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Abstract—We continue the study of the second Painlevé equation within the framework of the electrostatic
probe theory. The integrability conditions for the equation are found for the partial absorption of charged par-
ticles by the probe surface. A sets of solutions with the asymptotics y ~ ν/x for x  +∞ is constructed numer-
ically in a wide range of the free parameter ν. Also, solutions (related to those mentioned above) for half-integer
and integer ν, including solutions representable in asymptotic form at x  +∞ through the Airy function y ~
cAi(x) in the limit ν  0, are found. The results are discussed from the standpoint of the isomonodromic
deformation method. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The second Painlevé equation (P2)

(1)

which is a nonlinear analogue of the Airy equation, has
appeared from the evolution of the theory of differential
equations and has been of pure mathematical interest
for a long time [1]. Primary attention was focused on
the asymptotic behavior of the P2-generated function at
large values of its argument and on a relationship
between the asymptotics of a particular solution at ±∞.
The problem was solved by using the isomonodromic
deformation method [2–5] developed recently, which is
an analogue of the Laplace integral transformation
method as applied to the Painlevé equations.

Nearly at the same time, it was found that the P2
equation occurs in a number of problems of modern
theoretical and mathematical physics. Eventually,
many of the researchers stated their belief that the P2
equation, along with five other Painlevé equations,
must play the same role in nonlinear theoretical physics
as classical special functions in linear problems [4, 5].
Therefore, the problem of calculating the values of this
nonlinear special function, which is often referred to as
the Painlevé function of the second kind, becomes top-
ical.

This function is expressed via rational and known
special functions (Airy functions) only in two particu-
lar cases, namely, when the free parameter ν equals 0
and 1/2. In the general case, a mathematical description
of this function, e.g., in the form of a series or integral
representation, that would allow one to calculate its val-
ues is absent. The only method is numerical integration.
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In integrating the P2 equation, the problem of
choosing initial conditions providing a given asymptot-
ics of particular solutions arises. Moreover, a general
solution to the P2 equation is known to be a discontin-
uous function with movable singularities in the form of
first-order poles; i.e., the positions of singularities are
dependent on initial data. Only two attempts to numer-
ically integrate the P2 equation with ν = 0 have met
with success [6, 7]. These attempts have culminated in
solutions with the asymptotics y ~ cAi(x) for x  +∞,
where c is a parameter and Ai(x) is the Airy function.

The application of the P2 equation to the electro-
static probe problem [8] has remained practically
unknown. In [9], it was shown how the properties of the
P2 equation and its solutions show up in the electro-
static probe theory. It was found, in particular, that the
well-known relationship [1] between solutions to the
P2 equation at ν = 0 and 1/2 is given by the equation

(2)

The derivative ux satisfies (1) with ν = 1/2, and the
function η(ζ) = 2–2/3eu(x) with ζ = –2–1/3x is a solution to
the P2 at ν = 0. Using (2), the form of the monodromic
matrix [2] at ν = 1/2 has been refined.

In the probe theory, solutions to the P2 equation that
are regular at +∞ with the asymptotics y ~ ν/x (x 
+∞) appear. The detailed asymptotic description of
these functions in the form of a series is given in [1]. In
[9], initial conditions that these solutions must meet
were found and the solutions were constructed numeri-
cally. The initial conditions found resulted from the
analysis of a singularly perturbed set of differential
equations that describes the operation of a probe when
charged particles are totally absorbed by its surface. In
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this case, for any ν < 1/2, only a single solution with the
asymptotics mentioned above can be constructed.
However, it is known [1] that there exists a set of such
solutions at any ν. In this paper, the physically justified
case of partial absorption of charged particles is stud-
ied. This makes it possible to perform numerical inte-
gration and find solutions from this set.

INTEGRABILITY CONDITIONS
AND NUMERICAL PROCEDURE

The operation of a spherical probe in a collisional
plasma can be described by the equations [9]

(3)

Here, n+ and n– are the dimensionless numerical con-
centrations of positively and negatively charged parti-
cles, respectively; I+ and I– are their currents toward the
probe; E is the electric field strength; ψ is the dimen-
sionless electric potential; ξ = 1/r, where r is the radial
coordinate of the spherical coordinate system; and α is
the ratio of the Debye length to the probe radius.

Detailed asymptotic analysis of singularly per-
turbed set (3) at α ! 1 is presented in [9]. Canonical
form (1) of the P2 equation can be obtained from set (3)
by reducing it to a single equation for the field strength
E and applying the transformations [9]

(4)

to this equation. Here, ξs = 2/(I+ + I–) is the singularity
point of an external solution to (3). The parameter ν in
(1) is related to the probe currents as ν = (I– – I+)/(I– +
I+)/2. Since the dimensionless currents I+ and I– are
always positive in the absence of particle emission from
the probe surface, the free parameter ν in (1) may vary
(in the framework of the probe theory) only within the
interval |ν| ≤ 1/2. However, solutions to the P2 for any
ν from this interval, excluding ν = –1/2, are known [1]
to define solutions for arbitrary ν by recurrence rela-
tions. Therefore, in [9], solutions to the P2 were found
in a wide range of ν.

The integrability conditions for the P2 at ν < 1/2
were found [9] for the case when the electric potential
ψ(1) = ψ0 at the probe surface is given and the concen-
trations of both positively and negatively charged parti-
cles are n+(1) = n–(1) = 0 (boundary conditions for (3)).
Let us find the integrability conditions in the general
case, where n+(1) = n0+ > 0 and/or n–(1) = n0– > 0 at the
probe surface.

dn+/dξ n+E+ I+, dn–/dξ n–E–– I–,–= =

α2ξ4dE/dξ n– n+, E– dψ/dξ ,–= =

ξ 0 1,[ ] , ψ 0( )∈ 0, n± 0( ) 1.= =

x 21/3α 2/3– ξ s
5/3– ξ s ξ–( ),=

E ξ( ) 24/3α 2/3– ξ s
5/3– y x( )=
From set (3), it follows as an intermediate result that

(5)

where the prime denotes differentiation with respect
to ξ.

Let us apply transformations (4) to (5) and put

(6)

Then, at a point x0 (unknown beforehand) on the
probe surface, the relationship

(7)

is valid. In (7), the subscript 0 designates quantities
found at x = x0 and the prime means differentiation with
respect to x. Applying transformations (5) and (6) to the
third equation of (2), we arrive at

(8)

at α  0. Here, η0+ and n0+ are related by the same
relationship (6) as η0– and n0–. Substituting (8) into (7)
and taking into account (1) yields

(9)

Upon numerically integrating (1) at |ν| < 1/2, condi-
tions (8) and (9) provide solutions to the P2 with the
asymptotics y ~ ν/x for x  +∞. If charged particles
are absorbed completely, when η0+ = η0– = 0, condi-
tions (8) and (9) coincide with those found in [9]. Note
that, by physical considerations, the plus sign was cho-
sen in [9].

In the case ν = 1/2, which corresponds to a large
negative probe potential (ψ0 ! –1), so that one can
assume I+ = 0, it is convenient to use Eq. (2) for calcu-
lating numerical solutions to the P2. In order that the
boundary-value problem for (3) be solvable, it is neces-
sary that n+(1) = n0+ = exp(ψ0) > 0 [9]. For ν = 1/2, a set
of regular solutions to the P2 with the same asymptotics
at x  +∞ was found [9] under the condition that neg-
atively charged particles are totally absorbed: n–(1) =
n0– = 0.

In the case of partial absorption of negatively
charged particles, the following integrability conditions
for Eq. (2) can be obtained:

(10)

where η0+ = exp(2u0). Note that, in contrast to η0–, η0+
cannot take an arbitrary value at a given u0.

The computational procedure is described in detail
elsewhere [9]. Note only that, after the transition to
equivalent sets of first-order differential equations, we
will use difference schemes [10] to integrate (1) and

n–

α2 ξ4E '( )' α2ξ4EE ' I– I+–+ +
2E

-----------------------------------------------------------------------,=

n– 2 1/3– α2/3ξ s
2/3η–.=

y0'' 2y0y0' y0η0– ν–+=

y0' η0+ η0––( )/4=

y0 –x0/2 η0+ η0–+( )/4+ .±=

u0' –x0/2 η0+ η0–+( )/4+ , u x0( )± u0,= =
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THE SECOND PAINLEVÉ EQUATION IN THE ELECTROSTATIC PROBE THEORY 3
(2). For example, for Eq. (1), the scheme is the follow-
ing:

Here, a = 5 – , b = 6 – , z = y', and f(x, y) is the
right of Eq. (1). The convergence of the difference
scheme was verified [9] by splitting a step h, which was
finally taken to be h = 10–4. The major problem here is
to select the starting point of integration x0.

NUMERICAL RESULTS

Figure 1 shows the results of numerical integration
of the P2 at ν = 0.1 and 0.4 for various values of the
parameters η0+ and η0–. The dash-and-dot lines are the
solutions at η0+ = η0– = 0 [9].

Curves 1–9 in Fig. 1a were calculated for η0+ =
η0− = 1, 2.5, 2.87, 2.870990, 2.870991, 2.88, 3, 4, and
5, respectively. Curves 10–15 were obtained at η0+ = 0
and η0– = 0.5, 1.049210, 1.049211, 1.1, 2, and 6,
respectively. Curve 16 corresponds to η0+ = 1 and η0– =
6. From Fig. 1a, it follows that there are regular solu-
tions with the same asymptotics y ~ ν/x at x  +∞ and
those with different asymptotics at –∞. Among them
are oscillating solutions 1–3, 11, and 12 and also singu-
lar solutions 4–10 and 13–17. The curves of the two
types are separated by two separatrix solutions, which

yi 1+ yi h azi 1+ /b zi/b+( ),+=

zi 1+ zi
h
12
------ bf xi 1+ yi 1+,( )[ ] /a bf xi yi,( ).+ +=
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are unstable against weak perturbations of the initial
data. The separatrix solutions have the asymptotics

(11)

Note that the solutions to the P2 with the asymptot-

ics y ~ –  at x  –∞ were known previously for
ν < 0 [1].

Similar results were obtained at ν = 0.4 (Fig. 1b).
Curves 1–10 correspond to η0+ = η0– = (1) 0.5, (2) 0.77,
(3) 0.779663, (4) 0.779664, (5) 0.78, (6) 1, (7) 2, (8) 3,
(9) 4, and (10) 5. Curves 11–16 were calculated for
η0+ = 0 and η0– = (11) 0.5, (12) 1.009605, (13)
1.009606, (14) 1.1, (15) 2, and (16) 6; curve 17, at
η0+ = 1 and η0– = 6.

The results of calculating the starting point of inte-
gration x0 for various values of ν, η0+, and η0– are listed
in the table. The table also includes the numbers n of
terms involved in the asymptotic series [1] that
describes the asymptotics of the regular (at x  +∞)
solutions to the P2. In [9], four terms of the series were
taken into account; this number is, as a rule, insufficient
to obtain a desired accuracy of determining x0 when
charged particles are partially absorbed.

The behavior of solutions to the P2 at small ν  0
is of interest. For this case, it was found [1] that the
coordinate x0 and, together with it, y0  0 and the
solution to the P2 tends to the trivial solution y = 0 for
the complete absorption of charged particles. In our

y x/2– .±∼

x/2–
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case (partial absorption), x0 and y0 tend to certain limits
other than zero.

The results at ν = 10–11 are shown in Fig. 2a (solid
lines) and in the table. Curves 1–5 were constructed at
η0+ = 0 and η0– = 0.5, 1, 1.009623, 1.009624, and 6,
respectively; curve 6, at η0+ = 1 and η0– = 6. The curves
symmetric with respect to the x axis are also solutions
that appear when η0– and η0+ are substituted for η0+ and
η0–.

The solid lines in Fig. 2b show a solution to the P2
at ν = 0.5, which can be derived from solution 1
(Fig. 2a) with the well-known formula relating the
solutions for ν = 0.5 and 0 (see the Introduction). It is
seen that continuous solution 1 for ν = 0 gives rise to the

–4
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–10 –6 –2 2 6 x

2
34
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34567

1

Fig. 3.
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singular solution for ν = 0.5. The latter turns out to be
close to the solution

(12)

to the one-parameter set [2] at C = 0. As is known, solu-
tions to this set are not related to the solutions to the P2
at ν = 0. For comparison, the dashed lines in Fig. 2b
show another solution to this set in the limit C  ∞;
i.e., y = –2–1/3Bi'(ζ)/Bi(ζ).

The solid lines in Fig. 3 demonstrate solutions to the
P2 for ν = 0.5 that were found (as in [9]) by numerically
integrating auxiliary equation (2) (see also the table).
First, the results of [9] for η0– = 0 and η0+ > 0 were sup-
plemented. In [9], attempts to find solutions to (2) and,
correspondingly, to the P2 for u0 > 0.203, i.e., η0+ >
e0.406, failed. It turned out that, at such values of η0+, one
has to choose the negative value of the root in condition
(10). In view of this fact, the solutions to Eqs. (2) and
P2 for u0 = 0.5 and 1 were found (curves 1, 2). Curves
3–7, which belong to a different set of solutions than
curves 1 and 2, were found in the case of partial absorp-
tion of both positively and negatively charged particles
at η0+ = 1 and η0– = 6, 2, 1.76, 1.7542, and 1.75417557,
respectively.

The integral curves for the P2 equation at ν = 0 that
correspond to some of the curves discussed above are
shown by the dashed lines (marked by the letter a) in
Fig. 2a. The parts of curves 3a–5a for y < 0 were found
by directly integrating Eq. (1) with ν = 0. Then, the
solutions to the P2 for ν = 0.5 cm (the dashed curves in
Fig. 3) were completed using the well-known relation-
ship between the solutions.

The solid curves in Figs. 4a and 4b show the solu-
tions y(x, ν) to the P2 equation for ν = 1 and 2 that were
constructed with the recurrent formula [1] from solu-
tion 1 (Fig. 2a); the dashed curves are similar solutions
derived from the symmetric solution –y(x, 0).

Figures 5a and 5b show the typical form of other
solutions, y(x, 1) and y(x, 2), that were derived from
solution 5a (Fig. 2a). Here, the poles of the functions at
the right extreme of the range of integration (breaks in
the y axis) are noteworthy.

Figures 6a and 6b illustrate the solutions y(x, 1.5)
and y(x, 2.5), which were derived from the correspond-
ing solutions y(x, 0.5) (Fig. 3a). Note the different num-
ber of the poles of solution 5 for ν = 2.5.

Finally, Figs. 7a and 7b exhibit the functions y(x,
1.5) and y(x, 2.5), which were derived from the corre-
sponding solutions y(x, 0.5) in Fig. 2b. Here, it is wor-
thy to note the shift of the zeros and poles of the func-
tion y(x, 2.5) with respect to those of y(x, 0.5) and
y(x, 1.5) on the right of the plots.

y 2 1/3– Ai' ζ( ) CBi' ζ( )+( )/ Ai ζ( ) CBi ζ( )+( )– ,=

                         ζ 2 1/3– x–=
TECHNICAL PHYSICS      Vol. 49      No. 1      2004



THE SECOND PAINLEVÉ EQUATION IN THE ELECTROSTATIC PROBE THEORY 5
DISCUSSION OF THE SOLUTIONS IN TERMS
OF THE ISOMONODROMIC DEFORMATION 

METHOD

Let us discuss the results found in terms of the
isomonodromic deformation method [2]. This method
was used both in [3] to describe the asymptotic behav-
ior of real solutions to the P2 at ν = 0 and in [5] to study
the case of arbitrary ν. The asymptotics are represented
through the Stokes multipliers, which are the nontrivial
components of the Stokes matrices for the set of linear
differential equations

(13)

that is associated with (1). Here, Ψ1 and Ψ2 are func-
tions of the complex variable ζ. The Stokes matrices
relate the formal asymptotic expansions of two linearly
independent solutions to (13) at ζ  ∞ in adjacent
sectors of the complex plane. It is well known that y in
(13) satisfies (1) if the Stokes matrices are independent
of the deformation parameter x and vice versa. For the

Ψ1ζ i 4ζ2 x 2y2+ +( )Ψ1 4ζy ν/ζ 2iyx+ +( )Ψ2,–=

Ψ2ζ 4ζy ν/ζ 2iyx–+( )Ψ1 i 4ζ2 x 2y2+ +( )Ψ2+=

4
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Stokes multipliers s1, s2, and s3, we have

(14)

In the case of real x and y, s1 =  and s2 = .

In [5], the complete description of the solutions y ~
ν/x (x  +∞), which are studied here numerically, is
lacking; however, it was noted that for them s2 = 0.
Then, putting s1 = β + iγ, we find from (14) that for
these solutions

(15)

As was found in [5], any solution to the P2 has one
of three asymptotics for x  –∞. A solution may have
the form of damped oscillations, be a singular function
of the cosecant type, or represent either an increasing or
decreasing function with asymptotics (11). The plots
presented above show that any of these asymptotics is
realizable for those solutions to the P2 corresponding to
the case s2 = 0 at all but half-integer ν. The type of
asymptotics depends on the value of the imaginary part
γ of the Stokes multiplier s1.

s1 s2– s3 s1s2s3+ + 2 πν.sin–=

s3* s2*

β πν.sin–=
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After transformations, one of the formulas in [5]
yields

(16)

for real solutions to the P2 at x  –∞.
Calculations show that, in view of (15), the asymp-

totics of the solutions to the P2 that are plotted in
Fig. 1a satisfy (16) if γ ≈ 0 (the dash-and-dot line), γ ≈
0.15 (curve 1), 0.6 (2), 0.95 (3), 0.951056 (4), γ ≈ –0.5
(10), and 0.951056 (11). The asymptotics of the solu-
tions to the P2 that are shown in Fig. 1b are described
by (16) if γ ≈ –0.2 (the dash-and-dot line), γ ≈ 0.15 (1),
0.3 (2), 0.3090155 (3), γ ≈ –0.26 (11), and –0.3090167
(12).

Formula (16) is invalid for |s1|2 > 1, i.e., when γ2 >
1 – sin2πν. In this case, the asymptotic behavior of the
solutions to the P2 at –∞ must be found by the formula
[5]

Accordingly, for solutions 5–9 and 12–16 in Fig. 1a,
which have this asymptotics, as well as for solutions 4–

y x– 1/4– ρ 2 x 3/2/3 3ρ2/4( ) xln– ϕ+( ),sin∼

ρ2 π 1– 1 s1
2–( ),ln–=

ϕ – 3ρ2 2ln( )/2 π/4– is3Γ iρ2/2( )[ ]arg+=

y x 1/2– cosec 2 x 3/2/3 3ρ2/4( ) xln– θ+( ),∼

ρ2 π 1– s1
2 1–( ),ln=

θ 3ρ2/2( ) 2ln s1Γ 1/2 iρ2/2+( )[ ] .arg–=
10 and 13–17 in Fig. 1b, we have |γ| > 0.951056 and
|γ| > 0.309017, respectively.

Separatrix solutions (11) meet the condition 1 – s1s3 =
0 [5]; therefore, with s2 = 0, we find γ = ±(1 – sin2πν)1/2.
At ν = 1/2, we have γ = ±1, β = 0, and |s1| = 1. This
implies that the solutions to the P2 that are regular at
+∞ cannot have oscillating asymptotics (16) in this
case. This is confirmed by the results of numerical inte-
gration (Fig. 3).

If ν = 0, then β = 0 and the Stokes multiplier s1 is a
pure imaginary. It is known [3] that, in this case, the
behavior of the solutions to the P2 at +∞ is described by
the Airy function

(17)

At x  –∞ and c < 1, the asymptotics of these
solutions is represented by formula (16), which, at ν =
0, is reduced to the similar formula in [3]. As follows
from calculations, the asymptotics of solutions 1–3 in
Fig. 2a satisfies (16) with γ = –0.5, –0.99, and
−0.999999, respectively. In other words, having numer-
ically constructed the solutions to the P2 for small
ν  0 with the asymptotics y  ν/x at x  +∞,
we arrive at the solutions with asymptotics (17), which
were found earlier [6, 7]. In [3], it was argued [3] that
c = γ in (16) at ν = 0. However, the results presented
here show that c = –γ.

Note that formula (17) can be derived by linearizing
the P2 at ν = 0. If ν ≠ 0, the linearization of Eq. (1)
yields an inhomogeneous Airy equation; therefore, the

y cAi x( ) 2 1– π 1/2– cx 1/4– 2x3/2/3–( ).exp∼ ∼
Table

Curve no.
Fig. 1a Fig. 1b Fig. 2a Fig. 3

x0 n x0 n x0 n x0 n

1 0.99256 4 0.26350 4 0.20631 14 1.2181 4

2 2.4978 5 0.60967 4 0.35894 15 2.1211 4

3 2.8682 6 0.62133 4 0.36154 16 2.0078 9

4 2.8692 6 0.62133 4 0.36154 16 1.1042 4

5 2.8692 6 0.62173 4 1.1196 17 1.0370 4

6 2.8782 6 0.87861 4 2.5531 20 1.0353 4

7 2.9984 6 1.9507 4 1.0353 4

8 3.9980 9 2.9737 5

9 4.9993 12 3.9838 8

10 0.11835 5 4.9891 11

11 0.24812 6 –0.72004 4

12 0.24812 6 –0.67894 4

13 0.25879 6 –0.67894 4

14 0.42248 6 –0.67210 4

15 0.87682 9 –0.60981 4

16 2.46000 10 –0.41046 5

17 2.1342 9
TECHNICAL PHYSICS      Vol. 49      No. 1      2004



THE SECOND PAINLEVÉ EQUATION IN THE ELECTROSTATIC PROBE THEORY 7
asymptotics of the solutions to the P2, y  ν/x at
x  +∞, can be represented in the form

Here, Gi(x) ~ π–1x–1 at x  +∞ [11] is a solution of the
inhomogeneous Airy equation y'' = xy – π–1.

Curves 1a–5a (Fig. 2a) are also separatrix curves at
x  –∞ with asymptotics (11). They correspond to
the same values of β and γ (β = 0 and γ = –1) but differ-
ent s2.

If s2 ≠ 0, the asymptotics of the solutions to the P2
at x  +∞ is given by [5]

(18)

where σ = sgn(s2), ρ = π–1ln|s2|, and X = Γ(3/4 +
σν/2 + iρ/2)Γ(1/4 – σν/2 + iρ/2) – 1 + s1s2).

Solutions 1a and 2a correspond to s2 < 0; 3a–5a, to
s2 > 0.

For the solutions to the P2 at ν = 1/2 that are shown
in Fig. 2b, β = –1 and γ = 0. The asymptotics of the solu-
tion that is depicted by the solid lines (Fig. 2b) satisfies
(18) at s2 ≈ 0.72. Solution (12) at C  ∞ shown by the
dashed lines corresponds to s2 = 1, when formula (18)

y cAi x( ) νπGi x( ).+∼

y x( ) σ x/2 21/2x3/2/3 3ρ/4( ) xln+[cot∼
+ 5ρ/4( ) 2ln X/2– ] ,

[arg
(arg
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becomes invalid. It is of interest that, using the asymp-
totic representations of the Airy functions Ai(–x) and
Bi(–x) and of their derivatives for x  +∞ [11], we
find asymptotics (18) for solution (12) with C = 0
(C  ∞) if the Stokes multiplier s2 tends to unity from
the left (right): s2 = 1 – 0 and s2 = 1 + 0, respectively.

CONCLUSIONS
It is shown that basically the P2 equation may be

numerically integrated. This allows one to evaluate the
Painlevé function of the second kind in several particu-
lar cases. The question of how to denote this function to
single out a specific solution arises. Since any specific
solution may be uniquely characterized by the value of
the free parameter ν, the imaginary part γ of the Stokes
multiplier s1, and the real multiplier s2, we suggest that
the Painlevé function of the second kind be denoted as
P2(x; ν, γ, s2). For example, solutions with the asymp-
totics y ~ ν/x for x  +∞ obtained in this paper may
be denoted as P2(x; ν, γ, 0).
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Abstract—Results are presented from experimental studies of the formation of a ribbon electron beam during
the extraction of electrons from the plasma of a steady-state hollow-cathode discharge in the forevacuum pres-
sure range. It is shown that the main reason for the nonuniformity of the current density is the increase in the
local nonuniformity of the emission plasma density caused by the return flow of ions from the accelerating gap.
Taking this feature into account when developing a system of beam extraction provides for the generation of a
ribbon beam with a nonuniformity of the current density along the beam of less than 10%. © 2004 MAIK
“Nauka/Interperiodica”.
INTRODUCTION
One of the promising applications of ribbon electron

beams is the formation of large-area (up to 1 m2)
“plasma sheets” that can be used in various technolog-
ical processes (such as plasmochemical and ion etching
and the deposition of various coatings in the course of
decomposition and fusion reactions in the generated
plasma) and as moving microwave mirrors [1]. A fairly
high gas pressure (10–100 Pa) is required to generate
such a plasma. As a result, it is very difficult to use
sources with a thermionic cathode for this purpose, so
that there is, in fact, no alternative to the use of plasma
electron sources based on the extraction of electrons
from the plasma of low-pressure discharges with non-
incandescent electrodes [2–4]. In forming a ribbon
electron beam, one of the most important problems is
that of attaining a highly uniform current density. This
problem was considered by Bugaev et al. [5] who ana-
lyzed the main reasons for the nonuniformity of the
emission current in large-cross-section beams and sug-
gested ways of eliminating these reasons. At the same
time, Bugaev et al. [5] largely treated “standard”
plasma sources of electrons, whose working pressure
range was, as a rule, below 0.1 Pa. At such pressures,
the degree of uniformity of the current density of an
electron beam extracted from the plasma is largely
determined by the uniformity of the emission plasma.
The transition to the forevacuum pressure range results
in an increase in the effect of the return flow of ions
formed in the accelerating gap and the electron-beam
transport region on the emissive properties of the
plasma [6]. Therefore, for plasma sources of electrons
operating in the forevacuum pressure range, it seems
insufficient to achieve the initial uniformity of the emis-
sion plasma. It was shown in [6, 7] that an increase in
1063-7842/04/4901- $26.00 © 0104
the working pressure makes it necessary to take into
account the ionization processes in the accelerating gap
and attendant phenomena.

In this paper, we describe the results of investiga-
tions of the formation of a ribbon electron beam with a
highly uniform current density in a forevacuum plasma
source of electrons based on a discharge with an
extended hollow cathode [8].

EXPERIMENTAL SETUP

The experimental forevacuum plasma source of
electrons for the generation of a ribbon beam com-
prised the same basic elements as the source of a cylin-
drical electron beam described by us in [6], namely, a
hollow cathode, a flat anode with an emission opening,
an accelerating electrode, and a collector. Rectangular
hollow cathode 1 (Fig. 1) 300 × 80 × 40 mm in size
maintained a steady-state discharge with a current of up
to 1.5 A. The beam size was determined by a 250 ×
10 mm emission slot in anode 2. The slot was over-
lapped by fine-mesh metal grid 3. Cathode 1, anode 2,
and accelerating electrode 4 were electrically separated
from one another by caprolan insulators 5 and 6. The
parameters of the emitting plasma were measured with
cylindrical probes 7 introduced into the plasma via
channels in insulator 5. The probes were arranged so
that fast ions from the accelerating gap could not fall on
their collecting surfaces. The working gas was air. Fig-
ure 1 also shows how the sources of the discharge and
accelerating voltages (Ud aqd Ua, respectively) were
connected to the electrodes. The electron current distri-
bution along the electron beam was measured using
movable molybdenum collector 8 located behind a
grounded grid having a slot with a width of 1 mm and
2004 MAIK “Nauka/Interperiodica”
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length exceeding the beam size. The distance from the
emission grid to the collector was 15 cm.

EXPERIMENTAL RESULTS

In order to determine the distribution of the plasma
density along the hollow cathode, the currents to probes
7 (Fig. 1) were measured in the ion segment of the cur-
rent–voltage characteristic. In the absence of electron
emission, the nonuniformity of the plasma density
along the hollow does not exceed 5–10%, except for the
density maxima at the edges. At the same time, the elec-
tron beam extracted when applying the accelerating
voltage is significantly nonuniform and, as visual
observations demonstrate, turns out to consist of at least
ten fine beams (jets). The distribution of the current
density i(x) at the movable collector under different
experimental conditions is given in Fig. 2. In this case,
a much smaller number of experimentally recorded
maxima is due to the effect of individual jets in the
region where the distribution of the electron beam cur-
rent is measured. A decrease in the pressure resulted in
the disappearance of the beam nonuniformities. A sig-
nificant decrease in nonuniformities was also observed
when the grid cell size was reduced.

We performed a special experiment with a compos-
ite grid in order to more clearly establish a correlation
between the beam current density and the density of the
emitting plasma. The middle 6-cm-long part of the
composite grid was a grid with a 0.8 × 0.8 mm mesh,
and the remainder was a grid with a 0.4 × 0.4 mm mesh.
The effect of the electron emission on the plasma den-
sity distribution in the hollow for this situation is illus-
trated by Fig. 3. Figure 4 gives the corresponding dis-
tributions of the current density i(x) along the beam. It
can be seen that, in the absence of emission, the nonuni-
formity of the plasma density along the hollow does not
exceed 20%. At the same time, the electron emission
results in a several-fold increase in the plasma density
in the middle part of the hollow. The results presented
in this figure clearly demonstrate the agreement
between the positions of the maximum of the beam cur-
rent density and the maximum of the plasma density in
the hollow. We also note that, as the pressure decreases,
the nonuniformities of the beam current density and the
plasma density are smoothed out.

ANALYSIS OF THE RESULTS

The basic experimental results can be formulated as
follows. In the absence of electron emission, the non-
uniformity of the plasma density along the hollow does
not exceed 10%. The extraction of electrons from the
plasma at elevated pressures leads to the emergence of
more significant nonuniformities in both the plasma
and the electron beam. In this case, the spatial positions
of the maxima of the emission current density and the
density of the emitting plasma coincide. The nonunifor-
mity of the current density of the electron beam exceeds
TECHNICAL PHYSICS      Vol. 49      No. 1      2004
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Fig. 1. Schematic of an electron source.
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Fig. 2. Distribution of the electron current along the beam
for pressures of p = (1, 3) 4 and (2) 1 Pa and grid cell sizes
of (1, 2) 0.8 × 0.8 and (3) 0.4 × 0.4 mm.
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Fig. 3. Distribution of the probe current density in the anode
plasma for accelerating voltages of Ua = (1) 0 and (2) 3 kV
at a pressure of p = 4 Pa.
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the corresponding nonuniformity of the plasma density.
The effect of emission on the nonuniformity of the cur-
rent and plasma densities significantly reduces as the
gas pressure and the size of the emission hole (grid cell)
decrease. Based on the experimental results, we can
assume the following mechanism for increasing the
nonuniformity of the electron emission current. In the
initial stage of the extraction of electrons from the
plasma, the nonuniformity of the current density is
mainly due to the nonuniformity of the plasma density
in the hollow. The current density distribution may also
be affected by the nonuniformity of the emission grid,
namely, by the differences in the local curvature and the
scatter in the sizes of elementary cells. The ionization
of the residual gas in the accelerating gap and in the
region of electron beam transport, which is significant
in the forevacuum pressure range, leads to the emer-
gence of a significant return flow of ions. Since the ion-
ization rate is proportional to the electron current den-
sity, the density profile of the return ion flow must cor-
respond to the initial distribution of the current density
of the electrons emitted by the plasma. Fast ions, which
get into the plasma and exchange charges with gas mol-
ecules, bring with them a positive space charge, which
is neutralized by the plasma electrons. This results in a
local increase in the nonuniformity of the plasma den-
sity and in the corresponding increase in the nonunifor-
mity of the emission current. The increase in the emis-
sion current density with increasing plasma density is
also due to the increase in the area of the open plasma
surface within each cell of the anode grid because of the
narrowing of the space charge layer separating the
plasma from the grid. Therefore, a minor local variation
in the plasma density results in a disproportionate
increase in the local density of the electron emission
current. The return ion flow associated with the electron
current causes a further local increase in the plasma
density and the corresponding further disproportionate
increase in the density of the electron emission current
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Fig. 4. Distribution of the current density along the beam for
pressures of p = (1) 4 and (2) 2.4 Pa at Ua = 3 kV.
at this site. This positive feedback reaches saturation
and the plasma density ceases to increase when the for-
mation rate of slow ions is balanced by their diffusion
from the perturbation region.

In order to qualitatively estimate the possibility of
the existence of a local maximum in accordance with
the above mechanism, we will write balance equations
for slow ions formed in the cathode hollow due to
charge exchange of fast ions arriving at the plasma from
the accelerating gap. The production of ions is balanced
by their departure from the perturbed plasma region
due to diffusion. In the one-dimensional case, the bal-
ance equation has the following form:

(1)

where Di is the ionic diffusion coefficient; n(x) is the
plasma density in the perturbation region; ±Xb are the
coordinates of the boundaries of the perturbation
region; dn(x)/d  is the gradient of the plasma den-

sity at the edge of the perturbation region; l is the depth
of the hollow, which is less than the mean free path of
charge-exchange ions, whereby a one-dimensional
model may be employed; nn is the density of neutral
particles; Qe is the effective cross section for the ioniza-
tion of gas particles by electrons; d is the accelerating
gap length; and Qr is the effective cross section for the
charge exchange of ions.

In order to take into account the variation in the area
of the emitting surface, the coefficient K(x) is intro-

1
4
---

8kTe

πm
-----------nn

2QeQrd Qrnny–( )exp yd

0

l

∫

× n x( ) xd

Xb–

Xb

∫ Di
n x( )d

xd
--------------

Xb

l,–=

x Xb

–0.06 –0.04 0.02 0.04 0.06–0.02 0
1.0

1.5

2.0

2.5
1
2
3

x, cm

i, arb. units

Fig. 5. Calculated dependence of the electron current den-
sity on the x coordinate in the perturbation region for pres-
sures of p = (1, 2) 6.6 and (3) 4 Pa and grid cell sizes of h =
(1, 3) 0.8 × 0.8 and (2) 0.4 × 0.4 mm.
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duced in the left-hand side of Eq. (1),

(2)

where h is the inner size of the grid cell, ls(x) =

2  is the thickness of the ion
layer separating the plasma from the grid [2], and U is
the plasma potential relative to the anode.

It was assumed in the calculations that the depen-
dence of the plasma density on the x coordinate within
the perturbation region has the form of a Gaussian func-
tion. It follows from experiment that the value of Xb

remains constant. The value of dn(x)/d  is deter-

mined from the condition of equality of the perturbed
(n) and unperturbed (n0) densities at x = Xb.

The numerical results presented in Fig. 5 demon-
strate a local increase in the emission current density
i(x) with increasing both gas pressure and cell size of
the emission grid. Therefore, the results of our calcula-
tions qualitatively confirm the possibility of the exist-
ence of local nonuniformities of the emission current
due to the above physical mechanism.

CONCLUSIONS
A specific feature of the formation of a ribbon elec-

tron beam by a plasma source in the forevacuum pres-
sure range is the high probability of the emergence of a
nonuniformity in the distribution of the emission cur-
rent along the beam. The results of our investigations
indicate that this nonuniformity is caused by the return
ion flow from the accelerating gap into the emitting
plasma. The positive feedback that arises between the

K x( )
h 2ls x( )–( )2

h2
------------------------------,=

ε0U3/2 n x( ) ekTe( ) 1–

x Xb
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electron emission current and the return ion flow causes
a disproportionate increase in the primary nonunifor-
mity of the beam due to local nonuniformities of the
plasma density, as well as to the local bending of the
cells and difference in their sizes. The effect of the
return ion flow may be reduced, e.g., by its defocusing
accomplished by varying the grid shape in the emission
electrode. This provides the generation of a ribbon elec-
tron beam with a nonuniformity of 10% or less. The
investigation results provide one with more assurance
in developing plasma electron sources generating elec-
tron beams in the forevacuum pressure range.
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Abstract—Secondary electron emission from 2.5- to 5.0-µm thick diamond films (membranes) is considered.
The process is studied in the reflection regime, where secondary electrons leave the front surface of the mem-
brane exposed to primary electrons, and in the transmission regime, where primary electrons cause secondary
emission from the opposite surface. The secondary emission coefficient is determined based on the behavior of
0.1- to 30-keV electrons in the solid. In the reflection regime, the secondary emission coefficient may be higher
than 100 for electron energies of about 3 keV; in the transmission regime, it is no more than 5 even for 30-keV
electrons. The emissivity of the membranes in the transmission regime can be improved, specifically, by using
porous membranes, which allow one to obtain characteristics similar to those in the reflection regime. Experi-
mental data obtained agree with calculations. The production of diamond films, including porous membranes,
is described. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Bulk diamond and diamond films are promising
materials for high-temperature and radiation-resistant
electronics, as well as vacuum microelectronics. This is
because diamond offers a unique combination of phys-
icochemical properties: a high chemical and radiation
stability plus an extremely high thermal conductivity
and carrier mobility. Moreover, some of the diamond
faces have a negative electron affinity (NEA); i.e., the
energy of an electron in a vacuum is lower than its
energy at the conduction band bottom. Because of this,
electrons may be emitted from the conduction band
into a vacuum in a thresholdless manner [1]. The dis-
covery of NEA has given impetus to extensive research
aimed at creating efficient cold (field) emitters based on
diamond films. A large body of experimental data avail-
able today confirms the possibility of electron emission
from polycrystalline diamond films; however, the emis-
sion is more likely to stem from intergranular regions
than being related to the NEA effect [2]. The basic rea-
son why the NEA-based concept of creating electron
emitters has failed is the absence of electrons in the
conduction band of diamond, since it has a wide energy
gap and no appropriate donors have been found to date.

The NEA of diamond also shows up in an extremely
high secondary electron emission (SEE) coefficient [3].
This effect may give rise to the development of high-
efficiency vacuum microelectronic devices.

Such devices may be built on polycrystalline dia-
mond membranes, which are capable of enhancing an
electron flow with a given density distribution in the
plane normal to the direction of electron motion.
1063-7842/04/4901- $26.00 © 20108
It has been shown in many publications that, with
the diamond surface processed properly, the SEE coef-
ficient in the reflection regime may reach a high value,
for example, 120 for 3-keV electrons (when the dia-
mond film is covered by a nanometer Cs layer) [4].
Unfortunately, encouraging results have been obtained
for only the reflection regime, where incident (primary)
and secondary electrons are on the same side of the tar-
get. In one of the pioneering works concerned with
electron emission in diamond films in the transmission
regime [5], it was shown that a high SEE coefficient in
this case is basically possible but practically hard to
achieve. Physically, this may be related to the recombi-
nation of electron–hole pairs in the bulk of the film
when they diffuse toward its rear.

To fabricate devices for 2D image processing like
electron flow enhancers, it is of importance to preserve
the electron density distribution in the plane normal to
the flow direction. This is a challenge when electrons
are multiplied in the reflection configuration. There-
fore, the problem of the devices operating in the trans-
mission regime remains quite topical. There are other
difficulties associated with the fabrication of the
devices, namely, diamond films patterning, the need for
doping, and making low-resistance contacts. These
three obstacles (and especially the absence of low-
resistance contacts) prevent the production of industrial
field emitters based on diamond films.

The aim of this work is to generate secondary emis-
sion in diamond films with a multiplication ratio much
higher than unity in the transmission configuration. In
Section 1, we consider the dynamics of fast electrons in
membranes and estimate the SEE coefficient in both
004 MAIK “Nauka/Interperiodica”
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regimes. In Section 2, the technology of diamond films
and membranes is described. Section 3 is devoted to
investigation techniques and presents experimental
data obtained for void-free diamond films. Finally, in
Section 4, we discuss ways of enhancing secondary
emission in the transmission configuration.

1. DYNAMICS OF FAST ELECTRONS
IN MEMBRANES

The basic element of a hypothetical electron flow
enhancer is a membrane, which is exposed to fast pri-
mary electrons and emits secondary electrons from its
surface layer. The operation of a solid-state electron
flow enhancer may be elucidated by analyzing the elec-
tron dynamics in a solid. In similar devices, the energy
of electrons usually lies in the range 0.1–40 keV. In this
case, the electron velocity is much lower than the speed
of light and the energy loss of an electron with an
energy E per 1 m of electron travel can be expressed
as [6]

(1)

Here, N is the number of scattering atoms in 1 m3, e is
the electron charge, Z is the nuclear charge, ε0 is the
dielectric constant of vacuum, E is the electron energy,
E1 = E/ , and  is the mean energy spent on ioniza-
tion. If a fast electron strikes the membrane at a right
angle, the initial portion of its path in the material may
be considered as rectilinear at least until its velocity

drops markedly (by a factor of , as follows from
estimates). From (1), one can estimate the maximal
path length lm of the electron:

(2)

where E0 is the electron initial energy, A is the atomic
weight, and ρ is the density of the material.

For diamond, α = 3.54 × 10–2. If it is assumed that
the mean energy of ionization equals the second ioniza-
tion potential E2 (the latter is 16.3 and 24.4 keV for sil-
icon and carbon, respectively, [7]), the maximal pene-
tration depth for E0 = 20 keV will be 3.2 and 4.5 µm in
diamond and silicon, respectively. These estimates
agree well with data in [8]. As the collision rate
increases, the electron will progressively deviate from
the initial direction. The probability that the electron
will be scattered by an angle Θ is given by the error
function [6]
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where

(4)

Here, x is the thickness of the layer and ϕ is the accel-
erating voltage. For diamond, β0 = 13.Using (3) and (4)
and making several relevant simplifications, we find
that, having entered into the membrane, the electron is
inside a cone that is generated by rotating a curve y(x)
about the initial direction of the electron. The curve y(x)
is defined by the differential equation

(5)

where Φ–1(η) is the function reciprocal to Φ(x), Φ(x) is
the probability integral, and η is a given probability that
the electron is inside the cone (usually η = 0.7–0.8).
The length of the curve y(x) is roughly equal to lm. Let-
ting η tend to zero, we obtain a continuous set of cones
whose bases lie on a convex surface bounding the initial
cone. The initial cone (η = 0.7–0.8) and the convex sur-
face bound the space where primary electrons generate
most of the secondary electrons. The analysis may be
simplified by replacing the cone by a sphere of radius
lm/3 that is centered at a distance of 2lm/3 from the
membrane surface. With η = 0.7–0.8, this sphere will
contain roughly half the number of secondary elec-
trons. The enhancement coefficient will be the highest
if secondary electrons arise as close to the emitting sur-
face as possible. Clearly, the thickness of the membrane
in the transmission configuration must not exceed lm. In
this case, the secondary electrons can approach the sur-
face (by diffusion or drift), overcome the barrier (if
any), and escape into a vacuum. Let us consider the
dynamics of secondary electrons in greater detail. A
secondary electron arises simultaneously with a hole.
The time electron–hole recombination in diamond is
τn = 10–9–10–8 s. Therefore, the electrons must leave the
membrane for the time τn. If an internal field is absent,
only electrons that are in a surface layer of thickness
roughly equal to the electron diffusion length Ln may
reach the surface. In diamond films, the mobility and
lifetime of electrons are, respectively, µn = 0.1–
1.0 cm2/(V s) and 10–9–10–8 s. Hence, 0.016 ≤ Ln ≤
0.16 µm. Then, if an internal field is absent and lm @ Ln,
the emitting surface is bound to lie near the center of the
sphere mentioned above and the thickness of the mem-
brane should be taken to be roughly equal to 2lm/3. If
the secondary electrons are uniformly distributed over
the sphere and the thickness of the membrane is h =
2lm/3, the enhancement coefficient upon transmission is

KD ≈ 3LnE0/4h . With h = 3 µm and E0 = 20 keV, KD is
no higher than 33 for the best films with Ln = 0.16 µm,
whereas for typical films with Ln = 0.016 µm, KD is
smaller than 3.3. At the same time, if secondary elec-
trons are emitted by the surface exposed to primary
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electrons, the enhancement coefficient upon reflection
is estimated as KD ≈ E0min(3Ln/2lm, 1)/ . For an elec-
tron energy much lower than needed in the transmis-
sion configuration, this estimate yields a much higher
value of KD. For example, with E0 = 3 keV, we find that
KD may reach 120 for the best films and remains suffi-
ciently high for typical films. At energies below 3 keV,
it amounts to 30. A significant advantage of the reflec-
tion configuration is that no fundamental restrictions
are imposed on the membrane thickness.

2. DIAMOND MEMBRANE TECHNOLOGY

According to the above estimates for the transmis-
sion configuration, the operating voltage must be as
high as 30 kV for the films 3 to 4 µm thick. The films
must be prepared in the form of void-free or porous
membranes. The membranes are formed on the silicon
substrate surface. The technology used in this work
allows for the local nucleation and growth of a diamond
film on the silicon surface covered with a photoresist
containing nanodisperse diamond particles. Substrates
were phosphorus-doped single-crystal (100)Si wafers
with a resistivity of 2.5–4.5 Ω cm. Prior to diamond
film formation, the wafers were subjected to standard
cleaning in organic and inorganic solvents. Then, a
photoresist film was applied on the substrate by spin-
ning. The mean size of diamond grains contained in the
photoresist was less than 0.1 µm. The volume content
of the diamond powder in the photoresist was varied
from 10 to 50%. After drying at 80°C for 10 min, the
resist was exposed to the radiation from a mercury-
vapor lamp and developed in a 0.5% aqueous solution
of KOH. In the case of void-free films, exposure and
development were not carried out. Diamond films were
deposited by microwave-plasma-assisted CVD in sev-
eral stages.

At the preparatory stage, the resonator was evacu-
ated to a pressure of 103 Pa and then filled with hydro-
gen to (5–6) × 103 Pa. The hydrogen flow rate was
10 l/h

Before deposition, the sample surface was cleaned
of organic contaminants. For this purpose, the sample
was kept in a hydrogen plasma for about 15 min at (5–
6) × 103 Pa and annealed 650–700°C.

The annealing stage graded into the stage of deposi-
tion. Good diamond films were obtained when the
microwave power was 1–2 kW; the pressure in the reac-
tor, (9–10) × 103 Pa; the sample temperature, 750–
800°C; and the ethanol vapor content in the hydrogen
atmosphere 10–15%. Good doped films were obtained
under the same conditions except that a trimethylbo-
rate–boric alcohol mixture, instead of ethanol, was
poured into the evaporator. The percentage of trimeth-
ylborate is usually varied from 0.2 to 0.8% depending
on the degree of doping of the diamond film.

E

The sample with the film deposited was annealed

again under nearly the same conditions as for the pre-
deposition annealing.

The annealed sample with the film was covered by a
chemically inactive material. A part of the rear side of
the substrate that specified the membrane dimensions
was left unprotected. Then, the silicon was chemically
etched in an HF : HNO3 = 2 : 1 (by volume) solution for
60 min until the diamond films appeared, as detected
with an optical microscope. At the final stage, the pro-
tective mask was dissolved in a boiling solution of
trichloroethylene and the entire structure was cleaned
in the isopropyl alcohol vapor for 10 min.

3. SECONDARY EMISSION
IN VOID-FREE FILMS

1. Measuring bench and techniques for studying
the electrophysical parameters of the films. A mea-
suring bench was built around a CamScan scanning
electron microscope [9] and comprised (i) an electron
gun with set of electromagnetic lenses, which make it
possible to form collinear electron beams with a diam-
eter of less than 1000 Å on the film surface and scan a
5 × 5- to 1000 × 1000-µm area with a frequency of 0–
100 Hz at beam energies from 0.5 to 30.0 keV; (ii) a
sample holder (arm), which allows one to change the
sample position relative to the electron beam; (iii) a
contactor, a switch, and power supplies, which control
measuring conditions and apply an electric potential in
the range 0–1500 V to the sample; (iv) an evaporating
system, which includes a Cs evaporator and power sup-
ply; (v) a two-stage differential current amplifier, which
handles currents from 10–12 to 10–7 A at frequencies
varying between 0 and 100 Hz; and (vi) a recording and
display system, which consists of an electrometric
amplifier, digital voltmeter, plotter, oscillograph, and
storage oscilloscope.

Preliminary studies of polycrystalline diamond
films, graphite films, and amorphous carbon films have
shown that noticeable secondary emission in these
materials, unlike those intended for field-emission
cathodes, takes place when the films have mostly sp3

bonds. That is the reason why CVD was the method of
choice for depositing diamond films. The phase compo-
sition was confirmed by Raman spectroscopy (sp3

bonds prevail) and electron diffraction in a transmission
electron microscope (phase microanalysis). To sup-
press charge effects during measurements, the growing
films were doped by boron. Hall measurements on free
diamond films showed that the hole concentration in
the boron-doped films might reach 5 × 1018 cm–3. The
free carrier mobility was no higher than 1 cm2/(V s).

2. Secondary emission measurement in the trans-
mission and reflection geometry. Typical depen-
dences of the secondary emission coefficient on the pri-
mary electron energy for void-free diamond films upon
transmission and reflection are given in Figs. 1 and 2.
TECHNICAL PHYSICS      Vol. 49      No. 1      2004
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The secondary emission coefficient KD is defined as the
ratio between secondary and primary electron currents,
which are measured with a Faraday cup. The SEE cur-
rent may also include elastically and inelastically scat-
tered particles.

For films not subjected to any additional processing,
the maximum of KD in the reflection configuration was,
as a rule, in the primary energy range 800–900 eV
(Fig. 1). In this range, KD varied between 5 and 20 and
depended significantly on the membrane surface condi-
tion.

In the transmission geometry, the maximum shifts
to 25–35 keV, equals 2–3, and also depends on the sur-
face condition. These observations were made for the
case when the secondary electron yield was measured
on the front side of the film, which did not contact with
the substrate during growth. When primary electrons
were injected from the opposite side, the SEE coeffi-
cient was one order of magnitude lower because of a
large density of defects and grain boundaries on that
surface. This strengthens the supposition that a mecha-
nism of electron transport toward the membrane sur-
face is of fundamental importance.

To gain a better insight into the effect of surface con-
dition on the SEE coefficient, the films were subjected
to additional annealing and cesium deposition. The sur-
face of some of the diamond films grown was addition-
ally hydrogenated by means of hydrogen annealing.
The vacuum annealing of these samples at 700°C led to
a decrease in KD. This detrimental effect was enhanced
upon subsequent annealings probably because of the
diamond surface dehydrogenation. These findings are
well consistent with published data [10].

Cesium applied on the diamond films hydrogenated
raised the secondary electron yield two- or threefold.

3. Discussion. Comparing our experimental data, as
well data obtained by other authors, with the model (see
Section 1) shows that the model provides an adequate
description of the secondary electron dynamics. Figure 3
plots the dependences of KD on the primary electron
energy [10] and our data for the reflection geometry.
Peaks in our curves suggest that the maximal penetra-
tion depth of primary electrons is roughly equal to the
diffusion length, and the energy shift of the maximum
after cesium deposition indicates that the work function
decreases compared with the hydrogenated films.

Since the values of KD for our films and those stud-
ied in [10] are close to each other with primary electron
energies up to 1 keV, it may be argued that the surface
condition is also nearly the same. The discrepancy at
energies above 1 keV may be explained by the fact that
the diffusion lengths in the films used in [10] were
almost three times longer than those in our films.
Accordingly, the electrons were delivered to the surface
from greater depths. Such a reason seems plausible,
since films in [10] had a thickness of ≈20 µm and,
hence, a grain size greater than in our films (3 to 5 µm
thick). A lesser effect of grain boundaries may, in our
TECHNICAL PHYSICS      Vol. 49      No. 1      2004
opinion, be responsible for the wider energy range of
linear growth of KD in single crystals compared to the
linear range in polycrystalline films [10].

In the transmission configuration, KD is much
smaller (than in the reflection geometry), because the
diffusion mechanism of secondary electron delivery to
the surface is inefficient, as follows from the estimates
in Section 1.

