discussed in Ref.

For normal incidence and small deviation anglesu from
the ‘‘backward’’ direction, Eq.~21! takes the form

Jc~u!5
12r

4p l 2 E
0

L

dzE
0

L

dz8expS 2
z1z8

l DF~z,z8,q!,

~22!

where F(z,z8,q) is the Fourier transform of the radiatio
energy density~3!, q5u(k1k0) iu5k0u, k0i and ki are the
components ofk0 andk that are parallel to the boundaries
the layer,k052p/l, l is the wavelength of the radiation
and r 5r (m51) is the specular reflection coefficient~7! for
normal incidence. The distribution~22! is normalized to unit
incident flux passing through the boundary.
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Substituting the propagator~11!, which was calculated in

e
m

i

y,
-

la

dependenceJc(u) similar to that discussed in Ref. 13 is ob-
ry

eter
ith
ite

ring
al
the diffusion approximation, into~22!, for a semi-infinite
medium we obtain

Jc~u!5
3

8p
~12r !

~112z0 / l !2n~213z0 / l !

11nz0 / l
, ~23!

where n5k0lu!1. This generalizes previous results6,7,22,26

to the case of finite internal reflection. In the vicinity of th
peak (nz0 / l !1), the backscattering spectrum has the for

Jc~u!'
3~12r !

8p S 112
z0

l
22nS 11

z0

l D 2D , ~24!

and does not differ in structure from the results obtained
the absence of reflection.6,7,22,26,29It follows from ~24! that in
the case of strong reflection (12r !1), wherez is propor-
tional to (12r )21, the height of the peak does not var
while the coefficient ofn ~i.e., the slope of the angular de
pendenceJc(u)! increases. Thus, narrowing of the angu
replaced atn, l /L,12r by the quadratic law

ce
e

e

th
g
e

th
lit
n

r

served. In the limit of strong reflection from the bounda
(12r !1), the formula

Jc~u!5
12r

p~12r 14n/3!

5H 1

p S 12
4

3

n

12r
1...D , n!12r

3

4p

12r

n
, n@12r

~25!

is asymptotically accurate with respect to the large param
(12r )21.11 This can be seen by comparing the result w
the solution in Appendix A and the exact result for an infin
medium.30

The expression for the angular coherent backscatte
spectrum from a layer of finite thickness with strong intern
reflection has the form
ion
Jc~u!5
12r

p

~12r !sinh~nL/ l !1~4/3!n cosh~nL/ l !

~~12r !21~4n/3!2!sinh~nL/ l !1~8/3!n~12r !cosh~nL/ l !
. ~26!

In ~26! it is assumed thatL/ l @1.
According to~26! the finite character of the layer is manifested atn! l /L. In this region the expression forJc(n) can be

written

Jc~u!5
12r

p

~~12r !L/ l 14/3!1n2~L/ l 2!~~12r !L/ l 14!/6

~12r !~~12r !L/ l 18/3!14n2L~~12r !L/ l 14/31~12r !2~L/ l !2/8!/3l
. ~27!

When L/ l .1/(12r ), the linear dependence ofJc on n is between the probabilities of the emergence of radiat

through the front and rear boundaries of the medium under

of
rum

in

ake

een
a

or-
the
he

he

e
n:
Jc~u!5
1

p S 12
4l

3~12r !L
2

4

9
n2

L

~12r !l
1...D . ~28!

In the limit of strong internal reflection (L/ l ,1/(12r )), the
linear portion ofJc(n) is totally absent, since the dependen
Jc(n);1/n can be replaced atn, l /L by a dependence of th
form

Jc~u!5
12r

2p

1

~12r !12n2L/3l

55
1

2p S 12
2

3

L

l

n2

12r
1...D , n,A~12r !l

L

3

4p

l

L

l 2r

n2 ,
l

L
.n.A~12r !l

L

.

~29!

In the case under consideration, truncation of the coh
ent backscattering peak occurs atn;A(12r ) l /L, l /L,
which is associated with the confinement of radiation in
medium and the resultant lengthening of the wave propa
tion trajectories. Another manifestation of radiation confin
ment is the doubling of the scattering intensity exactly in
backward direction. This can be attributed to the equa
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the conditions of strong internal reflection. The variation
the form of the angular coherent backscattering spect
with decreasing thickness of the scattering layer is shown
Fig. 1.

We assumed above that there is no absorption. To t
weak absorption in the medium into account,n must be re-
placed byAn213(12v)!1, wherev5 l tot /l is the albedo
for single scattering,6,7 in the results obtained above.

4. LONG-RANGE SPATIAL INTENSITY CORRELATIONS

Let us now consider the long-range correlations betw
the radiation intensities reflected or transmitted through
layer. Like coherent backscattering, long-range intensity c
relations are sensitive to the confinement of waves in
medium under the conditions of internal reflection from t
boundaries.16,17,23

We define the intensity correlation function using t
relation

C~r,zf !5^E~r,z5zf !E~0, z5zf !&2^E~0, z5zf !&
2,
~30!

whereE(r,zf) is the flux density through the surface at th
point (r,zf), zf is the coordinate of the plane of observatio
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zf50 for reflection andzf5L for transmission. The angle
brackets in~30! denote averaging over the disposition of t
scatterers.

The Fourier transform of the correlation function, i.e
the fluctuation spectrum

M ~q,zf !5E C~r,zf !exp~2 iq•r! d2r, ~31!

obeys the relation23

M ~q,zf !5S 2p

k0
D 2 1

4p l

3E
0

L

dzE
4p

dVE
4p

dV8u^Ef~zf ,quz,V!&

2^Ef~zf ,quz,V8!&u2^I i~z,Vuzi

50,V0!&^I i~z,V8uzi50,V0!&, ~32!

where^I i(z,Vuzi50,V0)& is the mean intensity in the direc
tion V at depthz for radiation incident upon the surface o
the medium atzi50 in the directionV0 ,

^Ef~zf ,quz,V!&5E d2r exp~2 iq•r!E
~n•V1!.0

dV1

3~n•V1!^I f~r,zf ,V1uz,V!&, ~33!

^I f(r,zf ,V1uz,V)& is the mean intensity in the directionV1

at the point (r,zf) on the surface atzf from a point source
located at depthz emitting in the directionV. The mean
intensity satisfies the transport equation~1! with appropriate
sources.

Equation~32! was derived in Ref. 23 in the Born ap
proximation for the amplitude of one-center scattering,
which only pairwise correlations of the wave fields are tak
into account. For isotropic scattering centers of small rad
Eq. ~32! makes the main contribution to the fluctuatio

FIG. 1. Angular coherent backscattering spectrum from a layer of a ran
medium under the conditions of strong internal reflection. The number
the curves correspond to different values of the layer thicknessL/ l 510 ~1!,
50 ~2!, and 100~3!; the internal reflection coefficient of the boundari
r 50.99. For comparison the angular spectrum in the absence of inte
reflection is shown in the inset~r 50 andL/ l 55 ~1!, 10 ~2!, and 100~3!!.
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n
s,

in Eq. ~32! are taken outside the medium in immediate pro
imity to its boundary. The values of^I i& are normalized to
unit incident flux after passage through the boundary of
medium.

Equation~32! simultaneously takes into account the co
tributions of short-range and long-range intens
correlations.23,31As was shown in Refs. 23 and 31, owing
the conservation of radiation flux upon elastic scattering,
contributions of short-range and long-range correlations
the fluctuation spectrum partially cancel, and as a result
spectrum~32! is determined by integration over scales
variation of the variablez that exceed the mean free pathl .
The diffusion approximation~3! can be used to calculate th
spectrum. Repeating the transformations made in Refs
and 31, but with consideration of the boundary conditions~8!
and ~9!, we obtain the following expression for the fluctu
tion spectrum in the diffusion approximation:

M ~q,zf !5
2p~ I 1z0!2l 3

27k0
2 E

0

L

dz S U ]

]zf

]

]z
F~q,zf ,z!U2

1q2U ]

]zf
F~q,zf ,z!U2D U ]

]zi
F~q50,z,zi !U2

,

~34!

where the functionF(q,z,z8) is defined by~11!. It is as-
sumed in~34! that ql!1.

Below we analyze the spectrumM (q,zf) for purely elas-
tic scattering under the conditions of strong internal refl
tion ~12r !1 or z0@ l !. The result of the integration in~34!
for the general case, in which the incident waves differ
frequency and absorption occurs in the medium, is prese
in Appendix B.

In the case of reflection from a semi-infinite nonabso
ing medium, the intensity fluctuation spectrum has the fo
(zi5zf50)

MR~q!5
6p

k0
2 S z0

l D 2 ql

~11qz0!2 . ~35!

At q50 Eq. ~35! specifies the dispersion of the reflectio
coefficient,23 ^(dR)2&5MR(q50)/A, and vanishes becaus
of the conservation of flux upon elastic scattering. The sp
trum ~35! peaks, with (MR)max53pz0 /(2k0

2l), at q51/z0, and
decays as 1/q at q.1/z0 . In the range 1/z0,q,1/l the de-
cay of the spectrum is described by the relation

MR~q!56p/k0
2ql, ~36!

which characterizes the intensity fluctuations in a medi
with a perfectly reflecting boundary.

The correlation function corresponding to the spectr
~35! is

CR~r!5
3

k0
2 S z0

l D 2H l

z0
3 S z0

r
22 ln

z0

r
1...D , r!z0

2
l

r3 , r@z0

.

~37!

m
n

al

169L. V. Korolev and D. B. Rogozkin
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nal reflection, the main contribution to the correlation fun
tion for l ,r!z0 does not depend on z0 :
CR(r)'3l /(k0

2l 2r). At such values ofr the probability of
photons leaving the medium is negligible. Whenr@z0 , the
probability of leaving the medium after multiple reflection
becomes appreciable, and the correlation function begin
decay according to the same law as in the absence of re
tion at the boundary.23 However, because of the large num
ber of reflections of the radiation from the boundary, t
amplitude of long-range intensity correlations increases~by a
factor of (z0 / l )2'(4/3(12r ))2@1 for r@z0!.

In the case of the reflection of waves from a layer
finite thickness, the intensity fluctuation spectrum takes
form

MR~q!5
6p

k0
2 S z0

l D 2 l

L
FR~qL,qz0!, ~38!

where

FR~x,x0!5
1

2

x

~x12x0!2~~11x0
2!sinh x12x0 coshx!2

3H S ~x1x0!21
1

2D ~~11x0
2!sinh 2x12x0

3cosh 2x!2~x1x0!~~11x0
2!cosh 2x

12x0 sinh 2x!2x0
3J . ~39!

In the limit of large layer thickness (l !z0!L), the depen-
dence ofMR(q) on L is significant only at low spatial fre
quencies (1,1/L), where

MR~q!5
2p

k0
2 S z0

l D 2 l

L S 11
13

15
~qL!21...D . ~40!

Equation~40! is distinguished from the analogous equati
obtained with neglect of internal reflection at the boundar23

only by the enhancement factor (z0 / l )2. It describes the en
hancement of the amplitude of long-range correlatio
which has been noted above. Atq. l /L the spectrumMR(q)
behaves just as in the case of reflection from a semi-infi
medium.

Such behavior of the fluctuation spectrum means that
intensity correlations for the reflection of radiation in th
thick-layer limit behave as in a medium with a perfec
reflecting boundary, ifr,z0 , while for r.z0, they mimic
the dependence obtained in the absence of inte
reflection,23 enhanced by a factor (z0 / l )2.

In the case of strong internal reflection, a situation
which the lengthz0 is the maximum spatial scale (l !L!z0)
is possible. It is possible, if the transmission of the bou
ariest512r is significantly lower than the diffuse transmi
sion of the medium itselfT54l /3L ~see inequality~20!!. In
this case the character of the correlations is radically alte
The spectrum can be represented in the form

MR~q!5
6p

k0
2 S z0

l D 2 l

L
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3H 16 S z0
D 0

1

8

qL sinh 2qL

~2 coshqL1qz0 sinh qL!2 , q@1/z0

.

~41!

According to~41!, the spectrumMR(q) has a maximum at
q5(2/z0L)1/2. At q@(2/z0L)1/2 the spectrum decays accord
ing to

MR~q!5
3p

4k0
2

1

ql

sinh 2qL

sinh2 qL
, ~42!

and does not depend onz0 . Equation~42! describes the fluc-
tuation spectrum in a layer of a medium bounded by p
fectly reflecting walls. It is noteworthy that the dependen
MR(q)'3p/(2k0

2ql), which is distinguished from~36! only
by the additional factor 1/4, follows from~42! at q@ l /L. It
is fairly simple to understand the origin of this factor. Whe
z0@L, radiation is reflected repeatedly from the boundar
and ‘‘forgets’’ through which boundary it entered the m
dium; the reflection and transmission coefficients both eq
1/2. Likewise, the fluctuation spectrum of the reflected inte
sity atq@1/L should coincide with the analogous expressi
for a semi-infinite medium, which, however, corresponds
the incident intensity diminished by a factor of 2.

The correlation function corresponding to the spectr
~41! behaves in the following manner:

CR~r!

5
3

~k0l !2 5
1

4

l

r
, l ,r,L

1

8

l

L
ln

2z0L

r2 , L,r,Az0L/2

2
1

8

l

L
A pr

A2Lz0

expS 2rA 2

Lz0
D ,

r.Az0L/2.

~43!

A comparison with the results in Ref. 23 shows that t
behavior ofCR(r) is totally different from that which we
observed in the absence of internal reflection at the bou
aries. The regions of positive and negative intensity corre
tions are interchanged.

At relatively short distances,l ,r,L, CR(r) behaves in
accordance with the laws discussed above. At larger
(r.L), the correlation function decreases smooth
changes sign atr'ALz0, passes through a minimum a
r'1.7ALz0, and then tends to zero exponentially, remaini
negative all the time, in contrast to Ref. 23.

We now discuss the influence of strong internal refle
tion on the fluctuation spectrum of the intensity transmitt
through a layer~zi50, zf5L!,

MT~q!5
6p

k0
2 S z0

l D 2 l

L
FT~qL,qz0!, ~44!

where
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T 0 2 ~x12x0!2~~11x0
2!sinh x12x0 coshx!2

3H S x0
21

1

2D ~~11x0
2!sinh 2x12x0 cosh 2x!

1x0~~11x0
2!cosh 2x12x0 sinh 2x!

2~11x0
2!~x1x0!22x0~x1x0!22x0J .

~45!

In the thick-layer limit (l !z0!L), from ~44! and ~45! we
obtain

MT~q!5
6p

k0
2 S z0

l D 2 l

L H 1

3 S 12
2

15
~qL!21...D , q!1/L

1

2qL S 11
~qz0!2

~11qz0!2D , q@1/L

.

~46!

The amplitude of intensity correlations of the transmitt
radiation is increased by a factor of (z0 / l )2 in comparison to
the case in which internal reflection at the boundaries
insignificant.27,32,33This is a consequence of multiple refle
tion from the boundaries of the layer. In addition, at largeq
(q.1/z0) the amplitude of the spectrum is additionally i
creased by a factor of 2, since a correlation regime as
medium with a perfectly reflecting boundary sets in.
q.1/z0 the calculations can be described by the appropr
equation, which is discussed above for the reflection ge
etry ~see Eq.~36!!, with the sole difference being that th
power of the ‘‘source’’ must be taken into account in it, i.e
it must be additionally multiplied by the square of the tran
mission coefficient through the layerT;z0 /L ~see Eq.~18!
for l !z0!L!.

In the limiting case of strong internal reflectio
( l !L!z0), as noted above, the transmission of the scat
ing medium itself~without the boundaries! exceeds the trans
mission of the boundaries of the layer. During repeated
versals of the layer, photons forget through which of t
boundaries they penetrated the scattering medium. Th
fore, fluctuations at both boundaries display the same be
ior ~compare~44! and ~45! with ~41!–~43!!.

Qualitative variations in the form ofMR(q) andMT(q)
as the internal reflection coefficient increases are show
Fig. 2.

Now consider fluctuations in the total reflection a
transmission coefficients of the medium. The dispersion
these parameters is specified by the value of the spectru
q50.23 In purely elastic scattering, with which we are co
cerned,R1T51, and therefore

^~dR!2&5^~dT!2&5
1

A
MR,T~q50!. ~47!

Substituting the expressions~38! and ~39! or ~44! and ~45!
into ~47!, we obtain

^~dR!2&5^~dT!2&5
2p l

Ak0
2 S z0

l D 2 ~L1z0!32z0
3

~L12z0!4 . ~48!
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Expression ~48! depends nonmonotonically on the lay
thicknessL. WhenL!z0 , the dispersion increases linear
with the thickness

^~dR!2&5^~dT!2&'
3p

2Ak0
2

L

l
,

while in the thick-layer limit the dispersion decreases:

^~dR!2&5^~dT!2&'
2p

Ak0
2 S z0

l D 2 1

L
.

The dispersion reaches its maximum value whenL'2z0 :

^~dR!2&5^~dT!2&'
p

5Ak0
2

z0

l
.

As for the relative magnitude of fluctuations in the transp
ency of the medium,̂ (dT)2&/^T&2 increases linearly with
thicknessL:

^~dT!2&

^T&2 5
2p

2Ak0
2 S L

l DL213Lz013z0
2

~L12z0!2

5
2p

2Ak0
2 S L

l D H 3

4
, L!z0

1, L@z0

. ~49!

We have thus far assumed that waves incident upon
medium are monochromatic. However, this condition do
not hold in many experiments.7,15 The correlations between
radiation fluxes at different frequencies have been a sub
of investigation.

If the frequencies of the incident waves differ byDv, the
corresponding expression for the fluctuation spectrum can
obtained from~32! by substituting into~32! ‘‘incoming’’
propagators of the form

^I i~z,Vuzi50,V0 ,Dv!&^I i~z,V8uzi50,V0 ,2Dv!&,

where^I i(z,Vuzi50,V0 ,6 iDv)& satisfies a transport equa
tion like ~1! for a signal modulated at frequency6Dv. The

FIG. 2. Fluctuation spectra of reflected~solid curves! and transmitted
~dashed curves! radiation for various values of the internal reflection coe
ficient ~r 50.5 ~1!, 0.9 ~2!, and 0.95~3!!. The layer thicknessL/ l 510.
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corresponding equation is obtained from~1! after replacing
21 21 7
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s of
l a by l a 6 iDv/c. At small values ofDv (Dv!c/ l ), the
intensity propagators can be calculated in the diffusion
proximation. In this approximation one obtains an express
for the spectrum that differs from~34! only in that the ‘‘in-
coming’’ F functions must be taken~see Eq.~11!! for com-
plex absorption (l a

216 iDv/c).
An investigation of the frequency dependence of the c

relation between the total reflected or transmitted flu
would be of great interest.7,16,17In the case of purely elasti
scattering in the medium, the correlations between the tra
mitted and reflected radiation fluxes coincide:

C~Dv!5^~Tv01Dv/22^Tv01Dv/2&!

3~Tv02Dv/22^Tv02Dv/2&!&

5^~Rv01Dv/22^Rv01Dv/2&!~Rv02Dv/2

2^Rv02Dv/2&!&. ~50!

This is a consequence of flux conservation:R1T51.
WhenDv!c/ l , we obtain the following expression fo

C(Dv) in the diffusion approximation:

C~Dv!5
6p

Ak0
2 S z0

L12z0
D 2S L

l DFS L

l Dv
,
z0

L D , ~51!

where l Dv5(2lc/3Dv)1/2, and the universal function
F(x,y) has the form

F~x,y!5$2x2y2~sinh 2x1sin 2x!1~sinh 2x2sin 2x!

12xy~cosh 2x2cos 2x!%$2x@4xy~sinh 2x

1sin 2x!18x3y3~sinh 2x2sin 2x!

18x2y2~cosh 2x1cos 2x!1~114x4y4!

3~cosh 2x2cos 2x!#%21. ~52!

The length l Dv determines the depth to which the bu
speckle structure produced by interference of the incid
waves penetrates. Plots ofC(Dv) for various values of the
internal reflection coefficient are shown in Fig. 3. Equatio
~51! and ~52! can be simplified in two limiting cases.

WhenL! l Dv , the dependence ofC on the frequency is
appreciable only with very strong internal reflection (z0@L).
In this case

C~Dv!'
3p

8Ak0
2 S L

l D l Dv
4

l Dv
4 1L2z0

2 5
3p

8Ak0
2 S L

l D
3H 1, ALz0! l Dv

l Dv
4

L2z0
2 , L! l Dv!ALz0

, ~53!

i.e., the frequency dependence is manifested forl Dv,ALz0,
and the correlations weaken asDv increases according to
Dv22 law.

When l Dv!L, the relations~51! and ~52! take the form

C~Dv!'
3p

Ak0
2 S z0

L12z0
D 2 l Dv

3

l ~~ l Dv1z0!21z0
2!
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5
3p

Ak0
2 S z0

L12z0
D 25

l Dv

l
, z0! l Dv

l Dv
3

2lz0
2 l Dv!z0

. ~54!

According to~54!, when internal reflection is not very stron
~or the frequency shiftDv is not very large!, the behavior of
the correlation functionC(Dv) is qualitatively the same a
when there is no internal reflection.7,27,32,33The behavior of
C(Dv) does, however, change at largeDv. The correlations
between fluxes at differing frequencies decrease with
creasingDv according to aDv23/2 law. This result differs
from the conclusions in Refs. 16 and 17, where other la
viz, Dv21 andDv21/2, respectively, were predicted.

The disparity with Refs. 16 and 17 can be explained
follows. In Ref. 16, ‘‘surface’’ sources of radiation fluctua
tions were introduced phenomenologically in an incorr
manner. The way in which this was done in Ref. 16 is
consistent with flux conservation upon elastic scattering
Ref. 17, the expression for the intensity correlation funct
obtained in that work is also inconsistent with flux conserv
tion. In deriving the correlation function, van Rossum a
Nieuwenhuizen17 assumed that it is symmetric under inte
change of the ‘‘incoming’’ and ‘‘outgoing’’ propagators
Such symmetry exists only for correlations of diffusio
fluxes in an infinite homogeneous medium.34 In the case of a
finite geometry, the symmetry of the intensity correlati
function becomes more complicated.33 Only part of the total
correlation function derived in Ref. 33 contributes to t
frequency-dependent flux correlation function. It does n
have the indicated symmetry.

5. CONCLUSIONS

We have shown that internal reflection from the boun
aries of a random system alters the wave propagation reg

FIG. 3. Frequency-dependent flux correlation function for various value
the internal reflection coefficient~r 50 ~1!, 0.5 ~2!, 0.9 ~3!, 0.95 ~4!, and
0.99 ~5!!. The layer thickness isL/ l 510.
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APPENDIX A

g

l

m

-
n
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ted
al

di-
ciable influence on effects due to long-range correlation
multiply scattered waves.

Under the conditions of strong internal reflectio
(12r !1), significant restructuring of the spatial distrib
tion of the radiation in the medium occurs. This is evidenc
by calculations performed both in the diffusion approxim
tion and under the assumption of diffusely reflecting bou
aries. In the limit of strong internal reflection, the two a
proaches yield identical results. The structure of the ex
relations enables us to understand on a qualitative level
the radiation propagation regime in the medium is de
mined by the competition between the reflectivity~or trans-
missivity! of the boundaries, and of the scattering mediu
itself. When 12r !1, two situations can be distinguished.

In the thick-layer limit, where the transmission of th
boundaries is higher than that of the scattering medium it
(12r @ l /L), internal reflection simply increases the effe
tive length of the path that waves traverse before leaving
medium. The propagation of radiation along comparativ
short trajectories~shorter thanl /(12r )! takes place as in a
medium with a perfectly reflecting boundary.

Qualitative changes in the radiation distribution app
in the opposite limiting case, where the transmission of
boundaries is lower than the transmission of the scatte
medium itself (12r ! l /L). Radiation crosses the laye
many times from one boundary to the other, and as a re
‘‘forgets’’ from which side it entered the medium. The di
ference between the reflection geometry and the transmis
geometry vanishes. Before leaving the medium, the wa
traverse a path of the order of (lL /(12r ))1/2@L.

The features of the large-scale behavior of the radia
distribution are reflected in the shape of the angular cohe
backscattering spectrum. The spectrum narrows as a wh
However, in the limit of strong internal reflection, the sha
of the spectrum differs qualitatively from that observed
the absence of reflecting boundaries.

Internal reflection also leads to appreciable variation
the spatial dependence of the long-range intensity corr
tions in the reflected and transmitted radiation fluxes. Wh
12r ! l /L, regions of positive and negative intensity corr
lation are interchanged, compared with those for the cas
which there is no reflection from the boundaries. The sh
of the fluctuation spectrum also changes. The spectrum
qÞ0 exhibits a maximum, which corresponds to reversa
the sign of the correlation function. New qualitative featur
appear in the correlations between fluxes of coherent ra
tion at different frequencies. In the limit of strong intern
reflection (12r ! l /L), the correlations weaken more rapid
as the frequency shift increases than in the absence of re
ing boundaries: they go as Dv22 when
c(12r )/L,Dv,cl/L2, and asDv23/2 whenDv.cl/L2.

We thank E. E. Gorodnichev and A. I. Kuzovlev fo
their interest in this work and valuable comments. This
search was carried out with partial support from the Inter
tional Science Foundation~Grant N3U000 and N3U300! and
the Russian Fund for Fundamental Research~Project 95-02-
05530!.

173 JETP 86 (1), January 1998
f

d
-
-

ct
at

r-

lf

e
y

r
e
g

lt,

on
s

n
nt
le.

f
a-
n

-
in
e
or
f
s
ia-

ct-

-
-

In a semi-infinite medium with a diffusely reflectin
boundary, transport equation~1! with source~2! and reflec-
tion coefficient~10! can be solved exactly. We write~1! in
integral form:8

I ~r ,Vur 8,V8!5I ~0!~r ,Vur 8,V8!1
1

4p l E d3r 9

3E
4p

dV9E
4p

dV-I ~0!

3~r ,Vur 9,V9!I ~r 9,V-ur 8,V8!

1
1

p
r E d2r9E~0!~r ,Vuz9

50,r9!E~z950,r9ur 8,V9!, ~A1!

where

I ~0!~r ,Vur 8,V8!5d~V2V8!dS V2
r2r 8

ur2r 8u D
3

1

ur2r 8u2
expS 2

ur2r 8u
l tot

D , ~A2!

E~0!~r ,Vuz950,r9!5E
~n•V9!,0

dV9un•V9u

3I ~0!~r ,Vuz950,r9,V9!, ~A3!

E~z950,r9ur 8,V8!5E
~n•V9!.0

dV9~n•V9!

3I ~z950,r9,V9ur 8,V8!. ~A4!

It is convenient to rewrite the solution of Eq.~A1! in terms
of the solution Ĩ that is valid in the absence of interna
reflection from the boundary:

I ~r ,Vur 8,V8!5 Ĩ ~r ,Vur 8,V8!1
1

p
r E d2r9

3Ẽ~r ,Vuz950,r9!E~z950,r9ur 8,V8!,

~A5!

where Ĩ satisfies Eq.~A1! with r 50, and

Ẽ~r ,Vuz950,r9!5E
~n•V9!,0

dV9un•V9u

3 Ĩ ~r ,Vuz950,r9,V9!. ~A6!

Physically, the transition from~A1! to ~A5! corresponds
to the separation of multiple scattering within the mediu
and reflection from the surface.

Solving Eq.~A5! iteratively, we can easily obtain a se
ries expansion of the intensity in the multiplicity of reflectio
from the boundary. Summation of a series of a similar ty
was employed in Refs. 14 and 18 to find the total reflec
and transmitted flux under the conditions of multiple intern
reflection from the boundaries of the medium.

Taking the Fourier transform with respect to the coor
nate differencer2r8,
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I ~z,V,quz8,V8!5E d~r2r8!

a

nt
e

T 5
1 E dV~n•V!E dV8un•V8u

nt

sity

n

ab-
the

m

3exp$2 iq•~r2r8!%

3I ~z,V,r2r8uz8,V8!, ~A7!

Eq. ~A5! takes the form

I ~z,V,quz8,V8!5 Ĩ ~z,V,quz8,V8!

1
1

p
rẼ~z,V,qu0!E~0,quz8,V8!.

~A8!

With consideration of~A4!, the solution of Eq.~A8! is

I ~z,V,quz8,V8!5 Ĩ ~z,V,quz8,V8!

1
r

p

Ẽ~z,V,qu0!Ẽ~0,quz8,V8!

12rRq
,

~A9!

where

Rq5
1

p E
~n•V9!.0

dVun•Vu

3E
~n•V9!,0

dV8un•V8u Ĩ ~z50,V,quz850,V8! ~A10!

is theqth spatial harmonic of the reflection coefficient for
diffuse point source of radiation located on the surface.

Generalization of the result~A9! to the case of a finite
layer does not present any difficulty. It calls for suppleme
ing Eq.~A8! with a term corresponding to reflection from th
boundary of the layer atz5L:

I ~z,V,quz8,V8!5 Ĩ ~z,V,quz8,V8!

1
1

p
rẼ~z,V,qu0!E~0,quz8,V8!

1
1

p
rẼ~z,V,quL !E~L,quz8,V8!.

~A11!

The solution of~A11! can be written in the form

I ~z,V,quz8,V8!5 Ĩ ~z,V,quz8,V8!

1
1

pN
$rẼ~z,V,qu0!@Ẽ~0,quz8,V8!

3~12rRq!1rTqẼ~L,quz8,V8!#

1rẼ~z,V,quL !@Ẽ~L,quz8,V8!

3~12rRq!1rTqẼ~0,quz8,V8!#%,

~A12!

where

N5~12rRq!22r 2Tq
2 , ~A13!

and
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q p ~n•V!.0 ~n•V8!,0

3 Ĩ ~z85L,V,quz850,V8! ~A14!

is the qth spatial harmonic of the transmission coefficie
through a scattering layer for a diffuse point source.

Equations~A9! and~A12! specify the radiation intensity
within a scattering medium at any distancez from the bound-
ary. If we setq50, z850, andz5L in ~A9! and ~A12!, we
obtain the familiar relations25 for the reflected or transmitted
intensity for radiation of infinite extent in thexy plane that is
incident upon a layer of a medium.

Integrating ~A9! and ~A12! over V and V8, we can
easily obtain expressions for the radiation energy den
F(q,z,z8):

F~z,z8,q!5F̃~z,z8,q!1
r

p

F~z,qu0!F~0,quz8!

12rRq
~A15!

in a semi-infinite medium, and

F~z,z8,q!5F̃~z,z8,q!1
1

pN
$rF~z,qu0!

3@F~0,quz8!~12rRq!1rTqF~L,quz8!#

1rF~z,quL !@F~L,quz8!~12rRq!

1rTqF~0,quz8!#%, ~A16!

in a finite layer, respectively, where

F~z,z8,q!5E
4p

dVE
4p

dV8I ~z,V,quz8,V8!, ~A17!

F~z,qu0!5E
4p

dVE
~n•V8!,0

dV8un•V8u

3 Ĩ ~z,V,quz850,V8!, ~A18!

F~0,quz8!5E
4p

dV8E
~n•V!.0

dV~n•V!

3 Ĩ ~z50,V,quz8,V8!. ~A19!

Formulas~A15! and~A16! enable us to express the radiatio
energy density in the medium in terms of a known~for ex-
ample, in the case of point scatterers29! solution obtained in
the absence of internal reflection on the boundaries.

APPENDIX B

In the general case, where the layers of the medium
sorb radiation and the incident waves differ in frequency,
integration in Eq.~34! with consideration of~11! leads to the
following results for the fluctuation spectrum. The spectru
can be represented in the form

M ~q!5
6p

k0
2

~ l 1z0!2

l 2 Q~q!, ~B1!

where the functionQ(q) is
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Q ~q!5
1 1

$M ~q!F~g ! 2
a

sinh 2xL sinh 2aL

v,

B

erl,
R A2~gq! uA~gDv!u2 1 q

1M2~q!G~gq!1M3~q!F~gq50!% ~B2!

in the case of reflection and

QT~q!5
1

A2~gq!

1

uA~gDv!u2 $N1~q!F~gq!

2N2~q!G~gq!1N3~q!F~gq50!% ~B3!

in the case of transmission. The quantities appearing in~B2!
and ~B3! are

M1~q!5
1

2
~11~gqz0!2!~~ lq !21~ lgq!2!,

M2~q!5gqz0~~ lq !21~ lgq!2!,

M3~q!5N3~q!5
1

2
~12~gqz0!2!~~ lgq!22~ lq !2!,

N1~q!5M1~q!cosh 2gqL1M2~q!sinh 2gqL,

N2~q!5M1~q!sinh 2gqL1M2~q!cosh 2gqL, ~B4!

A~x!5~11~xz0!2!sinh xL12xz0 coshxL,

gq5Aq21
3

l l a
, gDv5A3

l S 1

l a
1 i

Dv

c D .

The functionsF(x) andG(x) in ~B2! and ~B3! are

F~x!5
1

4l H ~11z0
2~a21b2!!

3S x

x22a2 sinh 2xL cosh 2aL

2
a

x22a2 cosh 2xL sinh 2aL D
12z0aS x

x22a2 sinh 2xL sinh 2aL

2
a

x22a2 ~cosh 2xL cosh 2aL21! D
2~12z0

2~a21b2!!S x

x21b2 sinh 2xL cosh 2bL

1
b

x21b2 cosh 2xL sin 2bL D
12z0bS x

x21b2 sinh 2xL sin 2bL

2
b

x21b2 ~cosh 2xL cos 2bL21! D J , ~B5!

G~x!5
1

4l H ~11z0
2~a21b2!!

3S x

x22a2 ~cosh 2xL cosh 2aL21!
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x22a2 D
12z0aS x

x22a2 cosh 2xL sinh 2aL

2
a

x22a2 sinh 2xL cosh 2aL D2~12z0
2~a2

1b2!!S x

x21b2 ~cosh 2xL cos 2bL21!

1
b

x21b2 sinh 2xL sin 2bL D
12z0bS x

x21b2 cosh 2xL sin 2bL

2
b

x21b2 ~sinh 2xL cos 2bL21! D J , ~B6!

In ~B5! and ~B6! a5RegDv , andb5ImgDv .
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Éksp. Teor. Fiz.81, 768 ~1981! @Sov. Phys. JETP54, 411 ~1981!#.

3G. Bergmann, Phys. Rev. B28, 2914~1983!; Phys. Rep.107, 1 ~1984!.
4B. L. Al’tshuler, JETP Lett.41, 648 ~1985!.
5Yu. A. Zyuzin and B. Z. Spivak, Zh. E´ ksp. Teor. Fiz.93, 994~1987! @Sov.
Phys. JETP66, 560 ~1987!#.

6Yu. N. Barabanenkov, Yu. A. Kravtsov, V. D. Ozrin, and A. I. Saiche
Prog. Opt.29, 67 ~1991!.

7V. L. Kuz’min and V. P. Romanov, Usp. Fiz. Nauk166, 247 ~1996!
@Phys. Usp.39, 231 ~1996!#.

8V. V. Sobolev, Light Scattering in Planetary Atmospheres, Pergamon
Press, Oxford-New York~1975!.

9V. V. Ivanov, Zh.53, 589 ~1976! @Sov. Astron.20, 332 ~1976!#.
10J. X. Zhu, D. J. Pine, and D. A. Weitz, Phys. Rev. A44, 3948~1991!.
11T. M. Nieuwenhuizen and J. M. Luck, Phys. Rev. E48, 569 ~1993!.
12R. Berkovits and Sh. Feng, Phys. Rev. B45, 97 ~1992!.
13A. Lagendjik, R. Vreeker, and P. de Vries, Phys. Lett. A136, 81 ~1989!.
14I. Freund and R. Berkovits, Phys. Rev. B41, 496 ~1990!.
15N. Garcia, A. Z. Genack, and A. A. Lisyansky, Phys. Rev. B46, 14 475

~1992!.
16A. A. Lisyansky and D. Livdan, Phys. Lett. A170, 53 ~1992!; Phys. Rev.

B 47, 14 157~1993!.
17M. C. W. van Rossum and Th. M. Nieuwenhuizen, Phys. Lett. A177, 452

~1993!.
18I. Freund, J. Opt. Soc. Am. A41, 3274~1994!.
19J. H. Li and A. Z. Genack, Phys. Rev. E49, 4530~1994!.
20M. Ospeck and S. Fraden, Phys. Rev. E49, 4578~1994!.
21V. S. Potanov, Teor. Mat. Fiz.100, 287 ~1994!; Teor. Mat. Fiz.100, 424

~1994!.
22Yu. N. Barabanenkov and V. D. Ozrin, Zh. E´ ksp. Teor. Fiz.94~6!, 56

~1988! @Sov. Phys. JETP67, 1117~1988!#.
23D. B. Rogozkin and M. Yu. Cherkasov, JETP Lett.58, 585 ~1993!; Phys.

Rev. B51, 12 256~1995!.
24K. M. Case and P. F. Zweifel,Linear Transport Theory, Addison-Wesley,

Reading, Mass.~1967!.
25H. C. van de Hulst,Multiple Light Scattering, Academic Press, New York

~1980!.
26M. B. van der Mark, M. P. van Albada, and A. Lagendjik, Phys. Rev.

37, 3575~1988!.
27R. Pnini and B. Shapiro, Phys. Rev. B39, 6986~1989!; Phys. Lett. A157,

265 ~1991!.
28A. F. Molich, B. P. Oekry, W. Schupita, B. Sumetsbergen, and G. Mag

Phys. Rev. A50, 1581~1994!.
29E. E. Gorodnichev, S. L. Dudarev, and D. B. Rogozkin, Zh. E´ ksp. Teor.

175L. V. Korolev and D. B. Rogozkin



Fiz. 96, 847 ~1989! @Sov. Phys. JETP69, 481 ~1989!#; Phys. Lett. A144,
48 ~1990!.

33S. Feng, C. Kane, P. A. Lee, and A. D. Stone, Phys. Rev. Lett.61, 834
~1988!.
30Z. D. Genchev, Physica B175, 405 ~1991!.
31D. B. Rogozkin, Zh. E´ ksp. Teor. Fiz.111, 1674 ~1997! @JETP84, 916

~1997!#.
32M. J. Stephen and G. Cwilich, Phys. Rev. Lett.59, 285 ~1987!.
176 JETP 86 (1), January 1998
34S. Hikami, Phys. Rev. B24, 2672~1981!.

Translated by P. Shelnitz
176L. V. Korolev and D. B. Rogozkin



Crystal-field induced mixing of electron states in C 60 crystals at high pressure

of
K. P. Meletov* ) and V. K. Dolganov

Institute of Solid State Physics, 142432 Chernogolovka, Moscow Region, Russia
~Submitted 9 July 1997!
Zh. Éksp. Teor. Fiz.113, 313–322~January 1998!

Optical absorption spectra of thin fullerene (C60) crystals in the range 1.7 to 3.8 eV have been
measured atT5300 K and at pressures up to 2.5 GPa. The spectrum shifts toward the
red with pressure, and the electron absorption intensity is redistributed among its bands. The
intensity of the band associated with the lowest direct electron interband transition monotonically
increases with pressure, whereas the intensity of the upper interband feature decreases.
Bands related to weak edge absorption in the range between 1.7 and 2.2 eV gradually merge
with the band associated with the lowest interband transition, whose intensity rises with
pressure. A similar redistribution of intensity among electron transition bands has been observed
when comparing the spectrum of an isolated C60 molecule and that of a C60 crystal. The
results indicate that the crystal-field induced mixing of electron states is present in solid C60, and
they can be discussed in terms of the Craig–McClure model, which was suggested to
describe crystal-field induced mixing of electron states in anthracene and naphthalene molecular
crystals. © 1998 American Institute of Physics.@S1063-7761~98!02101-5#

1. INTRODUCTION Meanwhile, intensities of absorption bands in spectra
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Electronic spectra of C60 molecules and C60 crystals
have been discussed in numerous theoretical and experi
tal works. The first calculations of C60 molecule electron
spectra were reported soon after the discovery of stable l
all-carbon molecules in products of graphite las
ablation.1–3 Then followed more accurate quantum mecha
cal models of the C60 molecular structure, electron and ph
non spectra.4–8 Experimental study of the C60 electron spec-
trum became a real possibility after the efficient techniq
for synthesizing fullerenes in a graphite arc had come i
being.9–12 Detailed measurements of C60 molecular absorp-
tion spectra and their vibrational analysis were performed
solid solutions of C60 in argon and hexane matrices by mea
of high-resolution Fourier-transform spectroscopy.13,14 This
research indicated that the range of weak edge absorptio
the C60 molecular spectrum, 1.78 to 3.04 eV, is due
electron–phonon replicas of dipole-forbidden electron tr
sitions. These transitions, assisted by non-totally-symme
phonons are due to the Hertzberg–Teller and Jahn–T
effects, and also show up in absorption spectra of C60 films
and C60 thin crystals.15,16Dipole-allowed electron transition
have been detected above 3 eV, and the most intense of
generate spectral features at 4.84 and 5.88 eV.14

The recorded absorption spectrum of the C60 molecule is
in very good agreement with theoretical calculations of
electron spectrum, although certain differences in numer
parameters are present.8,14 Optical absorption spectra of C60

crystals are similar to the C60 molecule absorption spectrum
overall, which is quite common in molecular crystals. Ess
tially all features of the C60 crystal absorption spectrum ca
be also seen in the molecule spectrum, but shifted to
low-energy side. This shift in molecular crystal spectra
called a crystalline shift, and its value, which is proportion
to the transition intensity, can be up to hundreds of milliele
tronvolts.
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C60 crystals and C60 molecules in both gas-phase and so
solutions are notably different.17 The major difference is a
broad absorption band between 2.2 and 3.1 eV in the cry
spectrum. Its intensity is notably higher than those of we
edge features, but, it is weaker than the dipole-allowed
sorption features on the high-energy side.

Attention has been focused on the origin of this band
several studies, and the most common view is that the b
is due to direct transitions between the valence and cond
tion bands. The considerable width of the band is though
be due to splitting of degenerate electron states of both
lence and conduction bands of the crystal. Note that p
ently we have no convincing evidence that would allow us
attribute the band to a specific transition in the molecu
spectrum. Since there are no transitions of such intensit
this range of the electron spectrum, the band is thought to
connected with forbidden molecular transitions that are
lowed in the crystal due to a change in molecular positio
symmetry.

We suggest, however, that this band is due to a w
dipole-allowed transition in the molecular spectrum who
intensity increases considerably in a crystal owing to its m
ing with a stronger electron transition on the high-ener
side. Similar mixing of the molecule electron states due
the crystal field was detected in exciton absorption spectr
anthracene and naphthalene molecular crystals, and
scribed by Craig18 and McClure and Schnepp.19 Later re-
search demonstrated20 that the band intensity in this case
also changed considerably by hydrostatic pressure applie
a crystal, since it intensifies the interaction between m
ecules and the effect of the crystal field.

In view of this, we have investigated in detail the ba
intensities in electron absorption spectra of C60 crystals un-
der hydrostatic pressure. We have recorded absorption s
tra of C60 thin crystals in the 1.7–3.8 eV range atT5300 K
and at pressures up to 2.5 GPa. Alongside the red shif

17705$15.00 © 1998 American Institute of Physics



FIG. 1. Absorption spectra of a C60 crystal with a thickness of
less than 1mm and of C60 solution in toluene atT577 K and
standard pressure.
spectral features due to pressure, which was detected earlier,
e
e
re
he
he
C

th
th
ug

as
te
te
n
ca
C

te
ng
pe
-

quality achromatic quartz optics. The image of a crystal
r of
two

e
as
ns-
red

orp-
he

igh-

th-
n of

see
eV

re
eV
notable redistribution of their intensities has been observ
The intensity of the band corresponding to the lowest dir
interband transition rises monotonically with the pressu
whereas the intensity of the interband transition of the hig
energy decreases. Similar changes in the intensities of t
features were detected in the absorption spectrum of the60

molecules dissolved in toluene in comparison with that of
C60 crystal. These results will be discussed in terms of
crystal-field induced mixing of molecular electron states s
gested by Craig and McClure.

2. EXPERIMENT

Absorption spectra were measured using C60 thin crys-
tals grown from either a toluene solution or a gaseous ph
The initial material purity was higher than 99%. We selec
for measurements crystals shaped as thin plates with la
dimensions of about 1003100 mm and a thickness less tha
1 mm. The crystal thickness was derived from the opti
density obtained by comparison to the optical density of60

thin films.15

Absorption spectra were recorded on a compu
controlled spectrometer built around an MDR-23 grati
monochromator. Measurements were taken in a broad s
tral region in the visible and ultraviolet light using high
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placed into a high-pressure cell was magnified by a facto
about 80, processed to an intermediate plane defined by
crossed 2003200 mm optical slits, and projected to th
monochromator input slit. The crystal optical density w
derived from transmission spectra normalized to the tra
mission spectra of the diamond anvils, which were measu
at all pressures. Thus the contribution from the edge abs
tion of the diamond anvils, which notably changed with t
pressure, could be eliminated.

High-pressure experiments were performed using a h
pressure diamond anvil cell of the Merril–Basset type.21 The
working area of the anvils had a diameter of 600mm, and the
aperture diameter of the stainless steel gasket was 250mm.
The pressure-transmitting medium was a 1:4 mixture of e
anol and methanol. The pressure gauge was the positio
the R1 line in the ruby luminescence spectrum.22

3. RESULTS AND DISCUSSION

The absorption spectrum at standard pressure andT577
K of a C60 crystal with a thickness less than 1mm is given in
the lower half of Fig. 1. On the low-energy edge, one can
a weak absorption band ranging between 1.78 and 2.2
(A-band! with clearly defined fine structure. Next is a mo
intense absorption band running from 2.2 to 3.0
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C-band peaking at 3.4 eV. The two most intensive bands
in the region of a diamond anvil self-absorption, its low
bound being at;4 eV.

The upper half of Fig. 1 shows an absorption spectr
of C60 dissolved in toluene plotted on the same scale. T
graph clearly shows that the two spectra are, by and la
similar, although there are notable differences between th
Above all, the molecular spectrum is shifted to the hig
energy side with respect to the crystal spectrum. The shi
about 0.04 eV for the fine structure of the relatively we
A-band, and about 0.4 eV for the strongC-band. Moreover,
the C-band is considerably broader in the crystal spectr
than in the molecule spectrum. The most striking differen
between the two spectra is that the crystal spectrum cont
the B-band, which peaks at 2.8 eV, whereas no such fea
can be seen in the molecule spectrum.

In this spectral range, the molecule shows the weak
narrow feature marked by an asterisk in Fig. 1. The inten
distributions are also notably different: theC-band intensity
in the crystal spectrum is much lower than in the molec
spectrum. Thus, the intensity is substantially redistribu
among the absorption bands in the transition from isola
molecules to the crystal: that of theC-band drops consider
ably, and theB-band intensity increases. Note that this fa
was discussed in earlier studies of C60 optical absorption
spectra. Several interpretations have been suggested, an
most popular of them is the hypothesis that electron tra
tions forbidden by molecular symmetry are partially allow
in the crystal, since the molecule is deformed by the lo
crystal field. Unsuccessful attempts were also made to si
late this effect in absorption spectra of C60 solutions by tak-
ing solvents with a higher polarity.

Detailed measurements of optical absorption spectra
C60 thin crystals in the visible and UV at high pressure sh
that a redistribution of intensity among the electron transit
bands also occurs when crystals are compressed hydro
cally. Figure 2 shows absorption spectra of a C60 thin crystal
at T5300 K, at pressures ranging from one atmosphere
the lower graph to 2.5 GPa in the upper diagram. T
C-band intensity gradually decreases with pressure, and
B-band intensity increases. The spectrum is simultaneo
shifted toward lower energies, and the bands become ap
ciably wider. These changes are reversible, and when
pressure is lifted, all typcial features of the initial spectru
come back. Note that the red shift of the C60 absorption
bands due to high pressure was previously investigate
several experiments.16,23,24 In those experiments, a notab
increase in theB-band intensity in absorption spectra of C60

thin crystals was detected,16 as in independent measuremen
of C60 thin film spectra at high pressure.23 Unfortunately, this
effect was not given due attention in either of these work

Figure 3 shows the ratio between the total intensities
the C- andB-bands,I C /I B , due to electron absorption in
C60 crystal as a function of pressure. In ascertaining t
behavior, we isolated the bands, fitting a Gaussian to e
The B-band has a side band on its low-energy edge aro
2.5 eV under standard pressure. To obtain a better fit,
approximated theB-band as a sum of two Gaussians, and
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total intensity was the sum of their intensities. Empty circ
in Fig. 3 represent the ratio of the total intensities,I C /I B ,
measured under increasing pressure, and filled circles s
measurements taken as the pressure was decreased. T
tensity ratioI C /I B drops by a factor of more than two as th
pressure grows to 2.5 GPa, but returns to its original va
when the pressure is lifted.

The intensity of theA-band in the region of weak edg
absorption is essentially independent of pressure. Thi
hard to see in the absorption spectra of the thin crystal sh
in Fig. 2, since theA-band intensity is very low in this case
Absorption spectra of a crystal with a thickness of 2.8mm at

FIG. 2. Absorption spectra of a C60 crystal with a thickness of less than
mm at T5300 K and pressures of up to 2.5 GPa.

FIG. 3. Ratio of total intensities of theC- and B-bands,I C /I B , in the
absorption spectrum of the C60 crystal. Empty circles show measuremen
taken under increasing pressure, and filled circle corresponds to decre
pressure.
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T5300 K and pressures up to 2.4 GPa are plotted in Fig
They clearly show theA-band and the low-energy edge
theB-band, whereas the peak of theB-band and theC-band
are in the region of total absorption. At room temperature
fine structure of theA-band is essentially invisible, and onl
a sideband can be seen in this spectral region. TheB-band
intensity increases with pressure, and its high-energy e
shifts towards theA-band and suppresses it. The high-ene
edge of theA-band shifts to the red much more slowly tha
the corresponding edge of theB-band. Positions of the edge
of theA- andB-bands vs pressure are shown in the inser
Fig. 4. The empty symbols correspond to the theB-band
edge, defined as the crossing point between the tangent t
spectral profile and the horizontal axis. Filled symbols c
responds to theA-band edge, which is defined similarly. At
pressure of 3 GPa, theA-band is not observable, and edg
absorption is due entirely to theB-band. These results indi
cate different origins of theA- andB-bands in the absorption
spectrum of C60 crystals. A similar conclusion was derive
earlier from analysis of electron–phonon bands in the
sorption spectra of C60 molecules.14

Thus, the distinctive feature of absorption spectra of60

crystals is the broad and intenseB-band, which has no ana
log in the molecular absorption spectrum. At the same tim
the C-band intensity in the crystal spectrum is much low
than in the molecular spectrum. Under hydrostatic press

FIG. 4. Absorption spectra of a C60 crystal with a thickness of 2.8mm in the
region of theA-band atT5300 K and various pressures: 1! 1 bar, 2! 0.9
GPa, 3! 1.6 Gpa, and 4! 2.4 GPa. The insert shows positions of the edges
A-band~filled squares! andB-band~empty circles! vs pressure.
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sity, simultaneously increases; these changes are reve
when the pressure is lifted. The behavior of C60 crystal ab-
sorption spectra can be interpreted in terms of the crys
field-induced configurational mixing of electron states in m
lecular crystals. As shown by Craig and McClure, this effe
shows up most clearly when electron states with close e
gies and substantially different oscillator strengths of the
spective optical transitions are mixed.18,19 This is the case in
the electron absorption spectrum of the C60 molecule, where
the lowest allowed electron transition between states w
symmetry1Ag→1Tu , whose energy is 3.04 eV and oscillat
strengthf .0.015~* -band!, is much weaker than the highe
energy transition at 3.78 eV and oscillator streng
f .0.37.14 The information concerning classification of ele
tron transitions in the C60 molecule given above is based o
the analysis of electron–phonon spectra of frozen C60 solu-
tions in hexane and trimethylpentane atT577 K,14 and is in
good agreement with the most detailed calculations of
molecule’s electron spectrum.8

We now examine in more detail Craig’s discussion
the effect.18 The wave function of the lowest excited electro
state of the crystal is described in the first order of pertur
tion theory with respect to the crystal field by the express

C1
15F1

01$H12/~H112H22!%F2
01...

1$H1r /~H112Hrr !%F r
01..., ~1!

whereF1
0...F r

0 are unperturbed wave functions of the va
ous electron states of the same symmetry,H11...Hrr are the
energies of these states, andH12...H1r are the energies o
interaction due to the crystal field. Equation~1! holds if

Hrr 2H11@H1r , ~2!

which is a prerequisite for perturbation theory to be app
cable, and holdsa fortiori for most electron transitions in
molecular crystals. In this case the energy of the lowest
cited state in first-order perturbation theory is

DE5H111(
r

8~H1r !2/~H112Hrr !. ~3!

The transition matrix element in first-order perturbati
theory is

M1
15M1

01(
r

8$H1r /~H112Hrr !%Mr
0 , ~4!

whereM1
0...Mr

0 are the matrix elements of electron trans
tions between unperturbed states. It follows from Eq.~4! that
the effect of the crystal-field-induced configurational mixin
of electron states on the intensity and energy of elect
transition is the stronger, the higher the interaction ene
H1r between electron states, the larger the difference
tween matrix elementsM1

0 andMr
0 , and the smaller the dif-

ference between the energies of the electron transitio
H112Hrr . This effect determines the changes in the inten
ties of electron transitions within a molecule when a mole
lar crystal is formed, and subsequent changes when the c
tal undergoes hydrostatic compression. In the latter case

f
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to the difference between the rates of pressure-induced s
of electron absorption bands.20

Note that first-principles calculations of the electr
spectrum of the C60 crystal indicate that similar change
should occur in electron absorption bands of the molecul25

The calculations also predict an intense and wideB-band,
which has not been detected in the molecule absorption s
tra. Its calculated intensity is much higher than theB-band
intensity in experimental absorption spectra of C60 thin films,
whereas theC-band is absent in the calculations. The inte
sities of two electron absorption bands above theC-band are
considerably lower than in experimental absorption spec
Calculations of the C60 crystal absorption spectrum at hig
pressure by the same authors indicate that the width
amplitude of theB-band should increase with pressure26

whereas the intensities of electron absorption bands of hig
energies should continuously decrease.

Our aggregate results suggest that the lowest interb
transition between the top of the valence band and bottom
the conduction band in the C60 crystal is related to the
B-band. The weak edge absorption in the region of
A-band has a different nature and is related, as in the cas
molecular absorption, to electron–phonon replicas of forb
den electron transitions. This means that the direct band
in the C60 crystal is determined by the position of the lon
wave edge of theB-band, and is about 2.1 eV at atmosphe
pressure. The pressure dependence of the band gap c
derived from the position of theB-band long-wave edge, an
is shown in the insert to Fig. 4~empty circles!. The rate of
theB-band pressure shift,dEg /dP, is 20.1560.01 eV/GPa
at standard pressure, and yields the deformation potentia
the C60 crystal in accordance with the formula

D5dEg /d$ ln~V0 /V!%52B0~dEg /dP!, ~5!

where B0518.161.8 GPa is the bulk modulus of the C60

crystal derived from x-ray diffraction measurements at h
pressure.27,28 The deformation potential of C60 derived from
these data is 2.760.3 eV. It is about twice the value given i
Ref. 28, where the direct gap width was erroneously dedu
from the position of theA-band edge. Note that our measur
ment of the deformation potential is in better agreement w
the numerical calculation,26 which yields 3.1 eV.

Thus, our experimental data suggest crystal-fie
induced mixing of electron states in the C60 crystal. Crystal-
field-induced mixing is the primary reason for significa
redistribution of intensity among electron absorption ban
due both to formation of a crystal from molecules and h
drostatic compression of the former. The presently availa
data lead us to claim that theB-band in the absorption spec
trum of a C60 crystal corresponds to the lowest interba
transition, and the position of its long-wave edge yields
direct band gap of 2.1 eV. The deformation potential deriv
from the pressure-induced shift of theB-band edge is
2.760.3 eV.

In conclusion, we would like to express our gratitude
I. N. Kremenskaya and R. K. Nikolaev for supplyin
samples of C60 crystals and films. We are indebted to th
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Thermopower in quasi-two-dimensional „BEDT-TTF…mXn organic conductors

as
S. V. Demishev, M. V. Kondrin, V. V. Glushkov, N. E. Sluchanko, and N. A. Samarin

Institute of General Physics, Russian Academy of Sciences, 117942 Moscow, Russia
~Submitted 11 July 1997!
Zh. Éksp. Teor. Fiz.113, 323–338~January 1998!

Thermopower of (BEDT-TTF)mXn organic conductors has been studied using a dedicated
measurement technique in the temperature range of 4.2 to 300 K. It turned out that some features
of the thermopower in quasi-two-dimensional metals, namely the presence of a peak in the
thermopower ofa-~BEDT-TTF!2MHg~SCN!4 and a plateau ink-~BEDT-TTF!2Cu~NCS!2 in the
temperature interval between 10 and 50 K, are probably due to the phonon drag effect.
Similar temperature dependences of the Seebeck coefficient can be satisfactorily interpreted in
terms of a simple model taking into account the real experimental curve of the phonon
heat capacity versus temperature,C}T2, which is not described by the Debye formula. One
feature distinguishing organic superconductors from magnetically ordered metals is a stronger
temperature dependence of the characteristic electron–phonon scattering timete–ph(T).
Phonon drag effects also determine the behavior of the thermopower in the
~BEDT-TTF!3Cl2•2H2O organic conductor, which is characterized by a metal–insulator transition
at T;150 K. An analysis of measurements of the conductivity and thermopower vs.
temperature taken together indicates that the transition in this compound has a complex nature:
first ~at T;150 K! a metal–insulator transition occurs, which produces an energy gap in
the band spectrum, then at a lower temperature (T;20 K) a transition to a charge-density wave
state takes place. ©1998 American Institute of Physics.@S1063-7761~98!02201-X#
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In recent years, physical properties of (BEDT-TTF)mXn

organic conductors ~where BEDT-TTF denotes
bis~ethylenedithio!-tetrathiafulvalene, and X is an anion!
have been studied intensely using a variety of experime
techniques. One feature of these materials is the presen
the complex-structure layers of the BEDT-TTF molecu
separated by anion layers, with electrons confined to BED
TTF layers forming an essentially perfect two-dimensio
gas ~at low temperatures the in-plane conductivity can
several orders of magnitude higher than the conductivity
the perpendicular direction!.1

Depending on the form of the anion i
(BEDT-TTF)mXn , various types of ground states occur
low temperatures. Apart from normal metals and superc
ductors with one- or two-dimensional Fermi surfaces,2 there
are materials in the (BEDT-TTF)mXn group that are charac
terized by low-dimensional instabilities like charge-dens
waves, which lead to an insulator ground state,3–5 or spin-
density waves, which modify the metallic ground state ow
to magnetic ordering.6,7

Until the present time, efforts in the field of electro
properties have been largely focused on characterizatio
Fermi surfaces and studies of interaction in the electron s
system using quantum oscillation techniques8–10 or the cy-
clotron resonance,11,12 whereas their superconducting pro
erties and metal–insulator transition due to charge-den
waves were studied mostly by traditional galvanomagn
methods.3–5

Thermoelectric effects in (BEDT-TTF)mXn have not
been studied systematically as yet, and publications on
topic have appeared only occasionally~see, for example
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usually limited to determination of the effect sign. Note th
the progress in this field is impeded largely by techni
difficulties deriving from small dimension and frangibility o
single crystals of organic conductors.

At the same time, it is well known that measurements
the Seebeck coefficient as a function of temperature,S(T),
yield important information concerning not only paramete
of charge carriers, but also the nature of the electron–pho
scattering in the system,15–17 which is especially interesting
in the case of organic conductors, where strong Fermi-liq
effects have been anticipated.6–12

Therefore the aims of the reported work were, firstly,
develop a technique of precision thermopower measurem
with due account of specific features of organic conduct
and, secondly, to measure the Seebeck coefficient vs.
perature in various species of (BEDT-TTF)mXn , including
superconductors, magnetically ordered metals, and sys
that undergo a metal–dielectric transition.

2. EXPERIMENTAL TECHNIQUES

2.1. Samples

For our experiments, we selecte
~BEDT-TTF!2MHg~SCN!4 ~where M5Tl, Rb, NH4!,
~BEDT-TTF!2Cu~NCS!2, and~BEDT-TTF!3Cl2•2H2O single
crystals. All organic conductors were synthesized by M. K
moo at the Royal Institution, UK. We investigated five sing
crystals of each composition with typical lateral dimensio
of 1.5 to 2 mm. Measurements of thermopower and resis
ity were conducted along axes of the largest growth~along
the b-axis for ~BEDT-TTF!2Cu~NCS!2 and c-axis for
~BEDT-TTF!2MHg~SCN!4!. The samples of

18208$15.00 © 1998 American Institute of Physics
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FIG. 1. Diagram of the low-temperature section of the fac
ity for thermopower measurements.
~BEDT-TTF!2MHg~SCN!4 with M5Tl, Rb are organic met-
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als whose Fermi surfaces contain both one- and t
dimensional sections,2 and the presence of one-dimension
sections leads to instabilities like spin-density waves,6–10 so
that atT,10 K these metals are magnetically ordered. T
samples of ~BEDT-TTF!2NH4Hg~SCN!4 and
~BEDT-TTF!2Cu~NCS!2 are superconductors withTc'1 K18

andTc'11 K,14,19 respectively, the latter being a record f
quasi-two-dimensional organic conductors. Note that
~BEDT-TTF!2MHg~SCN!4 compounds belong to a singl
structure class~so-calleda-phases! with identical molecule
packing patterns in the BEDT-TTF layers, whereas the
perconductor~BEDT-TTF!2Cu~NCS!2 belongs tok-phases.
Note also that essentially all organic conductors unde
structural changes aroundT;100 K associated with change
in BEDT-TTF molecule packing patterns in the correspon
ing layers. For this reason, a metallic state often come
T,100 K,1,2 and in discussing the metallic systems we w
focus our attention on this temperature range.

