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This paper discusses the gravitational radiation that accompanies the formation of a rotating
protoneutron star. Mainly large-scale entropy inhomogeneities develope inside the star. As a result,
bubbles of hot nuclear substance are formed, and convective motions arise: bubbles of hot
neutron matter float to the surface of the star, while cold matter sinks to its center. Such large-
scale motions of material give rise to an inhomogeneous mass distribution inside the star.
Variable asymmetry appears in the mass distribution, and this causes gravitational radiation.
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1. INTRODUCTION try of the explosion. Two main mechanisms for the collapse
of a presupernova are known. They are distinguished by the
Explosions of supernovas accompanying the collapse ofact that the energy of the propagating shock wave in the first
the core and resulting in the formation of a neutron star or anechanism is sufficient to escape to infinity. The propaga-
black hole are one of the main sources of gravitational radiation of the shock wave in the second mechanism slows down
tion. Since laser detectors of gravitational waves that ar¢because of the intense loss of engrgnd is restored after
sensitive enough to detect the first bursts of such radiatiothe energy is replenished at the expense of neutron radiation.
from space have begun to operate in the last few years, we shall work in terms of the second mechanism. We ne-
detailed analysis of possible sources has become especialiject the stage of compression of the iron core when a pre-
crucial, including detailed numerical modelling of the physi- supernova collapses and the gravitational radiation that ac-
cal processes in the sources themselves. Although gravitgompanies this process. Our treatment will begin with the
tional radiation can already be regarded as having been detage of formation of the protoneutron star. We shall inves-
tected from the secular variation of the semimajor axis of thetigate the gravitational radiation that appears at the stage of
double pulsar PSR 193316, which gave astronomers con- cooling of a protoneutron star and its evolution into an ordi-
fidence in the rapid detection of bursts of gravitational radianary neutron star.
tion from space, the direct action of gravitational pulses on  Reference 4 discussed a model of presupernova evolu-
detectors has not yet been observed. Besides the direct profien. It consisted of the formation of a rapidly rotating pro-
lem of detecting bursts, the problem of what information cantoneutron star, which, because of instabilities, decays into
be extracted from gravitational pulses is also important.  two components, forming a close-lying pair of protostars.
Coalescing double neutron stars are currently regarde8uch a pair rotates around the common center of gravity and
as the most promising source for detecting gravitationaproduces powerful gravitational radiatién.This model is
pulses'? Such events are much rarer than are the flashes afimilar to those in papers discussing the radiation of gravita-
supernovas in our galaxy and in the nearby parts of the unitional waves from rapidly rotating nuclei of stars and neutron
verse. Gravitational waves are emitted far more often duringtars®=®
the flashes of supernovas, and therefore it can be even more The mechanism that we consider is associated with con-
promising to detect them than to detect pulses from the coarective flows of matter in a protoneutron stakny nonequi-
lescence of compact objects: neutron stars, neutron-stardibrium processes in the central regions of a protoneutron star
black-hole pairs, or possibly black-hole—black-hole pairsincrease the entropy. In particular, the nonequilibrium neu-
Pulses from the coalescence of compact objects will probtronization of matter first noted by Bisnovéti{ogan and
ably provide us with information on the epoch of the genera-Seidov!® can be such a process; this process was also subse-
tion of galaxies, while pulses of gravitational radiation from quently considered in Ref. 11. In this case, because of the
supernovas make it possible for us to study the initial stagstrong heating in the central region of the star, the mecha-
of formation and evolution of protoneutron stars, which will nism of convective heat dissipation from the center begins to
apparently be the most abundant source of bursts of gravitaperate, accompanied by the onset of large-scale inhomoge-
tional radiation. neities of entropy. These produce rather strong asymmetry
The main problem associated with computing the gravi-and result in strong gravitational radiatiéh.
tational radiation accompanying a supernova explosion has Gravitational radiation caused by asymmetric motions of
for a long timé~2 been to determine the degree of asymme-matter associated with convective processes was also consid-
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ered in Ref. 13. However, the authors of that paper obtainedase. The inviscid Euler equations were solved numerically.
the evolution of convection only for small-scale fluctuationsThe TVD difference scheme with coordinate splitting was
of matter. We obtain large-scale convection accompanied bysed(see Ref. 9 for more detailThe characteristic distribu-
the ascent of large bubbles of hot matter, which is associatetibn of rising matter in the form of large-scale entropy varia-
with the possible role of nonequilibrium neutronization whentions gave rise to shapes reminiscent of the mushroom clouds
a protoneutron star is formed. of a nuclear explosion in the earth’s atmosphere, escaping
Our modelling of the source of gravitational radiation from the center of the star. The same paper includes figures
during the explosion of a supernova is associated with thé¢hat show contours of constant entropy as a function of time.
idea of explosive convective instability in a protoneutron starSince the calculation was done in the adiabatic approxima-
due to nonequilibrium neutronization of matter at high den-tion, increased entropy corresponds to reduced density.
sities. The nonsteady-state cooling of a protoneutron star was In the simplest model under consideratigvithout rota-
simulated numerically, allowing for its rotation and its influ- tion or a magnetic field six bursts appear, and the gravita-
ence on the development of instabilities. To solve the secontional radiation is small in this case. It should be emphasized
part of the formulated problem—finding the shape of a gravithat large-scale inhomogeneities grow most rapidly, as fol-
tational pulse and the characteristics that allow observers t®ws from the analysis carried out in Ref. 19.
determine the main parameters of protoneutron stars—we The characteristic times for the inhomogeneities to de-
used a numerical code similar to that developed and tested ¥glop were about 4 ms when the characteristic scale of the
Ref. 14. ascending region was about 20 km. The characteristic time
According to current concepts stars withM >10M at ~ for a bubble to reach the surface of the protoneutron star was
the end of their evolution begin to collapse as a result of thd ms, which corresponds to a mean velocitycé50. The
processes of thermal dissociation and electron capture by tig#avitational radiation from such a process, calculated in
nuclei. During the collapse of the iron core of a star aboutRef. 12, is not very great. However, breakdown of the sym-
99% of the gravitational energy is radiated in the form of metry of the picture, caused, say, by rotation or by the pres-
neutrino radiation. Part of this energy can be imparted to th€nce of a magnetic field in the protostar, increases the gravi-
outer layers of the star and can subsequently cause its shell t@tional radiation.
be ejected. However, since the characteristic diffusion time If the rotational velocity in a protoneutron star is non-
of a neutrino is about 10 sec, some mechanism is necessa#§ro (this assumption is quite reasongblthe symmetry of
that would speed up the transport of the neutrino energy téhe problem breaks down. In the present paper, we consider
the front of the shock wave. Convection both inside andthe hydrodynamic instability that arises in a protoneutron
outside the neutrinosphere has recently been offered as sugk@r for two cases. The first case involves the development of
a mechanism® 1" Calculations for the two-dimensional case instabilities when rotation is absent, and the second case in-
showed an increase in the time it takes for matter to arrive irvolves the development of instabilities when weak rotation is
the region of heatingas a consequence of conveclidre-  Present. In both cases, the gravitational radiation from such a
hind the front of the shock wave and hence an increase in thgource was computed.
radius of the wave. However, when neutrino transport in the
region above the neutrinosphere was accurately taken into
account, it was showfi that convection, having been ini- , \MODELLING OF THE HYDRODYNAMIC INSTABILITY
tially generated, subsequently ceases to be developed and
ceases to replenish the energy of the shock wave, and this, in In calculating the density and temperature distributions
the final analysis, causes it to be damped out. inside a protoneutron star, we used the following values of
The process of collapse is extremely inhomogeneous. Ahe central density and central temperaturp,=2
collapsing central core with a mass of abol 4 appears, x 10 g/cn? andT=10" K. It was assumed that relativistic
surrounded by a shell in which the main mass of the star islegenerate electrons and an ideal nonrelativistic Fermi gas of
concentrated® The collapsing core subsequently reachesnucleons contribute to the equation of a state of the sub-
nuclear densities, which causes an expanding shock wave stance inside the star. Note that excess entropy was produced
be formed, and the process of nonequilibrium neutronizatiorclose to the center of the star=€0) by the process of non-
of this core begins. Such a neutronization process causes tlequilibrium neutronization.
entropy to increase at the center of this core; i.e., hot matter The equations of hydrodynamics used to model the pro-
is formed at the center of the core. This structure is hydrocesses that accompany the collapse of a protoneutron star in
dynamically unstable. the three-dimensional case have the form
Reference 9 discussed the hydrodynamic growth mecha-

nism of neutrino radiation, based on Ref. 19. It discussed the ﬂ _ _ pGM
o e p——=—gradP— —5—rr, (1)
development of convective instability in a gaseous sphere. dt r
Large-scale instabilities grow most rapidly in this case. Ana- g
lytical estimates showed that the inner hot layers are trans- _P+p div v=0, )

ported to the surface of the star in a characteristic time dt
~Rlvgong Reference 9 described calculations of the devel-
opment of hydrodynamic instability in a protoneutron star ~dE__dS P dp

) : X =T —+——
with excess entropy at the center for the three-dimensional dt T dt = p? dt’ ®
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ds the form of gravitational radiation for both models and used

at =0. (4) extrapolation to estimate the total luminosity for the case in
which a bubble reaches the boundaries of the neutrinosphere.

Herep is the mass density, is the material velocityP is the At the initial instant, the self-consistent field method was

pressure inside the protoneutron stis the energy density, used to obtain the equilibrium configuration, taking into ac-

andSis the entropy. All the quantities are functions of three count rotatiorf*

spatial coordinates and time. The calculations in this paper were carried out for two
To carry out numerical calculations, it is necessary tocases. In the first case, in order to test the equilibrium

choose dimensionless quantities. The physical variables atached by a star, rotation was neglected. In the second case,

the given problem were reduced to dimensionless form byveak rotation was taken into account, with the ratio of the

dividing by the corresponding quantities: density was ex-otational kinetic energyl to the gravitational energj\W|

pressed in units opo=2x 10" g/cn®, length in units of  peing

Lo=2X10" cm, time in units oft,=7.74x 10 3 sec, mass

in solar massedVl, =2x 10> g, and temperature in units of T/|W|=0.01.

T=10" K. These units were chosen for convenience of the  The angular velocity of the protoneutron star was as-

computations. sumed to be fairly small to avoid Jacobi instabilities, which
An explicit Godunov-type conservative TVD difference cause a star to rupture into two components. The kinetic and
scheme was used in the calculations. This means that thﬂ)ten'uaj energies were Computed from integra| representa_
system is written in so-called divergence form, where thejons, taking into account the density profile obtained in the
symbolic density vectot appears in a partial derivative calculation. The rotational period of a star corresponding to a
with respect to time, while the density-flux vectérappears  ratio of kinetic to potential energy of 0.01 equalled 14 ms.

in a partial spatial derivativé: The coordinate system was chosen so that the plane of rota-
U oF tion of the star coincided with they plane. This means that
r + r =0. the star's angular velocity vector has the components

Three-dimensional space was broken up into cubic cells 4,=0, 2,=0, Q,=0=const;

with a constant step of the lattice. All the variables of thei.e., we are considering solid-body rotation.
density vector f,pu,pS) were referred to the centers of the The entropy distributions for the second case are shown
cells, while the fluxes of these variablgsu(pu?,pSu) were  in Fig. 1. Two cross sections of the star are chosen as im-
computed on the boundaries between the cells. The variableges. In the first cross sectighRigs. 1a—1), the angular ve-
were computed at timé¢’ by solving the one-dimensional locity vector lies in the image plane. In other words, the
problem for each spatial direction. Cyclic permutation of horizontal axis corresponds to tleaxis, while the vertical
these directions was used to maintain second-order accura@xis corresponds to theaxis of our coordinate system. Fig-
After this, a function consisting of the source caused by thaires 14—1i’ correspond to a view from above onto the plane
action of the gravitational field of the star, which was takenof rotation, corresponding to the plane of the equator. The
as constant in the time of the calculations, was added to thiitial configuration is chosen at timie=0.075 ms, and the
equations. The calculations were carried out on the Convefinal configuration is shown for time~6.31 ms. The com-
computer of the Institute of Applied Mathematics, Russianplete evolution lasted 20 ms.
Academy of Sciences. One simulation was carried out on a Unlike the model considered in Refs. 9 and 12, in this
three-dimensional 5451x51 lattice with a step ofh case two bubbles initially appeéat about 3 ms elongated
=0.0025, which corresponded to a maximum distance of thén opposite directions along the axis of rotation. Four addi-
bubble from the center af,=0.0675. A second model was tional bubbles appear soon afterwatdsabout 5 msand lie
calculated on the same lattice with a stephef0.004, with  in the plane of rotation of the protoneutron star. Such an
the bubble at,=0.1 from the center. This was done in order entropy distribution breaks the symmetry of the pattern con-
to estimate how the total gravitational radiation depends omsidered in Ref. 12 and causes quadrupole gravitational radia-
the maximum distance of the bubble from the center. Thdion to appear. The bubbles located along the axis of rotation
time to calculate the first model was 15 h. The time to do theare broken off the hot core by the first bubbles and float to
calculation in the second model changed slightly because dhe surface. This occurs because the density varies more rap-
the increase in the timestep. idly along the axis of rotation. In the interval between these
In solving the hydrodynamic problem, data on the den-bubbles, cooler matter sinks to the center of the protoneutron
sity had to be held in the computer memory for values fromstar. The bubbles located in the plane of rotation break off
po t0 10 3p,. This made it possible to trace the ascent of thethe hot nucleus core later and also float to the surface. Our
bubble to values of ;=0.1 and no further. In order to com- calculations show that, following the first bubbles, additional
pletely trace the evolution of a bubble from the center to thébubbles with significantly less volume are formed, which
neutrinosphere, it is necessary to find the law of motion of also begin to float to the surface.
bubble out tary=0.17. This requires either the calculational The first stage of the development of the perturbations is
technique to be changed or the lattice step to be reducethe growth of asymmetry along the axis of rotation of the star
from 0.004 to 0.0001, which makes the time of the calcula{Figs. 1a—1& which lasts for 3 ms. The asymmetry is still
tion unacceptably large. We calculated the total luminosity invery weakly expressed in the plane of rotatigRigs.
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1a-1c), and the evolution proceeds peacefully. The asym{Figs. 1d—1f') begin to be distinguished at this stage. This
metry of the distribution of the substance is negligible duringinstant corresponds to the most intense gravitational radia-
this stage, and bubbles of hot matter have not yet beetion. As can easily be seen, the main gravitational radiation
formed. Gravitational radiation of the star, as will be shownoccurs from bubbles rising along the axis of rotation of the
below, is also negligible at this stage. Bubbles moving alongprotoneutron star. The stages shown in Figs—1g corre-

the axis of rotation have already been formed for the stagespond to the final formation of bubbles in the plane of the
shown in Figs. 1d—1f, and bubbles in the plane of rotationequator and the beginning of their ascent to the surface. The
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t=0.075 ms A gravitational wave is characterized by two degrees of
freedom and accordingly by two independent amplitudes,
usually denoted by, andh, . Here we shall not evaluate
each of these two quantities in detail, but shall restrict our-
selves to a computation of the luminosity of the source of
gravitational radiation and the total quantity of energy given
off when a star collapses.

The luminosity of a star in the form of gravitational ra-
diation is determined By

- G ab
E=gg (lal ™),

while the total amount of energy given off in the form of
gravitational radiation is calculated from the integral formula

AE=f Edt.

These equations, except for the last, contain the second
or third derivative with respect to time of the quadrupole
tensorl ;. In analytical calculations, taking the correspond-
ing derivative with respect to time does not affect the accu-
FIG. 2. Three-dimensional profile of the entropy for two characteristicracy of the computations. The situation is different in nu-
times. merical simulation. Even though evaluating an integral in
numerical calculationsfor example, by means of Simpson’s
rule) is a simple problem that arouses no concern about the
escaped from the calculated region: i.e., they are farther thagccumulation of numerical errors, differentiation is a non-

trivial problem. This is because, when the first difference is

20 km from the center. o
Figure 2 shows the three-dimensional profile of the en_computed and then divided by the step, small eriéos

tropy distribution initially ¢=0.075 ms) and when the example, rounding errorgrow in magnitude. For the third

bubbles have already formeti=3.65 ms). derivative, the corresponding errors can already be compa-
On figures with the velocity-field distributiotthese fig- _rable Wif‘h or even greater than t_he quantity itself,_thereby

ures are not shown hereonvective cells are clearly visible introducing unacceptable errors into the computation. Nu-

that show both the rise of hot matter to the surface and tha'erical differentiation is an ill-posed problem. There are

fall of cold matter to the center of the protoneutron star.  S¢veral methods of overcoming this ill-posedness.
We shall use the method considered in detail in Ref. 14.

The essence of this method consists of the transformation of

the first derivative ol ,, with respect to time. In the expres-
We shall calculate the gravitational radiation emitted bysion under the integral, the first derivative with respect to

a protoneutron protostar from the quadrupole formula of Reftime appears only as the partial derivative of the density of

22. The transverse-traceless part of small perturbations of thtae substance. Using the continuity equation

metric is determined from

hTT_2_G 'l'TT
ab™ RC4 ab
whereR is the distance from the star to the observer, Hid
is the projection of the tensor of the quadrupole moment o
the mass distribution inside the star onto the operator

bubbles along the axis of rotatigRigs. 1g—1j have already

3. GRAVITATIONAL RADIATION

P+ div(pv)=0

we transform the time derivative to derivatives of the density
Pf the substance and its velocity with respect to the spatial
coordinates. Next the expression is integrated by parts. As-
suming that there are no mass fluxes at infinity, the first
Pap= Sap— NaNp derivative of the quadrupole moment tensor with respect to

(n, is the unit vector directed from the star to the observer time can be reduced to

The tensor of the quadrupole moment of the mass distribu- 1 1 1
tion is defined b¥? Iab=2f p{z Valp+ 5 Ubla™ 3 Sap(V 1) dV.
Iab(t)=J p(r,t)(rarb—% (Sabrz)dv. The velocities that appear under the integral sign were
already computed when the self-consistent picture of motion
In these equations, the subscriptendb take the values 1, of the substance inside the star was constructed. The accu-
2, and 3, while a dot denotes the derivative with respect taacy of their computation was checked when the develop-
time. ment of large-scale inhomogeneities was modelled. Such an
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FIG. 3. Luminosity curvein units of M,c?/ seg of a protoneutron star in ~ FIG. 4. Pulse profile. The dimensionless amplitude of the gravitational wave
the form of gravitational radiation. is plotted on the vertical axis in units of 5.84.0" 1 for a distance of 10 kpc
to the protoneutron star.

approach makes it possible to avoid one differentiation with

respect to time and to calculate the gravitational radiation . = .
with satisfactory accuracy. which increases the quadrupole moment and increases the

The luminosity of the star, taking into account the fac_gravitational radiation. The bubbles begin to move almost

tors that reduce the problem to dimensionless form, is uniformly when they reach the limits of the neutrinosphere,
and then the gravitational radiation from them virtually

GP%'—éO . ceases. In order to estimate the total gravitational radiation in
cots € the process under consideration, we extrapolated the values

_ found for the total luminosity to{"*=0.17, i.e., to the limit
Heree is the dimensionless |Umin05ity of the star in the form of the neutrinosphere_ The resumng |uminosity is 4.5

of gravitational radiation. X 10" "My c?/sec.

A problem arises when computing the mean values over  The total energy emitted in the form of gravitational

time, denoted in the analytical formulas by angle brackgts waves in the course of the entire process can reach a value of
The difficulty is that the period over which the values are

averaged in the theoretical formulas is the rotational period AE~2.5x10"'Mgc?

of the star, which is comparable in magnitude with the durayaying into account rotation when the ratio of the kinetic

tion of the process itself or, more precisely, even somewhgénergy to the gravitational binding energy is 0.01.

exceeds it. A protostar makes one rotation around its axis in Figures 4 and 5 show, respectively, the pulse profile of
14 ms, whereas the bubbles ascend in characteristic times gfT ;4 the spectral powér distribution,in a pulse of gravi-

about 5. ms. In general, ther.e are two characteristic .tin_1e i_nt'ational radiation.
tervals in this process: the first equals the characteristic rise

time of the bubbles, and the second is the rotational period of

the protoneutron star. In order to obtain a sufficiently smooth

curve describing the gravitational radiation, we chose an ar- 5. 107
tificial averaging time interval. The time step in the calcula- 3ok
tions was variable; it was given automatically inside the pro-
gram, where a short interval at the initial stage of the
calculations changed to a rather long one at the final stage.
Thus, the time step was about 208 by the time the maxi-
mum of the first peak occurred, at about 3 ms, whereas it was
initially about 100us. By trial-and-error we chose an aver-
aging time of 0.5 ms, which gave a fairly smooth luminosity
curve without averaging out the main details of the process.
This curve is shown in Fig. 3. This figure shows the time
dependence of the luminosity=dE/dt in units of

M oc?/sec for the case with rotatioril(|W|=0.01) for the
second model. The luminosity at the maximum of the burst is
2.2x10 8Mc?/sec. In the first model, this value was 3.4 0 ! 2 f. kHz

X 1_0 QMQCZ/SGC' The change of the luminosity is easily ex- FIG. 5. Spectral power of the pulse. The quantiy—the square of the
plained by the fact that, in the second model, the bubbles arig,rier componenh™—is plotted along the vertical axis. The maximum
twice as far from the center, increasing the effective armspectral power is reached at a frequency of 700 Hz.
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4. CONCLUSION tion when the symmetry was broken as a consequence of
rotation. An exact calculation of the energy output is given

We shall introduce additional determinations of the am- b H it should b tioned that a | o b
plitude of gravitational radiation and estimate the amplitudea Ove. Fowever, 1t should be mentioned that a fong “com
f pulses was not obtained in our calculations, as was as-

observed on earth from the flashes of supernovas at the cef}

ter of our galaxy and in a nearby galaxy. sum_(rad mtt_he ?ret(r:]edmgt] ar|t|cle. itational radiati | f
We introduce the notation o estimate the actual gravitational radiation pulses for

the flashes of supernovas, the gravitational energy radiated
during faster rotations of the protostars needs to be calcu-
lated and the fraction of supernovas that possess such rota-

. . tion also needs to be estimated.
and we call the quantith(6,¢) the mean amplitude of the

gravitational wave. The flux of gravitational radiation is ex- The authors are grateful to A. A. Starobinsky and M. E.

pressed in terms of the introduced mean amplitude of th@rokhorov for fruitful discussions. This work was supported

wave as by the Kosmion Scientific Center and the Astronomiya Fed-
eral Program, Computational Astrophysics Section, as well

2h2, as by Grant No. 97-02-16486 of the Russian Fund for Fun-
damental Research.
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The luminosity in terms of flux is determined from
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This paper discusses a new class of spatially localized soliton solutions with bounded energy in
the problem of the nonlinear propagation of a light beam along a photorefractive crystal

(PRO with a drift mechanism of nonlinear response. Solitons of this class correspond to stable
propagation in the PRC of two or more wave packetsmponentsthat are matched in

intensity distribution but incoherent. Their spatial distributions correspond to simultaneous cross-
modulation self-locking of its first- and higher-order modes into the common nonlinear
waveguide formed by them. It is shown that such multicomponent solitons can be implemented
and that they are structurally stable both with respect to collisions and with respect to
substantialmore than 10% in intensifystochastic perturbations of their components as they
propagate to distances of the order of several diffraction lengths. The paper discusses the
possibility that conjugate polymers, antiferromagnets, and superconductors can contain

unusual states corresponding to the stable propagation of two or more mutually incoherent but
matched electron wave packets along conjugate chains or along isolated atomic planes.

© 1998 American Institute of Physids$1063-776198)00204-3

1. INTRODUCTION along them of relatively weakin intensity light beams*32
Provided that the wavelength of the strong beams does not
One of the most interesting problems of modern laseffall into the region of photorefractive sensitivity of the crys-
physics is to investigate the self-organization processes th&l, it is possible for them to propagate in lightguides induced
occur in systems consisting of nonlinear media and a lighin PRCs by low-intensity spatial solitons. The formation of
field. The stable self-consistent solutions of problems of thisstable pairs of two incoherent spatial solitons of any of the
type (solitong in media with spatially localizedlocal) non-  types enumerated aboybright—bright, bright—dark, dark—
linear response—the so-called Kerr nonlinearity—has beedark) has been observeéd® In terms of applications, these
thoroughly studied. The concepts of one-component and results open up wide prospects for controlling light with light
two-componentvectop solitons as self-consistent spatially in systems for transporting and processing optical informa-
localized solutiongin essence, normal modesf nonlinear  tion.
problems have become firmly established in very different  The object of this paper is to analyze a new class of
fields of modern physics. This includes fiber optics and thespatially localized stable soliton solutions with limited en-
optics of supershort light pulsés® nonlinear optics and la- ergy, corresponding to a bound state of two or more incoher-
ser spectroscopl/;® the physics of quasi-one-dimensional ent light beams—the components of such a soliton—in a
chains in ferromagnets® high-temperature PRC with a drift(local) nonlinear response mechanism. In
superconductor® conjugate polymer®*?etc. In terms of terms of the character of the light-field distribution, solutions
simulations, very interesting results have recently been obef this class correspond to the simultaneous self-locking and
tained in studying solitons and multisoliton solutions, as wellinterlocking of several of its of zero- and higher-order modes
as stable soliton pairs in photorefractive crystdlRCs. The  into the common nonlinear lightguide formed by them. The
importance of such studies is that the mechanism by whicinteraction of the locked modes in this case has a cross-
optical nonlinearity is formed in PRCs is one of the strongestnodulation(reactivg character and is not accompanied by
mechanisms. It can be observed with light intensities of onlyenergy-exchange processes.
a few mwW/cn?.®® Beginning with the pioneering work of
Refs. 14-16 in PRCs with a driftocal) mechanism for the
formation of a nonlinear responéactive studles have been 2. THE STARTING MODEL
carried out in so-called bright:*® dark?® gray?! vector??
and vortex® solitons, multisoliton solution&! and questions The model that we used for the nonlinear response of a
of their propagation and interactiofis?®® spatial PRC is based on the well-knowhsteady-state solution of
dimensionality?”?® and stability?*~3! It has been shown, for the classical system of material equations for an internal
example, that it is possible to form soliton lightguides in theelectric fieldEs«(x,z), written for the two-dimensional case
interior of a PRC, with subsequent trapping and propagatiomeglecting the photovoltaic effett,

1063-7761/98/86(4)/8/$15.00 636 © 1998 American Institute of Physics
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1 where the real function¥; 4(x) give the spatial distribution
Esc:alo(XJrl)()\l_)\z) in x of t.wo mutual.ly incoherent components of Fhe light
field, while the positive constants, , determine their non-
” N Ny ) dM(%,2) linear phase damping as a functionzofWe are thus dealing
><m§=:0 NG )\m+l> axm with the search for intensity distributions that are stationary
2 ! along z. It is easy to see, taking into account the mutual
€ N, incoherence of th&; , components, that substituting E&)
a= ameN,’ X Ng=N,’ @D into Egs.(1) and(2) results in a system of equations for the
spatial profiles of their amplitudes in the form
A R, (ﬁ 2+ _° d?y aoE
12729 = N1 26 T ao(x+1) dx§'2+2k fo % (Y24 Y2) = 11 ,|Y1,=0, (4)

HereN, and N, are the acceptor and donor concentrations, 5 ]
respectively:l, is a parameter that describes the dark con\Where ag=(1/2)kresn % and only the first term of the ex-

ductivity of the PRC and determines the rate of dark ionizaPansion is retained in Eq1). It is convenient to introduce
tion of the donors asl,, wheres is the photoionization Nt© EQ. (4) the dimensionless coordinatés=x/x, and ¢

cross sectiont(x,z) is the radiation intensitys is the static = ZLq and the amplitudes of the field componepisy(£)
permeability; e is the charge of a free carrier taking into = Y1.€) VR/lo, wherex, is determined by the characteristic
account its sign, i.e., negative for electrons and positive foffansverse scale of the problerr;, for example, by the width of
holes; andd is the temperature of the PRC in energy units. Itone of the light beamst y=kx; is the diffraction length
is assumed that an external static electric figjdis applied ~ corresponding tag; R=Lg/L;; andL,=|1/acE| is the
to the PRC in the transverse directialong thex axig). Itis ~ nonlinear refraction length. In this case, H4) transforms
also assumed that the optical radiation propagates alorg thdNto & system of equations for the dimensionless amplitudes:
axis and thaiN_>n, 1,>1, anda(dE/9x)<1. Heren is the
free-carrier concentration. FdEy,~10 kV/cm, 6~300 K,
when the spatial scales of variation of the light field exceed
the wavelength of the light, the terms of the series in@y. where we have writtef; ,=Lq4v; ,, and the+ and — signs
decrease so rapidly that only the first term, proportional tacorrespond to the cases of focusingy>0) and defocusing
[(x,2), need be kept in it, so that we will call this the local (6§7<0) nonlinearity. Both these cases can be implemented
component of the nonlinear response. In fact, this means théy appropriately choosing the orientation of the PRC and the
we restrict ourselves in this paper to so-called Kerrdirection ofE,. It is easy to see that the system of E(.
nonlinearity? retains the same form for oppositely propagating light
The propagation of a light beam with complex field am- beams.
plitude A(x,z) was described by the standard truncated wave Depending on the sign of the nonlinearity, the system of
equatior Egs. (5) has well-known particular solutions, having the
A 1 RA by character of single-component bright solitdf$?

d2P1 2
a2 =2lpitpe=Bizlp =0, &)

] _ ) o . _ pr=Fr——F——, p2=
written in the paraxial approximation, neglecting absorption. cosh{v281¢)
Herek is the wave numben= — (r .¢7°/2)Es(X,2) is the 25
nonlinear addition to the refractive indey andr . is the p1=0, py==* 22 (6)
effective electrooptic coefficient. Equatiof2) omits the ' coshi\2B5¢) '

homogeneous-int-refractive-index variation caused &g .
Equations(1) and (2) form a self-consistent problem that
takes into account. the'mutugl influence qf the redlstrlbgtlon p1=* B, tani({B1&), p,=0.

processes of the light intensity and electric field in the inte-

rior of the PRC. This model gives a good description of p1=0, pr,== \/Etanr( \/Eg). ()

experiments with so-called slit bearifswhich are widely . . o
. . X . . Such solutions are stable in principle, even though the nec-
used in practice when studying soliton effects in PRCs be- : : . . : .
; . sary one-dimensionality of the diffraction and self-action
cause of the strong anisotropy of the nonlinear response Oe,[s . . : . . .
processes is attained in real experiments only by using slit
the latter. . . T X
beams having a homogeneous field distribution in the direc-
tion orthogonal tot andZ.%® In this case, one has to consider
the possibility that modulational instability will develop
3. TWO-COMPONENT SOLITONS along the PRG/ leading to filamentation of the beam in this
direction. The stability of the two-dimensional solitons is due
to the nonlinearity-saturation effect.
In analyzing two-component self-consistent solutions
with a form more general than given by E@8) and(7), it is

A(X,2) =Y (X)exp —ivq,z) + Yo (X)exp —ivyz), 3 convenient to use the mathematical analogy between the

or dark solitong®

We shall attempt to find two-component solitonlike so-
lutions of the system formed by Eq4) and(2), correspond-
ing to separation of variables,
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or dark solitongdefocusing,

p1=1/B tani(VBé)cosa, p,=1/B tank Jﬁé)sin(clv,o)

as given by Ref. 33. Ind;,p,,U) coordinates, both these
solutions correspond to the projection onto {he, axes of
the corresponding single-soliton solutions of E¢B). and
0.5 (7), the plane of whose trajectories is rotated around the axis
of symmetryU through anglex.
When B;>B, holds, stable pairs—"“gray”
solitong*—can be formed from incoherent bright and dark
solitons both with self-focusing,

o=t V2B1— B2
0.5 YT cosliV2(B- B2 €]

p2=*=B, tani \2( 8, — B2) €], (11)

and with defocusing,

p1=*=B1 tani V2( 8, — B2) €],
V2B8,- B,

p2==* \/7 .
FIG. 1. The trajectory corresponding to the soliton of E44) known for cosh 2('81_'32) £l

PRCS® and formed by two mutually incohereftbright” and “dark” ) The latter solution exists 0n|y Wh%ll< 285. In the case of
components and the trajectory corresponding to the two-component soliton If-f . the traiect f h lit beqi
of Egs.(13) (open and closed curves, respectiyely(p,,p,) is the poten- sefi-focusing, € flrgjectory or such a soliton begins

tial energy,8;=1, 8,=0.25. (é— —o0) at a point of unstable equilibrium (ﬁ,\/,fg’_z) [the
local maximum at the bottom of the potential valley of Eq.
(8)] and ends §— +») at the symmetrically located point

character of the;, A£) dependences determined by the sys-(0,5 /3,) (Fig. 1, open curve In the p;p, plane, this tra-

tem of Egs.(5) and the nonlinear oscillations of two oscilla- jectory is a semiellipse with semiaxe®3,— 8, and v/,

-0.5 0.0

(12

tors in the common potential and, depending on the sign, the asymptotic limits lie either in
1 the half-planep,;=0 or p;=<0. With defocusing, the trajec-
Ulp1.p2)=*5 (pi+p2)°F (Bipi+ Bap3). (8)  tory of such a two-component soliton is also a semi-ellipse

(but now with semi-axes/B; and y28,— B;), beginning at

Here, as earlier, the- and — signs correspond to focusing the point of unstable equilibrium3+/3,,0) (the absolute
and defocusing, respectively. The potential energy of thenaximum of potential energyand ending at the point
equivalent mechanical system on thg, plane has several (*/3;,0), symmetrically located on the;p, plane. As in
local extrema, which correspond to singular points of itsthe preceding case, depending on the sign of the asymptotics,
phase portrait. However, by assumipg> 3, for definite-  this trajectory is located either ip,=0 or p,=<0.
ness and considering the case of self-focugkig. 1), it is All the two-component solutions of Eq&) enumerated
easy to convince oneself that only the two absolute minimabove are definite pairwise combinations of bright and dark
of U(py,p,), with coordinatesp; =+ /B, and p,=0 (one  solitons. At the same time, if at least one dark soliton enters
minimum with coordinatep,=p,=0 for defocusing are  into such a pair, its energy is infinitely large. Therefore, all
points of stable equilibrium, or foci, while the only local combinations of this type known until ng#for PRCs most
maximum p;=p,=0 (two absolute maxima with coordi- likely had purely methodological interest.
natesp,= =+ /3, and p,=0 for defocusingis a node. All We have succeeded in finding a new two-component
the other singular points have the character of saddles. In theoliton solution of Eqs(5) for PRCs with bounded energy
degenerate case ¢f;=8,=8, all the points with coordi- for the case of nonlinearity of the focusing type. A similar
natesp>+ p3=, located at the bottom of the potential val- solution was obtained earlier, for example, in the problem of
ley of Eq.(8), correspond to neutral equilibrium. the propagation of two ultrashort light pulses with mutually

Besides the one-component bright and dark solitons obrthogonal polarizations along a lightguide with Kerr
Egs. (6) and (7), there are also two-component solutions of nonlinearity®®3° Even though its trajectory on thg;p,
Eq. (5), which can be written in terms of elementary func- plane, like the self-matched pair formed by two bright inco-
tions. Thus, whens,= B,= 8, the solutions of Eq(5) are  herent solitons, begins and ends at the ptx), the p,(¢)
also known pairs formed by two incoherent bright solitonsdependence is odd in this solutidfig. 1, closed curve At

(the self-focusing case the same time, unlike the conventional dark soliton of Eq.
28 (10), the function p,(£) decreases exponentially a&—

(9) +o. For B1=48,, this new two-component solution for

2
osa pf—ﬁ sina, (9 . .
cosh(V2B¢) PRCs can be written explicitly

P17 Cosh2BE)
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FIG. 2. Distributions oflp,(£)| (8 and|p,(&)| (b) for the components of

the paired soliton of Eq€13) and their stable propagation along thaxis: FIG. 3. Structural stability of the distributions {(¢)| (a) and|p,(£)] (b)

perturbed by Gaussian noi$&0% in intensity for the components of the

B1=1, 2=0.25. paired soliton of Eqs(13) when they propagate along tieaxis: 8,=1,
B,=0.25.
V682 V68, sinh(v28,¢) . . . .
pr=f————=—, po== . same time, the antisymmetric componentin the absence
cosi(v28,¢) cosi(v2,¢) 13 of a p, component gradually transforms into a pair of bright

small-amplitude solitons with opposite phase that diverge
Figure 2 shows the spatial distributions of the amplitudealong the transverse coordinate
of the light field in the two mutually incoherent components Figure 3 illustrates the structural stability of the two-
of the solution of Egs(13) [the symmetric(Fig. 29 and  component soliton of Eqg13) against substantidtl0% in
antisymmetric(Fig. 2b componentsand their stable propa- intensity perturbations of the input amplitude profiles of
gation to a distance af=10, which on the scale of an actual both field componentg, , by Gaussian noise. With an in-
experiment would correspond to a length of about 5 cm forcrease of the noise lev&0% in intensity, such a soliton of
the PRC. A numerical calculation shows that, unlike the anEqgs.(13) was observed to decay in a computer experiment to
tisymmetric componenp,, the symmetric component; is  ordinary bright solitons, which consequently have a some-
transformed as it propagates along the PRC into an ordinanywhat large margin of stability against perturbations. A nu-
one-component bright soliton of the form of E®). At the  merical calculation also proved that the two-component soli-
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consists of two mutually incoherent componepﬁé'z) and
pt?. However, the corresponding components of these
andp(fz) solitons moving apart alon§are pairwise coherent.
Moreover, if the coherent component§” andp{? in these
solitons are in phase, the componepﬁéé) and p(22) have
opposite phase. As the rat®, / 8, increases, the solitons of
a pair gradually approach each other alafigWhen they
spatially coincide completel{the limiting transitiong, /8,
—), the out-of-phase components undergo complete inter-
ference quenching, and a one-component bright soliton of
the form of Eqs(6) develops. Naturally, such an analogy is
extremely tentative, since the shape and parameters of the
solitons of a pair vary because of cross-modulation interac-
tion as they approach alorgy

Thus, our solution of Eq913) is a new type of stable
and physically implementable two-component soliton for
PRCs, belonging to the class of solutions with separable
variables.

4. SELF-LOCKING OF HIGHER-ORDER SOLITON MODES

In essence, the two-component solution of EG8) that
we considered above describes cross-modulation self-locking
and propagation along the resulting nonlinear waveguide of
its zeroth- and first-order modes. We shall show in this sec-
tion that there also exist more complicated stable solutions of
this type, i.e., multicomponent solitons that include more
than two incoherent self-consistent components of the light
field with finite energy and spatially limited distributions
corresponding to the structure of the higher-order normal
modes of their common nonlinear lightguide. As far as we
know, multicomponent solutions of this type have not yet
been discussed in the literature. This is probably because in
order to put them into practice, the most important thing is to
eliminate interference between their components. When
there are only two such components, their polarization can
be chosen to be orthogon&I*° However, if there are more
such components, a different method has to be used. To do
this, one can, for example, use components with different
carrier frequencies and a nonlinear medium with a compara-
tively slow response, which, as a consequence of its inertia,
is incapable of tracking the interference beats. It is this case,
FIG. 4. Stability of the distributions offp,(£)| (a) and|p,(£)| (b) for the ~ considered earlier for the description of spatially localized
components of the paired soliton of Eq&3) against intersecting with the paired electronic stateghe so-called bisoliton model of
same paired soliton in a PR@; =1, 5,=0.25. high-temperature superconductiily that can be put into

practice in PRCs.

It is easy to convince oneself that, as a result of nonlin-
ton solution of Eqs(13) has structural stability with respect ear interaction of the two components of the soliton of Egs.
to collisions (mutual intersections with the same two- (13), a common nonlinear lightguide is formed in a PRC
component solitongFig. 4) or with ordinary one-component with a transverse distribution of the refractive index of
bright solitons.

Our computer modeling allowed us to track the transfor- AN ANpg,/cost(&/&o), (14
mation of the structure of the new two-component solitons asvhere the parametersn,,,=603, and £,=1/1/23, describe
the ratio of parameterg, , varied. It turned out that the the maximum refractive-index change and the width of this
limiting case of a solution of the form of Eq$13) as lightguide. We shall assume that all such solutions form a
B1/B,—1 is the pair p{*?,p{t?] of two-component pho- common nonlinear lightguide in a PRC, with a refractive-
torefractive bright solitons of the form given by Eq®), index profile similar to Eq(14). We shall regard\n,,,,, and
which are infinitely remote from each other on thaxis and &, as variable parameters. Then, at the first stage, our prob-
consequently do not interact. Each of the solitons of this paitem actually reduces to one of two already rather well-
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studied problems: the calculation of localized states in a po-  Figure 5 illustrates the spatial distributions of the ampli-
tential well corresponding to Eq14) of the form treated in tude of the light field for all three incoherent components of
Ref. 41, or the calculation of the normal modes of an opticathe new solution given by Eq17¢ (Figs. 5a, 5b, and 5c,
gradient lightguide with a known refractive-index distribu- respectively and their stable propagation to a distance of
tion profile (a particular case of the so-called Epstein profile =5, which, on the scale of an actual experiment, corresponds
given by Eq.(14).> Next, we also require that the solutions to a length of the PRC of a few centimeters.
found at the first stage form a common lightguide of the  In conclusion, one more feature of the class of multi-
required profile in the PRC because of Kerr nonlinearity, anccomponent solitons that we have found should be pointed
we determine the coefficients of the corresponding expaneut. Besides the limitation of their energy, it is in our opinion
sions over the normal modes from this condition. extremely important for applications that, unlike the two-
In the general case, the problem under discussion has mmmponent solitons of Eq$9) and (13) known earlier, the
elementary analytical solutions, and its eigenfunctions arenodulation depth of the refractive indeXn,.,, can be var-
expressed in terms of hypergeometrical functions. Howeveligd in solitons of the new type—i.e., the parameters of the
the character of the solutions is substantially simplified wheright-induced lightguide can be controlled by varying the
quite definite discrete relationships exist betwéen,,,,and  number of components in the soliton.
£,*142 for which the eigenfunctions can be expressed in
terms of the so-called associated Legendre functtdnis.
this case, the system of equations that we need to solve fGr
an arbitrary whole number=1, 2; -- is written in the form To summarize this paper, we shall briefly enumerate its
main results and formulate certain conclusions. Starting from

CONCLUSION

2 _(n)
d p|2 + Bon(n+1) —Bilp™=0, (15 @ completely realistic model of the formation of the nonlin-
dé costt(V2By¢) ear response of a PR€we have shown for the first time

that it is possible to implement in a PRC the two-component
soliton solution already known for other physical
problems®2°corresponding to the stable propagation of two

wherei=1, 2;--n. The condition of self-consistency of the
multicomponent solutions of soliton type is defined in this

case as self-consistent incoherent spatially localized beams with lim-
é (2 Bon(n+1) ited energy and nontrivial spatial structure in a PRC with a
[pM]P= . (16  drift hani f th li . The light-field

= Lpi cosR(V2BoE) rift mechanism of the nonlinear response. The light-fie

distributions in this solution correspond to simultaneous
Without dwelling here on the procedure of routine calcula-cross-modulation self-locking and to the propagation of its
tion, we proceed to only the first three multicomponent sozeroth and first-order modes in the nonlinear lightguide

lutions of this class fon=1, 2, 3: formed by the pair of components itself. Further analysis has
shown that there also exist more complicated multicompo-
p(ll)z \/2_'80 , (173 nent solitons of a similar type, which now include more than
cosi\2B4&) two self-consistent incoherent light-field components—the
) normal modes of their common nonlinear lightguide. Our
2)_ \/6_,30 computer modelling has shown that such solutions not only
1 —cosf?( \/2—,305)’ b canblbe physically implemented but also are structurally
. stable.
(22>: \/G_EOS'HP( ‘/2_305)’ In our opinion, the class of multicomponent solitons
L cosH( \/Z_Bo§) found and analyzed here is important for applications, since
¢ they exhibit a definite freedom of choice of the relationship
(3)_ (3/2V580 between the maximum refractive-index change,,,, in the
P1 cosR(V2B4¢) " resulting lightguide channel and its spatial scgje
BAa o Such multicomponent solutions of the nonlinear Sehro
(23)2 308, sinkt \/2_’805) , (179 dinger equation can also be of interest from a methodological
cosh( \/2_[30@ viewpoint, especially in connection with problems of form-
@) (1/2) \/3_30[4—5/cosﬁ( \/2_,305)] ing”nonlinez;;rI colIec;ivE mohdes in \]/cvaveguide I?jttié%sas |
pP3 = : well as problems of the physics of quasi-one-dimensiona
\ cosh \/2_’805) chains in ferromagnets® high-temperature

It is easy to convince oneself that the first solution, @qa), superconductor3*®and conjugate polymer§-*2|t seems to
is none other than the usual bright soliton of the form givenus that the last group of problems can provide fruitful ideas
by Egs.(6), that the second solution, E(L7b), corresponds concerning the possibility of the formation and subsequent
to the two-component soliton of Eg€l3), described above stable propagation of sever@ivo or more mutually inco-
and well known in a number of other probledfs®and that  herent(because of rapid phase relaxation or different eigen-
the third solution, Eq(17¢), is an additional, new solution, frequenciesbut stable electronic wave packdéthe compo-
including a third incoherent component of the light field, nents of multicomponent solitopsvith unusual mutually
with a spatial distribution corresponding to a second sym-orthogonal spatial distributions along one-dimensional con-
metrical mode of a nonlinear lightguide written in the PRC.jugate chains or isolated atomic planes. Moreover, the for-
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FIG. 5. Distributions of p{®(&)| @), [p$(£)] (b), and|p$(£)| (c) for the
components of the soliton of E(L7¢) and their stable propagation along the
faxis: Bo=1.

Vysloukh et al.

mation of precisely such incoherent but coupled packets
from coherent electron pairs when the latter are excited by
picosecond pulses with a quantum energy of about 2 eV can
explain the unexpected experimental result that we obtained
in Y-Ba—Cu-O0 films, in which an energy gap in the spec-
trum of the electronic states of superconducting samples was
observed for more than 3 ns after impact excitaffbn.
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Coherent repopulation of the components of a three-level quantum system in the field
of a pulsed bichromatic radio frequency wave
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The coherent repopulation of a quantum system consisting of three nonequidistant levels in the
field of a resonant bichromatic rf wave is studied. The atoms are assumed to have an

impulsive interaction with the rf wave in which the pulse duration is less than any of the relaxation
times. The hyperfine structure of gas atoms and a system of atomic oscillator levels in a

magnetic trap are considered as examples of such a quantum system. It is shown that in the second
case, the coherent repopulation effect can be used to cool neutral atoms in magnetic traps.

© 1998 American Institute of Physids$1063-776(98)00304-7

1. INTRODUCTION pulsed resonant bichromatic radio frequency wave. The re-
population of levels owing to interactions with radio fre-

The coherent redistribution of populatiofis particular, quency waves may, however, have wider applications. Thus,
coherent population captyris well known in laser physics.  using a bichromatic rf wave opens up the possibility of po-
This phenomenon involves the suppression of resonandarizing atoms in a gas target even when the gas atoms do not
fluorescence from the upper level to the two lower levels othave optical transition&tomic hydrogen, noble gase3his
a three-level atomic system interacting with the field of amethod can also be used to repopulate the oscillator levels of
resonant bichromatic wave. In particular, the two lower lev-neutral atoms in magnetic traps. As we shall show, this effect
els can be hyperfine structure componéritin this case, the leads to a reduction in the kinetic enerpooling of these
upper level is separated from the lower levels by an amoungtoms. This method of cooling is of special interest in con-
equal to the energy of a laser photon and is, therefore, natection with the recent discovery of the Bose condensation
populated at the initial time. When the necessary conditionsf alkali metal atomg.
for coherent population capture are satisfied, the upper level In this paper we examine the coherent repopulation of
remains unpopulated in the field of the bichromatic resonanthe levels of a three-level quantum system in the field of a
laser wave. resonant bichromatic radio frequency wave. It is assumed

Coherent population capture has been observed in a stghat the system has an impulse interaction with the rf wave,
tionary laser field. In this case, the effect depends stronglywith the pulse duration shorter than any of the relaxation
on the relationship between the resonance fluorescence tinitnes. We consider the hyperfine level structure of gas atoms
and the relaxation time of the lower levels. We have previ-and a system of neutral-atom oscillator levels in magnetic
ously examinedf® the coherent redistribution of populations traps as examples of quantum systems.
in a pulsed bichromatic laser pulse whose duration is shorter
than the resonance fluorescence time. It was shown that co-
herent population capture also occurs in this case, while thg coHERENT REPOPULATION OF THE COMPONENTS OF
population of the upper level and, therefore, the resonancg THREE-LEVEL SYSTEM IN THE FIELD OF A
fluorescence intensity depend strongly on the relative congjcCHROMATIC RADIO FREQUENCY WAVE
stant phase of the components of the bichromatic wave.

In this paper we examine the coherent redistribution of L€t us consider a system consisting of three nonequidis-
the populations in a three-level system interacting resonantl{ant levels. One of the components of the bichromatic wave
with a bichromatic radio frequency wave. This case differsiS in resonance with the transition between levels 1 and 3,
from that of a laser wave in the following ways: while the other is in resonance with the transition between

(1) All three components of the three-level system Can'GVG'S 2 and 3. Level 3 is common to both. It can be pOSi'
be populated initially and the problem must be solved withtioned arbitrarily relative to the other two levels.

different boundary conditions. The hamiltonian of the atorrf field system has the
(2) Coherent repopulation in this case necessarily reform
quires a pulsed interaction with the field in which the pulse H(t) = H0+V(t), 1)

duration is less than the longitudinal and transverse relax-

ation times. In the case of a stationary radio frequency wavelthereHy is the hamiltonian of a three-level system with the

coherent repopulation does not take place. characteristic wave functiorns; (i=1,2,3) and\7(t) is the
We have investigatédhe polarization of impurity cen- interaction operator for this system with the bichromatic rf

ter atoms in a magnetic matrix using the interaction of afield.

1063-7761/98/86(4)/6/$15.00 644 © 1998 American Institute of Physics
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We shall assume that the energy separation between the dag(t) _ _ _ _
levels can be less thaiT, so that, in general, their popula- gt~ Ve exp—ie)ai(t) —iVa —iez)as(t),
tions are not the same before the rf field is applied. Let us 9)
suppose that the time for this system to interact with the field
is shorter than any of the relaxation times, in particular, tharVhereVis and V,; are the matrix elements of the operator
the longitudinal relaxation tim&; and the transverse relax- V(t), calculated using the functiort§ and corresponding to
ation time T,. This condition means that it is possible to the resonant transitions, under the influence of the field, be-
examine the process assuming that the system is in a staween levels 1 and 3{;3) and between levels 2 and ¥'43).
described by a wave function which can be represented asla Egs.(9) and below, we set =1. Let us transform to the

superposition of the functions; , amplitudesa;(t) and functionsF; in Egs.(9). Since the ma-
trix elements are proportional to phase factors of the form
P(t)= E a(t)F;. 2 exdi(e;—q))], it can be seen that the same phase factors will

! remain on the right and left hand sides of E(®.and these
The amplitudes; (t) are the population amplitudes of tiis Wil cancel out. This means that the result of coherent re-

levels, which satisfy the following initial conditions: population of the levels of a three-level system is indepen-
_ dent of the initial phases of the level populations.
ai(0)=VA explia), ©) The solution of the linear systert®) for the case in
whereA, is the initial population of level, with which all the levels are populated &t 0 has the form
A=|a(0)[2 ) a(t)=[V,A_+V A, cogQt)]/Q?
and a; is the initial phase of its population amplitude. —iVAzV, sin(Q)/Q,

Since the interaction time is shorter than any of the re-

- _ ! _ ! 2
laxation times, there are essentially no stochastic perturba- ()= (VA4 cogQ)=V,AL)/Q

tions of the system during the interaction process. Thus, the — VAV, expliAg)sin(Qt)/Q,

amplitudea;(t) at any time is proportional to the constant

phase factor expd;) and can be represented in the form ag(t)=— \/A—3 cog Ot)—iA, exp(—igq)sin(Qt)/Q,
ai(t)=a(texpliay), (5) A, = VAV, exp—iAe)+ VALV,

where at any time the functior%(t) are independent of the
a; and att=0 they are given by

A_= VAV, — AV, exp(—iAg),

2(0)= A, 6) AL = VAN, + VAV, explide),
As eigenfunctionsF; of the hamiltonianH, we can A=AV, expiAe)— VALV;. (10)

choose a set of functions of the form . ) o )
Here Q is the frequency of the Rabi oscillations, wifh?

Fi=F exp—iq), (7)  =V3i+V3, whereV, andV, are the real parts of the matrix
_ _ elements V;3 and Vi3, respectively, with Vi3
where theF; are independent of the phases. =|Vis|exple). It is clear from Eq(10) that coherent popu-
We obtain a system of equations for the amplitudgt)  |ation capture can be observed in a pulsed regime if the
from the Schrdinger equation for(t), population of the common level satisfidg=0 at the initial
time. Thenas(t)=0 holds at any time if the parameters of
ih gt P (t)=H(t)¥(1), (8) the components of the bichromatic wave, the relative phase
and strengths, obey the condition
using the following assumptiong§l) both frequencies of the ) )
bichromatic wave coincide with the frequency of a transition AVit+AV;

COSAp=— (1D

between the corresponding levéle resonance approxima- 2VALALV Y,
tion); (2) throughout the entire interaction process, the _
phases of the components of the bichromatic wavdn general, when the populations of all the levels are nonzero
@i (i=1,2) and their relative phasé¢=¢;— ¢, remain at the initial time, there is no coherent population capture
fixed. For simplicity, in the following we consider only the €ffect, but a radical readjustment of the system population is

casesA ¢=0 andAp=1. possible.
The system of equations for the amplitudgét) has the To estimate the magnitude of the repopulation, we pro-
form ceed from the amplitudesa;(t) to the populations
pii=|ai(t)|2. If the rf pulse is very much shorter than the
day(t) _iv . ¢ Rabi periodQ %, then the actual populations can be found
ar - Visexmied)as(t), by averaging over the Rabi oscillations. For the populations

after the end of the field pulse, we obtain
dap(t)

gt~ Vasexpligz)as(t), P1=VIA_ 2104+ V2 A, 21204+ VEA4202,
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P22=V2|A_|21Q4+ VI A, 21204+ V2A,/2072, where, = p11+ poo+ pas is the (constant sum of the popu-
o lations of all the levels. The solution of the recurrence rela-
p3s=|AL[?120%+ Ag/2. (12 tion (17)is

We shall examine two typical situations. Let the conditions ~ pI\'=3/(N+3). (18

|A,|?=0 andA;#0 be satisfied. This may occur, for ex-
ample, forA¢=7 and
Vo=V AT 13 PO =p3y=(2/2)(N+2)/(N+3). (19)

It is clear from these equations that after a sufficiently large
number of cycles, level 1 is essentially empty, i.e., the atom
will be cooled, if this level is the one with the highest en-

With the normalization, this yields

which is a special case of the conditighl). For the magni-
tudes of the average populations whea =7 and Eq.(13)
is satisfied, this yields

ergy.

P1=ALTAA(A +A,), This procedure can also be applied in the case\ of
. = 7 when condition(13) is satisfied. Then the populations of
p22=Aot A1AI2(A1+A), level 3 after theNth and (N— 1)th cycles will be coupled by

the recurrence relation

TN _TIN-1) _ TIN=1)y2 _IN-1)

Let all the levels have the same populations initially, i.e., F38 P33 (pza A =p3z ). 20
A;=A,=A;=1 andA¢= 7. Then, after application of the An approximate solution of Eq20) can be found, assuming
bichromatic field pulse, the population of level 3 falls by athat
factor of two, while the populations of the other levels in- —(N)_—(N—-1) N)
crease to 5/4. If the pulses are repeated, then, as can be seen 38~ P33 +d(p55)/dN. @D
from Eq.(14), after theN-th pulse the population of the third As a result, we obtain the approximate differential equation
level decreases by a factor of'2Thus, the common third d(plY) (V)2

33 33

level can be completely emptied. = , (22
We now consider the other situatiohA_|?=0 and dN 4%

As;#0. These equations can be satisfied whes=0 and whose solution looks like
Vi=V,oVA; /A,. (15 P =43/(43E+N). (23

The expressions for the average populations will then hav@&he quantity¢é in Eq. (23) is a constant determined by the

the form initial conditions. Calculations show that E@3) yields
— _ higher (by 5-10% values than the exact value fpg;. The

=AL(A1+ AL+ AI2(A +A,), . ) ) 3

pu=AalAat Aot Ag)I2(ArtA) error in the calculation will be smaller for largét, em-
P2o=Ao( AL+ A+ A2(A+A,), ployed as an initial value in determining the constariere
— the values ofps3 for N ranging from unity toNy must be
p3s= (A1t AxtAg)l2. (18 calculated exactly using E420).