4. POTENTIALITIES FOR SECONDARY 
EMISSION ENHANCEMENT

IN THE TRANSMISSION GEOMETRY

1. Secondary emission in void-free membranes in
the presence of an internal sweeping field. We have

0 1 2 3 4 5
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15
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KD

Fig. 1. SEE coefficient vs. the primary electron energy in
the reflection configuration for two samples.
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Fig. 2. SEE coefficient vs. the primary electron energy in
the transmission configuration for the (h) 2.5-µm- and
(s) 5-µm-thick membranes.
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analyzed the case when a field in the membrane was
absent. An internal field may be generated with an
external electrode (shield) that visualizes the electron
flow enhanced. Consider an undoped diamond film. In
undoped diamond structures, the field may be consid-
ered as coordinate independent. Using an appropriate
continuity equation and assuming that the generation
rate k of electrons is uniform across the film, we find for
the electron distribution

(6)

where Es is the strength of the field generated by the
external electrode to which a voltage Ve is applied. The
0x axis is normal to the film, and its origin is on that sur-
face subjected to primary electrons. Electron recombi-
nation is practically absent if

(7)

n kτn 1 x/µnEsτn–( )exp–( ),=

h
µnτn

---------- ! Es,
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Fig. 3. Results of this work versus those obtained in [10]:
(1, 3) hydrogenated and cesium-covered films from [10],
(2, 4) hydrogenated and cesium-covered membranes from
this work, and (5) theoretical curve (Section 1).

1 2
3 4 5

Ve

Fig. 4. Optimized design of the membrane for the transmis-
sion configuration: (1, 2) incident and outgoing electron
flows, respectively; (3) thin heavily doped layer of p+-Si;
(4) diamond membrane; and (5) metallic grid applied on the
membrane.
where h is the membrane thickness; then, n ≈ kx/µnEs.

It is natural that (6) is valid if the concentration of
nonequilibrium carriers may be neglected. It may be
neglected if (7) is met and mobile carriers are effec-
tively removed from the ends of the film. For the elec-
trons, the latter condition is readily satisfied because of
negative electron affinity (the electrons are free to
escape into a vacuum). The holes can be removed if a
good ohmic contact for them is formed (e.g., by apply-
ing a thin layer of p+-Si on the membrane surface). The
concentration p+ of equilibrium holes must many times
exceed the concentration p of nonequilibrium holes in
the diamond. If the external electrode is at a distance de
from the membrane surface, we have

(8)

where ε is the permittivity of diamond.

Since εde @ h, condition (7) may be recast as

(9)

With µn = 1 cm2/(V s), τn = 10–8 s, h = 2 µm, de =
1 mm, and ε = 4.5, we have Ve @ 104 V. Such voltages
are unrealistic in real devices. Therefore, a shield can-
not be used as an electrode for generating a field in the
membrane. It is necessary that an accelerating electrode
be placed in the immediate vicinity of the membrane
(de ≤ 10 µm). The optimal design of an electron flow
enhancer is that where the electrode is formed in the
form of a grid on the membrane surface that does not
degrade the resolving power of the enhances (Fig. 4).
Then, the condition Ve @ h2/µnτn would suffice. With
µn = 1 cm2/(V s), τn = 10–8 s, and h = 2 µm, we find that
Ve @ 4 V. This condition is readily satisfied. As an elec-
trode, one can also use a thin (0.2–0.5 µm) p+ diamond
layer. Experimental implementation of such a structure
will be possible if the problems of diamond film surface
planarization and good ohmic contacts are resolved.

2. Secondary emission in porous membranes.
Another way of enhancing secondary emission is the
use of a porous membrane. In this case, the secondary
electrons are not emitted from the surface exposed to
primary electrons, as in the reflection configuration;
instead, if the energy of secondary electrons is suffi-
ciently low, they travel through the voids toward the
opposite surface under the action of an external field.
Certainly, the multiplication ratio Kn will be somewhat
smaller than in the reflection geometry, since some of
the primary electrons pass through the voids without
generating secondary particles. In this case, Kn = (1 –
Sn/S)KD, where Sn and S are the total area occupied by
voids and the membrane operating area, respectively,
and KD is the SEE coefficient in the reflection geometry.

To check this idea, we estimated the secondary elec-
tron energy and fabricated porous membranes. The sec-

Es

Ve

h deε+( )
----------------------,=

Ve @ 
εhde

µnτn

-----------.
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ondary electron energy was directly measured to be 3 to
5 eV.

Using the technology described in Section 2, we
fabricated porous diamond membranes with voids of
size 8 µm and a void spacing of 8 µm (Fig. 5). Figure 6
plots the SEE coefficient throughout the energy range
for the same sample in both configurations. Unlike
Fig. 2, here two peaks corresponding to the reflection
and transmission geometries are observed. The increase
in KD upon transmission is probably due to enhanced
electron multiplication in the voids; however, this
assumption needs further corroboration.

20 µm
L = SE1 EHT = 20 kV WD = 21 mm MAG = ×1.6 K

PHOTO = 0

DIAMOND 2
Distance = 10.0 µm

Fig. 5. SEM image of a porous diamond film.
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8

10

V, keV

Kn

12

Fig. 6. SEE coefficient vs. the primary electron energy for
the porous film in the (s) reflection and (j) transmission
configurations.

4
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The design suggested is of great practical impor-
tance. It loosens drastically the dependence of the mul-
tiplication ratio on the membrane thickness; makes it
possible to use low-energy electrons in the transmission
configuration; and raises the mechanical strength of the
membranes, removing stresses that arise in the dia-
mond film growing on the silicon substrate.

CONCLUSIONS

In boron-doped polycrystalline diamond films, the
SEE coefficient much higher than unity in the transmis-
sion configuration is obtained for the first time. The
effect of processing of the emitting surface (the appli-
cation of cesium, hydrogenation, and annealing) on the
SEE coefficient is studied. It is shown that the size and
structure of grains are of fundamental importance for
achieving high SEE coefficients. The model of second-
ary electron behavior suggested in this work fits well
the experimental data. The transmission configuration
with porous membranes is first implemented. With the
porous membrane, the electrons generated on the front
surface can be effectively directed toward the opposite
surface of the membrane.
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Abstract—The establishment of the steady-state dopant profile in a medium with a time-variable diffusion
coefficient is considered within the approach proposed previously for estimating mass- and heat-transfer time
characteristics. It is shown that the time it takes for the equilibrium concentration to set in may be increased or
decreased by appropriately choosing the law of variation of the diffusion coefficient. © 2004 MAIK
“Nauka/Interperiodica”.
High-temperature diffusion of doping impurities is
a basic step in the production of semiconductor devices
[1]. However, studies of how the variation of the diffu-
sion coefficient during heating, cooling, and other pro-
cesses that take place in semiconductor devices [1, 2]
affects the diffusion process are virtually lacking. The
aim of this study is to estimate quantitatively the effect
of this variation on the establishment of the steady-state
doping profile in the semiconductor technology. Such
an analysis is intended to improve the reproducibility of
the parameters of devices subjected to multiple anneal-
ing. In addition, whether or not the time characteristics
of diffusion can be described adequately in terms of the
averaged parameters of the sample is discussed.

STATEMENT OF THE PROBLEM

Let us consider a one-dimensional homogeneous
sample of thickness L with a time-variable diffusion

coefficient. An impurity of unit mass, (x, t)dx = 1,

with an initial concentration profile C(x, 0) = f(x) starts
diffusing into the medium at a time t (which is taken to
be the zero time t = 0 for simplicity). With time, the dis-
tribution of the impurity becomes stationary, C(x, ∞) =
1/L. Our aim is to determine the time taken to establish
the steady-state concentration at a given point x ∈  [0, L]
(point of observation).

THE SOLUTION TECHNIQUE

The space–time dopant distribution C(x, t) is
described by the diffusion equation [1, 3]

(1)

where G(x, t) is the dopant flow. The diffusion equation
should be complemented by the initial, C(x, 0) = f(x),

C
0

L∫

∂C x t,( )
∂t

-------------------- D t( )∂
2C x t,( )

∂x2
---------------------- ∂G x t,( )

∂x
--------------------– ,= =
1063-7842/04/4901- $26.00 © 20114
and boundary, G(0, t) = G(L, t) = 0, conditions. Since
the time dependence of the transient described by
Eq. (1) is rather complicated, it is, in general, impossi-
ble to estimate quantitatively the transient period by
directly solving this equation. In the situation of most
practical interest when the dopant is initially concen-
trated at one of the boundaries, f(x) = δ(x – 0), and the
transient period is determined at a point on the opposite
boundary, the concentration varies with time roughly
by the exponential law. The initial delta profile of dop-
ing corresponds to an impurity source deposited on a
sample wall [3, 4]. Note that, in transient period calcu-
lation, the delta function should be considered as one-
sided, δ(x – 0) [5]. If the concentration varies exponen-
tially, the transient period can be conveniently deter-
mined from the well-known [6–9] asymptotically opti-
mal [10] integral criterion

(2)

To calculate the transient period, it is necessary to
find the space–time dopant distribution C(x, t) satisfy-
ing Eq. (1). Let us represent a solution to the diffusion
equation as an expansion in eigenfunctions [11]:

(3)

Substituting solution (3) into Eq. (2) yields an exact
expression for the transient period (the time the concen-
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tration takes to reach the steady-state distribution):
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The fact that transient period (4) depends on the law
of variation of the diffusion coefficient complicates the
study of the diffusion dynamics. Let us first restrict our
analysis to the case when the diffusion coefficient var-
ies insignificantly. Such an approach makes the analy-
sis of diffusion clearer and, at the same time, allows one
to calculate the asymptotic transient period in the case
of a rapidly varying diffusion coefficient.

TRANSIENT PERIOD AT SMALL VARIATION
OF THE DIFFUSION COEFFICIENT

Under the assumption that the diffusion coefficient
varies insignificantly, the diffusion process is almost
completely characterized by the mean value D0 of the
diffusion coefficient. Following [9, 12], we represent
the time variation of the diffusion coefficient D(t) as the
sum of its mean value and a small deviation from this
value: D(t) = D0[1 + µν(t)], 0 ≤ µ ! 1. Since the param-
eter µ, which characterizes the amplitude of variation of
the diffusion coefficient, is small and the values of ν(t)
are limited, |ν(t)| ≤ 1, we may apply the Poincaré
method and seek for the solution C(x, t) in the form of
an expansion in powers of µ:

(5)C x t,( ) µkCk x t,( ).
k 0=

∞

∑=
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As criterion (2) is linear in impurity concentration
C(x, t), the transient period can be calculated by using
the principle of superposition. In this case, the transient
period may be represented as a series in powers of the
parameter µ:

(6)

where the zeroth-order approximation of the transient
period is given by

(7)

The factors multiplying a kth power (k ≥ 1) of the
small parameter µ in Eq. (6),

(8)

are normalized corrections to the transient period.
The zeroth-order approximation of the transient

period, which corresponds to a time-invariable diffu-
sion coefficient D0, and the first normalized correction
to it are easy to find:
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Since µ is a small parameter and the modulus of ν(t)
is no more than unity, the terms of the second and
higher orders in series (5) and (6) may be neglected
(linear approximation). The linear approximation is
necessary for the visualization of the main features of
the diffusion dynamics in a medium with time-varying
parameters.
When calculating the correction τ1(x), we, for sim-
plicity, approximate the diffusion coefficient law ν(t)
by using the functions cosωt and sinωt. If the initial
concentration profile has the form of the delta function
f(x) = δ(x – 0) and the point of observation is located at
the opposite boundary x = L, the first relative correc-
tions τ1cos(L) and τ1sin(L) to the transient period, which
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correspond to the harmonic variation of the diffusion
coefficient, are given by

(10)

(11)

where Ω = ωL2/π2D0 is the dimensionless frequency of
variation of the diffusion coefficient.

The calculation of the corrections creates no diffi-
culties; the alternating series obtained converge
strongly. The first corrections versus the dimensionless
frequency of variation of the diffusion coefficient are
presented in Fig. 1.

When the diffusion coefficient varies by the cosine
law, the frequency dependence is nearly monotonic and
the modulus of the function reaches a maximum at the
zero frequency (Fig. 1, curve 1). This corresponds to an
increase in the mean diffusion coefficient by µD0. Neg-
ative sign of the correction indicates that the transient
period shrinks as the diffusion coefficient grows. The
frequency range where the variation of the diffusion
coefficient has a noticeable effect on the transient
period at a level of 3 dB is limited from above by the
value Ωc = 0.636. The correction decreases with
increasing frequency of variation of the diffusion coef-
ficient and becomes sufficiently small in the range Ω >
3–4, so that the averaged diffusion coefficient can
describe the process with a reasonable accuracy.

When the diffusion coefficient varies by the sine
law, the frequency dependence has a resonant shape
(Fig. 1, curve 2). A similar curve for the transient period
was obtained in a constant-diffusion-coefficient
medium subjected to a periodic external action [13].
The absolute value of the correction τ1sin(L, Ω) peaks at
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Fig. 1. Frequency dependences of the corrections
(1) τ1cos(L) and (2) τ1sin(L).
Ω0 = 0.977. An appreciable gain in time is only possible
if the stationary profile is established within the positive
half-period of variation of the diffusion coefficient. The
change of sign in the diffusion coefficient law slows
down the process and the transient period grows. For
frequencies Ω > 1, the effect of the correction is weak
and the description of the diffusion dynamics in terms
of the averaged diffusion coefficient is adequate.

The linearity of Eq. (9) in correction function ν(t)
allows us to apply spectral analysis methods. The
expansion of the diffusion coefficient function in the
Fourier series in harmonic functions,

(12)

makes it possible to represent the total correction as a
sum of partial corrections:

where τ1cos(L, ωk) and τ1sin(L, ωk) are the normalized
corrections to the transient period when the diffusion
coefficient varies harmonically as cosωkt and sinωkt,
respectively.

The constant component of the function ν(t) is zero
by virtue of the condition imposed previously. As is evi-
dent from the above discussion, the additivity of the
corrections facilitates substantially the calculation of
the transient period τ1(x).

EXAMPLE OF CALCULATION

The diffusion coefficient in a solid depends expo-
nentially on the temperature [3, 14]:

where D and E are material constants, T(t) is the tem-
perature, and k is the Boltzmann constant.

Upon heating or cooling, the sample temperature
varies exponentially provided that the thermal conduc-
tivity is constant. With this restriction, the time varia-
tion of the diffusion coefficient in a sample subjected to
single doping via high-temperature diffusion is shown
in Fig. 2 (curve 1). Taking into account that the thermal
conductivity is a time-variable parameter leads to
somewhat more complicated time dependences of the
temperature and diffusion coefficient.

For long-term annealing (the annealing time t0
exceeds the time constant of heating the sample sev-
eral-fold), the diffusion coefficient law ν(t) can be
closely approximated by the second-order Walsh func-
tion wal(2, t) [15] (Fig. 2, curve 2). The corresponding

ν t( ) ak ωktcos
k 1=

∞

∑ bk ωktsin
k 1=

∞

∑+=

τ1 x( ) akτ1cos x ωk,( )
k 1=

∞

∑ bkτ1sin x ωk,( ),
k 1=

∞

∑+=

D T( ) D E/kT t( )–[ ] ,exp=
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correction τ1wal(2, t)(L) has the form

(13)

The frequency dependence of such a correction is
shown in Fig. 3 (curve 6). An advantage of approxima-
tion by symmetric or near-symmetric functions is evi-
dent: the diffusion coefficient can be expanded in an
alternating strongly convergent series in cosines of
multiple frequencies. Even the first term in the Fourier
expansion of the Walsh function in cosines gives a
fairly accurate approximation of the frequency depen-
dence of correction (13) to the transient period (Fig. 3,
curve 1). Curves 2–5 show the successive improvement
of the approximation accuracy as the second, third,
fourth, and fifth term, respectively, in the Fourier
expansion of the Walsh function is taken into account.
The contribution of the harmonics drops sharply with
increasing frequency, so that the first spectral compo-
nent alone approximates the transient period with an
acceptable accuracy for Ω > 0.5. The slight asymmetry
of curve 1 in Fig. 2 is accounted for by the sine compo-
nents of the expansion; their relative contribution is
small and decreases rapidly with an increase in anneal-
ing time.

TRANSIENT PERIOD AT LARGE VARIATION
OF THE DIFFUSI

The exact expression for transient period (4) with
the initial dopant profile f(x) = δ(x – 0) and the point of
observation x = L considered above has the form

(14)

From Eq. (14), we can determine the applicability
range of the linear approximation. For the diffusion
coefficient law adopted, it was found that the linear
approximation of the transient period and concentration
is valid up to µ ≈ 0.1 and 0.15, respectively. With µ
taken at the upper limit of the applicability range, the
maximal variation of the transient period is ≈10% of
Θ0(L). For stronger variations, µ ≈ 1.0, one should take
into consideration the terms nonlinear in µ in expan-
sion (6) and use the exact expression for the transient
period. Let us calculate the transient period for the
annealing process (which is of most practical interest)
in the case when the diffusion coefficient law has the
form of the second-order Walsh function. Then, tran-
sient period (14) is recast as

τ1wal 2 t,( ) L( ) 12

π2
------=

× 1–( )n

n2
-------------e

πn
2

2Ω
---------– πn2

2Ω
--------tanh 1+
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∞

∑ 1.–

Θ L( ) 2 1–( )n 1+ πn
L
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2
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t
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∞
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∞

∑=
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6D0 1 µ+( )
---------------------------=
TECHNICAL PHYSICS      Vol. 49      No. 1      2004
(15)

It is of interest to see how the transient period
depends on the degree of variation µ of the diffusion
coefficient. According to our analysis, one may use the

+
2L2

π2D0

------------ 1–( )n

n2
------------- 1

1 µ+
------------ 1 µ+( )πn2

2Ω
--------–exp
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2Ω
--------– / 1 1 µ–( )πn2
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t

Fig. 2. (1) Time dependence of the diffusion coefficient.
The approximation of the diffusion coefficient law by the
sum of its mean value and the first spectral component of
the function v(t): (2) the second-order Walsh function and
(3) a harmonic function.
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Fig. 3. (1) Frequency dependence of the corrections τ1(L)
corresponding to the first harmonic spectral component. (2–
5) Successive improvement of the approximation accuracy
as the second, third, fourth, and fifth harmonic spectral
components of the second-order Walsh function, respec-
tively, are taken into account. (6) Dependence of the correc-
tion τ1wal(2, t)(L) calculated by (13).
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simpler functional relationship

(16)

where τeff(L) is an effective correction to the transient
period. At small µ (0 ≤ µ < 0.1), relationship (16) coin-
cides with the linear approximation. As µ approaches
unity, the frequency dependence of τeff(L) remains
nearly unchanged (Fig. 4). Thus, the calculation may be
performed for the case when the diffusion coefficient
varies weakly.

CONCLUSIONS

Studying the time it takes for the impurity concen-
tration to reach the steady-state distribution in a homo-
geneous sample in relation to the law of variation of the
diffusion coefficient, we found that the appropriate
choice of this law may accelerate or slow down the
transient. If the diffusion coefficient varies rapidly, the
transient can be described in terms of the averaged dif-
fusion coefficient; otherwise, one should handle its
instantaneous values. The linear approximation is
shown to have the advantage that it allows one to use
the spectral approach and the principle of superposition
in describing the process and calculate the total tran-
sient period as the sum of partial transient periods for

Θ L( ) Θ0 L( ) 1
µ

1 µ+
------------τeff L( )+ 

  ,=

0.2

0

–0.2

–0.4

–0.6

–0.8

–1.0

1

2
3

0 2 4 6 8 10
Ω

τ1(L, Ω)

Fig. 4. Frequency dependence of the correction τ1eff(L)
when the diffusion coefficient is approximated by the sec-
ond-order Walsh function for the degree of variation µ =
(1) 0.01, (2) 0.3, and (3) 0.999.
individual spectral components of the diffusion coeffi-
cient law.
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on the Effective Sputtering Rate in a Magnetron Discharge

I. Yu. Burmakinskiœ and A. V. Rogov
Russian Research Centre Kurchatov Institute, pl. Kurchatova 1, Moscow, 123182 Russia

e-mail: alex-rogov@yandex.ru
Received May 29, 2003

Abstract—The sputtering rates of various materials in a magnetron ion sputterer are compared. The effective
sputtering yields obtained when argon is used as a working gas are given. The difference between the sputtering
yields found in this work and those obtained with monoenergetic ion beams is shown to be associated with res-
onance charge exchange between argon ions and neutral argon gas. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The method of monoenergetic ion beam is a stan-
dard technique for determining the sputtering yield of a
material [1–3]. When analyzing plasma–ion sputtering
processes, one usually needs to determine the rate of
material erosion (consumption). This problem is
related to an energy spread in the sputtering beam, its
component composition, and processes occurring in the
discharge plasma [4, 5]. In this work, we report experi-
mental data for the effective sputtering rates of materi-
als used in magnetron sputtering. The experiments
were performed with a dc replaceable-cathode magne-
tron sputterer. For all samples, the sputtering process
was carried out under the same vacuum conditions and
discharge current.

EXPERIMENTAL

The sputtering process was conducted in a 250-mm-
high cylindrical chamber with a diameter of 400 mm. A
planar magnetron with cathodic inserts (targets) was
used (Fig. 1). The diameter of the targets was 21 mm,
and the maximal diameter of the sputtering area was
16 mm. The water-cooled magnetic system of the mag-
netron was placed in a hermetic housing. The wall
thickness over the magnetic system surface was 1 mm.
Heat transfer from the target made of a material to be
tested was provided with a heat-conducting paste. The
thickness ∆ of the target was varied according to the
material; accordingly, the magnetic field B0 on the tar-
get surface varied from 0.110 to 0.155 T. The target
thicknesses and the corresponding values of the mag-
netic field are listed in the table. The magnetic field over
the cathode surface has an arc configuration, which is
typical of dc ion-beam magnetron sputterers [1, 2].

The system was evacuated to a residual gas (nitro-
gen and oxygen) pressure of 1 × 10–4 torr by means of
a turbomolecular pump. The process started at a work-
ing argon pressure P ≈ 5 × 10–3 torr for all the materials
1063-7842/04/4901- $26.00 © 20119
under test. Thus, the concentration of residual impuri-
ties was no more than 2%.

The discharge current was the same for all the mate-
rials: Id = 100 mA.

The sputtering time τsp was varied from 10 to 20 min
depending on the material to provide a desired mea-
surement accuracy.

During the process, the discharge voltage decreased
insignificantly; therefore, when processing experimen-
tal data, we used the mean voltage value given by

(1)

The amount of the material sputtered was found as
the difference between the cathodic insert mass before,

, and after, , the process. The sputtering
parameters for each of the test materials are listed in the
table.

Ud〈 〉 1
τ sp
------ Ud t( ) t.d

τ
∫=

Mcath
0 Mcath

end

1

2

3

4

5

6

S

N S

N S

N

Fig. 1. Design of the cathode unit: 1, magnetron housing;
2, magnetic system; 3, magnetic circuit; 4, cathodic insert
(target); 5, heat-conducting paste; and 6, water cooling of
the magnetic system and cathode.
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Table

No. Cathode
material ∆, mm 〈B0〉 , T 〈Ud〉 , V 〈ε i〉 , eV

Sy(tm),
atom/ion(atom)

Sy(Ar),
atom/ion(atom)

,
atom/ion(atom)

1 Al(26.28) 0.91 0.115 330 260 0.40 0.42 0.54

2 Ti(47.9) 1.00 0.110 305 245 0.22 0.19

3 Fe*(55.84) 0.23 * 320 255 0.65 0.51

4 Ni*(58.7) 0.07 * 360 290 0.8 0.8 0.63

5 Cu(63.54) 0.24 0.150 312 250 0.8 0.9 1.15

6 Zr(91.22) 0.40 0.135 260 210 0.21

7 Nb(92.91) 0.50 0.130 262 211 0.22

8 Mo(95.94) 0.32 0.14 277 222 0.21 0.32 0.36

9 Ag(107.87) 0.57 0.125 361 290 1.2 1.81

10 Ta(180.95) 0.20 0.155 280 225 0.22 0.28

11 W(183.8) 0.20 0.155 292 235 0.15 0.25 0.33

12 Pt(195.0) 0.27 0.145 373 300 1.11

13 C(12) 0.81 0.120 374 300 0.09 0.1 0.16

14 Ge(72.5) 0.81 0.120 355 285 0.65 0.71

* Magnetic material. ∆, the target thickness; 〈B0〉 , the mean magnetic field value on the cathode surface; 〈Ud〉 , the mean discharge value
(given by (1)); 〈ε i〉 , the mean energy of a sputtering ion; Sy(tm), the sputtering yield when the target material is sputtered by its own ions

(atoms); Sy(Ar), the sputtering yield when the target is sputtered by mean-energy argon ions (atoms); , the measured (effective) yield

of target sputtering.

Sy
eff

Sy
eff
RESULTS AND DISCUSSION

The discharge current measured in the experiment is
the sum of the ion current Ii toward the cathode and the

secondary electron current  = γeIi due to electron
bombardment [2, 3, 6]:

(2)

where γe is the secondary electron emission coefficient.

The effective (or apparent [6]) sputtering yield 
was calculated for each of the elements from the for-
mula

(3)

where e is the ion charge; Mt is the atomic mass of the
target; Id is the measured discharge current; τsp is the

sputtering time; and  and  are the masses of
the target before and after the process, respectively.

From [5, 7], it follows that the energy 〈ε i〉  (eV) of a
sputtering ion averaged over the ion spectrum is 0.7–
0.8 of the discharge voltage Ud expressed in energy
units (eV). For comparison, the table lists the sputtering
yields for the materials tested that were obtained by the

Ie
sec

Id I i Ie
sec+ I i 1 γe+( ),= =

Sy
eff

Sy
eff Mcath

0 Mcath
end–( )

τ spM t
----------------------------------

e 1 γe+( )
Id

---------------------,=

Mcath
0 Mcath

end
method of monoenergetic beam when the energy of
working gas (argon) ions and that of target material
ions are 〈ε i〉  = 0.8Ud (eV) [1]. Also given is the mean
value of the discharge voltage (given by (1)) measured
during the process for each of the target materials.

It turned out that, for most of the materials, the
effective sputtering yield calculated by (3) exceeds the

tabulated value (〈ε i〉) [1, 2] by δ(Sy) = 15–25% on
average:

One of the most plausible reasons for the increase in
the effective sputtering yield is that the sputtering flux
exceeds the purely ionic flux (current). This may hap-
pen if fast neutrals take part in the sputtering process,
which is provided when argon ions exchange charge
with the argon gas [7]. The sputtering yield for a neutral
argon atom is nearly equal to that for an argon ion if
their energies are the same [2, 3, 6].

The energy spectrum fi(ε) of ions bombarding the
cathode [8] is shown in Fig. 2b.

The integral of the function fi(ε, 0) over the energy
yields the ion current toward the cathode (up to a nor-

Sy
tab

δ Sy( )
Sy

eff Sy
tab εi〈 〉( )–

Sy
tab εi〈 〉( )

-------------------------------------- 100%.×=
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malizing factor and the cathode surface area):

(4)

Here, Isp is the total flux of sputtering particles under
the assumption that charge exchange takes place in a
layer of extension L0 that is localized between the ion
flux formation region [9] and the cathode.

Then, for the functions fi(ε) and fi(ε, x), one can
write

(5)

and

(6)

Thus, since the sputtering yields for an argon atom
and an argon ion are equal to each other, expression (4)
can be represented in the form

or, after cancellation,

(7)

For a working gas pressure P ≈ 5 × 10–3 torr and a
charge exchange layer thickness L0 = 3–5 mm, relation-

I i f i ε 0,( ) ε,d
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ε
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--------------------------------------------------------------------------------------- 100%×=
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ship (7) yields δ(Sy) = 15–25%, which agrees well with
experimental data.

CONCLUSIONS

Using an ion-beam magnetron sputterer, we mea-
sured the sputtering rates and effective sputtering yields
for various target materials. For most of the materials,
the sputtering yield exceeds that obtained by the
method of monoenergetic ion beam [1–3] by 15–25%
on average. The increase is related to lossless resonance
charge exchange between some of the argon ions mov-
ing toward the cathode and the argon gas with the for-
mation of fast neutrals participating in the target sput-
tering process. Thus, resonance charge exchange
between argon ions and the argon gas in the magnetron
discharge region is responsible for increased values of
the effective sputtering yield.

For magnetic materials (iron and nickel), as well as
for titanium, the decreased sputtering yield is obtained.
In the former case, this is explained by the discharge
parameters other than those for nonmagnetic materials
because of a change in the magnetic field value and
configuration over the cathode. In the case of titanium,
this is because of a large amount of the reflected mate-
rial, which is associated with the titanium-by-argon
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Fig. 2. (a) Energy dependence of the cross section of charge
exchange between argon ions and neutral argon gas [7] and
(b) ion energy spectrum (1) vs. total spectrum (2) of sputter-
ing particles on the cathodic target.
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scattering parameters and the geometry (dimensions)
of the experimental system [10].
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Abstract—An optical pyrometer designed for precision measurement of the GaAs substrate temperature dur-
ing MBE growth is considered. The pyrometer can be calibrated against a certain characteristic absolute tem-
perature that is visually determined from a change in the RHEED pattern. This enables one to calculate the
absolute temperature of the substrate with regard to its radiant emissivity and minimize the inaccuracy of radi-
ation temperature measurement. The inaccuracy is associated with the deposition of growth products on the
pyrometer window. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Temperature determination on the substrate surface
is a most challenging issue in MBE growth of semicon-
ductor heterostructures. The need for rotating the sam-
ple during growth to provide structural homogeneity
excludes the installation of a temperature-sensitive ele-
ment on the substrate holder near the growth surface. A
thermocouple is usually mounted in the substrate heater
on the back side of the holder and is surrounded by a set
of screens; thus, the environmental conditions for the ther-
mocouple and substrate differ noticeably. The relative
temperature measured by the thermocouple may differ
from the actual temperature at the outer (growth) substrate
surface by several tens of degrees and serves largely as a
feedback signal in the substrate heating circuit.

The accuracy of measuring the absolute temperature
at the surface of a growing epitaxial film specifies in
many respects the quality of heterostructures and, ulti-
mately, of semiconductor devices. As a rule, there are
rather narrow (20–30°C) temperature intervals where
an MBE-grown material offers an optimal optical or
electric performance. A vivid example is the growth of
ternary or quaternary semiconductor compounds. In
particular, AlGaAs films with an aluminum content of
25–70%, which are used as waveguides or emitters in
high-power semiconductor lasers, have optimal optical
and crystalline quality when grown at temperature of
710–720°C [1]. At such high (for GaAs) temperatures,
gallium desorption from the growing film surface
becomes appreciable. To reproducibly grow several-
micrometer-thick MBE layers of a given composition
at a typical rate of 1 µm/h, it is necessary to determine
1063-7842/04/4901- $26.00 © 20123
the substrate temperature with an accuracy of no worse
than ±3°C. Another problem is heteroepitaxial growth
of compounds with substantially different optimal
growth temperatures, e.g., InAlGaAs (550–570°C) on
AlGaAs (710–720°C). Under these conditions, the fast
variation of the substrate temperature cannot be
detected by a thermocouple. As a result, the efficient
control of the real temperature at the growing film sur-
face in the course of epitaxial growth is virtually
absent.

Optical pyrometry is widely used as a tool for addi-
tional substrate temperature monitoring [2–4]. Unlike
thermocouples, a pyrometer, along with standard
reflection high-energy electron diffraction, provides in
situ data on the growth surface condition. Industrial
pyrometers, calibrated against blackbody radiation,
measure the so-called radiation temperature, which
may differ considerably from the actual temperature of
the object, since the exact value of its emissivity is usu-
ally unknown. The emissivity of a GaAs substrate is, as
a rule, determined in special experiments, e.g., from the
temperature of oxide evaporation, which is detected
visually from a change in the RHEED pattern. When
combined with RHEED, a pyrometer provides a neces-
sary accuracy of substrate temperature measurement.

Our device for precision measurement of the GaAs
substrate temperature can be calibrated against refer-
ence temperatures immediately during the MBE
growth of the InAlGaAs/GaAs system. This enables
one to determine the emissivity of the substrate and cal-
culate its actual temperature from the radiation mea-
sured.
004 MAIK “Nauka/Interperiodica”
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SPECIFICATIONS

Temperature range—450–850°C

Design accuracy of temperature measurement—no
worse than ±3°C (from 500 to 600°C) and ±2°C (from
600 to 850°C)

Number of measuring photodetectors—1

Rate of data display—no rarer than twice a second

Diameter of temperature measurement area—2–
3 mm.

The optical scheme is designed for measuring the
temperature of a substrate that is placed 65 ± 2 cm from
the outer surface of the pyrometer window. The photo-
detector is tuned to the point of measurement with a
special adjuster and eyepiece with cross. The device
can be calibrated against a temperature preset by the
user, which makes it possible to measure the actual
temperature of the object with regard to its emissivity
and the transmission coefficient of the optics. The
actual surface temperature (in centigrade degrees) is
displayed on a six-bit LED indicator and can be trans-
ferred to a computer.

In this paper, we discuss the operation and design of
the pyrometer, as well as present the results obtained in
an ÉP1203 MBE setup.

MEASUREMENT OF GaAs SUBSTRATE 
TEMPERATURE DURING GROWTH 

IN THE MBE SYSTEM

The radiative methods of temperature measurement
are based on determining the emission intensity from
an object in a narrow spectral range where its emissiv-
ity remains constant in an operating temperature inter-
val. Within such an approach, the actual temperature is
calculated using the Planck blackbody distribution law
[5], which relates the spectral radiance distribution to
the temperature of a heated body. With regard for the
emissivity of real bodies, we have

(1)

where c1 and c2 are emission constants, T is the actual
temperature of a real body, and ε(λ, T) is the emissivity
of the real body.

The values of ε(λ, T) for real bodies are known
approximately. This parameter depends on the compo-
sition of a material and its surface condition. That is
why pyrometry techniques measure not the actual tem-
perature of a body but the so-called brightness temper-
ature, which is the temperature of absolutely black
body radiating at a given wavelength with a radiance
equal to the radiance of a real object (in formula (1),
ε(λ, T) is assumed to be equal to unity). Obviously, the

Rλ T,
0 ε λ T,( )

c1

λ5
----- 1

c2 λT⁄( )exp 1–
---------------------------------------,=
brightness temperature is lower than the real tempera-
ture. The correction ∆T is estimated as

(2)

Note that the introduction of this correction requires
that ε(λ, T) be determined experimentally.

In an MBE setup, the GaAs substrate temperature is
controlled by varying the current passing through a
heating element, which is placed immediately behind
the substrate. The heater temperature is, as a rule, 200–
250°C higher than the temperature of the substrate sur-
face (here, we consider an indium-free substrate holder,
when the back side of the substrate is directly exposed
to the heater). Calculations by formula (1) show that, in
the temperature range specified (450–850°C), the spec-
tral flux density of the heater is two to three orders of
magnitude higher than the spectral flux density of the
substrate.

The transmitted part of the heater radiation may be
attenuated considerably if the measurements are taken
in the spectral range where the radiation is attenuated
by the sample as much as possible. Figure 1 presents
the GaAs absorption spectra taken at T = 400 and
700°C [4]. The spectra have a sharp absorption edge,
which shifts toward longer waves as the temperature
increases. Experimental studies of absorption on sub-
strates 350–400 µm thick that are used in heteroepitax-
ial growth have shown that the transmission coefficient
of the substrates is on the order of 10–5 at a wavelength
of 0.63 µm and may be expected to decrease as the
wavelength increases up to 1 µm. Therefore, the radia-
tion intensity from the GaAs substrate surface will
exceed the transmitted radiation intensity from the
heater 250 and 103 times at temperatures of 450 and
850°C, respectively. Thus, for the temperature interval
of concern and in the spectral range of up to 1 µm, the
GaAs substrate, on the one hand, is opaque to the heater
radiation and, on the other hand, has (according to [4])
an almost constant emissivity ε(λ, T).

In view of the above, the measurements were per-
formed with a narrow-band interference filter designed
for a wavelength of 0.88 µm (the half-width of its trans-
mission spectrum is 50 nm; Fig. 1, curve 3) that trans-
mits the as yet fairly intense component of the heat
radiation and a silicon photodiode with a maximal
spectral sensitivity in this range (Fig. 1, curve 4).

During the epitaxial process, the observation win-
dow is gradually covered by growth products, as a
result of which its transmission coefficient varies. This
is a serious problem in the pyrometer determination of
the substrate temperature. It can be eliminated by peri-
odically calibrating the temperature meter against a
certain fixed (reference) point. As a reference point, we
chose the temperature of oxide desorption from the
GaAs surface. For MBE conditions, this temperature is
well known and equals 580°C. Such an approach will
be efficient if the GaAs surface is processed properly

∆T T2λ ε( )ln
c2

----------------.≈
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(has a thin dense oxide layer) and the substrate is heated
at a rate of no higher than 10°C/min, since the temper-
ature of oxide desorption is detected visually from a
change in the RHEED pattern [6].

As an additional calibration point that can be used
immediately during the growth of the test structure, one
may take the temperature boundary on the phase dia-
gram for the AlAs surface under static conditions.
According to [7], the (3 × 2)-to-(5 × 2) surface phase
transition, which is observed with RHEED upon
smoothly heating the substrate, occurs at a constant
temperature (≈700°C) in the operating range of arsenic
fluxes.

DESIGN OF THE DEVICE

The device consists of an optical module, where the
radiation from the GaAs substrate is transformed into
an electric signal, and a signal processing unit, which is
connected to the optical module via a cable. The optical
module may be mounted on the 40CF flange of the
pyrometer window of an ÉP1203 setup. The optical
scheme of the module is shown in Fig. 2. A lens 45 mm
in diameter with a focal length of 183.5 mm images a
part of the GaAs substrate in the photodetector plane
with a twofold demagnification. The entrance dia-
phragm makes it possible to smoothly attenuate (up to
50 times) the intensity incident on the photodetector.
The image is focused by moving the lens and dia-
phragm within the range –15…+26 mm relative to the
photodetector. The photodetector can travel ±8 mm to
the right (left) and ±8 mm up (down), thus making it
possible to bring different parts of the substrate in sharp
focus. An eyepiece serves to facilitate the fine adjust-
ment of the photodetector.

The electronic circuit of the photodetector generates
an electric signal, which varies in proportion to the pho-
todetector illumination, and also preprocesses it, i.e.,
converts an analog signal to a time-modulated pulsed
signal.

The signal processing unit receives the output signal
from the photodetector, calculates and displays temper-
ature values, and transfers them to a computer. A six-bit
LED indicator on the front panel of the unit displays
temperatures (in centigrade degrees) and other relevant
information. The circuit measuring the pulse duration is
built around a programmable logic array. A micropro-
cessor calculates actual temperature values, evaluates
calibration factors, and programs operating conditions
(e.g., sets the accuracy of calculation, which is defined
as the number of significant digits after the decimal
point).

Data transfer to the computer is provided with the
RS232 interface. The accuracy of data transferred is the
same as displayed on the indicator. A program for
graphically displaying the temperature vs. the number
TECHNICAL PHYSICS      Vol. 49      No. 1      2004
of time counts and for indicating running temperature
values on the monitor screen is also available.

CALCULATION OF ACTUAL TEMPERATURE 
AND CALIBRATION OF DEVICE

For the spectral line λ = 0.88 µm and the given tem-
perature range, the condition λT < 3000 µm K is met,
so that one may use the approximation of Planck’s for-
mula (1) that is known as Wien’s law [5] for spectral
radiance distribution with regard to the emissivity of an
object:

(3)

From (3), one finds an analytical relationship
between the temperature and radiance of a body:

(4)
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Fig. 1. Absorption spectra of GaAs at (1) 400 and
(2) 700°C, respectively; (3) transmission spectrum of the
interference filter; and (4) sensitivity spectrum of the photo-
detector.
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Fig. 2. Optical scheme of the device: (1) object, (2) lens,
(3) diaphragm, (4) semitransparent mirror, (5) interference
filter, (6) photodiode, (7) signal processing circuit, and
(8) eyepiece.
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In expression (4), the exact value of the substrate
emissivity ε(λ, T), as well as the proportionality factor
between the true radiance of the spectral line and the
measurement, are unknown. The calibration procedure
enables us to eliminate the unknowns and obtain a final
expression for the sample temperature.

The radiance of the object’s spectral line is deter-
mined with the silicon photodiode, the output current of
which is related to the desired value Rλ, T as follows:

(5)

where k is the proportionality factor including the char-
acteristics of the optics of the device and the conversion
ratios of its electronic circuitry.

Substitution of (5) into (4) yields an expression for
calculating the substrate temperature:

(6)

The first item in the square brackets is found upon
calibration. It includes the optical properties of the
object’s surface (ε(λ, T)) and the value of k. The cali-
bration process consists in determining the value of I0
corresponding to a certain known temperature T0:

(7)

where A(T0) is a constant that depends on calibration
temperature.

The final formula for the actual temperature of the
object that relates the photodiode current to the sub-
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Fig. 3. Temperature vs. the photodiode relative signal.
strate temperature has the form

(8)

where I(T) is a current measurement.

Figure 3 plots the temperature measured against the
ratio of photodiode currents that correspond to the mea-
sured and calibration temperatures (expression (8), λ =
0.88 µm). The plot implies that the detector must be
capable of recording a thermal radiation signal from the
substrate that varies by a factor of greater than 3500 as
the substrate temperature varies from 450 to 850°C
(i.e., the dynamic range D of the detector must exceed
3500).

CONCLUSIONS

Our device for pyrometric temperature control was
tested upon the MBE growth of AlGaAs/GaAs laser
heterostructures with an In0.1Ga0.9As lasing layer [8].
Owing to the optimization of the growth process and
doping profile, as well as the use of the device devel-
oped, the heterostructures had a low lasing threshold

(  = 70 A/cm2), high internal quantum efficiency
(ηint = 98%), and low optical losses (αint = 1.5 cm–1).
Based on these heterostructures, high-power (1 W)
laser diodes intended for pumping Yb3+-ion solid-state
lasers were made. They had a lasing wavelength of
945 nm, a high differential quantum efficiency (η >
65%), a low threshold current density (Jth = 100 A/cm2),
and a lifetime exceeding 10000 h. The temperature
control device was applied in a series of experiments
where three laser heterostructures were grown in suc-
cession. In these experiments, the lasing wavelength
varied within ±2 nm from structure to structure, thereby
demonstrating a high reproducibility of temperature
indications. The growth temperature for the In-contain-
ing lasing layer was chosen at the beginning of the
operating range, where indium desorption from the sur-
face becomes noticeable. Accordingly, a considerable
change in the growth temperature (>3°C) would change
the active layer composition and, thus, the lasing wave-
length.

The basic advantage of the pyrometer developed is
that the device takes into account the features of a par-
ticular semiconductor compound (GaAs in our case)
and makes it possible to measure in situ the actual sur-
face temperature in a wide range (from 450 to 850°C)
with a high accuracy. A high accuracy is provided by
relating the actual temperature to the RHEED pattern.
Thus, the device offers advantages over the existing
analogues and can be widely used in MBE growth of

1/T
λ
c2
---- A T0( ) I T( )( )ln– I0( )ln+[ ]=

=  
λ
c2
---- A T0( ) I T( )

I0
----------- 

 ln– ,

J th
0
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AlGaAs/GaAs heterostructures. Moreover, the basic
design of the device can be adapted to any other sub-
strate material in view of its emissivity.
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Abstract—Experiments on creating a plasma jet from capillaries made of polymeric materials, such as wax,
ground wood, and rosin, as well as of their mixtures, are described. The plasma jet is used to ignite the wax
vapor. The burning wax vapor forms ellipsoidal objects up to 10–15 cm in size, which lift. The time of their
burning may reach 0.4 s. Long-lived (about 1.5 s) luminous objects (LLOs) with an apparent size of 1.5 cm are
also produced in the experiments. As follows from scanning electron microscopy data, LLO residues consist of
polymer fibers. The experiments allow one to suggest that some natural ball lightnings are of organic nature. ©
2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The creation of artificial ball lightnings or LLOs [1],
as well as the analysis of polymeric ball lightnings and
their relation with luminous objects (balls) in gas-dis-
charge experiments [2–4], has raised the question as to
whether LLOs are of polymeric nature and necessitated
an experimental check of the available theories and
hypotheses [4–6]. According to the theory developed in
[3] and the hypotheses put forward in [2, 4], ball light-
nings and spherical objects that are produced in gas-
discharge experiments carried out in the organic atmo-
sphere or in the presence of macromolecular compo-
nents (in particular, wood components [2]) have a poly-
meric framework and appear via plasma-chemical pro-
cesses involving macromolecules, dust particles, and
silica particles. Due to the dielectric or polymeric
nature of the materials involved, the recombination of
charges accumulated in the objects takes a long time
and the stability of these objects is temperature depen-
dent; that is, the surrounding plasma must be kept at
temperatures below the temperature at which the
objects break down or ignite.

This work is an extension of works [5–7], which are
concerned with long-lived luminous polymeric plas-
moids and LLOs composed of cotton microfragments
and coal particles produced in erosive discharges, and
also of work [8], where the effect of plasma jets on var-
ious materials was studied.

EXPERIMENTAL

Since the objective of this work was to study poly-
meric LLOs, capillaries in the discharge chambers were
made of organic polymers. Experiments were carried
out with a standard capillary plasmatron described in
detail in [1].
1063-7842/04/4901- $26.00 © 20128
Its basic circuit is depicted in Fig. 1. It comprises
capacitive energy storage system 1, switching element
(gap) 2, and capillary plasmatron 3. The parameters of
the discharge circuit are as follows: the current pulse
duration is 6 ms; the peak energy, 200 J; the voltage
across the discharge gap, 300–340 V; and the peak cur-
rent value, 100–150 A.

The I–V characteristic of this plasmatron with capil-
laries made of organic glass or a mixture of rosin, par-
affin, and ground wood shows that the current and volt-
age pulses have a bell-shaped time waveform, which is
typical of erosive plasmatrons [1]. For the organic glass
capillary, the duration of the discharge pulse was
≈1.5 ms shorter than for the capillary made of the mix-
ture.

The resistors incorporated into the voltage divider
that was used to take the time dependence of the voltage
across the discharge gap have the following values:
R1 = 62 kΩ and R2 = 1.2 kΩ . The shunt resistance was

C = 3200 µF

L

1

2

3
R1

R2

Rsh

Fig. 1. Discharge circuit: 1, capacitive energy storage sys-
tem; 2, gap; 3, capillary plasmatron; R1 and R2, resistors of
voltage divider; and Rsh, shunt resistor.
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Rsh = 0.013 Ω , and the total capacitance of the storage
system was C = 3200 µF.

The discharge was initiated with 3- to 4-mm-long
capillaries of diameter from 1 to 2 mm (Fig. 2) made of
different polymers. The lower electrode (4 in Fig. 2)
was made of VDPM tungsten–copper alloy, and the
upper electrode was all-copper. Other elements of the
plasmatron (except for the capillary) were made of
organic glass.

The plasmatron and oscilloscope were triggered by
sync pulses from a G5-15 pulser.

The discharge was photographed in the open-dia-
phragm integrated regime with the use of neutral filters.
Video recording was performed in the continuous
regime by means of cameras with frame durations of 33
and 41 ms. The current waveforms on the gap were
recorded with an 0.013-Ω ohmic shunt.

The plasma was generated with capillaries made of
PMMA, paraffin, a wax–rosin mixture, and a paraffin :
rosin : ground wood (particle sizes of 100 to 300 µm) =
1 : 1 : 3 (by volume) mixture. Upon using various cap-
illary (plasma-generating) materials, the outer plasma
regions (i.e., those beyond the capillary) differed in
shape and size.

The length of the luminous area was typically 10–
12 mm for all the capillaries. The apparent diameter of
the jet in the case of PMMA varied from 3 to 5 mm,
while for capillaries made of the other materials, the
diameter increased to 15–40 mm.

EXPERIMENTS WITH THE CAPILLARY 
PLASMATRON

Production of luminous balls. The scheme of
experiments with the capillary plasmatron is shown in
Fig. 3. Wax in cell 2 was brought to the boiling point,
and then the cell was placed at a distance of 1–2 cm
from the plasmatron nozzle.

Figure 4 demonstrates the burning of the light frac-
tion of the wax vapor as a result of interaction with the
plasma jet from the PMMA capillary (3 mm long and
1 mm in diameter). After ignition, an LLO formed
completely separates from the cell and rises 15–20 cm
above its surface. This process lasts about 0.4 s. From
the time and height of rise of the LLO, one can estimate
the temperature of the gas inside it: T ≈ 2000 K. Such a
temperature means that the paraffin vapor burns out
completely [9]. Assuming that, upon heating, the paraf-
fin decomposes to methane, we can estimate the ratio of
the molecular components over the heated paraffin sur-
face: CH4 : O2 : N2 ≈ 1 : 1 : 8.

The results of this experiment deserve attention,
since similar luminous balls with a lifetime of <1 s have
been repeatedly observed under natural conditions,
namely, during thunderstorms in forests under hot
weather conditions [10]. Under these conditions, exter-
nal factors, such as high temperature and calm, may
cause a local increase in the concentration of organic
TECHNICAL PHYSICS      Vol. 49      No. 1      2004
vapors in the air layer near the Earth’s surface. Since
the rate of diffusion of organic polymeric particles of
which these vapors consist is much lower than that of
oxygen and nitrogen molecules, Dorg ~ DO2

(MO2
/Morg)0.5,

the particles may accumulate near the source (e.g., a
tree). In essence, this experiment simulates the ignition

1
2

3

4

Fig. 2. Erosive plasmatron: 1 and 4, electrodes; 2, insulating
plate with capillary (discharge chamber); and 3, plasmatron
base.

1

2

3

4

Fig. 3. Experimental scheme with the erosive plasmatron:
1, plasmatron; 2, cell with molten wax; 3, plasma; and 4,
wax vapor.

Fig. 4. Burning of the light fraction of the wax vapor as a
result of interaction with the plasma jet. The plasmatron is
to the right of the LLO.
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of vapors interacting with the streak lightning discharge
with the subsequent floating-up of the burning area. In
our opinion, this experiment sheds light on the nature of
the luminous balls.

(a)

(b)

(c)

(d)

Fig. 5. Time evolution of a polymeric LLO produced with
the capillary plasmatron. (a) LLO formation (within
≈41 ms). LLO after (b) ≈82, (c) ≈123, and (d) ≈533 ms.
Production of LLOs with a polymeric structure.
With the capillary plasmatron, we conducted experi-
ments aimed at producing LLOs with parameters as
close to those of ball lightnings as possible, namely,
with a lifetime of 1 s or more and a size of 1 cm or more.

These experiments followed two schemes. The first
one is shown in Fig. 3. In the other, the cell with the wax
vapor is absent. However, the presence of the hot vapor
does not affect noticeably the LLO formation.

Figures 5a–5d show typical LLOs produced in these
experiments. The images were made by a video camera
with a frame duration of 41 ms. Knowing the number of
frames, one can estimate the LLO lifetime. Here,
frames 1–3 and 13 are shown (the total number of
frames is 29 and the LLO lifetime, ≈1.2 s). Frame 0,
which corresponds to the discharge pulse, is usually
spoiled. With the energy deposit from the discharge
mentioned above, LLOs appear from the plasmatron
channel, as a rule, within 40–45 ms after the application
of the discharge pulse. Another important finding is that
the eye does not perceive small sizes of LLOs when
they die out. In this specific case, the time of observa-
tion was ≈1 s.

