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Continuity of magnetohydrodynamic flows near singular points
V. S. Beskin and I. V. Kuznetsova

P. N. Lebedev Physics Institute, Russian Academy of Sciences, 117924 Moscow, Russia;
Moscow Physicotechnical Institute, 141700 Dolgoprudnyi, Moscow Region, Russia
~Submitted 14 May 1997!
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The continuity of hydrodynamic and magnetohydrodynamic axisymmetric stationary flows near
singular points of acoustic surfaces is investigated when the flows are far from spherical
symmetry. It is shown that the flow is still continuous at the time the characteristics undergo a
bifurcation, but may become discontinuous when the flow is distorted further. ©1998
American Institute of Physics.@S1063-7761~98!00103-6#
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1. INTRODUCTION

The problem of flow continuity near singular surfaces
one of the classical problems in theoretical physics.1–5 How-
ever, even in the simplest case of ideal hydrodynamics,
problem reduces to a nonlinear second-order partial diffe
tial equation which changes from elliptical to hyperbolic
an acoustic surface. Recall that equations of this form, wh
go back to the classical equation of Tricomi, have been
cussed since the beginning of this century in connection w
transonic hydrodynamic flows~nozzles, wings!. In particular,
for plane flows the hodograph transformation method
been extremely fruitful~yielding a linear Chaplygin equa
tion! and has led to important advances in understand
these processes.1–3 Despite this, the question of constructin
a rigorous analytic theory for these flows is, in fact, s
open.

The difficulty is, first of all, that the very statement o
the direct problem in terms of an equilibrium equation
nontrivial. In other words, the problem of constructing a s
lution for given boundary conditions is nontrivial. Thu
even for one of the simplest variants, planar hydrodyna
flow, there is no rigorous way of constructing a solution
the direct problem~finding a solution from the shape of
nozzle or wing!. As a result, in most cases it has been n
essary to be satisfied with a solution of the inverse prob
~finding the shape of a nozzle from a known flow!.1–3

Yet another difficulty with this approach lies in the fa
that, for example, in the hydrodynamic limit the equilibriu
equation contains three integrals~constants! of motion,
which must be determined from the boundary conditio
This means that to determine the structure of a transonic
on some surface, one must specify four boundary conditio
e.g., two thermodynamic functions, along with two comp
nents of the velocity. However, in order to determine t
Bernoulli integral, without which the equilibrium equatio
cannot, of course, be solved, all three components of
velocity must be known, which is impossible since the th
component of the velocity must be obtained from the so
tion. This inconsistency is one of the fundamental compli
tions in the method being described here. As a result,
construction of a solution to the direct problem encount
4211063-7761/98/86(3)/8/$15.00
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substantial difficulties. On the other hand, it has been sho
that a flow which passes smoothly through the acoustic
separatrix surfaces is analytic near singular points—
points of tangency of the acoustic and separatrix surfac3

This important result makes it possible to analyze the pr
erties of a flow when it differs only slightly from a know
exact solution to the problem by expanding the solution
terms of small deviations from the singular point immed
ately in the physical plane.

As for astrophysical applications, exact solutions ha
also been constructed only for a number of model proble
In most cases, these studies have been carried out with
aid of various self-similar formulations6–10 or
numerically.11–17 Thus, Bogovalov18 has recently shown
with a numerical simulation of a cold magnetized wind fro
a rotating star with a quasimonopole magnetic field th
when the angular velocity of rotation of the star is increas
a discontinuity shows up in the region of a singular po
behind the fast magnetoacoustic surface and does not va
as the angular velocity is increased further. In that pape
was also suggested that this kind of discontinuity arises
soon as the characteristics undergo a bifurcation, when
structure of the characteristic surfaces near the singular p
changes suddenly as the flow parameters vary discont
ously. The purpose of this paper is actually to verify th
assumption.

In the second section of our paper we formulate the ba
equations for axisymmetric stationary flows. The third se
tion is devoted to a discussion of the conditions under wh
the characteristics undergo a bifurcation. In the fourth s
tion, a flow near a singular point is examined in the hyd
dynamic limit. It is shown that the flow remains continuo
at the time the characteristics undergo a bifurcation, bu
principle can become discontinuous when the flow is d
torted further. For this to happen, however, the shape of
acoustic surface must already differ substantially fro
spherical. In the fifth section, a program of this sort is carr
out for the magnetohydrodynamic problem examined
Bogovalov. Here also there is no singularity when the bif
cation occurs. On the other hand, it is shown that the in
bility found above could be the cause of the discontinu
found by Bogovalov.
© 1998 American Institute of Physics
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2. BASIC EQUATIONS

First of all, we state the basic equations that we shall
to study axisymmetric stationary flows. For hydrodynam
flows, one can introduce the stream functionF(r ,u), which
is defined by the equation

nvp5
1

2pÃ
¹3Few. ~1!

Here Ã5r sin u is the distance from the axis of rotation
while n and vp are the density and poloidal velocity of th
material. The curvesF(r ,u)5const just define the stream
lines and, thanks to the conditiondF5nv•dS, the quantity
F(r ,u) coincides with the flux of material through the su
face bounded by the circler 5const,u5const, 0,w,2p.
In particular, the total flux through a sphere of radiusr is
F(r ,p). Here the continuity equation¹•(nv)50 is satisfied
automatically because of the definition~1!.

In the hydrodynamic limit there are only three integra
of motion, which are constant on the surfacesF5const.
These are the energy flux~Bernoulli integral!

E~F!5
v2

2
1w1wG~r ,u! ~2!

~w is the specific enthalpy andwG is the gravitational poten
tial!, the componentL(F) of the angular momentum give
by

L~F!5vwr sin u ~3!

and the entropys(F), which is also constant on the stream
lines in ideal hydrodynamics. For simplicity, in the followin
we shall consider only hydrodyamical flows with zero ang
lar momentum,L50, and constant entropys and energyE
throughout all space. This situation arises during the ac
tion of a gas to a moving gravitational center.19 In this case
the equilibrium equation of the streamlines can be rewrit
in the form20

2Ã2¹kS 1

Ã2 ¹kF D2
~¹ iF!~¹kF!~¹ i¹kF!

D~¹F!2

1
~¹Ã2!•~¹F!

2DÃ2 24p2Ã2n2
~¹wG!•~¹F!

D~¹F!2 50,

~4!

where

D5211
cs

2

vp
2 , ~5!

cs is the speed of sound, and all covariant differentiat
operators¹k act in a flat space. Equation~4! contains only
one free surface, the acoustic surface, which is defined by
conditionD50.

Equation~4! is a generalization to the axisymmetric ca
of the well known equation3,5

wxx1wyy1
wy

2wxx12wxwywxy1wx
2wyy

D~¹w!2 50, ~6!
e

-

e-

n

n

he

which describes planar isentropic flow for a potentialw(x,y)
that specifies the velocity of the material in accordance w
the definitionv5¹w. Like Eq. ~6!, Eq. ~4! is actually the
Euler equation, now rewritten for the stream functio
F(r ,u). We emphasize that the equilibrium equation~4!,
like Eq. ~6!, only contains the stream functionF and the two
integrals of motionE ands. In fact, with the aid of Eq.~1!
~and forL50!, Eq. ~2! can be rewritten in the form

2E22wG~r ,u!22w5
~¹F!2

4p2r 2n2 sin2 u
. ~7!

Since the enthalpyw can be expressed as a function ofn and
s, Eq. ~7! also determines, although implicitly, the densityn
and, together with it, all the remaining thermodynamic qua
tities, as functions of the potentialF and the two integrals of
motion. Equation~7! can also be rewritten in the form

¹kn5n
Nk

D
, ~8!

where

Nk52
~¹ iF!~¹ i¹kF!

~¹F!2 1
1

2

¹kÃ
2

Ã2 24p2Ã2n2
¹kwG

~¹F!2 ,

~9!

while D is given by Eq.~5!.
Similarly, in the framework of magnetohydrodynamic

we can introduce the magnetic stream functionC(r ,u)
through

Bp5
1

2pÃ
¹C3ew, ~10!

whereBp is the longitudinal magnetic field. Accordingly, th
velocity of the particles can be written

v5
h

n
B1VFÃew . ~11!

In this case, for a cold plasma we haves50 ~and neglecting
gravitation! the equilibrium equation for the magnetic su
faces can be written in the form20 ~see Refs. 9, 10, and 13, a
well!

AF¹kS 1

Ã2 ¹kC D1
1

Ã2~¹C!2

~¹aC!~¹bC!~¹a¹bC!

D G
2

A

Ã2~¹C!2

1

2D
~¹k8F !~¹kC!1

1

Ã2 ~¹k8A!

3~¹kC!1
VF

c2

dVF

dC
~¹C!2

1
64p4

ṽ2

1

2M2

]

]C S G

A D216p3mn
1

h

dh

dC
50. ~12!

Herem is the relativistic enthalpy, which coincides with th
mass of the particles in a cold plasma;M254ph2m/n; the
gradient¹k8 acts on all quantities exceptM2; and the deriva-
tive ]/]C acts only on the integrals of motion. In addition

D5
A

M2 1
1

M2

Bw
2

Bp
2 . ~13!
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while the Alfvén factorA is

A512VF
2Ã2/c22M2. ~14!

Finally, we have

G5Ã2~E2VFL/c!21M2L22M2Ã2E2 ~15!

and

F5
64p4

M4

K

A22
64p4

M4 Ã2h2m2 ~16!

and all the operators¹ again act in a flat space. Here th
toroidal magnetic fieldBw and electric fieldE are defined as

Bw52
2I

cÃ
; ~17!

and

E52
VF

2pc
¹C. ~18!

Here I (r ,u) is the total electric current inside the regionC
,C(r ,u).

As in the hydrodynamic limit, the equilibrium equatio
~12! contains only the functionC(r ,u) and four integrals of
motion, specifically, the energy fluxE(C) and angular mo-
mentumL(C), given by

E5E~C!5
VFI

2pc4 1mh1mh
v2

2c2 ~19!

and

L5L~C!5
I

2pc3 1mhÃ
uw

c
, ~20!

as well as the rotational angular velocityVF(C) of the mag-
netic surfaces and the ratio of the particle flux to the m
netic flux,h~C!. Here the electric current is given in terms
the integrals of motion by20

I 52pc3
L2VFÃ2E/c

12VF
2Ã2/c22M2 . ~21!

On the other hand, the equilibrium equation~12! contains
two singular surfaces, the Alfve´n surface on whichA50,
and the fast magnetoacoustic surface on whichD50. Thus,
Eq. ~12! requires that four boundary conditions be specifi
on the surface of a rotating body.

Finally, the coupling condition equivalent to the Be
noulli equation of hydrodynamics, which just makes it po
sible to expressM2 in terms of the integrals of motion, i
rewritten in the form
ur
-

d

-

Ã2~E2VFL/c!2~12VF
2Ã2/c222M2!1M4~Ã2E22L2!

Ã2A2

5
1

64p4

M4~¹C!2

Ã2 1h2m2, ~22!

and the derivative¹kM
2 is written as

¹kM
25

Nk

D
, ~23!

where now the numeratorNk has the form

Nk52
A

~¹C!2 ¹bC¹k¹bC1
A

2

¹k8F

~¹C!2 . ~24!

As we can see, in both cases the equilibrium equatio
a second-order equation which is linear in the higher deri
tives. In other words, it can be written in the canonical fo

A
]2C

]r 2 12B
]2C

]r ]u
1C

]2C

]u2 1F 50, ~25!

where the coefficientsA2F are independent of the secon
derivatives. Calculating the standard combinationD5AC

2B2, for the MHD flows we obtain

D5A2D~D11! ~26!

and, accordingly,D5D(D11) in hydrodynamics. The
equilibrium equation, therefore, changes from elliptic to h
perbolic at the singular surfaces on which the poloidal vel
ity of the material equals either the fast or the slow mag
toacoustic speed,D50, or with the cusp velocity,D521.20

In the cold-plasma approximation, the conditionD50 is sat-
isfied only on the fast magnetoacoustic surface, while
slow and cusp surfaces do not exist. In the hydrodyna
limit, on the other hand, the only singular surface will be t
acoustic surface,D50.

3. BIFURCATION OF THE CHARACTERISTICS

We now consider the bifurcation of the characteristi
which can occur when the flow differs greatly from sphe
cally symmetric. To demonstrate this, we write down t
equation

dr

du
5

B6AB22AC

A
, ~27!

which describes the trajectories of the characteristic surfa
in the hyperbolic region of the equilibrium equation~25!.
Now, using the explicit form of the coefficientsA2C , we
have, for example, in the hydrodynamic limit
dr

du
5

r 2~]F/]r !~]F/]u!6@r 2~]F/]r !21~]F/]u!2#A2D~D11!r 2

~]F/]u!21D2@r 2~]F/]r !21~]F/]u!2#
. ~28!
r-
Equation~28! shows that, in general, at the acoustic s
faceD50, the derivatived(r 2r s)/du ~r s5r s(u) is the ra-
-dius of the acoustic surface! is nonzero. Thus, two characte
istics will pass through every point.5 However, at singular
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points where the derivative satisfies]F/]r 50, determining
the behavior of the characteristic surfaces requires a m
detailed treatment which can be carried out by expanding
solution near the singular pointr 5r * . In the end, in terms
of the dimensionless units

R5
r s2r

r * D1
, ~29!
i

-

t

w

c

re
e

whereD15r * (]D/]r ) for r 5r * , Eq. ~28! can be rewritten
in the form

dR

du
5au6AR, ~30!

where
a52
2~]D/]u2!r 5r

*
,u502r * ~D1 /F* !~]2F/]r ]u2!r 5r

*
,u50

D1
2 . ~31!
.
r-
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The exact solution of Eq.~30! can be found using the
substitution

R~u!5k2~u!u2. ~32!

Substituting Eq.~32! in Eq. ~30!, we obtain the implicit ex-
pression

k~u!5k11C~k12k2!/k1@k22k~u!#k2 /k1u~k22k1!/k1. ~33!

Here C is an integration constant, whilek1 and k2 are two
fixed values ofk(u) which are independent of the angleu.
They can be found directly from Eq.~30!. As a result, we
have

2k26k2a50, ~34!

and, therefore,

k1,25
16A118a

4
. ~35!

The behavior of the characteristic surfaces is exhibited
Figs. 1 and 2. Here the conditiona.0 corresponds to the
classical case1–5 in which four characteristics, which corre
spond to the two branches of the roots of Eq.~35!, pass
through a singular point. In fact, fork'k1 , Eq. ~33! yields

k~u!'k11C1um, ~36!

where the exponent is

FIG. 1. The behavior of the characteristic surfaces in the case where
parametera for a nonstationary singular point~left! satisfies the condition
21/8,a,0. The heavy curve denotes the separatrix characteristic, as
as the solution corresponding tok5k1 andk5k2 . A classical singular point
a.0 is indicated on the right. The pointA has no effect on the subsoni
region.
n

m52
118a1A118a

4a
. ~37!

Thus, for a.0, whenm,0 holds the second term in Eq
~36! diverges asu→0. Therefore, only the characteristic co
responding toC150 will pass through the origin whenk
'k1 . On the other hand, in the casea,0 ~which cannot be
realized for a plane hydrodynamic flow in the absence o
gravitational field!, the situation is substantially differen
Thus, when the condition21/8,a,0 corresponding to the
real roots ~35! is satisfied, infinitely many characteristic
pass through the singular point, since now we havem.0
andk(u)→k1 asu→0 for all values of the constantC1 . On
the other hand, fora,21/8, when the roots~35! become
complex, the structure of the characteristic surfaces
sharply different, so that not even one characteristic pas
through the singular point. The spherically symmetric ca
as such, corresponds to the conditiona50.

Therefore, when the flow differs enough from sphe
cally symmetric, the entire structure of the characteristic s
faces, including the separatrix characteristic~which, as is
known, just separates two regions that are not caus
coupled1–3!, changes in a discontinous fashion. In particul
if for a.21/8 the separatrix characteristic joins two sing
lar points, then fora,21/8 it no longer does. As a resul
the region lying immediately above a singular point witha
,0 also begins to affect the elliptic region of the equilibriu
equation in a discontinous fashion, since, as can be s
from Fig. 2, a perturbation from this region now reaches

he

ell

FIG. 2. The same, fora,21/8. A perturbation from pointA reaches the
acoustic surface along the characteristic.
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acoustic surface along the characteristic. Now it can be
derstood why Bogovalov proposed that a discontinuity
such in an outflow from a rotating magnetized body ori
nates when the characteristics undergo a bifucation.18

4. HYDRODYNAMIC FLOW

We now proceed to a rigorous examination of the beh
ior of the solution near the singular points of the equilibriu
equation~25!. First of all, we consider accretion in the hy
drodynamic limit with a nonrelativistic velocity in the neigh
borhood of the pointu50, r 5r * , wherer * is the radius of
the acoustic surface atu50. This situation can be realize
during accretion at a moving black hole.20 Following
Frankl’,3 we write down the first terms of the expansion
the stream functionF, densityn, and velocityv in powers of
r 2r * andu in the form

F5F* F1

2
u21

1

2
bhu22

q

24
u41

p1

720
u61

p2

24
u4h

1
p3

2
h2u2G , ~38!

n5n* ~11h1h1h2u2!, ~39!

and

v5v* ~11w1h1w2u2!, ~40!

whereh5(r 2r * )/r * . It is clear that withb50, q51, p1

51, p250, andp350, for h250 andw250, the functionF
~38! corresponds to the spherically symmetric flow

F5F0~12cosu!. ~41!

On the other hand, it is clear that the expansion~38! does not
require any limitations on the values of the coefficientsb, q,
and p12p3 . Recall that at a classical singular point, t
entire structure of a transonic flow~for given constant values
of the integralsE ands! was determined with the aid of jus
one more function. In the direct formulation, this functio
might be the shape of the flow boundary, e.g., a nozzle
wing. However, as mentioned above, serious difficult
arise in constructing a solution. On the other hand, beca
the transonic flow is analytic,3 the solution near the acoust
surface can be constructed by expanding in a series when
further function characterizing the flow is specified. Thu
for a plane symmetric flow, this function might be the lo
gitudinal velocity on the symmetry axis,f (x)5vx(x,0).3 In
our case, it is convenient to take the fluxnv r(r ,0) on the
axis, u50, as the defining function. According to Eqs.~1!
and~38!, this means that the role of ‘‘boundary conditions
n-
s
-

-

r
s
se

ne
,

will be played byb andp3 , which just determine the devia
tion of the flow from spherical symmetry. Thus, for accreti
to a black hole moving at velocityv` ,20 we obtain

b52k1~G!«1 , ~42!

and

p35
2b

A1026G
S 42A1026G

G11
21D , ~43!

where the small parameter is«15v` /cs(`) and the numeri-
cal coefficientk1(G);1 has been determined elsewhere20

All the remaining coefficients of the expansions in Eq
~38!–~41! should ultimately be expressed in terms of the
quantities. In fact, our problem will just consist in verifyin
the continuity of this procedure fora521/8.

As a result, using Eqs.~4! and~9! for Nr , we obtain the
following relations for the coefficients in the expansion ofF
andn:

h15
2b241A~422b!22~G11!~626b12p31b2!

G11
,

~44!

q511
3

4
b2, ~45!

w15b222h1 , ~46!

and

w252h2 , ~47!

where the1 sign in front of the square root in Eq.~44!
corresponds to accretion. Here

b522
GM

r * v
*
2 , ~48!

wherev* 5F* /2pn* r
*
2 is the flow velocity at the pointu

50, h50, so that for a spherically symmetric flow,22 when
r * 5GM/2v

*
2 , we haveb50. For simplicity, here we have

used the polytropic equation of stateP5knG, 1,G,5/3,
for which the specific enthalpy isw5cs

2/(G21), wherecs
2

5(1/mp)kGnG21 is the square of the speed of sound. W
emphasize that forb50 andp350, Eq. ~44! for h1 trans-
forms to the well known expression22,23

h15
241A1026G

G11
~49!

for a spherically symmetric flow.
Furthermore, the first terms in the expansion in pow

of h andu for the u-component of Eq.~8! give
h252

S 1

60
p11

1

36
q21

1

15
2

1

9
q1

1

12
b21

1

24
bp2D u21

1

2 S 1

2
b21

2

3
b1

1

3
p21bp32

1

3
qbDh

~G11!h2u21@~G11!h11~422b!#h
. ~50!
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It is clear from Eq.~50! that the following expressions hol
for p1 andp2 :

p15260~G11!h2
22

5

3
q2241

20

3
q25b22

5

2
bp2

~51!

and

p2526@~G11!h11422b#h222~q211b!1qb23bp3 .
~52!

In addition, in this case of a potential flow, we have

¹3v50. ~53!

As a result of Eq.~53!, we obtain an expression for th
coefficienth2 ,

h25
12q

6
2

1

4
h1b1

p3

2
. ~54!

Equations~44!–~54! also make it possible to determine a
the rest of the coefficients in the expansion for the stre
function F and densityn in terms ofb andp3 .

Finally, the coefficienta in Eq. ~30! is expressed in
terms ofb andp3 as follows:

a52
2b1p3~G11!

D1
2 , ~55!

where

D1
25~422b!22~G11!~626b12p31b2! ~56!

is the expression under the square root sign in Eq.~44!. It is
clear from condition~55! that at the point at which the cha
acteristics undergo a bifurcation,a521/8, there are no
changes in the procedure for determining the coefficient
the expansion of the stream functionF and densityn in
terms ofb andp3 . In other words, the flow remains continu
ous. However, as the flow becomes more distorted, w
D1

2→0 and, therefore,a→2`, the possibility of represent
ing the solution of the equation in the form of the analy
series~38! is lost, becauseh1 and, therefore, all the othe
expansion coefficients, become complex quantities. This
means that a continuous flow regime becomes impossib5

In a similar fashion, we can obtain relationships for t
coefficients in the expansions of the stream function and d
sity near the equator. In this case, which is realized, for
ample, during accretion at a rotating black hole,20,21we have

F5F* F11b2
q

6
1bhb1

p1

120
b51

p2

6
b3h1p3bh2G ,

~57!

and

n5n* ~11h1h1h2b2!, ~58!

whereb5u2p/2.
The equations for the expansion coefficients now h

the form

q511b2, ~59!
m

in

n

so
.

n-
-

e

h15
2b241A~422b!22~G11!~626b12p31b2!

G11
,

~60!

p15212~G11!h2
228212b2112q23q224bp2 ,

~61!

p252b22b224p3b1b3

22~G11!h1h224~22b!h2 , ~62!

and

h25
1

2
~2p32b22h1b!. ~63!

In this case the situation is clearly analogous to that exa
ined above.

We conclude, therefore, that when the characteristics
dergo a bifurcation, the procedure for finding the soluti
near a singular point is still valid. In other words, to dete
mine the solution we have, as before, to determine one o
free function besides the integrals of motionE ands. On the
other hand, the continuity may break down when the flow
distorted further, i.e., for sufficiently large values ofb and
p3 , when the expressionD1

2 under the square root in Eq.~44!
goes negative. It is true, as our analysis has shown, tha
the values given by Eqs.~42! and~43! this becomes possible
only for «1.1, when a shock inevitably develops in the e
tering flow. Recall that for a spherically symmetric flo
D1

251026G, so thatD1
2.0 for G,5/3.

5. MAGNETOHYDRODYNAMIC FLOW

We now consider the nonrelativistic MHD flow of a col
plasma~and neglecting gravitation! in the neighborhood of
the singular pointu5p/2, h50. As noted above, in order to
determine the transonic flow we have to specify four fun
tions on the surface of the body, for example, the density
velocity of the material, as well as the rotational angu
velocity and the normal component of the magnetic field. F
simplicity, as in the case of the flow considered
Bogovalov,18 we shall assume that all these quantities
constant on the surface:

n~R,u!5nin5const, ~64!

v~R,u!5v in5const, ~65!

VF~R,u!5V5const, ~66!

and

Bn~R,u!5Bn5const. ~67!

We now write the first terms in the expansions of the fluxC
and densityn in powers ofh andb in the form

C5C* F11b1a1hb2
a2

6
b3

1
a3

120
b51

a4

6
b3h1a5h2b G ~68!

and
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n5n* ~11h1h1h2b2!. ~69!

For a150, a251, a351, a450, anda550, the fluxC goes
over to the spherically symmetric solution of Eq.~12! which
occurs for an angular velocityVF50 and angular momen
tum L50:

C5C0~12cosu!. ~70!

In this case the Alfve´n surface coincides with the fast ma
netoacoustic surface. For nonrelativistic flow velocities,
coupling condition~22! has the form

E2mh5
M2~¹C!2

128p4Ã2mh
1

K

A2 , ~71!

where now

A512M2, ~72!

and

K5~2VFLmhÃ22VF
2Ã4m2h2!~122M2!1M4L2.

~73!

As in Bogovalov’s paper, we shall consider an outflo
of cold plasma with the constant integrals of motionVF ,
E5mh(11v in

2 /2c2),

h5
2pninv inR

2

C0
~74!

and angular momentum

L~C!5L0F12
~C2C* !2

C
*
2 G . ~75!

As a result, from Eqs.~12! and ~71!, it is possible to obtain
the following relationships:

a15122~v211!j* 1j
*
2

XA
2

X
*
2

M
*
2 21

a2 , ~76!

a25~2j
*
2 v212j* !

M
*
2

X
*
2 1a1

21a121, ~77!

h152
4

3
j* 2

2

3
v2~12a1!2D1 , ~78!

and

D1
25F4

3
j* 1

2

3
v2~12a1!G2

2
4~2M

*
2 21!

3M
*
2 j

*
2

2v2~12a1!1
v2

3
~12a1!22

2

3
v2a5 , ~79!

where we have introduced the dimensionless quantities

a5
VFr A

vA
, v25

M
*
2 21

M
*
2 , j* 5

VFr
*
2 mh

I * M
*
2 , ~80!

and

X* 5
r *
r A

, XA5
r a

r A
. ~81!
e

Here I * 5I (r * ,p/2)/2p, I (r ,u) is the total current flow in
the regionC,C(r ,u), with

I

2p
5

L2VFÃ2mh

12M2 , ~82!

while vA5v in is the Alfvén speed on the acoustic surface f
V50, given by

vA
25

C0
2

64p4r A
4m2h2 . ~83!

Finally, r A andr a are the Alfvén radii for a spherically sym-
metric flow and for a flow withaÞ0. For a flow that is close
to spherically symmetric, naturally we havea→0, j→1,
X*→1, andC*→C0 .

Then, the conditionD50 is written in terms of these
quantities as

v25
C0

2

C
*
2

X
*
6 a2

j
*
2 M

*
6 , ~84!

and the coupling equation~71! is written as

15
M

*
4

X
*
4

C
*
2

C0
2 1a2~2XA

22X
*
2 !1

a2~XA
22X

*
2 !2

X
*
2 v4 . ~85!

Finally, the coefficienth2 can be determined from the equ
librium equation~22!:

h252v2Fa2

2
2a52

1

2
2

a2XA
2X

*
2

M
*
2 ~12M

*
2 !

C0
2

C
*
2

3~X
*
2 2XA

2M
*
2 !G2

1

2
h1a1 . ~86!

As in the case of a hydrodynamic flow, therefore, t
expressions for all the expansion coefficients in Eqs.~76!–
~78! have a square-root singularity. Unfortunately, Eq.~78!
for h1 requires that four quantities characterizing the flow
specified, but these cannot be determined directly from
boundary conditions~64!–~67!. Thus, the value of the angu
lar velocity a at which the expression under the square-r
sign becomes negative~if it happens at all! cannot be deter-
mined with certainty. For smalla!1, however, Eq.~78! can
be written in the following form:

h152
4

3
2

2

3
a22A4

9
2

2

9
a2. ~87!

In particular, fora50 Eq. ~87! gives h1522, which just
corresponds to free outflow of the material. As we see,
~87! shows that the expression under the square-root
decreases as the angular rotation speed increases. Thus
possible that as a spherically symmetric flow is distor
further, it may become discontinuous. Furthermore, acco
ing to Eq. ~87!, the expression under the square-root s
becomes negative right ata;1, which corresponds exactl
to Bogovalov’s result.

We note, finally, that fora!1, the coefficienta in Eq.
~30! has the form
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a52
6a2

D1
2 . ~88!

Clearly, as in the case of a hydrodynamic flow, at the m
ment the characteristics undergo a bifurcation, the fl
ceases to be discontinuous. The transition to a regim
which the flow becomes discontinous corresponds
a52`.

6. CONCLUSION

In this paper we have shown that the solution of t
equilibrium equation near the singular points remains c
tinuous while the characteristics undergo a bifurcation,
may become discontinuous as the flow is distorted furth
The possibility of shock wave formation, obtained nume
cally by Bogovalov, is thereby demonstrated. On the ot
hand, the continuity of the procedure for determining t
flow parameters ata521/8 shows that a sudden change
the position of the separatrix characteristic~which separates
regions that are not coupled causally! does not affect the
number of boundary conditions required to determine
flow structure.
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useful discussions, and support, as well as V. B. Baranov
S. V. Bogovalov for fruitful discussions. This work was su
ported by the Russian Fund for Fundamental Resea
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Annihilation of a relativistic positron and K-electron to yield a photon and second
K-electron
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We study the annihilation of a fast positron and aK-electron resulting in the emission of a
photon and a secondK-electron. It is assumed that all electrons and positrons move in the
Coulomb field of the nucleus and that the Coulomb parameteraZ is much less than unity
~a51/137 is the fine-structure constant andZ is the atomic number!. The electron–electron
interaction, which is responsible for the ejection of the electron by the atom, is taken into
account in the first order of perturbation theory. We calculate the differential and total cross
sections of the process and construct the ratio of the cross sections of double and single
ionization as a function of the energy of the incident positron. Finally, we establish the high-
energy limit of this ratio, equal to 0.34/Z2. © 1998 American Institute of Physics.
@S1063-7761~98!00203-0#
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1. INTRODUCTION

The annihilation of a positron and a free electron is o
possible if two or more photons are emitted, since otherw
it is impossible to conserve energy and momentum.
since annihilation with an atomic electron involves a th
object ~the nucleus!, it can be two-photon, one-photon, o
even radiationless if the atom contains more than one e
tron:

A1e1→A112g, ~1!

A1e1→A11g, ~2!

A1e1→A111e2, ~3!

where A is a neutral atom or ion, and A1 and A11 are ions
whose charges exceed that of A by one or two units.

The reaction~1! is the crossing-symmetry channel fo
the Compton scattering of photons by the atom and can
ceed with low momentum transfer to the nucleus, as in
case of Compton scattering. This means that among
above reactions, this one has the largest cross section, e
in order of magnitude to the photon scattering cross sec
of a free electron,s;r 0

2, wherer 052.82310213 cm is the
classical electron radius. Two-photon annihilation on ato
has yet to be studied more thoroughly. We know of only o
experimental paper1 and one theoretical paper,2 and the re-
sults of these two studies are quite different.

One-photon annihilation~2! is the crossing-symmetry
channel for the atomic photoeffect. The reaction proce
with high momentum transferq;m ~m is the electron
mass!1! and has cross sections;r 0

2a4Z5. One-photon anni-
hilation on atoms is thoroughly studied in Refs. 3–5.

Radiationless annihilation~3! is studied in Refs. 6–9. In
this reaction, the energy liberated in the electron–posit
annihilation process is transferred to another electron
leaves the atom. As a result, a doubly charged ion and
4291063-7761/98/86(3)/10/$15.00
y
e
t

c-

o-
e
he
ual
n

s
e

s

n
at
e

electron emerge with definite energy. Reaction~3! proceeds
with large momentum transferq.2m to the nucleus and
large energy transferDE.2m to the liberated electron. The
reaction therefore has a small cross sections;r 0

2(aZ)8 and
occurs at small distancesr;1/q from the nucleus.8,9

More complicated annihilation processes on an atom
also possible. Among these is one-photon annihilation
companied by ejection of an electron~the name of the pro-
cess corresponds to the number of photons actually em
in the reaction!. As a result the atom becomes doubly io
ized, and the process can be called double ionization w
one-photon annihilation:

A1e1→A111e21g. ~4!

The energy of this reaction is divided between the pho
and the electron. Hence, in contrast to~2! and ~3!, here we
have photon and electron energy spectra.

We show below that the cross section of this reaction
relativistic positrons iss;r 0

2a(aZ)3. Notwithstanding the
fact that there emerges, in comparison to reaction~3!, a new
small factor;a related to photon emission, the cross sect
exceeds that of radiationless annihilation. The released
ergy is divided between the photon and the electron v
unequally. Two regions of the energy spectrum contrib
most to the cross section: the edge region, where the e
sion of a hard photon and low-energy electron with hi
momentum transfer to the nucleus is observed, and the
tral region, where both the photon and the electron have h
energies, while the momentum transferred to the nucleu
low. The edge region is extremely narrow~its width is of
order of the binding energy of theK-electron!, but its con-
tribution to the total cross section is comparable to the c
tribution of the rest of the spectrum. The central region co
prises about half the spectrum, but the section of this reg
© 1998 American Institute of Physics
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that contributes most to the cross section corresponds to
tion of slower electrons.

The electron–electron interaction plays the most imp
tant role in reaction~4!, with the result that this reaction
together with double photoionization

A1g→A1112e2 ~5!

are of interest to studies of electron correlations in the re
tivistic collision-energy range.10 Granted, experimental stud
ies of relativistic processes on low-Z elements or on the
outer shells of high-Z atoms, where correlation effects a
most in evidence, are hindered by the smallness of the
responding cross sections. However, the behavior of c
sections in the relativistic range has its peculiarities and
quires separate study. For instance, while the ratio of
cross section of double photoionization to that of sin
photoionization in the limit of high but still nonrelativisti
energies is constant,11–13 in the relativistic range it increase
with photon energy and approaches a new limit.10

In this paper we examine the double ionization of theK
shells of atoms and ions in the one-photon annihilation
high-energy positrons with atomic electrons. We assume
the electrons and the positron move in the Coulomb field
a nucleus with chargeZ. The electron–electron interaction
taken into account in the first order of perturbation theo
which is justified forZ@1. At the same time, we assume th
aZ!1, and all analytic expressions are derived by se
expansion in this parameter. However, the problem cont
one more Coulomb parameter,j5aZE/p ~E and p are the
electron energy and momentum!, which is not always small
In such cases the dependence onj is taken into accoun
exactly. We find the energy spectrum, the angular distri
tion of electrons and photons, and the total cross sectio
the process. We calculate the energy dependence of the
of the cross sections of double and single ionization. We a
give simple formulas for the high-energy limit in the relati
istic and nonrelativistic region. Finally, we show that at no
relativistic positron energies, the double-ionization cross s
tion can exceed the single ionization cross section in the c
of annihilation on light atoms.

2. AMPLITUDE AND CROSS SECTION OF DOUBLE
IONIZATION WITH ONE-PHOTON ANNIHILATION IN THE
EDGE REGION OF THE ENERGY SPECTRUM

To first order in the electron–electron interaction, t
process of double ionization with one-photon annihilation
represented by eight Feynman diagrams, four of which
depicted in Fig. 1. The other four diagrams differ from the
in the sign and interchange of the statesca and cb of the
initial electrons.2!

When a photon with energyv!m is emitted, all dia-
grams are of the same order, and their contribution to
total cross section isa21 times smaller than the cross sectio
of the radiationless annihilation reaction~3!. Due to the
smallness of this contribution, we do not consider the lo
energy region of the phonon spectrum.

When a hard photon and a low-energy electron
ejected, diagrams a and b are dominant, since their ph
c-
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propagator is much larger than the photon propagator of
grams c and d. To elaborate, in diagrams a and b, the vir
photon carries energyE22Eb5«21I ~here «25E22m is
the kinetic energy of the ejected electron, andI 5ma2Z2/2 is
the binding energy of theK electron!, while in the diagrams
c and d the transferred energy isE11Ea.E11m ~E1 is the
positron energy!. Accordingly, diagrams a and b represe
terms that are much larger than those represented by c a

When a hard photon and high-energy electron
ejected, all four diagrams in Fig. 1 together with all fo
diagrams obtained from the former by interchanging the
tial ~or final! states must be taken into account

Thus, in the high-energy region of the photon spectru
there are two regions that make the largest contribution
the total cross section: the edge region, adjacent to the
iting value of the photon energyvmax5E11m or the region
of low-energy electrons~with kinetic energies«2;I !, and
the central region, where the reaction energy is apportio
to the photon and electron is such a way that their to
momentum differs from the positron momentum only by
quantity of orderh5maZ ~the momentumq transferred to
the nucleus is low:q;h!. These two regions must be exam
ined separately, since in the first the nonrelativistic appro
mation remains valid to a great extent, while in the seco
only a fully relativistic approach can be used.

We start with the edge region of the photon spectru
Here we discard diagrams c and d in view of their extre
smallness. Let us compare diagrams a and b. The signifi
disparity between these diagrams is due to the different
ues of the electron propagatorsGa and Gb in the region of
the spectrum where the electron carries away only a sm
amount of energy,«2;I . The propagatorGa is the Coulomb
Green’s function of the low-energy electron, whileGb is the
Green’s function of the electron with a large negative ene
(2E1). Since the energy enters into the denominator of
propagator, diagram b is much smaller than a, and can
discarded. The amplitude of double ionization with on
photon annihilation in the edge region is represented by
gram a and the diagram obtained from a by interchanging
initial statesca andcb :

Medge
115Mab2Mba . ~6!

FIG. 1. Feynman diagrams for the process~4!. Solid lines denote electrons
in the Coulomb field of the nucleus, dashed lines denote photons, and w
lines denote the electron–electron interaction~photon propagator!.
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In the coordinate representation we can write the amplit
Mab as follows:3!

Mab5E f̄~r 8!gmca~r 8!dr 8

3E eiRD

4pR
c̄p2

~r !gmcb~r !dr , ~7!

where

f̄~r 8!5E c̄2p1
~r 9!ê* exp~2 ik–r 9!GC

E~r 9,r 8!dr 9, ~8!

R5ur2r 8u, D5E22E1s5«21I ,

E5E1s2D5m2«222I , ~9!

2I is the ionization energy of theK shell,â5g0a02g–a, g0

and g are Dirac matrices, andGC
E(r 9,r 8) is the relativistic

Coulomb Green’s function for an electron with energyE.
We assume that~7! is summed overm.

We are not concerned with polarization phenomena
that we limit ourselves to the case of linear polarization
photons with momentumk and polarization vectore. Then

ê* 5ê52g–e, e–k50. ~10!

The Dirac-conjugate wave functionc̄ is equal toc†g0 , the
functions c̄2p1

and c̄p2
are the wave functions of th

continuous-spectrum positron and electron,E1 and p1 ~E2

andp2! are the energy and momentum of the positron~emit-
ted electron!, and ca and cb are the wave functions ofK
electrons with different orientation of spin. The wave fun
tions of all of the electrons and the positron are of the C
lomb type, which is a fairly good approximation for ions an
atoms, since the integrals with respect tor and r 8 become
saturated at distancesr;r 8;1/h ~h5maZ is the mean mo-
mentum of aK electron!, where the field of the nucleus i
only slightly screened by the electron. The integral with
spect to r 9 converges at even smaller distances, forr 9
;1/uk2pu;1/m, where the field is of the Coulomb type.

Since in the edge region the emitted electron has
momentum (p2;h), the vector part of the electron curre
is small compared to the scalar part:

c̄p2
gcb;

p2

m
wp2

* wb , c̄p2
g0cb;wp2

* wb , ~11!

where wp2
and wb are the nonrelativistic Coulomb wav

functions of a free and bound electron, respectively.
Subsequent calculations will be carried out in the m

mentum representation. If we allow for~11!, the expression
for the amplitudeMab simplifies considerably:

Mab5E df

~2p!3 F1~2p1 ,f,a!D~ f!F2~p2 ,f,b!, ~12!

where

F1~2p1 ,f,a!5E df8df1

~2p!6 ^c2p1
uf82k&ê^f8uGCuf1&

3g0^f11fuca&, ~13!
e

o
f

-
-

-

w

-

F2~p2 ,f,b!5E df2

~2p!3 ^cp2
uf2&g0^f22fucb&, ~14!

D~ f!5
1

f22D22 i0
, D5«21I , ~15!

with ^f8uGCuf&[GC
E(f8,f) the relativistic Coulomb Green’s

function in the momentum representation.
Since the integrals~12!–~14! saturate atf ; f 1; f 2;h,

in the lowest-order approximation inaZ we can put

D~ f!5
1

f 2 ~16!

and use nonrelativistic Coulomb wave functions for theK
electrons and the ejected electron:

uca&5u1s&u0~a!, ucb&5u1s&u0~b!, ^cp2
u5ūp2

^wp2
u,

u0~a!5S w~a!

0 D , u0~b!5S w~b!

0 D ,

w~a!5S 1
0D , w~b!5S 0

1D ,

ūp2
5~w2

1,0!, w2[w~l2!, w1~l!w~l!51,

u1s&5N1S 2
]

]h DVihu0&, N1
25

h3

p
, h5maZ,

^f8uVihuf&5
4p

~ f82f!21h2 . ~17!

Hereu is a Dirac bispinor,w is a Pauli spinor, andu0& is a
plane-wave state with zero momentum.

Using ~17!, we can derive the following expression fo
F2 ~see Eq.~14!!:

F2~p2 ,f,b!5w2
1w~b!N1S 2

]

]h D ^wp2
uVihuf&. ~18!

The calculation ofF1 of Eq. ~13! is much more complicated
since the function contains the relativistic Coulomb Gree
function with low kinetic energyE2m;I . For this Green’s
function, the Coulomb parameterj5aZE/p is roughly
equal to unity and cannot be used as a small expansion
rameter. On the other hand, for a relativistic positron, ther
an expansion in powers ofaZ andj15aZE1 / p1'aZ ~see
Ref. 14!:

^c2p1
u5ū2p1

$^2p1u2aZ^2p1uV̂0G11¯%, ~19!

whereG1 is the relativistic propagator of a free electron wi
energy2E1 , and ū2p1

5u2p1

† g0 ; u2p1
is a bispinor with

four-momentum2p1 . The first term in this expansion~the
zeroth approximation inaZ! is a plane wave. We keep tw
terms in ~19!, since plugging only the first term into~13!
yields zero in the limitaZ→0. Denoting the contribution of
the plane wave to the integral~13! by F10, a calculation that
uses the functionca from ~17! yields
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F105N1ū2p1
êU~ f!u0 , U~ f!52

]

]h
^kuGCVihu2f&,

~20!

where

k5k2p1 .

Equation~20! contains the matrix element of the relati
istic Coulomb Green’s function for an electron with low k
netic energy. However, this Green’s function cannot be
placed by the nonrelativistic one, since it is calculated fo
large value of one of the momenta~based on energy conse
vation, we can show thatk.2m!. We transformU(f) in
such a way that the Green’s operatorGC is sandwiched be-
tween the nonrelativistic momentaf ; f 8;h. To this end we
use the Lippmann–Schwinger equation15

GC5G2aZGV̂0GC . ~21!

HereV̂05g0V0 , 2aZV0 is the operator of the interaction o
an electron and the Coulomb field of the nucleus, andG is
the relativistic Green’s operator in zero field. The mat
element of this operator is defined to be

^fuGuf8&5G~ f!~2p!3d~ f2f8!,

G~ f!5
Eg02g–f1m

p22 f 21 i0
, p25E22m2. ~22!

Note that forE2m!m and f ;h, the relativistic operator
G(f) is simply related to the nonrelativistic operator by

G~ f!5Gnr~ f!
g011

2
, Gnr~ f!5

2m

p22 f 21 i0
. ~23!

Plugging~21! into ~20!, we obtain

U~ f!u052
]

]h
G~k!H ^kuVihu2f&2aZE df8

~2p!3

3^kuV̂0uf8&^f8uGCVihu2f&J u0 . ~24!

The dominant contribution to the integral in~24! is pro-
vided by the region wheref 8;h. At such values off8 the
factor ^kuV0uf8&'4p/k2 can be taken outside the integr
sign, and the relativistic functionGC reduces to the nonrel
ativistic Coulomb Green’s functionGC

nr . Indeed, iterating
the Lippmann–Schwinger equation, we obtain

GCu05~G2aZGV̂0G1¯ !u0

5~Gnr2aZGnrV0Gnr1¯ !u0

5GC
nru0 , ~25!

where we have used~23! and the equalities

g0
251, S g011

2 D n

5
g011

2
,

g011

2
u05u0 . ~26!

In ~24!, the two terms in braces are quantities of the sa
order,4! but after we have taken the derivative with respec
h, the first term is multiplied by 2h/k2, while the second is
multiplied by a quantity;1/h. The term in ~24! should
therefore be discarded. Then
-
a

e
o

U~ f!u0.
4paZ

k2 G~k!
]

]h E df8
~2p!3

3^f8uGC
nrVihu2f&u0 . ~27!

Using the results obtained in Refs. 15 and 16, we obtai
simple expression for the integral in~27!:

J~h,f!5E df8
~2p!3 ^f8uGC

nrVihu2f&

5
2ipm

4p
I y^0uVpy1 ihuf&,

I y5E
1

`

dyS y11

y21D i j

, j5
aZm

p
. ~28!

The final expression forF10 assumes the form

F105N1ū2p1
êS 11

k̃

2m
D u0

4iphm

k4

3S 2
]

]h D I y^fuVpy1 ihu0&, ~29!

where ã5a–a, anda5g0g is the Dirac matrix.
We now evaluateF11, the contribution of the second

term in ~19! to the integral~13!:

F115aZN1ū2p1
^kuV0u0&G1~2k!ê

]

]h
J~h,f!u0

5
4paZN1

k2~v22p1
2!

]J~h,f!

]h
ū2p1

~v2 k̃ !êu0 , ~30!

wherev is the photon energy.
Summing the contributions~29! and ~30!, we find the

amplitudeF1 ~Eq. ~13!!:

F1~2p1 ,f,a!5F101F1152T~l1 ,a!
]J~h,f!

]h
, ~31!

T~l1 ,a!5N1

8ph

k4 ū2p1
~l1!ê

3S 11
k̃

2m
1

k̃2v

2m

k2

v22p1
2D u0~a!. ~32!

HereT(l1 ,a) is the one-photon annihilation amplitude of
positron with polarizationl1 and aK electron with polariza-
tion a, calculated to lowest order inaZ.

Inserting~16!, ~18!, and~31! into ~12!, we obtain

Mab5AabI y

]2

]h]h8
E df

~2p!3

3^wp2
uVih8uf&

1

f 2 ^fuVpy1 ihu0&, ~33!

Aab5
ipm

2p
N1T~l1 ,a!w2

1w~b!. ~34!

After taking the derivatives in~33!, we can puth85h. Us-
ing the equality



th
o

for

m-

-
in

t
hip

ion,

tion

433JETP 86 (3), March 1998 A. I. Mikha lov and I. A. Mikha lov
1

f 2 ^fuViau0&5
1

a2 ^fuV02Viau0&

and the operator identity14

]

]a
ViaVib5Vi ~a1b!,

we can transform~33! into

Mab5AabI y

]

]m

1

~m2h8!2 ^wp2
uVim2Vihu0&,

m52h1ry , r 52 ip5Ap2
212h2. ~35!

For real values ofa, the matrix element̂wp2
uViau0& with the

Coulomb function of the continuous spectrum,wp2
, has the

form17

^wp2
uViau0&5

4pNp2

p2
21a2 expS 22j2 arctan

p2

a D ,

Np2

2 5
2pj2

12exp~22pj2!
, j25

h

p2
. ~36!

We introduce a dimensionless parametern and express
the other parameters of the problem in terms ofn :

n5
«2

I
5

P2
2

h2 , j25
h

p2
5

1

An
, i j5

h

r
5

1

An12
. ~37!

In ~35! we transform to a new integration variable,

t5
12y

11y
.

Substituting~36! into ~35! yields

Mab52K~n!T~l1 ,a!w1~l2!w~b!, ~38!

where

K~n!5N1Np2

m

h4 J~n!, ~39!

J~n!5
8z2

~11z!3 S I 1

n11
2

I 2

n12D , z5
1

An12
, ~40!

I 15expS 2
2

An
arctanAn D E

0

1

dt
t2z~12t !

~11st!3 , ~41!

I 25E
0

1

dt
t2z~12t !3

~11st!3 f1~ t !f2~ t !, s5
12z

11z
, ~42!

f1~ t !5expF2
2

An
arctan

An~12t !

a1bt G ,

a5An1212, b5An1222,

f2~ t !5
~3z211!~12t !216z~12t2!12~11t !2

@~2z211!~12t !214z~12t2!1~11t !2#2 .

~43!

The differential cross section of double ionization wi
one-photon annihilation summed over the polarizations
 f

the photon (lk) and the final electron (l2) and averaged
over the positron polarization (l1) assumes the form5!

ds115
~4pa!3

2v j
uM 11u2

dp2dk

~2p!5 d~v1E22E122m!,

~44!

where j 5p1 /E1 is the positron flux andM 11 is the ampli-
tude of double ionization with one-photon annihilation.

Equation~44! can be used to obtain the cross section
the edge region by replacinguM 11u2 with

uMedge
11 u25

1

2 (
lkl1l2

uMab2Mbau2

5K2~n!
1

2 (
lkl1

@ uT~l1 ,a!u21uT~l1 ,b!u2#

52K2~n!
1

4 (
lkl1l0

uT~l1 ,l0!u2

52K2~n!uM 1u2. ~45!

HereuM 1u2 is the square of the one-photon annihilation a
plitude summed over the polarization of the photon (lk) and
averaged over the polarizations of the positron (l1) and the
bound electron (l0). The differential cross section of one
photon annihilation on twoK electrons can be expressed
terms of this quantity:

ds15
4pa

v j
uM 1u2

dk

~2p!2 d~v2E12m!. ~46!

Equation~44! is valid in any region of the spectrum. Bu
a specific feature of the edge region is the simple relations
between the cross section of double and single ionizat
which follows from ~44!–~46!:

dse
115

2

p
a2K2~n!dp2ds1. ~47!

We direct thez axis along the positron momentump1 , de-
note the polar and azimuthal angles that specify the direc
of the outgoing photon with momentumk ~the electron with
momentump2! by uk and wk ~by u2 and w2!, respectively,
and the solid angle into which the photon~electron! is
ejected bydVk (dV2). Then6!

dp25mp2d«2dV25
h3

2
An dndV2 , ~48!

pds15s0Z5S~uk!dVk , s05pr 0
2a4, ~49!

S~uk!525~E11m!
p1m4

k6 S E112m

4m
2

m2

k2 D sin2 uk ,

k5up12ku. ~50!

Plugging~48! and~49! into ~47! yields an expression for the
triple differential cross section

dse
11

dn dV2dVk
5

Q~n!

4pZ2

ds1

dVk
,
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FIG. 2. The energy spectrum of low-energ
electrons, Q(n)5Z2dse

11/s1dn, with n
5«2 /I .
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n
ion
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e
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Q~n!5
8J2~n!

12exp~22p/An!
. ~51!

A characteristic feature of~51! is the fact that the cros
section is independent of the direction in which an electro
ejected, i.e., low-energy electrons produced by double
ization with one-photon annihilation are distributed isotro
cally in solid angle. Integrating~51! over the photon and
electron ejection angles, we obtain an expression for the
ergy distribution of the low-energy electrons~«2!m, or n
!(aZ)22!:

dse
11

dn
5

Q~n!

Z2 s1, s15s0Z5w~E1!, ~52!

w~E1!5
4m3

p1~E11m!2 S E1
2

m2 1
2

3

E1

m
1

4

3

2
E112m

p1
ln

E11p1

m D . ~53!

The functionQ(n) is plotted in Fig. 2. Employing Eqs
~40!–~42!, we can obtainQ(n) for small and large values o
n :

Q~0!50.168, Q~n!5
4

p
n27/2 for n@1. ~54!

SinceQ(n) rapidly decreases with increasingn, in cal-
culating the contribution of the entire edge region, we c
extend the region of integration with respect ton to infinity:

se
115

B

Z2 s15s0Z3Bw~E1!,

B5E
0

`

Q~n!dn50.090. ~55!

The ratioZ2se
11/s15B is a constant that depends neith

on the energy of the incident positron nor onZ.
is
-

-

n-

n

The angular distributions of the electrons and photo
belonging to the edge region are very simple:

dse
11

dV2
5

se
11

4p
,

dse
11

dVk
5

B

Z2

ds1

dVk
5Bs0Z3S~uk!.

~56!

Figure 3 depicts the angular functionS(uk) for different
positron energies. The function has a peak whenu,p/2.
The peak narrows and shifts toward smaller angles as
positron energy rises. There is no forward emission of p
tons, i.e., in the direction of the incident positron beam.

3. AMPLITUDE AND CROSS SECTION OF DOUBLE
IONIZATION WITH ONE-PHOTON ANNIHILATION IN THE
CENTRAL REGION OF THE ENERGY SPECTRUM

We call the region of the energy spectrum in which t
momentum transferred to the nucleus is low (q;h) the cen-
tral region. A rather broad middle region exists in the sp
trum whereq50. Its boundaries are dictated by the comp
ibility of the two equations

p21k5p1 , E21v5E112m. ~57!

FIG. 3. Angular distributionS(uk)5p(s0Z5)21ds1/dVk of photons emit-
ted in process~2!.
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Solving these equations, we find that

2mv0

E01p1
<v<

2mv0

E02p1
,

~58!
v05E11m, E05E112m.

Herev0 andE0 are the maximum energies that the phot
and electron emitted in the process of double ionization w
one-photon annihilation can have. In the central region
four diagrams in Fig. 1 must be taken into account, as wel
the diagrams withca andcb interchanged.

We first calculate diagrams a and b in Fig. 1~diagrams c
and d are obtained from a and b by the interchan
c2p1

↔cp2
andca↔cb!. Since the ejected electron is rel

tivistic, the virtual photon transfers a large amount of ener
The energy of the electron in the intermediate state~in the
Green’s function! is also high. For this reason, we can a
sume plane waves for the positron and electron wave fu
tions, and a free-particle relativistic Green’s functionG. The
wave functions of the bound electrons are still of the Co
lomb type. The amplitudesMa and Mb for these diagrams
are

Ma5ū2p1
êG~k!gmE df

~2p!3 ^q2fuca&

3D~p22f!ūp2
gm^fucb&, ~59!

Mb5ū2p1
gmE df

~2p!3 G~q2k2f!ê^q2fuca&

3D~p22f!ūp2
gm^fucb&. ~60!

The photon propagatorD(f) is defined in~15!. In the
energy range whereq;h, the main contribution to the inte
grals ~59! and ~60! is provided by values off close toh.
Keeping only the leading terms, we obtain

D~p22f!.
1

2m«2
, G~q2k2f!.G~2k!,

Ma5
f~q!

2m«2
ū2p1

êG~k!gmu0~a!ūp2
gmu0~b!, ~61!

Mb5
f~q!

2m«2
ū2p1

gmG~2k!êu0~a!ūp2
gmu0~b!, ~62!

f~q!5E df

~2p!3 ^q2fu1s&^fu1s&5S 4h2

q214h2D 2

, ~63!

G~k!5
g0Ea2g–k1m

Ea
22k22m2 '

g0Ea1g–p21m

24m«2
, ~64!

Ea5m2«2 ,

G~2k!5
g0Eb1g–k1m

Eb
22k22m2 '

g0Eb1g–k1m

22mv
,

Eb5m2v. ~65!

In deriving ~61! and~62!, we putq50 everywhere except in
the factorf~q!. The cross section of the process is prop
h
ll
s

s

.

-
c-

-

-

tional to f2(q). This factor is responsible for the speci
status of the central region, sincef2(q);h there, while out-
side this regionf2(q);(aZ)8. Note that forq@h Eqs.~61!
and ~62! become invalid, but these regions still make bu
small contribution to the cross section~except in the very
narrow edge regionp2;h considered in Sec. 2!.

Primed letters denote diagrams in Fig. 1 with initi
states interchanged. If in diagrams a and b~a8 and b8! we
interchange the statesc2p1

andcp2
, we obtain diagrams c8

and d8 ~c and d!, respectively. The total amplitude of doub
ionization with one-photon annihilation that allows for th
contributions of all eight Feynman diagrams can be writt

M 115M ~2p1 ,p2!2M ~p2 ,2p1!.

M ~2p1 ,p2!5Ma1Mb2Ma82Mb8 ,

M ~p2 ,2p1!5Mc81Md82Mc2Md . ~66!

We denote the amplitude of the process in the cen
region by M central

11 . It can be obtained from~66! if for
Ma ,Mb , etc. we take expressions~61!, ~62!, and the like.
After an involved procedure of calculating traces, the squ
of the amplitude~66! summed and averaged over the partic
polarizations acquires the surprisingly compact form

uM central
11 u25

f2~q!W~v!

~2m!4E1E2
, ~67!

where

W~v!5S «21v0

«2v0
D 2H E1E22m22p1np2n

1S mv

«2v0
D 2

~E1E21m21p1np2n22«2v0!J ,

~68!

p1n5p1–n5
E1

22E2
21v2

2v
,

p2n5p2–n5
E1

22E2
22v2

2v
,

n5
k

k
, «21v5v0 . ~69!

Equation~68! can be further simplified7! by introducing the
dimensionless quantitiesx5v/v0 andg5m/v0 :

W~v![W~x!5gS 22x

12xD 2H 2~x2g!1F12S gx

12xD 2G
3F4

12x

x
2gS 22x

x D 2G J . ~70!

Substituting the expression~67! for uM 11u2 into ~44! we
obtain a formula for the differential cross section of doub
ionization with one-photon annihilation in the central regi
of the spectrum:

dsc
115

ar 0
2

16p2 f2~q!W~x!
dG

m2p1
,
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dG5
1

E2v
dp2dk d~E21v2E0!, E05E112m. ~71!

Before we perform an integration involving the ener
delta function, it is convenient to transform from the variab
p2 to the variableq5p21k2p1 . For fixedVk ~direction of
ejection of the photon! and q, the electron energyE2 de-
pends onv. After we have integrated with respect tov, we
must therefore make the substitution

dv d~E2~v!1v2E0!→U]E2

]v
11U21

, ~72!

where the derivative]E2 /]v is evaluated at a value ofv
that is the root of the equation

E2~v!1v2E050. ~73!

Bearing in mind that only smallq;h ~the central re-
gion! are important in integrals overq, we find that

v5v~ tk!5
2mv0

E02p1tk
, tk5cosuk , ~74!

dG5
v2

2mv0
dqdVk . ~75!

Substituting~75! into ~71! and integrating overq, we
obtain for the angular distribution of photons

dsc
11

dVk
5

s0Z3

32p

v0

p1
x2W~x!, x5x~uk!. ~76!

Equation~74! makes it possible to relatedtk to dx,

dtk5
2m

p1

dx

x2 , ~77!

and to go from the angular distribution~76! to the energy
distribution

dsc
11

dx
5

s0Z3

8

m

«1
W~x!, «15E12m. ~78!

On the basis of~74!, we conclude thatx1<x<x2 , where

x15
2m

E01p1
, x25

2m

E02p1
. ~79!

Integrating~78! with respect tox, we find the contribu-
tion of the entire central region to the cross section of dou
ionization with one-photon annihilation:

sc
115s0Z3f ~E1!, f ~E1!5

1

8

m

«1
E

x1

x2
W~x!dx. ~80!

Since in the region whereq50 the anglesuk andu2 and
the photon energyv are related by

tk5
p12p2t2

v S t25cosu25
p2–p1

p2p1
D , ~81!

which follows from~57!, we can make the independent va
able the angleu2 of electron ejection and obtain the electro
angular distribution. To this end we expressv and dv in
terms oft2 anddt2 :
le

v5v~ t2!5E0g6A~E0g!22h2,

dv5
p1p2

2dt2
E0p22p1E2t2

, ~82!

g5
v0

22~p1t2!2

E0
22~p1t2!2 , h25

v0
42~p0p1t2!2

E0
22~p1t2!2 ,

p0
25E0

22m2. ~83!

The plus sign in~82! is taken forp/2<u2<p, and the
minus sign for 0<u2<p/2. Substituting~82! into ~78!, we
obtain the angular distribution of the high-energy electron

dsc
11

dV2
5

s0Z3

16p

m

p1

p2
2W~x!

E0p22p1E2t2
. ~84!

4. DISCUSSION

The angular distributions of photons and electrons
longing to the central region of the energy spectrum are
picted in Fig. 4. We used~76! to construct the photon angu
lar function Y(uk)5A21dsc

11/dVk , with A5s0Z3, for
two values of«1 ~the positron’s kinetic energy!—m and 2m.
Equation ~84! was used to construct the electron angu
functionY(u2)5A21dsc

11/dV2 for three values of«1—m,
2m, and 4m. The values of«1 in units ofm label the curves.
Comparing the photon and electron angular spectra, we
tice that photons preferentially emerge in the forward dir
tion, while electrons are more uniformly distributed in ang
Recall that in the edge region, the probability of ‘‘forward
photon emission is zero, and electrons are emitted isotr
cally.

Photon energy spectra~78! are depicted in Fig. 5 for
three values of«1. Each curve lies within the interva
x1(«1)<x<x2(«1). To establish the behavior ofdsc

11/dx

FIG. 4. Angular distributions of photonsY(uk)5A21dsc
11/dVk and elec-

tronsY(u2)5A21dsc
11/dV2 belonging to the central region of the energ

spectrum, withA5s0Z3.
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outside this interval, we must integrate~71! over photon and
electron ejection angles. It can be shown that this met
yields

dsc
11

dx
5A

m

8«1
W~x!v~x!,

where the factorv(x) is unity for x1,x,x2 and decrease
by two to three orders of magnitude as we move a dista
Dx;aZ away from this interval.

The total double ionization cross section with on
photon annihilation is the sum of the contribution of the ed
and central regions of the energy spectrum~Eqs. ~55! and
~80!!:

s115se
111sc

115s0Z3@Bw~E1!1 f ~E1!#. ~85!

The ratio of the double and single ionization cross s
tions ~see Eqs.~85! and ~52!! is

R5
s11

s1 5
B1b~E1!

Z2 , ~86!

b~E1!5
f ~E1!

w~E1!
. ~87!

Figure 6 depicts the functionsf (E1), w(E1), and b(E1).
The functionsf (E1) and b(E1) decrease monotonically a
E1 increases, whilew(E1) peaks atE1'2m. We now study
the behavior of these functions at low and high energies«1

analytically.
For I !«1!m ~the conditionh!p1!m must be met!

we have

f ~E1!.
8

27

m

p1
, w~E1!.

4

3

p1

m
,

b~E1!.
2

9 S m

p1
D 2

5
1

9

m

«1
. ~88!

FIG. 5. Energy distribution of photons in the central region of the spectr
A5s0Z3. The curves are labeled with the positron energy in units of
electron mass.
d

e

-
e

-

Interestingly, forZ and«1 small, R can be greater than
unity, i.e., double ionization is more likely to occur tha
single ionization ~for He the ionization potential I
;1024 m, and at«151022 m the cross-section ratioR is
approximately 2.5!. This result can be explained entirely b
the special role of the central region of the energy spectr
The emission of two particles~a photon and an electron!
allows the momentum transfer to the nucleus in process~4!
to be small, which leads to an increase in the cross sec
On the other hand, in process~2! a decrease in the positro
momentump1 leads to an increase in the momentumq trans-
ferred to the nucleus. As a result, the one-photon annihila
cross section in the nonrelativistic region decreases toge
with p1 (;p1 /m), while the double ionization cross sectio
increases asp1 decreases (;m/p1).

For E1@m we can obtain the following expansions
reciprocal powers ofE1 :

f ~E1!.
m

E1
F11

m

4E1
S 11 ln

E1

m
16 ln 22231

1

6D G ,
w~E1!.

4m

E1
S 12

4

3

m

E1
D ,

b~E1!.
1

4 F11
1

4

m

E1
S 11 ln

E1

m
16 ln 22

35

2 D G ,
R~E1! ——→

E1→`

1

Z2 S B1
1

4D5
0.340

Z2 . ~89!

We see that the functionb(E1) approaches its asymptoti
value very slowly: even atE1 /m5100 the value ofb(E1)
differs from its asymptotic value of 1/4 by 10%.

Although we cannot hope to obtain accurate results
large values ofZ, let us estimate the total cross section
double ionization with one-photon annihilation atZ582 and
E152m and compare the result with the corresponding cr

;
e

FIG. 6. Dependence on the positron energyE1 of the total cross sections o
double and single ionization and their ratio:f (E1)5sc

11/s0Z3, w(E1)
5s1/s0Z5, andb(E1)5Z2sc

11/s1.
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section of double ionization of theK shell with radiationless
annihilation~3! ~see Refs. 8 and 9!. Since for high-Z atoms
the normalization constantsNp2

andN2p1
of the electron and

positron wave functions are appreciably different from uni
we will keep them in the formulas for the cross section~as
was also done in Refs. 8 and 9!. Then Eq.~85! becomes

s115Np2

2 N2p1

2 s0Z3@Bw~E1!1 f ~E1!#,

N2p1

2 5
2pj1

exp~2pj1!21
, j15aZ

E1

p1
, ~90!

whereNp2

2 has been defined in~36!.

A calculation with this formula yields

s11~Z582, E152m!54.3310229 cm2.

For process~3! under the same conditions we have~see Refs.
8 and 9!8!

s.1.8310229 cm2.

Thus, despite the additional small factora related to the
emission of a photon, the cross section of double ioniza
with one-photon annihilation proves to be greater than
cross section of radiationless annihilation, even for highZ
elements. AsZ decreases, this predominance grows, rea
ing several orders of magnitude for low-Z elements. There
are two factors that explain such behavior: the photon
changed by the electrons is much less virtual in process~4!
than in process~3!, and the emission of a photon in proce
~4! significantly reduces the momentum transferred to
nucleus.

We would like to express our gratitude to V. G. Gors
kov and L. N. Labzovski� for their interest in our work and
for fruitful discussions.

* !E-mail: Mikhailo@thd.pnpi.spb.ru
1!In this paper we use the relativistic system of units, in which\5c51.
2!The Greek lettera is used to denote both the initial electron state and

fine structure constant, but it is always clear from the context in what se
it is used.
,

n
e

-

-

e

se

3!The factor 4pa from the photon propagator and the factorA4pa/2v from
the photon wave function are incorporated into the expression for the c
section.

4!Although a factoraZ precedes the integral in~24!, the integral proper is
;1/aZ, which can be verified by substituting the free Green’s functi
~22! for GC .

5!The normalization constants 1/A2E from the electron wave functions ar
incorporated into the corresponding bispinorsup , which are normalized by
the conditionūpup5m/E.

6!The expression for the one-photon annihilation cross section in Ref. 18
be reduced to~49! and ~50!.

7!We write formula~68! because by virtue of exchange invariance, we c
use~68! to derive a formula for the relativistic double photoeffect.

8!The cross section given in Ref. 9 must be doubled.
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Most of the current inertial confinement fusion~ICF! schemes are based on the ignition of a high-
density DT fuel by a single, high-temperature spherical hot spot~the spark!. The spark is self-
generated by the implosion process, which is used to bring the fuel to high density. To
start ignition the spark has to be dimensioned in such a way that the ion temperature would be
greater than 5–7 keV, and that the spark radius would be greater than thea-particle
range. A spark with these features is indicated as supercritical. In the scheme based on self-
generated spark, ignition can fail to occur when the produced spark strongly deviates from
spherical shape, which can make all the surface losses highly relevant. High deformation,
or even spark splitting, can occur due to the amplification of initial deviations from spherical shape
by hydrodynamic instabilities~or by secular growth! during the implosion process. In
principle, ignition can be recovered if the implosion is designed in such a way as to make
supercritical at least one of the portions of hot fuel which are produced in this way near stagnation.
As a general trend, more compressed final assemblies are required. In this paper we present
fuel gain calculations~Gain5Thermonuclear energy/Energy in the compressed fuel! for DT
assemblies ignited at the end of an implosion process by a supercritical spark statistically
created within a cluster of many subcritical sparks. It is assigned the total number of sparks and
the probability of having at least one of them supercritical. As a function of these quantities
we calculate, in the framework of an isobaric model, the average thermal energy associated with
the spark assembly. The same model is also used to evaluate, by statistical arguments, the
areal mass, the burn fraction, and the system’s total fuel gain. It is found that the energy
distribution function of the sparks is influenced only by a single global parameter, in
which the assigned ignition probability and the number of sparks are also represented. Compared
to the single central-spark approach, being the final states with allowed inner turbulence,
the multispark scheme is characterized by relaxed initial symmetry requirements. For multispark
systems we can realistically consider the achievement of fuel gains comparable or greater
than those typical of the single-spark approach, when evaluated for currently accepted spark
convergence ratios. With regard to the single spark case, higher cold fuel densities are
needed, as expected~typically 23 – 33, for the same gain, depending on the energy distribution
function!. © 1998 American Institute of Physics.@S1063-7761~98!00303-5#
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1. INTRODUCTION

The conventional ICF scheme is based on fuel trigger
by a single, self-generated, hot spot~the ignition spark! at the
center of a compressed, cold DT fuel assembly. Hot s
ignition is usually preferred to volume ignition, because
the cases of interest for the energetic application of ICF
provides higher fuel gains at substantially smaller extre
parameters for the compressed fuel assembly~pressure, den-
sity, density3fuel size!. This is basically due to the circum
stance that to get high fuel gains in uniform systems it
necessary to ignite the fuel at comparatively low tempe
tures. This requires radiation trapping in order to make
diative losses smaller than the thermonuclear energy rele
to the fuel.

In the central-spark approach, ignition is initiated wh
the ion temperature in the spark,T2 ~'Te , the electron tem-
perature!, is greater than 5–7 keV and the spark radiusRspark

is greater than the range of thea-particle produced in the DT
4391063-7761/98/86(3)/6/$15.00
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reaction. Under such conditions, in a stagnant spark the t
monuclear energy deposited inside the spark exceeds th
diative and the electronic conductivity losses, and se
heating occurs. A spark with these features is called
supercritical spark.

The burn propagates from the spark to the surround
fuel, bringing it to temperatures in the range 40–100 ke
Fuel combustion is quenched by hydrodynamic expansio
a time texp'Rfuel/4cs , whereRfuel is the total radius of the
compressed fuel, andcs is the sound velocity at the burnin
temperature~much greater than the ignition temperature!.
The governing number for this process is clearlyf
5^sn&DT(r/MDT)texp, where ^sn&DT is the usual
Maxwellian-averaged product of the DT reaction cross s
tion times the ion velocity,r is the fuel mass density, an
MDT is the ionic average mass. The maximum off, which
occurs at a temperatureT'40.6 keV, is fmax'rRfuel/4.7
~CGS units are used!. It is therefore clear that values o
rRfuel of several g/cm2 are needed to obtain high values f
© 1998 American Institute of Physics
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the fractional fuel burn,f burn. A widely used formula for
f burn is given in the next section. Typically, forr fuel50.3, we
have f fuel50.3. The valueRspark of the spark radius is typi-
cally assumed to be of the order of 1/40 of the initial fu
capsule radiusRtarget ~i.e., the convergence ratio isCspark

5Rtarget/Rspark540!. Such a large value ofCspark is used to
maintain the ablation pressure, which is needed to drive
fuel up to the required high implosion velocity, within tec
nically available values~at laboratory energy releases!.

The controlled formation of the ignition spark is th
main objective of this scheme. Actually, because of the
quired high convergence ratio, this target design seems
sitive to nonuniformities in the ablation pressure, to irreg
larities in the target structure, and to hydrodynam
instabilities. For instance, it has been shown1 how due to the
nonuniformities in the initial energy deposition~percent
sized low modes, mode numberl up 10–20!, the thermo-
nuclear gain can drop abruptly to zero. The reason for ig
tion failure ~no gain! is the formation of a highly deformed
spark, in which the surface heat losses are too large due
unfavourable surface-to-volume ratio. Numerical model
shows that because of hydrodynamic instabilities, the fi
spark, at stagnation, can be so distorted as to become n
split into l substructures by the well-known mushroom
shaped jets.2,3 Preliminary studies3 of 3D perturbed spherica
stagnation show that saturation occurs when the perturba
amplitude is of the same order of wavelength. These stu
were carried out for the single mode at low harmonic indic
~l andm up 6!.

It should be noted that low modes~mode indices 5–10!
can, in principle, generate a large number of substructure
the prevailing grain size is of the order ofRs /n ~Rs is the
radius within which the sparks are enclosed, andn is a typi-
cal mode number!, approximatelyn2 fragments saturated a
Rs /n can be allocated in a single spherical layer, whilen3

can be allocated in a volume. At any rate, unbalanced di
irradiation with multibeam modern laser installations m
already produce a large number of substructures@n
}(number of beams)1/2#.

To the best of our knowledge, multimode 3D studies
with realistic implosion dynamics and burn are still lackin
as is any acceptable theoretical description of the final
bulence, since it may result for given initial conditions. Ho
ever, for conventional target designs, it seems reasonab
assume that, unless very high spherical symmetry is achie
in the initial stages of the implosion~by high-quality irradia-
tion and target finish!, spark splitting and ignition failure a
stagnation can occur.

Let us assume that the initial requirements for symme
are deliberately relaxed, so that a final turbulent condition
allowed. In this context, an interesting question which m
be answered has to do with the possibility of recovering
nition and high gain for this final assembly. Clearly, to fin
the answer, the relevant key parameter to be determine
the investment in energy required to make supercritical, w
assigned probabilityp, at least one of the hot fuel portions i
the turbulent mix~in the center or elsewhere!. Once this
energy is determined, the assembly parameters neede
high gain can be also found. This information can then
l

e

-
n-
-

i-

an
g
al
rly

on
es
s

If

ct

,
r-

to
ed

y
is
t
-

is
h

for
e

used to identify the general features of implosions wh
may lead to such final configurations. Since an ignition pro
ability p is introduced, the question may arise about t
scheme’s usefulness for energy applications, since now
nite ignition failure probability (12p) is allowed. In energy
applications, however, the concept of ignition failure can
introduced without harm if the implosion is designed in su
way as to make the ignition probabilityp sufficiently high.
For this kind of design, the well-known reactor loop cond
tion, which relates the target gain to the driver efficien
hdriver, sayhdriver3target gain'10, needs only be change
to p3hdriver3target gain'10. Ignition failure can arise un
der reactor conditions for a number of reasons, different fr
target design~e.g., misalignment, target structural imperfe
tions, lack of reproducibility of the driver pulse, etc.!, so that
the probability of ignitionp should be introduced in any
case.

2. A MODEL FOR GAIN CALCULATIONS

The following model is adopted to answer the questio
discussed in the previous section.

a! Uniform pressure (P) is assumed at stagnation for th
final fuel assembly. Ignition and fuel gain calculations wi
this assumption have been made by a number authors4 since
1976.

b! The fuel is divided into two phases, hot and cold. T
hot fuel is assumed to be split intoN parts at the same
temperature. Having the same temperature and pressure
hot sparks have also the same density (rspark). The pressure
in the cold fuel is assumed to be

P5aPF , ~1!

wherea is the factor by which this part of the fuel is no
degenerate, andPF is the Fermi pressure.5

c! The compressed DT fuel assembly is assumed to b
perfect gas. Thus the energy per unit volume is 3P/2 every-
where, regardless of the degeneracy degree.6

d! Lacking better descriptions, simple test-distributio
functions for the turbulence spectrum in energy are adop
(size} energy1/3). Various dependences are tried for tre
sampling. The final gain is computed for the distributio
which gives the smaller gains in the explored set.

e! To ignite the assembly, we assume5 that there must be
at least a spark with energy (E) such that

E.Ethr'
91

rspark
2

Tspark

7
MJ, ~2!

whereTspark is in keV, andrspark is in g/cm3. The inequality
~2! holds for a set of spheres with a radiusR>0.3/rsparkcm
and the same density (rspark) and temperature (Tspark). To
obtain ignition aTspark55 keV is usually considered suffi
cient. In all the following numerical examplesTspark57 keV
will be assumed. Unless a critical spark (E.Ethr) has been
created in the assembly, the subcritical sparks (E,Ethr) are
ultimately cooled by thermal conduction, radiative losses
the general assembly expansion.

f! The probabilityp to have withinN sparks at least one
with E>Ethr is assigned. Oncep and the energy distribution
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function for sparks are assigned, the total spark energy (Ehot)
can be calculated in terms ofEthr , N, andp.

g! The gain calculations require an estimate for the fr
tion ( f burn) of mass burned by thermonuclear reactions
fore the general fuel disassembling occurs. For DT fuel
semblies with spherical symmetry we apply a widely us
formula5 for f burn

f burn5
*0

Rfuelr dr

*0
f fuelr dr17

@CGS units#, ~3!

where the integral is taken from the symmetry center to
radius of the total fuel assemblyRfuel . In our case we use a
variant of Eq.~3!, in which the integral is statistically evalu
ated.

3. THE PROBABILITY OF IGNITION

We assume that, as a result of the implosion, within
isobaric fuelN hot sparks have been formed and distribu
in energyE according todq5 f (E,E0)dE, whereE0 is a
parameter with dimensions of energy, anddq is the probabil-
ity for a spark to be betweenE and E1dE. Let f (E,E0)
5v(E/E0)/E0 , wherev is a dimensionless function. Th
probability p to have at least one supercritical spark c
easily be calculated in terms ofv as

p512F E
0

Ethr /E0
v~x!dxGN

. ~4!

This equation can be solved forE0 as a function ofEthr , p,
andN. After this value ofE0 is inserted in

Ehot5NE
0

`

E f~E,E0!dE5NE0E
0

`

xv~x!dx, ~5!

an estimate results for the total energy,Ehot, which is re-
quired in order to obtain, with assigned probability, at le
one above-threshold spark. Clearly,

Ehot5gEthr , g5Nh@~12p!1/N#. ~6!

where the functionh is calculated from Eqs.~4! and~5!. We
note that, whenN is large, the expectedp-dependence forg
can be slow.

SinceE}R3, whereR is the radius of the spark, to usev
is tantamount to using the space turbulence spectrum.
distribution functions inE can then be seen in terms of spa
radii by introducing a space scaleR0 through E
5(R/R0)3E0 . The functionf (E,E0) will then correspond to
the function

g~R,R0!5R0f ~E,E0!
dE

dR
. ~7!

We now consider a few examples of the distribution fun
tions in E, which are chosen to illustrate some releva
points in view of their mathematical simplicity. We ado
three functions, a square-box, an exponential function, an
simple combination of power-laws in energy, which quali
tively represent quite different energy~radii! distributions.
The square-box dependence is
-
-

s-
d

e

e
d

t

he

-
t

a
-

f ~E,E0!5
1

E0
for E<E0 , ~8!

f ~E,E0!50 for E.E0 , ~9!

and the corresponding normalized energy is

g5
N

2~12p!1/N . ~10!

The exponential dependence

f ~E,E0!5
exp~2E/E0!

E0
~11!

corresponds to

g52
N

ln@12~12p!1/N#
. ~12!

and for the power-law case we have

f ~E,E0!5
2

3 F12S E

E0
D 1/3G S E

E0
D 22/3 1

E0
for E<E0 ,

f ~E,E0!50 for E.E0 , ~13!

g5
N

10@12A12~12p!1/N#3
. ~14!

The dimensionless hot energyg ~in units ofN! is represented
as a function ofp in Fig. 1, for N510. It is worth noting
how already for this value ofN both the ‘‘exponential’’ and
the ‘‘power-law’’ functions give better results than th
‘‘square-box’’ function. As is obvious from Eqs.~10!, ~12!,
and ~14!, the dependence onp becomes less important fo
increasingN. Note also thatEhot is substantially smaller than
NEthr .

4. FUEL ASSEMBLY DIMENSIONS

Let us assume that an energyEfuel has been transferre
to the compressed fuel. The fraction

n5Ehot/Efuel ~15!

is used to parametrize our calculations. If the parametern is
given, by using Eq.~6! we can write the allowedEthr as
follows:

Ethr5
n

g
Efuel , ~16!

FIG. 1. Dependence of the parameterg/N on p. The calculations are pre
sented for the distribution functions given by Eqs.~8!, ~9!, ~11!, and~13!.
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so that the allowed hot fuel density,rspark, can be computed
from Eq. ~2!. Since the temperature is given~say,
Tspark57 keV!, we can find the hot fuel pressure. Because
system is isobaric, the pressure (P) is the same everywher
in the fuel. Equation~1! can then be used to determine t
cold fuel density,rcold. The energy density throughout th
fuel is 3P/2, so that when we assume the fluid is entire
enclosed within a sphere of radiusRfuel ~see Fig. 2!, the
system size is

Rfuel5S Efuel

2pPD 1/3

. ~17!

Similar considerations provide the total fuel mass as a s
of the cold and hot part contributions:

M fuel5
2

3
@rcold~12n!1rsparkn#

Efuel

P
. ~18!

Since the critical spark volume isEthr /(3P/2), from the pre-
vious formulas the critical spark radius is found to be

Rthr5~n/g!1/3Rfuel . ~19!

We note that the distribution function in energy~or R! enters
in these estimates only through the single dimensionless
rameterg introduced in the initialEthr evaluation@through
Eq. ~16!#.

The thermonuclear gain for this fuel assembly is then

G5« t n

M fuel

Efuel
f burn, ~20!

where« t n is the thermonuclear energy released by burn
the unit mass, andf burn is the fraction of burned mass, now t
be evaluated by a statistical version of Eq.~3!.

5. THE BURN FRACTION f burn

For the situation analyzed in this paper, the integral
pearing in the Eq.~3! for f burn is

E
0

Rfuel
r dr5rsparkLspark1rcold~Rfuel2Lspark!, ~21!

FIG. 2. The numerical examples reported in the paper refer to sparks
domly distributed within a sphere of radiusRs smaller or equal to the fue
radiusRfuel .
e

m

a-

g

-

whereLspark is obtained by adding the portions of the radi
Rfuel embedded in the randomly distributed sparks~e.g., the
dashed segments in Fig. 2!.

Let us assume that a line starting from the system’s c
ter meets a spherical spark of radiusR(}E1,3). It is easily
seen that, on the average, the line segment within the sp
is (4/3)R(E). If, along the radial coordinater in the fuel, the
space-energy distribution is then assumed to bedN
54pr 2n(r ) f (E,E0)dr dE, we obtain

Lspark5E
0

Rfuel
drE

0

}

dE n~r ! f ~E,E0!pR2~E!•
4

3
R~E!.

~22!

However, (4/3)pR352E/(3P), where P is the constant
presure of the system, so that through Eqs.~5!, ~17!, and~19!
it follows that

Lspark5RfuelnS Rfuel

Rturb
D 2

, Rturb
2 5NF4p

3 E
0

Rfuel
n~r !drG21

,

~23!

without any additional assumption on the distribution fun
tion f (E,E0). As we have seen in the previous section, t
system dimensioning depends onf (E,E0) only throughg.
Thus the entire model depends only on the integral par
etersg andRturb.

If the sparks are distributed uniformly in the volum
enclosed within a radiusRs<Rfuel ~see Fig. 2!, through Eq.
~23! we find Rturb5Rs and

Lspark5Rfuel n~Rfuel /Rs!
2. ~24!

In this case, a more convenient parameter, the dilution of
sparks (d), can be used instead ofRs :

d5
4pRs

3

3 S 2E

3PD 21

5
1

n S Rs

Rfuel
D 3

, ~25!

where Eqs.~15! and~17! are used. By definitiond>1. After
d is assigned in the parametrization, we requirend
5(Rs /Rfuel)

3<1, so that n<1/d. In terms of d, Lspark

5Rfuel(n/d2)1/3, so that finally

E
0

Rfuel
r dr5Frcold2~rcold2rspark!S n

d2D 1/3GRfuel . ~26!

Sincercold.rspark, the integral~and f burn! increases withd.
The conventional calculations for single, central spa5

can be formally recovered from this model by settingg51
andd51. From Eqs.~15!, ~16!, ~19!, ~24!, and~25! it results
in Ehot5Ethr , Lspark5Rs5Rthr , and the statement holds.

6. FUEL GAIN CALCULATIONS

In the following we present some gain evaluations
assemblies having the sparks dispersed uniformly withi
radiusRs<Rfuel @see Fig. 2, and Eqs.~24!–~26!#. The uni-
form distribution in the entire fuel is obviously included as
special case (n51/d). The relevant formula forf burn is that
obtained by using Eqs.~3! and ~26!.

The numerical results presented in this section refe
Efuel5400 kJ; this value is taken just for illustrative pu
poses. Here, we are not interested in the value of the g

n-
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which can be achieved, but in its relative change as a fu
tion of the number of sparksN. In all the calculations, the
ignition temperature was assumed to be 7 keV@see Eq.~2!#.

All the graphs presented refer to an ignition probabil
p50.9 ~unless the lowest values ofN are considered, the
results are largely insensitive to the value of this parame
see Fig. 1!. The ratio between the fuel pressure and the Fe
pressure in the cold fuel was assumed to be8 a52. The typi-
cal behavior of the gainG in terms ofn andd is illustrated in
Fig. 3, where the isolevels forG are shown. The behavior i
always qualitatively the same, regardless of which value
N andp are considered, or the distribution function in ener
is adopted.

Curve 1 represents the boundary for the region whe
n<1/d ~Rs<Rfuel ; see Sec. 5!. The points on curve1 repre-
sent uniform distributions of the sparks throughout the f
volume (Rs5Rfuel). The curve2 represents the loci where
maximum ofG occurs for assignedd. On this curve, in the
region below the pointA, (]G/]n)d50. An additional mod-
est increase inG can be obtained by moving along curve1
from A to the pointB, where the line1 is tangent to an
isolevel@on this path (]G/]n)d>0#. The gain evaluated inB
is the highest possible. The coordinates ofB are given in
Table I for the ‘‘square-box’’ distribution function~and p
50.9!. Lying on curve1, theseB points correspond to a
uniform spark distribution in the fuel~i.e., Rs5Rfuel!.

The maxima corresponding to different values ofN are
shown in Fig. 4 for the ‘‘square-box’’ distribution~following
curve 2 up to the pointA, and then curve1 from A to B!.
Along each curve the value of the parameterd changes from
1 to the correspondingB points, which are listed in Table I
The sudden change in direction of each curve occurs at
transit through theA points ~see Fig. 3!. In Figs. 5a and 5b
calculations forG andrcold are presented~at N550! for the
‘‘square-box’’ distribution. To carry out comparisons, th
curve for the single-spark gain is also shown in Fig. 5a. T
maximum for a single spark (Gss52706) occurs atn

FIG. 3. Gain isolevels in then, d plane. The parametern5Ehot /Efuel rep-
resents the total energy given to the sparks, measured in units of the
fuel energyEfuel . The dilution parameterd represents the ratio of the vol
ume in which the sparks are distributed~radius Rs! to the overall sparks
volume. Between the curve1 and the lined51 lie the physically interesting
points, those for whichRs<Rfuel . On the curve2 lie the points of maximum
gain at assignedd. The maximum possible gain is achieved onB, where1
is tangent to an isolevel.
c-

r;
i
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50.0483, and the associated cold fuel density isr
5910 g/cm3. This density value is about 0.5 of that asso
ated with the maximum on curve5 in Fig. 5a. Clearly, sub-
stantially more favorable results for a multispark follow fro
the calculations relative to the other distribution functio
~see Fig. 1!. For the single-spark approach, the site of t
maximum gain is unlikely to be a working point since
corresponds to spark convergence ratios that are not pr
cal. This can be deduced from prescriptions derived fr
some high-gain capsule designs, where at 3/4 of the in
target radius the in-flight aspect ratio~IFAR! is set equal to
30 and the total thickness (ablator1DT) is assumed to be
equal to that of the initial, solid-state density DT layer.7,8

Thus the initial shell radius is

R05S IFAR

3p

M fuel

r0
D 1/3

. ~27!

where r0 is the DT density at the solid state. The spa
convergence ratio is evaluated asCspark5R0 /Rthr . The
single-spark maximum gain corresponds toCspark599, a
value much greater than those currently accepted9 ('40).
The working value (Cspark540) is recovered atn50.308,
where the gain isGssw51741. This working point was la-
belledW in Fig. 5a. The gain atW is smaller than the maxi-
mum gain obtained with multi-spark systems. For a mu
spark, the geometric parameter corresponding toCspark may
be Chot5R0 /Rs , whereRs is the radius of the turbulent re
gion ~see Sec. 5!. For the highest gainRs5Rfuel , and Chot

5Cfuel5R0 /Rfuel . Under these conditions, the highest ga
for the case of Fig. 5a corresponds toCfuel545, whereas

tal
FIG. 4. The maximum gain~evaluated along line2 in Fig. 3, and then from
A to B! is reported for different values ofN. The starting value isd51.

TABLE I.

N n d G

10 0.1061 9.423 2523
50 0.1148 8.710 2042

100 0.1197 8.353 1845
500 0.1329 7.526 1445

1000 0.1394 7.174 1297
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FIG. 5. a! Fuel gain for the case of 50 spark
distributed in energy according to the ‘‘square
box’’ distribution; p50.9, Efuel5400 kJ; 1—d
51, 2—d51.7, 3—d52.8, 4—d54.8, 5—d
58. b! Cold fuel density plotted as a function o
n.
ar

de
th
a
y

th
th
e
m
ha
th
a

th
w
e
r

gy
an
n
an
u
a

de-
rks.

st-

ix-
erse
ain
do-

ke it

-

rt

l
i-

-
ri

with
Cfuel539 for the ‘‘power-law’’ case. To obtain a gainGssw

by multispark configurations, more relaxed conditions
sufficient, namely those corresponding toCfuel'38 for the
case of Fig. 5a, andCfuel'30 for a ‘‘power-law’’ distribu-
tion. These conditions should be used in the implosion
sign, taking into account that in a multispark assembly
overall shape of the final fuel is expected to play a second
role in determining thermonuclear performances of the s
tem.

7. CONCLUSIONS

In the conventional ICF approach a central issue is
formation of a spherical triggering spark at the center of
fuel, at the end of the implosion process. Highly deform
sparks do not ignite1 and in experiments the measured nu
ber of neutrons was found to deviate substantially from t
computed in 1D simulations. This deviation increases wi
the implosion convergence ratio. The usual interpretation
tributes these results to a mixing process.

In this paper we assumed that as a final result of
implosion, a multispark system has been generated. It
found that high thermonuclear fuel gain can be still obtain
from compressed fuel assemblies, in which a large numbe
sparks (N510– 100) with a statistically generated ener
~size! spectrum is created. By requiring to have, with
assigned probability, at least one spark large enough to ig
the fuel we have computed the assembly dimensioning
by using statistical arguments we have computed the b
fraction and the fuel gain. It was found that the results m
e

-
e
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s-

e
e
d
-
t

t-

e
as
d
of

ite
d

rn
y

depend on the values of two integral parameters, which
pend on the energy-space distribution function of the spa

Although requiring more compressed fuels~typically
23 – 33!, the multispark approach may prove to be intere
ing because~in principle! it is based on the hypothesis ofab
initio relaxed implosion symmetry requirements. Final m
ing processes, which are currently considered to be adv
in ICF, could turn out to be not so dangerous, since high g
can still be obtained. Based on these considerations, the
main of implosion designs can be expanded so as to ma
relevant for thermonuclear energy.
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Superfluorescence of photonic paint
A. Yu. Zyuzin
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We consider the cooperative decay of incoherently pumped atoms in a disordered medium,
where light undergoes multiple scattering. It is shown that the cooperation number, which
determines the duration and amplitude of superfluorescent impulses, is given by the
number of atoms along a diffusive trajectory of the light propagating through the medium. We
also consider the problem of reflection of a probe wave during cooperative emission.
© 1998 American Institute of Physics.@S1063-7761~98!00403-X#
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1. INTRODUCTION

There is growing interest in active photonic pain
These are media in which light undergoes multiple rand
scattering, resulting in the diffusive propagation of radiatio
while interacting with atoms that can be pumped to obtai
positive population difference. The reflection and transm
sion of electromagnetic waves through such a cavity
been extensively studied over the past decade. The spe
pattern resulting from scattering has an average enhance
in the direction opposite the direction of the incide
radiation1 ~a comprehensive review of other statistical pro
erties of the speckle of reflected and transmitted wave
given in Ref. 2!.

Feedback provided by scattering in such a random ca
can serve to set up laser oscillations.3 Laser action in pow-
dered laser materials,4,5 laser dye solutions with scatterin
nanoparticles,6 and dye-doped microdroplets containing I
tralipid as a scatterer7 has recently been reported. These e
periments concentrated mostly on temporal and spatial p
erties of emission.

Recently, the proposed8 enhancement of the weak loca
ization peak in backscattering from an amplifying photon
paint was observed.9

The relevant question concerning recent observation
generation of light in active photonic paints4,5 is to what
extent this phenomenon is reminiscent
superfluorescence10,11 ~i.e., the cooperative decay of an inc
herently pumped system of dipole transitions, started by
tial noise or an external electromagnetic field!, which has
usually been studied in systems without scattering.

Here we consider the cooperative decay of incohere
pumped atoms in a random cavity, which is a slab of thi
nessL ~L@ l , where l is the mean free path of radiation!.
This geometry is often used in experiments. The time t
light spends in this cavity is of the order ofL2/D, whereD
is the diffusion constant. This time is to be compared w
the energy exchange time between atoms and field. We s
that if the latter is greater thanL2/D, then after some delay
the system will generate a superfluorescent pulse of hy
bolic secant form.
4451063-7761/98/86(3)/5/$15.00
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The duration of the superfluorescent pulse ist radNC
21,10

wheret rad is the radiative decay time of a single atom a
NC is the cooperation number, i.e., the number of atoms
take part in cooperative decay. We find that in disorde
systems, this number isNC}rl2L2/ l ~l is the wavelength of
the radiation andr is the density of active atoms, such th
rl3@1!, i.e., it is equal to the number of atoms in a tu
with cross sectionl2 and length of the order ofL2/ l , which
is the length of a diffusive trajectory of radiation.

The intensity of radiation of cooperating atoms at t
maximum of the superfluorescent pulse is}NC

2 /t rad.10 We
show that the diffusive slab radiates at maximum as a sys
of V/NC independent groups of cooperating atoms, and at
peak of the superfluorescent pulse, the intensity emitted
the slab is}(NC

2 /t rad)(V/NC); V is the volume of the slab.
The maximum cooperation number for givent rad and

density of active atoms is determined by the condition t
the time of energy exchange between atoms and the
equal the time that light spends in the cavity. From this co
dition, we find that the maximum cooperation number in t
random cavity isNC

max } lAcrt rad, wherec is the speed of
radiation in the slab.

These results are valid in the case of weak dephas
processes and long relaxation of population difference.
low we take into account the effect of dephasing on sup
fluorescence.

In the limit of large radiation escape timeL2/D, atoms
exchange energy with the field many times, so stimula
emission becomes important and the system exhibits osc
tory behavior.

We also consider the reflection of the probe wave dur
decay of the pumped system.

2. BASIC EQUATIONS

We model a random medium in the following way. Th
dielectric function«~r ! of the medium, which contains activ
atoms, is a random function of position, such that^«(r )&
51. Scattering of light is due to fluctuations of the dielect
function with white noise-like variance
© 1998 American Institute of Physics
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^d«~r !d«~r 8!&5
l4

4p3l
d~r2r 8!.

We consider the case of a weakly disordered systel
@l, with dimensions larger than the mean free path,
propagation of the field can be described as a diffusion p
cess with diffusion constantD5cl/3; c is the speed of light
in the medium.

The coupling between the polarization density

1

2
@eivtP~r ,t !1e2 ivtP* ~r ,t !#

averaged over scales smaller thanl, the population differ-
ence densityDN(r ,t), and the field

1

2
@eivtE~r ,t !1e2 ivtE* ~r ,t !#

can be described by the classical Maxwell–Bloch equatio
In this approach, amplified spontaneous emission nois
neglected, which is a good approximation f
superfluorescence;12 P(r ,t) and E(r ,t) are slowly time-
varying complex quantities, which we consider to be scala
v is the atomic frequency.

The first two Maxwell–Bloch equations have the form13

F d

dt
1gGP~r ,t !5

i umu2

\
DN~r ,t !E~r ,t !, ~1!

d

dt
DN~r ,t !52

i

2\
@P* ~r ,t !E~r ,t !2P~r ,t !E* ~r ,t !#.

~2!

Hereg is the inverse dephasing time andm is the electric
dipole moment. It is assumed that the population invers
relaxation time is longer than the delay time of the superfl
rescent pulse. We also neglect inhomogeneous broaden

The quantitiesDN(r ,t) and P(r ,t)/umu are components
of the local Bloch vector averaged over scales smaller t
the wavelength of the radiation. The rate at which its len
decreases, according to~1! and ~2!, is determined byg21.

The wave equation for the slow time variations of t
field componentE(r ,t) has the form

i
dE~r ,t !

dt
2F2

c2

2v
D2

v«~r !

2 GE~r ,t !52pvP~r ,t !.

~3!

Although E(r ,t) and P(r ,t) vary slowly in time, they
still contain random spatial phases, which result from r
dom interference between waves coming to the pointr via
different diffusive trajectories. To get rid of these phase f
tors, it is convenient to consider the diffusion propaga
D(r ;t1 ,t2), which determines the correlation function of th
polarization density and field:

^E~r ,t1!E* ~r ,t2!&54pk3vD~r ;t1 ,t2!. ~4!

Correlation functions involving the polarization density c
be obtained by using Eq.~1!.

To obtain the equation for the diffusion propagator, it
convenient to eliminate the polarization density from E
~1! and ~3!. Then the usual diagram technique14 makes it
o
-

s.
is

s;

n
-
g.

n
h

-

-
r

.

possible to calculate the average of the prod
E(r ,t1)E* (r ,t2). The corresponding diagrams are shown
Fig. 1.

Considering the evolution of the Bloch vector from tim
t50, at which a positive population difference is created,
obtain for the diffusion propagator

F d

dt1
1

d

dt2
2D¹2GD~r ;t1 ,t2!5 f ~r ;t1 ,t2!

1
1

rt0
2 E

0

t1
dt exp@2g~ t12t !#DN~r ,t !D~r ;t,t2!

1
1

rt0
2 E

0

t2
dt exp@2g~ t22t !#DN~r ,t !D~r ;t1 ,t !.

~5!

Here

t0[A \

2prvumu25A4pt rad

3vrl3

is the characteristic time of energy exchange between
field and the atomic system,11 r is the density of active at-
oms, and

t rad
215

8p2umu2

3\l3

is the radiative decay time of a single atom.
The function f (r :t1 ,t2) depends on the initial condi

tions. Here we choose the initial condition such that^P(r ,t
50)&50 and ^P(r ,t50)P* (r 8,t50)&5rumu2d(r2r 8).
This initial condition corresponds to an initial incohere
state. In this case

f 5rumu2 exp@2g~ t11t2!# ~6!

for times greater than the mean free time of radiationl /c.

FIG. 1. Diagram for the diffusion ladder, which is denoted by shaded
angles. Solid lines correspond to the average Green function of the fi
dashed lines denote scattering. Shaded circles denote interaction be
field and atoms. The average Green function satisfies the equa
idE(r ,t)/dt2$2c2D/2v2v/21 ic,2l %E(r ,t)5d(r2r 8)d(t).
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The equation for the mean population inversion dens
can be obtained by using Eqs.~1!, ~2!, and~5!:

dDN~r ,t !

dt
52

~2p!3

\rl3t0
2 E

0

t

dt8 exp@2g~ t2t8!#

3DN~r ,t8!@D~r ;t8,t !1D~r ;t,t8!#. ~7!