According to Eq.(16), applying the bichromatic field makes ~ Up to now we have assumed that the field is strong

the population of level 3 increase to 3/2, while the popula-€nough that the Rabi frequency is rather high and the field

tions of levels 1 and 2 decrease to 3/4. As can be seen frofulses are much longer than the period of the Rabi oscilla-

Eq. (16), the picture is not changed by repeating the pulsestions. Let the parameters be chosen so that the condition
There is a simple procedure by which a radical readjust}A+|°=0 is satisfiedsee conditior(11)). Then the popula-

ment of the populations can be achieved, in this case as welion of the common third level will bé; cos(Qt). Then it is

Suppose that after the end of the bichromatic field pulse, thelear that a pulse of length/2Q will empty the common

component coupling levels 1 and 3 is shut off. Because ofevel completely.

the effect on the atom of the remaining field component, the

populations of levels 2 and 3 become balanced and equal tb COHERENT REPOPULATION OF THE HYPERFINE

9/8. We again turn on both components of the bichromatid EVELS OF A GAS ATOM IN A BICHROMATIC RADIO

field, varying their strength in accordance with Efj5) and ~ FREQUENCY WAVE

the new values of the initial populatiors . After the second In this section we examine the interaction of atoms in a

bichromatic field pulse, the following level populations are ga5 yith a pulsed bichromatic radio frequency wave. Com-
establishedp;;=6/10, p,=9/10, andpgz=15/10, i.e., there  pared to the case of an impurity atom in a magnetic métrix,
will be a further reduction in the populations of levels 1 andthe atoms in a gas are significantly affected by both trans-

2 relative to that of level 3. verse relaxatior{relaxation timeT,=1/") and longitudinal
Let us relabel the quantitie; in Eq. (16) as;i(i’\'_”. relaxation(relaxation timeT, = 1/vy), whose times are of the

For the populatiop,; of level 1 after completion of thil-th ~ same order of magnitude in the gaseous phase.

cycle of this procedure, we have the recurrence relation It is appropriate to examine the interaction of a resonant

field with the atoms in a gas including the effect of relaxation
N N—1 N—-1 . . . . . .
Pl =p VSIS +pT ), (A7) using the density matrix formalism. The interaction of the
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three level system proposed in Sec. 2 with a resonant bichro-  k,=2iv2V—5I'/8—3+/8,
matic field in the interaction representation in the resonance
approximation is described by a ninth-order system of equa- ks=—2iv2V—5I"/8—3+/8. (26)

tions for the density matriy;; :
y Pi Let us assume that all the levels of a gas atom are popu-

p1t ¥(p11—pi) = —1Vi(par—p13), lated at the initial time, but not equally, in general: the diag-
: 0\~ iy onal elements of the density matrix gsg(0)=A; . For the
P2zt ¥(p22= p22) = ~1Vapaz= p2a), gas it is also necessary to assume that they are equal to their

equilibrium valuesA, =pﬁ . Suppose the rf field is turned on

033t ¥(paz— p3) = —iV1(p1s— p3D) —IVa(p2s— pa2),
paat ¥(pas~ 3 1(pas~pal 2lpzs~ P32 instantaneously. Then the phases of the nondiagonal matrix

p1st+ T prs=—iVi(psz—p11) +iVapis, elementsp;;(0)= VA/A; exfi(a;—a;)] will be fixed at the
e Tome —iV B _iv initial time, but differ in absolute value from zero. These
partTpa1==1Vi(p11=p3g) =1Vopor, initial conditions correspond to the initial conditiot® for-

mulated for the amplitudes (t) and mean that the atom is in
) a state described by the superpositi@n
P32t T p3o=—1Va(p2o—p3z) —iVip1a, That the field is turned on instantaneously means that the
AT 0u= — Ve park iV §witch—9n time.is much shorter than the time between th(_a
P27~ P12 P32V 2P13; interactions which randomly change the phase of the ampli-
port T po=—iV,pa+iVipos. (24)  tudes of the atomic state, i.e., it is less than all relaxation
times. When the field is turned on adiabatically for a time
much greater tham,,T,, the phases of the nondiagonal ma-
rix elements can change many times over the switch-on time
fid the initial conditions must then have the fopm=0
fl’a&j).l Thus, we shall assume that both the switch-on time
X ) and the duration of the field pulse are shorter than the relax-
that the phase factors of the form e»an on t_he right and ation times; this corresponds to the assumption that there are
let hand.S|des of Eqe24) cancel out, just as in Eqe9) for no stochastic changes in the phases of the wave functions
the amplitudes. Furthermore, as before, we.shaII assume thaﬁring the interaction process. It is important to emphasize
the. phases_ of the. compongnts .OT the f field are. constarﬂ,}at, as noted above, the solution of the equations for the
during the interaction. For smphmty we only consider th'e density matrix for this sort of impulsive interaction between
casesA¢=0,7. Then the matrix elements of the magnetic i, 4tom and the field does not depend on the initial phases
_d|pole interaction of the atom W'th the magnetic field of the ¢ 4o amplitudes of the atomic states. On the other hand, in
i-th component of the bichromatic wave;=|V;|exp(¢), order to achieve a Rabi-oscillation regime, the quantum me-
can be regarded as redl; =V, for Ap=0 andVy==V, oy nicq) system must interact with the field coherently for a

for ﬁ_‘P:.W' }(Ve E\troduce th? EOtazthﬂ:NﬂrTV' . lime no greater thaff,, T, i.e., the period of the Rabi os-
0 simplify the system of Eq424) we use the normal- cillations must be less thah,,T,. Thus, the field has to be

ization conditionp,;+ py;+ pgs== and introduce the quan- strong enough to makeé>T,y. As will be seen below, the
Uties X13= pa1— P13, X2s= P32~ pas, ANAX12= P12t pai- AS  gqiution of the system of equations for the matpixn the

a result, we transform. from a ninth-order system to a f'ﬁh'impulse regime whep;; (0)+0 for i#] is the same as the
order system of equations: corresponding solution obtained in the wave function formal-

P23t T paz=—i1Va(paa—p2) +iVipa,

In Eq. (24) the p are the equilibrium values of the level
populationsp;; . As in Sec. 2, we shall assume that there ar
no stochastic changes in the phases of the states during t
interaction process. In this case, using a system of eigenfun
tions of the hamiltoniai, of the form(7), it can be shown

prit+ y(p1i— p‘l)l): —iVix13, ism with the initial conditiong3).
_ o _ A solution of the systeni25) that is accurate to within
P22t ¥(P22— p22) = —1Vx23, first order terms in the parametdrsV and y/V for instan-
. . . taneous switch-on of a strong field whéarp=0,7 has the
X13T T x13= —i1V1(4p11+2p—23) =iV x12, form g e
Y23+ T x23= =1V a(4poot2p11—23) —iVix10,
X237 1 X23 2(4p22t2p1y ) 1X12 B (Aj+Ay)y 3TA [3(2A—A;—A,)(y—T)
X121 I x12= —iVox13—iVixas. (25) p1(D)= 2u * M * 8u
The char_acteristic equatiop of the _system of €H@$) is \/m (3T + )t 1

a complete fifth-order algebraic equation whose exact solu- IT expg — —a + 256 128 A,

tion is hard to obtain. We shall obtain an approximate solu-
tion of this equation, as well as the systé¢®b), that is ac-

+ 24( 'y_F) \ 2A1A2

curate to within first order terms in the small parametéig —Ay)cogv2Vt)+| = v
and y/V, assuming that the field is low enough that

V>T,y. The solution of the characteristic equation then has AV2A(5y%+ 26l y+33I?)
the form + Y,

ks=—ivV2V—T/2— y/2, Y S'”(‘/M)]
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xex;{ _a+ y)t} ! [[96(A1+A2—2A)

2 | 256

+64\A,A,]cog 2V V)

. {3(A1+A2)(3y2+ 14I" y+ 151'?)

D. F. Zaretskil and S. B. Sazonov

interactions with lasers whose frequencies are in resonance
with an optical transition of the atom. Very low temperatures
of the atomic gas can be attaingduch lower than 1 K The
Bose condensation of alkali metal atoms was recently dis-
covered using these methofs.

Laser cooling cannot be used, however, if the atoms do

A% not have excited states at optical frequencies. In this case, it
6A(y2+ 100 y+ 21I'2) is p055|bl_e to utilize coherent repo!oula_tlon of the (_)SC|IIato_r
- levels which an atom has as a particle in a magnetic trap, in

mV the field of a bichromatic radio frequency wave.

y—T The magnetic traps which are used have various field
F10VA A, N v2 sin( ZﬁVt)] configurations. The simplest is the so-called quadrupole trap.
The field in this trap varies spatially as

3y+5IN)t

X@X[{ . ( Y 5 ) , (27) Boc(422+p2)1/2 (29)
] (cylindrical geometry. Clearly, it varies linearly in any di-

where we have set=y+3I" and A=X/3 is the average rection and the potential of the interaction with the magnetic

population of the levels. The upper sign in E@7) corre-  moment of an atom has\a shape. In the field of such a trap
sponds taA¢=0 and the lower tA\ ¢=m. Similar expres-  he oscillator levels of an atom as a particle will be
sions exist forp,,(t), but they differ in that the terms pro- equidistan®

portional to cos(2Vt) and sin¢2Vt) have the opposite sign.
The populatiorp;4(t) can be calculated using the normaliza-
tion condition.

These formulas imply that the populations depend sig- . . . , i
nificantly on the phase differenck®e of the components of HereN is an integer quantum numbe,is Planck’s con

: ) ._stant, the trajectory of a particle of malgsin the magnetic
the bichromatic wave. In the case of a pulse whose duratloﬂeld 's assumed to be rouahly circular with radisbout
satisfies the conditioll "< 7<I'"1,y~1, the populations of any W

levels 1 and 2 will be equal to the central axis of the trap, andis the linear particle veloc-
q ity. For largeN the particle moves adiabatically, while the
— (A1+A2)yJr 3AT N 3(2A—A—Ay)(y-T)

3 3
EN:E (hZMv4p72)1/3N2/3:§ hVNle. (30)

orientation of its magnetic moment relative to the direction

P11~ 2u “ 81 of the field in the trap is conserved.
Of the levels(30) it is possible to choose three arbitrary
_VALA, Br+y)r nonequidistant levels which can be populated equally at the
R} } 1- 4 ' (28) initial time. After a bichromatic rf electromagnetic field

, L which is resonant with the system of chosen oscillator levels
In Eq. (28) the negative sign in front ofA,A; corresponds s rned on, coherent repopulation of these levels takes
to A¢=0 and the positive sign tdo=m. The overbar de- 500 The repopulation process can be carried out in the
notes averaging of the Rabi oscillations over time. It is Clearimpulse regime. For this case, the theoretical analysis of Sec-
that after a short pulse lasting less than the relaxation timeg,, 2 pased on the amplitude of states formalism is valid,

(T1,T2), the population of the common level will differ sub- qjnce hecause of the low density of states in magnetic traps,
stantially from the populations of the other levels, even wheny .(q is essentially no relaxation

all the levels were populated equally before the field was  nittarent variants of the repopulation procedure are pos-

turned on. It is important that this difference depends on th%ible. For example, by applying a pulsed rf field with a pulse
phase differencele. This effect arises as a result of the y,1a4i0n - and strength such that the conditiéhr= /2 is
coherent ﬁgm:natlloq of the popl)ulatlon ampr:nudes in tlhesatisfied, it is possible to empty the common level. As shown
o e e ke e . popops S5 .8 Shge e s uflcint o competaly sy e
X ' ' o common third level. If this level does not have the highest
three Ieyels will become equal to one another with time UNenergy, then ar-pulse of a resonant monochromatic field
der the influence of relaxation. can be used to transfer the population of a level whose en-
ergy is higher than that of the emptied level to a free level.
Repeating this process for the next, lower energy level of the
three levels, one can greatly cool the atomic gas in the trap
by transferring the atoms to ever lower energy levels.
Recently there has been extensive development of mag- Another means of coherent repopulation can be realized
netic traps for reducing the kinetic enerfgooling of neu- by applying bichromatic field pulses which last longer than
tral atoms. In these traps atoms are localized within a smathe period of the Rabi oscillations and have a phase differ-
volume of space+{ 10 2 cm) as a result of the interaction of ence of 7 between the components. Then, as can be seen
the magnetic moments of the atoms with a complicated magrom Egq. (14), after a few pulses it is possible to greatly
netic field configuration and contained there for some timaeduce the population of the common level. Using the pro-
(~100 s); the atoms are cooled by various methods, such agdure involving alternating switching-on of one or both of

4. COHERENT REPOPULATION OF THE OSCILLATOR
LEVELS OF A NEUTRAL ATOM IN A MAGNETIC TRAP
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the components of a bichromatic field with a phase differ-dio frequency field can have a fairly wide range of applica-
enceA =0, it is possible, according to E@18), to empty tions. We believe that the most promising approaches are the
one of the levels that is not common in the three level sysfollowing:
tem. It is proposed that subsequent cooling be carried out as 1. Coherent repopulation of hyperfine structure compo-
in the previous variant. nents makes it possible to polarize atoms in the gaseous
In order to carry out these cooling procedures, severgbhase. Unlike optical pumping, the proposed method is not
conditions must be satisfied. Thus, the Rabi frequencyelated to the existence of optical transitions in the atoms.
Q~V/h (V is the matrix element of the operator for the 2. The proposed method opens up the possibility of po-
interaction of the atomic magnetic moment with the rf fjeld larizing atoms and nuclei of impurity centers in a matrix
must be lower than the frequency corresponding to the sep&yithout using ultralow temperaturés.

ration between the oscillator leve(80). For largeN, this 3. Emptying one or several components of the hyperfine
will be of order »N~*%3. Thus, the following inequality strycture results in anomalous transparency of a medium for
must hold: Mossbauer gamma rays. This effect can be used in experi-

Q<vN~433. (31)  ments to observe stimulated emission for nuclear transitions.

on the other hand. the time f inale field pul tb 4. A bichromatic rf wave can be used to induce cooling
n the other hand, the time Tor a single NIe1d pulSe MUSt beye o iral atoms in magnetic traps. In this case, deep cooling
less thanT¢/N, whereT is the time a patrticle is confined in

the trap [T.~100 s). This yields the condition yvould begome possible for atoms tlhat have no excited levels
in the optical range, such as atomic hydrogen.

Q1< 7<T,IN (32 For cooling atoms in magnetic traps it may turn out to be

more convenient to use an oscillating component of the mag-

netic field of the trap itself as the repopulating variable field.

N<TQ. (33)  This component should have two resonant frequencies cor-

Equations(31) and (33 yield a condition for the maximum responding to transitions between oscillator levels of the

guantum numbeN at which the proposed repopu|ati0n pro- atom in the constant field of the trap, while the Spatial varia-
cedure can be used: tion in its amplitude and its polarization also should corre-

N72< yT./3 34 spond to the parameters of the constant field.
s The criteria for the strength of the repopulating variable

For p~10~2 cm, v~10? cm/s, andM~100 amu, we field cited in Sec. 4 give an oscillating trap field component
obtain an estimate of~100 kHz. AssumingTs~10° s,  of this sort that is several orders of magnitude smaller than
from Eq. (34 we obtain a maximum estimate fad of  for an rf electromagnetic field, as the ratign will be of
N~10°. The resonant frequency of the rf field, equal to theorder unity in this case.
difference in the energies of the levéR0), is, for largeN, ]
on the order ofyN~3~10 kHz. The particle energy for In conclusion, we thank Prof. R. Kuseman, Prof.
these values oN will be on the order of 107 eV, which ~ G. Odors (Louvain, Belgium, and Prof. M. Levenstein
corresponds to an atomic gas temperature~f0 3 K.  (Saclay, Francefor useful discussions.
Thus, the atomic gas must somehow be cooled to these tem- This work was supported by the Russian Fund for Fun-
peratures, then it can be cooled further by the method prodamental ReseardiGrant No. 96-02-17613a
posed here. Equatio81) implies an estimate for the field
width V~Qh of 3-10 '* eV. From this we obtain an esti-
mate of the required strength of the electromagnetic field.
Assuming that the interaction of the magnetic momeraf
the atom with an electromagnetic field of wavelengths 'B. D. Agap'ev, M. B. Gomny, B. G. Matisov, and Yu. V. Rozhdestveniki
dipole in character, we can writé~ uHp/\ (p/\~1078). Usp. Fiz. Nauk1639), 1 (1993 [Phys. Usp.36, 763 (1993 ].
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This paper studies the effect of a transition into the continuous spectrum on the “collapse” and
“revival” of population oscillations in an atom. It is shown that at large values of the

mean number of photons in a radiation field and in conditions of weak ionization the phenomena
of collapse and revival can still be observed, but the amplitude of population oscillations
decreases exponentially because of the damping of the level. The interaction of a quantized
electromagnetic field with & system of an atom when one state is continuous is

examined. Expressions are derived for the probability of “survival” of the atom when the
quantized field was initially in a state with a given number of photons and when it was in a
coherent state. An approximate calculation of the sum in averaging over the photon

number distribution in the case of a coherent field leads to expressions for the probabilities of
survival of the atom that transform into expressions, as the mean number of photons

tends to infinity, corresponding to the case of a field in the representation of a fixed number of
photons. The possibility of a stable state existing in a coherent quantized field is examined.

It is found that for aA system the condition for the existence of a stable state remains valid in
the case of a coherent state of the field when the photon number is largg998®

American Institute of Physic§S1063-776(98)00404-]

1. INTRODUCTION condition is met*~**and a classical or quantum field inter-
acts with the atom, the system always has a stable state in the
The study of various quantum states of electromagnetignoton number representation. If this condition is satisfied,
radiation and the nature of the interaction are important in,q probability of survival of the atom does not tend to zero
identifying optical fields and for their applications, for large interaction times. Colemant al? studied this sys-
The first rgsgarch in the mterachon involving coherenttem in the case of a quantized radiation field. When initially
quantized radiation was done in Refs. 1 and 2. New resulta1e quantized field is in a coherent state, Colerafali?

followed. In Refs. 3-5, in particular, the phenomena of “col- ) )
lapse” and “revival” of atomic population oscillations in aSSUme that the field is extremely strong and replace the

the interaction with coherent quantized radiation were prenumber of photons by its mean value. Such replacement at
dicted. Such phenomena cannot exist when a classical field {§€ initial stage makes it impossible to study the effect of

involved, which points to their quantum nature due to thefluctuation of the number of photons in the coherent radia-

discreteness of photons. Collapse and revival of populatiotion on the process.

oscillations were observed first in the experiments of Rempe  The present paper examines the interaction of a quan-
et al®’ are were later studied by many researchers. Similaized electromagnetic field and an atom in the cases of a
effects can be observed in squeezed quantized fiels, fixed number of photons and a coherent state. When the

e.g., Ref. 8 quantized field is coherent, the exact expressions for the

Studying the interaction of a quantized eIeCtromagnet'cprobabiIities are written in the form of a sum averaged over

field and atoms in the presence of transitions into the COMhe photon number distribution. Expressions are derived for

tinuous spectrum is important because such transitions caﬂ . . . .
dramatically change the pattern of the phenomena. In pa|1- e probab.llmes of surylval of the atom after this sum is
ticular, in Refs. 9 and 10 it is shown that the decay of ancalculated in an approxmate_manner. At large values of the
isolated level initiated by quantized radiation definitely doesmean number of photons, wher-«, the results correspond
not follow an exponential law and the probability of “sur- to the case of a quantized field with a fixed number of pho-
vival” of the atom does not tend to zero for large times. tons. In particular, it is found that if a certain condition is
Section 2 studies the population oscillations in the atommet, there is also a stable state when the atom interacts with
when there are transitions into the continuous spectrum.  conerent quantized radiation with a large mean number of
Section 3 discusses the interaction of quantized eleCtrophotons in the beam. Fedorov and MovseSiavere the first

magnetic .radlatlon. and an atom of thetype V\."th one of the to predict such stabilization of the atom in strong fields under
states being continuous. For a classical field this problem

was discussed by Rzazewski and EbétyWhen a certain certain conditions.

1063-7761/98/86(4)/7/$15.00 650 © 1998 American Institute of Physics
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be(t)=exp{—i(E+ wc'e)t} fe(t) (2.4
Ew and eliminating the third equation ¥2.3), we arrive at the
£ following system of equations:
df(t
i 1l )2,812 exp(—iet)cTf (1),
dt
¢ df(1) 29
t
‘ — =61, exp(ist)cfl(t)—if dE |,82E|20ch dt’
el E, y, dt 0
T
i h
| xexi(E—E,—w)(t' —1)] f5(t"),
w wheree is the offset from resonance,
8=E2—E1—w. (26)
E- vy Expanding the amplitude$,(t) and f,(t) in the photon

FIG. 1. number states,

fi<t>=n§0 f.(t,n)[n), 2.7

2. TWO-LEVEL SYSTEM WITH A CONTINUUM IN A

QUANTIZED RADIATION FIELD we arrive at the following system of equations:

. . . . d fl(t! n)

Let us examine a two-level system with a continuumi
(Fig. 1) in the interaction with a quantized radiation field of

frequencyw close to the frequency of the transition between gf,(t, n—1) _ _

the discrete levels of the atoms with wave functighsand i ——————=1/n B%, explist) fy(t,n)—i

. L dt
. A second photon in the radiation connects the second

=n By exp(—ist) fy(t,n—1),

atomic state/, with the continuum. The system Hamiltonian )
has the following form: X | dE (n—1)[B|
H=H+oc'c+BTc+c’B, (2.2

t
Xf exdi(E—E,—w)(t' —1)]
0

wherew is the frequency of the quantized radiaticrandc’

are the photon annihilation and creation operators, @aiatge , )

the operators of the transitions in the atom. X fa(t',n—1)dt". (2.8
Writing the wave function of the system consisting of |f initially the atom was in the state;,

the atom and the field as

) fi(0m)=p(n), f(0n-1)=0, (2.9
D(t)= >, ak(t)lﬂﬁf dE be(t) e, (2.2) vyherep(n)_is _the amplitude of the_ photgn_number distribu-
k=1 tion in the incident electromagnetic radiation, then the solu-

we obtain, from the Scfitinger equation with the Hamil- tion of the systen(2.8) is

tonian (2.1), the following system of equations for the ex- i
pansion coefficients i2.2): fl(t,n)zp(n)exp{ 3 [s+(n—1)A]t}
day(t)
|#:(El+ wc'c)a (t)+ Bclas(t), Xexp[ _(n—1) %] ( cosQ(Zn) )
day(1) .
i =(E,+wcic)ay(t) + BEcay(t) _e+t(n—1)A—(n—1)iT/12  Q(n) ]
dt - sin ti,
Q(n) 2
(2.10
T 2i
+f dE Boecbe(t), 2.3 fz(t,n—l):—p(n)l—\/ﬁﬁ’l‘z
Q(n)
_dbe(t) + .
I —g;— = (Bt wcic)be(t) + Baecan(l),

i
X exp[i [e—(n— l)A]t]
where 8,, and B,¢ are, respectively, the matrix elements of
the transitions between the discrete states of the atom and expl —(n—1)— | sin Q(n)t
between state, and the continuous spectrum. 4 2
Introducing the transformations

Here(n) is the Rabi frequency, andl andI" are, respec-
aj(t)=exp{—i(E;+wclo)t} fi(t), i=1,2, tively, the shift and width of the upper discrete level:
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2

i 1/2 . —
Q(n)= 8+(n—1)(A—% +4n|,812|2] , 7(—):0'9(”) :(A_E) /1_4nlﬁl_z|2
(2.1 dn | & 2 0?(n)
|B2E|2 B )
__Pf e E 20 Ei— 2w’ ['=27B2g, 20" 2|,312| 218

Q(n)
In deriving these expressions we assumed thaindI" are
weakly dependent on the argument. Performing the summation in the expression W(t)

Allowing for the expressiong2.10, we can write the in (2.19 via (2.17), we arrive at an approximate formula for
following formulas for the probabilities of finding the atom the probability in the case of coherent radiation:

in statesy;; and ¢, respectively: Wz(t)%%{|1—X|2exr[ﬁ(exq—(l“/2+Imy(ﬁ))t]—l)
Q(n)
2

Ccos

o r B B
Wl(t)=nzO |p(n)|2exp|’ —(n—l)g] t —t Im p]+|1+ x|?exd n(exd — (I'/2—Imy(n))t]

e+ (n—=1)(A—iT2) . Q(n) |?
+i sin t

—1)+t Im p]+2 R (1+ x)(1—x*)exdn

Q(n) 2 ’ (2 12 X (exd —(I'/2+i Re y(n))t]—1)—it Rep]]},
i Tt QO (2.19
W, (t)= 2 |p(n)|? —(n—l)? smTt where
When the quantized electromagnetic field is coherent, 3+F(A—il“/2) .
the distribution of the number of photons in the electromag- ~ X= —— =", p=0Q(n)—ny(n). (2.20
netic radiation is given by the Poisson law (n)
— In the limits 8,,—0 or I', A—0 the above expressions
|p(n)|2:exp( _F)n_ (2.13 transform into the expressions obtained in Ref. 8 or Refs. 9
nt’ ' and 10.

To simplify (2.19 still further, we examine the special
case of exact resonances=0, and weak ionization,

f1(0n)=0, (214 nANT< \Jn |By. Then(2.19 yields
f2(0,n—l)=p(n),

1 _
the probabilities of finding the atom in the staiggand gy, ~ Wa(D)~ E[ exgn(exp—I')—1)]
are, respectively,

*° A(n+1 2 |ﬂ12|t
Wl(t)=§O|P(n)|2 (n+1)|B14 +ex;{ﬁ(ex;{ -1

| (n)]?

If initially the atom was in the staté,,

_ I't t
Xex;{—n%) smﬂ(zn)t , X cos(n ex;{—;)sin"[i/l%' +\/:|/812|t)

(2.195
Q(n)t

nT (
— —SIN
2 Jn |84
2
t +\/ﬁ|ﬂ12|t)

_ We see from the expression fi¥,(t) that modulation
Q(n)={[e+n(A=iT/2)]?+4(n+1)|B1d*}"2 (2.16  of population oscillations leads to a collapse and revival of
z?e population oscillations. The revival period is given by the

cos

— [{ Ft) Bt
n exg — —|sin

- I't
W (t)= X |p<n>|2exp( -n5

e+n(A—iT/2)
—I1 Q(n) Sin >

}. (2.21)

where

We see that because of damping the nature of collap
and revival of oscillations of the level populations change

considerably.
Let us examine E¢(2.15 to find the probability of find- = 2|;r\/|ﬁ
12|

ing the atom on the upper level initially Foe1 the Pois-
son distribution has a sharp peaknat n, so that we can use At the initial stage of the process, for small times, wi&n
the expansion <|512|t/\/;<1 Eq.(2.21) becomes

Q(n)~Q(n)+ y(n)(n—n), (2.17) N [ p( |/312|2t2)
Wy(t)~ sexp(—nl't)] 1+exp —
where 2 Vn

ollowing expressioft

(2.22
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nl LV
><005(2\/ﬁ|,312|t)_L ////
\/ﬁ|,312| |4 _/

xsin(2yn |/a12|t>“. 223 L .

The damping of population oscillations initially follows a o,
Gaussian law, as predicted by Cummidgubsequently, os-
cillations revive after each periofl has elapsed, but the am-
plitude of these oscillations decreases exponentially due to
atom ionization. For large times, as HEQ.21) implies, the
probability of survival of an atom will not tend to zero, as it
does in the case of an isolated I/ rather, it will be an

exponentially small quantity, singe>1:

w

-n E. v
W, (t)~ —— | cog \/ﬁ|,312|t) FIG. 2.
Si t 2.2
\/:| 1 n(\/:|ﬂ12| )1 (2.2 Representing the wave function of the atom—field sys-

tem in the form(2.2) and proceeding from the Hamiltonian
(3.1), we arrive at the following system of equations for the

3. EFFECT OF THE STATES OF A QUANTIZED expansion amplitudes; (i=1,2) andbg:

ELECTROMAGNETIC FIELD ON THE STABILIZATION OF

ATOMIC LEVELS IN IONIZATION _dai(t)

2
Eit+ >, wkCECk) ai(t)+j dE BieC/be(t),
k=t 3.2

When an atom is exposed to an external electromagnetic
field, a new discrete level is induced in its continuous spec- (t)
trum, and as a result of interference with the continuum | be
states this level leads to a continuum with structure or to dt
autoionization-like resonances. As shown in Refs. 11-14, |ntroducing the transformations
under certain conditions, depending on the strength and fre- 5
guency of the external field, near the Fano minimum the _ ) t o
photoelectron spectrum undergoes a sharp change due to the (1) exp{ —l Ei+k21 wkckck)t] fi(, =12,
destructive interference of various ionization channels. When 3.3
a certain condition is met, one of the “dressed” states does 2

£(t) expr—l E+k21 wkc;ck>t]fE(t)

not decay. Under certain conditions stabilization can be ob-
served in strong fields, too. Stabilization in strong fields was
predicted by Fedorov and Movsesighin all such studies into the system of equatiori8.2), we arrive at the following
the external field is assumed classical. In the present papéystem of equations:
we examine how the state of a quantized electromagnetic
, : _df; (t)
field affects the formation of a stable state of an atom. —a0 dE Big exd —i(E—E;— wj)t]
Let us consider aA system whose upper state has a t

2
E+E wkaCk> E(t)"f‘kgl B;Eckak(t).

gontiljuous _spectrurfFig: 2 in an external qgantizgd radia- XCinE(t), i=1,2,

tion field with frequenciesw; and w,. The field with fre- (3.9
guencyw; connects the discrete state with the continuum, dfe(t) 2

while the field with frequency», connects the discrete level 5 _IE Bie exdi(E—Ej—wj)t] ¢;fi(t).

> with the continuum. The corresponding Hamiltonian of
the system consisting of the atom and the quantized field idNext, expanding the amplitudégqt) andfg(t) in the photon
number states,
2 2 -

H=Hy+ o+ fep+cf )
at |<§=:1 wyCy Ck k§=:1 (BiCk T CiBi), 3.9 fiy= S

ny.np=0

fi(ny,np,t)[Nny,ny),

(3.9
wherec,, c{ andc,, c; are the photon annihilation and cre- *
ation operators for the first and the second fields, respec- fe()= > fe(ni,ny,t)ng,ny),
tively, and 8, and B8, are the operators of transitions from M1.:N2=0

the states);, and ¢, into the continuum. we arrive at the following system of equations:
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dfi(ng,n,,t
i %# dE Bye exd —i(E—E,

—wt] Vg fe(ny—1n,,1),

i de(nl_dlt’nZH’t) :f dE Boe ex —i(E-E,
—wx)t] Yo+ 1 fe(ny— 1y, 1),
(3.6
2020 (B By otV
Xfi(ng,ny,t)+exdi(E—E,
—wp)t] Bienpt+1
Xfo(ng—1n,+1t).
If initially (t=0) the atom was in the staig,,
f1(n1,n2,0)=p(ny1,N3),
f,(n;—1n,+1,0=0, (3.7

fE(nl_ 1,n2,0) = 0,

wherep(nq,n,) is the amplitude of the photon number dis-
tribution in the radiation field, then the solution of system

(3.6) has the form

fl(nlvn21t):p(nlrn2)exf{ 5 |et(natl)

i

Q(nq,n
X‘COS(;Z)'[-F

ir
| a,_ T2

A, +n;

2
et (N, +1)(Ay,—il'5/2)—n (A —iT1/2)
X
Q(nlan)
Q(nqy,nyH)t
Xsin—( 12 2 ]
(3.8

2iyny(ny,+1) Fi(1—i/q)

Q(nq,ny)

fz(nl_ 1,n2+ 1,t): -

i,
X p(ny,ny)ex >

E_nl(Al_ 7)

il

 Q(ng,ny)t
X sin————,

+(ny,+1)

where

E ﬂlE(wl)BzE(wz)

Flz:_Pf d E—El—wl

A. D. Gazazyan

|B1.2l?
Al_z——Pf dE m,

8:E2_ E1+ Wy~ W1,

(3.9

[10=27B12g, 4w,

Q(n4,n,) is the Rabi frequency,

ir, ir;\]2
Af?)‘“l(“‘?”

Q(nl,nz): 8+(n2+1)

i\ 2) 12
+4n1(n2+1)|F12|2(1—a)} , (3.10
andq is the Fano parameter,
2F 5
= . 3.1
AN 34

If we take into account the expressiof&8), the probabili-
ties of finding the atom in stateg, and, are, respectively,

oo

Wi)= 2 Ip(n.nz)l”
1,127
Q(nlvnz)t

cos
2

1
xexp[ 3 [N+ (ny+ 1)I‘2]t]

) 8+(n2+ 1)(A2_|F2/2)_n1(A1_|F1/2)
+1
Q(ng,ny)
2

t, (3.12

Q(nl 1n2)

X sin
2

©

Wy(t)= >, . Ip(ny,n,)|2

Ny,Np=

any(ny+1)|Fy%1—i/ql?
|Q(nl,n2)|2

Xexp{ - % [N T1+(ny+ 1)I‘2]t]

_Q(ng,ny) |2
| t

X1|s 2

In the case of coherent quantized fielfjs(n;,n,)|? is
given by the Poisson distribution

Ny _Nn
n,'n,?

ng! ny!’

(3.13

lp(n1,n2)|2=exd — (ny+1y)]

As with classical radiation, in quantized fields there is a
stable state in the photon number representation, with

q
8:8o:§ [(n2+ 1)F2—nlrl]—(n2+ 1)A2+ nlAl.
(3.19

For further studies of the results of our investigation we
limit ourselves to the case of a single field with frequeacy
Then the probabilities of finding the atom in statgsand i,
become, respectively,

~ I't
W (t)= nzo Ip(n)lzexp( —-n 7)
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Q(n) and for large times, as—«, we have
X|cos——t
2 r,
. W(w) = : (3.23
+n(A,—A—i(T,—T)/2 Qn) |2 C+T
€ (A, 1— (T, 12 ( )t ’ (3.15 1 2

) sin —
WhenI';~TI", and the condition3.19 is met, the probabil-

* ) It ity of the atom being ionized i8V(»)~1/2.
WZ(t):zo lp(n)|“expg —n > Now let us examine the case of a coherent quantized
field, where the photon number is described by the Poisson

an?lF 4 1—ilgl? | = Q(n) |? distribution (2.13. How will (3.15 look for n>1? As in
X ()2 sin——1, Sec. 2, since the Poisson distribution has a sharp maximum
for n>1, we can use the expansi¢2.17) for the Rabi fre-
where guency(3.16), where
(P~ ] S —
Q(n)=)|e+n{ A=Ay - ——F— — 4n?|F3(1-i/q)
2 y(n)=/1- = A=Ay
QZ
12 (n)
2 2014 2 —
+4n |F12| (1 |/Q) ] ’ (316) B i(FZ_Fl) 4n|F12|2(1_i/q)2 (3 24)
and 2 Q(n)
e=E,—E;. (3.17  Performing the summation if2.15 via (2.17), we arrive at

When the external quantized field is in a state with a fixeothe following approximate formulas for the probabilities:

number of photons, i.e., . L o Fr,
p(N)= 6,1, (3.18 1(t)~Z |1+ x|?exg n| ex 5

and the condition .
g +1Im y(n))t —1>—t|mp +|1—x|?
£=8075 n(I';—T1)—n(A2—Ay) (3.19
1 2 —

X — — —
necessary for a stable state is met, the probabilities of finding ex;{ﬁ( exp{ ( 2 m y(n))t 1)+t
the atom in the stateg; and «, are, respectively,

r2 2 XImp|+2 R%(lJrX)(l—X*)
W, (t)= —2( 1+ — exg —n(T;+Tt]
()=
(M1+Tp)% T3 ’H p[ [+Tp
Xexpgn|exg — —i
Zrl n(ry+T )t 2
+ T, e e B
><Rey(n)>t —1|+it Rep } (3.29
n(r';+T,)t
Xcosq ————, (3.20
2 1 r,+T,
Wa(t)~ 7 |1— x|%expg n| exg — 5
r,r, n(r;+T'))t

Wo(t) = ————) 1+ex B e— .

(I'1+ 1) +1Im y(n))t —1)—t Im p}

N+t
+2exg—n(I'1+T',)t]cosq — r,+I, _
+ex;{dex;{—( 5 —Im y(n) |t —1)
For large times, as—o, the above expressions yield
r,+r,
rs r,r, +tIm p|—2Reexpn| exp —| —

Wi(e)= ————, Wy(2)=————. (3.2)

(I'y+T5) (I'y+T5) _

In conditions wherd;~T", we haveW, () =W,(x)=1/4. —i Re 7(”))t —1) +it Rep ]

The total probability of atom survival is
W) = Wi (1) +Wy(t) where

Y r, — e +n[A,—A—i(T,-T)/2]
=T, | LT, oAty (3.22 x(n)= o : (3.26
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andp is given by(2.20. In the limitI',=A,=

isolated leveP:10

We examine the expressiofi3.25 for the probabilities

under the conditio{3.19 that a stable state exists @& n,
ie.,

I')—n(A,—

Then Egs(3.25 yield

n(l,— Ay). (3.27)

q
£=8075

Wi (t)= 2 1+ ML [+T,t]-1
(0= | 1 g el - (T o= 1))
T, T (r1+r2 _ _)
+2F_2R nl exp — 5 —i Re y(n) |t
—1|+it Rep ] (3.28
w t)—& 1+exdn(exg — ([;+T,)t]—1)
2( _(F1+F2)2 xgn(exd —(I'; +T'5)t] ]

nflod (74
].

The total probability of atom survival is
W(t) =W, (1) +Wy(t)

T,

2 Rey(F))t

—1|+it Rep

1+ % exd n(exd — (I'y+ Fz)t]—l)]].
2

(3.29

When ('; +T)t<1, we have the expressid8.22 with n
=n. For large times, as—«, from (3.28 we obtain

i +2 cogt Rep) ]

(3.30

Wi ()~

2
AT
(T1+T)?

Wo(o0)~ {1+e” n[1 2 cost Rep)l}.

(I'y Fz)2

0, these ex-
pressions transform into the expressions for the decay of an

A. D. Gazazyan

Since forn>1 the second terms in braces(8130) are small,
2

W)= 2 Wy~ — B2 (33
Brry? T (It
These expressions coincide wit.21), and forl';~T", we

again find thatW,(=)~W,(x)=1/4. From(3.29 we can
derive an expression for the total probability of finding an
electron in the atom:

r
2 1 5
r1+r2(1+ r,°

Sincen>1, we arrive af(3.23, and atl';~
W()=1/2.

In a similar way we can derive an expression for the case
of a squeezed quantized field when the squeezing is weak.
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Squeezed harmonic generation in cooperative resonance scattering of intense radiation
by dipole molecules
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We examine the processes of resonance Raman scattering of intense electromagnetic radiation by
a lumped system of two-level atoms with a constant dipole moment. We calculate the

intensity of thesth generated harmonic in a saturating electromagnetic field and the statistical
characteristics of this harmonic. Finally, we show that stleharmonic is squeezed at

saturating field intensities. €@€998 American Institute of Physid$1063-776(98)00504-4

1. INTRODUCTION where E; and w, are the amplitude and frequency of the

incident radiatior(the vector of the electric component of the

. The Qe”eraﬁon of squeezed eIect.romagnetic radiation Ifnearly polarized wave is directed along the dipole moment
still drawing much attention. Generation of squeezed radlaa22 of the oriented molecules

tion in various spectral ranges, including vacuum UV, is es-
pecially important. On the other hand, observation of higher

harmonics generated by short laser pulses applied to the - gasic EQUATIONS FOR THE DENSITY MATRIX OF A

oms of inert gases, molecules, and crystdlproves that  cysTEM OF ORIENTED DIPOLE MOLECULES IN
coherent radiation can be generated in a broad spectral rang@y exTERNAL ELECTROMAGNETIC EIELD

The aim of the present investigation is to study the pos-
sibility of squeezing in higher-harmonic generation using the ~ The Hamiltonian of a system @ oriented dipole mol-
example of resonance scattering of electromagnetic radiatiogcules in an external electromagnetic field for a lumped sys-
by dipole molecules. One-photon squeezing in cooperativéem (\>1, with A\=27c/w, andl the linear size of the sys-
resonance fluorescence in two-level systems was studied §m has the form
Q. V.and S. V. Lawandéln our paper we fo<_:us on squeez- H= HE)M)_I_ ngh>+v(t)+w(t)+ Hi, 1)
ing processes that take place during excitation of higher har-
monics due to Raman scattering. We examine a lumped sys- M)_ (ph)_ t
tem of two-level molecules that have a dipole momaptin Ho" ' =fwaR,, Hg _zk: h by,
their excited state and are oriented by a given external field.

Multiphoton processes in the resonance scattering of V(t)=(Eq-d)R, coswot,
light by an individual molecule have been discussed in Ref. _ b o
8. In contrast to Ref. 8, in the present paper we study the W)= (Bp-dz) (RT+R7)cos wot,
effects of cooperative scattering, which take into account the ) .ot
presence of a strong electromagnetic field and the possibility ~Hint=1 ; (G-d20) (RT+R7) (b —hy).
of cooperative spontaneous luminescence. We assume that in
generating thesth harmonic, the system remains in the Here wy; is the frequency of the transition between two
lumped state. We will show that the squeezing in cooperativépecified states of a molecule, which form a two-level sys-
luminescence in the hard UV range is a highly nonmonotonidem, o= V27w, /Ve,, with V the quantization volume
function of the offset from resonance and the intensity of theande, the unit polarization vectoR™ andR, are the coop-
scattered light and increases with the number of molecules ifirative spin operators satisfying the commutation relations
the system as long as the model remains lumped. Ip the [R*, R"]=2R,, [R,, R*]==R%,
vacuum UV range the advantage of the proposed multipho-
ton method of higher-harmonic generation of squeezed radi@andbj andby are the Bose operators of the electromagnetic
tion over the one-photon method proposed in Ref. 7 is thatield.
one is able to use realistic Rabi frequencies. The nonmono- N what follows it will be convenient to pass to the Furry
tonic nature of the squeezing effect is due to the contributiofepresentatiol. Then the termV(t) is taken into account
of photon re-emission in the interaction of dipole momentsexactly in the zeroth-order Hamiltonian, and after perform-
d,, with the electromagnetic field, determined by a dimen-ing simple transformations we can write the Hamilton{an
sionless parameter greater than unity: in the Furry representation as follows:

- b
| Epdy H=HE +HP"+W(t) + Hig,

P™ gy W(t) = (Eq-dyy) (R explip sin wgt)

1063-7761/98/86(4)/4/$15.00 657 © 1998 American Institute of Physics
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+R™exp(—ip sin wyt))cos wot, 3. STATISTICAL PROPERTIES OF THE GENERATED
HARMONICS
B .d-) (R ext(ip sin wnt . Let us examine the power of the electromagnetic radia-
nt ; (G- dau)( Rip ot) tion generated by a quantum system:
+Rexp(—ip sin wet))(bf—by). d
P~ 1P sin wgt) ) (b= b P=3) fiwy gy (bbi). @3

Now let us introduce the density matrix of the atomic _ _ _ _
subsystemo(t)=Tr x(t), where x(t) is the total density We write the equation of motion for the Bose varlabl_es
matrix, and the trace is taken over the variables of the photoabtained through a formal solution of the corresponding
subsystem. Heisenberg equation:

We employ the projection-operator methéske, e.g., (Gh-gy) [t
Ref. 10 and keep only terms of lowest order in the interac-  p/(t)=b}(0)exp(i w,t)+ 9 G2 f dr
0

tion with the photon-field vacuum. The result is the follow- h
;nugbgasliz?nqn of motion for the density matrix of the atomic X expli o 7) (R (t— 7)exp(ip sin wo(t— 7))
+R (t—7)exp(—ip sin wp(t—17))). 4
@:ié[o’(t)’ RZ]—}—iQnO[O'(t)’ R"+R7] We insert(4) into (3) and use the Markov approxima-
t tion, which amounts to ignoring retardation in the slow part
+a([R™, o()RT]+[R a(t), R*]) of the spin operators:
—b([R™, RTa(t)]+[a()R™, R*]), 2) R™(t— 7)=~R*(t)exp( Fiwy7).
0y After simple transformations the expression férbe-
21 comes
0=wy—Nowg, Oy = le@JnO(P)y
fiwy < [ S\?
P=—=23 | = (B2, (PR'R")
a= —| Jn-n (p),
27y =1 \Ng) "™ Mo +32in,(P(RTRT)),
1 2 /m\3 wheres stands for the number of the harmonic generated at
b= 5 (n— J2m+n0(p), the frequencyw=sw,. Finding the numerical value oP
Tspm=1 \ g

requires knowing the correlatofR"R™) and(R"R™), and
) ] the calculation of these correlators for a system consisting of
wheren, is the resonance parameter, equal to the integer pagf |arge number of molecules is extremely difficult math-
of the ratiow,;/wo, 4 is the offset from resonance, and  ematically due to the necessity of solving E2). Hence we
consider only the steady-state case and the region of saturat-
ing fields (1, >N(a—b) (below we explain how these ap-
proximations can be used simultaneolis§ince in this case
(R*R™) and(R™R™) are of the same order, we conclude
is the probability of one-photon spontaneous decay of thdhat the dependence of the intensity of the radiation on the
excited state. harmonic number is determined primarily by the order of the
Equation (2) was derived under the conditions that Bessel function and that the intensity reaches its_ maximum
p<2ny and Ey-dyy)/fw,y<1, which made it possible to yalue ats~p+n,. Whens>p+ no, the Bessel function rap-
consider the interaction of the dipole momehyg and the idly decrea;es, which corresponds to the 'cutoff effect in the
external electromagnetic field in the resonance approximaheory of higher-order harmonic generation by atoms. To
tion. Clearly, Eq.(2) with d,,=0 coincides with the well- determme_ the statlst_lcal properties of the scattered radiation
known result of Ref. 11. The constarssandb are the rates W€ €xamine the variance of the quadratures of the electro-
of population depletion of the excited and ground states, reagnetic field:?

1 4 w§1 )
T 373 |z
sp fic

spectively. The constarit is zero atd,,=0 and is a specific GAAM)Z)=(GMZ)— (M2, i=1,2
feature of the generalized two-level systems witjy# 0 ' v v T
considered here. The emergence of a nonlinear dependence 1 i

on the intensity of the external electromagnetic field of the M1=§(bl+ by), M2=§(bl—bk),

Jrzn(p) type (Im(p) is the Bessel function of a real argument

is due to photon re-emission processes and only in the limiivhere angle brackets indicate averaging with the total den-
p<<1 corresponds to perturbation-theory results with a mini-sity matrix x(t), and f: stands for normal ordering. The fact
mum number of photons required by the given physical prothat the(:(AM;)2:) (i=1,2) are nonzero is sufficient for the
cess. existence of squeezing in the spectrum of the scattered light.
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After we eliminate the Bose variables via Hg), and em- +[(t)S,S )+ W[S,0(1),S,]

ploy the Markov approximation, we arrive at the following ’ ’

expression: +[S,,a(1)S,]), Y
| l? - 1

(:(AM1 %)= === (3 (p) + 2,0 (PDI(RTRY) .= /L_1 2+02, a=AZa+adb,

+(R"R7)—(R")2—(R7)?] b=A2a+A%0, y=A%(a+h).

2
1%[357%(‘))((}?*' R )—(R"WR™)) Clearly, in the Digke-state basis, the steady-state solution of
Eq. (7) can be written as follows:

+32,n,(P)(RTRT)=(R*)}R7))], T =2t exp—asS,), ®)

wheres is the number of a harmonic, apdis a geometrical \yherez is a normalization constant and=In(23/0?)
11 ! )

factor™ _ o A remark is in order. In Eqg2) and(7) we allowed only

Following Refs. 7 and 13, we introduce new quasispinfor the decay of the excited state, a process related to transi-
operatorsS™ ands, such that tions to the ground state. Actually this means that we are

[S*, S7]=2S,, [S,, S']=*S"; employing a strictly two-level approximation, since we ig-

. ) ~nore decays into “third” states, whose transition probabili-
they are related to the “old” operators via the following fies areT. The two-level approximation works for times

formulas: t<I'"1. Thus, the steady-state soluti¢8) is valid in the
R*=A;S"—A,S +2A5S,, R =R, time interval @—b) “l<t<I 1.
Using the solution(8), we can find the means in Egs.
R,=(A1-42)S,—A3(S"+57), (5)—(7):
where A;=cog 7, A,=sir®zy Az=sinycosy and <S+Si>:_<Si1>+(N_1)<511>+N1 (S*)=0,

cot2n= 5/29n0. ,
In terms of the new quasispin variables, the desired (S S')=—(Si)+(N+1)(S1y),

guantities, i.e., the variance of the quadratures of the electro- N2
magnetic field and the radiation power, become <5§>:<3§1>_N<511>+Z,
((AM4 )%
((aMy2) zs where
=iﬂ(J§,n (p)+ 32, (p)[BA((S2)—(S)?) oo NZLNH3— (2NZ4 2N+ LN 2(N+1)2LN - L 2— L
2 0 0 (Spp= )
Z(L-1)3
—A14,((STST)+(S"S")—2(S" (S )] ~
al? (S NLNT2—(N+2)LN T4+ L . a
_lm _ _ = v L=z
=513 (P)(AT(STST) ~(ST)(ST)) ' Z(L-1)? b

These expressions for the correlators make it possible to

2 —ct+\_ /ot — 2 2
FA(SST)=(STHS ) T4A5(S) calculate the power of the generated harmonics and study the

—(S)?)+ 32 (P)(A(S™SY) statistical properties of these harmonics in a saturating field.
0 Note that the spectral distribution of the radiation intensity is
—(S*)(S*>)+A§(<S*S*>—<S+) a highly nonlinearifnonmonotonig function of the frequen-
ciesswg (s=1,2,...) andstrength of the applied electro-
X(S7)) +4A5(SH—(SH)], (®  magnetic field(Fig. 1). Here the intensity of some of the
hon Z [ g\ higher harmonics may exceed the radiation intensity at the
—_ra = 292 242 fundamental frequency, (Fig. 1).
i Tsp 321 ”0) L(A1T5-ng(P) + 42054 ny(P)) Numerical analysis showé&Fig. 2) that the degree of

squeezing for the optimum harmonse-p+ng reaches its
maximum value at£/29n0)2~0.36. The size of this squeez-
2042 2 2 ing is of the same order as in one-photon resonance fluores-
B _n"(pHJSMO(p)xSZH' © cence atw=Ssw, (see Ref. J. But in the event of such one-
We assume thaﬂno> N(a—b). Then, if we ignore the photon fluorescence the fields must be saturating, i.e., the
small terms(of orderN(a—b)/Qno), Eq. (2) becomes Rabi frequency must be much larger than the product of the
number of emitters and the probability of decay of the ex-
o o~ o~ ~ . cited state of an individual emitter. This condition plays an
T:'Qno[a(t)lsz]"‘a([s o (1)S7] important role in statistical properties of the scattered radia-
_ tion, since in weak fields light scattering is coherent, with the
+[S o(1),ST ) —b([S,S o (1)] statistical properties of the applied and scattered electromag-

X(STST)+ (332, (p)+ATIL., (p))(S™ST)
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Multiple scattering of laser radiation in a randomly inhomogeneous turbid medium with a
spatially localized flow of particles is studied. The time autocorrelation function of backscattered
light is calculated for the case of a laminar flow of scatterers in a cylindrical capillary

embedded in the medium. A new method is proposed and tested experimentally for determining
the position of the dynamic region and the dominant form and characteristic velocity of

the particle motion there. €1998 American Institute of Physid$1063-776(98)00604-(

1. INTRODUCTION presented are in good agreement with one another. More-
over, they agree with both the results of other experinténts
Problems involving the multiple-scattering of light in and theoretical calculatiortd.The potential possibilities and
randomly inhomogeneous media have been attracting a grefanitations of the method of measuring the characteristics of
deal of attention in recent yealsThis is due to both the scatterer flows in strongly light-scattering turbid media are
diversity of beautiful physical effects observed underevaluated. The method we propose could find interesting ap-
multiple-scattering condition&oherent backscatterifigand plications, for example, in hemodynamics, since it opens up
angular and temporal correlations of the scattered radfationthe possibility of performing noninvasive measurements of
and, in connection with the extensive use of optical diagnosthe velocity of blood flow in blood vessels and detecting
tics methods in modern medicifie] the extreme importance changes in blood volume in capillary ansae and other bio-
of correctly describing the processes occurring under theslegical tissues?
conditions.
So-called diffusing-wave spectroscopy has been deveb THEORETICAL ANALYSIS
oping rapidly during the last ten years. Its foundations were ) ) _ .
laid in Refs. 8 and 9. The method of diffusing-wave spec- Let us consider the scattering of light with wavelenggth

troscopy is based on measuring the time autocorrelatioff! @ Sample of a turbid mediurgparticle size~\), charas:-
function Gy(r)=(E(t)E*(t—1)) of light that is multiply ~terizéd by a photon transport mean-free path =(us

. . . . -1 H .
scattered in a turbid medium. It is found that even under theh #a) > Whereug and u, are the scattering and absorption

conditions of strong multiple scatterir@, (7) is sensitive to  Coefficients,® and in addition u,<u¢. Under strong
the character and intensity of scatterer motion in the meMultiple-scattering conditions\(</* <L, whereL is the
dium. Moreover, by measuring,(7) it is possible to detect qharactensuc size of the samplhe time correlat|on f_unc-
very small displacements of the light-scattering parti¢igs ~ tion Gi(r,7) =(E(r,t)E* (r,t— 7)) of depolarized multiply-
to hundredths of a wavelengthof the radiation employed scattered radiation measgred at pairn the.boundaryo‘.of _
while the methods based on measuring the characteristics §1€ Sample can be described in the d'ﬁys'gn approximation
single scattering of waves are sensitive only to scatterer did?y Solving the stationary diffusion equatfdrt
placements over a distance of the ordehdfAnother inter- F(r)
esting possible application of diffusing-wave spectroscopy [Vz—az(T)]Gl(f,TF—D—
has been discovered in the last few years — the possibility of
determining the location and performing diagnostics of dy-with the boundary conditiof
namic inhomogeneities in turbid media on the basis of an 2
analysis of the scattered radiatitfh® Gy(r,7)— 5/*(n-VGl(r,r))=0, reS. 2

In the present paper we propose a method of determining
the location and measuring the characteristics of directethere we have neglected light absorption in the medium,
scatterer flows which are hidden deep in a turbid mediumF(r) describes the distribution of light sourcds,=c/™* /3
The method makes it possible to obtain information abouis the light diffusion coefficient in the medium,n is the
the motion of particles inside a medium on the basis of thenward unit normal to the surfac® and the specific form of
dependencé&;(7) measured at different points on the sur-the functiona(7) depends on the character of the scatterer
face of the sample. The theoretical and experimental result:otion in the medium:a?(7)=37/27,/*? in the case of

@

p
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Source Detector [ Finally, we write the boundary conditions on the surface
S, of the capillary in the forrf
H——nf p——— X U
" _
A Gl N=G(r.7), res,, )
e (n-VGi(r,7)=(n-VG{(r,7)), reS, (6)

whereG!™“(r, 7) are solutions of Eq(1) inside and outside
the volumeV, respectively.

To complete the mathematical formulation of the prob-
FIG. 1. Schematic diagram of the experiment. The samplel®x 15 cn?) lem we have only tq specify the dlstr_lbutlﬁ(r) of the ||g.ht _
consists of particles of rutile (Ti§) suspended in resif®.01 g of rutile per ~ sources in the medium. In an experiment the sample is ordi-
100 ml of resin, particle diameter 0.28m, ug=4 cm %, u,=0.002cm*,  parily illuminated by a laser beam of finite widih The
1*=0.25 cm,Dg=0). A transverse cylindrical opening with diameter cased> /* andb</* are easiest to describe theoretically,
=0.75 cm, where a flow of a suspension of polystyrene beads in water . in the first imatelv that
(particle diameter 0.29@m, concentratior=0.5%, Dg=1.5X 10"8 cn?/s, since In the . |r_s (?ase one Can assume approxm_a ely a a
70=6.32x10"* 5) is produced, was made parallel to the surface inside thePlane wave is incident on the surface of the medium, while
sample at a deptk=0.925 cm. Laser radiation is introduced into the me- in the second case one can study a point source of radiation
dium by means of a narrow fiber-optic lightguide with diamédter/* . The positioned at a point determined by its coordingteon the
_tlme autocc_;rrelgtlon function of the m_tensny of the multiply scattered light surface of the mediursee Fig. 1 Since the coherent laser
in the medium is measured at the poirty,0). .. . % 15

radiation becomes diffuse at a depth~/*, we shall
write the source function in Eq1) in the form

2a

Brownian motion of particles in a medium with diffusion 8(z—2zy) b /*

coefficientDg,° where 7y=(4k?Dg) " andk=2=/\, and F(r)= ’ . (7)
a?(7)=6(rlm/*)? in the case of laminar scatterer fld, 8(X)8(y—ys)8(z=2), b</*.

where the characteristic timg depends on the flow geom- On this basis it is easy to obtain an expression for the

etry. In the case when the directed motion of the light-correlation functionG} of depolarized light backscattered
scattering particles is superimposed on the random walk ofkom an infinite medium in the absence of a scatterer flow in

the particles@?(7) is given by a sum of terms corresponding the capillary ¢s—). In the limit 7< 7, we obtain
to these two different types of motidf.