A prerequisite for LLO appearance in these experi-
ments was the proper choice of components of which
the discharge chamber (capillary) is made. The sizes of
the capillary remained the same: 3.0–3.5 mm in length
and 1 mm in diameter. In this series of experiments,
LLOs appeared only when the capillary was made of a
mixture of pure medical paraffin (P), rosin (R), and
ground wood (W) of mean “grain” size 1 × 0.3 ×
0.3 mm. The components were mixed in the ratio of 1
paraffin to 1 rosin to 3 wood by volume. We used pine
wood in this work, since, according to [2], it contains a
large amount of lignin. It was assumed that, when inter-
acting with the plasma, lignin polymerizes with the for-
mation of a new structure.

As a rule, LLOs were detected in three out of every
four experiments. If a capillary was used many times,
LLOs might not appear after each subsequent dis-
charge. However, they often appear after 20 and 30 dis-
charges. In this case, the diameter may reach 2.0 to
2.5 mm. If the rate of discharges was not too high (one
discharge in 5 s), a capillary retained its initial diameter
d = 1 mm after the first five to seven start-ups of the
plasmatron.

It is remembered that LLOs appeared roughly 40 ms
after the initiation of the discharge pulse, as readily
demonstrated by video recording. However, we failed
to estimate the energy consumed by the capillary over
the time interval from the end of the current pulse to the
appearance of an LLO from the plasmatron channel
because of the specific design of the generator. Yet, a
rather high LLO initial velocity (3–5 m/s) suggests that
the energy evolution in the channel does take place over
this time. From this velocity, the energy delivered to the
capillary is estimated as E = 0.4–0.6 J.
TECHNICAL PHYSICS      Vol. 49      No. 1      2004
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During their lifetime, virtually each of the LLOs
repeatedly collided with the surface of the experimental
setup. The surface was covered by black paper. The
video records showed that the objects experienced
almost perfectly elastic collisions. The LLO velocity at
the exit from the capillary varied from 3 to 5 m/s, as
estimated from the video records. Some of the LLOs
gradually shrank from 5–7 to 2–3 mm in diameter. Ana-
lyzing the records frame by frame, we sometimes
observed how large LLOs disintegrate into smaller
ones. The objects disappeared, as a rule, suddenly when
colliding with the surface or in flight.

Once LLOs had died out, their residues (black par-
ticles up to 2 mm across) could be detected on the sur-
face in a number of cases. The residues were examined
under a SCAN-240-Cambridge scanning electron
microscope at different magnifications. The most inter-
esting micrographs are demonstrated in Fig. 6.

Figure 7 shows SEM images from fragments of the
initial materials used to prepare the discharge chambers
(capillaries). These fragments represent continuous
polymeric structures with various inclusions. Some of
the images exhibit coarse filaments or fibers up to
20 µm thick. Smooth surfaces correspond most likely to
molten paraffin or rosin components.

The smooth surfaces are nearly completely absent
on the LLO fragments (Fig. 6) unlike the initial mate-
rial (Fig. 7). At a large magnification (×2980), all the
surfaces in Fig. 6 appear porous and consist of inter-
laced filaments with distinct clusters in between. It may
be assumed that the paraffin or rosin material has
burned out, visualizing the LLO inner structure, which
consists of cellulose and lignin (the components of
ground wood).

The LLOs may be considered as the products of
burning of coarse polymeric clusters, which arise when
the wall material polymerizes in the channel or when
material fragments separate from the wall and agglom-
erate inside the channel. In this case, heating the cluster
surface may produce a burning film of gases leaving the
surface. As was shown theoretically (by solving the
heat conduction equation for thin samples) and con-
firmed experimentally in [11], the flame front for natu-
ral polymers may reach five to eight diameters of the
sample. The lifetime of an organic object when it burns
in a plasma is given by t ~ 1.5d2 s (d in millimeters)
[11]. Substituting d = 1–2 mm (the thickness of a poly-
meric cluster is limited by the plasmatron channel
diameter, 1–2 mm) into this relationship, we find the
theoretical lifetime of a luminous object, t = 1.5–6.0 s,
and its apparent diameter, D = 5–16 mm. These values
agree with experimental observations.

Note that clusters with a density of spruce, pine, or
birch (the density of these materials is close to that of
our mixture, ρ = (0.3–0.5) × 103 kg/m3)) and an appar-
ent diameter of 10–16 mm, occupy a hot zone with a
flame temperature Tf = 1400–1500 K (typical of poly-
mer burning). Starting from Archimedes’ principle, one
TECHNICAL PHYSICS      Vol. 49      No. 1      2004
can show that such clusters may soar owing to the buoy-
ancy force of the cold air, which acts on the region
occupied by the luminous object.

Thus, we may assume that burning polymeric parti-
cles that arise when streak lightning strikes a tree may
generate ball lightning with a lifetime of 1.5–6.0 s and
a diameter of 3–4 cm. In this case, the flame front of a
size much larger than the particle size may be perceived
by observers as the effective size of the ball lightning.

(a)

(b)

(c)3 µm ×1500

×2980

×45

2 µm

100 µm

Fig. 6. SEM micrographs from polymeric LLO residues
under different magnifications.
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The flame front will also specify the ability of the par-
ticle to levitate owing to the buoyancy force.

Our results suggest that LLOs observed in [12, 13]
were also of organic nature. They appeared upon clos-
ing the electrodes covered by pieces of charred wood
[12] or because of the discharge from the Tesla genera-
tor high-voltage electrode covered by pieces of charred
wood or wax [13].

CONCLUSIONS

Using a capillary plasmatron, we produced plasma
jets from capillaries made of polymeric materials, such
as wax, paraffin, ground wood, rosin, and their mix-
tures. The injection of the plasma jet ignites the wax
vapor. From the rate of rise of areas occupied by the

(a)×369

×1690

10 µm

3 µm (b)

Fig. 7. SEM micrographs from the material of which the
capillaries were made (different magnifications).
burning wax vapor (ellipsoids of characteristic size D =
10–15 cm) and the burning time (≈0.4 s), the tempera-
ture of the burning areas was estimated as T ≈ 2000 K.

We also produced LLOs with a lifetime of up to
1.5 s and an apparent size of up to 1.5 cm. An optimal
set of the capillary materials (paraffin, rosin, and
ground wood) making it possible to form LLOs was
found. LLO residues and the material of the capillary of
which LLOs were formed were examined under a scan-
ning electron microscope. The tentative analysis of the
micrographs led us to assume that the materials studied
consist largely of polymeric fibers.

Some ball lightnings observed in nature may be of
organic character, i.e., represent burning areas occupied
by heavy organic vapors or luminous structures with a
polymeric framework.
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Abstract—The charge composition of an ion beam from an E-Mevva source is calculated within a model of
sequential electron ionization of ions in a vacuum arc plasma. The effect of the plasma initial parameters on the
charge composition of the ion beam is studied. Possible charge compositions for more than 30 elements omitted
from this article are estimated. Also, the charge composition of the ions is calculated for the ultimate current
density of the electron beam. © 2004 MAIK “Nauka/Interperiodica”.
The ionization of plasma ions by electrons is a way
of generating multiply charged ions [1]. This method is
used in an E-Mevva (Electron-beam Metal-vapor vac-
uum-arc) ion source, a modified version of the Mevva-
V setup, to generate multiply charged metal ions. A
vacuum arc initiated in the ionization chamber gener-
ates a plasma of density n ≈ 1011 cm–3, and an electron
beam (current density jb ≈ 120 A/cm2, energy Ee =
20 keV, and pulse duration τp = 100 µs) is injected into
the plasma through an opening in the cathode and trans-
ported in a magnetic field through the plasma. This
device allowed the researchers to increase the charge of
Cd, In, Sn, Sm, Pb, and Bi ions. For the two elements
last mentioned, the record charges, Pb7+ and Bi8+, were
attained [2–4].

Calculations performed with the 2.5D PIC-code
KARAT [5] showed that, when the electron beam is
injected into the plasma, slow electrons of the plasma
leave the transport region and the beam is transported
under the conditions of complete charge neutralization.
In these conditions, the processes of recombination and
charge exchange may occur only with the participation
of beam electrons and the characteristic times of these
processes are much longer than the electron beam
(pulse) duration τp. In this case, the basic process
responsible for ion generation is the sequential ioniza-
tion of plasma ions by beam electrons.

The mean path of a beam electron in the chamber
exceeds the length of the chamber (40 cm) several times
even if the effect of the external magnetic field is taken
into account. Therefore, a plasma layer through which
the electrons travel may be viewed as a one-collision
layer and ion generation may be described by the set of
kinetic equations [1]

(1)
dni

dt
------- v eσi 1– i→ neni 1– ; i 1 2 … m,, , ,= =
1063-7842/04/4901- $26.00 © 20133
where m is the maximal charge of ions generated,
σi − 1 → i is the cross section of ion ionization from an
(i – 1)th to ith state by 20-keV electrons, ni – 1 is the
concentration of ions in the (i – 1) state, ni is the con-
centration of ions in the ith state, and v e is the electron
velocity.

For multiply charged ions, the ionization cross sec-
tion may be calculated by the Lotz formula [6]

(2)

where σi is the cross section of ionization of ions in an
ith state by electrons with an energy Ee, Ii is the ioniza-
tion potential for an ith sublevel, ri is the number of

σi 4.5 10
14– ri

EeIi

---------
Ee

Ii

----- 
  ,ln

i 1=

N

∑×=

0
0 1 2 3 4 5 6 7 8

0.1

0.2

0.3

0.4 1
2
3

Z

ni/n0

Fig. 1. Charge distribution for Bi ions upon the ionization
of the (1) metal vapor and (2) vacuum arc plasma.
(3) Experimental data.
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electrons on the ith sublevel, and the N is the nuclear
charge.

Set (1) was solved numerically. The data input was
ion charge distributions obtained with the Mevva-V
device [4] for various conditions of arc initiation. The
calculations (Fig. 1) reinforced the statement that the
use of the vacuum arc plasma (and not metal vapors) as
an initial medium makes feasible an increase in the
mean charge of the ions at a given beam parameter jbτp.
In the case of metal vapors, a plasma of the same charge
composition can be generated if the current density of

1
10 20 30 40 50 60 70 80

2

3

4

5

A

Z

90

Cd
In

Sn

Pb Bi

Fig. 2. Mean ion charge vs. atomic number. The continuous
curve was calculated for the case when an electron beam
acted on the plasma of a vacuum arc initiated in a high mag-
netic field. The dashed curve was calculated in the absence
of the field. Symbols show the mean charges of Cd, In, Sn,
Pb, and Bi ions.

2
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Fig. 3. Mean charge of (1) In, (2) Bi, and (3) U ions vs. jb.
Symbols show the experimental data for In and Bi at jb =
120 A/cm2.
an electron beam is three times higher than in the
E-Mevva device [1].

Our model and ion charge distributions obtained
with the Mevva-V device allow us to estimate the
potentialities of an electron beam for generating multi-
ply charge ions in the E-Mevva device [7]. Figure 2
plots the mean charge of ions against their atomic num-
ber. The continuous curve was calculated for the case
when an electron beam acted on the plasma of a vac-
uum arc initiated in a high magnetic field (under these
conditions, ion charge distributions were taken for Bi
and Pb). The dashed curve was calculated in the
absence of the field. Also shown are the mean charges
of Cd, In, Sn, Pb, and Bi ions that were measured when
the vacuum arc plasma was exposed to the electron
beam in the E-Mevva device. The calculations indicate
that the E-Mevva device makes it possible to generate
Ni, Ge, Mo, W, Ir, and Th ions with a charge as high as
9 or 10.

To further increase the ion charge, it is necessary to
raise the current density jb of the electron beam. The
ultimate current density tolerable for the E-Mevva ion-
ization chamber depends on the plasma concentration
and external magnetic field strength. Estimations with
the code KARAT show that, with the plasma concentra-
tion n = 1011 cm–3 and external magnetic field B = 3 kG,
the maximal current density in the chamber may reach
jb = 700–800 A/cm2. The mean charge of In, Bi, and U
ions vs. jb is plotted in Fig. 3. For the E-Mevva device,
the maximal current density currently available is 350–
400 A/cm2. Such values may be reached by increasing
either the total current of the beam or the magnetic field
strength. As follows from calculations, U9+ ions may be
generated in the E-Mevva device for jb = 400 A/cm2.
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Abstract—Stimulated Raman scattering (SRS) in a long-distance fiber-optic communication line with wave-
length-division multiplexing (WDM) is studied theoretically at a high power of the signal transmitted. A new
criterion for determining the SRS threshold is used to calculate the critical input power versus the number of
optical channels and frequency separation between them. The theoretical model is verified experimentally. SRS
interaction between two channels in a communication line with an SRS amplifier for which the optical
waveguide of the line serves as a nonlinear medium is measured. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

To extend the distance over which information can
be transmitted, modern fiber-optic communication
lines usually employ erbium-doped amplifiers. How-
ever, as the power of the transmitted signal grows, a
variety of nonlinear effects, such as stimulated Raman
scattering, self-modulation and cross modulation, stim-
ulated Brillouin scattering, and four-wave mixing,
appear in the light guide. SRS limits the communica-
tion distance to the greatest extent [1, 2]. This effect is
particularly severe in WDM systems. In this case,
longer wave signals are enhanced at the expense of
shorter wave ones [3, 4] and the SRS-induced power
exchange between the channels increases with fre-
quency separation within the bandwidth (15 THz) of
Raman amplification. When the input exceeds a certain
level, the output of shorter wave channels virtually
stops growing.

In earlier works devoted to SRS, calculations were
made either for short (no longer than 10 km) lines or for
a low (no higher than 20 mW) power of the transmitted
signal. However, today’s long-distance fiber-optic
WDM lines are longer than 200 km with typical signal
powers of 100 mW or more. Therefore, one goal of this
work is to clear up SRS-induced power limitations on
modern optical fibers.

An exact analytical solution for the evolution of
SRS channel interaction in WDM systems was found in
[5]. Based on this result, we constructed a model for
calculating the threshold power versus the number of
spectral channels and frequency separation between
them. In this model, a linear approximation of the gain
spectrum with a slope g' = 5.1 × 10–18 m/(W GHz) is
used.
1063-7842/04/4901- $26.00 © 20135
EXPERIMENTAL VERIFICATION 
OF THE THEORETICAL MODEL

The theoretical model was verified with the experi-
mental scheme shown in Fig. 1. Signals come from an
erbium-doped fiber laser (EFL) with a spectral line
width of less than 0.06 nm. Two optical signals with
wavelengths λ1 = 1550.12 nm and λ2 = 1561.42 nm are
applied to a 200-km-long fiber-optic line through a
multiplexer (MUX). The power distribution between
the two channels is measured by an optical spectrum
analyzer over a wide (up to 250 mW) input range.

The experimental and theoretical results are shown
to be in good agreement (Fig. 2). We thus may conclude
that the model is valid in a wide range of powers of sig-
nals transmitted over long distances.

SIMULATIONS RESULTS

As the power of a “multichannel” signal at the input
to a fiber-optic line grows, the output of the shortest
wavelength channel first grows. Subsequently, how-
ever, its growth rate slows down because of SRS and
the power reaches a maximum. As the input signal
increases further, the output drops. We define the criti-

OSA
SMF 200 km

MUX EDFA

EFL
λ = 1550.1 nm

EFL
λ = 1561.4 nm

Fig. 1. Fiber-optic line with an erbium-doped laser ampli-
fier at the input: EFL, erbium-doped fiber laser; MUX, mul-
tiplexer; EDFA + SMF, input device and fiber-optic line;
and OSA, optical spectrum analyzer.
004 MAIK “Nauka/Interperiodica”



 

136

        

GOLYSHEV 

 

et al

 

.

                                                                
cal SRS intensity at the input as that which provides the
maximum output of the shortest-wavelength channel.
Simulation results are shown in Fig. 3. The number of
channels was varied from 2 to 64. The frequency sepa-
ration between the channels was either 100 or 200 GHz.
In particular, for an eight-channel system with a
200-GHz channel separation, the critical power was
135 mW. For a smaller number of channels and smaller
separation, the critical power was still greater.

0.4

200 40 80 10060 120 140 160 180 200 220

0.8

1.2

1.6

2.0

2.4

2.8

Pin, mW

Pout, dB

Fig. 2. Crosstalk between two channels for different chan-
nel output Pout. Solid line, theory; (j) data points. Pin is the
channel input.
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Fig. 4. Multichannel optical signal at the input (upper panel)
and output (lower panel) of the 200-km-long line.
SRS causes a spectral nonuniformity at the output of
the line. Figure 4 shows the spectra of a 16-channel sig-
nal at the input and output of a 200-km-long light guide.
The power applied to the fiber was equal to the critical
power, and the channel separation was 100 GHz.

With equal input powers, the maximal output differ-
ence PN – P1 will be that between the longest and short-
est wavelength channels. Table lists the calculated
changes in P1 and PN (the blank means the absence of
the SRS).

The spectral nonuniformity mentioned above can be
compensated for by using spectral filters mounted at the
input and output of the line.

Thus, the SRS effect imposes significant limitations
on the maximum transmitted power and, hence, on the
communication distance. However, these limitations
are not fundamental. If the passive segment of the line
is long, they may be overcome with a fiber Raman
amplifier (FRA) for which the light guide of the line
serves as a nonlinear medium that accomplishes pump-
to-signal conversion.

We measured the spectral nonuniformity in a 2-
channel system with a distributed FRA pumped from
the output of the line. The scheme of the experiment is
shown in Fig. 5.

5

40 12 2820 36 44 52 60 68

10

15

20

25

30

35

N

Pth, dBm
40

1

2

Fig. 3. Threshold power versus the number N of channels.
The frequency separation is (1) 100 and (2) 200 GHz.

OSA
SMF 200 km

MUX

EFL
λ = 1550.1 nm

EFL
λ = 1561.4 nm

L
λ = 1440 nm

WDM 1440/1550

Fig. 5. Fiber Raman amplifier built in the fiber-optic line.
L stands for pumping laser. The other designations are the
same as in Fig. 1.
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The FRA was pumped by a 1440-nm laser, whose
power was varied from 0 to 1.2 W. The pumping radia-
tion was fed into the fiber through a WDM 1440/1550
optical multiplexer. The optical input was 20 mW per
channel, and the output varied between 0 and 85 µW.
The difference in optical signals proved to be very
small (less than 0.3 dB) throughout the range of mea-
surement. The FRA reduces significantly the signal
power losses due to SRS interaction between the chan-
nels compared with the standard design using an
erbium-doped laser amplifier at the input of the line. A
disadvantage of the FRA is that the power of the pump-
ing laser must be one order of magnitude higher than
the power of the erbium amplifier at the same output.

Table

Number of
channels, N

Change in P1 (PN), dB

∆f = 100 GHz ∆f = 200 GHz

2 – –3.6/+1.9

4 –3.8/+2.6 –3.8/+2.6

8 –3.9/+2.8 –3.9/+2.8

16 –3.9/+2.9 –3.9/+3.0

32 –3.9/+3.0 –3.9/+3.0

64 –3.9/+3.0 –
TECHNICAL PHYSICS      Vol. 49      No. 1      2004
CONCLUSIONS

We simulated SRS interaction in a long-distance
WDM system over a wide input range. Our results
allow one to relate an optimum input power to the num-
ber of spectral channels and separation between them.
The analytical model proposed was verified experimen-
tally. The findings obtained in this work may be useful
in designing advanced long-distance fiber-optic com-
munication lines. SRS interaction between signals in a
system with an FRA is found to be negligible.

ACKNOWLEDGMENTS

We thank O.G. Shkurikhin and A.G. Getman for
their assistance.

REFERENCES
1. R. G. Smith, Appl. Opt. 11, 2489 (1972).
2. R. H. Stolen, Proc. IEEE 68, 1232 (1980).
3. A. R. Chraplyvy and P. S. Henry, Electron. Lett. 19, 641

(1983).
4. A. R. Chraplyvy, J. Lightwave Technol. 8, 1548 (1990).
5. D. N. Christodoulides and R. B. Janger, IEEE Photonics

Technol. Lett. 8, 1722 (1996).

Translated by A. Khzmalyan



  

Technical Physics, Vol. 49, No. 1, 2004, pp. 138–141. Translated from Zhurnal Tekhnichesko

 

œ

 

 Fiziki, Vol. 74, No. 1, 2004, pp. 139–142.
Original Russian Text Copyright © 2004 by Naumov.

                                                                                                                          

SHORT
COMMUNICATIONS
Dynamics of a Charged Particle Bunch
in a Penning Trap

N. D. Naumov
Received May 5, 2003

Abstract—The Lagrangean equations for gas dynamics of a spherical bunch of charged particles in a Penning
trap are solved. The solution describes the pulsation of an inhomogeneous particle bunch whose center behaves
as a spatial oscillator in a coordinate system rotating with the Larmor frequency. © 2004 MAIK “Nauka/Inter-
periodica”.
INTRODUCTION

The construction of analytical solutions to the equa-
tions of gas dynamics is a method of studying the prop-
erties of nonlinear systems [1]. A bunch of particles in
a Penning trap is an example of space-bounded charged
particle distributions for which one can obtain a nonsta-
tionary solution to the self-consistent problem.

A Penning trap is usually subjected to an external
uniform magnetic field B = Be3 and a nonuniform elec-
tric field whose potential in the cylindrical coordinates
has the form

Such a field may be produced by hyperbolic elec-
trodes: two surfaces 2z2 = ρ2 + 2d2 with a potential Φ
and a surface ρ2 = 2z2 + 2d2 with a potential –Φ. Then,
κ = Φ/2d2.

An exact solution to the equations of gas dynamics
for a homogeneous spherical bunch of charged parti-
cles in a Penning trap was obtained earlier [2]. In this
work, we construct a nonstationary solution to the self-
consistent problem for a cold charged fluid,

(1)

(2)

that has the form of a spherical inhomogeneous bunch
of particles in a Penning trap. Here, e and m are the
charge and mass of the particle, respectively; n and V
are the density and velocity of the fluid, respectively;
Eext = –∇Φ 0; and E is the intensity of the self-electric
field of the bunch.

MOTION OF THE BUNCH CENTER

The motion of the bunch center will be described in
terms of the vector r = xiei, where ei are the unit vectors

Φ0 κ 2z2 ρ2–( ).=

∂
∂t
----- V ∇⋅( )+ V

e
m
---- E Eext

1
c
--- V B×[ ]+ + 

  ,=

∂n
∂t
------ ndivV+ V gradn⋅ 0, divE 4πen= = =
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of the coordinate system. In Eqs. (1) and (2), we pass to
the variable s = x – r(t) assuming that V(x, t) =  + U(s,
t). The external field is a linear function of coordinates;
hence, Eext(x) = Eext(r) + Eext(s).

As a result, the motion of the fluid relative to the
bunch center is described by the following equations:

(3)

(4)

As we might expect, the dynamics of the bunch cen-
ter is defined by equations of motion of a single particle
in a Penning trap:

(5)

where ω2 = 4eκ/m and Ω = eB/2mc.
The Hamiltonian equations for charged particle

motion in a Penning trap were solved in [3].
It will be shown that a self-consistent solution for an

inhomogeneous bunch may be obtained only if the
external electric field gradient and the magnetic field
are related as κ = mΩ2/6e. In this case, along with the
initial coordinate system, it is convenient to consider
another coordinate system where the unit vectors have
the form

in other words, the new system rotates with an angular
frequency –Ω relative to the initial coordinate system.
The use of the rotating coordinate system makes it pos-
sible to more clearly demonstrate the motion of the
bunch center.

ṙ

∂
∂t
----- U

∂
∂s
-----⋅+ 

  U
e
m
---- E Eext s( ) 1

c
--- U B×[ ]+ + 

  ,=

∂n
∂t
------ ndivU U

∂n
∂s
------⋅+ + 0, divE 4πen.= =

ẋ̇1
1
2
---ω2x1 2Ω ẋ2, ẋ̇2+

1
2
---ω2x2 2Ω ẋ1,–= =

ẋ̇3 ω2x3,–=

n1 e1 Ωtcos e2 Ωt,sin–=

n2 e2 Ωtcos e1 Ωt, n3sin+ e3,= =
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To describe the motion of the bunch center in the
rotating coordinate system, we will use a vector X =
Xjnj. The initial conditions in this coordinate system are
the initial positions xi0 and Xi0 of the bunch center:

Substituting xi = Xjnjei into (5), we find that the
motion of the bunch center in the new coordinate sys-
tem is nothing but oscillations of a spatial oscillator:

and, accordingly,

Thus, the motion of the bunch center in the initial
coordinate system obeys the law

As is known, a spatial oscillator describes a circle,
ellipse, or rectilinear segment depending on the initial
conditions, the center of the path coinciding with the
field center [4]. In our rotating coordinate system, the
path of the bunch center lies in the plane that is normal
to the vector L = m[X0 × X0] and represents a circle if
E0 = ωL or an ellipse if E0 > ωL. The semiaxes a and b
of the ellipse are given by

where

Here, E0 = m(  + ω2 )/2, X0 = Xi0ni, and  = ni.

Taking into account that X2  = ω2(a2 – X2)(X2 –
b2), one can easily check that, in the rotating coordinate
system, the vector

is also an integral of motion (along with the vector L =

m[X × ]).
If the bunch center is placed on the axis of symmetry

of the ellipse that coincides with the semiaxis a, the

vector [  × L] is collinear with the vector X (since the

vectors X and  are mutually perpendicular at this
point). Therefore, the vector Na is directed along the

X j0 x j0, Ẋ10 ẋ10 Ωx20,–= =

Ẋ20 ẋ20 Ωx10, Ẋ30+ ẋ30.= =

X j X j0 ωtcos
1
ω
---- Ẋ j0 ωt,sin+=

Ẋ̇ j ω2X j.–=

x1 X1 Ωtcos X2 Ωt,sin+=

x2 X2 Ωt X1 Ωt, x3sin–cos X3.= =
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m
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Ẋ
2

Na a2 X2– X L×[ ] XẊ Ẋ L×[ ]
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major axis of symmetry of the ellipse (as the Laplace
vector in the Kepler problem).

Similarly, one can check that the other vector that is
retained in the rotating coordinate system,

is directed along the minor axes of symmetry of the
ellipse.

If the initial conditions for the bunch center are such

that the vectors X0 and  are collinear or one of them
equals zero, the path of the center will be a rectilinear
segment in the rotating coordinate system.

SOLUTION OF THE GAS DYNAMICS 
EQUATIONS

Instead of the Cartesian coordinates si = sei, we will
use the spherical coordinate system (s, η, ψ). The
Lagrangean equations for fluid motion in this system
appear as

Here, us, uη, and uψ are the coordinates of the velocity
vector for a fluid element. It is easy to see that, if κ =
mΩ2/6e, possible solutions to the two last equations
have the form uη = 0 and uψ = –sΩsinη. In this case, the
first equation simplifies to

(6)

Thus, under the conditions selected, a fluid element,
as well as the bunch center, rotates with the Larmor fre-
quency and executes radial oscillations. If fluid elements
that are equidistant from the bunch center have the same
initial velocities, they move identically. Therefore, if the
form of the radial initial conditions for the fluid is spher-
ically symmetric about the bunch center, we may con-
sider the pulsation of a separate spherical layer of the
fluid in the bunch rotating and executing translational
motion as a whole. Then, the Lagrangean variable s is
the radius of the layer. This variable depends on time t
and the initial position s0 of the layer: s = s(t, s0).

Eventually, the problem reduces to the analysis of
the radial motion of a cold charged fluid subjected to a
combination of external and collective fields. The tech-
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nique for solving such a problem when particles move
in the radial directions without overtaking was
described in [5].

With this technique, we find for the particle density

(7)

where the functions s(t, s0) and R(t, s0) are solutions to
the equations

(8)

(9)

(the time derivative is denoted by overcircles).
The initial conditions for Eqs. (8) and (9) are

Here, the functions v(s) and ω(s) depend on the initial
distributions of the particle density and gas velocity rel-
ative to the bunch center, n(s, 0) = n0ω(s) and U(s, 0) =
v (s), and

For a homogeneous bunch, ω(s) = H(1 – s/q), where
H(x) is the Heaviside step function and q is the initial
radius of the bunch. If the initial velocity linearly varies
with the distance to the center of symmetry, v(s) = ks

n t s0,( ) n0
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-----------------------; R t s0,( )
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2

s2
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ω0
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Fig. 1. Formation of the particle density peak.
(k is a constant), we have s(t, s0) = s0R(t). Then, to cal-
culate the pulsation of a homogeneous bunch, one
needs solve one differential equation in the function R:

(10)

with the initial conditions R0 = 1 and  = k.

For s0 ≤ q, we obtain for the gas-dynamic parame-
ters of a homogeneous bunch

(11)

In this case, the function R characterizes the time
dependence of the bunch radius: s(t, q) = qR(t).

NUMERICAL CALCULATION

The gas-dynamic properties of an inhomogeneous
bunch can be calculated by varying s0 in a step-type
manner and solving Eqs. (8) and (9) at each step. Figure 1
shows the calculated particle density distributions in
the bunch for τ = (2) 0.5, (3) 1, and (4) 1.11, where τ =
Ωt. Curve 1 corresponds to the initial particle density
distribution

(12)

Calculation was performed for v (s) = 0 and  = 30Ω2.
As follows from Eq. (8), the former condition reflects a
balance between space-charge and external-field forces
in the surface layer of the fluid.

The formation of the particle density peak suggests
that the assumption of overtaking absence is invalid.
Overtaking makes itself evident in the fact that the con-
dition R(tk, s0) = 0 is met at a certain time t = tk in a par-
ticular layer. At the time of overtaking, the particle den-
sity tends to infinity (so-called gradient catastrophes
[1, 6]). In this case, a solution to Eqs. (8) and (9)
describes the variation of the gas-dynamic properties of
an inhomogeneous bunch till the time instant tk for
which 1.137 < τk < 1.138.

As follows from (10) and (11), overtaking is absent
if the particle density distribution is uniform and the
fluid velocity varies linearly with the distance to the
bunch center. One might therefore expect that the appli-
cability domain of the results will be different with ini-
tial distribution (12) changed appropriately.

Figure 2 shows the calculation results for

3 Ṙ̇ 2Ω2R
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In this case, space-charge and external-field forces

balance at  = 5Ω2. Here, τ = (2) 1, (3) 2, (4) 3, and
(5) 4. Curve 1 corresponds to the initial particle density

ω0
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0.30

0.45

0.50
1

2

3

4

s/q

n/n0

5

0.35

0.40

Fig. 2. Particle density oscillations.
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distribution. In this case, the particle density peak is of
a finite height, indicating that the motion of the fluid is
free of overtakings.
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Abstract—The structural characteristics of shear-stressed water are studied as a function of temperature in the
range 0–20°C. At a temperature of 8°C, water exhibits a maximal shear strength (2 × 10–2 Pa) and a maximal
recovery time (.32 s) of the locally disordered structure. With an aqueous sodium chloride solution as an exam-
ple, it is shown that even a minor (0.08%) concentration of ions extends significantly the temperature range of
water structure ordering. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

It is known [1] that some materials may be in the liq-
uid-crystal state, i.e., have the fluidity of liquids, on the
one hand, and exhibit molecular order and anisotropy
of a number of physical parameters, which is typical of
solids, on the other. A material with liquid-crystal
(mesomorphic) properties is in the solid state at temper-
atures below some temperature T∗ . When heated to T >
T∗ , it melts and passes into the mesomorphic state and,
at a temperature T∗∗  > T∗ , it becomes a normal liquid.
Thus, this material is in the mesomorphic state in the
interval T∗  < T < T∗∗ . In addition, recent experiments
have shown [2] that polar Newtonian liquids (water,
glycerol, ethanol, etc.) acquire an ordered structure
under certain conditions. This is consistent with data
obtained in [3], where it was established experimen-
tally that water and glycerol show a slight elasticity of
shear (note that the Newtonian behavior of glycerol at a
slow strain rate was observed in [4]). According to [2],
water at rest has an ordered structure at T < T∗∗  =
+19°C. At T > T∗∗ , molecular ordering breaks down
and the structure of water becomes “chaotic” (i.e., kT >
∆U, where kT is the mean energy of thermal motion of
molecules and ∆U is the difference in the potential
energies of the system at different molecular arrange-
ments). Thus, one may formally assume that water has
weak mesomorphic properties in the temperature inter-
val T∗  = 0°C < T < T∗∗  . +19°C.

In this work, we study the structure of tap water, dis-
tilled water, and snow melt subjected to local shear
loads in the interval T∗  < T < T∗∗ .

RATE THRESHOLD OF WATER STRUCTURE 
ORDERING BREAKDOWN UNDER SHEAR

In an equilibrium ordered thixotropic structure,
which water is at T∗  < T < T∗∗  [2], the rate of break-
1063-7842/04/4901- $26.00 © 20019
down of the supermolecular order equals the rate of its
restoration [5]. It is therefore clear that the ordered
structure of water in the mesomorphic state will break
down if the rate of intermolecular (interassociate) bond
breaking exceeds the rate of bond reconstruction. With
this in mind, we estimated the threshold shear strain
rate  =  at which the water structure becomes dis-
ordered.

Experiments were carried out on a bench shown in
Fig. 1. Here, 1 is a thermostatically controlled dish with
transparent windows 2 filled with water 3. Plate 4 is
placed parallel to the axis of symmetry of the dish.
Electric drive 5, rotating the plate about the axis of
symmetry of the dish, is equipped with a revolution
counter and a reduction gear, which makes it possible

ε̇τ ε̇τ*

(a) (b)
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4
3

a a
2
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a – a 2um
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0
δ(l)
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um F
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u = 0
∆x

A'
um

B' C' D
x

Fig. 1. Experimental scheme for the determination of the
threshold shear strain rate at which the water structure
becomes disordered.
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to vary the rate of rotation ω from 0.01 to 5 s–1. During
rotation, a zone with a maximal gradient of rate of rota-
tion of the liquid forms near the plate’s outer edge,
which has a linear velocity um = ωRm (Fig. 1a). At a cer-
tain value of um, waviness 6 (optical inhomogeneity due
to water structure disordering [2]) is observed (Fig. 1a).
Here, Rm = 1 cm is the distance from the outer edge of
the plate to the axis of revolution. Optical inhomogene-
ity in the liquid was detected with schlieren and video
cameras (the method of optical inhomogeneity detec-
tion similar to that described in [2]).

It is obvious that the shear strain rate  near the
outer edge of the plate is equal to ∇ yu (Fig. 1b), i.e., to
the derivative of the velocity with respect to the coordi-
nate normal to the direction of plate motion at a fixed
time t. The derivative ∇ yu was estimated as follows. If
the plate rotates slowly, one may assume that the liquid
adjacent to the portion OA of the plate (OA ! Rm)
moves with a velocity roughly equal to um. Hence, the
plane 0°C separates the moving and quiescent (u = 0)
masses of the liquid. Then, according to [6], a transition
layer B0D forms along the plane 0°C. In this layer, the
velocity u drops from um to 0. The thickness of the tran-
sition layer is estimated by the formula [6]

where ν is the kinematic viscosity coefficient of the liq-
uid and ∆x is the distance from the edge of the plate (the
point 0) to the point where the thickness ∆y = BD of

ε̇τ

∆y 7 ν∆x/um( )1/2,=
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Fig. 2. Temperature dependence of (1) the shear strain rate
 at which the structure becomes disordered, (2) healing

time t* of disordered areas in the water sample, and

(3) healing time  of disordered areas in the 0.08%

water solution of NaCl.

ε̇τ*
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*

0

the transition layer is determined. Therefore, we may
set ∇ yu . um/∆y. However, this estimate yields ∇ yu 
∞ at ∆x  0; therefore, one should take into account
the formation of a boundary layer at the end face 0F of
the plate upon moving (Fig. 1c). The thickness of the
boundary layer at the point 0 can be found from the
relationship [6] δ = 1.72(νl/um)1/2, where l is the thick-
ness of the plate. Then, with ∆x  0, ∆y  δ and
the shear strain rate is given by

Curve 1 in Fig. 2 shows the experimental tempera-
ture dependence of the minimal shear strain rate  at
which the water structure becomes disordered (data for
tap water). It is seen that the strength of the water
ordered structure (which is expressed in terms of the
ultimate shear stress τ* = µ , where µ is the shear vis-
cosity of water) is the highest at 8°C (τ* . 2 × 10–2 Pa)
and then decreases with decreasing temperature (at
least until T  3°C). Such behavior is likely to be
associated with the specific evolution of the water
structure upon approaching the point of solidification.

In general, the threshold value of  is sufficiently
high. This fact may explain experimental observations
that the ordered structure of water persists under the
conditions of laminar jet flow (at least with Re below
103) in the temperature interval T∗  < T < T∗∗ .

TEMPERATURE DEPENDENCE OF THE TIME 
OF DISORDER–ORDER TRANSITION 

FOR WATER IN THE MESOMORPHIC STATE
It has been shown [2] that the time taken to heal up

disordering due to local shear strains in the water sam-
ple is t* = 3–4 s at 17°C. If the entire sample is disor-
dered, it is healed at least for more than an hour. In
other words, the thixotropic properties of water at 17°C
are weak. The question arises as to what time will be
taken to heal up disordered areas of the sample when
the temperature decreases, specifically, at T  T∗∗ .

To perform relevant experiments, we followed the
technique developed in [2] but the sample was placed in
a thermostatically controlled dish where the tempera-
ture was kept constant in the interval from 1 to 20°C.
The results for tap water are represented by curve 2 in
Fig. 2. It is seen that the healing time has a maximum

 = 33 s at 8°C (as for curve 1).

Thus, water at 8°C has the highest structural
strength and the longest time of healing of local disor-
dered areas. Almost the same results were obtained for
distilled water and snow melt (for all the samples, the
spread of experimental data was no more than 7%).

It is worthy to note that even a minor concentration
of ions affects drastically the structural order of water.

ε̇τ ∇ yu     
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δ
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-------------------------.= =.
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Curve 3 in Fig. 2 shows the temperature dependence of

t* for a 0.08% NaCl solution in distilled water ( ).
This curve differs markedly from the same curve for the
pure distillate (cf. curve 2). It was found that the struc-
tural order in the 0.08% NaCl solution persists at least
up to 50°C. Presumably, Na+ and Cl– ions, which have
a high surface charge density, bind firmly water mole-
cules in the hydration sheath [7]. This, in turn, raises the
concentration of structured associates in the solution.

CONCLUSIONS
Our results can be summarized as follows. The tem-

perature dependences of  and t* have maxima at 8°C.
In other words, water exhibits the highest structural
strength and the longest healing time of local disorder
at this temperature. It may be assumed that the degree
of order in water increases as the temperature decreases
to 8°C; accordingly, a higher stress τ = µ  is needed to
destroy the structure.

However, the higher the degree of order before
destruction, the longer the time taken to reconstruct the
structure. This argument, however, does not explain
why  and t* go on decreasing as the temperature
declines below 8°C. It appears that a specific mecha-
nism of reconstruction comes into play near the freez-
ing point (before the onset of solidification).

A rather high threshold value of the shear strain rate
(  > 4 s–1) accounts for the effect observed experi-
mentally: the ordered structure of water persists up to

tNaCl
*

ε̇τ

ε̇τ

ε̇τ

ε̇τ*
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Re . 103 in the case of a laminar jet flow (i.e., when the
velocity gradient along the jet radius is low) at T < T∗∗ .

It was also found that even a minor concentration of
ions affects drastically the degree of order, raising the
temperature threshold T∗∗  of water amorphization. For
example, for a 0.08% NaCl solution, T∗∗  > +50°C;
therefore, blood plasma, containing about 0.9% NaCl,
is bound to have mesomorphic properties at least up to
50°C.
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Abstract—An analytical expression for the generatrix of the shape of a nonlinearly vibrating charged drop of
a perfect incompressible conducting fluid immersed in an ideal incompressible dielectric medium is found in
the second order of smallness in terms of perturbation theory. The drop experiences multimode initial deforma-
tion. The expression contains resonant (small-denominator) terms. With the effect of the environment taken into
account, the number of resonant situations becomes dependent on the drop-to-environment density ratio and
the resonant self-charge of the drop changes. It is shown that nonlinear vibrations may be of resonant character
even if the charge of the drop is far away from exact resonant values. This is because Rayleigh subcritical values
of the self-charge affect the frequencies of higher vibration modes insignificantly. © 2004 MAIK “Nauka/Inter-
periodica”.
Vibration and stability of charged drops is of consid-
erable interest in a variety of areas of science and tech-
nology (see, e.g., [1] and Refs. therein). In practice, one
often deals with vibrating drops that are suspended or
move in another immiscible fluid [2–9]. Such systems
were repeatedly studied in an approximation linear in
vibration amplitude [10–12]. Despite increased interest
in nonlinear vibrations of a drop in general [13–16],
vibration of a drop in a medium has come to the atten-
tion of researchers only recently [17].

(1) We will look for the shape of a drop of a perfect
incompressible conducting fluid of density ρ1 that exe-
cutes nonlinear vibrations in a perfect incompressible
dielectric medium of density ρ2 and permittivity ε∗ .
The drop has a charge Q, equilibrium radius R, and
interfacial tension coefficient σ. Analysis will be per-
formed in the spherical coordinate system with the ori-
gin at the center of the drop in terms of dimensionless
variables such that R = ρ1 = σ = 1. We assume that the
drop vibrates owing to a virtual axisymmetric multi-
mode deformation imposed on the initially spherical
shape. The deformation is defined by a finite spectrum
of modes (with numbers i ∈ Ξ ), each being described
by an appropriate Legendre polynomial Pi(µ), where
µ ≡ cosθ.

Supposing that the vibrating drop remains axisym-
metric, we write the interface equation in the form

(1)

where r and θ are the spherical coordinates and ξ(θ, t)
is a function that describes the vibration-related defor-
mation of the spherical interface.

r θ t,( ) –1 ξ θ t,( ); ξ  ! 1,+=
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The motion of the fluid in the drop and in the
medium is assumed to be potential with velocity field
potentials ψ1(r, t) and ψ2(r, t).

The mathematical statement of the problem
includes the Laplace equations for hydrodynamic and
electrostatic potentials

(2)

boundedness conditions

(3)

(4)

and boundary conditions at the interface (see (1))

(5)

(6)

(7)

(8)

Also, we assume that the charge and volume of the
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drop remain constant:

(9)

(10)

Finally, the initial conditions are

(11)

In the above expressions,  is the pressure in the
drop (j = 1) and medium (j = 2) in equilibrium; PE =
ε∗ (gradΦ)2/8π is the electric field pressure on the inter-
face; Pσ = divn is the Laplace pressure; n is the unit
vector of the positive normal to the drop surface; Φ(r, t)
is the electrostatic potential induced by the drop self-
charge in the medium; Φs(t) is the constant electrostatic
potential on the drop surface; ρ = ρ2/ρ1; ε is the initial
deformation amplitude (a small parameter of the prob-
lem); h1 is the partial contribution of an ith vibrational
mode to the initial perturbation:

ξ0 is a constant that is found from the drop volume con-
stancy condition:

and ∆ is the Laplacian.
A complete set of equations that describes the prob-

lem must include the stationarity condition for the cen-
ter-of-mass of the system. In the presence of an envi-
ronment, this condition has the form

(12)
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where L is the characteristic linear dimension of the
space occupied by the environment (L @ 1) and dΩ is a
solid angle element.

In the problem of drop surface vibration in a vac-
uum (ρ = 0), conditions (10) and (12) impose additional
restrictions upon the amplitude of the zero (volume)
and first (translational) modes, respectively, in the
expansion of the equation for the drop shape generatrix
in Legendre polynomials. These restrictions are totally
consistent with set (2)–(11) (i.e., an expression, e.g., for
the translational mode amplitude that is derived from
the stationarity condition for the center of mass coin-
cides with that obtained from the set of boundary con-
ditions). For a drop in an environment, the role of con-
dition (10) persists (since it is assumed that both media
are incompressible). At the same time, it is easy to
check that, if the linear dimension L of the environment
is sufficiently large, equality (12) can be made valid for
an arbitrary function r(θ, t) with a however high accu-
racy. Thus, for the drop surface vibrating in an environ-
ment of large but finite volume, the stationarity condi-
tion for the center of mass may be omitted, since it is
met automatically. As to the amplitude of the first
(translational) mode, it is defined, as well as the ampli-
tudes of all vibrational modes (n > 2), from boundary
conditions (5)–(7). Note that, when excited, the transla-
tional mode compensates for the displacement of the
center of mass due to vibrational surface modes.

(2) The problem stated by (2)–(11) was solved by
the method of many scales, as in the case of a drop in a
vacuum [13–16], in a second-order approximation. All
unknown functions were expanded in the small param-
eter ε,

(13)

under the assumption that they depend on two time
scales: fast, T0 = t, and slow, T1 = εt. The time deriva-
tives were calculated as

Substituting expansions (13) into (2)–(11) and col-
lecting terms with the same powers of ε, we readily
obtain boundary-value problems of different orders of
smallness. A zero-order solution describes the electro-
static field distribution near the charged conducting
drop,

ψ1 r θ t, ,( ) εψ1
1( ) r θ t, ,( ) ε2ψ1

2( )
r θ t, ,( ) O ε3( ),+ +=

ψ2 r θ t, ,( ) εψ2
1( ) r θ t, ,( ) ε2ψ2

2( )
r θ t, ,( ) O ε3( ),+ +=

Φ r θ t, ,( ) Φ 0( ) r( ) εΦ 1( ) r θ t, ,( )+=

+ ε2Φ 2( ) r θ t, ,( ) O ε3( ),+

ξ θ t,( ) εξ 1( ) θ t,( ) ε2ξ 2( ) θ t,( ) O ε3( ),+ +=

∂
∂t
----- ∂

∂T0
--------- ε ∂

∂T1
--------- O ε2( ).+ +=

Φ 0( ) r( ) Q
ε*r
--------,=
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and pressure balance on its surface,

Clearly, the dependence of the functions (r, θ, t)
and Φ(j)(r, θ, t) (i, j = 1, 2) on the spatial coordinates is
defined by Laplace equations (2) with boundary condi-
tion (3) or (4):

(14)

The functions ξ(j)(θ, t) (j = 1, 2), which describe the
shape of the oscillating drop surface, are also expanded
in Legendre polynomials:

(15)

It should be noted that second-order analysis of the
problem allows one to find the dependence of the first-
order evolutionary coefficients on both time scales T0

and T1, (T0, T1), (T0, T1), (T0, T1), and

(T0, T1), and the dependence of the second-order

functions on the slow time T0, (T0), (T0),

(T0), and (T0).

From boundary and additional conditions (5)–(10),
we find the set of first-order equations (in view of the
zero-order solution)

(16)

The evolution of the vibrating drop shape is of most
interest; therefore, substituting expansions (14) and
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(15) into (16) at j = 1, we obtain a differential equation

for the coefficients :

(17)

Its general solution is written in the form

(18)

Hereafter, the abbreviation c.c. means complex conju-
gates.

Solution (18) has either one arbitrary complex func-

tion (T1) or two real arbitrary functions (T1)

and (T1). The dependence of the latter on the time
scale T1 is found by solving the second-order problem.
The quantities ωn have the meaning of the eigenfre-
quencies of drop surface vibrations and are given by

(19)

where W ≡ Q2/(4πε∗ ) is the Rayleigh parameter charac-
terizing the stability of the drop against its self-charge.

From (7)–(10), we found the set of second-order
equations

(20)
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Using (20), expansions (14) and (15), and solution
(18), we can derive an inhomogeneous differential
equation for the second-order evolutionary coefficients

:

(21)

where

–
∂Φ 1( )

∂θ
------------- 

 
2
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and  and  are the Clebsch–Gordan coef-
ficients [18], which are nonzero if their subscripts sat-
isfy the conditions

Omitting secular (linearly growing with time) terms
from a solution to (21) yields the dependence of the

functions , , and  on the time scale T1:

Thus, in the second-order approximation, the func-

tions , , and  are constants that equal their
initial values.

Using a general solution to Eq. (21) and solution (18)
and satisfying the first- and second-order initial condi-
tions

which are obtained from (11), we can write final

expressions for the evolutionary coefficients (t)

and (t), which specify the shape of the vibrating
drop (see (13) and (15)):

(22)

where

and δn, i is the Kronecker delta.
(3) Figures 1a–1d show the time dependences of the

second-order amplitudes of the second, fourth, sixth,
and eighth modes (except for the zero one) that are
excited via nonlinear interaction for various drop-to-
medium density ratios ρ. Here, the initial deformation
is specified by the virtual excitation of the fourth (n = 4)
mode. It is seen that, as ρ increases, the eighth-mode
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amplitude grows, while those of the other modes
decline (the zero-mode amplitude remains constant).
The same tendency is also observed for modes with
other numbers that specify the initial deformation of the
drop. The zero-mode amplitude remains constant as ρ

1.0
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M 2
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0 2 4 6

(a)

t
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(c)
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M 4
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Fig. 1. Dimensionless second-order amplitudes (t) vs.

dimensionless time for the initial deformation defined by
the fourth mode at W = 1. ρ = 0.1 (thin lines), 1 (thick lines),
and 10 (dashed lines). (a) Second mode, n = 2; (b) fourth
mode, n = 4; (c) sixth mode, n = 6; and (d) eighth mode, n = 8.

Mn
2( )
varies, because the zeroth mode does not participate in
second-order nonlinear interaction. The dependence of
its amplitude on time, which causes monopole acoustic
radiation in the case of a compressible environment
[19], is derived from the drop volume constancy condi-
tion and is defined by the square of the amplitude of a
mode specifying the initial deformation. The ρ depen-
dence of the zero-mode amplitude appears in third-
order calculations.

The curves in Fig. 1 also demonstrate the well-
known [10–12] effect of linear decrease (with increas-
ing ρ) in the frequencies of all vibration modes that
may be realized in the system considered.

Calculations by (22), which are illustrated in Fig. 1,
were performed for the Rayleigh parameter W = 1,
which is far away from the critical value Wc = 4 and the
resonance value Wr = 2.67, at which the degenerate
three-mode interaction between the fourth and sixth
modes takes place [13, 15, 20, 21]. Nevertheless, it fol-
lows from Fig. 1c that the fourth and sixth modes reso-
nate in the situation used in calculations: the amplitude
of the sixth mode is substantially (several times) greater
than those of the other modes excited via nonlinear
interaction and grows in a resonant manner (linearly
with time), although it seems that resonance energy
transfer from the fourth to the sixth mode is impossible
at W = 1. Of still greater interest is the fact that the res-
onant buildup of the sixth mode due to its interaction
with the fourth mode is observed for any ρ used in cal-
culations (Fig. 1c).

Note that, in our system, resonance situations arise
because of small denominators in expression (22).
Namely, if the frequencies of nonlinearly interacting

modes satisfy the condition  = (ωi ± ωj)2, one of the

denominators in the coefficients , through which
the second-order amplitudes are expressed, vanishes.
The standard procedure of eliminating such situations
consists in introducing a small offset of the frequency
of one mode from the resonant value and then expand-
ing in powers of this small offset and eliminating secu-
lar terms [21]. The condition for degenerate resonance

between the sixth and fourth modes is  = 4  and is
met at ρ = 0 (Wr = 2.67). If W = 1 and ρ = 0.1, it is easy

to find that  ≈ 193.4 and  ≈ 55.6, so that  – 4  ≈

28.8, which is roughly eight times smaller than .

Consequently, the ratio (  – 4 )/  may serve as a

small parameter and the difference  – 4  may be
considered as close to zero. In other words, with W = 1,
the relationship between the frequencies of the sixth
and fourth modes is close to the resonance condition
and the resonance buildup of the sixth mode due to
energy transfer from the initially excited fourth mode
may show up in calculations. This fact is interesting in
that the resonance occurs when W is far away from Wr .
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This means that the drop charge may not be large for
one mode to resonantly build up.

