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This paper discusses the gravitational radiation that accompanies the formation of a rotating
protoneutron star. Mainly large-scale entropy inhomogeneities develope inside the star. As a result,
bubbles of hot nuclear substance are formed, and convective motions arise: bubbles of hot
neutron matter float to the surface of the star, while cold matter sinks to its center. Such large-
scale motions of material give rise to an inhomogeneous mass distribution inside the star.
Variable asymmetry appears in the mass distribution, and this causes gravitational radiation.
© 1998 American Institute of Physics.@S1063-7761~98!00104-8#
e
r

dia
a
tio
s,
cia
si-
vi
d

th
-
ia
o
r
a

de
na
s
un
in

o
ta
irs
ob
ra
m
ag
ill
vit

v
h
e

se
the

first
ga-
wn

r
tion.
ne-
re-
ac-

the
es-
e of
di-

olu-
o-
into
rs.
and

ita-
on

on-

star
eu-

bse-
the
ha-
s to
oge-
etry

of
nsid-
1. INTRODUCTION

Explosions of supernovas accompanying the collaps
the core and resulting in the formation of a neutron star o
black hole are one of the main sources of gravitational ra
tion. Since laser detectors of gravitational waves that
sensitive enough to detect the first bursts of such radia
from space have begun to operate in the last few year
detailed analysis of possible sources has become espe
crucial, including detailed numerical modelling of the phy
cal processes in the sources themselves. Although gra
tional radiation can already be regarded as having been
tected from the secular variation of the semimajor axis of
double pulsar PSR 1913116, which gave astronomers con
fidence in the rapid detection of bursts of gravitational rad
tion from space, the direct action of gravitational pulses
detectors has not yet been observed. Besides the direct p
lem of detecting bursts, the problem of what information c
be extracted from gravitational pulses is also important.

Coalescing double neutron stars are currently regar
as the most promising source for detecting gravitatio
pulses.1,2 Such events are much rarer than are the flashe
supernovas in our galaxy and in the nearby parts of the
verse. Gravitational waves are emitted far more often dur
the flashes of supernovas, and therefore it can be even m
promising to detect them than to detect pulses from the c
lescence of compact objects: neutron stars, neutron-s
black-hole pairs, or possibly black-hole–black-hole pa
Pulses from the coalescence of compact objects will pr
ably provide us with information on the epoch of the gene
tion of galaxies, while pulses of gravitational radiation fro
supernovas make it possible for us to study the initial st
of formation and evolution of protoneutron stars, which w
apparently be the most abundant source of bursts of gra
tional radiation.

The main problem associated with computing the gra
tational radiation accompanying a supernova explosion
for a long time1–3 been to determine the degree of asymm
6291063-7761/98/86(4)/7/$15.00
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try of the explosion. Two main mechanisms for the collap
of a presupernova are known. They are distinguished by
fact that the energy of the propagating shock wave in the
mechanism is sufficient to escape to infinity. The propa
tion of the shock wave in the second mechanism slows do
~because of the intense loss of energy! and is restored afte
the energy is replenished at the expense of neutron radia
We shall work in terms of the second mechanism. We
glect the stage of compression of the iron core when a p
supernova collapses and the gravitational radiation that
companies this process. Our treatment will begin with
stage of formation of the protoneutron star. We shall inv
tigate the gravitational radiation that appears at the stag
cooling of a protoneutron star and its evolution into an or
nary neutron star.

Reference 4 discussed a model of presupernova ev
tion. It consisted of the formation of a rapidly rotating pr
toneutron star, which, because of instabilities, decays
two components, forming a close-lying pair of protosta
Such a pair rotates around the common center of gravity
produces powerful gravitational radiation.4,5 This model is
similar to those in papers discussing the radiation of grav
tional waves from rapidly rotating nuclei of stars and neutr
stars.6–8

The mechanism that we consider is associated with c
vective flows of matter in a protoneutron star.9 Any nonequi-
librium processes in the central regions of a protoneutron
increase the entropy. In particular, the nonequilibrium n
tronization of matter first noted by Bisnovaty�-Kogan and
Se�dov10 can be such a process; this process was also su
quently considered in Ref. 11. In this case, because of
strong heating in the central region of the star, the mec
nism of convective heat dissipation from the center begin
operate, accompanied by the onset of large-scale inhom
neities of entropy. These produce rather strong asymm
and result in strong gravitational radiation.12

Gravitational radiation caused by asymmetric motions
matter associated with convective processes was also co
© 1998 American Institute of Physics
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630 JETP 86 (4), April 1998 Sazhin et al.
ered in Ref. 13. However, the authors of that paper obtai
the evolution of convection only for small-scale fluctuatio
of matter. We obtain large-scale convection accompanied
the ascent of large bubbles of hot matter, which is associ
with the possible role of nonequilibrium neutronization wh
a protoneutron star is formed.

Our modelling of the source of gravitational radiatio
during the explosion of a supernova is associated with
idea of explosive convective instability in a protoneutron s
due to nonequilibrium neutronization of matter at high de
sities. The nonsteady-state cooling of a protoneutron star
simulated numerically, allowing for its rotation and its influ
ence on the development of instabilities. To solve the sec
part of the formulated problem—finding the shape of a gra
tational pulse and the characteristics that allow observer
determine the main parameters of protoneutron stars—
used a numerical code similar to that developed and teste
Ref. 14.

According to current concepts,15 stars withM.10M ( at
the end of their evolution begin to collapse as a result of
processes of thermal dissociation and electron capture by
nuclei. During the collapse of the iron core of a star ab
99% of the gravitational energy is radiated in the form
neutrino radiation. Part of this energy can be imparted to
outer layers of the star and can subsequently cause its sh
be ejected. However, since the characteristic diffusion t
of a neutrino is about 10 sec, some mechanism is neces
that would speed up the transport of the neutrino energ
the front of the shock wave. Convection both inside a
outside the neutrinosphere has recently been offered as
a mechanism.15–17Calculations for the two-dimensional cas
showed an increase in the time it takes for matter to arriv
the region of heating~as a consequence of convection! be-
hind the front of the shock wave and hence an increase in
radius of the wave. However, when neutrino transport in
region above the neutrinosphere was accurately taken
account, it was shown18 that convection, having been in
tially generated, subsequently ceases to be developed
ceases to replenish the energy of the shock wave, and th
the final analysis, causes it to be damped out.

The process of collapse is extremely inhomogeneous
collapsing central core with a mass of about 1M ( appears,
surrounded by a shell in which the main mass of the sta
concentrated.15 The collapsing core subsequently reach
nuclear densities, which causes an expanding shock wav
be formed, and the process of nonequilibrium neutroniza
of this core begins. Such a neutronization process cause
entropy to increase at the center of this core; i.e., hot ma
is formed at the center of the core. This structure is hyd
dynamically unstable.

Reference 9 discussed the hydrodynamic growth mec
nism of neutrino radiation, based on Ref. 19. It discussed
development of convective instability in a gaseous sph
Large-scale instabilities grow most rapidly in this case. An
lytical estimates showed that the inner hot layers are tra
ported to the surface of the star in a characteristic timt
;R/vsound. Reference 9 described calculations of the dev
opment of hydrodynamic instability in a protoneutron s
with excess entropy at the center for the three-dimensio
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case. The inviscid Euler equations were solved numerica
The TVD difference scheme with coordinate splitting w
used~see Ref. 9 for more detail!. The characteristic distribu
tion of rising matter in the form of large-scale entropy var
tions gave rise to shapes reminiscent of the mushroom clo
of a nuclear explosion in the earth’s atmosphere, escap
from the center of the star. The same paper includes figu
that show contours of constant entropy as a function of tim
Since the calculation was done in the adiabatic approxim
tion, increased entropy corresponds to reduced density.

In the simplest model under consideration~without rota-
tion or a magnetic field!, six bursts appear, and the gravit
tional radiation is small in this case. It should be emphasi
that large-scale inhomogeneities grow most rapidly, as
lows from the analysis carried out in Ref. 19.

The characteristic times for the inhomogeneities to
velop were about 4 ms when the characteristic scale of
ascending region was about 20 km. The characteristic t
for a bubble to reach the surface of the protoneutron star
1 ms, which corresponds to a mean velocity ofc/150. The
gravitational radiation from such a process, calculated
Ref. 12, is not very great. However, breakdown of the sy
metry of the picture, caused, say, by rotation or by the pr
ence of a magnetic field in the protostar, increases the gr
tational radiation.

If the rotational velocity in a protoneutron star is no
zero ~this assumption is quite reasonable!, the symmetry of
the problem breaks down. In the present paper, we cons
the hydrodynamic instability that arises in a protoneutr
star for two cases. The first case involves the developmen
instabilities when rotation is absent, and the second case
volves the development of instabilities when weak rotation
present. In both cases, the gravitational radiation from suc
source was computed.

2. MODELLING OF THE HYDRODYNAMIC INSTABILITY

In calculating the density and temperature distributio
inside a protoneutron star, we used the following values
the central density and central temperature:rc52
31014 g/cm3 andT51011 K. It was assumed that relativisti
degenerate electrons and an ideal nonrelativistic Fermi ga
nucleons contribute to the equation of a state of the s
stance inside the star. Note that excess entropy was prod
close to the center of the star (r 50) by the process of non
equilibrium neutronization.

The equations of hydrodynamics used to model the p
cesses that accompany the collapse of a protoneutron st
the three-dimensional case have the form

r
dv

dt
52gradP2

rGM

r 3 r , ~1!

dr

dt
1r div v50, ~2!

dE

dt
5T

dS

dt
1

P

r2

dr

dt
, ~3!
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631JETP 86 (4), April 1998 Sazhin et al.
dS

dt
50. ~4!

Herer is the mass density,v is the material velocity,P is the
pressure inside the protoneutron star,E is the energy density
andS is the entropy. All the quantities are functions of thr
spatial coordinates and time.

To carry out numerical calculations, it is necessary
choose dimensionless quantities. The physical variable
the given problem were reduced to dimensionless form
dividing by the corresponding quantities: density was
pressed in units ofr05231014 g/cm3, length in units of
L0523107 cm, time in units oft057.7431023 sec, mass
in solar masses,M (5231033 g, and temperature in units o
T51011 K. These units were chosen for convenience of
computations.

An explicit Godunov-type conservative TVD differenc
scheme was used in the calculations. This means that
system is written in so-called divergence form, where
symbolic density vectorU appears in a partial derivativ
with respect to time, while the density-flux vectorF appears
in a partial spatial derivative:20

]U

]t
1

]F

]x
50.

Three-dimensional space was broken up into cubic c
with a constant step of the lattice. All the variables of t
density vector (r,ru,rS) were referred to the centers of th
cells, while the fluxes of these variables (ru,ru2,rSu) were
computed on the boundaries between the cells. The varia
were computed at timet8 by solving the one-dimensiona
problem for each spatial direction. Cyclic permutation
these directions was used to maintain second-order accu
After this, a function consisting of the source caused by
action of the gravitational field of the star, which was tak
as constant in the time of the calculations, was added to
equations. The calculations were carried out on the Con
computer of the Institute of Applied Mathematics, Russ
Academy of Sciences. One simulation was carried out o
three-dimensional 51351351 lattice with a step ofh
50.0025, which corresponded to a maximum distance of
bubble from the center ofr 050.0675. A second model wa
calculated on the same lattice with a step ofh50.004, with
the bubble atr 050.1 from the center. This was done in ord
to estimate how the total gravitational radiation depends
the maximum distance of the bubble from the center. T
time to calculate the first model was 15 h. The time to do
calculation in the second model changed slightly becaus
the increase in the timestep.

In solving the hydrodynamic problem, data on the de
sity had to be held in the computer memory for values fr
r0 to 1023r0 . This made it possible to trace the ascent of
bubble to values ofr 050.1 and no further. In order to com
pletely trace the evolution of a bubble from the center to
neutrinosphere, it is necessary to find the law of motion o
bubble out tor 050.17. This requires either the calculation
technique to be changed or the lattice step to be redu
from 0.004 to 0.0001, which makes the time of the calcu
tion unacceptably large. We calculated the total luminosity
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the form of gravitational radiation for both models and us
extrapolation to estimate the total luminosity for the case
which a bubble reaches the boundaries of the neutrinosph

At the initial instant, the self-consistent field method w
used to obtain the equilibrium configuration, taking into a
count rotation.21

The calculations in this paper were carried out for tw
cases. In the first case, in order to test the equilibri
reached by a star, rotation was neglected. In the second c
weak rotation was taken into account, with the ratio of t
rotational kinetic energyT to the gravitational energyuWu
being

T/uWu50.01.

The angular velocity of the protoneutron star was
sumed to be fairly small to avoid Jacobi instabilities, whi
cause a star to rupture into two components. The kinetic
potential energies were computed from integral represe
tions, taking into account the density profile obtained in t
calculation. The rotational period of a star corresponding t
ratio of kinetic to potential energy of 0.01 equalled 14 m
The coordinate system was chosen so that the plane of
tion of the star coincided with thexy plane. This means tha
the star’s angular velocity vector has the components

Vx50, Vy50, Vz5V5const;

i.e., we are considering solid-body rotation.
The entropy distributions for the second case are sho

in Fig. 1. Two cross sections of the star are chosen as
ages. In the first cross section~Figs. 1a–1i!, the angular ve-
locity vector lies in the image plane. In other words, t
horizontal axis corresponds to thex axis, while the vertical
axis corresponds to thez axis of our coordinate system. Fig
ures 1a8–1i8 correspond to a view from above onto the pla
of rotation, corresponding to the plane of the equator. T
initial configuration is chosen at timet50.075 ms, and the
final configuration is shown for timet'6.31 ms. The com-
plete evolution lasted 20 ms.

Unlike the model considered in Refs. 9 and 12, in th
case two bubbles initially appear~at about 3 ms!, elongated
in opposite directions along the axis of rotation. Four ad
tional bubbles appear soon afterwards~at about 5 ms! and lie
in the plane of rotation of the protoneutron star. Such
entropy distribution breaks the symmetry of the pattern c
sidered in Ref. 12 and causes quadrupole gravitational ra
tion to appear. The bubbles located along the axis of rota
are broken off the hot core by the first bubbles and float
the surface. This occurs because the density varies more
idly along the axis of rotation. In the interval between the
bubbles, cooler matter sinks to the center of the protoneu
star. The bubbles located in the plane of rotation break
the hot nucleus core later and also float to the surface.
calculations show that, following the first bubbles, addition
bubbles with significantly less volume are formed, whi
also begin to float to the surface.

The first stage of the development of the perturbation
the growth of asymmetry along the axis of rotation of the s
~Figs. 1a–1c!. which lasts for 3 ms. The asymmetry is st
very weakly expressed in the plane of rotation~Figs.
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FIG. 1. Distribution of levels of constan
entropy in thezx plane ~a!–~i! and in the
equatorial plane~a8!–~i8!. The length scale
along the axes shows the fraction of th
characteristic length: 0.1 corresponds to 2
km in linear measure. The entropy is ex
pressed in dimensionless units~normalized
to Boltzmann’s constant and the nucleo
density!.
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1a8–1c8!, and the evolution proceeds peacefully. The asy
metry of the distribution of the substance is negligible dur
this stage, and bubbles of hot matter have not yet b
formed. Gravitational radiation of the star, as will be sho
below, is also negligible at this stage. Bubbles moving alo
the axis of rotation have already been formed for the sta
shown in Figs. 1d–1f, and bubbles in the plane of rotat
-

n

g
es
n

~Figs. 1d8–1f8! begin to be distinguished at this stage. Th
instant corresponds to the most intense gravitational ra
tion. As can easily be seen, the main gravitational radiat
occurs from bubbles rising along the axis of rotation of t
protoneutron star. The stages shown in Figs. 1g8–1i8 corre-
spond to the final formation of bubbles in the plane of t
equator and the beginning of their ascent to the surface.
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bubbles along the axis of rotation~Figs. 1g–1i! have already
escaped from the calculated region; i.e., they are farther
20 km from the center.

Figure 2 shows the three-dimensional profile of the
tropy distribution initially (t50.075 ms) and when the
bubbles have already formed (t53.65 ms).

On figures with the velocity-field distribution~these fig-
ures are not shown here!, convective cells are clearly visibl
that show both the rise of hot matter to the surface and
fall of cold matter to the center of the protoneutron star.

3. GRAVITATIONAL RADIATION

We shall calculate the gravitational radiation emitted
a protoneutron protostar from the quadrupole formula of R
22. The transverse-traceless part of small perturbations o
metric is determined from

hab
TT5

2G

Rc4 Ï ab
TT ,

whereR is the distance from the star to the observer, andI ab
TT

is the projection of the tensor of the quadrupole momen
the mass distribution inside the star onto the operator

Pab5dab2nanb

~na is the unit vector directed from the star to the observe!.
The tensor of the quadrupole moment of the mass distr
tion is defined by22

I ab~ t !5E r~r ,t !S r ar b2
1

3
dabr

2DdV.

In these equations, the subscriptsa andb take the values 1
2, and 3, while a dot denotes the derivative with respec
time.

FIG. 2. Three-dimensional profile of the entropy for two characteris
times.
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e
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A gravitational wave is characterized by two degrees
freedom and accordingly by two independent amplitud
usually denoted byh1 andh3 . Here we shall not evaluate
each of these two quantities in detail, but shall restrict o
selves to a computation of the luminosity of the source
gravitational radiation and the total quantity of energy giv
off when a star collapses.

The luminosity of a star in the form of gravitational ra
diation is determined by22

Ė5
G

5c5 ^ Î abÎ
ab&,

while the total amount of energy given off in the form o
gravitational radiation is calculated from the integral formu

DE5E Ėdt.

These equations, except for the last, contain the sec
or third derivative with respect to time of the quadrupo
tensorI ab . In analytical calculations, taking the correspon
ing derivative with respect to time does not affect the ac
racy of the computations. The situation is different in n
merical simulation. Even though evaluating an integral
numerical calculations~for example, by means of Simpson
rule! is a simple problem that arouses no concern about
accumulation of numerical errors, differentiation is a no
trivial problem. This is because, when the first difference
computed and then divided by the step, small errors~for
example, rounding errors! grow in magnitude. For the third
derivative, the corresponding errors can already be com
rable with or even greater than the quantity itself, there
introducing unacceptable errors into the computation. N
merical differentiation is an ill-posed problem. There a
several methods of overcoming this ill-posedness.

We shall use the method considered in detail in Ref.
The essence of this method consists of the transformatio
the first derivative ofI ab with respect to time. In the expres
sion under the integral, the first derivative with respect
time appears only as the partial derivative of the density
the substance. Using the continuity equation

]r

]t
1div~rv!50,

we transform the time derivative to derivatives of the dens
of the substance and its velocity with respect to the spa
coordinates. Next the expression is integrated by parts.
suming that there are no mass fluxes at infinity, the fi
derivative of the quadrupole moment tensor with respec
time can be reduced to

İ ab52E rH 1

2
var b1

1

2
vbr a2

1

3
dab~v•r !J dV.

The velocities that appear under the integral sign w
already computed when the self-consistent picture of mo
of the substance inside the star was constructed. The a
racy of their computation was checked when the devel
ment of large-scale inhomogeneities was modelled. Such
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634 JETP 86 (4), April 1998 Sazhin et al.
approach makes it possible to avoid one differentiation w
respect to time and to calculate the gravitational radiat
with satisfactory accuracy.

The luminosity of the star, taking into account the fa
tors that reduce the problem to dimensionless form, is

Ė5
Gr0

2L0
10

c5t0
6 ė.

Hereė is the dimensionless luminosity of the star in the fo
of gravitational radiation.

A problem arises when computing the mean values o
time, denoted in the analytical formulas by angle brackets^ &.
The difficulty is that the period over which the values a
averaged in the theoretical formulas is the rotational per
of the star, which is comparable in magnitude with the du
tion of the process itself or, more precisely, even somew
exceeds it. A protostar makes one rotation around its axi
14 ms, whereas the bubbles ascend in characteristic time
about 5 ms. In general, there are two characteristic time
tervals in this process: the first equals the characteristic
time of the bubbles, and the second is the rotational perio
the protoneutron star. In order to obtain a sufficiently smo
curve describing the gravitational radiation, we chose an
tificial averaging time interval. The time step in the calcu
tions was variable; it was given automatically inside the p
gram, where a short interval at the initial stage of t
calculations changed to a rather long one at the final st
Thus, the time step was about 200ms by the time the maxi-
mum of the first peak occurred, at about 3 ms, whereas it
initially about 100ms. By trial-and-error we chose an ave
aging time of 0.5 ms, which gave a fairly smooth luminos
curve without averaging out the main details of the proce
This curve is shown in Fig. 3. This figure shows the tim
dependence of the luminosityL5dE/dt in units of
M (c2/sec for the case with rotation (T/uWu50.01) for the
second model. The luminosity at the maximum of the burs
2.231028M (c2/sec. In the first model, this value was 3
31029M (c2/sec. The change of the luminosity is easily e
plained by the fact that, in the second model, the bubbles
twice as far from the center, increasing the effective a

FIG. 3. Luminosity curve~in units of M (c2/ sec! of a protoneutron star in
the form of gravitational radiation.
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which increases the quadrupole moment and increases
gravitational radiation. The bubbles begin to move alm
uniformly when they reach the limits of the neutrinosphe
and then the gravitational radiation from them virtua
ceases. In order to estimate the total gravitational radiatio
the process under consideration, we extrapolated the va
found for the total luminosity tor 0

(max)50.17, i.e., to the limit
of the neutrinosphere. The resulting luminosity is 4
31027M (c2/sec.

The total energy emitted in the form of gravitation
waves in the course of the entire process can reach a valu

DE'2.5310210M (c2

taking into account rotation when the ratio of the kine
energy to the gravitational binding energy is 0.01.

Figures 4 and 5 show, respectively, the pulse profile
hTT and the spectral power distribution in a pulse of gra
tational radiation.

FIG. 4. Pulse profile. The dimensionless amplitude of the gravitational w
is plotted on the vertical axis in units of 5.94310217 for a distance of 10 kpc
to the protoneutron star.

FIG. 5. Spectral power of the pulse. The quantitySf—the square of the
Fourier componenthTT—is plotted along the vertical axis. The maximum
spectral power is reached at a frequency of 700 Hz.
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4. CONCLUSION

We shall introduce additional determinations of the a
plitude of gravitational radiation and estimate the amplitu
observed on earth from the flashes of supernovas at the
ter of our galaxy and in a nearby galaxy.

We introduce the notation

h2~u,w!5
1

2
~h1

2 ~u,w!1h3
2 ~u,w!!

and we call the quantityh(u,w) the mean amplitude of the
gravitational wave. The flux of gravitational radiation is e
pressed in terms of the introduced mean amplitude of
wave as

I 5
pc3

2G
n2h2.

The luminosity in terms of flux is determined from

Ė5R0
2E

21

1

dmE
0

2p

dwI ~u,w!.

The directionality diagram of the radiator of gravit
tional waves considered here has a complex structure. H
ever, for our estimates, we restrict ourselves to the appr
mation of a quadrupole dependence of the radiation flux
angles. Then the relationship of the wave amplitudeh deter-
mined here and the luminosity of the star will have the fo

h53.7310219AĖ•1 sec

M (c2

10 kpc

R0

1 kHz

n
.

We shall estimate the amplitude of the gravitational
diation when a supernova explodes at the center of our
axy. Naturally, we shall consider the rotation to be sm
i.e., about 1%.

Then

h510222A Ė•1 sec

1027M (c2

10 kpc

R

1 kHz

n
,

whereR is the distance from the center of the galaxy. Ho
ever, such pulses rarely appear, about once every 30 y.
amplitude of the pulses from protostars possessing slow
tation arriving, say, once a month is

h55310226A Ė•1 sec

1027M (c2

20 kpc

R

1 kHz

n
.

Note that we have restricted ourselves in this article
demonstrating that rotation~even slow rotation! breaks the
symmetry of the convective processes and increases
gravitational radiation by comparison with that of a nonr
tating star. In Ref. 12, we estimated the gravitational rad
-
e
en-
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w-
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n
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l-
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-
he
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tion when the symmetry was broken as a consequenc
rotation. An exact calculation of the energy output is giv
above. However, it should be mentioned that a long ‘‘com
of pulses was not obtained in our calculations, as was
sumed in the preceding article.

To estimate the actual gravitational radiation pulses
the flashes of supernovas, the gravitational energy radi
during faster rotations of the protostars needs to be ca
lated and the fraction of supernovas that possess such
tion also needs to be estimated.
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Forming stable nonlinear lightguides with cross-modulation self-locking of incoherent
soliton modes
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This paper discusses a new class of spatially localized soliton solutions with bounded energy in
the problem of the nonlinear propagation of a light beam along a photorefractive crystal
~PRC! with a drift mechanism of nonlinear response. Solitons of this class correspond to stable
propagation in the PRC of two or more wave packets~components! that are matched in
intensity distribution but incoherent. Their spatial distributions correspond to simultaneous cross-
modulation self-locking of its first- and higher-order modes into the common nonlinear
waveguide formed by them. It is shown that such multicomponent solitons can be implemented
and that they are structurally stable both with respect to collisions and with respect to
substantial~more than 10% in intensity! stochastic perturbations of their components as they
propagate to distances of the order of several diffraction lengths. The paper discusses the
possibility that conjugate polymers, antiferromagnets, and superconductors can contain
unusual states corresponding to the stable propagation of two or more mutually incoherent but
matched electron wave packets along conjugate chains or along isolated atomic planes.
© 1998 American Institute of Physics.@S1063-7761~98!00204-2#
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1. INTRODUCTION

One of the most interesting problems of modern la
physics is to investigate the self-organization processes
occur in systems consisting of nonlinear media and a li
field. The stable self-consistent solutions of problems of t
type ~solitons! in media with spatially localized~local! non-
linear response—the so-called Kerr nonlinearity—has b
thoroughly studied.1 The concepts of one-component a
two-component~vector! solitons as self-consistent spatial
localized solutions~in essence, normal modes! of nonlinear
problems have become firmly established in very differ
fields of modern physics. This includes fiber optics and
optics of supershort light pulses,1–3 nonlinear optics and la
ser spectroscopy,4–6 the physics of quasi-one-dimension
chains in ferromagnets,7,8 high-temperature
superconductors,9 conjugate polymers,10–12 etc. In terms of
simulations, very interesting results have recently been
tained in studying solitons and multisoliton solutions, as w
as stable soliton pairs in photorefractive crystals~PRCs!. The
importance of such studies is that the mechanism by wh
optical nonlinearity is formed in PRCs is one of the strong
mechanisms. It can be observed with light intensities of o
a few mW/cm2.13 Beginning with the pioneering work o
Refs. 14–16 in PRCs with a drift~local! mechanism for the
formation of a nonlinear response,17 active studies have bee
carried out in so-called bright,18,19 dark,20 gray,21 vector,22

and vortex23 solitons, multisoliton solutions,24 and questions
of their propagation and interactions,25,26 spatial
dimensionality,27,28 and stability.29–31 It has been shown, fo
example, that it is possible to form soliton lightguides in t
interior of a PRC, with subsequent trapping and propaga
6361063-7761/98/86(4)/8/$15.00
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along them of relatively weak~in intensity! light beams.24,32

Provided that the wavelength of the strong beams does
fall into the region of photorefractive sensitivity of the cry
tal, it is possible for them to propagate in lightguides induc
in PRCs by low-intensity spatial solitons. The formation
stable pairs of two incoherent spatial solitons of any of
types enumerated above~bright–bright, bright–dark, dark–
dark! has been observed.33,34 In terms of applications, thes
results open up wide prospects for controlling light with lig
in systems for transporting and processing optical inform
tion.

The object of this paper is to analyze a new class
spatially localized stable soliton solutions with limited e
ergy, corresponding to a bound state of two or more incoh
ent light beams—the components of such a soliton—in
PRC with a drift ~local! nonlinear response mechanism.
terms of the character of the light-field distribution, solutio
of this class correspond to the simultaneous self-locking
interlocking of several of its of zero- and higher-order mod
into the common nonlinear lightguide formed by them. T
interaction of the locked modes in this case has a cro
modulation~reactive! character and is not accompanied
energy-exchange processes.

2. THE STARTING MODEL

The model that we used for the nonlinear response o
PRC is based on the well-known35 steady-state solution o
the classical system of material equations for an inter
electric fieldEsc(x,z), written for the two-dimensional cas
neglecting the photovoltaic effect,17
© 1998 American Institute of Physics
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Esc5
1

aI0~x11!~l12l2!

3 (
m50

` S l1

l2
m11 2

l2

l1
m11D ]mI ~x,z!

]xm ,

a5
«

4peNa
, x5

Na

Nd2Na
, ~1!

l1,25
eE0

2u
6AS eE0

2u D 2

1
e

au~x11!
.

HereNa andNd are the acceptor and donor concentratio
respectively;I 0 is a parameter that describes the dark c
ductivity of the PRC and determines the rate of dark ioni
tion of the donors assI0 , where s is the photoionization
cross section;I (x,z) is the radiation intensity;« is the static
permeability;e is the charge of a free carrier taking in
account its sign, i.e., negative for electrons and positive
holes; andu is the temperature of the PRC in energy units
is assumed that an external static electric fieldE0 is applied
to the PRC in the transverse direction~along thex axis!. It is
also assumed that the optical radiation propagates alongz
axis and thatNa@n, I 0@I , anda(]E/]x)!1. Heren is the
free-carrier concentration. ForE0;10 kV/cm, u;300 K,
when the spatial scales of variation of the light field exce
the wavelength of the light, the terms of the series in Eq.~1!
decrease so rapidly that only the first term, proportiona
I (x,z), need be kept in it, so that we will call this the loc
component of the nonlinear response. In fact, this means
we restrict ourselves in this paper to so-called K
nonlinearity.1

The propagation of a light beam with complex field am
plitudeA(x,z) was described by the standard truncated w
equation1

i
]A

]z
5

1

2k

]2A

]x2 1k
dh

h
A, ~2!

written in the paraxial approximation, neglecting absorpti
Herek is the wave number,dh52(r effh

3/2)Esc(x,z) is the
nonlinear addition to the refractive indexh, and r eff is the
effective electrooptic coefficient. Equation~2! omits the
homogeneous-in-x refractive-index variation caused byE0 .
Equations~1! and ~2! form a self-consistent problem tha
takes into account the mutual influence of the redistribut
processes of the light intensity and electric field in the in
rior of the PRC. This model gives a good description
experiments with so-called slit beams,36 which are widely
used in practice when studying soliton effects in PRCs
cause of the strong anisotropy of the nonlinear respons
the latter.

3. TWO-COMPONENT SOLITONS

We shall attempt to find two-component solitonlike s
lutions of the system formed by Eqs.~1! and~2!, correspond-
ing to separation of variables,

A~x,z!5Y1~x!exp~2 in1z!1Y2~x!exp~2 in2z!, ~3!
,
-
-

r
t

e

d

o

at
r

e

.

n
-
f

-
of

where the real functionsY1,2(x) give the spatial distribution
in x of two mutually incoherent components of the lig
field, while the positive constantsn1,2 determine their non-
linear phase damping as a function ofz. We are thus dealing
with the search for intensity distributions that are station
along z. It is easy to see, taking into account the mutu
incoherence of theY1,2 components, that substituting Eq.~3!
into Eqs.~1! and~2! results in a system of equations for th
spatial profiles of their amplitudes in the form

d2Y1,2

dx2 12kFa0E0

I 0
~Y1

21Y2
2!2n1,2GY1,250, ~4!

wherea05(1/2)kreffh
2, and only the first term of the ex

pansion is retained in Eq.~1!. It is convenient to introduce
into Eq. ~4! the dimensionless coordinatesj5x/x0 and z
5z/Ld and the amplitudes of the field componentsr1,2(j)
5Y1,2(j)AR/I 0, wherex0 is determined by the characterist
transverse scale of the problem, for example, by the width
one of the light beams;Ld5kx0

2 is the diffraction length
corresponding tox0 ; R5Ld /Lr ; and Lr5u1/a0E0u is the
nonlinear refraction length. In this case, Eq.~4! transforms
into a system of equations for the dimensionless amplitud

d2r1,2

dj2 62@r1
21r2

22b1,2#r1,250, ~5!

where we have writtenb1,25Ldn1,2, and the1 and2 signs
correspond to the cases of focusing (dh.0) and defocusing
(dh,0) nonlinearity. Both these cases can be implemen
by appropriately choosing the orientation of the PRC and
direction ofE0 .17 It is easy to see that the system of Eqs.~5!
retains the same form for oppositely propagating lig
beams.

Depending on the sign of the nonlinearity, the system
Eqs. ~5! has well-known particular solutions, having th
character of single-component bright solitons,18,19

r156
A2b1

cosh~A2b1j!
, r250,

r150, r256
A2b2

cosh~A2b2j!
, ~6!

or dark solitons,20

r156Ab1 tanh~Ab1j!, r250.

r150, r256Ab2 tanh~Ab2j!. ~7!

Such solutions are stable in principle, even though the n
essary one-dimensionality of the diffraction and self-act
processes is attained in real experiments only by using
beams having a homogeneous field distribution in the dir
tion orthogonal toj andz.36 In this case, one has to consid
the possibility that modulational instability will develo
along the PRC,37 leading to filamentation of the beam in th
direction. The stability of the two-dimensional solitons is d
to the nonlinearity-saturation effect.

In analyzing two-component self-consistent solutio
with a form more general than given by Eqs.~6! and~7!, it is
convenient to use the mathematical analogy between
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character of ther1,2(j) dependences determined by the s
tem of Eqs.~5! and the nonlinear oscillations of two oscilla
tors in the common potential

U~r1 ,r2!56
1

2
~r1

21r2
2!27~b1r1

21b2r2
2!. ~8!

Here, as earlier, the1 and 2 signs correspond to focusin
and defocusing, respectively. The potential energy of
equivalent mechanical system on ther1r2 plane has severa
local extrema, which correspond to singular points of
phase portrait. However, by assumingb1.b2 for definite-
ness and considering the case of self-focusing~Fig. 1!, it is
easy to convince oneself that only the two absolute min
of U(r1 ,r2), with coordinatesr156Ab1 and r250 ~one
minimum with coordinatesr15r250 for defocusing! are
points of stable equilibrium, or foci, while the only loca
maximum r15r250 ~two absolute maxima with coordi
natesr156Ab1 and r250 for defocusing! is a node. All
the other singular points have the character of saddles. In
degenerate case ofb15b25b, all the points with coordi-
natesr1

21r2
25b, located at the bottom of the potential va

ley of Eq. ~8!, correspond to neutral equilibrium.
Besides the one-component bright and dark solitons

Eqs. ~6! and ~7!, there are also two-component solutions
Eq. ~5!, which can be written in terms of elementary fun
tions. Thus, whenb15b25b, the solutions of Eq.~5! are
also known pairs formed by two incoherent bright solito
~the self-focusing case!,

r15
A2b

cosh~A2bj!
cosa, r25

A2b

cosh~A2bj!
sin a, ~9!

FIG. 1. The trajectory corresponding to the soliton of Eqs.~11! known for
PRCs33 and formed by two mutually incoherent~‘‘bright’’ and ‘‘dark’’ !
components and the trajectory corresponding to the two-component so
of Eqs.~13! ~open and closed curves, respectively!. U(r1 ,r2) is the poten-
tial energy,b151, b250.25.
-

e

s

a

he

f
f

or dark solitons~defocusing!,

r15Ab tanh~Abj!cosa, r25Ab tanh~Abj!sin a,
~10!

as given by Ref. 33. In (r1 ,r2 ,U) coordinates, both thes
solutions correspond to the projection onto ther1,2 axes of
the corresponding single-soliton solutions of Eqs.~6! and
~7!, the plane of whose trajectories is rotated around the a
of symmetryU through anglea.

When b1.b2 holds, stable pairs—‘‘gray’’
solitons21—can be formed from incoherent bright and da
solitons both with self-focusing,

r156
A2b12b2

cosh@A2~b12b2!j#
,

r256Ab2 tanh@A2~b12b2!j#, ~11!

and with defocusing,

r156Ab1 tanh@A2~b12b2!j#,

r256
A2b22b1

cosh@A2~b12b2!j#
. ~12!

The latter solution exists only whenb1,2b2 . In the case of
self-focusing, the trajectory of such a soliton begi
(j→2`) at a point of unstable equilibrium (0,6Ab2) @the
local maximum at the bottom of the potential valley of E
~8!# and ends (j→1`) at the symmetrically located poin
(0,7Ab2) ~Fig. 1, open curve!. In the r1r2 plane, this tra-
jectory is a semiellipse with semiaxesA2b12b2 and Ab2

and, depending on the sign, the asymptotic limits lie eithe
the half-planer1>0 or r1<0. With defocusing, the trajec
tory of such a two-component soliton is also a semi-ellip
~but now with semi-axesAb1 andA2b22b1!, beginning at
the point of unstable equilibrium (7Ab1,0) ~the absolute
maximum of potential energy! and ending at the point
(6Ab1,0), symmetrically located on ther1r2 plane. As in
the preceding case, depending on the sign of the asympto
this trajectory is located either inr2>0 or r2<0.

All the two-component solutions of Eqs.~5! enumerated
above are definite pairwise combinations of bright and d
solitons. At the same time, if at least one dark soliton ent
into such a pair, its energy is infinitely large. Therefore,
combinations of this type known until now33 for PRCs most
likely had purely methodological interest.

We have succeeded in finding a new two-compon
soliton solution of Eqs.~5! for PRCs with bounded energ
for the case of nonlinearity of the focusing type. A simil
solution was obtained earlier, for example, in the problem
the propagation of two ultrashort light pulses with mutua
orthogonal polarizations along a lightguide with Ke
nonlinearity.38,39 Even though its trajectory on ther1r2

plane, like the self-matched pair formed by two bright inc
herent solitons, begins and ends at the point~0,0!, ther2(j)
dependence is odd in this solution~Fig. 1, closed curve!. At
the same time, unlike the conventional dark soliton of E
~10!, the function r2(j) decreases exponentially asj→
6`. For b154b2 , this new two-component solution fo
PRCs can be written explicitly

on
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r156
A6b2

cosh2~A2b2j!
, r256

A6b2 sinh~A2b2j!

cosh2~A2b2j!
.

~13!

Figure 2 shows the spatial distributions of the amplitu
of the light field in the two mutually incoherent componen
of the solution of Eqs.~13! @the symmetric~Fig. 2a! and
antisymmetric~Fig. 2b! components# and their stable propa
gation to a distance ofz510, which on the scale of an actu
experiment would correspond to a length of about 5 cm
the PRC. A numerical calculation shows that, unlike the
tisymmetric componentr2 , the symmetric componentr1 is
transformed as it propagates along the PRC into an ordin
one-component bright soliton of the form of Eq.~6!. At the

FIG. 2. Distributions ofur1(j)u ~a! and ur2(j)u ~b! for the components of
the paired soliton of Eqs.~13! and their stable propagation along thez axis:
b151, b250.25.
e

r
-

ry

same time, the antisymmetric componentr2 in the absence
of a r1 component gradually transforms into a pair of brig
small-amplitude solitons with opposite phase that diver
along the transverse coordinatej.

Figure 3 illustrates the structural stability of the two
component soliton of Eqs.~13! against substantial~10% in
intensity! perturbations of the input amplitude profiles o
both field componentsr1,2 by Gaussian noise. With an in
crease of the noise level~20% in intensity!, such a soliton of
Eqs.~13! was observed to decay in a computer experimen
ordinary bright solitons, which consequently have a som
what large margin of stability against perturbations. A n
merical calculation also proved that the two-component s

FIG. 3. Structural stability of the distributions ofur1(j)u ~a! andur2(j)u ~b!
perturbed by Gaussian noise~10% in intensity! for the components of the
paired soliton of Eqs.~13! when they propagate along thez axis: b151,
b250.25.



t

t

or
a

a

.

f

ter-
of

is
f the
ac-

for
ble

king
of

ec-
s of
re
ght
s
al

we
et
e in
to
en

can

do
ent
ra-

rtia,
se,

ed
f

lin-
qs.
C

his
a

e-

rob-
ll-

640 JETP 86 (4), April 1998 Vysloukh et al.
ton solution of Eqs.~13! has structural stability with respec
to collisions ~mutual intersections! with the same two-
component solitons~Fig. 4! or with ordinary one-componen
bright solitons.

Our computer modeling allowed us to track the transf
mation of the structure of the new two-component solitons
the ratio of parametersb1,2 varied. It turned out that the
limiting case of a solution of the form of Eqs.~13! as
b1 /b2→1 is the pair@r1

(1,2),r2
(1,2)# of two-component pho-

torefractive bright solitons of the form given by Eqs.~9!,
which are infinitely remote from each other on thej axis and
consequently do not interact. Each of the solitons of this p

FIG. 4. Stability of the distributions ofur1(j)u ~a! and ur2(j)u ~b! for the
components of the paired soliton of Eqs.~13! against intersecting with the
same paired soliton in a PRC:b151, b250.25.
-
s

ir

consists of two mutually incoherent componentsr1
(1,2) and

r2
(1,2) . However, the corresponding components of theser1,2

(1)

andr1,2
(2) solitons moving apart alongj are pairwise coherent

Moreover, if the coherent componentsr1
(1) andr1

(2) in these
solitons are in phase, the componentsr2

(1) and r2
(2) have

opposite phase. As the ratiob1 /b2 increases, the solitons o
a pair gradually approach each other alongj. When they
spatially coincide completely~the limiting transitionb1 /b2

→`!, the out-of-phase components undergo complete in
ference quenching, and a one-component bright soliton
the form of Eqs.~6! develops. Naturally, such an analogy
extremely tentative, since the shape and parameters o
solitons of a pair vary because of cross-modulation inter
tion as they approach alongj.

Thus, our solution of Eqs.~13! is a new type of stable
and physically implementable two-component soliton
PRCs, belonging to the class of solutions with separa
variables.

4. SELF-LOCKING OF HIGHER-ORDER SOLITON MODES

In essence, the two-component solution of Eqs.~13! that
we considered above describes cross-modulation self-loc
and propagation along the resulting nonlinear waveguide
its zeroth- and first-order modes. We shall show in this s
tion that there also exist more complicated stable solution
this type, i.e., multicomponent solitons that include mo
than two incoherent self-consistent components of the li
field with finite energy and spatially limited distribution
corresponding to the structure of the higher-order norm
modes of their common nonlinear lightguide. As far as
know, multicomponent solutions of this type have not y
been discussed in the literature. This is probably becaus
order to put them into practice, the most important thing is
eliminate interference between their components. Wh
there are only two such components, their polarization
be chosen to be orthogonal.38,39 However, if there are more
such components, a different method has to be used. To
this, one can, for example, use components with differ
carrier frequencies and a nonlinear medium with a compa
tively slow response, which, as a consequence of its ine
is incapable of tracking the interference beats. It is this ca
considered earlier for the description of spatially localiz
paired electronic states~the so-called bisoliton model o
high-temperature superconductivity40! that can be put into
practice in PRCs.

It is easy to convince oneself that, as a result of non
ear interaction of the two components of the soliton of E
~13!, a common nonlinear lightguide is formed in a PR
with a transverse distribution of the refractive index of

Dn}Dnmax/cosh2~j/j0!, ~14!

where the parametersDnmax56b2 andj051/A2b2 describe
the maximum refractive-index change and the width of t
lightguide. We shall assume that all such solutions form
common nonlinear lightguide in a PRC, with a refractiv
index profile similar to Eq.~14!. We shall regardDnmax and
j0 as variable parameters. Then, at the first stage, our p
lem actually reduces to one of two already rather we
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studied problems: the calculation of localized states in a
tential well corresponding to Eq.~14! of the form treated in
Ref. 41, or the calculation of the normal modes of an opti
gradient lightguide with a known refractive-index distrib
tion profile ~a particular case of the so-called Epstein profi!
given by Eq.~14!.42 Next, we also require that the solution
found at the first stage form a common lightguide of t
required profile in the PRC because of Kerr nonlinearity, a
we determine the coefficients of the corresponding exp
sions over the normal modes from this condition.

In the general case, the problem under discussion ha
elementary analytical solutions, and its eigenfunctions
expressed in terms of hypergeometrical functions. Howe
the character of the solutions is substantially simplified wh
quite definite discrete relationships exist betweenDnmax and
j0 ,41,42 for which the eigenfunctions can be expressed
terms of the so-called associated Legendre functions.43 In
this case, the system of equations that we need to solve
an arbitrary whole numbern51, 2,••• is written in the form

d2r i
~n!

dj2 12F b0n~n11!

cosh2~A2b0j!
2b i Gr i

~n!50, ~15!

wherei 51, 2,•••n. The condition of self-consistency of th
multicomponent solutions of soliton type is defined in th
case as

(
i 51

n

@r i
~n!#25

b0n~n11!

cosh2~A2b0j!
. ~16!

Without dwelling here on the procedure of routine calcu
tion, we proceed to only the first three multicomponent
lutions of this class forn51, 2, 3:

r1
~1!5

A2b0

cosh~A2b0j!
, ~17a!

5 r1
~2!5

A6b0

cosh2~A2b0j!
,

r2
~2!5

A6b0 sinh~A2b0j!

cosh2~A2b0j!
,

~17b!

5
r1

~3!5
~3/2!A5b0

cosh3~A2b0j!
,

r2
~3!5

A30b0 sinh~A2b0j!

cosh3~A2b0j!
,

r3
~3!5

~1/2!A3b0@425/cosh2~A2b0j!#

cosh~A2b0j!
.

~17c!

It is easy to convince oneself that the first solution, Eq.~17a!,
is none other than the usual bright soliton of the form giv
by Eqs.~6!, that the second solution, Eq.~17b!, corresponds
to the two-component soliton of Eqs.~13!, described above
and well known in a number of other problems,38,39 and that
the third solution, Eq.~17c!, is an additional, new solution
including a third incoherent component of the light fiel
with a spatial distribution corresponding to a second sy
metrical mode of a nonlinear lightguide written in the PR
-

l

d
n-

no
re
r,
n

n

for

-
-

n

-
.

Figure 5 illustrates the spatial distributions of the amp
tude of the light field for all three incoherent components
the new solution given by Eq.~17c! ~Figs. 5a, 5b, and 5c
respectively! and their stable propagation to a distance oz
55, which, on the scale of an actual experiment, correspo
to a length of the PRC of a few centimeters.

In conclusion, one more feature of the class of mu
component solitons that we have found should be poin
out. Besides the limitation of their energy, it is in our opinio
extremely important for applications that, unlike the tw
component solitons of Eqs.~9! and ~13! known earlier, the
modulation depth of the refractive index,Dnmax, can be var-
ied in solitons of the new type—i.e., the parameters of
light-induced lightguide can be controlled by varying th
number of components in the soliton.

5. CONCLUSION

To summarize this paper, we shall briefly enumerate
main results and formulate certain conclusions. Starting fr
a completely realistic model of the formation of the nonli
ear response of a PRC,35 we have shown for the first time
that it is possible to implement in a PRC the two-compon
soliton solution already known for other physic
problems,38,39corresponding to the stable propagation of tw
self-consistent incoherent spatially localized beams with l
ited energy and nontrivial spatial structure in a PRC with
drift mechanism of the nonlinear response. The light-fie
distributions in this solution correspond to simultaneo
cross-modulation self-locking and to the propagation of
zeroth and first-order modes in the nonlinear lightgu
formed by the pair of components itself. Further analysis
shown that there also exist more complicated multicom
nent solitons of a similar type, which now include more th
two self-consistent incoherent light-field components—
normal modes of their common nonlinear lightguide. O
computer modelling has shown that such solutions not o
can be physically implemented but also are structura
stable.

In our opinion, the class of multicomponent soliton
found and analyzed here is important for applications, si
they exhibit a definite freedom of choice of the relationsh
between the maximum refractive-index changeDnmax in the
resulting lightguide channel and its spatial scalej0 .

Such multicomponent solutions of the nonlinear Sch¨-
dinger equation can also be of interest from a methodolog
viewpoint, especially in connection with problems of form
ing nonlinear collective modes in waveguide lattices,45 as
well as problems of the physics of quasi-one-dimensio
chains in ferromagnets,7,8 high-temperature
superconductors,9,40 and conjugate polymers.10–12It seems to
us that the last group of problems can provide fruitful ide
concerning the possibility of the formation and subsequ
stable propagation of several~two or more! mutually inco-
herent~because of rapid phase relaxation or different eig
frequencies! but stable electronic wave packets~the compo-
nents of multicomponent solitons! with unusual mutually
orthogonal spatial distributions along one-dimensional c
jugate chains or isolated atomic planes. Moreover, the
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FIG. 5. Distributions ofur1
(3)(j)u ~a!, ur2

(3)(j)u ~b!, andur3
(3)(j)u ~c! for the

components of the soliton of Eq.~17c! and their stable propagation along th
z axis: b051.
mation of precisely such incoherent but coupled pack
from coherent electron pairs when the latter are excited
picosecond pulses with a quantum energy of about 2 eV
explain the unexpected experimental result that we obtai
in Y–Ba–Cu–O films, in which an energy gap in the spe
trum of the electronic states of superconducting samples
observed for more than 3 ns after impact excitation.44
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the Russian Fund for Fundamental Research~Grant No. 96-
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Coherent repopulation of the components of a three-level quantum system in the field
of a pulsed bichromatic radio frequency wave

D. F. Zaretski  and S. B. Sazonov
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The coherent repopulation of a quantum system consisting of three nonequidistant levels in the
field of a resonant bichromatic rf wave is studied. The atoms are assumed to have an
impulsive interaction with the rf wave in which the pulse duration is less than any of the relaxation
times. The hyperfine structure of gas atoms and a system of atomic oscillator levels in a
magnetic trap are considered as examples of such a quantum system. It is shown that in the second
case, the coherent repopulation effect can be used to cool neutral atoms in magnetic traps.
© 1998 American Institute of Physics.@S1063-7761~98!00304-7#
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1. INTRODUCTION

The coherent redistribution of populations~in particular,
coherent population capture! is well known in laser physics.1

This phenomenon involves the suppression of resona
fluorescence from the upper level to the two lower levels
a three-level atomic system interacting with the field o
resonant bichromatic wave. In particular, the two lower le
els can be hyperfine structure components.2,3 In this case, the
upper level is separated from the lower levels by an amo
equal to the energy of a laser photon and is, therefore,
populated at the initial time. When the necessary conditi
for coherent population capture are satisfied, the upper l
remains unpopulated in the field of the bichromatic reson
laser wave.

Coherent population capture has been observed in a
tionary laser field.2 In this case, the effect depends strong
on the relationship between the resonance fluorescence
and the relaxation time of the lower levels. We have pre
ously examined4,5 the coherent redistribution of population
in a pulsed bichromatic laser pulse whose duration is sho
than the resonance fluorescence time. It was shown tha
herent population capture also occurs in this case, while
population of the upper level and, therefore, the resona
fluorescence intensity depend strongly on the relative c
stant phase of the components of the bichromatic wave.

In this paper we examine the coherent redistribution
the populations in a three-level system interacting resona
with a bichromatic radio frequency wave. This case diffe
from that of a laser wave in the following ways:

~1! All three components of the three-level system c
be populated initially and the problem must be solved w
different boundary conditions.

~2! Coherent repopulation in this case necessarily
quires a pulsed interaction with the field in which the pu
duration is less than the longitudinal and transverse re
ation times. In the case of a stationary radio frequency wa
coherent repopulation does not take place.

We have investigated6 the polarization of impurity cen-
ter atoms in a magnetic matrix using the interaction o
6441063-7761/98/86(4)/6/$15.00
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pulsed resonant bichromatic radio frequency wave. The
population of levels owing to interactions with radio fre
quency waves may, however, have wider applications. Th
using a bichromatic rf wave opens up the possibility of p
larizing atoms in a gas target even when the gas atoms do
have optical transitions~atomic hydrogen, noble gases!. This
method can also be used to repopulate the oscillator leve
neutral atoms in magnetic traps. As we shall show, this ef
leads to a reduction in the kinetic energy~cooling! of these
atoms. This method of cooling is of special interest in co
nection with the recent discovery of the Bose condensa
of alkali metal atoms.7

In this paper we examine the coherent repopulation
the levels of a three-level quantum system in the field o
resonant bichromatic radio frequency wave. It is assum
that the system has an impulse interaction with the rf wa
with the pulse duration shorter than any of the relaxat
times. We consider the hyperfine level structure of gas ato
and a system of neutral-atom oscillator levels in magne
traps as examples of quantum systems.

2. COHERENT REPOPULATION OF THE COMPONENTS OF
A THREE-LEVEL SYSTEM IN THE FIELD OF A
BICHROMATIC RADIO FREQUENCY WAVE

Let us consider a system consisting of three nonequi
tant levels. One of the components of the bichromatic wa
is in resonance with the transition between levels 1 and
while the other is in resonance with the transition betwe
levels 2 and 3. Level 3 is common to both. It can be po
tioned arbitrarily relative to the other two levels.

The hamiltonian of the atom1rf field system has the
form

H~ t !5H01V̂~ t !, ~1!

whereH0 is the hamiltonian of a three-level system with th
characteristic wave functionsFi ( i 51,2,3) andV̂(t) is the
interaction operator for this system with the bichromatic
field.
© 1998 American Institute of Physics
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We shall assume that the energy separation between
levels can be less thankT, so that, in general, their popula
tions are not the same before the rf field is applied. Let
suppose that the time for this system to interact with the fi
is shorter than any of the relaxation times, in particular, th
the longitudinal relaxation timeT1 and the transverse relax
ation time T2 . This condition means that it is possible
examine the process assuming that the system is in a
described by a wave function which can be represented
superposition of the functionsFi ,

C~ t !5(
i

ai~ t !Fi . ~2!

The amplitudesai(t) are the population amplitudes of thei th
levels, which satisfy the following initial conditions:

ai~0!5AAi exp~ ia i !, ~3!

whereAi is the initial population of leveli , with

Ai5uai~0!u2, ~4!

anda i is the initial phase of its population amplitude.
Since the interaction time is shorter than any of the

laxation times, there are essentially no stochastic pertu
tions of the system during the interaction process. Thus,
amplitudeai(t) at any time is proportional to the consta
phase factor exp(iai) and can be represented in the form

ai~ t !5āi~ t !exp~ ia i !, ~5!

where at any time the functionsāi(t) are independent of the
a i and att50 they are given by

āi~0!5AAi . ~6!

As eigenfunctionsFi of the hamiltonianH0 we can
choose a set of functions of the form

Fi5F̄ i exp~2 ia i !, ~7!

where theF̄ i are independent of the phasesa i .
We obtain a system of equations for the amplitudesai(t)

from the Schro¨dinger equation forC(t),

i\
d

dt
C~ t !5H~ t !C~ t !, ~8!

using the following assumptions:~1! both frequencies of the
bichromatic wave coincide with the frequency of a transiti
between the corresponding levels~the resonance approxima
tion!; ~2! throughout the entire interaction process, t
phases of the components of the bichromatic wa
w i ( i 51, 2) and their relative phaseDw5w12w2 remain
fixed. For simplicity, in the following we consider only th
casesDw50 andDw5p.

The system of equations for the amplitudesai(t) has the
form

da1~ t !

dt
52 iV13 exp~ iw1!a3~ t !,

da2~ t !

dt
52 iV23 exp~ iw2!a3~ t !,
he

s
d
n

ate
a

-
a-
e

e

da3~ t !

dt
52 iV31 exp~2 iw1!a1~ t !2 iV32~2 iw2!a2~ t !,

~9!

whereV13 and V23 are the matrix elements of the operat
V̂(t), calculated using the functionsFi and corresponding to
the resonant transitions, under the influence of the field,
tween levels 1 and 3 (V13) and between levels 2 and 3 (V23).
In Eqs.~9! and below, we set\51. Let us transform to the
amplitudesāi(t) and functionsF̄ i in Eqs.~9!. Since the ma-
trix elements are proportional to phase factors of the fo
exp@i(ai2aj)#, it can be seen that the same phase factors
remain on the right and left hand sides of Eqs.~9! and these
will cancel out. This means that the result of coherent
population of the levels of a three-level system is indep
dent of the initial phases of the level populations.

The solution of the linear system~9! for the case in
which all the levels are populated att50 has the form

ā1~ t !5@V2A21V1A1 cos~Vt !#/V2

2 iAA3V1 sin~Vt !/V,

ā2~ t !5~V2A18 cos~Vt !2V1A28 !/V2

2 iAA3V2 exp~ iDw!sin~Vt !/V,

ā3~ t !52AA3 cos~Vt !2 iA1 exp~2 iw1!sin~Vt !/V,

A15AA2V2 exp~2 iDw!1AA1V1 ,

A25AA1V22AA2V1 exp~2 iDw!,

A18 5AA2V21AA1V1 exp~ iDw!,

A28 5AA1V2 exp~ iDw!2AA2V1 . ~10!

Here V is the frequency of the Rabi oscillations, withV2

5V1
21V2

2, whereV1 andV2 are the real parts of the matri
elements V13 and V23, respectively, with Vi3

5uVi3uexp(iwi). It is clear from Eq.~10! that coherent popu-
lation capture can be observed in a pulsed regime if
population of the common level satisfiesA350 at the initial
time. Thena3(t)50 holds at any time if the parameters
the components of the bichromatic wave, the relative ph
and strengths, obey the condition

cosDw52
A1V1

21A2V2
2

2AA1A2V1V2

. ~11!

In general, when the populations of all the levels are nonz
at the initial time, there is no coherent population captu
effect, but a radical readjustment of the system populatio
possible.

To estimate the magnitude of the repopulation, we p
ceed from the amplitudesai(t) to the populations
r i i 5uai(t)u2. If the rf pulse is very much shorter than th
Rabi periodV21, then the actual populations can be fou
by averaging over the Rabi oscillations. For the populatio
after the end of the field pulse, we obtain

r̄115V2
2uA2u2/V41V1

2uA1u2/2V41V1
2A3/2V2,
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r̄225V1
2uA2u2/V41V2

2uA1u2/2V41V2
2A3/2V2,

r̄335uA1u2/2V21A3/2. ~12!

We shall examine two typical situations. Let the conditio
uA1u250 and A3Þ0 be satisfied. This may occur, for ex
ample, forDw5p and

V15V2AA2 /A1, ~13!

which is a special case of the condition~11!. For the magni-
tudes of the average populations whenDw5p and Eq.~13!
is satisfied, this yields

r̄115A11A2A3/2~A11A2!,

r̄225A21A1A3/2~A11A2!,

r̄335A3/2. ~14!

Let all the levels have the same populations initially, i.
A15A25A351 andDw5p. Then, after application of the
bichromatic field pulse, the population of level 3 falls by
factor of two, while the populations of the other levels i
crease to 5/4. If the pulses are repeated, then, as can be
from Eq.~14!, after theN-th pulse the population of the thir
level decreases by a factor of 2N. Thus, the common third
level can be completely emptied.

We now consider the other situation:uA2u250 and
A3Þ0. These equations can be satisfied whenDw50 and

V15V2AA1 /A2. ~15!

The expressions for the average populations will then h
the form

r̄115A1~A11A21A3!/2~A11A2!,

r̄225A2~A11A21A3!/2~A11A2!,

r̄335~A11A21A3!/2. ~16!

According to Eq.~16!, applying the bichromatic field make
the population of level 3 increase to 3/2, while the popu
tions of levels 1 and 2 decrease to 3/4. As can be seen f
Eq. ~16!, the picture is not changed by repeating the puls

There is a simple procedure by which a radical readju
ment of the populations can be achieved, in this case as w
Suppose that after the end of the bichromatic field pulse,
component coupling levels 1 and 3 is shut off. Because
the effect on the atom of the remaining field component,
populations of levels 2 and 3 become balanced and equ
9/8. We again turn on both components of the bichroma
field, varying their strength in accordance with Eq.~15! and
the new values of the initial populationsAi . After the second
bichromatic field pulse, the following level populations a
established:r̄1156/10, r̄2259/10, andr̄33515/10, i.e., there
will be a further reduction in the populations of levels 1 a
2 relative to that of level 3.

Let us relabel the quantitiesAi in Eq. ~16! as r̄ i i
(N21) .

For the populationr̄11 of level 1 after completion of theN-th
cycle of this procedure, we have the recurrence relation

r̄11
~N!5 r̄11

~N21!S/~S1 r̄11
~N21!!, ~17!
s
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whereS5r111r221r33 is the ~constant! sum of the popu-
lations of all the levels. The solution of the recurrence re
tion ~17! is

r̄11
~N!5S/~N13!. ~18!

With the normalization, this yields

r̄22
~N!5 r̄33

~N!5~S/2!~N12!/~N13!. ~19!

It is clear from these equations that after a sufficiently la
number of cycles, level 1 is essentially empty, i.e., the at
will be cooled, if this level is the one with the highest e
ergy.

This procedure can also be applied in the case ofDw
5p when condition~13! is satisfied. Then the populations o
level 3 after theNth and (N21)th cycles will be coupled by
the recurrence relation

r̄33
~N!5 r̄33

~N21!2~ r̄33
~N21!!2/4~S2 r̄33

~N21!!. ~20!

An approximate solution of Eq.~20! can be found, assuming
that

r̄33
~N!'r̄33

~N21!1d~ r̄33
~N!!/dN. ~21!

As a result, we obtain the approximate differential equati

d~ r̄33
~N!!

dN
52

~ r̄33
~N!!2

4S
, ~22!

whose solution looks like

r̄33
~N!54S/~4Sj1N!. ~23!

The quantityj in Eq. ~23! is a constant determined by th
initial conditions. Calculations show that Eq.~23! yields
higher~by 5–10%! values than the exact value forr̄33. The
error in the calculation will be smaller for largerN0 em-
ployed as an initial value in determining the constantj. Here
the values ofr̄33 for N ranging from unity toN0 must be
calculated exactly using Eq.~20!.

Up to now we have assumed that the field is stro
enough that the Rabi frequency is rather high and the fi
pulses are much longer than the period of the Rabi osc
tions. Let the parameters be chosen so that the cond
uA1u250 is satisfied~see condition~11!!. Then the popula-
tion of the common third level will beA3 cos2(Vt). Then it is
clear that a pulse of lengthp/2V will empty the common
level completely.

3. COHERENT REPOPULATION OF THE HYPERFINE
LEVELS OF A GAS ATOM IN A BICHROMATIC RADIO
FREQUENCY WAVE

In this section we examine the interaction of atoms in
gas with a pulsed bichromatic radio frequency wave. Co
pared to the case of an impurity atom in a magnetic matr6

the atoms in a gas are significantly affected by both tra
verse relaxation~relaxation timeT251/G! and longitudinal
relaxation~relaxation timeT151/g!, whose times are of the
same order of magnitude in the gaseous phase.

It is appropriate to examine the interaction of a reson
field with the atoms in a gas including the effect of relaxati
using the density matrix formalism. The interaction of t
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three level system proposed in Sec. 2 with a resonant bic
matic field in the interaction representation in the resona
approximation is described by a ninth-order system of eq
tions for the density matrixr i j :

ṙ111g~r112r11
0 !52 iV1~r312r13!,

ṙ221g~r222r22
0 !52 iV2~r322r23!,

ṙ331g~r332r33
0 !52 iV1~r132r31!2 iV2~r232r32!,

ṙ131Gr1352 iV1~r332r11!1 iV2r12,

ṙ311Gr3152 iV1~r112r33!2 iV2r21,

ṙ231Gr2352 iV2~r332r22!1 iV1r21,

ṙ321Gr3252 iV2~r222r33!2 iV1r12,

ṙ121Gr1252 iV1r321 iV2r13,

ṙ211Gr2152 iV2r311 iV1r23. ~24!

In Eq. ~24! the r i i
0 are the equilibrium values of the leve

populationsr i i . As in Sec. 2, we shall assume that there
no stochastic changes in the phases of the states durin
interaction process. In this case, using a system of eigenf
tions of the hamiltonianH0 of the form~7!, it can be shown
that the phase factors of the form exp(iai) on the right and
left hand sides of Eqs.~24! cancel out, just as in Eqs.~9! for
the amplitudes. Furthermore, as before, we shall assume
the phases of the components of the rf field are cons
during the interaction. For simplicity we only consider th
casesDw50,p. Then the matrix elements of the magne
dipole interaction of the atom with the magnetic field of t
i -th component of the bichromatic wave,Vi5uVi uexp(iwi),
can be regarded as real:V15V2 for Dw50 andV152V2

for Dw5p. We introduce the notationuV1u5uV2u5V.
To simplify the system of Eqs.~24! we use the normal-

ization conditionr111r221r335S and introduce the quan
tities x135r312r13, x235r322r23, andx125r121r21. As
a result, we transform from a ninth-order system to a fif
order system of equations:

ṙ111g~r112r11
0 !52 iV1x13,

ṙ221g~r222r22
0 !52 iV2x23,

ẋ131Gx1352 iV1~4r1112r2222S!2 iV2x12,

ẋ231Gx2352 iV2~4r2212r1122S!2 iV1x12,

ẋ121Gx1252 iV2x132 iV1x23. ~25!

The characteristic equation of the system of Eqs.~25! is
a complete fifth-order algebraic equation whose exact s
tion is hard to obtain. We shall obtain an approximate so
tion of this equation, as well as the system~25!, that is ac-
curate to within first order terms in the small parametersG/V
and g/V, assuming that the field is low enough th
V@G,g. The solution of the characteristic equation then h
the form

k1523G/42g/4, k25 i&V2G/22g/2,

k352 i&V2G/22g/2,
o-
e

a-

e
the
c-

hat
nt

-
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-
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k452i&V25G/823g/8,

k5522i&V25G/823g/8. ~26!

Let us assume that all the levels of a gas atom are po
lated at the initial time, but not equally, in general: the dia
onal elements of the density matrix arer i i (0)5Ai . For the
gas it is also necessary to assume that they are equal to
equilibrium values:Ai5r i i

0 . Suppose the rf field is turned o
instantaneously. Then the phases of the nondiagonal m
elementsr i j (0)5AAiAj exp@i(ai2aj)# will be fixed at the
initial time, but differ in absolute value from zero. Thes
initial conditions correspond to the initial conditions~3! for-
mulated for the amplitudesai(t) and mean that the atom is i
a state described by the superposition~2!.

That the field is turned on instantaneously means that
switch-on time is much shorter than the time between
interactions which randomly change the phase of the am
tudes of the atomic state, i.e., it is less than all relaxat
times. When the field is turned on adiabatically for a tim
much greater thanT1 ,T2 , the phases of the nondiagonal m
trix elements can change many times over the switch-on t
and the initial conditions must then have the formr i j 50
( iÞ j ).1 Thus, we shall assume that both the switch-on ti
and the duration of the field pulse are shorter than the re
ation times; this corresponds to the assumption that there
no stochastic changes in the phases of the wave funct
during the interaction process. It is important to emphas
that, as noted above, the solution of the equations for
density matrix for this sort of impulsive interaction betwe
the atom and the field does not depend on the initial pha
of the amplitudes of the atomic states. On the other hand
order to achieve a Rabi-oscillation regime, the quantum m
chanical system must interact with the field coherently fo
time no greater thanT1 ,T2 , i.e., the period of the Rabi os
cillations must be less thanT1 ,T2 . Thus, the field has to be
strong enough to makeV@G,g. As will be seen below, the
solution of the system of equations for the matrixr in the
impulse regime whenr i j (0)Þ0 for iÞ j is the same as the
corresponding solution obtained in the wave function form
ism with the initial conditions~3!.

A solution of the system~25! that is accurate to within
first order terms in the parametersG/V andg/V for instan-
taneous switch-on of a strong field whenDw50,p has the
form

r11~ t !5
~A11A2!g

2m
1

3GA

m
1F3~2A2A12A2!~g2G!

8m

7
AA1A2

4 GexpF2
~3G1g!t

4 G1
1

256 H 128~A1

2A2!cos~&Vt!1F6
24~g2G!A2A1A2

V

1
4&A1~5g2126Gg133G2!

mV

2
4&A2~11g2138Gg115G2!

mV Gsin~&Vt!J
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3expF2
~G1g!t

2 G1
1

256 H @96~A11A222A!

664AA1A2#cos~2&Vt!

1F3~A11A2!~3g2114Gg115G2!

mV

2
6A~g2110Gg121G2!

mV

710AA1A2

g2G

V G& sin~2&Vt!J
3expF2

~3g15G!t

8 G , ~27!

where we have setm5g13G and A5S/3 is the average
population of the levels. The upper sign in Eq.~27! corre-
sponds toDw50 and the lower toDw5p. Similar expres-
sions exist forr22(t), but they differ in that the terms pro
portional to cos(&Vt) and sin(&Vt) have the opposite sign
The populationr33(t) can be calculated using the normaliz
tion condition.

These formulas imply that the populations depend s
nificantly on the phase differenceDw of the components o
the bichromatic wave. In the case of a pulse whose dura
satisfies the conditionV21!t!G21,g21, the populations of
levels 1 and 2 will be equal to

r̄115
~A11A2!g

2m
1

3AG

m
1F3~2A2A12A2!~g2G!

8m

7
AA1A2

4 G F12
~3G1g!t

4 G . ~28!

In Eq. ~28! the negative sign in front ofAA1A2 corresponds
to Dw50 and the positive sign toDw5p. The overbar de-
notes averaging of the Rabi oscillations over time. It is cl
that after a short pulse lasting less than the relaxation ti
(T1 ,T2), the population of the common level will differ sub
stantially from the populations of the other levels, even wh
all the levels were populated equally before the field w
turned on. It is important that this difference depends on
phase differenceDw. This effect arises as a result of th
coherent summation of the population amplitudes in
common third level, i.e., it is analogous to coherent popu
tion capture. Ift.T1 ,T2 holds, then the populations of a
three levels will become equal to one another with time
der the influence of relaxation.

4. COHERENT REPOPULATION OF THE OSCILLATOR
LEVELS OF A NEUTRAL ATOM IN A MAGNETIC TRAP

Recently there has been extensive development of m
netic traps for reducing the kinetic energy~cooling! of neu-
tral atoms. In these traps atoms are localized within a sm
volume of space (;1022 cm) as a result of the interaction o
the magnetic moments of the atoms with a complicated m
netic field configuration and contained there for some ti
(;100 s); the atoms are cooled by various methods, suc
-

n
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es

n
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e
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ll
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interactions with lasers whose frequencies are in resona
with an optical transition of the atom. Very low temperatur
of the atomic gas can be attained~much lower than 1 K!. The
Bose condensation of alkali metal atoms was recently
covered using these methods.7

Laser cooling cannot be used, however, if the atoms
not have excited states at optical frequencies. In this cas
is possible to utilize coherent repopulation of the oscilla
levels which an atom has as a particle in a magnetic trap
the field of a bichromatic radio frequency wave.

The magnetic traps which are used have various fi
configurations. The simplest is the so-called quadrupole t
The field in this trap varies spatially as

B}~4z21r2!1/2 ~29!

~cylindrical geometry!. Clearly, it varies linearly in any di-
rection and the potential of the interaction with the magne
moment of an atom has aV shape. In the field of such a tra
the oscillator levels of an atom as a particle will b
equidistant:8

EN5
3

2
~h2Mv4r22!1/3N2/35

3

2
hnN2/3. ~30!

Here N is an integer quantum number,h is Planck’s con-
stant, the trajectory of a particle of massM in the magnetic
field is assumed to be roughly circular with radiusr about
the central axis of the trap, andv is the linear particle veloc-
ity. For largeN the particle moves adiabatically, while th
orientation of its magnetic moment relative to the directi
of the field in the trap is conserved.

Of the levels~30! it is possible to choose three arbitra
nonequidistant levels which can be populated equally at
initial time. After a bichromatic rf electromagnetic fiel
which is resonant with the system of chosen oscillator lev
is turned on, coherent repopulation of these levels ta
place. The repopulation process can be carried out in
impulse regime. For this case, the theoretical analysis of S
tion 2 based on the amplitude of states formalism is va
since, because of the low density of states in magnetic tr
there is essentially no relaxation.

Different variants of the repopulation procedure are p
sible. For example, by applying a pulsed rf field with a pu
durationt and strength such that the conditionVt5p/2 is
satisfied, it is possible to empty the common level. As sho
in Sec. 2, a single pulse is sufficient to completely empty
common third level. If this level does not have the highe
energy, then ap-pulse of a resonant monochromatic fie
can be used to transfer the population of a level whose
ergy is higher than that of the emptied level to a free lev
Repeating this process for the next, lower energy level of
three levels, one can greatly cool the atomic gas in the
by transferring the atoms to ever lower energy levels.

Another means of coherent repopulation can be reali
by applying bichromatic field pulses which last longer th
the period of the Rabi oscillations and have a phase dif
ence ofp between the components. Then, as can be s
from Eq. ~14!, after a few pulses it is possible to great
reduce the population of the common level. Using the p
cedure involving alternating switching-on of one or both
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the components of a bichromatic field with a phase diff
enceDw50, it is possible, according to Eq.~18!, to empty
one of the levels that is not common in the three level s
tem. It is proposed that subsequent cooling be carried ou
in the previous variant.

In order to carry out these cooling procedures, seve
conditions must be satisfied. Thus, the Rabi freque
V;V/h ~V is the matrix element of the operator for th
interaction of the atomic magnetic moment with the rf fie!
must be lower than the frequency corresponding to the s
ration between the oscillator levels~30!. For largeN, this
will be of order nN24/3/3. Thus, the following inequality
must hold:

V,nN24/3/3. ~31!

On the other hand, the time for a single field pulse must
less thanTs /N, whereTs is the time a particle is confined i
the trap (Ts;100 s). This yields the condition

V21,t,Ts /N ~32!

or, in other words,

N,TsV. ~33!

Equations~31! and ~33! yield a condition for the maximum
quantum numberN at which the proposed repopulation pr
cedure can be used:

N7/3,nTs/3. ~34!

For r'1022 cm, v'102 cm/s, andM'100 amu, we
obtain an estimate ofn;100 kHz. AssumingTs;102 s,
from Eq. ~34! we obtain a maximum estimate forN of
N;103. The resonant frequency of the rf field, equal to t
difference in the energies of the levels~30!, is, for largeN,
on the order ofnN21/3;10 kHz. The particle energy fo
these values ofN will be on the order of 1027 eV, which
corresponds to an atomic gas temperature of;1023 K.
Thus, the atomic gas must somehow be cooled to these
peratures, then it can be cooled further by the method p
posed here. Equation~31! implies an estimate for the field
width V;Vh of 3•10214 eV. From this we obtain an esti
mate of the required strengthH of the electromagnetic field
Assuming that the interaction of the magnetic momentm of
the atom with an electromagnetic field of wavelengthl is
dipole in character, we can writeV;mHr/l (r/l;1028).
Finally, we obtainH;102 G. We can obtain an estimate fo
the minimum period of the Rabi oscillations from Eq.~33!:
V21;0.1 s. This criterion corresponds to an rf field with
strength of;75 G.

5. CONCLUSION

The preceding discussion has shown that the cohe
repopulation of atomic levels using a pulsed bichromatic
-
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dio frequency field can have a fairly wide range of applic
tions. We believe that the most promising approaches are
following:

1. Coherent repopulation of hyperfine structure comp
nents makes it possible to polarize atoms in the gase
phase. Unlike optical pumping, the proposed method is
related to the existence of optical transitions in the atom

2. The proposed method opens up the possibility of
larizing atoms and nuclei of impurity centers in a matr
without using ultralow temperatures.6

3. Emptying one or several components of the hyperfi
structure results in anomalous transparency of a medium
Mössbauer gamma rays. This effect can be used in exp
ments to observe stimulated emission for nuclear transitio

4. A bichromatic rf wave can be used to induce cooli
of neutral atoms in magnetic traps. In this case, deep coo
would become possible for atoms that have no excited le
in the optical range, such as atomic hydrogen.

For cooling atoms in magnetic traps it may turn out to
more convenient to use an oscillating component of the m
netic field of the trap itself as the repopulating variable fie
This component should have two resonant frequencies
responding to transitions between oscillator levels of
atom in the constant field of the trap, while the spatial var
tion in its amplitude and its polarization also should cor
spond to the parameters of the constant field.

The criteria for the strength of the repopulating variab
field cited in Sec. 4 give an oscillating trap field compone
of this sort that is several orders of magnitude smaller th
for an rf electromagnetic field, as the ratior/l will be of
order unity in this case.

In conclusion, we thank Prof. R. Kuseman, Pro
G. Odors ~Louvain, Belgium!, and Prof. M. Levenstein
~Saclay, France! for useful discussions.
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Effect of the state of a quantized electromagnetic field on the interaction with an atom
with allowance for the continuum
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This paper studies the effect of a transition into the continuous spectrum on the ‘‘collapse’’ and
‘‘revival’’ of population oscillations in an atom. It is shown that at large values of the
mean number of photons in a radiation field and in conditions of weak ionization the phenomena
of collapse and revival can still be observed, but the amplitude of population oscillations
decreases exponentially because of the damping of the level. The interaction of a quantized
electromagnetic field with aL system of an atom when one state is continuous is
examined. Expressions are derived for the probability of ‘‘survival’’ of the atom when the
quantized field was initially in a state with a given number of photons and when it was in a
coherent state. An approximate calculation of the sum in averaging over the photon
number distribution in the case of a coherent field leads to expressions for the probabilities of
survival of the atom that transform into expressions, as the mean number of photons
tends to infinity, corresponding to the case of a field in the representation of a fixed number of
photons. The possibility of a stable state existing in a coherent quantized field is examined.
It is found that for aL system the condition for the existence of a stable state remains valid in
the case of a coherent state of the field when the photon number is large. ©1998
American Institute of Physics.@S1063-7761~98!00404-1#
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1. INTRODUCTION

The study of various quantum states of electromagn
radiation and the nature of the interaction are importan
identifying optical fields and for their applications.

The first research in the interaction involving cohere
quantized radiation was done in Refs. 1 and 2. New res
followed. In Refs. 3–5, in particular, the phenomena of ‘‘co
lapse’’ and ‘‘revival’’ of atomic population oscillations in
the interaction with coherent quantized radiation were p
dicted. Such phenomena cannot exist when a classical fie
involved, which points to their quantum nature due to t
discreteness of photons. Collapse and revival of popula
oscillations were observed first in the experiments of Rem
et al.6,7 are were later studied by many researchers. Sim
effects can be observed in squeezed quantized fields~see,
e.g., Ref. 8!.

Studying the interaction of a quantized electromagne
field and atoms in the presence of transitions into the c
tinuous spectrum is important because such transitions
dramatically change the pattern of the phenomena. In
ticular, in Refs. 9 and 10 it is shown that the decay of
isolated level initiated by quantized radiation definitely do
not follow an exponential law and the probability of ‘‘su
vival’’ of the atom does not tend to zero for large time
Section 2 studies the population oscillations in the at
when there are transitions into the continuous spectrum.

Section 3 discusses the interaction of quantized elec
magnetic radiation and an atom of theL type with one of the
states being continuous. For a classical field this prob
was discussed by Rzazewski and Eberly.11. When a certain
6501063-7761/98/86(4)/7/$15.00
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condition is met11–14 and a classical or quantum field inte
acts with the atom, the system always has a stable state i
photon number representation. If this condition is satisfi
the probability of survival of the atom does not tend to ze
for large interaction times. Colemanet al.12 studied this sys-
tem in the case of a quantized radiation field. When initia
the quantized field is in a coherent state, Colemanet al.12

assume that the field is extremely strong and replace
number of photons by its mean value. Such replacemen
the initial stage makes it impossible to study the effect
fluctuation of the number of photons in the coherent rad
tion on the process.

The present paper examines the interaction of a qu
tized electromagnetic field and an atom in the cases o
fixed number of photons and a coherent state. When
quantized field is coherent, the exact expressions for
probabilities are written in the form of a sum averaged o
the photon number distribution. Expressions are derived
the probabilities of survival of the atom after this sum
calculated in an approximate manner. At large values of

mean number of photons, whenn̄→`, the results correspond
to the case of a quantized field with a fixed number of ph
tons. In particular, it is found that if a certain condition
met, there is also a stable state when the atom interacts
coherent quantized radiation with a large mean numbe
photons in the beam. Fedorov and Movsesian15 were the first
to predict such stabilization of the atom in strong fields un
certain conditions.
© 1998 American Institute of Physics
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2. TWO-LEVEL SYSTEM WITH A CONTINUUM IN A
QUANTIZED RADIATION FIELD

Let us examine a two-level system with a continuu
~Fig. 1! in the interaction with a quantized radiation field
frequencyv close to the frequency of the transition betwe
the discrete levels of the atoms with wave functionsc1 and
c2. A second photon in the radiation connects the sec
atomic statec2 with the continuum. The system Hamiltonia
has the following form:

H5Hat1vc†c1b†c1c†b, ~2.1!

wherev is the frequency of the quantized radiation,c andc†

are the photon annihilation and creation operators, andb are
the operators of the transitions in the atom.

Writing the wave function of the system consisting
the atom and the field as

F~ t !5 (
k51

2

ak~ t !ck1E dE bE~ t !cE , ~2.2!

we obtain, from the Schro¨dinger equation with the Hamil
tonian ~2.1!, the following system of equations for the e
pansion coefficients in~2.2!:

i
da1~ t !

dt
5~E11vc†c!a1~ t !1b12c

†a2~ t !,

i
da2~ t !

dt
5~E21vc†c!a2~ t !1b12* ca1~ t !

1E dE b2Ec†bE~ t !, ~2.3!

i
dbE~ t !

dt
5~E1vc†c!bE~ t !1b2E* ca2~ t !,

whereb12 andb2E are, respectively, the matrix elements
the transitions between the discrete states of the atom
between statec2 and the continuous spectrum.

Introducing the transformations

ai~ t !5exp$2 i ~Ei1vc†c!t% f i~ t !, i 51,2,

FIG. 1.
d

nd

bE~ t !5exp$2 i ~E1vc†c!t% f E~ t ! ~2.4!

and eliminating the third equation in~2.3!, we arrive at the
following system of equations:

i
d f1~ t !

dt
5b12 exp~2 i«t !c†f 2~ t !,

~2.5!

i
d f2~ t !

dt
5b12* exp~ i«t !c f1~ t !2 i E dE ub2Eu2c†cE

0

t

dt8

3exp@ i ~E2E22v!~ t82t !# f 2~ t8!,

where« is the offset from resonance,

«5E22E12v. ~2.6!

Expanding the amplitudesf 1(t) and f 2(t) in the photon
number states,

f i~ t !5 (
n50

`

f i~ t,n!un&, ~2.7!

we arrive at the following system of equations:

i
d f1~ t,n!

dt
5An b12 exp~2 i«t ! f 2~ t,n21!,

i
d f2~ t,n21!

dt
5An b12* exp~ i«t ! f 1~ t,n!2 i

3E dE ~n21!ub2Eu2

3E
0

t

exp@ i ~E2E22v!~ t82t !#

3 f 2~ t8,n21!dt8. ~2.8!

If initially the atom was in the statec1,

f 1~0,n!5r~n!, f 2~0,n21!50, ~2.9!

wherer(n) is the amplitude of the photon number distrib
tion in the incident electromagnetic radiation, then the so
tion of the system~2.8! is

f 1~ t,n!5r~n!expH 2
i

2
@«1~n21!D#tJ

3expH 2~n21!
Gt

4 J H cos
V~n!

2
t

1 i
«1~n21!D2~n21!iG/2

V~n!
sin

V~n!

2
tJ ,

~2.10!

f 2~ t,n21!52r~n!
2iAn

V~n!
b12*

3expH i

2
@«2~n21!D#tJ

3expH 2~n21!
Gt

4 J sin
V~n!

2
t.

HereV(n) is the Rabi frequency, andD andG are, respec-
tively, the shift and width of the upper discrete level:
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V~n!5H F«1~n21!S D2
iG

2 D G2

14nub12u2J 1/2

,
~2.11!

D52PE dE
ub2Eu2

E2E122v
, G52pub2,E112vu2.

In deriving these expressions we assumed thatD andG are
weakly dependent on the argument.

Allowing for the expressions~2.10!, we can write the
following formulas for the probabilities of finding the atom
in statesc1 andc2, respectively:

W1~ t !5 (
n50

`

ur~n!u2expH 2~n21!
Gt

2 J Ucos
V~n!

2
t

1 i
«1~n21!~D2 iG/2!

V~n!
sin

V~n!

2
tU2

,
~2.12!

W2~ t !5 (
n50

`

ur~n!u2expH 2~n21!
Gt

2 J Usin
V~n!

2
tU2

.

When the quantized electromagnetic field is cohere
the distribution of the number of photons in the electrom
netic radiation is given by the Poisson law

ur~n!u25exp~2n̄!
n̄n

n!
. ~2.13!

If initially the atom was in the statec2,

f 1~0,n!50,
~2.14!

f 2~0,n21!5r~n!,

the probabilities of finding the atom in the statesc1 andc2

are, respectively,

W1~ t !5 (
n50

`

ur~n!u2
4~n11!ub12u2

uV~n!u2

3expS 2n
Gt

2 D Usin
V~n!

2
tU2

,
~2.15!

W2~ t !5 (
n50

`

ur~n!u2expS 2n
Gt

2 D Ucos
V~n!

2
t

2 i
«1n~D2 iG/2!

V~n!
sin

V~n!

2
tU2

,

where

V~n!5$@«1n~D2 iG/2!#214~n11!ub12u2%1/2. ~2.16!

We see that because of damping the nature of colla
and revival of oscillations of the level populations chang
considerably.

Let us examine Eq.~2.15! to find the probability of find-
ing the atom on the upper level initially. Forn̄@1 the Pois-
son distribution has a sharp peak atn5n̄, so that we can use
the expansion

V~n!'V~ n̄!1g~ n̄!~n2n̄!, ~2.17!

where
t,
-

se
s

g~ n̄!5

dV~n!

dn U
n5n̄

5S D2
iG

2 DA12
4n̄ub12u2

V2~ n̄!

1
2ub12u2

V~ n̄!
. ~2.18!

Performing the summation in the expression forW2(t)
in ~2.15! via ~2.17!, we arrive at an approximate formula fo
the probability in the case of coherent radiation:

W2~ t !' 1
4$u12xu2exp@ n̄~exp@2~G/21Img~ n̄!!t#21!

2t Im p#1u11xu2exp@ n̄~exp@2~G/22Img~ n̄!!t#

21!1t Im p#12 Re@~11x!~12x* !exp@ n̄

3~exp@2~G/21 i Re g~ n̄!!t#21!2 i t Re p##%,

~2.19!

where

x5
«1n̄~D2 iG/2!

V~ n̄!
, p5V~ n̄!2n̄g~ n̄!. ~2.20!

In the limits b12→0 or G, D→0 the above expression
transform into the expressions obtained in Ref. 8 or Refs
and 10.

To simplify ~2.19! still further, we examine the specia
case of exact resonance,«50, and weak ionization,

n̄D,n̄G!An̄ uB12u. Then~2.19! yields

W2~ t !'
1

2H exp@ n̄~exp~2Gt !21!#

1expF n̄S expS 2
Gt

2 D cos
ub12ut

An̄
21D G

3F cosS n̄ expS 2
Gt

2 D sin
ub12ut

An̄
1An̄ ub12ut D

2
n̄G

An̄ ub12u
sinS n̄ expS 2

Gt

2 D sin
ub12ut

An̄

1An̄ ub12ut D G J . ~2.21!

We see from the expression forW2(t) that modulation
of population oscillations leads to a collapse and revival
the population oscillations. The revival period is given by t
following expression8:

T5
2pAn̄

ub12u
. ~2.22!

At the initial stage of the process, for small times, whenGt

!ub12ut/An̄!1, Eq. ~2.21! becomes

W2~ t !'
1

2
exp~2n̄Gt !H 11expS 2

ub12u2t2

An̄
D
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3cos~2An̄ ub12ut !2
n̄G

An̄ ub12u

3sin~2An̄ ub12ut !G J . ~2.23!

The damping of population oscillations initially follows
Gaussian law, as predicted by Cummings.1 Subsequently, os
cillations revive after each periodT has elapsed, but the am
plitude of these oscillations decreases exponentially du
atom ionization. For large times, as Eq.~2.21! implies, the
probability of survival of an atom will not tend to zero, as
does in the case of an isolated level9,10; rather, it will be an
exponentially small quantity, sincen̄@1:

W2~ t !'
e2n̄

2 F cos~An̄ ub12ut !

2
n̄G

An̄ ub12u
sin~An̄ ub12ut !G . ~2.24!

3. EFFECT OF THE STATES OF A QUANTIZED
ELECTROMAGNETIC FIELD ON THE STABILIZATION OF
ATOMIC LEVELS IN IONIZATION

When an atom is exposed to an external electromagn
field, a new discrete level is induced in its continuous sp
trum, and as a result of interference with the continu
states this level leads to a continuum with structure or
autoionization-like resonances. As shown in Refs. 11–
under certain conditions, depending on the strength and
quency of the external field, near the Fano minimum
photoelectron spectrum undergoes a sharp change due t
destructive interference of various ionization channels. W
a certain condition is met, one of the ‘‘dressed’’ states d
not decay. Under certain conditions stabilization can be
served in strong fields, too. Stabilization in strong fields w
predicted by Fedorov and Movsesian.15 In all such studies
the external field is assumed classical. In the present p
we examine how the state of a quantized electromagn
field affects the formation of a stable state of an atom.

Let us consider aL system whose upper state has
continuous spectrum~Fig. 2! in an external quantized radia
tion field with frequenciesv1 and v2. The field with fre-
quencyv1 connects the discrete statec1 with the continuum,
while the field with frequencyv2 connects the discrete leve
c2 with the continuum. The corresponding Hamiltonian
the system consisting of the atom and the quantized fiel

H5Hat1 (
k51

2

vkck
†ck1 (

k51

2

~bk
†ck1ck

†bk!, ~3.1!

wherec1 , c1
† andc2 , c2

† are the photon annihilation and cre
ation operators for the first and the second fields, resp
tively, andb1 and b2 are the operators of transitions fro
the statesc1 andc2 into the continuum.
to

tic
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o
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e-
e
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n
s
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tic

f
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Representing the wave function of the atom–field s
tem in the form~2.2! and proceeding from the Hamiltonia
~3.1!, we arrive at the following system of equations for th
expansion amplitudesai ( i 51,2) andbE :

i
dai~ t !

dt
5S Ei1 (

k51

2

vkck
†ckD ai~ t !1E dE b iEci

†bE~ t !,

~3.2!

i
dbE~ t !

dt
5S E1 (

k51

2

vkck
†ckD bE~ t !1 (

k51

2

bkE* ckak~ t !.

Introducing the transformations

ai~ t !5expH 2 i S Ei1 (
k51

2

vkck
†ckD tJ f i~ t !, i 51,2,

~3.3!

bE~ t !5expH 2 i S E1 (
k51

2

vkck
†ckD tJ f E~ t !

into the system of equations~3.2!, we arrive at the following
system of equations:

i
d f i~ t !

dt
5E dE b iE exp@2 i ~E2Ei2v i !t#

3ci
†f E~ t !, i 51,2,

~3.4!

i
d fE~ t !

dt
5(

i 51

2

b iE* exp@ i ~E2Ei2v i !t# ci f i~ t !.

Next, expanding the amplitudesf i(t) and f E(t) in the photon
number states,

f i~ t !5 (
n1 ,n250

`

f i~n1 ,n2 ,t !un1 ,n2&,
~3.5!

f E~ t !5 (
n1 ,n250

`

f E~n1 ,n2 ,t !un1 ,n2&,

we arrive at the following system of equations:

FIG. 2.
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i
d f1~n1,n2 ,t !

dt
5E dE b1E exp@2 i ~E2E1

2v1!t# An1 f E~n121,n2 ,t !,

i
d f2~n121,n211,t !

dt
5E dE b2E exp@2 i ~E2E2

2v2!t# An211 f E~n121,n2 ,t !,

~3.6!

i
d fE~n121,n2 ,t !

dt
5exp@ i ~E2E12v1!t#b1E* An1

3 f 1~n1 ,n2 ,t !1exp@ i ~E2E2

2v2!t# b2E* An211

3 f 2~n121,n211,t !.

If initially ( t50) the atom was in the statec1,

f 1~n1 ,n2,0!5r~n1 ,n2!,

f 2~n121,n211,0!50, ~3.7!

f E~n121,n2,0!50,

wherer(n1 ,n2) is the amplitude of the photon number di
tribution in the radiation field, then the solution of syste
~3.6! has the form

f 1~n1 ,n2 ,t !5r~n1 ,n2!expH 2
i

2 F«1~n211!

3S D22
iG2

2 D1n1S D12
iG1

2 D G tJ
3H cos

V~n1 ,n2!

2
t1 i

3
«1~n211!~D22 iG2/2!2n1~D12 iG1/2!

V~n1 ,n2!

3sin
V~n1 ,n2!t

2 J ,
~3.8!

f 2~n121,n211,t !52
2iAn1~n211! F12~12 i /q!

V~n1 ,n2!

3r~n1 ,n2!expH i

2 F«2n1S D12
iG1

2 D
1~n211!S D22

iG2

2 D G tJ
3sin

V~n1 ,n2!t

2
,

where

F1252PE dE
b1E~v1!b2E* ~v2!

E2E12v1
,

D1,252PE dE
ub1,2Eu2

E2E12v1
, ~3.9!

G1,252pub1,2;E11v1
u2, «5E22E11v22v1 ,

V(n1 ,n2) is the Rabi frequency,

V~n1 ,n2!5H F«1~n211!S D22
iG2

2 D2n1S D12
iG1

2 D G2

14n1~n211!uF12u2S 12
i

qD 2J 1/2

, ~3.10!

andq is the Fano parameter,

q5
2F12

AG1G2

. ~3.11!

If we take into account the expressions~3.8!, the probabili-
ties of finding the atom in statesc1 andc2 are, respectively,

W1~ t !5 (
n1 ,n250

`

ur~n1 ,n2!u2

3expH 2
1

2
@n1G11~n211!G2#tJ Ucos

V~n1 ,n2!

2
t

1 i
«1~n211!~D22 iG2/2!2n1~D12 iG1/2!

V~n1 ,n2!

3sin
V~n1 ,n2!

2
tU2

, ~3.12!

W2~ t !5 (
n1 ,n250

`

ur~n1 ,n2!u2
4n1~n211!uF12u2u12 i /qu2

uV~n1 ,n2!u2

3expH 2
1

2
@n1G11~n211!G2#tJ

3Usin
V~n1 ,n2!

2
tU2

.

In the case of coherent quantized fields,ur(n1 ,n2)u2 is
given by the Poisson distribution

ur~n1 ,n2!u25exp@2~ n̄11n̄2!#
n̄1

n1n̄2
n2

n1! n2!
. ~3.13!

As with classical radiation, in quantized fields there is
stable state in the photon number representation, with

«5«05
q

2
@~n211!G22n1G1#2~n211!D21n1D1 .

~3.14!

For further studies of the results of our investigation w
limit ourselves to the case of a single field with frequencyv.
Then the probabilities of finding the atom in statesc1 andc2

become, respectively,

W1~ t !5 (
n50

`

ur~n!u2expS 2n
Gt

2 D
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3Ucos
V~n!

2
t

1
«1n~D22D12 i ~G22G1!/2!

V~n!
sin

V~n!

2
tU2

, ~3.15!

W2~ t !5 (
n50

`

ur~n!u2expS 2n
Gt

2 D
3

4n2uF12u2u12 i /qu2

uV~n!u2 Usin
V~n!

2
tU2

,

where

V~n!5H F«1nS D22D12
i ~G22G1!

2 D G2

14n2uF12u2~12 i /q!2J 1/2

, ~3.16!

and

«5E22E1 . ~3.17!

When the external quantized field is in a state with a fix
number of photons, i.e.,

r~n!5dn,n8, ~3.18!

and the condition

«5«05
q

2
n~G22G1!2n~D22D1! ~3.19!

necessary for a stable state is met, the probabilities of find
the atom in the statesc1 andc2 are, respectively,

W1~ t !5
G2

2

~G11G2!2H 11
G1

2

G2
2

exp@2n~G11G2!t#

12
G1

G2
expF2

n~G11G2!t

2 G
3cosq

n~G11G2!t

2 J , ~3.20!

W2~ t !5
G1G2

~G11G2!2H 11expF2
n~G11G2!t

2 G
12 exp@2n~G11G2!t#cosq

n~G11G2!t

2 J .

For large times, ast→`, the above expressions yield

W1~`!5
G2

2

~G11G2!2
, W2~`!5

G1G2

~G11G2!2
. ~3.21!

In conditions whereG1'G2 we haveW1(`)5W2(`)51/4.
The total probability of atom survival is

W~ t !5W1~ t !1W2~ t !

5
G2

G11G2
H 11

G1

G2
exp@2n~G11G2!t#J , ~3.22!
d

g

and for large times, ast→`, we have

W~`!5
G2

G11G2
. ~3.23!

WhenG1'G2 and the condition~3.19! is met, the probabil-
ity of the atom being ionized isW(`)'1/2.

Now let us examine the case of a coherent quanti
field, where the photon number is described by the Pois
distribution ~2.13!. How will ~3.15! look for n̄@1? As in
Sec. 2, since the Poisson distribution has a sharp maxim
for n̄@1, we can use the expansion~2.17! for the Rabi fre-
quency~3.16!, where

g~ n̄!5A12
4n̄2uF12u2~12 i /q!2

V2~ n̄!
FD22D1

2
i ~G22G1!

2 G1
4n̄uF12u2~12 i /q!2

V~ n̄!
. ~3.24!

Performing the summation in~2.15! via ~2.17!, we arrive at
the following approximate formulas for the probabilities:

W1~ t !'
1

4H u11xu2expF n̄S expF2S G11G2

2

1Im g~ n̄! D t G21D2t Im pG1u12xu2

3expF n̄S expF2S G11G2

2
2Im g~ n̄! D t G21D1t

3Im pG12 ReF ~11x!~12x* !

3expF n̄S expF2S G11G2

2
2 i

3Re g~ n̄! D t G21D1 i t Re pG G J , ~3.25!

W2~ t !'
1

4H u12xu2expF n̄S expF2S G11G2

2

1Im g~ n̄! D t G21D2t Im pG
1expF n̄S expF2S G11G2

2
2Im g~ n̄! D t G21D

1t Im pG22 ReFexpF n̄S expF2S G11G2

2

2 i Re g~ n̄! D t G21D1 i t Re pG G J ,

where

x~ n̄!5
«1n̄@D22D12 i ~G22G1!/2#

V~ n̄!
, ~3.26!
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andp is given by~2.20!. In the limit G25D250, these ex-
pressions transform into the expressions for the decay o
isolated level.9,10

We examine the expressions~3.25! for the probabilities
under the condition~3.19! that a stable state exists atn5n̄,
i.e.,

«5«05
q

2
n̄~G22G1!2n̄~D22D1!. ~3.27!

Then Eqs.~3.25! yield

W1~ t !5
G2

2

~G11G2!2H 11
G1

2

G2
2

exp@ n̄~exp@2~G11G2!t#21!#

12
G1

G2
ReFexpF n̄S expF2S G11G2

2
2 i Re g~ n̄! D t G

21D1 i t Re pG G J , ~3.28!

W2~ t !5
G1G2

~G11G2!2H 11exp@ n̄~exp@2~G11G2!t#21!#

22 ReFexpF n̄S expF2S G11G2

2
2 i Re g~ n̄! D t G

21D1 i t Re pG G J .

The total probability of atom survival is

W~ t !5W1~ t !1W2~ t !