0/ — y
The boundary conditior{2) can be approximately re- Gi(n)=exp{—yaou ™), ®)

placed by requirings,(r,7) to vanish on the so-called ex- for b>,/* and

trapolated boundaty z=—z,=—A/*, where A depends

on the scattering conditions near the boundary. When the Jexﬁ—aoutp)

scattering is isotropic and the refractive index of the scatter- th)(x,y,r) - 477Dpl p
ing medium equals that of the surrounding medium, the
Milne theory givesA =0.7104+° exp( — agu/p2+ 42/ *2)
Let the turbid medium fill the half-spa@>0 and let the - \/W (©)

medium contain a hidden inclusion in the form of a cylindri-
cal capillary with diameted=2a>/*. Let the capillary be for b<</*. In these formulagy=1+ A is a numerical con-
directed along the axis and located at a distanzdrom the  stant of the order of 29=[x?+ (y—y,)?]"? (see Fig. 1, and
boundary of the mediuntFig. 1). We denote byS, the sur-  the light source is assumed to be located at the poit)0,
face of the capillary and by, the volume enclosed by it. If on the surface of the medium. The resu$ and (9) were
a directed scatterer flow is produced in the capillary, whileobtained earlier by different methods, and they have also
elsewhere in the medium the scatterers move as Browniabeen confirmed experimentafly. We note that the correla-
particles, then we can introduce in Ed) a spatial depen- tion function (8) does not depend on the positior, (y) of
dence ofa?(7) of the form™ the detector on the surface of the medium or on the photon
, . transport mean free path*.

an(7)=37/270/* 24 6(r/ T/ )%, TeVy, Now let a laminar flow of light-scattering particles be

aﬁut( 7)=37270/*?, reVs. produced in the capillary. In this case we write the solution
(3  in the form G,(x,y,7)=G3(x,y,7) + G3(x,y,7), where the

In our experimental situatiofFig. 1) a Poiseuille velocity last term describes the effect of the flow on the correlation

profile can be assumed for the particles inside the capillanfunction. Neglecting the conditiof2) on the boundary of the

a?(1)=

which gives medium, we obtain for the cade>/*
= \[30/k/*T;, wherel';=32Q/\2d?, 4 h-zo < (= dp
=30k T =320z W Gtym=- 2 5 [T 2 cosn(p-o))
and Q is the volume flow rate of the liquid, equal to the 2m/* =1 J - P
volume of the liquid passing through the cross section of the h—z
capillary per unit time. It is easy to show th@tis related to Xt aouths, aou/h?+Y?, ag@ anal,

the average velocity of the directed motion of the particles
in the capillary by the relatio@= 7a?V. (10
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where 9
1.0
fn(§1,€2,€3,64) = Kn(§1)Kn(§2)
« &3l n(€3)1n(8a) — Ealn(€3)1 (€4
L] 08;—
£5K (€)1 n(8) — EaKn(£a)1 (&) L\
(11
I, andK,, are modified Bessel functions, primes denote dif-
L . . . . 0.6r
ferentiation of the corresponding function with respect to its
argumenth=z+a, and§=tan 1(y/h). A somewhat differ-
ent result is obtained fdp<</™:
1 2 e 0.4F
S H
GI(X,y,7)=— P n; fo dp cogné)cog px) - 1 o
m 1 10 100 T, Us
2, 2 2, 2
Xfa(ryp?+ Foup rS‘/p T Aoup FIG. 2. Normalized time autocorrelation function of multiply scattered ra-
5 > 5 5 diation, calculated in the diffusion approximation for the case when the
a\/p + agup a\/p +ain), (12 radiation source and detector are arranged symmetrically relative to the

N NT PN NT capillary (x=0, y=-y,=2.5*, z=3.5*, d=3I*, zy=2,=/*,7,=6
wherer = (h +y9) " andrs=(h"+yg)"~ S %1074 s). Different curves correspond to different flow velocitias= 0.1
To satisfy the zero boundary condition in the plane(y), 0.6(2), 3 (3) cm/s.

z= —z,; and thereby obtailﬁsf for the experimental scheme

shown in Fig. 1, we use the method of imag&§Ve place

the images of the capillary and radiation source on the othewithin the coherence area of the scattered radiation to be

side of the planeg= — z; so that the geometry of the problem recorded. Passing along the waveguide, the scattered radia-

would become symmetric with respect to this plane. Thertion enters a photomultiplie?,which operates in the photon

the desired solution can be written as a sum of the expresounting mode and is connected with a digital multichannel

sions (8) or (9) and terms of the forn(10) or (12) corre- autocorrelatof) The use of fiber-optic waveguides to deliver

sponding to two different capillaries and light sources. the laser radiation to the sample and to record the scattered
light and the use of a digital correlator make it possible to
obtain a high signal/noise ratio in the measurement process.

3. EXPERIMENTAL CONDITIONS The measured quantity in the present experiment is the

o _ _normalized autocorrelation  function g,(7)={I(t)I(t
A schematic diagram of the experimental apparatus iS- 7))/(1)2 of the intensity of the scattered light. The radia-
shown in Fig. 1. The sample consists of rutile (3)Par-  tjon scattered in the turbid medium has a Gaussian distribu-

ticles suspended in resin. A cylindrical opening with diam-tjon a5 a result of whichg,(7) is related with gy(7)
eterd=0.75 cm was made through the sample at distance- G, (7)/G,(0) by the Siegert relation

z=0.925 cm from one of its faces. A laminar flow of a 5
suspension of polystyrene beads in water is maintained in the 92(7) =1+ Blg1(7)]%,

cylindrical opening by means of communicating vesselsyhere 0<g<1 is the aperture function determined by the
placed at different heights. The optical propertigs ( #a)  measurement system usetk. Since the sample used in the
of the suspension are close to those of the sample materialxperiment does not satisfy the condition of ergodicity, the
Therefore the region inside the Capillary differs from the SUr-producu (t) | (t_ 7-) is a\/eraged over an ensemble of realiza-
rounding medium only by the dynamics of the particles lo-tions by the method proposed in Ref. 21. The essence of this
cated in the capillary. For this reason, following the termi-method is that the averaging is accomplished by moving the
nology of Ref. 13, we shall call this region dynamically sample alternately in one direction and then in another rela-
heterogeneous. tive to the stationary source and detector by means of an

Coherent laser radiation at wavelength-514 nm and  electric stepping motor. In our experiments the velocity of
power 1 W, generated in the TEjimode by an argon ion the sample motion was equal to about Af/s. The direc-
laser with a Fabry—Perot etalon placed inside the laser cayion of motion is changed automatically, as a result of which
ity, is injected by means of a system of mirrors and a lenghe sample is displaced by approximately 50 first in one

into a multimode fiber-optic waveguideore diameter 200 and then in another direction parallel to the capillary axis.
um, numerical aperture 0.16The Fabry—Perot etalon inside

the laser cavity gives an adequate radiation coherence Iengﬁh
(about 3 m, which is necessary in experiments on multiple
scattering of light® Passing along the waveguide the light is Figure 2 shows the normalized correlation function of
incident on the surface of the sample. The light scatteredhe scattered radiation field, calculated for the case shown in
from the sample is collected by means of a single-modd-ig. 1 where the radiation is delivered and detected using
fiber-optic waveguiddédiameter 3.1um, numerical aperture thin fiber-optic waveguidesb(</*). The calculation was
0.13, which allows the fluctuations of the light intensity performed using Eqg9) and(12) with «,,=0 and the val-

BASIC RESULTS AND DISCUSSION
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FIG. 3. Experimentally measured normalized time autocorrelation functionFIG. 4. Normalized time autocorrelation function of multiply scattered ra-
of multiply scattered radiation for the experimental arrangement shown irdiation, measured for different types of scatterer motion in the capillary:
Fig. 1. The radiation source and detector are arranged symmetrically witiBrownian motion(1), laminar flow with velocityV=0.08 (2) and 0.24(3)
respect to the capillaryx=0, y=—y,=2.5*). Different curves corre-  cm/s, turbulent flow withlv=0.88 cm/s(4). The remaining parameters are
spond to different flow velocities/=0.08(1), 0.62(2), and 3.22(3) cm/s. the same as for the curves presented in Fig. 3. The measurement errors fall
The measurement errors fall within the size of the symbols in the figure. within the size of the symbols in the figure.

ues of the other parameters close to those used in the expedue to the method of averaging, vibration of the components
ment. The corresponding experimental points are presentesf the optical system, photomultiplier noise, and s9.on

in Fig. 3. As one can see from these figures, the section of We note that the theoretical and experimental results
the correlation function in the bounded range of delay timegpresented in Figs. 2 and 3 not only agree with one another
7 (1< 7<400 us under the conditions of our experimeig  qualitatively but they are also very close quantitatively. This
most sensitive to a change in the velocity of the fluid flowattests to the fact that our theoretical approach to studying
inside the dynamic region; this agrees with the results obthe multiple scattering of light in dynamically heterogeneous
tained in Ref. 13. For<<1 us the behavior of the correlation media is fully applicable to real experimental situations.
function is determined mainly by the small but nonzero ab-Moreover, the quantitative agreement between the theoretical
sorption of light in the medium, the absorption being theand experimental results makes it possible to suggest a
same both inside and outside the capillary. Fer50  method for determining the location and performing diagnos-
—200 us g41(7) tends to saturate at a constant level that istics of scatterer flows hidden inside strongly light-scattering
independent of the flow velocity. This fact was predictedmedia that is based on measurement and subsequent analysis
theoretically in Ref. 12 and can be easily explained qualitaof the temporal autocorrelation function of the multiply-
tively on the basis of the correspondence between the shostattered radiation. Indeed, the difference between the curves
trajectories of photons in the medium and the long delayg,(7) corresponding to different average velocitéf the
times 7:8 For larger the rate of decrease of;(7) is deter-  particle flow in the capillary is quite large and can be used to
mined mainly by photons with relatively short trajectories, measureV directly. Quantitative calibration of this method
since photons with long trajectories are now completelyof measuring the velocity can be performed on the basis of
decorrelated. Photons with short trajectories consist mainlpur theoretical model.

of photons which do not reach the capillary, and since the It is interesting that the method proposed for studying
particles in the medium surrounding the capillary are immo-the dynamics of particles in turbid media can be used with
bile, the theoretically computed functign(7) approaches a equal success for different types of dynamics of scatterers in
constant different from zero as— . The value of this con- the medium. As an illustration, we present in Fig. 4 the re-
stant is determined solely by the depth at which the capillarysults of measurements of the autocorrelation function of
is located. As shown in Ref. 12, fat>/>* it can be esti- backscattered radiation for the cases of Brownian, directed,
mated as 1 (zy+2z;)/z=0.55 for our sample z,=/~, and turbulent motions of light-scattering patrticles in the cap-
z,=0.7104*, z=3.7/*). Since in Ref. 12 a laminar flow illary. The system of communicating vessels located at dif-
of light-scattering particles in a plane-parallel layer and notferent heights was found to be inadequate for producing a
in a cylindrical capillary is studied, the agreement of thisturbulent fluid flow, since such a system does not make it
estimate with reality is satisfactory. However, as one can sepossible to reach the critical Reynolds number on the experi-
from Fig. 3, the experimentally measured correlation func-mental rectilinear section of the capillary. For this reason,
tion, though it tends to saturate at-50—200 us, still con-  turbulent scatterer motion in the cylindrical cavity inside the
tinues to decrease far>200 us in contrast to the function experimental sample was produced artificially with the aid of
calculated theoreticallyFig. 2). This is due to effects which a nozzle placed at the entrance opening of the capillary.
were neglected in our theoretical modspecifically, it is As one can see from Fig. 4, different types of particle
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motion lead to different time dependenapg 7). This con-  only by our close collaboration with D. A. Boas, B. Chance,
clusion also follows from the theoretical analysis: Forand A. G. Yodh at the University of Pennsylvar(idSA),
Brownian motion the variance of the phase differenceM. Heckmeier and G. Maret at the Center de Recherches sur
(Ag?(7)) for two photons scattered successively by theles MacromoleculegStrasbourg, Frangeand Professor R.
same particles of the medium at times separated by an inteMaynard at the UniversiteJoseph Fourier(Grenoble,
val 7 is proportional tor.2° For laminar and turbulent flows Francé. We thank S. S. Chesnokov, V. V. Tuchin, and A. V.
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motion. We note that for the reasons explained above alhis seminar.
curves in Fig. 4 approach the same asymptote for latge
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It has been shown by Yu. M. Golubev, M. I. Kolobov, and I. V. Sokolov, Zksft Teor. Fiz.

111, 1579(1997 [JETP84, 864 (1997], that when an optical cavity is excited by external

radiation from a sub-Poisson laser the cavity mode may be in either a sub-Poisson or a Poisson
stationary state. This is not important for a resonant medium which is excited into the

upper laser level while interacting with this mode inside the cavity. The degree of regularity of

the excitation will be identical to that of the initial light flux incident on the cavity, and

this ultimately ensures the same sub-Poisson lasing as for strictly regular pumping of the resonant
medium. © 1998 American Institute of Physid$$§1063-776(98)00704-5

1. INTRODUCTION sion of the optical cavity is preservethe cavity does not
reflect anything; the physical nature of the departure of the
In the present paper we study the physical situatiorie|d from the cavity is, of course, not importanin this case
where in some natural processes, for example, in interatomig,ere is hope that the excitation of the medium inside the
collisions, a laser medium is excited only into a nonlaserayity will be, first, uniform over the cavity volume and,

level. The population inversion required for lasing is pro-gecond, regularized. In what follows we shall show this and
vided by the additional action of radiation from an external\;« shall determine the measure of this regularization.

sub-Poisson laser. The formulation of such a problem is en- |, o y4ition to this. we must solve one other question of

tlr:ely a(_:leqluate, since er now have aft our ?Iqusailq'nzft Onl¥undamental importance: Does stationary photon statistics in
theoretical suggestions for a source of nonclassical lig the exciting mode influence the excitation statistics of the

also experimental implementations of this idea in J&zam medium? When we posed the problem in Ref. 5, we assumed

n Ru§5|a3§ One can discuss two limiting situations. One ISy gyp, poisson photon statistics in the exciting mode must
the situation where at the excitation frequency an optica . . : o
e established in order to accomplish regular excitation of

cavity containing the excited medium does not manifest itsthe medium. We constructed our thought experiment so as to
resonance properties. This is the single-pass excitation vari- '

ant. In the other limiting case external radiation excites any >ure that under given 'phyS|caI cwcum;tances the mode
appropriate high® cavity mode and this mode in turn ex- photons would be sub-Poisson to the maximum degree pos-
ible. This corresponded to the generally held view that the

cites the laser medium. This is the multiple-pass excitatior? > < o . .
variant. The single-pass variant is of no interest to us, sincRredicted statistical pattern in one or another experiment and

the exciting sub-Poisson light will be “spoiled” as a result the stationary distribution in the cavity. mode should corre-
of absorption in the first few layers of the material so thatSPONd to one another. Now, however, in consequence of the
now the main excitation in the further layers will actually be results obtained in Ref. 4, we know that at least in some
brought about by Poisson light. In such a situation regulariN€asurement procedures stationary photon statistics in a
ization of the excitation of the active medium can only haveMode can be completely unimportant, and we intend to dem-
a small effect. onstrate this for the excitation of the active medium.

The situation could be different in the multiple-pass vari-  AS We understand the situatiéiepending on the ratios
ant, where the excitation in one pass of the radiation througRf the actual modal spectral widths, completely different sta-
the material is neglected and the required effect accumulatdistical pictures can arise in a mode excited by the same
over a large number of passes, the process being uniforgtb-Poisson light. We can secure inside a cavity precisely
along the medium. In our opinion, the laser medium can béhe same photon number fluctuations as in the mode of the
excited with the required regularity here. Indeed, accordinghitial sub-Poisson laser. But the situation where these fluc-
to Ref. 4, if interference conditions are secured such that thiélations are completely random is entirely realistic. At the
incident light flux is not reflected from the entrance cavity same time it is obvious that what are more important for us
mirror but completely exits on the opposite side of the cavitythan the stationary states of any group of particles are the
(ideally transmitting optical cavity then the outgoing pho- statistical properties of the fluxes of particles which different
ton flux is regularized to the same extent as at the cavitgroups of particles exchange with one anottier example,
entrance. If the exit window is now closed and the flux isthe photon flux from a stationary mode into a stationary me-
used to excite the laser medium, which is distributed uni-dium) and which, strictly speaking, need not have the same
formly inside the cavity, then the condition of total transmis- statistical properties as the stationary states.

1063-7761/98/86(4)/6/$15.00 666 © 1998 American Institute of Physics
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" frequencyw, through the entrance windowk) and by ab-

K, K. K KK A . o )
¢ ¢ sorption in the medium when it is excitdd); the spectral
width of theb mode is formed only by the passage of the
a b field at frequencyw,, through the exit mirror. We shall study

the physical situations with different ratios of all spectral
widths «, (spectral width of thea mode, «,, ., andk.
We begin our discussion with the simplest situations,
FIG. 1. gradually making the system more complicated. We start
from the situation when there is ro cavity at all and the
radiation of thea laser, which we shall assume to be an ideal
2. THOUGHT EXPERIMENT AND ITS QUALITATIVE sub-Poisson laser, directly strikes the photodetector. In the
DISCUSSION present paper we shall assume that the electrical circuit for
Let us assume that the physical system consists of twgwitching on the photodetec.tor enabI(_as us to know Fhe pho-
highQ optical cavities(see Fig. 1 standing next to one tocurrent_ spectrum at the gxn. Acc;qrdmg to Ref. ;I.thIS spec-
another. One cavitythe a cavity) lases at the frequenay, trum is given by the following explicit expression in the case

of a one-mode sub-Poisson lag#re a lase). Its radiation of ideal photodetection:

enters thé cavity through an entrance window and excites a 2
¢ mode at frequencyw. (we shall assume below that the i(2):i(2>(1_ a (1
frequenciesw, and w. are the same The ¢ mode in turn 4 s ket Q2

acts on the medium placed in the cavity, giving rise to the

required population inversion and hence the lasing oftthe As is well known, and as one can see here, at zero fre-

laser at the frequency,, . In order to accomplish all this the duency shot noise is completely suppressed.

active media of both lasers must have the proper resonance Let us now make the system more complicated by plac-

properties(Fig. 2. We shall assume that the active mediuming between the sub-Poisson laser and the photodetettor a

of the a laser and its excitation system are the same as th&avity whose mode frequeney., as we have already stipu-

used in Ref. 1 to describe a sub-Poisson laser: This is essel@ted, equals the lasing frequeney of the sub-Poisson la-

tially a two-layer medium with regular and stationary exci- Ser. But now we shall assume that this cavity is empty, it

tation of the upper level. We shall assume tidaser me- contains no active medium, and both the entrance and exit

dium is a four-level medium. In the absence of external subMirrors transmit, i.e.x.= x¢+ «¢ . It is obvious that in the

Poisson radiation, the laser levéls2) will not be occupied empty cavity a fixed number of photons will accumulate in

at all. The atomic level0) is populated entirely randomly, thec mode and the entering flux of photons from théaser

for example, as a result of collisions occurring in the lasewill somehow separate into a flux reflected from theavity

plasma. We shall assume that the radiation frequesngcpf and a flux directed onto the photodetector. The question of

the sub-Poisson laser equals the frequency of the 0—3 atomihat stationary photon statistics are formed insidettioav-

transition. Then in the process of absorption of the externalty can now be easily answerédor this, we make the fol-

laser radiation and subsequent rapid spontaneous relaxatiéfving argument. The Mandel parametgr characterizing

on the 3-2 transition the atoms are transferred back into th&e rms photon number fluctuations

upper laser level, creating the required above-threshold in- .

version. For simplicity, we shall not introduce any frequency ~ N°—n*=n(1+¢) 2

detuning: The mode frequencies,, w,, andw; are equal

to the frequencies of the corresponding atomic transitions i#s often used for the statistical description.

the medium of thea andb lasers. For thea laser, which in our analysis is an ideal sub-
It is necessary to introduce into the analysis the spectrdf0isson laser, the Mandel parametegjs- —1/2, which is

widths of three actual cavity modes. We shall discuss th&stablished by the corresponding correlations between the

main results for the following physical conditions, optimal Fourier components of the spectral contour of width In

for our purposes, physical conditions: The spectral widtnthe limit x,> ., this correlation is transferred inside the

K¢+« of thec mode is formed by the passage of the field atcavity to the Fourier components of the spectral contour of
width .. In this case it is natural to expect that the Mandel

parametef; will also equal—1/2. In the opposite case,

2 13) 7 ® <k.the cprrectly correlated co_mponents occupy only a very
‘\i\ small portion of the contour at its center, while a large num-
n ﬂ ©a ,O>”wf 12) ber of Fourier components is excited by uncorrelated
i / @ \y® vacuum fluctuations. Then it can be expected that the Man-

\ @ b \ " del parameterg. will become close to zero. Therefore, de-
h %" ) pending on the ratios of the spectral widths, the stationary

photon statistics inside the cavity can be sub-Poisson, just

a b 7 as in the initial laser, or Poissdand, of course, any inter-

mediate statistigs Here we have the right to raise the ques-
FIG. 2. tions: Will this stationary photon statistics influence the char-
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acter of the excitation of the atoms? Is it necessary to striv8 he rate of change of the density matrix consists of the rate

for good photon statistics in order to secure regularity ofdue to the interactions inside tlecavity, the rate due to the

excitation of the medium? interactions inside thé cavity, and finally the rate associ-
First, however, we shall finish our discussion for theated with directed transfer of electromagnetic energy from

case of an empty cavity. As we have already mentioned irthe a to theb cavity. We shall express this formally as fol-

the Introduction, for us it is most important to understand thedows:

statistical properties of the fluxes and not the stationary states 1. 1 . A

of the particles. We can imagine in prln_C|pIe that when an bzra( L,— > |_§>p_ > KaRap+ @La%p

ordered photon flux enters an empty cavity a completely ran-

dom ensemble is created inside the cavity under stationary R 1 R 1 .

conditions, but the outgoing flux is nonetheless ordered to +kcctLpp— > (ket K)Rp— 5 Kb Ry p. (5)

the same degree as the entering flux. This is confirmed in

some sense in Ref. 4. In the case when the cavity is tuned for  The first term in Eq(5), containing the operator

complete transmissiofwhen the detuning of the frequency

of the incident light from the-mode frequency equals zero, [a:

this happens fok;= «¢), the photon flux leaving the cavity

is ordered to the same degree as the flux entering the cavity, 1

irrespective of the statistics of the ensemble of intracavity X ' (6)

photons. In this sense the cavity behaves just as a simple

beam-splitting plate, ignoring the presence of any ir'tem""[ietermines the development of the intracavity field of dhe

phot’gn stlate. | f level di i th .. laser on account of the active mediusee Fig. 2 excited
_Now e(tj us pf\ge our Ol;]r' e\ée ms, ium 'r? the cay|ty into the upper laser level with ratg with no fluctuations:®

(Fig. 2) and setx;=0. We thereby redirect the outgoing pe eypression is written under the assumption that the up-

pr;‘oton flux: B_e fpre l:l)t wgs dalt))sorrl]:)ed by the %homdiﬁ?torper laser level does not decay spontaneously into extraneous
whereas now it is absorbed by the active medium oflihe o, 015 As is well known, the maximum possible squeezing

laser. Obviously, the fate of the photons lost to thmode ¢ 16 jight can be achieved in this case. The parameter
cannot influence the mode itself and thereby also our ear- @ (@
a a

lier qualitative conclusions. Wher.= « holds, the cavity @ny_1_ Y1 Y12

once again operates only in transmission, but the entire pho- (B "= 2|9(f§)|2 ™

ton flux, which once again remains ordered, now goes to ) N
excitation of the active medium. In this case the same orS€ts the number of photons saturating the laser transition.
dered excitation of the atomic medium can be expected, ir] he active medium (g)f the laser is characterized by the
respective of the stationary photon statistics in ¢thmode. ~ following constantsy;™, the longitudinal longitudinal relax-
As a consequence of this, sub-Poisson |asing ofbthaser ation constant of the lower laser |eVng_az), the transverse
can be expectetiThis qualitative conclusion is confirmed by relaxation constant of the laser transition; amcand a:,

an analysis of the photocurrent spectrum. According to th@hoton operators in the lasing mode of thdaser,[a,a™]

1
2a*a—aa‘'—aa'-; BY(aa’ —aa’)’

> == = 2

1
aa’+aa’+3 pi”(aa" —aa")’

calculations below, it can be represented in the form =1
) ) ’ The second, last, and next-to-last terms in &g prede-
i(2_j@]q_ 4Kk Ka (ket ) Kb termine the decay of the quantum oscillators. The operators
Q ~ 'sh 2 2 2 2 2 . A .
O™ (ket )% K+ Q% (Kot K)°+4Q% i+ 92( ) R, have the conventional form
3 -
R.=a’a+a’a—2aa", (®)

As one can see, near zero frequency a dip with a quite

complicated shape and depth . .
» Ry andR. have the same form except that the photon opera-
—i

(2 2
5= |'§z):o shzni _ 4KcK @) tors a,a* are replaced by the photon operatdrs™ or
i2 (Kt k)2 c,ct, where[b,b*]=[c,c*]=1.
The b-laser medium excited into the upper laser level

is present in the shot noise. :
. . ensures the development of themode via the operatbr
The depth reaches a maximum and the dip reaches zero P P

in the case of an ideally transmitting cavity, wherg= . L.
b= P2

—

1
2h"b—bb*—bb"— = B (bb" —bb*)?

3. BASIC KINETIC EQUATION 1
1+ 5 B(bb* +hb")

We are studying three field oscillators. One oscillator X
represents the intracavity single-mode lasing field of ahe
laser. The other two oscillators represent the two-mode field 1 -1
in the b cavity: One mode serves for excitation of the me- +t7 BB (bb* —hb*)?| . 9

dium while the other is the lasing mode. The structure of the
basic kinetic equation for the density matrix of a three-Here the parameters determining the nonlinear properties of
oscillator electromagnetic field can be determined as followsthe b medium have the form
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2|92 2|g)|2 4. BASIC KINETIC EQUATION IN THE DIAGONAL
B =—mrw. BY=—mrm BY=8"+sY. REPRESENTATION AND SEMICLASSICAL EQUATIONS
Y1 Y12 Y2 Y12
(10 We now switch to the diagonal representation for the
The active medium of thb laser is characterized by the gfar\]lsrlzar:i]g;”x' This representation is introduced by the inte-

following constantsy{” and y{? are the longitudinal relag—
ation constants of the lower and upper laser levels,
is the transverse relaxation constant of the laser tran?i?ion. In P(t):f P(a,B,6,0)| )| 8)9)(8l(Bl(a|d*ad?pd?s,
formulating the basic kinetic equatioi®) we adopted the (12
requirement, optimal for our purposes, that the spontaneoys, ..
decay rate of the upper laser level into extraneous levels
equals zero. In what follows, we shall proceed in exactly the — ala)=ala), b|B)=8|B), c|[8)=245|6).
same way with respect to m? laser and we shall require This transformation leads to a partial differential equa-
thaty4” = 0. Then the operatdr, will have exactly the same tion for the weighting functionP(a,,5,t) that can be
form as the operatok ,, with all a indices replaced by  greatly simplified by assuming that the number of photons in
indices and all photon operataaisa* replaced by the photon each actual mode fluctuates very little around its stationary
operatorsh,b™. value:

The physical meaning of the quantity= «n. is that of

2_
an average rate of excitation of the upper laser level obthe |a|*=natea,  sa<na,

laser (n. is the average number of photons in themode |Bl?=ny+ep, ep<ng, (13
exciting the mediurn )

Finally, the term containing the operator [8]°=nc+ec, &c<nc.

|A-a%=@0++é+9— act—bat, (11) To a high degree of accuracy, the stationary solutions

= == = n,, Ny, andn. are identical to the semiclassical stationary
. o ) . . solutions of the problem. The semiclassical equations can be
in the basic kinetic equation gives directed transfer of elecsyng relatively easily, for example, from the initial equation

tromagnetic radiation from 7tha cavity into theb cavity () py neglecting all fluctuations of the fields. These equa-
(from thea into thec mode.” All these expressions can be tions are:

obtained by deriving the kinetic equation for the density ma-
trix of the electromagnetic field using, for example, the pro- d

cedure of Lamb and Sculfy. dt M= "am *a Na

We shall make one more remark concerning the quanti-
ties Kp and ;. In principle, we assume that the cavity E Np=— KN+ K Ne, (14)
contains two working mirrors: One is the entrance mirror  dt

through which the external radiation enters the cavity and the d
second is the exit mirror through which the radiation exits i Ne= — (K¢t k)Nt 2 Kak VNN
theb cavity and reaches the photodetector. Correspondingly,

we must write in the general form,= «y+ kpy and k.= k¢ Under stationary conditions this system becomes a sys-

+x¢. However, as stated earlier, for us the optimal conditem of algebraic equations, the solutions of which can be
tions arex.=0, i.e., when the losses occur in the same chanwyritten in the form

nel as excitation, ang;=0, i.e., when the losses occur only
in the detection channel and as a result of detection. Itis easy |, _Ta Ne_ Akakc M _ & (15)
to see that these conditions are physically consistent, since = ka' Na (kct&)? ng &y

the b- andc-mode frequencies can differ greatly and there- o yhig pasis we can write for the photon density matrix
fore the transmission of the mirrors for them can be com-

letely diff t in the Glauber representation
pletely different.

The absorption coefficient for the external radiation on _
the auxiliary transition 0—3 can be written in the form R(sa’sb’sc’t)_f P(a,p.5.deadesdec, (16
—r pb :
Kk=TroBy’, Whererg is the average rate of completely ran- B i _ i
dom excitation of the auxiliary level 0. Equatias) was a=\Natea€¥,  B=Nptepe?,
written under the assumption that the nonlinear phenomena 5= not eivc

N.t+e

in absorption can be neglected. This is accomplished if e
the following basic kinetic equation:
(By+ B np<1,

IR d 1 9’R d
which contains the saturation parameters forlthetom ot Ka Jes gaR— 5 KaMa _Zr?sa + Kp dep
b)|2 b)|2
(b)_2|gg)3)| (b)_ 2|g63 | S DRI 1 (et 1) d
N (DL 3 T 0" - > —
70 v63 Y5 vy b=, Fef T W) Gl
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n
X ec—n—°8a)R+{---}. anp  ©pe
a 2KaKkckp(Ket K+ 2K,1 2Kp)
= — ny,
The expressiof--} represents all higher-orderderiva- (Kot K) (Kot K+ 2K,) (Ko+ K+ 2Kp) (Kot Kp)
tives which in principle must be taken into account for non- (27)
classical fields. However, we shall show below that they do
) ) v ) L 1 Kp( Kt K)
not contribute to the physical, measured quantities which we ,e,,= — > (et T2 M (28
shall investigate here. (1at Kp) (Kot 2ka)
B 1 Kt K 29
fafe™ 75 Kot k+ 2k, Mo (29

5. STATISTICAL PROPERTIES OF THE PHOTONS STORED

IN A STATIONARY STATE IN THE B AND C MODES We take the condition«.= «, for which, as we know,

the b cavity becomes completely transmitting in the sense
Using the basic kinetic equatiofi7) and the conven- that the photon flux entering the cavity is completely ex-
tional procedure, we write the equations for the effectivepended in excmng the active n med|um of thdaser.
averages as Then, sincesi=&,n, ande2=£.n., we obtain the fol-
lowing expressions for the corresponding Mandel statistical

d - — Ny parameters characterizing the stationary photon fluctuations
msb:_z"bgﬁz"bn—cgbgc:o' (18 in each active mode:
1 « K Kqt kpt K
d — — fb: _ E a c a b c’ (30)
a8a=—2Ka8a— KkaNa,=0, (19 KaT Kc KpT Ko Kat Kp
. 31
d_z gc_—EKa_"Kc. 3D
at C_—(KC+K)8 +(KC+K) £,8:=0, (20
Na In the limit x>k,
d 1 — Ka
asbscz—E(KC-FK'f‘ZKb)SbSC §.=0, §b:—§ Kot kg (32
Ne Np — and in the limitk < k4,
+ = (ke+K) — g8,k — £5=0, 21

2 ( c ) n, acb b Ne c ( ) - 1 ~ 1 Ke .

d b=-3 b= Fie (33
- - n, —
gt fatv™ ~(Kat Kp)easpt kp = £a8c=0, (22 The situation with the Mandel parametgris, of course,
¢ in complete accord with the results of Ref. 4. But it turns out
that even wher¢.=0 holds with k,<«., the Mandel pa-

gi Gafe = (Kot k+2K,) €8¢ rameteré,, for the lasing mode can still be a minimum for the

present problem and equal t61/2. For this it is sufficient to
1 Ne — require thatkp,<<«,.
+§ (kT K) n—sa=0. (23

a

As can be seen, we have obtained a closed system &f SPECTRUM OF THE PHOTOCURRENT IN THE PROCESS
differential equations which for stationary conditions be-OF DETECTING THE LASING OF THE B LASER
comes an easily solvable system of algebraic equations. We
note that here the tern{s--} from Eq. (17) in principle do
not contribute here, and this is not due to any mathematicai®®
approximations. The solutions can be represented in the form

The spectrum of the photocurrent during observation of
ondary lasing can be written in the form

K ® _
i3 _|gﬁg(1+2q - Ref dt eep(t)e' . (34)
_ 1 Ny 0
¢a= "3 Ma (24 The solution of this problem gives a system of equations
which can be obtained from the basic kinetic equatibn)
B 2k Kok (Kot K+ 265+ 2Kp) by the standard procedure:
b7 T (ot 1) (ot K+ 2i) (ot K+ 2kp) (gt Kg) P d Np —
(29 gt Even(t) =~ Ky epep(t) +xp = n epec(t), (35

—=_ 2K K, " 1
c (KC+K)(KC+K+2Ka) nCv ( ) &Sbsc(t):_E(Kc‘FK)SbSc(t)
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1 S stationary state in tha mode, the average number of atoms
= = Ny (number of atoms stored under stationary conditions in
2y Al the level Q, and the average number of atois (the num-
S = ber of atoms stored under stationary conditions in levyel 2
3 6 andN; (number of atoms stored under stationary conditions
FIG. 3. in level 1). These boxes are all coupled through the particle

fluxes, which to some extent form stationary states inside the
boxes. The fluxt is the photon flux from the external sub-
1 Ng —— Poisson laser to the entrance mirror of theavity, while the
+5 (Kt k) . &pgal(l), (36)  flux 5is the photon flux from thé& mode to the photodetec-
tor. The collection of particles in each box can be associated
with a stationary state in which the number of particles fluc-
gt evfall) =~ Ka epea(t). 37 tuates around its average value. But, on the whole, it is ob-
vious that for us it is not so much the stationary states as the
roperties of the fluxes of the corresponding particles that are
mportant. Of course, the properties of the fluxes and the
rE)Sroperties of the local stationary states can be related in some
way. At the same time, however, one can imagine a situation
« fw —_ where this is not the case, and the main conclusion which we
0=

This system is easily solved directly, but in this case it is
more efficient to switch to a system of algebraic equation
for the Fourier components, especially since these equatio
are needed to write down the photocurrent spectrum:

dt epep(t)e'™ must draw from our arguments and calculations is that in a
particular problem withk.= « all particle fluxes participat-
Tt ing in the process are qualitatively identical and independent
Yo= fo dt epe(t)e™ (38) of the local stationary states, which disrupt these fluxes. If
the initial flux 1 is somehow regulated, then to some extent
each of the other five fluxes indicated in the diagram is also
regulated to the same degree, though the character of the
fluctuations in each box can be completely random.

0

ZQ:f dt Sbsa(t)eiﬂt.
0

From the initial differential equations it is easy to obtain

No This work was supported in part by INTA$3-194

s_ﬁ— 1 QXq0=— KkpXg T Kp o Yo, (39 EXT) and INTAS-RFBR(95-0656, for which we are grate-
¢ ful.
Qv — 1 N N 1 N Ne
Epec™ i = 2 (et )Ya 2 (retx) n_a Za. *)E-mail:yuri_golubev@pop.convey.ru
(40)
sbsa—iQZQ= — KaZg, - (41) 1Yu. M. Golubev and I. V. Sokolov, Zh. lsp. Teor. Fiz87, 408 (1984

[Sov. Phys. JETIO0, 234 (1984].
Solving this system of equations we can finally write *Y. Yamamoto, S. Mashida, and O. Nilson, Phys. Re\84,4025(1986;
down the explicit expression for the photocurrent spectrum Y- H- Richardson, Y. Yamamoto, and S. Mashida, Phys. Rev. B6it.

. 2867 (1997.

in the form(3). SA. S. Trifonov and P. A. Usachev, iProc. SPIE 2378(1995,
p. 122. ]

7. CONCLUSIONS 4Yu. M. Golubev, M. I. Kolobov, and I. V. Sokolov, Zh.K8p. Teor. Fiz.

111, 1579(1997 [JETP84, 864 (1997)].

The entireb system as a whole can be schematically °Yu. M. Golubev, Zh. Esp. Teor. Fiz.103 832 (1993 [JETP 76, 408
repreS(_anted as a collection of hoxes in which different typesagligalGolubev, G. R. Ershov, A. N. Prokshin, and I. V. Sokolov, Opt.
of particles are collected and fluxes between these boxes.spektrosk82(6), 860(1997 [Opt. Spectrosc82, 936 (1997)].

Figure 3 shows only the basic elements, specifically, boxesM. I. Kolobov and I. V. Sokolov, Opt. Spektrosk2, 112 (1987 [Opt.
with the average number of photong (the number of pho- ~Spectrosc62, 69 (1987].
tons stored in the stationary state in thenode, the average - ©- Scully and W. E. Lamb, Phys. Rev. 69, 208 (1967.

number of photon®, (the number of photons stored in the Translated by M. E. Alferieff
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We propose a new method for performing continuous quantum nondemolition measurements
(QNDM) of the polarization characteristics of light, the signal photon number, and the Stokes
parameters of light. For devices that implement such measurements we take cubically

nonlinear double-filament optical fibers with tunnel coupling of the filaments. Such a system
employs a four-mode mixing of the wavésvo probe modes and two signal mogldsnear optical
elements needed for preliminary and subsequent conversion of the Stokes parameters are

also used. We show that measurements of one Stokes parameter can be used for QNDM of the
phase difference between the two initial modes. Here the accuracy of such measurements

is determined by the initial fluctuations of the Stokes parameters of the probe modes and by the
size of the nonlinear mode conversion coefficient in the optical fibers19@8 American

Institute of Physicg.S1063-776(198)00804-X

1. INTRODUCTION (both classicdf and quanturtt*?polarization states of light
is to introduce real-value(Hermitian Stokes parameters of

Lately many papers have appeared concerning the phasge light field (see Sec. 2 Here the specific features of the
problem in quantum optics:® The focus in such research is quantum polarization properties of ligkind hence of the
usually on the mathematics of the problerfi.We believe phase problemare determined by uncertainty relations for
that a big achievement here was the introduction of a neéWhe Stokes parameters. The existence of three noncommuting
Hermitian operator by Peget al.? which became known as components of the operators of these paramesinsilar to
the Pegg—Barnett operator. The use of this operator largely,, operators of angular momentummakes their simulta-

removed the drawbacks associated with the standarf;jeous and exact measurement impossit#ecept in the
Susskind—Glogower representation. However, the analysis ‘?Fivial zero casg

the problem must not be separated from the specific proce- For this reason the problem of quantum measurements of

dure of phase measuremer(ts. Refs. 5-J. The present the Stokes parameters comes to the fore. Two basic methods

paper discusses the possibilities of such quantum measurg; measuring the Stokes parameters are possible in quantum
ments of phaséthe phase difference between two modes mechanics

The phase problem proper is not specific to the quantum The first is related to the realization of the procedure of

mode of description and is well-known in optics, where theremeasurin all four Stokes parametdsge Ref. 13 for the
are certain difficulties in measuring the phase of a light wave 9 P '

directly. This problem has a long history in classical opticsmethOd used t.o detecF theyrand as a result of these mea-
(see, e.g., Ref.)8 surement the information about the phase characteristics of

Of course, in various measurements involving Iightthe two initial polarization modes is extracted. However, the
fields only the ,phase difference between t@o more spa- precision with which all four Stokes parameters can be mea-

tially distant points has physical meaning, and methods usegt'ed simultaneously is limited and is determined by the un-
to measure this difference abound. certainty relation between the fluctuation variances of the

Actually, all the methods are aimed at extracting phas@iven guantitiessee Sec. 2 _ o
information from intensity measurements in one or another Another way to extract the information in the case of
optical scheme. In particular, the reconstruction of phase intwo modes is to conduct quantum nondemolition measure-
formation is done in holographic images: the forming of aments(QNDM) for two phase-dependent Stokes parameters.
three-dimensional image is the result of such reconstruction/Ve analyzed this problem for the first time in Ref. 14 for
Any method of processing optical images is also related totwisted” optical fibers with tunnel coupling between the
this problem. For instance, one field of quantum optics beingwo propagating modeg¢see Refs. 15-17 The necessary
actively developed is quantum tomograghy. condition for QNDM is the presence of polarization-

Since the phase parameters of optical radiation are disqueezed light, which is generated under certain conditions
rectly related to light polarization, the study of quantum po-in such fibers. For a given quantum polarization state of
larization states and the procedures used in measuring sutipht, the fluctuation variance of one of the Stokes param-
states play an important in the given probl&m. eters is smaller than its value in a coherent staté How-

One possible way to describe polarization problemsever, earlier schemes of QNDM of Stokes parameters based

1063-7761/98/86(4)/10/$15.00 672 © 1998 American Institute of Physics
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on the interaction of two polarization modes are extremely  The formation and observation of nonclassical light
difficult to implement in practice since, generally, repeatedstates and QNDM of the quantitids, andN_ and Hermit-
(or continuoug measurements of the observable must be carian quadratures of two-mode fieldimcluding optical fibers
ried out(see Refs. 18 and 19In particular, to extract infor- of a special typgare considered in Refs. 20 and 21.
mation about the measured Stokes parameter by this proce- Definition of the Stokes parameter operators in the form
dure, one must measure a large number of additional opticdll) with allowance for(2) leads directly to commutation re-
elementglinear and nonlinedr which reduces the effective- lations characteristic of operators in the (@Ualgebra?
ness of QNDM in real experiments. . .

In this paper we propose new methods of QNDM of ~ [S1:521=21Ss,  [S3,5:]=2iS;, 3)
Stokes parameters, methods that can be employed together [S,,S:]=2iS;, [Sy,S]=0.
with continuous measurements fairly easily. Here we are in-
terested in the basic aspects of the problem of such measurdH this leads to uncertainty relations for the Stokes param-
ments, determined by general quantum mechanical lawsters:
rather than in the technical limitations related to the sensitiv- . .
ity of the various devices or to the accuracy of detection <AS‘2><AS@>|<S”‘>|Z' Lkm=123, i#k#m, (4)

methods, which can always be improved. ~ where (AS)=(S)—(S)?(i=1,2,3) are the fluctuation
We also show that under certain conditions the given,ariances of the Stokes parameters. Thus, in quantum optics
procedure of QNDM of Stokes parameters can be used ifhere is, in principle, no way in which all Stokes parameters
nondemolition measurements of the phase difference of thgan e measured exactly and simultaneoGsith the excep-
optical field. The plan of the paper is as follows. tion of the trivial case in which all the parameters are zeros

In Sec. 2 we write the necessary introductory relations e define the vector polarization operator of a quantum
needed for the analysis of nonclassical polarization states @fiate of the light field to be

light in terms of Stokes parameters. The relationships be-

tween the phase-difference operators and these parameters P=€1S;1+&S;+&S;, 6)
are digcusse_d in Sec. 3, and Te'ated problems and approack\lﬁﬁere theg (j =1,2,3) are orthogonal unit vectors. Clearly,
f[o their solutlon(gonnected with the_ general phase p_rob_lemthe 0perat0|p2=S§+S§+S§ and the Stokes paramete

in quantum optics are analyzed in Sec. 5. Polarization commute. i.e

QNDM for specific parameters of the vector optical field, the o

photon numbers and the Stokes parameters, are described in [pZ,SJ-]:O, j=1,2,3. (6)
Secs. 3-5. The problem of using real me@abically non-
linear tunnel-coupled optical fiberkor these purposes is dis-
cused in the Appendix.

The vectom in our description of the quantum state of light
polarization plays the same role as the angular momentum
vectorJ in quantum mechanics, so that by analogy we can
call p?> the Casimir operator. Geometrically, the vecfor

2 NONCLASSICAL POLARIZATION STATES OF LIGHT IN determines the polarization state of light on the Poincare
TERMS OF STOKES PARAMETERS sphere with coordinates;, S,, andS; (see also Refs. 14 and
15).
A general quantum description of a two-modeo or- If the operatorsb, , correspond to the light field in a

thogonal polarization componeitslight field can be  coherent state, the fluctuation variances of all Stokes param-
achieved by using Hermitian Stokes parameter operatorgters are the same, i.e.,

The operators, which we denote By, S;, S,, andS;, can be 5 5 5 5
expressed in terms of the photon creation and annihilation (ASp)=(AS]) =(AS;)=(AS3)=(N1)+(N,), (@)

T H —15
operatorsh, , andb,  in these two modes: where the averaging is done over the vector of a coherent

So=blb;+blb,, S;=blb;—blb,, quantum state of the two-mode field,

S,=blb,+blb,, S;=i(bib;—blb,), 1€)=1B81)|B2)- (8)

where the subscripts 1 and 2 in our polarization problenHere|pB; ,) are eigenfunctions of the operatdss, with ei-
label modes with orthogonal linegalong thex andy axes  genvaluesB; ,, respectivelyN; ;)=|8; 4% are mean pho-
or circular polarizationgthe details are given belowThe  ton numbers in these modes.
operatordy, bJ{, b,, andbg satisfy the following commuta- For polarization-squeezed light, the fluctuation variance
tion relation, which holds for a bosonic system: (AS?) of one of the Stokes parameters is always less than its
1 B — value (7) corresponding to a coherent state, i.e., fluctuations
[bi.by1=4;,  [bi.b]=0, i,j=1.2, @ are suppressed in comparison to their level for coherent light.
where g;; is the Kronecker delta. Generation of such strictly quantum polarization stdsee
Thus,S, andS; are the operators of the sum and differ- Refs. 14 and 1bis possible in special optical fibefs.g., in
ence of photon numbersN.=N;*N,, where N;, cubically nonlinear twisted birefringent fibgrg the pres-
Eb{lzblyzfor each mode. The phase-dependent Stokes operance of both linear and nonlinear energy exchange between
tors S, andS; are similar to the Hermitian quadrature com- two orthogonally polarized moddslong thex andy axes,
ponents for the light-field amplituddsee Ref. 15 respectively.16-’
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FIG. 1. Geometric representation of stationary polarization states of light on

the Poincarespherejp is the polarization vector, anah is its projection on
the S; axis. The angle between ti® axis andp is 6; the shaded area
characterizes the quantum uncertainty of the Stokes paran®tersd S;.

A. P. Alodzhants and S. M. Arakelyan

m
Js(s+2)

For the maximum values= +s, when the varianceXp)?
=2s is at its minimum(see(12b)), the angled is neverthe-
less finite, i.e.,

cos 0= (13

1

Ji+2/s2

Only in the semiclassical limit, where>1 (see beloy, Eq.
(14) shows thatp is directed along thes; axis, i.e., co®
=1.

cos 0= (14

Fluctuations of the Stokes parametéEsis.(12)) lead to
the appearance of an “uncertainty layer” on the Poincare
sphere(see Fig. 1 This uncertainty layer is different for
different quantum polarization states of light. In our case of a
fixed value ofS,, the fluctuation variance of this Stokes pa-

Let us determine the stationary polarization states of aameter is exactly zertsee Eq(129).

light field, which are the eigenstates of the Casimir operator

Such a pictorial geometrical interpretation of these states

p? and, simultaneously, of one of the three Stokes parametefs similar to the vector model of angular momentum in quan-

S (j=1,2,3):

pAsmy=Agsm), Sfsm=mlsm), j=123, (9

where\, andm are the eigenvectors of the operatpfsand
S;, respectively.

Equations(9) constitute an eigenvalue problem in the

tum mechanic$?

In the case of Fock states, where the polarization modes
b, , are in states with fixed photon numbefs;) and|n,)
(respectively, and the general vector of stai® is

SU(2) algebra. The solutions of this problem are well knownwe obtain, by combining1), (5), and(15),

from quantum angular momentum thedfy?>

Let us examine one of the possible variants of its solu-
tion, whenj=1. In this case the final expressions for the

|&)=In1)|ny), (15
(P?)=(Sp(Sp+2))=ng(Ng+2), (169
(S1)=(N1)—(Ny), (16b)

matrix elements of the Stokes operators in the representation

in which the operatorg? andS, are diagonal are

(smp?|s'm’)=s(s+2) 8sg S (109
(smSys'm"y=m’ Sy Sss'» (10b)
(smS,|s'm’)=0.5{s(s+2)—m’'(m’ +2)
X 8ss Ommy =2, (100
(smS;|s'm’)=F0.5ys(s+2)—m’'(m’ +2)
X sg Omm =2, (100
wheres is related to the eigenvalue; by
As=5s(s+2) (11
and the quantum numben takes &+ 1 discrete values:
-s, —s+1, ...,0, ... s—1,s

Using Egs.(10), we can easily obtain relations for the
fluctuation variance$(Ap)?)=(p?) —(p)? and(AS3):

(AS})=0, (123
((Ap)?)=(ASH) +(ASE)=s(s+2)—m?. (12b

Geometrically, the stated®)—(12) can be represented by the
vectorp, of lengthp=/s(s+ 1), which rotates about th®,
axigsee Fig. L Here the projection of the vector on tisg
axis is equal tam.

whereng=(N;)+(N,).

The state$n; , and, consequentlyé) are eigenstates of
the operatorsN, , and p?, respectively. Hence, comparing
(16a and(16b) with (109 and(10b), we have(cf. Ref. 23h

m=(N1)—(Np). (17)

Thus, the quantum numbstgives the sum of the photon
numbers of the two polarization modes, and the nurmber
gives their difference. This suggests that the Fock state vec-
tor (15) is a special case of the solution of the eigenvalue
problem(9) for j=1.

Below we analyze the ways in which the nonclassical
polarization states of light considered here can be formed.

S:no,

3. QUANTUM NONDEMOLITION MEASUREMENTS OF THE
STOKES PARAMETER S;

According to the main concept of QNDM, a parameter
of the light field(the signal wavieobserved in the process of
such measurements must interact in a certain way in the
QNDM device with a parameter of the other field, the mea-
suring field (probe wavg it is the latter quantity that is
detectec?®242°

To employ such measurements, we assume that the
QNDM device mixes four optical modes; the annihilation
operators for two of these modes are denotedapy, and

The rotation angled of the polarization vector can be they belongas beforgto the measuring quantities; the other

defined to be

pair of operatorsh, ,, describes the measured quantit®se
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in in FIG. 2. g Block diagram of parallel QNDM of
la 2a a b the photon numbens’} andNZ} : 1 is a QNDM
l 1 device, which mixes the four modes , (probe
radiation and b, , (signal radiatiop with the
in out a” our subscripts 1 and 2 indicating the polarization
th ’ componentsp, , are the detectors of the phases
. 1 bzm/' < T4 — L ‘sbzm @94, of the probe modes; and the superscripts
;Z out a"™Q T D 7a” in and out indicate the input and output modes,
- in” N $2 respectively. b One of the possible realizations
our our b, 1 of a QNDM device based on cubically nonlinear
la 2a tunnel-coupled optical fibers. We show two
waveguides with tunnel coupling of the fila-
ments(the distanced between the filaments is
1-10um).

Fig. 2. This sets the proposed QNDM scheme apart fromoperatorsis hardly possible, while the representation in the
those considered earlier for the two-mode problef Ref.  form of the operatorsP, ,, is simple and instructive in the
14). In the Appendix we discuss a specific implementation ofsemiclassical approximation:
such four-mode interaction in optical fibers of a special type,
tunnel-coupled optical fibers.

We start by examining parallel nondemolition measure-  The operatorsb, ,, satisfy the commutation relations
ments of photon numbers in different optical-fiber filaments(S(_}e Refs. 26 and 27’
(cf. Refs. 26 and 27 Earlier (see Ref. 2D we discussed
parallel nondemolition measurements, but for Hermitian [Ny, ®q5]=i, [P1j,P]=0, j=a,b. (21
guadratures. Figure 2 is a block diagram of measurements of ) ,
the photon numbers in the signal modes, described by the . CIearIy, the opergtor(;l8) and(19) fully satisfy the cri-
operatorsNTsz(bT2)+bil'f2. Two detectors,D; and D, teria for implementation of QNDM. Indeed, on the one hand,

- o the measured quantitied;;, and N,, are conserved in the
register the phases of the probe polarization m ' and 1b 2b
@3;& described by the annihilation operatars aﬁﬁ%, re- measurement prqce&eee Eqs(183 and(193), and on the
spectively, at the output of the QNDM devi¢eptical fibey. qther, the measuring parametétise probe mode phasesre
The necessary relationships for the conversion of thémearly related only to the measured photon number of the

measured photon number and the phase of the probe wave her mode. We can therefore limit our investigation to

the QNDM device can be obtained by employing the equay DM in each filament of the tunnel-coupled optical fiber
tions (A8) of the Appendix: independently, i.e., the problem is identical to the one con-

sidered in Refs. 26 and 27: parallel QNDOMig. 2) reduce to

<Nl,2j>>1! j:a,b. (20)

NOR=NTL (188  two independent schemes of measuring and detecting the
- - robe-mode phases in each filament with their own hetero-
D35= D7~ YNI,. (18D gyne fields. P
Similarly, for QNDM of the photon numbeM3, in the other We now analyze QNDM based on the polarization as-
optical-fiber filament we have pects of the interacting modes. In this case the measured
out_ n1in quantities are the Stokes paramet8;s(i=0,1,2,3) of the
N2p=N2p, (199

signal modes, which are described by the operategsand
PU= N — YN | (19b bl ,. This means that by detecting the Stokes param&grs
. . (or the corresponding phase differepdeelonging to the
whereN7',, andNY ,, are the photon number operators in the prohe (measuring modes we gather information about a lin-
measured and proligneasuringmodes: P, (P77,) are the  ear combination of the signal polarization modes rather than
phase operators of the probe modes at the iutpud of  information about each such mode individually. Here, due to
the filaments, respectively; and the parameteharacterizes  the uncertainty relation&), in each specific case only one

the QNDM device and determines the efficiency of the wavesigkes paramete®,, (i=1,2,3) can be measured in a non-

interaction in tunnel-coupled optical fibefsee(A8)). demolition manner.

The physical meaning of the quantiti€s, », is easily Let us begin with the procedure for nondemolition mea-
grasped in a classical setting: they lead to the ordinargyrements of the Stokes parameSgs (Fig. 3.
phases of classicatomplex-valuedl amplitudes of the cor- Using the definition(1) and Egs(18) and(19), we can

responding components of the light field. In fact, the operaexpress the necessary relationships between the measured
tors @, 5, are introduced within what is known as the heu- stokes paramete;,=N,;,— N,;, and the detected phase dif-

ristic approach to the problem of phase in quantum theoryerencew ,=®,,—®,, (or the Stokes paramet8s,) in the
(see Ref. 28 This approach is usually used in describing thefgrm

procedure of QNDM of the photon numB&¢’ or for optical .

fields of complex configuration, e.g., solitons. In the latter fgt: b » (229
case, meaningful introduction of phase operators in the well- A A

established form(i.e., in the form of Susskind—Glogower Vo=l yS]. (22b)



676 JETP 86 (4), April 1998 A. P. Alodzhants and S. M. Arakelyan

" s;" In the limit
2n((A¥M?) <1, (263
_ y=2ny>1, (26b)
Sm 1 Sour

1] 1b

with n the mean number of photons in the modes at the input
of the QNDM device, we hav§(AS]¥?)2)—0. Here
out our
wis

a ((AS3IZ~((ASIHH =((AS]})?), (27)

D i.e., we obtain the Stokes parameglt at the input of the
QNDM device, which has not been changed by the measur-
FIG. 3. Block diagram of QNDM of the Stokes parame®}; . The quan- INg process. . )
tities SY, (V1) andS3a(W2") are the Stokes parametéphase differences Thus, the conditiori26a3 means that the fluctuations of
of the probe modes at, respectively, the input and output of the tunnelthe phase dif‘ferencﬁ"a'l1 between the probe modes must be
coupled optical fibers of the QNDM device Only the measure¢signa) Suppressed ie. to emp|0y QNDM we need polarization-
and probe Stokes parameters are shdwns the detector. S ' i

squeezed light for the probe parameS}; at the output of
the QNDM device(cf. Ref. 14. At the same time, an in-

Similar relationships exist for the conjugate quantities, i.e., crease in the parametgrwhich characterizes a QNDM de-
Sout_ gin (233 vice also reduces tr_le_ inaccuracy of rmegsuremés&
la™ la (26b)). However, attaining large values of is extremely
POU=pin— g (23p  difficult from an experimental standpoint, since this means
that the nonlinear interaction in the system must be highly
efficient (see Appendix
In the general case we must also examine the redistribu-
tion of noise in the othefconjugate¢ parameter$23) deter-
mining the given type of measurements. For the fluctuation
‘variance of the phase differenck, (the conjugate of the
measured Stokes parame&y) Eqg. (23b) yields

whereW¥, ,=®,, ,— D1, is the phase difference between
the probe and measured modes, respectively, at the {pput
outpud of the QNDM device.

Equations(22g and (22b) satisfy (just as(18) and (19
did) the general criteria of realization of quantum nondemo
lition measurements for the Stokes parame®s(see Refs.
14, 20, and 26 Indeed, first, this observable is conserved in _ _
the measuring procegsee(22a) and, second, the detected (AP =((A¥ D)+ y2((AS],)?). (28
phase differencel 3" is a linear function of the measured
Stokes parameted]}, (see(22b)).