Figure 2 illustrates curves similar to those depicted
in Fig. 1c. They show the resonant buildup of the sixth
mode at the initially excited fourth mode with W = 0
(the zero charge of the drop). In this case, at ρ = 0.1, we

have  ≈ 221,  ≈ 66.7, and, accordingly,  –

4  ≈ 45.7. Here, the system is still farther from exact
resonance than at W = 1 (see above), as also follows
from the fact that the ratio of the resonantly growing
amplitude of the sixth mode to those of other nonlinear
excited modes is somewhat lower than at W = 1 (see
Fig. 1).

It should be taken into account that, according to
[21–23], the number of resonances where lower modes
resonate along with higher ones is large (several hun-
dred at n, i, j ≤ 100). Since the condition for nonlinear
resonant energy exchange between modes depends on
the self-charge of the drop (the parameter W) only
slightly, we may expect that, under natural conditions
(for example, in a storm cloud), all resonance situations
allowable at a given set of initially excited modes will
be realized in free-falling drops even if their charge is
far from the resonant value. This circumstance is of
importance for the simulation of an as yet unclear
mechanism of lightning discharge origination in a
storm cloud (according to the present-day concept,
lightning originates from a corona initiated in the vicin-
ity of a coarse free-falling hailstone). Since the electri-
cal charges of drops in a cloud are no greater than one-
third of the Rayleigh critical value, as determined in
full-scale experiments, and intracloud fields are many
times lower than those necessary for the initiation of a
corona [24], a most plausible reason for a corona near a
water-covered hailstone or drop is instability of its
charged surface. The unstable surface emits a large
amount of heavily charged fine droplets at the surface
of which a corona discharge may be initiated [1, 25].
The resonant buildup of the fundamental mode (n = 2)
renders a weakly charged (in terms of instability
against the self-charge) drop in a cloud similar to a pro-
late spheroid. In this case, the surface of the drop may
become unstable at the vertices of the spheroid, where
the self-charge and polarization charge density increase
(the charge is redistributed when the drop elongates)
[1, 26, 27]. The problem is that, in second-order calcu-
lations for an ideal liquid drop nonlinearly vibrating in
a vacuum, exact fundamental resonance is absent. It
appears if the viscosity of the liquid is taken into
account [23]. However, viscosity can today be consid-
ered only on a qualitative basis, since nonlinear vibra-
tions of a viscous drop have not yet been explored ade-
quately because of the complexity of the analysis. For
an ideal liquid drop, fundamental resonance appears in
third-order calculations (at four-mode interaction) [23].
However, the amplitude of the resonantly growing fun-
damental mode at four-mode interaction is small (of the

ω6
2 ω4

2 ω6
2

ω4
2
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second order of smallness), while, at three-mode reso-
nant interaction, this effect has the first order of small-
ness [21, 28]. Therefore, it is of interest to study the
effect of a nonzero-density insulating environment on
the number of second-order three-mode resonances.

(4) As was noted, resonances appear when the fre-
quencies of interacting modes of capillary vibration

satisfy the condition  = (ωi ± ωj)2. According to (22),
when a charged drop vibrates in a medium, the fre-
quency ωn depends not only on the mode number n but
also on the dimensionless parameter W and dimension-
less density ρ. This means that the positions of reso-
nances in the mode number space will depend on W and
ρ, while, in a vacuum, they depend on W alone. Simple
calculations show that an additional degree of freedom
(associated with ρ) changes the resonant values of W
(relative to those in a vacuum at ρ = 0). At i, j ≤ 100 and

ωn
2

1

0

–1

0 2 4 t

M 6
(2)

Fig. 2. Dependences (t) illustrating the nonlinear

buildup of the sixth mode at the initially excited fourth
mode with W = 0.

M6
2( )

Variation of degenerate resonance positions with the
parameter W

W n m ρ

0 8 5 0

16 10 0

24 15 0.28

32 20 0.945

0.5 8 5 0.6352

16 10 0.766

24 15 1.965

32 20 13.74

1 8 5 3.6

16 10 6.68

2 30 19 0.3012

2.7 6 4 0.093

14 9 0.608

22 14 2.1675

30 19 85.241
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W < 4, the total number of resonances is several thou-
sand; therefore, it is unreasonable to list them all. As an
illustration, the table lists degenerate (i = j) resonant sit-
uations that may occur at a single-mode initial defor-
mation with several fixed W.

(5) Calculations by (22) (Figs. 1, 2) were made for
ρ = 0.1, 1, and 10. These values provide the most
descriptive results, since the variation of ρ with ρ < 0.1
or >10 affects the capillary vibration frequencies insig-
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0 2 4 t

M 2
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6 8

Fig. 3. Dimensionless second-order amplitude (t) of

the fundamental mode vs. dimensionless time at the initial
deformation defined by the fifth mode with ρ = 1. W = 1
(dashed line), 2 (thin line), and 3 (thick line).
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Fig. 4. Dimensionless second-order amplitudes (t) vs.

dimensionless time at the initial deformation defined by the
superposition of the second and third modes with ρ = 1 and
W = 1. (a) Even modes: zeroth mode (dashed line), second
mode (dash-and-dot line), fourth mode (thick line), and
sixth mode (thin line). (b) Odd modes: first mode (dashed
line), third mode (thick line), and fifth mode (thick line).
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nificantly. In the limit ρ  0, we are dealing with a
liquid drop vibrating in a gas; in the limit ρ  ∞, with
a gas bubble vibrating in a liquid. In practice, as was
already noted, one often has to deal with charged drops
suspended or moving in another immiscible dielectric
fluid [2–9]. The most common situation in this case is
characterized by ρ ≈ 1, ε∗  ≈ 2, and the interfacial ten-
sion coefficient varying from σ ≈ 2.5 dyn/cm (the par-
affin oil–water interface [5]) to σ ≈ 50 dyn/cm (the n-
heptane–water [9] or silicone–water [4] interface). For
vibration of charged drops in a gas, ρ ≈ 10–3, ε∗  ≈ 1, and
σ ≈ 50 dyn/cm [1]. Charged bubbles in a dielectric liq-
uid are objects of extensive research as applied to
charged helium surface stability [29], electrical dis-
charges in liquids [30], and thermonuclear fusion [31].
For bubbles, we typically have 1 < ε∗  < 80, ρ ~ 1000,
and 0.354 < σ < 70 dyn/cm [29–31].

Figure 3 shows the time variation of the second-
order fundamental mode amplitude at a fixed ρ and var-
ious W. In the dimensional form, the parameter W =
Q2/4πσR3ε∗  combines all physical quantities which are
of importance for the phenomenon considered: interfa-
cial tension coefficient, permittivity of the medium,
drop charge, and drop radius. Note that the interfacial
tension coefficient σ is related to the surface tension
coefficients σ1 and σ2 of pure phases by the Antonov
rule [32] σ ≈ |σ1 – σ2|. In our case, σ1 and σ2 are the sur-
face tension coefficients of phases contacting the gas.
As a rule, σ is much smaller than σ1 and σ2; therefore,
the interface is sometimes unstable against the self-
charge [5–7]. As W grows (approaches the value Wcr =
4, which manifests instability of the drop against the
self-charge [1]), so does the fundamental mode ampli-
tude.

Figure 4 demonstrates the calculated results for an
off-resonance situation where the initial deformation is
defined by the superposition of the second and third
modes with h2 = h3 = 1/2. The spectrum of second-order
modes is seen to contain both even and odd modes with
comparable amplitude factors (except for the zeroth
mode).

CONCLUSIONS

In the case of an ideal incompressible conducting
liquid drop nonlinearly vibrating in an ideal incom-
pressible dielectric medium, the energy maximum in
the spectrum of nonlinearly excited modes shifts
toward the highest mode with increasing medium-to-
drop density ratio, no matter which of the modes
defines the initial deformation. With the effect of the
environment taken into account, the number of reso-
nant situations becomes dependent on the drop-to-envi-
ronment density ratio and the resonant self-charge of
the drop changes. It is shown that nonlinear vibrations
may be of resonant character even if the charge of the
drop is far away from exact resonant values. This is
because Rayleigh subcritical values of the self-charge
affect the frequencies of higher vibration modes insig-
TECHNICAL PHYSICS      Vol. 49      No. 1      2004
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nificantly. That is why the calculated amplitude of the
nonlinearly excited fundamental mode is high even if
the initial deformation is defined by higher modes.
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Abstract—Analytical expressions for the profile of a nonlinear wave and for a nonlinear correction to its fre-
quency are derived in the fourth-order approximation in amplitude of a periodic traveling wave on a uniformly
charged free surface of an infinitely deep perfect incompressible fluid. It is found that corrections to the ampli-
tude and frequency of the nonlinear wave are absent if the problem is solved under the initial condition that
provides the constancy of the first-order amplitude and wavelength in time. Nonlinear analysis of conditions for
instability of the fluid free surface against the surface charge shows that the critical charge density and wave-
number of the least stable wave are not constant (as in the linear theory) and decrease with growing amplitude
of the wave. © 2004 MAIK “Nauka/Interperiodica”.
(1) Critical conditions for instability of the charged
surface of a fluid are of great interest for science and
applications [1, 2]. Yet, most of the theoretical studies
concerning the stability of infinitesimal-amplitude cap-
illary waves have been carried out in a linear approxi-
mation [2], although the obvious nonlinear nature of the
phenomenon, which follows from the nonlinear equa-
tions of hydrodynamics, has been corroborated in mul-
tiple experiments [1, 3–5]. Methods of asymptotic anal-
ysis of nonlinear capillary gravitational waves on the
neutral fluid surface are well known (see, e.g., [6–10]
and Refs. therein) and may be applied to the problem
posed. This is the subject of this investigation. Note that
nonlinear waves on the charged surface of a perfect
fluid have already been studied [11–14]; however, those
works were aimed at finding soliton solutions and the
methods used in them did not allow the researchers to
obtain nonlinear corrections to the frequencies and crit-
ical conditions for instability.

(2) Let a perfect incompressible ideally conducting
fluid of density ρ and surface tension coefficient γ
occupy the half-space z < 0 of the Cartesian coordinate
system in the gravitational field and let the unit vector
ez of this system be directed opposite to the gravita-
tional acceleration, ez || g. It is also assumed that the free
surface of the fluid is charged and a uniform electro-
static field E0 parallel to the unit vector ez is present near
the surface.

We will consider a plane wave traveling over the
free surface of a fluid making contact with a vacuum in
the direction of the unit vector ex. Then, the distortion
of the free fluid surface due to the traveling wave, the
wave velocity field, and the pressure and electric field
distributions near the distorted surface will depend on
time t and the coordinates x and z. A motion equation
1063-7842/04/4901- $26.00 © 0030
for the free fluid surface distorted by small-amplitude
wave motion will have the form z = ξ(x, t).

Our goal is to find the time-invariable profile of the
traveling wave and a frequency correction that is non-
linear in amplitude in the fourth-order approximation in
wave amplitude, which is considered to be small com-
pared with the wavelength. It should be noted that the
purely sinusoidal profile persists only for infinitesimal-
amplitude waves and becomes unsteady even in sec-
ond-order calculations. Therefore, classical works on
the theory of finite-amplitude waves in a perfect incom-
pressible fluid [6–10, 15, 16] treat the second-order cal-
culation of finite-amplitude waves as a problem of find-
ing the time-invariable wave profile. It will be shown
below that the appearance of a nonlinear frequency cor-
rection (quadratic in small parameter) in higher-than-
second-order calculations will cause a difference
between the phase velocities of the wave linear in small
parameter and of nonlinear corrections to it. This means
that the profile of finite-amplitude waves remains sta-
tionary only over limited time intervals.

(3) In view of the aforesaid, the phenomenon can be
mathematically stated in the form of the boundary-
value problem

(1)

(2)

(3)

(4)

z ξ : —2Φ> 0;=

z ξ : —2ϕ< 0;=

p p0 ρgz– ρ∂ϕ
∂t
------–

ρ
2
--- ∂ϕ

∂x
------ 

 
2 ∂ϕ

∂z
------ 

 
2

+ 
  ;–=

z ξ : 
∂ξ
∂t
------ ∂ξ

∂x
------∂ϕ

∂x
------+

∂ϕ
∂z
------;= =
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(5)

(6)

(7)

(8)

For the problem to be solved uniquely, it is neces-
sary to set initial conditions. For problems of this type,
the choice of initial conditions is a delicate subject,
since arbitrary initial conditions set in advance may
make the solution extremely awkward. In fact, the need
for setting initial conditions is replaced by the search
for a solution the least awkward in mathematical terms.
Such an approach is used in this article.

We assume that, in a zeroth approximation, the free
surface is undisturbed and is described by the equation
z = 0, the fluid is at rest, and the electric field is uniform
throughout the space:

Substituting these expressions into (1)–(8) yields

(4) Let us separate different orders of smallness
from our problem. Before doing so, we eliminate the
pressure function p(r, t) from consideration by substi-
tuting expression (3) for pressure into dynamic condi-
tion (5). The latter then takes the form

The unknown functions of the problem are the free
surface disturbance ξ, the velocity potential ϕ, and the
electric potential Φ. They will be sought as expansions
in a small parameter:

(9)

(10)

(11)

Here, ε is a small dimensionless parameter defined as
the wave amplitude a times the wavenumber k.

The problem will be solved by the method of many
scales from the perturbation theory. We assume that the
unknown functions ξn, ϕn, and Φn depend on the coor-
dinates x and z and on various time scales: the basic

p
—Φ( )2

8π
----------------+ γ∂2ξ

∂x2
-------- 1

∂ξ
∂x
------ 

 
2

+ 
 

3/2–

;–=

Φ 0;=

z ∞: —Φ E0ez;–

z ∞: —ϕ 0.–

ξ0 0; —ϕ0 0; —Φ0 E0ez; p0–≡≡≡
E0

2

8π
------.–=

Φ0 E0z.–≡

E0
2

8π
------– ρgξ– ρ∂ϕ

∂t
------ ρ

2
--- ∂ϕ

∂x
------ 

 
2 ∂ϕ

∂z
------ 

 
2

+ 
 ––

1
8π
------+

× ∂Φ
∂x
------- 

 
2 ∂Φ

∂z
------- 

 
2

+ 
  γ∂2ξ

∂x2
-------- 1

∂ξ
∂x
------ 

 
2

+ 
 

3
2
---–

.–=

ξ εξ 1 ε2ξ2 ε3ξ3 ε4ξ4 O ε5( );+ + + +=

Φ –E0z εΦ1 ε2Φ2 ε3Φ3 ε4Φ4 O ε5( );+ + + + +=

ϕ εϕ 1 ε2ϕ2 ε3ϕ3 ε4ϕ4 O ε5( );+ + + +=

ξn O 1( ); Φn O 1( ); ϕn O 1( ).∼ ∼ ∼
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scale (T0 = t) and slower ones (T1 = εt, T2 = ε2t, T3 = ε3t,
etc.); that is,

Then, the operator of time differentiation takes the
form

(12)

Let us expand the boundary conditions on the free
surface in deviation of the surface from the equilibrium
plane form (i.e., in ε) in the vicinity of z = 0. In the
stricter sense, all the z-dependent quantities entering
into conditions (4)–(6) will be expanded into the Taylor
series in the vicinity of z = 0. Also, we will expand ∂ξ/∂t
and (∂2ξ/∂x2)/(1 + (∂ξ/∂x)2)3/2 in powers of the small
parameter. When expanding the partial derivatives
(∂ξ/∂t) and (∂ϕ/∂t), we will take into account expres-
sion (12). Substituting expansions (9)–(11) into (1), (2),
(7), and (8), collecting terms with the same powers of
ε, and equating them to zero, we split the problem into
orders of smallness from the first to the fourth.

(5) Mathematically, the first-order problem is stated
as follows:

The first-order problem is easily solved by the con-
ventional methods [17, 18]:

Now, we can set the initial condition that will be used
in the subsequent consideration. Let us assume that all

ξn = ξn T0 T1 T2 T3 x, , , ,( ); Φn = Φn T0 T1 T2 T3 x z, , , , ,( );

ϕn ϕn T0 T1 T2 T3 x z, , , , ,( ).=

∂
∂t
----- ∂

∂T0
--------- ε ∂

∂T1
--------- ε2 ∂

∂T2
--------- ε3 ∂

∂T3
--------- O ε4( ).++ ++=

z 0: —2Φ1> 0;=

z 0: —2ϕ1< 0;=

z 0: 
∂ξ1

∂T0
---------

∂ϕ1

∂z
---------– 0;= =

–ρgξ1 ρ
∂ϕ1

∂T0
---------–

E0

4π
------

∂Φ1

∂z
----------– γ

∂2ξ1

∂x2
----------+ 0;=

Φ1 E0ξ1– 0;=

z ∞: —Φ1 0;

z ∞: —ϕ1 0.–

ξ1
1
2
---ζ iθ( )exp

1
2
---ζ iθ–( );exp+=

ϕ1
iω
2k
------ζ kz( ) iθ( )expexp–

iω
2k
------ζ kz( ) iθ–( );expexp+=

Φ1 = 
E0

2
-----ζ kz–( )exp iθ( )exp

E0

2
-----ζ kz–( ) iθ–( );expexp+

ω2 gk
γk3

ρ
--------

E0
2k2

4πρ
-----------; θ kx ωT0.–≡–+≡
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nonlinear corrections to the first-order wave profile (i.e.,
to the function ζ1 = ζ1(T0, x)) depend on mθ, where m is
an integer greater than unity. In other words, we assume
that the amplitude factors multiplying possible nonlin-
ear corrections to the wave profile with the argument
θ = 0 equal zero. It turns out that such an initial condi-
tion provides a simple form of solutions [8, 9].

(6) The second-order problem is stated as

A solution to this problem is easy to find:

z 0: —2Φ2> 0;=

z 0: —2ϕ2< 0;=

z 0: 
∂ξ2

∂T0
---------

∂ϕ2

∂z
---------– ξ1

∂2ϕ1

∂z2
-----------

∂ξ1

∂T1
---------–

∂ϕ1

∂x
---------

∂ξ1

∂x
--------;–= =

–ρgξ2 ρ
∂ϕ2

∂T0
---------–

E0

4π
------

∂Φ2

∂z
---------- γ

∂2ξ2

∂x2
----------+– ρ

∂ϕ1

∂T1
---------=

+ ρξ1

∂2ϕ1

∂z∂T0
--------------- ρ

2
---

∂ϕ1

∂z
--------- 

 
2 ρ

2
---

∂ϕ1

∂x
--------- 

 
2

+ +

–
1

8π
------

∂Φ1

∂z
---------- 

 
2 E0

4π
------ξ1

∂2Φ1

∂z2
------------ 1

8π
------

∂Φ1

∂x
---------- 

 
2

;–+

Φ2 E0ξ2– ξ1

∂Φ1

∂z
----------;–=

z ∞: —Φ2 0;

z ∞: —ϕ2 0.–

ξ2

k 2π k2γ gρ+( ) E0
2k–( )

8π ρg 2γk2–( )
-------------------------------------------------------=

× ζ2 2iθ( )exp ζ2
2iθ–( )exp+( );
(7) The third-order problem is stated as

Expressions for the inhomogeneity functions Ω31,
Ω32, and Ω33 on the rights of the initial conditions on the
free surface, which depend on the first- and second-
order solutions, are given in Appendix A.

A solution to the resultant inhomogeneous problem
is obtained by applying tedious while mathematically
straightforward calculations:

ϕ2

iωk 6πkγ E0
2–( )

8π ρg 2γk2–( )
---------------------------------------–=

× ζ2 2iθ( ) ζ2
2iθ–( )exp–exp( ) 2kz( );exp

Φ2

E0k
2

---------ζζ
E0k 2π k2γ– 2gρ+( ) E0

2k–( )
8π(ρg 2γk2)–

---------------------------------------------------------------------+=

× ζ2 2iθ( )exp ζ2
2iθ–( )exp+( ) 2kz–( ).exp

z 0: —2Φ3> 0;=

z 0: —2ϕ3< 0;=

z 0: 
∂ξ3

∂T0
---------

∂ϕ3

∂z
---------– Ω31; Φ3 E0ξ3– Ω33;= = =

–ρgξ3 ρ
∂2ϕ3

∂T0
-----------–

E0

4π
------

∂Φ3

∂z
----------– γ

∂2ξ3

∂x2
----------+ Ω32;=

z ∞: —Φ3 0;

z ∞: —ϕ3 0.–
ξ3 X ζ3 3iθ( )exp ζ3
3iθ–( )exp+( );=

X
k2 32α2k2W2 32αkW 1 α2k2W–( ) 6α4k4 21α2k2 6+ + + +( )

32 1 2α2k2–( ) 1 3α2k2–( )
-------------------------------------------------------------------------------------------------------------------------------------------------;=

ϕ3 Y31ζζ iζ iθ( )exp iζ iθ–( )exp–( ) kz( )exp=

+ Y33 iζ3 3iθ( )exp iζ3
3iθ–( )exp–( ) 3kz( );exp

Y33 –
αk2ω 32αkW2 104α2k2W 8W– 78α3k3 15αk+ +–( )

32 1 2α2k2–( ) 1 3α2k2–( )
---------------------------------------------------------------------------------------------------------------------------------;=

Y31
gk2 2αkW 8αkW 12α2k2– 9–( ) 14α4k4 25α2k2 2+ + +( )

32ω 1 2α2k2–( )
-------------------------------------------------------------------------------------------------------------------------------------------;=

Φ3 Θ31ζζ ζ iθ( )exp ζ iθ–( )exp+( ) kz–( )exp=

+ Θ33 ζ3 3iθ( )exp ζ3
3iθ–( )exp+( ) 3kz–( );exp
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Θ33

E0k2 8αkW 4αkW 5α2k2 7–+( ) 6α4k4 33α2k2– 24+ +( )
32 1 2α2k2–( ) 1 3α2k2–( )

-------------------------------------------------------------------------------------------------------------------------------------------;=

Θ31

E0k2 4α2k2 7 12αkW–+( )

16 1 2α 2
k2–( )

----------------------------------------------------------------;=

W
E0

2

4πρgγ
----------------; α γ

ρg
------.≡=
Here, α is the capillary constant of the fluid and W is the
Tonks–Frenkel parameter, which characterizes the sta-
bility of a flat uniformly charged free surface of a con-
ducting liquid [1, 2].

A result of solving the third-order problem is the
dependence of the wave amplitude ζ on the time scales
T2 and T3:

where ζ1 and β0 are functions that depend only on T3
and are found by solving higher order problems.

(8) The fourth-order problem is stated as

Expressions for the inhomogeneity functions Ξ41,
Ξ42, and Ξ43 on the rights of the initial conditions,
which depend on the first-, second-, and fourth-order
solutions, are given in Appendix B.

With the initial condition adopted, the fourth-order
solution has the form

Thus, a solution to the entire problem lacks fourth-
order quantities.

(9) Final expressions for the profile of a nonlinear
wave on the uniformly charged free surface of a fluid,

ζ ζ 1 iβ0( )exp iδζ1
2T2( );exp=

δ

=
gk3 α2k2 1 2α2k2+( ) 8 16αkW 1 α2k2 αkW–+( )–+( )

16ω 1 2α2k2–( )
-----------------------------------------------------------------------------------------------------------------------------,

z 0: ∇ 2Φ4> 0;=

z 0: ∇ 2ϕ4< 0;=

z 0: 
∂ξ4

∂T0
---------

∂ϕ4

∂z
---------– Ξ41;= =

–ρgξ4 ρ
∂ϕ4

∂T0
---------–

E0

4π
------

∂Φ4

∂z
---------- γ

∂2ξ4

∂x2
----------+– Ξ42;=

Φ4 E0ξ4– Ξ43;=

z ∞: —Φ4 0;

z ∞: —ϕ4 0.–

ξ4 ϕ4 Φ4= = 0; ζ1≡ 1
k
---; β0 0.= =
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velocity field potential, and electric field potential are
as follows:

(13)

where

(10) From the final solution and expression (13) for
wave profile, it follows that the time-invariable profile
of a finite-amplitude wave is a matter of convention.
Indeed, the wave profile is stationary up to the second
order of smallness. In this case, the nonlinear correc-
tion to the frequency is absent and the wave profile
depends on the first two terms in (13) with δ = 0 (θ∗  ≡
θ). In third-order calculations, the frequency correction
nonlinear in amplitude appears in (13) in the term linear
in α and is absent in the term quadratic in a. It should
be noted that in [8, 9] third-order nonlinear frequency
corrections are involved in all the terms (from linear to
cubic) of the expression describing the profile, which
seems to be incorrect. In fact, if we expanded in (13) the
cosine involved in the quadratic (in small parameter)
term in powers of the small parameter in the vicinity of
θ, the term proportional to δ would have at least the
fourth order of smallness and it would be incorrect to
give this term in third-order calculations. In the fourth-
order calculations made above, the nonlinear correction

ξ a θ*( )cos a2Λ 2θ*( )cos 2a3X 3θ;cos+ +=

ϕ a
ω
k
---- kz( )exp θ*( )sin=

+ a2ωαk 3αk 2W–( )
2 1 2α2k2–( )

----------------------------------------- 2kz( )exp 2θ*( )sin

+ a3 –2Y31 kz( ) θsinexp 2Y33 3kz( ) 3θsinexp–( );

Φ –E0z aE0 kz–( )exp+ θ*( )cos=

+ a2E0k
2

--------- 1
2 α2k2– 2αkW–

1 2α2k2–
----------------------------------------- 2kz–( )exp 2θ*( )cos+ 

 

+ a3 2Θ31 kz–( )exp θcos 2Θ33 3kz–( )exp 3θcos+( ),

Λ k 1 α2k2 2αkW–+( )
2 1 2α2k2–( )

--------------------------------------------------;≡

θ* θ δa2t+ kx ωt– δa2t.+≡ ≡
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to the frequency appears legitimately in the quadratic
term, while the undisturbed argument θ figures in the
term cubic in small parameter.

As follows from the aforesaid, the phase velocities
of various components of the wave profile that are cal-
culated in both the third- and the fourth-order approxi-
mation will differ, causing the distortion of the profile
in time. It only remains for us to obtain the time-invari-
able profile in the fifth-order approximation if a nonlin-
ear correction to the profile turns out to be zero (as in
the fourth-order approximation). In this case, however,
a nonlinear correction to the frequency may be legiti-
mately reduced to a cubic correction to the amplitude
(the third term in (13)).

(11) The expression obtained for the profile of a
nonlinear wave on the charged surface of a perfect fluid
coincides, in the limit W  0, with the known [8, 9]
expression for the profile of a nonlinear capillary grav-
itational wave on the neutral surface of a perfect fluid
(in view of the remark that corrections to the frequency
cannot be included in the terms of the profile that are
nonlinear in amplitude). From the expressions given
above, one sees that the amplitude factor Λ multiplying
the second-order correction grows resonantly at k = k2 ≡
1/α . The amplitude factor X multiplying the third-
order correction exhibits two resonances: at k = k2 and

k = k3 ≡ 1/α . Upon resonant interaction in the qua-
dratic approximation (where only one resonance takes
place), the energy is transferred from longer waves with
the wavenumbers k = k2 to shorter waves with the wave-
numbers k = 2k2 [19]. According to [13], the energy will
be transferred in the same direction at the resonance k =
k3: from longer waves with the numbers k = k3 to waves
with k = 3k3. However, the effect in this case will have
a higher order of smallness.

From (13), it also follows that the nonlinear addition
to the frequency is proportional to the wave amplitude
a squared and negative at k > k2 (the range of interest for
investigating the stability of the fluid charged surface)
and also has the third order of smallness. It is of interest
that the nonlinear correction to the frequency, as well as
the amplitude factors Λ and X, has resonance form.
Therefore, expression (13) is of limited applicability
near the wavenumbers k = k2 and k3, since both the
amplitude factors and the correction to the frequency
must be small compared with first-order quantities.

Now we take into account that Tonks–Frenkel insta-
bility occurs when the virtual wave frequency squared
passes through zero and the first derivative of the fre-
quency with respect to wavenumber vanishes (from the
latter condition, one determines the wavenumber of the
wave that has a maximal instability increment) [18, 20].
In the linear approximation, the critical values of the

2

3

Tonks–Frenkel parameter W = W∗  and wavenumber k =
k8 are as follows [18]:

In the nonlinear situation considered, a set of alge-
braic equations for W and k is generally very awkward.
However, since of interest for us are order-of-magni-
tude estimates, we expand the Tonks–Frenkel parame-
ter and wavenumber in the wave amplitude squared:

Substituting these expansions into the set of equa-
tions for determining instability conditions, one easily
finds that w = 11/8 and κ = 23/16.

Thus, the nonlinear analysis shows that the charge
density at which the surface of the fluid becomes unsta-
ble and the wavenumber of the least stable mode are
lower than those predicted from the linear theory.

We also recall that calculations in the fourth order of
smallness in wave amplitude show that a term propor-
tional to the third power of the amplitude is absent in
the nonlinear correction to the frequency. Whether or
not a frequency correction proportional to the ampli-
tude in the fourth power is other than zero will be elu-
cidated in fifth-order calculations. Such calculations
would help in tracing the further variation of nonlinear
corrections to the instability conditions for the charged
surface of a fluid.

(12) Further analysis of expression (13) will be
restricted to the first two terms, which provide the time-
invariable profile of a finite-amplitude wave in the
approximation used here.

As was noted, the amplitude factor Λ in the second-
order term has resonant form: with k = k2, the denomi-
nator of the expression for Λ vanishes and the correc-
tion tends to infinity. This phenomenon has been inves-
tigated in [8] as applied to nonlinear waves on the neu-
tral surface of a fluid. Unlike the case of the fluid
neutral surface, the numerator of the expression for Λ in
(13) contains the parameter W with negative sign,
which characterizes the stability of the charged surface
against the pressure of the self-charge electric field.
This means that, for a certain relationship between the
physical parameters, Λ may remain finite even if its
denominator vanishes. The denominator of Λ goes to
zero at k  k2; however, if simultaneously W tends to

Wx = 3/2  ≈ 1.06, the numerator of Λ will also tend
to zero. Eventually, in the limit k  k2 with W = Wx,
we have uncertainty of type 0/0, which is eliminated by
the l’Hospital rule to yield Λ = 1/8. The dependence
Λ = Λ∗ (αk) becomes continuous. It is depicted by the
dashed line in Fig. 1, which plots the dimensional factor
Λ vs. dimensional wavenumber αk for various W.

Note that, as k approaches k2, expansion (13) can no
longer represent the solution irrespective of W, since the
correction quadratic in the dimensionless amplitude a

k* α 1– ; W k*α k*
1– α 1–+ 2.= = =

W 2 wε2; kα 1 κε2.–≈–≈

2
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becomes much greater than the term linear in a. The
effect of viscosity, which plays an important part in res-
onance phenomena, is of interest in this respect and will
be demonstrated with water.

According to [21, 22], where nonlinear waves on the
neutral surface of a viscous fluid were investigated, the
effect of viscosity on the wave profile for water is
essential within the interval αk ∈  D ≡ [0.6, 0.7]. At the
extremities of this interval, the second-order amplitude
correction calculated without considering the effect of
viscosity turns out to be overestimated by several per-
cent. However, at k  k2, the overestimation becomes
infinitely large. Beyond this interval, the models of vis-
cous and inviscid water give similar results. Therefore,
analysis which follows is performed for waves with
αk ∉  D. The parts of the curves that fall into the domain
D in Fig. 1 are physically meaningless, since they are
constructed in the range where the initial inviscid
model is invalid.

From Fig. 1, it is seen that the physically meaningful
parts of the curves Λ = Λ(αk) tend to the curve Λ =
−Λ∗ (αk) in the limit W  Wx. It is natural to consider
the value W = W∗  as a criterion for separating different
wave motions. At this value of W, the asymptotic value
of Λ in the curves analyzed changes sign in the limit
k  k2. It is also seen that the second-order addition
to the linear part of the solution tends to zero at W  Wx.

Figure 1a shows a family of curves Λ = Λ(αk) con-
structed at various W ≤ Wx. In this range of W, the sec-
ond-order amplitude addition varies with the wavenum-
ber in the same manner as in the case of the neutral sur-
face: for longer waves with k < k2, the profiles have a
pointed top; for shorter waves with k > k2, the top is
blunt (for details, see [8, 9]).

Figure 1b shows curves Λ = Λ(αk) calculated for
various W from the range Wx ≤ W ≤ 2. It is easy to see
that these curves are in a sense reversed relative to those
shown in Fig. 1a: the right-hand physically meaningful
parts of these curves, which correspond to shorter
waves, are positive in an extended right-hand vicinity of
the point k = k2 and not negative as in Fig. 1a (branch 1
reaches the negative range away from k = k2). There-
fore, nonlinear waves associated with these curves can
be naturally viewed as a previously unknown type of
surface-charge-related periodic wave motion on the
surface of a perfect fluid. Figure 2 compares the profiles
of these waves with those of waves on the uncharged
surface. The profiles of capillary gravitational waves on
the charged and uncharged surface differ substantially.
It is more appropriate to call waves discovered on the
charged surface of a perfect fluid electrocapillary grav-
itational, or simply electrocapillary, waves, since the
gravitational field may be neglected for the wavenum-
ber range considered.
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Fig. 1. Dimensionless amplitude factor Λ vs. dimensionless
parameter αk for various W. (a) (1) W = Wx – 0.05, (2) W =
Wx – 0.25, and (3) W = Wx – 0.5. (b) (1) W = Wx + 0.05,
(2) W = Wx + 0.25, and (3) W = Wx + 0.5.
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Fig. 2. Wave profiles on the water surface at W = 0 (thin
curve) and 1.2 (thick curve) for αk = (a) 0.5 and (b) 0.9.
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CONCLUSIONS

Thus, the profile of a periodic capillary gravitational
wave traveling on the uniformly charged surface of a
perfect incompressible fluid is found to be unsteady
when calculated in asymptotic approximations of
higher-than-second order: it diffuses because the phase
velocities of corrections of different order of smallness
to the profile differ.

A nonlinear correction to the wave frequency that
depends on the amplitude squared appears in third-
order calculations, has resonant form, and generates
nonlinear corrections to the critical conditions under
which the free surface becomes unstable against sur-
face charge. In the fourth-order approximation, the crit-
ical charge density and the wavenumber of the least sta-
ble wave decrease in proportion to the wave amplitude
squared.

Nonlinear waves on the charged surface differ sub-
stantially from those on the neutral surface. The curva-
ture of the electrocapillary wave tops grows with the
surface charge density (i.e., with the parameter W) for
Wx v W  2. With W  Wx, the electric charge
serves to decrease the efficiency of nonlinear interac-
tion, since the second-order correction tends to zero in
this case.

APPENDIX A
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Substituting the first- and second-order solutions
into these expressions yields

APPENDIX B

In the fourth-order problem, the inhomogeneity
functions on the rights of the boundary conditions on
the free surface z = 0 of a fluid are given by

Ω31
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Substituting the first- and second-order solutions
into these expressions yields

where A410, A412, A413, A414, A420, A422, A423, A424, A430,
A432, A433, and A434 are functions of the time scales T1,
T2, and T3.
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Abstract—A study is made into the effect of the nonlinear mechanism of plasma electron heating on the dis-
persion properties of potential surface waves propagating along the interface between a metal and finite-pres-
sure magnetoactive plasma. An external steady magnetic field is directed normally to the interface. Different
mechanisms of electron energy loss are treated in a weak heating approximation. The energy balance equation
is used to determine the spatial distribution of the plasma electron temperature under conditions of nonlocal
heating. The effect of the plasma parameters on the nonlinear shift of the wavenumber and on the spatial damp-
ing factor of surface waves is investigated. The results obtained are valid for both semiconductor and gaseous
plasmas. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The properties of surface waves (SWs) in plasma–
metal structures are presently subjected to intensive
theoretical and experimental investigations. This is due
to their numerous applications in plasma and semicon-
ductor electronics, gas discharges, and plasma technol-
ogies [1]. The linear theory of SWs in such structures is
rather well developed [2–4]. However, the SW behavior
may become significantly nonlinear even in the case of
fairly low wave amplitudes [5–7].

The scope of investigations of nonlinear effects
determining the SW properties in plasma waveguide
structures is rather wide. These investigations involve
resonant second-harmonic generation, resulting in the
transfer of SW energy from the first to second harmonic
and vice versa [2]; a nonlinear SW damping caused by
the volume second-harmonic generation [2, 8]; SW
parametric excitation; and the interaction with low-fre-
quency perturbations, which leads to SW instability
[2]. We also mention the studies into the nonlinear SW
interaction that are devoted to different mechanisms of
SW self-interaction. For example, the SW self-interac-
tion due to the nonlinearity of the set of quasi-hydrody-
namic equations was treated in [2, 9], the ionization
nonlinearity was treated in [10, 11], and the thermal
nonlinearity was treated in [2, 12]. This interest in the
SW self-interaction is primarily associated with the fact
that these processes perturb the plasma parameters and
lead to the dependence of the SW phase velocity on the
SW amplitude. Note that the latter factor is of decisive
importance in the case of SW excitation. In particular,
in the case of SW parametric excitation [2, 13], the SW
self-interaction results in a violation of the condition of
spatiotemporal synchronism between the SW and the
pump field; this, in turn, leads to SW saturation. In the
1063-7842/04/4901- $26.00 © 0039
case of SW excitation by charged-particle beams, the
dependence of the phase velocity of the excited waves
determines the efficiency of their interaction with the
beam particles [8, 14, 15].

The objective of this study is to investigate the ther-
mal-nonlinearity-induced SW self-interaction on the
plasma–metal interface in the presence of a normal
magnetic field. This configuration of the magnetic field
is characteristic of RF and microwave discharges, mag-
netrons, Penning sources, magnetic-discharge pumps,
and Hall devices, as well as of plasma processing of
metal surfaces [4, 9, 14–16]. We note that the thermal
nonlinearity on the plasma–metal interface is of interest
from the standpoint of solving problems associated
with controlled fusion devices. Since the SW energy is
localized in the vicinity of the plasma boundary, the
existence of wave perturbations of this type may cause
undesirable heating of the plasma periphery and, as a
result, lead to a stronger interaction of plasma particles
with the structural material of the devices. Especially
undesirable is the increase in the energy of plasma par-
ticles in the divertor region of fusion devices, because
this may increase the flows of charged particles toward
the device wall.

FORMULATION OF THE PROBLEM

We will treat the nonlinear self-interaction of high-
frequency surface waves as a result of electron heating
in the field of a finite-amplitude wave. We will assume
that the wave propagates along the interface between a
metal and a finite-pressure plasma across an external
magnetic field directed normally to the interface. A
warm magnetoactive plasma takes up the half-space x >
0 (Fig. 1) and, in the x = 0 plane, is bounded by a per-
2004 MAIK “Nauka/Interperiodica”
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fectly conducting metal surface. The external magnetic
field H0 is directed along the x axis.

It is known that the SW properties in an inhomoge-
neous plasma substantially depend on the spatial distri-
bution of the plasma density in the boundary layer. In
the cases of strongly and weakly inhomogeneous
plasma, the SW properties are determined by the inte-
gral characteristics of the plasma in the region where
the wave field is localized [7]. In these cases, the
plasma–metal interface may be considered sharp,
assuming that the plasma is homogeneous with a den-
sity equal to its mean value in the region of SW local-
ization. This approach demonstrated its efficiency and
good agreement with experimental data, in particular,
when investigating gas discharges maintained by SWs.
In what follows, we will assume the plasma–metal
interface to be sharp and the plasma to be homoge-
neous.

We assume the effective frequency of electron colli-
sions with scattering centers ν = νcol + ν∗  + νi (where
νcol, ν∗ , and νi are the frequencies of elastic collisions,
excitation, and ionization, respectively) to be much
lower than the wave frequency ω. In the case of a gas-
eous plasma, ions and atoms of the working gas or
impurities may serve as scattering centers. In the case
of a semiconductor plasma, such centers may also be
provided by optical and acoustic phonons [17–19].

It is known [2] that the thermal mechanism of SW
self-interaction consists in that the plasma electrons
receive additional energy from the electric field of the
wave and then lose this energy in collisions with the
scattering centers. This causes a change in the spatial
distribution of the electron temperature, which defines
the collision frequency and pressure of the plasma elec-
trons. As a result, the electrodynamic properties of the
plasma change, which, in turn, leads to the dependence
of the parameters of an SW on its amplitude.

Note that the thermal mechanism of self-interaction
is closely associated with the ionization nonlinearity
[2, 10, 11]. For example, an increase in the amplitude of
a high-frequency wave causes a variation in the spatial
distribution of the electron temperature and, because of
the temperature dependence of the coefficients of ele-
mentary processes in plasma, leads to a variation in the
plasma density profile. As a result, the SW parameters
change. In the case of weak nonlinearity, the SW ampli-
tude is low and, accordingly, the perturbations of the

Y

X H0

Metal
Plasma

Fig. 1. Geometry of the problem.
plasma parameters (electron temperature, pressure, col-
lision frequency, and so on) are much smaller than their
unperturbed values. In this case, the effect of the ther-
mal and ionization nonlinearities on the dispersion
characteristics of SWs may be taken into account addi-
tively [2]. This enables one to study the effect of these
self-interaction mechanisms independently.

LINEAR THEORY

The dispersion properties and spatial distribution of
the electric field potential of high-frequency SWs prop-
agating in a plasma–metal structure were previously
studied in a linear (with respect to the field amplitude)
approximation in [4]. It was demonstrated in [4] that, in
the case of a collisionless gaseous plasma, the SWs

under study exist in the ω2 >  frequency range
(where ωce is the electron cyclotron frequency) and the
necessary condition of their existence is the finiteness
of the thermal velocity of plasma electrons VTe =

, where T is the plasma electron temperature.
In the general case of a collisional semiconductor
plasma, the equation for the SW potential Ψ may be
written in the form

(1)

where α = /(ε0ωω'), β = ω'2/(ω'2 – ), ε0 is the
semiconductor lattice permittivity (in the case of a gas-
eous plasma, ε0 = 1), ωpe is the electron plasma fre-
quency, k2 is the complex wavenumber of the SW, and
ω' = ω + iν.

Assuming that the spatial distribution of the SW
potential has the form [4]

(2)

where A1 and A2 are constants, one can derive expres-
sions for the quantities λ1, 2, characterizing the SW pen-
etration into the plasma:

(3)

Using the condition that both the electric potential
and the normal component of hydrodynamic velocity
of plasma electrons vanish on the plasma–metal inter-
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face, we derive the following dispersion relation:

(4)

from which, for the wavenumber k2, we obtain

(5)

Therefore, taking into account plasma electron col-
lisions results in both the damping of SWs and the
expansion of the range of their existence. It can be seen
that SWs may also exist in the range of frequencies
below the electron cyclotron frequency; however, in
this case, they are strongly damped (Imk2 > Rek2).

We note that, when the thermal motion of plasma
electrons is taken into account, the expressions for the
wave potential and the wavenumber are rather cumber-
some even in a linear approximation with respect to the
wave field amplitude. Therefore, further investigation
of the SW self-interaction will be performed for a fairly

dense plasma for which the condition  < ω2 !

/ε0 is satisfied. In this case, expressions (3) and (5)
are simplified to

(6)

(7)

Analysis of expression (6) shows that the SW phase
velocity significantly exceeds the thermal velocity of
electrons, which agrees with the applicability range of
the hydrodynamic description of the plasma. At the
same time, in the case of a dense plasma, the condition
of wave potentiality imposes the following restriction
on the thermal velocity of plasma electrons: VTe !

c(ω2 – )1/2/ωpe, where c is the speed of light in
vacuum.
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SPATIAL DISTRIBUTION OF THE ELECTRON 
TEMPERATURE

Let us consider weak thermal nonlinearity, assum-
ing that the change in the electron temperature δT due
to electron heating in the SW field is much less than its
equilibrium value T0: T = T0 + δT, δT ! T0. We also
assume that the frequency variation δν = δνcol + δν∗  +
δνi is small compared to its unperturbed value ν in the
absence of SWs. In this case, the expressions for the
electron collision frequencies in the vicinity of the
equilibrium temperature value may be written as

(8)

where the excitation and ionization frequencies are
defined by the following expressions [10, 20, 21]:

(9)

where U∗  and Ui are the excitation energy of the first
level and the ionization energy of the working gas
atoms, respectively. If the wave frequency ω is much
higher than the characteristic frequency of energy
transfer  in collisions of plasma electrons with scat-
tering centers, the process of energy exchange may be
considered to be quasi-steady [22]. In this case, the
electron temperature perturbation depends on the coor-
dinates and the squared SW amplitude modulus δT =
δT(x, y, |A1|2) and may be determined using the wave-
period-averaged equation of energy balance [22],

(10)

where Q is the vector of the heat flux transferred by
electrons, j is the density of the high-frequency electron
current, and E* is the complex conjugate electric field
of the wave.

The term P(T) = –n0 (T0)(T – T0) is the specific
energy transferred by the electrons to the scattering
centers with the characteristic frequency

(11)

νcol T( ) νcol T0( ) δνcol,+=

δνcol δT∂νcol

∂T
-----------

T0

 ! νcol T0( ),=

ν* T( ) ν* T0( ) δν*,+=

δν* δT∂ν*
∂T
---------

T0

 ! ν* T0( ),=

ν i T( ) ν i T0( ) δνi,+=

δνi δT∂ν i

∂T
-------

T0

 ! ν i T0( ),=

ν* ν*
0 U*/T–( ),exp=

ν i1 ν i1
0 U*/T–( ), T 2/3 Ui U*–( ),>exp=

ν i2 ν i2
0 Ui/T–( ), T 2/3 Ui U*–( ),<exp=

ν̃

1/3Re j E*⋅( ) ∇ Q⋅ P T( ),–=

ν̃

ν̃ T0( ) γ νcol T0( ) U*
∂ν*
∂T
---------

T0

Ui
∂ν i

∂T
-------

T0

,+ +=



42 AZARENKOV et al.
where n0 is the unperturbed plasma density and the γ =
2meM/(me + M)2 is the fraction of energy lost by the
electrons in elastic collisions with scattering centers of
mass M.

Note that, in the general case, the characteristic fre-
quency  is determined by both the elastic collision
frequencies and the atom ionization and excitation fre-
quencies.

The components of the heat flux vector Q in energy
balance equation (10) are defined by the expression
Qi = –χij∂T/∂ξj, where χij is the tensor of the electron
thermal conductivity of the plasma and x = (x, y). The
left-hand side of Eq. (10) describes the heating of
plasma electrons in the SW field. The terms on the
right-hand side describe the electron energy losses per
unit volume due to the finite thermal conductivity of the
plasma and the energy transfer to the scattering centers.

The energy balance equation may be simplified if
one assumes that the heat transfer largely occurs along
the magnetic field, χ = χxx @ χxy, χyx, χyy. This condition
is valid for collision frequencies much lower than the
electron cyclotron frequency (ν ! ωce) [22]. In view of
this, Eq. (10) takes the form

(12)

where  = 1/  is the characteristic
scale length of the electron thermal conductivity and
the value

(13)
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Fig. 2. Spatial distribution of the electron temperature in the
local heating approximation. The values of the parameters

ωce/ωpe, ω/ωpe, ν/ω, ν/ , and µ are as follows:

(1) 0.05, 0.2, 0.1, 103, 0.1; (2) 0.05, 0.4, 0.05, 103, 0.1;
(3) 0.1, 0.2, 0.1, 103, 0.1; (4) 0.05, 0.2, 0.2, 103, 0.1; (5) 0.1,
0.4, 0.1, 103, 0.1; (6) 0.05, 0.2, 0.1, 103, 0.15; and (7) 0.05,
0.2, 0.2, 2 × 103, 0.1.

ε0 ε0 ν̃
is the relative variation in the electron temperature in
the local heating approximation.

Assuming that the wave propagates in the positive
direction along the y axis and taking into account
expressions (2), (6), and (7), obtained using the linear
theory, one can write expression (13) in the form

(14)

where the dimensionless parameter µ = e|A1|/(me ) is
the ratio of the electron energy in the wave field to the
thermal electron energy.

The quantity (δT/T0)loc (Fig. 2) determines the spa-
tial distribution of the electron temperature perturba-
tions in the local heating approximation |∇  · Q| ! |P(T)|.
Note that this approximation was used, e.g., in [2, 11,
17, 18, 22–26]. In our case, however, this approxima-
tion is invalid in view of the smallness of the frequen-
cies ν and . It can be shown that, in the problem under
study, the condition of local heating may be reduced to

the form /(ν ) ! 1. This implies that we are deal-
ing with a situation in which electron heating is highly
nonlocal [23]. Therefore, expression (14) characterizes
only the spatial distribution of the SW power received
by the plasma electrons due to their collisions with the
scattering centers and fails to describe the spatial distri-
bution of the plasma electron temperature.

In order to determine the spatial distribution of the
temperature under conditions of nonlocal electron heat-
ing in the SW field, one must use Eq. (12) simulta-
neously with expression (14). In view of the fact that
the thermal conductivity of metal is high compared to
that of plasma, the boundary condition consisting in the
continuity of the heat flux on the plasma–metal inter-
face leads to a negligibly low heating of metal. In order
to determine the plasma temperature, one must use the
integral form of energy conservation during the heating
of plasma electrons,

which gives the following expression for the relative
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temperature variation:

(15)

Here, the following notation is used:

(16)

Note that the relative variation of the electron tem-
perature reaches its maximum value

(17)

at a distance of xmax ≅ rde from the plasma–metal inter-
face. Because of the heating of plasma electrons, there
is a heat flux deep into the plasma. Along with this,
there is also a heat flux toward the grounded metal sur-
face. However, in the case under consideration, the lat-
ter flux is negligibly small compared to the main flux
deep into the plasma (Fig. 2).

The condition of weak heating, δT ! T0, |δν| !
ν(T0), leads to the following restriction on the wave
field amplitude:

(18a)

At the same time, when solving the problem on SW
self-interaction, one must take into account the fact that
the results of linear theory are valid in the case

(18b)

Numerical calculations (Fig. 3) revealed that these
conditions are valid at field amplitudes for which
µ ≤ 0.1.

As was expected, an increase in the wave amplitude
and electron collision frequency leads to an increase in
the SW Joule loss and has a significant effect on the
heating of plasma electrons. Note also that, as the wave
frequency approaches the electron cyclotron frequency,
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the efficiency of SW energy transfer to the plasma elec-
trons increases (Fig. 3, curve 3). An increase in the
parameter ν/  causes an increase in both the tempera-
ture and the characteristic scale length of the electron

thermal conductivity (  ∝  ), which leads to a
more gradual decrease in the electron temperature deep
into the plasma.

NONLINEAR DISPERSION RELATION

A variation in the plasma electron temperature
causes a correction to the collision frequency δν (see
expressions (8)). Taking into account this correction
and the correction to the plasma electron pressure δp =
n0δT in the equation of motion for electrons,

(19)

and solving this equation simultaneously with the con-
tinuity and Poisson’s equations, one can derive the fol-
lowing equation for the wave potential:

(20)

Equation (20) with zero on the right-hand side is the
equation for the SW potential in a linear approximation
with respect to the wave field amplitude (see Eq. (1)).
The right-hand side of Eq. (20) accounts for the nonlin-
ear effects due to the variations in the collision fre-
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Fig. 3. Spatial distribution of the electron temperature in the
vicinity of the perturbation source. Curves 1–7 correspond
to the same plasma parameters as those in Fig. 2.
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quency (Rδν) and electron pressure (Rδp). We do not
present here the expressions for Rδν and Rδp because of
their awkwardness. We will seek a solution to Eq. (20)
for the SW potential in the form

(21)

where the nonlinear corrections Ψδν and Ψδp vary as µ2.
Applying the boundary conditions for the potential

and the normal component of the electron velocity on
the interface, we derive the following nonlinear disper-
sion relation:

(22)
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Fig. 4. Correction to the real part of the wavenumber caused
by the variation in the electron collision frequency as a
function of the magnetic field. The values of the parameters
ω/ωpe, ν/ω, and ν/  are as follows: (1) 0.1, 0.01, 103;
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ν̃

The complex wavenumber k2 satisfying this disper-
sion relation has the form

(24)

In the limiting case of |A1|  0, nonlinear disper-
sion relation (22) changes to linear dispersion relation (4)
and its solution, given by expression (24), changes to
expression (6).