For the population difference we chooseDN(r ,t50)
5DN.0 as the initial condition (DN5r).

The usual boundary conditions for the diffusion prop
gator are D(r ;t1 ,t2) on an open surface andn
•¹D(r ;t1 ,t2)50 on a reflecting surface;n is the normal to
the reflecting surface.

The diffusion approach is justified if the time of energ
exchange between atoms and field is greater than the m
free time of radiation,t0@ l /c.

3. COOPERATIVE DECAY IN PHOTONIC PAINT

Below we consider a slab of thicknessL (L@ l ). Let z
be the coordinate across the slabL>z>0. It is convenient to
study the solution of Eq.~5! in the form

D~r ;t1 ,t2!5AL

2 (
n51

`

Cn~z!Dn~ t1 ,t2!, ~8!

where

Cn~z!5A2

L
sin

pnz

L

is an eigenfunction of the diffusion equation with bounda
conditionCn(z)50 at the free boundariesz50, L.

Let us consider the initial evolution of the diffusio
propagator, when the population difference does not dep
on time. For the coefficients in~8!, we obtain from~5!

F d

dt1
1

d

dt2
1vnGDn~ t1 ,t2!

5A2

L
rumu2E dzCn~z!exp@2g~ t11t2!#1

DN

rt0
2 E

0

t1
dt

3exp@2g~ t12t !#Dn~ t,t2!1
DN

rt0
2 E

0

t2
dt

3exp@2g~ t22t !#Dn~ t1 ,t !. ~9!

Herevn5Dp2n2/L2 is an eigenvalue of the diffusion equa
tion. Solving Eq.~9! via the Laplace transform with initia
conditions Dn(0,t2)5Dn(t1,0)50 ~the field vanishes att
50!, we obtain

Dn~ t,t !}expH FAS vn

2
2g D 2

1
4DN

rt0
2 2

vn

2
2gG tJ . ~10!

The critical value of positive inversion densityDNn ,
above which the growth rate of a particular diffusion mod

Zn5AS vn

2
2g D 2

1
4DN

rt0
2 2

vn

2
2g

becomes positive, isDNn5(vng/2)rt0
2.3 More detailed cal-

culations of~10! are given in the next section.
y

-

an

nd

To proceed further in solving Eqs.~5! and~7!, we make
two approximations.

1! Below we consider the case of fast escape of radia
from the system, wherev1@d/dt1 ,d/dt2 ,g ~or, according
to ~10!, t0v1.1 for weak dephasing!, so we can neglect the
time derivative in Eq.~5!. In the language of superfluores
cence, this situation corresponds to the case in which the
no energy exchange between the emitted field and ato
subsystem.12 The field serves only to develop correlation b
tween atoms.

2! We consider only the most unstable modeD1(t1 ,t2).
At t50, the off-diagonal elements of

DNnm~ t ![E dzDN~z,t !Cn~z!Cm~z!

are zero by definition, and interaction between modes is
relevant for most of the time of decay. We therefore assu
that the interaction of the first diffusion modeD1(t1 ,t2) with
higher modes does not qualitatively change the descrip
of cooperative decay.

Under these assumptions the equation for the diffus
propagator has the form

D1~ t1 ,t2!5
4rumu2

pv1
exp@2g~ t11t2!#1

1

rv1t0
2 E

0

t1
dt

3exp@2g~ t12t !#DN11~ t !D1~ t,t2!1
1

rv1t0
2

3E
0

t2
dt exp@2g~ t22t !#DN11~ t !D1~ t1 ,t !, ~11!

and for the population difference

d

dt
DN11~ t !52

k3

\ F 8

3p
v1D1~ t,t !2rumu2

3exp~22gt !G . ~12!

Introducing

D~ t1 ,t2![exp@2g~ t11t2!#G~x~ t1!,x~ t2!! ~13!

in ~11!, where

x~ t !5
1

rv1t0
2 E

0

t

dtDN11~ t !, ~14!

we obtain

G~x1 ,x2!5
4rumu2

pv1
1E

0

x1
dxG~x,x2!1E

0

x2
dxG~x1 ,x!.

~15!

Equation~15! can be solved by a Laplace transform:

G~x1 ,x2!

5
4rumu2

pv1
E

2 i`1C

i`1C dz1

2p i

dz2

2p i

exp~z1x11z2x2!

z1z22z12z2
. ~16!

The asymptotic form of~16! for x15x2[x.1 is
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G~x,x!'
2rumu2

pv1

exp~4x!

Apx
. ~17!

The equation for the population difference (x.1) is

d2

dt2
x52

8k3

3p\rt0
2 G~x,x!exp~22gt !. ~18!

Taking into account only exponential factors, we obtain
solution of Eq.~18!:

DN11~ t !5dN~0!tanhH 2dN~0!~ t02t !

rt0
2v1

J 1
grt0

2v1

2
.

~19!

Here we introducedN11(0)[DN2gv1rt0
2/2; DN is the

population difference at the beginning of exponential grow
of radiative intensity, when deviation from the initial pop
lation difference is small (DN5r).

The delay time in~19! is

t05
v1rt0

2

2dN~0!
lnFdN~0!

r
Arl3

L

All
G .

In deriving this expression we took into account the relat
between the time of energy exchange between atoms
field and umu2, which enters into the initial condition fo
polarization density.

The radiative intensity is proportional todDN11(t)/dt,
and is emitted as a hyperbolic secant pulse. The result~19!
coincides with that of the Markov theory of superfluore
cence in a system without scattering.10,11The difference is in
the definition of the cooperation number.

It follows from Eq.~19! that in the case of weak depha
ing, the duration of a superfluorescent pulse ist0

2v1/4
[t radNC

21, where t rad is the time of radiative decay of
single atom and

NC5
18rl2L2

p2l

is the cooperation number, i.e., the number of atoms that
part in the cooperative decay. This is equal to the numbe
atoms in a tube of cross sectionl2 with the length of the
diffusive trajectoryL2/ l . The maximum of the cooperatio
number is determined by the conditiont0v151, whereupon
NC

max52lA6crt rad. Under this condition, atoms can ex
change energy with the field only once, i.e., stimulated em
sion can be neglected. We note that for a given densitr,
decay timet rad and velocity, the maximum cooperation num
ber in a disordered system is smaller than in a pencil-sha
system without scattering.15

The maximum emitted radiation is

V
d

dt
DN11~ t5t0!

~V is the volume of the slab!. It can also be written
N NC

2 /t rad, whereN 5Vr/NC is the number of cooperativ
regions in the slab.
e

h
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Cooperative decay in a diffusive medium can therefo
be interpreted as the independent cooperative decay oN

5Vr/NC systems, each consisting ofNC atoms.
Dephasing processes increase the duration of a puls

a factorr(DN2gv1rt0
2/2)21, and reduce the peak intensit

by the square of this factor. Note that this result coincid
with that for a system without scattering.16

If t0v1!1, atoms exchange energy with the field ma
times. In this case we expect spiking of intensity. The f
quency of spiking can be estimated13 from Eq. ~10! as

AU4DN

rt0
2 U2S v1

2
2g D 2

.

To obtain this expression we insert a negative value of
population inversion13 into ~10! ~this situation will occur af-
ter the pumped atoms exchange energy with the field!.

4. AMPLIFICATION IN THE BACKWARD DIRECTION

Correlation between pumped atoms can also be du
the external field, which stimulates emission in the forwa
direction in a system without scattering.13 In a disordered
system one might expect enhancement of emission in
backward direction.

Here we consider the reflection of a weak pro
plane wave with frequencyv during the development o
superfluorescent emission. The amplitude of the probe
low, so the effect of the external field on emission can
neglected. We can also neglect interference between the
ternal and emitted fields, because the initial state of polar
tion is incoherent. Below we consider in detail the line
stage of decay when the inversion density is high enoug
produce only the lowest diffusion mode instability,DN
5DN1(11d), d!1. This situation resembles the expe
mental setup of Ref. 9.

It is convenient to calculate the albedo, which is the ra
between the intensities of the reflected and incident fie
The time-dependent albedo can be expressed as17

a~q,t !5
c

4p l 2 E
0

`

dz dz8 expS 2
z1z8

l D
3E dr@11cos~q,r!#D~z,z8,r;t !. ~20!

Hereq is the sum of the incident and outgoing wave vecto
andr is the position in the plane. The diffusion propagat
~20! obeys Eq.~5! with the substitution ofd(r2r 8) for
f (r ;t1 ,t2). We also assume that the incident wave is close
the normal to the surface.

The first term describes diffusion scattering and the s
ond term describes the interference part, which is stron
peaked in the backward direction. The physical mechan
of the interference contribution is exhaustively discussed
the literature: see, for example, Refs. 1 and Ref. 8, and
erences therein.

The diffusion propagator can be represented as
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D~r ,r ;t1 ,t2!5(
n

Cn~z!Cn~z8!

3exp@ iq~r2r8!#D̂n~q,t1 ,t2!. ~21!

The Laplace transform of Eq.~5! for time-independent
DN.0 yields

D̂n~q,t1 ,t2!5E
2 i`1C

i`1C dp1dp2

~2p i !2

exp~p1t11p2t2!

p1p2

3H p11p21Vn~q!2
DN

rt0
S 1

p11g

1
1

p21g D J 21

, ~22!

where the real part of the integration contour passes to
left of all singularities, andVn(q)5Dq21vn is the eigen-
value of the diffusion equation for the slab geometry.

At t15t2 , integrating over the differencep12p2 in ~22!,
we obtain for the first mode att.v1

21

D̂1~q,t,t !5
~2g!3/2

Av1~v112g!
E

2 i`1C

i`1C dp

2p i

exp~pt!

pAp2Z1~q!

3Fp1Ag~v112g!

2v1
Ap2Z1~q!G21

.

~23!

Here we introduce

Z1~q!5
2gv1

2g1v1
S d2

Dq2

v1
D ,

which is the growth rate ofD̂1(q,t,t).
For moderate times

tv1Z1
2

g~2g1v1!
,1,

we obtain from~23!

D̂1~q,t,t !5
2

v1

exp@Z1~q!t#21

d2Dq2/v1
. ~24!

This expression is valid for either sign ofZ1 , i.e., above as
well as below threshold.

Taking into account that

C1~z!5A2

L
sin

pz

L
,

we obtain the singular contribution to the albedo from t
first mode:

da~q,t !5
3l

pL H exp@Z1~0!t#21

d
1

exp@Z1~q!t#21

d2Dq2/v1
J .

~25!
e

Below threshold the albedo is saturated. The peak at la
times has a Laplacian form}(udu1Dq2/v1)21. At thresh-
old and above, the peak narrows with time. Exactly at thre
old the albedo is linear with time, and above threshold
albedo grows exponentially.

5. CONCLUSION

To summarize, superfluorescent emission of active p
tonic paint develops due to the cooperation of atoms alon
diffusive trajectory through a system with cross-sectional
mensions of the order of a wavelength. The pulse there
becomes narrower with decreasing mean free path of ra
tion until the cooperation number reaches its maxim
value. The maximum cooperation number does not dep
on disorder.

An external field enhances emission in the backward
rection. The peak sharpens in coherent backscattering du
cooperative decay in a disordered system.
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Study of the rates of collisional decay of population, orientation, and alignment
by stimulated photon echo in a molecular gas
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A stimulated photon echo technique with specially selected linear polarizations of the coherent
resonant driver pulses is used to study depolarizing collisions in the molecular gas SF6

and in mixtures of it with buffer He and Xe. The collisional decay rates of the population,
orientation, and alignment in an ensemble of gas particles are determined for the first time in a
single experiment. These relaxation rates are measured as a function of the longitudinal
translational velocities of the resonant particles. To within the experimental accuracy, no
significant dependence of the collisional decay rates on the translational velocities of the particles
was observed. This result confirms the conventional theoretical approach to depolarizing
collisions. In pure SF6 the decay rates for the orientation and alignment were lower than the
relaxation constant for collisions involving a change in the longitudinal velocity~elastic
collisions! that is known from experimental observations of the ordinary photon echo. This means
that only some of the elastic collisions participate in destroying the multipole moments of
the levels. Evidence is found that the relaxation of the multipole moments created by polarized
radiation in a resonant medium of molecular SF6 gas depends onj , the total angular
momentum of the level. ©1998 American Institute of Physics.@S1063-7761~98!00503-4#
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1. INTRODUCTION

Since the first experiments on optical pumping,1 it has
been well known that polarized light can create a distinct
nonequilibrium distribution of the population over the ma
netic sublevels of an excited and~or! ground state.2 This sort
of polarized state decays through depolarizing collisio
which are very sensitive to asymmetries in the interact
potential.3

Coherent transient phenomena, such as the photon
and modifications of it, are widely used to study relaxati
processes in various media,4,5 including gases.6–8

The ordinary photon echo develops in a resonant m
dium at a time 2T12 following passage of two short ligh
pulses separated by a time delayT12. The photon echo is a
form of spontaneous coherent emission from an ensemb
particles which retains a phase memory of the first excit
pulse in the nondiagonal component of the optical cohere
matrix. Thus, the ordinary photon echo has been used
cessfully for measuring the relaxation constantgab

(1) ~the rate
of decay of the polarization of the medium!.9 It was pre-
dicted that this method might make it possible to meas
other relaxation characteristicsgk (kÞ1) of the optical co-
herent matrix by creating a photon echo in an external m
netic field.10

Polarization effects during photon echo formation can
used to identify a transition for smallj or to identify the type
of transition for j @1.11 The polarization features of echo
response generation in standing waves can aid in measu
the spontaneous emission probability for a resonant tra
tion, the relaxation rates for all the components of the opt
4501063-7761/98/86(3)/5/$15.00
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coherence matrix,12 and the magnitude of the collisional shi
in a spectrum line.13

Stimulated photon echo techniques can be employe
measuring some relaxation constants of the quantum le
themselves~given their degeneracy over the magnetic su
levels!, such as the relaxation of population, orientation, a
alignment without applying an external magnetic field.14 A
stimulated photon echo signal appears at a time 2T121T23,
after which the resonant medium is successively excited
three light pulses with time delaysT12 between the first and
second andT23 between the second and third. A pha
memory of the first and second driver pulses is retain
throughout the time delayT23, in the diagonal component
of the coherence matricesrmm8

(aa) andrmm8
(bb) . Herem andm are

the projections of the total angular momenta of the up
( j a) and lower (j b) levels, respectively.

Following Evseevet al.,14 we consider the excitation o
a resonant medium by a sequence of three linearly polar
pulses propagating along they axis. Let the polarization of
the third pulse coincide with the direction of thez axis, while
the polarizations of the first and second pulses are rotate
anglesc1 and c2 , respectively. In order to determine th
electric amplitude of the simulated photon echo, we use
expansion of the coherence matrixrmm

(ba) and the collision

matrix Gmm
m8m8(v) in terms of irreducible tensor operators.10

The first three terms in the expansion of the diagonal co
ponent ofrmm

(ba) are the total population of the level~zeroth
term!, the orientation of the level~first term!, and the align-
ment of the level~second term!. The appearance of the firs
or second terms corresponds to the formation of a ma
© 1998 American Institute of Physics



o
pa

-

r
l
el

o

pu
te

at
ns
di

ay

le
ec

of
a

se-
om
ec-
f a

to
nite
n

he

ver
g

re-
y-
on
nter-

r 1
ed
e
nse:

e
n-

e

ho-

er
lses
of

s

itor.

451JETP 86 (3), March 1998 Vasilenko et al.
scopic magnetic moment or macroscopic electric quadrup
moment in a subensemble of resonant particles. The ex

sion of the collision matrixGmm
m8m8(v) gives the correspond

ing relaxation rates:g (0) for the population,g (1) for the ori-
entation, andg (2) for the alignment of the levels. For drive
pulses with small areas~u i!1, i 51,2,3!, these theoretica
calculations of the stimulated photon echo amplitude yi
Eqs. ~1a!–~1c! for j↔ j transitions and Eqs.~2a!–~2c! for
j↔ j 11 transitions forj @1 ~typical for experiments in SF6
gas!:14

Ex}
1

15j
sin~c11c2!A2~T23!, ~1a!

Ey50, ~1b!

Ez}
1

9 j Fcos~c12c2!A0~T23!1
2

5
~2 cosc1 cosc2

2sin c1 sin c2!A2~T23!G , ~1c!

and

Ex}
1

60j
@sin~c11c2!A2~T23!25 sin~c1

2c2!A1~T23!#, ~2a!

Ey50, ~2b!

Ez}
1

9 j Fcos~c12c2!A0~T23!1
1

10
~2 cosc1 cosc2

2sin c1 sin c2!A2~T23!G , ~2c!

where

Ak~T23!5exp~2ga
~k!T23!1exp~2gb

~k!T23!, k50,1,2.
~3!

Equations~3! include the six relaxation ratesg i
(k) ~k

50, 1, 2, i 5a, b!:

g i
~k!5g i

~0!1G i
~k! , i 5a,b. ~4!

Here theg i
(0) ( i 5a, b) are the relaxation rates owing t

inelastic collisions and theG i
(k) ( i 5a, b) are the relaxation

rates owing to elastic depolarizing collisions.G i
(0)50 (i

5a, b) since elastic collisions cannot change the level po
lations. Collisions with a phase disruption can be neglec
in the molecular gas SF6.

In deriving Eqs.~1! and ~2! it has been assumed th
there is no dependence of the relaxation rates on the tra
tional velocity of a resonant particle. This important con
tion was verified in our experiment~see below!.

For infrared vibrational–rotational transitions the dec
rates of the upper levela and lower levelb are usually very
close to one another, so the equations can be simplified.~In-
stead of six decay rates, we have only three.! A further sim-
plification can be achieved by specially selecting the ang
c1 andc2 so that only two of the decay rates have an eff
on the amplitude of the photon echo.
le
n-

d

-
d

la-
-

s
t

2. EXPERIMENT

The characteristic feature of our experiment, the setup
which is sketched in Fig. 1, is the use of a cw laser 1 with
high quality output as an excitation source. The required
quence of linearly polarized driver pulses was shaped fr
the cw light by an electrooptical gate 3. If necessary, a s
ond electrooptical crystal 4 could rotate the polarization o
given light pulse by ninety degrees.

An important feature of our experiments is the ability
excite a subensemble of resonant gas particles with defi
longitudinal translational velocities. The width of such a
ensemble of longitudinal velocities is determined by t
pulse parameters~duration and intensity!, while the central
velocity can be chosen by tuning the frequency of the dri
radiation over the Doppler profile of the transition bein
studied. This makes it possible to investigate collisional
laxation as a function of the translational velocities by stud
ing coherent transient effects and extracting information
the relaxation mechanisms and on the steepness of the i
action potential from these data.9,16

In these experiments we use a cw CO2 laser 2, whose
frequency is stabilized at the center of the SF6 transition, as a
reference light source. The frequency of the driver lase
was coupled to that of the reference laser 2 with a fix
differenceV ~which determined the central velocity of th
molecular subensemble which forms the coherent respo
vy5V/k!.

In an earlier paper,17 the magnitude of the differenc
G (2)5g (2)2g (0) between the rates of relaxation of the alig
ment and populations of levels in the Q~38! transition of the
n3 vibrational mode of gaseous SF6 was measured. The rat
of relaxation of the alignmentg (2) was obtained from the
value ofG (2) and from a population decay rateg (0) given by
other experiments.18

In this paper, experimental studies of the stimulated p
ton echo were conducted on the P~33! A2

1 vibrational–
rotational line of then3 mode of gaseous SF6. Experiments
were done with four different polarizations of the driv
pulses. The polarizations of the first, second, and third pu
were rotated by an angle of 90° relative to the polarization

FIG. 1. The experimental setup: 1, 2 cw CO2 lasers; 3, 4 electrooptical gate
~the second gate has no polarizer at its output!; 5–7 gas cells; 8–10 CdHgTe
IR photodetectors; 11 frequency stabilization system; 12 frequency mon
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the other two optical pulses, respectively, in cases~100!,
~010!, and~001!, respectively. The fourth case represente
situation in which all three pulses had the same linear po
ization ~case~000!!.

In this way we obtained four different kinetic curves f
the dependence of the stimulated photon echo signal on
delay time between the second and third driver pulses.

In cases~100! and ~010! only the componentEx of the
stimulated photon echo signal amplitude exists and only
decay rates,g (1) andg (2), contribute to this amplitude:

E100}5 exp~2g~1!T23!2exp~2g~2!T23!, ~5!

and

E010}5 exp~2g~1!T23!1exp~2g~2!T23!. ~6!

Equations~5! and ~6! were obtained from Eq.~2a! with
c1590°, c250 andc150, c2590°, respectively.

Since the stimulated photon echo signals were extrem
weak, we used part of the emission from the reference la
2 for optical heterodyning of the detected stimulated pho
echo signal. Thus, the detector 8 recorded signalsS 100

}E100 andS 010}E010.
Similarly, in cases~001! and ~000! we have only the

componentEz of the stimulated photon echo signal, damp
with relaxation constantsg (0) andg (2) ~recall that thez axis
is assumed to coincide in direction with the polarization
the third driver pulse!:

E001}10 exp~2g~0!T23!2exp~2g~2!T23!, ~7!

and

E000}5 exp~2g~0!T23!1exp~2g~2!T23!. ~8!

Equations~7! and ~8! were obtained from Eq.~2c! with c1

5c2590° andc15c250, respectively.
Optical heterodyning was not used in cases~001! and

~000!, so we recorded signalsS 001}E001
2 andS 000}E000

2 .

3. RESULTS AND DISCUSSION

It is clear thatg (1) andg (2) can be obtained by simply
taking the logarithm of the sum or difference of the sign
amplitudesS 010 and S 100 detected by the detector 8 as th
polarizations of the first and second pulses are rotated.
resulting two sets of data, ln(S 0101S 100) and ln(S 010

2S 100), for different values ofT23 were approximated by
linear functions of the form

F ~T23!5g~k!T231const, k51,2.

which were constructed by least squares. The results for
SF6 at gas pressuresP5(0.9– 5.4)•1023 Torr are shown in
Fig. 2.

The other pair of relaxation rates,g (0) andg (2), can be
obtained by mathematical analysis of the signals detecte
the detector 8 in cases~001! and ~000!: the data were trans
formed into sets of the form ln(AS 0001AS 001) and
ln(AS 00022AS 001) for different values ofT23, which were
approximated by least squares as functions of the same f

F ~T23!5g~k!T231const, k50.2.
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The results for pure SF6 are shown in Fig. 3 for the same ga
pressures.

In pure SF6 the collisional decay rate for the alignme
was somewhat higher than the decay rates for the orienta
and population. Our measurements yielded the following
sults ~relaxation rate per unit pressure of SF6!: g (0)/p5(28
63)•106 s21Torr21, g (1)/p5(3263)•106 s21Torr21, and
g (2)/p5(3863)•106 s21Torr21. Our value ofg (0) is com-
parable to that in Ref. 18,g (0)/p5(3065)•106 s21Torr21.
It is interesting that the elastic collision rates for depolariz
tion ~see Eq. ~4!!, G (1)/p.4•106 s21Torr21 and G (2)/p
.10•106 s21Torr21, were smaller than the relaxation ra
owing to elastic collisions~collisions involving a change in
the longitudinal translational velocity of the resonant p
ticles! measured by the ordinary photon echo techniqu19

Gvcc /p;17•106 s21Torr21. Of course,Gvcc was measured
for a nondiagonal component of the matrixr (ab), while we
obtainedG (1) andG (2) for its diagonal components, but th
physical significance ofGvcc ~it is determined by elastic col
lisions, i.e., those in which only the translational velocity
the particles changes.! allows us to regard this constant as t
same for all four components of the matrixr (ab). Thus, it is
entirely appropriate to compareG (1) andG (2) with Gvcc . The
inequality G (1),G (2),Gvcc means that only some of th
elastic collisions participate in the breakup of the multipo
moments of the levels.. It is also evident that the magn
moment induced by the radiation in a subensemble of re

FIG. 2. Rates of relaxation of orientationg (1) ~squares! and alignmentg (2)

~triangles! in SF6 gas. The nonzero relaxation rates at zero pressure
explained by a transit-time effect.

FIG. 3. Rates of relaxation of orientationg (0) ~triangles! and alignmentg (2)

~squares! in SF6 gas. The nonzero relaxation rates at zero pressure are
plained by a transit-time effect.
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FIG. 4. Rates of relaxation of orientation
g (1) ~squares! and alignmentg (2) ~triangles!
in SF61Xe ~a! and SF61He ~b! gas mixtures
for an SF6 pressure of 2.7•1023 Torr. Re-
laxation at zero pressures of Xe and He
determined by the transit-time effect an
SF6–SF6 collisions.
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nant particles was longer-lived than the electric quadrup
moment (G (1),G (2)). It is interesting that the value ofG (2)

determined here for the P~33! A2
1 level turned out to be no

ticeably smaller than the previously measured17 value of the
same quantity,G (2), for the Q~38! line. This result indicates
that the relaxation of the multipole moments of these lev
depends onj .

Measurements ofg (1) and g (2) in gaseous mixtures o
SF6 with heavy~Xe! and light~He! buffers are shown in Fig
4 and correspond to the following values of the relaxat
rates ~per unit pressure of buffer gas!: gSF6– Xe

(1) /pXe5(16

62)•106 s21Torr21, gSF6– Xe
(2) /pXe5(1662)•106 s21Torr21,

gSF6– He
(1) /pHe5(3664)•106 s21Torr21, and gSF6– He

(2) /pHe

5(4764)•106 s21Torr21.
For collisions of SF6 molecules with the heavy buffe

Xe, it appeared thatg (1)'g (2). In mixtures with He, we
haveg (1),g (2), as in pure SF6.

The dependence of the constantsg (k) on the translationa
velocities were measured for several values of the freque
detuning between the driver laser and the center of the6
line over the rangeDn50 – 9 MHz. The value 9 MHz cor-
responds to;1/2 of the Doppler widthku in gaseous SF6 at
room temperature. The coherent responses were produce
a subensemble of particles with a width of;0.1ku. Both in
pure SF6 and in mixtures with light~He! and heavy~Xe!
buffers, the decay rates of the polarization moments dep
only weakly on the translational velocities of the collidin
particles. For example, Fig. 5 shows measurement data
g (1) andg (2) in an SF61Xe mixture. It is clear that the sligh

FIG. 5. Rates of relaxation of orientationg (1) ~squares! and alignmentg (2)

~triangles! in a gaseous mixture of SF6 (p52.5•1023 Torr) with Xe
~pXe57.2•1023 Torr as functions of the frequency detuningDn between the
driver radiation and the center of the P~33! A2

1 line of the n3 mode. Here
Dn59 MHz corresponds to a longitudinal velocity for the molecules ofvx

'90 m/s~;1/2 the Dopper width!.
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enhancement in relaxation as the detuning from the abs
tion line center is increased does not exceed the experime
error. This is consistent with the approximation used in
theory.11

It is well known that the P~33! A2
1 line of then3 vibra-

tional mode and the wings of;40 lines in the series o
‘‘hot’’ vibrational–rotational bands lie in the same spectr
region. Thus, in general, we must use a set of express
similar to Eqs.~1! and~2!, but with different coefficients tha
depend onj a and j b ,14 to obtain valid formulas for the am
plitude of the stimulated photon echo instead of Eqs.~5!–~8!.
The qualitative behavior of these amplitudes~sum and dif-
ferent of the two exponents! would be the same, so, on th
whole, the method for determining the relaxation consta
does not raise doubts. However, the absence of an isol
spectrum line could lead us to some quantitative error
calculating the constantsg (k), especially if the existence of a
substantial dependence of the relaxation constants for
polarization moments onj is confirmed.

4. CONCLUSION

The basic results of this study of depolarizing collisio
in the molecular gas SF6 and its mixtures with buffer He and
Xe are the following:

1. The dependence of the relaxation rates for the ori
tation and alignment on the translational velocities of t
resonant particles is negligible in all three cases.

2. Only some of the collisions, which do not destroy t
total population of the level, will destroy the multipole mo
ments formed in the magnetic sublevels, and in pure gase
SF6 and in SF61He mixtures it is found that the magnet
moment~orientation! is longer lived than the electric quad
rupole moment~alignment!, while in SF61Xe mixtures both
moments decay at the same rate.

3. We have found evidence that the relaxation rate
the alignment depends onj , the total angular momentum.
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Two-step excitation of an auto-ionized state of the Ba atom associated with two-photon
excitation of an intermediate state

A. Yu. Elizarov* )
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An experimental and theoretical study is performed of the angular photoelectron distribution for
three-photon ionization of Ba atoms through the 2v-excited intermediate state 6p2(1S0)
and the auto-ionized state 6p8s(3P1). Rotation of the polarization plane of dye-laser radiation
allowed us to investigate the photoelectron angular distribution. Electrons were counted
with the help of a time-of-flight electron spectrometer. The density-matrix formalism is used to
obtain expressions for the angular dependence of the differential ionization probability.
Possible experiments are discussed. ©1998 American Institute of Physics.
@S1063-7761~98!00603-9#
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1. INTRODUCTION

The study of the photoelectron angular distribution
stepwise ionization of atoms by polarized laser radiat
from an excited oriented state is a branch of polarizat
laser spectroscopy and has been pursued experimentally
theoretically for more than 20 years. This method allows o
to obtain unique information about various~including auto-
ionized! states of atoms. The use of tunable lasers and s
chrotron radiation opens up new experimental possibilit
for example, the possibility of studying auto-ionized sta
lying in the VUV region of the spectrum.1–3

Auto-ionized states can be excited by laser radiation
the visible region of the spectrum with the help of multiph
ton resonant or nonresonant excitation processes. An a
tional advantage of two-photon processes over two-step o
arises for intermediate states with nonzero total angular
mentum, when the orientation of atoms in intermediate sta
can be destroyed as a result of processes of radiation effu
and collisional depolarization. Thus, for example, depol
ization of atoms in the intermediate state 6s6p(1P1) during
stepwise excitation by polarized radiation of Ba atoms w
observed for atomic densities in the beam greater t
1011 cm23 ~Ref. 4!.

The influence of depolarization processes is greatly
minished if a two-photon process is used to excite the in
mediate state. In this case radiative relaxation to the gro
state is forbidden by the selection rules, as a result of wh
radiation effusion and collisional depolarization have pra
cally no effect on the orientation of the atoms in the int
mediate state for beam atomic densities up to 1013 cm23

~Ref. 5!, which provides experimental advantages in hig
resolution studies of angular distributions.

The excitation of auto-ionized states by polarized rad
tion was first described theoretically in Ref. 6, where t
wave-function formalism was used. The use of dens
matrix methods has made it possible to substantially simp
the summation over unobservable projections of the ang
momenta. This method has proved to be especially con
4551063-7761/98/86(3)/4/$15.00
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nient for describing excitation of auto-ionized states of p
larized atoms.7–10Preliminary polarization of the target atom
opens up additional possibilities in the design of a compl
quantum-mechanical photo-ionization experiment.9

In this work we consider the photoelectron angular d
tribution for resonant two-step ionization of auto-ionize
states of Ba atoms with the configuration 6p8s(3P1) through
the the 2v-excited intermediate state 6p2(1S0).

2. THEORY

For two-step ionization by polarized radiation the pho
electron angular distribution can be represented analytic
in the form11

dW

dV
}Tr~« i«e~RrargR1!!, ~1!

where dW is the probability of emitting a photoelectro
within the solid angledV, ra is the density matrix of the
atoms in the intermediate state,rg is the density matrix of
the ionizing radiation,« i and«e are the detection efficiency
matrices of the ions and electrons, andR is the radiative
interaction operator describing the transition in the prese
of electromagnetic radiation between the intermediate
final state.

A multipole of the 2v-excited intermediate state can b
represented as a superposition of excitation channels thro
the intermediate states with total angular momentumJa ~Ref.
12!:

rK1Q1

~2! 5(
Ja

^JaiRiJ0&^J1iRiJa&rK0Q0
rk1q1

^JaiRiJ0&*

3rk
18q

18
^J1iRiJa&* ~E2EJa

2\v!21, ~2!

whereuJ0& andE are the initial state and its energy,uJa& and
EJa

are the intermediate state of two-photon excitation a
its energy,uJ1& is the final state of the two-photon excitatio
process,̂ JaiRiJ0& is the reduced matrix element of the r
diative interaction,rK0Q0

is the density matrix of the ground
© 1998 American Institute of Physics
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state of the atom,rk1q1
is the density matrix of the electro

magnetic radiation of the first step, and\v is the energy of
the electromagnetic radiation. The sum overJa follows from
the well-known formula of vector manifolds:

~ ēs ,ēr !5(
m

~ ēs ,ēm!~ ēm ,ēr !. ~3!

In the description of the auto-ionization process we w
employ the formalism of irreducible tensor operators. F
lowing Refs. 11, 13, and 14, we write the state multipoles
the photons and atoms in the ground state, intermediate s
and final state.

a! The polarization density matrix of the electromagne
radiation was obtained in Ref. 13. Employing the expli
expression for it, we write the state multipole of the dipo
radiation

rkiqi

g ~1,1!5 (
l,l8

~21!12l8~2k11!1/2

3S 1 1 k1

l l8 2q1
D ~lurul8!, ~4!

wherei is the number of the excitation step, (l
1

l8
1

2q1

k1 ) is the

3 j -symbol, (lurul8) is the photon density matrix, expresse
in its usual form in terms of the Stokes parametersj j :

^lurul8&5~1/2!S 11j2 2j31 i j1

2j32 i j1 12j2
D . ~5!

b! For atoms in the isotropically oriented ground state
state multipole has the following form:11

rK0Q0
~g0J0 ,g08J08!5 Ĵ0

21dK0dQ0dJ0J
08
, ~6!

whereĴ[(2J11)1/2 holds for arbitrary angular momentum
J0 is the total angular momentum of the initial state, andg ( j )

are the remaining quantum numbers needed to describe
j th state of the atom.

c! Employing expression~2!, we write an expression fo
the state multipole of the atom in the oriented intermedi
stateug1J1&:

rK1Q1

~2! ~g1J1 ,g1J1!5(
Ja

~E02EJa
1hv!21

1^gaJaiRig0J0 ,gaJa&

3^g0J0 ,gaJaiRigaJa&

3^g1J1iRigaJag1J1&

3^gaJa ,g1J1iRig1J1&

3 (
K0 ,k1

Ĵa
2k̂1K̂0~KaQauK0Q0k1q1!

3H J0 J0 K0

1 1 k1

Ja Ja Ka

J rK0Q0
~g0J0 ,g0J0!

3DQ0q1

k1* ~Â!rk1q1

g ~1,1!
l
-
f
te,

t

e

the

e

3 (
Ka ,k18

Ĵ1
2k̂18K̂a~K1Q1uKaQak18q1!

3H Ja Ja Ka

1 1 k18

J1 J1 K1

J D
Qaq1

k
1*
8

~Â!rk
18q1

g
~1,1!,

~7!

where (KaQauK0Q0k1q1) is the Clebsch–Gordan coeffi

cient, $...% is the 9j -symbol, andD
Qaq1

k18* (Â) is the matrix of

finite rotations15 carrying the treatment of the excitation pro
cess from the laboratory coordinate system to the ato
coordinate system defined by the polarization vector of
atom, in which the density matrix is diagonal.

d! We represent the multipole of the auto-ionized st
of the atom in the form

rK2Q2
~g2J2 ,g2J2!5^g1J1 ,g2J2iRig2J2&

3^g2J2iRig2J2 ,g1J1&rK2Q2
8 ~J2 ,J2!

rK2Q2
8 ~J2 ,J2!5 (

K1k2

Ĵ2
2k̂2K̂1~K2Q2uK1Q1k2q2!

3H J1 J1 K1

1 1 k2

J2 J2 K2

J rK1Q1

~2! ~g1J1 ,g1J1!

3DQ1q2

k2* ~Â!rk2q2

g ~1,1!, ~8!

whereug2J2& is the auto-ionized state with total angular m
mentumJ2 andrk2q2

g (1,1) is the state multipole of the elec

tromagnetic radiation of the second step.
Since in the nonrelativistic approximation the ionizatio

probability does not depend on the electron spin and
polarization characteristics of the states of the electron
ion are not fixed, the expression for the product of the st
multipoles of the ion and photoelectron, arising as a resul
decay of the auto-ionized state, can be represented in
form

rKiQi
~g iJi ,g iJi !rkeqe

~ l j ,l 8 j 8!

5
1

4p
^ l j ,g iJi iVig2J2&

3^g2J2iVi l 8 j 8,g iJi&(
K2

rK2Q2
~g2J2 ,g2J2!

3~21!Ji1J21K21 j Ĵ2
2Ĵi

21H J2 j J i

j 8 J2 K2
J , ~9!

where ug iJi& is the state of the atom with one electro
knocked out,V is the Coulomb interaction operator, and$...%
is the 6j -symbol.

When the state multipole formalism is used, express
~1! transforms to14
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dW

dV
5( rKiQi

~g iJi ,g i ,Ji !rkeqe
~ l j ,l 8 j 8!

3«KiQi
* ~g iJi ,g iJi !«keqe

* ~ l j ,l 8 j 8!. ~10!

where the sum is over all repeated indices,«KiQi
* (g iJi ,g iJi)

and«keqe
* ( l j ,l 8 j 8) are the detection efficiency tensors of t

ions and electrons, respectively. In the case when the po
ization characteristics of the state of the ion are not fix
«KiQi

(g iJi ,g iJi)5 ĴidKi0
dQi0

~Ref. 14! and the expression
for the product of the detection efficiency tensors of the io
and the electrons has the form14

«KiQi
~g iJi ,g iJi !«keqe

~ l j ,l 8 j 8!

5
1

4p (
ke

Ĵi~21!1/22 j Z̄S l j ,l 8 j 8;
1

2
keDDqe0

ke ~R!,

~11!

whereZ̄( l j ,l 8 j 8; 1
2 ke) is the Huby function.14

Substituting Eqs.~8!, ~9!, and~11! in Eq. ~10!, we obtain
an expression fordW/dV ~here we use the atomic system
units!

dW

dV
52p~P2pva!3( ^g1J1 ,g2J2iRig2J2&

3^g2J2iRig2J2 ,g1J1&
1

4p
^ l j ,g iJi iVig2J2&

3^g2J2iVi l 8 j 8,g iJi&K ~ l ,l 8, j , j 8,J2 ,Ji ,Ja ,K2 ,ke!,

where the sum is overl ,l 8, j , j 8,J2 ,Ji ,Ja ; P is the photon
flux density,a is the fine-structure constant, and

K ~ l ,l 8, j , j 8,J2 ,Ji ,Ja ,K2 ,ke!

[ Ĵ2
2(

K2

rK208 ~J2 ,J2!

3~21!Ji1J21K21 j 8H J2 j J i

j 8 J2 K2
J

3(
ke

~21!1/22 j Z̄S l j ,l 8 j 8;
1

2
keDD00

ke~R̂21Â!. ~12!

The necessity of summing overK2 in the case of exci-
tation of an auto-ionized state was first shown in Ref. 16.
excitation of such states from an isotropically oriented int
mediate state, let us consider the case in which the coo
nate system is related to the polarization plane so thatQ2

5qe50. By virtue of the properties of the 6j -symbol, ex-
pression~12! is nonzero forK250, 2 and transforms to17

W~ue!5
ss

4p
@11bP2~cosue!#, ~13!

wheress is the total cross section,b is the anisotropy pa-
rameter of the angular distribution,P2(cosue) is the Leg-
endre polynomial of degree 2, andue is the angle between
the axis of the electron energy analyzer and the direction
polarization of the laser radiation.
r-
,

s

r
-
i-

of

3. EXPERIMENTAL SETUP

The time-of-flight electron energy analyzer was specia
developed and prepared for recording the electron ang
distribution and discriminating their energies in multiphot
ionization of atoms. Details of the experimental setup
given in Ref. 18; here we describe briefly its operation. T
energy of the recorded electrons is less than 3 eV. T
electron-optical circuit of the spectrometer employs a we
accelerating electrostatic field following a short interval
field-free electron drift during which ionization takes plac
This design was chosen so that in the interaction region
the radiation and atoms electrostatic fields distorting the
gular dependence of the electron distribution are absent.
Ba beam atomic density was varied in the ran
1010– 1012 at/cm3.

Ba atoms were excited and analyzed by pulsed dye-la
radiation oriented perpendicular to the direction of the
atomic beam. The dye-laser had the following paramet
spectral width of the lasing line 2 cm21, frequency scanning
region 570–590 nm, pulse energy 1.5 mJ, pulse duration
ns. The degree of linear polarization was 98%. The inter
tion region of the atoms with the laser radiation was scree
from the Earth’s magnetic field with the help of a triple pe
malloy screen, where the thickness of each screen was 2
The residual magnetic field in the electron drift region wa
mG.

4. DISCUSSION

Three-photon ionization of the Ba atoms was realiz
according to the following scheme:18

Ba@6s2~1S0!# ——→
2v~581.9 nm!

Ba* @6p2~1S0!#,

Ba* @6p2~1S0!# ——→
v~581.9 nm!

Ba* @6p8s~3P1!#,

Ba* @6p8s~3P1!#→FBa16s~2S1/2!

e2@«p1/2,3/2#
. ~14!

The energy of the continuum corresponding to three-pho
ionization coincided with the position of the auto-ionize
state 6p8s(3P1).

By rotating the polarization plane of the laser radiati
we measured the distribution of the photoelectrons co
sponding to the 6s state of the ion~see Fig. 1!. By virtue of
the isotropic orientation of the 6p2(1S0), whose choice was
dictated by the experimental capabilities of the setup,
analytical expression for the electron angular distribution
the form ~13!.

For the electrons corresponding to the 6s state of Ba1

we recorded the photoelectron angular distribution for diff
ent Ba atomic densities in the interaction region with t
laser radiation. Expression~13! was used to fit the experi
mental dependence of the electron signal intensity on
rotation angle of the polarization plane of the radiation. T
fit yielded the parameter valueb250.7460.1, which re-
mains within the limits of experimental error up to Ba atom
densities of;5.0310212 cm23.
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The main contribution to the probability of two-photo
excitation comes from the excitation channel with particip
tion of the state that is closest in energy to the virtual lev
In Ref. 5 it was shown that for 2v-excitation of the 6p2(1S0)
state the main contribution to the probability of two-phot
excitation comes from the channel involving the particip
tion of the resonant state 6s6p(1P1), which stands off from
the virtual level of two-photon excitation by 808 cm21. The
next selection-rule-allowed state stands off 13695 cm21 from
the virtual level. Therefore it is possible to limit the sum ov
Ja to the one term corresponding to the 6s6p(1P1) state.

For the case of the intermediate state 6p2(1S0) (J2

50), expression~12! simplifies substantially:K25ke and
the numerical values forK (1,1,j , j 8,1,1,1/2,1,K2 ,K2)
[K ( j , j 8,K2) are nonzero only forK250 and 2~see Table
I!. Comparison with experiment is rendered difficult becau
we have not calculated the Coulomb and dipole matrix e
ments.

5. CONCLUSION

We have considered the problem of the electron ang
distribution in three-photon ionization of Ba atoms. As t
intermediate states we used a discrete state and an

FIG. 1. Form of the dependence of the electron signal intensity on
rotation angle of the polarization plane of the laser radiation~curve 1! 0°
corresponds to collinear arrangement of the axis of the electron spectrom
relative to the polarization vector of the laser radiation. Curve2 is a fit to the
experimental curve using expression~13!.

TABLE I.

j , j 8 K ( j , j 8,0)31 K ( j , j 8,2)3P2(cosu)

1/2, 1/2 21.197 0
1/2, 3/2 0 20.219P2(cosue)
3/2, 3/2 20.423 0.155P2(cosue)
-
l.

-

r

e
-

ar

to-

ionized state. Excitation of an even state with the help o
two-photon process ensures minimal depolarization of
atoms in the intermediate state. This fact is especially imp
tant for the accuracy of the results of the complete quantu
mechanical experiment on photoionization of polariz
atoms,9 which records the angular distribution of the ele
trons. From the point of view of experimental realization th
variant of the setup of the complete experiment is the m
convenient since it does not require determination of the s
state of the photoelectrons, which is a complicated exp
mental task. We hope that the method proposed here
decreasing the influence of depolarization of the atoms in
intermediate state on the recording of the photoelectron
gular distribution will be of interest to experimentalists.
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Interaction of radiation and a relativistic electron in motion in a constant magnetic field
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This paper examines the effect of multiple photon emission on the quantum mechanical state of
an electron emitting synchrotron radiation and on the intensity of that radiation. Calculations
are done with a variant of perturbation theory based on the use of extended coherent states. A
general formula is derived for the number of emitted photons, which allows taking into
account their mutual interaction. A model problem is used to demonstrate the absence of the
infrared catastrophe in the modified perturbation theory. Finally, the electron density matrix is
calculated, and the analysis of this matrix makes it possible to conclude that the degree of
the electron’s spatial localization increases with the passage of time if the electron is being
accelerated. ©1998 American Institute of Physics.@S1063-7761~98!00703-3#
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1. INTRODUCTION

The effect of radiation on the paths of charged partic
in a synchrotron has already been analyzed~see, e.g., Ref. 1
and the literature cited therein!. The analysis is based on th
classical Lorentz–Dirac equation or on the solution of a
netic equation whose coefficients are the probabilities
quantum transitions between various stationary states o
electron moving in the magnetic field of the synchrotro
Calculations have shown that in the absence of focusin
the magnetic field there is an increase in the radial fluct
tions of the electron path and an increase in longitudi
fluctuations of the electron’s momentum with the passage
time. In a focusing magnetic field, in the initial stages
electron acceleration, the presence of radiation leads to
diative damping, which damps radial and vertical oscillatio
~the so-called radiative damping effect!. Lately, research ha
focused on the analysis of equations of the Lorentz–D
type in problems not necessarily related to synchrotron
diation ~see, e.g., Refs. 2–4!. New solutions of Lorentz–
Dirac equations have been found for some special cases
additional arguments from quantum electrodynamics are
voked to eliminate nonphysical solutions.

Despite the indisputable value of the results obtained
solving Lorentz–Dirac equations, it must be noted that so
important properties of the states of a particle emitting rad
tion, properties that are not directly related to the path and
not directly influence the above effects—like an increase
radial fluctuations of the path—are excluded from these
sults. This is true, in particular, of the evolution of the pa
ticle’s wave packet, which affects the radiation and hence
radiative friction and the path.

The present paper is an attempt to use a modi
perturbation-theory approach to examine the effect of m
tiple photon emission on the evolution of the wave packe
a particle, in particular when the particle emits synchrotr
radiation. Most papers devoted to the quantum mechan
theory of synchrotron radiation ignore this aspect. It is u
ally assumed that the particle emitting radiation has a w
4591063-7761/98/86(3)/13/$15.00
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function given by the solution of the Dirac equation. How
ever, if the emitted radiation is taken into account, the p
ticle is only a part of the quantum mechanical system and
state cannot be described with the completeness that is
sible in principle in quantum theory.

A common approach to describing the states of partic
that are members of a large system is to use the concep
the density matrix. This paper demonstrates that the ev
tion of the density matrix suggests that a particle goes w
the passage of time into states that are more and more lo
ized, with the particle motion described by the laws of cla
sical mechanics with ever-increasing accuracy. Thus we h
additional support for the validity of using the Lorentz
Dirac equation along with a clearer understanding of the
completeness of the physical picture described by this eq
tion.

The problem of the structure of the wave packets
emitting particles is related to the classical model of a d
tributed electron studied by Lorentz~see, e.g., Ref. 5!. In
quantum electrodynamics this model leads to the well-kno
problem of ultraviolet divergence, encountered in the cal
lations of the mass, charge, and energy of an elemen
particle. Furthermore, the renormalization of charge in qu
tum electrodynamics reveals the internal inconsistency of
traditional Feynman formulation of perturbation theory~see,
e.g., Ref. 6!. It would be useful to follow the changes in th
difficulties encountered by classical electrodynamics in
ated by changes in the perturbation theory, to establish wh
of the above problems is invariant, so to say. It might tu
out that in the modified theory some of these problems
be resolved without resorting to additional hypotheses. T
might then lead to a new direction in the development
quantum electrodynamics and the theory of quantized fie
in general. The present paper uses a model to show th
least in relation to the infrared catastrophe, the adop
modification in the theory does not lead to problems char
teristic of the traditional form of the theory. Calculations a
based on a general formula that describes the mutual in
action of the emitted photons as a manifestation of the n
© 1998 American Institute of Physics
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linearity inherent in quantum electrodynamics.

2. EMISSION OF PHOTONS BY A CLASSICAL CHARGED
PARTICLE

We write the Hamiltonian describing the interaction o
free electromagnetic field and a particle carrying an elec
chargeZ ~here we use atomic units:\51 andueu51!:

Ĥ int52
1

c E j–Â dV, ~1!

where the current density vectorj is a function of coordinates
and time. The vector potential operator is specified in
three-dimensional transverse gauge,

Â5(
a,q

gq$ f̂ aqeaqe
iq–r1 f̂ aq

† eaq* e2 iq–r%, ~2!

as a standard linear form in the creation and annihilat
operators~ f̂ aq

† and f̂ aq! for photons in states with polariza
tion a (a51,2), momentumq, and energyv5cq. The po-
larization vectorseaq have unit length and are orthogonal
q. The coupling constantsgq5(2pc2/vV)1/2 contain the
normalization volumeV, which does not enter into the fina
expressions and thus can be put equal to unity.

The total Hamiltonian is the sum of the free-phot
Hamiltonian

Ĥ05(
a,q

v f̂ aq
† f̂ aq1const

and the Hamiltonian~1!. We pass to the interaction pictur
for field operators; for example,

Â~ t !5eiĤ 0tÂe2 iĤ 0t.

The equation describing the evolution of the state vecto
the photon field,ut) in the interaction picture,

i
d

dt
ut)5Ĥ int~ t !ut), ~3!

has in the given case an exact solution in the form of
direct product of vectors of photon coherent states,

ut)5)
a,q

exp@2 ixaq2 f̂ aqQaq* 1 f̂ aq
† Qaq#ut0), ~4!

where the initial state vector coincides, to within an arbitra
phase factor, with the vacuum state of the photon field:

ut0)5eif0uvac), f05const,

Qaq~ t !5 i
gq

c E
t0

t

dt8eaq* –j q~ t8!eivt8,

xaq~ t !5E
t0

t

Im@Qaq~ t8!Q̇aq* ~ t8!#dt8,

and j q(t) is the Fourier transform of the current density.
Using the exact solution~4!, we can calculate all quan

tities of interest. For instance, the mean number of phot
created by timet is given by

naq
~0!~ t !5uQaq~ t !u2. ~5!
ic

a

n

f

e

y

s

Note that this formula yields the mean number of emitt
photons only ast→`, since creation of a photon requires
time intervalc/q long, which tends to infinity asq→0. In
what follows we use this interpretation ofnaq .

Suppose that photons are emitted by a point particle
rying electric chargeZ and moving along a pathr5r0(t).
Then

j q~ t !5Zv0~ t !exp@2 iq–r0~ t !#,

where v0(t)5 ṙ0(t). After summing over polarizations we
can reduce the time derivative of the number of photons~as
t0→`! to the form

d

dt (
a51,2

naq
~0!~ t !5

Z2

c2 gq
2E

2`

`

dtFv0S t2
utu
2

1
t

2D
3v0S t2

utu
2

2
t

2D2
1

q2 S q–v0S t2
utu
2

1
t

2D D S q–v0S t2
utu
2

2
t

2D D G
3expH ivt2 iq–F r0S t2

utu
2

1
t

2D
2r0S t2

utu
2

2
t

2D G J . ~6!

Applying this equation to the case of synchrotron rad
tion, we obtain

d

dt (
a

naq
~0!5Z2

v0
2

c2 gq
2E

2`

`

dtFcosv0t2
1

2
cos2 Q

3~cosv0t1cos~~2t2utu!v0!!G
3expH ivt22iqR cosQ sin

v0t

2

3cosS v0S t2
utu
2 D D J , ~7!

wherev05eH0 /gmc, v05Rv0 , H0 is the magnetic field
strength,R is the orbit’s radius,m is the particle mass, andg
is the Lorentz factor. The angleQ is the inclination of the
vectorq relative to the orbital plane.

The expression~7! is periodic in time, with periodT0

52p/v0 . Averaging over one period, we obtain

d

dt (
a

naq
~0!5Z2

v0
2

c2 gq
2E

2`

`

dt eivtF1

2
cos2 QJ2

3S 2qR cosQ sin
v0t

2 D1cosv0t

3S 12
1

2
cos2 Q D J0S 2qR cosQ sin

v0t

2 D G .
~8!

Next, we allow for the fact that for any periodic functio
F(t),



su

ll-
n

th
ro

s
th
um

th
o

rged
r
i-
ore
ia-

ia-
en-
rm

al-
-
ena

ns.

n

rs

s

of

o-

tor
on-

461JETP 86 (3), March 1998 G. M. Filippov
E
2`

`

e2 ivtF~t!dt5 (
n52`

`

einvT0E
0

T0
eivtF~t!dt, ~9!

where the sum of exponentials can be transformed into a
of delta functions:

(
n52`

`

einvT05
2p

T0
(

n852`

`

d~v2n8v0!.

Combining this with~9!, we can transform~8! to the follow-
ing form:

d

dt (
a

naq
~0!5Z2

v0
2

c2 gq
2(

n50

`
1

p E
0

p

dx e2inxH cos 2xJ0

3~2qR cosQ sin x!S 12
1

2
cos2 Q D

1
1

2
cos2 QJ2~2qR cosQ sin x!J

32pd~v2nv0!. ~10!

Sincev5cq.0, the sum in~10! goes from 0 tò .
Next we have7

E
0

p

e2imxJ2n~2a sin x!dx5peipmJn2m~a!Jn1m~a!,

and the recurrence formulas

Jn11~z!1Jn21~z!5
2n

z
Jn~z!,

Jn21~z!5
n

z
Jn~z!1Jn8~z!,

Jn11~z!5
n

z
Jn~z!2Jn8~z!.

As a result, Eq.~10! becomes

d

dt (
a

naq
~0!5Z2gq

2 (
n50

`

2pd~v2nv0!

3F tan2 QJnS nv
c

cosQ D
1

v0
2

c2 Jn8
2S nv

c
cosQ D G . ~11!

Equation~11! can be used, in particular, to obtain the we
known Schott formula. Thus, for the mean intensity of sy
chrotron radiation the semiclassical theory yields results
coincide with classical results. The semiclassical theory p
vides additional information~in comparison to that provided
by classical electrodynamics! only in the sense that it make
it possible to calculate the fluctuation in the number of
emitted photons, their mean energy, and total moment
Similar results can be obtained for the case in which
charged particle moves along an arbitrary path.8 In all cases
we arrive at classical formulas for the mean intensity of
radiation emitted by the particle. Moreover, calculations
m

-
at
-

e
.

a

e
f

the mean electromagnetic field that accompanies a cha
particle movingin vacuolead to well-known expressions fo
the retarded potentials.9 This agreement between the sem
classical and classical theories forms the basis for a m
accurate quantum mechanical theory of interaction of rad
tion and an emitting particle.

3. QUANTUM MECHANICAL THEORY

We consider the interaction of an electron and the rad
tion emitted by that electron. We pass to the Furry repres
tation and write the wave operator of the electron in the fo
of an expansion in the stationary states of type~A2! ~see the
Appendix!:

ĉ5(
j

d̂jcj ,

where we have excluded the antiparticle operators, since
lowing for the contribution of particle–antiparticle interme
diate states leads only to small corrections to the phenom
considered. The creation and annihilation operators,d̂j

† and
d̂j , must obey the standard Fermi commutation relatio
The current density operator is approximately~without al-
lowing for electron–positron pair contributions! given by

ĵ a~ t !5cĉ†aaĉ5c(
j,j8

d̂j
†d̂j8cj* ~r !aacj8~r !ei ~Ej2Ej8!t

~12!

~from now ona,b51,2,3 label the projections of vectors o
the Cartesian coordinate axes!.

We construct the operator

ĵ q
~0!~ t !5Zṙ0~q,t !e2 iq–r0~q,t !r̂q

~0! , ~13!

wherer0(q,t) is a vector~which needs to be determined! that
depends on the momentum transferq and timet, andr̂q

(0) is
the ‘‘zeroth’’ density operator at timet50:

r̂q
~0!5(

k,s
d̂ks

† d̂k1q,s .

Hered̂ks
† andd̂ks are the creation and annihilation operato

for an electron in a state with momentumk and a projection
of the electron spin on thez axis that takes the value
s561/2. Note that the operator~13! is selected in a form
that satisfies the energy conservation law.

We require that the running mean Fourier transform
the operator~12! coincide with the expectation value of~13!:

~ tu ĵ q~ t !ut !5 ṙ0~q,t !e2 iq–r0~q,t !~ tur̂q
~0!ut !. ~14!

Then r0(q,t) must be approximately equal to the mean p
sition of the particle at timet. We define the deviation of the
current from the ‘‘zeroth’’ value to be

D ĵ q~ t !5 ĵ q~ t !2 ĵ q
~0!~ t !.

This deviation will be used to build the interaction opera
in the new representation. The above transformation is c
venient because the operators~13! commute at different
times:
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@ ĵ q
~0!a~ t !, ĵ q8

~0!b
~ t8!#50. ~15!

Using ~13!, we write the electromagnetic interaction o
erator as a sum of two terms,Ĥ int(t)5Ĥ int

(0)(t)1Ĥ int
(1)(t),

where

Ĥ int
~0!~ t !52

1

c E ĵ ~0!~ t !–Â~ t !dV, ~16!

Ĥ int
~1!~ t !52

1

c E D ĵ ~ t !–Â~ t !dV. ~17!

Then, by virtue of~15!, the equation

i
d

dt
ut)5Ĥ int

~0!~ t !ut) ~18!

has an exact solution in the form of a direct product of
vectors of extended~or modified, in the terminology of Ref
10! coherent states,

ut)5)
a,q

exp~2 i x̂aq2 f̂ aqQ̂aq
† 1 f̂ aq

† Q̂aq!u0), ~19!

where~at t050!

Q̂aq~ t !5 i
gq

c E
0

t

dt8eaq* –ĵ q
~0!~ t8!eivt8, ~20!

x̂aq~ t !52
i

2 E
0

t

$Q̇
ˆ

aq
† ~ t8!Q̂aq~ t8!2Q̂aq

† ~ t8!Q6 aq~ t8!%dt8.

~21!

The initial state vectoru0! is the direct product of the vacuum
state of the electromagnetic field,uvac!, and the vector of the
initial state of the moving particle,uf!, described by the
wave functionf~r !, i.e., u0)5uf,vac).

We have chosent0 to be zero rather than2` due to the
fact that, as further calculations show, the temporal seque
of changes in the state of a moving particle that intera
with the field of the radiation it emits is highly important. I
this approach there are sure to be problems associated
the interaction turning on, which violates the charge cons
vation, and with the generation of virtual radiation, which
the consequence of such violation. To avoid the need to
card fictitious terms, one can resort to turning the interact
on slowly by replacing the constantZ with a slowly increas-
ing chargeZ(12eet), wheree is small. The charge buildup
time t in5e21 must be long compared tov21, but short
compared to the observation time~here t must be much
longer thanv21!. After we establish a method for evaluatin
the integrals for some definite value ofq, we can extend it to
any other value ofq.

If we ignore the corrections generated byĤ int
(1) , Eq. ~19!

fully solves the problem of calculating the physical quan
ties of interest. In particular, instead of~5! we have

naq~ t !5~ tu f̂ aq
† ~ t ! f̂ aq~ t !ut !,

which atr0(q,t)5r0(t) leads to a result coinciding with~5!.
Thus, if we ignoreĤ int

(1) , the current variant of the quantum
mechanical theory differs from the semiclassical one in c
e

ce
ts

ith
r-

s-
n

-

l-

culations of the mean number of the emitted photons or
energy of these photons only whenr0(q,t) differs from
r0(t).

At the same time, corrections due toĤ int
(1) can be ob-

tained for any convenient choice of the vectorsr0(q,t). Let
us put r0(q,t)5r0(t). Then Q̂aq(t)5Qaq(t) r̂q , where
Qaq(t) is specified by its semiclassical expression

Qaq~ t !5 i
Z

c
gqE

0

t

dt8eaq* –v0~ t8!exp$ ivt82 iqr0~ t8!%.

~22!

To construct a new ‘‘modified’’ perturbation theory inĤ int
(1) ,

we introduce the zero-order evolution operator

Û0~ t !5expH(
a,q

Q̂aq~ t ! f̂ aq
† 2Q̂aq

† ~ t ! f̂ aq2 i x̂aq~ t !J .

Then ~19! can be written asut)5Û0(t)u0). We also intro-
duce a new representation of operators:

Ã~ t !5Û0
†~ t !Â~ t !Û0~ t !. ~23!

The state vectorut& in this representation obeys the equati

i
d

dt
ut&5H̃ int

~1!~ t !ut&. ~24!

Allowing for ~24!, we can reduce the expression for th
mean number of photons to

naq~ t !5naq
~0!~ t !1 (

n51

`

~2 i !nE
0

t

dt1E
0

t1
dt2¯E

0

tn21
dtn

3^0u@¯@@ f̃ aq
† ~ t ! f̃ aq~ t !,H̃ int

~1!~ t1!#,

H̃ int
~1!~ t2!#,...,H̃ int

~1!~ tn!#u0&. ~25!

4. CALCULATING CORRECTIONS IN THE MODIFIED
THEORY

Writing the series in Eq.~25! explicitly, we find that the
expansion contains terms proportional to even powers oZ.
We collect the leading terms of this type, which containZ2

as a pre-exponential factor. Such terms exist innaq
(0)(t) and in

the first and second terms of the series~25!. Note that hereZ
is also contained in the exponents entering intoÛ0 andÛ0

† .
We calculate the first commutator in~25! via the following
auxiliary formulas:

f̃ aq~ t !5~ f̂ aq1Q̂aq~ t !!e2 ivt,

f̃ aq
† ~ t !5~ f̂ aq

† 1Q̂aq
† ~ t !!e2 ivt,

@ f̂ aq ,Û0~ t !#5Û0~ t !Q̂aq~ t !,

@ f̂ aq
† ,Û0

†~ t !#52Û0
†~ t !Q̂aq

† ~ t !,

@ f̂ aq
† ,Û0~ t !#5Û0~ t !Q̂aq

† ~ t !,

@ f̂ aq ,Û0
†~ t !#52Û0

†~ t !Q̂aq~ t !. ~26!

We put
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B̂aq~ t !5eaq–D ĵ2q~ t !,

so that

Ĥ int
~1!~ t !52

Z

c (
a,q

gq~ f̂ aqB̂aq~ t !e2 ivt1 f̂ aq
† B̂aq

† ~ t !eivt!.

~27!

Using ~26!, we can perform the following transformation:

@ f̃ aq
† ~ t ! f̃ aq~ t !,H̃ int

~1!~ t !#

5Û0
†~ t1!@~ f̂ aq

† 1Q̂aq
† ~ t,t1!!~ f̂ aq1Q̂aq~ t,t1!!,

Ĥ int
~1!~ t1!#Û0~ t1!, ~28!

where Q̂aq(t,t1)5Q̂aq(t)2Q̂aq(t1). Since the operators
Q̂aq(t) already containZ as a factor, the leading term
emerge as a result of the commutation of the photon op
tors andĤ int

(1) :

@ f̃ aq
† ~ t ! f̃ aq~ t !,H̃ int

~1!~ t1!#

'
Z

c
gqÛ0

†~ t1!~e2 ivt1B̂aq~ t1!~ f̂ aq1Q̂aq~ t,t1!!

2eivt1~ f̂ aq
† 1Q̂aq

† ~ t,t1!!B̂aq
† ~ t1!!Û0~ t1!. ~29!

If we average~29! over the initial state of the system b
employing the equalities

f̂ aqÛ0~ t1!u0)5Q̂aq~ t1!Û0~ t1!u0),

~0uÛ0
†~ t1! f̂ aq

† 5~0uÛ0
†~ t1!Q̂aq

† ~ t1!,

we get

~0u@ f̃ aq
† ~ t ! f̃ aq~ t !,H̃ int

~1!~ t1!#u0!5
Z

c
gq~0uŨ0

†~ t1!

3$B̂aq~ t1!Q̂aq~ t !e2 ivt1

2eivt1Q̂aq
† ~ t !B̂aq

† ~ t1!%Û0~ t1!u0!. ~30!

In calculating the next correction in~25! we immediately
discard terms that contain pre-exponential factors withZ
raised to a power greater than two. This means that when
plug such terms into the second and subsequent terms o
sum in ~25! into the expression for the first-order commut
tor, we can immediately discard terms containing the ope
torsQ̂aq andQ̂aq

† . In the resulting expressions, the operato
f̂ aq and f̂ aq

† can be freely interchanged with the operatorsÛ0

and Û0
† , since their commutators contain higher-order c

rections inZ, which we have just discarded.
In view of this, all terms in which the annihilation op

eratorsf̂ aq are to the right of otherf̂ -operators, or in which
the creation operatorsf̂ aq

† are to the left of otherf̂ -operators,
must be dropped. In the remaining terms the operator p
ucts f̂ aq f̂ a/q8

† must be replaced by the commutato
daa8D(q2q8). By performing these transformations we r
duce the leading terms that appear when we write the do
commutator on the right-hand side of Eq.~25! explicitly to
the form
a-

e
the

a-
s

-

d-

le

2
Z2

c2 gq
2~Û0

†~ t1!e2 iv~ t12t2!B̂aq~ t1!Û0~ t1!

3Û0
†~ t2!B̂aq

† ~ t2!Û0~ t2!1Û0
†~ t2!B̂aq~ t2!Û0~ t2!Û0

†~ t1!

3B̂aq
† ~ t1!Û0~ t1!eiv~ t12t2!!. ~31!

Collecting all terms of the specified order, we get

naq~ t !5uQaq~ t !u22 i
Z

c
gqE

0

t

dt1~0uÛ0
†~ t1!

3$e2 ivt1B̂aq~ t1!Q̂aq~ t !

2eivt1Q̂aq
† ~ t !B̂aq

† ~ t1!%Û0~ t1!u0!

1
Z2

c2 gq
2E

0

t

dt1E
0

t1
dt2~0uÛ0

†~ t1!

3$e2 iv~ t12t2!B̂aq~ t1!Û0~ t1!Û0
†~ t2!B̂aq

† ~ t2!

3Û0~ t2!1Û0
†~ t2!B̂aq

† ~ t2!Û0~ t2!Û0
†~ t1!

3eiv~ t12t2!B̂aq~ t1!%Û0~ t1!u0!. ~32!

If we now write all the terms in~32! that appear because o
plugging the explicit expressions forB̂aq(t) into ~32!, collect
like terms, and do the necessary canceling, we arrive at
final result:

naq~ t !5
Z2

c2 gq
2E

0

t

dt1E
0

t

dt2~0uÛ0
†~ t1!

3~eaq–ĵ q
†~ t1!!Û0~ t1!Û0

†~ t2!

3~eaq* –ĵ q~ t2!!Û0~ t2!u0!e2 iv~ t12t2!. ~33!

Note that in deriving~33!, we did not take advantage of th
fact thatr0(q,t) is independent ofq, with the result that the
formula still holds in the general case, in whichr0(t) is
replaced byr0(q,t) in ~22!.

5. NUMBER OF PHOTONS

We assume that in the expansion of the initial state v
tor of the particle,u0!, the expansion coefficientsCki

in states
with definite momentumuk i) have a peak atk0, and decrease
ask i deviates fromk0 , by the Gauss law

Cki
5~2pd'

2 !1/2~2pd l
2!1/4expF2

pi
2d l

2

4

2
~k i'2k0'!2d'

2

4 G ,
wherek5(k' ,pi), k0' is time-dependent, andd' andd l are
the transverse and longitudinal packet widths~relative to the
z axis!. This representation follows from the study of ele
tron states in a magnetic field in the Appendix. For relat
istic electrons, the momentum uncertainty in the initial st
is much less than the momentum proper. In real calculati
of the numbers of emitted photons via~33!, it is preferable to
represent the current operators as expansions in states
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definite momentum at a given moment in time, with a tim
dependence characteristic of plane waves. In the presen
per, this approximation is justified by the fact that due to
strong effect of the radiation on the particle’s state in
comoving reference frame, an effect exceeding the one
duced by the external field, we can ignore the quantizatio
levels in the time dependence of the operators. Indeed, e
the classical theory of synchrotron radiation predicts that
mean energy of the photons emitted by a particle is m
greater thanv0 . In view of this, the mean difference in pa
ticle energies before and after photon emission proves to
much greater than the separation between the levels of tr
verse motion. Under these conditions, allowance for le
quantization in the time dependence of the operator can
lead to small corrections of order 1/n̄ ~where n̄;g3 is the
mean ratio of the frequency of the emitted photon tov0!.

As a result of the action of electron operators, the v
torsk andk1 in the current operators in~33! are transformed
into the vectorsk i2Dq, whereDq5(sqs , with q1 ,q2 ,...
the momenta of the emitted photons. Replacing the gi
expression withk i(t)5k i2Dk(t), whereDk(t) is the mean
momentum lost by the particle by timet, and plugging it into
all the cofactors in~33! that are not in the exponential, w
get

naq~ t !5
Z2

c2 gq
2E

0

t

dt1E
0

t

dt2e2 iv~ t12t2!

3 (
ki ,s8

uCki
u2~eaq–vis8

* ~q,t1!!

3~eaq* –vis8~q,t2!!~vac;k i ,suÛ0
†~ t1!r̂q

†~ t1!

3Û0~ t1!Û0
†~ t2!r̂q~ t2!Û0~ t2!uk i ,s;vac!, ~34!

where

r̂q~ t !5 (
k,s,s8

d̂k2q,s8
† d̂k,s exp$ i ~«k2q2«k!t%,

v is8
a

~q,t !5
c2

2A« i« i8
ws8

* FA« i81mc2

« i1mc2 sasbki
b~ t !

1A« i1mc2

« i81mc2 sb~ki
b~ t !2qb!saGws ,

with « i5«ki (t)
, « i85«ki (t)2q , and summation over repeate

indices is implied. The term corresponding tos8Þs de-
scribes emission processes accompanied by electron
flip.

Further simplification is possible if the exponents in t
density operators in~34! are transformed according to

«k2q2«k'(
s

m~q,qs8!. ~35!

wherem(q,qs8) are unspecified functions. In this approac
different photons are assumed to be almost independ
since otherwise we would have to speak of a strong corr
tion between the emission of two separate photons, wh
pa-
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agrees neither with the semiclassical theory nor with the
culations below. In an approximation that is linear inDq, for
q!ki we have

m i~q,qs8!'~¹«ki2q2¹«ki
!qs8'2

q–qs8

mg i
, ~36!

whereg i5«ki
/mc2. As qs8→`, the functionm(q,qs8) ceases

to depend onqs8 .
Using the methods of calculating means employed

Ref. 9, we get

naq~ t !5E
0

t

dt1E
0

t

dt2 (
ki ,s8

uCki
u2Q̇iaq* ~ t1 ,s8!Q̇iaq~ t2 ,s8!

3exp@2Piq~ t1 ,t2!#, ~37!

where

Qiaq~ t,s8!5 i
Z

c
gqE

0

t

dt8eaq* –vis8~q,t8!

3exp@ ivt82 iq–r is8~q,t8!#,

with ṙ is8(q,t)5vis8(q,t). The exponent in~37! is given by

Piq~ t1 ,t2!5 (
b,q8,s8

@ uQibq8~ t1 ,s8!u2

3~12exp@2 im i~q,q8!t1# !

1uQibq8~ t2 ,s8!u2~12exp@ im i~q,q8!t2# !

2Qibq8
* ~ t1 ,s8!Qibq8~ t2 ,s8!

3~12exp@2 im i~q,q8!t1# !

3~12exp@ im i~q,q8!t2# !#. ~38!

Obviously,

Piq* ~ t1 ,t2!5Piq~ t2 ,t1!,

lim
q→0

Piq~ t1 ,t2!→0,

lim
t1→t2

Piq~ t1 ,t2!→0.

Equation~37! contains the desired corrections to the sem
classical expression for the number of emitted photons
assumes its semiclassical form foruPiq(t1 ,t2)u!1. From a
physical standpoint, this difference between the formula
due to the fact that in~37! we allow for interaction of the
emitted photons, while in the semiclassical theory this fac
is ignored. The probability distribution for the number
emitted photons in each state does not obey the Poisson
any longer, which a reflection of the nonlinearity of electr
magnetic phenomena in the quantum theory.

Obviously, an equation like~37! can be used to study
arbitrary motion of a particle, not just an electron in a sy
chrotron. To do so, we merely redefine the quantit
vis8(q,t), which in the simplest case can be approximat
calculated for the mean of the vectork i and averaged ove
spin ~in this case, the velocitiesv(q,t) and the function~38!
no longer depend on the indicesi ands8!.
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Let us estimatePq for the case in which the velocity
v(q,t) is constant and equal tov0 :

Qaq~ t !5
Z

c
gq

eaq* –v0

v2q–v0
ei ~v2q–v0!t.

Plugging this into~38!, we obtain an expression that is log
rithmically divergent, due to the slow decrease in the in
grands asq8→`. This fact is the manifestation of ultraviole
divergence, often encountered in electrodynamics. In c
trast to Feynman’s perturbation theory, ultraviolet dive
gence does not lead to a catastrophe: it only means tha~in
contrast to the predictions of the semiclassical theory! a uni-
formly moving particle is not accompanied by transve
photons. This example is a clear demonstration of the dep
dence of the way in which the ultraviolet divergence depe
on the perturbation theory employed. A detailed study of t
problem lies outside the scope of the present paper, w
we use the standard method of introducing a cutoff mom
tum qc;mc to remove the ultraviolet singularity. The resu
ing expression for the absolute value of the function~38!
proves to be small and varies very slowly~logarithmically!
with t1 and t2 . An explicit estimate of the function~38! for
v(q,t) constant will be made in Sec. 6.

6. INFRARED ASYMPTOTIC BEHAVIOR OF THE NUMBER
OF PHOTONS

Let us discuss the asymptotic behavior of the funct
~37! as v5qc→0. In classical electrodynamics~see, e.g.,
Ref. 11! and in the semiclassical theory there is a charac
istic frequency dependence ofnaq as v→0, namely,naq
}1/v3. Hence, upon integration with respect to momen
the total number of emitted photons diverges logarithmica
at the lower limit. Will allowing for the effect of emission o
the state of the emitting particle~as in Eq.~37!! influence
this pattern? To answer this question, we examine a mo
problem in which a charged particle moves at constant
locity v1 and, colliding at timet3.0 with a point scatterer
suddenly changes its own velocity by a small quantityDv
5v22v1 , uDvu!v1 , and then proceeds to move at consta
velocity v2 . The requirement that this jump in velocity b
small simplifies all calculations considerably. Moreov
since a jump in velocity implies infinite acceleration, vario
nonphysical effects are to be expected. The requirement
the velocity jump be small makes the velocity almost a c
tinuous function, so that such effects can be ignored. W
Eq. ~37! is employed in calculations, there is the problem
the interaction suddenly turning on at the initial moment
time, which violates energy conservation, and of genera
of fictitious radiation, which is the consequence of such v
lation. To avoid the need to discard fictitious terms, one
use the procedure developed in Sec. 3 to turn the interac
on slowly.

Since the particle is assumed to have a definite veloc
we drop the subscripti in ~38! and replace the vectorsvis

with the current value of the velocity. We calculate the
sulting functionsPq(t1 ,t2), assuming thatt in!t3!t. To this
end, we first estimate the quantitiesf t1 ,t2

5exp

@6iq–q8t1,2/mg# on the right-hand side of Eq.~38!. Since a
-
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photon is emitted when the particle changes velocity,
consider the neighborhood of the pointt15t3 , t25t3 , as-
suming thatt3;g0m/q2. The vectorq8 is the momentum
transferred from the moving particle to the emitted quanta
electromagnetic field~photons!. The mean value of this mo
mentum is of ordermuDvu, so that atq!muDvu the ratio
q8/q can be large. Thus, the absolute value of the expon
in f (t1 ,t2) in the range of parameters under investigation
large, and the exponentials are rapidly varying functions t
make a negligible contribution to~38!. Eliminating these
contributions from the outset, we reduce~38! to the simpler
form

Pq~ t1 ,t2!5 (
b,q8

@ uQbq8~ t1!u21uQbq8~ t2!u2

2Qbq8
* ~ t1!Qbq8~ t2!~11e2 iq–q8~ t12t2!/mg!#.

~39!

We now calculate the function~39! explicitly for v(q,t)
5v05const. In this case, assuming thatqc is much less than
the mean momentum of the emitting particle, we calcul
the integral with respect toq8 and obtain

Pq~ t1 ,t2!5
Z2

4p2c3 E do8
~n83v0!2

~12n8–v0 /c!2

3$ iSi~v2~ t12t2!!1 iSi~~v21v1!~ t12t2!!

12C̃2Ci~v2ut12t2u!2Ci~ uv21v1uut12t2u!

1 ln~v2uv21v1u~ t12t2!2!%, ~40!

where n85q8/q8, v15qcn8–q/mg, v25(c2n8–v0)qc ,
Si~j! and Ci~j! are the sine and cosine integrals, andC̃
50.5772... is Euler’s constant. The function~40! vanishes at
t15t2 and slowly increases with the time differenceDt
5ut12t2u. In the nonrelativistic limit at largeDt@1/cqc ,
the function~40! can be approximated by the expression

Pq~ t1 ,t2!'
2Z2v0

2

3pc3 @ ip sgn~ t12t2!

12~C̃1 ln~cqc!1 lnut12t2u!#. ~41!

We remark on the smallness of the coefficient of t
expression in square brackets. AsDt increases, the real par
of ~41! increases logarithmically, but the characteris
buildup time proves to be exponentially large, so that
function ~41! can be considered small over the entire ran
of its arguments.

Now let us estimate the number of photons emitted
the electron in the entire course of its motion for the nonr
ativistic case. Integrating by parts, we find, for instance, t

naq~ t !52 i
Z2

c2 gq
2E

0

t

dt1eaq–v~ t1!e2 ivt11 iq–r ~ t1!

3F eaq* –v~ t2!

v2q–v~ t !1 i ]P ~ t ,t !/]t
2 q 1 2 2
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3exp$ ivt22 iq–r ~ t2!2Pq~ t1 ,t2!%U
t250

t25t

2E
0

t

dt2 exp$ ivt22 iq–r ~ t2!2Pq~ t1 ,t2!%

3
]

]t2
S eaq* –v~ t2!

v2q–v~ t2!1 i ]Pq~ t1 ,t2!/]t2
D G .

Allowance for the value of the first term inside the squa
brackets at the lower limit is unjustified because of the v
lation of charge conservation att50. If we turn the interac-
tion on slowly, then this contribution is zero. First we int
grate by parts with respect tot1 , using the same ideas tha
we used in integrating with respect tot2 . We obtain

naq~ t !'
Z2

c2 gq
2U eaq–v2

v2q–v21 i ]Pq~ t,t2!/]t2
U

t25t
U2

1
Z2

c2 gq
2E

0

t

dt2E
0

t

dt1 exp$ iv~ t22t1!

1 iq–~r ~ t1!2r ~ t2!!2Pq~ t1 ,t2!%
]

]t1

3F eaq–v~ t1!

v2q–v~ t1!2 i ]Pq /]t1

3
]

]t2
S eaq* –v~ t2!

v2q–v~ t2!1 i ]Pq /]t2
D G , ~42!

where we have discarded the rapidly oscillating terms, wh
contribute nothing to the overall expression for the num
of emitted photons. The first term on the right-hand side
Eq. ~42! corresponds to the part of the transverse field t
follows the moving particle, and is related neither to chan
in the particle’s velocity nor to the radiation. Hence in a
calculations of the characteristics of the radiation that follo
we allow only for the second~integral! term.

In calculating the time derivatives in~42! we encounter
continuous and delta-functions terms, with the latter bein
reflection of the discontinuity in velocity, the derivativesQ̇aq

and Ṗq . For instance,

]

]t2
S eaq* –v~ t2!

v2q–v~ t2!1 i ]Pq~ t1 ,t2!/]t2
D

5 iu~ t32t2!
]2Pq~ t1 ,t2!

]t2
2

eaq* –v1

~v2q–v11 i ]Pq~ t1 ,t2!/]t2!2

1 iu~ t22t3!
]2Pq~ t1 ,t2!

]t2
2

3
eaq* –v2

~v2q–v21 i ]Pq~ t1 ,t2!/]t2!2

1d~ t22t3!F eaq* –v2

v2q–v21 i ]Pq~ t1 ,t2!/]t2
U

t25t310
-

h
r
f
t
s

,

a

2
eaq* –v1

v2q–v11 i ]Pq~ t1 ,t2!/]t2
U

t25t320
G . ~43!

Hereu~j! is the Heaviside step function.
The relationship between the continuous and de

function terms in~43! can be evaluated as follows. The tot
contribution of theu-functions can again be calculated b
parts, which again results in a delta-function contributi
multiplied by the magnitude of the discontinuity of the int
grand att25t3 . This jump includes the second derivative
Pq as a factor whose order of magnitude can be estimate
be the product of the first derivative and the mean value
the frequency of the emitted photon. The latter cannot
ceed the energy lost by the moving particle, and it is the
fore proportional to the small parameterl5v1–Dv/v1

2.
Clearly, allowing for the continuous terms in~43! would
mean allowing for the next terms in the series expansion
the integrals inl. The leading term is still the contribution o
the delta function, the only contribution we consider.

Using the condition that the interaction is turned
slowly, we find that

Qaq~ t !5
Z

c
gq

eaq* –v1

v2q–v1
ei ~v2q–v1!t, t in!t<t3 .

For t3,t the result is different:

Qaq~ t !5
Z

c
gqF S eaq* –v1

v2q–v1
2

eaq* –v2

v2q–v2
Dei ~v2q–v1!t3

1
eaq* –v2

v2q–v2
ei ~v2q–v2!tG .

For t in!t2<t3 we have

]Pq~ t1 ,t2!

]t2
52 i (

b,q8
Qbq8

* ~ t1!

3FZ

c
gq8~ebq8

*
–v1!ei ~v2q–v1!t2

3S 11expH 2
iq–q8~ t12t2!

mg J D
1

q–q8

mg
Qbq8~ t2!expH 2

iq–q8~ t12t2!

mg J G .
Finally, for t2.t3 we have

]Pq~ t1 ,t2!

]t2
5 (

b,q8
F22

Z2

c2 gq8
2 sinH ~v82q8–v2!

t22t3

2 J
3~ebq8

*
–v2!S ebq8–v1

v82q8–v1
2

ebq8–v2

v82q8–v2
D

2 i
q–q8

mg
Qbq8

* ~ t1!Qbq8~ t2!

3expH 2
iq–q8~ t12t2!

mg J 2 iQbq8
* ~ t1!

Z

c
gq8

3~ebq8
*

–v2!ei ~v82q8–v2!t2
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3S 11expH 2
iq–q8~ t12t2!

mg J D G .
Note that]Pq(t1 ,t2)/]t2 is continuous int1 .

Let us calculate the delta-function contribution to t
integrals with respect tot2 in ~42!, letting t→`:

naq~`!5
Z2

c2 gq
2E

0

`

dt1 exp@2 iv~ t12t3!1 iq–~r0~ t1!

2r0~ t3!!2Pq~ t1 ,t3!#

3
]

]t1
F eaq–v~ t1!

v2q–v~ t1!2 i ]Pq~ t1 ,t3!/]t1

3S eaq* –v2

v2q–v21 i ]Pq~ t1 ,t2!/]t2
U

t25t310

2
eaq* –v1

v2q–v11 i ]Pq~ t1 ,t2!/]t2
U

t25t320
G .

Now we integrate with respect tot1 , again limiting ourselves
to delta-function contributions. Allowing for the fact tha
Pq(t2 ,t1)5Pq* (t1 ,t2), we obtain

naq~`!5
Z2

c2 gq
2U eaq* –v2

v2q–v21 i ]Pq~ t3 ,t2!/]t2
U

t25t310

2
eaq* –v1

v2q–v11 i ]Pq~ t3 ,t2!/]t2
U

t25t320
U2

. ~44!

This equation solves the problem. If we neglect the deri
tives ofPq in the denominators,~44! coincides with the stan
dard expression for the number of low-frequency photo
emitted in a collision, an expression that can derived in c
sical electrodynamics11 and in quantum electrodynamics
we use standard perturbation theory.6 Let us estimate the
derivatives ofPq in the denominators in~44!. We have

]Pq~ t3 ,t2!

]t2
U

t25t310

522i
Z2

c2

3(
q8

gq8
2 ~q83v1!~q83v2!

q82~v82q8–v1!
1O1~q!,

whereO1(q) is of first order inq. For q small, noting that

]Pq~ t3 ,t2!

]t2
U

t25t320

522i
Z2

c2

3(
q8

gq8
2 ~q83v1!2

q82~v82q8–v1!
1O1~q!,

and thatv2'v1 , we obtain

naq~`!5
Z2

c2 gq
2U eaq–v2

v2q–v21D
2

eaq–v1

v2q–v11DU2

, ~45!

where
-

s
s-

D52
Z2

c2 (
q8

gq8
2 ~q83v1!2

q82~v82q8–v1!
. ~46!

In the nonrelativistic limitv0!c, from ~46! we obtain
D'4Z2v1

2qc/3pc2. Equation~45! does not contain the infra
red singularity. A deviation from thenaq}1/v3 law with
decreasingv begins at an energy of orderD. The lower the
energy of relative motion of the charged particle and po
scatterer, the lower the aforementioned energy. This estim
also holds if the velocity of the particle changes not sudde
but over a time interval that is short compared to the time
production of a low-energy photon.

7. CALCULATING THE DENSITY MATRIX FOR THE CASE
OF SYNCHROTRON RADIATION

We now use the above approach to calculate the den
matrix of an emitting particle. The exact expression for t
density matrix in the representation realized by the trans
mation ~23! has the form

g~x,x8,t !5^tuc̃†~x,t !c̃~x8,t !ut&. ~47!

We calculate~47! in the first approximation, replacing th
vector ut& by the initial state vectoru0&. Using the Baker–
Hausdorff rule with proper transformation of the evolutio
operatorsÛ0(t) and Û0

†(t), and the operatorsQ̂aq(t) in the
form ~20!, we easily find that

g~x,x8,t !5g0~x,x8,t !exp@2S~x2x8,t !#, ~48!

whereg0(x,x8,t)5f* (x,t)f(x8,t) is the value of the den-
sity matrix that does not account for emission and is de
mined by the wave functionf(x,t) of the exactly described
state of an electron in an external magnetic field. The fu
tion S(x2x8,t) in the exponent is given by

S~x2x8,t !5(
q,a

uQaq~ t !u2@12eiq–~x2x8!#, ~49!

which vanishes atx5x8. As ux2xu→`, the function~46!
acquires its maximum value, equal to the total number
photons emitted by the given moment in time.

The mean momentum of the particle can be calculated
follows:

p̄~ t !5p01 i E uf~x,t !u2¹8S~x,x8,t !ux5x8 d3x. ~50!

This means that the gradient¹8S(x,x8,t) determines the rate
of decrease of the mean particle momentum due to emis
of photons. If the initial state was stationary,uf(x,t)u2 does
not depend on time. In this case, the mean force acting on
particle is

Fb5 i E uf0~x,t !u2¹8S~x,x8,t !ux85xd
3x. ~51!

The calculation of the functionS(x,x8,t) for the case of
synchrotron radiation is similar to the calculation of the ph
ton production rate in Sec. 4. Noting thatS actually depends
on the differencer5ux2x8u, we obtain the value ofS aver-
aged over one period:
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S̄~r ,t !5t
Z2

c E
0

p

du sin u (
n51

`

nv0Fcot2uJn
2S nv0

c
sin u D

1
v0

2

c2 Jn8
2S nv0

c
sin u D G S 12J0S r

nv0

c
sin u0 sin u D

3expS ir
nv0

c
cosu0 cosu D D , ~52!

whereu0 is the polar angle of the vectorr with respect to the
axis perpendicular to the orbital plane,r 5ur u. In the ul-
trarelativistic case the following approximate formula
more convenient:

S̄~r ,t !5t
22/3Z2v0

pc E
0

`

d§§1/3E
0

p

du sin uH cot2 u

3Ai2F S §

2D 2/3S 12
v0

2

c2 sin2 u D G1
v0

4

c4

22/3 sin2 u

§2/3

3Ai 82F S §

2D 2/3S 12
v0

2

c2 sin2 u D G J S 12J0S sin u0

3sin ur
§v0

c DexpS i cosu0 cosu r
§v0

c D D , ~53!

where Ai(z) is the Airy function and Ai8(z) is its derivative.
Obviously, the imaginary part of the averaged expression
S given by ~52! and ~53! is zero.

According to Ref. 10, the density matrix~48! describes
an ensemble of pure states~in the sense of von Neumann!,
whose properties are determined by the behavior ofe2S(r ,t).
The expansion of the matrix~48! in the density matrices o
these pure states can be written

g~x,x8,t !5E d3aFa* ~x,t !Fa~x8,t !Na~ t !, ~54!

where Fa are the wave functions of the pure states, a
Na(t)d

3a are the probabilities that these states are realize
the given moment in time. The functionsFa(x,t) are propor-
tional to the products of the wave functionf(x,t) and the
functionsx(x2a,t), wherex(x,t) is the solution of the in-
tegral equation

G~r ,t !5e2S~x2x8,t !5E x* ~x2a,t !x~x82a,t !d3a.

~55!

But what about the existence and uniqueness of the solu
of this equation? If we write~55! in the Fourier representa
tion

G2q~ t !5xq* ~ t !xq~ t !,

the absolute value of the desired function is uniquely
fined, but not the phase. However, this uncertainty is a di
consequence of the translation invariance of Eq.~55!, whose
general solution, therefore, has the form

xq5eiaAG2q ,

with arbitrary reala. A solution exists if the Fourier trans
form Gq is a real nonnegative quantity. That it is real follow
r

d
at

on

-
ct

directly from the fact that ImS(r ,t) is odd and ReS(r ,t)
even under inversion; the nonnegativity follows from the fa
that ReS(r ,t) increases monotonically with distancer .

The effective size of the localization region for the initi
state in the orbital plane isdr;AR/gv0 ~see Appendix!.
The quantitydr is usually much larger than atomic dimen
sions. The localization region for the initial state along t
magnetic field is infinitely large, which is due to the initia
uncertainty in thez-component of the momentum. The latt
is obviously determined by the macroscopic parameters
the actual experimental layout.

Radiation can substantially alter the picture, and lead
spatial localization of the emitting particle in a region who
size is of the order of atomic dimensions. To estimate
rate of variation of the widths of the statesFa(t) with the
passage of time, the functionS(r ,t) was calculated numeri
cally for a set of parameters characteristic of the FIAN-
synchrotron~E50.68 GeV andR52 m!. Figure 1 depicts
SG (r ) as a function ofr for three orientations ofr . The upper
curve illustrates the behavior of this factor in the plane of
electron’s orbit.

8. MAIN CONCLUSIONS

The perturbation theory developed in this paper h
made it possible to establish that certain fundamental pr
lems of quantum electrodynamics are not invariant when
type of perturbation theory is altered. With respect to t
infrared divergence, this is shown by employing the sim
example of an emitting particle that undergoes a sud
change in velocity. The results have been obtained for
nonrelativistic case, since the study of emitting relativis
particles requires a detailed analysis of the ultravio
asymptotic behavior of the integrand in~38!.

The method of removing ultraviolet divergences by i
troducing a cutoff momentum, which was adopted in t
present paper, is not covariant under Lorentz transform
tions, and therefore cannot be used in a consistent relativ
theory. But even preliminary studies show that in the n

FIG. 1. Rate of buildup of the functionS(r ,t) determining the spatial width
of the electron’s wave packet in the FIAN-60 synchrotron as a function
distancer in observations at various angles relative to the direction of
magnetic field:u05p/200 ~curve1!, p/20 ~curve2!, andp/2 ~curve3!.
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approach the problem of ultraviolet divergence is not ca
strophic, in contrast to the case in ordinary quantum elec
dynamics. It is to be hoped that further research will lead
progress in understanding this problem.

Density matrix calculations have shown that reduction
the spatial dimensions of the localization region for the em
ting electrons to atomic dimensions can be achieved ov
macroscopically long time intervaltc of some tenths of a
second. Can the present theory be applied to such
times? The situation is complicated by the fact that in
course of one orbital revolution, the particle is subject to
solenoidal electric field that balances the loss of energy
photon emission. If we assume that this field acts durin
time interval so short that it only accelerates the particl
wave packet as a whole and is unable to change the parti
internal parameters substantially, then there is no reason
to do estimates we cannot extend the theory to the en
duration of the particle’s motion in the synchrotron. The tim
tc is much shorter than it takes the packet to spread du
the nonequidistant nature of the spectrum of the transve
motion levels. What is observed is an anisotropy in the pa
et’s width: the packet is most strongly squeezed perpend
lar to the magnetic field, and least strongly parallel to
field. Figure 2 depicts the angular dependence of the s
quantity as in Fig. 1 at a fixed value ofr . The considerable
elongation of the packet in the direction of the magnetic fi
is obvious.

The possibility of strong spatial localization of the em
ting particles means that if the acceleration cycle in the s
chrotron is long enough, the motion of the particles can
described to high accuracy by the equations of classical
chanics. Nevertheless, this does not mean that the inte
of the radiation must agree with the predictions of class
electrodynamics. Indeed, a localized state in quantum
chanics is completely different in its properties from a loc
ized state in Newton’s classical theory. The justification
using Newton’s equations of motion to calculate the pa
followed by wave packets is provided by Ehrenfest’s the
rem, but the decisive factor in calculating the intensity of t

FIG. 2. The same as in Fig. 1 but as a function of the observation anglu0

for a fixed distancer 55 a.u. The angleu0 is measured in radians.
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radiation is the momentum of the particle, rather than
position.

In quantum mechanics, a state with a definite moment
is completely delocalized, and in this way differs substa
tially from states of typeFa . There is thus no way in which
we can intuitively interpret calculations of the characterist
of radiation using classical ideas. The characteristic comm
feature of the formulas derived in this paper is the fact t
allowing for the mutual interaction of the emitted photo
reduces the radiative intensity. A similar result was obtain
by Landau and Pomeranchuk,12 who studied the radiation
emitted by charged particles moving in continuous me
~the Landau–Pomeranchuk effect!.

The physics of this phenomenon amount to the fact t
random collisions of an emitting particle with particles of th
medium can reduce the path length over which the radia
intensity builds up coherently. Something similar is observ
when photons are emitted into vacuum: multiple emission
photons can mimic the multiple collisions in a continuo
medium that lead to a reduction in radiative intensity.

The numerical calculations were done together with
A. Aleksandrov. This work was supported by a grant fro
the Russian Fund for Fundamental Research~Grant No. 97-
02-160-58!.

APPENDIX: COHERENT STATES OF A RELATIVISTIC
ELECTRON IN A UNIFORM MAGNETIC FIELD

Let

A5~2 1
2yH0 , 1

2xH0 , 0!,

whereH0 is the strength of the magnetic field directed alo
the z axis. The motion of an electron in such a field, whi
obeys the Dirac equation, has been the topic of numer
studies~see, e.g., Refs. 13–15!. The solution given below
differs from the well-known one only in some details.

We introduce the lowering operators for two indepe
dent oscillators:

â15
1

2
AmvLS x1

i p̂x

mvL
2 iy1

p̂y

mvL
D ,

â25
1

2
AmvLS x1

i p̂x

mvL
1 iy2

p̂y

mvL
D ,

where vL5ueuH0/2mc is the Larmor frequency. The fre
quency of the first independent oscillator is twice the Larm
frequency,v152vL , while the frequency of the second o
cillator is zero. The set of lowering and raising operato
~which are conjugates of lowering operators! satisfies the
standard Bose commutation relations. The operatorsâ1 and
â1

† describe the orbital motion of an electron in a magne
field, while the operatorsâ2 and â2

† describe the position
fluctuations, and other characteristics of the center of
osculating circular orbit, whose mean radius isR.

We next introduce the matrix operator

D̂5S p̂z 22iAmvLâ1

2iAmvLâ1
† 2 p̂z

D .
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The energies of the electron’s quantum states are

Ej5Am2c41p2c214vLmc2S n11s1
1

2D , ~A1!

where the labelj5(n1 ,n2 ,s,p) simply indicates the set o
quantum numbers in parentheses. Then1 ,n250,1,2,... label
the quantum states of the independent oscillators, withn1

being the principal quantum number. We denote the pro
tion of momentum on thez axis byp. The discrete variable
s takes two values,61/2, corresponding to two possibl
projections of spin on the direction of the magnetic field. T
bispinor describing a stationary state of an electron in a m
netic field is given by

cj~r ,t !5
1

A2Ej
S AEj1mc2wj~r !

c

AEj1mc2
D̂wj~r !D e2 iEjt, ~A2!

wherewj(r ) is a spinor of the form

wj~r !5eipz
1

An1!n2!
~ â1

†!n1~ â2
†!n2w0s~r!. ~A3!

Here

w0s~r!5AmvL

p
expS 2

mvLr2

2 Dxs ,

with

r25x21y2, x1/2* 5~1,0!, x21/2* 5~0,1!,

and the normalization length along thez axis is taken equa
to unity.

An arbitrary solution of the Dirac equation is a line
combination of bispinors of type~A2!. Just what linear com-
bination corresponds to the initial state of an electron in
synchrotron? For standard values of synchrotron parame
~for example, for the FIAN-60 synchrotron!, the mean value
of n1 is very large~of order 1013!, and if the assumption tha
photons are emitted largely independently of one anothe
true, so is Poisson’s law. In this case, the expected valu
the relative fluctuation of the numbern1 is extremely small,
l5Dn1/n̄1;1026. Hence, essentially all terms of the d
sired linear combination can be expanded in powers ol,
with the result that

Ej'Esp1
2vL

gsp
Dn1 ,

whereEsp is the value ofEj at j5(n̄1 ,n̄2 ,s,p), andgsp

5Esp /mc2.
We see that the spectrum is essentially uniform

spaced, with the levels being separated by the mean or
frequencyvsp52vL /gsp of the electron about the magnet
field. When the relative fluctuation ofn1 is small, we can put
Ej'Esp in all nonexponential factors.

The linear combination corresponding to the above
quirements has the form
c-

e
g-

e
rs

is
of

tal

-

csp~r ,t !5
1

A2Esp
S AEsp1mc2wsp~r ,t !

c

AEsp1mc2
D̂wsp~r ,t !D

3exp~2 iDEspt !, ~A4!

whereDEsp5Esp2vspn̄1 , and

wsp~r ,t !5eipz exp@An̄1~eia1â1
†~ t !2e2 ia1â1~ t !!