One feature of the~BEDT-TTF!3Cl2•2H2O organic con-
ductor is that metallic conductivity atT.150 K is replaced
by semiconducting conductivity at lower temperatures;
ducing the temperature toT'10 K increases the resistivit
by a factor of about 105.3 It was suggested in early publica
tions that the reason for the metal–insulator transition in
material is a change in the energy band pattern in the orig
semimetallic state, leading to formation of a band gap
T;150 K.20 A detailed analysis of the temperature depe
dence of the conductivity and magnetoresistance,3 however,
allowed the researchers to attribute the metal–insulator t
sition to formation of charge-density waves, which was la
supported by structural analysis.4,5

2.2. Thermopower measuring technique

From the technical viewpoint, the major problem
measurements of thermopower in organic conductors is
rication of good thermal contacts with two opposite sam
faces, which is asine qua nonfor accurate measurements
the temperature gradient. Since samples of organic con
tors are very brittle, we had to design a dedicated fixture
supporting samples that would allow us to cool samp
down without destruction due to thermal contraction of t
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tors have very small dimensions, so we had to select sin
crystals that were as long as possible—about 1.5–2.5 m

Another serious difficulty is conducting measureme
strictly in the range of linear response, which can be diffic
in the case of a metal-like sample, whose thermopower
creases with temperature. When the conventional techn
is used, one has to increase the temperature differenceDT
across the sample in order to achieve the required volt
sensitivity.

We used in the thermopower measurements a lo
temperature helium cryostat in which a sample was moun
on a cold plate in the vacuum jacket. By varying the liqui
helium flow rate, we could tune the temperature in the ran
between 1.5 and 300 K, and an electronic control sys
driving a heating system stabilized the prescribed temp
ture to within 0.05 K. A diagram showing the design of th
cell for measuring thermopower is given in Fig. 1.

The cell temperature was measured by resistance t
mometer 1. Organic metal sample 2 was glued to electric
insulated Z-shaped stripes 3 of thin indium foil, which mai
tained the sample in a strain-free state during alteration of
cell linear dimensions due to temperature variations. A te
perature gradient across the sample was generated by a
heater 4. In order to reduce the heat flow, a large open
was milled in the copper cold plate supporting the assem
~Fig. 1!. The thermopower generated in the sample w
picked up using two copper and two constantan conta
The sites where copper wires were soldered to the con
pads were attached to the sample holder by a thermally c
ducting glue and electrically insulated by thin capacitor p
per. This allowed us to minimize the temperature differen
between the constantan/copper junctions and thereby ge
of parasitic thermopower. In order to obtain equal tempe
ture gradients between copper and constantan contacts o
sample, the free ends of the wires were soldered pairw
~one copper wire to one constantan wire!, pressed to the
‘‘hot’’ and ‘‘cold’’ edges of the sample, and cemented by a
electrically conducting glue. This technique yielded high
reliable electric and thermal contacts to the sample, and
testing experiments the assembly withstood no less than
cooling/heating cycles without a notable degradation
sample properties and parameters of electric contacts. M
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surements on different single crystals of the same materials
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demonstrated that the thermopower could vary by 5–10
which is also an indication of fairly good reproducibility an
reliability of thermal and electric contacts fabricated by th
method.

The electric signals were picked up and experimen
parameters were driven by a dedicated facility build aroun
computer. All electric voltages were measured by Shch
digital voltmeters with an input impedance of at least 1
MV, and after data processing the signal amplitude sens
ity was about 10 nV. The thermopower was measured
follows. Initially the plate temperature was stabilized at
prescribed value. Then a constant current, whose magni
could be varied by the computer code, was fed to the hea
When a steady temperature gradient was obtained, t
mopower signals from the copper,UCu, and constantan,Uct ,
contacts were simultaneously recorded, after which a n
heater current amplitude was set, and the measurement
repeated. In the linear range of the thermoelectric respo
the measurement data plotted in coordinatesUCu vs. Uct

formed a straight line, whose slope was calculated using
least squares method. The number of measurement cy
and maximum heater current were selected so that, fir
the response was linear in the temperature gradientU
;DT, and, secondly, the number of points was sufficien
keep the maximum absolute error in the least squares me
within 3–5%. Under these conditions, the temperature dif
ence across the sample was 1.5–2 K and decreased co
erably in the range close to the liquid-helium temperatu
Note that the time required to accumulate data needed
plotting the curve ofU5 f (DT) around the liquid-helium
temperature was several tens of minutes. The total time
the heating/cooling cycle during which anS(T) curve was
plotted was about fifteen hours.

Since the slope is given by

tan a5
SCu2Ssample

Sct2Ssample
,

the Seebeck coefficient of the sample,Ssample, with respect to
one contact~in this specific case, copper! can be calculated
given the calibration curve of the difference between
thermopowers of two contact materials~in fact, the calibra-
tion of the copper/constantan thermocouple!. The copper
contacts were fabricated from high-purity wire, whose th
mopower atT,6 K was additionally tested using a lea
sample as a reference~we used materials manufactured b
Goodfellows, Great Britain!.

Note that this experimental technique has certain adv
tages over the traditional differential method, since it allo
one to get round the unknown temperature difference
tween the temperature gradient sensor and the sample
contact and to check that measurements are performed i
linear signal range. A similar technique was suggested
Laurentet al.,21 but they did not vary the temperature grad
ent, as was done in the reported paper.
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3. EXPERIMENTAL RESULTS

3.1. Organic conductors with metallic conductivity

Thermopower measurements for organic metal sam
with metallic conductivity are shown in Fig. 2. It is notewo
thy that a-phase samples demonstrate peaks ofS(T) in the
low-temperature region about 20 K, the peak amplitude
ing small for ~BEDT-TTF!2NH4Hg~SCN!4 ~curve 1!, and
most easily seen in curves 2 and 3 for
~BEDT-TTF!2RbHg~SCN!4 and ~BEDT-TTF!2TlHg~SCN!4,
respectively.

The sample conductivity vs. temperature was measu
using the traditional four-terminal configuration along t
same crystal axis as the thermopower. The curve ofr(T) for
a-phases has the typical shape shown in the insert to Fi
~curve 2!. In the high-temperature region,r increases with
decreasing temperature, and only below 150 K the cond
tivity has clearly metallic nature sincer drops as the tem-
perature is lowered. Our data are in agreement with pre
ously published results.2,6–10

Unlike a-phases,~BEDT-TTF!2Cu~NCS!2 exhibits me-
tallic properties much more explicitly: the high-temperatu
peak of its resistivity is considerably lower, itsS(T) curve
has no peak in the low-temperature region, andS(T)'const
aroundT;20 K ~see curves4 in the main diagram of Fig. 2

FIG. 2. Thermopower of various quasi-two-dimensional organic metals
temperature: 1! ~BEDT-TTF!2NH4Hg~SCN!4; 2!
~BEDT-TTF!2RbHg~SCN!4; 3! ~BEDT-TTF!2TlHg~SCN!4; 4!
~BEDT-TTF!2Cu~NCS!2. The insert shows typical curves of resistivity v
temperature, labeled with the same numbers as in the main graph.
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and the insert!. It was reported in literature17–19,22that a su-
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TABLE I. Parameters of power functions in Eqs.~1! and~2! approximating
thermopower maximum in organic conductors.
perconducting transition to the state withr50 was detected

at T511 K in k-~BEDT-TTF!2Cu~NCS!2. Note also that
throughout the studied temperature intervalS(T).0 for a-
phase samples, whereas S(T),0 in
k-~BEDT-TTF!2Cu~NCS!2 in the rangeT.11 K.

Near the superconducting transition atT;10 K, the
thermopower of~BEDT-TTF!2Cu~NCS!2 abruptly decreases
passes through zero atT510 K, and saturates at a level o
11.5 mV/K ~Fig. 2, curve4!. It is generally recognized tha
in the superconducting stateS[0,15 but this assertion applie
only to an isotropic superconductor. In the anisotropic ca
which occurs in organic superconductors, theory predic22

that valuesSÞ0 are possible, which was observed in expe
ments~Fig. 2!. Note that the absolute value of the copp
thermopower forT,10 K is at most of order 0.5mV/K ~in
accordance with published data for pure copper23!, so the
positiveS(T) cannot be attributed to superconducting sho
circuiting via the organic conductor. Thus, the behavior
thermopower ink-~BEDT-TTF!2Cu~NCS!2 is natural for an
anisotropic metal with a superconductor transition arou
T;10 K.

It is of interest to compare our thermopower measu
ments ink-~BEDT-TTF!2Cu~NCS!2 with measurements14 of
crystals of the same composition fabricated at the Institut
Chemical Physics in Chernogolovka, Russian Academy
Sciences. The overall shape of theS(T) curve in the region
above the superconducting transition~Fig. 2! is similar to
that given in Ref. 14, but the minimum value ofS in Ref. 14
is 227 mV/K, in contrast to our measurement o
217 mV/K. This discrepancy can be attributed either to sp
cific features of organic conductors fabricated in differe
laboratories or to possible methodological errors: the s
dard thermopower measurement technique employed in
14 can lead to significant measurement errors in the temp
ture gradient across a small sample, hence to systemati
rors in the Seebeck coefficient. According to our data,
thermopower changes sign below the superconducting t
sition, T,11 K, and settles atS511.5&mV/K, whereas in
Ref. 14 the observed valueS50 is reported. The reason fo
this discrepancy remains unclear and requires further in
tigation.

It is clear that unlikek-~BEDT-TTF!2Cu~NCS!2, a-
phases show an anomalous peak inS(T) ~Fig. 2!. In order to
analyze this effect in quantitative terms, let us consider
asymptotic behavior

S~T!}Ta, ~1!

which is valid at temperatures below the peak, and

S~T!}T2b, ~2!

which describes the curve in the high-temperature reg
(T.30 K). Solid lines in Fig. 2 show fits of~1! and ~2! to
experimental data, and values of the indicesa and b are
listed in Table 1. The uncertainty in parameters obtained
the nonlinear analysis is 6–10%.
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It is clear that the values ofa for all tested materials are
close and range between approximately 1.5 and 1.8, whe
b is spread over a wider interval between 1.2 for M5NH4

and 2.7 for M5Rb.

3.2. Organic conductor undergoing a metal–insulator
transition

Measurements of the thermopower and resistivity o
~BEDT-TTF!3Cl2•2H2O sample versus temperature are pl
ted in Fig. 3. In the rangeT.150 K the temperature depen
dence of the conductivity has a metallic nature, andS(T).0.

At about T;150 K a metal–insulator transition occu
in ~BEDT-TTF!3Cl2•2H2O, accompanied by reversal of th
sign of the thermopower. At lower temperatures the abso
value of S(T) grows, and this trend persists down to 40
~Fig. 3!. As the temperature is lowered to 20–30 K, the th
mopower drops sharply in absolute value, andS(T)'0 for
T,20 K to within the experimental accuracy~Fig. 3!. Note
that in this temperature range~BEDT-TTF!3Cl2•2H2O
samples have extremely high resistivity, about four orders
magnitude higher thanr(T;150 K), and the uncertainty in
S(T) increases to 3–5mV/K.

It is notable that there is a correlation between featu
of the curves ofr(T) andS(T): the bendr(T) at T;60 K

Material a b

~BEDT-TTF!2NH4Hg~SCN!4 1.55 1.2
~BEDT-TTF!2RbHg~SCN!4 1.75 2.7
~BEDT-TTF!2TlHg~SCN!4 1.76 2.1
~BEDT-TTF!3Cl2•2H2O 3.9 2.7

FIG. 3. Resistivity and thermopower of~BEDT-TTF!3Cl2•2H2O versus tem-
perature. Curves 1–4 are plots of different theoretical functions.
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corresponds to the point of inflection ofS(T), and the low-
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temperature bend inr(T) at T;20 K to S(T)'0 ~Fig. 3,
cited temperatures marked by arrows!.

For comparison with measurements of samples with m
tallic conductivity, we processed measurements ofS(T) in
the regions both below and above the peak using Eqs.~1!
and ~2! ~curves3 and 4 in Fig. 3!. The resulting indicesa
andb are listed in Table 1. Whereas indexb is about 2.7 and
close to the corresponding values f
~BEDT-TTF!2RbHg~SCN!4 and ~BEDT-TTF!2TlHg~SCN!4,
the value ofa is larger,a;3.9, i.e., the drop inS(T) for
~BEDT-TTF!3Cl2•2H2O is significantly steeper~Figs. 2 and
3!. The temperature dependence ofS(T) will be discussed in
detail in the next section.

4. DISCUSSION OF RESULTS

4.1. Sign of thermopower in quasi-two-dimensional organic
conductors

For ~BEDT-TTF!2MHg~SCN!4 a-phases and
~BEDT-TTF!2Cu~NCS!2, the thermopower signs are opp
site ~Fig. 2!, although, according to published data,2,6–10,19,24

their transport properties~relating, for example, to quantum
oscillations! are controlled in either case by hole sections
their Fermi surfaces. Recall that the thermopower of cop
is positive and forT,300 K its magnitude is less than 1.
mV/K,23 so the thermopower features illustrated by Figs
and 3 must be associated specifically with organic cond
tors. The data in Fig. 2 indicate that i
~BEDT-TTF!2Cu~NCS!2 the contribution of electron section
of the Fermi surface is larger than generally accepted, h
ever, further research and more accurate measuremen
the band structure parameters are needed in order to ha
ultimate judgement about the thermopower sign in tested
ganic conductors.

4.2. Features of thermopower in the region of the
metal–insulator transition in „BEDT-TTF…3Cl2–2H2O

Data on~BEDT-TTF!3Cl2•2H2O thermopower vs. tem
perature yield additional information about the nature of
metal–insulator transition in this material. It is known~Sec.
2.1! that there are two alternative interpretations of this p
nomenon. The first is based on a transformation of the or
nal semimetallic spectrum to a dielectric spectrum. The ot
model relates the metal–insulator transition to formation o
charge-density wave. According to Gruner,25 the behavior of
the resistivity as a function of temperature~Fig. 3! derives
from the fact that in the highly anisotropic two-dimension
case, partial ordering first takes place along an easy ax
T;150 K, while a charge-density wave for the entire co
ducting plane is finally generated atT,20 K.3–5

One can see~Fig. 3! that in factS(T)'0 atT,20 K, as
it should be for a collective mode like a charge-density
spin-density wave, or a superconductor.15 Reversal of the
thermopower sign near the metal–insulator transition is m
easily ascribed to opening of a gap in the electron spectr
For example, in the simplest model with isotropic bands a
equal number densities of electrons and holes,n5p, one can
easily derive from the standard expression for the th
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erate semimetal corresponds to the conditionth.te, where
te andth are relaxation times for electrons and holes, resp
tively. In the dielectric case, for which transport is due
activation processes,S,0 if the effective masses and relax
ation times satisfy the conditionth,temh /me. Combining
these two conditions, we obtain the condition for sign rev
sal in the formte,th,temh /me, which can be easily satis
fied if me!mh .

It follows from the discussion above that the model
the metal–insulator transition in~BEDT-TTF!3Cl2•2H2O can
be more complicated than that suggested in Refs. 3 an
which is based solely on the charge-density wave conc
At T;150 K, the band structure changes, and a gap is p
ably opened in the~BEDT-TTF!3Cl2•2H2O spectrum, which
leads to higher resistivity and a larger absolute value of th
mopower; atT;20 K, the system then forms a charg
density wave, and as a result the Seebeck coefficient v
ishes andr(T) acquires a break in the low-temperatu
region ~Fig. 3!. Note that the suggested model is in fu
agreement with available structural data.4

At the same time, the observed temperature depende
of the thermopower in the temperature range below the tr
sition at T;150 K is stronger~with asymptotic behavior
S}1/T2.7! thanS}1/T which corresponds to thermal activa
tion across a band gap.14 For this reason, we have to assum
that some features of the~BEDT-TTF!3Cl2•2H2O ther-
mopower are due to phonon drag.15,16

An accurate calculation of phonon-drag effects is
rather complex problem and requires detailed informat
about the variance of relaxation times.16 Usually theoretical
calculations for the degenerate case predict dependence
S}1/T4 or S}1/T3. The latter corresponds to the Herrin
relaxation mechanism16 and is close to the experimental da
for some organic conductors~Table 1!. In the case of carrier
activation, a simple estimate of the phonon drag effect a
function of temperature can be obtained using
expression15

S~T!5
C~T!

n~T!e S 1

11te–ph~T!/t~T! D , ~3!

whereC(T) is the phonon heat capacity,n(T) ande are the
concentration and charge of carriers,te–ph(T) is the
electron–phonon relaxation time, andt(T) is the relaxation
time of the phonon gas.

It follows from Eq. ~3! that in the case of thermal act
vation of carriers, the temperature dependence of the t
mopower is determined, to a first approximation, by the
ponential temperature dependence of the concentra
whereas all other parameters in Eq.~3! are described by
power laws, i.e., one should expect that atT,150 K the
~BEDT-TTF!3Cl2•2H2O resistivity should be described b
the formular}S}exp(Ea /T). We have derived from the re
sistivity measurements the activation energyEa'500 K
~Fig. 3, curve1!, and from the approximation of the initia
section of theS(T) curve ~Fig. 3, curve 2! Ea'490 K,
which is the same to within the experimental accuracy
;15 K. One can see in Fig. 3, however, that the exponen
asymptotic behavior describes thermopower data only up
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FIG. 4. Switching between two different theoretica
temperature dependences of heat capacity in qu
two-dimensional organic metals:~1! Debye formula
C}T3; ~2! C}Td, whered52. Experimental data
are taken from Ref. 27.
T;80 K, i.e., on the upper half of ther(T) activation sec-
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tion, and at lower temperatures the thermopower magnit
is lower than expected. This discrepancy can be ascribed
example, to the temperature dependence of the phonon
capacity, sinceC(T) drops with decreasing temperature.

Note that the fit of the high-temperature section of t
S(T) curve (T.80 K) by Eq.~2! yieldsS(T)}1/T4.1, which
corroborates the stronger temperature dependence in th
gion. Moreover, this result, as well as the approximat
S(T)}1/T2.7, which is the best over a wider temperatu
interval ~Fig. 3, curve3!, is in disagreement with the theo
retical dependenceS}1/T, which describes activation trans
port in the absence of phonon drag. Thus, the data in Fi
indicate that the increase in the~BEDT-TTF!3Cl2•2H2O ther-
mopower magnitude at low temperatures is due to pho
drag. Further decrease in the temperature leads to forma
of a charge-density wave and, as a result,S'0. The peak in
theS(T) curve in Fig. 3 is due to this change of the transp
regime.

4.3. Low-temperature peak in thermopower of quasi-two-
dimensional organic metals

We now consider possible mechanisms leading to
mation ofS(T) peaks in~BEDT-TTF!2MHg~SCN!4 samples.
Since these samples are in a metallic state at leas
T,100 K,2,6–12,24 the most probable cause of the the
mopower growth with decreasing temperature, as in the c
of ~BEDT-TTF!3Cl2•2H2O, is the phonon-drag effect, a
though the measured indexb ~Table 1! is less than the the
oretical valuesb53 – 4 for degenerate systems.15 It is note-
worthy that the values ofa for all tested samples are clos
a;1.5– 1.75, and considerably less than in the case
~BEDT-TTF!3Cl2•2H2O, wherea;3.9 ~Table 1!. Thus, the
drop inS(T) at T,15 K ~Fig. 2! can hardly be ascribed to
transition to a state with a charge-density wave since as
shown for~BEDT-TTF!3Cl2•2H2O, the thermopower should
drop more rapidly in this case~Fig. 3!. We suppose that this
drop can also be described in terms of the phonon-d
model.15

In the degenerate case,n5const and the thermopower a
a function of temperature is determined by temperature
pendences of the heat capacity and relaxation times. In
three-dimensional caset }T25, irrespective of the feature
of the dispersion curve,26 and the electron–phonon scatterin
time is a slower function of temperature, for example,te–ph
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temperature, and ‘‘high-temperature’’ asymptotes, wh
te–ph/t@1, can be derived from Eq.~3!,

S~T!}C~T!
t~T!

te-ph~T!
~4!

as well as ‘‘low-temperature’’ asymptotes,te–ph/t!1:

S~T!}C~T!. ~5!

The traditional interpretation15 of the S(T) peak is that
C(T)5const in the high-temperature region and, given
relaxation times selected above,S(T)}1/T7/2, whereas in the
low-temperature rangeS(T)}C(T)}T3. Thus the interpre-
tation of thermopower as a function of temperature in ter
of the phonon-drag model requires information about
temperature dependence of specific heat in real samples

Published data onC(T) of quasi-two-dimensional or-
ganic conductors27–30suggest that for all organic conducto
studied, the heat capacity curve plotted in the standard m
ner, C/T5 f (T2), is highly nonlinear atT.10 K.27–30 This
means that temperature dependence of the phonon com
nent of heat capacity is significantly different from that pr
scribed by the Debye law,C}T3, and the change in this
temperature dependence should occur at aboutT* ;10 K.

We have calculated the exponentd in the heat capacity
versus temperature,

C~T!}Td, ~6!

separately in each temperature range,T,T* and T.T* ,
using the data from Refs. 27–29. Typical curves are given
Fig. 4, and they clearly indicate that atT* ;10 K the
asymptoticC(T) power index actually does change for o
ganic conductors. The resulting exponentsd are listed in
Table 2, and their uncertainty is about 0.05.

It follows from Table 2 that the temperature dependen
of the heat capacity is universal for quasi-two-dimensio
organic conductors. AtT,T* the heat capacity is describe
by the Debye formula to within the experimental errors, a
d'3, while atT.T* d drops tod'1.7– 2.0. Thus, the lat-
tice specific heat dominates the electronic contribution in
temperature rangeT.2 K, which was studied in Refs. 27–
29, and measurements at lower temperatures are need
properly isolate the electronic heat capacity. As a res
measurements27–29 of C(T) can be used in analysis of th
thermopower due to phonon drag using Eqs.~3!–~5!.
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TABLE II. Parameters derived from measurements of heat capacity as a
function of temperature in quasi-two-dimensional organic conductors given
Unfortunately, the relatively high superconducting tra
sition temperature ofk-~BEDT-TTF!2Cu~NCS!2 and the en-
suing additional contribution toC(T) make an accurate de
termination ofd difficult in this case. Our estimate ofd based
on the curve30 of C(T) in a magnetic field of 5 T yields
2.4560.05. Since the curve ofC(T) in Ref. 30 is plotted
over the temperature range 6–12 K, this value ofd most
likely corresponds to the intermediate temperature ra
(T;T* ), and additional information is needed for accura
determination of high- and low-temperature asymptotic
havior.

It is interesting that a similar change of the regime w
theoretically analyzed by Kosevich26 for the heat capacity o
layered crystals with tight bonds within one layer and loo
bonds between layers. According to Ref. 26, the anisotr
of elastic constants is negligible at low temperatures, and
traditional formulaC}T3 applies. As the temperature in
creases, the contribution of high-frequency bending mode
C(T) becomes important, and their dispersion curve,
though three-dimensional, contains a dominant term q
dratic in the quasimomentum, and as a result the Debye
mula should be replaced withC}T2.26 According to the
standard model of quasi-two-dimensional organic cond
tors, they are composed of sets of organic molecule lay
~BEDT-TTF in our specific case! separated by anion poly
mer layers.1,2 It is obvious that the anisotropy of elast
moduli should be strong and the heat capacity vs. temp
ture should be an anomalous function. To the best of
knowledge, however, the applicability of the theoretic
results26 to the specific heat of organic conductors as a fu
tion of temperature has not been discussed as yet.27–30

Comparison between Figs. 2 and 4 demonstrates tha
thermopower ofa-phases peaks in the temperature ran
whered'2. Given Eqs.~3! and~6!, one can easily show tha
in the ‘‘low-temperature’’ limit (te–ph/t!1)

a'd2g
te-ph

t
, ~7!

and in the ‘‘high-temperature’’ range, wherete–ph/t@1,

b'gS 12
t

te–ph
D2d, ~8!

where the indexg determines the power-law dependence

te–ph

t
}Tg. ~9!

in Refs. 27–29 and calculations by the phonon-drag model.

Material

d

g
te–ph/t

(T,20 K)T,T* T.T*

~BEDT-TTF!2NH4Hg~SCN!4 3.00 1.91 3.11 0.13
~BEDT-TTF!2RbHg~SCN!4 3.05 2.03 4.73 0.06
~BEDT-TTF!2KHg~SCN!4 3.09 1.84 - -
~BEDT-TTF!2TlHg~SCN!4 - - 3.94 0.02
~TMTSF!2PF6 2.94 1.70 - -
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of the first order inte–ph/t and t/te–ph in the respective
temperature ranges. Comparison of the data in Tables 1
2 shows that conditiona'd, which is usually included in
the standard approach~Eq. ~5!!, is satisfied only to low ac-
curacy, so the correction toa is substantial.

We now estimate parameters of the phonon-drag mo
in Eqs. ~7! and ~8! for samples of
~BEDT-TTF!2MHg~SCN!4. Since no data on the specifi
heat for M5Tl in the temperature range of interest are ava
able, we have used results for its closest isostructural a
logue M5K, whose electronic properties and magnetic ord
pattern are essentially identical.6,7,12 In addition, we assume
that the phonon-drag correction in Eq.~8! is negligible; then
g'd1b, and in the temperature range below the th
mopower peak ~T,20 K in Fig. 2!
te–ph/t'(d2a)/(a1b). The parametersg and te–ph/t
calculated in this way are listed in Table 2. Using these d
to extrapolatete–ph/t to the temperature range above t
peak, we can show that the correction tog is at most 1–8%,
which justifies our estimation procedure.

Thus, it follows from our analysis that the electron
phonon interaction time divided by the phonon relaxati
time in superconducting~BEDT-TTF!2NH4Hg~SCN!4 is
greater than in magnetically ordere
~BEDT-TTF!2MHg~SCN!4 ~M5Rb, Tl! samples, and the pa
rameterg, on the contrary, is smaller. It is known that th
maximum possible value ofg is 5, which corresponds to
te–ph5const.24 Standard scattering theory yieldste–ph

}T23/2 or te–ph}T21/2,31 and in the presence of a stron
random potential the phonon scattering time it should
te–ph}T21, so it is feasible that real systems are charac
ized byg ranging between 3.5 and 5, which is in satisfacto
agreement with Table 2. Moreover, the stronger the temp
ture dependence ofte–ph at low temperatures, the higher th
index g and, as follows from experimental data reported
this paper, the feature distinguishing superconducting
ganic metals from magnetically ordered ones is probably
steeper functionte–ph(T).

If we ‘‘extrapolate’’ this trend and assume that th
higher the superconducting transition temperature, the st
ger the temperature dependence ofte–ph, then we can give a
qualitative interpretation of S(T) for
k-~BEDT-TTF!2Cu~NCS!2 ~Fig. 2!. If the temperature de-
pendence ofte–ph is described by a power law with an ex
ponent of up to 3, we havete–ph/t }T22 and, as follows
from Eq. ~8!, the phonon contribution is, in a way, compe
sated for, so thatb'0 and the thermopower has a plateau
a function of temperature. Precisely this behavior is obser
in k-~BEDT-TTF!2Cu~NCS!2 in the range 15 K,T,50 K,
i.e., near the peak position in other materials~Fig. 2, curve
4!.

5. CONCLUSIONS

In this paper, we have shown that some features of th
mopower in the studied samples of quasi-two-dimensio
organic conductors, namely the peaks f
a-~BEDT-TTF!2MHg~SCN!4 and the plateau for
k-~BEDT-TTF!2Cu~NCS!2 in the temperature range 10–5
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the Seebeck coefficient versus temperature can be satisf
rily interpreted in terms of a simple model that takes t
actual temperature dependence of the phonon heat cap
into account, which is not described by the Debye formu

The phonon-drag effects probably also determine the
havior of the thermopower in the~BEDT-TTF!3Cl2•2H2O
organic conductor, characterized by the metal–insulator t
sition at a temperature aroundT;150 K. The combined
analysis of conductivity and thermopower measurement
functions of temperature has allowed us to improve upon
results of previous research3–5 and establish that the trans
tion in this material is of a complex nature: first the electr
spectrum turns ‘‘dielectric,’’ with a gap emerging a
T;150 K, then a transition to the state with a charge-den
wave occurs atT;20 K.
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Thermopower of Al 12xSix solid solutions in vicinity of lattice instability
N. E. Sluchanko, V. V. Glushkov, S. V. Demishev, M. V. Kondrin, N. A. Samarin, and
V. V. Moshchalkov* )
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V. V. Brazhkin
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The thermopower coefficient as a function of temperature,S(T), has been measured in
nonequilibrium superconductors, such as Al12xSix substitutional solid solutions and Al–Si alloys
on various decay stages. When aluminum is substituted with silicon, the contribution to the
thermopower due to phonon-drag effects, which are dominant in pure aluminum at low
temperatures, is suppressed, and low-temperature anomalies inS(T) detected in
compositions near lattice instability limit are determined by the diffusion component of the
thermopower. The low-temperature anomalies in the thermopower and the notable increase in the
coefficient in front of the linear term inS(T) are attributed to effects of thermopower
renormalization due to the electron–phonon interaction enhancement with ‘‘soft modes’’ in the
face-centered cubic~FCC! lattice of Al12xSix solid solutions. The nature of these anomalies
in S(T) is analyzed in terms of the Kaiser and Reizer–Sergeev models. ©1998 American
Institute of Physics.@S1063-7761~98!02301-4#

1. INTRODUCTION Al12xSix and Al12xGex compounds are metastable,8 which,
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In recent years, a lot of attention has been attracted
theoretical and experimental studies of the thermopower
efficient as a function of temperature,S(T), in various
metal-like systems, such as glasses,1 high-temperature
superconductors,2 fullerenes,3 etc. This interest is caused b
high ‘‘susceptibility’’ of this parameter to the electron spe
trum of a material and the character of quasiparticle sca
ing, in particular, to features of electron–phonon interact
in the normal state. According to some researchers,2–4 fea-
tures of the electron–phonon interaction and their effect
the thermopower in the temperature range above the su
conducting transition may supply a clue to which of the s
perconductivity mechanisms is realized in a specific mate
and also yield information about the Eliashberg function
studied materials. Moreover, the enhancement factor
electron–phonon interaction can be derived directly fr
thermopower measurements in metals with substitutio
impurities.4,5

At the same time, important properties of most oxi
high-temperature superconductors, fullerenes, and org
superconductors are determined by proximity to the str
tural lattice instability. This is, on one hand, one of the fa
tors of superconductivity enhancement,6 on the other hand, it
makes difficult an investigation of these multicomponent m
terials.

Al12xSix substitutional solid solutions synthesized und
high pressure7 are among the most simple metal-like syste
from the viewpoint of both lattice structure, electron spe
trum, and chemical composition. Substitution of Al with
without breaking the FCC lattice configuration in the so
solution leads to an increase in the superconducting tra
tion temperatureTc up to ;11 K at x'0.2. Note that
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together with the enhancement of the superconductivity
one order of magnitude~sinceTc(Al) '1.18 K! and persis-
tence of the FCC lattice structure, makes these materials
venient models for studying superconductivity.

Attention was focused on the nature of the supercond
tivity enhancement in these nonequilibrium materials in o
previous research.9,10 The stability region and decay kinetic
of supersaturated Al12xSix solid solutions on early and lat
stages of their phase transformations have also b
studied.11,12 Our previous research9–12 indicated that the ori-
gin of the increase inTc of Al12xSix compounds is the en
hancement of the electron–phonon interaction due to clu
modes generated in the Al-based FCC lattice in approach
the lattice instability limit or spinodal. To the best of ou
knowledge, no measurements of the thermopower coeffic
of Al12xSix metastable solid solutions withx>0.01 have
been performed as yet. Since a considerable enhanceme
the electron–phonon interaction in Al12xSix has been de-
tected in this range of Si concentrations~the electron–
phonon interaction constantl(Al0.92Si0.08)50.9,10 whereas
l(Al) 50.38!, it is of interest to studyS(T) in compositions
approaching the lattice instability.

Thus, the aim of the reported research was to investig
in detail the thermopower coefficient versus temperature
establish its relation to the enhancement of electron–pho
interaction and charge carrier scattering in nonequilibri
Al12xSix model solid solutions over wide ranges of the si
con contentx and temperature.

2. EXPERIMENTAL TECHNIQUE

1. From the technical viewpoint, the major problem
measurements of thermopower of small metallic samp

19007$15.00 © 1998 American Institute of Physics
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FIG. 1. Diagram of the low-temperature section of th
facility for measuring thermopower~see text!.
with relatively low resistivities is fabrication of reliable ther-
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mal contacts on two opposite sample faces in an evacu
volume, without which accurate measurements of the te
perature gradient are impossible. In addition, owing to
high thermal conductivity of such materials, there is a pro
lem of detecting weak signals in measuring both the te
perature gradient and thermopower in the sample. In orde
reduce the shunting effect of the sample on the tempera
gradient, we polished disk-shaped samples with a diam
no larger than 3.5 mm to a thickness of about 100mm, after
which comb-shaped patterns of slits were made on both s
of the disk using an electric-erosion facility in order to i
crease the effective distance between the two potential
tacts on the sample~see the insert to Fig. 1!.

Measurements were performed in a low-temperat
sealed-off tube with a cold plate supporting the sample in
evacuated volume, the whole assembly being inserted int
STG-25~40! helium transport Dewar with a volume of 25 o
40 liters. By pumping liquid helium from the transpo
Dewar through a sintered copper throttle to the cold plate,
could control the sample holder temperature throughou
interval of 1.5 to 300 K, and an electronic circuit driving th
heaters maintained the temperature at a prescribed valu
within 0.05 K. A schematic drawing of the assembly d
signed for measuring thermopower is given in Fig. 1.

The plate temperature was measured by resistance
mometer 1. Sample 2 was glued to two sapphire substrat
which electrically insulated the disk sample mounted
measurements from the copper support. A temperature
dient across the sample was generated by small ele
heater 4. In order to reduce the heat flow between the sam
ends via the holder, an opening was milled in the cop
plate ~Fig. 1!. The thermopower signal was picked up fro
two copper~5! and two constantan~6! contacts. Junctions
between copper signal wires and the contacts made g
thermal contact with the copper plate through thin capac
paper and heat-conducting glue, which made it possible
equalize the copper–constantan junctions and thereby e
nate spurious thermopower measurements. In order to h
equal temperature differences between the copper and
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~copper to constantan!, each pair was pressed to either t
‘‘hot’’ or ‘‘cold’’ end of the sample and cemented by a
electrically conducting glue. This assembly assured go
thermal and electric contact with the sample, and in qual
assurance measurements the samples withstood more
ten heating/cooling cycles without notable degradation
their properties and parameters of electric contacts.

Electric signals were picked up and the experiment w
controlled by a dedicated electronic unit. At the initial m
ment, the holder temperature was set at a fixed value. Th
current of a fixed amplitude, which was determined by t
computer code, was fed to the small heater. When the t
perature difference across the sample settled, thermopo
signalsUCu andUct from the copper and constantan contac
respectively, were recorded simultaneously. A new hea
current amplitude was fixed thereafter, and the measurem
cycle was repeated. Steady-state thermopower measurem
plotted in UCu vs Uct coordinates were on a straight line
whose slope was calculated using the least squares me
The number of measurement cycles and the maximum h
ing current amplitude were selected so that the uncertaint
the least squares method was at most 3–5%. Since the s
is

tan a5
SCu2Ssample

Sct2Ssample
, ~1!

and the calibration curve of the thermopower for the cont
materials is known~this is, in fact, a calibration curve of th
copper/constantan thermocouple!, the sample thermopowe
coefficientSsamplewith respect to one contact~in this specific
case, copper! can be calculated. Note that this technique h
an advantage over the standard differential method,13 be-
cause in our method the unknown temperature difference
tween the temperature pickup and the sample-wire con
cancels. A similar technique was described by Laur
et al.,14 but they did not vary the temperature gradient a
fixed temperature, as we did in our experiments.

In some cases thermopower measurements were che
using the standard differential technique for measuringS(T),
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the temperature gradient across the sample being meas
by a small Cu–Cu:Fe thermocouple. Measurements base
various experimental techniques performed on differ
samples of the same composition demonstrated that abs
value ofS(T) varied by 5 to 10%, which is a clear indicatio
of good reproducibility and reliability of the experiment
method.

2. Samples of Al12xSix supersaturated substitution
solid solution with x<0.08 were fabricated by quenchin
under a high pressure of 8 GPa in a Toroid chamber.15 The
synthesis scheme, methods of Al12xSix sample preparation
and characterization were similar to those described in R
7 and 9–12.

3. The experimental facility shown in Fig. 1 was ca
brated and tested using a sample of Bi1.1SrCa0.4CuOx oxide
high-temperature superconductor, whose parameters
measured by the differential method over a temperature
terval of 4.2 to 300 K. Measurements of thermopower w
respect to gold are plotted in Fig. 2, which, in addition
DS5SBiSrCaCuO2SAu ~curve 1!, also shows the negative gol
thermopower~curve 2! and S(T) for the studied ceramic
sample directly derived from these two sets of measu
ments. Note thatTc'80 K obtained in this experiment is i
good agreement with resistance and magnetic susceptib
measurements performed on the same sample. The da
SBiSrCaCuO(T) ~curve 3! in the low-temperature range, whe
the ceramic is in the superconducting state, allow us to e
mate the absolute error of measurements, which is at m
0.2 mV/K in this case.

3. EXPERIMENTAL RESULTS

Measurements of thermopower of Al12xSix solid solu-
tions using samples of four different compositions with s

FIG. 2. Test measurements of La22x(BaSr)xCuO4 thermopower with re-
spect to gold~see text!.
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con content below the point of absolute instability of t
aluminum-based FCC lattice are given in Fig. 3. The gra
also shows for comparison curves ofS(T) for pure alumi-
num ~99.9%! thermally processed at high pressure in con
tions similar to those of the high-pressure synthesis and
S(T) curve for aluminum taken from Ref. 16.

The comparison between curves 1 and 2 in Fig. 3 clea
shows that thermal treatment of aluminum at high press
leads to a notable reduction of the down-peak in the th
mopower atTmin'80 K ~curve 1 in Fig. 3!, which is ascribed
to phonon-drag effects in aluminum. As the silicon conte
in the Al12xSix solid solution with the FCC lattice increase
in the range of up to 4 at. %, the down-peak in theS(T)
curve is restored~compare curves 2, 3, and 4 in Fig. 3!. At
the same time, this feature in theS(T) curves is broadened
and the peak position forx50.02 andx50.04 is notably
shifted to lower temperatures.

These changes in theS(T) curve caused by thermal pro
cessing and substitution of aluminum with silicon
Al12xSix are in good agreement with the results of Refs.
and 18, which reported on disordering of the aluminum l
tice through either substitution of Al with Ag, Zn, and Mg a
low impurity concentrations,x<0.005,17 or generation of
various types of vacancies under a flow of neutrons w
energies higher than 0.1 MeV.18 Tendencies characteristic o
changes in the thermopower of aluminum-based alloys w
qualitatively analyzed in Ref. 19, and it turned out that t
increase in scattering due to structural defects was accom
nied not only by a suppression of the down-peak in the a
minum thermopower atTmin'80 K, which is due to phonon-
drag effects, but also by the emergence of an additio
negative diffusion component in the thermopower.

FIG. 3. Thermopower of Al12xSix versus temperature for the following
compounds: 1! pure aluminum16; 2! aluminum thermally processed at hig
pressure; 3! x52 at. %; 4! x54 at. %; 5! x56 at. %; 6! x58 at. %.
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A further increase in the silicon content in nonequilib-
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rium Al12xSix solid solutions near the FCC lattice instabili
limit leads to a notable increase in the amplitude of the lo
temperature feature in theS(T) curve~curves 5 and 6 in Fig.
3!. Note that, apart from an increase in the down-peak a
plitude in alloys withx50.06 and 0.08, the absolute the
mopower at room temperature also increases significa
~Fig. 3!.

With a view to elucidating the nature of these anomal
in the Al12xSix thermopower, it seems interesting to stu
changes in the thermopower coefficientS(T) due to a step-
by-step isothermal annealing, which initiates decay of sup
saturated solid solutions. Given specific features of ph
transitions in Al12xSix ,10–12it is possible to stabilize succes
sive intermediate metastable states by fast quenching f
the annealing temperature and to measure thermopower
function of temperature in Al–Si alloys with various silico
contents in the solid-solution phase.

In terms of the phase composition, Al–Si metastable
loys in intermediate stages of decay are metal matrice
Al12xSix solid solutions with submicron silicon inclusion
Measurements of small-angle neutron scattering in Al12xGex

demonstrated20 that the decay of an aluminum-based so
solution leads to formation of dielectric inclusions wi
shapes close to spherical in the metallic matrix, and th
dimension in late stages~coalescence! is about 40–60 Å.
Changes in the thermopower of an aging alloy contain
either noncoherent or spherical coherent inclusions
largely controlled by the depletion of the solid-solutio
matrix,21,22whereas formation and growth of inclusions ha
not any noticeable effect on the thermopower coeffici
S(T) magnitude in such a multiphase system.

Thus, the results of earlier research indicate20–22that one
should expect that submicron semiconducting~Si, Ge! inclu-
sions generated in the process of Al12xSix and Al12xGex

decay in the Al-based solid solution matrix have little infl
ence on the changes in the alloy thermopower due to a p
transformation. As a result, the evolution ofS(T) should be
largely controlled by the thermopower of the solid-soluti
matrix, i.e., the Si content in Al12xSix .

We selected for measurement with the step-by-step
thermal annealing a Al0.92Si0.08 sample, whose compositio
was very close to the region of the FCC lattice instabil
limit. The procedure of step-by-step annealing is descri
elsewhere.11 When a new content of the Al12xSix solid so-
lution was obtained in the sample, it was cooled down
room temperature, after whichS(T) was measured over
temperature interval of 4.2 to 300 K. The measurement d
are given in Fig. 4~the numbers of the curves correspond
the real-time sequence of studied intermediate states!.

In each intermediate state, the resistivityr(T) and Hall
constant RH were measured independently at room a
liquid-helium temperatures. These data allow us to ascrib
each sample state both a superconducting transition temp
ture Tc and silicon content in the Al12xSix solid solution.7

In considering the set ofS(T) curves in Fig. 4, note the
similarity between curve 3 in Fig. 4 and curve 5 in Fig.
which correspond to states with closeTc'4.1 K and the
same silicon contentx50.06. Similarly, S(T) curves of
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samples withTc'2.5– 3 K ~x'0.04– 0.05, curve 4 in Fig. 3
and curve 5 in Fig. 4! show close values of thermopower an
have similar behavior. At the same time, changes in the
plitude and shape of theS(T) curve for Al12xSix and aging
Al–Si alloys in the late stages of decay, when the impur
content in the solid solution and number and dimensions
inclusions increase, are quite considerable. These differe
must probably be attributed to effects of boundary regio
around submicron Si inclusions in the Al-based matr
where the FCC structure of the solid solution is notably d
torted.

4. DISCUSSION OF RESULTS

One of the key factors in the analysis of the the
mopower coefficient in the low-temperature range is sel
tion of the proper procedure for separating contributio
from the phonon-drag effects,Sph(T), and diffusion compo-
nent,Sd(T). The diffusion thermopower is usually estimate
by the Mott formula

Sd5
p2kBT

3e F] ln s~E!

]E G
E5EF

, ~2!

wherekB is Boltzmann’s constant,e is the electron charge,s
is the conductivity, andEF is the Fermi energy.

Theoretical studies of the diffusion thermopower at hi
and low temperatures have led to the conclusion23 that in
these limiting cases the corrections toSd due to effects of
electron–phonon interaction, including nonelastic electro
phonon scattering, are inessential, and Eq.~2! is asymptoti-
cally exact. The most difficult region for interpretation o
thermopower measurements in metallic systems is the ra
of intermediate temperatures, where, along with phonon-d

FIG. 4. Curves of thermopower of Al0.92Si0.08 versus temperature obtaine
in different intermediate states of the sample annealing: 1! Tc55.4 K; 2!
Tc55.0 K; 3! Tc54.05 K; 4! Tc53.75 K; 5! Tc53.18 K; 6! Tc51.87 K;
7! Tc51.2 K.
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tion, nonmonotonic behavior of the diffusion thermopow
has been detected.4 Among the widely known materials in
which the relation between electron–phonon interaction
anomalies inSd(T) has been well established, the most n
table examples are metallic glasses,24–26 Chevrel’s
phases,5,27 fullerenes,28 and some oxide high-temperatu
superconductors.4,29 An important point is that most of thes
materials are superconductors in which the proximity to
structural instability, hence the enhancement of the electr
phonon interaction, is a major cause of emergence
strengthening of superconductivity.6

Using Kaiser’s approach, we can describe the anoma
in the diffusion thermopower at low and intermediate te
peratures by the expression4,5

Sd
e–ph5Sd2SB5allS~T!, ~3!

whereSB is the diffusion thermopower without taking int
account an electron–phonon interaction, which is a lin
function of temperature,l is the dimensionless constant
electron–phonon interaction:

l[2E dv

v
a2~v!F~v!, ~4!

lS is the normalization factor describing the enhancemen
electron–phonon interaction, which is a function of tempe
ture:

lS5E dv

v
a2~v!F~v!GS

hv

kBTY E dv

v
a2~v!F~v!, ~5!

GS(\v/kBT) is a known universal function,30 a2(v)F(v) is
the Eliashberg function.

In this connection, a correct incorporation ofSB(T) and
Sph(T) is sufficient for separatingSd

e-ph. Relying on the ar-
guments about the effect of structural scattering on
phonon-drag thermopower in Al and results of Refs. 1 and
we will use measurements ofS(T) in aluminum thermally
processed under high pressure~curve 2 in Fig. 3! as esti-
mates of the sum ofSB(T) and Sph(T) in separatingSd

e-ph.
Really, the thermopower due to phonon drag~the down-peak
at Tmin580 K in Fig. 3! is suppressed by the structural di
order in Al due to structural defects generated by therm
treatment under pressure. When Al is substituted with
additional disorder is introduced into the FCC lattice of t
solid solution because of this doping. In this case, one sho
expect a further drop inSph(T) for Al12xSix owing to a
decrease in the carrier mean free path.9

Moreover, spectra ofL II–III X-ray emission from alumi-
num, NMR Knight shift measurements, and data on the lo
temperature specific heat of Al10 indicate that the Fermi en
ergy EF and electron density of statesN(EF) change only
slightly if the FCC structure persists in Al12xSix . Given that
Eq. ~2! holds, this means that changes inSB(T) should be
small in Al12xSix .

Thus, the suggested estimate of the sum ofSph(T) and
SB(T) in the thermopower of Al12xSix based on measure
ments ofS(T) ~curve 2 in Fig. 3! yields the upper limit for
this sum.
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The parameterSd
e–ph as a function of temperature ob

tained using the separation procedure described abov
plotted in Fig. 5a for several Al12xSix compounds. Figure 5b
showsD(dr/dT) vs. temperature, which is a change in t
resistivity temperature coefficient for several intermedi
states of Al0.92Si0.08 obtained in the process of annealing wi
respect todr/dT for the ultimate, equilibrium state of the
Al–Si alloy. We emphasize that the curves ofD(dr/dT) in
Fig. 5b show low-temperature anomalies in the diffusi
component of the resistivity~see also Ref. 10!, whose posi-
tion and amplitude correlate with features inSd

e–phin Fig. 5a.
Within the framework of the model based on Eqs.~3!–

~5! the emergence of the down-peak inSd
e–ph must probably

be attributed to features of the parameterlS(T), and in par-
ticular, of the Eliashberg functiona2(v)F(v). On the other
hand, studies of inelastic neutron scattering in Al12xSix
revealed31 that substitution of aluminum with silicon leads t
softening of phonon modes in the solid solution, but no ra
cal changes in the phonon density of states were dete
~see Fig. 5c!. In this case, the emergence of the low
temperature feature inSd

e–ph of Al12xSix ~Fig. 5a! can be
ascribed to the enhancement of the electron–phonon inte

FIG. 5. Parameters of intermediate states of Al0.92Si0.08 vs. temperature:~a!
DS(T)5Sd

e–ph(T) at ~1! Tc55.4 K, ~2! 4.05 K, ~3! 3.75 K, ~4! 3.18 K; ~b!
D(dr/dT) at ~1! Tc55.4 K, ~2! 3.75 K, ~3! 1.87 K; ~c! phonon density of
states:~1! pure aluminum;~2! Al0.094Si0.06; ~3! changes in the density o
statesDF(v) taken from Ref. 31.
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FIG. 6. Parameters of Al12xSix solid solutions
vs. concentration:~a! residual resistivityr0(T)
taken from Ref. 10;~b! thermopowerS(T) at ~1!
room temperature and~2! in the vicinity of the
S(T) minimum in Fig. 3; ~c! Hall coefficient
RH(x) at room temperature;~d! reciprocal fre-
quency of atomic motion.11
tion with ‘‘soft’’ modes generated in the FCC lattice owing
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We stress that a higher densityF(v) of phonon states in

the low-frequency band of the spectrum is not a decis
factor in superconductivity enhancement of aluminum-ba
solid solutions. For example, the emergence of a locali
mode in Al12xGex caused by substitution of aluminum wit
germanium results in a considerably smaller growth inTc

than in the case of Al12xSix at an equal content of silicon in
the FCC matrix of the solid solution.32

An estimate of the change inl in Al12xSix from
l(Al) 50.38 tol(Al0.92Si0.08)'0.9 given in Ref. 10 allows
us to interpret the increase in the magnitude of the nega
thermopower of Al12xSix at room temperature in terms o
Eqs.~3!–~5! ~Figs. 3–5!. Since both the dimensionless fact
l of the electron–phonon interaction defined by Eq.~4! and
the temperature-dependent parameterlS(T) given by Eq.~5!
change considerably when the concentrationx in Al12xSix is
varied, it seems reasonable to relate not only the enha
ment of superconductivity, but also the emergence
growth of low-temperature features of the diffusion the
mopower to changes in the electron–phonon interaction
rametera2(v). At the same time, integral equations~3!–~5!
show little promise for an accurate quantitative descript
of the relation between the low-temperature anomalies of
diffusion thermopower and parametera2(v,T). It is prob-
able that these difficulties are caused by the limits of
approximation of weakly nonequilibrium states of metal
systems used in deriving Eqs.~3!–~5!.

Interestingly enough, similar anomalies ofa2(v) were
predicted by Weber33 for oxide high-temperature superco
ductors La22x(Ba,Sr)xCuO4 using the model of nonorthogo
nal tight binding in lattice dynamics. In this case,33 the de-
velopment of a strong Peierls instability in th
La22x(Ba,Sr)xCuO4 lattice due to changes in its compositio
leads to emergence of a relatively small number of pho
modes in the spectrumF(v), which are characterized b
anomalously strong interaction with conduction electrons

A different approach to the thermopower in disorder
metallic systems with strong electron–phonon interact
based on solutions of the quantum kinetic equation has b
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effect of electron–phonon–impurity interference must
taken into account, along with the thermopower renormali
tion due to electron–phonon interaction in all orders of t
perturbation theory. As a result, both the magnitude and s
of S(T) strongly depend on the impurity scattering amplitu
of electrons; moreover, contributions to the impurity the
mopower due to the electron–phonon interaction a
electron–phonon–impurity interference have similar str
ture and cannot be separated by processing experime
data.34,35 The calculations described in Refs. 34 and 35 ha
been applied recently toS(T) in oxide high-temperature su
perconductors and solid substitutional solutions based on
and lead.36

On the other hand, our preliminary analysis based on
approach of Refs. 34–36 indicates that, if integral equati
~1!–~5! of Ref. 36 are applied to the quantitative descripti
of the experimental data plotted in Figs. 3 and 4, there i
problem discussed previously in connection with the int
pretation ofS(T) in terms of Kaiser’s model. If the Debye
phonon spectrum, which was used in Ref. 36, is repla
with the real phonon density of statesF(v) for Al12xSix
solid solution,31 it has little impact on the result. As a resu
the issue of accurate quantitative interpretation of lo
temperature anomalies in the diffusion thermopower in n
equilibrium Al12xSix interstitial solid solutions in close
proximity to the lattice instability has remained unsettled.

Note that, in addition to the anomalous behavior of t
Al12xSix thermopower near the lattice instability~Fig. 6b!, a
significant nonlinearity in the residual resistivityr0(T) ~Fig.
6a! has been detected in the range of concentra
x55 – 8 at. %, as well as a maximum in the Hall coefficie
RH(x) ~Fig. 6c!. Thus far, all the anomalies of kinetic coe
ficients listed above, which are caused by the proximity
the spinodal, and hence, related to high atomic mobility~Fig.
6d! in the FCC lattice of model Al12xSix solid solutions,
have not found their adequate theoretical interpretation.

5. CONCLUSIONS

In this paper, we have shown that some features of th
mopower in nonequilibrium Al12xSix substitutional solid so-
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7V. F. Degtyareva, G. V. Chipenko, I. T. Belashet al., Phys. Status Solidi
A 89, K127 ~1985!.

p.-

.

.

temperature down-peak inS(T) and substantial increase i
the coefficient of its linear term, must be attributed to anom
lies in the diffusion component of thermopower. Structu
disordering caused by thermal processing of alumin
samples under high pressure and substitution of alumin
with silicon in the FCC lattice leads to suppression of t
thermopower due to phonon drag, which dominates in p
aluminum. Our analysis has allowed us to relate the th
mopower anomalies near the lattice instability to the
hancement of electron–phonon interaction with ‘‘so
modes’’ in the FCC lattice of Al12xSix solid solutions.

Thus, the experimental data of Refs. 9–12 combin
with the results of the reported study has allowed us to
tablish a relationship between parameters of the super
ducting and normal states in the Al12xSix model system,
where changes inx lead to growth in the superconductin
transition temperature by an order of magnitude, althou
the crystal lattice and electron spectrum are essentially
same.
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NMR in 55Mn21 nuclei in the quasi-one-dimensional antiferromagnetic CsMnBr 3
A. S. Borovik-Romanov,* ) S. V. Petrov, and A. M. Tikhonov

Kapitsa Institute of Physics Problems, Russian Academy of Sciences, 117334 Moscow, Russia

B. S. Dumesh

Institute of Spectroscopy, Russian Academy of Sciences, 142092 Troitsk, Moscow Region, Russia
~Submitted 23 July 1997!
Zh. Éksp. Teor. Fiz.113, 352–368~January 1998!

The NMR spectrum of the quasi-one-dimensional easy-plane antiferromagnetic CsMnBr3, which
has trigonal spin lattice, is investigated in detail. The measurements were performed on a
wide-band NMR decimeter microwave-band spectrometer over a wide range of magnetic fields at
temperatures 1.3–4.2 K. All three branches of the NMR spectrum previously found by us
@JETP Lett.64, 225 ~1996!# are severely distorted because of the dynamic interaction with the
Goldstone mode in the antiferromagnetic resonance spectrum. The experimental results in
fields up to 40 kOe are described satisfactorily by an equation obtained by Zaliznyaket al. @JETP
Lett. 64, 473~1996!#. Formulas are obtained in our work that agree very well with experiment
at all fields up to the ‘‘collapse’’ fieldHc of all sublattices. The unbiased NMR
frequency in CsMnBr3 is determined to benn05416 MHz (T51.3 K) in zero external magnetic
field, and in this way the reduction in the spontaneous moment due to the quasi-one-
dimensional nature of the system of Mn21 spins, which according to our data amounts to 28%, is
determined more accurately. The field dependences of the directions of the magnetic
sublattices with respect to the magnetic field are obtained from the NMR spectra, confirming the
equations of Chubukov@J. Phys. Condens. Matter21, 441 ~1988!#. The results on the field
dependence of the width and intensities of the NMR lines are discussed, along with three observed
anomalies: 1! a strong increase in the NMR frequency for nuclei in sublattices that are
perpendicular to the magnetic field; 2! the nonmonotonic temperature dependence of the resonance
field for the lower branch of the spectrum; 3! the presence of two branches of the NMR
spectrum in largeHc fields, in which the CsMnBr3 must be a quasi-one-dimensional
antiferromagnetic. ©1998 American Institute of Physics.@S1063-7761~98!02401-9#

1. INTRODUCTION relatively weak fields at very high frequencies~up to 700
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The quasi-one-dimensional antiferromagnetic CsMn3

(TN58.3 K) has been vigorously investigated in rece
years, both theoretically and experimentally. A number
extremely interesting properties have been found in the e
tron spin system of this material: quasi-one-dimensional
change interaction and trigonal magnetic structure,1 a phase
transition to a quasicollinear structure in a comparativ
weak magnetic field2 Hc, and the electron susceptibilit
anisotropy3,4 associated with the latter, a large reduction
the electron spin moment,1,4 and the presence of the Gold
stone mode in the antiferromagnetic resonance~AFMR!
spectrum,5,6 the frequency of which is proportional to th
cube of the magnetic field. This paper is devoted to an
vestigation of the unique features of the NMR spectrum
the nuclei of 55Mn21 magnetic ions, a brief observation
description of which has been given elsewhere.7

There are several distinctive features of NMR in the n
clei of magnetic ions in antiferromagnetics.8 The NMR fre-
quency of the nuclei of magnetic ions is determined prim
rily by the magnitude of the hyperfine field, which for the 3d
elements is proportional to the average electron spin^S&. In
particular, for55Mn21 ions this field can amount to 600–70
kOe. Accordingly, NMR is observed in55Mn21 nuclei in
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MHz!.
A strong anisotropy of the exchange interaction~the ra-

tio of the exchange integrals along the chains to their va
perpendicular to the chains'500! is preserved in CsMnBr3

despite the establishment of three-dimensional order
Therefore, a considerable reduction must occur in the m
spin ^S& of the Mn21 magnetic ion because of the presen
of large quantum fluctuations induced by the quasi-o
dimensional nature of the exchange interaction. The NM
frequency at the nuclei of the magnetic ions in zero magn
field, as we have pointed out, is determined by^S&. There-
fore, an investigation of the NMR spectrum is one of t
most accurate methods of determining^S& and, accordingly,
the reduction in the spin moment. Determination of the el
tron spin reduction in CsMnBr3 was one of the goals of this
work.

CsMnBr3 is an easy-plane antiferromagnetic with trig
nal magnetic structure. When an external magnetic field
applied in any direction in the easy plane, the NMR spectr
must split into three branches. By investigating the dep
dence of the resonance frequencies of these branches o
applied field, one can trace the transition of the trigonal
tiferromagnetic structure into quasi-collinear. The seco
goal of our work was to investigate this process and to co
pare the data obtained with the prediction of the Chubuk
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FIG. 1. Magnetic structure of the CsMnBr3 an-
tiferromagnetic ~a—unit magnetic cell; b—
orientation of spins in hexagonal plane with re
spect to the applied fieldH!.
theory.5 It must be pointed out that CsMnBr3 is the first
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antiferromagnetic in which NMR could be observed in t
nuclei of all sublattices forming the trigonal magnetic stru
ture.

Another unique feature of the resonance properties
antiferromagnetics is associated with the strong correla
of the vibrations of the nuclei with the vibrations of th
electron system. The effect of this correlation on the AFM
was first established by Heeger, Portis, Teaney and W9

who found a strong temperature dependence for the loca
of the AFMR line in the KMnF3 antiferromagnetic and ob
served a double electron-nuclear resonance. A thorough
oretical analysis was performed by de Genneset al.10 and it
was shown that the strong dependence of the AFMR on
temperature of the nuclear magnetic system is direct
dence of the interaction of the nuclear and ionic spins, le
ing to a dynamic frequency shift~DFS!: to a pulling of their
spectra.

Since CsMnBr3 is an easy-plane antiferromagnetic, o
could expect the appearance of a pulling effect in this ma
rial too. After we had found the strong distortions of th
NMR spectrum due to the dynamic interaction of the el
tron and nuclear spins~we reported this elsewhere7!, Zal-
iznyak and Zorin11 found that in the AFMR spectrum there
a gap, which is also caused by a pulling of the spec
branches. In this paper we compare the results obtaine
the NMR and AFMR methods.

Greater absorption of a radio-frequency field, associa
with an amplification of the amplitude of the pumping fie
at the nuclei of the magnetic ions because of the dyna
componentHh f of the hyperfine field,8 is observed in mag-
netically ordered crystals. The magnitude of this amplific
tion depends on the form of the AFMR spectrum.