5
G2

G11G2
H 11

G1

G2
exp@ n̄~exp@2~G11G2!t#21!#J .

~3.29!

When (G11G2)t!1, we have the expression~3.22! with n

5n̄. For large times, ast→`, from ~3.28! we obtain

W1~`!'
G2

2

~G11G2!2H 11
G1

G2
e2n̄FG1

G2
12 cos~ t Re p!G J ,

~3.30!

W2~`!'
G1G2

~G11G2!2
$11e2n̄@122 cos~ t Re p!#%.
an
Since forn̄@1 the second terms in braces in~3.30! are small,

W1~`!'
G2

2

~G1
21G2!2

, W2~`!'
G1G2

~G11G2!2
. ~3.31!

These expressions coincide with~3.21!, and forG1'G2 we
again find thatW1(`)'W2(`)51/4. From ~3.29! we can
derive an expression for the total probability of finding
electron in the atom:

W~`!5
G2

G11G2
S 11

G1

G2
e2n̄D . ~3.32!

Sincen̄@1, we arrive at~3.23!, and atG1'G2 we find that
W(`)51/2.

In a similar way we can derive an expression for the c
of a squeezed quantized field when the squeezing is we
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We examine the processes of resonance Raman scattering of intense electromagnetic radiation by
a lumped system of two-level atoms with a constant dipole moment. We calculate the
intensity of thesth generated harmonic in a saturating electromagnetic field and the statistical
characteristics of this harmonic. Finally, we show that thesth harmonic is squeezed at
saturating field intensities. ©1998 American Institute of Physics.@S1063-7761~98!00504-6#
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1. INTRODUCTION

The generation of squeezed electromagnetic radiatio
still drawing much attention. Generation of squeezed rad
tion in various spectral ranges, including vacuum UV, is
pecially important. On the other hand, observation of hig
harmonics generated by short laser pulses applied to th
oms of inert gases, molecules, and crystals1–6 proves that
coherent radiation can be generated in a broad spectral ra

The aim of the present investigation is to study the p
sibility of squeezing in higher-harmonic generation using
example of resonance scattering of electromagnetic radia
by dipole molecules. One-photon squeezing in coopera
resonance fluorescence in two-level systems was studie
Q. V. and S. V. Lawande.7 In our paper we focus on squee
ing processes that take place during excitation of higher
monics due to Raman scattering. We examine a lumped
tem of two-level molecules that have a dipole momentd22 in
their excited state and are oriented by a given external fi

Multiphoton processes in the resonance scattering
light by an individual molecule have been discussed in R
8. In contrast to Ref. 8, in the present paper we study
effects of cooperative scattering, which take into account
presence of a strong electromagnetic field and the possib
of cooperative spontaneous luminescence. We assume th
generating thesth harmonic, the system remains in th
lumped state. We will show that the squeezing in coopera
luminescence in the hard UV range is a highly nonmonoto
function of the offset from resonance and the intensity of
scattered light and increases with the number of molecule
the system as long as the model remains lumped. In
vacuum UV range the advantage of the proposed multip
ton method of higher-harmonic generation of squeezed ra
tion over the one-photon method proposed in Ref. 7 is t
one is able to use realistic Rabi frequencies. The nonmo
tonic nature of the squeezing effect is due to the contribu
of photon re-emission in the interaction of dipole mome
d22 with the electromagnetic field, determined by a dime
sionless parameterr greater than unity:

r5
E0–d22

\v0
,

6571063-7761/98/86(4)/4/$15.00
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where E0 and v0 are the amplitude and frequency of th
incident radiation~the vector of the electric component of th
linearly polarized wave is directed along the dipole mom
d22 of the oriented molecules!.

2. BASIC EQUATIONS FOR THE DENSITY MATRIX OF A
SYSTEM OF ORIENTED DIPOLE MOLECULES IN
AN EXTERNAL ELECTROMAGNETIC FIELD

The Hamiltonian of a system ofN oriented dipole mol-
ecules in an external electromagnetic field for a lumped s
tem (l@ l , with l52pc/v, andl the linear size of the sys
tem! has the form

H5H0
~M !1H0

~ph!1V~ t !1W~ t !1H int , ~1!

H0
~M !5\v21Rz , H0

~ph!5(
k

\vkbk
†bk ,

V~ t !5~E0•d22!Rz cosv0t,

W~ t !5~E0–d21!~R11R2!cosv0t,

H int5 i(
k

~gk–d21!~R11R2!~bk
†2bk!.

Here v21 is the frequency of the transition between tw
specified states of a molecule, which form a two-level s
tem, gk5A2p\vk /Vel , with V the quantization volume
andel the unit polarization vector,R6 andRz are the coop-
erative spin operators satisfying the commutation relation

@R1, R2#52Rz , @Rz , R6#56R6,

andbk
† andbk are the Bose operators of the electromagne

field.
In what follows it will be convenient to pass to the Fur

representation.9 Then the termV(t) is taken into account
exactly in the zeroth-order Hamiltonian, and after perfor
ing simple transformations we can write the Hamiltonian~1!
in the Furry representation as follows:

H̃5H0
~M !1H0

~ph!1W̃~ t !1H̃ int ,

W̃~ t !5~E0–d21!~R1exp~ ir sin v0t !
© 1998 American Institute of Physics
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1R2exp~2 ir sin v0t !!cosv0t,

H̃ int5 i(
k

~gk–d21!~R1exp~ ir sin v0t !

1R2exp~2 ir sin v0t !!~bk
†2bk!.

Now let us introduce the density matrix of the atom
subsystem,s(t)5Tr x(t), where x(t) is the total density
matrix, and the trace is taken over the variables of the pho
subsystem.

We employ the projection-operator method~see, e.g.,
Ref. 10! and keep only terms of lowest order in the intera
tion with the photon-field vacuum. The result is the follow
ing equation of motion for the density matrix of the atom
subsystem:

ds~ t !

dt
5 id@s~ t !, Rz#1 iVn0

@s~ t !, R11R2#

1a~@R2, s~ t !R1#1@R2s~ t !, R1# !

2b~@R2, R1s~ t !#1@s~ t !R2, R1# !, ~2!

d5v212n0v0 , Vn0
5v21

ud21u
ud22u

Jn0
~r!,

a5
1

2tsp
(

m51

` S m

n0
D 3

Jm2n0

2 ~r!,

b5
1

2tsp
(

m51

` S m

n0
D 3

Jm1n0

2 ~r!,

wheren0 is the resonance parameter, equal to the integer
of the ratiov21/v0, d is the offset from resonance, and

1

tsp
5

4

3

v21
3

\c3
ud21u2

is the probability of one-photon spontaneous decay of
excited state.

Equation ~2! was derived under the conditions th
r,2n0 and (E0–d21)/\v21!1, which made it possible to
consider the interaction of the dipole momentd21 and the
external electromagnetic field in the resonance approxi
tion. Clearly, Eq.~2! with d2250 coincides with the well-
known result of Ref. 11. The constantsa andb are the rates
of population depletion of the excited and ground states,
spectively. The constantb is zero atd2250 and is a specific
feature of the generalized two-level systems withd22Þ0
considered here. The emergence of a nonlinear depend
on the intensity of the external electromagnetic field of
Jm

2 (r) type (Jm(r) is the Bessel function of a real argumen!
is due to photon re-emission processes and only in the l
r!1 corresponds to perturbation-theory results with a m
mum number of photons required by the given physical p
cess.
n

-

rt

e

a-

e-

nce
e
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3. STATISTICAL PROPERTIES OF THE GENERATED
HARMONICS

Let us examine the power of the electromagnetic rad
tion generated by a quantum system:

P5(
k

\vk

d

dt
^bk

†bk&. ~3!

We write the equation of motion for the Bose variabl
obtained through a formal solution of the correspond
Heisenberg equation:

bk
†~ t !5bk

†~0!exp~ ivkt !1
~gk–d21!

\ E
0

t

dt

3exp~ ivkt!~R1~ t2t!exp~ ir sin v0~ t2t!!

1R2~ t2t!exp~2 ir sin v0~ t2t!!!. ~4!

We insert~4! into ~3! and use the Markov approxima
tion, which amounts to ignoring retardation in the slow p
of the spin operators:

R6~ t2t!'R6~ t !exp~7 iv21t!.

After simple transformations the expression forP be-
comes

P5
\v21

tsp
(
s51

` S s

n0
D 4

~Js2n0

2 ~r!^R1R2&

1Js1n0

2 ~r!^R2R1&!,

wheres stands for the number of the harmonic generated
the frequencyv5sv0. Finding the numerical value ofP
requires knowing the correlators^R1R2& and^R2R1&, and
the calculation of these correlators for a system consistin
a large number of molecules is extremely difficult mat
ematically due to the necessity of solving Eq.~2!. Hence we
consider only the steady-state case and the region of sat
ing fields Vn0

@N(a2b) ~below we explain how these ap
proximations can be used simultaneously!. Since in this case
^R1R2& and ^R2R1& are of the same order, we conclud
that the dependence of the intensity of the radiation on
harmonic number is determined primarily by the order of t
Bessel function and that the intensity reaches its maxim
value ats;r1n0. Whens.r1n0, the Bessel function rap
idly decreases, which corresponds to the cutoff effect in
theory of higher-order harmonic generation by atoms.
determine the statistical properties of the scattered radia
we examine the variance of the quadratures of the elec
magnetic field:12

^:~DMi !
2:&5^:Mi

2 :&2^Mi&
2, i 51, 2,

M15
1

2
~bk

†1bk!, M25
i

2
~bk

†2bk!,

where angle brackets indicate averaging with the total d
sity matrixx(t), and :f : stands for normal ordering. The fac
that the^:(DMi)

2:& ( i 51,2) are nonzero is sufficient for th
existence of squeezing in the spectrum of the scattered li



g

pin

g

re
tr

n of

nsi-
are
g-
ili-
s

.

e to
the

eld.
is

-
e
the

-
res-
-
the
the
x-

an
ia-
he
ag-

659JETP 86 (4), April 1998 V. A. Kovarski  and O. B. Prepelitsa
After we eliminate the Bose variables via Eq.~4!, and em-
ploy the Markov approximation, we arrive at the followin
expression:

^:~DM1,2!
2:&s56

umu2

4
~Js2n0

2 ~r!1Js1n0

2 ~r!!@^R1R1&

1^R2R2&2^R1&22^R2&2#

7
umu2

4
@Js2n0

2 ~r!~^R1R2&2^R1&^R2&!

1Js1n0

2 ~r!~^R2R1&2^R1&^R2&!#,

wheres is the number of a harmonic, andm is a geometrical
factor.11

Following Refs. 7 and 13, we introduce new quasis
operatorsS6 andSz such that

@S1, S2#52Sz , @Sz , S6#56S6;

they are related to the ‘‘old’’ operators via the followin
formulas:

R15D1S12D2S212D3Sz , R25~R1!†,

Rz5~D12D2!Sz2D3~S11S2!,

where D15cos2 h, D25sin2 h, D35sinh cosh, and
cot 2h5d/2Vn0

.
In terms of the new quasispin variables, the desi

quantities, i.e., the variance of the quadratures of the elec
magnetic field and the radiation power, become

^:~DM1,2!
2:&s

56
umu2

2
~Js2n0

2 ~r!1Js1n0

2 ~r!!@4D3
2~^Sz

2&2^Sz&
2!

2D1D2~^S1S2&1^S2S1&22^S1&^S2&!#

7
umu2

2
@Js2n0

2 ~r!~D1
2~^S1S2&2^S1&^S2&!

1D2
2~^S2S1&2^S1&^S2&!14D3

2~^Sz
2&

2^Sz&
2!!1Js1n0

2 ~r!~D1
2~^S2S1&

2^S1&^S2&!1D2
2~^S1S2&2^S1&

3^S2&!14D3
2~^Sz

2&2^Sz&
2!!#, ~5!

P5
\v21

tsp
(
s51

` S s

n0
D 4

@~D1
2Js2n0

2 ~r!1D2
2Js1n0

2 ~r!!

3^S1S2&1~D2
2Js2n0

2 ~r!1D1
2Js1n0

2 ~r!!^S2S1&

14D3
2~Js2n0

2 ~r!1Js1n0

2 ~r!!^Sz
2&#. ~6!

We assume thatVn0
@N(a2b). Then, if we ignore the

small terms~of orderN(a2b)/Vn0
), Eq. ~2! becomes

ds̃~ t !

dt
5 i Ṽn0

@s̃~ t !,Sz#1ã~@S2,s̃~ t !S1#

1@S2s~ t !,S1# !2b̃~@S2,S1s̃~ t !#
d
o-

1@s̃~ t !S2,S1# !1g̃~@Szs̃~ t !,Sz#

1@Sz ,s̃~ t !Sz# !, ~7!

Ṽn0
5A1

4
d21Vn0

2 , ã5D1
2a1D2

2b,

b̃5D2
2a1D1

2b, g̃5D3
2~a1b!.

Clearly, in the Dicke-state basis, the steady-state solutio
Eq. ~7! can be written as follows:7

s̃st5Z21 exp~2aSz!, ~8!

whereZ is a normalization constant, anda5 ln(ã2/b̃2).
A remark is in order. In Eqs.~2! and~7! we allowed only

for the decay of the excited state, a process related to tra
tions to the ground state. Actually this means that we
employing a strictly two-level approximation, since we i
nore decays into ‘‘third’’ states, whose transition probab
ties areG. The two-level approximation works for time
t!G21. Thus, the steady-state solution~8! is valid in the
time interval (a2b)21!t!G21.

Using the solution~8!, we can find the means in Eqs
~5!–~7!:

^S1S2&52^S11
2 &1~N21!^S11&1N, ^S6&50,

^S2S1&52^S11
2 &1~N11!^S11&,

^Sz
2&5^S11

2 &2N^S11&1
N2

4
,

where

^S11
2 &5

N2LN132~2N212N11!LN12~N11!2LN112L22L

Z~L21!3
,

^S11&5
NLN122~N11!LN111L

Z~L21!2
, L5

ã

b̃
.

These expressions for the correlators make it possibl
calculate the power of the generated harmonics and study
statistical properties of these harmonics in a saturating fi
Note that the spectral distribution of the radiation intensity
a highly nonlinear~nonmonotonic! function of the frequen-
cies sv0 (s51,2, . . . ) andstrength of the applied electro
magnetic field~Fig. 1!. Here the intensity of some of th
higher harmonics may exceed the radiation intensity at
fundamental frequencyv0 ~Fig. 1!.

Numerical analysis shows~Fig. 2! that the degree of
squeezing for the optimum harmonics;r1n0 reaches its
maximum value at (d/2Vn0

)2;0.36. The size of this squeez
ing is of the same order as in one-photon resonance fluo
cence atv5sv0 ~see Ref. 7!. But in the event of such one
photon fluorescence the fields must be saturating, i.e.,
Rabi frequency must be much larger than the product of
number of emitters and the probability of decay of the e
cited state of an individual emitter. This condition plays
important role in statistical properties of the scattered rad
tion, since in weak fields light scattering is coherent, with t
statistical properties of the applied and scattered electrom
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netic fields being identical. Hence the intensities of the in
dent electromagnetic field at which one can expect a con
sion of classical light into nonclassical~squeezed! light are
sure to belong to the region of saturating fields. In the ev
of one-photon fluorescence atv5sv0, saturation is possible
only if the Rabi frequencies are extremely high~since the
probability of decay of the excited state is proportional
(sv0)3), which at such high frequencies is essentially un
tainable.

On the other hand, in our scheme saturation occurs
an energy gapv21'n0v0, n0!s. This difference makes i
possible to squeeze high-frequency harmonics at mode
intensities of the incident radiation. The theory, howev
does not address higher field strengths, at which the wa

FIG. 1. The ratio of the radiation power at the frequencies 8v0 ~curve 1!
and 10v0 ~curve2! to the radiation power atv0 as a function of the param
eterr at n055.
i-
r-

nt

t-

or

te
,
e-

length of the optimum harmonic becomes smaller than
size of the system being studied.
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localized scatterer flows
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Multiple scattering of laser radiation in a randomly inhomogeneous turbid medium with a
spatially localized flow of particles is studied. The time autocorrelation function of backscattered
light is calculated for the case of a laminar flow of scatterers in a cylindrical capillary
embedded in the medium. A new method is proposed and tested experimentally for determining
the position of the dynamic region and the dominant form and characteristic velocity of
the particle motion there. ©1998 American Institute of Physics.@S1063-7761~98!00604-0#
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1. INTRODUCTION

Problems involving the multiple-scattering of light i
randomly inhomogeneous media have been attracting a g
deal of attention in recent years.1 This is due to both the
diversity of beautiful physical effects observed und
multiple-scattering conditions~coherent backscattering2,3 and
angular and temporal correlations of the scattered radiati4!
and, in connection with the extensive use of optical diagn
tics methods in modern medicine,5–7 the extreme importance
of correctly describing the processes occurring under th
conditions.

So-called diffusing-wave spectroscopy has been de
oping rapidly during the last ten years. Its foundations w
laid in Refs. 8 and 9. The method of diffusing-wave spe
troscopy is based on measuring the time autocorrela
function G1(t)5^E(t)E* (t2t)& of light that is multiply
scattered in a turbid medium. It is found that even under
conditions of strong multiple scatteringG1(t) is sensitive to
the character and intensity of scatterer motion in the m
dium. Moreover, by measuringG1(t) it is possible to detec
very small displacements of the light-scattering particles~up
to hundredths of a wavelengthl of the radiation employed!,
while the methods based on measuring the characteristic
single scattering of waves are sensitive only to scatterer
placements over a distance of the order ofl.9 Another inter-
esting possible application of diffusing-wave spectrosco
has been discovered in the last few years — the possibilit
determining the location and performing diagnostics of d
namic inhomogeneities in turbid media on the basis of
analysis of the scattered radiation.10–13

In the present paper we propose a method of determin
the location and measuring the characteristics of direc
scatterer flows which are hidden deep in a turbid mediu
The method makes it possible to obtain information ab
the motion of particles inside a medium on the basis of
dependenceG1(t) measured at different points on the su
face of the sample. The theoretical and experimental res
6611063-7761/98/86(4)/5/$15.00
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presented are in good agreement with one another. M
over, they agree with both the results of other experimen13

and theoretical calculations.12 The potential possibilities and
limitations of the method of measuring the characteristics
scatterer flows in strongly light-scattering turbid media a
evaluated. The method we propose could find interesting
plications, for example, in hemodynamics, since it opens
the possibility of performing noninvasive measurements
the velocity of blood flow in blood vessels and detecti
changes in blood volume in capillary ansae and other b
logical tissues.14

2. THEORETICAL ANALYSIS

Let us consider the scattering of light with wavelengthl
in a sample of a turbid medium~particle size;l), charac-
terized by a photon transport mean-free pathl * 5(ms8
1ma)21, wherems8 andma are the scattering and absorptio
coefficients,15 and in addition ma!ms8 . Under strong
multiple-scattering conditions (l!l * !L, where L is the
characteristic size of the sample! the time correlation func-
tion G1(r ,t)5^E(r ,t)E* (r ,t2t)& of depolarized multiply-
scattered radiation measured at pointr on the boundaryS of
the sample can be described in the diffusion approxima
by solving the stationary diffusion equation10,13

@¹22a2~t!#G1~r ,t!52
F~r !

Dp
~1!

with the boundary condition16

G1~r ,t!2
2

3
l * ~n–¹G1~r ,t!!50, rPS. ~2!

Here we have neglected light absorption in the mediu
F(r ) describes the distribution of light sources,Dp5cl * /3
is the light diffusion coefficient in the medium,15 n is the
inward unit normal to the surfaceS, and the specific form of
the functiona(t) depends on the character of the scatte
motion in the medium:a2(t)53t/2t0l * 2 in the case of
© 1998 American Institute of Physics
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Brownian motion of particles in a medium with diffusio
coefficientDB ,9 wheret05(4k2DB)21 and k52p/l, and
a2(t)56(t/t f l * )2 in the case of laminar scatterer flow,17

where the characteristic timet f depends on the flow geom
etry. In the case when the directed motion of the lig
scattering particles is superimposed on the random wal
the particles,a2(t) is given by a sum of terms correspondin
to these two different types of motion.18

The boundary condition~2! can be approximately re
placed by requiringG1(r ,t) to vanish on the so-called ex
trapolated boundary15 z52z152Dl * , where D depends
on the scattering conditions near the boundary. When
scattering is isotropic and the refractive index of the scat
ing medium equals that of the surrounding medium,
Milne theory givesD50.7104.19

Let the turbid medium fill the half-spacez.0 and let the
medium contain a hidden inclusion in the form of a cylind
cal capillary with diameterd52a.l * . Let the capillary be
directed along thex axis and located at a distancez from the
boundary of the medium~Fig. 1!. We denote byS1 the sur-
face of the capillary and byV1 the volume enclosed by it. I
a directed scatterer flow is produced in the capillary, wh
elsewhere in the medium the scatterers move as Brow
particles, then we can introduce in Eq.~1! a spatial depen-
dence ofa2(t) of the form13

a2~t!5H a in
2 ~t!53t/2t0l * 216~t/t f l * !2, rPV1,

aout
2 ~t!53t/2t0l * 2, r¹V1 .

~3!

In our experimental situation~Fig. 1! a Poiseuille velocity
profile can be assumed for the particles inside the capill
which gives

t f5A30/kl * G1 , whereG1532Q/A2pd3, ~4!

and Q is the volume flow rate of the liquid, equal to th
volume of the liquid passing through the cross section of
capillary per unit time. It is easy to show thatQ is related to
the average velocityV of the directed motion of the particle
in the capillary by the relationQ5pa2V.

FIG. 1. Schematic diagram of the experiment. The sample (8315315 cm3)
consists of particles of rutile (TiO2) suspended in resin~0.01 g of rutile per
100 ml of resin, particle diameter 0.25mm, ms854 cm21, ma50.002 cm21,
l * 50.25 cm,DB50). A transverse cylindrical opening with diameterd
50.75 cm, where a flow of a suspension of polystyrene beads in w
~particle diameter 0.296mm, concentration'0.5%, DB51.531028 cm2/s,
t056.3231024 s! is produced, was made parallel to the surface inside
sample at a depthz50.925 cm. Laser radiation is introduced into the m
dium by means of a narrow fiber-optic lightguide with diameterb,l * . The
time autocorrelation function of the intensity of the multiply scattered lig
in the medium is measured at the point (x,y,0).
-
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Finally, we write the boundary conditions on the surfa
S1 of the capillary in the form10

G1
in~r ,t!5G1

out~r ,t!, rPS1 , ~5!

~n–¹G1
in~r ,t!!5~n–¹G1

out~r ,t!!, rPS1 , ~6!

whereG1
in,out(r ,t) are solutions of Eq.~1! inside and outside

the volumeV1, respectively.
To complete the mathematical formulation of the pro

lem we have only to specify the distributionF(r ) of the light
sources in the medium. In an experiment the sample is o
narily illuminated by a laser beam of finite widthb. The
casesb@l * andb,l * are easiest to describe theoretical
since in the first case one can assume approximately th
plane wave is incident on the surface of the medium, wh
in the second case one can study a point source of radia
positioned at a point determined by its coordinateys on the
surface of the medium~see Fig. 1!. Since the coherent lase
radiation becomes diffuse at a depthz0;l * ,15 we shall
write the source function in Eq.~1! in the form

F~r !.H d~z2z0!, b@l * ,

d~x!d~y2ys!d~z2z0!, b,l * .
~7!

On this basis it is easy to obtain an expression for
correlation functionG1

0 of depolarized light backscattere
from an infinite medium in the absence of a scatterer flow
the capillary (t f→`). In the limit t!t0 we obtain

G1
0~t!5exp$2gaoutl * !, ~8!

for b@l * and

G1
0~x,y,t!5

1

4pDp
H exp~2aout r!

r

2
exp~2aoutAr214g2l * 2!

Ar214g2l * 2 J ~9!

for b,l * . In these formulasg511D is a numerical con-
stant of the order of 2,r5@x21(y2ys)

2#1/2 ~see Fig. 1!, and
the light source is assumed to be located at the point (0ys)
on the surface of the medium. The results~8! and ~9! were
obtained earlier by different methods, and they have a
been confirmed experimentally.8,9 We note that the correla
tion function ~8! does not depend on the position (x, y) of
the detector on the surface of the medium or on the pho
transport mean free pathl * .

Now let a laminar flow of light-scattering particles b
produced in the capillary. In this case we write the soluti
in the form G1(x,y,t)5G1

0(x,y,t)1G1
S(x,y,t), where the

last term describes the effect of the flow on the correlat
function. Neglecting the condition~2! on the boundary of the
medium, we obtain for the caseb@l *

G1
S~y,t!52

h2z0

2pl *
(
n51

` E
2`

` dp

cosp
cos~n~p2u!!

3 f nS aout

h2z0

cosp
, aoutAh21y2, aouta,a inaD ,

~10!
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where

f n~j1 ,j2 ,j3 ,j4!5Kn~j1!Kn~j2!

3F j3I n8~j3!I n~j4!2j4I n~j3!I n8~j4!

j3Kn8~j3!I n~j4!2j4Kn~j3!I n8~j4!
G ,

~11!

I n andKn are modified Bessel functions, primes denote d
ferentiation of the corresponding function with respect to
argument,h5z1a, andu5tan21(y/h). A somewhat differ-
ent result is obtained forb,l * :

G1
S~x,y,t!52

1

2p2 (
n51

` E
0

`

dp cos~nu!cos~px!

3 f n~rAp21aout
2 , r sAp21aout

2 ,

aAp21aout
2 , aAp21a in

2 ), ~12!

wherer 5(h21y2)1/2 and r s5(h21ys
2)1/2.

To satisfy the zero boundary condition in the pla
z52z1 and thereby obtainG1

S for the experimental schem
shown in Fig. 1, we use the method of images.19 We place
the images of the capillary and radiation source on the o
side of the planez52z1 so that the geometry of the proble
would become symmetric with respect to this plane. Th
the desired solution can be written as a sum of the exp
sions ~8! or ~9! and terms of the form~10! or ~12! corre-
sponding to two different capillaries and light sources.

3. EXPERIMENTAL CONDITIONS

A schematic diagram of the experimental apparatus
shown in Fig. 1. The sample consists of rutile (TiO2) par-
ticles suspended in resin. A cylindrical opening with dia
eter d50.75 cm was made through the sample at dista
z50.925 cm from one of its faces. A laminar flow of
suspension of polystyrene beads in water is maintained in
cylindrical opening by means of communicating vess
placed at different heights. The optical properties (ms8 , ma)
of the suspension are close to those of the sample mate
Therefore the region inside the capillary differs from the s
rounding medium only by the dynamics of the particles
cated in the capillary. For this reason, following the term
nology of Ref. 13, we shall call this region dynamical
heterogeneous.

Coherent laser radiation at wavelengthl5514 nm and
power 1 W, generated in the TEM00 mode by an argon ion
laser with a Fabry–Perot etalon placed inside the laser
ity, is injected by means of a system of mirrors and a le
into a multimode fiber-optic waveguide~core diameter 200
mm, numerical aperture 0.16!. The Fabry–Perot etalon insid
the laser cavity gives an adequate radiation coherence le
~about 3 m!, which is necessary in experiments on multip
scattering of light.20 Passing along the waveguide the light
incident on the surface of the sample. The light scatte
from the sample is collected by means of a single-mo
fiber-optic waveguide~diameter 3.1mm, numerical aperture
0.13!, which allows the fluctuations of the light intensit
-
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within the coherence area of the scattered radiation to
recorded. Passing along the waveguide, the scattered r
tion enters a photomultiplier,1! which operates in the photo
counting mode and is connected with a digital multichan
autocorrelator.2! The use of fiber-optic waveguides to deliv
the laser radiation to the sample and to record the scatt
light and the use of a digital correlator make it possible
obtain a high signal/noise ratio in the measurement proc

The measured quantity in the present experiment is
normalized autocorrelation function g2(t)5^I (t)I (t
2t)&/^I &2 of the intensity of the scattered light. The radi
tion scattered in the turbid medium has a Gaussian distr
tion, as a result of whichg2(t) is related with g1(t)
5G1(t)/G1(0) by the Siegert relation

g2~t!511bug1~t!u2,

where 0,b,1 is the aperture function determined by th
measurement system used.5,21 Since the sample used in th
experiment does not satisfy the condition of ergodicity, t
productI (t)I (t2t) is averaged over an ensemble of realiz
tions by the method proposed in Ref. 21. The essence of
method is that the averaging is accomplished by moving
sample alternately in one direction and then in another r
tive to the stationary source and detector by means of
electric stepping motor. In our experiments the velocity
the sample motion was equal to about 50mm/s. The direc-
tion of motion is changed automatically, as a result of wh
the sample is displaced by approximately 500mm first in one
and then in another direction parallel to the capillary axis

4. BASIC RESULTS AND DISCUSSION

Figure 2 shows the normalized correlation function
the scattered radiation field, calculated for the case show
Fig. 1 where the radiation is delivered and detected us
thin fiber-optic waveguides (b,l * ). The calculation was
performed using Eqs.~9! and~12! with aout[0 and the val-

FIG. 2. Normalized time autocorrelation function of multiply scattered
diation, calculated in the diffusion approximation for the case when
radiation source and detector are arranged symmetrically relative to
capillary (x50, y52ys52.5l * , z53.5l * , d53l * , z05z15l * ,t056
31024 s!. Different curves correspond to different flow velocities:V50.1
~1!, 0.6 ~2!, 3 ~3! cm/s.
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ues of the other parameters close to those used in the ex
ment. The corresponding experimental points are prese
in Fig. 3. As one can see from these figures, the sectio
the correlation function in the bounded range of delay tim
t (1,t,400ms under the conditions of our experiment! is
most sensitive to a change in the velocity of the fluid flo
inside the dynamic region; this agrees with the results
tained in Ref. 13. Fort,1 ms the behavior of the correlatio
function is determined mainly by the small but nonzero a
sorption of light in the medium, the absorption being t
same both inside and outside the capillary. Fort;50
2200 ms g1(t) tends to saturate at a constant level tha
independent of the flow velocity. This fact was predict
theoretically in Ref. 12 and can be easily explained qual
tively on the basis of the correspondence between the s
trajectories of photons in the medium and the long de
timest:8 For larget the rate of decrease ofg1(t) is deter-
mined mainly by photons with relatively short trajectorie
since photons with long trajectories are now complet
decorrelated. Photons with short trajectories consist ma
of photons which do not reach the capillary, and since
particles in the medium surrounding the capillary are imm
bile, the theoretically computed functiong1(t) approaches a
constant different from zero ast→`. The value of this con-
stant is determined solely by the depth at which the capill
is located. As shown in Ref. 12, ford@l * it can be esti-
mated as 12(z01z1)/z.0.55 for our sample (z05l * ,
z150.7104l * , z53.7l * ). Since in Ref. 12 a laminar flow
of light-scattering particles in a plane-parallel layer and
in a cylindrical capillary is studied, the agreement of th
estimate with reality is satisfactory. However, as one can
from Fig. 3, the experimentally measured correlation fu
tion, though it tends to saturate att;502200 ms, still con-
tinues to decrease fort.200 ms in contrast to the function
calculated theoretically~Fig. 2!. This is due to effects which
were neglected in our theoretical model~specifically, it is

FIG. 3. Experimentally measured normalized time autocorrelation func
of multiply scattered radiation for the experimental arrangement show
Fig. 1. The radiation source and detector are arranged symmetrically
respect to the capillary (x50, y52ys52.5l * ). Different curves corre-
spond to different flow velocities:V50.08 ~1!, 0.62~2!, and 3.22~3! cm/s.
The measurement errors fall within the size of the symbols in the figur
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due to the method of averaging, vibration of the compone
of the optical system, photomultiplier noise, and so on!.

We note that the theoretical and experimental res
presented in Figs. 2 and 3 not only agree with one ano
qualitatively but they are also very close quantitatively. Th
attests to the fact that our theoretical approach to study
the multiple scattering of light in dynamically heterogeneo
media is fully applicable to real experimental situation
Moreover, the quantitative agreement between the theore
and experimental results makes it possible to sugges
method for determining the location and performing diagn
tics of scatterer flows hidden inside strongly light-scatter
media that is based on measurement and subsequent an
of the temporal autocorrelation function of the multipl
scattered radiation. Indeed, the difference between the cu
g1(t) corresponding to different average velocitiesV of the
particle flow in the capillary is quite large and can be used
measureV directly. Quantitative calibration of this metho
of measuring the velocity can be performed on the basis
our theoretical model.

It is interesting that the method proposed for studyi
the dynamics of particles in turbid media can be used w
equal success for different types of dynamics of scatterer
the medium. As an illustration, we present in Fig. 4 the
sults of measurements of the autocorrelation function
backscattered radiation for the cases of Brownian, direc
and turbulent motions of light-scattering particles in the ca
illary. The system of communicating vessels located at d
ferent heights was found to be inadequate for producin
turbulent fluid flow, since such a system does not mak
possible to reach the critical Reynolds number on the exp
mental rectilinear section of the capillary. For this reas
turbulent scatterer motion in the cylindrical cavity inside t
experimental sample was produced artificially with the aid
a nozzle placed at the entrance opening of the capillary.

As one can see from Fig. 4, different types of partic

n
in
ith

FIG. 4. Normalized time autocorrelation function of multiply scattered
diation, measured for different types of scatterer motion in the capilla
Brownian motion~1!, laminar flow with velocityV50.08 ~2! and 0.24~3!
cm/s, turbulent flow withV50.88 cm/s~4!. The remaining parameters ar
the same as for the curves presented in Fig. 3. The measurement erro
within the size of the symbols in the figure.
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motion lead to different time dependencesg1(t). This con-
clusion also follows from the theoretical analysis: F
Brownian motion the variance of the phase differen
^Df2(t)& for two photons scattered successively by t
same particles of the medium at times separated by an in
val t is proportional tot.8,9 For laminar and turbulent flows
^Df2(t)&}t2,18,22 but in the latter case the coefficient o
proportionality is larger for the same characteristic parti
velocity. Thus, there is a possibility of not only determinin
the location of the dynamically heterogeneous region~cylin-
drical capillary in our case! and estimating the average v
locity of the particles inside this region but also drawi
conclusions about the dominant character of the scatt
motion. We note that for the reasons explained above
curves in Fig. 4 approach the same asymptote for larget.

5. CONCLUSIONS

In the present paper multiple scattering of laser radiat
in a randomly inhomogeneous medium with a spatially
calized flow of light-scattering particles was studied. T
time autocorrelation function of the light backscattered fro
a semi-infinite medium with a directed particle flow loca
ized in the region of a cylindrical capillary was calculated
the diffusion approximation. The results of the theoreti
analysis are in good agreement with the experimental res
at the flow velocity studied. This made it possible to sugg
a new method for determining the position and size of
flow region as well as the velocity of the scatterers inside
region. We note that proposed method is the only opt
method that permits measuring the velocity of relative
slow ~up to 1022 cm/s! flows under conditions of multiple
scattering of light in the medium. However, this method c
be used only for particle flows near the boundary of
medium (z,(15220)l * in accordance with our theoretica
calculations!. This result agrees with the conclusions draw
in Refs. 12 and 13. For this reason, it can be asserted tha
restriction is fundamental for turbid media and is not asso
ated with the peculiarities of any specific measurem
scheme.

Since the parameters of our sample are close to thos
some biological media,7,15 our method can be used for non
invasive measurement of the characteristics of blood flow14

Moreover, the velocity of scatterers can be measured s
larly in experiments on laser acceleration of particles
dense media.23 Thus, the range of potential applications
our method is very wide.
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Role of stationary photon statistics in a high- Q cavity mode while it is exciting the
active laser medium
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It has been shown by Yu. M. Golubev, M. I. Kolobov, and I. V. Sokolov, Zh. E´ ksp. Teor. Fiz.
111, 1579~1997! @JETP84, 864 ~1997!#, that when an optical cavity is excited by external
radiation from a sub-Poisson laser the cavity mode may be in either a sub-Poisson or a Poisson
stationary state. This is not important for a resonant medium which is excited into the
upper laser level while interacting with this mode inside the cavity. The degree of regularity of
the excitation will be identical to that of the initial light flux incident on the cavity, and
this ultimately ensures the same sub-Poisson lasing as for strictly regular pumping of the resonant
medium. © 1998 American Institute of Physics.@S1063-7761~98!00704-5#
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1. INTRODUCTION

In the present paper we study the physical situat
where in some natural processes, for example, in interato
collisions, a laser medium is excited only into a nonla
level. The population inversion required for lasing is pr
vided by the additional action of radiation from an extern
sub-Poisson laser. The formulation of such a problem is
tirely adequate, since we now have at our disposal not o
theoretical suggestions for a source of nonclassical light1 but
also experimental implementations of this idea in Japan2 and
in Russia.3 One can discuss two limiting situations. One
the situation where at the excitation frequency an opt
cavity containing the excited medium does not manifest
resonance properties. This is the single-pass excitation v
ant. In the other limiting case external radiation excites
appropriate high-Q cavity mode and this mode in turn ex
cites the laser medium. This is the multiple-pass excitat
variant. The single-pass variant is of no interest to us, si
the exciting sub-Poisson light will be ‘‘spoiled’’ as a resu
of absorption in the first few layers of the material so th
now the main excitation in the further layers will actually b
brought about by Poisson light. In such a situation regu
ization of the excitation of the active medium can only ha
a small effect.

The situation could be different in the multiple-pass va
ant, where the excitation in one pass of the radiation thro
the material is neglected and the required effect accumul
over a large number of passes, the process being unif
along the medium. In our opinion, the laser medium can
excited with the required regularity here. Indeed, accord
to Ref. 4, if interference conditions are secured such that
incident light flux is not reflected from the entrance cav
mirror but completely exits on the opposite side of the cav
~ideally transmitting optical cavity!, then the outgoing pho
ton flux is regularized to the same extent as at the ca
entrance. If the exit window is now closed and the flux
used to excite the laser medium, which is distributed u
formly inside the cavity, then the condition of total transm
6661063-7761/98/86(4)/6/$15.00
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sion of the optical cavity is preserved~the cavity does not
reflect anything; the physical nature of the departure of
field from the cavity is, of course, not important!. In this case
there is hope that the excitation of the medium inside
cavity will be, first, uniform over the cavity volume and
second, regularized. In what follows we shall show this a
we shall determine the measure of this regularization.

In addition to this, we must solve one other question
fundamental importance: Does stationary photon statistic
the exciting mode influence the excitation statistics of
medium? When we posed the problem in Ref. 5, we assu
that sub-Poisson photon statistics in the exciting mode m
be established in order to accomplish regular excitation
the medium. We constructed our thought experiment so a
ensure that under given physical circumstances the m
photons would be sub-Poisson to the maximum degree
sible. This corresponded to the generally held view that
predicted statistical pattern in one or another experiment
the stationary distribution in the cavity mode should cor
spond to one another. Now, however, in consequence of
results obtained in Ref. 4, we know that at least in so
measurement procedures stationary photon statistics
mode can be completely unimportant, and we intend to de
onstrate this for the excitation of the active medium.

As we understand the situation,4 depending on the ratios
of the actual modal spectral widths, completely different s
tistical pictures can arise in a mode excited by the sa
sub-Poisson light. We can secure inside a cavity precis
the same photon number fluctuations as in the mode of
initial sub-Poisson laser. But the situation where these fl
tuations are completely random is entirely realistic. At t
same time it is obvious that what are more important for
than the stationary states of any group of particles are
statistical properties of the fluxes of particles which differe
groups of particles exchange with one another~for example,
the photon flux from a stationary mode into a stationary m
dium! and which, strictly speaking, need not have the sa
statistical properties as the stationary states.
© 1998 American Institute of Physics
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2. THOUGHT EXPERIMENT AND ITS QUALITATIVE
DISCUSSION

Let us assume that the physical system consists of
high-Q optical cavities~see Fig. 1!, standing next to one
another. One cavity~the a cavity! lases at the frequencyva

of a one-mode sub-Poisson laser~the a laser!. Its radiation
enters theb cavity through an entrance window and excite
c mode at frequencyvc ~we shall assume below that th
frequenciesva and vc are the same!. The c mode in turn
acts on the medium placed in the cavity, giving rise to
required population inversion and hence the lasing of thb
laser at the frequencyvb . In order to accomplish all this the
active media of both lasers must have the proper reson
properties~Fig. 2!. We shall assume that the active mediu
of the a laser and its excitation system are the same as
used in Ref. 1 to describe a sub-Poisson laser: This is es
tially a two-layer medium with regular and stationary ex
tation of the upper level. We shall assume theb-laser me-
dium is a four-level medium. In the absence of external s
Poisson radiation, the laser levels~1,2! will not be occupied
at all. The atomic level~0! is populated entirely randomly
for example, as a result of collisions occurring in the la
plasma. We shall assume that the radiation frequencyva of
the sub-Poisson laser equals the frequency of the 0–3 at
transition. Then in the process of absorption of the exter
laser radiation and subsequent rapid spontaneous relax
on the 3–2 transition the atoms are transferred back into
upper laser level, creating the required above-threshold
version. For simplicity, we shall not introduce any frequen
detuning: The mode frequenciesva , vb , andvc are equal
to the frequencies of the corresponding atomic transition
the medium of thea andb lasers.

It is necessary to introduce into the analysis the spec
widths of three actual cavity modes. We shall discuss
main results for the following physical conditions, optim
for our purposes, physical conditions: The spectral wi
kc1k of thec mode is formed by the passage of the field

FIG. 1.

FIG. 2.
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frequencyvc through the entrance window (kc) and by ab-
sorption in the medium when it is excited~k!; the spectral
width of the b mode is formed only by the passage of t
field at frequencyvb through the exit mirror. We shall stud
the physical situations with different ratios of all spectr
widths ka ~spectral width of thea mode!, kb , kc , andk.

We begin our discussion with the simplest situation
gradually making the system more complicated. We s
from the situation when there is nob cavity at all and the
radiation of thea laser, which we shall assume to be an ide
sub-Poisson laser, directly strikes the photodetector. In
present paper we shall assume that the electrical circuit
switching on the photodetector enables us to know the p
tocurrent spectrum at the exit. According to Ref. 1 this sp
trum is given by the following explicit expression in the ca
of ideal photodetection:

i V
~2!5 i shot

~2! S 12
ka

2

ka
21V2D . ~1!

As is well known, and as one can see here, at zero
quency shot noise is completely suppressed.

Let us now make the system more complicated by pl
ing between the sub-Poisson laser and the photodetectob
cavity whose mode frequencyvc , as we have already stipu
lated, equals the lasing frequencyva of the sub-Poisson la
ser. But now we shall assume that this cavity is empty
contains no active medium, and both the entrance and
mirrors transmit, i.e.,kc5kc81kc9 . It is obvious that in the
empty cavity a fixed number of photons will accumulate
thec mode and the entering flux of photons from thea laser
will somehow separate into a flux reflected from theb cavity
and a flux directed onto the photodetector. The question
what stationary photon statistics are formed inside theb cav-
ity can now be easily answered.4 For this, we make the fol-
lowing argument. The Mandel parameterj, characterizing
the rms photon number fluctuations

n22n̄25n̄~11j! ~2!

is often used for the statistical description.
For thea laser, which in our analysis is an ideal su

Poisson laser, the Mandel parameter isja521/2, which is
established by the corresponding correlations between
Fourier components of the spectral contour of widthka . In
the limit ka@kc , this correlation is transferred inside theb
cavity to the Fourier components of the spectral contour
width kc . In this case it is natural to expect that the Mand
parameterjc will also equal21/2. In the opposite caseka

!kc the correctly correlated components occupy only a v
small portion of the contour at its center, while a large nu
ber of Fourier components is excited by uncorrela
vacuum fluctuations. Then it can be expected that the M
del parametersjc will become close to zero. Therefore, d
pending on the ratios of the spectral widths, the station
photon statistics inside theb cavity can be sub-Poisson, jus
as in the initial laser, or Poisson~and, of course, any inter
mediate statistics!. Here we have the right to raise the que
tions: Will this stationary photon statistics influence the ch
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acter of the excitation of the atoms? Is it necessary to st
for good photon statistics in order to secure regularity
excitation of the medium?

First, however, we shall finish our discussion for t
case of an empty cavity. As we have already mentioned
the Introduction, for us it is most important to understand
statistical properties of the fluxes and not the stationary st
of the particles. We can imagine in principle that when
ordered photon flux enters an empty cavity a completely r
dom ensemble is created inside the cavity under station
conditions, but the outgoing flux is nonetheless ordered
the same degree as the entering flux. This is confirme
some sense in Ref. 4. In the case when the cavity is tuned
complete transmission~when the detuning of the frequenc
of the incident light from thec-mode frequency equals zero
this happens forkc85kc9!, the photon flux leaving the cavity
is ordered to the same degree as the flux entering the ca
irrespective of the statistics of the ensemble of intracav
photons. In this sense the cavity behaves just as a sim
beam-splitting plate, ignoring the presence of any inter
photon state.

Now let us place our four-level medium in the cavi
~Fig. 2! and setkc950. We thereby redirect the outgoin
photon flux: Before it was absorbed by the photodetec
whereas now it is absorbed by the active medium of thb
laser. Obviously, the fate of the photons lost to thec mode
cannot influence thec mode itself and thereby also our ea
lier qualitative conclusions. Whenkc5k holds, the cavity
once again operates only in transmission, but the entire p
ton flux, which once again remains ordered, now goes
excitation of the active medium. In this case the same
dered excitation of the atomic medium can be expected
respective of the stationary photon statistics in thec mode.
As a consequence of this, sub-Poisson lasing of theb laser
can be expected.5 This qualitative conclusion is confirmed b
an analysis of the photocurrent spectrum. According to
calculations below, it can be represented in the form

i V
~2!5 i shot

~2! F12
4kck

~kc1k!2

ka
2

ka
21V2

~kc1k!2

~kc1k!214V2

kb
2

kb
21V2G .

~3!

As one can see, near zero frequency a dip with a q
complicated shape and depth

d5
u i V50

~2! 2 i shot
~2! u

i shot
~2! 5

4kck

~kc1k!2 ~4!

is present in the shot noise.
The depth reaches a maximum and the dip reaches

in the case of an ideally transmitting cavity, wherekc5k.

3. BASIC KINETIC EQUATION

We are studying three field oscillators. One oscilla
represents the intracavity single-mode lasing field of thea
laser. The other two oscillators represent the two-mode fi
in the b cavity: One mode serves for excitation of the m
dium while the other is the lasing mode. The structure of
basic kinetic equation for the density matrix of a thre
oscillator electromagnetic field can be determined as follo
e
f
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The rate of change of the density matrix consists of the r
due to the interactions inside thea cavity, the rate due to the
interactions inside theb cavity, and finally the rate assoc
ated with directed transfer of electromagnetic energy fr
the a to theb cavity. We shall express this formally as fo
lows:

ṙ5r aS L̂a2
1

2
L̂a

2D r2
1

2
kaR̂ar1AkakcL̂a→cr

1kc
W
c
Q

1L̂br2
1

2
~kc1k!R̂cr2

1

2
kb R̂b r. ~5!

The first term in Eq.~5!, containing the operator

L̂a5F2a
Q

1a
W

2aa
W

12aa
Q

12
1

2
b1

~a!~aa
W

12aa
Q

1!2G
3Faa

W
11aa

Q
11

1

2
b1

~a!~aa
W

12aa
Q

1!2G21

, ~6!

determines the development of the intracavity field of thea
laser on account of the active medium~see Fig. 2! excited
into the upper laser level with rater a with no fluctuations.1,6

The expression is written under the assumption that the
per laser level does not decay spontaneously into extran
levels. As is well known, the maximum possible squeez
of the light can be achieved in this case. The parameter

~b1
~a!!215

g1
~a!g12

~a!

2ug12
~a!u2

~7!

sets the number of photons saturating the laser transit
The active medium of thea laser is characterized by th
following constants:g1

(a), the longitudinal longitudinal relax-
ation constant of the lower laser level;g12

(a), the transverse
relaxation constant of the laser transition; anda and a1,
photon operators in the lasing mode of thea laser,@a,a1#
51.

The second, last, and next-to-last terms in Eq.~5! prede-
termine the decay of the quantum oscillators. The opera
R̂a have the conventional form

R̂a5a1a
Q

1a1a
W

22a
W
a
Q

1, ~8!

R̂b andR̂c have the same form except that the photon ope
tors a,a1 are replaced by the photon operatorsb,b1 or
c,c1, where@b,b1#5@c,c1#51.

The b-laser medium excited into the upper laser lev
ensures the development of theb mode via the operator6

L̂b5b2
~b!F2b

W
1b

Q
2bb
W

12bb
Q

12
1

2
b2

~b!~bb
W

12bb
Q

1!2G
3F11

1

2
b1

~b!~bb
W

11bb
Q

1!

1
1

4
b1

~b!b2
~b!~bb

W
12bb

Q
1!2G21

. ~9!

Here the parameters determining the nonlinear propertie
the b medium have the form
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b1
~b!5

2ug12
~b!u2

g1
~b!g12

~b! , b2
~b!5

2ug12
~b!u2

g2
~b!g12

~b! , b1
~b!5b1

~b!1b2
~b! .

~10!

The active medium of theb laser is characterized by th
following constants:g1

(b) andg2
(b) are the longitudinal relax-

ation constants of the lower and upper laser levels, andg12
(b)

is the transverse relaxation constant of the laser transition
formulating the basic kinetic equation~5! we adopted the
requirement, optimal for our purposes, that the spontane
decay rate of the upper laser level into extraneous le
equals zero. In what follows, we shall proceed in exactly
same way with respect to theb laser and we shall requir
thatg2

(b)50. Then the operatorL̂b will have exactly the same
form as the operatorL̂a , with all a indices replaced byb
indices and all photon operatorsa,a1 replaced by the photon
operatorsb,b1.

The physical meaning of the quantityr b5knc is that of
an average rate of excitation of the upper laser level of thb
laser ~nc is the average number of photons in thec mode
exciting the medium!.

Finally, the term containing the operator

L̂a→c5a
W
c
W

11a
Q

1c
Q
2a

W
c
Q

12b
W
a
Q

1, ~11!

in the basic kinetic equation gives directed transfer of el
tromagnetic radiation from thea cavity into the b cavity
~from thea into thec mode!.7 All these expressions can b
obtained by deriving the kinetic equation for the density m
trix of the electromagnetic field using, for example, the p
cedure of Lamb and Scully.8

We shall make one more remark concerning the qua
ties kb and kc . In principle, we assume that theb cavity
contains two working mirrors: One is the entrance mir
through which the external radiation enters the cavity and
second is the exit mirror through which the radiation ex
theb cavity and reaches the photodetector. Correspondin
we must write in the general formkb5kb81kb9 andkc5kc8
1kc9 . However, as stated earlier, for us the optimal con
tions arekc950, i.e., when the losses occur in the same ch
nel as excitation, andkb850, i.e., when the losses occur on
in the detection channel and as a result of detection. It is e
to see that these conditions are physically consistent, s
the b- andc-mode frequencies can differ greatly and the
fore the transmission of the mirrors for them can be co
pletely different.

The absorption coefficient for the external radiation
the auxiliary transition 0–3 can be written in the for
k5r 0b0

(b) , wherer 0 is the average rate of completely ra
dom excitation of the auxiliary level 0. Equation~5! was
written under the assumption that the nonlinear phenom
in absorption can be neglected. This is accomplished if

~b0
~b!1b3

~b!!nb!1,

which contains the saturation parameters for theb atom

b0
~b!5

2ug03
~b!u2

g0
~b!g03

~b! , b3
~b!5

2ug03
~b!u2

g3
~b!g03

~b! .
In
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4. BASIC KINETIC EQUATION IN THE DIAGONAL
REPRESENTATION AND SEMICLASSICAL EQUATIONS

We now switch to the diagonal representation for t
density matrix. This representation is introduced by the in
gral relation

r~ t !5E P~a,b,d,t !ua&ub&ud&^du^bu^aud2ad2bd2d,

~12!

where

aua&5aua&, bub&5bub&, cud&5dud&.

This transformation leads to a partial differential equ
tion for the weighting functionP(a,b,d,t) that can be
greatly simplified by assuming that the number of photons
each actual mode fluctuates very little around its station
value:

uau25na1«a , «a!na ,

ubu25nb1«b , «b!nb , ~13!

udu25nc1«c , «c!nc .

To a high degree of accuracy, the stationary solutio
na , nb , andnc are identical to the semiclassical stationa
solutions of the problem. The semiclassical equations can
found relatively easily, for example, from the initial equatio
~5! by neglecting all fluctuations of the fields. These equ
tions are:

d

dt
na5r a2ka na ,

d

dt
nb52kbnb1k nc , ~14!

d

dt
nc52~kc1k!nc12AkakcAnanc.

Under stationary conditions this system becomes a s
tem of algebraic equations, the solutions of which can
written in the form

na5
r a

ka
,

nc

na
5

4kakc

~kc1k!2 ,
nb

nc
5

k

kb
. ~15!

On this basis we can write for the photon density mat
in the Glauber representation

R~«a ,«b ,«c ,t !5E P~a,b,d,t !dwadwbdwc , ~16!

a5Ana1«aeiwa, b5Anb1«beiwb,

d5Anc1«ce
iwc

the following basic kinetic equation:

]R

]t
5ka

]

]«a
«aR2

1

2
kana

]2R

]«a
2 1kb

]

]«b

3S «b2
nb

nc
«cDR1

1

2
~kc1k!

]

]«c
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3S «c2
nc

na
«aDR1$•••%. ~17!

The expression$•••% represents all higher-order« deriva-
tives which in principle must be taken into account for no
classical fields. However, we shall show below that they
not contribute to the physical, measured quantities which
shall investigate here.

5. STATISTICAL PROPERTIES OF THE PHOTONS STORED
IN A STATIONARY STATE IN THE B AND C MODES

Using the basic kinetic equation~17! and the conven-
tional procedure, we write the equations for the effect
averages as

d

dt
«b

2522kb«b
212kb

nb

nc
«b«c50, ~18!

d

dt
«a

2522ka«a
22kana50, ~19!

d

dt
«c

252~kc1k!«c
21~kc1k!

nc

na
«a«c50, ~20!

d

dt
«b«c52

1

2
~kc1k12kb!«b«c

1
1

2
~kc1k!

nc

na
«a«b1kb

nb

nc
«c

250, ~21!

d

dt
«a«b52~ka1kb!«a«b1kb

nb

nc
«a«c50, ~22!

d

dt
«a«c52

1

2
~kc1k12ka!«a«c

1
1

2
~kc1k!

nc

na
«a

250. ~23!

As can be seen, we have obtained a closed system
differential equations which for stationary conditions b
comes an easily solvable system of algebraic equations.
note that here the terms$•••% from Eq. ~17! in principle do
not contribute here, and this is not due to any mathemat
approximations. The solutions can be represented in the f

«a
252

1

2
na , ~24!

«b
252

2kakck~kc1k12ka12kb!

~kc1k!~kc1k12ka!~kc1k12kb!~ka1kb!
nb ,

~25!

«c
252

2kakc

~kc1k!~kc1k12ka!
nc , ~26!
-
o
e

e

of
-

e

al
m

«b«c

52
2kakckb~kc1k12ka12kb!

~kc1k!~kc1k12ka!~kc1k12kb!~ka1kb!
nb ,

~27!

«a«b52
1

2

kb~kc1k!

~ka1kb!~kc12ka!
nb , ~28!

«a«c52
1

2

kc1k

kc1k12ka
nc . ~29!

We take the conditionkc5k, for which, as we know,
the b cavity becomes completely transmitting in the sen
that the photon flux entering theb cavity is completely ex-
pended in exciting the active medium of theb laser.

Then, since«b
25jbnb and«c

25jcnc , we obtain the fol-
lowing expressions for the corresponding Mandel statist
parameters characterizing the stationary photon fluctuat
in each active mode:

jb52
1

2

ka

ka1kc

kc

kb1kc

ka1kb1kc

ka1kb
, ~30!

jc52
1

2

ka

ka1kc
. ~31!

In the limit kc@ka ,

jc50, jb52
1

2

ka

ka1kb
, ~32!

and in the limitkc!ka ,

jc52
1

2
, jb52

1

2

kc

kb1kc
. ~33!

The situation with the Mandel parameterjc is, of course,
in complete accord with the results of Ref. 4. But it turns o
that even whenjc50 holds withka!kc , the Mandel pa-
rameterjb for the lasing mode can still be a minimum for th
present problem and equal to21/2. For this it is sufficient to
require thatkb!ka .

6. SPECTRUM OF THE PHOTOCURRENT IN THE PROCESS
OF DETECTING THE LASING OF THE B LASER

The spectrum of the photocurrent during observation
secondary lasing can be written in the form

i V
~2!5 i shot

~2! S 112q
kb

nb
Re E

0

`

dt «b«b~ t !eiVtD . ~34!

The solution of this problem gives a system of equatio
which can be obtained from the basic kinetic equation~17!
by the standard procedure:

d

dt
«b«b~ t !52kb «b«b~ t !1kb

nb

nc
«b«c~ t !, ~35!

d

dt
«b«c~ t !52

1

2
~kc1k!«b«c~ t !
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1
1

2
~kc1k!

nc

na
«b«a~ t !, ~36!

d

dt
«b«a~ t !52ka «b«a~ t !. ~37!

This system is easily solved directly, but in this case i
more efficient to switch to a system of algebraic equatio
for the Fourier components, especially since these equat
are needed to write down the photocurrent spectrum:

xV5E
0

`

dt «b«b~ t !eiVt.

yV5E
0

`

dt «b«c~ t !eiVt. ~38!

zV5E
0

`

dt «b«a~ t !eiVt.

From the initial differential equations it is easy to obta

«b
22 iVxV52kbxV1kb

nb

nc
yV , ~39!

«b«c2 iVyV52
1

2
~kc1k!yV1

1

2
~kc1k!

nc

na
zV ,

~40!

«b«a2 iVzV52kazV . ~41!

Solving this system of equations we can finally wr
down the explicit expression for the photocurrent spectr
in the form ~3!.

7. CONCLUSIONS

The entireb system as a whole can be schematica
represented as a collection of boxes in which different ty
of particles are collected and fluxes between these bo
Figure 3 shows only the basic elements, specifically, bo
with the average number of photonsnc ~the number of pho-
tons stored in the stationary state in thec mode!, the average
number of photonsna ~the number of photons stored in th

FIG. 3.
s
s
ns

s
s.
s

stationary state in thea mode!, the average number of atom
N0 ~number of atoms stored under stationary conditions
the level 0!, and the average number of atomsN2 ~the num-
ber of atoms stored under stationary conditions in level!
andN1 ~number of atoms stored under stationary conditio
in level 1!. These boxes are all coupled through the parti
fluxes, which to some extent form stationary states inside
boxes. The flux1 is the photon flux from the external sub
Poisson laser to the entrance mirror of theb cavity, while the
flux 5 is the photon flux from theb mode to the photodetec
tor. The collection of particles in each box can be associa
with a stationary state in which the number of particles flu
tuates around its average value. But, on the whole, it is
vious that for us it is not so much the stationary states as
properties of the fluxes of the corresponding particles that
important. Of course, the properties of the fluxes and
properties of the local stationary states can be related in s
way. At the same time, however, one can imagine a situa
where this is not the case, and the main conclusion which
must draw from our arguments and calculations is that i
particular problem withkc5k all particle fluxes participat-
ing in the process are qualitatively identical and independ
of the local stationary states, which disrupt these fluxes
the initial flux 1 is somehow regulated, then to some ext
each of the other five fluxes indicated in the diagram is a
regulated to the same degree, though the character of
fluctuations in each box can be completely random.
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Quantum nondemolition measurements of the phase and polarization Stokes
parameters of optical fields
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We propose a new method for performing continuous quantum nondemolition measurements
~QNDM! of the polarization characteristics of light, the signal photon number, and the Stokes
parameters of light. For devices that implement such measurements we take cubically
nonlinear double-filament optical fibers with tunnel coupling of the filaments. Such a system
employs a four-mode mixing of the waves~two probe modes and two signal modes!. Linear optical
elements needed for preliminary and subsequent conversion of the Stokes parameters are
also used. We show that measurements of one Stokes parameter can be used for QNDM of the
phase difference between the two initial modes. Here the accuracy of such measurements
is determined by the initial fluctuations of the Stokes parameters of the probe modes and by the
size of the nonlinear mode conversion coefficient in the optical fibers. ©1998 American
Institute of Physics.@S1063-7761~98!00804-X#
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1. INTRODUCTION

Lately many papers have appeared concerning the p
problem in quantum optics.1–8 The focus in such research
usually on the mathematics of the problem.1–4 We believe
that a big achievement here was the introduction of a n
Hermitian operator by Pegget al.,2 which became known a
the Pegg–Barnett operator. The use of this operator lar
removed the drawbacks associated with the stand
Susskind–Glogower representation. However, the analys
the problem must not be separated from the specific pro
dure of phase measurements~cf. Refs. 5–7!. The present
paper discusses the possibilities of such quantum meas
ments of phase~the phase difference between two modes!.

The phase problem proper is not specific to the quan
mode of description and is well-known in optics, where the
are certain difficulties in measuring the phase of a light wa
directly. This problem has a long history in classical opt
~see, e.g., Ref. 8!.

Of course, in various measurements involving lig
fields only the phase difference between two~or more! spa-
tially distant points has physical meaning, and methods u
to measure this difference abound.

Actually, all the methods are aimed at extracting pha
information from intensity measurements in one or anot
optical scheme. In particular, the reconstruction of phase
formation is done in holographic images: the forming o
three-dimensional image is the result of such reconstruct
Any method of processing optical images is also related
this problem. For instance, one field of quantum optics be
actively developed is quantum tomography.7

Since the phase parameters of optical radiation are
rectly related to light polarization, the study of quantum p
larization states and the procedures used in measuring
states play an important in the given problem.9

One possible way to describe polarization proble
6721063-7761/98/86(4)/10/$15.00
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~both classical10 and quantum11,12polarization states of light!
is to introduce real-valued~Hermitian! Stokes parameters o
the light field ~see Sec. 2!. Here the specific features of th
quantum polarization properties of light~and hence of the
phase problem! are determined by uncertainty relations f
the Stokes parameters. The existence of three noncommu
components of the operators of these parameters~similar to
the operators of angular momentum! makes their simulta-
neous and exact measurement impossible~except in the
trivial zero case!.

For this reason the problem of quantum measurement
the Stokes parameters comes to the fore. Two basic met
of measuring the Stokes parameters are possible in quan
mechanics.

The first is related to the realization of the procedure
measuring all four Stokes parameters~see Ref. 13 for the
method used to detect them!, and as a result of these me
surement the information about the phase characteristic
the two initial polarization modes is extracted. However, t
precision with which all four Stokes parameters can be m
sured simultaneously is limited and is determined by the
certainty relation between the fluctuation variances of
given quantities~see Sec. 2!.

Another way to extract the information in the case
two modes is to conduct quantum nondemolition measu
ments~QNDM! for two phase-dependent Stokes paramete
We analyzed this problem for the first time in Ref. 14 f
‘‘twisted’’ optical fibers with tunnel coupling between th
two propagating modes~see Refs. 15–17!. The necessary
condition for QNDM is the presence of polarization
squeezed light, which is generated under certain conditi
in such fibers. For a given quantum polarization state
light, the fluctuation variance of one of the Stokes para
eters is smaller than its value in a coherent state.14,15 How-
ever, earlier schemes of QNDM of Stokes parameters ba
© 1998 American Institute of Physics
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on the interaction of two polarization modes are extrem
difficult to implement in practice since, generally, repea
~or continuous! measurements of the observable must be c
ried out~see Refs. 18 and 19!. In particular, to extract infor-
mation about the measured Stokes parameter by this pr
dure, one must measure a large number of additional op
elements~linear and nonlinear!, which reduces the effective
ness of QNDM in real experiments.

In this paper we propose new methods of QNDM
Stokes parameters, methods that can be employed tog
with continuous measurements fairly easily. Here we are
terested in the basic aspects of the problem of such mea
ments, determined by general quantum mechanical la
rather than in the technical limitations related to the sensi
ity of the various devices or to the accuracy of detect
methods, which can always be improved.

We also show that under certain conditions the giv
procedure of QNDM of Stokes parameters can be use
nondemolition measurements of the phase difference of
optical field. The plan of the paper is as follows.

In Sec. 2 we write the necessary introductory relatio
needed for the analysis of nonclassical polarization state
light in terms of Stokes parameters. The relationships
tween the phase-difference operators and these param
are discussed in Sec. 3, and related problems and approa
to their solution~connected with the general phase proble
in quantum optics! are analyzed in Sec. 5. Polarizatio
QNDM for specific parameters of the vector optical field, t
photon numbers and the Stokes parameters, are describ
Secs. 3–5. The problem of using real media~cubically non-
linear tunnel-coupled optical fibers! for these purposes is dis
cused in the Appendix.

2. NONCLASSICAL POLARIZATION STATES OF LIGHT IN
TERMS OF STOKES PARAMETERS

A general quantum description of a two-mode~two or-
thogonal polarization components! light field can be
achieved by using Hermitian Stokes parameter operat
The operators, which we denote byS0, S1, S2, andS3, can be
expressed in terms of the photon creation and annihila
operators,b1,2

† andb1,2 in these two modes:11–15

S05b1
†b11b2

†b2 , S15b1
†b12b2

†b2 ,
~1!

S25b2
†b11b1

†b2 , S35 i ~b2
†b12b1

†b2!,

where the subscripts 1 and 2 in our polarization probl
label modes with orthogonal linear~along thex andy axes!
or circular polarizations~the details are given below!. The
operatorsb1, b1

† , b2, andb2
† satisfy the following commuta-

tion relation, which holds for a bosonic system:

@bi ,bj
†#5d i j , @bi ,bj #50, i , j 51,2, ~2!

whered i j is the Kronecker delta.
Thus,S0 andS1 are the operators of the sum and diffe

ence of photon numbers,N6[N16N2, where N1,2

[b1,2
† b1,2 for each mode. The phase-dependent Stokes op

tors S2 andS3 are similar to the Hermitian quadrature com
ponents for the light-field amplitudes~see Ref. 15!.
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The formation and observation of nonclassical lig
states and QNDM of the quantitiesN1 andN2 and Hermit-
ian quadratures of two-mode fields~including optical fibers
of a special type! are considered in Refs. 20 and 21.

Definition of the Stokes parameter operators in the fo
~1! with allowance for~2! leads directly to commutation re
lations characteristic of operators in the SU~2! algebra12:

@S1 ,S2#52iS3 , @S3 ,S1#52iS2 ,
~3!

@S2 ,S3#52iS1 , @S0 ,Si #50.

All this leads to uncertainty relations for the Stokes para
eters:

^DSi
2&^DSk

2&>u^Sm&u2, i ,k,m51,2,3, iÞkÞm, ~4!

where ^DSi
2&[^Si

2&2^Si&
2 ( i 51,2,3) are the fluctuation

variances of the Stokes parameters. Thus, in quantum o
there is, in principle, no way in which all Stokes paramet
can be measured exactly and simultaneously~with the excep-
tion of the trivial case in which all the parameters are zero!.

We define the vector polarization operator of a quant
state of the light field to be

p5e1S11e2S21e3S3 , ~5!

where theej ( j 51,2,3) are orthogonal unit vectors. Clearl
the operatorp25S1

21S2
21S3

2 and the Stokes parameters~1!
commute, i.e.,

@p2,Sj #50, j 51,2,3. ~6!

The vectorp in our description of the quantum state of lig
polarization plays the same role as the angular momen
vector J in quantum mechanics, so that by analogy we c
call p2 the Casimir operator. Geometrically, the vectorp
determines the polarization state of light on the Poinc´
sphere with coordinatesS1, S2, andS3 ~see also Refs. 14 an
15!.

If the operatorsb1,2 correspond to the light field in a
coherent state, the fluctuation variances of all Stokes par
eters are the same, i.e.,

^DS0
2&5^DS1

2&5^DS2
2&5^DS3

2&5^N1&1^N2&, ~7!

where the averaging is done over the vector of a cohe
quantum state of the two-mode field,

uj&5ub1&ub2&. ~8!

Here ub1,2& are eigenfunctions of the operatorsb1,2 with ei-
genvaluesb1,2, respectively;̂ N1,2&[ub1,2u2 are mean pho-
ton numbers in these modes.

For polarization-squeezed light, the fluctuation varian
^DSi

2& of one of the Stokes parameters is always less than
value ~7! corresponding to a coherent state, i.e., fluctuatio
are suppressed in comparison to their level for coherent li
Generation of such strictly quantum polarization states~see
Refs. 14 and 15! is possible in special optical fibers~e.g., in
cubically nonlinear twisted birefringent fibers! in the pres-
ence of both linear and nonlinear energy exchange betw
two orthogonally polarized modes~along thex and y axes,
respectively!.16,17
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Let us determine the stationary polarization states o
light field, which are the eigenstates of the Casimir opera
p2 and, simultaneously, of one of the three Stokes parame
Sj ( j 51,2,3):

p2usm&5lsusm&, Sj usm&5musm&, j 51,2,3, ~9!

wherels andm are the eigenvectors of the operatorsp2 and
Sj , respectively.

Equations~9! constitute an eigenvalue problem in th
SU~2! algebra. The solutions of this problem are well know
from quantum angular momentum theory.22,23

Let us examine one of the possible variants of its so
tion, when j 51. In this case the final expressions for t
matrix elements of the Stokes operators in the representa
in which the operatorsp2 andS1 are diagonal are

^smup2us8m8&5s~s12!dss8dmm8, ~10a!

^smuS1us8m8&5m8dmm8dss8, ~10b!

^smuS2us8m8&50.5As~s12!2m8~m862!

3dss8dmm862 , ~10c!

^smuS3us8m8&570.5iAs~s12!2m8~m862!

3dss8dmm862 , ~10d!

wheres is related to the eigenvaluels by

ls5s~s12! ~11!

and the quantum numberm takes 2s11 discrete values:
2s, 2s11, . . . , 0, . . . ,s21, s.

Using Eqs.~10!, we can easily obtain relations for th
fluctuation varianceŝ(Dp)2&5^p2&2^p&2 and ^DS1

2&:

^DS1
2&50, ~12a!

^~Dp!2&5^DS2
2&1^DS3

2&5s~s12!2m2. ~12b!

Geometrically, the states~9!–~12! can be represented by th
vectorp, of lengthp5As(s11), which rotates about theS1

axis~see Fig. 1!. Here the projection of the vector on theS1

axis is equal tom.
The rotation angleu of the polarization vector can b

defined to be

FIG. 1. Geometric representation of stationary polarization states of ligh
the Poincare´ sphere;p is the polarization vector, andm is its projection on
the S1 axis. The angle between theS1 axis andp is u; the shaded area
characterizes the quantum uncertainty of the Stokes parametersS2 andS3.
a
r
rs

-

on

cosu5
m

As~s12!
. ~13!

For the maximum valuesm56s, when the variance (Dp)2

52s is at its minimum~see~12b!!, the angleu is neverthe-
less finite, i.e.,

cosu5
1

A112/s2
. ~14!

Only in the semiclassical limit, wheres@1 ~see below!, Eq.
~14! shows thatp is directed along theS1 axis, i.e., cosu
51.

Fluctuations of the Stokes parameters~Eqs.~12!! lead to
the appearance of an ‘‘uncertainty layer’’ on the Poinca´
sphere~see Fig. 1!. This uncertainty layer is different fo
different quantum polarization states of light. In our case o
fixed value ofS1, the fluctuation variance of this Stokes p
rameter is exactly zero~see Eq.~12a!!.

Such a pictorial geometrical interpretation of these sta
is similar to the vector model of angular momentum in qua
tum mechanics.22

In the case of Fock states, where the polarization mo
b1,2 are in states with fixed photon numbers,un1& and un2&
~respectively!, and the general vector of state~8! is

uj&5un1&un2&, ~15!

we obtain, by combining~1!, ~5!, and~15!,

^p2&[^S0~S012!&5n0~n012!, ~16a!

^S1&5^N1&2^N2&, ~16b!

wheren0[^N1&1^N2&.
The statesun1,2& and, consequently,uj& are eigenstates o

the operatorsN1,2 and p2, respectively. Hence, comparin
~16a! and~16b! with ~10a! and~10b!, we have~cf. Ref. 23b!

s5n0 , m5^N1&2^N2&. ~17!

Thus, the quantum numbers gives the sum of the photon
numbers of the two polarization modes, and the numbem
gives their difference. This suggests that the Fock state v
tor ~15! is a special case of the solution of the eigenva
problem~9! for j 51.

Below we analyze the ways in which the nonclassi
polarization states of light considered here can be forme

3. QUANTUM NONDEMOLITION MEASUREMENTS OF THE
STOKES PARAMETER S1

According to the main concept of QNDM, a paramet
of the light field~the signal wave! observed in the process o
such measurements must interact in a certain way in
QNDM device with a parameter of the other field, the me
suring field ~probe wave!; it is the latter quantity that is
detected.20,24,25

To employ such measurements, we assume that
QNDM device mixes four optical modes; the annihilatio
operators for two of these modes are denoted bya1,2, and
they belong~as before! to the measuring quantities; the oth
pair of operators,b1,2, describes the measured quantities~see

n
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FIG. 2. a! Block diagram of parallel QNDM of
the photon numbersN1b

in andN2b
in : 1 is a QNDM

device, which mixes the four modesa1,2 ~probe
radiation! and b1,2 ~signal radiation!, with the
subscripts 1 and 2 indicating the polarizatio
components;D1,2 are the detectors of the phase
F1,2a

out of the probe modes; and the superscrip
in and out indicate the input and output mode
respectively. b! One of the possible realization
of a QNDM device based on cubically nonlinea
tunnel-coupled optical fibers. We show tw
waveguides with tunnel coupling of the fila
ments~the distanced between the filaments is
1–10mm).
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Fig. 2!. This sets the proposed QNDM scheme apart fr
those considered earlier for the two-mode problem~cf. Ref.
14!. In the Appendix we discuss a specific implementation
such four-mode interaction in optical fibers of a special ty
tunnel-coupled optical fibers.

We start by examining parallel nondemolition measu
ments of photon numbers in different optical-fiber filame
~cf. Refs. 26 and 27!. Earlier ~see Ref. 20! we discussed
parallel nondemolition measurements, but for Hermit
quadratures. Figure 2 is a block diagram of measuremen
the photon numbers in the signal modes, described by
operatorsN1,2b

in 5(b1,2
in )1b1,2

in . Two detectors,D1 and D2,
register the phases of the probe polarization modes,F1a

out and
F2a

out, described by the annihilation operatorsa1 anda2, re-
spectively, at the output of the QNDM device~optical fiber!.

The necessary relationships for the conversion of
measured photon number and the phase of the probe wa
the QNDM device can be obtained by employing the eq
tions ~A8! of the Appendix:

N1b
out5N1b

in , ~18a!

F2a
out5F2a

in 2gN1b
in . ~18b!

Similarly, for QNDM of the photon numberN2b
in in the other

optical-fiber filament we have

N2b
out5N2b

in , ~19a!

F1a
out5F1a

in 2gN2b
in , ~19b!

whereN1,2n
in andN1,2a

in are the photon number operators in t
measured and probe~measuring! modes;F1,2a

in (F1,2a
out ) are the

phase operators of the probe modes at the input~output! of
the filaments, respectively; and the parameterg characterizes
the QNDM device and determines the efficiency of the wa
interaction in tunnel-coupled optical fibers~see~A8!!.

The physical meaning of the quantitiesF1,2a is easily
grasped in a classical setting: they lead to the ordin
phases of classical~complex-valued! amplitudes of the cor-
responding components of the light field. In fact, the ope
tors F1,2a are introduced within what is known as the he
ristic approach to the problem of phase in quantum the
~see Ref. 28!. This approach is usually used in describing t
procedure of QNDM of the photon number26,27or for optical
fields of complex configuration, e.g., solitons. In the lat
case, meaningful introduction of phase operators in the w
established form~i.e., in the form of Susskind–Glogowe
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operators! is hardly possible, while the representation in t
form of the operatorsF1,2a is simple and instructive in the
semiclassical approximation:

^N1,2j&@1, j 5a,b. ~20!

The operatorsF1,2a satisfy the commutation relation
~see Refs. 26 and 27!

@N1,2j ,F1,2j #5 i , @F1 j ,F2 j #50, j 5a,b. ~21!

Clearly, the operators~18! and~19! fully satisfy the cri-
teria for implementation of QNDM. Indeed, on the one han
the measured quantitiesN1b and N2b are conserved in the
measurement process~see Eqs.~18a! and ~19a!!, and on the
other, the measuring parameters~the probe mode phases! are
linearly related only to the measured photon number of
other mode. We can therefore limit our investigation
QNDM in each filament of the tunnel-coupled optical fib
independently, i.e., the problem is identical to the one c
sidered in Refs. 26 and 27: parallel QNDM~Fig. 2! reduce to
two independent schemes of measuring and detecting
probe-mode phases in each filament with their own hete
dyne fields.

We now analyze QNDM based on the polarization a
pects of the interacting modes. In this case the measu
quantities are the Stokes parametersSib ( i 50,1,2,3) of the
signal modes, which are described by the operatorsb1,2 and
b1,2

† . This means that by detecting the Stokes parametersSia

~or the corresponding phase difference! belonging to the
probe~measuring! modes we gather information about a lin
ear combination of the signal polarization modes rather t
information about each such mode individually. Here, due
the uncertainty relations~4!, in each specific case only on
Stokes parameterSia ( i 51,2,3) can be measured in a no
demolition manner.

Let us begin with the procedure for nondemolition me
surements of the Stokes parameterS1b ~Fig. 3!.

Using the definition~1! and Eqs.~18! and ~19!, we can
express the necessary relationships between the mea
Stokes parameterS1b[N1b2N2b and the detected phase di
ferenceCa[F2a2F1a ~or the Stokes parameterS3a) in the
form

S1b
out5S1b

in , ~22a!

Ca
out5Ca

in2gS1b
in . ~22b!
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Similar relationships exist for the conjugate quantities, i.e

S1a
out5S1a

in , ~23a!

Cb
out5Cb

in2gS1a
in , ~23b!

whereCa,b[F2a,b2F1a,b is the phase difference betwee
the probe and measured modes, respectively, at the inpu~or
output! of the QNDM device.

Equations~22a! and ~22b! satisfy ~just as~18! and ~19!
did! the general criteria of realization of quantum nondem
lition measurements for the Stokes parametersS1b ~see Refs.
14, 20, and 26!. Indeed, first, this observable is conserved
the measuring process~see~22a!! and, second, the detecte
phase differenceCa

out is a linear function of the measure
Stokes parameterS1b

in ~see~22b!!.
Note that the nonlinear correction to the initial pha

difference~23b! associated with the Stokes parameterS1a
in is

precisely the quantity that determines the back action of
device on the corresponding quantity.

Let us examine the redistribution of quantum noise t
takes place in the measuring process. To this end we
~22b! to find the observed value ofS1b

obs[Ca
out/g.

For the variance of fluctuations of this quantity th
emerges in the detection of the phase differenceCa

out we
have

^~DS1b
obs!2&5^~DS1b

in !2&1
^~DCa

in!2&

g2
. ~24!

As a result, the inaccuracy~error! of measurement
^(DS1b

meas)2&[^(DS1b
obs)2&2^(DS1b

in )2&, of the Stokes param
eterS1b

in ~the difference between the photon numbers! has the
form

^~DS1b
meas!2&5

^~DCa
in!2&

g2
. ~25!

We see that the measurement inaccuracy^(DS1b
meas)2& in the

QNDM considererd here is completely determined by
fluctuations in the phase difference between the polariza
modes at the input of the QNDM device, and depends on
efficiency of the nonlinear phase buildup in tunnel-coup
optical fibers.

FIG. 3. Block diagram of QNDM of the Stokes parameterS1b
in . The quan-

tities S3a
in (Ca

in) andS3a
out(Ca

out) are the Stokes parameters~phase differences!
of the probe modes at, respectively, the input and output of the tun
coupled optical fibers of the QNDM device1. Only the measured~signal!
and probe Stokes parameters are shown;D is the detector.
-

e

t
se

e
n
e

d

In the limit

2n̄^~DCa
in!2&!1, ~26a!

ḡ[2n̄g@1, ~26b!

with n̄ the mean number of photons in the modes at the in
of the QNDM device, we havê(DS1b

meas)2&→0. Here

^~DS1b
obs!2&'^~DS1b

out!2&5^~DS1b
in !2&, ~27!

i.e., we obtain the Stokes parameterS1b
in at the input of the

QNDM device, which has not been changed by the mea
ing process.

Thus, the condition~26a! means that the fluctuations o
the phase differenceCa

in between the probe modes must
suppressed, i.e., to employ QNDM we need polarizati
squeezed light for the probe parameterS3a

in at the output of
the QNDM device~cf. Ref. 14!. At the same time, an in-
crease in the parameterḡ which characterizes a QNDM de
vice also reduces the inaccuracy of measurements~see
~26b!!. However, attaining large values ofḡ is extremely
difficult from an experimental standpoint, since this mea
that the nonlinear interaction in the system must be hig
efficient ~see Appendix!.

In the general case we must also examine the redistr
tion of noise in the other~conjugate! parameters~23! deter-
mining the given type of measurements. For the fluctuat
variance of the phase differenceCb ~the conjugate of the
measured Stokes parameterS1b) Eq. ~23b! yields

^~DCb
out!2&5^~DCb

in!2&1g2^~DS1a
in !2&. ~28!

The corresponding uncertainty in the phase differen
^(DCb

imp)2&5^(DCb
out)2&2^(DCb

in)2&, introduced by the
quantum nondemolition measurements of the Stokes par
eterS1b

in has the form

^~DCb
imp!2&5g2^~DS1a

in !2&. ~29!

Hence the fluctuation variances~25! and ~29! fully charac-
terize the QNDM of the photon-number differenceS1b

in con-
sidered here.

If we allow for ~25! and~29!, we see that the product o
these variances satisfies the inequality

^~DS1b
meas!2&^~DCb

imp!2&5^~DS1a
in !2&^~DCa

in!2&>1. ~30!

Thus, the inaccuracy of measurements of the photon-num
difference, ^(DS1b

meas)2&, and the phase-difference varianc
^(DCb

imp)2& satisfy the corresponding uncertainty relatio
between the photon-number difference and the phase di
ence between two modes~cf. Ref. 9!.

In the case of ‘‘good’’ QNDM, the lower bound in~30!
is attained~see Refs. 26 and 27!, i.e., the right-hand side o
~30! becomes an equality. This occurs, for instance,
polarization-squeezed light for the probe parameterS3a

in ,
which depends on the phase differenceCa

in, is fed to the
input of the QNDM device. Then the suppression of the flu
tuations^(DCa

in)2&, on the one hand, leads to a reduction
the inaccuracy of measurements^(DS1b

meas)2& ~see~25!! and,
on the other, to an increase in^DS1a

2 & due to the uncertainty
relation ~30!. In turn, the latter factor leads in the measur

l-
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ment process to an increase in the level of fluctuations for
phase difference,̂(DCb

imp)2& ~see~29!!, and accordingly to
a decrease in the inaccuracy of measurement,^(DS1b

meas)2&.
Thus, the QNDM of the Stokes parameterS1b

in are done
by redistributing the noise in the measuring process, i.e.,
noise level in the conjugate quantityCb grows. However, to
control this process in time, continuous nondemolition m
surements must be employed.

Indeed, a characteristic feature of such QNDM is t
possibility of periodically repeating the measurements.18,24,26

Only as a result of a series of measurements can one ju
the ‘‘quality’’ of the previous measurement.

In the schemes of QNDM of the Stokes parameters
considered earlier,14 the implementation of recurrent mea
surements encounters experimental difficulties. On the o
hand, in the problem of recurrent measurements consid
here, such a procedure can easily be employed, the onl
quirement being that there must be negative feedback in
system~cf. Ref. 25!.

In this case it also becomes possible to control the qu
tum fluctuations of the measured quantity in time, compar
each subsequent measurement with the previous one.
tinuous QNDM of an observable constitute the limit of su
recurrent measurements.18 Here the quantity behaves class
cally with an ‘‘uncertainty’’ tube characterized by the valu
of ^(DS1b

meas)2&.
However, such behavior within the given uncertainty

gion is strictly quantum, since fluctuations of the measu
quantity at the output of the QNDM device are suppres
via the quantum interference of noise.

Note that negative feedback~without QNDM! em-
ployed, for example, in the electric circuit of the detecti
system makes it possible to alter the statistics of phot
~within the negative feedback circuit! and of
photoelectrons.25 This result is due to the nontrivial role o
negative feedback and of the amplitude~phase! modulator as
a fundamental constituent of the system that produces
self-consistent field within the negative feedback loop. If
this system we add an element that performs QNDM in
certain optical parameter, the statistics can be ‘‘shifted’’
rectly to the state of light for the given measured quant
which state also becomes nonclassical.

Thus, by implementing negative feedback we can, a
detecting the phase differences of the probe modesCa

out ~or
the corresponding Stokes parameterS3a

out), make continuous
QND measurements ofS1b

in . In particular, these measure
ment generate a new class of quantum states of light~see
Sec. 2! that have a definite value of one of the Stokes para
eters. The situation is similar to the case of Fock state
quantum optics, in which the number of photons is fixe
which is the limiting case of amplitude-squeezed light.26

4. QUANTUM NONDEMOLITION MEASUREMENTS OF THE
STOKES PARAMETERS S2 AND S3

In this section we discuss the feasibility of QNDM of th
phase-dependent Stokes parametersS2 andS3 ~see Eqs.~1!!.

Figure 4 presents a block diagram for the nondemolit
measurement of the Stokes parameterS3c . In this case, lin-
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ear elements2 and 3 ~cf. Fig. 3! are added to the QNDM
device. We first examine the role of the linear element2 at
the input of the QNDM device. This element performs pr
liminary linear conversion of the Stokes parameters for
measured modes~preparation of the quantum state!. Stan-
dard linear optical elements, such as phase shifters and b
splitters, can be used for this purpose.

As a result of such conversion of the measured mod
we have for the Stokes parameters at the input of the non
ear system1

S0b
in 5S0c , S2b

in 5S2c ,

S1b
in 5S1c cos 2g2S3c sin 2g, ~31!

S3b
in 5S3c cos 2g1S1c sin 2g,

whereSjc ( j 51,2,3) are the Stokes parameters at the in
of the linear element2, andg is the linear mode conversio
coefficient.

If for QNDM of the Stokes parameterS3c we take
g53p/41pm (m50,1,2, . . . ), we have for the operators
~31!

S0b
in 5S0c , S1b

in 5S3c , S2b
in 5S2c , S3b

in 52S1c .
~32!

Clearly, as a result of passage through the linear med
2, all information about the Stokes parameterS3c is con-
tained inS1b

in , the photon-number difference, which is the
measured in a nondemolition manner.

Hence, after measurements in the nonlinear medium1
have been completed, we must reinstate in a nondemoli
manner the initial polarizations in the measured mod
~which is the concept underlying QNDM!. This is done in
linear system3 by a transformation of the Stokes paramete
that is the inverse of~32!.

As a result we have

S0c
out5S0b

out5S0b
in 5S0c , S3c

out5S1b
out5S1b

in 5S3c ,
~33!

S2c
out5S2b

out, S1c
out52S3b

out,

FIG. 4. Block diagram for QNDM of the Stokes parameterS3c ~phase
differenceCc). The quantitiesS3a

in andS3a
out denote the Stokes parameters

the probe modes at the input and output of the QNDM device, which c
sists of the linear elements2 and3 and the QNDM device1, respectively;
Cc

out is the phase difference after the measurements have been comp
Only the measured and probe Stokes parameters are shown;D is the detec-
tor.
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where Sic
out are the Stokes parameters at the output of

QNDM device ~see Fig. 4!. Here the Stokes parameterS2c

does not change in the conversion process, and the mea
quantityS3c is conserved.

Thus, QND measurements of the Stokes parameterS3c

can be implemented by a proper selection of the conver
coefficient in the linear systems2 and3. This constitutes the
essence of the process of controlling the quantum syste
the given case.

The parameterS2c can be measured in a nondemolitio
manner in a similar way. However, in this case we m
select the proper optical elements for the device2 in Fig. 4 to
ensure preliminary conversion of the Stokes parametersS1b

andS2b similar to~31! and~32!. Only then will the measured
Stokes parameterS1b

in contain complete information onS2c .

5. QUANTUM NONDEMOLITION MEASUREMENTS OF THE
PHASE DIFFERENCE

We consider QNDM of the phase difference~which for
the sake of definiteness is denoted byCc) based on non-
demolition measurements of the phase-dependent Stoke
rameterS3c ~see Fig. 4!. In the semiclassical approximatio
~20! we represent this Stokes parameter~see also Ref. 14! as:

S3c52AN1cAN2c sin Cc , ~34!

whereN1,2c are photon-number operators for the polarizat
modesc1,2 at the input of the QNDM device, andCc is the
measured phase difference between these modes.

According to the above procedure of measuring
Stokes parameterS3c , we have for this quantity at the inpu
of the nonlinear medium~see also~32!!

S1b
in 5S3c52AN1cAN2c sin Cc . ~35!

In this case the relationship between the detected phase
ferenceCa

out ~or the Stokes parameterS3a
out) and the corre-

sponding measured quantity~35! is ~cf. ~22b!, ~34!!

Ca
out5Ca

in22gAN1cAN2c sin Cc , ~36a!

S3a
out52AN1a

in AN2a
in sin Ca

out. ~36b!

We see from~36! that the information about the measur
phase differenceCc is contained in the detected phase d
ferenceCa

out and hence in the Stokes parameterS3a
out. Subse-

quent reasoning is similar to that in our analysis of QND
of the Stokes parameterS1b

in ~see Sec. 4!. Therefore, here we
touch only on the specific features of QNDM of the pha
differenceCc .

Concerning these features, we note that the dete
quantityCa

out also depends on the amplitudes~photon num-
bers! of the measured modes~see~36a!!. This in turn means
that there is additional amplitude noise, which destroys
process of measuring the phase differenceCc . In the ideal
case, the QNDM device must be tuned only to the measu
phase difference~cf. Ref. 6!.

Let us examine the conditions under which we can
nore the amplitude fluctuations of the measured modes
this end we write the photon-number and phase-differe
operators for the measured modes as~cf. Refs. 9 and 27!
e

red

n

in

t

pa-

e

if-

e

ed

e

ed

-
o
e

N1,2c5^N1,2c1DN1,2c&, Cc[^Cc&1DCc , ~37!

where angle brackets indicate averaging over the initial st
of the operators of photon numbers and phase differen
DN1,2c andDCc are the corresponding operator~small fluc-
tuation! parts. When the number of photons in the modes
large~see~20!!, we have for the fluctuations of the measur
Stokes parameterS3c ~Eq. ~34!!

DS3c5 (
j 51,2

]S3c~Njc ,Cc!

]Njc
UNjc5^Njc&

Cc5^Cc&

DNjc

1
]S3c~Njc ,Cc!

]Cc
UNjc5^Njc&

Cc5^Cc&

DCc . ~38!

As a result, if we allow for~34!, the fluctuation variance o
the detected phase difference~36a! is

^~DCa
out!2&5^~DCa

in!2&14g2^N1c&^N2c&cos2~^Cc&!

3^~DCc
2!2&1g2S ^N2c&

^N1c&
^DN1c

2 &

1
^N1c&

^N2c&
^DN2c

2 & D sin2^Cc&. ~39!

Defining the observed value of the phase asCc
obs5Ca

out/ḡ,
where ḡ[2g(^N1c&^N2c&)

1/2 coŝCc& is the nonlinear pa-
rameter characterizing the measurement efficiency, we
from Eq. ~39! that the inaccuracy of phase-difference me
surements,̂ (DCc

meas)2&5^(DCc
obs)2&2^(DCc

2)& ~at ^Cc&
Þp/21pm, m50,1,2, . . . ), is

^~DCc
meas!2&50.25F ^DN1c

2 &

^N1c&
2

1
^DN2c

2 &

^N2c&
2 G tan2^Cc&

1
^~DCa

in!2&

ḡ2
. ~40!

This implies that in the general case, where^Cc&Þpm,
m50,1,2, . . . , the amplitude noise of the modes~the two
terms in square brackets! has an additional destructive effe
on the measuring process.

To be able to ignore this destructive effect, we assu
that

^DN1,2c
2 &!^N1,2c&. ~41!

Physically, this condition means that there is amplitud
squeezed~in photon numbers! light in the measured modes a
the input of the linear element2 in Fig. 4.

Thus, QND measurements of the phase differenceCc

are identical to those of Fig. 4 used in measuringS3c under
conditions in which the fluctuations of the number of ph
tons in the corresponding modes are suppressed~cf. Ref. 14!.

Note that the measured phase differenceCc ~see~36a!!
is shifted byp/2 relative to its fluctuations~see the second
term on the right-hand side of Eq.~39!!. This fact has been
noted in Ref. 5. Of course, the shift must be taken into
count in the measurements, because otherwise the info
tion about the measured phase difference might be lost.
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6. CONCLUSION

We have shown that continuous QND measurement
the Stokes parameter of a light field and the phase differe
between the initial polarization modes are possible. We
lieve that the nondemolition measurements considered
are promising both from a fundamental standpoint and
practical applications. We now list the most important a
pects of this approach.

First, precision measurements of vector light fields m
prove useful in areas where light polarization is important
particular, we would like to mention the possibility of ob
serving quantum polarization instabilities and chaos.9,17 At
the same time, such measurements could be used in p
lems of quantum cryptography, where light polarizati
plays an important role in exchanging information betwe
the corresponding components~cf. Ref. 29!.

Second, the nonclassical polarization states of light p
dicted in the present paper and the polarization-squee
light we considered earlier in Ref. 15 may play an importa
role in various phase-sensitive interference measuremen
the highest possible sensitivity.13,30,31

Third, there exists a deep analogy between the Sto
parameters~1! and angular momenta in quantum mechani
which are described by the formalism of the SU~2! algebra
on the basis of the commutation relations~3!. This analogy
may bring to light entirely new experiments in atomic phy
ics based on the general principles of QNDM of Stokes
rameters examined in this paper. Indeed, as shown in
14b, QND measurements of the components of the ang
momentum of an atomic system are possible in a modi
Stern–Gerlach experiment, where a beam of atoms propa
ing in the space between two magnets interacts with p
metric photons, which are used to form squeezed states
the probe component of the angular momentum~see also
Ref. 32!. This measuring scheme is identical to the QND
procedure for Stokes parameters in the absence of neg
feedback.14 Combined methods of QNDM of angular~spin!
momenta of atoms interacting with a probe optical field
also possible~see, e.g., Ref. 33!.

Fourth, the approach discussed in this paper can be
directly to describe the polarization characteristics of bos
like atoms in quantum theory.34 In this case the Stokes pa
rameters determine the polarization properties of the ato
system proper.

Let us briefly discuss the possibility of experimenta
implementing the quantum nondemolition measureme
proposed in this paper. Most suitable for this purpose are
high-stability single-mode chip lasers with semiconduc
pumps.35 The latter fact is important for introducing negativ
feedback in the measuring channel~cf. Refs. 25 and 26!.
Tunnel-coupled optical fibers can be used to mix the f
modes~see the Appendix and Ref. 16!. In this respect InSb-
based waveguides, which allow using moderate pump
powers due to the large nonlinearity of the waveguide ma
rial, have great potential. A similar system consists
GaAs/Ga0.3Al0.7As-based optical fibers with a nonlineari
mechanism~a cubic nonlinearity of order 1024 esu) based
on quantum wells~an MQW structure!. In this case, for an
of
ce
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optical fiber roughly 1.5-mm long and the pump laser em
ting 0.9-mm light, the necessary effective phase build
g'̄5 can be attained at intensitiesI of roughly
7.1 kW cm22.

In conclusion we note that in the four-mode proble
with optical fibers considered here, polarization-squee
states of light for the Stokes parametersSjb andSja can be
formed only if we allow for linear energy exchange betwe
the modes~see Eqs.~A1! and ~A4!!. Indeed, in this case
redistribution of energy and hence redistribution of fluctu
tions between the Stokes parameters become possible,
the case in the two-mode problem.15

This work was supported by the Russian Fund for Fu
damental Research.

APPENDIX. FOUR-MODE INTERACTIONS IN NONLINEAR
TUNNEL-COUPLED OPTICAL FIBERS

Here we discuss the problem of QNDM in a tunne
coupled optical fiber with a nonlinearity of the Kerr type.

The propagation of classical fields of distinct frequenc
v andn in cubically nonlinear tunnel-coupled optical fibe
can be described by the following equations for two~differ-
ent polarization! complex-valued amplitudesA1,2 andB1,2 in
each fiber~subscripts 1 and 2!, respectively~see Ref. 16!:

2ib
c

v

dA1

dz
52K12

v exp~ iwa!A22~kv1uA1u2

12kvn1uB2u2!A1 ,

2ib
c

v

dA2

dz
52K21

v exp~2 iwa!A12~kv2uA2u2

12kvn2uB1u2!A2 ,

2ib
c

n

dB1

dz
52K21

n exp~2 iwb!B22~kn2uB1u2

12knv2uA2u2!B1 ,

2ib
c

n

dB2

dz
52K12

n exp~ iwb!B12~kn1uB2u2

12knv1uA1u2!B2, ~A1!

where K12
v,n and K21

v,n are the linear mode-coupling coeffi
cients at the corresponding frequencies;wa5avvz/c and
wb5annz/c are the mode phases determined by the diff
ence of the effective refractive indicesbv,n; j ( j 51,2), i.e.,
av2bv22bv1 and an5bn22bn1; b5(bv11bv21bn1

1bn2)/4; c is the speed of light in vacuum; andkv j , kn j ,
kvn; j , knv; j}x (3) ( j 51,2) are the nonlinear coefficients o
the material of the optical fibers. In contrast to the case t
we considered earlier,14 here we ignore linear energy ex
change between the modes, i.e., we assume that the c
sponding mode-coupling coefficients are zero, i.e.,K12

v

'K12
n 'K21

v 'K21
n 'K21

n 50. We also assume thatv'n.
From an experimental standpoint, the latter condition me
that the modesAj andBj have almost equal frequencies, b
each pair (A and B) differ in polarization~e.g., the modes
can be circularly polarized16!.
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Thus, the system of equations~A1! in this approximation
has the form

i
dA1,2

dz
52~kuA1,2u212kabuB2,1u2!A1,2,

i
dB1,2

dz
52~kuB1,2u212kabuA2,1u2!B1,2, ~A2!

where k[kv1v/2bc'kv2v/2bc'kn1n/2bc'kn2n/2bc
and kab[kvn1v/2bc'kvn2v/2bc'knv1n/2bc
'knv2n/2bc.

When we go over to a quantum description, we m
replace the complex-valued classical amplitudesAj andBj in
Eqs.~A2! with operators according to the standard proced
~cf. Ref. 14!, i.e.,

Aj→ iC̃aj , Aj*→2 iC̃aj
† ,

Bj→ iC̃bj , Bj*→2 iC̃bj
† , j 51,2, ~A3!

whereC̃5(2p\v/«0V)1/2, with V the quantization volume
As a result we obtain at the quantum equations of motion
the annihilation operators of the two orthogonally polariz
modesaj andbj :

i
da1,2

dz
52~ k̄a1,2

† a1,212k̄abb2,1
† b2,1!a1,2,

~A4!

i
db1,2

dz
52~ k̄b1,2

† b1,212k̄aba2,1
† a2,1!b1,2,

wherek̄C̃2k, andk̄ab[C̃2kab .
The operatorsaj and bj satisfy the usual commutatio

relations for a bosonic system:

@aj ,ak
†#5@bj ,bk

†#5d jk , @aj ,bk
†#5@aj ,bk#50, ~A5!

where j ,k51,2.
Equations~A4! can also be obtained from the equati

of evolution of the operatorsaj and bj in the Heisenberg
picture:

i\
daj

dt
5@aj ,H int#, i\

dbj

dt
5@bj ,H int#, ~A6!

where the interaction Hamiltonian

H int5
\c

2n1
@ k̄~a1

†2a1
21a2

†2a2
21b1

†2b1
21b2

†2b2
2!