1An̄2~eia2â2
†~ t !2e2 ia2â2~ t !!#w0s~r!,

with â1
†(t)5â1

† exp(ivspt) and â2
†(t)5â2

† , wherea1 anda2

are constant phases; the momentum along thez axis is as-
sumed equal top. The components of the current densi
vector in the state~A4! are

j sp
x 5

2c2

Esp

AmvLn̄1uwsp~r ,t !u2 sin~vspt1a1!,

j sp
y 52

2c2

Esp

AmvLn̄1uwsp~r ,t !u2 cos~vspt1a1!,

j sp
z 52

c2p

Esp
uwsp~r ,t !u2. ~A5!

The packet’s rms width in the radial direction in the sta
~A4! is determined by the radial behavior of the functio
w0s(r), and can be estimated to beDr5A2Rc/Esp. In the
azimuthal direction, the stationary states of type~A2! are
completely delocalized. Indeed, in these states the ang
momentum is well-defined, and by virtue of the uncertain
relation for action–angle variables, they cannot be localiz
in angle.

In contrast, the state~A4! has no definite angular mo
mentum, but its angular width is limited, and is of ord

Df;1/An̄1 in the azimuthal direction~we assume that the
uncertainty in the position of the orbit’s center is mu
smaller than the orbit’s radius, so thatn2!n1!, which after
being multiplied by the orbit’s radius yields a distan
roughly equal toDr ~for the FIAN-60 synchrotron this dis
tance is about one micrometer!.

The packet width along thez axis is governed by such
macroscopic parameters of the device as the diaphr
widths, and for this reason it can exceed the radial or a
muthal width many times over. In this case the packet can
represented by a linear combination of states of type~A4!:

cs~r ,t !5(
p

Cpcsp~r ,t !, ~A6!

where the constantsCp satisfy the normalization condition
and guarantee, e.g., a Gaussian dependence on thez projec-
tion of the momentum with midpoint atp50:

Cp5~2pd0
2!1/4e2p2d0

2/4.

If we assume that the spatial width of the packet along thz
axis is much greater than the radial width, thend0@Dr, and
in this case the state~A6! is associated with a small symme
ric ellipsoid elongated in the direction of the magnetic fie
and revolving in this orientation in a circular orbit about a
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axis parallel toz. To estimate the time of packet spread
the radial or azimuthal direction, we must keep the next te
in the expansion of the energyEj in powers ofDn1 . This
yields the value of the time of packet spreading due to
nonequidistant levels of transverse motion,t1;g0R2ADn1.
Here g0 is the Lorentz factor for the electron beam in
synchrotron. For the FIAN-60 synchrotron the timet1 was
estimated to be about ten seconds.
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Recent calculations of the order of (Za)4(m/M ) Ry pure recoil correction to the hydrogen
energy levels are critically revised. The origins of errors made in the previous studies are
elucidated. In the framework of a systematic approach, a new result is obtained for theS
levels. It amounts to216.4 kHz in the ground state and21.9 kHz in the 2S state. © 1998
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1. INTRODUCTION

The correction to theS levels of hydrogen atom, which
is first order inm/M and fourth order inZa, has become
recently a point of controversy. Initially, this correction w
calculated in Ref. 1. A different result for the same corre
tion was subsequently obtained in Ref. 2. While the sa
~exact inZa! starting expression for the pure recoil corre
tion was employed in both papers, the methods of calcula
and, in particular, the regularization schemes used w
rather different. To resolve the discrepancy between the
results, an attempt was undertaken in Ref. 3 to prove
correctness of the earlier result of Ref. 1 by applying
method of calculation used by the present author in Ref
An extra contribution due to the peculiarities of the regul
ization procedure was found by the authors of Ref. 3, wh
exactly compensates for the difference between the resu
Ref. 2 and the result of Ref. 1. This finding has led t
authors of Ref. 3 to the conclusion that ‘‘discrepancies
tween the different results for the correction of the order
(Za)6(m/M ) to the energy levels of the hydrogen-like ion
are resolved and the correction of this order is now firm
established.’’

Assuming that the criticism of Ref. 3 is complete
valid, we nevertheless cannot agree with the conclusion c
above. The point is that in emphasizing the importance o
explicit regularization of divergent expressions, the auth
of Ref. 3 pay no attention to an accurate matching of re
larized contributions.

In fact, one usually starts from an exact expressi
which can be easily checked to have a finite value. Differ
approximations must then be used to handle this expres
at different scales. In this way some auxiliary parameter~s!,
which enable us to separate the applicability domains
different approximations, are introduced. Finally, a necess
condition for the sum of the calculated contributions to
correct is its independence of any scale-separating param

In the present paper we systematically pursue this line
reasoning for a recalculation of the order of (Za)6m2/M
correction to the hydrogen energy levels. We discuss o
the S levels since for higher angular-momentum levels
result has actually been firmly established.2,4 Since the con-
4721063-7761/98/86(3)/8/$15.00
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troversy mentioned above concerns details of a regular
tion at the subatomic scale, the dependence of the result
the principal quantum numbern is also known. We therefore
perform all the calculations for the ground state and th
restore then dependence in the final result.

To make the presentation self-contained we reder
some known results, using sometimes new approaches.
general outline of the problem is given in Sec. 2. Sections
4, and 5 deal with the Coulomb, magnetic, and seagull c
tributions, respectively. The correspondence between var
results is discussed in Sec. 6. A couple of minor compu
tional issues are addressed in the Appendices.

The Coulomb gauge of the electromagnetic potent
and relativistic units\5c51 are used throughout the pape
Leaving aside the radiative corrections, we setZ51 in what
follows.

2. GENERAL OUTLINE

The first recoil correction to a bound state energy of
relativistic electron in the Coulomb field is an average va
of the nonlocal operator,5–7,1,8

DErec52
1

M E dv

2p i
^~p2D~v,r 8!!G~r 8,r uE1v!

3~p2D~v,r !!&, ~1!

which is taken over an eigenstate of the Dirac equation in
Coulomb field,

Hc~r !5Ec~r !, H5ap1bm2
a

r
. ~2!

In ~1!, p is the electron momentum operator,D~v,r ! de-
scribes an exchange by the transverse~magnetic! quantum,

D~v,r !5E d3k

~2p!3 eikr
4paak

k22v2 , ak[a2
k~ak!

k2 ,

~3!

and

G~r 8,r uE1v!5S E1v2ap82bm1
a

r 8D
21

d~r 82r !

~4!
© 1998 American Institute of Physics
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is the Green’s function for the Dirac equation in the Co
lomb field. The integration contour in~1! goes from minus
infinity to zero below the real axis, rounds zero from abo
and then proceeds to plus infinity above the real axis.

Since we will calculate the correction~1! perturbatively,
i.e., as a power series ina, we can decompose~1! into three
parts:

DErec5C 1M1S . ~5!

Specifically, the Coulomb, the magnetic, and the seagull c
tributions, which correspond to thepp, pD1Dp, and DD
terms from~1!, respectively.

3. COULOMB CONTRIBUTION

It is natural to continuously transform the integratio
contour into the sum of two subcontours, thus splitting
Coulomb contribution into two terms,

C 5 K p2

2M L 2
1

M
^pL2p&, ~6!

where L2 is the projector to the set of negative-ener
Dirac–Coulomb eigenstates. The former term in~6! results
from the integration along the upper half of the infinite c
cumference and its value is determined by the atomic s
p;ma. Being the average of the local operator, this te
can be easily calculated exactly. The latter term in~6! arises
as an integral along the contourC2 , wrapping the half-axis
(2`,0) in the counterclockwise direction. This term is com
pletely saturated by momenta from the relativistic scalep
;m. It can therefore be calculated without an
regularization:1,2

2
1

M
^pL2p&a6 5

m2a6

M
. ~7!

4. MAGNETIC CONTRIBUTION

Using the identity

^pGD1DGp&5
1

v
^@p,H#GD1DG@H,p#1$p,D%&,

~8!

which follows directly from the equation for the Green
function, we can extract from the general expression for
magnetic contribution,

M5
1

M E dv

2p i
^pGD1DGp&, ~9!

its local part,

1

M E
C2

dv

2p i

1

v
^$p,D~v,r !%&52

1

2M
^$p,D~0,r !%&.

~10!

Due to the rapid convergence of the integral in~9! at infinity,
we can reduce the integration contour toC2 . By virtue of
the virial relations~see Ref. 9 and the references cited the!,
the sum of the local parts of the Coulomb and magne
contributions takes a simple form:6
-

,

n-

e

le

e

c

K p2

2M
2

1

2M
$p,D~0,r !%L 5

m22E2

2M
. ~11!

Physically, this contribution to the recoil correction is in
duced by an instantaneous part of the electron-nucleus in
action.

4.1. Long distances

Immediate integration with respect tov in ~9! gives:2

M52
a

M E d3k

~2p!3 K pS (
1

um&^mu
k1Em2E

2(
2

um^mu
E2Em1kD 4pak

k
eikr L , ~12!

where(1(2) represents the sum over discrete levels supp
by the integral over the positive-~negative-! energy part of
the continuous spectrum.

4.1.1. Positive Energies.In the leading nonrelativistic
approximation, the first term in Eq.~12! reads

M15
a

Mm E d3k

~2p!3 K pG ~r 8,r uE2k!
4peikr

k
pkL ,

~13!

whereG (r 8,r uE2k) is the Green’s function for the Schro¨-
dinger equation in the Coulomb field, and the average
taken over the nonrelativistic wave function. For the grou
state we use

c~r !5A~ma!3

p
e2mar , E52

ma2

2
. ~14!

Only thep-wave term from the partial expansion

G ~r 8,r uv!5(
l

~2 ! l~2l 11!Pl~n8n!G l~r 8,r uv! ~15!

survives the integration over the angles:

M152
ma3

Mp E
0

`

dk kE
21

1

dx~12x2!

3^G 1~r 8,r uE2k!eikrx&. ~16!

For the nonrelativistic Green’s function in the Coulomb fie
we use the integral representation from Ref. 10,

G 1S r 8,rU2 k2

2mD5
im

2pAr 8r

3E
0

p ds

sin s

exp$ i @2~ma/k!s1k~r 81r !/tan s#%

12exp$ i2~ma/k!p%

3J3S 2kAr 8r

sin s D . ~17!

The integrals overr and r 8 in ~16! can be easily calculated
after expanding the Bessel function in a power series. T
result can be expressed in the form
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M15
273m5a6

Mp E
0

` dk k

k5

3E
21

1

dx~12x2!E
C

dt
t12ma/k

~a2bt!4

3
1

12exp$ i2pma/k%
, ~18!

wherek5A2m(k2E), the contourC is the unit circumfer-
enceutu51 directed clockwise, and

a5S 11
ma

k D S 11
ma

k
2

ikx

k D ,

b5S 12
ma

k D S 12
ma

k
1

ikx

k D .

Integration by parts conveniently extracts from the last in
gral in ~18! the terms which are nonvanishing at large m
menta:

M152
25m2a5

Mp E
0

1

dy~12y2!E
21

1

dx~12x2!F~x,y!,

~19!

where

F~x,y!5
2

b~a2b!32
12y

b2~a2b!22
y~12y!

ab2~a2b!
1

12y2

a2b2

2
y~12y2!

a3b E
0

1 dt t2y

12~b/a!t
. ~20!

Here we introduced a new integration variabley[ma/k.
Since

k

k
5

a

2

12y2

y
, ~21!

we can do a power series expansion of~19! with respect toa
up to the first order by expanding the integrand with resp
to y up to the first order~note thata2b54y22ikx/k!:

~12y2!F~x,y!'
2

~a2b!32
1

2~a2b!
1

1

2
2

y2

2~a2b!

2
y

2
1y ln~a2b!. ~22!

Here the last term emerges as a result of expansion of
integral in ~20!,

E
0

1 dt t2y

12~b/a!t
5

1

12y
FS 1,12y;22y;

b

aD , ~23!

where F(1,12y;22y;b/a) is the Gauss hypergeometr
function. Integrating now~22! first with respect tox, and
then with respect toy, from 0 to somey0 (a1/2!y0!1), we
obtain

E
0

y0
dy~12y2!E

21

1

dx~12x2!F~x,y!
-
-

ct

he

'
p

32a
2

1

48y0
22

1

12
ln

4y0
2

a
1

1

48
2

1

9
1

2y0

3
1

2y0
2

3

3 ln 4y02
3y0

2

4
2

pa

32
. ~24!

On the other hand, we can ignorea in F(x,y) in the interval
@y0,1#. In the sum of two integrals, the dependence on
auxiliary parametery0 disappears, and we obtain the resu

M15
m2a5

Mp H 2
p

a
1

8

3
ln

1

a
1

8

3
ln

Ry

^E&1S
1

16

3
ln 2

1
32

9
2paJ . ~25!

Here we introduce the Bethe logarithm11

16E
0

1

dy y
F~1,12y;22y;~~12y!/~11y!!2!21

~11y!4~12y!

5 ln
Ry

^E&1S
12 ln 21

11

6
. ~26!

In ~25!, the ordera4 term is the lowest-order contribution t
~10!, the ordera5 terms are in accord with the result o
Salpeter,12 and the ordera6 term coincides with the retarda
tion correction, which is found in Ref. 2, Eq.~14!, by a
different method.

It can be easily seen that the ordera6 contribution to the
positive-energy part of~12! is exhausted by the sum of th
contributions to~10! and ~25!. Actually, relativistic correc-
tions are at least of thea2 relative order. The retardation
reveals itself beginning with thea5 order ~25!. Hence the
relativistic corrections for the retardation are at least of
order ofa7.

4.1.2. Negative Energies.Virtual transitions to the
negative-energy states give rise to the second term in~12!. In
the leading nonrelativistic approximation, it is2

M25
a2

4m2M E d3k

~2p!3 K 4p

k82

4pkk8
2

k2 L , ~27!

wherekk85k2k8(kk 8)/k82, andk85p82p2k; herep and
p8 are the arguments of the wave function and its conjug
respectively. The integral overk diverges logarithmically
~the leading linear divergence vanishes due to the numera
which atk→` becomes transverse to itself, and hence ri
only like k, not k2!. To treat this divergence we use th
following formal trick:2 subtract from~27! the same expres
sion with k821l2 substituted in place ofk82. For l@ma,
the subtracted term is completely determined by a sc
much less than the atomic scale, so that we find the t
below by using a relativistic approach.

The regularized version of~27! can be written in the
form

M22M2
r 52

a2

4m2M K ~pi82pi !E d3k

~2p!3

4pkj

k2

3S d i j 2
ki8kj8

k82 D S 4p

k822
4p

k821l2D L . ~28!
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In the coordinate representation, the integral above is

in j

r 2 S d i j 2
] i] j

l2 D 12e2lr

r
5

ini

r 2 E
0

2l

dsS 12
s2

l2Desr .

~29!

After substitution into~28! it gives

M22M2
r 52

a2

4m2M K 4pd~r !E
0

2l

dsS 12
s2

l2D
1

1

r 2 E
0

2l

dssS 12
s2

l2Desr L . ~30!

Finally, the result of a trivial calculation of the average ov
the ground state is

M22M2
r 5

m2a6

M S 2 ln
«

a
21D , ~31!

where«[l/2m.

4.2. Short distances

Since in the nonrelativistic approximation the subtrac
term,M2

r , is ultraviolet divergent, we must calculate it b
yond this approximation, i.e., using a relativistic approach
is more convenient in this approach to postpone the inte
tion over v to the last stage of calculation. As we will se
below, the reversed order of integration~first over space vari-
ables, then over frequency! makes the calculations quit
simple. The price for the technical advantage is that a re
lator contribution is calculated not only for the negativ
energy part, but also for the positive-energy part ofM .
Surely, the instantaneous contribution can be put aside
that only two first terms from the right-hand side of~8! are
considered below.

For the subtracted term, we have the new expansion
rameter,ma/l, and hence the Coulomb interaction during
single magnetic exchange can be treated perturbatively.
orderma6/M contributions arise due to only two first term
of the Green’s function expansion in the Coulomb inter
tion, G(0) andG(1). Let us begin with the second contribu
tion:

MG
r 5

2

M E
C2

dv

2p i

1

v
^@p,H#G~1!Dr&, ~32!

Here

Dr5E d3k

~2p!3 eikr
4paak

k21l22v2 .

and we can disregard the atomic momenta in compar
with l andm:

MG
r 52

a3c2

pM E
C2

dv

iv

3 K 4pp8

p82

2m1v1ap8

p822V2

4p

q2

v1ap

p22V2

4pap

p22K 2L .

~33!
r

d

It
a-

u-

so

a-

he

-

n

The notations of Ref. 2 are used:c2[uc(0)u2, the angle
brackets denote here integrations overp andp8 together with
the average over the spinorua5da1 , q5p82p, and

K [Av22l2, V[A2mv1v2.

The average over the spin degrees of freedom gives

^~2m1v1ap8!~v1ap!app8&5vp8p
25vp8pq. ~34!

Then, after transition to the coordinate representation we
tain

MG
r 5

2a3c2

mM E
C2

dv

iv E
0

`

drS ] i

eiVr21

V2r D
3njF S d i j 1

] i] j

V2 D eiVr21

r
2~V→K !G . ~35!

The integration overr is simple but lengthy. The result is

MG
r 52

a3c2

2mM E
C2

dv

iv H K

V
2

K 2

V2 lnS 11
V

K
D

1~V←K !12 lnS 11
K

V D J . ~36!

Here the contour of integration goes counterclockw
around the cut that connects points22m and2l. Accord-
ing to the Feynman rules,V5 i uVu, while K 51(2)uK u
on the lower~upper! edge of this cut. Since the integrand
regular at smallv, we can setl50 ~recall thatl!m! and
obtain

MG
r 5

a3c2

mM E
0

1

dxS A12x

x3/2 2
1

x2 arctanA x

12x

2
1

Ax~12x!
D 52

3

2

pa3c2

mM
. ~37!

To calculate the contribution due toG(0) we must ac-
count properly for the wave-function’s short-distance beh
ior:

Mc
r 52

a3c2

pM E
C2

dv

iv K S 4pp8

p82

2m1v1ap8

p822V2

4paq

q22K 2

1
4pap8

p822K 2

v1ap8

p822V2

4pq

q2 D 2m1ap

p2

4p

p2 L . ~38!

Averaging over the spin part of the wave function, we obta

Mc
r 52

a3c2

pM E dv

i K S 4m

v
11D

3
4p

p82~p822V2!

4p

q22K 2

4ppq
2

p4

2
4p

~p822K 2!~p822V2!

4p

q2

4ppp8
2

p4 L . ~39!

Again, the six-dimensional integral overp andp8 turns into
a simple integral overr in the coordinate representation. Th
integral is
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Mc
r 5

2a3c2

M E dv

i H S 4m

v
11D F 1

V2 lnS 11
V

K
D

1
1

K 2 lnS 11
K

V D2
1

VK
G1

1

2mv
ln

K

V J . ~40!

Finally, the integration along the same contour as ab
gives the following expression for the nonvanishing terms
the limit «→0:

Mc
r 5

m2a6

M S 2

«
2

32

9pA«
E

0

` du

Acoshu
12 ln

1

« D . ~41!

We see that, as expected, the logarithmic in« term cancels
the corresponding term in~31!. The more singular in« terms
can only be the result of the regularization procedure app
to the positive-energy contribution~25!. Since the latter is
nonsingular at short distances, this procedure is actually
necessary, i.e., it can produce only positive powers ofma/l.
An explicit calculation can be found in Appendix A.

4.3. Total magnetic contribution

In the sum of all contributions due to a single magne
exchange any dependence on the scale that separates th
rameter« cancels out, and we obtain

Ma61 K p2

2M L
a6

5
m2a6

M S 2112 ln
1

a
212

3

2D . ~42!

Here 21 on the right-hand side is due to the~long-range!
effect of retardation@see Eq.~25! and Eq.~14! of Ref. 2#,
2 ln(1/a)21 comes from the whole range of scales fromma
to m, and23/2 is the short-range contribution.

5. SEAGULL CONTRIBUTION

5.1. Long distances

The best way to analyze the atomic scale contribution
to begin by taking the integral with respect tov. It appears
that in the order of interest only the positive-energy interm
diate states should be considered:2

S 15
a2

2M E d3k

~2p!3

3 K 4p

k82

2p8k81 i @sk8#

2m

4p

k2

2pk1 i @sk#

2m L . ~43!

A simple power counting shows that only bilinear ink and
k8 term gives rise to the ultraviolet divergence. To regular
this divergence, we subtract from the divergent term
regulator contribution, which at large distances is

2
a2

4m2M K 4pk8

k821l82

4pk

k21l2L , ~44!

while ma!l, l8!m. In the coordinate representation th
regularized version of~43! is

S 12S 1
r 5

a2

4m2M K 2p
1

r 2 p1
1

r 42S ¹
e2l8r

r
D S ¹

e2lr

r D L .

~45!
e
n

d

n-

pa-

is

-

e
e

The average over the ground state is («85l8/2m):

S 12S 2
r 5

m2a6

M H 2
«821«8«1«2

a~«81«!

1122 ln
«81«

a
1

2«8«

~«81«!2J . ~46!

Here 1 appears due to the nonsingular operatorpr 22p. The
first term in the curly brackets represents the regulator c
tribution to the previous order. In Appendix B, an appe
ance of this term as a short-range contribution to thema5/M
order is shown explicitly. In what follows we calculate th
subtracted term, whose nonrelativistic version~44! is ultra-
violet divergent, in the framework of a relativistic approac

5.2. Short distances

As in the case of the single magnetic exchange, only t
first terms of the Green’s function expansion in the Coulo
interaction contribute to them2a6/M order. For theG(1)’s
contribution we have

S G
r 5

a3c2

2pM E
C2

dv

i

3 K 4pap8
p822K 82

v1ap8

p822V2

4p

q2

v1ap

p22V2

4pap

p22K 2L .

~47!

Calculation along the same lines as in the case ofMG
r gives

the result

S G
r 5

pa3c2

Mm
~4 ln 222!, ~48!

which is nonsingular in the limitl,l8→0.
As for the contribution due toG(0), it can be extracted

from

a3c2

2pM E
C2

dv

i K 4pap8
p822K 82

v1ap8

p822V2

3
4paq

q22K 2

2m1ap

~p21g2!2 4p L 1~l↔l8! ~49!

as a zeroth-order term of the Laurent series ing[ma ~this
series begins with an order 1/g term, which describes the
seagull contribution to them2a5/M order at short distances
discussed in Appendix B!. The average over the spin part o
the wave function is

~2mvap8aq1ap8~ap8!aq~ap!&52~v21@p822V2# !

3S 11
~p8q!2

p82q2 D12p8q. ~50!

The term in the square brackets can be omitted. In fact,
corresponding part of~49! does not depend onm and hence
~merely on dimensional grounds! contributes to them2a5/M
order only. The first term then gives the nonsingular con
bution in the limitl,l8→0:



-
te

T
er

th

-

al-

he

ic
um

as

y
e
ent

d
r-

med
cale
lcu-
lar

rage
u-

3.
e-
en
. 1
he
f. 3

r

m

ich
en-

on

f

e

gy,
e

477JETP 86 (3), March 1998 A. S. Yelkhovsky
2v2S 11
~p8q!2

p82q2 D→ pa3c2

Mm
~124 ln 2!. ~51!

Finally, analysis of the last term in~50! deserves more atten
tion since here we have the infrared singularity. Integra
over the space variables, this term gives

2p8q→
2a3c2

Mm E
C2

dv

iv
$ f ~V,K !2 f ~K 8,K !%, ~52!

where

f ~x,y!5 lnS 11
x

yD2
xy

~x1y!2 ~53!

~recall thatK 85Av22l82!. For «!1 we obtain

2a3c2

Mm E
C2

dv

iv
f ~V,K !

5
pa3c2

Mm S 22 ln
1

«
14 ln 221D . ~54!

Calculation of the integral withf (K 8,K ) is slightly more
cumbersome since it does not contain a small parameter.
contour C2 for this integral encompasses in the count
clockwise direction the cut connecting the points2l and
2l8. Continuous deformation ofC2 leads to the equation

E
C2

dv...5E
C1

dv...22p i Res
v50

...22p i Res
v5`

..., ~55!

where... representsf (K 8,K )/v, and the contourC1 goes
in the clockwise direction around the cut that connects
pointsl andl8. Using the evident relations,

E
C1

dv...52E
C2

dv..., ~56!

Res
v50

1

v
f ~K 8,K !5 f ~l8,l!, ~57!

Res
v5`

1

v
f ~K 8,K !52 ln 21

1

4
, ~58!

we obtain

2a3c2

Mm E
C2

dv

iv
f ~K 8,K !

5
pa3c2

Mm S 2 ln
2«

«1«8
1

2««8

~«1«8!22
1

2D . ~59!

5.3. Total seagull contribution

As can be seen from~46!, ~48!, ~51!, ~54!, and~59!, the
total seagull contribution to them2a6/M order does not de
pend on the scale that separates the parametersl and l8.
The contribution is

S a65
m2a6

M S 122 ln
2

a
1

1

2
14 ln 222D , ~60!
d

he
-

e

where 1 is the long-range contribution, 4 ln 222 is the short-
range contribution, and the remaining terms obtain their v
ues on the whole range of scales fromma to m.

6. CONCLUSIONS

In complete agreement with the result of Ref. 13, t
total correction of them2a6/M order does not contain lna.
It consists of two terms,

DErec5
m22E2

2M U
a6

1
m2a6

Mn3 ~2 ln 223!. ~61!

The former term is completely determined by the atom
scale and depends nontrivially on the principal quant
numbern,

m22E2

2M U
a6

5
m2a6

2Mn3 S 1

4
1

3

4n
2

2

n2 1
1

n3D . ~62!

As for the latter term, our calculations show that it h
its origin at the scale of the order ofm.

The correction~61! shifts the hydrogen ground state b
216.4 kHz and the 2S state by21.9 kHz. These figures ar
comparable14 or even exceed the uncertainties of the rec
Lamb shift measurements.15

The result~61! differs from those obtained in Refs. 1 an
3 and in Ref. 2. Let us first discuss the origin of the diffe
ence in the latter case. In Ref. 2, it was erroneously assu
that the cancellation of singular operators at the atomic s
does not leave a nonvanishing remainder. The present ca
lation shows that because of the difference in the particu
features of a cutoff procedure used to regularize the ave
values of different singular operators, some finite contrib
tions survive the cancellation process.

Unfortunately, the same error was repeated in Ref.
The long-range contribution was found there in the fram
work of some particular regularization scheme. It was th
added to the short-range contribution calculated in Refs
and 2 by completely different regularization procedures. T
regularization dependence of the results obtained in Re
can be seen, for example, in Eq.~29! of Ref. 3, where the
integration overk8, which is limited above by the paramete
s8, gives rise to a finite~depending ons8/s! contribution to
the result. This contribution was erroneously omitted fro
Eq. ~29! of Ref. 3.

The error made in Ref. 1 is a computational error, wh
is caused by inaccurate treatment of the frequency dep
dence in the integral~42! of Ref. 1 @ironically, because of a
typographical error, only the important factors, (v22k1

2)21

and (v22k2
2)21, are skipped in Eq.~42! of Ref. 1#. In what

follows we rederive our result employing the regularizati
scheme used in Ref. 1.

First of all, the result for the long-range contribution~46!
of Ref. 1 ~‘‘the third term’’! is consistent with the result o
our work @1 in Eq. ~46!#.

As for the remaining contributions, let us begin with on
general comment. In their analysis of the integral~42!, the
authors of Ref. 1 use the symmetrization inv, since, as they
wrote, ‘‘generally there are three regions of photon ener
v;a2, v;a, and v;1, that give a contribution and th
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middle region is almost eliminated by the symmetrization
In order to avoid the discussion whether the middle regio
eliminated or not, we will recalculate the contributions of t
first and the second terms in Eq.~43! of Ref. 1 without the
symmetrization inv. Since the symmetrization procedure
no more than a technical trick, the result of a calculat
should not depend on whether this procedure is applied
not.

To determine the high-energy part of the first and sec
term contribution, we set«85«50 in ~49! and cut off the
low-energy enduvu,me from the contourC2 . The result
for the short-range~high-energy! contribution to the integra
~42! of Ref. 1 can then be obtained:

DE5
m2a6

M
2 ln

e

2
. ~63!

The sum of the orderm2a6/M contributions to Eqs.~51!,
~54!, and~57! of Ref. 1 is smaller by a factor of 2. An extr
factor 1/2 emerges there due to the symmetrization inv,
since the contribution of the contourC1 , which wraps the
half-axis (me,`), vanishes.

Let us now consider the low energies. Only the seco
term in Eq. ~43! of Ref. 1 contributes there. According t
Eqs.~42! and~43! of Ref. 1, this contribution~with the typos
corrected! is

DE5
a2

Mm E
CL

dv

2p i E d3k1

~2p!3 E d3k2

~2p!3 E d3p

~2p!3

3c~p1k1!
4pk1

k1
22v2

1

2mv2p2

4pk2

k2
22v2 c~p1k2!.

~64!

Here the contourCL goes from2me to 0 below the real
axis and then from 0 tome above it. Recall now that the
high-energy contribution~63! is calculated on the assump
tion that e@a. This means that in~64! we can ignorep2,
which is of the order of (ma)2, in comparison with 2mv,
which is shown below to be of the order ofm2a. We can
then easily come to the coordinate representation and ob

DE5
a2

2Mm2 E
CL

dv

2p i

1

v20 K S ¹
ei uvur

r D 2

2
1

r 4L . ~65!

Since the integration contour does not wrap the z
point, we can safely add the operator21/r 4, which is anni-
hilated by thev integration. The result of taking the averag
over the ground state is

DE52
2m2a6

M E
CL

dv

2p i

1

v20 S 2 lnS 12
i uvu
ma D

1
2i uvu
ma

1

12 i uvu/ma
1

3

2 S v

ma D 2 1

12 i uvu/ma D .

~66!

Here we see that the natural scale forv is in fact ma.
Since uvu is positive on the lower half ofCL , the integral
given above in dimensionless units reads
.
is

n
or

d

d

in

o

DE52
m2a6

pM E
0

e/a

dxS 4

x
arctanx2

4

11x223
x2

11x2D .

~67!

The result of integration,

DE5
m2a6

M S 3
e

pa
22 ln

e

a
1

1

2D , ~68!

which is added to all the other seagull contributions, giv
for the orderm2a6/M seagull correction:

S a65
m2a6

M S 22 ln
1

a
12 ln 22

1

2D , ~69!

in complete agreement with our result~60!.
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APPENDIX A

The extra terms in~41! should be canceled by the regu
lator counterpart of~13!, which differs from~13! by Ak21l2

used instead ofk. As in the main text, we approximate th
sum over the positive-energy intermediate states by the n
relativistic Green’s function and the matrix element ofa by
p/m. In this approximation, the regulator contribution is

M1
r 5

a

Mm E d3k

~2p!3 K pG ~r 8,r uE

2Ak21l2!
4peikr

Ak21l2
pkL . ~A1!

After the transformations the regulator version of the expr
sion ~18! is

M1
r 5

273m5a6

Mp E
0

` dk k2

k5v E
21

1

dx~12x2!

3E
C
dt

t12ma/k

~a2bt!4

1

12exp~2p ima/k!
, ~A2!

where k5A2m(v2E), v5Ak21l2, the contourC, and
the functionsa andb are defined in the text. Only singula
terms in the expansion~22! operate at ranges of the order
l21. For those terms the integrals overk and x become
elementary and give

M1
r 5

m2a6

M H 2
2

«2 S ln
«

a
21D1

2

«
2

32

9pA«

3E
0

` du

Acoshu
J . ~A3!

The second and the third terms therefore coincide with
corresponding terms in~41!. The new singularity}«22 is



th to

,

e

.

.
.

T.

with

479JETP 86 (3), March 1998 A. S. Yelkhovsky
the regulator contribution to the instantaneous part of
magnetic exchange~10!:

2
1

2M
^$p,Dr~0,r !%&

'24paK pi81pi

2m

pj81pj

2M

d i j 2qiqj /q2

q21l2 L
522

m2a6

M«2 S ln
«

a
21D . ~A4!

The leading contribution to~49! is

S r5
8m3a5

M E
C2

dv

2p i E d3p

~2p!3

4p

p22K 82

3
v

p22V2

4p

p22K 2 . ~B1!

After the integration with respect top it becomes

S r5
ma5

Mp

1

«22«82 E
C2

dv vS 1

V1K 8
2

1

V1K
D .

~B2!

Up to terms of the first order in«, «8 we obtain

S r5
m2a5

Mp S 322
«2 ln~2/«!2«82 ln~2/«8!

«22«82

22p
«821«8«1«2

«81« D . ~B3!
eThe last term compensates for the leading contribution
~46!
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Plasma waves in a nonideal plasma
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This paper shows how the concepts commonly used for a Debye plasma—Landau damping,
collisional damping, short-range and long-range collisions, and plasma waves—must be revised to
describe a nonideal electron–ion plasma. The degrees of freedom of a nonideal plasma are
divided into collective and individual. The increase and saturation of the fraction of collective
degrees of freedom as the coupling constant increases is discussed. The Tatarski� approach
for a system of coupled oscillators makes it possible to model the collective degrees of freedom
of a nonideal plasma by a set of Langevin oscillators in a thermostat. The correlation
energy and the energy of the plasma waves are found. The concepts developed here made it
possible to determine the dispersion of the plasma waves and their damping. The effect of damping
on the discrepancy between the position of the maximum of the dynamic structure factor
and the real part of the solution of the dispersion equation is considered. The effective collision
frequency of the individual degrees of freedom~the electrons! is estimated, taking into
account both short-range pairwise scattering and scattering at plasma waves. ©1998 American
Institute of Physics.@S1063-7761~98!00903-2#
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1. INTRODUCTION

Plasma~Langmuir! waves are a specific characteristic
a gaseous~Debye! plasma~see, for example, Refs. 1–5!. The
formulas obtained for a gaseous plasma restrict pla
waves to wave numbersk/k!1 and coupling constan
g5be2n1/3!1,4 wherek5ae

21 is the inverse electron De
bye radius,ae5@T/(4pe2ne)#1/2, ne andn are the densities
of the electrons and the positive charges, andT5b21 is the
temperature.

However, plasma waves in a nonideal plasma have b
observed in early experiments6–9 and with simulation by the
molecular-dynamics method.10–13 In this connection, the ex
istence of plasma waves in a nonideal plasma has been
sidered proven in a number of papers, and has been us
solve various problems of the theory of such a plasma.14–20

At the same time, no one has succeeded in making a s
factory transition from a Debye plasma1–5 to a nonideal
plasma.6–20Thus, an entire region of the theory of a nonide
plasma relating to plasma waves and corresponding to
concepts developed in Refs. 1–5 has been lacking.

This paper attempts to develop a theory of a nonid
plasma that follows the concepts of Refs. 1–5 and
method of collective variables.21,22In doing so, we start from
the restriction of the possible wave vectors of the longitu
nal plasma modes,kn21/3,const, which was covered in
Refs. 23–25, and from the associated limitation of the sa
ration of the collective degrees of freedom.24–27

The expressions for a Debye plasma are used in
paper with values of the coefficients from Ref. 1. Howev
because of the approximate character of the existing mo
of a Debye plasma,1–5 the choice of numerical values is am
biguous. This is even more true of a nonideal plasma.
4801063-7761/98/86(3)/9/$15.00
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have directed most of our attention to qualitative dep
dences.

Section 2 briefly presents the necessary informat
from the theory of a Debye plasma. Section 3 reviews
analogous concepts—Landau damping, collisional damp
the region of existence of plasma waves, and the numbe
collective degrees of freedom—for a nonideal plasma
means of qualitative estimates.

Section 4 separates the degrees of freedom of a noni
plasma into collective and individual. It is shown that th
equations of motion for the collective variables reduce
equations of the Langevin type, so that it is possible to
troduce dispersion characteristics. Section 5 discusses th
ergy of the fluctuations of the longitudinal electric field. It
shown how the theory developed for an ideal plasma can
extended to a nonideal plasma. Both the correlation ene
and the energy of the plasma waves are found. The distr
tion of these energies over wave numbers and frequencie
discussed.

The concepts that have been developed are used in
6 to determine the dispersion characteristics. The results
compared with experimental~actual and computer
simulated! observations of plasma waves in a nonide
plasma. The frequencies of the interactions of the elect
~the individual degrees of freedom! with the charges and the
plasma waves are considered in Sec. 7. The results are
pared with the data of a molecular-dynamics experiment

A nonideal plasma is a disordered system with stro
interaction. It is assumed that, for this reason, a nonid
plasma can be studied theoretically either by extrapola
and interpolating rigorous expansions for a weakly nonid
plasma and by approaches developed in the theory of me
or by computer simulation.28,29 In the Conclusion, it is dis-
© 1998 American Institute of Physics
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cussed why it is nevertheless promising to construct suc
theoryab initio.

2. THE DEBYE PLASMA

In a low density plasma, longitudinal plasma waves c
propagate with a dispersion law

v2~k!5Ve
2~113ae

2k2! ~1!

and with a collisionless Landau damping rate of1

GL~k!

Ve
50.14S k

k D 3

expF2
1

2 S k

k D 2G , ~2!

which is independent ofg @hereVe5(4pe2ne /m)1/2 is the
plasma frequency#. The damping rateGL is exponentially
small for k/k!1 and increases ask/k increases~Fig. 1!.
However, Eq.~2! is valid only in the limit k/k!1 and be-
comes inapplicable in the regionk/k'1, i.e., even beforeGL

becomes a quantity of the same order of magnitude as
frequency, and the concept of propagating plasma waves
comes meaningless.1 The v(k) andGL(k) dependences ca
be extended into the region of largek by solving a complex
functional equation, as described in Bekefi’s monograp30

with a citation to Ref. 31. The result shown in Fig. 1 mak
it possible to find the value ofk05ak (a52.34) for which
GL(k0)5v(k0) @in this case,v(k)/Ve53.5#. The quantita-
tive results of Ref. 31 cannot be considered very reliable
the regionGL /v'1, since the expressions used in this ca
formally go beyond the limits within which they are app
cable. However, this value ofa agrees with Ref. 21, where
is assumed that the motion of the particles in a plasm
moderately collective fork'2k, while the degrees of free
dom withk'k can already be considered completely colle
tive. These estimates refine the quantitative concepts use
Ref. 1.

The collisional dampingGc of the plasma waves~plas-
mons! is expressed in Ref. 1 in terms of the frequencynei of
the electron–ion collisions in the Lorentzian model:

Gc5nei/3A2p. ~3!

FIG. 1. Dispersion curves for an ideal plasma. The real part~1, 2! and the
imaginary part~3, 4! of the frequency of the plasma waves, computed fro
Eqs.~1! and ~2! and according to Refs. 30 and 31, respectively.
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In a Debye plasma,nei is mainly determined by long-rang
collective interactions with scattering at small angles and
described by the Landau collision integral

nei5^nevs t~v !&, ~4!

wherev is the electron velocity, the brackets denote aver
ing over velocities,s t is the electron momentum-transfe
cross section

s t}E
0

p/2

~12cosx!
cos~x/2!

sin3~x/2!
dx. ~5!

and x is the scattering angle. Sincex!1, the expression
under the integral in Eq.~5! approximately equalsdx/x.
Then

Gc /Ve5 ln Lg3/2/3, ~6!

where L5rmax/rmin5(1/4p)1/2g3/2 ~the total Debye radius
a5ae/2

1/2 is usually taken as the maximum impact para
eterrmax, while rmin5rL5e2b is taken as the minimum!.

Equation~6! is valid for g!1 (ln L@1) and becomes
inapplicable asg increases before the valueGc /Ve'1 is
reached. To estimateGc for large g, the value of lnL was
usually fixed when it attained a value of'3 ~Ref. 32! ~ex-
perimental data on electrical conductivity forg.0.1 indi-
cates that this is possible!. Then we haveGc /Ve51 when
g0'1.

According to the above estimates, the region in wh
plasma waves exist is thus limited by the inequalities

k,k0'ak, ~7a!

g,g0'1. ~7b!

The region of existence of plasma waves is sometimes
ited even more strongly by the inequality

Ve /nei.1.

It is this inequality that Iakubov and Khrapak,33 for example,
refer to when they assert that plasma waves cease to ex
a nonideal plasma. This explains why plasma waves are
mentioned in the monographs of Ebelinget al.28 and Fortov
and Yakubov.29

Another important characteristic for our treatment is t
numbers of collective degrees of freedom. The value ofs
can be estimated as the ratio of the volume of a sph
4pk0

3/3, to (2p)3/V, which gives the density of possibl
wave vectors in volumeV. In a Debye plasma,

s

3Ne
5

1

9p1/2 a3g3/2!1, ~8!

whereNe is the number of electrons in volumeV. It can be
seen that almost all the degrees of freedom remain in
vidual.

3. THE DAMPING RATE

Estimates ofGL andGc valid for g!1 require substan-
tial revision for the regiong*1. The key here is to naturally
limit the wavelengths of the plasma waves to about the m
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distance between the charged particles;23 in terms of wave
numbers, it corresponds to a bound of the Debye wave n
ber q0 :34

k,q05~6p2!1/3ne
1/3. ~9!

In a Debye plasma,q0@k, and the limitation of inequality
~7a! is stronger than that of inequality~9!. As g increases, the
inequality reverses:q0,k.

Landau damping is determined by electrons moving w
a velocity equal to the phase velocityv f of the wave:1

v f5
v~k!

k
.H Ve /k0.vT , g!1,

Ve /q0.vTkn21/3.vT , g>1.
~10!

In a Debye plasma, such electrons are thermal. In a n
Debye plasma, asg increases, a smaller and smaller numb
of electrons, corresponding to the far tail of the Maxw
distribution, contribute to the Landau damping, and
maximum value ofGL(q0) decreases with increasingg.
Thus, asg increases, the region ofk values in which strong
Landau damping could occur shifts toward largerk and is
displaced beyond the limitk5q0 . In other words, the role o
Landau damping decreases asg increases in the nonidea
region.

The estimates made in Sec. 2 for the collisional damp
rate become meaningless in a nonideal plasma, since,g
increases, a larger and larger role begins to be played
strong interactions at distances of the order of and less
n21/3. Three regions ofg can be distinguished, in each o
which interactions of a different type predominate:

~a! The regiong!1 (a@n21/3). Weak collective inter-
actions at distances'a are the determining factors.

~b! The regiong;0.1 (a;n21/3). The Debye characte
of the screening is maintained, but strong interactions at
tances of'n21/3 become the main interactions, while in
volving multiple particles.

~c! The regiong.1 (a,n21/3). The Debye radius lose
the meaning of a screening radius, and screening now t
place at distances of'n21/3 ~this is also suggested by th
results of numerical simulation35, 1!!. The character of the
interaction substantially changes in this case:36 Because the
Coulomb wells of the close-lying ions overlap, the electro
ion interaction potential effectively becomes short-ran
The main contribution tonei now comes from strong pair
wise interactions at distances of,n21/3 with scattering at
large angles.

To estimate the collisional damping rate for anyg, it is
convenient to introduce damping rateG1 andG2 , caused by
weak and pairwise strong collisions, respectively. The firs
them is described, as before, by the Landau collision inte
and the second by the Boltzmann collision integral, both
ing expressed in terms of the Coulomb scattering integra
Eq. ~5!. Going in Eq.~5! from angles to impact parametersr,
after integrating in the first case fromne

21/3/2 to a, and in the
second case from zero tone

21/3/2, we get for the regiong
!1

G1

Ve
5

g3/2

6
ln

L1
211

L2
211

~11!
-
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and for the regiong.1

G2

Ve
5

g3/2

6
ln~L2

211!, ~12!

whereL15a/r L , L25ne
21/3/2r L . There is a certain indeter

minacy~from 0.5 to 1! in the choice of the coefficient inL2 .
After averaging in Eq.~4!, the value ofmv2 under the loga-
rithm sign is replaced byT ~this estimate also introduce
indeterminacy!. In the limit g!1 we haveG1@G2 and G1

increases asg3/2. For g@1 the damping rateG2 decreases as
g21/2. Consequently, a maximum must exist in the interm
diate regiong;0.1. Its value can be estimated by summi
G1 andG2 :

Gc5G11G2 . ~13!

Here G150 holds forL1,L2 , since the concept of wea
collisions becomes meaningless whena,n21/3. Although
neither Eq.~11! nor ~12! can generally be used in the inte
mediate region, such an estimate can be supported by the
that all such collisions result in deviations by small ang
~the extreme case is the flight of an electron precisely
tween two ions!. Small deviations make a small contributio
to Gc . This is valid, of course, if Eq.~13! actually gives
small values ofGc . According to the estimate of Eq.~13!,
taking into account the noted indeterminacies, the maxim
of Gc /Ve is 0.08– 0.2!1 and is located atg50.8– 1.6.

It follows from these estimates that plasma waves
main weakly damped even wheng'1 andk'q0 . The re-
gion of their existence is substantially wider than that giv
by inequalities~7!; it is shown in Fig. 2, where the contour
of the total damping rate are also plotted. It can be seen
either Landau damping or collisional damping dominat
depending on the values ofk andg.

In considering the number of collective degrees of fre
dom in a nonideal plasma, it should be borne in mind that
have ak5q0 when g5gL . In Fig. 2, gL50.25. For g
.gL inequality ~8! becomes invalid. It follows from the
definition of the Debye wave numberq0 that

FIG. 2. Region of existence of plasma waves in a nonlinear plasma.
horizontal line isk5q0 , and the curves are the contours (Gc1GL)/v(k)
5const. The numbers near the curves indicate the values of the const
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s/3ne51/3 when g.gL . ~14!

The value 1/3 corresponds to the fact that only longitudi
oscillations are considered.

Thus, in a nonideal plasma, the number of collect
degrees of freedom has increased by comparison with a
bye plasma, while Landau damping has ceased to limit th

4. COLLECTIVE DESCRIPTION OF A NONIDEAL PLASMA

Since there are numerous well-defined collective mo
in a nonideal plasma, it is natural to attempt to use for s
a plasma the method of collective variables developed
Bohm21 to describe a gas plasma. This method was use
obtain the dispersion behavior of Eqs.~1! and ~2!, which
follows from the kinetic equations of Refs. 1 and 30. T
collective variables were defined in the form

rk~ t !5(
j

N

exp@2 ikxj~ t !#.

The case of a nonideal plasma is far more complex.
are dealing with a system of nonlinearly interacti
oscillators21 in which, unlike the case of an ideal plasma, th
interaction cannot be neglected.

In order to obtain equations of motion for collective e
citations in a nonideal plasma that can be used for su
quent qualitative analysis, it is necessary to modify
method of collective variables. In order to do this in t
present paper, we immediately use the heuristic estim
from Sec. 3; i.e., we assume that the damping of the pla
waves is small. Then, by analogy with Ref. 21, the Ham
tonianH of the system can be written as

H5Hos~rk!1H in~q,p!1DHkk81DHos–in, ~15!

whereHos(rk) is the Hamiltonian corresponding to the co
lective degrees of freedom,H in(q,p) is the Hamiltonian of
the individual degrees of freedom,q and p are the coordi-
nates and momenta of the separate particles, andDHkk8 and
DHos–in are corrections that allow for the interactions of t
collective modes with each other and with the individu
degrees of freedom. Strictly speaking, in a nonlinear plas
it is impossible to separate the collective and individual va
ables in the last two terms. Writing them thus in Eq.~15! is
justified only because of their assumed smallness.

We shall not give the explicit form for the Hamiltonia
in Eq. ~15!; this is rather complex, and there is no need fo
in the subsequent estimates in this paper. Therefore, we
mediately write the equations of motion for the collecti
variables, following from Eq.~15!:

r̈k52vk
2rk1Fkk81Fos–in, ~16!

where the last two terms are forces corresponding to
corrections in the Hamiltonian of Eq.~15!. The system of
Eqs. ~16! recalls the system for weakly coupled oscillato
considered in Ref. 37. They differ only in the presence of
term Fos–in, describing the interaction of an oscillator wit
the mean of the individual particles, which can be regard
as interaction with a thermostat. Reference 37 investiga
the relaxation of a Hamiltonian system of coupled oscillat
l
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at times small by comparison with the Poincare´ recurrence
time. In this case, equations like Eq.~16! were represented in
the form

r̈k52vk
2rk1Geff ṙk1y, ~17!

whereGeff is the effective coefficient of friction, whiley(t)
is a d-correlated random force,̂y(t)y(t8)&52Drd(t2t8),
whereDr is the diffusion coefficient inr space. In our case
only the presence of the thermostat makes it easy to go f
Eq. ~16! to Eq. ~17!.

Thus, the equation of motion of the collective variabl
can be reduced, at least in principle, to simpler equation
Langevin type. The simplification, in particular, consists
the fact that, unlike Eq.~16!, Eq. ~17! depends only on its
wave vector. The damping due to the interaction of differe
collective modes, following fromFkk8 , and the damping
caused by interaction with the individual degrees of freed
and following from Fos–in are combined into an effective
coefficient of friction.

Note that Eq.~17! differs from the equation for dampe
oscillations by the presence of random excitationy(t). Its
appearance could have been foreseen initially, since Eq.~17!
models a subsystem of the collective degrees of freedom
the entire system of Eqs.~15! at constant temperature.

As in the ordinary method of collective variables, isola
ing the collective degrees of freedom limits the motion of t
individual quasiparticles to a neighborhoodDE of a certain
hypersurface in phase space with dimension 3Ne2s. How-
ever, unlike the case of a Debye plasma, this neighborhoo
apparently rather large~because of the fluctuation–
dissociation theorem of Ref. 37,DE}Dr5nk2GeffvT!, which
expresses the far stronger coupling between the collec
and individual degrees of freedom.

Equation ~17! can be analyzed similarly to the usu
equation for a stochastic oscillator.38 In this case, the concep
of the normal frequency of an oscillator becomes meani
less, and its role is taken over by the frequencyv1 at which
the maximum response to the random forcey(t) of Eq. ~17!
occurs. For this frequency, the expressionv1

25vk
22Geff

2 ,
which is well known in mechanics, is valid. The quanti
Geff , unlike the case of Landau damping, has a dissipa
character. The quantitiesvk andGeff must of course be de
termined by successively carrying out the transformatio
given in Eqs.~15!–~17!. However, for the estimates in thi
paper, we usevk5v(k) from Eq. ~1! or Ref. 31 andGeff

5GL1Gc from the estimates in Sec. 3.

5. THE POTENTIAL ENERGY OF THE PLASMA AND THE
ELECTRIC-FIELD FLUCTUATIONS

5.1. The correlation energy

The mean potential energy of a system with an elec
magnetic field is expressed in terms of the mean square e
tric field ~the contribution of the magnetic field is small!:

U5^E2&/~8p!. ~18!

In thermal equilibrium at temperatureT, the space–time
spectrum of the electric-field fluctuations and conseque
the mean square electric field, according to the fluctuatio
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dissipation theorem, are determined by the spectrum o
particular dissipative quantity—the imaginary part of the
verse longitudinal permittivity:2,30

U52
T

~2p!4 E d3kE dv

v
ImF 1

«~k,v!G . ~19!

This integral can be computed by various means. If the in
gration overv is done first, it is obvious that, because of t
analytical properties of the expression under the integral,
integral in Eq. ~19! over v can be expressed in terms
values of«(k,0). We represent the factors of the integrand
the form

1

v
5

1

2
lim
D→0

F 1

v1 iD
1

1

v2 iD G .
2ImF 1

«~k,v!G5
1

2i H F12
1

«~k,v!G2F12
1

«* ~k,v!G J ,

after which, the integral in Eq.~19! can be computed:2

U5
T

2~2p!3 E d3kF12
1

«~k,0!G5
T

~2p!2 E F~k!dk.

~20!

The integral in Eq.~20! diverges@in particular, in a Debye
plasma, the integrand is proportional toae

2k2/(11ae
2k2) and

goes to infinity when it is integrated overd3k#. This is the
ordinary Coulomb divergence, associated with the infin
self-energy of the electromagnetic field. There is physi
interest in a finite quantity, namely, the energy gainUcorr

5U2U0 from the mutual correlations, whereU0 is the en-
ergy of an uncorrelated Coulomb system. The quantityUcorr

is the potential part of the thermodynamic function, i.e.,
internal energy of the system. To computeU0 , we use the
fact that the correlations weaken as the temperature is
creased; i.e.,

U05 lim
T→`

U.

This limit can be represented in the form of an integral o
the wave vectors:23

U05
1

2~2p!3 E d3k lim
T→`

FTS 12
1

«~k,0! D G . ~21!

As T→`, the plasma becomes a Debye plasma, and th
fore the limit of the quantity in brackets equalsT(k/k)2

54pnee
2/k2. From this we get that

Ucorr52
T

2ae
3~2p!2 E d~kae!

3H 12F12
1

«~k,v!G~kae!
2J . ~22!

The quantityU0 can also be written in more general form
Since«(k,0).11o(1/T) at high temperatures, the integran
in Eq. ~21! can be written with the same accuracy
T(«(k,0)21), andUcorr can be obtained39 in the form

Ucorr52
T

2 E d3k

~2p!3

@«~k,0!21#2

«~k,0!
, ~23!
a
-

-

e

e
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e
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which agrees with the general expression for the correla
energy @Eq. ~85.15! in Ref. 40#. The integral in Eq.~22!
corresponds to the region between straight line1 @the first
term in braces in Eq.~22!# and curve2 ~the second term! in
Fig. 3 and is finite. In the case of a Debye plasma, at ro
temperatures, we get

Ucorr52
T

ae
3~2p!2 E

0

` d~kae!

11~kae!
2 , ~24!

which gives the well-known expression for the Coulom
energy38

Ucorr/NT52Apg3/2.

To make the transition to a nonideal plasma, the integra
in Eqs. ~18!–~24! must be carried not to infinity, but to
k'q0 . In a Debye plasma,q0@k, and this restriction is
unimportant. In a nonideal plasma, the indicated strong
equality is not satisfied, and the integration must be carr
only to q0 ~the region between curves1, 2 and3 in Fig. 3!.
Then, by extrapolating the Debye expression for«(k,0) into
the strong-coupling region~this is valid at least in the long
wavelength limit1!!, for Ucorr we get

Ucorr/NT52~2/p1/2!g3/2 arctan~q0ae!. ~25!

This expression was obtained in Ref. 23 by somewhat dif
ent means.

5.2. Electric-field energy of longitudinal plasma waves

There is particular interest in the energy of the longi
dinal plasma waves. This energy can be estimated in
equilibrium case by assigningT/2 to each collective degre
of freedom and assuming that the number of collective
grees of freedom equals the volume of the phase spac
wave numbers.4,5 This volume is aboutk3 for a Debye
plasma and aboutq0

3 for a nonideal plasma. It is assumed
this estimate that the plasma waves are undamped fork,k
~or q0!, whereas these waves do not exist fork.k ~or q0!.

FIG. 3. Energy densityF(k) of the longitudinal modes:1—uncorrelated
charges,2—correlated charges,3—k5q0 , 4—collective modes in the ab-
sence of damping,30 5—collective modes with damping taken into accoun
The definition ofk1 is given in the text.
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To refine the numerical coefficients, compute the ene
distribution overk taking damping into account, and obtain
smooth transition from the Debye case to the nonideal c
Eq. ~19! should be integrated first overv and then overk in
the region of where these modes exist. In Ref. 30, such
estimate is made for a low-density plasma on the assump
of infinitely small damping, Im@«(k,v)#→0. In this case, the
integrand in Eq.~19!

A~v,k!5v21 Im@«21~k,v!#

is equal to

A~v,k!5~p/2!Ved~v2Ve!/v, ~26!

and, after integrating overv, the ratio of the electric-field
energy of the collective modes to the thermal energy of
electrons equals

j5
^E2&

8p•~3/2!neT
5

1

6p2ne
E

0

kmax
k2dk. ~27!

It is assumed in Ref. 30 thatkmax5k. Then

j50.17g3/2. ~28!

However, if the choicekmax52.34k is correlated with Fig. 1,
we get

j52.17g3/2. ~29!

In such an estimate, the damping of the waves is neglecte
the approximation tokmax52.34k; i.e., the estimate given by
Eq. ~29! overestimatesj.

It might be thought that the truth lies between Eqs.~28!
and ~29!. However, the estimates of Eqs.~28! and ~29! can
be refined without assuming that the damping is infinit
small by numerically integratingA(v,k) in the region where
the collective modes exist@the maximum ofA(vk) for a
given k# by using the following expression for th
permittivity:30

«~k,v!512~Ve /v!2F~x!,

F~x!522x2F122x exp~2x2!

3E
0

x

exp~ t2!dt2 iApx exp~2x2!G ,
x5v/~&kvT!.

It is easy to integrateA(v,k) over v in the regionkae

<0.7, where the collective modes are well defined~Fig. 4,
curves1 and2!. The result of integration overv is given by
curve5 in Fig. 3. It can be seen that this curve already beg
to deviate from curves2 and 4 when kae'0.3. For larger
kae values, the estimate acquires an extremely approxim
character, since it is now difficult to separate the contrib
tions to the integral ofA(v,k) from the individual and the
poorly defined collective modes~curve3 in Fig. 4!.

The integral overk from zero to infinity, or actually to
k1 (k,k1,2.34k), of the function corresponding to curve5
in Fig. 3 determines the quantity

j50.11g3/2, ~30!
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which is less than the estimates from Eqs.~28! and ~29!.
In the case of Eq.~29!, the limiting value of wave num-

ber q0 becomes comparable withak at gL , whereas, in the
case of Eq.~28!, this occurs for some valueg.gL . The
value ofj reaches its limiting value of 1/3 for these values
g and then does not change asg increases. However, accord
ing to the estimate given by Eq.~30!, only the coefficient
begins to decrease atg values for whichq0 is less thank1 ,
whereas the value ofj itself becomes equal to 1/3 whe
g'15.

Recalling that these estimates are approximate,
should expect that the value ofg at whichj51/3 is attained
lies between 0.25 and 15 and can be refined~at this stage of
the investigations! by comparing with the results of a nu
merical experiment.

6. DISPERSIVE BEHAVIOR

We take Eq.~1! as the starting point for estimating th
dispersion of the plasma waves. The dispersion term pro
in it, 3Ve

2ae
2k2, has a gas-dynamic character. The coeffici

for k2, which equals 3T, is r 5(]P/]n)h for an ideal gas
(P5nT) in a process with polytrope indexh53.4 For a
nonideal plasma,r can be computed by using Eq.~25! for the
Coulomb energy. We get

r 53T@12~2/3Ap!g3/2 arctan~q0ae!#; ~31!

i.e., the value is smaller than for an ideal gas. The result
the estimate are given in Fig. 5, along with the data o
molecular-dynamics calculation.13 It can be seen that the
qualitative change of the dispersion curves asg increases
corresponds to the tendency of the values ofvk to decrease,
observed in a computer experiment.

The largest divergence between curve2 and the points
obtained from the data of Ref. 13 is observed at largek. This
divergence can be associated with the fact that curve2 and
the points in Fig. 5 relate to different values. The poin
correspond to the maxima of the dynamic structure fac
i.e., to the statistical estimate ofk2A(v,k). As far as curves
1 and2 are concerned, they are the real parts of the soluti

FIG. 4. Power spectrumA(v,k) of the longitudinal modes:1—kae50.3,
2—0.7, 3—1.
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vk8 of the dispersion equation«(k,v81 iv9)50 for an ideal
and a nonideal plasma. The position of the maximum
A(v,k) in v coincides with the solutionvk8 of the dispersion
equation only if the dampingvk9 of the plasma waves is
assumed to be infinitely small. Only then@as in Eq.~26!# is
the functionA(v,k) a singular term of Sokhotski�’s formula,
and the support of this function reduces to the solution
equation«(k,v)50.

If the damping is nonzero, this function,

A~v,k!52
Im «

u«~k,v!u2v
,

is regular, and its maximum approximately corresponds
the maximum of the first factor or to the minimum of th
function u«(k,v)u25«821«92 ~«8 and «9 are the real and
imaginary parts of the permittivity!. Close to the solution of
the dispersion equation we have«8'A(v2vk8) and«9'B
1C(v2vk8), and it is possible to write«821«92'(A2

1C2)(v2vk8)
212BC(v2vk8)1B2. The minimum of such

a quadratic trinomial occurs atvmax,k5vk82BC/(A21C2). For
small damping, the values ofB andC are infinitesimal. Ask
increases, theB andC values increase whileC remains posi-
tive, andvmax,k shifts toward smallervk8 values.

Figure 5 shows the dependence ofvmax,k for an ideal
plasma, calculated numerically from curves of the fo
shown in Fig. 4. It can be seen that thevmax,k curves are
below curve1 in Fig. 5 whenkae.0.4. The same effect with
respect to curve2 is also expected for a nonideal plasma. A
estimate of the maximum displacement~for k'q0! gives a
value of orderVeg

5/2.
The determination of the correlation energy in Sec. 5 a

the influence of the equation of state on thev(k) dependence
makes it possible to connect the approach developed in
paper with the approach in which the main effect comes fr
computing the contribution of the short-range~quantum! in-
teraction to the thermodynamic functions~see, for example
Ref. 28 and the references therein!. First, the corresponding
equations of state can be used in calculatingr ; in this case,
however, the correlation energy of Eq.~25! should be

FIG. 5. Dispersion of plasma waves in a nonideal plasma. Calculat
1—Refs. 30 and 31,2—according to Eq.~31!, g51.56, 3—vmax,k .
Molecular-dynamics data:13 squaresg50.39, trianglesg51.56.
f

f

o

d

is

supplemented by the short-range contribution, as is done
a Debye plasma. Second, it can be expected that there
short-range effects on the dispersion characteristics fork val-
ues close tokmax, as occurs for the phonon spectra.

The dependence of the damping rate on the wave n
ber is shown in Fig. 6. The two analytical curves correspo
in their minimum and maximum to the estimates of the Co
lomb logarithm in Eq.~12!, made in connection with the
indeterminacy of the numerical coefficients mentioned
Sec. 3.

The estimate from Sec. 3 agrees fairly well with th
results of the numerical simulation of Ref. 13 in the region
k where Landau damping dominates. Unfortunately, in
region of smallk, where the main contribution must be from
collisional damping, there are no results of a molecul
dynamics calculation.

Table I shows the results of an experimental observa
of plasma waves. References 6–8, 41, and 42 only reco
that plasma oscillations exist for some values of the cha
density and temperature. Values ofv(k) for the conditions
of Ref. 8 were found in Ref. 9 by interpreting the results
electrical conductivity measurements. It follows from Tabl
that plasma waves are reliably observed even in the regio
valuesg.0.2– 1 for the coupling constant, where, accordi
to Sec. 3, the total damping rate must reach a maximum

7. INDIVIDUAL DEGREES OF FREEDOM

By differentiating Eq.~15! with respect top andq, we
can find the equations of motion for the quasiparticles~elec-
trons! corresponding to the individual degrees of freedom

n:FIG. 6. Damping rate of plasma waves in a nonideal plasma:1 and2—Eq.
~12! using an estimate of the Coulomb logarithm from the minimum and
maximum. Molecular-dynamics data:13 squares g50.39, triangles g
51.56.

TABLE I. Values of the coupling constant for which plasma oscillatio
were experimentally observed.

g50.2 g50.5 g50.2– 1 g50.5 g50.25

v/Ve – – 1.060.1 – –
Refs. 6 7 8 41 42
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dpi

dt
5¹(

j
F~qi j !1 f in–os. ~32!

HereF(qi j ) is the potential energy of the interaction of ele
tron i with chargej ~including ions!, and the forcef is cre-
ated by the electric field of the collective modes. We rec
that, in a nonideal plasma, the potentialF in Eq. ~32! should
be considered the short-range core of the Coulomb poten
and scattering off it is strong but effectively pairwise. Co
lective scattering at large distances, on the other hand
described by the second term in Eq.~32!.

In the simplest form, the forces in Eq.~32! can be speci-
fied as follows: When the collective variables are separa
out, the long-wavelength part of the Coulomb interacti
forms a field of plasma waves.4,21 In a Debye plasma, the
limiting vector that separates the collective fields from t
short-wavelength interaction (;k) was not sufficiently well-
defined. This, however, was compensated by the fact tha
actual contribution came only from the regionsk!k and
k@k, and the plasma was correctly described.

For significantly strong coupling, the situation chang
Now the limiting vector is defined unambiguously—it isq0 ,
and the integral

F~r !54pE d3k

k2 exp~2 ik•r !,

taken overk.q0 can be used as the potentialF.
Both force terms in Eq.~32! correspond to certain sca

tering cross sections and the electron relaxation times or t
effective scattering frequencies defined in terms of th
cross sections. The considerations explained in Sec. 3 in
timating the collisional damping of plasma waves are va
for the collisional part of the effective frequencync , andnc

differs from Gc from Eq. ~13! only by a coefficient:1,43

nc5~3p/16ae!Gc ,

where, in a singly ionized low-density plasma, the coeffici
ae50.582, according to Ref. 43, allows for the electron
electron interaction. We shall use the same value ofae for
the estimates.

The scattering cross section for the interaction of el
trons with plasma waves was first computed in Ref. 44 a
equalled the Rutherford cross section but without the C
lomb logarithm. The interaction frequency, however,
given by the expressionnos5jVe . The total effective fre-
quency of the ‘‘collisions’’ can be written in the form

neff /Ve5nc /Ve1nos/Ve . ~33!

Note that a formula of the form Eq.~33! was first used to
estimate the electrical conductivity of a nonideal plasma
Ref. 36. For smallg, both terms in Eq.~33! increase asg3/2,
whereas, for large degrees of nonlinearity, the first term
creases asg21/2 while the second approaches a const
'1/3 along with the total effective frequency. The results
an estimate for the two expressions forj from Eqs.~28! and
~30! are shown in Fig. 7, in comparison with the data o
molecular-dynamic experiment of Ref. 45 with regard
electronic relaxation times. It can be seen that taking plas
waves into account strongly changes the estimates of
ll
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collision frequency and, along with it, the electronic tran
port properties of the plasma. The latter question deserv
separate treatment.

8. CONCLUSION

The construction of a theory of a nonideal plasma at
same level of rigor as for a Debye plasma is made poss
by the smallness of the dampingG/Ve . However, this theory
cannot be constructed by expanding in the small param
G/Ve , since no analytical representations have yet b
found that describe the properties of the plasma as a func
of this parameter.

The identification of the contribution of the collectiv
degrees of freedom in the Hamiltonian is associated with
most general properties of the motion of charged partic
i.e., the topology of the isoenergetic hypersurface in
phase space of the system must be equivalent to the topo
of a torus. The dimension of this torus determines the nu
ber of oscillational degrees of freedom. The validity of the
assertions would support the correctness of the approac
Ref. 37 in the general case, as well as the possibility of us
it for a nonideal plasma.

The shape of the phase hypersurface needs to be stu
using computer simulation. The topological properties of
phase trajectory must then be studied by modern method
differential geometry and mathematical statistics. This w
confirm the validity of the assumed approach to the theory
a nonideal plasma.

We thank A. A. Rukhadze and M. V. Netsina for intere
in the work and for support.
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Experiments on two-step heating of a dense plasma in the GOL-3 facility
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This paper presents the results of experiments on two-stage heating of a dense plasma by a
relativistic electron beam in the GOL-3 facility. A dense plasma with a length of about a meter and
a hydrogen density up to 1017 cm23 was created in the main plasma, whose density was
1015 cm23. In the process of interacting with the plasma, the electron beam~1 MeV, 40 kA, 4
ms! imparts its energy to the electrons of the main plasma through collective effects. The
heated electrons, as they disperse along the magnetic field lines, in turn reach the region of dense
plasma and impart their energy to it by pairwise collisions. Estimates based on experimental
data are given for the parameters of the flux of hot plasma electrons, the energy released in the
dense plasma, and the energy balance of the beam–plasma system. The paper discusses the
dynamics of the plasma, which is inhomogeneous in density and temperature, including the
appearance of pressure waves. ©1998 American Institute of Physics.@S1063-7761~98!01003-8#
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1. INTRODUCTION

Studies in the physics of the interaction of powerful re
tivistic electron beams with a plasma have, besides gen
plasma-physics purposes, the task of developing a metho
heating the plasma for a reactor based on a multiple mi
confinement system.1–3 As is well known, such a reacto
must have a plasma with a density of 1017– 1018 cm23 in
order to possess acceptable technical parameters.3 At the
same time, because of collective effects~mainly because of
the development of Langmuir turbulence!, for existing pa-
rameters of relativistic electron beams, energy transfer fr
a beam to a plasma attains high efficiency when the pla
density does not substantially exceed 1015 cm23.4–7 When
the plasma reaches a density of even (3 – 5)31015 cm23, the
beam imparts virtually none of its energy to it. This is b
cause, as the plasma density increases, the growth rate o
beam instability becomes less than the collision frequen
and instability does not develop.

To avoid this limitation on the density, so-called tw
stage heating of a dense plasma was proposed in Refs. 3
8. The essence of this system is that the plasma is div
into a region with a density of about 1015 cm23, located at
the center of the facility~efficient relaxation of the beam
occurs in it, with the beam energy being mainly imparted
the electrons of the plasma—see, for example, Refs. 9
10!, and two adjacent regions with a plasma density
.1017 cm23 suitable for tandem-mirror confinement. In su
a system, the electrons of the low-density plasma heate
the beam disperse along the magnetic field, are retarde
pairwise Coulomb collisions in the dense plasma, and t
heat it.

The GOL-3 facility was created at the Institute
Nuclear Physics, Siberian Branch, Russian Academy of
ences, to study the heating of a dense plasma by means
4891063-7761/98/86(3)/12/$15.00
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relativistic electron beam and the physics of multiple-mirr
confinement. The first phase of this facility is intended f
studying the interaction of a microsecond electron beam w
a plasma.11 The first phase, the GOL-3-I, is distinguishe
from the full-scale facility by a shorter magnetoplasma s
tem and lower beam energy.

A plasma column inhomogeneous in density can
formed in an experiment by several methods. One metho
to place thin foils across the plasma column. The mate
that comprises a foil heats up, quickly vaporizes, is ioniz
under the action of the flux of plasma electrons, and forms
expanding gas–plasma cloud with high initial density. A fl
of plasma electrons having an energy of 1–5 keV was
corded at the surface of the end foil in model experime
with nanosecond electron beams;12 heating and expansion o
the surface layer of this foil was observed. Experiments
which thin organic films were used as a target were carr
out in the GOL-3 facility. These experiments are briefly d
scribed in Ref. 13, where it is shown that the beam efficien
heats the dense plasma of the foil in a two-stage manne

In this paper, to form a dense plasma bunch, a cloud
hydrogen with a given length and density was admitted i
the discharge chamber. This modification of the two-sta
heating method is shown schematically in Fig. 1. Such
method of obtaining a region with a dense plasma is con
nient in allowing various parameters to be measured imm
diately inside the cloud. Moreover, it is also more efficie
since there is no need to replace the combustible foils. P
liminary summaries of parts of these experiments have b
published in Ref. 14.

2. DESCRIPTION AND OPERATING REGIME OF THE GOL-3-
I FACILITY

The layout of the facility is shown in Fig. 2, and a d
tailed description of it is given in Ref. 11. We recall briefl
© 1998 American Institute of Physics
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FIG. 1. Two-stage heating system.
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that the GOL-3-I facility consists of a U-3 electron-bea
generator, a plasma chamber inside a solenoid with a
form field of up to 6 T at alength of 7 m and 12 T at the
individual mirrors at the ends, a 10-MJ capacitor bank
supplying the solenoid, and systems for control, monitori
and diagnostics. In the experiments discussed in this art
the facility was operated with the following parameters: T
magnetic field was 5.5 T in the uniform part of the soleno
and 11 T at the mirrors, and the initial hydrogen plas
column was 7 m long and 8 cm in diameter. The electr
beam had an energy of 0.8–0.9 MeV, the maximum curr
density in the plasma was about 1 kA/cm2, the beam diam-
eter in the plasma was 6 cm, the pulsewidth was 4ms, and a
typical energy content in the beam was 70620 kJ ~Fig. 3!.

The following beam parameters were measured in
experiments: the currents, the voltage on the cathode, an
total energy; moreover, a magnetic analyzer of the be
spectrum was installed at the output of the plasma cham
in certain experiments. Optical interferometers with a wo
ing wavelength of 3.39 and 0.63mm, diamagnetic sensors
and detectors of soft x rays and VUV radiation were used
measure the parameters of the plasma and of the gas c
The broadening of theHa line profile was also measured b
means of a polychromator with a dissector tube. Two s
tems of Thomson scattering of the laser radiation were u
in the experiments. The diagnostic facility is described
more detail in Ref. 7. In the rest of this paper, thez coordi-
nate along the magnetic field is measured from the middl
the input mirror.
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3. DESIGN OF THE EXPERIMENTS AND FORMING THE GAS
CLOUD

To directly model the two-stage heating of a den
plasma on the GOL-3-I facility, a series of experiments w
performed in which a high-density hydrogen cloud was us
as a target for slowing down fast plasma electrons. Here
below in the text, the termcloud will relate to a section of
increased density before the beam is injected, and we s
call this object in the process of heating and subsequent
persal aplasma bunch. The cloud in the experiments de
scribed here was created by means of a local pulsed
puffing. The gas pulse was formed by means of positi
action electromagnetic valves,15 optimized to have short op
erating times and high gas throughput. Two assemblies
four valves each were mounted on the facility. One assem
was placed at a distance ofz512.40, or 270 cm from the
input foil, and the other atz5575 cm. The valves could be
operated separately or together. The structure of the v
made it possible to obtain up to 1021 hydrogen molecules pe
pulse from each assembly.

The experimental scenario was as follows: Hydrog
with a concentration corresponding to the required plas
density in the uniform part was first admitted into th
vacuum chamber of the facility through a palladium in
valve. The concentration of the hydrogen thus admit
could be varied over the range 1013– 1016 cm23. Most of the
experiments were performed with a uniform plasma den
of (3 – 5)31014 cm23, at which a relativistic electron beam
-
FIG. 2. Layout of experiment GOL-3-I and place
ment of the diagnostic facility.1—U-3 beam-
generator diode,2—input mirror ~coordinatez50!,
3—pulsed valves,4—interferometers,5—x-ray de-
tectors,6—pyroelectric bolometer,7—VUV detec-
tor, 8—solenoid with vacuum chamber,9—
electrooptic detector of soft x rays,10—exit module
~beam detector, beam-spectrum analyzer!, 11—
electrooptic detector of hard x rays,12—lightguides
to the spectrum analyzer,13, 14—Thomson-
scattering systems,15—VUV sensor.
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FIG. 3. Typical oscilloscope tracings of the cathode voltageU, the
beam currentI , and the signalnTSof the diamagnetic sensor.
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efficiently interacts with a plasma. After the chamber w
filled with hydrogen, the magnetic field was switched on, a
then the pulsed gas valves were opened, forming a de
cloud. At the proper time, a forward discharge was trigger
which formed the initial plasma channel. After the prelim
nary plasma was formed, an electron beam was injected
the chamber. The length of the gas cloud and its density
location could be varied.

In experiments with a dense gas bunch, the forwa
discharge operating regime differed somewhat from the s
dard regime, described earlier in Ref. 7. The discharge
rent flowing through the plasma was decreased by a s
factor. This had the effect that the hydrogen was inco
pletely ionized even in the homogeneous part. The resul
plasma density was nevertheless sufficient for normal in
tion of the beam. Ionization is subsequently quickly co
pleted, partially by the electron beam, but mainly by t
heated plasma electrons.

To accurately determine the parameters of the hydro
cloud, the expansion of the gas through the chamber
studied on a special test stand that simulated a 2-m seg
of the plasma chamber of the facility. The gas density w
measured on the test stand and in the GOL-3 facility by
interferometer operating at a wavelength of 0.63mm. The
dependence of the hydrogen density on time is shown in
4. The cloud reaches its maximum density at time 1.3 m
the site where the gas is injected. As the initial gas press
is reduced, the hydrogen concentration decreases linear
the valve. The integral of the density along the axis of
facility was also measured. The scatter of the experime
points in measurements over a large series of valve trig
ings was 10%, which corresponds to the error in determin
the density from interferometric measurements. The ac
racy in measurements by means of the interferometer
determined by the detector noise and by vibrations,
therefore the gas-density profile in regions with a dens
below 231015 cm23 was determined by solving the one
dimensional self-similar problem of the flow of gas along
tube.16,17
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4. HEATING A UNIFORM PLASMA

We shall briefly present the main results of a study of
interaction of a relativistic electron beam with a unifor
plasma in the GOL-3-I facility~they are explained in Ref. 7!,
which are required in discussing and interpreting the res
of experiments on the two-stage heating of a dense plas
High transfer efficiency of the beam energy to the plasma
obtained in the experiments when the density is as muc
(1 – 2)31015 cm23. As the plasma density is increase
above this value, a decrease was observed in the relaxa
efficiency of the relativistic electron beam.

During heating, the energy content of the plasma
creases approximately linearly until the instant that
power of the injected beam is sharply decreased. Figur
shows a typical diamagnetic signal, measured by a sens
a distance ofz540 cm from the input foil. Inhomogeneity o
the energy release over the length of the facility is obser
and persists during the entire time that the beam is be
injected because of anomalously low longitudinal electro
thermal conductivity.

Measurements of the energy content and the ene
spectrum of the beam at the output from the plasma sh
that the beam loses as much as 25% of its energy as a r
of collective interaction with the plasma. The main, therm

FIG. 4. Molecular density of hydrogen vs time, measured across the vac
chamber at various distances from the site where the valves are instal
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ized plasma component, with a density of about 1015 cm23,
can have a temperature of about 1 keV in the region of
maximum energy release~Thomson diagnostics located
z5270 cm were used to measure a plasma temperatur
0.6 keV at the maximum of the heating at the indicated d
sity!. Besides this, there is a group of superthermal electr
that contains a significant fraction of the energy lost by
beam. The characteristic energy of these electrons excee
least 10 keV, and their instantaneous density at the end o
heating pulse is several percent of the plasma density.
total power of the beam of superthermal electrons at the
has a scale of 10 MW/cm2, scaled to a magnetic field of 5 T

The total energy content of the plasma column can re
3.5–4 kJ, which is'5% of the total energy of the beam
under optimum conditions. The remaining energy lost by
beam escapes at the ends of the facility during the hea
pulse and can be used for heating the dense plasma bu

Cooling of the plasma after the beam injection cease
well described by classical electron thermal conductivity
the ends. The measured transverse energy losses from
plasma are insignificant.

An important difference between the physics of expe
ments in the GOL-3-I facility and experiments with nanose
ond beams4–6 is the increased role of slower, including ma
roscopic, processes~motion of the plasma, heat transfe
stability, charge exchange processes!, which in some cases
substantially determines what processes occur.

5. RESPONSE TO HEATING OF A DENSE EXTENDED
BURST

The first cycle of experiments was devoted to a study
the process of heating a cloud whose maximum density
(0.2– 2)31017 cm23 occurs at the point where the gas
admitted. The pulsed valves were placed close to the in
foil ~at z512 or 40 cm!. The following quantities were var
ied in the experiments: the initial pressure in the valves
the range 2–15 atm~determines the maximum density for
constant density profile along the length!; the plasma density
in the homogeneous part, in the range 331013– 1016 cm23

~determines the efficiency with which the beam intera
with the plasma and to a significant extent the spectrum
the hot plasma electrons!; the delay of the triggering of the
beam with respect to the time that the valves are switc
on, in the range 0.5–2.5 ms~determines the length of th
cloud for a weakly varying maximum density!. These experi-
mental parameters correspond to a length of the cloud e
to 0.5–4 m at the instant when the beam is injected~the
length of the cloud is conventionally defined by the regi
where the density exceeds 531015 cm23; we recall that, for
such a plasma density, the beam no longer interacts wi
directly!.

The two-stage heating effect of a dense bunch is ill
trated in Fig. 5. The gas-density distribution for our expe
ment is also shown in this figure. With a valve-triggerin
delay of 1.75 ms, the gas cloud is about 300 cm long. It
be seen that the plasma pressurenT at the pointz5240 cm
~close to the limit of the bunch! is a factor of 3–4 higher than
in the case of a uniform plasma. The plasma pressure
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creases somewhat in the depth of the bunch but is alw
much higher than the pressure obtained when the beam
rectly interacts with a plasma whose density equals the lo
density of the bunch. A substantial increase of the plas
cooling time is also observed in the depth of the bun
which is evidently associated with the decreased role of e
tronic thermal conductivity to the ends as the plasma den
increases and its temperature decreases.

As the length of the cloud decreases, the region of ma
mum plasma pressure follows its boundary. Figure 6 show
set of signals from the diamagnetic sensors for a delay of
ms ~the cloud is about 50 cm long!. It can be seen that the
plasma pressure now sharply increases atz540 cm. For this
size of bunch, the maximum plasma pressure isnT52.8
31018 eV/cm3 for a local plasma density of abou
1016 cm23. Note that the pressure peak is always close to
boundary of the bunch and that the length of the increas
pressure region depends on the gas-pressure distribution
the length of the facility.

Starting from the diamagnetic measurements and m
surements of the plasma density and temperature by m
of a laser-scattering system, the plasma parameters wer
termined in a dense bunch and in a uniform plasma. Figu
shows the results of such measurements. It can be seen
for the case shown here, at the point of the laser meas
ments (z5270 cm), the plasma temperature at the maxim
of the heating reaches 0.18 keV when the density
631015 cm23.

As the delay is increased, there is a time when the

FIG. 5. ~a! Distribution of the atomic density of hydrogen over the length
the facility when the beam injection is delayed by 1.75 ms relative to t
gering of the valve.~b! Plasma pressure at several points along the length
the plasma column. The thin curve indicates injection into a uniform plas
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cloud fills a substantial length of the facility. In this case, t
region of efficient interaction becomes small, the heating
ficiency drops, and hence a smaller fraction of the be
energy is transferred to the bunch of hot plasma electro
When the density of the homogeneous plasma exce
1015 cm23, the efficiency with which the beam interacts wi
the homogeneous plasma decreases, and the energy tran
into the dense bunch accordingly decreases sharply.

6. ABSORPTION OF FAST ELECTRONS IN THE BURST

The set of experiments that was carried out showed
the parameter that determines the character of the en
release in the bunch~while identical conditions are main
tained with respect to the relaxation of the beam in the
mogeneous part of the plasma! is the quantity

FIG. 6. ~a! Distribution of the atomic density of hydrogen over the length
the facility when the beam injection is delayed by 0.5 ms relative to t
gering of the valve.~b! Plasma pressure at several points along the lengt
the plasma column. The thin curve indicates injection into a uniform plas
e
f-
m
s.
ds
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^nl&5E ~n~ l !2n0!dl,

wheren( l ) andn0 are the local density of the cloud and th
density of the homogeneous plasma, andl is the distance
measured from the uniform plasma into the interior of t
bunch. For cases with different distributions of the hydrog
concentration over the length of the facility, the plasma p
rameters by the end of the heating pulse are identical
points with an identical value of̂ nl&. Therefore, even
though the sensors of the plasma pressure are located
significant distance from one another, the set of experime
makes it possible to study the dependence of the plas
parameters on̂nl& with far better spatial resolution.

The results of diamagnetic measurements were use
find the character of the distribution of the absorbed ene
as a function of the depth of the bunch. Each measurem
corresponds to a definite value of the gas densityn at the site
where a sensor is placed; accordingly, the energyEa per
starting atom was computed at this point. Since the abso
temperatures are not very large in the densest part of
bunch, the hydrogen ionization energyEi

a ~taken from Ref.
18! was allowed for in the calculations.

Let us first consider how the temperatures of the el
trons and ions in the bunch are connected as a function
Ea . In the part of the bunch adjacent to the homogene
plasma, the diamagnetic signal

W5~3/2!n~Te1Ti !S

is caused only by the electrons (Te@Ti), since the ions are
not susceptible to heating. Forn5731015 cm23 and Te

5200 eV (̂ nl&;431017 cm22) the energy-exchange time
between the electrons and ions is 10ms, whereas, forn52
31016 cm23 andTe550 eV (̂ nl&;1018 cm22) it decreases
to 0.2 ms. The plasma can therefore conventionally be
sumed to be isothermal for^nl&.1018 cm22. In this case we
have Te5Ti . This relationship remains valid until̂nl&
;1019 cm22, when the temperature decreases so much
the plasma becomes incompletely ionized. It can be found
solving the Saha equation that the degree of ionization is
fairly high at^nl&51019 cm22 and amounts to 95%, wherea
it decreases to'50% when^nl&'1.531019 cm22.

The dependence ofEa on ^nl& was next plotted~Fig. 8!.
As can be seen, the energy per electron–ion pair is ab
1 keV at the boundary of the bunch and then decreases
increasing^nl&. The character of the falloff is associate

f
-
of
a.
a

FIG. 7. Distribution of densityn, tem-
peratureT, and pressurenT over length
for a long cloud, compared with the dat
of diamagnetic measurements~circles!
and Thomson scattering~squares!.
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with the parameters of the plasma flux that heats the clo
in which the electron component can conventionally be
vided into two parts: Maxwellian electrons with a tempe
ture of about 1 keV, and superthermal electrons with a m
energy greater than 10 keV. The energy contribution fr
these groups of electrons is distributed over the depth^nl& of
the bunch in accordance with their collision length. The f
lowing model was used to calculate the energy release.
beam passes through a region with a dense cold plasma
out interacting and is then incident on a disperse plas
which it heats up, losing as it does a significant part of
energy~under conditions close to optimum for interaction!.
The fast electrons that result from the interaction were
sumed to be isotropic, and therefore about 15% of them
cape to the exit mirror, while the remaining 85% are incide
on the cloud and are thermalized there. We consider the
ditions under which the fast electrons in the bunch are
tarded to be constant during the entire pulse. Besides the
electrons, the thermal electrons of the homogeneous pla
also contribute to the heating of the bunch because of lo
tudinal electronic thermal conductivity. The dependen
shown in Fig. 8 relates to a beam with an initial energy
about 50 kJ~pulsewidth about 3.2ms!.

The same figure shows the calculated absorption cu
of the plasma electrons, which have a temperature of 1
and an energy reserve of 2 kJ in the electronic compon
~the technique for calculating the absorption curve is given
Ref. 14!. It can be seen that the curve of the observed ene
release in the cloud cannot be explained except by reta
tion of the thermal electrons, especially at depths with^nl&
.1018 cm22.

The figure also shows the results of model calculatio
for a two-temperature distribution function of the fast plas
electrons~with components of 1 keV, 2 kJ and 10 keV, 5 kJ!.
As can be seen, besides the absorption of the hot electro
the main component~with the density of the uniform

FIG. 8. Mean energy per hydrogen atom in a cloud, imparted by time
ms, vs the depth of the cloud, taking into account the ionization energy.
points correspond to measurements with the diamagnetic sensors, an
curves correspond to a calculation of the character of the energy re
from an electron flux having a model distribution function~light curve—
only Maxwellian electrons, heavy curve—supplemented by superthe
electrons!.
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plasma!, absorption of a group of superthermal electro
with a characteristic energy ofEf;10 keV is observed. A
certain fraction of the hot electrons passes all the w
through the cloud, depositing part of its energy, and then
absorbed in the input foil or is reflected from the magne
mirror. Note that, from the results of the calculation, t
contribution from fast electrons depends weakly on the fo
of their distribution function when the mean energy is co
served.

The densitynf of fast electrons with energy 10–20 ke
can be obtained directly from the diamagnetic measurem
~from the sharp pressure falloff in the interior of the bun
immediately after the beam ends!. These estimates give
nf;1013 cm23.

Since there is virtually no heat dissipation from the i
terior of the cloud, the energy contained in the fast electr
is accumulated in the cloud during the beam injectiontb .
The relationship

nfEfL/t f;E n~~3/2!T1Ei
a!dl/tb ,

should then obviously be satisfied, wheret f is the lifetime of
the fast electrons in the trap. From this estimate, the
electrons have lifetimes oft f;0.14ms, which virtually co-
incides with the time of flight of the fast electrons throug
the trap.

7. ENERGY BALANCE

On the basis of the ‘‘universal’’ energy-release curve
the hot electrons in the bunch, obtained by processing a la
number of experiments~Fig. 8!, the resulting model function
of the flux distribution of hot electrons can be used to det
mine the energy-deposition distribution over the length
the bunch in each specific shot. For example, we show
data for a shot corresponding to Fig. 5. The input energy
the beam in this case was 77 kJ. The total energy releas
the plasma and the cloud by the end of the pulse is
60.5 kJ. Of this energy, about 0.9 kJ is contained in
‘‘homogeneous’’ plasma, with a density up to 1015 cm23,
360.2 kJ is contained in the dense bunch, w
n.1016 cm23 ~on the assumption that the mean energy
the fast electrons equals 10 keV!, and the remaining energ
is imparted to the intermediate-density plasma. The ene
losses of the beam in this shot amount to 10–15 kJ; i.e
significant fraction of the energy lost by the beam is tra
ferred to the dense plasma. A part of the energy lost by
beam during the pulse escapes into the exit mirror, wh
there is no bunch of dense plasma.

8. OBTAINING A DENSE PLASMA BURST WITH HIGH
TEMPERATURE

The main feature of the experiments discussed in
section is the use of a positive-action system of gas-puls
which made it possible to obtain a plasma bunch with
characteristic size of about 0.5 m at the time the beam
injected. The maximum density in the cloud was smal
than that in the experiments described in Sec. 5, and equa
(0.5– 2)31016 cm23. This was done so that the plasma tem
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FIG. 9. Experimental~heavy curves! and
calculated~light curves! values of the
plasma pressure at various points of th
system.
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perature even in its densest part would significantly exc
the ionization energy of hydrogen. The site where the n
gas-admission system was installed coincided with tha
the Thomson scattering diagnostics, so that, unlike the
ceding experiments, the plasma parameters could be m
sured in the densest central part of the cloud (z5270 cm).
The plasma density in the homogeneous part was
31014 cm23.

Figure 9 shows typical signals from diamagnetic sens
located at various points of the plasma column. It can
seen that the plasma pressure close to the center of the b
(z5270 cm) increases monotonically during the heat
pulse and then gradually decreases. The two-stage he
effect consists of the fact that the amplitude of the plas
pressure in the cloud significantly exceeds~by a factor of
3–5! the value obtained at the same point when a homo
neous plasma of optimum density is heated.

In the experiments described in Sec. 5, the thickn
^nl& of the cloud was about 1020 cm22, and therefore the
center of the cloud was heated only by the superthermal e
trons, while the Maxwellian electrons left their energy at t
periphery of the cloud. In the experiments described here,
density of the cloud was chosen so that the thermal elect
of the homogeneous plasma heat a significant part o
Therefore, by the end of the heating, the pressure distribu
along the length of the system has one clearly expres
maximum at the site of formation of the bunch. The press
of the plasma in its homogeneous part has a character
d
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second maximum~see Fig. 9!, which is associated with the
arrival of a pressure wave at the recording point. The pr
sure in the wave in this case is comparable with the ma
mum pressure of the plasma at the time the beam is injec
In this regime, the density and temperature of the plas
were measured at the center of the bunch during the hea
and a certain time after it ended. As a whole, the Thom
measurements agree with the diamagnetic measurement~al-
lowing for the fact that the closest diamagnetic zone is 30
from the center of the cloud!. A typical final temperature a
the center of the bunch is 60–70 eV at a density of ab
1016 cm23 and up to 200 eV at a density of 731015 cm23.
Note that the plasma density measured after the heating
is less than the initial value, which can be explained
propagation of the short bunch along the magnetic field
der the action of the pressure gradient. The plasma temp
ture obtained at the center of the bunch is several time
large as the ionization energy, which makes it possible
carry out a more accurate analysis of the energy bala
although the low value of̂nl& makes it impossible to effec
tively confine a significant fraction of the superthermal ele
trons.

9. DYNAMICS OF A DENSE PLASMA BURST

After the gas cloud begins to be heated, the rate at wh
it expands changes substantially. Moreover, because the
perature and pressure are distributed over the depth of
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plasma column, a complex plasma-flow pattern is establis
in it, and pressure waves are formed. We shall consider
case with the pulsed-inlet valves located atz512 cm~Figs. 5
and 6!.

We turn our attention to the features of the shape of
signals from the diamagnetic sensors. Some time after
end of the beam, secondary maxima are observed on
diamagnetic signals. They are associated with the arrival
pressure wave at the measurement point. The signals
the sensors of the visible, VUV, and soft x rays from t
plasma show the same features. Broadening of theHa line at
the time of arrival of the wave is observed, which is eviden
that the ion temperature and the plasma density increas
that instant~the spectral resolution of the diagnostic facili
makes it possible to distinguish the Stark broadening of
wings of the line and the Doppler broadening of its cor!.
The place of origin of these waves and their propagat
velocity can be traced by varying the experimental con
tions.

An analysis of the data shows that there are sev
waves in the dense plasma. A wave propagates from
region with a pressure peak both into the interior of t
bunch~into increasing density! and into the region of homo
geneous plasma~into decreasing density!. Moreover, a pres-
sure wave is formed close to the input foil~such a wave is
also observed when the beam is injected into the homo
neous plasma7!. The pressure in the oncoming wave can
twice as large as that of the plasma before the arrival of
wave ~Figs. 6 and 9!. The velocity of the wave depends o
the parameters of the plasma in which it propagates.
example, as the density of the gas bunch varies, its temp
ture and consequently the wave velocity varies. As the d
sity in the gas bunch decreases, the wave velocity increa

10. MODELLING THE DYNAMICS OF THE DENSE PLASMA

The heating of the plasma by the beam and the proce
of heat transfer and motion of the plasma were numeric
modelled, using the hydrodynamic model described in de
in Ref. 19. The model uses phenomenological parame
that characterize these phenomena and are determine
comparing the calculations with the experimental resu
The model was developed to study the heating and dynam
of the dense plasma bunchs of variable atomic composi
in an inhomogeneous magnetic field, and some of its ca
bilities are therefore not used for the calculations carried
in this paper.

The starting equations

The dynamics of the plasma are described by the eq
tion of motion and the continuity equation:
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Heren andV are the density and velocity of the plasma,M
is the mass of the ions,s is the coordinate along a line of th
magnetic fieldH, T5Te1Ti ,

q52l2nM
]V

]s U]V

]sU
is the artificial viscosity introduced in the standard way
damp out the instability of the solution that arises when
wave breaks in the plasma,l;3 – 10 cm is the characteristi
length of the wavefront at which the viscous addition b
comes substantial, andt is time.

The heat distribution in the system is determined by
heat-balance equations for the electrons and ions:

3

2

]nTe

]t
1H

]

]s S 3

2

nTeV

H D1nTeH
]

]s S V

H D
5

]

]s S ke

]Te

]s D1Qe , ~3!

3

2

]nTi

]t
1H

]

]s S 3

2

nTiV

H D1nTiH
]

]s S V

H D
5

]

]s S k i

]Ti

]s D1Qi . ~4!

HereTe andTi are the temperatures of the electrons and io
in the plasma, while the longitudinal heat conductivities a
given by

ke5Fe~Zeff!
nTete /z

m
, k i5Fi~Zeff!

nTit i

M
, ~5!

where the collision times are defined as

te5
3.53104Te

3/2

~L/10!Zeff
2 n

, t i5
2.13106Ti

3/2

~L/10!Zeff
2 n

AM

M p
. ~6!

The temperature in Eq.~6! is expressed in electron volts, an
the other quantities are in cgs units;M p is the proton mass
the coefficientFe(Zeff) is taken from Ref. 20,Fi(Zeff)53.9,
andz is the flux-limiting coefficient of the electron therma
conductivity. This coefficient depends on the beam pow
and is determined by the turbulence level in the plasma;
no greater than 100–1000.7

The quantitiesQe,i on the right-hand sides of Eqs.~3!
and ~4! are represented as follows:

Qe5
PhT

SL
A

max~0.1 log@nc /n~s!# !

~Dq21s/ l 0!1/2

1
]E

]t
2

]

]t
~Eion2E0!1nn«~Ti2Te!, ~7!

Qi5nn«~Te2Ti !, ~8!

where

n«53.231029
nZeff

2 L

Te
3/2 AM p

M

is the characteristic frequency of the electron–ion ene
exchange,
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E05
3

2
n~Te01Ti0!

is the initial energy of the plasma,Te05Ti05T0 , and
Eion(n,T) is the ionization energy of hydrogen, calculat
from the electron temperature~see Ref. 18!. The first term in
Eq. ~7! describes the energy release of the beam in
plasma,nc5(3 – 5)31015 cm23 is the limiting value of the
plasma density, above which no turbulence develops,A is a
normalizing factor,P(t) is the beam power,S is the cross
section of a force tube,hT is the fraction of the beam energ
that goes to heat the Maxwellian part of the plasma distri
tion function, l 0 is the relaxation length of the beam in th
plasma, andDq;0.2 is the initial angular spread of the ele
trons of the beam over velocities.

The quantity]E/]t in Eq. ~7! describes the variation o
the energy density of the plasma because the tail of
plasma electrons is retarded in it~see Ref. 14!,

]E~j,Th ,t !

]t
5

P~ t !hh

ThS~j!
E

«min8

`

c~j,Th«8!exp~2«8!d«8,

~9!

where «85«/Th is the dimensionless energy of the sup
thermal electrons,hh is the fraction of the beam energy th
goes to heat the superthermal electrons,«min8 is the energy at
which mean free pathR0 of the electron in the plasma equa

^ns&5E n~s!ds,

j5^ns&/R0 , and the electron absorption function in th
plasma target is approximated by

c~j,«!53.39«~j10.01!0.25 exp~26j2.5!.

Initial conditions

The initial conditions correspond to spatially inhomog
neous filling of the system with hydrogen, which is partia
ionized by a longitudinal discharge at the initial temperat
T0;1 eV. The initial density is given by

n~s!5n01nd exp~2~s2sd!2/ l d
2!1nf

3exp~2~s1sf !
2/ l f

2!. ~10!

The second term in Eq.~10! describes the gas cloud in th
system, and the third term describes the plasma at the su
of the input foil, whose parameters are taken from the m
surements of Ref. 21. The initial velocity of the plasma
assumed equal to zero.

Boundary conditions

The boundary conditions at the ends of the system h
the form

T15T25T0 , V15V250,
]~nT1!

]s
5

]~nT2!

]s
50.

~11!

which corresponds to experimental conditions in the pr
ence of an input foil and an exit calorimeter on whose s
e

-

st

-

-

e

ce
a-

e

-
-

faces a plasma appears whose temperature is relatively
but increases with time when a beam passes through.

Results of modelling, comparison with experiment

Our calculations use initial conditions close to the e
periments described in Sec. 8. In this case, a cloud
formed at a distance ofz5270 cm. The density of the main
homogeneous plasma was 1015 cm23. The transport effi-
ciency of the beam energy into the main component of
plasma was assumed in the calculation to be equal to 4%
that into the superthermal electrons was assumed to be 1

The calculated distribution of the plasma paramet
over length is given in Fig. 10 for different times~the beam
lasted 4.4ms in this shot!. At time 1ms after the beginning of
the beam, the density distribution over length virtually co
cides with the initial distribution. The length of the bunc
with a maximum density of 731015 cm23 is about 30 cm.
The temperature in the bunch during the action of the be
remains lower than in the homogeneous plasma. The p
sure in the bunch is lower than in the surroundings at
beginning of heating because of the large expenditure to
ize the hydrogen, increases during the pulse more rap
than in the homogeneous part of the plasma, and exceed
pressure in the homogeneous plasma by a factor of 2–4
the end of the beam.