RESULTS AND DISCUSSION

We will analyze the effect of the magnetic field on
the phase characteristics of the SW. Numerical calcula-
tions reveal that an increase in the external magnetic
field leads to an increase in the nonlinear corrections to
the real part of the wavenumber, which are associated
with the variations in the electron collision frequency
(Fig. 4) and electron pressure (Fig. 5). Note that, in the
entire range of variations of the magnetic field, the non-
linear correction due to the variations in the collision
frequency significantly exceeds the correction due to
the electron pressure perturbations.

The correction to the imaginary part of the wave-
number k2 also increases with increasing external mag-
netic field and is largely determined by the perturbation
of the electron collision frequency (Figs. 6 and 7).

One can see from expression (23) that the effect of
the perturbation of the electron collision frequency ν on
the SW dispersion is determined by the temperature
dependence of the frequency ν. First, we will consider
the case in which the electron collision frequency
increases with temperature, ∂ν/∂  > 0. This takes
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Fig. 5. Correction to the real part of the wavenumber caused
by the variation in the electron pressure as a function of the
magnetic field. Curves 1–4 correspond to the same plasma
parameters as those in Fig. 4.
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place in the case of electron scattering by optical or
acoustic phonons in semiconductor plasma (ν(T) ∝

, T3/2 [17–19]) or in the case of a low-pressure gas
discharge, when the electron collision frequency is
determined by inelastic collisions leading to atom exci-
tation [22]. In such a situation, the nonlinear shift of the
real part of the wavenumber k2 is negative (ReSδν < 0)
and nonlinear damping rate (24) is larger than linear
damping rate (6) (ImSδν > 0). In the opposite case, when
the electron collision frequency decreases with increas-
ing temperature, ∂ν/∂  < 0 (e.g., in the case of elas-

tic electron collisions with ions or impurities of gaseous
plasma, when ν(T) ∝  T–3/2, T1/2 [22]), an opposite
dependence takes place. In this case, the shift of the real
part of the wavenumber is positive, and the damping
rate decreases compared to its linear value.

As was mentioned above, the change in the electron
temperature significantly depends on the parameter
ν/ . In view of this, nonlinear corrections to the com-
plex wavenumber also depend on the mechanism of
electron energy losses. The wave damping rate and the
nonlinear shift of the wavenumber both increase with
the parameter ν/ : ImSδν, ReSδν ∝  ν/ . In the case of
semiconductor plasma and high-pressure gas dis-
charges, the main mechanism of energy losses is due to
elastic collisions [22] and the ratio of the collision fre-
quency ν to the characteristic frequency of energy
transfer  is described by

(25)

As the pressure decreases and inelastic electron col-
lisions leading to atom excitation become dominant [5,

T

T T0
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ν/ν̃ 0.5M/me @ 1.=
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3, 4 1, 2

Fig. 6. Correction to the imaginary part of the wavenumber
caused by the variation in the electron collision frequency
as a function of the magnetic field. Curves 1–4 correspond
to the same plasma parameters as those in Fig. 4.
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22], this ratio decreases,

(26)

Expressions (25) and (26) allow one to conclude
that nonlinear corrections to the wavenumber due to
electron heating in the SW field are most significant at
high pressures (Fig. 6, curves 1–4).

CONCLUSIONS

We have theoretically studied the effect of plasma
electron heating on the dispersion properties of high-
frequency potential SWs propagating along the
plasma–metal interface. We have considered the case of
a finite-pressure dense plasma in an external steady
magnetic field normal to the interface. We have derived
and investigated a linear dispersion relation for SWs
with allowance for electron thermal motion and elec-
tron collisions. It is demonstrated that the electron heat-
ing is highly nonlocal and is largely determined by the
processes of heat transfer in the plasma. The spatial dis-
tribution of the plasma electron temperature has been
found in a weak heating approximation. A nonlinear
dispersion relation has been investigated. Analytical
expressions have been derived for the nonlinear shift of
the wavenumber and the spatial damping rate. Numeri-
cal analysis has been performed of the effect of the
plasma parameters and the magnitude of the external
magnetic field on the SW characteristics. The results of
the investigation are applicable to both a semiconductor
and gaseous plasma bounded by metal.
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Abstract—The modified Lorentz–Mossotti method is used to determine the polarization correction to the mean
macroscopic electric field in plasma as a function of the electron density, the density of the medium, and the
electron and ion temperatures. It is demonstrated that, at high electron densities, the polarization correction may
play a decisive role in estimating various electrodynamic characteristics of conducting media. © 2004 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

The formulation and solution of the problem of esti-
mating the effective field Eef in plasma have a long his-
tory. The beginning of investigations in this field is usu-
ally timed to the discovery of the Earth’s ionosphere.
The importance of solving this problem was deter-
mined by the practical need to perform correct calcula-
tions of the altitude at which the region with the critical
electron density is located in the ionosphere. The first
correct estimates of the field acting on an isolated elec-
tron in an ionospheric plasma were made in [1–5]. It
turned out that, in this case, the acting field is approxi-
mately equal to the mean macroscopic field.

The assumption of the equality of the acting field to
the mean macroscopic field for the ionospheric condi-
tions is based on the relative smallness of the polariza-
tion correction.1 This result, which was in fact obtained
for a rarefied plasma (as was repeatedly stressed by
Ginzburg [4–6]), is usually extended to other media in
which the plasma parameters (the electron density, den-
sity of the medium, electron and ion temperatures, and
others) significantly differ from the ionospheric ones.

Subsequent estimates of the effective field in plasma
were associated with the use of the kinetic approach
based on the solution of the Bogolyubov–Born–Green–
Kirkwood–Yvon (BBGKY) hierarchy of kinetic equa-
tions.

Based on the solution of the BBGKY hierarchy of
kinetic equations in the binary collision approximation,
Kadomtsev [7] made an estimate of the analytical
smallness of the polarization correction to the acting
field in a plasma. It was demonstrated that, for conven-
tional plasma media, this correction is always negligi-
ble. Kadomtsev [7] made corresponding estimates for
three-particle distribution functions, assuming the
probability of three-particle correlation to be zero.

1 Detailed analysis of such an approach may be found in [6].
1063-7842/04/4901- $26.00 © 20047
Since, in this approximation, the polarization correc-
tion can be directly found in terms of the second corre-
lation functions [7], whose current values are a priori
assumed to be negligible, one can refer to the negligi-
bility of this correction without performing further
kinetic analysis. In this sense, the result is predeter-
mined and, once obtained, is valid only for highly rar-
efied plasma media in which the probability of three-
particle correction is very low.

At the same time, the Coulomb interaction of parti-
cles in plasma is long-range and, since (by definition)
the region bounded by the Debye radius contains many
particles, the dipole interaction of screening correlation
electron “clouds” shifted relative to ions is inevitably
present in the external electric field. In addition, one
must take into account the interaction between an iso-
lated electron and a system of these “clouds.” A rigor-
ous inclusion of such a collective interaction is impos-
sible in the approximation of two-particle correlation
functions.2 A further increase in the capabilities of the
BBGKY method in application to dense plasma media
involves significant and largely insurmountable mathe-
matical difficulties.

Note that the use of a rigorous kinetic approach to
determining different physical quantities in the thermo-
dynamic limit leads, in quite a number of cases, to
extremely simple results [9, 10]. A characteristic fea-
ture of these results is that they may be obtained using
simple and physically descriptive models. In connec-
tion with this, we will demonstrate below the possibili-
ties of the modified Lorentz–Mossotti approach as
regards the determination of the polarization correction
in various plasma media.

The objective of this study is to find the polarization
correction to the acting field as a function of plasma
parameters using the model notions of the Debye

2 This is treated in detail in [8].
004 MAIK “Nauka/Interperiodica”
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screening of a charge in an isolated small volume of a
plasma medium.

BASIC POSTULATES AND RELATIONS

In the most general case, the expression for the
effective electric field acting on an electron in an isotro-
pic plasma may be written as

(1)

where E is the mean macroscopic field; P is the polar-
ization vector of the medium; ε0 is the dielectric permit-
tivity of a vacuum; and a is a coefficient that may
depend on the electron density, the density of the
medium, the electron and ion temperatures, and the
charge screening radius associated with them.

As applied to dielectric media under certain model
assumptions [11], the coefficient a may be set equal to
1/3. In this case, the quantity P/3ε0 in Eq. (1) is the so-
called Lorentz polarization correction. It follows from
experiment that, for plasma media, the coefficient a ≠ 0;
however, under certain (including ionospheric) condi-
tions, one can assume that a ≈ 0. Then, we can approx-
imately assume that

(2)

In the case of a ≠ 0 and for the harmonic dependence
of the external field E = E0exp(±iωt), the expression for
the complex permittivity of the medium  has the
form [6]

(3)

where N is the electron density of the medium, η = 1 ±
iΩ/ω (or some other function of Ω and ω; examples of
graphs of this function for the real ηReε(Ω/ω) and imag-
inary ηImε(Ω/ω) parts of  are given, e.g., in [12]), and
Ω is the effective collision frequency of electrons with
heavy particles of the medium (in what follows, we will
first assume that Ω = 0; the obtained results may be
readily generalized to the case of Ω ≠ 0). The rest of
notation is conventional.

Note that relation (2), which was initially proved for
relatively low values of N, is inapplicable to the case of
high N. Indeed, at high electron densities, along with
the polarization of an isolated small volume of the
plasma medium, one must take into account the polar-
ization associated with the electron scattering by the
nearest ions and the effect of far charges in this volume
on an individual electron. This effect was correctly
ignored by Ginzburg [4–6], because the vectors of the
corresponding partial polarization shifts of the electron
component of an isolated volume under the conditions
treated in [4–6] are equal in magnitude and opposite in
direction. The restrictions on the electron temperature

Eef E aP/ε0,+=

Eef E.=

ε̇

ε̇ 1
e2N

ε0ηmeω
2

--------------------- 1 e2aN

ε0ηmeω
2

---------------------+
1–

,–=

ε̇

and density [4] determine the applicability range of
Eq. (2).

In order to find a more general expression for the
acting field in a plasma medium with allowance for
charge screening, we will apply the Lorentz–Mossotti
method [11] and isolate a spherical region in which
charge separation of any significance is possible. The
size of this region is assumed to be small compared to
both the wavelength λ of the external field E and the
characteristic scale on which the plasma parameters
vary. The radius r0 of this region may be related, e.g., to
the Debye radius D of charge screening in a plasma,
r0 ∝  D. In accordance with this method, we will seek
the field acting on an isolated electron in the form of the
sum of fields

(4)

Here, E1 is the field produced by charges of the internal
surface of the sphere that are formed under the effect of
the external field E when all ions and electrons (except
for the isolated electron) are removed from this spheri-
cal region, and E2 is the field characterizing the interac-
tion of the isolated electron with all ions and electrons
of the spherical plasma volume.

The use of these model concepts of the origin and
character of the field E1 enables one to employ the anal-
ogous apparatus of the field calculations in a dielectric
(see, e.g., [11]). In this case, the field E1 in both the
plasma and the dielectric is expressed in terms of the
polarization vector as

(5)

In order to calculate the field E2, we will treat the
problem of electron scattering in the ion field with
allowance for the Debye screening of charge in a
plasma, thereby taking into account the effect of far
charges on the character of electron scattering. The
Debye potential φ in the gas approximation (eφ ! k0Te)
is described by the expression [6]

(6)

where

(7)

k is the Boltzmann constant, and Te and Ti are the elec-
tron and ion temperatures, respectively.

The notion of the Debye radius of charge screening
(along with Eq. (6)) may be generalized to the case of
solid-state plasma (degenerate and nondegenerate). For
example, Eqs. (6) and (7) for nondegenerate and degen-
erate semiconductors under conditions of thermody-
namic equilibrium will be respectively rewritten as fol-
lows [13]:

(8)

Eef E E1 E2.+ +=

R1
1

3ε0
--------P.=

φ r( ) e/4πε0r( ) r/D–( ),exp=

D ε0kTeTi/ e2 Te Ti+( )N[ ]{ } 1/2
,=

φ r( ) e/4πε0εstr( ) r/D–( ),exp=
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(9)

(10)

where εst is the stationary permittivity of the semicon-

ductor, Φ1/2(·) is the Fermi–Dirac integral [13], (z) =
dΦ(z)/dz, Nc, v = N/Φ1/2(ζc, v/kT) is the effective density
of states in the conduction band (c) or valence band (v),
and ζc, v is the chemical potential for electrons (c) and
holes (v).

Under conditions of complete degeneracy, expres-
sion (10) has the following simple form [13]:

(11)

where h is the Planck’s constant and m* is the effective
mass of the charge carrier.

In particular, we note that, in metals, in which the
electron gas is highly degenerate and the impurity con-
centration is relatively low, formula (6) has a somewhat
different form: concentric regions with an increased
and a decreased correlation density of the screening
charge are formed, and a charge halo is formed around
the scattering Coulomb center [9]. Therefore, the appli-
cability range of Eqs. (6)–(11) is restricted to semicon-
ductors. For metals, these and subsequent formulas
may be used with caution and only for making approx-
imate estimates.

As in [6], we will solve the problem of finding the
variation of the electron velocity δv after the electron
scattering from a center of force characterized by the
field potential given by Eq. (6). Here, δv is the variation
of the electron velocity averaged over all impact param-
eters ρ and initial directions. In view of this averaging,
one can write [6]

(12)

where s0 is the shift of an electron due to its scattering.

Over the time δt, an electron experiences, on the
average, Nvδt collisions. Then, on multiplying Eq. (12)
by Nvδt and performing integration over all impact
parameters ρ, we will arrive at the following result:

(13)

where ρm is the maximum impact parameter.

D
ε0εstkT

e2N
-----------------,=

D
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-----------------Φ1/2' ζ c v, /kT( ),=
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D
π

3N
------- 

 
1/6 ε0εsth

2

4πe2m*
-------------------,=

δv v /3ρ( ) d
dρ
------ ρ θsin( )s0,–=

δv' = δvNv δt2πρ ρd

0

ρm

∫
=  2π/3( )v 2Nδts0 ρ θsin( ) 0

ρm,–
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Based on Eq. (13), we can write

(14)

The quantity ρsinθ in Eq. (14) may be evaluated in
a linear approximation based on the classical problem
of electron scattering in the Coulomb field (see, e.g.,
[13]) if the approximation

(15)

is used in Eq. (6) (this approximation produces a differ-
ence from the exponential of no more than 10% up to
argument values of (r/D) ~ 1).

In order to find ρsinθ, we will substitute eφ into the
scattering integral [13],

(16)

where rmin is found from the condition that the radicand
is zero.

Integration of Eq. (16) in view of (15) gives

(17)

Using Eq. (17), one can readily derive the limiting
expression for ρsinθ:

(18)

Based on Eq. (18), expression (14) may be rewritten
as

(19)

After summing up Eq. (19) over all electrons N* =
(4π/3)R3N contained in the isolated spherical volume of
radius R, we obtain the equation of motion for all elec-
trons,

(20)

Using Eq. (20), one can readily determine the field
E2 related to the polarization shift of electrons that is
caused by the scattering in the Coulomb field with
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allowance for the Debye screening of charges in the
plasma,

(21)

We substitute Eqs. (5) and (21) into Eq. (4) to derive
the expression for the effective field as a function of E
and P,

(22)

The second term in Eq. (23) is the sought polariza-
tion correction to the mean macroscopic field E in the
plasma. Accordingly, the coefficient a in Eq. (3) is

(23)

The quantity P is a function of E; therefore, in order
to find the explicit expression for Eef(E), one must, gen-
erally speaking, solve anew the problem of electron
motion in the effective field, i.e., solve the following
equation (here, we will again introduce the effective
electron collision frequency Ω with the heavy particles
of the medium):

(24)

where s is the electron shift caused by the effective
field.

For harmonic fields, the solution to Eq. (24) may be
written as

(25)

where ω0 =  is the plasma frequency and
P = eNs.

We substitute Eq. (25) into Eq. (22) to eventually
derive the explicit expression for the effective field in
the plasma,

(26)

Note that expression (26) was derived irrespective
of the methods for determining the quantity a (it is only
its presence that is important). Therefore, this expres-
sion remains valid in the widest range of variations in
the parameters appearing in this expression (i.e., in the
region where expression (3) for  remains valid. In this
case, the right-hand side of Eq. (26) may be further gen-
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eralized to the case in which η ≠ 1 ± iΩ/ω, as was indi-
cated above). For a relative variation of the field in a
plasma, one can use Eqs. (3) and (26) and write the fol-
lowing expression:

(27)

The physical reason for the deviation of the acting
field in a plasma from the mean field consists in the
polarization shift of the electron component relative to
the ions, which arises both as a result of polarization of
an isolated small volume of the plasma medium under
the action of the external field and due to electron scat-
tering by screened ions; i.e., this deviation is associated
with the resultant shift of the screening cloud of the
charge relative to the Coulomb center.

Indeed, in the absence of an external field, the
Debye screening of charge in a plasma may be obtained
as a result of either a direct solution of Poisson’s equa-
tion with the use, e.g., a Boltzmann distribution [6, 8]
or a kinetic treatment in the model of two-particle inter-
action. Therefore, it is natural to consider the polariza-
tion of a “quasi-particle” (ion + screening electron
cloud) in the external electric field. As a result of sum-
mation of this polarization effect of all quasi-particles
on an isolated electron, one can determine the field E1
(formula (5)), which turns out to be directed oppositely
to the external field E0. Then, the isolated electron is
scattered by the screened ion under the action of the
external field. In this case, the polarization shift of scat-
tering together with the field E2 in the thermodynamic
limit (formula (22)) turns out to be directed along the
external field (the electrons are decelerated by the field
of quasi-particles). As follows from Eq. (22), the great-
est contribution to E2 is made by slow electrons (they
are decelerated by the field of quasi-particles to a
greater extent). However, the summation of E1 and E2
eventually brings about a polarization shift opposite to
E (see Eqs. (22) and (23)). A similar result is obtained
in the case of the kinetic treatment of the problem: the
correlation electron cloud shifts relative to the screened
ion along the external field E [7].

Expression (26) for the effective field, obtained
using the elementary approach, may be transformed to
the form given in [7]. For this, one must assume that
e2/3πε0mev 2D ! 1 (this is equivalent to the requirement
that the plasma medium be rarefied). Then, taking into
account the first two terms of expansion of a in the
small parameter, one can use the following approxima-
tion:

(28)

Substituting Eq. (28) into (26) and averaging over
the velocity in the high-frequency approximation (for
weak fields), one can readily derive the following

∆E
E

--------
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expression for relative variation of the mean effective
field:

(29)

where the superscript s implies averaging.

As was indicated above, the results of using the
above classical approach to estimating the polarization
correction in the problem of electromagnetic wave
propagation in plasma media may be generalized to the
case of solids characterized by intrinsic conductivity,
e.g., semiconductors. In such solids, the Debye radius
is determined on the basis of Eqs. (7)–(11) using the
notion of the effective mass m* of charge carriers,
which may be much less than the electron mass. In this
case, it is obvious that the field E1 is equal to E1 =
P/3ε0εst and that Eq. (23) for the coefficient a with
allowance for Eqs. (8) and (15) can be rewritten as

(30)

As an illustrative example of inclusion of the deci-
sive role of the obtained polarization correction, we
will refer to the estimation of the skin depth for a ZnS
piezoelectric semiconductor exhibiting electron con-
ductivity with N ≈ 1016 cm–3 at a temperature T = 273 K
[14]. The mean effective electron mass in ZnS is  ~
0.25me, εst = 8.32, and the electron relaxation frequency
on optical lattice vibrations is Ω = 1/τ ~ 7 × 1011 s–1

[15]. For a wavelength of λ = 1 cm and chosen condi-
tions, the coefficient a is approximately equal to 0.01.

Estimates show that the skin depth (d = λ/[12πIm ])
is approximately 2.5 times that for the case of a = 0.
This ratio increases with increasing wavelength and
tends to unity with decreasing wavelength. For exam-
ple, for λ = 10 cm, this ratio increases to 7; for λ =
0.1 cm, it decreases to 1.15; and, for λ = 0.01 cm, it is
close to 1.
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CONCLUSIONS
The application of a systematic approach based on

the classical concepts of the polarization of an isolated
small plasma volume and electron scattering by a
screened Coulomb center in an external field enables
one to perform an analytical estimation of the polariza-
tion correction in dense plasma media (including
degenerate solid-state plasma). In such media, the
polarization correction may play a decisive role, thus
significantly changing various electrodynamic charac-
teristics of the media.
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Abstract—The structure, composition, and mechanical properties of iron-alloyed TiC–TiNi composite mate-
rials are studied. When the titanium carbide framework is sintered with iron and then impregnated with titanium
nickelide, iron atoms are found to diffuse into the matrix and form the B2 structure that is inhomogeneous (gra-
dient) in chemical composition and properties and exhibits various temperatures of martensitic transformation.
The latter fact shows up in the broadening of the martensitic transformation hysteresis and its shift toward low
temperatures with increasing iron content. At room temperature, the strength properties of gradient-matrix TiC–
TiNi composites are shown to increase with iron concentration. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

An increase in the ductility of the matrix of a com-
posite material via martensitic transformation was stud-
ied in [1–3]. When plastic shear is confined within thin
intergranular layers of the matrix, this mechanism effi-
ciently releases peak stresses that appear upon loading
composite materials, and the deformation of titanium
nickelide as the crystal lattice loses shear stability mod-
ifies its structural state.

However, this mechanism of stress relaxation in
composite materials works only in a narrow tempera-
ture range near phase transition temperatures and at
strictly defined stresses. The temperature–stress range
of structural transformations that occur in the matrix of
a composite material under an applied load may be
extended by providing a chemical composition gradient
in the matrix. In this case, its microvolumes could
undergo structural transformations at different temper-
atures and stresses. As is known [4, 5], the parameters
of martensitic transformation (MT) in TiNi can be con-
trolled by alloying. For example, the substitution of
iron or cobalt for nickel decreases the temperature at
which the initial B2 structure transforms into the B19'
martensitic phase and changes the sequence of phase
transitions resulting in the formation of the intermedi-
ate R phase, which also transforms into B19' martensite
under the action of applied stresses or when the temper-
ature decreases [4, 5]. On the contrary, the alloying of
TiNi with palladium, platinum, gold, or zirconium
leads to an increase in the MT temperature [5]. Thus,
the introduction of the elements listed above into differ-
ent areas of the TiNi matrix can create a composition
gradient, thereby producing microvolumes with differ-
ent temperature and force parameters of martensitic
transformation.
1063-7842/04/4901- $26.00 © 20052
However, data for structural instability in the chem-
ically graded matrix of a composite material are cur-
rently lacking. The purpose of this work is to investi-
gate the structure and properties of a TiNi-based com-
posite with a structurally unstable gradient matrix.

EXPERIMENTAL

A composite material was prepared via the method
of powder metallurgy, which involves the sintering of
Ti–15 wt % C (TiC0.7) powder to form a TiC frame-
work, followed by the impregnation of the framework
with TiNi of equiatomic composition. A composition
gradient was created using iron, since, as compared to
other elements, a small increase in the iron concentra-
tion in TiNi significantly decreases the MT temperature
and changes the sequence of MTs [4, 5]. This allows
one to effectively control the MT temperature and force
parameters upon the B2–martensite transition even if
the alloying element content is low.

PZhR iron powder in amounts of 1, 3, 5, and 6 wt %
was mixed with the TiC powder in a ball mill, and then
the mixture was compacted at a pressure of 150 MPa.
The preforms were sintered at a pressure of no lower
than 10–2 Pa at 1550°C for 3 h. Under such sintering
conditions, the porosity of TiC frameworks was 31–
32 vol % irrespective of the iron content. The frame-
works were then impregnated with TiNi at a pressure of
no lower than 10–2 Pa at 1350°C for 10 min. After
impregnation, the TiC framework-to-TiNi matrix
weight ratio was 60 : 40. Test specimens were spark-cut
and then mechanically finished with a diamond paste.

Phase analysis was performed with a DRON-UM1
X-ray diffractometer (CuKα radiation) at room temper-
ature. The temperature intervals of martensitic transfor-
004 MAIK “Nauka/Interperiodica”
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mations occurring in the matrix of the composite were
determined from the temperature dependence of the
electrical resistance. The strength properties of the
composite were found from the critical breaking stress
of the specimen subjected to three-point bending on an
INSTRON-1185 testing machine.

RESULTS AND DISCUSSION

X-ray diffraction data show that the TiC frameworks
sintered have the fcc lattice with a parameter of 0.43146 ±
0.00003 nm. The unit cell parameter (Fig. 1a) and the
FWHM of diffraction reflections remain virtually
unchanged with increasing iron content. The diffraction
pattern taken from the TiC + 6 wt % Fe specimen
(Fig. 2a) contains additional weak reflections, which
may be assigned to iron-containing phases, such as
Fe2Ti, Fe2C, and Fe3C. These phases may form as a
result of chemical interaction between the iron and tita-
nium carbide upon sintering; their volume fraction does
not exceed 5%.

After the impregnation of the frameworks, along
with the reflections from the basic phases TiC and TiNi
with the B2 structure, the reflections from nickel-
enriched intermetallics (Ni4Ti3, Ni3Ti2, and Ni3Ti) are
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Fig. 1. Unit cell parameters of (a) titanium carbide and
(b) titanium nickelide in (1) sintered TiC + Fe frameworks
and (2) (TiC–TiNi) + Fe composite material vs. the iron
concentration.
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also observed (Fig. 2b). The total volume fraction of
these phases is about 8%. We failed to detect iron com-
pounds present in the framework before impregnation
probably because of their dissolution in the binder of
the composite material.

Upon cooling, the matrix undergoes martensitic
transformation, as follows from resistivity measure-
ments (Fig. 3). The nonmonotonic run of the curve ρ(T)
during cooling and heating of the material and the for-
mation of a hysteresis loop indicate martensitic trans-
formation in the given temperature range [4, 5]. As the
iron content rises, the hysteresis loop in the curve ρ(T)
broadens and shifts toward low temperatures (Fig. 3).
Such behavior of the temperature dependence of the
resistivity may be attributed to the formation of micro-
volumes where the MT temperatures are lower than in
the rest of the matrix.

Such microvolumes with different MT temperatures
may arise due to the dissolution of the iron in local
areas of the matrix, which makes it graded in terms of
composition and, hence, MT temperatures.

In all the hard alloys prepared by impregnating the
TiC framework with TiNi, the FWHM of the reflections
from the TiC increases (on average, by a factor of two
as compared to the FWHM before impregnation)
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Fig. 2. X-ray diffraction patterns taken from the (a) sintered
TiC + 6 wt % Fe framework and (b) TiC–TiNi + 6 wt % Fe
composite material.
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(Fig. 4a) and shifts toward higher diffraction angles.
The unit cell parameter of the TiC, aTiC, decreases to
0.4309 nm and is virtually independent of the iron con-
tent in it (Fig. 1a). Since the unit cell parameter of tita-
nium carbide depends substantially on the titanium-to-
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Fig. 3. Temperature dependences of the resistivity upon
cooling and heating (1) Ti–50.0 at. % Ni, (2) TiC–TiNi,
(3) TiC–TiNi + 1 wt % Fe, (4) TiC–TiNi + 3 wt % Fe, and
(5) TiC–TiNi + 6 wt % Fe composites.
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carbon ratio [6], the broadening of the reflections is
most likely to be due to the variation of the TiCx chem-
ical composition in the microvolumes, while the
decrease in the unit cell parameter indicates that x
decreases from 0.7 to 0.6. Thus, during the impregna-
tion of the TiC framework with TiNi, the carbon dif-
fuses from the titanium carbide to the matrix and inter-
acts with the titanium of the matrix, producing carbide
particles with a composition other than the initial com-
position TiC0.7. The matrix becomes nickel-enriched,
as a result of which the MT temperature in it and the
unit cell parameter of the B2 phase decrease (Figs. 3
and 1b, respectively). As the iron content in the com-
posite grows, the unit cell parameter of the B2 phase
somewhat diminishes (Fig. 1b). The reflections from
high-index planes in the B2 phase become much
broader, while the FWHM of the reflections from low-
index planes remains unchanged (Fig. 4b). To separate
out contributions to the reflection intrinsic broadening
that are due to microstrains and small grain size, we
used the technique [7] based on the construction of
interpolation plots in the coordinates [(βcosθ)/λ]2 –
[(sinθ)/λ]2, where β is the reflection FWHM in radians.
It was found that, for both TiC and TiNi, the broadening
of the reflections after impregnation is largely caused
by microstrains in their crystal lattices. The choice of
the quadratic coordinates for the interpolation plots is
dictated by the fact that the shapes of the diffraction
reflections from both the carbide phase and the B2
phase are closer to the Gaussian than to the Lorentzian
form. Figure 5 shows the dependence of microstrains in
the TiC and TiNi lattices on the content of iron intro-
duced into the carbide framework. For the iron-free
specimens, the value of 〈ε2〉1/2 is seen to be 1.1 × 10–3 for
the B2 phase and 0.9 × 10–3 for the titanium carbide. As
the iron content in the composite material rises, the
microstrains build up in both TiC and TiNi, the buildup
in the latter being greater.

There are two basic reasons for the broadening of
diffraction peaks and the generation of microstrains.
The first is thermal stresses arising upon cooling the
composite material from the annealing temperature; the
other, the presence of a composition gradient in the TiC
and TiNi phases.

To estimate the contribution associated with the first
reason, we calculated thermal stresses due to a mis-
match in the thermal expansion coefficients (TECs) of
the basic phases of the composite (for the calculation
procedure, see [8]). Relevant parameters were taken
from [6, 9]. The thermal stresses that appear at the car-
bide–binder interface upon cooling from the annealing
temperature (400°C) to room temperature were found
to be 100–160 MPa. Then, the average microstrains are
10–3 in the binder and 0.1 × 10–3 in the titanium carbide
(Fig. 5, the dot-and-dash line). Since iron introduced in
small amounts may change the TEC of the matrix insig-
nificantly, this factor cannot give rise to high thermal
stresses in either of the phases.
TECHNICAL PHYSICS      Vol. 49      No. 1      2004
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Comparing the microstrains found experimentally,
ε1, with those obtained by calculation (see above), ε2
(Fig. 5, the dot-and-dash line), shows that ε1 ≈ ε2 for the
B2 phase of the iron-free specimen and ε1 @ ε2 for the
titanium carbide. In other words, thermal stresses may
be critical in distorting the lattice in TiNi with the B2
structure. For the carbide, the broadening of reflections
is associated with the composition gradient (the forma-
tion of particles with different carbon content). In view
of the intense diffusion of the carbon from the titanium
carbide to the matrix during impregnation, we may
assume that strains ε1 in the titanium carbide result
from the variation of the unit cell parameter aTiC. Thus,
the basic reason for microstrains in the TiC lattice is
likely to be the formation of microscopic composition
gradients and, to a lesser degree, static distortions of the
lattice.

The increase in the iron concentration (Fig. 5) has a
minor effect on the microstrains in the titanium carbide,
whereas 〈ε2〉1/2 in the matrix grows significantly
(roughly by a factor of four). Therefore, one may
assume that microstrains in the B2 phase are caused by
thermal stresses and, even to a greater extent, by the
formation of the composition gradient. The insignifi-
cant decrease in the unit cell parameter of the B2 phase
(Fig. 1b) (the same is observed when TiNi is alloyed
with Fe [4]) shows that the iron dissolves in the matrix.
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Fig. 5. Microstrains in the TiC and TiNi phases of the (TiC–
TiNi) + Fe composite vs. the iron concentration (s, the
value for the sintered TiC framework).
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In addition, the related extension of the MT tempera-
ture range toward low temperatures (Fig. 3) indicates
the nonuniform iron distribution and the formation of
the graded B2 structure. As a result, microstrains in the
matrix of the composite material grow considerably
with increasing iron concentration.

The mechanical properties of such graded-composi-
tion materials are bound to reflect the structural modifi-
cations. In particular, the room-temperature strength of
iron-alloyed composite materials is expected to be
higher than in the initial TiC–TiNi material because of
the formation of the graded-composition B2 matrix
with a wide range of MT temperatures and martensitic
shear stresses. Indeed, Fig. 6 shows that the bending
strength of iron-alloyed composite materials increases
with iron concentration, whereas the elastic modulus
decreases. The increase in the bending strength can be
explained by the formation of microvolumes with dif-
ferent compositions (a composition gradient) with an
increase in the iron concentration in the matrix.
Accordingly, peak stresses that appear upon loading the
composite will relax in a wide range.

CONCLUSIONS

Iron introduced upon sintering the carbide frame-
work does not change the stoichiometric composition
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Fig. 6. (1) Bending strength and (2) elastic modulus of
(TiC–TiNi) + Fe composites vs. the iron concentration.
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of titanium carbide; it only results in the formation of
Fe2Ti, Fe2C, and Fe3C compounds.

The impregnation of the carbide framework is
accompanied by intense carbon diffusion to form addi-
tional TiC particles. The titanium carbide becomes non-
uniformly depleted of carbon, and nickel-enriched
NimTin intermetallics form in the binder.

The alloying of the composite material with iron
increases microstrains in the B2 structure fourfold,
which may be related to the formation of the graded-
composition matrix of the Ti–Ni–Fe ternary system.

A simultaneous increase in the ultimate strength and
strain, along with a decrease in the elastic modulus,
with content of the iron introduced into the framework,
is due to the formation of graded-composition micro-
domains with the B2 structure. These microdomains
provide the effective relaxation of peak stresses that
arise upon loading the composite material.
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Abstract—A new approach to studying the dynamic strength properties of structural materials is demonstrated
with fracture of 2024-T3 aircraft aluminum alloy. The central idea of this approach is the incubation time to
failure. In [1], experimental data for dynamic fracture of this alloy were analyzed in terms of the classical frac-
ture criterion, which is based on the principle of maximum critical stress intensity factor [2]. In [1], the depen-
dence of the stress intensity factor limiting value (the dynamic fracture toughness KId, which was assumed to
be a functional characteristic of the material) on the loading rate was also measured. The same experimental
data were analyzed in terms of an alternative structure–time approach [3]. In this approach, the dynamic fracture
toughness KId is considered as an estimable characteristic of the problem, so that determination of limiting loads
does not require a priori knowledge of the loading-rate dependence of the dynamic fracture toughness. The
incubation time to failure of the aircraft aluminum alloy is calculated. The difference in the loading-rate depen-
dences of the dynamic fracture toughness, which is observed for various structural materials, is explained. The
dynamic fracture toughness of the alloy under pulsed threshold loads is calculated. © 2004 MAIK
“Nauka/Interperiodica”.
Quasi-brittle fracture of solids is known to be the
result of cracking, the rate of which is governed by both
the stressed state and structure of a solid. In the linear
mechanics of fracture, it is assumed that the stress level
in the vicinity of a crack depends on a single factor,
namely, on the stress intensity factor KI. For cracked
specimens loaded statically, the limiting loads are
determined in terms of the critical stress intensity factor
(fracture toughness), which is considered to be a mate-
rial constant. In static problems, the fracture criterion
for regions with symmetrically loaded cracks has the
form [2]

(1)

where KI is the stress intensity factor and KIc is the static
fracture toughness.

According to this criterion, a crack starts propagat-
ing when the stress intensity factor KI reaches a certain
critical value KIc, which is found experimentally for
each material. This approach, fitting well the results of
static fracture tests, is now universally accepted in engi-
neering practice.

However, under conditions of dynamic loading, the
situation changes. The strength properties of materials
and constructions under static or dynamic loading are
different. In the latter case, knowledge of only the crit-
ical stress intensity factor does not suffice to study frac-
ture processes in cracked specimens. A series of exper-
imental investigations into dynamic fracture has shown
that the critical stress intensity factor is no longer a

K I K Ic,≤
1063-7842/04/4901- $26.00 © 20057
material constant. It varies in a complex manner with
loading conditions, and the traditional approach
becomes invalid. Therefore, other criteria are needed.

Owen et al. [1] experimentally studied the dynamic
fracture toughness of 2024-T3 aircraft aluminum alloy.
The authors used several schemes where notched-bar
specimens of fixed length and width but various thick-
ness had a fatigue crack at the end of the notch and were
subjected to impact loading at different rates.

The fracture criterion used in [1] had the same form
as under static loading, but the critical value of the
stress intensity factor was conventionally considered as
a function of the local loading rate. The time to failure
was determined from the condition

(2)

Here, P(t) is the generalized dynamic load and a is the
crack initial length. The right of (2) represents the
dynamic fracture toughness, which is a material func-
tion depending on the local loading rate  = dKI/dt
in the scheme used. Such an approach is, however,
inconvenient in applications, since it is difficult to pre-
dict the loading rate in advance. It is also inefficient
because the dynamic fracture toughness may depend on
both the history and the way of loading in a complex
manner [4, 5]. For example, in [1], fracture was
observed at the growth stage of the stress intensity fac-
tor and the loading rate was taken to be equal to the
slope of the linear segment in the stress–strain curve.

K I t P t( ) a, ,( ) K Id K I' t( )( ).≤

K I' t( )
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However, if threshold load pulses (e.g., ultimate pulses
of given duration and critical amplitude) are applied,
fracture may also take place after the stress intensity
factor has reached a maximum. In this case, the
dynamic fracture toughness may decrease with
decreasing ultimate-pulse duration [4] rather than
increase, as was observed in [1]. Thus, the dynamic
fracture toughness appearing in condition (2) is not a
material parameter, which brings about the need for
alternative methods for testing the dynamic strength
properties of materials.

Let us show that experimental data in [1] can be ana-
lyzed by using a much more convenient and efficient
structure–time criterion [3]. For specimens with sym-
metrically loaded cracks, it has the form

(3)

where KI(t) is the current value of the stress intensity
factor and τ is the incubation time to failure, whose
physical meaning is the characteristic relaxation time
upon microfracture of a material.

An expression for the stress intensity factor as
applied to the experiment [1] is found by solving the
following initial- and boundary-value problem: an infi-
nite elastic plane containing a semi-infinite crack Γ± =
{(x, y) : y = ±0, x ≤ 0} is subjected to an impact load.
The stressed state at the apex of the crack is determined
from a solution to the equation of elastodynamics for an
isotropic medium

(4)

(which holds true at all inner points of this plane) with
the boundary conditions

(5)

the initial condition

(6)

and the energy condition

(7)

which provides the uniqueness of a solution to this
problem. In (4), λ and µ are the Lamé parameters, U =
U(t, x1, x2) is the displacement vector, and ∆ is the
Laplacian. This initial- and boundary-value problem
meets the experimental conditions in [1]. According to
Hooke’s law, the stress tensor components are related to
the displacement vector as

(8)

The maximal breaking stress along the extension of the

K I s( ) sd

t τ–

t

∫ K Icτ ,≤

ρ∂2U

∂t2
--------- λ µ+( )grad divU= µ∆U+

σxy Γ±
 = 0, σy Γ±

p t( ),–=

U t 0≤ 0,=

t∀ 0: U> const O rβ( ), r 0, β 0,>+=

σij λdivUδij µ
∂Ui

∂x j

---------
∂U j

∂xi

---------+ 
  .+=
crack has the asymptotic

(9)

Let the crack edges be subjected to a linearly
increasing impact load

(10)

where H(t) is the Heaviside function and P is the load-
ing rate.

Solving problem (4)–(7) by the Wiener–Hopf fac-
torization method, we obtain the stress intensity factor
in the form

(11)

where

(12)

and

is the function of the velocities c1 and c2 of longitudinal
and shear waves, respectively.

In our case, for a pulse given by (10), the function
Q(t) takes the form

(13)

Let t∗  be the time to failure. Substituting Eqs. (11)
and (13) into criterion (3), we find the loading rate in
terms of t∗ :

(14)

The critical value of the stress intensity factor KId(t)
is the stress intensity factor at the instant of fracture.
According to (11), it has the form

or

(15)

This result will be used to analyze the experimental
data in [1]. To estimate the incubation time to failure τ,
we compare the data calculated by Eq. (15) with the
experimental data. The result obtained with the struc-
ture–time criterion for the 2024-T3 alloy specimen
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(thickness h = 2.54 mm, KIc ≈ 30 MPa m1/2) is shown in
Fig. 1. The incubation time τ found from this curve
equals 40 µs.

In the problem under consideration, as well as in the
experiments described in [1], the specimen failed at the
growth stage of the stress intensity factor. However, the
loading scheme where the dynamic fracture toughness
is achieved at the stage of stress intensity factor
decrease can be realized, as noted above [4]. Such a sit-
uation arises if we consider pulses of given duration
and look for a threshold amplitude.

To study the dynamic fracture toughness at thresh-
old loads, consider pulses p(t) = PU(t) of various dura-
tion T, where

(16)

Using the solution to problem (4)–(7), we find the
stress intensity factor in the form (11)–(12), where U(t)
is given by Eq. (16). Substituting (11) into criterion (3)
yields an analytical expression for the threshold ampli-
tude:

(17)

Here, P∗  is the ultimate (threshold) pulse amplitude.

The time to failure t∗  is the time over which

is reached.

U t( ) π
T
---t 

  H t( ) H t T–( )–[ ] .sin
2

=

P*
τK Ic

ϕ c1 c2,( ) Q s( ) sd

t τ–

t

∫t
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--------------------------------------------------------.=
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t τ–
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∫t
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Fig. 1. Variation of the dynamic fracture toughness with
time to failure t∗ . Solid line, calculation with the structure–
time criterion; circles, data points [1].
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Then, the expression for the dynamic fracture
toughness KId = KI(t∗ ) takes the form

(18)

By varying the pulse duration T, we find the time to
failure t∗  and the dynamic fracture toughness for each
specific case.

Figure 2 compares the experimental behavior of the
dynamic fracture toughness [1] with its behavior at
threshold pulsed loads for this alloy. In the latter case,
the dynamic fracture toughness decreases as the dura-

K Id

τK IcQ t*( )

Q s( ) sd

t τ–

t

∫t
max

-----------------------------------.=

106

1

T, µs

KId/KIc

2

3

1

Fig. 2. Dependence of the dynamic fracture toughness of
2024-T3 alloy on the breaking pulse duration T. Upper
curve, constant loading rates; lower curve, pulsed threshold
loads.

100
t, µs
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50
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1 10

Fig. 3. Time dependence of the stress intensity factor for a
threshold pulse of duration 8 µs. The dot indicates the time
of fracture.
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tion T of the threshold pulse approaches zero, whereas
in [1] it rises without limit.

Figure 3 shows the stress intensity factor curve for a
threshold pulse of duration 8 µs. The effect of “delayed
fracture” is observed: the specimen fails when the
stress intensity factor decreases after it has gone over a
maximum. The same effect was predicted in [4] and
observed experimentally in [5].

Thus, the structure–time criterion is an efficient
means for studying problems of dynamic fracture. It
allows one to predict the dynamic fracture toughness
under various loading conditions. In the framework of
the approach proposed, the critical value of the
dynamic stress intensity factor is an estimable parame-
ter. Its variation with loading rate depends on the load-
ing history and experimental conditions.

Moreover, when describing the strength properties
of a material under dynamic loading, one need not
know the dependence of the dynamic fracture tough-
ness on the loading rate. Two constants, KIc and τ,
which characterize the strength properties of a material,
will suffice to estimate ultimate loads.

REFERENCES

1. D. M. Owen, S. Z. Zhuang, A. J. Rosakis, et al., Int. J.
Fract. 90, 153 (1998).

2. G. Irwin, J. Appl. Mech. 24, 361 (1957).
3. Yu. V. Petrov, Preprint (Inst. for Problems of Mechanical

Engineering, Russ. Acad. Sci., St. Petersburg, 1996),
pp. 9–12.

4. D. A. Shockey, D. C. Erlich, J. F. Kalthoff, et al., Eng.
Fract. Mech. 23, 311 (1986).

5. A. N. Berezkin, S. I. Krivosheev, Yu. V. Petrov, et al.,
Dokl. Akad. Nauk 375, 328 (2000) [Dokl. Phys. 45, 617
(2000)].

Translated by K. Shakhlevich
TECHNICAL PHYSICS      Vol. 49      No. 1      2004



  

Technical Physics, Vol. 49, No. 1, 2004, pp. 61–66. Translated from Zhurnal Tekhnichesko

 

œ

 

 Fiziki, Vol. 74, No. 1, 2004, pp. 62–67.
Original Russian Text Copyright © 2004 by Aleshin, Tsikhotsky, Yatsenko.

                  

SOLID-STATE
ELECTRONICS

       
Prediction of the Properties of Two-Phase Composites
with a Piezoactive Component

V. I. Aleshin, E. S. Tsikhotsky, and V. K. Yatsenko
Research Institute of Physics, Rostov State University, Rostov-on-Don, 344090 Russia

e-mail: aleshin@ip.rsu.ru
Received January 29, 2003

Abstract—The effective dielectric, piezoelectric, and elastic constants of two-phase macroscopically piezoac-
tive 3–0 and 3–3 composites are calculated. It is assumed that one of the components is a polarized ferroelectric
ceramic material and the other is an inactive material with variable elastic properties. The limiting case when
the elastic compliances of the inactive material tend to infinity (porous ferroelectric ceramics) is considered.
The adequacy of this model to production technologies of piezoelectric composites is discussed. Computational
results are compared with experimental data. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The development of novel piezoactive composites
needs reliable theoretical models allowing process
engineers to predict the properties of the composites
when the concentrations of the components vary in a
wide range and their electromechanical parameters
greatly differ. In a number of composite production
technologies, initial powders are mixed in an appropri-
ate proportion, pressed to a desired shape, and then sin-
tered [1]. If the concentration of one component is suf-
ficiently small, the final product will consist of a mono-
lithic matrix, which is formed by the other (higher
concentration) component, and isolated isometric
inclusions. (Hereafter, we consider a two-phase com-
posite assuming that the grain size in initial ceramic
powders is much larger than the size of crystallites in
the composite, so that each grain may be assigned the
effective properties of associated ceramics. At the same
time, the crystallite size must be much smaller than the
characteristic size of the composite in order to provide
the homogeneity of the entire system.) According to the
classification currently adopted [2], such a composite is
classified as a 3–0 composite. If the component concen-
tration ratio in a composite prepared by the same tech-
nology is roughly 1/2, the components enter into the
composite symmetrically, forming two infinite con-
nected clusters. A composite thus prepared is referred
to as a 2–3 composite.

Thus, the entire feasible range of concentrations
may be covered and, hence, composites of various
types can be produced by the same technology. There-
fore, of great importance is the proper choice of a
method for calculating the effective constants of a
piezoelectric composite at different component con-
centrations. In other words, it is necessary to know how
the effective constants of a composite depend on the
component concentration for a given process of prepa-
1063-7842/04/4901- $26.00 © 20061
ration. Unfortunately, exact solutions to three-dimen-
sional problems of calculating the effective constants of
inhomogeneous systems are unknown. As a result, a
strict classification of composites by their structure is
lacking.

The theory of heterogeneous systems subdivided
two-phase composites into two large groups: matrix
systems and binary mixtures. The concentration depen-
dences of the effective constants in the two groups are
much different.

In matrix systems, the variation of the concentration
from 0 to 1 does not change the material structure qual-
itatively: at any concentration, one of the components
forms a connected matrix that contains isolated inclu-
sions of the second one. The system remains essentially
asymmetric, and the formulas for effective constants
yield their continuous concentration dependence
throughout the 0–1 range. It should be noted that these
formulas are, as a rule, used to calculate the effective
constants of piezoactive composites, which is not uni-
versally true.

The case of binary systems has been considered
above. These systems are known to exhibit critical con-
centration transitions: the metal–insulator transition
(for properties described in terms of the second-rank
tensor) or stiffness–compliance transition (for those
described by the fourth-rank tensor). The transition of
the first type means that, at some critical concentration
m1 (0 < m1 < 1), the conducting component in the
metal–insulator mixture forms an infinite cluster and
the system as a whole becomes conductive. In the latter
case, it is supposed that a composite is a mixture where
the elastic compliances sij of one component tend to
infinity (porous composite). The stiffness–compliance
transition means that there exists some minimal (criti-
cal) concentration m2(0 < m2 < 1) above which the rigid
framework made up of the second component may lose
004 MAIK “Nauka/Interperiodica”



 

62

        

ALESHIN 

 

et al

 

.

                                          
stability. In other words, even if a composite with m >
m2 is prepared by an appropriate “mixing” technology,
its properties are bound to depend significantly on
many random factors related to the initial component
distribution. The concentrations m1 and m2 do not nec-
essarily coincide. In piezoactive materials, the transi-
tions may be interrelated because of the piezoelectric
effect.

In this work, we study the effective constants of
binary piezoactive mixtures one component of which is
a polarized ferroelectric ceramic material and the other
is an inactive (passive) isotropic low-permittivity mate-
rial with different elastic properties. In calculations, the
effective medium method is used.

COMPUTATIONAL SCHEME

The effective medium method (or the self-consis-
tency method) is based on the solution of the problem
of interaction between a spherical inclusion and its
environment. The properties of the environment are
identified with the effective properties of the entire
composite and are to be determined. Since of most
practical interest are the properties of polarized piezo-
electric composites, one should bear in mind that the
medium is anisotropic in dielectric and elastic proper-
ties and shows the macroscopic piezoelectric effect.
The problem of interaction between a spherical inclu-
sion and an anisotropic piezoactive medium is reduced
[3–5] to the solution of a set of linear equations that
relate electric and elastic fields inside and outside
(away from) the inclusion:

(1)

Here, E is the electric field, D is the induction, σ is the
mechanical stress, and u is the strain. The variables
with the subscript 0 refer to the medium, i.e., represent
the volume-averaged components of the electric and
elastic fields. The coefficients A, B, and H depend only
on the properties of the medium and are independent of
the properties of the inclusion. Expressions for these
coefficients in the axisymmetric case are given in [3, 5].
Equations (1) do not impose any restrictions on the
relationship between the electric and elastic fields
inside the inclusion: they merely reflect the elastic (lin-
ear) character of inclusion–medium interaction.

To implement the self-consistency scheme, set (1)
must be solved jointly with one of the sets of equations
for the piezoelectric effect in the piezoactive compo-
nent,

(2)

and with a similar set of equations for the passive (non-

Ei E0i– Aii D0i Di–( ) Hin u0n un–( ),+=

σi σ0i– H ji D0 j D j–( )Bin u0n un–( ).=

Ei η ij
u D j hinun,–=

σi –h jiD j cin
0 un,+=
piezoactive) component,

(3)

In Eqs. (2) and (3), ηij are the components of the
reciprocal permittivity, cij are the stiffness coefficients,
and hij are the piezoelectric constants.