14k̄ab~a1
†a1b2

†b21b1
†b1a2

†a2!# ~A7!

with d/dt→2(c/n1)d/dz (n1 is the linear refractive index!.
Thus, the system of equations~A4! describes the self

action and cross-interaction between the four modes in a
bically nonlinear tunnel-coupled optical fiber. In the gene
case, self-action has a destructive effect on the type
QNDM considered here~cf. Refs. 26 and 27!. In particular,
the terms with self-action are present in~18!, ~19!, ~22!, and
~23!, which leads to additional phase fluctuations for t
measuring~probe! and measured modes.

To reduce the effect of self-action, specially prepar
optical fibers withk̄!k̄ab can be used. However, in standa
t

e

r

u-
l
of

d

tunnel-coupled optical fibers the anisotropy of cubic susc
tibility is, for all practical purposes, low.16 It is also possible
to place in front of the QNDM device an additional cubical
nonlinear medium, with the sign of the nonlinear susceptib
ity, however, being opposite that of the susceptibility of t
given fiber~cf. Refs. 20 and 26!.

In the ideal case, withk̄50, the solution of the system
of equations~A4! is

a1,2
out5~exp$2 ig~b2,1

in !†b2,1
in %!a1,2

in , ~A8!

b1,2
out5~exp$2 ig~a2,1

in !†a2,1
in %!b1,2

in ,

whereg[22k̄abl ~herel is the length of the tunnel-couple
optical fiber!, anda1,2

in (a1,2
out) andb1,2

in (b1,2
out) are the operators

of the probe and measured modes, respectively, at the i
~output! of the fiber, operators that satisfy the commutati
relations~A5! ~see also Fig. 2!.

Thus, using~A8!, we can easily obtain the transforma
tions ~18! and~19! needed to implement quantum nondem
lition measurements.
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By using a linear analysis it is analytically shown that the stability of strongly localized modes
depends on their symmetry, the sign of nonlinearity, and the degree of localization. The
existence of a stable, bright, even mode of the discrete nonlinear Schro¨dinger equation is
demonstrated and confirmed by direct numerical simulations. Possible applications to all-
optical switching are discussed. ©1998 American Institute of Physics.@S1063-7761~98!00904-4#
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In the past decade many investigations have been
voted to intrinsic localized modes in discrete nonlinear s
tems due to their relevance to different branches of scie
e.g., solid state physics, nonlinear optics, and biology. T
fundamental properties of localized structures were use
explain some thermodynamic effects in solids~e.g., nonex-
ponential energy relaxation!, polaron and defect dynamics i
anharmonic lattices and quantum crystals~see Refs. 1–6 and
the bibliography cited there!. Many physical phenomen
such as modulational instability of plane waves,7,8 formation
and stability of temporal solitons,9,10 and the recurrence
effect11 occur in discrete systems in a quite different w
compared to those in extensively studied continuum syste
The discretness of the medium is responsible for new ph
cal effects that could not be forecast in studying the c
tinuum model. Some of the theoretically predicted proper
of discrete systems, in particular, modulational instability
plane waves, existence and dynamics of bright and dark
calized states, have already been verified experimentally12,13

In many cases the evolution of the initial excitation m
be described by the discrete nonlinear Schro¨dinger equation
~DNLSE!, which is one of the fundamental equations in no
linear physics. For instance, it governs electron-phonon
teraction in a one-dimensional ionic crystal or mediates n
linear processes in biology, where it is called a discrete s
trapping equation.1 Another spectacular example is th
evolution of the electromagnetic field in an array of linea
coupled waveguides, which have a great potential in ap
cations for performing all-optical switching, steering, and d
multiplexing. The use of such waveguide arrays for pow
and phase-controlled, all-optical information processing w
discussed in many papers~see Refs. 14 and 15 and the bi
liography cited there!. However, from the point of view of
obtaining a practical device the number of excited chann
in the array should be minimized. Fortunately, discrete s
tems are able to support the so-called strongly locali
modes~SLMs!, which contain only a few excited compo
nents and hence exactly suit the above-mentioned criter
In contrast to an inhomogeneous discrete system, this in
6821063-7761/98/86(4)/5/$15.00
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sic localization is a pure nonlinear effect which appears to
very promising in optical information processing. Howeve
to optimize the switching process, the boundaries betw
stable and unstable propagation of the SLM must be ide
fied.

As far as the structure of the SLM is concerned, tw
basic types of SLMs can be distinguished, i.e., odd~centered
on-site! and even modes~centered between sites!. In each
case the adjacent components may oscillate either in-p
~unstaggered modes! or out-of-phase~staggered modes!,16,17

depending on the sign of the nonlinearity. As was alrea
mentioned, the stability of SLMs against perturbations
fects substantially the dynamics of the mode and is there
an important issue to be addressed. The problem can be
led by using various approaches, e.g., direct numerical
culations or a method based on the so-called Peierls-Nab
~PN! potential.16,17 It is evident that the former method can
not cover the entire problem; i.e., study of the effect of var
tion of all parameters involved on the stability. The latt
method relies on the PN potential~PN barrier! of both types
of solutions, providing no information about the instabili
gain. Moreover, as was demonstrated in Ref. 17, to con
tently interpret the results obtained, one must introduce c
cepts such as the negative mass for staggered modes
other technique, which is based on a variational approa
was applied to investigate the existence and stability of re
tively weak localized modes of the generalized DNLSE18

Finally, the onset of chaos, including the so-called mic
chaos for three coupled oscillators, has been studied by
culating the Lyapunov exponent.19

As a result of these previous studies, all even SLMs
the DNLSE with the Kerr-like nonlinearity have been a
sumed to be unstable. In this paper we prove for the first t
the existence of a stable even mode in the system descr
by the DNLSE and give an analytical criterion for its stab
ity. We show that a direct linear analysis can be exploited
straightforwardly investigate the stability of the entire fam
of SLMs. This technique provides a clear physical picture
the onset of SLM dynamics. The analytical results conce
© 1998 American Institute of Physics
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ing the regions of instability as well as the respective g
permit us to draw conclusions for all-optical switching
waveguide arrays.

The DNLSE under consideration is

i
dEn

dt
1c~En111En21!1luEnu2En50, ~1!

wheret andn represent the evolution parameter and the
index, respectively;En represents the excitation at thenth
site,c is the linear coupling coefficient, andl is the effective
nonlinear coefficient. All quantities are dimensionless. T
can be achieved by a convenient normalization using c
acteristic scales for the evolution variable and the amplit
of the excitation. In case of waveguide arrayst denotes the
propagation distance along the waveguide.

In order to identify SLMs we take advantage of
method reported in Refs. 1 and 4. InsertingEn

5en exp(ivt) into ~1!, whereen represent the respective am
plitudes of a bright localized mode, we obtain a system o
few algebraic equations. Thus, for the even modeen

5A(...,0,a3 ,a2,1,s,sa2 ,sa3,0,...), unu51m.2,3,..., s561
we obtain the following equation with the requirement f
strong localizationua3u!ua2u!1, an'0 for n.3:

v[ve5lA21sc1
c2

lA2 ,

a2[a5
c

lA2 2sS c

lA2D 2

, a35S c

lA2D 2

, ~2!

where for symmetry reasons the subscriptn50 has been
dropped.

Analogously, for the odd mode the ansatzen

5B(...,0,b2 ,b1 ,b0 ,sb1 ,sb2,0,...), ub2u!ub1u!1, gives

v[vos5lB21
2c2

lB2 , b051, b1[b5
c

lB2 ,

b25b1
2, s51 ~3a!

for the symmetric mode and

v[voa5lB21
2c2

lB2 , b050, b151,

b2[b5
c

lB2 , s521 ~3b!

for the antisymmetric mode. Here the subscriptse and o
represent the even and the odd mode, respectively, and
parameters561 defines the symmetry of the mode. In d
riving ~2! and ~3! we restricted the analysis to the secon
order terms concerning the small parametersa andb for no
more than six excitations. In concentrating on the phys
aspect of the problem we restrict the discussion to the fi
order approximation. For sufficiently strong localization th
provide a reasonable accuracy, which was confirmed b
direct numerical solution of~1!. The difference between nu
merical and approximate analytical solutions mer
amounts to a few percents. A detailed study which ta
higher-order terms into account represents a separate su
and is beyond the scope of this paper. Hence, in what follo
n

e

s
r-
e

a

the

-

l
t-

a

s
ject
s

we mainly deal withstrongly localized modes and assum
that for a, b,nsl'0.2 the second-order terms can be i
nored.

To study the stability of SLMs we impose complex pe
turbationsdn(t) on each nonzero excitation amplitude.20 We
begin with the even mode and insert the perturbed pro
en5A(...,0,a1d22,11d21 ,s1d11 ,a1d12,0,...) into ~1!.
A subsequent linearization yields an eighth-order system
equations for the real-valued variables, which is only n
merically solvable. However, a considerable simplificati
can be achieved by a proper decomposition of the pertu
tions into symmetric and antisymmetric components asd j

6

5d1 j6d2 j ( j 51,2),19 which leads to a decoupling of th
system. Separating real and imaginary parts of the pertu
tions d j

65d j r
61 id j i

6 and introducing the scaled timete

5vet, we obtain two independent systems for the colum
vector d̄65(d1r

6 ,d1i
6 ,d2r

6 ,d2i
6)

dd̄6

dte
5S 0 ~s2p!a 0 2a

22~3s2p!a 0 a 0

0 2a 0 1

a 0 21 0

D d̄6, ~4!

wherep561 stands for the symmetric (d j
1) and antisym-

metric (d j
2) perturbation, respectively. If we introduc

d̄6`exp(gte), then the eigenvaluesg of ~4! are given by the
biquadratic equation

g41@112~p2s!a12~322ps!a2#g212~p2s!a

12~322ps!a212~p22s!a31a450. ~5!

If the symmetry of the perturbation coincides with that of t
SLM (s5p), Eq. ~5! does not exhibit real-valued solution
provided thata is small, as required (a<nsl). Thus, the
SLM is always stable against those perturbations, which w
numerically verified. In contrast, if the perturbation has t
opposite symmetry of the SLM (p52s), the SLM can be-
come unstable@Re(g)Þ0#.

We observed two basically different kinds of SLMs d
namics. Both staggered and unstaggered modes are al
unstable with respect to symmetric and antisymmetric p
turbations, respectively, whereas SLMs withas,0 are un-
stable only if the modulus of the amplitudea exceeds a
critical value, i.e.,uau.acr . These particular even SLMs ar
neither staggered nor unstaggered and can be obtained
those by changing the phase of excitations on sitesn>1 by
p. Hence, we call these modestwisted staggered~TS! (s
51,a,0) and twisted unstaggered~TU! (s521,a.0)
SLM. It is worth noting that the continuous NLSE limit doe
not exhibit a solution of that topology.

In analyzing the solutions of~5! we can ignore higher
than quadratic terms ina and thus obtain a compact expre
sion for the instability gain. If the linear coupling (c) and the
nonlinearity~l! have the same sign~i.e., a.0!, the unstag-
gered SLM (s51) is always unstable against antisymmet
perturbations, where the gain of instability

g'2Asa~125sa/4!, sa.0 ~6!
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increases witha ~see Fig. 1!. The instability of unstaggered
modes is confirmed by a direct numerical solution of~1!. The
decay of the antisymmetrically perturbed, unstaggered SL
and its subsequent transformation into an odd mode can
clearly recognized in Fig. 2. As can be anticipated from~6!
~see also Fig. 1!, the transition time decreases witha due to
the increase in the instability gain. A change ofa from 0.13
~Fig. 2a! to 0.15 ~Fig. 2b! causes a significant reduction o
that transition time to the stable odd mode. We mention th

FIG. 1. Instability gain@Re(g)# plotted as a function of the amplitudea for
even SLMs. The insets show the shape of the respective SLMs, where
twisted modes are sketched at the bottom.

FIG. 2. Evolution of an unstaggered SLM (s51) antisymmetrically per-
turbed; l51, A51, d̄25(0.01, 0, 0, 0);~a! a50.13, evolution of the
four initial excitations~solid linesn561, dashed linen522, dotted line
n52!; ~b! a50.15, evolution of the mode.
M
be

at

for relatively small amplitudes (a'0.1) the intermediate
asymmetric, oscillating state is fairly persistent and can
thus considered a quasi-stationary state.

In contrast to the behavior of the unstaggered SL
which is in agreement with the results previous
reported,16–18 the TU mode (s521) becomes unstable
against symmetric perturbations only beyond the critical a
plitude and the corresponding gain is

g'A2sa2acr, sa1acr,0, acr'0.12. ~7!

This has the consequence that TU SLMs are stable aga
anyperturbation ifa,acr . For the case wherec andl have
opposite signs~i.e., a,0! the situation is reversed~see the
left side of Fig. 1! and the TS mode exhibits stability for tha
particular region of uau. These predictions were double
checked by numerically solving~1!, imposing anasymmetric
perturbation on the TU SLM. Ifa does not exceed the criti
cal valueacr , the TU mode is stable, exhibiting only sligh
oscillations produced by the perturbation~see Fig. 3a!. If a
grows larger and exceeds the critical value, the TU SL
becomes unstable and decays eventually~see Fig. 3b!. Thus,
the existence of a stable even SLM of the DNLSE has b
proven. The stability of the twisted modes might be e
plained by the fact that neither the TU nor the TS variant h
a topological counterpart among odd SLMs. Hence, suc
twisted SLM cannot transform to an odd SLM and stabil
arguments based on the PN barrier do not apply here.
yond the critical valueacr instability manifests itself in a
spreading of the mode and sets in if the localization becom
weaker due to an increasing secondary amplitudeuau ~see
Fig. 3b!. We note that allowance for second-order terms
conjunction with the excitations at the sitesunu53 does not
significantly change the instability regions and the gain. T
transition from stability to instability, which is caused by
slight change ofa at the input, can be potentially exploite
for all-optical switching ~e.g., see the drastic change
the output intensity in the waveguide labele
n521 in Figs. 3a and 3b, respectively!.

Following the same procedure, one can also study
stability of odd SLMs. For example, if we ignore the secon
order corrections for the odd symmetric SLM in Eq.~3a! and
impose complex perturbations«n(t), we obtain from~1! and
the subsequent linearization a six-order system of ordin
differential equations. Decomposing the perturbation into
symmetric and antisymmetric components«1

65«116«21,
we can easily infer that the equation for«1

2 can be separated
and that it yields the solution«1

2(t)5«1
2 exp(2ivot). Obvi-

ously, this type of perturbation does not provoke any ins
bility of the system. Thus, one needs only to study the s
bility with respect to symmetric perturbations. Separati
real and imaginary parts of the perturbations«05«0r

1 i«0i , «1
15«1r

1 1 i«1i
1 , we obtain a system of four linea

equations

d«̄

dtos
5S 0 0 0 2b

2 0 b 0

0 22b 0 1

2b 0 21 0

D «̄, ~8!

the
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FIG. 3. Propagation of the perturbed twisted unstaggered SLM (s521), l51, A51; ~a! a50.11,acr , d̄5(0.04, 20.02, 0.02,20.02), d̄25(0,
20.04, 20.04, 0.04);~b! a50.16.acr , d̄15(0.04, 0,0, 0).
e
b

ht

ays
ver,

the

ed

dd

n a
n

where tos5vost is the scaled time, and «̄
5(«0r ,«0i ,«1r

1 ,«1i
1) is the perturbation vector. Again, th

corresponding eigenvalue problem represents a simple
quadratic equation, which now reads as

g41~114b2!g214b2~11b2!50, ~9!

where Re(g) also represents the instability gain. We straig
forwardly obtain a nonzero gain Re(g) only provided that the
secondary excitationubu.1/A8'0.35. Such an instability
causes the spreading of the mode in both directions inn. The
i-

-

larger the instability gain, the faster the unstable SLM dec
and the excitation is spread over the entire array. Howe
the above values for the secondary excitation are beyond
required small-parameter limit forb. Thus, we may draw the
conclusion that the odd,strongly localized mode~3a! is

stable against small perturbations. This result was confirm

numerically. Figure 4 shows the evolution of a perturbed o

SLM, where a complex perturbation was superimposed o
solution of ~3a!. Obviously, the perturbation results only i
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the quickly damping oscillations near the SLM. Because~1!
has a continuum set of SLM solutions, which depend on
amplitude B, the perturbed solution eventually transform
into a stable SLM with a new amplitude which is determin
by the strength of perturbation. Analogously, one can sh
that the odd antisymmetric SLM is also stable.

In conclusion, we have demonstrated that by using
direct linear analysis the stability behavior of intrinsi
strongly localized modes of the discrete nonlinear Sch¨-
dinger equation can be analytically predicted. The region
instability and the respective gain have been explicitly c
culated. The familiar stability of odd modes was confirme
It was shown for the first time that twistedevenmodes can
also be stable provided that the secondary amplitudes
below a certain critical value.

FIG. 4. Evolution of the perturbed odd SLM. The amplitudes of the cen
~upper curve! and the secondary~lower curve! excitations are shown forl
51, B51, b50.1, «̄5(0.05, 0, 0.05, 0);«25 i •0.05.
e

w

a

of
l-
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Second-harmonic generation in the interior of an isotropic medium with quadratic
nonlinearity by a focused inhomogeneously polarized pump beam
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This paper presents a theoretical study of second-harmonic generation~SHG! by a focused pump
beam in the interior of an isotropic medium, experimentally observed earlier. It shows that
the spatial dispersion of the quadratic optical response of the substance can be responsible for this
nonlinear process even when a macroscopic inversion center is present in the medium. It is
established that this effect, which is impossible in the plane-wave approximation, also does not
occur when a Gaussian pump beam with uniform distribution of the polarization state of
the wave field over the cross section is used, but that the presence in the pump beam of higher
transverse modes with polarization different from the fundamental mode can cause an
SHG signal to appear. The conditions for a wave to appear at the doubled frequency are found,
analytical dependences for its electric field and total power on the propagation coordinate,
the degree of focusing, and the other parameters of the problem are obtained, and the requirements
on the optimum experimental geometry are formulated. The dependence of the signal-beam
power on the wavevector detuning is studied, and it is shown that interference effects can cause the
wave at the second harmonic to disappear when a normal dispersion law is obeyed in the
region between the fundamental and doubled frequencies. ©1998 American Institute of Physics.
@S1063-7761~98!01004-X#
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1. INTRODUCTION

The conversion of laser pump radiation into the seco
harmonic in the interior of noncentrosymmetric crystals h
been known since the first days of nonlinear optics.1 Second-
harmonic generation~SHG! is also widely used in the spec
troscopy of the surfaces and interfaces of media,1–3 since this
three-wave-mixing process can be efficient only when th
is no macroscopic inversion center in the test object. Volu
SHG is also possible in an isotropic medium, for exampl
liquid or a gas, when a static electric field is imposed on
medium,1 removing the inversion center in it. At the sam
time, in the absence of external fields, the appearance
signal at the doubled frequency due to local electric-dip
optical susceptibilityx̂ (2) is forbidden not only in centrosym
metric but also in noncentrosymmetric liquids and gas
since the corresponding tensorx̂ (2) equals zero because o
symmetry under permutation of its last two subscripts4,5

Nevertheless, SHG was experimentally produced sev
years ago in the interior of a noncentrosymmetric solution
arabinose using noncollinear interaction of two laser bea
with identical frequency.6,7 This result is because the sign
obtained at the second harmonic was not quadratic
fourth-order in the field of the pump wave, which is e
plained by the fact that it displayed nonlinear optical susc
tibility x̂ (4)(2v;v,v,v,2v).

A number of experimental papers8–14 have recently been
published in which a signal was observed at the doub
frequency, generated by one pump beam, in a suspensio
arbitrarily oriented fragments of the purple membranes
6871063-7761/98/86(4)/9/$15.00
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Halobacterium halobium, containing chiral molecules o
bacteriorhodopsin. In a number of cases, when coarse m
brane fragments~about 1mm in diameter! are studied, the
appearance of the second harmonic can be ascribed to
tially coherent hyper-Rayleigh scattering.8–11 Actually, each
membrane fragment is an ordered structure of signific
size, which can generate a coherent SHG signal. When
averaged over the volume of the solution, the total signa
the doubled frequency does not go to zero, because the m
brane fragments illuminating it are macroscopic in size~of
the order of the wavelength of the laser radiation be
used!. A theory based on the present model of partially c
herent hyper-Rayleigh scattering was constructed in Ref.
its conclusions give a fairly good description of the expe
ments on the study of a suspension of coarse fragment
purple membranes.8–11However, by no means all the exper
mental results can be explained in this way. Membrane fr
ments reduced to about 50 nm were used in Refs. 12–14
this case, the directionality diagram of the observed S
signal and its polarization dependences did not match
prediction of its appearance due to hyper-Rayleigh scatte
~both completely incoherent and partially coherent!. More-
over, the presence of two components that interfere w
each other was distinctly observed in the signal at
doubled frequency in these experiments. These were q
dratic and fourth-order in the field of the pump wave.

There has been no consensus among investigators
garding the nature of the SHG signal component quadrati
field, and moreover there is no satisfactory theory that
explain all the experimental results so far obtained. We
© 1998 American Institute of Physics
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tend to show in this article that the quadratic part of t
signal wave observed in Refs. 12–14 can be caused by
tial dispersion of the nonlinear-optical response of the in
rior of the substance, since, even when the size of the in
tigated membrane fragments is much less than
wavelengths of the interacting fields~about 50 nm!, the non-
local behavior of the nonlinear optical response can be
nificant. Theoretical treatment of this phenomenon is no
simple problem and requires that the spatial limitation of
pump beam and the inhomogeneity of its polarization s
with respect to the cross section be treated, since, as wi
seen from the formulas given below, such an effect is imp
sible in the plane-wave approximation.

2. MAIN CONSIDERATIONS

In this paper, we consider the signal component at
second harmonic generated in the interior of a nonabsor
homogeneous isotropic medium that is quadratic in the fi
of a monochromatic pump beam. The material equation
the generalized polarization of a medium at the doubled
quency, allowing for spatial dispersion of the quadratic no
linearity, can be written as

Pi
~2!~r !5g i jkl

~2! El~r !
]

]r j
Ek~r !, ~1!

where E(r )}exp(2ivt) is the electric field of the pump
beam. As pointed out above, the local electric-dipole opt
susceptibilityx̂ (2) equals zero in the present case even wh
there is no macroscopic inversion center in the medium.

In this paper, we use the approach to the electrodyn
ics of complex media in which the magnetic induction
identically equal to the magnetic field. The generalized
larization of the medium unambiguously describes the o
cal response of the latter in this case, since it is the o
cause for the appearance of the electromagnetic signal w
All the magnetic effects are completely taken into accoun
the framework of the assumption that spatial dispersion
present in theP~E! dependence. We shall restrict ourselv
in what follows to terms that are linear in the small spati
dispersion parameterd8/l ~d8 is the characteristic scale o
the nonlocal optical response, andl is the wavelength of the
light!. When we take this into account to describe the q
dratic optical response of the material, it is sufficient in o
problem to know only the tensorĝ (2) ~we recall once again
that x̂ (2)50!.

The literature exhibits frequent attempts to separate
generalized polarization into electric-dipole, magnet
dipole, electric-quadrupole, etc., contributions. In such
approach,ĝ (2) would be represented in terms of a number
tensors describing the nonlinear-optical response of a ‘‘
ferent nature.’’ It should be pointed out that this is not po
sible for arbitrary media and by no means for all cases~see
Ref. 16!. Moreover, even when such a separation can
made, the tensorĝ (2) can include not only terms o
magnetic-dipole and electric-quadrupole origin, but a
terms formed by its manifestation of the nonlocal nature
the electric-dipole contribution, caused by the interaction
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the dipoles that compose the substance~see, for example,
Ref. 17!. Moreover, this separation is extremely conve
tional and arbitrary, since it is the generalized polarization
the medium, including the electric-dipole and all the oth
possible contributions, that enters into the right-hand par
the wave equation as the source of the electromagnetic w
In this connection, in the case considered here, it is imp
sible in principle to obtain more spectroscopic informati
than is contained in the independent components of the
sor ĝ (2). This is why it seems to us to be more convenie
and correct to use the tensorĝ (2) introduced in accordance
with Eq. ~1! to describe the nonlocal behavior of the qu
dratic optical response of a substance in the problem con
ered here.

The material tensorĝ (2) possesses no additional intern
symmetry. Therefore, for the media considered here, w
`` or ``m symmetry, it has three independent Cartes
components, which we denote by

g1
~2!5gxxyy

~2! , g2
~2!5gxyyx

~2! , g3
~2!5gxyxy

~2! .

Taking this into account, the material Eq.~1! can be written
in vector form as

P~2!~r !5
1

2
g1

~2!
“~E•E!1g2

~2!E~“•E!1g3
~2!~E•“ !E,

~2!

where we have written“5]/]r and omitted the argumentr
in the field E everywhere for brevity. We should point ou
that the prescribed-pump approximation should be u
whenE~r ! is substituted in Eq.~2!, since we hope to restric
ourselves to a study of the optical response of the med
that is quadratic in the field. Taking into account the acti
of the signal beam on the pump wave and also the self-ac
of the latter does not affect the form of the terms in t
expression for the polarization of the medium that are q
dratic in field, but only adds terms proportional to high
powers of the field of the pump beam.

Let us examine what each of the three terms on the rig
hand side of Eq.~2! contributes to the field of the signa
wave. The first of these is the gradient of a scalar functi
and therefore is a purely irrotational1! vector field of the po-
larization of the medium. The electric field created by it
the doubled frequency is found from the Maxwell equati
div D50:

Epot
~2!~r !52

4p

«SH
Ppot

~2!~r !. ~3!

@This is the form that results from the reduction of the wa
equation for longitudinal plane electromagnetic waves~see
Ref. 1, Sec. 3.3!, and consequently also for beams of irrot
tional type.# Here «SH is the permittivity of the medium a
the doubled frequency, and the subscript ‘‘pot’’ recalls t
irrotational character of the field~a potential field!. The last
equation shows that the irrotational field of the vectorPpot

(2)

generates an electromagnetic wave of irrotational ty
which, as is well known, cannot propagate freely but exi
only inside a medium, being coupled to the wavePpot

(2)(r ) by
Eq. ~3!. When it encounters the surface of the medium,Epot

(2)
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contributes to a free wave because the boundary condit
for an electromagnetic field must be satisfied, but this c
tribution must be taken into account1 ~and is taken into
account—see, for example, Refs. 18 and 19! as part of the
SHG signal from the surface. In this article, we shall co
sider only electromagnetic waves of the solenoidal type
the doubled frequency, since they are the only purely b
effect ~i.e., the signal is formed in the interior of the m
dium!.

The second term in Eq.~2! is proportional to divE, and
therefore equals zero, which follows from Maxwell’s equ
tion div D50 taking into account the constant-pump a
proximation. Thus, the SHG signal of interest to us can
generated only by the solenoidal component of the third te
in Eq. ~2!. Below, we consider it in more detail.

Note first that the case in which the medium lacks
macroscopic inversion center~symmetry``! differs from
the case of a centrosymmetric substance by the presen
linear gyration in the medium. This has the result, in parti
lar, that normal waves with right- and left-circular polariz
tion have different wave vectors in such a medium. Ho
ever, this difference is a first-order correction in the spa
dispersion parameterd8/l, and therefore the only result o
including it is that additional terms quadratic ind8/l appear

in Eq. ~2!, which already includes the tensorĝ (2), which is
linear in the small spatial dispersion parameter; these q
dratic terms are outside the scope of our treatment. T
including the influence of linear gyration does not change
general form of the expression forP(2) and consequently
cannot affect the conclusion that SHG is possible or imp
sible in any specific situation. Of course, if the rotation of t
polarization ellipse that arises in this way at distances of
order of the length of the medium is sufficiently large,
should be taken into account when writing out the express
for the pump-beam field and the wave equation in orde
correctly describe the characteristics of the signal wave~es-
pecially its polarization!. However, in this paper, we sha
consider the linear rotation of the polarization ellipse to
small at all lengths of interest to us, which agrees quite w
with the real situation that occurs in the experiments con
ered above for studying a suspension of fragments of pu
membranes. Taking into account what has been said,
shall neglect the influence of linear gyration for the particu
case of an isotropic noncentrosymmetric medium. T
makes our further calculations for isotropic media with``
symmetry ~with no inversion center! and ``m ~a cen-
trosymmetric medium! completely identical.

If we consider a plane pump wave with wave vectork,
the third term in Eq.~2! takes the formig3

(2)(E•k)E, which
equals zero because the field of a free plane wave is tr
verse. As will be seen from the subsequent formulas
Gaussian beam with a homogeneous distribution of the
larization state of the wave over its cross section also can
generate an SHG signal, and therefore we shall assume
besides the zeroth-order~Gaussian! modeEG(r ), the pump
wave contains two additional higher-order transverse mo
EX,Y(r ), where all three of these modes can have differ
polarizations. We direct thez axis of the xyz coordinate
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system along the beam axis~see Fig. 1!, and we shall write
all subsequent formulas up to and including terms linear
1/kw ~k5nv/c is the wave number of the pump wave in th
medium,n5A« is the refractive index,« is the permittivity
of the medium at frequencyv in the absence of linear ab
sorption, andw is the half-width of the Gaussian mode of th
pump beam!. The field of the beam at the fundamental fr
quency thus has the form

E~r !5EG~r !1EX~r !1EY~r !, ~4!

where

EG~r !5E0Fe02
ez

ik
~e0•“ !GeG~r !,

EX~r !5E0
XFe0

X2
ez

ik
~e0

X
•“ !G x

wb~z!
eG~r !,

EY~r !5E0
YFe0

Y2
ez

ik
~e0

Y
•“ !G y

wb~z!
eG~r !. ~5!

HereeG(r ) describes a scalar normalized Gaussian beam

eG~r !5
1

b~z!
expF2 ivt1 ik~z2 l 0!2

r'
2

w2b~z!
G , ~6!

where b(z)511 i (z2 l 0)/ l d , l d5kw2/2 is the diffraction
length of the Gaussian beam,l 0 is the distance from thez
50 plane to its waist, andr' is the component of radius
vectorr that lies in thexy plane. In Eqs.~5!, E0 andE0

X,Y are
scalar amplitudes, whilee0 ande0

X,Y are the polarization vec
tors of the three transverse modes of the pump beam u
consideration, and the absolute magnitudes of these vec
equal unity. All six of the indicated quantities are in gene
complex, whilee0 ,e0

X,Y'ez , whereez is the unit vector along
the z axis. In the framework of the assumptions made he
all three transverse modes of the beam with frequencyv
satisfy not only the wave equation but also the condit
div E50, which follows from the Maxwell equation divD
50 when the constant-pumping approximation is taken i
account. This is why, as already pointed out in endnote 1,
fields EG(r ) and EX,Y(r ) of these three modes, which ar
solenoidal free waves, have components along thez axis,

FIG. 1. Propagation of a pump beam with SHG through a medium. The
initial conditions for the field of the signal wave are set in thez50 plane;w
is the half-width of the beam at the fundamental frequency in the plan
the beam waist,z5 l 0 .
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which are additions to the main~x andy! components of the
field of the corresponding transverse mode that are linea
the small parameter 1/kw.

Substituting the fieldE~r ! given by Eq.~4! into the third
term of the material equation~2! and using Eqs.~5! and~6!,
we obtain that, taking into account the approximations m
here, this term will have a purely solenoidal character in
case. It was shown above that neither the first nor the sec
term of Eq.~2! contributes to the solenoidal component
the vector polarization field of the medium, and therefore

Pvor
~2!~r !5g3

~2!~E•“ !E5g3
~2!

eG
2 ~r !

wb~z! H E0E0
X@ex3~e0

X

3e0!#1E0E0
Y@ey3~e0

Y3e0!#

2
r'

wb~z!
E0

XE0
Y~ez•~e0

X3e0
Y!!J , ~7!

whereex,y are the unit vectors along thex,y axes, respec-
tively. We have used the subscript ‘‘vor’’ to designate t
solenoidal part of the vector fieldP(2)(r ) ~a vortex field!.
Only Pvor

(2) can generate a free electromagnetic wave of
solenoidal type in the volume of a medium, since the irro
tional componentPpot

(2) does not contribute to it~this follows
from the form of the wave equation, which can be found
the book cited above; see Ref. 1, Sec. 3.3!.

3. SOLUTION OF THE WAVE EQUATION AND ANALYSIS OF
THE TRANSVERSE FIELD DISTRIBUTION OF THE
SIGNAL WAVE OVER THE BEAM CROSS SECTION

Let us write the wave equation for the electromagne
field Evor

(2) at the doubled frequency, generated by the po
ization Pvor

(2) of the medium, in abbreviated form, for whic
we introduce a slowly varying amplitudeAvor

(2) according to

Evor
~2!~r !5Avor

~2!~r !exp@22ivt1 ikSH~z2 l 0!#. ~8!

wherekSH52nSHv/c, andnSH5A«SH is the refractive in-
dex of the medium at the doubled frequency. The redu
wave equation forAvor

(2) has the following form:

S ]

]z
2

i

2kSH
D'DAvor

~2!~r !

5
2p ikSH

«SH
exp@2ivt2 ikSH~z2 l 0!#Pvor

~2!~r !, ~9!

whereD'5]2/]x21]2/]y2, while Pvor
(2) is given by Eq.~7!,

using Eq.~6!.
Since the SHG signal from the surface is not under d

cussion in this paper, we set zero initial conditions for E
~9! at z50 ~the boundary of the medium!. Its exact solution
can be written in quadratures as

Avor
~2!~r !5

2p ikSH

«SH

g3
~2!

w E
0

z

dz8H E0E0
X@ex3~e0

X3e0!#

1E0E0
Y@ey3~e0

Y3e0!#2
r'

w Fb~z8!
in

e
r
nd

e
-

c
r-

d

-
.

24i
z82z

kSHw2G21

E0
XE0

Y~ez•~e0
X3e0

Y!!J Fb~z8!

24i
z82z

kSHw2G21 1

b2~z8!
expH iDk~z82 l 0!

2
2r'

2

w2 Fb~z8!24i
z82z

kSHw2G21J , ~10!

where Dk52k2kSH is the detuning of the wave vectors
Fortunately, by imposing not very burdensome limitations
the parameters of the problem, Eq.~10! can be greatly sim-
plified and the result can be written in analytical form
terms of special functions. We require that

uDkuuz2 l 0u!kSHl d ~11!

be satisfied for allz inside the medium. Since usuall
uDku/kSH!1 holds~small detuning of the wave vectors!, this
approximation can obviously be used for a thicknessL of the
medium of at least several diffraction lengths~provided that
the pump-beam waist lies inside the medium!. However, in
the limit uz2 l 0u/ l d@1, the expression under the integral
Eq. ~10! is small by comparison with its value in the plane
the beam waist; i.e., as should be expected, regions of
medium that far from the beam waist contribute little to t
SHG process. Therefore, there is every reason to ass
that, in all cases of practical importance, the simplified f
mula given below forAvor

(2)(r ) is valid even in the limitL
@ l d :

Avor
~2!~r !5 i

pkkSHw

«SH
g3

~2!H E0E0
X@ex3~e0

X3e0!#

1E0E0
Y@ey3~e0

Y3e0!#2
r'

wbSH~z!
E0

XE0
Y

3ez•~e0
X3e0

Y!J 1

bSH~z!
expF2

2r'
2

w2bSH~z!
G

3T ~2!~2 l 0 ,z2 l 0!, ~12!

where

bSH~z!511 i
z2 l 0

l d

2k

kSH

is in fact an analog of the coefficientb(z) for a Gaussian
beam at the doubled frequency with half-widthw/&, and
T (2) is used to denote the following dimensionless integr

T ~2!~z1 ,z2!5E
z1 / l d

z2 / l d exp~ inz!

~11 i z!2 dz5 i H 1

11 i z
exp~ inz!

2n exp~2n!Ei~ inz1n!J U
z5z1 / l d

z5z2 / l d

, ~13!

wheren5Dkld is a dimensionless parameter that charac
izes the detuning of the wave vectors, and

Ei~x!5E
2`

x

~et/t !dt

is the exponential integral function.
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It should be pointed out that an integral similar to E
~13! was encountered in Refs. 20–22 when four-wave m
ing processes~in particular, third-harmonic generation! in
focused Gaussian beams were considered. At the same
the corresponding integral for the SHG case in a wea
anisotropic medium20 differs appreciably from the formula
that we have obtained forT (2). The cause of this differenc
is that, in the problem considered here, SHG does not o
under the action of a Gaussian beam, as in Ref. 20,
because of the interaction of various transverse modes
multimode pump beam. The analogy with third-harmon
generation in isotropic media is therefore rather unexpec
and we shall return to this point in Sec. 4.

As follows from the basic Eq.~12!, SHG in the interior
of an isotropic medium in the case considered in this pape
possible only with noncoincident polarization vectors
three transverse modes of the pump beam. Generation o
second harmonic is impossible in the case of a single-m
beam, for instance a purely Gaussian beam with unifo
polarization over the cross section. It also follows from E
~12! that the field distribution over the cross section of t
signal beam is the same as if it consisted of a Gaussian b
and higher transverse modes, but thez dependence in
Avor

(2)(r ) because of the factorT (2)(2 l 0 ,z2 l 0) is different
than in a free electromagnetic wave. If it is assumed that
structure of the pump beam is such thatEX,Y(r ) constitute
only a small correction toEG(r ), it follows from Eq. ~12!
that the Gaussian component will dominate in the sig
beam. It is also interesting to point out that the two high
transverse modes in the SHG signal form an axisymme
‘‘speckle’’ distribution of the wave polarization state, i
which the electric field vector at any point of the cross s
tion of the beam is directed along its radius. The total po
ization of the signal beam will in general be elliptical, wi
the parameters of the polarization ellipse being differen
different points of the cross section.

Figure 2 illustrates the transverse spatial distribution
the electromagnetic field of a three-mode pump beam in
far field of diffraction. In drawing this figure, we assume
that the field of the Gaussian component of the beam is
rected along thex axis, while the small addition from the tw
upper transverse modes, with speckle polarization, ha
phase shift ofp/2 relative to the field of the Gaussian mod
in order that the polarization of the wave would be stric
linear and not elliptical at all points of the figure~this is done
only for greater clarity of the image!. In other words, Fig. 2
is drawn with the following values of the parameters th
characterize the pump beams:

E0
X5E0

Y50.2iE0 , e05e0
X5ex , e0

Y5ey

~ex,y are the unit vectors directed along thex,y coordinate
axes!. The quantitiesx/r 0(z) and y/r 0(z) are plotted along
the axes in the figure, wherer 0(z)52uz2 l 0u/kw is the half-
width of the Gaussian mode of the pump beam in the
field of diffraction. The transverse field distribution in th
pump beam shown in Fig. 2 is remarkable in that the tra
verse field distribution of the signal wave created by it in t
far zone of diffraction will have almost the same form~to
.
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within some phase factor!, except that the half-width of the
beam at the doubled frequency will be about a factor of&
less.

4. FORMULA FOR THE SHG SIGNAL POWER AND
DISCUSSION OF THE RESULTS

We start by obtaining expressions that connect the pu
beam powerW with the amplitudes of its three transvers
modes. As a result of integrating the intensity of a wave w
frequencyv, the expression for which can easily be foun
from Eqs.~4!–~6!, it is found that over the beam cross se
tion W equals the sum of the powers of these three mo
WG , WX,Y ~i.e., these three modes are in some sense
thogonal!:

W5
cn

8p E E uE~r !u2dr'5WG1WX1WY, ~14!

where

WG5
cn

16
w2uE0u2, WX,Y5

cn

64
w2uE0

X,Yu2. ~15!

All the powers in Eqs.~14! and ~15! are independent ofz,
which is associated with the use of the constant-pump
proximation.

The total SHG signal power is obtained similarly to i
tegrating the square of the slow field amplitudeAvor

(2)(r ) at the
doubled frequency, given by Eq.~12!, over the beam cross
section:

W~2!~z!5
128p2k4

cnSH«2 ug3
~2!u2$WGWXue0

X3e0u21WGWYue0
Y

FIG. 2. Transverse distribution of the electric field of the pump beam o
its cross section in the far field of diffraction. The arrows show the relat
amplitude and direction of the linear polarization of the field at the po
with the correspondingx andy coordinates; the latter are normalized to th
half-width r 0(z) of the Gaussian mode of the pump beam. Above the fig
is schematically illustrated the transverse modal structure of the pump b
in which the zeroth~Gaussian! mode, which is homogeneous and linear
polarized along thex axis, predominates, and which also contains a sm
admixture of the first order mode, the direction of whose linear polariza
at each point is perpendicular to the axis of the beam.
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3e0u21WXWYue0
X3e0

Yu2%uT ~2!~2 l 0 ,z2 l 0!u2.

~16!

If an analyzer that transmits only thex-polarized componen
of the electric field of the signal wave is put at the outp
from the medium~as was done in the experiment describ
in Ref. 14!, the power of the transmitted beam at the doub
frequency will be determined by

WX
~2!~z!5

128p2k4

cnSH«2 ug3
~2!u2H WGWYue0

Y3e0u2

1
1

2
WXWYue0

X3e0
Yu2J uT ~2!~2 l 0 ,z2 l 0!u2.

~17!

In Eqs. ~16! and ~17!, the factors in braces describe the d
pendence of the SHG signal power on the polarization st
of the three transverse modes of the pump beam, while
square of the absolute value of the dimensionless inte
T (2) determines howW(2) and WX

(2) depend on thez coor-
dinate and the positionl 0 of the beam waist.

Figure 3 shows the normalized dependence of the p
ersW(2) andWX

(2) on parameterw, which gives the polariza-
tion state of the Gaussian component of the pump beam
cording to

e05ex cosw1 iey sin w.

For clarity, polarization states of this Gaussian mode co
sponding to certain values ofw are shown symbolically plot-
ted againstw. Horizontal arrows show the electric field lin
early polarized along thex axis, vertical arrows show i
linearly polarized along they axis, and circles with an arrow
correspond to right- or left-circular polarizations. In co
structing Fig. 3, we assumed that the two transverse mo
EX,Y(r ) have constant~independent ofw! speckle polariza-
tion with WX,Y50.01WG , which corresponds to the ratio o
the amplitudes of these modes used in constructing Fig.

FIG. 3. Normalized dependence of the total powerW(2) of the signal wave
~solid curve! and the powerWX

(2) of its x-polarized component~dashed
curve! vs parameterw, which determines the polarization state of th
Gaussian transverse mode of the pump beam according to the formue0

5ex cosw1iey sinw, wheree0 is the polarization vector of this Gaussia
mode, andex,y are the unit vectors along thex,y axes. The polarization
states of the Gaussian component of the pump beam for differentw are
schematically shown in the upper part of the figure. It was assumed tha
first-order transverse mode of the beam at the fundamental frequen
significantly weaker than the Gaussian component, while the directio
linear polarization of its electric field at any point of the cross section
for any w is perpendicular to the beam axis.
t
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The theoretical curves shown in Fig. 3 are in qualitati
agreement with the recently obtained experimental dep
dence of the signal power of bulk SHG on the polarizati
state of the pump beam,14 although there is no detailed quan
titative agreement between them. In fact, in Ref. 14, besi
signal components that are quadratic in the field, a siza
fourth-order component relative to the pump-wave field w
also observed. The latter results from the presence of non
ear optical susceptibilityx̂ (4) in an isotropic noncentrosym
metric medium, but is also possible because of certain c
cade processes. The indicated effects have remained virtu
uninvestigated theoretically, the more so when spatia
bounded wave packets are involved. This is why it is n
currently possible for us to give a definitive interpretation
the experimental results obtained in Ref. 14. Nevertheles
is noteworthy that an SHG signal is present in the dep
dences shown in Fig. 3 even for circular polarization of t
pump wave~in our case, of course, we are dealing with
Gaussian fundamental mode!. This effect was observed
experimentally,11,14 but it has not yet been theoretically ex
plained in relation to Ref. 14. The theoretical calculatio
carried out in this article make it possible to explain t
appearance of such a ‘‘doubly forbidden’’ signal~according
to the expression of Allcocket al.11 and Balakinet al.14! at
the doubled frequency, created in the interior of an isotro
medium by an~almost! circularly polarized pump beam.

The four remaining figures are constructed assuminz
5L; i.e., the SHG signal at the output from the medium
considered. These figures show how the dimensionless c
ficient uT (2)u2 entering into Eqs.~16! and ~17! depends on
the lengthL of the medium, on the coordinatel 0 of the plane
of the pump-beam waist, and on the parametern5Dkld that
characterizes the detuning of the wave vectors. We recall
uT (2)u2 completely determines the dependence of the sig
wave power onL, l 0 , andn.

Figure 4 showsuT (2)(2L/2,L/2)u2 vs. L for the follow-
ing values ofn : 22 ~curve1!, 20.5 ~2!, 0 ~3!, 0.5~4!, 1 ~5!,

he
is

of
d

FIG. 4. Dependence ofuT (2)(2L/2,L/2)u2, the dimensionless power of th
SHG signal when the pump beam is focused at the center of the medium
the lengthL of the medium, normalized to the diffraction lengthl d of the
pump beam. The values of the parametern5Dkld , which characterizes the
detuningDk of the wave vectors for the SHG process, were taken as
lows: 22 ~curve1!, 20.5 ~2!, 0 ~3!, 0.5 ~4!, 1 ~5!, and 3~6!.



th

n
ow

,
to

G
m

th
in
th

ur
e
t

-
he

e

ur
ke
th
uc
w

fo
en

,
d

g-
ve

al

of

at
on
h

e

di

he
of

is

693JETP 86 (4), April 1998 Volkov et al.
and 3 ~6!. The given case corresponds to focusing of
pump beam at the center of the medium (l 05L/2) for all
values ofL. Note that, forn'1, a sort of quasisynchronism
occurs, characterizing the increase of the relative SHG sig
amplitude. We shall discuss this fact in more detail bel
when studying the dependence ofT (2) on the parametern.
Figure 5 shows the dependence ofuT (2)(2 l 0 ,1`)u2 on l 0

for the same values ofn. Of course, under real conditions
the length of the medium is finite; here it only important
us that it be so large thatuT (2)u2 differs little from its
asymptotic value asL→1`. As can be understood from
Fig. 4, to satisfy this requirement, it is sufficient to takeL
equal to several tens of diffraction lengthsl d .

Figures 4 and 5 show that the larger part of the SH
signal, as expected, is formed in the region of the pu
beam waist. Actually, increasing the lengthL of the medium
beyond several diffraction lengths no longer increases
power of the wave at the doubled frequency, and, if we br
the region of the beam waist beyond the boundary of
medium ~negativel 0 in Fig. 5!, the relative value ofW(2)

sharply decreases. Because of interference effects, it t
out that the maximum SHG signal power from the volum
can be attained by placing the pump beam waist close to
surface of the medium~the z50 plane! zero to severall d

away, depending on the value ofn!. Although such a require
ment on the geometry of the problem is not critical for t
appearance of the second harmonic whenn is positive, for
n<0 the power of the wave at the doubled frequency form
in the volume of a~long! medium falls to zero when the
plane of the beam waist is significantly remote from the s
face of the medium. All these circumstances should be ta
into account in setting up the experiment. To choose
optimum geometry of the latter, it can be useful to constr
the three-dimensional dependence of the SHG signal po
on L and l 0 in order to find the values of the parameters
which the power is a maximum. Figure 6 shows the dep
dence of the dimensionless coefficientuT (2)(2 l 0 ,L2 l 0)u2

on the lengthL of the medium and on the distancel 02L/2

FIG. 5. Dependences ofuT (2)(2 l 0 ,1`)u2, the dimensionless power of th
wave at the doubled frequency, vs the distancel 0 from the plane of the
pump-beam waist to the surface of a long medium, normalized to the
fraction lengthl d of the pump beam. The values of parametern are the same
as in constructing the corresponding curves in Fig. 4.
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from the pump beam waist to the center of the medium
plotted forn53. The two heavy curves in Fig. 6 correspon
to the valuesL andl 02L/2 for which this plane of the beam
waist coincides with one of the surfaces of the medium. Fi
ure 6 clearly confirms the conclusions that we reached abo
on the basis of an analysis of Figs. 4 and 5.

Figure 7 illustrates the dependence of the SHG sign
power on the parametern5Dkld , which characterizes the
wave vectors. The solid curve corresponds to a position
the pump beam waist well within a fairly long medium~i.e.,
the distance from the plane of the waist to both surfaces is
least several tens of diffraction lengths—see the explanati
to Fig. 5!. The dashed curve is plotted for the case in whic

f-

FIG. 6. The dimensionless poweruT (2)(2 l 0 ,L2 l 0)u2 of the SHG signal vs
the lengthL of the medium and vs the distancel 02L/2 from the pump beam
waist to the center of the medium, expressed in diffraction lengthsl d of the
pump beam. The two heavy curves correspond to thoseL and l 02L/2 val-
ues for which the plane of the pump beam waist coincides with one of t
surfaces of the medium. The figure is drawn for a dimensionless detuning
the wave vectors ofn53.

FIG. 7. Dimensionless power of the signal wave when the pump beam
focused at the center of a long medium (uT (2)(2`,1`)u2, solid curve! and
when it is focused on the input surface of a long medium (uT (2)(0,
1`)u2, dashed curve! vs the parametern5Dkld , which characterizes the
wave-vector mismatchDk ~l d is the diffraction length of the pump beam!.
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the plane of the waist coincides with the input surface~the
z50 plane! of a fairly long medium. An interesting featur
of the phenomenon we have investigated that is indicated
the form of the solid curve in Fig. 7 is that when the pum
beam waist lies in the depth of the medium the SHG sig
completely disappears forn<0, i.e., nSH>n, which corre-
sponds to normal dispersion in the frequency region fromv
to 2v. The analytical formula for the indicated dependence
given by the square of the following expression:

T ~2!~2`,1`!5H 2pne2n, n>0.

0, n,0.
~18!

The disappearance of the SHG signal for negativen is caused
by the destructive interference of waves at the doubled
quency generated at different points of the medium illum
nated by the pump beam. Forn.0 this interference become
constructive and we can see the signal wave even when
pump beam waist lies deep within the medium. When
plane of the beam waist approaches the surface of the
dium, part of the sources of the wave at the second harm
as it were disappear, which makes it possible to partia
escape the destructive influence of the interference. Tha
why, when the pump beam waist lies at the surface of
medium, the SHG signal appears even whenn is negative, as
is demonstrated by the dashed curve in Fig. 7.

Of course, the signal in then,0 case can be said t
completely disappear when the pump beam is focused in
interior of the medium only to within the approximation
used in this treatment. In practice, only a significant we
ening of the wave at the doubled frequency should be
pected. Moreover, at very large values ofunu, when the in-
equality uDku/k!1 breaks down, our formulas can becom
invalid because the condition given in inequality~11! is not
obeyed and the method of slowly varying amplitudes is
applicable. However, the latter limitations do not seem c
cial to us, since, whenunu increases significantly, it is impos
sible to obtain any perceptible SHG signal because of
sharp decrease of the coherent-interaction length for
nonlinear optical process.

The solid curve in Fig. 7 reaches its maximum atn51.
For this value ofn, a sort of quasisynchronism is observe
for which the pump radiation is transformed into the seco
harmonic with the greatest efficiency. This quasisynch
nism, which appears for nonzero detuning of the wave ve
mismatch, was noted in the references cited above20–22 de-
voted to the study of four-wave processes in focused Ga
ian beams. Moreover, Eq.~18! is completely analogous to
the corresponding expression obtained in the indicated
ticles for the case of third-harmonic generation. This fact i
consequence of the mathematical similarity noted in Se
between certain formulas that describe two extremely dif
ent problems. We shall present a qualitative explanation
the phenomenon of quasisynchronism for SHG in a focu
beam, based on the discussions of Ward and New.20 The
wave vectors of the spatial Fourier harmonics of the pu
beam are tilted both with respect to the axis of the beam
relative to each other. Each pair of these plane-wave harm
ics generates its own contribution to the signal wave at
y
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doubled frequency. Phase synchronism is attained in
case at some nonnegative mismatch of the moduli of
wave vectors (2k>kSH), since the interaction of the two
spatial Fourier harmonics of the pump beam is noncollin
in general. The mean angle between the wave vectors o
different harmonics of a beam with half-widthw is on the
order of 1/kw, and therefore phase quasisynchronism for
SHG process is attained when the wave-vector mismatc

Dk;2k@12cos~1/kw!#;1/kw2;1/l d ,

which agrees well in order of magnitude with the exact va
n5Dkld51 obtained above.

5. CONCLUSION

This paper has presented the first study of SHG cau
in the interior of an isotropic medium by spatial dispersion
the quadratic optical nonlinearity. A coherent signal at t
doubled frequency in this case results from the interaction
different transverse modes of a pump beam possessing
larization that varies over the cross section. It can be sho
that the described SHG mechanism is unrealistic because
signal amplitude is directly proportional to three small p
rameters: the spatial-dispersion parameter, the diverge
angle of the pump beam, and the quantityAWX,Y/W, which
characterizes the fraction of higher-order transverse mode
the total pump power. As a matter of fact, the detection
such a weak signal is by no means a hopeless task, sinc
shown in this article, more effective mechanisms for the
pearance of a quadratic-in-field SHG signal in the volume
an isotropic medium are forbidden for one reason or anot
Indeed, the local electric-dipole optical susceptibilityx̂ (2) of
an isotropic medium equals zero even in the absence
inversion center in the medium. Spatial dispersion of
quadratic optical response of the substance also cannot c
a volume SHG signal if the pumping is represented by
plane light wave or by a Gaussian beam homogeneously
larized over the cross section. This is because the polar
tion wave formed in the medium at the doubled frequen
has a pure irrotational character and cannot generate a
electromagnetic wave in the interior of the medium. A stu
of the dependence of the signal power at the second
monic on the wave-vector mismatchDk showed that quasi-
synchronism is observed for some nonzero valueDk.0 in-
versely proportional to the diffraction lengthl d of the beam.
The SHG process occurs most efficiently close to this va
and therefore choosing the optimumDk and the optimum
degree of focusing of the pump beam can make it sign
cantly easier to experimentally observe the effect. Moreov
we have investigated in great detail the question of optim
ing the other geometrical parameters of the problem.

We hope that our work will promote further advances
experimental studies of SHG in the interior of isotropic li
uids. It would be desirable in subsequent experiments
separate the signal into two components quadratic and fo
order in the field. In this case, the characteristics of the p
of the beam at the doubled frequency that is quadratic in fi
~i.e., the dependence of the SHG signal power on the po
ization states of the pump beam and the signal wave,
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transverse distributions of the intensity and polarization s
of the latter, and the dependence of the SHG signal powe
the parameters that specify the experimental geometry! could
be correlated with the formulas obtained in this paper. T
would make it possible to check the validity of our hypot
esis that the second harmonic in the volume of the med
results from the presence of higher-order transverse mod
the pump beam in the case that we have considered. No
important is further theoretical study of SHG in the interi
of an isotropic noncentrosymmetric medium. In particul
the authors regard as the next problem the study of the si
at the doubled frequency, whose occurrence is due to
fourth-order optical susceptibilityx̂ (4). Interesting results
can be obtained by investigating the contribution of cert
cascade nonlinear optical processes to the experimentally
served SHG signal. The solution of these problems wo
make it possible, in our opinion, to completely interpret t
experimental data—both those already waiting to be
plained, and those that will certainly be obtained in the n
future.

The authors are grateful to A. P. Shkurinov and A.
Pakulev for useful discussions, as well as to the Russ
Fund for Fundamental Research for partial financial supp
of our work ~Project Code 96-02-16596!.
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1!The concepts of longitudinal or transverse polarization of a vector field

suitable only for the case of plane waves. The beam can be represen
a superposition of plane-wave spatial Fourier harmonics whose wave
tors are slightly noncollinear, and therefore, even if the field in the bea
polarized across its axis, it still has a small component along almost a
these wave vectors. A fairly obvious generalization of the concept of
gitudinal or transverse plane electromagnetic waves is provided by irr
tional or solenoidal beams, given, respectively, by the conditions cuE
50 and divE50. It is easy to show that with this definition each irrot
tional or solenoidal spatial Fourier harmonic of the beam is, respective
longitudinal or a transverse plane wave, and therefore all the specific p
erties of longitudinal or transverse electromagnetic waves will be inher
by irrotational or solenoidal beams, respectively. Note that an irrotatio
beam has a small field component directed across its axis, while a sol
te
on

is

m
in
ss

,
al

he

n
b-

ld

-
r

.
n
rt

re
as

c-
is
of
-
a-

a
p-
d

al
oi-

dal beam has a small longitudinal component. These components are
order in the beam-divergence angle. The concepts of irrotational and
noidal can be applied to the wave beams of any vector quantity, includ
the wave of the polarization of a medium.
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Trapping of an electromagnetic wave by the boundary of created plasma
M. I. Bakunov* ) and S. N. Zhukov

N. I. Lobachevski� Nizhni� Novgorod State University, 603600 Nizhni� Novgorod, Russia
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We discuss a new phenomenon of the electrodynamics of transient media, the trapping of
electromagnetic radiation by the boundary of a transient plasma due to the conversion of the
radiation into surface waves localized at the boundary. Calculations are done for an
initial plane wave and for a beam of finite width in conditions where the boundary of the
suddenly created~because of ionization! plasma half-space is perpendicular to the initial wavefront.
Two frequency down-shifted surface waves traveling along the boundary in opposite
directions are shown to be excited, as well as frequency up-shifted outgoing radiation and a time-
independent mode in the form of a spatially inhomogeneous structure of dc currents and a
magnetic field within the plasma half-space. We study the associated kinematic, amplitude, and
energy relations. Finally, we establish that the most efficient trapping~up to 40% in
energy! can be achieved with the forward~with respect to the direction of the initial wave
propagation! surface mode and that the trapping is accompanied by concentration of
electromagnetic energy at the plasma boundary. ©1998 American Institute of Physics.
@S1063-7761~98!01104-4#
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1. INTRODUCTION

Recently there has been an upsurge of interest in stu
of transformations of electromagnetic waves in nonstation
media ~see, e.g., Refs. 1–8!. The reason lies largely in th
successful experiments in conversion of the frequency of
crowave radiation in devices with transient plasma9 ~at an
ionization front moving in the plasma!, and in experiments
on simultaneous ionization of the entire gaseous medium
the active volume~flash ionization!.10,11 In a recent review
by Fa�nberg12 this avenue of research in quantum electron
was mentioned as one of the most rapidly developing.

As for the theoretical work in the field of the electrod
namics in transient media, the bulk of it, starting with t
pioneering work of Einstein13 and Morgenthaler,14 has devel-
oped in two directions: the study of the interaction of ele
tromagnetic waves and of moving inhomogeneities~the me-
dium’s boundary or a parameter wave in an immob
medium!,2,3,5,13,15–18and the study of conversion of waves
a homogeneous infinite medium with purely temporal var
tions of the parameters.7,8,14,19–21Much less developed is th
theory of the interaction of electromagnetic radiation w
bounded transient media. The first to study some feature
the reflection of electromagnetic waves from the pla
boundary of a transient medium~nondispersive insulator
and plasmas! was Fante22 in 1971. Borisov23,24 and Kalluri25

thoroughly studied steady-state and transient processes i
interaction of an electromagnetic wave and a suddenly
ated ~because of ionization! plasma half-space~for a tran-
sient insulator half-space the necessary calculations w
done by Nerukh!.26 A more realistic case of sudden ioniz
tion in a plasma slab was examined by Kalluri and Gotet27

All this work, however, touched only on problems wi
the simplest geometry, where the boundary of the crea
6961063-7761/98/86(4)/7/$15.00
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plasma was assumed to be parallel to the wavefront. A ric
case from a physical standpoint is the absence of the co
tion that the wavefront be parallel to the plasma’s bounda
Indeed, in this case, with a TM polarized initial wave, w
expect a conversion of this wave into surface waves dri
by the created plasma boundary. At a steady-state boun
there can be no direct conversion of the incident wave i
surface waves, because it is impossible to satisfy two con
vation laws: of the wave’s frequency~the photon energy!,
and of the component of the wave vector~momentum! tan-
gential to the boundary.28 Existing methods of feeding elec
tromagnetic radiation to planar waveguide structures
based upon the creation of a longitudinal spatial inhomo
neity in the system~via a diaphragm, a smoothly profiled o
rough section, etc.!, or upon spatial synchronization of th
volume and surface waves via coupling prisms~the method
of frustrated total internal reflection!.28,29 For a transient
boundary there exists an entirely different way of inputti
radiation, since here the requirement that the wave freque
be conserved does not hold.

In the present paper we demonstrate the effect of c
version of electromagnetic radiation into surface waves a
transient plasma boundary for the case where the boun
of the suddenly created~because of ionization! plasma half-
space is orthogonal to the initial wavefront~this geometry
considerably simplifies the analysis of the energy relation
the conversion!. We show that two frequency down-shifte
surface waves traveling along the boundary in opposite
rections are excited. We establish that the most efficient c
version~up to 40% in energy! can be achieved for the for
ward ~with respect to the direction of the initial wav
propagation! surface mode. Trapping of the electromagne
wave by the boundary of the created plasma is accompa
by dissipation of a fraction of the energy into volume rad
© 1998 American Institute of Physics
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tion with a continuous frequency spectrum, moving aw
from the boundary, and by excitation of a time-independ
mode in the form of a spatially inhomogeneous structure
dc currents and a magnetic field within the plasma h
space. We also find that the energy density at the boun
in the forward surface wave is much higher than the ene
density in the initial wave, over a wide range of densities
the created plasma, i.e, the trapping is accompanied b
concentration of electromagnetic energy at the plas
boundary.

Some preliminary results of the present study were
ported in Ref. 30.

2. STATEMENT OF THE PROBLEM. CALCULATION OF
LAPLACE TRANSFORMS

We assume that initially, att,0, in an nonionized me-
dium ~gas! with a dielectric constant«'1 there is a linearly
polarized plane electromagnetic wave of frequencyv0 with
fields

Ey~x,t !5Bz~x,t !,
~1!

Bz~x,t !5B0 exp~ iv0t2 ih0x!, h05
v0

c
,

propagating along thex axis.
At time t50 external factors suddenly ionize the ha

spacey,0, with the result that cold collisionless plasma
concentrationN is formed in that half-space. We begin o
calculation of the conversion of the wave~1! at the given
space–time inhomogeneity by using Maxwell’s equations
which at timet50 the current of the produced electrons
switched on, along with the equations of electron moti
with the electrons having zero initial velocity.15,16 Applying
the Laplace transformation to the given system of equatio
we arrive at an equation for the transform of the magne
field, b(x,y,p) ~here p is the complex-valued ‘‘Laplace’’
variable!:

«
]

]y S 1

«

]b

]yD2
1

c2
~p2«1v0

2!b

52
1

c2
~p«1 iv0!B0 exp~2 ih0x!, ~2!

where «(y,p)511h(2y)vp
2/p2, h(2y) is the unit step

function, and vp5A4pe2N/m is the plasma frequency
Finding the solutions of Eq.~2! in the homogeneous region
y.0 and y,0 satisfying the radiation conditions, an
matching them at the boundaryy50 by requiring thatb and
«21]b/]y be continuous at the boundary, we arrive at t
following expressions forb(x,y,p):

b~x,y,p!5
B0 exp~2 ih0x!

p2 iv0
1AI~p!

3expS 2 ih0x2
y

c
Ap21v0

2D ~3!

for y.0, and
y
t
f
-
ry
y
f
a
a

-

n

,

s,
ic

e

b~x,y,p!5
p~p1 iv0!1vp

2

p~p21v0
21vp

2!
B0 exp~2 ih0x!

1AII~p!expS 2 ih0x1
y

c
Ap21v0

2vp
2D ~4!

for y,0, with

AI~p!52B0

ipv0vp
2

~p2 iv0!Ap21v0
21vp

2D~p!
, ~5!

AII~p!5B0

iv0vp
2~p21vp

2!Ap21v0
2

p~p2 iv0!~p21v0
21vp

2!D~p!
, ~6!

D~p!5~p21vp
2!Ap21v0

21p2Ap21v0
21vp

2; ~7!

here we select the roots whose real parts are positive.
Under an inverse Laplace transformation, the first ter

in ~3! and~4!, which are forced solutions of Eq.~2!, contrib-
ute at any point in space to the fieldBz(x,y,t), starting at
t50. In the regiony.0 this contribution has the form~1!,
i.e., coincides with the initial wave, while in the regio
y,0 it is determined by the formula

Bz~x,t !5B0 exp~2 ih0x!F vp
2

v0
21vp

2

1(
6

v0

2

v06Av0
21vp

2

v0
21vp

2
exp~6 i tAv0

21vp
2!G , ~8!

which agrees with the results of conversion of an elect
magnetic wave under instantaneous ionization of the med
in the entire space.20,21

Under an inverse Laplace transformation, the seco
terms in~3! and~4! ~free solutions! contribute to the field at
a given point only starting att5uyu/c. This means that start
ing at the moment of ionizationt50, the region of conver-
sion of the wave fields~1! and ~8! propagates in both direc
tions from the emerging boundaryy50.

To calculate the steady-state solutions~as t→`! and the
angular distribution of the outgoing radiation (y→6`), in
applying the inverse Laplace transformation to the sec
terms in~3! and ~4! it is convenient to select the integratio
contour as depicted in Fig. 1. The poles of the functio
AI(p) andAII(p) contribute, together with~1! and~8!, to the
steady-state solutions, while the integrals along the edge
the cuts determine transient processes, including the ra
tion field. In Fig. 1 the polesiv0 and 6 iAv0

21vp
2 are de-

picted to the right of the cuts, as follows from the case wh
the initial wave is a wave beam of finite width rather than
plane wave. The contribution of the poleiv0 of the function
AI(p) cancels~‘‘turns off’’ ! the initial wave~1! in the region
y.0, and the contributions of the poles6 iAv0

21vp
2 of the

function AII(p) cancel the waves with frequencie
6Av0

21vp
2, the waves determined by~8!, in the region

y,0.
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FIG. 1. The integration contour fort.uyu/c. The wavy lines rep-
resent the cuts (6 iv0 and 6 iAv0

21vp
2 are the branch points of

the roots), and3 indicate the poles of the functionsAI(p) and
AII(p) ~the corresponding label is in parentheses!.
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3. SURFACE WAVES

The effect of formation of steady-state solutions as s
face waves is described by the contribution of the poles
A1(p) and AII(p), which are determined by the equatio
D(p)50. This equation has two solutions,p56 ivs ~Fig.
1!, where

vs5Av0
21 1

2vp
22Av0

41 1
4vp

4. ~9!

Thus, the electromagnetic wave trapped by the plas
boundary consists of two surface waves: one~with frequency
vs.0) propagating in the same direction as the initial pla
wave, the other~with frequency2vs,0) propagating in the
opposite direction. This result can be illustrated by a kin
matic diagram~Fig. 2!. In this diagram the coordinates of th
points of intersection of the two branches of the dispers
curve of the surface waves~see Ref. 31! and the straight line
h5h0 representing the invariance~at a temporal discontinu
ity! of the spatial structure of the waves in the boundar
plane correspond to the frequencies of the surface wa
Figure 2 shows that the conversion of the initial wave in
surface waves entails a down-shift in frequency (vs,v0).
The frequency conversion coefficientvs /v0 increases with
the density of the created plasma, approaching unity w
N@Nc , with Nc5mv0

2/4pe2 the critical density~Fig. 3!.
WhenN!Nc , the frequencyvs is close to the upper limit on
the frequency of the surface wave,vp /A2 ~see Fig. 2!.31

The amplitudesB6 of the surface waves are given by th
residues of the functionsAI(p) and AII(p) at the polesp
56 ivs and have the following form:

B65B0

~vp
22vs

2!~v06vs!

2v0Av0
41~1/4!vp

2
. ~10!
r-
f

a

e

-

n

s
s.

n

The amplitude of the backward wave is always smaller th
that of the forward wave (B2,B1).

The amplitude conversion coefficientsB6 /B0 are de-
picted in Fig. 4 as functions of the density of the creat
plasma. The ratioB2 /B0 reaches its maximum valu
(B2 /B0)max'0.12 at N/Nc'1.7 and approaches zero a
N/Nc→`. The ratio B1 /B0 increases monotonically with
plasma density, approaching a limit of 2 asN/Nc→`.

At first glance, the asymptotic behavior of the conve
sion coefficientB1 /B0 seems to violate energy conservatio
Indeed, in the limitN/Nc→`, the ‘‘plus’’ surface wave be-
comes a plane wave with the same frequencyv0 as the ini-
tial wave and propagates in vacuum (y.0) along the per-
fectly conducting half-spacey,0. Since its amplitude is

FIG. 2. The kinematic diagram for the surface wave: curves1 represent the
branches of the dispersion curve of the surface waves at the boundary o
plasma half-space, and curves2 represent the light lines (h56v/c). The
points where the curves1 intersect the straight lineh5h0 correspond to the
frequencies of the trapped surface waves,6vs .
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twice the amplitude of the initial wave, the energy density
each point of the regiony.0 is quadrupled. Here the energ
of the ‘‘plus’’ wave is twice the energy of the initial wave~it
is assumed that the latter is a large but still spatially boun
wave packet!. To resolve this contradiction, we must dismi
the ideal picture of a plane wave acting as an initial wave
must do the necessary calculations with a~wide but limited
in y) wave beam. For the initial beam it is convenient to ta

Bz~x,y,0!5B0

sin~y/a!

y/a
exp~2 ih0x!, ~11!

a beam of widtha@1/h0 with a uniform spatial frequency
spectrumF(k):

Bz~x,y,0!5B0 exp~2 ih0x!E
2`

`

F~k!e2 ikydk, ~12!

F~k!5H a/2, uku,1/a,

0, uku.1/a.
~13!

SubstitutingBz(x,y,0) from ~12! for B0 exp(2ih0x) on the
right-hand side of Eq.~2! and proceeding in the same way
for an initial plane wave, we arrive at the following expre
sion for the amplitudeB1 :

FIG. 3. Frequency conversion coefficientvs /v0 as a function of the density
of the created plasma.

FIG. 4. Amplitude conversion coefficients of a plane wave into surf
waves,B1 /B0 ~curve1! andB2 /B0 ~curve2!, as functions of the density o
the created plasma. The dashed curves represent the results of calcu
B1 /B0 for a wave beam withh0a510 ~curve3! andh0a55 ~curve4!.
t

d

d

e

B15B0

~vp
22vs

2!~v01vs!

2v0Av0
41~1/4!vp

4
g arctan

1

g
, ~14!

whereg5h0aA2(12vs /v0), v05ch0. The results of cal-
culations of the conversion coefficientB1 /B0 via ~14! are
depicted by dashed curves in Fig. 4. Both Eq.~14! and Fig. 4
imply that B1 /B0→2 as N/Nc increases as long asN/Nc

!(h0a)2, i.e., as long as the region of localization of th
surface wave in vacuum is small compared to the widtha of
the initial beam. WhenN/Nc>(h0a)2, i.e., when the trans-
verse scale of the surface wave becomes comparable to
width of the initial beam and exceeds it, the conversion
efficient B1 /B0 decreases, approaching zero asN/Nc→`.
As a result, no violation of energy conservation occurs~see
Sec. 5!.

4. STATIC MODE. ANGULAR DISTRIBUTION OF RADIATION

The static mode excited in the plasma half-space
determined by the contribution of the time-independent te
in ~8! and the residue at the polep50 ~see Fig. 1! of the
second term in~4! is also a steady-state solution~in addition
to the surface waves discussed earlier!:

Bz
st~x,y!5

vp
2

v0
21vp

2FBz~x,y,0!

2B0 expS y

c
Av0

21vp
22 ih0xD G , y,0. ~15!

The magnetic fieldBz
st(x,y) is associated with a spatial dis

tribution of dc currents j st(x,y)5(c/4p)“3 Bst in the
plasma.

The radiation field is determined by the integrals alo
the right edges of the cuts~see Fig. 1! in the intervalsv0

,uvu,` for y.0 and Av0
21vp

2,uvu,` for y,0 (v
5Im p). Following the method developed in Refs. 32 a
33, we calculate the energy of the radiation field~per unit
surface area of the boundary! in vacuum (WI) and plasma
(WII) as t→` by integrating the electromagnetic energ
density expressed in terms of the above integrals with res
to y. As a result we arrive at a representation

WI,II5E
2p/2

p/2

wI,II~u! du ~16!

with angular density of the radiant energy

wI,II~u!5
cv0

16p2
cot2uuAI,II~p5 iv!u2, ~17!

where the radiation angleu in vacuum and in the plasma i
measured from the normal to the boundary (2p/2,u
,p/2; u5p/2 corresponds to the direction of thex axis!,
and

v5H v0/sin u, y.0,

1

sin u
Avp

2 sin2u1v0
2, y,0.

~18!
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Negative frequencies correspond to backward radiation w
respect to the direction of propagation of the initial wave~at
anglesu,0).

The functionwI,II~u! is plotted in Fig. 5 for two values o
the density of the created plasma. The divergences of
functionswII asu→6p/2 (wII(u)}(p/27u)22) andwI(u)
at the total reflection angles u→6u* , sinu*
5v0 /Av0

21vp
2 (wI(u)}uu7u* u21) correspond to the emis

sion of parts of the energies of the ‘‘halves’’ of the pla
waves not trapped by the plasma boundary; these waves
frequencies6Av0

21vp
2 and are generated in the plasmay

,0) immediately after creation of the plasma~second term
in ~8!!. The divergence of the functionwI(u) as u→p/2
(wI(u)}(p/22u)22) corresponds to the emission of a pa
of the energy of the ‘‘half’’~for y.0) of the plane wave of
type ~1! not trapped by the plasma boundary~the forced so-
lution in the vacuum!. When the initial beam~11! is in-
volved, the divergences become logarithmic, which me
that they are integrable.

5. ENERGY RELATIONS. THE EFFECT OF ENERGY
CONCENTRATION

The plane-wave idealization is inadequate in studies
the energy efficiency of trapping of a wave by the crea
plasma boundary. We conduct our analysis with a beam
type ~11!. The energy of the initial beam~per unit surface
area of the boundary!, W05B0

2a/8, is converted into the en
ergy of surface waves,31

W65
cB6

2

16pvs

~12«s!~11«s
2!

«s
2A212«s

~19!

(«s512vp
2/vs

2 , and the amplitudesB1 andB2 are defined
in Eqs. ~14! and ~10!, respectively!, the radiant energyWr

5WI1WII ~see Eqs.~16! and ~17!!, and the energy of the
static mode,

FIG. 5. Angular densities of the radiant energy in vacuum,wI(u), and in the
plasma,wII(u), at N/Nc50.5 ~solid curves! andN/Nc54 ~dashed curves!.
All curves are normalized to the same quantitycB0

2/16p2v0.
th

he

ve

s

f
d
of

Wst5
B0

2a

32

vp
2

vp
21v0

2
, ~20!

which consists of the magnetic field energy~15! and the
kinetic energy of the electrons calculated on the basis of
expression for the currentj st(x,y). The following asymptotic
formulas, forN/Nc→`, have also proved useful:

W6

W0
→0,

Wst

W0
→0.25,

Wr

W0
→0.75. ~21!

Figure 6 depicts the dependence of the distribution
energy between the secondary solutions on the density o
created plasma for an initial beam withh0a520. Conversion
to the backward surface wave has low efficienc
(W2 /W0)max'731024 at N/Nc'1, while the efficiency of
conversion to the forward surface wave may exceed 40%

S W1

W0
D

max

'0.41 at
N

Nc
'800. ~22!

The highest energy efficiency of trapping is achieved
N/Nc;(h0a)2, when the scale of localization of the forwar
surface wave in the vacuum, (1/h0)AN/Nc , coincides in or-
der of magnitude to the widtha of the initial beam~cf. the
results of Sec. 3!. Here the depth of penetration of the plasm
by the surface wave is small (;(h0

2a)21) and the energy of
the wave is localized mostly in vacuum. Ash0a decreases,
maximum conversion efficiency is reached at lower densi
of the created plasma and hence at greater localization o
surface wave in the vacuum.

It is important here that the trapping of electromagne
radiation be accompanied by energy concentration near
created plasma boundary: the time averages of the en
density in the forward surface wave in the vacuum,wv(y5
10), and in the plasma,wp(y520), exceed the energy
density in the initial wave,w05B0

2/8p, over a wide range of
concentrations of the created plasma~Fig. 7!. In other words,
when surface waves are produced by transient processes
ergy flows toward the created plasma boundary.

FIG. 6. Energy conversion coefficientsW1 /W0 ~1!, Wst /W0 ~2!, and
Wr /W0 ~3! as functions of the density of created plasma for an initial be
with h0a520.
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6. CONCLUSION

We have used a plasma system with simple geometr
demonstrate the effect of conversion of electromagnetic
diation into surface waves at the boundary of a highly tr
sient medium~with a characteristic ‘‘switching’’ time much
shorter than the period of the radiation!. We have found that
the efficiency of such conversion~the trapping of radiation
by the boundary! may be high~up to 40% in energy!, with
conversion accompanied by a down-shift in frequency of
waves. We have also studied the accompanying proces
scattering into frequency up-shifted volume radiation with
continuous spectrum and excitation of a static mode.

The trapping effect can be observed in experiments
volving a device of the type described in Ref. 6, where
takes less than 1 ns to create transient plasma by sendin
electric discharge between the plates of a long plane-par
capacitor. If the created plasma layer is illuminated from
side by a beam of microwave radiation, the surface w
generated as a result of trapping can be detected at a co
erable distance along the plasma layer from the spot wh
the beam ‘‘illuminates’’ the plasma.

The pattern of conversion of the electromagnetic wave
a bounded transient plasma, constructed within the scop
a parametric~linear! problem, may prove useful in studyin
nonlinear ~self-consistent! regimes of radiation trapping in
gas discharges in regions where high-power microw
beams overlap~as in the experiments discussed in Refs
and 11! and in processes of formation of self-sustaini
plasma structures that drive the surface waves created
result of trapping~such structures were observed by Solaet
al.34!.

The most promising application of the trapping effe
lies in developing entirely new methods of feeding radiat
to planar waveguide structures with semiconductor lay
The transient nature of the semiconductor medium can
maintained through various mechanisms, such as ca
injection,35, photoionization by a laser pulse,36,37 and
‘‘switching’’ of the effective mass.35 Since the attained char
acteristic transient times are shorter than 1 ps, these me
nisms can be used to achieve transient input of the radia
of submillimeter radiation, which plays an important role
microwave electronics. The simplest device of this kind

FIG. 7. Relative energy densities in the forward surface wave: curve1, in
vacuum,wv /w0; and curve2, in the plasma,wp /w0.
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corporates a semiconductor waveguide layer in which
carrier concentration rapidly increases due to the action
master laser pulse, which results in the trapping by that la
of a signal wave incident on the layer. Another possible
vice incorporates a waveguide layer that is steady-state~for
example, an insulator!, while the transient condition is cre
ated in a plasma film covering the part of the wavegu
‘‘illuminated’’ by the signal wave.
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Ionization self-channeling of modulated plasma-wave beams in a magnetic field
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The dynamics of ionization self-channeling of modulated beams of plasma waves forming a
solitary plasma-wave channel in an external magnetic field is investigated. It is shown that
electromagnetic wave processes at the modulation frequencies of the ionizing radiation can
be excited in the background plasma and in the channel. ©1998 American Institute of Physics.
@S1063-7761~98!01204-9#
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1. INTRODUCTION

Ionization self-action of the fields of electromagne
sources in the whistler frequency range (VH,v,vH ,
wherevH andVH are the electron and ion gyrofrequencie!
admits simultaneous concentration of the ionizing radiat
and the resulting plasma.1–4 As a result of such self-action
narrow plasma-wave channels, which localize the radia
energy, and the release of energy in a narrow magnetic
tube are observed.2,3 The plasma inhomogeneity formed wit
such a discharge automatically5 matches the short excitin
antenna with the pump generator and the surrounding b
ground plasma. This increases the efficiency of energy tra
fer from the source into the plasma in the field tube.6 In the
nighttime ionosphere, the plasma-wave channel7–9 excited at
altitudesh>150 km by an on-board radio source is a sou
of powerful fluxes of hot particles along the flux lines of th
geomagnetic field. It is evident from theoretical estima
that within several minutes hot particles from the discha
can fill a large portion of a magnetic field tube, resting on
discharge, and form an artificial magnetospheric duct.10 As a
result of this, the geophysical situation near a perturbed t
can change substantially.8,9 For example, the conditions fo
the excitation, propagation, and reflection of whistler a
Alfvén electromagnetic waves change.8,11 The fluxes of pre-
cipitating charged particles from a perturbed tube chan9

Modulation of the fluxes of precipitating high-energy (Ee

>40 keV! electrons signifies excitation of an ac curre
along the entire length of the magnetospheric tube pertur
by the modulated discharge.10 Under laboratory conditions
such discharges, called helicons,12–14are of great interest fo
the development of ultraclean plasma chemical reactors
for investigating the nonlinear interaction between the fie
of powerful HF sources and the resulting plasma.

The present paper reports the results of an experime
investigation of the dynamic processes of ionization s
channeling of plasma-wave beams produced in a magn
field by a HF dipole source whose output is amplitud
modulated. It is shown that when a plasma channel for
beams of fast electrons from the discharge are injected a
the external magnetic field. The ionization of the neutral g
by the beam electrons allows the channel to grow in leng
The rate of growth of the plasma-wave channel is determi
7031063-7761/98/86(4)/7/$15.00
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by the dispersion of the wave fields producing and supp
ing the channel. The currents generated by the plasma-w
beams excite an azimuthal magnetic field and radial and
gitudinal polarization electric fields of the plasma in th
channel. When the HF source is amplitude-modulated,
plasma parameters and the dimensions of the plasma-w
channel are observed to vary with a frequency equal to
modulation frequency and LF wave fields are generated.
relaxation time of the LF oscillations was found to be a
equate for observing echo signals after the modulation of
HF source is switched off.

2. EXPERIMENTAL CONDITIONS AND RESULTS

The experiments were performed in a glass discha
chamber 1800 mm long and 200 mm in diameter. The ex
ing rings of the dipole source~60 mm in diameter! were
positioned at the end of the chamber coaxially with resp
to the axis of the chamber and the longitudinal magnetic fi
and separated from one another by a distancel 560 mm. A
GST-2 generator supplied to the rings a HF voltagef 0

5240 MHz, U0550 V! which was amplitude-modulated a
two frequenciesf 156 kHz, f 1, f 2<70 kHz. The modula-
tion frequencyf 2 could be varied over the range 6–70 kH
The air pressure in the chamber was maintained at the l
p<331024 torr. The magnitudeB0 of the external magnetic
field could be varied from 60–750 G. The plasma parame
were measured with mobile Langmuir probes and a four-w
electrostatic analyzer positioned on the axis of the discha
chamber at the opposite end from the HF source. The
radiation from the source loaded on the plasma channel
detected with a P6–22 measuring antenna and a S4-27
lyzer. The LF fields excited by the discharge were picked
with the S4-73 analyzer using electric~probe! antennas and a
ferrite antenna in the form of a Rogowski loop. The dyna
ics of the emission of the discharge plasma was recor
with FD-21 KP photodiodes.

The structure of the HF discharge formed during ioniz
tion self-channeling of plasma waves contains a resona
cone~Fig. 1!, which rests on the exciting rings, and a narro
filament~plasma-wave channel! extending from the focus o
the resonance cone in the direction of the magnetic fieldB0.2

At low pressures, when the electron mean free path is gre
© 1998 American Institute of Physics
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FIG. 1. Photograph of a HF discharge formed u
der the conditions of ionization self-channeling b
the field of plasma waves excited by a dipo
source forp5231022 torr, B05500 G, andU0

550 V (z — distance from source!.
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than the dimensions of the cone, the cone becomes dif
and joins more smoothly with the plasma-wave chann3

Under stationary conditions the lengthL of the channel is
determined by the decay length of the waves that main
the channel. In the case of collisional damping

L;
v

ne
lz~vp /v!2,

wherelz is the longitudinal wavelength,ne is the effective
electron collision frequency, andvp is the plasma frequenc
corresponding to the plasma density in the column. T
transverse length scaler' (r'!L) of the plasma-wave chan
nel is determined by the amplitudeE0 of the wave field and
the losses of particles from the discharge. For the cas
diffusive losses

r';AD' /n i ,

where D' is the ambipolar diffusion coefficient andn i

;E0
2b is the ionization frequency.15 The plasma density dis

tribution in the channel under stationary conditions, wh
se
.

in

e

of

was measured with a mobile electric probe, is displayed
Fig. 2a for the casep5231022 torr, B05500 G. The dis-
tribution of the relative magnitudeEz /Ez max of the longitu-
dinal component of the HF electric field in the channel
shown in Fig. 2b for the same conditions. Figure 3 shows
retardation curve of the electron current as a function of
retarding potential. This curve was obtained using a mu
grid analyzer at pressurep'331024 torr, B05250 G. It
should be noted that the number of high-energy electr
decreases quite rapidly with increasing distancer from the
channel axis to the chamber wall and with increasing pr
surep.

Modulation of the HF fields that produce the dischar
gives rise to an entire spectrum of dynamical processes in
plasma of the plasma-wave channel and the surround
background. Figure 4 shows traces of the time dependenc
the powerW(t) of the HF radiation producing the discharg
the plasma densityN(t) at the center of the discharge, th
plasma densityNs(t) near the wall, the LF magnetic field
Hw(t) excited by the discharge, and the fluxJe(t) of fast
n-
ces
re-
olv-
FIG. 2. Transverse distributions of the plasma densityN(r )
~a! and relative amplitudeEz /Ez max ~b! of the longitudinal
component of the HF electric field in the plasma-wave cha
nel. The distributions were measured at different distan
from the dipole source under stationary conditions cor
sponding to Fig. 1. The dashed curves were obtained by s
ing the system of equations~1! and ~2! numerically for the
conditions of the present experiment.
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(Ee.30 eV! electrons from the discharge which are emitt
along the axisz0iB0.

The large difference in the behavior of theN(t) and
Ns(t) curves reflects the difference in the dynamics of
plasma at the center of the channel~the curveN(t) was

FIG. 3. Curve of retardation of the electron flux ejected from the plas
wave channel in a direction along the external magnetic field withp53
31024 torr, B05250 G, andU0550 V.

FIG. 4. Dynamics of the oscillations of the plasma densityN(t) near the
axis andNs(t) in the peripheral~near-wall! regions of the discharge, gen
eration of the azimuthal magnetic fieldHw(t) and fast-electron fluxesJe(t)
associated with the modulation of the HF powerW(t) supplied to the dis-
charge withp5331024 torr, B05250 G, andU0550 V.
e

obtained with a negative probe according to the ion satu
tion current! and the background plasma near the wall~the
curve Ns(t) was obtained with a photodiode with a wide
aperture window, oriented toward the region near the w
r .0.5 a). It was found that for the present modulation fr
quencies the density of the comparatively cold (Ee;3 eV!
discharge plasma near the wall continuously increased
ing the HF pulse, virtually did not respond to fast modulati
~with frequencyf 2) of the input HF powerW(t), and did not
have enough time to relax to zero during pauses. The c
stant component of the photocurrent of the FD-21KP dio
amounted to.80% of the variable component presented
Fig. 4. The plasma density at the center of the plasma-w
channel followed closely the fast (f 2) modulation of the in-
put HF power. The shift of the main maximum inNs(t)
relative to the main maximum inN(t) characterizes the for
mation time of the transverse structure of the plasma-w
channel (t;6 ms!.

The formation of plasma-wave channels is accompan
by injection of fast-electron beams~the curveJe(t) in Fig. 4!
and excitation of LF electromagnetic fields. The oscillogra
of Hw(t) in Fig. 4 demonstrates excitation of an azimuth
component of the alternating~with frequencyf 2) magnetic
field. Excitation ofHw is possible16 because of both the dia
magnetism of the nonuniform plasma in the channel and
plasma polarization currents in the channel. It is signific
that the oscillations ofHw(t) were also observed after th
fast modulation (f 2) was switched off. Echo signals are se
especially clearly in the top panel of Fig. 5, which displa
oscillograms ofW(t) and Hw(t) for the casef 25 f 1 ~fast
modulation of input power is absent!. Two frequencies of the
excited oscillationsf 8;70 kHz during the HF pulse andf 9
;24 kHz during the pauses between the pulses are cle
seen in the curveHw(t) in this panel.

The polarization of the channel plasma by charg
particle beams emanating from the discharge region du
the formation and relaxation of the plasma-wave chan
gives rise to oscillations of the electric field near the chann
Oscillograms of the oscillations ofHw(t) and the radial elec-
tric field Er.DU/Dr , whereDU is the potential difference
between the electric probes located on the axis of the plas
wave channel and in the background plasma at a dista
Dr 56 cm from the axis, are displayed at the center a
bottom of Fig. 5. The amplitude of the oscillations ofEr(t)
is maximum whenvHe /v05n, n52, 3, and reaches value
>50 V/m. The amplitude of the oscillations ofHw(t)
;1022 A/m corresponds to a longitudinal polarization cu
rent in the plasma-wave channelJe<10 mA (W,10 W!.

The beams of fast electrons from the discharge wh
emerge in a direction along the external magnetic field a
polarize the plasma-wave channel are generated on the
ing edge of the HF pulse forming the plasma-wave chan
Figure 6 displays oscillograms ofJe(t) andW(t) that dem-
onstrate the characteristic fine structure of the generated e
tron beams. It was found that for HF pulse rise timesDt
.20 ms the peak of the electron fluxJe(t) splits in two.

It would appear that the first peak inJe(t) is due to
motion of the region of the focus of the resonance co
where the plasma density gradient¹N(r ), the external mag-

-
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FIG. 5. Oscillograms of the radial electricEr(t) and
azimuthal magneticHw(t) components of the LF fields
generated by a modulated plasma-wave discharge w
p5331024 torr, B05250 G, andU0550 V and dif-
ferent values of the fast-modulation frequencyf 2.

FIG. 6. Oscillograms ofJe(t) and W(t) measured withp
5331024 torr, B05250 G,U0550 V, andf 2<12 kHz and
demonstrating the structure and distribution of the electr
beams generated on the leading edge of the HF pulse form
the discharge.
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netic fieldB0, and the source electric fieldE(r ) are all ori-
ented in the same direction, away from the source. The fi
E„r … in this region has a maximum associated with a ch
acteristic singularity of the refractive index and with the e
citation of plasma waves which accelerate electrons.17 The
rise time of the first peak ofJe(t) characterizes the growt
time of the plasma-wave channel from the source to the m
suring probe and makes it possible to estimate the rat
growth of the channel along the magnetic field (v i;ve

>108 cm/s).
The second peak inJe(t) is formed by the flux of elec-

trons ejected from the positive column of the plasma-wa
channel by the longitudinal electric fieldEi;¹ iN. The flux
exists so long as the positive potential continues to incre
on the leading edge of the HF pulse and the longitudi
nonuniformity of the plasma in the plasma-wave channel
mains. As the amplitude of the channel-forming HF pu
decreases, the longitudinal nonuniformity in the channel
creases as a result of rapid expansion of the plasma and
change sign, as observations of the changes in the longi
nal component of the electric field showed.

3. DISCUSSION OF THE EXPERIMENTAL RESULTS

Taken together, the experimental data presented ab
show the following physical picture of the dynamical ph
nomena that are observed. The discharge starts to form in
near-field of the HF source. The structure of this quasist
field changes substantially when the plasma density incre
above the critical densityNc and the plasma frequencyvp

exceeds the frequencyv of the exciting field. Forvp.v
conical resonance surfaces, resting on the rings of the e
ing antenna, appear~Fig. 1!. The field of the plasma waves
which are efficiently excited along the surface of the re
nance cone, forms a plasma column~a plasma-wave channe!
at the focus, extending along the external magnetic field
beam of plasma waves~small-scale whistlers!, which trans-
port sufficient energy along the filament to produce a
maintain the filament, is trapped in the channel. We note
a short (l !l0, wherel0 is the wavelength in vacuum! HF
source efficiently excites plasma waves over a wide rang
wave numbers.18 For this reason, the wave fields with wav
lengthslp ranging in scale from the diameter of the wire
the exciting rings to twice the distance between the the ri
(lp<2l ) form a channel. The good spatial resolution of t
resonance cone~see Fig. 1! confirms that small-scale plasm
waves with large amplitude are efficiently excited by t
short dipole antenna. Beats of the total field of the plas
waves with different longitudinal scales can explain18 the
excitation of low-frequency oscillations with frequencyf 8
~see Fig. 5! during a long HF pulse. The plasma nonunifo
mity in the resonance cone becomes more smeared out
decreasing gas pressure, i.e., it is determined by the elec
mean free path. At high plasma densities whistlers wh
transverse structure contains both small and large scales
be excited in the channel.5,6,19

The stationary self-consistent plasma density distribut
N(r') in the transverse section of an axisymmetric chan
ld
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and the HF potentialw5C(r')eivt2 ikzz (E52¹w) at short
distances from the source (z,l0) are determined by the
system of equations3

¹'C2kz
2~12N/Nc!C50, ~1!

D'D'N1~n i2va!N50, ~2!

where na is the attachment frequency. Here we took in
account the fact that in the parameter range considered
components of the permittivity tensor are«11'«22'1 and
«33512N/Nc , while charged-particle losses are due main
to electron attachment to air molecules. The weak longitu
nal nonuniformity of the stationary channel can be taken i
account by adding to Eq.~2! an additional loss factor
;D i /L2 corresponding to particle diffusion to the end wa
To construct a simplified theoretical model of a stationa
plasma-wave channel, the frequencyn i of electron-impact
ionization of air molecules can be represented by a mo
function n i5a(kzC)2b of the amplitude of the longitudina
field, determining the electron temperature in the channe15

The system of equations~1! and ~2! admits self-localized
axisymmetric2 and multihump solitary field and plasm
distributions.3 The multihump ~multisoliton! solutions of
Eqs.~1! and~2! correspond to multibeam self-channeling
plasma waves, which is observed when asymmetric sou
of ionizing radiation are used.3 An axisymmetric single-
soliton solution describes a solitary plasma-wave chan
formed by a symmetric, medium-power source.2 Figure 2
shows the computational results~dashed curves! for the sys-
tem ~1! and ~2! with b52, D' /na563 mm2, andlz5120
mm.

The solution of a self-consistent system of equations
the type~1! and ~2! for the time-dependent case, taking a
count of losses and the longitudinal nonuniformity of t
plasma-wave channel, presents substantial difficulties.
this reason, to explain the experimental results on the
namics of ionization self-channeling of plasma-wave bea
we confine our attention to well-known theoretical consid
ations and estimates. We note first that because the fiel
the wave beam does not heat the plasma uniformly over
cross section, and because an external magnetic fiel
present (r He<0.1 mm !r Hi<10 mm !a5100 mm! two
essentially different regions of the discharge are observe
the dynamical regime of ionization self-channeling. A qu
sistationary region of comparatively cold plasma, who
density varies approximately by a factor of 2 over the time
the HF pulse (t1;1/f 1), always remaining somewhat les
than the critical density (Ns<Nc), is present at the peripher
(r>50 mm!. The average electron energy in this region v
ies in the rangeEe,3 eV. In the central, dynamical part o
the discharge~in the region of the plasma-wave channelr
<30 mm! N and Ee vary more strongly~see Fig. 4! and
closely follow the modulation of the supplied power wi
both frequencies (f 1 and f 2), and under appropriate cond
tions they also follow the beat frequencyf 8 of the total field
of the plasma waves with different longitudinal scales.

The low-frequency oscillations observed in the chan
occur as follows. As the input HF power increases,
plasma density in the channel increases and a positive



a
th
a
e
n
t

sm
tro
e
n

o-
ra
o
a
p

th
l

le

e
ba
lo
he
ien
s
it
v
th
c
d
ns
m
n
w

pa
te
o
ld

a
wi
e

s
-
n

nc
he
t

e it
f a
t’’

ve
ted

ow
ing

ves
n
ted
nd-
an-
of

that
the
of
on-
HF
be

it
ther
ith
ith

the
the
ble
na.
LF
to-
ris-

e of
in

n-

.

,

708 JETP 86 (4), April 1998 G. A. Markov
umn of increasing length forms. The electrons are heated
the field of the plasma waves trapped in the column and
ejected in a direction along the external magnetic field. In
process, the positive potential of the column increases
ion diffusion through the lateral surface of the column acc
erates. The column continues to increase in length, eve
the input power decreases, on account of the energy of
trapped radiation. In the process, the potential and pla
density in the expanding column decrease. The elec
beam ejected from the column excites an azimuthal magn
field, while the growing positively charged plasma colum
forms radial and longitudinal electric fields which move t
gether with it. As a result, when the discharge-forming
diation is subjected to fast amplitude modulation, a wave
perturbations of the parameters of the plasma channel
electromagnetic fields and currents associated with these
turbations can form. The propagation velocity of such
wave equals the propagation velocity of the channel in
background plasma (vc;ve). The characteristic longitudina
scale of the wave of perturbations islc;ve / f mod, while the
frequency of the wave equals the modulation frequencyf mod

and satisfies the condition

f mod.v~ne /vp!2~ l e /lz!,

wherelc,L. Here l e is the electron mean free path, whi
lz;2l . Under the conditions of our experiments,ve>108

cm/s, f mod<105 Hz, the dimensions of the apparatus areL

;2 m <lc/4, which made it impossible to investigate th
structure of the fields and currents of the wave of pertur
tions. However, observations of the sign changes of the
gitudinal component of the LF electric field in phase with t
sign changes of the longitudinal component of the grad
of the plasma density in the channel and the sign change
the Er andHw components of the excited LF fields make
possible to talk about observation of an induced LF wa
process formed by the modulated wave beam. We recall
in the presence of ionization nonlinearity in the frequen
rangeVH,v,vH the field of the plasma waves is localize
as a result of total internal reflection at the crest of the de
plasma.2 The observed sign changes of the longitudinal co
ponent of the gradient of the plasma density in the chan
are due to the motion of the crests of the dense plasma a
from the HF source along the longitudinal axis of the ap
ratus. These properties of the observed effect differentia
substantially from the outwardly similar effects consisting
the formation of moving plasma nonuniformities by the fie
of Langmuir solitons and space-charge solitons.21

Oscillations of the parameters of the plasma-wave ch
nel excite characteristic oscillatory and wave processes
frequency close tof mod in the background plasma and th
positive column. For example, the echo signalsHw(t) ob-
served under the experimental conditions during the pau
between the HF pump pulses (W;0) are explained by exci
tation of magnetohydrodynamicH waves whose dispersio
curves at high frequencies (vH!v,vH) pass into the dis-
persion curves of helical waves~whistlers!.20 The increase in
the amplitude of the echo signal at the modulation freque
f 2;24 kHz is due to a resonance of a MHD wave in t
discharge chamber, whose longitudinal scale equals
by
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wavelength of the excited TE wave. These results mak
possible to explain the mechanism of the operation o
plasma antenna, observed during the ‘‘Active filamen
ionospheric experiment,’’10,11 by the excitation of VLF ra-
diation by the wave of perturbations in the plasma-wa
channel formed by a discharge in the field of the modula
beam of plasma waves.