Note that the nonlinear correction to the initial phase
difference(23b) associated with the Stokes parame3gr is
precisely the quantity that determines the back action of th
device on the corresponding quantity. ((AWMP)2y = 12((ASI)?). (29)

Let us examine the redistribution of quantum noise that . _
takes place in the measuring process. To this end we uddence the fluctuation variancé®5) and (29) fully ci:harac-
(22b) to find the observed value @P=Ww . terize the QNDM of the photon-number differen8g, con-

For the variance of fluctuations of this quantity that Sidered here.

emerges in the detection of the phase differeNc®" we If we allow for (25) and(29), we see that the product of
these variances satisfies the inequality

The corresponding uncertainty in the phase difference,
((APP)2y=((AWPE"2) —((AWE)?), introduced by the
guantum nondemolition measurements of the Stokes param-
gterS{‘b has the form

have
petna a2, (AYD?) . ((ASIFI2N(AVEDZ)=((AST)*((ATD?H)=1. (30
(AS{5)9) =((AS[p)%)+ ¥ (24) Thus, the inaccuracy of measurements of the photon-number

difference, ((AS{5?j?), and the phase-difference variance
- (AW™P)2) satisfy the corresponding uncertainty relation
«ASIIT};a 2>E<_(A82332>_<(A5Tb)2>’ of the Stokes param- f)etweben t>he photon-number difference and the phase differ-
eterS;,, (the difference between the photon numbéiss the ence between two modésf. Ref. 9.
form In the case of “good” QNDM, the lower bound if80)
<(Axyg‘)2> is attained(see Refs. 26 and 27i.e., the right-hand side of
— (25  (30) becomes an equality. This occurs, for instance, if
Y polarization-squeezed light for the probe paramesgl,
We see that the measurement inaccurd@yS]2j2) in the  which depends on the phase differenéd’, is fed to the
QNDM considererd here is completely determined by thenput of the QNDM device. Then the suppression of the fluc-
fluctuations in the phase difference between the polarizatiotuations((AW1)?2), on the one hand, leads to a reduction in
modes at the input of the QNDM device, and depends on ththe inaccuracy of measuremerta SJi:2J2) (see(25)) and,
efficiency of the nonlinear phase buildup in tunnel-coupledon the other, to an increasedAS§a> due to the uncertainty
optical fibers. relation (30). In turn, the latter factor leads in the measure-

As a result, the inaccuracyerron of measurement,

(AST™5)=
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ment process to an increase in the level of fluctuations for the s;"

phase difference[(A¥};™)?) (see(29)), and accordingly to cd

a decrease in the inaccuracy of measuremgmtS;>2j2). "
Thus, the QNDM of the Stokes parameg&i, are done b ) | 3 ¥

by redistributing the noise in the measuring process, i.e., the s §" §o 530'“

noise level in the conjugate quantiy, grows. However, to 3C 1 A I

control this process in time, continuous nondemolition mea- out

surements must be employed. Ssa

Indeed, a characteristic feature of such QNDM is the
possibility of periodically repeating the measureméfit:2

Only as a result of a series of measurements can one judg:e .
the “quality” of the previous measurement IG. 4. Block diagram for QNDM of the Stokes paramefgy (phase

q y p : difference¥ ). The quantitiesSy, andS3.' denote the Stokes parameters of
In the schemes of QNDM of the Stokes parameters Wene probe modes at the input and output of the QNDM device, which con-

considered earlie? the implementation of recurrent mea- sists of the linear elemengsand3 and the QNDM device, respectively;
surements encounters experimental difficulties. On the othe¥ 2" is the phase difference after the measurements haV(_e been completed.
hand, in the problem of recurrent measurements considered"? e measured and probe Stokes parameters are sBoigrthe detec-
here, such a procedure can easily be employed, the only re.

guirement being that there must be negative feedback in the

system(cf. Ref. 25.

In this case it also becomes possible to control the quarear element® and 3 (cf. Fig. 3 are added to the QNDM
tum fluctuations of the measured quantity in time, comparinglevice. We first examine the role of the linear elem2ait
each subsequent measurement with the previous one. Cotite input of the QNDM device. This element performs pre-
tinuous QNDM of an observable constitute the limit of suchliminary linear conversion of the Stokes parameters for the
recurrent measuremerifsHere the quantity behaves classi- measured modepreparation of the quantum stateStan-
cally with an “uncertainty” tube characterized by the value dard linear optical elements, such as phase shifters and beam
of ((AS]Ey?). splitters, can be used for this purpose.

However, such behavior within the given uncertainty re-  As a result of such conversion of the measured modes,
gion is strictly quantum, since fluctuations of the measuredve have for the Stokes parameters at the input of the nonlin-
guantity at the output of the QNDM device are suppressecar systeni
via the quantum interference of noise. in in

Note that negative feedbackwithout QNDM) em- Sob=Soc:  Szp=Szc»
ployed, for example, in the electric circuit of the detection in .
system makes it possible to alter the statistics of photons 15 = S1c COS Y~ S Sin A,
(within the negative feedback circyit and of in _ ;
photoelectrond® This result is due to the nontrivial role of S3p=S3c COS Yt Sye sin 2,
negative feedback and of the amplitughas¢ modulator as  whereS;; (j=1,2,3) are the Stokes parameters at the input
a fundamental constituent of the system that produces thef the linear elemen®, andg is the linear mode conversion
self-consistent field within the negative feedback loop. If tocoefficient.
this system we add an element that performs QNDM in a  If for QNDM of the Stokes parameteB;. we take
certain optical parameter, the statistics can be “shifted” di-g=37/4+ 7m (m=0,1,2...), we have for the operators
rectly to the state of light for the given measured quantity,(31)
which state also becomes nonclassical. _ _ . _

Thus, by implementing negative feedback we can, after  Sob=Soc:  Sib=Sscs Sb=Szc:  Sgp=—Stc-
detecting the phase differences of the probe mohg‘é (or (32
the corresponding Stokes parame}), make continuous Clearly, as a result of passage through the linear medium

QND measurements dBj,. In particular, these measure- 5 g information about the Stokes parame®y, is con-

ment generate a new class of quantum states of ligb¢  ained inS | the photon-number difference, which is then

Sec. 2 that have a definite value of one of the Stokes parameasured in a nondemolition manner.

eters. The situation is similar to the case of Fock states i Hapce after measurements in the nonlinear medium

quantum optics, in which the number of photons is fixed,naye been completed, we must reinstate in a nondemolition

which is the limiting case of amplitude-squeezed liht. manner the initial polarizations in the measured modes
(which is the concept underlying QNDMThis is done in

4. QUANTUM NONDEMOLITION MEASUREMENTS OF THE linear systen8 by a transformation of the Stokes parameters

STOKES PARAMETERS S, AND S that is the inverse of32).
As a result we have

(31

In this section we discuss the feasibility of QNDM of the . ‘
phase-dependent Stokes parameSgrandS; (see Eqs(1)). o= =S =S0c,  S3e=S=SIL=Ssc,
Figure 4 presents a block diagram for the nondemolition out cout ut out
measurement of the Stokes param@gyr. In this case, lin- Se=Sk: Sic=—Sh,

(33
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where S\ are the Stokes parameters at the output of the  Nj »=(Njx+AN; ), W =(¥)+AV,, (37

QNDM device (see Fig. 4. Here the Stokes paramet8y, L . L

does not change in the conversion process, and the measurigere angle brackets indicate averaging over the initial states

quantity Sy, is conserved. of the operators of photon numbers and phase difference;
Thus, QND measurements of the Stokes paran®@ier ANl_,ac andAW . are the corresponding opera_(csmall fluc- _

can be implemented by a proper selection of the conversiofti@tion parts. When the number of photons in the modes is

coefficient in the linear systen@sand3. This constitutes the arge(see(20)), we have for the fluctuations of the measured

essence of the process of controlling the quantum system mMtokes parameteds. (Eq. (34))

the given case. 9S3¢(Njc, W)
The parametes,. can be measured in a nhondemolition A%CI,E NG IN=(N, >ANJ-C
manner in a similar way. However, in this case we must =12 e qit;:(\pj(f)
select the proper optical elements for the devige Fig. 4 to
ensure preliminary conversion of the Stokes paramedgys T 9S3¢(Nje ,We) AY (38)
andS,, similar to(31) and(32). Only then will the measured oV, Njc=(Nje)™ = €

Stokes parametes]}, contain complete information o8, . Fe=(Te)

As a result, if we allow for(34), the fluctuation variance of

the detected phase differen(369 is
5. QUANTUM NONDEMOLITION MEASUREMENTS OF THE

PHASE DIFFERENCE ((AW2H2)=((AW™M?) + 492(N1 )Ny )coL((W )
We consider QNDM of the phase differengghich for ) (Ny¢) )

the sake of definiteness is denoted By) based on non- X((AWE)?)+ ¥ <Nlc><ANlc>

demolition measurements of the phase-dependent Stokes pa- (N

rameterS;, (see Fig. 4. In the semiclassical approximation Nic 2 .

(20) we represent this Stokes paramétare also Ref. D4as: * (Noe) (ANZ) | Sin(). (39
S3c=2VN1c VN sin ¥, (34 Defining the observed value of the phase¥®s=w24,

whereN; », are photon-number operators for the polarizationwhere y=2y((Nyc)(N2))*? cog¥,) is the nonlinear pa-

modesc; , at the input of the QNDM device, ardl . is the ~ rameter characterizing the measurement efficiency, we find

measured phase difference between these modes. from Eqg. (39) that the inaccuracy of phase-difference mea-
According to the above procedure of measuring thesurements,((AWM®3y2)=((AWY2)—((AW?)) (at (V)

Stokes parameted,., we have for this quantity at the input # 7/2+7m,m=0,1,2...),is

of the nonlinear mediuntsee alsq32))

. 3 meas 2 <AN§C> <AN§C> nz
SN =S3c= 2Ny Ny sin V. (35) ((A¥F%)=0.2 (Noo)? + (Nyo)? tar (W)
lc 2c

In this case the relationship between the detected phase dif- i 2
ferenceW 2" (or the Stokes paramet&Y) and the corre- N <(Aga) ) 40
sponding measured quantif85) is (cf. (22b), (34)) ¥? '

W=~ 29Ny Ny sin ¥, (368 This implies that in the general case, when )+ mm,

m=0,1,2 ..., theamplitude noise of the moddshe two
30=2 NI VN, sin W, (@b ’ j p

terms in square brackgtkas an additional destructive effect
We see from(36) that the information about the measured On the measuring process.

phase difference¥ . is contained in the detected phase dif-  To be able to ignore this destructive effect, we assume
ference? 3" and hence in the Stokes parame3§}'. Subse- that
guent reasoning is similar to that in our analysis of QNDM 2\
of the Stokes paramet&t} (see Sec. 4 Therefore, here we (AN 25)<(N1.20)- 41
touch only on the specific features of QNDM of the phasePhysically, this condition means that there is amplitude-

differenceV .. squeezedin photon numbendight in the measured modes at
Concerning these features, we note that the detecteithe input of the linear elemein Fig. 4.
quantity " also depends on the amplitudgghoton num- Thus, QND measurements of the phase differevge

berg of the measured moddésee(36a). This in turn means are identical to those of Fig. 4 used in measurig under
that there is additional amplitude noise, which destroys theonditions in which the fluctuations of the number of pho-
process of measuring the phase differedte In the ideal tons in the corresponding modes are suppregse®ef. 19.
case, the QNDM device must be tuned only to the measured Note that the measured phase differelce (see(363)
phase differencécf. Ref. 6. is shifted by/2 relative to its fluctuationgsee the second
Let us examine the conditions under which we can ig-term on the right-hand side of E(9)). This fact has been
nore the amplitude fluctuations of the measured modes. Tooted in Ref. 5. Of course, the shift must be taken into ac-
this end we write the photon-number and phase-differenceount in the measurements, because otherwise the informa-
operators for the measured modegcfs Refs. 9 and 2y tion about the measured phase difference might be lost.
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6. CONCLUSION optical fiber roughly 1.5-mm long and the pump laser emit-
ting 0.9.um light, the necessary effective phase buildup

We have shown that continuous QND measurements 0 ~5  can be attained at intensities of roughly
the Stokes parameter of a light field and the phase difference 1 kW cni 2.

between the initial polarization modes are possible. We be- |n conclusion we note that in the four-mode problem
lieve that the nondemolition measurements considered heth Optica' fibers considered here, po'arization_squeezed

are promising both from a fundamental standpoint and foktates of light for the Stokes paramet&g and S, can be

practical applications. We now list the most important as<formed only if we allow for linear energy exchange between

pects of this approach. the modes(see Egs(Al) and (A4)). Indeed, in this case
First, precision measurements of vector light fields mayredistribution of energy and hence redistribution of fluctua-

prove useful in areas where light polarization is important. Intions between the Stokes parameters become possible, as is

particular, we would like to mention the possibility of ob- the case in the two-mode problém.

serving quantum polarization instabilities and ch&bsAt This work was supported by the Russian Fund for Fun-

the same time, such measurements could be used in proBamental Research.

lems of quantum cryptography, where light polarization

plays an important role in exchanging information between
the corresponding componerits. Ref. 29. APPENDIX. FOUR-MODE INTERACTIONS IN NONLINEAR

Second, the nonclassical polarization states of light preTU'\”\"EL'COUPLED OPTICAL FIBERS

dicted in the present paper and the polarization-squeezed Here we discuss the problem of QNDM in a tunnel-
light we considered earlier in Ref. 15 may play an importantcoupled optical fiber with a nonlinearity of the Kerr type.
role in various phase-sensitive interference measurements of The propagation of classical fields of distinct frequencies
the highest possible sensitivity>*>* o and v in cubically nonlinear tunnel-coupled optical fibers
Third, there exists a deep analogy between the Stokesan be described by the following equations for tigffer-
parametersl) and angular momenta in quantum mechanicsent polarization complex-valued amplitudes, , andB, , in
which are described by the formalism of the (@Ualgebra  each fiber(subscripts 1 and)2respectively(see Ref. 18
on the basis of the commutation relatiof®. This analogy

may bring to light entirely new gxperiments in atomic phys- 2i,8£ % = — K, exp(i ga)As— (k1| Agl?
ics based on the general principles of QNDM of Stokes pa- w

rameters examined in this paper. Indeed, as shown in Ref. +21,,1|Bo A,

14b, QND measurements of the components of the angular “r ’

momentum of an atomic system are possible in a modified . CdA, ” , )
Stern—Gerlach experiment, where a beam of atoms propagat- 2P gz ~ K21 &Xp(— Pa)A1— (K0l Ay
ing in the space between two magnets interacts with para-

metric photons, which are used to form squeezed states for +2K4,2/B1]?) A,

the probe component of the angular moment(see also c dB,
Ref. 32. This measuring scheme is identical to the QNDM 2iB;E= — K5, exp —i@p)By— (K,0/Bq)?
procedure for Stokes parameters in the absence of negative

feedback* Combined methods of QNDM of anguléspin + 24 02| A2 By,
momenta of atoms interacting with a probe optical field are dB
also possibldsee, e.g., Ref. 33 ., Ub v -
possible g I = — K1, exp(i ¢) By~ (k,1| B,

Fourth, the approach discussed in this paper can be used 2 v dz
directly to describe the polarization characteristics of boson-
like atoms in quantum theor/.In this case the Stokes pa-
rameters determine the polarization properties of the atomiwhere K75 and K3;” are the linear mode-coupling coeffi-
system proper. cients at the corresponding frequencieg,= «,wz/c and

Let us briefly discuss the possibility of experimentally ¢,= «,vz/c are the mode phases determined by the differ-
implementing the quantum nondemolition measurementence of the effective refractive indicg, ,.; (j=1,2), i.e.,
proposed in this paper. Most suitable for this purpose are the,— B,>— B,1 and a,=B,o—B,1; B=(Bu1T Bu2t L1
high-stability single-mode chip lasers with semiconductor+f,,)/4; c is the speed of light in vacuum; and,;, «,;,
pumps® The latter fact is important for introducing negative Ko s Km;jsc)(“) (j=1,2) are the nonlinear coefficients of
feedback in the measuring chanref. Refs. 25 and 26  the material of the optical fibers. In contrast to the case that
Tunnel-coupled optical fibers can be used to mix the fouwe considered earliéf, here we ignore linear energy ex-
modes(see the Appendix and Ref. 18n this respect InSb- change between the modes, i.e., we assume that the corre-
based waveguides, which allow using moderate pumpingponding mode-coupling coefficients are zero, ik,
powers due to the large nonlinearity of the waveguide mate=K7,~K3,~K3~K3=0. We also assume thab~rv.
rial, have great potential. A similar system consists ofFrom an experimental standpoint, the latter condition means
GaAs/Gg AlgAs-based optical fibers with a nonlinearity that the mode#\; andB; have almost equal frequencies, but
mechanism(a cubic nonlinearity of order 10 esu) based each pair A andB) differ in polarization(e.g., the modes
on quantum wellfan MQW structurg In this case, for an can be circularly polarizef).

+2Kvwl|Al|2)BZ! (Al)
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Thus, the system of equatiofl) in this approximation  tunnel-coupled optical fibers the anisotropy of cubic suscep-

has the form tibility is, for all practical purposes, low It is also possible
dA to place in front of the QNDM device an additional cubically
L2 _ (k|AL 4%+ 2k B2 12)AL o, nonlinear medium, with the sign of the nonlinear susceptibil-
d ' ’ ' ity, however, being opposite that of the susceptibility of the
dB,, given fiber(cf. Refs. 20 and 26
= —(K|Byd?+ 2kap| A2 19 B3 2, (A2) In the ideal case, witkk=0, the solution of the system
of equationgA4) is
where k=« w/2BC~ kK w/2BC~ Kk, vI2BC~ K, ,vI23C .
and Kab= K1 @0I23C~ K ,,,0/23C~ K, vI23C aguzt eXp[_W(b 1)Tb ]})alz’ (A8)
~K,,2VI2B3C. bOUt exp[—ly(a 1)Ta ) ?2,

When we go over to a quantum description, we must _
replace the complex-valued classical amplitudeandB; in ~ wherey=— 2kapl (herel is the Iength of the tunnel-coupled
Egs.(A2) with operators according to the standard procedur@ptlca| fibed, anday'(af%) andbl'AbS%) are the operators

(cf. Ref. 19, i.e., of the probe and measured modes respectively, at the input
- . s (outpud of the fiber, operators that satisfy the commutation
Aj—iCa;, Aj——iCaj, relations(A5) (see also Fig. R

Thus, using(A8), we can easily obtain the transforma-
tions (18) and(19) needed to implement quantum nondemo-
lition measurements.

Bj—iCb;, Bf——iCb/, j=12, (A3)

whereC= (2mhw/sV)*?, with V the quantization volume.
As a result we obtain at the quantum equations of motion for

the annihilation operators of the two orthogonally polarized:g_,,i: wlad%rtf@vpti.viadimir.su
modesa; andb;:
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By using a linear analysis it is analytically shown that the stability of strongly localized modes
depends on their symmetry, the sign of nonlinearity, and the degree of localization. The
existence of a stable, bright, even mode of the discrete nonlinear dicheo equation is
demonstrated and confirmed by direct numerical simulations. Possible applications to all-
optical switching are discussed. €998 American Institute of Physid§1063-776098)00904-4

In the past decade many investigations have been desic localization is a pure nonlinear effect which appears to be
voted to intrinsic localized modes in discrete nonlinear sysvery promising in optical information processing. However,
tems due to their relevance to different branches of sciencép optimize the switching process, the boundaries between
e.g., solid state physics, nonlinear optics, and biology. Thetable and unstable propagation of the SLM must be identi-
fundamental properties of localized structures were used tbied.
explain some thermodynamic effects in soli@gsg., nonex- As far as the structure of the SLM is concerned, two
ponential energy relaxatipnpolaron and defect dynamics in basic types of SLMs can be distinguished, i.e., ¢cihtered
anharmonic lattices and quantum crysi@lse Refs. 1-6 and on-site and even mode¢centered between sitedn each
the bibliography cited theje Many physical phenomena case the adjacent components may oscillate either in-phase
such as modulational instability of plane wavésprmation  (unstaggered modesr out-of-phasdstaggered modgs®!’
and stability of temporal solitor’s:® and the recurrence depending on the sign of the nonlinearity. As was already
effect! occur in discrete systems in a quite different waymentioned, the stability of SLMs against perturbations af-
compared to those in extensively studied continuum systeméects substantially the dynamics of the mode and is therefore
The discretness of the medium is responsible for new physian important issue to be addressed. The problem can be tack-
cal effects that could not be forecast in studying the conded by using various approaches, e.g., direct numerical cal-
tinuum model. Some of the theoretically predicted propertiegulations or a method based on the so-called Peierls-Nabarro
of discrete systems, in particular, modulational instability of(PN) potential*®’ It is evident that the former method can-
plane waves, existence and dynamics of bright and dark lorot cover the entire problem; i.e., study of the effect of varia-
calized states, have already been verified experimeritalfy. tion of all parameters involved on the stability. The latter

In many cases the evolution of the initial excitation may method relies on the PN potenti@N barriej of both types
be described by the discrete nonlinear Sdimger equation  of solutions, providing no information about the instability
(DNLSE), which is one of the fundamental equations in non-gain. Moreover, as was demonstrated in Ref. 17, to consis-
linear physics. For instance, it governs electron-phonon intently interpret the results obtained, one must introduce con-
teraction in a one-dimensional ionic crystal or mediates noneepts such as the negative mass for staggered modes. An-
linear processes in biology, where it is called a discrete selfether technique, which is based on a variational approach,
trapping equation. Another spectacular example is the was applied to investigate the existence and stability of rela-
evolution of the electromagnetic field in an array of linearly tively weak localized modes of the generalized DNL'SE.
coupled waveguides, which have a great potential in appliFinally, the onset of chaos, including the so-called micro-
cations for performing all-optical switching, steering, and de-chaos for three coupled oscillators, has been studied by cal-
multiplexing. The use of such waveguide arrays for power-culating the Lyapunov exponetit.
and phase-controlled, all-optical information processing was As a result of these previous studies, all even SLMs of
discussed in many papefsee Refs. 14 and 15 and the bib- the DNLSE with the Kerr-like nonlinearity have been as-
liography cited there However, from the point of view of sumed to be unstable. In this paper we prove for the first time
obtaining a practical device the number of excited channelthe existence of a stable even mode in the system described
in the array should be minimized. Fortunately, discrete sysby the DNLSE and give an analytical criterion for its stabil-
tems are able to support the so-called strongly localizedty. We show that a direct linear analysis can be exploited to
modes(SLMs), which contain only a few excited compo- straightforwardly investigate the stability of the entire family
nents and hence exactly suit the above-mentioned criterioraf SLMs. This technique provides a clear physical picture of
In contrast to an inhomogeneous discrete system, this intrirthe onset of SLM dynamics. The analytical results concern-

1063-7761/98/86(4)/5/$15.00 682 © 1998 American Institute of Physics
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ing the regions of instability as well as the respective gainve mainly deal withstrongly localized modes and assume
permit us to draw conclusions for all-optical switching in that for «, B<w~0.2 the second-order terms can be ig-

waveguide arrays. nored.
The DNLSE under consideration is To study the stability of SLMs we impose complex per-
turbationss,(t) on each nonzero excitation amplitutfane
 dEn 2 begin with the even mode and insert the perturbed profile
|W+c(En+l+En,l)+)\|En| E,=0, (1) g pertu p
e, =A(....0a+8_51+6_1,5+85.1,a+5.5,0,..) into (1).

wheret andn represent the evolution parameter and the sité® subsequent linearization yields an eighth-order system of
index, respectivelyf, represents the excitation at tm¢h  equations for the real-valued variables, which is only nu-
site, ¢ is the linear coupling coefficient, andis the effective ~ merically solvable. However, a considerable simplification
nonlinear coefficient. All quantities are dimensionless. Thiscan be achieved by a proper decomposition of the perturba-
can be achieved by a convenient normalization using chartions into symmetric and antisymmetric componentssas
acteristic scales for the evolution variable and the amplitude® 8+ 6—; (j=1,2),* which leads to a decoupling of the
of the excitation. In case of waveguide arraydenotes the ~System. Separating real and imaginary parts of the perturba-
propagation distance along the waveguide. tions &; =6, +idj; and introducing the scaled time,

In order to identify SLMs we take advantage of a =wet, We obtain two independent systems for the column
method reported in Refs. 1 and 4. Inserting, vectors™=(58y 85,65 05)
=e, exp(wt) into (1), wheree, represent the respective am-

plitudes of a bright localized mode, we obtain a system of a 0 (s=p)a 0 -—a
few algebraic equations. Thus, for the even mogle ds* 2—(3s—p)a 0
=A(...,003,a5,18,50a,,503,0,...), |[n|=1m.2,3,...,s=*1 P 0 4 o 1 |9 4
we obtain the following equation with the requirement for €
strong localizatior az|<|a,|<1, a,~0 for n>3: @ 0 -1 0
o NAZtsCt c? wherep= *1 stands for the symmetrio&f) and antisym-
W= We™ s¢ NAZ metric (6;) perturbation, respectively. If we introduce
c |2 c \2 5+ exp@ry), then the eigenvalues of (4) are given by the
ay=a= 77 =S W) , agz(m> , (2)  biquadratic equation

4 _ _ 27~2 _
where for symmetry reasons the subscript0 has been g +[1+2(p=s)a+2(3-2ps)a’]g”+2(p-9)a

dropped. +2(3—-2ps)a?+2(p—2s)a’+a*=0. (5)
Analogously, for the odd mode the ansatg,
=B(...,085,81,80,581,582.0,...), | B2|<<| B1| <1, gives If the symmetry of the perturbation coincides with that of the
2c2 c SLM (s=p), Eq. (5) does not exhibit real-valued solutions
0=0,=\B*+ —%, Bo=1, B1=p=—=3, provided thata is small, as requiredd=<wg). Thus, the
AB AB SLM is always stable against those perturbations, which was
Bo=B% s=1 (33 numerically verified. In contrast, if the perturbation has the
opposite symmetry of the SLMp(= —s), the SLM can be-
for the symmetric mode and come unstabl¢Re(@)#0].
2¢2 We observed two basically different kinds of SLMs dy-
0=wy,=\B%+ —5, Bo=0, pB;=1, namics. Both staggered and unstaggered modes are always
AB unstable with respect to symmetric and antisymmetric per-
c turbations, respectively, whereas SLMs wits<<O are un-
Bo=B= “B% s=-1 (3b)  stable only if the modulus of the amplitude exceeds a

critical value, i.e.|a|> ay,. These particular even SLMs are
for the antisymmetric mode. Here the subscriptend o neither staggered nor unstaggered and can be obtained from
represent the even and the odd mode, respectively, and thieose by changing the phase of excitations on sited by
parameteis=*+1 defines the symmetry of the mode. In de- 7. Hence, we call these modéwisted staggeredTS) (s
riving (2) and (3) we restricted the analysis to the second-=1,a4<0) and twisted unstaggeredTU) (s=—1,a>0)
order terms concerning the small parametermnd 8 for no  SLM. It is worth noting that the continuous NLSE limit does
more than six excitations. In concentrating on the physicahot exhibit a solution of that topology.
aspect of the problem we restrict the discussion to the first- In analyzing the solutions of5) we can ignore higher
order approximation. For sufficiently strong localization theythan quadratic terms inr and thus obtain a compact expres-
provide a reasonable accuracy, which was confirmed by aion for the instability gain. If the linear coupling) and the
direct numerical solution ofl). The difference between nu- nonlinearity(\) have the same sigfi.e., «>0), the unstag-
merical and approximate analytical solutions merelygered SLM 6=1) is always unstable against antisymmetric
amounts to a few percents. A detailed study which takeperturbations, where the gain of instability
higher-order terms into account represents a separate subject
and is beyond the scope of this paper. Hence, in what follows g~2\/§(1—55a/4), sa>0 (6)
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FIG. 1. Instability gaif Re(g)] plotted as a function of the amplitudefor
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for relatively small amplitudes ~0.1) the intermediate,
asymmetric, oscillating state is fairly persistent and can be
thus considered a quasi-stationary state.

In contrast to the behavior of the unstaggered SLM,
which is in agreement with the results previously
reported'®18 the TU mode §é=-1) becomes unstable
against symmetric perturbations only beyond the critical am-
plitude and the corresponding gain is

g~ vV—Sa— ae,

This has the consequence that TU SLMs are stable against

sa+ay<0, aq=0.12. )

even SLMs. The insets show the shape of the respective SLMs, where th@ny perturbation ifa<a,. For the case whereand\ have
twisted modes are sketched at the bottom.

opposite signgi.e., <0) the situation is reversegee the
left side of Fig. 2 and the TS mode exhibits stability for that
particular region of|a|. These predictions were double-

increases with (see Fig. 1 The instability of unstaggered Cchecked by numerically solvind), imposing anasymmetric

modes is confirmed by a direct numerical solutioff The
decay of the antisymmetrically perturbed, unstaggered SL

perturbation on the TU SLM. Ifr does not exceed the criti-

vfal valueag,, the TU mode is stable, exhibiting only slight

and its subsequent transformation into an odd mode can geScillations produced by the perturbatisee Fig. 3a If «

clearly recognized in Fig. 2. As can be anticipated fr(gn
(see also Fig. 11 the transition time decreases withdue to
the increase in the instability gain. A changeaofrom 0.13
(Fig. 2a to 0.15(Fig. 2b causes a significant reduction o

grows larger and exceeds the critical value, the TU SLM
becomes unstable and decays eventuake Fig. 3l Thus,
the existence of a stable even SLM of the DNLSE has been

¢ proven. The stability of the twisted modes might be ex-

that transition time to the stable odd mode. We mention thaPl2in€d by the fact that neither the TU nor the TS variant has

h o W

Intensity

FIG. 2. Evolution of an unstaggered SLM=1) antisymmetrically per-
turbed;N=1, A=1, § =(0.01, 0, 0, 0);(a) «=0.13, evolution of the
four initial excitations(solid linesn= =1, dashed linen=—2, dotted line

n=2); (b) «a=0.15, evolution of the mode.

a topological counterpart among odd SLMs. Hence, such a
twisted SLM cannot transform to an odd SLM and stability
arguments based on the PN barrier do not apply here. Be-
yond the critical valuea,, instability manifests itself in a
spreading of the mode and sets in if the localization becomes
weaker due to an increasing secondary amplitude(see
Fig. 3b. We note that allowance for second-order terms in
conjunction with the excitations at the siteg=3 does not
significantly change the instability regions and the gain. The
transition from stability to instability, which is caused by a
slight change ofx at the input, can be potentially exploited
for all-optical switching (e.g., see the drastic change of
the output intensity in the waveguide labeled
n=—1 in Figs. 3a and 3b, respectively

Following the same procedure, one can also study the
stability of odd SLMs. For example, if we ignore the second-
order corrections for the odd symmetric SLM in E§a) and
impose complex perturbatior$(t), we obtain from(1) and
the subsequent linearization a six-order system of ordinary
differential equations. Decomposing the perturbation into the
symmetric and antisymmetric componerts=e,,*&_;,
we can easily infer that the equation toy can be separated,
and that it yields the solution; (t)=&; exp(—iwt). Obvi-
ously, this type of perturbation does not provoke any insta-
bility of the system. Thus, one needs only to study the sta-
bility with respect to symmetric perturbations. Separating
real and imaginary parts of the perturbatiorg= ¢,
+iegi, €, =&, +ie;;, we obtain a system of four linear
equations

o 0 0 -8

de 2 0 B 0 |_
dro. | 0 g, 6]

268 0 -1 0
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FIG. 3. Propagation of the perturbed twisted unstaggered S&M—1), A=1, A=1; (8 a=0.11<a, §=(0.04, -0.02, 0.02,70.02),3’:(0,
—0.04, —0.04, 0.04);(b) @=0.16>a, 6"=(0.04, 0,0, 0).

where 71,=w,d is the scaled time, ande larger the instability gain, the faster the unstable SLM decays
=(eqr €0 ,sfr ,efi) is the perturbation vector. Again, the and the excitation is spread over the entire array. However,
corresponding eigenvalue problem represents a simple bihe above values for the secondary excitation are beyond the
quadratic equation, which now reads as required small-parameter limit fg8. Thus, we may draw the
g*+(1+4B%)g?>+4B%(1+ B?) =0, 9) conclusion that the oddstrongly localized mode(3a) is

where Reg) also represents the instability gain. We straight-Stable against small perturbations. This result was confirmed
forwardly obtain a nonzero gain Rg(only provided that the ~numerically. Figure 4 shows the evolution of a perturbed odd

secondary excitatiorh,8|>1/\/§~0.35_ Such an instability SLM, where a complex perturbation was superimposed on a
causes the spreading of the mode in both directioms ifihe  solution of (3a). Obviously, the perturbation results only in
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This paper presents a theoretical study of second-harmonic genei@ki@ by a focused pump

beam in the interior of an isotropic medium, experimentally observed earlier. It shows that

the spatial dispersion of the quadratic optical response of the substance can be responsible for this
nonlinear process even when a macroscopic inversion center is present in the medium. It is
established that this effect, which is impossible in the plane-wave approximation, also does not
occur when a Gaussian pump beam with uniform distribution of the polarization state of

the wave field over the cross section is used, but that the presence in the pump beam of higher
transverse modes with polarization different from the fundamental mode can cause an

SHG signal to appear. The conditions for a wave to appear at the doubled frequency are found,
analytical dependences for its electric field and total power on the propagation coordinate,

the degree of focusing, and the other parameters of the problem are obtained, and the requirements
on the optimum experimental geometry are formulated. The dependence of the signal-beam
power on the wavevector detuning is studied, and it is shown that interference effects can cause the
wave at the second harmonic to disappear when a normal dispersion law is obeyed in the

region between the fundamental and doubled frequenciesl9@8 American Institute of Physics.
[S1063-776(198)01004-X

1. INTRODUCTION Halobacterium halobium containing chiral molecules of
acteriorhodopsin. In a number of cases, when coarse mem-
rane fragmentgabout 1 um in diametey are studied, the
ppearance of the second harmonic can be ascribed to par-
tially coherent hyper-Rayleigh scatterifig: Actually, each
membrane fragment is an ordered structure of significant
size, which can generate a coherent SHG signal. When it is
. 2 . in th bi | %veraged over the volume of the solution, the total signal at
g_?g 'Ea;;?c%gsciE)Tg?rzsgzniggﬂgerién;qe%ifi ofojregia\r/r? Tg]?he doubled frequency does not go to zero, because the mem-
liquid or a gan) when a static eIeth)ric field is i'mposed OE th%rane fragments illuminating it are macroscopic In Sk .
medium? remo’ving the inversion center in it. At the sameethe order of the wavelength of the laser rad|at|op being
time, in ,the absence of external fields, the éppearance of used. A theory basgd on the _present model of pamally co-
signéll at the doubled frequency due t(; local electric-dipoleﬁ‘erent hypgr-Raer|gh sgattermg was cqngtructed in Ref. 1.5;

) A ] ) its conclusions give a fairly good description of the experi-
optical susceptibilityy(? is forbidden not only in centrosym- ments on the study of a suspension of coarse fragments of
metric but also in noncentro:symmetric liquids and gasesprple membrane’:t However, by no means all the experi-
since the corresponding tenspf®) equals zero because of mental results can be explained in this way. Membrane frag-
symmetry under permutation of its last two subscriots. ments reduced to about 50 nm were used in Refs. 12—14; in
Nevertheless, SHG was experimentally produced severahis case, the directionality diagram of the observed SHG
years ago in the interior of a noncentrosymmetric solution okjgnal and its polarization dependences did not match the
arabinose using noncollinear interaction of two laser beamgrediction of its appearance due to hyper-Rayleigh scattering
with identical frequency:’ This result is because the signal (both completely incoherent and partially cohejeiMore-
obtained at the second harmonic was not quadratic bujver, the presence of two components that interfere with
fourth-order in the field of the pump wave, which is ex- each other was distinctly observed in the signal at the
plained by the fact that it displayed nonlinear optical suscepdoubled frequency in these experiments. These were qua-
tibility x“(2w;0,0,0,— ). dratic and fourth-order in the field of the pump wave.

A number of experimental papérs*have recently been There has been no consensus among investigators re-
published in which a signal was observed at the doubledarding the nature of the SHG signal component quadratic in
frequency, generated by one pump beam, in a suspension fiéld, and moreover there is no satisfactory theory that can
arbitrarily oriented fragments of the purple membranes okxplain all the experimental results so far obtained. We in-

The conversion of laser pump radiation into the seconqb)
harmonic in the interior of noncentrosymmetric crystals hasa
been known since the first days of nonlinear optiGacond-
harmonic generatio(SHG) is also widely used in the spec-
troscopy of the surfaces and interfaces of médtaince this
three-wave-mixing process can be efficient only when ther

1063-7761/98/86(4)/9/$15.00 687 © 1998 American Institute of Physics
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tend to show in this article that the quadratic part of thethe dipoles that compose the substalsee, for example,
signal wave observed in Refs. 12—14 can be caused by spRef. 17. Moreover, this separation is extremely conven-
tial dispersion of the nonlinear-optical response of the intetional and arbitrary, since it is the generalized polarization of
rior of the substance, since, even when the size of the inveshe medium, including the electric-dipole and all the other
tigated membrane fragments is much less than th@ossible contributions, that enters into the right-hand part of
wavelengths of the interacting fiel@about 50 nmy, the non-  the wave equation as the source of the electromagnetic wave.
local behavior of the nonlinear optical response can be sigi this connection, in the case considered here, it is impos-
nificant. Theoretical treatment of this phenomenon is not aible in principle to obtain more spectroscopic information
simple problem and requires that the spatial limitation of thethan is contained in the independent components of the ten-
pump beam and the inhomogeneity of its polarization statgor y(2). This is why it seems to us to be more convenient
with respect to the cross_sectlon be treated, since, as will bgnqg correct to use the tens&ifz) introduced in accordance
seen from the formulas given below, such an effect is imposy it Eq. (1) to describe the nonlocal behavior of the qua-

sible in the plane-wave approximation. dratic optical response of a substance in the problem consid-
ered here.
2. MAIN CONSIDERATIONS The material tensoy'?) possesses no additional internal

) ) _ symmetry. Therefore, for the media considered here, with
In this paper, we consider the signal component at th@c or sccom symmetry, it has three independent Cartesian
second harmonic generated in the interior of a nonabsorbingsmponents, which we denote by

homogeneous isotropic medium that is quadratic in the field

of a monochromatic pump beam. The material equation for 7(12)2 Vii)yya ?’(22)2 Vg)yxa ?’%2): Vg)xy-

the generalized polarization of a medium at the doubled freTaking this into account, the material Ed) can be written
guency, allowing for spatial dispersion of the quadratic NON5., vector form as

linearity, can be written as

1
P2(r)= > Y?V(E-E)+yPE(V-E)+y?(E-V)E,
2

where E(r)xexp(-iot) is the electric field of the pump v o e have writtelV = 9/r and omitted the argument
beam. As po[nted out above, the local electric-dipole op'[ica|n the field E everywhere for brevity. We should point out
susceptibilityy'?) equals zero in the present case even whefihat the prescribed-pump approximation should be used
there is no macroscopic inversion center in the medium. \yhen E(r) is substituted in Eq(2), since we hope to restrict

In this paper, we use the approach to the electrodynamgpyrselves to a study of the optical response of the medium
ics of complex media in which the magnetic induction isthat is quadratic in the field. Taking into account the action
identically equal to the magnetic field. The generalized poof the signal beam on the pump wave and also the self-action
larization of the medium unambiguously describes the optiof the latter does not affect the form of the terms in the
cal response of the latter in this case, since it is the onlyxpression for the polarization of the medium that are qua-
cause for the appearance of the electromagnetic signal wavgatic in field, but only adds terms proportional to higher
All the magnetic effects are completely taken into account inpowers of the field of the pump beam.
the framework of the aSSUmption that Spatial diSpeI’Sion is Let us examine What each Of the three terms on the rlght_
present in theP(E) dependence. We shall restrict ourselveshand side of Eq(2) contributes to the field of the signal
in what follows to terms that are linear in the small spatial-waye. The first of these is the gradient of a scalar function,
dispersion parametet’/\ (d’ is the characteristic scale of and therefore is a purely irrotatiotavector field of the po-
the nonlocal optical response, ands the wavelength of the |arization of the medium. The electric field created by it at
light). When we take this into account to describe the quathe doubled frequency is found from the Maxwell equation
dratic optical response of the material, it is sufficient in ourgiy p=0-
problem to know only the tensoy® (we recall once again 4
that x(*)=0). ERN) =~ — PR/(1). ®

The literature exhibits frequent attempts to separate the €sH
generalized polarization into electric-dipole, magnetic-[Thjs is the form that results from the reduction of the wave
dipole, electric-quadrupole, etc., contributions. In such arnequation for longitudinal plane electromagnetic waysse
approachy® would be represented in terms of a number ofRef. 1, Sec. 3.8 and consequently also for beams of irrota-
tensors describing the nonlinear-optical response of a “diftional type] Here ey is the permittivity of the medium at
ferent nature.” It should be pointed out that this is not pos-the doubled frequency, and the subscript “pot” recalls the
sible for arbitrary media and by no means for all ca@=® irrotational character of the fielth potential fielgl The last
Ref. 16. Moreover, even when such a separation can bequation shows that the irrotational field of the vedBi)
made, the tensory® can include not only terms of generates an electromagnetic wave of irrotational type,
magnetic-dipole and electric-quadrupole origin, but alsowhich, as is well known, cannot propagate freely but exists
terms formed by its manifestation of the nonlocal nature ofonly inside a medium, being coupled to the W;R{)é)t(r) by
the electric-dipole contribution, caused by the interaction ofEqg. (3). When it encounters the surface of the medillﬁ‘lg?[,)t

d
PI(r) = Y E(r) 5 E(r), (1)
J
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contributes to a free wave because the boundary conditions H
for an electromagnetic field must be satisfied, but this con-
tribution must be taken into accodntand is taken into M ‘ -~
account—see, for example, Refs. 18 and a9 part of the '
SHG signal from the surface. In this article, we shall con- [
sider only electromagnetic waves of the solenoidal type at
the doubled frequency, since they are the only purely bulk ¥ ] : z
effect (i.e., the signal is formed in the interior of the me- :
dium). ;

The second term in Eq2) is proportional to divE, and o
therefore equals zero, which follows from Maxwell's equa-
tion divD=0 taking into account the constant-pump aP-FIG. 1. Propagation of a pump beam with SHG through a medium. The zero
proximation. Thus, the SHG signal of interest to us can benitial conditions for the field of the signal wave are set in #3e0 planew
generated only by the solenoidal component of the third terntp the half-width of the beam at the fundamental frequency in the plane of
in Eq. (2). Below, we consider it in more detail. the beam waistz=1o.

Note first that the case in which the medium lacks a
macroscopic inversion centésymmetrycoco) differs from

the case of a centrosymmetric substance by the presence §fstem along the beam axisee Fig. 1, and we shall write
linear gyration in the medium. This has the result, in particu-all subsequent formulas up to and including terms linear in
lar, that normal waves with right- and left-circular polariza- 1/kw (k=nw/c is the wave number of the pump wave in the
tion have different wave vectors in such a medium. How-medium,n= /¢ is the refractive indexg is the permittivity
ever, this difference is a first-order correction in the spatiabf the medium at frequency in the absence of linear ab-
dispersion parametet’/\, and therefore the only result of sorption, andw is the half-width of the Gaussian mode of the
including it is that additional terms quadraticdi/N appear pump beam The field of the beam at the fundamental fre-
in Eq. (2), which already includes the tensgf?), which is  quency thus has the form

linear in the small spatial dispersion parameter; these qua-

dratic terms are outgide the Zcope o? our treatment. T?ms, E(r)=Ee(n)+EXn)+EY(r), @
including the influence of linear gyration does not change thevhere
general form of the expression f&? and consequently

o
e
‘‘‘‘‘‘
Lt BN

———— —_—
~~,

cannot affect the conclusion that SHG is possible or impos-  E.(r)=E,| e,— E (e-V)|eg(r),

sible in any specific situation. Of course, if the rotation of the ik

polarization ellipse that arises in this way at distances of the r e X

order of the length of the medium is sufficiently large, it — EX(r)=Eg| & — o (eﬁ-V)} WB D) es(r),

should be taken into account when writing out the expression -

for the pump-beam field and the wave equation in order to I e, y

correctly describe the characteristics of the signal w@ge EY(r)=Ej| ey — K (3" V)} WB(2) es(r). 5

pecially its polarization However, in this paper, we shall
consider the linear rotation of the polarization ellipse to beHereeg(r) describes a scalar normalized Gaussian beam
small at all lengths of interest to us, which agrees quite well
with the real situation that occurs in the experiments consid- g ()= L ex;{ , (6)
ered above for studying a suspension of fragments of purple B(2)
membranes. Taking into account what has been said, Wghere g(z)=1+i(z—1)/l4, |4=kw?2 is the diffraction
shall neglect the influence of linear gyration for the particulanength of the Gaussian bear, is the distance from the
case of an isotropic noncentrosymmetric medium. This=g plane to its waist, and, is the component of radius
makes our further calculations for isotropic media With  yectorr that lies in thexy plane. In Eqs(5), E, andEy"Y are
symmetry (with no inversion centgrand «em (a cen-  scalar amplitudes, while, ande}'¥ are the polarization vec-
trosymmetric mediumcompletely identical. tors of the three transverse modes of the pump beam under
If we consider a plane pump wave with wave vedtor  consideration, and the absolute magnitudes of these vectors
the third term in Eq(2) takes the formi y{?)(E-k)E, which  equal unity. All six of the indicated quantities are in general
equals zero because the field of a free plane wave is trangomplex, whileeo,eg(ﬂez, whereeg, is the unit vector along
verse. As will be seen from the subsequent formulas, a@hez axis. In the framework of the assumptions made here,
Gaussian beam with a homogeneous distribution of the paall three transverse modes of the beam with frequescy
larization state of the wave over its cross section also canngfatisfy not only the wave equation but also the condition
generate an SHG signal, and therefore we shall assume thaliy E=0, which follows from the Maxwell equation diD
besides the zeroth-ordéGaussianmodeEg(r), the pump =0 when the constant-pumping approximation is taken into
wave contains two additional higher-order transverse modeaccount. This is why, as already pointed out in endnote 1, the
E*Y(r), where all three of these modes can have differenfields Eg(r) and E*Y(r) of these three modes, which are
polarizations. We direct the axis of thexyz coordinate solenoidal free waves, have components along ztexis,

2
—iwt+ik(z—|0)—m
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which are additions to the maim andy) components of the ' -z]? ey v
field of the corresponding transverse mode that are linear in —4i W} EOEO(eZ-(ef)(XeO))] B(z")
the small parameter Hw. s
Substituting the fieldE(r) given by Eq.(4) into the third -zt 1 . ,
term of the material equatiof) and using Eqs(5) and(6), —4 ke  BAZ) exp iAk(z' —lo)
we obtain that, taking into account the approximations made
here, this term will have a purely solenoidal character in our 2rf , 7z —z]™t
case. It was shown above that neither the first nor the second W B(z)) -4 kspw? ' (10

term of Eq.(2) contributes to the solenoidal component of

the vector polarization field of the medium, and therefore where Ak=2k—ksy is the detuning of the wave vectors.

Fortunately, by imposing not very burdensome limitations on

2 .
eg(r) the parameters of the problem, EGO) can be greatly sim-
2) ey — (2 _ (2 G
PUGH) =75 (E- V)E= 4" WB(2) [EOEé[exx(eg plified and the result can be written in analytical form in
y y terms of special functions. We require that
X &) ]+ EoEd[ &, % (&) X
M1 XY Y b isfied f llz inside th di Si Il
_ EXEY(e, (efxe)) !, @) e satisfied for allz inside the medium. Since usually
wh(z) °7° |Ak|/ksy<1 holds(small detuning of the wave vectdshis

solenoidal part of the vector fiel®®)(r) (a vortex fiel.  the pump-beam waist lies inside the medjutdowever, in

Only P2) can generate a free electromagnetic wave of thdhe limit |z—1Io|/l;>1, the expression under the integral in
solenoidal type in the volume of a medium, since the irrota-Ed- (10) is small by comparison with its value in the plane of

tional componen®() does not contribute to ithis follows the beam waist; i.e., as should be expected, regions of the
pot . . . -
from the form of the wave equation, which can be found inmedlum that far from the beam waist contribute little to the

the book cited above; see Ref. 1, Sec)3.3 SHG process. Therefore, there is every reason to assume
’ ' that, in all cases of practical importance, the simplified for-
mula given below forA{2)(r) is valid even in the limitL

>y
3. SOLUTION OF THE WAVE EQUATION AND ANALYSIS OF »
THE TRANSVERSE FIELD DISTRIBUTION OF THE @, TKKspw o) X
SIGNAL WAVE OVER THE BEAM CROSS SECTION Avor(1) =1 75| EoBolecx (€ )]

Let us write the wave equation for the electromagnetic v v r, Yy
field E(2) at the doubled frequency, generated by the polar- +EoEo[eyX (e X €)]— WD) EoEo
ization P{2) of the medium, in abbreviated form, for which ,
we introduce a slowly varying amplitu (f} according to Y 1 2ry

2 2 xer (X&) Bsw(2) X - W2Bsi(2)

Evan(r) =AH(r)ex] — 2i wt+iksy(z—10)]. 8)

X 7@ (~lg,z~1y), (12

wherekspy=2ngpw/c, andngy= Jegy is the refractive in-
dex of the medium at the doubled frequency. The reducewhere
wave equation foA{2) has the following form: 2—1y 2k

9 i Bsu(z)=1+i I
- (2)
(az 2kSH AL)Avor(r)

Ksw
is in fact an analog of the coefficieft(z) for a Gaussian

2miksy . . , beam at the doubled frequency with half-widthv2, and
= oo exd 2i wt—|kSH(z—I0)]Pf,o),(r), (9) 7% is used to denote the following dimensionless integral:
whereA | = 32/ ax2+ 9% 9y?, while P2 is given by Eq.(7), F®(2,.2,)= f 2leexivd) 1 v
using Eq.(6). g (1F10) 1+ig
Since the SHG signal from the surface is not under dis- {=2,1l4
cussion in this paper, we set zero initial conditions for EQ. —vexp(—v)Ei(ivi+v) . (13
(9) at z=0 (the boundary of the mediumlts exact solution (=7 1ly

can be written in quadratures as wherev= Akl is a dimensionless parameter that character-
2miksy Y2 (2 izes the detuning of the wave vectors, and
e ol I TN BT )

Ei(x)= ﬁ (e/t)dt
B(z")

r
Y Y _ L
+EoBole, X (& X &)] w is the exponential integral function.



JETP 86 (4), April 1998 Volkov et al. 691

It should be pointed out that an integral similar to Eq. \t/
(13) was encountered in Refs. 20—22 when four-wave mix- —_— t = —
ing processegin particular, third-harmonic generatiptin Y2 ah
focused Gaussian beams were considered. At the same time, ]

the corresponding integral for the SHG case in a weakly RS SSSEEENENE

because of the interaction of various transverse modes of a

anisotropic mediur? differs appreciably from the formula Lo oooIIIIIIIil
that we have obtained fort?). The cause of this difference S SStttetdddhiiii:
is that, in the problem considered here, SHG does not occur 055 7 SO DT
under the action of a Gaussian beam, as in Ref. 20, but ob - - LI

L A A I I
[}
I
)
]

A R I T T R S

multimode pump beam. The analogy with third-harmonic 05k - PREGEEESOEE
generation in isotropic media is therefore rather unexpected, : Mt i
and we shall return to this point in Sec. 4. R
As follows from the basic Eq12), SHG in the interior T lTTITTTTTmm e
of an isotropic medium in the case considered in this paper is B P TP
possible only with noncoincident polarization vectors in -5 -16 05 0 05 10xp(2)

three transverse modes of the pump beam. Generation of the

second harmonic is impossible in the case of a single-mod?G' 2. Trangver§e d|str|bu.t|on of the eIeptnc field of the pump beam over
Its cross section in the far field of diffraction. The arrows show the relative

beam, for instance a purely Gaussian beam with uniformmpjitude and direction of the linear polarization of the field at the point

polarization over the cross section. It also follows from Eq.with the corresponding andy coordinates; the latter are normalized to the

(12 that the field distribution over the cross section of thehalf-widthro(z) of the Gaussian mode of the pump beam. Above the figure

signal beam is the same as if it consisted of a Gaussian bealﬁf;ch_ematlcally illustrated _the transvers_e mpdal structure of the pump beam,

. . in 'which the zeroth(Gaussiaj mode, which is homogeneous and linearly

and hlgher transverse modes, but thedependence n polarized along thex axis, predominates, and which also contains a small

A\(,f,)r(r) because of the factor?(—1y,z—1,) is different  admixture of the first order mode, the direction of whose linear polarization

than in a free electromagnetic wave. If it is assumed that thét €ach point is perpendicular to the axis of the beam.

structure of the pump beam is such ti&tY(r) constitute

only a small correction tdeg(r), it follows from Eq. (12)

that the Gaussian component will dominate in the signawithin some phase factprexcept that the half-width of the

beam. It is also interesting to point out that the two higherbeam at the doubled frequency will be about a factoydf

transverse modes in the SHG signal form an axisymmetri¢ess.

“speckle” distribution of the wave polarization state, in

which the electric field vector at any point of the cross sec-

tion of the beam is directed along its radius. The total polar-4' FORMULA FOR THE SHG SIGNAL POWER AND

ization of the signal beam will in general be elliptical, with DISCUSSION OF THE RESULTS

the parameters of the polarization ellipse being different at  \We start by obtaining expressions that connect the pump

different points of the cross section. beam poweW with the amplitudes of its three transverse
Figure 2 illustrates the transverse spatial distribution ofmodes. As a result of integrating the intensity of a wave with

the electromagnetic field of a three-mode pump beam in th@equencyw, the expression for which can easily be found

far field of diffraction. In drawing this figure, we assumed from Egs.(4)—(6), it is found that over the beam cross sec-

that the field of the Gaussian component of the beam is dition W equals the sum of the powers of these three modes

rected along the axis, while the small addition from the two W, WX (i.e., these three modes are in some sense or-

upper transverse modes, with speckle polarization, has gogona):

phase shift ofr/2 relative to the field of the Gaussian mode,

i_n order that the_ pplarization qf the wave_ woulld pe strictly W= en f f |E(r)|2drl=WG+WX+WY, (14)

linear and not elliptical at all points of the figu(this is done 8m

only for greater clarity of the imageln other words, Fig. 2 \ynere

is drawn with the following values of the parameters that

characterize the pump beams: e o2 xy_ SN X2
We=1e W2IEgl2, W*Y=co wiERY % (15)
X_Y_ 3 _ _ Y _
Ey=E;=0.2E,, e=e=¢, =g All the powers in Eqs(14) and (15) are independent d,

. ] ] which is associated with the use of the constant-pump ap-
(e, are the unit vectors directed along tkgy coordinate proximation.
axes. The quantities/ro(z) andy/ro(z) are plotted along The total SHG signal power is obtained similarly to in-
the axes in the figure, wherg(z) =2|z—1o|/kw is the half- tegrating the square of the slow field amplituti)(r) at the

width of the Gaussian mode of the pump beam in the fayy pied frequency, given by EL2), over the beam cross
field of diffraction. The transverse field distribution in the section:

pump beam shown in Fig. 2 is remarkable in that the trans- 24

verse field distribution of the signal wave created by it in the 2) 128w )12 X ) viy
. . . =—— X ey|%+

far zone of diffraction will have almost the same for(o W@ Chgpe? 757 WG W€ X el + WG W e
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FIG. 3. Normalized dependence of the total powé?) of the signal wave
(solid curve and the powerwg(z) of its x-polarized componentdashed
curve vs parameterp, which determines the polarization state of the
Gaussian transverse mode of the pump beam according to the foegula
=g, Cosetig, sing, whereg, is the polarization vector of this Gaussian
mode, ande,, are the unit vectors along they axes. The polarization
states of the Gaussian component of the pump beam for differeare
schematically shown in the upper part of the figure. It was assumed that thEIG- 4. Dependence ¢f71?)(—L/2,L/2)|?, the dimensionless power of the
first-order transverse mode of the beam at the fundamental frequency BHG signal when the pump beam is focused at the center of the medium, on
significantly weaker than the Gaussian component, while the direction othe lengthL of the medium, normalized to the diffraction lendthof the
linear polarization of its electric field at any point of the cross section andpump beam. The values of the parameterAkly, which characterizes the
for any ¢ is perpendicular to the beam axis. detuningAk of the wave vectors for the SHG process, were taken as fol-
lows: —2 (curvel), —0.5(2), 0 (3), 0.5(4), 1 (5), and 3(6).