An interesting feature of the process of heating a de
bunch located in a hot plasma is the ballistic compression
the dense plasma at a certain stage of the heating. In
case, pressure peaks appear at the edges of the bunc
move toward the center of the bunch. Under the experim
tal conditions in the GOL-3 facility, this effect can increa
the density and pressure at the center of the bunch. In
case described here, the density increases by'30%. Besides
compression of the central part of the bunch, expansion o
periphery is observed at the same time during heating
subsequent cooling.

The pressure gradient of electrons~and ions! formed in
the bunch during expansion causes a large-amplitude w
with a phase velocity of'23107 cm/sec to develop a
times t.7 ms. The electron temperature at the wavefront
virtually constant over its length and equalsTe

;180– 130 eV at timest;7 – 11ms, while the ion tempera-
ture increases fromTi;11– 17 eV in front of the wavefron
to 30–40 eV behind the wavefront. Since the ions sati
Ti!Te'const, assuming a constant polytrope,g;1,19 we
get the following calculated ion-sound velocity:

Cs5~g~Te1Ti !/mi !
0.5'107 cm/sec.

This means that a large-amplitude shock-induced ion-so
wave with a Mach number ofM;2 is formed in the system
Because of the high electron thermal conductivity, the wa
parameters are not described by the Hugoniot adiabat.
plasma density at the wavefront increases by a factor of'3,
while the velocity of the ions exceeds the ion-sound veloc
so that the wave formation and propagation process ra
corresponds to the expansion of a plasma into a vacuum
collective acceleration of the ions by electron pressure. N
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FIG. 10. Calculated distributions of the
plasma characteristics along the length
the system at various times:n is the
plasma density,nT is the pressure,T is
the temperature of the electrons, andV is
the velocity of the plasma.
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that this mechanism of increasing the ion energy can be
ful for heating a plasma, for example, when plasma strea
formed in such a way collide.

A comparison of the calculated plasma pressure at v
ous points of the system with the value measured by
diamagnetic sensors~Fig. 9! shows that the increase in tim
and the longitudinal pressure distribution at the stage
beam heating agree well with experiment, as does the fa
in temperature because the classical thermal conductivit
restored when the beam is turned off. However, the exp
mentally observed wave in this case is satisfactorily
scribed by the model close to the cloud and damps ou
amplitude significantly faster than in the model as one g
away from the cloud. Moreover, no steep pressure fronts
measured in the experiment. This is partially explained
the finite spatial resolution of the dynamic sensors, wh
smoothes out the signal in time from the moving wavefro
However, the wavefront damping is most probably asso
ated with radial inhomogeneity of both the hot plasma a
the dense bunch. As a result, the expansion rate of the b
is different at different points over the cross section of
plasma. The faster damping of the wave in experimen
presumably associated with losses of the fast ions of
bunch in the charge transfer that occurs while the wav
moving.

Besides the compression wave associated with the
e-
s

i-
e

f
ff
is

ri-
-

in
s
re
y
h
t.
i-
d
ch

e
is
e
is

x-

pansion of the dense bunch, a pressure wave generated
dense gas-plasma formation that appears during the ex
sive vaporization of the input foil~see Ref. 7! propagates
through the plasma. A complex pattern of propagation a
interference of pressure waves results from this. This is ill
trated by Fig. 11, which shows the space–time dynamics
the plasma pressure. The propagation of waves from the
put foil (z50) and from the site at which the cloud is a
mitted (z5270 cm) can be seen. These pressure waves
intersect at a definite instant. A similar picture is observed
experiment.

11. THE CLOUD AT THE END OF THE APPARATUS: TWO
CLOUDS

In order to more fully absorb the beam energy relea
in the main plasma, a series of experiments was carried
in which, in addition to the cloud atz512 cm, a second
assembly of pulsed valves was mounted on the facility az
5575 cm. Some of the experiments with this assembly w
performed with the valves close to the entrance foil switch
off. The general character of the energy release is simila
that observed in the cloud formed at the beginning of
facility. An exception is that there are virtually no pressu
waves in the cloud. This is most probably because the reg
where the beam most intensely interacts with the plasma
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FIG. 11. Calculated dynamics of the plasma press
for a short cloud.
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close to the entrance foil, i.e., far from the boundary of
cloud. However, when the cloud is located at the input,
beam can begin to intensely relax even within the cloud
the region where the local plasma density exceeds the
sity at the homogeneous section only by a small fac
Moreover, the temperature of the main component of
plasma is higher at the input, and the specific energy con
bution is accordingly greater at the boundary of the clo
For this reason, when the cloud gets to the end of the pla
column, the distribution of the absorbed energy over
depth of the cloud changes appreciably, large pressure
dients do not appear, and the conditions for the formation
shock waves do not arise.

The conditions for two-stage heating of the plasma
completely met when the valves at both ends of the faci
are actuated simultaneously. When this is done, a region
low density, in which the beam relaxes efficiently, is form
at the center of the plasma column. At the ends of the fa
ity, this region is surrounded on two sides with dense plas
bunchs. The density profile of the gas and the distribution
the specific energy content~taking into account the ioniza
tion energy! over the length in this regime is shown in Fi
12. At the time the beam ends, the maximum signals
observed on the sensors located in the region of the ho
geneous plasma. The homogeneous plasma then transfe
ergy comparatively quickly to the plasma bunchs at the en
which slowly cool. Because the length of the low-dens
plasma, in which relaxation of the beam occurs, was not v
e
e
n
n-
r.
e
ri-
.
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large in these experiments, the absolute parameters of
dense plasma are inferior to those shown above for o
configurations.

12. CONCLUSION

The main results of the experiments on two-stage he
ing of a dense plasma in the GOL-3 facility are the follow
ing:

1. The feasibility in principle of a system for two-stag
heating of a dense plasma has been shown experimentall
the first time. Energy was concentrated in a dense pla
cloud. The efficiency of energy transfer from the beam to
initial plasma with a density of 531014 cm23 by collective
interaction was about 30%. Approximately half of this e
ergy was transferred into a bunch of dense plasma in
case.

2. The dense plasma is heated both by the flow of M
wellian electrons with a temperature of a about 1 keV and
superthermal electrons with a characteristic energy
.10 keV.

3. Gas-dynamic expansion of the heated dense pla
bunch is observed, with development of waves having ph
velocities close to that of ion-sound waves and identified
experiment as shock-induced ion-sound waves. These wa
on one hand, can serve as an additional source to hea
plasma in the depth of the dense bunch and, on the o
l-

a-
FIG. 12. Experiment with two bunchs of a
dense plasma:~a! Distribution of the atomic
density of hydrogen over the length of the faci
ity with a delay of 0.5 ms in triggering the
valves. ~b! Distribution of the specific energy
content of the plasma over the length of the f
cility ~beam duration 3ms!.
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hand, can produce more efficient heating of the ions in
region of the low-density plasma.

4. When a cloud with a characteristic length of 0.5 m
heated, a temperature of up to 75 eV at the center is atta
by the end of the heating pulse, with a density
231016 cm23. In this case, the energy consumed in heat
the dense plasma is several times as great as that spe
ionization.

5. The dynamics of the expansion of the dense plas
bunch has been numerically investigated, and a hydro
namic model has been developed to describe this proc
Efficient pumping of energy into the longitudinal compone
of the velocity occurs in a number of regimes. The results
the numerical modelling are found to be in reasonable ag
ment with experiment.

6. The specific parameters of the dense plasma ca
enhanced by increasing the energetics of the beam. Th
planned for the second phase of the GOL-3 facility, alo
with an additional slowdown of the dispersal of the den
plasma~by using magnetic well configurations or multimi
ror geometry!.
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Theory of a weakly nonideal Bose gas in a magnetic field
A. I. Akhiezer, S. V. Peletminski , and Yu. V. Slyusarenko* )
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This paper investigates Bose–Einstein condensation of an ideal gas of finite-spin bosons in an
external magnetic field. We generalize Bogolyubov’s theory of a weakly nonideal Bose
gas to the case where the gas of finite-spin bosons is located in an external magnetic field. We
find the corresponding quasiparticle spectrum and formulate the superfluidity criterion for
the boson gas. The magnetization of the weakly nonideal Bose gas is also determined. Finally,
we specify a method of studying kinetic processes that take place in a weakly nonideal
Bose gas. ©1998 American Institute of Physics.@S1063-7761~98!01103-2#
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1. INTRODUCTION

Lately intricate experimental investigations have be
carried out1 that prove the existence of a remarkable ph
nomenon, Bose–Einstein condensation, predicted by Al
Einstein in 1925. The thoroughness and precision of the
periments, conducted at temperatures as low as
31028 K, suggest that it is possible to study the effect of
external magnetic field on Bose–Einstein condensat
which should exhibit well-defined features. In this conne
tion it would be interesting to study the phenomenon
Bose–Einstein condensation in the case where the bo
have finite spins and an external magnetic field is applied
the system.

In this paper we consider the problem for an ideal Bo
gas and for a nonideal Bose gas. Note that if the bosons c
an electric charge, we must allow not only for the param
netism of the gas but also for the Landau diamagneti
which is a reflection of quantization of motion in a magne
field. However, in an ideal Bose gas, quantization of mot
makes Bose–Einstein condensation in the presence a
netic field impossible~see below!. Hence we assume from
here on that the particles are electrically neutral, and al
only for the paramagnetism of the atoms.

We start with Bose–Einstein condensation for an id
gas in a constant magnetic field. Then we introduce a wea
nonideal Bose gas of finite-spin particles in a magnetic fi
and generalize Bogolyubov’s results2 that refer to a weakly
nonideal Bose gas of spin-zero particles.

2. BOSE–EINSTEIN CONDENSATION FOR AN IDEAL GAS
IN A MAGNETIC FIELD

We begin our investigation of Bose–Einstein conden
tion for an ideal gas in a magnetic field, a gas consisting
electrically neutral spin-S particles, by introducing the boso
distribution function

NSZP
~b,z!5$exp@b~«p2mHSZ2z!#21%21, ~2.1!

where «p5p2/2m is the kinetic energy of a particle with
momentump, SZ is the projection of the particle spin in th
5011063-7761/98/86(3)/6/$15.00
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direction of the magnetic fieldH, Sm.0 is the magnetic
moment,b is the reciprocal temperature, andz is the chemi-
cal potential. Since the distribution function is positive,«p

2mHSZ2z.0 is always positive, and the chemical pote
tial z can be determined from the expression~cf. Ref. 3!

n5
N

V
5

1

V
(

SZ52S

S

(
p

$exp@b~«p2mHSZ2z!#21%21,

~2.2!

where n is the gas density. As the temperature decrea
each term in~2.2! decreases. Sincen is a fixed quantity and
z is always smaller than2mHS (z,2mHS), z increases as
the temperature drops.

The Bose–Einstein condensation temperatureT0 is de-
fined as the temperature at whichz reaches2mHS (z5
2mHS), and can by found by solving the equation

n5
1

V
(

SZ52S

S

(
p

$exp@b0~«p2mH~SZ2S!!#21%21.

~2.3!

When T,T0 , the distribution function of the above
condensate particles is given by

NSZp~b,2mHS!5$exp@b~«p2mH~SZ2S!!#21%21,
~2.4!

with the particles with the largest projection of spinS form-
ing the condensate. The condensate particle densityn0 is

n05n2
1

V
(

SZ52S

S

(
p

$exp@b~«p2mH~SZ2S!!#21%21.

~2.5!

We also give the formulas for the magnetization of the bos
gas:
© 1998 American Institute of Physics
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m55
1

V
m (

SZ52S

S

SZ(
p

$exp@b~ ~«p

2mHSZ2z!#21%21, T.T0 ,

mn0S1
1

V
m (

SZ52S

S

SZ (
p

$exp@b~«p

2mH~SZ2S!!#21%21, T,T0 ,
~2.6!

Next we study two limits,mH!T and mH@T (T
,T0). In the first limit we are dealing with ordinary Bos
condensation~with small corrections ignored!, and the mag-
netization is given by

m5mn0S. ~2.7!

In the second limit the magnetization is

m5mn0S1mS
1

V
(

p
$exp~b«p!21%21,

or, with allowance for~2.3!,

m5mnS. ~2.8!

Thus, in weak magnetic fields the magnetization is de
mined by the density of just the condensate particles, w
in strong magnetic fields the magnetization is determined
the total particle density.

Now we write the expressions for the transition tempe
ture T0 in weak and strong magnetic fields. In weak ma
netic fields, the transition temperature is determined by
usual formula

T05
1

V
H 4p2n\3

~2S11!G~3/2! z̃ ~3/2!
J 2/3

, T0@mH, ~2.9!

where G(x) and z̃ (x) are the gamma function an
Riemann zeta function, respectively. In strong magne
fields we have

T05
1

V
H 4p2n\3

G~3/2! z̃ ~3/2!
J 2/3

, T0!mH. ~2.10!

Clearly, the Bose condensation temperature in strong m
netic fields is higher than it is in the absence of a field.

If the bosons carry an electric charge, we must allow
Landau quantization of the boson motion across the m
netic field. The particle density in this case is

n5
eH

c~2p\!2 (
k50

`

(
SZ52S

S E dpzH expFbS pz
2

2m

1S k1
1

2DvH2mHSZ2z D G21J 21

,

with vH5eH/2mc the Larmor frequency. Since the term
the sum corresponding tok50, with z5mHS1vH/2, is di-
vergent for small values ofpz , there can be no Bose con
densation in this case. In other words, for Bose condensa
in an ideal gas in the presence of a magnetic field to oc
the bosons must be electrically neutral~see Ref. 4!.
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3. PRECIPITATION OF THE CONDENSATE AND THE
EFFECTIVE HAMILTONIAN OF A WEAKLY NONIDEAL BOSE
GAS IN A MAGNETIC FIELD

Now let us study the behavior of a nonideal Bose gas
a magnetic field. The kinetic energy of the bosons and th
interaction with the magnetic fieldH are governed, in the
second-quantization scheme, by the formula

H05
1

2m (
a

E d3r¹ca
†~r !¹ca~r !

2mH•(
a,b

E d3rca
†~r !Sabcb~r !, ~3.1!

whereSab is the boson spin matrix, andca
†(r ) andca(r ) are

the boson creation and annihilation operators at pointr with
spin-projectiona, which are related to the operatorsapa

† and
apa of boson creation and annihilation with momentump
and spin-projectiona:

ca
†~r !5V 21/2(

p
apa

† exp~2 ip•r !,

ca~r !5V 21/2(
p

apa exp~ ip•r !. ~3.2!

In terms ofapa
† andapa, the operatorH0 assumes the form

H05(
a

(
p

«a~p!apa
† apa , «a~p!5

p2

2m
2mHa.

~3.3!

We must also allow for the boson–boson interaction. W
begin with the expression for the interaction energy of t
bosons,

V5V1~r12r2!1V2~r12r2!S1•S2

1V3~r12r2!~n•S1!~n•S2!, ~3.4!

with r1 and r2 the radius vectors of the two bosons,S1 and
S2 the boson spins, andn5(r12r2)/ur12r2u. The functions
V1(r12r2), V2(r12r2), and V3(r12r2) depend only on
ur12r2u. The first term on the right-hand side of Eq.~3.4!
represents the usual potential interaction between the bos
The second term describes the spin–spin exchange inte
tion. Finally, the third term is a reflection of possible tens
forces. Magnetic-dipole interaction is also described by
Hamiltonian~3.4!.

In the second-quantization scheme, the interact
Hamiltonian of a Bose gas is

V5
1

2 (
a1¯a4

E d3r 1E d3r 2ca1

† ~r1!Ca2

† ~r2!

3Va1¯a4
~r12r2!Ca3

~r2!ca4
~r1!, ~3.5!

where Va1¯a4
(r12r2) is given by ~3.4!. In terms of the

operatorsapa
† andapa, this Hamiltonian can be written

V5
1

2V
(

p1¯p4
(

a1¯a4

Fa1¯a4
~p1 ,p4!

3dp11p2 ;p31p4
ap1a1

† ap2a2

† ap3a3
ap4a4

, ~3.6!
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where

Fa1¯a4
~p1 ,p4!5U1~p12p4!da1a4

da2a3

1U2~p12p4!Sa1a4

i Sa2a3

i 1U4~p12p4!

3
~p12p4! i~p12p4! j

~p12p4!2 Sa1a4

i Sa2a3

j , ~3.7!

with the functionsUl(p), l 51,2,3, related to the Fourie
transforms

Vl~p!5E d3rVl~r !exp~2 ip•r ! ~3.8!

of the Vl(r ) as follows:

U1~p!5V1~p!,

U2~p!5V2~p!2
1

2 H ]2V3~p!

]pl]pl
2

pipj

p2

]2V3~p!

]pi]pj
J , ~3.9!

U3~p!5
1

2

]2V3~p!

]pl]pl
2

3

2

pipj

p2

]2V3~p!

]pi]pj
.

The total Bose-gas HamiltonianH is given by ~see Eqs.
~3.3! and ~3.6!–~3.9!

H5H01V, ~3.10!

which contains quadratic terms and fourth-order terms in
boson creation and annihilation operators.

The equilibrium properties of a Bose gas are descri
by the Gibbs distribution

w5exp@V2b~H2zN!#, ~3.11!

where V is the thermodynamic potential,N is the particle
number operator,z is the chemical potential, andb is the
reciprocal temperature.

According to Bogolyubov,2 in the operatorH2zN we
must isolate the terms containing the creation and annih
tion operators of bosons with minimum energy, i.e., bos
with zero momentum and projection of spinS. These opera-
tors, a0S

† and a0S , correspond to a macroscopically larg
occupation numbern0S ~a fact that is a reflection of Bos
condensation! and hence can be replaced byC-numbers:

a0S
† →An0S, a0S→An0S, ~3.12!

wheren0S is the macroscopically large number of conde
sate particles. As a result, the operatorH2zN becomes

H2zN[H5H21H31H4 , ~3.13!

where the HamiltonianH2 is quadratic in the boson creatio
and annihilation operators:

H2~n0S!5 f ~n0S ,H !1
] f ~n0S ,H !

]n0S
H (

pÞ0
apS

† apS

1 (
aÞS

(
p

apa
† apaJ 1(

a
(

p
«~p!apa

† apa

1H n0S

SV
@US~0!2U1~0!#2mHJ
e

d

a-
s

-

3(
a

~a2S!(
p

apa
† apa1S

n0S

V

3 (
pÞ0

H U2~p!1
1

2
U3~p!sin2 qJ apS21

† apS21

1 (
pÞ0

k~p!$apS
† a2pS

† 1apSa2pS12apS
† apS%

1 (
pÞ0

$@ t ~1 !~p!~apS21
† a2pS

† 1a2pS
†

1apS
† a2pS21

† 12apS21
† apS!#1H.c.%

1 (
pÞ0

$q~1 !~p!apS21
† a2pS21

† 1H.c.%. ~3.14!

Here, to simplify subsequent calculations, we introduce
notation~see~3.8! and ~3.9!!

f ~n0S ,H ![
1

2

US~0!

V
n0S

2 2mSHn0S ,

US~0![U1~0!1S2FU2~0!1
1

3
U3~0!G ,

k~p![
1

2

n0S

V
$U1~p!1S2@U2~p!1U3~p!cos2 q#%,

~3.15!

t ~6 !~p![
SA2S

4

n0S

V

pz~px6 ipy!

p2 U3~p!,

q~6 !~p![
S

4

n0S

V

~px6 ipy!2

p2 U3~p!,

whereq is the angle between the momentump and the mag-
netic fieldH ~in deriving ~3.14! and ~3.15! we used the ex-
plicit form of the spin matricesSab

i and assumed that thez
axis is directed alongH!.

The HamiltoniansH3 andH4 in ~3.12! are, respectively,
of third and fourth order in the boson creation and annih
tion operators. The HamiltonianH2 describes a gas of fre
quasiparticles and is known as the effective Hamiltonian o
weakly nonideal Bose gas, while the HamiltoniansH3 and
H4 describe the interaction between quasiparticles. Allow
for H3 andH4 is important when one studies various kine
processes in a Bose gas. Studies of such processes lie ou
the scope of the present paper, however, so that we will
write the expressions for the operatorsH3 andH4 explicitly.

The quantityn0S introduced in~3.12! is a well-defined
function of temperature and chemical potential. However
the Gibbs distribution with a specified condensate,

w~b,z,n0S!5exp$V~b,z,n0S!2bH~n0S!%, ~3.16!

in which the thermodynamic potentialV can be found from
the normalization condition

V~b,z,n0S!5 ln Tr exp@2bH~n0S!#, ~3.17!
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n0S is a free parameter. Actually this quantity should
found by minimizing the thermodynamic potentialV at fixed
b andz ~see Ref. 5!:

H ]V

]n0S
J

b,z

50. ~3.18!

In the adopted approximation, where almost all particles
in the condensate~low temperatures!, according to~3.14!
and ~3.15! this condition becomes

z'
] f ~n0S ,H !

]n0S
5US~0!

n0S

V
2mSH. ~3.19!

Now let us explain how the concept of a quasiparticle
introduced. According to Ref. 2, we must diagonalizeH2 .
This is achieved by introducing a unitary transformationU
that ‘‘mixes’’ the operatorsapS, a2pS

† , apS21 , anda2pS21
† :

UapSU
†5f1~p!apS1f2* ~p!a2pS

† 1c1~p!apS21

1c2* ~p!a2pS21
† ,

UapS21U†5f3~p!apS1f4* ~p!a2pS
† 1c3~p!apS21

1c4* ~p!a2pS21
† . ~3.20!

For this transformation to be unitary, i.e., for it to preser
the commutation relations between the boson creation
annihilation operators, the amplitudesf i and c i ( i
51,2,3,4) must satisfy the relations

uf1u22uf2u21uc1u22uc2u251,

uf3u22uf4u21uc3u22uc4u251 ~3.21!

and relations of the type

f1f3* 2f2f4* 1c1c3* 2c2c4* 50. ~3.22!

The unitary transformation~3.20! is a generalization of
Bogolyubov’s unitary transformation. In addition to~3.21!
and ~3.22!, to determine the amplitudes of the unitary tran
formation we needH2 be to a diagonal operator, i.e.,

UH2U†[H2q5(
a

(
pÞ0

vpaapa
† apa1E0 , ~3.23!

where thevpa comprise the energy spectrum of quasipa
cles ~E0 is the ‘‘energy’’ of the ground state of the operat
H2zN!. Equations~3.21!–~3.23! provide a complete solu
tion for the energy spectrum of quasiparticles and the am
tudesf i andc i , which relate particle states and quasiparti
states.

4. SPECTRA OF QUASIPARTICLES OF A WEAKLY
NONIDEAL BOSE GAS IN A MAGNETIC FIELD

Now we deal directly with the diagonalization of th
HamiltonianH2 ~see~3.13!–~3.15!!.

According to~3.23!,

@H2q ,apS
† #5vpSapS

† , @H2q ,apS21
† #5vpS21apS21

† .
~4.1!

Allowing for the fact thatH25U†H2qU, we obtain
re

s

nd

-

-

li-

@H2q ,UapS
† U†#5U@H2 ,apS

† #U†,

@H2q ,UapS21
† U†#5U@H2 ,apS21

† #U†. ~4.2!

Employing Eqs.~3.20! and calculating the commutators o
the left-hand sides of Eqs.~4.2!, we arrive at a system o
homogeneous linear equations for the amplitudesf i(p),

~«12k2vpS!f112kf212t ~2 !f312t ~1 !f450,

2kf11~«12k1vpS!f212t ~2 !f312t ~1 !f450,

2t ~1 !f112t ~1 !f21~«1b2vpS!f312q~1 !f450,

2t ~2 !f112t ~2 !f212q~2 !f31~«1b1vpS!f450,
~4.3!

and a system of homogeneous equations for the amplitu
c i(p),

~«12k2vpS21!c112kc212t ~2 !c312t ~1 !c450,

2kc11~«12k1vpS!c212t ~2 !c312t ~1 !c450,

2t ~1 !c112t ~1 !c21~«1b2vpS!c312q~1 !c450,

2t ~2 !c112t ~2 !c212q~2 !c31~«1b1vpS!c450.
~4.4!

Note that the coefficients in the second set of equati
can be obtained from those in the first by replacingvpS with
vpS21 . The quantitiesk(p), t (6)(p), and q(6)(p) in Eqs.
~4.3! and ~4.4! are determined by~3.15! and ~3.9!; we have
also introduced the notation

b~p!5mH1S
n0S

V
FU2~p!2U2~0!

1
1

2
U3~p!sin2 q2

1

3
U3~0!G . ~4.5!

Since the determinants of the systems of equations~4.3! and
~4.4! are identical, we actually have one biquadratic disp
sion equation,

vp
42@x~p!1a~p!#vp

21a~p!x~p!24h~p!50, ~4.6!

where

a~p!5«p@«p14k~p!#,

x~p!5@«p1b~p!#224q2~p!,

h~p!516q~p!l ~p!«p@«p1b~p!22q~p!#, ~4.7!

with

q~p!5
S

4

n0S

V
U3~p!sin2 q,

l ~p!5
S2

2

n0S

V
U3~p!cos2 q. ~4.8!

The dispersion equation~4.6! has two roots forvp
2. The first

we identify with

vpS
2 5 1

2 @x~p!1a~p!#2 1
2$@x~p!2a~p!#214h~p!%1/2,

~4.9!

while the second we identify with
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vpS21
2 5 1

2 @x~p!1a~p!#

1 1
2 $@x~p!2a~p!#214h~p!%1/2. ~4.10!

Note thatvpS is a nonactivation frequency~a Goldstone
frequency,v0S50!, while vpS21 is an activation frequency
The quantitiesvpS

2 and vpS21
2 must be positive. This im-

poses constraints on the shape of the interaction potentia
low momenta and field intensities, i.e.,vpS.0 andvpS21

.0 if

mH>
1

3
S

n0S

V
U3~0!, U3~0!>0,

mH>S
n0S

V
FU2~0!1

1

3
U3~0!G , ~4.11!

and the interaction amplitudes~see Eqs.~3.9!! satisfy the
conditions

U1~0!1S2U2~0!>S2U3~0!, U3~0!>0. ~4.12!

We see that in the adopted theory, we cannot pass to the
H→0 and derive formulas similar to those in Bogolyubov
theory.

Solution of Eqs.~4.3! and ~4.4! with allowance for the
normalization conditions~3.21! leads to the following ex-
pressions forf i(p) andc i(p):

f1~p!5
«p1vpS

2A«pvpS

DS21~p!, f25
«p2vpS

2A«pvpS

DS21~p!,

f3~p!52A «p

vpS

t ~1 !~p!$2q~p!2@«p1b~p!1vpS#%

x~p!2vpS
2

3DS21~p!, ~4.13!

f4~p!52A «p

vpS

t ~2 !~p!$2q~p!2@«p1b~p!2vpS#%

x~p!2vpS
2

3DS21~p!,

c1~p!5
«p1vpS21

2A«pvpS21

DS~p!, c25
«p2vpS21

2A«pvpS21

DS~p!,

c3~p!52A «p

vpS21

t ~1 !~p!$2q~p!2@«p1b~p!1vpS21#%

x~p!2vpS21
2

3DS~p!,

c4~p!52A «p

vpS21

t ~2 !~p!$2q~p!2@«p1b~p!2vpS21#%

x~p!2vpS21
2

3DS~p!, ~4.14!

where

DS~p![h1/2~p!$h~p!1@x~p!2vpS
2 #2%21/2,

DS215DSuS→S21 . ~4.15!

Using Eqs.~4.13! and ~4.14!, we can easily see that cond
tions like ~3.22! are automatically satisfied.

We now return to the Gibbs distribution~3.16!. Accord-
ing to ~3.13!, ~3.20!, and~3.23!,
at

it

Uw~b,z,n0S!U†[wq5exp$V2b@H2q1H3q1H4q#%,

~4.16!
whereH2q is given by

H2q5E01vpSapS
† apS1vpS21apS21

† apS21

1 (
a52S

S22

vpaapa
† apa . ~4.17!

Here

vpau aÞS21
aÞS [vpã 5«p1~a2S!H 2mH1S

n0S

V
U2~0!J

~4.18!

~we do not write the expression forE0!. The operatorH2q is
the Hamiltonian of an ideal gas of quasiparticles, whileH3q

and H4q describe triple and quadruple interactions betwe
quasiparticles~H3q[UH3U† contains terms likeaaa and
a†aa and H4q[UH4U†, terms like aaaa, a†aaa, and
a†a†aa!.

Equation~4.17! shows that there are 2S11 species of
quasiparticles, of which the branchvpS is a Goldstone
branch~i.e., vpS vanishes atp50! and the remaining 2S are
activation branches. These branches constitute a modifica
of the energy spectrum of the particles of an ideal Bose
in a magnetic field:

vpa5«p1amH, a52S,...,S. ~4.19!

The mean value of an arbitrary physical quantityb is

Tr wb̂5Tr wqUb̂~n0S!U†, ~4.20!

where b̂(n0S) is the operatorb̂ in which the creation and
annihilation operators of bosons with zero momentum a
spin projectionS are replaced byAn0S ~see Eqs.~3.12!!.

In particular, the diagonal elements of the one-parti
density matrix are

b̂[ f̂ aa~p!5apa
† apa[ f̂ pa ,

with the result that

f pa5n0Sdp0daS1Npãdaã1daS@ uf1u2NpS1uf2u2

3~11N2pS!1uc1u2NpS211uc2u2~11N2pS!#

1daS21@ uf3u2NpS1uf4u2~11N2pS!

1uc3u2NpS211uc4u2~11N2pS!#, ~4.21!

whereã5$2S,2S11,...,S22%, andNpa is the quasiparti-
cle distribution function:

Npa5Tr wqapa
† apa . ~4.22!

We now examine the superfluidity of a weakly nonide
gas in a magnetic field. To this end we introduce the te
2bu•P into the Gibbs distribution, whereu is the velocity
of the weakly nonideal Bose gas~the velocity of the normal
component!, and

P5(
a

(
p

papa
† apa
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is the system’s momentum operator. It is easy to prove
UPU†5P. Hence the formulas for the distribution functio
are still expressions of type~4.21! in which the quasiparticle
distribution functionsNpa (a5S,S21,ã) are given by~see
Eq. ~4.22!!

Npa5$exp@b~vpa2p•u!#21%21, a5S,S21,ã .
~4.23!

These distribution functions must be positive. For lo
momenta, the distribution functionsNpS21 andNpã are sure
to be positive because the activation energiesvpS21 andvpã

are as well~see Eqs.~4.9!, ~4.10!, and~4.18!!. However, the
Goldstone-quasiparticle distribution functionNpS is positive
for low momenta only if the velocityu is smaller than a
certain critical valueuc , which is determined by requiring
that vpS/p be at its minimum for smallp:

u,uc5min
p

vpS

p
; ~4.24!

this is Landau’s superfluidity condition.
We also write the expression for the magnetization o

weakly nonideal Bose gas atu50. This magnetization is
given by the diagonal part of the one-particle density mat

m5m(
a

a
1

V
(

p
f pa . ~4.25!

Inserting this into~4.21!, we obtain

m5mS
n0S

V
1m (

a52S

S22

a
1

V
(

p
Npa

1m
1

V
(

p
$NpS@Suf1u21~S21!uf3u2#1~11NpS!

3@Suf2u21~S21!uf4u2#1NpS21@Suc1u2

1~S21!uc3u2#1~11NpS21!@Suc2u2

1~S21!uc4u2#%, ~4.26!

where the quasiparticle distribution functionsNpa are given
by ~4.23! with u50.

In conclusion, we note that the quasiparticle energy
pends on the magnetic field strength and condensate den
at

a

:

-
ity.

If these parameters vary slowly with time, the emergi
modulation of the energy spectrum can be interpreted as
external field in which the Bose gas has been placed.
cause of such modulation, the system entropyS also
changes. Using the method developed in Ref. 6, we can
mulate the H theorem and calculate the dissipative func
TṠ . To this end we must study the kinetic equation for t
distribution function of quasiparticles in a magnetic fiel
That equation allows for the various quasiparticle interact
processes described by the HamiltoniansH3 andH4 . Obvi-
ously, quadruple processes correspond to scattering, w
triple processes correspond to the fusion of two quasipa
cles into one and fission of one quasiparticle into two.

The H theorem implies that the dissipation functionTṠ

is proportional to the square of the frequencyv of modula-
tion of external parameters. The absorption~by the system!
of the energy of a variable external field and of an acou
field capable of propagating in the quasiparticle gas also
ies according to this law. The law is valid as long asvt is
much less than unity, witht the relaxation time, i.e., the time
that it takes static equilibrium to set in in the quasipartic
gas. Here, however, we will not calculateTṠ and will not
establish its dependence on the temperatureT of the gas.
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This paper discusses the possibility of weak localization of the phonon modes in a nonideal
harmonic crystal lattice whose separate layers are weakly coupled to each other. An expression is
obtained for the diffusivity tensor. The role of inverse coherent scattering processes is
studied. It is established that, when such processes occur under conditions of strong diagonal
disorder in the region of relatively low frequencies, where the dispersion law of the
phonon modes exhibits two-dimensional properties, substantial renormalization of the diffusivity
can take place. The paper analyzes the situation that occurs under conditions of off-
diagonal disorder when resonant-scattering impurity centers are present in the lattice. The
question of the possible nature of the low-temperature plateau in the thermal conductivity of the
complex crystals BSCCO and BSYCO is discussed. ©1998 American Institute of
Physics.@S1063-7761~98!01203-7#
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1. INTRODUCTION

The problem of the propagation and scattering of qua
particles in disordered media when multiple cohere
scattering processes are important has been widely discu
in the literature. Most of the interest here is caused by p
nomena associated with coherent inverse scattering. Thi
fect was predicted theoretically and was detected at the
ginning of the 1980s for electrons in disordered metals.
emphasize that the localization problem for electrons
been quite widely studied, and interest in it has been m
tained for a very long time~see, for example, Altshule
et al.’s monograph1 and the reviews of Kramer an
MacKinnon2 and Olemski�3!.

The phenomenon of localization of electromagne
waves propagating in disordered media has recently b
proposed as an independent topic. See, for exam
Kuz’min and Romanov’s review4 relative to the appearanc
of coherent phenomena accompanying the scattering of li
A discussion appeared comparatively recently in connec
with the experiments of the Amsterdam group.5 They inves-
tigated radiation transport velocity in samples with powde
TiO2 in air, and a substantial difference was detected
tween the energy transport velocityvE and the phase veloc
ity. Similar results were obtained in Ref. 6 for the case
porous glasses. Concepts concerning the existence of
domly located resonant-scattering impurity centers in
medium have been used in a number of papers to exp
these facts.7,8

As far as problems of weak localization of phono
modes and sound waves in disordered systems are
cerned, the situation is as follows: Studies have been car
5071063-7761/98/86(3)/14/$15.00
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out for standard three-dimensional lattices. The numbe
papers is small. There is appreciable interest in systems
resonant-scattering impurity centers. The case of a harm
crystal with isotopic defects has been considered in the
proximation of a single-site, coherent potential under con
tions of crossover splitting of the spectrum.9,10 In our
papers,11,12 we analyzed the situation in the general case
off-diagonal disorder, taking into account the interaction
the impurities. Reference 13 discussed the question of
Ioffe–Regel criterion. Moreover, several papers have a
lyzed the question of renormalization of the phonon sp
trum because of the appearance of coherent inverse sca
ing effects in anharmonic processes. Reference 14 was
first to consider such features of the spectrum of quasipa
cles close to localization thresholds, and a certain hypoth
cal situation was studied. We have studied the tempera
and concentration dependence of spectra close to
thresholds15 as well as in the ultrasound limit16,17for systems
with resonant-scattering defects. According to our resu
coherent inverse scattering processes in the ultrasound
in a standard three-dimensional anharmonic lattice resu
substantial renormalization of the group velocity and t
phonon lifetime. This relaxation mechanism can predomin
over the Rayleigh mechanism and conventional anharmo
relaxation mechanisms.

In the case of phonons, the situation has been studied
a long time, but not so fully as for electrons and electrom
netic radiation. We emphasize that, until now, the quest
of how coherent effects accompanying the propagation
multiple scattering of phonon modes affect the frequen
and low-temperature behavior of the kinetic coefficients
low-dimension compounds has gone virtually undiscusse
© 1998 American Institute of Physics
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the literature. Localization phenomena must be more p
nounced in low-dimensional systems than in standard th
dimensional compounds. It therefore is of interest to ca
out theoretical studies of vibrational-mode localization
layered and quasi-one-dimensional compounds. The tr
ment of this problem for layered crystals is the goal of t
present paper.

Below, we discuss the possibility of weak localization
vibrational excitations in certain nonideal strongly anis
tropic harmonic lattices. We assume that the separate la
of such lattices are weakly coupled with each other and
two-dimensional properties appear. We consider the case
strong diagonal and off-diagonal disorders. A scalar mo
of the lattice is used for the sake of simplicity. Specifical
the frequency behavior of the diffusivity tensor has be
studied. In determining the diffusivity for phonon quasipa
ticles, we employ a rigorous expression of the Kubo type
the lattice thermal conductivity. Using such an expressi
we can obtain an analog of the Bethe–Salpeter equation
the two-particle Green’s function, in terms of which the d
fusivity is expressed. We emphasize that coherent inve
scattering processes are taken into account when the
particle lattice Green’s function averaged over impurity co
figurations is determined.

Note that, in layered lattices with diagonal disorder~i.e.,
with heavy defects!, virtually no well-defined quasiloca
modes appear in the region where the system displays q
two-dimensional properties.18–20 In this case, the renormal
ization of the group velocity of the phonons~but not of the
lifetime! is comparatively weak. A standard type of quasi
cal modes appears, but under conditions of off-diagonal
order; i.e., there is drastic weakening of the local force
rameters for the impurity atom.20–28 Only in this case it is
possible to speak of a system of resonant-scattering impu
centers.

The experimental data on the nonstandard tempera
dependence of the thermal conductivity of single crystals
layered systems of the high-temperature supercondu
~HTSC! Bi2Sr2CaCu2O81y ~BSCCO! and its insulating ana
log Bi2Sr2YCu2O8 ~BSYCO! are discussed in terms of th
theory that is developed.

2. MODEL OF THE CRYSTAL LATTICE

Let us first of all discuss a model of a crystal latti
whose separate layers are weakly coupled to each othe
lattice with tetragonal symmetry is used as the model in
paper. It is assumed that only the nearest-neighbor at
dynamically interact and that the effective interaction b
tween the atoms in the base planexy is much stronger than
along the fourth-order symmetry axisz.

In this model of the lattice, the dispersion law for
vibrational mode with quasimomentumk is written as

v2~k!5v i
2S sin2

akx

2
1sin2

aky

2 D1v'
2 sin2

bkz

2
. ~1!

Here$a,b% are the components of a translational lattice v
tor. The symbolsv i

2 andv'
2 are used to denote the quantiti
-
e-
y

at-

-
rs

at
of

el
,
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-
r
,
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-

v i
25

4g i

M0
, v'

2 5
2g'

M0
,

whereM0 is the mass of an atom of the lattice–matrix. B
definition, the force parametersg i andg' (g i ,g'.0) char-
acterize the interaction in thexy plane and along thez axis.
According to the discussion above,g i.g' .

In the long-wavelength limit, when the conditions

akx~y!!1, bkz!1, ~2!

are satisfied, Eq.~1! simplifies to

v2~k!5 v̇ i
2ki

21 v̇'
2 k'

2 , ki
25kx

21ky
2.

The quantitiesv̇ i and v̇' that appear here are the sound v
locities, with

v̇ i5
av i

2
, v̇'5

bv'

&

.

In the situation under consideration, when the dispers
law corresponds to the case of a three-dimensional latt
the spectral function of the square density of phonon sta
g(v2), is defined by the chain of equations

g~v2!5
1

N (
k

d~v22 v̇ i
2ki

22 v̇'
2 k'

2 !5
a2b

~2p!2

v

v̇ i
2v̇'

2

5
&

p2

v

v i
2v'

. ~3!

At relatively low frequencies,

0,v2<2v'
2 ,

a situation is possible in which a condition having the fo
of the inequalities~2! is still satisfied for the quantitykx(y)a,
but it breaks down for the components of the wave vec
along a direction perpendicular to the layers. We then ha

v2~k!5 v̇ i
2ki

212v'
2 sin2

k'b

2
. ~18!

Using Eq.~18!, we represent the density of statesg(v2) in
the form

g~v2!5
a2b

2p2

1

bv'
2 E dkiki E d cos~bk'!

sin~bk'!

3dS cos~bk'!2
v'

2 2v21 v̇ i
2ki

2

v'
2 D .

From this, after elementary transformations, we get

g~v2!5
1

p2v i
2 arccos

v'
2 2v2

v'
2 .

We turn our attention to the following fundamental fac
Namely, if the frequency of a phonon mode lies in the int
val

2v'
2 ,v2,v i

2.
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then it depends weakly onkz , as a consequence of which th
dispersion law given by Eq.~18! must approximately corre
spond to the case of a two-dimensional lattice. In this ca
we have

g~v2!5a2bE dk'

2p E d~ki
2v̇ i

2!

2~2p!v̇ i
2 dS v22 v̇ i

2ki
2

22v1
2 sin2

bk1

2 D5
1

pv i
2 . ~4!

Thus the density of the square phonon states,g(v2), is in-
dependent of frequency in the frequency interval under c
sideration.

Note that it is assumed in this paper that there is str
anisotropy of the interatomic interaction force. It is assum
at the same time that the unit cell parameters can have
ferent orders of magnitude. We shall consider both casea
'b and a!b. For more detail concerning the model, se
for example, Kosevich’s monograph.21

3. LATTICE THERMAL CONDUCTIVITY AND DIFFUSIVITY IN
AN ANISOTROPIC IRREGULAR HARMONIC CRYSTAL

3.1. Diffusivity

As is well known, the component of the lattice therm
conductivity tensorkaa8 is expressed in terms of the corr
lation function of the energy-flux operatorsf. We have22

kaa85
1

2T2V E
2`

`

dt^^ f a~ t !, f a8~0!&&c , ~5!

whereT is the temperature andV is the volume of a unit cell
of the lattice. The symbolŝ...& and ^...&c denote, respec
tively, the operations of averaging over the equilibrium th
modynamic distribution with the Hamiltonian of a harmon
crystal and over the implemented impurity configuratio
The quantityf a that appears in Eq.~5! is defined as

f a5
1

2 (
s,s8

Faa8
ss8 us

a
ps8

a8

M s8
Ra

ss8 , Ra
ss85Rs

a2Rs8
a . ~6!

Here the quantitiesus
a andps

a are the Cartesian componen
of the displacement and momentum operators of thes atom
~s is the site index!, M s is the mass of the atom at thes site,

andFaa8
ss8 are the matrix elements of the second-order fo

parameters. The symbolRs
a denotes the component of th

radius vector of thesth lattice site.
Using Eq.~6!, Eq. ~5! can be represented as

k5k11k2 , ~7!

k15
1

6pT2 (
s,s8

s1 ,s18

~F0R!ss8~F0R!s1s
18E0

`

dv v2n~v!

3@n~v!11#^Gss1
1 ~v!Gs

18 ,s8
2

~v!&c , ~8!

k25
1

3pT2 (
s,s8

s1,s18

[(2F0~R!ss8^~DFR!s,s
18
e,

n-

g
d
if-

,

l

-

.

e

1~DFR!ss8~DFR!s1s
18
#E

0

`

dv v2n~v!@n~v#11!

3^Im Gss1
1 ~v!Im Gs

18s8
1

~v!&c . ~9!

Here the symbolsGss8
6 denote the retarding and advancin

single-particle lattice Green’s functions~G functions!. These
G functions are ‘‘assembled’’ on the operators of the d
namic atomic displacementsus.

In the expression fork given by Eq.~7!, the first term
k1 , given by Eq.~8!, describes the contribution to the the
mal conductivity of the standard phonon modes, which
scattered at the dynamically perturbed regions. As show
Appendix A, the second termk2 , given by Eq.~9!, is asso-
ciated with the impurity modes. In the low-temperature
gion, the behavior ofk is determined in this case byk1 .

Keeping in mind what has been said, we representk as

kaa8'
1

3pT2 E
0

`

dvv2n~v!@n~v!11#

3(
j

gj~v!Daa8
j

~v!, ~10!

where by definitiongj andD j are the density of vibrationa
states and the diffusivity of thej th vibrational mode;n(v)
5@exp(v/T)21#21.

We shall consider a layered crystal. Its lattice posses
axial symmetry. The tensork in this case has two principa
values, which we denote byk i and k' . For simplicity, we
restrict ourselves to the single-mode approximation and
sume that the matrices of the force parameters are diag
in the Cartesian indices. For the sake of brevity, the se
sites and Cartesiana indices are denoted ass. We then have

Daa~v!5
1

pg~v! (
s,s8

(
s1 ,s18

Ra
ss8R

a

s1s18Fs,s8
0 Fs1 ,s

18
0

3^Gss1
1 ~v!Gs

18s8
2

~v!&c . ~11!

Note that the quantityG25^G1G2&c is a two-particle lattice
Green’s function.

Let us convert Eq.~11! from the site representation t
the momentum representation. After a number of transform
tions, we get

Daa~v!5
1

pg~v! (
kk8

v̇a~k!v̇a~k8!v~k!v~k8!

3G2~k;k8;v!, ~12!

G2~k,k8,v!5 lim
V→0

^Gk,k8
1

~v!Gk,k8
2

~v2V!&c . ~13!

We recall thatv~k! andv(k)5]v(k)/]k are the dispersion
law and the group velocity of the phonon mode with qua
momentumk. See also Ref. 11 for an expression for t
diffusivity in a form like Eqs.~12! and ~13!.
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In the case of insulators in the region of the limiting lo
temperatures, the phonon mean free pathsl ph are determined
by the geometrical size of the sample. For comparativ
high temperatures, the value ofl ph is dictated by anharmonic
Umklapp processes. In the intermediate region, the fli
path is sensitive to defects.23 Equations~10!, ~12!, and ~13!
describe the behavior ofk in just this intermediate tempera
ture interval with reasonable accuracy.

3.2. The two-particle Green’s function and the
Bethe–Salpeter equation

In the simplest approximation, the impurities are isoto
defects. However, an impurity actually interacts differen
with its surroundings than do the atoms of the matrix. We
interested in the qualitative picture. We shall therefore
sume that the perturbation of the interaction force parame
between an individual impurity and its surroundings exten
only to the nearest coordination spheres. The defect con
tration c is assumed to be low. The total perturbation is re
resented as the sum of the contributions from the individ
defects. It can be stated that specific quasimolecules ap
in a crystal, each of which is formed by an impurity and t
matrix atoms that dynamically interact with it. The perturb
tion operator in the site representation has the form

Ṽs1s2
5(

m
cmVs1s2

m ,

Vs1s2

m 5 (
L ,L8

ds1 ,m1Lm
ds2 ,m1L

m8
VLL 8m . ~14!

VLL 85M0ev2dLL 81DFLL 8 , e512Md /M0 . ~15!

In Eq. ~14!, Vm denotes the perturbation introduced
the individual defect located at themth site; L and L 8 are
summed over the sites occupied by the atoms of the qu
molecule, i.e., over the sitem5d and over the sites adjacen
to it.

In the momentum representation, an equation of
form

G2~k,k8,v!5 lim
V→0

^Gk,k8
1

~v!Gk,k8
2

~v2V!&c

5 lim
V→0

Ḡk
1~v!Ḡk

2~v2V!S dkk8

1(
k1

U~k•k1 ;v,V!

3^G2~k1 ,k8,v,V!&cD , ~16!

can be used in the general case for a nonideal harm
crystal lattice, whereḠk

1(v) is the Fourier component of th
single-particle functionGss85^Gss8&c for a nonideal har-
monic system, andU(k•k1 ;v,V) is the vertex part. Equa
tions like Eq.~16! are called Bethe–Salpeter equations.

We assume here and in what follows that the contri
tion of only the fan diagrams that describe inverse cohe
ly

t
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scattering processes and determine the weak-localization
gime is introduced into the vertex partU(k,k8;v,V).4,11,14

We have

U~k,k8;v,V!5
G

N F12
G

N (
k1

Ḡk1

1 ~v!Ḡk12q
2 ~v2V!G21

,

q5k1k8. ~17!

In Eq. ~17!, the bare vertex isG5ct1t2; i.e., it is defined in
terms of single-sitet scattering matrices.

Let us transform to the single-particle Green’s functio
We set

Ḡk
1~v!5Fv22vk

22P~v!2 i
v

t i~v!G
21

, ~18!

whereP(v) andv/t i(v) are the real and imaginary parts o
the mass operatorS, which corresponds to the elastic inte
action of phonons with the defects.

In specific applications, forGk
1(v), instead of Eq.~18!,

we use below a representation of the form

Ḡk
1~v!5Q~v!Fv22ṽk

22 i
v

t i8~v!G
21

. ~19!

Here ṽk is the renormalized dispersion law, for which

ṽk
22vk

22P~ṽk!50. ~20!

The factorQ(v) is given by

Q21~v!512cosF
]uS~v!u

]v2 1Im S~v!
]F~v!

]v2 . ~21!

In this case, we have for the resonant part of the phase

F~v!5arctan
Im S~v!

Re S~v!
~22!

@see the derivation of Eqs.~21! and ~22! in Appendix B#.
Moreover, we set

t i85Q21t i , ~23!

wheret i8 is the lifetime of the quasiparticles for a nonide
harmonic system.

In this case, in a narrow frequency interval close to t
resonance frequency@where ReS(vR)50# and at a certain
distance from it, instead of Eq.~21!, we have approximately

Q21~v!'H 11Im S~v!
]F

]v2 , uv22vR
2 u,GR ,

12
]P~v!

]v2 , uv22vR
2 u.GR,

~24!

whereGR is the resonance width.
We emphasize that we have taken into account mult

scattering processes at the impurity site in finding the sing
site scattering matrix. When this is done, the real part of
mass operator in the immediately vicinity of resonance
strong dispersion. When the single-particle phonon Gree
function was defined in the form of Eq.~19!, this dispersion
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was taken into account by introducing theQ factor. Further-
more, the scattering cross section in the standard theo
expressed in terms of phase shifts. When this is done,
cross section in the case of resonant scattering is expre
by means of the Breit–Wigner formula. At the same tim
the cross section is proportional to the square of the ma
tude of thet matrix. There is consequently a connection b
tween the resonant part of the phase shift and the com
nents of the mass operator. The reflection of this fact is
expression of theQ factor close to resonance in terms of t
derivative of the resonant part of the phase shift, given
Eq. ~24! ~see, for example, Taylor’s monograph24!.

Based on the expression for the dispersion law, Eq.~20!,
we have for the components of the group velocity vector

v i
25 v̇ i

2Q2~v!F12
P~v!

v2 22
v'

2

v2 sin2
k'b

2 G ,
vz5v'5Q~v!

v'
2 b

2v
sin~k'b!.

Let us turn our attention to the strong angular dispersion
the group velocity.

Since the defect concentrationc is assumed to be low
~i.e., c!1!, the method of expansion in powers of conce
tration, developed in Refs. 25 and 26, is suitable for de
mining the mass operatorS(k,v). In the momentum repre
sentation, under conditions of off-diagonal disorder, such
expansion has the form11

S~k,v!' (
LmLm1

e2 ikL mF ctLmLm1

m dmm1

1c2 (
m1Þm

S tmGm
0m1tm1Gm1

0mtm

12Gm
0m1tm1Gm1

0mtm1D
LmLm1

dmm1
eikLm1

1c2 (
m1Þm

S tmGm
0m1tm1

12Gm1

0mtmGm
0m1tm1D

LmLm1

3e2 ik~Rm2Rm1
!... ~25!

The t matrix used above for scattering at an individual qu
simolecule is defined as

tm5
Vm

12Gm
0mVm . ~26!

whereGm
0m1 is the Green’s function of the ideal lattice. Th

indicesm andm1 mean that the first site index belongs to t
quasimoleculem, while the second belongs to the quasim
eculem1 . The first term in Eq.~25! in this case describe
phonon scattering at isolated impurity quasimolecules, w
the second describes the scattering at all groups of two qu
molecules. The omitted terms describe scattering by gro
of three or more impurity quasimolecules.

In Ref. 27, the Binet–Cauchy theorem is used to sh
that the elements of the scattering matrix in the site rep
sentation are defined by
is
he
ed

,
i-
-
o-
e

y

f

-
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n

-

-

le
si-
ps

-

tss85

Vss81(p51
I ~21!p( i i ,ki

VS si1 ...i p

s8k1 ...i p
D ĠS k1 ...kp

i 1 ...i p
D

11(p51
I ~21!p( i i ,ki

VS i 1 ...i p

k1 ...kp
D ĠS k1 ...kp

i 1 ...i p
D .

HereA(
s8k1 ...i p

si1 ...i p ) is the minor of matrix (G,V) of dimension

L3L, which is composed of elements lying on the interse
tion of the rowsLp5( i 1 ...i p) and columnsLp85(k1 ...kp).
Each index in the setsLp and Lp8 can be encountered onl
once. For any permutation of indices, the value ofA(

s8k1...i p

si1 ...i p )

changes sign.
For a qualitative description of the phonon spectra in

casec!1, it is sufficient in practice to take into account
Eq. ~25! terms to second order in the concentration, inc
sive. The effect of the interaction of phonons with groups
more than two impurities must be expressed weakly beca
of the anharmonicity. It is assumed that the decomposit
over groups of interacting impurities converges in
asymptotic sense. In other words, such a series is consid
convergent if, for its first few terms, each subsequent term
less than the preceding one~the divergence close to singula
points can be formally eliminated by taking into accou
anharmonic damping!. We shall return to the question of th
convergence of the series when discussing specific mod

In specific calculations, it must be taken into accou
that the Green’s functionG0 possesses the symmetry of th
crystal, while the perturbationV possesses the symmetry
the quasimolecule. To do so, it is convenient to use the m
ods of group-representation theory.

As for the bare vertexG, as can be shown, it is dete
mined by a relationship of the form

G5c (
LmLm8 Lm~1!L

m~1!8
exp~2 ik1Lm! t̃ LmL

m8
~1 !m

exp~ ik2Lm8 !

3exp~ ik3Lm~1!! t̃
Lm~1!L

m~1!8
~2 !m~1!

exp~2 ik4Lm~1!8 !

5ct̃ ~1 !~k1 ,k2! t̃ ~2 !~k3 ,k4!. ~27!

In this case, single-site matrixt̄ is expressed in terms ofVm

from Eqs.~14! and ~15! andḠk(v) from Eq. ~19!.

4. THE CASE OF DIAGONAL DISORDER

4.1. Behavior of the t matrix and the S operator

We consider the case of diagonal disorder for a laye
crystal, in which the force parameters are not perturbed
we have DF50. We shall analyze the behavior of th
single-site scattering matrixt, as well as of the mass operato
S~v!. First, by using the identity

(
sÞ0

G0s
02~v!52

]G00
0

]v2 2G00
02~v!,

in place of Eq.~25!, we get

S~v!5ct~v!@11Dc~v!#, ~28!
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FIG. 1. Ret(v), Im t(v), ReDc(v),
Im Dc(v) vs v/2v i . In the case of thet ma-
trix, 1~18!, 2~28!, 3~38! are curves corre-
sponding to the values of parametere2

equal, respectively, to 5, 7, 10; for the facto
Dc , 1~18!, 2~28!, 3~38! are curves corre-
sponding to values of parameterce2 equal,
respectively, to 0.5, 0.75, and 1. The indice
with the prime are used for marking th
imaginary parts oft andDc .
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Dc~v!5ct2~v!F2
]G00

0

]v2 2G00
02~v!G

1
c

2 (
sÞ0

G0s
02~v!t2~v!S 11eik•s

12t~v!G0s
0 22D

1
c

2 (
sÞ0

G0s
02t2~v!

12eik•s

11t~v!G0s
0 1... ~288!

@G00
0 (v)5G0s50

0 (v)#. In this case, thet matrix given by Eq.
~26! is

t21~v!5
V

12VG00
0 ~v2!

, V51ev2. ~289!

We should point out that both the sums in Eq.~28! converge
rapidly. The convergence criterion of the series forS~v!,
according to Refs. 18 and 19, is that

Ut2~v!
]Ġ00~v!

]v2 U!1. ~29!

As far as the Green’s functionG0
0(v2) of the ideal crys-

tal is concerned, in the frequency region where the lat
displays quasi-two-dimensional properties, in accorda
with Eq. ~4!,

Im G00
0 ~v2!5pg~v2!'

1

v i
2 ,

where v i
2 is the square of the maximum frequency of t

vibrations in the plane. Using the Kramers–Kronig relatio
we get

Re G00
0 ~v2!5E

0

` dv82

p
P

1

v22v82 Im G00
0 ~v2!

'
1

pv i
2 ln

v i
2

v2 .

Consequently,

G00
0 ~v2!'2

1

pv i
2 ln

v i
2

v22 ipg~v2!

'2
1

pv i
2 ln

v i
2

v22
i

v i
2 . ~30!
e
e

,

Taking into account the explicit form of the Green
functionG00

0 given by Eq.~30! and of the diagonal perturba
tion operatorV given by Eqs.~14! and~15!, we find that the
denominator of thet matrix given by Eq.~289! is

12VG0
0~v2!'11

ev2

pv i
2 ln

v i
2

v2 1 i
ev2

v i
2 ,

whence it can immediately be seen that the real part of tht
matrix in the case of extremely heavy impurities, genera
speaking, can go to zero for values of the frequency sati
ing the equation

11
evR

2

pv i
2 ln

v i
2

vR
2 50. ~31!

In this case, the broadening of such a level is of the orde
magnitude of

GR'ueuvR
2.

Thus, if Eq. ~31! is satisfied in the frequency region und
consideration for reasonable values of parametere, the con-
dition GR /vR

2!1 is not fulfilled, as a result of which it is
virtually meaningless to talk about quasilocal vibrations e
isting in a narrow frequency interval, as well as about re
nant scattering at such modes. In confirmation of what
been said, Fig. 1 shows graphs of the real and imagin
parts of the single-sitet matrix of Eq.~289! for three values
of the parametere.

We stress that, if the presence of heavy impurities
weakly anisotropic crystals always results in the appeara
of quasilocal modes, it is difficult for such modes to appe
in low-dimensional crystals, as first shown in Refs. 18 a
19. However, such modes do appear in the case of we
coupled impurities~see Sec. 5!.

We now discuss the question of the corrections to
mass operator of the phonons which are quadratic in
concentration, i.e., the question of the value ofDc in Eq.
~28!. In the case of strong disorder, whenc!1 ande2c<1
simultaneously, on one hand, the relationships

Re t

v i
2 !1,

Im t

v i
2 '1.
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are satisfied in the frequency intervaluv2vRu/vR,1. On
the other hand, the lattice Green’s function, according to
~30!, is of the order ofv i

22 , as a result of which we have

Dc'ce2
v2

v i
2 ~11 i !.

SincevR
2!v i

2 holds, we getDc!1. In confirmation of what
has been said, Fig. 1 also shows graphs for the real
imaginary parts of the factorDc for several values of the
diagonal-disorder parameterce2.

It follows from everything that has been said above
this section, that, even under conditions of strong diago
disorder, renormalization of the phonon-mode frequenc
can be neglected in a certain rather wide region of frequ
cies close tovR . As far as damping is concerned, only th
term linear in concentration is needed in the expression
S. As a result, the configuration-averaged single-part
Green’s function of the phonon mode with quasimoment
k can be written as

Ḡk
1~v!'Fv22v2~k!2 i

v

t i~v!G
21

. ~32!

Here v/t i(v) is the imaginary part of the polarization op
erator, i.e.,ct. In this case,23

1

t i~v!
5smv2g~v!, sm5

p

2
cS Md2M0

M0
D 2

5
p

2
ce2.

In the case under consideration, the bare vertexG in the
Bethe–Salpeter equation immediately satisfies an identit
the Ward type. Namely,

t1~v!2t2~v!5
G

N (
k

@Gk
1~v!2Gk

2~v!#,

whence, using Eqs.~32! and ~18!, we get

15
G

N (
k

F S v22ki
2v'

2 22v'
2 sin2

bk'

2 D 2

1S v

t i~v! D
2G21

. ~33!

In the low-frequency region, 0<v2!v i
2 , instead of Eq.

~33!, we have

G5
vv i

2

t i~v!
5

v

pt i~v!gi~v2!
. ~34!

Using the explicit expressions for the phonon Gree
function of Eq.~32! and the bare vertexG of Eq. ~34!, we
now determine the diffusion vertex and afterwards the co
ponents of the diffusivity tensor, Eq.~12!.

4.2. The diffusion vertex

Let us obtain the expression for the vertexU(q;v;V) in
the weak-localization regime, where

ql!1, Vt i!1 ~35!
q.

nd

al
s

n-

r
e

of

s

-

@l 5vt i(v) is the phonon flight path#. We shall limit our-
selves to the frequency region for which the phonon disp
sion law exhibits two-dimensional properties.

Taking into account what has been said, we consider
expression

J5
G

N (
k

Ḡk
1~v!Ḡq2k

2 ~v1V!. ~36!

We transform in Eq.~36! from summation overk to integra-
tion overdk. We replace the sum(k with

a2b

~2p!32v̇ i
E

2p/b

p/b

dk'E
0

2p

dwE d~ v̇ i
2ki

2!... ~37!

We shall use for the Green’s functions in expression~37! the
representation in Eq.~32! and shall take the integral overdki

2

by finding the residue. We get

J5G
a2t i~v!

16p2v v̇ i
2 E

2p/b

p/b

dk'E
0

2p

dwH 12 iVt i2 i
t i~v!

v

3E~q,k,v!J 21

,

E5qiv̇ iAv222v'
2 sin2

bk'

2
1v'

2 sin
q'b

2
sin bk' .

We shall use the inequalities~35!, which actually identify
coherent inverse scattering processes. If these condition
satisfied, it is possible to findJ by expanding in series the
expression under the integral in braces, after which it is e
to integrate overdw anddk' . We find

J511t i~v!@ iV2R~q,v!#,

R~q,v!5
qi

2v̇ i
2

2 S 12
v'

2

v
2 D 1

v'
4

2v2 sin2
q'b

2
.

The result is that

U~q;v;V!'
vv i

2

t i
2~v!

1

2 iV1R~q,v!t i~v!
. ~38!

Note that, when the conditionv2!v'
2 is satisfied, the factor

Rt i has the standard form for a quasi-three-dimensional s
tem and equalsv̇ i

2qi
2t i(v)/21 v̇'

2 q'
2 t i(v).

4.3. Determining the diffusivity in the weak localization
regime

Let us find the principal values of tensorD in a situation
in which the condition given by inequalities~35! is satisfied.
Using Eqs.~13! and ~16!, we have

$D i ,D'%5$D i
~1! ,D'

~1!%2$D i
~2! ,D'

~2!%. ~39!

where

$D i
~1! ,D'

~1!%5
1

2pg~v!
lim

V→0
(

k
$2v̇ i

2ki
2,v'

4 b2

3sin2~k'b!%Ḡk
1~v!Ḡk

2~v1V!, ~40!
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$D i
~2! ,D'

~2!%5
1

2pg~v!
lim

V→0
(

q
U~q;v,V!

3(
k

$2v̇ iki
2,v'

4 b2 sin2~k'b!%

3Ḡk
1~v!Ḡk

2~v1V!Ḡk1q
1 ~v!Ḡk1q

2 ~v1V!.

~41!

The first term of Eq.~39!, given by Eq. ~40!, is the
diffusivity neglecting inverse coherent scattering process
The second term, given by Eq.~41!, determines the chang
of the diffusivity due to the contribution from similar specifi
interference scattering processes close to defects. In lat
with a strongly anisotropic interatomic force interaction, t
summation overq is bounded above by two small quantitie
qi ,''p/ l i ,'(v). In this case, ifa'b holds, the flight path is
l i ,'5 v̇ i ,'t i(v). However, if the unit cell parametersa and
b differ strongly, i.e., fora!b, a situation can occur in
which q''p/b.

We restrict ourselves in what follows to the static ca
in which V→0. Let us first consider the frequency regio
0,v2,2v'

2 , in which the density of states is three
dimensional~it corresponds to index 1!. Using Eqs.~32! and
~38! and taking into account the explicit form of the dispe
sion law, Eq.~18!, we have

$D i
~1! ,D'

~1!%1'
v'

2 t i~v!

2pg~v!vv i
2 H 2v̇2GiS v2

v'
2 D ,v̇'

2 G'S v2

v'
2 D J ,

~42!

where

Gi~x!5~x21!arccos~12x!1A2x2x2,

G'~x!5arccos~12x!2~12x!A2x2x2.

In the limit v→0, taking into account the definition o
g(v→0) given by Eq.~3! and the relationships

arccosx5arcsinA12x2, arcsinx.x1
x3

6
,uxu,1,

we get for the longitudinal component of coefficientD the
usual expression of the form

$D i
~1! ,D'

~1!%1>t i~v!$v̇ i
2/2,v̇'

2 %.

As for the interference correction toD i
(1), as shown in

Ref. 11, it is of order

12
3

2p2g~v!t i
2~v!v̇ i

3 .

In the case of a three-dimensional long-wavelength pho
spectrum, the role of such a correction, generally speakin
negligible. The situation can be otherwise only when
system includes resonant-scattering impurity centers
crossover splitting of the vibrational branch, when the gro
velocity is close to zero. We considered this case in de
earlier in Ref. 12.

Let us determine the diffusivityD in the frequency re-
gion 2v'

2 <v2,v i
2 , in which the vibrational-mode disper
s.

es

,

n
is

e
d

p
il

sion law is quasi-two-dimensional~this region corresponds
to index 2!. In order to do this, first, transforming from sum
mation to integration in Eq.~40!, we can integrate overdki

by the method of residues and then overdk' directly. We
have

$D i
~1! ,D'

~1!%2'
1

2pg~v!

t i~v!

vv i
$2v̇ i

2~v22v'
2 !,v'

4 b2%.

~43!

Let us proceed to the interference term of Eq.~39!. After
carrying out computations similar to those described abo
we get

$D i
~2! ,D'

~2!%2'
1

2pg~v!

t i
3~v!

2v3v i
2 (

q<qi ,q'

U~q;v;0!

3$2v̇ i
2~v22v'

2 !,v'
4 b2%.

Then, using the explicit form of the diffusion vertex given b
Eq. ~38!, we find

$D i
~2! ,D'

~2!%2'
1

2pg~v!v2 (
q<qi ,q'

1

R~q,v!

3$4v̇ i
2~v22v'

2 !,v'
4 b2%. ~44!

Let us obtain an explicit expression for the quant
(qR

21 that appears in Eq.~44!. In the limit b! l' ,

(
q<qi ,q'

1

R~q,v!
5

a2b

~2p!2 E
2p/ l'

p/ l'
dq'E

0

p/ l i

dqi
2Fqi

2
v̇ i

2

2

3S 12
v'

2

v2 D 1
v'

4 t i~v!

2v2 sin2
q'b

2 G21

'
2a2

p2 F v̇ i
2t i~v!S 12

v'
2

v2 D G21

3
b

l'
lnS 2&

l'
b

v

t iv'
2 D ~448!

~here and belowl i5 l ph,i , l ph,'5 l'). Let us combine the
terms of the standard and interference types, Eqs.~43! and
~44!. We use the representation forg(v) in the form of Eq.
~4!. In this case we also recall thatt i

21(v)
5(p/2)ce2v2g(v). As a result, for the intermediate fre
quency region, we get the following formula for the diffu
sivity tensor:

$D i ,D'%25H v̇ i
2t i~v!

2 S 12
v'

2

v2 D • b2v'
4 t i~v!

8v2 J F~v!,

~45!

F~v!512
2

p
ce2

v2

v i
2

1

~12v'
2 /v2!

b

l'

3 lnS&p
l'
b

ce2
v4

v'
2 v i

2D ~46!

~these equations also remain valid whenl''b!.
Let us make some comments on the expressions

tained for diffusivity tensorD. It follows directly from Eqs.
~45! and~46! that, in the case of strong off-diagonal disorde
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when the parameterce2 is of the order of several tens o
more, the diffusivityD can vary substantially because of th
interference mechanism. We should also emphasize that
~43!, ~45!, and~46! make it possible to study weak localiza
tion processes in the problem of low-temperature ther
conductivity.

In order to illustrate how specific impurity interferenc
processes affect the diffusivity in the weak-localization
gime, we numerically calculated theF factors of Eq.~46!.
We considered the frequency interval in which the frequ
cies of the vibrational modes depend weakly on the tra
verse componentk' of the quasimomentum. It was also a
sumed thatl ph,''b. The parameterce2 was varied from
0.25 to 1 in the calculations. Its value is determined by
measure of disorder. Moreover, the value of the param
v' /v i was varied. Its value depends on the ratio betwe
the force parameters that characterize the interaction a
thez axis and in thexy plane. The results of the calculation
are shown in Fig. 2, from which it can be seen that, first,
the case of strong off-diagonal disorder, the partial diffusi
ties can undergo appreciable variation in regions where
system exhibits quasi-two-dimensional properties. In pr
ciple, for ce2.1 a gap appears in theD(v) spectrum. Sec-
ond, the renormalization of the diffusivity strengthens as
interaction between the layers weakens.

5. THE CASE OF OFF-DIAGONAL ORDER

In this section, we shall consider only the intermedia
frequency region 2v'

2 <v2,v i
2 , in which the dispersion

law possesses quasi-two-dimensional properties. As poi
out, if off-diagonal disorder occurs in a layered lattice wh
the local force constants are markedly weakened, a vi
tional mode of resonance type arises close to the impu
center. A gap appears in the vibrational spectrum at so
critical concentrationccr . We shall analyze the features o
the behavior of the diffusivity forc.ccr . We begin with the
quasilocal perturbation model.

FIG. 2. The factorF vs v/2v i . Curves1~18!, 2~28!, 3~38! and4~48! corre-
spond to the values of parameterce2 equal to 0.25, 0.5, 0.75, and 1, respe
tively. In the case of the dashed curves, marked with the unprimed ind
the parameterv' /v i equals 0.15. For the solid curves, with the prim
indices,v' /v i50.1.
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5.1. Quasilocal perturbation model in the weak-coupling
case

We assume that the fluctuational perturbation of the
teraction force parameters between an individual substitu
impurity and its surroundings extends to the zeroth and fi
coordination spheres. In the case of a tetragonal lattice c
sidered here, the defect interacts with four atoms~1–4! in the
plane of the layer and two atoms~5 and 6! in the adjacent
layers. Then the representations 3A1g12Eu1B1g1A2u are
available on the occupied impurity site and the neighbor
sites 1–6 of the ‘‘impurity quasimolecule.’’ The represent
tions A2u1Eu are available on the impurity site itself.

The unitary matrixU for the A2u1Eu representations is
defined as

U15S 1 0 0 0 0 0 0

0 w w w w 0 0

0 0 0 0 0 y y
D .

It is assumed above thatw51/A4 andy51/&.
Using the explicit form of the matrixU, the matricesV

andG0 can be determined in symmetrized coordinates. F
we have

V15S 4t ig i12t'g'1M0ev2 22t ig i 0

22t ig i t ig i 0

0 0 2t'g'

D .

~47!

Here it is assumed that

t i512
g i8

g i
, t'512

g'8

g'

.

We also have

Ḡ05S G00
0 2G01

0 0

2G01
0 G00

0 1G12
0 12G13

0 0

0 0 G00
0 1G56

0
D . ~48!

In order to simplify further, we neglect the interactio
between the atomic planes. When this is done,g'50. We
also use the following relationships between the Gree
functions in the case of a planar lattice:

4g i~G00
0 2G01

0 !511M0v2G00
0 ,

4g iG01
0 2g i~G00

0 1G12
0 1G13

0 !5M0v2G01
0 .

In this case, in the low-frequency regionv;0.1v i ,

Re G00
0 '2 ReG01, Im G00

0 'Im G01.

Substituting Eqs.~47! and ~48! into Eq. ~26! and using the
three last relationships for the Green’s functions, we get

tA2u
5

t̂

Z
,

t̂5S M0v2«1ztg~12M0v2«G01
0 tgAz~12M0v2«G01

0 !

tgAz~12M0v2«G01
0 ! 2tg~12M0v2«G0

0!
D

Z512t i2M0ev2 Re G00
0 ~12t i/2!2 iM 0ev2

s,



ua
ri

se

g
-
Th

e

ue
ce
te
E

y

s
on
ce

e

e

ela-
in

on
s
the

rep-

m

s

of a
an

the
m

en
d a

the

516 JETP 86 (3), March 1998 A. P. Zhernov and E. P. Chulkin
3~12t i!Im G00
0 . ~49!

In this case, in the region of low frequencies and small q
simomentum values, we have for the space–time Fou
component of the scatteringt matrix given by Eq.~49!

t~k,v!'2
zg i8v

2

v i
2g i8/ueug i2v22 iv2Azg i8/g i

1OF ~kia!4,e~kia!2
v2

v i
2G . ~50!

Herez is the number of nearest neighbors in thexy plane.
It can be seen from this that, in the weak-coupling ca

in the limit R5g i8/g i→0, the t matrix has a low-frequency
resonance. The characteristic frequency is

vR5A R

ueu
v i .

It can also be seen from the formula for thet matrix, Eq.
~50!, that the conditionvR

2!v i
2 is satisfied and the dampin

of the level,GR5A4Rv2, is simultaneously small by com
parison with the characteristic resonance frequency.
resonance mode is thus well defined.

In what follows, as far as the mass operator is concern
we recall that the relationship of general form for thet ma-
trix, Eq. ~26!, includes the matricesV and G. We restrict
ourselves to the region of low frequencies and small val
of the quasimomentum. In this case, if the indicated matri
are directly multiplied and we transform from the coordina
representation to the momentum representation using
~27!, we have~see Ref. 11 for some of the details!

S~v,k!5ct~v,k!@11Dc~v,k!#,

Dc~v,k!5ct2~v,k!S 2
]G0

0~v!

]v2 2G0
02~v! D

1c(
sÞ0

Gs
02~v,k!t3~v,k!eik•s1Gs

03~v,k!t4~v,k!

12Gs
02~v!t2~v,k!

...

~51!

The convergence condition of the series is again given b
relationship of the form of Eq.~29!.19,20

When thet matrix is of the resonance type, it is nece
sary to explicitly consider the renormalization of the phon
spectrum and take into account the frequency dependen
factor Q. The configuration-averaged single-particleGk

1

function of thek mode is described by a relationship in th
general form of Eq.~19!. TheQ factor close to and far from
resonance was determined above@see Eq.~23!#.

5.2. Case of crossover splitting of the vibrational spectrum

In the case of weakly coupled impurity atoms, thet ma-
trix is defined in dimensionless variables as

t~x!52
cAzGR

xR2x2 iGR
,

where
-
er

,

e

d,

s
s

q.

a

-

of

GR5AzRx, x5
v2

v i
2 , xR5

vR
2

v i
2 .

Herev i is the maximum frequency of the vibrations in th
plane, andR5g i8/g i!1.

We shall assume that the defect concentration is r
tively high and that the following inequalities are satisfied
some frequency interval close tovR :

ux2xRu.GR , xk.uRe ct~x!u. ~52!

It then turns out that the single-particle Green’s functi
Ḡ(v) in the neighborhood ofxR has not one but two band
of resonance type. In this case, the dispersion curve of
phonons is actually split at frequencyxR , and a band gap
appears in the vibrational spectrum.28,29 Taking into consid-
eration what has been said, the Green’s function can be
resented as

Ḡ1,2
1 ~k,x!5Q~x!@x2 x̃1,2~k!1 iAx/tR8#

21.

This includes the factor

Q~x!5S 12
]P

]x D 21

5
~xR2x!2

~xR2x!21cRxR

and x̃1,2(k) denotes the renormalized dispersion law

x̃1,2~k!5
1

2
@xR1cR1xk7A~xk1xR1cR!224xkxR#

@x(k)5vk
2/v i

2#. It corresponds to two bands that result fro
the crossover splitting described above. The upper limitx2

of the first band is close toxR , while the band gap equal
x12x25cR ~x1 is the lower limit of the second band!.

Note that it makes sense to speak of the existence
gap ofD5cR between the two branches if it is greater th
the broadening. In other words, the inequalitiesD.G or
cR.RxR must be satisfied. Based on these inequalities,
concentration for which crossover splitting of the spectru
occurs can be estimated. We have

ccr'xR5vR
2/v i

2.

Note also that, in the case under consideration,

Ut2~v!
]Ġ00~v!

]v2 U' cR2x

~x2xR!2 '
cR2xR

~cR!2 5
xR

c
5

R

ec
.

Since we havec.ccr , the condition given by inequality~29!
for the convergence of the series in Eq.~51! is satisfied.

Taking into consideration what has been said, wh
there is simultaneously a well-defined quasilocal state an
gap in the vibrational spectrum, it can be shown that
diffusivity components are determined by a formula like

D i ,'~v!5Ḋ i ,'~v!2(
q

Ḋ i ,'~v!F2 iV1Ḋ i
~ l !~v!qi

2

1Ḋ'~v!
2

b2 sin2S q'

b

2D G21

, ~53!

where
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Ḋ i~v!5
v i

2t i 8~v!

2
, Ḋ'~v!5

v'
4 b2t i 8~v!

4v2 Q2~v!.

~538!

The group velocityv i is determined by

v i
2~x!5Q2~x!S 12

P~x!

x
2

x'

x D . ~54!

In this case, the second term of Eq.~538! in Eq. ~53! de-
scribes the influence of inverse coherent scattering proce

Integration can be carried out overdq in Eq. ~53!. As a
result, we get

D i ,'~gq!5Ḋ i ,'~v!F~v!. ~55!

The factorF is given by

F~v!'12
a2

p2g~v!

1

v i
2t i 8~v!

ln
&pv

t i~v!v'
2 . ~56!

Using Eqs.~55! and ~56!, we now consider the question o
localization thresholds. The threshold frequenciesv t l are
found by solving the equation

F~v t l !50.

Let us determine the relaxation time, the density
states, and the group velocity that appear in Eq.~56!. If we
take into account the definition of thet matrix, it is easy to
find that

Im t~x!52
zcR2x2Az

~xR2x!21zR2x2 .

Since we are considering the situation in which inequalit
~52! are satisfied, we get, approximately,

Im t~x!'2
z3/2c~Rx!2

~xR2x!2 .

Now we directly get that

t i
2152

Im t~x!

Azx
5zcR2

x3/2

~xR2x!2 .

The effective relaxation time, taking into account the expli
form of Q, approximately equals

t i 8
21

5Q21~x!t i~x!'
~xR2x!21cRxR

~xR2x!2

~xR2x!2

zcR2x3/2

5
~xR2x!21cRxR

zcR2x3/2 . ~57!

Note that, in the region where quasi-two-dimensional pr
erties are displayed, the correction quadratic inc2 to the
phonon lifetime turns out to be second-degree~and we ne-
glect it!, whereas its role is substantial in the thre
dimensional case.11,12 For the density of states in the firs
region of quasi-two-dimensionality, excluding the gap, wh
v'

2 ,vR
2!1, we have approximately
es.

f

s

t

-

-

n

g̃~v2!.
a2b

2~2p!2v i
2 E

2p/b

p/b

dk'H E
0

~ki
minv i !

2

d~kiv̇ i
2!Fki

2v̇ i
2

2S v22SR~v!22v'
2 sin2

k'b

2 D G
1E

~ki
maxv i !

2

v2

d~kiv̇ i
2!Fki

2v̇ i
22S v22SR~v!

22v'
2 sin2

k'b

2 D G J '
1

pv i
2 @h~vR

22v2!

1h~v22vR
22cRv i

2!#.

By definition, the anomalous dispersion region lies b
tween ki

max and ki
min . It corresponds to the forbidden fre

quency region for the density of vibrational states. Outs
this region, in dimensionless variables,

g̃~Ax!5
Ax

p
. ~58!

Finally, we consider the casexR.x'5v'
2 /v i

2 ; i.e., we
assume that the frequencyvR lies in the quasi-two-
dimensional region of the spectrum. Therefore, the gro
velocity is determined from

v i
2'Q2~x!S 12

P~x!

x D . ~548!

We use Eqs.~57!, ~58!, and~548! for t i 8 , ḡ, andv i and
simplify Eq. ~56! for F in the frequency region close to th
threshold frequency. We have

F~x!512
z

p

cR2x

~xR2x!3

~x2xR!21cRx0

xR2x1cR

3 ln
&zcR2x2

x'~xR2x!2 . ~59!

Using Eq. ~59!, we show first of all that, far from the
gap, i.e., whenx!xR and x@xR1cR, there is no localiza-
tion in the case under consideration. Indeed, ifx!xR holds,
the second termDF in the expression for factorF equals

uDFu5Uzc2Rx

pxR
2 ln

zcR2x2

x'xR
2 U!1.

DF obviously goes to zero whenR5g i8/g i!1. Then forx
@x01cR we get that

uDFu5Uzc2R

px0
ln

zcR2

x'
U!1.

Again DF→0 when R!1. Consequently, the equatio
F(v t l)50 is not satisfied in either case.

Let us now analyze the behavior ofF close to the edges
of the gap in the excitation spectrum. In order to do this,
again transform Eq.~59!. We set

x15xR1cR1d r ,

whered r!cR is some small frequency interval to the rig
of the gap. We also set
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x25xR2d l .

Here d l!xR is a small frequency interval to the left of th
gap. After some simple computations, we find

F~x!5125
zcR2x2

pd l
3 ln

zx2
2 cR

x'd l
2 @1, x2,xR ,

zx1xR

pcd r
ln

x1
2 z

x'c
.1, x1.xR1cR.

~60!

It immediately follows from the expressions for the d
fusivity D given by Eq.~53! and F given by Eq.~60! that
regions of localized states appear at the left and right ed
of the gap. In this case, the region of localized states at
left edge of the gap is substantially larger that at the rig
Note also that, in the case of diagonal disorder, localiza
effects can in principle appear in a rather wide hig
frequency region. If the disorder is off-diagonal, localizati
occurs close to the edges of the low-frequency gap in
excitation spectrum, as in the case of a three-dimensio
lattice.

6. THE NATURE OF THE LOW-TEMPERATURE PLATEAU IN
THE THERMAL CONDUCTIVITY OF THE COMPOUNDS
BSCCO AND BSYCO

The question of the unusual temperature dependenc
the thermal conductivity of a single crystal of BSCCO
complex HTSC systems and its insulating analog BSY
has been discussed in the literature.30–32 It is assumed tha
heat is transported mainly by phonons in these systems
wide temperature range from 10 to 100 K. The presence
the plateau in the thermal conductivity of BSCCO a
BSYCO in the temperature interval 10 K<T<30 K is ex-
tremely interesting here@there is no such plateau in thek(T)
dependence for 1-2-3 superconductors that are th
dimensional relative to phonon properties, wherek increases
monotonically in this temperature range32#. In other words,
the thermal conductivity has features characteristic of h
transport in amorphous insulators. The authors of an exp
mental work33 also point out there is strong cationic diso
dering in actual crystals because of cationic nonstoichio
etry in the layers that contain bismuth and strontium.

At the same time, it is well known that the bismu
cuprates Bi2Sr2Can21CunO412n , wheren51,2,3, possess a
crystal lattice with the pseudo-tetragonal symmetryI4/mmm
or D4h

17 and are block structures. They consist of alternat
layers of the rock-salt type, BiO–SrO, and the oxyge
defective perovskite Ca–CuO2. The distinguishing mark of
Bi-based compounds is the weak coupling of the Bi–O l
ers because of the relatively large distance'30 Å between
them. This property makes bismuth compounds similar
mica. In particular, Bush, Kitaevet al.33–35 considered their
optical spectra and concluded that the phonon subsystem
a quasi-two-dimensional character. Reference 36, on the
sis of an analysis of inelastic incoherent neutron scatte
spectra obtained by the isotopic-contrast method, conclu
that the interaction between the BiO–SrO and Ca–Cu2

structural blocks is weak.
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It was established in Sections IV and V that substan
renormalization of the diffusivity can occur in low-frequenc
regions under conditions of strong disorder because of s
cific interference processes. A plateau can evidently aris
the low-temperature dependence of the thermal conducti
because of such renormalization of the diffusivity.12

Thus, taking into account all that has been said, it can
assumed that the phonon subsystem displays t
dimensional properties in the low-temperature region in
heat transport in the compounds BSCCO and BSYCO. Ba
on the results of this paper, the plateau in the tempera
dependence of the thermal conductivity experimentally
served for irregular single crystals of BSCCO and BSYC
can be qualitatively explained as a result of the action
specific impurity interference processes of coherent inve
scattering. The question of the model of the disorder in t
case requires special consideration.

7. CONCLUSION

We have discussed the question of the weak localiza
of the acoustical vibrational modes in a nonideal stron
anisotropic harmonic crystal lattice. It was assumed that
layers of the lattice are weakly coupled to each other a
display two-dimensional properties. Based on the Kubo f
mula for the thermal conductivity, we have obtained an e
pression for the diffusivity tensor in the weak-localizatio
regime for temperature regions in which the phonon flig
paths are determined by elastic scattering at point defec

The features of the frequency behavior of the diffusiv
have been analyzed in the frequency interval where the
persion law of the acoustic phonon modes possesses
dimensional properties. Most importantly, we have cons
ered the case of diagonal disorder for which impurity mod
of a quasilocal type do not appear in the region where
system manifests quasi-two-dimensional properties. Ne
theless, as it turned out, substantial renormalization of di
sivity D can occur under conditions of strong disorder on
because of inverse coherent scattering processes. In this
renormalization of the diffusivity is strengthened when t
interaction between the layers is weakened. Whence2.1, a
gap appears in theD(v) spectrum at frequencies comparab
with the characteristic frequency of the spectrum.

In the case of off-diagonal disorder and weak couplin
there are quasilocal modes in the vibrational spectrum in
region where the system manifests quasi-two-dimensio
properties. In other words, a system of resonant-scatte
impurity centers appears. We have shown that in this cas
the concentration is greater than a critical valueccr , and a
low-frequency gap arises in the vibrational spectrum, regi
of localized phonon states arise on the left and on the r
edges of such a gap.

We are grateful to N. M. Plakida and H. Schober f
support.

APPENDIX A

Above we have discussed questions relating to h
transport associated with standard phonon modes. In the



co

ity
th
e-

th
e
th
y
rit

ex

.

a

n

be

n

-

s.

519JETP 86 (3), March 1998 A. P. Zhernov and E. P. Chulkin
of off-diagonal disorder, forDFÞ0, thek2 term should also
be considered. Keeping in mind what has been said, we
sider an expression of the form

Y5 (
mLL 8

m1L1L18

cmcm1
~DFR!m1L ,m1L8~DFR!m11L1 ,m11L

18

3Im Gm1L ,m11L1
Im Gm11L

18 ,m1L8

1 (
mLL 8

ss

~cmDFR!m1L ,m1L8~F0R!ss8

3 Im Gm1L8,s8 Im Gs,m1L . ~A1!

For simplicity we restrict ourselves to the single-impur
approximation. We shall assume that the impurity is at
site m5d. We multiply the resulting expression by the d
fect concentration. In this case, instead of Eq.~A1!, we have

Y5Y11Y2

5c (
L ...L18

~DFR!LL 8~DFR!L1L
18

Im G̃LL 1
Im G̃L

18L8

1c(
ss8
LL 8

~DFR!d1L ,d1L8~F0R!ss8

3Im G̃s,d1L Im G̃d1L8,s8 . ~A2!

We shall take into account the interaction only between
atoms in the layers, and we restrict ourselves in this cas
the case in which only adjacent atoms interact. As far as
first term in Eq.~A2! is concerned, it is possible to directl
sum over the sites occupied by the atoms of the impu
quasimolecule. We get

Y158c~t ig i
0a!2 Im G̃dd~ Im G̃d1a,d1a2Im G̃d1a,d2a!.

~A3!

Herea is the lattice constant, andd6a is the radius vector of
one of the nearest neighbors of the impurity. Note that
plicit expressions for functionsḠdd andḠds8 can be obtained
on the basis of the results given, for example, in Ref. 37

The expression for termY2 is also simplified. Using the
explicit form of the matrix (DFR)d1L ,d2L , it is possible to
sum over sitesLL 8. We have

Y254ct ig i
0a(

ss8
~F0R!ss8 Im G̃ds8~ Im G̃d1a,s2G̃d2a,s!.

Since (F0R)ss8Im Ḡds8;(12dss8)(21)s82s, we have Y2

50. The contribution to the thermal conductivity denoted
k2 is thus determined by termY1 in Eq. ~A3!.

In the low-temperature limit, only the contribution from
low frequencies is substantial. In the quasi-two-dimensio
case, asv→0, we have ImḠdd;const, Im@Ḡd1a,d1a(v)
2Ḡd1a,d2a(v)#;v2; consequently,Y1;v2. As a result,
we find that

k2;cav̇ it i
2g i~T/u i!

3

n-

e

e
to
e

y

-

s

al

~u i is the Debye temperature of a planar lattice!. Note that
the quantityk2 is small by comparison with

k1;
v̇ iL

2 S T

u i
D 2

,

which is determined by the boundary scattering~L is the
characteristic geometrical size of the sample!.

APPENDIX B

In general, the expression for the mass operator can
represented as

S~v!5Re S~v!1 i Im S~v!5uS~v!ueiF~v!.

where

uS~v!u5~A@Re S~v!#21@ Im S~v!#2,

F~v!5arctan
Im S~v!

Re SR~v!
. ~B1!

Thus, for the real part of the mass operator we have

P~v!5SR~v!5uS~v!ucosF. ~B2!

If the frequencyv is close to the frequency of the phono
mode with quasimomentumv̄k , the operatorP is deter-
mined by a formula of the form

P~v!5P~ṽk!1~v22ṽk
2!

]P~v!

]v2 . ~B3!

Using Eqs.~B1! and ~B2!, instead of Eq.~B3!, we have

P~v!5P~ṽk!1S v22ṽk
2F]uS~v!u

]v2 cosF

2US~v!U ]F

]v2 sin F G5P~ṽk!1~v22ṽk
2!

3F]uS~v!u
]v2 cosF2

]F

]v2 Im S~v!G . ~B4!

Based on Eq.~B4! and the determination of the single
particle Green’s function given by Eq.~15!, it is possible to
directly obtain an expression for factorQ in the form of Eq.
~21!.
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We derive the basic equations of nonlocal Josephson electrodynamics, valid for any ratios of the
characteristic scale of phase-difference variations and junction thickness. The spectrum of
generalized Swihart waves is obtained. We also study the effect of finite surface resistance of the
superconducting electrodes on the dynamics of vortex structures characteristic of nonlocal
electrodynamics. ©1998 American Institute of Physics.@S1063-7761~98!01303-1#
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1. INTRODUCTION

Josephson junctions with a high value of the critical c
rent density cannot be described by the conventional si
Gordon equation whenl j (d)<l, where

l j~d!5A F0

2pm0 j c~2l12d!
~1!

is the Josephson length,l is the London magnetic-field pen
etration depth, and 2d is the thickness of the intermedia
nonsuperconducting layer, withF05h/2ueu the magnetic
flux quantum, andj c the homogeneous critical current de
sity. Josephson vortices (l!l j ), which correspond to smal
values ofj c ,

j c! j l'
F0

4pm0l3 , d!l ~2!

~here we use the terminology introduced by Gurevich1!, have
been studied for a long time.2 For Abrikosov–Josephso
vortices,1 the characteristic spatial scale of variation of t
phase differencew is much smaller than the London depthl,
and the opposite condition is met:

j c@ j l . ~3!

Several researchers3–8 found that in this case the magn
tostatics and electrodynamics of a Josephson junction
come spatially nonlocal. In Refs. 3–8 the effect of the n
mal dc conductivity of London superconductors was igno
and no detailed analysis of the role of the finite thickness
the normal layer in the junction was carried out. Allowin
for these two factors, in Sec. 2 we derive an integ
differential equation~Eq. ~24!! that contains both tempora
and spatial nonlocalities. Using this equation, in Sec. 3
analyze the spectral properties of a Josephson junction in
linear approximation. To calculate the maximum norm
layer thickness below which nonlocality effects manife
themselves, in the Appendix we estimate the critical curr
density for an idealized model of the normal layer in t
compound YBa2Cu3O7. Finally, in Sec. 4 we study the dy
namics of a 4p kink in a thin (d→10) tunneling junction
with current, where we allow for two dissipation channe
quasiparticle tunneling and the surface resistance of the e
trodes.
5211063-7761/98/86(3)/6/$15.00
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2. EQUATIONS OF NONLOCAL JOSEPHSON
ELECTRODYNAMICS

In this section we derive the basic equations of Jose
son electrodynamics, which hold for a tunneling junction
arbitrary thickness. We take the simplest geometry: two
perconducting half-spaces (uxu.d) separated by a nonsupe
conducting layer (2d<x<d). The system is assumed to b
homogeneous iny, or ]/]y50. We introduce the following
Fourier representation of an arbitrary function:

f ~x,z,t !5E
2`

`

dvE
2`

`

dk e2 ivt1 ikzf ~v,k,x!

5E
2`

`

dv f ~v,x,z!e2 ivt. ~4!

We assume that a magnetic field directed along thy
axis satisfies the boundary conditionH(x5d,z,t)5H(x5
2d,z,t). The solution of Maxwell’s equations in the supe
conductors,

2
]H~v,x,z!

]z
5ss~v!Ex~v,x,z!, ~5a!

]H~v,x,z!

]x
5ss~v!Ez~v,x,z!, ~5b!

]Ex~v,x,z!

]z
2

]Ez~v,x,z!

]x
5 im0vH~v,x,z!, ~5c!

where

ss~v!5sdc1
i

vm0l2 , sdc5 Re
v→0

@ss~v!#, ~5d!

with ss(v) the complex conductivity andm0 the permeabil-
ity of free space, can be written

H~v,x,z!5E
2`

`

dk H~v,k!eikz

3H exp@2Vs~v,k!~x2d!#, x.d,

exp@Vs~v,k!~x1d!#, x,2d,
~6!
© 1998 American Institute of Physics
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Ex~v,x,z!5E
2`

`

dk
2 ik

ss~v!
H~v,k!eikz

3H exp@2Vs~v,k!~x2d!#, x.d,

exp@Vs~v,k!~x1d!#, x,2d,
~7!

Ez~v,x,z!5E
2`

`

dkh̃~v,k!H~v,k!eikz

3H exp@2Vs~v,k!~x2d!#, x.d,

exp@Vs~v,k!~x1d!#, x,2d,
~8!

where

Vs~v,k!5Ak22 ivm0ss~v!, ~9!

ReVs.0, andh̃(v,k)5Rs2 iXs is the surface impedance,

h̃~v,k!5
Vs~v,k!

ss~v!
, ~10!

which, as Eqs.~5d!, ~9!, and ~10! imply, has the low-
frequency approximation

h̃~v,k!52 ivm0lh~v,k!,

h~v,k!5A11~kl!2F11 i
v

2
m0l2sdc

112~kl!2

11~kl!2 G .
~11!

The functionH(v,k) can be found by solving the ap
propriate set of Maxwell’s equations for the tunneling lay
(uxu,d):

“3E52m0

]H

]t
, ~12!

“3 H5 i@ j c sin w~z,t !1 j QP~V!#1snE1«0« r

]E

]t
,

~13!

wherei is the unit vector along thex axis,«0 is the permit-
tivity of free space, and« r.0 is the dielectric constant~rela-
tive permittivity!. The first term in square brackets in~13! is
the Josephson current density, which depends on the p
difference w(z,t) of the macroscopic wave function o
paired particles in the two superconducting regions, wh
j QP(V) is the tunneling-quasiparticle current density, whi
depends only on the applied potential difference2

V[V~z,t !52E
2d

d

Ex~x,z,t !dx52
F0

2p

]w

]t
. ~14!

This is the well-known Josephson relation. We no
show that all components of the electric and magnetic fie
can be expressed in terms of the phase-difference func
w(z,t). We start by introducing the operation of averagi
over x for an arbitrary functionf (x,z,t):

f ~x,z,t !5^ f ~z,t !&1 f̃ ~x,z,t !,

^ f ~z,t !&5
1

2d E
2d

d

f ~x,z,t !dx. ~15!

Then Eqs.~12! and ~13! reduce to
r

se

e

s
on

2
]^H&

]z
5 j c sin w1 j QP~V!1

F0«0« r

4pd

]2w

]t2

1
F0sn

4pd

]w

]t
, ~16a!

2
]H̃

]z
5snẼx1«0« r

]Ẽx

]t
, ~16b!

2m0

]H̃

]t
5

]Ẽx

]z
1

Ẽz~x5d!

d
2

]Ẽz

]x
, ~16c!

]H̃

]x
5snẼz1«0« r

]Ẽz

]t
, ~16d!

2dm0

]^H&
]t

5
F0

4p

]2w

]z]t
2Ẽz~x5d,z,t !. ~16e!

In deriving Eqs.~16! we employed the fact that^Ez&50 and
the boundary conditions H̃(x5d)5H̃(x52d) and
Ẽz(x5d)52Ẽz(x52d), which correspond to the descrip
tion of the electromagnetic field outside the tunneling barr
given in Eqs.~6!–~8!. Note that these assumptions do n
hold when the materials of the superconductors differ.

The solution of Eqs.~16b!–~16e! for H̃, Ẽx , andẼz can
be written

H̃~x,z,t !5E
2`

` E dv dke2 ivt1 ikzk
sn2 i«0« rv

Vn

3Fcosh~Vnx!2
sinh~Vnd!

Vnd GA~v,k!,

Ẽx~x,z,t !5E
2`

` E dv dke2 ivt1 ikz
2 ik2

Vn

3Fcosh~Vnx!2
sinh~Vnd!

Vnd GA~v,k!,

Ẽz~x,z,t !5E
2`

` E dv dke2 ivt1 ikzk sinh~Vnx!A~v,k!,

~17!

where

Vn[Vn~v,k!5Ak22 ivm0sn2
« r

c2 v2, ReVn.0,

~18!

with sn the conductivity of the normal layer. The continuit
of the tangential components of the electromagnetic field
the boundariesx56d implies that

A~v,k!5
2 ivm0lh

k sinh~Vnd!
H~v,k! ~19!

and

H~v,k!5
2 ikF0w~v,k!

4pm0
H d1lhF11

k0
2«n~v!

Vn
2

3@12Vnd coth~Vnd!#G J 21

, ~20!
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wherek05v/c, «n(v)5« r1 isn /v«0 , and

w~v,k!5E
2`

` E dtdz

~2p!2 eivt2 ikzw~z,t !, ~21!

and we also find that
th
ot

n

in

fs
o

rt
s

tio
d

fo
^H~z,t !&52
F0

2pm0

E
2`

` E dt8dz8Q~z2z8,t2t8!
]w~z8,t8!

]z8
~22!

and
Q~z,t !5E
2`

` E dvdk

8p2d
e2 ivt1 ikz

d1lh~v,k!
k0

2«n~v!

Vn
2~v,k!

@12dVn~v,k!coth~dVn~v,k!!#

d1ln~v,k!H 11
k0

2«n~v!

Vn
2~v,k!