2. CRYSTALLINE AND MAGNETIC STRUCTURE OF THE
ANTIFERROMAGNETIC CsMnBr 3

CsMnBr3 belongs to the large family of binary halides
typeABX3 , whereA is an alkali metal,B is a 3d metal, and
X is a halogen. The crystal structure is described by theD6h

4

spatial symmetry group with lattice parametersa57.61 Å
and c56.52 Å.12 The Mn atoms in the plane perpendicul
to theC6 axis form a hexagonal lattice.

The crystal lattice determines the specific magne
structure of this substance, which is determined in exp
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fact that the distance between adjacent Mn atoms along
C6 axis is one-half that in the plane, the exchange interac
integral J5214 GHz determined in neutron scatterin
experiments,13 which characterizes the energy of the antife
romagnetic exchange interaction along the hexagonal axi
several hundred timesJ8, which characterizes the antiferro
magnetic interaction in the perpendicular plane. The va
J850.46 GHz is obtained from neutron diffraction data13

and J850.5 GHz from AFMR data.6 At TN58.3 K, three-
dimensional antiferromagnetic ordering occurs in the Mn21

spin system. The anisotropy energy, characterized by
constantD ~D52.9 GHz2 and 2.4 GHz6!, establishes the di-
rections of all spins in the chains perpendicular to the six
order symmetry axis. The weak exchange interactionJ8 be-
tween spins lying in one plane leads to the appearanc
trigonal 120-degree magnetic structure. Thus, the magn
structure of CsMnBr3 can be considered a set of on
dimensional antiferromagnetic chains, elongated along
C6 axis and interacting weakly among themselves. The u
magnetic cell is shown in Fig. 1a.

Six sublattices form the magnetic structure. Since anis
ropy is essentially absent in the basis plane, all of the Mn21

magnetic moments are expanded even in a small cons
magnetic fieldH, applied in the plane, so that the magne
field direction coincides with one of the bisectors of the t
angle ~see Fig. 1b and Fig. 2a!, i.e., the magnetizations
M1 ,M4 will be perpendicular to the field while the other tw
pairs of sublattices~M2,6 and M3,5! will form angles of
6p/6 with the field direction. On the whole, however, th
angles between the directions of adjacent Mn21 spins in the
plane will remain close to 120°. Increasing the value ofH
will lead to a decreasing anglea between the sublatticesM2

and M3 ~the same as forM5 and M6!, as shown by
Chubukov:6

cos
a

2
5

1

22z
, z5

H2

Hc
2 , ~1!

with a vanishing in a fieldHc5(48JJ8)1/2S'61 kOe ~ex-
perimental value4 of Hc'64 kOe forT51.8 K!. Moreover,
in each chain a very slight rotation of all spins occurs towa
the directionH, which is due to the finiteness of the magn
tude of the large exchange interaction fieldHE , which is
HE58JS'1500 kOe. Thus, in the magnetic fieldHc a col-
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FIG. 2. Schematic representation of the ma
netic structure of CsMnBr3 ~a—H!Hc ; b—H
.Hc!.
lapse of two pairs of sublattices occurs~a phase transition of
ed
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he
the second kind!, and the magnetic structure is transform
from six-sublattice to quasi-two-sublattice~Fig. 2b!.

The difference between the anglesb andg is negligible.
A further increase in the magnetic field should lead to
rotation of all spins toward the direction of the vectorH until
there is a complete breakdown of the antiferromagn
structure through a spin-flip transition. Measurements of
magnetic moment of CsMnBr3 as a function of the magneti
field ~in fields up to 80 kOe! in Refs. 3 and 4 agree for th
most part with theory.5

The hyperfine interaction energy per 3d Mn21 ion in the
magnetically ordered state can be written in the form~see
Ref. 8!

Hh f5A~^I &,^S&!, ~2!

where ^S& and ^I & are the mean spin of the electron a
nucleus of the55Mn21 ions andA is the hyperfine interaction
constant~A,0 for Mn21!. The static field at the nuclei of th
55Mn21 ion ~in the absence of an external magnetic field! is

Hh f52
A

gnh
^S&, ~3!

gn is the nuclear gyromagnetic ratio~gn51.06 MHz/kOe for
55Mn!.

Assuming the hyperfine constantA is independent of the
sublattice number~and taking into consideration thatA,0!,
the magnitudes of the local fieldsHni0 , which act on the
nuclei of the magnetic ions for all six sublattices, have
form

Hni05uHh f1Hu5Hh fS 11
H2

Hh f
2 22

H

Hh f
cosu i D 1/2

, ~4!

where u i is the angle between the external magnetic fi
vector and the sublattice magnetization. The nuclei of
ions of the sublatticesM1 and M4 correspond toi 51, M2

and M5 to i 52, andM3 and M6 to i 53. Let us write the
cosines of the anglesu i in explicit form:

cosu15
H

HE
,

cosu25sin
a

2
1

H

HE
cos2

a

2
1oS H

HE
D ,
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cos
2

1oS HE
D . ~5!

Thus, the NMR frequency in CsMnBr3 in the absence of
a dynamic shift is

vni05gnHni0 . ~6!

Figure 3 shows the NMR spectrum in CsMnBr3 ~4! pre-
dicted by theory~ignoring pulling!. For the assumptions
made previously, the NMR spectrum in fieldsH,Hc

(H'C6) will consist of three branches. In a fieldH.Hc the
NMR spectrum should consist of one branch because of
very small difference between the anglesb and g ~the ap-
pearance of the dashed curve 1 in place of the theoretica8
will be explained below!.

3. SAMPLES

The samples were prepared by the Bridgeman meth
Fabrication of the CsMnBr3 crystals has been described
detail elsewhere.4 The CsMnBr3 crystals grown by this
method are transparent and are easily cleaved along pl
perpendicular to the binary axes. TheC6 axis uniquely de-
termines the intersection of the cleavage planes. T

FIG. 3. NMR spectrum of CsMnBr3 ignoring DFS.18, 2, 3—branches of
NMR spectrum according to Chubukov’s angular dependences,5 1—
empirical relationship for unshifted frequency of middle branch~see below!.

199Borovik-Romanov et al.



n
ite

wi
th

on
c-

r
es

f

with differing slot geometry 8~the size of the gap in the slot
ce
200
nce

ro-
he
one
e
5

. 4.
-

ple
tire

he

-

n-
e

as
nce
SD1

ss
re-

ant
CsMnBr3 crystalline samples are extremely hygroscopic a
are hydrated quite rapidly in open air, turning into a wh
powder that is probably CsMnBr3•2H2O. Therefore, single-
crystal samples cleaved from a large crystal were coated
a resin cement. The protective cladding produced in
manner made it possible to work with one CsMnBr3 single
crystal for a long period of time.

4. NMR APPARATUS AND MEASUREMENT PROCEDURE

In view of the strong dependence of the NMR signal
the magnitude of the fieldH, a wideband cw decimeter spe
trometer of the type described in Ref. 14 with a high-Q cav-
ity was built to investigate nuclear resonance in CsMnB3.
The Q of the resonant section in the frequency range inv
tigated was 300–400.

The copper cavity~1 in Fig. 4! was a modified version o
a tunable cavity of the ‘‘split-ring’’ type.15 Three cavities

FIG. 4. Resonant circuit:1—cavity; 2—plate; 3—thin PETE film; 4,5—
coupling loops;6—coaxial feed lines;7—sample;8—narrow slot.
d

th
is

-

is ;0.09 mm!, in which mica plates were placed to redu
the frequency, were used to cover the range from 500 to
MHz. By moving plate 2 one can change the capacita
between plate 2 and cavity 1~the insulator 3 is a 5–10mm
thick film of polyethylene terephthalate~trade-named
Lavsan!, thereby changing the resonant frequency. Mic
wave power is supplied by the coaxial line 6. Coupling to t
resonator is accomplished by means of single-turn coils,
of which is the transmitting loop 4, while the other is th
receiving loop 5. The diameter of the coupling loops is
mm. The direction of the external magnetic fieldH, pro-
duced by a superconducting solenoid, is indicated in Fig
TheC6 axis of the CsMnBr3 single crystal 7 was perpendicu
lar to H. The alignment accuracy of theC6 axis with respect
to the solenoid axis was;63°, which did not greatly in-
crease the error in determining the resonant field. The sam
was mounted on a special fluoroplastic substrate. The en
system was immersed in a helium bath.

Figure 5 is a block diagram of the spectrometer. T
frequency of the microwave oscillatorG ~a Kh1-43 instru-
ment for studying frequency response! was modulated by the
low-frequency (f 545 kHz) reference oscillator of the syn
chronous detector SD2~PAR 5110 lock-in amplifier!. This
occurred by mixing the low-frequency signal with the co
trol voltageUcont that sets the frequency of the microwav
oscillator. An automatic frequency control~AFC! system,
tuned to the first harmonic of the modulation signal, w
used to maintain the oscillator frequency at the resona
peak. The AFC system consists of synchronous detector
and a cavity resonance tracker~ETC! with proportional and
integral feedback channels.

The output power of the microwave oscillator was le
than 3 mW. Absorption in the resonance channel was
corded at the second modulation harmonicUs2 f by means of
SD2. The depth of the frequency modulation~0.3–3 MHz!
was chosen so that it did not greatly broaden the reson
absorption line; it was typically;1.5 MHz.

Attenuators At1~10 dB! and At2 ~10 or 3 dB! were
it;
e-

k-
FIG. 5. Block diagram of spectrometer: RC—resonant circu
G—microwave oscillator; D—detector; SD1—synchronous d
tector ~UNIPAN 232B!; SD2—synchronous detector~lock-in
PAR 5110!; F—Ch3-63/1 frequency meter; At1, At2—
attenuators; DC—directional coupler; ETC—electronic trac
ing circuit; Ucont—control voltage;UHD—signal from Hall de-
tector;Us2 f —second harmonic signal.
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tion of the spectrometer in order to smooth its amplitud
frequency characteristic~AFC!. The frequency of the oscil
lator G was monitored by the frequency meterF ~Ch3-63/1!,
which was connected to the transmitter channel via the
rectional coupler DC~attenuation of the reflected wave wa
at least 25 dB!.

Thus, the NMR spectrum could be measured in t
modes: by scanning the magnetic field at fixed oscillator
quency, or by scanning the frequency at fixed magnetic fi
Unfortunately, because of the nonlinearity and poor repe
ability of the input line frequency response, this operat
mode of the spectrometer could not be fully utilized. Mor
over, the sensitivity of the spectrometer turned out to
perfectly adequate in the field-scanning mode. For the
operating mode the error in frequency measurement du
frequency instability of the resonant circuit~Fig. 4! was no
greater than 0.1 MHz. The temperature was monitored
means of the resistance of a germanium resistor and the e
librium saturated vapor pressure of4He. Its stability was no
worse than60.05 K.

The magnetic field intensity was measured with a H
detector~UHD in Fig. 5!, which together with the CsMnBr3

sample were located at equivalent positions inside a su
conducting solenoid. The error in determining the magne
field intensity did not exceed 1%.

To excite resonance and to obtain the maximum NM
amplification, the sample was oriented so that the fieldH of
the solenoid and the radio frequency fieldh were mutually
perpendicular in the hexagonal plane.

The mass of the CsMnBr3 single crystals investigate
ranged from 50 to 100 mg.

5. SPECTRUM OF COUPLED VIBRATIONS IN CsMnBr 3

Until recently the effect of dynamic interaction of th
electron and nuclear systems of the Mn21 ions on the AFMR
spectrum was completely ignored during the investigation
the low-frequency resonance properties of the electron
tem in small-size noncollinear CsMnBr3, RbMnBr3 and
CsMnI3 antiferromagnetics. It was only after the experime
tal discovery of the pulling of the spectra in CsMnBr3 ~se-
verely distorted NMR spectrum7 and gap in the Goldston
branch of the AFMR spectrum11! in Ref. 11 that the spec
trum of joint nuclear–electron vibrations was calculated u
der the assumption that the exchange trigonal structure is
distorted by the field. This condition is satisfied in fields
to ;40 kOe. In these fields the formulas of Ref. 11 descr
our experimental results satisfactorily.

For a comprehensive description of the results obtai
by us over the entire field range up toHc564 kOe, we cal-
culated the NMR spectrum using the low-frequency~Gold-
stone! AFMR mode ve1(H) calculated by Chubukov,5

which is

ve1~H !→geA3

4

H3

Hc
2 . ~7!

asH→0.
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known that its low-frequency vibration occurs with esse
tially no escape of spin magnetic moments from the e
plane: the ratio of the amplitude of the magnetization vib
tions of the sublattices perpendicular to the plane to the
plitude in the plane isH/HE . A similar relationship must be
satisfied in the case of CsMnBr3. Limiting consideration to
only this vibration, the Lagrangian of the electron spinsze0

can be written in the form16

Le05
1

2

x i

ge
2 ~f22ve1

2 ~H !f2!, ~8!

wheref is the small deviation of each spin in the basis pla
from the equilibrium direction, andx i is the susceptibility
along theC6 axis. The quantityve1(H) cannot be given in
analytic form. It is the solution of a 6th-degree equatio
which can be solved numerically. The form of the give
Lagrangian, strictly speaking, is valid as long as no seri
deformation of the trigonal magnetic structure occurs. W
return to a discussion of this question below.

Typical longitudinal (T1) and transverse (T2) relaxation
times for the nuclei of the Mn21 ions areT1;1 – 10 msec
andT2;10msec. These values are clearly several orders
magnitude greater than the period of the natural vibration
the nuclear magnetization of55Mn21, which is;2 nsec. For
this reason the magnetizations of the nuclear sublattices
be considered as conserving the magnetic moments, and
Lagrangian corresponding to their precession in the fieldHeff

can be represented in the form proposed for ferromagne
in the theory of the macroscopic dynamics of magne
substances.17 In this case the Lagrangian for the nuclei
one subsystem becomes

Ln5
1

gn
~^m&3V1gnHeff!, ~9!

where^m& is the paramagnetic moment of the sublattice n
clei, Heff5H1Hh f according to Eq.~4! ~the dipole field,
which does not exceed 2 kOe as a calculation has shown~see
below!, is ignored here, andV is the angular velocity in spin
rotation space.

By adding Eq.~8! and the sum of Eq.~9! for all six
sublattices, we obtained the Lagrangian of the system
electron and nuclear spins of the antiferromagnetic be
considered with the hyperfine interaction taken into accou

Len5Le01(
i 51

6

Lni . ~10!

The characteristic equation of the linearized system~in
terms of the small angle of deviation of the spins from eq
librium! of Lagrange equations determines the spectrum
joint vibrations. This equation has the following form for th
CsMnBr3 magnetic structure:

ve1
2 2v25

1

3

vT0
2

vn0
2 (

i 51

3
~v21vni

2 2vni0
2 !vni

2

~vni0
2 2v2!

,

vni0
2 5gn

2~Hh f! i
2S 11

H2

~Hh f! i
222

H

~Hh f! i
cosu i D ,

201Borovik-Romanov et al.



t
ha
e
r

f.

ca
be

5
ea
nt

a
re

5
e

ta

um
th

re
tio
0
pe
rib
ed

ree

is
-

of
his

l

-

ng
ee
the-

w

n-

ical

n

r.

at-
vni
2 5gn

2~Hh f! i
2S 12

H

~Hh f! i
cosu i D , ~11!

where the indexi of the spin orientation of the Mn21 ion
with respect to the applied field runs through values from
to 3, (Hh f) i is the value of the hyperfine field for nuclei a
the i th position, which at some points, as an experiment
shown, depends on the magnitude of the applied magn
field, vn05vni0(H)uH50 is the unbiased NMR frequency fo
any i 51, 2, 3, andvT05geHh fAxn /x i is the gap in the
AFMR spectrum~the formula is exactly the same as in Re
11!.

As already indicated, the Lagrangian of the electrons
apply rigorously only below 40–45 kOe. However, as will
seen from our experimental results, in fields greater than
kOe the dynamical interaction of the electron and nucl
systems almost completely vanishes, and it makes no co
bution whatsoever to the solution of Eq.~11!. Accordingly,
the form of the electron Lagrangian exerts no influence wh
soever on these solutions in strong fields. Thus, the exp
sions for the NMR frequencies calculated from Eqs.~11! are
rigorous in fields below 40 kOe and in fields greater than
kOe, but between these values they must be considered
pirical approximations.

6. EXPERIMENTAL RESULTS AND DISCUSSION

We observed the NMR lines in a CsMnBr3 single crystal
over the very wide frequency range;200– 450 MHz, in
magnetic fields from 20 to 80 kOe. The basic experimen
data were obtained at temperatures of 1.3 and 1.75 K.~Ob-
servations of the lower branch were also made atT52.5, 3.0,
3.5 and 4.2 K.! The spectrum atT51.3 K is shown by the
points in Figs. 6 and 7.

a! Shape of NMR spectrum at T51.3 and 1.7 K.In the
existence region of the trigonal structure the NMR spectr
splits into three branches, which agrees qualitatively with
form of the spectrum assumed above~see Fig. 3!. In fields
below 45 kOe, the experimental points indicate that all th
branches are severely distorted by the dynamical interac
with the low-frequency AFMR mode. At fields above 5
kOe, where the dynamical shift can be ignored, the up
and lower branches of the spectrum convincingly desc
the collapse of the trigonal structure, which is complet
according to other authors, at a field ofHc564 kOe.

FIG. 6. NMR spectrum of CsMnBr3: points—experimental NMR spectrum
at T51.3 K, lines—result of calculation using Eq.~11!.
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The behavior of the middle branch clearly does not ag
with the expression forvn10 ~6!, represented by curve18 in
Fig. 3. In order to describe the behavior of this branch it
necessary to assume thatHh f for ions of the sublattices per
pendicular to the applied field depends on the magnitude
this field. Best agreement with experiment is obtained if t
dependence is represented in the form

Hh f
1 5Hh f~11cH2!, ~12!

wherec51.931025 kOe22. In Figs. 3 and 7 this empirica
dependence is represented by curve1. It agrees with experi-
ment only up toH5Hc . We return to a discussion of pos
sible reasons for this anomaly below.

Below 45 kOe the NMR spectrum is distorted by stro
dynamical interaction. Our experimental data for all thr
branches of the spectrum are described very well by the
oretical curves calculated from Eqs.~11! and depicted in
Figs. 6 and 7 by the solid curves. Equation~11! contains two
parametersvn0 and

vT05ge

vn0

gn
Axn

x i
. ~13!

In this formulaxn is easily calculated by using the Curie la
for nuclear moments. Using the valuex i5(1.260.1)
31022 cgs units/mole from Ref. 4, we see that just one u
known, vn0, remains in the formula forvT0. This single
parameter was determined from the best fit of the theoret
curves for all three branches of the spectrum~11! to the
experimental results. As a result, we obtainedvn05416
64 MHz at T51.3 K; this frequency corresponds toHh f

539264 kOe. Using the value of the hyperfine constantA
52(1.5360.04)310218 erg obtained in Ref. 20 from the
value of the hyperfine splitting of the EPR line of the Mn21

ion introduced into CsMgBr3, we determined the mean spi
of the Mn21, ^S&5uhvn0 /Au51.8060.05. Uncertainty in
the value ofA, makes the major contribution to the erro
From magnetization measurements4 at T51.8 K, ^S&51.7
60.1, which agrees well with our data. From neutron sc

FIG. 7. NMR spectrum of CsMnBr3 ~high frequencies!: points—
experimental NMR spectrum atT51.3 K, solid lines—result of calculation
using Eq.~11!, dashed lines—unbiased NMR spectrum~6! and ~12!.
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tering work,1 ^S&51.560.15 atT54.2 K; this also agrees
satisfactorily with our value if the difference in temperatur
is taken into account.

Using Eq.~13! and our value ofvn0, we have the fol-
lowing relationship for the temperature dependence:vT0

5(7.960.4)/AT GHz ~temperatureT in K!. Note that the
value of vT0 calculated in this manner agrees satisfacto
with the experimental AFMR gap forT51.2 and T
52.0 K.11

The lower branch 2 undergoes the greatest distortion
to dynamical coupling. The frequency of this branch in t
20–35 kOe interval of magnetic fields varies drastically~of
the order of 10 MHz/kOe!. The pulling effect is much less
evident on the two upper branches, but it is still quite noti
able. This result agrees qualitatively with the results obtai
in Refs. 18 and 19, in which collinear antiferromagnet
with two pairs of Mn21 ions located at crystallographicall
nonequivalent positions were investigated.

The experimental points forT51.7 K for all branches of
the spectrum are essentially identical to the data forT
51.3 K. Only the lower branch at fields below 30 kOe~up to
0.4 kOe! is shifted slightly toward weaker fields; this is
consequence of the temperature dependence ofvT0.

b! Width and intensity of NMR lines.The intensity of the
absorption lines depends strongly on the magnetic field
all NMR branches.

The signal of the middle branch falls off abruptly wit
decreasing magnetic field, and at;25 kOe it completely dis-
appears; the same thing also occurs with the upper bra
but at fields below;35 kOe. Such an abrupt falloff in NMR
intensity was observed earlier for the upper NMR branch
CsMnF3

18 and CsMnCl3.
19 This can be explained by the fac

that the nuclear magnetizations precess in antiphase in
different magnetic sublattices. It is quite possible that
same thing also occurs in CsMnBr3.

Figure 8 shows an example of the spectrum at 41

FIG. 8. Example of NMR spectrum at frequency of 418.1 MHz atT
51.3 K. The numbers denote the centers of absorption lines:1—middle
branch,2—upper branch,3—signal from collapsing sublattices.
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MHz. The left line corresponds to the middle branch of t
spectrum near maximum intensity. The middle line is t
absorption signal of the upper branch near the phase tra
tion. The right line is the signal from two pairs of collapse
sublattices. Note the abrupt increase in absorption inten
for this branch at a field;Hc .

The lower limit of observations of the low-frequenc
branch was 197 MHz~the low-frequency limit of the spec
trometer!; this corresponds to a resonant field of about
kOe (T51.7 K). Figure 9 shows a set of experimental sca
of the low-frequency branch at different frequencies. A
measurements were made at a fixed modulation amplit
'0.4 MHz and Q ;400. Figure 9 convincingly demon
strates the sharp increase in absorption~by more than a factor
of 10! of this branch with frequency. Our analysis of th
experimental data withdv/dH taken into account shows
strong frequency dependence of the width of the resona
line: at about 210 MHz, the width of the absorption line
;4 MHz, and at about 360 MHz it drops to approximate
0.5 MHz.

Note that no peculiarities in the line intensities were o
served at the intersection point of the upper and mid
branches.

7. ANOMALOUS NMR FEATURES IN CsMnBr 3

a! Difference in hyperfine fields for different sublattice
We have already pointed out that in sublattices oriented p
pendicular to the applied field, the behavior of the hyperfi
field differs from that in other sublattices, even in relative
weak fields. A similar effect in strong fields is even mo
surprising. According to the existing theory,5 in fields greater
than Hc CsMnBr3 is transformed into the quasicollinea
state, in which all six sublattices are perpendicular to
applied magnetic field, albeit tilted very slightly toward th
latter~cosine of the tilt angle;H/HE!. Therefore, one might
expect that the resonant frequency of the nuclei would be
same in all sublattices. Our results show that this is not

FIG. 9. Experimental low-frequency branch of NMR atT51.3 K at several
frequencies.
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fields aboveHc . The lower branch lies in the frequenc
range in which one should expect it~nearvn10!, extending,
as it were, the nonexistent branch18, although a tendency
toward an excess increase beyondHc is also evident. The
upper branch is located 30 MHz above18. It extends curve1
but with a much smaller slope. The presence of two branc
means that aboveHc, the productA^S& is 10% higher for
ions in sublattices 1, 4 than in sublattices 2, 6 and 3, 5. T
possible reasons for a change inA^S& can be considered:

1. ^S& can increase with the field because of a decre
in spin reduction, as shown elsewhere.21 It is difficult to ex-
plain, however, why the effect of the field on spin reducti
is different for different sublattice groups, even though th
all lie in the same plane and are perpendicular to the app
field.

2. A change inA may be due to a change in the symm
try of the positions of the magnetic ions of sublattices 1, 4
fields aboveHc in each hexagonal layer the spins of one
these sublattices belong to 1/3 of the magnetic ions and
directed opposite the spins of 2/3 of the magnetic ions, wh
belong to the other two sublattice pairs. As a result, the sp
of the first third of the ions are directed opposite the spins
all adjacent ions. For the other two thirds of the ions, the s
directions of adjacent ions alternate~and sum to zero!. More-
over, each of the layers has nonzero magnetization. Thus
hexagonal symmetry of each layer~and of the crystal as a
whole! breaks down, and this should be accompanied
magnetostriction. However, at the present time it is diffic
to assess the magnitude of this effect and its influence on
constantA. These symmetry considerations might in pri
ciple also explain the anomalous behavior of the freque
of the middle branch at fields less thanHc .

We also estimated the possible effect of a change in
dipole field at the nuclei. As numerical calculations show
the dipole field at the nuclei is nearly unchanged during
collapse of the sublattices. Its total value amounts to ab
1.7 kOe, whereas a field of the order of 30 kOe is required
explain the anomaly being considered.

b! Temperature dependence.We also found an ex-
tremely unusual change in the behavior of the lower bra
of the NMR spectrum with increasing temperature. If, for
temperature increase from 1.3 to 1.7 K, the lower branc
shifted, albeit slightly, but in the ‘‘required’’ direction, th
lower branch will accordingly be displaced toward weak
fields in accordance with the general prediction that
amount of pulling should decrease with increasing tempe
ture. This effect was observed in all previously investiga
collinear antiferromagnetics.

We investigated the behavior of the lower branch of
spectrum at 1.3, 1.7, 2.5, 3.0, 3.5 and 4.2 K. As an exam
Fig. 10 shows the experimental data at three temperature
is seen that together with the reduction of the NMR f
quency at 25 MHz, associated with a 6% decrease in
spontaneous magnetic moment of Mn21, the lower branch is
shifted by about 3 kOe toward larger fields with a tempe
ture increase from 1.7 to 3.5 K. Moreover, the intensity
the NMR signal decreased appreciably, and the resona
line was broadened.
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The results indicate that besides the free parametervn0

~which depends weakly on temperature! and the quantityvT0

~the temperature dependence of which is rigorously defi
and shifts the lower NMR branch in the opposite directio!,
only one quantity—the AFMR frequencyve1—which
should depend on the temperature, remains in Eq.~11!, from
which the shape of the branches of the NMR spectrum w
calculated. We have proposed the following temperature
pendence for it:

ve1~H,T!5
ve1~H !

F~T!
, ~14!

whereF(T) is an empirical function. Then, looking for th
best agreement with the experimental curves obtained for
six temperatures stated above using iterative methods,
obtainedvn0 and F(T) for these temperatures. Figure 1
shows the functionF(T) for various temperatures from 4.
to 1.3 K. As a result, we have

F~T!51.010.1T2.

The equation forve1(H,T), of course, is only valid for fields
in which pulling is strong. The temperature at which t
NMR line is located at the minimum field isTmin'1.8 K.
This is thoroughly confirmed by experiment.

FIG. 10. Temperature dependence of lower NMR branch. Solid line
result of calculation using Eq.~11! with empiricalF(T) function taken into
account.

FIG. 11. EmpiricalF(T) function. Dark points—experimental NMR data
open triangles—fit to AFMR data from Ref. 11.
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Figure 12 shows the behavior ofvn0, demonstrating the
temperature dependence that we derived for the magne
tion of antiferromagnetic sublattices. The data of two neut
diffraction investigations1,22 are shown for comparison.

Absolute values are given in Ref. 1, but only relati
values in Ref. 22. In the latter case we normalized them
our data at 1.7 K. All results agree to within the error limi

8. CONCLUSION

In summarizing our work we can point to the followin
main results:

1. The NMR spectrum in an antiferromagnetic with
trigonal magnetic structure has been investigated for the
time. It has been shown that it is split into three branches
it graphically demonstrates the deformation process of
magnetic triangles with the transition to the quasicolline
structure in a fieldHc564 kOe.

2. The experimental results have made it possible to
termine the NMR frequencyvn05416 MHz for zero field,
and to obtain by means of this value the mean spin of
Mn21 magnetic ion,̂ S&51.8060.05. This means that spi
reduction is 28% in quasi-one-dimensional CsMnBr3 be-
cause of quantum fluctuations.

3. At fields below 45 kOe, all three branches of the sp
trum experience strong frequency shifts~or pulling! due to
the dynamical interaction of the electron and nuclear s
systems. The lower branch is displaced by a particula
large amount~nearly 200 MHz!.

4. An equation has been obtained that describes the
dependence of all four modes of the spectrum~three quasi-
nuclear and one quasielectronic!, in very good agreemen
with experiment.

5. Despite expectations, in fields aboveHc , where
CsMnBr3 in a first approximation should behave like a co
linear two-sublattice antiferromagnetic with one NMR fr
quency, we found two NMR branches differing by 30 MH
This can be explained by a disruption of hexagonal symm
try by the field.

FIG. 12. Temperature dependence of the mean magnetic moment of M21

in CsMnBr3. Dark points—NMR; squares—from Ref. 1, open points—fro
Ref. 22.
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resonant frequency with magnetic field at the nuclei of t
pair of sublattices, which is perpendicular to the field,
related to the anomaly described in the previous paragra

7. The temperature dependence of the location of
low-frequency branch of the spectrum turned out to be m
complicated than in three-dimensional magnetic materi
We were able to explain it only by assuming the existence
a rather strong temperature dependence of the frequenc
the low-frequency AFMR branch~cubic in the field!.
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results of this work.
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Structure of the attraction zones of the final states in the presence of dynamical period

doubling bifurcations
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The structure of the attraction zones of the final states associated with dynamical period doubling
bifurcations is investigated. It is found that on the ‘‘initial value—transition rate’’ plane the
attraction zones of the two possible final states alternate with each other and that a subdivision of
the attraction regions occurs with a decrease in the transition rate. It is shown that the
boundaries of the attraction zones are smeared out because of the effect of noise and in this
situation the fine structure of the attraction zones is destroyed. As analytical and numerical
calculations have shown, the critical value of the noise variance, corresponding to the
boundary between the dynamical~or predictable! and stochastic~or unpredictable! modes, has a
power-law dependence on the transition rate with a typical exponent value of one. The
existence of ‘‘noise’’ invariants is also observed: the integrated~over all initial values! probability
of achieving the final state is invariant with respect to the noise level. ©1998 American
Institute of Physics.@S1063-7761~98!02501-3#
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Bifurcations in systems, whose parameters change
finite rate, are customarily called dynamic. It is known th
in the absence of noise the final state of a nonlinear sys
experiencing a dynamical bifurcation is completely det
mined by the initial conditions. This important feature
dynamical ‘‘noise-free’’ bifurcations was first pointed out b
Shishkova,1 and subsequently was investigated in detail
many papers, in particular in Refs. 2 and 3, which contai
voluminous bibliography.

The presence of even a small amount of noise radic
alters the character of the dynamical bifurcation transiti
for a high noise level or, what is equivalent, for a small ra
of change of the parameters the transition loses its dete
nate~or dynamical! character and becomes stochastic. If, a
result of the bifurcation, two energetically equivalent sta
arise, as occurs in parametrons,4,5 in systems experiencing
period doubling bifurcation,6 in polarization-unstable lasers7

and in a number of other systems, then with an increas
the noise level the system becomes unpredictable, and
probability of coming to one of the two final states a
proaches 50%. The very same situation also occurs wi
decrease in the transition rate, i.e., in the quasistatistica~or
adiabatic! limit.

The number of papers that have been devoted to
effect of noise on dynamical bifurcations is relatively sma
In particular, it was shown in Refs. 2, 3 and 8 that a de
occurs in the loss of stability after passing through the bif
cation point due to the effect of noise. We have found9,10 the
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This paper investigates another important aspect of
period-doubling type of dynamical bifurcations: the ex
tence of fine structure of the attraction zones of the fi
states. The distinguishing feature of these zones is the a
nation of the attraction intervals to the first and to the seco
states not only along the initial value axis but also along
axis representings, the rate of variation of the control pa
rameter r . The initial model ~noisy nonstationary logistic
mapping! is described in Sec. 2, and the structure of t
attraction zones in Sec. 3.

Another goal of this paper is an analysis of the smear
of the boundaries and destruction of the fine structure of
attraction zones due to the effect of noise~Sec. 4!. A second-
ary but important result of this analysis was a more ex
definition of the boundary between the stochastic and
namical modes~Secs. 5 and 6! compared with our previous
papers.9,10

Finally, the existence of ‘‘noise’’ invariants, i.e., prob
ability characteristics that are invariant with respect to
noise intensity, is established in Sec. 7.

2. INITIAL MODEL: NONSTATIONARY NOISY LOGISTIC
MAPPING

The nonstationary noisy logistic mapping

x~n11!5F~x~n!!1 f ~n!, R~x~n!!5r ~n!@12x~n!#. ~1!

20607$15.00 © 1998 American Institute of Physics
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is chosen as the object of our investigation. HereF(x) is the
noise-free logistic mapping andr (n) is the control param-
eter, which varies from the initial valuer 0 to the final value
r f in a piecewise-linear manner~Fig. 1!

r ~n!5H r 0 ,
r 01s~n21!,

r f ,

n51,
1<n,N,

n.N.
~2!

The discrete timen assumes values of 1, 2, ... The rate
change of the control parameter is denoted bys5Dr /Dn,
and the number of steps through which the intervalDr 5r f

2r 0 passes is denoted byN. The quantityN is 1 greater than
the integer part of the fractionDr /s:

N5Dr /s115~r f2r 0!/s11. ~3!

The initial (n51) value of the sequencex(n) is denoted by
j:

x1[j. ~4!

The first period-doubling bifurcation for the logisti
mapping occurs atr values exceeding the critical valuer c1

53, and the second occurs atr .r c253.4. Therefore, it is
advisable to choose the initial valuer 1 somewhat less than
r c1 , and the final valuer f somewhat greater thanr c1 but
smaller thanr c2 . In the calculations below we will work
with the values ofr 152.8 andr 253.2.

The bifurcation diagram of the logistic mapping for
variation of r within the interval fromr 152.8 to r 253.2 is
shown in Fig. 2a. The first period-doubling bifurcation o

FIG. 1. Piecewise-linear variation of control parameterr with time: r n

5r 11s(n21).
f

branchx* (r ) becomes unstable~the dotted line in Fig. 2a!,
and the the system enters one of the two possible statio
statesx̄ or xI , which are stable fixed double mapping poin
~Fig. 2b!:

x~n12!5F~F~x~n!!!. ~5!

The quantityx* serves as the unstable point of this mappin
For x.x* , the system arrives at the statex̄ and forx,x* at
the statexI . A determination of the attraction zones of th
statesx̄ andxI constitutes the subject of our investigation
this paper.

3. FINE STRUCTURE OF ATTRACTION ZONES IN ABSENCE
OF NOISE

Figure 3 shows the ‘‘initial coordinatej-rate s’’ plane,
on which the attraction regions of the statex̄ are depicted as
black and the attraction regions of the statexI as white. This
figure was obtained by a numerical solution of Eq.~1! in the
absence of noise (f (n)50) for r 052.8 andr f53.2, so that
Dr 5r f2r 050.4.

The black and white attraction zones alternate with e
other in Fig. 3 along both thej axis and thes axis. These
zones form a cellular structure, which is parametrized by
number of steps N through which the interval
Dr 5r f2r 0 passes. This number is related to the rates of
variation of the control parameterr by Eq. ~3!. For 0.4,s
,` the transition fromr 0 to r f is accomplished in one step
N51. Initial values ofj within the interval 0,j,4.3 and
0.57,j,1.0 lead to the statex̄ ~black regions!, while values
from the interval 0.43,j,0.57 lead to the statexI ~white
regions!. Only for s.0.4 are there three intervals: two blac
and one white. For a two-step transition,N52, when the rate
s varies within the interval 0.2,s,0.4, the number of inter-
vals amounts to five. As the number of jumpsN increases,
the number of alternating black and white intervals increa
as 2N11. For anN-jump transition the thicknessDsN of the
attraction intervals along thez axis decreases as
FIG. 2. Bifurcation dynamics of the logistic
mapping in the interval 2.8,r ,3.2 ~a! and
double logistic mapping~b!. The pointsx̄
andxI are stable final states of the system,x*
is unstable state.
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the
FIG. 3. Division of the ‘‘initial coordinatej–rates’’ plane into
attraction regions of the statesx̄ ~black cells! andxI ~white cells!.
The regions subjected to action of noise are gray. These include
destroyed fine cells and smearing of cell boundaries.
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4. SMEARING OF THE ATTRACTION ZONE BOUNDARIES
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DsN5sN2sN115
N

2
N11

5
N~N11!

. ~6!

As a result, the pattern of attraction zones acquires a
structure with an increase inN, i.e., for a decrease ins. This
structure is shown on a larger scale in Fig. 4 than in Fig
for greater clarity.

Our partitioning of the (j,s) plane into zones of attrac
tion to the statesx̄ andxI represents a modification of theD
partitioning in the theory of dynamical systems. In the pro
lem being considered the quantitys characterizes the rate o
variation of the control parameter in a nonstationary syst
whereasD partitioning is usually done on the plane of th
parameters characterizing a stationary state of the sys
Generalization of theD partitioning method to a nonstation
ary system is perfectly natural. The key point in this meth
is the formal determination of the boundaries of the regio
of a nonlinear system with qualitatively different behavio
The physical meaning of the partitioning parameters is
portant only in the interpretation step.

The unique feature of theD partitioning is that the cell
dimensions decrease as the number of stepsN increases. The
newly formed black and white regions are narrower both
width and thickness than the previous regions and they
pear in the lower portion and at the peripheries of Figs. 3
4. A reduction in the thickness and width of the regio
creates the prerequisites for the destruction of the fine st
ture of the attraction zones due to the action of noise.
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AND DESTRUCTION OF THEIR FINE STRUCTURE
DUE TO THE EFFECT OF NOISE

We use very simple assumptions in the noisy logis
mapping~1! with respect to the noisef (n): the fluctuations
of f (n) are uniformly distributed within the interval (2a,
1a):

w~ f !5 H1/2a,
0,

u f u<a,
u f u.a, ~7!

and the values off (n) and f (m) at neighboring instants o
time are uncorrelated:

^ f ~n! f ~m!&5s f
2d~m,n!, s f

25a2/3.

Heres f
2 is the variance of the fluctuations andd(m,n) is the

Kronecker symbol. Other assumptions about the distribut
functionw( f ) and the correlation function (f (n) f (m)) lead
to qualitatively similar results.

Noise primarily smears out the sharp boundaries
tween the black and white attraction regions. We will ar
trarily depict the transition regions, for which the probabi
ties P̄ and PI of going into the statesx̄ andxI lie within the
interval (1/4, 3/4), by gray. The gray regions differ in pro
ability from the purely black and purely white regions b
less than 1/4. The interval 1/4,P,3/4 is symmetrical with
respect to the pointP51/2, which corresponds to an equ
probability of attaining statesx̄ andxI .

The gray zones in Fig. 3 are calculated for a noise le
s f

251026. The probabilitiesP̄ and PI were calculated by
averaging the data obtained from 500 realizations of the p
cessx(n) for more than 10,000 points on the (j,s) plane. A
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FIG. 4. Fine structure of attraction re
gions of the statesx̄ ~black cells! andxI
~white cells! for small ratess.
black~or white! color is retained in this figure for the regions
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for which the probabilityP̄ ~or correspondinglyPI ! differ
from unity by less than 1/4:u12 P̄u<1/4 for the black re-
gions andu12PI u<1/4 for the white regions.

It follows from Fig. 3 that the noise action has com
pletely destroyed the fine structure of the attraction region
small rates~s,0.001 for s f

251026! and has noticeably
smeared some boundaries between the white and blac
gions. The latter effect is only partially evident in Fig. 3
view of the limited resolution capability of the chose
method of presenting the data.

5. CONDITIONS FOR SMEARING OF BOUNDARIES AND
DESTRUCTION OF FINE STRUCTURE OF ATTRACTION
ZONES

Due to the action of the external noisef (n) the probabil-
ity of going into the statesx̄ and xI now becomes differen
from 1 and/or 0, so that the abrupt transition, let us say, fr
the regionP̄51 to the regionP̄50 now becomes smooth
Considering the smearing of the attraction zone bounda
due to the effect of noise, let us give the unperturbed~in the
absence of noise! distribution of the probabilityP̄(0)(juN) of
going into the statex̄ from the initial statej after N steps.
According to Eq.~1!, the noise component shifts the variab
x(n11) by f (n) in each step. Assuming the noise is qu
weak, i.e., ignoring nonlinear noise distortion effects, we
late the probabilityP̄(juN) to the unperturbed distribution
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w( f ). In the absence of nonlinear distortions of the no
component this relationship is given by a convolution tra
formation. For a single-step transition (N51) we have the
obvious relation

P̄~ju1!5E
0

1

P̄~0!~j8u1!w~j2j8!dj8, ~8!

which smooths the distributionP̄(0)(ju1) with the weighting
functionw. For a two-step transition the noise acts twice
the variablex. In the first step the unperturbed probabili
P̄(0)(ju2) is transformed into the intermediate distributio
P̄(1)(ju2) in accordance with a transformation of the ty
~8!:

P̄~1!~ju2!5E
0

1

P̄~0!~j8u2!w~j2j8!dj8, ~9!

and in the second stepP̄(1)(ju2) is transformed to

P̄~2!~ju2![ P̄~ju2!5E
0

1

P̄~1!~ju2!w~j2j8!dj8. ~10!

Similarly, for P̄(juN) we have the series of convolutions
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ed

FIG. 5. Evolution of the probabilityP̄(ju1) of single-step transi-
tion to the statex̄ as the noise level increases: a—unperturb
‘‘noise-free’’ probability distributions (s f50), b—smearing of
boundaries in presence of weak noise (s f!sc), c—smoothing of
probability distribution in presence of high noise level (s f@sc).
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P ~juN!5E
0

P ~j8uN!w~j2j8!dj8,

.

.

.

P̄~N!~juN![ P̄~juN!5E
0

1

P̄~N21!~j8uN!w~j2j8!dj8.

~11!

Based on these formulas, let us consider the smearin
the sharp boundary located atj5j* . To do this we assume
P̄(0)(juN)5u(j2j* ), where u(j2j* ) is the unit Heavi-
side function. In view of Eq.~8!, for a uniform distribution
law ~7! the probabilityP̄(j2j* u1) for a one-step transition
is given by the piecewise-linear function

P̄~j2j* u1!5H 0,
~j2j* 1a!/2a,

1,

j,j* 2a,
j* 2a,j,j* 1a,

j.j* 1a.
~12!

According to Eq.~12! the width Dj1 of the transition zone
(2a,1a) is comparable to the rms deviation:s f5a/).
Each subsequent step broadens the transition zone. By u
the arguments on which the derivation of the law of lar
numbers is based, one can prove that the total width of
transition zoneDjN for anN-step transition increases in pro
portion toAN:

DjN's fAN. ~13!
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squeeze out the black and white regions and the probabil
of the two final states finally equalize:

P̄~j2j* uN!'PI ~j2j* uN!'0.5.

This occurs when the width of the transition zoneDjN is
comparable to the width of the attraction zoneDj* :

DjN5s fAN'Dj* . ~14!

SinceN'Dr /s, we obtain the estimate

sc
2'~Dj* !2N's~Dj* !2/Dr . ~15!

for the critical noise levelsc
2, corresponding to equalizatio

of the probabilitiesP̄ and PI and the destruction of the fin
structure of the attraction zones. According to this estim
the critical noise level is proportional to the first power of t
rates: sc

2}s.
The process for the smearing of the boundaries and

struction of the fine structure of the attraction zones is illu
trated in Fig. 5 by a numerical calculation example. T
unperturbed~in the absence of noise! probability distribution
P̄(j) ~Fig. 5a!, the probability distribution P̄(j) for
s f,sc corresponding to a slight smearing of the boundar
~Fig. 5b!, and the probability distributionP̄(j) for s f@sc ,
which is close to 1/2~Fig. 5c!, are shown in this figure.

For very small ratess ~i.e., for a very large number o
stepsN! the assumption of no nonlinear distortions cease
be valid sooner or later, and the broadening will occur m
rapidly than the power law~15!.
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6. BOUNDARY BETWEEN STOCHASTIC AND DYNAMICAL
MODES OF BIFURCATION TRANSITION
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In the purely dynamical mode when noise is absent,
probabilities of the system entering the statex̄ or xI are equal
to 1: P̄(j)51 or PI (j)51. In other words, for a dynamica
transition the final state of the system is completely pred
able. In the opposite case of severe noise the stochastic m
is realized, in which the final states are equally probab
P̄(j)5P(j)50.5 and, consequently, unpredictable~more
precisely, predictable with a probability of 0.5!.

As the arbitrary boundary between the dynamical a
stochastic modes we take the intermediate mode, for wh
the probabilities of going into statesx̄ andxI amount to 75%:
P̄(j)5PI (j)50.75. The boundary between the stochas
and dynamical modes chosen in this manner correspond
the boundary of the gray regions in Fig. 3.

Let us examine the configuration of this boundary
greater detail. According to Eq.~15!, at the middle of the
(j,s) plane, i.e., forj51/2, the critical noise level satisfies
power law of the form

sc
25Asa, ~16!

where a51 and A'(Dj0* )2/Dr . For Dj0* 50.3 and Dr
50.4 we haveA'0.25. At the periphery of Fig. 3, i.e., a
j→0 and j→1, the alternating black and white attractio
zones narrow: their widthDj* decreases approximately b
the factorN5Dr /s. Thus, asj→0 andj→1,

Dj* >
Dj0*

N
'

Dj0*

Dr
s,

so that we again arrive at a power law of the form~16!, but
now with the exponent a53 and the coefficient
A15A/(Dr )2:

sc
25A1sa5

~Dj0!2s3

~Dr !3 . ~17!

The parameter values adopted above yieldA1'0.04.
The overall character of the boundary between the

chastic and dynamical modes on the (j,s) plane is shown
~for a fixed noise levels f

2! in Fig. 6. This boundary rises a
the periphery compared with the central portion of the (j,s)
plane since the fine structure of the attraction zones is
stroyed more rapidly at the periphery.

The smooth curve1 in Fig. 6 refers to the bulk of initial
values of j and characterizes the lower boundary for t
onset of the stochastic mode for most pointsj. Besides the
boundary 1, corresponding to the destruction of the fi
structure of the attraction zones, the stochastic mode aris
the boundaries of the wide attraction zones where eve
small noise can make the final states equally probable
high sensitivity to noise is typical of all boundaries betwe
the black and white cells. Only the most smeared bounda
corresponding to the gray regions in Fig. 3, are depicted
the curves2 in Fig. 6. The rest of the boundaries of th
attraction zones are subjected to a somewhat smaller sm
ing ~the smearing of these boundaries is not shown in Fig.!.

For the smeared boundaries the dependence of the
cal noise levelsc

2 on the rates is characterized by highe
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exponents up toa'527, as was established previously9,10

for the special initial valuej50.67, which coincides with the
stationary valuex* ~Fig. 2!.

7. NOISE INVARIANTS

Let us consider the quantity

Ī N5E
0

1

P̄~j!dj, ~18!

which represents the probability, integrated over all init
statesj, of going into the final statex̄, i.e., the area bounde
by the curveP̄(juN). The unique feature of this quantity i
its independence~within the linearized model of the effect o
noise! of the noise intensitys f

2, and it can therefore be calle
a noise invariant.

In order to prove the existence of noise invariants,
example, forN52, we integrate Eq.~9! with respect toj
with the normalization

E
2`

`

w~ f !d f51.

taken into account. Then we obtain the relation

Ī N
~0!5E

0

1

P̄~ju2!dj5E
0

1

P̄~1!~ju2!dj

5E
0

1

P̄~0!~ju2!dj5 Ī 2
~0! ,

which attests to the invariance of the quantityĪ 2 with respect
to the noise intensity. The invariance of the quantityĪ N is
proved similarly.

FIG. 6. Schematic representation of boundaries between dynamical and
chastic modes on (j,s) plane. The curve1 corresponds to the destruction o
the fine structure of the attraction zones, whereas the curve2 refers to the
smeared boundaries of the black and white cells.
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First of all, it has been established that the attraction
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TABLE I. Values of noise invariants.
Invariance of the quantityĪ N means that noise neithe
increases nor decreases the area beneath the curveP̄(juN)
but only redistributes the probability along thej axis. One
interesting property of bifurcation transitions of the type b
ing considered follows from this, which has yet to be me
tioned in the literature as far as we know. Consider the qu
tity

Ī N
~0!5E

0

1

P̄~0!~juN!dj,

which characterizes the probability of going into the statex̄
in the absence of noise. If this quantity is larger~or smaller!
than 0.5, i.e., if the statex̄ is reached more~or less! fre-
quently thanxI , then this property is also preserved in t
presence of noise.

This property can have practical value at relatively sm
values ofN when Ī N is still markedly different from 0.5. For
example, forN<5 the difference ofĪ N from 0.5 amounts to
at least 0.04~or 8%!, as follows from the table below.

The system considered is an example of a peculiar ‘
furcation’’ roulette, in which noise cannot equalize the pro
abilities of the outcomesx̄ andxI . Physically this is explained
by the symmetrical action of the noise: the noise, facilitat
an increase in transitions from the statex̄ to xI , induces the
same number of inverse transitions from the statexI to x̄. Of
course, asN→`, the noise invariantsĪ N and IIN approach
0.5, so that the integrated probabilitiesĪ N and IIN do not
equalize because of an increase in the noise but as a res
a decrease in the rates ~or increase in the number of step
N!.

8. CONCLUSION

The above analysis of dynamical period doubling bifu
cations has explained several previously unknown featur

N 1 2 3 4 5
Ī N 0.86 0.4 0.64 0.45 0.54
212 JETP 86 (1), January 1998
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regions of two possible final statesx andxI alternate on the
‘‘initial state j-transition rates’’ plane, forming fine struc-
ture ass→0.

Secondly, it has been shown that noise smears
boundaries of the attraction zones and thereby destroys
fine structure.

Thirdly and finally, the existence of noise invariants h
been discovered, i.e., the integrated~over all initial values!
probabilities of going into statesx̄ andxI are independent o
the noise intensity.
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Nonlinear quantum theory of interaction of charged particles and monochromatic

ial
radiation in a medium
G. K. Avetisyan, A. Kh. Bagdasaryan, and G. F. Mkrtchyan

Erevan State University, 375049 Erevan, Republic of Armenia
~Submitted 20 February 1997!
Zh. Éksp. Teor. Fiz.113, 43–57~January 1998!

We study the quantum theory of nonlinear interaction of charged particles and a given field of
plane-transverse electromagnetic radiation in a medium. Using the exact solution of the
generalized Lame´ equation, we find the nonlinear solution of the Mathieu equation to which the
relativistic quantum equation of particle motion in the field of a monochromatic wave in
the medium reduces if one ignores the spin–spin interaction~the Klein–Gordon equation!. We
study the stability of solutions of the generalized Lame´ equation and find a class of
bounded solutions corresponding to the wave function of the particle. On the basis of this
solution we establish that the particle states in a stimulated Cherenkov process form bands.
Depending on the wave intensity and polarization, such a band structure describes both
bound particle–wave states~capture! and states in the continuous spectrum. It is obvious that in
a plasma there can be no such bands, since bound states of a particle with a transverse
wave whose phase velocityvph is higher thanc are impossible in this case. The method developed
in the paper can be applied to a broad class of problems reducible to the solution of the
Mathieu equation. ©1998 American Institute of Physics.@S1063-7761~98!00401-6#

1. INTRODUCTION ~a0 is the amplitude of the four-dimensional vector potent
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While in spontaneous processes of emission of radia
by charged particles the medium acts as the third b
needed for the conservation of energy and momentum
processes where particles interact with an external field
electromagnetic radiation new phenomena that are es
tially nonlinear manifest themselves.1–5 For instance, in an
insulator, where the refractive indexn5A«m.1, there is the
Vavilov–Cherenkov effect~here« and m are the dielectric
constant and permeability of the medium!. In a plasma me-
dium, wheren,1, such processes are impossible~which is
also true of a vacuum, wheren51!, but in this case the
plasma can act as the third body for energy and momen
conservation in the creation and annihilation of electro
positron pairs by the photon field.6–8

The interaction of electrons and electromagnetic rad
tion in a dielectric medium, i.e., a stimulated Cherenkov p
cess, has its own special features due to the threshold n
of spontaneous Cherenkov radiation~the electron velocityv
must be higher than the phase velocityc/n of the wave emit-
ted in the given medium1!! or to the requirement that a ce
tain coherence condition be met,v cosu5c/n, whereu is the
Cherenkov angle~c is the speed of light in vacuum!. The
existence of a threshold velocity in the spontaneous pro
leads to a threshold value of the field strength in the stim
lated process, and, depending on whether the strength o
external field is greater or smaller than this critical value,
interaction of charged particles and the radiation field ma
fests itself differently~see Ref. 1!.2! If we introduce a dimen-
sionless Lorentz invariant parameter of the intensity of
given radiation field,

j252
e2a0

2

m2c4 , a0
25a0ia0

i ~1.1!
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of the wave!, then according to the results of Ref. 1, fo
j.jcr , where

jcr
2 5S 12n

v0

c D 2F ~n221!S mc2

E0
D 2G21

, ~1.2!

the wave field becomes a potential barrier from which a p
ticle is ~inelastically! ‘‘reflected.’’ Here the expression fo
the critical-intensity parameter has been written for the c
where the initial electron velocityv0 ~electron energyE0! is
directed along the field’s wave vectork (uku5nv/c), i.e.,
when the initial Cherenkov angle with the external wave
zero. If uÞ0 ~wave polarization is unimportant in this cas!
and the interaction angles are not too small,usinu uE0 /mc2@j
~see Ref. 5!, we have

jcr
2 ~u!5S 12n

v0

c
cosu D 2F ~n221!S mc2

E0
D 2Usin uUG21

.

~1.3!

In this case stimulated Cherenkov interaction is nonlinea
the field strength itself, and ‘‘reflection’’ occurs from th
corresponding phase planes, while the electrons that initi
were in the wave can be captured by it. This nonlinear ‘‘
flection’’ or capture of electrons by the radiation field has
straightforward physical interpretation in the reference fra
associated with the wave~sincen.1, we havevph,c, and
such a reference frameR does indeed exist3!!. In this refer-
ence frame there can only be a~nonuniform! magnetic field
which, beginning with a valuej.jcr , reverses the particle’s
motion (p→2p), i.e., the particle is elastically reflected.

This phenomenon, i.e., the existence a critical fie
strength, dramatically changes the behavior of electrom
netic processes in a medium. In particular, we can spea
the Compton effect in a dielectric medium only when t

2408$15.00 © 1998 American Institute of Physics



field strength of the wave does not exceed this value.4 This
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value determines the width of the Cherenkov resonance,
the closeness to the Cherenkov cone, which in linear the
is limited only approximately by the condition for the app
cability of perturbation-theory techniques. The exact solut
of the classical problem shows1,5 that there is a minimum
width of the Cherenkov resonance determined by
strength of the field,

Uv0 cosu2
c

nU
min

5D~j!,

and that linear theory can be applied only if

Uv0 cosu2
c

nU
min

@D~j!,

or in other words,j!jcr . But jcr , as Eqs.~1.2! and ~1.3!
show, can be arbitrarily small near the Cherenkov co
which means that the Cherenkov process is highly nonlin
no matter how weak the field is. In this connection it must
said that the results of studies in the stimulated Cheren
effect obtained by perturbation techniques and reported
the reviews in Refs. 11 and 12 were erroneous. These re
have been analyzed in detail in Ref. 13.

The nonlinear dynamics of the Cherenkov process
the features of this process mentioned earlier have been
ied largely in classical terms. The solution of the quant
problem, which could, at least in principle, describe t
quantum dynamics of the nonlinear interaction of an elect
and an electromagnetic field in the medium, has been fo
only in the special case in whichu50 and the wave is cir-
cularly polarized.3,14 And, as noted earlier, when the field
turned on and off adiabatically, the electron can only be ‘‘
flected’’ from the wavefront~from the envelope of the wav
pulse! due to the intensity effect (j2.jcr

2 ). As result of such
~classical! ‘‘reflection’’ and because of the wave propertie
of the particle, there occurs an essentially quantum phen
enon: modulation of the electron probability density at ha
x-ray frequencies due to the superposition of the incident
‘‘reflected’’ electron waves.3 It is still unclear what role the
quantum phenomena play in the general case and how
portant the formation of bound electronic states in the c
ture mode is. Here we are forced to deal with a qualitat
manifestation of the quantum nature of the particle–wa
system, when the expected discrete spectrum of bound s
of a particle are influenced in a quantum manner by the o
potential wells, which are infinite in number~a situation re-
sembling the pattern of electronic states in a solid!.

In this paper we study the quantum theory of the int
action of a charged particle and coherent electromagn
radiation in a medium. Our goal is to establish an ove
picture of the nonlinear quantum dynamics of a stimula
Cherenkov process and to fill, in this way, the gaps m
tioned earlier.

In Sec. 2 we discuss the nonlinear interaction of char
particles and the given field of a wave on the basis of
relativistic Klein–Gordon equation. We classify the cases
which such equations can be reduced to the Mathieu e
tion. Since the Mathieu equation cannot be solved exa

25 JETP 86 (1), January 1998
e.,
ry

n

e

,
r,

e
v

in
lts

d
d-

n
d

-

-
d
d

-
-

e
e
tes
er

-
tic
ll
d
-

d
e
n
a-
ly

theory techniques or the eikonal approximation,in Sec. 3
we develop a new approach: under certain conditions
Mathieu equation can be replaced by the generalized La´
equation, which can be solved exactly. We study the clas
bounded solutions. In Sec. 4 we study the stability of
wave functions and show that particle states form a system
allowed and forbidden bands~in the reference frameR asso-
ciated with the wave this system corresponds to the b
structure of the particle energy spectrum!. Finally, in Sec. 5
we discuss the results.

2. KLEIN–GORDON EQUATION FOR A PARTICLE IN THE
FIELD OF A PLANE MONOCHROMATIC WAVE IN A
MEDIUM, REDUCIBLE TO THE MATHIEU EQUATION

If we ignore spin–spin interaction, the Klein–Gordo
wave equation describes the interaction of a relativis
charged particle and a given field of electromagnetic rad
tion:

2\2
]2C

]t2 5Fc2S p̂2
e

c
AD 2

1m2c4GC, ~2.1!

wheree andm are the particle’s charge and mass,p̂52 i\¹
is the particle’s generalized momentum operator, a
A5A(t2nx/c) is the vector potential of a plane wav
propagating along thex axis. We assume that the wave
monochromatic with frequencyv and polarization

A5H 0, A0 sinFvS t2n
x

cD G , gA0 cosFvS t2n
x

cD G J .

~2.2!

Hereg50 corresponds to linear polarization andg561 to
right- and left-hand polarization, respectively.

In solving Eq.~2.1! it is convenient to replace the var
ables x and t by the wave coordinatest5t2nx/c and
h5t1nx/c. Then, as~2.2! shows, the variablesh, y, andz
are cyclic, so that the eigenvalues of the operators

L̂52 i\
]

]h
, p̂y52 i\

]

]y
, p̂z52 i\

]

]z

are conserved:L5const, py5const, andpz5const. Note
that the two componentspy and pz of the generalized mo-
mentum are conserved because the presence of a plane
does not destroy the homogeneity of space in theyz plane,
the polarization plane of the wave (p'5const). Clearly, in
the free-particle solution of Eq.~2.1!, L is the constant of the
motion well known from classical electrodynamic
E2cpx /n5const (L5(nE2cpx)/2n), only here, in the
quantum case,p5$px ,p'% andE must be interpreted as th
initial momentum and total energy of a free particle.

Thus, we can look for a solution of Eq.~2.1! in the form

C~r ,t !5F~t!expS 2
i

\
Lh1

i

\
p'–r D , ~2.3!

L5
1

2 S E2
c

n
pxD5const, p'5const, ~2.3a!

25Avetisyan et al.



and for the functionF~t! we have an ordinary second-order

hr

n

C~r ,t !5F~t!exp
i

p –r2
i

Lh2
i n211

Lt ,
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r-
a
,
the
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f

differential equation:

\2~n221!
d2F

dt2 12i\L~n211!
dF

dt
2Fc2S p'2

e

c
A~t! D 2

1L2~n221!1m2c4GF50. ~2.4!

This equation can be reduced to a one-dimensional Sc¨-
dinger equation with a ‘‘potential energy’’U(t) if we elimi-
nate the term with the first derivative. To this end we co
duct the following transformation:

F~t!5F~t!expS 2
i

\

n211

n221
Lt D . ~2.5!

Then for the unknown functionF(t) we have the following
equation:

d2F

dt2 1
1

\2~n221!2 H 4n2L22~n221!c2S p'2
e

c
A~t! D 2

2~n221!m2c4J F50, ~2.6!

and the solution of the Klein–Gordon equation~2.1! can be
written
of arbitrary intensity and interaction angle Eq.~2.6! does not

ro

ve
n

o

-

S \ ' \ \ n221 D
~2.7!

with F(t) the solution of Eq.~2.6!.
Thus, establishing the interaction of a scalar particle a

a given field of electromagnetic radiation~2.2! reduces to
solving Eq.~2.6!. The form of the latter depends on the p
larization of the wave. In the general case of elliptic pola
ization this equation is the well-known Hill equation; for
circularly polarized wave Eq.~2.6! is the Mathieu equation
and for a linearly polarized wave the equation is again of
Hill type. Here we examine all cases of interaction~and the
dependence on the wave intensity! in which the Klein–
Gordon equation reduces to the Mathieu equation

d2F

da2 5~B1D sin2 a!F. ~2.8!