4. CONCLUSIONS

The experimental results presented in this paper sh
the complicated nature of the dynamical phenomena aris
during ionization self-channeling of beams of plasma wa
in a magnetic field. Amplitude modulation of the radiatio
forming the plasma-wave channel gives rise to modula
electron fluxes, whose current is closed by the backgrou
plasma currents and ion fluxes from the surface of the ch
nel, directed along the magnetic field and LF oscillations
the potential and density of the plasma in the channel
move in a direction away from the HF source and along
external magnetic field, i.e., it leads to the formation
waves of perturbations. Under the nighttime ionosphere c
ditions the plasma-wave channel excited by the on-board
source is a source of electron fluxes whose velocity can
higher than the phase velocity of Alfve´n and VLF whistler
waves.7,8 Amplitude modulation of the HF source makes
possible to produce current structures, which move toge
with the electron fluxes and increase in size, together w
the low-frequency electromagnetic waves associated w
them, i.e., to form plasma-dynamical antennas in
ionosphere.11 The scales of such dynamical antennas and
wavelength of the perturbations in them can be compara
to the wavelengths of the VLF waves excited by the anten
For this reason they could be interesting for purposes of
radio communication and wave diagnostics of the magne
spheric plasma. Investigations of the dispersion characte
tics and the structure of the fields and currents of the wav
perturbations that is excited by the modulated wave beam
a magnetized plasma are of interest in themselves.
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Nonlinear properties of a weakly collisional plasma at low radiation intensities
A. V. Maksimov, K. N. Ovchinnikov, V. P. Silin,* ) and S. A. Uryupin
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In this paper we evaluate theoretically the modification of the distribution function of slow
subthermal electrons heated by radiation in a completely ionized plasma. The new solution we
have found to the kinetic equation under conditions typical of weak-collisional plasmas
can be used to predict new nonlinear behavior arising from perturbations of the nonuniform
electron density and the coefficient of nonlocal heat transfer that depend on the intensity of the
radiation heating the plasma, which is absorbed via inverse bremsstrahlung. It is predicted
that this new nonlinear behavior manifests itself at unexpectedly small radiation intensities.
© 1998 American Institute of Physics.@S1063-7761~98!01304-3#
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1. INTRODUCTION

The task of this paper is to discuss nonlinear effects
appear when a completely ionized plasma is subjected
comparatively weak electromagnetic field. Let us write t
electric field of the radiation in the form

~1/2!E exp~2 iv0t !1c.c.,

where E is an amplitude that is slowly varying over th
period 2p/v0 . We will refer to a field as ‘‘high-frequency’’
whenv0 significantly exceeds the effective electron–ion c
lision frequency

nei54A2pZe4nL/3m2vT
3. ~1.1!

Here e and m are the charge and mass of an electron,vT

5AkBT/m is the thermal velocity of an electron~wherekB is
Boltzmann’s constant!, L is the Coulomb logarithm,n is the
electron number density, andZ is the effective ionization
state of the ions defined by the relation

Z5(
i

ei
2ni

e2n
. ~1.2!

The sum runs over all ion species;ei andmi are the charge
and mass of the corresponding species.

As a measure of the effect of electromagnetic radiat
on the electrons, it is customary1 to use the velocity with
which the electrons oscillate in the pump field:

vE5ueEu/mv0 . ~1.3!

When speaking of a weak high-frequency electromagn
field, we will always assume that the oscillatory velocityvE

is small compared to electron velocities characteristic of
processes under study. It is in this approximation that
obtain the kinetic equation~2.3! used below~see Ref. 2!.
Therefore, in every case we will assume that the follow
inequality holds:

vE
2!vT

2, ~1.4!

which is often chosen as the condition for weakness of
pump field. However, even when the inequality~1.4! holds,
7101063-7761/98/86(4)/7/$15.00
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at high degrees of ionizationZ@ 1 ~which will be used be-
low! it is well known3,4 that the electron distribution function
can be strongly modified over the entire velocity phase sp
when the Langdon parameter

a5
ZvE

2

vT
2 ~1.5!

is not small compared to unity. Our discussion will apply
conditions where the field is so weak that

a!1. ~1.6!

This is the case of interest to us, i.e., a weak high-freque
radiation field, for which no one has predicted nonlinear
fects due to readjustment of the electron distribution u
now.

The Langdon parameter~1.5! reflects a competition be
tween two processes, and arises as a ratio of two times
electron–electron collision time for thermal electrons

teT5Z/nei ,

which determines when a Maxwellian distribution is esta
lished in the range of velocitiesv;vT , and the time for
heating thermal electrons

tHT5~vT
2/vE

2 !/nei .

Our interest will be in the distribution of electrons with ve
locities less than the thermal velocity. For these cold subth
mal electrons the electron–electron relaxation time is de
mined by collisions with thermal electrons, and according
Eq. ~3.21! is proportional to the square of the velocity:

teC~v !}teT~v2/vT
2!.

In contrast to this, the characteristic time for heating co
electrons by inverse bremsstrahlung absorption is prop
tional, according to~3.5!, to the fifth power of the velocity:

tHC}tHT~v5/vT
5!.

Therefore, for velocities such that

v<vT~ teT /tHT!1/3;vTa1/3, ~1.7!
© 1998 American Institute of Physics
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conversion of the distribution law for cold electrons to Ma
wellian form via electron-electron collision turns out to be
rather slow process compared to heating by a high-freque
field via inverse bremsstrahlung absorption. It is this pro
erty that distinguishes the nonlinear processes we are
cussing for the plasma.

Cold subthermal electrons play an important role in
transport theory of weakly collisional plasmas,5–7 when the
collisionless condition is satisfied for thermal electrons:

kl ei@1. ~1.8!

Herek is the wave vector of the spatially nonuniform plasm
perturbations, andl ei5vT /nei is the mean-free path of
thermal electron. In this case, since the free range of an e
tron with velocityv is proportional to the fourth power of th
velocity:

l ~v !}~v/vT!4l ei ,

cold subthermal electrons with velocities

v,vT~kl ei!
21/4[v* !vT ~1.9!

are found to be strongly collisional.
In this report, the theoretical results we have used ap

to a situation where collisional electrons satisfy the follo
ing inequality over the entire velocity space:

v,v* <vTSAp

8
Z

vE
2

vT
2 D 1/3

[vL;vTa1/3. ~1.10!

This inequality defines a new range of physical parame
that specify the interaction of a plasma with radiation,
which we predict new behavior for the electron transport.
this case, using the terminology of flux limiting of electro
heat transport in a plasma, the results we will obtain be
can be briefly characterized as a relaxation of this lim
Now, however, we extend results established previously
fairly strong fields with Langdon parameters that are
small8,9 to the new conditions where inequality~1.6! is sat-
isfied.

In the second section of the article we derive a start
kinetic equation for the slowly varying electron distributio
function in a high-frequency electromagnetic field. In t
third section, we find the quasistationary distribution of ele
trons in a spatially uniform electromagnetic field, which fo
lows a law that is quite different from Maxwellian in th
low-velocity range. The electron distribution function in th
presence of nonuniform electromagnetic fields is found
the fourth section. This distribution allows us to obtain
expression for the nonlinear perturbation of the electron d
sity. Conditions are derived in which this perturbation dom
nates. In the fifth section an expression is obtained for
effective nonlocal thermal conductivity, which is characte
ized by a nonlinear dependence on the pump field. The s
section is devoted to discussing the results of the article
cy
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2. STARTING KINETIC EQUATION

In discussing processes in a fully ionized plasma in
high-frequency electromagnetic field with fairly low inten
sity, an approximate description is used which is based on
expansion in the small parameter

vE
2

vT
2 !1. ~2.1!

In this case the electron distribution function is written in t
form

f 5 f 01@~1/2! f 1 exp~2 iv0t !1c.c.#, ~2.2!

where the functionsf 0 and f 1 change very little within one
period of the high-frequency oscillation 2p/v0 . The corre-
sponding kinetic equation for the slowly time-varying fun
tion f 0 has the following form2 to first-order accuracy in the
parameter~2.1!:

] f 0

]t
1v

] f 0

]r
1

eE0

m

] f 0

]v
2Jei@ f 0#2Jee@ f 0 , f 0#

5
e2

4v0
2m2 H ]uEu2

]r

] f 0

]v
1

1

2

]2f 0

]v i]v j
S ]

]t
1v

]

]r D
3~EiEj* 1Ei* Ej !1~EiEj* 1Ei* Ej !S ]2f 0

]r i]v j
1S ]

]t

1v
]

]r D ]2f 0

]v i]v j
2

]

]v i
JeiF] f 0

]v j
G2JeeF] f 0

]v i
,

] f 0

]v j
G D J ,

~2.3!

whereE0 is the intensity of the quasistationary electric fiel
For the electron–ion collision integral we use the appro
mate expression

Jei@ f 0#5n~v !
]

]v r
H @v2d rs2v rvs#

] f 0

]vs
J , ~2.4!

where

n~v !53Ap

8

neivT
3

v3 [
A

v3 . ~2.5!

Expression~2.4! does not take into account the exchange
energy between electrons and ions, which is described
terms we have neglected of the same order as the elec
ion mass ratio. Finally, we will write the electron-electro
collision integral in the Landau–Fokker–Planck form

Jee@ f 0 , f 0#5
]

]v r
S Drs

] f 0

]vs
D2

]

]v r
~Ar f 0!, ~2.6!

from which the following expressions are obtained for t
diffusion coefficient and frictional force in the velocity phas
space:

Drs5
2pe4L

m2 E dv8
~v2v8!2d rs2~v2v8!r~v2v8!s

uv2v8u3

3 f 0~v8!, ~2.7!

Ar5
2pe4L

m2 E dv8
~v2v8!2d rs2~v2v8!r~v2v8!s

uv2v8u3
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3
] f 0~v8!

]vs8
. ~2.8!

It should be emphasized that the term appearing on the r
side of Eq.~2.3! that contains the electron–ion collision in
tegrals describes, among other things, inverse bremss
lung absorption of electromagnetic radiation by electrons
they collide with ions. Equation~2.3! will be used below to
analyze the kinetic properties of electrons in the radiat
field.

3. ELECTRON GROUND-STATE DISTRIBUTION FUNCTION

In this section we obtain the distribution function fo
plasma electrons heated by inverse bremsstrahlung ab
tion, under conditions where nonuniformity of the heati
radiation is insignificant. That is, we will assume that

]

]r
EiEj* 50. ~3.1!

Using Eq.~2.3! next, we will assume that the degree of io
ization is large:

Z@1. ~3.2!

Then we obtain from Eq.~2.3!

] f 0

]t
2Jei@ f 0#2Jee@ f 0 , f 0#52

e2

4v0
2m2 ~EiEj*

1Ei* Ej !
]

]v i
JeiF] f 0

]v j
G .

~3.3!

In studying the solutions to this equation we write the el
tron distribution function in the form of two terms:

f 05 f s1 f a , ~3.4!

where f s is the symmetric part of the electron distributio
function, obtained by averaging the functionf 0 over the
angles of the velocity vectorf s5^ f 0&, and f a5 f 02 f s is its
asymmetric part.

Assuming that the characteristic time for the electr
distribution function to change is large compared to the ti
it takes electrons with velocitiesv to become isotropic
(t i(v)5n21(v)), it is not difficult to see that as a result o
averaging Eq.~3.3! we obtain

] f s

]t
2Jee@ f s , f s#5

1

3
vE

2 1

v2

]

]v S v2n~v !
] f s

]v D . ~3.5!

In this case, for the distribution functionf s that depends on
the absolute magnitude of the velocity we have

Jee@ f s , f s#5
1

v2

]

]v H v3Fd~v !

v
] f s

]v
2a~v ! f sG J , ~3.6!

where

d~v !5
8p

3
BF E

v

`

dv8v8 f s~v8!
ht

h-
s

n

rp-

-

e

1
1

v3 E
0

v
dv8~v8!4f s~v8!G , ~3.7!

a~v !5
8p

3
BF E

v

`

dv8
] f s~v8!

]v8

1
1

v3 E
0

v
dv8~v8!3

] f s~v8!

]v8 G
52

8pB

v3 E
0

v
dv8~v8!2f s~v8!, ~3.8!

B5
2pe4L

m2 5
A

Zn
. ~3.9!

When the Langdon parameter~1.5! is small it is usually as-
sumed that the solution to Eq.~3.5! is a Maxwell
distribution:3

f m~v,t !5
n

~2p!3/2vT
3~ t !

expS 2
v2

2vT
2~ t ! D , ~3.10!

where the time dependence of the thermal velocity is
scribed by the equation

vT

dvT

dt
5

1

6
neivE

2, ~3.11!

which corresponds to the characteristic heating time for th
mal electrons

tHT5~vT
2/vE

2 !/nei . ~3.12!

The argument for this widely-held assumption is that forv
;vT smallness of the Langdon parameter implies that
time ~3.12! for heating thermal electrons is much larger th
the time teT5Z/nei for their distribution to become Max
wellian. From this same expression, however, it follows th
the distribution~3.10! will be incorrect for cold subtherma
electrons, where the heating time is determined by the
pression

tHC~v !5~v2/vE
2 !/n~v !, ~3.13!

while the time for conversion of the distribution law to Max
wellian form, mediated by collisions of cold electrons wi
thermal electrons, is

teC~v !5Z~v2/vT
2!/nei . ~3.14!

Therefore, this time turns out to be much longer than
heating time for velocities that satisfy inequality~1.7!.

In identifying the form of the distribution function fo
electrons with velocities much smaller than the thermal
locity

v!vT ~3.15!

we are interested in a small portion of the electrons in
velocity phase space when the distribution of electrons in
remainder of that space is the Maxwellian~3.10!. This latter
assumption allows us to use the following approximation

d~v !'2vT
2 a~v !, ~3.16!
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which obviously follows from Eq.~3.7! and the first form of
expression~3.8! after substituting~3.10! into the latter. The
second way of writing expression~3.8!, taking into account
the approximation

f s~v !5 f s~0!, ~3.17!

allows us to obtain

a52
8p

3
B fs~0!. ~3.18!

In our discussion, we can assume with fair accuracy tha

f s~0!5 f m~v50!. ~3.19!

Therefore, for cold subthermal electrons we have

a52
nei

Z
[2nee. ~3.20!

Equations~3.6!–~3.9! and ~3.16!–~3.20! allow us to repre-
sent Eq.~3.5! for cold subthermal electrons with velocitie
that satisfy the inequality~3.15! in the form of the following
differential equation:

] f s

]t
2

nee

v2

]

]v H v3FvT
2

v
] f s

]v
1 f sG J

5Ap

8
vE

2nei

vT
3

v2

]

]v S 1

v
] f s

]v D . ~3.21!

In discussing the consequences of this equation we will t
into account the fact that the electron–electron relaxa
time of cold electrons Eq.~3.14!, which characterizes the
second term on the left side of Eq.~3.21!, is much smaller
than the characteristic time for heating of thermal electr
given by Eq.~3.12!, which characterizes the change of t
thermal velocityvT(t) with time. This allows us to neglec
the time derivatives in Eq.~3.21! and write the following
ordinary differential equation for the quasistationary ca
when the thermal velocity varies slowly with time:

1

v2

d

dv H v3F1

v
d fs

dv
1

f s

vT
2G1

vL
3

v
d fs

dv J 50, ~3.22!

where the Langdon velocity has the form

vL5SAp

8
ZvE

2vTD 1/3

. ~3.23!

We must find a solution to Eq.~3.22! that satisfies the bound
ary condition

1

v
d fs

dv
50 ~3.24!

at v50, which comes from the last term on the left side
Eq. ~3.22! and corresponds to the absence of sources of e
trons forv50. The corresponding solution to Eq.~3.22! has
the form

f s~v !5 f s~0!expF2
1

vT
2 E

0

v u4du

u31vL
3G . ~3.25!

From this, we find that when condition~3.15! holds,
e
n

s

e

f
c-

f s~v !5
n

~2p!3/2vT
3 H 12

1

vT
2 E

0

v u4du

u31vL
3J . ~3.26!

In this case, the approximation~3.19! was used. The accu
racy of this latter approximation can be estimated if we n
that for vT@v@vL it follows from ~3.26! that

f s~v !5
n

~2p!3/2vT
3 H 12

v2

2vT
2 1

2p

3)

vL
2

vT
2 F11OS vL

v D G J .

~3.27!

In view of the smallness of the Langdon parameter expres
by Eq. ~1.6! and our neglect of corrections of ordera2/3, we
may assume approximation~3.19! is justified. Expression
~3.26!, which describes the distribution of subthermal ele
trons of a plasma heated by inverse bremsstrahlung abs
tion is a new result of the theory, which will be the startin
point for deriving the new results described in the followin
sections of this paper.

4. PERTURBATION OF THE ELECTRON DENSITY BY A
NONUNIFORM FIELD

In the theory of parametric instability the nonlinear i
teraction between modes is determined by the perturbatio
the electron density by a spatially nonuniform electroma
netic field. For this reason, we choose to write the elec
field in a new form, different from the form used in th
previous section:

EiEj*→EiEj* 1d~EiEj* !exp~ ikr !. ~4.1!

The first term on the right side of this expression is det
mined by the spatially nonuniform pump field. The seco
term is determined by a superposition of the electromagn
fields of the pump and the perturbed modes, which are in
acting at parametric resonance. Then picking

f 05 f s1d f exp~ ikr !, ~4.2!

whered f is a small perturbation of the electron distributio
function determined by the spatially nonuniform perturbati
~4.1!, we can write the following linearized equation th
follows from Eq.~2.3!:

i ~kv!d f 2Jei@d f #2Jee@d f #

5
e2

4v0
2m2 S ik

] f s

]v
duEu21

1

2
i ~kv!d~EiEj*

1Ei* Ej !
]2f s

]v i]v j
2d~EiEj* 1Ei* Ej !

]

]v i
JeiF ] f s

]v j
G

2~EiEj* 1Ei* Ej !
]

]v i
JeiF]d f

]v j
G D . ~4.3!

In writing this equation we have used the assumption that
degree of ionization~3.2! is large, allowing us to neglect th
contribution of the electron–electron collision integral on t
right side of Eq.~4.3!. In addition, we have used conditio
~1.4! everywhere. Finally, we have neglected time deriv
tives of the functiond f everywhere, following the usual ar
gument that its influence on the electron density pertur
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tions caused by the nonuniform intensity of the pump field
small. For simplicity, we will assume thatduEu2 is purely
real in what follows.

In analyzing the consequences of Eq.~4.3!, the most
important thing to note is that, since inequality~1.8! is sat-
isfied for the case of interest to us, the electrons are c
sionless over a large region of the velocity phase spa
when

v@vT~kl ei!
21/4!vT . ~4.4!

This implies that in this range of velocities, in looking ford f
we can neglect terms that contain collision integrals wh
haved f as an argument. Then it follows from Eq.~4.3! that
for the thermal electrons~4.4! we have

d f T5
e2

4v0
2m2 S 1

v
d fs

dv
duEu21

1

2

3d~EiEj* 1Ei* Ej !
]2f s

]v i]v j
2

1

~ i ~kv!
d~EiEj*

1Ei* Ej !
]

]v i
JeiF ] f s

]v j
G D . ~4.5!

This solution allows us to write the following expression f
the contribution of thermal collisionless electrons to the p
turbation of the electron density:

dnT5
e2duEu2

4v0
2m2 E dv

1

v
d fs

dv
'2

e2duEu2

4v0
2m2vT

2 n[2
dvE

2

4vT
2 n.

~4.6!
In computing the integral in Eq.~4.6! we use the fact

implied by Eq.~3.26! that if we neglect small quantities o
ordera2/3 the electron distribution functionf s(v) coincides
with a Maxwellian distribution over the entire velocity pha
space except a small regionv<vL .

For cold subthermal electrons with velocities that sati
inequality ~1.9!, particle collisions are decisive. In this ca
the largest term in the kinetic equation is the electron–
collision integral. However, the corresponding operator a
only on the asymmetric part of the distribution functio
which depends on the angle between velocities. Theref
the asymmetric part of the distribution function will be rel
tively small. Consequently, expressing the perturbation
the distribution function for cold electrons in the form

d f c5d f 01d f a , ~4.7!

where d f 05^d f c& is a distribution function averaged ove
the angles of the velocities, we can assume in the spirit of
usual approach due to B. I. Davydov thatd f a is relatively
small, and write the following two equations from Eq.~4.3!:

^ ikvd f a&2vT
2nee

1

v2

d

dv S v3F1

v
dd f 0

dv
1

d f 0

vT
2 G1

vL
3

v
dd f 0

dv D
5A2pvT

3nei

1

v2

d

dv S 1

v
d fs

dv D e2duEu2

4m2v0
2 , ~4.8!

ikvd f 02Jei@d f a#5
e2

4m2v0
2 S ikv

1

v
d fs

dv
duEu2
s

li-
e,

h

-

y

n
ts

e,

f

e

1
1

2
ikv

]2f s

]v i]v j
d~EiEj* 1Ei* Ej !

1d~EiEj* 1Ei* Ej !S v iv j

2
1

3
d i j v

2D 1

v
d

dv
2n~v !

v
d fs

dv D .

~4.9!

Keeping in mind inequality~1.9!, we write the solution to
Eq. ~4.9! in the form

d f a52
ikv

2n~v ! S d f 02
1

3v5

d

dv S v5
d fs

dv D e2duEu2

4m2v0
2 D

1S v iv j2
1

3
d i j v

2D e2

12m2v0
2n~v !

d~EiEj*

1Ei* Ej !
1

v
d

dv S n~v !

v
d fs

dv D . ~4.10!

The second term of this expression is irrelevant if we o
want to find an equation for the symmetric part of the p
turbation of the distribution function of cold collisional elec
trons. Substituting Eq.~4.10! into Eq. ~4.8! gives

k2v2

6n~v !
d f 02vT

2nee

1

v2

d

dv S v3F1

v
dd f 0

dv
1

d f 0

vT
2 G1

vL
3

v
dd f 0

dv D
5A2pvT

3nei

1

v2

d

dv S 1

v
d fs

dv D e2duEu2

4m2v0
2

1
k2v2

6n~v !

1

3v5

d

dv S v5
d fs

dv D e2duEu2

4m2v0
2 . ~4.11!

Because the region of interest to us is where the distribu
~3.26! differs from a Maxwellian, we will assume that th
characteristic velocities of cold electrons, which determ
the perturbation of the electron density, are small compa
to vL . Furthermore, we will assume that velocities a
smaller thanvL throughout the entire region of cold colli
sional electrons. This implies that condition~1.10! is satis-
fied, from which we have

a5
ZvE

2

vT
2 .A8

p

1

~kl ei!
3/4. ~4.12!

The latter condition determines the magnitude of the pu
field intensity at which radiation heating of the plasma giv
rise to the new nonlinear effects we have identified in t
paper. For cold collisional electrons, we have according
Eq. ~3.26!

f s~v !5
n

~2p!3/2vT
3 S 12

v5

5vT
2vL

3D . ~4.13!

This expression makes it clear that the last term (}k2) in Eq.
~4.11! gives a contribution todn of the same order as th
small discrepancy from which the integral~4.6! is calculated.
Therefore, in what follows we will omit this term. Moreove
for velocities smaller thanvL electron–electron collisions ar
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less important in redistributing the electrons than bremsst
lung absorption. Therefore, neglecting electron–electron
lision integrals we obtain the following differential equatio

4

9p

k2v5

vE
2vT

6nei
2 d f 02

1

v2

d

dv S 1

v
d

dv Fd f 01
dvE

2

vE
2 f sG D 50.

~4.14!

This equation is very simple and can be treated analytica
In fact, making the variable substitutionx5(v/vk)

5, where

vk5vT@~15Ap/2!~vE /vT!kl ei#
1/5, ~4.15!

and writingd f 0 in the form

d f 05x1/5C~x!
9n

10p3/2vT
3

nee

kvE

dvE
2

vE
2 , ~4.16!

we obtain for the functionC(x) the following equation:

x2
d2C

dx2 1x
dC

dx
2S 1

25
1x2DC5x4/5. ~4.17!

We emphasize that Eq.~4.15! determines the characterist
velocity of electrons, which is an important parameter of o
theory.

The solution to Eq.~4.17! that is regular at infinity has
the form

C~x!5C1K1/5~x!2I 1/5~x!E
x

` dz

z1/5 K1/5~z!

2K1/5~x!E
0

x dz

z1/5 I 1/5~z!, ~4.18!

whereK1/5 and I 1/5 are Bessel function of imaginary argu
ment. In order to determine the constant of integrationC1 we
use the boundary conditionv21dd f 0 /dv50 for v50,
which, like Eq.~3.24!, corresponds to the absence of a sou
of particles with zero velocity. We emphasize that in th
case in particular there are qualitative differences betw
the approach given here and previous theories, in which
primary process that establishes the symmetric part of
distribution function is electron–electron collisions.5 As a
result, we obtain

C152221/5p21/2GS 3

10D sin
p

5
. ~4.19!

Equations~4.16!–~4.19! allow us to find the following ex-
pression for the contribution of cold subthermal electrons
the density perturbation:

dnc

n
52

dvE
2

4vT
2

1

kl ee~kl ei!
3/5 S vT

vE
D 12/5

C0 , ~4.20!

wherel ee5Zl ei ,

C052S 212313

p57 D 1/5E
0

` dx

x1/5 C~x!544. ~4.21!

Equations~4.6! and~4.20! give the following final result for
nonlinear perturbations of the density of electrons by a n
uniform electromagnetic field:
h-
l-

y.

r

e

n
e
e

o

-

dn

n
52

dvE
2

4vT
2 F11

44

kl ee~kl ei!
3/5 S vT

vE
D 12/5G . ~4.22!

The weakly collisional contribution~4.20! to this expression
exceeds the ponderomotive contribution~4.6! when

ZvE
2

vT
2 [a,

23Z1/6

~kl ei!
4/3. ~4.23!

The latter inequality combined with~Eq. 4.12! is realized
when

kl ei,100Z2/7. ~4.24!

Even when the usual condition~1.8! for the plasma to be
collisionless holds, inequality~4.24! still defines a very siz-
able wavelength region where weak-collisional nonlinearit
can occur. The new nonlinearity introduced by Eq.~4.22!
corresponds to decreasing the weak-collisional contribu
as the pump field grows.

5. COEFFICIENT OF NONLOCAL EFFECTIVE ELECTRON
HEAT CONDUCTIVITY

The results of the previous section allow us to derive
nonlinear change in the effective electron thermal conduc
ity induced by a weak field heating the plasma. In doing
we focus on perturbations of the kinetic energy density of
electrons by the nonuniform radiation field

3

2
d~nkBT![E dv

mv2

2
d f . ~5.1!

Because of the low velocities of the cold subthermal el
trons, their kinetic energy density is small compared
(3/2)kBTdnc . Therefore, the perturbation of the temperatu
of the cold electronsdTc will be

dTc

T
52

dnc

n
5

dvE
2

4vT
2

1

kl ee~kl ei!
3/5 S vT

vE
D 12/5

C0 . ~5.2!

Comparing this expression with the corresponding resul
the linear theory,5 we note that in addition to the new depe
dence on the wave vector a new nonlinear dependence o
spatially uniform pump feeding the field appears as well:
the pump intensity increases, the perturbation of the temp
ture decreases.

For kinetic energy perturbations of the thermal electro
according to Eq.~4.5! we have

3

2
d~nkBT!T5

3

2
kB~ndTT1TdnT!52

dvE
2

4

3

2
mn.

~5.3!

In light of Eq. ~4.6!, it is not difficult to see that~4.5! implies
dTT50 to this order of approximation. The perturbation
the effective temperature of thermal electrons acquires a n
zero value when we take their collisions into account, a
turns out to be of order

dTT;T~dvE
2/vT

2!~kl ei!
21.

The latter expression is small compared to Eq.~5.2! by virtue
of the inequality
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ZvE
2

vT
2 [a,

23Z1/6

~kl ei!
1/2, ~5.4!

which in view of inequality~1.8! is always satisfied when
condition ~4.23! holds. Therefore, under the conditions
interest to us the primary contribution to heating of the el
trons by a nonuniform electromagnetic field comes from
cold electrons, and is determined by Eq.~5.2!.

The divergence of the electron heat flux densityq arising
from heating of the plasma by spatially nonuniform rad
tion, as follows from Eq.~4.3!, is determined in the follow-
ing way:

div q5Q01dQ, ~5.5!

where

Q05
e2

4v0
2m2 E dvv iJeiF ] f s

]v j
Gd~EiEj* 1Ei* Ej !, ~5.6!

dQ5
e2

4v0
2m2 E dvv iJeiF]d f s

]v j
G~EiEj* 1Ei* Ej !. ~5.7!

Since, the functionf s does not differ from Maxwellian ove
most of the velocity phase space, the heatQ0 generated per
unit time by the nonuniform radiation field acting on th
unperturbed electron distribution can be written in the fo

Q05
1

2
mndvE

2nei . ~5.8!

This expression arises from the contribution of the therm
electrons and coincides with the result obtained by dir
calculation of divq using the distribution of collisionles
thermal electrons Eq.~4.5!. The contribution of thermal elec
trons to Eq.~5.7! is smaller than Eq.~5.8! by a factor of
vE

2/vT
2 . The contribution of subthermal electrons to Eq.~5.7!

is given by the following expression:

dQ52
1

2
mndvE

2nei

nee

kvE
C2 , ~5.9!

where

C25
9

5A2p
GS 1

5DGS 3

10D sin
p

5
'5.8. ~5.10!

Expression~5.9! indicates that the redistribution of cold ele
trons caused by the nonuniform electromagnetic field
leases heat from the plasma, which corresponds to bre
strahlung of the nonequilibrium subthermal electro
Condition~4.12! implies that Eq.~5.9! is small compared to
Eq. ~5.8! by the small factor@Z1/2(kl ei)

5/8#21. Therefore,
we may neglect the contribution~5.9! to the heat balance
equation. Then we have

ikq5
1

2
mndvE

2nei

5k2nkBdTvTl ei

Z

~kl ei!
2/5 S vE

vT
D 12/5 2

C0
. ~5.11!

Here the relation defined by Eq.~5.2! betweendvE
2 and the

temperature incrementdT5dTc has been used. Expressio
-
e

-

l
t

-
s-
.

~5.11! is written in such a way that it allows us to determin
the effective nonlocal thermal conductivity for the irrot
tional part of the heat currentq52x grad(dT)

xeff~k!5
xSH

11300~ZvE
2/vT

2!26/5~Zk2l ei
2 !1/5. ~5.12!

The 1 in the denominator of Eq.~5.12! has been added in
order to make this expression interpolate between Eq.~5.11!
and the well-known expression for the Spitzer–Ha¨rm ther-
mal conductivity,xSH513.6nvTkBl ei ask→0.

6. CONCLUSION

Expression ~5.12! modifies the results of the linea
theory of nonlocal thermal conductivity5 by introducing a
new fractional-power dependence on the wave vectork and a
nonlinear dependence on the intensity of the heating fiel

However, the principal result of our article is Eq.~4.22!,
which describes the new nonlinear behavior of perturbati
of the plasma density modified by radiation-induced heati
Expression~4.22! requires reexamination of the theory of
number of parametric instabilities in plasmas under con
tions that are typical of laser-generated plasma experim
directed toward controlling laser-induced thermonuclear
sion.

Thus, our theory reveals a new effect: a nonlinear c
tribution to the heat transport by the field that heats
plasma through reverse bremsstrahlung absorption.

This work was financially supported by the Russi
Fund for Fundamental Research~Grant No. 2.46! and the
State Program~Grant 96-02-17002! on ‘‘Optics and Laser
Physics.’’

* !E-mail: silin@sci.lpi.ac.ru

1V. P. Silin, Parametric Excitation of High-Power Radiation by a Plasm
~Nauka, Moscow, 1973! @in Russan#.

2A. V. Maksimov, V. P. Silin, and M. V. Chegotov, Fiz. Plazmy16, 575
~1990! @Sov. J. Plasma Phys.16, 331 ~1990!#.

3A. B. Langdon, Phys. Rev. Lett.44, 575 ~1980!.
4R. Balescu, J. Plasma Phys.23, 553 ~1982!.
5A. V. Maksimov and V. P. Silin, Zh. E´ ksp. Teor. Fiz.103, 73 ~1993!
@JETP76, 39 ~1993!#.

6A. V. Maksimov and V. P. Silin, Zh. E´ ksp. Teor. Fiz.105, 1242 ~1994!
@JETP78, 669 ~1994!#.
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‘‘Shallow-water’’ and ‘‘deep-water’’ approximations in the theory of the disruptive
instability of thin current-carrying layers

S. K. Zhdanov* )

Moscow State Institute of Engineering Physics, 115409 Moscow, Russia

V. P. Vlasov

‘‘Kurchatov Institute’’ Russian Science Center, 123182 Moscow, Russia
~Submitted 31 September 1997!
Zh. Éksp. Teor. Fiz.113, 1313–1318~April 1998!

Within the framework of the two-fluid hydrodynamics of plasmas it is shown that the problem of
instability of a thin current-carrying layer admits two limiting cases which allow analytic
solutions and complement one another. These limits are analogous to the well-known shallow-
water and deep-water approximations in the fluid mechanical ‘‘wave-breaking’’ instability.
In this case, the long-wave limit coincides with the ‘‘quasi-Chaplygin’’ dynamic system of
Bulanov and Sasorov, Fiz Plazmy4, 746 ~1978! @Sov. J. Plasma Phys.4, 418 ~1978!#,
while the short-wavelength limit corresponds to the phenomenological model of Trubnikov, Usp.
Fiz. Nauk 160, 167 ~1990! @Sov. Phys. Usp.33, 87 ~1990!#, for the clumping of
‘‘elementary’’ currents. In the latter case, strong collapse is unavoidable with the appearance of
current filaments that trap a finite current. ©1998 American Institute of Physics.
@S1063-7761~98!01404-8#
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1. The tearing instability and the associated phenom
of reconnection of magnetic field lines and formation
magnetic islands are fundamental aspects of the physic
neutral current layers. Many original papers and revie
have been devoted to them~see, for example, Refs. 2–5 an
the papers cited in them! in which the instability is analyzed
in all of its manifestations. At present, the physics of th
instability is clear in broad outline. It is well known that th
tearing mode can be interpreted from a physical point
view as the result of a pinch in the distributed curre
layer—a kind of instability that leads to ‘‘clumping’’ due t
the mutual attraction of individual elementary current fi
ments that remain when the layer inevitably breaks up2–4

Thus, the disruption and clumping, which would appear to
mutually exclusive phenomena, are organically combined
this instability evolves. However, this fundamental feature
the theory of unstable thin current-carrying layers manife
itself in a most peculiar way, in that two approaches t
have seemed at first glance to contradict one another are
combined.1,2 In fact, as we will show in this paper, the non
linear dynamic models proposed in Refs. 1 and 2 are
sides of the same coin, not mutually exclusive but rat
complementing one another. We show here that they co
spond to two limiting cases with respect to a certain para
eter that depends on the product of the line density and
magnitude of the characteristic scale of the perturbation. T
fact—which, as far as we know, has not been no
before—is an informative contribution to the theory of t
tearing instability of thin current layers.

2. The model first proposed by Bulanov and Sasorov
Ref. 1 can be written in the following way, incorporating th
correction pointed out in Ref. 6:

r t81~rv !x850, v t81vvx852~1/2!c0
2~~r0 /r!2!x8 , ~1!
7171063-7761/98/86(4)/3/$15.00
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where c052(cAd/a)0 , r5na is the line density of the
plasma in the current layer,a is the layer thickness,cA is the
Alfvén velocity, d05c/vpe is the vacuum skin depth, an
the label ‘‘0’’ denotes unperturbed values of quantities. T
perturbations are assumed to be long-wavelength, so
their characteristic scalel greatly exceeds the thickness
the current layer,l@a. A key issue to address is that Eq.~1!
will only be valid under the assumption that the line dens
of current in the layer is constant, implying that the disco
tinuity in the tangential component of the magnetic fie
across the layer is constant as well. This requirement o
ously contradicts the picture of clumping of currents outlin
above. In the phenomenological model of Trubnikov2 ~where
Ĥ is the Hilbert operator!:

r t81~rv !x850, v t81vvx85gTĤr,

gT52pI 1
2/M1c2h, ~2!

the fundamental picture is entirely different. Here the th
current layer is a set of identical parallel wires—‘‘elementa
currents,’’ each of which has a currentI 1 and massM1 ~per
unit length!; the value ofr equals the product of the distanc
h between neighboring wires in equilibrium and the numb
of wires passing along thex axis per unit length~along the
layer!. These quantities also give meaning to the accelera
gT that appears in Eq.~2! ~the Trubnikov acceleration!.

Systems~1! and ~2! are not merely externally different
since they predict different dependences on wave numbe
the growth rate of the instability in the linear stage of
evolution:

gBS5kc0 , gT5~kgT!1/2, ~3!

for Eqs.~1! and~2! respectively. This difference in the wave
number dependence of the growth rate outwardly rec
what happens in the ‘‘wave-breaking’’ instability of a laye
© 1998 American Institute of Physics
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of water,6 which must be treated as either shallow or de
depending on the ratio of the perturbation wave length to
layer thickness. In this case, the former situation ha
growth rate proportional to the wave number, while in t
second situation it is proportional to the square root of
wave number. In reality, this analogy is even deeper: the
of the parameter that separates long- and short-wavele
regions is played by the quantity«5d0

2/a0l.
3. In order to justify this assertion, let us follow Refs.

and 6 and use the equations of two-fluid hydrodynamics
the following form:

~na! t81~nav !x850,

v t81vvx852
j zBy

cn~mi1me!
[2

ueuByuj

c~mi1me!
. ~4!

Here the geometry of the layer is chosen so that current fl
along thez axis; the coordinatey is transverse to the layer
and the coordinatex is measured along the layer. In this cas
the usual notation is used, and in addition the plasma
treated as quasineutral:ne5ni5n, and the longitudinal ve-
locities are assumed to be equal:vxe5vxi5v. For conve-
nience we also introduce a current velocity

uj5vzi2vze5 j z /ueun.

Let us calculate the value of this current velocity, taking in
account the law of conservation of generalized momentum
ions and electrons which follows from the assumed unif
mity of the layer with respect to coordinatez:

~mvz1eA/c!e,i5const, ~5!

where the quantityA is the z-component of the vector po
tential; the component of the magnetic field can be written
terms of it as follows:

Bx5]A/]y, By52]A/]x, Bz50.

Using Eq. ~5!, we obtain thez-component of the curren
velocity:

uj5uj 02ueuA/mc, ~6!

where m5mime /(mi1me), and uj 0 is the initial value,
which is assumed to be constant. In Eq.~4!, all the quantities
are referred to the layer, i.e., fory50. Outside the layer, the
vector potential satisfies the following equation~neglecting
displacement current!:

DA5~]2/]x21]2/]y2!A50, ~7!

which must be supplemented by the boundary condition

@]A/]y#y5052~4p/c! j za[2~4p/c!ueuna~uj 0

2ueuA/mc!y50 , ~8!

where @]A/]y#y50 is the jump in]A/]y transverse to the
current layer. Following Refs. 1 and 2, we assume that
layer is immersed in vacuum; if this is not true, we mu
maintain a current on the right-hand sides of Eqs.~7! and~8!
induced by the instability in the medium surrounding t
layer.

We note that the formal solution to Eqs.~7! and ~8! is
the relation
,
e
a

e
le
th

n

s

,
is

of
-

n

e
t

By52~2p/c!Ĥ~ j za!. ~9!

Relations of this kind were probably first introduced in sim
lar problems involving currents in thin layers by Chukb
~see, e.g., Ref. 7!.

It is further convenient to write the vector potential
the form of a sum

A5A01A1 , A052B0uyu, B05~2p/c!ueun0a0uj 0 ,

~10!

which explicitly distinguishes the unperturbed fieldA0 . We
now choose characteristic scales for the quantitiesl,
mcuj 0 /ueu,n0 ,a0 , i.e., the spatial coordinate, vector pote
tial, ion density of the plasma, and layer thickness resp
tively. Then in dimensionless form condition~8! for the cor-
rectionA1 to the vector potential can be written as follow

«@]A1 /]y#y5052~na~12A1!21!y50 , ~11!

where«5d0
2/a0l is the parameter introduced above.

It is obvious that when« is small, i.e., as assumed i
Ref. 1, the left side of Eq.~11! may be treated as a sma
quantity, and to this accuracy we obtain from Eq.~11! the
value of the potential at the layer:

A1'12~na!21. ~12!

Using it in Eqs.~4!, we can easily verify that Eq.~1! results.
Obviously Eq.~12! is identically the condition for constanc
of the line density of the currentj za5const, while the con-
dition «! 1 defines the shallow-water region, i.e., the co
straint on the wavelengths of the perturbationsl@d0

2/a0 .
In the opposite limit, when« is large, we can expand in

powers of«21 and neglect terms with the vector potential o
the right side of Eq.~11!, and accordingly in Eq.~8!. It is
easy to see that this is equivalent to the condition of c
stancy of the current velocityuj5const. In this limit, it fol-
lows that the line current density equals approximately

j za'ueuuj 0na, ~13!

and is proportional to the plasma line density of the curr
layer. Using Eq.~9! once more, we can convince ourselv
that Eqs.~4! now reduce to

~na! t81~nav !x850,

v t81vvx85gHĤ~na/n0a0!, ~14!

which is equivalent to Eq.~2!. Meanwhile, the phenomeno
logical Trubnikov acceleration calculated from fluid mecha
ics is found to be

gH5
2pe2~uj

2na!0

~mi1me!c
2 . ~15!

The condition«@1 combined with the conditiona0!l de-
fines the short-wavelength range for the perturbationsa0

!l!d0
2/a0 ~deep water in hydrodynamic terminology!.

4. It is well known1,6 that within the framework of mode
~1! the solutions typically have a tendency to break up
current layer in such a way that the line density decrea
locally but not the current~!!, which clearly contradicts the
physical picture of the instability. The results obtained abo
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allow us to resolve this paradox, which has existed since
time of publication of Ref. 1. The fact is that in parame
ranges where the current layer breaks up, as the line de
decreases a point is inevitably reached where the cond
for applicability of Eqs.~1! is violated, i.e., the current den
sity can no longer be treated as constant. According to
~13!, decreasing the line density leads to a proportional
crease in the current density, so that disruption of the cur
layer is necessarily accompanied by filamentation of the c
rent in complete correspondence with the physics of the t
ing instability. We will show that whenever Eqs.~14! are
applicable, a strong collapse is inevitable with the appe
ance of current filaments that trap a finite current. Note t
system~14! can be written in the equivalent Hamiltonia
form:

C t852dH/dr, r t85dH/dC, v5Cx8 ,

r5na/~na!0 , ~16!

where the ‘‘Hamiltonian’’ is

H5E dx~~r/2!@Cx8#22~1/2!gHr@K̂r#!. ~17!

Here the operatorK̂ is defined by the relation

]~K̂r!/]x[Ĥr.

Obviously, conservation laws apply for ‘‘energy,’’ ‘‘momen
tum,’’ and ‘‘particle number’’ respectively:

H5const, P5E dx~rCx8!5const,

N5E dx~r!5const. ~18!

The scale transformationx→bx, r→r/b, C→bC, which
conserves the ‘‘momentum’’P and ‘‘particle number’’N,
gives

H→H2~@gH/2p#N2 ln~1/b!!, ~19!

and as the scale decreases (b→0) the Hamiltonian can only
decrease–a clear advantage!

In conclusion, we give an example of an exact solut
in the form of an isolated collapsing filament:8
e
r
ity

on

q.
-

nt
r-
r-

r-
t

n

v5j~dL/dt!, r5~L0 /L !~12j2!1/2,

j5x/L, uxu<L, ~20!

where L5L(t) is the half-width of the filament~r[0 for
uxu>L!, andL0 is its initial value. The size of the filament i
determined by the equation

Ld2L/dt252gHL0 ,

according to which at time

t5tc5@pL0 /~2gH!#1/2

this current filament ‘‘collapses,’’ trapping a finite current

I f ;E
2L

1L

r dx5const.

Elementary analysis shows that including the interact
with neighboring filaments located periodically in the curre
layer drags out the collapse, but does not eliminate it co
pletely. Periodic systems of current filaments are obviou
unstable against modulation with respect to position or va
of the currents in the filaments, and this instability can a
be described within the framework of Eqs.~14!.

The authors are grateful to B. A. Trubnikov for discus
ing this work and also to the participants of the seminar
academic V. D. Shafranov for fruitful discussions.
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Generation of electromagnetic radiation in the motion of vortices in magnetically
coupled superconducting films
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Zh. Éksp. Teor. Fiz.113, 1319–1338~April 1998!

We examine theoretically the generation of electromagnetic radiation in the relative motion of
vortex lattices in magnetically coupled films in the dc transformer geometry. We establish
the conditions under which the force of mutual pinning of the vortex lattices varies according to
a harmonic law as a function of the relative displacement of the vortices in the films
within a given range of magnetic field inductions. In this case the equation describing the
viscous flow of vortex lattices in magnetically coupled films is the same as the equation of the
resistively shunted Josephson junction model. We show that magnetically coupled
superconductors exhibit the properties of a Josephson element without any restrictions on the
geometrical size of such a system imposed by the coherence lengthj. The frequencyf
of the electromagnetic radiation generated by the relative motion of vortex lattices in magnetically
coupled superconductors depends on the spatial period of the vortex lattices and the velocity
of relative vortex motion, which means that the frequency of the radiation can be tuned by
applying a magnetic field or a current. ©1998 American Institute of Physics.
@S1063-7761~98!01504-2#
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1. INTRODUCTION

One manifestation of the time-dependent Joseph
effect1 in superconducting systems with weak links is t
generation of narrow-band electromagnetic radiation. Ho
ever, for the weak link to possess the properties of a Jos
son junction, the characteristic geometrical size of the we
link region must not be much larger than the cohere
length j in the superconductor.2,3 This condition strongly
hinders the fabrication of reproducible Josephson juncti
based on high-Tc superconductors, where the typical valu
of j are 3–10 Å. Hence it would be interesting to search
analogs of the Josephson effect in superconducting syst
in which such strong constraints on the size of the eleme
do no exist.

There is a close analogy between the time-depend
Josephson effect in systems with weak links and the resis
state of a superconductor in the flux-flow regime,4 and a
moving Abrikosov-vortex lattice5 can be represented by a
array of weak links.6 Fiory7 and Leeet al.8 observed coher-
ent vibrations of vortex lattices by the emergence of step
the current–voltage characteristic of the superconducting
crobridge generated by the rf component of an external
rent. For such quantum interference effects to exist the v
tices must be pinned. Pinning guarantees that there
interaction between the ac component of the current from
external source and the natural oscillations of the super
rent, which result from modulation of the mean vort
velocity.9 Quantum interference becomes especially evid
if coherent motion of a large number of vortices with
appreciable variable component of the velocity can
arranged.7 This is achieved by using samples with a we
developed structure of pinning centers, e.g., by modula
7201063-7761/98/86(4)/11/$15.00
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the thickness of the superconducting film10 or by creating a
regular lattice of small~submicrometer! cylindrical micro-
holes~antidots! in the film.11

The analogy between the resistive state of a superc
ducting microbridge and the time-dependent Josephson
fect also manifests itself in the existence of intrinsic elect
magnetic radiation generated by bridge structures in the fl
flow regime.8,12,13 Such radiation is emitted if there i
nonuniform motion of a vortex lattice, e.g., in the event
spatially nonuniform pinning. In the case of a weak rando
pinning potential, it is primarily the noise component that
emitted, with the nature of the emitted radiation determin
largely by the nature and strength of the pinning.14 The spe-
cific features of the rf response to the motion of
Abrikosov-vortex lattice in a periodic pinning potential ge
erated by modulating the thickness of a superconducting
was observed by Martinoliet al.15 However, the weakness o
the link in the vortex lattice, the low pinning potential, an
the difficulties encountered in monitoring the strength of t
link made it impossible to generate appreciable radiat
power.

Systems that are undoubtedly of interest as generato
electromagnetic radiation in which both the size of the co
pling force between the vortex lattice and pinning poten
and the spatial period of the pinning potential can be var
in a controllable manner. Obviously, in a periodic pinnin
potential such a coupling force is of a resonant nature; i
strongest if the period of the vortex lattice matches the
riod of the pinning potential.15 The strength of the coupling
force can be varied if there is simultaneous self-matching
the periods of the vortex lattice and the pinning potent
provided that the magnetic interaction between two ident
© 1998 American Institute of Physics
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721JETP 86 (4), April 1998 V. A. Kozlov and A. V. Samokhvalov
vortex lattices arranged in electrically insulated parallel
perconducting films~as in a dc transformer16! is utilized. The
periodic dependence of the interaction energy of vortex
tices in the two films on the relative displacement of the
lattices is ensured by the existence of a self-matching p
odic pinning potential,17 and the necessary coupling forc
can easily be selected by changing the gap between the
perconducting films. A variable component of the vortex v
locity and hence a variable electric field and current are g
erated by the relative motion~slippage! of the vortex lattices
in the two films.

The key issue in building a theory of magnetica
coupled superconductors is the assumption17 that a vortex
lattice is displaced as a whole in the periodic pinning pot
tial generated by another vortex lattice. The interaction
ergy between vortex lattices in magnetically coupled fil
was first calculated by Sherrill and Manson18,19 for the case
of Abrikosov vortices in thin films,20 with the film thickness
d much smaller than the magnetic-field penetration depthl.
These results were generalized to films of arbitrary thickn
by Clem,21,22 who also built a detailed theory describing th
stripping of the vortex lattices in magnetically coupled film
and did model calculations of the current–voltage charac
istics of dc transformers. The theoretical ideas develope
Refs. 17, 21, and 22 were corroborated by detailed meas
ments of the current–voltage characteristics and the m
netic interaction between vortices in magnetically coup
films.23,24

In this paper we examine electromagnetic radiation d
to the relative motion of vortex lattices in magnetica
coupled films in the dc transformer geometry. In Sec. 2
calculate the structure of the magnetic field of a squ
Abrikosov-vortex lattice formed by an external magne
field in magnetically coupled superconducting films, a
study the interaction between the vortex lattices in the t
films. In Sec. 3 we write the equations of vortex motion
the periodic pinning potential generated by the magnetic
teraction between the vortex lattices. The equations are s
lar to the equation of the resistively shunted Josephson ju
tion model,2 in which the relative displacement of the vorte
lattices in the films acts as the phase differencew. In Sec. 4
we study the rf response of magnetically coupled superc
ductors to the relative motion of vortex lattices in neighb
ing films. The frequencyv of the electromagnetic radiatio
depends on the spatial period of the vortex lattices, wh
means that it is possible to tune the frequency of the ra
tion by applying an external magnetic field. In Sec. 5
discuss examples of Josephson systems based on ma
cally coupled films. There we also compare the behavio
such systems with that of an ordinary Josephson junctio

2. MUTUAL VORTEX PINNING IN MAGNETICALLY
COUPLED SUPERCONDUCTORS

We consider two parallel films of a type-II superco
ductor, of thicknessesd1 andd2, separated by an insulatin
layer of thicknessd3 ~Fig. 1!. We assume that generally th
films are different, and each is characterized by a magne
field penetration depthl l and a coherence lengthj l , where
-
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the subscriptl takes the valuesl 51,2 for the first and second
films, respectively. For simplicity we assume that the ext
nal perpendicular magnetic field with inductionB05B0z0

generates in each film a square Abrikosov-vortex lattice. T
vortex lattice perioda is determined byB0 in accordance
with the relationB0a25F0, whereF05p\c/e is the quan-
tum of magnetic flux, or fluxon. We also assume that
thicknessd3 of the insulating layer is so large that tunnelin
can be ignored (d3@j l). On the other hand, the attractio
between vortices belonging to different films guarantees
nificant magnetic interaction between the vortex lattices.
choose a coordinate system (x,y,z) with x and y axes par-
allel to the basic vectors of a vortex lattice; the planez50
lies in the middle of the insulating layer, and the superco
ducting films occupy the regionsz1A<z<z1B and z2B<z
<z2C , wherez1A52d12d3/2, z2B52z1B5d3/2, andz2C

5d21d3/2. For definiteness we consider the case in wh
the external currents in the films are directed along one of
basic vectors of a vortex lattice:j1,2iy0, and the current-
induced flux flows along thex axis.

If there is no external current in the films, the Gibb
energyG of such a system is at its minimum when the ax
of the vortices in the two films are opposite each other a
there is no relative displacementxd of the vortex lattices, i.e.,
xd50. Obviously, by virtue of translation invariance, theG
vs. xd dependence is a periodic function of the displacem
xd : G(xd1na)5G(xd) for integern. An external current of
density j flowing in the films acts on unit length of eac
vortex line with a Lorentz forcefL5F0j3z0 /c, and the be-
havior of the vortex lattices is determined by the ener
G85G2DW ~see Ref. 25!, whereDW is the work done by
the current source in moving the vortices. The Lorentz fo
shifts the vortex lattices with respect to each other along
x axis, and the minimum inG8 corresponds to an arrange
ment of vortices for whichxdÞ0. If the external current
density j is so high that the Lorentz forcef L exceeds the
force of internal~volume and surface! pinning of the vortices
in the films, f p , as well as the maximum magnetic intera
tion force between the vortex lattices in the two films,f c

max,

FIG. 1. Magnetically coupled superconducting films in an external magn
field B0. The structure of the magnetic lines is shown schematically for
arbitrary relative displacementxd of the vortex lattices in the films.
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then there is relative motion~slippage! of the vortex lattices,
which leads to a periodic time-dependence of the vortex
locity. The corresponding dependence of the energyG8 on
the relative displacementxd is a monotonically decreasin
function with a periodic variation of the slope of theG8 vs.
xd curve. Our qualitative treatment of the dependence of
vortex lattice energy in magnetically coupled films on t
relative displacementxd shows that the behavior of this sy
tem corresponds to that of a Josephson element.26

2.1. An Abrikosov-vortex lattice in magnetically coupled
superconductors

We begin by calculating the magnetic field of a squa
lattice of Abrikosov vortices in magnetically coupled supe
conductors when there is relative displacementxd of the lat-
tices~Fig. 1!. In the London approximation, which holds fo
superconductors with a large Ginzburg–Landau param
k l5l l /j l@1, the distribution of the magnetic fieldH l in a
superconductor in each of the films is described by the L
don equation

L̂ l~H l ![H l1l l
2
“3“3H l

5F0z0 (
n,m52`

1`

d~r2r l~n,m!!, ~1!

where the vectorr l(n,m)5(xl1na)x01may0 determines
the position of the vortex lines, andxl specifies the displace
ment of the vortex lattice in relation to the zero positi
corresponding to the coaxial arrangement of vortices in
magnetically coupled films (n andm are arbitrary integers!.
We employ the fact that the London approximation is line
and write the desired general solution of the differen
equation~1! as a linear combination of two solutions,

H l5H lv1H ld , ~2!

where the first termH lv is a particular solution of the inho
mogeneous equation~1!,

L̂ l~H lv!5F0z0 (
n,m

d~r2r l~n,m!!, ~3!

and the second termH ld is the general solution of the corre
sponding homogeneous London equation

L̂ l~H ld!50, ~4!

which guarantees that the magnetic field components at
film surfaces are continuous.

We select the particular solutionH lv5Hlvz0 of the in-
homogeneous equation~3! in a form that describes the struc
ture of the magnetic field of a square lattice of Abrikos
vortices in a massive superconductor. This solution can
written as a two-dimensional Fourier series in spatial h
monics:

Hlv5
F0

a2 (
n,m

Sl~n,m!exp@ iqa~nx1my!2 ix l #,

~5!

qa5
2p

a
, x l5qanxl .
-

e

e
-

er

-

e

r
l

he

e
r-

To broaden the range of applicability of the London appro
mation, we use the Clem model,27 which provides a good
description of a single Abrikosov vortex for an arbitra
value of the Ginzburg–Landau parameterk. Representing
the vortex lattice by a linear superposition of single vortic
we arrive at the following expression for the spatial Four
spectrumSl(n,m):

Sl~n,m!5
K1~qlj l

v!

qll lK1~j l
v/l l !

, ~6!

ql[ql~n,m!5qaAn21m21S a

2pl l
D 2

, ~7!

where the parameterj l
v , which is the effective vortex-core

size in the Clem model, satisfies the equation

j l
v

A2
5j lF12

K0
2~j l

v/l l !

K1
2~j l

v/l l !
G 1/2

,

andK0,1(z) are modified Bessel functions. The fact that w
use the linear superposition principle in calculating the l
tice field of Abrikosov vortices means that there is no ov
lap of normal vortex cores, i.e.,j l

v!a. For superconductors
with a large Ginzburg–Landau parameter,k l@1, Eq.~6! can
be simplified:

Sl~n,m!.S 1

qll l
D 2

. ~8!

The general solution of the homogeneous London eq
tion ~4!,

H ld5~Hld
x ,Hld

y ,Hld
z !,

which guarantees that the appropriate boundary condition
the film surfaces are met, will also be written as a tw
dimensional Fourier series in spatial harmonics:

Hld
s 5

F0

a2 (
n,m

@Cl
s1eqlz1Cl

s2e2qlz#

3exp@ iqa~nx1my!2 ix l #,

s5x, y, z. ~9!

Plugging~2!, ~5!, and~9! into Eqs.~1! and ~4! results in an
algebraic relationship linking the unknown expansion coe
cientsCl

s6 ,

2qanCl
x62qamCl

y66 iqlCl
z650, ~10!

and makes it possible to write

L̂ l~H l ![
F0z0

a2 (
n,m

l l
2ql

2Sl~n,m!

3exp@ iqa~nx1my!2 ix l #. ~11!

Everywhere outside the superconductor~i.e., z,z1A ,
z1B,z,z2B , and z.z2C) the magnetic fieldHb satisfies
Maxwell’s equation
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“3Hb50, b5H C if z.z2C ,

B if z1B,z,z2B ,

A if z,z1A ,

~12!

and is a potential field. The scalar potentialUb correspond-
ing to this field,

Hb52¹Ub , ~13!

is a solution of Laplace’s equation

“

2Ub50. ~14!

We seek a solution of Eq.~14! in the form

Ub52B0z1
F0

a (
n21m2Þ0

@Cb
1euz1Cb

2e2uz#

3exp@ iqa~nx1my!2 ixb#, ~15!

where u5qaAn21m2 , CA
250, xA[x15qanx1, xB50,

CC
150, andxC[x25qanx2.

It is convenient to write the boundary conditions th
follow from the continuity of the magnetic field componen
at the film surfaces as follows:

z5zlb⇒H l5Hb , where l 51, 2, b5~A,B,C!. ~16!

Substituting the Fourier expansions~5!, ~9!, and~15! into the
boundary conditions~16! and taking Eq.~10! into account,
we arrive at a system of linear algebraic equations that m
it possible to express the unknown coefficientsCl

s6(n,m)
andCb

6(n,m) in terms of the spectral functionsSl(n,m) ~Eq.
~6!! and the parameters of the problem. As a result, us
Eqs. ~5!, ~9!, ~13!, and ~15!, we can find the desired distri
butions of the magnetic field.

The solutions obtained in this manner fully determi
the structure of the magnetic field in magnetically coup
superconductors for an arbitrary relative displacementxd

5x22x1 of the vortex lattices in the two films.

2.2. Gibbs energy of a vortex lattice in magnetically coupled
superconductors

The behavior of a superconductor in an external m
netic fieldB0 is determined28 by the Gibbs energy

G5F2
1

4p E dV~H–B0!, ~17!

whereF is the free energy of the system. In calculating t
Gibbs energy per vortex in magnetically coupled superc
ductors, the integral must be evaluated within a unit cell
the vortex lattice,Sc5(uxu,uyu<a/2):

E dV5E
2`

1`

dzE
Sc

dx dy.

In the regions occupied by the superconductor (z1A<z
<z1B and z2B<z<z2C), the following expression for the
free energyFl corresponds to the London equation~1! ~see
Ref. 28!:

Fl5
1

8p E
Vl

dV @H l
21~l l“3H l !

2#, ~18!
t

ke

g

d

-

-
f

where

Vl5H ~x,yPSc , z1A<z<z1B! if l 51,

~x,yPSc , z2B<z<z2C! if l 52.

The energy of the magnetic fieldHb outside the supercon
ductor is determined in the usual way:

Fb5
1

8p E
Vb

dV Hb
2 ,

whereVb5H ~x,yPSc ,z.z2C! if b5C,

~x,yPSc ,z1B,z,z2B! if b5B,

~x,yPSc ,z,z1A! if b5A.

~19!

Using Eqs.~1! and ~13! and the boundary conditions~16!,
we see that the free energy

F5 (
l 51,2

Fl1 (
b5A,B,C

Fb ~20!

can be written

F5
1

8p H (
l 51,2

E
Vl

dV H l L̂ l~H l !2E
Sc

dS@UAL̂1~H1!#z1A

1E
Sc

dS@UBL̂1~H1!#z1B
2E

Sc

dS@UBL̂2~H2!#z2B

1E
Sc

dS@UCL̂2~H2!#z2CJ , ~21!

wheredS5dx dy z0 is the surface area element.
The interaction energyGc of Abrikosov-vortex lattices

in magnetically coupled superconductors~or, in other words,
the energy of mutual pinning of the vortex lattices! is the part
of the Gibbs energyG ~Eq. ~17!! that depends on the relativ
displacementxd of vortices in the two films:

G5G01Gc~xd!. ~22!

Obviously, the second term on the right-hand side of E
~17! contributes nothing toGc since it contains no terms
quadratic in the expansion coefficientsSl , Cl

s6 , and Cb
6 .

Substituting the Fourier expansions~5!, ~11!, and ~15! into
~21! and dropping terms that are independent ofxd , we can
write the interaction energyGc(xd) per unit vortex cellSc in
terms of the spectral functionsSl(n,m) and the Fourier ex-
pansion coefficientsCl

z6(n,m):

Gc~xd!52
F0

2

8pa (
n21m2Þ0

@q1S1~C1
z1e2g11C1

z2em1!

3~12e2d1!1q2S2~C2
z1em21C2

z2e2g2!

3~12e2d2!#
1

u2a
, ~23!

where d l5qldl , g l5qld3/2, and m l5d l1g l . The coeffi-
cientsCl

z6 in ~23! can be obtained by solving a system
linear algebraic equations~see Sec. 2.1! and can be ex-
pressed in terms of the spectral functionsSl(n,m) ~Eq. ~6!!
and the parameters of the problem. If in~23! we replace the
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Cl
z6 by the corresponding solutions and collect the coe

cients of like spatial harmonics, we obtain a Fourier ser
for the energyGc(xd):

Gc~xd!52
F0

2

a (
n>1

Gn cos~qanxd!. ~24!

Here the parameterxd5x22x1 is the relative displacemen
of the vortex lattices in the films, and the amplitudesGn of
the spatial harmonics can be expressed in terms of the s
tral functionsSl(n,m):

Gn5
1

4p (
m52`

`
P1Q21P2Q1

auD
, ~25!

where

Pl[Pl~n,m!5qlSl~12e2d l !S 11
ql

2e2d l

ql
1 D e2g l,

Ql[Ql~n,m!5SlH 2ql
2S 11

ql
2e2d l

ql
1 D sinh d l

1ql
1Fed l2S ql

2

ql
1D 2

e2d lG ~12e2d l !J e2m l, ~26!

D[D~n,m!5H q1
1q2

1ed3Fed12S q1
2

q1
1D 2

e2d1G
3Fed22S q2

2

q2
1D 2

e2d2G
24q1

2q2
2e2d3 sinh d1 sinh d2 J e2m12m2,

whereql
65ql6u, and d35ud3. The interaction force~per

vortex! of vortex lattices in magnetically coupled films is

f l52
dGc

dxl
~27!

and can be written as a Fourier series in the spatial harm
ics of the relative displacementxd :

f 152 f 25
F0

2

a2 (
n>1

An sin~qanxd!, ~28!

An5
n

2 (
m52`

`
P1Q21P2Q1

auD
, ~29!

whereP1,2, Q1,2, andD have been defined in~26!. Equa-
tions ~24!–~29! make it possible to calculate the mutual pi
ning energyGc(xd) and the forcef 1,2(xd) of the magnetic
interaction of vortex lattices in magnetically coupled sup
conducting films.

Figure 2 depicts the dependence of the spatial-harm
amplitudesAn , calculated by Eqs.~26! and ~29!, on the in-
ductionB0 of the external magnetic field for several valu
of the thicknessesd1 and d2 of the superconducting films
and the thicknessd3 of the insulating layer. The amplitude
-
s

ec-

n-

-

ic

An rapidly decrease as the inductionB0 and the numbern of
the harmonic increase, so that harmonics withn>2 in the
expansion~28! are significant only in weak fieldsB0;Hc1,
whereHc15F0 ln k/4pl2 is the lower critical field in the
London model.

If a vortex lattice is so dense that the distancea between
vortices is at most of the order of the magnetic-field pene
tion depthl1,2, Eqs.~26! and~29! become much simpler. If
in ~29! we ignore, forl1,2@a/2p, the exponentially small
terms and in~26! replace the spectral functionSl(n,m) with
the expression~8!, which is valid for superconductors with
large Ginzburg–Landau parameter,k1,2@1, we obtain a
simple representation for the amplitudesAn of the pinning
force f 1,2:

An.
n

2 (
m52`

`
e2ud3

ua

12e2ud1

q1
2l1

2

12e2ud2

q2
2l2

2
, ~30!

where

u5
2pAn21m2

a
, q1,25

2pAn21m21~a/2pl1,2!
2

a
.

Clearly, the Fourier spectrum ofAn exponentially decays ifn
is larger than a certain valuenm5a/2pd3. Thus, by selecting
the proper value of the thicknessd3 of the insulating layer
we can guarantee that the force of mutual pinning of vor
lattices,f 1,2, is harmonic over a broad range of film param
eters,

f 1,2.6 f c1 sin qaxd , ~31!

FIG. 2. Spatial-harmonic amplitudesAn (n5 123), calculated by Eqs.~26!
and~29!, as functions of the inductionB0 of the external magnetic field for
several values of the thicknessesd1 andd2 of the superconducting films and
the thicknessd3 of the insulating layer (l1,252000 Å andj1,2520 Å). The
solid curves correspond tod1,251000 Å andd35100 Å, the dashed curves
to d1,251000 Å andd35300 Å, and the dotted curves tod1,25500 Å and
d35100 Å.
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with the amplitudef c15F0
2A1 /a2 decreasing monotonically

asB0 increases.

3. EQUATION OF MOTION OF VORTICES IN MAGNETICALLY
COUPLED SUPERCONDUCTORS

For each film we write the equation of motion of vortic
in the periodic pinning potential generated by the interact
of vortex lattices in the two films. We assume that the d
namics of magnetic-flux motion is determined by the Lore
force fL5( j F0 /c)x0 per unit length of a vortex line, the
force being generated by the interaction of the currentj and
a vortex. We also assume that the internal~volume and sur-
face! pinning forcef p in both films is negligible and has n
appreciable effect on vortex motion. A vortex moving with
velocity v is subject to a viscous friction forcefh52hv
proportional to the velocity of the vortex. Under these a
sumptions, the equations of motion of vortex lattices alo
the x axis in magnetically coupled films can be written17,21

2h1ẋ11
F0

c
j 11

f 1

d1
50,

~32!

2h2ẋ21
F0

c
j 21

f 2

d2
50,

whereh1 andh2 are the phenomenological viscosity coef
cients of the films, and the interaction forcesf 1 and f 2 have
been defined in~28!. Introducing the phase differencew
5qaxd determined by the relative displacementxd of vortex
lattices, we can easily transform~32! into the following
equation, which describes the motion of vortices in magn
cally coupled superconductors:

aẇ1 j s~w!5 j . ~33!

The parametera5cah/2pF0 decribes the dissipation tha
results from the relative motion of vortex lattices, and t
function

j s~w!5
cB0

d (
n>1

An sin nw ~34!

determines the dependence of the currentj s flowing in the
films without losses on the arrangement of the vortices in
two films. Hereh, d, and j denote the reduced viscosit
coefficient, the reduced film thickness, and the redu
external-current density, and can be expressed in terms o
parameters of the problem:

h5
h1h2

h11h2
, d5

d1d2~h11h2!

h1d11h2d2
, j 5

j 2h12 j 1h2

h11h2
. ~35!

From now on we assume that the superconducting fi
are identical (l5l1,2, j5j1,2, d15d2, and h15h2) and
that the currents in the films are equal in magnitude a
opposite in direction (j 252 j 1). In this case the reduce
parameters specified in~35! are simply d5d1,2 and h
5h1,2/2, and j coincides with the density of the extern
current in the superconducting films:j 5 j 252 j 1.

The maximum current density

j c5max@ j s~w!#5 j c~wc! ~36!
n
-
z

-
g

i-

e

d
he

s

d

that can flow in magnetically coupled films without dissip
tion in the geometry being discussed corresponds to a mu
displacementxd

c of the vortex lattices in the two films fo
which the phasewc5qaxd

c satisfies the equation

S d js
dw D

w5wc

5 (
n>0

nAn cosnwc50. ~37!

Here j c can be considered the critical current, and if curre
higher than the critical value flow in the films, the vorte
lattices become stripped. If the currentj in the films is less
than j c , the mutual attraction of the vortices in the two film
fixes the relative spatial arrangement of the vortex latti
and ensures nondissipative flow of the current. Whenj
. j c , there is relative motion of the vortex lattices in the tw
films, which leads to dissipation when such a current flows
the films. Note that the attraction of vortex lattices in ma
netically coupled superconductors can be considered a
tional pinning of vortices, a factor that leads to an increase
the critical current as compared to the critical currentj p due
to the intrinsic~internal and surface! pinning of vortices in
the films. Such additional pinning can be detected in exp
ments and constitutes a problem in its own right.

Figure 3 depicts the dependence of the critical curr
density j c ~see Eqs.~34!, ~36!, and~37!! on the inductionB0

for several values of the film thicknessd and the thickness
d3 of the insulating layer. AsB0 increases, the vortex-lattic
period a decreases, vortex overlap grows, and the distri
tion of the magnetic field in the films becomes more unifor
This leads to a decrease in the mutual vortex-lattice pinn
force, and hence to a decrease in the critical current den
j c . Figure 4 depicts the dependence of the critical curr
density j c on the film thicknessd for several values ofB0

and the thicknessd3 of the insulating layer. The increase i
j c with d in the case of thin superconducting films (d!l)
can be explained by the decrease in the effective penetra
depthld5l2/d, which determines the characteristic spat
scale of the magnetic-field variations in a vortex.20 As the

FIG. 3. Dependence of the critical current densityj c ~see Eqs.~34!, ~36!,
and~37!! on the inductionB0 for several values of the film thicknessd and
the thicknessd3 of the insulating layer (l52000 Å andj520 Å). The solid
curve corresponds tod51000 Å andd35100 Å, the dashed curve tod
51000 Å and d35300 Å, and the dotted curve tod5500 Å and d3

5100 Å.
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film thicknessd becomes larger, a quasi-two-dimension
vortex transforms into an Abrikosov vortex, whose magne
field changes significantly over the penetration depthl. Here
the relative effect of the finite film thicknessd on the free
energyF1,2 of a vortex~Eq. ~18!! weakens, and ford.l the
perturbations introduced by the film surfaces are insign
cant. In the latter case, however, the external current is
tributed nonuniformly over the film thickness, and in writin
the equations of vortex motion~32! one must bear in mind
that the mean current densityj 1,2 depends on the film thick
nessd1,2, and furthermore, the axial lines of the vortices m
be tilted.

For values of the external magnetic fieldB0 at which the
period of the vortex lattice created by the field is moder
(a<l), the contribution of harmonics withn>2 in the ex-
pansion~34! is insignificant~see Fig. 2!. Hence, leaving only
the term withn51 in ~34!, which corresponds to the funda
mental harmonic with spatial frequencyqa , we obtain a
simple sinusoidal dependence of the supercurrentj s on the
phasew, corresponding to the harmonic law~31! for the
pinning force,

j s1~w!. j c1 sin w, ~38!

where the critical current density is

j c15
cB0A1

d
. ~39!

If the insulating layer is not very thin (d3>a/2p), we can
keep only the term withm50 in ~30!. If, in addition, for d
.a we ignore the fact that the thickness of the supercond
ing films is finite, them from~30! and ~39! we can easily
obtain

j c1.
cF0a2e22pd3 /a

64p5l4d
, ~40!

which is valid for superconducting films with a larg
Ginzburg–Landau parameter,k5l/j@1. The equation of

FIG. 4. Dependence of the critical current densityj c ~see Eqs.~34!, ~36!,
and~37!! on the film thicknessd for several values of the inductionB0 and
the thicknessd3 of the insulating layer. Curves1 correspond toB0

5100 G and curves2, to B05500 G (l52000 Å andj520 Å); the solid
curves correspond tod35100 Å and the dashed curves, tod35300 Å.
l
c

-
s-

e
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motion of vortices in magnetically coupled superconduct
~Eq. ~33!! corresponding to the sinusoidal dependence~38!
of the supercurrentj s on the phasew coincides with the
equation of the resistively shunted Josephson junc
model:29,30

aẇ1 j c1 sin w5 j , ~41!

where j c1 is given by~39!, j is the reduced external curren
density in the films~see~35!!, and the parametera describes
the dissipation that emerges in vortex motion. If the currenj
in the films is less thanj c1, Eq. ~41! has a steady-state solu
tion ws5qaxd

s, which determines the displacement of th
vortex lattices in the two films relative to their equilibrium
positions. In this case there is nondissipative current flow
the magnetically coupled films, which are in a mixed sta
even when there is no intrinsic pinning of the vortices in t
films.

4. RF RESPONSE OF MAGNETICALLY COUPLED
SUPERCONDUCTORS

When the currentj in a superconducting film exceed
the critical valuej c , the vortex lattices become stripped an
there is slippage of the vortex lattices relative to one anoth
In view of the periodicity of the interaction potential, suc
motion has a variable velocity component and must lead
generation of electromagnetic radiation. Qualitatively, t
motion can be considered the nonuniform motion of lattic
consisting of magnetic dipoles. Note that the motion of v
tices in the films generates an electric fieldE5 ẋdB0 /c with
a variable component. We restrict our discussion to ident
films with a dense vortex lattice (a,l). This means that Eq
~41! suffices to describe the motion of vortices in magne
cally coupled superconductors. Writing the viscosity coe
cienth5F0B0 /r fc

2 in terms of the resistivity of the films in
the flux-flow regime,r f5rnB0 /Hc2, wherern is the resis-
tivity of the films in the normal state, andHc25F0/2pj2 is
the upper critical field, we can obtain the following expre
sion for the frequency of oscillationv ~see Ref. 2!:

v5
Aj 22 j c1

2

a
5v0AS j

j c1
D 2

21, ~42!

v05
4pc jc1r fa

F0
5

4pc jc1rn

aHc2
. ~43!

The fact that the frequencyv of the electromagnetic
radiation emitted by magnetically coupled films depends
the spatial lattice perioda means that it is possible to tun
the frequency by applying an external magnetic fieldB0. If
the external currentj is substantially higher than the critica
value j c1,

v.
4pcrn

Hc2F0
1/2

jAB0. ~44!

By analogy with the well-known properties of Josephs
junctions, the system of magnetically coupled supercond
ors is expected to be sensitive to an external variable fiel21
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because microwave radiation synchronizes the motion of
magnetic flux, Shapiro-type steps appear in the curre
voltage characteristic.29

Let us discuss the relationship between the frequencv
and the constant voltageV0 generated by the relative motio
of vortex lattices. We take a superconducting bridge
length L and widthW and place it in an external magnet
field B0, so that a square lattice ofN3M vortices is formed
within a surface area ofL3W: N5L/a andM5W/a, where
a is the spatial period of the lattice. In the flux-flow regim
in the superconducting films there emerges an electric fieE
whose constant componentE0[^E& t ensures dissipation an
is determined, in accordance with Maxwell’s equation

“3E52
1

c

]B

]t
,

by the mean velocityv0 of a vortex lattice in the films:

E05
v0B0

c
. ~45!

The electric fieldE0 generates a constant voltage across
bridge,

V05E0L5E0aN. ~46!

After one periodT52p/v the pattern of the mutual arrange
ment of the vortex lattices is repeated, with the vortex latt
in each of the magnetically coupled films being displac
with respect to its previous position by one half of the spa
period of the lattice, i.e.,a/25v0T. This readily leads to a
relationship between the applied voltageV0 and the fre-
quencyv,

V05
\

2e

N

2
v, ~47!

which differs from the well-known Josephson relation1 by an
additional factorN/2, where the integerN is equal to the
number of vortices fitting into the bridge lengthL. Note that
when only one vortex lattice is mobile while the other
immobile ~e.g., because of strong intrinsic pinning!, the fac-
tor N/2 in ~47! must be replaced byN. The latter determines
the number of fluxons exiting the contour in the course
one period.

The dc electrical resistanceR0 of the bridge due to the
motion of the magnetic flux isR05V0 /I 0 at the operating
point, whereI 05 jS is the total current flowing through th
cross-sectional area of the filmS5Wd. When I 0 is much
greater than the critical currentI c5 j cS, the resistanceR0

approaches the characteristic resistance

R5
r fL

S
, ~48!

which corresponds to a current-independent shunt resist
in the resistively shunted Josephson junction model.

A convenient parameter describing the operation of s
a bridge is the characteristic voltage31

Vc5I cR. ~49!
e
t–

f

e

e
d
l

f

ce

h

Note that an elementary chain of vortices moving tra
versely to the bridge involves a voltageVc15Vc /N, which is
related to the characteristic frequencyv0 through the Joseph
son relation~see Eq.~47!!. At high currents (I 0@I c) and
under optimum matching conditions for the impedances
the bridge (Rc), and the load (RL), i.e., RL.Rc , we can
expect the rf power delivered to the load to be32

P;.
RIc

2

8
. ~50!

5. DISCUSSION

We now compare the behavior of magnetically coup
superconductors in which there is relative slippage of
vortex lattice with that of an ordinary Josephson junction.
an example, we take anS–N–S junction with a resistance
RN and thicknessdN of the normal layer. The weak link in
the S–N–S junction results from the proximity effect,28 and
the critical current in such a junction at temperatureT is
given by3

I c
SNS5

pD2

4ekBTRN
(
n>0

8

p2~2n11!2

l n

sinh l n
, ~51!

wherel n5(2n11)1/2dN /jN , D is the energy gap in the su
perconductors, andjN is the coherence length in the materi
of the normal layer. Clearly, Eq.~51! tells us thatI c

SNScan be
high when the normal barrier is thin (dN;jN), while its
resistanceRN is low. For dN@jN, the critical currentI c

SNS

exponentially decreases as the normal layer becomes thic
The low resistanceRN , which makes it difficult to match the
S-N-S junction with other devices, can be increased by
ducing the area of the junction. However, the smaller
junction area, the lower the radiated power.

When magnetically coupled superconductors are
volved, the weak link is established by the magnetic inter
tion of vortex lattices in the superconducting films. Let
compare the expression for the critical current densityj c1 in
magnetically coupled superconducting films~Eq. ~40!! with
the expression ~51! for the critical current of an
S–N–S junction. One can easily see thata/2p in ~40! plays
the same role as the parameterjN for an S–N–S junction:
the magnitude of the weak coupling between magnetic
coupled superconductors decreases exponentially in m
netic fieldsB0, for which the vortex lattice perioda is of the
order of the thicknessd3 of the insulating layer between th
superconducting films. Since we havea@j in fields B0

!Hc2, the requirements that the insulating layer in magne
cally coupled superconductors must obey are not so strin
as they are for Josephson junctions.

The characteristic resistanceR0 ~Eq. ~48!! of a bridge of
magnetically coupled superconductors does not explicitly
pend on the gap thicknessd3. This makes it possible to
matchR0 to the load impedanceRL by changing the lengthL
and widthW of the superconducting bridge without appr
ciably reducing the critical currentI c5 j c1S and hence the
radiated powerP; ~Eq. ~50!!.
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For clarity, we rewrite the relationship~47! between the
frequencyf 5v/2p and the voltageV0 across the bridge in
the form

f 52
2e

h
V1 , ~52!

whereV15V0 /N is the voltage generated across an elem
tary chain of vortices moving transversely to the bridge, a
the additional factor of 2 preceding the coefficient 2e/h
.483.6 MHz/mV reflects the obvious fact that for a give
voltageV1 the oscillating frequencyf doubles because th
vortices move toward one another.

We note one more interesting corollary of Eq.~52!. For
a bridge of given geometric dimensionsL3W, the depen-
dence of the radiation frequencyf on the external magneti
field B0 appears in ~52! via the relationship N(B0)
5L(B0 /F0)1/2. SinceN takes only integer values, the fre
quency f for a given voltageV0 across the bridge can tak
only discrete values, i.e., ifV0 is fixed, changes inf induced
by changes inB0 can take place only in jumps: the jump to
neighboring step corresponds to a change in the numberN of
vortex chains by61.

ExpressingI c andR0 in terms of the dimensions of th
bridge which is fabricated from magnetically coupled sup
conductors, we can write the expression~50! for the rf power
in the form

P;.P0~N3M !, ~53!

where P05r f j c
2a2d/8 is the power radiated by a unit ce

(a3a) containing only one vortex of a lattice. Note th
such an elementary bridge, made from magnetically coup
superconductors containing only one vortex (N51 and M
51), behaves in many respects like a single Josephson j
tion. Here the geometrical dimensions of such a bridge
determined not by the coherence lengthj but by a
5(F0 /B0)1/2, which simplifies the fabrication of such ob
jects from high-Tc superconducting materials in comparis
to the fabrication of ordinary Josephson junctions.

It is convenient to discuss the time-dependent Joseph
effect in weak-link systems in terms of fluxons that penetr
the junction.26 In an ordinary Josephson junction, it takes o
periodT for one fluxonF0 to pass through the region occu
pied by the junction. This means that such a system oper
at low power levels, and that raising the power requires s
chronizing a large number of junctions.32 Such synchroniza-
tion constitutes a complicated problem, since the juncti
are coupled only through the external circuit and there is
direct magnetic interaction of Josephson vortices in differ
junctions. In anL3W superconducting bridge based o
magnetically coupled superconducting films, the exter
magnetic fieldB0 generates a lattice of coupled vortices th
consists ofN3M unit cells. Equation~53! implies that it
takes one periodT for N3M vortices to re-interlock simul-
taneously, which is equivalent to synchronizing an array
N3M junctions. As a result, the rf power delivered to t
load also grows by a factor ofN3M . Here the frequencyf
decreases in comparison to the Josephson frequencf J

5V0(2e/h) only by a factor ofN for a fixed biasV0 across
the bridge. Such synchronous operation requires, howe
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that the vortex lattices move as a whole with respect to e
other. This can be ensured if the interaction energy in e
film, which determines the elastic properties of a vort
lattice,25 is much greater thanGc ~Eq. ~23!!, which charac-
terizes the interaction of neighboring vortex lattices in ma
netically coupled superconductors.

To illustrate the above results, we examine Joseph
devices based on magnetically coupled superconduc
films, and assume that the vortex lattices are counterpro
gating. Using the parameters of the dc transformer discus
by Ekin et al.,23,24 with the transformer fabricated from
granular aluminum films (Al/SiO2 /Al), i.e., Hc2550 G, l
56000 Å, rn510mV•cm, d5750 Å, andd35120 Å, we
find that for an external magnetic fieldB0510 G (a
51.4mm) the potential of mutual pinning of the vortex la
tices isDUc;10 meV, which provides a critical current den
sity j c.103A/cm2. The critical current for a bridge withL
50.7 mm (N5500) and W520mm proved to be I c

5 j cWd515mA. Substituting these data into~43!, ~48!, and
~49!, we can easily find the characteristic frequencyf 0

5v0/2p, the resistanceRc , and the voltageVc across a
bridge based on such magnetically coupled superconduc
films: f 0.0.3 GHz, Rc.10V, and Vc.0.15 mV (Vc1

.0.3mV). By virtue of ~42!, the frequency of the rf re-
sponse in such a system,f 5v/2p, depends on the excess o
the currentI 0 over the critical valueI c , i.e., on the choice of
operating point. Assuming that the voltageV0 across the
bridge is equal to the characteristic valueVc , we find that
f 5 f 0 , which corresponds to the currentI 0 in the films being
equal toA2I c.21mA, and to motion of the vortex lattices
toward one another with a velocityv05a f /2.23104cm/s.
Here Eq. ~50! estimates the rf powerP; delivered to a
matched load,RL.Rc , to be;1029 W.

Another example deals with magnetically coupl
YBCO superconducting films with typical parameters33 l
52000 Å andr f510mV•cm and dimensionsd5500 Å,
d35100 Å, L50.7 mm, andW520mm. The mutual pin-
ning potentialDUc of the vortex lattices in such magnet
cally coupled superconducting films in an external magne
field B051000 G (a51400 Å andN55000) reachesDUc

;0.1 eV. The critical current density and the critical curre
determined by the interaction of the vortex lattices in the t
films, arej c.23104A/cm2 and I c50.2 mA. The character-
istic parameters of a bridge fabricated from such magn
cally coupled superconducting films aref 0.2.7 GHz, Rc

.70V, and Vc.14 mV (Vc1.2.8mV). Assuming as we
did in the previous example that the voltageV0 across the
bridge is equal to the characteristic valueV05Vc , we find
that the frequencyf is equal tof 0 and that the currentI 0 in
the films isA2I c.0.28 mA. The mean vortex velocityv0 in
the films isv05a f /2.23104cm/s, and an estimate of th
emitted rf powerP; ~Eq. ~50!! at the oscillating frequency
yields P;;0.35mW.

Note that such high critical current densities,j c

; 1042105A/cm2, flowing in an S–N–S junction with an
area of 0.8mm2 fabricated from high-Tc superconducting
materials can be observed only at very low resistances
such a junction,RN;0.1V ~see Ref. 34!. However, the
study of magnetically coupled films that are based on hi
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Tc superconductors is hindered by the high values of
critical current densityj p ~i.e., strong internal pinning o
Abrikosov vortices in such films! characteristic of high-Tc

superconducting materials. Granular high-Tc superconduct-
ing films, which have a low energy of internal pinning fo
the intergranular vortices, may prove to be promising hig
Tcsuperconducting materials for studying the motion of v
tices in magnetically coupled superconductors.35

Obviously, the moderate frequenciesf at which mag-
netically coupled superconducting films radiate, result fr
the relatively low velocities of Abrikosov vortices in supe
conductors. However, the method of creating nonunifo
motion of vortex structures discussed in this paper is univ
sal and can be realized in long magnetically coupled Jose
son junctions.36 The characteristic velocities of Josephs
vortices in flux-flow oscillators~FFO! reach 107–108cm/s at
frequenciesf ; 2002450 GHz ~see Ref. 37!. The use of a
pair of long Josephson junctions as an FFO between w
there is additional magnetic coupling38 make it possible to
synchronize the oscillators with vortices moving in a sing
direction. The advantage of the regime suggested in this
per, with counterpropagating vortices, lies in the fact that
magnetic coupling between Josephson vortices makes it
sible to increase the oscillating frequency and radia
power.

6. CONCLUSION

We have shown that when the vortex lattices in magn
cally coupled superconducting films move relative to o
another in the dc transformer geometry, the system gene
electromagnetic radiation efficiently. The fact that there
magnetic coupling between identical vortex lattices guar
tees self-consistency of the periods of the vortex lattices
pinning potential, and optimum coupling between them. T
equation describing the viscous motion of the vortex latti
in magnetically coupled superconducting films coincid
with the equation of the resistively shunted Josephson ju
tion model, in which the relative displacementxd of the vor-
tex lattices in the films acts as the phase differencew. The
relatively large number of easily controlled parameters, i
the thickness of the superconducting films, the thicknes
the insulating layer, and the temperature-depend
magnetic-field penetration depth, make it possible to a r
ize an operational mode in which the force of mutual pinn
of the vortex lattice varies harmonically over a given ran
of external magnetic fields. This ensures a sinusoidal dep
dence of the supercurrentj s on the phasew in the equivalent
resistively shunted Josephson junction model.

We find that magnetically coupled superconductors p
sess the properties of a Josephson element without any
straints imposed by the coherence lengthj on the spatial
dimensions of the magnetically coupled system. The fact
there is an analogy between the motion of vortices in m
netically coupled superconductors and a Josephson junc
implies that the system examined here is sensitive to exte
electromagnetic radiation: because microwave radiation s
chronizes the motion of the magnetic flux, Shapiro-type st
appear in the current–voltage characteristic. The freque
e
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of the electromagnetic radiation generated by the rela
motion of vortex lattices in magnetically coupled superco
ductors depends on the spatial period of the vortex latti
and the velocity of relative vortex motion, which means th
the frequency of the radiation can be tuned by applying
magnetic field or a current. When in magnetically coupl
superconducting films there is relative motion of vortex l
tices consisting ofN3M unit cells, it takes one oscillation
period for N3M vortices to re-interlock simultaneously
which is equivalent to synchronizing an array ofN3M Jo-
sephson junctions.

The magnetic coupling of the vortex lattices in th
neighboring films constitutes an additional pinning mech
nism with a well-known and relatively simple pinning pote
tial, which can be calculated analytically and compared
rectly with the experimental data. This opens ne
possibilities in establishing the nature of pinning, since
becomes possible to efficiently control the magnitude a
spatial scale of the additional pinning potential.
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Temperature dependence of the heat capacity and saturation magnetization of dilute
reentrant ferrimagnetic spinels
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Using model objects consisting of dilute reentrant spinels Li0.5Fe2.52xGaxO4 with x51.0– 1.2,
this paper describes the temperature dependence of the magnetic contribution to the heat
capacity,Cm(T), at H50 and temperatures exceeding the freezing temperature (Tf ;10 K) and,
for T>4.2 K, the low-field magnetizationsH(T) and the saturation magnetizationss(T),
as well as the magnetization isothermssT(H) in fields of up to 10 kOe. The specific features of
the behavior of the overall characteristics ofCm(T) andss(T) are found for the states of a
frustrated ferrimagnetic that occur in the conditions considered here~H50 and T.Tf or T
>4.2 K and strong magnetic fields! and are discussed in connection with changes in the
magnetic excitation spectrum caused by local breakdowns of collinear spin ordering and
frustrations. ©1998 American Institute of Physics.@S1063-7761~98!01604-7#
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1. INTRODUCTION

This paper presents the results of a study of the magn
and thermal properties of dilute two-sublattice ferrimagne
spinels Li0.5Fe2.52xGaxO4 (1.0<x<1.2), which are included
among Heisenberg magnets with short-range exchange.
0.9<x,1.5 interval on thex2T phase diagram correspond
to the concentration region of reentrant states, where, as
temperature decreases, a paramagnetic–ferrimagnetic tr
tion is initially observed at the Curie pointTC , and then a
ferrimagnetic–ferrimagnetic spin-glass transition is obser
at the freezing temperatureTf,TC .1,2 The latter is charac-
terized by the existence atT,Tf of long-range ferrimagnetic
order ~spontaneous magnetizationssÞ0! with the typical
properties of a spin glass. Forx51.0– 1.2, theTf values are
about 10 K, and the ferrimagnetic spin-glass states br
down in rather weak magnetic fields,H,Hs ~the technical
saturation field of the ferrimagnet!. The value ofTC de-
creases from 435 (x51.0) to 325 K (x51.2).

The problem of reentrant states in Heisenberg syst
with short-range interaction~formation mechanisms, th
presence of phase transitions with 0 K,T,TC , magnetic
structure! continues to attract the attention of investigato
and, obviously, cannot be solved except in connection w
ferrimagnetic states, which precede the ferrimagnetic s
glass in concentration and temperature (T.Tf).

3,4 Ferrimag-
netic states of this kind are interesting in themselves. In v
ous cross sections ofx2T2H parameter space, this can in
clude a frustrated ferrimagnetic, ferrimagnetics w
fluctuating exchange, with fluctuating exchange and stoch
tic magnetic structure, etc. The properties of such magn
including the magnetic-excitation spectrum, can significan
differ from those inherent to homogeneous colline
structures.5–8

Guided by such considerations, we undertook studie
the concentration intervalx51.0– 1.2, which corresponds t
the beginning of the formation of ferrimagnetic spin-gla
7311063-7761/98/86(4)/6/$15.00
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states on thex2T phase diagram of Li–Ga spinels in th
T50 K cross section.1 Particular attention was concentrate
on the study of the ferrimagnetic region, namely, on t
states that precede spin glass in temperature~Tf,T,TC ,
H50! or occur under the action of a magnetic fieldH.Hs

for T>4.2 K, i.e., both forT,Tf and forT.Tf . An advan-
tage of the test objects considered here is that they co
spond to the simulation concepts of Ref. 9, where the mec
nism of the formation of spin-glass states~semispin-glass
states, in the author’s terminology! in dilute ferrimagnetic
spinels with one sort of magnetic ions was theoretically c
sidered.

According to Ref. 9, when dilution occurs in region
with an increased content of nonmagnetic ions~composition
disorder!, local breakdown of the collinearity, or canting
occurs. These canted spins partially polarize the collin
matrix, as a result of which more extended regions of lo
noncollinearity are formed. As a consequence of the com
tition of inter- and intrasublattice antiferromagnetic intera
tions, frustrated exchange coupling appears within these
gions. At some concentration of nonmagnetic ions, th
regions begin to overlap over the entire crystal. This cor
sponds to the formation of long-range transverse order of
spin glass with respect to spontaneous magnetizationss .

Such a mechanism for forming ferrimagnetic spin-gla
states, unlike the conclusions of Gabay–Toulouse mean-
theory,10 does not presuppose the formation of regular n
collinear structures in the regionTf,T,TC . The state
achieved in the finite temperature intervalT.Tf can be re-
garded as a state of a frustrated ferrimagnet with local
struction of collinear spin ordering in the form of regions
local noncollinearity. This paper is devoted to an experim
tal study of the thermal and magnetic properties of suc
state, with a program that includes a study of the tempera
dependence of the magnetic contribution to the heat capa
Cm(T) and the saturation magnetizationss(T), as well as
© 1998 American Institute of Physics
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FIG. 1. Polytherms of the magnetizationsH(T) in ZFC regimes
~preliminary cooling of the sample to 4.2 K in the absence of a fie!
and FC~cooling withHÞ0! of the spinel Li0.5Fe1.4Ga1.1O4 for vari-
ous values of the field:1—10 Oe,2—30 Oe,3—50 Oe,4—100 Oe.
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the low-field polytherms of the magnetizationsH(T) and the
isotherms ofsT(H) in fields up to 10 kOe.

2. SAMPLES AND MEASUREMENT TECHNIQUE

The studies were carried out on single-phase polyc
talline samples obtained by standard ceramic technolog
in Refs. 1 and 2. The isotherms of the specific magnetiza
sT(H) were measured at temperatures from 4.2 to 100 K
fields of up to 10 kOe on a ballistic magnetometer similar
that used in Refs. 1 and 2. The sensitivity of the appara
was 1023 G cm3g21. The temperature was measured
means of a carbon thermometer and was kept constan
within 61 K during the measurements. Along with this, t
sH(T) dependences in fields ofH55 kOe, which exceeded
the technical saturation fieldHs , were directly measured
with a temperature step of~3–5! K.

The method of measuring the heat capacity and the te
nique of distinguishing the magnetic contributionCm(T) are
similar to what we used in Ref. 11. The low-temperatu
measurements from 2 to 22 K were also duplicated on
apparatus described in Ref. 12. The measurement erro
heat capacityC was less than61%. A carbon thermomete
was also used to measure the temperature.
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3. EXPERIMENTAL RESULTS AND THEIR DISCUSSION

3.1. Magnetic properties in weak „H<Hs… and strong „H
>Hs… magnetic fields

First of all, it is expedient to consider the experimen
results that can serve as evidence of the existence in w
magnetic fields atT.Tf of inhomogeneities of the ferrimag
netic structure in the form of a region of local noncollinea
ity. Figures 1 and 2 show magnetization polythermssH(T)
of samples withx51.1 and 1.2, respectively. The notation
ZFC and FC indicate different prehistory: ZFC denotes p
liminary cooling of the samples toT,Tf ~in our case, toT
54.2 K! in the absence of a field, while FC denotes cooli
with HÞ0. As can be seen from these figures, the beha
of the magnetization polytherms is irreversible,sZFC(T,H)
ÞsFC(T,H), over a wide region,T.Tf ;10 K, and be-
comes stronger as the temperature decreases, especial
T,Tf . As field H is increased in the high-temperature r
gion, the irreversibility effects are suppressed, but they
come more intense asT→Tf

1 : the difference Ds
5sFC2sZFC increases. Such behavior at low temperature
typical of systems with spin-glass ordering.1,2,13 For x
<1.1, the irreversibility effects manifest themselves in
identical way and disappear over the entire tempera
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rangeT>4.2 K for H>100 Oe. In contrast, the irreversibi
ity is expressed more strongly forx51.2 ~see Fig. 2 and Ref
1! and, asT→0, exists in fields up to several hundred oe
sted.

In the concentration region considered here, the beha
in small fields (H,Hs) must be determined by the doma
structure. In particular, the most probable cause of irrev
ibility both for T→0 K and for higher temperatures is pin
ning of the domain boundaries. In this case, the pinning c
ters in general can consist of both inhomogeneities of
polycrystalline structure~inclusions, pores, local stresse
etc.! and inhomogeneities of the magnetic ordering cau
by local breakdowns of spin collinearity.14,15 The former
mechanism causes irreversibility in ordinary magnetica
soft ferromagnets: in weak magnetic fields, irreversibility e
ists at temperatures from 0 K to TC , but the form of the
sZFC(T) andsFC(T) dependences can differ greatly.14

In comparison with this, irreversibility effects are e
pressed differently in Li–Ga spinels: they exist in far stro
ger magnetic fields, and a specific variation~of the spin-glass
type! of the behavior ofsZFC(T) is observed as the field
increases andT→0 K. At the same time, their dependen
on the concentrationx of the nonmagnetic Ga31 ions shows
up clearly. In combination, all this is evidence of a seco
irreversibility mechanism, associated with the presence
regions of local noncollinearity. Note that the presence
these regions, which arise as pinning centers of the dom
boundaries, can be used to explain the decrease of the
part of the dynamic susceptibility forT,100 K mentioned
earlier.2 Thus, the data obtained at low fields experimenta
confirms the existence of regions of local noncollinear
theoretically predicted in Ref. 9 for the objects under cons
eration.

Figure 3 shows the magnetization isothermssT(H) of
the test samples atT54.2 K andH<10 kOe. It can be seen
that, for concentrations ofx51.0 and 1.1, technical satura
tion is reached atHs;2 kOe, and there is no para-proces
This shows that local noncollinearity is broken down by t
magnetic field, and a collinear ferrimagnetic state~or some-
thing very close to it! occurs forH.Hs . The noncollinear
structure is more stable against the action of the field for

FIG. 2. Polytherms of the magnetizationsH(T) in ZFC and FC regimes of
the spinel Li0.5Fe1.3Ga1.2O4 for various values of the field:1—50 Oe,2—100
Oe.
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sample withx51.2, as is evidenced by the presence o
para-process whenH.Hs . This correlates with the irrevers
ibility behavior, which is also expressed more strongly f
this concentration.