By separately substituting (2) and (3) into (1) and
averaging the resultant expressions for Di and ui over
volume in the standard way, we arrive at a set of equa-
tions for the effective constants of the piezoactive com-
posite:

(4)
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Table 1.  Experimentally found constants /ε0, dij(10–12 C/N), and (10–12 m2/N) of PZT-5H [6]

d31 d33 d15

3130 3400 –274 593 741 16.5 –4.78 –8.45 20.7 43.5

εij
σ sij

E

ε11
σ /ε0 ε33

σ /ε0 s11
E s12

E s13
E s33

E s44
E

In (4),  are the components of the effective per-

mittivity,  are the elastic compliances, and  are
the piezoelectric moduli of the composite. The matrix
∆ (9 × 9), appearing in Eqs. (4), can be written in gen-
eral form as follows:

(5)

The first and second terms in (5) correspond to the
piezoactive and passive components, respectively; m is
the concentration of the passive component; and the
subscript t marks the transpose.

Self-consistent system of equations (4) is closed and
allows one to calculate the complete set of effective
constants for a piezoactive composite. The constituents
of the composite enter into Eqs. (4) symmetrically, as
follows, for example, from relationship (5). It is also
assumed that the piezoactive component is homoge-
neous and polarized and also that its constants do not
depend on its concentration (that is, the ferroelectric
ceramic in the composite is equally polarized at any
concentration).

RESULTS AND DISCUSSION
Calculations were performed for three cases where

polarized PZT-5H ceramics was used as a piezoactive
component and isotropic materials with greatly differ-
ing elastic properties were used as a passive compo-
nent. These materials were (i) SiO2, which has elastic
properties of the same order as the ferroelectric ceram-
ics, (ii) a formaldehyde-based polymer with elastic
compliances one order of magnitude higher than those
of the ferroelectric ceramics, and (iii) air bubbles as the
limiting case (the material with an infinite compliance).
The permittivity of the three passive components was
small (~1). The constants of polarized PZT-5H were
taken from [6]; the elastic and dielectric constants of
SiO2, from [7]. The constants of the polymer were mea-
sured with an original device described elsewhere [8].
All constants found experimentally and used in calcu-
lations are listed in Tables 1 and 2.

Figure 1 shows the calculation results for case (i).
As follows from Fig. 1b, stiff SiO2 inclusions in the
piezoactive matrix suppress the piezoactive properties
of the composite. The piezoelectric moduli of the mate-
rial decrease nearly twofold at a SiO2 concentration of
0.25 and vanish at a concentration of about 0.7. In the

sij
*σ

sij
*E

dij
*

D = 1 m–( ) hu A+ h– H+

–ht Ht+ cD B+ 
 
 
 

1–

m e A+ H
Ht c B+ 

 
 

1–
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same concentration interval (from 0 to 0.7), the permit-
tivity also drops significantly (Fig. 1a). As was noted
above, such behavior is associated with the metal–insu-
lator critical transition. It is known that the effective
medium method gives the critical concentration m1 =
1/3 for transitions of this type. In our case, this means
that the piezoelectric composite loses piezoelectric
properties if the concentration m of the passive compo-
nent exceeds 2/3. The behavior of the elastic constants
suggests that the material becomes almost isotropic in
elastic properties at a concentration of 0.5 (Fig. 1c) with

the piezoelectric modulus  remaining at a level of
100 pC/N, which is typical of several new piezoceramic
compositions. Thus, by introducing appropriate admix-
tures into piezoceramic materials, one can vary their
properties over a wide range and prepare composites of
practical interest.

With less stiff polymeric inclusions present in the
piezoactive matrix, the decrease in the piezoactive
properties is not so drastic (Fig. 2b). They disappear, as
before, at m > 2/3, but the sharp drop of the piezoelec-

tric moduli  and  starts only with m ≈ 0.4. It is

noteworthy that, in the range 0 < m < 0.4, where the 

and  decline very smoothly, the elastic stiffness of
the composite drops sharply (Fig. 2c). The components
of the permittivity decrease almost linearly in the inter-
val 0 < m < 2/3 (Fig. 2a).

Having discussed this intermediate case, we pass to
the limiting situation when the piezoactive matrix con-
tains infinite-compliance (zero-stiffness) inclusions,
i.e., air bubbles. In this case, we must put c = 0 on the
right of (5). The computational results for this case are
shown in Fig. 3.

Note first of all that the stiffness coefficients of the
composite (Fig. 3c) vanish at m2 = 0.5. This point marks
the critical stiffness–compliance transition. With m >
m2, A solution to the set of Eqs. (4) loses stability. Thus,
the effective medium method predicts that a porous
composite prepared by a mixing technology (the burn-

d33
*

d33
* d15

*

d33
*

d15
*

Table 2.  Experimentally found constants ε/ε0 and
sij(10−12 m2/N) of SiO2 [7] and polymeric passive compo-
nents

SiO2
ε/ε0 s11 s12

4.5 10.5 –0.801

Polymer 4.3 255.1 –102.0
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ing-out of polymeric granules [1, 9], etc.) will have sta-
ble properties only if the bubble (pore) concentration is
less than m2 = 0.5. As regards this value of m2, it should
be noted that the effective medium method is approxi-
mate: at any rate, it does not give an exact geometrical
distribution of the components in the system. There-
fore, to refine the critical value of m2 that manifests the
stiffness–compliance transition, it would be reasonable
to invoke numerical models similar to those used in the
percolation theory to study metal–insulator transitions.
Such analysis would also be of interest for asymmetric
systems (such as a polymeric matrix with stiff inclu-
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Fig. 1. Effective dielectric, piezoelectric, and elastic con-
stants of the piezoactive composite vs. passive component
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(5) , (6) , (7) , (8) , (9) , and (10) .
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sions), because it is impossible to arbitrarily increase
the concentration of inclusions that have an arbitrary
(isometric) shape to unity: at some m < 1, such inclu-
sions necessarily form an infinite cluster. Thus, most
matrix systems, as well as mixtures, are bound to
exhibit critical concentrations.

Figure 3b shows the dependence of the piezoelectric
moduli of the composite on the bubble concentration.

The moduli  and  remain practically constant

throughout the concentration range (the modulus 
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stants of the piezoactive composite vs. passive component
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even slightly increases). Such behavior may be

explained by a fast growth of the compliances  and

. The monotonic decrease in the piezoelectric mod-

ulus  (at m = 0.5, it is less than half the starting
value) may be associated with similar behavior of the

Poisson’s ratio – / , which also decreases more
than twofold.

To conclude, our results are in good agreement with
experimental data for porous ceramics [9–11]. Poor
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agreement of estimates [11] made by the method
described in [12] with experiments is due to the fact
that the anisotropy and piezoelectric activity of the
medium were not taken into account adequately.

CONCLUSIONS

The analysis of the effective properties of two-phase
piezoactive composites shows that the introduction of
passive stiff low-permittivity admixtures even in small
amounts (≈25%) suppresses markedly the piezoelectric
activity of ferroelectric ceramics. Moreover, at a pas-
sive component concentration of ≈0.7, the composite
totally loses piezoelectric properties. As was shown
above, such behavior is associated with the metal–insu-
lator critical transition.

If the passive component is of infinite elastic com-
pliance (porous ferroelectric ceramics), the piezoelec-

tric moduli  and  remain practically constant

(the modulus  may even slightly increase) as its
concentration grows. This may be related to the signif-

icant growth of the elastic compliance components 

and , which is likely to compensate for a decrease
in the fraction of the piezoactive component in the sys-
tem. The monotonic decrease in the piezoelectric mod-

ulus  may be associated with similar behavior of the

Poisson’s ratio – / .

At a certain pore concentration, porous ceramics
exhibit the stiffness–compliance critical transition. The
effective medium method, which was used in calcula-
tions, predicts this transition at m2 = 0.5. This means
that most present-day technologies can provide stable
performance of porous ceramics only at pore concen-
trations m < m2 (≈0.5).

The results obtained are consistent with available
experimental data for porous ferroelectric ceramics.
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Abstract—Based on holographic interferometry data for electrophoresis and diffusion, an algorithm for quan-
titatively analyzing protein mass transfer in gels is suggested and implemented. The diffusion coefficients of a
number of proteins in different media are found. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Mass transfer causes phase inhomogeneities, which
may be studied with optical methods, including holo-
graphic interferometry. The application of this method
has greatly extended the potentialities of optical exper-
iment for phase inhomogeneity visualization [1, 2].

Earlier [3], the efficiency of holographic interferom-
etry in studying the electrophoresis kinetics of biologi-
cal preparations in gels was demonstrated. The use of
real-time holographic interferometry for electrophore-
sis visualization allows researchers to examine the pro-
cess directly in the working zone of an electrophoresis
column without adding dyes. Also, this method makes
it possible to trace the separation and motion of protein
fractions, control the shape of the protein fraction front,
etc.

QUANTITATIVE ANALYSIS OF PROTEIN 
ELECTROPHORETIC SEPARATION IN GELS

In this work, we tried a technique for quantitatively
analyzing interferograms that reflect the electrophore-
sis and diffusion of biological preparations in gels.
Experiments were carried out with human donor albu-
min, which makes up almost 60% of the total mass of
the blood plasma, under conditions of continuous elec-
trophoresis in 7% polyacrylamide gel. This gel has
proved efficient in studies of the protein electrophoretic
separation kinetics. Since the system is homogeneous
in this case, the heating of the gel is insignificant and
the system is stable. A slight uniform heating and elec-
tric-field-induced ion redistribution in the buffer system
show up as an inclination of finite-width fringes relative
to their initial position; however, this inclination can be
taken into account upon interferogram identification.

We used a 100-mm-high 35-mm-wide vertical elec-
trophoresis column with polyacrylamide gel of thick-
ness 7 mm. The 7 × 30-mm cross-sectional area of the
column and gel allowed us to introduce a large volume
1063-7842/04/4901- $26.00 © 20067
of samples, which was significant for the analysis of
low-concentration preparations. Under such condi-
tions, proteins were uniformly distributed over the gel’s
cross section and enter the gel simultaneously.

During electrophoresis, the protein fractions con-
centrate and form narrow regions. When a protein frac-
tion of mass m is localized in the working zone of the
column, the interference pattern represents a family of
finite-width fringes (in Fig. 1, the fringes are schemati-
cally shown as curves). The interferogram can be
described through the number N of finite-width fringes
(curves), the function f(x) of distortion for each of the
fringes, and the area S under the interference curve.

It is reasonable to assume that the area S, the mass
m of the protein localized in a given zone, and the num-
ber N of finite-width fringes are interrelated. Finding
this relationship is basic to the quantitative analysis of
protein mixture electrophoresis.

It turns out that the distortion of fringes due to pro-
tein fraction localization and the area under the interfer-
ence curve depend on the total amount m of protein
rather than on the protein concentration in a sample
under test (Fig. 2). For a fixed number N of fringes on

nN

n1

n2
n3

y

x

N

S

f, (x)

Fig. 1. Schematic representation of finite-width interfero-
metric fringes taken from protein electrophoresis.
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the interferogram and for the same amount m of pro-
tein, the value of S varies with the protein volume V in
the electrophoresis column only slightly.

We found the dependence of the area S under the
curve on the number N of fringes for various amounts
m of albumin introduced into the column (Fig. 3).

Furthermore, we experimentally substantiated the
assumption that the shape of the interference curve f(x)
depends on an electrophoretic system, the electric field
strength in an electrophoresis column, the gel porosity,
etc., and remains unchanged if the basic parameters of
electrophoresis are kept fixed. Also, it was shown that,
when the amount m of protein is varied, the area S under
the curve varies proportionally but the shape of the
curve f(x) remains constant. This fact allows one to
construct an algorithm for separating out partial pro-

20
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40

60

V, ml

S, arb. units

Fig. 2. Area S under the interferometric curve vs. volume V
of protein with the protein mass m remaining unchanged.
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Fig. 3. Area S under the interferometric curve vs. the num-
ber N of finite-width fringes on the interferogram for the
protein mass m = (1) 8, (2) 5, (3) 4, and (4) 0.5 mg.
files from the overall complex profile f(x) when pro-
teins are insufficiently separated during electrophore-
sis.

QUANTITATIVE ANALYSIS OF PROTEIN 
DIFFUSION IN GELS

Diffusion, spontaneous transfer of a material
between various parts of a system within one phase,
depends on temperature, external field, the physical
structure of biological preparations, and concentration
gradient. Diffusion causes the smearing of protein
zones and, consequently, degrades the resolving power
of electrophoretic devices. The use of holographic
interferometry for studying the diffusion of various
materials and material mixtures is exemplified in [4–7].

Below, we give a technique for determining the dif-
fusion coefficients of proteins in gels. Molecular diffu-
sion, which occurs in the presence of a concentration
gradient, is considered.

To determine the diffusion coefficient for albumin, a
certain amount of protein was introduced in polyacry-
lamide gel. Electrophoresis was examined with real-
time holographic interferometry. After the protein zone
had been formed, the interferogram of the initial stage
of diffusion was taken. Then, the electrophoresis cur-
rent was switched off and the macroscopic directed dif-
fusion of the protein in the gel, which was induced by
the concentration gradient, started.

The technique for finding diffusion coefficients is
elucidated in Fig. 4, which shows two distortions, f1(x)
and f2(x), of the fringes in the zone where the protein of
mass m is localized at the initial, t1, and final, t2, times.

The diffusion coefficient is found from Fick’s first
law

(1)

where L is the protein flux through a unit cross section
in a unit time in the direction of the concentration gra-
dient, D is the diffusion coefficient, and dc/dx is the
protein concentration gradient in the x direction.

Let us integrate both sides of (1) with respect to
time:

(2)

The integral on the right can be written as

(3)

where  is the time-averaged derivative of c(x) at
a given point x0 in the t1 – t2 time interval.

L D
dc
dx
------,–=

L td

t1

t2

∫ D
∂c
∂x
------ t.d

t1

t2

∫–=

∂c
∂x
------ td
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t2

∫ ∂c
∂x
------∆t
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------ t2 t1–( ),= =
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TECHNICAL PHYSICS      Vol. 49      No. 1      2004



        

INVESTIGATION OF PROTEIN MASS TRANSFER 69

  
This point is selected so that the diffusate at this

point is absent at the time t1. To estimate , we use
the approximation

(4)

Consider the left of equality (2):

(5)

where m1 and m2 are the masses of the material passing
through a section s at the point x0 by the times t1 and t2,
respectively.

For the point x0 thus selected, m1 = 0 and

(6)

Using these intermediate expressions, we recast
Eq. (1) in the form

(7)

Assuming that the distortion function f(x) of the
fringes is proportional to the concentration c(x), we
determine the area of the figure ABx0 and the slope of
the tangent to the curve f2(x) at the point x0. Eventually,
we find that the diffusion coefficient equals 1.2 ×
10−4 cm2/s.

As follows from the experiments, the concentration
of the polyacrylamide gel as a supporting medium can-
not be below 3%. Otherwise, the gel starts rapidly
decomposing. We determined the diffusion coefficients
for various concentrations of the gel. The diffusion
coefficient of albumin vs. the gel concentration is plot-
ted in Fig. 5.

The diffusion coefficient may also be found from
Fick’s second law

(8)

which defines the rate of concentration variation due to
diffusion. Here, D is the diffusion coefficient, t is the
diffusion time, and x is the coordinate along which the
protein diffuses.

The distortion of the fringe can be approximated
with a high accuracy by a Gaussian function. During
diffusion, the Gaussian curve expands. Assuming that
the concentration curve c(x) varies in proportion to the
curve f(x), we may represent c(x) in Gaussian form:

(9)

∂c/∂x
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where A is a normalizing factor and b is a time-depen-
dent parameter that characterizes the width of the dis-
tribution.

During diffusion, the parameter b grows; that is, the
distribution expands. However, the mass of the protein
introduced into the column and the area under the curve
c(x), which is proportional to the mass, remain the
same; therefore, we may write

(10)

The second derivative of c(x) with respect to x and
the first time derivative of c(x) are given by

(11)

(12)
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∞–

+∞
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Fig. 4. Shape of the interferometric lines f1(x) and f2(x) for
the initial, t1, and final, t2, times of diffusion.
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Fig. 5. Diffusion coefficient of albumin vs. gel concentra-
tion.
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Substituting formulas (11) and (12) into Eq. (8)
yields an expression for the diffusion coefficient:

(13)

Let it seem reasonable to interpolate a set of data
points yk for the curve c(x) by formula (9). The param-
eters b and A may be found by the least-squares
method. At the same time, simple expression (13) for
diffusion coefficient D, which was derived from Fick’s
second law, makes it possible to directly find D by mea-
suring b and ∂b/∂t. From (9), it follows that b is the half-
width of the distribution c(x) at a level of 0.6 of the
peak. We may replace the quantity ∂b/∂t by ∆b/∆t and
determine small variations ∆b for short time intervals
∆t. Such an approach to finding the diffusion coefficient
(which is based on Fick’s second law) yields D = 1.6 ×
10–4 cm2/s.

Thus, the two approaches give different values of
the diffusion coefficient. This is because uncertainty in
the position of the baseline for the curves f(x) (Fig. 4)
increases the calculation error and, accordingly, a scat-
ter in the area of the figure ABx0 and coefficient D. At
the same time, this uncertainty influences b to a lesser
extent.

CONCLUSIONS
We showed that real-time holographic interferome-

try may be useful for quantitative analysis of protein
mass transfer in gels and for finding the diffusion coef-
ficient. This method is illustrative and well compatible

D b
∂b
∂t
------.=
with modern data processing techniques. The technique
for diffusion coefficient determination may be applied
to study the diffusion of different protein components
and makes it possible to find the diffusion coefficient
under variable electrophoresis conditions.
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Abstract—Mechanisms of polarization modulation in a single-mode fiber that modulate the phase difference
between polarization modes without affecting their amplitudes are considered. A coefficient that characterizes
the efficiency of cylindrical piezoceramic modulators and is independent of their resonant properties is intro-
duced. Analytical expressions for this coefficient for different modulation mechanisms are derived. The lateral
pressure on the fiber is shown to provide the highest efficiency. For isotropic fibers, a modulator with a squeez-
ing covering, which increases significantly its efficiency, is studied. For anisotropic fibers, the most appropriate
way of phase difference modulation is longitudinal extension, in which case the birefringence axes do not have
to be matched. In most cases, the measured and predicted efficiencies are in good correspondence. © 2004
MAIK “Nauka/Interperiodica”.
INTRODUCTION

In single-mode fibers with linear birefringence,
polarization of light is analyzed in terms of a superpo-
sition of two orthogonal linearly polarized modes
[1, 2]. In the general case, polarization at the exit from
the fiber can be modulated by varying the amplitudes
and phases of the polarization modes. In certain appli-
cations, it is, however, necessary to modulate the phase
difference while keeping the amplitude ratio constant
[3, 4]. In this paper, we accomplish such a modulation
mechanically, extending and squeezing the fiber and
also changing its bend radius. Figure 1 shows typical
modulators subjected to these actions (the light guide is
marked gray, the hatched areas are immovable parts,
the transducer element that produces a varying mechan-
ical effect is shown black, and vertical hatching indi-
cates an adhesive). The analysis which follows relies on
published data [1, 5–9] and additional calculations and
experiments performed by the authors.

THEORETICAL ANALYSIS

Birefringence in single-mode fibers is described by
the difference in propagation constants for orthogonal
polarization modes Ex and Ey [1, 10]:

(1)

where λ is the optical wavelength in free space, nx and
ny are the effective refractive indices of the core for the
orthogonally polarized modes, and Λ is the polarization
beat length.

The orthogonal directions of polarization of polar-
ization eigenmodes are often referred to as the birefrin-

β βx βy–
2π
λ

------ nx ny–( ) 2π
Λ
------,= = =
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gence axes of a fiber. The modulation of the phase dif-
ference is determined by variations in the birefrin-
gence, δβ, and length, δL, of the fiber:

(2)

The efficiency of polarization modulators is usually
characterized through the ratio of the phase difference
modulation index δϕ to the product of the applied volt-
age U and interaction length L [5]:

(3)

δϕ Lδβ βδL.+=

K '
δϕ
UL
-------- rad

V m
---------- .=

(a)

(c)

(b)

(d)

(e)
2(R

 + δR
)

2r
 +

 δ
R

2(
R

 +
 δ

R
)

2(R
 + δR

)

R + δR

Fig. 1. Various designs of piezoceramic fiber-optic modula-
tors of polarization mode phase difference.
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However, this parameter depends strongly on fre-
quency because of the resonance properties of electro-
mechanical transducers (such as piezoceramic cylin-
ders, etc.). It is therefore more appropriate to compare
the efficiencies of fiber modulators with different kinds
of perturbations applied to the fiber when the efficiency
is defined as the ratio of the modulation index to a
change δR in the piezoceramic cylinder radius with the
interaction length L taken as a normalizing factor:

(4)

Note that modulation efficiency may also be defined
in terms of energy consumption, strain, etc. In this
paper, we will hold definition (4) as the most conve-
nient for practical use.

A mechanical perturbation of a single-mode fiber
gives rise to several mechanisms of phase difference
modulation. Their efficiency depends significantly on
the type of perturbation and fiber. Below, we consider
four modulation-inducing perturbations: bending
(Fig. 1a), bending with tension (Figs. 1b, 1c), lateral
pressure (Figs. 1c, 1d), and extension (Figs. 1b, 1c, 1e).

(1) Bending. To see how pure bending of an isotro-
pic fiber affects its intrinsic birefringence, it is neces-
sary to eliminate other types of deformation, in partic-
ular, longitudinal extension. To this end, several turns
of the fiber are shaped into a circle, fixed together, and
flattened in the diametral direction, so that the fiber
experiences no extension when its radius R changes
[11, Fig. 1]. As is known [1, 6], bending induces a static
birefringence β1 given by

(5)

where r is the fiber radius, CS = π (p12 – p11)(1 + µ)/λ,
µ is the Poisson’s ratio of the fiber, n1 is the refractive
index of the core, and p11 and p12 are the elastooptic
constants of quartz.

For λ = 0.633 µm, CS ≈ 2.7 × 106 rad/m. The axes of
induced birefringence are always uniquely related to
the direction of the axis of the turns: the fast axis is per-
pendicular and the slow axis is parallel to it. Relation-
ship (5) was verified experimentally.

The variation of the coil radius modulates the bire-
fringence. Using formulas (2) and (5), we obtain an
expression for the efficiency of this modulation mecha-
nism:

(6)

This formula takes into account that the length of
the deformed region of the fiber changes with the bend
radius of the coil (L = 2πRN, where N is the number of
turns). The bend-induced birefringence contains the

K
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factor of second order of smallness in r/R, which shows
that the efficiency of modulation due to pure bending is
low.

(2) Bending with tension. If the fiber is coiled
around a cylinder, a change in the cylinder radius will
change the longitudinal extension of the light guide. In
this case, the mechanism of phase difference (δϕ) mod-
ulation differs from that associated with pure bending.
In the tension-coiled fiber, an additional linear birefrin-
gence β2 appears [7],

(7)

(where ε is the longitudinal strain in the fiber), which is
added scalarly to the birefringence due to pure bending.

The directions of the optical axes in the coiled fiber
are known: they are the same as in the case of pure
bending and are related to the cylinder axis.

Formulas (5) and (7) give the total change in bire-
fringence, β1 + β2, due to a change δR in the piezocer-
amic cylinder radius:

(8)

Formula (8) assumes that r ! R and ε ! 1 and there-
fore contains only the term for dynamic tension.
Neglecting the geometrical elongation of the fiber
yields the following expression for the modulation effi-
ciency:

(9)

Within the above approximations, the modulation of
birefringence is independent of the initial static tension
of the fiber coiled around the cylinder, because (8) and
(9) do not contain ε. This fact agrees with the results
reported in [5] and is corroborated by our experiments.

(3) Lateral pressure. To simulate lateral pressure
applied to cylindrical piezoceramic fiber polarization
modulators, the fiber coiled around the cylinder was
squeezed by tightened metal coverings (Fig. 1c). With
an ac voltage applied to the ceramic cylinder, it
changed the radius, exerting a lateral pressure on the
fiber along its length. Polarization modulation arises
from the modulation of birefringence (or phase differ-
ence δϕ = δβL). The axes of the birefringence due to
bending with tension are automatically aligned with the
axes of birefringence induced by lateral pressure. In
this case, the static component of birefringence caused
by bending with tension adds up with the term β3,
which is approximately equal to [8]

(10)
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where E is the Young’s modulus of the fiber (77 GPa)
and P is the squeezing force per unit length (N/m). For-
mula (10) was verified experimentally.

Note that formula (10) for the efficiency contains
the hardly determinable parameter P, which must be
expressed through δR.

Using methods of the elasticity theory [12], we
found a relationship between the total displacement w
of the extremities of the fiber that are on the axis of
static force action and the force P:

(11)

In this expression, we neglect strains in the cover-
ings and piezoceramic cylinder. Assuming that δw =
δR, we find a relationship between changes in the
radius of the cylinder, δR, and in the force P, δP:

(12)

As follows from (10) and (12), the efficiency K of
modulation due to lateral pressure on the fiber can be
represented in the form

(13)

It should be noted that the above formulas ignore the
effect of protective polymeric coatings applied on the
fiber. They, however, may reduce significantly the bire-
fringence modulation due to lateral pressure, because
their rigidity is one to two orders of magnitude lower
than that of quartz.

Above, we considered birefringence modulation in
isotropic single-mode fibers. However, polarization
modulators based on anisotropic highly birefringent
fibers (with a beat length Λ ≤ 1 cm) are of greater prac-
tical interest. Such fibers are known to exhibit a high
intrinsic (fabrication-induced) birefringence. Anisotro-
pic fibers are capable of reliably keeping the linear
polarization of light at random external effects; there-
fore, they are widely used in polarization-sensitive
pickups.

The analysis of the δϕ modulation mechanisms is
also valid for anisotropic fibers. However, it should be
kept in mind that a misalignment between the axes of
intrinsic birefringence and axes of induced birefrin-
gence may cause unwanted coupling between polariza-
tion modes and change their amplitudes. In modulators
with birefringent fibers, any of the above mechanisms
may be accomplished only in the case of oriented fiber
coiling (for example, in fibers with an elliptic cross sec-
tion [13] that are matched to the axes of polarization
eigenmodes).

Lateral squeezing of flat fiber regions is the easiest
technique to induce phase difference modulation in an
anisotropic fiber (Fig. 1d). However, it is necessary to
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align the birefringence axes with the direction of the
force P in this case.

(4) Longitudinal extension. Unlike isotropic fibers,
anisotropic fibers are appropriate for tension-related
modulation of phase difference between polarization
modes [9]. It has been shown [14] that such a modula-
tion mechanism is efficient because of the nonuniform
distribution of the Poisson’s ratio µ and thermal expan-
sion coefficient α over the cross section of an anisotro-
pic fiber. In most cases, the cladding can be divided into
two regions with different α1, µ1 and α2, µ2 where
mechanical stresses govern intrinsic birefringence. If a
fiber of length L elongates by a small amount δL, the
intrinsic birefringence β changes by approximately [14]

(14)

Here, the dimensionless coefficient Q = (δβL)/(δLβ) is
the ratio between the phase shifts that are associated
with a change in the intrinsic birefringence and in the
geometrical elongation of the fiber.

The quantity Q can be evaluated experimentally. It
depends on the type of anisotropic fiber and is maximal
(20–25) for bow-tie fibers.

The phase difference modulation index for this way
of modulation is

(15)

The related efficiency is given by

(16)

where R is the initial length of the stretcher (Fig. 1e) or
the radius of the extending cylinder (Figs. 1b, 1c).

In modulators built around a piezoelectric cylinder,
orientational fiber coiling is unnecessary, because here
polarization modulation relies on tension alone. Bire-
fringence induced by bending combined with tension is
weak and randomly oriented with respect to the intrin-
sic birefringence axes; therefore, it does not affect the
modulation efficiency. If an anisotropic fiber is coiled
so that the intrinsic birefringence axes and the axes
induced by bending with tension coincide, the effi-
ciency may be improved.

EXPERIMENTAL

An experimental setup for studying the efficiency of
fiber-optic modulators that modulate the phase differ-
ence between polarization modes is schematically
shown in Fig. 2. Linearly polarized radiation from a
He–Ne laser is applied to a single-mode fiber; passes
through a fiber-optic modulator (M); and comes to a
photodetector (D), the signal from which is displayed
on an oscilloscope. An analyzer (A) is placed in front of
the photodetector. The polarization of the radiation at
the entrance to the fiber is adjusted with a half-wave
plate (λ/2) so that the intensities of the polarization

δβ QβδL
L

------.=

δϕ 1 Q+( )βδL.=

K4
1 Q+( )β

R
----------------------,=
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modes excited are the same. The modulator is con-
trolled by a harmonic voltage generator (G). With the
circuit tuned optimally and the phase difference modu-
lated harmonically, δϕ(t) = δϕmsin(2πft), the output sig-
nal of the photodetector is UD(t) = cos(ϕ0 + δϕm-
sin(2πft)). The modulation index δϕm can be readily
determined from the waveform of such a signal (typical
waveforms are shown in Fig. 2).

He–Ne
λ /2 A

D
M

G u(t) = sin(2πft)

δϕm = π

δϕm = 2π

δϕm = 3π

Fig. 2. Block diagram of the experimental setup and typical
waveforms of phase-difference-modulated signals.

5

200 40 60 80

10

15

N

δϕ, rad

Fig. 3. Polarization modulation index versus the number N
of turns of an anisotropic fiber coiled around a piezoceramic
modulator (R = 1.6 cm, δR = 7.3 × 10–8 m, and Λ = 3 mm).
In experiments on measuring the efficiency of the
modulators shown in Figs. 1a–1d, a standard isotropic
single-mode fiber was used.

In the modulator with pure bending (Fig. 1a), the
plates that squeeze the turns were actuated by an elec-
tromagnetic transducer (dynamic head).

The bending-and-tension mechanism of modulation
was implemented with the fiber coiled around a piezo-
ceramic cylinder (Fig. 1b).

Rigid tightened coverings (Fig. 1c) were used to
exert lateral pressure. According to our theoretical esti-
mates and measurements, such a way of pressure appli-
cation provides the greatest modulation efficiency in
this approach.

The design where a flat segment of the fiber without
a protective cladding is squeezed (Fig. 1d) also used a
piezoceramic transducer. Here, the displacement of the
surfaces that squeeze the fiber was taken as δR in the
formula for the modulation efficiency.

Experiments with anisotropic fibers used those with
a stressing elliptic cladding with a beating length Λ = 3
and 1.7 mm (Q ≈ 11).

In the experiments, we used several piezoceramic
cylinders of different radii (9.5, 14, 16, and 37 mm) and
100 × 17 × 10-mm piezoceramic bars. The piezoelectric
transducers were excited by a harmonic voltage at a fre-
quency of about 1 kHz (outside the range of natural res-
onances). Since a geometrical displacement provided
by the transducer must be known to determine the mod-
ulator’s efficiency, the oscillations of piezoceramic ele-
ments were calibrated in a series of special measure-
ments. The measurements were carried out with a
Michelson interferometer (one of the mirrors was dis-
placed by the piezoceramic element) and fiber-optic
Fabry–Perot interferometers (the fiber was fixed on the
piezoceramic element). The efficiencies obtained are
summarized in the table.
Table

Light guide Modulator structure and basic 
modulation mechanism

Efficiency

theory experiment parameters used in calculation and experiment

Isotropic Fig. 1a, pure bending 2.79 × 10–3 2.51 × 10–3 r = 50 µm; L = 0.35 m, R = 1.1 cm

Fig. 1b, bending with tension 2.68 2.2 µ = 0.17; R = 0.95 cm, r = 50 µm, L = 2.21 m

Fig. 1c, lateral pressure 7300 12.6* P = 30 N/m; E = 7.7 × 1010 N/m2;
r = 62.5 µm; L = 2.21 m

Fig. 1d, lateral pressure 8300 2000 P = 120 N/m; E = 7.7 × 1010 N/m2;
r = 62.5 µm; L = 0.08 m

Anisotropic Fig. 1b, longitudinal extension 2.65 2.6 Q = 11; Λ = 3 cm; R = 0.95 cm; L = 2.45 m

Fig. 1e, longitudinal extension 0.055 0.051 Q = 11; Λ = 1.7 cm; R = 8 cm

Fig. 1d, lateral pressure 104 1700 P = 100 N/m; E = 7.7 × 1010 N/m2;
r = 50 µm; L = 0.08 m

* Fiber with protective polymeric cladding.
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All the piezoceramic modulators had almost linear
amplitude responses at voltages of up to several tens of
volts.

The most important results of the experiments are as
follows.

The experiments have corroborated the fact that the
efficiency of lateral pressure application depends on the
value of the static lateral pressure only slightly. It was
found, in particular, that, instead of squeezing the cyl-
inder with the fiber by the metal coverings, one may
cover the fiber by wax (at frequencies above 1 kHz, wax
acquires a sufficiently high rigidity and may be used as
an outer covering).

In the design with an anisotropic fiber coiled around
a piezoceramic cylinder, the mechanism associated
with longitudinal extension dominates. In this case, the
phase difference modulation index is expected to
increase linearly with the length of the fiber in the mod-
ulator. In practice, however, a random orientation of the
coiled fiber may induce a small additional birefrin-
gence associated with the bending-and-tension mecha-
nism. The direction of the additional birefringence rel-
ative to the intrinsic birefringence is random. There-
fore, experimental curves describing the modulation
index vs. the number N of turns have a variable slope,
whose average value is determined by pure tension (see
Fig. 3). To reduce the parasitic irregular bending-
induced modulation, the piezoelectric cylinder for a
polarization modulator must have a radius as large as
possible. It should also be noted that the protective
cladding affects the efficiency of such a modulator
insignificantly. When a composite material is under
tension, internal stresses in its layers are proportional to
the rigidity of the layer, so that the quartz, whose
Young’s modulus is 10 to 100 times higher than that of
the protective cladding, takes over most of the load.
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Abstract—The initiation of H2/O2/H2O mixture combustion when asymmetric vibrations in H2O molecules are
excited by a resonant IR laser radiation is considered. It is shown that the vibrational excitation of the molecules
gives rise to new efficient channels for the formation of chemically active O and H atoms and OH radicals. As
a result, the chain mechanism of combustion in the mixtures is enhanced and, as a consequence, the induction
time is cut and the ignition temperature is lowered. Even at a minor radiant energy flux delivered to the gas
(Ein ≈ 2.5 J/cm2), the ignition temperature of the stoichiometric H2/O2 mixture containing only 5% of H2O may
become as low as 300 K. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The use of laser radiation to initiate combustion of
various mixtures has been the subject of extensive dis-
cussion [1]. To date, only three methods of laser-initi-
ated combustion have been tested experimentally.
These are laser-induced thermal heating of a medium,
photodissociation or photoionization of molecules
under the action of laser radiation, and breakdown of a
medium subjected to high-power radiation (laser spark)
[2–10].

Among the methods that have been extensively
investigated both theoretically and experimentally is
local heating of a reacting mixture by laser radiation
that is resonantly absorbed by vibrational–rotational
transitions in molecules exhibiting high rates of vibra-
tional–translational relaxation (for example, SF6 or
NH3) [2–4] (these molecules are deliberately intro-
duced into the mixture). In this case, the temperature of
the gas mixture exposed to the radiation increases,
which breaks molecular bonds and causes the forma-
tion of chemically active free radicals. These radicals
initiate chain reactions. Such a method of combustion
initiation (by CO2 laser radiation with a wavelength
λI = 10.6 µm) was applied to H2/O2, CH4/O2, C2H4/O2,
and C3H8/O2 mixtures.

In the case of photochemical combustion initiation,
the absorption of laser (usually UV) radiation by free–
bound electron transitions in a molecule irradiated
leads to photodissociation, i.e., to the formation of
active atoms or radicals, which are responsible for the
chain mechanism of combustion. With this method, the
ignition of H2/O2, CH4/O2, and C2H2/O2 mixtures
exposed to radiations with λI = 157, 193, and 242 nm
[5–7] was accomplished.
1063-7842/04/4901- $26.00 © 20076
A laser spark arises when a high-power radiation
pulse (of duration 10–100 ns and intensity 1010–
1011 W/cm2) is incident on a very narrow region (of
characteristic size 1 µm), causing multiphoton ioniza-
tion of the gas in the beam channel and, as a result, elec-
tric breakdown of a medium. In this region, the temper-
ature and pressure rise drastically (~106 K and ~108 Pa,
respectively), which generates a shock wave starting
from the beam axis and igniting the mixture. Laser-
spark ignition has been accomplished in both gaseous
and liquid media [8–10]. However, all these methods
suffer from considerable disadvantages and their effi-
ciency is low [10, 11].

Recently, a more effective method of combustion
and detonation initiation has been proposed. It is based
on the excitation of the electron states O2(a1∆g) and

O2(b1 ) by laser radiation with wavelengths λI =
1.268 µm and 762 nm, respectively [12, 13]. In this
case, combustion is initiated owing to high-rate chain
reactions involving excited O2 molecules. Here, the
laser radiation energy required is much lower
(~1 J/cm2) than in the methods considered above. The
basic cause for chain reaction intensification upon

exciting O2 molecules to the a1∆g and b1  states is a
decrease in the barrier of endoergic reactions involving
excited molecules.

Vibrationally excited molecules also react 102–
103 times faster than unexcited ones [14]. To excite
molecular vibrations, IR laser radiation is necessary. In
this case, a small amount of IR-active molecules must
be introduced into a combustible gas mixture (for
example, H2/O2). The most appropriate candidates are
H2O molecules, which absorb intensely the radiation of

Σg
+

Σg
+
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HF, CO, and CO2 lasers (of wavelengths 2.7, 5.6, and
10.4 µm, respectively) [15]. Importantly, the addition
of these molecules does not affect the properties of
combustibles [16].

The aim of this study is to analyze the kinetic mech-
anisms behind combustion initiation in H2/O2/H2O
mixtures when the vibrational degrees of freedom of
H2O molecules are excited by laser radiation.

STATEMENT OF THE PROBLEM AND BASIC 
EQUATIONS

An H2O molecule has three (symmetric, ν1 =
3656 cm–1; deformation, ν2 = 1594 cm–1; and asymmet-
ric, ν3 = 3755.8 cm–1) vibrational modes. The rotational
motion of an H2O molecule and, correspondingly, a set
of rotational energy levels can be described in terms of
the asymmetric top model, where the energy of the top
is characterized by three quantum numbers J, Ka, and
Kc [17]. The first determines the total angular momen-
tum; the second and third ones, its projection onto the
axis of an oblate and prolate symmetric top. Therefore,
a vibrational–rotational state of an H2O molecule is
defined by three vibrational, Vi (i = 1–3), and three rota-
tional quantum numbers: m ≡ V1V2V3(JKaKc).

Radiations with λI ≈ 2.7 and 5.6 µm are absorbed at
the 000  001 (100) and 010  001 (100) vibra-
tional–rotational transitions, respectively; radiation
with λΙ ≈ 10.4 µm, at the 000  010 transition [15].
Laser excitation of the vibrations will be effective if the
condition τI ! τV is met, where τI is the time of induced
transitions and τV is the relaxation time of an excited
state. The asymmetric mode of an H2O molecule has
the longest relaxation time [18]. Therefore, the maxi-
mum excitation efficiency of molecular vibrations in
H2O is achieved when the radiation with λI ≈ 2.7 µm is
used.

We will analyze a stoichiometric H2/O2 mixture
(containing 5% of water vapor) exposed to radiation
with λI = 2.66 µm. In an H2O molecule, this radiation is
absorbed at the center of the spectral line for the
000(634)  001(633) transition. Consider the case
when τI > τt, τr, and τVV , where τt and τr are the charac-
teristic times of translational and rotational relaxations,
respectively, and τVV is the time of vibrational–vibra-
tional intramode exchange. One may assume that, at t ≥
τI, translational and rotational degrees of freedom in the
molecule are in thermodynamic equilibrium and that
the Boltzmann distribution of molecules over vibra-
tional levels with a related vibrational temperature Tξ is
established very rapidly within each of the modes (ξ =
1, …, n, where n is the number of modes both in initial
molecules of the reactive mixture and in resultant mol-
ecules).

Consider processes occurring in the central zone of
the laser beam (r < Rb) with the Gaussian intensity dis-

tribution along its radius: I(r, t) = I0(t)exp(–r2/ ),
where Rb is the characteristic radius of the pulsed radi-

Rb
2
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ation beam. The duration of the pulse is τp, so that
I0(t) = I0 at 0 < t ≤ τp and I0(t) = 0 at t > τp. The variation
of the hydrodynamic parameters and reactant concen-
trations in the irradiation zone is specified by the hier-
archy of characteristic times for different processes of
macro- and microtransfer [19, 20]. For a vibrationally
nonequilibrium reacting gas, these times are the time τa

of propagation of acoustical vibrations across the

beam; the times of multicomponent, , and thermal,

, diffusions of an ith component; the time  of
vibrational thermal diffusion; the time τλ of heat con-
duction; the time of change of the state of the medium
under the action of the striction force τF, the time τI of
induced transitions, the energy relaxation time τV for
vibrationally excited states, the pulse duration τp, and

the characteristic time  of the chemical reaction that
produces (destroys) a component responsible for the
chain mechanism of the process (in our case, these
components are O and H atoms and OH radicals).

For a stoichiometric H2/O2 mixture containing 5%
water vapor (H2/O2/H2O = 0.633/0.317/0.05) exposed
to radiation with λI = 2.66 µm, the estimation of these
characteristic times under the conditions typical of
numerical experiments (I0 = 1–20 kW/cm2, Rb = 10 cm,
P0 = 103–105 Pa, and T0 = 300–700 K), we have τa ≈ 2 ×
10–4 s, τI = 3 × 10–6–4.5 × 10–4 s, τV = 3.4 × 10−7–2 ×
10−5 s, τD ~ τT ~ τλ ~  = 0.3–10 s, and τF = 0.1–1 s.
Consider the cases where τV < τI ≤ τp < τa ! τD, τF.
Under these conditions, the coefficient kν of radiation
absorption by H2O molecules varies from 5 × 10–4 to

2 × 10–2 cm–1. Therefore, the condition  @ Rb is also
valid. Hence, one may neglect the variation of the
parameters along the direction of beam propagation
and use the approximation of thin optical layer. The
system of equations of state for the medium at the cen-
ter of the zone exposed can then be written in the form

τD
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τT
i τDi

V
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Here, ρ, T, and P are the density, temperature, and pres-
sure of the gas, respectively; R is the universal gas con-
stant; K is the Boltzmann constant; h0i is the enthalpy of
formation of an ith component in the mixture at T =
298 K; µi is the molecular mass of this component; S is
the number of molecular components; L is the number

QVT
ξ εξ0 εξ–( ) 1 yξ0–( ) Wξ 0,

i γi,
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of components consisting of linear molecules; θξ is the
characteristic vibrational temperature of a ξth mode; gξ
is the degeneracy multiplicity of the ξth mode; Z is the
number of modes in a molecule of an ith sort;  =

γi and  = Wξ, pγj(ξ  i, p  j) in
the case of intra- and intermolecular V–V' exchange,

respectively;  is the rate constant of V–T relax-
ation due to collision with an ith partner; Ni is the con-
centration of molecules of an ith sort; M1 is the number
of atomic and molecular components in the mixture; lξ
is the number of vibrational quanta that are lost or
gained by a ξth mode in V–V ' exchange (L1 is the num-

ber of V–V ' exchange channels);  and  are the
stoichiometric coefficients of a qth reaction that pro-
duces an ith component; k+q and k–q are the rate con-
stants of a forward (+) and back (–) qth reaction,
respectively; L2 is the number of reactions that produce
(destroy) a molecule containing the mode ξ; M2 is the
number of reactions that form an ith component; βrj are
the coefficients of expansion of an rth reaction in coor-
dinates of the normal modes; Er is the part of the acti-
vation energy of an rth reaction that is accounted for by

the vibrational degrees of freedom;  is the activa-
tion energy of an rth chemical reaction that destroys
(produces) a vibrationally excited molecule; lξ, I is the
number of vibrational quanta gained (lost) by the mode
ξ due to induced transitions; Nm and Nn are the concen-
trations of H2O molecules in the lower and upper states
of the transition m  n, respectively; gm and gn are the
degeneracy multiplicities of these states, respectively; h
is the Planck constant; λmn is the wavelength at the cen-
ter of the spectral line of the absorbing transition m 
n; Amn is the Einstein coefficient for this transition; bD is
the half-height Doppler width of a spectral line; and
H(x, a) is the Voigt function. The value of this function
was evaluated with allowance for the joint action of the
Doppler and collisional broadening of a spectral line.

The values of the collisional broadening coefficient 
(M = H2, O2, and H2O) were taken the same as in [15].
The values of βrξ were taken to be equal to unity (as in
[21]). If the translational and vibrational degrees of
freedom of molecules participating in a reaction are not
in equilibrium, the rate constant of a chemical reaction
is a function of T and Tξ (in the framework of the mode
approximation) and can be represented in the form

Here, (T) is the rate constant of a qth chemical reac-
tion at Tξ = T and ϕ(T, Tξ) is the nonequilibrium factor.
The value of this factor at given T and Tξ was calculated
in the same way as in [21]. The kinetic model used in
this paper to analyze combustion initiation takes into
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consideration (i) 29 reversible chemical reactions with
the participation of H, O, OH, H2O, H2, O2, HO2, H2O2,
and O3; (ii) vibrational–vibrational (V–V ') exchange
between the symmetric, deformation, and asymmetric
(ν1, ν2, and ν3) vibrational modes of H2O; the modes of
H2 (ν4), O2 (ν5), and OH (ν6); the symmetric, deforma-
tion, and asymmetric vibrational modes of HO2 (ν7, ν8,
and ν9) and O3 (ν10, ν11, and ν12) molecules; and
between the modes of an H2O2 molecule (ν13, ν14, ν15,
ν16, and ν17); and (iii) vibrational–translational (V–T)
energy relaxation for the modes ν2, ν4, ν5, ν6, ν9, ν11,
and ν15. The temperature dependences of the rate con-

stants (T) for the chemical reactions,as well as of the

rate constants for V–V ' exchange (  and Wξ, p) and

V–T relaxation ( ) were taken the same as in [21].

COMBUSTION INITIATION IN THE H2/O2/H2O 
MIXTURE UNDER IRRADIATION 

WITH ΛI = 2.66 µm

It is known that a gas mixture in a zone with a radius

Rb is ignited when the condition  ≤  is fulfilled.

For an H2/O2 mixture,  is the formation time of

active H and O atoms and OH radicals and  is the
time it takes for them to leave the reaction zone. In the
problem under consideration, the latter is the diffusion
time of the lightest carriers of the chain mechanism

(H atoms); i.e.,  = . Thus, at  > , the value
of the induction period τin is bound from above by the

time . Figure 1 shows the dependences of  (for
Rb = 10 cm) and τin for different laser radiation energies
delivered to the gas (Ein = I0τp) on the initial tempera-
ture of the H2/O2/H2O = 0.633/0.317/0.05 mixture at
P0 = 103 Pa. It is seen that the radiation with λI =
2.66 µm cuts considerably τin and decreases the self-
ignition temperature Tign. In a first approximation, the
value of Tign can be found from the relationship τin(Tign,

P0, Ein) = (Tign, P0). Even at Ein = 1 J/cm2, Tign equals
540 K instead of 750 K when Ein = 0. At Ein ≥ 2.7 J/cm2,
ignition becomes possible at temperatures as low as
300 K. At Ein = 10 J/cm2, a new tendency in the τin vs.
T0 dependence is observed (as T0 decreases starting
with 600 K, so does τin).

The decrease in the delay times of ignition, which
are observed when asymmetric vibrations of an H2O
molecule are excited by laser radiation, are explained
by a change in the formation kinetics of chemically
active O and H atoms and OH radicals and also by an
increase in the temperature of the mixture due to V–T-
relaxation of the vibrational energy of the H2O mole-
cules excited. Figure 2 shows the mole fractions of the
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initial and resultant components in the H2/O2/H2O mix-
ture (at T0 = 600 K and P0 = 103 Pa) vs. time for Ein = 0
and 2.5 J/cm2. It is seen that, when the gas is exposed to
radiation with λI = 2.66 µm, both the dependences γi(t)
and the temperature dynamics change. While at Ein = 0
the maximum concentrations in the interval [0, τin] are
typical of O3, H, and HO2, at Ein = 2.5 J/cm2, the maxi-
mal concentrations are reached for H, O, and OH.
Moreover, the latter components form even at t < τp.
After the relaxation of the laser energy absorbed by the
H2O molecules at t > τV (at the given T0 and P0, τV ≈ 7 ×
10−5 s), the gas temperature begins to rise. At t = τp, it
reaches 840 K and subsequently (in the interval [τp, τin])
remains virtually unchanged.

Nevertheless, the basic reason for the decrease in τin
is the appearance of new effective channels for the for-
mation of H and O atoms and OH radicals rather than
the heating of the medium. For example, if only the
thermal mechanism worked, the value of τin would be
2.24 × 10–2 s. If, however, we also take into account the
formation of H, O, and OH upon the excitation of H2O
molecules, the value of τin declines to 9.2 × 10–3 s. With
decreasing T0, the difference in the values of τin grows
and reaches 5.7 times at T0 = 300 K and Ein = 5 J/cm2.

It should be noted that the excitation of asymmetric
vibrations in an H2O molecule by radiation with λI =
2.66 µm also causes symmetric vibrations in H2O
(because of the high-rate intramolecular V–V '
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exchange H2O(001) + M = H2O(100) + M) and vibra-
tions in an H2 molecule (due to the intermolecular V–V '
exchange H2(V = 0) + H2O(001) = H2(V = 1) + H2O
(000)). This is illustrated in Fig. 3, which shows the
time variation of the vibrational, Tξ (ξ = 1, 2, 3, 4, 5, 6),
and translational, T, temperatures after the ignition of
the H2/O2/H2O mixture at T0 = 300 K and P0 = 103 Pa
for Ein = 5 J/cm2. Note that initially (t < 10–5 s) the
vibrational temperature of OH grows due to the V–V'
exchange OH(V = 0) + H2O(100) = OH(V = 1) +
H2O(000), while at t > 10–5 s, it grows because the
energy being released goes into OH vibrations when
the chemical reaction H2 + O2 = 2OH proceeds. Thus,
the radiation with λI = 2.66 µm creates the situation
where not only vibrationally excited H2O molecules but
also excited H2 molecules and OH radicals enter into
the chemical reactions within the interval [0, τp].

The excitation of H2O and H2 molecules provides
new effective channels for the production of O and H
atoms and OH radicals. Figure 4 demonstrates these
channels for the cases when excited H2O molecules in
the H2/O2/H2O mixture are absent and when H2O mol-
ecules are excited by the radiation with λI = 2.66 µm.
The basic chain-initiating reaction at T0 < 800 K (exci-
tation is absent) is the reaction H2 + O2 = 2OH, which
produces vibrationally excited OH radicals. Next, the
OH radicals react with the H2 molecules to form H
atoms: OH + H2 = H2O + H. The H atoms react with the
O2 molecules to produce O atoms and OH radicals: H +
O2 = OH + O. This is one of the reactions responsible
for chain propagation. The O atoms, when reacting
with the H2 molecules, produce OH and H. This is the
second basic reaction in the chain mechanism of ignit-
ing the H2/O2 mixture. Another reaction in which the H
atoms participate is the formation of HO2: H + O2 +
M = HO2 + M. At low temperatures (T0 < 800 K) and
sufficiently high pressures (P0 > 104 Pa) of the mixture,
the HO2 molecules recombine intensely to form inac-
tive hydrogen peroxide.