@12dVn~v,k!coth~dVn~v,k!!#J . ~23!
he

e

f

-
e

The relationship between the magnetic field and
phase difference generally proves to be nonlocal in b
space and time. From Eq.~16a! we obtain a generalized
sine–Gordon equation for the phase difference in the form
the following integro-differential equation:

sin w1
a

v j

]w

]t
1

1

v j
2

]2w

]t2

52l j
2l

]

]z E
2`

` E dt8dz8Q~z2z8,t2t8!
]w~z8,t8!

]z8
,

~24!

where l j
25F0/4pm0 j cl is the square of the Josephso

length ~1! corresponding to the limit d→10,
v j

254pd jc /F0«0« r , a5(sQP1sn)/v j«0« r , and in~16a!
we introduced a linearization of the quasiparticle tunnel
current density,j QP(V)'sQP^Ex&.

Formally this equation differs from those used in Re
1, 3, and 8 only by the presence of time integrals and a m
complicated expression for the kernel.

3. SPECTRAL PROPERTIES OF A JOSEPHSON JUNCTION

We consider the limit of the linear theory of Swiha
waves,2,9 corresponding to small perturbations of the pha
difference, which makes it possible to use the approxima
sinw'w. In this limit we seek the solution of the linearize
variant of Eq.~24! in the formw}exp(2ivt1ikz). By intro-
ducing the notation

d5
d

l
, q5kl j , V5

v

v j
, «5

l j

l
~25!

and ignoring damping we obtain a dispersion relation
Swihart waves:

~V221!H d1A11S q

« D 2F11
d3V2

«2 G~Vd!G J
5q2H 11

d2V2

«2 A11S q

« D 2

G~Vd!J , ~26!
e
h

of

g

.
re

e
n

r

G~Vd!5

¦

1

Vd
2 ~12Vd coth Vd!,

Vd
25

d2

«2 ~q22V2d!

if q2.V2d,

2
1

3
if q25V2d,

2
1

Vd
2 ~12Vd cot Vd!,

Vd
25

d2

«2 ~V2d2q2!

if q2,V2d.

~27!

The value of the wave vector at the point of inflection of t
dispersion curve can be found from the equation

C1
2x31~C1

222C1C2!x21~C2
222C1C2!x1C2

2~12d2!50,
~28!

where

x5S q

« D 2

5~kl!2, C1511
d3

3«2 , C25
d

«2 .

The value of the frequencyV at k50 coincides with that
obtained earlier by Silin.9 But the asymptotic behavior in th
short-wave limit~q2@V2d and q@«! yields V2→«2/d as
q→1`, which leads to the following asymptotic value o
the frequency:

v̄5
c

lA« r

. ~29!

Numerical calculations of theV(q) dependence for cer
tain values of« and d are depicted in Figs. 1 and 2. Th
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feasibility of achieving high critical current densities («
<1) by varying the normal-layer thickness in the interv
0<d<dm is demonstrated in the Appendix.

Allowing for these features of the spectral properties
the Josephson junction, we obtain the following prerequi
of the low-frequency approximation:

max~v j ,v̄ !m0l2sdc!1. ~30!

The expression~23! for the kernel can be simplified con
siderably only for thin junctions withuVnud!1. This is true
if

kd!1,
v

v̄

d

l
!1. ~31!

Hence for this approximation to be valid for the entire sp
trum, d must be much less thanl. Then, if conditions~30!
and ~31! are met and we allow for the fact that limx→0@(1
2x cothx)/x2#521/3, we arrive at the following expressio
for the kernel:

Q~v,k!5
1

2

12 ivt~k!

d1lA11~kl!2
, ~32!

where

t~k!5m0l3H sdc

2

112~kl!2

11~kl!2

1
snd

3l
A11~kl!2J A11~kl!2

d1lA11~kl!2
.

FIG. 1. TheV(q) dependence at«50.8 for various values ofd.

FIG. 2. TheV(q) dependence atd50.1 for various values of«.
l

f
e

-

The real part of the right-hand side of Eq.~32! coincides
with an expression used earlier in studies of nonlocal effe
in Josephson electrodynamics.1,8

4. TRAVELING 4p KINK IN A TUNNELING JUNCTION WITH
CURRENT

In this section we discuss some of the corollaries of
general theory for a thin (d→10) tunneling junction with
current. On the right-hand side of Eq.~24! we introduce a
dimensionless homogeneous transport-current densityj dc / j c

~overlap geometry2!. In the case of a thin junction, Eqs.~23!,
~24! and ~32! yield

]2w

]t2 1a
]w

]t
1sin w2g5E

2`

`

dz8H E
2`

` dk

2pV~k!
eik~z2z8!

3S 11b
«212k2

«21k2

]

]t D ]2w~x8,t !

]z82 J .

~33!

Here and in what follows we use dimensionless variab
with the substitutions

v j t→t,
z

l j
→z,

v

v j
→v, l j k→k

and introduce the following notation:

V~k!5A11S k

« D 2

, b5
1

2
v jm0l2sdc , g5

j dc

j c
.

The parameterb allows for the finite surface resistance of th
superconducting electrodes, and« is defined in~25!. Using
the integral representation of the Bessel function of the s
ond kind,

1

2p E
2`

` dkeikz

A11~k/«!2
5

«

p
K0~«uzu!, «.0, ~34!

we calculate the integrals in~33! and finally obtain

]2w

]t2 1a
]w

]t
1sin w2g

5
«

p E
2`

`

dz8H S K0~«uz2z8u!1b@2K0~«uz2z8u!

1«uz2z8uK08~«uz2z8u!#
]

]t D ]2w~z8,t !

]z82 J . ~35!

Here a prime denotes the derivative of a function with
spect to its argument, so that

S 11«
]

]« D «K0~«uzu!5«@2K0~«uzu!1«uzuK08~«uzu!#.

~36!

To analyze the dynamics of traveling vortices~whose
velocity v5 c̄n5l jv jn has yet to be found! in a Josephson
junction, we limit our discussion to solutions of the form

w~z,t !5f~z5z2nt !. ~37!
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In view of the Josephson relation~14!, the traveling wave
~37! carries information about the voltage–current-dens
characteristicg :

V~z!5
F0v j

2p
nF8~z!. ~38!

The boundary conditions for a 4p kink are

f~1`!2f~2`!54p, f~1,2!~6`!50, ~39!

and the dimensionless velocityn of a vortex is an eigenvalue
of the equation

n2f9~z!2anf8~z!1sin f~z!2g

5
«

p E
2`

`

duH S K0~«uz2uu!2bn@2K0~«uz2uu!

1«uz2uuK08~«uz2uu!#
d

duDf9~u!J , ~40!

provided that the boundary conditions~39! are satisfied. Note
that if b50, Eq.~40! coincides with Eq.~11! of Ref. 1. The
case«→` corresponds to an ordinary Josephson vortex
we limit ourselves to junctions with high current densitiesj c

(«!1), we are dealing with what is known as small-sca
Abrikosov–Josephson vortices.1,10 Then for the function
K0(u) we can use its asymptotic expression for a small
gument,K0(u)5 ln(2/u).

Using the second condition in~39! and the fact that

E
2`

`

ln~ uz2uu!f~2,3!~u!du52
«2`

` duf~1,2!~u!

u2z
~41!

~hereW denotes the Cauchy principal value of the integra!,
we can transform~40! into

n2f9~z!2anf8~z!1sin f~z!2g

5
«

p «2`

` du

u2z S df

du
22bn

d2f

du2 D . ~42!

This equation was used to study a traveling 2p kink
under conditions of high dissipation (a@1) in Ref. 1 forb
50 and in Ref. 11 forbÞ0. Here, bearing in mind the
boundary conditions~39!, we introduce the ansatz

f~z!5u14 arctan
z

s
, ~43!

wheres is the size of the core of the moving vortex, and

g5sin u<1. ~44!

We also note that ats5« and n25«2, Eq. ~43! yields the
solution for a zero-current nondissipative 4p kink (a5b
5g50).12 To estimate the dimensionless velocityn of a
vortex for a junction with current (gÞ0) and with dissipa-
tion ~aÞ0 andbÞ0!, it is sufficient to derive two equation
from ~42! for the unknown variable parameterss andn. Mul-
tiplying both sides of~42! by f8(z) and integrating the prod
ucts with respect toz, we obtain a relation that expresses t
balance between friction and the Lorentz force:
y

If

r-

anE
2`

`

f82~z!dz164«sbnE
2`

` u2du

~u21s2!3 524pg.

~45!

To obtain the second integral relation, we multiply~42!
by f9(z) and again integrate with respect toz. This yields

n2E
2`

`

f92dz1E
2`

`

f9 sin fdz

516«sE
2`

` s22u2

~s21u2!3 du. ~46!

Employing the identity

sin@u14 arctana#5
a426a211

~11a2!2 sin u

1
4a~12a2!

~11a2!2 cosu ~47!

and calculating the integrals in~45! and ~46!, we obtain the
required two equations forn ands:

2nS a1
«

s
b D52sg, n25«s. ~48!

Eliminating s, we find the dimensionless vortex velocity

n5A1B2
2a«

3g
, ~49!

where

A5S 2
q

2
1AQD 1/3

, B5S 2
q

2
2AQD 1/3

,

q

2
5F S 2a

3g D 3

1
b

g G«3, Q5S 11
16a3

27g2b D b2

g2 «6.

5. CONCLUSION

The basic equations of nonlocal electrodynamics h
been derived for a single Josephson junction of arbitr
thickness positioned between two similar semi-infinite sup
conductors with finite normal dc conductivity. We have stu
ied the dispersion relation for this junction numerically in t
linear approximation. We have also analyzed the conditi
under which the various theories of nonlocal Josephson e
trodynamics can be used. The theory of a thin junction t
allows for finite surface resistance of the superconduct
electrodes has been developed. Finally, we have estim
the velocity and size of the core of a 4p kink in such a
structure.

We would like to express our gratitude to Yu. M. Alie
for discussions of the results, and to the Bulgarian Natio
Science Foundation.

APPENDIX: ESTIMATES OF THE DEPENDENCE OF
JOSEPHSON CRITICAL CURRENT DENSITY ON NORMAL-
LAYER THICKNESS

We wish to estimate the maximum normal-layer thic
ness ~or the dimensionless parameterdm5dm /l! below
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which nonlocality effects begin to show up. To be more s
cific, we introduce the definition~see Eqs.~~1! and ~25!!

«~dm!51, ~A1!

assuming that ordinary local Josephson electrodynamics
erates when«@1, while for junctions with high critical cur-
rent densities we have«,1. A simple estimate for the cur
rent density in the tunneling layeruxu,d,

j 52
ie\

ms
@C* ~x!C8~x!2C~x!C8* ~x!#, ~A2!

can be made by integrating the Schro¨dinger equation~see
Eq. ~A7! with bn50!

jn
2C9~x!5C~x! ~A3a!

with boundary conditions

C~6d!5Ans exp~ iu1,2!. ~A3b!

The result of these simple calculations is well known~Eq.
~8.13! in Ref. 13!, and has the form
(l5Ams/4e2m0ns)

j 5 j c sin~u22u1!, ~A4a!

j c~d!5
F0

2pm0l2jn sinh~2d/jn!
. ~A4b!

Various experimental estimates14,15 for the intergrain
boundary in a YBa2Cu3O7 film at T54.2 K yield a coher-
ence lengthjn51 – 10 nm for a normal layer, while for th
London magnetic-field penetration depth we havel5140
nm. If these data are taken into account, Eq.~A1! becomes

jn sinh
2dm

jn
52~l1dm!. ~A5!

In Fig. 3 the parameterdm5dm /l is plotted as function
of the coherence lengthjn in the normal layer. This numeri
cal example and Fig. 3 show that at«;1 we must allow for
the finite thickness of the normal layer in the junction, w
0Þd<dm anddm;0.1.

We believe that for junctions with extremely high crit
cal current densities («!1) it is advisable to assess th
current–phase relation via modified the Ginzburg–Land
equations~an.0 andbn>0!

FIG. 3. The parameterdm as a function of the coherence length of th
normal layerjn .
-

p-

u

\2

2ms

d2C

dx2 1uasuC2bsuCu2C50, uxu.d, ~A6!

\2

2mn

d2C

dx2 2anC2bnuCu2C50, uxu,d, ~A7!

and using the following estimates for the YBCO crystal16:

ms58me , uas~T!u51.2310221S Tc2T

Tc
D J,

bs54310249 Jm3. ~A8!

Indeed, as shown by Sols and Ferrer17 for the special case
ms5mn and bs5bn , the divergence of the critical curren
density~A4b! asd→10 is removed, and in the limit of very
thin junctions the Josephson current density becomes the
pairing current density:

lim
d→0

j c~d!5
F0

3)pm0l2js

, ~A9!

wherejs5\/A2msuasu.
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Kinetics of magnetic dipoles and unified theory of NMR spectra in condensed matter
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A new approach to the analysis of magnetic dipole motion in external magnetic field and fields
generated by neighboring magnetic dipoles is suggested, and original general kinetic
equations for the dipole density are derived. Special cases of these general equations are the
Bloch, Redfield, and Provotorov equations, which are widely used in NMR theory. A comparison
between NMR spectra calculated with the new theory and published experimental data also
shows good agreement in regions to which the equations listed above do not apply. ©1998
American Institute of Physics.@S1063-7761~98!01403-6#
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1. INTRODUCTION

NMR techniques have been extensively used in stud
of the molecular motion and structure of vario
materials.1–3 It is well known from NMR theory that in orde
to extract information from NMR spectra about the structu
and motion of molecules in a material, one must first der
interpretable kinetic equations for directly observable mac
scopic densities of magnetic dipoles from the equation
the density operatorr(t), which describes the microscop
motion of all (N;1023) molecules in a sample and is unsol
able in real cases. Such kinetic equations were obta
about forty years ago for the three cases1,4,5 of most practical
interest, based on approximate solutions of the equation
the density operator for a system ofN;1023 microscopic
dipoles m i coupled through dipole–dipole interactions. A
important point is that the derivation of these equations1,4,5

began by defining, on the basis of simple physical consid
ations, the main component of the density operatorr0(t),
which determines the dipole densityM (t), and the operator
r1(t)

r1~ t !5r~ t !2r0~ t !!r0~ t ! ~1!

characterizing the time derivatives of the dipole density a
inverse spin temperaturebs(t). This approach was used i
the 1950s1 to obtain Bloch’s kinetic equations for the ma
roscopic dipole densityM (t), which permitted adequate de
scription of NMR in liquids and gases when

vdtc!1, ~2!

wherevd5d2n/\, d is the dipole moment,n is the dipole
concentration, andtc is the time in which the local dipole
field acting on a specific dipole changes due to thermal m
tion.

The main component of the density operatorr0(t) in
liquids for a resonant magnetic fieldv1 of arbitrary ampli-
tude was expressed, using the smallnessa(t)5mH0 /kT
!1, in the form

r0~ t !;11a~ t !Ŝ, ~3!
5271063-7761/98/86(3)/7/$15.00
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where Ŝ is the operator of the total dimensionless nucle
spin of the paramagnetic material,H0 is the magnitude of the
dc magnetic field, andT is the temperature of the substanc

In a solid material and weak resonant field,

v loctc@1, ~4!

v1;v loc , ~5!

wherev loc is the local field frequency, the main compone
of the density operator was expressed, using simple phys
considerations, in the form4

r0~ t !;11bs~ t !~DŜz1v1Ŝx1Ĥd
z!, ~6!

where D is the frequency offset of the resonant magne
field, bs(t) is the inverse spin temperature in the material
frequency units, andĤd

z is the secular part of the dipole
dipole interaction.

Finally, in the case of a solid material and resonant fi
v1!v loc, the main component of the density operator w
expressed as5

r0~ t !;11bs~ t !DŜz1bd~ t !Ĥd
z , ~7!

wherebd(t) is the inverse temperature of the dipole–dipo
reservoir~with dimensions of time!.

Further,1,4,5r0(t) and the equation for the density oper
tor

dr

dt
52 i @DŜz1v1Ŝx1Ĥd

z ,r# ~8!

were used in calculatingr1(t), which determines the rate o
change of dipole densities, reciprocal spin temperatures,
the actual form of the kinetic equations. The resulti
equations1,4,5 for M (t) and b(t) allowed the researchers t
explain many effects observed in NMR experiments. Th
successes were the first to demonstrate that it is possib
obtain fairly simple kinetic equations for the dipole dens
observed in NMR, although the motion ofN;1023 dipoles
described by Eq.~8! is extremely complicated. The con
straints~2!, ~4!, and ~5! imposed ontc and v1 , however,
© 1998 American Institute of Physics
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considerably reduced the applicability of NMR to studies
molecular motion and the structure of materials.

The aim of the reported work was to eliminate the
constraints and obtain general kinetic equations for magn
dipole densities and spin temperatures that could be app
to analysis of NMR spectra at allv1 and tc . The most
difficult problem in deriving these kinetic equations is taki
into account the contribution ofĤd

z for the rate of change o
dipole density, which will be discussed in the next sectio

2. CONTRIBUTION OF DIPOLE–DIPOLE INTERACTIONS TO
KINETIC EQUATIONS FOR DIPOLE DENSITY

An important point in determining the contribution o
dipole–dipole interactions to the kinetic equations for t
dipole density is that the motion of all magnetic and opti
dipoles is controlled by an elementary dynamical proces
the form of dipole precession in external fields and lo
fields generated by neighboring dipoles. This fact was
rived from the analysis of the great amount of data on de
of polarizations due to the dipole dephasing obtained in
periments on magnetic resonance1,3 and resonant optica
effects.6 This process was studied in NMR experiments
early as the 1950s,1–3 in which the decay of free nuclea
polarization was measured. Interestingly enough, follow
the advent of the laser in the 1960s, it became clear
similar processes govern the motion of optical dipoles. La
in the 1970s, the key role of the classical elementary dyna
cal process in dipole kinetics was confirmed by molecu
dynamics calculations of free polarization decay in Ca2

crystals detected in NMR experiments.7 These calculations
clearly demonstrated that the elementary dynamical pro
provides an excellent description not only of the dipo
dephasing, but also of concomitant oscillations detected
experiments on the decay of free polarization in CaF2 crys-
tals.

After molecular-dynamics calculations,7 the only prob-
lem in obtaining general kinetic equations was to develop
analytic approach to calculation of the contribution of t
dipole–dipole interaction to the time derivative of the dipo
density and derivation of the kinetic equations. Such an
proach was suggested earlier in Ref. 6, where the contr
tion of the dynamical process to the rate of change of opt
dipole density was determined for the first time not on
basis of approximate calculations, but by using a sim
physical reasoning. An important point in determination
this contribution is selection of variables to characterize
dipole density. The most convenient variables for calcu
tions based on this approach are polarizations of layers
viously suggested in Ref. 8 to describe dipole precession
partial dipole densitiessb(h,t), whereb5x,y,z, which are
in the longitudinal local dipole fieldh at time t.

The major problem in deriving such equations is calc
lation of the contribution of dipole precession in local ma
netic fields to the rate of change of the dipole density de
mined by the Hamiltonian of the dipole–dipole interaction

Ĥd
z5(

i .k
bik~3ŝ i

zŝk
z2~sisk!!53Ĥzz1Ĥ is , ~9!
f
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whereŝ i
b are spin operators proportional to dipole mome

di , and bik are predetermined coefficients of the dipole
dipole interaction.1

The contribution ofĤzz was calculated exactly8:

]F~h,t !

]t
5 ihF~h,t !,

F~h,t !5sx~h,t !1 isy~h,t !, ~10!

where

h5

Tr F(
k

biksk
zP̂~h!G

Tr P̂~h!
,

P̂(h) is the projector on all dipole configurations that gen
ate fieldh at the site of thei th dipole.

The most difficult part of the calculation is taking int
account the contribution ofĤ is to the rate of change of the
partial dipole density, which was first done8 by intuitively
truncating formally accurate but extremely cumbersome
pressions derived using the memory function techniq
Only recently6 was it proved that the contribution ofĤ is to
the kinetic equations can be easily obtained using five ob
ous physical properties typical of this interaction: 1! it should
be proportional to the local fieldh and 2! componentssx,y of
the layer polarization; 3! the isotropic component of this in
teraction, Ĥzz, contributes to the rate of change of lay
polarization an exactly calculable contribution proportion
to hsx,y; 4! since HamiltonianĤ is describes exchange o
polarizations between spins, its contribution should van
after multiplication byg(h), which describes the distribution
of local longitudinal fields in dense spin systems, and a
integration over all layers, and 5! in the case of equal polar
izations in all layers.

Given these simple physical considerations, one can
ily determine the form of the contribution ofĤd

z to the rate of
change of layer polarizations measured in free polariza
decay experiments, and a simple kinetic equation can be
tained:

dF~h,t !

dt
5

3

2
iF ~h,t !2 i S 3

2
2a D

3@hF~h,t !2hF0~ t !2F1~ t !#, ~11!

where

F~h,t !5sx~h,t !1 isy~h,t !, ~12!

F0~ t !5E dh g~h!F~h,t !, ~13!

F1~ t !5E dh g~h!hF~h,t !. ~14!

In the next section, we will add to Eq.~11! contributions
of spectral diffusion, spin–lattice relaxation, and interacti
with ac resonant field of an arbitrary amplitude to the rate
change of the layer polarization; thus we will obtain kine
equations for description of experimental data.
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3. GENERAL KINETIC EQUATIONS FOR LAYER
POLARIZATION OF SOLIDS IN NMR EXPERIMENTS

In deriving kinetic equations, it is convenient to intro
duce the following notation8:

s0
b5E s~h,t !g~h!dh, ~15!

s1
b5E s~h,t !hg~h!dh. ~16!

In deriving general kinetic equations with due account
the contributions of dipole–dipole interaction to the rate
change of layer polarizations, we add to equations like~11!
the contributions of spectral diffusion and spin–lattice rela
ation to the rate of change of dipole density in the form
simple expressions:

~s0
a2sa!/t' , a5x,y, ~17!

sa/T' , a5x,y. ~18!

In an ac resonant field of arbitrary amplitudev1 aligned with
the x-axis, the equation should include terms like

v1sa, a5y,z. ~19!

In order to take into account the spin–lattice relaxation
both the Zeeman~with relaxation timeTiZ! and dipole–
dipole ~with time Tid! reservoirs, we add to the equatio
terms like

~seq
z 2sz!/TiZ ,

hs1
z/^h2&Tid , ~20!

whereseq
z is the equilibrium dipole density, and the term

~s0
z1hs1

z/^h2&2sz!/t i ~21!

describes the equilibration of the spin system of the so
material.

Thus, by taking into account the precession of dipoles
local magnetic fields~11! and all the processes describ
above by Eqs.~17!–~21!, we obtain the following kinetic
equations for the rate of change of dipole density:

dsx

dt
52S D1

3h

2 Dsy2S 3

2
2a D ~hs0

y1s1
y2hsy!

1
s0

x2sx

t'

2
sx

T'

, ~22!

dsy

dt
5S D1

3h

2 Dsx1S 3

2
2a D ~hs0

x1s1
x2hsx!

2v1sz1
s0

y2sy

t'

2
sy

T'

, ~23!

dsz

dt
5v1sy1

1

t i
S s0

z1
hs1

z

^h2&
2szD

1
seq

z 2sz

TiZ
2

hs1
z

^h2&Tid
, ~24!
f
f

-
f

f

d

n

whereD is the offset from resonance,v1 is the resonant field
amplitude, 1/t' is the rate of change of longitudinal loca
magnetic fields due to spin exchange and thermal motion
atoms, 1/t i is the equilibration rate in the spin system of th
solid, 1/T'(i) is the rate of transverse~longitudinal! relax-
ation due to thermal motion, resulting in absorption of ph
ton of energy\v0 corresponding to the Larmor frequenc
v0 , and TiZ and Tid are the times of longitudinal spin–
lattice relaxation in the Zeeman and dipole–dipole res
voirs. The parameter 3/22a is the measure of the nonave
aged part of the isotropic dipole–dipole interactionĤ is ,
which depends on the material structure and its alignm
with respect to the dc magnetic field.

In what follows, we will show that the kinetic equation
derived by this technique are equivalent to the Redfie
Bloch, and Provotorov equations in the usual domains
applicability of these equations.

4. DERIVATION OF THE REDFIELD EQUATION FROM THE
GENERAL KINETIC EQUATION

An important point in the derivation of kinetic equation
in a rotating coordinate system is the equation of ene
conservation in the spin system:

Ds0
z1v1s0

x1
3

2
s1

z5const. ~25!

Let us derive Eq.~25! from the general equations given i
the previous section. To this end, we average Eqs.~22! and
~24! over the distribution functiong(h) and then Eq.~24!
over the functionhg(h):

ds0
x

dt
52Ds0

y2
3

2
s1

y2
s0

x

T'

, ~26!

ds0
z

dt
5v1s0

y1
seq

z 2s0
z

TiZ
, ~27!

ds1
z

dt
5v1s1

y2s1
zS 1

TiZ
1

1

Tid
D . ~28!

Multiplying Eq. ~26! by v1 , Eq. ~27! by D, and Eq.~28! by
3/2, and summing all these equations, we obtain a fundam
tal property of the kinetic equations, describing energy
change between the spin system and lattice:

d~v1s0
x1Ds0

z1~3/2!s1
z!

dt
52

v1s0
x

T'

1D
seq

z 2s0
z

TiZ

2
3

2
s1

zS 1

TiZ
1

1

Tid
D . ~29!

In the range of timest;t i ,'!TiZ,id,' the spin system can b
considered to be isolated from the lattice. In this case,
spin-system energy in Eq.~29! is an integral of the motion
defined by Eq.~25!.

We now show from Eqs.~22!–~24! the Redfield
equation4 using energy conservation~25!. To this end, we
derive from Eqs.~22!–~24! the quasi-equilibrium conditions
discussed in Ref. 4. Note that in this case an averaged o
tation for all dipoles is established; as a result,
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sb5s0
b1

h

^h2&
s1

b , b5x,y. ~30!

By substituting expression~30! into Eqs.~22!–~24! and av-
eraging the latter overh andhg(h), we obtain the following
system of kinetic equations, in which energy exchange
tween the spins and lattice can be neglected during spin–
interaction:

ds0
x

dt
52Ds0

y2
3

2
s1

y ,
ds0

z

dt
5v1s0

y ,

ds0
y

dt
5Ds0

x1
3

2
s1

x2v1s0
z ,

ds1
x

dt
52Ds1

y2
3

2
^h2&s0

y2
s1

x

t'

,

ds1
y

dt
5Ds1

x1
3

2
^h2&s0

x2v1s1
z2

s1
y

t'

,
ds1

z

dt
5v1s1

y .

~31!

In quasi-equilibrium, the kinetic equation system~31! has the
sole solution

s0
y5s1

y5s1
x50, s0

x5bv1 ,

s0
z5bD, s1

z5
3

2
b^h2&, ~32!

whereb is the reciprocal spin temperature.4

From Eqs.~29! and~32! we can derive a kinetic equatio
for the reciprocal spin temperature, which is Redfield’s cl
sical equation4:

dbs

dt
5

b02bs

T1r
, ~33!

where

b05b i T1r/TiZ , b i5beq

D2

v1
21D21v loc

2 ,

1

T1r
5

1

v1
21D21v loc

2 S v1
2

T'

1
D2

TiZ
1

v loc
2

Tc
D ,

1

Tc
5

1

TiZ
1

1

Tid
, v loc

2 5
9

4
^h2&.

We now proceed to the derivation of the Bloch equat
from Eqs.~22!–~24!.

5. DERIVATION OF THE BLOCH EQUATION FROM THE
GENERAL KINETIC EQUATION

To derive the Bloch equation, we should note that
applies to the case of fast thermal motion of molecules in
material studied, i.e.,v loct'!1. Under these conditions, th
transverse polarization of layersF(h,t) defined by Eq.~10!
can be approximated by an expression similar to Eq.~30!:

F~h,t !5F0~ t !1
h

^h2&
F1~ t !. ~34!
e-
in

-

t
e

In order to derive the Bloch equation from Eqs.~22!–~24!, it
suffices to consider just the contributions of the dipol
dipole interaction to the rate of change of layer polarizatio

S dF

dt D
dd

5 iahF1~1.52a!~hF01F1!1
F02F

t'

. ~35!

After averaging Eqs.~34! and~35! overg(h) andhg(h), we
obtain

S dF0

dt D
dd

5
3

2
iF 1 , S dF1

dt D
dd

5
3

2
i ^h2&F02

1

t'

F1 , ~36!

where the subscriptdd indicates that Eq.~36! applies to the
part of F(h,t) that depends only on the dipole–dipole inte
action of spins and spectral diffusion. Analysis of the ex
solution of Eq.~36! allows one to separate out the parame
9^h2&t'

2 , which controls the spin system kinetics. It h
been shown that for

9^h2&t'
2 !1 ~37!

the kinetic equations forF0(t) andF1(t) are decoupled:

S dF0

dt D
dd

52
9

4
^h2&t'F0~ t !, S dF1

dt D
dd

52
1

t'

F1~ t !.

~38!

By substituting expressions~35! and ~38! into the original
system ~22!–~24!, we obtain the following set of kinetic
equations:

ds0
x

dt
52Ds0

y2S 1

T'

1
9

4
^h2&t'Ds0

x ,

ds0
y

dt
5Ds0

x2S 1

T'

1
9

4
^h2&t'Ds0

y2v1s0
z ,

ds0

dt
5v1s0

y1
seq

z 2s0
z

TiZ
. ~39!

Thus, when Eq.~37! holds, we have obtained the set of equ
tions ~39!, which is equivalent to the Bloch equations1 if we
write 1/T'8 51/T'19t'^h2&/4.

6. DERIVATION OF THE BASIC EQUATION FROM THE
GENERAL KINETIC EQUATIONS

To derive the basic equation, note that the local field
the site of a specific spin is largely determined by the nea
neighbors, i.e., we can consider a finite number (103– 104) of
local field h values. Then we can rewrite the general equ
tions ~22!–~24! in matrix form by introducing vector and
matrix operators. To this end, we order the spatial basis
cording to local field valuesh. Then each functiona(h) is
replaced by the vectora whose components area(hj ). For
convenience, we introduce the following notation:I is a vec-
tor all of whose elements are 1,K̂ is a matrix all of whose
elements are 1, andD̂(a) is the diagonal matrix whose diag
onal elements are the components of vectora. Let us express
the kinetic matrix operators in the explicit form:

Û5 iaD̂~h!1 i S 3

2
2a D @D̂~h!K̂D̂~g!1K̂D̂~hg!#
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1
1

t'

K̂D̂~g!2S 1

t'

1
1

T'
D Ê, ~40!

Â5
1

t i
F K̂D̂~g!1

1

^h2&
D̂~h!K̂D̂~hg!2ÊG , ~41!

B̂5
1

Tid^h
2&

D̂~h!K̂D̂~h–g!, ~42!

after which Eqs.~22!–~24! take the compact form

dF

dt
5~Û1 iDÊ!F2 iv1sz,

dsz

dt
5v1 Im~F!1S Â2

Ê

TiZ
2B̂D sz1seq

z I

TiZ
. ~43!

The first line of Eq.~43! defines the vectorF, and substitut-
ing it into the second line, we obtain a closed equation
the longitudinal polarization vectorsz:

dsz

dt
52v1

2 ReH E exp@~Û1 iDÊ!~ t2t8!#szdt8J
1v1 Im$exp@~Û1 iDÊ!t#%F~h,0!

1~ Â2 Ê/TiZ 2B̂!sz1seq
z I

TiZ
, ~44!

whereF(h,0) is the vector of the initial transverse polariz
tion of the layer. Note that the matrixÛ describes free po
larization decay, so it determinesG(t), i.e., the signal due to
this decay:

G~ t !5~exp@Ût#I , g!5(
n

~ÛnI , g!tn/n!

5(
n

Mntn/n! ~45!

dnG/dtn5~exp@Ût#ÛnI , g!. ~46!

This means that the initial transverse polarization can be
glected at times larger than the free polarization decay ti
i.e., in the region where the theory of Ref. 5 applies.

Note that under the conditions of the theory of Ref.
when v1!v loc , v1

2t it'!1 at times of order t i ~t i

,1025 s; Ref. 9!, which is much shorter than the free p
larization decay time, quasi-equilibrium is established w
the longitudinal magnetization vector:

sz~ t !5DbZI1
9

4
bdh, ~47!

where the typical time of change inbZ and bd is much
longer than the free polarization decay time.

Substituting Eq.~47! into Eq. ~44! and taking scalar
products of the resulting equation andg andhg, we obtain a
system of linear kinetic equations for the inverse tempe
tures:

dbZ

dt
5a11bZ1a12bd1

beq2bZ

TiZ
,

r

e-
e,

,

-

dbd

dt
5a21bZ1a22bd2S 1

TiZ
1

1

Tid
Dbd , ~48!

whereseq
z 5beqD and the coefficientsai j are linear combi-

nations of the integrals

Yn5E
0

`

exp~ iDt !
dnG~ t !

dtn
dt. ~49!

In deriving Eq.~49! we have used the relationships

h52
2

3
i S Û1

Ê

T'
D I , hg5

2

3
i S Û* 1

Ê

T'
D g, ~50!

where the matrixU* is the Hermitian conjugate ofÛ, and
the fact that the inverse temperaturesbz and bd are essen-
tially constant over the free polarization decay time.

To calculate integrals in Eq.~49!, we have derived the
generating function

J~x!5 (
n50

n21

Ynxn5
Y02x(n50

n21Mnxn

11 iDx
. ~51!

From Eq.~51! we obtain

Yn5~2 iD!np@ f ~D!1 i f 8~D!#2 (
s50

n21

Ms~2 iD!n2s21,

~52!

wheref (D) describes the absorption line profile andf 8(D) is
the dispersion signal. Using Eq.~52!, we obtain the follow-
ing coefficients for equation system~48!:

a1152pv1
2f ~D!,

a215
4

9

pv1
2

^h2& S D2f ~D!2
D f 8~D!

T'
D ,

a125pv1
2S f ~D!2

f 8~D!

DT'
D ,

a225
4

9

pv1
2

^h2& F2D2f ~D!2
1

pT'

1
2D f 8~D!

T'

1
f ~D!

T'
2 G .

~53!

Substituting Eq.~53! into Eq. ~48!, neglecting terms propor
tional to 1/T' , which might be important under other cir
cumstances, and taking into account that 1/TiZ!1/Tid , we
obtain the well-known equations5

dbZ

dt
5pv1

2f ~D!~bd2bZ!1
beq2bZ

TiZ
,

dbd

dt
5

4

9

pv1
2D2

^h2&
f ~D!~bZ2bd!2

bd

Tid
. ~54!

7. COMPARISON OF THEORY AND EXPERIMENTAL DATA

It is noteworthy that Eqs.~22!–~24! are linear in both
sb(h,t) andh, which allows us to solve them both analyt
cally and numerically. We have obtained analytic expr
sions for the Fourier transforms of all projections of lay
polarizationss0,1

b (t), where the latter are determined by co
ditions ~15! and~16!. To compare our calculations to exper
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mental data, we have obtained a solution11 of ~22!–~24! for
line shapef (D), which is the Fourier transform of the rati
s0

y(t)/seq
z , andseq

z is the equilibrium polarization constan
and we have written a computer program to calculate NM
spectra in less than a minute. All calculations have b
performed for the case wheng(h) is a Gaussian distribution
function of local fields.

Figure 1 shows measured10 and calculated signals of fre
polarization decay in solid CaF2 with the @111# orientation.
The analysis of these spectra based on the theory desc
above has indicated that the oscillating component of dec
ing free polarization depends on the nonaveraged part of
isotropic dipole–dipole exchange interaction, which is ch
acterized by the parameter 3/22a ~oscillations vanish ata
53/2!. It describes collective coherent oscillations of d
poles, in which the polarization of individual dipoles simu
taneously passes through zero.

Our calculations have revealed the effect of spectral
fusion on the oscillation amplitude, and yielded estimates
spectral diffusion times:t'54•1024 s andt i,1025 s. In
our calculation we have used the following values of para
eters in Eqs.~22!–~24!: M258.08•108 s22, Tid520 s, TiZ

5480 s, T'52 s, v151026 s21, a51.25, crystal orienta-
tion @111#.

This theory has been also used to analyze satura
experiments.10 Figure 2 shows theoretical and experimen

FIG. 1. Decay of free polarization in CaF2 @111#: the solid line represents
calculations and the dashed line experimental data.10

FIG. 2. NMR saturation time vs. offset in a CaF2 @111# single crystal: the
solid line shows calculations with Eq.~55! using the parameters of Fig. 1
asterisks are experimental data.10
n

ed
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he
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n
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data on the saturation timeu as a function of frequency offse
D. In Ref. 10 the data were fitted to calculations by t
theory given in Ref. 5:

1

u~D!
5 f ~D!S 11

D2

M2
D , ~55!

wheref (D) is the absorption line profile taken directly from
experiment, andM2 is the second moment of the absorptio
line. In this work the functionf (D) was calculated for the
first time using Eqs.~22!–~24! with parameters correspond
ing to the data in Fig. 1 atv150.27 G.

For comparison with the data of saturation experime
at v loct;1,4 we used Eqs.~22!–~24! and the parameters o
Fig. 1 to calculate the absorption line profiles in CaF2 with
@111# orientation at various values of the saturation fieldH1 .
The resulting curves are given in Fig. 3, and they dem
strate how the line profile changes from Gaussian to Lore
zian asH1 increases. We have obtained the dependenc
the absorption line amplitude at the resonant frequencyv0

on v1 ~Fig. 4!. The latter graph shows that the calculatio
for a CaF2 single crystal are in qualitative agreement wi
experimental data for Al and Cu powder,4 which is consis-
tent with the Redfield equations~33! derived from the gen-
eralized equation system.

8. CONCLUSIONS

In conclusion, we emphasize that NMR spectra ha
been calculated for the first time using consistent kine
equations for the magnetic dipole density, based on the e
tion for the density matrix. Note also that such equatio
were first derived to describe free polarization decay8 by
intuitively simplifying formally rigorous expressions for th

FIG. 3. Dependence of the saturated absorption line in CaF2 @111# ~normal-
ized to unit area! on the ac resonant magnetic field amplitudeH1 : ~1! H1

50; ~2! 0.08 G;~3! 0.16 G;~4! 0.32 G;~5! 0.64 G;~6! 1.28 G;~7! 2.56 G;
~8! 5.12 G. Calculations were performed with parameters of Fig. 1.
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coefficients obtained using the memory function techniq
but the latter could not be calculated in practice. Simi
kinetic equations were later derived by analyzing a sim
dynamical process in the form of dipole precession in lo
dipole and external magnetic fields, based on five phys
considerations.6 The latter can be considered a justificati
of the kinetic equations for partial dipole densities that ha
been successfully used in analysis of NMR spectra in c
densed media.11,12 The theory advanced in this paper allow
one to calculate in several minutes NMR spectra measure
solids using the computer program mentioned above, to
rive from experimental data the characteristic spin relaxa
times~T' andTi! and spectral diffusion times~t i andt'! of
Zeeman and dipole–dipole reservoirs~TiZ andTid!, the sec-
ond momentM2 of the absorption line and all higher-orde
momentsMi , and the parametera, which is defined as the
ratio between the second and fourth moments.8

FIG. 4. Amplitude of absorption line with normalized integral as a funct
of the ac resonant field amplitudeH1 . 1! calculation for CaF2 with param-
eters of Fig. 1;2, 3! measurements of Cu and Al powder, respectively.4
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Note also that the same five physical considerations
lowed us to derive kinetic equations for partial dipole den
ties for the case of ESR13 and interpret spectra measured in
solution of chemical radicals over a wide range of dipo
concentrations.
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The Hall effect in La 0.67Ba0.33MnO3
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The Hall effect in polycrystalline barium-substituted lanthanum manganite La0.67Ba0.33MnO3 has
been investigated in the temperature interval 298,T,355 K. It is found that the anomalous
Hall coefficient in this material is two orders of magnitude greater than the normal coefficient. At
T05333 K the normal Hall coefficient changes sign, which indicates a change in the type
of conductivity. The temperature dependence of the normal Hall coefficient, electrical conductivity,
and magnetoresistance is explained on the basis of the concept of motion of the mobility
edge attendant as the temperature changes. ©1998 American Institute of Physics.
@S1063-7761~98!01503-0#
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1. INTRODUCTION

The production of multilayer metallic films possessing
large magnetoresistance at room temperature and ha
definite potential for practical applications1 has stimulated
the search for other materials with similar properties. A f
years ago ‘‘colossal’’ magnetoresistance~CMR! was de-
tected in lanthanum manganite films~see the reviews in
Refs. 2 and 3!. Subsequent growth of interest in these ha
forgotten compounds led to an upsurge of information ab
their magnetic and electrical properties. The effect of vario
factors on the magnitude of the CMR has been describe
detail.2,3 Unfortunately, an understanding of the CM
mechanism in La12xMxMnO3 ~M5Ca, Sr, Ba! has not yet
been achieved. Historically, the first model explaining t
interrelationship between the electrical and magnetic effe
in these compounds was Zener’s double-exchange mo4

however, this model fails to give a satisfactory explanat
of a number of experimental facts.5–7 Efforts to give a more
adequate description of the magnetic and transport prope
of lanthanum manganites have been based on very div
suppositions. Thus, Refs. 5–7 stress the importance of al
ing for lattice deformation and conclude that the current c
riers in these compounds are small-radius polarons. Re
ences 2, 8, and 9 emphasize the similarity of the phenom
in LaMnO3-based materials and magnetic semiconductors
number of authors assume that the state of these materia
two-phase~ferro- and antiferromagnetic!, and one of the pos
sible mechanisms of CMR is modification of such a state
a magnetic field.2,10

The difference in points of view on the nature of CMR
due in part to the insufficiency of the experimental da
Usually, the results of studies of magnetic and resistive pr
erties are analyzed. Measurements of the Hall effect co
yield substantial information, but there are precious few
5341063-7761/98/86(3)/4/$15.00
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dications of them in the literature. We are aware of only o
work11 that investigates the Hall effect in La2/3Ca1/3MnO3

films. The results reported there are, however, difficult
understand: first, far from the Curie temperatureTc5232 K
the hole concentration is almost an order of magnitude
than could be expected from the doping level, and seco
the mobility has a maximum while the concentration ha
minimum at the Curie point. It is possible that these stran
results arose because the anomalous Hall effect was
separated out.

The present work is an experimental study of the H
effect in La0.67Ba0.33MnO3 in the region of the magnetoresis
tance extremum. The normal (R0) and anomalous~spontane-
ous! (Rs) Hall coefficients are determined. Analysis of th
temperature dependence ofR0 andRs suggests that the trans
port properties of lanthanum manganites in the vicinity of t
Curie point are associated with a change in the position
the mobility edge relative to the Fermi level.

2. SAMPLES AND EXPERIMENTAL TECHNIQUE

Measurements were performed in polycrystalli
samples with nominal composition La0.67Ba0.33MnO3. The
constituent powders, synthesized by co-precipitation fr
solution,12 were cold-pressed and then annealed in a stre
of oxygen at 1200 °C for 18 h. X-ray analysis showed th
the polycrystal obtained in this way is single-phase and ha
lattice that can be assumed to be cubic with perioda
53.9 Å. The Mn31 and Mn41 content was determined b
potentiometric titration. It was found that the Mn41 ions con-
stitute 40% of the total number of manganese ions, whe
the Mn41 concentration is equal to 6.731021 cm23.

Samples for measurements of the Hall effect and
magnetoresistance were cut in the shape of rectangular
fers with dimensions 103330.9 mm3. Magnetization mea-
© 1998 American Institute of Physics
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535JETP 86 (3), March 1998 Bebenin et al.
surements were performed on smaller wafers with the s
relative dimensions. Magnetization curves were recorded
a vibration magnetometer. Measurements of the Hall ef
were performed using the four-point potentiometric meth
at constant currentI 550 mA in fields up to 15 kOe for two
mutually opposed directions of the magnetic field vector a
two mutually opposed directions of the current.

The presence of a large magnetoresistance effect
poses rigid constraints on the quality of the contacts and
temperature stability in the measurement of the Hall volta
isotherms. Indium contacts were fashioned by ultraso
soldering. The temperature stability was 0.05 K or better

3. EXPERIMENTAL RESULTS

The form of the magnetization curves of th
La0.67Ba0.33MnO3 sample is typical of ferromagnets. Satur
tion was reached in fieldsH,5 kOe. The Curie temperature
determined by the method of thermodynamic coefficien
was found to be equal toTc5349 K.

The resistivity at room temperature wasr(T5293 K)
53.531022 V•cm. The temperature dependence of the
sistance is typical for polycrystalline samples of lanthan
manganite. In ther(T) curve atH50 a resistance peak i
observed atTR5339 K. Imposing a magnetic field shifts th
peak toward higher temperatures. Note that the peaks in
r(T) curves for differentH correspond to the same magn
tization valueM'140 G.

The magnetoresistance, defined byr 5(r(H)
2r(0))/r(0), is negative. The temperature dependen
r (T) has a minimum atT5TMR(H). For example, in aH
55 kOe fieldTMR5334 K andr (TMR)524.7%.

The H dependence of the Hall resistancerHall at differ-
ent temperatures is plotted in Fig. 1. In the indicated te
perature interval it satisfiesrHall,0. With growth of the tem-
perature the dependence ofrHall on H changes from a
nonlinear dependence with abrupt growth in small fields t
linear dependence nearTc .

As is well known, in ferromagnets13

rHall5R0B1RsM , ~1!

whereB is the magnetic field induction in the sample; in o
caseB'H. In the investigated temperature region the ma
netization depends sensitively on the field intensity. In

FIG. 1. Dependence of the Hall resistance on the magnetic field at diffe
temperatures.
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ferromagnetic region we can setM (H)5Ms1xH, where
Ms is the spontaneous magnetization andx is the suscepti-
bility of the paramagnetic process. Having determinedMs

andx from the magnetization curves, we can readily find t
Hall coefficients.14 SinceM (H) andrHall(H) are known,R0

andRs can be determined in a different way by constructi
the dependence ofrHall /H on M /H. In this way it is also
possible to analyze the results in the paramagnetic regio

To find the Hall coefficients, we used the results of me
surements ofM (H) and rHall(H) in the region 5<H
<15 kOe. The two methods for findingR0 andRs give iden-
tical results. Figures 2 and 3 plot the temperature depende
of the Hall coefficients. The normal Hall coefficient forT
<325 K is positive, essentially independent of temperatu
and equal toR05(962)310212 V•cm•G21. As the tem-
perature is increased past 325 K,R0 at first grows rapidly,
reaches a sharp maximum, and then abruptly falls to zero
changes sign atT0'333 K. With further increase of the tem
perature, the normal Hall coefficient remains negative a
grows in magnitude.

The anomalous Hall coefficient is negative in the ferr
magnetic temperature region, withuRsu exceedinguR0u by
two orders of magnitude. AtT5T0 the anomalous Hall co-
efficient has a wide minimum, and atT5Tc changes sign.

4. DISCUSSION

In Refs. 15 and 16 it was shown that in the ferroma
netic region the resistance of polycrystals of lanthanum m
ganite is determined mainly by intercrystal boundaries, a

ntFIG. 2. Temperature dependence of the normal Hall coefficient.

FIG. 3. Temperature dependence of the anomalous Hall coefficient.
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the resistance of polycrystalline samples can exceed the
sistance of single-crystal samples by two to three order
magnitude. Under these conditions the Hall effect is g
erned mainly by crystallites.14

Calculating the hole concentrationnp in the temperature
region T<325 K with the help of the formulaR0

5(ecnp)21, we find that np5(762)31021 cm23, which
essentially coincides with the Mn41 ion concentration. As-
suming that the resistance of the crystallites is one to
orders less than that of the investigated polycrystal, we
tain an estimate for the hole mobility on the order
1 cm2

•V21
•s21. These two estimates allow us to conclu

that forT,T0 the conductivity of La0.67Ba0.33MnO3 is deter-
mined by band charge carriers undergoing strong scatte
This conclusion and also the large magnitude of the ano
lous Hall coefficient are in agreement with the result that
valence band of LaMnO3, as band calculations show~see,
e.g., Ref. 17!, is formed mainly by manganesed states and
has widthW;1 eV.

The change in the nature of the temperature depend
and sign of the normal Hall coefficient is evidence of
change in the type of conductivity atT5T0 . Optical mea-
surements also indicate different types of conductivity in
ferro- and paramagnetic regions.18 In our opinion, the change
in the type of conductivity is due to movement of the mob
ity edge in the vicinity of the Curie temperature. Since t
valence band of LaMnO3 is narrow, the carrier states ar
very sensitive to the presence of disorder. Disorder due to
presence of impurity atoms, vacancies, etc., can be assu
to be temperature-independent, whereas magnetic diso
due to fluctuations of the magnetization depends onT. For
the case of a narrow-band ferromagnetic semiconductor
position of the mobility edge~taking only magnetic disorde
into account! was calculated in Ref. 19 according to thes
2d model. It was shown that as the temperature is increa
from the ferromagnetic region to the paramagnetic regi
magnetic fluctuations cause the mobility edge to shift by
amount comparable with the width of the band. Although
results obtained in this work cannot be applied directly to
analysis of the conduction mechanisms in lanthanum man
nites, even in combination with familiar general ideas of t
physics of disordered systems,20–22 they allow a qualitative
explanation of the above experimental facts.

At T50 disorder is due to the presence of a dop
impurity and lattice defects. The mobility edgeEc in this
case is located inside the band~see Fig. 4! so that Ec(T
50),Etop, whereEtop is the energy corresponding to the to
of the valence band~for simplicity we ignore band deforma
tion and formation of density-of-states tails!. With growth of
the temperature the mobility edge shifts toward the cente
the band due to the appearance of magnetic disorder,
according to Ref. 19, a large part of the shift takes pla
already in the ferromagnetic temperature region. The larg
value of the differenceEtop2Ec is reached in the far para
magnetic region. If nonmagnetic disorder is absent, then
the case of a narrow-band materialEc(T50)2Ec(T@Tc)
5aW sinceW is the smallest energy parameter; in Ref.
the valuea51/4 was obtained. A magnetic field suppress
magnetic disorder and, consequently, shifts the mobility e
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away from the center toward the top of the valence band
The Fermi levelEF in our case is found inside the va

lence band. Utilizing the elliptic model of the density o
states, it easy to obtain an estimate for the Fermi ene
Etop2EF'0.4W, which is similar to the differenceEc(T
50)2Ec(T@Tc). Consequently, movement of the mobilit
edge can lead to a large change in the number of carrier
the delocalized states.

The conductivity forT,325 K has a metallic characte
whence it follows that the Fermi level at these temperatu
is located far from the mobility edge. AsTc is approached,
because of the shift ofEc the differenceEc2Ef decreases,
which leads to a decrease in the number of carriers in
delocalized states and, consequently, to a growth of the
mal Hall coefficient. At some temperatureTMS the mobility
edge crosses the Fermi level, i.e., a metal–semicondu
transition occurs. If the temperature exceedsTMS , then the
Fermi level lies in the region of localized states and the c
ductivity does not have a bandlike character. It is w
known21 that if the conductivity is due to activation of cur
rent carriers to the mobility edge, then the normal Hall co
ficient is negative as a rule, regardless of whether the carr
are electrons or holes. Consequently, the change of sig
R0 from positive atT,T0 to negative atT.T0 observed in
our samples can be explained by a transition atT5T0 from
bandlike conductivity to conductivity due to activation o
holes to the mobility edge; thusTMS5T0 .

The change in the type of conductivity is also reflect
in the temperature dependence of the anomalous Hall c
ficient, as is indicated by the presence of a minimum aT
5T0 in the Rs(T) curve.

Near TMS growth of the temperature leads to a rap
growth of the resistance. On the other hand, at values oT
noticeably aboveTMS , the differenceEF2Ec varies weakly;
therefore the resistance is of an activation nature with a
vation energy equal to this difference, and decreases w

FIG. 4. Diagram of the location of the Fermi level and the mobility edg



b

p
th
t

al
s
c
ri

ce

rth
b

rm
or
m
r

ni
f
te

at
.

s

gn.

er

un.

ett.

P.

e-
e,

e

537JETP 86 (3), March 1998 Bebenin et al.
growth of T. Consequently, the resistance peak should
found at some temperatureTR.TMS , as is observed.

A magnetic field shifts the mobility edge toward the to
of the band. In a weak magnetic field the change in
resistance caused by this shift should be greatest at
metal–semiconductor transition; therefore the extremum
the magnetoresistance should be found atT5TMS . The in-
vestigated samples haveTMR5334 K for H55 kOe, i.e.,
TMR indeed essentially coincides withTMS5333 K.

5. CONCLUSION

The study reported here of the Hall effect in polycryst
line samples of La0.67Ba0.33MnO3 shows that the anomalou
Hall effect in this material greatly exceeds the normal effe
In the ferromagnetic temperature region far from the Cu
point the normal Hall coefficientR0 is positive, its value is
essentially independent of temperature, and the hole con
tration np , determined with the help ofR0 , is near the con-
centration of Mn41 ions. At T5333 K the normal Hall co-
efficient changes sign; as the temperature is increased fu
R0 remains negative but its magnitude increases. Such
havior of R0(T) indicates that atT5333 K a change in the
type of conductivity takes place.

The observed temperature dependence of the no
Hall coefficient, the electrical resistance, and the magnet
sistance can be explained in terms of movement of the
bility edge as the temperature varies, changing the numbe
current carriers in the delocalized states. Such a mecha
for the change in the type of conductivity in the vicinity o
Tc is apparently a general feature of all heavily doped ma
rials based on LaMnO3. It should be noted in passing that
low doping levels the situation may be more complicated
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Spectrum of plasma oscillations in structures with a periodically inhomogeneous two-
dimensional electron plasma
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We develop a rigorous electrodynamic theory of plasma oscillations in a periodically
inhomogeneous two-dimensional electron system with a rectangular profile of the spatial
modulation of the equilibrium electron concentration. We calculate the frequencies and radiative
damping of the main plasma-oscillation types with a zero reduced wave vector. We show
that the frequency splitting and the radiative damping of the oscillations are nonmonotonic
functions of the modulation percentage and the ratio of the widths of the bands of two-
dimensional plasma with low and high electron concentrations. The results of calculations are
compared with experimental data and with the results of a perturbation theory developed
in earlier work of other researchers. We discuss the physical mechanism for the emergence of
radiative damping of plasma oscillations. ©1998 American Institute of Physics.
@S1063-7761~98!01603-5#
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1. INTRODUCTION

Plasma oscillations in periodically inhomogeneous tw
dimensional~2D! electron systems have been experimenta
investigated by many researchers1–7 using submillimeter
Fourier transform spectroscopy. The experimenters u
metal–insulator–semiconductor~MIS! structures based o
p-Si ~Refs. 1–4! and GaAs/AlGaAs heterostructures~Refs.
5–7!. Periodic spatial modulation of the density of a 2D
electron plasma,Ns , in the inversion channel of the MIS
structure or in the GaAs/AlGaAs heterojunction was crea
by the field effect produced by applying a bias voltage~posi-
tive in the MIS structure and negative in the GaAs/AlGa
heterojunction! to a periodic gate electrode, which is a so
semitransparent~for electromagnetic waves! periodically
corrugated conducting NiGr layer1–6 or a metallic~Al ! grid.7

The typical modulation periodL is about ~0.5–1! mm.
Plasma oscillations manifest themselves in the form of re
nances in the transmission spectrum of electromagnetic
diation passing through the structure.

The main results of these experimental studies can
summarized as follows. As the percentage of spatial mo
lation of the density of the 2D electron plasma increase
with the average surface electron number densityN̄s remain-
ing constant, the plasma oscillation frequencies decre
Note that in the case of a homogeneous 2D layer (N̄s

5Ns), the plasma frequencyvp is proportional toAN̄s

~Refs. 8 and 9!:

vp5ANse
2k/2m* «0«̄ , ~1!

where k is the plasmon wave number,e and m* are the
electron charge and effective mass,«0 is the permittivity of
free space, and«̄ is the effective dielectric constant, whic
5381063-7761/98/86(3)/7/$15.00
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depends on the geometry of the structure. The resona
observed in the experiments described in Refs. 1–7 co
spond to excitation of plasma oscillations with wave nu
bersk5kn52np/L (n51,2,3,...).

In a periodically inhomogeneous 2D electron system,
aside from a decrease in plasma oscillation frequencies, t
is a splitting of plasma resonances due to the emergenc
forbidden frequency minibands in the continuous plasm
spectrum~1!. Here the splitting of resonances manifests its
most vividly in structures with asymmetric profiles of th
electron density distribution.3

As the modulation percentage increases, the contin
of the 2D electron system is violated eventually and a pe
odic system of isolated quasi-one-dimensional electron ch
nels emerges.5,6 As the average surface electron density d
creases, the frequency of plasma oscillations of electr
localized in these channels increases.

Krasheninnikov and Chaplik10 were the first to undertake
a theoretical study of plasma oscillations in a periodica
inhomogeneous 2D electron plasma in an approximation
which the spatial modulation of the equilibrium electron de
sity was assumed weak. According to Ref. 10, the spect
of plasma oscillations atkn52np/L (n51,2,3,...) is de-
scribed by

vn
65vp

~0!~16uN2nu/N0!1/2, ~2!

wherevn
1 andvn

2 are the upper and lower edges of the 2nth
forbidden frequency band~odd-numbered forbidden band
appear atkn5(2n21)p/L!; the N2n are the Fourier expan
sion coefficients for the periodic electron density distributi
in the 2D system, withN2n!N0 , N05N̄s ; andvp

(0) is given
by Eq. ~1! with Ns replaced byN0 . Equation~2! shows that
the perturbation theory approach does not predict a decr
© 1998 American Institute of Physics
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in the average frequency~the ‘‘softening’’ effect! of plasma
oscillations, (vn

11vn
2)/2 as the modulation percentag

grows. Moreover, the splitting of plasma resonances,Dv1

5v1
12v1

2 , observed in the experiments described in Re
1–3 exceeds~by a factor greater than two in some expe
ments! the value calculated by~2!.

Eliassonet al.11 were the first to theoretically substant
ate the ‘‘softening’’ effect of plasma oscillations that appe
as the modulation percentage grows. Further theoretica
vestigations of Cataudella and Ramaglia12 and Meshkov13

suggested that the frequenciesvn
6 drop to zero when the

modulation amplitude reaches unity~which corresponds to
continuity of the 2D system being violated!. The rigorous
quantum mechanical calculations done by Wulfet al.14 sup-
port the conclusion, obtained by the classical hydrodyna
approach, that in a continuous 2D electron system the
plasma oscillation frequency decreases as the percenta
spatial modulation grows.

The increase in the frequency of plasma oscillations
electrons localized in a system of isolated quasi-o
dimensional channels with the decrease in the average
face electron density was explained by Shikinet al.,15 while
Schaichet al.16 built an approximate theory of the passage
electromagnetic waves through a structure containing p
odically inhomogeneous 2D electron plasma for arbitrary
modulation percentages.

In all of the above papers, plasma oscillations are c
sidered in the electrostatic approximation. However, as no
earlier, plasma oscillations observed in experiments invo
ing periodically inhomogeneous 2D electron systems hav
wave numberskn52np/L (n51,2,3,...), which corre-
sponds to the center of the first Brillouin zone (k50) in the
reduced-zone scheme for a periodic structure. Hence
plasma oscillations prove to be related to homogeneous~in
the plane of the 2D system! fields of transverse electromag
netic waves. Because of this relation, absorption~or emis-
sion! of electromagnetic waves by plasma oscillations in
riodic structures is possible. A meaningful description
oscillations in a 2D plasma requires a rigorous electrod
namic approach. The characteristic of the relation betw
plasma oscillations and electromagnetic radiation is the
diative damping of such oscillations.17 It is understood that
the electrostatic approximation cannot specify the magnit
of the radiative damping of one or another plasma mode

In Ref. 18–21, a rigorous electrodynamic theory
plasma oscillations in a homogeneous 2D electron plasma
was developed. The theory takes into account the relatio
such oscillations to electromagnetic radiation in structu
with a periodic metallic lattice, including the case whe
there is an external magnetic field perpendicular to the pl
of the 2D electron system.22 The method based on th
scattering-matrix technique18 was used by Wilkinsonet al.7

in their studies of plasma oscillations in a periodically inh
mogeneous 2D electron system. Their calculations made
possible to explain quantitatively the data gathered in
experiment of the same researchers,7 who employed submil-
limeter Fourier transform spectroscopy to study 2D plasma
oscillations in GaAs/AlGaAs structures with a gate electro
in the form of a periodic metallic lattice. In particular, the
.
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corroborated theoretically the reduction of the 2D plasma
oscillation frequency with an increase in the percentage
spatial modulation of the electron density.

However, the results obtained in Ref. 7 cannot be u
directly to explain the results of the experiments described
Refs. 1–3, 5, and 6, where the electron density in theD
system was modulated by employing a semitransparent p
odically corrugated solid gate electrode. Moreover, the c
culations in Ref. 7 were done for a fixed ratio of the widt
of the bands of two-dimensional plasma with low and hi
electron concentrations, which makes the description
many features of the plasmon spectrum in a periodicD
system impossible.

As noted earlier, the splitting of plasma resonances
served in experiments has so far been described in
perturbation-theory setting in the electrostatic approxim
tion.

To carry out a theoretical analysis of the features
plasma oscillations in periodically inhomogeneous 2D elec-
tron systems in connection with the above experiments
to establish the limits of the perturbation-theory approa
the rigorous electrodynamic theory developed by the pres
authors in their theoretical study of 2D plasma oscillations in
a semiconductor heterostructure with a lateral periodic m
tallic lattice has been advanced still further.18,19

In Sec. 2 we describe the theoretical model and give
main relations. Section 3 is devoted to examining the res
of calculations and comparing them with the existing expe
mental and theoretical data. In Sec. 4 we summarize the
clusions that follow from our results.

2. MODEL AND BASIC RELATIONS

Suppose that a 2D electron plasma occupies the space
the surface of a substrate~the y50 plane! with a dielectric
constant«1 . The equilibrium surface electron concentratio
in the plane of the 2D system is a periodic function of po
sition x, Ns(x)5Ns(x1L), of the form

Ns~x!5 HNA if 0 ,x,w,
NB if w,x,L. ~3!

We assume that above the 2D plasma there is a layer o
an insulator of thicknessd, and above the insulator~for y
.d! there is a medium, with the dielectric constants«2 and
«3 , respectively.

In accordance with the conditions of the experime
described in Refs. 1–3, 5, and 6, we assume that the de
electric and magnetic fields are uniform along the bands
2D plasma~along thez axis!, and limit ourselves to TM
polarization, which means that the nonzero components
the electric field areEx andEy and the nonzero componen
of the magnetic field isHz . For TE polarization the compo
nent Ex is zero, so that fields with TE polarization cann
interact with longitudinal plasma oscillations in the directio
x observed in the experiments.1–3,5,6

We write the desired fields and currents in the perio
structure in the form of expansions in spatial Fourier tra
forms. For instance, for thez-component of the magneti
field we have
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Hz~x,y!5 (
m52`

`

Hzm~y!exp~2 ibmx!, ~4!

where

Hzm~y!5
1

L E
0

L

Hz~x,y!exp~ ibmx!dx

are the amplitudes of the spatial Fourier transforms, and

bm5k1 2mp/L ,

with k the wave number reduced to the center of the fi
Brillouin zone. The amplitudes of the Fourier components
the magnetic field in the three different media can be writ

Hzm
~1!~y!5Am exp~am

~1!y!, y<0, ~5!

Hzm
~2!~y!5Bm sinh~am

~2!y!1Cm cosh~am
~2!y!, 0<y<d,

~6!

Hzm
~3!~y!5Dm exp~2am

~3!y!, y>d. ~7!

Here (am
( j ))25bm

2 2k0
2« j ( j 51,2,3),k05ṽA«0m0, m0 is the

permeability of free space, andAm , Bm , Cm , and Dm are
constants. Generally, the dielectric constants« j are complex-
valued,« j5« j81 i« j9 , where the« j9 are determined by the
dielectric losses in the corresponding media.

Writing the time dependence in exponential form
exp(iṽt), Maxwell’s equations yield

Exm
~ j !52

i ṽm0

k0
2« j

]Hzm
~ j !

]y
. ~8!

Let us write the boundary conditions at the surfacesy50
andy5d as follows:

Exm
~1!5Exm

~2! , Hzm
~2!2Hzm

~1!5I xm ~9!

at y50, and

Exm
~2!5Exm

~3! , Hzm
~3!2Hzm

~2!50 ~10!

at y5d, where theI xm are the amplitudes of the spatial Fo
rier transforms of the current density in the 2D electron
plasma.

Using Eqs.~5!–~10!, we can derive the following rela
tion linking the electric field and the surface current dens
in the y50 plane:

Exm~0!5GmI xm . ~11!

The surface impedanceGm is given by

Gm5 iZ0

xm
~3!/xm

~2!1coth~am
~2!d!

xm
~2!1xm

~1!xm
~3!/xm

~2!1~xm
~1!1xm

~3!!coth~am
~2!d!

,

~12!

wherexm
( j )5« j k0 /am

( j ) , andZ0.377V is the impedance o
free space.

On the other hand, for the current density in the 2D
electron system we have

I x~x!5sAEx~x,0! if 0 ,x,w, ~13!

I x~x!5sBEx~x,0! if w,x,L. ~14!
t
f
n

,

y

In the local approximation~the Drude model!, the surface
conductivitiessA andsB can be written

sA,B5
e2NA,B

m*
t

11 i ṽt
, ~15!

wheret is the phenomenological relaxation time of the ele
tron momentum in the 2D plasma.

If we now go to the Fourier representation in~13! and
~14! and allow for~11!, we obtain

(
m52`

`

~12GmsA!I xm exp~2 ibmx!50, 0,x,w,

~16!

(
m52`

`

~12GmsB!I xm exp~2 ibmx!50, w,x,L.

~17!

Bearing in mind that

I xm5
1

L E
0

L

I x~x!exp~ ibmx!dx,

we can write~16! and~17! as integral equations for the su
face current density:

(
m52`

`

~12GmsA!exp~2 ibmx!E
0

L

I x~z!exp~ ibmz!dz50,

0,x,w, ~18!

(
m52`

`

~12GmsB!exp~2 ibmx!E
0

L

I x~z!exp~ ibmz!dz50,

w,x,L. ~19!

Next we write the distribution of the current density over o
period of the structure as

I x~x!5I xA~x!1I xB~x!,

whereI xA(x)50 if w,x,L, andI xB(x)50 if 0,x,w.
The functionsI xA(x) andI xB(x) can be approximated in

the intervals 0,x,w andw,x,L by the expansions

I xA~x!5exp~2 ikx! (
n50

N

pnPn~x8!, ~20!

I xB~x!5exp~2 ikx! (
n50

N

qnPn~x9!, ~21!

wherePn(x8) and Pn(x9) are Legendre polynomials of th
first kind of degreen defined, respectively, in the interva
0,x,w and w,x,L, x852x/w21, x952(x2w)/s21,
s5L2w, andpn andqn are unknown constant coefficient
Note that the functionsI xA,B(x)exp(ikx) are the complex-
valued amplitudes of the current densitiesI xA,B(x) in the 2D
electron system; they are periodic functions of positionx
with periodL.

We write the current density in Eqs.~18! and~19! in the
form of the sum of the expansions~20! and~21! and employ
the Galerkin procedure23 for solving the integral equation
~18! and ~19!, where for the orthogonal basis functions w
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take the Legendre polynomialsPn(x8) and Pn(x9) in the
corresponding intervals. This procedure makes it possibl
pass from the system of integral equations~18! and ~19! for
the function I x(x) to a system of 2(N11) homogeneous
algebraic equations for the coefficientspn andqn :

(
n50

N

Aknpn1 (
n50

N

Bknqn50, k50,1,2,...,N,

(
n50

N

Cknpn1 (
n50

N

Dknqn50, k5N11,...,2N11, ~22!

where

Akn5win (
m52`

`

j kS mpw

L D j nS mpw

L D ~12GmsA!,

Bkn5sin (
m52`

`

~21!mj kS mpw

L D j nS mps

L D ~12GmsA!,

Ckn5win (
m52`

`

~21!mj kS mps

L D j nS mpw

L D ~12GmsB!,

Dkn5sin (
m52`

`

j kS mps

L D j nS mps

L D ~12GmsB!. ~23!

The spherical Bessel functions of the first kind of degreen,
j n(mpw/L) and j n(mps/L), emerge in Eqs.~23! as a result
of calculations of integrals of type24

E
21

1

Pn~z!exp~ irz!dz52i nj ~r!,

which appear after substituting the expansions~20! and~21!
into Eqs.~18! and ~19!.

The dispersion relation, which connects the frequen
and the reduced wave numbers of the natural oscillation
the system, is determined from the condition that the de
minant of the system of linear homogeneous equations~22!
be zero. For a fixed real value of the wave numberk, the
roots of the dispersion relation yield the values of t
complex-valued frequenciesṽ5v1 ig. The real partv is
the frequency of the natural oscillations, and the imagin
part g is the damping coefficient for these oscillations, t
damping being due both to dissipative losses and elec
magnetic radiation emitted by the structure~radiative losses!.
If we neglect dissipative losses, theng5g r , whereg r is the
radiative damping coefficient.

The Galerkin procedure and the series in~23! are con-
vergent. Below we give the results of numerical calculatio
for N54 and for terms withumu<30 retained in~23!, which
makes it possible to ensure 1% accuracy in the calcula
natural frequencies.

3. RESULTS AND DISCUSSION

In this section we discuss calculations of a 2D electron
system with a periodic distribution profile for the equilibriu
electron concentration of the form~3!, for the following val-
ues of the modulation amplitude:
to

y
of
r-

y

o-

s

d

Dns5
NA2NB

2N̄s

,1, NA.NB.0.

In accordance with the experimental situation, we stu
the plasma oscillations with a zero wave vectork. Such os-
cillations manifest themselves in the form of plasma re
nances in the transmission spectra of the external elec
magnetic wave~uniform in the plane of the 2D system!
passing through the structures in the experiments descr
in Refs. 1–3, 5, and 6.

The presence of a periodic distribution profile of th
equilibrium electron concentration in the 2D system splits
each plasma oscillation with a wave numberkn52np/L
~which corresponds tok50 in the reduced-zone schem!
into two oscillations with different frequenciesvn

6 . In the
adopted case of a profile of the equilibrium electron conc
tration ~Eq. ~3!! that is symmetric with respect to the cente
of the intervals 0,x,w and w,x,L, one oscillation is
nonradiative (g r50) and the other is characterized by no
zero radiative damping. Obviously, only radiative modes c
interact directly with an external electromagnetic field a
hence can be observed in experiment.

The magnitude of radiative damping rapidly decreases
n grows, so that plasma resonances withn51 are the most
degenerate resonances in the transmission spectrum o
electromagnetic wave. In this connection, below we consi
only the fundamental~i.e., with the lowest frequencies!
plasma oscillations withn51 and drop the label 1 for con
venience.

Figure 1 depicts the results of calculating the frequenc
and radiative damping coefficients of plasma oscillations
functions of the parameterw/L obtained without allowance
for dissipative losses in the structure~t→` and« j950!. The
values of the other parameters are characteristic of M
structures based onp-Si that are used in experiments.1–3 The
average surface electron concentrationN̄s5(NAw1NBs)/L
is assumed constant. The distributions of the electric fi
componentEx(x) and of the oscillations of the surfac
charge densityr(x) in the plane of the 2D system are de-
picted in Fig. 2 for radiative and nonradiative oscillations

Figure 1 shows that the frequencies of the plasma os
lations decrease as the percentage of the modulation o
equilibrium electron concentration grows over essentially
entire range of the parameterw/L, due to the localization of
the oscillation field in the region of the 2D plasma with the
lower electron concentration~Fig. 2!. Naturally, atw/L50
and w/L51 the frequenciesv1 and v2 coincide and are
equal to the frequency of plasma oscillations in a struct
with a homogeneous 2D electron layer with the electron
concentrationNs5N̄s . Theoretically, the frequencies o
plasma oscillations tend to zero asDns→1 (NB→0). These
conclusions agree with earlier theoretical results.7,11–13

The frequency splittingDv5v12v2 of the radiative
and nonradiative oscillations is a nonmonotonic function
the parameterw/L. For small values ofw/L the radiative
oscillation frequency is higher than the frequency of the n
radiative mode, while for large values ofw/L the situation is
just the opposite. The value ofw/L at which the oscillations
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FIG. 1. Thew/L-dependence of the frequen
cies~a! and radiative damping coefficients~b!
for radiative ~solid curved! and nonradiative
~dashed curves! plasma oscillations for vari-
ous values of the amplitude of the spati
modulation of the electron concentrationDns

50.2 ~curves 1!, 0.5 ~curves 2!, and 0.7
~curve3!. The parameters of the structure a

«1511.45, «253.9, «351, N̄s53
31012 cm22, L5631025 cm, d52
31026 cm, and m* 50.2 me , with
c51/A«0m0 the speed of light.
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FIG. 2. Distributions of the amplitude and phase of the longitudinal elec
field Ex5uExuexp(iwE) and of the oscillations of the surface charge dens
r5uruexp(iwr) in the plane of the 2D electron system for radiative~a! and
nonradiative~b! oscillations atw/L50.5 andDns50.7. The other param-
eters of the structure are the same as in Fig. 1.
become degenerate (w15w2) approaches 0.5 as the mod
lation percentage decreases, which agrees with the pertu
tion theory formula~2! if

uN2u
N0

5
sin~2pw/L !

2p~NB /~NA2NB!1w/L !
. ~24!

This corresponds to the given profile~3! of the concentration
distribution. Estimates show that perturbation theory te
niques provide satisfactory agreement~to within 1%! with
the results of rigorous calculations ofDv only when Dns

,0.05.
The asymmetry of the periodic profile of the electro

concentration distribution in a 2D system~which was ig-
nored in this work! must lead~at least in principle! to radia-
tive damping of both fundamental plasma oscillations, wh
makes it possible to observe the splitting of the frequenc
of these oscillations in experiments. The splitting of a plas
resonance due to the excitation of plasma oscillations at
frequenciesv1 and v2 has been observed in the expe
ments discussed in Refs. 1–3, which indicates that the s
metry of the profile of the concentration distribution is vi
lated ~in the work of Mackenset al.1,2 this violation was
uncontrolable!. Moreover, the insulating layer (SiO2) used in
the experiments discussed in Refs. 1–3 had a periodic
varying thickness, a situation that was also not taken i
account by the theory.

These facts impede direct quantitative comparison of
experimental data and the results of calculations. For
stance, the estimates done by the perturbation theory form
~2! with the use of~24! yield a value ofDv that is almost
twice as small as the experimentally observed value.1 Our
rigorous calculations yield even a smaller value ofDv ~by
approximately 15%! for the percentage of modulation of th
equilibrium electron concentration realized in the experim
of Mackenset al.:1 Dns.0.26. Allowance for dissipative
losses by inclusion into the calculations of the values ot
and « j9 characteristic of the experiment discussed in Ref
has essentially no effect on the values of the natural frequ
cies ~with an accuracy of better than 1%!. We believe that
the main reason for the considerable discrepancy between
experimental and theoretical data is the presence in the

c
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perimental structures of an additional inhomogeneity rela
to the periodic corrugation of the surface of the insula
layer. Note that Heitmann3 has reported the observation
substantial splitting of the plasma resonance atw/L50.5 and
a modulation percentageDns of approximately 0.7, which
qualitatively agrees with the results of our calculation d
picted in Fig. 1a. Perturbation theory techniques yield in t
caseDv50, so that they cannot be used to explain He
mann’s results3 qualitatively.

As expected, the maximum value of the radiative dam
ing coefficient increases with the modulation percentage,
in the process the maximum ofg r shifts to larger values o
w/L ~Fig. 1b!. This yields a nonmonotonic dependence ofg r

on the modulation percentage for any fixed value ofw/L.
Figure 2a shows that the distribution of the electric fie

componentEx in a radiative plasma oscillation is symmetr
with respect to the centers of the intervals 0,x,w and
w,x,L. At the same time, the distributionEx(x) for the
nonradiative mode~Fig. 2b! has nodes at the central points
these intervals, i.e., is antisymmetric. The distributions of
nonequilibrium additions to the surface charge densityr(x)
for the radiative and nonradiative oscillations have oppo
symmetry parities in relation to the corresponding distrib
tionsEx(x). Thus, in the case of a radiative oscillation in t
plane of a 2D electron system there emerges a chain of e
tric dipoles formed by the nonequilibrium charges of opp
site signs at the edges of the bands of 2D plasma with dif-
ferent equilibrium electron concentrations. Th
electromagnetic radiation emitted by these dipoles is
cause of radiative damping. In the case of nonradiative
cillations no dipoles are formed~see the distributionr(x) in
Fig. 2b!. If the distribution profile for the equilibrium densit
of the 2D electron plasma is asymmetric, then the symme
of the distributionsEx(x) andr(x) is violated, which leads
to radiative damping of both oscillations.

4. CONCLUSION

We have analyzed theoretically the plasma oscillatio
in a periodically inhomogeneous 2D electron plasma. The
model employed was that of a continuous 2D electron sys-
tem with a rectangular profile of the spatial modulation
the equilibrium electron concentration with an arbitra
modulation percentage.

Using a rigorous electrodynamic approach, we have
culated the frequencies and radiative damping of two fun
mental ~lowest in frequency! types of plasma oscillation
with a zero reduced wave vector. The splitting of the plas
oscillation frequencies has proved to be a nonmonoto
function of the ratios/w of the bands of 2D plasma with low
and high electron concentrations, respectively. At a cer
value ofs/w inside the interval 0,s/w,1 degeneracy set
in and the oscillation frequencies are inverted. As the mo
lation percentage grows, degeneracy sets in at smaller va
of the parameters/w.

The results of our rigorous calculations have been co
pared with the experimental data taken from the literature
submillimeter Fourier transform spectroscopy of plasma
cillations in a periodically inhomogeneous 2D electron
d
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plasma and with the results of an earlier approximate the
of a small periodic perturbation of the equilibrium electro
concentration. We have found that perturbation theory te
niques yield results that are in satisfactory agreement w
those of rigorous calculations only at values of the amplitu
Dns of concentration modulation smaller than 0.05. T
most probable reason for the large discrepancy between
experimental and theoretical values of the frequency splitt
is the presence of a periodic gate electrode in the experim
tal structures, with the effect of this electrode ignored by
theory.

Because of the symmetry of the periodic profile of t
distribution equilibrium electron concentration considered
this paper, one of the fundamental plasma oscillations is n
radiative. The maximum value of the radiative damping c
efficient g r of the other fundamental oscillation increas
with modulation percentage, while the maximum ofg r is
observed for smaller values ofs/w. As a result, there
emerges a nonmonotonic dependence of the radiative da
ing coefficient on the amplitude of the modulation of th
equilibrium electron concentration at any fixed value ofs/w.

On the basis of an analysis of the distributions of t
longitudinal electric field in the radiative and nonradiati
plasma oscillations and the distributions of the nonequi
rium surface charge density in a 2D electron plasma we hav
attempted to explain the physical mechanism of emission
electromagnetic waves by the system.
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damental Research~Project No. 96-02-19211!.

* !E-mail: vapr@scnit.saratov.su

1U. Mackens, D. Heitmann, L. Prager, J. P. Kotthaus, and W. Beinv
Phys. Rev. Lett.53, 1485~1984!.

2D. Heitmann, J. P. Kotthaus, U. Mackens, and U. Beinvogl, Superlatt
Microstruct.1, 35 ~1985!.

3D. Heitmann, Surf. Sci.170, 332 ~1986!.
4T. Zettler and J. P. Kotthaus, Semicond. Sci. Technol.3, 413 ~1988!.
5J. P. Kotthaus, W. Hansen, H. Pohlmann, and M. Wassermeier, Surf.
196, 600 ~1988!.

6T. Demel, D. Heitmann, and P. Grambow, inProc. NATO ARW ‘‘Spec-
troscopy of Semiconductor Microstructures’’, Venice~1989!, NATO ASI
Series B, Physics, Vol.206, G. Fasol, A. Fasolino, and P. Lugly~eds.!,
Plenum Press, New York~1989!, p. 75.

7R. J. Wilkinson, C. D. Ager, T. Duffield, H. P. Hughes, D. G. Hasko,
Ahmed, J. E. F. Frost, D. C. Peacock, D. A. Ritchie, G. A. C. Jones, C
Whitehouse, and N. Apsley, J. Appl. Phys.71, 6049~1992!.

8T. N. Theis, Surf. Sci.98, 515 ~1980!.
9A. V. Chaplik, Surf. Sci. Rep.5, 289 ~1985!.

10M. V. Krasheninnikov and A. V. Chaplik, Fiz. Tekh. Poluprovodn.15, 32
~1981! @Sov. Phys. Semicond.15, 19 ~1982!#.

11G. Eliasson, P. Hawrylak, Ji-Wei Wu, and J. J. Quinn, Solid State Co
mun.60, 3 ~1986!.

12V. Cataudella and V. M. Ramagllia, Phys. Rev. B38, 1838~1988!.
13S. V. Meshkov, J. Phys.: Condens. Matter3, 1773~1991!.
14U. Wulf, E. Zeeb, P. Gies, R. R. Gerhardts, and W. Hanke, Phys. Re

42, 7637~1990!.
15V. B. Shikin, T. Demel’, and D. Heitmann, Zh. E´ ksp. Teor. Fiz.96, 1406

~1989! @Sov. Phys. JETP69, 797 ~1989!#.
16W. L. Schaich, P. W. Park, and A. H. MacDonald, Phys. Rev. B46,

12 643~1992!.
17M. V. Krasheninnikov and A. V. Chaplik, Zh. E´ ksp. Teor. Fiz.88, 129

~1985! @Sov. Phys. JETP61, 75 ~1985!#.
18C. D. Ager and H. P. Hughes, Phys. Rev. B44, 13 452~1991!.
19O. R. Matov, O. V. Polishchuk, and V. V. Popov, Pis’ma Zh. Tekh. F



.

h.

ns

544 JETP 86 (3), March 1998 Matov et al.
18, No. 8, 86~1992! @Sov. Tech. Phys. Lett.18, 645 ~1992!#.
20C. D. Ager, R. J. Wilkinson, and H. P. Hughes, J. Appl. Phys.71, 1322

~1992!.
21O. R. Matov, O. V. Polischuk, and V. V. Popov, Int. J. Infrared Millim

Waves14, 1455~1993!.
22O. R. Matov, O. F. Meshkov, O. V. Polishchuk, and V. V. Popov, Z
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Absence of saturated ferromagnetism in the two-dimensional Hubbard model with two
holes for U5`
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For a square Hubbard lattice with infinite repulsion energyU the following exact result has been
obtained: the ferromagnetic state with maximum spin is not the ground state of the system
if the number of holes is equal to two. ©1998 American Institute of Physics.
@S1063-7761~98!01703-X#
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1. INTRODUCTION

The Hubbard model, first introduced to explain ferr
magnetism, is a simple model describing compounds w
strong correlation coupling. The Hubbard Hamiltonian
usually written in the form

Ĥ52t (
^ i , j &,s

~ ĉi ,s
1 ĉ j ,s1 ĉ j ,s

1 ĉi ,s!1U(
i

~ni↑ni↓!.

whereci ,s
1 and ci ,s are the creation and annihilation oper

tors of the electron at the sitei with spin projections, nis is
the number of electrons at the sitei with spins, and the sum
over ^ i , j & extends over pairs of nearest neighbors. The p
ence of only two parameters—the jump to the neighbor
site t and the Coulomb repulsion energyU per site—make
the model extraordinarily attractive for study.

The two-dimensional Hubbard model with infinite repu
sion may be considered as a zeroth approximation for
description of a wide class of compounds with anomalo
magnetic and electrical properties, including hig
temperature superconductors. Therefore the question o
nature of the ground state of this model is of exceptio
importance for understanding the mechanism of hi
temperature superconductivity. The available reference
the literature contain contradictory statements. All numeri
studies of cluster systems~see, e.g., Refs. 1 and 2! give one
and the same picture: for systems with fixed total spin of
particles S the ground-state energyE0(S) is a monotonic
function ofS. In the case of one hole the ground state of
system corresponds to maximum spin~saturated ferromag
netism! in the following cases: 1! a free boundary, 2! an even
number of particles in each direction, and 3! positive jump
energy (t.0). Here the ground-state energy is a monoto
cally decreasing function ofS. If none of these three condi
tions is satisfied, the ground state corresponds to the m
mum possible spin of the particles, wherebyE0(S) grows
with S. If the number of holes is greater than one, the grou
state of the system corresponds to minimum spin~S50 or
S51/2! and the ground-state energy is a monotonically
creasing function ofS. In his 1966 paper Nagaoka3 consid-
ered only a simple cubic~square! lattice with periodic
boundary conditions and an even number of particles in e
direction. He gave a rigorous proof of the maximality of t
5451063-7761/98/86(3)/5/$15.00
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spin for the ground-state energy in the case of one hole.
remainder of his paper is usually interpreted as follows:
low hole concentrations for a cubic lattice the ground st
has maximum lattice spin~the state of saturated ferromag
netism! for all U,Umax. According to Ref. 3, the limiting
value Umax falls as the hole concentration grows. In fa
Nagaoka formulated his result somewhat differently: for
simple cubic lattice with one hole andU5` the ground state
corresponds to maximum spin; for finiteU andn holes the
ferromagnetic state with maximum total spin is not t
ground state if

an/N,t/U,

whereN is the number of lattice sites, anda is a numerical
parameter of order unity. Nagaoka obtained this result in
gas approximation assuming a small but macroscopic h
concentrationn/N. Formally the case of two holes was n
considered in Ref. 3.

In the present paper, for a periodic two-dimensional l
tice with an even number of sites in each direction, I obt
an upper estimate for the difference

D5E0~Smax21!2E0~Smax!

between the ground-state energy with spin equal to 1
than its maximum value and the energy of the Nagaoka st
The estimate is obtained variationally. I consider the quan

D̃5
^C~Ĥ2E0~Smax!!C&

^C,C&
.

The explicit form of the test function is given for whichD̃
,0.

2. MAIN EQUATIONS

Consider a rectangularNx3Ny lattice. We denote byN
5NxNy the number of sites, byâi

1 (âi) the creation~anni-
hilation! operator at thei th site of a particle with spin up, and
by b̂i

1 (b̂i) the creation~annihilation! operator at thei th site
of a particle with spin down. We assume that the syst
possesses translational invariance, and we consider s
with prescribed quasimomentuma5(ax ,ay):
© 1998 American Institute of Physics
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ax5
2p

Nx
i , i 50, 1,...,Nx21,

ay5
2p

Ny
i , i 50, 1,...,Ny21.

For such states the complete set

F i j 5
1

AN
~11exp~ iax!K̂x1exp~2iax!K̂x

21...

1exp~ iNx21ax!K̂x
Nx21

!~11exp~ iay!K̂y

1exp~2iay!K̂y
21...

1exp~ iNy21ay!K̂y
Ny21

!âi â jF0 , ~1!

may be specified, whereK̂x (K̂y) is the translational shift
operator~by one lattice site! in the x (y) direction, andF0

5b̂1
1â2

1 ... âN
1u&, where u & is the empty state. The functio

F i j is a translationally invariant state with fixed distanc
between the flipped spin and each hole~equal to the dis-
tances between the first andi th or j th site, respectively!. The
translational shift operatorsK̂x (K̂y) are defined as follows:

K̂xF5exp~2 iax!F, K̂yF5exp~2 iay!F.

The functionsF i j satisfy the following normalization
conditions:

^F i j ,F lm&5d i l d jm2d imd j l . ~2!

As the basis functions we take

Vk1 ,k2
5

1

M (
i , j

F i j exp~ ik1•r i !exp~ ik2•r j !. ~3!

where the setk5(kx ,ky) coincides with the set of quasimo
menta a5(ax ,ay) with the exception of the casekx5ky

50. The vectork may be treated as a hole momentum in
system in which the flipped spin is at rest.

Obviously, the functionsVk1 ,k2
are antisymmetric in the

indicesk1 ,k2 :

Vk1 ,k2
52Vk2 ,k1

. ~4!

Thus, the obvious requirement is fulfilled that for a giv
quasimomentuma we have (N21)(N22)/2 independent
functionsVk1 ,k2

:
We note the useful relation

(
k1

Vk1k2
52

1

N (
i , j

F i j exp~ ik2•r j ! ~5!

and analogously

(
k2

Vk1k2
52

1

N (
i , j

F i j exp~ ik1•r j !, ~5a!

where the sum overk is taken over theN21 indicated val-
ues.

The functionsV i j satisfy the following normalization
conditions:
^Vk1 ,k2
,Vp1 ,p2

&5~dk1 ,p1
dk2 ,p2

2dk1 ,p2
dk2 ,p1

!2
1

N

3~dk1 ,p1
1dk2 ,p2

2dk1 ,p2
2dk2 ,p1

!.

~6!

In addition,

^Vk1 ,k2
,F r1 ,r2

&5
1

N
~exp~2 ik1•r12 ik2•r2!

2exp~2 ik1•r22 ik2•r1!!. ~7!

Thus the functionsF i j can be expressed in terms of th
functionsVk1 ,k2

as follows:

F i j 5
1

N (
k1k2

Vk1k2
~exp~2 ik1•r i !21!

3~exp~2 ik2•r j !21!. ~8!

The energy spectrumE is found by solving the Schro¨dinger
equation

ĤC5EC. ~9!

whereĤ is the Hubbard Hamiltonian forU5`:

Ĥ5t(
i , j

8 @~ âi
1â j1â j

1âi !~12b̂i
1b̂i !~12b̂ j

1b̂ j !

1~ b̂i
1b̂ j1b̂ j

1b̂i !~12âi
1âi !~12â j

1â j !# ~10!

or

Ĥ5t (
i , j ,s

X̂i
s0X̂j

0s , ~10a!

where X̂i
s0 (X̂i

0s) are the Hubbard operators. The sum
expressions~10! and~10a! extend over nearest neighbors.
what follows we taken the quantityt as our unit of energy,
i.e., we sett51 in Eq. ~10!.

We represent the wave functionC as an expansion ove
the setVk1 ,k2

:

C5 (
k1 ,k2

ck1 ,k2
Vk1 ,k2

. ~11!

3. VARIATIONAL ESTIMATES

Using test wave functions in the form~11! makes it
easier to estimate the maximum eigenvalue of the Ham
tonian ~10!.

By virtue of the periodicity of the lattice and the eve
ness of the number of sites in each direction, under the s
stitution âi

1↔âi
1(21)i , âi↔âi(21)i and correspondingly

b̂i
1↔b̂i

1(21)i , b̂i↔b̂i(21)i , the Hamiltonian changes
sign: Ĥ↔2Ĥ. This means that the energy spectrumE does
not depend on the sign oft. Therefore, from the proof tha
the maximum eigenvalueEmax is greater than some valueL
(Emax.L) it automatically follows thatEmin,2L.

Let us consider test functions for which the valuesck1 ,k2

are nonzero only if one of the vectorsk1 andk2 is equal to
p05(px ,py)5(p,p) and the other is equal to any of th
four possible vectors:
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p15S p,p1
2p

L D , p25S p,p2
2p

L D ,

p35S p2
2p

L
,p D , p45S p1

2p

L
,p D , ~12!

whereL5AN.
The vectorspi were chosen such that for allpi the en-

ergy of the two free quasiparticles is equal to the maximum
energy of the states of theN22 states with spinS5Smax:

«05«p0 ,pi
58S 11

cos~2p/L !21

4 D'8S 12
p2

2ND . ~13!

We assume the test wave function to be symmetric with re
spect to the substitutiony↔2y under the conditioncp4,p0

50; therefore the nonzero coefficients areck1,k2

cp1 ,p0
5g, cp2 ,p0

5g, cp3 ,p0
52d, cp4 ,p0

50,

cp0 ,p1
52g, cp0 ,p2

52g, cp0 ,p3
522d, cp0 ,p4

50.
~14!

We will treat the coefficientsg andd as variational param-
eters.

The value D̃5^C,(Ĥ2E0(Smax))C&/^C,C&, according
to Eq. ~A16! in the Appendix, is calculated in terms of the
quantitiesf i(p). Simple calculation gives

f 1~p1!5cp1 ,p0
5g, f 1~p2!5cp2 ,p0

5g,

f 1~p3!5cp3 ,p0
52d, f 1~p4!5cp4 ,p0

50,

f 1~p0!522g22d, f 2~p1!5cp1 ,p0
cosp0x52g,

f 2~p2!52g, f 2~p3!522d,

f 2~p4!50, f 2~p0!52~g1d!S 12d
12cos~2p/L !

g1d D ,

f 3~p1!5 f 3~p2!5 f 3~p3!5 f 3~p4!50,

f 3~p0!52d sin~2p/L !,

f 4~p1!5cp1 ,p0
cosp0y52g, f 4~p2!52g,

f 4~p3!522d, f 4~p4!50,

f 4~p0!52~g1d!S 12g
12g cos~2p/L !

g1d D ,

f 5~p0!50, f 5~p1!5 f 5~p2!5 f 5~p3!5 f 5~p4!50, ~15!

Substituting Eqs.~15! into Eq. ~A9!, we obtain

uCu252( uck1k2
u22

8

N
~ ugu21udu212ug1du2!. ~16!

Let us calculate the value ofD5X2«0uCu2. Employing
Eqs.~A9! and ~A10!, we find

D5
8«0

N
~ ugu21udu212ug1du2!1

8

N (
k1k2

~cosk1x

1cosk1y!u f 1~k1!u21
8

N (
k1

$ f 1~k1!@ f 2* ~k1!
-

1 f 4* ~k1!#1 f 1* ~k1!@ f 2~k1!1 f 4~k1!#%

2
8

N (
k1

u f 2~k1!u2 cos~k1x2ax!

1
8

N (
k1

u f 3~k1!u2 cos~k1x2ax!

1
8

N (
k1

@ f 2* ~k1! f 3~k1!1 f 3* ~k1! f 2~k1!#sin~k1x

2ax!2
8

N (
k1

u f 4~k1!u2 cos~k1y2ay!

1
8

N (
k1

@ f 4* ~k1! f 5~k1!1 f 5* ~k1! f 4~k1!#sin~k1y

2ay!1
8

N (
k1

u f 5~k1!u2 cos~k1y2ay!. ~17!

Calculating the sums over the vectorsk1 and k2 in expres-
sion ~17!, we find (a52p/L)

r 15
8

N (
k1k2

~cosk1x1cosk1y!u f 1~k1!u2

52
32

N S 12
12cos~2p/L !

2 D ~ ugu21udu2!2
64

N
ug1du2,

~18!

r 25
16

N (
k1

f 1~k1!@ f 2* ~k1!1 f 4* ~k1!#

52
64

N
~ ugu21udu2!2

128

N
ug1du2S 12

12cos~2p/L !

2 D ,

~19!

r 352
8

N (
k1

u f 2~k1!u2@cos~k1x2ax!1cos~k1y2ay!#

5
32

N
~ ugu21udu2!1

64

N
ug1du22

8

N
ugu2F2

2cosS 2p

L
2ayD1222 cosax2cosS 2p

L
1axD G

2
8

N
udu2F22cosay2cosS 2p

L
1axD G

1
32

N
ug1du2~cosax1cosay22!, ~20!

r 45
8

N (
k1

@ f 2* ~k1! f 3~k1!1 f 3* ~k1! f 2~k1!#

3@sin~k1x2ax!1sin~k1y2ay!#

5
32

N
~g1d!dS 12d

12cos~2p/L !

g1d D
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3@sin ax1sin ay#sin
2p

L
, ~21!

r 55
8

N (
k1

u f 3~k1!u2 cos~k1x2ax!

1
8

N (
k1

u f 5~k1!u2 cos~k1y2ay!

52
16

N
~g1d!d sin2

2p

L
cosax . ~22!

Finally, we obtain

D5
64

N
~g1d!dax

2p

L
2

16

N
ug1du2~ax

21ay
2!

2
4ugu2

N Fax
21S 2p

L
2axD 2

1S 2p

L
2ayD 2G

2
16udu2

N Fay
21a21S 2p

L
1axD 2

1S 2p

L
1ayD 2G .

~23!

Note that forg52(2/15)d, ax52a, anday50 the quan-
tity D is equal to

D̃5
128p2

15N2 udu2. ~24!

Therefore the maximum energy is greater than«0 by the
amount

D«5
128p2uau2

15N2^CC&
>

0.4p2

N2 . ~25!

This means that there exists an energy levelE1 for a system
with two holes such that

E1>«01
0.4p2

N2 . ~26!

As a consequence of the symmetry of the energy spect
relative to change of sign oft, noted above, it follows from
the inequality~26! that there also exists an energy levelE2

for a system with two holes such that

E2<2«02
0.4p2

N2 . ~27!

4. CONCLUSION

It follows from inequality~27! that the ground state of
system with two holes corresponds to total spinS of the
particles less than the maximum possible value. In
present paper, as our test functions we have chosen func
with S5Smax21. Even in this case the ground state is low
than the Nagaoka state. For states with lowerS this estimate
can possibly be strengthened.

The results of this work show that the state of satura
ferromagnetism is not the ground state for a system with
holes.

This conclusion in no way contradicts the results
Nagaoka.3 In this regard, it must be stressed that Nagao
m

e
ns

r

d
o

f
a

proved that the ground state of a system withU5` and one
hole, which corresponds to saturated ferromagnetism, co
sponds to a state with lowerS for a larger number of holes
andU,U0 . Thus, in Ref. 3 he proved the absence of sa
rated ferromagnetism in the indicated case. In his proof N
gaoka made an assumption about the structure of the w
function that is not necessarily valid if the ground state
degenerate for a system with maximum spin and prescri
value of the projection of the total spin.

Thus, Ref. 3 derives a sufficient (U,U0) but not nec-
essary condition for the absence of saturated ferromagnet
In his 1966 paper Nagaoka sought a wave function of co
pletely determinate form under the condition of nondeg
eracy of the ground state for a system with maximum sp
In the case of two holes the ground state for a system w
maximum spin is degenerate; therefore the ground-s
wave function cannot coincide with the wave function fou
by Nagaoka. This applies to the three-dimensional as we
the two-dimensional case. The test function used in
present paper can be obtained as the solution of a sec
equation for the zeroth-order wave function in the expans
in the density as the small parameter~in the given case 1/N!.

APPENDIX A

To calculate the quantity

D5
^C,ĤC&

^C,C&
~A1!

we find an expression for the normalization^C,C& and X

5^C,ĤC& in terms of the coefficientsck1 ,k2
in the wave

function expansion~11!.
Taking Eqs.~6! and ~7! into account, we obtain for the

normalization of the wave function̂C,C&

^C,C&52(
k1k2

uck1k2
u22

4

N (
k1

U(
kp

ck1kpU2

. ~A2!

Introducing the notation

«~k!522~coskx1cosky!, ~A3!

f 1~k!5(
k1

ckk1
, ~A4!

f 2~k!5(
p

ckp cospx , ~A5!

f 4~k!5(
p

ckp cospy , ~A6!

f 3~k1!5(
k2

ck1k2
sin k2x , ~A7!

f 5~k1!5(
k2

ck1k2
sin k2y . ~A8!

we have

^C,C&52(
k1k2

uck1k2
u22

4

N (
k

u f 1~k1!u2. ~A9!
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Similarly, for X5^C,ĤC& we obtain

X52(
k1k2

«k1k2
uck1k2

u21
8

N (
k1k2

~cosk1x

1cosk1y!u f 1~k1!u21
8

N (
k1

$ f 1~k1!@ f 2* ~k1!