In the case of a circularly polarized wave~g561 in ~2.2!!,
there is azimuthal symmetry about the direction of wa
propagation~the x axis!, so that we can, without loss o
generality, select the particle’s initial momentum in thexz
plane (py50), i.e.,p'5pz in ~2.6! and~2.7!, anda5vt/2.
Then for the coefficients of Eq.~2.8! we have
Bc5
4~n221!m2c414~n221!c2pz

2216n2L228ecpzA014e2A0
2

\2v2~n221!2 ,

Dc5
16ecpzA0

\2v2~n221!
. ~2.9!

When the wave is linearly polarized, in the general case If the conditions are opposite to those of~2.10!, e.g.,

u50, the interaction is due to the wave intensity, and for the

all
on
reduce to the Mathieu equation~2.8!. But in realistic cases
where the interaction angles are not too small,j is essentially
always much smaller than (E/mc2)sinu, and in Eq.~2.6! we
can ignore, with accuracy still remaining high, the term p
portional to the wave intensity (}A2) in comparison to the
term proportional top'–A5pA sinu, whereu is the angle
between the particle momentump and the wave vectork of
the given radiation field~2.2!. Thus, if

E

mc2 sin u@j ~2.10!

and the particles interact with a linearly polarized wa
(g50 in ~2.2!!, Eq. ~2.6! reduces to the Mathieu equatio
~2.8! with

Bl ,u5
4~n221!m2c414~n221!c2py

2216n2L228ecpyA0

\2v2~n221!2 ,

Dl ,u5
16ecpyA0

\2v2~n221!
. ~2.11!
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coefficients of Eq.~2.8! we have

Bl ,05
~n221!m2c424n2L2

\2v2~n221!2 , Dl ,05
e2A0

2

\2v2~n221!
.

~2.12!

3. BUILDING AN APPROXIMATE SOLUTION OF THE
MATHIEU EQUATION FROM THE EXACT SOLUTION OF THE
LAMÉ EQUATION

As noted in Sec. 2, in the present paper we examine
cases in which the relativistic equations of particle moti
are reducible to the Mathieu equation~2.8!. As is known,17

for k!1 Jacobi’s elliptic function Sn(a,k) tends to the or-
dinary sine function:

Sn~a,k!uk!1→sin a. ~3.1!

Using this property of the doubly periodic function Sn(a,k),
we can replace the Mathieu equation~2.8! by the generalized
Laméequation17

d2U

da2 5@B1N~N11!k2Sn2~a,k!#U, ~3.2!

26Avetisyan et al.



where the coefficientN(N11)k2 of Sn2(a,k) is a constant
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quantity that depends on the parameters of the particle
the field ~see Eqs.~2.9!, ~2.11!, and ~2.12!!. For arbitrary
values ofB, Eq. ~3.2! can be solved exactly for positiv
integersN.

Thus, passing to the limit~3.1!, we can build an approxi-
mate solution of Eq.~2.8! by employing an exact solution o
Eq. ~3.2!. Mathematically, when the passage to the lim
~3.1! is completed, the divergence along the imaginary a
of the ordinary sine function at the infinitely distant point~in
the analytic continuation into the complex plane! transforms
into a removable divergence in the form of a simple pole
the elementary cell of the doubly periodic function Sn.
terms of the classification of algebraic equations, Eq.~2.8!
has two regular points and one irregular point, while E
~3.2! has four regular points. When the Mathieu equation
replaced by a generalized Lame´ equation, the irregular poin
of the Mathieu equation transforms into two regular points
the Laméequation, with the result that the latter allows
exact solution~since Eq.~3.2! transforms into~2.8! in such a
way thatN(N11)k25D ask→0 andN→`, in the Mathieu
equation two regular points actually merge into one irre
lar!.

Physically, the approximate solution of the Mathie
equation~2.8! found in this manner means that we allow f
the poles of ‘‘Bragg’’ resonances in the field of the mon
chromatic wave~Cherenkov resonances in the referen
frame comoving with the wave!, and there are infinitely
many such resonances. Hence such an essentially nonl
solution will describe, at least in principle and to arbitrar
high accuracy, the nonlinear interaction of charged partic
with a wave in the medium~no matter how weak the wav
may be!. This corresponds toN51 in Eq.~3.2!. The solution
for strong fields corresponds toN@1. This means, however
that any process becomes nonlinear and, on the other h
that its quantum nature is suppressed and the interaction
tern approaches the classical one. Hence we study in d
the case in whichN51, which corresponds to extreme
weak fields (D!1), and which reveals the fundamental no
linearity of the process and the quantum features of stim
lated interaction noted in Sec. 1.

The exact solution of Eq.~3.2! in this case has the fol
lowing form:17

U~a!5C1

H~a1a1!

u~a!
exp@2Z~a1!a#

1C2

H~a2a1!

u~a!
exp@Z~a1!a#, ~3.3!

wherea1 is determined by the equation

Cn2a1•dn2a1

Sn2a1
2

1

Sn2a1
5B. ~3.4!

Here Cna1 and dna1 are also Jacobi’s elliptic function~the
cosinus amplitudinis and the delta amplitudinis!, C1 andC2

are normalization constants, and the functionsH(a), u~a!,
andZ(a) are defined as follows:

H~a!5q1~aq3
22uz!, u~a!5q4~aq3

22uz!,
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Z~a!5
u8~a!

u~a!
, ~3.5!

where

q1~b,q!52q1/4 sin b22q9/4 sin 3b12q25/4

3sin 5b2¯ ,

q2~b,q!52q1/4 cosb12q9/4 cos 3b12q25/4

3cos 5b1¯ ,

q3~b,q!5112q cos 2b12q4 cos 4b12q9

3cos 6b1¯ ,

q4~b,q!5122q cos 2b12q4 cos 4b22q9

3cos 6b1¯ . ~3.6!

Obviously,q1(b,q) is an odd function andq2,3,4(b,q) are
even functions. The arguments of theq-functions incorpo-
rate q3[q3(0,q) ~q i[q i(0,q), generally speaking!, and
q5exp(ipz), wherez is an arbitrary complex number with
positive imaginary part, so thatuqu,1. On the other hand
the parameterq is related to the argumentk of Sn(a,k) in
the following manner:

k5
q2

2~0,q!

q3
2~0,q!

. ~3.7!

Since the solution of Eq.~3.2! is the wave function of a
particle and thus must be bounded,Z(a1) in ~3.3! must be
either purely imaginary or zero,Z(a1)50. The function
Z(a) has the following properties:

Z~a12K !5Z~a!, Z~a12iK 8!5Z~a!2
ip

K
.

Hence, it is enough to study the functionZ(a) in the rect-
angle@2K; 2iK 8# of the complex plane~Fig. 1!. Equations
~3.5! imply that Z(a) is either purely imaginary or vanishe
on the straight linesx50 andx5K.

Now let us determine the range of values ofB for a fixed
value of K satisfying the condition of boundedness of t
wave function~3.3!. To this end we employ the relationshi
betweena1 andB given by Eq.~3.4!. The latter yields

k2Sn2a15B1k211, ~3.8!

FIG. 1. Nodal values of the functionZ(a) in the elementary cell of the
complex variablea.
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i.e., we must find all the values ofB satisfying ~3.8! for
which a1 varies along the straight linesx50 andx5K. To
this end we build the nodal values in the elementary c
@2K; 2iK 8# of the complex variablea, since Sn2(a,k) is a
doubly periodic function with real (2K) and imaginary
(2K8) periods~Fig. 2!.

Figure 2 shows that on the straight linesx50 andx5K
the function Sn2(a,k) varies within the half-closed regio
(2`,0# and the interval@1,1/k2#. From Eq. ~3.8! in the
(2`,0# region we obtain

B1k211<0. ~3.9!

In the interval@1,1/k2# at a15K we obtain

B1150, ~3.10!

and ata15K1 iK 8,

B1k250, ~3.11!

i.e., in the interval@1,1/k2# the admissible values of the pa
rameterB lie within the region

21<B<2k2. ~3.12!

Thus, the bounded solutions of the generalized La´
equation~3.2! lie in the ranges~3.9! and ~3.12! of variation
of parameterB, i.e., there are allowed and forbidden band
Let us show that at the edges of these bands the two line
independent solutions in~3.3! coincide and are transformed
respectively, into the doubly periodic functions Sn(a,k),
Cn(a1), and dna1 . The latter agrees with the general pro
erty that at the edges of the allowed bands, a particle’s w
function must be periodic.

Thus, ata150 the solution~3.3! yields

U~a!5C
H~a!

u~a!
5C

q2

q3
Sn a~C5C11C2!.

At a15K we have

U~a!5C1

H~a1K !

u~a!
1C2

H~a2K !

u~a!
5C

q2

q4
Cn a.

At a15K1 iK 8 we have

U~a!5C1

H~a1K1 iK 8!

u~a!
expS 2 i

p

2K
a D

FIG. 2. Nodal values of the functionF(a)5Sn2 a in the elementary cell of
the complex variablea.
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Allowing for the fact thatH(a) is an odd function and

H~a1K1 iK 8!5q21/4 expS i
p

2K
a Dq3~aq3

22!,

we find that

U~a!5C8q21/4
q3

q4
dn a~C85C12C2!.

4. BAND STRUCTURE OF PARTICLE STATES IN A
STIMULATED CHERENKOV PROCESS

The existence of well-defined ranges ofB in Eq. ~3.2!,
which atk2!1 becomes Eq.~2.8!, restricts the region ove
which a charged particle can move in the field of a transve
electromagnetic wave in the medium. Indeed, the conditi
~3.9! and ~3.12! determine the admissible values ofL ~see
Eq. ~2.3a!! and the transverse componentsp' of the gener-
alized momentum, i.e., the initial values of the energy a
momentum of a free particle~the velocity and the Cherenko
angle! at which the particle remains in the wave. Thus, in t
field of a plane-transverse wave in the medium there
allowed and forbidden regions of motion, or bands, for t
charged particle. Below we will see that such a band str
ture of particle states exists only in a medium with refract
index n.1, due to the nonlinear Cherenkov interactio
Physically this means that a particle may be in a bound s
with the transverse wave, i.e., is captured by the wave, wh
in any case is impossible in a plasma (n,1), where the
phase velocity of the wave,vph, is higher thanc.

Let us now study the quantum dynamics of stimulat
Cherenkov interaction. We wish to display the band struct
of the particle state mentioned earlier as a function of
wave’s intensity and polarization and of the interaction an
u.

Suppose that we are dealing with a circularly polariz
wave. If we combine the conditions~3.9!, ~3.12!, and~2.9!,
we have~with such a wave! the following band structure for
the conserved quantityL5(nE2cpx)/2n:

nE2cpx>F ~n221!~c2pz
21m2c41e2A0

2!

1
~n221!2\2v2

4 G1/2

,

@~n221!~c2pz
21m2c41c2A0

2!#1/2

<nE2cpx<F ~n221!~c2pz
21m2c4

1e2A0
222eA0cpz!1

~n221!2\2v2

4 G1/2

. ~4.1!

Such a band structure of the particle states has a sim
physical explanation in the reference frameR moving to-
gether with the wave (V5c/n). Since in such a referenc
frame there can only be a static magnetic field, the prob
is steady-state, with the result that the particle energy is c
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trum of the particle also has a band structure:

E8>Fc2pz
21m2c41e2A0

21
n2\2v82

4 G1/2

,

@c2pz
21m2c41e2A0

2#1/2<E8

<Fc2pz
21m2c422eA0cpz

1e2A0
21

n2\2v82

4 G1/2

. ~4.2!

Herev85(v/n)An221 is the frequency of the wave in th
reference frameR.

To establish the physical pattern of the band structure
the particle states in the laboratory reference frame, we
press the conserved quantitiesL andp' in terms of the ini-
tial detuning of the Cherenkov resonance,v cosu2c/n. Then
the conditions~4.1! yield the following band structure for th
initial longitudinal velocity of the particle:

v cosu<
c

n
2

c

n F ~n221!S mc2

E D 2

j21F\v

2E
~n221!G2G1/2

,
~4.3a!

v cosu>
c

n
1

c

n F ~n221!S mc2

E D 2

j21F\v

2E
~n221!G2G1/2

;

v cosu>
c

n
1

c

n F ~n221!S mc2

E D 2

j2G1/2

,
~4.3b!

v cosu<
c

n
2

c

n F ~n221!S mc2

E D 2

j2G1/2

;

v cosu<
c

n
1

c

n F ~n221!S nc2

E D 2

j22~n221!

3S mc2

E D 2 2p sin u

mc
j1F\v

2E
~n221!G2G1/2

,
~4.3c!

v cosu>
c

n
2

c

n F ~n221!S nc2

E D 2

j22~n221!

3S mc2

E D 2 2p sin u

mc
j1F\v

2E
~n221!G2G1/2

.

We see that due to the effect of the wave intensity in
stimulated Cherenkov process there is a forbidden b
whose width depends neither on the interaction angle no
quantum recoil~condition~4.3b!!, and hence is of a classica
nature and is always present, no matter how weak the ra
tion field. For this reason we call it the main forbidden ban
with a width

D0~j2!52
c

n F ~n221!S mc2

E D 2

j2G1/2

. ~4.4!

This constitutes the characteristic feature of a coherent s
taneous process, which leads to a substantial nonlineari
the corresponding stimulated process~see footnote 3! dis-
cussed in Sec. 1. Because of the forbidden band~4.4! there is
nonlinear ‘‘reflection’’ of the particle from the leading edg
of the plane-transverse wave. Indeed, the condition~4.3b!
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~1.2! of the wave intensity~at u50!, above which the wave
becomes a potential barrier for the particle and ‘‘reflect
it.1,3 The other two forbidden bands are related to the stim
lated Cherenkov interaction in the field, i.e., when the int
action angleu is nonzero. In this case finite motion of th
particle in the wave~capture! becomes possible, with th
interaction of the charged particle and the transverse elec
magnetic wave in the medium being entirely of a quant
nature. Here, because of the periodic structure of the fi
the discrete levels of the bound states of the particle in
capture mode are transformed into bands, and structure s
lar to the band structure of electronic states in sol
emerges. The forbidden bands, which appear atuÞ0, are
symmetrically disposed about the phase velocity of the wa
c/n, and have the same widthD1(j,u)5D2(j,u)[D(j,u):

D~j,u!'
c

n
~n221!S mc2

E D 2 p

mc
j sin uF ~n221!

3S mc2

E D 2

j21F\v

2E
~n221!G2G21/2

. ~4.5!

The presence of such forbidden bands leads to ‘‘reflectio
of the particle from the corresponding phase planes an
the possibility of formation of bound states in the wav
which are already first-order effects in the field strength;
the classical limit this agrees with our previous results.1,5

Note that formula~4.5! was written on the assumptio
that the parameter of the problemk2 is much smaller than
unity, which is a condition for the validity of the above re
sults. This condition can also be written

8eA0cp sin u

\2v2~n221!
!1. ~4.6!

If ~4.6! holds, Eqs.~2.7! and ~3.3! together with~2.9!
determine the final form of the wave function of a partic
with spin S50 in the field of a plane-transverse monochr
matic wave in a medium:

C~r ,t !5expF i

\
p'–r1

i

\

bE2cpx

n221 S x

c
2ntD G

3H C1

H~~v/2!~ t2nx/c!1a1!

u~~v/2!~ t2nx/c!!

3expF2Z~a1!
v

2 S t2
nx

c D G
1C2

H~~v/2!~ t2nx/c!2a1!

u~~v/2!~ t2nx/c!!

3expFZ~a1!
v

2 S t2
nx

c D G J . ~4.7!

Let us now discuss the case in which the wave is linea
polarized. The conditions~3.9!, ~3.12!, and~2.11! determine
the following regions of particle motion in the wave as fun
tions of the particle’s initial velocity and the interactio
angle ~provided that condition~2.10! is met, i.e., that the
effect of wave intensity is negligible!:
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v cosu<
c
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c \v
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n n 2E
~4.8a!

v cosu>
c

n
1

c

n

\v

2E
~n221!;

v cosu<
c

n
1

c

n H F\v

2E
~n221!G2

2~n221!

3S mc2

E D 2 2p sin u

mc
jJ 1/2

,
~4.8b!

v cosu>
c

n
2

c

n H F\v

2E
~n221!G2

2~n221!

3S mc2

E D 2 2p sin u

mc
jJ 1/2

.

At u50, or in conditions opposite to~2.10!, when the inter-
action is due to the wave intensity, we have

v<
c

n
2

c

n H ~n221!S mc2

E D 2 j2

2
1F\v

E
~n221!G2J 1/2

,
~4.9a!

v>
c

n
1

c

n H ~n221!S mc2

E D 2 j2

2
1F\v

E
~n221!G2J 1/2

;

v>
c

n
1

c

n F ~n221!S mc2

E D 2 j2

2 G1/2

,

v<
c

n
2

c

n F ~n221!S mc2

E D 2 j2

2 G1/2

; ~4.9b!

v<
c

n
1

c

n

\v

E
~n221!, v>

c

n
2

c

n

\v

E
~n221!.

~4.9c!

Here, if we examine the two opposite limits of the interacti
angle or field strength, we see that the stimulated Cheren
process directly depends both on wave intensity and on w
polarization. In contrast to the case of a circularly polariz
wave, in the field of a linearly polarized wave the bou
particle states~capture! also form due to the intensity effec
at u50. In this case the results are valid if

e2A0
2

2~n221!\2v2 !1. ~4.10!

The disappearance of the first forbidden band near
Cherenkov velocity atuÞ0 can be related to the fact that th
condition~2.10! ignores the wave intensity effect. As show
earlier, this main forbidden band for a charged particle in
field of a transverse wave in a refractive medium does
depend on the interaction angle, is always present no m
how weak the field intensity may be, and is of purely clas
cal origin.

Up to this point we studied the main bands, which c
respond toN51 in the solution of the generalized Lam´
equation. In the general case, for arbitraryN, the wave func-
tion of a scalar particle has the form

C~r ,t !5expF i

\
p'–r1

i

\

nE2cpx

n221 S x

c
2ntD G
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3H C1)
i 51 u~~v/2!~ t2nx/c!!

3expF2Z~a i !
v

2 S t2
nx

c D G
1C2)

i 51

N
H~~v/2!~ t2nx/c!2a i !

u~~v/2!~ t2nx/c!!

3expFZ~a i !
v

2 S t2
nx

c D G J , ~4.11!

where thea i ( i 51,...,N) can be determined from the fol
lowing system of equations:17

(
j 51,j Þ i

N
Sn a jCn a jdna j1Sn a iCn a idna i

Sn2ah2Sn2a i
50,

~4.12!

F(
i 51

N

Cna i

dna i

Sna i
G2

2(
i 51

N
1

Sn2a i
5B.

Equation~4.11! is valid if

16eA0cp sin u

N~N11!\2v2~n221!
!1, ~4.13!

which shows that forN@1 the wave function~4.11! is valid
in the most highly refractive media possible, and in las
fields. This equation also shows that the discussed result
the main bands in the field of a circularly polarized wave a
also valid in the caseN51 in strong fields at small interac
tion angles,u!1.

5. DISCUSSION

Achieving a quantum description of the interaction of
charged particle and a plane-transverse electromagnetic w
in a medium, based on the relativistic equation of motio
can be reduced to finding the solution of the Mathieu eq
tion ~a one-dimensional problem in the wave coordinat!.
The method of building a nonlinear approximate solution
the Mathieu equation developed in the present paper is b
on the exact solution of the generalized Lame´ equation for
small values of the modulus of Sn when the latter tends
the ordinary sine function~see~3.1!!. Using this property of
the doubly periodic function Sn(a,k), we replace the
Mathieu equation by the generalized Lame´ equation, which
has the same basic properties as the Mathieu equation, b
contrast to the latter allows for an exact solution. We ha
studied the class of bounded solutions of the Lame´ equation
and used them to build the particle wave function. Accord
to the latter, the spectrum of eigenvalues of the quanti
characterizing a state of a particle in the field of a transve
monochromatic wave in a dielectric medium has band st
ture. In the reference frame attached to the wave there
only be a static magnetic field, i.e., the problem is stea
state, with the result that energy is conserved~and so is the
generalized momentum of the particle in the polarizat
plane of the plane-transverse wave!, and the particle energy
spectrum consists of bands. In the laboratory reference fr
the conserved quantities are
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~see Eqs.~2.3a!!, a situation that leads to band structure
the initial longitudinal particle velocity. This velocity dete
mines the admissible width of the Cherenkov resonance
the proximity of the Cherenkov cone to an external wave
the stimulated Cherenkov process. This is a typically non
ear resonance in forced oscillations, wherein the resona
width is a nonlinear function of the amplitude of the extern
periodic force—in our case the field strength in the wa
The admissible width of the nonlinear Cherenkov resona
is determined by the conditions~4.3! and ~4.8!, ~4.9! for
circular and linear polarization of the wave, respectively. F
smaller values of this width, i.e., as we approach closer t
a certain ‘‘critical’’ value from the initial Cherenkov con
~the limits of these conditions!, a particle is unable to pen
etrate the wave further, i.e., there are forbidden regions
the motion of the particle in the field of the wave. Dependi
on the interaction angle, wave intensity, and polarization,
presence of these forbidden bands leads to ‘‘reflection’’
the particle from the respective phase planes and to for
tion of bound states, or the capture of the particle by
transverse wave. The latter, in particular, means that th
can be no band structure in plasma-like media, since bo
states of a particle and a transverse wave propagating
phase velocityvph.c are impossible.

The nonlinear solutions of the Mathieu equation o
tained in this paper on the basis of an exact solution of
Laméequation are valid if the modulus of Sn is small,k2!1,
whereupon the generalized Lame´ equation turns into the
Mathieu equation. This is the only approximation used
building the nonlinear solution of the Mathieu equation
the basis of the method developed in this paper. When
wave is circularly polarized, the equation of particle moti
has the form of the Mathieu equation, so that the results
valid if k2!1, which amounts to~4.6! for the first band
(N51) and to~4.13! for a band with an arbitraryN. When
the wave’s polarization is linear, the equation of particle m
tion reduces to the Mathieu equation if we ignore the te
proportional to wave intensity~condition~2.10!!, so that our
results hold in this case if the condition~4.6! is augmented
by ~2.10!. However, in realistic cases for the Cherenkov p
cess, the condition~2.10! ~whereby the equation of motio
reduces to the Mathieu equation! almost always holds, so w
are again left withk2!1 ~condition~4.6!!. At u50, instead
of ~4.6! we have~4.10!.

The above equations for the first band (N51) corre-
spond to extremely weak fields. The essential nonlinearity
the stimulated Cherenkov process was established in
cisely such fields. This nonlinearity is due to a buildup
31 JETP 86 (1), January 1998
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tion from an infinite number of shallow ‘‘potential wells o
the wave.’’ In the field we consider in this paper~see~4.6!!,
the probabilities of such effects in each well are extrem
low. But due to the coherent nature of the Cherenkov proc
~which has, at least in principle, an infinite coherent leng!
and the translational symmetry of the field of a monoch
matic wave, there is a resonant increase in the probabil
of these effects, which leads to band stricture. The met
developed in this paper allows for simultaneous contrib
tions of infinite poles of the ‘‘Bragg resonance’’ type.

As for spin–spin interaction, the problem involving th
Dirac equation will be discussed in a separate paper.

1!Actually, the spectrum of spontaneous Cherenkov radiation is determ
by the dispersion of the medium,n5n(v). But since in this paper we
study the stimulated Cherenkov effect in an external field of monoch
matic radiation, of which laser light is a good example, byn we mean the
refractive index of the medium at the frequency of the stimulated wav

2!The same coherence conditions as in Cherenkov process are applica
stimulated Compton and undulator processes, so that these processe
all the features we have just described~resulting in an interaction with a
retarded interference wave!,7,8 which can be generalized to include stimu
lated interaction of particles and a wave propagating with a phase velo
vph,c.

3!In a plasma, wheren,1, an inertial reference frame moving with velocit
V5cn has physical meaning, being associated with the center of massC)
of the particle–antiparticle system in pair production by the photon field
the plasma.9,10
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Effect of multiple scattering on the emission of ultrarelativistic electrons in a thin layer

e

of matter
N. F. Shul’ga and S. P. Fomin

Kharkov Physicotechnical Institute National Scientific Center, 310108 Kharkov, Ukraine
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We develop a quantitative theory of the effect of multiple scattering on the bremsstrahlung of
ultrarelativistic electrons in a thin layer of matter. The effect is an analog of the
Landau–Pomeranchuk–Migdal~LPM! effect of suppression of the radiation emitted by high-
energy particles in an infinite amorphous medium, but certain differences do exist. On
the basis of our approach we analyze the data recently obtained at SLAC~E-146! in experiments
set up to verify the LPM effect. We show that in addition to the LPM effect, this experiment
exhibited the suppression of bremsstrahlung in a thin layer of matter, theoretically predicted in our
earlier papers. ©1998 American Institute of Physics.@S1063-7761~98!00501-0#
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The process of emission of radiation by high-ener
electrons develops in a broad spatial region in the direc
of the particle’s momentum. If within this region~which is
known as the coherence length of the emission process1,2! an
electron collides with a large number of atoms, the inter
tion with these atoms differs from the interaction with sep
rate distant atoms.

Landau and Pomeranchuk3 found that the multiple scat
tering of high-energy electrons in an amorphous medi
leads to a decrease in the spectral radiation density in
low-frequency range in comparison to Bethe and Heitle
result.4,5 Landau and Pomeranchuk3 established the condi
tions needed for this effect to appear and estimated the s
tral radiation density in the frequency range where the ef
is significant. What is important is that the effect develops
a scale much smaller than the radiation length.

A quantitative theory of the effect of multiple scatterin
on electron bremsstrahlung in an amorphous medium
developed by Migdal,6 who used the kinetic-equatio
method. The work done by Landau and Pomeranchuk3 and
Migdal6 stimulated a great deal of research by other sci
tists, who studied the effect of the medium on bremsstr
lung at high energies. Among the areas of interest were
effect of polarization of the medium on radiation,7 the allow-
ance for recoil in emission,8 the effect of absorption of ra
diation by the medium,9 the spectral–angular distributions o
radiation,10,11 and the emission of radiation in finite
thickness targets12 ~see the reviews in Refs. 1, 2, 13–16 a
the literature cited therein!. Laskinet al.17 proposed and de
veloped a method of functional integration to describe
effect of multiple scattering on the radiation emitted by hig
energy electrons in matter. At present the effect of multi
scattering on electron bremsstrahlung in an amorphous
dium is known as the Landau–Pomeranchuk–Migdal~LPM!
effect.18–21

A detailed experimental study of the LPM effect h
been done only recently at SLAC for electron energies up
25 GeV ~see Ref. 19!. In earlier experiments the accurac
was low due to the difficulties involved in gathering the ne
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literature cited therein!. Anthony et al. studied the spec-
trum of radiation emitted by electrons in the range of pho
energies extending from fractions of MeV to several hund
MeVs. The measurements were done with targets rang
from carbon to uranium. The target thickness varied fro
fractions of one percentage point of the radiation length
several percentage points. Comparison of the experime
results with the results of Monte Carlo calculations using
Migdal formulas demonstrated good agreement of theory
experiment for relatively thick targets. With a thin targe
however, significant discrepancy between the experime
results and Migdal’s predictions was discovered in a num
of cases, especially for gold targets with a thickness of 0.
of the radiation length in the gamma-photon region below
MeV.

The experiment of Anthonyet al.19 aroused significant
interest and stimulated the development of new approac
in studying the LPM effect based on the eikonal approxim
tion in investigating the emission process,20,24on applying to
the present problem the results of the theory of Moliere25 and
Bethe26 of multiple scattering of particles in matter,27 and on
further development of the functional integration method28

The interest in this problem is also related to the search
analogs of the LPM effect in QCD and in other areas
physics~see, e.g., Refs. 29 and 30!.

In this paper we analyze the above-mentioned exp
mental data that do not agree with the predictions of
Migdal theory of the LPM effect. We show that deviation
from the predictions of the Migdal theory observed in t
experiment of Anthonyet al.19 are present when the cohe
ence length of the emission process is large compare
target thickness (l c@L), i.e., when the condition for appli
cability of the Migdal theory are not met. We considered t
casel c@L earlier, in Refs. 31 and 32, where we found th
the spectrum of the radiation emitted by electrons in a t
target may differ considerably from the spectrum specifi
by the Migdal formula or by the Bethe–Heitler formula. I
Ref. 31 we also derived asymptotic formulas for the rad
tion spectrum that are valid for ultrahigh electron energi
when the effect is significant.~Similar asymptotic formulas

3207$15.00 © 1998 American Institute of Physics
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kinetic-equation method.! However, direct application o
these asymptotic formulas in the analysis of the experime
data of Ref. 19 leads to absurd results, since at SLAC e
gies the asymptotic behavior used in Refs. 12 and 31 is
reached. Hence analysis of the experimental data19 requires
developing a quantitative theory of the process of emiss
of radiation by relativistic electrons traveling through a th
layer of amorphous matter, a theory that would lead to ex
results. The present paper is devoted to this problem.

In Sec. 2 we discuss the main results of the Migd
theory of the LPM effect.

Section 3 develops a general theory of the process
emission of radiation by high-energy electrons travel
through a thin layer of matter. We show that if the coheren
length of the emission process exceeds the target thickn
the entire target acts as a single object with which the e
trons interact and emit radiation. Here the radiation spect
is determined solely from the distribution of the particl
over the angles through which they are scattered by the
get. The distribution function in turn depends on the type
target ~an amorphous medium or a crystal!. We derive
simple asymptotic formulas for the average value of
spectral radiation density, which make it possible to anal
qualitatively the emission process in a thin layer of am
phous matter.

In Sec. 4 we develop a quantitative theory of the eff
of multiple scattering on the emission of radiation by u
trarelativistic electrons in a thin layer of amorphous matt
The theory is based on the exact expression for the distr
tion of particles over the scattering angles in matter obtai
by Moliere25 and Bethe.26 The distribution function takes
into account both multiple scattering of particles in an am
phous medium and single scattering. Generally it differs c
siderably from the Gaussian distribution of particles over
scattering angles commonly used in the theory of the L
effect. Here we discuss various limits when emiss
strongly depends on the effects of single and multiple s
tering of particles by the atoms of the medium. We obt
several terms of the asymptotic expansion of the expres
for the average value of the radiation spectrum in powers
the parameters determining the effect of multiple scatter
on the emission process.

Finally, in Sec. 5 we make a quantitative comparison
the result of our theory and the experimental data of Ref.
We show our results and the results of the experiment a
well. We point out that the asymptotic expressions for
radiation spectrum obtained earlier in Refs. 31 and 32
insufficient for a quantitative description of the given expe
ment.

All the results of our research have been obtained
describing the emission process within the classical elec
dynamics approach. Such a description is valid when
energy of the gamma photons is low in comparison to
energy of the emitting particle, which means we can ign
the quantum recoil effects in emission. The conditions of
experiment conducted by Anthonyet al.19 obey this require-
ment.
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The spectral density of the radiation emitted by an el
tron moving in an external field along a pathr (t) is deter-
mined in classical electrodynamics by the formula1,2

d«

dv
5

e2

4p2 E douk3I u2, ~2.1!

wherek andv are the wave vector and the frequency of t
emitted wave,uku5v, do is the solid-angle element in th
direction of the radiation’s propagation, and

I5E
2`

`

dt v~ t !exp@ i ~vt2k–r ~ t !!#. ~2.2!

Here we use a system of units in which the speed of ligh
unity.

In an amorphous medium a particle’s path is rando
with the result that Eq.~2.1! must be averaged over the var
ous paths of the electron:

K d«

dv L 5
e2

4p2 E do^uk3I u2&. ~2.3!

The emission of radiation by a relativistic electron tra
elling in matter is a process that develops in a large a
rapidly growing~with energy! spatial region along the direc
tion of the particle’s motion.1,2 The length of this region is
called the coherence length of the emission process.1,2,32 In
classical electrodynamics the coherence length is define

l c52g2/v , ~2.4!

whereg is the electron Lorentz factor. On the basis of qua
tative estimates, Landau and Pomeranchuk found3 that if the
average value of the square of the angle of the electron
flection due to multiple scattering over the coherence len
is larger than the square of the characteristic angle of em
sion of radiation by a relativistic electron,qg;g21, the
bremsstrahlung of an electron propagating in matter is s
pressed in comparison to the results of Bethe and Heitl
theory.4

The first quantitative results concerning this effect we
obtained by Migdal.6 His reasoning was based on a proc
dure~which he proposed! for averaging Eq.~2.1! that used a
kinetic equation for the angular distribution function of pa
ticles in the medium. Migdal succeeded in carrying out t
procedure for an infinite amorphous medium in the limit
small scattering angles~in this case multiple scattering ca
be interpreted as a Gaussian process!. He also found that

K d«

dv L 5FM~s!S d«

dv D
0

, ~2.5!

where (d«/dv)0 is the radiation spectrum without allowanc
for the effect of multiple scattering on emission of radiatio

S d«

dv D
0

5
2e2

3p
g2qL, ~2.6!
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tering angle per unit length!, andFM(s) is the Migdal func-
tion, which takes into account the effect of multiple scatt
ing on emission of radiation:

FM~s!524s2H E
0

`

dx e22sx coth x sin~2sx!2
p

4 J .

~2.7!

This function exhibits simple asymptotic behavior for sm
and large values ofs:

FM~s!5H 1, if s.1,

6s, if s!1.

The quantitys2 is the ratio of the square of the chara
teristic angle at which radiation is emitted by a relativis
electron,qg

2;g22, to the average value of the square of t
electron deflection due to multiple scattering over the coh
ence length,q25qlc .

When s.1 holds, Eq.~2.5! coincides, within logarith-
mic accuracy, with the corresponding results of Bethe a
Heitler:

K d«

dv L
BH

5
4

3

L

LR
F11

1

12
~ ln 183Z21/3!21G , ~2.8!

whereLR is the radiation length,

LR
215

4Z2e6n

m2 ln~183Z21/3!.

Heren is the atom number density in the medium,Zueu is the
nuclear charge, andm is the electron mass.

But if s!1 holds, then according to~2.5! there is a de-
crease in the spectral density of the radiation emitted by
electron moving in matter in comparison to the results
Bethe and Heitler:

K d«

dv L ! K d«

dv L
BH

. ~2.9!

This effect became known as the Landau
Pomeranchuk–Migdal effect.18–21,27

Formula~2.5! is valid if the medium in which the emis
sion of radiation occurs is infinite. More precisely, the thic
nessL of the target must be large compared to the len
within which the emission process develops:

L@ l c . ~2.10!

Formula~2.5! was derived to within logarithmic corrections
The reason for such accuracy is thatq is assumed to be a
constant independent of the pathL on which scattering oc-
curs. On the other hand, for small paths the value ofq is a
logarithmic function oft ~see Ref. 33!:

q25
«s

2

«2

t

LR
S 110.038 ln

t

LR
D . ~2.11!

~See also Refs. 1, 2, and 13, which discuss other aspec
the problem related to the necessity of refining the value
multiple scattering angles important for the emission of
diation.!
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integral method, which was done in Ref. 17. Here the av
aging procedure can be carried out analytically via integ
tion over random paths, since the scattering is assumed t
a Gaussian process and the functional that must be aver
is an exponential expression for relativistic particles.

3. EMISSION OF RADIATION IN A THIN LAYER OF MATTER

The above theory of the LPM effect is valid if conditio
~2.10! is met, i.e., if we can ignore the effect of the edges
the target on the emission of radiation. We now study
opposite case, where the emission process develops
lengths much greater than the target thickness (l c@L). The
effect of the polarization of the medium on the emission a
the transition radiation are ignored, which is justified
v@gvp holds, wherevp is the plasma frequency.

In our case ofl c@L it is convenient to writeI in ~2.1! in
the form

I5 i E
2`

`

dt exp@ i ~vt2k–r ~ t !!#
d

dt

v~ t !

v2k–v~ t !
. ~3.1!

This expression was obtained from~2.2! via integration
by parts. The exponential factor in~3.1! can be set to unity,
since for l c@L the difference vDt2k–r (Dt) is much
smaller than unity~Dt5L/v is the time interval during
which the electron interacts with the plate!. Integration with
respect tot in ~3.1! yields

I' i S v8

v2k–v8
2

v

v2k–vD , ~3.2!

wherev andv8 are the electron velocities before and after t
scattering by the target. Plugging~3.2! into ~3.1!, we arrive
at the desired spectral density of the radiation emitted by
electron in a thin target. Allowing for the fact that at hig
energies the characteristic angles of electron scattering
thin target are small, we can easily integrate in~2.1! over the
emission angles. This yields

d«

dv
5

2e2

p F 2j211

jAj211
ln~j1Aj211!21G , ~3.3!

wherej5gq/2, andq5(v82v)/v is the angle of electron
scattering by the target (q!1).

Note that formula~3.3! was derived without using a spe
cific law of particle–target scattering. Hence it is valid f
scattering of particles in both an amorphous medium and
crystal, as well as for the emission of radiation by a parti
in a given external field. The only conditions are that t
emission process must develop over a length greater than
size of the region where the external field acts on the part
and that the angle of particle–target scattering must be s
compared to unity. Here, however, the ratio of the charac
istic angle of emission of radiation by a relativistic electro
qg;g21, to the electron scattering angleq can be arbitrary.

Formula ~3.3! has a simple asymptotic behavior fo
small and large values of the parameterj:

d«

dv
5

2e2

3p H g2q2, if gq!1,

3@ ln g2q221#, if gq@1.
~3.4!

34N. F. Shul’ga and S. P. Fomin



The term with 21 in the asymptotic expression for
m

n
u-

h
an

ta
th

a

e

e

-

at
ti

an
ou

m

-
er
o

th
pl
er
io
to

th
of
ri-
tri
us

d f~q!
5nE ds~x!@ f ~q2x,t !2 f ~q,t !#, ~4.1!
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gq@1 is the first-order correction to the logarithmic ter
~the discarded terms are of order (gq)22!.

The scattering angles for different particles are differe
with the result that~3.3! must be averaged over the distrib
tion of the particles ejected by the target in the anglesq:

K d«

dv L 5E d2q f ~q!
d«$q%

dv
, ~3.5!

where q5(qx ,qy) is the two-dimensional angle throug
which the particles are scattered by the target in the pl
orthogonal to the initial electron velocityv. The distribution
functions f (q) are different for different targets~amorphous
media, crystals, nonuniform external fields!. This leads to
various effects in the emission of radiation~bremsstrahlung
in an amorphous medium, coherent radiation in a crys
etc.!. But despite this difference, there are general laws
govern the emission of radiation by a particle traveling in
thin target, laws due to the asymptotic behavior~3.4!. Spe-
cifically, if in ~3.4! we replaceq2 by the average value of th
square of the particle–target scattering angle,q2, we arrive
at the following estimates for the average value of the sp
tral density of radiation:

K d«

dv L '
2e2

3p H g2q2, if g2q2!1,

3@ ln g2q221#, if g2q2@1.
~3.6!

We see from~3.6! that if q2 increases with target thick
ness~e.g., in an amorphous mediumq2;L!, atg2q2;1 the
nature of emission of radiation by a particle traveling in m
ter changes. Here the linear dependence of the radia
spectrum onq2 ~for an amorphous medium, onL! is re-
placed by the weaker logarithmic dependence. Such a ch
in the nature of emission is characteristic of both amorph
media and crystals.~In a crystal theq2 vs. L dependence is
generally more complicated than in an amorphous mediu2

There are conditions such that in a crystalq2;L also holds
with qc

2@q2; see Ref. 2.!
The conditiong2q2;1, at which the nature of the emis

sion of radiation by a particle in a thin layer of matt
changes, coincides with the condition for the LPM effect
suppression of emission of radiation in a thick target. At
same time, the formulas that describe the effect of multi
scattering in thin and thick layers of matter differ consid
ably. For instance, in the case of the LPM effect the radiat
spectrum depends on the frequency of the emitted pho
while ~3.6! are independent ofv. Only the conditions for
applicability of ~3.6! depend onv.

4. EMISSION OF RADIATION IN A THIN LAYER OF
AMORPHOUS MATTER

To find the average value of the spectral density of
radiation emitted by a relativistic electron in a thin layer
matter~Eq. ~3.5!!, we must know the scattering-angle dist
bution function for the particles. The scattering-angle dis
bution function for fast particles traveling in an amorpho
medium is specified by the following kinetic equation:25,26
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dt

whereds(x) is the cross section of particles scattered by
individual atom through the anglex. For a screened Cou
lomb potential,

ds~x!5~2p!21xdxdws~x!,

wherex andw are the polar and azimuthal scattering ang
and we have introduceds~x! used in Ref. 26:

s~x!5
8pZ2e4

~pv !2

1

~x21xa
2!2 .

Here p is the electron momentum, andxa5\/pR, with R
the Thomas–Fermi radius of screening of the atomic pot
tial.

The general solution of Eq.~4.1! satisfying the condition
f (q,0)5d(q), whered~q! is a two-dimensional delta func
tion, has the form

f ~q,t !5
1

~2p!2 E d2h expH i q–h2nt

3E ds~x!~12ei x–h!J . ~4.2!

This formula for f (q,t) describes both single and mu
tiple scattering of a particle in a medium. In the limitt→0,
i.e., when we are dealing only with single scattering of
particle in a medium, we can expand~4.2! in powers oft. In
the first approximation we find that forqÞ0,

f ~q!5ntds~q!. ~4.3!

Inserting this distribution function in~3.5!, we find~after
integrating over scattering angles! a radiation spectrum tha
coincides~if we ignore the recoil effect! with the correspond-
ing result of Bethe and Heitler~Eq. ~2.8!!. Here the screening
radius R of the Coulomb potential must be set
R50.81RBZ21/3 ~see Refs. 1 and 34!, whereRB5\2/me2 is
the Bohr radius.

The expansion in powers oft in ~4.2! is valid if the
target is thin compared to the mean free path of a particle
the material,t0;1/ns t , wheres t is the total electron–atom
scattering cross section~for a screened Coulomb potential w
haves t54pR2(Ze2/\v)2!.

In the limit t@t0 the multiple scattering of a particle b
different atoms of the medium becomes important. The
gular distribution function of the particles in this case can
transformed into26

f ~q!5
1

2pBxc
2 E

0

`

hdhJ0S h
q

xcAB
D expS h2

4B
ln

h2

4
2

h2

4 D ,

~4.4!

wherexc
254pntZ2e4/(pv)2, andB can be found from the

following equation:

B2 ln B5 ln
xc

2

xa
2 1122C. ~4.5!

HereC50.577 is Euler’s constant. Since fort@t0 we have
the inequalityxc@xa , B is large compared to unity. Keep
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~4.4! in powers ofB , we can write the distribution func
tion as

f ~q!5
1

2pq2 H 2e2q2/q2
1

1

B
f ~1!S q

Aq2
D J , ~4.6!

whereq25xc
2B is the mean square multiple scattering an

of a particle in matter, and

f ~1!S q

Aq2D 5E
0

`

hdhJ0S h
q

Aq2D h2

4
lnS h2

4 De2h2/4.

~4.7!

The first term on the right-hand side of Eq.~4.6! is a
Gaussian distribution of particles over the angles, relate
multiple scattering. The second term is the first-order corr
tion to the Gaussian distribution forq2<q2. However, for
q2@q2 this term becomes the leading one and determi
the probability of single scattering. In this range of angle

f ~q!'
4ntZ2e4

~pv !2q4 , q2@q2. ~4.8!

Plugging the distribution function~4.6! into ~3.5!, we
arrive at an expression for the radiation spectrum that allo
for the effect of multiple scattering on emission of radiatio

K d«

dv L 5
2e2

p FF0~a!1
F1~a!

B
21G , ~4.9!

where

a25g2q2,

F0~a!5
8

a2 E
0

`

dj
2j211

Aj211
ln~j1Aj211!e24j2/a2

,

F1~a!5
4

a2 E
0

`

dj
2j211

Aj211
ln~j1Aj211! f ~1!~2j/a!.

Let us first examine two limiting cases of formula~4.9!
corresponding toa2!1 anda2@1. In the case wherea2!1
we introduce aj0 such thata!j0!1. Then in the region
where j,j0 holds we use the appropriate asymptotic fo
mula in ~3.4! for the radiation spectrum, while in the regio
where j.j0 we use the asymptotic formula~4.8! for the
distribution function. Here

F0~a!'11
a2

3
1O~j0

4!,
~4.10!

F1~a!'
1

3
a2 F2~C21!2 ln a21

13

6
1O~j0

2!G .
Plugging~4.10! into ~4.9! and employing~4.5!, we arrive at
a formula that coincides with the result~2.8! of Bethe and
Heitler. Thus, both fort!t0 , where multiple scattering ca
be ignored, and fort@t0 but g2q2!1, the spectrum of the
radiation emitted by electrons traveling in a thin layer
matter is given by the Bethe–Heitler formula.
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Now we examine the casea2@1. If we introduce a new
variable y5j1Aj211 into the expression forF0(a), we
get

F0~a!5
4

a2 E
1

` dy

y3 ~y411!ln y expF2S y221

ay D 2G .
~4.11!

For a2@1 we can easily obtain the first terms in th
series expansion of this integral in powers ofa22:

F0~a!'S ln a22C1
1

a2 1¯ D S 11
2

a2D
1

1

a2 1O~a24!. ~4.12!

Reasoning along similar lines, we can obtain the first term
the series expansion ofF1(a):

F1~a!'C1O~a22!. ~4.13!

We have kept only the first term of the expansion ofF1

in powers ofa22 sinceF1(a) enters into the radiation spec
trum ~4.9! with a small factorB21. In deriving the latter
formula we used the result obtained by integrating~4.7!,
which can be represented in the following form:26

f ~1!~q!52e2x~x21!FC1E
0

x

dt
et21

t G22~122e2x!,

wherex5g2q2/a2.
As a result we arrive at the following expression for t

radiation spectrum witha2@1:

K d«

dv L 5
2e2

p H ~ ln a22C!S 11
2

a2D1
2

a2 1
C

B
21J .

~4.14!

We see that fora2@1, i.e.,g2q2@1, the spectral density
of the radiation emitted by electrons in a thin layer of mat
differs considerably from the Bethe–Heitler result.

In the general case wherea is arbitrary, the functions
F0(a) and F1(a) can be found by numerically integratin
the relations determining these functions. The results of s
calculations and their relationship to the asymptotic formu
~4.10! and ~4.12! are depicted in Fig. 1.

FIG. 1. The functionsF0(a) andF1(a) obtained by numerically integrating
the expressions~4.9! ~solid curves!, calculated by the asymptotic formula
~4.10! ~dashed curves!, and calculated by the asymptotic formulas~4.12! and
~4.13! ~dot–dash curves!.
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5. ANALYSIS OF THE RESULTS OF THE EXPERIMENT
DESCRIBED IN REF. 19
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Anthonyet al.19 observed a decrease in the spectral d
sity of the radiation emitted by 25-GeV electrons in a go
target of thicknessL50.7%LR in the low-frequency range
(v<20 MeV) in comparison to the corresponding results
Bethe and Heitler. In this frequency range the cohere
length l c is large compared toL, i.e., the condition of the
above theory are met. As applied to the given experim
the values ofa2 and B in ~4.9! are a2'7.61 andB'8.46.
Here, according to~4.14!, if we allow for terms of ordera22

andB21, we get

K d«

dv L '0.00538. ~5.1!

This asymptotic value of the radiation spectrum co
cides to within a few percent with the results of exact cal
lations by formulas~3.5! and~4.4!. Note that the asymptotic
formula ~4.14! and the result of exact calculations agree w
if in ~4.14! we keep several expansion terms, including
terms of ordera22 and B21. If in ~4.14! we keep only the
logarithmic term, the result for the radiation spectrum will
1.4 times larger than the exact result. If the first-order c
rection is kept~i.e., terms of ordera22 andB21 are ignored!,
the results will be lower by a factor 2 than the exact res
Hence the conditions of the experiment conducted by A
thony et al.19 correspond to an intermediate case, where
Bethe–Heitler formula~2.8! ceases to be valid but th
asymptotic formula~3.6!, in which only the logarithmic term
is taken into account, is still insufficient for describing th
emission process.

Comparing the value established by formula~5.1! for the
spectral density of radiation with the Bethe and Heitle
result ^d«/dv&BH'0.0093, we find that

K d«

dv L '0.578S d«

dv D
BH

, ~5.2!

which is in good agreement with the experimental result~see
Fig. 2!.

Thus, the experiment of Anthonyet al.19 confirms not
only the Landau–Pomeranchuk–Migdal effect but also
effect of suppression of electron bremsstrahlung in a t
layer of matter predicted in Ref. 31.

As the electron energy increases, the frequency ra
and the range of target thicknesses in which the propo
theory is valid rapidly grow. Figure 3 depicts the depende
of the average spectral density of the radiation emitted
250-GeV electrons on target thickness. It also presents
results of calculations of the radiation spectrum for differe
frequencies by the Migdal formula~2.5!.

The results show that as the target gets thinner, all
LPM lines corresponding to different frequencies transfo
into the result of calculations of the radiation spectrum
formula ~4.9!, which is independent ofv. Only the range of
applicability of the latter result isv-dependent, and within a
broad range of target thicknesses we have
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K d«

dv L ,S d«

dv D
BH

.

When the thicknessL decreases further, the mean squa
multiple scattering angle,q2, also decreases. Beginning wit
a thicknessL;1023LR , the spectrum of radiation emitte
by electrons in a thin layer of matter transforms into t
corresponding Bethe–Heitler result.

Note that forl c@L the entire target acts as a single o
ject with which the electrons interact and emit radiation. T
means that the interference of the electromagnetic wa
emitted by an electron from different sections of its path
the target is important. Here the target cannot be separ
into several layers, since the radiation emitted in one la
cannot be assumed to be independent from that emitte
another layer. If we were to partition a target of thicknessL

FIG. 2. Spectral density of the radiation emitted by 25-GeV electrons
gold target whose thickness is 0.7% of the radiation length. The1 designate
the experimental data taken from Ref. 19; the LPM and B–H histogra
represent the results of Monte Carlo calculations19 done in the Landau–
Pomeranchuk–Migdal theory and in the Bethe–Heitler theory; and the s
S–F line represents the results of our calculations by formula~3.5! with the
distribution function~4.4!.

FIG. 3. Dependence of the spectral density of radiation on target thickn
The dot–dash line B–H represents the results of calculations by the Be
Heitler theory~formula~2.8!!. The dashed lines LPM represent the results
calculations by Migdal’s theory of the LPM effect~formula ~2.5!! for dif-
ferent values of the energies of the emitted gamma quanta:v50.2 GeV~1!,
1 GeV ~2!, and 5 GeV~3!. The solid curve S–F represents the results of o
calculations by formula~3.5! with the distribution function~4.4!, which
describes the effect of bremsstrahlung suppression in a thin layer of ma
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into layersDL;1023LR and move these layers apart along
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16V. A. Bazylev and N. K. Zhevago,Emission by Fast Particles in Matter
and External Fields, @in Russian# Nauka, Moscow~1987!.

k
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r,

ff,

.

h.
the electron path to distances exceeding the coherence le
l c , the radiation emitted in each layer could be assume
be independent, and the total spectral density in all th
layers would equal the corresponding result of Bethe
Heitler ~see also Ref. 24!.
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Weak-pulse transparency enhancement in an optically dense three-level medium

induced by a 2 p pulse in a neighboring transition „V-scheme …

N. V. Denisova, V. S. Egorov, V. V. Kozlov, N. M. Reutova, P. Yu. Serdobintsev,
and É. E. Fradkin

Physics Research Institute, 198904 St. Petersburg, Russia
~Submitted 15 April 1997!
Zh. Éksp. Teor. Fiz.113, 71–88~January 1998!

The coherentV-configuration interaction between an optically dense resonantly-absorbing three-
level medium~neon! and two ultrashort superradiance pulses with converging wave fronts
is investigated experimentally and theoretically. Both separate and combined propagation of pulses
with wavelengthsl15614.3 nm~strong field,u1>p! andl35594.5 nm~weak field,
u3'p/20! are studied. For propagation of a separate strong-field pulse, supertransparency of the
absorbing medium was observed, which is associated with the generation of a soliton-like
pulse at the difference frequency (Dn'1700 MHz) and the dispersion–diffraction stabilization
effect. Under these conditions a weak-field pulse is completely absorbed. Combined
propagation of the pulses leads to novel effects. A below-threshold pulse~weak field! was
observed to pass through the absorber while interacting coherently with a strong-field pulse at a
neighboring transition. It is shown theoretically that absorption of the weak pulse is
reduced for two reasons: first, as a result of incoherent transparency of the resonance transition
caused by emptying of the lower level by the field of the strong pulse, and second, as a
result of coherent transfer of polarization between the upper levels via the two-photon processes.
When the conditions for combined propagation are met, the latter mechanism ensures
inversionless amplification of a weak pulse over a wide band of frequencies. In this case, the
gain can even exceed the linear absorption coefficient in absolute value. A difference in
propagation velocities of the weak and strong pulses was recorded experimentally, along with a
shift in the carrier frequency of the weak field towards the red ('600 MHz). A mechanism
for transfer of phase modulation from a strong pulse to a weak pulse via the common lower level
is discussed theoretically. ©1998 American Institute of Physics.@S1063-7761~98!00601-5#
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The possibility of light amplification and laser oscilla
tion without population inversion, due to interference b
tween atomic transitions leading to suppression of resona
absorption, was predicted by Kocharovskaya and Khanin
their 1988 paper~see Ref. 1!, and independently by Harris2

and Scullyet al.3 Among the systems that admit inversio
less amplification, those that exhibit the most striking beh
ior are systems withL-type transition sequences, as a co
sequence of coherent population trapping. In contrast,
know of no papers, either theoretical or experimental, t
deal with inversionless amplification of ultrashort lig
pulses by three-level media with aV-type configuration. In
fact, the only discussions of pulse propagation for neighb
ing transitions in theV-scheme have been from the point
view of generating two-frequency solitons~simultons!.4,5

In this paper we investigate theoretically and experim
tally the combined propagation of two ultrashort light puls
~i.e., pulses whose durations are shorter than all relaxa
times of the atomic system!, produced by neighboring tran
sitions, through an optically dense three-level medium w
the V-configuration and an inhomogeneously broadened
sorption line. Before the arrival of such pulses, all atoms
the medium are in the lower state~see Fig. 1!. First, a pulse
that is resonant with the lower-frequency transition and
intensityE1 sufficient to create an inversion between level2
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medium. A weak pulse of the neighboring high-frequen
transition with intensityE3 then enters the absorbing me
dium after a certain time delay; this pulse is too weak
change the population of level3. Experimentally, an abrup
attenuation of the absorption for the weak field is observ
We have proven theoretically that when the weak pulse
shorter than the strong pulse, there exists a wide band
frequencies for which the spectral components of the w
field can undergo amplification.

2. DESCRIPTION OF EXPERIMENT

2.1. Source of superradiance

Two superradiance pulses, a long-wavelength pu
(l15614.3 nm, 2p6– 1s5 transition, referred to as the
‘‘red’’ pulse! and a short-wavelength pulse~l35594.5 nm,
2p4– 1s5 transition, referred to as the ‘‘yellow’’ pulse!, arise
essentially simultaneously when high-voltage nanosec
discharges~whose voltage growth rate is'631011 V/s! are
excited in a narrow thick-walled glass capillary with intern
diameterd50.4 mm and lengthL527 cm. The geometric
parameters of the capillary were chosen in such a way a
ensure high spatial coherence of the radiation field:
Fresnel numbersF1,35d2/Ll1,3 for both wavelengths are
;1. In this system, the gas is excited by an ionizing poten
gradient wave. We described and investigated the superr

3910$15.00 © 1998 American Institute of Physics
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ant operating regime of this source in Ref. 6; however, in t
paper we also obtained simultaneous ‘‘single-mode osc
tion’’ at the two wavelengths discussed above, a first in s
a narrow capillary. The optimal neon pressure w
p'0.7– 0.9 Torr. The durations of the red superradian
pulse and the yellow superradiance pulse were 1–1.5 ns
0.5–0.8 ns respectively. The maximum power of the
pulse was 0.7 W; depending on the excitation conditio
that of the yellow pulse was approximately 10–40 times le
For this reason, in what follows we will refer to these as t
strong-field~red! pulse and weak-field~yellow! pulse. The
yellow pulse appears 0.5 ns later than the red pulse,
because the red pulse is wider than the yellow, the
pulses overlap completely in time. The carrier frequency
the red pulse is shifted toward the violet end of the spectr
by '200 MHz '1/7DnDoppl, while that of the yellow pulse
is shifted toward the red end by 300 MHz. The spect
widths were'1.2 GHz for the red pulse and'1.4 GHz for
the yellow pulse.

2.2. Absorbing medium

Pulses from the light source were directed into the
sorbing medium, which was the plasma of a positive glo
discharge neon column containing metastable neon atom
the 1s5(2p53s) state with a maximum concentration o
about 1012 cm23. The discharge was created in a glass tu
of length 30 cm and diameter 10 mm at a working press
of 1.6 Torr, a current of 2–7 mA, and a tube voltage of ab
1.5 kV. The input windows of the tube were sealed into it
Brewster’s angle. To measure the concentration, a mi
was fastened behind a holder oriented perpendicular to
tube axis. The reflection coefficient of the mirror was me
sured at a wavelengthl5585.2 nm. The concentration o
metastable neon atoms in the 1s5 level was measured using
mirror behind the tube7 at wavelengthsl5614.3 and 594.5
nm with an FEU-38 photomultiplier and a digital voltmete
Since the distribution of metastable atoms over the tube
ameter is nonuniform in a positive glow-discharge column~it
is described by a zero-order Bessel function!, in reality we
measured the mean of the concentration over the diame

Before a pulse arrives at the medium, the population
already distributed in a certain way among the three level
the V-configuration. However, the populations of levels 2p4

and 2p6 are quite low—of order 1010 cm23—which is much
lower than the population of level 1s5; therefore, we neglec
these in the following discussion. The lower metastable le

FIG. 1. Three-levelV-scheme with notation used in the text.
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the three levels corresponds to a medium with
V-configuration.

The light beam passing through the absorbing medi
was focused by a lens in such a way that it converged
rectly behind the output window of the absorbing cell. Th
beam geometry~i.e., with a nonplanar wave front! creates
conditions that can lead to a supertransparency regime;
Refs. 8–10.

If the interaction between the light and the resonant
sorbing medium is to be coherent, the conditiont!T1, T2

must be fulfilled, wheret is the duration of either of the
pulses. In dilute atomic gases and low-pressure dischar
this inequality is fulfilled for the nanosecond regime of pul
durations. Under the conditions of our experime
(I<6 mA), the phase memory time of the medium for t
2p6– 1s5 and 2p4– 1s5 transitions isT2511 ns, according
to our estimates. In calculatingT2 we included radiative and
collisional relaxation processes in the absorbing mediu
collisions with electrons were not taken into account due
their low concentration in the discharge under the conditio
stated above, namelyne,1012 cm23 ~see Ref. 11!. The
population relaxation timeT1 for the transitions we used wa
measured in Ref. 12 and is approximately 19 ns. These
timates show that the duration of the pulses under study h
is shorter than the relaxation time by more than an orde
magnitude, and hence the interaction of these pulses with
two transitions will be coherent in nature. The temporal c
herence of the interaction is supplemented by the condi
of spatial coherence, which is ensured by the single-m
character of the light source.

It is important to note that in our experiments we us
the same two transitions in neon both for generation and
absorption. Therefore, both the yellow and red pulses sat
the condition for resonant interaction.

2.3. Experimental setup

Because of the high time resolution of our experimen
setup~;300 ps!, a general sketch of which is shown in Fi
2, we were able to make measurements of the spect
temporal characteristics of both pulses, and also to mon
the optical density of the absorbing layer as these meas
ments were made. We investigated both combined and s
rate interactions of the pulses with the three-level medium
the V-configuration. To ensure that the pulses propaga
independently, the beams were offset from one another a
input to the medium by the prism P~see Fig. 2!; the separa-
tion was approximately 2 mm, which equalled their diam
eters. This enabled us to create individual interaction ch
nels for the red and yellow pulses in the absorption cell.

To make the timing measurements, we directed the f
damental beams passing through the prism and the abso
cells into an optical delay line and then recorded them us
a photodiode~LFD-2! and an S7-8 sampling oscilloscop
The second light beam reflected from the input surface of
prism served to synchronize and trigger the oscilloscope;
light detector we used an RCA photomultiplier with tim
resolution;1 ns.
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FIG. 2. Experimental setup for observing ind
vidual propagation of the pulses
M1–M6—mirrors, L1–L7—lenses, P—prism,
PD—LFD–2 photodiode, S7-8—stroboscopic o
cilloscope, V—digital voltmeter, mA—
milliammeter, I—iris diaphragm, FPI—Fabry–
Perot interferometer, C—camera.
The spectral characteristics of the pulses were investi-
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gated using an IT28-30 Fabry–Perot interferometer with a
mm ring brace and planar wideband mirrors with dielect
coatings~the free spectral range was 5000 MHz, the ha
width of the system feedback loop was 260 MHz!. For pre-
liminary dispersion, we used an MUM monochromator. T
interferometer operated with diverging beams. In order
eliminate the effect of spontaneous emission we used an
diaphragm at the output of the absorbing tube, and the t
itself was blackened. The detecting system was enti
screened from external sources of light.