The radiation-induced (λI = 2.66 µm) excitation of
asymmetric vibrations in H2O molecules alters consid-
erably the combustion initiation scheme. Indeed,
excited H2O molecules dissociate even at low tempera-
tures. In addition, they react with O2 molecules
~102 times more rapidly than unexcited ones. There-
fore, the basic chain-initiating reactions in this case are
those involving excited H2O molecules: H2O(100, 001) +
M = H + OH + M, H2O(100, 001) + O2 = OH + HO2,
and H2O(100, 001) + O2 = H2O2 + O, which immedi-
ately produce active O and H atoms and OH radicals.
Another important feature of this chain process is the
presence of vibrationally excited H2 molecules in the
mixture. The rate of the branching chain reaction
H2(V = 1) + O = H + OH far exceeds that of the reaction
with the participation of unexcited H2 molecules. That
is why the delay time of ignition shortens and Tign
declines when molecular vibrations in H2O molecules
are excited by laser radiation.
TECHNICAL PHYSICS      Vol. 49      No. 1      2004
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Now let us compare the efficiency of the combustion
initiation method proposed (which relies on the excita-
tion of asymmetric vibrations in H2O molecules) and
the method of direct heating of a reactive mixture by
resonant laser radiation (the total energy absorbed by
the gas is spent on heating a medium), which is cur-
rently the subject of wide speculation. Figure 5 shows
the associated dependences of τin on the initial pressure
of the H2/O2/H2O = 0.633/0.317/0.05 mixture at T0 =
300 K, the laser energy density Ein = 5 and 10 J/cm2,
and τp = 10–4 s. It is seen that, when H2O molecules are
excited by radiation with λI = 2.66 µm and Ein =
5 J/cm2, τin may be five to ten times shorter. At Ein =
10 J/cm2, this difference decreases slightly but remains
significant (2.5–5 times) in the range P0 = 102–104 Pa.
Also, for each Ein, there exists the boundary value of the
initial pressure, P0b, above which the value of τin starts
increasing. The higher Ein, the greater P0b. It should be
noted that the value of P0b also depends on the initial
temperature of the mixture (P0b increases with T0).
Such behavior of the dependences τin(P0) for the
H2/O2/H2O mixture is explained by the fact that, at low
T0 (P0 > P0b), HO2 molecules are formed by the reaction
H + O2 + M = HO2 + M, the rate of which, at T < 800 K,
is higher than the rate of the chain propagation reaction
H + O2 = OH + O. Under these conditions, the dominat-
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Fig. 4. Formation of the chain mechanism upon igniting the
H2/O2/H2O mixture (a) without the excitation of the H2O
molecules and (b) with the excitation of molecular vibra-
tions in the H2O molecules by radiation with λI = 2.66 µm.
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ing process with the participation of HO2 becomes the
recombination reaction 2HO2 + M = H2O2 + O2 + M
(Fig. 4). At low temperatures, H2O2 molecules are inac-
tive and serve as a sink for the chain mechanism carri-
ers (H atoms). An increase in Ein accelerates the H atom
production by the reaction H2O(001) + M = H + OH +
M and, accordingly, increases P0b.

CONCLUSIONS

The excitation of asymmetric vibrations in an H2O
molecule by laser radiation leads to the formation of
new effective channels for the production of chemically
active O and H atoms and OH radicals. This, as well as
the presence of vibrationally excited H2 molecules,
which form via the V–V' exchange H2O(001) + H2(V =
0) = H2O(000) + H2(V = 1), enhances the chain mecha-
nism of combustion in the H2/O2/H2O mixture. Accord-
ingly, the induction time and the ignition temperature
decrease. Even at a low radiation energy density deliv-
ered to the H2/O2/H2O mixture, Ein = 2.7 J/cm2, the
ignition temperature of the mixture kept at a low pres-
sure (P0 = 103 Pa) may be lowered down to 300 K. For
combustion initiation, the excitation of asymmetric or
symmetric vibrations in H2O molecules by resonant
laser radiation is much more (five to ten times) effective
than the thermal heating of the medium by IR laser
radiation. Since H and O atoms, as well as OH radicals,
are also responsible for the chain mechanism in igniting
hydrocarbon fuels, our method of chain reaction inten-
sification, which is based on the laser-induced excita-
tion of molecular vibrations in reactant molecules (or in
IR-active molecules deliberately introduced into the
mixture), may be efficient in various applications.
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Fig. 5. Dependences τin(T0) for the H2/O2/H2O =
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asymmetric vibrations in the H2O molecules are excited
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Abstract—Energy transfer from higher modes of capillary vibrations of an incompressible liquid charged drop
to the lowest fundamental mode under four-mode resonance is studied. The resonance appears when the prob-
lem of nonlinear axisymmetric capillary vibration of a drop is solved in the third-order approximation in ampli-
tude of the multimode initial deformation of the equilibrium shape of the drop. Although the resonant interac-
tion mentioned above builds up the fundamental mode even in the first order of smallness, its amplitude turns
out to be comparable to a quadratic (in small parameter) correction arising from nonresonant nonlinear inter-
action, since the associated numerical coefficients are small. © 2004 MAIK “Nauka/Interperiodica”.
Nonlinear vibration of charged drops is of consider-
able interest in a variety of areas of science and technol-
ogy. This problem has been repeatedly considered in
statements of different degree of complexity and rigor
(see, for example, [1–8] and references therein). Never-
theless, several issues of considerable interest remain to
be investigated. It is still unclear, in particular, whether
the fundamental mode amplitude may by resonantly
enhanced by gaining energy from higher modes. This
problem is of crucial importance in the theory of thun-
derstorm electricity in the context of lightning initiation
by a corona near a large charged drop or water-covered
hailstone in a storm cloud [9, 10]. Although such a
mechanism seems plausible, considerable evidence for
this mechanism is still lacking. According to full-scale
experimental data [11], the self-charge of large drops
and hailstones in clouds is too low for a corona dis-
charge to be initiated near them or the surface of a drop
to become unstable. At the same time, it is obvious that,
when a drop elongates into a body close to a spheroid,
the field strength near its vertices increases appreciably.
A drop may extend into a spheroid through the excita-
tion of the fundamental vibration mode upon resonant
energy transfer from higher modes to the fundamental
one [12–14]. However, calculations [12, 13] show that,
under three-mode nonlinear resonant interaction
between vibration modes, the lowest mode that can
acquire energy from higher modes is the third one. The
fundamental (second) mode is involved in resonant
interaction with higher modes only in third-order calcu-
lations of the amplitude of the initial deformation of a
drop, where four-mode resonances appear [8, 15]. Note
that three-mode resonances arising in second-order cal-
culations cause a first-order effect; i.e., the amplitude of
a mode excited via energy exchange with higher modes
is of the first order of smallness [13] and may exceed
the amplitudes of initially excited higher modes. There-
1063-7842/04/4901- $26.00 © 20008
fore, a question of pure scientific interest that is perti-
nent to the theory of nonlinear interaction arises: Of
which order of smallness will a mode be excited via
resonant energy exchange upon four-mode interaction,
which appears only in the third order of smallness? To
tackle this question, we will solve the problem consid-
ered below.

(1) Consider a liquid drop with a radius R and
charge Q in the absence of the environment and gravi-
tational field. We consider an ideal incompressible per-
fectly conducting liquid with a density ρ and surface
tension coefficient γ. Let the equilibrium spherical
shape of the drop be subjected to a small-amplitude per-
turbation at zero time. Our aim is to trace the temporal
evolution of the shape of the drop and to analyze its
vibration under the action of capillary and electric
forces. Considering that the flow inside the drop is
caused by weak vibrations of its surface, one may
assume that the flow is potential; i.e., the velocity field
is characterized by a potential ψ. The electric field
potential around the drop is denoted by φ. The shape of
the drop is assumed to be axisymmetric for all time. In
the dimensionless variables such that ρ = 1, R = 1, and
γ = 1, the equation for the surface of the drop in the
spherical coordinate system related to the drop’s center
of mass has the form

(1)

where r and ϑ are the spherical coordinates and ξ(ϑ , t)
is the function describing the deviation of the shape
from the spherical one (|ξ(ϑ , t)| ! 1).

The mathematical statement of the problem con-
tains the Laplace equations for the liquid-velocity and
electric-field potentials

(2)

F r ϑ t, ,( ) r 1– ξ ϑ t,( )–≡ 0,=

∆ψ 0, ∆φ 0;= =
004 MAIK “Nauka/Interperiodica”
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the boundedness conditions

(3)

(4)

the kinematic and dynamic boundary conditions

(5)

(6)

the constancy condition for the volume of the drop

(7)

the stationarity condition for the center of mass

(8)

the constancy condition for the total charge

(9)

the constancy condition for the electric potential over
the surface of the drop

(10)

and the initial conditions

(11)

In expressions (2)–(11), pat, p, pq, and pσ are the
atmospheric pressure, hydrodynamic pressure in equi-
librium, electric field pressure, and capillary pressure,
respectively; n is the unit vector that is normal to the
surface of the drop; φS is the electric potential of the
drop; ε is the initial deformation amplitude, which is a
small parameter of the problem; Ω is the spectrum of
modes specifying the initial deformation; hk is the par-
tial contribution of a kth mode to the initial deformation

(  ~ O(1)); Pk(cosϑ) is the kth-order Legendre

polynomial; ξ0 and ξ1 are quantities defined in such a
way that integral conditions (7) and (8) are valid at the
initial time instant; and ∆ is the Laplacian.

For convenience, we supplement the set of constants
hk so that hk ≡ 0 for any k ∉  Ω .

(2) We will solve boundary problem (2)–(11) by the
method of many scales up to the third order of small-

r 0: —ψ 0,

r +∞: —φ 0;

r 1 ξ ϑ t,( ): ∂ξ
∂t
------– —ψ —F⋅++ 0,= =

∂ψ
∂t
-------

1
2
--- —ψ( )2+ p pq pat– pσ;–+=

r2 ϑ drdϑ dϕsin

V

∫ 4π
3

------,=

V r ϑ ϕ 0 r 1 ξ ; 0 ϕ π; 0 ϕ 2π≤ ≤≤ ≤+≤ ≤, ,{ } ;=

rr2 ϑ drdϑ dϕsin

V

∫ 0;=

n —ϕdS⋅
S

∫ 4πQ– ,=

S r ϑ ϕ r, , 1 ξ ; 0 ϑ π; 0 ϕ 2π≤ ≤≤ ≤+={ } ;=

r 1 ξ ϑ t,( ): φ+ φS t( );= =

t 0: ξ ξ 0P0 ϑcos( ) ξ1P1 ϑcos( )+= =

+ ε hkPk ϑcos( ),
∂ξ
∂t
------

k Ω∈
∑ 0.=

hk

k Ω∈
∑
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ness in initial perturbation amplitude ε. To this end, we
represent all desired values in the form of expansions in
powers of ε and assume that they depend not merely on
time but on various time scales Tj = ε jt (j = 0, 1, 2). In
this case, the time derivative is expressed via deriva-
tives with respect to the time scales Tj as follows:

Substituting the expansions

(12)

(13)

(14)

(15)

into boundary-value problem (2)–(11) and collecting
terms with the same powers of ε, we come to the prob-
lems of different orders of smallness (see Appendix A).

In expansions (14) and (15), φ(0) = Q/r and  = Q are
zeroth-order solutions, which correspond to the equi-
librium (spherical) surface of the drop.

Since the Laplace equations are linear, the functions
ψ(k) and φ(k) are obviously solutions to equations that are
similar to (2). Subject to boundedness condition (3),
(4), one may write

(16)

(17)

The function describing the deviation of the surface
from the spherical shape is represented by a similar
expansion in Legendre polynomials:

(18)

Note that, when considering the problem in the
third-order approximation, we can find the depen-
dences of the first-order temporal coefficients in (16)–

(18) on three time scales: (T0, T1, T2), (T0, T1,

T2), and (T0, T1, T2); the dependences of the sec-

ond-order coefficients on two scales: (T0, T1),

(T0, T1), and (T0, T1); and the dependences of

the third-order coefficients only on T0: (T0),

(T0), and (T0).

Sequentially using solutions (16)–(18) for k = 1, 2,
3 and the sets of first-, second-, and third-order bound-

∂
∂t
----- ∂

∂T0
--------- ε ∂

∂T1
--------- ε2 ∂

∂T2
---------.+ +=

ξ εξ 1( ) ε2ξ 2( ) ε3ξ 3( ) O ε4( ),+ + +=

ψ εψ 1( ) ε2ψ 2( ) ε3ψ 3( ) O ε4( ),+ + +=

φ φ0( ) εφ 1( ) ε2φ 2( ) ε3φ 3( ) O ε4( ),+ + + +=

φS φS
0( ) εφS

1( ) ε2φS
2( ) ε3φS

3( ) O ε4( )+ + + +=

φS
0( )

ψ k( ) rnDn
k( ) t( )Pn ϑcos( ) k 1 2 3, ,=( ),

n 1=

∞
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φ k( ) Fn
k( )

t( )
rn 1+

----------------Pn ϑcos( ) k 1 2 3, ,=( ).
n 0=

∞
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ξ k( ) Mn
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∞
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ary conditions, we obtain differential equations for the

coefficients (t), which characterize the temporal
variation of the surface of the drop.

(3) Solving the first-order problem for the coeffi-

cients  (see Appendix A), we arrive at an equa-
tion harmonic in T0:

(19)

where  = n(n – 1)(n + 2 – W) is the natural frequency
of an nth mode of the surface vibrations and W =
Q2/(4π) is the Rayleigh parameter characterizing the
stability of the drop against the self-charge.

A general solution to Eq. (19) includes arbitrary
functions: either one complex function or two real ones,
which depend on the time scales T1 and T2:

(20)

(hereafter c.c. stands for the complex conjugates to the

preceding terms). Here, (T1, T2) = (T1,

T2)exp[i (T1, T2)] are the complex amplitudes and

(T1, T2) and (T1, T2) are the real functions char-
acterizing the amplitude and phase of vibrations. The

form of the functions (T1, T2), (T1, T2), and

(T1, T2) is found by solving the higher order prob-
lems.

(4) Considering the second-order problem (see
Appendix A), we obtain an inhomogeneous differential

equation for the evolutionary coefficients (t):

(21)

The constants γkmn and ηkmn are given in Appendix B.
In order that a solution to Eq. (21) be free of secular

terms, the terms that depend on the time T0 in the form
exp[iωnT0] must be eliminated from its right-hand side.
This will allow us to find the dependences of the func-
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tions (T1, T2) (or (T1, T2) and (T1, T2)) on
the time scale T1. In the simplest case, we have

(22)

which means that , , and  are independent
of T1.

The careful examination of the inhomogeneity func-
tion for Eq. (21) shows that, if either of the two relation-
ships ωn = ωp ± ωq is fulfilled for three modes of capil-
lary vibrations with the numbers n, p, and q, the
requirements of eliminating secular terms from solu-
tions to similar equations (written for the modes n, p,
and q) are reduced to a set of three coupled differential
equations that define the dependence of the interrelated

functions (T1, T2), (T1, T2), and (T1, T2) on
the time scale T1. In this case, it is customary to speak
of internal three-mode resonant interaction between
capillary vibrations of the drop, which was considered
in [12, 13].

A general solution to Eq. (21) also includes either

one complex, , or two real,  and , arbitrary
functions; however, these functions are dependent only
on the time scale T1. If three-mode resonant interac-
tions are absent, the solution to Eq. (21) for vibration
modes (n > 2) has the form

(23)

Expressions for the constants  and  are
given in Appendix B. The form of the functions

(T1), (T1), and (T1), where (T1) =

(T1)exp[i (T1)], can be determined only by solv-
ing the third-order problem.

(5) Let us analyze in greater detail an inhomoge-
neous differential equation for the evolutionary coeffi-

cients (t), which follows from the set of third-order
boundary conditions (see Appendix A):
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(24)

where  ≡ ωk ± ωl ± ωm and δi, j is the Kronecker
delta.

Expressions for the coefficients used in (24) are
given in Appendix B. For brevity, complex conjugates
on the right-hand side of (24) are omitted.

× Ak
1( )Ag

2( )( ) Hkgn
0 –( ) i ωk ωg–( )T0[ ] Ak

1( )Ag
2( )( ) }exp+

+
1

2k 1+( )
-------------------- 2 n 1–( )ωnωk Ξn–[ ] Ak

1( )( )2{
k 2=

∞

∑
× i ωn 2ωk+( )T0[ ]exp 1 δn k,–( ) 2 n 1–( )ωnωk Ξn+[ ]–

× Ak
1( )( )

2
i ωn 2ωk–( )T0[ ] } An

1( )
exp

+ Dk m,
l n, δm l 1+, δk n 1–, δk n 1+,+( )χ lβk m 1 l n, , , ,

1 –( ) Dk n,
l m, Hk m l n, , ,

1 –( ) +( )+[ ]

× iΨk l m, ,
+( ) –( )T0[ ] Al

1( )Am
1( )( )exp

+ Dk m,
l n, Dk l,

m n, δm l 1+, δk n 1–, δk n 1+,+( )χ lβk m 1 l n, , , ,
2 +( ) Hk m l n, , ,

2 +( ) +( )+[ ]

× iΨk l m, ,
–( ) –( )

T0[ ] Al
1( )

Am
1( )⋅( )exp

+ Dk l,
m n, δm l 1+, δk n 1–, δk n 1+,+( )χ lβk m 1 l n, , , ,

2 –( ) Dk n,
l m, Hk m l n, , ,

2 –( ) –( )
+[ ]

× iΨk l m, ,
–( ) +( )T0[ ] Al

1( )
Am

1( )( )Ak
1( ),exp

Ψk l m, ,
±( ) ±( )
TECHNICAL PHYSICS      Vol. 49      No. 1      2004
By analogy, the requirement of eliminating secular
terms from a solution to Eq. (24) allows one to deter-

mine the form of the functions (T2) and (T1). In
the simplest case when resonant interactions between
vibration modes are absent, this requirement has the
form

hence, it readily follows that

(25)

whereas  is independent of the time T2 and  and

 are independent of the time T1. Expression (25)
defines second-order corrections to the natural frequen-
cies ωn of the capillary vibrations of the drop (see (20)).

With initial conditions (11) met, a solution to
Eq. (24) can be written in the form (provided that the
components giving rise to secular terms are eliminated
from its right-hand side)
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Analyzing the form of the inhomogeneity function
for Eq. (24), one easily checks that, along with three-
mode resonant interaction (which appears in the sec-
ond-order problem (see (21)), four-mode resonant
interaction is also possible. It arises when the natural
frequencies of modes with numbers n, p, q, and s satisfy
either of the two relationships ωp ± ωq – ωs = ωn (see the
triple sum in the inhomogeneity function for Eq. (24)). It
may also happen that one of the modes takes part in res-
onant interaction twice (degenerate resonance). More-
over, in the third-order approximation considered, three-
mode resonant interaction may also arise such that first-
order modes, which are responsible for the initial defor-
mation spectrum, exchange energy with second-order
modes (see the double sum in the inhomogeneity func-
tion for Eq. (24)). Interactions of such types have not
been found in the previous third-order calculations [2].

(6) Let us consider four-mode interaction more
closely. To reflect the fact that the frequency combina-
tions ωp ± ωq – ωs is close to the frequency ωn, we intro-
duce a mismatch parameter σ ~ O(1) given by

(26)

Supplementing (24) by similar equations for modes
with the numbers p, q, and s and eliminating compo-
nents responsible for secular terms in solutions from
their right-hand sides, we derive a set of coupled differ-

ential equations for  (where i = 1, 2; j = n, p, q, s).
By way of example, we show such a set for the first of
resonance situations (26) ωp + ωq – ωs = ωn(1 + ε2σ):

(27)

(for the notation used, see Appendix B). For the second
resonance situation (ωp – ωq – ωs = ωn(1 + ε2σ)), the set
of equations is similar to (27).

Set (27) must be supplemented by the requirements
of eliminating secular terms from solutions to differen-
tial equations for the second-order amplitudes of modes
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with the numbers n, p, q, and s (see (21)). Assume that
these modes are involved in none of the resonances
other than those given by (26). This means that, in the
second-order approximation, expressions like (22) are

valid for the functions , , , and , so
that these functions are independent of the time T1. As
a result, we find that the left-hand and right-hand sides
of Eqs. (27) are functions only of T1 and only of T2,
respectively. Since T1 and T2 in the method of many
scales are independent variables, the left-hand and
right-hand sides of Eqs. (27) should be set equal to a
constant, for example, to zero.

For the functions  (where j = n, p, q, s), we
obtain

hence, , , and  are constants and equal their
initial values, which are readily found from (11) and
(12) in view of (18), (20), and (23):

Eventually, expression (23) for the second-order
amplitudes takes the form

(28)

For the functions  (where j = n, p, q, s), we
obtain complex equations by equating the real and
imaginary parts to zero. For the determination of the

functions  and  (j = n, p, q, s), we may write
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(29)

The initial conditions for set (29) are also easily
obtained from initial conditions (11) subject to (12),
(18), and (20). The form of Eqs. (29) suggests that four-
mode resonance may show up only if the amplitudes of
at least three of interacting modes are other than zero at
zero time. As an example, consider the situation where
modes with the numbers p, q, and s are present in the
spectrum specifying the initial deformation of the drop,
while the nth mode is excited via mode interaction (that
is, p, q, s ∈  Ω; n ∉ Ω ). In this case, the set of Eqs. (29)
must be supplemented by the initial conditions

(30)

Subject to initial conditions (30), solutions to set (29)

yield the first-order amplitudes (t) (see (20)) as
functions of the slow time scale T2 = ε2t for modes tak-
ing part in resonant interaction (j = p, q, s, n).

(7) Figure 1 shows the results of numerical calcula-
tions for the resonance situation ω17 + ω21 – ω30 = ω2

with W = 0.460245 (W = Q2/4πγR3 is the dimensionless
parameter that characterizes the self-charge of the
drop). It was assumed that the initial perturbation is
specified by the 17th, 21st, and 30th modes, whose par-
tial contributions to the amplitude of this perturbation
(ε = 0.1) equal each other (h17 = h21 = h30 = 1/3). Since
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the growth of the mode missing in the initial perturba-
tion spectrum is of greatest interest, Fig. 1 and all other
figures show the results obtained only for the second
(fundamental) mode. From the plots presented, it fol-
lows that the first-order evolutionary coefficient

(t) (see expansions (12) and (18)) of the mode
excited via four-mode resonant interaction is of minor
value (it is one order of magnitude smaller than the cor-
responding amplitudes of the 17th, 21st, and 30th
modes) and does not exceed the second-order quanti-
ties. An increase in the relative amplitude ε of the initial
perturbation merely decreases the period of resonant

interaction without affecting the amplitude (t) (the
calculation results for ε = 0.3 are shown in Fig. 2).

It is natural to suppose that the initial deformation of
the surface of the drop is actually governed by a wider
spectrum of modes (not only by the 17th, 21st, and 30th
modes); then, the partial contribution from the modes
of interest will decrease. Figure 3 shows the results
obtained for h17 = h21 = h30 = 1/12 and ε = 0.1. Expect-
edly, the decrease in the partial contribution of reso-
nantly interacting modes leads to a proportional
decrease in the amplitude of the fundamental mode
excited. Simultaneously, the period of resonant interac-
tion extends considerably.

A change in the charge of the drop (in the parameter
W) increases the frequency mismatch parameter in rela-
tionship (26), that is, deteriorates the conditions for res-
onant energy transfer from higher modes to the lowest
(fundamental) mode. Figures 4 and 5 show the curves
calculated for W = 0 and 0.87, respectively, i.e., for W
lower and higher than the resonant value. The mismatch
parameters in both cases are practically the same in
magnitude but opposite in sign. It is easy to see that the
change in sign of the charge causes the amplitude of the
resonantly excited mode to grow and the resonant inter-
action period to extend. Note that, when the charge
increases, the amplitude of the fundamental mode

M2
1( )

M2
1( )

0 10 20 30 40 t

–0.01

0

0.01

M 2
(1)

Fig. 1. Temporal dependence of the first-order evolutionary
coefficient in the expansion in initial perturbation amplitude
for the excited fundamental (second) mode of capillary
vibrations of the drop. The parameter W exactly equals the
resonant value W = 0.46. ε = 0.1 and h17 = h21 = h30 = 1/3.
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diminishes to a considerably lesser extent, because an
increase in the charge under normal (off-resonance)
conditions builds up vibration modes.

Numerical calculations were also carried out for the
second four-mode resonant situation ωp – ωq – ωs =
ωn(1 + ε2σ) (see (26)), which takes place, for example,
for the 34th, 30th, 10th, and 2nd modes with W =
0.983454. The results obtained for this situation coin-
cide completely with those presented in Fig. 1 and are
therefore omitted.

Calculation of the second-order correction (t)
to the fundamental mode amplitude (see (12), (18), and
(28)) by conventional methods from the theory of non-
linear vibration [1–6] shows that this correction (arising
from nonresonant mode interaction) is comparable to

(t). This is because the expression for the second-

order correction (t) to the amplitude of an nth
mode involves the coefficients

where the subscripts k and m run over the numbers of
modes from the initial perturbation spectrum. It is obvi-

ous that, when k and m take the same values,  ~
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-------------------------------------------------------------------------,∼
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Fig. 2. Same as in Fig. 1 for ε = 0.3.
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–0.002

0

–0.001

0.001

0.002

M 2
(1)

Fig. 4. Same as in Fig. 1 for W = 0.
1/ . Since the frequency of the second mode is much
lower than possible frequencies of vibration modes, the

coefficients  and, consequently, the corrections

(t) turn out to be considerably greater than correc-

tions (t) to higher modes. As a consequence, the
contribution of the nonresonant second-order correc-

tion ε2 (t) to the amplitude of the fundamental
mode is comparable to the contribution from the reso-
nance-induced first-order evolutionary coefficient

(ε (t)). This circumstance, together with the
requirement that the asymptotic expansion of the
amplitude of the fundamental mode excited be uniform,
bounds the small parameter ε from above.

CONCLUSIONS

The asymptotic calculation of nonlinear capillary
vibrations of a charged drop of an ideal incompressible
liquid that is performed in the third-order approxima-
tion in amplitude of the multimode initial deformation
reveals four-mode internal resonant interaction
between modes, causing the fundamental mode to build
up even if it is absent in the spectrum of initially excited
modes. However, the amplitude of the fundamental

ωn
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λ kk2
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Fig. 3. Same as in Fig. 1 for h17 = h21 = h30 = 1/12.
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Fig. 5. Same as in Fig. 1 for W = 0.87.
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mode excited via resonant energy exchange with ini-
tially present higher modes, while formally being of the
first order of smallness, does not exceed a second-order
correction due to nonresonant nonlinear interaction.
Therefore, the results obtained in this work could
hardly shed light on the lightning initiation mechanism.

Also, in the third-order approximation, three-mode
resonant interaction between the first-order amplitudes
of initially excited modes with second-order correc-
tions to the amplitudes arises.

APPENDIX A

BOUNDARY-VALUE PROBLEMS OF VARIOUS 
ORDERS OF SMALLNESS

Substituting expansions (12)–(15) into boundary-
value problem (2)–(11) and collecting terms with the
same powers of ε, we come to problems of various
order of smallness. In the mathematics which follows,
partial derivatives, for example, with respect to x are
designated as ∂x.

Separating out the terms with ε1, we obtain the first-
order problem stated as

The terms with ε2 state the second-order problem:

∆ψ 1( ) 0; ∆φ 1( ) 0;= =

r 0: ψ 1( ) 0;

r +∞: —φ 1( )
0;

r 1: ∂T0
ξ 1( ) ∂rψ

1( );= =

r 1: ∂T0
ψ 1( )=

=  
1

4π
------∂rφ

0( ) ∂rφ
1( ) ξ 1( )∂rrφ

0( )+( ) 2ξ 1( ) ∆Ωξ 1( );+ +

ξ 1( ) ϑcos( )d

1–

1

∫ 0; ξ 1( )P1 ϑcos( )d

1–

1

∫ 0;= =

r = 1: ∂rφ
1( ) ξ 1( ) ∂rrφ

0( ) 2∂rφ
0( )+( )+{ } ϑcos( )d

1–

1

∫  = 0;

r 1: φ 1( ) ξ 1( )∂rφ
0( )+ φS

1( ) t( );= =

t 0: ξ 1( ) ξ hkPk ϑcos( ); ∂T0
ξ 1( )

k Ω∈
∑ 0.= = =

∆ψ 2( ) 0; ∆φ 2( )
0;= =

r 0: ψ 2( ) 0;

r +∞: —φ 2( )
0;

r = 1: ∂T0
ξ 2( ) ∂T1

ξ 1( )+  = ∂rψ
2( ) ξ 1( )∂rrψ

1( ) ∂ϑξ 1( )∂ϑψ
1( );–+
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The third-order problem is defined by the terms
with ε3:

r 1: ∂T0
ψ 2( ) ∂T1

ψ 1( ) ξ 1( )∂rT0
ψ 1( ) 1

2
--- ∂rψ

1( )( )2
+ + +=

+
1
2
--- ∂ϑψ 1( )( )2 1

8π
------ 2ξ 2( )∂rφ

0( )∂rrφ
0( ) ξ 1( )( )2

+{=

× ∂rrφ
0( )( )2 ∂rrrφ

0( )∂rφ
0( )+( ) ∂ϑφ 1( )( )2 ∂rφ

1( )( )2
+ +

+ 2∂rφ
2( )∂rφ

0( ) 2ξ 1( ) ∂rrφ
0( )∂rφ

1( ) ∂rrφ
1( )∂rφ

0( )+( ) }+

+ 2ξ 2( ) ∆Ωξ 2( ) 2 ξ 1( )( )2
– 2ξ 1( )∆Ωξ 1( );–+

ξ 2( ) ξ 1( )( )2
+( ) ϑcos( )d

1–

1

∫ 0;=

2ξ 2( ) 3 ξ 1( )( )2
+( )P1 ϑcos( )d

1–

1

∫ 0;=

r 1: ∂rφ
2( ) ξ 1( ) ∂rrφ

1( ) 2∂rφ
1( )+( )-+





1–

1

∫=

+ ξ 2( ) ∂rrφ
0( ) 2∂rφ

0( )+( ) ξ 1( )( )2 1
2
---∂rrrφ

0( )

+

--+ 2∂rrφ
0( ) ∂rφ

0( )+ 
 ∂ϑξ 1( )∂ϑφ 1( )–





d ϑcos( ) 0;=

r 1: φ 2( ) ξ 1( )∂rφ
1( ) ξ 2( )∂rφ

0( )+ +=

+
1
2
--- ξ 1( )( )2∂rrφ

0( ) φS
2( ) t( );=

t 0: ξ 2( ) hkP0 ϑcos( )
2k 1+

-----------------------------
k Ω∈
∑–= =

–
3
2
--- hkhmKkm1P1 ϑcos( );

k m, Ω∈
∑

∂T0
ξ 2( ) ∂T1

ξ 1( )+ 0.=

∆ψ 3( ) 0; ∆φ 3( )
0;= =

r 0: ψ 3( ) 0;

r +∞: —φ 3( )
0;

r = 1: ∂T0
ξ 3( ) ∂T1

ξ 2( ) ∂T2
ξ 1( )+ +  = ∂rψ

3( ) ∂ϑξ 2( )∂ϑψ 1( )–

– ∂ϑξ 1( )∂ϑψ 2( ) ξ 2( )∂rrψ
1( ) ξ 1( ) ∂ϑξ 1( ) 2∂ϑψ 1( )((+ +

– ∂rϑψ 1( ) ) ∂rrψ
2( ) ) 1

2
--- ξ 1( )( )2∂rrrψ

1( );+ +
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r 1: ∂T0
ψ 3( ) ∂T2

ψ 1( ) ∂T1
ψ 2( ) ξ 1( )∂rT1

ψ 1( )+ + +=

+ ∂ϑψ 1( )∂ϑψ 2( ) ∂rψ
1( )∂rψ

2( ) ξ 2( )∂rT0
ψ 1( ) ξ 1( )+ + +

× ∂rT0
ψ 2( ) ∂ϑψ 1( ) ∂rϑψ 1( ) ∂ϑψ 1( )–( ) ∂rψ

1( )∂rrψ
1( )+ +( )

+
1
2
--- ξ 1( )( )2∂rrT0

ψ 1( ) 1
8π
------ 2ξ 3( )∂rφ

0( )∂rrφ
0( ) ξ 1( )( )3

+{=

× ∂rrφ
0( )∂rrrφ

0( ) 1
3
---∂rφ

0( )∂rrrrφ
0+ 

  2 ∂ϑφ 1( )∂ϑφ 2( )(+

+ ∂rφ
1( ) ξ 2( )∂rrφ

0( ) ∂rφ
2( )+( ) ∂rφ

0( )∂rφ
3( )+

+ ξ 2( )∂rφ
0( )∂rrφ

1( ) ) 2ξ 1( ) ξ 2( ) ∂rrφ
0( )( )2((+

+ ∂rφ
0( )∂rrrφ

0( ) ) ∂rrφ
0( )∂rφ

2( ) ∂ϑφ 1( )+ +

× ∂rϑφ 1( ) ∂ϑφ 1( )–( ) ∂rφ
1( )∂rrφ

1( ) ∂rφ
0( )∂rrφ

2( ) )+ +

+ ξ 1( )( )2 ∂rrrφ
0( )∂rφ

1( ) 2∂rrφ
0( )∂rrφ

1( )+(

+ ∂rφ
0( )∂rrrφ

1( )) } 2 ∆Ω+( )ξ 3( ) 2ξ 1( ) ξ 1( )( )2(+ +

– 2 ∆Ω+( )ξ 2( ) ) 2ξ 2( )∆Ωξ 1( )– 3 ξ 1( )( )2∆Ωξ 1( )+

– ∂ϑξ 1( )( )2∂ϑϑ ξ 1( ) 1
2
--- ∂ϑξ 1( )( )2∆Ωξ 1( );–

3ξ 3( ) 6ξ 1( )ξ 2( ) ξ 1( )( )3
+ +( ) ϑcos( )d

1–

1

∫ 0;=

ξ 3( ) 3ξ 1( )ξ 2( ) ξ 1( )( )3
+ +( )P1 ϑcos( ) ϑcos( )d

1–

1

∫ 0;=

r 1: ∂rφ
3( ) ξ 3( ) ∂rrφ

0( ) 2∂rφ
0( )+( )---+





1–

1

∫=

+ ξ 2( ) ∂rrφ
1( ) 2∂rφ

1( )+( ) ξ 1( )( )3 1
6
---∂rrrrφ

0( )

+

--+ ∂rrrφ
0( ) ∂rrφ

0( )+ 
 ξ 1( )( )2 1

2
---∂rrrφ

1( ) 2∂rrφ
1( )+

+

--+ ∂rφ
1( )


 ξ 1( ) ξ 2( ) ∂rrrφ

0( ) 4∂rrφ
0( ) 2∂rφ

0( )+ +( )(+

+ 2∂rφ
2( ) ∂rrφ

2( ) ∂ϑξ 1( )∂rϑφ 1( ) )– ∂ϑξ 2( )∂ϑφ 1( )–+

---– ∂ϑξ 1( )∂ϑφ 2( )





d ϑcos( ) 0;=

r 1: φ 3( ) ξ 1( )∂rφ
2( ) ξ 2( )∂rφ

1( ) ξ 3( )∂rφ
0( )+ + +=

+
1
2
--- ξ 1( )( )2∂rrφ

1( ) ξ 1( )ξ 2( )∂rrφ
0( )+

+
1
6
--- ξ 1( )( )3∂rrrφ

0( ) φS
3( ) t( );=
Here, Kkmn = ( )2, where  are the Clebsch–
Gordan coefficients.

APPENDIX B

NOTATION

t 0: ξ 3( ) hkhmhl

3 2l 1+( )
----------------------KkmlP0 ϑcos( )

k m l, , Ω∈
∑–= =

–
9
5
---h2 hkhmKkm1

k m, Ω∈
∑ hkhmhlKkmgKgl1

k m l, , Ω∈
∑

g = 0

∞

∑+
 
 
 

× P1 ϑcos( );

t 0: ∂T0
ξ 3( ) ∂T1

ξ 2( ) ∂T2
ξ 1( )+ + 0.= =

Ck0m0
n0 Ck0m0

n0

γkmn Kkmn ωk
2 n k– 1+( ) 2n m m 1+( ) 1–( )+[=

+ m k 1+( ) k 2k 2n– 7+( )– 3+( )nW /2 ]

+ α kmn ωk
2/k nW /2+[ ] ;

ηkmn Kkmn n/2 k– 1+( ) α kmn 1 n/ 2m( )+( )/k;+=

Kkmn Ck0m0
n0( )2

;=

α kmn Ck0m0
n0 Ck 1–( )m1

n0 k k 1+( )m m 1+( );–=

λ kmn
±( ) γkmn ωkωmηkmn±( )/ ωn

2 ωk ωm±( )2–( );=

Hkgn
0 +( ) Πkgn

0 Πkgn
1 ωkωg– Πkgn

2 ωg
2–( ) λ kkg

+ λ kkg
–( )+( );=

Hkgn
0 –( ) Πkgn

0 Πkgn
1 ωkωg Πkgn

2 ωg
2–+( ) λ kkg

+ λ kkg
–( )+( );=

Πkgn
0  = ωk

2 n k– 1+( ) 2n k 1–( ) k 2+( ) g g 1+( )+( )+(
+ nW 3 k 3 n– k+( )– g 3 n– k– g+( )–( ) )Kkgn

+ ωk
2/k nW+( )α kgn;

Πkgn
1 g k n– 2–+( )Kkgn n k g+ +( )α kgn/ gk( );–=

Πkgn
2 g n– 1–( )Kkgn α kgn/g;–=

Ξn 3 ωn
2 n n 1–( )W–( ); χ l

9 l 1+( )
2l 1+( ) 2l 3+( )

--------------------------------------;–= =

βkmgln
1 +( ) Πkgn

0 Πkgn
1 ωk ωl ωm+( )– Πkgn

2 ωl ωm+( )2;–=

βkmgln
1 –( ) Πkgn

0 Πkgn
1 ωk ωl ωm–( )– Πkgn

2 ωl ωm–( )2;–=

βkmgln
2 +( ) Πkgn

0 Πkgn
1 ωk ωl ωm+( ) Πkgn

2 ωl ωm+( )2;–+=

βkmgln
2 –( ) Πkgn

0 Πkgn
1 ωk ωl ωm–( ) Πkgn

2 ωl ωm–( )2;–+=

Hkmln
1 +( ) –( ) βkmgln

1 +( ) λ lmg
+( ) µkmgln

1 –( )

g 1=

∞

∑ µkmgln
0 –( ) ;

g 0=

∞

∑+ +
g 2=

∞

∑=
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Hkmln
1 –( ) +( ) βkmgln

1 –( ) λ lmg
–( ) µkmgln

1 +( )

g 1=

∞

∑ µkmgln
0 +( ) ;

g 0=

∞

∑+ +
g 2=

∞

∑=

Hkmln
2 +( ) +( ) βkmgln

2 +( ) λ lmg
+( ) µkmgln

1 +( )

g 1=

∞

∑ µkmgln
0 +( ) ;

g 0=

∞

∑+ +
g 2=

∞

∑=

Hkmln
2 –( ) –( ) βkmgln

2 –( ) λ lmg
–( ) µkmgln

1 –( )

g 1=

∞

∑ µkmgln
0 –( ) ;

g 0=

∞

∑+ +
g 2=

∞

∑=

µkmgln
1 –( ) Λkmgln

1 Γ kmgln
1 ωmωk;–=

µkmgln
1 +( ) Λkmgln

1 Γ kmgln
1 ωmωk;+=

µkmgln
0 –( ) Λkmgln

0 Γ kmgln
0 ωmωk;–=

µkmgln
0 +( ) Λkmgln

1 Γ kmgln
0 ωmωk;+=

Λkmgln
0 1

2k
------ Kgln[α kmg(2 k 2–( )ωk

2 kn(2 k 2+( )W– ∫



=

– l 3l 1+( ) ) ) Kkmg kn 4 6k k 1+( )–((+

+ k3 2 m 1+( ) m 2+( )– k2 n 9–( )–(
– k 3n 2m m 3+( ) 22–+( ) )W ) k 1–( )–

× k k n– 2–( )ωk
2 ) ] 2knα kmg–

× 2l 4ν– 1+( )Kg l 2ν– n, ,

ν 1=

l/2[ ]

∑




;

Λkmgln
1 g n– 1–( )Kgln αgln/g–( ) m 1–( )Kkmg(=

– α kmg/m )ωm
2 Wnk g 1+( ) l n+((+

– g 2 )Kgln– αgln )Kkmg;+

Γ kmgln
0 k 1–( ) k 2 n 1+( )–( )Kkmg/2( k 1–( )(–=

× m n+( ) m )α kmg/ km( ) )Kgln– k 1–( )(+

× k 2–( )Kkln/2 k 2–( )α kln/k )Kgmn;–

Γ kmgln
1 g n– 1–( )Kgkn n k+( )αgkn/ kg( )–( )–=

× m 1–( )Klmg α lmg/m–( ) g n– 1–( )( Kgln–

– αgln/g ) m 1–( )Kkmg α kmg/m–( );

Gn
1

2k 1+( )
-------------------- 2Ξn δn k, 2 k 1–( )ωk

2 Ξk+( )+[ ]




k 2=

∞

∑≡

– δk n 1–, δk n 1+,+( )χk δk n 1+,– βk k 1 n n, , , ,
2 +( ) βk k 1 n n, , , ,

1 –( )+[ ]

– 1 δg 0,–( ) 1 δg 1,–( ) βk k g n n, , , ,
2 +( )[ λ kng

+( ) 1 δk n,–( )+({
g 0=

∞

∑
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× λnkg
+( ) ) βk k g n n, , , ,

1 –( ) λ kng
–( ) λnkg

–( )+( ) 2 1 δk n,–( )Πngn
0 λ kkg

–( ) ]+ +

---+ 2 δk n,–( ) 1 δg 0,–( )Zk g n, ,
1 Zk g n, ,

0 ]}+




Ak
1( )Ak

1( )( );

Zk g n, ,
i µk k g n n, , , ,

i +( ) Λn k g k n, , , ,
i Λk n g k n, , , ,

i i 0, 1=( );+ +≡

Dk n,
l m, 1 δk n, δl m, ;–≡

Yn
+( ) = Dq n,

p s, δp n 1–, δp n 1+,+( ) δs q 1+, χq δq s 1+, χs+( )βp s 1 q n, , , ,
1 –( )

+ Dp n,
q s, δq n 1–, δq n 1+,+( ) δs p 1+, χ p δp s 1+, χs+( )βq s 1 p n, , , ,

1 –( )

+Dq n,
p s, Dp n,

q s, δs n 1–, δs n 1+,+( )δq p 1+, χ p δp q 1+, χq+( )βs p 1 q n, , , ,
2 +( )[

+ H p s q n, , ,
1 –( ) +( ) Hq s p n, , ,

1 –( ) +( ) H p q s n, , ,
2 –( ) –( )+ +

+ Hq p s n, , ,
2 –( ) –( ) Hs q p n, , ,

2 +( ) +( ) Hs p q n, , ,
2 +( ) +( )+ + ] ;

Yn
–( ) = Dq n,

p s, δs n 1–, δs n 1+,+( ) δp q 1+, χq δq p 1+, χ p+( )βs p 1 q n, , , ,
1 –( )

+ Ds n,
q p, δq n 1–, δq n 1+,+( ) δp s 1+, χs δs p 1+, χ p+( )βq p 1 s n, , , ,

1 –( )

+Dq n,
p s, Ds n,

q p, δp n 1–, δp n 1+,+( )δq s 1+, χs δs q 1+, χq+( )βp s 1 q n, , , ,
2 +( )[

+ Hs p q n, , ,
1 –( ) +( ) Hq p s n, , ,

1 –( ) +( ) Hs q p n, , ,
2 –( ) –( )+ +

+ Hq s p n, , ,
2 –( ) –( ) H p q s n, , ,

2 +( ) +( ) H p s q n, , ,
2 +( ) +( )+ + ] ;

Y p
+( ) = Dq n,

p s, δn p 1–, δn p 1+,+( ) δq s 1+, χs δs q 1+, χq+( )βn q 1 s p, , , ,
1 –( )

+ Dp n,
q s, δs p 1–, δs p 1+,+( ) δq n 1+, χn δn q 1+, χq+( )βs q 1 n p, , , ,

1 –( )

+Dp n,
q s, Dq n,

p s, δq p 1–, δq p 1+,+( )δs n 1+, χn δn s 1+, χs+( )βq s 1 n p, , , ,
2 +( )[

+ Hn q s p, , ,
1 –( ) +( ) Hs q n p, , ,

1 –( ) +( ) Hn s q p, , ,
2 –( ) –( )+ +

+ Hs n q p, , ,
2 –( ) –( ) Hq s n p, , ,

2 +( ) +( ) Hq n s p, , ,
2 +( ) +( )+ + ] ;

Y p
–( ) = δn p 1–, δn p 1+,+( ) δq s 1+, χs δs q 1+, χq+( )βn q 1 s p, , , ,

1 +( )

+ δs p 1–, δs p 1+,+( ) δq n 1+, χn δn q 1+, χq+( )βs q 1 n p, , , ,
1 +( )

+ δq p 1–, δq p 1+,+( )δs n 1+, χn δn s 1+, χs+( )βq s 1 n p, , , ,
1 +( )

+ Hn q s p, , ,
1 +( ) –( ) Hs q n p, , ,

1 +( ) –( ) Hn s q p, , ,
1 +( ) –( )+ +

+ Hs n q p, , ,
1 +( ) –( ) Hq s n p, , ,

1 +( ) –( ) Hq n s p, , ,
1 +( ) –( )+ + ;

Yq
+( ) = Yq

–( ) = Dp n,
q s, δn q 1–, δn q 1+,+( ) δp s 1+, χs δs p 1+, χ p+( )

× βn p 1 s q, , , ,
1 –( )

Dq n,
p s, δs q 1–, δs q 1+,+( ) δp n 1+, χn δn p 1+, χ p+( )+

× βs p 1 n q, , , ,
1 –( )

Dp n,
q s, Dq n,

p s,
[ δp q 1–, δp q 1+,+( ) δs n 1+, χn(+

+ δn s 1+, χs )βp s 1 n q, , , ,
2 +( ) Hn p s q, , ,

1 –( ) +( ) Hs p n q, , ,
1 –( ) +( ) Hn s p q, , ,

2 –( ) –( )+ + +

+ Hs n p q, , ,
2 –( ) –( ) H p s n p, , ,

2 +( ) +( ) H p n s q, , ,
2 +( ) +( )+ + ] ;
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Anisotropic Acoustooptic Modulator 
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Abstract—The problem of anisotropic Bragg diffraction of nonpolarized light by a slow acoustic wave in a
TeO2 crystal is solved. Two independent acoustic waves are excited in the crystal. Nonpolarized light splits in
the crystal into two orthogonally polarized eigenmodes, either diffracting by its associated acoustic beam. Con-
ditions under which the angles of incidence and diffraction are the same for both diffraction processes are
found. Depending on the acoustic frequency, the diffracted light at the exit from the crystal may be represented
either by a single nonpolarized beam or by two orthogonally polarized beams with different directions and
orthogonal polarizations. This may provide a high diffraction efficiency (up to 100%) for nonpolarized light in
a TeO2 crystal. Theoretical calculations are supported by experiments. Modulators capable of controlling a
high-power laser operating at a wavelength of 1.06 µm are fabricated. © 2004 MAIK “Nauka/Interperiodica”.
Single-crystalline paratellurite (TeO2) is the most
promising acoustooptic material for the implementa-
tion of diffraction by a slow acoustic wave. This is
because it offers not only an extraordinarily high acous-
tooptic quality M2 but also a unique combination of
optical, acoustic, and engineering properties. Today, a
high (up to 100%) efficiency of slow-acoustic-wave
diffraction is achievable only in the case of anisotropic
acoustooptic diffraction of polarized light. However,
the most powerful industrial solid-state or fiber lasers
emit, as a rule, either nonpolarized or randomly polar-
ized light (in particular, at a wavelength of 1.06 µm).

Thus, our aim was to find an acoustooptic means of
controlling (modulating) nonpolarized optical radiation
under the condition of high-efficiency diffraction by a
slow acoustic wave. The idea of the method is illus-
trated by vector diagrams in Fig. 1. Let nonpolarized
light be incident on the crystal at an angle α to its opti-
cal axis. In the crystal, the light splits into two orthogo-
nally polarized eigenmodes, which are characterized by
wavevectors K1 and K2 and associated with the indica-
trices no and ne of the crystal. Also, let there exist a sin-
gle direction β for diffracted beams with vectors 

and . The incident and diffracted optical modes are
coupled through two acoustic beams with vectors q1
and q2. The wavevectors of the acoustic waves make
angles γ1 and γ2, respectively, with the [110] crystallo-
graphic direction. In the general statement, a solution to

K1'

K2'
1063-7842/04/4901- $26.00 © 20083
the problem must simultaneously meet the momentum
conservation law for two independent diffraction pro-
cesses

(1)

(2)

We calculated the angles of incidence and diffrac-
tion versus the direction and frequency of the acoustic

K1 q1+ K1' ,=

K2 q2+ K2' .=

[001]

no

α

ne

[110]

β

K2

K1
q1

q2

K2'

K1'

[110]

q2

q1
γ2

γ1

Fig. 1. Vector diagram of interaction between two optical
eigenmodes diffracted by two acoustic waves and the angles
these waves make with the [110] axis.
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wave. The indicatrices of the refractive indices were
approximated by ellipsoids of revolution [1]

(3)

(4)

where n1(θ) is the refractive index of the extraordinary
ray, n2(θ) is the refractive index of the ordinary ray, θ is
the angle relative to the optical axis, δ = λ0ρ/2πn0 is the
splitting factor, ρ is the specific rotation of polarization
of light (rad/mm), and λ0 is the wavelength of light in
free space.

n1
2 θ( ) θcos

2

no
2 1 δ+( )2

---------------------------
n1

2 θ( ) θsin
2

ne
2

--------------------------+ 1,=

n2
2 θ( ) θcos

2

no
2 1 δ–( )2

---------------------------
n2

2 θ( ) θsin
2

n0
2

--------------------------+ 1,=

4.9
33

f, MHz
36 39

5.6

6.3

α, β, deg

B C

DA

β2

β1

α2

α1

Fig. 2. Angles of incidence of orthogonally polarized opti-
cal eigenmodes in the crystal and their diffraction angles
versus acoustic frequency.

34.8
f, MHz

5.05

5.10

α, β, deg

D'

A

α2

α1

35.4 36.0

D

Fig. 3. Closer view of the vicinity of the points A and D that
are shown in Fig. 2.
The calculations were performed for λ0 = 1.06 µm,
ρ = 254.8, no =2.208, and ne = 2.352. The velocity of an
acoustic wave propagating in the (110) plane at a small
angle to the normal to the optical axis was approxi-
mated [2] as ν = ν0(1 + bϕ2), where b = 4.895 is the
elastic wave anisotropy parameter, ϕ is the angle
between the phase velocity of sound and the normal to
the optical axis, and ν0 = 0.617 × 106 mm/s is the veloc-
ity of sound propagating perpendicularly to the crys-
tal’s optical axis.