X ep| 2+ WXWY| & x 8|2 .72 (—1g,2—10)|2 The theor_etical curves shown i_n Fig. 3 are in qualitative
(16) agreement with the recently obtained experimental depen-

dence of the signal power of bulk SHG on the polarization

If an analyzer that transmits only tixepolarized component  state of the pump beaffialthough there is no detailed quan-
of the electric field of the signal wave is put at the outputtitative agreement between them. In fact, in Ref. 14, besides
from the medium(as was done in the experiment describedsignal components that are quadratic in the field, a sizable
in Ref. 14, the power of the transmitted beam at the doubledfourth-order component relative to the pump-wave field was

frequency will be determined by also observed. The latter results from the presence of nonlin-
) 12872k* ) v ear optical susceptibilitﬁ((“) in an isotropic noncentrosym-
§<)(Z)= onea? |7(3 )|2{ WeW"|ey X &l metric medium, but is also possible because of certain cas-
SH

cade processes. The indicated effects have remained virtually
uninvestigated theoretically, the more so when spatially
bounded wave packets are involved. This is why it is not
currently possible for us to give a definitive interpretation of
17 the experimental results obtained in Ref. 14. Nevertheless, it
In Egs.(16) and(17), the factors in braces describe the de-is noteworthy that an SHG signal is present in the depen-
pendence of the SHG signal power on the polarization statedences shown in Fig. 3 even for circular polarization of the
of the three transverse modes of the pump beam, while theump wave(in our case, of course, we are dealing with its
square of the absolute value of the dimensionless integrdbaussian fundamental modeThis effect was observed
7 determines howV(® andW{?) depend on the coor-  experimentally;** but it has not yet been theoretically ex-
dinate and the positioh, of the beam waist. plained in relation to Ref. 14. The theoretical calculations
Figure 3 shows the normalized dependence of the powearried out in this article make it possible to explain the
ersw(? andW§<2) on parameter, which gives the polariza- appearance of such a “doubly forbidden” sigriatcording
tion state of the Gaussian component of the pump beam ate the expression of Alicockt al!! and Balakinet al'%) at
cording to the doubled frequency, created in the interior of an isotropic
L medium by an(almosj} circularly polarized pump beam.
€=8 Cosetig sine. The four remaining figures are constructed assunzing
For clarity, polarization states of this Gaussian mode corre=L; i.e., the SHG signal at the output from the medium is
sponding to certain values gfare shown symbolically plot- considered. These figures show how the dimensionless coef-
ted againstp. Horizontal arrows show the electric field lin- ficient |.71?)|? entering into Eqs(16) and (17) depends on
early polarized along thex axis, vertical arrows show it the lengthL of the medium, on the coordinalg of the plane
linearly polarized along thg axis, and circles with an arrow of the pump-beam waist, and on the parameteAkly that
correspond to right- or left-circular polarizations. In con- characterizes the detuning of the wave vectors. We recall that
structing Fig. 3, we assumed that the two transverse modds™t?)|? completely determines the dependence of the signal-
EXY(r) have constantindependent ofp) speckle polariza- wave power orL, |y, andv.
tion with W*Y=0.01Wg, which corresponds to the ratio of Figure 4 shows$.7(?)(—L/2,L/2)|? vs. L for the follow-
the amplitudes of these modes used in constructing Fig. 2.ing values ofv: —2 (curvel), —0.5(2), 0(3), 0.5(4), 1 (5),

1
+5 WXWY & x &2t .72 (— 14,2 1) |2
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FIG. 5. Dependences 02 (—1,,+)|?, the dimensionless power of the
wave at the doubled frequency, vs the distahgdérom the plane of the 0 >
pump-beam waist to the surface of a long medium, normalized to the dif: -4 -

fraction lengthl 4 of the pump beam. The values of parametere the same d

as in constructing the corresponding curves in Fig. 4. ) ) )
FIG. 6. The dimensionless powgr?(—1,,L—1,)|? of the SHG signal vs

the lengthL of the medium and vs the distanige- L/2 from the pump beam

d 3(6). Th . d f . f th waist to the center of the medium, expressed in diffraction lenigtia$ the
an (6). € given case corresponds to focusing of t epump beam. The two heavy curves correspond to thoaadl,—L/2 val-

pump beam at the center of the mediulg=L/2) for all  ues for which the plane of the pump beam waist coincides with one of the
values ofL. Note that, forv~1, a sort of quasisynchronism surfaces of the medium. The figure is drawn for a dimensionless detuning of
occurs, characterizing the increase of the relative SHG signdie wave vectors of=3.
amplitude. We shall discuss this fact in more detail below
when studying the dependence.@t?) on the parameter.
Figure 5 shows the dependence|af®(—14,+%)|? onlq
for the same values aof. Of course, under real conditions,
the length of the medium is finite; here it only important to
us that it be so large thdt7{?)|? differs little from its
asymptotic value as — +. As can be understood from : _ )
Fig. 4, to satisfy this requirement, it is sufficient to take ©N the basis of an analysis of Figs. 4 and 5. _
equal to several tens of diffraction lengths Figure 7 illustrates the dependence of the SHG signal
Figures 4 and 5 show that the larger part of the gHGPower on the parameter=Akl,, which characterizes the
signal, as expected, is formed in the region of the pump’ave vectors. The solid curve corresponds to a position of
beam waist. Actually, increasing the lendttof the medium 1€ Pump beam waist well within a fairly long mediu(ire.,

beyond several diffraction lengths no longer increases thi distance from the plane of the waist to both surfaces is at
east several tens of diffraction lengths—see the explanation

power of the wave at the doubled frequency, and, if we brin , X ! X
the region of the beam waist beyond the boundary of th o Fig. 5. The dashed curve is plotted for the case in which

medium (negativel, in Fig. 5), the relative value ofNV?
sharply decreases. Because of interference effects, it turns

from the pump beam waist to the center of the medium,
plotted forv=3. The two heavy curves in Fig. 6 correspond
to the valued. andly,—L/2 for which this plane of the beam
waist coincides with one of the surfaces of the medium. Fig-
ure 6 clearly confirms the conclusions that we reached above

out that the maximum SHG signal power from the volume L7
can be attained by placing the pump beam waist close to the st
surface of the mediunithe z=0 plang zero to severaly

away, depending on the value of Although such a require- 4
ment on the geometry of the problem is not critical for the

appearance of the second harmonic wheis positive, for 3r

v<0 the power of the wave at the doubled frequency formed
in the volume of a(long) medium falls to zero when the
plane of the beam waist is significantly remote from the sur-
face of the medium. All these circumstances should be taken
into account in setting up the experiment. To choose the
optimum geometry of the latter, it can be useful to construct ~a
the three-dimensional dependence of the SHG signal power

onL andl, in order to find the values of the parameters for FIG. 7. Dimensionless power of the signal wave when the pump beam is

. . . . focused at the center of a long mediup{?)(— o, +)|?, solid curve and
which the power is a maximum. Figure 6 shows the d(:"p(:"nﬁvhen it is focused on the input surface of a long mediup®(0,

. . . . ) 2 2
dence of the d|men5|0n|e§5 coefficigt )(_.IOaL_IO)| +)|2, dashed cunjevs the parameter=Akly, which characterizes the
on the lengthL of the medium and on the distantg-L/2  wave-vector mismatchk (14 is the diffraction length of the pump beam
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the plane of the waist coincides with the input surfétee  doubled frequency. Phase synchronism is attained in this
z=0 plang of a fairly long medium. An interesting feature case at some nonnegative mismatch of the moduli of the
of the phenomenon we have investigated that is indicated bwave vectors (R=kg,), since the interaction of the two
the form of the solid curve in Fig. 7 is that when the pumpspatial Fourier harmonics of the pump beam is noncollinear
beam waist lies in the depth of the medium the SHG signain general. The mean angle between the wave vectors of the
completely disappears far<0, i.e.,ngy=n, which corre- different harmonics of a beam with half-width is on the
sponds to normal dispersion in the frequency region fteam order of 1kw, and therefore phase quasisynchronism for the
to 2w. The analytical formula for the indicated dependence iSSHG process is attained when the wave-vector mismatch is

given by the square of the following expression: Ak~ 2K[1— cog 1kw)]~ 1Kkw2~ 114,

2@ve” ", v=0. which agrees well in order of magnitude with the exact value

TP(—o, )= 0, L<0. (18  y=Akly=1 obtained above.
The disappearance of the SHG signal for negatii®caused 5 concLUSION
by the destructive interference of waves at the doubled fre-
quency generated at different points of the medium illumi-  This paper has presented the first study of SHG caused
nated by the pump beam. Fpr 0 this interference becomes in the interior of an iSOtrOpiC medium by Spatial diSperSion of
constructive and we can see the signal wave even when tiBe quadratic optical nonlinearity. A coherent signal at the
pump beam waist lies deep within the medium. When thedoubled frequency in this case results from the interaction of
plane of the beam waist approaches the surface of the mélifferent transverse modes of a pump beam possessing po-
dium, part of the sources of the wave at the second harmoni@rizaﬂon that varies over the cross section. It can be shown
as it were disappear, which makes it possible to partia”)lhat the described SHG mechanism is unrealistic because the
escape the destructive influence of the interference. That &gnal amplitude is directly proportional to three small pa-
why, when the pump beam waist lies at the surface of théameters: the spatial-dispersion parameter, the divergence
medium, the SHG signal appears even whésnegative, as  angle of the pump beam, and the quantiy"/W, which
is demonstrated by the dashed curve in Fig. 7. characterizes the fraction of higher-order transverse modes in

Of course, the signal in the<0 case can be said to the total pump power. As a matter of fact, the detection of
completely disappear when the pump beam is focused in theuch a weak signal is by no means a hopeless task, since, as
interior of the medium only to within the approximations shown in this article, more effective mechanisms for the ap-
used in this treatment. In practice, only a significant weakJearance of a quadratic-in-field SHG signal in the volume of
ening of the wave at the doubled frequency should be exan isotropic medium are forbidden for one reason or another.
pected. Moreover, at very large values|ef when the in- Indeed, the local electric-dipole optical susceptibijt§?) of
equality|Ak|/k<1 breaks down, our formulas can becomean isotropic medium equals zero even in the absence of a
invalid because the condition given in inequalifyl) is not  inversion center in the medium. Spatial dispersion of the
obeyed and the method of slowly varying amplitudes is notjuadratic optical response of the substance also cannot cause
applicable. However, the latter limitations do not seem cru-a volume SHG signal if the pumping is represented by a
cial to us, since, whef| increases significantly, it is impos- plane light wave or by a Gaussian beam homogeneously po-
sible to obtain any perceptible SHG signal because of théarized over the cross section. This is because the polariza-
sharp decrease of the coherent-interaction length for thison wave formed in the medium at the doubled frequency
nonlinear optical process. has a pure irrotational character and cannot generate a free

The solid curve in Fig. 7 reaches its maximumvat 1.  electromagnetic wave in the interior of the medium. A study
For this value ofy, a sort of quasisynchronism is observed, of the dependence of the signal power at the second har-
for which the pump radiation is transformed into the secondnonic on the wave-vector mismatdtk showed that quasi-
harmonic with the greatest efficiency. This quasisynchrosynchronism is observed for some nonzero valke>0 in-
nism, which appears for nonzero detuning of the wave vectoversely proportional to the diffraction length of the beam.
mismatch, was noted in the references cited atfovéde- The SHG process occurs most efficiently close to this value,
voted to the study of four-wave processes in focused Gaussnd therefore choosing the optimufxk and the optimum
ian beams. Moreover, Eq18) is completely analogous to degree of focusing of the pump beam can make it signifi-
the corresponding expression obtained in the indicated aecantly easier to experimentally observe the effect. Moreover,
ticles for the case of third-harmonic generation. This fact is ave have investigated in great detail the question of optimiz-
consequence of the mathematical similarity noted in Sec. $g the other geometrical parameters of the problem.
between certain formulas that describe two extremely differ- ~ We hope that our work will promote further advances in
ent problems. We shall present a qualitative explanation oéxperimental studies of SHG in the interior of isotropic lig-
the phenomenon of quasisynchronism for SHG in a focusedids. It would be desirable in subsequent experiments to
beam, based on the discussions of Ward and Rfefhe  separate the signal into two components quadratic and fourth
wave vectors of the spatial Fourier harmonics of the pumprder in the field. In this case, the characteristics of the part
beam are tilted both with respect to the axis of the beam andf the beam at the doubled frequency that is quadratic in field
relative to each other. Each pair of these plane-wave harmortie., the dependence of the SHG signal power on the polar-
ics generates its own contribution to the signal wave at thézation states of the pump beam and the signal wave, the
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transverse distributions of the intensity and polarization statedal beam has a small longitudinal component. These components are first-
of the latter, and the dependence of the SHG Signa| power orprder in the beam-divergence angle. The concepts of irrotational and sole-
the parameters that specify the experimental georetnyld ?hoe'dv"i‘/;szno??thgg;‘:é‘;&gﬁ ‘g’f;emb:;lrj“nf'(’f any vector quantity, including
be correlated with the formulas obtained in this paper. This
would make it possible to check the validity of our hypoth-
esis that the second harmonic in the volume of the medium o _ o
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We discuss a new phenomenon of the electrodynamics of transient media, the trapping of
electromagnetic radiation by the boundary of a transient plasma due to the conversion of the
radiation into surface waves localized at the boundary. Calculations are done for an

initial plane wave and for a beam of finite width in conditions where the boundary of the
suddenly createtbecause of ionizatigrplasma half-space is perpendicular to the initial wavefront.
Two frequency down-shifted surface waves traveling along the boundary in opposite

directions are shown to be excited, as well as frequency up-shifted outgoing radiation and a time-
independent mode in the form of a spatially inhomogeneous structure of dc currents and a
magnetic field within the plasma half-space. We study the associated kinematic, amplitude, and
energy relations. Finally, we establish that the most efficient trapfuipgo 40% in

energy can be achieved with the forwafdith respect to the direction of the initial wave
propagation surface mode and that the trapping is accompanied by concentration of
electromagnetic energy at the plasma boundary.19®8 American Institute of Physics.
[S1063-776(98)01104-4

1. INTRODUCTION plasma was assumed to be parallel to the wavefront. A richer
case from a physical standpoint is the absence of the condi-
Recently there has been an upsurge of interest in studig#n that the wavefront be parallel to the plasma’s boundary.
of transformations of electromagnetic waves in nonstationaryndeed, in this case, with a TM polarized initial wave, we
media(see, e.g., Refs. 1}8The reason lies largely in the expect a conversion of this wave into surface waves driven
successful experiments in conversion of the frequency of miby the created plasma boundary. At a steady-state boundary
crowave radiation in devices with transient plaSniat an  there can be no direct conversion of the incident wave into
ionization front moving in the plasmaand in experiments surface waves, because it is impossible to satisfy two conser-
on simultaneous ionization of the entire gaseous medium ination laws: of the wave’s frequendghe photon energy
the active volume(flash ionization.'®** In a recent review and of the component of the wave vectatomentur) tan-
by Fainberd? this avenue of research in quantum electronicsgential to the boundarsf Existing methods of feeding elec-
was mentioned as one of the most rapidly developing. tromagnetic radiation to planar waveguide structures are
As for the theoretical work in the field of the electrody- based upon the creation of a longitudinal spatial inhomoge-
namics in transient media, the bulk of it, starting with theneity in the systengvia a diaphragm, a smoothly profiled or
pioneering work of Einsteiri and Morgenthalet? has devel- rough section, etg,. or upon spatial synchronization of the
oped in two directions: the study of the interaction of elec-volume and surface waves via coupling pris(ttee method
tromagnetic waves and of moving inhomogeneitig® me-  of frustrated total internal reflectipf®?® For a transient
dium’'s boundary or a parameter wave in an immobileboundary there exists an entirely different way of inputting
medium),>>>1315-18nd the study of conversion of waves in radiation, since here the requirement that the wave frequency
a homogeneous infinite medium with purely temporal varia-be conserved does not hold.
tions of the parameter€1419-2\Much less developed is the In the present paper we demonstrate the effect of con-
theory of the interaction of electromagnetic radiation withversion of electromagnetic radiation into surface waves at a
bounded transient media. The first to study some features afansient plasma boundary for the case where the boundary
the reflection of electromagnetic waves from the planamf the suddenly createhecause of ionizatigrplasma half-
boundary of a transient mediurfmondispersive insulators space is orthogonal to the initial wavefrotihis geometry
and plasmaswas Fant& in 1971. Boriso?>?*and Kallur?®  considerably simplifies the analysis of the energy relations in
thoroughly studied steady-state and transient processes in thige conversion We show that two frequency down-shifted
interaction of an electromagnetic wave and a suddenly cresurface waves traveling along the boundary in opposite di-
ated (because of ionizatignplasma half-spacé€for a tran-  rections are excited. We establish that the most efficient con-
sient insulator half-space the necessary calculations weneersion(up to 40% in energycan be achieved for the for-
done by Nerukh?® A more realistic case of sudden ioniza- ward (with respect to the direction of the initial wave
tion in a plasma slab was examined by Kalluri and Gdteti. propagation surface mode. Trapping of the electromagnetic
All this work, however, touched only on problems with wave by the boundary of the created plasma is accompanied
the simplest geometry, where the boundary of the creately dissipation of a fraction of the energy into volume radia-

1063-7761/98/86(4)/7/$15.00 696 © 1998 American Institute of Physics
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2

tion with a continuous frequency spectrum, moving away p(p+iwg) +
RIS

from the boundary, and by excitation of a time-independent  b(x,y,p)= > 3. Bo eXp(—ihoX)

mode in the form of a spatially inhomogeneous structure of P(P“+ wyt wp)

dc currents and a magnetic field within the plasma half- y

space. We also find that the energy density at the boundary +A|,(p)exp< —ihox+ E\/p2+ wozwzp 4

in the forward surface wave is much higher than the energy
density in the initial wave, over a wide range of densities of .
the created plasma, i.e, the trapping is accompanied by fgr y<0, with

concentration of electromagnetic energy at the plasma _ )
boundary. IPwowy

A(p)=—B
Some preliminary results of the present study were re- (P O(p—iwo) \/p2+w§+w§D(p)’ ©
ported in Ref. 30.

R 2/ ~2 2 2 2
i wows (Pt wp)Vp+ o
Au(p)=Bo . . °

. 2 2 2 '
2. STATEMENT OF THE PROBLEM. CALCULATION OF P(P—iwo)(p™+ wyt w,)D(P)
LAPLACE TRANSFORMS

(6)

D(p)=(p%+ w2) P2+ w2+ p2\p?+ w2+ wl; 7
We assume that initially, &< 0, in an nonionized me- (P)=(p"+wp) VP @oT P Vp @o™ @p @

dium (gas with a dielectric constant~1 there is alinearly e \e select the roots whose real parts are positive.
polarized plane electromagnetic wave of frequengywith Under an inverse Laplace transformation, the first terms

fields in (3) and(4), which are forced solutions of E¢), contrib-
E,(X,t)=B,(x,t), ute at any point in space to the fieRi(x,y,t), starting at
(D t=0.Inthe regiony>0 this contribution has the forr(t),

B,(x,t)=Bg exp(i wt—ihgX), h0=—0, i.e., coincides with the initial wave, while in the region

y<0 it is determined by the formula

propagating along the axis.

At time t=0 external factors suddenly ionize the half-
spacey< 0, with the result that cold collisionless plasma of wi+ o’
concentratiorN is formed in that half-space. We begin our
calculatipn o_f the conver'sion of Fhe wav#d) at the giyen . wo o i+ wg )
space—time inhomogeneity by using Maxwell’s equations, in + Z > ?exp(i itVog+wy) |, (8
which at timet=0 the current of the produced electrons is N @0 @p

switched on, along with the equations of electron mOt'on\/vhich agrees with the results of conversion of an electro-

. . . e B 16 .
with the electrons having zero initial velocty. Applying magnetic wave under instantaneous ionization of the medium

the Laplace transformation to the given system of equatlonsih the entire spac®?!

we arrive at an equathn for the transform of tPe magn”euc Under an inverse Laplace transformation, the second
field, b(x,y,p) (here p is the complex-valued “Laplace

2

B,(x,t)=Bg exp(—ihgx) 2. 2

terms in(3) and (4) (free solution$ contribute to the field at

variable: a given point only starting dt=|y|/c. This means that start-
9 11db\ 1 ) ing at the moment of ionizatiot= 0, the region of conver-
8@ 5 @) - ?(p28+wo)b sion of the wave field¢l) and(8) propagates in both direc-

tions from the emerging boundap=0.
1 To calculate the steady-state solutigast—c) and the

== —(pe+ing)Bg exp(—iheX), (2)  angular distribution of the outgoing radiatiog-6 =), in

c applying the inverse Laplace transformation to the second

where e(y,p) =1+ n(—Yy)0¥/p% n(—y) is the unit step termsin(3) and(4) it is convenient to select the integration
function, and w,= m}Lm is the plasma frequency. contour as depicted .in Fig. 1. The p_oles of the functions
Finding the solutions of Eq2) in the homogeneous regions Ai(P) andA;(p) contribute, together witkl) and(8), to the
y>0 and y<0 satisfying the radiation conditions, and Steady-state solutions, while the integrals along the edges of
matching them at the boundayy=0 by requiring thab and  the cuts determine transient processes, including the radia-
e 1db/dy be continuous at the boundary, we arrive at thetion field. In Fig. 1 the polesw, and *i+wg+ wj, are de-

following expressions fob(x,y,p): picted to the right of the cuts, as follows from the case where
. the initial wave is a wave beam of finite width rather than a
b(x,y,p)= Bo eX[(.—IhOX) +A(p) plane wave. The contribution of the pdle, of the function
P—lwg A(p) cancelq“turns off" ) the initial wave(1) in the region
y y>0, and the contributions of the polesi \/w02+ wzp of the
Xexr< —ihgx— E\/p2+ w% (3) function A,(p) cancel the waves with frequencies

+ Jwi+ wzp, the waves determined b{8), in the region
for y>0, and y<O0.
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Ilmp

x HNaf+ ol (D

X iy (D)

-

¥ iw, (1) _ . ,
FIG. 1. The integration contour fae>|y|/c. The wavy lines rep-
resent the cutsiwy and xi \/w02+ wzp are the branch points of

Rep the roots), andX indicate the poles of the function,(p) and

> A, (p) (the corresponding label is in parentheses

0 {In

x o1, 1)

—iwg

x —Nzg+ wz (ID)

3. SURFACE WAVES The amplitude of the backward wave is always smaller than

. . that of the forward waveR_<B,).
The effect of formation of steady-state solutions as sur The amplitude conversion coefficients, /B, are de-

face waves is described by the contribution of the poles of

Ay(p) and A, (p). which are determined by the equation picted in Fig. 4 as functions of the Qensity Qf the created
D(p)=0. This eéuation has two solutions= 1w, (Fig plasma. The ratioB_/By reaches its maximum value
1) Wheré s " (B_/Bg)max=0.12 at N/N.~1.7 and approaches zero as

N/N.—o0. The ratioB, /By increases monotonically with
- 2412 [4 1 4 plasma density, approaching a limit of 2 ld6N.— .

s \/w0+ 2% @o 4wy ® At first glance, the asymptotic behavior of the conver-
Thus, the electromagnetic wave trapped by the plasmaion coefficienB. /B, seems to violate energy conservation.
boundary consists of two surface waves: grih frequency  Indeed, in the limitN/N.— o, the “plus” surface wave be-
ws>0) propagating in the same direction as the initial planecomes a plane wave with the same frequeagyas the ini-
wave, the othetwith frequency— ws<0) propagating in the tial wave and propagates in vacuum>0) along the per-
opposite direction. This result can be illustrated by a kinefectly conducting half-spacg<0. Since its amplitude is
matic diagram(Fig. 2). In this diagram the coordinates of the
points of intersection of the two branches of the dispersion
curve of the surface wavdsee Ref. 3land the straight line
h=h, representing the invariancat a temporal discontinu-
ity) of the spatial structure of the waves in the boundary’s 1 1
plane correspond to the frequencies of the surface waves.
Figure 2 shows that the conversion of the initial wave into
surface waves entails a down-shift in frequenay<€ wo).

The frequency conversion coefficient/w, increases with 2 h=hy 2
the density of the created plasma, approaching unity when \\ P
N>N,, with N;=mw2/4me? the critical density(Fig. 3.
WhenN<N¢, the frequencyws is close to the upper limit on ®
the frequency of the surface Wa\lep/\/i (see Fig. 23
. . -, 0 , ay
The amplitudes.. of the surface waves are given by the —% 7(:25
residues of the function#,(p) and A, (p) at the polesp
= *iwg and have the following form: FIG. 2. The kinematic diagram for the surface wave: cutvespresent the
) ) branches of the dispersion curve of the surface waves at the boundary of the
(wp— ws)(wo* wg) plasma half-space, and curvBsepresent the light linesh + w/c). The
B.=B (10 points where the curvelintersect the straight line=h, correspond to the

=770 2 2"
209 \/“’0+ (1/4)wp frequencies of the trapped surface wavesy.
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o,/ (02— 02)(wo+ wy) 1
B, =By—————— y arctan, (14)
200\ wp+ (L) oy Y

where y=hgay2(1— ws/wg), wg=chgy. The results of cal-
culations of the conversion coefficieBt, /B, via (14) are
depicted by dashed curves in Fig. 4. Both Egl) and Fig. 4
imply that B, /Bg—2 asN/N. increases as long as/N,
<(hpa)?, i.e., as long as the region of localization of the
surface wave in vacuum is small compared to the walthf
the initial beam. WhemN/N.=(hya)?, i.e., when the trans-
R ) verse scale of the surface wave becomes comparable to the
0 2 4 6  NIN, width of the initial beam and exceeds it, the conversion co-
efficient B, /B, decreases, approaching zeroN¥N,— .
As a result, no violation of energy conservation ocosee
Sec. 5.

FIG. 3. Frequency conversion coefficienf/ w, as a function of the density
of the created plasma.

twice the amplitude of the initial wave, the energy density a
each point of the regiop>0 is quadrupled. Here the energy
of the “plus” wave is twice the energy of the initial wav@ The static mode excited in the plasma half-space and
is assumed that the latter is a large but still spatially boundedetermined by the contribution of the time-independent term
wave packet To resolve this contradiction, we must dismissin (8) and the residue at the pofe=0 (see Fig. 1 of the
the ideal picture of a plane wave acting as an initial wave an@econd term iff4) is also a steady-state soluti¢éin addition

must do the necessary calculations witkmade but limited  to the surface waves discussed eaylier
in y) wave beam. For the initial beam it is convenient to take

t4. STATIC MODE. ANGULAR DISTRIBUTION OF RADIATION

2

w
Si la BS X, _ p B X, ’0
Bz(X,y,O)ZBo%exr(—ihox), (11) 206Y) —wngS 2%,y,0)
a beam of wiqtha> 1/hy with a uniform spatial frequency B, exp(z w%+w,2)—ih0x y<o. 15
spectrum® («): C\/

_ x _ The magnetic fielB5(x,y) is associated with a spatial dis-
B2(X,y,0)=Bg exp(—iheX) fﬁ ®(k)e "Ydk, (120 tribution of dc currentsjS(x,y)=(c/4m)Vx B in the

plasma.
al2, |k|<1la, The radiation field is determined by the integrals along
d(k =|0 PESTA (13)  the right edges of the cutsee Fig. 1in the intervalsw

<|w|<» for y>0 and x/w02+w2p<|w|<00 for y<0 (w
SubstitutingB,(x,y,0) from (12) for B, exp(—ihgX) on the  =Im p). Following the method developed in Refs. 32 and
right-hand side of Eq(2) and proceeding in the same way as 33, we calculate the energy of the radiation figher unit

for an initial plane wave, we arrive at the following expres- surface area of the boundarin vacuum @,) and plasma
sion for the amplitudeB. : (W,) ast—o by integrating the electromagnetic energy
density expressed in terms of the above integrals with respect
toy. As a result we arrive at a representation

B./R, /2
2 W= wi(6) dé (16)
— /2
1 o v e
e 3 i with angular density of the radiant energy
g 4T — .
@o N
w(6)= cof 0|A y(p=iw)|?, 17
i 16’77'2
where the radiation anglé in vacuum and in the plasma is
measured from the normal to the boundary #/2<6
2 <w/2; 6= /2 corresponds to the direction of thkxeaxis),
0 20 40 NN, and
FIG. 4. Amplitude conversion coefficients of a plane wave into surface wolsin 6, y>0,
waves B, /Bq (curvel) andB_ /B, (curve2), as functions of the density of _ 1 (18)
the created plasma. The dashed curves represent the results of calculating w i /w? Sir o+ w? y<0.
B, /B, for a wave beam witthga= 10 (curve 3) andhya=5 (curve4). sin 6 p or
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I
!
;' FIG. 6. Energy conversion coefficiend®, /W, (1), Wg /W, (2), and
:. W, /W, (3) as functions of the density of created plasma for an initial beam
i with hya=20.
]
i 102
Y
FIG. 5. Angular densities of the radiant energy in vacuangg), and in the B3a ws
plasmaw, (6), at N/N,=0.5 (solid curve$ andN/N.=4 (dashed curves Wst=§ — (20
All curves are normalized to the same quant§3/16mwo. w,t+ wy

which consists of the magnetic field ener@5) and the
Negative frequencies correspond to backward radiation witlinetic energy of the electrons calculated on the basis of the
respect to the direction of propagation of the initial wése  expression for the curreft(x,y). The following asymptotic

angles6<0). formulas, forN/N.— o, have also proved useful:
The functionw, () is plotted in Fig. 5 for two values of
the density of the created plasma. The divergences of the W. Wqt W,
functionswy, as 6— = /2 (wy (6) (/2% 6)~2) andw,(6) w, 0w, 0% W, 0" 21)

at the total reflection angles6—=*6,, sind,
:wo/\/m (w,(8)%| 6= 6, |~ %) correspond to the emis- Figure 6 depicts the dependence of the distribution of
sion of parts of the energies of the “halves” of the plane €nergy between the secondary solutions on the density of the
waves not trapped by the plasma boundary; these waves hageeated plasma for an initial beam witga=20. Conversion

<0) immediately after creation of the plasrteecond term  (W-/Wo)ma=7x 10~* atN/Ng~1, while the efficiency of
in (8)). The divergence of the functiow,(§) as #—m/2  conversion to the forward surface wave may exceed 40%:

(w,(0)=(m/2— 6) ~2) corresponds to the emission of a part N
of the energy of the “half’(for y>0) of the plane wave of (_+) ~0.41 at—~800. (22)
type (1) not trapped by the plasma bounddtiye forced so- 0/ max Nc

lution in the vacuum When the initial beam(11) is in-

volved, the divergences become logarithmic, which meand he highest energy efficiency of trapping is achieved at
N/N.~ (hoa)?, when the scale of localization of the forward

that they are integrable.

Y J surface wave in the vacuum, (i) VyN/N, , coincides in or-
der of magnitude to the width of the initial beam(cf. the
results of Sec. B Here the depth cz)f penetration of the plasma
. T . . y the surface wave is smal<{(hga) ') and the energy of
e O e I S i wave s lcalzed mosty n vacuum. Aga decreases,

I bound W duct vsis with a b aximum conversion efficiency is reached at Iovv_er c_jensmes
plasma boundary. YVe conduct our analysis With a Beam Oj¢ 1o created plasma and hence at greater localization of the
type (11). The energy of the initial beartper unit surface .

2 . . surface wave in the vacuum.

area of the boundajyW,=Bga/8, is converted into the en- It is important here that the trapping of electromagnetic
ergy of surface waves, radiation be accompanied by energy concentration near the

cB? (1—85)(1+s§) created plasma boundary: the time averages of the energy
izleuS o2—1-s. (19 density in the forward surface wave in the vacuuwm(y=

s s +0), and in the plasmaw,(y=—0), exceed the energy

(es=1— w?/w?, and the amplitudeB, andB_ are defined density in the initial wavew,=B3/87, over a wide range of
in Egs. (14) and (10), respectively, the radiant energyV, concentrations of the created plas(fa. 7). In other words,

=W,+W, (see Egs(16) and(17)), and the energy of the when surface waves are produced by transient processes, en-
static mode, ergy flows toward the created plasma boundary.

5. ENERGY RELATIONS. THE EFFECT OF ENERGY
CONCENTRATION
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w,/wy, w,fw, corporates a semiconductor waveguide layer in which the
carrier concentration rapidly increases due to the action of a
master laser pulse, which results in the trapping by that layer
of a signal wave incident on the layer. Another possible de-
vice incorporates a waveguide layer that is steady-gfate
example, an insulatprwhile the transient condition is cre-
ated in a plasma film covering the part of the waveguide
“illuminated” by the signal wave.
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The dynamics of ionization self-channeling of modulated beams of plasma waves forming a
solitary plasma-wave channel in an external magnetic field is investigated. It is shown that
electromagnetic wave processes at the modulation frequencies of the ionizing radiation can

be excited in the background plasma and in the channel19@8 American Institute of Physics.
[S1063-776(98/01204-9

1. INTRODUCTION by the dispersion of the wave fields producing and support-
ing the channel. The currents generated by the plasma-wave
lonization self-action of the fields of electromagnetic beams excite an azimuthal magnetic field and radial and lon-
sources in the whistler frequency rang€@(<ow<wy, gitudinal polarization electric fields of the plasma in the
wherewy and{}y are the electron and ion gyrofrequengies channel. When the HF source is amplitude-modulated, the
admits simultaneous concentration of the ionizing radiatiorplasma parameters and the dimensions of the plasma-wave
and the resulting plasma® As a result of such self-action, channel are observed to vary with a frequency equal to the
narrow plasma-wave channels, which localize the radiatiomodulation frequency and LF wave fields are generated. The
energy, and the release of energy in a narrow magnetic fielctklaxation time of the LF oscillations was found to be ad-
tube are observed The plasma inhomogeneity formed with equate for observing echo signals after the modulation of the
such a discharge automaticdllynatches the short exciting HF source is switched off.
antenna with the pump generator and the surrounding back-
ground plasma. This increases the efficiency of energy trans-
fer from the source into the plasma in the field tGda.the 2. EXPERIMENTAL CONDITIONS AND RESULTS
nighttime ionosphere, the plasma-wave chafiffelxcited at The experiments were performed in a glass discharge
altitudesh=150 km by an on-board radio source is a sourcechamber 1800 mm long and 200 mm in diameter. The excit-
of powerful fluxes of hot particles along the flux lines of the ing rings of the dipole sourcé60 mm in diameter were
geomagnetic field. It is evident from theoretical estimategositioned at the end of the chamber coaxially with respect
that within several minutes hot particles from the dischargeo the axis of the chamber and the longitudinal magnetic field
can fill a large portion of a magnetic field tube, resting on theand separated from one another by a distdre60 mm. A
discharge, and form an artificial magnetospheric di&ts a ~ GST-2 generator supplied to the rings a HF voltadg (
result of this, the geophysical situation near a perturbed tube 240 MHz, U,=50 V) which was amplitude-modulated at
can change substantiafly. For example, the conditions for two frequenciesf;=6 kHz, f;<f,<70 kHz. The modula-
the excitation, propagation, and reflection of whistler andtion frequencyf, could be varied over the range 6—70 kHz.
Alfvén electromagnetic waves charft. The fluxes of pre- The air pressure in the chamber was maintained at the level
cipitating charged particles from a perturbed tube ch@ngep<3x10~* torr. The magnitud®, of the external magnetic
Modulation of the fluxes of precipitating high-energy( field could be varied from 60—750 G. The plasma parameters
=40 keV) electrons signifies excitation of an ac currentwere measured with mobile Langmuir probes and a four-wall
along the entire length of the magnetospheric tube perturbeelectrostatic analyzer positioned on the axis of the discharge
by the modulated dischard®.Under laboratory conditions chamber at the opposite end from the HF source. The HF
such discharges, called helicorfs!*are of great interest for radiation from the source loaded on the plasma channel was
the development of ultraclean plasma chemical reactors andetected with a P6—22 measuring antenna and a S4-27 ana-
for investigating the nonlinear interaction between the fielddyzer. The LF fields excited by the discharge were picked out
of powerful HF sources and the resulting plasma. with the S4-73 analyzer using electfjgrobe antennas and a
The present paper reports the results of an experimentéérrite antenna in the form of a Rogowski loop. The dynam-
investigation of the dynamic processes of ionization selfics of the emission of the discharge plasma was recorded
channeling of plasma-wave beams produced in a magnetiwith FD-21 KP photodiodes.
field by a HF dipole source whose output is amplitude-  The structure of the HF discharge formed during ioniza-
modulated. It is shown that when a plasma channel formgjon self-channeling of plasma waves contains a resonance
beams of fast electrons from the discharge are injected alongpne(Fig. 1), which rests on the exciting rings, and a narrow
the external magnetic field. The ionization of the neutral gadilament(plasma-wave channetxtending from the focus of
by the beam electrons allows the channel to grow in lengththe resonance cone in the direction of the magnetic fglé
The rate of growth of the plasma-wave channel is determinedt low pressures, when the electron mean free path is greater

1063-7761/98/86(4)/7/$15.00 703 © 1998 American Institute of Physics
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FIG. 1. Photograph of a HF discharge formed un-
der the conditions of ionization self-channeling by
the field of plasma waves excited by a dipole
source forp=2x10"2 torr, B,=500 G, andU,
=50 V (z — distance from sourge

than the dimensions of the cone, the cone becomes diffusgas measured with a mobile electric probe, is displayed in
and joins more smoothly with the plasma-wave charinel.Fig. 2a for the cas@=2x10"2 torr, B,=500 G. The dis-
Under stationary conditions the lengthof the channel is tribution of the relative magnitudg,/E, .« Of the longitu-
determined by the decay length of the waves that maintaiinal component of the HF electric field in the channel is

the channel. In the case of collisional damping shown in Fig. 2b for the same conditions. Figure 3 shows the
o retardation curve of the electron current as a function of the
L~ —)\Z(a,p/w)z, retarding potential. This curve was obtained using a multi-

Ve grid analyzer at pressurg~3x10~* torr, B,=250 G. It

where)\, is the longitudinal wavelengthy, is the effective  should be noted that the number of high-energy electrons
electron collision frequency, and, is the plasma frequency decreases quite rapidly with increasing distandeom the
corresponding to the plasma density in the column. Thehannel axis to the chamber wall and with increasing pres-
transverse length scate (r, <L) of the plasma-wave chan- surep.

nel is determined by the amplitud®, of the wave field and Modulation of the HF fields that produce the discharge
the losses of particles from the discharge. For the case d@jives rise to an entire spectrum of dynamical processes in the
diffusive losses plasma of the plasma-wave channel and the surrounding

background. Figure 4 shows traces of the time dependence of
the powerW(t) of the HF radiation producing the discharge,
where D, is the ambipolar diffusion coefficient and, the plasma densitiN(t) at the center of the discharge, the
~E§B is the ionization frequenc¥’. The plasma density dis- plasma densityNg(t) near the wall, the LF magnetic field
tribution in the channel under stationary conditions, whichH (t) excited by the discharge, and the flux(t) of fast

ri’\’ DL/Vi’

NIN, E.JE.

I max

FIG. 2. Transverse distributions of the plasma denkify)

(a) and relative amplitudé&, /E, 5 (b) of the longitudinal
component of the HF electric field in the plasma-wave chan-
nel. The distributions were measured at different distances
from the dipole source under stationary conditions corre-
sponding to Fig. 1. The dashed curves were obtained by solv-
ing the system of equationd) and (2) numerically for the
conditions of the present experiment.

w
g
[« )
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Jpo MA obtained with a negative probe according to the ion satura-
| tion currenj and the background plasma near the wie
curve Ng(t) was obtained with a photodiode with a wide-
aperture window, oriented toward the region near the wall
r>0.5a). It was found that for the present modulation fre-
guencies the density of the comparatively cotfL.{3 eV)
10 discharge plasma near the wall continuously increased dur-
ing the HF pulse, virtually did not respond to fast modulation
(with frequencyf,) of the input HF powelN(t), and did not
have enough time to relax to zero during pauses. The con-
FIG. 3. Curve of retardation of the electron flux ejected from the plasma-stant component of the photocurrent of the FD-21KP diode
wave channel in a direction along the external magnetic field wit3 amounted to>80% of the variable component presented in
X 10" 4 torr, B;=250 G, andU,=50 V. . 3
Fig. 4. The plasma density at the center of the plasma-wave

channel followed closely the fast{) modulation of the in-
dput HF power. The shift of the main maximum Mq(t)

relative to the main maximum iN(t) characterizes the for-

20§

0 30 60 90 120 1S0 180 V, eV

(#<>30 eV) electrons from the discharge which are emitte

along the axiszo| By mation time of the transverse structure of the plasma-wave
The large difference in the behavior of tid(t) and P
channel ¢~6 ws).

Ng(t) curves reflects the difference in the dynamics of the . . :
The formation of plasma-wave channels is accompanied

plasma at the center of the chanriée curveN(t) was by injection of fast-electron beantthe curvely(t) in Fig. 4)

and excitation of LF electromagnetic fields. The oscillogram
of H,(t) in Fig. 4 demonstrates excitation of an azimuthal
component of the alternatin@vith frequencyf,) magnetic
field. Excitation ofH, is possiblé® because of both the dia-
magnetism of the nonuniform plasma in the channel and the
plasma polarization currents in the channel. It is significant
that the oscillations oH ,(t) were also observed after the
fast modulation {,) was switched off. Echo signals are seen
especially clearly in the top panel of Fig. 5, which displays
oscillograms ofW(t) and H(t) for the casef,=f; (fast
modulation of input power is absgnTwo frequencies of the
excited oscillations’ ~70 kHz during the HF pulse antf
~24 kHz during the pauses between the pulses are clearly
seen in the curvél ,(t) in this panel.

The polarization of the channel plasma by charge-
particle beams emanating from the discharge region during
the formation and relaxation of the plasma-wave channel
gives rise to oscillations of the electric field near the channel.
Oscillograms of the oscillations &f ,(t) and the radial elec-
tric field E,=AU/Ar, whereAU is the potential difference
between the electric probes located on the axis of the plasma-
wave channel and in the background plasma at a distance
Ar=6 cm from the axis, are displayed at the center and
bottom of Fig. 5. The amplitude of the oscillations Bf(t)
is maximum whenwy/wg=n, N=2, 3, and reaches values
=50 V/m. The amplitude of the oscillations dfi ,(t)
~10 2 A/m corresponds to a longitudinal polarization cur-
rent in the plasma-wave channkl<10 mA (W<10 W).

The beams of fast electrons from the discharge which
emerge in a direction along the external magnetic field and
polarize the plasma-wave channel are generated on the lead-
ing edge of the HF pulse forming the plasma-wave channel.
Figure 6 displays oscillograms df(t) andW(t) that dem-
onstrate the characteristic fine structure of the generated elec-
tron beams. It was found that for HF pulse rise tines
e iy e oot o e ige g 20,45 the sk of the eectron k(1) spfs in two
eration of tshe azimutt?al rrr)1agnetic fietdl,(t) a?1d fast-electron fluxgﬂi;(tg) _It would appegr that the first peak ihy(t) is due to
associated with the modulation of the HF powtt) supplied to the dis- Motion of the region of the focus of the resonance cone,
charge withp=3x10"* torr, B,=250 G, andU,=50 V. where the plasma density gradiéniN(r), the external mag-
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FIG. 5. Oscillograms of the radial electrtg,(t) and
azimuthal magneti¢i ,(t) components of the LF fields
generated by a modulated plasma-wave discharge with
p=3X10"* torr, By=250 G, andU,=50 V and dif-
ferent values of the fast-modulation frequerfgy

FIG. 6. Oscillograms ofl¢(t) and W(t) measured withp
=3X10"*torr, By=250 G,U,=50 V, andf,<12 kHz and
demonstrating the structure and distribution of the electron
beams generated on the leading edge of the HF pulse forming
the discharge.
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netic field By, and the source electric fiel(r) are all ori-  and the HF potentiab="¥(r, )e'“'"kZ (E= —V ¢) at short
ented in the same direction, away from the source. The fieldistances from the source<€\,) are determined by the
E(r) in this region has a maximum associated with a charsystem of equatioﬁs
acteristic singularity of the refractive index and with the ex- )
citation of plasma waves which accelerate electfdrihe V W=k (1=N/N)¥ =0, @
rise time of the first peak ad.(t) characterizes the growth _
time of the plasma-wave channel from the source to the mea- D AN+ (1 =va)N=0, @
suring probe and makes it possible to estimate the rate ofhere v, is the attachment frequency. Here we took into
growth of the channel along the magnetic fieldtv, account the fact that in the parameter range considered the
=10 cm/s). components of the permittivity tensor atg,~¢e,,~1 and
The second peak idg(t) is formed by the flux of elec- &33=1—N/N., while charged-particle losses are due mainly
trons ejected from the positive column of the plasma-waveo electron attachment to air molecules. The weak longitudi-
channel by the longitudinal electric fielej~VN. The flux  nal nonuniformity of the stationary channel can be taken into
exists so long as the positive potential continues to increasaccount by adding to Eq(2) an additional loss factor
on the leading edge of the HF pulse and the longitudinak- D”/L2 corresponding to particle diffusion to the end wall.
nonuniformity of the plasma in the plasma-wave channel reTo construct a simplified theoretical model of a stationary
mains. As the amplitude of the channel-forming HF pulseplasma-wave channel, the frequengy of electron-impact
decreases, the longitudinal nonuniformity in the channel deionization of air molecules can be represented by a model
creases as a result of rapid expansion of the plasma and céunction »;= a(k,¥)?# of the amplitude of the longitudinal
change sign, as observations of the changes in the longitudiield, determining the electron temperature in the chathel.
nal component of the electric field showed. The system of equation€l) and (2) admits self-localized
axisymmetrié and multihump solitary field and plasma
distributions® The multihump (multisolitor) solutions of
3. DISCUSSION OF THE EXPERIMENTAL RESULTS Egs.(1) and(2) correspond to multibeam self-channeling of
plasma waves, which is observed when asymmetric sources
Taken together, the experimental data presented abow ionizing radiation are uset.An axisymmetric single-
show the following physical picture of the dynamical phe-soliton solution describes a solitary plasma-wave channel
nomena that are observed. The discharge starts to form in tHermed by a symmetric, medium-power soufcEigure 2
near-field of the HF source. The structure of this quasistatishows the computational resuldashed curvgdor the sys-
field changes substantially when the plasma density increasésm (1) and (2) with =2, D, /v,=63 mn¥, and\,=120
above the critical densitil; and the plasma frequenay, mm.
exceeds the frequenay of the exciting field. Forw,>w The solution of a self-consistent system of equations of
conical resonance surfaces, resting on the rings of the excithe type(1) and(2) for the time-dependent case, taking ac-
ing antenna, appedFig. 1). The field of the plasma waves, count of losses and the longitudinal nonuniformity of the
which are efficiently excited along the surface of the resoplasma-wave channel, presents substantial difficulties. For
nance cone, forms a plasma colufarplasma-wave channel this reason, to explain the experimental results on the dy-
at the focus, extending along the external magnetic field. mamics of ionization self-channeling of plasma-wave beams,
beam of plasma wavesmall-scale whistlejs which trans-  we confine our attention to well-known theoretical consider-
port sufficient energy along the filament to produce andations and estimates. We note first that because the field of
maintain the filament, is trapped in the channel. We note thathe wave beam does not heat the plasma uniformly over the
a short (<)o, where), is the wavelength in vacuunHF  cross section, and because an external magnetic field is
source efficiently excites plasma waves over a wide range gfresent (4.<0.1 mm <ry;<10 mm <a=100 mmn) two
wave numberd® For this reason, the wave fields with wave- essentially different regions of the discharge are observed in
lengthsA , ranging in scale from the diameter of the wire of the dynamical regime of ionization self-channeling. A qua-
the exciting rings to twice the distance between the the ringsistationary region of comparatively cold plasma, whose
(Ap=2l) form a channel. The good spatial resolution of thedensity varies approximately by a factor of 2 over the time of
resonance congee Fig. 1 confirms that small-scale plasma the HF pulse ¢;,~1/f,), always remaining somewhat less
waves with large amplitude are efficiently excited by thethan the critical densityNs<N,), is present at the periphery
short dipole antenna. Beats of the total field of the plasmdr=50 mm. The average electron energy in this region var-
waves with different longitudinal scales can expldithe ies in the rangeZ,<3 eV. In the central, dynamical part of
excitation of low-frequency oscillations with frequendy  the dischargdin the region of the plasma-wave chanmel
(see Fig. 5 during a long HF pulse. The plasma nonunifor- <30 mm N and #, vary more strongly(see Fig. 4 and
mity in the resonance cone becomes more smeared out wittiosely follow the modulation of the supplied power with
decreasing gas pressure, i.e., it is determined by the electrdioth frequenciesf( and f,), and under appropriate condi-
mean free path. At high plasma densities whistlers whoséons they also follow the beat frequent€y of the total field
transverse structure contains both small and large scales cahthe plasma waves with different longitudinal scales.
be excited in the chann&f1® The low-frequency oscillations observed in the channel
The stationary self-consistent plasma density distributioroccur as follows. As the input HF power increases, the
N ) in the transverse section of an axisymmetric channeplasma density in the channel increases and a positive col-
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umn of increasing length forms. The electrons are heated byavelength of the excited TE wave. These results make it
the field of the plasma waves trapped in the column and arpossible to explain the mechanism of the operation of a
ejected in a direction along the external magnetic field. In theplasma antenna, observed during the “Active filament”
process, the positive potential of the column increases anidnospheric experiment®! by the excitation of VLF ra-

ion diffusion through the lateral surface of the column accel-diation by the wave of perturbations in the plasma-wave
erates. The column continues to increase in length, even athannel formed by a discharge in the field of the modulated
the input power decreases, on account of the energy of theeam of plasma waves.

trapped radiation. In the process, the potential and plasma

density_in the expanding columq decreas_e. The electro_g_ CONCLUSIONS

beam ejected from the column excites an azimuthal magnetic

field, while the growing positively charged plasma column  The experimental results presented in this paper show
forms radial and longitudinal electric fields which move to- the complicated nature of the dynamical phenomena arising
gether with it. As a result, when the discharge-forming ra-during ionization self-channeling of beams of plasma waves
diation is subjected to fast amplitude modulation, a wave ofn @ magnetic field. Amplitude modulation of the radiation
perturbations of the parameters of the plasma channel arf@rming the plasma-wave channel gives rise to modulated
electromagnetic fields and currents associated with these peglectron fluxes, whose current is closed by the background-
turbations can form. The propagation velocity of such aplasma currents and ion fluxes from the surface of the chan-
wave equals the propagation velocity of the channel in thdel, directed along the magnetic field and LF oscillations of
background plasmav¢~v). The characteristic longitudinal the potential and density of the plasma in the channel that
scale of the wave of perturbationsNg~ve/f g, While the ~ move in a direction away from the HF source and along the
frequency of the wave equals the modulation frequefigy ~ €xternal magnetic field, i.e., it leads to the formation of

and satisfies the condition waves of perturbations. Under the nighttime ionosphere con-
5 ditions the plasma-wave channel excited by the on-board HF
o™ @(vel wp)“(le/\7), source is a source of electron fluxes whose velocity can be

higher than the phase velocity of Affaeand VLF whistler
waves’® Amplitude modulation of the HF source makes it

cm/s, fmog< 1P Hz, the dimensions of the apparatus &fe p(_)ssible to produce current s_tructures,_ Wh?Ch move together
~2 m <\/J4, which made it impossible to investigate the with the electron fluxes and increase in size, together with
structure of the fields and currents of the wave of perturbalN® low-frequency electromagnetic waves associated with
tions. However, observations of the sign changes of the lont1€M: .e., to form plasma-dynamical antennas in the
gitudinal component of the LF electric field in phase with the0sphere: The scales of such dynamical antennas and the
sign changes of the longitudinal component of the gradiens(vavelength of the perturbations in them can be comparable
of the plasma density in the channel and the sign changes & the wavelengths of the VLF waves excited by the antenna.
the E; andH, components of the excited LF fields make it For this reason th_ey could be mte_restlng_for purposes of LF
possible to talk about observation of an induced LF waved@dio communication and wave diagnostics of the magneto-

process formed by the modulated wave beam. We recall thapheric plasma. Investigations of the dispersion characteris-
tics and the structure of the fields and currents of the wave of

in the presence of ionization nonlinearity in the frequency : ) X X
rangeQ), < w< wy, the field of the plasma waves is localized perturbations that is excited by the modulated wave beam in

as a result of total internal reflection at the crest of the dens@ Magnetized plasma are of interest in themselves.
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In this paper we evaluate theoretically the modification of the distribution function of slow
subthermal electrons heated by radiation in a completely ionized plasma. The new solution we
have found to the kinetic equation under conditions typical of weak-collisional plasmas

can be used to predict new nonlinear behavior arising from perturbations of the nonuniform
electron density and the coefficient of nonlocal heat transfer that depend on the intensity of the
radiation heating the plasma, which is absorbed via inverse bremsstrahlung. It is predicted

that this new nonlinear behavior manifests itself at unexpectedly small radiation intensities.
© 1998 American Institute of Physids$1063-776198)01304-3

1. INTRODUCTION at high degrees of ionizatiod> 1 (which will be used be-
low) it is well knowr™** that the electron distribution function

The task of this paper is to discuss nonlinear effects thaty, pe strongly modified over the entire velocity phase space
appear when a completely ionized plasma is subjected to @pon the Langdon parameter

comparatively weak electromagnetic field. Let us write the

electric field of the radiation in the form ZU%
A= —5—

2
(1/2E exp(—iwgt) +c.C., Ut
where E is an amplitude that is slowly varying over the is not _small compared_to u_nity. Our discussion will apply to
period 2/ w,. We will refer to a field as “high-frequency” ~ conditions where the field is so weak that
v_vhenwo significantly exceeds the effective electron—ion col- a<l. (1.6)
lision frequency

1.5

. ) 3 This is the case of interest to us, i.e., a weak high-frequency
vei=4\2mwZenAI3m . (1.1 radiation field, for which no one has predicted nonlinear ef-

Here e and m are the charge and mass of an electrop, fects due to readjustment of the electron distribution until

= JkgT/m is the thermal velocity of an electrgwherekg is ~ MOW: h q f ition b
Boltzmann’s constant A is the Coulomb logarithmm is the The Langdon parametél.@ reflects a .comfpetltlo.n e.- h
electron number density, ard is the effective ionization tween two processes, and arises as a ratio of two times: the

state of the ions defined by the relation electron—electron collision time for thermal electrons

ter=2/vei,
z=> .
zi: e’n

2
en;
(1.2 which determines when a Maxwellian distribution is estab-

] _ lished in the range of velocities~vy, and the time for
The sum runs over all ion species;andm; are the charge peating thermal electrons

and mass of the corresponding species. -
As a measure of the effect of electromagnetic radiation tyr=(v7/ve)/ vei.

on the electrons, it is customdryo use the velocity with 5 interest will be in the distribution of electrons with ve-

which the electrons oscillate in the pump field: locities less than the thermal velocity. For these cold subther-
ve=|eE|/may. (1.3  mal electrons the electron—electron relaxation time is deter-

. . _mined by collisions with thermal electrons, and according to
When speaking of a weak high-frequency electromagnetie:, (3 27) is proportional to the square of the velocity:
field, we will always assume that the oscillatory veloaity

is small compared to electron velocities characteristic of the  tec(v)*ter(v?/v3).
processes under study. It is in this approximation that wi
obtain the kinetic equatioi2.3) used below(see Ref. 2
Therefore, in every case we will assume that the followin
inequality holds:

vi<v?, (1.4)

9n contrast to this, the characteristic time for heating cold
electrons by inverse bremsstrahlung absorption is propor-
gtional, according tq3.5), to the fifth power of the velocity:

tHcoctHT(US/U-?—).
which is often chosen as the condition for weakness of thél’herefore, for velocities such that
pump field. However, even when the inequality4) holds, v=<uvt(ter/tyr) *~v1a®?, 1.7

1063-7761/98/86(4)/7/$15.00 710 © 1998 American Institute of Physics
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conversion of the distribution law for cold electrons to Max- 2. STARTING KINETIC EQUATION
wellian form via electron-electron collision turns out to be a In discussing processes in a fully ionized plasma in a

rather slow process compared to heating by a high'frequencr)(igh-frequency electromagnetic field with fairly low inten-

field via inverse premsstrahlung_ absorption. It is this pro _sity, an approximate description is used which is based on an
erty that distinguishes the nonlinear processes we are di

. %’xpansion in the small parameter
cussing for the plasma.