To bring about the combined propagation of red a
yellow pulses in the absorbing medium, the beams emi
by the source were directed by a mirror into one propaga
channel. The prism P that separated the yellow and
beams was positioned behind the absorbing cell, which
abled us to tune the recording system by rotating this pr
and thereby measure the parameters of the yellow and
pulses.

3. EXPERIMENTAL RESULTS

3.1. Independent pulse propagation

In the geometry we used to observe independent pro
gation of the pulses, the beams did not overlap at the inpu
the medium. By investigating experimentally the tempo
and spectral characteristics of the red and yellow pulses
fore and after interacting with the absorbing medium,
were able to compare the results of the interaction for vari
input parameters of the pulses.

Our studies of the propagation of the red pulse throu
the absorbing medium showed that this pulse entered a
gime of supertransparency when its pulse energy exceed
certain threshold (u1>p),8,10 i.e., the pulse was observed
propagate over an anomalously long distance compare
the classical limits associated with self-induced transpare
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field pulse away from resonance, with a value of ord
;DnDoppl, which is typical of the supertransparency effec

The oscilloscope traces shown in Fig. 3 allow us to co
pare the temporal shapes of the input pulse and the red p
passing through the absorbing medium. The maximum de
experienced by the pulse as it passed through the absor
medium was 1.5 ns, at which point the combined oscil
scope trace shows that the red pulse has completely eme
from the profile of the incident pulse. Pulses with high inp
amplitude were delayed less than pulses with low input a
plitude, and passed through with less absorption.

For concentrations of absorbing atoms of approximat
1012 cm23, the red pulse was attenuated by about a facto
8–20 ~depending on the input amplitude!. At lower concen-
trations ('331011 cm23) the pulse passed through with a
most no attenuation.

When the yellow pulse propagated through the optica

FIG. 3. Oscilloscope traces of the input red pulse~upper trace! and trans-
mitted pulse through the absorbing medium~lower trace!, obtained for in-
dependent propagation of the pulses. The time scale is 0.5 ns
td51.3 ns.
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FIG. 4. Spectral and temporal characteri
tics of the yellow pulse~a,b! and red pulse
~c,d! at the input to the absorbing medium
~1! and at the output from it~2!, obtained
for combined propagation of the two
pulses. The time scale is 0.5 ns/div. In Fig
4c, the input pulse~left-hand trace! is at-
tenuated by a filter.
dense absorbing layer, we observed an entirely different pic-
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ture. In a medium with concentration>531011 cm23, the
pulse was attenuated so strongly that we were unable to
tect the pulse at all at the output of the absorbing cell, e
with the sensitivity of the detection system set to maximu
It is obvious that in this case the energy of the yellow pu
at the input to the medium is insufficient to overcome t
threshold for self-induced transparency (u3;p/20), in
which case it is completely absorbed.

3.2. Combined propagation of two resonance pulses

During the combined propagation of red and yello
pulses in the absorbing medium we noticed that they in
acted with one another. This interaction was revealed
changes in how the pulses interacted with the medium c
pared to the independent propagation case described in
previous section.

The most striking proof that the pulses interacted w
the fact that in this regime of propagation the yellow sup
radiance pulse passing through an absorbing medium
optical densityk3L of 15 ~wherek3 is the linear absorption
coefficient for transition1-3! was attenuated by only a facto
of 8, which enabled us to identify changes in its tempo
and spectral profile since they lay within the resolution lim
of our detection system.

In Fig. 4a we show an oscilloscope trace of the yello
pulse passing through the absorbing medium against
background of the input signal. There is clearly no tempo
delay in the pulse compared to the incident pulse as
former passed through the medium, which corresponds
velocity of the pulse in the medium close to the velocity
light.

Figure 4b shows changes in the spectrum of the yel
pulse relative to the spectrum of the input pulse caused b
passage through the absorbing medium. The center of
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l5594.5 nm served as a reference for the yellow line. Sp
tral analysis of the yellow pulse showed that after pass
through the absorbing medium, its carrier frequency was r
shifted by;600 MHz; in this case the offset of the carrie
frequency of the yellow pulse from resonance w
Dn03'300 MHz.

Analogous spectral and temporal measurements w
also made for the red pulse. Oscilloscope traces of the
pulse at the input and output to the medium are shown
Fig. 4c.

The peak of the pulse passing through the medium
obviously delayed relative to the peak of the incident pu
by ;1 ns, which is typical of an input pulse whose amp
tude is not too high. Noteworthy is the fact that in the pre
ence of the yellow pulse, there is somewhat more ene
reradiated by the red pulse at its trailing edge than is the c
when the pulses propagate independently.

The spectra of a red input pulse and a red pulse tra
mitted through the absorbing cell are compared in Fig. 4d
this figure, the spontaneous line center for neon
l5614.3 nm is shown as a reference. The red shift of
pulse carrier frequency at the output of the absorbing m
dium relative to the spectrum of spontaneous emission
neon is the same as for the case in which the red p
propagates independently:Dn'1700 MHz. The initial offset
of the red pulse carrier frequency from resonance isDn01'
2200 MHz.

The abrupt decrease in absorption of the weak field
served in these experiments can be explained theoreticall
solving the combined Maxwell–Bloch equations for a thre
level medium. This model, which we describe below, can
include all the peculiarities of the experiment, and in partic
lar is built around the plane-wave approximation. Neverth
less, even within the framework of this simple model we w
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be able to describe the fundamental regularities of the effect,
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and thereby achieve the double goal of finding amplificat
mechanisms in a situation that is maximally close to exp
ment and at the same time arriving at concrete recomme
tions for optimizing the experimental setup.

4. THEORETICAL DISCUSSION

4.1. Fundamental equations of the model

Our theoretical discussion is based on the joint solut
of the two equations for the fields in transitions1–2
(E1(t,z)) and1–3 (E3(t,z)) and the system of Bloch equa
tions for the three-level system~V-scheme! ~see Fig. 1!. The
experimental results clearly indicate that the strong fi
plays a dominant role in the dynamics of pulse propaga
for the yellow transition. On the other hand, the feedba
from the weak field is small and causes only an insignific
change in the temporal profile at the trailing edge of the
pulse. In our theoretical model we assume that the sh
wavelength pulseE3(t,z) is weak, so that its interaction with
transition1–3 can be treated in the linear approximation. W
also neglect its effect on the conditions for propagation
the strong long-wavelength pulse, thereby abandoninga pri-
ori any attempt to describe secondary effects exerted by
weak field on the strong field. The system of Maxwel
Bloch equations then separates into two subsystems, on
which describes the interaction of pulseE1(t,z) with the
transition1–2:

]

]z
E152

n1

c

]

]u
E11k1^P 1~ t,z,V!&,

]

]u
P 152 iVP 11E1N 1 , ~1!

]

]u
N 152

1

2
~E1P 1* 1E1* P 1!,

while the other subsystem

]

]z
E352

n3

c

]

]u
E31k3^P 3~ t,z,V!&,

]

]u
P 352 iVP 32g3P 31E3N 31

i

2
E1P 2 , ~2!

]

]u
P 252 iVP 22g2P 21

i

2
~E1* P 31E3P 1* !,

describes the interaction of pulseE3 with transition1–3. In
writing these equations we use the notation

k152pv1d1
2N/n1c\, k352pv3d3

2N/n3c\,

whered1 is the dipole moment of transition1–2, d3 is the
dipole moment of transition1–3, N is the concentration o
atoms in level1, P 1 is the polarization of transition1–2, P 2

is the polarization of transition2–3 ~more precisely,2–1–3,
since the transition2-3 is forbidden in the dipole approxima
tion!, P 3 is the polarization of transition1–3, N 1 is the
population difference between levels2 and 1, N 3 is the
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polarization relaxation times, andn1 andn3 are the nonreso-
nant refractive indices.

The total field is related to its envelopes by the expr
sions

Ẽ j~ t,z!5
\

dj
E j~ t,z!exp@2 i ~v j t2K jz!#, j 51,3,

whereK j5v j /c are the wave numbers for the correspondi
frequencies in vacuum. In these field equations, angle bra
ets indicate averaging over the resonant frequencies for
entire ensemble of atoms:

^...&5E ...f ~V! dV.

An important step in deriving Eqs.~1! and ~2! is the
neglect of relaxation effects in the density matrix equatio
for transition1–2 while including their effect on the atomic
variables for transition1–3. At first glance this may appea
strange, since the duration of the yellow pulse in our exp
ments was equal to or even somewhat shorter than that o
red pulse. Actually, the situation we are dealing with he
involves a manifestation of the fundamental property of se
induced transparency, in which a short pulse that satisfies
threshold conditions for this effect phases an entire ensem
of atoms with a wide inhomogeneously broadened abso
tion line. For an ensemble of dipoles with differing carri
frequencies distributed over a wide inhomogeneously bro
ened absorption line, attenuation of the macroscopic po
ization takes place within a time of orderT* . In this case the
polarization of each individual dipole is preserved at t
micro-level for a much longer time, up tog1

21 ~whereg1 is
the rate of attenuation of the polarizationP 1!.

McCall and Hahn were the first to note13 that a pulse
whose duration satisfies the conditionT* !t!g1

21, and
whose area at the input to the absorbing medium exceedp,
propagates with low absorption due to this same ability
induce phasing of the dipole oscillations of the entire e
semble of atoms; its energy is significantly attenuated o
when the propagation time through the thickness of the
sorbing medium is greater thang1

21. On the other hand, for
weak pulses in the same range of duration, the pulse en
is incoherently scattered due to dephasing of the dipole
cillations over times of orderT* . Under our experimenta
conditions, we estimate the difference in attenuation rates
the strong and weak field to beH(T* )21/g1'15. This esti-
mate proves that we are correct in including relaxation
fects for the weak field and neglecting these effects for
strong field.

It is known ~see, e.g., Ref. 14!, that when a pulse enter
ing the medium has a sufficiently smooth envelope pro
whose area exceedsp, in traversing a distance equal to a
proximately 2–3 absorption lengths it is transformed into
self-induced transparency soliton with area 2p. Under our
experimental conditions, the optical density of absorbing
oms for transition1–2 was 30, and effective interaction o
both pulses took place over essentially the entire leng
From a physical point of view, the most transparent resu
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are obtained when we choose the shape of the field envelope
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at transition1–2 to be a self-induced transparency soliton

E1~ t,z!5A0 sech@~ t2t02z/v !/t#exp@ i ~dt2kz!#, ~3!

in which case the polarization and inversion will have t
form

P 1~ t,z,V!52
@ i ~Vt1dt!2t]/]u#sech@~ t2t02z/v !/t#

11~Vt1dt!2

3exp@ i ~dt2kz!#, ~4!

N 1~ t,z,V!52112
sech2@~ t2t02z/v !/t#

11~Vt1dt!2 . ~5!

We will return to the question of how correct it is to choo
the field in the form of a self-induced transparency soliton
discussing the results. Substituting the expression for
field in the form ~3! into Eq. ~1! determines the relation
between the pulse amplitude and its duration~whereA0t52
and the pulse velocity isv!,

1

v
5

n1

c
1k1t2K 1

11~Vt1dt!2L , ~6!

and the dispersion relation

k~d!5
dn1

c
2k1t K Vt1dt

11~Vt1dt!2L . ~7!

Here d is the offset of the carrier frequency of the se
induced transparency soliton from the center of transit
1–2, and k is a correction to the wave numberK1 . The
quantityt0 determines the position of the self-induced tran
parency soliton at the input to the medium relative to
position of the ‘‘weak’’ pulse. It is convenient to choose f
t0 the initial delay of pulseE3 compared to the solitonE1 .

4.2. Evolution of the weak field

We now consider the system of equations for a we
field. The evolution of the inversionN 3 entering into Eq.~2!
is entirely determined by the dynamics of the self-induc
transparency soliton, because we assume that the fieldE3 is
so weak that it cannot cause any change in the popula
difference. Thus,N 3 can be written in the form

N 3~ t,z,V!52
@12N 1~ t,z,V!#

2

5211
sech2@~ t2t02z/v !/t#

11~Vt1dt!2 . ~8!

The simplest and physically most transparent results are
tained if we assume that the duration of the pulseE3(t,z) is
much shorter than that of the self-induced transpare
soliton.1! We can then neglect the time derivatives ofE1 ,
P 1 , N 3 , andN 1 compared to derivatives of the more rap
variablesE3 , P 3 andP 2 . In this approximation the equatio
for the evolution of the weak field reduces to the form
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]z 3K H 3 3

3exp@~ iV1g!u#du2
1

4
E1P 1* EuEu

E3

3exp@~ iV1g!u#du duJ L , ~9!

where in place of timet we introduce the wave variabl
u5t2z/(c/n3) . In deriving Eq.~9! we have used the fac
that the duration of pulseE3(t,z) is small compared with
A0

21, and have setg25g35g. We note immediately that the
polarization P 3(t,z), which controls the evolution of the
field, has two components. The first describes the linear
teraction of the field with a medium whose concentration
atoms N 3 is modulated in time by the field of the sel
induced transparency soliton. We can tentatively call t
interaction between the pulses incoherent. The presenc
the second component of the polarizationP 3 is due to the
coherent transfer of the interaction between the two tra
tions via the polarizationP 2 . It is this transfer of coherence
that essentially distinguishes this model from the two-le
system.

The wave equation~9! describes the propagation of non
monochromatic waves through a dispersive medium in thz
direction. Let us assume that a wave is excited at the bou
ary of the medium by an incident pulse

E3~z50,t !5e0~u! ~10!

with frequency spectrum

F~ṽ !5
1

2p E
2`

1`

e0~u!ei v̄udu. ~11!

Because the spectral components propagate independe
one another in a linear medium, the behavior of the wave
given by a superposition of harmonic waves

E3~z,u!5E
2`

1`

F~ṽ !exp@2 i ṽu1 ik~ṽ !z#dṽ. ~12!

The relationk(ṽ) for this dispersive medium can be foun
from Eq. ~9!:

k~ṽ !5k3K 2
~V2ṽ !1 ig

~V2ṽ !21g2 N 3

2
i

4
E1P 1*

~V2ṽ !22g212ig~V2ṽ !

@~V2ṽ !21g2#2 L . ~13!

The imaginary part of the dispersion relation reveals that
field–medium system is not conservative, so that either a
plification (Im@k(ṽ)#,0) or attenuation (Im@k(ṽ)#.0) of the
field are possible within certain frequency ranges.

Within the broad line for the red pulse (t.T* ), and
when conditions ensure that this pulse propagates at e
resonance with transition1–2, we can calculate the absorp
tion coefficient of the field for the yellow transition:

Im@k~ṽ !#5k3T* H 1

11~ṽT* !2
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12~ṽt!2
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F 11~ṽt!2 0 G
3

cosh22@~ t2t02z/v !/t#

11~ṽt!2 J . ~14!

In deriving Eq.~14! we have taken advantage of the sma
ness ofgt and have chosen the averaging functionf (V) in
the form

f ~V!5
T*

p

1

11~VT* !2 . ~15!

The larger value of the second term in Eq.~14! is responsible
for the smaller absorption coefficient of the weak field. It
important to note that the strong field always leads to a
crease in the absorption coefficient of the yellow pulse.
those spectral components of the weak field that lie within
interval whose width equals that of the strong-field spectr
(vt,1), the polarizationP 1 at the leading edge of the re
pulse increases the gain, while at the trailing edge it redu
it. Conversely, for the remaining spectral compone
(vt.1), the gain is less pronounced at the leading edge
more so at the trailing edge. We also note that when the
is homogeneously broadened~for which case we substitut
f (V)5d(V) into Eq. ~13!!, depending on the relative pos
tions of the pulses, both amplification of the weak field a
attenuation of the latter are possible. The decrease in abs
tion due to emptying of level1 occurs for all spectral com
ponents of the weak field at any instant in time. On the ot
hand, the contribution of the polarization to amplification
a weak pulse is approximately (gt)21 times smaller than
that due to the dynamics of the population difference, and
contrast to inhomogeneous broadening lines, it is alw
negative at the leading edge of the red pulse~i.e., the strong
field draws energy from the weak field! and positive at its
trailing edge~the strong field delivers energy to the we
field!.

We now discuss the phase characteristics of the pul
In Ref. 10 we described supertransparency, which occ
when a coherent pulse with a converging wave front pro
gates through a dense resonant absorbing medium. The
is propagated over an anomalously long distance becaus
pulse carrier frequency is driven toward the low-frequen
end of the spectrum beyond the limits of the inhomog
neously broadened line. In Ref. 10 we were able to exp
this phenomenon by invoking the mechanism of dispersiv
diffractive stabilization. In this paper our interest centers
the dynamics of the yellow-transition pulse, so we regard
phase characteristics of the strong field as given, and con
trate our attention on how they affect the spectrum of
weak pulse.

In these experiments we detected a shift in the spect
of the field for the yellow transition. The most faithful me
sure of this effect is the pulse frequency averaged over
pulse spectrum, or equivalently the modulation frequen
averaged over time and normalized by the field amplitu
spectrum:
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2` ]u 3

E
2`

1`

E3~u,z!du, ~16!

wherew(u,z) is the phase of the pulse. In the previous e
pression for the field we separated out a factor that oscilla
at the optical frequency, so Eq.~16! is written not for the
average frequency, but rather ford3 , the average offset from
the frequencyv3 . Using the spectral representation~12! and
integrating overtime, we obtain

^d3~z!&u

52
*2`

1`ṽF~ṽ !exp$Im@k~ṽ !#z%cos$Re@k~ṽ !z#%dṽ

*2`
1`F~ṽ !exp$Im@k~ṽ !#z%cos$Re@k~ṽ !z#%dṽ

,

~17!

where the expression fork(ṽ) is obtained from Eq.~13! by
making the substitutiont5z/(c/n3) . In deriving Eq.~17!,
we assumed that the weak pulse is not phase modulate
the input to the medium. We also assume the spectrum of
input pulse is symmetric. These two conditions taken
gether reflect the fact that the carrier frequency of the fi
coincides with the center frequencyv3 of the transition.

In the approximation we used above (g21@t.T* ) and
for moderate offsetsd (dt,1), we obtain the following ex-
pression for Re@k(ṽ)#:

Re@k~ṽ !#5k3T* H ṽT*

11~ṽT* !2 1cosh22F t01S 1

v
2

1

cD zG
3S dtF 1

11~ṽt!222
3~ṽt!221

@11~ṽt!2#3G
2ṽtF 1

11~ṽT* !2 1
2

@11~ṽt!2#2G D J . ~18!

Heren15n351. The antisymmetry of Eq.~18! with respect
to ṽ at d50 and the symmetry of expression~14! under the
same conditions makes the right-hand side of~17! vanish.
That is, we conclude that the carrier frequency of t
‘‘weak’’ field does not shift if the red pulse propagates
exact resonance with the transition1–2 (d50). Conversely,
an offset in the red pulse carrier necessarily implies a shif
the frequency of the yellow pulse.

5. DISCUSSION OF EXPERIMENTAL RESULTS

Rather than proceed directly to a discussion of the in
action of a two-frequency pulse with the three-level mediu
we first touch briefly on the distinctive features of the regim
of individual pulse propagation. Up to now there have be
fairly detailed studies of the numerous coherent phenom
that occur when short light pulses interact with a two-lev
medium.14 These phenomena can be classified as either
ear and nonlinear. In our experiments we have found b
types of phenomena: the interaction of the yellow pulse w
transition1–3 is linear, while the interaction of the red puls
with transition1–2 is nonlinear.
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The yellow pulse power was approximately 0.02 W.
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Knowing the beam diameter at the input of the absorpt
cell D;1 mm and the value of the 2p4– 1s5 transition di-
pole moment,d3'3310218 cgs electrostatic units, we ca
estimate the value of the input area of the yellow pul
u35V3t3'531022p. In this case, the inverse absorptio
length can be estimated by the magnitude of the inverse
ear absorption coefficient

k35
2

DnDoppl
Aln 2

p

pe2

m0c
f N'1.152310212 N cm21,

wheref is the oscillator strength of the transition andN is the
concentration of absorbing atoms in the 1s5 state. When the
concentration of absorbing atoms isN'531011 cm23,
k3L'15. Calculations like those of Ref. 15, for examp
that take into account classical anomalous absorption re
ing from the large width of the pulse spectrum, show that
energy of a pulse traversing a layer with optical thickne
k3L'15 should be attenuated by more than a factor of 10
which surely explains the absence of the yellow pulse at
output of the absorbing medium.

For the red pulse, the propagation is qualitatively diffe
ent in character. At a power of about 0.7 W, its input ar
u>p. Because the duration of the pulse is much less thanT1

andT2 , we might expect generation of a 2p–pulse in the red
transition. However, it is not possible to completely ident
the experimentally observed pulse dynamics with s
induced transparency, because the use of a converging b
geometry gives rise to new effects when light interacts w
two-level systems. These novel effects are manifestation
a common phenomenon—supertransparency.10 This phe-
nomenon, which is fundamental in nature, can be said
generalize the effect of self-induced transparency to the c
of three spatial measurements. In addition to the well-kno
dynamics of self-induced transparency solitons, in which
oms of the medium are excited to the upper state and su
quently return their excess energy to the field pulse by stim
lated emission, supertransparency also exhibits a
mechanism—dispersive–diffractive stabilization—whi
further stabilizes the self-induced transparency pulse.

Since our analysis of the red-pulse propagation dyna
ics is similar in general outline to what we published in o
previous paper Ref. 10, it will not be discussed in detail he
We merely note that although the carrier frequency of the
pulse is shifted from the resonance frequency toward lon
wavelengths, our value of this shift turns out to be somew
smaller than that found in the experiments of Ref. 8 since
parameters of the source and focusing of the beams w
different in our case.

Now let us return to our discussion of the distincti
features of the interaction of a weak pulse with transit
1–3 in the presence of a strong pulse in the adjacent tra
tion 1–2, i.e., the three-levelV-scheme. We mentioned be
fore that the large difference in pulse energies allows us
neglect in first approximation the effect of the weak field
the strong field and regard the interaction between fields
unilateral effect. Within this approach it is impossible to d
scribe the larger reradiation of energy of the red pulse at
trailing edge compared to the case of independent prop
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tion of the pulses, which is in fact detected experimenta
However, the most important effects, namely the sharp
crease in absorption of the yellow pulse and the shift of
carrier frequency, find their explanation within the fram
work of the approximations used. The theory set forth abo
makes it possible to make both qualitative and quantita
estimates of these phenomena.

To explain the most striking result of the experimen
i.e., the fact that a weak pulse can propagate through a de
strongly absorbing resonant medium, we turn to the exp
sion for the absorption coefficient of the yellow pulse in t
presence of a red pulse in a neighboring transition. The la
is calculated using Eq.~14! with the substitution of Eq.~15!
for values of the field and medium parameters used in
experiment. The results of this calculation, which are sho
in Fig. 5, demonstrate that the absorption coefficient at tr
sition 1–3 depends on the frequency and distance trave
by the weak-field pulse in the absorber. It should be no

FIG. 5. Absorption coefficient of the weak field at the short-wavelen
transition as a function of the normalized frequencyvt and the distance
traversed~in units of the Beer absorption length for transition1–3! for the
following values of the parameters:T* 50.35ns, t350.4 ns, t50.7 ns,
t050.5 ns. Projections of the surface are shown in three mutually perp
dicular planes. Individually~above! we present plots of the gain at the cen
tral frequency of transition1–3 as a function of distance traversed by th
yellow pulse in the medium.
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amplification in the case of the central spectral componen
the yellow pulse, since the amplification coefficient excee
the absolute value of the linear unperturbed absorption c
ficient k352k3T* by a factor of 1.11. A coefficient of field
amplification this large cannot be achieved even for to
inversion of the1–3 transition. In other words, the efficienc
of the interaction between the fields turns out to be hig
than that of the medium with each of the fields taken in
vidually. As we should expect, the red pulse influences
yellow pulse most strongly in the region where the stro
field is a maximum, and the affected frequency compone
of the yellow-pulse spectrum lie within a band whose wid
is the same as that of the red-pulse spectrum.

The amplification effect under discussion here is pur
coherent, and is caused by a two-quantum process in w
the interaction is transferred via the polarizationP 2 , which
couples levels1 and 3 by way of the common lower level
This is easy to verify if we neglect the second term in E
~13!, saving only the first term arising from changes in t
population of the lower level, which is}N 3 . In this case,
the maximum achievable effect is complete transparenc
the medium at the central spectral component of the yel
pulse. If we add to this effect, which decreases the abs
tion, the contribution from the polarizationP 2 , we obtain a
net field gain in the1–3 transition, which occurs over a wid
range of frequencies against a background of no invers
between levels1 and3 at all times. This leads us to identif
the effect as inversionless amplification. However, this d
not lead to amplification of the weak pulse as a whole. T
amplification effect, which occurs because the interaction
volves a common lower level, is not disrupted for times
orderT* , due to the phasing of all the atomic oscillators
the ensemble induced by the strong pulse. The simultane
phasing of the two polarizationŝP 1& and ^P 2& for all the
three-level atoms of the ensemble follows directly from t
theory developed here, and as far as we know has not b
discussed previously.

Our fundamental theoretical conclusions are based
the assumption that the shape of the field envelope for t
sition 1–2 is that of a self-induced transparency soliton. Th
choice was determined by two factors. The first of these
the tendency for a short high-power pulse to acquire the fo
of a self-induced transparency soliton as it propagates in
absorber. The second is connected with the fact that a
induced transparency soliton generates a deep modulatio
the population difference between levels1 and2, up to com-
plete emptying of the lower level, which thereby ensu
optimal conditions for amplification of the weak pulse. Thu
the self-induced transparency soliton is essentially ideal
pump pulse.

The conditions for pulse propagation were by no me
optimal in our experiment. Because the strong pulse w
focused by a lens, which led to expulsion of its carrier f
quency from the inhomogeneously broadened absorp
line, the delay was decreased, the efficiency of the reso
interaction lowered, and the modulation depth for the po
lation of level 1 less marked. Under these conditions t
decrease in absorption, and hence the amplification, bec

47 JETP 86 (1), January 1998
of
s
f-

l

r
-
e
g
ts

y
ch

.

of
w
p-

n

s
e
-

f
f
us

en

n
n-

is
m
n
lf-
of

s
,
a

s
s

-
n
nt
-

me

5. Nevertheless, the experiments recorded an anomalo
low loss of energy by the weak pulse~by a factor of 8 in all!,
which indirectly confirms the significance of these effects

In stressing the special role of the self-induced transp
ency soliton in the dynamics of coherent amplification p
cesses, we must emphasize that this same formalism ca
applied to calculate the characteristics of the yellow pulse
it interacts with a red pulse of arbitrary shape,2! once this
shape is given at any instant in time at any point of t
medium. It is only important that the red pulse be stro
enough to pass through the optically dense medium with
appreciable absorption. The specific shape of the strong-
envelope determines only the degree of coherent amplifi
tion and incoherent brightening, not the qualitative dynam
features of the combined propagation of the coherent pul
Our approach allows us to estimate the optimal optical thi
ness of absorbing medium that ensures maximum gain
the weak field at its center frequency, the optimum relat
position of the pulses at the input to the medium at the ce
frequency, optimal relations between their durations, e
Moreover, the theory does not distinguish transitions1–2
and1–3; therefore, propagation of the strong pulse on tra
sition 1–3 and the weak pulse on transition1–2 in no way
affects the dynamics of amplification of the weak pulse
the strong pulse.

6. CONCLUSION

We obtained these results, which are novel both from
theoretical and an experimental point of view, in the cou
of our investigations of the coherent interaction of lig
pulses with a three-level medium in theV-configuration. We
experimentally observed combined propagation of a yell
and red pulse for neighboring transitions in an absorb
medium, and recorded how they affected one another.
most remarkable feature to emerge from this work is
ability of the yellow pulse to pass through the absorbing c
with anomalously small absorption, especially since t
pulse is completely absorbed when it propagates ‘‘indep
dently.’’ In order to explain this abrupt decrease in the a
sorption of a pulse generated by the 2p4—1s5 transition we
invoke a mechanism involving two factors. The first factor
the efficient lowering of the population of the lower 1s5

level, which is emptied by the passage of the 2p6—1s5 red
pulse. The nature of this process leads us to describe
incoherent brightening of the adjacent transition. The sec
factor, which is purely coherent in nature, is connected w
the transfer of the interaction via polarizationP 2 , which
interferes constructively with the field of the yellow pulseE3

and leads to enhancement of the spectral components o
weak field over a wide band of frequencies.

We experimentally detected a shift in the carrier fr
quency of the yellow pulse away from resonance tow
longer wavelengths, caused by modulation of the refrac
index of the medium in the presence of the strong field of
neighboring transition of theV-scheme, whose carrier fre
quency in turn is redshifted. We have shown theoretica
that if the carrier frequency of the red pulse does not dev
from exact resonance with the transition 2p6—1s5 as it

47Denisova et al.



propagates, it will not give rise to modulation of the refrac-
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Quantum theory of resonant scattering of atoms by a pulsed field under coherent

liz-
population trapping conditions
A. V. Ta chenachev, A. M. Tuma kin,* ) and V. I. Yudin

Novosibirsk State University, 630090 Novosibirsk, Russia
~Submitted 30 April 1997!
Zh. Éksp. Teor. Fiz.113, 89–110~January 1998!

We develop an entirely quantum mechanical analytical description of scattering of atoms with
angular momentaj g→ j→ j e5 j ~j is an integer! by a pulseds12s2 field. In the
stationary-atom approximation with exact accounting for recoil effects, we solve the problem of
the change in the distribution of atoms among the internal and translational degrees of
freedom initiated by a single pulse forj g51, 2. We find in analytical form recurrence formulas
that make it possible to calculate the distribution of the atoms after an arbitrary sequence
of pulses has acted on the system. We show that for discrete~resonant! values of the time interval
between the pulses, the action ofN pulses leads to effective formation and narrowing of
peaks at discrete points in momentum space and to a broadening of the envelope of these peaks.
In the case of a broad initial momentum distribution we derive explicit formulas for the
peaks and the envelope and study their asymptotic behavior forN@1. Finally, in the weak-field
limit we study numerically the dependence of the contrast of the scattering diagram on
pulse length. ©1998 American Institute of Physics.@S1063-7761~98!00701-X#
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The pioneering works of Aspectet al.1,2 initiated inten-
sive studies of the kinetic manifestations of coherent po
lation trapping~CPT!. Today we know of various methods o
laser cooling of atoms below the one-photon recoil energy
velocity-selective coherent population trapping in fields w
spatial polarization and intensity gradients. The meth
have been developed theoretically2–9 and to a certain exten
experimentally.1,10–12,9The idea of these cooling methods
as follows. Atoms in a stationary inhomogeneously polariz
field are trapped into a CPT state~dark state! uCNC& that
does not interact with the field. The state is a coherent
perposition of the wave functions of the magnetic sublev
of the ground state with different momentum values~e.g., in
a s12s2 field the momentum values ar
p,p6\k, p62\k,•••, known collectively as the
p-family2!. When the atoms are in free motion, the comp
nents of this superposition acquire different phases. A
result, if the atom was in the CPT state at a certain mom
at subsequent times the CPT state usually disintegrates
to the translational motion of the atoms, and the atoms be
to interact with the field. However, the degree of this dis
tegration and the intensity of the atom–field interaction
selectively dependent on the momentump. For instance, the
population of the excited state, considered as a function
momentum, has a dip nearp50. Due to random kicks in
absorbing and emitting photons, the atoms gather in this
gion of momentum space, where the interaction with
field is at its minimum. Thus, cooling in this case is a co
sequence of a special diffusion process.13–16

Recently two groups of researchers proposed a n
method of pulsed cooling17 ~or Ramsey cooling18!, which as
shown by the results of experiments18 and quantum
simulations17 makes it possible to obtain narrower structur
in the velocity distribution of atoms and in shorter time i
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ing the discussions in Refs. 17 and 18, we discuss the p
ics of the laser pulse cooling method. During the timet ~the
pulse length of thes12s2 field! the atoms are pumped int
the dark state

uCNC&5 (
mg52 j g ,2 j g12,•••, j g

cmg
up2\kmg , j g ,mg&,

where j g andmg are the quantum numbers representing
ground-state angular momentum and its projection. Then
the course of the time intervalT the field is switched off and
the atoms move freely. Here, in view of the dephasing of
different components of the superposition, there is a tra
tion from the CPT state to states that can interact with
field:

uCNC ,T&5 (
mg52 j g ,2 j g12,•••, j g

cmg

3expS 2
iT

\

~p2\kmg!2

2M D
3up2\kmg , j g ,mg&.

This formula shows that if the time interval between puls
is chosen to beTn5pn/4v r ~herev r5\k2/2M is the fre-
quency corresponding to the recoil energy, andn is a non-
zero integer!, for certain discrete values of momentu
(pm52\km/n for j g odd and pm5(2m/n11)\k for j g

even! the statesuCNC ,T& anduCNC& differ only in a general
phase factor. Thus, for discrete values of time,Tn , and mo-
mentum,pm , the CPT state is restored.~An exception is
j g51, when there are no restrictions on the timeT, with
pm52p\km/4v rT.! If at the end of the time intervalTn a
second light pulse is switched on, the atoms with the selec
momentapm do not interact with the field, while the othe
atoms scatter with a change in momentum due to spont

4912$15.00 © 1998 American Institute of Physics
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representation acquires a well-defined comblike structur
By using a sequence of light pulses one can increase
contrast of the atomic scattering diagram.18 Note that the
sharp selectivity in atomic momentum in this case is ensu
by the large value ofT, by analogy with Ramsey
resonances.19 We also note that the transverse motion of t
atoms~in relation to the wave vector! leads to the emergenc
of a common phase factor in the functionuCNC ,T& ~the fac-
tor contributes nothing to dephasing! and therefore in no way
affects our reasoning.

In this paper we develop a quantum theory for ato
with angular momentaj g5 j→ j c5 j ~j is an integer! scat-
tered by as12s2 field. Our goal is to give a complet
analytical description of Ramsey cooling. The main appro
mation that we employ is that the lifetime of the atoms in t
dark state, limited by the translational motion effect, is mu
longer that the pulse lengtht. In perturbation-theory terms
this condition can be written asgt(kv/V)2!1 ~hereg is the
radiation width of the excited level,kv is the Doppler shift,
andV is the Rabi frequency!,2,16 which means that either w
must use precooled atoms or the laser field must be str
Moreover, we assume~except in Sec. 5! that the interaction
in stationary, i.e., gt@1 and gSt@1, with
S5V2/(g2/41d2) the saturation parameter andd the detun-
ing from resonance. In these conditions the density matrix
the atoms after a light pulse has acted on the system ha
following form:

r̂5uCNC&W^CNCu.

The functionW depends on the initial~before the first light
pulse has acted on the system! density matrix and can be
found exactly~outside the scope of the expansion in rec
momentum! by a method described in Ref. 16. The evoluti
of the density matrix of the atoms that are in the ground s
and propagate freely is determined by the kinetic-energy
erator ĤK . The solution of the problem of calculating th
corresponding unitary operator exp(2iĤKT/\) is well-
known. Applying the above transformations in the approp
ate order, we can calculate the atomic distribution after
arbitrary sequence of field pulses.

In the present paper we solve this problem for two v
ues of angular momentum,j g51, 2. We find in analytical
form recurrence formulas linking the distributionW(N11) af-
ter N11 pulses have acted on the system withW(N), the
distribution afterN pulses. We show that a sequence
pulses applied to the system leads to the formation and
rowing of peaks at discrete points in the momentum sp
and to a broadening of the envelope of these peaks. In
case of a broad~in comparison to the photon momentum!
initial momentum distribution, which is important for pract
cal reasons, we derive explicit formulas for the peaks a
envelope. We also examine the asymptotic behavior of
solution forN@1. Moreover, for weak saturation,S!1, we
study the dependence of the contrast of the scattering
gram on the parametergSt. Finally, we compare our result
with those of Refs. 17 and 18 and discover that qualitativ
the results coincide.
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Let us examine one-dimensional~along thez axis! mo-
tion of atoms whose ground and excited states form an o
cal transitionj g5 j→ j e5 j ~j is an integer! in the interaction
between the system of atoms and a pulseds12s2 field.
Within the pulse of lengtht the field is assumed monochro
matic:

E~z,t !5e~z!E0 exp~2 ivt !1c.c.,
~1!

e~z!5
1

&

~e21 exp~ ikz!2e11 exp~2 ikz!!,

wheree6157(ex6 iey)/& are unit cyclic vectors. At each
point in space the field~1! is linearly polarized. The direction
of the polarization vectore(z) at pointz50 coincides with
thex axis, and for an arbitraryz the vector is rotated through
an anglekz, i.e., the field is a linearly polarized helix. In
view of this it is convenient~as shown in Ref. 16! to shift
from the laboratory reference frame to the local referen
frame in which thex8 axis rotates together withe(z). The
corresponding transformation formulas are

Ôlab5Û~z!ÔlocÛ
†~z!,

Ôloc5Û†~z!ÔlabÛ~z!, ~2!

Û~z!5exp~2 ikzĴz!,

whereĴz is the operator of the projection of angular mome
tum, andÔlab andÔloc are matrices representing an arbitra
operator in the laboratory and local reference frames, res
tively. In particular, the Hamiltonian of a free atom in th
rotating reference frame is

Ĥ05ĤK1\v0P̂e , ~3!

where

ĤK5
~ p̂2\kĴz!

2

2M
~4!

is the kinetic-energy operator~which now depends on the
values of the projection of angular momentum!, v0 is the
transition frequency, and

P̂e5 (
me52 j e

j e

u j e ,me&^ j e ,meu ~5!

is the projector operator on the excited state, withu j e ,me&
the wave vectors of the magnetic sublevels. In the local
erence frame the Hamiltonian~1! of the resonant atom–field
interaction is spatially homogeneous:

ĤA–F5\VV̂ exp~2 ivt !1H.c., ~6!

whereV is the Rabi frequency~which without loss of gen-
erality can be assumed positive!, and the dimensionless op
eratorV̂ is defined in terms of Clebsch–Gordan coefficien
as follows~the quantization axis is directed along thez axis!:

V̂5
V̂212V̂11

&

, ~7!
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V̂q5 (
me ,mg

u j e ,me&^ j e~ j g,1!,meu j g ,mg ;1,q&^ j g ,mgu. ~8!

The transitions induced by the field~1! are depicted in Fig. 1
We see that there are two independent systems of intera
sublevels.20 One consists ofL-segments and begins with th
u j g ,2 j g& sublevel. The other consists of V-segments a
begins with theu j e ,2 j e& sublevel. We call these systems th
L- and V-system, respectively.

Separating in the usual way the fast time dependenc
the frequency of the field, we obtain a quantum kinetic eq
tion that describes the evolution of the slow components
the density matrix in the rotating reference frame:

]

]t
r̂~z1 ,z2!52

i

\
@ĤK ,r̂~z1 ,z2!#

2 iV@~V̂1V̂†!,r̂~z1 ,z2!#2S S g

2
2 id D

3P̂er̂~z1 ,z2!1S g

2
1 id D r̂~z1 ,z2!P̂eD

1g (
q561,0

Qq~k~z12z2!!V̂q
†r̂~z1 ,z2!V̂q ,

~9!

where d5v2v0 is the detuning from resonance, and t
functionsQq(k(z12z2)) describe the stimulated and spont
neous recoil effects:

Q61~kz!5
3

2 S sin kz

kz
1

coskz

~kz!2 2
sin kz

~kz!3 Dexp~7 ikz!,
~10!

Q0~kz!53S 2
coskz

~kz!2 1
sin kz

~kz!3 D .

In ~9! we used the standard notation for commutato

@Â,B̂#. Equation~9! accounts exactly for quantum effec
due to momentum transfer from field to atoms in radiat
processes and to the translational motion of atoms. Note
the convenience of using the coordinate representation

FIG. 1. Diagrams representing the radiative transitions between the Zee
sublevels of the ground and excited states. The solid and dashed lines
resent stimulated transitions between the sublevels of theL-system, and
between the sublevels of the V-system, respectively. The wavy arrows
pict spontaneous transitions.
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that the semiclassical expansion in powers ofk(z12z2) is
invalid.

A remark is in order concerning the necessity to just
the model of one-dimensional motion~often used in prob-
lems dealing with the mechanical action of a plane elec
magnetic wave on atoms; see, e.g., Ref. 22!. Obviously, due
to the interaction with the vacuum modes of the field, t
Cartesian coordinates in the equations of motion gener
cannot be separated. However, these correlations, which
due to the spontaneous recoil effect, are small if the varia
of the transverse momentum in an elementary emission a
small. This case, when the transverse kinetic energy is m
higher than the one-photon recoil energy (kBT'@\v r), is
studied in the present paper.

3. SOLUTION FOR IMMOBILE ATOMS

If while a light pulse~of lengtht! acts the atoms are, o
the average, displaced by a distance much shorter than
wavelength of the light,

vt!l, ~11!

they can be assumed to be immobile, so that the first term
the right-hand side of Eq.~9! can be dropped. As a result w
arrive at a system of first-order ordinary differential equ
tions ]r/]t5Lr, whose solution can be written as

rm1 ,m2
~z1 ,z2ut1t!5 (

n1 ,n2

Rm1 ,m2

n1 ,n2 ~z1 ,z2ut!rn1 ,n2
~z1 ,z2ut !,

~12!

where R is the matrix exponential function of the corre
sponding Liouville operator,R(t)5exp(tL). For large val-
ues oft, i.e.,

gt@1, gSt@1, ~13!

whereS5V2/(g2/41d2) is the saturation parameter, the a
oms are pumped completely into the dark state, with
corresponding steady-state solution~the limit t→` in ~12!!

r̂~z1 ,z2!5uCNC&W~z1 ,z2!^CNCu. ~14!

The atom–field interaction operator annihilates the CPT s
uCNC&

ĤA–FuCNC&50, ~15!

which is a superposition of ground-state Zeeman wave fu
tions:

uCNC&5(
mg

cmg
u j g ,mg&. ~16!

The simplest way to find the coefficientscmg
is to direct the

quantization axis along the field polarization vector. Then
dark state coincides with the Zeeman sublevelu j g,0&. If we
then carry out a rotation throughp/2 about they axis ~thus
returning to the original choice of the quantization axisz!,
we find that cmg

can be expressed in terms of Wign
d-functions~elements of the rotation matrix!:21

cmg
5dmg,0

j g ~p/2!. ~17!

an
ep-

e-

51Ta chenachev et al.



The functionW(z1 ,z2) has the meaning of a two-point
s

he

re
in
ur

o
w

s,

w

m

-
a

t
nt

-

rt

i-
ith

in

-

Since theL- and V-systems of magnetic sublevels are inde-

pe-

ric

g
nts
ct
distribution function in the local reference frame. In our ca
the relationship betweenW and the ordinary distribution
function F in the laboratory reference frame is given by t
following expressions:

F~z1 ,z2!5Tr$Û~z1!r̂~z1 ,z2!Û†~z2!%5^CNCu

3exp~2 ik~z12z2!Ĵz!uCNC&W~z1 ,z2!,

~18!

where the trace is over the internal atomic degrees of f
dom. The value ofW is determined by momentum transfer
spontaneous and stimulated photon scattering in the co
of a field pulse and by the initial~prior to the light pulse!
distribution over the internal and translational degrees
freedom. According to Ref. 16, after the pulse has acted,
have

W~z1 ,z2ut1t!5Tr$Ĉ~z12z2!r̂~z1 ,z2ut !%, ~19!

where the matrixĈ(z12z2) is the left eigenvector ofL
corresponding to a zero eigenvalue:

05 iV@~V̂1V̂†!,Ĉ~z!#2~~g/2! 1 id!P̂eĈ~z!1~g/2

2 id!Ĉ~z!P̂e)1g (
q561,0

Qq~kz!V̂qĈ~z!V̂q
† . ~20!

We select the normalization condition forĈ in the form

^CNCuĈ~z!uCNC&51. ~21!

If we ignore the translational motion of the atom
Tr$Ĉ(z12z2) r̂(z1 ,z2ut)% is a constant of motion for~9!.
Calculating its value before and after the pulse with allo
ance for~14! and~21!, we arrive at~19!. Equations~20! and
~21! lead to four fundamental properties of the matrixĈ(z),
which are valid for all integral values of angular momentu
j :

~1! Cm1 ,m2
(0)5dm1 ,m2

, which corresponds to conserva
tion of the total population of the atomic sublevels in optic
pumping.

~2! Asymptotically ~for ukzu@1! the function Qq(kz)
specified in~10! vanishes and the solution of~20! assumes
the formĈ(`)5uCNC&^CNCu. This property allows, at leas
in principle, for correlations between arbitrarily dista
pointsz1 andz2 .

~3! The propertyĈ†(z)5Ĉ(2z) ensures that the mo
mentum distribution of the atoms is positive definite.

~4! In contrast to the above three properties, the fou
propertyCm1 ,m2

(z)5C2m1 ,2m2
(2z) is specific to the con-

figuration of thes12s2 field considered here and man
fests itself in the symmetry of the scattering diagram w
respect to zero.

In our problem, prior to the field pulse the atoms are
the ground state, so that to find the functionW we only need
to know the matrix elements ofĈ between the wave func
tions of the magnetic sublevels of the ground level,u j g ,mg&.
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pendent~there is no coherence between them!, this matrix
Ĉgg can be represented in block-diagonal form:

Ĉgg5uCNC&^CNCu1 (
i ,i 851

j g

uC i
L&Ci ,i 8

L ^C i 8
L u

1 (
i ,i 851

j g

uC i
V&Ci ,i 8

V ^C i 8
V u, ~22!

where

uC i
L&5(

mg

1

&

~dmg ,2 i
j g ~p/2!1dmg ,i

j g ~p/2!!u j g ,mg& ~23!

and

uC i
V&5(

mg

1

&

~dmg ,2 i
j g ~p/2!2dmg ,i

j g ~p/2!!u j g ,mg& ~24!

are the eigenvectors of the operatorV̂†V̂ with eigenvalues

a i5
i 2

j g~ j g11!
, i 51,•••, j g . ~25!

The method used to determine the coefficients in~23! and
~24! is similar to that used in deriving~17!. The superscripts
L and V indicate that the vector belongs either to theL-
system or to the V-system of the Zeeman sublevels~see Fig.
1!. For instance, in~23! mg runs through the values
2 j g ,2 j g12,•••, j g and in ~24!, through the values
2 j g11,2 j g13,•••, j g21.

We found the explicit form of the matricesĈL and ĈV

for two transitions,j g51,2.

3.1. The j g51˜ j e51 transition

In this case

CL5
Q11Q21

42Q12Q21
, CV5

2Q0

42Q12Q21
~26!

are independent of detuning and saturation, which is a s
cific feature of this transition.

3.2. The j g52˜ j e52 transition

Here ĈL and ĈV can be represented as the symmet
and antisymmetric~with respect toQ0! parts,

ĈL5M̂ ~Q0!1M̂ ~2Q0!, ĈV5M̂ ~Q0!2M̂ ~2Q0!,
~27!

of the matrix

M̂ ~Q0!5
2Q01Q211Q1

2D S m1,1 m1,2

m2,1 m2,2
D . ~28!

The explicit expressions for the coefficientsD and mi j are
given in the Appendix.

As Eqs.~A1!–~A5! show, the dependence on detunin
and field amplitude is due to the finite off-diagonal eleme
m1,2 andm2,1. This coherence is induced by the recoil effe
and is proportional to the differenceQ212Q1 , which van-
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ishes at kz5np ~see Eqs. ~10!!. Assuming that
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ee

r̂(z ,z ut1T)5exp 2
i

Ĥ T uC &W(z ,z ut)^C u

r-

m

ef-
us,

la
ted
and

s:

-

l
en-
Q215Q15Q, we arrive at a reduced matrix, which is ind
pendent ofd andV:

M̂ red5
3~Q01Q!

362Q0
222Q0Q230Q13Q2

3S 322Q 0

0 ~Q01Q!/2D . ~29!

On the other hand, as Eqs.~20! and~28! show, the coherence
between the states~23! and ~24! can be ignored in two lim-
iting cases: a strong laser fieldV@g, and a large detuning
udu@g. In both cases ~28! becomes ~29! with
Q5(Q211Q1)/2.

Let us now discuss the range of applicability of soluti
~14!. In the local reference frame the translational motion
atoms in described by the operatorĤK given by ~4!. The
diagonal element

^CNCuĤKuCNC&5
p̂2

2M
1

\v r

2
j g~ j g11! ~30!

has the meaning of the effective energy of an atom in
dark state. The second term on the right-hand side, the
rection to the kinetic energy due to the inhomogeneity in
field’s polarization, is on the order of the recoil effect and
independent of coordinates. Thus, in the homogeneous
considered here the diagonal element~30! contributes noth-
ing to the dynamics of the atomic ensemble. The finite o
diagonal elements,

^C1
LuĤKuCNC&52

\kp̂

2M
Aj g~ j g11!,

^C2
LuĤKuCNC&5

\v r

4
Aj g~ j g11!~ j g21!~ j g12!, ~31!

describe nonadiabatic states, which lead to a finite lifetime
the atoms in the CPT state. If we employ the perturbat
theory in the atomic velocitykv!min(g,gS), this lifetime
can be estimated atg21(V/kv)2 ~see Refs. 2 and 16!. The
corrections due to translational motion are negligible if t
lifetime is much longer than the pulse lengtht, i.e., if
(V/kv)2@gt. Summing up all the restrictions, we can wri

min~g,gS!t@1, kv!min~g,gS!, gtS kv
V D 2

!1. ~32!

These conditions are weaker than~11! and can be met with
precooled atoms or a strong laser field.

4. SOLUTION FOR FREE PROPAGATION OF ATOMS; THE
ACTION OF A SEQUENCE OF LIGHT PULSES

After the field is switched off, the atoms are in th
ground state, with the result that their evolution in fr
propagation is determined by the kinetic-energy operator~4!:
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1 2 S \ K D NC 1 2 NC

3expS i

\
ĤKTD . ~33!

By combining~33! and~19! we can derive a recurrence fo
mula that relates the distribution after (N11) pulses,
W(N11), to W(N), the distribution afterN pulses:

W~N11!~r ,z!5 (
mg ,ng

Cmg ,ng
~z!cng

cmg

3exp@2 iv rT~ng
22mg

2!#

3expFv rTS 2i

k

]

]z
1ng1mgD ]

k]r G
3expF2v rT~ng2mg!

k

]

]zGW~N!~r ,z!, ~34!

where we have introduced the variablesr 5(z11z2)/2 and
z5z12z2 . The reader will recall that the Fourier transfor
in the differencez is a Wigner distribution function in the
phase space:

W̃~r ,p!5
1

2p\ E
2`

`

expS 2
ipz

\ DW~r ,z!dz.

In this paper we do not account for spatial localization
fects. We assume that the distribution is homogeneo
W(r ,z)5W(z), with the result that~34! becomes

W~N11!~z!5 (
mg ,ng

Cmg ,ng
~z!cng

cmg

3exp@2 iv rT~ng
22mg

2!#

3W~N!~z12v rT~ng2mg!/k!. ~35!

We define the initial conditions for the recurrence formu
~35! as follows. Suppose that before the first pulse has ac
on the atomic system the atoms are in the ground state
have an isotropic distribution over the magnetic sublevel

rmg ,ng

~0! ~z!5
dmg ,ng

2 j g11
F ~0!~z!,

whereF (0)(z) is the initial distribution in the laboratory ref
erence frame. After the first pulse has acted, we get

W~1!~z!5Tr$Ĉgg~z!exp~ ikzĴz!%
F ~0!~z!

2 j g11
. ~36!

4.1. The case of a broad initial momentum distribution

The natural scale of length in~35! and~36! is the wave-
length l52p/k. If the spread in momentum in the initia
distribution is considerably greater than the photon mom
tum, the functionF (0)(z) is finite in a small~in comparison
to l! neighborhood ofz50. In the zeroth approximation we
can approximate it by a ‘‘unit delta function’’:

F ~0!~z!5H 1 if z50,

0 if zÞ0.
~37!
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system the distribution function constitutes a regular sys
of peaks at the point 0,64v rT/k,68v rT/k,•••:

W~N!~z!5(
l

f l
~N!F ~0!~z24v rTl/k!. ~38!

The amplitudes of the peaks,f l
(N) , satisfy the recurrence

formula

f l
~N11!5 (

mg ,ng

Cmg ,ng
~4v rTl/k!cng

cmg

3exp@2 iv rT~ng
22mg

2!#f l 1~ng2mg!/2
~N! ~39!

with the initial condition

f l
~1!5d l ,0 .

In view of the symmetry ofĈ ~see Sec. 3!, the coefficients
f l

(N) are real and symmetric:f l
(N)5f2 l

(N) . The momentum
representation corresponding to~38! has the form of the
product,

W̃~N!~p!5F~N!~p!F̃ ~0!~p!, ~40!

of the periodic~with a period 2p\k/4v rT! and symmetric
~with respect top50! function

F~N!~p!5 (
l 52 j g~N21!

j g~N21!

expS 2 i4v rTl
p

\kDf l
~N! ~41!

and a smooth envelope, which in the present approxima
coincides with the initial momentum representation.

Let us examine the process of formation of a combl
structure in the momentum space qualitatively using an
proximate expression for the matrixĈ:

Cmg ,ng
~4v rTl/k!5H dmg ,ng

, if l 50,

Cmg ,ng
~`!5cmg

cng
, if lÞ0,

which is valid for large values of the time interval betwe
pulses,v rT@1. In this case~39! becomes

f0
~N11!51,

~42!

f lÞ0
~N11!5

1

2
f l

~N!1
1

4
~f l 11

~N! 1f l 21
~N! !

for j g51 and

f0
~N11!51,

~43!

f lÞ0
~N11!5

11

32
f l

~N!1
3

16
cos~4v rT!~f l 11

~N! 1f l 21
~N! !

1
9

64
~f l 12

~N! 1f l 22
~N! !

for j g52. Within the interval@2p\k/4v rT,p\k/4v rT# the
function ~41! describes the formation of the principal max
mum at the point where all the harmonics interfere constr
tively, amplifying each other. As Eqs.~42! imply, at j g51
the amplitudes of all the harmonics are positive. Hence
principal maximum is at the pointp50 ~see Fig. 2a!. When
j g52, the amplitudes of the even harmonics are positive,
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cos 4v rT. For cos 4v rT positive the principal maximum is
at pointp50 ~see Fig. 2b!, while for cos 4v rT negative the
principal maximum is at pointp5p\k/4v rT ~see Fig. 2c!.
Moreover, in contrast to the casej g51, at moderate values
of N an additional maximum manifests itself at poi
p5p\k/4v rT if cos 4v rT is positive or at pointp50 if
cos 4v rT is negative~see Figs. 2b and c!. In the additional
maximum the even and odd harmonics interfere destr
tively, so that the maximum disappears as the numbe
pulses increases. The case cos 4v rT50 requires specia
treatment. Here the period ofF (N)(p) is p\k/4v rT and the
principal maximum~within the periodicity interval! is at
point p50 ~see Fig. 2d!. The number of harmonics in~41!
and their amplitudes increase with the number of puls
This, obviously, leads to an increase in the height of
principal maximum of the functionF (N)(p) and a decrease
in the width ~see Fig. 3!.

Generally speaking, the comblike structure in the m
mentum distribution is formed for arbitrary values of th
time lagT. However, forj g52 the effectiveness of this pro
cess reaches its maximum atucos 4v rTu51, i.e., at the reso-
nant values

Tn5
pn

4v r
. ~44!

Equations~42! and ~43! yield values of f l
(N) that differ

somewhat from~39!. Nevertheless, the main features of pe
formation are reflected correctly.

Another important fact should be mentioned. At reson
values~44! of the time interval between pulses in a sequen
we haveQ21(4v rTn)5Q1(4v rTn). In this case~see~29!!

the matrixĈgg and hence the amplitudesf l
(N) are indepen-

dent of detuning and saturation. In other words, when
initial momentum distribution is broad, at resonant values
the time lag the formation of the comblike structure is ind
pendent on the field parametersd and V ~provided, of
course, that the conditions~32! are met!.

When we used the approximation~37!, we entirely ig-
nored the variation of the envelope of the peaks in the m
mentum representation. Now we take this fact into acco
by writing, instead of~38!,

W~N!~z!5(
l

f l
~N!

E l
~N!~z24v rTl/k!, ~45!

where the functionsE l
(N) are equal to unity at zero, are finit

in a small neighborhood ofz50, and describe the variatio
of the envelope at each step. The amplitudesf l

(N) still satisfy
~39!. Let us examine the evolution ofE0

(N)(0)51, which is
equivalent to the envelope of the momentum distribution a
whole,

E0
~N11!~z!5 (

mg ,ng

Cmg ,ng
~z!cng

cmg
exp@ iv rT~ng

22mg
2!#

3f~ng2mg!/2
~N!

E ~ng2mg!/2
~N! ~z!. ~46!
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FIG. 2. Formation of a comblike structure in th
velocity distribution of atoms after five light
pulses have acted on the system. The perio
functionF(p) of ~41! is depicted for the follow-
ing four cases:~a! j g51 and 4v rT5p; ~b!
j g52 and 4v rT5p; ~c! j g52 and 4v rT52p;
~d! j g52 and 4v rT5p/2.
The right-hand side of this equation contains the functionsdepends on the behavior ofĈ(z) near zero and the values of

E l

(N)(z) with lÞ0. In the limit 4v rT@1, in ~46! we
can approximate E lÞ0

(N) (z) by E0
(N21)(z). Then for

E (N)(z)[E0
(N)(z) to within (kz)2 we have

E ~N11!~z!2E ~N!~z!5~2kz!2D ~N!E ~N!~z! ~47!

with the initial condition~36!:

E ~1!~z!5W~1!~z!.

The first-order terms inkz vanish in view of the symmetry
f l

(N)5f2 l
(N) . The ‘‘diffusion’’ coefficient

D ~N!52
1

2 (
mg ,ng

Cmg ,ng
9 ~0!cng

cmg

3exp@2 iv rT~ng
22mg

2!#f~ng2m2!/2
~N! ~48!
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f l
(N) . Calculating the second derivative ofĈ(z) at zero, we

establish explicitly that

D ~N!5
7~12f1

~N!!

10
~49!

for j g51 and

D ~N!5
9~3472260 cos~4v rT!f1

~N!287f2
~N!!

1600

2
2~1119~V/g!2!~12cos~4v rT!f1

~N!!

u1119~V/g!2118id/gu2 ~50!

for j g52.
The solution of Eq.~47! can be represented in the form

of a finite product:
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E ~N!~z!5 )
i 50

N21

~12~kz!2D ~ i !!F ~0!~z!, ~51!

whereD ( i ) for i positive is determined by Eqs.~49! and~50!,
and expanding~36! in powers ofkz, we arrive at the follow-
ing expressions forD (0):

D ~0!5
11

30
at j g51,

D ~0!5
17

5
2

16~1119~V/g!2!

15u1119~V/g!2118id/gu2
at j g52.

~52!

Obviously, Eq.~51! describes the broadening of the e
velope of the peaks in the momentum distribution, with t
number of peaks increasing and the fraction of atoms wit
each peak decreasing in the process. Whenj g52 holds, the
coefficientD depends on the field parametersd and V and
reaches its minimum atd50 and V!g ~here, in view of
~32!, V must be much larger thankv!. Thus, the envelope
broadening effect can be diminished by a quantity of orde
a few percent by using a weak resonant field.

The final expression for the momentum distributi
function in the local reference frame in the case of a bro
initial momentum distribution is

W̃~N!~p!5 (
l 52 j g~N21!

j g~N21!

expS 2 i4v rTl
p

\kDf l
~N!

Ẽ l
~N!~p!,

~53!

whereẼ l
(N)(p) is the Fourier transform ofE l

(N)(z). The ob-
served distribution function~in the laboratory reference
frame! is expressed in terms ofW̃(N)(p) by the following
formulas:

F̃ ~N!~p!5
W̃~N!~p1\k!1W̃~N!~p2\k!

2
for j g51, ~54!

FIG. 3. Dependence of the halfwidth of the peak in the momentum re
sentation on the number of light pulses atj g51 and 4v rT5p. The dots
correspond to the results of calculations by Eqs.~39! and ~41!, and the
dashed curve represents the asymptotic curve 0.58/AN.
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F ~p!5
8

for j g52, ~55!

which follow from ~18! and describe the splitting of eac
peak in the local reference frame intoj g11 peaks in the
laboratory reference frame.

4.2. Asymptotic behavior for N@1

The approximate Eqs.~42! and ~43! make it possible to
analyze the asymptotic behavior of the solution when
number of pulses is large. ForN@1 the dependence o
uf l

(N)u on N andl can be approximated by a smooth functio
f(N,l ) and Eqs.~42! and ~43!, by the second-order differ
ential equation

]

]N
f~N,l !5a

]2

] l 2 f~N,l ! ~56!

with the boundary and initial conditions

f~N,0!51, f~0,l !50.