3.2. Temperature dependences of the heat capacity Cm„T…

The temperature dependence of the magnetic contr
tion to the heat capacityCm(T) of Li–Ga spinels withx
51.0– 1.2 for T.Tf , i.e., in the ferrimagnetic region, is
shown in Fig. 4. For comparison, this figure also shows
data from Ref. 2 for a sample withx50.9. For clarity, the
experimental curves are shifted along the vertical axis (Cm)
relative to each other. Assuming that the features of the
havior caused by the character of the ferrimagnetic sta
considered here can show up most clearly mainly in the te
perature region close toTf , we have initially restricted our-
selves to the interval 10,T<40 K for all samples. Inciden-
tally, we should point out that, forT,Tf in the test objects,
as in other reentrant magnets,Cm(T);T.11,13,16

In analyzing the results given in Fig. 4, the followin
should be pointed out: The spin-wave lawCm;T3/2, which
is obeyed for unsubstituted Li spinels,11 here clearly breaks
down as a consequence of the formation of maxima. Ho
ever, neglecting the maxima, theCm(T) curves as a whole
maintain positive curvature~are concave!, in which they dif-
fer from the similar dependence with higher Ga31

concentrations,11 as well as from those cited for other spin
glass systems, where theCm(T) curves have negative curva
ture ~are convex!.13

With regard to the latter, we should immediately poi
out that the transition fromCm;T3/2 dependence~undiluted
ferrimagnets! to convex curves~spin-glass systems!, must
naturally pass through certain intermediate stages that re
the changes in the magnetic subsystem caused by a gra
increase of the concentration of nonmagnetic ions. The
sence in the literature of detailed information on this qu
tion is evidence only that the region of thex2T diagrams
corresponding to the beginning of the formation of ferrima
netic spin-glass states has so far been studied very little

Taking into account that the concave shape of theCm(T)
curves is caused by spin waves with a quadratic disper
law, it was of interest to consider the concentration evolut

FIG. 3. Isotherms of the magnetizationsT(H) of the dilute spinels
Li0.5Fe2.52xGaxO4 (x51.0– 1.2) forT54.2 K.
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of the Cm(T) dependences from the standpoint of their d
viation from theT3/2 law. To do this, the experimental curve
were replotted inCm2T3/2 coordinates. For illustration, on
of these curves (x51.2) is shown in the inset of Fig. 4. I
was established by using this procedure that, forx>1.0, the
T3/2 law is satisfied only in the temperature region direc
adjacent toTf , i.e., T&22 K. At higher temperatures, de
spite the presence of maxima, the experimentalCm(T) de-
pendence rises less steeply than would follow from aT3/2

law ~dashed curves in Fig. 4!. In contrast to this, for a sampl
with x50.9, a maximum is superposed on theT3/2

dependence.2 As a whole, the behavior of theCm(T) tem-
perature dependence for all samples withx50.9– 1.2 can
obviously be interpreted as follows: In the temperature in
val under consideration, the main type of excitation in t
magnetic subsystem is spin waves, but the density of st
in the spin-wave spectrum decreases as the degree of dil
and the temperature increase. Other contributions to the
capacity also appear as temperature increases, becau
which maxima appear on theCm(T) dependences.

FIG. 4. Temperature dependences of the magnetic contribution to the
capacityCm(T) of the dilute spinels Li0.5Fe2.52xGaxO4 ~x51.0– 1.2 andx
50.9 from Ref. 2! for H50. Forx51.0– 1.2, the curves are shifted upwar
along the vertical axis by~0.5, 1.0, and 1.5!3102 J K21g21, respectively.
The inset shows theCm(T3/2) dependence for the sample withx51.2. The
dashed curves show extrapolations ofCm(T);T3/2 for T&20 K.
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The shape of these maxima, as well as the concentra
variations of the course of theCm(T) dependences, clearl
show that the detected features of theCm(T) behavior are
not associated with a phase transition from a collinear to
ordered noncollinear ferrimagnetic structure. This is a
supported by the fact that, for the temperatures correspo
ing to these maxima, no anomalies are observed in the
havior of the temperature dependences of the real partx8(T)
and imaginary partx9(T) of the low-field dynamic suscep
tibility, whereas the latter has a characteristic maximum
T5Tf .2,17

At the same time, the appearance of maxima on
Cm(T) dependences probably reflects the fact that additio
degrees of freedom appear in the magnetic subsystem.
erence 9 expressed the assumption that this could be ca
by regions of local noncollinearity. If the presence of the
regions really causes the appearance of new modes in
excitation spectrum, because of which maxima are form
on the Cm(T) dependences, it is clear that there must
several such maxima. This follows directly from the circum
stance that the formation of such regions is a statistical p
cess that is determined by the random placement of the n
magnetic ions in the spinel lattice.9 Taking into account the
short-range character of the exchange, there is a good b
for assuming that, for the givenx values, there exist severa
more probable types of regions of local noncollinearity~the
degree of breakdown of the exchange, elongation, etc.!. As a
consequence, excitations with an identical nature, associ
with different types of regions of local noncollinearity, mu
appear~and manifest themselves! at different temperatures.

The experimental data that have been obtained ag
with such concepts. Actually, the maximum that appears
x50.9 superposed on theT3/2 dependence is maintaine
even at high concentrations of nonmagnetic ions, but
shape varies with increasingx. At the same time, theCm(T)
behavior also varies in the low-temperature region—theT3/2

law breaks down and, as is clearly seen from theCm(T)
dependence forx51.2, new maxima appear. By extendin
the temperature interval to 60 K forx51.2, we convinced
ourselves that the maxima exist even at higher temperatu

It follows from the results of Sec. 3.1. that the regions
local noncollinearity are destroyed by a magnetic fie
Therefore, studying the overall characteristics ofCm(T) or
ss(T) in a magnetic field makes it possible to experimenta
check the presence of coupling between the additional c
tribution to the heat capacity and regions of local nonc
linearity. Keeping this in mind, we have also studied t
temperature dependence of the magnetization in a field
H55 kOe for all samples withx>1.0.

3.3. Temperature dependence of the saturation
magnetization

The temperature dependence of the magnetization of
test samples in a field ofH55 kOe atT5(4.2– 100) K are
shown in Fig. 5. It can be seen from the results shown ea
in Sec. 3.1.~Fig. 3! that this magnetization can be regard
as saturation magnetization forx51.0 and 1.1. Although the
saturation is not complete atH55 kOe for the sample with

eat
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x51.2, technical saturation is achieved. Therefore, the t
saturation magnetization (ss) will be used below for all the
samples in just this sense.

As follows from the data of Fig. 5, unlike theCm(T)
temperature dependence, there are no sharp changes
temperature behavior forss(T) in each separate case. How
ever, whereas theCm(T) behavior, in general, is of the sam
type for all the samples, appreciable concentration variati
occur at low temperatures forss(T). This includes the ap-
pearance of a plateau forT,30 K for thex51.1 case and a
weakly expressed maximum forx51.2 in theT,50 K re-
gion.

The uniform behavior of thess(T) dependences is evi
dence that additional excitations in the magnetic subsyst
manifesting themselves in the form of maxima on theCm(T)
curves, either do not alter thez projection of the magnetiza
tion or are suppressed by the magnetic field because o
breakdown of their sources. If it is assumed that regions
local noncollinearity serve as such sources, both possibil
can take effect simultaneously. In particular, it was assum
in Ref. 9 that rigid rotation of these regions around the
rection ofss(T) can occur.

When the regions of local noncollinearity are complete
destroyed by a magnetic field, i.e., when collinear ferrim
netic structure is restored, thess(T) dependence must prob
ably obey the spin-waveT3/2 law. In order to check this, the
experimental data forss(T) were also replotted inss2T3/2

coordinates, as is shown in Fig. 5.
It can be seen that theT3/2 law is obeyed in the entire

temperature range~4.2–100! K for a sample withx51.0,
whereas, forx51.1 and 1.2, it is obeyed only in the com
paratively high-temperature region, i.e., forT.30 K andT
.50 K, respectively. Nevertheless, in our opinion, in co
bination with the data on theCm(T) behavior, this can sup
port the hypothesis that the presence of regions of local n
collinearity for H50 causes new degrees of freedom
appear in the magnetic subsystem, which make an additi
contribution to the heat capacity.

The observed changes of thess(T) behavior at low tem-
peratures for the casesx51.1 and 1.2 do not contradict this

FIG. 5. Temperature dependences of the saturation magnetizationss(T) of
the dilute spinels Li0.5Fe2.52xGaxO4 (x51.0– 1.2) inss2T3/2 coordinates.
The solid curves are calculated from Eq.~2!. The values ofA and D are
given in the text.
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if local noncollinearity and frustrations are maintained
these samples and in the presence of a fieldH.Hs . As
shown in Refs. 18–20, theCm(T) and sH(T) behavior is
determined in such a situation by the presence of a gap in
excitation spectrum, which has the form

D5m~H2H0!, ~1!

wherem is the magnetic moment,H is the external field, and
H0 is the internal field. The presence of the term2mH0 ,
which, in contrast to the external fieldH, promotes the ap-
pearance of magnetic excitations, is caused by the pres
of competition of the exchange and by frustrations.19 Al-
though the completely disordered state, i.e., a type of s
glass, was chosen as the initial state in the calculatio
model of Ref. 19, it changes in large fields to a frustra
ferrimagnetic state. Moreover, the magnetic excitations
regarded in Ref. 19 as noninteracting spin waves.

Starting from this, we attempted to approximate the e
perimentalsm(T) curves forx51.1 andx51.2 by a depen-
dence of the form21

ss~T!5ss0@12AT3/2 exp~2D/kT!#, ~2!

whereA, ss0 , andD are parameters to be determined, andk
is Boltzmann’s constant.

We obtained the following values for the parameters
mathematically processing the experimentalss(T) data: For
x51.1, we have ss05(46.760.7) G cm3g21, A5(12.0
60.5)31025 K23/2, and D5(215.260.1) K. For x51.2,
we have ss05(39.360.2) G cm3g21, A5(14.060.1)
31025 K23/2, and D5(214.861.2) K. In both cases, the
correlation coefficient isR.0.99. The calculated results ar
shown in Fig. 5 by solid curves.

The values obtained for the parameters of Eq.~2! are
quite reasonable. For comparison, we should point out t
for x51.0, the coefficientA in Bloch’s law forss(T) equals
(18.161.2)31025 K23/2. The negative sign ofD is ex-
plained by the small value of the applied external field. U
ing asm the magnetic moment of the Fe31 ion, i.e., 5mB , at
H55 kOe we havemH.0.3 K. Consequently, the gap i
virtually completely determined by the internal fieldH0 . The
numerical values ofD are close to the corresponding freezin
temperaturesTf ;10 K. The same result (uDu*Tf) was ob-
tained when the heat capacityCm(T) in large fields was in-
vestigated for samples of the~Eu–Sr!S spin-glass
system.18,20 There is thus a basis for assuming that the ch
acter of thess(T) temperature dependences at low tempe
tures in a field ofH55 kOe also reflects the specifics of th
ferrimagnetic states that occur under these conditions,
(T,H), in samples withx51.1 and 1.2, namely, the presen
of local noncollinearity and frustrations. For thex51.2 case,
their presence obviously follows from the results of Fig.
~see Sec. 3.1.!. This apparently also occurs for thex51.1
sample, although in a lesser degree. With the small sus
tibility of the para-process, the absence of saturation in fie
H<10 kOe can evidently by recorded only by a SQU
magnetometer.
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4. CONCLUSION

The results of the study of the thermal and magne
properties of model objects—the dilute reentrant ferrim
netic spinels Li0.5Fe2.52xGaxO4 (x51.0– 1.2)—have con-
firmed the main concepts of the formation mechanism
ferrimagnetic spin-glass states in such systems, obta
theoretically.9 The spin-glass state is preceded in tempera
~T.Tf , H50! by the frustrated ferrimagnet state, which
characterized by the presence of local breakdowns of co
ear ferrimagnetic ordering—regions of local noncollinear
with frustrated exchange couplings retained within the
The ordered noncollinear structures whose existence foT
.Tf is predicted in the Gabay–Toulouse mean-field mod10

are absent here.
This model of the formation of ferrimagnetic spin-gla

states is compared with the features detected in the beha
of the temperature dependence of the heat capacity,Cm(T) at
H50, which as a whole deviate from the BlochT3/2 law and
demonstrate the presence of maxima due to contributions
associated with spin waves. In the presence of a sufficie
strong magnetic field (H.Hs), which breaks down the fer
rimagnetic spin-glass state and restores the collinear f
magnetic structure at all temperaturesT>4.2 K, theT3/2 law
is obeyed for saturation magnetizationss(T) ~the x51.0
case!, which confirms that the additional modes in the ma
netic excitation spectrum are associated with regions of lo
noncollinearity.

If frustrations are maintained even in strong magne
fields, then, according to the data that we obtained on
character of thess(T) dependence for samples withx51.1
and 1.2 and theCm(T) data taken from Refs. 18–20 for th
~Eu–Sr!S system, a gap of the formD5m(H2H0) appears
in the magnetic excitation spectrum. In this case, the exc
tions can be regarded as noninteracting spin waves, while
2mH0 term that promotes their appearance is caused by
competition of the exchange interactions and by frustratio

It is possible that the temperature dependence ofCm(T)
at H50 (x51.1– 1.2) and of the saturation magnetizati
ss(T) as T→0 K ~x51.1 and 1.2! detected in this work
reflect certain common regularities in the variation of t
character of the magnetic-excitation spectrum in frustra
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ferro- and ferrimagnetic systems with short-range acti
However, this question requires further study.

In conclusion, I consider it my pleasant duty to expre
my gratitude to V. A. Pervakov, S. R. Kufterina, and N. Y
Tyutryumova for help in making the measurements.

1N. N. Efimova, Yu. A. Popkov, and N. V. Tkachenko, Zh. E´ ksp. Teor. Fiz.
90, 1413~1986! @Sov. Phys. JETP63, 827 ~1986!#; Fiz. Nizk. Temp.16,
1565 ~1990! @Sov. J. Low Temp. Phys.16, 881 ~1990!#.

2N. N. Efimova, Yu. A. Popkov, S. R. Kufterina, V. A. Pervakov, V.
Ocharenko, and N. Yu. Tyutryumova, Fiz. Nizk. Temp.20, 546 ~1994!
@Low Temp. Phys.20, 431 ~1994!#.

3W. M. Saslow, and G. Papkep, Phys. Rev. Lett.56, 1074~1986!.
4J. R. Thomson, Hong Gud, D. Y. Ryanet al., Phys. Rev. B45, 3129
~1992!.

5T. A. Kaplan, Phys. Rev.109, 782 ~1958!.
6I. Ya. Korenblit and E. F. Shender, Usp. Fiz. Nauk126, 233 ~1978! @Sov.
Phys. Usp.21, 832 ~1978!#.

7V. A. Ignatchenko and R. A. Iskhakov, Zh. E´ ksp. Teor. Fiz.72, 1005
~1977! @Sov. Phys. JETP45, 526 ~1977!#; Izv. Akad. Nauk SSSR, Ser
Fiz. 44, 1434~1980!.

8I. Ya. Korenblit and E. F. Shender, Phys. Rev. B33, 624 ~1986!.
9J. Villain, Z. Phys. B33, 31 ~1979!.

10M. Gabay and G. Toulouse, Phys. Rev. Lett.47, 201 ~1981!.
11N. N. Efimova, V. A. Pervakov, V. I. Ovcharenko, and N. Yu. Tyutyu

mova, Fiz. Tverd. Tela35, 2838 ~1993! @Phys. Solid State35, 1405
~1993!#.
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Kinetic theory of rotating molecule interaction with a solid surface
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A kinetic theory of interaction between molecules with rotational degrees of freedom and a solid
surface for arbitrary ratios among the times of molecule rotation, flight through the region
of surface forces, and relaxation of a molecular ensemble due to phonons has been developed. A
kinetic equation for an ensemble of molecules residing in the field of surface forces has
been derived from the equation for the one-particle distribution function of molecules by averaging
it along the dynamical trajectories in the region of surface force action. A simple analytic
expression for the probability of trapping a molecule with rotational degrees of freedom has been
obtained. Experimental data on rotational cooling and rotational polarization of desorbed
molecules are discussed. ©1998 American Institute of Physics.@S1063-7761~98!01704-1#
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1. INTRODUCTION

In recent years considerable attention has been focu
on the dynamics of multiatomic molecules interacting w
solid surfaces. Features of the adsorption dynamics show
in distributions of molecules over various states affected
their interaction with a surface. Using laser spectrosco
techniques, which are sensitive to rotational states of a m
ecule, researchers have obtained abundant information a
the distribution of molecules scattered in the therm
regime.1–5 Effects of rotational polarization and the ‘‘rota
tional rainbow’’1–3 in scattered molecules, translational coo
ing, rotational cooling, and polarization of desorb
molecules3–5 have been observed. Features of the distri
tion over rotational states of molecules during their inter
tion with surfaces manifest themselves in transport proce
in rarefied gas—in particular in light-induced drift6 and the
influence of the magnetic field on heat and particle flows7,8

Effects connected with the nonequilibrium distributio
of molecules interacting with a surface can be described
natural way by the kinetic theory. Techniques based on
microscopic approach have been developed thus far only
monatomic particles.9–11 As for molecules with internal de
grees of freedom, the theory runs into considerable diffic
ties. Thus, in polyatomic molecules the interaction poten
with a surface strongly depends on the angular orientatio
the molecule.12 For thermal molecules, the times of rotatio
and flight through the region of surface forces (10213–10212

s! are comparable to the relaxation time of the molecu
ensemble due to phonons in the solid.11 Progress in describ
ing surface scattering of rotating molecules has b
achieved only in computer simulations~molecular
dynamics12,13!. Some features of the distribution of fast sca
tered molecules have been satisfactorily described by
namical scattering theory.14,15

In the reported work we have developed a consist
7371063-7761/98/86(4)/8/$15.00
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kinetic theory of rotating molecules interacting with a so
surface~Sec. 2!. It is based on the theory11 proposed earlier
for monatomic particles and is a generalization of the la
theory to molecules with rotational degrees of freedom.
fundamentally new feature of our theory, which allows us
describe the distribution of molecules residing in a comp
multidimensional field, is the introduction of new variable
defining molecular trajectories in the mean surface field
stead of traditional canonically conjugate variables. Bel
we purpose a kinetic equation obtained by averaging the
act equation for a one-particle distribution function alo
various dynamical trajectories. This equation contains
loss and gain terms describing the arrival of molecules fr
gas~molecular beam! to the interaction region, and their de
parture back to the gas phase as a result of molecule mo
along the trajectories above the surface potential well,
the collisional integral due to phonons, which leads, in p
ticular, to transitions of molecules to bound~adsorbed!
states.

Solution of the kinetic equation for an ensemble of s
face particles allows one to determine the distribution fu
tion of molecules departing from the surface~a surface
boundary condition for the gas distribution function!. With
the scattering integral in the relaxation-time approximatio
we obtain~Sec. 3! a simple analytic expression for the pro
ability of trapping a molecule with rotational degrees of fre
dom, and provide a microscopic justification for the pre
ously suggested phenomenological description of cer
effects.16 On the basis of our results, we discuss general f
tures of translational and rotational cooling of desorbed m
ecules, and rotational polarization of desorbed and scatt
particles.

2. KINETIC EQUATION

We start our consideration with the potentialV of inter-
action between a molecule and a solid, which depends on
© 1998 American Institute of Physics
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coordinatesr j of all atoms in the solid, the coordinatesx, y,
andz of the molecule~the z-axis is normal to the surface,x
and y are coordinates in the plane parallel to the surfac!,
and other generalized coordinatesV. The coordinatesV
specify molecular orientation angles with respect to the s
face; for a linear molecule,V5$q,f%, i.e., the polar and
azimuthal angles of the molecule, and for a more comp
shape of the moleculeV5$q,w,c%, i.e., the three Euler’s
angles. Let us denote by$ak% the set of generalized coord
nates and by$bk% the set of corresponding generalized m
menta,k51, . . . ,K; K is the number of molecular degree
of freedom.

Following the conventional technique of constructing
netic equations for a system ofN11 particles,17,18 let us
express the classical kinetic equation for the one-particle
tribution functionF(t,a,b) of molecules interacting with an
equilibrium solid surface in the form

]F

]t
1 (

k51

K S ȧk

]F

]ak
1ḃk

]F

]bk
D5I @F#, ~1!

ȧk5
]HM

]bk
, ḃk52

]HM

]ak
, ~2!

where HM5HM($ak%,$bk%) is the Hamiltonian of a mol-
ecule, which equals the sum of the rotational and tran
tional kinetic energies, and the potential energyV(1)($ak%)
averaged over equilibrium states of the solid.18 The right-
hand side of Eq.~1! is due to the residual part of the inte
action potential,V(2)5V2V(1), which depends on therma
displacementsdr j5r j2Rj of particles with respect to thei
lattice sitesRj . With due account ofV(2), which varies in
time owing to thermal oscillations of surface atoms, the
ergy of a molecule moving in the region of surface forc
can change due to exchange with the solid. This excha
obviously, can be described in terms of creation and ann
lation of phonons; in other words,I @F# can be treated as
collisional integral between molecules and phonons. The
teraction among molecules is neglected, since the sur
coverage of adsorbed molecules is assumed to be smal

Terms on the left of Eq.~1! are due to both the explici
time dependence of the distribution function and the cha
in F during motion in potentialV(1). The potential is shown
in Fig. 1. Depending on the sign of the total energyE of the
molecule~the sum of the kinetic and potential energies!, mo-
tion alongz is finite for E,0 and semi-infinite forE.0.
The scattering integral takes into account transitions betw
states of the same sign ofE, and transitions between states
opposite sign,E.0 andE,0.

Equation ~1! contains detailed information about th
variation of the molecular distribution function in the regio
of surface forces. In recent experiments, however, mean
ues of parameters which are integrals of the motion outs
the region of interaction with the surface are measured.1 In
determining the distribution function of molecules movin
away from the surface after interaction, we will follow th
approach of Ref. 11 and develop a rough approximation
averaging Eq.~1! over the range of surface forces. To th
end, we first transform from variables$a,b% to new inde-
r-
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-
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pendent ones. In this capacity, let us use variables defin
molecular trajectories in the potentialV(1) and positions of
molecules on their trajectories.

By virtue of the equations of motion~2!, all generalized
coordinates and momenta at an arbitrary moment
uniquely determined by their initial values. Let us draw t
planez5L, which bounds the region of surface forces~Fig.
1!, and select the initial valuez5 z̃: z̃5L for E.0 and ar-
bitrary z̃ in the region of surface forces forE,0. The initial
values of all variables$a,b% exceptz5 z̃ will be denoted by
g (g5$g i%, i 51, . . . , 2K21). If we solve the equations o
motion with initial conditions$a,b%u t505$z̃,g% and express
the time in terms of the coordinatez, the variables$a,b% can
be expressed in terms of variables$z,g%:

a15z, a25A1
~j!~g1 , . . . ,g2K21 ,z!, . . . ,

aK5AK21
~j! ~g1 , . . . ,g2K21 ,z!,

b15B1
~j!~g1 , . . . ,g2K21 ,z!, . . . ,

bK5BK
~j!~g1 , . . . ,g2K21 ,z!.

In this case, the values of the inverse functions

C1
~j!~a1 , . . . ,aK ,b1 , . . . ,bK!5g1 , . . . ,C2K21

~j!

3~a1 , . . . ,aK ,b1 , . . . ,bK!5g2K21

are constant with time and can be considered indepen
integrals of the motion.19 Any fixed set of variablesg speci-
fies a molecular trajectory in the potentialV(1), whereas the
coordinatez and superscriptj (j51, . . . ,J(g)) specify the
molecule’s position on its trajectory. The superscriptsj are
introduced because each trajectory has at least two bran
of the function relating$a,b% to $z,g%, which correspond to
the motion of a molecule towards the surface (b1[pz,0 for
j51) and away from it (pz.0 for j52). The number of
branchesJ equals two, however, only in the simplest cas
when the potentialV(1) depends only onz. If the potential
also depends on other coordinates, there can be traject

FIG. 1. Shape of potentialV(1) describing interaction of a molecule with
surface. Values ofV(1) between the two curves correspond to various m
lecular orientations with respect to the surface and different positions
molecules’ centers of mass in the surface plane;f 2, f 1, andr are distribu-
tion functions of molecules moving towards the surface, away from
surface, and of the ensemble of molecules in the surface region 0,z,L,
respectively.
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with J.2. Such trajectories are due to the existence of
ditional turning points in the potentialV(1) ~when a molecule
passes through a turning point,j increases by one; see Fig
2! because of the exchange of kinetic energy between tr
lation along the normal to the surface and other degree
freedom.1! In particular, if the potential is a function ofz and
molecular rotation angles, this is the exchange between
translational and rotational degrees of freedom. If the pot
tial depends on coordinatesx andy in the plane of the sur-
face, the correlations between normal and tangential mo
play a similar role. For trajectories withE.0, J can be
assumed to be finite, since the motion along the norma
the surface is semi-finite. Without loss of generality, we
sume for simplicity that trajectories withE,0 are closed, so
J is finite even whenE,0.

Since the transformation between variables$a,b% and
$z,g% is one-to-one for all givenj, any function of$a,b%
can be reduced to a set of functions of$z,g% labeled byj.
The element of the phase space in variables$z,g% takes the
form

da db5uJ~j!~z,g!udz dg, ~3!

whereda, db, anddg denote products of differentials of th
corresponding variables~see Appendix!, andJ(j)(z,g) is the
Jacobian, of the transformation, which can be interpreted
the density of states in terms of the new phase variab
Irrespective of the number of molecular degrees of freed

uJ~j!~z,g!u5uvz
~j!~z,g!u21uṽzu. ~4!

Here ṽz is the initial velocity on trajectoryg at z5 z̃ ( z̃5L
for E.0). Equation~4! can be derived by differentiating th
left- and right-hand sides of Eq.~3!, with respect to time with
due account of Liouville’s theorem about conservation
phase space, and the fact that atz5 z̃ the variables$a,b% are
equal to their initial values$z̃,g%.

Replacing the canonically-conjugate variables$a,b% in
Eq. ~1! with the integrals of the motion$g% in potentialV(1)

and the coordinatez, and noting thatġ i50, we obtain

]Fj~ t,z,g!

]t
1vz

~j!~z,g!
]Fj~ t,z,g!

]z
5I j@Fj8#. ~5!

It is clear from~5! that the kinetic equation can be simplifie
considerably in variables$z,g% since the sum of 2K terms on
the left-hand side of Eq.~1! corresponds to just one term i

FIG. 2. Trajectories forE.0 in potential V(1): 1! for J52; 2! for
J.2.
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Eq. ~5! ~the second!. It describes variations in the one
particle distribution function due to the motion of molecul
along trajectories.

We make the natural assumption that the distribut
function is continuous along trajectories, and supplement
~5! with boundary conditions at the turning pointsz0

(j) ~Fig.
2!:

Fj~ t,z5z0
~j! ,g!5Fj11~ t,z5z0

~j! ,g!,

and forE,0 we add the condition

F1~ t,z5z0
~1! ,g!5FJ~ t,z5z0

~1! ,g!,

which reflects the periodicity of motion along closed traje
tories.

Equation~5! will be averaged below along trajectories
the region of surface forces. Before averaging the equati
we improve upon the set of variables, which will then co
veniently specify trajectories. Note first that whenE.0, the
set of variablesg, which is defined atz5L, can be selected
either at the point of entry to the surface region (ṽz,0), or
at the point of egress (ṽz.0). We denote these sets of var
ables byg2 and g1, respectively. In describing effects a
sociated with the distribution of molecules after their inte
action with the surface, the setg1 is the natural one.

Second, one can determine trajectories by using inst
of 2K21 initial values of coordinates and momen
2K21 independent combinations of these values. F
E.0, variablesg can be chosen so that a subset of the
denoted byG, coincide atz5L with the constants of the
motion of the molecule outside the region of surface forc
For a linear molecule, these are the variablesG5$v,J%, i.e.,
the components of the velocity and angular momentum v
tors. The rest of the variables,g; , specify the initial values
of quantities that change during free motion of the molecu
For a linear molecule, these are the initial values ofx andy
in the plane of the surface and the molecular axis orienta
angles in a plane perpendicular toJ. The representation o
variablesg in the formg5$G,g;% for linear and more com-
plex molecules is considered in greater detail in the App
dix. For E,0 we choose variablesg in the same way as fo
E.0 ~this is of no further significance!.

Note that information about variablesg; at z5L is lost
as a molecule moves from the region of surface forces t
detector. This is due to the fact that the phase variables,
initial values g;, change within certain limits, and thes
parameters run over their ranges many times during the
lecular motion. The equations below will be averaged o
g; . Note that this averaging is quite similar to averagi
over rapidly varying phases in the kinetic theory of a g
with rotational degrees of freedom.21

Let us average Eq.~5! along trajectories in the surfac
region 0,z,L. Multiplying Eq. ~5! by

uJ~j!~z,g!uS v21E dg; (
j51

J E
0

L

dzuJ~j!~z,g!u D 21

,

then integrating overz, summing overj with due account of
Eq. ~4!, and averaging overg; , we obtain
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]r

]t
1u~E!t f l

21~ f 12Âf 2!5^I &. ~6!

Hereu(E)51 for E.0 and 0 forE,0, andf 1 and f 2 are
distribution functions of molecules moving towards the s
face and away from the surface outside the interaction
gion:

f 1[ f 1~ t,G1!5v21E dg;
1Fj5J~ t,z5L,g1!,

~7!

f 2[ f 2~ t,G2!5v21E dg;
2Fj51~ t,z5L,g2!.

The function

r[r~ t,G!5

v21E dg;(
j51

J E
0

L

dzuJ~j!~z,g!uFj~ t,z,g!

v21E dg; (
j51

J E
0

L

dzuJ~j!~z,g!u

~8!

is the averaged distribution function of molecules in the s
face region 0,z,L. It describes the distribution of mol
ecules over statesG which are specified by the set of param
eters that do not vary when a molecule moves in free sp
v is the phase space corresponding to variablesg; ~see
Appendix!. By virtue of Eq. ~8!, the functionr in equilib-
rium equals the usual Boltzmann distribution functi
r0(E)}exp(2E/T), and since the original distribution func
tion F is normalized to the total number of molecules,

E da dbF5N,

the distribution functionr is normalized to the number o
moleculesNs in the surface region 0,z,L,

Ns5E dGg~G!r~ t,G!,
~9!

g~G!5E dg; (
j51

J E
0

L

dzuJ~j!~z,g!u.

The functiong(G) has the sense of a density of states in
variablesG. The operatorÂ,

Âf 2[ f 2~ t,G1!5v21E dg;
1Fj51~ t,z5L,g1!, ~10!

is introduced because the distribution function of molecu
incident on the surface, which depends in a natural way
the variablesg2 of particles arriving at the surface regio
can be expressed in terms of variablesg1 of particles leav-
ing the surface region using an inverse transform perform
along the trajectories in potentialV(1).

Equation~6! also contains the quantityt f l , which has the
sense of an averaged time of flight through the surface re
0,z,L along the trajectoryg. The average is taken over th
x, y, and the orientation angles, which vary during molecu
motion in free space:
-
e-

-

e;

e

s
n

d

n

r

t f l[t f l~G!5v21E dg; t f l~g!, ~11!

where

t f l~g!5 (
j51

J E
0

L dz

uvz
~j!~z,g!u

. ~12!

The mean collisional integral^I & in Eq. ~6! is determined by
an expression whose only difference from Eq.~8! is thatFj

is replaced withI j ~see Eq.~5!!.
Note that Eq.~6! is strictly correct. In order to derive a

closed equation for the distribution functionr, let us use, as
in Ref. 11, a rough model of molecular interaction with t
surface. We assume that the distributionf 1 of particles leav-
ing the interaction region is determined by the average
tribution r of surface particles11:

f 15u~E!r. ~13!

Note that Eq.~13! is reasonable fort.t f l . Using Eq.~13!,
let us rewrite Eq.~6! as

]r

]t
5u~E!t f l

21Âf 22u~E!t f l
21r1t21~r02r!. ~14!

This is the sought-for approximate kinetic equation f
molecules with internal degrees of freedom. The first t
terms on the right-hand side of Eq.~14! describe the arrival
of molecules from the gas phase~molecular beam! at the
surface region and their departure to the gas phase. Acc
ing to Eq. ~14!, particles come and go during the time
flight ~averaged over the ‘‘unmeasured’’ variablesg;)
through the surface force region along trajectories w
E.0. Unlike the corresponding terms on the left-hand s
of Eq. ~6!, the gain and loss terms in Eq.~14! do not change
sign under time reversal, and generate additional entropy~as
a source of dissipation supplementing the collisional in
gral! in the ensemble of surface particles. Their dissipat
property is due to Eq.~13!, which breaks the symmetry o
the left-hand side of Eq.~6! under time reversal. Note tha
the structure of Eq.~14! is similar to that of a previously
suggested kinetic equation~Eq. ~8! in Ref. 11! describing
monatomic particle interactions with a surface. Unlike t
mentioned equation, which was derived for the case o
potential that was a function of only thez coordinate, Eq.
~14! allows the interaction potential to depend on an arbitr
number of generalized molecular coordinates.

In deriving Eq. ~14!, we have expressed the collsion
integral in the relaxation time approximation, i.e.,

^I &5t21~r02r!. ~15!

In our previous work11,16 we showed that the
t-approximation provides a satisfactory description of so
effects observed in transport through a rarefied gas and s
tering of molecular beams on surfaces. The ratet21 intro-
duced in Eq.~14! describes relaxation due to phonons of t
distribution functionr averaged over the surface layer. No
that in real molecule/surface systems, the rate of collisi
with phonons strongly depends onz, since the potentialV(2)

responsible for this interaction vanishes outside the rang
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the surface field. Thus,t21 has the sense of the collision ra
averaged over the surface region. By assuming also~as
usual10,22! that an average probability of transitions betwe
molecular trajectories due to interaction with the solid h
been determined, the relaxation rate can be expressed a

t21[t21~G!5(
G8

Ẇ~G→G8!,

~16!

Ẇ~G→G8!5v21E dg;E dg;8 ẇ~g→g8!,

whereẇ(g→g8) andẆ(G→G8) are the rates of transition
out of trajectoryg to g8 and from stateG to G8.

3. RESULTS OF CALCULATIONS IN t-APPROXIMATION

3.1. As follows from Eq.~14!, the distribution function
of particles in the region of surface forces takes shape
time of ordert f l andt; this rate is of order 10213–10212 s in
realistic systems with physically adsorbed particles,11 at
times much greater than 10212 s, the time derivative can b
neglected in comparison with the terms on the right-ha
side of Eq.~14!. In this quasi-stationary regime, we deriv
from Eq. ~14!

r5H Sr01~12S!Âf 2, E.0,

r0 , E,0,
~17!

S[S~G!5S 11
t~G!

t f l~G! D
21

. ~18!

According to Eq. ~17!, molecules in bound state
(E,0) are in equilibrium, whereas molecules in unbou
states separate into two groups. Particles in the first group
those whose relaxation process has been completed, w
the distribution of the rest depends on the distribution fu
tion f 2 of particles incident on the surface, and is determin
by its transform as the particles pass through the region
surface forces, in accordance with Eq.~10!. Equations~17!
and ~18! indicate thatS has the sense of a relaxation pro
ability.

3.2.Let us derive equations that describe the transpor
particles in the system. By integrating Eqs.~14! and ~13!
over states G with weighting functions g(G) and
g(G)t f l

21(G), respectively~see Eq.~9!!, using Eqs.~4! and
~17!, we obtain

dNs

dt
5S2G22S0~ ta

~0!!21Ns , ~19!

G15~12S2!G21S0~ ta
~0!!21Ns . ~20!

Here

G75vE dGuvzu f 7~G!

are fluxes of molecules moving towards the surface
away from it outside the interaction region, and factorsS0

and S2 in Eqs. ~19! and ~20! are given by the relaxation
probability averaged in various ways:
s

a

d

re
ile
-
d
of

f

d

S05S E dGu~E!uvzur0~E! D 21E dGu~E!uvzuS~G!r0~E!.

~21!

The difference between Eq.~21! and the expression forS2 is
that the distribution functionr0(E) in the latter is replaced
with the distributionf 2(G) of molecules incident on the sur
face. The quantityta

(0) , which has the sense, as follows fro
Eq. ~20!, of the mean particle lifetime at the surface in equ
librium ~in this caseG15G25(ta

(0))21Ns!, is given by

~ ta
~0!!215S E dGg~G!r0~E! D 21

3E dGg~G!u~E!t f l
21~G!r0~E!. ~22!

According to this formula, the equilibrium escape rate is d
termined by the transit time through the region of surfa
forces along the trajectories ofE.0 averaged over the entir
ensemble of particles. It follows from Eq.~22! that in the
case of a deep potential well~whenVm@T), ta

(0) is given by
the Frenkel–Arrhenius formulata

(0)5t0exp(Vm/T), and in the
special case of a potential that depends only onz, the coef-
ficient of the exponential equals the oscillation period n
the well minimum:

t0'm1/2~d2V~1!/dz2!21/2,

wherem is the molecule mass.
Equations~19! and ~20! are formally identical to the

equations of phenomenological adsorption theory. The
sorption time, in accordance with Eq.~20!, is expressed as
ta5ta

(0)/S0, and this expression depends~see Eqs.~21! and
~18!! on the ratio between the characteristic relaxation timt
and time of flightt f l . In the limiting cases we have

ta5H ~t/t f l !ta
~0! , t/t f l@1,

ta
~0! , t/t f l!1.

Note that the expression for the lifetime att/t f l@1 is in
agreement with the Kramers theory in the case of we
friction.23 Although our formula applies to the case of inte
mediate friction (t/t f l<1), our result is different from the
Kramers one in the limitt/t f l→0, since the latter yields an
infinitely growing lifetime as the friction increases. The r
sults are different because the limiting case of strong frict
cannot be described when the kinetic equation is avera
over z, and approximation~13! obviously ignores the fac
that the particle mobility drops to zero if the friction i
strong. It is known that the number of particles in this ca
can be obtained using Smoluchowski’s equation. Theref
our model of particle interaction with a surface is limited
the case of moderate friction. The distribution shape, ho
ever, which is the only interesting result for us, is describ
adequately in both limiting cases, regardless of the num
of escaping particles. Indeed, in accordance with Eqs.~17!

and ~18!, we have f 15r5Âf 2 for t/t f l@1, whereas for
t/t f l!1 we havef 15r5r0. Note also that the strong fric
tion regime, as is well known, cannot be realized in inter
tion of real molecules with a surface.10 So, the ratiot/t f l

cannot be arbitrarily small, since the relaxation time due
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phonons obviously has a lower limit determined by the
cillation period of atoms in the solid (;10213 s!, while the
time of flight through the interaction region several Å thi
is about 10213–10212 s.

3.3. By substituting Eq.~17! into ~13!, let us determine
the distribution functions of molecules moving away fro
the surface at times much longer thant f l andt :

f 15Sr01~12S!Âf 2. ~23!

When applied to scattering of a molecular beam on a surf
Eq. ~23! relates the distribution functionf 1 of molecules
moving from the surface to the distribution functionf 2 of
molecules incident on the surface outside the interaction
gion. The distribution functionsr0 and f 1 are normalized in
accordance with Eqs.~19! and ~20!, which describe the par
ticle transport. Therefore Eq.~23! means thatr0 can change
in a time of about the adsorption time. Thus, for scattering
a surface that was initially clean~not coated with an adsor
bate!, we can obtain by solving Eqs.~19! and ~20! that
Ns.0, G1.(12S2)G2 for t!ta and Ns.S2G2ta ,
G1.G2 for t@ta . Hence, the first term of Eq.~23! can be
neglected fort!ta , but it becomes important at times com
parable to the adsorption time. In another special case, w
the arrival of particles is zero, Eq.~23! reduces to a simple
expression for the distribution function of desorbed m
ecules:

f des
1 5c~ t !S~G!exp~2E/Ts!,

c~ t !5const•exp~2t/ta!. ~24!

An important point is that Eq.~23! can be used as
boundary condition for the Boltzmann equation in describ
nonequilibrium processes in the gaseous phase. The th
ness of the surface-force region~1–5 Å! is usually small in
comparison with the molecule free path, and the timest f l and
t are much shorter than the characteristic relaxation time
gases. Therefore Eq.~23! can be used as a boundary con
tion corresponding to a quasi-stationary solution of Eq.~14!
for the surface phase, where the number of particles is v
able. In the steady state, which takes place under the co
tion t@ta , the distribution functionsf 1 andr0 can be nor-
malized ~see Eqs.~19! and ~20!! by equating the flux of
molecules incident on and reflected from a surface.

Distributions like that given by Eq.~23! can be inter-
preted by distinguishing two channels of molecules inter
tion with a surface. Some of the molecules comes to equ
rium with the surface during transitions~accompanying the
absorption and emission of phonons in the solid! between
different states in the surface field, and others elastic
scatter on their trajectories (E.0) without exchanging en
ergy with the solid. The simplicity of our result is obvious
due to thet-approximation, which considerably simplifie
the collisional integral.

There is another important point. Models with two com
ponents in distribution functions of molecules reflected fro
a surface have been used in the literature since Maxwell~the
specular-diffuse boundary condition in rarefied g
dynamics24,25!. In recent experiments with molecular beam
the two-component structure of the distribution of scatte
-
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molecules was actually detected in various systems.26–32The
observed diffusion component is usually attributed to tra
ping of molecules in the potential well. This statement see
to be only partially true. Really, the diffuse component
important in the case of a deep potential well provided t
adsorbed states are occupied by molecules. The func
S(G) in Eqs. ~23! and ~24!, however, has the sense of th
relaxation probability, and trapping of molecules in bou
states is unnecessary since the ratet21 for molecular relax-
ation withE.0 can be associated, using Eq.~16!, with tran-
sitions to both bound states (E8,0) and states above th
potential well (E8.0). Another feature of our theory is tha
the presence of trajectories withJ.2 at E.0 ~or short-
lived collisional complexes as they are known! does not pro-
vide an alternative ‘‘trapping’’ channel, as suggested in so
publications,15 but only leads to an increase in the relaxati
probabilityS. The latter is due to the longer transit time~12!
for ‘‘longer’’ trajectories with J.2. Note that this factor
was mentioned in the discussion in Ref. 20 on a qualitat
level.

3.4. The dependence of the ‘‘trapping’’ probability o
parameters which determine the molecule state manifest
self in various effects related to the shape of the distribut
of molecules interacting with a surface. They include, in p
ticular, translational cooling of desorbed molecules28,30,33

and deviation of the angular distribution of desorbed m
ecules from the cosine law,33 as well as rotational cooling
and rotational polarization of desorbed molecules, and ro
tional polarization of scattered particles.3 These effects show
up in the following way. The mean measured translatio
and rotational kinetic energies of desorbed molecules are
than their equilibrium values. The angular distribution of e
caping particles has an excessive fraction of particles d
orbed at large angles with respect to the normal. The ang
momentum vectorsJ of desorbed molecules are aligned pr
dominantly with the normal to the surface~this effect is tra-
ditionally termed helicopter-like rotational alignment o
molecules3!, whereas the vectorsJ of scattered molecules ar
aligned predominantly perpendicular to the normal~cart-
wheel alignment!.

Before discussing the rules governing the observed
fects, note that the ‘‘trapping’’ probabilityS can be calcu-
lated using Eqs.~11!, ~12!, and ~16! for t f l and t. Leaving
aside calculations more sophisticated than the semiphen
enological theory under consideration, we limit our discu
sion to the qualitative interpretation based on the pheno
enological analysis given above.

Usually the interaction potential depends weakly on
coordinates in the surface plane.12 The parameterst f l , t, and
S for linear molecules and a perfectly smooth surface dep
largely on only two variables, namelyvz andJt , whereJt is
the projection ofJ on the surface. The effects of translation
cooling and ‘‘non-cosine’’ desorption can be ascribed, in a
cordance with Eq.~24!, to the relaxation probability, which
decreases with the velocity componentvz . The decrease inS
with increasingvz is easily understandable, since the time
flight ~12! obviously decreases with increasing velocit
Given Eq. ~18! for the relaxation~trapping! probability,
some experimental data were satisfactory described.11,34
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The rotational cooling and predominance of t
helicopter-like alignment of desorbed molecules can be
tributed to the decreasing functionS(Jt). Moreover, the de-
crease inS with increasingJt enables us to understand~see
Eq. ~23!! why the cartwheel-like polarization is predomina
in the scattering channel. We previously,16 analyzed the ef-
fects due to a rotational polarization of molecules. We
sumed that the interaction parameterst f l and t were func-
tions of the rotational state. These functions were deri
from experimental data in order to predict results of oth
experiments. It turned out that, using Eq.~18! for the relax-
ation probability, we could give a consistent description
experimental data35,36 concerning rotational cooling and po
larization of desorbed molecules and also relate the temp
ture dependence of the rotational polarization in a very
efied gas, obtained previously in studies of the effect
magnetic field on the heat flow in a rarefied polyatomic g
between two surfaces,37 to the temperature dependence
the energy accommodation coefficient.

We acknowledge helpful discussions of this work w
L. A. Maksimov.

APPENDIX A.

Here we give details concerning the description o
molecule’s rotational motion in a potential that depends
the anglesV that define the orientation of its principal axe

1. For a diatomic~linear! moleculeV5$q,f% are the
polar and azimuthal angles of the molecule with respec
the surface. For a more complex moleculeV5$q,w,c% are
the three Euler angles. We define them as follows. Thex-,
y-, andz-axes are fixed and attached to the surface, andx8-,
y8-, and z8-axes are attached to the rotating molecule a
aligned with the principal axes of the inertia tensor. T
Euler anglesq,w,c define, accordingly, the orientation o
the z8-axis with respect toz, and the orientation of the line
of nodesz which points in the direction of the vector produ
nz3nz8, with respect to thex- and x8-axes;q and f5w
2p/2 are the polar and azimuthal angles of thez8-axis with
respect tox, y, andz. The definition of angles and axes is th
same as in Fig. 16.2 of Ref. 38.

The angular momenta canonically conjugate to the Eu
anglesq, w, andc are projections of vectorJ on thez-, z-,
and z8-axes.39 The variable canonically conjugate to th
anglesq and f of a linear molecule are the projectionsJz

andJz , respectively.
The element of phase space in the canonically conjug

variables has the form

dY5dY trdY rot , ~A1!

dY tr5dx dy dz dpxdpydpz ,

dY rot5dq df dJzdJz ~A2!

for a linear molecule and

dY rot5sin2 q dq dw dc dJzdJzdJz8 ~A3!

for a more complex molecule. The factor sin2q is due to the
angle between the fixedz-axis and rotatingz8-axis.
t-

-

d
r

f
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r-
f
s
f

n
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d
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te

2. Let us illustrate the transformation from variablesg to
$G,g;% taking as an example the states withE.0. The su-
perscript ‘‘1 ’’ will be omitted in variables describing trajec
tories. For a linear moleculeG5$p,J% are the momentum
and angular momentum vectors of the rotating molecu
g;5$w8,x,y%, wherew8 is the angle defining the projectio
of the molecular axis on the plane perpendicular toJ. In this
case

dg5dGdg; , ~A4!

dG5dpzdpxdpyJ dJ dOJ , dg;5dw8dx dy;

the phase volume corresponding to variablesg; is equal to
v52ps, wheres is the surface area element.

For a more complex molecule, $G,g;%
5$p, J,q8,w8,c8,x,y%, whereq8, w8, andc8 are the Euler
angles defining the axis aligned withJ. In particular, for a
symmetric top,G5$p, J,q8% ~angleu8 is constant becaus
the molecule axis precesses aroundJ when moving freely!
andg;5$w8,c8,x,y%. For a spherical top,G5$p, Jq8,c8%
andg;5$w8,x,y%. In the new variables

dg5dpzdpxdpyJ
2dJdOJ sin q8dq8dw8dc8dx dy.

~A5!

In the general casedg5dGdg; , where the separation into
dG and dg has been given above. The phase volumev
5(2p)3s for a symmetric top andv52ps for a spherical
one.

* !E-mail: pankov2a@yahoo.com
†!E-mail: borman@bvd.mephi.ru
‡!E-mail: krylov@redline.ru
1!When E.0, J.2 may be associated with the existence of short-liv

collisional complexes; see, for example, Ref. 20.
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Synchronization of high-frequency vibrations of slipping phase centers in a tin whisker
under microwave radiation
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Current–voltage characteristics of a system with a variable number of slipping phase centers
resulting from phase separation in a tin whisker under external microwave field with a frequency
V/2p>35–45 GHz have been studied experimentally. Emergence and disappearance of
steps with zero slope in a whisker’s current–voltage characteristic atUm/n5(m/n)UV , wherem
andn are integers andUV is determined by Josephson’s formula\V52eUV , have been
investigated. Microwave field generated by slipping phase centers is nonharmonic, and the system
of slipping phase centers permits synchronization of internal oscillations at a microwave
frequency by an external field with a frequency which is then-th harmonic of internal oscillations.
The estimated microwave power generated by a whisker is 1028 W. Stimulation of
superconductivity in a current-carrying whisker has been detected. ©1998 American Institute
of Physics.@S1063-7761~98!01804-6#
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1. INTRODUCTION

Microwave generation in a Josephson junction~a weak-
coupling element in a superconducting circuit! under a dc
voltage has attracted researchers’ attention since the
when the ac Josephson effect was discovered. The sim
structure of the experimental device and easy control of
generated frequency are the most attractive features of
effect. The frequency generated by the junction is de
mined by the formula

v52Ue/\,

where U is the voltage drop across the junction,e is the
electron charge, and\ is the Planck constant. The disadva
tages of these devices are their low output and difficulties
matching the superconducting circuits containing Joseph
junctions to the microwave circuits. Attempts have be
made to overcome these difficulties using circuits of sh
junctions.1–4

Josephson junctions have a typical linear size in the
rection perpendicular to the supercurrent density vec
namely the Josephson penetration depthl j . If the junction
dimension in the direction perpendicular to the supercurr
satisfies the conditiond,l j ~a short junction!, the phase
variation is uniform over the junction volume, and one ha
single source of microwave radiation. In the case of a n
work of short synchronized junctions, it seems possible
derive a high microwave output close to the sum of pow
generated by each element.

A long uniform superconducting channel with slippin
phase centers can be classified with such systems. Phase
ping centers occur in resistive states of a long narrow ch
nel carrying a constant current at a temperature close to
superconducting transition (I .I c , T,Tc).

5,6 Real structures
in which phase slipping centers have been detected are
7451063-7761/98/86(4)/6/$15.00
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films with width w and single-crystal wires~whiskers! with
diameterd smaller than the superconductor coherence len
j. From the viewpoint of experimenters dealing with sup
conducting channels, whiskers~thin crystalline wires! are
preferable because their uniformity over the length is high
But thin films have some advantages when applications
concerned, since their dimensions are directly controlled d
ing their manufacture. On the other hand, microscopic in
mogeneities due to fabrication technologies can lead to c
siderable degradation of parameters of slipping ph
centers, and a thin film may behave like a system of we
superconducting bounds localized along the narrow film.

An isolated slipping phase center is an nonstationa
inhomogeneous entity ‘‘localized in the space’’ and conta
ing an internal region with a size of aboutj where the su-
perconducting order parameter oscillates at the Josep
frequencyv52eUv /\. At temperatures near the transitio
point, the voltage averaged over the oscillation period,Uv ,
in the slipping phase center is due to penetration of a n
uniform longitudinal electric field into the outer region of th
center through a distance of aboutl E ~the electric field pen-
etration range!, and the electric resistance of each phase s
ping center isR052rNl E /S, whererN is the material resis-
tivity in the normal state andS is the channel cross
section.5–8 At the moment when the absolute value of t
order parameter vanishes, the phase difference over the
ter jumps by 2p. Current–voltage characteristics~CVC! of
such superconducting channels contain a set of sloped li
sections corresponding to resistancesRn5nR0 ~wheren is
an integer! connected by sections of curves with curre
jumps. Extrapolations of these linear sections cross the
rent axis at approximately the same pointI 0 ~an excess
current!.5–7,9

Although the number of publications dedicated to sl
ping phase centers is fairly large,5,6 the dynamics of system
© 1998 American Institute of Physics



ie
de
ti

s

pi
th

e

th
ep
y
n
e
0

i
4

ra
rd

h

al
e

er

b

at
th
te
rs
c
ts

te

d
s

s
iti
It
T

us
o
n

ng

red

the
ted
he
era-

ce-
on-

1
ers
r
by
the

ces

r of
nd

ivity
by
in

eri-

c-
ing

arly
em-
-

ere

746 JETP 86 (4), April 1998 V. I. Kuznetsov and V. A. tulin
with slipping phase centers has been stud
insufficiently.7,8,10–12The reversed ac Josephson effect un
external electromagnetic radiation was detected in thin
films at a frequency of 10 GHz7 and in single-crystal wires
~whiskers! at frequencies of up to 900 MHz.13–15 In both
these cases, a CVC contains, in addition to sloping step
fundamental step with a zero slope at voltageUV in the
region of parameters corresponding to one phase slip
center and associated with high-frequency oscillations of
order parameter in the center, and ‘‘weak’’ steps atUm/n

5(m/n)UV , whereUV is the voltage corresponding to th
external field frequency andm andn are integers. Ivlev and
Kopnin16 analyzed the ac Josephson effect in terms of
microscopic theory. The pattern of various zero-slope st
at different direct currents and microwave frequencies in s
tems with variable numbers of slipping phase centers has
been investigated in full. A current-carrying whisker und
an electromagnetic field with a frequency higher than 9
MHz has never been studied.

2. SAMPLES AND EXPERIMENTAL DETAILS

In the reported work, we have studied the effect of m
crowave fields with frequencies ranging between 35 and
GHz on CVCs of tin whiskers in the regime when seve
slipping phase centers exist in a sample at voltages of o
of UV . In previous experiments7,13–15the parametersT and
V/2p were selected so that the mean voltageUv across one
center, which determined the frequency of proper hig
frequency oscillations,v52Ue/\, could be tuned toUV ,
i.e., the frequencyv of internal oscillations should be equ
to that of applied microwave field. We have used high
microwave frequenciesV/2p and temperatures at a great
distance fromTc than Tidecks et al.13–15so that to satisfy the
condition Uv5UV /n, i.e., nv5V (n.1) when a sample
contained several slipping phase centers at voltages a
UV . It follows from the microscopic theory16 that this is the
condition under which induced steps on a CVC are gener
at voltagesUV /n. The presence of such steps means that
radiatition generated by the system of slipping phase cen
is nonharmonic. Given the higher uniformity of whiske
over their lengths and smaller number of structural defe
than in films, they are preferable for such experimen
Moreover, zero-slope steps on a CVC of an irradia
whisker13–15are considerably wider than in narrow films.7 In
many experiments~see for example Ref. 17!, low-frequency
oscillations instead of high-frequences oscillations were
tected in narrow films. Whiskers grown from thin tin film
deposited on silicon substrates had diametersd50.2–0.8
mm, lengths of about 1 mm, resistance ratioR300/R4.2

,100, andTc'3.7 K. A whisker was set across a 300-mm
gap in a thin tin film about 1000 Å thick. A whisker wa
attached to electrodes by electrostatic forces at the in
moment, then, apparently, by the Van der Waals forces.
not easy to remove a whisker from the substrate surface.
heat-sinking conditions, probably, were fairly good beca
the greater part of the sample was in contact with the p
ished substrate surface, therefore measured CVCs did
exhibit a notable hysteresis in the studied temperature ra
d
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unlike CVCs reported in Refs. 13–15. CVCs were measu
using either the two-terminal configuration~this was possible
becauseTc of films was higher than that of whiskers! or the
four-terminal configuration. The substrate supporting
whisker was placed in a copper waveguide and insula
from environment by a superconducting lead shield. T
curves of the critical current and resistance versus temp
ture for the case of a single slipping phase center atTc2T
,10 mK had shapes typical of whiskers:I c;(12T/Tc)

3/2,
R0;(12T/Tc)

21/4.13

3. EXPERIMENTAL RESULTS

Current–voltage characteristics of all samples are pie
wise linear, i.e., they are composed of linear sections c
nected by nonlinear sections with larger slopes. Figure
shows the examples of CVCs of superconducting whisk
with microwave radiation off. The initial parts of the whiske
CVCs without microwaves are also shown in Figs. 2–4
dashed lines. The numbers near the linear sections of
whisker CVCs indicate the ratios between their resistan
and that of a single phase slipping center,R0. The latter
parameter was determined as the largest common diviso
differential resistance values of all linear CVC sections a
compared to an estimate derived from the size and resist
of the whisker. The CVC linear sections are connected
nonlinear sections, which are reproducible and reversible
the range of studied frequencies. Note that in most exp
ments, the initial CVC sections atI .I c ~curves~a! in Figs. 2
and 3! without radiation are nonlinear, and the first reprodu
ible linear sections correspond to states with several slipp
phase centers~the linear section 3R0 on curve~a! in Fig. 2
and 5R0 on curve~a! of Fig. 3!. In earlier experiments,13–15

the states with one slipping phase center could be regul
produced. In contrast to those experiments, where the t
perature differenceTc2T was less than 10 mK, we mea
sured CVCs mostly at temperatures 70–160 mK belowTc .
In this case, states with several slipping phase centers w

FIG. 1. CVC of the Sn3 whisker (R0'0.19 V, Tc'3.71 K, R300/R4.2

'73) without irradiation by an external microwave field atT'3.56 K. The
insert shows the CVC of the Sn2 sample (R0'0.21 V, Tc'3.72 K,
d'0.8 mm, R300/R4.2'50) without irradiation atT'3.63 K.
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stable at notably larger temperature differencesTc2T. This
can be seen by comparing the CVC shown in Fig. 1 with
CVC in the insert to this graph. Moreover, the linear sectio
with the same resistance~such as 3R0 sections on curve~a!
in Fig. 2 for Sn1 and 2R0 in curve ~d! in Fig. 4 for Sn3!
separated by voltage jumps were recorded many times.
the basis of these observations, we have come to the con
sion that, in spite of some complications in interpreti
CVCs of our whiskers, they are superconducting chann
with slipping phase centers at appropriate temperatures
transport currents.

When samples are exposed to microwave radiation, t
CVCs contain, in addition to linear sloping sections due

FIG. 2. Set of CVCs of the Sn1 sample (R050.79–0.63V, Tc'3.69 K,
d'0.3 mm, R300/R4.2'20) at different powers of external microwave irra
diation at frequencyV/2p540.62 GHz andT'3.62 K: ~a! 70 dB ~dashed
line!; ~b! 36 dB; ~c! 31 dB, ~d! 30 dB, ~e! 28.6 dB. The insert shows
low-current sections of CVCs of the Sn1 sample at approximately e
parameters in another cycle of measurements:~a! 32.6 dB;~b! 30.6 dB;~c!
29 dB; ~d! 28 dB; ~e! 25.2 dB.

FIG. 3. Set of CVCs of the Sn2 sample (R050.23–0.18V, Tc'3.72 K,
d'0.8 mm, R300/R4.2'50) at different powers of microwaves at frequen
V/2p540.62 GHz atT'3.63 K: ~a! 70 dB ~dashed line!; ~b! 30.2 dB;~c!
30 dB; ~d! 28.2 dB;~e! 26.1 dB.
e
s

n
lu-

ls
nd

ir
o

the presence of certain numbers of slipping phase cen
steps with a zero slope at voltagesUm/n5(m/n)UV . At low
microwave powers, the channel critical current was high
i.e., stimulation of superconductivity theoretically describ
by Eliashberg18 took place. Instead of the emergence of t
zero-slope step first atUV ,13–15 we observed the sequentia
appearance of steps at 2UV , UV , 3UV , and UV/2 for a
sample Sn1~Fig. 2!, and in Sn2~Fig. 3! we first observed a
step atUV/2 and then atUV ~not shown in the graph!. At
lower temperatures the unusual shapes of the CVCs at
radiation intensity with linear sections of the same slo
~curve~d! in Fig. 4! or the lowest linear sections correspon
ing to several slipping phase centers were replaced by m
common CVC shapes. The sequence of microwave-indu
steps in whiskers’ CVCs emerging with increasing micr
wave power also became more like the usual sequenc
lower temperatures, namely, the step atUV was detected
first, then the step at 2UV , and at still higher microwave
power atUV/2 ~Fig. 4!. The curve became similar to thos
given in Refs. 13–15. As the microwave power increas
the sloping linear sections due to the slipping phase cen
became more pronounced on CVCs~Figs. 2 and 3!.

Steps with zero slope emerge on linear sections
CVCs, which either exist in the samples not exposed to
crowaves or appear in the samples irradiated by the mi
wave field. For example, the step of zero slope on the C
of the Sn1 whisker atUV ~insert to Fig. 2! appears after the
emergence of a linear section on the curve, its growth,
the shift of its lower edge to the required voltage~curves~a!,
~b!, and~c! in the insert to Fig. 2!. As soon as the edge of th
linear section achievesUV , a zero-slope step is produce
~curve~d!, and its width increases with the microwave pow
curve~e!!. The steps atUV/2 ~curves~c!, ~d!, and~e! in Fig.
2! emerge in a similar manner. The step at 3UV ~curve~c! in
Fig. 2! appears when the sloping linear section with diffe
ential resistance 3R0 extends to this region. A zero-slop
step can disappear at a higher microwave power~for ex-

al

FIG. 4. CVC of the Sn3 whisker (R050.21 V, Tc'3.71 K, R300/R4.2

'73) at different microwave powers at frequencyV/2p537.5 GHz at
T'3.58 K ~curves a, b, and c! andT'3.63 K ~curve d!; ~a! 70 dB ~dashed
line!; ~b! 19.5 dB;~c! 12 dB; ~d! 70 dB ~dashed line!.
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FIG. 5. Normalized critical currentI c /I m versus the relative am-
plitude of external microwave field at frequencyV/2p540.62
GHz atT'3.62 K for the Sn1 whisker in two different cycles o
measurements~full squares are the data of the first cycle and emp
squares correspond to the second cycle!, I m'107 mA. Normalized
widths of zero-slope steps on a CVC as functions of relative m
crowave field amplitude at voltageUV ~crosses plot data of the
second cycle! and at voltage 2UV ~full circles are the data of the
first cycle and empty circles correspond to the second cycle!. The
dashed, dash-dotted, and solid lines show absolute values of B
functionsJ0(x), J1(x), andJ2(x), respectively;x5100(P/Pm)1/2,
P is the power, andPm is the maximal output of the microwave
generator.
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ample, the steps at 3UV , UV , andUV/2) when the upper
edge of the linear section shifts below the respective volta
and a vertical CVC section moves to this region. In this ca
the differential resistance of the linear section can hav
jump ~curves~d! and~e! in Fig. 2!, namely, the linear section
at about 3UV changed its factor from 3 to 2. Thus, a line
section on a CVC of a sample with or without microwa
pumping atUm/n is a necessary condition for formation of
zero-slope step, i.e., for the existence of the required num
of slipping phase centers in the sample.

By tuning the incident microwave frequencyV, we
could detect zero-slope steps not observed previously w
voltageUm/n coincided with a linear section of a CVC re
corded without irradiation.

Sloping linear sections in a CVC of a whisker containi
a certain number of slipping phase centers and expose
microwaves of a fixed power could decrease their resista
factor with respect to the resistance of an isolated slipp
phase center if the direct transport current increased~see
curve ~b! in Fig. 2!. The resistance factor could also rema
unchanged~curve~e! in Fig. 2, section 2!. An increase in the
incident microwave power could cause, in addition to su
pression of both the critical and excess current at a fi
voltage, a switch-over to a linear section with a lower diffe
ential resistance. On the curves in Fig. 2, the resistance fa
dropped from four to two, and in Fig. 3 from five to two. Th
CVCs of the Sn2 whisker~Fig. 3! initially contained a linear
section with resistance 5R0 at voltages aboveUV , and under
microwave irradiation this parameter dropped to 3R0 and
then 2R0. At higher microwave powers the length of the 2R0

section increased at a constant resistance factor. Note thR0

could vary under microwave radiation within 20%. Thu
microwaves not only produce horizontal steps on CVCs,
also strongly affect CVCs of tin whiskers.

We have also measured the widths of microwave
duced steps as functions of the incident power over the
terval of their existence. The experimental dependencie
current-normalized widths of zero-slope steps at voltagesUV

and 2UV , and of the critical current for a sample Sn1 o
tained in different measurement cycles at approxima
equal parameters as functions of the relative microwave
e,
e,
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en

to
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-
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-
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,
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-
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plitude are given in Fig. 5. The graph also shows as an ill
tration the absolute values of Bessel functions of order 0
and 2 (J0(x), J1(x), andJ2(x)) although we believe that the
experimental curves are not directly related to these fu
tions. Note the main features of the curves in Fig. 5.~1! The
microwave stimulation of superconductivity led to an i
crease in the critical current of about 20%.~2! The zero-
slope step at 2UV emerged at a lower microwave power an
had the maximum width of about 0.5I c . ~3! The step atUV

observed in the second cycle of measurements~it was too
small in the first cycle and its width is not shown in Fig.!
appeared at a higher microwave power, and in its prese
the width of the 2UV step and the critical current as func
tions of the microwave field amplitude changed consid
ably. In this case the critical current and width of the 2UV

step vanished at a notably higher microwave field amplitu
than in the first cycle.~4! InducedUV and 2UV steps ap-
peared at a finite microwave power, i.e., there is a cer
threshold microwave power needed for formation of the
steps. This threshold is related to the extension of the lin
CVC sections to voltagesUV and 2UV . ~5! There is only
one interval of the microwave field amplitude on which t
critical current and CVC steps exist. No oscillations ha
been detected on the curves of critical current and step wi

In studying step widths as functions of the microwa
power, we recorded~in several cases! nonmonotonic curves
with relatively narrow down-peaks against the background
wide bell-shaped curves.

4. DISCUSSION OF RESULTS

The current–voltage characteristic of a uniform sup
conducting channel, which is our model for a whisker, d
pends on its length. In the case of a short whisker sec
through which current is fed,l' l E , the presence of one
slipping phase center allows the sample to conduct a cur
higher than the critical value. Ifl @ l E , the exponentially
decaying parameters of slipping phase centers have little
fect on the channel properties, therefore it should cont
several slipping phase centers, whose number is determ
by the channel length. In our samples, the conditionl @ l E
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was satisfied (l'(10–20)l E), therefore we assume that se
eral slipping phase centers were necessary to conduct a
rent slightly higher than the critical value. In the process
generation of the required number of centers, the insta
neous number of centers can be unstable and variable in
time and space.

The CVCs of our samples have piecewise linear sha
with sections characterized by differential resistan
R5nR0, wheren is an integer. These sections correspond
definite numbers of slipping phase centers, which can
derived from the sample sizes. In addition, there are the n
linear sections on which the number of centers is proba
unstable and varies with time. A dedicated investigation
needed to verify this hypothesis. The linear sections of CV
of the superconducting channel in the simplified model7 are
described by the formulaU5nR0(I 2I 0). The excess curren
I 0 is usually related to the average superconducting com
nent of the total current. This formula is not universal for
linear sections, becauseI 0Þconst for all groups of linear
sections.9 The CVCs of our samples contain neighboring li
ear sections with equaln but differentI 0.

Microwave irradiation of our samples has a dual effe
on their CVCs. The first effect is the generation of const
voltage steps, which was the main subject of the repo
study. The second effect is the change in the numbe
slipping phase centers under microwave radiation and st
lization of CVC sections with definite numbers of these ce
ters. This shows up in the extension of linear sections
transformation of some nonlinear CVC portion to linear.

The existence of constant-voltage steps under mic
wave radiation indicates that there are currents of microw
frequencies with spectral componentsv52enUv /\ (n
51,2,3, . . . ) in theregions of slipping phase centers. Wh
the external frequency equals that of one of these harmon
several centers are synchronized, which shows up in the f
of constant-voltage steps atUm5mUv , wherem is the num-
ber of slipping phase centers,Uv5\V/2en, and V is the
external radiation frequency. As a result, steps can occu
Um/n5(m/n)\V/2e if this voltage coincides with an inher
ent or microwave-induced linear section of CVC with a de
nite ~integral! number of slipping phase centers.

Unfortunately, it is difficult to determinem andn with
certainty using CVCs. Linear sections from which the nu
ber of centers could be exactly determined could be s
near constant-voltage steps only at certain values of par
eters. We believe that the step atUV/2 in Fig. 2 is due to the
synchronization of two slipping phase centers by the fou
harmonic of proper oscillations, i.e.,UV/2→2UV/4, simi-
larly UV→4UV/4, 2UV→4UV/2, 3UV→6UV/2, the step at
4UV→8UV/2 is not shown; in Fig. 4UV/2→2UV/4,
UV→2UV/2, and 2UV→4UV/2; in Fig. 3,UV/2→2UV/4;
in Fig. 6, UV/2→3UV/6, 2UV/3→4UV/6, and UV

→6UV/6. At other values of parameters this sample dem
strated steps at 5UV/6→5UV/6 and UV/3→2UV/6 ~not
shown in the graphs of this paper!.

Thus, at certain positions of these voltages in the wh
ker CVCs, microwave field synchronizes oscillations of t
order parameter in all slipping phase centers present
sample, which results in constant voltage drops across
ur-
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lated centers and across the entire sample. States with
chronized slipping phase centers under microwave radia
emerge predominantly at corresponding locations in
CVCs. Other CVC sections may correspond to states
which some slipping phase centers are synchronized by
ternal field and the rest are not. This conjecture allows u
interpret the drop in the differential resistance of linear s
tions ~and the behavior of the differential resistance in ge
eral! when the current increases under microwave radiat
The existence of neighboring sloping steps with equal re
tance but different excess current can also be interprete
these terms. A similar effect without microwave radiatio
can be attributed to a different but, in a sense, similar p
nomenon. So-called Fiske steps19 were detected in experi
ments with tunneling Josephson junctions when the
quency generated by the junction was locked to the reso
frequency of the structural cavity in the experimental devi
In this case, constant-voltage steps determined by the
sephson formula with the resonant cavity frequency could
seen on CVCs. The gap in the tin film on which the whisk
was mounted could act as a structural resonator. The le
of this gap was about 5 mm, and, given the silicon subst
dielectric constant
(«'12), we have a resonant frequency in the studied mic
wave band. In this case, a section with a constant voltage
to synchronization of a group of slipping phase cent
~Fiske step! can occur. The centers whose oscillations are
locked to the resonant frequency should demonstrate a li
behavior. As a result, the CVC of the sample should hav
linear section with the resistance corresponding to the n
ber of unlocked centers, which is smaller than the total nu
ber. The question why horizontal steps have not been
served remains unanswered. Doubts in this interpreta
could be eliminated by directly measuring microwaves g
erated in the sample.

Figure 5 shows the widths of constant-voltage steps
functions of the microwave field amplitude in relative unit

FIG. 6. Low-current sections of CVCs of the Sn2 sample at different
crowave field powers at frequencyV/2p540.62 GHz in the second cycle o
measurements atT'3.60 K: ~a! 70 dB; ~b! 24.49 dB;~c! 22 dB.
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The maximal width of these steps allows us to estimate
microwave power generated by the whisker:

P'~DI !2mR0 ,

where DI is the step width in terms of current. Henc
P'1028 W.

The microwave generation in the slipping phase cen
can be interpreted in terms of the order parameter ve
time, which vanishes at some moment and then increase
some value. At the moment when the order paramete
zero, the difference between the phases on different side
the slipping phase center drops by 2p. It would be interest-
ing to estimate the times of these processes and com
their reciprocal values with the frequencies of the order
rameter oscillations and external radiation. The most imp
tant parameter is the timetD in which the order paramete
recovers. WhentD is much longer than the order parame
oscillation period determined by the Josephson formula, b
the mean and instantaneous absolute values of the orde
rameter within the center are much smaller than the equ
rium value in other regions of the superconducting chan
If tD is comparable to or smaller than the period of the or
parameter oscillations, the instantaneous value of the ga
the slipping phase center can be large and comparable to
gap in the surrounding regions. The spectra of normal e
tations in slipping phase centers should be notably differ
in these two cases, which can lead to differences in so
electrical properties of slipping phase centers. Since the
ergy relaxation time of current carriers in tin is 3310210 s,
the first case is realized in the microwave frequency ban

The behavior of the step width is determined by tw
factors. The first is the width of the step against the ba
ground of an infinite linear CVC section with a definite num
ber of slipping phase centers as a function of the microw
field amplitude. The second is the limitation of the consta
voltage step by the length of the CVC linear sloping secti
whose positions, as follows from experimental data, are a
functions of the microwave power. A change in the numb
of slipping phase centers breaks the initial synchroniza
condition, and the system can switch to either a totally
synchronized state, or a partially synchronized state, or f
synchronized state at a different harmonic and with a diff
ent number of slipping phase centers~for example, the zero-
slope step at 2UV in Fig. 2 can be due to synchronization
four centers by the second harmonic or six centers by
third harmonic!. Given these two effects, we could not d
termine the constant-voltage step width as a function of
microwave amplitude unambiguously and compare it to
theoretical model. The existence of the microwave pow
e
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threshold at which induced steps appear and the absen
oscillations in both the zero-slope step width atUm/n and
critical current as functions of the microwave field amplitu
are due to a definite number of slipping phase centers
quired at these voltages.

5. CONCLUSION

In the reported work, we have studied the effect of m
crowave radiation on current–voltage characteristics
whiskers with submicron diameters. Such whiskers can se
as microwave oscillators at frequencies of up to 40 GHz w
an output of about 1028 W. The spectrum of generate
waves contains many harmonics, and the generation oc
on CVC sections with stable numbers of slipping phase c
ters. Features of CVCs of our samples under microwave
diation are determined by changes in the number of slipp
phase centers and the synchronization degree of gener
in these centers.

The work was supported by theSuperconductivitysub-
program of thePhysics of Condensed Stateprogram spon-
sored by the Russian government~Project No. 95021!, and
by the Physics of Solid-State Nanostructuresprogram
~Project No. 1-084/4!.

* !E-mail: tulin@ipmt-hpm.ac.ru

1D. W. Palmer and J. E. Mercereau, Appl. Phys. Lett.25, 467 ~1974!.
2M. Octavio and W. J. Skocpol, J. Appl. Phys.50, 3505~1979!.
3L. É. Amatuni, V. N. Gubankov, A. V. Zaitsev, and G. A. Ovsyanniko
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Conductance of a quantum wire in a longitudinal magnetic field
V. A. Ge ler* ), V. A. Margulis, and L. I. Filina

N. P. Ogaryov Mordovian State University, 430000 Saransk, Russia
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We examine the ballistic conductance of a quantum wire in a parallel magnetic field in the
presence of several impurities and derive analytic expressions for the transmission coefficient and
the conductance in such a system. We show that scattering by impurities leads to a number
of sharp peaks near the thresholds of the conductance quantization steps. The number of such
peaks is determined by the distance between the impurities and the energy of the scattered
particle. We also study the conductivity of a quantum wire in the region where the transport
mechanism is diffusive. The conductivity is examined for the case in which charge carriers
are scattered by randomly distributed point impurities. We study Shubnikov–de Haas oscillations
in such a system. The general oscillation pattern consists of broad minima separated by
irregularly spaced sharp peaks of the burst type. ©1998 American Institute of Physics.
@S1063-7761~98!01904-0#
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1. INTRODUCTION

The conductance of an electron gas in quasi-o
dimensional nanostructures has attracted growing atten
in view of the fact that systems of this type exhibit intere
ing physical effects, such as the Aharonov–Bohm effect,
weak localization effect, and the quantization of condu
tance. A magnetic fieldB applied along the axis of a quan
tum wire enhances lateral geometric confinement,1,2 so that
by varying B we can alter the effective geometrical size
the system, and hence the functional dependence of the
ductance on the fieldB. In particular, by varyingB we can
change the parameters of the conductance quantiza
steps.3,4 Studying the conductance of a quantum wire in
lateral magnetic field makes it possible to investigate s
important characteristics of electrons as the parameters o
confining potential and the subband energies in the ene
spectrum.5,6

Two fundamentally distinct cases are possible in stud
of the conductance of quantum wires. If the wire’s radius a
length are less than the electron mean free path, the con
tance is ballistic and can be expressed in terms of approp
transmission coefficients.7–9 Otherwise, the conductance
diffusive and can be described by an appropriate trans
equation.

Elastic scattering by impurities plays an important ro
in such systems.9–20 In particular, as shown in Ref. 4, sca
tering by a single point impurity in a ballistic quasi-on
dimensional nanostructure in the presence of a longitud
magnetic fieldB leads to the emergence of narrow and hi
peaks to the left of the threshold of the conductance qua
zation steps. As the Landauer–Bu¨ttiker formula7–9 implies,
the wire conductance in the ballistic regime is described
the sum of the electron transmission coefficients over
various scattering channels. These coefficients change in
presence of an impurity due to the possibility of reflection
the incident electron wave, which depends on the parame
7511063-7761/98/86(4)/12/$15.00
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of the scattering center. The effect may be even stronge
there are several impurities. General considerations sug
that since each impurity can reflect the incident elect
wave, variations in the relative positions of the impuriti
can have a strong effect on the shape of the conducta
curveG(E). Moreover, due to multiple reflections, the num
ber of peaks in theG vs. E curve may be high even for two
impurities. In the diffusive regime, scattering by impuritie
leads to oscillations of the Shubnikov–de Haas type in
dependence of the conductivitys on the fieldB.

The goal of our investigation is to study the conductan
of a quantum wire in a longitudinal magnetic field whe
carriers are scattered by point impurities in both the ballis
regime and the diffusive transport regime.

Various models of the confining potential have be
used to describe theoretically the one-electron states
quantum wire: an infinitely long waveguide with consta
cross section,21,22 saddle-point potentials for constrictions
quantum channels,7–11 and a symmetric quadrati
potential.23–25 A more rigorous approach to the shape of t
confining potential requires self-consistent solution of t
Poisson equation and the Schro¨dinger equation. Numerica
solutions of these equations yield an almost parabolic po
tial for channels in a two-dimensional gas with, however
flat lower boundary~the lower part being cut off26!. Since
such a shape is very close to parabolic, a harmonic pote
is quite realistic from an experimental standpoint.23 The con-
venience of the harmonic potential for theoretical studies
quasi-one-dimensional microstructures in a longitudi
magnetic field is explained by the fact that such a poten
yields explicit formulas for the spectral characteristics a
the scattering parameters.

To describe one-electron states in a quantum wire
use a symmetric confining potentialV(x,y)5m* v0

2(x2

1y2)/2, wherem* is the effective electron mass andv0 is
the characteristic confining-potential frequency, which is
lated to the effective radiusl 0 of the wire by l 0
© 1998 American Institute of Physics
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5A\/m* v0 . For one-electron states that are unperturbed
impurities and are in a longitudinal magnetic fieldBiz, the
Hamiltonian of our model is

H05
1

2m*
S p2

e

c
AD 2

1
m* v0

2

2
~x21y2!. ~1!

We select a symmetric gauge for the vector potential of
magnetic field,A(r ), i.e., A5(2yB/2, xB/2,0). Then the
spectrum of the Hamiltonian~1! can be written

Emnp5
\vc

2
m1

\V

2
~2n1umu11!1

p2

2m*
,

and the corresponding wave functions in cylindrical coor
natesr, w, andz are

Cmnp
0 5expS ipz

\ Dexp~ imw!

A2p
Rmn~r!, ~2!

wheremPZ, nPN, andp5pz is the projection of momen
tum on thez axis. Here

Rmn~r!5Cmnr
umuexpS 2

r2

4l 2D Ln
umuS r2

2l 2D ,

~3!

Cmn5
1

l 11umu F n!

2umu~n1umu!!
G 1/2

, l 5A \

m* V
,

Ln
umu(x) are generalized Laguerre polynomials,V

5Avc
214v0

2 , andvc is the cyclotron frequency.
In this paper we study electron transport in a quant

wire with allowance for elastic scattering by a system
potentials of short-range impurities. We model the poten
of short-range impurities as a sum of point potentials27–29:

V~r !5(
j

ajd~r2r j !@11~r2r j !–¹#, ~4!

whereaj are the coupling constants of the pseudopoten
and r j are the radius vectors of the impurity centers.

From ~3! we see that the unperturbed wave functio
decrease exponentially with distance from the conduc
channel axis~as r increases!. The characteristic size of th
wave function in a plane perpendicular to the magnetic fi
is l , while the characteristic size of the microstructure
obviouslyA\/m* v05l 0. Below we study only the impor-
tant case in whichl is several times smaller thanl 0. This
occurs in the presence of strong magnetic quantization
when the microstructure is pinched.9

The restriction on the magnitude of the magnetic fieldB
can be lifted if all impurities are near the conducting chan
axis. We know of no experimental work in which such
impurity distribution is employed. However, recent nov
technology employing a scanning tunneling microsco
makes it possible to manipulate impurity atoms with the
quired precision.

2. SCATTERING BY A SYSTEM OF POINT IMPURITIES

Note that the use of potentials of type~4! in 2D and 3D
requires a special approach.30 In particular, perturbation
y

e

-

f
l

l,

s
g

d

nd

l

l
e
-

theory techniques do not work in this case.27 However, if
Kre�n’s formula for the resolvent of the HamiltonianH0 per-
turbed by such a potential is employed, we can derive ex
analytic formulas for the Green’s function of such a Ham
tonian and the wave function.

Using ~2!, we find the Green’s function of the operato
H0 in the form

GE
0~r ,r 8!5

m*

2p i\ (
n50

`

(
m52`

`

exp@ im~w2w8!#

3Rmn~r!Rmn~r8!
exp~ ipmnuz2z8u/\!

pmn
, ~5!

where

pmn5F2m* S E2
\vc

2
m2

\V

2
~2n1umu11! D G1/2

.

We now examine the Green’s function and the state o
scattered particle for the operatorH0 perturbed by a single-
point potential concentrated at pointr0. As shown, e.g., in
Ref. 30, a convenient way to study operators of this type is
employ the approach based on Kre�n’s formula for resol-
vents. According to this formula, the Green’s function of t
HamiltonianH5H01V has the form

GE~r ,r 8!5GE
0~r ,r 8!2@Q~E,r0!1a21#21

3GE
0~r ,r0!GE

0~r0 ,r 8!. ~6!

Here Q(E,r0) is Kre�n’s Q-function, which is defined, to
within a constant, by

Q~E,r0!5 lim
r→r0

@GE
0~r ,r0!2GE0

0 ~r ,r0!#, ~7!

whereE0 is some fixed value ofE, anda is related to the
scattering lengthl by a52p\2l/m* . Combining ~5! and
~7!, we have

Q~E,r0!5
Am*

2A2p i\
(
n50

`

(
m52`

`

Rmn
2 ~r0!

3F S E2
\vc

2
m2

\V

2
~2n1umu11! D 21/2

2 i S \vc

2
m1

\V

2
~2n1umu11! D 21/2G1C, ~8!

where the constantC remains to be determined.
Now suppose thatC0(r ) is a delocalized state ofH0. By

virtue of Eq.~6!, the corresponding stateC(r ) of the opera-
tor H is

C~r !5C0~r !2@Q~E,r0!1a21#21C0~r0!GE
0~r ,r0!.

~9!

We see from~9! that the electron scattering amplitude in
quantum wire then takes the form

t~E,r0!5@Q~E,r0!1a21#21. ~10!

The constantC in ~7! and~8! can easily be found by passin
to the limitsr→0 andE→0. The result is
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C5
m*

2p\2S m* V

2\ D 1/2

zS 1

2
,
1

2D . ~11!

Herez(s,s) is the generalized Riemann zeta function. No
that by passing to the limitv0→0 in ~8! we obtain

Q~E,0!5aa21zS 1

2
,
1

2
2

E

\vc
D ,

wherea5l/A2l B , with l B5A\/m* vc the magnetic length
For the scattering amplitude in this limit we have

t~E!5
a

11az~1/2,1/22E/\vc!
. ~12!

The right-hand side of Eq.~12! coincides with the expressio
in Ref. 28 for the scattering amplitude of an electron in
magnetic field, scattered by a point potential atr050. Note
the difference between Eqs.~12! and ~10!, which becomes
important in our subsequent investigation. Equation~10!
contains the distancer0 from the wire’s axis to the point a
which the impurity is located. Such an inhomogeneity
Kre�n’sQ-function results, in the present case, from the la
of invariance of the HamiltonianH0 under the group of mag
netic translations.

We now examine the Green’s function of the opera
H0 perturbed by a system of identical impurities. T
Green’s function of this Hamiltonian can be obtained in e
plicit form ~see Refs. 31 and 32!:

GE~r ,r 8!5GE
0~r ,r 8!2 (

i , j 51

Ni

@Q~E!1a21# i j
21

3GE
0~r ,r i !GE

0~r j ,r 8!. ~13!

Here Kre�n’s matrix Qi j (E) has the form

Qi j ~E!5H GE
0~r i ,r j !, iÞ j ,

Q~E,r j !, i 5 j ,
~14!

and (a21) i j 5a21d i j . In Eq. ~14!, Q(E,r j ) is given by~8!
with r0 replaced byr j , wherer j is the polar radius of the
j th impurity. Combining~13! and~14!, we can determine the
scattering operatorT(E). The Green’s function ofH can be
expressed27 in terms of the Green’s functionGE

0 and the
operatorT(E):

GE~r ,r 8!5GE
0~r ,r 8!2GE

0~r ,r 8!T~E!GE
0~r 8,r !. ~15!

Combining~13! and ~15!, we find that

T~E!5(
i , j

@Q~E!1a21# i j
21ud~r2r i !&^d~r2r j !u. ~16!

Using this expression for the scattering operator, we
easily write the scattering matrixTbb8(E) in the form

Tbb8~E!5(
i , j

@Q~E!1a21# i j
21Cb

0~r i !Cb8
0 * ~r j !. ~17!

According to what was said in the Introduction, the im
purities that can effectively scatter are those near the axi
the conducting channel. The results of Ref. 4 imply that
k

r

-

n

of
r

r j<l , corrections inr j to the elements of Kre�n’sQ-matrix
are of orderO(r j

2/l 2). We will subsequently see that th
scattering parameters for the HamiltonianH can be ex-
pressed in terms of these elements; neglecting correction
orderO(r j

2/l 2), we assume from now on thatr j50. In this
case, by virtue of~3!, the only electrons scattered are tho
with angular momentumm50.

Equation~13! implies that delocalized statesC(r ) of the
HamiltonianH01V with energyE have the form

C~r !5C0~r !2(
i , j

@Q~E!1a21# i j
21C0~r i !GE

0~r ,r j !,

~18!

where C0 is the delocalized wave function of the unpe
turbed HamiltonianH0 with the same energy. Consider th
transition, due to the scatterers, from the state (0,n0) with
energyE5\V(n011/2)1p2/2m* to the state (0,n1) with
the same energy. Suppose that the wave that propagat
the mode (0,n0) is

C0n0p0

0 5
1

A2p
expS ip0n0

z

\
DR0n0

~r!. ~19!

According to ~18!, the corresponding state of the Ham
tonianH with the same energyE is

C~r !5
exp~ ip0n0

z/\!

A2p
R0n0

~r!2
1

A2p

m*

2p i\l 2

3 (
n50

`
R0n~r!

p0n
(
j ,k

@Q~E!1a21# jk
21

3expF i S p0n0
zj1

p0nuz2zku
\ D G , ~20!

where we have allowed for the fact thatR0n(0)5l 21 for all
values ofn.

3. TRANSMISSION COEFFICIENT AND CONDUCTANCE IN
THE BALLISTIC REGIME

Using the results obtained for the wave functions in S
2, we can find the transmission coefficients and the cond
tance in the ballistic regime.

When z,2maxuzku, the coefficientw (2) of R0n0
(r) in

~20! has the form

w~2 !5
exp~ ip0n0

z/\!

A2p
2

m*

2p i\l 2p0n0

S (
j ,k

@Q~E!1a21# jk
21

3exp
ip0n0

~zj1zk!

\ D exp~2 ip0n0
z/\!

A2p
, ~21!

and whenz.maxuzku, the coefficientw (1) of R0n1
(r) is
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w~1 !5
exp~ ip0n0

z/\!

A2p
dn0n1

2
m*

2p i\l 2p0n1

3S (
j ,k

@Q~E!1a21# jk
21exp

i ~p0n0
zj2p0n1

zk!

\ D
3

exp~ ip0n1
z/\!

A2p
. ~22!

Comparingw (1) andw (2), we see that the partial transmi
sion coefficientTn0→n1

(E) is

Tn0→n1
~E!5Udn0n1

2
m*

2p i\l 2

3

(
j ,k

@Q~E!1a21# jk
21exp@ i ~p0n0

zj2p0n1
zk!/\#

@p0n0

2 12m* \V~n02n111/2!#1/2
U 2

.

~23!

Following the Landauer–Bu¨ttiker formalism,7–9 we can
find the conductance of the microstructure:

G~E!5
2e2

h (
n0 ,n50

N

Tn0→n~E!, ~24!

where the integerN satisfiesE5\V(N11/21d), 0,d,1.
Since it is difficult to use the general formulas~23! and~24!
in an analytic investigation due to the complexity of the e
pression for Kre�n’s Q-matrix, we consider the various lim
its. First we obtain convenient estimates for the off-diago
elements of this matrix. The diagonal elements of Kre�n’s
Q-matrix are equal toQ0(E)1a21.

At r j5rk50 the off-diagonal elements of Kre�n’s
Q-matrix are

Gjk[GE
0~r j ,r k!5

m*

2p i\l 2 (
0

`
1

p0n
exp

ip0nuzj2zku
\

.

~25!

Using the method developed in Refs. 28 and 29, we
transform the sum in~25! into an integral:

Gjk5
m*

2p\2uzj2zku
expF2 iA2E

\V
21U zj2zk

l
UG

1
m*

A2p3/2\2l
E

0

`S 1

2
1

1

2
coth

t2

2
2

1

t2D
3expF2

t2

2 S 12
2E

\V D2
1

2t2 S zj2zk

l
D 2Gdt. ~26!

This formula proves to be convenient in analyzing the va
ous limits. Indeed, suppose thatuzj2zku/l !1, which corre-
sponds to small distances between impurities. Then Eq.~26!
yields the asymptotic behavior
-

l

n

-

Gjk5
m*

2p\2uzj2zku
F11OS Uzj2zk

l
U D G . ~27!

If the distances between the impurities are large, i
uzj2zku/l @1, Eq. ~26! yields

Gjk52
m* i

2p\2l A2E/\V21

3expF2 iA2E

\V
21

uzj2zku
l

G
3F11OS uzj2zku

l
D G . ~28!

Equation~27! shows that when the distances between
impurities are small, the matrix elementsGjk are large, while
Eq. ~28! shows that when these distances are large,uGjku is
independent of the coordinates of the impurities. In the la
case we can estimate the ratio of the off-diagonal element
Kre�n’s matrix to the diagonal elements. Let us introduce
scattering length l5m* a/2p\2 and the constantg
5ulu/A2l . In all realistic situationsg!1, so that we have

U Gjk

Q0~E!1a21U5
A2

A2E/\V21

3
g

u11gz~1/2,1/22E/\V!u
. ~29!

Clearly, forE@\V/2 we have from~29!

U Gjk

Q0~E!1a21U!1, j Þk.

Discarding the small off-diagonal terms in the matr
@Q(E)1a21#21, we obtain a convenient estimate for th
transmission coefficient:

Tn0→n1
~E!

>Udn0n1
2

m*

2p i\l 2

3

@Q0~E!1a21#21(
j

exp@ i ~p0n0
2p0n1

!zj /\#

@p0n0

2 12m* \V~n02n111/2!#1/2
U 2

.

~30!

Note that when there are only two impurities in the condu
ing channel and they are near the wire’s axis, we can s
plify Eq. ~30!. We position one impurity at the origin an
introduce the quantityD5uz12z2u, the distance between th
impurities. Then we can write

Tn0→n1
5udn0n1

1 ig~N1d1n1!21/2

3@11gz~1/2,2N2d!#~11cosb1 i sin b!u2,

~31!
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whereb5(p0n0
2p0n1

)D/\.

4. SCATTERING BY TWO POINT IMPURITIES

We now discuss elastic scattering by the potential of t
impurities in greater detail. What is interesting here is t
the problem makes it possible to carry out a fairly simp
analytic and numerical analysis of the expression for the
crostructure’s conductance. In addition, it can be expec
that this case will reveal the main features of scattering
several point potentials.

Using the shift formula for the Riemann zeta functio
we separate the real and imaginary parts of this function33

Re z5Re zS 1

2
,2N2d D5zS 1

2
,12d D , ~32!
tia
g

-

ie
g

th
m
-
-

in
o
t

i-
d
y

,

Im z5Im zS 1

2
,2N2d D5 (

n50

N

~N1d2n!21/2.

To estimatez(1/2,12d) we use the results of Ref. 31
whereupon

zS 1

2
,12d D>~12d!21/21

1

2
~22d!21/222A22d

1
1

24
~22d!23/2. ~33!

Combining~32! and ~31!, we obtain
Tn0→n5dn0nH 11
4g2 Im z

AN1d2n@~112g Re z!21~2g Im z!2#
J

1
g2~N1d2n!21

@11g Re z~11cosb!2g Im z sin b#21@g Im z~11cosb!1g Re z sin b#2
. ~34!
tities
nal

e
er

t

tion
the

f this
Let us compare this with the expression for the par
transmission coefficient in the case of scattering by a sin
impurity ~obtain in Ref. 4!. The coefficient ofdn0n in ~34!

~the expression in braces! differs from the corresponding co
efficient in Ref. 4 in thatg is replaced by 2g, which means
that the coupling constant in~4! has doubled. This term in
Tn0→n does not contain the distance between the impurit
and its structure is the same as for scattering by a sin
impurity. The second term in the sum forTn0→n contains the
distance between the impurities, and in the limitD→0, it
simply turns into the analogous corresponding term in
transmission coefficient for the case involving a single i
purity. Both terms are proportionalg2 and, generally speak
ing, are small becauseg!1. However, at values of the elec
tron energyE at which 112g Re z50, the first term of
those proportional tog2 ceases to be small, since in~34! the
small factorg2 in the numerator cancels the same factor
l
le

s,
le

e
-

the denominator, and both terms in braces become quan
of the same order. In the second term, which is proportio
to g2, the same situation occurs at 112g@(11cosb)Re z
2sinb Im z#50. While in the former case there is only on
such pointE at which the above situation occurs, in the latt
there can be many, and their location on theE axis depends
on the distanceD between impurities. As shown in Ref. 4, a
energy values satisfying the condition 112g Re z50, a
sharp maximum emerges at the conductance quantiza
steps near the threshold of each step. We expect that in
cases considered here, there can be several maxima o
kind.

We now consider the conductanceG(E) of a quantum
wire for the important case where in which the distanceD
between the two impurities is large,D/l @1.

Using Eqs.~24! and ~34!, we obtain
G

G0
5 (

n50

N H 11
4g2 Im z

AN1d2n@~112g Re z!21~2g Im z!2#
J

1g2 (
n,n050

N
~N1d2n!21

@11g Re z~11cosb!2g Im z sin b#21g2@~11cosb!Im z1Re z sin b#2
, ~35!
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whereG052e2/h is the conductance quantum. Calculating the sums in~35! in the same way as in Ref. 4, we obtain that

G

G0
5N111

~2g Im z!2

~112g Re z!21~2g Im z!2

1g2 (
n0 ,n50

N
~N1d2n!21

112g@~11cosb!Re z2sin b Im z#12g2~11cosb!@~Re z!21~ Im z!2#
. ~36!
:
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Clearly, the conductance in~36! consists of three terms
G/G05G11G21G3. The first, G1511@x#, where @x# is
the integer part ofx5(E/\V21/2), is independent of scat
tering and produces conductance quantization steps of w
\V and height equal to the conductance quantumG0. The
second term,G2, is given by

G25~2g!2UzS 1

2
,2xD2zS 1

2
,12$x% D U2

3F114gzS 1

2
,12$x% D14g2UzS 1

2
,2xD U2G21

,

~37!

where$x% is the fractional part ofx. Finally, the third term is

G35g2 (
n,n050

`

~x2n!21H 112gF ~11cosb!zS 1

2
,12$x% D

2sin bUzS 1

2
,2xD2zS 1

2
,12$x% D UG12g2~11cosb!

3UzS 1

2
,2xD U2J 21

. ~38!

The last two terms reflect the deviation of the shape
the quantization steps from ideal. Both terms,G2 andG3, are
due to scattering by impurities. TheG vs. E curves are de-
picted in Figs. 1–3, with the details of one of the peaks at
step threshold depicted separately. The diagrams repre
ing G(D) are depicted in Figs. 4–6, which show how co
ductance quantization breaks down in the case of scatte
by two point impurities. The number of resonance peaks
theG vs.E curves depends strongly on the distance betw
impurities and the number of the conductance step, i.e.,
number of peaks increases withD andN. All peaks are lo-
cated near a step threshold, which is due to the aforem
tioned fact thatG2(E) andG3(E) are small everywhere ex
cept in the vicinity of the threshold. The height of the
peaks decreases as the distance from the step thresho
creases, the reason obviously being that asE increases, we
move farther away from the points of resonance, i.e., the s
G2(E)1G3(E) gets small as we move away from the ma
peak.

We also note that the peaks inG2(E) and G3(E) are
located at different points in the vicinity of a step thresho
and that the peak inG2(E) is much lower than the main pea
in G3(E), sinceG3

max(E)/G2
max(E);N. Indeed, the second

term in G2(E) in the neighborhood of the resonance po
determined by the equality 112g Re z50 is of order unity.
th
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It is clear why the resonance inG2(E) is determined by such
an equality: when this condition is met, the small factorg2 in
the numerator in~36! cancels the same factor in the denom
nator. A similar situation occurs forG3(E) if the following
condition is met:

112g@~11cosb!Re z2sin b Im z#50. ~39!

The factors Rez and Imz in ~39! behave differently,
i.e., Im z is large for d!1, while Rez is large for d'1.
Equations~32! and ~33! clearly demonstrate this. On th
other hand, because of the smallness ofg, for condition~39!
to be met at least one of these factors must be large. Cle

FIG. 1. ~a! Energy dependence of the conductance of a microstruct
G(E), for the case of scattering by two impurities withl 052.531026 cm,
l 51.131026 cm, andD5231025 cm. ~b! Detailed structure of the reso
nance peaks.



-

o

(

i
T

al

u-
e
on-
s-

ur
nc

ure,

757JETP 86 (4), April 1998 Ge ler et al.
the condition~39! is met only ifd!1. Then near the thresh
old ~39! yields the estimate sinb Im z.1/2g, and since
Im z.1/Ad for d!1, we have sinb.Ad/2g. Hence 0,d
,4g2 near a resonance. Using what was said earlier, fr
~36! we find that in the neighborhood of a resonance

G3~E!.
1

2
~N11! (

n50

N
~N1d2n!21

11A12d/4g2

1

~ Im z!2
. ~40!

Then ford!1 we obtain

G3~E!.
N11

2 S 1

11A12d/4g2D . ~41!

The factor in parentheses ranges from 1/2 to 1, so thatN
11)/4,G3(E),(N11)/2. Clearly, for N@1 we have
G3(E)@G2(E), while for N;1 and d!1 all three terms
(G1(E), G2(E), andG3(E)) are of the same order.