Cold subthermal electrons play an important role in the v

transport theory of weakly collisional plasntag,when the w2
collisionless condition is satisfied for thermal electrons:

<1. (2.1

In this case the electron distribution function is written in the
form

f=fo+[(1/2f, exp(—iwgt)+c.cl, 2.2

Herek is the wave vector of the spatially nonuniform plasmawhere the functions, andf, change very little within one
perturbations, and’e;j=vy/ve; is the mean-free path of a period of the high-frequency oscillationnZw,. The corre-
thermal electron. In this case, since the free range of an elegponding kinetic equation for the slowly time-varying func-
tron with velocityv is proportional to the fourth power of the tjon f,, has the following forrA to first-order accuracy in the
velocity: paramete2.1):

K/ o> 1. (1.9

of ofy  eEgq of
/(v)c(vlvy)?, e, Zo_ 20 =070 5 orfq
( ) ( T) ei ot v ar m ov \]e|[f0] Jee[anfo]
cold subthermal electrons with velocities e? (d|E|?aofy, 1 &*fy [0 9
dogm? | gr v 2 dvidvy \at T ar
v<v(k/e) Yi=v,<v7 (1.9 2 5
X(EiE]*+Ei*EJ-)+(EiEJ*+Ei*Ej)(—O+<—
are found to be strongly collisional. dridvj \dt
In this report, the theoretical results we have used apply g\ %, J ato oty afg
to a situation where collisional electrons satisfy the follow- TV —— Jeil |~ Jded =—» = || |
. . . . . . ar (QUiO"Uj ovj (?l)]' ovj (9Uj
ing inequality over the entire velocity space:
(2.3
T vé w3 s whereE, is the intensity of the quasistationary electric field.
VU, SUT ) E SvL~vratt (1.10 For the electron—ion collision integral we use the approxi-

mate expression

This inequality defines a new range of physical parameters B 9 0

that specify the interaction of a plasma with radiation, in  9eil fol=¥(v) v, [v"0rs=vrvs] v’ 24

which we predict new behavior for the electron transport. In

this case, using the terminology of flux limiting of electron where

heat transport in a plasma, the results we will obtain below T Veiv$ A

can be briefly characterized as a relaxation of this limit.  v(v)=3 3 23— o3 (2.9

Now, however, we extend results established previously for

fairly strong fields with Langdon parameters that are notEXpression2.4) does not take into account the exchange of

smalf® to the new conditions where inequalit.6) is sat- €nergy between electrons and ions, which is described by

isfied. terms we have neglected of the same order as the electron-

In the second section of the article we derive a startindon mass ratio. Finally, we will write the electron-electron

kinetic equation for the slowly varying electron distribution collision integral in the Landau—Fokker—Planck form

function in a high-frequency electromagnetic field. In the ifo

third section, we find the quasistationary distribution of elec-  Jed fo.fo]l= = ( D;s —
. . . L . v, Jug

trons in a spatially uniform electromagnetic field, which fol-

lows a law that is quite different from Maxwellian in the from which the following expressions are obtained for the

low-velocity range. The electron distribution function in the diffusion coefficient and frictional force in the velocity phase

presence of nonuniform electromagnetic fields is found irspace:

the fourth section. This distribution allows us to obtain an 2 et A j

1%
“ . (Arfo), (2.6)

L (V=V)28= (V=V)(v=V)g
lv—v'[®

expression for the nonlinear perturbation of the electron denp =
sity. Conditions are derived in which this perturbation domi-
nates. In the fifth section an expression is obtained for the X fo(V'), 2.7
effective nonlocal thermal conductivity, which is character- . s ) ’

ized by a nonlinear dependence on the pump field. The sixt _2me’A J’ , (V=V) 6= (V=V") (V=V')g

section is devoted to discussing the results of the article. "' m? lv—v'[?

mZ
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dfg(V'
y o(V")

dug

1 v
(2.9 +U—g JO dv'(v')4fs(v’)}, (3.7

It should be emphasized that the term appearing on the right 8 o at(v’)
side of Eqg.(2.3) that contains the electron—ion collision in- a(v)= 3 BU do’ Py
tegrals describes, among other things, inverse bremsstrah- v

lung absorption of electromagnetic radiation by electrons as 1 (v . af(v')
they collide with ions. Equatiof2.3) will be used below to to3 JO dv'(v') E
analyze the kinetic properties of electrons in the radiation
field. 8mB (v )
=3 f do’(v")fs(v’), (3.9
v 0
4
3. ELECTRON GROUND-STATE DISTRIBUTION FUNCTION _2me"A i
B= 7= (3.9

In this section we obtain the distribution function for ) o
plasma electrons heated by inverse bremsstrahlung absorfynen the Langdon parametk.5) is small it is usually as-
tion, under conditions where nonuniformity of the heatingSumed that the solution to Eq@3.5 is a Maxwell

radiation is insignificant. That is, we will assume that distribution:
2
I oox_ f(vt)=;exi{—v—) (3.10
5 EIEJ =0. (31) m\ity (271_)3/2()%(‘:) 2()-2|-(t) ' .
Using Eq.(2.3) next, we will assume that the degree of ion- where the time dependence of the thermal velocity is de-
ization is large: scribed by the equation
Z>1. (3.2 dvy 1
. THL "6 veivé, (3.11)
Then we obtain from E¢2.3
o e2 which corresponds to the characteristic heating time for ther-
— Jeilfol = Jed fo.fol =~ o (EiES mal electrons
b o, tur=(WH0R)/ vei. (312
+EFE)) ;i Jei[a_vj}- The argument for this widely-held assumption is that dor

~vt smallness of the Langdon parameter implies that the
3.3 time (3.12 for heating thermal electrons is much larger than
In studying the solutions to this equation we write the electhe timet.t=Z/v,; for their distribution to become Max-
tron distribution function in the form of two terms: wellian. From this same expression, however, it follows that
fft (3.4 the distribution(3.10 will b_e inc_orrept for cold_ subthermal
07 st Tan ' electrons, where the heating time is determined by the ex-
where f¢ is the symmetric part of the electron distribution pression
function, obtained by averaging the functidg over the
angles of the velocity vectadi,=(f,), andfazfl?)—fS is its thc(v) = (*vp)/v(v), (313
asymmetric part. while the time for conversion of the distribution law to Max-

Assuming that the characteristic time for the electronwellian form, mediated by collisions of cold electrons with
distribution function to change is large compared to the timghermal electrons, is

it takes electrons with velocities to become isotropic -
(ti(v)=vr"Y(v)), it is not difficult to see that as a result of tec(v) =Z(vv) ] vei- (3.19

averaging Eq(3.3 we obtain Therefore, this time turns out to be much longer than the
afs ) J |, afs heating time for velocities that satisfy inequality.?).
Tt Jdedfsfsl=gvE 2 (U v(v) E) (3.9 In identifying the form of the distribution function for
electrons with velocities much smaller than the thermal ve-
In this case, for the distribution functioiy that depends on |ocity

the absolute magnitude of the velocity we have

U<UT (313
1 9 | ,ld(v) dfs . . . .
Jed fs.fsl=—=—1{v ——a(v)fs|, (3.6)  we are interested in a small portion of the electrons in the
v° Jdu v Jdv . L .
velocity phase space when the distribution of electrons in the
where remainder of that space is the Maxwellig10. This latter

8 " assumption allows us to use the following approximation:
=5 B“ dov o) d(v)~—v}a(), (316
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which obviously follows from Eq(3.7) and the first form of 1 (v u*du
expression(3.8) after substituting3.10 into the latter. The fsv)= 5=z {1l = 3 : (3.29
- . . . (277) ZUT vt Jo u +U|_
second way of writing expressidi8.8), taking into account
the approximation In this case, the approximatiai3.19 was used. The accu-
¢ —£.(0 31 racy of this latter approximation can be estimated if we note
s(v)=15(0), (3.179 that forv>v>wv/ it follows from (3.26 that
allows us to obtain 9 2
f(o)m e 1 O 2T 1+o(v—L)
a=— T Big0). (3.18 T @m¥ |7 27 3wzl vl]|
3 (3.27

In our discussion, we can assume with fair accuracy that In view of the smallness of the Langdon parameter expressed
by Eq.(1.6) and our neglect of corrections of ordef’, we

fs(0)=Tm(v=0). (319 may assume approximatiof8.19 is justified. Expression
Therefore, for cold subthermal electrons we have (3.26), which describes the distribution of subthermal elec-
trons of a plasma heated by inverse bremsstrahlung absorp-
__Tei_ _ tion is a new result of the theory, which will be the starting
a Vee- (3.20 . . . . .
Z point for deriving the new results described in the following

Equations(3.6—(3.9) and (3.16—(3.20 allow us to repre- Sections of this paper.
sent Eq.(3.5 for cold subthermal electrons with velocities
that satisfy the inequalit{3.15 in the form of the following

differential equation: 4. PERTURBATION OF THE ELECTRON DENSITY BY A

NONUNIFORM FIELD

s Ve @ { JuT ofs ” o . . .
——— — — +fy In the theory of parametric instability the nonlinear in-
At vt v v teraction between modes is determined by the perturbation of
\/; ) U$ d (1 ofg the_elr—_zctron dens_ity by a spatially nonuniform electromag—
Vg Ueri 25 (; %) (3.2)  netic field. For this reason, we choose to write the electric

field in a new form, different from the form used in the
In discussing the consequences of this equation we will takerevious section:
into account the fact that the electron—electron relaxation .
time of cold electrons Eq(3.14), which characterizes the EiE] —EE] + S(EE])explikr). 4.
second term on the left side of E(.21), is much smaller The first term on the right side of this expression is deter-
than the characteristic time for heating of thermal electronsgnined by the spatially nonuniform pump field. The second
given by Eq.(3.12, which characterizes the change of theterm is determined by a superposition of the electromagnetic
thermal velocityv(t) with time. This allows us to neglect fields of the pump and the perturbed modes, which are inter-
the time derivatives in Eq(3.21) and write the following acting at parametric resonance. Then picking
ordinary differential equation for the quasistationary case

when the thermal velocity varies slowly with time: fo=fs+ of explikr), “.2
3 where 8f is a small perturbation of the electron distribution
iz i 03 E d_fS f_; oL % =0 (3.22 function determined by the spatially nonuniform perturbation
ve dv vdv vi v dv ' (4.1), we can write the following linearized equation that
where the Langdon velocity has the form follows from Eq.(2.3):
p 13 i(kv) 6f = Jeil 6F]—Jed 6]
— 2
UL—( \/; ZUEUT) . (323) B e2 ' 5fs ) 1 . .
= m ik W §|E| + E I(kV)ﬁ(EiEj
We must find a solution to Eq3.22) that satisfies the bound- 0
ary condition . 9?4 . . 9 ot
]_dfs +Ei Ej) F7Ui(90]'_5(EiEj +Ei Ej)ﬁ_l)iJeiﬁ_le
-—=0 (3.29
v EEEf+E'E i J aaf) 4.3
atv=0, which comes from the last term on the left side of (BEf+ETE) dvi “® avj|) “3

Eq.(3.22 Eind corresponds to the absence of sources of elegy, \iting this equation we have used the assumption that the
trons foru =0. The corresponding solution to E.22 has degree of ionizatiori3.2) is large, allowing us to neglect the

the form contribution of the electron—electron collision integral on the
1 (v u*du right side of Eq.(4.3). In addition, we have used condition
fs(v)=fs(0)exp — — fo prememll (3.29 (1.4 everywhere. Finally, we have neglected time deriva-
T L

tives of the functionéf everywhere, following the usual ar-
From this, we find that when conditigi3.15 holds, gument that its influence on the electron density perturba-
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tions caused by the nonuniform intensity of the pump field is 1 9t

small. For simplicity, we will assume thaf|E|? is purely 5 ikv—— - 70, - O(E{E] +E['E))

real in what follows. '
In analyzing the consequences of HEg.3), the most

important thing to note is that, since inequality.8) is sat-

isfied for the case of interest to us, the electrons are colli-

+5(EiE}k+Ei*Ej)(Uin

sionless over a large region of the velocity phase space, 1 2 1d 2w(v) dfs )
when 3 vdv v do
v>vr(k/ ) Hi<vr. (4.4) (4.9

This implies that in this range of velocities, in looking féf ~ Keeping in mind inequality1.9), we write the solution to
we can neglect terms that contain collision integrals whichEd. (4.9) in the form

have §f as an argument. Then it follows from E@L.3) that ; 2 2
for the thermal electron&t.4) we have Sf = kv 1 d [ sdfs) elE]
| T2 [T 3 @ |V G ame?
e® (1ldfy . 1
Tt o o JEt 3 + U.UA_E 5..v2) i S(E,E*
0 2t gt 12mzw021/(v) "l
J
><5EE*+E*E 5EE* dfg
( D Goiae; o) rerE) o M (4.10
dv v du
J of
+E'E)) o Jei a—vs ) (4.5  The second term of this expression is irrelevant if we only
i j

want to find an equation for the symmetric part of the per-
This solution allows us to write the following expression for turbation of the distribution function of cold collisional elec-
the contribution of thermal collisionless electrons to the pertrons. Substituting Eq4.10 into Eq. (4.8) gives

turbation of the electron density: 5 o 3
kv 1d 1 dafo 5f0 [ d5f0
_ e?S|E[? J 1dfy  e®E? v Bu(0) o™ e 2l L e 2|70 Tdv
r= 4wim? v dv  4w2mZl | 42 n- 5 2
1 d [1df\ e*s|E]|
@0 =Nemwe 25| T G| ane
In computing the integral in Eq4.6) we use the fact 0
implied by Eq.(3.26 that if we neglect small quantities of kp2 1 d ; dfs e?5|E|?
order &?® the electron distribution functiohy(v) coincides te S as5a |\ V| g2z (4.1
. . N . ) 6v(v) 3v° dv dv ) 4m‘wj
with a Maxwellian distribution over the entire velocity phase
space except a small region=v, . Because the region of interest to us is where the distribution

For cold subthermal electrons with velocities that satisfy(3.26) differs from a Maxwellian, we will assume that the
inequality (1.9), particle collisions are decisive. In this case characteristic velocities of cold electrons, which determine
the largest term in the kinetic equation is the electron—iorthe perturbation of the electron density, are small compared
collision integral. However, the corresponding operator act¢o v . Furthermore, we will assume that velocities are
only on the asymmetric part of the distribution function smaller thanv_ throughout the entire region of cold colli-
which depends on the angle between velocities. Thereforesional electrons. This implies that conditigh.10 is satis-
the asymmetric part of the distribution function will be rela- fied, from which we have
tively small. Consequently, expressing the perturbation of
the distribution function for cold electrons in the form

Zv \F 1 »
= >\/— . .
N wT e
5f = 8f o+ Sf,, 4.7
The latter condition determines the magnitude of the pump

the anales of the velocities. we can assume in the spirit of thfield intensity at which radiation heating of the plasma gives
9 ' P fise to the new nonlinear effects we have identified in this

usual approagh due to B'. | Davydov t_h&fta IS reIatwer paper. For cold collisional electrons, we have according to
small, and write the following two equations from Eg.3): Eq. (3.26

J1dsfy  fg vﬁdéfo)

where 5fq=(6f.) is a distribution function averaged over

5

f B n v

vIUL

v? dv v dv  wE] v dv

_ , 1.d
(iIkvSf ) —vivee 7 | v

(4.8  This expression makes it clear that the last terrk?) in Eq.
(4.1 gives a contribution toSn of the same order as the
1 df small discrepancy from which the integ(dl.6) is calculated.
ikv = — 5|E|2 Therefore, in what follows we will omit this term. Moreover,
for velocities smaller than, electron—electron collisions are

=N2mtvei 2 o D | amPel

1d (ldf)e5|E|2
2

) e
ikvfo—Jei[ 6fa]= T
0
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less important in redistributing the electrons than bremsstrah- g ov2 44 v
lung absorption. Therefore, neglecting electron—electron col- o 202 1+ K/ od K/ o) T® (v—) T (4.22
lision integrals we obtain the following differential equation: T cee e E
.- 5 The weakly collisional contributio4.20 to this expression
i l‘ ’é T - iz i (Ei [5f0+ 5LZE f ):0 exceeds the ponderomotive contributi@n6) when
O UVEV TV vodv \v dv Vg ° (414) ZUE_ _ 2321/6 (4 23
W k)™ '

This equation is very simple and can be treated analytically.
In fact, making the variable substitution=(v/v,)°, where  The latter inequality combined witkEq. 4.12 is realized

[(A5mI2)(ve o)k, oS @1y
UVk=U v v v / ei y .
T BT e K/ o< 102", (4.24)
and writing 6f in the form
goto Even when the usual conditiofl.8) for the plasma to be
1 N vee SUE collisionless holds, inequalit{4.24) still defines a very siz-
8fo=x""W (x) —10773/20$ WE v_é (4.19 able wavelength region where weak-collisional nonlinearities
can occur. The new nonlinearity introduced by E4.22
we obtain for the functionl’(x) the following equation: corresponds to decreasing the weak-collisional contribution
2 as the pump field grows.
de_\lr+xd_\1f_ ier2 P =x4 (4.17
dx? dx |25

We emphasize that Eq4.15 determines the characteristic - COEFFICIENT OF NONLOCAL EFFECTIVE ELECTRON
velocity of electrons, which is an important parameter of our{EAT CONDUCTIVITY

theory. . _ o The results of the previous section allow us to derive the
The solution to Eq(4.17) that is regular at infinity has nonlinear change in the effective electron thermal conductiv-
the form ity induced by a weak field heating the plasma. In doing so,
o we focus on perturbations of the kinetic energy density of the
dz p aqy y
‘If(x)=C1K1,5(x)—Il,5(x)J 175 Kq5(2) electrons by the nonuniform radiation field
X
d 2 S(nkgT) fd mo 5.1)
x dz = 8(nkgT)= | dv —— &f. .
—Kys(X) . 225 l15(2), (4.18 2 2

Because of the low velocities of the cold subthermal elec-
whereK ;5 and |15 are Bessel function of imaginary argu- trons, their kinetic energy density is small compared to
ment. In order to determine the constant of integrafigrwe  (3/2)kgT én.. Therefore, the perturbation of the temperature
use the boundary conditiom 1défy/dv=0 for v=0, of the cold electrons$T, will be
which, like Eq.(3.24), corresponds to the absence of a source

ST 2 12/5
of particles with zero velocity. We emphasize that in this ~__¢_ _ &: OvE ! vr C (5.2
i i itative di T 402 K/ od K/ &) o '
case in particular there are qualitative differences between n U5 K eeKZ g VE

the approach given here and previous theories, in which the. o mparing this expression with the corresponding result of
primary process that establishes the symmetric part of thge |inear theory,we note that in addition to the new depen-
distribution function is electron—electron collisiohdAs a dence on the wave vector a new nonlinear dependence on the

result, we obtain spatially uniform pump feeding the field appears as well: as
3 the pump intensity increases, the perturbation of the tempera-
—1s_—1 s
C,=—2 Yoz Yo To/SNg- (4.19  ture decreases.

For kinetic energy perturbations of the thermal electrons,
Equations(4.16—(4.19 allow us to find the following ex- according to Eq(4.5 we have

pression for the contribution of cold subthermal electrons to 3 Sv2 3
the density perturbation: > 5(”kBT)T=§ kg(nST1+Téng)=— TE > mn
one  Svg 1 <UT)12’5C 4.20 (5.3
N 4of k/edk/e)? \ve o ' In light of Eq. (4.6), it is not difficult to see that4.5) implies
P ST+=0 to this order of approximation. The perturbation of
where/ oe=2/ i, X ;
the effective temperature of thermal electrons acquires a non-
212313 15 ro gy zero value when we take their collisions into account, and
Co=—|—57 L W(x)=44. (420 turns out to be of order

_ 2, 2 s -1
Equations(4.6) and (4.20 give the following final result for STy~ T(SvelvT) (K ei)
nonlinear perturbations of the density of electrons by a nonThe latter expression is small compared to &2 by virtue
uniform electromagnetic field: of the inequality
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Zvé 23716 (5.19) is written in such a way that it allows us to determine
7Ea<w. (5.4  the effective nonlocal thermal conductivity for the irrota-
T ’ ei

tional part of the heat curremt= — xy grad(@T)

which in view of inequality(1.8) is always satisfied when
condition (4.23 holds. Therefore, under the conditions of
interest to us the primary contribution to heating of the elec- (k)= XsH (5.12
trons by a nonuniform electromagnetic field comes from the X" 14300 Zvélvs) ~¥™(ZK2/3) Yo '
cold electrons, and is determined by E§.2).

The divergence of the electron heat flux densjiigrising ) ] .
from heating of the plasma by spatially nonuniform radia- "€ 1 in the denominator of Eq5.12 has been added in
tion, as follows from Eq(4.3), is determined in the follow- Order to make this expression interpolate between(&4.)

ing way: and the well-known expression for the Spitzer-+idaher-
mal conductivity,yspy= 13.6v1kg/e; ask—0.
div g= Qo+ 8Q, (5.5
where

Jv 6. CONCLUSION

2
e ofs e
Q°=—4w§m2 dvoJei 7, S(EEF+EfE), (5.6

Expression(5.12 modifies the results of the linear
theory of nonlocal thermal conductivityby introducing a
new fractional-power dependence on the wave vdctomd a
nonlinear dependence on the intensity of the heating field.

However, the principal result of our article is E¢.22),
which describes the new nonlinear behavior of perturbations
of the plasma density modified by radiation-induced heating.
5 Expression(4.22 requires reexamination of the theory of a

Q0=§ MNovgVe . (5.8 number of parametric instabilities in plasmas under condi-

) ) ) o tions that are typical of laser-generated plasma experiments
This expression arises from the contribution of the thermaljirected toward controlling laser-induced thermonuclear fu-
electrons and coincides with the result obtained by direckjgp.
calculation of divg using the distribution of collisionless Thus, our theory reveals a new effect: a nonlinear con-
thermal electrons Ed4.5). The contribution of thermal elec- ipution to the heat transport by the field that heats the

trons to Eq.(5.7) is smaller than Eq(5.8) by a factor of  pjasma through reverse bremsstrahlung absorption.
vg/vT. The contribution of subthermal electrons to E8.7)

asty .

e2
5Q:F(2)mzfdvvi\]ei

Since, the functiorfs does not differ from Maxwellian over
most of the velocity phase space, the h@gtgenerated per
unit time by the nonuniform radiation field acting on the
unperturbed electron distribution can be written in the form

is given by the following expression: This work was financially supported by the Russian
1 Fund for Fundamental Resear¢Brant No. 2.4 and the
5Q=— = mndviv,, Jee C,, (5.9 State ProgramGrant 96-02-170020n “Optics and Laser
2 kvg Physics.”
where
Com— (L)1 2 )sin T <58 5.1
2—5\/? g 1—0 sm§~ .0. (5.10

*)E-mail: silin@sci.lpi.ac.ru
Expression(5.9) indicates that the redistribution of cold elec-
trons caused by the nonuniform electromagnetic field re-
leases heat from the plasma, which corresponds to brems-
strahlung of the nonequilibrium subthermal electrons.
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Here the relation defined by E¢5.2) betweensv?Z and the
temperature incremerdT= 6T, has been used. Expression Translated by Frank J. Crowne
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“Shallow-water” and “deep-water” approximations in the theory of the disruptive
instability of thin current-carrying layers
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Within the framework of the two-fluid hydrodynamics of plasmas it is shown that the problem of
instability of a thin current-carrying layer admits two limiting cases which allow analytic
solutions and complement one another. These limits are analogous to the well-known shallow-
water and deep-water approximations in the fluid mechanical “wave-breaking” instability.

In this case, the long-wave limit coincides with the “quasi-Chaplygin” dynamic system of
Bulanov and Sasorov, Fiz Plazrdy 746 (1978 [Sov. J. Plasma Phyd, 418 (1978],

while the short-wavelength limit corresponds to the phenomenological model of Trubnikov, Usp.
Fiz. Nauk 160, 167 (1990 [Sov. Phys. Usp33, 87 (1990], for the clumping of

“elementary” currents. In the latter case, strong collapse is unavoidable with the appearance of
current filaments that trap a finite current. 98 American Institute of Physics.
[S1063-776(98)01404-9

1. The tearing instability and the associated phenomenahere co=2(cp,d/a)g, p=na is the line density of the
of reconnection of magnetic field lines and formation of plasma in the current layea, is the layer thickness,, is the
magnetic islands are fundamental aspects of the physics dfifven velocity, dp="Clwpe is the vacuum skin depth, and
neutral current layers. Many original papers and reviewshe label “0” denotes unperturbed values of quantities. The
have been devoted to thefsee, for example, Refs. 2-5 and perturbations are assumed to be long-wavelength, so that
the papers cited in thenin which the instability is analyzed their characteristic scalk greatly exceeds the thickness of
in all of its manifestations. At present, the physics of thisthe current layen\>a. A key issue to address is that Ed)
instability is clear in broad outline. It is well known that the will only be valid under the assumption that the line density
tearing mode can be interpreted from a physical point obf current in the layer is constant, implying that the discon-
view as the result of a pinch in the distributed currenttinuity in the tangential component of the magnetic field
layer—a kind of instability that leads to “clumping” due to across the layer is constant as well. This requirement obvi-
the mutual attraction of individual elementary current fila- ously contradicts the picture of clumping of currents outlined
ments that remain when the layer inevitably breaksdp. above. In the phenomenological model of Trubnikéwvhere
Thus, the disruption and clumping, which would appear to bgj is the Hilbert operator
mutually exclusive phenomena, are organically combined as ,
this instability evolves. However, this fundamental feature of Pt
the theory of unstable thin current-carrying layers manifests gT=27-r|§/|v|lc2h, 2)

|rt]self n a mgst fpeculllar way, in tha(tjltwo approaLches thatthe fundamental picture is entirely different. Here the thin
ave _seem; atfirst glance .to CO””"’? ict one another are NoW, et layer is a set of identical parallel wires—"elementary
gombmedl.' In fact, as we will shovy in this paper, the non- currents,” each of which has a curreijtand massvl; (per
Ilpdear d]}n:smlc model§ prop:)sedt |n”Refs. Il gnd t? fre tE'Wﬁmit length; the value ofp equals the product of the distance
sides of the same coin, not mutually exclusive but Tathey, yapyeen neighboring wires in equilibrium and the number
complementlng one another. We show here that they COIT&St wires passing along the axis per unit lengti{along the
spond to two limiting cases with respect tp a certa_m paramrayet). These quantities also give meaning to the acceleration
eter that depends on the product of the line density and th _ that appears in Eq2) (the Trubnikov acceleration
magnitude of the characteristic scale of the perturbation. Thi Systems(1) and (2) are not merely externally different
fact—which, as far as we know, has not been nOtGdsince they predict different dependences on wave number for

befqre—lls an !nformapve contribution to the theory of thethe growth rate of the instability in the linear stage of its
tearing instability of thin current layers. evolution:

2. The model first proposed by Bulanov and Sasorov in "
Ref. 1 can be written in the following way, incorporating the ves=KCo, yr=(kgr)™ ©)
correction pointed out in Ref. 6: for Eqs.(1) and(2) respectively. This difference in the wave-
, , , , 5 . number dependence of the growth rate outwardly recalls
pe+(pv)=0, vitvv,=—(12c5((po/p)?)x, (1)  what happens in the “wave-breaking” instability of a layer

+(pv)y=0, v{+vvy,=grHp,

1063-7761/98/86(4)/3/$15.00 717 © 1998 American Institute of Physics
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of wate_r,6 which musft be treated as eif[her shallow or deep, B,= —(27-r/c)I:|(jZa). 9)
depending on the ratio of the perturbation wave length to the ) o o o
layer thickness. In this case, the former situation has KRelations of this kind were probably first introduced in simi-
growth rate proportional to the wave number, while in thel@r problems involving currents in thin layers by Chukbar
second situation it is proportional to the square root of thelSee, e.g., Ref.)7 _ _ o
wave number. In reality, this analogy is even deeper: the role It is further convenient to write the vector potential in
of the parameter that separates long- and short-wavelengthe form of a sum
regions is played.by _the quanuty:_ﬁolao)\. A=Ag+A;, Ag=—Bglyl, Bo=(2m/c)|e|nyagu;o,

3. In order to justify this assertion, let us follow Refs. 1 (10)

and 6 and use the equations of two-fluid hydrodynamics in . . L .
the following form: which explicitly distinguishes the unperturbed fiedg. We

now choose characteristic scales for the quantities
(na){ +(nav),=0, uCUjo/|€el,ng,a,, i.e., the spatial coordinate, vector poten-
tial, ion density of the plasma, and layer thickness respec-

v +ovl=— By _ [€1B,u; _ (4)  tively. Then in dimensionless form conditi@8) for the cor-
cn(m; +me) c(m;+me) rectionA; to the vector potential can be written as follows:
Here the geometry of the layer is chosen so that current flows e[9AL10Y]y—o=—(na(1—A;)—1)y_g (12)
y= y=0:

along thez axis; the coordinatg is transverse to the layer,

and the coordinate is measured along the layer. In this case,wheree = 53/ao\ is the parameter introduced above.

the usual notation is used, and in addition the plasma is It is obvious that where is small, i.e., as assumed in
treated as quasineutral,=n;=n, and the longitudinal ve- Ref. 1, the left side of Eq(11) may be treated as a small
locities are assumed to be equak.=v,;=v. For conve- quantity, and to this accuracy we obtain from Egl) the
nience we also introduce a current velocity value of the potential at the layer:

ui:Uzi_vze:jz/|e|n- Ar~1—(na) " (12)

Let us calculate the value of this current velocity, taking intoUsing it in Egs.(4), we can easily verify that Eq1) results.
account the law of conservation of generalized momentum o®bviously Eq.(12) is identically the condition for constancy
ions and electrons which follows from the assumed unifor-of the line density of the currenta= const, while the con-
mity of the layer with respect to coordinaze dition e< 1 defines the shallow-water region, i.e., the con-
straint on the wavelengths of the perturbatiors 63/610.

In the opposite limit, wher is large, we can expand in
where the quantityA is the z-component of the vector po- powers ofe ~! and neglect terms with the vector potential on
tential; the component of the magnetic field can be written inthe right side of Eq(11), and accordingly in Eq(8). It is
terms of it as follows: easy to see that this is equivalent to the condition of con-

B,=0Aldy, B,=—dAldx, B,=0. Istancy of the gurrent velocityjz_const. In this Iimit, it fol-

ows that the line current density equals approximately

(mv,+eA/c),;=const, (5)

Using Eg. (5), we obtain thez-component of the current )
velocity: ja~=|elujona, (13
and is proportional to the plasma line density of the current

layer. Using Eq{(9) once more, we can convince ourselves
where u=mime/(m;+mg), and ujo is the initial value, that Egs.(4) now reduce to

which is assumed to be constant. In E4), all the quantities
are referred to the layer, i.e., fgr=0. Outside the layer, the (na){ +(nav),=0,
vector potential satisfies the following equatigmeglecting
displacement current
AA= (521 9x2+ 3?1 ay?) A=0, @ Whiph is equiyalent to Eq(.2). Meanwhile, the phgnomeno-
logical Trubnikov acceleration calculated from fluid mechan-
which must be supplemented by the boundary condition jcs is found to be

uj=Uujo—|e|A/ uc, (6)

vt’+vv)’(=ng:|(na/noao), (14

[0AIdy]y-o=—(4mlc)j,a=—(4m/c)|e/na(u, 27-re2(ujzna)0
=—— 15
~|elA/u)y o, ® T mrmoc? 15
where[JdA/dy]y,—o is the jump indA/dy transverse to the The conditione>1 combined with the conditioay<\ de-
current layer. Following Refs. 1 and 2, we assume that théines the short-wavelength range for the perturbatiaps
layer is immersed in vacuum; if this is not true, we must<\<&3/a, (deep water in hydrodynamic terminology

maintain a current on the right-hand sides of E@$.and(8) 4. It is well known"® that within the framework of model
induced by the instability in the medium surrounding the(1) the solutions typically have a tendency to break up the
layer. current layer in such a way that the line density decreases

We note that the formal solution to EqS) and (8) is locally but not the current!), which clearly contradicts the
the relation physical picture of the instability. The results obtained above
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allow us to resolve this paradox, which has existed since the y=¢(dL/dt), p=(Lo/L)(1— £)12

time of publication of Ref. 1. The fact is that in parameter

ranges where the current layer breaks up, as the line density £=x/L, |x<L, (20)
decreases a point is inevitably reached where the conditiowhere L=L(t) is the half-width of the filamentp=0 for
for applicability of Egs.(1) is violated, i.e., the current den- |x|>=L), andL, is its initial value. The size of the filament is
sity can no longer be treated as constant. According to Edjetermined by the equation

(13), decreasing the line density leads to a proportional de- Ld2L/d= —au L

crease in the current density, so that disruption of the current = Guto:
layer is necessarily accompanied by filamentation of the curaccording to which at time

rent in complete correspondence with the physics of the tear- . _ . _ 112

T ! i t=tc=[mLo/(2gn)]

ing instability. We will show that whenever Eqél4) are

applicable, a strong collapse is inevitable with the appearthis current filament “collapses,” trapping a finite current
ance of current filaments that trap a finite current. Note that FL
system(14) can be written in the equivalent Hamiltonian 't ~J’ P dx=const.

form:

, , , Elementary analysis shows that including the interaction
Vi=—=6HIép, pi=0HI¥Y, v=V,, with neighboring filaments located periodically in the current
p=nal/(na)g, (16) layer drags out the collapse, but does not eliminate it com-

pletely. Periodic systems of current filaments are obviously
unstable against modulation with respect to position or value

where the “Hamiltonian” is

) o N of the currents in the filaments, and this instability can also
H =f dx((p/2)[W]°—(1/2)gnp[Kp]). (17 e described within the framework of Eq44).
Here the operatoK is defined by the relation The authors are grateful to B. A. Trubnikov for discuss-
~ - ing this work and also to the participants of the seminar of
d(Kp)lox=Hp. academic V. D. Shafranov for fruitful discussions.
Obviously, conservation laws apply for “energy,” “momen- %E-mail: root@plasm.mephi.msk.su
tum,” and “particle number” respectively:
!s. V. Bulanov and P. V. Sarasov, Fiz. Plazmy 746 (1978 [Sov. J.
H=const, P= j dx(p¥,)=const, Plasma Phys4, 418(1978].
2B. A. Trubnikov, Usp. Fiz. Nauk 60, 167 (1990 [Sov. Phys. Usp33, 87
(1990].
— — 3A. A. Galeev, in theHandbook of Plasma PhysicA. A. Galeev and R. N.
N f dx(p)=const. (18 Sudan(Eds) (North-Holland, Amsterdam, 1984; Energoatomizdat, Mos-

. . cow, 1984, Vol. 2, p. 331.
The scale transformation—bx, p—p/b, W —bW¥, which  4g B Kadomtsev, Usp. Fiz. Nauk51, 3 (1987.

conserves the “momentum’P and “particle number”’N, 5S. V. Bulanov, G. I. Dudnikova, T. Zh. Esipenket al, Fiz. Plazmy22,
gives 867 (1996 [Plasma Phys. Ref22, (1996].
6S. K. Zhdanov and B. A. TrubnikovQuasi-Gaseous Unstable Media
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We examine theoretically the generation of electromagnetic radiation in the relative motion of
vortex lattices in magnetically coupled films in the dc transformer geometry. We establish

the conditions under which the force of mutual pinning of the vortex lattices varies according to
a harmonic law as a function of the relative displacement of the vortices in the films

within a given range of magnetic field inductions. In this case the equation describing the
viscous flow of vortex lattices in magnetically coupled films is the same as the equation of the
resistively shunted Josephson junction model. We show that magnetically coupled
superconductors exhibit the properties of a Josephson element without any restrictions on the
geometrical size of such a system imposed by the coherence Iéngtie frequencyf

of the electromagnetic radiation generated by the relative motion of vortex lattices in magnetically
coupled superconductors depends on the spatial period of the vortex lattices and the velocity

of relative vortex motion, which means that the frequency of the radiation can be tuned by
applying a magnetic field or a current. €998 American Institute of Physics.
[S1063-776(198)01504-2

1. INTRODUCTION the thickness of the superconducting fifhor by creating a
regular lattice of smallsubmicrometer cylindrical micro-
One manifestation of the time-dependent JosephsoRoles(antidots in the film!?

effect' in superconducting systems with weak links is the  The analogy between the resistive state of a supercon-
generation of narrow-band electromagnetic radiation. HoWgycting microbridge and the time-dependent Josephson ef-
ever, for the weak link to possess the properties of a Josephect also manifests itself in the existence of intrinsic electro-
son junction, the characteristic geometrical size of the weakmagnetic radiation generated by bridge structures in the flux-
link region must not be much larger than the coherencg,,, regime®1213 Such radiation is emitted if there is
length £ in the superconductdr’ This condition strongly 1o niform motion of a vortex lattice, e.g., in the event of

hinders the_fabrication of reproducible Josephsqn junCti0n§patially nonuniform pinning. In the case of a weak random
based on high-. superconductors, where the typical values

. . . inning potential, it is primarily the noise component that is
of ¢ are 3-10 A. Hence it would be interesting to search forgmitted, with the nature of the emitted radiation determined

analogs of the Josephson effect in superconducting SySten]g‘rgely by the nature and strength of the pinntfidhe spe-
in which such strong constraints on the size of the elements... .
do no exist. cific features of the rf response to the motion of an

There is a close analogy between the time—dependerﬁb”kosov'vortex lattice in a periodic pinning potential gen-

Josephson effect in systems with weak links and the resistiv%rated by modulating the thickness of a superconducting film
13® However, the weakness of

state of a superconductor in the flux-flow regifnand a Was observed by Martinoét a er. !
moving Abrikosov-vortex latticecan be represented by an the link in the vortex lattice, the low pinning potential, and
array of weak link$. Fiory” and Leeet al® observed coher- the difficulties encountered in monitoring the strength of this

ent vibrations of vortex lattices by the emergence of steps ifi"k made it impossible to generate appreciable radiative
the current—voltage characteristic of the superconducting miPOWer.

crobridge generated by the rf component of an external cur- Systems that are undoubtedly of interest as generators of
rent. For such quantum interference effects to exist the vorélectromagnetic radiation in which both the size of the cou-
tices must be pinned. Pinning guarantees that there igling force between the vortex lattice and pinning potential
interaction between the ac component of the current from agnd the spatial period of the pinning potential can be varied
external source and the natural oscillations of the supercuih @ controllable manner. Obviously, in a periodic pinning
rent, which result from modulation of the mean vortex potential such a coupling force is of a resonant nature; it is
velocity? Quantum interference becomes especially evidenstrongest if the period of the vortex lattice matches the pe-
if coherent motion of a large number of vortices with anriod of the pinning potentia® The strength of the coupling
appreciable variable component of the velocity can bégorce can be varied if there is simultaneous self-matching of
arranged. This is achieved by using samples with a well- the periods of the vortex lattice and the pinning potential,
developed structure of pinning centers, e.g., by modulatingrovided that the magnetic interaction between two identical

1063-7761/98/86(4)/11/$15.00 720 © 1998 American Institute of Physics
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vortex lattices arranged in electrically insulated parallel su- a

perconducting filmgas in a dc transform&) is utilized. The 0 A A A b c
periodic dependence of the interaction energy of vortex lat- \ / ) ; z,
tices in the two films on the relative displacement of these // 7% S// J ¢
lattices is ensured by the existence of a self-matching peri- / / 2
odic pinning potential] and the necessary coupling force //, ¢ // X / 2
can easily be selected by changing the gap between the su- ,} 7 B d,

4 4

’

3

perconducting films. A variable component of the vortex ve-

!
P
ocity and hence a variable electric field and current are gen- / 7 4
erated by the relative motiogslippage of the vortex lattices 2 : ; é / !
in the two films. 4”2 ( 7// A z,,
The key issue in building a theory of magnetically i i {
coupled superconductors is the assumpfiahat a vortex ksl A
lattice is displaced as a whole in the periodic pinning poten- y x Y

tial generated by another vortex lattice. The interaction en- . S _

ergy between vortex lattices in magnetically coupled fiImsF'G' 1. Magnetically coupled superco_ndyctm_g films in an extern_al magnetic
first calculated by Sherrill and Manééﬁg for the case field By. The structure of the magnetic lines is shown schematically for an

was ”_S ) y = 0. - ) h arbitrary relative displacement, of the vortex lattices in the films.

of Abrikosov vortices in thin filmg° with the film thickness

d much smaller than the magnetic-field penetration dapth

These results were generalized to films of arbitrary thickness

by Clem?*??*who also built a detailed theory describing the the subscript takes the valuek= 1,2 for the first and second

stripping of the vortex lattices in magnetically coupled films fims, respectively. For simplicity we assume that the exter-
and did model calculations of the current—voltage charactemal perpendicular magnetic field with inductidy= Bz,
istics of dc transformers. The theoretical ideas developed igenerates in each film a square Abrikosov-vortex lattice. The
Refs. 17, 21, and 22 were corroborated by detailed measurgortex lattice perioda is determined byB, in accordance
ments of the current—voltage characteristics and the magyith the relationBya?=®,, whered,= wr#ic/e is the quan-
netic interaction between vortices in magnetically coupledum of magnetic flux, or fluxon. We also assume that the
films.23*2‘_‘ _ _ o thicknessd; of the insulating layer is so large that tunneling
In this paper we examine electromagnetic radiation dugan be ignored dz>£)). On the other hand, the attraction
to the relative motion of vortex lattices in magnetically petween vortices belonging to different films guarantees sig-
coupled films in the dc transformer geometry. In Sec. 2 Wenjficant magnetic interaction between the vortex lattices. We
calculate the structure of the magnetic field of a squarghoose a coordinate system,y,z) with x andy axes par-
Abrikosov-vortex lattice formed by an external magneticallel to the basic vectors of a vortex lattice; the plave0

field in magnetically coupled superconducting films, andiies in the middle of the insulating layer, and the supercon-
study the interaction between the vortex lattices in the twajucting films occupy the regiong;a<z<z;5 and z,g<z
films. In Sec. 3 we write the equations of vortex motion in<z,., wherez,;y=—d;—d3/2, Z,g=— z;5=0d3/2, andz,¢
the periodic pinning potential generated by the magnetic in=d,+d,/2. For definiteness we consider the case in which
teraction between the vortex lattices. The equations are simihe external currents in the films are directed along one of the

lar to the equation of the resistively shunted Josephson jungyasic vectors of a vortex latticg; Jlyo, and the current-
tion model? in which the relative displacement of the vortex induced flux flows along the axis.

lattices in the films acts as the phase differegcén Sec. 4 If there is no external current in the films, the Gibbs
we study the rf response of magnetically coupled supercorenergyG of such a system is at its minimum when the axes
ductors to the relative motion of vortex lattices in neighbor-of the vortices in the two films are opposite each other and
ing films. The frequency of the electromagnetic radiation there is no relative displacement of the vortex lattices, i.e.,
depends on the spatial period of the vortex lattices, whiclx,=0. Obviously, by virtue of translation invariance, t@e
means that it is possible to tune the frequency of the radiays. x, dependence is a periodic function of the displacement
tion by applying an external magnetic field. In Sec. 5 wex,: G(x4+na)=G(xy) for integern. An external current of
discuss examples of Josephson systems based on magngiénsityj flowing in the films acts on unit length of each
cally coupled films. There we also compare the behavior ofortex line with a Lorentz forcé = ®,j X z,/c, and the be-
such systems with that of an ordinary Josephson junction. havior of the vortex lattices is determined by the energy
G'=G—-AW (see Ref. 25 whereAW is the work done by
the current source in moving the vortices. The Lorentz force
shifts the vortex lattices with respect to each other along the
X axis, and the minimum G’ corresponds to an arrange-

We consider two parallel films of a type-Il supercon- ment of vortices for whichxy#0. If the external current
ductor, of thicknessed; andd,, separated by an insulating densityj is so high that the Lorentz forch exceeds the
layer of thicknessl; (Fig. 1). We assume that generally the force of internallvolume and surfagepinning of the vortices
films are different, and each is characterized by a magnetidn the films, f,, as well as the maximum magnetic interac-
field penetration depth; and a coherence lengtfy, where tion force between the vortex lattices in the two filmiS>,

2. MUTUAL VORTEX PINNING IN MAGNETICALLY
COUPLED SUPERCONDUCTORS
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then there is relative motiofslippage of the vortex lattices, To broaden the range of applicability of the London approxi-
which leads to a periodic time-dependence of the vortex vemation, we use the Clem modelwhich provides a good
locity. The corresponding dependence of the endbdyon  description of a single Abrikosov vortex for an arbitrary
the relative displacement; is a monotonically decreasing value of the Ginzburg—Landau parameter Representing
function with a periodic variation of the slope of tk&¥ vs. the vortex lattice by a linear superposition of single vortices,
Xq curve. Our qualitative treatment of the dependence of theve arrive at the following expression for the spatial Fourier
vortex lattice energy in magnetically coupled films on thespectrumS (n,m):
relative displacementy shows that the behavior of this sys-

tem corresponds to that of a Josephson eleffent. Ki(ai&)

nm=——mo0H, 6
S(nm AN KL (ETN) ©

2.1. An Abrikosov-vortex lattice in magnetically coupled

superconductors aq=q;(n,m)=0q, \/n2+ m?+
We begin by calculating the magnetic field of a square

lattice of Abrikosov vortices in magnetically coupled super-where the parametes! , which is the effective vortex-core

conductors when there is relative displacementbf the lat-  size in the Clem model, satisfies the equation
tices(Fig. 1. In the London approximation, which holds for

2

, )

a

27T)\|

superconductors with a large Ginzburg—Landau parameter &/ K&(&VIN)) 12

K=\ /§&>1, the distribution of the magnetic field, in a ﬁ: "= m

superconductor in each of the films is described by the Lon-

don equation andKg 4(¢) are modified Bessel functions. The fact that we

use the linear superposition principle in calculating the lat-

r _ 2
Li(H)=H ATV XV XH, tice field of Abrikosov vortices means that there is no over-

+o lap of normal vortex cores, i.e§' <a. For superconductors
=bdyz, 2 S(r—ry(n,m)), (1)  with a large Ginzburg—Landau parameters>1, Eq.(6) can
nm==e be simplified:
where the vector;(n,m)=(x,+na)x,+may, determines 2
the position of the vortex lines, and specifies the displace- S(n,m)= (i (8)
ment of the vortex lattice in relation to the zero position air
corresponding to the coaxial arrangement of vortices in the The general solution of the homogeneous London equa-

magnetically coupled filmsn(andm are arbitrary integejs .

Y TEIEIS tion (4),
We employ the fact that the London approximation is linear
and write the desired general solution of the differential Hig=(HY HYy HE),

equation(1) as a linear combination of two solutions,
_ which guarantees that the appropriate boundary conditions at

Hi=H,+Hiq, 2 the film surfaces are met, will also be written as a two-
where the first ternH,, is a particular solution of the inho- dimensional Fourier series in spatial harmonics:
mogeneous equatiaf),

. H;{,=%2 [CrTe?+CP e 97

Li(Hi,) = D020 2 8(r=ri(n,m)), 3 a2 im

n,m

and the second terid,4 is the general solution of the corre- xexgiga(nx+my)=ix],
sponding homogeneous London equation

Li(Hia) =0, ) Plugging(2), (5), and(9) into Egs.(1) and (4) results in an
which guarantees that the magnetic field components at thagebraic relationship linking the unknown expansion coeffi-
film surfaces are continuous. cientsC/™,

We select the particular solutidd,,=H,,z, of the in-
homogeneous equatidB) in a form that describes the struc-
ture_ of the magnet.ic field of a square Iatt.ice of Abrikosovand makes it possible to write
vortices in a massive superconductor. This solution can be

o=X,Y, Z. 9

—g,nC" —g,mc " *iq,CF =0, (10)

written as a two-dimensional Fourier series in spatial har- ®
. 3 %o 2.2
monics: LiH)=— 2 Mafs(n.m)
a n,m
d, _ _ . .
Hi,=— 2 S(nmexgiga(nx+my)—ix], X expliga(nx+my)—ixi]. (1)
ac n,m
(5 Everywhere outside the superconductoe., z<z;a,
q 2w 1= 0aN% 2,5<z<Z2yg, and z>2z,c) the magnetic fieldH, satisfies
a— 4 1 I—Yal'A -

a Maxwell’'s equation
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C if Z>ch,
VXHz=0, B={B
A if z<z4,,

if z,5<2<25g, (12

and is a potential field. The scalar potenti} correspond-
ing to this field,

HB: _VU,B ) (13
is a solution of Laplace’s equation
V2Uz=0. (14)
We seek a solution of Ed14) in the form
CI)O +aUz —a—Uuz
Up=—Boz+ — 222 [Cje"*+Cze 7
n“+m<#0
X exgdiga(nx+my)—ixgl, (15

where u=q,Vn?+m?, Cy=0, xa=x1=0aNXs, xs=0,
Cc =0, andxc= x2=ganX;.

It is convenient to write the boundary conditions that
follow from the continuity of the magnetic field components

at the film surfaces as follows:
z=z~H,=Hg, wherel=1,2, B=(AB,C). (16

Substituting the Fourier expansiof®, (9), and(15) into the
boundary conditiong16) and taking Eq.{10) into account,

we arrive at a system of linear algebraic equations that make

it possible to express the unknown coefficie@g™ (n,m)
andcg(n,m) in terms of the spectral functiorg(n,m) (Eq.
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where
(X,yeS., zjpa=<z=z45) Iif I=1,
"l(xyeS., zmgsz<zyc) if I=2.

The energy of the magnetic field; outside the supercon-
ductor is determined in the usual way:

F—1J dV H3
7 8m )\, B

X,y € S¢,2>25¢) if B=C,
whereV,g=13 (X,Y€S;,215<2<25) if =B, (19
(X,y€S.,2<71p) if B=A.

Using Egs.(1) and (13) and the boundary conditiond.6),
we see that the free energy

> R+ X

1=1,2 B=AB,C

F= Fs (20)

can be written

>

—_ 1 r ~
F= E[I—lz JVIdV H|L|(H|)—Lcds[uAl_l(Hl)]ZlA
+fSCdS[UBI:1(H1)]zls— fSCdS[UBﬁz(HZ)]ZZB

+ jSCdS[Ucr—z(Hz)]zzc’a (21

(6)) and the parameters of the problem. As a result, using _
Egs. (5), (9), (13), and(15), we can find the desired distri- WheredS=dx dy z, is the surface area element.

butions of the magnetic field.

The interaction energy,. of Abrikosov-vortex lattices

The solutions obtained in this manner fully determinein magnetically coupled superconductdes, in other words,
the structure of the magnetic field in magnetically coupledthe energy of mutual pinning of the vortex latti¢ésthe part

superconductors for an arbitrary relative displacement
=X,— X, of the vortex lattices in the two films.

2.2. Gibbs energy of a vortex lattice in magnetically coupled
superconductors

of the Gibbs energ® (Eq.(17)) that depends on the relative

displacemenk, of vortices in the two films:
G=Gp+ G.(Xy). (22

Obviously, the second term on the right-hand side of Eq.
(17) contributes nothing tdG. since it contains no terms

The behavior of a superconductor in an external magquadratic in the expansion coefficiers, C~, and CE.

netic fieldB, is determine®f by the Gibbs energy

1
G=F—Ede(H~BO), (17)

Substituting the Fourier expansiofs), (11), and (15) into
(21) and dropping terms that are independenkf we can
write the interaction energ@.(xq) per unit vortex cellS; in
terms of the spectral functior§(n,m) and the Fourier ex-

whereF is the free energy of the system. In calculating thepansion coefficient€f~(n,m):
Gibbs energy per vortex in magnetically coupled supercon- 2

ductors, the integral must be evaluated within a unit cell ofg (x,)=—

the vortex lattice S.= (|x|,|y|<a/2):

+ oo
f dVZI dzJ’ dx dy.
— SC

In the regions occupied by the superconductas &z
<z,5 and z,p<7<7,:), the following expression for the
free energyF, corresponds to the London equati@) (see
Ref. 28:

1
Fi=go f dV [HE+ (VX )2, (19

= 3
8ma nZ+m2+0

[q;S,(C¥ e "1+ C¥ et)
1 1
X(1—e %) +q,S,(C5 e*2+C5 e 72)

1
X(1-e %)) —, (23

u‘a
where 6§, =q,d,, y,=0q,d3/2, and u;=4,+v,. The coeffi-
cientsC/™ in (23) can be obtained by solving a system of
linear algebraic equationtsee Sec. 2)land can be ex-
pressed in terms of the spectral functid®én,m) (Eqg. (6))
and the parameters of the problem. If(2B) we replace the
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C{* by the corresponding solutions and collect the coeffi- 4,

cients of like spatial harmonics, we obtain a Fourier series 10~

for the energyG.(xy): F
2

()
Gol(xa) == 2, G COSGaNXe). (24

103k

Here the parametery=x,—X; is the relative displacement
of the vortex lattices in the films, and the amplitudes of
the spatial harmonics can be expressed in terms of the spec:

tral functionsS;(n,m): 10
1 o P1Q,+P,Q;
G”_Em;m aub ’ (25
-5
where 107 |
q e’
Pi=Pi(nm=qS(1-e M| 1+ ——|e 7,
q 1o
q e a0 a0 60 B0
Qi=Qi(n,m)=§4 2q, | 1+ ———|sinh 4, 0 200 400 600 800 B, G
a

FIG. 2. Spatial-harmonic amplitudés, (n= 1—3), calculated by Eqg26)
and(29), as functions of the inductioB, of the external magnetic field for

+ q|+ (1-e” 5')] e M, (26) several values of the thicknesssandd, of the superconducting films and

—\ 2
e5|_(q_|) e d
ar

—\ 2
eﬁl_<q_l) e 4
a

eﬁz_ ( q_i) e~ S
a,

the thicknessl; of the insulating layer X, ,=2000 A and¢; ,= 20 A). The
solid curves correspond i ,= 1000 A andd;=100 A, the dashed curves
to d; ,=—1000 A andd;=300 A, and the dotted curves th ,=500 A and
d;=100 A

DED(n,m):quq;e‘83

X A, rapidly decrease as the inductiBg and the numben of

the harmonic increase, so that harmonics with2 in the
expansion(28) are significant only in weak fieldBy~H,;,
oMLK, whereH = ®, In k/47\? is the lower critical field in the
London model.
. If a vortex lattice is so dense that the distaaceetween
whereq;” =g+ u, and 53=uds. The interaction forcéper  yortices is at most of the order of the magnetic-field penetra-
vortex) of vortex lattices in magnetically coupled films is  tjon depth\, ,, Egs.(26) and(29) become much simpler. If
dG, in (29) we ignore, for\, ;>a/2m, the exponentially small
~ dx (270 terms and in(26) replace the spectral functid(n,m) with
! the expressio8), which is valid for superconductors with a
and can be written as a Fourier series in the spatial harmonarge Ginzburg—Landau parametet; >1, we obtain a

—4q, g, e % sinh §; sinh 8,

f|:

ics of the relative displacemenry;: simple representation for the amplitudas of the pinning
) force f ,:
0 .
fi=—f=— 2, A sin(ganxg), (28) n > e ud3q_gud {_gud
ac n=1
An=3 ua 2y 2 N (30
o m= - qiA1 azA3
A _n D P1Q2+P2Q; (29
T3 &~ T auD where
2 2 2
whereP,,, Q;,, andD have been defined if26). Equa- U= 2myn“+m q :277\/” +m°+(a/2ah, o)
tions (24)—(29) make it possible to calculate the mutual pin- a ro T2 a '

ning energyG.(xq) and the forcef, X(x4) of the magnetic
interaction of vortex lattices in magnetically coupled super-
conducting films.

Figure 2 depicts the dependence of the spatial-harmon
amplitudesA,,, calculated by Eq926) and(29), on the in-
duction B, of the external magnetic field for several values
of the thicknessesl; and d, of the superconducting films
and the thicknesd; of the insulating layer. The amplitudes f1o==*f sinQaXg, (31

Clearly, the Fourier spectrum @&f, exponentially decays ffi
is larger than a certain valug,= a/2wd3. Thus, by selecting
the proper value of the thicknesls of the insulating layer

e can guarantee that the force of mutual pinning of vortex
lattices,f », is harmonic over a broad range of film param-
eters,
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with the amplitudef ., = ®2A, /a® decreasing monotonically Jer Acm™2
asB, increases.

3. EQUATION OF MOTION OF VORTICES IN MAGNETICALLY
COUPLED SUPERCONDUCTORS

For each film we write the equation of motion of vortices
in the periodic pinning potential generated by the interaction
of vortex lattices in the two films. We assume that the dy-
namics of magnetic-flux motion is determined by the Lorentz
force f  =(j®q/c)xy per unit length of a vortex line, the
force being generated by the interaction of the curjeartd
a vortex. We also assume that the interalume and sur- ) ) . N )
face pinning forcef, in both films is negligible and has no 0 200 400 600 800 B, G
appreciable effect on vortex motion. A vortex moving with a
velocity v is subject to a viscous friction fOI’Céq: — v FIG. 3. Depend_ence gf the critical current densjigy(sge Eq§(34), (36),

and(37)) on the inductiorB, for several values of the film thicknedsand

proportional to the velocity of the vortex. Under these 8She thicknessl; of the insulating layerX =2000 A andé=20 A). The solid

sumptions, the equations of motion of vortex lattices alongyrve corresponds to=1000 A andds=100 A, the dashed curve to

the x axis in magnetically coupled films can be writtéA® ~ =1000 A and d;=300A, and the dotted curve td=500A and ds
=100 A.
) D, fq 0
— Xyt — == =0,
mXaT o J1 d,

(32 that can flow in magnetically coupled films without dissipa-

o Oy fy tion in the geometry being discussed corresponds to a mutual
mXot ot - =0,

d, displacement§ of the vortex lattices in the two films for
; e i
where 5, and », are the phenomenological viscosity coeffi- Which the phase®=g.xg satisfies the equation
cients of the films, and the interaction forcesandf, have djs .
been defined in(28). Introducing the phase difference de :nzo nA, cosne®=0. (37
=(Xq determined by the relative displacemegtof vortex e=¢t T

lattices, we can easily transforif82) into the following Herej. can be considered the critical current, and if currents
equation, which describes the motion of vortices in magnetihigher than the critical value flow in the films, the vortex

cally coupled superconductors: lattices become stripped. If the currgnin the films is less
. . thanj., the mutual attraction of the vortices in the two films
aptjs(e)=j. (33 fixes the relative spatial arrangement of the vortex lattices

The parameter=can/2wd, decribes the dissipation that and ensures nondissipative flow of the current. When
results from the relative motion of vortex lattices, and the>]¢, there is relative motion of the vortex lattices in the two

function films, which leads to dissipation when such a current flows in
the films. Note that the attraction of vortex lattices in mag-

Js(e)= o > A, sinne (34)  Netically coupled superconductors can be considered addi-

d =1 tional pinning of vortices, a factor that leads to an increase in

the critical current as compared to the critical currgntue

films without losses on the arrangement of the vortices in th&° e intrinsic(internal and surfagepinning of vortices in
two films. Here 7, d, andj denote the reduced viscosity the films. Such addmonal pinning can be detgcted in experi-
coefficient, the reduced film thickness, and the reduce('inent_S and const|_tutes a problem in its own ngh_t._
external-current density, and can be expressed in terms of the F_'gl_”e 3 depicts the dependence of the_ C”“Cf""' current
parameters of the problem: fo seveial valles of the i thicknesband the thickness
2 Cdyda(pit ) jemi—iame d; of the insulating layer. A8, increases, the vortex-lattice
T it m T myditopd, 1= mt+n (35) perioda decreases, vortex overlap grows, and the distribu-
tion of the magnetic field in the films becomes more uniform.
This leads to a decrease in the mutual vortex-lattice pinning

: > . . orce, and hence to a decrease in the critical current densit
that the currents in the films are equal in magnitude ané Y

opposite in direction jo=—j.). In this case the reduced ]c. Figure 4 depicts the dependence of the critical current

parameters specified i135) are simply d=d,, and densityj. on the film thicknesgsl for several values oB,

" A : . and the thicknesdj of the insulating layer. The increase in
c_u:]rléi %inatrr]woeljssglenrigr?(jugitr?g tglas: ;125|:ty_(j)1;the external jc with d in the case of thin superconducting filmg<¢\)

The maximum current densi can be explained by the decrease in the effective penetration
ty depthA9=\?/d, which determines the characteristic spatial
je=maxfjd@)]=jc(¢°) (36 scale of the magnetic-field variations in a vort®@s the

determines the dependence of the curijgnfiowing in the

From now on we assume that the superconducting film
are identical A=\y,, é=&,,, d;=d,, and »,=17,) and
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jcxm-{ Acm-2 motion of vortices in magnetically coupled superconductors
1.0 (Eq. (33)) corresponding to the sinusoidal depende(®®

of the supercurrenjs on the phasep coincides with the
equation of the resistively shunted Josephson junction
model?®30

0.8

0.6 ap+ijc Sine=j, (41)

wherej., is given by(39), j is the reduced external current
density in the filmgsee(35)), and the parameter describes
the dissipation that emerges in vortex motion. If the curjent
in the films is less tha;, Eq. (41) has a steady-state solu-
tion ¢°=q.xg, which determines the displacement of the
vortex lattices in the two films relative to their equilibrium
positions. In this case there is nondissipative current flow in
the magnetically coupled films, which are in a mixed state,

FIG. 4. Dependence of the critical current dengitysee Eqs(34), (36), even when there is no intrinsic pinning of the vortices in the
and(37)) on the film thicknessl for several values of the inductid, and films.

the thicknessd; of the insulating layer. Curved correspond toB,

=100 G and curveg, to B,=500 G (\=2000 A and¢=20 A); the solid

curves correspond td,=100 A and the dashed curves,dg=300 A.