1 f 4* ~k1!#1 f 1* ~k1!@ f 2~k1!1 f 4~k1!#%

2
8

N (
k1

u f 2~k1!u2 cos~k1x2ax!

1
8

N (
k1

@ f 2* ~k1! f 3~k1!1 f 3* ~k1! f 2~k1!#

3sin~k1x2ax!1
8

N (
k1

u f 3~k1!u2 cos~k1x2ax!

2
8

N (
k1

u f 4~k1!u2 cos~k1y2ay!

1
8

N (
k1

u f 5~k1!u2 cos~k1y2ay!

1
8

N (
k1

@ f 4* ~k1! f 5~k1!1 f 5~k1! f 4~k1!#

3sin~k1y2ay!. ~A10!

We note the case in which only terms with hole momentap1

andp2 are present in the expansion~11! of the wave function
C, i.e.,

ck1k2
5dk1p1

dk2p2
2dk1p2

dk2p1
. ~A11!

Here

f 1~p1!51, f 1~p2!521, f 2~p1!5cosp2x ,

f 2~p2!52cosp1x , f 4~p1!5cosp2y ,

f 4~p2!52cosp1y , f 3~p1!5sin p2x ,

f 3~p2!52sin p2x , f 5~p1!5sin p2y ,

f 5~p2!52sin p1y ~A12!

and, consequently,

^C,C&542
8

N
, ~A13!

X524«p1p2
1

8

N
~cosp1x1cosp1y1cosp2x

1cosp2y!1
16

N
~cosp1x1cosp2x1cosp1y

1cosp2y!2
8

N
~cos~2p2x1p1x2ax!1cos~2p1x

1p2x2ax!!2
8

N
~cos~2p2y1p1y2ay!

1cos~2p1y1p2y2ay!!. ~A14!
If we havep2x1p1x5ax andp2y1p1y5ay , which cor-
responds to the wave function of a stateS5Smax, then

X54S 12
2

ND «p1p2
.

Taking Eq.~A13! into account, we have

X52~«p1
1«p2

!^C,C&,

as could be expected, since in the given case we used
exact wave function with eigenvalue of the HamiltonianE
52(«p1

1«p2
).

We also make note of the following convenient fact. L
the functionsck1 ,k2

5c(k1x ,k1y ,k2x ,k2y) be symmetric un-
der to the substitutionx↔y. Then

f 1~k1x ,k1y!5L f 1~k1y ,k1x!,

f 2~k1x ,k1y!5L f 4~k1y ,k1x!,

f 3~k1x ,k1y!5L f 5~k1y ,k1x!, ~A15!

whereL561.
Substituting Eqs.~A15! into Eq. ~A10!, we obtain

X52(
k1k2

«k1k2
uck1k2

u21
8

N (
k1k2

~cosk1x

1cosk1y!u f 1~k1!u21
16

N (
k1

$ f 1~k1! f 2* ~k1!

1 f 1* ~k1! f 2~k1!%2
8

N (
k1

u f 2~k1!u2~cos~k1x2ax!

1cos~k1x2ay!!1
8

N (
k1

@ f 2* ~k1! f 3~k1!

1 f 3* ~k1! f 2~k1!#~sin~k1x2ax!1sin~k1x2ay!!

1
8

N (
k1

u f 3~k1!u2~cos~k1x2ax!1cos~k1x2ay!!.

~A16!
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Electron spectra and wave functions of icosahedral quasicrystals have been investigated in the
tight-binding approximation using the two-fragment structural model~the Amman–MacKay
network! with ‘‘central’’ decoration. A quasicrystal has been considered as a limiting structure in
a set of optimal cubic approximants with increasing lattice constants. The method of level
statistics indicates that the energy spectrum of an icosahedral quasicrystal contains a singular
~nonsmooth! component. The density of electron states has been calculated for the first
four optimal cubic approximants of the icosahedral quasicrystal, and the respective Lebesgue
measures of energy spectra of these approximants have been obtained. Unlike the case
of a one-dimensional quasiperiodic structure, the energy spectrum of an icosahedral quasicrystal
does not contain a hierarchical gap structure typical of the Cantor set of measure zero in a
one-dimensional quasicrystal. Localization of wave functions in an icosahedral quasicrystal has
been studied, and their ‘‘critical’’ behavior has been detected. The effect of disorder due
to substitutional impurities on electron properties of icosahedral quasicrystals has been
investigated. This disorder makes the electron spectrum ‘‘smoother’’ and leads to a
tendency to localization of wave functions. ©1998 American Institute of Physics.
@S1063-7761~98!01803-4#
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1. INTRODUCTION

Quasicrystals are objects that have noncrystallograp
symmetry and coordination long-range order~i.e., the capa-
bility of coherent scattering of incident radiation!.1,2 Quasic-
rystals are metallic alloys, but their physical properties
different from those of crystalline and amorphous meta
phases, although they have much in common with the la
Like metals, quasicrystals have a specific heat compon
linear in temperature, which is usually smaller than the c
culated value of the free-electron model.3 At the same time,
the electrical resistivity of quasicrystals~unlike that of amor-
phous phases of similar compositions! is anomalously high
~in the stable icosahedral phase of AlPdRe it is as high
2 V•cm at 0.5 K4!, highly susceptible to their composition
decreases with increasing temperature~its temperature coef
ficient is negative at all temperatures!, and increases as th
degree of structural order increases and defects
annealed.3,5

Decagonal quasicrystals are characterized by anisotr
conductivity: the conductivity along the packing axis of cry
tal planes with a finite period~the ten-fold axis! behaves like
that of normal metals, and the conductivity in the crys
planes themselves behaves in the manner described ab6

In addition, the conductivity along the periodic axis of d
cagonal quasicrystals is an order of magnitude higher t
the conductivity in crystal planes.7 Other specific features ar
the large magnitude and strong temperature dependenc
the Hall coefficient, conductivity in the optical band devia
ing from the Drude formula, and strong temperature dep
dence of the thermopower.3,6 The magnetoresistance in wea
magnetic fields is usually negative.3 Essentially all quasic-
5501063-7761/98/86(3)/9/$15.00
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rystal phases, including alloys containing transitional met
are weak diamagnetics over a wide temperature range~ex-
cept for alloys containing Mn!.6 Various models have bee
suggested to describe these properties, but accurate info
tion on the electron spectra of quasicrystals is required
assess the utility of these interpretations.

Electron spectra of quasicrystal structures have b
studied theoretically rather well in the cases of one- and tw
dimensional quasicrystals using the two-fragment structu
model ~one- and two-dimensional Penrose tiling
respectively!.8–11 The energy spectrum of a one-dimension
quasicrystal lattice is a Cantor set of Lebesgue measure
with a self-similar sequence of gaps; its wave functions de
onstrate critical behavior, being neither localized n
delocalized.8,9

In the two-dimensional configuration, the energy spe
trum has nonzero Lebesgue measure, contains a sing
component, and most of its wave functions are critical.10,11

One consequence of the peculiar electron spectra of one-
two-dimensional quasicrystals is that their resistance i
power-law function of their dimensions.10 An investigation
of electron properties of three-dimensional icosahedral q
sicrystals with Danzer’s model structure~constructed on the
basis of four tetrahedra! revealed large oscillations in th
density of electron states throughout the spectral band,
the localization of individual states in specific topologic
configurations.12

The shapes of electron spectra and wave functions
three-dimensional quasicrystals with the structure of
Amman–MacKay network~a three-dimensional analogue o
the Penrose tiling! have not been studied in detail sinc
starting with the publication by Marcus,13 many researchers
© 1998 American Institute of Physics
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believed that this system had no interesting features in
spectrum and wave functions.12 In reality, published conclu-
sions are inconsistent. For example, Marcus,13 who studied
the electronic properties of a three-dimensional quasicry
with the structure of the Amman–MacKay network in th
tight-binding approximation, detected no fundamental diff
ences from the crystalline structure, and concluded tha
electron spectrum was smooth and electron wave funct
were delocalized.13 Niizeki and Akamatsu,14 in contrast, sug-
gested the existence of critical wave functions and a pecu
shape of the electron spectrum—a singular continuous sh
in the three-dimensional case. Similar conclusions can
derived from the results obtained earlier in Refs. 15 and

First-principles calculations and calculations of the de
sity of electron states in the weak-binding approximation
some crystalline approximants, i.e., three-dimensional c
talline structures whose local atomic structure is similar
that of quasicrystals, indicate the existence of strong osc
tions in the density of states with a deep pseudogap at
Fermi level. This allowed the researchers to suggest tha
Hume–Rothery criterion could be applied to quasicrys
stability.3,7,17–25The presence of a pseudogap, however, c
not account for the physical properties of quasicrystals
scribed above. Their interpretation demands more deta
information about the wave functions and features of
electron spectrum in quasicrystals.

In the present work, we have studied in the tight-bindi
approximation features of the electron spectrum and local
tion of wave functions in a three-dimensional icosahed
quasicrystal treated as a structural limit of a sequence
cubic approximants. This publication is a continuation of o
earlier studies.15,16 The paper is organized as follows. Se
tion 2 considers the most widely used two-fragment str
tural model of quasicrystals, describes the formalism of
projection method applied to the Amman–MacKay netwo
and considers the structure of periodic approximants
icosahedral quasicrystals. Section 3 is dedicated to the an
sis of electron properties of icosahedral quasicrystals in
tight-binding approximation. Subsection 3.1 describes te
niques used in this study and approximations. Calculation
the electron spectrum and wave functions in a defect-
icosahedral quasicrystal, along with the effect of disor
due to substitutional impurities in a quasicrystal, are d
cussed in Subsection 3.2. Section 4 is devoted to the dis
sion of results, and Sec. 5 contains conclusions.

2. PERIODIC APPROXIMANTS OF ICOSAHEDRAL
QUASICRYSTALS

Probably the most common model of the quasicrys
frame is based on the quasiperiodic packing of two elem
tary structural units~the two-fragment model!. This model
applied to a one-dimensional quasicrystal generates the
bonacci sequence of short and long segments. In the
dimensional case the two-fragment model is the Penrose
ing composed of two rhombi with acute angles of 36° a
72° at their vertices~prolate and oblate rhombi, respe
tively!, and in the three-dimensional case, this is a gene
zation of the Penrose tiling~alternatively termed the
ts
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Amman–MacKay network! composed of prolate and oblat
rhombohedrons. Real quasicrystalline structures are usu
modeled by the Amman–MacKay network decorated in
complex manner, in which atoms are located at positions
different fragments forming the rhombohedron netwo
~rhombohedral vertices, edges, faces, and inner volumes!. In
such structures some positions can be vacant~structural
voids! and chemical disorder due to substitutional impurit
is also possible.25

There are three basic techniques for construction of
Amman–MacKay network, namely the projection techniqu
the method of multiple grids, and the method using se
similarity of quasiperiodic structures.10,11,26,27The most com-
monly used method is the projection technique, which is p
formed as follows. In order to construct the Amman
MacKay network with a primitive decoration~atoms are
located only at rhombohedron vertices!, an integer hyperlat-
tice is generated in a six-dimensional space, and th
dimensional subspaces, parallel~i! and perpendicular~'!,
with an irrational orientation with respect to the hyperlatti
are constructed. Lattice sites close to the parallel subsp
are projected onto it, and this projection is the basis of
quasicrystal structure frame. The subspace orientations
selected so that the unit vectors of the six-dimensional
perlattice projected onto the parallel subspace are alig
with the five-fold axes of the icosahedron. A siter 8 of the
six-dimensional hyperlattice is present in the projection o
the parallel subspace ifn(r'8 )51, wheren(r') is a form-
function of the hyperlattice unit cell projection on the o
thogonal subspace~the form-function is unity within the pro-
jection and zero outside it!. Here r' is the perpendicular
component ofr . The inside volume of the hypercell is de
fined by the condition

r5(
i 51

6

xiai , 0,xi,1,

whereai are the basis vectors of the six-dimensional cu
lattice, so

n~r'!5H 1, if r'5(
i 51

6

xiai'
, 0,xi,1,

0, if otherwise.

~1!

Following Shawet al.,28 we use the following set of ba
sis vectors in the perpendicular and parallel subspaces:

a1'5h~1,0,2t!, a2'5h~1,0,t!,

a3'5h~2t,1,0!, a4'5h~0,2t,1!, ~2!

a5'5h~0,t,1!, a6'5h~2t,21,0!;

a1i5h~t,0,1!, a2i5h~t,0,21!,

a3i5h~1,t,0!, a4i5h~0,1,t!, ~3!

a5i5h~0,21,t!, a6i5h~1,2t,0!,

whereh5(11t2)21/2. The polyhedron defining the regio
of nonzero values ofn(r') in Eq. ~1! is an orthogonal cross
section of the ‘‘projection tube’’~a region in the six-
dimensional space in which a vector of the six-dimensio
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552 JETP 86 (3), March 1998 Olenev et al.
space is projected onto the parallel subspace! shaped like a
rhombic triacontahedron. The irrational numbert character-
izing the rhombic triacontahedron,t5(11A5)/2, is called
the ‘‘golden mean.’’

Let us leave the set of basis vectors~3! unchanged and
replace the set~2! with basis vectorsai', i 51,...,6derived
from the vectors defined in Eq.~2! by replacingt with an
approximate rational number~the ratio between two succes
sive Fibonacci numbersf n, given by the expression
f 05 f 151, f n115 f n1 f n21 , where n>1 and
limn→`@ f n11 / f n#5t), namely, t̄5 f n11 / f n , where f n11

and f n are integers. In this case, the orthogonal section of
‘‘projection tube’’ is a distorted rhombic triacontahedron,
the projection procedure generates in the parallel space c
structures locally isomorphic to the Amman–MacKay n
work. The smaller the difference betweent and its rational
approximationt̄ , the larger the period of the resulting cub
structure ~for t̄5 f n11 / f n the period is
L52h( f n11t1 f n)!, and the more accurate the approxim
tion to the quasicrystal structure. For this reason, such st
tures are called periodic approximants to icosahedral qu
crystals. If ratios between successive Fibonacci numbers
treated as approximations tot̄ , the approximants are optima
in the sense discussed by Shawet al.28 Let us label the ap-
proximants by f n11 / f n , i.e., the notation
‘‘ f n11 / f n-approximant’’ means thatt is replaced with
f n11 / f n in constructing a distorted ‘‘projection tube.’’ Not
that the f n11 / f n approximants have a bcc structure f
n51,4,...,3k11,... and asimple cubic structure for othern.
Thus, the icosahedral quasicrystal can be considered a s
tural limit of the sequence of optimal cubic approximan
with increasing period.

In order to obtain the Amman–MacKay network dec
rated in a complex manner, a six-dimensional cubic hyp
lattice and a set of ‘‘projection tubes’’ are used~a separate
‘‘tube’’ for each position in the six-dimensional lattice!.
‘‘Projection tubes’’ corresponding to different positions
the decorated Amman–MacKay network become more n
row with the increase in the structural fragment dimensi
ality. The polyhedrons representing orthogonal sections
‘‘projection tubes’’ for sites on edges, two-dimensional a
three-dimensional faces of the six-dimensional hyperlat
are the rhombic icosahedron, rhombic dodecahedron,
rhombohedron~prolate and oblate!, respectively.25

3. ELECTRONIC PROPERTIES OF THE TWO-FRAGMENT
MODEL OF ICOSAHEDRAL QUASICRYSTAL

Presently there is no universal technique for investig
ing electronic properties of quasiperiodic structures. Si
quasicrystals have no long-range translational order, tr
tional techniques for calculating electron bands in sol
based on Bloch’s theorem do not apply. Methods that do
require translational invariance of the system, such as
recursion technique and the like, are poorly suited to
calculation of energy spectra and electron wave function
quasicrystals.12,13 The structures studied in the present wo
are therefore optimal cubic approximants to icosahedral q
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sicrystals. Thus, the icosahedral quasicrystal is considere
be a structural limit of the sequence of such approximan

3.1. Model, approximations, and calculation techniques

Electronic properties of a two-fragment structural mod
of icosahedral quasicrystals have been studied in the ti
binding approximation. In order to minimize the number
adjustable parameters of the model, we used a Hamilton
with constant hopping integrals between nearest neighb
As follows from the results for one- and two-dimension
quasicrystals, such a Hamiltonian describes basic feature
a quasicrystal and allows one to analyze qualitatively
effect of quasiperiodic properties on electron spectra of q
sicrystals in one and two dimensions.8–11,29In this paper, we
consider the ‘‘central’’ decoration of approximants with a
oms of one type, namely, atoms with ones-orbital per atom
are located at rhombohedral centers. In this case, the Ha
tonian can be expressed as

H5(
j

u j &e j K j u1 (
j , j Þ i

U i &t i j ^ j u.

If atoms of only one type are present, the diagonal eleme
e j can be equated to zero. In this case the Schro¨dinger equa-
tion in the tight-binding approximation can be written in th
form

(
j

t i j c j5Ec i , ~4!

where the transfer integrals are equated to a nonzero con
(t i j 521) only in the case of nearest neighbors, i.e., ato
of rhombohedra with a common face~the inclusion of other
neighbors does not significantly alter the results but com
cates the calculations!. Since an increase in the approxima
order by one~the order of the 1/1-approximant is one, that
the 2/1-approximant is two, etc.! leads to a decrease in th
Brillouin zone volume by a considerable factor~aboutt23!,
the singular point of the icosahedral quas
crystal in the thermodynamic limit isk50. We therefore
numerically diagonalized the Hamiltonian matrices~4! for
various periodic approximants with periodic boundary co
ditions, and calculated the distribution of energy levels
k50.

In investigating the smoothness of the energy spectr
we used the method of level statistics~LS-method!.10,11,29It
is based on two key equations. The first yields the relat
number of gaps between levels with widthsDE<BNb:

D~b!5
1

N21 (
j 51

N21

uS b2 logNFe j 112e j

B G D , ~5!

whereN is the number of atoms in the approximant bas
B5eN2e1 is the total band width,u is the Heaviside theta
function. The second equation yields the band fraction oc
pied by gaps between levels with widthsDE<BNb:

F~b!5
1

B (
j 51

N21

~e j 112e j !uS b2 logNFe j 112e j

B G D . ~6!
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If B5const, these functions should satisfy the following co
ditions in the thermodynamic limit, irrespective of th
smoothness of the spectrum10,11,29: D(b)51 for
b.21 andF(b)50 for b,21. In crystalline and amor-
phous systems~with smooth spectra! the curves ofD(b) and
F(b) jump from zero to one atb521 in the thermody-
namic limit.10,11,29Therefore an electron spectrum is cons
ered unsmooth or singular if the gaps between levels as f
tions of the system dimension are not described by
function 1/N in the thermodynamic limit.

Localization properties of wave functions in the icosah
dral quasicrystal have been studied using the statistic
2p-norms of wave functions,10,11 which are defined as

ici2p[
(nucnu2p

~(nucnu2!p , ~7!

wherecn are amplitudes of the electron wave function~ex-
pansion coefficients of the wave function in the tight-bindi
basis!.

By considering the icosahedral quasicrystal as a st
tural limit of a sequence of optimal cubic approximants w
increasing period, one can try to calculate thermodyna
limits for curves describing distributions of 2p-norms of
eigenvectors of the Hamiltonian in Eq.~4!. In this paper, the
statistical analysis of the distributions of 2p-norms of wave
functions in the icosahedral quasicrystal is based on the fu
tion I 2p(g),10,11 which yields the relative number of state
with 2p-normsici2p<Ng, i.e.,

I 2p~g![
1

N (
n51

N

u~g2 logNic~n!i2p!. ~8!

The wave functions were classified in accordance w
their normalization integrals.10 Wave functions were consid
ered to be delocalized if

E
ur u,R

uc~r !u2dr;Rd,

whered is the space dimensionality. They were assumed
be localized when their finite norms existed:

È uc~r !u2dr .

Wave functions which could not be normalized in an infin
space but were not delocalized were defined as ‘‘critical.

In order to analyze the effect of chemical disorder~dis-
order due to substitutional impurities25! on the electron spec
trum and localization of wave functions in an icosahed
quasicrystal, atoms of a different element were randomly
troduced into the basis of optimal periodic approximants~a
two-component system was analyzed!. In this case, the
Hamiltonian can be expressed as

H5(
j

u j &e j K j u1 (
j , j Þ i

u i L t i j ^ j u.

The diagonal elementse j can assume two possible va
ues, namelyeA andeB, depending on whether atom A or B
-

-
c-
e

-
of

c-

ic

c-

h

to

l
-

at thej th site. The difference between the two types of ato
can be characterized by the energy parameterd :

d5eA2eB.

The transfer integrals for nearest neighbors aretAA, tAB,
or tBB, depending on which atoms occupy sitesi and j . The
difference between the transfer integrals for the differ
types of atoms can be characterized by the energy param
d1 :

d15tAA2tBB.

The transfer integraltAB is described in the additive limit,30

tAB5~ tAA1tBB!/2.

3.2. Numerical calculations

In our work, we investigated four optimal cubic approx
mants to the icosahedral quasicrystal: 1/1, 2/1, 3/2, and
The unit cells of these approximants contain 32, 136, 5
and 2440 atoms, respectively. Figure 1 shows the integr
density of states calculated by taking energy levels atk50
for cubic approximants 2/1, 3/2, and 5/3 to the icosahed
quasicrystal~the curve for the 1/1-approximant is not give
because its Brillouin zone is much larger than those of
proximants of higher orders, so calculations based on ene
levels at onek-point of the Brillouin zone are not represen
tative!.

One can see in Fig. 1 that the integrated density of sta
converges rather rapidly and show no hierarchical struc
of gaps, which is typical of the Cantor set in the spectrum
a one-dimensional quasicrystal. Figures 2 and 3 showD(b)
andF(b) calculated for the three icosahedral approxima
2/1, 3/2, and 5/3. It is clear in Fig. 2 thatD(b) for these
three approximants almost converges to the thermodyna
limit in the regionb,21. This means that a thermodynam
cally large number of gaps between levels are narrower t
in traditional systems asN→` ~in the thermodynamic limit
the band gap between levels in crystalline and amorph

FIG. 1. Integrated density of states for periodic approximants 2/1, 3/2,
5/3 of an icosahedral quasicrystal in arbitrary units.
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systems as a function of the system size is given by10 DE
}1/N!. Figure 3 illustrates the convergence ofF(b) for the
approximants under consideration in the regionb.21,
which indicates that a finite fraction of the energy band
occupied by gaps between levels wider than those in tr
tional systems. Thus, our results indicate that forN→` the
spectrum of the icosahedral quasicrystal contains a sing
component.

As in the two-dimensional case,10 it is impossible to de-
termine beyond doubt whether the energy spectrum of
icosahedral quasicrystal contains a regular component s
the answer to this question requires investigation ofD(b)
andF(b) nearb521 for approximants of higher orders.

To determine whether a singular component is presen
the electron spectrum of an icosahedral quasicrystal, we
culated the density of electron states for the approxima
under consideration. The density of states for the three l
est approximants, 1/1, 2/1, and 3/2, was calculated by
tetrahedron method using energy levels at 40k-points in the
irreducible part of the Brillouin zone of the correspondi
approximant. In the calculation of the density of states
the 5/3-approximant we used fourk-points in the irreducible
part of the Brillouin zone. Owing to the relatively small vo
ume of the Brillouin zone of the 5/3-approximant~as com-
pared to the Brillouin zone volume for the first approximan!,
the reduction in the number ofk-points has little effect on
the resulting density of states.

This is confirmed by the small difference between t

FIG. 2. FractionD(b) of gaps with widthsDE<BNb for periodic approxi-
mants 2/1, 3/2, and 5/3 of an icosahedral quasicrystal. Curves with sm
steps correspond to higher approximant orders. The total band width
equated to the limiting valueB`59.69.
s
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density of state curves for the 5/3-approximant calcula
using onek-point (k50) and fourk-points in the irreducible
part of the Brillouin zone. The curves of the density of ele
tron states for optimal approximants of higher orders are
smooth and more ‘‘spiky.’’ This confirms the conclusio
given above about the presence of a singular componen
the electron spectrum of icosahedral quasicrystals, since
density of states would otherwise converge to a smo
curve.

Moreover, the calculations indicate that the spectr
smoothness is different in different energy regions. The sp
trum is smoother at low energies, while strong oscillatio
are mainly seen at higher energies. The width of the smo
section, however, decreases with increasing approxima
order. It seems probable, therefore, that in the thermo
namic limit ~in a quasicrystal!, strong oscillations in the den
sity of states, indicating the presence of a singular com
nent in the spectrum, occur throughout the whole ene
range, which means that the bands of the energy spectru
the quasicrystal are flat, i.e., they have low dispersion,
the group velocities of electrons are very low. This is ob
ously why the electrical conductivity strongly depends on
composition of quasicrystalline alloys.6

Our calculations are in good agreement with Carlsso
calculations20 of the density of electron states for the fir
four periodic approximants in the weak-binding approxim
tion: we have detected gaps in the low-energy region for

ler
as

FIG. 3. FractionF(b) of the band filled with gaps between levels wit
widths DE<BNb for periodic approximants 2/1, 3/2, and 5/3 of an icos
hedral quasicrystal. Curves with smaller steps correspond to higher app
imant orders. The total band width in the calculations was equated to
limiting value B`59.69.
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5/3-approximant, although no such gaps have been dete
in the lower-order approximants.

The calculations of the density of electron states allow
us to determine the Lebesgue measure of energy spect
the corresponding approximants. The Lebesgue measu
an energy spectrum was calculated to be the total lengt
the permitted segments in the energy range@26;6# ~accord-
ing to a well-known theorem on spectral boundaries,30 the
energy levels of the system under consideration lie within
range26<E<6!. The Lebesgue measures of the spectra
the 1/1-, 2/1-, 3/2-, and 5/3 approximants normalized toB
5en2e1 ~owing to the fast convergence of the integrat
density of states, the value ofB for the 5/3 approximant was
adopted for the various approximants; see Fig. 1! proved to
be 0.95, 0.98, 0.98, and 0.97, respectively. We therefore c
clude that the Lebesgue measure of the energy spectrum
pends weakly on approximant size in three-dimensio
icosahedral quasicrystals, unlike the case of a o
dimensional quasicrystal, in which the Lebesgue measur
the energy spectrum of a periodic approximant decrea
with system size as a power law.8–10

The small differences among the Lebesgue measure
the latter two approximants analyzed in our calculations
dicates that the energy spectrum of three-dimensional ic
hedral quasicrystal should occupy a finite-width band of
energy scale. In addition, normalized energy-spectrum
besgue measures close to 1 in the approximants under
sideration, along with a tendency for the results to conve
suggest that the spectrum of an icosahedral quasicrystal
not contain notable gaps. These results corroborate the ‘‘n
Cantorian’’ nature of the spectrum based on the integra
density of states for the first four optimal periodic appro
mants~Fig. 1!.

Figure 4 showsI 8(g) calculated for three optimal cubi
approximants, 2/1, 3/2, and 5/3. The graph demonstr
convergence ofI 8(g) in a narrow range aboutg'22.3 in
the thermodynamic limit. Moreover, the graph showsI 8(g)
converging to a step function with the jump atg'22.3 as
the approximant order increases. This means that in the t
modynamic limit (N→`), the 2p-norms (p54) of almost
all wave functions in an icosahedral quasicrystal depend
system size asici8'Ng, whereg'22.3.

For delocalized states, the 2p-norm of the wave function
depends on system size asici2p

ext'N12p, as follows from
Eq. ~7!, and exponentially decaying localized functions ha
the 2p-norm ici2p

exp.loc'1. The calculated 2p-norms (p
54) of the wave functions in an icosahedral quasicrystal
a function of system size, therefore rule out both delocali
and exponentially localized states. It is known, nonethele
that the dependence of the 2p-norm of the wave function on
system size described by the functionNg(p,a) applies to wave
functions whose squared amplitudes decay as power
functions10,11 ~a>0 is the localization index;a50 and a
→` characterize delocalized and exponentially localiz
states, respectively!. We have therefore assumed in this wo
that, as in a two-dimensional quasicrystal,10,11

ucu2}ur u22a. ~9!

In calculating the 2p-norm of the wave function~9! over
ted
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sufficiently large quasiperiodic fragments, we have found
that the functiong(p,a)up54 for 23<g<21.7 is described
by the curve in Fig. 5. These results were obtained num
cally for the first five approximants of an icosahedral qua
crystal in order to demonstrate their convergence to the t
modynamic limit~the graph shows calculations for the fift
approximant, whose basis contains about ten thousand
oms!. Figure 5 shows thatg'22.3 corresponds to a local
ization indexa'0.75. According to the classification base
on the normalization integral, wave functions with such b
havior must be classified as critical, since functions satis
ing the conditionucu2}ur22a, a.0, can be normalized in
the three-dimensional case only ifa.3/2.

Figures 6, 7, and 8 showD(b), F(b), and I 8(g) at
different degrees of chemical substitutional disorder char
terized by the parameterd and concentration of atoms of th
second component B~the 5/3-approximant has been used!.
The graphs indicate that substitutional disorder makes
spectrum smoother than in a quasicrystal without subst

FIG. 4. FractionI 8(g) of states withici8<Ng for periodic approximants
2/1, 3/2, and 5/3. Curves with smaller steps correspond to approximan
higher orders.

FIG. 5. Functiong(p,a)up54 for 23<g<21.7.
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FIG. 6. D(b) calculated for the 5/3-approximant atd50.5, d51,
and d52 ~concentrationCB of B atoms andd1 are constant and
equal to 50 at.% and 0, respectively!. The dashed line shows th
curve for the ideal case~d150, CB50, andd50!.
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tional disorder (D(b) andF(b) converge to a step functio
with jump atb521 asd increases!, and there is a tendenc
toward localization~the curves ofI 8(g) shift to higherg!.

Similar effects, namely smoother spectra and a tende
toward localization, were also detected when the increas
chemical disorder was characterized by the parameterd1 and
concentration of the second component B. ‘‘Smoothing’’
the electron spectrum due to a higher degree of chem
disorder is illustrated by Fig. 9, which shows the integra
density of states for the 5/3-approximant at various conc
trations of B atoms~the calculations were performed usin
four k-points in the irreducible part of the Brillouin zone!.
cy
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4. DISCUSSION

Our results show that the electronic properties of a thr
dimensional icosahedral quasicrystal with the structure of
Amman–MacKay network are substantially different fro
those of a one-dimensional quasicrystal~the Fibonacci
chain!. As in a one-dimensional quasicrystal, the spectrum
a three-dimensional quasicrystal contains a singular com
nent. The structure of the electron spectrum of an icosahe
quasicrystal, however, is not self-similar, unlike the spe
trum of one-dimensional quasicrystals, owing to the differe
topology of the system; as a result, the Lebesgue measu
r

FIG. 7. Curves ofF(b) calculated for the 5/3-approximant atd
50.5, d51, andd52 ~concentrationCB of B atoms and paramete
d1 are constant and equal to 50 at.% and 0, respectively!. The
dashed curve refers to the ideal case~d150, CB50, andd50!.
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the electron spectrum in a three-dimensional icosahe
quasicrystal is nonzero. Moreover, the spectrum of an ico
hedral quasicrystal does not contain large gaps, as foll
from our calculations, and the quasiperiodicity of the stru
ture gives rise to large oscillations in the density of sta
throughout the entire energy range of the spectrum. T
shape of the electron spectrum of a quasicrystal is consis
with strong electron scattering at the Fermi level~all electron
states have zero group velocity! due to the everywhere dens
set of reciprocal lattice vectors in the quasicrystal.31

Most of the wave functions in an icosahedral quasicr
tal are ‘‘critical’’ ~according to the classification based on t
normalization integral! and fall off as a power-law function
of the distance. This is in good agreement with previo
results32 in which electron and phonon spectra in a se
similar cluster package of pseudo-MacKay icosahedr
were analyzed in an AlPdMn alloy. Contrary to the cla
made in Ref. 32, however, wave functions based on the s
similarity of a structure with localization parametera52.5
are not ‘‘critical,’’ strictly speaking, but are instead localize

FIG. 8. Curves ofI 8(g) calculated for the 5/3-approximant atd50.5,
d51, andd52 ~concentrationCB of B atoms and parameterd1 are constant
and equal to 50 at.% and 0, respectively!. The dashed curve applies to th
ideal case~d150, CB50, andd50!.

FIG. 9. Integrated density of electron states for an icosahedral quasicr
with ~1! CB50 at.%,~2! 30 at.%, and~3! 50 at.% in arbitrary units.
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and fall off as a power law~in accordance with the classifi
cation based on the normalization integral; see above!. An
important difference from the one- and two-dimensional q
siperiodic packages~Fibonacci chains and Penrose tiling, r
spectively! is the single value of the localization indexa for
most of the wave functions, rather than a continuous sp
trum of a.10 When chemical disorder is introduced, the ele
tron spectrum becomes ‘‘smoother’’ and wave functions te
to be localized~i.e., the localization indexa increases with
the degree of chemical disorder!.

5. CONCLUSIONS

We have demonstrated that the electron spectrum o
perfect ~defect-free! quasicrystal in three dimensions co
tains a singular~nonsmooth! component, and the wave func
tions are critical. Chemical disorder~substitutional disorder!
makes the electron spectrum smoother and tends to loc
electron states. The results enable us to concisely addres
electrical conductivity of a three-dimensional quasicrystal~a
more complete analysis will be given in a separate publi
tion!. Although the number of publications on this topic
relatively large, they have not yet given a clear explanat
of the reason for the low conductivity of quasicrystals and
temperature dependence.

Different solutions to the problem of conductivity o
icosahedral quasicrystals obtained in the weak-binding
proximation yield inconsistent results: according to Kitaev33

it should be finite, and according to Sokoloff~a solution
based on perturbation theory!,34 it should be infinite. Burkov
et al.35,36 modeled electron scattering in a three-dimensio
quasicrystal with a multicomponent Fermi surface that c
tains a large but finite number of electron and hole ‘‘poc
ets.’’ These authors noted that in this case the Ander
localization conditions apply to electrons in ‘‘pockets’’ o
the Fermi surface, which should lead to a temperature dep
dences}AT of the conductivity~due to electron–electron
scattering! when the electron states are localized within t
valleys, ands}T when intervalley scattering is turned on
higher temperatures~phonon scattering!.37 By considering a
quasicrystal to be a structural limit in a sequence of optim
approximants with increasing period, we previous
concluded31 that all electron states on the Fermi surface s
fer strong scattering in a three-dimensional quasicrystal,
the wave functions should have oscillations on all scales~this
is confirmed by analysis of the critical properties of the wa
functions!, and that hopping conductivity should occur.

Hopping conductivity was also suggested for the se
similar structure of an icosahedral AlPdMn quasicrys
whose basic structural unit was a 51-atom pseudo-Mac
icosahedron,32 and for icosahedral quasicrystals in AlCuFe38

One experiment demonstrated that the low-temperature
ductivity of Al70.5Pd21Re8.52xMnx icosahedral quasicrystal
is described by the Mott law for hopping conductivity wit
variable hop distance:

s5s0 expS 2FT0

T G pD ,tal
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wherep51/2 for x52, 2.5, 3, 3.5, andp51/4 for x50 ~the
temperature ranged between 0.45 and 10 K!.39 This result
indicates the existence of a mobility threshold and a ‘‘me
glass’’ state. It would be pointless to discuss the tempera
dependence in detail, for it deserves a separate publica
but this result favors the critical properties of wave functio
and their tendency to be localized when disorder is int
duced into the system~especially near band edges!.

If wave functions decay with distance according to
power law,c}1/r a, the hop frequency 1/t ~t is the relax-
ation time! in the hopping mode as a function of temperatu
has the form 1/t}Ta/n if the hop activation barrierDE is
related to the hop lengthl asDE5const•l2n, wheren is a
positive integer32 ~this condition is valid, as follows from
experiment,39 at temperatures that are not too low, when t
Mott law for the hopping conductivity holds!. Moreover, the
‘‘smoothing’’ of the electron spectrum due to disorder lea
to a higher density of states at the Fermi level, given
experimental fact that the Fermi level in stable icosahed
quasicrystals is located at a local minimum of the density
states, i.e., a ‘‘pseudogap’’!. Thus, the Einstein conductivity
s}e2N(Ef)l

2/t applied to quasicrystals in the hopping co
ductivity mode31 yields a conductivity that increases wit
temperature and the degree of disorder in the system.

In conclusion, we thank P. A. Korzhavyi and D. V. L
vanov for interest in this work and valuable remarks. T
work was supported by the Russian Fund for Fundame
Research~Grant No. 96-02-16143!.
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Magnetic susceptibility anisotropy and low-dimensional antiferromagnetism of CuO
T. I. Arbuzova,* ) I. B. Smolyak, A. A. Samokhvalov, and S. V. Naumov
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The anisotropy of the magnetic susceptibilityx and the influence of oxygen vacancies in CuO
single crystals on it are investigated. The temperature dependences ofx(T) along thea,
b, and c axes in the range 60,T,600 K and the behavior of the field dependence of the
magnetizations(H) above and below the Ne´el temperatureTN are plotted for a crystal
before and after heat treatment. Thex(T) curves have the form characteristic of low-dimensional
systems, which become three-dimensional when the temperature is lowered. The character
of the x(T) curves remains unchanged after annealing. Oxygen vacancies have practically no
influence on thea-axis magnetic susceptibility, but they alter the absolute values of the
b- andc-axis susceptibilities. The significant effects of reducing the oxygen concentration include
a decrease in the magnitude of the low-temperature anomaly~increase! in x and an increase
in the minimum value ofx. The results of the calculations of the exchange parameterI /k and the
g factor are discussed in terms of the Heisenberg and Ising models for a one-dimensional
system. ©1998 American Institute of Physics.@S1063-7761~98!01903-9#
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1. INTRODUCTION

Cupric oxide~CuO! occupies a special place among t
semiconductor 3d oxides because of the uniqueness of so
of its physical properties. Unlike NiO, CoO, FeO, and Mn
~which have fcc lattices!, CuO has a low-symmetry mono
clinic crystal structure and temperature behavior of the m
netic susceptibilityx that is unusual for three-dimension
~3D! antiferromagnets. In polycrystals the susceptibility
creases, rather than decreases, above the Ne´el temperature
TN , passes through a broad maximum nearT5550 K, and
then slowly decreases as the temperature rises.1,2 Its electri-
cal and optical properties also have several special featu3

Copper compounds are usually good examples of iso
pic Heisenberg systems. The formation of linear~1D! chains
and planar two-dimensional~2D! magnets is typical of them
Their formation can be due to the Jahn–Teller effect res
ing from the low-symmetry environment of the Cu21 ions.
The data on the susceptibility,1,4–9 magnetization,10–13 and
specific heat14,15of CuO indicate strong spin correlations an
a possibility of low-dimensional antiferromagnetic orderi
aboveTN . The dimensionality of the magnetic system infl
ences the thermodynamic functions more strongly than d
the structure of the crystal lattice. When the dimensiona
decreases from 3D to 1D, the short-range-order effects
enhanced. The characteristic features of low-dimensio
systems include flattened maxima of the susceptibilityx and
the specific heatC at temperatures comparable to the e
change interaction parameter.

Cupric oxide~CuO! has a simple chemical formula an
can serve as a model object for high-Tc superconductors
Many of the properties of CuO resembles those
YBa2Cu3O6 and La2CuO4. They all contain identical struc
tural fragments, i.e., Cu~O!4 parallelograms formed by
Cu–O chains, arep-type semiconductors with a low charg
5591063-7761/98/86(3)/6/$15.00
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carrier mobility and antiferromagnets with fairly high Ne´el
temperaturesTN.200 K, and have similar values of th
saturation magnetic moment per Cu21 ion, which are consid-
erably less than the theoretical value. Strong spin corr
tions are observed in the temperature rangeT.TN .

The exchange interaction between the Cu21 ions ~their
electronic configuration is 3d9, and the spinS51/2) is me-
diated mainly by O22 ions. Defects in the oxygen sublattic
should have an appreciable influence on the magnetic p
erties of CuO, and the intentional introduction of such d
fects can be a good way to reveal the special features of
magnetic bonds and ordering. However, it is known th
CuO has a very narrow region of oxygen homogene
whose size cannot be determined by ordinary methods.16 At
the same time, the existing disparities between the publis
data6–9 on both the magnitude and the character of the va
tion of x(T) in the principal crystallographic directions ca
be attributed to the differences in the quality of the samp
and their defect density. Therefore, for CuO magnetic m
surements, particularly measurements ofx(T), are an effec-
tive tool, which makes it possible to investigate the influen
of oxygen vacancies and other defects on the magnetic p
erties.

2. SAMPLES AND MEASUREMENT METHOD

Cupric oxide single crystals were grown by forming
solution in a melt in the CuO–BaO system in ZrO2 crucibles.
A mixture of CuO and BaCO3 powders~of very-high-purity
grade! in the required proportions was heated in air
1000 °C. The mixture melted completely. The melt was h
at 1000 °C for 6 h and then cooled to 890 °C at the rate
1 °C/h. Below 890 °C the system was cooled to room te
perature together with the furnace. The crystals were m
chanically extricated from the crucibles. To obtain samp
© 1998 American Institute of Physics
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FIG. 1. Temperature dependence of thea- ~1!, b-
~2!, andc-axis susceptibility~3! for a stoichiometric
CuO single crystal. Inset: plots ofx(T) nearTN for
Hia ~1! andHic ~3! during heating (s) and cool-
ing (1).
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with different defect densities, the single crystals were s
jected to prolonged anneals for 20–80 h at 500 °C in oxy
~nominally stoichiometric samples! and at 950 °C with sud-
den cooling in liquid nitrogen~samples with oxygen defects!.
Such heat treatments do not alter the lattice constants o
crystals.

X-ray diffraction investigations of the samples were p
formed at room temperature on a DRON-2 diffractome
using chromiumKa radiation. The single crystals had
monoclinic C2/c(15) lattice1 with the parametersa54.677
Å, b53.422 Å,c55.129 Å, andb599.50°. The CuO single
crystals had the shape of quadrangular prisms measurin
to 333310 mm3. The natural large faces were oriented
the ~110! plane.

The magnetic measurements were performed on a F
day magnetic balance in the temperature range 60–60
and in the range of magnetic fieldsH<13 kOe. The sensi-
tivity of the balance permits measurement of the suscept
ity down to 1028 cm3/g. The temperature dependence of t
susceptibility was measured mainly in a 9 kOe field. The
measurement error was less than 3%.

3. MAGNETIC PROPERTIES OF CuO

The first thorough measurements of the susceptibility
a CuO polycrystal over the broad temperature range 4.2,T
,1100 K were performed by O’Keefe and Stone.1 Accord-
ing to their data, the susceptibilityx5231026 cm3/g re-
mains constant as the temperature rises up to 140 K. A so
what different type of dependence ofx(T), viz., an increase
in the susceptibility as the temperature drops below 100
was obtained in Refs. 4–6, 8, 9, and 14.

We investigated a large number of CuO polycrystals a
single crystals. Our single crystals exhibited an increasex
asT decreases in the low-temperature region. The magnit
of the change inx, the temperature range with a consta
value of x, and its minimum value depend on the defe
-
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density in the samples. Decreasing the number of oxy
vacancies by additional annealing in a stream of O2 reduced
the minimum value tox51.031026 cm3/g. As the concen-
tration of oxygen vacancies increased, the maximum on
x(T) curve in the high-temperature region shifted to a low
value ofT and became less pronounced.

The temperature dependence of the magnetic suscep
ity of the CuO single crystals in the principal crystallo
graphic directions was studied in Refs. 6, 7, and 9. Th
point out the anisotropy ofx both in the rangeT,TN and
considerably aboveTN . The anisotropy ofx i andx' in the
region of magnetic ordering is characteristic of collinear a
tiferromagnets. AboveTN the susceptibility should be isotro
pic, and the anisotropy ofx can be observed only in highly
anisotropic antiferromagnets.17 In any case, for a fixed value
of the magnetic moment of the ions the susceptibility sho
decrease with increasing temperature in the region of m
netic disorder forT.TN ; however, in CuO it increases.

The temperature dependence of the susceptibility
CuO has the form that is typical of low-dimensional~1D or
2D! antiferromagnetic systems, which undergo a phase t
sition to a 3D state with long-range interaction order wh
the temperature is lowered.18 To isolate the influence of oxy
gen on the magnetic properties of CuO, we investigated
x(T) curves of a single crystal weighing 15.6 mg and me
suring 231.732.5 mm3 before and after heat treatment.

Figure 1 presents plots of the temperature dependenc
the susceptibility in the principal directionsa (xa), b (xb),
and c (xc) in a field H58.9 kOe for a CuO single crysta
annealed in a stream of oxygen. In the magnetically orde
region (T,213 K! the spin of the Cu21 ion is directed along
the @010# axis; therefore,xb is the parallel susceptibility, and
xa andxc comprise the perpendicular susceptibility.10–12The
parallel susceptibility should tend to zero asT→0 in a col-
linear antiferromagnet, but a finite value ofxb is always
observed in CuO. This is an indication of partial activation
the orbital angular moment and spin-orbit coupling. As t
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FIG. 2. Temperature dependence of thea-
~1!, b- ~2!, andc-axis susceptibility~3! for
a CuO single crystal annealed in air.
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temperature rises in the rangeT.140 K, the value ofxb

increases quite dramatically. However, atTN5230 K the
susceptibility peak typical of Ne´el antiferromagnets is no
observed, and only the slope of thexb(T) curve changes. As
the temperature rises further, the increase inxb is fairly
weak. The values ofxa andxc remain almost constant an
close to one another in the temperature range investigate
small dip inx was discovered for theHic direction in all the
single crystals. According to neutron-diffraction investig
tions, atT5212 K the magnetic structure of CuO undergo
a transition from collinear antiferromagnetic ordering to h
lical ordering with a magnetic moment in theac plane.10 A
second specific-heat peak is observed at the same tem
ture ~the first is observed atTN), indicating a phase transi
tion. Hysteresis of the intensity of the magnetic reflectio
was observed in the transition region at 212–230 K;11 there-
fore, we performed finer measurements of the susceptib
in both the heating and cooling regimes. No hysteretic p
nomena were discovered in the behavior ofx(T) along the
a, b, andc axes near 212 K~see the inset in Fig. 1!.

To increase the number of oxygen vacancies, the C
single crystal was annealed in air at 950 °C and investiga
again. Figure 2 presents plots of the temperature depend
of xa , xb , and xc for the same crystal annealed in air.
follows from a comparison of Figs. 1 and 2 that the form
the temperature dependences of the susceptibility is m
tained. Oxygen vacancies have practically no influence
the xa(T) curve, but they cause significant changes in
absolute values ofxb andxc . In the defect-containing single
crystal the parallel susceptibility increases forT,TN and
decreases forT.TN , i.e., the changes in the absolute val
of xb(T) become weaker. Inversion of thexa(T) andxc(T)
curves is observed at low temperatures. In the stoichiome
crystalxc.xc is obtained forT,TN , and these susceptibili
ties practically coincide atT.TN . In the defect-containing
single crystalxc,xa is observed over the entire range
variation of the temperature. In addition, the temperature
the minimum ofxc remains equal to 213 K before and aft
annealing. The most significant effects of the oxygen vac
cies are a decrease in the magnitude of the low-tempera
increase in the susceptibility along all the axes and an
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crease in the minimum value ofxb for T,140 K.
The temperature dependences of the susceptibility

the single crystal with oxygen vacancies are in good agr
ment with the curves obtained in Ref. 7 with respect to
character of the variation ofx and its absolute values. Abov
TN , xb has the largest value, andxc has the smallest value
However, the claim made by Kobler and Chattopadhyay
Ref. 7 that the negative jump2Dxc at T5212 K in CuO is
equal to the positive jumpDxb and that there is no variation
of the a-axis susceptibility is incorrect. This behavior of th
susceptibility is characteristic of their sample. Unlike Kobl
and Chattopadhyay,7 we observed small, but noticeable di
continuities on the course of thexa(T) curve nearT5220 K.
Thex(T) curves for the principal axes in Ref. 9 differ som
what from our data and the data in Ref. 7. More specifica
at T.200 K thec-axis susceptibility has the largest valu
and xb.xa . An analysis of the data onx(T) for different
single crystals and the results in Refs. 5–9 reveals that
sharpest changes inx occur in the noncollinear phase a
212–230 K. The quality of the single crystals has a we
influence onTN , but can alter the relationship between t
values ofx along thea, b, andc axes.

The disparities in the literature in regard to the tempe
ture and field dependences of the magnetization of CuO
probably attributable to technological details. A nonline
dependence of the magnetizations on the field was observed
for T<250 K in several polycrystals5,19 and single crystals.8

The small spontaneous magnetization is attributed to
weak ferromagnetism appearing in the antiferromagnet w
there is a deviation of the spins from the collinear directi
~tilting of the spins, canted antiferromagnetism!. It is not
clear whether the weak ferromagnetism is an inherent pr
erty of CuO or is caused by defects, particularly by oxyg
vacancies. We recorded the field dependence of the ma
tization s(H) for polycrystals and single crystals in th
range of fields 1.5,H,15 kOe at various temperatures. A
though we cannot evaluate the behavior ofs(H) in weak
fields, extrapolation of the magnetization toH50 yields in-
formation on the spontaneous magnetization and weak fe
magnetism.

In single crystals the spontaneous magnetization diff
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from zero both above and belowTN . Figure 3 presents plot
of s(H) for a stoichiometric single crystal along thea, b,
andc axes at 56 and 300 K. The spontaneous magnetiza
varies from 1.531023 to 831023 G•cm3/g. A similar de-
pendence ofs(H) was observed for thea direction atT
5115 K in Ref. 8. In a single crystal with oxygen vacanci
the s(H) curves remain qualitatively unchanged, and t
residual magnetization is maintained in the same range.
small value of the residual magnetization indicates we
canting of the Cu21 spins, which is not associated with oxy
gen vacancies.

4. DISCUSSION OF RESULTS

The temperature dependence of the susceptibility
CuO has the form characteristic of low-dimensional ma
netic systems. BelowTN25213 K CuO is a collinear antifer
romagnet, but aboveTN15230 K strong spin correlations ar
observed, and the short-range order remains intact at lea
to 450 K. It should be noted that the helical magnetic str
ture discovered in the intermediate range 212,T,230 K
can be realized in both three-dimensional and o
dimensional systems. The nature of the long-range magn
order in low-dimensional systems differs from the usual
der in three-dimensional magnetic arrays, as is manifeste
the appreciable decrease in the mean spin due to low-en
excitations. The decrease in the mean spin is inversely
portional to the value of the spin and the number of intera
ing neighbors.

The magnetic structure of CuO can be represented in
form of Cu–O–Cuchains parallel to the@101# direction with
strong antiferromagnetic superexchangeI 1 through O22 ions
within a chain and a weaker ferromagnetic interactionI 2

between chains. The relation betweenI 1 and I 2 is of great
importance. IfI 2 is significantly smaller thanI 1, then as the
temperature at whichkT becomes comparable toI 2 rises, the
interaction between chains vanishes and CuO can go ov
a one-dimensional antiferromagnetic state. If the interac
between chains in theac plane is nonzero, the probability o
two-dimensional antiferromagnetic ordering is not ruled o
The interaction within a chain leads to spin correlation a
short-range-order effects. One manifestation of the sh
range-order effects in the low-dimensional systems is
flattened maximum on thex(T) curve nearT'I /k.

FIG. 3. Field dependence of thea- (3, h), b- (s, 1), andc-axis mag-
netization (n, *) for a stoichiometric CuO single crystal atT556 K (3,
s, n) andT5300 K (h, 1, * !.
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At the present time there is no clear verdict regarding
dimensionality~1D or 2D! of the magnetic system in CuO
and the model~the Heisenberg, Ising, orXY model! that
should be used to describe it. Since CuO is a system wh
initially consists of independent antiferromagnetic cha
and since Cu21 ions are often described by the Heisenbe
model, we attempted to describe the temperature depend
of the susceptibility in the rangeT.TN using a one-
dimensional isotropic chain withS51/2.20 The best agree-
ment of the experimentalx(T) curve for a polycrystal with
the calculated curves for different values of the exchan
parameterI /k and theg factor was obtained forI /k5430 K
andg51.97.

In single crystals magnetic susceptibility anisotropy
observed aboveTN in parallel and perpendicular fields rela
tive to the direction of the spin. In the Heisenberg model
exchange within a chain is isotropic; therefore, the calcula
susceptibility should also be isotropic. The anisotropy ofx in
this model can also be related to the anisotropy of theg
factor. In this case the maximum susceptibility, which
specified by the relation

xmaxuI u/Ng2mB
250.07346,

depends on theg factor, and the temperature of the susce
tibility maximum for all the field directions should be th
same. In CuO the value of theg factor is unknown, since
single crystals do not exhibit an EPR signal in the tempe
ture range 80–450 K.21 Weak anisotropy of theg factor of
Cu21 ions is usually observed in compounds:gi ,'51.9
22.4. The small g-factor anisotropy (gi52.02 and g'

51.88 for I /k5390 K! can account for the observed aniso
ropy of x i andx' in the restricted rangeT.400 K, but the
entire temperature dependence of the susceptibility aboveTN

is not described by the 1D Heisenberg model. Treatmen
the experimental plots ofx(T) along thea, b, andc axes for
stoichiometric and defect-containing single crystals using
numerical results of Bonner and Fisher20 for a Heisenberg
chain with S51/2 gave strongly differing values of the ex
change parameters and theg factor. Therefore, CuO is not a
isotropic system, and the 1D Heisenberg model is inap
cable.

An anisotropic antiferromagnetic chain can be describ
by the Ising model or theXY model.18,22 We estimated the
exchange parameters and theg factor for a CuO single crys-
tal before and after annealing using the theoretical formu
for an Ising chain. The calculations showed that the value
I /k and theg factor for the different axes differ strongly, i.e
the Ising model is also inapplicable. It should, however,
noted that the exchange parameters for thea andc directions
are fairly close and are significantly greater than the value
I /k for the b axis. Therefore, the strongest interaction b
tween Cu ions occurs in theac plane, in which the
Cu–O–Cuchains lie.

The plots of the temperature dependence of the sus
tibility of CuO are very similar to thex(T) curves for the 1D
antiferromagnet CsCoCl4,23 which can be described by th
XY model. TheXY model is characterized by strongg-factor
anisotropy (g'@gi) and the absence of susceptibility aniso
ropy in thexy plane. It can be assumed that CuO is eithe
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one-dimensional compound corresponding to theXY model
or a two-dimensional compound. The magnetic propertie
1D and 2D compounds do not differ strongly; therefore, it
often difficult to correctly choose the model. The estima
of I /k and theg factor based on different models should
treated with caution, since it is usually assumed in the c
culations that the spin of the Cu21 ions is directed along the
b axis. However, the transition from three-dimensional
low-dimensional antiferromagnetism is accompanied by
change in the direction of the spin. This is indicated by
neutron-diffraction data and the relation between the val
of x along the principal axes. In anisotropic low-dimension
models the parallel susceptibility should be significan
smaller than the perpendicular component, and the maxim
of x' shifts to a lower temperature in comparison tox i . As
we see from Figs. 1 and 2,xb has the largest value abov
TN . In this temperature range the susceptibility along
principal axes is apparently a result of the superposition ox i
andx' .

Cupric oxide~CuO! is a frustrated antiferromagnet be
cause of the closeness of the values of the competitive
romagnetic exchangeJ1 between nearest neighbors and t
antiferromagnetic interactionJ2 between next-nearest neigh
bors. According to the theoretical models,24 a first-order
phase transition from Ne´el ordering to helical ordering
should be observed in a frustrated 2D Heisenberg antife
magnet withS51/2 at J2 /J151.1, and a first-order transi
tion from helical antiferromagnetism to a quantum spin-flu
state should be observed atJ2 /J151.65. Qualitatively simi-
lar behavior is observed for the magnetic system in Cu
The transition from a 3D state to a low-dimensional st
with strong spin correlation in a definite direction apparen
does not occur at a critical point, but is spread over a te
perature range. This is indirectly supported by the nonz
residual magnetization and the weak variation ofxa , xb ,
and xc with the temperature atT.TN . Microscopic mag-
netically ordered regions are apparently preserved aboveTN .
The absence of dramatic changes along the course o
xa(T) curve is not an indication of very strong sp
correlations.7 It can be attributed to the fact that thea-axis
susceptibility is equal tox' below 212 K, while the compo-
nentx i becomes important above 212 K.

As we have already noted above, defects influence
magnitude of the susceptibility and the form of thex i(T)
and x'(T) curves. As the number of oxygen vacancies
creases, the maximum ofx shifts to a lower value ofT. This
can be caused by the cleavage of antiferromagnetic bo
and by a decrease in the effective exchange. The appear
of small regions with broken antiferromagnetic bonds
creases the susceptibility. In polycrystalline CuO films,
which there is a possibility for a larger number of defe
than in bulk samples, the Ne´el temperature is considerab
lower (TN,160 K!.25 The ‘‘paramagnetic’’ increase in th
susceptibility for CuO single crystals and polycrystals at l
temperatures is attributed to the weak ferromagnetism
pearing because of the canting of the spins near defects
to the appearance of free Cu21 ions.4,7,8 In our opinion, the
weak ferromagnetism is, in fact, attributable to a deviation
the direction of the spins from collinear ordering due to fru
of
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tration of the exchange interactions, but the formation
isolated paramagnetic Cu21 centers is unlikely. A paramag
netic resonance signal was not observed for any of the p
crystals and single crystals not containing extrinsic impu
ties. The absence of an EPR signal is attributed to the lo
range antiferromagnetic order atT,TN and to the strong
spin correlations of the Cu21 ions aboveTN . It can be seen
from Figs. 1 and 2 that the presence of defects in CuO sin
crystals does not cause enhancement of the paramagnet
crease inx. The decrease in the low-temperature anomaly
a defect-containing crystal is fictitious because of the gen
increase inx. An increase in the susceptibility with decrea
ing T, which is qualitatively similar to the behavior ofx'

andx i as a function of the temperature, is possible in alt
nated chains20 and frustrated antiferromagnets. The low
temperature increase inx can also be caused by a repeat
transition to a spin-glass state or a state of low-dimensio
ordering. In the closely related compound La2CuO42d a de-
crease in the intensity of the 3D neutron Bragg scatter
and, accordingly, a sharp increase in the 2D quasielastic s
tering were observed when the temperature was lowered
low 30 K.26 The probability of such a transition in CuO ha
not been ruled out.

5. CONCLUSIONS

The magnetic susceptibility of CuO is anisotropic ov
the entire temperature range investigated. The plots ofx(T)
along the principal axes indicate 3D antiferromagnetism
low TN and low-dimensional ordering of a special type~a
quantum spin-fluid state! aboveTN . Of all the known low-
dimensional magnets, CuO and the closely rela
perovskite-like compounds have the highest Ne´el tempera-
tures (TN) and, accordingly, the strongest exchange inter
tion. Defects lead to partial cleavage of the antiferromagn
bonds. Oxygen vacancies do not qualitatively influence
form of x(T), but change the absolute values ofxb andxc .
The noticeable effects of oxygen vacancies include a
crease in the magnitude of the low-temperature increasex
and weaker changes inxb(T). For T.TN theb-axis suscep-
tibility xb has the largest value, indicating a change in
direction of the spin of the Cu21 ions. Treatment of the
experimental data on the basis of the 1D Heisenberg
Ising models has shown that these models do not desc
the behavior ofx(T) in CuO.
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Light-induced evaporation and condensation growth of aerosol particles
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We analyze the possibility of resonant optical radiation inducing evaporation and condensation
growth of aerosol particles suspended in a vapor–gas mixture. The molecules of the
vapor absorb radiation selectively as to velocity. We examine the Knudsen regime, in which the
particle radius is much smaller than the mean free path of the molecules. ©1998 American
Institute of Physics.@S1063-7761~98!02003-4#
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1. INTRODUCTION

Studies of phenomena related to the effect of opti
radiation on submicrometer particles are of fundamental
portance in astrophysics and are of interest in connec
with laser monitoring of the atmosphere. In particular, t
evaporation of aerosols in the field of optical radiation is o
of the main processes determining the time it takes an a
dispersion system to clear up.

Suppose that a fine macroscopic particle is suspende
a mixture consisting of its own vapor and a noncondens
gas. A system is in phase equilibrium, of course, if t
chemical potentials, temperatures, and pressures of the
ponents of the gaseous phase and the particle are the s

When the particle is irradiated by optical radiation,
heats up, thus destroying the phase equilibrium, and be
to evaporate. From the standpoint of phenomenological t
modynamics, breakdown of the phase equilibrium of a s
tem in a field of optical radiation is only possible if th
particle and vapor–gas medium absorb light differently. B
can there be evaporation and all the more condensa
growth of a particle if the system does not absorb radiati
or if such absorption is a peripheral factor rather than a
cisive one?

Microscopic analysis suggests at least three reasons
such evaporation and condensation growth are possible.

Suppose that the radiation is a traveling light wa
whose frequency is close to that of an electronic
vibrational–rotational transition of a vapor molecule. B
cause of the Doppler effect, the radiation is absorbed se
tively as to velocity. The effective resonant velocity interv
Dv is determined by the condition thatk–Dv;G, wherek is
the wave vector, andG is the homogeneous halfwidth of th
absorption line. The molecules that absorb radiation beco
excited. As a result, the velocity distribution of the vap
molecules in the intervalDv has a Bennett dip, and the co
responding molecules are in the excited state, forming a B
nett peak.1 The position of the Bennett peak and dip is d
termined by the sign and value of the offsetV of the
radiation frequency from the center of the absorption line

If excited and unexcited vapor molecules interact diff
ently with the molecules of the buffer~nonabsorbing and
noncondensing! gas, the rates of decay of the Bennett pe
5651063-7761/98/86(3)/7/$15.00
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and of smoothing-out of the Bennett dip are different. As
result, the overall velocity distribution function for the vap
molecules is non-Maxwellian. At nonzero offsetsV, this
leads to light-induced drift of the vapor2 and the aeroso
particle.3 Another consequence, directly related to the pro
lem being discussed, is a change in vapor temperature th
not, however, accompanied by a change in the tempera
of the vapor–gas mixture.4 Depending on the size ofV, the
temperature of the vapor can be higher or lower than
equilibrium temperature of the system. In the first case
aerosol particle evaporates, and in the second it grows
result of condensation of the cooled vapor.

Another possible reason for the breakdown of pha
equilibrium is the dependence of the collision rate on
quantum state of the molecules. To be more specific, le
examine the case in which the collision cross section for
molecules that have absorbed radiation grows. This lead
an increase in the number of vapor molecules that started
from the surface of the particle, but as a result of the fi
collisions in the Knudsen layer changed velocity and end
up on the interphase boundary. In other words, there is
tial screening of the boundary layer and, as a result, the n
ber of vapor molecules colliding with the particle surface p
unit time and having a definite condensation probability
creases.

The number of molecules that evaporate from the s
face per unit time depends only on the type of substan
temperature, and curvature of the surface. As a result,
dynamic equilibrium between evaporation and condensa
is violated in favor of the latter, i.e., the aerosol partic
grows. On the other hand, an increase in the transport c
section of the molecules due to absorption of radiation
duces the probability of these molecules being shifted fr
the volume of the gas to the surface of the particle. T
violates dynamic equilibrium in favor of evaporation. Thu
variation in the collision rate of the excited molecules ge
erates two competing factors: one stimulating the conden
tion growth of the aerosol particle and the other stimulat
evaporation. It is probably impossible to predict a priori
which direction the process will proceed. Establishing t
conditions in which evaporation or growth occurs constitu
the goal of the theory.

Another reason phase equilibrium might be destroy
© 1998 American Institute of Physics
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could be the dependence of the nature of the interactio
vapor molecules and the surface of the particle on the qu
tum state of the molecules. If the condensation coefficien
the molecules that have absorbed radiation increases,
densation processes are dominant and the particle grow
the opposite case, in which the probability of condensat
of the excited molecules is lower than that of the unexci
molecules, the particle evaporates.

The kinetic theory of radiative evaporation of an aero
particle absorbing radiation was developed in Ref. 5. In
present paper we develop a theoretical model that desc
the evaporation and condensation growth of a single non
sorbing particle suspended in a vapor–gas mixture, in wh
the vapor molecules are excited by resonant optical radia
selectively as to velocity. We examine the Knudsen regim
in which the mean free path of the molecules is much gre
than the size of the particle.

2. STATEMENT OF THE PROBLEM

Let us examine a spherical aerosol particle suspende
a mixture consisting of the vapor of this particle and a no
condensing gas. The radiusr 0 of the particle is much greate
than the radius of a critical nucleation center. The system
in thermodynamic equilibrium at temperatureT0 .

We irradiate the system with monochromatic light,
traveling light wave propagating along thez axis ~Fig. 1!.
Let the radiation be absorbed by the vapor molecules in
electronic or vibrational–rotational transition from th
ground staten to the first excited statem. The frequencyv
of the radiation is slightly offset fromvmn, the center fre-
quency of the absorption line, i.e.,V5v5vmn

(uVu!v,vmm). Molecules that have absorbed radiation b
come excited. This alters their transport characteristics
their probability of being captured by the interphase pla
Thus, the gaseous phase can be interpreted as a t
component mixture consisting of the excited and unexc
components of the vapor and the buffer~nonabsorbing and
noncondensing! gas. The components of the vapor consist
molecules of equal massm1 but different diametersdn

Þdm . As a result of stimulated transitions and the radiat
decay of the excited level, these components are consta
swapping molecules.

Resonant interaction between light and vapor destr
the state of phase equilibrium, and evaporation or conde
tion growth of the aerosol begins. Obviously, the decre
~increase! in particle mass per unit time, i.e., the evaporati
~condensation! rate, is determined by the mass vapor flux
the particle’s surface:

d

dt S 4

3
pr 0

3r D52^J&, ~1!

FIG. 1. Problem geometry.
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wherer is the density of the particle,J is the radial compo-
nent of the mass vapor flux at the particle surface, and an
bracketŝ¯& always denote integration over the surfaceS of
the particle~Fig. 1!:

^J&5E
~S!

J dS52pr 0
2E

0

p

J~u!sin u du. ~2!

If the velocity distribution functionsf m and f n for the
excited and unexcited vapor molecules are known, the fluJ
can be calculated

J5m1E v r~ f m1 f n!dv. ~3!

When the absorbing molecules are approximated b
two-level model, the velocity distribution functions for th
vapor molecules,f m and f n , and the molecules of the buffe
gas, f 2 , satisfy the following system of kinetic equations1,4:

] f m

]t
1v–¹ f m5

x~v!Gm~ f n2 f m!

2
2Gmf m1Sm , ~4!

] f n

]t
1v–¹ f n52

x~v!Gm~ f n2 f m!

2
1Gmf m1Sn , ~5!

] f 2

]t
1v–¹ f 25S2 . ~6!

Here

Si5Sim1Sin1Si2 , i 5m,n,2,

x~v!5
4uGmnu2G

Gm@G21~V2k–v!2#
, Gmn5

E0dmn

2\
, ~7!

where G is the homogeneous halfwidth of the absorpti
line, Gm is the rate of radiative decay of the excited lev
x(v) is the probability of absorption per unit time for mo
ecules with a given velocityv ~the absorption rate for suc
molecules!, dmn is the dipole matrix element of them→n
transition,E0 is the amplitude of the electric field of the ligh
wave,Si j are Boltzmann collision integrals, and\ is Planck’s
constant.

To specify the boundary conditions for Eqs.~4!–~6! we
must fix the distribution functionsf i

1(r0 ,v) ( i 5m,n,2) for
molecules emitted from the particle surface. Generally,
temperatureTs of the surface differs from the equilibrium
temperatureT0 , a fact that can be explained either by th
absorption of light by the particle or by removal of the late
heat of evaporation.5 Let us assume that the fractiona i of
vapor molecules in thei th state is evaporated with a Max
wellian distributionf i

s corresponding to the surface temper
tureTs and number densitynis , while the fraction (12a i) is
elastically reflected without experiencing condensation in
i th state with a distribution functionf i

r . We also assume tha
vapor molecules reflected in thei th state experience com
plete energy accommodation in collisions with the interph
surface, and have a Maxwellian distribution functionf i

r cor-
responding to temperatureTs and number densitynir . Ignor-
ing inelastic collisions with the surface, for vapor molecul
we have
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f i
1~r0 ,v!5a i f i

s~v!1~12a i ! f i
r~v!,

i 5m,n, v–n.0,

f i
s,r5nis,r S m1

2pkBTs
D 3/2

expS 2
m1v2

2kBTs
D , ~8!

wherem1 is the mass of a vapor molecule, andkB is Boltz-
mann’s constant.

We assume that molecules of the buffer gas are diffus
scattered by the surface, with their energy being comple
accommodated and their velocity distribution function be
Maxwellian:

f 2
1~r0 ,v!5n2r S m2

2pkBTs
D 3/2

expS 2
m2v2

2kBTs
D , v–n.0,

~9!

wheren2r is the number density of the buffer gas molecu
scattered by the surface,m2 is the mass of a buffer gas mo
ecule, andn5r0 /r 0 is the outward-directed unit normal~Fig.
1!.

We assume that light is absorbed only by vapor m
ecules with velocities in the rangek–Dv;G, and that it does
not interact with molecules of the condensed phase. In
case only unexcited molecules evaporate from the surf
Then in the boundary condition~8! we must putnms50,
while nns is the equilibrium densityns of saturated vapor
corresponding to surface temperatureTs . With allowance for
the curvature of the particle surface, Thomson’s formu6

yields

ns5ns0 expS 2m1s

rkBTsr 0
D , ~10!

wherens0 is the density of saturated vapor above a flat s
face at temperatureTs , ands is the surface tension.

In ~8!, the unknown number densitiesnir of the excited
( i 5m) and unexcited (i 5n) vapor molecules reflected from
the surface of the aerosol particle can be found from
balance relations for the mass vapor fluxes at the interph
boundary:

Ni
15~12a i !uNi

2u1a iNi
s , i 5m,n. ~11!

HereNi
1 , Ni

2 , andNi
s are the numbers of vapor molecule

in the i th state emitted by, incident upon, and evapora
from unit surface area per unit time:

Ni
1,s5E

n–v.0
v r f i

1,s~r0 ,v!dv,

uNi
2u5E

n–v,0
uv r u f i

2~r0 ,v!dv, Nm
s 50. ~12!

The distribution functionsf i
1 and f i

s of the of the emitted and
evaporated vapor molecules are given by~8!, and that of the
incident molecules,f i

2 , can be found by solving the kineti
equations~4! and ~5!.

In the boundary condition~9!, the unknown number den
sity n2r of reflected buffer-gas molecules can be found fro
the nonpercolation condition

N2
15uN2

2u. ~13!
ly
ly

s

-

is
e.

-

e
se

d

The mass vapor flux at the particle surface is

J5m1 (
i 5m,n

~Ni
12uNi

2u! ~14!

or, if we take~11! and ~12! into account,

J5m1 (
i 5m,n

a i~Ni
s2uNi

2u!

5anm1Nn
s2m1 (

i 5m,n
a i uNi

2u. ~15!

We now examine quasistationary evaporation~growth!,
in which the rate at which the particle radius varies,ṙ 0 , is
low compared to the vapor velocityU1 . Equations~1!, ~2!,
and ~15! imply that ṙ 0 /U1;r1 /r, wherer1 and r are the
mass densities of vapor and particle. Thus, far from the c
cal point the quasistationary approximation is valid. In t
kinetic equations~4!–~6! we can then ignore the time deriva
tives of the distribution function.

We limit ourselves to the analysis of the free-molecu
evaporation~growth! regime, in which the mean free path o
molecules is much greater than the particles’ radius. In
case we can ignore the perturbation of the distribution fu
tion for the molecules incident upon a particle due to co
sions with emitted particles. If we assume that the intens
of the light is independent of position and the transverse s
of the light beam is much greater than the mean free pat
the molecules, the distribution functions produced by int
molecular collisions, i.e., far from the particle, are also sp
tially homogeneous. Then in Eqs.~4!–~6!, which the distri-
bution functionsf i

2 of the incident molecules must satisfy
we can ignore spatial derivatives.

We examine the case of small values ofx~v!, which is
common for vibrational–rotational transitions, while fo
electronic transitions this case is realized at low light inte
sitiesI . What is important is that forx(v)!1 the state of the
system is close to equilibrium, so that the molecular veloc
distribution functions can be written as perturbed Maxwe
ian distributions:

f i~v!5 f i0@11hi~v!#,

f i05ni S mi

2pkBT0
D 3/2

expS 2
miv

2

2kBT0
D , ~16!

whereni is the number density of molecules of speciesi , and
T0 is the equilibrium temperature of the vapor–gas mixtu

The component temperatures differ little from the eq
librium temperatureT0 :

Ti5T0~11t i !, i 5m,n,2, ~17!

wheret i is the unknown perturbation of thei th component.
Under these assumptions, the linearized variants of E

~4!–~6! assume the form

1

2
Gmx~v!S nn

nm
21D2Gm~11hm!1Lmm1Lmn1Lm250,

~18!
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2
1

2
Gmx~v!S 12

nm

nn
D1

nm

nn
Gm~11hm!

1Lnm1Lnn1Ln250, ~19!

L2m1L2n1L2250. ~20!

We consider only elastic collisions between molecul
and for the linearized collision integralsLi j we make ap-
proximations that ensure accurate values for the first thirt
moments ofLi j ~see Ref. 7!. Obviously, in an approximation
linear inx(v) we can assume thatnm!nn . Then the solution
of Eqs.~18!–~20! takes the form

hm5
Gm

Gm1gm
S 1

2

nn

nm
x~v!211

Am

Gm
D , ~21!

hn5
Gm

Gm1gm

gm

gn
S 2

1

2
x~v!1

nm

nn
D

1
Gm

Gm1gm

nm

nn

Am

gn
1

An

gn
, ~22!

h25
A2

g2
. ~23!

Here we have introduced the notation

Ai5 (
j 5m,n,2

Ai j , ci5
v

v̄ i

, v̄ i5S 2kBT0

mi
D 1/2

,

Ai j 5S ci
22

3

2D Fg i j t i
`22

mi j

mj
~t i

`2t j
`!n i j

~1!G ,
mi j 5

mi mj

mi1mj
, g i5g im1g in1g i2 , i 5m,n,2. ~24!

The expression for the raten i j
(1) is given in Appendix A.

The number density and temperature perturbation of
i th component are defined to be

ni5E f i dv,

t i
`5

Ti2T0

T0
5p23/2E S 2

3
ci

221Dhi exp~2ci
2!dci . ~25!

Note that generally the expression forAi j in ~24! incor-
porates terms containing the macroscopic velocities of
vapor and the buffer gas, partial heat fluxes, and compon
of the stress tensor. These terms contribute only to the l
vapor fluxJ(u) and do not alter̂J&, the flux averaged ove
the surface. The point here is that the light-induced fluxes
matter and energy, which are directed along thez axis ~Fig.
1!, provide a contribution toJ(u) proportional to cosu, and
the components of the stress tensor provide a contribu
proportional to (3 cos2 u21). The surface integral~2! of
these terms vanishes. This situation is typical of axisymm
ric problems of gas kinetics in an approximation linear in t
Mach number. The intensity of evaporation of a particle e
veloped in a slow flow of the vapor–gas mixture will be t
same as in a medium at rest. In our case this means tha
,
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rate of evaporation or condensation growth of a particle
be considered independently of light-induced drift2 and
photophoresis.3

3. RADIAL VAPOR FLUX ŠJ‹

In an approximation linear inx~v! we havenm!nn , i.e.,
nn'n1 . Then Eqs.~16!, ~21!, and~25! yield

nm5
n1

2p3/2x0 , x05E x~v!exp~2c1
2!dc1 ,

tm
`5

1

3p3/2

n1

nm

Gmx2

Gm1nmn
~1!12nm2

~1!m12/m2
,

x25E S c1
22

3

2Dx~v!exp~2c1
2!dc1 . ~26!

Both x0 and x2 , which depend on the parametersx
5V/kv̄1 andy5G/kv̄1 , have a simple form for both inho
mogeneous (y!1) and homogeneous (y@1) line broaden-
ing. For intermediate values ofy, a numerical calculation is
carried out in Appendix B.

The relative light-induced cooling~heating! of the vapor
and heating~cooling! of the buffer gas are, respectively,

t1
`5

nmtm
`1nntn

`

n1
5

n2

n11n2

nm

n1
tm

` S 12
V2m

~1,1!

V2n
~1,1! D ,

n2t2
`52n1t1

` . ~27!

Here theV i j
( l ,r ) are the Chapman–Cowling integrals,8 which

depend on the model of the pairwise interaction potential.
expression for molecules approximated by the hard-sph
model is given in Appendix A.

The mean mass vapor flux at the particle surface is

^J&5
r1v̄1

2p1/2S GsDa1Gc

Dg

gn
1

an

2
t1

`D . ~28!

Here

Gs5
gm

Gm1gm

x0

2p3/21
Gm

Gm1gm

3S x1
2

p
1

1

2

nm

n1

nm2
~1!

Gm

m12m2

m11m2
tm

` D , ~29!

Gc5
anGm

Gm1gm
S x0

2p3/22
x1

2

p
2

x2

6p3/2D , ~30!

x1
25

1

2 E
0

p

sin u duE
c1r,0

uc1r ux~v!exp~2c1
2!dc1 ,

Da5an2am , Dg5gn2gm . ~31!

In ~28! the quantityx1
2(x,y) is calculated in Appendix B.

In Eq. ~28!, the kinetic coefficientGs characterizes the
surface mechanism of particle evaporation~growth!, which is
related to the difference in the evaporation–condensation
efficients for excited and unexcited vapor molecules. T
kinetic coefficientGc characterizes the contribution relate
to the difference in rates of collisions of excited and une
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cited vapor molecules. Finally, the third term in~28! de-
scribes the rate of condensation growth~evaporation! of the
aerosol particle due to light-induced cooling~heating! of the
vapor.

If we choose effective rates of collisions of thei 2 j in
the formg i j 5n i j

(1) and assume that the interacting molecu
are hard elastic spheres and that the effective interaction
of excited and unexcited vapor molecules with the buffer-
molecules are commensurate, i.e. (dn22dm2)/dn2!1, the ex-
pression~28! for the mean mass flux of the vapor become

^J&5
r1v̄1

2p1/2S GsDa1Gd

Dd

dn2
D , Dd5dn22dm2 . ~32!

Here

Gd5an

nm

n1

n2

n11n2
tm

`12BGc ,

B5
~m1/2!1/2n1dndn21m12

1/2n2dn2
2

~m1/2!1/2n1dn
21m12

1/2n2dn2
2 . ~33!

The second term in parentheses in~32! characterizes the
bulk evaporation~growth! mechanism of the particle,
mechanism related to the transport properties of excited
unexcited vapor molecules.

The expressions for the kinetic coefficientsGs and Gd

become much simpler for inhomogeneous and homogen
line broadening

3.1. Inhomogeneous broadening

Such broadening (y!1) is characteristic of tenuou
gases. Forx,1, i.e.,V,kv̄1 , we obtain

Gs5
2p1/2Gmn

2

3Gmkv̄1
S 2Gm13gm

Gm1gm

1
4Gm

Gm1gm

m22m1

m21m1

nm2
~1!

Gm1nmn
~1!12nm2

~1!m12/m2
D , ~34!

Gd5
2p1/2anGmn

2

Gmkv̄1
S 2B

Gm

Gm1gm

1
1

3

n2

n11n2

Gm

Gm1nmn
~1!12nm2

~1!m12/m2
D . ~35!

3.2. Homogeneous broadening

In this casey@1 and, to within terms of ordery21, we
have

Gs5
2Gmn

2

GmG
, Gd50. ~36!

Thus, when homogeneous broadening occurs, we can ig
the contribution of the bulk evaporation~growth! mecha-
nism.

4. DISCUSSION

The kinetic coefficientsGs andGd , which characterize
the surface and bulk evaporation~condensation growth!
s
dii
s

nd

us

re

mechanisms of an aerosol particle, are proportional to
radiation intensity and depend on the ratio of the rate
radiative decay of an excited level,Gm , to the intermolecular
collision rategm . The value ofGm /gm , which depends on
gas pressure, has a stronger effect on the bulk compone
the radial vapor flux.

The frequency offsetV from the center of the absorptio
line determines the light-induced cooling or heating of t
vapor, i.e., the sign of relative variation of the vapor te
peraturet1

` . From ~29! we see that the sign oft1
` is deter-

mined by the signs ofDd andx2 . Suppose that the effectiv
diameter of molecules that have absorbed light increa
(Dd,0). Then as Fig. 4b shows, for small values ofV the
vapor heats up, while for large values ofV it cools off. Thus,
there exists an inversion valueV inv that depends on the pa
rametery5G/kv̄1 . For inhomogeneous broadening (y!1),
V inv57.5G, while for y52 we haveV inv'0.75G. When
Dd,0, the third term in parentheses on the right-hand s
of the Eq.~28! for the radial vapor flux describes evaporatio
of a particle if V,V inv and condensation growth ifV
.V inv .

The rate of particle evaporation or growth is strong
affected by V. In contrast to the phenomenon of ligh
induced drift,2 the direction of the radial vapor flux is inde
pendent of the sign ofV, i.e., the kinetic coefficientsGs and
Gd are even functions ofV. Here the evaporation~growth!
rate peaks at exact resonance,V50. Figures 2 and 3 depic
the dependence of

Gs* 5GsS 4uGmnu2

Gmkv̄1
D 21

,

Gd* 5GdS an

Gm

Gm1gm

4uGmnu2

Gmkv̄1
D 21

on the offset parameterx for inhomogeneous broadenin
(y50.1) with m1'm2 . At other values of the parameter
bothGs* andGd* vary, but qualitatively the dependence onx
remains the same. The curve representingGs(x) ~Fig. 2! is a
Lorentzian, and the kinetic coefficientGs is always positive.
The curve representingGd(x) is plotted in Fig. 3. We see

FIG. 2. Dependence of the kinetic coefficientGs on the offset parameterx
at y50.1 andm1'm2 . Curve 1 corresponds togm@Gm, and curve2 to
gm!Gm .
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that atV5V inv, Gd changes sign. The inversion value of th
offset,V inv , which depends on the broadening parametey,
coincides with the value that determines the sign of the r
tive variation of the temperature,t1

` .
WhenV,V inv , bothGs andGd are positive. Hence for

Da.0 and Dd.0 the particle evaporates, and atDa,0
andDd,0 it grows. If Da andDd have opposite signs, th
surface and volume bulk of the vapor flux^J& compete, and
there is no way to predict the direction of the phase transi
in the general case. To make such a prediction, we must h
numerical estimates of the coefficientsGs and Gd for spe-
cific systems and specific physical conditions. WhenV
.V inv , the particle grows ifDa,0 andDd.0 and evapo-
rates ifDa.0 andDd,0.

We now make some numerical estimates for a spec
system under typical experimental conditions. We take a
dium particle whose diameterr 0 is 1 mm and immerse it in a
mixture of sodium vapor and the inert gas argon at temp
ture T0 equal to 371 K. The saturated vapor pressure is
31025 Pa. The effect of surface curvature can be neglec
The molecular characteristics are:m153.82310226 kg, m2

56.64310226 kg, d153.0 Å, and d253.4 Å. With the
pressure of the buffer gas~argon! being about 1300 Pa, th
Knudsen number Kn is approximately 10, which correspo
to the free-molecule regime.

The source of light is a tunable dye laser emitting in t
vicinity in the D1 andD2 lines of sodium~wavel;600 nm!.
The radiated power is about 10 mW and the beam diam
is about 1 mm. At this intensity the Rabi frequencyGmn is of
order 108 Hz. The radiative decay rateGm563107 Hz ~see
Ref. 9!. Finally, the parameterG/kv̄1 ' 0.01 corresponds to
inhomogeneous line broadening.

Numerical estimates of the kinetic coefficients yield

Gs'1.10, Gd'1.22.

If we assume thatDa50.01 andDd/dn250.01, the particle
loses approximately 5310219 g per second.

In conclusion we note that experimental studies at a
riety of buffer-gas pressures and values ofV might become a
source of accurate information about evaporatio
condensation coefficients and transport characteristics of
cited molecules.

This work was supported by the Russian Fund for F
damental Research~Grant No. 96-01-00756!.

FIG. 3. Dependence of the kinetic coefficientGd on the offset parameterx
at y50.1, m1'm2 , andn1!n2 .
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APPENDIX A

In Eq. ~24!, the expression for the raten i j
(1) taken from

Ref. 7 has the form

n i j
~1!5

16

3

mi j

mi
njV i j

~1,1! .

Here theV i j
( l ,r ) are the Chapman–Cowling integrals,8 which

depend on the shape of the pair interaction potential betw
molecules of speciesi and j . For hard spheres of diameterd
we have

V i j
~ l ,r !5S kBT

2pmi j
D 1/2r 11!

2 S 12
1

2

11~21! l

l 11 Dpdi j
2 ,

FIG. 4. Thex-dependence ofI 1 ~a!, I 2 ~b!, andI 3 ~c! for various values of
y50.1 ~curves1!, 0.2 ~curves2!, 0.5 ~curves3!, 1 ~curves4!, and 2~curves
5!.
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di j 5
di1dj

2
.

APPENDIX B

Here we find the dependence ofx0 , x1
2 , andx2 on the

offset and broadening parametersx andy. It is convenient to
write ~26! and ~31! in the form

x05
4Gmn

2

Gmkv̄1

I 1~x,y!, x25
4Gmn

2

Gmkv̄1

I 2~x,y!,

x1
25

4Gmn
2

Gmkv̄1

I 3~x,y!,

wherex5V/kv̄1 , andy5G/kv̄1 .
For inhomogeneous broadening (y!1) with x!1 we

have

I 1~x,y!5p2, I 2~x,y!52
p2

2
, I 3~x,y!5

p3/2

3
.

For homogeneous broadening (y@1) with x,y we
have, to within terms of ordery21,
I 1~x,y!5
p3/2

y
, I 2~x,y!50, I 3~x,y!5

p

2y
.

The results of numerical calculations for various valu
of the parametersx andy are plotted in Fig. 4.
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Evolution of the ESR spectrum at the metal–insulator transition in quasi-one-
dimensional systems
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The evolution of ESR spectra in metals containing both conduction electrons and localized
paramagnetic centers with inhomogeneous broadening of the magnetic resonance is treated
theoretically. It is shown that such a spectrum can be effectively narrowed when a relaxation
bottleneck is present for an arbitrary distribution of inhomogeneous broadening. The temperature
dependence of the ESR spectrum in the polymeric phase of RbC60 is investigated
experimentally in the region of the metal–insulator transition. Application of the calculations to
the experimental data demonstrates good agreement with the physical model if it is
assumed that the given material is a quasi-one-dimensional system. ©1998 American Institute
of Physics.@S1063-7761~98!02103-9#
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1. INTRODUCTION

The shape of the ESR line in metals containing localiz
paramagnetic centers in addition to their conduction e
trons is usually analyzed on the basis of the Barnes–Pl
theory.1 The role of these localized centers is played by va
ous impurities possessing unpaired spin or by the conduc
electrons, but localized for one reason or another.

For a graphic description of the kinetics of the vario
processes taking place in such systems, it is convenien
represent the delocalized and localized spins in the form
two subsystems, respectivelye ands. Figure 1 schematically
depicts the direct interaction between the subsystems
the corresponding ratesVes andVse and their direct coupling
with the lattice with ratesVeL and VsL . The dynamics of
such subsystems are typically investigated with the help
the Bloch–Hasegawa equations for the magnetizations o
localized and delocalized spins.1,2 In the case where the ex
change interaction of the subsystems with each other exc
their partial lattice coupling (Ves,Vse@VeL ,VsL), coupled
oscillations of the spin magnetizations of the conduct
electrons and the localized spins take place, i.e., the phen
enon of a relaxation bottleneck is observed.1 In this case the
system is characterized by a single Lorentzian ESR line
the opposite limit the spectrum divides into two lines w
central frequenciesve andvs characterizing each of the sub
systems individually.

The evolution of the ESR spectrum in such systems
been investigated in detail in many studies~see the corre-
sponding references in the review in Ref. 1!. However, in
most experiments the picture is blurred by the huge width
the resonance of the conduction electrons. Neverthe
there is a sufficient number of objects in which the ‘‘intri
sic’’ width of the ESR line of the conduction electrons
comparable with the width of the ESR line of the localiz
centers. Here, first of all, we should mention quasi-o
dimensional organic conductors3,4 and the recently discov
ered conducting polymer phases of the two alkali fullerid
5721063-7761/98/86(3)/6/$15.00
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RbC60 and CsC60.5–8 The quasi-one-dimensionality of th
last two compounds has been the growing subject of disc
sion, but the relatively narrow ESR line of the conducti
electrons~2–6 G! provides additional confirmation of th
low dimensionality of these compounds. The main interes
quasi-one-dimensional conductors is motivated by
metal–insulator transition, which in turn is accompanied
an abrupt change in the ESR spectrum.

An important problem of the ESR spectroscopy of on
dimensional systems is inhomogeneous~not coupled with the
rateVsL! broadening of the ESR line of the localized spin
In 1984 Tagirov and Trutnev extended the Barnes–Ple
theory to the case of an arbitrary distribution of reson
frequencies of the localized spins with distribution functi
g(V) ~Ref. 9!, where

E
2`

`

g~V!dV51. ~1!

They showed that if the coupling rateVse ~see Fig. 1! ex-
ceeds some characteristic width of inhomogeneous broa
ing of the resonant frequenciesD̃, these frequencies are av
eraged or, what is the same thing, a narrowing of
spectrum by rapid exchange between the subsystems t
place. However, this narrowing has been graphically dem
strated only for the case of finite second momentsM2 of the
function g(V), where

M25E
2`

`

V2g~V!dV. ~2!

In this case the contribution of inhomogeneous broadenin
decreased to the valueM2 /Vse. In the following section we
calculate the ESR spectrum over the wide range of varia
of the ratesVse, Ves characteristic of the metal–insulato
transition and show that an analogous inhomogeneous
narrowing effect should be observed in the more general c
of an arbitrary functiong(V) satisfying condition~1!.
© 1998 American Institute of Physics
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In the third section we present our experimental data
the temperature dependence of ESR spectra along with
culations to help interpret these spectra in the polymer ph
of RbC60 in the region of the metal–insulator transition.10

2. CALCULATION OF THE ESR SPECTRUM AT THE
METAL–INSULATOR TRANSITION

As the starting point of our ESR spectrum calculatio
we employ the kinetic equations for the magnetizations
the delocalized and localized spins from Ref. 9, augmen
for completeness by terms allowing for indirect spin–latt
relaxation of the localized spins.

Following the recommendations of Ref. 9 explicitly, w
obtain an exact solution~within the framework of the model!
for the imaginary part of the dynamic susceptibility of th
delocalized and localized spins in the form

x9~v!5
PY1RX

X21Y2 . ~3!

Here we have introduced the notation

P[vsxsde1vexeqs12vsvelxsxe2bs~Se1Bs!

2be~Ss1Be!,

R[vsxs~Se1Bs!1vexe~Ss1Be!1bs~de1velxe!

1be~qs1vslxs!,

X[vsvel
2xsxe1SeSs2BeBs2qsde ,

Y[qsSe1deSs1l~vexeBe1vsxsBs!,

de5ve

xe

xe
02v, ds5vs

xs

xs
02v, k[

vs

ve
.

qs5
A

A21B2 , A[E
2`

` ~V1ds!g~V!

~V1ds!
21Ws

2 dV,

B[E
2`

` Wsg~V!

~V1ds!
21Ws

2 dV,

Ss[
B

A21B2 1klxe
0Ves, Se[We1k21lxs

0Vse,

We[Ves1VeL , Ws[Vse1VsL ,

Be[kVes1lxs
0Ws , Bs[k21Vse1lxe

0We ,

FIG. 1. Diagram of the coupling of the spin subsystems of the conduc
electrons and localized spins between themselves and with the crysta
tice.
n
al-
se

s
f
d

be[xe
0We2k21xs

0Vse, bs[xs
0Ws2kxe

0Ves,

ve ,vs andxe ,xs are the resonant frequencies and static s
ceptibilities for the delocalized and localized centers, anl
is a constant of the molecular field introduced to allow f
the mutual influence of thee ands subsystems.1 Note should
be made of the difference between the partial susceptibili
xe

0 andxs
0 on the one hand and the total static susceptibilit

xe andxs , on the other. The coupling between them is o
vious from the relations for the magnetizationsMe andMs in
an external magnetic fieldH0 :

Me5xe
0~H01lMs!, Ms5xs

0~H01lMe!.

The kinetic coefficients

Ves5
8pc

3\
S~S11!rJ2, ~4!

Vse5
4p

\
~rJ!2kBT ~5!

are determined by the Overhauser and Korringa coup
mechanisms of the conduction electron subsystems with
calized spins and vice versa.1 In relations~4! and~5! r is the
density of states of the conduction electrons at the Fe
level, J is the exchange integral,S and c are the spin and
concentration of the localized spins, andkB is the Boltzmann
constant. The kinetic coefficients are related to the par
static susceptibilities by the principle of detailed balance:

Vesxe
05Vsexs

0. ~6!

Mathematical analysis of expression~3! shows that un-
der conditions in which the bottleneck effect is strong a
for

a[E
2`

` V2g~V!

~ds1V!21Ws
2 dV!1 ~7!

the imaginary part of the dynamic susceptibility of the to
spin system is described by a single Lorentzian line w
half-width

DL5
xs

0VsL1xe
0VeL

xs
01xe

0 1a
VesVse

Ves1Vse
. ~8!

Note that if inequality~7! is satisfied it is necessary to hav
Vse@D̃. It is clear from Eq.~8! that forVse>Ves narrowing
of the spectrum is possible for any form of inhomogeneo
broadening. For example, forM2 /Vse

2 !1 the well-known
result

DL5
xs

0VsL1xe
0VeL

xs
01xe

0 1
xs

0

xs
01xe

0

M2

Vse
. ~9!

obtains. In the case when the second moment ofg(V) di-
verges, formula~9! is inapplicable and the expression forDL

is determined by the specific form ofg(V). In particular, for
a Lorentzian dependence

g~V!5
D̃/p

D̃21V2
~10!

n
at-



ce

R

e-

574 JETP 86 (3), March 1998 V. A. Atsarkin and V. V. Demidov
FIG. 2. Calculated values of the dependen
of the g-factor ~a! and the half-width~b! of
the two Lorentzian components of the ES
spectrum on the parameterVse in the case in
which the inhomogeneous broadening is d
scribed by a Lorentzian.
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inequality ~7! reduces simply toVse@D̃ and we now have

DL5
xs

0VsL1xe
0VeL

xs
01xe

0 1
xs

0

xs
01xe

0 D̃. ~11!

Thus, in the casexs
0,xe

0 or, what is the same thing, fo
Vse.Ves, the inhomogeneous broadening will be narrow
by rapid exchange between the subsystems.

Thus, it is clear from Eqs.~9! and ~11! that under con-
ditions of strong coupling between thes and e subsystems
their total ESR spectrum can narrow abruptly. With weak
ing of the interaction of thes ande subsystems each of them
becomes more independent, and in the limit in which
coupling is switched off completely the ESR spectrum co
sists of two lines: a Lorentzian line, describing the resona
of the conduction electrons, and a line with line shapeg(V)
~under the conditionD̃@VsL!, characterizing the resonanc
of the localized spins.

The intermediate case is of greatest interest, at least f
the point of view of the metal–insulator transition. Here it
not possible to obtain an analytical formula. Therefore
carried out a numerical calculation of the frequency dep
dence of the imaginary part of the dynamic susceptibi
x9(v) of a model system. We assumed that the system c
tains conduction electrons withg-factor ge52.0002 and ac-
tivation behavior of the static susceptibility:

xe~T!5xe~T0!exp~2EA /kBT!,

and localized spins with susceptibility obeying the Cu
law:

xs~T!5xs~T0!~T0 /T!.

In this case the temperature dependence of the kinetic
pling coefficients of the subsystems was taken to have
following form:

Ves~T!5Ves~T0!exp~2EA /kBT!,

Vse~T!5Vse~T0!~T/T0!exp~22EA /kBT!.

The physical meaning of the parametersEA , xe(T0),
xs(T0), Ves(T0), andVse(T0) ~T0 is some arbitrary tempera
ture! is obvious, and their numerical values were chosen
convenience of an illustrative example. Although the abo
dependences are of a specifically model character, they
ertheless are close to the real situation of the metal–insu
transition. As is well known, the metal–insulator transition
d

-

e
-
e

m

e
-

n-

u-
e

r
e
v-
or

accompanied by the appearance of an energy gapEg52EA

near the Fermi surface. As a result, the carrier concentra
begins to fall abruptly as the temperature is lowered, as a
according to an activation law with activation energyEA .
For this reason an activation law appears in the tempera
dependence ofVes, Vse, andxe . In addition, in our model
calculation we used the Lorentzian distribution functi
g(V) given by Eq.~10! in order to convincingly demonstrat
the narrowing effect in this nontrivial case.

The spectrum calculated for each specific tempera
was approximately described by a sum of two Lorentzia
Of course, in the presence of coupling between thee ands
subsystems the total spectrum cannot be represented in
form of a sum of two independent ESR lines. However,
proposed approximation proved to be quite successful
particular, in the example given below, in which the calc
lated curve was fitted by a sum of two Lorentzians, the ra
of the rms error to the peak-to-peak amplitude of the cal
lated curve was less than 0.2% over the entire range of va
tion of Vse. Thus, there was hardly any difference betwe
the fits and the calculated spectra. Figure 2 plots the dep
dence of theg-factors and half-widthsD1/2 of each of the
Lorentzian components on the parameterVse. All frequen-

cies were normalized to the inhomogeneous half-widthD̃. It

can be seen that forVse.20D̃ the ESR spectrum is describe
by a single Lorentzian. After that it becomes complicate
but, as was noted above, it is well described by a sum of
Lorentzians over the entire range of variation ofVse. In this
case, one Lorentzian is monotonically broadened out to

valueD̃ and itsg-factor tends to theg-factor of the localized
spins. At the same time, the parameters of the second c
gradually approach values corresponding to the conduc
electrons. Such behavior of the separate Lorentzian com
nents justifies associating them with the ESR lines of ths
ande subsystems.