5. CONDUCTANCE OF A QUANTUM WIRE IN THE DIFFUSIVE
REGIME

We now discuss the conductance of a quantum wire
the case in which the system is in the diffusive regime.

FIG. 2. a! Energy dependence of the conductance of a microstruct
G(E), under the same conditions as in Fig. 1a but with a different dista
between impurities,D5531025 cm. b! Detailed structure of the peaks.
m

n
o

find the probability of an electron transition from the initi
stateub&5um,n,p& to the final stateub8&5um8,n8,p8&, we
use the Lippmann equation34

Wbb85
2p

\
uTbb8u

2d~«b2«b8!. ~42!

Introducing the scattering amplitudetbb8(E), we obtain

Wbb85
2p

\V2 utbb8~E!u2d~«b2«b8!, ~43!

whereTbb8(E)5V21tbb8(E), with V the normalization vol-
ume.

The electron motion along the wire’s axis in a longit
dinal magnetic field~the z axis! is semiclassical, so that w
can use the Boltzmann transport equation to find the n
equilibrium distribution function for the electrons. The tran
port equation linearized in the electric fieldE parallel to the
z axis has the form

] f 0

]«b

eEp

m*
5I bb8

ei
~ f !, ~44!

e,
e

FIG. 3. a! Energy dependence of the conductance of a microstruct
G(E), under the same conditions as in Figs. 1a and 2a but withD
51024 cm. b! Detailed structure of the peaks.
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FIG. 4. G vs. D at l 052.531026 cm and l 51.1
31026 cm. The heavy curve corresponds toE/\V21/2
52, and the light curve toE/\V21/254.
tri
ll-

m

n

ely

er

on-
ed
where I bb8
ei ( f ) is the collision integral, andf 0(«) and f («)

are, respectively, the equilibrium and nonequilibrium dis
bution functions. The collision integral is given by the we
known formula

I bb8
ei

5(
b8

Wbb8@ f ~«b!2 f ~«b8!#. ~45!

In the relaxation-time approximation, the nonequilibriu
distribution function is

f ~«b!5 f 0~«b!2
eEp

m*
t~«!

] f 0

]«
. ~46!

Combining~45! and~46!, we obtain the following expressio
for the relaxation timet21(«b)5(b8Wbb8:

t21~«b!5
2p

\V2 (
b8

tbb8~Eb8!d~«b2«b8!. ~47!

The longitudinal conductivity is

szz52
e2

Vm* 2 (
b

p2
] f 0

]«b
t~«b!. ~48!
-
Then the general formula forszz becomes

szz52
e2\2

2pm* 2 (
b

p2
] f 0

]«b
F(

b8
utbb8~«b!u2

3d~«b2«b8!G21

. ~49!

Here

tbb8~«b!5V(
i , j

@Q~«b!1a21# i j
21Cb

0* ~r i !Cb8
0

~r j !,

~50!

with the matrix in the denominator given by~14!.
The equation for the scattering amplitude is extrem

awkward, which means that the general expression~49! is
extremely difficult to analyze, so that below we consid
various limiting cases.

We examine the important case in which geometric c
finement is weaker than magnetic. This situation is realiz
when the radiusr of the wire is much greater thanl B . Here
the characteristic scale of variation of the wave function~2!
if-
FIG. 5. The same dependence as in Fig. 4 but for a d
ferent range ofD.
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FIG. 6. G vs. D at l 052.531026 cm, l 51.131026 cm,
andE/\V21/254. The distanceD between the impuri-
ties is much greater than in Fig. 4.
e
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e
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the
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rate
in the geometric-confinement plane is of orderl , the hybrid
length, andl !r. In view of this, the main contribution to th
current is provided by electrons moving along the wire
axis, while the contribution of the electrons at a distan
from the axis is exponentially small (}exp(2r2/2l 2)). Hence
we can setr0 to zero in the expression~8! for Q(E,r0).

In this case Kre�n’s Q -function is homogeneous, and w
can average~42! over the positions of the randomly distrib
uted impurities. If the impurity concentration is low, i.e.,
for a characteristic momentump of the electron gas we ca
write p@\(ni)

1/3, whereni is the impurity concentration, we
can linearize the electron transition probability~43! in the
impurity concentration, with the result thatWbb8
5niVWbb8

0 , whereWbb8
0 is the probability of elastic scatter

ing by a single impurity at the origin,

Wbb8
0

5
2p

\V2

a2

11az~1/2,1/22«b /\V!
d~«b2«b8!.

~51!

Bearing all this in mind, we can findt(E) using Eq.~47!:

t21~«!5
niL

\2V
ut~«!u2

m*

A2m* \V
(

n
S «

\V
2n2

1

2D 21/2

,

~52!

where

t~«!5
a

11az~1/2,1/22«/\V!
, ~53!

andL is the length of the wire.
Combining~49!, ~52!, and~53!, we find the general ex

pression for the conductivity in the present case:

szz52
e2\3

p l 2m* 2ni
E

\V/2

`

d«
] f 0

]«
ut~«!u22

3

(
n

~«/\V2n21/2!1/2

(
n

~«/\V2n21/2!21/2

. ~54!
e

We first examine a nondegenerate electron gas in
ultraquantum limit. The equilibrium distribution function fo
electrons with a vanishing projection of angular moment
on the wire’s axis is

f 0~«b!5A expH 2
1

TF p2

2m*
1\VS n1

1

2D G J , ~55!

where the normalization constant is

A5
8p\2ne

m* VA2pm* T
sinh

\V

2T
,

with ne the electron concentration. In the ultraquantum lim
(\V@T), combining~54! and ~55! yields

szz5A
2e2\3TV

p3m* 2ni\Va2
t~a!expS 2

\V

2T D , ~56!

where

t~a!5E
0

`

xe2xU11azS 1

2
,
1

2
2

xT

\V D U2

dx. ~57!

FIG. 7. Dependence of the longitudinal conductivity of a nondegene
electron gas in the ultraquantum limit\V@T with s054e2\4ne

3@p3a2n* 2niA2pm* T#21.
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To estimate the integral in~57! we note thatx<1 is the
region in which the integrand varies substantially, which i
plies thatxT/\V!1. Then for the Riemann zeta function w
can use the asymptotic formula33

zS 1

2
,d D.

1

Ad
1

1

2

1

A11d
. ~58!

Combining~57! and ~58!, we obtain

t~a!.11a2
\V

T
. ~59!

The final expression for this limit is

szz.
4e2\3neT

p3A2pm* Tm* 2niVa2

3expS 2
\V

2T D S 11a2
\V

T D . ~60!

The diagram representing this dependence is depicted in
7.

We now turn to the case of a degenerate gas in the
traquantum limit (n50, T50). If we bear in mind the
asymptotic behavior of the zeta function, Eq.~54! yields

szz5
2e2\3a2~m0 /\V21/2!L

p3a2m* 2Ni

~u21v2!, ~61!

FIG. 8. Dependence of the longitudinal conductivity onm0 /\V in the ul-
traquantum limit.
-

ig.

l-

where

u5
1

A3/22m0 /\V
1

1

2A5/22m0 /\V
22A5

2
2

m0

\V

1
1

24S 5

2
2

m0

\V D 23/2

1a21 ,
~62!

v5S m0

\V
2

1

2D 21/2

, Ni5Vni ,

and 0.5\V,m0,1.5\V, with m0 the Fermi level. The dia-
gram representing~62! is depicted in Fig. 8.

Finally, we consider the Shubnikov–de Haas oscillatio
in the longitudinal conductivity of a quantum wire. Estima
ing the ratio of the sums in~54! via the Poisson formula by
a method similar to the one used in Ref. 33, we easily ob

szz5
8e2\2m

3p3m* 2niVa2

3

12A\V/m (
k51

`

~21!kAk cos~2pkm/\V2p/4!

a2\V/m14u11az~1/2,1/22m/\V!u22
,

~63!

wherem is the chemical potential of the electron gas in t
wire, and

Ak5
2p2kT

\V sinh~2p2kT/\V!

1

A2k
. ~64!

The curve representing the dependence ofszz/s0 on the
ratio vc /v0, where

s05
8e2\2m

3p3a2m* 2v0ni

,

is depicted in Fig. 9.
ic

FIG. 9. Oscillations of the longitudinal conductivity
of a quantum wire with variations of the magnet
field at m/T5100 andm/\v05100.
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6. DISCUSSION

For a more detailed analysis of the resonance peak
the conductance we consider the formula~38! used for esti-
mates. This formula implies thatG3(E) has a maximum a
d.4g2. Then from the estimates in Sec. 4 it follows th
sinb.1, which means thatp0n0

2p0n.(\/D)(p/212pk),
with k50,1,2, . . . . This implies that

AN2n01d2AN2n1d.
l

A2D
S p

2
12pkD . ~65!

The condition~65! shows which of the partial transmissio
coefficientsTn0→n yield a resonance contribution to the co
ductance. Suppose that at an energyE (N and d54g2 are
fixed! the condition~65! is met for certain values ofn0 and
n. ThenTn0→n provides a resonance contribution to the th
term, G3(E). For all other transmission coefficientsTn

08→n8

the quantityAN2n081d2AN2n81d can obviously only
satisfy~65! at values ofd not equal to 4g2. The correspond-
ing resonance contributions of these coefficients are sma

Note that the peaks from these coefficients can lie eit
to the right or left of the resonance point on theE axis.
Clearly, the height of these peaks decreases as we m
away from the point of resonance to the right. Such beha
of G3(E) is due to the dependence ofb on n0 and n, and
differs considerably from the behavior ofG2(E), where all
transmission coefficients provide a resonance contributio
the same point. The behavior ofG(E) corresponds to dia
grams built according to~35! and depicted in Figs. 1a–3a
The detailed structure ofG(E) is depicted in Figs. 1b–3b.

Let us roughly estimate the numberN0 of peaks in the
vicinity of a step threshold, whered!1. Equation~65! im-
plies thatN0;A2ND/pl . This estimate shows thatN0 in-
creases with energy in proportion toAE/\V and the distance
between the impurities. A comparison of Figs. 1b–3b sho
that the above conclusion agrees with the behavior ofG(E)
near the step threshold.

Figures 4–6 depict theG vs. D dependence for differen
values of E. We see that asE/\V increases, new peak
appear, but the old peaks do not change position, and ch
shape negligibly. Such behavior of the resonance peaks
be explained by the fact that each peak originates from
of the transmission coefficients, and the contribution of
the other peaks to the region where one of them is larg
insignificant. Moreover, the diagrams imply that the numb
of peaks inG(D) increases withD in any neighborhood of
the step threshold.

We now estimate the parameters of the peaks. We s
with the behavior of the second conductance term,G2(E).
The term has a maximum at a pointd0!1 such that
gz(1/2,12d0)521. To the left of the step threshold, whe
d approaches unity,G2(E) is of order 12d and hence is
extremely small, which means that the peak begins at
point whered50, i.e., at the step threshold, and sinced0

!1, rises almost vertically to the resonance point, wherd
5d0. The declining part of the peak can be approximat
described by a formula that follows from~37! for d0,d
!1. Then
in

r.
r

ve
r

at

s

ge
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e
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is
r
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y

G2~E!.
1

11dg22
. ~66!

Let us now find the halfwidthG(E) and the height of the
resonance peaks inG2(E). The maxima inG2(E) are shifted
by d0 to the right of the threshold of each step and have
amplitudeDG.1. We wish to find the valued1 at which
G2(d1)5G2(d0)/2. An estimate ofd1 by ~66! yields g2,
with the result thatG(E);g2\V. Thus, the halfwidths of all
peaks inG2(E) are the same, do not depend onE, and are
extremely small.

Next we examine the behavior of the third term in t
conductance,G3(E), near a resonances. Since as noted e
lier, the peaks inG3(E) are due to a resonance in the corr
sponding transmission coefficientTn0→n , below we examine
the behavior of such coefficients. To the left of the st
threshold, whered.1, the transmission coefficientsTn0→n

are of order (N112n)(12d)/2(11cosb) and hence are
small for all n0 andn with the exception of certain value a
which b5p/212pk ~these values ofb correspond to a
resonance, as mentioned earlier!. The line of reasoning used
in studyingG2(E) shows that the increasing parts are alm
vertical ~to the left of a resonance point!. To the right of a
resonance point the decreasing parts of the peaks are
proximately described by

Tn0→n.
~N1d2n!21

11cosb1dg22
. ~67!

Let us now find the halfwidthG(E). Clearly, in this case
we also haveG(E);g2\V. Since as noted earlier, only on
resonance term contributes significantly in the vicinity
each peak inG3(E), this is the estimate of the halfwidth in
G3(E). Thus, all peaks inG3(E) are located to the right o
the step threshold, and their halfwidths are extremely sm
and depend neither on the energyE nor on the distanceD
between the impurities.

The relationships of Secs. 3–5 were obtained on the
sumption that there is strong magnetic quantization, i.e.,
hybrid length is much less than the effective radius of
wire. However, the above results concerning the correcti
to Kre�n’s Q -function caused by deviations of impuritie
from the wire’s axis imply that changes induced by the
corrections in G21G3 are higher-order correction
;g2(r/l 0)2. Hence the deviations of impurities from th
microstructure axis have no significant effect on the posit
and shape of the resonance peaks inG(E).

Equation~63! suggests that theszz vs. B dependence is
of an oscillatory nature. These oscillations appear when
Fermi level intersects a hybrid-oscillatory level with ener
\V(n11/2). Note that since theV vs. B dependence is
nonlinear, the peaks of the curve in Fig. 9 are nonuniform
spaced.

Now let us discuss the nature of the oscillation maxim
near the points wherem5\V(n11/2). The dependence o
the scattering amplitudet(m) on the magnetic field near th
points wherem5\V(n11/2) has a strong effect on the con
ductivity, i.e., at these points the facto
u11az(1/2,1/22m/\V)u22 vanishes, so that the denomin
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tor of the second fraction in~63! becomes a small quantity o
ordera2\V/m. The quantitya is of order 0.1 forB;10 T.
This means that at the maxima the values ofszz increase by
a factor of 100 form/\V;10. The overall oscillation pattern
is one of broad minima separated by nonequidistant sh
peaks of the burst type.

Finally, we estimate the region where the results of S
5 are valid. The transport mechanism is diffusive rather th
ballistic if the length and radius of the wire meet certa
conditions:r, L.l, wherel is the mean free path in th
wire, i.e., for typical values ofl;1025 cm, r must be
greater than 1025 cm. For magnetic quantization to be muc
greater than size quantization,r must be much greater tha
l B , which is achieved ifB.1.5 T, i.e., under ordinary con
ditions, where magnetic quantization must be taken into
count. Thus, in the region where electron transport is dif
sive and under ordinary conditions for the magnitude of
quantizing magnetic field, magnetic quantization is stron
than size quantization, so that the results of the present
tion correspond to the situation with a quantum wire.
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Spectroscopy of quasiparticle excitations of superconducting bismuth cuprate at high
pressures
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We study the energy spectrum of Bi2223 (Bi1.6Pb0.4Sr1.8Ca2.2Cu3Ox) at high hydrostatic
pressures by Andreev- and tunneling-spectroscopy methods. We determine the gap anisotropy in
the basalab plane and find the following values for the parametersD(w): Dmax542 mV,
andDmin519.5 mV (Tc5110 K anddTc /dP50.16 K/kbar). We detect an increase in the ratio
R52Dmax/kTc with pressureP; for Bi2223 cuprate,dR/dP'0.017 kbar21. In the phonon-
frequency region we detect a ‘‘softening,’’ due to pressure, of the high-frequency part of the
phonon spectrum corresponding to ‘‘breathing’’ modes of oxygen, as well as other optical
modes of Cu–O. The characteristic frequencies of the spectrum for\V.60 mV are found to
decrease, with increasing pressure, at a rated ln(\V)/dP'26.560.531023 kbar21. This
result explains the observed increase in the ratio 2D/kTc(P) in the model of strong
electron–phonon interaction. ©1998 American Institute of Physics.@S1063-7761~98!02004-6#
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1. INTRODUCTION

It is impossible to decipher the pairing mechanisms
high-Tc superconductors without analyzing the excitati
spectrum of the superconductor over a broad energy ra
Junction methods are the main source of such informat
especially the tunneling effect inS–I–S structures.1 In junc-
tions with direct conductivity ofS–c–SandS–c–N type, the
spectroscopic characteristics of the superconductor are
served in the Andreev-reflection regime2 ~S stands for a su-
perconductor,c for a constriction,N for a normal metal, and
I for an insulator!. In this paper we use both junction regim
to study the effect of pressure on the gap and phonon spe
of a bismuth metal oxide, with each regime providin
complementary information.

For isotropic superconductors the theory of electro
phonon interaction yields a unique relation between the r
2D/kTc and the phonon spectrum: as the phonon frequen
increases, 2D/kTc must decrease, while softening of the ph
non frequencies must lead to an increase in this ratio.3 This
conclusion is fully corroborated by tunneling experiments
high pressure, which serve as an additional argument in
vor of the phonon mechanism of superconductivity.4,5 Here
the gap anisotropy of low-temperature superconductors p
no important role, since it is rapidly suppressed by ela
scattering by impurities.1

The situation is different for high-Tc superconductors. A
characteristic feature of such superconductors is strong
anisotropy,6 which accounts for the anomalous value of t
7631063-7761/98/86(4)/8/$15.00
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ap

ratio, 2D/kTc>7, and probably ensures the high value ofTc

~see Ref. 7!. Hence complete information about the mech
nism of high-Tc superconductivity can only be obtained
we take gap anisotropy into account. For instance, to de
mine D(w) of cuprates from tunneling-spectroscopy studi
junctions must be created in each crystallographic direct
which technologically is extremely difficult.8 At the same
time, the anisotropic energy gap in a superconductor and
changes in the gap produced by high pressure can be
duced from Andreev-reflection measurements.9 The experi-
ment can involve a singleS–c–N junction and is therefore
more promising.

As a result of Andreev reflection from theN–S inter-
face, there is inversion of electrons into holes, with a h
reflected in the same direction in which the respective e
tron had been moving. This leads to a doubling of the ju
tion conductanceG(V) at V50, i.e., G(0)/G(eV@D)'2
~see Refs. 10 and 11!. Such behavior in the reflection i
retained even for large electron incidence angles. As a re
if an NS microjunction is prepared on a single crysta
Andreev-reflected electrons carry information about
value of D(k) for all directions of the wave vectork ~see
Ref. 11!. Thus, measuring the conductance of a single po
NS junction makes it possible to completely reconstruct
anisotropyD(k) of the energy gap of the superconductor.

In our research we used three types of junction, e
with its own advantages in studies of electron–phonon in
© 1998 American Institute of Physics
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actions in high-Tc superconductors. Andreev junctions of th
S–c–N type make it possible to find gap anisotropy of c
prates in theab plane and the reaction of gap anisotropy
pressure. InS–c–S microjunctions no anisotropy effect
were observed, but the junctions proved suitable for the e
tic Andreev spectroscopy of phonons at high pressure.
nally, tunnel measurements were found to yield exhaus
information about phonons but cannot be used to mea
the size of the energy gap and gap anisotropy to high a
racy.

2. GAP ANISOTROPY

Information about gap anisotropy and the phonon sp
trum was obtained from the characteristics ofS–c–N and
S–c–S microjunctions and tunnelS–I–S structures. The ob-
jects of investigation were bismuth cuprat
(Bi1.6Pb0.4Sr1.8Ca2.2Cu3Ox) ~95% of the Bi2223 phase,Tc

5110 K) prepared by the solid-phase synthesis method f
chemically pure oxides. Bismuth ceramic plates 130.1
30.01 cm3 were prepared by subjecting a powder of t
Bi2223 phase to a pressure of 30–40 kbar between two s
anvils. For the bandage supports of the powder being pre
we used copper wires with a diameterD50.1–0.2 mm fas-
tened to the anvil surface parallel to each other. As a resu
pressure the powder was compacted into dense plane-pa
plates with a thicknessd<0.1 mm. The ceramic sample
with current and potential leads manufactured from a sil
paste were then annealed atT5845 °C.

The method of fabrication ofS–c–N microjunctions was
based on pressing a fine silver powder into a ceramic m
rial. The silver powder with particles of diameterd53 mm
was spread over the surface of the ceramic plate and cov
with a drop of glue. Then the sample was placed in a hyd
static press and subjected to a pressure of up to 15 kbar.
high mobility of the silver powder and hydrostatic pressi
resulted in the powder being pressed into the surface of
cermet, and a stable metallic junction formed. The outer
ameter of such a junction was 1–1.5 mm, while the area
the spectroscopicS–c–N microjunction estimated by Sharv
in’s formula ~see Ref. 2! is much smaller, about 10211

–10212 cm2. A pure S–c–N junction is probably produced
when microscopic cracks are formed in the thin microcr
tals of the ceramic plate under shear deformations that
pear in the pressing process and the simultaneous influ
the silver powder into the cracks. Then, probably, the Sh
vin junction is formed at the fracture of a microcrystal alo
the ~001! or ~010! plane. Note that what is measured in th
case are the characteristics of fairly perfect microcrystals
the ceramic material. This is suggested by the high rep
ability of the Andreev spectra for different junctions.

In addition to normal-metal–superconductor structu
we manufactured and studiedS–I–S junctions of the break
junction type. Here is a brief description of the method us
in manufacturing such junctions. A thin ceramic plate w
current and potential leads was placed on a support m
factured from a textolite foil. Then the plate was covered
a thick,d;0.5 mm, layer of varnish. After polymerization o
the varnish the substrate was bent until the ceramic p
s-
i-
e
re
u-

c-

m

el
ed

of
llel

r

e-

red
-
he

e
i-
f

-
p-
of
r-

f
t-

s

d

u-
y

te

broke, and this moment was monitored by the change in
resistance of the plate. The resistance of the break junct
fabricated at room temperature was either metallic or tun
in nature. The stability of the characteristics of the samp
made it possible to study the samples at low temperatu
and high pressures. For spectroscopic measurements we
a high-pressure chamber of the piston–cylinder type,12 which
contained not only the sample but also pressure and temp
ture pickups. To measure the characteristics we used a s
dard four-probe circuit. The differential conductance curv
were recorded by a circuit with a highly constant modulati
voltage.

The characteristic spectrum~i.e., the voltage dependenc
of G(V)5dI/dV) for a Bi2223–Ag microjunction is de-
picted in Fig. 1. The main features of the spectrum are ea
reproducible for junctions that differ greatly in their condu
tance. Note that the position of the local minima in the d
namic conductance~the resistance peaks! at eV5D1542
60.5 meV (P50) corresponds to the size of the of the s
perconducting energy gapDab540–50 meV of Bi2223 cu-
prates previously found in tunneling measurements in theab
plane.6,8,13 We obtained close values ofDab(Bi) from tun-
neling S–I–S spectra. And although, as we will see belo
the peaks in the tunneling conductance ateV'D are clearly
visible, their considerable smearing made it impossible
determine quantitatively the rate of change of the param
D under pressure. This drawback does not exist for Andr
NS microjunctions~Fig. 1!.

In a series of experiments with microjunctions who
resistance differed considerably, the singularities depicte
Fig. 1 ateV5D1 ,D2 were found to occupy the same pos
tions, which suggests that the nature of these singularitie
spectroscopic. Another indication of the relation of these s
gularities to the superconductivities of cuprates is the te
perature dependence ofD(T). For instance, theD1 vs. T

FIG. 1. The characteristic of the Bi2223–Ag junction~S–c–N! demonstrat-
ing the singularities of the anisotropic energy gap ateV52D1 and
eV52D2 at P50 and 10 kbar.
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curve for Bi2223–Ag microjunctions depicted in Fig. 2
similar to the well-known BCSD(T) curve for the energy
gap of a superconductor. On the hand, the singularity for
small gapD2 rapidly flattened out with increasing temper
ture and had a quite different~non-BCS!nature. Such tem-
perature curves forD1 andD2 of bismuth cuprate were dis
cussed by Pashitski� and Pentegov14 and was observed in th
experiments of Maet al.15 involving IR-spectroscopy with
high angular resolution.

The characteristic features of the resulting spectra~Fig.
1! are sharp dips in dynamic conductance whose posit
are related to the energy gapD1. We believe that these dip
are a manifestation of an effect accompanying Andreev
flection and due to the high degree of locality of the fe
current of a Sharvin microjunction. Earlier it was noted th
in cuprates, as well as in ordinary superconductors16 ~includ-
ing superconductors with heavy fermions17!, the dynamic re-
sistance ofN–S junctions under a bias voltageV5Vd may
exhibit peaks, withVd related toD by Vd'D/e. The tem-
perature dependence of a peak atVd was found to follow the
temperature dependence ofD(T).

The resistance peak in the dynamic characteristics
metallic N–S junctions results from nonequilibrium pro
cesses at quasiparticle energies 2eV52eVd;2D ~Ref. 18!
or at high measuring current densities.16,17What is important
here is that irrespective of the specific mechanism of sin
larity formulation in the spectrum atV5Vd , the relationship
of this singularity to the sizeD of the energy gap of the
superconductor yields the convenient possibility of quant
tively following the changes inD(w) induced by hydrostatic
pressure.

By analyzing the experimental curves, we found that
break ateV5D2 ~Fig. 1! is probably a reflection of the ga
anisotropy in cuprates in theab plane. The singularity a
eV5D2 cannot be related to the energy gap in t
c-direction, since in this direction the Fermi velocityVFs in
metal oxides is of order 106 cm/s, which is much less tha
the Fermi velocity in silver,VFn;108 cm/s. Hence the ef-
fectiveness of Andreev reflection in the direction of thec
axis must drop considerably~by a factor of approximately

FIG. 2. Temperature curves forD2 ~curve 1! and D1 ~curve 2!; the solid
curves representD(T)BCS and R(T), the superconducting transition of th
ceramic material being studied.
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VFn /VFs).
10 The effect of inhomogeneity of the order pa

rameter due to structural defects or impurities can also
ruled out, since the value ofD2 was reproduced in measure
ments involving a large number of samples. The narrow c
ductance peak near the zero-bias potential is often obse
in experiments withN–S junctions, but its nature has yet t
be explained~see, e.g., Ref. 19!.

As the pressure grows,D15Dmax(ab) increases andD2

5Dmin(ab) decreases, i.e., the gap anisotropya
5Dmax/Dmin gets stronger, and for Bi2223 the ga
anisotropy increase rate was found to beda/dP50.003
60.001 kbar21. The critical temperature increase rate w
found to bedTc /dP516 K/kbar, which yields the rate o
change of the ratioR52Dmax(ab) /kTc, namely dR/dP
50.01760.005 kbar21.

To get a feeling for the nature of the observed curve,
calculated the conductivitys(V) of a normal-metal–
anisotropic-superconductor microjunction. For simplici
we assumed that anisotropy of the energy gapD in the ab
plane is the most important and that the Blonder–Tinkha
Klapwijk parameterZ is small.10 Then

G~V!'11
2

p E
0

p/2

dwuA~V,w!u2,

A5
E1 iG2$~E1 iG!22D2%1/2

D
, ~1!

whereD5uD(w)u, and the Dines parameterG accounts for
the smearing of the singularity in the Gor’kov anomalo
Green’s function. The dependence of the parameterD on the
azimuthal anglew in the ab plane was approximated by th
formula

D~w!5D0S 11(
k

Ck cos~2wk! D , ~2!

which makes it possible to allow fors- andd-pairing effects
simultaneously. The parametersCk in ~2! were selected so
that the results provided by~1! would reasonably fit the ex
perimentalG(V) dependence~Fig. 1!. Equation~1! for cal-
culating the functionG(V) reflected the main features of th
experimental curve~Fig. 1! for eV<2D ~with the exception
of the peak at small bias voltages!, which made it possible to
relate the singularities of the observed spectrum of theNS
junction to the anisotropy of the energy gapD(w) of the
superconductor.

It is currently believed that the values ofTc and R
52D/kTc in cuprates are high as a result of substantial
isotropy of the energy gap in theab plane.6,7 The observed
increase in the ratioR and in gap anisotropy at high pressu
agrees with these ideas. Still, this is not an argument in fa
of the nonphonon mechanism of superconductivity, since
preciable gap anisotropy andd-wave superconductivity may
also be possible for a modified electron–phonon pair
mechanism~see, e.g., Ref. 20!.

3. PHONON SPECTRUM

The unusual symmetry of the order parameter in highTc

is corroborated by numerous experiments, but still electro
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phonon interactions play an important role in pairing.13,21–23

The phonon spectrum of cuprates extends to 100 mV and
previous research has shown,2,13,21 there is strong coupling
between electrons and high-energy phonons. In the pre
paper this is corroborated by experiments in elastic spect
copy of the electron–phonon interaction inS–c–S micro-
junctions of the Andreev type and in tunnelS–I–S samples.

Tunnel investigations of ordinary superconductors
high pressure demonstrate beyond any doubt that the de
tion of the ratioR52D/kTc from the universal BCS value
R53.53 is due to strong electron–phonon interaction.24 In
anisotropic high-Tc superconductors, there is no univers
relation between the maximum energy gap 2Dmax and the
transition temperatureTc . However, one can expect an a
preciable contribution from electron–phonon interactions
the ratioR52Dmax/kTc for the nonphonon pairing mecha
nism. As in the case of ordinary superconductors, this c
tribution shows up at high pressure, since the phonon
quencies contribute the most to variations of the ratioR(P)
with pressure~these frequencies comprise the lower part
the bosonic spectrum of cuprates!. The greatest contribution
to superconductivity is provided by phonons with large ve
tors q;p/a, wherea is the lattice constant. These are t
phonons detected by junction methods and neutron spec
copy methods.1,2 Hence the information aboutv(P) ob-
tained via these methods reflects the essence of the elec
phonon interaction in superconductors more accurately t
the Raman spectroscopy method, which determines the
non frequenciesvq only at q50, i.e., at the center of the
Brillouin zone.

The elastic Andreev spectroscopy of bismuth metal
ide involved usingS–c–S junctions, which made it possibl
to simultaneously determine the ratio 2D/kTc and the shift
of phonon frequenciesv(P) for different pressures. The fea
sibility of such spectroscopy in Andreev-type junctions
based on the fact that for strong electron–phonon interact
the dynamic conductanceG ‘‘feels’’ the frequency depen-
dence of the complex-valued gap functionD(v) ~see Ref.
25!:

G5
dI

dV
5

1

RN
H 11U D~v!

\v1@~\v!22D2~v!#1/2U2J
v5eV/\

,

~3!

whereRN is the resistance of the junction in the normal sta
From ~3! it follows that the derivativedG/dV of S–c–N and
S–c–S junctions reflects the behavior ofD(v) and hence the
phonon spectrum of the superconductor. ForS–c–S junc-
tions the singularities in the conductanceG due to strong
electron–phonon interaction ought to show up at biaseseV
5\v i12D, wherev i are the characteristic frequencies
the phonon density of statesF(v).

We measured break-junctionS–c–S junctions whose
metallic nature was monitored both by the temperature
pendence of their conductance and by the weak reactio
G(0) of the junctions to pressure. At low temperaturesT
,Tc , the current–voltage characteristics ofS–c–S samples
had excess current, which is a true sign of junctions w
direct conductance.2
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Figure 3 depictsG(V) for an S–c–S junction, demon-
strating the emergence of an energy gap ateV52D
5114 meV (T577 K). The observed discrepancy in the va
ues of the energy gap parameter for Bi2223 obtained fr
measurements of anS–c–N junction (D542 mV) and an
S–c–S junction (D557 mV) may be related to partial sup
pression of the order parameter and theS–N interface due to
the proximity effect. As in the case of anS–c–N junction,
the temperature dependenceD(T) of anS–c–S junction cor-
responds to the BCS curve. Note that here there is no sin
larity corresponding to the small energy gapD2, which is
probably due to the special features of multiple Andreev
flection of an electron between two anisotrop
superconductors.18

At bias voltageseV higher than 2D, the conductance o
the S–c–S was found to exhibit singularities, which can b
interpreted as a reflection of the phonon structure of
metal oxide being investigated~Fig. 4!. The spectroscopic
nature of these curves appears to be proved by the fact
for different junctions, either with tunneling conduction o
with direct conduction, the arrangement of the singularit
in the conductance measured from the sum of the ene
gaps, 2D, was the same. To establish the nature of the p
non structure in the spectra of Andreev-type junctions,
calculated the junction conductance with Eq.~3!, where the
complex-valued gap parameter for cuprates,D(v), was de-
termined from the solution of the Eliashberg equations
the phonon density of statesF(v) of Bi2223 ~see Ref. 26!.
The value of the electron–phonon coupling constanta2(v)
in the functiong(v)5a2(v)F(v) was found by the method

FIG. 3. Effect of gap singularities in the conductance of the Bi2223–Bi22
microjunction~S–c–S!. The inset illustrates the effect of hydrostatic pre
sure on the position of the singularity ateV52D in the spectrum: curve1
corresponds to a pressureP50, and curve2 to a pressureP510 kbar.
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developed in Ref. 27, while the electron–phonon coupl
constantl was found by requiring that the calculated tran
tion temperature match the experimental value ofTc . At l
'3.3 and the value 0.1 for the Coulomb coupling const
m* 50.1, thecalculated value ofTc was found to be 110 K
~the corresponding isotropic energy gapD0 was found to be
22 meV!. We see~Fig. 5! that the general structures of th
observed and calculated features ofdG/dV agree. The coin-
cident locations and similarity of the phonon features in
Andreev~Fig. 4! and tunneling~Fig. 6! spectra make it pos
sible to ignore the possible distortions in the conductance
S–c–S junctions related to inelastic processes.2

FIG. 4. The spectrum ofdG/dV in S–c–S junctions of the Andreev type a
zero and finite pressure. The arrows indicate singularities of the curves
proved to be pressure-sensitive.
g
-

t

e

of

The effect of 10 kbar on the structure of the second
rivative of current of one of the AndreevS–c–S junctions is
shown in Fig. 4. The initial region of the phonon spectrum
Bi2223 changes little under pressure,d ln(v)/dP5(121.5)
31023 kbar21 ~this agrees with the Raman spectrosco
data in Refs. 21 and 28!. The most significant changes tak
place in the high-frequency part of the spectrum at\v
5 70295 meV, where pressure is found to considerably
duce the phonon energy at a rated ln(v)/dP526
31023 kbar21.

Although the results of elastic Andreev spectroscopy
high pressures can easily be reproduced, this method ha
gained wide acceptance, in contrast to tunneling spect
copy. This fact stimulated similar tunnel investigation
Comparative analysis of the effect of high pressure on
phonon spectrum of the metal oxide conducted in conju
tion with the data obtained by the Andreev and tunnel
spectroscopy methods greatly increases the credibility of
results.

For the tunnel current in isotropic superconductors
can write1

G~V!5
dI

dVU
eV5\v

;N~v!5Re
\v

@~\v!22D2~v!#1/2
,

~4!

where the complex-valued energy gapD(v) of the supercon-
ductors has singularities at frequencies\v5D01\V corre-
sponding to virtual phonons with an energy\V. HereD0 is
the BCS gap, andN(v) is the tunnel density of states. In th
derivative of the tunnel conductance,dG/dV, the phonon
structure manifests itself in the form of dips, whose positio
give the phonon frequencies to high accuracy.1 For
S–I–S junctions, such singularities appear at biaseseVi

52D01\V i . As shown in Ref. 29, the conditioneVi

52^D&1\V i ~where ^D& is an ‘‘average’’ gap! remains
valid for strongly anisotropic superconductors~Bi2223 is

at
lcu-

l
e

FIG. 5. Comparative characteristics of the experimental and ca
lated curves for a bismuth metal oxide: curve1 representsdG/dV
reconstructed froma2F(v), curve 2 represents the experimenta
behavior ofdG/dV, and curve3 represents the behavior of th
density of statesF(v) for a bismuth metal oxide.26
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such a superconductor!. This makes it possible to determin
the energies of the characteristic phonon frequenciesV i of
an anisotropic superconductor by measuring the tun
dG/dV spectra.

The inset in Fig. 7 depicts the behavior ofG5dI/dV for
an S–I–S junction with an energy gap ateV52D
575 meV. Similar values of 2D for the bismuth metal oxide
with Tc5110 K have been obtained by Kane and Ng.8 The

FIG. 6. dG/dV of a tunnel Bi2223–Bi2223 break junction atP50 ~curve
2! and 10 kbar~curve1!.
el

observed smearing of the gap characteristics is inheren
tunnel high-Tc superconductors13 and emerge in high-quality
junctions because of substantial anisotropy inD(k). How-
ever, this anisotropy does not prevent the phonon structur
the tunnel spectrum from being detected, since the chara
istic values of phonon frequencies are linked to a cert
average valuêD& ~see Ref. 29!.

To establish the extent to which the spectrum of t
tunnel sample reflects the bulk properties of the ceramic
terial, we measured the temperature dependenceG(T) junc-
tion conductance at zero bias. By comparing this behav
with R(T) for the transition of the ceramic material to th
superconducting state~Fig. 7!, we found that the point a
which the resistanceR(T) disappears is essentially the sam
as the break inG(T) for the junction, which corresponds t
the point at which the energy gap of the superconductor
gins. In this case the spectroscopic characteristics of
junction are determined by the macroscopic properties of
sample.

At bias voltageseV higher than 2D, the derivative of the
junction conductancedG/dV5d2I /dV2 exhibits features re-
lated to the phonon structure of the metal oxide~Fig. 6!.
Comparison of thedG/dV spectra of a tunnelS–I–S break
junction and AndreevS–c–S microjunctions shows~Figs. 4
and 6! that the curves coincide in both the number and lo
tion of the features~if units of measurement along the hor
zontal axes are the same,V22D). This points to the same
nature of the two spectra. According to Ref. 26, the phon
spectrum of Bi2223 cuts off in the vicinity of 80–90 meV
while the tunnel characteristics and the Andreev-reflect
spectra demonstrate the existence of a feature ateV22D
ud-
FIG. 7. Temperature dependence of the conductanceG of a
tunnel Bi2223–Bi2223 junction at zero bias, andR(T), the
superconducting transition of the ceramic material being st
ied. The inset illustrates the effect of the energy gapD on the
conductance of the tunnel junction atP50 and 10 kbar.
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5 90295 meV. Note that for tunnelS–I–S and AndreevS–
c–S junctions, results with coinciding~in location! character-
istic phonon frequencies were obtained despite the fact
for the S–C–S junction the parameter 2D52Dmax

5114 meV is much larger than in tunnel junctions (2D
5 70284 meV).

Applying hydrostatic pressure up to 10 kbar introduc
no significant changes in the tunnel value of the gap, wh
is probably due to the large smearing of the average tun
density of states~inset in Fig. 7!. Note that the change in
location of the beginning of the tunnel gap~Fig. 7! induced
by applying pressure is essentially the same as the pres
dependence of the transition temperatureTc(P) of the junc-
tion edges, at a rated lnTc /dP51.431023 kbar21.

Figure 6 depicts the effect of pressure on the feature
the spectrum of Bi2223. As in the case of Andreev-ty
junctions, the high-frequency part of the spectrum neareV
;90 meV proved to be the most sensitive to pressure. T
part is probably related to the vibrational modes of oxyg
and its environment, and in particular to ‘‘breathing’’ mode
As the pressure rises, the rate of shift of the modev depicted
in Fig. 6 by an arrow is negative and amounts
d ln(v)/dP'26.560.531023 kbar21. At the same time,
the lower part of the phonon spectrum (\v,40 meV) shifts
at a rated ln(v)/dP'131023 kbar21 toward higher fre-
quencies. These data fully agree with the above results
Andreev spectra.

Our results concerning the variation of the characteri
phonon frequencies with pressure make it possible to ca
late the effect of pressure on the ratio 2D/kTc in cuprates in
the strong electron–phonon interaction approximation. T
calculation were done according to the method descri
above, where the variation of the functionF(v) with pres-
sure was found with allowance for the experimental valu
of v(P). The calculated variation of the ratioR52D/kTc

under pressure was found to bed5@R(P)2R(0)#/R(0)
50.018, which is very close to the experimental val
d50.017 and the valued50.02 obtained via the Ge�likman–
Kresin formula3

2Dmax

kTc
5CS 115.3F Tc

v0
G2

lnFv0

Tc
G D ~5!

with the characteristic phonon frequencyv0 of the breathing
mode being equal to 75 meV. HereC(D) is a constant whose
value is determined by the gap anisotropy functionD(k)
~see, e.g., Ref. 30!. In the isotropic BCS theory,C53.53.

4. CONCLUSIONS

Our experimental results indicate that in the Bi2223 c
prate, the high-frequency phonons, related to optical vib
tions of oxygen atoms and its environment, undergo
greatest change when pressure is applied. These freque
correspond to energies of 70–95 MeV and, in particular
the breathing mode at\v5 70275 meV. The acoustic and
optical modes of the phonon spectrum with energ
\v,40 meV shift toward higher frequencies at a rate clo
to the values provided by Raman spectroscopy data.21,28
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A characteristic feature of ordinary electron–phonon
teractions in superconductors is an increase in the freque
of the phonon modes,vq , with increasing pressure.24 A rare
exception here is lanthanum, for which softening of the lo
frequency part of the spectrum is observed. In our case
detected a softening of the high-frequency phonon mo
with wave vectors at the edge of the Brillouin zone. A sim
lar effect of softening of the edge LO phonon modes un
doping was observed in YBCO, LaSrCuO, and BaKBiO
employing the inelastic neutron scattering method.
La22xSrxCuO4, the energy (p,0) of the phonon mode wa
found to decrease from 79 meV atx50 to 70 meV at
x50.15 ~Ref. 31!; a similar mode in YBa2Cu3O72x was
found to soften from 77 meV atx51 (Tc50) to 58 meV at
x50 (Tc592 K) ~Ref. 22!; in Bi2Sr2(Ca12xYx)Cu2O8 sig-
nificant softening of the ion modes was observed asx varied
from 1 to 0 (Tc582 K) ~Ref. 32!. In all these cases the
increase in the transition temperature of cuprates was acc
panied by a decrease~softening! in the high-frequency
modes of the phonon spectrum. We observed a similar
fect: an increase inTc accompanied by an increase in pre
sure is accompanied by a decrease in the energy of the u
frequencies of the phonon spectrum. Hence it is possible
the microscopic reasons for the softening of the phon
modes under pressure and under concentration variation
the same.

The superconducting properties of cuprates mani
themselves at the edge of the Mott metal–insula
transition.33 In view of the hypothesis concerning the unive
sal nature of this transition, the reaction of the critical te
peratureTc to pressureP and concentrationc of impurities is
determined by a function of a dimensionless parametex
characterizing the closeness of the system to the phase
sition point, at whichx5xc . In this region, the difference
x2xc5P/Pc1C/Cc , wherePc andCc are parameters char
acterizing the effect of pressure and impurity concentrat
on the correlation length.

Recently the significant softening of the edge optic
phonon modes near a metal–insulator junction has b
computer-simulated in the two-band model of the Peier
Hubbard Hamiltonian.34 The results show that the reason f
such softening may be electron–electron correlations, wh
make it profitable for the energy of the high-frequency L
oxygen modes to decrease.

We note, finally, that the observed decrease in the
quencies of the upper part of the phonon spectrum expl
the increase in the ratio 2Dmax/kTc(P) irrespective of the
nature of the effect. Actually, agreement with the experim
tal results is achieved if we use a simple generalization of
Ge�likman–Kresin equation~5!, whereC5C(k) is a con-
stant determined by the anisotropic pairing mechanism
cuprates in the weak coupling limit.29 The parameterD in ~5!
is equal to the maximum value ofD(k), or Dmax. The char-
acteristic phonon frequencyv0 is the breathing mode, whos
energy\v0 decreases under pressure at a rated ln(v)/dP5
2631023 kbar21. This means that essentially the entire o
served increase in the ratio 2Dmax/kTc under pressure is du
to the strong electron–phonon interaction.
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Ballistic transport and spin–orbit interaction of two-dimensional electrons on a
cylindrical surface

L. I. Magarill,* ) D. A. Romanov, and A. V. Chaplik

Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk,
Russia
~Submitted 11 August 1997!
Zh. Éksp. Teor. Fiz.113, 1411–1428~April 1998!

The components of the ballistic magnetoconductance tensor of a two-dimensional electron gas
placed on a cylindrical sector are calculated for various geometries. For a quasiclassical
system a method is proposed for finding the conductance based only on the Bohr–Sommerfeld
quantization condition and not requiring a knowledge of the matrix elements of the
velocity. The effect of curvature of the surface on the spin–orbit interaction in a two-
dimensional electron gas is investigated. As examples, the microwave absorption and longitudinal
conductance of a hollow cylindrical wire are calculated, and also the conductance of a
cylindrical sector. There are qualitative differences from planar systems, in particular the relative
sign of the curvature and the spin–orbit coupling constant becomes important. ©1998
American Institute of Physics.@S1063-7761~98!02104-0#
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1. INTRODUCTION

Nonplanar two-dimensional electron systems have
tracted interest for a number of years. Experiments have b
performed on faceted surfaces of GaAs/AlGaAs structu
containing a two-dimensional electron gas.1,2 In this case, the
gas occupies a region consisting of planar segments orie
differently in space~in the experiment, relative to an extern
magnetic field!. Recently it has become possible3 by using
special techniques~lift-off ! to separate a thin layer of th
GaAs/AlGaAs heterojunction together with the tw
dimensional electron gas and bend it up to angles on
order of 180°. A number of works have theoretically exa
ined the spectrum of a curved two-dimensional elect
gas,4–7 its plasma modes,8 magnetotransport,5,9 etc.

Going over to the model of low-dimensional electro
on a curved manifold~a surface or contour! is not a trivial
procedure. In classical mechanics the problem reduces
ply to introducing couplings which reduce the effective nu
ber of degrees of freedom, and therefore from the ‘‘ve
outset’’ can make use of curvilinear coordinates. In the qu
tum problem we must speak of waveguides, one or two ch
acteristic dimensions of which become much smaller than
the remaining lengths of the problem, and the wave equa
must be transformed in the spirit of the adiabatic approxim
tion ~the degrees of freedom separate into fast and slow!. In
this case an adiabatic potential of geometrical origin aris
As far as we know, this question was first discussed by
Kosta.10 We showed in Ref. 11 for the case of an elect
ring that the result depends on the method of ‘‘on
dimensionalization.’’ Thus, the system preserves its mem
of the shape of then-dimensional waveguide, or more ge
erally, of the potential limiting the motion of the
n-dimensional particle, from which in the limit a
(n21)-dimensional wave equation arises~this circumstance
was overlooked in Ref. 10!.
7711063-7761/98/86(4)/9/$15.00
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The situation is, however, significantly simplified for
surface of constant curvature~sphere, circular cylinder!. In
this case, it is possible at once to write down the tw
dimensional Laplace operator in the corresponding coo
nates since the adiabatic potential arising in the transi
from the three-dimensional problem reduces to a constan
the present work we consider the spectrum and ballistic c
ductance of a two-dimensional electron gas on the surfac
a cylindrical sector. Such a system is the closest to that
alized experimentally by the lift-off method.3 The main ef-
fect consists of an effective variation of the normal comp
nent of the magnetic field, which is all that the two
dimensional electron ‘‘sees.’’ The Landau levels split, a
this leads to the observed changes in the ballistic transpo
comparison with a planar structure.

Less trivial is the effect of curvature on the spin-orb
component of the total Hamiltonian of the two-dimension
particle. The mathematical reason for this lies, naturally,
the behavior of spinors in a curved space. In the pres
paper we discuss the physical consequences of the effe
curvature on the spin–orbit coupling of two-dimension
electrons located on the surface of a circular cylinder or
lindrical sector.

2. ELECTRON SPECTRUM IN CROSSED FIELDS AND THE
HALL CONDUCTIVITY „INTERNAL STATES …

The investigated system consists of a sector2w0<w
<w0 of a circular cylinder of radiusR in a uniform magnetic
field B acting in the plane perpendicular to the axis of t
cylinder~we choose thez axis to coincide with this axis!. We
restrict the discussion to the case in which the magnetic fi
is directed along thex axis which passes through the top
the sector~see Fig. 1!. An electric fieldF transverse toB,
directed along the arc@2w0 ,w0#, is also applied to the sys
tem ~it is assumed that the poles of the battery are conne
© 1998 American Institute of Physics
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to the end-faces forming the sectorw56w0!. We choose the
vector potential of the magnetic fieldB5(B,0,0) in the form
A5(0,0,By) and use cylindrical coordinates (r5R,w,z).

Separating out the motion along thez axis in the form of
a plane wave@C5c(w)exp(ipzz)/AL, whereL is length of
the system#, we arrive at the one-dimensional Schro¨dinger
equation~we neglect the electron spin!

2
1

2mR2

]2c

]w2 1@eFRw1Ueff~w;pz!#c5Ec, ~1!

where Ueff(w;pz)5mV2R2(sinw1pzlB
2/R)2/2 is the effective

potential energy;V5eB/mc is the cyclotron frequency, an
l B5Ac/eB is the magnetic length. We further assumew0

,p/2 and we set\51. First we examine the energy spe
trum of the electrons withupzu,k0[R sinw0 /lB

2 . This in-
equality means that the suspension point of the Landau
cillator lies inside the sector~‘‘internal’’ states!. In a strong
magnetic fieldl B!R, it is possible to expand the potential
Eq. ~1! near its minimumwk5arcsin(pzlB

2/R). In this ~para-
bolic! approximation Eq.~1! is easily solved, and we find th
following expression for the energy:

Eb~F !5VkS n1
1

2D2eFR arcsinS pzl B
2

R D 2
e2F2

2mVk
2 , ~2!

Vk5VA12pz
2l B

4/R2, b5~n,pz!, n50, 1, 2,... . ~3!

This result is quite transparent: we obtain the Landau sp
trum in crossed electric and magnetic fields with local va
of the normal component of the magnetic fieldBk

5B coswk .
Knowing the energy spectrum, it is not hard to find t

Hall current j z in the ballistic regime. Toward this end it i
necessary, following the method expounded in the cla
work of Adams and Holstein,12 to sum up the velocity of the
Landau statevb(F)5]Eb(F)/]pz over all levels weighted
by the equilibrium Fermi distribution functionf (Eb

(0)):

j z52
2e

2Rw0L (
b

vb~F ! f ~Eb
~0!!, ~4!

whereEb
(0)[Eb(0), thefactor 2 takes spin degeneracy in

account, and 2Rw0 is the arc length of the sector. Substitu
ing Eq. ~2! into Eq. ~4!, we find for the contribution of the
internal states to the Hall conductanceGH[szw5 j z /F:

FIG. 1. Cylindrical sector in a magnetic field.
s-

c-
e

ic

GH5
G0l B

2

2Rw0
(

n
E

2k0

k0
dpz

f ~En
~0!~pz!!

A12pz
2l B

4/R2
~5!

~G052e2/h is the conductance quantum!. Expression~5!
can also be found from Kubo’s linear formula. Indeed, in t
absence of scattering the Kubo formula yields the followi
expression forGH :

GH52
2e2

w0L (
b8Þb

~ v̂z!b8bwbb8 f ~Eb
~0!!

Eb,b8
~0! . ~6!

Here v̂z5 p̂z /m1VR sinw is the operator of thez compo-
nent of the velocity,Eb,b8

(0)
5Eb

(0)2Eb8
(0) ; and b8Þb means

that nb8Þnb ~the matrix elements of the operatorsv̂z andw
are diagonal inpz!. The sum overb8 in Eq. ~6! is propor-
tional to the correction of first-order perturbation theory~as
the perturbation we consider the interaction with the elec
field eRFw! to the diagonal matrix element of the operat

v̂z . This allows us to prove the equivalence of expressio
~6! and ~5!.

In the ultraquantum limit~when only the lower Landau
band is populated, i.e.,n50, which is possible for cosw0

.1/3! we find from Eq.~5! for T50

GH5G0F12
arcsin~sin w02w0n/2!

w0
G , ~7!

wheren52pNsl B
2 is the filling factor andNs is the surface

carrier density. Forw0!1 we have from Eq.~7!

GH5
Nsec

B
1

G0w0
2

12 F12S 12
n

2D 3G . ~8!

The second term on the right in Eq.~8! is the correction to
the curvature.

If more than one Landau band is filled, it is necessary
differentiate cases of overlapping and non-overlapp
bands. In general, forT50 Eq. ~5! yields the following ex-
pression forGH :

GH5G0(
n

H 12
arcsin~A12~EF /«n!2!

w0
u~«n

22EF
2 !J

3uS 12
arcsin~A12~EF /«n!2!

w0
u~«n

22EF
2 ! D , ~9!

whereEF is the Fermi energy,«n5V(n11/2), andu(x) is
the Heaviside step function. Similarly, it is possible to fin
an expression for the surface concentration as a functio
EF :

Ns5
1

p l B
2w0

(
n

H sin w02A12S EF

«n
D 2

u~«n
22EF

2 !J
3uS sin w02A12S EF

«n
D 2

u~«n
22EF

2 ! D . ~10!

In order to findGH(B;Ns), it is necessary to expressEF with
the help of Eq.~10! in terms ofNs and substitute this resul
into expression~9!. In general, this program cannot be ca
ried out analytically~in contrast to a planar, unbounded tw
dimensional gas, whereGH5G0n/2[Nsec/B!. The situa-
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tion simplifies somewhat when the Fermi level is found
the group of non-intersecting bands. The bands with numb
l 50,1,..., n011 are separated from one another by gaps

n011/2

n013/2
<cosw0<

n013/2

n015/2
. ~11!

The remaining bands withl>n011 overlap. Conditions~11!
follow from the inequalities max(En011

(0) )>min(En012
(0) ) and

max(En0

(0))<min(En011
(0) ). Thus, if w0 satisfies inequalities~11!

and EF<min(En012
(0) )[V cosw0(n015/2), then we have the

case where the Fermi level lies in the group of no
overlapping bands. In this case,m bands are filled~from the
zeroth to the (m21)-th! and themth band is partially filled.
Then from Eq.~10! we find A12(EF /«m)25(m11)sinw0

2nw0/2, and correspondingly forGH
1!

GH5G0H m112
arcsin~~m11!sin w02w0n/2!

w0
J . ~12!

The correction to the curvature for smallw0 in this case has
the form (mw0!1)

GH2
Nsec

B
'

G0w0
2

12 F ~m11!2S m112
n

2D 3G . ~13!

The filling here is such thatm,n/2,m11. For arbitrary
bending angles, the system of equations~9! and ~10! was
solved numerically. The dependence of the Hall conducta
on the magnetic field for fixed concentrationNs for sectors
with different angles is plotted in Fig. 2. Instead of th
straight-line dependence characterizing planar systemsw0

50), the B-dependence ofGH for a curved surface ha
cusps at values of the magnetic field corresponding to
gency of the Fermi level with the tops of the Landau ban
En

(0)(pz50)5«n .

FIG. 2. Magnetic-field dependence of the Hall conductance for a cylindr
sector. The straight line corresponds to a flat strip.
rs
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3. ACCOUNT OF BOUNDARY STATES

The foregoing treatment pertains obviously to the ca
when the parametera5( l B /Rw0)2 is small. To take accoun
of boundary states it is necessary to solve the Schro¨dinger
equation for arbitrarya, and also to lift the restrictionupzu
,k0 . The Hall conductance in the linear approximation inF
can be found if the quantity]Eb(F)/]FuF50 is known. In-
deed, integrating by parts with respect topz in the general
formula ~4!, we arrive at the following expression:

GH5
e

2pRw0
(

n
E

2`

`

dpzvb
~0!

]Eb~F !

]F U
F50

] f ~Eb
~0!!

]m
,

~14!

vb
~0!5

]Eb
~0!

]pz
, ~15!

wherem is the chemical potential. Note that the formula
type ~14! for the contribution of only the internal states~con-
sidered in the previous section! contains in addition a term
outside the integral, arising from the finiteness of the in
gration region overpz :

GH
~ int!5

e

2pRw0
(

n
H E

2k0

k0
dpzvn

~0!~pz!

3
]En~pz ;F !

]F U
F50

] f ~En
~0!~pz!!

]m

12
]En~k0 ;F !

]F U
F50

f ~En
~0!~k0!!J . ~16!

Employing the spectrum~2!, it is hence easy to obtain agai
expression~5!.

In what follows, we limit the discussion to the case
which the temperature is equal to zero. In this case] f /]m
→d(En

(0)(pz)2EF) @whereEF5m(T50) is the Fermi en-
ergy# and integration overpz gives

GH5
e

2pRw0
(
n,i

sign~vn
~0!~kn,i~EF!!!

3
]En~kn,i~EF!;F !

]F U
F50

, ~17!

wherekn,i(EF) are the roots of the equation

En
~0!~pz!5EF . ~18!

Let us calculate the quantitiesvn
(0) and]En /]FuF50 en-

tering into expression~17!, in the quasiclassical approxima
tion. The energy spectrum is found from the Boh
Sommerfeld quantization rule:

RE
w1

w2
dwA2m@E2Ueff~w;pz!2eFRw#5p~n1g!.

~19!

Herew15max(wl ,2w0), w25min(wr ,w0), wherew l ,r are the
turning points@roots of the integrand in Eq.~19!#. We as-
sume that at the boundaries of the sector~at the points6w0!
there is an infinitely high barrier—a ‘‘hard wall.’’ The valu

l
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of the parameterg depends on the positions of the turnin
points:g51/2 if the turning points lie inside the sector, i.e
w r,w0 andw l.2w0 ; g53/4 if for the given energyE the
particle reaches one of the boundaries of the sample, ang
51 for the ‘‘passing’’ particles, when the turning points l
at w52w0 andw5w0 . There is a quite complicated proce
dure, proposed by Langer,13 allowing one to smooth out the
jumps in g. Our numerical calculation shows that even f
n50 ~when the effect of the phase ofg is maximum! the
difference between the results of Langer’s method and
culations forg5const51/2 does not exceed 10%. On th
other hand, the jumps ing at the hard wall are obviously no
due to curvature. Therefore, being interested mainly in
effects of curvature, in what follows we will, for simplicity
write the Bohr–Sommerfeld conditions with constantg equal
to 1/2. For illustration, Fig. 3 plots the dispersion curv
En

(0)(pz) for a sector withw051.3 for d50.01, obtained
numerically in the quasiclassical approximation.

Differentiating Eq.~19! with respect toF, we find

]En

]F U
F50

5
eRI~3!~En

~0!~pz!,pz!

I ~2!~En
~0!~pz!,pz!

. ~20!

Similarly, differentiating Eq.~19! with respect topz for F
50, we arrive at an expression forvn

(0)(pz):

FIG. 3. Energy spectrum for a sector withw051.3; the first three Landau
zones.
l-

e

vn
~0!~pz!5VR

3
I ~1!~En

~0!~pz!,pz!1~pzl B
2/R!I ~2!~En

~0!~pz!,pz!

I ~2!~En
~0!~pz!,pz!

.

~21!

In expressions~20! and ~21! we have introduced the func
tions I (s):

I ~s!~E,k!5E
w1

w2
dw

R~s!~w!

AE2Ueff~w;k!
, ~22!

whereR(1)5sinw, R(2)51, andR(3)5w.
Substituting Eqs.~20! and ~21! into Eq. ~17!, we finally

find for the Hall conductance

GH5
G0

2w0
(
n,i

signS I ~1!~EF ,kn,i !1
kn,i l B

2

R
I ~2!

3~EF ,kn,i ! D I ~3!~EF ,kn,i !

I ~2!~EF ,kn,i !
. ~23!

Setting E5EF in the Bohr–Sommerfeld condition forF
50, we find numerically the quantitieskn,i(EF) and there-
upon the conductance from Eq.~23!. The proposed method
allows one to avoid calculating velocity matrix elements~as
is required in the Kubo formulism!, which in turn requires
that we know the wave functions. Instead, with the propo
method it is sufficient to use just the Bohr–Sommerfe
equation defining the energy levels and to calculate the i
grals I (s).

Results of numerical calculations of the dependence
the Hall conductance on the Fermi energy for a sector w
w051 are shown in Fig. 4a. For comparison, Fig. 4b plo
the analogous curves for a flat strip of widthd ~R→`, w0

→0, 2Rw05d!. The solid curves in both figures correspon
to the casea→0. In this limit the edge states are unimpo
tant, and the problem admits the analytical solution given
expressions~9!. Here the role of curvature is especially clea
the magnetic field acting on the two-dimensional electro
becomes effectively inhomogeneous. As a result, instea
vertical steps, as in the case of a plane wave, a cylindr
sector is characterized by smoothed steps inGH(EF).
ll
nt
FIG. 4. Curves of the dependence of the Ha
conductance on the Fermi energy for differe
values of the parametera ; a! cylindrical sector
with w051, b! flat strip of the same width.
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4. LONGITUDINAL BALLISTIC CONDUCTANCE

To calculate the longitudinal conductance in thez direc-
tion, Gzz, we make use of the Buttiker–Landauer approa
~see, e.g., Ref. 14!. Neglecting scattering, we take all tran
mission coefficients to be equal to zero or unity~depending
on the position of the Fermi level!. ThenGzz(EF) is deter-
mined by the number of rootskn,i of Eq. ~18!:

Gzz5
G0

2 (
n,i

u~vn
~0!~kn,i~EF!!. ~24!

Thanks to the nonmonotonic dependence ofEn
(0)(pz) ~see

Fig. 3!, the number of roots of Eq.~18! for some values of
EF is doubled in comparison with the flat strip. As a resu
Gzz depends nonmonotonically onEF ~see Fig. 5!.

Finally, let us consider a quantum constriction curv
along the direction of the current: a narrow strip cut out
the cylindrical sector transverse to those forming it~an
‘‘arched bridge’’!. The external magnetic field is perpendic
lar to the sample at its upper point. The situation here
qualitatively different since in no direction now are there a
solutions in the form of traveling waves. We will assume~as
is often done in problems of quantum constrictions! that mo-
tion along thez axis is bounded by a parabolic potenti
mv2z2/2, and we carry out the procedure of ‘‘adiabatiz
tion,’’ setting z up as the fast variable andw as the slow
variable. In the vector-potential gauge adopted above
Hamiltonian of the problem has the form

H52
1

2mR2

]2

]w2 1
1

2m S 2 i
]

]z
1

R

l B
2 sin w D 2

1
mv2z2

2
. ~25!

Writing the wave function in the form

C~z,w!5(
n

cn~z;w!xn~w!exp~ imVRz sin w!, ~26!

FIG. 5. Dependence of the longitudinal conductanceGzz on the Fermi en-
ergy for a cylindrical sector withw051.3.
h

,

f

is

-

e

wherecn(z;w) are the oscillator eigenfunctions~w is a pa-
rameter!, we arrive in the usual way at the equation f
xn(w) containing the adiabatic potential:

F2
1

2mR2

]2

]w2 1Av21V2 cos2 w S n1
1

2D Gxn5Exn .

~27!

In the spirit of the adiabatic approximation, the nondiago
terms inn describing transitions between the adiabatic ter
have been dropped in Eq.~27!.

Now, to find the ballistic conductanceGww , we need to
find the transmission coefficientsTn of the barrier figuring in
Eq. ~27!. In the quasiclassical approximation the coefficien
Tn are substantially different from zero and unity only f
energies near the barrier maximum forw50. Expanding the
adiabatic potential in the vicinity of this point~cf. Ref. 15!,
we arrive at Campbell’s parabolic barrier problem~see Ref.
16!. Hence it is easy to find the form of the steps of t
conductance:

Gww
~n!5G0Fn1

1

11exp~2A!G ,
~28!

A5
2p@EF2ṽ~n11/2!#R

ṽ l̃An11/2
,

where ṽ5AV21v2 and l̃ 251/mṽ. The step width grows

with magnetic field asAṽ.

5. SPIN–ORBIT INTERACTION ON A CYLINDRICAL
SURFACE

The spin–orbit interaction of two-dimensional electro
is described by two contributions to the effective spin
orbital Hamiltonian. One of them, known as the Rash
model, is written in the invariant form17,18

V̂15g1ŝ3p̂•n, ~29!

where ŝ i and p are respectively the Pauli matrices and t
two-dimensional momentum operator,n is the surface nor-
mal, andg1 is the spin–orbit coupling constant. The cont
bution V̂1 is nonzero only for structures asymmetric in th
normal direction~a typical example is a triangular quantu
well!. In this sense we say~in the two-dimensional limit! that
g1Þ0 for an oriented surface on which the two directions
n are non-equivalent.

The second contribution arises from the terms in
bulk Hamiltonian that are cubic in the momentum~first con-
sidered by Dresselhaus19 after allowing for quantization in
the normal direction~the z axis!. It can be written down
explicitly only for a certain choice of the coordinate axes18

V̂25g2~ ŝxp̂x2ŝyp̂y!. ~30!

The constantg2 is also nonzero for a symmetric quantu
well. The relative role ofV̂1 andV̂2 depends on the width o
the well ~and of course on the material!, but, strictly speak-
ing, both terms must be taken into account simultaneous

For planar two-dimensional systems the Hamiltonia
V̂1 and V̂2 are unitarily equivalent~see Ref. 18! and their
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FIG. 6. Energy spectrum of two-dimensiona
electrons located on the surface of a cylinder:!
Rashba model, b! Dresselhaus model. The lowe
subbands are shown~j 561/2, m561!.
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energy spectra are identical and depend only on their a
lute valuesug1u and ug2u. It turns out that in the case of
curved surface all these statements lose their validity.

First of all, let us consider a hollow circular cylinder, fo
which both models admit an exact analytical solution. It f
lows from Eq.~29! that the Hamiltonian of two-dimensiona
electrons located on the surface of a cylinder has, in
Rashba model, the form

Ĥ ~R!5
p̂z

21 p̂w
2

2m
1g1~ ŝzp̂w2Ŝp̂z!, ~31!

Ŝ5F 0 2 ie2 iw

ieiw 0 G , ~32!

where we assume that the radius of the cylinderR is much
larger than the lattice constant and we use cylindrical co
dinates with thez axis as the axis of the cylinder. Herep̂z is
the longitudinal momentum operator and p̂w

52 i (1/R)]/]w. The Hamiltonian~31! leads to the spectrum
~see Ref. 9!

Ej ,m
~R!~k;L1!5BFk21 j 21

~122L1!

4

1mAj 2~L121!21k2L1
2G , ~33!

whereB51/2mR2, k5pzR, j is the projection of the tota
angular momentum on the cylindrical axis~it has a half-
integer value!, L152mg1R, andm561 is a quantum num-
ber labeling the two branches of the spin-split dispersion
of each subbandj .

A similar solution with the same structure of the wa
function

C~w!5
exp~ ipzz!

AL
S ei ~ j 21/2!wc~1!

ei ~ j 11/2!wc~2!D ~34!

~c1,2 are constants independent ofw! is also possible for the
Dresselhaus model. The Hamiltonian in this model is giv
by

Ĥ ~D !5
p̂z

21 p̂w
2

2m
1g2@$Ŝ,p̂w%2ŝzp̂z#, ~35!
o-

-

e

r-

w

n

where the braces denote the symmetrized operator prod
Solving the Schro¨dinger equation for the Hamiltonian~35!
with periodic ~in w! boundary conditions, we obtain for th
spectrum

Ej ,m
~D !~k;L2!5BFk21 j 21

1

4
1mAj 2L2

21~kL21 j !2G .
~36!

HereL252mg2R.
It is clear from Eqs.~33! and ~36! that the following

symmetry properties hold for the energy spectrum:

Ej ,m
~R!~k;L1!5Ej ,m

~R!~2k;L1!5E2 j ,m
~R! ~k;L1!,

Ej ,m
~R!~k;L1!ÞEj ,m

~R!~k;2L1!, ~37!

Ej ,m
~D !~k;L2!5Ej ,m

~D !~2k;2L2!

5E2 j ,m
~D ! ~2k;L2!5E2 j ,m

~D ! ~k;2L2!. ~38!

Properties~37! and ~38! have the result that all thermody
namic and kinetic characteristics of the system that con
sums over states depend on the relative sign of the curva
and of g1 in the Rashba model and are independent of
sign ofg2 in the Dresselhaus model. The contributionV̂1 can
be said to be the cause of differences in the spectra and o
physical characteristics of concave and convex cylindri
systems fabricated from a GaAs/AlGaAs heterojunction. F
ures 6a and 6b plot the dependencesEj ,m

(R)(k) andEj ,m
(D)(k) for

the case of the heterostructure GaAs/AlGaAs. For the par
etersL1,2 we have chosen the value 4.6, which correspo
to g15g252.5310210 eV•cm ~see the estimates in Refs. 1
and 18! andR51mm.

It is not hard to find the energy spectrum of the tw
dimensional electrons on the surface of a cylinder for sim
taneous action of both mechanisms of the spin–orbit inte
tion. The expression for it has the form

Ej ,m~k;L1!5BH k21 j 21
~122L1!

4

1mA@ j ~L121!2kL2#21@L1k2L2 j #2J .

~39!
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Hence it follows that the fundamental possibility exists
separating the contributionsV̂1 and V̂2 when measuring the
same thermodynamic~kinetic! property for systems differing
only in their sign of curvature: for example, a GaAs/AlGaA
heterojunction bent such that the two-dimensional elect
gas is found either on the inner or outer side of the cylind
cal surface.

The longitudinal conductance of the hollow cylinderG
for Fermi energiesEF near the origin of the spectrum de
pends substantially on the spin–orbit interaction. We stud
the shape of the conductance steps in the Rashba model
earlier paper~Ref. 9!. The number of intersection points o
the dispersion curve with the Fermi level~this number deter-
mines the height of the conductance steps! varies within the
limits of the lower subbands~j 561/2, m571! as the
Fermi level is increased, in the sequence8–4–8. In the
Dresselhaus model, as can be seen from Fig. 6b, the c
sponding sequence looks like4–8–4–8,which leads to a
different shape ofGzz(EF). It must be emphasized onc
again thatGzz(EF) in this model, in contrast to the Rashb
model, does not depend on the sign ofg2 .

Observable consequences of this effect of the dep
dence of the electron dispersion law on the sign ofg1 in-
clude features of the microwave absorption spectrum o
hollow cylindrical wire. The normalized solutions of th
Schrödinger equation with the Hamiltonian~31! have the
form ~34!, where

c j 1
~1!

5c j 2
~2!

5 iA jCj /L1k, c j 2
~1!

5c j 1
~2!

5Aj ,

Aj5uL1ku/A4pD jCj , Cj5D j1 j ~L121!,

D j~pz!5Aj 2~L121!21k2L1
2.

The absorbed power of an electromagnetic wave of
quencyv due to the interaction with the electron, is given
the following expression~per unit length of the cylinder!:

Q~v!5
2pv

L (
b8,b

u^b8uH intub&u2d~Eb82Eb2v!

3@ f ~Eb8!2 f ~Eb!#. ~40!

In Eq. ~40!, Ĥ int5ev̂•A0/2c is the interaction operator,A
5Re(A0 exp(2ivt) is the vector potential of the electroma
netic wave,v̂ is the velocity operator,b5(pz , j ,m) is the set
of quantum numbers characterizing the state of the elect
and f (Eb) is the Fermi distribution function.

To start with, let us consider the interaction of the ele
trons with an electromagnetic wave polarized in thez direc-
tion. In this case we havêb8uH intub&}^b8uvzub&. For the

operatorv̂z we have from Eq.~31! v̂z5 p̂z /m2g1Ŝ. The
nonzero matrix elements of the operatorv̂z are diagonal inpz

and j . Thus, for az-polarized wave absorption takes pla
only for transitions with a change inm ~with ‘‘spin flip’’ !.
The corresponding matrix elements are equal to

^pz , j ,1uvzupz , j ,2&5^pz , j ,2uvzupz , j ,1&*

5
ig1~L121! j

D j~pz!
. ~41!
f

n
i-

d
an

re-

n-

a

-

n,

-

For reasonable values of the cylinder radiusR and typical
values of the surface concentrationNs the ratio EF /B is
large ~e.g., for a GaAs/AlGaAs heterojunction withNs52
31011 cm22 andR51 mm we haveEF /B'1.63104!. This
makes it possible to calculate the absorption quasiclassic
i.e., to replace the sum overj in Eq. ~40! by an integral

(
j
→uRu E

2`

`

dpy .

After integrating overupu (p5(py ,pz)) using thed-function,
we arrive at the result

Q~z!~v!5
e2E0

2~L121!22puRu
8pL1

2 E
0

1

dx
x2

A12x2

1

q4~x!

3F f S v2

8mg1
2q2~x!

2
v

2 D 2 f S v2

8mg1
2q2~x!

1
v

2 D G .
~42!

In expression~42! we have introduced the functionq(x)
5A12(2L121)x2/L1

2; E0 is the amplitude of the electric
field of the electromagnetic wave.

Figure 7 presents an example of the depende
Q(z)(v) given by expression~42! for g152.5310210

eV•cm ~the GaAs/AlGaAs heterostructure, Ref. 18!, R
51 mm andT50 K. The central peak of width 4mg1

2 cor-
responds to the planar system (R→`). Curvature leads to a
substantial change in the absorption line. The absorp
maximum is shifted toward the blue~red! for negative~posi-
tive! values ofg1R. The departure of the absorption max
mum from its position for a planar systemv052ug1umvF is
of the order ofvF /R, wherevF5A2EF /m is the Fermi ve-
locity. Let us turn our attention now to the strong asymme
in the shape of the absorption lines for positive and nega
values ofg1R.

Somewhat more involved calculations are required
the case of a circularly polarized electromagnetic wa
propagating along the axis of the cylinder. The select
rules for this case areDpz50, D j 561, Dm50,62. Under
the same condition that we used above (B!EF), we find for
the absorption power due to spin-flip transitions (Dm
562)

FIG. 7. Absorption of az-polarized electromagnetic wave:R51 mm, EF

55 meV.
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Q~c!~v!5
e2E0

2~L121!22pR

16pL1
2

3(
6

E
21

1

dxA12x2
u~6g6~x!!

q2~x!g6
2 ~x!

3F f S v2

8mg1
2g6

2 ~x!
7

vq~x!

2g6~x! D 2 f S v2

8mg1
2g6

2 ~x!

7
vq~x!

2g6~x!
1v D G , ~43!

whereg6(x)5q(x)6x/uL1u, andu(x) is the Heaviside step
function. Figure 8 plots the dependence ofQ(c)(v) for the
same parameters as forQ(z)(v) in Fig. 7. In comparison
with the z-polarization case the absorption maximum
shifted in the opposite direction and the absorption line
roughly two times wider.

If the double inequality 1!uL1u!vF /g1 is satisfied, ex-
pressions~42! and ~43! can both be represented in simp
analytical form (Dv5v2v0):

Q~z!~v!}A 2DvR sign~g1!/vF

11DvR sign~g1!/vF
,

Q~c!~v!

}(
6
A12@sign~g1!/26A1/42DvR sign~g1!/vF#2

1/42DvR sign~g1!/vF
.

~44!

The frequencyv is restricted to the interval ensuring re
values of the radicals.

It is technologically simpler to fabricate a curved tw
dimensional system in the form of a cylindrical sectorr
5R,2w0/2<w<w0/2,2`<z<`. Such samples have a
ready been obtained3 by separating off a thin layer contain
ing two-dimensional electrons from a GaAs/AlGaAs hete
structure by the ‘‘lift-off’’ technique.

The corresponding calculations are quite cumberso
The transverse part of the electron wave function obeys
one-dimensional Schro¨dinger equation

]2c

]w2 1
2mR2

\2 ~Ẽ2V̂SO!c50. ~45!

FIG. 8. Absorption of a circularly polarized electromagnetic wave:R
51 mm, EF55 meV.
s

-

e.
e

Herec is a two-component spinor andẼ5E2pz
2/2m is the

transverse energy. A very important difference from the h
low cylinder case discussed above is that in the present
zero, and not periodic, boundary conditions are imposed
the wave functionc :

c~w56w0!50. ~46!

The spinorc can be represented in the form

c~w!5S ei ~l i21/2!wc~1!

ei ~l i11/2!wc~2!D ~47!

~c (1,2) are constants which are independent ofw!. By virtue
of the absence now of axial symmetry the quantitiesl i ( i
51,2,3,4) are not half-integers~as in the case of a hollow
cylinder!, but are given by expressions which follow from
Eqs.~45! and ~47!: l1,256q1R andl3,456q2R, where

q6

5A~b12j!212mẼ1b1
272A~b12j!2~2mẼ1b1

2!1pz
2b1

2

~48!

~b15mg1 , j51/2R!.
The general solution of Eq.~45! is a superposition of

four wave functions of the form~47! ~with different l i!:

c~w!5(
i 51

4

Aicl i
~w!.

Subjecting these solutions to boundary conditions~46! and
making use of the connection betweencl i

(1) andcl i

(2) , which

is given by Eq.~45!, after some quite cumbersome transfo
mations we arrive at the following equation for the electr
energy:

~ f 1 f 22pz
2!sin2S ~q11q2!

a

2D
5~ f 12 f 2!2pz

2 sin2S ~q12q2!
a

2D ,
~49!

f 65
2mẼ1b1

22~q66ub12ju!2

2ub1u
,

where a52Rw0 is the width of the sector. This equatio
does not have an analytical solution. However, it can be
once seen that in the distinction to the case of a holl
cylinder degeneracy of the spectrum forpz50 is conserved.

We can carry out the same treatment for the case of a
strip of two-dimensional electron gas. The resulting disp
sion equation has the same form as~49!, but the quantities
q6 and f 6 are given by different expressions@the superscript
~0! corresponds to the planar case#:

q6
~0!5A~A2mE~0!1b1

27ub1u!22pz
2,

~50!

f 6
~0!56~A2mE~0!1b1

22q6
~0!!2ub1u.

Comparing these two dispersion equations, it is not hard
convince oneself that the following relation holds betwe
the transverse energies of a curved and a flat s
@Ẽ(pz ;b1 ,j) and Ẽ(0)(pz ;b1 )#:
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Ẽl ,m~pz ;b1 ,j!5Ẽl ,m
~0!~pzub1u/ub2ju,b12j! ~51!

~l 51,2,... is the index of the subband!.
It follows from this expression that the spectrum of

curved strip remains unchanged only for simultaneo
change of sign ofg1 and of the curvature 1/R. Thus, curved
two-dimensional electron systems are sensitive to the sig
the spin–orbit interaction. Results of numerical solution
Eq. ~49! for an InAs/GaSb heterostructure~g150.9
31029 eV•cm ~Ref. 20!, R51 mm, and strip widtha equal
to 0.3 mm! are shown in Fig. 9. The figure shows the fir
two spin-split subbands of the energy spectrum of a cur
strip ~cylindrical sector!. The spectrum of a flat strip is als
shown for comparison. Also shown are steps of the long
dinal conductance, whose edges are determined by
minima of the dispersion curves.

In the Dresselhaus model the equation determining
value of l i is not biquadratic, as in the case of the Rash
model, but fully quartic. Therefore it is not possible to obta
a relation of the type~51! and the problem must be solve
numerically from the very start. As has already been said
is clear that the dependenceG(EF) will not be sensitive to
the sign ofg2 .

To summarize, we have considered some problems
ballistic magnetotransport of two-dimensional electrons o
curved surface. Depending on the geometry of the exp
ment, the effective inhomogeneity of the magnetic field lea
either to a smearing out of the sharp edges of the cond
tance steps~as functions of the Fermi energy! or to a non-

FIG. 9. Right: energy spectrum~first two subbands! of a curved strip:
dashed line—g1.0, dotted line—g1,0, solid line—flat strip. Left: first two
corresponding steps in the dependence of the longitudinal conductanc
the Fermi energy;E05\2/2ma2, G052e2/h is the conductance quantum
s

of
f
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-
he
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it

of
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ri-
s
c-

monotonic dependence ofG(EF). Cusps corresponding to
the extrema of the Landau bands arise in the magnetic fi
dependence of the Hall conductance for fixed electron c
centration.

The spin–orbit interaction of two-dimensional electro
undergoes a more significant change in the transition t
curved surface. In particular, for an oriented surface it
comes possible to experimentally determine the sign of
spin–orbit coupling constant in the Rashba model.
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end of p. 422,mw0 should readm sinw0.
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Weak localization in semiconductor structures with strong spin–orbit coupling
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Zh. Éksp. Teor. Fiz.113, 1429–1445~April 1998!

A theory of weak localization is constructed forp-type semiconductor structures with a complex
G8 valence band. An equation for the Cooperon is obtained and solved in the case when
spin relaxation cannot be treated as a perturbation. The anomalous magnetoresistance is calculated
in bulk samples as a function of the external deformation and in quantum wells as a
function of the doping level. The results of the theory are represented in a form that allows
direct comparison with experiment. ©1998 American Institute of Physics.
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1. INTRODUCTION

The phenomenon of weak localization consists in qu
tum interference of waves propagating along the same tra
tory but in opposite directions. One of the most striking co
sequences of this phenomenon is the anomalous chan
the resistance in classically weak magnetic fields. The rea
for this is that when waves propagate in opposite directi
along the same path in a magnetic field an additional ph
difference arises that is proportional to the magnetic fl
through the area enclosed by the path. As a result, the in
interference is destroyed and the anomalous contributio
the conductivity is decreased.

Besides a magnetic field, inelastic processes and
relaxation also destroy interference. Here effects associ
with spin relaxation depend significantly on the total angu
momentum of the two waves. Thus, in the absence of m
netic impurities, only states with nonzero total angular m
mentum are susceptible to spin relaxation. A theory tak
these facts into account and explaining anomalous ma
toresistance in metals and metal films was developed in R
1 and 2, and for two-dimensional carriers in semiconduc
heterostructures in Refs. 2–5. These works assumed tha
spin relaxation times can be comparable with the depha
time of the wave function, but both these times are mu
longer than the momentum relaxation time. In these pap
the spin–orbit interaction, which leads to spin relaxatio
was treated as a perturbation.

However, it is well known that in III–V semiconductors
Si, Ge, and heterostructures based on them the valence
is formed as a result of a strong spin–orbit interaction, a
the total angular momentum is coupled with the quasim
mentum of the particle. As a result, the spin and momen
relaxation times are of the same order of magnitude a
consequently, the methods for calculating the magnetore
tance used in Refs. 1–5 are inapplicable for these syste

The goal of the present work is to create a theory
weak localization leading to anomalous magnetoresistanc
semiconductor structures with a strong spin–orbit inter
tion. We will consider non-deformed and deformed bu
semiconductors ofp-type with a complexG8 valence band.
7801063-7761/98/86(4)/10/$15.00
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For quantum-well structures we calculate the dependenc
the magnetoresistance on the carrier concentration. All
culations are carried out in the single-particle approximati
whose domain of applicability was indicated in Ref. 2. In t
present paper odd terms in the wave vector in the spect
are not taken into account, since the spin relaxation time
to them exceeds the momentum relaxation time for not
large a deformation or not too narrow wells.

2. HOLE SPECTRUM AND WAVE FUNCTIONS

In a bulk cubic semiconductor the energy level in aG8

valence band at the quasimomentumk50 is quadruply de-
generate. In the spherical approximation, which we use h
these four states are classified according to the projectio
the total angular momentumJ53/2. ForkÞ0 the states are
double degenerate and are characterized by the projectio
the angular momentum in thek direction, where states with
projections differing only in sign have the same energy:
heavy holes J•k/k563/2, and for light holesJ•k/k
561/2. Taking uniaxial deformation into account, the ho
wave functions can be written in the form6

Ĉak5eik•rF̂a~k!, ~1!

wherea5h1, h2 andl1, l2 label the states of the heavy an
light holes, respectively, andF̂a are four-component column
vectors in the basis of Bloch functions of the top of t
valence band. For uniaxial deformation along the~100! axis
the hole energies are

El ,h5Ak26A~Bk2!21b«B~3ki
22k2!1~b«!2, ~2!

Eh15Eh25Eh , El15El25El ,

whereA andB are the band parameters determining the
fective massesmh and ml of the heavy and light holes,«
5«zz1(«xx1«yy)/2 is the relative deformation,b is the con-
stant of the deformation potential, and the symbolsi and'

here and below denote vector projections on the deforma
axis and on the plane perpendicular to it. Formula~2! is
written in the spherical approximation, where the band c
stant isD5B). For uniaxial deformation along the~111!
© 1998 American Institute of Physics
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axis,b is replaced byd/). Forb5d/) formula~2! is valid
for any direction of uniaxial deformation. FunctionsF̂a cor-
responding to the same energy can be chosen so that the
related to one another by time inversion. The volume of
sample is assumed to be equal to unity.

We examine scattering by the short-range potential

V~r !5V0d~r !.

As can be seen from Eq.~1!, the corresponding scatte
ing matrix element

Vab~k,k8!5^ĈakuV~r !uĈbk8&5V0F̂a
↑ ~k!F̂b~k8! ~3!

depends on both the initial and final quasimomenta of
hole. It follows from Eq.~3! that transitions are possible i
ro
is

ed

n

on

e
is
are
e

e

which not only the quasimomentum but also the project
of the angular momentum changes. This means that the
relaxation times can be of the same order of magnitude as
momentum relaxation time. This constitutes the main diff
ence between the effects of weak localization in a comp
band and the case when the spin–orbit interaction is we

3. EQUATIONS FOR THE COOPERON

As was shown in Ref. 7, the main quantum correction
the conductivity arises when ‘‘fan’’ diagrams are taken in
account. Such diagrams describe the interference arising
result of multiple backscattering. The amplitude of this inte
ference~a Cooperon! is determined by the sum of the ladd
diagrams at small total momentumq:
n

of
le

f a
e

o

The corresponding integral equation for the Coope
Cgd

ab(k,k8,q), averaged over the uncorrelated impurity d
tribution, has the form

Cgd
ab~k,k8,q!5N Vab~2k,2k8!Vgd~k1q,k81q!

1N (
mn

E dzg

~2p!z Vam~2k,2g!Vgn~k

1q,g1q!Cnd
mb~g,k8,q!Gn

R~g1q!Gm
A~2g!.

~4!

wherez is the dimensionality of the space,N is the impurity
concentration, andGn

A,R are the advanced and retard
Green’s functions for holes of typen :

Gn
A,R~k!5

1

EF2En~k!6 i\/2tn~k!6 i\/2tw
~n!~k!

. ~5!

Here EF is the Fermi energy, determined by the total co
centration of light and heavy holes, andtm(k) is the total
relaxation time of the stateum,k&:

1

tm~k!
5N

2p

\ (
n
E dzk8

~2p!z uVmn~k,k8!u2d@EF2En~k8!#.

~6!

andtw
(n)(k) is the phase relaxation time of the wave functi

of a hole of typen. The quantitiesEF andtn(k) depend on
the applied deformation, but the following relations hold:

th15th25th , t l15t l25t l .

In the absence of a deformationtn does not depend on th
direction ofk or ont l5th . Note that the proposed theory
valid for EFtn /\@1 ~Ref. 7!.
n
-

-

As is well known,7 a divergence arises in the integratio
over g on the right-hand side of Eq.~4! in the limit q→0.
This means thatq should be retained in Eq.~4! only in
Gn

R(g1q). ExpandingEn(g1q) to second order inq and
then integrating overEn(g), we obtain the equation

Cgd
ab~k,k8,q!5N Vab~2k,2k8!Vgd~k,k8!

1N (
mn

z~m,n!E dVg

2ptn~g!Nn~g!

\

3Vam~2k,2g!Vgn~k,g!Cnd
mb~g,k8,q!

3H 12 iv~n!~g!qtn~g!2@v~n!~g!

3qtn~g!#22
tn~g!

tw
~n!~g!J , ~7!

v~n!~g!5
1

\

]En~g!

]g
.

The quantityNn(g) has the meaning of a density of states
holes of typen on the Fermi surface per unit solid ang
dVg :

Nn~g!5
gn

z21

~2p!z U]En

]g U
g5gn

21

,

wheregn is the absolute value of the quasimomentum o
hole of typen on the Fermi surface, determined from th
equationEn(g)5EF . Here the total relaxation time is als
expressed in terms ofNn(g):

1

tm~k!
5N

2p

\ (
n
E dVguVmn~k,g!u2Nn~g!. ~8!
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The factorz~m,n! allows for the fact that the pole contribu
tion to the Cooperon arises only forEm(k)5En(k) and is
equal to unity if both indices correspond to heavy holes o
light holes, and is otherwise equal to zero. As a conseque
the indexn takes the same value forNn , tn , v(n), andtw

(n)

inside the integral in Eq.~7!. For Em(k)ÞEn(k) the correc-
tions to expression~7! are ;(mh /ml21)21\/(EFtn)
;\/(EFtn)!1.

In general, Eq.~7! can be solved as follows. To sta
with, consider the homogeneous integral equation with
same kernel as Eq.~7!, but where the small quantitie
v(n)(g)qtn(g), @v(n)(g)qtn(g)#2, and tn(g)/tw

(n)(g) have
been discarded:

l iAi g
a ~k!5N (

mn
z~m,n!E dVg

2ptn~g!Nn~g!

\

3Vam~2k,2g!Vgn~k,g!Ai n
m ~g!. ~9!

In this equationl i are the eigenvalues andAi is a set of
eigenfunctions, which can be chosen to be orthonormal:

(
ag

z~a,g!E dVk

2pta~k!Na~k!

\
Ai g

a ~k!A j g
* a~k!5d i j .

~10!

Next, knowing the spectrum of eigenvalues and
eigenfunctions, the solution of the inhomogeneous equa
~7! can be written in the form

Cgd
ab~k,k8,q!5(

i j
ai j ~q!Ai g

a ~k!A j d
* b~k8!, ~11!

where the coefficientsai j (q) are unknown. To find them, we
also expand the inhomogeneous term in Eq.~7! in the func-
tions Ai g

a :

N Vab~2k,2k8!Vgd~k,k8!5(
i j

Wi j Ai g
a ~k!A j d

* b~k8!.

~12!
o
e,

e

e
n

Next multiplying both sides of Eq.~7! by Amg
* a(k)And

b (k8),

integrating overk andk8, and summing over the spin indice
as in Eq.~10!, we obtain a system of algebraic equations
the coefficientsaim(q):

(
i

@Tni~q!1~12ln!dni#aim~q!5Wnm , ~13!

where the coefficientsTni , disappearing in the limitq→0
andtw

(n)→`, are equal to

Tni~q!5N (
abgd

z~a,g!z~b,d!E dVk

2pta~k!Na~k!

\

3E dVg

2ptb~g!Nb~g!

\
Vab~2k,2g!

3Vgd~k,g!Ang
* a~k!Ai d

b ~g!H iv~b!~g!qtb~g!

1@v~b!~g!qtb~g!#21
tb~g!

tw
~b!~g!J . ~14!

It can be seen from Eq.~13! that the contribution to the
Cooperon that diverges asq→0 comes only from solutions
of Eq. ~9! with ln51. In this event, two cases are possib
For l051, a nondegenerate eigenvalue which correspo
to the solutionA0g

a (k),

Cgd
ab~k,k8,q!5(

m
a0m~q!A0g

a ~k!Amd
* b~k8!, ~15!

a0m~q!5
W0m

T00~q!2(
iÞ0

T0i~q!Ti0~q!

12l i

.

Summing overm, we finally obtain
Cgd
ab~k,k8,q!5

A0g

a ~k!N (
mn

z~m,n!E dVg

2ptn~g!Nn~g!

\
Vmb~2g,2k8!Vnd~g,k8!A0n

* m~g!

T00~q!2(
iÞ0

T0i~q!Ti0~q!

12l i

. ~16!
lar
n-
If, on the other hand, the eigenvaluel51 is r -tuply
degenerate, then the coefficientsaim(q) are found by solving
a system of equations of dimensionalityr 3r :

(
i 51

r

Tni~q!aim~q!5Wnm , n, m51,•••,r . ~17!

Here

Cgd
ab~k,k8,q!5 (

i , j 51

r

ai j ~q!Ai g
a ~k!A j d

* b~k8!. ~18!
Let us now apply this general method to the particu
problem of weak localization of holes with the spectrum co
sidered in Sec. 2.

A. Bulk crystals

In this case, as a result of the factorz~m,n! in Eq. ~9!
only eight of the sixteen different spin componentsAi g

a (k)

are nonzero, namely those witha and g such thatEa(k)
5Eg(k). What is more, since the functionsF̂a follow one



o
w

to

o
l

p

rm
nt

-
n

of

a-
en-

es

n-
es-
r

with

of
-
have

of

t

g
he

at

783JETP 86 (4), April 1998 Averkiev et al.
from the other by time inversion, the remaining system
eight equations splits into two systems of respectively t
and six equations.

Analysis shows that starting from zero deformation up
the point whereub«u;EF , the eigenvaluel51 is nonde-
generate and is contained in a system of two equations:

l iAi h2

h1 ~k!5N E dVgH 2pth~g!Nh~g!

\

3@ uVh1,h1~k,g!u21uVh1,h2~k,g!u2#Ai h2

h1 ~g!

1
2pt l~g!Nl~g!

\
@ uVh1,l1~k,g!u2

1uVh1,l2~k,g!u2#Ai l2
l1 ~g!J , ~19!

l iAi l2
l1 ~k!5N E dVgH 2pth~g!Nh~g!

\

3@ uVl1,h1~k,g!u21uVl1,h2~k,g!u2#Ai h2

h1 ~g!

1
2pt l~g!Nl~g!

\
@ uVl1,l1~k,g!u2

1uVl1,l2~k,g!u2#Ai l2
l1 ~g!J , ~20!

Ai h1

h2 52Ai h2

h1 , Ai l1
l2 52Ai l2

l1 ,

whereAi a
a 50. The eigenvaluel051 belongs to the solution

A0h2

h1 ~k!5jth
21~k!, A0l2

l1 ~k!5jt l
21~k!, ~21!

wherej is a normalization factor. Note that in the absence
deformation the solutionA0g

a (k) corresponds to zero tota

angular momentum, composed from the statesa andg. The
expression forCgd

ab is obtained by substituting Eqs.~21! into
expression~16!.

For the particular case of scattering by a short-range
tential, expression ~16! simplifies since in this case
T0i(q)Ti0(q)50 as a result of the absence of a source te
in the classical kinetic equation for the diffusion coefficie
Finally, the equation for the Cooperon takes the form

Cgd
ab~k,k8,q!5

\

4p~N̄h1N̄l !

A0g

a ~k!A0d

b ~k8!j22

D iqi
21D'q'

2 1tw
21

.

~22!

Here

N̄a5E dVkNa~k! ~23!

is the total number of holes of speciesa on the Fermi sur-
face. Expressions~22! have the standard form of the diffu
sion pole, which involves the average diffusion coefficie
and the average dephasing time of the wave function:

D i ,'5
N̄hD i ,'

~h! 1N̄lD i ,'
~ l !

N̄h1N̄l

, ~24!
f
o

f

o-

.

t

where D i ,'
(a) are the components of the diffusion tensor

holes of speciesa :

D i ,'
~a!5

1

N̄a
E dVgNa~g!@v i ,'

~a!~g!#2ta~g!, ~25!

tw
215

*dVg@Nh~g!/tw
~h!~g!1Nl~g!/tw

~ l !~g!#

N̄h1N̄l

. ~26!

In the limiting case of large deformations, whenub«u
@EF , only one subband is filled, and the number of equ
tions is reduced to four, each of which contains the eig
valuel51. Therefore the Cooperon is found from Eqs.~17!
and ~18! with r 54.

In this limiting case it is convenient to classify the stat

Ĉak according to the projection of the total angular mome
tum on the deformation axis. In the case of uniaxial compr
sion the states withJz561/2 are responsible for the uppe
valence subband, and in the case of dilation, the states
Jz563/2. Such a pair of states, differing in the sign ofJz ,
we will label with the indexa51, 2.

For infinitely large deformation, only one component
the functionsF̂a is different from zero. Consequently, tran
sitions between two degenerate states are absent and we
Vab;dab , and t[t0 does not depend on the direction
the quasimomentum. Therefore the four eigenfunctionsAi g

a

corresponding to the eigenvaluel51 are also independen
of k and can be chosen in the following way:

A11

1 5A22

2 5A32

1 5A41

2 5~2pt0N̄/\!21/2, ~27!

their remaining components are equal to zero.
In the basis~27!, the coefficientsTni andWmn entering

into Eqs.~17! are equal to

Wmn5dmn

\

2pN̄t0

, ~28!

Tni~q!5T0~q!dni , T0~q!5~D i
~0!qi

21D'
~0!q'

2 1tw
21!t0 .

~29!

Here the superscript~0! indicates that the correspondin
quantities should be calculated for infinite deformation. T
expression for the Cooperon has the standard form:

C11
11~q!5C22

22~q!5C22
11~q!5C11

22~q!5
\

2pN̄t0

1

T0~q!
,

~30!

and the remaining components are equal to zero.
In order to obtain an expression for the Cooperon

finite deformation, we must again make use of Eqs.~17! and
~18!, whereAi g

a are given in~27! and theTni are replaced by

T̃ni :

T̃ni~q!5Tni~q!1N (
abgd

E dVk

2pt0N0~k!

\

3E dVg

2p

\
Ang

* a
Ai d

b @t0N0~g!Vab
~0!Vgd

~0!
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2t~g!N~g!Vab~2k,2g!Vgd~k,g!#, ~31!

where Tni(q) are calculated according to formula~14! for
infinitely large deformation and are given by formula~29!.
The difference betweenT̃ni(q) and Tni(q) is due both to
transitions between states with opposite spins and t
change in the rate of transitions inside one branch and
appears asub«u→`. The differenceT̃ni(q)2Tni(q) appears
because in our foregoing perturbation-theory treatmen
spin relaxation processes, besides the parame
v(n)(g)qtn(g), @v(n)(g)qtn(g)#2, and tn(g)/tw

(n)(g) taken
into account inTni , quantities of the same order can al
arise due to changes inVab(k,g) in Eq. ~4! under the action
of deformation.

Calculation shows that in the first nonvanishing order
EF /ub«u the quantitiesT̃ni can be represented in the form

T̃115T̃225T01t0 /t i ,

T̃335T̃445T01t0 /~2t'!, ~32!

T̃345T̃435t0 /~2t'!,

the remaining components are equal to zero. Here

t0

t i
5S 4

45D
2S EF

b« D 4 ~mi2m'!4

mi
2m'

2 S mi
21m'

2

2mim'
D 2

, ~33!

t0

t'

5S 4

45D
2S EF

b« D 4 ~mi2m'!4

mi
2m'

2 , ~34!

mi ,' are the effective hole masses for motion along the
formation axis and transverse to it. These expressions for
spin relaxation times, written in terms ofmi andm' , do not
depend on the sign of the deformation, but the values of
masses themselves are different for dilation a
compression:6

mi5
\2

2~A6B!
, m'5

\2

2~A7B/2!
. ~35!

Here the upper sign corresponds to dilation, and the lo
one, to compression. Solving the system of equations~17!

with T̃ni ~32!, we obtain a set of expressions for the nonze
components of the Cooperon:

C11
11~q!5C22

22~q!5
\

4pN̄t0

2

T0~q!1t0 /t i

,

C21
12~q!5C12

21~q!5
\

2pN̄t0
F 1

T0~q!1t0 /t'

2
1

T0~q!
G ,

~36!