0 200 400 600 800 d A

4. RF RESPONSE OF MAGNETICALLY COUPLED
SUPERCONDUCTORS
film thicknessd becomes larger, a quasi-two-dimensional , ) )
vortex transforms into an Abrikosov vortex, whose magnetic  When the curreni in a superconducting film exceeds
field changes significantly over the penetration depthlere (e critical valuej, the vortex lattices become stripped and
the relative effect of the finite film thickness on the free there is slippage of the vortex lattices relative to one another.

energyF, , of a vortex(Eq. (18)) weakens, and fod>\ the In view of the periodicity of the interaction potential, such
perturbations introduced by the film surfaces are insignifinotion has a variable velocity component and must lead to

cant. In the latter case, however, the external current is digdeneration of electromagnetic radiation. Qualitatively, this
tributed nonuniformly over the film thickness, and in writing Mtion can be considered the nonuniform motion of lattices

the equations of vortex motiof82) one must bear in mind consisting of magnetic dipoles. Note that the motion of vor-

that the mean current density , depends on the film thick- tices in the films generates an electric fiéle-x4Bo/c with
nessd; ,, and furthermore, the axial lines of the vortices may@ variable component. We restrict our discussion to identical
be tilted. films with a dense vortex latticeai\ ). This means that Eq.

For values of the external magnetic filg at which the ~ (41) suffices to describe the motion of vortices in magneti-
period of the vortex lattice created by the field is moderatec@lly coupled superconductors. Writing the viscosity coeffi-
(a<\), the contribution of harmonics with=2 in the ex-  cientn=®qBo/pc? in terms of the resistivity of the films in
pansion(34) is insignificant(see Fig. 2 Hence, leaving only the flux-flow regime p¢=p,Bo/Hc,, wherep, is the resis-
the term withn=1 in (34), which corresponds to the funda- tivity of the films in the normal state, arid.,=®o/2m¢ is
mental harmonic with Spatia| frequenc{ya, we obtain a the upper critical fleld, we can obtain the fO”OWing expres-
simple sinusoidal dependence of the supercurjemin the  sion for the frequency of oscillation (see Ref. 2

hase o, ding to the h ic la@®1) for th 2 [
phasee, corresponding to the harmonic la@1) for the [i2-ij2 (1 )2
— = Wwg Jl _11
C

pinning force, w= (42)
o
jsl((P):jcl sin ¢, (38 Amci Amci
c a C
where the critical current density is wo= TClc1Ps -7 JClpn. (43
(OR aH.,
. CcByA; .
JCl:T (39 The fact that the frequency of the electromagnetic

radiation emitted by magnetically coupled films depends on
If the insulating layer is not very thindg=a/27), we can the spatial lattice period means that it is possible to tune
keep only the term wittm=0 in (30). If, in addition, ford  the frequency by applying an external magnetic fild If
>a we ignore the fact that the thickness of the superconductthe external current is substantially higher than the critical
ing films is finite, them from(30) and (39) we can easily valuej,
obtain dme
C®0a28727d3 /a w= H—(I)plr;ZJ \/B_O (44)
— (40) c2®¥o

64m"\"d By analogy with the well-known properties of Josephson
which is valid for superconducting films with a large junctions, the system of magnetically coupled superconduct-
Ginzburg—Landau parametex=X\/&>1. The equation of ors is expected to be sensitive to an external variable ffeld:

o=
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because microwave radiation synchronizes the motion of thBlote that an elementary chain of vortices moving trans-
magnetic flux, Shapiro-type steps appear in the currentversely to the bridge involves a voltagyge; =V /N, which is
voltage characteristit related to the characteristic frequengy through the Joseph-
Let us discuss the relationship between the frequency son relation(see Eq.(47)). At high currents [(>1.) and
and the constant voltagé, generated by the relative motion under optimum matching conditions for the impedances of
of vortex lattices. We take a superconducting bridge ofthe bridge R.), and the load R,), i.e., Rg=R., we can
length L and widthW and place it in an external magnetic expect the rf power delivered to the load tc*be
field By, so that a square lattice &fX M vortices is formed
within a surface area df X W: N=L/a andM =W/a, where
a is the spatial period of the lattice. In the flux-flow regime,
in the superconducting films there emerges an electric Eeld
whose constant componeig=(E), ensures dissipation and
is determined, in accordance with Maxwell's equation

RIZ
P_= ? (50)

5. DISCUSSION

VXE=— E ﬁ, We now compare the behavior of magnetically coupled
c ot superconductors in which there is relative slippage of the
by the mean velocity, of a vortex lattice in the films: vortex lattice with that of an ordinary Josephson junction. As
an example, we take aB—N-S junction with a resistance
voBg Ry and thicknessly of the normal layer. The weak link in
Bo=——- (49 the S-N—S junction results from the proximity effeé?,and

the critical current in such a junction at temperatdrds
The electric fieldE, generates a constant voltage across thgjiven by?

bridge,

Vy=E,L = EqaN (46) svs__ A 8 o
0= Sot-= Eodl. © " 4ekgTRy i 2(2n+1)2 Sinhl,’

(51)

After one periodl =27/ w the pattern of the mutual arrange- _ _

ment of the vortex lattices is repeated, with the vortex latticeVherel,=(2n+1)"ady/éy, A is the energy gap in the su-
in each of the magnetically coupled films being dismaceoperconductors, anél, is the coherence length in the material
with respect to its previous position by one half of the spatialf the normal layer. Clearly, Eq51) tells us that ¢ °can be
period of the lattice, i.e.a/2=v,T. This readily leads to a high when the normal barrier is thind(~ &), while its

relationship between the applied voltayg and the fre- resistanceRy is low. Fordys>éy, the critical current o™°
quencyo, exponentially decreases as the normal layer becomes thicker.
The low resistanc®y, which makes it difficult to match the
fi N S-N-S junction with other devices, can be increased by re-
0722 (47) ducing the area of the junction. However, the smaller the
junction area, the lower the radiated power.
which differs from the well-known Josephson relafiday an When magnetically coupled superconductors are in-

additional factorN/2, where the integeN is equal to the yolved, the weak link is established by the magnetic interac-
number of vortices fitting into the bridge length Note that  tion of vortex lattices in the superconducting films. Let us
when only one vortex lattice is mobile while the other is compare the expression for the critical current dengityin
immobile (e.g., because of strong intrinsic pinninthe fac-  magnetically coupled superconducting fillf&q. (40)) with
tor N/2 in (47) must be replaced bi. The latter determines the expression (51) for the critical current of an
the number of fluxons exiting the contour in the course OfS—N—Sjunction. One can easily see tha® in (40) plays
one period. the same role as the parametgr for an S—-N-S junction:
The dc electrical resistandg, of the bridge due to the the magnitude of the weak coupling between magnetically
motion of the magnetic flux iRo=Vo/lo at the operating coupled superconductors decreases exponentially in mag-
point, wherel =S is the total current flowing through the petic fieldsB,, for which the vortex lattice period is of the
cross-sectional area of the fil®=Wd. Whenl, is much  order of the thicknesds of the insulating layer between the
greater than the critical curremt=|S, the resistanc&®k;  superconducting films. Since we haee>¢ in fields B,

approaches the characteristic resistance <H,,, the requirements that the insulating layer in magneti-
L cally coupled superconductors must obey are not so stringent
R= %, (48) as they are for Josephson junctions.

The characteristic resistangg (Eqg. (48)) of a bridge of

which corresponds to a current-independent shunt resistan&agnetically coupled superconductors does not explicitly de-
in the resistively shunted Josephson junction model. pend on the gap thicknest;. This makes it possible to

A convenient parameter describing the operation of suclatchRo to the load impedandg, by changing the length
a bridge is the characteristic voltdde and widthW of the superconducting bridge without appre-

ciably reducing the critical current.=j.,S and hence the
V.=1.R. (49 radiated poweP_ (Eqg. (50)).
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For clarity, we rewrite the relationshi@7) between the that the vortex lattices move as a whole with respect to each
frequencyf = w/27 and the voltagd/, across the bridge in other. This can be ensured if the interaction energy in each

the form film, which determines the elastic properties of a vortex
20 lattice?® is much greater thats, (Eq. (23)), which charac-
f:zWVl, (52) terizes the interaction of neighboring vortex lattices in mag-

netically coupled superconductors.
whereV;=V,/N is the voltage generated across an elemen-  To illustrate the above results, we examine Josephson
tary chain of vortices moving transversely to the bridge, andlevices based on magnetically coupled superconducting
the additional factor of 2 preceding the coefficien#/2  films, and assume that the vortex lattices are counterpropa-
=483.6 MHz/uV reflects the obvious fact that for a given gating. Using the parameters of the dc transformer discussed
voltage V; the oscillating frequency doubles because the by Ekin et al,?®** with the transformer fabricated from
vortices move toward one another. granular aluminum films (Al/SigYAl), i.e., H;,=50 G, A

We note one more interesting corollary of E§2). For ~ =6000 A, p,=10 #Q-cm, d=750 A, andd;=120 A, we
a bridge of given geometric dimensiohs<W, the depen- find that for an external magnetic fiel,=10G (a
dence of the radiation frequendyon the external magnetic =1.4um) the potential of mutual pinning of the vortex lat-
field B, appears in(52) via the relationshipN(B,)  tices isAU.~10 meV, which provides a critical current den-
=L(By/®,) Y2 SinceN takes only integer values, the fre- sity j.=10°A/cm?. The critical current for a bridge with
quencyf for a given voltageV, across the bridge can take =0.7mm (N=500) and W=20um proved to bel.

only discrete values, i.e., ¥, is fixed, changes ifi induced =j . Wd=15uA. Substituting these data intd3), (48), and
by changes iB, can take place only in jumps: the jump to a (49), we can easily find the characteristic frequenigy
neighboring step corresponds to a change in the nuMlmdr = w/27, the resistanceR,, and the voltage/, across a
vortex chains byt 1. bridge based on such magnetically coupled superconducting

Expressing ;. andR, in terms of the dimensions of the films: f4=0.3 GHz, R;=10€Q), and V. =0.15mV (V.
bridge which is fabricated from magnetically coupled super-=0.3 V). By virtue of (42), the frequency of the rf re-
conductors, we can write the expressig0) for the rf power ~ sponse in such a systefi w/27, depends on the excess of
in the form the current  over the critical valué, i.e., on the choice of

operating point. Assuming that the voltayk across the

P_=Po(NXM), (53 bridge is equal to the characteristic vallg, we find that
where Po=p;j2a?d/8 is the power radiated by a unit cell f=f,, which corresponds to the curregtin the films being
(axa) containing only one vortex of a lattice. Note that equal to\2I,=21 A, and to motion of the vortex lattices
such an elementary bridge, made from magnetically coupletbward one another with a velocity,=af/2=2x 10*cm/s.
superconductors containing only one vortéX=1 and M Here Eq.(50) estimates the rf poweP _ delivered to a
=1), behaves in many respects like a single Josephson junmatched loadR, =R, to be~10"° W.
tion. Here the geometrical dimensions of such a bridge are Another example deals with magnetically coupled
determined not by the coherence lengéh but by a  YBCO superconducting films with typical paramefra
=(P,/By)*? which simplifies the fabrication of such ob- =2000A andp;=10xQ-cm and dimensionsl=500 A,
jects from highT, superconducting materials in comparisond;=100 A, L=0.7 mm, andW=20 um. The mutual pin-
to the fabrication of ordinary Josephson junctions. ning potentialAU,. of the vortex lattices in such magneti-

It is convenient to discuss the time-dependent Josephsazally coupled superconducting films in an external magnetic
effect in weak-link systems in terms of fluxons that penetratdield B,=1000 G @=1400 A andN=5000) reaches\U,
the junction?® In an ordinary Josephson junction, it takes one~0.1 eV. The critical current density and the critical current,
periodT for one fluxon®, to pass through the region occu- determined by the interaction of the vortex lattices in the two
pied by the junction. This means that such a system operatdéms, arej.=2x 10*A/cm? and|.=0.2 mA. The character-
at low power levels, and that raising the power requires synistic parameters of a bridge fabricated from such magneti-
chronizing a large number of junctiofsSuch synchroniza- cally coupled superconducting films afg=2.7 GHz, R,
tion constitutes a complicated problem, since the junctions=70(), andV =14 mV (V;;=2.8uV). Assuming as we
are coupled only through the external circuit and there is nalid in the previous example that the voltayg across the
direct magnetic interaction of Josephson vortices in differenbridge is equal to the characteristic vaMg=V., we find
junctions. In anLXW superconducting bridge based on that the frequency is equal tof, and that the currenit, in
magnetically coupled superconducting films, the externathe films is\2I.~0.28 mA. The mean vortex velocity, in
magnetic fieldB, generates a lattice of coupled vortices thatthe films isv,=af/2=2x10%m/s, and an estimate of the
consists ofNXM unit cells. Equation(53) implies that it emitted rf powerP _ (Eg. (50)) at the oscillating frequency
takes one period for NXM vortices to re-interlock simul- yields P_~0.35uW.
taneously, which is equivalent to synchronizing an array of Note that such high critical current densitieg,
NXM junctions. As a result, the rf power delivered to the ~ 10°*—10°A/cm?, flowing in an S-N—-S junction with an
load also grows by a factor & X M. Here the frequency area of 0.8um? fabricated from highF. superconducting
decreases in comparison to the Josephson frequépcy materials can be observed only at very low resistances of
=Vy(2e/h) only by a factor ofN for a fixed biasvy across  such a junction,Ry~0.10) (see Ref. 31 However, the
the bridge. Such synchronous operation requires, howevestudy of magnetically coupled films that are based on high-
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T. superconductors is hindered by the high values of thef the electromagnetic radiation generated by the relative
critical current densityj, (i.e., strong internal pinning of motion of vortex lattices in magnetically coupled supercon-
Abrikosov vortices in such filmscharacteristic of higif,  ductors depends on the spatial period of the vortex lattices
superconducting materials. Granular highsuperconduct- and the velocity of relative vortex motion, which means that
ing films, which have a low energy of internal pinning for the frequency of the radiation can be tuned by applying a
the intergranular vortices, may prove to be promising high-magnetic field or a current. When in magnetically coupled
T.superconducting materials for studying the motion of vor-superconducting films there is relative motion of vortex lat-
tices in magnetically coupled superconductBrs. tices consisting oNX M unit cells, it takes one oscillation
Obviously, the moderate frequenciésat which mag- period for NXM vortices to re-interlock simultaneously,
netically coupled superconducting films radiate, result fromwhich is equivalent to synchronizing an array& M Jo-
the relatively low velocities of Abrikosov vortices in super- sephson junctions.
conductors. However, the method of creating nonuniform  The magnetic coupling of the vortex lattices in the
motion of vortex structures discussed in this paper is univerneighboring films constitutes an additional pinning mecha-
sal and can be realized in long magnetically coupled Josepmism with a well-known and relatively simple pinning poten-
son junctions® The characteristic velocities of Josephsontial, which can be calculated analytically and compared di-
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frequenciesf ~ 200—450 GHz (see Ref. 3Y. The use of a possibilities in establishing the nature of pinning, since it
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there is additional magnetic couplifgmake it possible to spatial scale of the additional pinning potential.
synchronize the oscillators with vortices moving in a single  The authors are grateful to A. A. Andronov and S. V.
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magnetic coupling between Josephson vortices makes it pothors (A.V.S.) is grateful to the International Soros Science
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Using model objects consisting of dilute reentrant spinejsié, s ,Ga0, with x=1.0-1.2,

this paper describes the temperature dependence of the magnetic contribution to the heat
capacity,C,,(T), atH=0 and temperatures exceeding the freezing temperalyre-10 K) and,
for T=4.2 K, the low-field magnetizationy(T) and the saturation magnetization(T),

as well as the magnetization isothermg(H) in fields of up to 10 kOe. The specific features of
the behavior of the overall characteristics@f(T) ando4(T) are found for the states of a
frustrated ferrimagnetic that occur in the conditions considered tiéreO and T>T; or T
=4.2 K and strong magnetic fiel[dand are discussed in connection with changes in the
magnetic excitation spectrum caused by local breakdowns of collinear spin ordering and
frustrations. ©1998 American Institute of Physids$$1063-776(98)01604-7

1. INTRODUCTION states on thex—T phase diagram of Li—-Ga spinels in the
T=0K cross section.Particular attention was concentrated
This paper presents the results of a study of the magnetign the study of the ferrimagnetic region, namely, on the
and thermal properties of dilute two-sublattice ferrimagneticstates that precede Spin g|ass in temperaﬁmfe:T<TC,
spinels Lp sF& 5 «GaOy (1.0=x=<1.2), which are included H=0) or occur under the action of a magnetic fi¢ld>H
among Heisenberg magnets with short-range exchange. Thg; T=4.2 K, i.e., both foiT<T; and forT>T;. An advan-
0.9<x<1.5interval on th—T phase diagram corresponds tage of the test objects considered here is that they corre-
to the concentration region of reentrant states, where, as thé?)ond to the simulation concepts of Ref. 9, where the mecha-
tgmp.ergt.ulre decreases, a paramag_netic.—ferrimagnetic translsm of the formation of spin-glass statésemispin-glass
tion is initially observed at the Curie poifiic, and then @ = giates in the author's terminologyn dilute ferrimagnetic

ferrimagnetic—ferrimagnetic spin-glass transition is observe(gpinelS with one sort of magnetic ions was theoretically con-
at the freezing temperatufg <T. .22 The latter is charac- sidered

terized by the existence &< T; of long-range ferrimagnetic According to Ref. 9, when dilution occurs in regions

order (spontaneous magnetizatian,#0) with the typical with an increased content of nonmagnetic iéo@mposition

properties of a spin glass._Fmtl.O_—l.Z_, theT; values are ﬂisorde), local breakdown of the collinearity, or canting,
about 10 K, and the ferrimagnetic spin-glass states brea . . . .
occurs. These canted spins partially polarize the collinear

down in rather weak magnetic fieldsi<H (the technical matrix, as a result of which more extended regions of local

saturation field of the ferrimagnetThe value of T de- . .
creases from 435x=1.0) to 325 K k=1.2). qqncolllqearlty are formed. As. a consequence of fche. compe-
The problem of reentrant states in Heisenberg system%t'on of inter- and mtrasublattlce. antlferromagr?etllc interac-
with short-range interactionformation mechanisms, the tpns, frustrated exchange qouplmg appears V\_"th_'n these re-
gions. At some concentration of nonmagnetic ions, these

presence of phase transitions with &K <T., magnetic ) X ) )
structure continues to attract the attention of investigators'®9ions begin to overlap over the entire crystal. This corre-

and, obviously, cannot be solved except in connection witrSPONds to the formation of long-range transverse order of the
ferrimagnetic states, which precede the ferrimagnetic spigPin glass with respect to spontaneous magnetization

glass in concentration and temperatufe=(T;).>* Ferrimag- Such a mechanism for forming ferrimagnetic spin-glass
netic states of this kind are interesting in themselves. In variStates, unlike the conclusions of Gabay—Toulouse mean-field

ous cross sections of~T—H parameter space, this can in- theory;® does not presuppose the formation of regular non-
clude a frustrated ferrimagnetic, ferrimagnetics withcollinear structures in the regiofi;<T<Tc. The state
fluctuating exchange, with fluctuating exchange and stochagchieved in the finite temperature interviab Ty can be re-
tic magnetic structure, etc. The properties of such magnetgarded as a state of a frustrated ferrimagnet with local de-
including the magnetic-excitation spectrum, can significantlystruction of collinear spin ordering in the form of regions of
differ from those inherent to homogeneous collinearlocal noncollinearity. This paper is devoted to an experimen-
structures® tal study of the thermal and magnetic properties of such a
Guided by such considerations, we undertook studies o$tate, with a program that includes a study of the temperature
the concentration intervad=1.0—1.2, which corresponds to dependence of the magnetic contribution to the heat capacity
the beginning of the formation of ferrimagnetic spin-glassC,(T) and the saturation magnetization(T), as well as

1063-7761/98/86(4)/6/$15.00 731 © 1998 American Institute of Physics
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the low-field polytherms of the magnetizatiof(T) and the 3. EXPERIMENTAL RESULTS AND THEIR DISCUSSION

isotherms ofo'r(H) in fields up to 10 kOe. 3.1. Magnetic properties in weak (H<Hg) and strong (H
>H,) magnetic fields

2. SAMPLES AND MEASUREMENT TECHNIQUE First of all, it is expedient to consider the experimental
) ) ) results that can serve as evidence of the existence in weak
_The studies were carried out on single-phase polycrysmagnetic fields aT > T; of inhomogeneities of the ferrimag-
talline samples obtained by standard ceramic technology a5gtic structure in the form of a region of local noncollinear-
in Refs. 1 and 2. The isotherms of the specific magnetlzatloril[y_ Figures 1 and 2 show magnetization polytherongT)
or(H) were measured at temperatures from 4.2 to 100 K ir‘bf samples withx=1.1 and 1.2, respectively. The notations

fields of up to 10 kOe on a ballistic magnetometer Similar 105 ang FC indicate different prehistory: ZFC denotes pre-
that used in Refs. 1 and 2. The sensitivity of the apparatuEminary cooling of the samples ®<T; (in our case, tof

3 -1
was 10° Geng™. The temperature was measured by=4.2 K) in the absence of a field, while FC denotes cooling

means of a carbon thermometer and was kept constant to. . :
within =1 K during the measurements. Along with this, theWlth H#0. As can be seen from these figures, the behavior

ou(T) dependences in fields &f =5 kOe, which exceeded of the magnetization polytherms is irreversibies-(T,H)

the technical saturation fielé,, were directly measured 7 “rc(T.H), over a wide regionT>T; ~10 K, and be-
with a temperature step ¢8-5) K. comes stronger as the temperature decreases, especially for
The method of measuring the heat capacity and the techt<T¢ - AS field H is increased in the high-temperature re-

nique of distinguishing the magnetic contributiGp,(T) are  9ion, the irreversibility effects are suppressed, but they be-
similar to what we used in Ref. 11. The low-temperaturecome more intense asT—T{ : the difference Ao
measurements from 2 to 22 K were also duplicated on the= orc—0zrc increases. Such behavior at low temperatures is
apparatus described in Ref. 12. The measurement error dfpical of systems with spin-glass orderihg™® For x

heat capacityC was less than-1%. A carbon thermometer =<1.1, the irreversibility effects manifest themselves in an
was also used to measure the temperature. identical way and disappear over the entire temperature
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FIG. 2. Polytherms of the magnetization,(T) in ZFC and FC regimes of FIG. 3. Isotherms of the magnetization:(H) of the dilute spinels
the spinel Lj sFe, :Ga ,O, for various values of the field—50 Oe,2—100 LigsF& s «Ga0, (x=1.0-1.2) forT=4.2 K.
Oe.

sample withx=1.2, as is evidenced by the presence of a
para-process wheid>H,. This correlates with the irrevers-
ibility behavior, which is also expressed more strongly for
this concentration.

rangeT=4.2 K for H=100 Oe. In contrast, the irreversibil-
ity is expressed more strongly far= 1.2 (see Fig. 2 and Ref.
1) and, asT—0, exists in fields up to several hundred oer-
sted.

In the concentration region considered here, the behavi
in small fields H<Hs) must be determined by the domain The temperature dependence of the magnetic contribu-
structure. In particular, the most probable cause of irreverstion to the heat capacit€(T) of Li—-Ga spinels withx
ibility both for T—0 K and for higher temperatures is pin- =1.0-1.2 forT>Ty, i.e., in the ferrimagnetic region, is
ning of the domain boundaries. In this case, the pinning censhown in Fig. 4. For comparison, this figure also shows the
ters in general can consist of both inhomogeneities of thelata from Ref. 2 for a sample witk=0.9. For clarity, the
polycrystalline structure(inclusions, pores, local stresses, experimental curves are shifted along the vertical a&ig)(
etc) and inhomogeneities of the magnetic ordering causedelative to each other. Assuming that the features of the be-
by local breakdowns of spin collinearit§:!® The former havior caused by the character of the ferrimagnetic states
mechanism causes irreversibility in ordinary magneticallyconsidered here can show up most clearly mainly in the tem-
soft ferromagnets: in weak magnetic fields, irreversibility ex-perature region close t;, we have initially restricted our-
ists at temperatures fro O K to T, but the form of the selves to the interval 0T=<40 K for all samples. Inciden-
o7eo(T) and o(T) dependences can differ greatfy. tally, we should point out that, foF <T; in the test objects,

In comparison with this, irreversibility effects are ex- as in other reentrant magne@,,(T)~T.11:13:16
pressed differently in Li—Ga spinels: they exist in far stron- In analyzing the results given in Fig. 4, the following
ger magnetic fields, and a specific variatiofithe spin-glass should be pointed out: The spin-wave l&@y,~ T%?, which
type) of the behavior ofo,-(T) is observed as the field is obeyed for unsubstituted Li spinéfshere clearly breaks
increases and — 0 K. At the same time, their dependence down as a consequence of the formation of maxima. How-
on the concentratior of the nonmagnetic G4 ions shows ever, neglecting the maxima, tt@&,(T) curves as a whole
up clearly. In combination, all this is evidence of a secondmaintain positive curvatur@are concavg in which they dif-
irreversibility mechanism, associated with the presence ofer from the similar dependence with higher ¥a
regions of local noncollinearity. Note that the presence ofconcentrations! as well as from those cited for other spin-
these regions, which arise as pinning centers of the domaiglass systems, where ti&,(T) curves have negative curva-
boundaries, can be used to explain the decrease of the reate (are convex'®
part of the dynamic susceptibility fofF <100 K mentioned With regard to the latter, we should immediately point
earlier? Thus, the data obtained at low fields experimentallyout that the transition front,,~ T%? dependencéundiluted
confirms the existence of regions of local noncollinearityferrimagnets to convex curvegspin-glass systemsmust
theoretically predicted in Ref. 9 for the objects under consid-naturally pass through certain intermediate stages that reflect
eration. the changes in the magnetic subsystem caused by a gradual

Figure 3 shows the magnetization isothermgH) of  increase of the concentration of nonmagnetic ions. The ab-
the test samples dt=4.2 K andH=<10 kOe. It can be seen sence in the literature of detailed information on this ques-
that, for concentrations of=1.0 and 1.1, technical satura- tion is evidence only that the region of tixe- T diagrams
tion is reached aH ~2 kOe, and there is no para-process.corresponding to the beginning of the formation of ferrimag-
This shows that local noncollinearity is broken down by thenetic spin-glass states has so far been studied very little.
magnetic field, and a collinear ferrimagnetic staie some- Taking into account that the concave shape ofGh€T)
thing very close to jtoccurs forH>H,. The noncollinear curves is caused by spin waves with a quadratic dispersion
structure is more stable against the action of the field for théaw, it was of interest to consider the concentration evolution

0%.2. Temperature dependences of the heat capacity  C,,(T)
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The shape of these maxima, as well as the concentration
variations of the course of th€,(T) dependences, clearly
show that the detected features of ig(T) behavior are
not associated with a phase transition from a collinear to an
ordered noncollinear ferrimagnetic structure. This is also
supported by the fact that, for the temperatures correspond-
ing to these maxima, no anomalies are observed in the be-
havior of the temperature dependences of the realyg#rf)
and imaginary parj”(T) of the low-field dynamic suscep-
tibility, whereas the latter has a characteristic maximum for
T=T;.2Y

At the same time, the appearance of maxima on the
Cn(T) dependences probably reflects the fact that additional
degrees of freedom appear in the magnetic subsystem. Ref-
erence 9 expressed the assumption that this could be caused
by regions of local noncollinearity. If the presence of these
regions really causes the appearance of new modes in the
excitation spectrum, because of which maxima are formed
on the C,(T) dependences, it is clear that there must be
several such maxima. This follows directly from the circum-
stance that the formation of such regions is a statistical pro-
cess that is determined by the random placement of the non-
magnetic ions in the spinel lattideTaking into account the
short-range character of the exchange, there is a good basis
for assuming that, for the givexvalues, there exist several
more probable types of regions of local noncollineatitye
degree of breakdown of the exchange, elongation).eis.a
consequence, excitations with an identical nature, associated
with different types of regions of local noncollinearity, must
appear(and manifest themselveat different temperatures.

The experimental data that have been obtained agree
with such concepts. Actually, the maximum that appears for

FIG. 4. Temperature dependences of the magnetic contribution to the heit:o 9 superposed on thg32 dependence is maintained

capacityC,(T) of the dilute spinels lgsFe, 5 ,Ga0O, (x=1.0—1.2 andx
=0.9 from Ref. 2 for H=0. Forx=1.0-1.2, the curves are shifted upwards
along the vertical axis by0.5, 1.0, and 1)5<10? J K g™, respectively.
The inset shows th€,(T*? dependence for the sample witk=1.2. The
dashed curves show extrapolationsGf(T)~ T%?2 for T<20 K.

even at high concentrations of nonmagnetic ions, but its
shape varies with increasing At the same time, th€,,(T)
behavior also varies in the low-temperature region—¥H@&

law breaks down and, as is clearly seen from @g(T)
dependence fox=1.2, new maxima appear. By extending
the temperature interval to 60 K for=1.2, we convinced

of the C,,(T) dependences from the standpoint of their de-ourselves that the maxima exist even at higher temperatures.
viation from theT3?law. To do this, the experimenta| curves It follows from the results of Sec. 3.1. that the regions of
were replotted irC,,— T%? coordinates. For illustration, one local noncollinearity are destroyed by a magnetic field.
of these curvesx=1.2) is shown in the inset of Fig. 4. It Therefore, studying the overall characteristics@f(T) or

was established by using this procedure thatxferl.0, the  os(T) in a magnetic field makes it possible to experimentally
T2 Jaw is satisfied only in the temperature region directlycheck the presence of coupling between the additional con-
adjacent toT;, i.e., T<22 K. At higher temperatures, de- tribution to the heat capacity and regions of local noncol-
spite the presence of maxima, the experime@g(T) de- linearity. Keeping this in mind, we have also studied the
pendence rises less steeply than would follow from®8  temperature dependence of the magnetization in a field of
law (dashed curves in Fig)4In contrast to this, for a sample H=5 kOe for all samples withx=1.0.

with x=0.9, a maximum is superposed on tHE¥?

dependencé.As a whole, the behavior of th€,(T) tem- _

perature dependence for all samples with 0.9—1.2 can 3-3- Temperature dependence of the saturation

obviously be interpreted as follows: In the temperature inter magnetization
val under consideration, the main type of excitation in the  The temperature dependence of the magnetization of the
magnetic subsystem is spin waves, but the density of statesst samples in a field di=5 kOe atT=(4.2-100) K are

in the spin-wave spectrum decreases as the degree of diluti@mown in Fig. 5. It can be seen from the results shown earlier
and the temperature increase. Other contributions to the heat Sec. 3.1(Fig. 3) that this magnetization can be regarded
capacity also appear as temperature increases, becauseasfsaturation magnetization fere=1.0 and 1.1. Although the
which maxima appear on the,,(T) dependences. saturation is not complete & =5 kOe for the sample with
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0. G cm®g”! T. K if local noncollinearity and frustrations are maintained in
60 30 50 100 these samples and in the presence of a fleldH. As
shown in Refs. 18-20, th€,(T) and o (T) behavior is
determined in such a situation by the presence of a gap in the
excitation spectrum, which has the form

A=u(H=Hy), @

30t . . . )
whereyu is the magnetic momenty is the external field, and
T Hy is the internal field. The presence of the termuH,
0 . . . _
0 355 500 ., 1000 which, in contrast to the external field, promotes the ap

3% K pearance of magnetic excitations, is caused by the presence

of competition of the exchange and by frustratiGhsl-

FIG. 5. Temperature dependences of the saturation magnetizafjdy of h h th mol I isorder i f in
the dilute spinels g Fe, o GaO; (X=1.0-1.2) ino.— T coordinates,  10UgN the completely disordered state, i.e., a type of sp

The solid curves are calculated from E&). The values ofA and A are glass, was Choser! as the ini_tial State_ in the calculational
given in the text. model of Ref. 19, it changes in large fields to a frustrated
ferrimagnetic state. Moreover, the magnetic excitations are
regarded in Ref. 19 as noninteracting spin waves.

Starting from this, we attempted to approximate the ex-
nfSerimentalom(T) curves forx=1.1 andx=1.2 by a depen-
dence of the forrft

x=1.2, technical saturation is achieved. Therefore, the ter
saturation magnetizatiors{) will be used below for all the
samples in just this sense.

As follows from the data of Fig. 5, unlike th€,(T) 3
temperature dependence, there are no sharp changes in the 7s(T)=0s[1-AT" exp(—A/KT)], 2
temperature behavior far,(T) in each separate case. How-
ever, whereas th€,(T) behavior, in general, is of the same whereA, o4, andA are parameters to be determined, &nd
type for all the samples, appreciable concentration variations Boltzmann’s constant.
occur at low temperatures ferg(T). This includes the ap- We obtained the following values for the parameters by
pearance of a plateau for<30 K for thex=1.1 case and a mathematically processing the experimentg|T) data: For
weakly expressed maximum for=1.2 in theT<50 K re- x=1.1, we have o,=(46.7+0.7) Genig™?, A=(12.0
gion. +0.5)x10 ° K32 andA=(—15.2-0.1) K. Forx=1.2,

The uniform behavior of thers(T) dependences is evi- we have o4=(39.3+0.2) Genfg ™!, A=(14.0+0.1)
dence that additional excitations in the magnetic subsystemx10™° K32 and A=(—14.8+1.2) K. In both cases, the
manifesting themselves in the form of maxima on @g(T) correlation coefficient iR>0.99. The calculated results are
curves, either do not alter treeprojection of the magnetiza- shown in Fig. 5 by solid curves.
tion or are suppressed by the magnetic field because of the The values obtained for the parameters of E. are
breakdown of their sources. If it is assumed that regions ofjuite reasonable. For comparison, we should point out that,
local noncollinearity serve as such sources, both possibilitier x= 1.0, the coefficienA in Bloch’s law foro¢(T) equals
can take effect simultaneously. In particular, it was assume@18.1+1.2)x 10" % K32 The negative sign ofA is ex-
in Ref. 9 that rigid rotation of these regions around the di-plained by the small value of the applied external field. Us-
rection of a4(T) can occur. ing asu the magnetic moment of the Feion, i.e., Sug, at

When the regions of local noncollinearity are completelyH=5 kOe we haveuH=0.3 K. Consequently, the gap is
destroyed by a magnetic field, i.e., when collinear ferrimag~virtually completely determined by the internal fi¢tg). The
netic structure is restored, tloe(T) dependence must prob- numerical values oA are close to the corresponding freezing
ably obey the spin-wav&>? law. In order to check this, the temperature3; ~10 K. The same resul{4|=T;) was ob-
experimental data foo4(T) were also replotted irs— T2 tained when the heat capaciB,(T) in large fields was in-
coordinates, as is shown in Fig. 5. vestigated for samples of the(Eu—S)IS spin-glass

It can be seen that the>? law is obeyed in the entire system'®?° There is thus a basis for assuming that the char-
temperature rangé4.2—100 K for a sample withx=1.0, acter of theo(T) temperature dependences at low tempera-
whereas, fox=1.1 and 1.2, it is obeyed only in the com- tures in a field oH =5 kOe also reflects the specifics of the
paratively high-temperature region, i.e., for-30 K andT  ferrimagnetic states that occur under these conditions, i.e.,
>50 K, respectively. Nevertheless, in our opinion, in com-(T,H), in samples withk=1.1 and 1.2, namely, the presence
bination with the data on th€,(T) behavior, this can sup- of local noncollinearity and frustrations. For the=1.2 case,
port the hypothesis that the presence of regions of local northeir presence obviously follows from the results of Fig. 3
collinearity for H=0 causes new degrees of freedom to(see Sec. 3.1. This apparently also occurs for the=1.1
appear in the magnetic subsystem, which make an additionaample, although in a lesser degree. With the small suscep-
contribution to the heat capacity. tibility of the para-process, the absence of saturation in fields

The observed changes of thg(T) behavior at low tem- H=<10 kOe can evidently by recorded only by a SQUID
peratures for the cases=1.1 and 1.2 do not contradict this, magnetometer.
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4. CONCLUSION ferro- and ferrimagnetic systems with short-range action.

The results of the study of the thermal and magneticHowever’ this question requires further study.

properties of model objects—the dilute reentrant ferrimag- |5 conclusion, | consider it my pleasant duty to express
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A kinetic theory of interaction between molecules with rotational degrees of freedom and a solid
surface for arbitrary ratios among the times of molecule rotation, flight through the region

of surface forces, and relaxation of a molecular ensemble due to phonons has been developed. A
kinetic equation for an ensemble of molecules residing in the field of surface forces has

been derived from the equation for the one-particle distribution function of molecules by averaging
it along the dynamical trajectories in the region of surface force action. A simple analytic
expression for the probability of trapping a molecule with rotational degrees of freedom has been
obtained. Experimental data on rotational cooling and rotational polarization of desorbed
molecules are discussed. €998 American Institute of Physid$$1063-776(98)01704-1

1. INTRODUCTION kinetic theory of rotating molecules interacting with a solid
surface(Sec. 2. It is based on the theotyproposed earlier

In recent years considerable attention has been focus€dr monatomic particles and is a generalization of the latter
on the dynamics of multiatomic molecules interacting withtheory to molecules with rotational degrees of freedom. A
solid surfaces. Features of the adsorption dynamics show upndamentally new feature of our theory, which allows us to
in distributions of molecules over various states affected bydescribe the distribution of molecules residing in a complex
their interaction with a surface. Using laser spectroscopynultidimensional field, is the introduction of new variables
techniques, which are sensitive to rotational states of a molefining molecular trajectories in the mean surface field in-
ecule, researchers have obtained abundant information abaostead of traditional canonically conjugate variables. Below
the distribution of molecules scattered in the thermalwe purpose a kinetic equation obtained by averaging the ex-
regimel~° Effects of rotational polarization and the “rota- act equation for a one-particle distribution function along
tional rainbow~23in scattered molecules, translational cool- various dynamical trajectories. This equation contains the
ing, rotational cooling, and polarization of desorbedloss and gain terms describing the arrival of molecules from
molecule$™ have been observed. Features of the distribugas(molecular beamto the interaction region, and their de-
tion over rotational states of molecules during their interacparture back to the gas phase as a result of molecule motion
tion with surfaces manifest themselves in transport processedong the trajectories above the surface potential well, and
in rarefied gas—in particular in light-induced dfifand the  the collisional integral due to phonons, which leads, in par-
influence of the magnetic field on heat and particle fléfs. ticular, to transitions of molecules to boun@dsorbe

Effects connected with the nonequilibrium distribution states.
of molecules interacting with a surface can be described in a  Solution of the kinetic equation for an ensemble of sur-
natural way by the kinetic theory. Techniques based on théace particles allows one to determine the distribution func-
microscopic approach have been developed thus far only fgion of molecules departing from the surfa¢a surface
monatomic particle-1! As for molecules with internal de- boundary condition for the gas distribution functiofwith
grees of freedom, the theory runs into considerable difficulthe scattering integral in the relaxation-time approximation,
ties. Thus, in polyatomic molecules the interaction potentiawe obtain(Sec. 3 a simple analytic expression for the prob-
with a surface strongly depends on the angular orientation ofibility of trapping a molecule with rotational degrees of free-
the moleculé? For thermal molecules, the times of rotation dom, and provide a microscopic justification for the previ-
and flight through the region of surface forces (310712  ously suggested phenomenological description of certain
s) are comparable to the relaxation time of the moleculaeffects'® On the basis of our results, we discuss general fea-
ensemble due to phonons in the sdfid®rogress in describ- tures of translational and rotational cooling of desorbed mol-
ing surface scattering of rotating molecules has beercules, and rotational polarization of desorbed and scattered
achieved only in computer simulationsmolecular particles.
dynamic$?3. Some features of the distribution of fast scat-
tered molecules have been satisfactorily described by dy? KINETIC EQUATION
namical scattering theofy:*® We start our consideration with the potentiélof inter-

In the reported work we have developed a consistenfiction between a molecule and a solid, which depends on the

1063-7761/98/86(4)/8/$15.00 737 © 1998 American Institute of Physics
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coordinates; of all atoms in the solid, the coordinatesy, il

andz of the moleculethe z-axis is normal to the surface,
andy are coordinates in the plane parallel to the sunface / 5 f
and other generalized coordinatés The coordinated) — 7+
specify molecular orientation angles with respect to the sur- % /
face; for a linear moleculef={9, ¢}, i.e., the polar and 0 g ~o. ¢

azimuthal angles of the molecule, and for a more complex
shape of the molecul® ={9,¢,¢}, i.e., the three Euler's
angles. Let us denote Hyy,} the set of generalized coordi-
nates and by 3} the set of corresponding generalized mo-
menta,k=1, ... K; K is the number of molecular degrees
of freedom.

.F0||OWII’?g the conventional technique ,Of cogitgructmg ki- FIG. 1. Shape of potential™) describing interaction of a molecule with a
netic equations f_or a .SySFem ‘N‘*'. 1 particles,”*® let US surface. Values o¥") between the two curves correspond to various mo-
express the classical kinetic equation for the one-particle digecular orientations with respect to the surface and different positions of

tribution functionF(t,a,B) of molecules interacting with an molecule;’ centers of mass in thg surface plane;f*, andp are distribu-
equilibrium solid surface in the form tion functions of molecules moving towards the surface, away from the

surface, and of the ensemble of molecules in the surface region<Q.,

K respectively.
JF +s JF o JF I[E !
pendent ones. In this capacity, let us use variables defining
dHm . dHpy . o 1 »
= =— (2)  molecular trajectories in the potentisf?) and positions of
k aﬁk ’ k ¢9a'k ’

molecules on their trajectories.

where Hy=Hy({a,{84) is the Hamiltonian of a mol- By virtue of the equations of motio(ﬁ)f all generalized
ecule, which equals the sum of the rotational and translac?Ordinates and momenta at an arbitrary moment are
tional kinetic energies, and the potential enekd)({ ) uniquely determlned by their |n|t|:_;1l values. Let us dra}w the
averaged over equilibrium states of the séfidThe right-  Planez=L, which bounds the region of surface fordésg.
hand side of Eq(1) is due to the residual part of the inter- 1), and select the initial value=z: z=L for E>0 and ar-
action potentialV?=Vv—V® which depends on thermal bitraryz in the region of surface forces f@&<0. The initial
displacementsr;=r; —R; of particles with respect to their values of all variable$a, 8} exceptz=2z will be denoted by
lattice sitesR;. With due account o/(?), which varies in  y (y={y},i=1,..., K—1). If we solve the equations of
time owing to thermal oscillations of surface atoms, the enyqtion with initial conditions{a,ﬂ}|t:0={3,y} and express

ergy of a molecule moving in the region of surface forcesiye time in terms of the coordinatethe variablega, 8} can
can change due to exchange with the solid. This exchanggg expressed in terms of variablgs )

obviously, can be described in terms of creation and annihi-

lation of phonons; in other word$[F] can be treated as a 1=z, a;=AP(y1, .. Y12 -

collisional integral between molecules and phonons. The in-

— A
teraction among molecules is neglected, since the surface %K A=alres - v2k-1.2),
coverage of adsorbed molecules is assumed to be sm.al.l. B1=BE(y1, ... ya-1,2) ,
Terms on the left of Eq(1l) are due to both the explicit
time dependence of the distribution function and the change Bx= B (y11 - -+ Yak-1.2).

in F during motion in potentiaV}). The potential is shown

— . . In this case, the values of the inverse functions
in Fig. 1. Depending on the sign of the total enefypf the

molecule(the sum of the kinetic and potential energjaao- ‘1’(15)(&1, ce kB BT YL 1\1,(2?()71

tion alongz is finite for E<0 and semi-infinite forle>0. _

The scattering integral takes into account transitions between Xlag, B Br) = Yak-1

states of the same sign Bf and transitions between states of are constant with time and can be considered independent

opposite signE>0 andE<O0. integrals of the motiod® Any fixed set of variables speci-
Equation (1) contains detailed information about the fies a molecular trajectory in the potenti{'), whereas the

variation of the molecular distribution function in the region coordinatez and superscrip§ (é=1, ... Z(y)) specify the

of surface forces. In recent experiments, however, mean vatnolecule’s position on its trajectory. The superscriptare

ues of parameters which are integrals of the motion outsidetroduced because each trajectory has at least two branches
the region of interaction with the surface are meastrkd. of the function relating «, 8} to {z, v}, which correspond to
determining the distribution function of molecules moving the motion of a molecule towards the surfagh £ p,<<0 for

away from the surface after interaction, we will follow the £&=1) and away from it p,>0 for £&=2). The number of
approach of Ref. 11 and develop a rough approximation byranchesE equals two, however, only in the simplest case,
averaging Eq(1) over the range of surface forces. To this when the potentiaV*) depends only orz. If the potential

end, we first transform from variabldsr, 3} to new inde- also depends on other coordinates, there can be trajectories
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- Eq. (5) (the second It describes variations in the one-
1 particle distribution function due to the motion of molecules
along trajectories.

We make the natural assumption that the distribution
function is continuous along trajectories, and supplement Eq.
2 (5) with boundary conditions at the turning poimg) (Fig.
2):

t
Fe(t,z=2 ) =F1(t,2=2 ),
FIG. 2. Trajectories forE>0 in potential V(V): 1) for E=2; 2) for

E>2. and forE<0 we add the condition

Fit,z=2",y)=F=(t,z=2",7),

with Z>2. Such trajectories are due to the existence of adwhich reflects the periodicity of motion along closed trajec-
ditional turning points in the potentiai™ (when a molecule tories.

passes through a turning poiitincreases by one; see Fig. Equation(5) will be averaged below along trajectories in
2) because of the exchange of kinetic energy between tranghe region of surface forces. Before averaging the equations,
lation along the normal to the surface and other degrees ofie improve upon the set of variables, which will then con-
freedom? In particular, if the potential is a function afand  veniently specify trajectories. Note first that whER-0, the
molecular rotation angles, this is the exchange between thget of variablesy, which is defined az=L, can be selected
translational and rotational degrees of freedom. If the poteneither at the point of entry to the surface regi&}}{ 0), or

tial depends on coordinatesandy in the plane of the sur- 4t the point of egres>0). We denote these sets of vari-
face, the correlations between normal and tangential motiogy|eg byy~ and y", respectively. In describing effects as-

i

play a similar role. For trajectories witk>0, = can be  gqciated with the distribution of molecules after their inter-
assumed to be finite, since the motion along the normal tQ:tion with the surface, the set is the natural one.
the surface is semi-finite. Without loss of generality, we as- Second, one can determine trajectories by using instead
sume for simplicity that trajectories with<<O are closed, SO of 2k —1 initial values of coordinates and momenta
£ is finite even wherE<0. _ 2K—1 independent combinations of these values. For
Since the transformation between variables 3} and g~ variablesy can be chosen so that a subset of them,
{z,7} is one-to-one for all giver, any function of{e,8}  genoted byT", coincide atz=L with the constants of the
can be reduced to a set of functions{afy} labeled by¢.  mation of the molecule outside the region of surface forces.
The element of the phase space in variajiey; takes the oy a jinear molecule, these are the variatiles{v,J}, i.e.,
form the components of the velocity and angular momentum vec-
_110® tors. The rest of the variables,. , specify the initial values
da dB=[3'9(z,y)|dz dy, @ o quantities that change during free motion of the molecule.
whereda, dB, anddy denote products of differentials of the For a linear molecule, these are the initial values @indy
corresponding variablesee Appendix andJ()(z,v) is the in the plane of the surface and the molecular axis orientation
Jacobian, of the transformation, which can be interpreted agngles in a plane perpendicular Jo The representation of
the density of states in terms of the new phase variablegariablesy in the formy={I",y_} for linear and more com-

Irrespective of the number of molecular degrees of freedomplex molecules is considered in greater detail in the Appen-
dix. For E<0 we choose variableg in the same way as for

139(z,9)| =0 (z,9)| v, (4)  E>O0 (this is of no further significande

_ o Note that information about variables. atz=L is lost
Herev, is the initial velocity on trajectoryy atz=z (z=L  as a molecule moves from the region of surface forces to a
for E>0). Equation(4) can be derived by differentiating the detector. This is due to the fact that the phase variables, with
left- and right-hand sides of E(@), with respect to time with  jnitial values y_, change within certain limits, and these
due account of Liouville’s theorem about conservation Ofparameters run over their ranges many times during the mo-
phase space, and the fact tharatz the variableg«, 8} are  lecular motion. The equations below will be averaged over
equal to their initial value{z, v} v . Note that this averaging is quite similar to averaging

Replacing the canonically-conjugate variabfes3} in  over rapidly varying phases in the kinetic theory of a gas
Eq. (1) with the integrals of the motiofiy} in potentialV(¥)  with rotational degrees of freedofh.
and the coordinate, and noting thaty;=0, we obtain _Let us average _Ec(.'§) along trajectories in the surface

region 0<z<L. Multiplying Eg. (5) by
oF g(t,z, ’)/)
ot

IF(t,z,y)

+v¥(z,y) o

:Ig[Fér] (5) 2 L -1
99@ |0t ay. 3 [Cazaveni] .
&=1J0
It is clear from(5) that the kinetic equation can be simplified
considerably in variablelz, y} since the sum of R terms on  then integrating ovez, summing oveg with due account of
the left-hand side of Eq.1) corresponds to just one term in Eq. (4), and averaging ovey._, we obtain
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d -
e OENHE AT =(). ©  t=tyD=o | dy ty). (11

Here (E)=1 for E>0 and 0 forE<O0, andf® andf~ are = Where

distribution functions of molecules moving towards the sur-
dz

fellce.and away from the surface outside the interaction re- to(y)= E (12)
gion: 0 |v (zy)|
_ The mean collisional integrdl ) in Eq. (6) is determined by
fr=f"tI=o lf dYth‘:E(t'Z:L'Vr)’ an expression whose only ﬁif>ference from E8). is thatF,
7 is replaced withl ,; (see Eq(5)).
Note that Eq.6) is strictly correct. In order to derive a
f‘Ef‘(t,F‘)=w‘1f dy_Fq_q(t,z=L,y"). closed equation for the distribution functipn let us use, as
in Ref. 11, a rough model of molecular interaction with the

The function surface. We assume that the distributionof particles leav-

= ing the interaction region is determined by the average dis-
L . . . .
w,lf dy. S f 42360z, ) Fe(t.2,y) tribution p of surface particles:
éi=1 Jo

p=p(t,1)= i = 6(E)p. (13
w—lJ dy 2 LdzlJ(f)(z y)| Note that Eq.(13) is reasonable fot>t; . Using Eq.(13),
= ’ let us rewrite Eq(6) as
(8 o
is the averaged distribution function of molecules in the sur- ~ —-= O(E)t; *Af~—0(E)ty '+ 7 H(po—p). (14

face region B<z<L. It describes the distribution of mol-

ecules over statds which are specified by the set of param- This is the sought-for approximate kinetic equation for
eters that do not vary when a molecule moves in free spacénolecules with internal degrees of freedom. The first two
w is the phase space corresponding to variables(see terms on the right-hand side of EG.4) describe the arrival
Appendix. By virtue of Eq.(8), the functionp in equilib- ~ of molecules from the gas phagmolecular beamnat the
rium equals the usual Boltzmann distribution function surface region and their departure to the gas phase. Accord-
po(E)=exp(—E/T), and since the original distribution func- ing to Eq. (14), particles come and go during the time of

tion F is normalized to the total number of molecules, flight (averaged over the “unmeasured” variables.)
through the surface force region along trajectories with
f da dBF=N, E>0. Unlike the corresponding terms on the left-hand side
of Eq. (6), the gain and loss terms in E{.4) do not change

the distribution functiorp is normalized to the number of Sign under time reversal, and generate additional entfapy
moleculesN, in the surface region @z<L a source of dissipation supplementing the collisional inte-

gral) in the ensemble of surface particles. Their dissipative
property is due to Eq(13), which breaks the symmetry of
9 the left-hand side of Eq6) under time reversal. Note that
= ©) the structure of Eq(14) is similar to that of a previously
bt L . . . . . .
_ ® suggested kinetic equatiafieq. (8) in Ref. 11 describing
9(I") f dy- 521 Jo dz3%(z,y)l. monatomic particle interactions with a surface. Unlike the

mentioned equation, which was derived for the case of a
The functiong(I') has the sense of a density of states in theyotential that was a function of only the coordinate, Eq.

:f dr'g(I')p(t,T),

variablesl". The operatod, (14) allows the interaction potential to depend on an arbitrary
number of generalized molecular coordinates.
f*Ef*(tilﬂ):w*lf dyingl(t,z:L,f), (10 _ In d\_eriving Eq.(lfl), we have expresged 'Fhe collsional
integral in the relaxation time approximation, i.e.,

is introduced because the distribution function of molecules (1y=7"Ypo—p) (15)
incident on the surface, which depends in a natural way on Po= k)
the variablesy™ of particles arriving at the surface region, In our previous work'*® we showed that the
can be expressed in terms of variables of particles leav-  7-approximation provides a satisfactory description of some
ing the surface region using an inverse transform performeeéffects observed in transport through a rarefied gas and scat-
along the trajectories in potentisf®). tering of molecular beams on surfaces. The raté intro-
Equation(6) also contains the quantity; , which has the duced in Eq(14) describes relaxation due to phonons of the
sense of an averaged time of flight through the surface regiodistribution functionp averaged over the surface layer. Note
0<z<L along the trajectory. The average is taken over the that in real molecule/surface systems, the rate of collisions
X, y, and the orientation angles, which vary during moleculawith phonons strongly depends ansince the potentiaV/(?)
motion in free space: responsible for this interaction vanishes outside the range of
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the surface field. Thus; ! has the sense of the collision rate -1

averaged over the surface region. By assuming & So:(JdFH(E)|vz|Po(E)) fdrﬂ(E)|vz|S(F)Po(E)-
usuat®?} that an average probability of transitions between (21)
molecular trajectories due to interaction with the solid ha

been determined, the relaxation rate can be expressed asSThe difference between E(R1) and the expression f@" is

that the distribution functiopy(E) in the latter is replaced
with the distributionf ~ (I") of molecules incident on the sur-
face. The quantity”), which has the sense, as follows from
(16) Eq. (20), of the mean patrticle lifetime at the surface in equi-

W(F—>F')=aflf dwa dy  W(y—7v'), librium (in this caseG+=G‘=(tg°))‘1Ns), is given by

Tl=r ()= WI—T"),
F!

-1
. . 0)\—1_
wherew(y—y') andW(I'—T"") are the rates of transitions (tg ) 1_(f ng(F)pO(E)>
out of trajectoryy to y' and from statd” to I'’.