The problem was solved for several practically
important combinations of the angles γ1 and γ2. The
choice of these angles and limitations imposed on them
will be detailed below. A solution will be sought for the
situation with γ1 = 4° and γ2 = 7°, which was realized in
practice. Figure 2 plots the angles of incidence α1 and
α2 of the orthogonally polarized eigenmodes of the
crystal and the respective diffraction angles β1 and β2

against the frequency of the acoustic wave. Note that
the curves α1 and β1 refer to diffraction described by
Eq. (1); the curves α2 and β2, to diffraction described
by Eq. (2). The angles are counted from the optical axis,
and Fig. 2 shows their values in the crystal. The points
of interest in the plot are as follows. At the point A, the
frequencies of both acoustic waves (the vectors q1 and
q2) are roughly and the angles of incidence of the
respective orthogonally polarized modes are exactly
equal to each other, but the propagation directions of
the diffracted beams do not coincide. At the points B
and C, the diffraction angles of both optical modes are
exactly the same. However, these angles become the
same if the frequency of the acoustic wave with the
wavevector q2 is shifted (by 1.326 MHz in this particu-
lar case). Figure 3 shows the closer view of the vicinity
of the points A and D. It is seen that the frequency shift
of the acoustic wave with the wave vector q2 changes
the angle of incidence that corresponds to exact Bragg
synchronism (D shifts to D'). Consequently, at a con-
stant angle of incidence, a change in the frequency of
this optical mode violates Bragg synchronism by the
difference between the ordinates of the points D' and D
(in our case, it is about 0.2 mrad). Such a small mis-
match is however smaller than the divergence of the
acoustic wave and does not degrade the diffraction effi-
ciency. In particular, for this frequency and a piezoelec-
tric transducer width of 10 mm, the acoustic wave
divergence is 2 mrad. Note that such a weak depen-
dence of the angle of incidence on the acoustic fre-
quency makes it possible to use this acoustooptic dif-
fraction mode in skew-angular anisotropic deflectors
based on TeO2 crystals [1, 2]. These deflectors rely on
the possibility of significantly changing the acoustic
frequency (and, hence, the diffraction angle) with the
diffraction efficiency remaining almost unchanged.
TECHNICAL PHYSICS      Vol. 49      No. 1      2004
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We thus see that two acoustic beams in a TeO2 crys-
tal may be efficiently controlled (modulated) by nonpo-
larized light. However, one feature of such a light mod-
ulation technique should be noted. When light to be
modulated is completely nonpolarized and a control-
ling optical beam does not have preferential polariza-
tion, the eigenmodes of the crystal are incoherent, so
that their superposition at the exit of the crystal due to
diffraction will also be completely nonpolarized. If,
however, arbitrarily polarized light is applied to the
crystal, the eigenmodes will be coherent. Since the light
is diffracted by two acoustic waves with different fre-
quencies, the polarization of the outgoing light, which
is a superposition of two coherent but frequency-sepa-
rated optical waves, is modulated in time. For most
applications, the feature described above is of no signif-
icance. However, it should be taken into account in a
number of cases.

To complete the discussion of the modulator’s
design, let us concentrate on limitations that are
imposed on the acoustic wave propagation angles γ1
and γ2 in practice. The first limitation is associated with
the fact that a slow acoustic wave traveling near the
[110] axis is characterized by a high acoustic anisot-
ropy. Therefore, a deflection of the acoustic wave phase
front (the plane of the transducer) from this axis by a
small angle γ causes a significant deflection of the
energy vector by an angle ϕ. For the diffraction plane,
in which the transducers are inclined in the case stud-
ied, the ratio ϕ/γ is approximately equal to 10 (for γ less
than 7°). Consequently, a large value of γ is impractica-
ble, because it requires the crystal to have large dimen-
sions. The second limitation is imposed on the lower
bound of the angle γ for the following reason. A TeO2
crystal is optically active, with the activity being maxi-
mal along the optical axis and sharply decreasing away
from it. For the acoustooptic interaction conditions
considered, the eigenmodes of the crystal were shown
[3] to become elliptically polarized (with the ellipticity
being a function of the angle γ) when γ is smaller than
4°. Clearly, the polarizations of two optical eigenmodes
due to diffraction by acoustic beams with different
angles γ are not strictly orthogonal, while the basic idea
of the method proposed relies on this orthogonality.
Also, there exist limitations imposed on the frequency
range, which is determined by the angles γ1 and γ2. In
applications, the optimal values of the angles γ1 and γ2
apparently lie between 4° and 7°.

The table summarizes the frequency positions of the
nodes A, B, C, D, and D' for several combinations of γ1
and γ2. The upper and lower figures are the frequency
and angle of a node, respectively. It is seen that, in this
range of γ1 and γ2, a modulator with an acoustic wave
frequency of 24 to 50 MHz can be designed.

Figure 4 shows schematically the TeO2 crystal. The
“acoustic” end faces of crystal 1 were optically finished
so that the planes of piezoelectric transducers 2 and 3
make angles of 7° and 4° to the [110] axis. Because of
TECHNICAL PHYSICS      Vol. 49      No. 1      2004
the acoustic anisotropy effect, the acoustic beams are
deflected from the [110] axis by 60° and 40°, respec-
tively. It is significant that, in such a geometry, there
appears a region where the acoustic beams from the two
piezoelectric transducers intersect. In this region, a par-
allax between the two beams at the exit of the crystal is
absent upon acoustooptic interaction. In other words,
the orthogonally polarized exit beams will be coinci-
dent in both the angular and coordinate spaces, which
is undoubtedly important for applications.

I1

I0

I0'
[001]

[110]

1

40°

60°

3

2

Fig. 4. Geometry of the TeO2 crystal: I0, incident optical

beam; , the zeroth diffraction order; and I1, diffracted

beam.

I0'

Table

γ2, γ1, 
deg

A, MHz; 
deg

B, MHz; 
deg

C, MHz; 
deg

D, MHz; 
deg

D', MHz; 
deg

4, 3 49.973,
2.616

49.973,
4.836

50.702,
4.836

50.702,
2.616

50.702,
2.606

5, 3 29.755,
3.591

29.755,
4.913

30.404,
4.913

30.404,
3.591

30.404,
3.593

6, 3 24.039,
4.236

24.039,
5.304

24.679,
5.304

24.679,
4.236

24.679,
4.249

6, 4 44.235,
4.348

44.235,
6.292

45.666,
6.292

45.666,
4.348

45.666,
4.341

7, 4 34.655,
5.075

34.655,
6.597

35.981,
6.597

35.981,
5.075

35.981,
5.0869
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Our experiments confirmed the theoretical calcula-
tions. Several prototypes of acoustooptic modulators
following the design shown in Fig. 4 were fabricated.
The acoustic wave frequencies calculated differed from
those providing equal diffraction angles in a particular
crystal by no more than ±10%, which is apparently due
to an inaccuracy in the orientation of the acoustic faces
upon optical finishing. The modulators were used to
control nonpolarized radiation from a high-power
(25 W) 1.06-µm cw fiber laser. The overall diffraction
efficiencies achieved in the experiments were no less
than 85–90%.
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Abstract—The cross section of absorption of electromagnetic radiation by a fine spherical metal particle is cal-
culated. The influence of the skin effect on the absorption cross-section is estimated for an arbitrary ratio
between the free path and size of the particle. The results of this work are compared with those obtained earlier
in the framework of classical electrodynamics. It is shown that taking into account the kinetic effects modifies
essentially the known data for the skin effect in a spherical particle. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Fine metal particles (whose radius R is comparable
to the free path Λ of an electron in a metal) are different
from metal particulates in optical properties. For exam-
ple, the absorption cross section of fine particles, which
shows the nontrivial dependence on the ratio R/Λ, can-
not be described by the equations of macroscopic elec-
trodynamics [1, 2].

To date, the kinetic approach has been applied to
fine particles whose radius R is much smaller than the
skin depth δ. Accordingly, the skin effect was neglected
[3–6].

To calculate the absorption cross-section of a fine
spherical metal particle, we use here the method of
moments to solve the kinetic equation for an electron in
a metal. Variational moment boundary conditions for
conduction electrons are formulated. The system of
Maxwell equations for an electromagnetic field is
solved jointly with the kinetic equation for electrons in
a metal. This provides a consistent consideration of the
influence of the skin effect on the absorption cross-sec-
tion.

PROBLEM DEFINITION

Let a fine metal particle (FMP) be placed in the field
of a plane electromagnetic wave H = H0exp(–iωt). The
radius of the particle is assumed to be much smaller
than the wavelength; therefore, the nonuniformity of
the external magnetic field H0 is disregarded. The wave
induces a vortex electric field inside the particle. If
screening (skin effect) is absent, this vortex electric
field has the form

where c is the velocity of light, H0 is the magnetic field,
and ω is the electromagnetic wave frequency.

E0 ω H0 r×[ ] / 2ic( ) iωt–( ),exp=
1063-7842/04/4901- $26.00 © 20087
The vortex electric field generates eddy currents
inside the particle, causing it to absorb the electromag-
netic energy. The electric field results in a deviation f1
of the electron distribution function f from the Fermi
equilibrium function [3, 4, 6]

Here, ε = mV2/2 is the energy of electrons with an effec-

tive mass m and velocity V and εF = m /2 is the Fermi
energy of electrons.

Let us introduce the spherical coordinate system
such that its center coincides with the particle center
and the polar axis is aligned with the magnetic field H0.
It is assumed that the temperature is much lower than
the degeneracy temperature of the electron gas and that
the Fermi surface is of the spherical shape. The cross
section σ of absorption of electromagnetic energy by a
particle can be determined by the formula [7]

(1)

where jϕ is the ϕth component of the eddy current
inside the particle,  is the complex conjugate to the
ϕth component of the electric field inside the particle,
and r is the running value of the radius.

The functions jϕ and  are expressed through the
function f1. Consider the case of diffuse scattering of
electrons by the particle surface [7]

(2)

In an approximation linear in an external field, the
function f1 satisfies the Boltzmann kinetic equation for
electrons where the collision integral is taken in the

f 0

1, 0 ε εF≤ ≤
0, εF ε.<




=

VF
2

σ 1
2
--- 8π

cH0
2

--------- 
  Re jϕ∫ Eϕ*d3r,⋅=

Eϕ*

Eϕ*

f 1 r V,( ) 0 at r R and r V⋅ 0.<= =
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relaxation time approximation [7, 8]:

(3)

where e is the electron charge and τ is the relaxation
time.

MODEL AND CALCULATION

Owing to the symmetry of the problem, Eq. (3) is
convenient to write in the spherical coordinates [9]:

(4)

where Vr, Vϕ, and VΘ are the velocity components along
the respective spherical coordinates r, ϕ, and Θ.

Equation (4) is solved by the method of moments
[9]. The function f1 is represented as a combination of
the moments Cr and CrCϕ:

where δ(εF – ε) = δ(V – VF)/(mVF) = δ(C – 1)/m  is
the Dirac delta function, a1(r) and a2(r) are the coeffi-
cients multiplying the moments, Cr = Vcosα/VF and
Cϕ = Vsinαcosβ/VF are the dimensionless velocity com-
ponents, and α and β are angles in the velocity space.

The function f1 can then be expressed as

We multiply Eq. (4) by Cϕ and CrCϕ in succession
and integrate the result over the velocity space. After
transformations, we obtain

(4')

Here, ν = 1/τ – iω, Ψ1 is the electric field inside the par-

ticle (in the absence of screening,  = iωH0r/(2c)),
and Ψ2 is the electric field outside the particle. Let us
introduce the dimensionless quantities
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Substituting this notation into (4') and performing
necessary transformations yields the system of equa-
tions

(5)

From this system, one can derive an equation for the
function α1(ξ):

(6)

Let the field outside the particle be designated as Ψ2.
Then, the Maxwell equations for the field Ψ1 inside the
particle and the field Ψ2 outside the particle have the
form

(7)

Consider moment boundary conditions for the dis-
tribution function. The average power  dissipated in
the particle is given by

where the function ϕ1 is defined as

The second term on the right of the equation for dis-
sipated power can be represented as a sum of two terms
that describe the energy fluxes transferred by electrons
incident on the surface and reflected from it:

For diffuse reflection of electrons from the surface
(condition (2)), the second term on the right of this rela-
tionship vanishes. Accordingly, this term must be min-
imized. The quantities Ψ1 and Ψ2 on the particle surface
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must satisfy the following boundary conditions:

(8)

Note that, with such boundary conditions, the fluxes
are calculated accurate to within 4%. The current den-
sity jϕ can be represented as [9]

(9)

Let us introduce the dimensionless quantity w2 =

32π2e2R2m2 /(3h3c2). In view of (9), system (7) of
equations for the fields can be recast in the form

(10)

As follows from the first equation of system (10),
the influence of the conduction currents on the behavior
of the field inside the particle at a given frequency is
proportional to w2. As w increases, interaction between
the conduction currents and the variable electromag-
netic field inside the particle is enhanced. Thus, this
parameter characterizes the degree of influence of the
skin effect on the absorption of the electromagnetic
field by the particle.

Consider the behavior of the field and electrons
inside the particle. It is described by the system of
equations

Let us make the substitutions –iyw2 = l21, –5z = l11,
and 5z2 = l12. Then,
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A solution to system Eq. (11) will be sought in the
form Φ1 = Kα1, where K is a coefficient. Let the opera-
tor

be designated as Ω . Then, system (11) can be written as

Comparing the two above expressions, we find that
l21/K = Kl11 + l12.

From this quadratic equation, we find the values of
the coefficient K:

Substituting the values of l11, l12, and l21 yields

Solving the first differential equation of system (11)
and taking into account that K has two solutions and

also that Φ1 = K1, 2α1 and l21/K1, 2 = – , we obtain

The general solution for Φ1 has the form Φ1 =
χ1C1 + χ2C2, where C1 and C2 are coefficients that can
be found from boundary conditions (8) and

Below, we will deal with the derivatives of χ1 and χ2.
They are expressed as
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Let us find the form of the coefficients C1 and C2
from boundary conditions (8). From the solution to the
second differential equation in system (10) (the field
outside the particle), we have Φ2 = iyVFξ/(2c) + C3/ξ2,
where C3 is a coefficient.

Since α1= Φ1/K1, 2, one obtains

Substituting the expressions for Φ1, Φ2, α1, and α2
into boundary conditions (8) with ξ = 1 yields the set of
equations

Solving it, we find expressions for C1, C2, and C3. In
terms of S1 and S2, they have the form

where

Knowing the coefficients S1 and S2, we can find the
absorption cross section σ in analytical form. Accord-
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ing to (1),

(12)

where σ0 = π2ne2VFR4/(2mc3); n is the charge carrier
concentration; and , , , and  are the respec-
tive complex conjugates.

The value of integral (12) can also be determined
from the absorption equation [10]

where  is the magnetic moment calculated by the

formula  = –icC3/(wH0V) and V is the volume of the
particle.

Carrying out relevant substitutions and changes of
variables, we eventually obtain the formula for energy
absorption:

(13)

Thus,

Equations (12) and (13) are equivalent to each other.
Therefore, the absorption cross section can be calcu-
lated by the expression that is free of integration, which
considerably facilitates calculations.

RESULTS AND DISCUSSIONS

The calculated value of the absorption function
allows one to describe the process of electromagnetic
energy absorption by particles of different size.

The equations of macroscopic electrodynamics
become invalid for particles whose linear sizes are
comparable to the electron free path. For particles
whose radius equals the electron free path (x = 1), the
dependence of the absorption function F(x, y, ω) on the
dimensionless frequency y of incident radiation is
shown in Fig. 1 with w = 3. It is seen that the run of the
function Fσ differs from that of Fcl, which was calcu-
lated in the framework of classical electrodynamics
[10, 11]:
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The kinetic increase of the function F = F0, which
does not consider the skin effect, also cannot cover all
features of the electron behavior on the surface of the
particle. The inclusion of the skin effect weakens the
absorption (Fσ) in comparison with F0, since field
screening inside the particle is taken into account in this
case.

Figure 2 shows that, for w = 0.1, the function Fσ,
which was obtained in this paper, runs nearly in the
same way as the function F0, which was found from
exact kinetic calculations without considering the skin
effect. Note, however, that the skin effect is really insig-
nificant at such w. Thus, the coincidence mentioned
above indicates that the method suggested is fairly
accurate. At the same time, with x = 1, macroscopic
electrodynamics describes the absorption process
inadequately, as demonstrated by the behavior of the
curve Fcl.

The reverse situation is shown in Fig. 3, where x =
10 and the skin effect is pronounced (w = 10). Here, the
classical macroscopic result Fcl describes the absorp-
tion process correctly, since the size of the particle is
large (in comparison with the electron free path). This
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follows from the fact that the classical macroscopic
result and Fσ are close to each other. At the same time,
neglect of the skin effect leads to the overestimated
value of the absorption cross section.

The dependence of the absorption function for x =
0.1 and w = 3 is shown in Fig. 4. When the dimension-
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less frequency y is low, the functions Fσ and F0 behave
in a similar manner (i.e., the skin effect does not influ-
ence the absorption) but deviate markedly from the
classical result Fcl. This is because x is small and elec-
tron scattering by the surface of the particle is essential
for the process considered. As y increases, Fσ and F0
diverge, since the skin effect shows up to a greater
extent, while Fσ and Fcl approach each other.

Figure 5 demonstrates the y dependences of the ratio
F0/Fcl (the values of the absorption function F(x, y, ω)
that were calculated without considering the skin
effect). The rise in y and ω is seen to enhance the influ-
ence of the skin effect.
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Abstract—The dynamics of back cathode bombardment (BCB) instability in a magnetron diode (a coaxial
diode in a magnetic field, B ≡ B0z ≡ B0) is numerically simulated. The quasi-stationary regime of electron leak-
age across the high magnetic field (B0/Bcr > 1.1, where Bcr is the insulation critical field) is realized. An electron
beam in the electrode gap is split into a series of bunches in the azimuthal direction and generates the electric
field component Eθ(r, θ, t), which accelerates some of the electrons. Having gained an extra energy, these elec-
trons bombard the cathode, causing secondary electron emission. The rest of the electrons lose kinetic energy
and move toward the anode. Instability is sustained if the primary emission from the cathode is low and the
secondary emission coefficient kse = Ise/Ie, BCB is greater than unity. The results of numerical simulation are
shown to agree well with experimental data. A physical model of back-bombardment instability is suggested.
Collective oscillations of charged flows take place in the gap with crossed electric and magnetic fields (E × B
field) when the electrons and E × B field exchange momentum and energy. The self-generation and self-
organization of flows are due to secondary electron emission from the cathode. © 2004 MAIK “Nauka/Inter-
periodica”.
INTRODUCTION

This work is devoted to the physics of magnetic
insulation failure as applied to a dense electron flow in
a vacuum coaxial diode subjected to crossed magnetic
and electric fields E × B (hereafter, a magnetron diode
(MD)). Interest in the physics of crossed-field devices
(microwave oscillators, high-current-beam injectors,
etc.) stems from the fact that they are widely used in
high-power vacuum electronics. However, the theory of
these devices still remains on the phenomenological
level. A magnetic field B0 is known to suppress the
mobility of electrons (ions) across the lines of magnetic
force at distances exceeding the Larmor radius of the
particles (dac > reL = mv e, ac/eB0). This effect, called
magnetic insulation, is nearly absolute in axisymmetric
systems with a sparse beam (enedac ! Vac/dac = E0,
where dac is the anode–cathode spacing and Vac is the
voltage across this spacing). In high-power electron
devices, the beam is dense (enedac ≈ E0). In this case, a
leakage current across the magnetic field is observed as
a rule because of fluctuations in the charge distribution
(flow turbulence).

The physics of crossed-field devices is difficult for
theoretical analysis because the associated processes
are highly nonlinear, and numerical simulation in terms
of self-consistent models requires a great body of com-
putation and dedicated programs [1–6]. The use of sim-
plified models (such as the 1.5-D code) gives faulty
1063-7842/04/4901- $26.00 © 20093
results. For example, it was erroneously argued [7] that
a beam in an MD becomes unstable when the emission
current from the virtual cathode is high. It is, however,
known that the virtual cathode instability is related to a
high mobility of charged particles along the applied
electric field E [8], while in MDs the charge mobility
along the E field is suppressed by the transverse B field.

A beam in MDs becomes highly unstable when the
primary electron current from the cathode is low. This
result was repeatedly obtained in the midtwentieth cen-
tury in experiments with diodes with cold secondary
emission cathodes [1, 9, 10] and a low primary electron
emission current (Ie0 < 1 A).1 With a voltage pulse
(Vac = 5–30 kV) applied to the diode and kse(we, BCB) >
1, large-amplitude collective oscillations were
observed. Individually, the oscillations of the charge
and electric field inside the diode were measured nei-
ther in [9, 10] nor in other experiments because of tech-
nical difficulties. The high-amplitude beam oscillations
inside the diode showed up as the emission enhance-
ment more than a hundred times (the current through
the diode dramatically increased, εeB = Iac/Ie0 @ 1, when

1 The effect of secondary emission from metal surfaces was dis-
covered in 1902 upon studying cathode rays. The secondary
emission coefficient (kse = Ise/Ie, BCB) for all-metal cathodes used
in [9] exceeds unity for bombarding electron energies we, BCB >
200 eV. Composite (e.g., oxide) cathodes used in [10] have a
lower energy threshold [11].
004 MAIK “Nauka/Interperiodica”
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the magnetic field was applied) and as an additional
heating of the cathode with a high efficiency (ηBCB =
Pe, BCB/Pac ≈ 30%) of energy extraction from the power
supply. This effect was treated by many authors [1, 9,
10] as the generation of a beam due to the back bom-
bardment of the cathode by fast electrons, which also
heats up the cathode. However, attempts to construct a
speculative theoretical model of this process have
failed.

Electrons with an excess energy δwe, c ≈ 300 eV in
the MD gap were discovered even in early experiments
[12]; however, no adequate explanation to this phenom-
enon was given at the time. Note that the diodes oper-
ated in a high vacuum at voltages Vac > 1 kV. Under
such conditions, pair electron collisions and residual
gas ionization may be neglected. Only the collective
interaction of electrons with the electromagnetic field
may affect noticeably the energy distribution. Oscilla-
tions that cannot be related to resonance structures are
usually called turbulent oscillations. The study of elec-
tron flow turbulence in MDs is a challenge, because
associated experimental data are hard to obtain. The
oscillation (noise) level in the external circuit was rela-
tively low and correlated weakly with the effect of mag-
netic insulation failure, thereby indicating that the
oscillations are radiationless. Studies of crossed-field
microwave devices over a period from the 1940s to the
1960s were summarized in [1]. The authors of those
articles acknowledged that the problem of electron flow
turbulence in crossed-field devices had remained unre-
solved. Later, the problem of stability of high-power
beams in crossed fields has again attracted considerable
attention because of research on controlled thermonu-
clear fusion. In particular, this problem is topical for
plasma accelerators [13], magnetic isolation of hot
plasma from cold walls [14], and the generation and
transport of high-power beams [2, 3].

1. PHYSICS OF PROCESSES RESPONSIBLE
FOR ELECTRON LEAKAGE TO THE ANODE

IN MAGNETRON DIODES

“Strange” instability observed in experiments with
MDs was first simulated in 1996 and then studied in
detail in [15–18]. Simulation was performed with the
electromagnetic PIC code KARAT [19, 20]. The results
of simulation were verified by the fulfillment of the
energy balance: Pac ≅  Pe, a + Pe, BCB; i.e., the consumed
power and the power accumulated at the electrodes
were equal to each other within several percent. Let us
consider the steady-state conditions for electron leak-
age to the anode: Ie, a(t) ≈ Iac = const, Vac(t) ≈ Va0, eVa0 =

m /2,  < v e, a0. The law of conservation ofv e, a0
2 v e, a
energy in an MD is fulfilled if

(1)

where  = m /2,  = m /2, and

 = m /2 are the mean energies of electrons

that fall on the anode (  < eVac), strike the cathode,
and leave the cathode.

The computer model, unlike full-scale experiments
[9, 10], allowed us to “measure” fields, currents, energy
fluxes, and momentum fluxes in the diode gap. The azi-
muthal momentum changes because of the magnetic
force moment, which is similar to the torque of a usual
electric motor:

(2)

where B0 is the applied axial magnetic field and Bcr is
the critical magnetic field (or the Hull cutoff field).

Angular momentum (2) is transferred to the MD
electrodes when electrons strike the anode (at an angle

) and when the electrons with an excess energy
strike the cathode (at an angle ):

(3)

The law of conservation of azimuthal momentum is
fulfilled if condition (3) is met. Now let us see whether
electrons may leak to the MD anode (Ie, a ≠ 0) if the

back bombardment of the cathode is neglected (  ≈
0). Such an assumption comes into conflict with the law
of conservation of energy (  < v e, a0) and azimuthal

momentum (3), since the inequality /  >
B0/Bcr > 1 is valid. Thus, the effect of back cathode
bombardment is a direct consequence of magnetic insu-
lation failure in an MD. In [3, 6], such a regime was
given the name back-bombardment instability.

2. CHARGE OSCILLATION IN A MAGNETRON 
DIODE UNDER THE CONDITION

OF BACK-BOMBARDMENT INSTABILITY

It was shown [15–18] that an electron flow in a
smooth-bore MD generates a self-organizing self-
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Ṁe, c Ie, BCB/e( )mrc v e, BCB v e, c0–( ) α e, BCB;sin=
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renewable structure in the (r, θ) plane in the form of
dense electron clouds rotating about the cathode. The
azimuthal size of the clouds is close to the electrode
spacing dac in the diode, which corresponds to the
shielding length for electric field disturbances between
the electrodes. An electric field produced by charge
bunches is somewhat similar to the rotating rf electric
field in the diode of a generator magnetron [21, 22].2 It
is known that magnetrons use a slow-wave structure (a
slot anode with resonators), which generates a traveling
azimuthal rf field Eθ(ra, θ – ωt). According to the quan-
titative engineering model of electronic processes in a
magnetron, which was developed in the 1940s–1950s
[see, e.g., [1, 21, 22]), most electrons in the diode group
to form needles. Electron needles rotate about the cath-
ode with a velocity roughly equal to the drift velocity
vEB = Er/B0 synchronously with the traveling rf field
Eθ(ra, θ – ωt). Such conditions provide an efficient
energy extraction from the beam. The magnetic field B0

cannot confine the retarded electrons (we, a < 0.3eVac,
eEa > ev e, aB0), and they are attracted to the anode,
which absorbs them to generate a current Ie, a. This cur-

rent picks up the power Pac =  from the power
supply. The electrons are emitted into needles from the
surface of an “electronic sleeve” (its thickness is esti-
mated as δe, c = (0.1–0.2)dac), which is formed by a
dense flow of electrons that both left the cathode and
returned back to it. In the engineering model, the emis-
sion current from the cathode is assumed to be space-
charge-limited (at the cathode the field Ec = 0). This
assumption is justified by satisfactory agreement
between calculations and practice.

Such an approach to analyzing oscillations in a
smooth-bore magnetron diode turned out to be inade-
quate, since both external (P~ = 0) and internal (Eaθ = 0,
Ec = 0) sources of an rf field are absent in its gap. In an
MD, the cathode (at the cathode, Ec = Er(rc, θ – Ωt, t) ≠
0) with nonuniform nonstationary emission serves as a
driver of a traveling rf electric field. This secondary

2 Recall that a high-power pulsed microwave magnetron was first
created early in the 1940s jointly by teams of researchers in the
United States and Europe. Magnetron-equipped radars played an
essential role in World War II. High peak microwave powers
(P~ = 0.1–1.0 MW) generated by magnetrons in the centimeter
range (with an efficiency η~ = P~/Pac = 50–70%) were obtained
due to an unexpectedly strong electron emission from the cathode
(Je ~ 100A/cm2, Je/Je0 ~ 102 [21, Chaps. 1, 12]), which far
exceeded its thermionic emission. The reason was found to be
secondary electron emission from the cathode, which is associ-
ated with the back bombardment of the cathode. In the 1930s and
earlier, thin filaments were usually used as cathodes. These fila-
ments readily burned out. The burnout of the cathode was
observed, for example, upon testing (Leningrad, 1936–1937) the
world’s first prototypes of high-power (  ≥ 0.3 kW) multicavity
magnetrons (λ = 9 cm) [23], which formed the basis for industrial
magnetrons [21, 22]. In today’s compact “nonincandescent” mag-
netrons [24], secondary emission is generated by weak cold emis-
sion.

P~

Ie, aV ac
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emission occurs under the action of a backward elec-
tron flow, which implies a high level of beam oscilla-
tion. When studying a turbulent beam in an MD, one
runs into obstacles both in solving nonlinear equations
and in describing intermediate objects that make possi-
ble energy and momentum exchange between the elec-
trons moving toward the anode and those returning to
the cathode. The electrons taking part in collective
oscillations exchange energy when interacting with the
E × B field. In this process, the magnetic field remains
virtually unchanged, while the electric field varies
noticeably because of the space charge of the dense
beam. In collective oscillations, the energy of the E
field serves as an energy buffer (ε0E2/2 ~ 〈nemv 2〉/2),
which has been accepted by most of the researchers.

The process of momentum exchange between beam
electrons in an MD (this process is a prerequisite for the
oscillations to occur and the azimuthal momentum to
be transferred to the electrodes; see (2), (3)) has been
poorly understood because of the complexity of the
problem. It is known that crossed-field devices have a
nonzero density of the electromagnetic momentum
(gEB = ε0E × B0) for both rapidly and slowly time-vary-
ing fields (i.e., in the absence of electromagnetic waves;
see, e.g. [25, §104 and Chap. 27]). Straightforward
analysis shows that, in diodes with magnetic insulation
of electrons, the electromagnetic momentum and the
electron flow momentum per unit volume are compara-
ble in order of magnitude (|gEB| ~ |nemv e|). As applied to
devices like MDs (B0z = const, E = ∇ V(r, θ, t)), one can
state the following. In the diode gap, almost radiation-
less high-amplitude (δne ~ ne) rf oscillations of electric
charges may take place even if the variation of the
applied voltage and diode current is small. These oscil-
lations are sustained when the charges interact with the
E × B field and exchange momentum and energy with
it. Nonstationary secondary electron emission from the
cathode is also an important factor.

3. STATEMENT OF THE PROBLEM
AND MATHEMATICAL MODEL

The dynamics of particles in a smooth-bore magne-
tron was simulated with the code KARAT in a com-
bined way. An external voltage pulser Vp(t) was con-
nected to the diode through an RL circuit, and the diode
was represented as a circuit element (Fig. 1) with the
parameters Vac(t) (voltage across the diode) and Iac(t)
(current through the diode). The overall circuit was
described by the Kirchhoff equation

(4)

The voltage pulse Vp(t) has a smooth profile with a
leading edge time of 2 ns. Typical voltage and current
waveforms are given in Fig. 1. The current Iac(t), the
sum of the electron leakage current to the anode and the
capacitive (displacement) current, was calculated with

V ac t( ) Vp t( ) R1Iac t( )– L1dIac t( )/dt,–=

R1 0.2kΩ, L1 0.05µH .= =
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Fig. 1. (a) Connection of the magnetron diode to the external circuit and (b) waveforms of the voltage Vac(t) across the gap, primary
emission current Ie0(t), and current Iac(t) across the diode.
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the Maxwell equations and a discrete model of charged
plasma (the PIC method of coarse particles [27]). The
dynamics simulation was carried out by using meshes
with the number of nodes 105 and the number of coarse
(primary and secondary) particles 105.

The code KARAT makes it possible to simulate
both the 2D (r, θ) and 3D (r, θ, z) configurations of the
diode. To test the numerical method and find the appli-
cability domain of the 2D model, simulation was per-
formed for an MD with parameters close to those
obtained experimentally [9]: molybdenum cathode, rc =
3.3 mm; anode, ra < 10 mm; length, l2 = 20 mm; B0z ≡
B0 = 0.2–0.3 T; and Vac = 10– 30 kV. In [9], the cathode
had annular extensions at the end faces and the mag-
netic field at the end faces was slightly increased (as in
the diode of an AKh9 magnetron [21) in order to sup-
press electron leakage out of the diode. A negative volt-
age pulse was applied to the cathode, and the anode and
evacuating system were under the zero potential, which
is a standard practice in the technology of generator
magnetrons and in experiments with MDs. In spite of
shielding, the electrons in such a system may escape
along the magnetic field toward the chamber walls. The
results of simulation and experimental data from [9]
coincided within 10% when (i) the gap was small com-
pared with the longitudinal dimension of the diode,
dac ≤ 0.1lz, and (ii) the field B0 = (1.1–1.2)Bcr. At larger
gaps (dac > 0.1lz) or B0 > 1.2Bcr, the results of simulation
and experimental data differed markedly probably
because of the influence of the cathode’s end faces or
electron escape toward the walls of the vacuum
chamber.

High magnetic fields, B/Bcr = 1.5–3.0, are usually
used to improve the efficiency of magnetrons [21, 22]
and beam injectors [28, 29] based on diodes with mag-
netic insulation and secondary-emission cathodes. In
the latter, the beam is injected into the gap from the
near-cathode sheath (electronic sleeve). As was noted
in Section 2, a theoretical model for this sheath is
absent. In the last decade, a number of authors [7, 29]
tried to fill this gap and suggested a simple model based
on beam one-dimensional oscillations. In other words,
they invoked the Langmuir’s early idea of oscillation
potentials [1, 8, 12]. Langmuir oscillation is known to
be widely used in the plasma theory; however, this con-
cept fails when applied in the theory of charged beams
in crossed E × B fields. The theory of one-dimensional
oscillation may explain electron leakage across the
magnetic field provided that the restrictions related to
the energy and momentum conservation laws are elim-
inated (see (1)–(3)).

Usually, smooth-bore MDs (Eθ(rc) = Eθ(ra) = 0) sub-
jected to voltages Vac < 100 kV may be analyzed under
the assumption that the electromagnetic field is irrota-
tional (curlE = 0, curlB = 0). At the same time, when
analyzing the radial equilibrium of the device, one
should take into account that the azimuthal current of
the electrons displaces slightly (δB/B0 ≈ 1%) the mag-
netic field toward the anode. Simulations based on the
potential model and on equations that include relativis-
tic effects and the rotational components of the electro-
magnetic fields gave nearly the same results for Vac =
10–30 kV and ra < 10 mm. A problem arising in numer-
ical simulation is avoiding instabilities due to the dis-
creteness of calculations.3

In the case of the 2D model, the integral quantities
(current, charge, etc.) were calculated for an axial
length l0z = 10 mm. The basic design with the parame-
ters rc = 3.3 mm, ra = 5.3 mm, dac = 2 mm, and B0 = 0.25 T
was used. The voltages (see Fig. 1) were Vp = 12 kV and

3 High-power beams in crossed E × B fields are known to be sub-
ject to many instabilities especially when secondary emission
takes place. In [30, 31], experimental and theoretical investiga-
tions into a single-wall secondary-emission microwave discharge
in E × B fields were carried out. In our calculations, such a dis-
charge occurred as a stray instability (“computer physics”) when
the mesh was insufficiently fine (Nr < 200, Nθ < 250). Fortu-
nately, the fundamental microwave resonance of the discharge is
near the double cyclotron frequency and away from the funda-
mental harmonic of BCB instability, which lies in the vicinity of
the Larmor frequency (ν0,BCB ≈ νLe = νce/2). This fact allowed us
to separate out, if any, the stray instability. However, stringent
requirements for the fineness of the mesh prevented us from per-
forming full-scale 3D calculations.
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Vac (t > 6 ns) ≈ Va0 = 11.2 kV (quasi-stationary regime).
In practice, the parameters l, t, v, I, Q, V, W, E, B, R, ν,
L, and C are usually measured in mm, ns, mm/ns, A,
nC, kV, µJ, kV/mm, T, kΩ, GHz, µH, and pF. Also, ε0 =
1/36π pF/mm, c = (ε0µ0)–0.5 = 300 mm/ns, e = 1.6 ×
10−10 nC, and m = me = 9.1 × 10–13 µJ (ns/mm)2. The
equations which follow are given for the (r, θ) geometry
in the nonrelativistic approximation and for a potential
electric field:

(5)

(6)

Here, v nr and v nθ are the velocity components of an nth
electron, (r, θ, t) are path coordinates, E0 = 5.6 kV/mm,
vEB = 22.4 mm/ns, ωce = 2πνce, νce = 28B0 = 7 GHz is
the electron cyclotron frequency, v e,a0 = 62.7 mm/ns is
the velocity of an electron with an energy we,a0 = eVa0 =
11.2 keV, Vcr = 14.5 kV is the cutoff voltage, Bcr =
0.22 T is the critical cutoff field at Vac = 11.2 kV,
B0/Bcr = 1.13; and dtn = 10–5–10–4 ns is the time step of
calculation. Integration is carried out over the path of
the nth electron.

Equations (5) and (6) describe the history of an arbi-
trary electron in a permanent magnetic field B0 and in
an electric field with the components Er(r, θ, t) and
Eθ(r, θ, t), which are found by numerically solving
Poisson equation (7) with boundary conditions (8).
Charge distribution (9) in the diode gap depends on the
position (see (5), (6)) and amount of electrons (macro-
electrons) that have escaped from the cathode over a
time ∆t = (0 < t1 < t) and stay in the gap at a current time
instant t (that is, of those electrons that were not
absorbed by the anode or cathode). The leakage current
toward the anode Ie, a(t) and the diode current Iac(t) are
calculated by (10) and (11):

(7)
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(8)

(9)

(10)

(11)

The cathode surface emits primary electrons (I0e(θ,
t) is given by initial conditions) and secondary elec-
trons, which are knocked out of the cathode by fast
electrons. The yield factor of secondary electrons (kse =
Ise/Ie,BCB) is calculated in view of empirical data [11] by
the formula

(12)

where ksm is the maximal secondary emission coeffi-
cient (ksm = ksm(θ) < 3), αe,BCB is the angle between the
electron velocity and the normal to the surface, we,BCB
is the kinetic energy of the electrons bombarding the
cathode, ws1 ≈ 0.1 keV is the threshold energy, ws2 ≈
0.6 keV is an energy parameter, and h(w) is the Heavi-
side function.

The electrons escaping from the cathode were uni-
formly distributed in the energy interval we,c0 = (10–
50) eV and had the same escape direction in terms of
the polar and azimuthal angles. Note that the initial
electron energy adopted in the simulation (we,c0 =
30 eV) exceeds the value obtained in experiments (see,
e.g., [11]) but is much smaller than the characteristic
electron energy (we ≈ 1 keV) in the near-cathode sheath.
In the basic design of the diode, there exists a rather
high energy threshold (δwe/we,a ≈ 20%) for the electrons
moving toward the anode. Note for comparison that, in
[4], the electron escape toward the anode was simulated
for (B0 – Bcr)/B0 ≈ 1% and, in [5], the computational
scheme worked only for the case when electrons were
emitted along the magnetic field. Under the steady-state
conditions (Vac(t) ≈ Va0), the electrons escaping from the
cathode may reach the anode only if a nonstationary
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azimuthal electric field Eθ(r, θ, t) exists in the diode
gap.

4. DYNAMICS OF ELECTRON FLOW 
FORMATION IN MAGNETRON DIODES

The dynamics of formation of electron clouds, sec-
ondary emission current, and electric field in the MD
gap (basic design) is illustrated in Figs. 2–4. At the zero
time, azimuth-uniform primary electron emission is
accomplished (Ie0 = 2 A). These electrons form an azi-
muth-uniform sheath near the cathode. The sheath
thickens with increasing voltage Vac(t) (Fig. 2, the con-
figuration at t = 3 ns). The electrons starting at earlier
times cannot return to the cathode, because the electric
field strength grows. After ∆t ≈ 3 ns, the voltage across
the diode reaches a maximum value (12 kV) and the
current through the diode drops to zero (the waveforms
in Fig. 1). Over a time interval of 3–4 ns, the electric
field strength Er(r, θ, t) in the near-cathode sheath
3 ns 3.6 ns

5 ns 8 ns

Ω Ω

ΩΩ

6

r r

r

rc

ra ra

rcB0z B0z

B0zB0z

r

6 60

6

mm

mmmm

mm

θ θ

θθ

rc rc

ra ra

10 ns
r, mm

ra

rc

6

4

2
0 180 360
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Fig. 2. Formation of electron clouds in the diode gap in the case of uniform initial emission (Ie0 ≈ 2 A) from the cathode. At the time
3.6 ns, secondary electrons are generated in an avalanche-like manner. By the time t = 8 ns, the quasi-stationary regime with a leak-
age current Ie, a ≈ 4 A toward the anode and weak diode current oscillations (δIac/Iac ≈ 1%) is established. At the bottom, rectangular
sweep at the time t = 10 ns is shown.
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decreases, which causes the intense electron bombard-
ment of the cathode and a rapid growth of the secondary
emission current (Figs. 1, 3, 4). The cathode bombard-
ment at the stage where the field E(t) decreases has an
effect opposite to that observed when the electrons are
captured in the gap during the increase in E(t). In real
experiments, the leading edge time is usually longer
and secondary emission is stimulated by a special cir-
cuit that generates a high voltage spike δV(t) ~ Vac
across the diode [28, 29].

The electrical parameters of the diode (the voltage
Vac(t) and the current Iac(t)) are stabilized with time. The
steady regime is established by the time t = 8 ns
(Fig. 1). However, the secondary emission current Ise(t)
continues to markedly oscillate even at t > 8 ns (Fig. 4).
The current Ise(t) exceeds the anode current amplitude
Ie, a(t) ≈ Ise(t) – Ie,BCB(t) roughly by a factor of 10. The
backward electron flow, which is represented by the
bombardment current Ie,BCB(t), also oscillates signifi-
cantly. The charge distribution qe(r, θ, t) in the gap turns
out to be severely nonuniform (Fig. 2). As a result, an
azimuthal field Eθ(r, θ, t) with an amplitude of about
0.15E0 arises and the field Er(r, θ, t) noticeably oscil-
lates (Figs. 3, 5). The pattern of electron clouds
(bunches) (Fig. 2, t = 8 ns) remains nearly the same
with time and has a period of revolution about the axis
of ta ≈ 1 ns. Assuming that the radial velocity in (5)
equals zero and Er = –E0, we can estimate the azimuthal
velocity at the midradius: 〈v eθ〉  = v a ≈ vEB(1 +
vEB/raωce) = 25 mm/ns. The period of revolution for
these electrons is taa = 2πra/va ≈ 1 ns, which coincides
with the period of revolution of the clouds ta. It can be
assumed that most of the electrons in the gap are cap-
tured particles that have a kinetic energy lower than the
potential energy (we < eV(r, θ, t)). This assumption is
substantiated by the shape of the electron energy distri-
bution function (Fig. 6).

The mean energies of the electrons reaching the
anode and bombarding the cathode are, respectively,

 = 7.4 keV and  = 0.44 keV (Fig. 7). Using
these values and those under the steady-state conditions
(Vac = 11.2 kV,  = 4 A,  = 36 A), we may numer-
ically calculate the back bombardment efficiency, the
power fluxes toward the electrodes, and the precision of
energy balance (1): ηBCB = (eVac – )/eVac = 34%,
Pac = 44.8 kW, Pe, a = 29.6 kW, Pe, BCB = 14.8 kW, and
(Pac – Pe, a – Pe, BCB)/Pac < 1%. Disagreement with
experimental data in [9] is within 10%. In the computer
model of the diode, the emission enhancement coeffi-
cient εeB = Ie, a/I0e may be taken high (εeB > 100), since
the primary emission current under the steady-state
conditions may be infinitesimal: I0e(t > 8 ns) ≈ 0
(Fig. 1).

Consider the angular characteristics of the electrons
at the MD electrodes and the conservation of the azi-
muthal momentum. The electrons approach the anode
along the tangent (  = 82°), and their angular distri-

we,a we,BCB

Ie,a Ie,BCB

we,a

α e,a
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bution is narrow. The mean angle of incidence to the
cathode is  = 24°; that is, here the path is closer
to the normal and the distribution function is wider
(Fig. 7). Using the above values for the steady-state
conditions and formulas (2) and (3), we check the bal-
ance in azimuthal momentum:

(13)

that is, the torque balance is fulfilled within 1%.
In the charge azimuth distribution (Fig. 2, t = 10 ns),

three basic bunches and three bunches of lower inten-
sity can be distinguished. In the frequency spectrum for
the electric field, current density, etc., the frequencies
corresponding to the period of revolution ta and higher
harmonics (ta/3, ta/6, …) are resolved. The spectrum

α e,BCB

1 Ṁe, a
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Fig. 3. Waveforms of the fields Er(t) and Eθ(t) at the point
with the coordinates r = 0.4 cm and θ = 215°.
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Fig. 6. Electron distribution function in the MD gap over total energy at different times (w, kinetic energy; eV, potential energy).
also contains the frequencies νLe = νce/2 = 3.5 GHz, νce,
and its higher harmonics. In an ideal electrode system
without azimuthal inhomogeneities (like the MD in
Fig. 2), the spectrum is relatively simple with a peak
near the Larmor frequency νBCB ≈ νLe (the fundamental
frequency of BCB instability [3, 6]). In the presence of
azimuthal inhomogeneities (the cathode axis is dis-
placed, electron emission is nonuniform, etc.), the fre-
quency spectrum becomes irregular.

5. RESULTS AND DISCUSSION

Macroscopic equations (2) and (3) can be obtained
by summing the left- and right-hand sides of (6) over all
electrons in the diode gap and averaging the sum over
some time interval. Averaging is needed because the
secondary electron flow Ise(t), the leakage current
toward the anode Ie, a(t), the field E(r, θ, t), etc. notice-
ably oscillate in time (Figs. 3–5). The equation thus
obtained differs from (2) and (3) by the presence of the
sum of the integrals that reflect the effect of the field Eθ
on the electrons (see (6)). Under the steady-state condi-
tions, the effects of the field Eθ(r, θ, t) on the electrons
moving toward the anode and on those bombarding the
cathode compensate each other. In other words, the
work done by the field Eθ(r, θ, t) on the electrons in the
gap over the time interval ∆t @ tce equals zero:

(14)

The electrons moving toward the anode are in phase
with the decelerating field Eθ (r, θ, t). In this process,
they lose energy and transfer the excess azimuthal
momentum, which is gained via interaction with the
field B0, to the E × B field. Here, the E × B field serves
as a time buffer for momentum and energy. The elec-
trons that return to the cathode are in phase with the
accelerating field Eθ(r, θ, t) and acquire an excess
energy and momentum. Such a mechanism is akin to
electron–E × B field interaction in a magnetron (see
Section 2). The difference is that integral (14) in the
diode of a generator magnetron is less than zero, since
the electric field removes energy (and azimuthal
momentum) from the electrons and transfers it to anode
resonators. Equations (3) for a magnetron also change,
since the torque due to the electric field pressure
exerted on the surface of anode slots is added. There-
fore, the torque balance in a magnetron is usually ful-
filled when the energy and momentum fluxes toward
the cathode are minor.
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The MD parameters are convenient to analyze in
comparison to an electron diode with a high-emissivity
cathode (Ec = 0) in the absence of a magnetic field (B0 =
0). For the basic MD design (Fig. 2), the numerical sim-
ulation gives the limiting current Icap,lim = 216 A at a
voltage Vac = 11.2 kV. The electric charge in the elec-
tron diode for this case (B = 0) is Qcap,lim = 21.5 nC. This
value is roughly equal to the charge in the MD gap,
Qse = eNse(t > 8 ns) = 21 nC, and exceeds the charge in
a vacuum capacitor (no electrons in the gap) by a factor
of 1.6: Qcap = C0Vac = Qcap,lim/1.6. Comparing these val-
ues with the MD parameters, we find the extent of mag-
netic insulation degradation χe,a = Ie, a/Icap,lim ≈ 1/50 (the
maximal value of χe,amax ≈ 1/15, was obtained in [9] for
a platinum cathode and B0/Bcr ≈ 1.1), the relative sec-
ondary emission current Ise/Icap,lim ≈ 1.5, and
Qse/Qcap,lim ≈ 1. For estimation, we take the maximal
charge in the MD to be equal to Qem = 1.5Qcap.

As was noted above, high instability in an MD diode
occurs when the beam is dense. As a dense beam crite-
rion, we choose the amount of the electron charge in the
gap at the time t = 3 ns (the onset of instability, Fig. 4):
ξe,ac(t) = eNe0(t = 3 ns)/Qem ≈ 1/4. In practice, the
amount of this charge can be estimated from only the
MD external parameters (the waveforms in Fig. 1 and
TECHNICAL PHYSICS      Vol. 49      No. 1      2004
the diode dimensions). For example, Qe0 = Qa – Qcap ≈
4.5 nC, where Qa(t = 3 ns) = (t)dt ≈ 18.5 nC is the

charge accumulated at the MD anode and Qcap = C0Vac =
14 nC is the capacitive charge at Vac = 12 kV. Thus, as a
beam stability criterion, one may use the smallness
condition for the exchange parameter (ξe,ac ! 1):

(15)

where ξe,ac is the exchange parameter, Qe,a(tp) is the
charge transferred by electrons for the process time tp,
and Qem is the maximal charge in the diode.

A similar criterion was suggested long ago [13]
upon estimating the stable acceleration domain for a
collisionless plasma in a magnetic field. Experiments
and numerical simulations of plasma acceleration
between electrodes [32, 33] showed that the current
sheath breaks down when the exchange parameter
approaches unity for a homogeneous plasma or earlier
if the plasma is inhomogeneous.
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In crossed-field devices, multiple electron exchange
in the gap (ξe,ac @ 1) usually takes place during a volt-
age pulse Vac (t < tp) (see, e.g., [9, 10, 28, 29]). Our
investigations show that strong BCB instability in the
beam develops even at ξe,ac > 0.3. In many articles,
magnetic-insulation devices were analyzed in terms of
the hydrodynamic model of electron flow [1, 2] (which
is also called the Brillouin, or drift, model). As follows
from Fig. 8, the simulated paths of electrons in the MD
gap, while extended in the azimuthal direction (|v e,r| !

), are not localized in a narrow layer. Instead, the
electrons move across the gap (from the cathode to the
anode and vice versa). Therefore, the hydrodynamic
model does not work for “leaky” (at (ξe,ac > 0.3) MDs.

The dynamics of BCB instability for electron flows
in crossed-field devices was studied for voltages Vac !
0.5 MV. However, for Vac ~ 1 MV, the results will be
qualitatively the same, since basic processes responsi-
ble for BCB instability occur in the near-cathode
sheath, where electrons remain nonrelativistic. Such a
conclusion relies, e.g., on data for kinetic losses of elec-
trons arriving at the anode of a 2-MV magnetic-insula-
tion beam-transport line [34].

In gaps with magnetic insulation of ions (dac > riL),
the mechanism behind intense oscillation in electron
beams exposed to crossed fields is apparently the same.
In this case, the anode (or anodic plasma) serves as an
emitter with nonstationary secondary emission. Such
an assumption [35] is based on available experimental
data for the generation of high-temperature proton
beams by a gas-discharge magnetron-type injector and
on the predictions of the BCB instability model.

CONCLUSIONS

The process of quasi-stationary electron leakage
across a high magnetic field (B0/Bcr > 1.1) is studied by
numerical simulation. The electron flow in the gap
splits into bunches in the azimuthal (drift) direction.
The collective (turbulent) oscillation of charges takes
place when the electrons interact with the E × B field
and exchange momentum and energy with it. The self-
organization of the turbulent electron flows is provided
by the properties of the cathode (Je0 ! Jcap,lim; the field
at the cathode Ec(t) ≠ 0) and also by secondary electron
emission with a coefficient kse > 1. The results of simu-
lation are verified by the fulfillment of the energy bal-
ance, Pac = Pe, a + Pe, BCB (the spent power equals the
absorbed power), and the torque balance (the torque
arising when electrons leak across the magnetic field
equals that transferred to the cathode and anode by inci-
dent electrons). The calculated results are shown to
agree well with experimental data. The physical model
of the oscillatory system (a dense charged particle flux
in crossed E × B fields) applies to electron and ion
beams. The numerical model of BCB instability may
help to improve the efficiency of high-power micro-

v e θ,
wave oscillators and high-current charged-beam injec-
tors.
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