C22
11~q!5C11

22~q!5
\

4pN̄t0
F 1

T0~q!1t0 /t'

2
1

T0~q!
G ,

its remaining components are equal to zero.
Comparing formulas~36! and ~22! we can trace out the

transition from the case of infinitely large deformation
zero deformation. Formulas~36! are valid as long ast i ,'

@t0 holds. Fort i ,';t0 formulas~22! start to apply. Look-
ing at formulas~36! we can say that ast i ,' decrease, the
a
s-

of
rs

-
he

e
d

er

o

diffusion pole disappears fromC11
11, C22

22, and from the first
term of the remaining four Cooperons, this first term b
comes (D i

(0)qi
21D'

(0)q'
2 1tw

21)t0 times smaller than the sec
ond term inC21

12, and formula~36! goes over to formula~22!.
It follows from formulas ~33! and ~34! that even forub«u
;EF the inequalityt i ,'@t0 can be preserved. This mean
that the phenomenon of weak localization is described
formula~36! for practically any deformation, and all change
are associated withD i ,' , tw , t i ,' , andt.

Note that for zero deformation the formula~22! does not
coincide with the corresponding expression in Ref. 2. This
because Ref. 2 neglected the fact that the equation for
Cooperon should only treat transitions between states w
the same energy for givenk. The symmetry arguments use
in Ref. 2 are valid only formh5ml , i.e., for B50.

B. Quantum wells

Let us turn our attention now to the phenomenon
weak localization inp-type quantum wells based on com
pounds with aG8 valence band. We consider a rectangu
symmetric quantum well, employing as before the spher
approximation to describe the states in the valence band.
simplicity, we assume the barriers to be infinitely high. T
spectrum and wave functions of the carriers under these
sumptions have been used in many studies. We use the
of the wave functions suggested in Ref. 8:

Ĉak
~n!5eik•rF̂a

~n!~k,z!, ~37!

F̂15F 2v0C~z!

iv1S~z!eiwk

2v2C~z!e2iwk

iv3S~z!e3iwk
G , F̂25F iv3S~z!e23iwk

v2C~z!e22iwk

iv1S~z!e2 iwk

v0C~z!

G .

Herek is the two-dimensional~in-plane! wave vector,wk is
its azimuthal angle,r andz are the coordinates characteri
ing motion respectively in the plane of the quantum well a
along its growth axis,n is the number of the size quantiza
tion level,a labels the two degenerate states~in a symmetric
quantum well!, andC(z) and S(z) are respectively a sym
metric and an antisymmetric function of the coordinatez.
The dispersion equation for finding the energy of such sta
En(k), and also expressions forC(z) and S(z) and the
wk-independent real coefficientsv i ( i 51 – 3) are given in
Ref. 8.

An equation for the Cooperon in the case when one s
quantization subband is filled can be derived from Eq.~7!,
where k and g are two-dimensional~in-plane! vectors and
z(m,n)[1. In this case, when averaging over position of t
impurities in a symmetric quantum well it is important
note that

Edz C3~z!S~z!5Edz S3~z!C~z!50.

System of equations~9! takes the form

l i
~00!

Ai
~00!

2
1~wk!5N

2ptN

\ E dwg@ uV11~wk2wg!u2

1uV12~wk2wg!u2#Ai
~00!

2
1~wg!, ~38!
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Ai
~00!

1
252Ai

~00!
2
1, Ai

~00!
1
15Ai

~00!
2
250,

l i
~10!

Ai
~10!

2
1~wk!5N

2ptN

\ E dwg@ uV11~wk2wg!u2

1uV12~wk2wg!u2#Ai
~10!

2
1~wg!, ~39!

Ai
~10!

1
25Ai

~10!
2
1, Ai

~10!
1
15Ai

~10!
2
250.

l i
~11!

Ai
~11!

1
1~wk!5N

2ptN

\ E dwg@V11
2

3~wk2wg!Ai
~11!

1
1~wg!

1V12
2 ~wk ,wg!Ai

~11!
2
2~wg!#, ~40!

l i
~11!

Ai
~11!

2
2~wk!5N

2ptN

\ E dwg@V11*
2~wk ,wg!

3Ai
~11!

1
1~wg!1V11*

2

3~wk2wg!Ai
~11!

2
2~wg!#,

Ai
~11!

2
15Ai

~11!
1
250.

Here the total relaxation time is given by

t215N
2pN

\ E dw@ uV11~w!u21uV12~w!u2#. ~41!

and the density of states at the Fermi level is expresse
terms of the particle velocityvF and the quasimomentum
kF :

N5
kF

~2p!2\vF
. ~42!

Note that since the kernel of the integral equation~38!
depends on a difference of angles, the equations for diffe
Fourier harmonics separate.

If we have EF;D, where D is the minimum energy
separating two lower subbands, the eigenvaluel51 is con-
tained only in the first equation. The corresponding norm
ized solution is

A0
~00!

2
15~4ptN̄/\!21/2, ~43!

whereN̄52pN.
In contrast to the three-dimensional case for scatte

by a short-range potential, in the classical kinetic equat
the source term is different from zero. Consequently,
products satisfyT0i(q)Ti0(q)Þ0. However, as a conse
quence of the orthogonality ofAi

00
g
a with the solutionsAi

10
g
a

andAi
01

g
a , only the solutionsAi

11
g
a;e6 iwk contribute to the

sum in the denominator in Eq.~16!. Carrying out the calcu-
lations indicated in formula~16!, we obtain

Cgd
ab~k,k8,q!5

A0
~00!

g
a

A0
~00!

d
b

Dq2t1t/tw
, ~44!

where the diffusion coefficient

D5
1

2
vF

2t tr ,
in

nt

l-

g
n
e

andt tr is the so-called transport time arising in the soluti
of the kinetic equation in the case when the scattering pr
ability depends on the difference of angles between the
tial and final values of the quasimomentum:

t tr
215N

2pN

\ E dw@ uV11~w!u21uV12~w!u2#~12cosw!.

~45!

In the limit EF!D we haveuV12u!uV11u and the solu-
tions corresponding to the eigenvaluel51 are contained in
all four equations~38!–~40!. Consequently, to calculate th
Cooperon it is necessary to use formulas~17! and ~18! with
r 54, whereTni have been replaced byT̃ni :

T̃ni~q!5D0q2t01
t0

tw
1N (

abgd
E dwk

2pt0N0

\

3E dwg

2p

\
Ang

* a
Ai d

b @t0N0Vab
~0!Vgd

~0!

2tNVab~wk2wg!Vgd~wk2wg!#, ~46!

The index 0 indicates quantities that have been calcula
without allowing for the mixing of light and heavy hole
arising forkÞ0; the components

A11

1 5A22

2 5A32

1 5A41

2 5~2pt0N̄/\!21/2, ~47!

are found fork50 with the remaining components equal
zero. Solving the system of equations~17! with T̃ni(q) given
by formula ~46!, we obtain an expression for the Coopero

C11
11~q!5C22

22~q!5
\

4pN̄t0

2

D0q2t01t0 /tw1t0 /t i
QW

,

C21
12~q!5C12

21~q!5
\

4pN̄t0
F 1

D0q2t01t0 /tw1t0 /t'
QW

2
1

D0q2t01t0 /tw
G , ~48!

C22
11~q!5C11

22~q!5
\

4pN̄t0
F 1

D0q2t01t0 /tw1t0 /t'
QW

1
1

D0q2t01t0 /tw
G ,

where the remaining components are equal to zero. H
t i ,'

QW have the meaning of longitudinal and transverse s
relaxation times, where the role of the preferred axis
played by the normal to the plane of the quantum well:

t0

t i
QW5S kFa

p D 4

I i . ~49!

t0

t'
QW5S kFa

p D 6S 11
mh

2

ml
2D I' , ~50!

wherea is the width of the quantum well andI i ,' depends
only on the mass ratioml /mh for infinitely high barriers:
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I i5
3

2 E
0

1

dxS sin
px

2
2

sin kx

sin k D 4

,

I'5
3

2 E
0

1

dx cos2
px

2 S sin
px

2
2

sin kx

sin k D 2

,

k5Aml

mh

p

2
.

I i ,' are plotted in Fig. 1 as functions ofml /mh . Formulas
~49! and ~50! are valid for

mh

ml
S kFa

p D 2

!1.

Note that the nonzero value oft0 /t i
QW arises because

the rate of the transitions changes with increasingk while
conserving the projection of the angular momentum, and
nonzero value oft0 /t'

QW is due to transitions in which the
projection of the angular momentum changes. TheEF /D
dependence of the timest i

QW andt'
QW is different:

t0 /t i
QW;~EF /D!2, t0 /t'

QW;~EF /D!3.

Formulas ~48! apply for t0 /t i ,'
QW!1, i.e., for EF!D.

With growth of EF /D the spin relaxation rate grows,t i ,'
QW

becomes;t0 , and the diffusion pole is preserved in form
las ~48! only in the last terms inC21

12, C12
21, C22

11, andC11
22,

whose form coincides with formula~44!. Consequently,
weak localization effects in quantum wells for arbitra
EF /D ~but for the case in which only one subband is fille!
are described by formula~48!, in which D, tw , t i ,'

QW , andt
depend onEF /D.

Having obtained expressions for the Cooperons, we
examine the influence of weak localization on various kine
phenomena in semiconductor structures. Below we calcu
the magnetoresistance in classically weak fields such
vct!1, wherevc is the classical cyclotron frequency. Th
presence of a magnetic field has an effect on weak loca
tion starting from

vctEFtw /\;1.

FIG. 1. Dependence of the longitudinal and transverse spin relaxation t
in a quantum well on the ratio of the masses of the light and heavy ho
1—I i , 2—10I' .
e

n
c
te
at

a-

HereEFtw /\@1.

4. CALCULATION OF THE DIFFUSION CONTRIBUTION TO
THE CONDUCTIVITY

As is well known,9 to calculate the contribution to th
conductivity associated with weak localization it is necess
to sum the three diagrams depicted in Fig. 2. In the structu
under study this contribution to the static conductivity can
represented in the form

Ds i j 5Ds i j
~ I!1Ds i j

~ II !1Ds i j
~ III ! , ~51!

Ds i j
~ I!5

e2\

2p (
abgd

E dzk

~2p!z E dzq

~2p!z ṽ i
~ag!~2k!ṽ j

~bd!~k!

3Gg
A~2k!Ga

R~2k!Gb
A~k!Gd

R~k!Cda
gb~k,2k,q!,

~52!

Ds i j
~ II !5

e2\

2p (
abgdmn

E dzk

~2p!z E dzk8

~2p!z E dzq

~2p!z ṽ i
~am!

3~2k!ṽ j
~bn!~k8!Gm

A~2k!Ga
R~2k!

3Gb
A~k8!Gn

R~k8!Vmg~2k,2k8!Vdb~k,k8!

3Gg
A~2k8!Gd

A~k!Cna
gd~k8,2k,q!, ~53!

es
s:

FIG. 2. Diagrammatic representation of the contributions to the conduc
ity: a—Ds (I) , b—Ds (II) , c—Ds (III) .



rte

n

uc
o

b

n

m
of
si-

es:

c-

er
-

di-
de-
of
to

e

787JETP 86 (4), April 1998 Averkiev et al.
Ds i j
~ III !5

e2\

2p (
abgdmn

E dzk

~2p!z E dzk8

~2p!z

3E dzq

~2p!z ṽ i
~am!~2k!ṽ j

~bn!~k8!Gm
A~2k!

3Ga
R~2k!Gb

A~k8!Gn
R~k8!Vga~2k8,2k!

3Vnd~k8,k!Gd
R~k!Gg

R~2k8!Cna
gd~k,2k8,q!, ~54!

where the matrix element contrasted with the hatched ve
satisfies the equation

ṽ~ab!~k!5v~a!~k!dab

1N (
mn

E dzg

~2p!z Vam~k,g!Vnb~g,k!ṽ~mn!

3~g!Gn
R~g!Gm

A~g!. ~55!

Equation~55! is similar to Eq.~4! for the Cooperon and ca
be solved by the method expounded above.

To start with, let us consider corrections to the cond
tivity in a bulk sample. For scattering by a short-range p
tential for any deformationVam(k,g)Vnb(g,k) is an even
function of g. Therefore the integral in Eq.~55! is equal to
zero, and

ṽ~ab!~k!5v~a!~k!dab . ~56!

For the same reason

Ds i j
~ II !5Ds i j

~ III !50.

It follows from Eq. ~56! that onlyCba
ab(k,2k,q) Cooperons

contribute toDs i j
(1). For ub«u,EF according to formula~22!

Cba
ab~k,k8,q!52

\

4p~N̄h1N̄l !

ta
21~k!tb

21~k8!

D iqi
21D'q'

2 1tw
21

,

~57!

and after summation overa and b and integration with re-
spect tok, the expression for the conductivity becomes

Ds i j 5
e2

p\
Di j E dzq

~2p!z

1

D iqi
21D'q'

2 1tw
21 . ~58!

In the strong deformation limit the Cooperons are defined
Eqs.~36! and

Ds i j 52
e2

p\
Di j

~0!E dzq

~2p!z F 2

D i
~0!qi

21D'
~0!q'

2 1tw
2111/t i

1
1

D i
~0!qi

21D'
~0!q'

2 1tw
2111/t'

2
1

D i
~0!qi

21D'
~0!q'

2 1tw
21G . ~59!

The changeover from formula~59! to formula ~58! as the
deformation is decreased takes place whent i ,' becomes
;t0 and the first two terms in formula~59! disappear. Note
that if the inequality t i ,'@t0 is still satisfied for ub«u
>EF , then the first two terms have the form of diffusio
x

-
-

y

poles at the same time that the coefficients ofqi ,'
2 cannot

coincide with the corresponding diffusion coefficients.
For two-dimensional carriers in a symmetric quantu

well the scattering probability depends on the difference
angles between the initial and final directions of the qua
momentum. Therefore the componentsṽ(ab)(k) can be ex-
pressed in terms of the total relaxation and transport tim

ṽ~ab!~k!5v~a!~k!
t tr

t
dab . ~60!

Substituting this expression in Eqs.~52!–~54!, we obtain

Ds~ I!52
e2

p\
D

2pN̄tt tr

\ E dzq

~2p!z (
ab

Cba
ab~q!,

Ds~ II !5Ds~ III !5
1

2

t2t tr

t tr
Ds~ I!. ~61!

Using expressions~44! and~48! for the Cooperon, it is pos-
sible to obtain a formula for the contribution to the condu
tivity. For EF!D

Ds52
e2

p\
D0E d2q

~2p!2 F 2

D0q21tw
2111/t i

QW

1
1

D0q21tw
2111/t'

QW2
1

D0q21tw
21G , ~62!

and forEF;D

Ds5
e2

p\
DE d2q

~2p!2

1

Dq21tw
21 . ~63!

The changeover from formula~62! to formula ~63! with
growth of EF /D is completely analogous to the changeov
from formula ~59! to formula ~58! with decrease of the de
formation.

As was already mentioned, in a magnetic field an ad
tional phase-breaking of the wave function takes place,
stroying the weak localization and decreasing the value
uDs i j u. To calculate the magnetoresistance according
Refs. 1 and 2 the integral inq in formulas ~58! and ~59!
should be replaced according to the following rule:

E dzq

~2p!z→
vc

4pDa
(

n
E dz22q

~2p!z22 , ~64!

D iqi
21D'q'

2→~Daq2!z221vc~n11/2!,

where

Da5~D i
z22D'

2 !1/z,

and vc is the cyclotron frequency of a particle with charg
2e and inverse effective mass tensormi j

2152Di j /\,

vc5
4eH

\c
Dc , Dc5AD'~D' cos2 u1D i sin2 u!.

~65!

Here H is the magnitude of the magnetic field andu is the
angle between the field and the deformation axis.

In formulas ~64! z53 holds if the dimensions of the
sample exceedADatw. If the length of the sample in the
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direction of the magnetic field is less than this length, th
from the point of view of diffusive motion the sample
two-dimensional and we havez52.

For the case of a quantum well

E d2q

~2p!2→
vc

4pDa
(

n
, ~66!

Dq2→vc~n11/2!;

and in this casevc is also given by formula~65!, where byu
we mean the angle between the magnetic field and the
mal to the quantum well,D i50 andD'5D.

It is convenient to represent the final expressions for
conductivity in the form of a difference

ds i j ~H !5Ds i j ~H !2Ds i j ~0!.

For a bulk sample for deformationsub«u,EF we have

ds i j ~H !52
Di j

Da

e2

4p2\
AeH

\c

Dc

Da
f 3S 4DceH

\c
twD ,

~67!

and for ub«u@EF

ds i j ~H !5
Di j

~0!

Da
~0!

e2

4p2\
AeH

\c

Dc
~0!

Da
~0!

3F2 f 3S 4Dc
~0!eH

\c

twt i

tw1t i
D

1 f 3S 4Dc
~0!eH

\c

twt'

tw1t'
D 2 f 3S 4Dc

~0!eH

\c
twD G .

~68!

Here f 3 is a function introduced in Ref. 10:

f 3~x!5 (
n50

` H 2@An111x2An1x#2
1

An11/21x
J .

~69!

In the case of two-dimensional diffusion in a bu
sample forub«u,EF we have

ds i j ~H !52
Di j

Da

e2

4p2\
f 2S 4DceH

\c
twD , ~70!

and for ub«u@EF

ds i j ~H !5
Di j

~0!

Da
~0!

e2

4p2\
F2 f 2S 4Dc

~0!eH

\c

twt i

tw1t i
D

1 f 2S 4Dc
~0!eH

\c

twt'

tw1t'
D 2 f 2S 4Dc

~0!eH

\c
twD G .

~71!

Here

f 2~x!5 ln x1c~1/211/x!, ~72!

wherec(y) is the digamma function.
The variation of the conductivity in a magnetic field in

quantum well within the framework of the model consider
n

r-

e

above is isotropic and is described by formula~70! for EF

;D and by formula~71! for EF!D, where in the latter case
t i ,' have been replaced byt i ,'

QW .
As the deformation is decreased, formulas~68! and~71!

give way to formulas~67! and ~70! sincet i ,' decrease and
the first two terms in expressions~68! and ~71! disappear
since we havef 3(0)5 f 2(0)50. The same thing happens i
a quantum well asEF /D is increased. From formulas~67!,
~68!, ~70!, and ~71! it is clear that the magnetoresistan
changes sign whenub«u/EF or EF /D varies in the quantum
well.

Formulas~67! and~70! differ from the result obtained in
Ref. 2 by a factor of two. This difference is due to the abov
mentioned inaccuracy in the calculation of the Cooperon

5. CONCLUSION

In the present paper we have constructed a theory
weak localization for the case of strong spin–orbit couplin
We have obtained equations for the Cooperons in semic
ductors with a complex valence band with allowance
strong transitions between subbands. We have examined
dependence of the magnetoresistance on the external pa
eters: on deformation in bulk samples and on the dop
level in quantum wells. Expressions have been obtained
the variation of the anomalous contribution to the conduc
ity in a magnetic field. We have shown that the magneto
sistance in a nondeformed bulk sample is positive a
changes sign with growth of the deformation. Such behav
also takes place in a quantum well when the doping leve
reduced.

Note that since the interparticle interaction was not tak
into account in the construction of the given theory, it
capable of describing the experimental data only at temp
turesT!\/tw ~Ref. 2!.
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Intraband transitions in magnetoexcitons in coupled double quantum wells
A. B. Dzyubenko* )
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A theory of far-infrared~FIR! magneto-optical intrabands→p6 transitions of direct and indirect
excitons in semiconductor coupled double quantum wells has been developed. The case of
symmetric strained InxGa12xAs/GaAs quantum wells with nondegenerate valence band in the
regime of both narrow and wide barriers has been analyzed. The energies and dipole
matrix elements of transitions between the grounds and excitedp6 states in a quantizing
magnetic fieldB.2 T and electric fieldE perpendicular to the quantum well plane have been
studied. The regimes of direct~in a weak electric field! and indirect~in a strong electric
field! transitions, and the transition between the direct and indirect regimes, have been investigated.
© 1998 American Institute of Physics.@S1063-7761~98!02304-X#
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1. INTRODUCTION

Two-dimensional~2D! spatially separated electron–ho
(e–h) systems in a strong magnetic field have been stud
theoretically for a number of years.1 Depending on the sepa
rationd betweene- andh-layers and the population numbe
of excitons at the lowest Landau level,nX52p l B

2nX ~where
nX is the exciton density andl B5(\c/eB)1/2!, such systems
demonstrate an abundance of possible low-tempera
phases. In particular, at smalld Bose–Einstein condensatio
of magnetoexcitons in the state with momentumK50 is
possible~see also Ref. 2, where exact many-body results
the limit d50 were obtained!.

In order to check theoretical predictions, real quasi-tw
dimensional systems with sufficiently long exciton lifetim
are necessary. Recently experimenters’ attention has
focused on systems of this kind.3–7 Some evidence in favo
of condensation of indirect excitons in a strong magne
field was provided by interband magneto-optical spectr
copy ~with a temporal and spatial resolution! of type II
GaAs/AlAs quantum wells.3 In addition, anomalies were de
tected in low-temperature transport properties of exciton
a magnetic field.8 Other semiconductor structures that ha
been intensely studied in recent times are InGaAs/GaAs4 and
GaAs/GaAlAs5 coupled double quantum wells~DQW!.
When an electric fieldE is applied normally to the quantum
well plane, the exciton ground state is modified~direct-to-
indirect crossover!. In a strong electric fieldE the ground
state is an indirect exciton~Fig. 1!, whose radiative lifetime
is considerably longer. This makes it possible to investig
many-body effects in neutrale–h systems in a strong mag
netic fieldB at low exciton temperatures.

Identification of many-body effects in optical spectra d
mands detailed knowledge of optical properties of excito
in DQW in a strong magnetic field. The theory of magne
optical transitions of excitons in InGaAs/GaAs DQW in
low-density regime was presented in our previo
publication9 and is in good agreement with experimen
7901063-7761/98/86(4)/8/$15.00
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data.4 The intraband FIR magnetospectroscopy proved to
an efficient tool in studies of the ground and excited state
excitons in bulk indirect semiconductors~see Ref. 10 and
references therein!. Experimental results concerning quas
two-dimensional excitons obtained by this technique be
to emerge relatively recently. FIR magnetospectroscopy
used6 in measurements ofe–h interaction as a function o
the population number in type II InAs/AlGaSb quantu
wells. Evidence in favor of the existence of a stable exci
state in a strong magnetic field~in the presence of excess fre
electrons! was obtained.7 FIR spectra of type II GaAs/AlAs
quantum wells in a strong magnetic field were also measu
in the regime of low exciton density.11 Another highly sen-
sitive technique, namely the optically detected cyclotr
resonance, was used in studies of direct excitons in G
quantum wells.12–15

No detailed theoretical study of intraband magne
optical properties of quasi-two-dimensional excitons h
been published as yet. On the contrary, one can even fin
the literature erroneous claims16 about the energy ofs→p
intraexciton transitions as a function of the magnetic field~a
drop in the transition energy withB), which contradict ex-
perimental data.15 Previously we analyzed changes in th
1s→np6 transitions in DQW due to the magnetic field
the regime of a wide barrier between wells atE50.17

This paper reports on a theoretical investigation of
energies and dipole matrix elements of FIR transitions
symmetric InGaAs/GaAs DQW as functions of the barr
width in a strong magnetic fieldB510 T ~Sec. 3.1!, changes
in the transitions caused by an applied electric fieldE in a
fixed magnetic field~Sec. 3.2!, and changes in these param
eters with a magnetic field under strong and intermed
electric fieldsE ~Sec. 2.1!. Sections 2.1–2.3 describe th
calculation techniques, and Sec. 2.4 gives a qualitative
scription of magnetoexciton spectra in DQW. Some resu
of this work were briefly reported in our previou
publications.17,18
© 1998 American Institute of Physics
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FIG. 1. a! Direct D and indirect I excitons in
DQW. Splittings between symmetric and antisym
metric states of electrons and holes,De and Dh ,
are shown. b! Excitons in DQW in an electric
field
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2. THEORETICAL MODEL

2.1. System Hamiltonian

Consider a heavy-hole exciton in a symmetric strain
Inx1

Ga12x1
As/GaAs/Inx2

Ga12x2
As DQW with x15x250.2,

well widths L15L2, and barrier widthLb ~Fig. 1!. Light
holes, whose branch is separated from that of heavy hole
several tens of meV, can be neglected.19 The exciton Hamil-
tonian in DQW in perpendicular electricE¢ 5(0,0,E) and
magneticB5(0, 0,B) fields can be expressed as

H5Hez1Hhz1H2D1Ueh[H01Ueh , ~1!

where the Hamiltonian components

Hez52
\2

2me

]2

]ze
2

1Ve~ze!1eEze , ~2!

Hhz52
\2

2mhz

]2

]zh
2

1Vh~zh!2eEzh ~3!

describe the motion of free electrons and holes along
z-axis. The well depths for electrons and holes are assu
to be Vei50.8DEg(xi) and Vhi50.2DEg(xi), where
DEg(xi)5Eg(0)2Eg(xi) is the band-gap offset,Eg(x)
51.51921.47x10.375x2 eV is the gap width in
InxGa12xAs, and the effective masses areme50.067 and
mh50.35.9,19 The exciton energy is measured with respec
Eg(0).

The solutions of the one-dimensional Schro¨dinger equa-
tions

Hezz i~ze!5Ei
~e!z i~ze!, Hhzj j~zh!5Ej

~h!j j~zh!, ~4!

corresponding to the lowest discrete levels are calculated
merically. In order to avoid difficulties with the continuum i
an electric fieldEÞ0, boundary conditions corresponding
infinite energy barriers at sufficient distances~200–500 Å!
from the DQW are invoked. WhenE50 and the DQW is
symmetric ~i.e., the two wells are identical atx15x2 and
L15L2), the subscriptsi , j 5s, a correspond to the sym
metric ground state (s) and antisymmetric first excited sta
(a) of electrons and holes, respectively:

zs~a!~ze!56zs~a!~2ze!, js~a!~zh!56js~a!~2zh!.
~5!
d

by

e
ed

o

u-

The splittings between symmetric and antisymmetric sta
De5Ea

(e)2Es
(e) andDh5Ea

(h)2Es
(h) , are determined by pen

etration of the wave functions under the barrier~see Sec.
3.1!.

The HamiltonianH2D of relative motion of a noninter-
acting electron–hole pair with magnetic momentum of t
center of massK in a perpendicular magnetic fieldB has the
form20,21

H2D52
\2

2m
“r

21
1

2
\~vch2vce! l̂ z1

e2B2

8mc2
r2

1
e

Mc
B•~r3K !1

K2

2M
, ~6!

where r5re2rh is the relative separation,m215me
21

1mhi
21 is the reduced mass,vce(h)5eB/me(hi)c is the elec-

tron ~hole! cyclotron frequency, andl̂ z52 i (r3¹r)z is the
z-projection of the orbital angular momentum of relative m
tion. In this formula we have taken advantage of the ex
tence of an exact integral of the motion, namely the magn
center-of-mass momentum,20 whose operator is

K̂52 i\¹R2
e

c
A~r!,

whereR5(mere1mhirh)/M is the center-of-mass location
and M5me1mhi . The vector potential is expressed in th
symmetric gaugeA5 1

2B3r, andr5(r,z). Note that in Eqs.
~2!, ~3!, and ~6!, an isotropic electron spectrum is assume
while the masses of holes moving in the quantum well pla
and in the perpendicular direction are different,mhiÞnhz

~see Appendix to Ref. 9, where the nonparabolicity ofmhi is
discussed!. In what follows, we will neglect the difference
between effective masses in the InGaAs wells and GaAs
riers. The energy of the Coulomb interaction between el
trons and holes can be written in the form

Ueh5Ueh~ ure2rhu!52
e2

eure2rhu
, ~7!

wheree512.5. In a InGaAs/GaAs DQW, the effect of ele
trostatic image forces is very weak, owing to the small d
ference between the dielectric constants of GaAs (e512.5)
and In0.2Ga0.8As (e513),9 so this effect is neglected.
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2.2. Wave functions of magnetoexcitons with K 50

In order to calculate the eigenfunctions of Hamiltoni
~1!, we diagonalize the termUeh of electron–hole interaction
in the basis of the wave functions of noninteracting electro
hole pairs in a DQW in a magneticB and electricE fields.
The wave function of an exciton with center-of-mass m
mentumK50 ~see Sec. 2.3! can be expressed in the form o
the expansion9

CK50,l z
~re ,rh!5expS i @r3R#z

2l B
2 D F l z

~r,ze ,zh!, ~8!

F l z
~r,ze ,zh!5 (

i , j 51,2
(

n2m5 l z
Ai jnmz i~ze!j j~zh!fnm~r!,

~9!

wherel B5(\c/eB)1/2, z i(ze) andj j (zh) are the electron and
hole wave functions determined by Eq.~4!, fnm(r)
5(a†)n(b†)mu00&/An!m! are the factored wave functions i
a magnetic fieldB,22,23andr5re2rh . For magnetoexcitons
the quantum numbersn and m label the Landau levels o
electrons and holes, respectively, and the angular momen
projection l z5n2m. Note that the wave functionsfnm(r)
of thee–h-pairs correspond to bound states in a fieldB ~the
characteristic length scalênmur2unm&52(n1m11)l B

2).
Therefore Eq.~9! can be considered an expansion in excit
wave functions. Note also that Eq.~9! takes into accoun
mixing of different subbandsi and j , which is important for
accuracy of calculations~compare to the discussion in Re
24!.

The energy eigenvaluesE and eigenfunctions of Hamil
tonian ~1! for a magnetoexciton with angular momentu
projection l z5n2m are calculated by numerically solvin
the secular equation

DetS FEi
~e!1Ej

~h!1\vceS n1
1

2D1\vchS m1
1

2D2EG
3d i i 8d j j 8dnn8dmm81Ui jnm

i 8 j 8n8m8D50, ~10!

where the matrix elements of thee–h interaction have the
form

Ui jnm
i 8 j 8n8m85^ i 8 j 8n8m8uUehu i jnm&5dn82m8,n2m

3E d2q

~2p!2S 2
2pe2

«q DFi j
i 8 j 8~q!D nm

n8m8~q!, ~11!

dn82m8,n2mD nm
n8m8~q!5S min~n,n8!!

max~n,n8!!

min~m,m8!!

max~m,m8!!
D 1/2

3S q2l B
2

2 D un2n8u

Lmin~n,n8!

un2n8u S q2l B
2

2 D
3Lmin~m,m8!

um2m8u S q2l B
2

2 D expS 2
q2l B

2

2 D ,

~12!

whereLn
m are the generalized Laguerre polynomials and
–

-

m

Fi j
i 8 j 8~q!5E

2`

`

dzeE
2`

`

dzhexp~2quze2zhu!

3z i~ze!z i 8~ze!j j~zh!j j 8~zh! ~13!

are the form factors related to the wave functions of o
dimensional motion. The integrals in Eq.~13! and then in Eq.
~11! are calculated numerically; the calculation is based
an expansion that includes the two lowest electron and h
levels (i and j ), at least ten Landau levels atB512 T, and
up to 36 Landau levels atB52 T. An approximate technique
of taking into account the nonparabolicity of heavy holes
described in Appendix to Ref. 9.

2.3. Interaction between excitons and FIR radiation

In the Faraday geometry~the wave vector of light is
aligned with the magnetic fieldB), the Hamiltonian describ-
ing light absorption due to interaction between the excito
and FIR electric field with amplitudeF 0 and frequencyv
has the form

dV̂65
eF 0

v S pe
6

me
2

ph
6

mhi
Dexp~2 ivt !. ~14!

Here the plus and minus signs denote left-handed~right-
handed! circular polarization s6; pa

65pax6 ipay (a
5e,h), and

pe52 i\¹e1
e

c
Ae , ph52 i\¹h2

e

c
Ah

are the kinematic momentum operators. One can show t

@dV̂6,K̂ #50 . ~15!

This means that the magnetic momentum does not cha
during an FIR transition. All populated exciton states co
tribute to intraband FIR transitions, including those with
nite K . This is the difference between intraband and int
band transitions, since in the latter only excitons w
K50 are optically active. In this paper we consider only F
transitions of excitons with center-of-mass momentu
K50, which can be characterized by a constant angular
mentum projectionl z ~see Eq.~6!!. Therefore, the selection
rules for excitons withK50 in a magnetic fieldB have the
usual form

^CK50,l
z8

8 udV̂6uCK50,l z
&;d l

z8 ,l z61 . ~16!

Effects related to FIR absorption by two-dimensional ma
netoexcitons withKÞ0 were discussed in Ref. 18b. By u
ing expansion~9! and the formula

dV̂15
iA2e\F 0

v l B
S a†

me
2

b

mhi
De2 ivt, ~17!

wherea† (b†) is the ladder operator corresponding to ele
tron ~hole! Landau levels~see Eq.~9!!, we can express the
matrix elements of intraband transitions betweens and ~for
example! p1 exciton states by the formula

u f u2;u^CK50,p1udV̂1uCK50,s&u2
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;U (
i j 51,2

(
n

An11Ai jn 11 n* S Ai jnn

me
2

Ai jn 11 n11

mhi
D U2

l B
22 .

~18!

For symmetric DQW~subscriptsi , j 5s,a), FIR transitions
in the Faraday geometry are allowed only between exc
states with the same spatial parityi ^ j under inversion (ze

→2ze , zh→2zh): S→S andA→A ~see also Sec. 2.4.1!.

2.4. Magnetoexcitons in DQW: qualitative description

2.4.1. Classification of states.The DQW have four exci-
ton terms~instead of one in an isolated quantum well wh
the lowest size-quantized level is taken into account!.4,9,24,25

The classification of the states depends on theR, which is the
ratio between one-particle symmetric–antisymmetrice–h
splitting De , Dh and the difference between the binding e
ergies of direct (D) and indirect (I ) excitons: dEID5ED

2EI , R5max(De ,Dh)/dEDI .
When R!1, the wide-barrier regime of DQW is rea

ized, and the exciton states in DQW are predominantly eit
direct or indirect.1! In addition, there is splitting due to tun
neling through the barrier: for example, in symmetric DQ
at E50 each direct and indirect state is split into states sy
metric (S) and antisymmetric (A) under inversion (ze→
2ze , zh→2zh). In the case of a wide barrier, th
symmetric–antisymmetric splitting is governed by tw
particle e–h tunneling through the barrier,DX.DeDh /
dEDI .9 The splittingDX is suppressed by a rise in exciton
effects (;dEDI

21); in particular, it decreases with increasin
magnetic fieldB. In the wide-barrier regime, we will labe
exciton states by quantum numbers of the high magn
field limit (Dnm , I nm) by indicating the numbers ofe andh
Landau levels that are dominant in expansion~9!, and by the
spatial character of the states. When necessary, we will i
cate the state inversion symmetry (S or A) at E50, and
under strongE the lower (Dnm

2 andI nm
2 ) and upper (Dnm

1 and
I nm

1 ) branches of the exciton spectrum~one example is
shown in Fig. 2!.

For a sufficiently thin barrier, the opposite limit is en
countered,De ,Dh@dEDI andR@1. In this regime, excitons
cannot be classified as direct or indirect, since these st
are mixed. Many of the characteristic features of the narro
barrier regime can be understood in the one-particle appr
mation, neglecting excitonic effects.26,27 Exciton states in
symmetric DQW atE50 can be classified asi j nm , where
i , j 5s, a, in accordance with the quantum numbers of el
tron and hole wave functionsz ij jfnm, which dominate ex-
pansion~9!. The statesssnm andaanm (sanm andasnm) cor-
respond to exciton states that are spatially symmetricS
~antisymmetricA).

2.4.2. FIR transitions.In a strong magnetic field, the
exciton 1s states are formed predominantly by the wa
function f00 of the loweste andh Landau levels. Owing to
the Coulombe–h interaction, there is a small admixture o
states fnn of higher Landau levels proportional t
; l B /aBe(h)!1, whereaBe(h)5e\2/me(h)e

2. Similarly, the
2p1(2p2) exciton states are formed predominantly by t
wave function f10(f01) with a small admixture of
n

-

er

-

ic

i-

tes
-
i-

-

fn11n(fn n11) states. Therefore the 1s→2p1 (1s→2p2)
excition transition can be considered an electron~hole! cy-
clotron resonance,f00→f10 (f00→f01), which is modified
by excitonic effects. The evolution of the energy and mat
elements of transitions from the symmetric 1s ground states
or D00S to variousp6 states in a magnetic fieldB at E50 in
In0.2Ga0.8As/GaAs DQW were discussed in a previo
publication.17 For example, the strongest 1s→p1 transitions
are D00S→D10S and D00S→I 10S, i.e., the transition to the
first electron Landau level. The transition energy is high
than the free-electron cyclotron energy, since the originals
state is more tightly bound than the final 2p6 state. In DQW,
the dipole matrix elementu f 2u of the D00S→D10S transition
only increases withB. An explanation of such behavior wa
given in Ref. 17.

3. NUMERICAL CALCULATIONS AND DISCUSSION

In this part of the paper, we discuss results for symm
ric In0.2Ga0.8As/GaAs DQW withL15L2560 Å. Section 3.1
is dedicated to the dependence of energies and oscil
strengths of intraexciton FIR transitions on the barrier thic
nessLb in a magnetic fieldB510 T atE50, and Secs. 3.2
and 3.3 to their dependence on the magnetic and ele
fields at fixedLb560 Å.

3.1. Dependence on the barrier thickness

An important parameter that determines many of the f
tures of excitons in DQW~in particular, the character of a
crossover from the direct to indirect regime in an appli
electric field E) is the tunnel barrier thicknessLb , which

FIG. 2. Energies of 1s and 2p1 exciton states in DQW in the wide-barrie
regime as functions of the electric fieldE . Vertical arrows show the four
lowest transitions from the 1s ground state to 2p1 excited states, depicted
in detail in Fig. 4a.
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determines the coupling between the quantum wells. E
gies and matrix elements of transitions from the symme
1s ground state top1 states are plotted versusLb in Fig. 3.
In the narrow-barrier regime, the initial state is form
mostly of thezsjsf00 wave function denoted byss00 ~see
Sec. 2.4.1!, and two possible symmetric 2p1 final states are
ss10 andaa10 with the wave functionzsjsf10 andzajaf10,
respectively. The energies of these two transitions are\vce

1dE1 and\vce1De1Dh1dE2, respectively. HeredEi are
the energy corrections due to the differences in the Coulo
binding energies of the 1s and 2p1 states, anddE2!De

1Dh for small Lb . The matrix element of thess00→ss10

transition is large, and that of thess00→aa10 transition is
very small~and is due to the admixture of theaa00 state to
ss00 and ss10 to aa10). As De1Dh.\vce in the narrow-
barrier regime, an anticrossing between the 3p1 and ss21

states takes place atLb.25 Å, which leads to a redistribu
tion of oscillator strengths between the transitions.

After the crossover to the wide-barrier regime, excito
become predominantly either direct (D) or indirect (I ). For
example, the ground 1s state is theD00S exciton with the
wave function (zsjs1zaja)f00/A2, and the two 2p1 final
states are the directD10S and indirectI 10S excitons with the
wave functions (zsjs6zajs)f10/A2. Figure 3 shows that the
energy of the transition to the first 2p1 excited state in-
creases very slowly withLb because the changes in the bin
ing energies of the initial and final states cancel each ot
The transition energy to the next 2p1 state~with the wave
function zajaf10 at small Lb and (zsjs2zaja)f10/A2 at
large Lb! rapidly drops with Lb, since the symmetric–

FIG. 3. Energies and dipole matrix elements of exciton transitions from
symmetric 1s ground state top2 excited states as functions of the barri
width Lb in an InGaAs/GaAs DQW withL15L2560 Å andx50.2 at E

50. The areas of open circles are proportional tou f 2u in Eq. ~18!. Dashed
lines correspond to forbidden (S→A) transitions to antisymmetric fina
states. Characteristics of final states are labeled in the graph.
r-
c

b

s

r.

antisymmetric splittingDa exponentially drops with the bar
rier width Lb . In the wide-barrier regime the parameterDa is
determined by one-particle tunneling across the barrier:Da

.uEauexp(2S a)/p, whereS a5A2mazuEauLb /\ andEa is
the energy of the level in a single quantum well.28

In the considered case of In0.2Ga0.8As/GaAs DQW with
L15L2560 Å and, for example,Lb.60 Å, the numerical
calculation yields9 De.4.9 meV andDh.0.6 meV. For
largeLb the two lowest transitions to the 2p1 states are the
transitions to the direct (D00S→D10S) and indirect (D00S
→I 10S) excitons with the energy difference between the
.dEDI5ED2EI . The separation from the optically forbid
den transitions toA-states'DX.DeDh /deDI . The transi-
tions to the next Landau levels,D00S→D21S and D00S
→I 21S, correspond to the final 3p1 states, and their oscilla
tor strengths are considerably smaller.

3.2. Evolution of FIR transitions in an electric field at BÞ0

A perpendicular electric fieldE breaks the symmetry
under inversionz→2z and allows alls→p6 transitions in
DQW. Exciton 1s and 2p6 levels in an electric fieldE in the
wide-barrier regime are shown in Fig. 2. In a weak elect
field, all levels shift quadratically due to the Stark effect.
intermediate fields, depending on Landau level numbersnm,
the crossover between direct and indirect exciton states
curs. Owing to the lower Coulomb energy, this crosso
happens in weaker electric fields for the 2p1 state than for
the 1s state. This effect can be seen in the FIR absorpt
spectra.

Let us consider evolution of transitions from the grou
1s state to the excitedp6 states in the electric fieldE and
fixed magnetic field~Fig. 4!. The transition to the first ex-
cited 2p1 state experiences a red shift, which saturates
strong electric fieldsE . This shift is also a function ofB: the
higher the magnetic field, the larger the red shift. This shif
controlled by excitonic effects. Indeed, in a weak fieldE

both the initialD00 and finalD10 states are direct excitons. I
a strong electric field, they become the indirect magneto
citons I 00

2 and I 10
2 with lower binding energies. As a resul

the exciton transition energy drops and approaches tha
the cyclotron resonance of free carriers~these energies ar
marked by arrows in Fig. 4!.

Note also the nonmonotonic dependence of the energ
transition to the third 2p1 excited state~at E50 this is the
D00S→I 10A transition, which is strictly forbidden by sym
metry selection rules!. This nonmonotonic behavior is due t
successive crossovers from the direct state to the indi
state, first for the initial state and then for the final state
the FIR transition. The first crossover~when the third excited
2p1 state transforms from the indirectI 10A to direct D10

1

magnetoexciton! occurs in a lower fieldE , when the initial
state is predominantly a spatially direct excitonD00. This
explains both the growth in the oscillator strength and
shift due to the larger Stark effect for the 2p1 state. Then the
initial 1s state undergoes a crossover fromD00S to I 00

2 . As a
result, we have theI 00

2→D10
1 transition, which has an oscil

lator strength decreasing with the field strength and a s

e



e

g
c

tio
1

i-

r

the
le.
-

us

f
ar
s. 4

r in

r,
s.

the

i-

-

to

ris

-

-
ional

795JETP 86 (4), April 1998 A. B. Dzyubenko
almost linear inE due to the Stark effect in the initial stat
I 00

2 of the indirect exciton.

3.3. Evolution of FIR transitions in a magnetic field at fixed
EÞ0

The binding energy of indirect excitons increases withB
more slowly than that of direct excitons. Therefore a ma
netic field B induces a crossover from an indirect to dire
state in a strong fixed electric fieldE , which depends on the
Landau level numbers of the exciton states.4,9,25 This effect
can be seen in exciton FIR absorption spectra. The evolu
of both the energies and dipole matrix elements of thes
→p1 transition with the magnetic fieldB in the electric field
E57 kV/cm is illustrated by Fig. 5a, and in the fieldE
517.2 kV/cm by Fig. 5b.

In the stronger electric fieldE ~Fig. 5a!, the initial 1s
state is the indirect excitonI 00

2 . In the magnetic field range
under consideration,B,16 T, no crossover between the d
rect and indirect states occurs, so only theI 00

2→I 10
2 transition

has a large matrix element, which rapidly~essentially lin-
early! increases withB. Transitions to all remaining highe
levels have much lower intensities.

FIG. 4. Evolution in an electric fieldE of energies and dipole matrix ele
ments of transitions from the 1s ground state to~a! excitedp1 states and~b!
p2 states in a magnetic fieldB510 T for symmetric InGaAs/GaAs DQW
with L15L2560 Å andx50.2. The areas of open circles are proportional
the transition matrix element squared,u f 2u. The horizontal arrows indicate
energies of cyclotron resonances for free electrons and holes. Characte
of final states in the transitions are labeled in the graph.
-
t

n

In the weaker electric field~Fig. 5b!, the gap between the
I 10

2 andD10
6 states is considerably smaller. Furthermore,

mixing between direct and indirect exciton states is notab9

Therefore theI 00
2→D10

1 transition has a notable matrix ele
ment even at intermediate magnetic fieldsB. At B,4 T, the
behavior of spectral lines is complicated owing to numero
anticrossings between levels of directnp1 and indirectn8p1

excitons, wheren8.n. This results in small splittings o
lines and redistribution of their intensities, which is simil
to the behavior of interband transitions discussed in Ref
and 9. At B.10 T, the I 00

2→D10
1 transition amplitude in-

creases rapidly because of the indirect-to-direct crossove
the initial state: the ground state gradually evolves4,9 and
transforms from the indirectI 00

2 to directD00
2 exciton. Since

the excitonic effects in 2p6 states are considerably weake
such a crossover occurs in much stronger magnetic field

Note that the transition to the finalD10
2 state remains

very weak because of the large difference between
shapes of wave functions of~almost degenerate! D10

2 andD10
1

direct excitons. Indeed, it follows from the probability distr
bution for the excitons~Fig. 6!, i.e.,

PK50,l z
~ze ,zh!5E d2ruCK50,l z

~re ,rh!u2, ~19!

tics

FIG. 5. Evolution in a magnetic fieldB of energies and dipole matrix ele
ments of 1s→p1 transitions as functions of the magnetic fieldB in electric
fields ~a! E57 kV/cm and~b! E517.2 kV/cm. The dotted lines show po
sitions of several weak transitions. The areas of open circles are proport
to dipole matrix elements squared,u f u2 @Eq. 18!#.
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FIG. 6. Probability distributionsP(ze, zh) ~Eq.
~19!! for exciton states involved in transition
shown in Fig. 5a (B510 T!: a! initial 1s state
D00

2 ; three of the various low-lying 2p1 final
states: b! I 10

2 , c! D10
2 , and d! D10
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that in fieldsE57 kV/cm andB510 T, the ground state a
the lowest Landau levels~i.e., the initial state in the transi
tions in question! is predominantly direct~we denote it by
D00

2 ). This state is predominantly a direct exciton in the l
quantum well (ze, zh,0) with a large admixture of an indi
rect component (ze,0, zh.0) and an extremely small com
ponent corresponding to a direct exciton in the right quant
well (ze, zh.0). In the same fields, the 2p1 ground state is
polarized because the Coulomb excitonic effects are no
strong, i.e., this is predominantly an indirect excitonI 10

2 (ze

.0, zh,0) with a small admixture of the direct excito
(ze, zh,0). The dipole matrix element of theD00

2→I 10
2 tran-

sition is large due to the large spatial overlap between
wave functions of these states. The next two excited 2p6

states (D10
2 andD10

1 ) are predominantly direct excitons in th
right and left quantum wells, respectively. As a result, on
the D00

2→D10
1 transition is strong, whereas theD00

2→D10
2

transition is very weak because of the small spatial ove
between the wave functions of these two states.

4. CONCLUSIONS

We have analyzed theoretically intraband magne
optical transitions of direct and indirect excitons in InGaA
GaAs coupled double quantum wells. Features in the beh
ior of transition energies and matrix elements due to
crossover from the narrow-barrier regime to the wide-bar
regime in an electric fieldE and magnetic fieldB have been
described. In particular, a red shift of the transition from t
1s ground state to the first 2p6 excited state in DQW due to
the direct–indirect crossover in an electric fieldE has been
predicted. This effect is due to Coulomb excitonic effe
t

m

as

e

p

-
/
v-
e
r

s

and increases withB. These theoretical results may be use
in planning experiments and interpreting their results.
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The phenomenon of upper critical dimensionalitydc2 has been studied from the viewpoint of the
scaling concepts. The Thouless numberg(L) is not the only essential variable in scale
transformations, because there is the second essential parameter connected with the off-diagonal
disorder. The investigation of the resulting two-parameter scaling has revealed two
scenarios, and switching from one to another scenario determines the upper critical dimensionality.
The first scenario corresponds to the conventional one-parameter scaling and is characterized
by the parameterg(L) invariant under scale transformations when the system is at the
critical point. In the second scenario, the Thouless numberg(L) grows at the critical point as
Ld2dc2, which leads to a violation of the Wegner relations5n(d22) between the critical
exponents for conductivitys and localization radiusn, which takes the forms5n(dc222). The
resulting formulas forg(L) are in agreement with the symmetry theory suggested in a
previous publication, I. M. Suslov, Zh. E´ ksp. Teor. Fiz.108, 1686~1995! @JETP81, 925 ~1995!#.
A more rigorous version of Mott’s argument concerning localization due to topological
disorder has been proposed. ©1998 American Institute of Physics.@S1063-7761~98!02404-4#
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1. INTRODUCTION

The one-parameter scaling hypothesis1 has played an im-
portant role in development of the contemporary localizat
theory2–8 and stimulated creation of the theory of quantu
corrections9 unambiguously supported by an experime
The criticism of the one-parameter scaling10–13 in fact refers
not to underlying physical ideas, but rather to its justificati
in the formalism ofs-models.14–16The justification problem
remains a pressing one, and may require more accurate
nitions of the basic notions as well as lead to a restriction
the range of applicability. Here we discuss modifications
scaling concepts that we believe are inevitable in hi
dimensional spaces.

Experience with phase-transition theory17,18 indicates
that scaling is applicable only to spaces with dimension
tiesd within an interval between the upper and lower critic
dimensionalities,dc1 anddc2. For d,dc1, there is no phase
transition, and ford.dc2, the mean-field theory is valid
There is no doubt thatdc152 in the localization theory,1

whereas the issue of the upper critical dimensionality
remained a subject for discussions for many years.19–25 As
concerns the problem of the density of states~determined by
the averaged Green’s function^G&), a comprehensive solu
tion was recently found26–29 by the author of this paper. I
was demonstrated thatdc254 and how the conditiond.4
simplifies the problem. The singularity atd54 was also in-
vestigated, and the (42e)-dimensional theory was deve
oped. As concerns conductivity, which is determined by c
relator ^GRGA&, the upper critical dimensionality could be
in principle, different for this quantity. The latter stateme
was made in Ref. 21, but there are some serious errors.26 In
fact, this conjecture is not true: the special role of dimensi
ality d54 is a fundamental fact manifesting itself in th
7981063-7761/98/86(4)/7/$15.00
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renormalizability of the theory,26–29 and the renormalization
properties of both density-of-states and conductivity pro
lems are similar. This clearly follows from the fact that th
same diagrammatic technique is used in both problems. N
renormalizability of the theory atd.4 indicates the impor-
tance of the Hamiltonian structure on the atomic scale, wh
is the reason why the scaling invariance is broken. This r
soning is supported by the previously developed ‘‘symme
theory,’’30 which yields the results that are in agreement w
those of a one-parameter scaling only ford,4.

The present paper was motivated by two factors. On
hand, the opinion thatdc25` has recently become quit
popular.10,24,25 This opinion is not absolutely groundles
since the one-parameter scaling theorygives no indicationof
the existence of an upper critical dimensionality. So there
certain drawbacks in the existing physical picture of loc
ization, although it remains unchanged after many years
discussions.

On the other hand, the Wegner relation

s5~d22!n ~1!

between the critical exponents for conductivity (s) to those
of localization radius (n), which derives from the scaling
theory, can be obtained under less demanding condition31

Namely, it suffices to postulate the symmetry of correlati
length on both sides of the transition and independence
the Thouless number at the critical point of the length sca
These two assumptions are taken for granted, so the me
nism responsible for a violation of the Wegner relation
d.423,30,32deserves a consideration on the physical leve

The aim of the reported work was to fill these gaps a
investigate the phenomenon of the upper critical dimensi
ality from the standpoint of the scaling concepts.
© 1998 American Institute of Physics
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2. PROBLEM OF THE SECOND PARAMETER

The scaling theory1 is based on the Thouless scalin
consideration,4,33 which is similar to the well-known
Kadanov scheme in the theory of critical phenomena.17,18

The disordered system in question, which is described by
Anderson model on ad-dimensional cubic lattice with the
coupling integralsJ between nearest neighbors and t
spread of the energy levelsW, is divided into blocks of size
L. In the absence of interaction between the blocks, the
tem has random energy levels with a characteristic spa
D(L);J(a0 /L)d, wherea0 is the lattice constant. If the in
teraction is ‘‘switched on,’’ the matrix elements between t
states of the neighboring blocks appear and result in hyb
ization of ‘‘block’’ functions. The hybridization is the stron
gest between the states with close energies, and on a q
tative level we can consider only such states. By selectin
each block a level closest to a given energyE, we obtain the
effective Anderson model with the spread of levelsW(L)
;D(L) and coupling integralsJ(L) determined by the cor
responding matrix elements. The effective Anderson mo
provides a reduced description of the system on scales la
than L, and its properties are controlled by the Thoule
number

g~L !5
J~L !

W~L !
, ~2!

related to the conductanceG(L) of a block with dimension
L:

g~L !;
\

e2
G~L !, G~L !5s~L !Ld22. ~3!

Repeating the Thouless consideration for the effec
Anderson model, we obtain an algorithm for calculati
g(bL) with integerb, giveng(L):

g~bL!5F~b,g~L !!. ~4!

Abrahamset al.1 considered the limitb→1 for this
equation, when it can be rewritten in the form suggested
Gell-Mann and Low:

d ln g

d ln L
5b~g!. ~5!

The transition pointgc is determined by a conditionb(gc)
50, and the conductivitys5 limL→`s(L) and localization
radiusj behave in the vicinity of the transition as

s}~g02gc!
s, j}~gc2g0!2n, ~6!

whereg0 is the value ofg(L) at L;a0, 1/n5gcb8(gc), and
the critical exponents is determined by Eq.~1!.

The theory developed by Abrahamset al.1 corresponds
to the simplest scenario of one-parameter scaling. In p
ciple, one can imagine alternative situations. For example
two parameters, g(L) andh(L), are important, we have, b
analogy with Eq.~4!,

g~bL!5F~b,g~L !,h~L !!, h~bL!5G~b,g~L !,h~L !!,
~7!

which in the limit b→1 yields
e
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d ln g

d ln L
5b~g,h!, ~8a!

d ln h

d ln L
5g~g,h!, ~8b!

and the results are determined by the properties of two fu
tions,b(g,h) andg(g,h).

The arguments presented in Ref. 1 in favor ofone pa-
rameter g(L) scaling in spite of their peculiarity1! were well
grounded. If the basic physical concept proposed in that
per is correct, the parameterg(L) changes over a distance o
the order of the correlation radiusj, which can be arbitrarily
large near the transition point, and Eq.~8b! can be analyzed
at a constantg. If parameterh(L) varies between the finite
limits and is a monotonic function, it should on a certa
scaleL0!j tend to a limiting valueh`(g), and after substi-
tuting this value into Eq.~8a! we return to a one-paramete
scaling. An oscillating behavior of parameterh(L) would
only indicate its inadequate definition, since averaging
the oscillations34 would lead to an equation system like~8!

with a smoothed parameterh̄(L), which varies monotoni-
cally. The parameterh(L) can only be important if it tends to
zero or infinity, but then can be detected on the level
order-of-magnitude estimates, and it would have had a c
physical sense. The entire scientific community has failed
suggest such a parameter throughout the period starting
the year 1979.

There are two candidates to the role of the second
rameter which appear as a matter of course, but are reje
after a closer scrutiny.

a! While the Thouless scheme is constructed without
proximations, the effective Anderson model contains a la
numbern(L) of levels at each lattice site, which increas
with L and can be considered as the second parameter.
hybridization of states in neighboring blocks with energiesE
andE8 is determined by the parameterJ(L)/uE2E8u and is
inessential foruE2E8u@J(L). Therefore one can take int
account onlyn(L);J(L)/D(L) levels around energyE, and
the parametern(L) does not generate a new scale since i
of the same order as the Thouless numberg(L). Nonethe-
less, this modification of the Thouless scheme reveals n
opportunities and will be considered in future work.

b! The overlap integrals in the Thouless construction
random values, and the ratiow(L)5dJ(L)/J(L) between
their fluctuationdJ(L) and their typical valueJ(L) can be
treated as the second parameter. But fluctuations can be
glected if dJ(L)!J(L), and the opposite cas
dJ(L)@J(L) is impossible since the extreme limit of off
diagonal disorder corresponds to a symmetric distribution
coupling integrals around zero whendJ(L);J(L). Hence,
the parameterw(L) can only play some role when it is of th
order of unity and does not generate a new scale. None
less, the off-diagonal disorder is significant, although a m
appropriate definition of the corresponding parameter is
quired.

Estimates based on the optimal fluctuation technique35,36

show that a typical wave function of localized states ha
behavior
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uC~r !u}H r 2z, r !j

exp~2r /j!, r @j,
~9!

wherez5d22 increases with the space dimensionality. T
result is valid outside the close neighborhood of the tran
tion point, i.e., in the region similar to that where the Land
theory7 can be used, but such results have a tendenc
become rigorous in spaces with a high dimensionality. In
critical region, a similar result is associated with investig
tions of multifractal properties of the wave functions37

^uC~r !u2uC~r 8!u2&}ur 2r 8u2h, ur 2r 8u!j, ~10!

where h;e for d521e and h;1 for d53, i.e., it also
increases with the space dimensionality. Therefore, let
assume that Eq.~10! holds in the critical region andz in-
creases without bound asd increases, and let us consid
whether this property can lead to a catastrophe. A large v
of z means that the block wave functions in the Thoule
scheme are strongly localized on a scale smaller thanj ~Fig.
1!, which leads to strong off-diagonal disorder. For examp
the overlap integral coupling states 1 and 2 is much sma
than that coupling states 3 and 4. The anticipated catastro
is a localization due to the pure off-diagonal disorder, wh
can occur even ifW(L)50, i.e., when the spread of energ
levels is neglected. The Thouless numberg(L) in this case is
infinite and cannot play any role, and the hybridization
block states is controlled by a different parameter related
off-diagonal disorder.

3. LOCALIZATION IN THE CASE OF OFF-DIAGONAL
DISORDER

A possibility of localization due to off-diagonal disorde
was discussed in connection with the problem of format
of an impurity band in a semiconductor, which in fact stim
lated the creation of the localization theory.38 An isolated
impurity in a semiconductor can generate a state with ene
E0 within the band gap. When the concentration of su
impurities is finite, they form an impurity band, which
described in the site representation by the Anderson m
with off-diagonal disorder~sometimes this is termed the Lif
shitz model5!:

(
n8

Jnn8Cn81E0Cn5ECn . ~11!

FIG. 1. At largez in Eq. ~10!, the block eigenfunctions are highly localize
on scalesL,j, which leads to strong off-diagonal disorder. For examp
the overlap between the states 1 and 2 is substantially smaller than be
3 and 4.
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If the coupling integral drops exponentially,

Jnn8}exp$2kurn2rn8u%, ~12!

wherern is the coordinate of thenth impurity, the impurity
band is completely localized in the limit of low concentr
tion. Intuitive arguments in favor of this conjecture we
suggested by Mott3 on the basis of Lifshitz’s classification o
states.35,36 Here we present a refined version of Mott’s arg
ment with the aim of attracting attention to physically si
nificant aspects ignored by both Mott and Lifshitz.

The density of statesn(E) of the impurity band is a
continuous function of energy and is formed by levels
which the overwhelming majority have energies differe
from that of an isolated impurityE0. In order to obtain such
levels, one should take into account the interaction betw
an arbitrary impurity atom 1 and its environment, no mat
how weak it is. According to Lifshitz, the main factor i
‘‘collisions’’ between impurity atoms, i.e., random encou
ters among the latter. If the unit distance is the average
tance between impurities, the limit of zero concentration c
responds tok→` in Eq. ~12!. Since the overlap integra
decays exponentially with the distance, only interaction
tween the nearest neighbors should be taken into acco
Nevertheless, the analysis cannot be limited to pairw
‘‘collisions.’’

Indeed, suppose that the nearest neighbor of atom
atom 2. If the nearest neighbor of atom 2 is atom 1, the 1
pair can be treated in isolation from its environment~Fig.
2a!. If the nearest neighbor of atom 2 is atom 3, we m
consider the1–2–3cluster~Fig. 2b!: first the hybridization
of states of atoms 2 and 3 should be taken into account,
their interaction with atom 1. If the nearest neighbor of ato
3 is not atom 2 but atom 4, we must consider the1–2–3–4
cluster~Fig. 2c!, etc. If this construction process starts wi
atom 1 and ends with atomi , we consider by definition tha
atom 1 belongs toi th cluster. It is evident that atoms 2, 3
. . . specified in this process belong to the samei th cluster.

,
een

FIG. 2. Decomposition of an arbitrary configuration of impurities into clu
ters.
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Taking each impurity atom in turn as atom 1, we obtain
decomposition of an arbitrary configuration into cluste
~Fig. 2d!. The decomposition is unique since each atom
this scheme belongs to a certain cluster, and no atom
belong to two clusters at once~neglecting an infinitesima
probability of detecting an exact equality between two int
atomic distances!. Formally we should take into account a
bitrarily large clusters, but in fact all clusters contain with
overwhelming probability a number of atoms on the order
unity ~the existence of an infinite cluster would mean co
centration of an infinite number of impurities in a finite vo
ume!.

Let us introduce parameterR1, which is the characteris
tic interatomic distance inside a cluster, and parameterR2,
which is the characteristic separation between clusters
thorough investigation is needed to give rigorous definitio
of these parameters, but for any reasonable definition
have

R1,R2 , ~13!

since clusters are formed from the nearest atoms.
By neglecting interaction between clusters and diagon

izing Hamiltonians of isolated clusters, we obtain the ze
approximation for the density of statesn(E) of the impurity
band, whose width is determined by the parame
exp(2kR1). This approximation is asymptotically exact
the limit of zero concentration, since the nearest neighbo
each atom is in the same cluster, and the shift of its le
with respect toE0 is calculated correctly in the lowest ap
proximation.

Regarding each cluster as a site of a new lattice
taking into account interaction between clusters, we ob
the effective Anderson model with the spread of lev
W}exp(2kR1) and overlap integralsJ}exp(2kR2). By vir-
tue of Eq.~13!, we haveJ/W→0 ask→`, and in the zero-
concentration limit, all states are localized inside the clust
The latter clarifies the physical sense of these clusters.

Thus, we have proved the basic feasibility of localizati
of all states due to the pure off-diagonal disorder. Note t
the pattern of hybridization between the eigenstates of s
rate blocks~Fig. 1!, neglecting the spread of energy leve
and in the limitz→`, is similar to the case of topologica
disorder in a system of impurities with exponential overla

4. TWO-PARAMETER SCALING

In the presence of off-diagonal disorder, a disorde
system can be characterized by two parameters:

g~L !5
J~L !

W~L !
, w~L !5

dJ~L !

J~L !
, ~14!

the latter having as an upper bound a certain valuewmax ~Sec.
2!. A phase diagram in coordinates (g,w) is shown in Fig. 3.
At w50, the boundary between localized and delocaliz
states is located atg;1. An increase inw leads to greater
disorder in the system, and the boundaryAB between the two
phases displaces to higherg and tends to infinity at somewc

~a curve likeAB8 precludes localization due to the pure o
diagonal disorder, when the Thouless number is infini!.
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The existence of the critical pointwc solves the problem of
the second parameter in the renormalization group: the
nontrivial scale is associated not withw, but with w2wc .

If the parametersg andw uniquely determine the state o
a disordered system, then in the course of the Thouless s
transformation one point of plane (g,w) turns into another
point of this plane. If the system is at a critical point, it ca
move only along the criticalAB surface, which is the locus
of such points.

In order to return to the conventional scheme of on
parameter scaling, we should postulate, in accordance
the conventional concepts of the theory of critical pheno
ena~Ref. 17, Ch. 6!, the existence of a fixed pointF ~Fig.
4a!, which is stable for states on the critical surface but u
stable for states off the critical surface. In the theory of d
ferential equations,39 such a property is associated with
saddle point characterized by two asymptotes,AB and CD,
and hyperbolic trajectories in the vicinity of this point~Fig.
4a!. Changes in the Thouless numberg(L) with scaleL for
this case are shown in Fig. 5a. It has a constant valuegc at
point F ~curve 1!, relaxes togc at a finite scaleL0 for the
points on the critical surface different from F~curves2 and
3!, approachesgc at the scaleL0 and departs from this value
at the scalej for the points close to the critical surfac
~curves4 and5!. Roughly speaking, evolution in the (g,w)
plane consists of two stages, namely the fast relaxation to
curve CD and slow motion along this curve. At scalesL
@L0 the (g,w) plane is in fact compressed to the lineCD,
and positions on this line are determined by the Thoul
number.2! Thus, we have returned to the convention
scheme, and we assume it to be valid for low dimension

Suppose that there is no stationary point on the criti
surface at larged. Then a system at a critical point move
upward along curveAB asL increases~Fig. 4b!. The down-
ward motion is impossible because this means that
diagonal disorder disappears asymptotically at largeL and
contradicts the physical arguments of Sec. 2. The Thou
numberg(L) increases withL at the transition point~curve1
in Fig. 5b!, in the metallic phase it increases faster,1 g(L)

FIG. 3. Phase diagram in coordinates (g,w). The hatched area correspond
to localized states, the cross-hatched area to delocalized states.
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FIG. 4. Flow diagram for Thouless’ scale
transformations~a! in the presence of a sta
tionary point F on the critical surface AB and
~b! in the absence of such a point.
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;sLd22 ~curve2!, and in the localized phase the curve e
hibits reentrant behavior~curve3!.

At first sight, such reentrant behavior is absurd from
physical standpoint. This means1 that the degree of hybrid
ization between block states increases at smallerL, but then
drops for an unclear reason. In reality, this is not so, since
hybridization is not determined entirely by the Thoule
number, but is also a function ofw(L). At the transition
point, the effective disorder~hence the hybridization degree!
remains at the same level but is transferred from the diag
type to off-diagonal one. In the localized phase, the effec
disorder increases monotonically, but in the first stage
Thouless number grows, and the diagonal disorder chara
ized by this parameter decreases owing to transformatio
the off-diagonal disorder. Only whenL.j and the total dis-
order has increased considerably does diagonal disorder
begin to grow.

As the space dimensionality increases, the first scen
~Fig. 4a! should gradually transfer to the second one~Fig.
4b!, so the stationary point should move upwards along
curveAB and go to infinity at a certain dimensionalitydc2.
We identify this value with the upper critical dimensionalit
The aim of subsequent analysis is to develop a phenom
logical theory of this bifurcation.
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The phenomenological description is possible beca
the functionsb(g,h) andg(g,h) in the two-parameter scal
ing equations~8! admit regular expansions. By virtue of Eq
~7!, they describe a relation between two finite system
whereas all singularities emerge in the thermodynam
limit.17 This argument assumes, however, an adequate ch
of scaling variables, which do not have their built-in sing
larities. In this sense, the variablew is not appropriate be-
cause it has a singular pointwc . Therefore we introduce a
new variableh5F(g,w) such that in the (g,h) plane the
curves of Fig. 4a take the form shown in Fig. 6, i.e., cur
AB has an asymptoteg;h as g,h→` and curveCD be-
comes a vertical line. The first condition is adopted so t
the critical surface, which is associated with no singulariti
should have regular projections on both coordinate axes,
the second is assumed to simplify the equations~see below!.

In investigating the bifurcation, it is sufficient to analyz
Eq. ~8! in the region of largeg andh, where it can be trans
formed to

d ln g

d ln L
5~d22!1

Ah

g
1

Bh2

g2
1

Ch3

g3

1 . . . [~d22!1b̃S g

hD , ~15a!
r
FIG. 5. Evolution of the Thouless paramete
in scenarios illustrated by Figs. 4a and 4b.
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d ln h

d ln L
5m1

b

h
, ~15b!

where parameterm changes sign atd5dc2,

m5a~d2dc2!, d→dc2 , ~16!

anda.0, b.0, andA,0. Indeed, ath5const all conclu-
sions from Ref. 1 apply to functionb(g,h), i.e., it has as-
ymptotesd22 and lng for large and smallg, and atd.2
has a rootgc , which is a function ofh in this specific case
By expandingb(g,h) in powers of 1/g,

b~g,h!5~d22!1
A1~h!

g
1

A2~h!

g2
1 . . . , ~17!

we find that the expansionAn(h) in powers of 1/h should
begin with hn in order to yield a rootgc;h ~Fig. 6!. By
retaining the leading terms of the expansion inh, we obtain
Eq. ~15a!.

As follows from the foregoing, atd.dc2 the function
g(g,h) should lead to unbounded growth inh, which, how-
ever, should not be faster than that ing, so that the rootgc

;h should retain its physical sense. Given thatg(L) in-
creases no faster thanLd22,1 we have at largeh the condi-
tion 0,g(g,h),d22, which indicates that the expansion
g(g,h) in powers of 1/g and 1/h begins with a zero-orde
term:

g~g,h!5m1
a

g
1

b

h
1 . . . ~18!

If the variables are defined so that curve CD is a vertical li
the coordinatehc of the stationary point is independent ofg
and the coefficienta in Eq. ~18! is zero. The stationary poin
should be stable ford,dc2, and absent ford.dc2, which
means thatb is positive andm changes sign atd5dc2, as can
be seen in Eqs.~15! and ~16!.

Equation system~15! is easy to analyze. Ford,dc2, Eq.
~15b! has a stationary pointhc5b/umu, and the variable
changeg→ghc in Eq. ~15a! returns us to the one-paramet
scaling with the critical exponents given by equations

1/n5gcb̃8~gc!, s5n~d22!, ~d22!1b̃~gc!50.
~19!

FIG. 6. Diagram of Fig. 4a after the variable changeh5F(g,w).
,

For d.dc2 and largeh, we haveh(L)}Lm, and after the
changeg→gLm, Eq. ~15b! is reduced to a one-paramet
form, but with d222m instead ofd22. For L&j, the
Thouless number follows the law

g~L !5gcS L

a0
D m

1~g02gc!S L

a0
D m11/n

, ~20!

and the critical exponents are determined by the equatio

1/n5gcb̃8~gc!, ~21a!

s5n~d222m!, ~21b!

~d222m!1b̃~gc!50. ~21c!

The localization radius is defined as the distance
which the parameterg(L) begins to drop forg0,gc ~i.e., in
the localized phase! and the exponents is determined by
matching the function defined by Eq.~20! and g(L)
;sLd22 at L;j. At the transition point, the Thouless num
ber increases according to the law

g~L !}Lm, ~22!

which is the reason why the Wegner relation fails~see Eq.
~21b!!. The comparison between Eqs.~19! and ~21! demon-
strates that critical exponents as functions ofd have cusps at
d5dc2

.
Usually, one feature of the upper critical dimensional

is that the critical exponents are independent ofd abovedc2.
As follows from Eq.~21b!, this is possible ifm5d1const,
which yields in combination with Eq.~16!

m5d2dc2 . ~23!

Given this relation, we obtain the Thouless number a
function of the length scale forL&j:

g~L !5gc1~g02gc!~L/a0!1/n, d,dc2 , ~24a!

g~L !5gc~L/a0!d2dc21~g02gc!~L/a0!d2dc211/n,

d.dc2 . ~24b!

Equation~24b! is the main result of our phenomenologic
approach. Equation~24a! is a well-known consequence o
one-parameter scaling, but its range of applicability is li
ited.

5. COMPARISON TO THE SYMMETRY THEORY

The symmetry theory30 yields the same values of critica
exponents as the Vollhardt and Wo¨lfle self-consistent
theory32:

n51/~d22!, s51 for 2,d,4,
~25!

n51/2, s51 for d.4.

For d,4 they are compatible with the one-parameter scal
because the Wegner relations5n(d22) holds. Its failure at
d.4 means thatdc254.
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In order to compare the results given by Eq.~24! to the
symmetry theory, let us derive from the latter30 the diffusion
coefficient DL for a finite block of sizeL. It is calculated
using the diffusion coefficientD(v,q) for an infinite system
using the formula3!

DL;DS i
DL

L2
,L21D . ~26!

It was shown in Ref. 30 that

D~v,q!5D0~v!q0, q!a0
21 , ~27!

andD0(v) is given by the equation

D0~v!5At1BS 2
iv

D0~v! D
1/2n

, ~28!

where t is the distance to the transition point. Given th
g(L)}DLLd22 and parametert is proportional tog02gc ,
we can easily derive from Eqs.~26!–~28!

g~L !5gc~L/a0!d2221/n1~g02gc!~L/a0!d22. ~29!

This result is similar to Eq.~24! but not identical in the
general case. The results expressed by Eqs.~24! and~29! are
identical only for specific values of critical exponents giv
by Eq. ~25!:

g~L !5gc1~g02gc!~L/a0!d22, d,4,
~30!

g~L !5gc~L/a0!d241~g02gc!~L/a0!d22, d.4.

Thus, the phenomenological model developed in the
ported work is in full agreement with the symmetry theory30

This correspondence between the two theories is far f
trivial because the symmetry theory is based on differ
principles and does not use in any way the scaling conce
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reality that all other parameters relax rapidly to a surface which can
mapped one-to-one onto the (g,w) plane.
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Superconducting transition temperature in mercury HTSC-cuprates under hydrostatic
pressure
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A study is made of the properties of the homologous series of mercury HTSC-cuprates
HgBa2Can21CunO2n121d with n51 – 8. Experiments are conducted under pressure for samples
with n51 – 5. The Hg-1223 and Hg-1234 phases were synthesized using a controlled high
pressure chamber. The oxygen content of an initial mixture corresponding to the Hg-1234 phase
was varied by changing the composition of the initial BaO/BaO2 oxides. The dependence
of the superconducting transition temperatureTc on the lattice constanta ~and, therefore, on the
oxygen content! and ofTc

max anddTc
max/dp on n are convex upward up ton54, 5. The

maximum values always correspond to the Hg-1223 phase. ExperimentalTc
max(n) curves for the

phases withn51 – 6 anddTc
max/dp curves forn51 – 5 are compared with Anderson’s

theory ~the so-called RVB model!. A general analysis of these results indicates that the mercury
cuprates have an ideal structure for HTSC. The Hg-1223 phase is the ‘‘champion’’ in this
ideal structure and the critical temperature corresponding to this phase (Tc5135 K) is the highest
at atmospheric pressure. ©1998 American Institute of Physics.@S1063-7761~98!02504-9#
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1. INTRODUCTION

The homologous series of layered mercury HTS
cuprates is described by the general form
HgBa2Can21CunO2n121d . The layers of CuO2 determine
the superconductivity.

In connection with the appearance of this series of
tragonal cuprates with a high superconducting transition t
perature~Tc5135 K, n53!2 and the available theories, w
have decided to examine our experimental data on mer
HTSC compounds from a unified standpoint. The superc
ducting phases withn51 – 5 have been studied at pressu
of up to 2.5 GPa. The 1245 phase was produced with an 8
content of the pure phase, while the 1256 and 1267 ph
are mixtures and, because of the strong overlap in the c
ditions for synthesizing them at high pressures, it was imp
sible to work with them.

We attempt to understand our experimental results
terms of the resonant valence bond model proposed
Anderson.1 All the CuO2 layers in a unit cell are assumed
be equivalent with a uniform charge distribution and only t
bonds between neighboring layers of CuO2 are considered.1,3

2. EXPERIMENT

We used a well worked out method for measuring
Tc(p) curves from the jumps in the two magnetic suscep
bilities. Chambers were used in which the pressure was
ated in a liquid medium and recorded at room temperat
Then the chamber was cooled to the required low temp
tures. The pressure was measured at room temperature
suitable calibration was used to determine its value at
given low temperature. Our experiments over many ye
with these chambers on quantum effects in single crys
have shown that hydrostatic behavior and almost the
8051063-7761/98/86(4)/6/$15.00
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pressure are maintained down to liquid-helium temperatu
The temperature was measured using a~Cu10.15%Fe!/Cu
thermocouple.

The measurement samples withn51, 2 were prepared in
closed vials in the Department of Inorganic Chemistry at
Chemistry Faculty of Moscow State University and tho
with n53 – 5 were prepared in high quasihydrostatic pr
sure chambers at the Institute of High Pressure Physics o
Russian Academy of Sciences. We used our earlier4 data on
Tc(p), except for the data forn51. The data onTc(p) for
the 1201 phase were taken from corresponding combi
data in the literature. New experimental data, includi
samples synthesized in a controlled quasihydrostatic pres
chamber,5 were also used. All theTc(p) curves in the new
experiments were obtained for the maximumTc of the given
phase for monophase samples of 1223, 1234, and 1
whose superconducting characteristics are listed in Tab
We did not use our values for the pressure derivat
dTc /dp of the 1201 phase, which differed from the da
published by others. The discrepancy can be explained
the fact that in our chambers, the pressure created at r
temperature redistributes the excess oxygen. Similar a
ments have been advanced and proven elsewhere6 for Tl-
2201 samples which yielded low pressure derivatives, as
have also found.4 To a certain extent, this is consistent wi
the results of Ref. 6, where a reduction inTc was observed
during peroxidation in the Hg-1223 phase and, perhaps
the Hg-1234 phase. The oxygen content was varied
changing the BaO/BaO2 ratio in the initial mixture.

The cations of doubly valent mercury in the structure
the layered HTSC-oxides are characterized by a dumbell
ordination with oxygen atoms necessarily present only
neighboring layers and only optionally in the mercury laye
© 1998 American Institute of Physics
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TABLE I. Parameters of the HTSC-samples~experimental data!.

n

1 2 3 4 5

Tc
max, K 98 127 135 126 111

dTc
max/dp, K/GPa 2.4 3.2 4.6 2.2 4.3

d ln a/dp, 1/GPa – – 20.003* – –
d ln c/dp, 1/GPa – – 20.0067* – –
dout** , nm – – 0.94 – –
din** , nm – – 0.32 – –
d ln dout /dp, 1/GPa – – 20.0098 – –
d ln din /dp, 1/GPa – – 20.0054 – –
d ln Aout /dp, 1/GPa 0.0245 – – – –
d ln Ain /dp, 1/GPa – 0.025 – – –

Notes:*Data from Ref. 15:d ln a/dp520.003,d ln c/dp520.006; ** dout is the separation between CuO2 layers of neighboring unit cells,din is that within
a unit cell.
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The weak coupling with neighboring cations makes it p
sible to change the populationd of the anion position in the
mercury layer with oxygen atoms and to vary the concen
tion of holes in the conduction band. There is no incomp
ibility of the layers because of this weak Hg–O bond in t
layer. The amount of oxygen in the layer~d!, because it
changes the lattice parametera, determinesTc ~a convex-
upward or dome-shapedTc(a) curve7!; see Fig. 1. Becaus
of the distinctive features of the crystalline structure,Tc also
depends on the pressure~Fig. 2!. The layers of Ba–O and
Hg–O form an NaCl-type ionic lattice which alternates w
perovskite units. The perovskite Cu–O layers are respons
for the superconductivity. In order for superconductivity
appear, the degree of oxidation must be within the ra
2.05–2.25. Carrier delocalization requires that the Cu
separations in the layer be in the range 0.190–0.197 nm.
Cu–O~3! bond length is 0.27 nm, i.e., the bond is mu
weaker. For highTc , all these structural relationships mu
be satisfied ideally. For example, if the cation dimensions
the two sides of the Cu–O layer are not the same, then
structure is distorted andTc is reduced.

The NaCl units ensure stability of the structure and se
as reservoirs of holes for the CuO2 layer. The cation–oxygen
distance in any layer is equal to the distance in the neigh
ing layer. All the parametersa for the tetragonal structure in
the Cu–O, Hg–O, and Ba–O layers are the same.

FIG. 1. Tc as a function of the lattice parametera for mercury HTSC-
cuprates:1—Hg-1201;2—Hg-1212;3—Hg-1223;4—Hg-1234.
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The crystalline structure~tetragonal for all phases! was
determined for each sample during synthesis and is give
Refs. 2 and 5. The dependence of its parameters on pres
is given in Table I. The phase analysis was based on x
patterns. The 1223 and 1234 phases were synthesized
different peroxidation. Here the hole concentration in t
CuO2 layers was varied by changing the amountx of oxygen
in the Hg–O layer, which makes it possible to controlTc ;7

see Fig. 1. The derivatives with respect to pressure w
determined fromTc measurements at a pressure of 1 GP
The results are given in Table 1 and in Figs. 3 and 4.

Note that our data for the pressure derivatives of
various phases~up to the 1234 phase! form the same sort of
dome-shaped curves as forTc

max(n), only much more dis-
tinctly, with a maximum in the 1223 phase. The difference
Tc

max for the variousn is about 40%, while the pressure d
rivatives vary by about a factor of two~Figs. 3 and 4!. The
1245 phase does not have a dome-shaped curve~see below!.

3. DISCUSSION OF RESULTS

We have examined our results in terms of the RV
model.1 Wheatleyet al.1 have stated the basic assumptio
of the model and given formulas forTc of the various phases
of layered HTSC-cuprates. This makes a comparison w
experiment possible. It is assumed without question that
CuO2 layers are responsible for the superconductivity.

FIG. 2. Tc(p) curves for different phases:1—Hg-1223 (dopt50.4); 2—Hg-
1245; 3—data for underoxidized samples of Hg-1223~d50.10 and d
50.15!.
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We have calculated the pressure dependence of the
model parameters, expressing them in terms of the interla
transport integralst' in and t'out between CuO2 layers. The
exchange integral within the layers isJ54t i

2/U, whereU is
the interatomic Hubbard energy,3 which is assumed to be
independent of pressure.8

Using our RVB model calculations for the first tw
terms of the homologous series, we have obtained the p
sure derivatives of the coupling parametersAin andAout from
the experimental data; hereAin is the coupling paramete
between the CuO2 layers in a unit cell andAout is that be-
tween the layers of neighboring cells. The two parame
are related to the interlayer transport layerst' in and t'out:
Ain,out5t' in,out

2 /J.
For a layered structure with one CuO2 layer, we obtain

the following expression:

Tc~1!52AoutRd, ~1!

whereR is of order unity andd is the amount of hole doping
relative to half filling and defined as the number of holes
Cu atom. Superconductivity is observed experimentally

FIG. 3. Experimental and calculated values ofTc
max as a function of the

numbern of CuO2 sublayers. The solid symbols are from experiments at
initial pressure~circles! and at a pressure of 1 GPa~diamonds!; the hollow
symbols are calculations for, respectively, the initial pressure and 1 GP

FIG. 4. The experimental~crosses! and calculated~diamonds! pressure de-
rivativesdTc

max/dp as functions of the numbern of sublayers.
ain
er
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rs

r
r

0.05,d,0.2.9,10 Starting with the data for the 1201 phas
when optimally doped with oxygen (Tc

max598 K) and the
data for the pressure derivatives~2.4 K/GPa! at these critical
temperatures, we obtain the pressure derivatives forAout.
We assume thatd corresponds to optimum doping of th
Hg–O layer. The results are shown in Table I.

For a layered structure with two CuO2 layers in a unit
cell,1 we have

Tc~2!5~Aout1Ain!Rd. ~2!

Using the data forAout(p), with Eq. ~2! we calculated the
pressure derivatives forAin , as well. In the calculation we
used a critical temperatureTc

max5127 K, which corresponds
to optimum doping of the 1212 phase. For the 1223 and 1
phases we calculatedTc

max and the pressure derivatives a
functions ofAout(p) andAin(p) in accordance with the for-
mulas from Ref. 1 reduced to the form

Tc~3!5
1

2
~Aout1AAout

2 18Ain
2 !Rd, ~3!

and

Tc~4!5
1

2
~Aout1Ain1AAout

2 15Ain
2 22AoutAin!Rd. ~4!

The results of the calculations on the effect of pressure onTc

are given in Table I and Figs. 3 and 4. Analogously to t
expressions forn53 and 4,1 we have obtained formulas fo
the phases withn55 – 8 and calculatedTc :11

Tc~5!5146 K, Tc~6!5148 K,

Tc~7!5150 K, Tc~8!5151 K.

For n55 – 8 the calculated values ofTc are almost invariant.
Although they differ from the much higher calculated valu
~the deviation is as high as 40 K for largen!, the experimen-
tal values12 shown in Fig. 3 generally tend to become ind
pendent ofn for n.4. A comparison of the pressure deriv
tives with experiment showed good agreement for the 12
1234, and 1245 phases~Fig. 4!.

For n<5 the pressure derivatives in Fig. 4 are ess
tially the same, although there is a sharp transition from
dome-shaped curve to a jump atn55 followed by a plateau
~calculations!. This kind of behavior in the pressure deriv
tives is encountered in high pressure studies. The pressu
a good parameter for testing theoretical models.13

We have neglectedd(p). The contribution of charge
transport in the mercury cuprates is much smaller than
HTSC materials such as Y-123 and it is the pressure, as s
which mainly affects the magnitude ofTc .14 Our data con-
firm this. ~See below.! It has been shown14 that the mercury
cuprates are the best candidates for studying the effec
pressure on the properties of HTSC materials. It appear
us that the increase inTc to 135 K in the 1223 phase and th
reduction compared to theory in the 1234 phase and
higher n are related to possible disruptions of the ideal
dering. For example, nonstoichiometric oxygen in the Hgd

layer increases the oxygen surroundings of part of the
atoms~increases the coordination number! and the resulting
additional interaction displaces the Ba atoms and disrupts

e

.
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ideal structure, even in the 1223 phase. It is possible
Tc(p50)5135 K is an upper bound for layered HTSC m
terials, since forn53 the ‘‘idealness’’ is the maximum pos
sible. In the following we shall discuss in more detail wh
we mean by this term.

Measurements of the compressibility at pressures u
4.5 GPa revealed a roughly twofold anisotropy (dc/c)
3(da/a), which is not a very large amount. Our compres
ibility data are confirmed elsewhere15 up to 6.0 GPa.

The sharp difference in the effect of pressure on
spacing in a unit cell of the 1223 phase~Fig. 5! along thec
axis observed in Ref. 15 should be mentioned: the dista
d~Cu~2!–O~3!!50.2727 nm is greatly reduced at a pressu
of 8 GPa~to 0.244 nm, i.e., by 10%!. At the same time, the
Hg–O~3! spacing varies little: from 0.198 to 0.196 nm at t
same pressure. Along thea axis, similarly small and equa
compressibilities were observed for the Cu~1!–O~1!, Cu~2!–
O~2!, and Hg–O~4! spacings.

Armstronget al.15 point out that the relationship of th
Cu~2!–O~3! structural parameter to the role of the electron
level of the O~3! ion, which controls the electronic structur
of the CuO2 plane and thereforeTc , has been discussed e
tensively in the literature. On the other hand, the singula
we have observed in the pressure derivatives atn54 may be
related to a change in the compressibility of the structu
parameterd(Cu~2!–O~3!) on going from one internal CuO2
layer to another. A further rise in the number of intern
layers causes a monotonic but tiny growth inTc and makes
the pressure derivatives approach saturation.

Note that both underoxygenation and peroxygenat
cause a drop inTc . The increase ind in an underoxygenated
sample is related to a reduction in the lattice constanta6

FIG. 5. The HgBa2Ca2Cu3O81d (n53) phase. The atoms in the structure a
labelled. O~4! is superstoichiometric oxygen in an amountd.
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owing to oxidation of copper and an enhancement of
copper-oxygen bond in the layer and takes place in para
with the pressure effect which raisesTc

max. On the other
hand, increased peroxidation leads to a reduction inTc and in
the parametera,7 i.e., the opposite of the effect of pressu
on Tc . In the dome-shaped plots ofTc as a function of the
amount of oxidation~the parametera!, the position ofdopt

~the value ofd corresponding toTc
max! depends only on the

amount of CuO2 layers in the structure forn<3. Our studies
of peroxygenated samples of the 1223 and 1234 phases~see
Figs. 1 and 6! showed that as the number of CuO2 layers
increases, the shift in the curves along thea axis becomes
smaller.

Based on these data, theTc(n) curve can be divided into
two regions with respect ton. In the first~up to and includ-
ing n53!, the energy level of the apical oxygen O~3! plays a
fundamental role. This has been proven many times, e.g
Ref. 16, where it is shown that the Hall effect confirms t
invariance in the hole concentration when pressure is
plied. The hydrostatic pressure changes the volume, but d
not redistribute the charges. At the same time, the pres
changes the length of the Cu–O~3! bond greatly.15 Applying
pressure to HTSC materials containing O~3! produces higher
pressure derivatives than when O~3! is absent. Forn51, 2
the parameterd is independent of the pressure, so that t
character of the distribution of holes among the CuO2 layers
cannot change. Equations~1! and ~2! are valid for d
5const. The critical temperatureTc

max is entirely determined
by the parametersAout andAin . At the same time, the pres
sure affectsTc

max, especially in the 1223 phase. A quantit
tive analysis~comparison! of the compressibilities at the ini
tial pressure along thea axis and of theTc

max(p) andTc(a)
curves~Figs. 1 and 6! shows that there are different mech
nisms by whichTc andd are affected. Our experiments~see
Fig. 1! imply that Tc decreases asa is reduced. AtDa
50.0007 nm there is a transition into another phase wit
changeDc50.3 nm, a change in the number of CuO2 layers,
and another value ofTc

max ~Figs. 1, 6, and 7!. This follows
from the method of oxidation proposed in Ref. 7, in whi
the amount of initial oxygen during synthesis of the 12
phase was changed and new phases were added. For smn,
the same thing happens, but the parametera changes more
~to 0.002 nm!. We may assume thatd retains a certain con
stancy as the relationship of the phases changes. The

FIG. 6. The lattice parametera for the 1223 and 1234 phases as a functi
of the amountx of initial oxygen.
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factor when pressure is applied is the variation in the lat
parameterc, i.e., in the bond lengths along it, as well as t
variation in Aout and Ain . This is related to the results o
Refs. 15 and 16 for the 1223 phase and the assumption
the pressure has little effect ondopt.

The influence of the number of layers onTc decreases a
their number increases. This correlates with our results:
ther the critical temperature nor the pressure derivatives
crease for largen in either the RVB theory or in the exper
ments. It is possible that this is related to the fact that
presence of superstoichiometric oxygen does not cause
oxidation of the layers in phases with largen. Most likely,
another pattern sets in atn53, 4: the dome-shaped curve
vanish andTc and the pressure derivatives become cons
owing to the small role played by the interior layers of CuO2.
The change in the influence of the pressure, i.e., the c
stancy of the pressure derivatives, may be related to a l
increase in the separation between O~3! and CuO2 layers
with large n. Furthermore, this may still be caused by t
fact that the presence of superstoichiometric oxygen does
cause peroxidation of the layers in phases with largen and
the overall hole concentration does not change in all
superconducting layers. In the phases withn,3, there is a
rapid reduction in the Cu–O separation in the layers as
degree of oxidation increases, as is indicated by the ma
tude of the parametera. This effect becomes smaller as th
number of layers increases fromn51 and vanishes forn
53. ~See Fig. 1 and Ref. 12.!

The structural balance fails forn.3, since more nons
toichiometric oxygen is required with increasingn.6 As a
result, the Ba–O~Hg! separation decreases, while the B
O~Cu! separation increases and the interaction between
and O~Cu! atoms decreases. This also leads to a slight red
tion in the Cu–O separation in the CuO2 layer. Thus, increas
ing the thickness of the perovskite unit and this unbalanc
reduceTc

max.
The main reason for the reduction inTc

max and the
change in the pressure derivatives in the phases withn54
and 5 must be assumed to be a reduction in the ave
oxidation of the copper owing to the weakened interacti
i.e., to a reduction in the parametersAout and Ain , which
determineTc

max for the ideal 1223 phase.
We have already noted that the distribution of holes

FIG. 7. Percent content of the 1234 phase in synthesized samples
function of the amountx of initial oxygen ~synthesis conditions:Ts

5900 °C, ts52 h, ps52 GPa!.
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the layers does not change. This is even more true of
phases withn.4. Preliminary data indicate that the range
variation of a, i.e., the Cu–O separation in the layer, do
not change during peroxidation in phases withn.3. This is
all confirmed by an examination of the correlations betwe
the pressure derivatives and separations in the lattice a
the c axis ~a simplification of the ideas of Ref. 16!. At a
pressure of 1 GPa, in the 1223 phase the separat
d(Hg–O~3!) andd(Cu~2!–O~3!) and the separation betwee
the CuO2 layers decrease in different ways. According
Ref. 16, the energy level of the O~3! atom is determined by
the electronic states in the CuO2 layer. This yields a maxi-
mum pressure derivative for the 1223 phase. The value
Tc are also set by a high oxidation~larged!, which depends
weakly on the pressure but strongly on the amount of O~4!.
However, the effect of the separationsd(Hg–O~3!) and
d(Cu~2!–O~3!) should not be neglected. See Fig. 8,
which the values ofd for the Hg-1223, 1234, and 124
phases,15,17 as well as their differenceDd, are indicated. A
quantity inversely proportional toDd controls the interac-
tion. It is very similar to the pressure derivatives ofTc

max for
different n. Pressure strongly reducesd(Cu–O~3!) in the
1223 phase, i.e., leads to a larger pressure derivative.
creasing the number of layers reduces the effect of the H
O~3! and Cu–O~3! bonds on the interaction. This correlatio
leads to a reduction inTc

max and to a rise in the pressur
derivatives to values corresponding to the 1223 phase.
the changes inTc

max are determined by the outer layers
CuO2. This is also indicated by calculations11 based on the
model of Wheatleyet al.1

Experiments should be conducted regarding the effec
pressure on the dome-shapedTc(a) curves for phases with
n.3. This is impossible for the phases withn.5 owing to
difficulties in obtaining the required samples.

4. CONCLUSION

We have measured theTc
max(p) curves at pressures up t

2.5 GPa for the Hg-1223, 1234, and 1245 phases. For
first four phases~1201, 1212, 1223, and 1234!, the plots of
the pressure derivatives andTc

max as functions of the phas

s a

FIG. 8. The separations Cu–O~3! ~1! and Hg–O~3! ~2! and their difference
Dd ~3! as functions of the numbern of layers. Data obtained at a pressure
8.5 GPa are shown for the 1223 phase:15,17 ~solid circle! d(Hg–O(3)) and
~solid triangle! d(Cu–O(3)).
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number have a dome shape. All of our measurements y
pressure derivatives of 4 K/GPa for the 1223 phase whenTc

is nearTc
max and 2 K/GPa for the 1234 phase. When we

over to the 1245 phase, the pressure derivative again
creases to 4 K/GPa.

Using the Anderson model1 to describe the data ha
made it possible to confirm the experimental data onTc

max for
the 1223 and 1234 phases and the observed pressure d
tives for the 1223, 1234, and 1245 phases, as well a
demonstrate thatTc

max is independent of the number of laye
for n.4, in qualitative agreement with experiment.

An examination of the bond lengths along thec axis in
the 1223, 1234, and 1245 phases reveals a nonmonoton
that correlates with the observed variation in the press
derivative ofTc

max with the number of layers.
The pressure dominates the other interactions. The m

changes inTc
max are determined by the external layers

CuO2. For layered HTSC materialsTc
max5135 K is an upper

bound.
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Reciprocity relations for the effective electrical conductivity of randomly inhomogeneous
media in the fractal regime
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An exact relation for the realization-averaged effective conductivities in the fractal region is
found for two-dimensional randomly inhomogeneous media. It has the form$se(t,L)%
3$1/se(2t,L)%215se

2(t50,L@j), wherej is the correlation length~the self-averaging scale!,
L is the size of the system,t5(p2pc)/pc , andpc is the percolation threshold. ForL@j,
the system is self-averaged, and the relation transforms into the Dykhne reciprocity relation, A.
M. Dykhne, Zh. Éksp. Teor. Fiz.59, 110 ~1970! @Sov. Phys. JETP32, 63 ~1971!#
se(t)se(2t)5se

2(t50)5s1s2. A similar relation is obtained for media with an exponentially
broad distribution of local conductivities, as well as for individual realizations of some
deterministic structures. ©1998 American Institute of Physics.@S1063-7761~98!02604-3#
u
fo

-
r

b
nd

t
he

ifi
,

a

ity
g
al

nts
ns

al
o-

of

a-
on.
de-

on-
law
1. INTRODUCTION

As is widely known, a macroscopically inhomogeneo
medium is described by its own effective characteristics,
example, the effective electrical conductivityse , which, by
definition, relates the volume-averaged electric fields^E&
and current densitieŝj &:

^ j &5se^E&, ~1!

whereE5E(r ) and j5 j (r ) are the local electric field inten
sity and current density. The averaging is performed ove
volume V with the characteristic dimensionL;V1/3, which
is much greater than the correlation lengthj. Self-averaging
of the system occurs forL.j ~in this caseL is customarily
called the representative dimension!.

Two-phase media, in which all the elements can
clearly separated into two types, such as ‘‘black’’ a
‘‘white,’’ ‘‘highly conductive’’ and ‘‘poorly conductive,’’
‘‘metallic’’ and ‘‘insulating,’’ etc., represent a thoroughly
studied type of randomly inhomogeneous media.

In the two-dimensional case (d52), a series of exac
relations1 for se can be obtained for two-phase media. At t
percolation threshold, i.e., forp5pc51/2, wherep is the
concentration of the highly conductive phase with a spec
conductances1.s2, we obtain Dykhne’s exact expression1

which is suitable for any value of the ratioh5s2 /s1,

se~p5pc!5As1s2, L@j. ~2!

In the case ofpÞpc the exact analytical expression forse is
unknown and is probably impossible to obtain, but an ex
relation can be written for so-called reciprocal media.

If a reciprocal ~tilde-labeled! medium, which differs
from the original medium by interchange of the conductiv
values of the phasess1↔s2, is introduced, then, accordin
to Ref. 1,se and the effective conductivity of the reciproc
8111063-7761/98/86(4)/4/$15.00
s
r
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e
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ct

mediums̃e obey an exact relationse(p)s̃e(p)5s1s2, i.e.,
a so-called reciprocity relation. The local fields and curre
in these media are related by the symmetry transformatio1

j5Ln3Ẽ[LPp/2Ẽ, E5L21n3 j̃[L21Pp/2j̃ ,

L5As1s2,

wherej andE are the local current and field in the origin
medium,j̃ andẼ are the analogous quantities in the recipr
cal medium,n is a unit vector that is normal to the plane
the medium, andPp/2 is the operator for rotation byp/2. In
randomly inhomogeneous medias̃e(p)5se(12p), and the
reciprocity relation takes the form

se~p!se~12p!5s1s2 @5se
2~p5pc!#,

whence follows, in particular, the expression~2! for p5pc

51/2.
For media of dimensionsL,j ~which are shorter than

self-averaging scale!, the system is mesoscopic, and the me
sured characteristics fluctuate from realization to realizati
In this case the realization-averaged quantities are well
fined.

2. RECIPROCITY RELATION FOR A TWO-PHASE TWO-
DIMENSIONAL MEDIUM IN THE FRACTAL REGION

For percolation systems the averages of the specific c
ductance and resistance over realizations exhibit power-
dependences on the size of the system;2 such systems are
referred to as self-similar and fractal systems.2,3 For the ex-
treme case of strong inhomogeneity (h50) the realization-
averaged conductivity$se% and resistivity $re% have the
form2

$se%5s1~L/a0!2t/n, t.0, L,j,
© 1998 American Institute of Physics
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$re%5r2~L/a0!g/n, t,0, L,j,

wherea0 is the minimum size in the medium, and in the ca
of a network problem it is the length of a link. Although$se%
and $re% depend strongly~according to a power law! on L,
the combination of these two parameters, which general
the reciprocity relation to the fractal region, scarcely depe
on L in the two-dimensional case, as follows from the e
pressions presented above:

$se~t,L !%$re~2t,L !%215se
2~t50,L@j!'s1s2 .