Thus, the problem reduces to a heat equation for a se
bounded rod whose end is kept at a constant tempera
The solution of this problem has the form

f~N,l !512ErfS l

2AaN
D , ~57!

where the ‘‘thermal conductivity’’ coefficienta is equal to
1
4 at j g51. For j g52 the situation is more complicated. Fo
mally at ucos 4v rTu51 the ‘‘thermal conductivity’’ a is
equal to15

32, but the first coefficientsuf1
(N)u differs consider-

ably from ~57! because of the transition over pointl 50, a
process that cannot be described by Eq.~56!. For this coef-
ficient the asymptotic behavior is

uf1
~N!u'12

1.3

AN
.

For l .1 formula ~57! becomes valid if we interpreta as a
fitting parameter close to15

32 and weakly dependent onN.
Equation~57! shows that the width of the peaks in th

momentum representation decreases like 1/AN ~see Fig. 3!.
The asymptotic behavior of the ‘‘diffusion’’ coefficientD (N)

in Eq. ~47! for the envelope of the peaks also obeys the 1/AN
law. Hence the width of the envelope increases likeN1/4,
while the relative fraction of atoms within each peak~the
area of the peak! decreases likeN21/4.

Interestingly, a similar asymptotic behavior for the wid
and area of the peaks is observed in the problem of coo
by velocity-selective coherent population trapping in a s
tionary s12s2 field13 if N is interpreted as the time o
interaction with the field.

4.3. Scattering in the general case

Let us examine the general case where the de Bro
wavelengthlDB of the atom~the characteristic length ove

e-
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which the functionF (0)(z) is finite! is not necessarily smal
compared to the wavelengthl of the light. If

4v rT@
lDB

l
, ~58!

the formulas~35! and ~36! still describe the formation o
well-resolved peaks at 0,64v rT/k,68v rT/k,•••, whose
amplitudes are described by~39! and, as a consequence, of
comblike structure in momentum space. However, the sim
representation~51! for the envelope becomes invalid. Fo
lDB.l the shape of the envelope differs qualitatively fro
the caselDB!l discussed above. As the scattering diagr
in Fig. 4 shows, each peak in the coordinate representa
exhibits spatial oscillations corresponding to the diffracti
of atoms on a standing wave~the Kapitza–Dirac resonanc
effect!.22 In the momentum representation this feature ma
fests itself in the peak envelope, which demonstrates qu
tum diffraction features discussed in Ref. 16. In the oppo
limit where

4v rT<
lDB

l
, ~59!

the very property~53! of factorization of the distribution
function into a periodic functionF(p) and an envelope
Ẽ(p) becomes invalid. WhenlDB.l holds, the two effects
Ramsey cooling proper and the Kapitza–Dirac resonance
fect, may influence each other~may interfere with each
other!. For 4v rT5(2n11)p, their interference is destruc
tive. The action of two light pulses reduces to broadening
momentum distribution, while the quantum features induc

FIG. 4. Diagram of atomic scattering after five light pulses have acted
the system atj g51 and 4v rT510p in the case of a narrow initial momen

tum distribution,F̃ (0)(p)}exp(2p2/p0
2), with p05\k/5.
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for 4v rT52np, the effects interfere constructively, ampl
fying each other.

4.4. Ramsey cooling of atoms precooled by velocity-
selective coherent population trapping

It is appropriate at this point to compare the results
the theory developed in the present paper with quan
simulations of Ramsey cooling of helium atoms~the j g51
→ j e51 transition!.17 The following situation was examine
in Ref. 17. The atoms were precooled by velocity-select
coherent population trapping in a resonants12s2 field be-
low the quantum limit\v r ~the full width at half-maximum
of the peaks in the momentum representation was 0.34\k!.
Then, in the course ofT5500g21 the atoms were left to
themselves, after which a second pulse of light of len
t5100g21 was sent through the system. Here we will n
consider the precooling process—we model it by a mixt
of Lorentzian~for atoms in theuCNC& state! and Gaussian
~for atoms in theuC1

L& state! distributions~the uC1
V& state is

assumed empty!:

r̂~z!5A exp~2akuzu!uCNC&^CNCu1B

3exp~2b~kz!2!uC1
L&^C1

Lu.

The following values of the parameters correspond to
data given in Ref. 17:a50.17, A51.25, b57.78, and
B54.75. Since the atoms in theuC1

L& state do not participate
in Ramsey cooling, the initial condition for~35! should be
taken in the form of a Lorentzian peak:

W~1!~z!5A exp~2akuzu!.

According to~35!,

W~2!~z!5W~1!~z!1
22Q21~kz!2Q1~kz!

822Q21~kz!22Q1~kz!

3~W~1!~z14v rT/k!1W~1!~z24v rT/k!

22W~1!~z!!.

We found the Fourier transformW̃(p), added to it a broad
background corresponding to the Gaussian distribution,
used the peak splitting formula~54!. The result was the dis
tribution functionF̃(p) in Fig. 5, which agrees qualitatively
with the result of Ref. 17. For instance, according to o
calculations the width of the principal peaks at the poi
p56\k was 0.06\k ~the total width at halfheight withou
allowing for background!, while the data of Ref. 17 yield
0.04\k. The discrepancy can be explained by the fact t
condition ~32! was not met in Ref. 17,kv;gS, and during
the second field pulse there was additional cooling due
selective coherent population trapping.

5. DEPENDENCE OF THE CONTRAST OF THE SCATTERING
DIAGRAM ON THE PARAMETER gSt

In view of the experiment of Sanderet al.18 in pulsed
cooling on the j g52→ j e→2 in the D1-line of 87Rb, we
consider a situation in which the pulse length is not su
ciently large for the atoms to switch to the dark state co

n
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pletely. More precisely, we assume that in the event of w
saturation,S!1, only one of the two conditions in~13! is
met, i.e.,

gt@1, gSt<1.

In this case instead of~35! we have the following recurrenc
formula for the density matrix of the atoms:

FIG. 5. Diagram of scattering of atoms precooled by velocity-selective
herent population trapping.
ak

rm1 ,m2
~z!5 (

n1 ,n252 j g
Rm1 ,m2

~zut!exp@2 iv rT~n12n2!#

3rn1 ,n2

~N! ~z12v rT~n12n2!/k!, ~60!

where m1,2 and n1,2 label the magnetic sublevels of th
ground state~the density matrix of the excited state and th
off-diagonal elements can be expressed in terms of the d
sity matrix of the ground state in theS!1 limit!. The initial
conditions also change appropriately:

rm1 ,m2

~1! ~z!5 (
n52 j g

j g

Rm1 ,m2

n,n ~zut!exp~ ikzn!
F ~0!~z!

2 j g11
. ~61!

Figures 6a, b, and c depict the results based on the
merical calculation of the matrix exponential functionR for
the j g52→ j e52 transition ford57g, N528, T5p/4v r

~in accordance with the data of Ref. 18! and for different
values of thegSt parameter: 0.4, 0.8, 1.6, and 16. The initi
distribution is assumed to be Gaussian,F (0)

3(z)5exp(2b(kz)2) with b51.45 ~the corresponding
Gaussian halfwidths at e21/2 of the maximum of the mo-
mentum distribution is 1.7\k!. Table I shows that the enve
lope halfwidthse and the contrast of the scattering diagra
~the peak-to-peak ratioF̃(\k)/F̃(0)! increase withgSt, but
the peak halfwidthsp decreases. The value ofgSt can be
increased by increasing the pulse length and the field int

o-
m

n

e

FIG. 6. Dependence of the scattering diagra
for j g52 and 4v rT5p on the parametergSt.
Shown is the momentum distribution functio

for the atoms,F̃(p), in the laboratory reference
frame after 28 light pulses have acted on th
system at ~a! gSt50.4, ~b! gSt50.8, ~c!
gSt51.6, and~d! gSt516.
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TABLE I. Dependence of the characteristics of the scattering diagram on
the parametergSt.
sity or by decreasing the detuning from resonance. The
perimental data correspond togSt51.6, which is far from
the optimum values determined by the following qualitati
considerations. Only the atoms trapped into a CPT state
tribute to formation of the comblike structure, so that t
maximum contrast is observed when all the atoms are tr
ferred intouCNC&. The condition for almost complete clea
ing of the medium can be written asgSt.1/a, wherea is
the minimum eigenvalue~25! ~in our casea51/6!. For in-
stance, decreasing the detuning by a factor ofA10 we find
that gSt516, which yields a scattering amplitude close
the analytical results achieved in the previous sections of
paper~see Fig. 6d and Table I!. Note that here one can spea
only of qualitative agreement between our results and th
of Ref. 18. In particular, atgSt51.6 our data yield
se'4.0\k, while the data of Ref. 18 yieldse'4.4\k; for
the peak halfwidth we havesp'0.2\k, while Ref. 18 yields
sp50.3\k. Here are some factors that lead to these discr
ancies. First, the interaction in the experiment of Ref. 18
not consist only of the closed transitionj g52→ j e52, since
there was an additional field that pumped the atoms from
hyperfine component withj g51. This ‘‘depleting’’ field
acted continuously, and in the interval between light pul
in the active transition atoms returned to the sublevel w
the angular momentumj g52, with the momentum distribu
tion being further broadened because of the recoil eff
Second, the finite momentum resolution of the detecting s
tem made it impossible to observe structures narrower t
0.3\k. Finally, our main assumption that the atoms rem
immobile when a light pulse acts on the system works poo
in conditions corresponding to those of the experime
wherekvt;gSt;1.

6. CONCLUSION

By assuming that the translational motion of atoms c
be completely ignored while a light pulse acts on the sys
we were able to develop a fairly simple analytical descript
of Ramsey cooling of atoms. The method accounts exa
for the quantum effects that are due to the recoil in the
sorption~emission! of photons and the free motion of atom
in the absence of a field. We found that the interaction
atoms and light pulses in CPT conditions may generate
relations between arbitrarily distant pointsz1 andz2 , a fact
of fundamental importance for atomic optics and atomic
terferometry. We also discovered features of the scatte
diagram not detected in earlier studies,17,18 namely,

gSt se/\k sp/\k F̃(\k)/F̃(0)

0.4 3.2 0.15 1.5
0.8 3.5 0.15 2.2
1.6 4.0 0.15 3.7
16 6.6 0.05 31
` 6.6 0.05 55
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pulses have acted on the system! of additional maxima~i.e.,
in addition to the principal maximum!;

~2! the lack of dependence in the casej g51 ~provided
that conditions~32! are met! of the scattering diagram on th
field parameters; and

~3! the dependence in the casej g52 of the scattering
diagram in the field intensity and detuning. However, in t
case of a broad~on the photon momentum scale! initial dis-
tribution at resonant values of the time interval between t
consecutive light pulses~Eq. ~44!! this dependence manifes
itself only in the peak envelope in the momentum distrib
tion.

We examined the scattering of atoms with angular m
menta j g51→ j e51 and j g52→ j e52 by a resonant
s12s2 field. The method can be applied~after proper
modification! to transitions with larger values of angular m
menta and to more complicated field configurations~includ-
ing two- and three-dimensional!.

The authors are grateful to Dr. Frank Sander fro
Garching, who read the manuscript and made useful rem
and clarifications.

APPENDIX

The coefficientsD andmi , j have the following form:

D581S 4S d

g D 2

1S V

g D 4D ~2144160Q2123Q21
2

160Q126Q21Q123Q1
214Q21Q014Q1Q0

14Q0
2!218S V

g D 2

~216021188Q211225Q21
2

218Q21
3 21188Q11210Q21Q126Q21

2 Q1

1225Q1
226Q21Q1

2218Q1
3260Q21Q0260Q1Q0

132Q21Q1Q0260Q0
218Q21Q0

218Q1Q0
2!2~15

23Q2123Q112Q0!~216021044Q211225Q21
2

227Q21
3 21044Q1230Q21Q1115Q21

2 Q1

1225Q1
2115Q21Q1

2227Q1
32288Q0160Q21Q0

218Q21
2 Q0160Q1Q0128Q21Q1Q0218Q1

2Q0

260Q0
2112Q21Q0

2112Q1Q0
218Q0

3!, ~A1!

m1,15972S 4S d

g D 2

1S V

g D 4D ~231Q211Q1!

2216S V

g D 2

~45221Q2113Q21
2 221Q1

12Q21Q113Q1
2!212~1523Q2112Q023Q1!

3~45218Q2113Q21
2 26Q012Q21Q0218Q1

22Q21Q112Q0Q113Q1
2!, ~A2!

m2,252243S 4S d

g D 2

1S V

g D 4D ~Q2112Q01Q1!
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Ultrahigh-energy cosmic rays: possible origin and spectrum

A. V. Uryson

P. N. Lebedev Physical Institute, Russian Academy of Sciences, 117924 Moscow, Russia
~Submitted 30 June 1997!
Zh. Éksp. Teor. Fiz.113, 12–20~January 1998!

The complicated shape of the cosmic ray spectrum recorded by giant arrays in the energy range
101721020 eV is analyzed. It is shown that in the energy region;101821019 eV the
spectrum probably coincides with the injection spectrum whose exponent is equal approximately
to 3.223.3. The flatter component in the energy region (3.225.0)31019 eV is due to
braking of extragalactic protons on primordial photons~the cosmic background radiation!. At
energies exceeding 3.231019 eV the spectrum does not have a blackbody cutoff. The
possibility of determining the distances at which cosmic rays originate and investigating the
evolution of their sources on the basis of ultrahigh-energy cosmic ray data is discussed. ©1998
American Institute of Physics.@S1063-7761~98!00201-7#

1. INTRODUCTION galactic in the energy regionE,1019 eV and extragalactic
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The origin of cosmic rays of ultrahigh-energy,E.1017

eV, is still unclear. The experimental data indicate that c
mic rays with energiesE.431019 eV are probably extraga
lactic in origin.1–3 If this is so, then their spectrum may hav
a blackbody cutoff:4,5 the recorded particle flux with energ
631019 eV will be twice as small as expected from th
power-law extrapolation of the spectrum as a consequenc
the interaction of the cosmic rays with primordial photo
~the cosmic background radiation! in intergalactic space
However, if the proton sources are not farther away from
than 40–50 Mpc the blackbody cutoff will be absent sin
protons of energies up toE'1022 eV traverse such distance
almost freely.6 In Ref. 7 it was shown that the main proto
sources with energiesE.Ebb'3.231019 eV are probably
the nuclei of active galaxies no farther from us than 40 M
if the Hubble constant is equal to 75 km/(s Mpc). In th
case the proton spectrum does not have a blackbody cu
At present the experimental data obtained at differ
detectors—Yakutsk,8 Akeno and AGASA,9 ‘‘Fly’s Eye,’’ 10

Haverah Park,11, Sydney,12 and Volcano Ranch13—neither
confirm nor refute its presence.

The origin of cosmic rays in the energy regio
1017,E<1019 eV is determined not only on the basis
their spectrum, but also their anisotropy and chemi
composition.1–3 However, the available experimental da
are not sufficiently unequivocal to determine whether cos
rays of such energies are galactic or extragalactic.

Different models have been considered in attempts
explain the shape of the spectrum in the energy reg
E.1017 eV. According to the results of Refs. 14–17, th
spectrum can have a complicated shape if it is formed
extragalactic protons whose sources are hundreds of m
parsecs from us. On the other hand, modeling of charg
particle trajectories in galactic magnetic fields has sho
that cosmic rays in the energy region 101721018 eV are ga-
lactic or are of mixed origin—they are accelerated in t
Galaxy and in the Local Supercluster.18,19

The present paper proposes two models to explain
proton spectra. The first model assumes that cosmic rays
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for E.10 eV. In the second model they are assumed to
extragalactic for energiesE.1017 eV. Using these two mod-
els the paper discusses the possibility of investigating
evolution of sources of ultrahigh-energy cosmic rays.

2. EXPERIMENTAL DATA

The cosmic ray spectrum in the energy regionE.1017

eV has a complicated shape:3,8,10 for E'531017 eV the
slope of the spectrumg grows from g'3.023.1 to
g'3.223.3 ~the error in the determination ofg is
0.0220.06), while in the energy regionE'1019 eV it de-
creases tog'2.622.7, i.e., a flatter component appears
the spectrum. The error in the determination of the slope
the flatter component is 0.1.~Spectral slopes are not provide
in Refs. 11–13.! Cosmic ray spectra measured at differe
detectors8–12 and energy-normalized in the same way as
Ref. 3 are plotted in Fig. 1.

3. COSMIC RAY SPECTRUM FOR E<1019 eV IN THE
GALACTIC MODEL

The propagation of cosmic particles in the Galaxy can
described in the diffusion approximation if their energy do
not exceed 101721018 eV ~Ref. 18!. In addition, it was
shown in Refs. 20–22 that particles with chargeZ cease to
propagate diffusively if their energy exceeds some va
E0Z, such that in the energy regionE.E0Z the particle
spectrum coincides with the injection spectrum and
slopes of the spectra are equal tog5g0. ~Note that this result
was obtained in Refs. 20–22 by different methods: in Re
20 and 21 it is due to drift of ultrahigh-energy cosmic rays
large-scale magnetic fields, while in Ref. 22 it is due to
transition to collisionless propagation of particles in a m
dium where they excite MHD waves.! An estimate of the
energyE0 was obtained by numerical simulation of the pa
ticle trajectories in the Galactic magnetic field:1 E0'231018

eV.
The chemical composition of cosmic rays in the ener

region 101821019 eV is still unclear. According to the result
of measurements reported in Ref. 23, the proton fraction

605$15.00 © 1998 American Institute of Physics



tic
FIG. 1. Cosmic ray spectrum forE.1017 eV, energy-normalized in
the same way as in Ref. 3; measurement data at:d — Yakutsk,8

3 — Akeno and AGASA,9 1 — ‘‘Fly’s Eye,’’ 10 s — Haverah
Park.11 Solid line — theoretical spectrum calculated in the galac
model forE,Ebb and in the extragalactic model forE.Ebb .
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energiesE.1018 eV protons predominate. According to th
data of Ref. 10, the composition varies in the energy ra
4310172431019 eV in the following way: to start with,
iron nuclei predominate, and at the other end there are o
protons.

We will assume that at energiesE>1018 eV protons
predominate. Then the spectrum of the protons coinci
with their injection spectrum at energiesE>231018 eV.

The regionE>231018 eV is the region in which the
slope of the measured spectrum grows. This means ap
ently that at energiesE.1018 eV the slope of the proton
injection spectrum g0 is roughly equal to 3.223.3:
g0'3.223.3.

Particles with energyE.Ebb probably accelerate mainl
from sources no farther away from us than 40–50 Mpc,7,24,25

and as a consequence their spectrum does not have a b
body cutoff. If this is so, then the exponent of the spectr
in this region coincides with the exponentg0 of the injection
spectrum. We assume that in the regionE.Ebb the injection
spectrum is the same as forE>231018 eV. Then the slope
of the spectrum in the regionE.Ebb is equal to
g53.223.3.

Particles with energiesE.Ebb , propagating from
sources closer than 40 Mpc, will interact with the cosm
background radiation until their energy falls
E'(3.225.0)31019 eV. Particles with such energies cann
undergo any interactions in intergalactic space since t
mean free paths in the cosmic background radiation fiel
quite large:l.1000 Mpc~Ref. 6!. This leads to the resul
that protons with energiesE.3.231019 eV ‘‘pump’’ into
the regionE'(3.225.0)31019 eV, and as a result the slop
of the spectrum in this region changes fromg.3.1 to a value
g1 such that

E
Ebb

E2gdE5E
Ebb

E3
E2g1dE,

whereE3 is the upper limit of the energy range of the flatt
component. We findg1 from the experimental data.3,8–13The
measured value ofE3 is approximately 431019 eV, and the
energy of the particles is determined with an error of a
proximately 20–30%~Refs. 8 and 10!. Therefore we esti-
mated the exponentg1 for several values ofE3 in the inter-
val 431019,E3,531019 eV and several values ofg in the
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in Table I. The energy range of the flatter component w
allowance for the 30% error in the determination of the e
ergy isE'(225)31019 eV. It agrees with the measureme
results of Refs. 8, 9, 11–13 and does not contradict
single-measurement data of Ref. 10.

The possible existence in the spectrum of a flatten
component of such a nature was predicted in Refs. 14–1

The theoretical spectrum based on the proposed mod
plotted in Fig. 1. It is normalized to the measured intensity
E'1019 eV. In addition, the calculations assumed that t
energy region of the flatter component
E'(3.225.0)31019 eV. The theoretical spectrum agree
with the measurements within the limits of error.

Let us consider the slopes of the spectra in the reg
E>1019 eV. It is clear from the table that the propose
model yields values ofg1 in agreement with the slope of th
flatter component.

To estimate the slope of the measured spectrum in
regionE.Ebb we make use of the summary of the expe
mental data in Ref. 3: in 1993 only 881 events with ener
E>1019 eV were recorded, and only 7 withE>1020 eV and
2 with E>231020 eV. For a power-law spectrum whereN
is the number of particles with energy greater thanE,
N(>E), the relation N1(>E1)/N2(>E2)5(E1 /E2)g11

holds, and from it we obtaing53.120.1
10.2 for E151019 eV,

E251020 eV.
Some of the 881 events have energy in the inter

'(1.023.2)31019 eV and make up the flattened comp
nent. Therefore, in the regionE.3.231019 eV the exponent
of the spectrum will be greater than the estimate:g.3.1 and,
consequently,g0.3.1.

TABLE I. Calculated exponentg1 of the flatter component for differen
values~within the limits of experimental error! of its upper limit E3 and
spectral slopeg.

g E3, eV g1

3.0 4.931019 2.6
3.05 4.831019 2.65
3.05 4.931019 2.7
3.1 4.531019 2.6
3.2 4.531019 2.7
3.3 4.231019 2.7

7A. V. Uryson
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trum coincides with the injection spectrum in two region
231018<E,1019 eV andE.3.231019 eV. Estimates of the
slope of the spectrum in these intervals agree with e
other: g53.223.3 andg.3.1; consequently, the measure
spectrum apparently does not have a blackbody cutoff.~The
authors of Ref. 3, on the basis of these same experime
data, concluded that its existence was possible. They
sumed that if there is no cutoff, then the slope forE.Ebb

must coincide with the slope of the flatter component.!

Cosmic ray injection spectrum

Let us consider how the cosmic ray injection spectr
varies between the different energy intervals, making us
the results presented above.

In the regionE,1017 eV the proton spectrum is relate
to the injection spectrum by the relation1 N(.E)}E2g02m,
where the parameterm describes the dependence of the d
fusion coefficient on the energy,D}Em. The measurement
of Ref. 26 yield a value ofm the range 0.320.7 for energies
of a few GeV/nucleon, the measurements of Ref. 27 yi
m50.6 for energies'1 TeV/nucleon, and analysis of th
diffusion model18 yields m50.1520.20 in the energy range
E510921017 eV. The slopeg of the cosmic ray spectrum
for E,331015 eV is equal to approximately 2.75 and hen
the exponent of the injection spectrum in this region
g0'2.2 for m50.6 andg0'2.6 for m50.1520.2.

The spectral indexg0 in the region 33101521018 eV is
hard to determine since it is still not clear for what reaso
the slope of the cosmic ray spectrum varies forE.331015

eV. Particles with chargeZ are accelerated to energie
E<1015Z21 eV, apparently, in supernova bursts.28 Accord-
ing to Refs. 18, 29, and 30, the slope of the spectrum va
as a consequence of the propagation and subsequent a
eration of the particles in the Galaxy. In addition, it
possible3 that high-energy protons accelerate in other~not
yet established! processes, and their injection spectru
changes.

Thus, if protons predominate in the composition of co
mic rays in the energy regionE.1018 eV ~Ref. 23!, then it is
possible that the slope of the injection spectrum varies in
following way: it increases to a valueg0'3.223.3 for
E.1018 eV in comparison with the regionE,331015 eV,
where the slope does not exceed 2.6, 2.2<g0<2.6.

4. EXTRAGALACTIC MODEL OF THE ORIGIN OF COSMIC
RAYS IN THE ENERGY REGION E>1017 eV

In this model we assume that the particles with ene
E.1018 eV are mainly extragalactic, that their spectrum h
the single exponentg'3.023.1, found in the region
E'(224)31017 eV,3,8,10 and that for energiesE.1018 eV
the spectrum is distorted as a result of interaction of
particles with the fossil radiation~cosmic background radia
tion! in intergalactic space.

A possible change in the shape of the spectrum in
region E<3.231019 eV was noted in Ref. 14 and invest
gated in Refs. 15–17. According to the results of these s
ies, the spectrum can have a complicated shape if it is form
by extragalactic protons: by interacting with the cosm
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the red shift, in processes ofe e pair formation if their
energy satisfiesE,1019 eV, and by photo-generation o
pions for E.Ebb . As a result, the differential spectrum o
the protons emitted by an isolated source can exhibit a hu
and a valley frome1e2 pair formation, a photo-pion hump
and a blackbody cutoff. However, if the sources uniform
fill the Universe, the hump and valley frome1e2 pair for-
mation will be weakly expressed. The sources should fi
sphere of radius corresponding to the red shiftz'0.2. The
photo-pion hump~without a valley! will be present in the
spectrum if the proton sources uniformly fill a sphere of
dius corresponding toz<0.085.

Hence we may assume that for a nonuniform source
tribution the spectrum will have not only a photo-pion hum
but also other peculiarities. Thus, the measured spect
could be explained by varying the shape of the source dis
bution. Observation data indeed indicate that the nucle
active galaxies are distributed nonuniformly on scales rea
ing ;102 Mpc ~Ref. 31! and that they are most likely th
main sources of ultrahigh-energy protons.1,7

Let us analyze the spectrum in accordance with this
pothesis. If, in accordance with Refs. 7, 24, and 25, the p
ticles with E.Ebb are accelerated mainly in sources sep
rated from us by distances not exceeding 40250 Mpc, then
their spectrum does not have a blackbody cutoff. Thus,
exponent of the spectrum in this region is equal
g'3.023.1. This is just the rough estimate of the slope
the regionE.Ebb obtained above. It coincides with th
slope for E'(125)31017 eV and, consequently, in thi
model the measured spectrum does not have a blackb
cutoff.

The shallow component at energiesE'(3.225.0)31019

eV in this model is also due to ‘‘pumping’’ of protons int
this region having energiesE.Ebb . Values of the spectra
index g1 of the flattened component forg'3.023.1 are
shown in the table.

In the spectrum of particles accelerated in sources w
z'0.2, a notch can appear in the regionE,1019 eV as a
result of particles with energiesE'2310182331019 eV
losing energy by creatinge1e2 pairs in the background ra
diation field.16

This model can be verified by calculating the prot
spectra of sources distributed nonuniformly at distan
r .40 Mpc from us with a nonuniformity scale of up t
;100 Mpc.

5. POSSIBLE CONSTRAINTS ON COSMIC RAY SOURCES

Particles with energiesE.1018 eV probably propagate
along straight-line paths in the Galaxy21,22 and beyond it.32

The energy of a proton emitted at the epoch with r
shift z falls as it propagates in intergalactic space due to
red shift and formation ofe1e2 pairs and pions.1 Let E0(z)
be the energy that a proton should have at its epoch of g
eration in order for its energy atz50 to beE. We note that
the luminosity and density of sources in the accompany
volume increase with growth of their red shiftz. Thus, the
energy density of extragalactic particles in the interv
(E,E1dE) is equal to

8A. V. Uryson
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where neg(z) is the density of extragalactic source
LCR(E0)dE is their cosmic-ray luminosity in the interva
(E0 ,E01dE), andt(z) is the propagation time of such pa
ticles. The lower integration limitzmin corresponds to the
distance the particles can traverse essentially without los
According to Ref. 6, this distance is;10 kpc, and therefore
zmin'0.003. The upper limitzmax is probably'324.33,34

The energy densityweg(.E) can be found from the
cosmic ray spectrum:

weg~.E!5
4p

c E ~E!EdE,

whereI (.E) is the total intensity of cosmic rays with ene
gies.E andc5331010 cm/s is the speed of light.~Energy
requirements on ultrahigh-energy particle sources are
cussed in Ref. 1.!

At the present time, models of the cosmological evo
tion of sources are not exact enough35,36 to allow one to
extract from them estimates of the density and luminosity
sourcesneg(z) and LCR(z). It is also unclear whether th
energetics of the sources is not connected in some way
the efficiency of the particle acceleration. It has still not be
possible to identify the most powerful extragalactic sour
as possible sources of cosmic protons withE'1020 eV ~Ref.
32!. On the contrary, in Ref. 7 I identified the nuclei of active
galaxies, emitting moderate fluxes in the radio and x-
ranges, as the sources of such protons. From the prop
models we obtain the estimate

weg~.E!5E neg~z!LCR@E0~z!#t~z!dz.

For example, according to Fig. 1, forE5Ebb we have
I (Ebb)Ebb

3 '1024.5 (m2
•s•sr•eV22)21, and hence

weg(.Ebb)'4310221 erg/cm3. In the second mode
weg(.E) can be estimated at lower energies: from Fig. 1
follows for E'231018 eV that
I •(231018 eV)•(231018 eV)3'1024.7 (m2

•s•sr•eV22)21

and henceweg(.E)'1310219 erg/cm3.
It is possible that the slope of the flattened compon

reflects how distant the proton sources are that form it. T
farther the source is located from us, the larger the ene
that the proton loses on average traversing intergala
space. The dimensions of the voids between galaxies am
to (2.52100)h21 Mpc, and between clusters of galaxies a
(1002250)h21 Mpc for the Hubble constan
H5100h km•s21

•Mpc21 ~Ref. 31!. Therefore, if the
sources beyond the Local Supercluster are located at a
tancesr>100 Mpc, then the slope of the flattened comp
nent will be greater than forr<100 Mpc. Thus, by studying
the flattened component it is possible to estimate the
tances from which the protons are arriving. So far such
analysis has been difficult to carry out because of the la
experimental error in the slope of the spectrum forE.Ebb .
If the second model is confirmed, then it will be possible
obtain from it an estimate of the distances from which th
ultrahigh-energy cosmic rays are arriving using the spect
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for E'2310 210 eV, where the experimental errors a
significantly less.

6. CONCLUSION

I have proposed two models of the origin of ultrahig
energy cosmic rays. In the first model the cosmic rays
assumed to be extragalactic forE>331019 eV and galactic
at lower energies. In the second model they are assume
be extragalactic starting atE.1017 eV. It follows from both
models that the measured spectrum has apparently no b
body cutoff and that the flattened component in the ene
region (325)31019 eV is due to braking of protons on pri
mordial photons.

Moreover, it follows from the first model that there is
possible changeover from galactic to extragalactic rays in
region of the notch. The data on anisotropy and chem
composition in this energy region are still not sufficient
definite to reliably confirm this conclusion.

In the first model we also found that the injection spe
trum of cosmic rays with energiesE.1018 eV is different
from that at lower energies. Its exponent is larg
g0'3.223.3 whereas for 1010,E,331015 eV it lies in the
interval 2.2<g0<2.6. The proton spectrum has expone
g0'3.223.3 in the energy region;101821018 eV. This re-
sult was obtained from the measurements of Ref. 23, fr
which it follows that forE>1018 eV protons predominate in
the composition of cosmic rays.

To check the second model it is necessary to calcu
the spectra of protons withE.1017 eV from sources at dis-
tancesr .40 Mpc from us and nonuniformly distributed o
scales up to;100 Mpc.

From the ultrahigh-energy cosmic ray data it is possi
to form a picture of the evolution of the sources and estim
the distances from which cosmic rays are arriving. Calcu
tions of the proton spectra with allowance for the evoluti
of the sources were performed in Refs. 1 and 16. A sim
dependence of the source density and luminosity onz was
adopted. It was then shown that the evolution of the sour
has a more complicated form.35,36 It follows from the pro-
posed models that the evolution of the sources can be in
tigated employing the extragalactic particle spectrum

I ~.E!
4p

c
E5E neg~z!LCR@E0~z!#t~z!dz.

The distances from which the cosmic rays are arriv
can be estimated by analyzing the slope of the flattened c
ponent. The dimensions of the voids between galaxies
(2.52100)h21 Mpc, and between clusters of galaxie
(1002250)h21 Mpc ~Ref. 31!. The slope of the flattened
component will be greater if the distance to the sources
yond the Local Supercluster exceeds 100 Mpc than in
caser ,100 Mpc. However, so far it has been difficult t
carry out such an analysis due to the large error in the sl
of the measured spectra forE.Ebb . If the second model is
confirmed, then it can be used to obtain an estimate of
distances from which cosmic rays are arriving using

9A. V. Uryson
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14A. M. Hillas, Can. J. Phys.21, 1016~1968!.
15C. T. Hill and D. N. Schramm, Phys. Rev. D31, 564 ~1985!.
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but also forE'2310 210 eV, where the experimenta
errors are significantly less.

The above conclusions can be verified in further m
surements of cosmic ray spectra at energiesE.1017 eV at
the detectors described in Refs. 8–11 and also in Refs
and 38, and at the ShAL-1000 detector,39 all of which have
significantly better resolution. Projected new detectors
tended for recording cosmic rays with energiesE.1019 eV
are described in Ref. 40.
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Squeezed states and quantum chaos
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We examine the dynamics of a wave packet that initially corresponds to a coherent state in the
model of a quantum rotator excited by a periodic sequence of kicks. This model is the
main model of quantum chaos and allows for a transition from regular behavior to chaotic in the
classical limit. By doing a numerical experiment we study the generation of squeezed states
in quasiclassical conditions and in a time interval when quantum–classical correspondence is well-
defined. We find that the degree of squeezing depends on the degree of local instability in
the system and increases with the Chirikov classical stochasticity parameter. We also discuss the
dependence of the degree of squeezing on the initial width of the packet, the problem of
stability and observability of squeezed states in the transition to quantum chaos, and the dynamics
of disintegration of wave packets in quantum chaos. ©1998 American Institute of Physics.
@S1063-7761~98!00801-4#

1. INTRODUCTION cavity in a dynamical regime close to the separatrix.4,6
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At present the problem of generating squeezed quan
states draws a lot of attention, both from the standpoin
both pure knowledge and possible applications.1–3 Most of-
ten the topic is squeezed states of the electromagnetic fi
If in the simplest case we take a single-mode quantum fi
which is described by the creation and annihilation opera
a† and a, the variances of the quadrature field operat
a15a1a† anda252 i (a2a†) satisfy the uncertainty rela
tion Da1Da2>1, where the equality holds for a cohere
state or vacuum. Then, in these simple terms, a sque
state is a state for which the variance of one of the quadra
components is less than unity. Quantum fluctuations, de
mined by the uncertainty relation, are represented diagr
matically in thea1a2 plane of the quadrature components
a circle for a coherent state or by an ellipse for a squee
state. In a more systematic description of squeezing,
quantum-noise ellipse is determined in terms of the pro
tion onto the same plane of the horizontal section of
Wigner distribution function, which gives the quasiprobab
ity distribution for measuring the quadratic fie
components.3

A typical situation in experiments in generation
squeezed states is one in which a large number of pho
participate in a nonlinear interaction and the amplitude
quantum fluctuations is small compared to the mathema
expectations of the observables.2,3 In this case the common
approach in explaining squeezing is to use the semiclas
setting, where the Wigner quantum function is actually as
ciated with a classical distribution function and instead
examining the dynamics of the quantum-noise ellipse
considers the evolution of the classical phase volume.3,4

For quite a long time it has been known that squeez
of light is amplified in systems close to the bifurcation po
between two different dynamical regimes.3–6 Buildup of
squeezing in such conditions was considered, e.g., for
parametric interaction of light waves5 and for the interaction
of Rydberg atoms with an electromagnetic mode in a highQ
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The following simple argument is used to explain t
buildup of squeezing near a bifurcation point: quantum flu
tuations build up for the physical variable that is unsta
near the threshold. As a result there is nothing to stop
strong squeezing of fluctuations of the conjugate varia
since in a nondissipative system phase volume is conserv3

It must be noted at this point that a number of resear
ers~see Refs. 3–6! studied the buildup of squeezing near t
instability threshold in optical systems with only regular d
namics. However, it is well known that strong~exponential!
deformation of the phase volume is one of the main ma
festations of dynamical chaos in classical systems.7 The
physical reason for such strong deformations of the ph
volume is the local instability of motion, which usuall
manifests itself within a wide range of values of the cont
parameter of the dynamical system and not near the bifu
tion point. According to the correspondence principle, in t
quasiclassical limit a quantum system must manifest
properties of a classical system. Thus, it is quite natura
expect buildup of squeezing in the transition to quant
chaos, too. On the other hand, in a quantum mechanical
scription we speak only of the dynamics of wave packe
whose center moves almost along a classical trajectory in
course of a certain time interval. Hence in the quasiclass
limit the strong deformations of the phase volume, whi
accompany the transition to chaos, must manifest themse
in squeezing along a certain direction up to the point wh
quantum effects produce strong smearing of the wave pac

As far as we know, the generation of squeezed state
a system with chaotic dynamics was first examined in Re
8–10. By employing the 1/N-expansion method6,11 ~hereN
is the number of quantum states participating in the dyna
ics of the system! it was found in Refs. 8 and 9 that th
squeezing of light increases significantly in the transition
chaos during the time interval for which quantum–classi
correspondence is well-defined.12 This result was illustrated
in Refs. 8 and 9 by the example of the generalized Jan

6110$15.00 © 1998 American Institute of Physics



Cummings model, which allows a transition from regular
13

gle
g
d

r

to
l s
n-

z
ve
er
to

l
i

m
g

e
r

t i

e
lit
g
zi
o

ve

v
r
t

g

b-
re
m

to

th
t

h
th
z

a-
t a
d

wave packet in chaos consists of two stages: the initial
n of
ults
.
ck-
for

–
, in
t con-

in
, re-
in

the

um
liz-

ss
al-
ical
s in

in
os-

ng

ith
of

n
iod
e

dynamics to chaotic dynamics in the classical limit.Then
this result was generalized to the case of arbitrary sin
mode quantum-optical systems in Ref. 14. The squeezin
wave packets in quantum chaos was also briefly discusse
Ref. 10.

However, the main results of Refs. 8, 9 and 14 we
obtained by using a form of perturbation theory~the
1/N-expansion!. In this connection it should be interesting
study the generation of squeezed states in the numerica
lution of the Schro¨dinger equation proper for a simple qua
tum system that allows a transition to quantum chaos.

In the present paper we study the generation of squee
states in the time evolution of an initially Gaussian wa
packet in the model of a quantum rotator excited by a p
odic sequence of kicks, called the kicked quantum rota
The model was first introduced by Casatiet al.15 and at
present is the main model in studies of quantum chaos~see,
e.g., the review in Refs. 16–18!. The quantum rotator mode
is attractive mainly for two reasons: first, the classical lim
for this model is a well-studied standard map,19 and second,
in numerical calculations it is fairly easy to study the dyna
ics of the model in the quasiclassical region with a lar
number of quantum levels.

We examine the dynamics of narrow Gaussian pack
in a rotator with 217 ('105) levels. We define squeezing fo
the generalized quadrature operator

Xu5a exp~2 iu!1a†exp~ iu!,

whereu is a real parameter. It is this type of squeezing tha
observed in the homodyne detecting scheme, whereu is de-
termined by the phase of the reference beam.1 We will see
that as long as the wave packet is localized, the degre
squeezing correlates well with the degree of local instabi
in the system. Here the greater the instability, the stron
the squeezing achieved in a shorter time interval. Squee
is much stronger in quantum chaos than it is in regular m
tion. We will also see that the narrower the initial wa
packet, the higher the degree of squeezing that can
achieved. We attribute this to the fact that a narrow wa
packet is closer in its evolution to the classical trajecto
than a broad one, with the result that it is more sensitive
local instabilities in the motion, which leads to stron
squeezing.

We will also consider the problem of stability and o
servability of squeezing in the transition to chaos. More p
cisely, we will study the time dependence of the optimu
values of the phasesu of the generalized quadrature opera
Xu for which the squeezing is at its maximum~this is known
as principal squeezing20,21!. We will show that in strong
chaos and in long time intervals the optimum values of
phases change dramatically even under a small perturba
of the parameters of the initial Gaussian packet. Suc
squeezing regime is unstable and difficult to observe. On
other hand, our results suggest that in weak chaos squee
is fairly stable.

We will also briefly discuss the dynamics of disintegr
tion of wave packets in chaos. Here we will show tha
typical scenario of disintegration of an initially localize
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spread of the packet, and the catastrophic disintegratio
the packet into many small subpackets. Here our res
agree on the whole with the results of Casati and Chirikov18

Note that earlier the dynamics of narrow Gaussian pa
ets in the quasiclassical region was studied numerically
the model of a quantum rotator with kicks,22,23 and also the
model of a kicked quantum top24 and for the quantum-cat–
Arnold model25 in connection with the problem of quantum
classical correspondence in quantum chaos. However
these papers the generation of squeezed states was no
sidered.

The model of a quantum rotator is extremely popular
theoretical studies of quantum chaos. On the other hand
cently possibilities of implementing variants of this model
optical systems have been discussed.26 Moreover, the quan-
tum rotator model has been realized in experiments in
interaction of laser light and cooled atoms.27 Hence our re-
sults on the buildup of squeezing in the transition to quant
chaos in a rotator are also related to experimentally rea
able systems.

The plan of this paper is as follows. In Sec. 2 we discu
the quantum map of the rotator model and find how to c
culate principal squeezing. The method used in numer
calculations is developed in Sec. 3, and the main result
the dynamics of squeezing are given in Sec. 4. Finally,
Sec. 5 we draw the main conclusions and consider the p
sibility of verifying our results in experiments on squeezi
buildup.

2. THE QUANTUM ROTATOR MODEL AND SQUEEZED
STATES

Let us examined the model of a quantum rotator w
periodic delta-function kicks. Here we follow the notation
Ref. 23. The Hamiltonian for such a model is

H5
p2

2mL2 2dp~ t/T!mL2v0
2 cosx,

dp~ t/T!5 (
j 52`

1`

d~ j 2t/T!, ~1!

where x is the cyclic variable with a period 2p, L is the
characteristic size of the rotator,m is the rotator mass, and
v0 is the frequency of linear vibrations. The functio
dp(t/T) describes a periodic sequence of kicks with a per
T, whered(x) is the Dirac delta function. Let us introduc
new variables

a5mL2v0
2T, b5

T

mL2, ~2!

and measure time in units ofT, i.e., t→t/T. Then the Schro¨-
dinger equation assumes the form

i\
]C

]t
52

\2b

2

]2C

]x2 2dp~ t !a cosx•C. ~3!

Due to the periodicity ofC(x) in x the solution of Eq.~3!
can be written as follows:
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FIG. 1. Phase portrait of the classical standard map
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C~x!5
A2p

(
k52`

eikxAk~ t !,

Ak~ t !5
1

A2p
E

0

2p

C~x!e2 ikxdx. ~4!

Using the standard procedure,16,23 we obtain the quantum
map in the form

Cn115UxUpCn ,

Up5expS 2
ib

2\
p̂2D , Ux5expS ia

\
cos~ x̂! D , ~5!

where Cn is the value of the wave function at the tom
immediately after thenth kick. The time evolution of the
wave function in the map~5! is determined solely by two
parameters,a/\ and b\. SinceUp is diagonalized in the
p-representation,Ux is diagonalized in thex-representation,
and the transition betweenx- andp-representations is give
by the Fourier transformation~4!, the map~5! actually re-
duces to

Cn11~x!5UxF
21UpFCn~x!, ~6!

whereF and F21 are the direct and inverse Fourier tran
forms.

Sometimes it proves useful to use the quantum map w
ten in terms of the probability amplitudesAk of transitions
between the unperturbed levels of the rotator.15 Combining
~4! and ~5!, we obtain

Ak
~n11!5 (

m52`

1`

FkmAm
~n! ,

Fkm5~2 i !k2m expS 2
i\bm2

2 D Jk2mS a

\ D , ~7!
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and the superscript (n) on the variableA stands for the num-
ber of the kick. Bearing in mind that the Bessel functio
with u l u>z rapidly decrease with increasingl , we see from
~7! that, with exponential accuracy, in the course of a sin
kick 2a\21 unperturbed rotator levels are captured. Belo
we consider the case wherea/\ is large, which is typical of
quantum chaos problems.

In the classical limit the Hamiltonian~1! reduces to the
standard map

Pn115Pn2K sin xn11 , xn115xn1Pn ~mod 2p!,
~8!

wherePn5bpn , with the subscriptn denoting the values o
x and P immediately after thenth kick, andK[ab is the
Chirikov parameter.1! Strong and global chaos sets in fo
K.1. For K,1 the larger part of the phase plane is fille
with regular trajectories, although small regions with loc
chaos exist no matter how smallK may be.19 The phase
portrait for the map~8! at K50.8 is depicted in Fig. 1. The
chaotic layer lies near the separatrix of the main resona
which passes through the hyperbolic points (6p,0). In our
calculations we usually take a wave packet whose cente
gravity lies near a hyperbolic point.

For the initial state of the quantum map~5! we take the
Gaussian wave packet

C~x!5~2ps2!21/4 expS 2
~x2x0!2

4s2 1 ik0~x2x0! D ,

~9!

where

^x&5x0 , ^dx2&[^x2&2^x&25s2,

p0[^p&5\k0 , ^dp2&5 \2/4s2 ,

andk0 is an integer. The packet is assumed narrow:
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Note that in view of its periodicity inx the wave packet~9!
is generally not a state that minimizes the uncertainty re
tion. But in the case of a narrow packet it is essentia
indistinguishable from a minimum-uncertainty state.22–24

A typical initial quantum state in studies of light squee
ing is a coherent state.1–3 Such a state is an eigenfunction
the annihilation operatora, which in the present notation ca
be written as

a5
1

A2\
S Ag x̂1 i

p̂

Ag
D , g5S a

b D 1/2

. ~10!

The fact that the annihilation operator has such an app
ance can easily be understood if we consider the follow
limiting case of the harmonic oscillator that follows from~3!:

i\
]C

]t
52

\2b

2

]2C

]x2 1
ax2

2
C. ~11!

Now we can show that the wave function~9! is a coherent
state, i.e., an eigenfunction of~10!, if we put

s25
\

2g
. ~12!

Let us now turn to the problem of squeezing.
In light squeezing experiments,1 the observable quantity

is the variance of the generalized quadrature operator

Xu5ae2 iu1a†eiu, ~13!

whereu is the phase of the reference beam in the homod
detecting scheme. In the particular cases whereu50 or
u5p/2 Eq. ~13! yields the following expressions for th
generalized position and momentum operators:

X15a1a†, X252 i ~a2a†!, @X1 ,X2#52i , ~14!

with the uncertainty relation̂dX1
2&^dX2

2&>1, where averag-
ing is done over an arbitrary quantum state and equalit
achieved for a coherent state. The standard definition
quadrature squeezing is the condition1,3

min~^dX1
2&,^dX2

2&!,1, ~15!

i.e., the variance of one of the quadrature component
smaller than for the coherent state.

In a more general case we consider the variance^dXu
2&

of the operator~13!, and the state is assumed squeezed if
value of ^dXu

2& in this state for some value ofu is smaller
than in the coherent state.20,21 Experiments actually deter
mine the minimumS of this variance as a function of th
angleu:

S5 min
uP[0,2p]

^dXu
2&. ~16!

Using the definition~13! of Xu , we can show20,21 that

S5112^da†da&22A^da2&^da†2&, ~17!

and the minimum of̂ dXu
2& is reached at an optimum phas

valueu5u* defined as follows:21
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For our discussion it is convenient to expressS in terms of
the cumulants of the operatorsx andp. Using the definition
~10! of operatora and Eq.~17!, we obtain

S5
1

\ S ^dp2&
g

1^dx2&g

2A~^dx2&g2 ^dp2&/g!214c2D , ~19!

where

c5 1
2~^~xp1px!&22^x&^p&!.

Clearly each Gaussian packet satisfiesS5\/2s2g, while for
a coherent state we have, in view of~12!, S51. Hence a state
is squeezed if

S,1. ~20!

The condition determines the principal squeezing attaina
in homodyne detecting.20

The maximum of the variancêdXu
2& in u can be defined

in the same way the minimum was defined in~16!. We de-
note it byS̄. Then we can show that the dependence ofS̄ on
the cumulants differs from~19! only in the sign in front of
the square root, so that we have

SS̄>1. ~21!

Thus, squeezing inS ~Eq. ~20!! is accompanied by dilation in
S̄.

Note that in contrast to the quadrature squeezing~15!,
the definition~19! of principal squeezing contains quadratu
correlators of thê xp& type. This is very important for sys
tems with discrete time, to which the model of a quantu
rotator excited by kicks belongs. The thing is that the quad
ture squeezing~15! is essentially unobservable in such sy
tems, although the principal squeezing~19! and ~20! may
occur.2! In Sec. 4 we discuss the time dependence ofS.

3. THE NUMERICAL METHOD

Several features of the numerical method must be m
tioned. The interval inx from 0 to 2p is partitioned intoN
segmentsDx52p/N, and the wave functionC(x) is repre-
sented by a discrete sequence of values~column vectoruC&!
of lengthN, so thatC l5C( lDx), l P@0,1,•••, N21#. Ac-
cordingly, in the sum in~4! k varies from 0 toN21. In our
numerical methodN is an integral power of two. Here th
operatorF in ~6! is interpreted as the fast Fourier transform
which induces the following transformations:

F: C l→Ak , F21: Ak→C l . ~22!

To determine the principal squeezing, we must calcul
^dq2&, ^dp2&, and ^xp& ~see Eq.~19!!. For instance, the
calculation of^xp& proceeds along the following lines:

^xp&5^CuxF21pFuC&,
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finding the complex conjugate of the result, whilex and p
are vectors that initially have the form

x5@0, Dx, 2Dx,•••, 2p2Dx#,

p5@0, 1, 2,•••, N21#.

The fact thatx is defined modulo 2p requires following
the wave packet and ensuring that it is defined correctly d
ing the passage through the end-points of the interval@0,
2p#. We set up the process in the following manner. Wh
the center of the wave packet in thex-representation ap
proaches an edge of the half-interval@0, 2p#, the wave func-
tion C(x) is examined on a new interval,@2p,p#, with a
new vector

x5@0,Dx,•••,p,2p1Dx,2p

12Dx,•••,22Dx,2Dx#,

since (2kDx)mod 2p5(2p2kDx)mod 2p, wherek is an
integer. The transition from@2p,p# to @0,2p# is treated
similarly.

Calculations in thep-representation have their own sp
cial features. For instance, although for the Hamiltonian~1!
the momentum is defined in the interval from2` to 1`, in
numerical calculations we deal only with a finite range
values of momentump, a range specified by the numberN
of Fourier transforms in the expansion~4!. To avoid the pos-
sible problem of reflection of the wave packet from an ed
of the given interval in thep-representation,3! we select this
interval in each iteration of map~6! in such a way that the
maximum of the absolute value of the wave function of t
packet is always at the center of the given interval~actually,
we renumber the vectorp!.

The process of calculating the next iteration of the qu
tum map~6! is terminated as soon as the packet ceases t
sufficiently localized either in thex-representation or in the
p-representation, i.e., when the number of Fourier transfo
actually involved in the calculation process is smaller th
needed. We write the conditions for packet delocalizat
mentioned earlier. To this end we introduce the notation

j5 max
[0,2p]

uC~x!u, x5max$uA1u,uA2u,•••,uANu%,

and Aleft and Aright are the values ofAk belonging, respec-
tively, to the left and right edges of the finite interval
which the wave function in momentum space, the finiten
being due to the finite numberN of Fourier transforms in the
expansion~4!. The calculation is terminated when one of t
two inequalities,

maxH uAleftu
x

,
uArightu

x J .« or
uC~z!u

j
.«,

is valid ~herez50 if xP@0,2p# or z5p if xP@2p,p#. In
this paper we used the value«50.002!.

4. THE MAIN RESULTS

For the initial wave function in our calculations we too
the coherent state~a Gaussian wave packet! with \51026

and k0510 000, ands was varied between 0.04 and 0.0
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Chirikov parameterK, in terms of which the parametersa
andb in the evolution operator~5! are expressed as follows

a5K1/2
\

2s2 , b5K1/2
2s2

\
. ~23!

These formulas are obtained by combining the definit
K5ab and Eqs.~10! and ~12!.

In Sec. 2 we found that the number of unperturbe
rotator levels captured in one kick is roughly 2a/\. From
~23! it follows that in our case this number isK1/2/s2 and
amounts to several tens of thousands for the adopted wi
s of the wave packet.

In our calculationsK was varied between 0.2 and 2 wit
a step of 0.02. We found the time dependence of the squ
ing S ~19! and the optimum value of the phaseu* at which
^dXu

2& is at its minimum. To demonstrate the correlation th
exists between the degree of squeezing and the ch
characteristics9,14 we calculated

d5@^dx2&1^dp2&#1/2. ~24!

It can be shown9,14,28that in the classical limit and while
the wave packet is well-localized, i.e.,@^dx2&#1/2!x0 and
@^dp2&#1/2!p0 , the d of ~24! corresponds to the following
separation in phase space:

dcl~ t !5@~Dx!21~Dp!2#1/2, ~25!

where (Dx(t), Dp(t)) is the solution of the linear small
perturbation equations near the classical traject
(x(t), p(t)). The quantity dcl(t) characterizes the diver
gence of two initially close trajectories and enters into t
definition of the largest classical Lyapunov exponent

l5 lim
t→`

dcl~ t !

t
. ~26!

For a classical standard map with strong chaosK@1 we
have the simple dependencel' ln(K/2) ~see Ref. 19!. The
Lyapunov exponent~26! is an asymptotic characteristic o
chaos. For finite time intervals7

dcl~ t !'exp~h~x,p!t !, ~27!

where the exponenth is a function of a point in phase spac
and coincides, in order of magnitude, with the Lyapun
exponentl, but in some time intervals the difference b
tween the two may be significant. The latter fact can
explained by the strong inhomogeneity in the statistical pr
erties of the phase space of chaotic systems and, corresp
ingly, by the different rates of divergence of trajectories
different regions of phase space through which the sys
passes in its time evolution. It must be noted at this point t
the dependence ofh on the parameterK is extremely com-
plicated. What is important, however, is only the property
the strong~exponential! increase ofdcl specified by~27! in
the presence of chaos, a property often called lo
instability.7 When the motion is regular, the time dependen
of dcl is much weaker—it follows a power function.7
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On the other hand, it ish that determines the rate o
phase-volume deformation: the stronger the local instabi
the greater the phase-volume deformation in a given t
interval.

Since in our case quantum–classical correspondence
the concept of chaos are well-defined only in a very sh
time interval, while the wave packet remains localized, it
meaningful to consider the correlations existing between
time dependence of the squeezing and that of the quantd
~see~24!!, which in the classical limit becomesdcl ~see~25!!.

Figure 2 depicts the time dependence of the logarithm
squeezingS and lnd for different values ofK, when the
center of gravity is of the wave packet is initially at the po
x05p, p05\k050.01. This initial condition is close to a
hyperbolic point through which the chaotic layer passes e
whenK is small ~see Fig. 1!. Figure 2 shows that the large
the squeezing~the smaller the value ofS! the larger the local
instability ~the larger the values of lnd! up ton'4, when the
packet spread becomes so large that purely quantum ef
become important.

For another initial condition,x05p/2 and p050.01,
which is closer to an elliptic point and hence lands in t
chaotic region only at large values ofK, the dynamics of
squeezing is depicted in Fig. 3. We see that in this c
squeezing is stronger by a factor of almost two than un
the conditions of Fig. 2 in the same time interval. On t

FIG. 2. Time dependence of the logarithm of squeezingS ~the upper part of
the figure! and lnd defined in Eq.~24! ~the lower half of the figure!; x05p
ands50.006.

FIG. 3. The same as in Fig. 2 but forx05p/2.
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other hand, both Fig. 2 and Fig. 3 exhibit an increase
squeezing as a function of the parameterK, which controls
the development of chaos in the system.

Let us study the correlation between squeezing and
degree of local instability in the system for different valu
of K in greater detail. TheK-dependence of the degree
squeezing calculated after a fixed number of kicks atx05p
and p050.01 is depicted in Fig. 4. After the third kick th
correlation between lnS and lnd become very evident~Fig.
4a!. However, small discrepancies in this dependence m
appear as the number of kicks grows. Such discrepan
become evident, for instance, after the fourth kick f
1.1&K&1.4 ~Fig. 4b!. After five kicks,n55, the correlation
between lnS and lnd is restored~Fig. 4c!. Note that this

FIG. 4. Logarithm of the squeezingS ~solid curves! and lnd ~dashed
curves! as functions of the Chirikov parameterK for a fixed number of
kicks: ~a! n53, ~b! n54, and~c! n55; x05p ands50.007.
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behavior pattern is quite typical. Hence, to establish the c
relation between local instability and squeezing more clea
a certain procedure of coarsening~averaging! these quanti-
ties in the given time interval is needed. In our study
determine the minimum squeezingSmin in a time interval
during which the packet remains well-localized for most v
ues ofK considered here, and hence the maximumdmax in
the same time interval. We found that there is a disti
correlation betweenSmin and dmax: the larger the value o
dmax the smaller the value ofSmin , and vice versa. An ex
ample of such a dependence is depicted in Fig. 5, whereSmin

and dmax were calculated after six kicks. Note that the d
grams do not go farther thanK.1.7 because after six kick
the wave packet becomes delocalized forK.1.7 and calcu-
lating averages and local instability becomes meaningles

We also studied the dependence of the dynamics
squeezing on the initial widths of the wave packet. The
results are depicted in Fig. 6. Clearly, the narrower
packet the stronger the squeezing achieved in a fixed
interval. This dependence arises because a narrow w
packet travels farther along its classical trajectory tha
wide packet, so that it undergoes stronger deformations
lated to nonlinear classical dynamics. The exponential

FIG. 5. Logarithm of the minimum squeezingSmin ~solid curves! and of the
local instabilitydmax ~dashed curves! as functions of the Chirikov paramete
K after seven kicks. The parameters and initial conditions are the same
Fig. 4.

FIG. 6. Time dependence of the logarithm of squeezingS for different
initial widths s of the wave packet at fixedK50.8; x05p.
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from the classical limit and the dynamics is of an essentia
quantum nature.

Now let us examine the problem of stability and obse
ability of squeezing in chaos. The figures mentioned ear
can serve to illustrate the statement that the stronger
chaos the stronger the principal squeezing. However,
definition ~19! of principal squeezing is related to fixing th
phase,u5u* . Here u* is time-dependent even for exact
integrable systems.21 When chaos is strong, the time depe
dence ofu* (t) in the classical limit may be extremely com
plicated. Indeed, in addition to dilation and squeezing,
main feature of chaos in classical systems with a boun
phase space is the multiple formation of folds of the ph
volume as chaos evolves.7 Hence the process of finding th
‘‘minimum width’’ of a phase drop, which actually amount
to finding theu* vs. t dependence in the quasiclassical lim
becomes unstable for large time intervals.

Basing our reasoning on a similar semiclassical pictu
we examined the stability of the time dependence of the
timum phaseu* (t) calculated quantum mechanically with
small perturbation of the initial position of the wave pack
More precisely, we found the time dependence of the o
mum phaseu1* with the initial conditionx05p and, simi-
larly, u2* (t) with the initial conditionx05p20.05. We de-
note the difference of these phases by

D~ t !5u1* ~ t !2u2* ~ t !.

Since u* is periodic with a periodp ~see Eq.~18!!, it is
natural to take sin 2D as the quantity of interest, since in th
way we avoid breaks in the diagrams related to the peri
icity of u* . The dependence of sin 2D on the Chirikov pa-
rameterK for different fixed numbers of kicks is depicted i
Figs. 7a–7c. After two kicks~Fig. 7a! the maximum value of
usin 2Du does not exceed 0.035 atK52. After three kicks
~Fig. 7b! the value ofD becomes significant atK*1.2. Fi-
nally, after four kicks~Fig. 7c! the process of measurin
squeezing becomes essentially unstable atK*1. Indeed, in
these condition with a small perturbation of the initial po
tion of the wave packet, the difference of the optimu
phases reaches a value of orderp. In Ref. 9 such generation
of squeezed states was called unstable squeezing. As F
implies, unstable squeezing is observed when chaos is st
and the time intervals are such that semiclassical descrip
is valid. On the other hand, for short time intervals and sm
K ’s the squeezing is strong and stable.