To summarize here, the numerical calculations grap
cally demonstrate a significant convergence of the reson
frequencies of the main body of localized spins~the effect of
spectrum narrowing! due to a strong exchange interaction
the e ands subsystems. In this case, the second momen
the distribution function of the local magnetic fields in whic
the localized spins initially find themselves can be as large
desired.
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FIG. 3. Example of fitting of the experimenta
ESR spectra~the plotted signals are normalize
to a reference level!. The solid curves corre-
spond to experiment, and the dashed curves—
calculation with the parameters given in the tex
at T560.6 K ~a! and 30.1 K~b!.
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3. THE ESR SPECTRUM IN THE POLYMERIC PHASE OF
RbC60 AT THE METAL–INSULATOR TRANSITION

We performed an experimental study of ESR spectra
various relaxation characteristics in the polymer phase
RbC60

1! in which the temperature was lowered from 300
4.2 K. The ESR spectra were recorded on a Bruker ER-
spectrometer at a frequencyv/2p59.56 GHz. The tempera
ture of the samples was varied with the help of an Oxfo
attachment to the ESR 900 cryostat~relative accuracy of
temperature setting60.1 K! and was additionally monitored
by the ESR signal from a reference piece of ruby. The rel
ation characteristics were recorded on the custom-built s
trometer described in Ref. 10. The main, general results w
published in Ref. 11; here we will dwell in detail only on th
evolution of the ESR spectrum in this material at the met
insulator transition. The point here is that at high enou
temperatures the ESR spectrum, usually ascribed to the
duction electrons, is ideally described by a Lorentzian. Ho
ever, as the temperature is lowered below 55 K the ESR
becomes asymmetric and wide wings appear in it~Fig. 3!.
The total intensityI , that is, the area under the resonan
curve, identified with the total spin susceptibility, fal
abruptly~Fig. 4!. The anomalous falloff of the susceptibilit
in RbC60 was observed earlier and interpreted as a met
insulator transition with transition temperatureTc555 K
~Ref. 5!. The presence of such a transition is also indica
d
f

0

d

-
c-
re

–
h
n-
-
e

e

l–

d

by studies of relaxation characteristics10 and the electrical
conductivity of this material12,13 in the same temperature in
terval.

We think that in addition to free carriers, localized par
magnetic centers also participate in the formation of the E
spectrum in the polymer phase of RbC60, where the ends of
broken polymer chains of C60 molecules may play the role o
such centers. Thus, the given system can be analyze
terms of the model of two coupled spin subsystems con
ered in the previous section.

In the course of the analysis, we setl50. Test calcula-
tions with lÞ0 showed that the influence of this consta
reduces for the most part to a mutual modification of t
central resonant frequencies of both spin subsystems
consequently, is not fundamental for the derivations that
low. As the temperature dependence of the static suscep
ity of the localized spin we used the Curie law:xs(T)
5xs(Tc)(Tc /T). Here we assumed that the localized sp
undergo inhomogeneous broadening with a Gaussian di
bution

g~V!5
1

sA2p
expS 2

V2

2s2D , ~12!

wheres5D̃/A2 ln 2. To calculate the static susceptibility o
the delocalized spins we followed the indication of qua
ce
the

di-

the
FIG. 4. Comparison of the temperature dependen
of the experimental and calculated parameters of
ESR spectrum in RbC60 : empty and filled circles—
experimental values of the parameters of the in
vidual components corresponding to thee- and
s-subsystems. Dashed curves—calculations with
parameters given in the text.
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one-dimensionality of the electrical conductivity in this m
terial stated in Ref. 12 and applied the formula obtained
the susceptibility of a quasi-one-dimensional conductor w
energy gapEg52EA near the Fermi surface14

xe~T!52xe~Tc!E
D

` x

Ax22D2

ex

~11ex!2 dx, ~13!

whereD[EA /kBT. As the temperature is lowered, the latt
formula tends to the expression

xe~T!52xe~Tc!ADe12D,

which approximates expression~13! well already forD.4.
Thus, the temperature dependence ofxe(T), in addition to
its activation dependence, acquires the additional facto
T21/2. This is the reason why we took the kinetic coefficie
for the Korringa relaxation in the form

Vse5Vse~Tc!expS 2
2EA

kBT D , ~14!

which was previously successfully used for this materia11

The temperature behavior ofVes was determined from the
principle of detailed balance~6!. As for the temperature de
pendence of the energy gapEA(T), there are as of yet no
generally accepted theoretical indications in this regard.
analysis of our experimental data based on the descr
model required that the gap open up rapidly as the temp
ture decreases. Therefore, for definiteness in our calculat
we tookEA(T) to have the form

EA~T!5H 0, T>Tc

D~0!@12~T/Tc!
6# T,Tc

, ~15!

proceeding from the best fit of the calculated curves to
experimental data. From the same considerations we ado
the following values for the other parameters:k51.0013,
D(0)/kB580 K, xe(Tc)/xs(Tc)54.0, vs /s5150,
Vse(Tc)/s530, VeL /s50.11, andVsL /s50.11. In addi-
tion, for best fit of the calculated curves to the experimen
data we assigned a monotonic twofold increase of the
VsL with increase in temperature from 40 to 55 K. A samp
comparison of experimental and calculated ESR spectr
shown in Fig. 3. It can be seen that the model spectra s
factorily describe the experimental data.

As in the previous section, further processing of the c
culated spectra reduced to the representation of the ca
lated curves as the sum of two Lorentzians. Note that des
the Gaussian form of the functiong(V), the calculated spec
tra are quite well decomposed into Lorentzian compone
all the way down toT530 K ~an example of such a decom
position is shown in Fig. 5!, and only at lower temperature
is the Gaussian nature of the inhomogeneous broade
manifested. This latter circumstance lowers the reliability
the interpretation of the wide spectral component atT
,30 K, but as before, the description of the narrow spec
component governed by the conduction electrons remain
force.

Figure 4 plots the dependence of theg-factors, the half-
widths, and the intensities of the two Lorentzian compone
into which both the experimental and calculated spectra w
r
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decomposed. It can be seen from this figure that the ca
lated curves satisfactorily describe the experimental d
The divergence in the behavior of theg-factor of the narrow
Lorentzian component atT,35 K can be ascribed to ne
glecting the parameterl, which was mentioned above. W
have difficulty in explaining the underestimated values of
intensities of the wide component atT.35 K in terms of the
model even though note should be made of the signific
error in determining the amplitude of the given componen
this temperature range.

At the same time, it should be noted that in fact on
four quantitiesk, Vse(Tc), xe(Tc)/xs(Tc), andD~0! play the
role of adjustable parameters. Here the quantityk is uniquely
determined from the experimental ratio of theg-factors of
both components when the bottleneck effect is absent~at low
temperatures!, while D~0! is determined from the experimen
tal falloff of the intensity of the narrow component atT
,30 K.

Transforming from the dimensionless quantities to t
real ones gives the following parameter values:gs

52.0031, ge52.0004, s/4p563.7 MHz, Vse(Tc)51.2
31010 s21, VeL54.53107 s21, VsL59.03107 s21, xe(Tc)
58.831028 emu/mol, xs(Tc)52.231028 emu/mol, and
D(0)/kB580 K.

In conclusion, let us recapitulate the main results of o
work. In metals containing both conduction electrons a
localized paramagnetic centers the ESR spectrum in the p
ence of a strong bottleneck is described by a single Lore
zian regardless of the form of the distribution of the loc
magnetic fields in the sample. In this case an effective
crease of the inhomogeneous contribution to the combi
ESR spectrum of coupled spin systems of conduction e
trons and localized paramagnetic centers is possible for
distribution functiong(V). In the intermediate region of the
transition from strong bottleneck conditions to the case
independent spin subsystems the total ESR spectrum ca
described with good accuracy by a sum of two Lorentzia
each of which is associated with one type of center, and s
a representation is also valid when the inhomogene
broadening is Gaussian. Application of our calculations
experimental data on the temperature dependence of the
spectra in the polymer phase of RbC60 yields good agree-
ment between our results and the model of a quasi-o
dimensional metal containing two efficiently exchang

FIG. 5. Example of decomposition of the calculated ESR spectrum in
sum of two Lorentzians. Solid curve—calculated spectrum forT530.1 K
~see comparison with experiment in Fig. 3!, dashed lines—Lorentzians o
the individual components, dotted line—sum of these components.
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coupled subsystems, conduction electrons and impu
paramagnetic centers.
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Influence of magnetic field on the electronic specific heat of the organic metal
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Specific heat measurements of a single crystal of the organic metal~BEDT-TTF!2KHg~SCN!4

have been carried out at low temperatures and under a magnetic field of up to 14 T. A
jump in the specific heat of about 0.1 J/mol•K, which corresponds to the antiferromagnetic phase
transition, has been observed. The magnetic field is found to decrease the transition
temperature at any field orientation. The strongest effect was found to take place in the field
direction along the highly conducting ac plane. ©1998 American Institute of Physics.
@S1063-7761~98!02203-3#
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1. INTRODUCTION

The organic metals~BEDT-TTF!2MHg~SCN!4, where
BEDT-TTF stands for bis~ethylenedithio!-tetrathiafulvalene
and M5K, Tl, and Rb are of significant interest due to the
unusual properties in magnetic fields at low temperatur1

The Fermi surface characteristic of these compounds con
of a cylindrical ~quasi-two-dimensional, Q2D! part and
slightly corrugated open~quasi-one-dimensional, Q1D
sheets. The instability of the Q1D conducting band aga
the spin density wave~SDW! formation is thought to be the
reason for a phase transition occurring below 10 K in th
compounds. The strong anisotropic change of the magn
susceptibility2 resembles that previously observed in t
purely Q1D conductors such as~TMTSF!2X,3 although the
magnitude of the magnetic moment modulation extrac
from the mSR experiment4 is considerably smaller,mSDW

50.003mB ~heremB is the Bohr magneton!.
According to theB-T phase diagram originally propose

by Sasakiet al.5 for the M5K salt on the basis of magne
toresistance studies at different temperatures, the phase
sition into the SDW state is gradually suppressed by
magnetic field applied perpendicular to the highly condu
ing planes, and the normal metallic state is stabilized ab
23 T in the entire temperature region. Many of the mag
toresistance anomalies have been explained in the frame
of the SDW model6 and the phase diagram.5 However, sev-
eral serious problems remain. For example, the effect
magnetic field on the SDW ground state in these compou
near the transition temperatureTp is not clearly understood
For the quasi-one-dimensional~TMTSF!2X salts, a magnetic
field applied perpendicular to the highly conducting plane
known to stimulate rather than suppress the SDW instab
5781063-7761/98/86(3)/4/$15.00
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due to the effective enhancement of the one-dimensio
character of the electron motion. The theoretical model
veloped for one-dimensional systems7,8 and applied to
~BEDT-TTF!2KHg~SCN!4 ~Ref. 9! predicts a gradual in-
crease of the SDW transition temperature with magne
field. Other models considering magnetic breakdown
tween Q1D and Q2D parts of the Fermi surface10,11 or fluc-
tuation effects12 have been proposed as possible explana
for the field-induced reentrant transition. We note that all
theories mentioned above consider the effect of the field
rected perpendicular to the highly conducting planes as
most significant effect. However, from the experimen
point of view, no agreement has been established as
whether the perpendicular field component has the main
fect on the low-temperature antiferromagnetic state nearTp .

The B-T phase diagram was recently revised on the
sis of the comparative magnetoresistance and magn
torque studies by Sasakiet al.9 and Kartsovniket al.13 Both
investigations proposed that the low-temperature state dif
from the normal metallic state even in the high-field regio
However, no agreement has been reached as to the mag
field effect in the low-field range. According to the diagra
proposed by Sasakiet al.,9 at least two successive transition
take place upon cooling the sample in a finite field, where
magnetically ordered state is stabilized by the field. In co
trast, only one transition was found by Kartsovniket al.13 in
the temperature dependences of the resistance and torq
fields below 10 T; the transition temperature shifted
slightly lower temperatures as the field was raised.

Thus, the effect of magnetic field on the low-temperatu
state ofa-~BEDT-TTF!2MHg~SCN!4 is still an open ques-
tion and further detailed studies are required in order
© 1998 American Institute of Physics
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FIG. 1. Specific heat of~BEDT-TTF!2KHg~SCN!4 versus tempera-
ture squared.
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clarify the problem. We report here the results of an exp
mental study of the heat capacity of
a-~BEDT-TTF!2KHg~SCN!4 single crystal as a function o
temperature under a magnetic field up to 14 T. A sin
prominent anomaly corresponding to one phase transi
has been observed at all applied fields. The anomaly gra
ally shifts down as the field increases. Tilting the field fro
the direction normal to the highly conducting planes
creased the magnitude of the shift.

2. EXPERIMENTAL

The single crystal used for the experiment was obtai
by galvanostatic electrolysis (j 51.0mA/cm2) of a solution
of KSCN, Hg~SCN!2 and 18-crown-6~10 mmol/l each! in
1,1,2-trichloroethane/MeOH~abs.! ~9:1; 25 ml! in the pres-
ence of BEDT-TTF~13 mg! at a temperature of 25 °C.

To measure specific heat we used, the standard ac m
lation technique.14 The magnitude of the temperature mod
lation was 0.5–2%, the modulation frequency wasn
50.04 Hz and the calorimeter-to-bath relaxation timet was
a few seconds in the studied temperature region of 6–1
so that 2pnt.1. The calorimeter consisted of a bare chip
Cernox thermoresistor and a carbon heater. The thermal
between the calorimeter and the bath was provided
50-mm manganin wires, which were used also as electr
leads to the thermometer and heater. A single crysta
~BEDT-TTF!2KHg~SCN!4 with the mass of 0.9 mg was fixe
by applying a small amount of Apiezon N grease to t
thermometer and a smaller amount of the same grease
used to fix the heater to the sample. The absolute value o
specific heat of the sample was determined with an accu
of 5% and was approximately a factor of 4 larger than
admixture. The temperature error due to the magnetore
tance of the Cernox thermoresistor did not exceed 0.1 K
14 T and was taken into account in the data analysis.

3. RESULTS AND DISCUSSION

The total specific heat at zero field is presented in Fig
~here 1 mol5NA formula units, whereNA is the Avogadro
number!. The specific heat is plotted versus temperat
squared. Since the plot is almost linear in such coordina
i-
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we can approximate the monotonic background as:C5a
1bT2. The specific heat, after subtraction of the backgrou
at zero magnetic field and at two orientations of the magn
field B514 T, is shown in Fig. 2; the data are offset f
clarity. The phase transition is manifested by a peak-l
feature in the heat capacity. At zero field the maximum is
8 K and it shifts to lower temperature in a magnetic fie
The relatively large width of the anomaly is probably caus
by the strong fluctuations. The magnitude of the specific h
jump at zero field is evaluated asC050.1 J/mol•K or about
1% of the total specific heat. This value agrees with o
previous measurements,15 but it is about a factor of 3 smalle
than the value reported by Henninget al.16 On the other
hand, Nakazawaet al.17 may not have observed the anoma
since the scattering of their experimental data exceeded
Figure 3 shows the field dependence of the maximum p
tion at two field orientations:B is perpendicular to the highly
conductingac plane andB is parallel to this plane. We se
that in both cases the shift of the maximum position is p
portional to the magnetic field squared,Tp(B)5D(u)B2,

FIG. 2. Specific heat of~BEDT-TTF!2KHg~SCN!4 after subtraction of the
monotonic background at zero field and at fieldB514 T directed parallel
and perpendicular to theac plane.
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whereu is the angle between the normal to theac plane and
the magnetic field direction. For the field orientations sho
in Fig. 3 we find

D~u50°!5~1.560.4!31023 K/T2 ~1!

and

D~u590°!5~5.060.5!31023 K/T2.

The angular dependence of the maximum position
shown in Fig. 4 forB514 T. The plot demonstrates an a
proximately linear dependence on the square of the cosin
the angleu between the normal to theac plane and the field
direction.

Assuming that the phase transition is second order,
can relate the behavior of the specific heat to the magn
susceptibility by using the thermodynamic identity

Ci2Cj52Tm0S ]Hi j

]T D
H
F S ]Mi

]T D2S ]M j

]T D G
H

52
Tm0

2 S ]Hi
2

]T D
H
F S ]x i

]T D2S ]x j

]T D G
H

, ~2!

wherem0 is the magnetic permeability of vacuum.Hi j (T) is
the phase-separation line, andCi(Cj ) andx i(x j ) are the spe-
cific heat and susceptibility of the phasei ( j ), respectively.
Although in our case the transition is significantly broaden
in temperature, we will attempt to evaluateD(]x/]T)H in
the antiferromagnetic state from Eq.~2! using our data. For
B parallel to theac plane we estimate

FIG. 3. Field dependence ofTp versus magnetic field squared at two fie
directions.

FIG. 4. Angular dependence ofTp versus cosine of the angle between t
normal to theac plane and field direction.
n

s
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e
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DS ]x

]TD
H

'2.631027 K21

in the limit B→0, in agreement with the susceptibility da
from Ref. 2 and Ref. 18. ForB perpendicular to theac plane
we estimate

DS ]x

]TD
H

;0.831028 K21 as B→0.

We note that no significant change in the susceptibility
that direction was found in the magnetization measureme2

in the fieldB55 T. In principle, this may be explained by
dependence of the transition temperature, which is m
weaker thanB2 in fields below 5 T. Such an assumption
consistent with our data, as can be seen in Fig. 3. The un
tainty in the determination of the peak position does n
allow us to make a definite conclusion about the field eff
below 5 T.

Thus, our specific heat data show only one phase tra
tion in a magnetic field in the range 0,B,14 T. In contrast
with the conclusion made by Sasakiet al.,9 no evidence of
two successive transitions below 14 T was found. Therefo
we affirm that in the field range studied by us the only effe
of magnetic field is that it gradually shifts the transition to
lower temperature. An important result is that the shift
dependent on the field direction.

The fact that the field parallel to theac plane has a
stronger effect than the field perpendicular to theac plane
seems to be consistent with the assumption about the e
axis or the easy-plane antiferromagnetic order.19 1! For the
field along theac plane we can compare the obtained shift
the transition temperature with that predicted, in the me
field approximation, for the SDW state with an easy-a
ordering under the magnetic field parallel to the spin alig
ment direction given by20

Tp~B!5T0 exp~27z~3!b2!, ~3!

whereb5mBB/2pkT. In low fields this expression reduce
to21

Tp~B!2Tp

Tp
'0.2S mBB

kBTp
D 2

, ~4!

which has a parabolic field dependence, in agreement w
our data. SubstitutingTp58 K, we obtain from Eq.~4! the
shift of the transition temperature 0.01 K/T22, in reasonable
agreement with the experimental value~1!.

The influence of the magnetic field perpendicular to t
ac plane is rather different in our measurements than
pected for the conventional SDW state. According to t
theoretical prediction,7,8 it also differs from the results re
ported by Sasakiet al.9 As mentioned above, other theoret
cal models10,11 predict a decrease of the transition tempe
ture for this field direction. Probably the total effect of th
magnetic field is a superposition of one of those mechani
and the spin-field interaction.

In conclusion, we have found an anomaly in speci
heat of~BEDT-TTF!2KHg~SCN!4 which corresponds to the
antiferromagnetic ordering phase transition. This anomal
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shifted toward low temperatures in an applied magnetic fie
The shift occurs at any direction of the magnetic field; t
strongest effect is observed for the field parallel to theac
plane. We suggest that for this field orientation the shift m
be understood as resulting from the destruction of the S
phase via the interactions of the electron spins with the
ternal magnetic field. The reason for the decrease in the t
sition temperature in a field perpendicular to theac plane is
yet to be clarified.

This work was supported in part by the Russian Fund
Fundamental Research~No. 96-02-17475! and INTAS
~Grant No. 93-2400-EXT!.

1!We note that although the SDW transition in Q1D organic metals is c
monly characterized by an easy-axis antiferromagnetic ordering, re
torque experiments pointed out the possibility of a more complicated
alignment in theac plane.
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Contribution of Andreev reflection to the increase in the resistance of the normal metal
in a bimetallic N – S structure

Yu. N. Chiang* ) and O. G. Shevchenko

B. I. Verkin Physicotechnical Institute of Low Temperatures, National Academy of Sciences of Ukraine,
310164 Kharkov, Ukraine
~Submitted 17 September 1997!
Zh. Éksp. Teor. Fiz.113, 1064–1070~March 1998!

We study the resistive properties of 3D normal-metal–superconductor systems in the pure mean-
free-path limitl N,S@j(T) ~l N,S are the mean free paths in the metals, andj is the coherence
length! at liquid helium temperatures. In contrast to the situation wherel !j, which is common in
experiments involving either sandwiches or mesoscopic samples, here theN–S system
exhibits unusual temperature behavior that cannot be described by existing theories of boundary
resistance. What is most remarkable is a rise in normal resistance in regions that do not
incorporate theN–S boundary as the temperature decreases, with asymptotic behavior resembling
that of the temperature curve of the gap of a superconductor in contact with a normal metal.
We show that this effect, not observed earlier in 3D systems, is due to the nonequivalence of the
cross sections of scattering by normal-metal impurities of electron and hole excitations in
conditions of Andreev reflection. We also show that in standard measurements of the contribution
of the N–S boundary lying between the test contacts, this effect is masked by accompanying
effects, the proximity effect and the boundary resistance, whose estimate requires taking
into account the presence on theN–S boundary of an electrostatic barrier of the Schottky type, a
barrier that redistributes the probabilities of ordinary and Andreev reflections of quasiparticles
in the nonequilibrium conditions due to current flow. ©1998 American Institute of Physics.
@S1063-7761~98!02303-8#
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Usually, when measuring the temperature dependanc
the resistance of a pure normal metal, one expects th
decrease in the temperatureT leads to a decrease in the me
al’s resistance, with a saturation plateau reached asT→0. In
this paper we report on results of experiments that dem
strate the opposite behavior as a current is introduced
the normal metal through a contact with a pure superc
ductor, with the area of theN–S contact being so large tha
tunneling properties play no role.

We have studied three-dimensional~3D! N–S systems,
which guarantees that several conditions are met simu
neously: that the bulk characteristics of the initial metal
retained, e.g., the macroscopically large mean free pathl ,
which ensures a certain freedom in positioning the test c
tacts within regions of the size of the mean free path s
rounding theN–S boundary; that the pure limitl @jS,N ~here
jS and jN are the coherence lengths in the supercondu
and the normal metal, respectively! is achieved so that the
proximity effect can be easily identified; and, finally, that
N–S contact can be manufactured that is sure to have n
tunnel characteristics~it is difficult to meet these condition
in thin-film systems, which are usually used in studies of
N–S boundary!. The samples were bimetallicN–S systems
consisting of single-crystal copper with tin fused on one
the faces, with mean free paths ranging from 10 to 100mm
in both metals. The area of theN–S boundary varied within
( l – 10l )3( l – 10l ). The test contacts in the normal region
the system ~copper! were placed at distance
5821063-7761/98/86(3)/4/$15.00
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L25(0.5– 2)l for the contact closest to the boundary an
accordingly, at distancesL15(3 – 10)l for the second con-
tact, farthest from the boundary.

Figure 1~curve1! depicts the temperature curve for th
resistance between contacts in the normal region of anN–S
system for one sample~with L1'3l , L2'0.5l , and
l'20 mm! in a temperature interval containing the transiti
temperatureTc of tin. Figure 2~curve1! depicts the tempera
ture curve for the resistance of a region containing theN–S
boundary for the same sample at temperatures belowTc . For
the other samples the corresponding temperature curves
a similar shape. The first of these curves, measured for
contacts that were located at great distances from theN–S
boundary, clearly correlates with the transition of tin into t
superconducting state, as a comparison with Fig. 2 cle
shows, but has a shape that is unusual for a normal meta
the temperature decreases, the resistance grows, and th
crease in resistance is fairly rapid nearTc ~we believe that
this effect is not described in the literature!.

To understand the nature of this effect, we first turn
the theory of the boundary resistance ofN–S systems that
allows for the contribution of this resistance to the measu
temperature curves in Figs. 1 and 2.

As is known,1 an N–S boundary raises the resistance
a system consisting of a normal metal and a type I superc
ductor, measured between test points positioned in suc
way that the boundary lies between the points. The eff
manifests itself most vividly near the transition temperatu
© 1998 American Institute of Physics
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Tc of the superconductor (T<Tc), where an extremely
strong temperature dependence of the excess resistan
predicted. Many researchers believe~see, e.g., Refs. 2 and 3!
that this resistance is the resistive contribution of a layer
the superconductor with a thickness on the scale of the
of the inelastic and elastic mean free paths of electron
this metal, i.e., it is assumed that there exists an exten
layer of the superconductor with nonzero potential, althou
the distribution of the total current outside the Meissner la
is described by the same equation as in the absence o
electric field in the superconductor.2

Now, variations in the mean free path in the norm
metal are allowed here, since the excess resistance is
sumed to develop exclusively in the superconducting h
space. However, earlier we observed~see Ref. 4! a decrease
in the resistance of anN–S double system in the transitio
of the superconductor to the normal state, and this ef
suggested that the excess resistance may be the resu
variations of the electron mean free path in the normal-m
half-space. The experiment described in Ref. 4 was sti
lated by one of the first such ideas, based on the contribu
of non-Andreev reflection of quasiparticles ‘‘gliding’’ alon

FIG. 1. Temperature behavior of the resistance of the normal metal in a
structure belowTc of the superconductor:1! experimental points;2! bound-
ary resistance (zÞ0); 3! contribution of Andreev reflection.

FIG. 2. Resistance of the region of theN–S system incorporating theN–S
boundary, belowTc of the superconductor:1! experimental points;2! con-
tribution of the boundary resistance (zÞ0); 3! contribution of the boundary
resistance atz50; 4! results of calculations of the boundary resistance
the theories of Artemenkoet al.2,3,13 and Hsiang and Clarke theory;3 5!
contribution of Andreev reflection;6! contribution of the proximity effect.
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the N–S boundary5 and having energy lower than the ga
energy.

Later certain indications emerged6–8 that pointed to the
possibility of other variations in the effectiveness of scatt
ing in the nonequilibrium region of the normal metal adj
cent to the superconductor, a layer whose thickness is of
order of the mean free path. Generally, two mechanisms
be distinguished here. One is related to the special feature
the scattering by the impurities closest to the boundary in
Andreev reflection of quasiparticles with energies lower th
the gap energy.7,8 The second is related to the special fe
tures of the reflection of quasiparticles with energies hig
than the gap energy by the potential barrier of electrost
origin, provided that such a barrier can form at the bound
between two conductors, one of which is a superconduct9

Blonderet al.9 developed the method that allows for the se
ond mechanism and assumed that such a barrier form
random, while the height of the barrier was assumed fixe

There is, however, the possibility that the contact pot
tial difference plays an important role in forming a potent
barrier between two metals at a temperature at which
metal passes to the superconducting state. If the fields in
metals on both sides of the boundary do not differ t
strongly, as is the case with metals whose conductances
of the same order, the contact potential difference proba
cannot lead to a sizable potential barrier, so that such a
rier can be ignored. But when the fields differ considerab
as in the case when a semiconductor is in contact with
ordinary metal, the contact potential difference, lumped
the boundary region of the conductor with the lower cond
tance, bends the bands and initiates the formation of a po
tial, or Schottky, barrier.

A similar situation emerges at the boundary betwee
normal metal and a superconductor, whose electric poten
and, hence, the contact potential difference acquire an a
tion, in comparison to the normal state of the superc
ductor, of the order of the Bernoulli potentialD2/«F ~Refs.
10 and 11!, i.e., of order of the variation in the energy of th
ground state of the metal that becomes a superconduct12

At atomic distances this energy corresponds to a fi
strength of several volts per centimeter, which is quite su
cient for the formation of a barrier of the Schottky type wi
a height that cannot be ignored in large-area contacts w
high transmittance~in 3D contacts!.

Let us use the method of calculating the boundary re
tance developed by Blonderet al.9 for narrow channels. This
approach is justified, since the resistance of the bound
region ~no thicker than the coherence length of the norm
metal! in the vicinity of theN–S boundary is an order o
magnitude higher than the resistance of the normal meta
that all the voltage is actually lumped in this region as in
narrow channel, and our system can be interpreted as
N– I –S structure. Naturally, the large lateral dimensions
the N–S contact (<10l ) introduce certain limitations, so
that the theory developed by Blonderet al.9 in our case gives
the qualitative picture of the behavior of the resistance rat
than the quantitative.

Calculations of the current via probability relations f
quasiparticle states within the framework of the Bogolyub

D
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equation and the boundary conditions of Andreev and o
nary reflections at theN–S boundary~for more details see
Ref. 9!, done with allowance for the barrier mentioned e
lier, lead to the following expression obtained entirely in t
normal half-space~relative to theN–S boundary! without
allowance for nonequilibrium processes in the superc
ductor:

I N–S52N~«F!e2vFV
@D~T!/kBT#exp@D~T!/kBT#1C

z0
214z2 ,

~1!

whereN(«F) is the density of states at the Fermi surface,e is
the electron charge,vF is the Fermi velocity,eV is electron
energy at theN–S boundary of the normal half-space,D(T)
is the energy gap in the superconductor,kB is the Boltzmann
constant,z is the dimensionless height of the barrier th
forms at the normal-metal–superconductor junction~for
more details see Ref. 9!: z5kBN(«F)D(T)/2«F ~z;1 for the
copper–tin pair asT→0!, andz0 is the height of a barrier o
static origin, which is temperature-independent~much
smaller than unity for 3D contacts!; C is a constant such tha
C!1 for z<1 andC;1 for z@1.

For T!Tc this result is identical~if we put z50! to the
one obtained from studies of nonequilibrium processes
superconductor,2,3 when the total current is calculated as t
sum of two contributions, the contribution related to char
imbalance, and the contribution that gets converted dire
into supercurrent. This suggests that the model of Blon
et al.9 is correct; in it a variation in the conductance of t
N–S system in a nonequilibrium situation~in the presence o
a current! is the result of two different probabilities of occu
pation of the branches of the drastically different spectra
excitations in the normal and superconducting half-spa
even in the ballistic regime of crossing theN–S boundary.
The reader will recall that the starting assumption in t
model is that the field transferred to the superconductor
excitations with an energyE.D is balanced by the gradien
of the chemical potential of the superconducting electr
outside the Meissner layer. We also note that, in contras
the narrow-channel model used by Blonderet al.,9 the given
expression leads to no resistance for theN–N boundary with
z0 , z50, as should be the case for 3D contacts, for wh
our calculations were done.

Equation ~1! determines the contribution of theN–S
boundary to the limiting of the current in the system due
the flux of particles reflected by the boundary into the norm
metal in the direction opposite that of the initial current. O
should expect that this contribution is also present, wit
weight exp(2L/l), in test contacts that are entirely inside t
normal metal; hereL is the distance from theN–S boundary
to the corresponding test contact in the normal metal.~But if
the limiting of the current is related solely to the resisti
contribution of the scattering processes in the supercond
ing half-space, it is clear that this has no effect on the re
tance measured between test contacts in the normal me!

Equation ~1! directly describes the current in anN–S
system in the constant-voltage regime~i.e., the internal resis-
tance of the current source can be ignored!, in which within
the temperature range fromTc to T0 the currents may assum
i-
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any value from 0 tò . In real experiments, in which mea
surements are conducted in the constant-current regimeI 0 ,
the maximum values of current cannot exceedI 0 , so that the
effective current at theN–S boundary can be written as fol
lows:

I b* ~T!5I b~T!@11~ I b~T!/T0!#21[I 02I 0 ref~T!,

whereI 0 ref(T) is the flux of the charged particles reflecte
from the boundary into the normal metal. If we allow for th
exponential nature of the damping of this flux~as noted ear-
lier! as we move away from the boundary, for a pointxi of
the normal half-space we can write

I 0 ref~T,x!5a~x!I 0 ref~T!, a~x!512exp~2 lx !,

I * ~T,xi !5I 02a~xi !I 0 ref~T!,

where x is the coordinate of the point measured from t
N–S boundary (x50).

In practice, one usually measures the effective resista
R* , which in the situations considered here exceeds the
valueR0 by

DR*

R0
[

R* 2R0

R0
5I 0~xi2xk!F E

0

xi
I * ~T,x!dx

2E
0

xk
I * ~T,x!dxG21

. ~2!

Figures 1 and 2~curves2! depict the temperature curve
for R* (T) andDR* /R0 , calculated by Eq.~2! together with
~1!, and the corresponding experimental data forxi

546 mm and xk511 mm ~Fig. 1! and for xi511 mm and
xk50 mm ~Fig. 2!. The latter case corresponds to a situati
in which the N–S boundary is between the test contac
Figure 2 also depicts the temperature curve~curve4! calcu-
lated according to the theories of Artemenkoet al.2,3,13 and
Hsiang and Clarke3 for the case when one test contact
placed on the superconductor~these theories do not allow fo
excess resistance on test contacts in the normal metal!, and
the temperature curve for the boundary resistance, withz(T)
ignored. The coefficients of all the calculated curves are n
malized in a unified manner to two limits:R* 5R(Tc

53.5 K) andR* (T→0)→0.
Thus, there is no theory of excess resistance— includ

the theory that yields the greatest value of this resistance
to allowance for additional energy barriers at theN–S
boundary—that describes the results of real experime
even at the qualitative level, for test contacts in the norm
metal. Comparison of the temperature behavior of the re
tance of the region containing theN–S boundary~Fig. 2!
and the resistance measured on the test contact deep i
the superconductor~i.e., far from the boundary! suggests that
there is a 0.2-K difference in the observed transition~or criti-
cal! temperatures~3.5 K and 3.7 K!. This explains the initial
decrease in the resistance atT53.7 K of the test contacts in
the normal region~Fig. 1! as a manifestation of the proximit
effect, before the entire superconductor, including its bou
ary layer~whose critical temperature differs somewhat fro
that of the bulk of the superconductor!, becomes supercon
ductive. Hence it is only natural to allow for the contributio
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of the proximity effect in the region of the test contact
well, including theN–S boundary. According to Ref. 12
this contribution in the normal region can be estimated a

Rprox* ~T,xN!'RNH 12
12exp~2D/kBT!

11exp~2D/kBT!

jN~T!

j~T!1jN~T!

3E
0

xN
expF2

x

jN~T!G dx

xN
J , ~3!

wherexN is the coordinate of the test contact in the norm
region, whose resistance isRN . Subtracting the contribution
of the proximity effect~curve6 in Fig. 2! and the boundary
resistance from the experimental data, we arrive at the t
perature dependence of the resistance of the region inco
rating theN–S boundary, which is depicted by curve5 in
Fig. 2. For test contacts that are entirely in the normal reg
the same procedure yields the results depicted by curve3 in
Fig. 1.

Thus, notwithstanding the entirely different temperatu
curves for the resistance in different regions of anN–S sys-
tem, there is a general pattern that can be observed if
appropriate effects are taken into account; namely, there
contribution that increases with decreasing temperature
law characteristic of gap temperature behavior. It can be
sumed that the nature of such behavior is related to the n
equivalence, predicted by Herath and Rainer,6 of the cross
section of scattering by normal-metal impurities near
N–S boundary of electron and Andreev-reflected hole ex
tations. In their calculations, Kadigrobovet al.14 found that
allowing for this effect in multiple reflections and averagin
over the angles can double the effective cross section of s
tering by impurities in a layer of thickness of ord
jN'\vF /kBT, with DR* /R'jN /L, whereL is the distance
from theN–S boundary. For our test contacts in the norm
region at T52 K (jN'6 mm), jN /L150.13 and jN /L2

50.55, so that we can expect that on the averageDR* /R
l
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e
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l

amounts to 33%, which is extremely close to the 44% o
served in experiments~Fig. 1!. Obviously, for a pair of test
contacts encompassing theN–S boundary, we must allow
for the competing mechanism of conductance enhancem
due to an appreciable change in the number of reflection
the boundary as the temperature drops, when the pote
barrier becomes higher.7

The authors are grateful to A. M. Kadigrobov and A. N
Omel’yanchuk for useful discussions.
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Experimental investigation of the behavior of the specific heat in finite systems in the
vicinity of the critical mixing point
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The specific heat of a 2,6-lutidine–water mixture is measured in the vicinity of the lower critical
mixing point in the bulk and in porous media. The results of the measurements are interpreted
by finite-size scaling. In particular, a universal function of the ratiot/t* @t is the dimensionless
deviation of the temperature from the specific-heat maximumTm(L), and t* is the
characteristic dimensionless temperature, which depends on the pore size# describing the
behavior of the specific heat in the vicinity of the critical point in porous media with different
pore sizes is obtained. The results obtained are consistent with the predictions of finite-
size scaling and with the data from a numerical calculation of the specific heat of the finite three-
dimensional Ising model. ©1998 American Institute of Physics.@S1063-7761~98!02403-2#
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1. INTRODUCTION

In recent years there has been a great deal of intere
the investigation of phase transitions in liquids placed in
porous medium. There are several reasons for this. Firs
porous medium is characterized by a large surface, a
therefore, surface phenomena play an essential role. Sec
a porous medium is a finite system of sizeL ~the character-
istic pore size!, which can be commensurate with the corr
lation lengthjc . The thermodynamic properties of a su
stance in a porous medium clearly depend on the rela
betweenL andjc and can differ significantly from the bulk
properties (L@jc). In the vicinity of a second-order phas
transition, where the correlation length increases with
bound as the critical temperatureTc is approached, i.e.,

jc5j0@~T2Tc!/Tc#
2n,

such a situation can occur in an experimentally achieva
region nearTc even for characteristic system sizesL;104 Å.

The experimental data1–7 obtained by studying phas
transitions in porous media are generally interpreted wit
the theory of phase transitions in a random field, whereL
!jc and the porous medium plays the role of the rand
field. Only in Ref. 8, in which the specific heat of4He placed
in a porous medium was measured in the vicinity of thel
transition, were the experimental data compared with
predictions of finite-size scaling theory.9,10

In a bulk system the behavior of the specific heat can
described in a broad vicinity of the critical point by the e
pression

Cp5A6utu2a1D6utuD2a1B61Et, ~1!

wheret5(Tc2T)/Tc , a is the specific-heat critical expo
nent, andB61Et is the regular part of the specific heat. Th
second term in~1! is the nonasymptotic Wegner correctio
andD50.5. The plus and minus signs denote the unorde
and ordered phases, respectively.
5861063-7761/98/86(3)/5/$15.00
in
a
a

d,
nd,

-

n

t

le

n

e

e

d

In a finite-size system the behavior of the specific hea
the vicinity of the critical point depends on the characteris
sizeL of the system. When the correlation lengthjc becomes
commensurate with the size of the system, the anoma
behavior of the specific heat is suppressed, and instea
increasing without bound it has a maximum

Cm;~L/j0!a/n

at

tm~L !5~Tm~L !2Tc!/Tc .

The increase in the correlation length also has a bound, a
reaches a maximum valuejmax'j0tm(L)2n.

According to finite-size scaling theory, the specific he
can be represented in the form

Cp~ t,L !5A6utu2aF~ t/t* !1Creg, ~2!

whereF(t/t* ) is a universal function of the dimensionles
parametert/t* . Here the deviation of the temperature of th
systemt is defined relative to the temperature of the speci
heat maximumTm(L) @t5(T2Tm(L))/Tm(L)#, which dif-
fers from the usual definition oft relative to the bulk critical
temperatureTc . However, in an experimentTm(L) is the
only special temperature in the behavior of the specific h
In the limit for a bulk system (L→`), Tm(`)5Tc . The
characteristic temperature

t* ;~L/j0!21/n

has the meaning of the temperature at which the behavio
the specific heat in a system of sizeL begins to deviate from
the bulk behavior.

The explicit form of the universal functionF(t/t* ) is
not predicted within finite-size scaling, but it is not difficu
to determine its asymptotic behavior. In fact, for (t/t* )@1
the specific heat should behave as in a bulk system. In
case

F~ t/t* !5const'1.
© 1998 American Institute of Physics
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In the limit (t/t* )!1, the specific-heat anomaly is su
pressed at the characteristic temperaturet* (L), i.e.,
A6utu2aF(t/t* )5A6ut* u2a, and, therefore,

F~ t/t* !'~ t/t* !a.

Thus, the universal function must have the following asym
totes:

F~ t/t* !5
Cp~ t,L !2Creg

A6utu2a
'H const, ~ t/t* !@1,

~ t/t* !a, ~ t/t* !!1.
~3!

The present work is devoted to experimental testing
the predictions of finite-size scaling for the case of speci
heat measurements in the vicinity of the lower critical m
ing point of a 2,6-lutidine–water mixture placed in poro
media with different values of the characteristic pore sizeL
~the porous media were regarded as finite-size syste!.
Since a porous medium has a complicated geometry, the
lowing questions arise. Does the form of the universal fu
tion F(t/t* ) depend on the geometry, and to what extent c
a porous medium serve as a model of a finite-size syst
For this reason we verified the existence of a single func
F(t/t* ) defined by~3! on the basis of experimental specifi
heat data and compared it with the analogous depend
obtained from the results of a numerical calculation of
specific heat of the finite three-dimensional Ising mod
which is an ideal finite-size system, for various values of
number of spinsL3.

2. EXPERIMENT

The specific heat of a 2,6-lutidine–water mixture plac
in a porous medium, was measured in an adiab
microcalorimeter11 with a cell volume equal to 0.29 cm3.
The measurements were performed with scanning at the
of 0.3–1 K/h. The temperature in the cell was measured b
platinum resistance thermometer~the nominal resistance a
the triple point of water was 100V), which was positioned
on an internal heat shield. The temperature of the inte
shield followed the temperature of the cell and was mo
tored by a thermocouple.

Porous glasses prepared in the Institute of Precision
chanics and Optics~St. Petersburg! served as the porous me
dia. The porous glasses were obtained from a sodium b
silicate glass by leaching the sodium and boron oxides a
cooling below the phase-separation temperature and the
transition and have the form of a network of randomly co
nected channels. We used porous glasses with characte
pore sizes of 1000 Å and 100 Å and specific surfaces of'20
m2/cm3 and '100 m2/cm3, respectively. Cylindrical matri-
ces with a diameter of 5 mm and a length of 14 mm w
made from the glasses so that they could be inserted tig
into the calorimetric cell. Besides the glass matrices, a
rous matrix with approximately the same pore sizes was
pared from a spherical nickel powder with a narrow s
distribution, which was compacted under a high pressure
had a characteristic pore size of'2500 Å.1) The volume of
the pores relative to the total volume of the matrices w
67% for the 1000 Å glass matrix, 26% for the 100 Å gla
matrix, and 35% for the 2500 Å nickel matrix.
-
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Before being saturated with the mixture, the matric
were washed with the solvent and dried at'200 °C for
several hours. The porous matrices were placed in a ve
with a prepared mixture of known concentration in t
single-phase state (T,Tc) and were impregnated by th
mixture under the action of capillary forces. Specially pe
formed measurements on the 1000 Å glass matrix sho
that the matrices are saturated with a mean concentra
equal to the concentration in the vessel. To perform th
measurements, a mixture with a lutidine weight fractionx
'0.15 was prepared in an amount slightly greater than tw
the pore volume of the matrix. The matrix was saturated w
this mixture, and its phase-separation temperature was d
mined from the specific-heat maximum. Then the matrix w
dried and saturated again with the remaining portion of
volume. In both cases the measured phase-separation
peratures coincided. This is evidence that the concentra
of the mixture in the vessel remained unchanged. The 1
Å glass matrix was usually saturated with'0.18 g of the
mixture, and the 100 Å glass matrix and the nickel mat
were saturated with about 0.06 g.

3. RESULTS

We previously11 measured the bulk coexistence curve
a 2,6-lutidine–water mixture and the specific heat for t
critical lutidine weight fractionxc50.29 in the vicinity of the
critical mixing point. The specific-heat data were appro
mated by Eq.~1!. The critical temperatureTc5(33.6339
60.0002) °C was determined from the characteristic k
on the temperature dependence of the enthalpyH(T) with
slow scanning at a rate of'531023 K/h in a narrow vicin-
ity of Tc . The results of the treatment are presented in
first row in Table I. The Wegner correction in the unorder
phase was insignificant. The specific-heat critical expon
coincided with the theoretical valuea50.11.12 The universal
ratio between the coefficients in front of the asymptotic te
obtained in the experiment,A2/A151.77, also agrees with
the theoretical value of 1.82~Ref. 13! to within the error of
its determination.

Coexistence curves were measured to determine
critical concentrations of the 2,6-lutidine–water mixture
the porous media. The phase-separation temperatureTp(x)
for different concentrations was determined from t
specific-heat maximum. In the porous glass with a pore s
of 100 Å the specific-heat maximum is expressed v
weakly, and the error in the determination of the pha
separation temperature is large. Therefore, we shall

TABLE I. Values of the parameters in Eq.~1! obtained from the treatmen
of the experimental data on the specific heat of a 2,6-lutidine–water mix
in the bulk ~first row! and data from the numerical calculation of the fini
three-dimensional Ising model16 extrapolated to an infinite system.

A1 A2 a D1 D2 B1 B2 E

4.67 8.20 0.111 – 217.17 88.59 91.10 28.83
61.5 62.6 60.018 – 62.0 60.64 61.0 61.65

1.49 2.15 (0.11) 0.41 21.89 21.81 20.69 –
60.1 60.04 – 60.2 60.1 60.02 60.08
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present these data for quantitative comparison. Figure 1
sents the coexistence curves of a 2,6-lutidine–water mix
measured in the porous glass with a pore size of 1000 Å
the porous nickel, and in the bulk. Two effects associa
with the porous media are observed. The coexistence cu
are shifted toward higher concentrations relative to the co
istence curve in the bulk. This indicates that a bound laye
lutidine forms on the surfaces of the porous matrices,14 re-
ducing the concentration within the pores. The formation
a lutidine layer on the surfaces of porous matrices made f
Vycor glass was also observed in Ref. 4. The other effec
an increase in the temperature of the minimum on the co
istence curves in the porous media in comparison withTc in
the bulk@displacement of the temperature of the specific-h
maximumTm(L)#. The following critical parameters of th
mixture in the porous media were determined from
minima on the coexistence curves: the critical lutidi
weight fractionxc'0.32 andTm533.93 °C in the porous
glass with a pore size of 1000 Å, andxc'0.30 andTm

533.705 °C in the porous nickel with a pore size of 2500
Figure 2 shows the behavior of the specific heat in

bulk and in the porous media in the vicinity of the critic
point. As the pore size decreases, the specific-heat ano
decreases sharply. To illustrate this, the figure shows the
cific heat in the glass matrix with a characteristic pore size
'100 Å for a lutidine weight fractionx50.57'xc . The
specific-heat anomaly is completely suppressed and app
as a very weak~on the level of the noise! maximum atT
'45°C~see the inset in Fig. 2!, which is spread over a broa
temperature range. The region of suppression of the spec
heat anomaly as a function of the pore size is clearly see
Fig. 3, where the same data are presented as a functio
utu2a @a50.11, t5(T2Tm(L))/Tm(L)#. Far from the tem-
perature of the maximum,Tm , the specific heat in the porou
medium exhibits the same behavior as in the bulk and be
to deviate from the bulk behavior at a certain characteri
temperaturet* (L).

For comparison, Fig. 4 presents data on the specific
per spin,15 which were obtained in numerical calculations
the finite three-dimensional Ising model for different valu
of the number of spinsL3 or, equivalently, for different val-

FIG. 1. Coexistence curve of a 2,6-lutidine–water mixture in the bu
(1), in the porous glass with a characteristic pore size of 1000 Å (h), and
in the porous nickel with a pore size of 2500 Å (d).
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ues of the size of the periodic latticeL. It is seen that the
behavior of the specific heat is qualitatively the same as
which we observed experimentally.

To construct the universal functionF(t/t* ), in accor-
dance with Eq.~3!, the regular part of the specific heat an
the nonasymptotic Wegner correction obtained from treat
the specific heat in the bulk~see Table I! were subtracted
from the experimental values of the specific heat in the
rous medium. It was assumed here that the regular part o
specific heat does not depend on the characteristic pore

FIG. 2. Specific heat of a 2,6-lutidine–water mixture at the critical conc
trations:1 — in the bulk,3 — in the 2500 Å porous nickel,h — in the
porous glass with a pore size of 1000 Å, andm — in the porous glass with
a pore size of 100 Å. The inset presents the specific heat in the porous
with a pore size of 100 Å over a broad temperature range.

FIG. 3. Specific heat of a 2,6-lutidine–water mixture at the critical conc
trations in the bulk (1), in the porous nickel with a pore size of 2500
(3), and in the porous glass with a pore size of 1000 Å (h) as a function
of t2a with a50.11. The solid lines were drawn for better visualization
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The values of the coefficientsA6 and the critical exponenta
were also taken from the treatment of the specific heat in
bulk. Figure 5 presents the plots ofF thus obtained for the
unordered and ordered phases in logarithmic coordina
The characteristic temperaturet* served as a fitting param
eter. In addition, the values of the specific heat in the por
medium were shifted relative to the specific heat in the b
by a constant value due to the difference between the cri
concentrations in the porous medium and in the bulk~the
different molecular weights!.

The figures also present plots ofF(t/t* ) constructed by
a similar method from the results of a numerical calculat
of the specific heat for the finite three-dimensional Isi
model.15 As in the case of the treatment of the experimen
data, this required determination of the regular part of
specific heat and the coefficientsA6 and D6. The dashed
curves in Fig. 4, which are the envelopes of the specific-h
curves for differentL, represent the behavior of the speci
heat in the ordered~upper line! and unordered~lower line!
phases in the three-dimensional system. The points lying

FIG. 4. Numerical calculation of the specific heat per spin in the fin
three-dimensional Ising model for various values of the lattice sizeL ~Ref.
15! as a function oft2a (a50.11):L532 (n), 64 (,), 128 (1), and 256
(s). The solid lines were drawn for better visual perception.
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the envelopes were approximated by Eq.~1! without the lin-
ear term in the regular part. The critical temperatureTc

54.511526 obtained from the calculation and the critical e
ponenta50.11 were fixed. The results of this treatment a
presented in the second row of Table I. Unfortunately, th
were few data for the treatment in the unordered pha
therefore, these values of the coefficients should be rega
as approximate.

It is seen from Fig. 5 thatF(t/t* ) has different forms in
the unordered and ordered phases. In our opinion, this is
to the asymmetric character of the behavior of the spec
heat relative to the critical temperatureTc . The amplitude of
the fluctuational part of the specific heat in the ordered ph
A2 is approximately two times greater than the amplitude
the specific heat in the unordered phaseA1. Therefore, the
specific heat reaches different values in the ordered and
ordered phases at equal distances fromTc , while remaining
finite. This results in the formation of a transition regio
from a small value of the specific heat to a large value w
a specific-heat maximum attm(L), which is always shifted in
the direction of the ordered phase, and an additional con
bution to the specific heat of the unordered phase~see Fig.
2!. The additional contribution is manifested in the form of
‘‘hump’’ on the plot of F(t/t* ).

4. DISCUSSION

It follows from the treatment of the experimental da
that there is a single dependence of

Cp~ t,L !2Creg

A6utu2a
5F~ t/t* !

on the dimensionless parameter (t/t* ), which describes the
behavior of the specific heat in finite systems. In additio
the analogous function constructed on the basis of the
on the specific heat of the finite three-dimensional Is
model with different values for the number of spinsL3 is
consistent with the experimental dependence. This allow
to state thatF(t/t* ) is a universal function and does no
depend on the medium modeling a finite system.

The asymptotic behavior of the universal function o
tained corresponds to the predictions of finite-size sca
theory @Eq. ~3!#. In fact, as follows from Fig. 5, fort/t*
@1 the functionF(t/t* ) reaches a constant valueF(t/t* )
e
,6-
s

e-
g

FIG. 5. The universal functionF(t/t* ) in unor-
dered ~a! and ordered~b! phases in logarithmic
coordinates. The function was obtained from th
experimental data on the specific heat of a 2
lutidine–water mixture in the 2500 Å porou
nickel (3) and the 1000 Å porous glass (h) and
on the basis of a numerical calculation of the sp
cific heat for the finite three-dimensional Isin
model with the lattice sizesL532 (n), 64 (,),
128 (1), and 256 (s).
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'1, which corresponds to the behavior of the specific hea
the bulk. In the other limitt/t* !1, F(t/t* ) is a power func-
tion: F(t/t* )}(t/t* )a. In addition, the slope of the solid
lines in Fig. 5 corresponds toa50.1160.02.

A plot of the universal functionF(t/t* ) calculated in an
e expansion withe51, which is visually similar to the uni-
versal function presented in Fig. 5, but in the oppos
phases, was presented in Ref. 16. The character of the
havior of F(t/t* ) in the ordered and unordered phases
Ref. 16 is similar to the behavior of the functionF(t/t* ) that
we obtained in the unordered and ordered phases, res
tively. Therefore, it was not possible to compare the univ
sal function constructed on the basis of our experimental d
and the data from the numerical calculation of the fin
three-dimensional Ising model with the results of the cal
lation in Ref. 16.

Finite-size scaling theory also predicts that the displa
ment of the temperature of the specific-heat maxim
Tm(L) relative to the critical temperature in the bulkTc is
described by a power function of the sizeL of the system:

tm~L !5uTc2Tm~L !u/Tc}L21/n. ~4!

Figure 6 presents the experimental data ontm(L) and the
data obtained from the numerical calculation of the fin
three-dimensional Ising model. To facilitate compariso
the experimental data have been displaced along thex axis in
the figure by a certain constant value. It is seen from
figure that in both cases the displacement of the tempera
of the specific-heat maximumtm(L) obeys the same depen
dence of type~4!, which corresponds ton50.6460.02.

5. CONCLUSIONS

Our experimental data on the specific heat of a 2
lutidine–water mixture in the bulk and in porous media w

FIG. 6. Logarithmic dependence of the temperature of the specific-
maximum in a finite system~relative to the critical temperature in the bulk!
tm5u(Tc2Tm(L))/Tcu on the system size:d — experimental data,1 —
data from the numerical calculation of the three-dimensional Ising mo
To facilitate comparisons, the experimental data have been displaced
the x axis by a certain constant value. The slope of the straight line co
sponds ton50.6460.02.
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different pore sizes have been used to obtain a function
the dimensionless ratiot/t* , which describes the behavior o
the specific heat in a finite system. The analogous func
constructed on the basis of the data from a numerical ca
lation of the specific heat of the finite three-dimension
Ising model15 coincides with the experimental function. Th
provides a basis to state thatF(t/t* ) is a universal function
and does not depend on the geometry of the medium mo
ing a finite system. The asymptotic behavior of the univer
function for t/t* @1 andt/t* !1 is consistent with the pre
diction of finite-size scaling theory.

The displacement of the temperature of the specific-h
maximumTm(L) in finite systems relative to the critical tem
peratureTc in the bulk as a function of the sizeL of the
system has been obtained and is in good agreement with
dependence predicted by finite-size scaling.

In conclusion, we wish to thank A. Talapov for suppl
ing us with the preliminary data from the numerical calcu
tion of the specific heat of the finite three-dimensional Isi
model. We also thank E. Gorodetski� for some very useful
discussions, as well as V. Kulikov, A. Muratov, and V. Po
nek for some valuable comments.
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the Russian Fund for Fundamental Research~Grant No. 96-
02-18235!.

1!The matrices of the spherical nickel powder compacted under high p
sure were prepared in the Institute of High-Pressure Physics~Troitsk, Mos-
cow Region! according to a procedure developed by V. A. Sidorov and
B. Tsiok.
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Orientational states of C 60 molecule in crystals
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Local symmetry of orientational states of the C60 molecule in crystals has been investigated. It
was shown that the various orientational phase transitions in different crystals are related
to different orientational orbits. The model of orientational phase transitions based on a sequence
of orientational states with different symmetry properties has been suggested. We have
found that both the local symmetry of C60 molecule and the symmetry of its internal vibrations
become higher after a reduction of crystal spatial symmetry at the phase transition. This
effect is fairly common and can be observed in the orientational order–disorder phase transitions
with wave vectors at the Brillouin zone boundary. Feasible manifestations of the predicted
effect in various experiments are discussed. ©1998 American Institute of Physics.
@S1063-7761~98!02503-7#
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1. INTRODUCTION

It is well known that phase transitions in fullerene cry
tals lead to changes in orientational states of the C60 mol-
ecule. It follows from experimental data on pristine C60 ~ful-
lerite! crystals1 that in the high-symmetryFm3m phase the
C60 molecule experiences anisotropic retarded rotation,
this rotation is stopped after theFm3m→Pa3 transition,
when an orientational ordering of C60 molecules takes place
In AC60 crystals~fullerides!, where A5K, Rb, a more com-
plex Fm3m→Pnnmphase transition comes about, when t
ordering of molecular orientations in the low-symmet
Pnnm phase is accompanied by a molecule strain and,
result of these two effects, covalent bonds between neigh
ing C60 molecules are formed.2 In both cases, the order pa
rameter of these phase transitions should describe the
tion between the averaged orientational states of the60

molecule in the high- and low-symmetry phases and the
entational ordering of molecules.

Presently there is no universal theory of changes in
entational states of the C60 molecule in crystals. The theore
ical description of orientational phase transitions in fullere
crystals is based on two techniques, namely continuous
discrete, each of which provides a good description of60

molecule orientational states in only one of two phases.
example, the continuous technique1 has been applied to C60

rotating molecules in theFm3m phase, when the average
anisotropic distribution of C60 molecular orientation is ex
panded in terms of symmetrized spherical functions tra
formed according to irreducible representations of the ico
hedral (Yh) or cubic (Oh) point groups. In this
approximation, however, it is difficult to describe both t
specific orientation of a C60 molecule in the low-symmetry
5911063-7761/98/86(3)/7/$15.00
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phase and strain of the C60 molecule due to the phase tran
sition in AC60 fullerides.

The discrete technique applied to an orientational ph
transition in fullerites is based on discrete orientational sta
of a rotating C60 molecule3 ~see also Ref. 1!. In this case, the
orientational state of a C60 molecule in the low-symmetry
phase is described exactly, whereas the description of a
tating molecule in the high-symmetry phase is approxima
namely, its state is presented in the form of a set of sev
discrete orientational states. Since the discrete technique
actly describes the orientational states of C60 molecules in
the low-symmetry phase of the crystal, it is clear that
physical properties of the low-symmetry phase affected
an orientational phase transition can be also describe
terms of this method. For example, a generalization of
discrete technique4 was applied to describe the strain of th
C60 molecule at the phase transition in the fulleride AC60

crystal.
In this paper, we demonstrate that some physical pr

erties of the high-symmetry phase can be also describe
terms of the discrete method because the various disc
orientational states of the C60 molecule have differing intrin-
sic local symmetries. Therefore physical phenomena in
high-symmetry phase related to specific discrete orien
tional states can be classified in accordance with symm
properties of orientational states.

Section 2 describes all orientational states of the60

molecule in theFm3m phase with differing local symmetry
The phase transition will be discussed in Sec. 3 in terms
orientational states, and distributions of the atomic density
a rotating C60 molecule will be constructed in Sec. 4. Th
local symmetry and the symmetry of internal vibrations
the C60 molecule in a crystal will be discussed in Sec. 5.
Sec. 6 we will discuss possible experimental tests of p
© 1998 American Institute of Physics
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592 JETP 86 (3), March 1998 Aksenov et al.
dicted types of orientational states using X-ray and neut
diffraction, along with manifestations of increasing symm
try of C60 molecule internal vibrations at the phase transit
in light-scattering experiments.

2. SYMMETRY OF C60 MOLECULE ORIENTATIONAL
STATES

In order to determine the types of orientational states,
us consider various embeddings of the C60 molecule, which
has icosahedral symmetry, in a cubic crystal lattice.

The C60 molecule has the point symmetry groupYh ,
which contains six five-fold rotation axes (C5), ten triple
rotation axes (C3), fifteen double rotation axes (C2), and
inversion (I ), all listed in Table I. The C60 molecule occu-
pies in the crystal lattice the position with local symme
Oh . The point groupOh has three four-fold rotation axe
(C4), four triple rotation axes, six double axes, and inv
sion.

By comparing the sets of symmetry axes contained inOh

andYh symmetry groups, one can infer that in order to ha
only one four-fold symmetry axis, which is the case in cub
crystals, the C60 molecule should occupy either two discre
orientational states if the double rotation axis of the C60 mol-
ecule is aligned with one of̂100& axes of the crystal lattice
or four discrete states in the case of a different orientation
the molecule. If the double rotation axis of the C60 molecule
is aligned with â 100& crystal axis, it can be rotated aroun
its double axis so that its triple axes coincide with^111&
crystal axes. This is the case of the highest local symmetr
the C60 molecule embedding in the cubic crystal lattice~Fig.
1a!. This embedding generates two so-called standard or
tations, which can be transformed to one another by rota
the molecule around anŷ100& crystal axes through an ang
of 90°. A C60 molecule occupying a position with theOh

symmetry in the standard orientation in the lattice of t
Fm3m phase has the local symmetryTh5OhùYh .5 This is

TABLE I. Symmetry elements of free C60 molecule and its position in
crystal lattice of theFm3m cubic phase.

Symmetry elements C5 C4 C3 C2 I

C60 molecule 6 – 10 15 1
Position with
Oh symmetry in lattice

– 3 4 6 1
n
-

t

-

e

of

of

n-
g

the case in the A3C60 crystal, where C60 molecules are ran-
domly distributed between the two standard orientations.6

Now let us consider the situation when only one of t
triple axes of C60 coincides with one of̂ 111& axes of the
cubic crystal lattice~Fig. 1b!. With due account of the inver
sion symmetry, one can see that the six symmetry elem
of the point groupS65(E,C3 ,C3

2)3(E,I ) are common ele-
ments of both the C60 molecule and point groupOh , where
E is the identity element of the symmetry group. The loc
symmetry group in this case isS6 . Since the point groupOh

has 48 different symmetry elements, the number of differ
orientational states of the C60 molecule in this embedding is
8548/6. These eight orientational states were used to
scribe the phase transition in the C60 fullerite.3

If a double axis of the C60 molecule is aligned with the
@110# axis in the cubic lattice~Fig. 1c!, the common symme-
try elements are (E,C2)3(E,I ), so the number of differen
orientational states of the C60 molecule is 12548/4. These
twelve orientational states of the C60 molecule were used in a
description of the phase transition in the AC60 fulleride.4 The
local symmetry group for the C60 molecule isC2h . Note that,
if a double axis of the molecule is aligned with the@100#
crystal direction and no triple axis of the molecule is align
with the ^111& crystal axes, a different twelve-fold orienta
tional basis is generated~Fig. 1d!. Below these two orienta-
tional bases are denoted as 12~a! and 12~b!, respectively.

In the case when none of the C60 symmetry axes coin-
cides with the corresponding symmetry elements of the c
tal lattice, the only common symmetry elements are (E,I );
hence the number of different orientational states of the60

molecule is 24548/2, and the local symmetry group of th
molecule isI ~Fig. 1e!.

Orientational states of one basis have the same cont
ous degrees of freedom. For example, the rotation an
around one triple axis in the case of the eight-fold basis
arbitrary. The situation is similar in the case of a twelve-fo
basis, but here an arbitrary rotation is allowed around
double axis. In the case of the 24-fold basis two independ
rotations are possible. Note that at some rotation angles
additional degeneracy of orientational states of the C60 mol-
ecule may occur because some symmetry axes of the60

molecule can coincide with symmetrical directions of t
lattice. For example, in the eight-fold basis double symme
axes can coincide witĥ100& directions in the lattice at som
rotation angle around the triple axis. This brings abou
FIG. 1. Initial orientations of C60 molecule in various
orientational bases:~a!, ~b!, ~c!, ~d!, ~e!, or ~f! is one of
the orientational states of the C60 molecule in 2-, 8-,
12~a!-, 12~b!-, 24-, or 6-fold bases.
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degeneracy of orientational basis functions, and we h
only two standard orientations instead of eight.

In the two twelve-fold bases the number of independ
orientational functions reduces to six when the double sy
metry axis of the C60 molecule coincides with thê100& crys-
tal direction in the 12~a! basis and with thê110& crystal
direction in the 12~b! basis~Fig. 1f!. In this case, the loca
symmetry of orientational states is determined by po
groupD2h . It is clear that all of the above special positio
can be also derived from the 24-fold basis. Note also that
orientational states of the two- and six-fold bases are m
symmetrical and, unlike orientational states of other ba
have no rotational degrees of freedom.

Table II lists different types of orientational bases a
materials~fullerite C60 and fulleride AC60! whose orienta-
tional phase transitions are described in terms of these st
Note that no orientational phase transition occurs in A3C60,
and static disorder in the distribution of C60 molecules be-
tween two standard orientations was experimentally dete
in the Fm3m phase.6

Functions of orientational states referred to a single
sis, which transform into one another under rotational sy
metry elements of groupFm3m, form an orbit~in terms of
group theory7! — in this specific case, an orientational orb

3. ORIENTATIONAL PHASE TRANSITION

Diffraction studies1 of fullerite C60 in phaseFm3m in-
dicate that the orientation of the rotating C60 molecule in the
crystal has an anisotropic distribution. Consequently, diff
ent orientational states of the C60 molecule should be occu
pied with different probabilities. It was shown in the prev
ous section that orientational states can be combined
orientational orbits with different local symmetry properti
~Table II!. Since the orientational states of one orbit a
physically equivalent, these states are occupied by C60 mol-
ecule with equal probabilities, so the anisotropy of the m
ecule orientation distribution implies that states of differe
orbits are occupied by a rotating C60 molecule with different
probabilities given by

Pn5exp~2 Vn/kT!/(
m

exp~2 Vm/kT!, ~1!

wherek is Boltzmann’s constant,Vn is the potential energy

TABLE II. Different types of orientational bases for C60 molecule in the
Fm3m phase.

Multiplicity Local symmetry
of orient. of orient.
basis state Crystal Note

2 Th A3C60 Static disorder
6 D2h

8 S6 C60 Dynamic disorder
12~a! C2h AC60 Dynamic disorder
12~b! C2h

24 I
e

t
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t

e
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ed
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of staten of the orientational orbit, and the summation
performed over all orientational states of all orientational
bits.

Thus, we can suggest the following model of the orie
tational phase transition in fullerene crystals. At high te
peratures~T@Tc , whereTc is the phase transition tempera
ture!, a rotating C60 molecule occupies all orientational stat
of all orientational orbits. At temperatures close to the ph
transition (T.Tc) the rotating C60 molecule is in the states
of one orientational orbit most of the time, namely on t
orbit corresponding to a specific orientational crystalline p
tential of a C60 molecule in a specific crystal. At the trans
tion point the orbit is ‘‘frozen out,’’ and the molecule occu
pies one of the orientational states of that orbit.

By drawing the analogy between the orientational ph
transition and structural phase transition associated with
placements, we come to the following conclusions. The
of all states belonging to all orientational orbits is an ana
of all possible displacements of all atoms in a crystal c
Each orientational orbit can be interpreted as an analog
displacements affecting only the atoms associated with
soft mode at the phase transition. Thus, different orien
tional orbits are microscopic realizations of order parame
related to different phase transitions.

Table III lists orientational orbits and orientational stat
necessary for describing orientational phase transitions
fullerite C60 and fulleride AC60.

Table III clearly illustrates how the orientational trans
tion proceeds. At higher temperatures a rotating C60 mol-
ecule occupies in a C60 (AC60) crystal all orientational state
of all orientational orbits~the twofold orbit, sixfold orbit,
etc.!. Near the phase transition point (T.Tc) the molecule is
in states of the eightfold~twelvefold! orbit most of the time,
and in the low-symmetry phase the molecules are orie
tionally ordered in one of the states of the eightfold~twelve-
fold! orbit.

4. DISTRIBUTION OF ATOMIC DENSITY OF A ROTATING
C60 MOLECULE

It has been shown in the previous section that a rota
C60 molecule is in orientational states of one orbit most
the time in theFm3m phase near the phase transition poi
therefore the distribution of C60 molecule orientations in a
crystal is determined by states of only one orbit. Let us se
a certain orientational state; then, in this statec1, the atomic
density on the surface of molecule C60 at pointV defined by
polar anglesu andw in the coordinate system shown in Fig
1 has the form

TABLE III. Orientational states of C60 molecules in different phases of C60

and AC60 crystals.

Crystal

High-symmetry phase
Low-symmetry phase

T,TcT@Tc T.Tc

C60 fullerite $2,6,8,...% $8% 8
AC60 fulleride $2,6,8,...% $12% 12
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FIG. 2. a! A fragment ~one-eighth of a molecule! of atomic
density distribution of a rotating C60 molecule inFm3m phase.
Dark regions correspond to the maximum densities~from 100
to 60%!, lighter areas correspond to densities ranging betw
66 and 33%, and the lightest areas to the range of 33 to
Orientational states have a Gaussian distribution with a st
dard deviation of 5°. b, c, d! the same as~a!, but with a stan-
dard deviation of 3°. Moreover, in~c! and ~d! the crystals are
deformed:~c! compression strainexx5eyy522ezzÞ0; d! the
same compression as~c! plus additional shear strainexyÞ0.
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r1~V!5(
n

d1~V2Vn!, ~2!

whered is the Dirac delta function and summation is pe
formed over the 60 carbon atoms in the molecule. By tak
the rest of the orientational states into account and mode
thermal motion of the C60 molecule using a normal distribu
tion with standard deviations, we can express the mea
atomic densitŷ r~V!& in the form

^r~V!&5CE dS8 exp@2~V2V8!2/2s2#(
k

rk~V8!

5E dS8 exp@2~V2V8!2/2s2#

3(
k,n

dk~V82Vn!, ~3!

whereC is a numerical constant, the integration runs ov
the C60 molecule surface,uV2V8u is the distance betwee
pointsV andV8 on the molecule surface and is expressed
degrees, and summation is performed over orientatio
states of the orbit (k) and the 60 positions of carbon atoms
the C60 molecule (n).

Figure 2 shows distributions of atomic density of a r
tating C60 molecule in an AC60 crystal in the phaseFm3m.
The functions were calculated by Eq.~3! with orientational
states of the twelve-fold orbit. The initial orientational sta
c1 is that shown in Fig. 1c. The other orientational states
the molecule were obtained by applying the following ro
tions: c25C4c1 , c35C4

2c1 , and c45C4
3c1 . The rest

of the orientational states were obtained by apply
rotationsC3 andC3

2 in accordance with the following sym
bolic scheme: (c5 ,c6 ,c7 ,c8)5C3(c1 ,c2 ,c3 ,c4) and
g
g

r

n
al

f
-

g

(c9 ,c10,c11,c12)5C3
2(c1 ,c2 ,c3 ,c4), whereC4 denotes a

rotation around thez-axis through an angle of 90° andC3 is
a rotation around the@111# axis through an angle of 120°.

The symmetry analysis of the phase transition in f
leride AC60 indicates8 that the low-symmetry phase is a re
sult of condensation of one component of the sixfold ord
parameter; hence, we should expect emergence of six
mains in the low-symmetry phase. The distribution of atom
density ~Fig. 2a and 2b! is constructed on the basis of a
twelve orientational states and therefore is connected with
six domains. In a deformed crystal, however, the twelve o
entational states are no longer physically equivalent, so
probabilities of detecting a molecule in different states
unequal. The symmetry analysis of the phase transitio4,8

allows one to make out which of the twelve orientation
states refer to a specific deformation pattern. The atomic d
sity distribution due to external stresssxx5syy522szz

Þ0 is given in Fig. 2c. It is based on orientational statesc1 ,
c2 , c3 , and c4 . By applying an additional shear stres
sxyÞ0, one can further limit orientational degrees of fre
dom of the C60 molecule. The atomic density distributio
constructed from the two orientational statesc1 andc3 for
this case is given in Fig. 2d.

5. LOCAL SYMMETRY AND SYMMETRY OF INTERNAL
VIBRATIONS OF THE C60 MOLECULE IN CRYSTAL LATTICE

It was shown in the previous sections that a rotating C60

molecule occupies all orientational states of all orbits, b
near the phase transition point~in phaseFm3m! the mol-
ecule is in states of only one orbit most of the time. As
result, the atomic density distribution is anisotropic. The
cal symmetry of a rotating C60 molecule in a crystal lattice is
determined by the state of lowest symmetry occupied by
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molecule. The local symmetry of the C60 molecule in the
high-symmetry phaseFm3m is therefore described by th
inversion groupI . On the other hand, orientations of C60

molecules in the low-symmetry phase are ordered, and
occupy one state of a specific orientational orbit. For
ample, C60 molecules in the fullerite in the low-symmetr
phasePa3 occupy the state with local symmetryS6 , and in
fulleride AC60 in low-symmetry phasePnnm the state with
local symmetryC2h . Thus, as a result of a phase transiti
which lowers the crystal spatial symmetry, the local symm
try of a C60 molecule becomes higher~Table IV!.

Further, let us consider the phonon symmetry in ph
Fm3m. There are two possibilities, depending on the ph
non energy. If the phonon frequency is higher than the ch
acteristic rotation frequency of the C60 molecule, the phonon
moves through the crystal with different orientations of C60

molecules and, as a result of slow rotation of molecules,
symmetry for the phonon is considerably lower than one
expect for theFm3m spatial group. On the other hand, th
symmetry for a phonon with a frequency considerably low
than the characteristic rotation frequency of C60 molecule
should correspond to the spatial groupFm3m.

Let us consider as an example internal vibrations of
C60 molecule in C60 and AC60 crystals, which can be inves
tigated in Raman scattering experiments. It is well kno
that in IR absorption and Raman experiments phonons w
wave vectors about zero are detected, and their symmet
determined by the wave-vector group withk50, i.e.,Gk50,
or in other words, by the point symmetry group~local, point
and other symmetry groups in crystals are described in R
9!. Primitive cells of C60 and AC60 crystals in theFm3m
phase contain only one rotating C60 molecule, which occu-
pies the site with local symmetryOh . Therefore it seems
feasible that internal vibrations of the C60 molecule in the
Fm3m phase can be analyzed on the base of icosahe
groupYh ~Refs. 10 and 11! or point groupOh ~Refs. 10 and
11! if splitting of internal vibrations by the crystal field mus
be taken into account. But, since the C60 molecule has no
fourfold axis ~see Sec. 2!, the highest local symmetry grou
of the C60 molecule in the crystal lattice can be onlyTh

5OhùYh . This is one of the reasons why the symme
analysis of internal vibrations of the C60 molecule in the
Fm3m phase was initially based on irreducible represen
tions of Th group.12

The analysis of orientational states of the C60 molecule
described above indicates that internal vibrations of the m
ecule can be classified in accordance with irreducible re
sentations of the groupTh only when the C60 molecule oc-
cupies states of the double orientational orbit. In C60 and
AC60 crystals the orientational crystal potential is such t
eight- and twelvefold orbits, respectively, must be cons

TABLE IV. Local symmetry of C60 molecule in different phases of C60

fullerite and AC60 fulleride.

Crystal Fm3m phase Pa3 phase Pnnmphase

C60 fullerite I S6 –
AC60 fulleride I – C2h
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ered, whose local symmetry is much lower, namelyS6 and
C2h . Since the frequencies of internal vibrations are cons
erably higher~by a factor of 10 to 100! than the characteris
tic rotation frequency of the C60 molecule, the correspondin
phonons travel through the crystal, in which the C60 mol-
ecules appear statically disordered. The point symmetry
such phonons will be even lower. Thus, the symmetry
internal vibrations of the C60 molecules in theFm3m phase
will be no higher thanS6 andC2h for C60 and AC60 crystals,
respectively. Since the point groups of low-symmetry pha
for these crystals areTh andD2h , respectively, we come to
the conclusion that the symmetry of internal vibrations of t
C60 molecule becomes higher when the spatial symmetry
creases as a result of the orientational phase transition.

6. RESULTS AND DISCUSSION

Let us briefly summarize the results of this work. Th
model of the orientational phase transition in fullerene cr
tals based on the discrete approach has been suggeste
orientational states of a rotating C60 molecule have been
classified in accordance with their symmetry properties.
orientational states have been attributed to different orie
tional orbits with different local symmetry properties. Sp
cific orientational orbits are related to specific orientation
phase transitions; moreover, orientational states of one o
are analogs of atomic displacements that give rise to
modes at structural phase transitions.

The distribution of atomic density of a rotating C60 mol-
ecule in theFm3m phase is controlled by orientational stat
of one orbit. The atomic density distribution is related to t
development of the orientational phase transition in acc
dance with the scheme described in Sec. 3.

The analysis of the symmetry of orientational states
C60 molecules has led us to conclude that the local symm
of the C60 molecule and the symmetry of internal vibration
of the molecule in a crystal lattice are higher after a ph
transition to a state with lower spatial symmetry.

Now let us discuss possible experimental tests of
conclusions. The distributions of atomic density of a rotati
C60 molecule calculated in the previous sections~Fig. 2! are
directly related to diffraction spectra recorded in expe
ments. For example,13 the intensities of Bragg peaks are d
termined by specific configurations of atoms in the crys
cell. In the case under consideration, one primitive cell c
tains one rotating C60 molecule. The intensities of Brag
peaks are determined by the structural factor squared:

F~Q!5bcH 60ccon exp@2W1~Q!#J~QR!

1cdiscexp@2W2~Q!#E dr 8K (
k,n

dk~r 82rn!L
3exp~2 iQr 8!J , ~4!

where bc is the neutron coherent scattering length on
carbon nucleus~or the atomic form factor in the case o
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X-rays!, the continuous and discrete weight factors,ccon and
cdisc, are fit parameters satisfying the conditionccon1cdisc

51; in the case of fullerite C60 we haveccon50.31 and
cdisc50.691 J(QR)5sin(QR)/(QR) is the Bessel function,R
is the radius of the C60 molecule, andW1(Q) andW2(Q) are
the Debye–Waller factors for the carbon atom in C60. As a
result of various averaging procedures, the factorsW1(Q)
andW2(Q) can be different. Equation~4! clearly shows that
the structural factor containŝ(k,ndk(r 82rn)&, which de-
scribes the anisotropy of the mean atomic density of C60, and
which was used in Sec. 4.

Note also that a rotating C60 molecule occupies orienta
tional states of all orbits, but only one orbit is associated w
an orientational phase transition. Therefore summation o
k in ^(k,ndk(r 82rn)& is performed over the states of th
orbit, and the effect of orientational states of other orbits
described by the isotropic Bessel functionj (QR).

Thus, the specific distributions given in Fig. 2 will de
termine the intensities of the Bragg peaks in theFm3m
phase; hence, neutron and x-ray diffraction patterns can
vide experimental tests of the theoretical atomic density
tributions of a rotating C60 molecule.

It is known that the symmetry of crystal lattice vibra
tions can be determined using Raman scattering. Horo
et al.14 recorded Raman spectra of fullerite C60. These spec-
tra indicate that the lines recorded atT5259 K in the low-
symmetry Pa3 phase have more clearly defined featu
than the same lines recorded at a temperature only two
grees higher, in the high-symmetryFm3m phase.

The large width of lines attributed to internal vibration
in C60 molecules in theFm3m phase can be ascribed
various physical causes. In pure C60 crystals, however, mol-
ecules are neutral, and this fact limits the range of poss
causes.~For example, a charged molecule C60

21 ~or C60
23! can

transfer as a result of the Jahn–Teller effect to a deform
state, which leads to splitting of internal molecular vibr
tions. Moreover, charged C60 molecules can generate macr
scopic electric fields in a dielectric crystal, which leads
splitting of transverse and longitudinal optical phonon!
Therefore the large line widths in fullerite C60 can be attrib-
uted to either anharmonic interactions between internal
brations of C60 molecules and other phonons, or the lo
local symmetry of the C60 molecule in the crystal lattice
~splitting by the crystal field! and/or interaction between ran
domly aligned molecules ~as in so-called Davydov
splitting15!.

Unlike the anharmonic interaction, the latter two effec
determine the point group, which can be checked out in li
scattering experiments with polarization analysis.

The symmetry analysis10 indicates that Raman-active in
ternal vibrations in the C60 molecule have symmetry 2Ag

% 8Hg . Therefore Raman spectra should contain ten diff
ent lines, two of which have symmetryAg ~nondegenerate
vibrations! and eight~fivefold degenerate! symmetryHg . A
crystal field of cubic symmetry lifts the degeneracy of vibr
tions with symmetryHg5Eg% Fg , where the vibration with
symmetryFg is triply degenerate and the vibration with sym
metry Eg is doubly degenerate. Experimental resu
demonstrate14 that such splitting really occurs for the vibra
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tions Hg(1) andHg(2) (T5261 K). Similar splitting prob-
ably takes place in the modesHg(6) andHg(7).14 Measure-
ments of polarized light scattering14 indicate that vibration
Hg(1) with a lower frequency of 266.2 cm21 has symmetry
Eg, and the vibration with a frequency of 272.4 cm21 has
symmetryFg . The situation is opposite in the case of th
Hg(2) vibration: the mode with a frequency of 430.3 cm21

has symmetryFg and that with a frequency of 434.3 cm21

has symmetryEg .
Since vibrations with symmetryAg are nondegenerate

the large width of their lines can be due to interaction b
tween neighboring molecules with different orientations.
this case, the strongest interactions between neighboring60

molecules with different orientations in theFm3m phase
~the first coordination sphere contains 12 molecules! can be
modeled by defining larger lattice cells containing more th
one C60 molecule. All such lattices with larger cells can b
constructed from theFm3m phase using the symmetr
analysis of all possible phase transitions that give rise
larger primitive cells.~In the cluster approximation, if inter
action between neighboring C60 molecules is taken into ac
count, wide Raman lines of symmetryAg can be interpreted
as sets of separate lines~one to thirteen! of different intensi-
ties, which are proportional, generally speaking, to the len
of time for which C60 molecules are in the correspondin
orientational states.!

Thus, the large widths ofAg lines can be attributed to
interaction between neighboring C60 molecules with different
orientations, i.e., the Davydov splitting,15 given that the point
group of the crystal with larger primitive cells can have
lower symmetry owing to uncorrelated orientations of neig
boring molecules.

Now let us discuss the width of theFg andEg lines. The
symmetry analysis of orientational states of C60 molecules in
C60 and AC60 crystals given above indicates that most of t
time, the C60 molecule is in states with symmetryS6 and
C2h , respectively. In this case, owing to the low symme
of the crystal field, the degeneracy of triply degenerateFg

vibrations is lifted. Moreover, as in the case ofAg lines, the
Davydov splitting caused by interaction between neighb
ing molecules with different orientations takes place.

Thus, the symmetry of internal vibrations of C60 mol-
ecules in C60 and AC60 crystals cannot be higher thanS6 and
C2h because of the low local symmetry of orientational sta
and interaction between randomly oriented neighboring m
ecules. This means that vibrations ofFg symmetry, which
could have been detected in theFm3m phase only in the
case of orthogonal polarizations of incident and scatte
light, should be also detected in the case of parallel polar
tions; likewise, the vibrations ofEg symmetry should be ob
served in the case of perpendicular polarizations. Theref
it would be of interest to conduct an accurate polarizat
analysis ofFg and Eg vibrations in fullerite C60 ~Fm3m
phase! in measurements of Raman scattering.

This work is a part of theFullerenes and Atomic Clus
ters Russian State program, grant No. 97032, and was s
ported by the INTAS–RFBR grant No. 95-0639.
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Is superdense fluid hydrogen a molecular metal?
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Recent experiments on the compression of liquid hydrogen in reverberating shock waves, which
indicate the transition into a metallic state at about nine times the liquid H2 density@S. T.
Weir, A. C. Mitchell, and W. J. Nellis, Phys. Rev. Lett.76, 1860~1996!#, have been interpreted
by a microscopic percolation in a virtual molecular structure with a continuous spectrum
of the electron excitations. The scaling dependence of the electron mobility on the energy above
the percolation threshold has been used to qualitatively describe the electrical conductivity
of fluid molecular hydrogen in the vicinity of the insulator-metal transition point. ©1998
American Institute of Physics.@S1063-7761~98!02603-1#
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Metallic hydrogen, the simplest element in the period
system and the most abundant in the Universe, has b
extensively studied as the prototype of the insulator-m
transition for over half a century.1 The current research i
mainly motivated by the significance of metallic hydrogen
astrophysics, especially for the magnetic-dynamo model
Jupiter and Saturn.2 Although in this field the disordered
phases are actually interesting, the insulator-metal trans
is traditionally considered in solids, and most experime
have been done in diamond anvil cells at very low tempe
tures. At ninefold compression a phase transition indica
by the appearance of a strong infrared absorption band
been recovered, but the onset of metallization because o
band gap closure in solid molecular hydrogen is still a s
ject of controversy.3 Recently, Weir, Mitchell, and Nellis4

have reached almost the same densities in a fluid phas
much higher but still moderate temperatures by stron
compressing liquid hydrogen in reverberating shock wav
Under these conditions, a qualitative change of the electro
structure is revealed by strongly changing electronic prop
ties, despite the thermal excitations which play a mask
role. In the density range (1.7– 2.1)31023 cm23, at tempera-
tures in the range 2000–4000 K the electrical conductivity
shock-compressed fluid hydrogen increases by more
three orders of magnitude to 2000V21

•cm21, a value char-
acteristic of metals. The activation energy, which occurs
lower densities, goes to zero at approximate
1.931023 cm23, marking the onset of metallization.

If even solid hydrogen is nonmetallic, the liquid can
metallic as in the case of silicon. Therefore, analysis of
insulator-metal transition in fluid hydrogen is based on
theory of disordered electron systems5,6 rather than on the
theory of crystalline solids. Recently, Ross7 has proposed the
metallization of H-atom subsystem in partially dissociat
fluid hydrogen. We show that more naturally molecular h
drogen is metallized wholly.

Strong electron-ion interaction makes the structure n
the insulator-metal transition in fluid hydrogen closely r
semble the neutral molecular fluid. Therefore, analysis
5981063-7761/98/86(3)/4/$15.00
en
al

of

n
s
-
d
as
he
-

at
y
s.
ic
r-
g

f
an

t

e
e

-

ar
-
n

be based on a microscopic percolation model,8 which has
been applied to expanded fluid mercury,9 sodium-ammonia
solutions,10 and doped semiconductors Si:P.11 The underly-
ing idea is a virtual atomic-like structure which is retained
such systems in the transition region where the atoms ar
mixed states described by the density matrix. Since cla
cally accessible spheres of valence electrons of the neigh
ing atoms overlap, screening leads to admixing of free-l
electron states. In the microscopic percolation model a sh
change of the electrical conductivity below the insulato
metal transition is governed by a high coupling parame
namely, the ionization potential of atoms in expanded m
als, or admixture states in ammonia solutions and semic
ductors to the temperature. Applying this model to hydrog
which consists of strongly bound, two-atomic molecules,
assume a virtual molecular structure. Otherwise, near
insulator-metal transition point we consider fluid hydrogen
molecular metal with partially free electrons in bondin
quasimolecular orbitals admixed with free electron states~in
contrast, nearly free metallic electrons could not bond
molecules!. Two electrons of H2 quasimolecules in a virtua
molecular structure are equivalent and contribute equally
the conductivity. We show that the percolation model of t
insulator-metal transition is capable to qualitatively descr
ing the electronic properties of such a virtual molecu
structure. The model of a virtual molecular structure can a
shed light on a plasma phase transition, whose existenc
hydrogen is still strongly questionable.12

Presumably, a virtual molecular structure exists at te
peratures much lower than the ionization or dissociation
ergy of molecules and at moderately high densities, at wh
the molecular orbitals are not strongly overlapped. In suc
structure, the transition point can be identified with a per
lation threshold of the classically accessible regions of e
trons in the ground-level molecular orbitals. Since electro
are mainly localized within the classically accessible regi
the effective one-electron potential near the boundary of
region is close to the molecular ion potential. Thus, t
boundary surface is determined by the equation
© 1998 American Institute of Physics
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2
e2

2r 1
2

e2

2r 2
52J, ~1!

wheree is the electron charge,r 1 andr 2 are the distances o
an electron from the nuclei, andJ'16 eV is the vertical
ionization potential of the molecules. This surface, which
close to the prolate ellipsoid with half-axes 1.55a0 and
1.95a0 , wherea0 is the Bohr radius~Fig. 1!, bounds almost
the same volume as a mean sphere of radius

Rm5
e2

J
. ~2!

The upper limit for the percolation threshold corr
sponds to ellipsoids with the parallel rotational axes, wh
coincide with those of spheres of the same volume. Furth
more, for the strongly correlated fluids like hard spheres w
very thin overlapping shells,13 the percolation threshold cor
responds to the random close packing fraction,

4p

3
Rm

3 nm5z th , ~3!

wherenm is the molecule number density, andz th'0.64. We
note that Eq.~3! can be rewritten as the Edwards–Sien
correlation for the insulator-metal transitions in dop
semiconductors:14

e2nm
1/3

J
50.534.

From Eqs.~2! and ~3! we obtain the number density o
hydrogen molecules at the insulator-metal transition poin

nm'2.131023 cm23,

which corresponds to the mass density 0.7 g/cm3. This value
agrees within the experimental uncertainty with the abo
mentioned estimate from the disappearance of the activa
energy.4

The Coulomb interaction in a strongly coupled plasm
above the insulator-metal transition point is characterized
the coupling parameter

G5
z2e2

RsT
5z th

1/3z2
J

T
, ~4!

FIG. 1. Classically accessible region of the molecular orbital of hydrogen
the atomic unit scale. The mean sphere of the same volume is also sh
s

h
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wherez52 is the total charge number of tightly bound pr
tons, andRs5(4pnm/3)21/3 is the Wigner–Seitz radius o
the molecular cell. Although the classical Coulomb para
eter is higher than 102, it does not necessarily strongly influ
ence the structure of compressed fluid determined by
repulsion between quasimolecules. Evidently, strongly rep
sive exchange interaction between quasimolecules in
dense hydrogen plasma precludes a plasma phase trans
which is induced otherwise by the Coulomb attraction.

The overlap of the classically accessible regions of el
trons in neighboring molecules qualitatively changes
electronic states. The number of electrons screening the
clei can fluctuate; i.e., the nuclei are virtually screened
electrons of neighboring molecules. Therefore, in mix
quasimolecular states electrons are partially free, and
spectrum of excitations is continuous. According to t
variational principle of quantum mechanics, an internal e
ergy spectrum of a quasimolecule~i.e., without the energy of
the intermolecular interactions! is bound from below by the
ground energy level of the free molecule. Using molecu
orbitals, we write the one-electron energy spectrum in
form

Ep52J1«p , «p5p2/2m, ~5!

where«p is the electron excitation energy,p is the momen-
tum of an electron far from the virtually screened nuclei, a
m is the electron mass. On the other hand, the mean inte
energy of the quasimolecule in a mixed state is

Ep52a00J1app«p , ~6!

whereapp anda00 are the diagonal elements of the dens
matrix normalized by the conditionapp1a0051. From Eqs.
~5! and~6!, it follows that the admixture of free motion in th
quasimolecular orbitals, which is determined by the ratio
the matrix elements, is

app /a005«p /J. ~7!

Therefore, low-lying quasimolecular states, which are pr
erably occupied, contain only a small admixture of free m
tion. The lifetime and the extension of the quasimolecu
states, which in the neighboring molecules can overlap,
bound by transitions of electrons between molecules.8

In the vicinity of the insulator-metal transition point th
electric current is carried by electrons which transfer b
tween overlapping, classically accessible spheres in a vir
molecular structure. Although below the transition point t
electrons in the ground-level state are localized in finite cl
ters, classically accessible regions of electrons excited ov
mobility gap could form an infinite cluster. At still highe
energies practically the entire volume becomes classic
accessible, and the electron mobility increases to the mini
gas-kinetic value. By definition, the absolute mobility gapD1

is determined by the appearance of the mobility, and the
mobility gap D2 is determined by its increase to the ga
kinetic value. This two-parameter gap is

Dk5J2e2~4pnm/3zk!
1/3, k51,2, ~8!

wherez1.0.64 is the percolation threshold equal to the ra
dom close packing fraction, andz2 (.z1) is an accessible

n
n.
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volume fraction of the same order of magnitude. The la
parameter is of less importance since it does not lead to
exponential dependence of the conductivity. One can use
regular close packing fractionz250.74. In the scaling
theory, the mobility is a power function of the distance fro
the threshold:15

m~«p!5
et

m S «p2D1

D22D1
D n

, «p,D2 , ~9!

wheren'0.9 is the critical exponent,t5 l /vT is the relax-
ation time, l'Rs is the minimal free path length, andvT

5A8T/pm is the mean thermal velocity. Below and at th
transition point the Boltzmann statistics of the quasiatom
excitations has been shown to apply even at very
temperatures.11 By averaging with the density of state
which corresponds to free motion in a major part of t
quasimolecular-state volume, we obtain the electrical c
ductivity

s5
ze2nmtq

m
, ~10!

where the factorq,1 describes the partial localization o
the electrons. This factor is expressed by the following co
bination of the incomplete gamma-functionsG(m,x):

Fk5
2

Ap
FGS 5

2
,

Dk

T D2
Dk

T
GS 3

2
,

Dk

T D G .
Below the insulator–metal transition point the localizati
factor is

q5
T~F12F2!

D22D1
'

2

Ap

AD1T

~D22D1!
expS 2

D1

T D ,

D2.D1@T, ~11!

which is exponentially small. On the metallic side

q5
3T/22D12TF2

D22D1
'

3T/22D1

D22D1
,

D1<0, D2@T. ~12!

Taking into account the electron degeneracy above
insulator-metal transition point, the thermal energy 3T/2 in
the last formula must be substituted by a renormaliz
Fermi-energy

«F85\2kF
2q2/2m, ~13!

where the prime indicates the difference from the elect
gas, andkF5(6p2nm)1/3 is the Fermi wave-vector. In prac
tice, the localization factor in this case goes to unity. Mo
over, this factor drops out in the expression of conductiv
Indeed, for the degenerated electrons the relaxation time

t5 l /vF8 , vF85vFq, ~14!

where vF8 is a renormalized Fermi velocity, andvF is the
Fermi velocity of the electron gas. Substituting Eq.~14! into
Eq. ~10!, we reduce the localization factor. Therefore, w
obtain the minimal metallic conductivity
r
he
he
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-
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s

s5
e2nel

mvF
. ~15!

In fact, for the degenerated electrons the electric cond
tivity can be described in gas-kinetic terms. We use
Ioffe–Regel criterion for the minimal free path length

l;\/Dp, ~16!

whereDp is the quantum uncertainty of the electron mome
tum. At high temperatures the momentum uncertainty can
substituted by the thermal momentummvT . The minimal
free path is then the thermal wave length. From Eq.~10! we
then obtain

s'
e2ne

kFmvT
'

e2neRs

mvT
. ~17!

Except for a numerical coefficient of the order of unity, th
expression is the same as it would be in the case of Bo
mann statistics if the free path length were equal toRs . With
such an accuracy, Eqs.~10!–~12! for the percolation conduc
tivity can also be directly extrapolated for the degener
electrons on the metallic side of the transition.

In the case of strong degeneracy the momentum un
tainty can be expressed only by the Fermi momentum

Dp5gmvF ,

whereg is a coefficient, and the free path length is

l;1/gkF .

Matching it to the extrapolated Boltzmann formula on t
metallic side of the transition~at the point at which
vT5gvF!, we obtain

l 5Rs /g, ~18!

FIG. 2. Electric conductivity of dense fluid hydrogen in the insulator-me
transition range. Experimental dots from Ref. 4 and solid lines by the
croscopic percolation theory are shown. The estimated insulator-metal
sition point is shown by theg arrow. Theg parameter is 0.1.
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i.e., the parameterg is the inverse free path length of th
intermolecular spacing. For a rough estimate of the par
eterg, applying thevT5gv equality to the transition point
we obtaing;0.1. Of course, the uncertainty of this param
eter does not influence the Boltzmann conductivity below
insulator-metal transition point.

The percolation conductivity of dense molecular hyd
gen in the insulator-metal transition region is shown in Fig
to qualitatively agree with the experiment. Thus, an idea o
microscopic percolation can be actually instructive for u
derstanding of the insulator-metal transition in the stron
compressed dielectric liquid. Obviously, the theory based
a virtual molecular structure is limited to the vicinity of th
transition point, in particular, because hydrogen molecu
dissociate deep into the metallic state. While the meta
state is reasonably well understood,16 the transition is still a
subject of study.

In conclusion, we apply a microscopic percolatio
theory for the description of the insulator-metal transition
dense fluid hydrogen with a virtual molecular structure a
show that molecular bonding can still be consistent with
metallic properties.
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The possibility of ferromagnetic instability in a system with hopping between manganese cations
and oxygen anions has been investigated on the basis of the concept of strong
electron–electron interaction in one unit cell. A phase diagram for ferromagnetic ordering as a
function of the filling factors of the 2p6-shell of oxygen (np) and 3tg

6-shell of manganese
(nt) has been constructed. ©1998 American Institute of Physics.@S1063-7761~98!02703-6#
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1. INTRODUCTION

Strong electron–electron interaction in the same unit
is the cause of a considerable increase in the spin part o
magnetic susceptibility.1 It turned out, however, that th
electron–electron scattering amplitude at the Fermi surf
decreases with an increase in electron density,2 which makes
ferromagnetic ordering impossible throughout the reg
which can be studied in the gas approximation. These st
ments are confirmed by cluster calculations and in fact ap
only to s-states of electrons, which have only two intern
spin degress of freedom.

As follows from experimental data, the 4s-shell of pure
metallic manganese contains 0.6 electron per cell. There
the rest of the 3d-electrons completely fill the six-electro
t2g-shell, while theeg

4-shell, with four electron, contains onl
0.4 of oneeg-electron. It can be shown that the system ca
not be ferromagnetic at such a low concentration.

In compounds like MnO, a bivalent Mn21 cation has a
partially filled t2g-electron shell with five electrons that co
responds to a one-hole state if 2p6-shell of oxygen is com-
pletely filled. Since the partially filledt2g-shell contains an
odd number of electrons and the manganese oxide is
dielectric state atT.TN , it is natural to suppose3 that the
Hubbard energy fort2g-electrons is higher than the hoppin
energy between the manganese cation and oxygen anio

In the antiferromagnetic state of La31Mn31O3
22 the man-

ganese cation is in a trivalent state, so that the manganes
two holes in the six-electront2g-shell.

In the Ca21Mn41O3
22 antiferromagnetic compound th

manganese cation is in the tetravalent state, in agreem
with the suggestion about the presence of three holes in
t2g
6 -shell.4

If we denote bynt the number of holes in thet2g
6 -shell of

the manganese and bynp the number of holes in the
2p6-shell of O22 anions, the electroneutrality condition fo
La(12x)

31 Mex
21MnO3 is expressed as follows:

nt13np5x12, ~1!
6021063-7761/98/86(3)/6/$15.00
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where x,1 is the concentration of bivalent substitution
metal ions~Me! of the second group~Ca, Sr, Ba!.

As the number of oxygen holesnp changes from zero to
unity, the number of holes in cations,nt , changes from three
to zero.

2. PROBLEM STATEMENT AND GENERAL RELATIONSHIPS

In compounds with the perovskite structure, the m
probable hopping is between the transitional metal cati
which is at the center of a simple cubic unit cell, and t
nearest oxygen anions at face centers.

Let us assume that the hopping does not change the
projection so that the tunneling Hamiltonian is only dete
mined by one hopping integralt (r ) :

Ĥ5 (
r ,r8,s,h,n

t~r2r 8!@ d̂r ,s,h
1 p̂r8,s,n1H.c.#1 (

r ,s,h
@ed

2sH#d̂r ,s,h
1 d̂r ,s,h1 (

r ,s,n
@ep2sH# p̂r ,s,n

1 p̂r ,s,n .

~2!

Herem is the chemical potential,s56 is the spin index, and
H is the applied magnetic field. The crystal indexl takes
three values (h5xy,yz,zx) when thet2g-shell is filled and
three values (n5x,y,z) when thep-shell is filled.

In the ~Ln, Me!MnO3 compounds, triply degenerat
states of manganese cations overlap with three states of
gen anions, each of which is triply degenerate. Thus the
trix of hopping integrals has in the general case the form o
339 rectangle. If only hopping between nearest neighbor
taken into account, eacht2g-state overlaps with only the two
p-states of one of the two oxygen anions on the same stra
line. Introducing for convenience the notationfk5t@1
2exp(ipk)#, we present the matrix of tunneling transitions
Table I.