Figure 1 presents the results of numerical simulation of
conductivity of a two-dimensional network.

The reciprocity relation can be rigorously proved in t
fractal region. For this purpose we consider a sample of
L i3L' (L i ,',j) and apply current contacts to it, first alon
the vertical sides~in this case^ j &ix) and then along the
horizontal sides. Ohm’s law can then be written in the fo

I i ,'5Gi ,'U i ,' , ~3!

whereGi ,' is the conductance of the sample in the directio
parallel and perpendicular tox.

The symmetry transformations in terms of the total c
rent and the voltage drop (I i ,' andU i ,') have the form

I i ,'52LŨ',i , U i ,'52L21 Ĩ',i . ~4!

FIG. 1. Dependence of the realization-averaged conductances and
tances on the size of the sample fors2 /s1'1022. 1 — $G(t50.1,L)%,
2 — $G(t520.1,L)%, 3 — 1/$R(t50.1,L)%, 4 — 1/$R(t520.1),L%,
5 — A$G(t50.1,L)%/$R(t520.1,L)%.
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We note that in the general case the determination of
conductance or the resistance of a finite sample implies
assignment of specific boundary conditions~for example,
ideal current contacts on some faces and insulation on
ers!. It is easily seen that the symmetry transformations a
the boundary conditions so that the ideal current conta
become insulators, and, conversely, boundaries with an in
lator become ideal current contacts. Thus, if we conside
rectangular sample, whose vertical faces are covered by i
current contacts with a potential difference and whose h
zontal faces are ideal insulators, in the reciprocal sample
current contacts with a potential difference are the horizon
faces, and the insulators are vertical faces. Integration of
transformations along contours joining the opposite fa
gives the relations between the corresponding potential
ferences and currents in the dual samples. Substituting~4!
into ~3!, for Ohm’s law in the reciprocal medium we obta

Ĩ i ,'5G̃i ,'Ũ i ,' , G̃',i5L2/Gi ,' . ~5!

This relation in a finiteN3N network was indicated in Ref
4. Averaging the latter expression over realizations, we
tain

$G̃',i%$1/Gi ,'%5s1s2 . ~6!

In the case ofL i5L' , after moving over to specific charac
teristics, we obtain

$se~p,L !%/$r̃e~p,L !%5s1s2 , ~7!

wherere51/se , and since a randomly inhomogeneous m
dium satisfies$r̃e(p,L)%5$re(12p,L)%, the reciprocity re-
lation ~7! takes the form

$se~p,L !%/$re~12p,L !%5s1s2 . ~8!

When L.j, it is no longer necessary to average over re
izations, and~8! becomes the familiar reciprocity relation1

and whenp5pc51/2, it transforms into Dykhne’s formula
for the effective conductivity~2!.

Since the operations of division and averaging over
alizations do not commute, it is impossible to obtain an e
pression analogous to Dykhne’s formula~2! from ~8! even
for p5pc . It is possible, however, to write such a reciproci
relation containing only one effective conductivity at the pe
colation threshold. To derive this relation, before averag
the second expression in~5!, we take its logarithm and us
the fact that $ ln Gi%5$ln G'%5$ln G% when L i5L'5L.
Then, after the transition to the effective conductivity, f
p5pc we obtain

$ ln se~pc ,L !%5 lnAs1s2 ~5 ln se~pc ,L.j!!. ~9!

3. RECIPROCITY RELATION FOR A STRIP

Let us consider a sample of a randomly inhomogene
two-phase medium in the form of a strip, such that its dime
sion along thex axis satisfiesL i@j, and its dimension along
they axis satisfiesL',j. Although one of the dimensions o
the sample is less than the correlation radius, both the c
ductance of the medium along thex axis ~when the current
contacts assigning the boundary conditions are such tha^ j &

sis-



i-
d
th

o-
in
le
re
d

a

he

th

a
m

ion

he
-

p-
e.

t

a

f.
o
n

iz

n-

for
lly
u-
ssion

of
n-

ty.
a
at

w

ty,

n-
, no
a

etry
ns
he
s of

de-
he

nge
-
the

on-
sion

is-
hases

813JETP 86 (4), April 1998 Snarski  et al.
is parallel to thex axis! Gi and the conductance in the d
rection perpendicular to itG' are well defined quantities an
do not require additional averaging over realizations of
random structure. In fact, in one extreme case we haveL'

5a0, and self-averaging occurs forL i@j1}utu2n1 and n1

51.5 In the other, two-dimensional, case, it occurs forL'

5L i@j2}utu2n2 andn254/3.2 As L' increases froma0 to
L i@j2 , there is a transition from one-dimensional to tw
dimensional behavior. The characteristic self-averag
length then goes fromj1 to j2, and there are no conceivab
reasons why this transition would not be monotonic. The
fore, as in the case of randomly inhomogeneous me
~whereL i5L'@j), in our case we have

G̃i ,'~p!5Gi ,'~12p!,

and we can thus write the following reciprocity relation for
strip:

Gi~p!G'~12p!5s1s2 . ~10!

At the percolation threshold, or, more precisely, in t
blurred region, the reciprocity relation~10! relatesGi and
G' for the same sample to one another as follows:

Gi~pc!G'~pc!5s1s2 .

We note that in the special case in whichL' is equal to
the minimum size in an inhomogeneous system and
sample becomes homogeneous, the resistance along
sample is simply the sum of the elementary resistances,
the conductance across the sample is the sum of the ele
tary conductances. The reciprocity relation~10! then holds
identically, as is easily demonstrated by a direct calculat

4. RECIPROCITY RELATIONSHIP FOR A MEDIUM WITH AN
EXPONENTIALLY BROAD DISTRIBUTION OF LOCAL
CONDUCTIVITIES

One of the major problems in percolation theory is t
determination ofse for a random network with an exponen
tially broad distribution of resistivities. The problem of ho
ping conduction reduces to this problem in a special cas2,6

In the network variant the resistance of thei th link is given
in the formr i5r 0elx, wherex is a random variable in a uni
interval having a smooth distribution.6 In the continuum vari-
ant we haves(x)5s0e2lx. Such a medium represents
special case of the two-dimensional media considered
Ref. 1 with the Ohm’s law

j ~r !5exp~^ ln s&1x!E~r !, ~11!

wherex(x,y)5 ln s2^ln s&, and is treated, according to Re
1, as an ensemble of systems such that the multiple-p
distribution function of the conductivity is an even functio
of x. ForL.j the expression forse is derived in analogy to
the two-phase case, and, as was shown in Ref. 1,

se~L.j!5exp~^ ln s&!.

Applying the symmetry transformations to a sample of s
L,j, we can easily obtain

$se%/$re%5exp̂ ln s&. ~12!
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This is the reciprocity relation for a system with an expone
tially broad spread of resistivities.

As in the case of a two-phase medium, the relation
$ ln se% can be obtained for a medium with an exponentia
broad distribution of local conductivities. Applying the arg
ments presented at the end of Sec. 1, we obtain an expre
analogous to~9!, which can be written in two forms:

$ ln se%5^ ln s&, $ ln se~L,j!%5 ln se~L.j!, ~13!

i.e., in a medium with an exponentially broad distribution
local conductivities, the realization-averaged effective co
ductivity is equal to the volume-averaged local conductivi

The reciprocity relation in a strip can be obtained in
similar manner. Without presenting the derivation, we
once write

GiG'5exp~2^ ln s&!. ~14!

If the local conductivity is distributed according to the la
s(x)5s0e2lx, wherex is a random quantity with a uniform
distribution function that takes values from zero to uni
then

GiG'5s0
2el.

5. RESISTANCE OF DETERMINISTIC STRUCTURES

The reciprocity relations for realization-averaged co
ductances were considered above. There are, of course
such relations for an individual realization. However, for
certain class of inhomogeneous structures the symm
transformations makes it possible to obtain not only relatio
like the reciprocity relations, but also the exact value of t
resistances and conductances for arbitrary conductivitie
the phases.

As an example, let us consider the spiral structure
picted in Fig. 2. A structure consisting of two phases with t
specific conductancess1 ~black! and s2 ~white! is con-
structed so that it remains unchanged under the intercha
s1↔s2 and rotation byp/2 about the axis which is perpen
dicular to the surface and passes through the center of
square. In structures which satisfy such symmetry, the c
centrations of the phases are clearly equal. The expres
for the conductance~and the resistance! of the sampleG

FIG. 2. Two-phase structure in the form of a ‘‘broken spiral.’’ The res
tance of the sample remains unchanged upon interchange of the two p
and rotation byp/2.
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5As1s2 then follows at once from~5! ~we recall that the
thickness of the sample is assumed to be equal to unity!. The
result obtained means thatGi ~with vertical contacts! andG'

~with horizontal contacts! are identical. We note that thi
does not follow directly from the drawing of the structure
Fig. 2. Rotation byp/2 without the interchanges1↔s2 does
not give an identical result, since the structures are geom
cally different. Similar structures of conducting paths~if, for
example, it is assumed that the ‘‘black’’ phase condu
much better than the ‘‘white’’ phase! were considered in
describing the flow of current in polycrystalline media in t
case of strong conductivity anisotropy in Ref. 7. The conc
of a trap for lines of good conductivity was introduced in th
work. When a trap is approached, a line of good conductiv
winds around its center, the current density increases,
current flows through lines of poor conductivity into th
neighboring set of lines of good conductivity and ‘‘grows
along them. The conductance of such a trap was estim
using the variational principle for the case of strong anis
ropy and had the valueG;As is', wheres i ands' are the
principal values of the conductivity tensor of the polycry
talline medium. The conductance of a similar two-phase tr
which was calculated exactly above, is also expressed
terms of the geometric mean, but now, of course, of
isotropic conductivities of the phases.

6. CONCLUSIONS

Several examples of two-dimensional media, for whic
reciprocity relation for the realization-averaged conducta
of the sample can be rigorously derived using Dykhn
symmetry transformations, have been considered here. T
examples do not, of course, exhaust the class of medi
which similar relations are possible. Symmetry transform
tions were used forL.j in Ref. 1 to calculate the effective
electrical conductivity in polycrystalline films and in Ref.
to calculate the effective galvanomagnetic characterist
ri-
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WhenL.j holds, reciprocity relations are also possible f
kinetic phenomena which are more complicated than c
duction, for example, for thermoelectric phenomena.9–12

Similar relations can be obtained forL,j in all these cases
The question of the existence of reciprocity relations

three-dimensional randomly inhomogeneous media meri
separate study. Such relations can clearly be only appr
mate and can hold in the region of the universal behavio
the effective characteristics, for example, near the perc
tion threshold.
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The main mechanisms for the Auger recombination of nonequilibrium carriers in semiconductor
quantum-well heterostructures are investigated. It is shown for the first time that there are
three fundamentally different Auger recombination mechanisms in quantum wells: 1! a threshold-
free mechanism, 2! a quasithreshold mechanism, and 3! a threshold mechanism. The rate of
the threshold-free process has a weak temperature dependence. The rate of the quasithreshold
Auger process exhibits an exponential temperature dependence. However, the threshold
energy depends significantly on the quantum-well width and is close to zero for narrow quantum
wells. It is shown that the threshold-free and quasithreshold processes are dominant in
fairly narrow quantum wells, while the quasithreshold and threshold Auger processes are dominant
in wide quantum wells. The limiting transition to a three-dimensional Auger process is
accomplished for a quantum-well width tending to infinity. The value of the critical quantum-
well width, at which the quasithreshold and threshold Auger processes combine to form
a single three-dimensional Auger recombination process, is found. ©1998 American Institute
of Physics.@S1063-7761~98!02704-8#
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1. INTRODUCTION

Two recombination processes predominate in semic
ductors at high nonequilibrium-carrier excitation levels: 1! a
radiative process and 2! a nonradiative Auger process ass
ciated with an electron–electron interaction. The mec
nisms of Auger recombination in homogeneous semicond
tors have been studied by many investigators.1–4 In narrow-
gap semiconductors the Auger recombination proces
involving two electrons and a heavy hole~the CHCC Auger
process! or an electron and two heavy holes with a transiti
of one of them into a spin–orbit split-off band~the CHHS
Auger process! are most probable.2,4,5 Both these processe
have thresholds, and the Auger recombination rate va
with the temperature according to an exponential law1,2

Semiconductors in which the spin–orbit splitting constan
close to the gap width~GaSb and InAs! are exceptions. In
these semiconductors the rate of the CHHS process dep
weakly on the temperature under certain conditions.6 It is
generally assumed that the phonon-assisted Auger reco
nation processes are dominant in weakly doped semicon
tors at low temperatures and high nonequilibrium-carrier
citation levels.3,5 Because of the large momentum transfer
the phonon, the threshold for the heavy holes is remov
and the rate of such an Auger process is a power functio
the temperature. However, removal of the threshold as a
sult of interactions with phonons is not the only possibili
At high carrier concentrations hole–hole or hole–elect
scattering can be a more effective mechanism for remov
the threshold to the Auger process. Therefore, the questio
the mechanism of Auger recombination in homogene
semiconductors at low temperatures remains open. We h
8151063-7761/98/86(4)/18/$15.00
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discussed this problem in greater detail in a separate pa7

Auger recombination processes involving impurities are
considered in the present work.

Solitary semiconductor heterostructures, quantum we
quantum wires, and quantum dots are spatially inhomo
neous due to the existence of heterobarriers. The presen
an interface influences not only the energies and wave fu
tions of the carriers, but also the macroscopic properties
the heterostructures, the influence on the latter being of f
damental importance.8 It is generally assumed that th
mechanism of Auger recombination in quantum wells is
same as the mechanism in a homogene
semiconductor.5,9–12 Nevertheless, the presence of an inte
face significantly influences the electron–electron interact
in quantum wells, and this influence has a fundamental ch
acter. An interface removes the constraints imposed by
energy and momentum conservation laws on electro
electron interaction processes. More specifically, the con
vation law for the quasimomentum component perpendicu
to the interface is removed. This, in turn, leads to the appe
ance of new threshold-free channels for Auger recombi
tion in heterostructures.8 The rate of the threshold-free Auge
recombination process varies with the temperature accor
to a power law. At low temperatures the threshold-free p
cess, unlike the threshold process, is a fairly effective ch
nel of nonradiative recombination, and for narrow quantu
wells it is dominant in comparison with the phonon-assis
Auger recombination process at high carrier concentratio7

The presence of a threshold-free matrix element for
electron–electron interaction also has a significant influe
on the phonon-assisted Auger recombination process.
latter becomes a resonant process and is intensified sig
cantly in comparison with the three-dimensional phono
assisted Auger process.7 However, at high concentrations o
© 1998 American Institute of Physics
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the nonequilibrium carriers the phonon-assisted Auger p
cess is considerably weaker than the phononless thresh
free Auger process down to extremely low temperatures.
first direct experiment devised to observe the threshold
ger recombination channel atT577 K was described in Ref
13.

A detailed analysis of the threshold and threshold-f
Auger recombination mechanisms for a single heterobar
was performed in Ref. 8. The conditions under which
threshold-free channel is more dominant than the thresh
channel were analyzed. There has been no such det
analysis of the Auger recombination mechanisms for qu
tum wells. The possibility of removing the threshold for th
Auger recombination process for quantum wells associa
with the passage of excited carriers into the continuous
of the spectrum was analyzed in Ref. 14. However, that
per does not include a microscopic theory for the thresho
free process, and there is no theoretical analysis of the c
petition between the threshold, quasithreshold, a
threshold-free Auger recombination mechanisms at differ
temperatures for different quantum-well widths. In Refs.
and 16 only the threshold-free Auger recombination chan
corresponding to small momentum transfers during the C
lomb interaction between the particles was considered~for
the CHCC process! with neglect of the spin–orbit interac
tion.

The purpose of the present work is to theoretically
vestigate the principal mechanisms of the Auger recomb
tion of nonequilibrium carriers in semiconductor quantu
wells. It will be shown that there are three fundamenta
different Auger recombination mechanisms in quant
wells: 1! a threshold mechanism, which is similar to an A
ger process in a homogeneous semiconductor, 2! a qua-
sithreshold mechanism, whose threshold energy depends
nificantly on the quantum-well width, and 3! a threshold-free
mechanism, which is not observed in a homogeneous s
conductor. The threshold energy for a threshold Auger
combination process in a quantum well is close to the thre
old energy for a homogeneous semiconductor. Convers
because of the small value of the threshold energy, the ra
the quasithreshold process in narrow quantum wells depe
weakly on the temperature. For this reason, in fairly narr
quantum wells there is no clear distinction between
threshold-free and quasithreshold Auger recombina
mechanisms, and they combine to form a single thresh
free Auger process. As the quantum-well width increases,
threshold energy of the quasithreshold process increases
tends to the bulk value. The behavior of the threshold-f
Auger recombination mechanism is totally different. As t
quantum-well width increases, its rate decreases sharply,
this mechanism vanishes when we move over to a homo
neous semiconductor. The conditions under which
threshold-free Auger recombination mechanism is domin
in comparison with the threshold mechanism are obtai
below. The critical value of the quantum-well width,
which the quasithreshold and threshold Auger recombina
mechanisms combine to form one three-dimensional Au
process, are also found.
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2. BASIC EQUATIONS

The wave functions of the charge carriers are neede
analyze the Auger recombination mechanisms and to find
rate of the Auger process. As has already been establis
for bulk Auger processes, the wave functions of the carri
must be calculated in a multiband approximation.2 We shall
use the four-band Kane model, which faithfully describes
wave functions and spectrum of the carriers in narrow-g
III–V semiconductors.17

For most III–IV semiconductors the wave functions
the conduction band at the Brillouin-zone center are
scribed by theG6

1 representation, and the wave functions
the valence band are described by theG7

1 andG8
1 represen-

tations. The first two of these are doubly degenerate, and
last representation is quadruply degenerate. The equa
for the corresponding wave functions can be written in d
ferential form. The basis wave functions of the conducti
band and the valence band are usually taken in the form
eigenfunctions of the angular momentum.17,18 However, for
our purposes there is another more suitable representatio
the basis functions:

us↑&, us↓&, ux↑&, ux↓&, uy↑&, uy↓&, uz↑&, uz↓&, ~1!

where us& and the functionsux&, uy&, and uz& are s- and p-
type Bloch functions with angular momenta equal to 0 and
respectively. The former describes the state of the cond
tion band, and the latter describe the state of the vale
band at theG point. The arrows denote the direction of th
spin. The wave functionc of the carriers can be represente
in the form

c5Csus&1Cup&,

whereCs andC are spinors. Near theG point the equations
for the envelope functions ofCs and C in the spherical
approximation have the following form:

5
~Ec2E!Cs2 i\g¹•C50,

~Ev2d2E!C2 i\g¹Cs1
\2

2m
~ g̃114g̃2!¹~¹•C!

2
\2

2m
~ g̃112g̃2!~¹3~¹3C!!1 id~s3C!50.

~2!

Here g is the Kane matrix element, which has the dime
sions of velocity,g̃1 and g̃25g̃3 are generalized Luttinge
parameters,18 d5Dso/3, Dso is the spin–orbit splitting con-
stant,Ec and Ev are the energies of the lower edge of t
conduction band and the upper edge of the valence banm
is the mass of a free electron, ands5(sx ,sy ,sz) denotes
the Pauli matrices. If the heavy-hole mass, which descri
the interaction with the upper bands, is introduced pheno
enologically instead of the Luttinger parameters, Eqs.~2!
transform into the equations obtained in Ref. 19. It can
seen that Eqs.~2! do not differ from the equations usuall
used in the literature.18,20–22In the first equation of system
~2! for the electrons we neglect the term with a heavy ma

The Fourier transformation of Eqs.~2! makes it possible
to obtain the spectra for the electrons and holes:

a! for heavy holes,
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Eh5d2
\2k2

2mh
;

b! for light holes and spin-split-off holes,

El ,so52
d

2
2

\2k2

4
~ml

211mh
21!

6A2d21S d

2
2

\2k2

4
~ml

211mh
21! D 2

; ~3!

c! for electrons,

k25
E

\2g2

E21E~2Eg13d!1~Eg13d!Eg

Eg1E12d
.

Herek is the quasimomentum of the carriers,

ml
215

2g2

Eg1d2E
1m21~ g̃114g̃2!,

mh
215m21~ g̃122g̃2!,

mh coincides with the heavy-hole mass, andml coincides
with the light-hole mass in the case of a spin–orbit coupl
constant equal to zero. For convenience, we set the energ
the upper edge of the valence bandEv equal tod. We cal-
culate the electron energyE from the lower edge of the
conduction band.

The expression for the probability flux density can
derived from Eq. ~2! by making the substitutionE→
2 i\]/]t and then using a procedure similar to the proced
employed in quantum mechanics.23 It can also be derived
using thek•p approximation in second-order perturbatio
theory. As a result, for the holes we obtain

jh5
Eg1d2E

2mlg
@CsC* 1Cs* C#2

i\

2mh
@~C3curlC* !

2~C* 3curlC!#. ~4!

For electrons in the conduction band the expression
the probability flux density takes on a simpler form:

je5g@CsC* 1Cs* C#. ~5!

The exact procedure for deriving the boundary conditions
the wave functions at an interface are still not entirely cle
However, several approximate methods for solving t
problem have been developed in the last few years. Foll
ing the method developed by Burt,20 from the system of
equations~2! we obtain the Kane equations, which can
integrated through an interface

5
~Eg1d2E!Cs2 i\g¹•C50,

2EC2 i\g¹Cs1
\2

2m
¹~6g̃2¹•C!

1
\2

2m

]

]xk
~ g̃122g̃2!

]

]xk
C1 id~s3C!50.

~6!

Using these equations and the probability flux density c
servation law, we can obtain the boundary conditions for
wave-function envelopes@see Eqs.~24! and ~25!#.
g
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Carrier states in a quantum well

The wave functions of carriers in a quantum well can
found by utilizing the symmetry properties of the Ham
tonian in the quantum well. The spinless HamiltonianH0 is
invariant under the replacementx→2x. Let us consider the
operatorR, which is such that

R: ~x,y,z!→~2x,y,z!, R5I C px , ~7!

H0R5RH0 ,

where I is the inversion operator,C px is the operator for
rotation byp about thex axis, and thex axis is perpendicu-
lar to the plane of the quantum well.

With consideration of the spin–orbit coupling th
Hamiltonian can be written in the form

H5H01
\

4m2c2
~¹V3p!•s, ~8!

where p is the momentum operator andV is the potential
energy of an electron in the crystal. The latter term does
commute withR. Therefore, the symmetry operatorD can
be sought in the form of the product ofR and a certain spin
matrix S, which must be found:D5R^ S. Since inversion
does not alter the sign of a vector product, the matrixS
should satisfy the relations:

H Ssx5sxS

Ssy52syS

Ssz52szS

, sx5F0 1

1 0G ,
sy5F0 2 i

i 0 G , sz5F1 0

0 21G . ~9!

It is clear that the Pauli matrixsx can be taken asS: S
5sx . In the basis~1! the matrixD takes the form

D53
0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 21 0 0 0 0

0 0 21 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

4 , D5D21.

~10!

The matrix of the HamiltonianH must satisfy the com-
mutation relations22

DH~2x,y,z!D215H~x,y,z!↔H~2x,y,z!

5D21H~x,y,z!D . ~11!

Consequently,C(x,y,z) andDC(2x,y,z) satisfy the same
equation. Therefore, the eigenfunctions of the Hamilton
can be sought in the form of the eigenfunctions of the ope
tor D :

C~x,y,z!1nDC~2x,y,z!, wheren561. ~12!
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The valuesn561 correspond to carrier states with differe
symmetry. When the wave functions are so chosen,
boundary conditions need to be satisfied on only one in
face, since they will hold automatically on the second int
face. Expanding Eq.~12!, we find the necessary condition
for different components of the symmetrized wave functio

Cs↑~x,y,z!56Cs↓~2x,y,z!,

Cx↑~x,y,z!57Cx↓~2x,y,z!,

Cy↑~x,y,z!56Cy↓~2x,y,z!,

Cz↑~x,y,z!56Cz↓~2x,y,z!, ~13!

where the plus sign corresponds ton51, while the minus
sign corresponds ton521 for thes, y, andz components,
and the opposite is true for thex component.

A. Holes in a rectangular quantum well

Selecting the coordinate system so that the longitud
component of the wave vector corresponds to they axis and
performing Fourier transformation in that plane, we obta
the following expressions for the wave functions of the c
riers.

For the heavy holes we have

Ch~q,x!5H1S q coskhxj

2 ikh sin khxj

2kh sin khxj1q coskhxh
D

1H2S q sin khxh

ikh coskhxh

2q sin khxj2kh coskhxh
D . ~14!

Hereq andkh are they andx components of the quasimo
mentum of the heavy holes,

j5
1

A2
S 1

21D , h5
1

A2
S 1

1D ,

andH1 andH2 are normalization constants.
For the light holes we have

Cl~q,x!5L1S kl sin klxh2l lq cosklxj

2 iq cosklxh1 il lkl sin klxj

2l lkl sin klxj1l lq cosklxh
D

1L2S 2kl cosklxj2l lq sin klxh

2 il lkl cosklxh2 iq sin klxj

2l lq sin klxj2l lkl cosklxh
D ,

~15!

Csl5
i\g~kl

21q2!

Eg1d2E
@L1 cosklxh1L2 sin klxj#, ~16!

where l l5d/(E12d2\2kl
2/2mh), and q and kl are they

and x components of the light-hole quasimomentum. T
wave functions of the spin-split-off holes are similar to t
wave functions of the light holes.
e
r-
-

:
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e

The transition to functions of another symmetry in t
expressions presented above can be accomplished usin
formal replacementj↔h for thes, x, andy components and
the replacementj↔2h for the z component. In the barrie
region (x.a/2) the wave functions of the bound holes dec
exponentially as the distance from the interface increase

Ch5H̃1S qj

2 ikhj

2khj1qh
D exp~2kh~x2a!!

1H̃2S qh

2 ikhh

2qj1khh
D exp~2kh~x2a!!, ~17!

Cl5L̃1S k lh2l̃ lqj

2 iqh1 i l̃ lk lj

2l lk lj1l̃ lqh
D exp~2k l~x2a!!

1L̃2S k lj2l̃ lqh

i l̃ lk lh2 iqj

2l lqj1l̃ lk lh
D exp~2k l~x2a!!, ~18!

Csl5
i\g~2k l

21q2!

Eg1 d̃1Uc2E
@ L̃1h1L̃2j#exp~2k l~x2a!!,

~19!

l̃ l5
d̃

Uv1E12d̃2\2kl
2/2mh

, d̃5
D̃so

3
.

HereUc andUv are the heights of the barriers for the ele
trons and holes,D̃so is the spin–orbit coupling constant in th
broad-band region, andk l andkh are the magnitudes of th
x components of the quasimomenta of the light and he
holes under the barrier, which are related to the correspo
ing energy values according to Eqs.~3!. For x,2a/2 the
wave functions can be obtained from~17!–~19! using~13!. If
we simultaneously consider the wave functions of two
more particles, it is impossible to cause thez components of
their quasimomentum to vanish simultaneously by selec
the coordinate system in a general form. The transition t
function with arbitrary quasimomentum directions is acco
plished using the rotation matrix

Dw5Rw ^ Sw , ~20!

where Rw acts on the coordinate components of the wa
function, andSw acts on the spinor components. The Eu
angles for rotation in theyz plane by an anglew are

F52p/2, Q5w, C5p/2.

Thus,

Rw5F 1 0 0 0

0 1 0 0

0 0 cosw sin w

0 0 2sin w cosw

G ,
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Sw5F cosw/2 2 i sin w/2

i sin w/2 cosw/2 G . ~21!

If the vectorq has the componentsq(0,cosw, sinw) in the
x,y,z coordinate system, the wave function can be written
the form

Cq[Cw5D2wC0 . ~22!

The wave function previously found is labeled by a subsc
zero. Here we present the wave function of the heavy ho
obtained using~22!, since we shall need it below:

Ch~q,x,f!5H1F q coskhxe2 ifj

2 ikh sin khxj2q coskhx sin fh

2kh sin khxj1q coskhx cosfh
G

1H2F q sin khxeifh

ikh coskhxh1q sin khx sin fj

2kh coskhxh2q sin khx cosfj
G .

~23!

The boundary conditions for the hole wave functions can
derived by integrating the Kane equations~6! through the
interface. We shall use the approximationg5const, which is
a good approximation for semiconductor heterostructu
based on III–V compounds. Then we obtain the continu
conditions for the following quantities at an interface:

1) Cx ,

2)
Eg1d2E

2mlg
Cs1

\2

2mh
q•C'⇔~mh

212ml
21!q•C'

1 iml
21 ]Cx

]x
,

3) mh
21 ]

]x
C' ,

4) mh
21 ]

]x
uC'u2,

5) mh
21uCu2. ~24!

The boundary conditions are further simplified, if the val
of the modified Luttinger parameters on the two sides of
interfaceg̃1 andg̃2, which characterize the interactions wi
the higher bands, are assumed to be identical. In this cas
have mh5const. Taking into accountml

21'2g2/(Eg1d
2E)@mh

21 , instead of~24! we obtain the continuity condi
tion for the following quantities:

1) C,

2)
]

]x
C' ,

3)
1

Eg1d2E
divC. ~25!

Generally speaking, the wave functions of the holes a
in a quantum well are results of the superposition of th
branches of the valence band: heavy, light, and spin-split
holes. However, the last of the branches decays strongly,
n

t
s

e

s
y

e

we

d
e
ff
e.,

exponentially, with the exponentkso'A4mhDso/3\2 as the
distance from the interface increases. As a result, this bra
mainly influences the value of the derivative of the wa
function near the interface, and its influence on the value
the wave function itself is negligibly small. We stress th
such an approximation is not equivalent to the use of a
34 Hamiltonian from the onset. We shall seek the wa
function as the result of the superposition of the branches
the heavy and light holes. Near the upper edge of the vale
band we haveulsou'mh /ml@1. This means that only the
first and third of the boundary conditions~25! can be em-
ployed. In this approximation the light and heavy holes
not mix and have different spectra, which are obtained wh
the wave functions are substituted into the boundary con
tions ~25!.

The spectrum of the heavy holes coincides with t
quantum-mechanical spectrum of a particle in a rectang
quantum well. The dispersion equation for states with ev
and oddx components of the wave function for the hea
holes takes the form

tan
kha

2
5

kh

kh
, for even states;

cot
kha

2
5

kh

kh
, for odd states. ~26!

For the light holes the states with different parity are
longer separated, and the dispersion equation becomes s
what more complicated:

FEg1d1Vc2E

Eg1d2E

kl
21q2

k l
22q2

k l cot
kla

2
1kl

2l l21

2l̃ l21
G

3FEg1 d̃1Vc2E

Eg1d2E

kl
21q2

k l
22q2

k l tan
kla

2
2kl

2l l21

2l̃ l21
G

5q2F2l l21

2l̃ l21
1

Eg1 d̃1Vc2E

Eg1d2E

kl
21q2

k l
22q2G 2

. ~27!

Here a is the width of the quantum well. We note that th
states of the light holes also split into states with differe
parity whenq50.

The opposite situation is observed for the spin-split-
holes. The components of the wave functions of the light a
heavy holes oscillate rapidly, and their contribution to t
overlap integrals is negligibly small. In just the same way
can be seen thatCx and divC/(Eg1d2E) should be con-
sidered continuous for the split-off spin–orbit compone
The form of the wave functions of the spin-split-off holes
similar to the form of the wave functions~15! and~16! of the
light holes. Strictly speaking, when the conditionEg2D
.Uv is satisfied, the spectrum of the spin-split-off holes
continuous. However, when the rapidly oscillating contrib
tions of the light- and heavy-hole subbands are neglecte
can be either continuous or discrete. In the general case t
is a density-of-states peak with small values for the h
momentum components that are perpendicular to the in
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820 JETP 86 (4), April 1998 G. G. Zegrya and A. S. Polkovnikov
face near such a quasidiscrete level. The spectrum of t
holes has a form similar to the spectrum of the light hole7

B. Electrons in a rectangular quantum well.

Electrons obey the same symmetry rules as holes. T
wave functions have a form similar to that of the wave fun
tions of the light holes and can be written as follows:

for uxu,a/2,

Csc5A1 coskcxh1A2 sin kcxj,

Cc5
i\g

Z
A1S kc sin kcxh2lcq coskcxj

2 iq coskcxh1 ilckc sin kcxj

2lckc sin kcxj1lcq coskcxh
D

1
i\g

Z
A2S 2kc coskcxj2lcq sin kcxh

2 ilckc coskcxh2 iq sin kcxj

2lcq sin kcxj2lckc coskcxh
D ,

~28!

for x.a/2,

Csc
~1!5@Ã1h1Ã2j#expS 2kcS x2

a

2D D ,

Cc
~1!5

i\g

Z̃
Ã1S kch2l̃cqj

2 iqh1 i l̃ckcj

2l̃ckcj1l̃cqh
D expS 2kcS x2

a

2D D

1
i\g

Z̃
Ã2S kcj2l̃cqh

i l̃ckch2 iqj

2l̃cqj1l̃ckch
D expS 2kcS x2

a

2D D ,

~29!

where

Z5
E21E~2Eg12d!1~Eg13d!Eg

E1Eg12d
,

Z̃5
E21E~2Eg12Uv12d̃ !1~Eg1Uv13d̃ !~Eg1Uv!

E1Eg1Uv12d̃
,

l̃c5
d̃

E1Eg1Uv12d̃
.

Herekc is thex component of the electron quasimome
tum in the quantum well,q is the electron longitudinal mo
mentum, andkc is the magnitude of thex component of the
electron quasimomentum under the barrier. Functions w
different symmetries can be derived using the same pro
dure as in the case of holes. The continuity ofCs and Cx

follows from the boundary conditions. This leads to the d
persion equation
se

ir
-

th
e-

-

S kc tan
kca

2
2

Z

Z̃
kcD S kc cot

kca

2
1

Z

Z̃
kcD

52q2S lc2l̃c

Z

Z̃
D 2

. ~30!

The spectrum splits into even and odd states if the long
dinal wave vectorq is small or if the expression in parenthe
ses on the right-hand side of the equation is close to z
The latter condition usually holds, since as a rule we ha
Uv!Eg , which corresponds to semiconductors with a sim
lar band structure.

3. PROBABILITY OF AUGER RECOMBINATION

The probability of Auger recombination per unit time
calculated within first-order perturbation theory with respe
to the electron–electron interaction:

Wi→ f5
2p

\
uM f i u2d~« f2« i !, ~31!

where

M f i5^C f~r1 ,r2 ,n1 ,n2!U e2

k0ur12r2u UC i~r1 ,r2 ,n1 ,n2!&

~32!

is the matrix element of the electron–electron interactionr1

and r2 are the coordinates of the carriers,n1 andn2 are the
spin variables@see~12!#, e is the charge of an electron, an
k0 is the static dielectric constant of the semiconductor.

When the antisymmetrization of the wave functions
taken into account, the matrix element of the Auger tran
tion can be written in the form

M f i5M I2M II , ~33!

where

M I5^C3~r1 ,n1!C4~r2 ,n2!

3U e2

k0ur12r2u UC1~r1 ,n1!C2~r2 ,n2!&,

M II5^C3~r1 ,n1!C4~r2 ,n2!

3U e2

k0ur12r2u UC1~r2 ,n2!C2~r1 ,n1!&. ~34!

In quantum wells, as in homogeneous semiconduct
the main contribution to the Auger recombination rate
made by the CHCC and CHHS processes. Strictly speak
such terminology is not applicable to the carriers in a qu
tum well, since there is mixing of the states of the ligh
heavy, and spin-split-off holes. However, as was indica
above, in the limitmc!mh the mixing of the heavy and ligh
holes is small, and the admixture of spin-split-off holes to t
heavy and light holes can be neglected when the condi
Dso@T is satisfied. The latter condition practically alway
holds for III–V semiconductors. Therefore, the terminolo
indicated above can be used. In the present work we con
ourselves to consideration of the CHCC Auger recombi
tion process. All the dependences for the Auger recomb
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tion coefficients in the CHHS process withDso,Eg are
qualitatively identical to those for the CHCC process. D
tailed expressions for the Auger recombination coefficie
in the CHHS process were presented in Ref. 7. In the CH
process there are two electrons and one heavy hole in
initial state, which we shall assume to be localized. T
wave functions of one of the bound electrons and the h
will be denoted bywc andwh , respectively. The symbolsC1

and C4 will be retained for the wave functions of the tw
departing carriers, and we shall interpretC4 as the final state
of the high-energy electron.

Matrix element of an Auger transition

The matrix element of the electron–electron Coulom
interaction is most conveniently calculated using the Fou
representation:

M I5
4pe2

k0
E I 23~p!I 14~2p!

p21q2

dp

2p
dq11q22q32q4

,

where

I i j ~p!5E C i* ~x!C j~x!eipx dx, ~35!
a-
ke
or

w
le
h

-
s
C
he
e
le

r

dq5H 1, q50,

0, qÞ0,

q5uq12q4u5uq32q2u is the momentum transfer in th
plane of the quantum well during the Coulomb interactio
In narrow-gap III–V semiconductors the mass of an elect
in the conduction band is generally much less than the m
of a heavy hole in the valence band. On the basis of th
arguments we shall neglect the electron momenta in c
parison to the hole momenta wherever they appear in
form of simple algebraic expressions. Such an approxima
is not permissible for determining the threshold energy@see,
for example,~60!#.

It is convenient to represent the matrix element of t
electron–electron interaction in the form

M I5
8pe2

k0
E

0

`

C1* ~x!C4~x!@I ~x!2Ĩ ~x!# dx, ~36!

where
I ~x!5E
2`

1` dp

2p

1

p21q2
exp~2 ipx!E

2a/2

a/2

wc~y!wh~y!exp~ ipy! dy

'
1

2q~q21kh
2! 5

2qwc~x!wh~x!

2expH qS x2
a

2D J Fqwc
,S a

2Dwh
,S a

2D1~wc
,wh

,!a/28 G , 0,x,
a

2
,

expH qS a

2
2xD J Fqwc

,S a

2Dwh
,S a

2D2~wc
,wh

,!a/28 G , x.
a

2
,

Ĩ ~x!5E
2`

1` dp

2p

1

p21q2
exp~2 ipx!E

uxu.a/2
wc~y!wh~y!exp~ ipy! dy

'2
1

2q~kh
22q2! H 2expH qS x2

a

2D J Fqwc
.S a

2Dwh
.S a

2D1~wc
.wh

.!a/28 G , 0,x,a/2,

22qwc~x!wh~x!1expH qS a

2
2xD J Fqwc

.S a

2Dwh
.S a

2D2~wc
.wh

.!a/28 G , x.a/2,

~37!
odd

to
sig-
The , and. signs on the wave functions and their deriv
tives indicate that the values of the latter must be ta
within the quantum well and in a barrier, respectively. F
mulas~37! were derived using the approximation

e2qa!1, e2kha/2!1,

kc
2!q21kh

2 . ~38!

Although the last inequality does not hold for fairly narro
quantum wells, the expressions obtained above, neverthe
give a value of the Auger coefficient with a sufficiently hig
accuracy over the entire range of quantum-well widths.
n
-

ss,

Depending on the parity of the productwc* (x)wh(x), the

integralsI (x) and Ĩ (x) satisfy the following relations3!

I ~2x!,Ĩ ~2x!56I ~x!,Ĩ ~x!,

where the plus and minus signs correspond to even and
values ofwc* (x)wh(x). At small values of the momentum

transferq the expressions~37! for the integralsI and Ĩ

cease to be valid. This is because relations~38! do not hold
at small values ofq, since the interference processes due
scattering of the carriers on the two interfaces become
nificant. In the case of fairly high temperatures~greater than
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the size-quantization energy of a heavy hole! the incorrect
dependence of the matrix element on the momentum tran
at small values ofq does not play a significant role, since th
main contribution to the Auger recombination rate is ma
by momenta that are greater than or equal to the ther
value. In the case of low temperatures~below the size-
quantization energy of a heavy hole! the bound carriers are
located in the ground size-quantization level, and expr
sions~37! are easily modified. For this purpose it is sufficie
to write 2 sinh(qx)e2qa instead of the multiplierseq(x2a) and
2 sinh(qa)e2qx instead ofeq(a2x).

It is noteworthy that the matrix elementM I is nonzero
only if the product C1* (x)C4(x)wc* (x)wh(x) is an even
function @see Eqs.~36! and ~37!#. The expression forM II is
obtained from~36! by replacing the subscript 1 inC1* (x) by
a subscript 2. The labels I and II will be omitted in the mat
elements up to the end of this section. In the approxima
of an infinitely deep quantum well for the localized hea
holes, the term containingĨ vanishes and can, therefore, b
neglected.

The state of an excited electron can lie in either
continuous or the discrete spectrum,4! the latter situation aris-
ing when the longitudinal momentum of the electron~in the
plane of the quantum well! significantly exceeds the trans
verse momentum.

In determining the Auger recombination rate, both t
localized and delocalized states must be taken into acc
as final states in the integral~36!. The possibility of the tran-
sition of the excited electron into a bound or free state le
to significantly different Auger recombination mechanism
in quantum wells.

a! Calculation of the Auger recombination matrix el
ment for a transition into the continuous spectrum. The wave
function of the excited carriersC4(x) satisfies the relations

C495H 2k4
2C4 , for uxu,a/2,

2 k̃4
2C4 , for uxu.a/2.

~39!

With consideration of relation~39!, within the quantum well
we can write

F4
n5~21!n

C4
~n!

k4
2n

,

whereF4
n is thenth original form ofC4. Similarly,

F4
n5~21!n

~eqxC4~x!!~n!

~k4
21q2!n

e22qx,

is thenth original form ofC4(x)e2qx. The expressions fo
the original F4

n and F4
n are needed below to calculate th

matrix elementM according to~36!.
It is seen from~37! that the matrix element is a sum o

two parts. The first of these is related to the presence o
interface and contains a multiplier which decays expon
tially on the two sides of an interface. The second part or
nates from integration of the wave functions of the carri
within the quantum well. Therefore, it is natural to divide t
matrix element into two parts:
fer

e
al

s-
t

n

e

nt

s

n
-

i-
s

M5
4pe2

k0
2~M11M2!,

where

M15
1

2q~q21kh
2! H ~wcwh!a208 (

n>1

1

~q21k4
2!n

3F S C4* expH qS a

2
2xD J D

a/220

~n!

C1
~n21!U

a/220

2S C4* expH qS x2
a

2D J D
a/210

~n!

C1
~n21!U

a/210

~q21k4
2!n

~q21 k̃4
2!n

12qnC4
~n21!U

a/220

C1
~n21!U

a/220

G
1q~wcwh!a/220 (

n>1

1

~q21k4
2!n F S C4expH qS a

2

2xD J D
a/220

~n!

C1
~n21!U

a/220

G
1

~q21k4
2!n

~q21 k̃4
2!n

~C4eq~x2a/2!!a/210
~n! C1

~n21!U
a/210

22C4
~n!U

a/220

C1
~n21!U

a/220

G
12qF (n>1

Cn11
2 1

~q21k4
2!n11

3C4
~n!C1

~n21!U
a/220

~wcwh!a/2209

2 (
n>1

Cn12
3 1

~q21k4
2!n11

C4
~n21!C1

~n21!U
a/220

3~wcwh!a/220- G J , ~40!

M25
1

q21kh
2 E

0

a/2

~C4C1!~wcwh! dx

2 (
n>1

1

~q21k4
2!n S 2C4

~n!C1
~n21!wcwhua/220

1Cn
1C4

~n21!C1
~n21!~wcwh!8ua/220

1Cn11
2 C4

~n!C1
~n21!~wcwh!9ua/220

1

q21kh
2
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2Cn12
3 C4

~n21!C1
~n21!~wcwh!-ua/220

1

q21k4
2D .

In expanding the matrix elementsM1 andM2 into series, we
assume that the conditionq21k4

2.(k1
2 ,kh

2) holds. In other
words, the total momentum of the excited particle exce
the momentum of the localized particle.

The value ofM1 is determined by the values of the wav
functions and their derivatives at the interface, andM1→0
as a→`. Conversely, ad-function contribution appears in
M2 as a→`, and it transforms into the ordinary Auger re
combination matrix element for a homogeneous semicond
tor @see~62! and~64!#. We note thatM1, M2, and, therefore,
M are essentially threshold-free matrix elements. In fa
none of the constraints imposed on the initial momenta of
carriersk1, kc , andkh apply to them. However, the mecha
nisms which lead to violation of the momentum conservat
law (k11k2Þk31k4) in these terms are different. InM1 the
violation of the conservation law is associated with the sc
tering of carriers on the interfaces. The same mechan
leads to the appearance of a threshold-free Auger proce
the case of scattering on a single heterobarrier.8 In M2 the
reason for the violation of the conservation law is the co
finement of the integration volume with respect tox to the
region of the quantum well, which leads to the appearanc
a function of the formk21 sin(ka/2) instead ofd(k). The
differences betweenM1 and M2 just indicated physically
mean that the matrix elementM1 corresponds to a true
threshold-free process, whose appearance is attributed t
scattering of momentum on the heterobarriers. The ma
elementM2 corresponds to the quasithreshold process,
when the quantum-well widtha tends to infinity, it trans-
forms into the ordinary threshold matrix element. The ad
tional sum appearing in the curly brackets in the express
for M2 and the corresponding terms inM1 were introduced
so that at smallq the expansion in the small parameterk/k4

would begin at a higher power forM2 than forM1. Herek is
the characteristic momentum of the localized carriers.

WhenM1 is calculated, it can be assumed thatq!k4. In
fact, at large values ofq there is an exponentially sma
number of carriers.5! When M1 and M2 are calculated, it is
convenient to utilize the following relations:

(
k>0

xk5
1

12x
, (

k>0
kxk5

x

~12x!2
,

(
k>0

k2xk5
x~11x!

~12x!3
, (

k>0
k3xk5

x~114x1x2!

~12x!4
.

Then

M1'
~wcwh!a/2208

2~q21kh
2!

FC4C1ua/220

1

k4
2

11k1
2/k4

2

~12k1
2/k4

2!2

2C4C1ua/210

1

k̃4
2

12k1
2/ k̃4

2

~11k1
2/ k̃4

2!2
s

c-

t,
e

n

t-
m
in

-

of

the
ix
d

i-
n

1
2

k4
4

1

12~k1
2/k4

2!2
C48C18ua/220

2
2

k̃4
4~11k1

2/ k̃4
2!2

C48C18ua/210G
1

~wcwh!a/220

2~q21kh
2!

F 1

k4
2~12k1

2/k4
2!

C48C1ua/220

2
1

k̃4
2~11k1

2/ k̃4
2!

C48C1ua/210

2
1

k4
2~12k1

2/k4
2!

C4C18ua/220

1
1

k̃4
2~11k1

2/ k̃4
2!

C4C18ua/210G
2

~wcwh!a/2209

q21kh
2 F 1

k4
4

31k1
2/k4

2

~12k1
2/k4

2!3
C4C18ua/220

2
1

k4
4

113k1
2/k4

2

~12k1
2/k4

2!3
C48C1ua/220G

2
~wcwh!a/220

~3!

q21kh
2 F 4

3k4
6

31k1
2/k4

2

~12k1
2/k4

2!4
C48C18ua/220

1
1

3k4
4

~31k1
2/k4

2!~113k1
2/k4

2!

~12k1
2/k4

2!4
C4C1ua/220G . ~41!

This expression can be simplified appreciably, if we lea
only theO(k1

2/k4
2) terms in it. The expression in the secon

set of brackets is identically equal to zero according to
orthogonality condition ofC1 andC4. As a result,

M1'
~wcwh!a/2208

2~q21kh
2!

FC4C1ua/220

1

k4
2 S 11

3k1
2

k4
2 D

2C4C1ua/210

1

k̃4
2 S 12

3k1
2

k̃4
2 D G2

~wcwh!a/2209

~q21kh
2!

3F2
1

k4
4
C48C1ua/2201

3

k4
4
C4C18ua/220G

2
~wcwh!a/220

~3!

~q21kh
2!

1

k4
4
C4C1ua/220 . ~42!

The final expressions forM1 can be obtained after sub
stituting the expressions obtained in the preceding section
the wave functions of the carriers at an interface into~42!
@see ~14! and ~29!#. As we have already noted above, th
approximation of an infinitely deep quantum well was e
ployed during this process for the heavy holes in the bou
state. This approximation is justified in view of the larg
mass of the heavy holes. The conditionEg.Uv remains in
force. As a result we have
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1! for nc56nh ,

M1'
1

2~qh
21kh

2!

\3g3

Eg
3 S 11a/3

11a/2D
2 112a/3

11a

qhkckckh

Akc
21kc

2

3S 3Vc1Vv

4Eg
1

9

2

E0c

Eg
DAcAhCcC f ua/220

2
1

2~qh
21kh

2!

\3g3

Eg
3 S 11a/3

11a/2D
2 112a/3

11a

qhkckh

Akc
21kc

2

3
E0c

Eg
AcAhCcC f8ua/220 ; ~43!

2! for nc57nh ,

M1'
i

2~qh
21kh

2!

\3g3

Eg
3

~11a/3!2

~11a/2!2

112a/3

11a

qcqhkckh

Akc
21kc

2

3sin fS 3Vc1Vv

4Eg
1

9Eg26Vc

2Eg
DAcAhCcC f ua/220

1
i

2~qh
21kh

2!

\3g3

Eg
3

~11a/3!2

~11a/2!2

112a/3

11a
io

n

r

y
g
e
y.
ua
:

3sin f
qcqhkckh

kcAkc
21kc

2

E0c

Eg
AcAhCcC f8ua/220 . ~44!

Here we have writtena5Dso/Eg , and f is the angle
between the directions of the electron and heavy-hole lon
tudinal momentaqc andqh .

Let us proceed to an analysis ofM2. The integral appear-
ing in M2 is proportional to the sum

E
0

a

~C4C1!wcwh dx}( 6
sin~k42k!a/2

k42k
, ~45!

wherek takes eight different values:k56k16kc6kh . The
remaining terms in~40! are obtained by subtracting from
the expansion of this integral in the small parameterk/k4 to
fourth order inclusively. HereAk4

21q4
2 must be used instea

of k4. For this reason, the terms of the form sin (k4

2k)a/(k42k) must be replaced by

sin~k42k!a

k42k
x~k,q!,

where
x~k,q!5
q81q6~3k4

21kk4!1q4~3k4
412kk4

31k2k4
2!1q2~k4

61kk4
51k3k4

3!1k4k4
4

~q21k4
2!4

. ~46!
-

er
ins
ima-
of
of

it
the

ral
ent

um
In the limit k!k4 we have M2}k4
25, and hence,M2

;M1(k/k4)!M1. When k5k4, the multiplier accompany-
ing M2 becomes equal to unity, signifying that the expans
in the small parameter virtually vanishes. In the limitk4

!q the functionx is also approximately equal to unity. I
addition, fora→`

sin
~k42k!a/2

k42k
→

p

2
d~k2k4!,

whence it follows thatM2 transforms into the bulk Auge
coefficient in the limit of an infinitely wide quantum well.

Of all the terms appearing in the sum~45!, the largest is
the one for whichk5k11kc1kh , since this term has the
smallest threshold energy.~We interpret the threshold energ
as the mean energy of a heavy hole participating in an Au
transition.! The contribution of the remaining terms to th
sum is significantly smaller, and we neglect it for simplicit
Then the expression for the matrix element of the q
sithreshold Auger process is written in the following form

M2'
1

8~qh
21kh

2!
eid

\g

Eg

112/3a

11a
AcAfAcAh

3
sin~kf2kc12kc22kh!a/2

kf2kc12kc22kh
n

er

-

3x~kc11kc21kh ,qh!H qhkce
if1qckh , nc56nh ,

qcqh sin f, nc57nh .

~47!

Hered is an insignificant phase multiplier.
b! Calculation of the Auger recombination matrix ele

ment for a transition into the discrete spectrum. Let us now
move on to an analysis of the matrix element of an Aug
transition under which a particle with a large energy rema
in the bound state. This case corresponds to the approx
tion qf@kf , whereqf andkf are interpreted as the values
the momentum of the highly excited particle in the plane
the quantum well (qf) and in directions perpendicular to
(kf). Accordingly, no expansions need be performed in
matrix element, and we can write

M3'
1

q21kh
2 E0

a/2

~C4C1!~wcwh! dx. ~48!

This integral can easily be calculated, but the gene
formula obtained is quite involved, and we shall not pres
it here. We present only an estimate ofM3 here, which is
valid when the bound carriers are in the ground quant
state:
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M3'
1

qh
21kh

2
eid

\ga

2Z
AcAfAcAhaqcqh sin f ~nc52nh!.

~49!

Here a is a multiplier of the order of unity, which arise
from the integration of the product of the envelopes of
carrier wave functions over the region of the quantum w

E
0

a/2

f 1f 2f 3f 4 dx'
a

2a
, wheref i5coskix, ~50!

andi labels the initial and final states of the particles parti
pating in the Auger recombination process. We note thata is
nonzero only when the parities of the pairwise produ
C1C4 andCcCh coincide; therefore, there is only one ter
in ~49!, unlike ~47!. For wide quantum wells, where the pa
ticles can be in different quantum bound states,a is given by
the expression@compare~45!#

a5
1

16 (
n1 ,n2 ,n3 ,n450,1

~21!n is i
sin~~21!n iki !a/2

~21!n ikia/2
. ~51!

Here the labeli refers to summation from 1 to 4, ands i

characterizes the parity of the functionf i (s i51 for an odd
function, ands i50 for an even function!.

4. AUGER RECOMBINATION COEFFICIENT

The calculation of the Auger recombination rate requi
summation of the probability of the Auger transition per u
time ~31! over all the initial and final carrier states with th
corresponding weights, i.e., occupation numbers. We pre
the expression forM I andM II ~33! in the form of the sums

M I5M I
~1!dn3n1

dn4n2
1M I

~2!dn3 2n1
dn4n2

1M I
~3!dn3n1

dn4 2n2
1M I

~4!dn3 2n1
dn4 2n2

,
~52!

M II5M II
~1!dn3n2

dn4n1
1M II

~2!dn3 2n2
dn4n1

1M II
~3!dn3n2

dn4 2n1
1M II

~4!dn3 2n2
dn4 2n1

,

whereM I
( i ) and M II

( i ) are the matrix elements of transition
with fixed carrier spin states.

After averaging over the initial spin states and summ
over the final spin states, we obtain

K (
n3 ,n4

uM f i u2L 5(
i

~ uM I
~ i !u21uM II

~ i !u2

2Re@M I
~ i !* M II

~ i !# !. ~53!

In the derivation of~53! we took into account thatM I
(3)

'M II
(3)'M I

(4)'M II
(4)'0. It is convenient to usêM2& to de-

note the matrix element summed over the spin variables

^M2&5 (
n3 ,n4 ,n1 ,n2

uM f i u2. ~54!

Then the Auger recombination rate takes the form
e
:

-

s

s
t

nt

g

G5
2p

\ (
k1 ,k2 ,k3 ,k4

^M2& f 1f 2~12 f 3!~12 f 4!d

3~E31E42E12E2!. ~55!

Here f 1 and f 2 are the Fermi distribution functions of th
carriers in the initial state, andf 3 and f 4 are the analogous
functions in the final state. For highly excited states,f 4 can
be set equal to zero. It is noteworthy that we can writef̃ 3

instead of 12 f 3, where f̃ 3 is the hole distribution function.
The contributions of the matrix elementsM1, M2, and

M3 to the Auger recombination rate differ, since the excit
particles for such processes lie in different quantum states
the case ofM1 and M2 the excited particles lie in states i
the continuous spectrum, and in the case ofM3 the excited
particle lies in a state in the discrete spectrum. It is m
complicated with separation of the contributions betweenM1

and M2. Although the physical difference between them
maintained, there is an interference term between them
small values of the quantum-well width the interference
significant, since both processes are virtually threshold-f
but a calculation neglecting it continues to lead to a resul
the correct order of magnitude, which reflects all the m
features of the Auger recombination coefficient as a funct
of the temperature and the parameters of the quantum-
structure. If the quantum well is sufficiently wide, the inte
ference betweenM1 andM2 can be neglected. In fact, whil
M1 as a function of the quasimomenta does not have
peaks, the magnitude ofM2 has a maximum at the poin
k4(q)1k35k11k2. When the quantum-well width tends t
infinity, the maximum at that point has the character of ad
function. Therefore, for wide quantum wells the Auger r
combination probability corresponding toM2 as a function
of the heavy-hole longitudinal momentumqh has a maxi-
mum at larger values ofqh than does the probability corre
sponding toM1. As the quantum-well width decreases, t
maxima of these probabilities approach one another, and
region of overlap between these matrix elements grows.

The Auger transition probabilities corresponding toM1

andM2 as functions of the heavy-hole longitudinal mome
tum for various quantum-well widths are presented in Fig
It is seen from the figure that interference between
threshold-free process corresponding toM1 and the qua-
sithreshold process correspondingM2 takes place only for
narrow quantum wells, in accordance with the foregoi
statements. It should be noted that the Auger recombina
probabilities are fairly smooth functions of the heavy-ho
longitudinal momentum, since summation over discr
quantum states of the carriers was performed during t
calculation. Whenqh is close to the maximum value spec
fied by the longitudinal momentum and energy conservat
laws, the Auger recombination probability has a square-r
divergence, which can be eliminated by integrating overqh ,
i.e., by calculating the Auger recombination rate.

Thus, we represent the Auger recombination rate in
form

G5G11G21G3 , ~56!

where the rateG1 corresponds to the threshold-free Aug
process with the matrix elementM1, G2 corresponds to the
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FIG. 1. Auger transition probabilitiesw1 andw2

corresponding to the threshold-free and qu
sithreshold matrix elementsM 1 andM 2 vs. the
heavy-hole longitudinal momentum atT5300
K for various values of the quantum-well width
a. The parameters characteristic of InGaAs
InP quantum wells withEg'1 eV were used in
the calculation.
th

.

y
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o
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a
s,
quasithreshold Auger process with the matrix elementM2,
andG3 corresponds to the threshold Auger process with
matrix elementM3.

Expressions forG1 and G2 can be obtained using Eq
~55! by replacing the summation overk4 in it by integration
and going over from ad function with respect to the energ
to a d function with respect to the momentum. Below w
shall investigate the Auger recombination coefficientC,
which is related to the rateG by the expression

G5Cn2p.

Heren and p denote the two-dimensional concentrations
the electrons and holes, respectively. For the Auger rec
bination coefficientC1 we have

C1'
256p2

3

EB

\
lg

4 1

a~a12/kc!
2

FS Dso

Eg
D kc

2kc
2

~kc
21kc

2!2

3K qh
2kh

2

~qh
21kh

2!3

1

kf~qh! L H Vc

Eg
F S 3Vc1Vv

4Eg
1

9

2

E0c

Eg
D 2

1
kf

2

kc
2

E0c
2

Eg
2 G1

T

2Eg

kc
21kc

2

kc
2 F S Vv29Vc

4Eg
1

9

2

E0c

Eg
D 2

1
kf

2kc
2

kc
4

E0c
2

Eg
2 G J , ~57!

where

F~x!5
11x/2

114x/9

117x/912x2/9

~11x/2!2
, EB5

mce
4

2\2k0
2

,

e

f
-

lg5
\

A2mcEg

.

For simplicity, here we have replaced the electron longitu
nal momentum by its thermal value. For degenerate carr
the electron Fermi energyEF must be used instead of th
temperature. The angle brackets denote averaging ove
distribution function of the heavy holes. In the case of
Boltzmann distribution, which is usually observed for hole
this averaging has the form

^ f ~q!&5
2

qT
2E0

`

q f~q!expS 2
q2

qT
2D dq,

whereqT is the heavy-hole thermal momentum:

qT5A2mhT

\2
.

Similarly, for C2 we obtain

C2'
32p2

3

EB

\
lg

2K x2~qh ,kh12kc!

a~a12/kc!
2

qc
2kh

21qh
2~kc

21qc
2/2!

~qh
21kh

2!3kf

3
12cos~kf2kh22kc!a

2~kf2kh22kc!
2 L , ~58!

wherex(q,k) is the function defined above@see~46!#. Fi-
nally, for C3 we have

C3'
2048p2

3

EB

\
lg

2 a

~a12/kc!
3
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FIG. 2. Dependence of the threshold energy for t
CHCC process on the quantum-well width for thre
Auger recombination mechanisms: the thresho
free mechanism (Eth

1 ), the quasithreshold mecha
nism (Eth

2 ), and the threshold mechanism (Eth
3 ) at

T5300 K. The solid curve corresponds to th
threshold energyEth

tot for the total Auger recombina-
tion coefficient (C5C11C21C3). The horizonal
dotted line corresponds to the threshold energyEth

3D

for the three-dimensional Auger process.
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3K qth
2

qT
2

qc
2

~qth
2 1kh

2!3
expS 2

qth
2

qT
2 D a2L

n

. ~59!

In the latter case the averaging is performed only over
discrete heavy-hole quantum states and the electron
menta. The threshold value ofqth is found from the energy
conservation law and the longitudinal component of the m
mentum:

Ef~Akf
21qth

2 !5Eg1
\2~qth

2 1kh
2!

2mh
1

\2~kc1
2 1kc2

2 !

2mc
.

For simplicity, we neglected the electron longitudinal m
menta in determining the threshold energy, since they
small; however, we took into account the size-quantizat
energy of the electrons, which alters the effective value
the gap width in the quantum well. If the energy of the e
cited electronEf is expanded into a series in the momen
nearqth5Q, whereQ is the value of the electron momentu
corresponding to an energy equal toEg (Q'A4mcEg /\2),
the following estimate can be obtained for the threshold m
mentum:

qth'A4mcEg

\2
1

3

2
kc

2. ~60!

If the quantum-well width tends to infinity, the thresho
momentum tends to its bulk value.2 In addition, it must be
taken into account that for wide quantum wells with a lar
number of levels the multipliera @see ~49!# tends to ad
function. This is a manifestation of the conservation law
the transverse component of the quasimomentum:

a2→
p

128
a ( d~kh6kc16kc26kc4!.

When the quantum-well width is large andVc!Eg holds,
the inequalityC3!C2 is satisfied, sinceC3 /C2'AVc /Eg.
Therefore, for wide wellsC3 can be neglected in compariso
to C2. If Vc&Eg , the relationC3 /C2'AVc /(Eg2Vc)>1
e
o-

-

-
re
n
f

-

-

r

holds. For narrow quantum wells the threshold energy forC3

increases@see~60!#, and the Auger recombination coefficien
~59! decreases in comparison to the bulk value by the fac

expS kc
2

qT
2D 'expS mc

mh

E0c

T D .

By equating the exponent to unity it is easy to estimate the
characteristic quantum-well width at which this effect b
comes significant:

E0c'T•
2

3

mh

mc
⇔a'

p

qT
. ~61!

Thus, at values of the quantum-well widtha that are smaller
than several reciprocal thermal momenta,a&p/qT , the
threshold energyEth(a) becomes significantly greater tha
the bulk valueEth

3D ~see Fig. 2!. For III–V semiconductor
compounds at room temperature the equality~61! is achieved
when the quantum-well width is of the order of a hundr
angstroms.

Let us consider the Auger recombination coefficientC2

in greater detail for the quasithreshold process. In the li
a→` the following replacement can be made in the av
aged function in~58!:

12cos~kf2kh22kc!a

2~kf2kh22kc!
2
→

pa

2
d~kf2kh22kc!. ~62!

This formula clearly reveals the presence of a threshold
this limit, and after multiplication bya2, C2 transforms into
the three-dimensional expression. For comparison,
present the result from Ref. 2 forC3D and our limiting ex-
pression:

C3D56A2p5
e4mc\

3

k0
2

1

Eg
5/2T1/2mc

1/2mh
3/2
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3expS 2
2mc

mh

Eg

T D , ~63!

C2a256
16A2p5

27

e4mc\
3

k0
2

1

Eg
5/2T1/2mc

1/2mh
3/2

3expS 2
2mc

mh

Eg

T D . ~64!

The multiplier 4 in~64! appears, because the calculation
M2 according to~47! requires considering not only the ter
with k5kc11kc21kh , but also the terms withk5kc12kc2

1kh , k52kc11kc21kh , and k52kc12kc21kh . When
the quantum-well width tends to infinity, all four terms ma
identical contributions toC2. As we see, there is a differenc
between expressions~63! and ~64! only in the numerical
multiplier. The small discrepancy by a factor of 2/3 appea
because the size-quantization momenta of the electrons
be distinguished from one another when there is a large n
ber of electronic levels:kc1Þkc2. In addition, expression
~63! was obtained in a simplified model, in which the ma
nitude of the spin–orbit splitting is assumed to be infinite
large. The conditionD,Eg , which holds for most narrow-
gap III–V semiconductors, was actually used in derivi
~64!. When we calculated~64!, we neglectedVc in compari-
son to Eg . In the general caseC2a2 must be replaced by
(C21C3)a2, and ~64! remains valid. However, the limiting
transition from the quasithreshold process to the thresh
process@see~62!# can be made only for very wide quantu
wells. A qualitative criterion for this transition can be o
tained from an analysis of the Auger transition probability
a function of the heavy-hole momentum. As we have alre
noted above, the quasithreshold process withC2 dominates
for wide quantum wells. The probability of this process h
two characteristic peaks@see~58!#. The first of them corre-
sponds to a maximum of the square of the matrix element
the transition near the threshold value of the heavy-hole
mentum. The width of this maximum is of the order of th
reciprocal width of the quantum well. The second peak
near the value of the hole thermal momentum. The Au
recombination coefficientC2 can be estimated by multiply
ing the values of the Auger transition probability near the
maxima by the corresponding widths. Then

C2'C2
th~Qh'qth!1C2

T~Qh'qT!, ~65!

where Qh is the value of the heavy-hole momentum:Qh
2

5kh
21qh

2 .

C2
T'C2

th
lEg

a S T

Eth
D 3/2

exp
Eth

T
.

Here lEg
'2p/qth is the wavelength of the highly excite

electron. A comparison of the contributions fromC2
th andC2

T

provides a natural criterion for transformation of the qu
sithreshold process into the three-dimensional threshold
ger process. It can be written as follows:

a@ac ,

where
f

,
ust

-

-

ld

s
y

s

r
o-

s
r

e

-
u-

ac5lEgS T

Eth
D 3/2

expS Eth

T D . ~66!

For semiconductors with a wide gap of order 1 eV at roo
temperature the critical widthac can reach several thousan
angstroms. However, the criteriona@ac for passage from
the two-dimensional Auger process to the three-dimensio
process was obtained without consideration of the mom
tum relaxation processes of the particles due to interact
with phonons and electron–electron scattering. In reality,
mean free path of the particles is generally smaller thanac ,
and the transition to the three-dimensional Auger proc
actually occurs when the quantum-well width takes a va
of the order of the mean free path of the carriers. It follo
directly from these statements that the Auger coefficien
the three-dimensional case can be correctly calculated
when the processes involving scattering of the electron
hole momenta are taken into account.7

Quantum wells with a widtha,ac exhibit displacement
of the probability maximumw2 for the quasithreshold pro
cess as a function of the heavy-hole momentum tow
longer wavelengths~see Fig. 1! asa decreases. This leads t
a decrease in the threshold energy of this process and,
consequence, in weakening of the temperature dependen
the Auger recombination coefficient.

Figure 2 presents plots of the dependence of the thre
old energy on the quantum-well width for all three Aug
recombination mechanisms withC1, C2, andC3 taken indi-
vidually and for the overall Auger recombination proce
with C5C11C21C3, which were determined from the for
mula

Eth
~ i !~T!5T2

d ln Ci

dT
, i 51,2,3. ~67!

The threshold energy for the quasithreshold process
smaller than the three-dimensional value, since the valu
the critical widthac'1000 Å is greater than the maximum
quantum-well width presented in the figure. For t
threshold-free Auger process the threshold energy decre
as the quantum-well width increases, and it becomes ne
tive at a certain width. Such behavior of the threshold ene
is associated with the fact that the Auger recombination
efficient C1 becomes a decreasing function of the tempe
ture for sufficiently wide quantum wells. As the quantum
well width increases, the threshold energy for the ove
Auger process tends to the limiting valueEth

3D , which is
marked in the figure.

Let us move on to an examination of the threshold-fr
Auger process. As we have already noted above, the p
ability of the threshold-free Auger transition does not ha
any features as a function of the heavy-hole momentu
Therefore, the coefficientC1 has a weak nonexponentia
temperature dependence. It was investigated in detail for
first time in Ref. 8. In addition, the functionC1(T) is non-
monotonic and has a maximum. The presence of this m
mum is easily explained. At low temperatures and, acco
ingly, small longitudinal momenta of the carriers, their wa
functions are almost orthogonal, and the value ofC1 is small.
As the temperature rises, the characteristic momentum tr
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FIG. 3. Dependence of the Auger recombinatio
coefficientsC1 and C2 for the threshold-free and
quasithreshold processes on the quantum-well wi
a at various temperatures.
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fer in the Coulomb interaction increases~it is approximately
equal to the heavy-hole thermal momentum!. Therefore, at
low temperatures the Auger coefficient is an increasing fu
tion of the temperature. As the temperature rises further,
Auger recombination coefficientC1(T) reaches a maximum
and begins to decrease, since the long-range Coulomb i
action responsible for the Auger process is weak when
momentum transfer is large. The temperature at which
maximum occurs is easily estimated on the basis of the
gument that the size-quantization energy of the holes is e
to the temperatureT'\2p2/2mha2. We note that this maxi-
mum would not be present, if we assumed that the ove
integral I ch is proportional to the momentum transfer. Su
an assumption, which, in our opinion, has no justification
most of the structures investigated, has often been used i
literature ~see, for example, Ref. 24! and leads to incorrec
expressions for the Auger recombination rate and to incor
dependences of this rate on the temperature and
quantum-well parameters.

The Auger coefficientC1 as a function of the quantum
well width a has an abruptly descending form. Depending
which term is predominant in~57!, C1 decreases with in-
creasinga either as 1/a3, as 1/a5, or as 1/a7. In any case,
even after multiplication bya2, C1 remains a decreasin
function of the quantum-well width. Therefore, such a p
cess can be dominant only for fairly narrow quantum we
For a'1/kc , the coefficientC1 has a maximum, which is
associated with the weak overlap of the carrier wave fu
tions. As the quantum-well width is diminished further, t
rate of the threshold-free Auger process decreases smoo
The simplified expression forC1 in the CHCC process ob
tained in Refs. 15 and 16 gives a 1/a7 dependence on th
quantum-well width.
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Figure 3 presents the dependence of the Auger recom
nation coefficientsC1 andC2 on the quantum-well width a
various temperatures for a model structure based on the c
pound InGaAsP. First, the dependences ofC1 andC2 on the
quantum-well width have a pronounced maximum. It is no
worthy that the positions of the maxima scarcely depend
the temperature. Second, as is seen from the figure, the
tive role of the quasithreshold Auger recombination p
cesses increases with increasing temperature. The thres
process is not indicated in the figure, since the value ofC3 at
the quantum-well widths considered is considerably sma
~by several orders of magnitude! thanC1 andC2. Therefore,
the dependence ofC3 on the quantum-well width is pre
sented separately in Fig. 4. We note that the maximum
achieved at a far greater quantum-well width for this proc
than for the quasithreshold and threshold-free proces
This, in turn, is attributed to the decrease in the value of
threshold energy for the threshold process as the quan
well width increases~see Fig. 2!, rather than to the overlap o
the wave functions.

Figure 5 presents the temperature dependence of th
tal Auger recombination coefficient and the partial contrib
tions of the threshold-free and quasithreshold mechani
for various quantum-well widths. It is seen from this figu
for sufficiently wide quantum wells that the threshold-fr
Auger process dominates (C1.C2)at low temperatures
while the quasithreshold process dominates (C2.C1) at
high temperatures. Therefore, the temperature dependen
the total Auger recombination coefficient has a characteri
form with a maximum and a minimum. As the quantum-w
width is increased, both the maximum and the minimum
the Auger recombination coefficient shift toward lower tem
peratures, and they vanish in the limit of an infinitely wid
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FIG. 4. Dependence of the coefficientC3 for the
threshold Auger recombination process on t
quantum-well width at various temperatures.
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quantum well. Thus, in the case of a homogeneous semi
ductor the Auger recombination coefficient is a monoto
function of the temperature. We note that a Boltzmann d
tribution of the carriers was used to calculate the tempera
dependence of the Auger recombination coefficients. At l
temperatures electrons and holes generally obey Fer
Dirac statistics. Therefore, the mean momenta of the e
trons and holes participating in the Auger process dep
weakly on the temperature and do not vanish atT50. Figure
6 presents the temperature dependence of the threshold
Auger recombination coefficientC1 for various values of the
hole Fermi energy for quantum wells with various width
There are significant differences between the Auger rec
bination coefficients for the Fermi–Dirac and Boltzmann d
tributions in the limitT!EF , whereEF is the hole Fermi
energy. This condition is usually achieved only in the case
very low temperatures, at which the Auger recombinat
process is not important.
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5. DISCUSSION

The analysis that we performed showed that in semic
ductor quantum-well structures there are three different A
ger recombination mechanisms, viz., threshold, quasithre
old, and threshold-free mechanisms. The Aug
recombination coefficientsC1, C2, C3 of these processe
depend differently both on the temperature and on the
rameters of the quantum well: the heights of the heteroba
ers for electrons and holes (Vc and Vv) and its width~see
Figs. 3–5!. In the limit a→` the sum of the quasithreshol
and threshold Auger recombination coefficients multipli
by the square of the quantum-well width,C2a21C3a2, tends
to the bulk value of the Auger recombination coefficientC3D,
while C1a2 tends to zero. For sufficiently narrow quantu
wells the value of the two-dimensional Auger recombinati
coefficient multiplied by a2 is greater than the three
dimensional value due to the predominance of the thresh
tal
l
-
-

FIG. 5. Temperature dependence of the to
Auger recombination coefficient and partia
contributions of the threshold-free and qua
sithreshold mechanisms for various quantum
well widths.
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FIG. 6. Comparison of the temperature depe
dences of the threshold-free Auger recombinati
coefficientC1 for various values of the Fermi en
ergy for two different quantum-well widths. In the
figure TF denotes the Fermi energy expressed
degrees. The curve withTF52100 K corre-
sponds approximately to Boltzmann statistics.
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free and quasithreshold Auger recombination proces
Thus, the Auger recombination process is enhanced in q
tum wells in comparison to a homogeneous semiconduc
This enhancement is even more significant at low temp
tures. Under these conditions the three-dimensional Au
recombination coefficientC3D is small due to the presence o
a small exponential multiplier@see~63!#. We note that the
entire analysis of the dependence of the Auger recomb
tion coefficients (C1, C2, andC3) on the temperature and th
parameters of the quantum well is qualitatively applicable
both the CHCC and CHHS Auger processes to the sa
extent. However, since we did not specify model quantu
well structures, we illustrated these dependences in the
of the CHCC process. The Auger recombination coefficie
C1, C2, andC3 for the CHHS Auger recombination proce
were analyzed in detail in Ref. 7.

We note that significant suppression of the Auger reco
bination processes in quantum wells is possible when
conditionsVc ,Vv.Eg andE22E1.Eg are satisfied (E1 and
E2 are the energies of the first and second size-quantiza
levels of the carriers!,25 i.e., if the energy of the excited
particle is insufficient for a transition into the continuo
spectrum or to the next size-quantization level. To sati
these equations, structures with deep and narrow quan
wells for both electrons and holes must be fabricated. T
presently existing technologies permit the fabrication of su
structures on the basis of InAs/AlSb~Ref. 26! and InAs/
GaSb/AlSb~Ref. 27!. Only the threshold Auger recombina
tion process corresponding toC3 takes place in such dee
quantum wells. This coefficient can be several orders
magnitude smaller than the Auger coefficients for t
threshold-free and quasithreshold processes (C1 andC2) in
shallow quantum wells (Vc ,Vv,Eg).

Note that the phonon-assisted Auger recombination p
cess also undergoes significant changes for quantum we7

In analogy to the phononless Auger recombination proc
there are three different mechanisms for the phonon-ass
process (Cph

3 , Cph
2 , andCph

1 ), which correspond to the thresh
old, quasithreshold, and threshold-free matrix elements
the electron–electron interaction. The first process is fu
analogous to the three-dimensional process. However, in
row quantum wells this process is appreciably weaker t
the threshold-free and threshold Auger recombination p
cesses. In the literature just this phonon-assisted proce
considered the main Auger recombination process in qu
s.
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tum wells.28,29 The phonon-assisted Auger recombinati
processes with the quasithreshold and threshold-free m
elements for the electron–electron interaction can be re
nant processes.7 At low temperatures they can compete wi
the phononless Auger recombination processes. Howe
because there is no strong dependence of the latter on
temperature, such competition is possible at far lower te
peratures than in the three-dimensional case. Thus, in na
quantum wells the phononless~threshold-free! Auger pro-
cess is dominant in comparison to the phonon-assisted
cess over a broader temperature range than in the th
dimensional case. As the quantum-well width increases
resonant scattering on the phonons weakens, and we go
to the usual three-dimensional conditions.7

It is important to note that at high concentrations of no
equilibrium carriers in a homogeneous semiconductor
phonon-assisted Auger recombination process can be we
than the Auger process followed by hole–hole scatteri
which eliminates the threshold.7

6. CONCLUSIONS

The following are the main results of this work.
1. It has been shown that three different Auger recom

nation mechanisms operate simultaneously in quan
wells: a! a threshold mechanism, b! a quasithreshold mecha
nism, and c! a threshold-free mechanism. In the limit of a
infinitely wide quantum well the first two processes tran
form into the three-dimensional Auger process, and
threshold-free Auger process tends to vanish.

2. It has been demonstrated for narrow quantum w
that the Auger coefficients of the quasithreshold a
threshold-free processes have a weak power-law depend
on the temperature. In addition, their values significantly
ceed the three-dimensional coefficient divided by the squ
of the quantum-well width. At the same time, the coefficie
of the two-dimensional threshold Auger process has a la
threshold energy than in the three-dimensional case (Eth

2D

.Eth
3D). The corresponding Auger recombination coefficie

is smaller than the three-dimensional expression divided
the square of the quantum-well width.

3. The limiting transition from the two-dimensional Au
ger recombination process to the three-dimensional pro
has been accomplished in this work. It has been shown
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(C21C3)a2 transforms asa→` into the three-dimensiona
Auger coefficientC3D obtained in Ref. 2.

4. It has been shown for sufficient wide quantum we
that the dominant process is the quasithreshold Auger rec
bination process, whose threshold energy is an increa
function of the quantum-well width~see Fig. 2!. The value of
the critical quantum-well width, at which the threshold e
ergy for the quasithreshold process becomes comparab
the threshold energy for the three-dimensional Auger proc
has been shown. The critical quantum-well widthac is a
strong ~exponential! function of the temperature. For struc
tures withEg'1 eV at room temperature,ac can be as large
as several thousand angstroms.
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Influence of structural disorder on the current–voltage characteristic of a quasi-one-
dimensional tunnel junction
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The influence of the subbarrier impurity scattering of tunneling electrons on the current–voltage
characteristic of a quasi-one-dimensional insulator layer with weak structural disorder~a
small impurity concentration! is considered in the one-electron approximation atT50. An
expansion in powers of the impurity concentration gives the form of the current–voltage
characteristic and the conditions for small mesoscopic fluctuations of the static tunneling
conductance of such a layer in the cases of resonant and nonresonant tunneling. ©1998
American Institute of Physics.@S1063-7761~98!02804-2#
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1. INTRODUCTION

Real tunnel junctions must contain some defects or
purities, at least in small concentrations. This naturally rai
the question of how weak disorder affect the parameter
such junctions. The single-particle problem of the tunnel
transmission of particles through a homogeneous pote
barrier with identical scattering centers, i.e., impurities, ra
domly arranged within it was examined in the quasi-on
dimensional and three-dimensional cases at low impu
concentrations in Refs. 1 and 2.

This paper, which is closely related to Refs. 1 and
considers how the subbarrier impurity scattering of tunnel
electrons affect the current–voltage characteristic of a qu
one-dimensional barrier layer and the magnitude of the
soscopic fluctuations of its static tunneling conductance
the cases of both nonresonant and resonant tunneling. Lo
bounds on the transverse dimensions of the barrier layer
obtained from the requirement that these fluctuations
small.

2. MODEL: BASIC RELATIONS

Let us consider anN–I–N sandwich consisting of two
identical layers of a normal metal~N! separated by a layer o
an insulator~I! of thicknessL and areaS that is impregnated
with impurities within the following model. For the conduc
tion electrons in the N layers we adopt the three-dimensio
isotropic quadratic dispersion law«5k2 (\2/2m51) with
the Fermi energy«F , and for the barrier potentialU(r ) in
the region 0<x<L, which is occupied by the insulator, i
the absence of a potential difference on the barrier (V50)
we take the model1

U~r !5U01v~r !, r5~x,r!, 0<x<L. ~1!

A homogeneous insulator without impurities would have
potential U05const.«F , and disorder is generated in th
model of structural disorder in the simplest case by the r
dom potentialv(r ) of identical impurities randomly distrib
uted throughout the insulator layer:
8331063-7761/98/86(4)/5/$15.00
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v~r !5 (
0<xj<L

u~r2r j !, ~2!

where the pointsr j are macroscopically uniformly distrib
uted with the densityn in the layer at 0<x<L, andu(r ) is
the local single-impurity potential with a radius of actionr 0.
In the case under consideration of small impurity concen
tions, the following relations are assumed to hold for t
characteristic parameters with the dimensions of length:

r 0!aF
21!n21/3,L, ~3!

where aF
215(U02«F)21/2 is the characteristic dampin

length of an electronic state with the energy«F in a homo-
geneous barrier.

In the quasi-one-dimensional case considered here
assumed that the insulator layer is composed ofM5S/b2

insulator filaments~with impurities! with the transverse di-
mensionb. In addition, the mean free path with respect
electron jumps from filament to filament is assumed to
large in comparison to the filament lengthL, so that the
tunneling dynamics in each filament is independent of
dynamics in the other filaments. We shall first consider j
this case as the simplest case for theoretical analysis an
addition, as a case of interest in itself, since such a qu
one-dimensional situation is possible, for example, in
case of strong anisotropy of the effective mass of the tun
ing electrons in three-dimensional barriers or in the case
the elastic tunneling of electrons through a bundle of h
mopolymer molecules with impurities.

At a small biasV!«F ,U02«F ~the electron chargee
51) and the temperatureT50 and under the assumptio
that the tunneling dynamics in different filaments is indepe
dent, the formulas for the tunneling current^ i (V)&, the tun-
nel conductance of the layer^g(V)& ~per filament!, and their
relative root-mean-square fluctuations^d2&1/2 can be repre-
sented in the form
© 1998 American Institute of Physics



nt

in
s

er

s

ith

rd
l

n-

-

f a

l

tic

of

ac-

ing,

ec-
-

834 JETP 86 (4), April 1998 V. Ya. Kirpichenkov
^ i ~V!&5
1

M (
k51

M E
«F

«F1V

^gk~«!&d«5E
«F

«F1V

^g~«!&d«,

^g~V!&5
1

V
^ i ~V!&, ~4!

^d2&1/2

5F 1

M

E
«F

«F1V

@^g~«!g~«8!&2^g~«!&^g~«8!&#d« d«8

E
«F

«F1V

^g~«!&^g~«8!&d« d«8
G 1/2

.

~5!

For filaments of arbitrary thickness

g~«![g~«,Gm!5E D~«,q,r;Gm!
d2q

~2p!2
d2r, ~6!

whereD(«,q,r,Gm) is the tunneling transmission coefficie
of a filament with a random impurity configurationGm

5$r1 ,r2 , . . . ,rm% for electrons with the energy« having a
fixed transverse component of the momentumq at the ‘‘en-
trance’’ to the barrier and a fixed transverse coordinater at
the ‘‘exit.’’ The integration overq is performed over the
range 0<q2<« (q.0), and the integration overr is per-
formed over the cross section of the filament. The averag
in ~4! and~5! is carried out over the impurity configuration
Gm :

^g~«!&5 (
m50

N

CN
m ~V2V1!N2m

VN E
~V1!

g~«,Gm!dGm ,

~7!

^g~«!g~«8!&5 (
m50

N

CN
m ~V2V1!N2m

VN

3E
~V1!

g~«,Gm!g~«8,Gm!dGm ,

where dGm5dr1dr2 . . . drm , V15b2L, V5SL5MV1, N
5nV is the total number of impurity atoms in the barri
layer, n is the three-dimensional impurity density, andCN

m

5N(N21)3 . . . 3(N2m11)/m!.
For sufficiently thin filaments, such thatb!aF

21 and
M@1, Eqs.~6! and~7! lead to the one-dimensional relation

^g~«!&;b2«^D~«!&,
~8!

^g~«!g~«8!&;b4««8^D~«!D~«8!&,

where D(«)5D(«,q50,r50;Gm) is the tunneling trans-
mission coefficient of a strictly homogeneous filament w
the impurity configurationGm5$x1 ,x2 , . . . ,xm%, which cor-
responds to the one-dimensional barrier potential

U~x!5U01 (
0<xi<L

u~x2xi !. ~9!

In the one-dimensional case the impurities can be rega
as point scatterers1 and the local single-impurity potentia
can be taken in thed-function form:

u~x!5k0d~x!. ~10!
g

ed

The averages in~8! are taken over the one-dimensional co
figurationsGm :

^D~«!&5 (
m50

`

pm

1

DGm
E D~«,Gm!dGm ,

~11!

^D~«!D~«8!&5 (
m50

`

pm

1

DGm

3E D~«,Gm!D~«8,Gm!dGm ,

where

pm5
~n1L !m

m!
e2n1L

is the probability thatm impurities are found in a system
with a linear impurity concentrationn15nb2 in a filament of
lengthL, dGm5dx1 . . . dxm is a volume element of the con
figuration phase space, and

DGm5E dGm

5E
~0,x1,x2, . . . ,xm,L !

dx1dx2 . . . dxm5
Lm

m!

is the total volume of the configuration phase space o
system ofm impurities in a filament of lengthL.

The tunneling transmission coefficientsD(«,Gm) ap-
pearing in~11! are found by solving the tunneling problem
for the one-dimensional Schro¨dinger equation with potentia
~10!.1

The calculations of the current–voltage characteris
^ i (V)& ~4! and the root-mean-square fluctuation^d2(V)&1/2

~5! reduce to calculations of the mean^g(«)& and the cor-
relator ^g(«)g(«8)&, which can be expressed in terms
^D(«)& and ^D(«)D(«8)& in accordance with~8! in the
quasi-one-dimensional case, followed by their integration
cording to~4! and ~5!.

3. CURRENT–VOLTAGE CHARACTERISTIC OF A QUASI-
ONE-DIMENSIONAL BARRIER IN THE CASE OF
NONRESONANT TUNNELING

Let us first consider the case of nonresonant tunnel
which is observed for all«F,U0, if the impurities are repul-
sive @k0.0 in ~10!#, and for«F,«g , where«g is the true
lower boundary of the single-particle electron energy sp
trum in an infinite filament with impurities, if they are attrac
tive (k0,0).1,2

In the case of nonresonant tunnelinĝD(«)& and
^D(«)D(«8)&, as well as ^g(«)& and ^g(«)g(«8)&, are
smooth functions of the arguments« and«8. Therefore, for
V!«F ,U02«F it follows from ~4! and ~5! that

^ i ~V!&5^g~«F!&V, ~12!

^d2&1/25F 1

M

^g2~«F!&2^g~«F!&2

^g~«F!&2 G 1/2

, ~13!

where, in accordance with~8!,
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^g~«F!&;b2«F^D~«F!&, ^g2~«F!&;b4«F
2^D2~«F!&.

~14!

To find the values of̂g(«F)& and^g2(«F)& appearing in
~12! and ~13! we must calculatêD(«F)& and ^D2(«F)& in
accordance with~14!, which we do below to exponentia
accuracy. For this purpose, in the limit of a small impur
density under discussion here (n1aF

21!1) we write virial
expansions2 for the corresponding dimensionless decreme

h152
1

L
ln ^D~«F!&, h252

1

L
ln ^D2~«F!&,

L[aFL@1, ~15!

in powers ofc5n1aF
21!1, confining ourselves, for simplic

ity, to the first-order terms:

h152
1

L
ln D ~0!~«F!2

c

L

3E
0

L FD~«F ,t1!

D ~0!~«F!
21Gdt11 . . . ,

~16!

h252
2

L
ln D ~0!~«F!2

c

L

3E
0

L FD2~«F ,t1!

D ~0!2~«F!
21Gdt11 . . . ,

whereL5aFL is the dimensionless length of the filamen
t15aFx1 is the dimensionless coordinate of an impurity
the pointx1, andD (0)(«F) and D(«F ,t1) are the transmis-
sion coefficients of the one-dimensional barrier without i
purities and with one impurity at the pointx1, respectively.

For nonresonant values of«F andL@1 we have1

D ~0!~«F!5e22L,
D~«F ,t1!

D ~0!~«F!
5~12mF!2, ~17!

wheremF5k0(2aF1k0)21 is the subbarrier scattering am
plitude ~for «F) in the single-impurity potential~10!. In the
nonresonant case presently under considerationumFu;1.

Substituting~17! into ~16!, we find

h1521cmF~22mF!,
~18!

h25412cmF~22mF!2cmF
2~22mF!2.

Taking into account~18!, from ~12!–~15!

^g~«F!&;b2«F exp~2h1L!, ~19!

^d2&1/2;M 21/2 exp~hL/2!, ~20!

whereh5h222h15cmF
2(22mF)2 andhL;cL.1.

A bound on the parameters of a quasi-one-dimensio
insulator layer follows from~20!. It ensures~in an ensemble
of identical samples! that the relative fluctuations of the tun
nel conductance will remain small,^d2&1/2!1, at nonreso-
nant values of«F upon passage from sample to sample:

AM@exp~hL/2!, M5S/b2 . ~21!
ts

t

-

al

When this condition is satisfied, real self-averaging of t
static tunnel conductance~4! of a quasi-one-dimensiona
structurally disordered insulator layer takes place in the n
resonant case.

4. CURRENT–VOLTAGE CHARACTERISTIC OF A QUASI-
ONE-DIMENSIONAL BARRIER IN THE CASE OF
RESONANT TUNNELING

Resonant tunneling takes place when«F falls within the
region of the discrete spectrum in the associated problem
an infinite (2`,x,`) filament with attractive (k0,0) im-
purities located in the former layer (0,xj,L).1,3

The resonant effects reach their greatest values in si
tions in which the energy«F is close to the subbarrier sca
tering band of amplitudem(«) at «0 («05U02k0

2/4), which
is the energy of a bound electron state in one impurity cen
~the energy of a local single-impurity level! in the associated
spectral problem mentioned above. Therefore, below
shall consider the case where«F coincides with«0 whenV
50.

To find ^ i (V)& and ^d2(V)& we must first calculate the
meanŝ D(«)& and ^D(«)D(«8)& ~11! at resonant energies

Let us consider the calculation of^D(«)&. For further
analysis, it is convenient to represent^D(«)& in the follow-
ing form:

^D~«!&5 (
m50

`

pmDm~«!, ~22!

Dm~«!5
1

DGm
Vm~«!,

Vm~«!5E
$DGm%

D~«,Gm!dGm , ~23!

where Dm(«) is the transmission of the filament averag
over the configurations with a fixed number of impuritiesm.

When the energy« is close to«0, there are always im-
purity configurationsGm

res(«), called resonant configuration
at the energy«, in which D(«,Gm

res(«));1 holds, while the
transmission is exponentially small for all the remaini
~nonresonant! configurations.1 Accordingly, at each energy«
the phase space of a system ofm impurities in a filament of
lengthL is factorized into a set of resonant and nonreson
regions. WhenL@1 holds and« is close to«0, the main
contribution to the integralVm(«) is made by the resonan
regions of the phase space@see~27! and ~28! below#:

Vm~«!5E
$DGm%

D~«,Gm!dGm

;E
$DGm

res
~«!%

dGm5DGm
res~«!, ~24!

whereDGm
res(«) is the resonant~at the energy«) phase vol-

ume of anm-impurity system in a filament of lengthL.
To find ^ i (V)& we must calculate the integrals form

>1 in accordance with~4!, ~8!, and~22!–~24! (V!«F)
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J m~V!5E
«F

«F1V

«Vm~«!d«;E
«F

«F1V

«DGm
res~«!d«

;«FE
«F

«F1V

DGm
res~«!d«. ~25!

Only the intermediate asymptotes found in Ref. 1 a
known for the functionDGm

res(«), which specifies the ampli
tude and shape of the resonant transmission maximum in
vicinity of the impurity level at«0, for m.1. Therefore, to
calculate the overall structure of the current–voltage cha
teristic and obtain numerical estimates, we confine ourse
to an approximation forDGm

res(«), which correctly takes into
account the two main parameters of the real function, viz.
characteristic width and height:

Vm~«!;DGm
res~«!;H aF

2m , u«2«0u<gm/2,

0, u«2«0u.gm/2,
~26!

where gm;k0
2 exp(2L/m) is the characteristic energ

width of the resonant transmission band of a barrier of len
L5L/aF with m impurities.

Returning to the estimate~24!, we note that it is valid
provided the contribution of the resonant regions of
phase space to the integralVm(«) is much greater than th
contribution of the nonresonant regions:

DGm
res~«!@e22LDGm , DGm5Lm/m!, L5aFL.

~27!

In the resonant transmission band we haveu«2«0u<gm/2.
With consideration of~26!, this inequality takes the form

e22LLm/m! !1. ~28!

For L@1 ~typical values areL;10), this condition holds
for all m>1.

Using ~26! for the integralJ m(V) ~25!, we obtain the
estimate

J m~V!;«FaF
2mH V, uVu<gm/2,

~gm/2!sign V, uVu.gm/2.
~29!

Finally, taking into account~4!, ~8!, ~11!, and~22!–~26!, we
obtain the current–voltage characteristic in the followi
form:

^ i ~V!&5 i 0~V!1 (
m51

`

cme2cLwm~V!, ~30!

where i 0(V);b2«F exp@2(21c)L#V is the contribution
from the configurations withm50 ~the ‘‘empty’’ barrier! to
the mean current,

wm~V!;b2aF
m

J m~V!

;b2«FH V, uVu<gm/2,

~gm/2!sign V, uVu.gm/2,
~31!

c5n1aF
21 , andgm;k0

2 exp(2L/m).
Thus, at small impurity concentrations (c!1) the

current–voltage characteristic^ i (V)& ~30! is represented in
e

he

c-
es

ts

th

e

the form of a series in powers of the concentration, who
mth term gives the contribution of them-impurity reso-
nances to the mean tunneling current.

In the case considered here we are interested in the ra
of parameters in which the total contribution of the res
nances withm>1 significantly exceeds the contribution o
the empty barrieri 0(V):

(
m51

`

cme2cLwm~V!@ i 0~V!. ~32!

This inequality demarcates an extensive region in the (V,c)
plane~for fixed L, k0! in which the resonant impurity tun
neling current is decisive. For example, if we confine o
selves to only the term withm51 on the left-hand side o
~32!, we have~taking into accountc!1)

1@c@
i 0~V!

w1~V!
ecL;H e22L, uVu<g1/2,

~2uVu/g1!e22L, uVu.g1/2,
~33!

whereg1;k0
2 exp(2L) and uVu!«F . For example, forL

510 and the characteristic valuesk0
2;«F;10 eV the range

of concentrations~33! covers several orders of magnitude
uVu<1 V ~1025!c!1). On the other hand, for any fixe
concentration in this range, the contribution of the first re
nance is formally comparable toi 0(V) at such large values
of uVu;cg1 exp(2L);c«F exp(L).«F that they are al-
ready far outside the range of applicability of the approxim
tion used (uVu!«F).

Thus, in the range of parameters of interest to us,
quantity i 0(V) in ~30! can be omitted, and the current
voltage characteristic can be written in the form

^ i ~V!&5 (
m51

`

cme2cLwm~V!. ~34!

Differentiating ^ i (V)& ~34!, we find

d^ i &
dV

5 (
m51

`

cme2cL
dwm

dV
, ~35!

d2^ i &

dV2
5 (

m51

`

cme2cL
d2wm

dV2
, ~36!

where in the approximation~31!

dwm

dV
;b2«FH 1, uVu<gm/2,

0, uVu.gm/2,
~37!

d2wm

dV2
;2b2«F sign~V!dS uVu2

gm

2 D . ~38!

Of course, the functionswm(V) found in this approximation
and its derivatives specify only the ‘‘skeletons’’ of the fun
tions ^ i (V)&, d^ i &/dV, andd2^ i &/dV2, which reflect only the
most features of the real behavior. These functions, are
course, smoothed, and thed functions in~38! spread out to
form peaks of finite width and height. The qualitative cha
acter of these functions is shown in Fig. 1.

The function^ i (V)& is significantly nonlinear@because
of the significant nonlinearity of thewm(V) given by ~31!#
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FIG. 1. Qualitative forms of̂ i (V)& ~a! and of
d^ i &/dV andd2^ i &/dV2 ~b!.
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and thus differs radically from the dependence in a bar
without impurities~or in the case of nonresonant tunneling
a barrier with impurities!. The resonant current in the rang
of parameters considered~33! is several orders of magnitud
greater than the current in an empty barrier. Them-impurity
resonances are displayed in the plot ofd^ i &/dV in the form
of a plateau with the characteristic widthgm;k0

2

3exp(2L/m), and peaks appear on the plot ofd2^ i &/dV2 at
uVmu;gm/2.

If, as above,L510 andk0
2;«F;10 eV are taken for

estimates, then for the characteristic energy widths of
first three resonances we have

g1;1023 eV, g2;1021 eV, g3;1eV. ~39!

This means that these resonances can be observed e
mentally only at the temperatures

T1!10 K, T2!103 K, T3!104 K, ~40!

respectively, and that they should be manifested on the v
age scales

V1;1023 V, V2;1021 V, V3;1 V. ~41!

In accordance with~5!, ~8!, and~11!, the calculation of
^d2& requires calculations not only ofJ m(V) for m>1, but
also of integrals of the form

Km~V!5E dGmS E
«F

«F1V

«D~«,Gm!d« D 2

. ~42!

Within the approximations that were used to calculate
J m(V), we obtain

Km~V!;«F
2aF

2mH V2, uVu<gm/2,

gm
2 /4, uVu.gm/2.

~43!
r

e

eri-

lt-

e

Then, it follows from~5! that

^d2&1/25
1

AMF (
m51

`

cme2cLxm~V!

S (
m51

`

cme2cLwm~V!D 2 21G 1/2

, ~44!

where

xm~V!;b4aF
mKm~V!;b4«F

2 H V2, uVu<gm/2,

gm
2 /4, uVu.gm/2.

~45!

Leaving only the terms withm51 in the sums~44! for
an estimate, from the condition̂d2&1/2!1 we obtain the fol-
lowing bounds on the tunnel-junction parameters:

AM@
1

Ac
expS cL

2 D , M5
S

b2
, ~46!

which ensure real self-averaging of the static tunnel cond
tance of a quasi-one-dimensional insulator layer with str
tural disorder in the resonant case.
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