To conclude this section we will briefly touch on th
problem of the dynamics of disintegration of coherent sta
in chaos, a problem that is of interest by itself. Figures
and 8b depict the dependence ofuCu on x and of uAku on k
~see Eq. ~4!!. Actually, Fig. 8 gives the shape of th
wave function in the coordinate and momentum represe
tions for an initially narrow wave packet with

@^dx2&#1/2(t50)[s50.006 and @^dp2&#1/2(t50)5 1
12

31023. The relatively small valueK51.2 makes it possible
to examine the fairly long evolution of the wave packet up
the point of its total disintegration.4! After six kicks ~Fig. 8a!
the wave packet spreads out significantly, but on the wh
retains its bell-shaped structure. What follows is

in

67K. N. Alekseev and D. S. Pri mak



it
Fi
n

k

e-

ap

second, the emerging subpackets are extremely small. Hence
aos
de-

aly-

ow
n
es
ated

o-

ent
the

for
ow
ll-
n to
the
ained
ent
ues

ess

d
ri-
ple

las-

de-
pon-
ure
, al-
ular

nd
of

but
in

ical
ffi-
ici-
do

ing
he

the
d in

ks
g
g to
At
e in

tum

te
disintegration of the packet into many small packets, w
the characteristic shape of the wave function depicted in
8b ~after 18 kicks!. Finally, very soon the wave functio
becomes so dissected that even 217 Fourier harmonics are
insufficient to describe the evolution correctly~for the data
of Fig. 8 this happens approximately at the 20th kick!. Quali-
tatively, the same pattern of the evolution of the wave pac
was observed at higher values ofK: first the broadening, or
‘‘swelling,’’ of the wave packet, and then its rapid disint
gration into many very small subpackets. The differences
packet disintegration for large values ofK in comparison
with the caseK.1 ~Fig. 8! boil down to two facts: first, the
swelling of the packet and the disintegration occur very r
idly ~it takes only several kicks to complete the process!, and

FIG. 7. The differenceD of optimum phases as a function of the parame
K at s50.006,x05p, and a fixed number of kicks:~a! n52, ~b! n53, and
~c! n54.
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the process of disintegration of wave packets in strong ch
resembles an explosion. On the whole, the pattern being
scribed agrees well with the pattern obtained from the an
sis of the behavior of the Wigner function,18 although we
observed some anomalies. In particular, for fairly narr
wave packets (s5431023) we observed the disintegratio
of the initial packet into two fairly large subpackets. Rippl
then appeared on the subpackets, and the two disintegr
into many small packets.

A more detailed description of the disintegration of c
herent states in chaos requires further investigations.

5. DISCUSSION AND CONCLUSION

Thus, in this work we have used a numerical experim
to study the dynamics of generation of squeezed states in
evolution of a Gaussian packet in the quasiclassical limit
the model of a quantum rotator excited by kicks. We sh
that within the time interval where the packet is we
localized the squeezing becomes stronger in the transitio
chaos. For strong chaos and in long time intervals
squeezing process becomes unstable. These results, obt
through direct numerical simulation, are in good agreem
with the results obtained by perturbation-theoretic techniq
and for other models.8,9,14

In the final stages of preparing the manuscript for pr
we became acquainted with two recent papers29 also devoted
to the problem of generating nonclassical states~squeezing
and antibunching! in quantum chaos. Rui-Hue Xie an
Gong-ou Xu29 presented the results of numerical expe
ments on the dynamics of quadrature squeezing in sim
quantum models that allow a transition to chaos in the c
sical limit: the Lipkin–Meshkov–Glick model30 and the
Belobrov–Zaslavski�–Tartakovski� model.31 In contrast to
our approach, Rui-Hue Xie and Gong-ou Xu29 were inter-
ested in the long-time limit, when the wave packets are
localized and this sense the quantum–classical corres
dence is completely violated. They found that quadrat
squeezing disappears in the transition to quantum chaos
though to some degree squeezing is always present in reg
motion. It must be noted at this point that Rui-Hue Xie a
Gong-ou Xu29 noticed the existence of nonzero squeezing
some sort in the short-time limit and for quantum chaos,
they did not observe the buildup of squeezing described
the present paper, probably because in their numer
experiments29 the quasiclassicality parameter was not su
ciently large: only several hundred quantum levels part
pated in the dynamics of the system. Thus, their results
not contradict ours and augment them in another limit
case, the limit of long times of motion. The description of t
dynamics of squeezing in the case intermediate between
one described in the present paper and the one studie
Ref. 29 merits a separate investigation.

In conclusion we would like to make several remar
concerning the possibility of experimentally observin
squeezing in quantum chaos on a time scale correspondin
a well-defined quantum–classical correspondence.
present essentially all squeezed-light experiments are don
the stationary regime. Squeezing in the transition to quan

r
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FIG. 8. Dependence of the absolute value of t
wave function,uCu on x and dependence of the
absolute value of the Fourier transforms,uAku,
on k in the expansion~4! of the wave function at
~a! n56 and ~b! n518 and fixeds50.006,
K51.2, andx05p.
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sense is a transient dynamical phenomenon. The first ex
ments in light squeezing in transient regimes are only in
preliminary stage.32 We hope that the development of effe
tive experimental methods for observing squeezed state
light in transient dynamical regimes will also make it po
sible to observe the buildup of squeezing in the transition
quantum chaos.

On the other, as noted in the Introduction, it is mu
simpler to realized the quantum rotator model with kicks
atomic optics.27 Moreover, it is much simpler to observ
transient dynamical regimes in experiments with cooled
oms. Hence we believe that atomic-optics systems of
type discussed in Ref. 27 have great potential for obse
tions of squeezed states in quantum chaos.
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1!The unusual form of the standard map~8! is due to the fact that we find it

convenient to take the values ofx and p immediately after thenth kick
rather than before thenth kick, as is done by the majority of researchers
must be noted, however, that the properties of the standard map ar
tained.

2!Note that Lan23 studied the time dependence of^da2& and ^dp2& for a
quantum rotator on a time scale on which quantum–classical corres
dence holds~Table I in Ref. 23!. Both variances increase uniformly, so th
quadrature squeezing~15! is impossible.

3!For a discussion of the problem of reflection and splitting of a wave pa
due to the finite range of momentum in the close model of the quan
Arnold cat see Ref. 25.
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of wave packets we did not use the procedure~described in Sec. 3! of
terminating the counting process when the wave function becomes d
calized.
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Dissociation of molecular hydrogen ions by an IR laser pulse

E. A. Volkova, A. M. Popov, and O. V. Tikhonova

D. V. Skobel’tsyn Research Institute for Nuclear Physics, M. V. Lomonosov Moscow State University,
119899 Moscow, Russia
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Dissociation dynamics of the simplest molecular systems, such as H2
1 , D2

1 , and HD1 ions, in an
intense IR laser field has been investigated by numerical modeling. Ann-term approximation
has been developed to describe the molecular system dynamics in an intense electromagnetic field.
Calculations by then-term approximation have been compared to an accurate numerical
solution of the two-particle problem. The dissociation probability as a function of the frequency
and intensity of radiation for different isotopes in a molecular hydrogen ion is discussed.
A quasistatic model of molecule dissociation in an IR field has been suggested, and limits of its
applicability have been determined. ©1998 American Institute of Physics.
@S1063-7761~98!00901-9#
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Research in the dynamics of simple molecular syste
in intense optical fields has attracted a lot of attention
recent years.1–3 Given the relatively complex structure o
molecular systems in comparison with atoms, the range
effects in molecules exposed to powerful laser pulses is q
considerable, in particular, because of the large differe
between resonant frequencies of electron and nuclear
systems in a molecule.

Theoretical description of molecules is usually based
the Born–Oppenheimer adiabatic approximation, which
lows one to decouple electron and nuclear variables o
molecule. The possibility of applying this approximation
the dynamics of molecules under intense laser fields, h
ever, has never been sufficiently investigated. Therefor
numerical solution of the problem of laser pulse action
the simplest molecular system, the hydrogen molecular
H2

1 , beyond the adiabatic approximation is, undoubted
very interesting.4–6 Such calculations performed on mode
computers, however, require a lot of CPU time, and theref
cannot be routinely used in modeling molecules, even
simplest ones, under intense electromagnetic fields. For
reason, development of approximate models that would
low us to adequately describe interaction between str
electromagnetic fields and molecules is a topical issue.

In the reported work, we have investigated dissociat
of several hydrogen molecular ions, namely H2

1 , D2
1 , and

HD1, by an intense IR laser field. The applicability of th
adiabatic approximation to the simplest molecules has b
investigated. The dissociation probability of H2

1 , D2
1 , and

HD1 ions as a function of the field amplitude and frequen
has been calculated in then-surface approximation. A qua
sistatic model of molecule dissociation by an IR field, whi
could allow us to interpret the intensity dependence of
dissociation probability, has been suggested, and its app
bility limits have been determined.
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In this paper, we limit our discussion to a on
dimensional model of a molecular system, in which electr
can move only along the molecule axis and the nuclei
allowed only to oscillate in this direction.

In the reference frame with origin at the center of ma
the molecule HamiltonianH0 has the form

H052
\2

2m

]2

]x2 2
\2

2m

]2

]R2 1Ve~x,R!1
e2

R
, ~1!

wherex is the electron coordinate,R is the internuclear dis-
tance,m5jM is the molecule reduced mass,M is the proton
mass,j is a factor equal to 1/2, 2/3, or 1 for H2

1 , HD1, or
D2

1 ions, respectively. As in Ref. 6, the expression for t
electron potential energyVe(x,R) was taken in the form

Ve~x,R!52
e2

A~R/22x!21a2
2

e2

A~R/21x!21a2
, ~2!

wherea50.943a0 , anda0 is the Bohr radius.
Using the adiabatic approximation based on the sm

ness ofm/M , one can construct a complete set of eigenfu
tions for the HamiltonianH0 in the form7

Fnv~x,R!5fnv~R!wn~x,R!, ~3!

wherewn(x,R) (n51,2,3,...) is theelectron wave function
obtained by solving the eigenvalue problem with the elect
Hamiltonian:

Hewn~x,R!5Ee
~n!~R!wn~x,R!,

He52
\2

2m

]2

]x2 1Ve~x,R!, ~4!

andfnv(R) is the nuclear wave function in the state corr
sponding to thenth potential surface~electron term!, ob-
tained by solving the equation

F2
\2

2m

]2

]R2 1Veff
~n!~R!Gfnv~R!5Envfnv~R!. ~5!

7108$15.00 © 1998 American Institute of Physics
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Veff
~n!~R!5

e2

R
1Ee

~n!~R! ~6!

is the effective potential energy of interaction between
clei, including the energy of electrons in the system, a
v50,1,2,... is the vibrational quantum number.

Figure 1 shows several curves ofVeff
(n)(R) for the lowest

potential surfaces calculated using Eqs.~4! and ~6!, and
Table I lists energiesEnv of the ground-state potential su
face (n51) for the three molecular ions studied. The fu
number of vibrational states in the discrete spectrum for
surface is 19, 22, and 25 for H2

1 , D2
1 , and HD1, respec-

tively.

3. INTERACTION WITH ELECTROMAGNETIC WAVES

In the dipole approximation, the interaction between
molecule and electromagnetic wave is described by
Hamiltonian

H5H02D«~ t !cosvt, ~7!

where D is the dipole moment operator,«(t) is the wave
electric field amplitude, which is a slow function of time, an
v is the wave frequency.

In the general case, the dipole momentD of a molecule
can be expressed as

D5de1dN , ~8!

wherede anddN are the dipole moments of the electron a
nuclear subsystems, respectively.

FIG. 1. Effective potential energy of interaction between nuclei in the mo
hydrogen molecular ion in electronic statesi 51,2,3,4.

TABLE I. Energy levelsE1v ~eV! of modeled H2
1 , HD1, and D2

1 molecular
ions on the ground-state potential surface.

V H2
1 HD1 D2

1

0 21.355 21.363 21.373
1 21.236 21.259 21.288
2 21.120 21.158 21.204
3 21.009 21.060 21.123
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in the case of homonuclear molecules~H2 and D2 !, the
nuclear dipole moment is identically zero, and the elec
field acts only on the electronic subsystem:

D5de52ex, dN50. ~9!

Therefore transitions between various vibrational states
one electron term are forbidden, and higher vibrational sta
can be populated only through cascade transitions via o
electronic states. In the HD1 heteronuclear molecule, th
center of positive charge is displaced with respect to
center of mass, so the nuclear dipole moment is nonzero,
the electric field acts directly on the nuclear subsystem. T
ing into account the smallnessm/M!1, one can easily ob-
tain the dipole moment of the nuclear subsystem for HD1:

dN5eR/3. ~10!

In our calculations, we have assumed that the elec
field amplitude can be described by the following function
time:

«~ t !55
«0

t

t f
, t,t f ,

«0 , t f<t,t1t f ,

«0F12
t2~t1t f !

t f
G , t1t f<t,t12t f ,

~11!

wheret f is the width of the leading and trailing edges of th
pulse, andt is the plateau width.

The photon energy of the electromagnetic wave was v
ied between\v50.12 and 0.96 eV, such that the timest f

andt were multiples of the wave periodT52p/v. In par-
ticular, for \v50.12 eV, which is the photon energy of
CO2 laser, we tookt f52T andt55T.

4. RESULTS AND DISCUSSION

4.1. Approximation of n potential surfaces. Comparison
with exact calculations

In our model, the dynamics of a molecule in the field
an electromagnetic wave is described by a two-particle w
function C(x,R,t) which can be derived by solving th
time-dependent Schro¨dinger equation

i\
]C~x,R,t !

]t
5@H02D«~ t !cosvt#C~x,R,t !. ~12!

It was shown previously6 that stationary functions of the sys
tem can be approximated to high accuracy by the wave fu
tions obtained in the adiabatic approximation. Therefore
initial condition for Eq.~12! was defined as

C~x,R,t50!5f1v~R!w1~x,R!, ~13!

which corresponds to the electron ground state and vib
tional state with indexv. In most cases we tookv50.

A numerical solution of Eq.~12! with initial condition
~13! for laser pulses in the visible and IR, obtained witho
resorting to the Born–Oppenheimer approximation, was c
culated earlier.8 In the visible, there is competition betwee

l
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FIG. 2. Populations of various vibrational state
of the molecule~n50,1,2! on the ground-state
potential surface as functions of time during
laser pulse with P5231013 W/cm2,
\v50.12 eV, t f52T, and t55T: a! four-
surface approximation; b! exact calculation
~high-frequency oscillations are averaged out
exact calculations!. The dashed line shows th
envelope of the laser pulse.
ionization and dissociation, whereas in the IR radiation there
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ionization probability is negligible in comparison with the
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is a range of field amplitudes in which the ionization pro
ability is negligible in comparison with the dissociatio
probability.

The calculation of an exact solution, however, require
great deal of CPU time, so it seems reasonable to dev
various approximate models. One of them is then-surface
model.

We expand the full wave function of a molecu
C(x,R,t) in electron wave functions$w i(x,R)% of different
potential surfaces:

C~x,R,t !5(
i

a i~R,t !w i~x,R!. ~14!

Then one can easily obtain the following equation system
the expansion coefficientsa i(R,t) in the adiabatic
approximation7:

i\
]a i

]t
5F2

\2

2m

]2

]R2 1Veff
~ i !~R!2dN«~ t !cosvt Ga i

1(
j Þ1

a jWi j , ~15!

whereWi j 52di j (R)«(t)cosvt, di j is the matrix element of
the electron dipole moment, which contains the nuclear
ordinate as a parameter,Veff

(i) is the effective potential energ
of interaction between the nuclei in the electroni -th state
defined by Eq.~6!, anddN is the nuclear component of th
system dipole moment, which is nonzero only for HD1.

The set of functions$a i(R,t)% contains nuclear wave
functions of nonstationary states for various potential s
faces in the molecule, and the last term in Eq.~15! describes
transitions between different electron states of the molec
~transitions between different surfaces! induced by the elec-
tromagnetic field. If the summation in Eq.~14! includes in-
tegration over electron-continuum states, Eqs.~15! will be
equivalent to the initial equation~12! as long as the adiabati
approximation is valid.

The possibility of truncating the system~15! and retain-
ing a small number of electron states in expansion~14! al-
lows us to simplify the problem considerably. It was show
in the earlier study of H2

1 and D2
1 ionization and

dissociation8 that at IR intensities of about 1013 W/cm2, the

73 JETP 86 (1), January 1998
-

a
op

r

-

r-

le

dissociation probability, so transitions to electron-continuu
states can be ignored in Eqs.~14! and ~15!.

The initial conditions for Eq.~15! equivalent to Eq.~13!
are expressed as

Ha1~R,t50!5f1v~R!,
a i~R,t50!50, i 52,3,4,... ~16!

If ionization can be neglected, the following normalizatio
condition holds:

(
i

Wi51,

where

Wi5E ua i~R,t !u2dR ~17!

is the probability of detecting the molecule on thei th poten-
tial surface.

In order to determine the number of expansion terms t
should be retained in Eq.~14!, we have calculated the evo
lution of the H2

1 molecule in the field generated by a CO2

laser (\v50.12 eV) at intensities P5431012– 2
31013 W/cm2 in the n-surface approximation (n52,3,...),
and using a more accurate model described in Refs. 6 an
The comparison between calculations by the exact tw
particle model and in then-surface approximation for
P5231013 W/cm2 has shown that at least four terms shou
be taken into account in Eq.~14!. Only in this case did we
have reasonable agreement between the results.

An important point is that although the population
excited states of the molecule withn53,4 is low throughout
the laser pulse action, they are important for accurate ca
lations of the populations in statesn51, 2. Figure 2a shows
calculated populations in the lowest vibrational states of
ground potential surface vs. time. The probabilitiesW1v
were calculated by expanding the functiona1(R,t) in eigen-
functionsf1v(R), v50,1,2,...:

W1v~ t !5U E a1* ~R,t !f1v~R!dRU2

, ~18!

and they are also in good agreement with similar exact
culations.
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TABLE II. Probability of vibrational state population of the H2
1 molecule at

the end of the laser pulse calculated in then-surface approximation and
Table II listsW1v derived in the exact calculation and
the n-surface approximation (n52,3,4) for
P5231013 W/cm2 and \v50.12 eV at the moment whe
the laser pulse terminates. These data also illustrate ins
ciency of the two-~three-!surface approximation for calcula
ing populations of molecule vibrational states. Table
clearly shows that the inclusion of the third and fourth p
tential surfaces leads to a higher probability of molecule d
sociation at the end of the laser pulse.

To sum up, in the approximation suggested for mole
lar ions, a solution of the exact two-particle Schro¨dinger
equation on a two-dimensional mesh can be replaced wi
solution of n one-dimensional equations, which makes t
problem much easier ifn is small. The number of potentia
surfaces that should be taken into account depends, natu
on the laser-field parameters. Note, however, that in the s
ied range of parameters the two-surface approximation i
good agreement with exact calculations at such power d
sities (P,731012 W/cm2) that the probability of molecule
dissociation and its vibrational excitation are small.

Note also that in then-surface approximation the mo
ecule ionization presents a specific problem that is not
cussed in this paper. An important point is that there i
range of field intensities in which ionization processes can
ignored.

4.2. Dissociation probability as a function of field intensity
and frequency

Hereinafter dynamics of molecular systems will be an
lyzed in the four-surface approximation. The dissociat
probability was calculated by the formula

WD512(
v

W1v ,

where the sum is calculated over all vibrational states of
ground-state potential surface. Here we have taken into
count the exact calculations, which indicate that the proba
ity W3v of populating states of the discrete spectrum of
excited bound-state term is negligible. This fact derives fr
the Frank–Condon principle and large difference betw
internuclear separations for the two surfaces~see also Ref.
8!.

Curves ofWD(P) for H2
1 , D2

1 , and HD1 and the quan-
tum energy\v50.12 eV are given in Fig. 3. It is clear tha
the dissociation probability for D2

1 , whose nuclear mass i
greater than that of H2

1 , is smaller because of the lowe
velocity of the nuclear wave packet when the molecule is

exact two-particle model atP52•1013 W/cm2.

V n52 n53 n54 Exact model

0 0.869 0.641 0.488 0.430
1 4.64(22) 6.25(22) 7.43(22) 7.17(22)
2 1.85(23) 2.19(23) 1.34(23) 1.41(23)
3 3.07(23) 7.34(23) 7.81(23) 6.90(23)
(vW1v 0.924 0.761 0.595 0.537
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the repulsive potential surface. On the other hand, the di
effects of the electromagnetic field on the nuclear subsys
in HD1 leads to a higher dissociation probability than in H2

1

and D2
1 homonuclear molecules. These effects are espec

important, since the CO2 laser frequency\v50.12 eV is
close to the molecular vibration frequenc
\V5E22E1'0.104 eV. However, the strong anharmoni
ity of the molecule~Table 1! should lead to a reduction in th
resonant effect at high vibrational quantum numbers.

The importance of the direct effects on the electro
degrees of freedom of HD1, in addition to the nuclear vari-
ables, was demonstrated by omitting the electron dipole m
ment. This is equivalent to the analysis of the HD1 dynamics
in the one-surface approximation. In this case the disso
tion probability is 0.059 at the radiation intensit
P5231013 W/cm2, which is even lower than the dissocia
tion probability of D2

1 . Therefore, we can assert that the hi
dissociation probability of the HD1 heteronuclear molecule
as compared to that of H2

1 and D2
1 , is a result of the com-

bined action of the electromagnetic field on the electron a
nuclear subsystems.

Note also a characteristic step in the curve ofWD(P) for
H2

1 . Its cause will be discussed in the following section
terms of a quasistatic dissociation model.

We now proceed to the dissociation probability as
function of laser frequency. This function was studied
\v50.12– 0.96 eV, for a constant shape and width of
laser pulse such that the pulse edges and plateau conta
an integral number of field oscillations. Calculations for H2

1

and HD1 at P51.431013 W/cm2 are shown in Fig. 4. For
both of these molecules, the dissociation probability
\v>0.5 eV grows rapidly with laser frequency, whic
might be due to the smaller number of photons needed f
multiphoton transition between the ground and first exci
electron states of the molecule. For HD1 the dissociation
probability also rapidly grows at\v<0.2 eV, possibly due
to the proximity to the vibration frequency of the nucle
subsystem. In the H2

1 molecule,WD also increases in this
frequency band, and the population of vibrational states
the ground potential surface is also significant~Fig. 2!. Since
dipole transitions in the homonuclear molecules H2

1 and D2
1

within one potential surface are forbidden, these states ca

FIG. 3. Dissociation probability of 1! H2
1 , 2! HD1, and 3! D2

1 molecules
vs. radiation intensity at\v50.12 eV.
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populated only through multiphoton transitions via excit
potential surfaces. But at\v50.12 eV the number of pho
tons needed for the transition between the two lowest
faces is about thirty. Given so high a number of photo
needed for excitation and dissociation, we need an alte
tive approach to transitions between potential surfaces
low-frequency electromagnetic field.

Two regions of intense dissociation of HD1 molecules
in the IR and UV bands were also detected by other autho9

4.3. Quasistatic model of molecule dissociation in IR field

In this section, we discuss a quasistatic model of m
ecule dissociation in IR field that enables us to considera
simplify calculations of molecular dynamics in a low
frequency IR field and, in particular, interpret features in
dissociation probability of the H2

1 ion as a function of field
intensity and frequency.

Above all, note that the expansion of the molecular wa
function C(x,R,t) in the system of electron states unpe
turbed by the electromagnetic field is not the only way
simplifying the problem~12!. From the mathematical view
point, this can be done using any set of orthonormal fu
tions, and its selection is a matter of mathematical con
nience and physical insight. In intense fields at opti
wavelengths, the preferable technique for describing mole
lar states is based on states modified by the field.10 This
concept yields satisfactory interpretations of various featu
of the above-threshold dissociation detected
experiments.11–13

In a low-frequency IR field, perturbation of potenti
surfaces of a molecule can be described by a quasistatic
proximation based on the smallness of the laser field in c
parison with the characteristic frequency of electron mot
within the molecule.

The set of molecule electron states in a low-frequen
field can be derived by solving the time-independent Sch¨-
dinger equation

@He2de«~ t !cosvt#wn
~«!~x,R,t !

5En
~«!~R,t !wn

~«!~x,R,t !, ~19!

whereHe is the electron Hamiltonian of the molecule.

FIG. 4. Dissociation probability of~1! H2
1 and ~2! HD1 molecules vs. op-

tical photon energy atP51.431013 W/cm2.
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and corresponding energies$En (R,t)%, which contain both
the nuclear coordinate and time as parameters.

In moderate fields, mixing of all eigenstates of the ele
tron Hamiltonian except the lowest two can be neglected
calculations of the molecule’s ground potential surface. Th
the energies of these states are determined, if we assume
the field is quasistatic, by the expression

E1,2
~«!~R,t !5

1

2
@E1~R!1E2~R!#6\VR ,

where

VR5
1

\
A1

4
@E1~R!2E2~R!#21d12

2 «2~ t !cos2 vt

determines the characteristic time of the systemt;1/VR ,
and E1(R) and E2(R) are the energies of electron states
zero field amplitude. The quasistatic condition for the field
equivalent to

v,VR . ~20!

The resulting stateswn
(«)(x,R,t) are quasistationary. We as

sume that the field intensity is sufficiently weak that the st
decay time is larger than the laser pulse width. In the c
under discussion, this condition is satisfied because mole
ionization can be ignored.

As noted above, it is assumed in obtaining the set
functions$wn

(«)(x,R,t)% that the electric field is a slow func
tion of time, so that the electron wave function tunes up
accordance with the instantaneous strength of the wave e
tric field. This leads to the conditionDVR /VR!1, where
DVR is the change inVR over the characteristic time, an
yields, if the laser pulse envelope is a slow function,

v!
\2VR

3

ud12u2«2~ t !
. ~21!

Note that this condition is a criterion of the validity of th
semiclassical approximation with respect to time, and t
approximation can be used in solving the problem anal
cally.

The combination of conditions~20! and~21! in a strong
electromagnetic field (DE/2,ud12u«(t)) yields the condition
\v!ud12u«0 , i.e., the photon energy should be less than
separation between modified potential surfaces~Fig. 5!. But
condition~21! does not hold when the field intensity«(t) is
almost zero. In this case, the quasistatic condition can
interpreted as the smallness of the probabilities of Landa
Zener transitions between surfaces. On the basis of the
mate in Refs. 15 and 16, we obtain

\v!
~DE~R!!2

ud12~R!u«0
. ~22!

This estimate limits the range ofR in which the quasistatic
model holds. In this specific case, condition~22! is satisfied
if R<5 Å.

The complete wave functionC(x,R,t) of the system can
be expanded in the set of functions~19!,

75Volkova et al.
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C~x,R,t !5(
i

a i
~«!~R,t !w i

~«!~x,R,t !, ~23!

wherea i
(«)(R,t) is the nuclear wave function of the molecu

on the i -th potential surface modified by the slow fie
«(t)cosvt. By substituting expansion~23! into Eq. ~12! and
using the Born–Oppenheimer adiabatic approximation,
obtain the following equation system for function
a i

(«)(R,t):

i\
]a i

~«!

]t
1 i\(

n
an

~«!K w i
~«!U]wn

~«!

]t L
5F2

\2

2m

]2

]R2 1Veff
~ i !~R,t !2dN«~ t !cosvt Ga i

~«! . ~24!

Here Veff(R,t)5e2/R1En
(«)(R,t) is the molecule’s potentia

surface modified by the low-frequency field.
Thus, we have obtained the equation describing the

tion of a nuclear wave packet in the effective potential mo
fied by the slow electromagnetic field of the wave. The s
ond term on the left of Eq.~24! describes transitions betwee
surfaces induced by the field.

Under certain conditions imposed on the field frequen
the second term on the left of Eq.~24! can be neglected~see
Appendix for details!. In this case we have

i\
]a i

~«!

]t
5F2

\2

2m

]2

]R2 1Veff
~ i !~R,t !

2dN«~ t !cosvt Ga i
~«!~R,t !, ~25!

i.e., the Schro¨dinger equation for a nuclear wave packet in
time-dependent potentialVeff

(i) . The elimination of the term
mixing potential surfaces in Eq.~24! is similar to the Born–
Oppenheimer approximation, since this enables us to
couple the equations of motion for nuclei in the absence
an external field.

The advantage of the approach discussed here is the
sibility of replacing Eqs.~15! for the nuclear wave function
with the single equation~25!. Indirect evidence for the va

FIG. 5. Two lowest potential surfaces of the H2
1 molecule in the presence o

an electromagnetic field.

76 JETP 86 (1), January 1998
e

o-
i-
-

,

e-
f

os-

lidity and physical convenience of this approach is provid
by the low population of excited electronic states withn53
and 4, and by the fact that the population of all excited sta
is much lower than that of the molecule’s ground-state
tential surface by the end of the laser pulse.

The full set of termsVeff
(i) (R,t) can be obtained by solving

Eq. ~19! at different moments in time. The functio
Veff

(i) (R,t) has the form

Veff
~1!~R,t !5e2/R1E1

~«!~R,t !. ~26!

In a strong field, whenDE!ud12«u, we derive from Eq.~26!

Veff
~1!~R,t !5e2/R1E1~R!2ud12«~ t !cosvtu. ~27!

In the opposite case, whenud12«u!E2(R)2E1(R), we ob-
tain from the Eq.~26!

Veff
~1!~R,t !5

e2

R
1E1~R!2

ud12u2«2~ t !cos2 vt

E2~R!2E1~R!
. ~28!

It is clear that in both cases the effective potentialVeff
(i) (R,t)

oscillates at a frequency that is twice the laser frequen
This effect16 leads to repulsion of the nuclei during bo
half-periods of the field optical cycle.

Figure 6 shows the ground-state potential surface of
molecule in the optical electromagnetic field at various
tensitiesP5c«0

2/8p calculated by Eq.~26!. In the range of
small radiation intensities,P<931012 W/cm2, the curve of
Veff

(1)(R,t) contains a section corresponding to classical fin
motion, i.e., there is a possibility of quasistationary vibr
tional states of the molecule, which can decay as a resu
tunneling across the potential barrier. At an intens
P'1.031013 W/cm2 the potential barrier vanishes, and th
curve ofVeff

(1)(R,t) has a plateau~curve2!, i.e., a region where
the force acting between the two nuclei,F52]Veff

(1)/]R, is
approximately zero. At higher field intensities the plate
disappears~curve3!, which means that the nuclei repel on
another at all separationsR between them.

Figure 7 shows calculations of the dissociation proba
ity of H2

1 as a function of the radiation intensity obtained

FIG. 6. Ground potential surface of the H2
1 molecule modified by electro-

magnetic field of a wave with intensity~in W/cm2! ~1! 5.031012; ~2!
1.231013; ~3! 2.031013. These curves correspond to maximum elect
field intensity.
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the quasistatic model and in the four-surface model. One
see that these curves are fairly close in the ra
P<1.531013 W/cm2. At higher intensities the quasistat
model is no longer valid~see Eq.~A6!!, and the effect of
higher-energy surfaces perturbed by the laser field mus
taken into account.

This model allows us to interpret the main features
the curve of WD(P). For example, at intensitie
P<1013 W/cm2 the H2

1 molecule dissociates as a result
tunneling of the nuclear wave packet across the poten
barrier ~curve 1 in Fig. 6!. The probability of this process
increases with field intensity. In the rang
P;(1.0– 1.5)31013 W/cm2 the nuclear wave packet is o
the plateau of theVeff

(1)(R) curve, and the dissociation prob
ability depends weakly on the field intensity. At higher i
tensities the dissociation probability again increases with
tensity owing to the growth in the repulsive forc
F52]Veff

(1)/]R on the protons throughout the laser pulse.
If the H2

1 molecule is initially in an excited vibrationa
state, tunneling will probably occur in the range of low
field intensities. The effect of the plateau on theVeff

(1)(R) curve
should also be less pronounced owing to the greater widt
the nuclear wave packet. Such properties of theWD(P) func-
tion were detected in calculations of the molecule vibratio
statev51 ~Fig. 7!.

The model also enables us to understand the shape o
WD(\v) curve for H2

1 in the low-frequency band
(\v>0.12 eV). In particular, the increase in the field fr
quency leads to shortening of the time during which
nuclear wave packet is in the region of infinite motion, hen
the dissociation probability decreases. Thus, the dissocia
probability for a molecule should increase with decreas
field frequency.

If the photon energy is higher than\v;0.25 eV, which
corresponds to the minimum in theWD(\v) curve, the qua-
sistatic condition~A6! is violated and the model under dis
cussion no longer holds.

Application of the quasistatic model to the dissociati
of the HD1 molecule under these conditions also yields
sults that are in good agreement with four-surface calc

FIG. 7. Dissociation probabilities of H2
1 in ~1,3! ground vibrational state

(v50) and~2! excited vibrational state withv51 as functions of radiation
intensity. Curves1 and 2 are obtained in the four-surface approximatio
and curve3 in the quasistatic approximation.
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models in the case of D2 is far from satisfactory because th
nuclei in this molecule move more slowly, and the qua
static condition~A6! does not hold.

5. CONCLUSIONS

In this paper, we have discussed dissociation of vari
isotopes of the molecular hydrogen ion in an intense IR la
field. Exact two-particle calculations have been compa
with the results of then-surface approximation. The disso
ciation probability has been calculated as a function of
field intensity and frequency. The quasistatic model of d
sociation has been discussed. This model provides a fa
accurate description of interaction between the laser field
a molecule in the band of lower frequencies and an interp
tation of the curve of dissociation probability versus fie
intensity.

We thank V. P. Krainov for useful discussions of issu
studied in this work. This work was supported by the Ru
sian Fund for Fundamental Research~Grant 96-02-19286!.

APPENDIX

We now derive the condition relating parameters o
molecule and laser field such that equation system~24! sepa-
rates into a system of decoupled equations describing mo
on quasistatic potential surfaces modified by the exter
field. To this end, we estimate the terms with]a1

(«)/]t and
a1

(«)^w1
(«)u]w2

(«)/]t& on the left of Eq.~24!.
Assuming

]a1
~«!

]t
;Va1

~«!,

where V is the molecule oscillation frequency, and takin
into account

]w1
~«!

]t
;

]w1
~«!

]«
«0v,

we reformulate the adiabatic condition as

\V@\v«0K w1
~«!U]w2

~«!

]« L . ~A1!

In the two-surface approximation wave function
w1,2

(«)(x,R,t) can be expressed as

w1,2
~«!5C1

~1,2!~R,t !w1~x,R!1C2
~1,2!~R,t !w2~x,R!, ~A2!

wherew1(x,R) andw2(x,R) are unperturbed electron wav
functions, and the coefficientsC1

(1,2)(R,t) andC2
(1,2)(R,t) are

given by

C1
~1!5@11~a/22Aa2/411!2#21/2,

C1
~2!5@11~a/21Aa2/411!2#21/2,

C2
~1!5~a/22Aa2/411!C1

~1! ,

C2
~2!5~a/21Aa2/411!C1

~1! . ~A3!

Here
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a~R,t !5
E2~R!2E1~R!

5
DE~R!

, ~A4!
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Taking uE22E1u;1 eV and d12;ea0 , we obtain
13 2 -

J.

-
w

in,

er,

ett.

v.
d12~R!«~ t ! d12~R!«~ t !

E1(R) andE2(R) are the electron energies of the two lowe
unperturbed states of the molecule.

Using Eqs.~A2! and~A3!, we can easily obtain the fol
lowing estimate for̂ w1

(«)u]w2
(«)/]t&:

K w1
~«!U]w2

~«!

]t L ;
v

2

a/2

a2/411

5
v

2

DE~R!/2

DE2~R!/41ud12~R!u2«0
2 d12~R!«0 .

~A5!

After estimating the matrix element defined by Eq.~A5! in
the localization region of nuclear wave functions in a m
lecular bound state, we derive from Eq.~A1! the condition

\v!\V
uE22E1u2

ud12u«
, ~A6!

which determines the limit on the external field frequenc
It is clear that condition~A6! is more rigorous at highe

laser frequencies and masses of atoms in the molecule o
to the lower oscillation photon energy\V.

In the case under discussion\V'\v;0.1 eV. There-
fore condition~A6! is valid in the localization region of the
nuclear wave functions of molecule bound states at inte
ties up to

P!P* ;
c

8p

uE22E1u2

ud12u2
. ~A7!
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P* ;10 W/cm , which is in fair agreement with our nu
merical calculations.
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Effect of four-photon interactions on coherent population trapping in L-systems

ip in
B. A. Grishanin, V. N. Zadkov

International Laser Center, M. V. Lomonosov Moscow State University, 119899 Moscow, Russia

D. Meschede
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Zh. Éksp. Teor. Fiz.113, 144–167~January 1998!

The resonance fluorescence spectrum of aL-system excited by two resonant light fields is
calculated using a Markov analysis. Analytical formulas are derived in the strong-field limit within
and beyond the rotating wave approximation. It is shown that the resonance fluorescence of
the system does not vanish during coherent population trapping. Its spectrum consists of two
multiplets which are similar to a triplet in the resonance fluorescence spectrum of a two-
level atom and lie at the electronic transition frequencies, together with two triplets located at the
frequencies of four-photon processes involving the optical excitation fields. The latter are
fundamental in character and impose limits on the lower bound of the dephasing rate for the
Raman resonance owing to the effect of radiative decay of the dipole transitions on the
dynamics of the ground state. The effect of four-photon dephasing on the absorption spectrum of
a L-system is analyzed and found to lead to a substantial reduction in the depth of a dip in
the absorption spectrum which vanishes as the laser field strength is increased. ©1998 American
Institute of Physics.@S1063-7761~98!01001-4#

1. INTRODUCTION resonance fluorescence spectrum is and how deep the d
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9-
The interaction of electromagnetic fields with atoms
one of the most fundamental problems in quantum optics
is known that a much wider range of effects occur in mu
level atoms than in two-level atoms owing to field-induc
coherence between the atomic states and quantum inte
ence. The three-level systems realized inL-, J-, and V-
configurations play an important role in research on th
effects, as they are of intermediate complexity between t
level and multilevel atoms. A whole series of new effec
have been observed in them; coherent population trappin
one of the most intriguing and has been studied intens
both experimentally and theoretically.~See the reviews by
Agap’ev et al.1 and Arimondo2 and the references cite
there.! Coherent populating trapping shows up most clea
in a three-level system with two close long-lived levels an
third level which lies far from them~L- or V-systems! that
have been excited by two cw laser fields, so that the dis
level is optically coupled to the two others. Tuning the driv
fields to resonance with its dipole transitions leads to tr
ping of the populations of the system in a coherent supe
sition of the two close levels. In Raman absorption spec
this effect shows up as a very narrow dip against the ba
ground of an absorption line and in resonance fluoresce
spectra it is observed as the absence of emission, which
led to its being referred to as a ‘‘dark’’~or ‘‘coherent popu-
lation trapping’’! resonance.

In this article we study the question of how four-phot
interactions affect the coherent population trapping effec
a L-system excited by two cw laser fields, in particular, ho
‘‘dark’’ the coherent population trapping resonance in t
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the Raman absorption spectrum is. A rough estimate of
intensity of resonance fluorescence in aL-system during co-
herent population trapping has been made in the rota
wave approximation3 which yields zero fluorescence inten
sity for two-level atoms. The same result can be seen in
5c of Narducciet al.,4 which shows a calculated fluorescen
spectrum for aL-system. This indicates that during cohere
population trapping aL-system does not radiate and the da
line is entirely absent in its resonance fluorescence spect

Our calculations, presented in this paper in t
asymptotic limit of a strong field, show, however, that t
resonance fluorescence of a system does not vanish du
coherent population trapping. Its spectrum consists of t
multiplets, similar to the triplet in the resonance spectrum
two-level atoms and located at the electronic transition f
quencies, together with two triplets located at the frequenc
of four-photon processes involving the pump light fields. T
latter are fundamental in character and impose limits on
lower bound of the dephasing rate of the Raman resona
owing to the contribution to the dynamics of the ground st
from radiative decay of dipole transitions. The effect of t
four-photon dephasing mechanism on the absorption s
trum of aL-system is analyzed and found to lead to a su
stantial reduction in the depth of a dip in the absorpti
spectrum that vanishes as the laser field intensity is
creased.

This article is organized as follows: Section 2 is devot
to a description of the complete Liouvillian of an atom inte
acting with a laser radiation field. The specific features of
excitation of two-level atoms and aL-system are analyzed
In Sec. 3 the resonance fluorescence spectrum of aL-system

7914$15.00 © 1998 American Institute of Physics



is calculated in the rotating wave approximation, as well as
f
t

th
sio
e
a
a
s

es
tio

e

ec
ie
re
by

a

ox

te

a

n

Thus, we can treat it as a universally small perturbation rela-
de
a-
to

e-

ion

ld

of
of

t
tral
the

ic
of

ent

t of

oth
on,
o
r-
g

outside the range of validity of this approximation. The e
fect of four-photon interactions involving the driver ligh
fields on coherent population trapping and their role in
formation of the absorption resonance and in the disper
of the L-system are analyzed in Secs. 4 and 5, respectiv
Most of the voluminous mathematical calculations are c
ried out in the Appendix. In the Conclusion we discuss
experiment for detecting the calculated structure of the re
nance fluorescence spectrum of aL-system.

2. LIOUVILLIAN OF AN ATOM BEYOND THE RANGE OF
VALIDITY OF THE ROTATING WAVE APPROXIMATION;
DYNAMICAL TRANSFORMATIONS USED TO CALCULATE
THE FLUORESCENCE SPECTRUM

The complete Liouvillian of an atom, which describ
changes in the atomic variables according to the equa
dÂ/dt5L(t)Â in Markov theory, has the form

L~ t !5L01Ld1Lr1LL~ t !. ~1!

Here L0 is the unperturbed Liouvillian (i /\)@Ĥ0 ,(#, in-
cluding the free precession of the atom at the laser frequ
cies according to Eq.~A4! of Appendix A. ~The symbol(
denotes a place for substituting a transformed operator.! Lr

andLd determine the dynamics of the atom owing, resp
tively, to relaxation and nonzero detuning of the frequenc
of the driver laser fields from the resonance transition f
quencies in the atom~resonance excitation is described
L0!, while LL(t) describes the laser excitation.

In terms of the interaction representation the transform
tion S(0,t) corresponding to the Liouvillian~1! takes the
form

S~0,t !5SRWA~0,t !S̃0~0,t !eL0t, ~2!

where the superoperators

SRWA~0,t !5exp~LRWAt !, LRWA5Ld1L r1Lp ~3!

determine the system dynamics in the rotating wave appr
mation ~RWA!,

S̃0~0,t !5T expF E
0

t

dLp~t!dtG ~4!

is the evolution superoperator for the dynamics of the sys
owing to the nonresonant excitation component, and

dLp~ t !5eL0tLL~ t !e2L0t2Lp ~5!

is the deviation from the average valueLp of the Liouvillian
for the laser excitation.5 The symbol T used in Eq.~4! de-
notes the time ordering of the superoperator taken in qu
tum mechanics.

The deviationdLp(t) in Eq. ~5! oscillates at the fre-
quencies of the laser drive fields and their combinatio
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tive to the resonant excitation contribution for the amplitu
of driver waves smaller than the amplitude of the intr
atomic field. In a first-order approximation with respect
this parameter, the evolution superoperator has the form

S~0,t !5S~0,t !RWAF11E
0

t

dLp~t!dtGeL0t. ~6!

Note that this approximation is valid if the value of the int
gral is less than of order unity.

We now consider the specifics features of the excitat
of a two-level atom and aL-system.

2.1. Excitation of a two-level atom

For a two-level atom excited by a laser fie
EL cos(vLt), Eq. ~5! takes the form

dLp~t!5 i
V0

2
@ŝ1 exp~22ivLt !

1ŝ2 exp~2ivLt !,(#, ~7!

where V0 is the Rabi frequency andŝ6 are the standard
Pauli matrices. Applying Eq.~7! to the complex polarization
amplitudeŝ1 and using Eq.~6!, we find thatS(t)ŝ1 deter-
mines the structure of a triplet~because of the presence
the termS(t)RWA! in the resonance fluorescence spectrum
a two-level atom at a frequency of 3vL ,5 which is analogous
to the known triplet at the laser excitation frequency.6,7 Inte-
grating with respect tot in Eq. ~6!, we can easily show tha
the ratio of the corresponding amplitudes of the spec
components at the frequencies of the third harmonic and
laser light is proportional to the small quantityV0 /2vL .

2.2. Excitation of a L-system

Let us consider aL-system consisting of three electron
levels with transition frequencies among them
v12!v13, v23 ~Fig. 1!. Two coherent fieldsE cos(vLt) and
E8 cos(vL8t) act, respectively, on the transitions 1↔3 and
2↔3. These fields interact with the complete dipole mom
of the system determined by the operatord13ŝ131d23ŝ23,
whereŝ13,23 are the Pauli matricesŝ1 for the corresponding
atomic transitions. As a result, the induced dipole momen
the system oscillates at frequencies6vL and6vL8 .

As opposed to the case of two-level atoms, where b
driver fields interact with one and the same atomic transiti
during excitation of aL-system each field interacts with tw
transitions. Thus, the Liouvillian corresponding to biha
monic laser excitation with a frequency detunin
D5vL82vL takes~according to Eq.~B3!! the form

dLp~t!5
i\gL

2
@~ t̂eiDt1 t̂1e2 iDt!,(#, ~8!
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FIG. 1. A L-system~a! and a typical arrangement fo
the experimental measurement of resonance fluor
cence induced by two monochromatic laser fields w
frequenciesvL and vL8 ~b!. g, g8, andg12 are the re-
laxation rates of the populations in the upper leve
G13 , G23 , andG12 are the dephasing rates; and,w is the
rate of pumping to level 2. The fluorescence spectru
of the atoms is analyzed using a Fabry-Perot interf
ometer~FP! and a photodiode~PD! in a direction per-
pendicular to the directions of the laser~Lb! and atom
~Ab! beams.
wheregL5Ag21g82, g5d13E8, g85d23E, and the opera-
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where ŝ6(t) are the Heisenberg positive~negative! fre-
ence
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the
op-

fine
tor t̂ is defined as

t̂5gL
21~gŝ13

1 1g8ŝ23
2 !. ~9!

In deriving Eq.~8! we have neglected terms containing su
with higher frequencies.

Equation ~8! obviously determines additional spectr
components at frequenciesvL6D and vL86D, of which
only the components atvL2D and vL81D are new. The
correspond to four-photon processes and should show u
a symmetricL-system as a mirror reflection of the virtu
levels of the subsystem of lower levels~Fig. 2! owing to
modulation of the 1↔3 and 2↔3 transitions by the intrinsic
oscillatory frequencyD'v12 of the lower level subsystem
It is known that four-photon frequency mixing leads to ge
eration of a coherent signal at the Stokes and anti-Sto
frequencies.8 Our later calculations show, however, th
these nonlinear resonances are also accompanied by
bands because of incoherent scattering processes.

The above analysis shows that the important differe
between exciting a two-level atom~see Eq.~7!! and aL-
system~Eq. ~8!! is that excitation in the case of theL-system
is mainly determined by the biharmonic frequency detun
D. In experiments this detuning is usually much smaller th
the frequencies of the laser systems that are exciting the
tem. This means that the intensity of the additional com
nents in the fluorescence spectrum~fine structure!, which is
determined by the exponential factors in Eqs.~7! and ~8!, is
substantially higher for aL-system than for a two-leve
atom.

3. CALCULATING THE FLUORESCENCE SPECTRUM OF A
L-SYSTEM

The spectral density of the emission from an exci
atom~resonance fluorescence spectrum! is determined by the
normally ordered two-time correlation function of the lig
emitted by the atom.9,10 Assuming that the atomic fluctua
tions are Markovian, i.e., they are independent of one
other at timest andt1t, we can write down the correlatio
function for the atomic fluorescence in the form

K ~t!5^r̂0S~0,t !uŝ2~ t !@S~ t,t1t!ŝ1~ t1t!#&, ~10!
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quency operators. These operators have a time depend
only in the form of high-frequency oscillations at optic
frequencies. The superoperatorsS(0,t) and S(t,t1t) de-
scribe the relaxation and interaction of the atoms with
exciting laser fields during the time intervals (0,t) and
(t,t1t), andr̂0S(0,t) is the density matrixr̂(t) at timet. It
follows from Eq. ~3! that the superoperatorsS(0,t) and
S(t,t1t) are simple exponentials of the form exp@LRWAt#,
according to the rotating wave approximation.

The termŝ2(t)@S(t,t1t)ŝ1(t1t)# in Eq. ~10! is sim-
ply the product of the two operatorsŝ2(t) and ŝ1(t1t)
averaged over the fluctuations in the time interval (t,t1t).
This averaging is carried out with the aid of the transform
tion S(t,t1t), which determines the conditional atom
quantum mechanical probability distribution function at tim
t1t relative to timet. The emission spectrum of the ato
can then be calculated as the Fourier transform of the co
lation function~10!.

In the stationary case the density matrix in the vec
representation is simply the zero vector^0u of the matrix of
the evolution superoperatorLRWA. Then we can obtain the
stationary correlation function from Eq.~10! by averaging it
over the temporal oscillations. This averaging leads to
replacement of the bilinear combination of the complete
eratorsŝ6(t) by two combinations:

FIG. 2. A L-resonance and additional resonances which determine the
structure of the resonance fluorescence spectrum.
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ŝ2~ t !3ŝ1~ t1t!→ŝ13
2 3ŝ13
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Similarly, we have

K ~t!→K 1~t!1K 2~t!.

When we calculate the resonance fluorescence spectru
the atom in the rotating wave approximation the correlat
functions K 1,2(t) correspond to the frequenciesv13'vL

andv23'vL8 and when we calculate the fine structure of t
spectrum beyond the range of validity of this approximat
they correspond, respectively, to the frequenc
vL2D52vL2vL8 andvL81D52vL82vL . ~See Sec. 2.2.!

On describing theL-system with the aid of the Liouvil-
lian in the rotating wave approximation and expanding it
terms of the eigen-projectors, we obtain the following re
tively simple expression:

K ~t!5 (
k50

8

$^0uŝ13
2

•uk&&^kuŝ13
1 &exp@~lk2 ivL!t#

1^0uŝ23
2

•uk&&^kuŝ23
1 &exp@~lk2 ivL8 !t#}, ~11!

where the symbol ‘‘•’’ means that the operators are mult
plied in accordance with the multiplication rules for oper
tors and the result is presented in the form of a ket-vec
lk , uk&, and ^ku are the eigenvalues of the matrix and t
eigenvectors of the LiouvillianLRWA.

Using Eq.~11! together with Appendix B we can obtai
the following expression for the correlation function that d
scribes the structure of the resonance fluorescence spec
of the atom outside the range of validity of the rotating wa
approximation:

K ~t!5
gL

2

4v12
2 (

k50

8

^0uŝ12
2

•uk&^kuŝ12
1 &$exp@2 i ~vL2D!t#

1exp@2 i ~vL81D!t#%exp~lkt!, ~12!

where theŝ12
6 are the complex conjugate amplitude of t

subsystem of lower levels which modulate the dipole m
ment of the transition. This modulation gives rise to ne
spectral components in the fluorescence spectrum.

Recall that Eq.~12! describes only the basic structure
the fluorescence spectrum, which is determined by the
rametergL /v12, which, in turn, we assume to be sma
Here we have neglected the higher order contribution wh
makes a nonzero contribution to the coherent componen
the response in the rotating wave approximation, which co
ponent equals zero when this correction is neglected i
strong field in a first-order approximation with respect to t
parameterG/gL for detuningsd, dR'0 ~by analogy with the
two-level atom7!.

3.1. Fluorescence spectrum in the rotating field
approximation

The fluorescence spectrum determined by Eq.~11! is the
sum of Lorentz spectrum lines whose total spectral pow
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are proportional to the coefficient in front of the correspon
ing exponent in Eq.~11!, while their width and frequency
shift are determined by the real and imaginary parts of
eigenvalueslk . In general, the fluorescence spectrum can
calculated numerically. In an asymptotically strong fie
however, as we shall show below~and has been demon
strated previously4 for a special case! an analytic solution
can also be obtained.

For simplicity let us consider aL-system excited by two
high-power laser fields of equal intensity. In this case we c
average the relaxation of the system over the Rabi nutati
while the Hamiltonian corresponding to the laser-induc

precession operatorLp5( i /\)@Ĥp ,(# takes the form

Ĥp5\
g

2
ŝ5\

gL

2& S 0 1 1

1 0 0

1 0 0
D .

This Hamiltonian corresponds to quasi-energy states with
ergies that are shifted with respect to the eigenvalues of

Hamiltonian Ĥp , which equal$0,6gL/2%.11 ~For a two-
level atom the eigenvalues of the Hamiltonian are equa
$6gL/2%!. The temporal dynamics of these mixed qua
energy states cause oscillations in the expected values o
physical variables at two different frequenciesgL andgL/2 .
The physical significance of these nutations in terms of
quasienergy levels is illustrated in Fig. 3.

The Rabi nutations between the quasi-energy levels
described by a Liouvillian which, in the operator bas

$n̂3 ,n̂1 ,n̂2 ,ŝ12
c ,ŝ12

s ,ŝ13
c ,ŝ13

s ,ŝ23
c ,ŝ23

s % ~the indicesc and s
denote the cosine and sine components, respectively!, takes
the form

FIG. 3. The formation of Rabi nutations in a two-level atom~a! and in a
L-system~b!. Only a minimum set of transitions between the quasiene
states, corresponding to the set of all possible lines in the fluoresc
spectrum, is shown,
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Lp5

¨

0 0 0 0 0 0
gL

2
0

gL

2

0 0 0 0 0 0 2
gL

2
0 0

0 0 0 0 0 0 0 0 2
gL

2

0 0 0 0 0 0 2
gL

2&
0 2

gL

2&

0 0 0 0 0
gL

2&
0 2

gL

2&
0

0 0 0 0 2
gL

2&
0 0 0 0

2
gL

2

gL

2
0

gL

2&
0 0 0 0 0

0 0 0 0
gL

2&
0 0 0 0

2
gL

2
0

gL

2

gL

2&
0 0 0 0 0

©

. ~13!

Its eigenvalueslk (k50, ..., 8) areequal to 0, 0, 0,2 igL/2, 2 igL/2, igL/2, igL/2, 2 igL , igL , while the corresponding se
of eigenvectors is defined as

$ck%5

¦

0 0 0 0 0 A1/2 0 A1/2 0

0 21/2 21/2 A1/2 0 0 0 0 0

A1/2 223/2 223/2 1/2 0 0 0 0 0

0 i /2 2 i /2 0 0 0 21/2 0 1/2

0 0 0 0 A1/2 2 i /2 0 i /2 0

0 0 0 0 A1/2 i /2 0 2 i /2 0

0 2 i /2 i /2 0 0 0 21/2 0 1/2

1/2 21/4 21/4 2223/2 0 0 2 i /2 0 2 i /2

1/2 21/4 21/4 2223/2 0 0 i /2 0 i /2

§

.

Let us now discuss the physical significance of the dynami-gL/2. The last two eigenvectors,c7 and c8 , describe the
of
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cal variables corresponding to the eigenvectorsck .
The eigenvectorc0 describes the stationary excitation

a system by two laser fields of equal intensity acting on
1↔3 and 2↔3 transitions, respectively. The eigenvecto
c1 and c2 describe a two-dimensional stationary excitati
space, a combination of the polarization of the ground s
and the populations of all three levels. The eigenvectorsc3

andc6 describe excitation which involves a combination
the populations of the subsystems of the lower levels and
independent combination of the polarizations 1↔3% 2↔3;
they oscillate at half the Rabi frequency,gL/2. The eigen-
vectorsc4 and c5 describe excitations which are a comb
nation of three polarizations~1↔2 and an independent com
bination 1↔3% 2↔3! which also oscillate at a frequency o
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excitation of the bound state together with the populations
all three levels and the polarization of the ground state,~all!
oscillating at a frequency ofgL . Therefore, the Rabi nuta
tions of the eigenexcitations of the system for combinatio
of the unbound levels take place at a frequency ofgL/2,
while the bound states oscillate at a frequency ofgL . ~See
Eq. ~A5!!.

Using Eq. ~13! for the nutation operatorLP , we can
average the LiouvillianLd1Lr in Eq. ~1! over the nutations
and write it in the form of a sum of 333 matrices, two 232,
and two 131. ~The last two are diagonal elements.! As a
result, we can obtain a simplified expression for the last th
terms in Eq.~1!, which describe the overall dynamics of th
system in the interaction representation, of the form
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nly
LRWA5S 2~G131G23!/2 0 0

0 2G12/2 2~g1g81G12!/2&

0 2G12/2& 2~g1g81G12!/4
D

% S 2~g121w!/22G13/42G23/42 igL/2 2 ids/2

2 ids/2 2G12/22G13/42G23/42 igL/2D
% S 2G12/22G13/42G23/41 igL/2 ids/2

ids/2 2~g121w!/22G13/42G23/41 igL/2D
% ~23g/823g8/82G12/82G13/42G23/42 igL!

% ~23g/823g8/82G12/82G13/42G23/41 igL!,

where the total detuning isds52d1dR5vL1vL82v13 The preceding analysis shows that in a strong field o
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2v23. The corresponding eigenvalues are given by

$lk%55
0

2~g1g813G12!/4
2~G131G23!/2

m1

m2

m1*

m2*
~23g23g82G1222G1322G2328igL!/8
~23g23g82G1222G1322G2318igL!/8

6 ,

~14!

where

m1,25
1

4
@2g122w2G126 iA4ds

22~g121w1G12!
2

2G132G2322igL#.

Here g12 and w are the rates of relaxation and pumping
the lower level system,G12 is the dephasing rate in this sy
tem, g and g8 are the rates of relaxation from the excite
states, andG13 and G23 are the corresponding dephasin
rates.

Let us now discuss the eigenvalueslk in detail.
Note that because the relaxation operator is not s

adjoint, each eigenvalue corresponds to two eigenvec
one of which describes the operators acting on the phys
variables, while the other describes the density matrix. T
eigenvaluel050 corresponds to the stationary stater̂st

→^0u and the operatorÎ→u0&, which has no dynamical sig
nificance. This eigenvalue determines the coherent line in
fluorescence spectrum. The eigenvaluesl1,2 describe the
nonoscillatory dynamics of the system and determine
Rayleigh scattering of the fields which excite the syste
The four eigenvaluesl3,4,5,6determine oscillations at half th
Rabi frequencygL/25g/& and describe the contribution o
field-induced resonances to the fluorescence spectrum.
last two eigenvaluesl7,8 determine oscillations at the Rab
frequencygL and describe the ordinary 1↔3 and 2↔3 nu-
tations in the weak-field limit.
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quencies of the system, and not the Raman detuningdR .
Here ford50, relaxation in the system of lower levels do
not contribute to the oscillations at half the Rabi frequen

m1,252G13/42G23/42 igL/2.

This effect can, in principle, be used to study the contrib
tion of the lower level system to the fluorescence spectrum
an experiment where the spectra are measured as a fun
of the detuningd for different intensities of the laser line
The measured width of the spectral components locate
half the Rabi frequency is then determined directly by t
relaxation rate in the lower level system.

For the case of an exact resonance (d,dR50), we can
obtain an analytic expression for the fluorescence spect
in the rotating wave approximation. The major differen
compared to the spectra from two independent two-level s
tems, however, is that in the case of theL-system the genera
coefficient in Eq.~11!, which determines the intensity of th
spectral components, differs from the corresponding coe
cient for the case of a two-level atom, which is simply pr
portional tog. In coherent population trapping, this coeffi
cient for a L-system and, therefore, the intensity of th
spectral components decrease by roughly a factor ofG12/g,
which is a small parameter. For the cesium atom,12 as an
example, it is'1.631023, while for sodium2 it can be es-
timated to be'4.931023 using published parameters.13

3.2. Fine structure of the fluorescence spectrum

For simplicity let us again consider the case of an ex
resonance. Using the equations from Sec. 3.1 together
Eq. ~12!, we obtain the following expressions for the coef
cientsck in front of the exponential factors:

c05
g2/G12

2

A~312g/G12!
3

, c15
9

8

112g/G12

A~312g/G12!
3

,

c2,3,550, c4,65
1

4

11g/G12

A312g/G12

,
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c7,85
1

16

1

A312g/G12

, ~15!

These coefficients multiplied by the common fact
ggL

2 /4v12
2 determine the intensity of the fine structure co

ponents of the fluorescence spectrum~12!.
The complete fluorescence spectrum of aL-system, in-

cluding the structure in the rotating wave approximation
well as the fine structure calculated above, is shown in F
4. Equation~15! implies that for the typically large values o
the ratiog/G12 only the coefficientsc0 andc45c6 are pro-
portional to the large values of orderAg/G12. As a result,
only three lines show up in each of the two fine structu
features of the fluorescence spectrum~Fig. 4!. One of them is
coherent~i.e., has zero width! with an intensity proportiona
to c0 , while the other two are broadened lines with an inte
sity proportional toc4 shifted to the left and right of the
coherent line at half the Rabi frequencygL/2.

4. EFFECT OF FOUR-PHOTON INTERACTIONS ON
COHERENT POPULATION TRAPPING

Using Appendix B we can easily calculate the contrib
tion to the relaxation of the ground state from the relaxat
contributions of the dipole transitions. The nature of the
laxation processes involves an interaction of the dipole m
ments of the 1↔3 and 2↔3 transitions with the vacuum
fluctuations of the electromagnetic field. These interacti
are described by the Hamiltonian

Ĥj5
\

2 ~ ĵ1
2ŝ13

1 1 ĵ2
2ŝ23

1!1H.c., ~16!

where

ĵ1
25

1

\ E d13~r !Ê0~r !, ĵ2
25

1

\ E d23~r !Ê0~r !

are the components of the vacuum electromagnetic fi
Ê0(r ) with negative frequency amplitudes integrated ov
the spatial distributiondk3(r ) of the dipole moments
(k51,2).