Thus, in the simplest approximation used in this wo
each state of manganese cations overlaps independently
the p-states of the four nearest oxygen cations. For this r
© 1998 American Institute of Physics
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TABLE I.

Atomic states px
(1) py

(1) pz
(1) px

(2) py
(2) pz

(2) px
(3) py

(3) pz
(3)

Mn—xy 0 fx 0 fy 0 0 0 0 0
Mn—yz 0 0 0 0 0 fy 0 fz 0
Mn—zx 0 0 fx 0 0 0 fz 0 0
en

g
s;
cu

en

n-

-
d
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etic

x-

ant

an

in-
ions

n

clic

to
son, the equations that determine the one-particle Gre
function split into three independent equations.

As noted above, the Hubbard energies for both man
nese and oxygen ions are the largest energy parameter
therefore assume that they are infinite to simplify our cal
lations.

Given this condition, solutions must be sought indep
dently for each integer change innt . At the same time, we
assumenp is no greater than unity.

3. INTERVAL OF n t BETWEEN ZERO AND UNITY

In the limiting case of infinite Hubbard energy, it is co
venient to express creation and annihilation operators
terms of X̂, i.e., operators of transition between empty~0!
and one-particle (us,l&) states:

d̂rs,l5X̂r
~0us,l! , d̂rs,l

1 5X̂r
~s,lu0! , ~38!

p̂rs,n5Ŷr
~0us,n! ; p̂rs,n

1 5Ŷr
~s,nu0! . ~39!

In calculating mean occupation numbersnp,d
(s) , we use

the simplest approximation2 with the excitation energy deter
mined by an averaged self-energy part, which is expresse
terms of so-called terminal factorsf p,d

(s) :

nd
~s!53 f d

~s! (
pl56

ap
~2l!nF~jp

~s,l!!, ~48!

np
~s!5 f p

~s!F2nF~ep!1 (
pl56

ap
~l!nF~jp

~s,l!!G , ~49!

wherenF(e) is the Fermi distribution function,

jp
~s,6 !56AS r

2D 2

1 f p
~s! f d

~s!tp
22sH2m,

ap
~6 !5

1

2 F16
r

jp
~s,1 !2jp

~s,2 !G ,
tp
25t2@22cos~px!2cos~py!#, m52~ep1ed!/2,

r 5ep2ed .

Taking into account the cubic symmetry, the terminal fact
can be expressed in terms of mean occupation numbe

one-particle states,n(s)5(
s

3

ns
(s) :

f l
~s!512(

s

3

ns
~ s̄ !2 (

sÞl

3

ns
~s!512n~ s̄ !2

2n~s!

3
. ~5!

Hereinafters̃52s56.
’s

a-
we
-

-

in

in

s
of

From these equations, we easily derive the spin magn
momentM p,d5n(s)2n(s̃) for bothp- andd-states. The pos-
sibility of ferromagnetic instability is determined by the e
istence of a singularity in the magnetic susceptibility:

detS 12~K01Ld!, 2 f dLd / f p

2 f pLp / f d , 32P02Lp
D 50. ~6!

Here we have introduced the following functions:

K05 (
p,k56

ap
~2k!nF~jp

~l!!5
nt

625nt
,

jp
~6 !56A~r /2!21 f t f ptp

22m, ~7!

P052nF~ep!1 (
p,k56

ap
~k!nF~jp

~l!!53
np

625np
,

Lp,d5 (
p,l56

H d

dtp
2 @ tp

2nF~jp
~l!!ap

~6l!#2nF~jp
~l!!ap

~6l!J .

~8!

All the functions depend on one parameter that is invari
under transformations of the quadratic symmetry group:

tp
252t2~22cospx2cospy!. ~9!

It is convenient to introduce the density of states for
‘‘empty’’ quadratic lattice:

r0~e!5 (
px ,py

d~e2cospx2cospy!,

after which all coefficients can be expressed in terms of
tegrals of the density of states and predetermined funct
of the dimensionless variablee.

4. INTERVAL OF n t BETWEEN UNIT AND TWO

Consider the situation whent2g-states resonate betwee
one- and two-hole states, whereas the number of 2p-holes in
the 2p6-shell of oxygen is still less than one (np,1).

One-particle statesâs
1u0&, b̂s

1u0&, and ĉs
1u0& have spin

1/2. The lowest two-particle states3A2 have spinS51:

âs
1b̂s

1u0& ~Sz5s!,
â↑

1b̂↓
11â↓

1b̂↑
1

&

u0& ~Sz50!.

~10!

The remaining six two-particle states are obtained by cy
permutationa→b→c→a.

States1E and1A1 with higher energies are not taken in
account.
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At finite magnitudes of applied magnetic field the var
tions of the terminal factors depend on variations of b
one-particle (nI) and two-particle (nII) occupation numbers
Taking into account the system symmetry under permu
tions of a-, b-, andc-states, we calculate variations of te
minal factors:

f 1
~s!5nII

~s!1nI
~s! , d f 1

~s!5dnII
~s!1dnI

~s! ,

f 2
~s!5nII

~0!1nI
~ s̄ ! , d f 2

~s!5dnI
~ s̄ !52dnI

~s! . ~11!

Thus, unlike the previous case of one-particle states,
need two independent equations for calculating one-par
and two-particle variations.

In order to derive these equations, let us multiply t
dominant part of the annihilation operator expansion

ârs5Ẑr5g1X̂r
~0,s,0us,s,0!1g2X̂r

~0,s̄,0us,s̄,0!

1g3X̂r
~0,0,sus,0,s!1g4X̂r

~0,0,s̄us,0,s̄ ! , ~128!

whereg152g351, g252g451/&, by an arbitrary linear
combination of conjugatedX-operators:

Ŷr5b1X̂r
~s,s,0u0,s,0!1b2X̂r

~s,s̄,0u0,s̄,0!1b3X̂r
~s,0,su0,0,s!

1b4X̂r
~s,0,s̄u0,0,s̄ ! . ~129!

By averaging separateT-products over states with
given temperature and chemical potential in the one-lo
approximation, we obtain an equation relating the tw
particle occupation numbersnII , Fourier components of the
virtual one-particle Green’s functionĜv(p), and terminal
factors f k(s), wherek51,2,3,4, and alsof p(s).

The matrix inverse of the one-particle Green’s functio
in turn, can be expressed in terms of terminal factorsf k ,
energy differencer 5ep2ed , and the sumep1ed522(m
1sH):

Ĝv
21~p!5S ~ iv2ed1!dk,n , 2gkf knx , 2gkf kny

2 f pnx* gn , iv2ep , 0

2 f pny* gn , 0, iv2ep

D .

~13!

Let us calculateT-products in the zero-loop approxima
tion ‘‘Hubbard I’’:

2^T̂~ Ẑr~t!Ŷr~t10!!&

5~g1b11g3b3!^X~s,sus,s!&1~g2b21g4b4!^X~A0uA0!&

5~g1b11g3b3!nII
~s!1~g2b21g4b4!nII

~0!

5T (
v,p;1<k,s<4

gkGv
~k,s!~p!bsf se

ivd. ~14!

Here d is a small positive number andf s is the terminal
factor.

By varying Eq.~14! with respect to magnetic field, w
obtain two equations. Under the condition

(
1<k<4

gkbk50
h

-

e
le

p
-

,

we obtain an equation independent of the magnitude of
plied magnetic field:

dnII
~s!~12K0!22K0dnI

~s!5d f 1
~s!~12K0!

1d f 2
~s!~11K0!50. ~15!

Here the electron~or hole! density lies in the interval 1,nt

,2 and the coefficients can be calculated at zero exte
magnetic field:

K05 (
p,l56

ap
~2l!nF~jp

~l!!52
nt21

42nt
,

jp
~6 !56A~r /2!21g2f t f ptp

22m, ~16!

f t5
42nt

18
, f p5

625np

6
, g253. ~17!

Under the conditiongk5bk , we have an equation for th
susceptibility:

dnII
~s!5d f 2

~s!1d f 1
~s!5@K01Ld# (

k51,2
gk

2d f k
~s!

1g2
f d

2 f p
Ldd f p2g2f D0sdH, ~18!

where the coefficientLd is given by the following genera
formula:

Ld5 (
p,l56

H d

dtp
2 @ tp

2nF~jp
~l!!ap

~2l!#2nF~jp
~l!!ap

~2l!J
5 (

p,l56
H d

dtp
2 @ tp

2nF~jp
~l!!ap

~2l!#J 2K0 , ~19!

D05 (
p,k56

ap
~2k!nF8 ~jp

~k!!,

ap
~6 !5

1

2 F16
r

Ar 214g2f t f ptp
2G . ~20!

The equation for the variations of oxygenp-states is derived
from the equation for occupation numbersnp similar to Eq.
~49!:

np
~s!5 f p

~s!F2nF~ep!1 (
pk56

ap
~2k!nF~jp

~s,k!!G . ~21!

The relation between the variations of the occupat
numbers and the variations of the terminal factorsf p

(s) is
derived from the general equation~5!:

dnp
~s!53d f p

~s!52Lp

f p

g2f d
(

k51,2
gk

2d f k
~s!

1@P01Lp#d f p2 f pR0sdH. ~22!

Its coefficients are calculated at zero magnetic field:

P05
np

f p
53

np

625np
, R052nF8 ~ep!1 (

p,l56
ap

~l!nF8 ~jp
l)!,

~23!
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Lp5 (
p,l56

H d

dtp
2 @ tp

2nF~jp
~l!!ap

~l!#2nF~jp
~l!!ap

~l!J
5(

p,l
H d

dtp
2 @ tp

2nF~jp
~1 !!ap

~l!#J 2P012nF~ep!. ~24!

Thus the system of three equations,~15!, ~21!, and~22!, de-
termines changes in the three terminal factors, in terms
which one can express the variations of all occupation nu
bers.

The solvability condition for the respective homog
neous equation system is the condition of ferromagnetic
stability. As a result, the condition of a phase transition to
ferromagnetic state is expressed in a simple form:

~32P0!@3K0~12K0!2Ld~113K0!#

23LpK0~12K0!50. ~25!

In this equation

K052
nt21

42nt
. ~26!

FunctionsP0 and Lp,d are the same as in Eqs.~7! and ~8!,
but with genealogical coefficients and terminal factors
fined in a different manner:

g253, g1
251, g2

251/2, f d5~42nt!/18,

jp
~6 !56Ar 2/41g2f pf dtp

22m. ~27!

The equation of state fornp has the same form as Eq.~2!.
The equation fornt is ~see Eq.~3!!

nt5119 f d (
p,l56

ap
~2l!nF~jp

~l!!. ~28!

The normal coordinates and excitation spectrum are de
mined by the same equations as in the previous section
with a factor f t and genealogical coefficientsgk defined in a
different manner:

g253, f t5
42nt

18
, f p5

625np

6
. ~29!

This equation relates energy parametersep anded . By elimi-
nating these variables using equations of state~12! and ~17!
in zero field, we obtain an equation for the magnetic ph
diagram in variablesnt andnp :

(
p,l56

ap
~2l!nF~jp

~l!!52
nt21

42nt
5K0 ,

np52 f pF2nF~ep!1 (
p,l56

ap
~l!nF~jp

~l!!G . ~30!

5. INTERVAL OF CONCENTRATIONS n t BETWEEN 2 AND 3

Experimental data indicate that in~La, Ca!MnO3 com-
pounds, the manganese cations have a positive charge
ing between13 and 14. Hence we conclude that in thi
material thed electron states of manganese resonate betw
3d3- and 3d4-states. According to the electroneutrality co
dition ~1!, these states correspond to the interval 2,nt,3 in
of
-

-
e

-

r-
ut

e

ng-

en

the hole representation, for which we have resonance
tween two- and three-particlet2g-states, whereas the occup
tion numbernp is still less than 1.

The lowest three-particle state hasS53/2 and is four-
fold degenerate in the spin projection:

âs
1b̂s

1ĉs
1u0&, Sz53s/2;

1

)

~ âs̄
1

b̂s
1ĉs

1u0&1âs
1b̂s̄

1
ĉs

1u0&1âs
1b̂s

1ĉs̄
1u0&),

Sz5
s

2
. ~31!

The three lowest triplet states with spin 1 are construc
from three different products of creation operator pairs~see
definition ~10!!.

The expansion in terms ofX-operators describing tran
sitions between two- and three-particle states with the low
energies is determined by three genealogical coefficients

ârs5X̂r
~0,s,su3s/2!1A2

3
X̂r

~A~yz,xz!us/2!1
1

)

X̂r
~0,s̄,s̄us̄/2! .

~32!

The expansion of two other annihilation operators is deriv
from Eq. ~32! by using the operation of cyclic permutation

At zero field, all mean occupation numbers and termi
factors can be expressed in terms ofnt , i.e., the mean num-
ber of holes per cell. Taking degeneracy into account,
have

9nII14nIII 51, 18nII112nIII 5nt ,

f t5
5nt26

36
. ~33!

To obtain the equation of state forH50, we express occu
pation numbers of three-particle states in terms of the o
particle Green’s function at coincidence points.

After summation with respect to the spin index, we o
tain the equation of state

nt5214 f K0 , K05 (
p,l56

ap
~2l!nF~jp

~l!!,

jp
~6 !56A~r /2!212 f pf ttp

22m. ~34!

The equations for variations of three-particle occupat
numbers,

dnIII
~3s/2! , dnIII

~s/2!52dnIII
~2s/2! ,

can be derived from the general equation for the mean va
of T-products of annihilation operator~32! for a linear com-
bination of three conjugate operators with arbitrary coe
cientsgs :

g5b5nIII
~3s/2!1g6b6nIII

~s/2!1g7b7nIII
~2s/2!

5T (
5<k,n<7

(
vp

gkGv
k,n~p!gnf n . ~35!
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By calculating matrix elements of the one-particle Gree
function using the general definition~13! for the inverse
Green’s function, we obtain the right-hand side of Eq.~35!:

g5b5dnIII
~3/2!1g6b6dnIII

~1/2!1g7b7dnIII
~21/2!5K0@g5b5d f 5

1g6b6d f 61g7b7d f 7#1~b•b! f dG. ~36!

If vector b is assumed to be orthogonal tob, i.e.,
(

5<k<7
gkbk50, we can obtain two equations that do not co

tain the magnetic field variation in explicit form.
The first equation is obtained under the conditio

g7b75g5b5 andb6b6522b5b5 :

dnIII
~3/2!53dnIII

~1/2! . ~37!

Assuming thatb650 andg7b752g5b5 , we obtain the sec-
ond equation:

~12K0!~dnIII
~3/2!1dnIII

~1/2!!22K0dnII50. ~38!

Variations of terminal factors can be expressed in terms
variations of occupation numbers:

d f 55dnIII
~3/2!1dnII , d f 65dnIII

~1/2! , d f 75dnIII
~21/2!2dnII .

~39!

Using the additional conditiondnIII
(21/2)52dnIII

(21/2) , we ob-
tain the reciprocal relations

dnIII
~3/2!5d f 51d f 61d f 7 , dnIII

~1/2!5d f 6 ,

dnII52d f 62d f 7 . ~40!

The variation of the virtual Green’s functiondG contains
three types of terms:

g5
2dnIII

~3s/2!1g6
2dnIII

~s/2!1g7
2dnIII

~2s/2!5@K01Ld#

3 (
k55,6,7

gk
2d f k

~s!1g2
f d

f p
Ldd f p2g2f dD0sdH,

~41!
s

-

s

f

where the coefficientsLp,d are determined by general equ
tion ~8!, and

D05 (
p,l56

ap
~2l!nF8 ~jp

~l!!,

ap
~6 !5

1

2 F16
r

Ar 214g2f t f ptp
2G . ~42!

Thus, we have obtained the same equations as
~14!–~16! but with different definitions of the quantities:

g253, f t5
5nt26

36
, g5

251, g6
25

2

3
,

g7
25

1

3
, K059

nt22

5nt26
. ~43!

The equation defining the variation ofnp is similar to Eqs.
~18! and ~19!:

dnp
~s!53d f p

~s!5Lp

f p

g2f d
(

k55,6,7
gk

2d f k
~s!1@P01Lp#d f p

2 f pR0sdH. ~44!

All the coefficients can be calculated at zero magnetic fie

P05
np

f p
53

np

625np
,

R052nF8 ~ep!1 (
p,k56

ap
~k!nF8 ~jp

k)!. ~45!

Thus, we have a system of four equations that yields
criterion for onset of ferromagnetic ordering:
detS 12g5
2~K01Ld! 4/32g6

2~K01Ld! 12g7
2~K01Ld! 2g2f dLd / f p

21 12 21 0

12K0 2 11K0 0

2g5
2f pLp /g2f d 2g6

2f dLp /g2f d 2g7
2f p /g2f d 32P02Lp

D 50. ~46!
-

m-
Calculating the determinant yields

~32P0!@3K0~12K0!2Ld~213K0!#23LpK0~12K0!50,
~47!

where

K059
nt22

5nt26
, f t5

5nt26

36
, g252,

nt5214 f t (
p,l56

ap
~2l!nF~jp

~l!!. ~48!
6. DISCUSSION AND CONCLUSIONS

An important difference between the situations atnt

,1 ~Eq. ~6!! and at 3.nt.1 ~Eqs.~25! and~47!! is that at
nt,1 condition~6! of ferromagnetic ordering for small num
bers of particles, whenK0→0, can be satisfied only whenLd

or Lp are of order unity.
In the other two cases~2.nt.1 and 3.nt.2! ferro-

magnetic ordering will necessarily occur even at small nu
bers of quasiparticles, i.e., whenK0!1. The ferromagnetic
instability vanishes atK0'Lt , as follows from Eqs.~25! and
~47! ~Fig. 1!.
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It is convenient to express coefficientsLp,d, which are
proportional to the scattering amplitudes ofp- and
d-excitations with opposite spins, in terms ofK0 andP0 :

Ld5wd2K0 , Lp5wp2P012nF~ep!. ~49!

The parameterswp,d can be represented as a sum of to
derivatives

wp,d5 (
p,l56

d

dtp
2 @ tp

2nF~jp
~l!!ap

~6l!#. ~50!

They can easily be calculated for the flat-band model, w
the density of states fortp

2 is constant. For example, when th
lowest subband is filled, min$jp

(2)%,0, but jp
(1).0 for all

momentap, we have in the limitT50

wp,d5
1

2 H 17
r

Ar 2116g2t2f pf t
J . ~51!

Hence, at all finite values of the dimensionless param
ur /tu, wp,d has a finite positive value no greater then unit

FIG. 1. Magnetic phase diagram for thep–d-electron subsystem atT50
calculated in the flat-band approximation. The regions of ferromagnetic
dering are hatched. The lines of electroneutrality correspond to the fol
ing materials: 1! pure LaMnO3; 2! pure CaMnO3; 3! La0.1Ca0.9MnO3, i.e., at
critical concentrationx5x* '0.9.
l

n

er

We therefore conclude that the two scattering amplitu
Lp andLd decrease from the positive numberwp,d to nega-
tive @211wp,d# as the chemical potential increases.

In addition to this conclusion, note also that at smallK0

the left-hand sides of Eqs.~25! and~47! are negative. There
fore ferromagnetic instability is inevitable when the conce
tration nt deviates slightly from roughly 1 or 2 to the hig
side, since in these conditions the system resonates betw
magnetic~Hund! states~Fig. 1!.

With increasing concentrationsnp and nd, the signs of
scattering amplitudesLp andLd change, which correspond
to a transition across the boundary of ferromagnetic insta
ity.

This phenomenon was observed when trivalent lant
num was replaced with a bivalent calcium cation
La12xCaxMnO3. As the charge of the MnO3 complex in-
creased, i.e., the concentrationx rose, the ferromagnetic or
dering temperature passed through a broad peak shifted
wards the region of concentrations aboutx'1/4. At higher
concentrations,x.1/4, the Curie temperature decreased ra
idly, and vanished byx.1/2.

These effects are in qualitative agreement with the ph
diagram in Fig. 1.

When crossing the electroneutrality lines 1 to high
concentrations of bivalent cations, we approach the bound
of ferromagnetic instability. In the long run, atx>x* the
electroneutrality line 1 turns out to lie partially outside th
ferromagnetic instability region, and twice crosses the fer
magnetic ordering boundary.

As can be seen in Fig. 1, the critical concentrationx*
'0.9 is higher than the measured valuex* '0.5.

1E. C. Stoner, Proc. R. Soc. London165, 372 ~1938!.
2J. Hubbard and K. P. Jain, J. Phys. C2, 1650~1968!.
3J. C. Slater, Phys. Rev.82, 538 ~1951!.
4J. Goodenough, Phys. Rev.100, 564 ~1955!.
5R. O. Zaitsev, Zh. E´ ksp. Teor. Fiz.70, 1100~1976! @Sov. Phys. JETP43,
574 ~1976!#.

Translation provided by the Russian Editorial office

r-
-



JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS VOLUME 86, NUMBER 3 MARCH 1998
Dynamic model of a double chain with hydrogen bonds
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The evolution of a system of two interacting molecular chains joined by the collective field of an
adiabatically rapidly moving subsystem of light~hydrogen! atoms is considered. The motion
of all three subsystems is simulated directly on the basis of the equation of the dynamics of an
open system. An ordered structure, as well as its collective fluctuations, are obtained as a
result of self-organization of the system in the presence of noise and relaxation. The possibilities
of developing such a description for the direct simulation of DNA molecules are discussed.
© 1998 American Institute of Physics.@S1063-7761~98!02803-0#
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1. INTRODUCTION

According to current ideas, the static or averaged str
ture of biological molecules by itself does not complete
determine their biological function. In particular, the proce
of transcription is a typical example, in which the dynam
of the deoxyribonucleic acid~DNA! molecule have a signifi-
cant bearing on its function, since the double helix must h
local openings in order to expose the coding bases to
chemical reaction.

This is, of course, a complex phenomenon involvi
RNA-polymerase, which may utilize an energy-localizati
mechanism as it moves along the DNA molecule and
local openings in the double helix.1 The DNA denaturation
process, which is simpler in design and has been stu
extensively by experimental means, exhibits some simila
to transcription and is a convenient and important process
simulating the dynamics of such complex molecules
DNA.2,3

The dynamic simulation of the evolution of DNA mo
ecules has aroused increasingly intense interest in re
years. In this context two principal areas of research can
identified:

a! descriptions based on relatively simple phenome
logical models, which can be reproduced numerically a
investigated analytically;3–11

b! direct numerical simulations which take into accou
the motion of all the atoms comprising the DN
molecule.12–19

In case~a! the so-called simple models are employ
~the term ‘‘simple model’’ was introduced in the review
Ref. 20 and has become the standard term in the literatu!,
in which some details of the dynamics in the usual mec
nistic sense of the word are lost. A considerable part of
structural information regarding the DNA molecule is al
lost. However, this is the price for being able to simulate
surrounding physiological conditions characteristic of t
molecule instead of treating it as an isolated structure.

This is an extremely important point. First, it corr
sponds to the fundamentally biological essence of the p
lem ~although it is investigated by physical methods!. Small
6081063-7761/98/86(3)/6/$15.00
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changes, for example, in the chemical composition of
medium, lead to radical reorganization of the dynamics
the biomolecule and its structure. Second, from the phys
standpoint, the molecule becomes an open system and
quires a description by the methods of nonequilibrium sta
tical physics. This is already a matter of kinetics, rather th
dynamics per se.

In case~b! the macromolecule is investigated by molec
lar dynamics with consideration of its complete atomic co
position. Since one base pair in a DNA molecule conta
about 60 atoms, a simulation can be performed only
small fragments of it and very short intervals of real physi
time ~less than 1029 s!, which are significantly shorter tha
the characteristic times of such processes as replica
transcription,1 and denaturation.2 However, some details o
the molecular motion manage to be manifested even wi
such short time intervals. They provide information on t
intramolecular dynamic cooperative movements of the
oms, which cannot be obtained by any other method
which underlies slow and large-scale biologic
processes.12,18

One recent promising direction in the development
the numerical simulation of DNA is the retention of as fe
degrees of freedom in the molecular-dynamics equation
possible to achieve a compromise between maximum s
plicity and preservation of the specific properties of t
system.21 It should be supplemented by a compromise
taking into account the features of the surrounding phy
ological medium.22,23

The specific properties of DNA include the presence
hydrogen bonds which join the two molecular chains to o
another. Many dynamic properties of the system~primarily
the fluctuational properties associated with the transpor
nonlinear excitations along it! are determined by hydroge
bonds. Qualitatively, the existence of such bonds is a con
quence of the rapid motion of the light hydrogen subsyst
superposed on the adiabatically slow movements of
heavy molecular complexes making up the chains.

In a first approximation the heavy molecules move in
certain collective~time-averaged! potential created by the
hydrogen atoms. This conception permitted the construc
© 1998 American Institute of Physics
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609JETP 86 (3), March 1998 A. A. Samoletov and A. É. Filippov
of a self-consistent phonon theory of such motion.18,19 The
approximation is valid when the system is in a state close
one of its stationary states.

However, the most important problem in the theory is
describe the significantly nonlinear dynamics of DNA duri
the cleavage of bonds and the local opening of fragment
the double helix. In these extreme configurations the mo
of the hydrogen subsystem cannot be considered ergo
and the time-averaged potentials poorly reflect the insta
neous distribution of the forces in the dissociated fragme

The use of time-averaged potentials is based on the
lytical tradition, within which finding a rough descriptio
involved transforming the problem, which originated as
many-particle dynamic problem of the motion of an e
semble of interacting subsystems, into a particular c
tinuum description on the basis of collective fields~densi-
ties!. The possibilities currently offered by comput
technology make it possible to numerically simulate fai
complicated systems with a long-range interaction and
ferent characteristic rates for the processes occurring in
subsystems comprising them.

The continuum densities and the effective potentials
sociated with them are reconstructed in such ana posteriori
approach. This makes it possible, in principle, to verify t
results of the continuum theories and to reveal the struct
features of the system that were totally lost in the rou
description. The use of simple bare potentials even prov
a definite gain both in the speed of the calculations and in
volume of the system accessible to simulation.

A DNA molecule contains two types of hydrogen bon
involving two or three hydrogen atoms. The most conveni
objects for the theory, however, are artificially created po
mers, for example, poly-TATA, or the corresponding fra
ments of natural molecules.24,25In a numerical simulation the
complication associated with an arbitrary sequence of ba
is insignificant, but it leads to a large number of dynam
scenarios. To demonstrate the most general features o
model, in this paper we present the results of a simulation
the poly-TATA system.

The purpose of the work is to obtain a working model
a double chain stabilized by the rapid motion of the lig
subsystem which qualitatively reproduces the most gen
features of a real DNA molecule and to carry out a prelim
nary investigation of it. The formulation of the model
given in Sec. 2.

The main result of this work is a demonstration th
direct dynamic stabilization of the double helix by the rap
motion of the light subsystem not only is possible, in pr
ciple, but also provides for a speed in the model that is s
ficient for simulating large molecules~with 103 or more base
pairs! over long time intervals. The model thus devised e
sures the global dynamic stability of the system under inv
tigation under one set of conditions and opens up the po
bility for a model description of thermal and chemic
denaturation under another set of conditions. The results
discussed in Sec. 3.
to
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2. FORMULATION OF THE MODEL

Let us consider a model system consisting of a seque
of identical groups of particles, each of which contains p
ticles of two kinds~two particles of each kind! having dif-
ferent masses:m25102m1. We write the equations of motion
in the form of a system of stochastic differential equation

d2r i /dt25S 2gdr i /dt2(
j

]U~r i2r j !/]r i

1j~r i ,t ! D /mi , ~1!

where the final temperature of the system is modeled by
simultaneous addition of an additive noise, i.e., a generali
delta-correlated Gaussian random field26,27 ~white noise!

^j~r ,t !&50, ^j~r ,t !j~r 8,t !&52Dd~r2r 8!d~ t2t8!
~2!

and the relaxation termsg dr i /dt. The ratio of the noise
intensityD to the relaxation rateg can be varied by assign
ing the effective temperatureT;D of the system.

This is the simplest form of the equations of the dyna
ics of an open system. As we have already noted, the dyn
ics are important for understanding the biological function
the molecule, for which, in turn, the surrounding physiolog
cal medium~its composition and temperature! is important.
A limiting description in terms of the system of stochas
differential equations~1! and ~2! is obtained, if there is a
clear-cut hierarchy of characteristic time scales for the
tramolecular processes and the interaction with the medi

The real values ofg, U, and j within the molecular
system are different. In the general case the concrete s
ture of the noise depends on the external environment of
molecule. In particular, a DNA molecule is surrounded
water molecules~where the decisive structural role also b
longs to hydrogen bonds!, which transform the externa
white noise acting on the DNA molecule into noise wi
finite memory times. To obtain equations of types~1! and~2!
that take into account these effects, the system must be
panded by including the corresponding molecules in it.

Strictly speaking, the potentialsU are not potentials in
the mechanical sense, but are nonequilibrium thermo
namic potentials. Some aspects of this question were
cussed in Refs. 22 and 23 in connection with the kinetics
DNA. It was shown that an approach based on stocha
equations like~1! and ~2! is applicable for describing the
kinetics of a DNA molecule under not excessively restricti
conditions. The potentialsU then incorporate not only the
direct interaction between the atoms, but also the influe
of the surrounding physiological medium, the partial scre
ing, etc. These nonequilibrium potentials were obtained in
explicit form within the model in Ref. 3.

The solution of the system of stochastic equations~1!
and ~2! has its own special features, which have a bear
both on the purely mathematical structure of t
problem26–29 and, in part, on the investigation of the mod
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FIG. 1. Set of successive positions of th
molecules comprising a fragment of 20
elementary units of a double chain~the
ordinary and large points correspond t
the light and heavy molecules! accumu-
lated over the course of the time interva
tmin,t,tmax described in the text. The
inset shows the current positions of th
molecules of the same fragment of th
structure at the timet5tmax.
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in numerical experiments. We, therefore, dwell briefly on
qualitative description of the variation of the expected so
tions with time.

Introducing the Hamiltonian

H5(
j , i

U~r i2r j !1(
i

pi
2/2mi ,

we write system~1! in the form

dr i /dt5]H/]pi , dpi /dt52gpi /mi2]H/]r i1j.
~3!

The corresponding Fokker–Planck equation has the form

]r/]t1$H,r%5(
i

g@]~pir!/]pi #/mi

1D(
i

@]2r/]pi
2#. ~4!

Equation~4! has a stationary solution of the Gibbs type

r05exp@2bH#, ~5!

if the Einstein relation holds, i.e., if

D5gkT, b51/kT. ~6!

The distribution ofr0 can clearly be factored into velocit
and coordinate distributions.

The evolution to this distribution proceeds in such
manner that at first a Maxwellian velocity distribution
established,20,23and then slower Smoluchowski diffusion o
curs in the configuration space of the system. This proces
described either by the Kramers equation for a probab
density distribution20 or by the system of stochastic equ
tions

gdr i /dt52]H/]r i1j. ~7!

The latter description is closer to the essence of the pre
work. The Boltzmann distribution corresponds to averag
of the noisej in all events, while in a numerical experime
~as well as in a physical experiment! we investigate a single
event.
-

is
y

nt
g

Over long times noise leads to a stationary sequenc
the form of a Markov chain, whose states are station
states of the deterministic part of system~7!,28 permitting
observation of the corresponding transitions.

In the case under consideration such transitions t
place between two intuitively expected states of hydrog
~see below!, as well as between nonlinear excitations in t
chains of heavy bases that are difficult to predicta priori. As
the temperature~the noise intensity! increases, this picture is
destroyed,29 and the double chain dissociates. Information
a particular system is contained in the structure of the po
tials U(r i2r j ) and can vary.

In the context of the present work stability is importan
When the noise is not excessively intense, the set of parti
obeying the equations of the model spontaneously form
necessary configurations without alteration of any of
other degrees of freedom~the vibrational and rotational de
grees of freedom, the possibility of denaturation, etc.!. The
latter was ensured by the following choice of the potenti
U(r i2r j ):

1! the Coulomb potentials regularized atur i2r j u→0
were taken to describe the attraction of the hydrogen ato
to the two heavy molecules within one segment@U1(r0

2r1) andU1(r02r2), respectively# and the repulsion of the
heavy molecules from one anotherU2(r12r2);

2! the interaction of the neighboring molecules in ea
of the two chainsU2(r1,22r1,28 ) was chosen in the form o
the isotropic potential

U2~r1,22r1,28 !5U2~ ur1,22r1,28 u!

52ur1,22r1,28 u2~a22ur1,22r1,28 u2/2!,

which has a minimum at a certain distanceur1,22r1,28 u5a
Þ0 between them~which essentially assigns the character
tic spatial scale of the problema[1 along the chain!;

3! the radius of the skeletons at which the attraction of
the hydrogen atoms to the molecules in the chains gives
to repulsion, which assigns the second~in the transverse di-
rection to the chains! spatial scale of the problem, was mo
eled by replacing the purely Coulomb potential byU1(r0

2r1)5U1(ur02r1u)5(12s/ur02r1u)/ur02r1u.



-
e.
ts

611JETP 86 (3), March 1998 A. A. Samoletov and A. É. Filippov
FIG. 2. Typical variations of the coordi-
natesyj (t) for motion of the system that
is steady with time. The motion of four
molecules making up an arbitrarily se
lected internal segment in the structur
The points correspond to the movemen
of the light atoms.
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3. DISCUSSION OF RESULTS

Some results of the investigation of the evolution of t
model system are summarized in Figs. 1–5. The relative s
plicity of the model permits direct observation of the co
certed movements and fluctuations of the double chain
heavy molecules stabilized by the rapid motion of the lig
atoms on the computer screen.

Figure 1 gives a qualitative representation of the char
ter of this motion. It shows a set of successive positions
the molecules comprising a fragment of 200 base pairs.
ordinary and large points correspond to the light and he
molecules. This image was accumulated over the cours
the time intervaltmin,t,tmax, which was selected so that th
initial time tmin would be significantly longer than the tim
needed to achieve a stationary state~in the sense discusse
above! after ‘‘activation’’ of the system at the timet50.

More specifically, Fig. 1 presents 20 events in the dis
bution yj (t) for j 50, 1, 2, which were obtained with a
interval of 50 elementary steps ofDt50.02 between two
successive images fortmin553104

•Dt. The inset presents
the current position of the molecule in the same fragmen
the structure at the timet5tmax5tmin1103Dt5tmin120. The
difference between the patterns of motion of the fast a
slow subsystems is directly visible.

Figure 2 shows the motion of the system in significan
longer time intervals~of the order of 7.53104Dt). Here typi-
cal variations of the coordinatesyj (t) for motion of the sys-
tem that is steady with time are shown for the case of f
molecules~two light and two heavy! comprising an arbi-
trarily selected internal complementary pair in the structu

The points in Fig. 2 correspond to the motion of t
internal light atoms. It is easy to see that both the quasip
-
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odic fluctuations of the slow subsystem and the intermitte
in the motion of each light atom gravitate first to one a
then the other chain.

All these motions can be characterized quantitatively
ing the correlation functions

G~ j ,i ;t !5^yj~0!yi~ t !&2^yj~ t !yi~ t !&

5E dt8yj~ t81t !yi~ t8!/T2^yj~ t !&^yi~ t !&, ~8!

calculated for both subsystemsj ,i 50,1;2,3.
The functions

G~0,0;t !5^y0~0!y0~ t !&2^y0~ t !&2,

G~2,2;t !5^y2~0!y2~ t !&2^y2~ t !&2.

are presented in Figs. 3a and 4a, respectively, as exam
The function G(2,2;t) has a clearly expressed structur
which is associated with the existence of a characteristic t
scale corresponding to fluctuations of the slow subsystem

The existence of this scale is confirmed by the prese
of characteristic extrema of the Fourier transform of th
function

G~2,2;v!5E dt exp~ ivt !G~2,2;t !/2p i , ~9!

which is shown in Fig. 4b.
The values of6v in the figure are normalized to 100%

and the interval between the extrema in dimensionless u
is ;0.03. UnlikeG(2,2;t), G(0,0;t) is scarcely structured
and, as is seen from Fig. 3b, where this function is rep
sented in semilogarithmic coordinates, decays exponent
as t increases.
FIG. 3. The correlation functionG(0,0;t)
5^y0(0)y0(t)& 2 ^y0(t)&25*dt8 y0(t81t)
3y0(t8)/T2^y0(t)&2 in ordinary ~a! and
semilogarithmic~b! coordinates.
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FIG. 4. The correlation functionG(2,2;t)
5^y2(0)y2(t)&2^y2(t)&2 plotted directly as
a function of time~a! and using the Fourier
transform G(2,2;v)5*dt exp(ivt)
3G(2,2;t)/ 2p i ~b!.
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The intermittency in the motion of each light atom co
responds to the intuitively expected mechanism of bond
between the chains, which is specified by the dynamics
the fast subsystem. The particles, i.e., the mediators of
interaction, alternately spend a relatively long time near e
of the chains and thereby create the desired charge-med
bonding on the average. This, in turn, means that a state
a displaced position for a light atom should be energetic
preferable. The effective potential for it is determined by t
mutual adjustment of all the forces of the problem, includi
the balance between the noise and relaxation.

If the sum of the interaction potentialsUk(r i2r j ;t) at
the arbitrary moments in timet

Ueff~r i2r j ;t !5U1~r02r i ;t !

1U1~r02r2 ;t !1U2~r12r2 ;t !, ~10!

is formally calculated, we find thatUeff(r i2r j ;t) also has a
very large spread because of the significant random com
nent in the variabler0(t).

Figure 5 presents a typical distribution of the interacti
energyUeff(r i2r j ;t), which was calculated for an arbitraril

FIG. 5. Typical distribution of the interaction energyUeff(r i2r j ;t) for an
arbitrarily selected internal segment of the structure as a function of
instantaneous coordinate of one of the hydrogen atomsy0(t). The heavy
curve shows the effective double-well potential obtained as a result of
eraging over a time intervalT57.53104

•Dt.
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selected internal segment of the structure and plotted a
function of the instantaneous coordinate of one of the hyd
gen atomsy0(t).

The significance of the role of the random component
r0(t) in shapingUeff(r i2r j ;t) is revealed by the spread o
the points in this figure.

The effective double-well potential sought is obtain
only as a result of averaging over a sufficiently long tim
interval T@Dt. In particular, Fig. 5 shows a set of 150
successive events with the resultUeff(r i2r j ;t) calculated
with an interval of 50 elementary steps ofDt50.02 between
one another. The result of the averaging overT57.5
3104Dt51.53103 is illustrated by the thick solid curve.

The results obtained provide evidence that the work
model presented in this paper of a double chain stabilized
the rapid motion of the light subsystem reproduces both
most general features of a real DNA molecule and the av
aged characteristics of the system expected on the bas
the conventional adiabatic approximation.

Direct dynamic stabilization of the double chain, whic
does not resort to such an approximation, provides fo
speed in the model that is sufficient for investigating lar
molecules over long time intervals.

It imparts global dynamic stability to the system und
investigation at a relatively small noise intensity~tempera-
ture! and opens up a possibility for describing thermal a
chemical denaturation when the intensity of the external d
turbances is increased.

One of us~A. S.! thanks M. Peyrard for bringing this
problem to his attention, as well as for the hospitality pr
vided during his stay in the Ecole Normale Supe´rieure de
Lyon ~France!.
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A nonlinear theory is presented for the formation of hexagonal optical structures in a
photorefractive medium equipped with a feedback mirror. Oppositely directed beams in
photorefractive crystals are unstable against the excitation of sideband waves. It is shown here that
as this instability evolves to its nonlinear stage, the three-wave interaction between weak
sideband beams does not stabilize it, but rather leads to explosive growth of the amplitudes of
beams whose transverse wave vectors form angles that are multiples ofp/3. As a result,
sideband beams at these angles are found to be correlated. A range of parameters is found in which
four-wave interactions saturate the explosive instability, which explains the appearance of
stable hexagons in the experiment. Outside this region, nonlinearities of higher order saturate the
explosive instability, and the process of hexagon generation must be studied numerically.
Matrix elements are obtained for the three- and four-wave interactions as functions of the distance
to the feedback mirror, and an equation for the time evolution of the sideband wave
amplitudes is derived that describes the hexagon generation. A comparison is made with
experimental results for the photorefractive crystals KNbO3 and BaTiO3. © 1998 American
Institute of Physics.@S1063-7761~98!02903-5#
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1. INTRODUCTION

Oppositely directed optical beams passing through n
linear media often exhibit transverse instability against
excitation of waves at small angles to the primary propa
tion direction and the generation of transverse hexag
shaped optical structures.1–5 This instability is caused by
positive feedback between the counterpropagating bea
and is absolute in nature. In photorefractive crystals s
phenomena have been especially well-studied,6–9 due to the
extreme ease with which the evolution of the transverse
stability and formation of regular structures can be observ
Characteristic times for the creation of these structures ra
from tenths to tens of seconds. Typical nonlinear leng
within these crystals, over which the amplitude of the lig
beams changes appreciably, are several millimeters, and
intensities of the pump beams required to generate them
achievable using cw lasers.10

Until recently, theoretical studies of the transverse ins
bility concentrated mostly on calculating threshold con
tions for the generation of transverse optical structures. T
was first done for Kerr media,11 followed by threshold cal-
culations for the photorefractive crystals KNbO3 and BaTiO3

equipped with feedback mirrors,12 and the crystals LiNbO3
and LiTaO3 illuminated by oppositely directed pump beam
but with no feedback mirror.13 The crystals KNbO3 and
BaTiO3 are the best ones to study from an experimental p
of view. When these crystals are equipped with feedb
mirrors, it is found that stationary hexagonal structures fo
with an instability threshold that is in rather good agreem
with theoretical predictions.6,8,12In Ref. 12, Honda and Ban
erjee found the threshold by assuming that the instability w
aperiodic, i.e., the imaginary part of the instability grow
6141063-7761/98/86(3)/14/$15.00
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rate equaled zero at the threshold of the instability~if this
were not the case, moving optical structures would be se
Experimentally, such a motion can only be produced by m
matching the directions of the oppositely directed bea
slightly!. In other words, the frequency detuning betwe
pump and sideband waves is assumed to be zero at th
stability threshold.

Above threshold, the instability leads to generation
weak optical beams at small anglesu5uk'u/k0 to the pump
beams, wherek0 is the wave vector of the pump beams a
uk'u is the transverse component of the excitation beam w
vector. For pumping slightly above threshold, the on
beams generated had wave vectors in a narrow layer aro
uk'u.k0' , where the instability growth rate is a maximu
~herek0' is the value of the transverse wave vector cor
sponding to maximum gain!. Thus, the initial stage of the
evolution of the instability involves the creation of annul
structures~in the plane perpendicular to the pump bea!
with amplitudes that decay exponentially with time. The d
tribution of intensity along the beam at this stage is arbitr
and is determined by fluctuations in the medium. This the
is linear in the amplitudes of the weak beams, and there
cannot describe the subsequent evolution of the instab
which leads to the formation of regular hexagonal opti
structures. These structures arise from nonlinear interact
between the weak optical beams. The task of this paper
derive a theory of this interaction for photorefractive KNbO3

and BaTiO3 crystals equipped with a feedback mirror. Th
small parameter used in the theory is the amplitude of
sideband waves normalized by the square root of the in
sity of the pump beams. Since the instability is aperiod
three-wave interactions between optical beams whose tr
verse wave vectors make angles with each other that
© 1998 American Institute of Physics
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multiples ofp/3 become important as the instability evolv
toward its nonlinear stage. It is shown here that this inter
tion does not stabilize the instability, but rather leads to
plosive growth in the amplitudes of the weak sideba
waves, as a result of which hexagonal structures form. T
can be understood from the following example. Let us
sume that as a result of the evolution of the linear instabi
three weak beams are excited with wave vectorsqj

5(k0 ,k' j ), j 51, 2, 3, equal real amplitudesA, and trans-
verse wave vectorsk' j that make angles ofp/3 with each
other. The linear instability theory of Ref. 12 implies th
three other beams with the transverse wave vector2k' j will
also be excited in the system at the same time, and six be
with 2k0 : q5(2k0 ,6k'1,2,3). The amplitudes of these
waves all equalA.

It will be show below that the evolution ofA(t) is de-
termined by the following equation:

]A

]t
5n0A1UA2, ~1!

wheren05nk0'
is the instability growth rate at its maximum

point uk'u5k0' and U is the matrix element for the three
wave interaction. SettingAu t505A0 and integrating this
equation gives

A5
A0n0

~n01UA0!e2n0t2UA0
, ~2!

This expression reveals that there exists a timetcr.0 at
which the amplitudeA goes to infinity when the condition
A0U.0 holds. This is an example of a so-called explos
instability, for which the solution becomes singular at a fin
time. Thus, a fundamental feature of this problem is t
three-wave processes lead to correlations between pertu
tions whose transverse wave vectorsk' make angles with
one another that are multiples ofp/3. These correlated per
turbations generate hexagons in the plane of transverse w
vectorsk'. In this case there is no correlation between d
ferent hexagons, and the interaction between them is sm
Four-wave and higher-order wave processes stabilize the
stability, and also suppress the generation of other hexag
with smaller amplitudes~i.e., those hexagons which begin
grow after the primary one!. Thus, hard excitation of hexa
gons takes place until amplitudes are reached at which
excitation is stabilized by nonlinearities of fourth and high
order. This hard excitation of hexagons is the analog o
first-order phase transition.

A more general equation, which describes the evolut
of weak beamsAk with transverse wave vectork, will be
derived below~here and below the sign' will be omitted!,
taking into account three- and four-wave interactions:

]Ak

]t
5n0Ak1

1

2
U (

k11k25k
Ak1

Ak2

2
1

3! (
k11k21k35k

T2k k1k2k3
Ak1

Ak2
Ak3

, ~3!

whereU, T2kk1k2k3
are the matrix elements of the three- a

four-wave processes evaluated on the surfaceuku5k0' .
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Since linear instability theory predicts the growth of pertu
bations within the thin ringuku.k0' , in summing in Eq.~3!
it is sufficient to retain only those transverse wave vect
whose magnitude corresponds to the maximum linear gro
rate, i.e.,uku5k0' . Thus, Eq.~3! is essentially a Laudau
expansion in the amplitudeAk of the growing linear modes
~see, e.g., Ref. 14!.

Note that the applicability of Eq.~3!, i.e., the possibility
of limiting the treatment to three- and four-wave process
assumes that the nonlinearity is small. For this to be true
general, the matrix elementU is required to be small inde
pendent of how far above threshold the system is. In
theory of phase transitions this corresponds to a first-or
phase transition that is close to a second-order phase tr
tion by virtue of the smallness of the order parameter disc
tinuity. In photorefractive crystals, the matrix elementU is
not particularly small; however, the matrix elementT2kk1k2k3

contains a rather large numerical factor which justifies
existence of a range where Eq.~3! is applicable whenever the
total contribution of four-wave processes can provide b
saturation of the explosive instability and stability of the s
tionary hexagonal lattices. In what follows, a range of p
rameters will be found in which such saturation and stabi
are actually achieved, and the results of analytic four-wa
theory will be compared with a numerical experiment th
takes into account wave processes of higher order. As a
sult, it will be shown that the analytic theory describes t
process of hexagon generation in a qualitatively correct m
ner, but that the stationary amplitudes it predicts differ
roughly a factor of 2 from those obtained by the numeri
experiment. Thus, higher-order wave processes lead to
important renormalization of the hexagon amplitudes. T
numerical calculations also show that when a range of
rameters is deliberately chosen for which four-wave the
cannot saturate the explosive instability, the hexagons
stabilized at larger amplitudes, i.e., for stronger nonlinear

The plan of this paper is as follows: in Sec. 2 nonline
equations are derived that describe the evolution of sideb
beams in photorefractive media with a feedback mirror, a
a general boundary value problem is formulated for solv
these equations. In Sec. 3 the linear theory of transverse
stability is investigated by linearizing this boundary val
problem. As a result, the threshold condition is found for t
instability, along with eigenvectors for the direct an
Hermitian-conjugate linear boundary value problems. In S
4 expressions are obtained for the matrix elementU of the
three-wave interaction. The fact that this matrix element w
turn out to be nonzero is of fundamental importance. In S
5 the overall amplitude equation~3! is derived, along with an
expression for the four-wave interaction matrix eleme
T2kk1k2k3

. For photorefractive crystals like KNbO3 and

BaTiO3, the matrix elementsU andT2kk1k2k3
turn out to be

purely real. In Sec. 6 an equation is found that describes
time evolution of the hexagon intensity, and the hexag
stability is investigated. This analysis makes it possible
determine the range of parameters in which the four-w
interaction is sufficient to stabilize the growth of the hex
gons. In Sec. 7 the generation of hexagons is investiga
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numerically, taking into account higher-order nonlineariti
and the theoretical results are compared with experime
results for the photorefractive crystals KNbO3 and BaTiO3.
In the last section, all of these results are summarized.

2. FUNDAMENTAL EQUATIONS

Assume that a pump light waveF0 exp@i(n0k0z2v0t)#
propagates along thez axis in a photorefractive crystal alon
with an oppositely directed waveB0 exp@2i(n0k0z2v0t)#
arising from reflection by a feedback mirror. HereF0(z),
B0(z) are complex wave amplitudes that vary slowly withz,
k0 is the wave vector of the light waves in vacuum,v0 is
their frequency, andn0 is the index of refraction of the crys
tal. For simplicity we will refer to both waves as pum
waves. We denote the distance between the back face o
crystal and the feedback mirror byL and the length of the
crystal along thez axis by l , and set the coordinate of th
front face of the crystalz50 ~see also the experiment setu
in Refs. 8 and 12!. Consider perturbations of the pum
beams in the form of weak sideband waves, and write
total amplitudes of the beams in the form

F exp@ i ~n0k0z2v0t !#5F0 exp@ i ~n0k0z2v0t !#

3F11(
k

exp~ ik–r'!Fk~z,t !G ,
~4!

B exp@2 i ~n0k0z2v0t !#5B0 exp@2 i ~n0k0z2v0t !#

3F11(
k

exp~ ik–r'!Bk~z,t !G ,
where k5(kx ,ky) is the transverse wave vector in thexy
plane,r' is the spatial coordinate in this plane, andFk , Bk

are amplitudes of the sideband waves normalized by the
plitudes of the pump waves. Assume that the polarization
all the waves are the same, the amplitudes of the sideb
waves are small, i.e.,uFku, uBku!1, and thatuku!n0k0 , i.e.,
the sideband waves propagate at small angles to the p
beams.

The wave beams in the photorefractive medium inter
via the following mechanism. Under the action of the lig
current carriers are excited and the crystal acquires a ph
conductivity. The modulation of the light intensity caused
interference of the light beams leads to modulation of
photoconductivity and the appearance of a space-ch
electric field. Modulation of this space-charge fieldE in turn
leads to modulation of the dielectric constant of the crys
e5e01de according to the linear electrooptic effec
de52n0

4rE, wheren0 is the index of refraction of the crys
tal andr is the effective electrooptic coefficient.10,15 In par-
ticular, if the z axis coincides with the crystallographicz
axis, then r 5r 13. Note that only the longitudina
z-componentE[Ez of the space-charge field is included
the analysis that follows, since the other components g
rise to negligibly small contributions. Thus, the interacti
between the light beams arises from their diffraction by
refractive index modulations they induce in the crystal.10,15

In this paper we will assume that the wave interaction
mediated only by generation of reflecting refractive ind
,
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gratings, whose wave vectors are close to62n0k0 . Under
the conditions of the experiment in which the hexagons w
seen, interaction via transmission gratings is negligi
small.8,12 Therefore, the space-charge fieldE(r' ,z,t) can be
written in the form

E~r' ,z,t !5exp~2in0k0z!E2k0

3S 11(
k

exp~ ik–r'!E2k0 ,kD
1exp~22in0k0z!E22k0

3S 11(
k

exp~ ik–r'!E22k0 ,kD , ~5!

whereE62k0
(z) are the space-charge field amplitudes aris

from the pump beams andE62k0 ,k(z,t) are the space-charg
field amplitudes of the sideband beams normalized by
pump-beam field amplitudes. These amplitudes are wri
by the pump and sideband waves, and also by pairs of w
sideband waves. The reality of the quantityE(r' ,z,t) leads
to the following relations between these amplitudes:

E22k0
5E2k0

* , E22k0 ,2k5E2k0 ,k* .

The wave amplitudesF andB vary with time on a scale
that is the same order as the characteristic relaxation tim
the space-charge fieldE, which in photorefractive crystals
can range from tenths of seconds to tens of seconds;10 there-
fore, this dependence can be neglected in the w
equation.10,15 The equations for the amplitudesF and B,
which are slowly varying inz, take the following form in
light of Eq. ~5!:

S d

dz
2

i

2k0n0
D'DF52

ik0n0
3r

2
BE2k0

3S 11(
k

eik–r'E2k0 ,kD ,

~6!

S d

dz
1

i

2k0n0
D'DB5

ik0n0
3r

2
FE22k0

3S 11(
k

eik–r'E22k0 ,kD ,

whereD'5]2/]x21]2/]y2.
When the amplitudes of the sideband waves can be

glected, the following expressions for the pump beams
low from Eqs.~6! and ~4!:

d

dz
F052

ik0n0
3r

2
B0E2k0

,
~7!

d

dz
B05

ik0n0
3r

2
F0E22k0

.

Equations~6!, ~7! must be supplemented by a relatio
between the space-charge fieldE and the wave amplitudes
As shown above, the photorefractive nonlinearity is e
tremely slow; therefore, the generation of the space-cha
field turns out to be affected only by the total intensity of t
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optical beams averaged over the rapid oscillations with
quencyv0 , i.e., the standing-wave optical patterns form
by interference between the oppositely directed beams.
us write the light intensityI averaged over the rapid tempor
oscillations in the form

I 5I S@ I 01exp~2in0k0z!I 2k0
1exp~22in0k0z!I 22k0

#,
~8!

where

I 05
1

I S
H uF0u2F11(

k
eik–r'~Fk1F2k* !

1 (
k1 ,k2

ei ~k11k2!•r'Fk1
F2k2

* G1uB0u2S 11(
k

eik–r'~Bk

1B2k* !1 (
k1 ,k2

ei ~k11k2!•r'Bk1
B2k2

* D J ,

~9!

I 2k0
5

F0B0*

I S
F11(

k
eik–r'~Fk1B2k* !

1 (
k1 ,k2

ei ~k11k2!•r'Fk1
B2k2

* G ,
here I 22k0

5I 2k0
* , and I S5uF0u21uB0u2 is the sum of the

pump beam intensities.
Assume that the photorefractive crystal contains a se

donor and acceptor levels with densitiesND and NA , and
densities of ionized donors and conduction-band electr
ND

1 and n respectively.16 The compensating acceptor leve
are completely occupied by electrons and do not particip
in any transitions, andND.NA . Let us neglect thermal tran
sitions of electrons from donor levels into the conducti
band. Then the acceptor charge2eNA entirely compensate
the charge due to ionized donors in the dark. Assume
phototransitions take electrons from donor levels to the c
duction band with a probabilitysI(ND2ND

1), and that elec-
trons are trapped by ionized donors with a probabi
g0ND

1n, wheres is the photoionization cross section andg0

is the recombination coefficient. Then the density of ioniz
donors is given by the equation

]ND
1

]t
5sI~ND2ND

1!2g0ND
1n, ~10!

which must be supplemented by the Poisson equation

div E54p
e

e i
~ND

12NA2n! ~11!

and the equation of continuity

]~ND
12n!

]t
1

1

e
div j 50, ~12!

Heree i is the static dielectric constant along thez axis. Note
that it is sufficient to take into account only the longitudin
dielectric constant, since only small-angle perturbationsuku
!n0k0 are treated in this paper. This in turn implies that it
sufficient to take into account only the longitudinal comp
-
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nent E5Ez of the space-charge field. The electric curre
density j is determined by drift and diffusion of electrons:

j 5emnE1eD¹n, ~13!

wherem is the carrier mobility,D5mkBT/e is the diffusion
coefficient,T is the temperature, andkB is the Boltzmann
constant. In the majority of experiments on excitation
hexagons in photorefractive crystals, conditions are such
ND , ND

1 , NA , uND2NAu@n;10 furthermore, the characteris
tic recombination time 1/g0NA for carriers~electrons! is con-
siderably smaller than the characteristic relaxation timetd

5e ig0NA/4pemsIS(ND2NA) for the space-charge field
Therefore, the time derivative in Eq.~10! can be neglected
andn can be expressed as a function of the light intensity
follows:

n5
sI~ND2NA!

g0NA
. ~14!

From Eqs.~11!–~14! we obtain an equation for the spac
charge field:13,15

I Std

]E

]t
52IẼ2EscĨ , ~15!

where the tilde instructs us to separate out the spatially
cillating parts with wave vectors62n0k0 . Here Esc

52in0k0D/m is a characteristic photoinduced electric fie
that depends only on the properties of the crystal,15,17 and is
caused by diffusion of photoelectrons. If the conductivity
the crystal is predominantly due to holes, we need o
change the coefficients that multiplytd andEsc .10

Equations~15!, ~8!, ~9! imply the following expression
for the amplitudeE62k0

of the reflecting grating created b
the space-charge field generated by the pump beams:

E2k0
52Esc

F0B0*

I S
, E22k0

5E2k0
* . ~16!

The theory presented above is entirely suitable for tre
ing the crystals KNbO3 and BaTiO3 under investigation in
this paper. This is because diffusion of photoelectrons do
nates in these crystals, and according to Eq.~16! the spatial
modulation of the refractive index is shifted byp/2 relative
to the modulation of the standing optical pattern, which c
responds to the so-called nonlocal photorefract
response.10,17 Note that inclusion of either an applied exte
nal electric field or the photogalvanic effect leaves the fo
of Eq. ~15! unchanged, only changing the constantEsc .15,17

In particular, the quantityEsc is almost real in the crystals
LiNbO3 and LiTaO3; therefore, there is no phase shift, whic
corresponds to the local response caused by drift of elect
in an external field or by the photogalvanic effect.13,15There-
fore, in the interest of greater generality it is assumed be
that Esc is an arbitrary complex constant.

Let us assume that the feedback mirror has unit refl
tion coefficient,R51, and that the reflection of the ligh
beam from the crystal face is negligibly small. Then we o
tain from Eqs.~7! and ~16!

F0~z!5F0~0!eigz/2, B0~z!5B0~0!e2 ig* z/2,
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uF0~z!u25uB0~z!u25uF0~0!u2e2g i z, ~17!

whereg[g r1 ig i5k0n0
3rEsc/2 is the coupling constant o

the photorefractive crystal, which can easily be obtain
from experiment by using Eqs.~17!. Then thez-dependence
of the characteristic relaxation time for the space-charge fi
has the form

td~z!5td~0!eg i z. ~18!

Equations~4!, ~6!, ~8!, ~9!, and~15!–~18!, can be used to
obtain a closed system of equations for the weak-beam
plitudes. For subsequent calculations it is convenient to w
this system in matrix form:

J] tCk5LCk1 (
k11k25k

h~Ck1
,Ck2

!

1 (
k11k21k35k

Q~Ck1
,Ck2

,Ck3
!, ~19!

where

Ck5~Fk ,F2k* ,Bk ,B2k* ,E2k0 ,k ,E22k0 ,k! ~20!

is a six-dimensional vector,

J5eg i zS 0

0

1
D ~21!
-

n

d

ld

-
te

is a diagonal 636 matrix, and0, 1 are respectively the zero
and unit 232 matrices. The linear operatorL has the form

L52Ni ]z2Kkd1
1

2

3S g 0 2g 0 2g 0

0 2g* 0 g* 0 g*

g* 0 2g* 0 0 g*

0 2g 0 g 2g 0

1 21 21 1 22 0

21 1 1 21 0 22

D , ~22!

where

N5S 1

1

0
D , K5S 2s3

s3

0
D

are diagonal 636 matrices, s3 is a Pauli matrix, kd

5k2/2k0n0 , and the timet has been made dimensionless
dividing it by the characteristic relaxation time of the fieldE
at the front face of the crystal:t/td(0)→t.

The quadratic nonlinearity in Eq.~19! is written in the
form of a vectorh that depends on the two argumentsCk1

andCk2
:

h~Ck1
,Ck2

!51
2

g

2
E2k0 ,k1

Bk2

g*

2
E22k0 ,k1

B2k2
*

g*

2
E22k0 ,k1

Fk2

2
g

2
E2k0 ,k1

F2k2
*

2
1

2
Fk1

F2k2
* 2

1

2
Bk1

B2k2
* 1Fk1

B2k2
* 2

1

2
E2k0 ,k1

~Fk2
1F2k2

* 1Bk2
1B2k2

* !

2
1

2
Fk1

F2k2
* 2

1

2
Bk1

B2k2
* 1Bk1

F2k2
* 2

1

2
E22k0 ,k1

~Fk2
1F2k2

* 1Bk2
1B2k2

* !

2 , ~23!
de-
on
in
ths
while the cubic nonlinearity vectorQ depends on three ar
guments:

Q~Ck1
,Ck2

,Ck3
!5S 0

0
0
0

2
1

2
E2k0 ,k1

~Fk2
F2k3

* 1Bk2
B2k3

* !

2
1

2
E22k0 ,k1

~Fk2
F2k3

* 1Bk2
B2k3

* !

D , ~24!

Equations~19! must be supplemented by boundary co
 -

ditions. In particular, at the back face of the crystal the si
band beamsBk acquire an additional phase due to reflecti
of the Fk beam from the feedback mirror. In order to obta
this phase shift, let us find the difference in the optical pa
of two parallel rays 1 and 2 incident at an angleu8 on the
back faceAC of the crystal~see Fig. 1!. The optical path
differenceD1,2 will then have the form

D1,25 l AB1 l BC2n0l CD1l/2,

where

l AB5 l BC5L/cosu, l CD52L tan u sin u8,
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sin u/sin u85n0 ,

L is the distance between the feedback mirror and the b
face of the crystal, andl is the wavelength of the light in
vacuum. Subtracting the path difference of the pump bea
2L1l/2 from the optical path differenceD1,2, we obtain the
required phase shiftf ~in the small-angle approximationu
!1!:

f52L~cosu21!k0.22kdn0L,

while the boundary conditions for the sideband waves h
the form

Fk~0!5F2k* ~0!50,

Bk~ l !5Fk~ l !exp~22ikdn0L !, ~25!

B2k* ~ l !5F2k* ~ l !exp~2ikdn0L !,

wherel is the length of the crystal along thez axis. Note that
the signs of the exponents in~25! are reversed compared t
Ref. 12. This discrepancy is obviously due to a typograph
error in Ref. 12, since subsequent expressions in this p
are correct.

Thus, the problem of describing the evolution of sid
band waves reduces to a boundary value problem for
system of equations~19! with boundary conditions~25!. A
characteristic feature of the photorefractive nonlinearity
the fact that the right side of Eq.~19!, and consequently the
stationary solutions of the boundary-value problem~19!,
~25!, are independent of the pump intensityI S . The pump
intensity determines only the overall normalization of t
optical intensities and the characteristic timetd for setting up
the stationary solutions.

3. LINEAR INSTABILITY THEORY

As a first step, let us study the evolution of sideba
waves in the linear approximation. The system~19! is linear-
ized by discarding the nonlinear~in Ck! termsh, Q. If we
assume that the time dependence ofCk has the formCk

}exp(nkt), we obtain a linear boundary value problem for t
complex eigenvaluesnk :

LCk5nkJCk . ~26!

Solution of this boundary value problem in the general c
presents considerable difficulty, because Eq.~26! is a system
of ordinary differential equations~in the coordinatez! with
nonconstant coefficients. The linear boundary value prob

FIG. 1. SegmentDA is perpendicular to the direction of propagation of ra
1 and2 within the photorefractive crystal.
ck

s

e

l
er

-
e

s

d

e

m

can be solved in two special cases where the system red
to a system of ordinary differential equations with consta
coefficients. The first is the case where the coupling cons
g5g r is real ~a medium with a local photorefractive re
sponse!. Then uF0(z)u25uB0(z)u25const. This case was in
vestigated in Ref. 13 under the additional condition Renk

50, i.e., the instability threshold was found. However, t
coupling constant can be treated approximately as a
number only in photorefractive crystals like LiNbO3 and
LiTaO3, and no one has experimentally observed the form
tion of hexagons in these crystals to date. In the crys
KNbO3 and BaTiO3 discussed in this paper, the constant
unequivocally complex; in fact, we haveg. ig i ~indicating a
nonlocal photorefractive response!.10,15 In the second case
the coupling constantg is an arbitrary complex quantity, bu
it is assumed that the reflection coefficient from the feedb
mirror is exactly equal to 1, i.e.,R51 ~reflection from the
crystal faces is neglected as before!, and henceuF0(z)u2

5uB0(z)u2. It is also necessary to assume thatnk50. This
implies that the boundary value problem is solved at
instability threshold Renk50, and that this instability is ape
riodic, so that Imnk50, i.e., the frequency detuning betwee
pump beams and sideband beams vanishes. If it were
case that the detuning satisfied ImnkÞ0, a moving optical
pattern would be observed in the experiment. However,
experiments of Refs. 8 and 12 showed that the optical pat
is motionless; therefore, the assumption Imnk50 appears to
be fully justified. The boundary value problem withR51,
nk50 was solved in Ref. 12. In this case the system~26!
takes the form

S d

dz
1 ikdDFk52

ig

4
~Fk1F2k* 2Bk2B2k* !,

S d

dz
2 ikdDF2k* 5

ig*

4
~Fk1F2k* 2Bk2B2k* !,

S d

dz
2 ikdDBk52

ig*

4
~Fk1F2k* 2Bk2B2k* !,

~27!

S d

dz
1 ikdDB2k* 5

ig

4
~Fk1F2k* 2Bk2B2k* !,

E2k0 ,k5
1

2
~Fk2F2k* 2Bk1B2k* !,

E22k0 ,k52
1

2
~Fk2F2k* 2Bk1B2k* !,

where the space-charge field amplitudes were elimina
from the first four equations by using the last two equatio
of the system. The solution to the system~27! combined with
the boundary conditions~25! leads to the threshold conditio
for appearance of the instability, which exactly coincid
with the results of Ref. 12

cos~wl !cos~kdl !1
g i

2w
sin~wl !cos@kd~ l 12n0L !#
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FIG. 2. Threshold dependence ofg i l on kdl
for L50 ~a! andn0L/ l 54.44 ~b!.
e

re

f t

t
u

old
a
tive

in

r

then
the

r

1
g r12kd

2w
sin~wl !sin~kdl !2

g r

2w
sin~wl !

3sin@kd~ l 12n0L !#50, ~28!

wherew5Akd
21g rkd2g i

2/4. As we have already noted, th
coupling constant satisfiesg. ig i in the KNbO3 and BaTiO3

crystals to high accuracy, i.e., is pure imaginary. Therefo
in what follows we will setg5 ig i , and then obtain the
threshold functiong i(kdl ) from Eq. ~28! for each value of
the distance to the feedback mirrorL. This function consists
of a sequence of minima. Figure 2 shows special cases o
threshold curvesg i(kdl ) for L50 andn0L/ l 54.44; in the
second case, the dependence ofg i l on kdl is so steep tha
only those parts of the threshold curve near the minima co
,

he

ld

be plotted. The region of instability lies above the thresh
curve g i(kdl ). As L changes, the position of the minim
changes; however, the number of minima and their rela
spacings remain unchanged, which allows us to label them
order of increasingkdl as 1,2,3,•••, etc. In what follows a
positive integerm is used to label each minimum. Fo
n0L/ l ,1.43•••, the first minimumm51 is the deepest, while
as L increases the second minimum becomes deepest,
the third, etc., in succession. Figure 3 shows
L-dependence ofg i

minl and kd
minl corresponding to these

minima. There is only one set of values of the parameteL
for which g i

minl andkd
minl can be found analytically, namely

n0L/ l 523/212m, g i
minl 5p, kd

minl 5p/2, ~29!
ck

FIG. 3. Dependence ofg i

minl ~a! andkd
minl ~b!

on the dimensionless distance to the feedba
mirror n0L/ l .
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It is clear from Fig. 3a that at these values ofL the minimum
valueg i

minl5p is reached as a function ofL. It is important
to note that forn0L/ l *23/212m the position of themth
minimum is given with high accuracy by the relation

kd~ l 12n0L !5~2m21!p ~30!

~which is an identity when Eq.~29! holds!. The limiting case
of this relation for 2n0L/ l @1, m51 has been seen i
experiments.8 Actually, condition ~30! implies that we are
choosing that phase shift in Eq.~25! between sideband
beams propagating in opposite directions along thez axis for
which these beams interact most efficiently. In order to
derstand the physical meaning of Eq.~30!, let us investigate
the dependence of the space-charge field amplitudeE2k0 ,k on
the z coordinate. From Eqs.~27! and ~25! we find

Fk1B2k* 5exp@2 ikd~z2 l !#@Fk~ l !

1exp~2ikdn0L !F2k* ~ l !#,
~31!

F2k* 1Bk5exp@ ikd~z2 l !#

3@exp~22ikdn0L !Fk~ l !1F2k* ~ l !#.

Then from Eq.~27! it follows that

E2k0 ,k5 i sin@kd~ l 2z1n0L !#@exp~2 ikdn0L !Fk~ l !

1exp~ ikdn0L !F2k* ~ l !#. ~32!

Physical considerations suggest that the lowest instab
threshold corresponds to the most effective interaction
tween sideband waves mediated by the space-charge
E2k0 ,k . According to Eq.~32!, the amplitude of this field is
sinusoidal, and thus on the average the magnitude of the
amplitude will be a maximum within the crystal when th
peak of the sinusoid is located at the center of the crystz
5 l /2, from which we obtainkd( l /21n0L)5(m21/2)p,
wherem is a whole number, which exactly coincides wi
Eq. ~30!. Numerical calculations actually confirm that whe
n0L/ l *23/212m holds the maximum of the amplitud
E2k0 ,k coincides to good accuracy with the center of t
crystal, and that for values ofkd away from the threshold
minimum kd5kd

min the maximum of this amplitude move
away from the crystal center. Nevertheless, the physical
tification presented above is somewhat qualitative, beca
in addition to the interaction of sideband beams via the fi
E2k0 ,k there is also a contribution associated with diffracti
of the sideband beams by the space-charge field of the p
beamsE2k0

, as is apparent from the linear part of the syst
Eq. ~19!. This contribution does not allow such a simp
interpretation; however, our success in explaining Eq.~30! is
reason to hope that the overall physical justification is c
rect.

Let us now allowg i to exceed threshold somewhat:
,h5(g i2g i

min)/gi
min!1, where g i

min corresponds to the
deepest minimum for a given value ofL. Near threshold the
instability growth rate can be written in the form

nk5n02~kd2kd
min!2f ,
-

ty
e-
eld

ld

s-
se
d

p

-

where n0 is the maximum instability growth rate,ukd

2kd
minu/kd

min!1, and f .0 is a constant. Because the line
boundary value problem cannot be solved analytically
nkÞ0, the values ofn0 and f remain unknown. However, i
will be clear from what follows that these values themselv
are not important for the existence of an explosive thr
wave instability. Furthermore, althoughn0 gives a correction
to the hexagon amplitudes, near threshold we haven0→0
and so this correction is negligibly small. Since the value
n0 is positive above threshold, in the linear approximati
the amplitudesFk andBk will grow exponentially with time
until the three-wave nonlinearity becomes important. F
small values of the ‘‘supercriticality’’h, the gain of the in-
stability is positive only within a narrow ringuku
.A2kd

mink0n0, so that when sideband waves are excited
this ring, the magnitudes of their transverse wave vectorsuku
can be treated as practically constant.

In addition to the threshold condition~28!, the linear
boundary value problem Eqs.~27! and~25! allows us to find
the six-dimensional eigenvector Eq.~20! ck

(0) of this prob-
lem at the instability threshold. The zero superscript in
cates that all quantities are calculated at the threshold po
and the lower case symbolck is used in place of the upper
case symbolCk to emphasize that the latter is a solution
the nonlinear boundary value problem, while the former i
solution to its linear portion only.

Let us briefly describe the procedure for findingck
(0) :

the general solution to the system of four ordinary differe
tial equations~27! can be written in the form of a sum of fou
independent solutions with arbitrary coefficientsc
5(c1 ,c2 ,c3 ,c4). The values of these coefficients are det
mined from boundary conditions~25!, which reduce to a
homogenous system of linear equations forc. The condition
that the system be solvable is that its determinant van
which leads to the threshold condition~28!, from which we
find a solutionc of the homogenous system of linear equ
tions defined up to an arbitrary factor. Therefore, the eig
vector ck

(0) is also determined up to an arbitrary factor.
particular, forn0L/ l 523/212m, g i

minl5p, kd
minl5p/2 we

obtain

ck
~0!

51
2 i expF2 i

p

2 S z

l
2

1

2D G1expS 3

4
ip DexpS pz

2l D
i expF i

2
pS z

l
2

1

2D G1expS 2
3

4
ip DexpS pz

2l D
i expF i

2
pS z

l
2

1

2D G1expS 1

4
ip DexpS pz

2l D
2 i expF2

i

2
pS z

l
2

1

2D G1expS 2
1

4
ip DexpS pz

2l D
2 i2 cosFp2 S z

l
2

1

2D G
i2 cosFp2 S z

l
2

1

2D G
2 .

~33!

For arbitrary values ofL the explicit form of this vector
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is very complicated and will not be given here. For ea
specific value of the parametersg i

minl, kd
minl, L the eigenvec-

tor ck
(0) was found using the program Mathematica 2.2.

In order to find the three- and four-wave interactions it
also necessary to solve a linear boundary value probl
which is the Hermitian conjugate of the linear portion of t
boundary value problem Eqs.~19! and ~25! with respect to
the scalar product

^c k
cuck&5E

0

l

dz~ck
c i!* ck

i . ~34!

Here repetition of the labeli implies summation from 1 to 6
and ck

c is an eigenvector of this Hermitian-conjugate pro
lem that satisfies the system of equations

L1c k
c50 ~35!

at the instability threshold. The operatorL1[(LT)* is the
Hermitian conjugate of~22!, and the following boundary
conditions are imposed on the components of the vectorck

c :

Bk
c~0!5B2k

c* ~0!50,

Bk
c~ l !52Fk

c~ l !exp~22ikdn0L !, ~36!

B2k
c* ~ l !52F2k

c* ~ l !exp~2ikdn0L !,

obtained by integrating the Hermitian operatorid/dz by
parts.

The solution of the Hermitian-conjugate boundary va
problem~35!, ~36! is analogous to the solution of the origin
boundary value problem~27!, ~25!, and the threshold condi
tion for the Hermitian-conjugate problem coincides with t
threshold condition~28! for the direct problem. The eigen
vector for the conjugate problem takes the following fo
whenn0L/ l 523/212m, g i

minl5p, kd
minl5p/2:

c k
c~0!51

expF2 i
p

2 S z

l
2

1

2D G1expS i
p

4
2

pz

2l D
expF i

p

2 S z

l
2

1

2D G1expS 2 i
p

4
2

pz

2l D
expF i

p

2 S z

l
2

1

2D G1expS i
3p

4
2

pz

2l D
expF2 i

p

2 S z

l
2

1

2D G1expS 2 i
3p

4
2

pz

2l D
ip expF2 i

p

2 S z

l
2

1

2D G
ip expF i

p

2 S z

l
2

1

2D G
2 .

~37!

4. THREE-WAVE INTERACTION OF SIDEBAND WAVES

The investigation of three- and four-wave interactio
given here will follow several ideas taken from Refs. 18 a
19, in which the generation of hexagonal cells was discus
at the surface of a liquid dielectric in an external electric fie
~Refs. 18! and under conditions of weakly supercritical co
vection ~Refs. 19!.
h

,

-

d
ed

Let us expand the general solutionCk of the nonlinear
boundary value problem~19!, ~25! within the ring uku
.A2kd

mink0n0 in eigenvectorsck,n of the linear boundary
value problem~27!, ~25!:

Ck5(
n

ck,nAk,n~ t !, A2k5Ak* , ~38!

where the lettern labels the eigenmode of the linear proble
for a given value of the wave vectork.

Substituting this expression into the nonlinear syst
~19! and taking the scalar product of the latter~as in Eq.
~34!! with the eigenvectorck

c of the conjugate linear problem
leads to the following equation, which is accurate up to q
dratic nonlinearities:

]Ak,n

]t
5nk,nAk,n1

1

2 (
n1 ,n2

(
k11k25k

Uk1 ,k2 ,k
n1 ,n2 ,nAk1 ,n1

Ak2 ,n2
,

~39!

whereUk1 ,k2 ,k
n1 ,n2 ,n is the matrix element of the three-wave in

teraction.
Since for small values of the supercritical paramete

,h5(g i2g i
min)/gi

min!1 sideband waves are excited only
the narrow ringuku.A2kd

mink0n0 corresponding to the mod
with maximum gain and labeln50, while the other modes
have negative gain, to find the matrix element we need o
calculate it at the instability thresholdkd5kd

min , g5 ig i
min ,

ck,n5ck
(0) , ck,n

c 5ck
c(0) for n50. Therefore, in what fol-

lows the labeln will be omitted. Furthermore, the conditio
k11k25k implies that only vectors that make angles ofp/3
with each other will participate in the three-wave interactio

As a result, we obtain from Eq.~19!

Uk1 ,k2 ,k[U52
^c k

cuh0&

^c k
cuJck&

, ~40!

whereJ and h are defined in Eqs.~21! and ~23!. The zero
label in h0 indicates that its arguments are evaluated at
instability threshold,h05h(ck

(0) ,ck
(0)), and Eq. ~39! re-

duces to Eq.~3!.
For each specific set of values of the parametersg i

minl,
kd

minl, L the matrix elementU was found using the program
Mathematica 2.2. In the first step, the eigenvectorsck

(0) ,
ck

c(0) were calculated for the direct and conjugate line
problems, and then the value ofU was obtained by integra
tion in Eq. ~40!. For the special casesn0L/ l 523/212m,
g i

minl5p, kd
minl5p/2 an analytic expression for the matr

element follows from Eqs.~33! and ~37!:

U52
2&

5

112ep

cosh~p/2!
. ~41!

Figure 4 shows how the matrix elementU for the three-wave
interaction at the instability threshold depends on the d
tanceL between the back face of the crystal and the feedb
mirror ~for the first minimumm51 of the threshold curve
g i

min(L)!, calculated from Eqs.~40! and~23!, where the func-
tions g i

min(L) andkd
min(L) are given in Fig. 3. In this case, i

was assumed that the coupling constantg is pure imaginary,



r

b
m
lit

es
f

th

nt

u

ta
fo

ea
ef
am
d

es
ic
It
r

th
it
in
s

ics
th

to

in

tain
n
ly

on-

-

s of

tted
s.
ms,

vely.

cs

ar-

-

623JETP 86 (3), March 1998 P. M. Lushnikov
which is true for KNbO3 and BaTiO3 to high accuracy. The
fact that U is a purely real quantity is very important fo
investigating the explosive instability.

5. FOUR-WAVE INTERACTION OF SIDEBAND WAVES

The explosive three-wave instability can be saturated
nonlinearities of fourth and higher orders. Those light bea
whose wave vectors lie in the narrow ring near the instabi
thresholduku.A2kd

mink0n0[k0' will be referred to as ‘‘fun-
damental’’ spatial harmonics. The quadratic nonlineariti
represented by the vectorh in the fundamental system o
equations~19! and written out in Eq.~23!, give rise to all
possible sum and difference harmonics arising from
three-wave interactionk5k11k2 , uk1,2u5k0' .

Equations for the harmonicsk5k11k2 , uk1,2u5k0' fol-
low from Eqs.~19! and~25!, wherekd5k2/2k0n0 . The sum-
mation in the quadratic nonlinearities runs over fundame
harmonics at the instability thresholdck5ck

(0) , and time
derivatives and cubic nonlinearities are neglected beca
the corrections they produce are of higher order~fifth order
and higher!. Thus, when the amplitudes of the fundamen
harmonics are specified the boundary-value problem
combination harmonics reduces to the solution of a lin
system of ordinary differential equations with constant co
ficients and an inhomogeneous part determined by the
plitudes of the fundamental harmonics. The boundary con
tions for this system are, as before, given by Eqs.~25!.
Solution of this system presents no fundamental difficulti
however, explicit expressions for the combination harmon
are not given here because they are extremely involved.
important to note that these harmonics are second orde
the amplitudes of the sideband waves, and therefore
contribute to the four-wave processes via the interaction w
the fundamental harmonics. Furthermore, the four-wave
teraction contains a contribution from the intrinsic proce

FIG. 4. Dependence of the three-wave interaction matrix elementU on
n0L/ l .
y
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2→2 due to interaction of the fundamental spatial harmon
that arise from the cubic nonlinearities in the fifth and six
equations of the system~19!.

Thus, the general solutionCk
tot of the nonlinear bound-

ary value problem~19!, ~25! can be cast in the form

Ck
tot5Ck1dCk , ~42!

whereCk is an expansion of~38! in fundamental harmonics
and

dCk5 (
k11k25k

Ak1
Ak2

dCk

is an expansion in combination harmonics. The vectorsk1

andk2 lie at the instability thresholduk1u5uk2u5k0' .
Substituting Eqs.~42! and~43! into the nonlinear system

~19! and taking the scalar product of this system according
~34! with the vectorck

c of the conjugate linear problem~27!
leads to the following equation, which is accurate to with
cubic nonlinearities:

]Ak

]t
5nkAk1

U

2 (
k11k25k

Ak1
Ak2

2 (
k11k21k35k

3$@2^c k
c~0!uh~ck1

~0! ,dCk21k3
!2h~dCk21k3

,ck1

~0!!&

2^c k
c~0!uQ~ck1

~0! ,ck2

~0! ,ck3

~0!!&#/^c k
c~0!uJck

~0!&%

3Ak1
Ak2

Ak3
, ~43!

whereJ, h are defined in Eqs.~21! and ~23!, and the sum-
mation runs over fundamental harmonics. Thus, we ob
Eq. ~3!. The matrix element of the four-wave interactio
T2kk1k2k3

is found by symmetrizing the expression in cur
brackets in Eq.~43!. The matrix elementT2kk1k2k3

depends
only on the angles between the vectorsk, k1 , k2 , k3 ; there-
fore we will denote this matrix element byTf , wheref is
the angle between the vectorsk1 andk2 .

In the special case where only six fundamental harm
ics are excited with wave vectorsk1 , k2 , k3 , k4 , k5 , k6 ,
forming a hexagon~Fig. 5!, we obtain three types of combi
nation harmonics: zero-orderuku.0, second-order uku
.2k0' , and ‘‘root-three’’-orderuku.)k0' . These combi-
nation harmonics are generated by the interaction of pair
fundamental harmonics at anglesp, 0, andp/3, respectively.
In Fig. 5 the second order harmonics are indicated by do
lines, and the) harmonics are indicated by dashed line
The zero-order harmonic renormalizes the pump bea
while the second-order and) harmonics form the vertices
and centers of the faces of secondary hexagons, respecti
This is clear both from Fig. 5 and the experiments~see, e.g.,
Fig. 2 in Ref. 8!. The interaction via second-order harmoni
contributes to the matrix elementT0 , while interaction via
) harmonics contributes toTp/3 ; interaction via zero-order
harmonics contributes to bothT0 and Tp/3 . The process 2
→2 also contributes to bothT0 andTp/3 .

Let us denote the amplitudes of the six fundamental h
monicsk1 , k2 , k3 , k4 , k5 , k6 by A1 , A2 , A3 , A4 , A5 , A6 .
According to Eq.~38!, only three amplitudes are indepen
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dent: A45A1* , A55A2* , A65A3* , becausek452k1 , k5

52k2 , k652k3 . Then Eq,~3! can be rewritten in the form

]A1

]t
5n0A11UA3* A5* 2FT0

2
uA1u21Tp/3~ uA3u2

1uA5u2!GA1 ,

]A3

]t
5n0A31UA1* A5* 2FT0

2
uA3u21Tp/3~ uA1u2

1uA5u2!GA3 , ~44!

]A5

]t
5n0A51UA1* A3* 2FT0

2
uA5u21Tp/3~ uA1u2

1uA3u2!GA5 .

Thus, the original boundary value problem~19!, ~25!
reduces to a system of three amplitude equations.

The Mathematica 2.2 program was used to find the m
trix elementsT0 , Tp/3 for each specific value of the param
etersg i

minl, kd
minl, L, just as in the previous section where t

three-wave interaction was discussed. Figure 6 shows
dependence of these matrix elements on the distanceL be-
tween the back face of the crystal and the feedback mi
~for the first minimumm51 of the threshold curveg i

min(L)!,
calculated according to Eqs.~23! and ~43!, whereg i

min(L),
kd

min(L) are given in Fig. 3. Just as forU, all of these matrix
elements are found to be purely real quantities.

6. HEXAGON FORMATION DYNAMICS AND STABILITY

In the previous section, the problem of describing t
evolution of hexagons was reduced to solution of the sys
~44! of three ordinary differential equations. When cub
nonlinearities are neglected, this system leads to an explo

FIG. 5. The six vectors denoted by solid lines represent the fundame
harmonics. The ends of these vectors form the fundamental hexagon
dotted lines denote the second-order harmonics, while the dashed line
) harmonics. The second-order harmonics form the vertices of secon
hexagons, while the) harmonics are at the centers of their faces.
-

he

or

e
m

ive

instability. For equal and real amplitudesA15A35A5

5ReA1, we obtain~1! as a special case, whose correspon
ing solution ~2! goes to infinity at finite time. In genera
solutions to the system~44! ~without cubic nonlinearities!
can be expressed in terms of elliptic functions, and for ar
trary initial conditions~except for a set of measure zer!
these solutions also exhibit singularities at finite times. It c
be shown that in this limit the relative deviations (uA1u2

2uA2u2)/uA1u2, (uA2u22uA3u2)/uA2u2 go to zero, the total
phaseF5Arg A11Arg A31Arg A5 goes topn, wheren is
an integer, and each of the phases individually goes t
certain constant. Therefore, at later stages of evolution
system~44! reduces to the following equation for the inte
sity I 25uA1u25uA2u25uA3u2:

1

2

]I

]t
5n0I 1UI 3/22S T0

2
12Tp/3D I 2, ~45!

whose solution can be directly compared with experiment
small supercritical parameters whenn0→0.

Thus, the formation of hexagons admits the followin
physical picture. Due to fluctuations in the medium at tim
t50, the amplitudeA1 is found to be nonzero for a certai
value of wave vectork lying in the ring uku.A2kd

mink0n0.
The linear instability leads to an increase inuA1u until the
nonlinear terms in Eq.~44! become important, as a result o
which the amplitudesA1 , A3 , A5 all begin to grow explo-
sively at the same time, i.e., sideband waves are found to
excited with wave vectorsk1 , k2 , k3 , k4 , k5 , k6 forming a
hexagon~see Fig. 5!. The explosive growth of these ampl
tudes due to the three-wave interaction will continue until
four-wave nonlinearity comes into play. If in this case
turns out that the system parametersg i

minl, kd
minl, n0L/ l are

such that the total matrix elementT0/212Tp/3 is positive,
then the four-wave nonlinearity can stabilize the instabili
otherwise, the growth in intensity of the sideband waves c

tal
he
are
ry

FIG. 6. Dependence of the matrix elementsT0 , Tp/3 for four-wave interac-
tions onn0L/ l ; the solid curve isT0 , the dashed curveTp/3 .
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tinues and stabilization is achieved only via nonlinearities
higher order. In what follows, we will discuss the stability
stationary hexagonal solutions.

In experiment it has been well established6,8 that initially
two sideband waves are actually excited, with opposite si
of the transverse wave vectors. This exactly correspond
the initial growth of amplitudeA1 for the ck eigenmode Eq.
~38!, since this mode consists of sideband waves with tra
verse wave vectors6k ~20!. Then a rapid growth of hexa
gons is observed, and the intensities of all sideband wa
are comparable.8 In Ref. 8 the time dependence of the inte
sities of the sideband waves was measured. It is clear f
Fig. 3 of Ref. 8 that after a short initial stage of exponen
growth, the intensity follows a power-law increase that
characteristic of explosive nonlinearity, after which it is s
bilized by higher-order nonlinearities. Evidence of this sta
lization is the formation of secondary hexagons with lo
intensity~see Fig. 2 in Ref. 8! generated by second-order an
) harmonics.

The stationary~hexagon! solution to Eq.~44! has the
form

A05
U

4Tp/31T0

1sign UA 2n0

4Tp/31T0
1S U

4Tp/31T0
D 2

, ~46!

whereA05A15A25A3 . This solution is characterized by
‘‘hard’’ excitation regime, with an amplitude discontinuity a
threshold~for n050! given by

A05
2U

4Tp/31T0
.

The procedure for investigating the internal stability
the stationary solution~46! was analogous to that used
Ref. 19. This solution is stable when

2
1

2

U2

T014Tp/3
,n0,4

T01Tp/3

~2Tp/32T0!2 U2. ~47!

This result, when evaluated near the instability thresh
wheren0→0, implies thatT01Tp/3.0. Figure 7 shows the
dependence of the hexagon intensityI 5A0

2 on n0L/ l in that
range of the parameterL where the stability condition~47!
holds. Outside this range, explosive growth of the hexag
can be stabilized only by higher-order wave processes.

7. NUMERICAL EXPERIMENT

A numerical experiment was performed in order
verify the results of the analytic theory for hexagon gene
tion described above. The goal of this experiment was
investigate the region of large values ofn0L/ l *0.1, where
saturation of the explosive instability is provided by highe
order wave processes~five-wave and higher!. In the experi-
ment the boundary value problem~19!, ~25! was solved nu-
merically, taking into account a larger number of sum a
difference harmonics than in the previous section. In orde
estimate the number of higher-order harmonics required,
accordingly the order of the wave processes that mus
f

s
to

s-

es

m
l

-
-

d

s

-
o

-

d
to
nd
e

included in order to definitely ensure saturation of the exp
sive instability, the following integral of the boundary valu
problem~19!, ~25! was used:

H5(
k

~ uFku22uBku2!1@Fk1Fk* 2Bk2Bk* #U
k50

50,

~48!

where the summation runs over all harmonics. The vanish
of this integral for allz at all timest physically expresses
conservation of the energy of the optical field, since the d
sipation of optical energy, which is small in a photorefracti
crystal, has nowhere been taken into account in deriving
system~19!, ~25!. In particular, atz50 ~i.e., at the front face
of the crystal! the conditionH50 implies that the optical
power of the pump beam incident on the crystal equals
total optical power of the beams that exit the crystal by
back face~recall that we have neglected reflection from t
boundary and have set the reflection coefficient of the fe
back mirror equal to unity!. According to the boundary con
dition ~25!, we haveFkuz5050 for all k; therefore it follows
from Eq. ~48! that when sideband waves form the pump
depleted, which is expressed in the growth of the zero-or
harmonics Fkuk50 , Bkuk50 which renormalize the pump
beams. Thus, in the strongly nonlinear theory we must a
minimum take into account all processes in which zero h
monics interact with each other. It is not difficult to see th
such processes give contributions up to eighth order in
equation for the fundamental harmonic. Therefore, in the
merical experiment all processes up to eight-wave inc
sively were taken into account. In this case, it is necessar
include along with the harmonics 0, 1, 2,) listed above the
harmonicsA7, 3, A12, A13, 4 as well.~The ends of the

FIG. 7. IntensityI of the fundamental hexagon at the front face of t
photorefractive crystalz50 as a function ofn0L/ l , which follows from the
theory of four-wave interactions in the region where this theory is ap
cable. The intensity of the hexagon is normalized by the intensity of
pump at the front face of the crystal.
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wave vectors of harmonics 3,A12, 4 form the vertices of
hexagons, while the ends of the wave vectors of harmo
A7, A13 form regular dodecagons!.

At each timet the boundary value problem~19!, ~25!
was solved by Newton’s method. At each step of t
method, values of the amplitudeBkuz50 were specified at the
front face of the crystal for all the harmonics. Then the a
plitudesFkuz5 l , Bkuz5 l at the back face of the crystal wer
found by integrating the first four ordinary differential equ
tions of the system~19! using the fourth-order Runge-Kutt
method in the coordinatez. The error used in Newton’s
method was given by the accuracy with which the bound
condition ~25! was satisfied at the back face of the cryst
The time dependence was determined by integrating
space charge field amplitudesE62k0 ,k using a predictor-
corrector method~the fifth and sixth equations of the syste
~19!!.

The results of the numerical experiment are shown
Fig. 8 in the form of plots of the intensities of the fundame
tal harmonic and) harmonic versus the distance to th
feedback mirror for 0<n0L/ l<0.85. In the region 0
<n0L/ l &0.1, the intensity of the fundamental harmonic h
a minimum, which is in agreement with the results of t
analytic theory according to which fourth-order proces
can saturate the explosive growth of the hexagon instab
only in this region. However, in this case the analyticalBk

an

and numericalBk
num values of the light-beam amplitudes di

fer rather strongly:uBk
numu/uBk

anuuz50;2, which indicates a
strong renormalization of the amplitudes of the hexagons
to higher-order wave processes. Thus, the predictions of
four-wave theory are valid more qualitatively than quanti
tively. For n0L/ l *0.1, when the four-wave interaction
surely cannot ensure saturation of the explosive instabi
the nonlinearity increases with increasingn0L/ l .

Additional numerical investigations showed that, sin

FIG. 8. Dependence of the intensity of the fundamental hexagonI ~solid
curve! and intensity of the) harmonic~I

)

is dashed! on n0L/ l obtained
from the numerical experiment. The normalization of the intensity is
same as in Fig. 7.
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the amplitudes of the higher-order harmonics rapidly de
as their labels increase, if we assume by definition that all
higher-order combination harmonics equal zero but take
account all possible processes between the 0, 1, 2,) har-
monics, the amplitude of the fundamental harmonic chan
by more than 2%. Thus, for the strongly nonlinear theory
actually turns out to be sufficient to take into account wa
processes up to eighth order, while including in those p
cesses only interactions with the participation of harmon
0, 1, 2,). Note also that only harmonics 0, 1, 2,) are
observed in experiment, while the higher harmonics are
weak to be recorded~see, e.g., Refs. 6 and 8!. In these ex-
periments the intensity of hexagons is observed to be fr
one to three percent of the intensity of the pump, which
somewhat lower than the results obtained from the numer
experiment, which gives a valueuBk(0)u2.0.04. This is
probably explained by the fact that losses due to reflectio
the crystal faces~of order 15% for light incident on the bac
face of the crystal and just as much again when the li
reenters the crystal after reflection from the feedback mirr!
have not been included in the system~19!, ~25!, and losses in
the reflection of light from the feedback mirror have al
been neglected.

We mention in conclusion that forn0L/ l *0.85 station-
ary hexagon solutions turn out to be unstable against
pumping of energy back into the) harmonic. This instabil-
ity is connected with the fact already noted in Sec. 3 that
n0L/ l .1.43 the depths of the first and second minima of
threshold curveg i

min(kdl) for the linear instability are compa
rable ~see Fig. 3a!. In this case the ratiokd

minum52 /kd
minum51 is

close to 3~accurate to 2%!. Thus, in the neighborhood o
n0L/ l;1.43 the amplitudes of the first-order and) harmon-
ics are the same order, and hence they are coupled by
three-wave interaction. This case requires the inclusion o
wave processes up to eight-wave in the numerical calc
tions, and thus the treatment of a larger number of harmo
than were included in the numerical experiment describ
above. Consideration of this problem lies outside the fram
work of this paper.

8. CONCLUSION

Thus, the following results have been obtained in t
paper. A system of equations~19! has been derived with
boundary conditions~25! that describes the evolution of th
sideband wave amplitudes and space-charge field for an
bitrary level of nonlinearity. Linearization of this system
leads to the threshold condition~28! for appearance of a
transverse instability, which exactly coincides with the r
sults of Ref. 12. It has been shown that the threshold cu
g i(kdl ) consists of a sequence of minima whose relat
depth changes with the parametern0L/ l , which is propor-
tional to the distanceL to the feedback mirror. Forn0L/ l
,1.43 the deepest minimum~i.e., corresponding to the low
est instability threshold! turns out to be the first, and as th
quantity n0L/ l increases the second, third, etc., minima b
come the deepest in succession. Expression~30! was ob-
tained, which describes with high accuracy the position of
the minima. In this case the magnitudes of the transve

e
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wave vectors belong to the set 1,), A5,... for thefirst,
second, third, etc. minima. Moreover, a set of explicit so
tions ~29! has been found for the threshold Eq.~28! which
correspond to the deepest values of the minima for all p
sible values of the parametern0L/ l . Eigenvectors were cal
culated for the direct linear boundary value problem~25!,
~26! and its Hermitian conjugate~36!, ~35! at the instability
threshold as functions ofn0L/ l . For the special cases~29!
explicit analytic expressions~33!, ~37! were given for these
vectors.

For small values of the supercritical parameterh, when
the sideband beams are unstable only within a narrow
uku.A2kd

mink0n0, the general solution to the nonlinea
boundary value problem~19!, ~25! was reduced~by expand-
ing ~38! in eigenfunctions of the linear problem! to the sys-
tem of amplitude equations~3!. This system consists of
Landau expansion in the amplitude of the growing line
modes. The matrix elementsU and Tkk1k2k3

for three- and
four-wave interactions respectively were calculated at the
stability threshold as functions ofn0L/ l . These matrix ele-
ments turn out to be purely real quantities. In the special c
~29! the explicit analytic expression~41! was obtained forU.
The fact that the matrix elementU for the three-wave inter-
action differs from zero is of fundamental importance, sin
it leads to the appearance of the explosive three-wave in
bility and correlation of sideband waves whose wave-vec
make angles with one another that are multiples ofp/3.

The possibility of stabilization of explosive growth o
the hexagons due to four-wave interactions was investiga
Eqs. ~44! were obtained to describe the temporal dynam
of generation of the steady-state hexagonal solutions~46!,
and the stability condition~47! for these solutions was found
As a result it was shown that forn0L/ l &0.1 four-wave in-
teractions can saturate the explosive instability. Outside
region it is definitely necessary to take into account high
order wave processes. A numerical experiment was
formed to investigate the nonlinear boundary value prob
~19!, ~25!. It was shown that in general it is necessary to ta
into account all wave processes up to eight-wave. Howe
among these processes the only important ones were int
tions between the fundamental harmonic and harmonic
), and 2. Forn0L/ l &0.1 the results obtained agreed qua
titatively with the results of the four-wave interaction theor
however, it was found that higher-order wave processes
to a substantial renormalization of the hexagon amplitu
given by the analytic expression~46!. It was shown that for
n0L/ l *0.85 the strongly nonlinear stationary hexagonal
lutions ~obtained in the numerical experiment! become un-
stable against repumping of energy into higher harmon
The reason for this is that in this region the fundamen
-
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harmonic and) harmonic are of the same order due to t
closeness of their linear instability thresholds. In this case
transverse wave vectors of these two harmonics corresp
to positions of two successive minima of the threshold cu
g i(kdl ), which leads to an intense exchange of energy
tween them.
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Equation~9! should read as follows:

Ln5
1

gn
~^m&,V1gnHeff! ~9!
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