FIG. 4. The resonance fluorescence spectrum of aL-system ~the 2S1/2

→2P3/2 transition in the cesium atom! excited by two intense laser field
into a coherent population trapping state.
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photon interactions outside the range of applicability of t
rotating wave approximation, we can write Eq.~16! in the
form

Ĥj5Ĥj
01Ĥj

4ph ,

Ĥj
4ph5

\

2
~ ĵ1

2dS0ŝ13
1 1 ĵ2

2dS0ŝ23
1 !1H.c.,

where Ĥj
0 determines the standard interaction,Ĥj

4ph de-
scribes the additional contribution owing to four-photon i
teractions, anddS0 is the four-photon contribution to the
dynamic transformation of theL-system. Using the final for-
mulas of Appendix B for the transformed operatorsŝ13

1 and
ŝ23

1 , we obtain the following formula for the four-photo
contribution to the Hamiltonian:

Ĥj
4ph5

gL

2D

\

2
$ĵ1

2@ t̂,ŝ13
1 #exp@2 i ~vL2D!t#

1 ĵ2
2@ t̂1,ŝ23

1 #exp@2 i ~vL81D!t#%1H.c. ~17!

By calculating the commutators in Eq.~17!, we can write
down the four-photon contribution with the aid of the tra
sition operators for the low level subsystem as

Ĥj
4ph5

\

4D
$g8ĵ1

2~ t !exp@2 i ~vL2D!t#ŝ12
2

1gĵ2
2~ t !exp@2 i ~vL81D!t#ŝ12

1 %1H.c. ~18!

This implies that the vacuum electromagnetic field intera
with the lower level subsystem through four-photon pr
cesses. The efficiency of this interaction depends on the
teraction constant of the laser fields with the dipole tran
tions of the L-system. The distinctive feature of thi
interaction is that the emission of a vacuum photon by
1↔3 transition is accompanied by the absorption of a 1↔2
transition photon, while the emission of a vacuum photon
the 2↔3 transition is accompanied by the emission of
1↔2 transition photon. Conservation of energy in these p
cesses is ensured by the four-photon interaction of
vacuum field with the laser fields, and this is reflected in
exponential terms in Eq.~18!.

Following Ref. 10, we can write the relaxation operat
for the low level subsystem, which corresponds to Eq.~18!,
in its customary form in terms of the operator bas

$n̂1 ,n̂2 ,ŝ1 ,ŝ2%:

L12

5S 2g12 g12 0 0

w12 2w12 0 0

0 0 2~g121w12!/2 0

0 0 0 2~g121w12!/2

D ,
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whereg12 is the relaxation rate of the lower level subsystem. Given that the termg8ĵ1
2ŝ12

2 in Eq. ~18! describes a relaxation
2 1 ing

nce
transition from level 1 to level 2 and the termgĵ2 ŝ12 describes a transition in the opposite direction, we obtain the follow
expression for the relaxation owing to the contribution of four-photon processes:

L12
4ph5

gL
2

4D2 S 2c2g13 c2g13 0 0

c82g23 2c82g23 0 0

0 0 2~c2g131c82g23!/2 0

0 0 0 2~c2g131c82g23!/2

D , ~19!

wherec5g/gL , c85g8/gL , andc21c8251. When the contribution of four-photon processes to resona

-
w

o
s

he
sp
-
d

ex
th

ic

n

-
in
rre
n

r in
t

e-

ec-

nd
the

cu-

are

ual

he

on,
e-

rves
n-
ton
of
Equation ~19! implies that the contribution of four
photon processes to the relaxation rate constant of the lo
level subsystem,G12 is given by

G12
4ph5

gL
2

8D2 ~c82g131c2g23!'
gL

2

4D2 g13/2.

This contribution leads to a fundamental lower bound
G12. As an example, for the Cs atom and laser field inten
ties of ;1 W/cm2, we haveG12

4ph;1023g13/2'104 s21.

5. THE ROLE OF FOUR-PHOTON INTERACTIONS IN THE
FORMATION OF AN ABSORPTION RESONANCE
AND DISPERSION

The simplest experimental possibility for observing t
dark resonance is to measure the transmission and/or di
sion ~in atomic vapor! of exciting laser waves, whose inde
pendent detection is made easier by the relatively large
ferenceD of the corresponding frequenciesvL andvL8 in the
neighborhood of the resonance:D@G. The real and imagi-
nary parts of the corresponding refractive indices are
pressed in an obvious way in terms of the operators for
corresponding dipole transitions~assuming that macroscop
volume averaging is valid! as

nk95
\cgkN0

I k
Im^uk&^3u&, ~20!

and

nk8215
\cgkN0

I k
Rê uk&^3u&, ~21!

wheregk and I k are the corresponding Rabi frequencies a
intensities of the fields, withk51 corresponding to fre-
quencyvL and k52 to vL8 ~here g15g and g25g8!. To
calculate Eqs.~20! and ~21! in the stationary case it is nec
essary to find the stationary density matrix in the rotat
wave approximation; this matrix is represented by the co
sponding zero eigenvector^0u determined from the equatio

^0uLRWA50.
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dephasing is taken into account, the relaxation operato
the expression forLRWA must include the field-dependen
correction~19!. Then the results of averaging in Eqs.~20!
and ~21! with a natural choice of basis for the vector repr
sentation of the density matrix~see Appendix A1! are de-
scribed simply by the corresponding components of the v
tor ^0u.

Performing the corresponding analytic calculations a
expressing the concentration of active atoms in terms of
pressurep, we obtain

nk821520.0289pl3
g̃ 2

g̃ k
2 n3F d̃2

~ g̃ 1
22g̃ 2

2!G̃12d̃1g̃ L
2 d̃R

g̃ L
2 G̃1214G̃12

2 14d̃ R
2 G ,

~22!

and

nk950.0289pl3
g̃ 2

g̃ k
2 n3 . ~23!

Heren3 describes the population of the excited state cal
lated according to the formula

n35F31
2g̃g̃ L

2

g̃ 1
2g̃ 2

2 ~11 d̃ 2!1
g̃

2

3
g̃ L

4 G̃121g̃L
6 /42~ g̃ 2

22g̃ 1
2!2G̃12d̃

212g̃ L
2 ~ g̃ 2

22g̃ 1
2!d̃Rd̃

g̃ 1
2g̃ 2

2~ d̃ R
21G̃12

2 1G̃12g̃ L
2 /4!

21,

where the tilde means that the corresponding variables
normalized toG. The argumentsd and dR depend on the
velocity of the atom owing to the single-photon and resid
Doppler effect, while the dampingG12 in the lower level
system is determined by the reciprocal time of flight of t
atom~for a cuvette with pure vapor!. Thus, in order to obtain
computational data which model the experimental situati
Eqs.~22! and ~23! must be averaged over a Maxwellian v
locity distribution, which is done numerically.

Figure 5 shows calculated resonance absorption cu
for 2S1/2→2P3/2 transitions in cesium and potassium for i
tense pump and weak probe fields. Although four-pho
dephasing is not very important for cesium, in the case
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FIG. 5. Absorption resonances in cesium~a!
and potassium~b! vapor including~smooth
curve! and neglecting~dotted line! four-
photon dephasing. The dot-dashed curve
Fig. a corresponds to a calculation takin
four-photon dephasing into account whe
the separation between the lower levels w
specially reduced by a factor of 10. The fiel
intensities in the calculations were
I 150.01 mW/cm2 and I 2510 mW/cm2.
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sent
isotope 41K is only 0.25 GHz, i.e., almost two orders o
magnitude smaller than the splitting in cesium, with a pu
field intensity of 10 mW/cm2 the resonance in the absence
a magnetic field is essentially unobservable. Thus, the fo
photon mechanism for dephasing of theL-resonance estab
lishes a fundamental limit of ‘‘observability’’ for the absorp
tion resonance in strong fields, by imposing a limit either
the pump field intensity or on the magnitude of the splitti
in the ground state.

6. CONCLUSION

Four-photon interactions, therefore, play a fundamen
role in the formation of fluorescence spectra, as well as of
absorption spectra and/or dispersion of a resonanceL-system
during coherent population trapping.

A typical arrangement of a possible experiment for d
tecting a resonance fluorescence spectrum employing
atomic beam is shown in Fig. 1b. Experiments of this s
using an atomic beam and an atom trap have been desc
in detail by Gauthieret al.14 and Stalgieset al.,15 respec-
tively. The directions of the atomic and laser beams are c
sen to be mutually perpendicular so as to avoid the ordin
Doppler effect. The fluorescence spectrum is analyzed wi
Fabry-Perot interferometer. Calculations for the fluoresce
spectrum of two-level atoms show that for an atomic be
with 109 atoms/s•mm2, using a 5-millimeter Fabry-Pero
cavity with Q;104 one can expect more than 105 photons/s
from a volume of diameter;100mm. For aL-system, four-
photon interactions, on one hand, reduce the fluoresce
intensity relative to that of a two-level atoms by a factor
(gL/2v12)

2, and, on the other, increase it by a factor
(g/G12)

1/2. As an example, for the Cs atom a saturation
tensity of 1.1 mW/cm and the corresponding parame
gL5102g are already achieved for a laser power of 30 m
at a wavelength of 852 nm focussed into a spot with a dia
eter of about 1 mm. For these experimentally easily reali
parameters, we may expect, as the calculations show, a
duction in the scattering intensity of theL-system compared
to two-level atoms by a factor of 23103 and, therefore, to
detect fewer than;100 photons/s, which is not a proble
for modern detection systems.

The authors thank D. N. Klyshko, A. Schentzle, and
Wynands for fruitful discussions. One of the autho

87 JETP 86 (1), January 1998
p
f
r-

n

l
e

-
an
t
ed

o-
ry
a
e

ce
f
f
-
r

-
d
re-

.

for support.
Thus work was supported in part by the Volkswage

Stiftung ~Grant No. I/72944! and the Russian Fund for Fun
damental Research~Grant No. 96-03-032867!.

APPENDIX A

Dynamic superoperator of a L-system

Let us consider aL-configuration of the quantum me
chanical levels of an atom~Fig. 1! acted on by two laser
fields with frequencies close to a Raman resonance whic
described by a Hamiltonian of the form

ĤL5Ĥa1Ĥ I , ~A1!

where

Ĥa52\v12u2&^2u1\v13u3&^3u

is the intrinsic Hamiltonian of the atom~the energy of level
1 is taken to be zero, so that the projection operatoru1&^1u is
absent in the Hamiltonian! and

Ĥ I5\g cos~vLt1w!~ u1&^3u1u3&^1u!1\g8

3cos~vL8 t1w8!~ u2&^3u1u3&^2u!

is the Hamiltonian of the interaction of the atomic syste
with two light fields having frequenciesvL andvL8 , includ-
ing the dependence of the excitation on the phase of the fi
The interaction constants, i.e., the Rabi frequencies, dep
on the amplitudesAvL

andAv
L8

of the external field an on the

dipole matrix elementsd13 andd23:

g5
1

\
d13AvL

, g85
1

\
d23Av

L8
. ~A2!

Only the case when a single-photon resonance is pre
is of interest, i.e., whenvL andvL8 are close, respectively, to

v13 andv23. We can rewriteĤa in the form

Ĥa5Ĥ01Ĥd , ~A3!
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where the ‘‘unperturbed’’ Hamiltonian
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u2&5gL
21~geiwuc&2g8e2 iw8un&),
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rix
Ĥ05\~vLu3&^3u2Du2&^2u!, ~A4!

including the biharmonic frequency detunin
D5vL82vL'v12, describes free precession with the tw

laser frequencies. The ‘‘perturbing’’ HamiltonianĤb can be
written in the form

Ĥd52\du3&^3u1\dRu2&^2u,

where

d5vL2v13, dR5vL82vL2v12

describe the single-photon detuning for theu1&→u3& transi-
tion and the two-photon Raman detuning, respectively. B
detunings can be zero with a suitable choice of laser frequ
cies.

The dynamics of an atomic system with the Hamiltoni
~A3! can be characterized as a combination of fast~owing to

Ĥ0! and slow~owing to Ĥd! precessions, so it is appropr
ate to shift to a representation of the interaction with
unperturbed unitary transformation

U0~ t !5expF2
i

\
Ĥ0t G .

In the rotating wave approximation6 we can neglect the rap
idly oscillating terms, so that the Hamiltonian~A1! takes the
form

ĤL5Ĥd1Ĥp5\@2du3&^3u1dRu2&^2u1~gL/2!~ uc&

3^3u1H.c.!] ~A5!

and is the effective Hamiltonian in this approximation. He
we have introduced the bound state (uc&) and the unbound
state (un&) orthogonal to it:

uc&5gL
21~ge2 iwu1&1g8e2 iw8u2&),

un&52gL
21~g8e2 iwu1&2ge2 iw8u2&). ~A6!

The stateuc& is associated with excitation of the levele with
an effective coupling constant ofgL5Ag21g82. For zero
Raman detuning (dR50), it is easy to see that the Hami
tonian ~A5! describes a two-level system. This can be de
onstrated most clearly by substituting the expressionu2&^2u
corresponding to the inverse transformation~A6! in Eq.
~A5!:

u1&5gL
21~g8eiw8uc&1ge2 iwun&),
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which leads to the result

ĤL5\F S d1
dRg2

gL
2 D uc&^cu1S d1

dRg82

gL
2 D un&^nuG

1\dR

gg8

gL
2 [ei ~w2w8!uc&^nu1H.c.]

1
\gL

2
(uc&^3u1H.c.).

In the basis$u3&,uc&,un&% the corresponding matrix has th
form

ĤL5S 0 \gL/2 0

\gL/2 \d 0

0 0 \d
D

1
\dR

gL
2 S 0 0 0

0 g2 gg8ei ~w2w8!

0 gg8e2 i ~w2w8! g82
D

and, for dR50, can quickly be expanded in terms of th
232 matrix of a two-level system ‘‘dressed’’ with th
atomic field and the 131 matrix of a single unbound state
i.e., the excited and bound states form an effective two-le
system ue& % uc&. For simplicity we redefine u1& as
exp(2iw)u1& and u2& as exp(2iw8)u2&, so that we can rewrite
Eq. ~A6! in the form

uc&5gL
21~gu1&1g8u2&), un&52gL

21~g8u1&2gu2&),

which does not contain the phase factors explicitly.
With this representation of the Hamiltonian in the rota

ing wave approximation, the corresponding dynamic part
the Liouvillian has the form

LL5
i

\
@ĤL ,(#. ~A7!

The complete LiouvillianLRWA also contain a relaxation
operator which is specified phenomenologically here.

A1. Transformation of the Liouvillian in the rotating wave
approximation

The initial representation of the Liouvillian in the rota
ing wave approximation is a matrix in the nonhermitian ba

$êk%5 P̂a,b5ua&^bu, where k5(a,b) and a,b51,2,3,
which can be represented by the following complex mat
elements using Eqs.~A7!:
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l
d

LRWA5

¨

2g2g8 g g8 0 0 2
ig

2

ig

2
2

ig8

2

ig8

2

0 2g12 g12 0 0
ig

2
2

ig

2
0 0

0 w 2w 0 0 0 0
ig8

2
2

ig8

2

0 0 0 idR2G12 0
ig8

2
0 0 2

ig

2

0 0 0 0 2 idR2G12 0 2
ig8

2

ig

2
0

2
ig

2

ig

2
0

ig8

2
0 2 id2G13 0 0 0

ig

2
2

ig

2
0 0 2

ig8

2
0 id2G13 0 0

2
ig8

2
0

ig8

2
0

ig

2
0 0 2 id2G23 0

ig8

2
0 2

ig8

2
2

ig

2
0 0 0 0 id2G23

©

.

For converting to the more convenient Hermitian bases, we can introduce two transformationsVc andVc1 of the form

Vc51
1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 g/gL 0 g8/gL 0

0 0 0 0 0 0 g/gL 0 g8/gL

0 0 0 0 0 2g8/gL 0 g/gL 0

0 0 0 0 0 0 2g8/gL 0 g/gL

2 ,

Vc151
1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1/& 1/& 0 0 0 0

0 0 0 2 i /& i /& 0 0 0 0

0 0 0 0 0 1/& 1/& 0 0

0 0 0 0 0 2 i /& i /& 0 0

0 0 0 0 0 0 0 1/& 1/&

0 0 0 0 0 0 0 2 i /& i /&

2 . ~A8!

The transformationVc introduces two pairs of polarization operatorsP̂c ,P̂c
1 and P̂n ,P̂n

1 for transitions to the excited leve
from the bound and unbound states, whileVc1 introduces the Hermitian cosine-sine operators~analogs of the coordinates an
momenta or the Pauli matricesŝ1 , ŝ2 in a two-level system!:

q̂g5~ P̂121 P̂21!/&, p̂g52 i ~ P̂122 P̂21!/&,

q̂c5~ P̂c1 P̂c
1!/&, p̂c52 i ~ P̂c2 P̂c

1!/&,

q̂n5~ P̂n1 P̂n
1!/&, p̂n52 i ~ P̂n2 P̂n

1!/&. ~A9!

Here the subscriptsg, c, andn correspond to the ground (1↔2!, bound (c↔3), and unbound (n↔3) subsystems.
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After applying the transformations~A8! to the Liouvillian LRWA in the rotating wave approximation, for the transformed
21 21

it

e

operatorLRWA5Vc1VcLRWAVc Vc1 we obtain

LRWA5

¨

2g2g8 g g8 0 0 0
gL

&

0 0

0 2g12 g12 0 0 0 2
j2gL

&

0
jhgL

&

0 w 2w 0 0 0 2
h2gL

&

0 2
jhgL

&

0 0 0 2G12 2dR 0 2jhgL 0 2~j22h2!
gL

2

0 0 0 dR 2G12 0 0 2
gL

2
0

0 0 0 0 0 2Gc d DG 0

2
gL

&

j2gL

&

h2gL

&

jhgL 0 2d 2Gc 0 DG

0 0 0 0
gL

2
DG 0 2Gn d

0 2
jhgL

&

jhgL

&

~j22h2!
gL

2
0 0 DG 2d 2Gn

©

, ~A10!

where we have used the following notation

j5g/gL , h5g8/gL ,

Gc5j2G131h2G23, Gn5h2G131j2G23,

DG5jh~G132G23!.

The block structure of the transformed dynamic superoperatorLRWA indicated by the continuous lines in Eq.~A10! is
discussed in more detail in Appendix A2.

As opposed to the initial complex representation, the transformed operatorLRWA has real matrix elements, since
corresponds to the Hermitian basis$êk%.

For a symmetricL-system, withG135G23, g5g8, and, therefore,DG50 andj5h, Eq. ~A10! takes the form

LRWA51
2g2g8 g g8 0 0 0 gL /& 0 0

0 2g12 g12 0 0 0 2gL/2& 0 gL/2&

0 w 2w 0 0 0 2gL/2 0 2gL/2&

0 0 0 2G12 2dR 0 2gL/2 0 0

0 0 0 dR 2G12 0 0 2gL/2 0

0 0 0 0 0 2G d 0 0

2gL /& gL/2& gL/2 gL/2 0 2d 2G 0 0

0 0 0 0 gL/2 0 0 2G d

0 2gL/2& gL/2& 0 0 0 0 2d 2G

2 .

A2. The block structure of the dynamic superoperator in the tion variables~A9!. By analogy, the matrix blocks can b

rotating wave approximation

ing

za

-

The physical significance of the superoperatorLRWA de-
fined by Eq.~A10! becomes most transparent on examin
its block structure. It is convenient to break the matrix~A10!
up into blocks in accordance with a definite set of polari

90 JETP 86 (1), January 1998
-

numbered with a subscriptp corresponding to the popula
tions and by the subscriptsg, c, andn corresponding to the
polarizations of ground (1↔2), bound (1↔3), and un-
bound (1↔2) subsystems. In this notation, the matrix~A10!
appears as
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LRWA5S 0 Lgg 2Lcg
T 2Lng

T

Lcp Lcg Lcc 2Lnc
T

Lnp Lng Lnc Lnn

D . ~A11!

It consists of nine nonzero independent blocks. The diago
block Lpp describes the dynamics of the populationsn3 , nc ,
andnn , and the blocksLgg , Lcc , andLnn , the polarization
dynamics, respectively, of the ground state and of the bo
and unbound subsystems. The five nonzero nondiagonal
trices describe the dynamics of theL-system owing to cou-
pling among the above basis variables. The antisymmetr
these five blocks is a consequence of the purely oscilla
character of the dynamics resulting from the interaction w
the external field, while the inner dynamics includes rela
ation so it is also represented by the matrix elements wh
yield nonzero real components in the eigenvalues of the
trix LRWA.

It is easy to see from the block structure of~A11! that
there is no connection between the populations and pola
tions of the ground state, sinceLgp50. This reflects the fac
that the exciting field acts directly only on transitions into t
excited state, while single-photon excitation of the grou
state is absent.

The block representation given here for the dynamic
peroperator in the rotating wave approximation is conven
for qualitative discussions of the effect of the parameters
the L-system on its dynamics, since it reduces to change
only the inner structure of the blocks in the representat
~A11!.

APPENDIX B

Superoperator calculation of the general formula for the
fine structure of the spectrum

Let us calculate the two-time correlation function~10!
that determines the atomic fluorescence spectrum:

K ~t!5^r̂0S~0,t !uŝ2~ t !@S~ t,t1t!ŝ1~ t1t!#&. ~B1!

Here the total evolution superoperator~see Eq.~2!! has the
form

S~0,t !5SRWA~ t !S̃0~ t !, ~B2!

whereSRWA(t) is the superoperator in the rotating wave a
proximation andS̃0(t) is the superoperator for the perturbe
evolution owing to the nonresonant interaction. The super
eratorS̃0(t) describes the transformation of an initial syste

HamiltonianĤ(t) of the form

Ĥ~ t !→Ĥ01dĤ~ t !5Ĥ01
\gL

2
~ t̂eiDt1 t̂1e2 iDt!,

~B3!

where the operatort̂ is defined by Eq.~9!. In first-order
perturbation theory we can introduce a superoperatorS̃0(t),
corresponding to the Hamiltonian~B3!, in the form

S̃0~ t !5S0~ t !1dS0~ t !5S0~ t !1E
0

t

dLp~t!dtS0~ t !,
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dLp~t!5
i

\
@dĤ~t!,(#. ~B4!

IntegratingdS0(t) with respect tot and using Eq.~B4!
together with Eq.~B3!, we obtain

dS0~ t !5
gL

2D
@t̂eiDt2 t̂1e2 iDt,(#S0~ t !, ~B5!

which describes oscillations at a frequencyD.
The superoperatorS0(t) in Eq. ~B5! describes the unper

turbed dynamics represented by the Hamiltonian~A4!, which
accounts for the free precession of all theL-system transi-
tions. The latter is represented in the form

S0~ t !5S12
1 e2 iDt

% S12
1 eiDt

% S13
1 e2 ivLt

% S13
1 eivLt

% S23
1 e2 ivL8 t

% S23
1 eivL8 t

% P0 , ~B6!

where the matricesSkl
6 for the corresponding superoperato

are the one-dimensional eigen-projectors on the corresp
ing intrinsic precession of the variables andP0 is the projec-
tor on the three-dimensional subspace of the nonoscilla
variables, i.e., the populations. After substituting Eq.~B6! in
Eq. ~B5!, we obtain

dS0~ t !5
gL

2D
$@t̂,(#S13

1 exp@2 i ~vL2D!t#

2@ t̂1,(#S23
1 exp@2 i ~vL81D!t#

2@ t̂1,(#S13
2 exp@ i ~vL2D!t#

1@ t̂,(#S23
2 exp@ i ~vL81D!t#%. ~B7!

Then substituting Eq.~B7! into Eq. ~B2! and using Eq.
~B1! together with the relationr̂0S(0,t)→^0u for t→` be-
cause of the damping of all the eigen-oscillations cor
sponding to the nonzero eigenvalues, we can finally write
correlation function in the form

K ~ t,t1t!5^0udS0~ t !ŝ2
•exp~LRWAt!dS0~ t1t!ŝ1&,

~B8!

where the symbol ‘‘• ’’ denotes the product of transforme
operators ands65s13

6 1s23
6 is the sum of the complex am

plitudes oscillating at the optical frequencies.
If we then applydS0 to ŝ6 and recall thatŝ13

6 and ŝ23
6

are eigenvectors for the eigen-projectorsS13
6 and S23

6 , we
obtain

dS0~ t !ŝ252
gL

2D
$@t̂1,ŝ13

2 #exp@ i ~vL2D!t#

1@ t̂,ŝ23
2 #exp@ i ~vL81D!t#, ~B9!

and

dS0~ t1t!ŝ15
gL

2D
$@t̂,ŝ13

1 #exp@2 i ~vL2D!~ t1t!#

1@ t̂1,ŝ23
1 #exp@2 i ~vL81D!~ t1t!#%,

~B10!
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where the commutators of the complex amplitudes of the
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Let us consider the important special case in which the
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Lett.
1↔3 and 2↔3 transitions witht̂ and t̂ are given by

@t1,ŝ13
2 #52

ŝ12
2

A2
, @t,ŝ23

2 #52
ŝ12

1

A2
,

@t,ŝ13
1 #5

ŝ12
1

A2
, @t1,ŝ23

1 #5
ŝ12

2

A2
.

After substitution of Eqs.~B9! and ~B10! in Eq. ~B8! and
leaving out terms which oscillate relative tot, with the dy-
namical representation in the rotating wave approximation
terms of the eigenvectors and corresponding eigenvalues
~B8! finally takes the form of Eq.~12!.

APPENDIX C

Transformation of the time evolution superoperator in the
rotating wave approximation

For a L-system with a time-independent Hamiltonia

Ĥ, the time evolution superoperator is unitary and is giv
by an exponentialS (t)5exp(LHt) with a purely dynamic
Liouvillian of the type~A7! and can be written in the form

L~ t !5U~ t !(U21~ t !5(
a,b

exp@2 i ~va

2vb!t#ua&^au(ub&^bu, ~C1!

where theva and ua& are the Bohr eigenfrequencies and t
corresponding eigenvectors of the Hamiltonian, while
unitary transformationU(t) is specified by the relation

U~ t !5expF2
i

\
Ĥt G .

Subsequently, we can use the interaction representa
for the superoperatorLH1L r , which differs from the
purely dynamical Liouvillian corresponding toS (t) in that it
includes the relaxation superoperatorLr , and treatLH as
the Liouvillian for the unperturbed time evolutionS (t). In
the interaction representation the time dependent relaxa
superoperator has the form

L r
I ~ t !5 (

a,b;m,n
exp$ i @~va2vb!2~vm

2vn!#t%Lab,mnua&^mu(un^bu, ~C2!

where

Lab,mn5 (
k,l ;m,n

^auk&^ l ub&Lkl,mn̂ mum&^nun&

denotes the matrix elements of the relaxation superoper

in terms of the eigen-basis of the HamiltonianĤ.
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oscillations in Eq.~C.2! are fast compared to the rates of a
the relaxation processes, so that it is possible to average
these oscillations. Then the resulting effective~‘‘reduced’’!
relaxation operator has the form

Lre5(
a,b

Laa,bbua&^bu(ub&^au

1 (
aÞb

Lab,abua&^au(ub&^bu, ~C3!

where it is assumed that all the frequenciesvab correspond-
ing to theb→a atomic transitions (aÞb) are different. The
first term in Eq.~C.3! describes the relaxation of the pop
lations owing to b→a transitions from other levels (b
Þa) and radiative decay (b5a). The second term de
scribes the relaxation of the polarization variables. The c
responding matrix isn3n, where n53 is the number of
levels in aL-system.

The superoperator~C3! commutes with the dynamica
Liouvillian, since they have an eigenbasis in common. Giv
this circumstance, the relaxation of the atomic oscillations
simply described by the corresponding damping rates

Gab52Re Lab,ab .

If these quantities are all nonzero, then the stationary~zero-!
vector ^r̂stu has nonzero components only in population
laxation space and is actually described by then-component
zero-vectorra

st of the n3n submatrixLaa,bb .
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Stimulated scattering and wavefront conjugation in an inhomogeneous plasma

Yu. V. Rostovtsev and I. V. Khazanov
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In the context of the problem of stimulated scattering we discuss the mechanism of wavefront
conjugation in an inhomogeneous plasma proposed relatively recently, associated with a
difference in suppression of scattering~due to inhomogeneities! for the inverted and uninverted
components. We analyze the solutions of the integro-differential equations describing this
process both numerically and analytically for different sound attenuation lengths (n21). It is shown
that for this effect to exist it is necessary thatn not be too small. We also consider
extinction of the inverted wave in terms of this mechanism. ©1998 American Institute of
Physics.@S1063-7761~98!01101-9#

Along with processes of stimulated scattering in planein the plasma density@we definew1(x50)50; the point
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waves, which have already been investigated to a signific
extent, analogous processes in waves with complex sp
structure are of interest, especially those in which effici
wavefront conjugation is possible.1,2 Different methods of
solution of this problem have been discussed in many wo
and the stimulated-scattering method of wavefront conju
tion ~SS-WFC! is one of the main ones and possesses
important advantage over the others that it does not req
high-power reference waves of high~diffraction! quality for
its realization. In SS-WFC, in fact, self-conjugation of th
wavefront takes place. This mechanism of wavefront con
gation is sometimes also called statistical since before b
directed into the active~nonlinear! medium, where in fact
stimulated scattering takes place, the radiation that is to
inverted is first passed through a screen with small-scale
dom inhomogeneities, as a result of Fresnel diffraction
which the structure of the pump field in the active medium
formed as a set of strong inhomogeneities~the so-called
speckle structure!. In the classical scheme of wavefront co
jugation in such a field local coupling is necessary betw
the amplitude of the medium density perturbation and
amplitude of the electromagnetic waves, i.e, the conditio

n l @1 ~1!

must be fulfilled, wherel is the characteristic scale of th
pump inhomogeneities~longitudinal correlation length of the
field!. Kurin3 addressed the possibility of substantia
broadening the region in which this mechanism acts
avoiding the limitations of condition~1!. In fact, on the basis
of comparatively simple, interesting, but not obvious es
mates he concluded that this is possible for an inhomo
neous plasma. The purpose of the present paper is to c
out a more rigorous examination of this question.

Thus, consider a longitudinally~in thex direction! inho-
mogeneous plasma with characteristic inhomogeneity len
scaleLN . We let a pump wave, whose field we assume to
given, propagate in this direction, with amplitude

a15C1~x,r !exp@2 iw1~x!#, ~2!

frequencyv1 and wave numberk1. In expression~2! w1(x)
is the phase excursion~phase detuning! due to the variation
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x50 will be called below the synchronization point#. In con-
trast to the case of plane waves, here we allow the func
C1 to have a complex transverse structure~dependence onr )
with characteristic scaler much less than the beam width
varying from cross section to cross section~dependence on
x) and constant mean intensity over the cross section, i.

1

SE uC1u2d2r 5^uC1u2&5const, ~3!

whereS is the cross-sectional area, and the angular brac
denote averaging over the ensemble of realizations of
speckle inhomogeneity. Let us consider the process of
tionary inverse stimulated Brillouin scattering~SBS! of such
a wave, about which more will be said below, developing
the vicinity of the synchronization point at which the we
known conditions

v15v21v3 , k15k21k3 , v3!v1,2,

k1'2k2 , k3'2k1

are satisfied~the indices 2 and 3 pertain, respectively, to t
Stokes wave and the ion acoustic wave, and the notatio
the corresponding quantities here and below are analogou
the preceding!. The equations describing it differ from th
corresponding equations for the usual SBS in an inhomo
neous medium by the presence of additional terms w
transverse LaplacianD' of the amplitudes of the waves, i.e
this in fact is the parabolic equation for the amplitudes w
a quadratic nonlinearity, taking into account th
inhomogeneities3 s i(x) of the medium.1! Expressing from
one of them the amplitude of the ion acoustic wave with
help of the Green’s function~or, what is the same thing
writing down its solution implicitly!, it is not difficult to
proceed from the system of equations to one integ
differential equation for the amplitude of the Stokes wav
which can be significantly simplified in the present case
pump speckle structure. Specifically, we represent its s
tion as the sum of the inverted and uninverted wave:

a25@A2~x!C1* ~x,r !1Ã2~x!const2#exp@ iw2~x!#. ~4!

9308$15.00 © 1998 American Institute of Physics
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plane wave as its ‘‘typical representative’’ and apply t
well-known procedure1,2 of statistical averaging, taking
C1(x,r ) to be a Gaussian, statistically uniform random fie
We thus obtain equations for the functionsA2(x) andÃ2(x)
describing the amplification of both components:3

d~A2 ,Ã2!

dy
52hb exp~2 idy2!E

2L

y @A2~ ỹ!,Ã2~ ỹ!#

12 i ~y2 ỹ!u

3exp@2h~y2 ỹ!#exp~ id ỹ2!dỹ. ~5!

In Eq. ~5! we have introduced the notationA2(y)5A2(x),
Ã2(y)5Ã2(x), y5gx,

d5
1

2g2
~w1xx9 1w2xx9 !ux50;

k1

g2LN

@here we make use of the usual simplification of replac
the phase detuningw i(x) by the first term of the Taylor
series expansion about the synchronization poi#,
b5GNL

2 /v2v3g2 @GNL is the temporal growth rate of the de
cay instability in the field of a plane wave with intensi
equal to the mean intensity of the speckle structure, in
unbounded, homogeneous plasma,v2,3 are the group veloci-
ties of the Stokes and the ionic-acoustic wav
g5 l 21[(k1r2)21#, h5n/g, L5gL @(L,L) is the region of
nonlinear interaction~scattering! centered on the synchron
zation point x50#, h51, 2, andu50, 1, 2. The values
h52, u52 in system~5! describe the inverted wave, th
valuesh51, u51 describe the uninverted wave. Foru50
system of Eqs.~5! goes over to the ‘‘classical’’ equation fo
stationary SBS in a planar pump field.7

Let us analyze the solutions of this system of equati
in different situations. To start with, consider a homogene
medium. Thend50 and Eqs.~5! significantly simplify:

d~A2 ,Ã2!

dy

52hbE
2L

y exp@2h~y2 ỹ!#@A2~ ỹ!,Ã2~ ỹ!#

12 i ~y2 ỹ!u
dỹ. ~6!

Hence, in the well known strong-damping limit~1!
(h@1) the integrals of the kernels in Eqs.~6! converge rap-
idly and the unknown functionsA2 and Ã2 can be taken
outside the integral at the pointỹ5y, thereby obtaining the
corresponding gains g52b/h (h52) and g̃5b/h
(h51).1–3 These expressions, as can be easily seen f
Eqs.~6!, are valid forg!h. On the other hand, this conditio
obtains automatically since the very procedure of statist
averaging, with the help of which we obtained Eqs.~5!, re-
quires that the gain be small on the scale of one speckle s
which in the given case meansg!1. If these conditions are
fulfilled, theng/ g̃52 holds at any point of the medium an
thus we have the wavefront conjugation effect.

In contrast to the simple situation just described, the
posite situation (h!1) is markedly more complicated an
requires a more detailed analysis. Let us start out withh50
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from Eqs.~6! we have the equation (h51, u51)

dÃ2

dy
52bE

2L

y Ã2~ ỹ!dỹ

12 i ~y2 ỹ!
. ~7!

It is interesting to note that this equation is very similar
the equation for ordinary time-independent SBS in a p
scribed pump field in a homogeneous nondissipative m
dium. Such SBS is described, as is well known, by the eq
tion of an ordinary harmonic oscillator, which follow
directly from Eq.~7! in the absence of the imaginary term
the denominator of the kernel (u50). Thus, the solution of
Eq. ~7! turns out to be not an exponential function, but a su
of trigonometric functions. One can convince oneself of t
by substituting the trial solution

Ã2~y!}cos~ b̃y1d̃!1 i sin~ b̃y1d̃!, ~8!

in Eq. ~7!, where b̃ and d̃ are real constants. Substitutin
expression~8! on the right side of Eq.~7!, we obtain an
expression involving the sine-integral~si! and cosine-integra
~ci! functions. In this expression the terms with si(u) and
ci(u) @u5 b̃( i 1L1y)# can be neglected under the cond
tions

ub̃u&1, ub̃~L1y!u@1 ~9!

by virtue of the asymptotic expansions of these functions

si~u!, ci~u!;
~sin u, cosu!

u

~see Ref. 9!, while in the remaining terms with si(i b̃ ) and
ci( i b̃ ) given the first of conditions~9! it is sufficient to keep
the first few terms of their series expansions.9 As a result, by
comparing with the left side of Eq.~7! we obtain the follow-
ing equation for the period of the oscillations:

2ub̃u5bS 0.61 lnub̃u2ub̃u1
1

4
ub̃u2Deu b̃ u, b̃,0. ~10!

Hence, as can be easily seen, it follows thatu b̃ u;b. A simi-
lar equation for the correlated componentb (h52, u52)
obtains analogously and has the same form as~10! with the
substitutionb̃→b/2, b→b/2. Thus, the spatial frequenciesb

and b̃ of the oscillations of the relative amplitudesA2 and
Ã2 are roughly identical, although the first is somewh
larger. Solutions~8!–~10! are in good agreement with nu
merical calculation of Eq.~7! by computer~Fig. 1!. They
break down, as can be seen from the second condition~9!
only near the left boundary of the interaction region. T
second of conditions~9! implies the smallness of variation o
A2 andÃ2 over the scale of one speckle spot, the need
which was noted earlier. Note that, as is clear from the lim
of integration in*2L

y , numerical calculation, both of this
equation@Eq. ~7!# and the more complicated Eqs.~6! and~5!,
simplifies substantially if we solve not the direct problem,
is customary, but the inverse problem, i.e., assign the Sto
wave not at the entrance to the layer—A2(L), Ã2(L), but
at the exit from the interaction region:A2(2L), Ã2(2L).
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FIG. 1. Relative amplitudeA2 corre-
lated with the speckle-pump Stoke
wave in inverse stimulated Brillouin
scattering~the stationary problem! in a
homogeneous layer without dissipatio
versus the dimensionless coordinatey
~along the layer!: b50.1, h52, u52,
d50, h50, L5100, A2(2L)572
172i .
Just this calculational scheme is used in this work. Thus, as
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follows from the solutions, forh50 the intensities of the
scattered waves in the medium do not undergo signific
variations:

uA2~y!u;uA2~L!u, uÃ2~y!u;uÃ2~L!u,

i.e., they remain at the level of the thermal fluctuations.
this regard, note that, continuing the above analogy with
problem of inverse SBS of a planar pump wave, an insta
ity of the given stationary states may be expected, which
speckle pump field is probably also absolute.10,11

The effect of damping of the longitudinal~sound! wave
can substantially alter these solutions. To allow for it, it
necessary to return to the more general Eqs.~6!. Thus, fol-
lowing, as before, the analogy of the processes consid
here with ordinary SBS or with an ordinary harmonic osc
lator, it may be expected that the oscillating solutions~8!
break down, transforming into exponential solutions if t
damping scale becomes less than the period of the osc
tions ~in the absence of damping!, i.e., forh. b̃ or h.b ~for
the correlated component!. Under these conditions, as th
calculations show,

2Re g.2Re g̃.b. ~11!

Note that this value corresponds to the growth rate for si
lar processes (k2;k3) defined in other models—of one
dimensional pump fluctuations or wide-frequency-ba
packets—in Refs. 12 and 13. The method for solving
general equations~5!, proposed in Ref. 3, by simply takin
the functionsA2( ỹ ) andÃ2( ỹ ) outside the integral on the
right side of the equation gives acceptable accuracy h
Indeed, taking this approach and setting

A2~y!,Ã2~y!}expH E
2L

y

@g~ ỹ!,g̃~ ỹ!#dỹJ ,
nt

e
l-
a

ed

la-

i-

d
e

e.

the real parts Re(g, g̃), and likewise for the imaginary parts
Im(g, g̃);2b ln(1/h), which agrees with the numerical so
lutions @the period of the oscillations inA2(y) is not much
less than inÃ2(y)#. For h,b, b̃ the gains of the Stokes
waves are significantly decreased~Fig. 2!.

Let us now analyze stimulated scattering of a pump w
speckle structure in inhomogeneous media. Such scatte
also turns out to be largely similar to ordinary stimulat
scattering of a plane wave. For this purpose, we need
return to the original equations~5!. As before, let us first
consider the situation in which we neglect damping (h50).
Then for u50 ~a planar pump wave! Eqs. ~5! are easily
reduced to the equation of a parabolic cylinder, and its so
tions are expressed in terms of the function of a parab
cylinder.7 The gradient of the amplitude levels of the Stok
wave corresponds to the well-known criterion7,14

uA2~2L!u
uA2~L!u

5exp~pp!, p5
hb

2d
>1. ~12!

At the same time, the absolute value of the amplitude
the time-independent problem falls quite slowly:uA2(y)u
}1/y ~herey@d21/2 holds, and almost the entire variation o
this function right up to its boundary valueuA2(L)u takes
place in this region!. Consequently, since the amplitude
the Stokes field must grow beyond the thermal noise leve
a factor of exp (15) as a benchmark figure in order to o
serve stimulated scattering, a very large system is requi
Therefore, in reality inverse stimulated scattering~from the
thermal noise level! in nondissipative media is possible on
as a time-dependent process. It has been considered in m
studies,7,14,15in just such a formulation, where it was show
that the process of stimulated scattering begins to deve
near the synchronization point as an absolute instabi
e
FIG. 2. The same as in Fig. 1, but for th
case with dissipation:b50.04, h52,
u52, d50, h50.03, L5100,
A2(2L)572172i .
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n
FIG. 3. The same as in Fig. 1, but for a
inhomogeneous layer:b50.1, h52,
u52, d50.05, h50, L540,
A2(2L)5100.
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resulting Stokes wave and sound wave pulses broade
both sides, encompassing ever larger regions of plas
Here, if the length of the inhomogeneous layer is finite,
wave amplitudes cannot reach the described stationary
and when the pulse fronts reach the boundaries of the l
the process can again take on the character of an abs
instability, but with a different growth rate.

On this plane, the situation is essentially the same fo
pump with speckle structure (uÞ0). In this case it is not
possible to find exact solutions of Eqs.~5!; however, as nu-
merical calculations show, they have the same form~Fig. 3!.
The total gain of the Stokes components is described by
same formula~12! and thus the total discrimination of th
uncorrelated wave relative to the correlated wave after
versing the layer is the same as in the classical case,1,2 i.e., it
is equal to two. For the parameters of the cases shown in
3, the functionA2(y) converges to its limiting values~12!
comparatively rapidly. At the same time, the length of t
layer necessary for this grows abruptly asp increases. The
values ofA2(y) and Ã2(y) on the left side of the laye
(y,0) not close to the synchronization point (uyu@d21/2)
are given roughly by the formula in this region for the Stok
component for a planar pump wave7

A2~y!

Ã2~y!J }H A2~2L!

Ã2~2L!J exp$ ip ln@~2d!1/2uyu#%, ~13!

although the variable period of their oscillations, while ma
taining the same constant amplitude, is somewhat larger
in Eqs.~13!.2! On the right side of the layer the frequency
the oscillations grows rapidly, as in the case with plan
pumping, and their amplitude decreases. The functional
pendence of the falloff ofuA2(y)u and uÃ2(y)u can be de-
termined here as follows. Taking the correlated compon
(h52, u52) for definiteness, we write Eqs.~5! for it in the
form ~recall thath50)

2
1

2b
exp~ idy2!

dA2

dy

5E
2L

y0 A2~ ỹ!exp~ id ỹ2!

122i ~y2 ỹ!
dỹ1E

y0

y A2~ ỹ!exp~ id ỹ2!

122i ~y2 ỹ!
dỹ

~14!

wherey0.0 is such thatdy0
2@1. It is probable that the main

contribution to the first integral in Eq.~14! comes from the
region near the synchronization point (d ỹ2;1) since rapid
oscillations of the exponential are happening on the left s
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tude ~13!. Therefore, settingy.y0 it is possible to take the
denominator of the integrand outside the integral, denot
the remaining part byc1. On the other hand, for the indicate
values ofy, as can be seen from Eq.~14!, it is possible to
distinguish a slow and a fast part of the solution itselfA2(y)
by representing it as

A2~y!5J~y!exp~2 idy2!, y.y0 . ~15!

Substituting~15! in ~14! and dropping small terms, we arriv
at a Volterra integral equation of the second kind for t
function J(y). The solutions of such equations, as is w
known,16 can be found by the method of successive ite
tions. Applying it here, already in the zeroth iteration w
obtain

J0~y!.
pc1

2y2 , c1[E
2L

y0
A2~ ỹ!exp~ id ỹ2!dỹ. ~16!

Subsequent iterations have little effect, in contrast to
plane wave case, where the solution can also be simplifie
a similar way by virtue of the more rapid falloff in this cas
of the functionJ0(y) with increasingy ~Ref. 16!. ~For a
planar pump wave, an additional phase factor arises in s
cessive iterations that depends ony.! Following this discus-
sion and in analogy with the plane wave case, where
exact solution is known, we define the quantityc1 as

uc1u;d21/2uA2 ~2L!u.

As a result we obtain

A2~y!}uA2~y!uexp~2 idy2!,

uA2~y!u;
p

hd1/2y2
uA2~2L!u. ~17!

As can easily be seen, the same dependences also obta
the uncorrelated wave (h51, u51); however, its intensity,
in accordance with the above remarks, falls to its limit mu
sooner. Computer calculations agree to within an order
magnitude with the values ofuA2(y)u and uÃ2(y)u found
from formulas ~17!, exceeding them severalfold. We als
note that in the numerical solutions for a finite lay
(2L,L) the profiles of variation of these quantities clear
reveal oscillations about mean values corresponding to
values obtained from Eqs.~17!. However, as the length o
the layer is increased, these oscillations slowly smooth
and become less pronounced.
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is more rapid than in the case of a plane wave~see above!, if
the Stokes wave grows above the thermal noise level, t
the length of the layer needed to observe such~stationary!
stimulated scattering is still large. Time-dependent stim
lated scattering in a speckle pump field probably also de
ops in a way similar to the above picture for a planar pu
field. Thus, an absolute instability should develop in a sm
neighborhood of the synchronization point also in this ca
However, for an absolute instability an inverted wave is n
formed,3! and therefore the previously indicated growth
the intensity levels of the Stokes waves with discriminatio
~in amplitude! is not realized at this stage and apparently c
be achieved only by passing to the stationary regime, wh
again requires a large system.

We also note here that in the case of a planar pu
wave, as in formula~17!, A2(y) } exp(2idy2). Therefore
the fact, noted in Ref. 3, that the result~12! can be obtained
in a very simple way is quite interesting. Specifically, if in
purely formal way we take the functionA2(y) outside the
integral in Eqs.~5! (u50) ~although, generally speaking,
varies, as can be plainly seen, no more weakly than the
nel of this equation!, we thereby introduce forA2(y) in Eqs.
~5! the growth rateg(y) and integrate it iny from 2` to
1` (6L→6`), thereby determining the total gain for th
Stokes wave in the layer. The resulting double integra
calculated immediately by transforming to different integ
tion variables:y, ỹ→y,j (j[y2 ỹ ). The main conclusions
in Ref. 3 were in fact based on the described corresponde
with ~12!. No less interesting is the fact that all of the n
merical solutions for an inhomogeneous medium presen
here confirm the final result for the total gain of the Stok
waves in the layer obtained by this approach.3

Below we describe the effect of damping of the longit
dinal wave (hÞ0) on the processes of forced scattering
inhomogeneous media discussed above. For a plane w
(u50) Eqs. ~5!, like for h50, are easily reduced to th
equation of a parabolic cylinder, which when we transfo
from y to independent variable~complex! z[y2 ih/2d takes
the same form as in the caseh50. Thus, here forA2 the
same solutions7 with the corresponding substitution a
valid.

For a pump field with speckle structure in this situatio
as in the above case of inverse scattering in the absenc
dissipation (h50), there are solutions that are noticeab
similar to the corresponding solutions for a plane wave. F
it must be said that the amplitudesA2(y) andÃ2(y) on the
left side of the layer not far from the synchronization po
have roughly the dependence of Eqs.~13! in which we must
make the indicated substitution fory, i.e., they take the form

A2~y!

Ã2~y!J }H A2~2L!

Ã2~2L!J expH pF i ln@~2d!1/2uyu#1
h

2dyG J
~18!

(h/2duyu!1), but now not only are the periods of their in
frequent oscillations somewhat larger than in formulas~18!,
but the amplitudes of the latter also fall off from the le
boundary of the layer somewhat more slowly. On the rig
side of the layer the behavior of the solutions of Eq.~5! is
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b andh. Forh,(p/2)b, as will be shown below, to find the
solutions in the regiony.0 it is possible as before to repre
sent them in the form given by the first of formulas~17!
(dy2@1). Then, from an equation similar to Eq.~14! but
allowing for the exponential factor of the kernel in Eqs.~5!
associated with damping, we similarly find

A2~y!}uA2~y!uexp~2 idy2!,

uA2~y!u;
p

hd1/2y2
exp~2hy!uA2~2L!u, y@

h

2d
.

~19!

In contrast to the nondissipative case, here the intensity
the Stokes wave decreases much more rapidly through
layer. The same behavior is obtained for the amplitude of
uncorrelated wave@as was the case for formulas~17!#. The
results of numerical calculations in this case roughly a
agree with formulas~19!, just as the corresponding resul
agree with formulas~17!.

For stronger damping of the ion acoustic wave

h.
p

2
b ~20!

the amplitudes of the Stokes components oscillate on
right side of the layer much more slowly than indicated
Eqs. ~19!. As the numerical calculations show, in the give
case the magnitudes of the amplitudesuA2u anduÃ2u fall off
on the right side of the layer with growth~damping!rates
gradually decreasing in magnitude with distance from
synchronization point (y50) due to the influence of the os
cillation factors exp(6idy2) in Eqs.~5!. For uÃ2u this influ-
ence up to the point

y* '
1

2d
, ~21!

and foruA2u, up to the point 2y* , turns out to be insubstan
tial and the corresponding rates on these intervals are e
to approximately the same values as in a homogene
plasma:

Re g̃'2
p

2
b, Reg'2

p

2
b. ~22!

The value of expression~21! arises from the condition tha
the scale of the oscillations of the given exponential fact
in Eqs. ~5! (u51) at the given point, equal top/2dy* ,
should significantly exceed the longitudinal correlati
length of the field (Dy51), over which, as is not hard to se
the growth rate~11! is in fact formed. At the same time
since it is easy to show thatu52 for the correlated compo
nent in Eqs.~5!, the value ofy up to which it may be as-
sumed that the growth rate foruA2u is given by formula~22!
is two times larger than the value given by formula~21!.
Similar simple arguments, however, do not apply to the
side of the layer, where, as was pointed out, the amplifica
of the Stokes waves is insignificant.4! The behavior of the
functions A2 and Ã2 themselves on the right side of th
layer is somewhat more complicated. Transforming to
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functions exp@ia2(y)#[A2 /uA2u and exp@iã2(y)#
dy
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for
[Ã2 /uÃ2u, we show that their oscillations, as was alrea
noted, occur with comparatively large~variable! periods. The
frequencies of the oscillations are subtended between
value @ Im(g, g̃)#hom;b ln(1/h) ~see above for the homoge
neous medium! on the one side and values following fro
formulas ~18! on the other. Starting from lengthsy0 where
the magnitudesuA2u and uÃ2u become comparable with
those satisfying criterion~12!, the periods of the oscillation
are in quite good agreement with the formulas~18!. This is
because at such lengths, as for a planar pump field, the
plitudes of the Stokes waves are described by the same
pendence as on the left side of the layer divided by the
ponential in Eq.~12!. At lengths less thany0 the periods vary
weakly and for not too smallb they are equal to several o
the periods corresponding to@ Im(g, g̃)#hom. For such lengths
a phase lapse occurs in the oscillations in the region ofy*
~21! ~the inhomogeneity of the medium tends to increa
their period in comparison with the period in the homog
neous medium, bringing it closer to ‘‘its own’’~18!. As can
be easily seen by comparing Re(g, g̃) ~22! and

@ Im(g, g̃)#hom, several oscillations in the wave amplitud
can occur up to the pointy0 for real values of the paramete
p@1 ~12!.

It is clear from the above remarks that these solutio
generally speaking, differ substantially from the preced
~19! and cannot be obtained by the same technique as
latter. Indeed, separating the two integrals in the applica
equation, similar to Eq.~14!, with the dominant contribution
coming from the first given conditions~20! and ~22!, is in-
valid since in this case the falloff of the exponent
exp@2h(y2 ỹ)# ~5! outpaces the growth ofuA2(y)u in the y
direction, thereby suppressing the main contribution to
integral from the region near the synchronization point.
the other hand, the scales of the oscillations of the functi
exp@ia2(y)# and exp@iã2(y)# ~see above! are formed in the
given case precisely as a result of the influence of the atte
ation (h). Therefore its spatial scale should be less than
scales of these oscillations, which in fact is what condit
~20! says. The total gain due to the whole layer of bo
Stokes components for both this condition and the reve
inequality corresponds to criterion~12!.5!

Thus, we have analyzed inverse stimulated scatterin
a pump field with speckle structure for different attenuatio
of the sound~ion acoustic! wave on which the process de
velops. As can be seen, a substantial difference between
discrimination mechanism~noted in Ref. 3 and discusse
here! connected with the difference in the gain, due to t
inhomogeneities of the medium, of the correlated and unc
related ~with the pump! Stokes waves, and the classic
mechanism1,2 arises because the latter gives the direct d
crimination of the growth rateg̃ (g/ g̃52 at all points in the
medium!, while in the case discussed here (h!1) it is mani-
fested only on isolated segments and is collected togethe
the total discrimination integrated over the entire layer. Ho
ever, for inverse stimulated scattering these segments are
tributed less favorably so that at the final stage of amplifi
tion of the correlated component discrimination of t
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conditions necessary for wavefront conjugation more sev
than in the caseh@1.

The point is that for wavefront conjugation, genera
speaking, the discrimination of the gain of the uncorrela
waves revealed above is simply inadequate. It is also ne
sary that the specklon distortions~extinction of the correlated
component! invariably arising on the scale of each spot
the pump speckle structure as a consequence of amplifica
at the center of the spot and at its edges~the so-called ser-
pentine distortions, not taken into account in the first-ord
treatment of the specklon! and accumulating at the momen
the inverted wave leaves the layer remain nevertheless
stantially smaller than the intensity level of the invert
wave. In the well known situation treated in Refs. 1 and
this is achieved forg!1 ~small gain of the specklon on th
scale of a spot! thanks to the increasing rate of amplificatio
of the inverted component in comparison with the uncor
lated distortions (g/ g̃52). In the given case, as was d
scribed above, at a significant distance on either side of
synchronization point (y50) no such discrimination exists
Even under more favorable conditions of greater damping
the sound wave~20! the quantities Reg and Reg̃ up to
lengthsy;y* ~21! differ only weakly@see Eqs.~22!# so that
for them it may be assumed that specklon distortions fr
different speckle spots~inhomogeneities! simply add in in-
tensity ~by virtue of the randomness of the process!. Thus,
invoking the well known estimate1 for the extinction
coefficient6!

R'uDA2~y!/A2~y!u2,

where DA2(y) is the variation of the complex amplitud
A2 over the correlation length~speckle spot!, we obtain the
following estimate for the relative level of distortions on th
interval (0,y* ):

Q5Ry* 5S p

2
b D 2

y* 5pp
pb

8
, h52. ~23!

For simplicity, we have taken into account here inR only
variations ofuA2u. From the numerical calculations it is pos
sible to obtain a more exact value for the total level of d
tortionsQS with allowance for the contribution of the regio
to the left of the synchronization pointy50, and also phase
variations inA2 ~including the above-mentioned phase lap
in the oscillations aty;y* ). Specifically, calculatingR(y)
directly for each correlation length and summing these v
ues up toy* , we find thatQS exceeds the estimate~23! by
at least a factor of two. This means that since the factorpp
on the rightmost side of Eq.~23! is the argument of the
exponential in criterion~12! ~which in order to be able to
observe the inverted component must be equal appr
mately to 15, and the distortions themselves should be sm
QS!1), another necessary condition here is

b<0.02. ~24!

Thus it follows from conditions~12! that d<0.005. Let us
now determine the length of the layer that is required
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amplification of a specklon. Even if we assume that the
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growth rate~22! is conserved for ally.0, it is easy to obtain
while satisfying criterion~12! (h52) that

ymin52/d.

The decrease inuRe gu as a function ofy increases this quan
tity by roughly a factor of two, so that ford<0.005 we have

Lmin>103. ~25!

Thus, at such lengths we haveQS<0.2. In the case of strong
damping of the sound wave, it is easy to see that suc
relative level of the distortions~in intensity! of the inverted
wave as it leaves the layer, which in this case correspo
directly to the relative noise level~distortion! of the wave
amplitude on the scale of a speckle spot,1,2 is reached even
for a length of the layer 2Lmin>70.7! Note also that if we
have in mind stimulated scattering in speckle beams~e.g.,
focused in the medium!, where the pump intensity varie
smoothly over its cross section, then the discrimination
the growth rate of the uncorrelated components in this s
ation is decreased since the specklon must also keep its s
ture on the periphery of the beam cross section, where
gain is weak, while the uncorrelated waves are concentr
into its central part, where the gain is maximum. As a res
the growth rates Reg and Reg̃ are similar in value at still
greater distances than in the case under consideration
pump with constant mean intensity over the cross section~3!,
and therefore the lengthLmin is also increased in compariso
with estimate~25!. In this case, the arguments of the exp
nent in criterion ~12! for the correlated and uncorrelate
components probably differs not by a factor of two, as p
viously, but only by a factor of 1.4, in analogy with th
decrease in the degree of discrimination of the uninver
wave in a focused beam in homogeneous media.1,2

Thus, as could be expected, the situation with stro
damping of the sound wave (h@1) ~1! is more favorable for
wavefront conjugation than its opposite. However, since
der ordinary gas-dynamic conditionsn } k3

2, it becomes in-
creasingly difficult to satisfy this condition at longer wav
lengths~e.g., even for a CO2-laser!. From this point of view,
a weakly collisional plasma is more promising since an
acoustic wave in it attenuates mainly as described by
Landau theory~collisionlessly! and n } k3, i.e., it falls off
more slowly with decreasingk3. Larger attenuation of the
sound wave in a plasma is important for wavefront conju
tion because18,19it gives shorter setup times for the stationa
regime in which stimulated scattering is strongest. At
same time, in a weakly collisional plasma there is no co
sional heating which can interfere with SBS and wavefr
conjugation.20,21 On the other hand, nonequilibrium cond
tions are also possible in such a plasma, with weaker da
ing of waves. Note that for a Maxwellian distribution fun
tion electron Landau damping of ion sound corresponds
the condition

h5n l 52Ap

8
~2p!2Am

M S r

l1
D 2

.1
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ion, l152l3, and the scale of the speckle inhomogeneit
r@l1).

1!For simplicity we do not take account in these equations of second
nonlinearities such as generation of harmonics of ion sound,4–6 assuming
that the pump wave is not too strong, the more so since in the given
this process is noticeably damped as it proceeds incoherently.

2!Note that the distances between the maxima and minima in the depend
A2(y) in the numerical solutions for a planar pump wave are well d
scribed by expressions~13!; however, their positions may not necessar
coincide with those determined in Ref. 7, where solutions were found
an unbounded layer (L→`) and the boundary conditionA2(y
→`)5exp$ip ln@(2d)1/2y#% @since Eqs.~5! are linear, any solution multi-
plied by an arbitrary constant factor is also a solution corresponding to
boundary condition of the first solution multiplied by the same coefficie
~including complex coefficients!; this fact is taken into account in the form
of expressions~13!#. The number of trains of oscillations grows continu
ously as the length of the layer is increased.

3!We are grateful to G. A. Pasmanik for bringing this to our attention.
4!On the other hand, this picture can be explained here by employing

same procedure3 of taking the functionsA2( ỹ ) and Ã2( ỹ ) outside the
integral in Eqs.~5! and introducing a growth rate calculated numerica
for h50, i.e., ~for example, forÃ2)

g̃~y!52bE
0

y1Lexp~idj22i2djy!

12ij
dj, j5y2ỹ.

The graph of the function Reg̃(y) (L→`) provided in Ref. 3 shows tha
the interval where this quantity is not small is concentrated mainly in
regiony*0. This is because the given integrand expression oscillates
in the integration region fory.0 @this region contains, in contrast to th
region of valuesy,0, a pointj for which d(dj222djy)/dj50]. It may
be expected that taking account ing̃(y) of the sufficient damping assure
by satisfaction of condition~20! leads to significantly better quantitativ
agreement between the results obtains by this method and those pres
here.

5!Note that this criterion is also satisfied for the accompanying stimula
scattering, including, as we have verified, pump fields with speckle st
ture. Some generalizations of it for two-dimensional systems were
tained in Ref. 17.

6!Note also that an exact calculation of this coefficient in the given cas
hardly possible: here it is a function ofy and to find it, it is necessary to
know the solutionA2(y) over the entire layer. Even in the simplest sit
ation h@1 its calculation is quite involved,1 but the result turns out to be
in good agreement with the estimate given here.

7!Note that at a pump frequency moderately exceeding the electron pla
frequency (v1;vpe) this length turns out to be much smaller than th
inhomogeneity scale of the plasmaLN ~on this segment, at least! that is
necessary for the required level of scattering.18 However, the same also
applies to the case~25!.
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