X J dl'g(T) 8(E)t; X(T) po(E). (22)

3. RESULTS OF CALCULATIONS IN 7-APPROXIMATION According to this formula, the equilibrium escape rate is de-
o ] termined by the transit time through the region of surface
3.1. As follows from Eq.(14), the distribution function ¢4 ces along the trajectories B0 averaged over the entire
of particles in the region of surface forces takes shape in @nsemble of particles. It follows from E@22) that in the
time of ordert;, andr; this rate is of order 10°-10"?sin 450 of 2 deep potential wekhenV, >T), t© is given by
realistic systems with physically adsorbed particlest the Frenkel—Arrhenius formulléo)ztoexp(\/ 7-'-)’ and in the
times much greater than 162 s, the time derivative can be special case of a potential that depends gnl;zpthe coef-

neglected in comparison with the terms on the right-nangsient of the exponential equals the oscillation period near
side of Eq.(14). In this quasi-stationary regime, we derive the well minimum:

from Eq. (14) to~mY2(d2vV/d2) 12,

(17)  wherem is the molecule mass.
Equations(19) and (20) are formally identical to the
)\ ! equations of phenomenological adsorption theory. The ad-
SES(F)Z(lJFt (F)) (18)  sorption time, in accordance with E(RO), is expressed as
il t,=t)/S,, and this expression depengiee Eqs(21) and
According to Eg. (17), molecules in bound states (18)) on the ratio between the characteristic relaxation time
(E<0) are in equilibrium, whereas molecules in unboundand time of flightr, . In the limiting cases we have
states separate into two groups. Particles in the first group are )
those whose relaxation process has been completed, while . | (7t)ta”,  7/ty>1,
the distribution of the rest depends on the distribution func- a- tg)), Ity <1.
tion f~ of particles incident on the surface, and is determined ) - o
by its transform as the particles pass through the region of NOte that the expression for the lifetime dlt;>1 is in
surface forces, in accordance with E@0). Equations(17) a9f€em293m with the Kramers theory in the case of weak
and (18) indicate thatS has the sense of a relaxation prob- ffiction.” Although our formula applies to the case of inter-
ability. mediate frlcthn (r/tf,_sp, our resylt is different fr_om the
3.2.Let us derive equations that describe the transport oKr@mers one in the limit/t;— 0, since the latter yields an
particles in the system. By integrating Eq44) and (13) infinitely growing lifetime as theT fr_|§:t|on increases. Thg re-
over states I with weighting functions g(I') and sults are dlﬁerenF because the Ilmltlng case of strgng friction
g(r)tal(r), respectively(see Eq.(9)), using Egs.(4) and cannot be descrlbe_d When the knjetlc ec_]uatlon is averaged
(17), we obtain over z, and approximatior(13) obviously ignores the fact
that the particle mobility drops to zero if the friction is
strong. It is known that the number of particles in this case
dt can be obtained using Smoluchowski’'s equation. Therefore
e (01 our model of particle interaction with a surface is limited to
G =(1-S)G +So(t3") "Ns. (20 the case of moderate friction. The distribution shape, how-
Here ever, which is the only interesting result for us, is described
adequately in both limiting cases, regardless of the number
G::wf dl|v,|f7(I) of escaping particles. Indefad, in accordance with E#48)
and (18), we havef*=p=Af" for 7/t;>1, whereas for
are fluxes of molecules moving towards the surface and/t;<1 we havef " =p=p,. Note also that the strong fric-
away from it outside the interaction region, and fact8gs tion regime, as is well known, cannot be realized in interac-
and S in Egs. (19) and (20) are given by the relaxation tion of real molecules with a surfac®.So, the ratior/t;,
probability averaged in various ways: cannot be arbitrarily small, since the relaxation time due to

| Spot(1-9)Af~, E>0,
s Po, E<O,

dN,

=S G —S(t?) "IN, (19
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phonons obviously has a lower limit determined by the osmolecules was actually detected in various systétn&.The
cillation period of atoms in the solid~10 2 s), while the  observed diffusion component is usually attributed to trap-
time of flight through the interaction region several A thick ping of molecules in the potential well. This statement seems
is about 1013-10" 12 s, to be only partially true. Really, the diffuse component is
3.3. By substituting Eq(17) into (13), let us determine important in the case of a deep potential well provided that
the distribution functions of molecules moving away from adsorbed states are occupied by molecules. The function

the surface at times much longer thignand 7 : S(T") in Egs. (23) and (24), however, has the sense of the
N A relaxation probability, and trapping of molecules in bound
f7=Spo+(1-SAf". (23 states is unnecessary since the raté for molecular relax-

When applied to scattering of a molecular beam on a surfacétion withE>0 can be associated, using Eg6), with tran-

Eq. (23) relates the distribution functioh®™ of molecules Sitions to both bound state€(<0) and states above the
moving from the surface to the distribution functién of ~ Potential well €">0). Another feature of our theory is that
molecules incident on the surface outside the interaction rehe presence of trajectories wiff>2 at E>0 (or short-
gion. The distribution functiong, andf* are normalized in lived collisional complexes as they are knovatoes not pro-
accordance with Eq$19) and (20), which describe the par- Vide an alternative “trapping” channel, as suggested in some
ticle transport. Therefore E¢23) means thap, can change publications}® but only leads to an increase in the relaxation
in a time of about the adsorption time. Thus, for scattering orProbability S. The latter is due to the longer transit tirte2)

a surface that was initially cleafmot coated with an adsor- for “longer” trajectories with E>2. Note that this factor
bate, we can obtain by solving Eqg19) and (20) that Wwas mentioned in the discussion in Ref. 20 on a qualitative
Ne=0, G"=(1-S)G™~ for t<t, and Ng=S"Gt,, level

G*=G"~ for t>t,. Hence, the first term of Eq23) can be 3.4. The dependence of the “trapping” probability on
neglected fot<t,, but it becomes important at times com- parameters which determine the molecule state manifests it-
parable to the adsorption time. In another special case, whegelf in various effects related to the shape of the distribution
the arrival of particles is zero, E423) reduces to a simple ©0f molecules interacting with a surface. They include, in par-
expression for the distribution function of desorbed mol-ticular, translational cooling of desorbed molecdte§®®

ecules: and deviation of the angular distribution of desorbed mol-
N ecules from the cosine la¥,as well as rotational cooling
faes= c()S(I')exp( — E/Ty), and rotational polarization of desorbed molecules, and rota-

tional polarization of scattered particlé3hese effects show
up in the following way. The mean measured translational
An important point is that Eq(23) can be used as a and rotational kinetic energies of desorbed molecules are less
boundary condition for the Boltzmann equation in describingthan their equilibrium values. The angular distribution of es-
nonequilibrium processes in the gaseous phase. The thickaping particles has an excessive fraction of particles des-
ness of the surface-force regioh-5 A) is usually small in  orbed at large angles with respect to the normal. The angular
comparison with the molecule free path, and the tilgeand ~ momentum vectors of desorbed molecules are aligned pre-
7 are much shorter than the characteristic relaxation times idominantly with the normal to the surfathis effect is tra-
gases. Therefore E23) can be used as a boundary condi- ditionally termed helicopter-like rotational alignment of
tion corresponding to a quasi-stationary solution of 8d) moleculed), whereas the vectorsof scattered molecules are
for the surface phase, where the number of particles is varialigned predominantly perpendicular to the norntedhrt-
able. In the steady state, which takes place under the condivheel alignment

c(t)=constexp —t/t,). (29

tion t>t,, the distribution functiong™ andp, can be nor- Before discussing the rules governing the observed ef-
malized (see EQs.(19) and (20)) by equating the flux of fects, note that the “trapping” probabilit can be calcu-
molecules incident on and reflected from a surface. lated using Eqgs(11), (12), and(16) for t;; and 7. Leaving

Distributions like that given by Eq(23) can be inter- aside calculations more sophisticated than the semiphenom-
preted by distinguishing two channels of molecules interacenological theory under consideration, we limit our discus-
tion with a surface. Some of the molecules comes to equilibsion to the qualitative interpretation based on the phenom-
rium with the surface during transitiorfaccompanying the enological analysis given above.
absorption and emission of phonons in the gobétween Usually the interaction potential depends weakly on the
different states in the surface field, and others elasticalloordinates in the surface platfeThe parameters,, 7, and
scatter on their trajectorie€(>0) without exchanging en- Sfor linear molecules and a perfectly smooth surface depend
ergy with the solid. The simplicity of our result is obviously largely on only two variables, namely, andJ,, whereJ; is
due to ther-approximation, which considerably simplifies the projection of] on the surface. The effects of translational
the collisional integral. cooling and “non-cosine” desorption can be ascribed, in ac-

There is another important point. Models with two com- cordance with Eq(24), to the relaxation probability, which
ponents in distribution functions of molecules reflected fromdecreases with the velocity component The decrease i8
a surface have been used in the literature since Maxhadl  with increasing, is easily understandable, since the time of
specular-diffuse boundary condition in rarefied gasflight (12) obviously decreases with increasing velocity.
dynamic$*29. In recent experiments with molecular beams,Given Eq. (18) for the relaxation(trapping probability,
the two-component structure of the distribution of scatteredsome experimental data were satisfactory describ&t.
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cooling and predominance of the
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2. Let us illustrate the transformation from variabjeto

helicopter-like alignment of desorbed molecules can be at{I',y_} taking as an example the states wih-0. The su-

tributed to the decreasing functi®{J;). Moreover, the de-
crease inS with increasingl; enables us to understafisee
Eq. (23)) why the cartwheel-like polarization is predominant
in the scattering channel. We previousfyanalyzed the ef-

perscript “+ " will be omitted in variables describing trajec-
tories. For a linear molecul& ={p,J} are the momentum
and angular momentum vectors of the rotating molecule,
v-={¢',X,y}, wheree' is the angle defining the projection

fects due to a rotational polarization of molecules. We asof the molecular axis on the plane perpendiculai.tin this

sumed that the interaction parametéfsand = were func-

case

tions of the rotational state. These functions were derived

from experimental data in order to predict results of other

experiments. It turned out that, using E@8) for the relax-

ation probability, we could give a consistent description of

experimental daf&*® concerning rotational cooling and po-

larization of desorbed molecules and also relate the temper
ture dependence of the rotational polarization in a very rar-
efied gas, obtained previously in studies of the effect o

magnetic field on the heat flow in a rarefied polyatomic ga

between two surfaces, to the temperature dependence of

the energy accommodation coefficient.
We acknowledge helpful discussions of this work with
L. A. Maksimov.

APPENDIX A.

a_

f:
S

dy=dl'dy._,
dI'=dp,dp.dp,J dJ dO,

the phase volume corresponding to variabjesis equal to
w=2s, wheres is the surface area element.

For a more complex molecule, {I',y_}
{p, 3,9 ,¢", 4’ ,X,y}, whered', ¢', andy’ are the Euler
angles defining the axis aligned with In particular, for a

(A4)
dy_=de’'dx dy,

symmetric top,I'={p, J,9'} (angle §' is constant because
the molecule axis precesses arouharhen moving freely
andy_={¢’,¥',x,y}. For a spherical top,'={p, J9',¢'}
andy_={¢’,x,y}. In the new variables

dy=dpzdpxdpyJ2deOJ sin 9'd9'de’dy’ dx dy.
(A5)
In the general casdy=dI'dy._, where the separation into
dI' and dy has been given above. The phase volume

Here we give details concerning the description of a=(27)33 for a symmetric top and = 2s for a spherical
molecule’s rotational motion in a potential that depends orpne.

the angled} that define the orientation of its principal axes.
1. For a diatomic(linean) moleculeQ)={¥9,¢} are the

polar and azimuthal angles of the molecule with respect t

the surface. For a more complex molec@le={ ¥, ¢, 4} are
the three Euler angles. We define them as follows. Xhe
y-, andz-axes are fixed and attached to the surface,xdrd

*)E-mail: pankov a@yahoo.com

c")E-mail: borman@bvd.mephi.ru

PE-mail: krylov@redline.ru
YWhen E>0, E>2 may be associated with the existence of short-lived

collisional complexes; see, for example, Ref. 20.

y'-, and z’-axes are attached to the rotating molecule and
aligned with the principal axes of the inertia tensor. The 15 5 garker and D. J. Auerbach Surf. Sci. Rép1 (1985.

Euler anglesd, ¢, define, accordingly, the orientation of
the z'-axis with respect t@, and the orientation of the line
of nodes{ which points in the direction of the vector product
n,Xn,,, with respect to thex- and x’'-axes; 9 and ¢=¢

— /2 are the polar and azimuthal angles of #ieaxis with
respect t, y, andz. The definition of angles and axes is the
same as in Fig. 16.2 of Ref. 38.
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Current—voltage characteristics of a system with a variable number of slipping phase centers
resulting from phase separation in a tin whisker under external microwave field with a frequency
0/27w=35-45 GHz have been studied experimentally. Emergence and disappearance of

steps with zero slope in a whisker’s current—voltage characteristigat=(m/n)U,, wherem

andn are integers antl , is determined by Josephson’s formdl& =2eU , have been
investigated. Microwave field generated by slipping phase centers is honharmonic, and the system
of slipping phase centers permits synchronization of internal oscillations at a microwave
frequency by an external field with a frequency which is i harmonic of internal oscillations.

The estimated microwave power generated by a whisker i€ Y0. Stimulation of

superconductivity in a current-carrying whisker has been detectedl998 American Institute

of Physics[S1063-776098)01804-4

1. INTRODUCTION films with width w and single-crystal wiregwhiskers with
diameterd smaller than the superconductor coherence length
£. From the viewpoint of experimenters dealing with super-
conducting channels, whiskefghin crystalline wireg are

Microwave generation in a Josephson junctianveak-
coupling element in a superconducting cirguinder a dc
V%Itagehhas attracte;d resefz;\rchers a(;t_entlon sc;ncehthe_ UMSeferable because their uniformity over the length is higher.
when the ?chJosep son € |e<(:jt was |sdcovere - T el S:cmﬁ t thin films have some advantages when applications are
structure of the experimental device an easy control of t foncerned, since their dimensions are directly controlled dur-
generated frequency are the most attractive features of gy weir manufacture. On the other hand, microscopic inho-
ef_fecg Jheh fr(faquenlcy generated by the junction is deteri”nogeneities due to fabrication technologies can lead to con-
mined by the formula siderable degradation of parameters of slipping phase

w=2Uel% centers, and a thin film may behave like a system of weak
superconducting bounds localized along the narrow film.
where U is the voltage drop across the junctiom,is the An isolated slipping phase center is an nonstationary,

electron charge, anfll is the Planck constant. The disadvan-inhomogeneous entity “localized in the space” and contain-
tages of these devices are their low output and difficulties inng an internal region with a size of abog&twhere the su-
matching the superconducting circuits containing Josephsoperconducting order parameter oscillates at the Josephson
junctions to the microwave circuits. Attempts have beenfrequencyw=2eU,/#x. At temperatures near the transition
made to overcome these difficulties using circuits of shorpoint, the voltage averaged over the oscillation perldg,
junctions ™ in the slipping phase center is due to penetration of a non-

Josephson junctions have a typical linear size in the diuniform longitudinal electric field into the outer region of the
rection perpendicular to the supercurrent density vectorgenter through a distance of abdut(the electric field pen-
namely the Josephson penetration depth If the junction  etration rangg and the electric resistance of each phase slip-
dimension in the direction perpendicular to the supercurrenping center isRy=2p\le/S, wherepy is the material resis-
satisfies the conditioml<\; (a short junctiof, the phase tivity in the normal state andS is the channel cross
variation is uniform over the junction volume, and one has asection>® At the moment when the absolute value of the
single source of microwave radiation. In the case of a neterder parameter vanishes, the phase difference over the cen-
work of short synchronized junctions, it seems possible tder jumps by 2r. Current—voltage characteristi¢€€VC) of
derive a high microwave output close to the sum of powersuch superconducting channels contain a set of sloped linear
generated by each element. sections corresponding to resistanégs=nR, (wheren is

A long uniform superconducting channel with slipping an integey connected by sections of curves with current
phase centers can be classified with such systems. Phase sfipmps. Extrapolations of these linear sections cross the cur-
ping centers occur in resistive states of a long narrow charrent axis at approximately the same point (an excess
nel carrying a constant current at a temperature close to theurreny.>~"°
superconducting transition 1., T<T.).>® Real structures Although the number of publications dedicated to slip-
in which phase slipping centers have been detected are thjsing phase centers is fairly largé the dynamics of systems

1063-7761/98/86(4)/6/$15.00 745 © 1998 American Institute of Physics
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with  slipping phase centers has been studied v.
insufficiently”819-12The reversed ac Josephson effect under

uv

V. |. Kuznetsov and V. A. tulin

- U uv

5
external electromagnetic radiation was detected in thin tin | gqol /
films at a frequency of 10 GHzand in single-crystal wires 151 /
(whiskerg at frequencies of up to 900 MHZ:'® In both ~ 400F so0k j
these cases, a CVC contains, in addition to sloping steps, ¢ 1
fundamental step with a zero slope at voltddg in the L !
region of parameters corresponding to one phase slipping 400 Y 1 .
center and associated with high-frequency oscillations of the | | 1 i
order parameter in the center, and “weak” stepsUat, 200 200 5 | 2 .
=(m/n)Uq, whereU,, is the voltage corresponding to the . f
external field frequency anah andn are integers. Ivlev and 450 565 ?,SLOLE,A

Kopnin'® analyzed the ac Josephson effect in terms of the [ )
microscopic theory. The pattern of various zero-slope steps ‘/'/,/
at different direct currents and microwave frequencies in sys- 9| — -

i L i
tems with variable numbers of slipping phase centers has no 800 900 1000
been investigated in full. A current-carrying whisker under

e . . IG. 1. CVC of the Sn3 whiskerRy=0.19 Q, T¢=3.71 K, Rag/Ry,
an electromagnetic field V_Vlth a frequency higher than 90d;73) without irradiation by an external microwave fieldTat 3.56 K. The
MHz has never been studied.

insert shows the CVC of the Sn2 samplR,&0.21 Q, T,~3.72 K,
d~0.8 um, Rp9/R4~50) without irradiation aff ~3.63 K.

0|

" 1 2 -
1100 I, A

2. SAMPLES AND EXPERIMENTAL DETAILS
In the reported work, we have studied the effect of mi_un_hke (.:VCS reported in Refs. 13._15' (.:VC.:S were megsured
sing either the two-terminal configuratidmis was possible

crowave fields with frequencies ranging between 35 and 4%ecausél} of films was higher than that of whiskersr the

GHz on CVCs of tin whiskers in the regime when several ; . . .
- e four-terminal configuration. The substrate supporting the
slipping phase centers exist in a sample at voltages of order, . . ; .
. . 3-15 whisker was placed in a copper waveguide and insulated
of Ug . In previous experiment$3~1the parameter§ and

Q /27 were selected so that the mean voltahje across one from enwronme_n_t by a supercondu_ctlng lead shield. The
: : - curves of the critical current and resistance versus tempera-
center, which determined the frequency of proper high-

I ture for the case of a single slipping phase centef.at T
frequency oscillationsew=2Ue/#, could be tuned tdJ , ; . o a 32
i.e., the frequencyw of internal oscillations should be equal =10 mK had shapes typical of whiskerg:~(1—=T/Tc)™

—-1/413
to that of applied microwave field. We have used higherROM(1 TITe)
microwave frequencie§)/27 and temperatures at a greater
distance fronfT; than Tidecks et a*'°so that to satisfy the
conditonU _,=Ugq/n, i.e., no=Q (n>1) when a sample Current—voltage characteristics of all samples are piece-
contained several slipping phase centers at voltages abowise linear, i.e., they are composed of linear sections con-
U, . It follows from the microscopic theot§that this is the nected by nonlinear sections with larger slopes. Figure 1
condition under which induced steps on a CVC are generateshows the examples of CVCs of superconducting whiskers
at voltagedJ, /n. The presence of such steps means that thaith microwave radiation off. The initial parts of the whisker
radiatition generated by the system of slipping phase centeiGVCs without microwaves are also shown in Figs. 2—4 by
is nonharmonic. Given the higher uniformity of whiskers dashed lines. The numbers near the linear sections of the
over their lengths and smaller number of structural defectsvhisker CVCs indicate the ratios between their resistances
than in films, they are preferable for such experimentsand that of a single phase slipping centBy. The latter
Moreover, zero-slope steps on a CVC of an irradiatedparameter was determined as the largest common divisor of
whisker*~°are considerably wider than in narrow filhin  differential resistance values of all linear CVC sections and
many experimentssee for example Ref. )7/low-frequency compared to an estimate derived from the size and resistivity
oscillations instead of high-frequences oscillations were deef the whisker. The CVC linear sections are connected by
tected in narrow films. Whiskers grown from thin tin films nonlinear sections, which are reproducible and reversible in
deposited on silicon substrates had diamet#rs0.2—0.8 the range of studied frequencies. Note that in most experi-
um, lengths of about 1 mm, resistance rafy,/R,>  ments, the initial CVC sections &t 1 (curves(a) in Figs. 2
<100, andT.~3.7 K. A whisker was set across a 3@0n  and 3 without radiation are nonlinear, and the first reproduc-
gap in a thin tin film about 1000 A thick. A whisker was ible linear sections correspond to states with several slipping
attached to electrodes by electrostatic forces at the initighhase centeréhe linear section By on curve(a) in Fig. 2
moment, then, apparently, by the Van der Waals forces. It isnd R, on curve(a) of Fig. 3. In earlier experiments—1°
not easy to remove a whisker from the substrate surface. Thhe states with one slipping phase center could be regularly
heat-sinking conditions, probably, were fairly good becausgroduced. In contrast to those experiments, where the tem-
the greater part of the sample was in contact with the polperature differencd.—T was less than 10 mK, we mea-
ished substrate surface, therefore measured CVCs did netired CVCs mostly at temperatures 70—160 mK belqw
exhibit a notable hysteresis in the studied temperature rang# this case, states with several slipping phase centers were

3. EXPERIMENTAL RESULTS



JETP 86 (4), April 1998

U, uv
U0
F
200+
L
100
, :
4
e !d c
0 50 150 1, pA

FIG. 2. Set of CVCs of the Sn1 sampl®{f=0.79-0.63Q2, T.~3.69 K,
d~0.3 um, R3go/ R4 ~20) at different powers of external microwave irra-
diation at frequency)/27=40.62 GHz andl~3.62 K: (a) 70 dB (dashed
line); (b) 36 dB; (c) 31 dB, (d) 30 dB, () 28.6 dB. The insert shows
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FIG. 4. CVC of the Sn3 whiskerR;=0.21 Q, T,~3.71 K, R3p9/Ry4>
~73) at different microwave powers at frequenfy/27=37.5 GHz at
T~3.58 K(curves a, b, and)andT~3.63 K (curve d; (a) 70 dB (dashed
line); (b) 19.5 dB;(c) 12 dB; (d) 70 dB (dashed ling

low-current sections of CVCs of the Snl sample at approximately equal

parameters in another cycle of measuremef@s32.6 dB;(b) 30.6 dB;(c)

29 dB; (d) 28 dB; (e) 25.2 dB.

stable at notably larger temperature differentgs T. This

the presence of certain numbers of slipping phase centers,
steps with a zero slope at voltagds,,=(m/n)Uq . At low
microwave powers, the channel critical current was higher,

can be seen by comparing the CVC shown in Fig. 1 with the.e., stimulation of superconductivity theoretically described
CVC in the insert to this graph. Moreover, the linear sectionsy Eliashberdf took place. Instead of the emergence of the

with the same resistandsuch as &, sections on curvéa)
in Fig. 2 for Snl and R, in curve (d) in Fig. 4 for Sn3

zero-slope step first afl, ,**~*®we observed the sequential

appearance of steps atJ3, Ug, 3Ug, andUgq/2 for a

separated by voltage jumps were recorded many times. Osample SniFig. 2), and in Sn2(Fig. 3) we first observed a
the basis of these observations, we have come to the conclatep atU/2 and then atJ, (not shown in the graph At

sion that, in spite of some complications in interpretinglower temperatures the unusual shapes of the CVCs at zero
CVCs of our whiskers, they are superconducting channelgadiation intensity with linear sections of the same slope
with slipping phase centers at appropriate temperatures ar{durve(d) in Fig. 4) or the lowest linear sections correspond-

transport currents.

ing to several slipping phase centers were replaced by more

When samples are exposed to microwave radiation, theicommon CVC shapes. The sequence of microwave-induced
CVCs contain, in addition to linear sloping sections due tosteps in whiskers’ CVCs emerging with increasing micro-
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FIG. 3. Set of CVCs of the Sn2 sampl®{=0.23-0.18), T,~3.72 K,
d=~0.8 um, Rzp0/R,~50) at different powers of microwaves at frequency
O/27=40.62 GHz afT~3.63 K: (a) 70 dB (dashed ling (b) 30.2 dB;(c)

30 dB; (d) 28.2 dB;(e) 26.1 dB.

wave power also became more like the usual sequence at
lower temperatures, namely, the steplat was detected
first, then the step at2,, and at still higher microwave
power atUq/2 (Fig. 4). The curve became similar to those
given in Refs. 13-15. As the microwave power increased,
the sloping linear sections due to the slipping phase centers
became more pronounced on CV(E3gs. 2 and R

Steps with zero slope emerge on linear sections of
CVCs, which either exist in the samples not exposed to mi-
crowaves or appear in the samples irradiated by the micro-
wave field. For example, the step of zero slope on the CVC
of the Sn1 whisker alt), (insert to Fig. 2 appears after the
emergence of a linear section on the curve, its growth, and
the shift of its lower edge to the required voltagerves(a),
(b), and(c) in the insert to Fig. 2 As soon as the edge of the
linear section achieveb, a zero-slope step is produced
(curve(d), and its width increases with the microwave power
curve(e)). The steps al) /2 (curves(c), (d), and(e) in Fig.
2) emerge in a similar manner. The step &g (curve(c) in
Fig. 2) appears when the sloping linear section with differ-
ential resistance R, extends to this region. A zero-slope
step can disappear at a higher microwave povfer ex-
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1.25

LOORN R FIG. 5. Normalized critical current, /1, versus the relative am-
\n %! plitude of external microwave field at frequendy/27=40.62

:: e %o GHz atT~3.62 K for the Sn1 whisker in two different cycles of

3 0 751 \ a measurementSull squares are the data of the first cycle and empty

’ \ %, squares correspond to the second cydlg~107 uA. Normalized

e o widths of zero-slope steps on a CVC as functions of relative mi-

crowave field amplitude at voltagd, (crosses plot data of the

second cyclpand at voltage P, (full circles are the data of the

first cycle and empty circles correspond to the second tyTlee

dashed, dash-dotted, and solid lines show absolute values of Bessel

functionsJy(x), J;(x), andJ,(x), respectivelyx=100(P/P,)?,

P is the power, and®,, is the maximal output of the microwave

generator.
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ample, the steps atl®,, Uy, andUq/2) when the upper plitude are given in Fig. 5. The graph also shows as an illus-
edge of the linear section shifts below the respective voltagédration the absolute values of Bessel functions of order 0, 1,
and a vertical CVC section moves to this region. In this caseand 2 Jy(x), J1(X), andJ,(x)) although we believe that the
the differential resistance of the linear section can have axperimental curves are not directly related to these func-
jump (curves(d) and(e) in Fig. 2), namely, the linear section tions. Note the main features of the curves in Fig(13.The
at about 3J, changed its factor from 3 to 2. Thus, a linear microwave stimulation of superconductivity led to an in-
section on a CVC of a sample with or without microwave crease in the critical current of about 2092) The zero-
pumping atU,,, is a necessary condition for formation of a slope step at @, emerged at a lower microwave power and
zero-slope step, i.e., for the existence of the required numbérad the maximum width of about 05 (3) The step atJ
of slipping phase centers in the sample. observed in the second cycle of measureméinta/as too

By tuning the incident microwave frequend®, we  small in the first cycle and its width is not shown in Fig. 5
could detect zero-slope steps not observed previously whesppeared at a higher microwave power, and in its presence
voltage U, coincided with a linear section of a CVC re- the width of the 2J, step and the critical current as func-
corded without irradiation. tions of the microwave field amplitude changed consider-

Sloping linear sections in a CVC of a whisker containingably. In this case the critical current and width of thg 2
a certain number of slipping phase centers and exposed &iep vanished at a notably higher microwave field amplitude
microwaves of a fixed power could decrease their resistancian in the first cycle(4) InducedU, and 2J, steps ap-
factor with respect to the resistance of an isolated slippingpeared at a finite microwave power, i.e., there is a certain
phase center if the direct transport current increa@es threshold microwave power needed for formation of these
curve (b) in Fig. 2). The resistance factor could also remain steps. This threshold is related to the extension of the linear
unchangedcurve(e) in Fig. 2, section 2 An increase in the CVC sections to voltage§, and 2J,. (5) There is only
incident microwave power could cause, in addition to sup-one interval of the microwave field amplitude on which the
pression of both the critical and excess current at a fixedritical current and CVC steps exist. No oscillations have
voltage, a switch-over to a linear section with a lower differ-been detected on the curves of critical current and step width.
ential resistance. On the curves in Fig. 2, the resistance factor In studying step widths as functions of the microwave
dropped from four to two, and in Fig. 3 from five to two. The power, we recorde¢in several cas@snonmonotonic curves
CVCs of the Sn2 whiskeffig. J) initially contained a linear  with relatively narrow down-peaks against the background of
section with resistancer, at voltages above, , and under wide bell-shaped curves.
microwave irradiation this parameter dropped tBy3and
then ZR,. At higher microwave powers the length of thBg
section increased at a constant resistance factor. Not®ghat
could vary under microwave radiation within 20%. Thus, The current—voltage characteristic of a uniform super-
microwaves not only produce horizontal steps on CVCs, butonducting channel, which is our model for a whisker, de-
also strongly affect CVCs of tin whiskers. pends on its length. In the case of a short whisker section

We have also measured the widths of microwave inthrough which current is fed,~lg, the presence of one
duced steps as functions of the incident power over the inslipping phase center allows the sample to conduct a current
terval of their existence. The experimental dependencies dfigher than the critical value. IF>1g, the exponentially
current-normalized widths of zero-slope steps at voltadigs decaying parameters of slipping phase centers have little ef-
and A, and of the critical current for a sample Snl ob-fect on the channel properties, therefore it should contain
tained in different measurement cycles at approximatelyseveral slipping phase centers, whose number is determined
equal parameters as functions of the relative microwave anby the channel length. In our samples, the conditisr ¢

4. DISCUSSION OF RESULTS
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was satisfiedl(=(10—20) ), therefore we assume that sev- U, pV

The CVCs of our samples have piecewise linear shapes
with sections characterized by differential resistance
R=nR,, wheren is an integer. These sections correspond to
definite numbers of slipping phase centers, which can be so
derived from the sample sizes. In addition, there are the non-
linear sections on which the number of centers is probably
unstable and varies with time. A dedicated investigation is
needed to verify this hypothesis. The linear sections of CVCs
of the superconducting channel in the simplified mbdee ol L . e i N
described by the formuld =nRy(1 —1,). The excess current 300 400 500 600 700 LpA
lo is usually related to the gverage sgpercond_uctlng COMPQsi 6. Low-current sections of CVCs of the Sn2 sample at different mi-
nent of the total current. This formula is not universal for all crowave field powers at frequen€yi2= 40.62 GHz in the second cycle of
linear sections, becaudg+ const for all groups of linear measurements dt~3.60 K: (a) 70 dB; (b) 24.49 dB;(c) 22 dB.
sections The CVCs of our samples contain neighboring lin-
ear sections with equal but differentl .

Microwave irradiation of our samples has a dual effect
on their CVCs. The first effect is the generation of constantated centers and across the entire sample. States with syn-
voltage steps, which was the main subject of the reportedhronized slipping phase centers under microwave radiation
study. The second effect is the change in the number ofmerge predominantly at corresponding locations in the
slipping phase centers under microwave radiation and stabEVCs. Other CVC sections may correspond to states in
lization of CVC sections with definite numbers of these cen-which some slipping phase centers are synchronized by ex-
ters. This shows up in the extension of linear sections anternal field and the rest are not. This conjecture allows us to
transformation of some nonlinear CVC portion to linear.  interpret the drop in the differential resistance of linear sec-

The existence of constant-voltage steps under microtions (and the behavior of the differential resistance in gen-
wave radiation indicates that there are currents of microwaveral when the current increases under microwave radiation.
frequencies with spectral components=2enU,/f (n The existence of neighboring sloping steps with equal resis-
=1,2,3...) in theregions of slipping phase centers. Whentance but different excess current can also be interpreted in
the external frequency equals that of one of these harmonicthese terms. A similar effect without microwave radiation
several centers are synchronized, which shows up in the forman be attributed to a different but, in a sense, similar phe-
of constant-voltage steps'dt,=mU,,, wherem is the num- nomenon. So-called Fiske stépsvere detected in experi-
ber of slipping phase centerd,,=#Q/2en, andQ is the ments with tunneling Josephson junctions when the fre-
external radiation frequency. As a result, steps can occur ajuency generated by the junction was locked to the resonant
U.vn=(m/n)aQ/2e if this voltage coincides with an inher- frequency of the structural cavity in the experimental device.
ent or microwave-induced linear section of CVC with a defi-In this case, constant-voltage steps determined by the Jo-
nite (integra) number of slipping phase centers. sephson formula with the resonant cavity frequency could be

Unfortunately, it is difficult to determinen andn with seen on CVCs. The gap in the tin film on which the whisker
certainty using CVCs. Linear sections from which the num-was mounted could act as a structural resonator. The length
ber of centers could be exactly determined could be seeaf this gap was about 5 mm, and, given the silicon substrate
near constant-voltage steps only at certain values of parandgielectric constant
eters. We believe that the stepld/2 in Fig. 2 is due to the (e~12), we have a resonant frequency in the studied micro-
synchronization of two slipping phase centers by the fourthwave band. In this case, a section with a constant voltage due
harmonic of proper oscillations, i.eUo/2—2Uq/4, simi-  to synchronization of a group of slipping phase centers
larly Ug—4U /4, 2Ua—4U /2, 3Uoa—6Uq/2, the step at  (Fiske stepcan occur. The centers whose oscillations are not
4U5—8Uq/2 is not shown; in Fig. 4Un/2—2Uq/4,  locked to the resonant frequency should demonstrate a linear
Ug—2Uq/2, and 2Jo—4Uq/2; in Fig. 3,Uqn/2—2Uq/4; behavior. As a result, the CVC of the sample should have a
in Fig. 6, Up/2—3Uqh/6, 2U4/3—4UqG/6, and Ug linear section with the resistance corresponding to the num-
—6Uq/6. At other values of parameters this sample demonber of unlocked centers, which is smaller than the total num-
strated steps at B,/6—5Uqn/6 and Un/3—2Uq/6 (not  ber. The question why horizontal steps have not been ob-
shown in the graphs of this paper served remains unanswered. Doubts in this interpretation

Thus, at certain positions of these voltages in the whis€ould be eliminated by directly measuring microwaves gen-
ker CVCs, microwave field synchronizes oscillations of theerated in the sample.
order parameter in all slipping phase centers present in a Figure 5 shows the widths of constant-voltage steps as
sample, which results in constant voltage drops across isdunctions of the microwave field amplitude in relative units.

eral slipping phase centers were necessary to conduct a cul / :
rent slightly higher than the critical value. In the process of / / }
generation of the required number of centers, the instanta: [ ’
neous number of centers can be unstable and variable in bot!%] / I
time and space. I ! /

a
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The maximal width of these steps allows us to estimate théhreshold at which induced steps appear and the absence of
microwave power generated by the whisker: oscillations in both the zero-slope step width &y, and
P~ 2 critical current as functions of the microwave field amplitude
~(Al)*mRy,, - L

are due to a definite number of slipping phase centers re-
where Al is the step width in terms of current. Hence, quired at these voltages.
P~10"8 W.

The microwave generation in the slipping phase center§- CONCLUSION

can be interpreted in terms of the order parameter versus In the reported work, we have studied the effect of mi-
time, which vanishes at some moment and then increases twowave radiation on current—voltage characteristics of
some value. At the moment when the order parameter igvhiskers with submicron diameters. Such whiskers can serve
zero, the difference between the phases on different sides ak microwave oscillators at frequencies of up to 40 GHz with
the slipping phase center drops byr2It would be interest- an output of about I0°® W. The spectrum of generated
ing to estimate the times of these processes and compawaves contains many harmonics, and the generation occurs
their reciprocal values with the frequencies of the order paesn CVC sections with stable numbers of slipping phase cen-
rameter oscillations and external radiation. The most importers. Features of CVCs of our samples under microwave ra-
tant parameter is the time, in which the order parameter diation are determined by changes in the number of slipping
recovers. Whemr, is much longer than the order parameter phase centers and the synchronization degree of generation
oscillation period determined by the Josephson formula, botin these centers.
the mean and instantaneous absolute values of the order pa- The work was supported by tHauperconductivitgub-
rameter within the center are much smaller than the equilibprogram of thePhysics of Condensed Stgteogram spon-
rium value in other regions of the superconducting channelsored by the Russian governmeémroject No. 9502), and
If 75 is comparable to or smaller than the period of the ordeby the Physics of Solid-State Nanostructurggogram
parameter oscillations, the instantaneous value of the gap ifProject No. 1-084/%
the slipping phase center can be large and comparable to the
gap in the surrounding regions. The spectra of normal exci: E-mail: tulin@ipmt-hpm.ac.ru
tations in slipping phase centers should be notably different

1
in th twi which nl t ifferen in meD- W. Palmer and J. E. Mercereau, Appl. Phys. L2§, 467 (1974.
ese 0 cases, ch can lead to differences SO gM. Octavio and W. J. Skocpol, J. Appl. Phyg0, 3505(1979.

electrical properties of slipping pha_se centers. Smfleo the ens E, Amatuni, V. N. Gubankov, A. V. Zaitsev, and G. A. Ovsyannikov,
ergy relaxation time of current carriers in tin i<30™ "' s, Zh. Exsp. Teor. Fiz83, 1851(1982 [Sov. Phys. JETB6, 1070(1982)].
the first case is realized in the microwave frequency band. “L. E. Amatun(i, V.aN[. Gubankov, and G. /;. Ovsyfslrznikoc\gj Fiz. Nizkikh
; ; ; ; Temp.9, 939(1983 [Sov. J. Low Temp. Phy®, 484 (1983].

The beha.v|or. of the ?’tep width is determmed by two 5B. 1. Ivlev and N. B. Kopnin, Usp. Fiz. Nauk42, 435(1984 [Sov. Phys.
factors. The first is the width of the step against the back- ysp 27 206 (1984].
ground of an infinite linear CVC section with a definite num- ®R. Tidecks,Current-Induced Nonequilibrium Phenomena in Quasi-One-
ber of S||pp|ng phase centers as a function of the microwave Dimensional Superconductgrén Springer Tracts in Modern Physics
; ; ; T _ Vol. 121, Springer(1990.
field amplitude. The second is the Ilmltgtlon of the constgnt "W. J. Skocpol, M. R. Beasley, and M. Tinkham, J. Low Temp. Phgs.
voltage ste_p_ by the length of the CVC I|_near sloping section, 145(1974. )
whose positions, as follows from experimental data, are alsds. M. Gol'berg, N. B. Kopnin, and M. I. Tribel'skii, Zh. i&p. Teor. Fiz.
functions of the microwave power. A change in the numbergi"‘(,\j)' 289(1382 [S,OV-_ Phyz- JEI"W- Eltf %9%%19(1972

P s R . Meyer and G. Minnigerode, Phys. Lett.38, .
of shlp.plng phase centers breaks _the mmgl synchronlzatlonol D. Meyer and R. Tidecks, Solid State Comm@a, 639 (1977,
condition, and the system can switch to either a totally unity. Tinkham, J. Low Temp. Phys5, 147 (1979.
synchronized state, or a partially synchronized state, or fully’X. Yang and R. Tidecks, Z. Phys. &, 113(199)).

. . . . . 13 7 H H o
synchronized state at a different harmonic and with a differ-,R- Tidecks and G. von Minnigerode, Phys. Status Soligin421(1979.
R. Tidecks and G. Slama, Z. Phys.3, 103 (1980.

ent number of sllpplng phase centéfer example, the Zero- 155" pamaschke and R. Tidecks, Z. Phys78 17 (1989

slope step at @, in Fig. 2 can be due to synchronization of 16g_ |. |vlev and N. B. Kopnin, Solid State Commu#1, 107 (1982.
four centers by the second harmonic or six centers by th&G. E. Churilov, V. M. Dmitriev, and V. N. Svetlov, Fiz. Nizk. Temp,
third harmonig. Given these two effects, we could not de- 18?1?%25&1?3%%%&% Igt"t‘l’i' ﬂ‘zisgg (1983]

termine the constant-voltage step width as a function of thesy, p_Fiske, Rev. Mod. Phys36, 221 (1964).

microwave amplitude unambiguously and compare it to the

theoretical model. The existence of the microwave powemranslation was provided by the Russian Editorial office.



JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS VOLUME 86, NUMBER 4 APRIL 1998

Conductance of a quantum wire in a longitudinal magnetic field
V. A. Geller*), V. A. Margulis, and L. I. Filina

N. P. Ogaryov Mordovian State University, 430000 Saransk, Russia
(Submitted 2 July 1997
Zh. Eksp. Teor. Fiz113 1376-1396April 1998)

We examine the ballistic conductance of a quantum wire in a parallel magnetic field in the
presence of several impurities and derive analytic expressions for the transmission coefficient and
the conductance in such a system. We show that scattering by impurities leads to a number

of sharp peaks near the thresholds of the conductance quantization steps. The number of such
peaks is determined by the distance between the impurities and the energy of the scattered
particle. We also study the conductivity of a quantum wire in the region where the transport
mechanism is diffusive. The conductivity is examined for the case in which charge carriers

are scattered by randomly distributed point impurities. We study Shubnikov—de Haas oscillations
in such a system. The general oscillation pattern consists of broad minima separated by
irregularly spaced sharp peaks of the burst type. 1998 American Institute of Physics.
[S1063-776(198)01904-0

1. INTRODUCTION of the scattering center. The effect may be even stronger if
there are several impurities. General considerations suggest
The conductance of an electron gas in quasi-onethat since each impurity can reflect the incident electron
dimensional nanostructures has attracted growing attentionave, variations in the relative positions of the impurities
in view of the fact that systems of this type exhibit interest-can have a strong effect on the shape of the conductance
ing physical effects, such as the Aharonov—-Bohm effect, theurve G(E). Moreover, due to multiple reflections, the num-
weak localization effect, and the quantization of conduc-ber of peaks in thé& vs. E curve may be high even for two
tance. A magnetic field@ applied along the axis of a quan- impurities. In the diffusive regime, scattering by impurities
tum wire enhances lateral geometric confinenténgp that  leads to oscillations of the Shubnikov—de Haas type in the
by varying B we can alter the effective geometrical size of dependence of the conductivity on the fieldB.
the system, and hence the functional dependence of the con- The goal of our investigation is to study the conductance
ductance on the fiel®. In particular, by varyingd we can  of a quantum wire in a longitudinal magnetic field when
change the parameters of the conductance quantizatiatarriers are scattered by point impurities in both the ballistic
steps>* Studying the conductance of a quantum wire in aregime and the diffusive transport regime.
lateral magnetic field makes it possible to investigate such  Various models of the confining potential have been
important characteristics of electrons as the parameters of thesed to describe theoretically the one-electron states in a
confining potential and the subband energies in the energguantum wire: an infinitely long waveguide with constant
spectrunt:® cross sectioRt?? saddle-point potentials for constrictions in
Two fundamentally distinct cases are possible in studieguantum channel§! and a symmetric quadratic
of the conductance of quantum wires. If the wire’s radius andpotential>>~2° A more rigorous approach to the shape of the
length are less than the electron mean free path, the conducenfining potential requires self-consistent solution of the
tance is ballistic and can be expressed in terms of appropriafeoisson equation and the Schimger equation. Numerical
transmission coefficients®? Otherwise, the conductance is solutions of these equations yield an almost parabolic poten-
diffusive and can be described by an appropriate transpottal for channels in a two-dimensional gas with, however, a
equation. flat lower boundary(the lower part being cut dff). Since
Elastic scattering by impurities plays an important rolesuch a shape is very close to parabolic, a harmonic potential
in such system$:2° In particular, as shown in Ref. 4, scat- is quite realistic from an experimental standpditithe con-
tering by a single point impurity in a ballistic quasi-one- venience of the harmonic potential for theoretical studies of
dimensional nanostructure in the presence of a longitudinajuasi-one-dimensional microstructures in a longitudinal
magnetic fieldB leads to the emergence of narrow and highmagnetic field is explained by the fact that such a potential
peaks to the left of the threshold of the conductance quantiyields explicit formulas for the spectral characteristics and
zation steps. As the Landauer-tBker formuld—® implies,  the scattering parameters.
the wire conductance in the ballistic regime is described by  To describe one-electron states in a quantum wire we
the sum of the electron transmission coefficients over th&ise a symmetric confining potentiaV(x,y)=m* wg(x2
various scattering channels. These coefficients change in they?)/2, wherem* is the effective electron mass ang) is
presence of an impurity due to the possibility of reflection ofthe characteristic confining-potential frequency, which is re-
the incident electron wave, which depends on the parametetated to the effective radiud, of the wire by I

1063-7761/98/86(4)/12/$15.00 751 © 1998 American Institute of Physics
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= JhIm* w, . For one-electron states that are unperturbed byheory techniques do not work in this cadeHowever, if
impurities and are in a longitudinal magnetic fidjz, the  Krein's formula for the resolvent of the Hamiltoniahy, per-

Hamiltonian of our model is turbed by such a potential is employed, we can derive exact
5w 2 analytic formulas for the Green’s function of such a Hamil-
Ho= 1 (p— EA) + m “’O(Xz+y2). 1) tonian .and the wave function. .
2m* C 2 Using (2), we find the Green’s function of the operator

. . H; in the form
We select a symmetric gauge for the vector potential of the '° the fo

magnetic field,A(r), i.e., A=(—yB/2,xB/2,0). Then the o m< = 2 _
spectrum of the Hamiltoniafil) can be written Ge(r,r)= 2aih & m;_ exdim(e—¢')]
hoe,  hQ p? - ,
Emno=——M+ ——(2n+|m|+ 1)+ , EXPipmnl2—2'| /1)
mnp= 5 (ntimi+1)+ XRine( )R 9 ) =1 NG
mn
and the corresponding wave functions in cylindrical coordi-Where
natesp, ¢, andz are
_ _ ho,  hQ 12
0 ipz\expime) Pmn=12m*| E— m— ——(2n+|m|+1) .
‘I’manGX 7 2 2

—=—=Rmn(p), )
5 mnl P - .
) o We now examine the Green’s function and the state of a
whereme Z, ne N, andp=p, is the projection of momen- gcattered particle for the operatdy, perturbed by a single-

tum on thez axis. Here point potential concentrated at poirg. As shown, e.g., in
2 2 Ref. 30, a convenient way to study operators of this type is to
Rmn(p):cmnpmexp< _p_2> |nm|(P_2)’ employ the approach based on Krs formula for resol-
47 2/ 3) vents. According to this formula, the Green’s function of the
12 HamiltonianH=H,+V has the form
1 n! h
Conn= 157 2+ m])! Vg Ge(r,r')=G(r,r')~[Q(E,pp)+a 1] *
LimM(x) are generalized Laguerre polynomials{) X GR(r,ro)Ge(ro,r'). (6)
= \/wcz+4woz, andw, is the cyclotron frequency. Here Q(E,py) is Krein's Q-function, which is defined, to

In this paper we study electron transport in a quantumyithin a constant by
wire with allowance for elastic scattering by a system of

potentials of short-range impurities. We model the potential  Q(E,pg)= lim [G%(r.ro)—Ggo(f,fo)], (7)
of short-range impurities as a sum of point potentfafs’ p=Po
whereE, is some fixed value oE, anda is related to the
V(=2 ajd(r—rp[1+(r—r)-V], (4)  scattering lengthh by a=2#%\/m*. Combining(5) and
: (7), we have

wherea; are the coupling constants of the pseudopotential,

andr; are the radius vectors of the impurity centers. Q(E. po) = Vm* % % R2 (po)
From (3) we see that the unperturbed wave functions Po 2\2mih im0 m=Z M Po

decrease exponentially with distance from the conducting
channel axigas p increases The characteristic size of the
wave function in a plane perpendicular to the magnetic field
is 7, while the characteristic size of the microstructure is _12
obviously yA/m* wy=/. Below we study only the impor- —i ( ho m+ @(ZnJr |m|+ 1))
tant case in which’ is several times smaller thafy,. This 2 2

occurs in the presence of strong magnetic quantization andhere the constar@ remains to be determined.

when the microstructure is pinchéd. Now suppose tha?°(r) is a delocalized state ¢f,. By

The restriction on the magnitude of the magnetic fild ;e of Eq.(6), the corresponding stat(r) of the opera-
can be lifted if all impurities are near the conducting channel . 1 is

axis. We know of no experimental work in which such an
impurity distribution is employed. However, recent novel — W (r)=%¥°(r)—[Q(E,po)+a ] ¥ (ry)GL(r,ry).

technology employing a scanning tunneling microscope 9
makes it possible to manipulate impurity atoms with the re{y
quired precision.

we -1/2

X
2

19)
m— 7(2n+|m|+1)

+C, (8)

e see from(9) that the electron scattering amplitude in a
quantum wire then takes the form

2. SCATTERING BY A SYSTEM OF POINT IMPURITIES t(E,ro)=[Q(E,pp)+a 1]~ % (10)

Note that the use of potentials of tyjp#) in 2D and 3D  The constan€ in (7) and(8) can easily be found by passing
requires a special approath.In particular, perturbation to the limitsp—0 andE—O0. The result is
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1/2

m* /m*Q 11 pj=</, corrections irp; to the elements of Kile's Q-matrix
=3 ﬁ2<7 ¢ 55)- (11 are of orderO(p{//?). We will subsequently see that the

™ scattering parameters for the Hamiltoni&h can be ex-
Here{(s,o) is the generalized Riemann zeta function. Notepressed in terms of these elements; neglecting corrections of
that by passing to the limiby—0 in (8) we obtain orderO(ij//'Z), we assume from now on thaf=0. In this
case, by virtue of3), the only electrons scattered are those
- o= with angular momenturm=0.
2’2 fo Equation(13) implies that delocalized statds(r) of the

wherea=\/+2l , with | 5= JA/m* o, the magnetic length. HamiltonianHy+ V with energyE have the form
For the scattering amplitude in this limit we have

a \If(r>=~lfo<r>—i2J [Q(E)+a 1] " Wo(r)GR(r,r)),
1+ af(1/2,1/2-Elhwg) (12 (18

The right-hand side of Eq12) coincides with the expression where ¥, is the delocalized wave function of the unper-
in Ref. 28 for the scattering amplitude of an electron in ay,rhed HamiltoniarH, with the same energy. Consider the
magnetic field, scattered by a point potentiat@t 0. Note  transition, due to the scatterers, from the state{)Owith
the difference between Eqél2) and (10), which becomes  energyE=#%0(ny+ 1/2)+ p%2m* to the state (®,) with

important in our subsequent investigation. Equatid®  the same energy. Suppose that the wave that propagates in
contains the distancg, from the wire’s axis to the point at {he mode (0n,) is

which the impurity is located. Such an inhomogeneity in

Q(E,0)=aa ¢

11 E)

t(E)=

Krein’s Q-function results, in the present case, from the lack ipon 2

f invariance of the HamiltoniaH y under the group of mag- o __ 1 O
of ir . 0 \IIOnOpO—— exp —— Ron,(p)- (19
netic translations. N2

We now examine the Green’s function of the operator
Ho perturbed by a system of identical impurities. TheAccording to (18), the corresponding state of the Hamil-
Green'’s function of this Hamiltonian can be obtained in ex-tonianH with the same energ is
plicit form (see Refs. 31 and 32

N; S~ exp(ipon,z/f) 1 m*
Ge(rr)=GY(rr)~ 3 [QE)+a )y N RN =Py
XGRr,r)GY(r;,r'). (13 x% ROn(p)E [Q(E)+a 1]
Here Kreéin's matrix Q;;(E) has the form n=0 Pon Ik
£y Gg(ri,r]‘), |7&J, 14 XeXF{i(pOHOZJ“f‘M) , (20)
Qij(E)= QEp), i, (14

— -1
and (ail)ij:ailﬁij- In Eq. (14), Q(E.p;) is given by(8) where we have allowed for the fact tHag,(0)=/"- for alll

with p, replaced byp;, wherep; is the polar radius of the values ofn.

jth impurity. Combining(13) and(14), we can determine the

scattering operatof (E). The Green'’s function o can be

expressed in terms of the Green’s functio® and the 3. TRANSMISSION COEFFICIENT AND CONDUCTANCE IN
operatorT(E): THE BALLISTIC REGIME

Ge(r,r')=G2(r,r")—G(r,rYT(E)GL(r',r). (15 Using the results obtained for the wave functions in Sec.
2, we can find the transmission coefficients and the conduc-
tance in the ballistic regime.

When z< —maxz/, the coefficiente!™) of Rony(p) in

T(E)ZZJ, [Q(E)+a ] |a(r—r))s(r—r)|. (16) (20) has the form

Combining(13) and(15), we find that

Using this expression for the scattering operator, we can explipon 2/H) o
easily write the scattering matrik;z/ (E) in the form ()= o _ E)+a 13!
Bﬁ ‘P . 2 ‘ [Q( ]]k
2w 2mihi/ “pon, \ TK

Tpp (E)=25 [QE)+a ' " WR(r)wyr(r). (17 . .
pp 7 LA iDong(Zj+2) | €Xp(—ipon,2/H)
. - ) . X exp ,
According to what was said in the Introduction, the im- h N2
purities that can effectively scatter are those near the axis of
the conducting channel. The results of Ref. 4 imply that forand whenz>maxz/, the coefficientp(™) of R0n1(p) is

(21)
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exp(i z/h * m* z—z
() SR ZA) - mr YL P e N 27
¢ Nony > K 127 — /
N2 2ifi/ “Pon, mh?|zj— 2z
i (Pon Zi— Pon.Z¢) If the distances between the impurities are large, i.e.,
x| 3 [QE)+a 1 lexp Ong Jh on, 7k |zj—z|//>1, Eq.(26) yields
.k
G m*i
explipon,2/%) 22 K 2mh2/2EIRO -1
X ——.
N2m y 4 - [2E 1|z]-—zk|
exg —i\/=—"1——
Comparinge(™) and ¢(7), we see that the partial transmis- hQ /
sion coefficientT,, _,, (E) is
o «|1+0[BZH (29
//
T E)=|s. . - m* Equation(27) shows that when the distances between the
=M "o 2 mif/? impurities are small, the matrix elemer@s, are large, while
Eq. (28) shows that when these distances are lafGg,| is
E [Q(E)Jra-lmlexqi(pm 2/~ Pon 2/ independent of t.he coordinatgs of the imp.urities. In the latter
o I o ! case we can estimate the ratio of the off-diagonal elements of
[p2, +2m* hQ(ng—ny+1/2)]H2 : Krein’s matrix to the diagonal elements. Let us introduce the
° scattering length \=m*a/27w%? and the constanty
(23 =|\|//27. In all realistic situationsy<1, so that we have
Following the Landauer—Btiker formalism!=° we can
. . Gk V2
find the conductance of the microstructure: =
Qu(E)+a™t| 2E/hQ-1
G(E)= 2¢° % T E 24 Y
( )_ Tno,n:O noﬂn( )! ( ) (29)

Tty (2,12 ERQ)]

where the integeN SatISerSEZﬁQ(N-i- 1/2+ 5), 0<o<1l. C|ear|y, forE>AQ0/2 we have frorr(zg)
Since it is difficult to use the general formulé®3) and (24)

in an analytic investigation due to the complexity of the ex- Gijk
pression for Krin's Q-matrix, we consider the various lim- m
its. First we obtain convenient estimates for the off-diagonal

elements of this matrix. The diagonal elements ofiKi® Discarding the small off-diagonal terms in the matrix

<1, j#k.

Q-matrix are equal t®Qy(E)+a L. [Q(E)+a 1171, we obtain a convenient estimate for the
At p;=p,=0 the off-diagonal elements of Kiis transmission coefficient:
-matrix are
Q Tnoﬁnl(E)
m &1 iPonlZj— 2
G=G(r,ry)= —exp——1——.
e R T m*
25 =| Spp— ——
29 oM 2aifis?

Using the method developed in Refs. 28 and 29, we can

transform the sum ii25) into an integral: 2

[QO<E>+a-1J-1; ex{i(Pon,~ Pon,)Z; /1]

m* . [2E | zj—z X 2 " 12
ij 27Th2|zj_2k| ex[{ i 0 1 ~ [p0n0+2m ﬁQ(no n1+1/2)]
(30)
m* w( 1 1 2 1) SR
SR f — 4+ - coth—— — Note that when there are only two impurities in the conduct-
V2m¥2, Jo\2 2 2 2 ing channel and they are near the wire’'s axis, we can sim-

plify Eqg. (30). We position one impurity at the origin and
dt. (26) introduce the quantith = |z, — z,|, the distance between the
impurities. Then we can write

t2 L 2E)_1 z—z\?
“OR T\ TR ol T

This formula proves to be convenient in analyzing the vari-Tng—n, =|6ngn, +17(N+8+ny) =2
ous limits. Indeed, suppose tHaj—z|//'<1, which corre- o 2
sponds to small distances between impurities. Then(Z8). X[1+y{(1/2-N=8)](1+cosp+i sin B,

yields the asymptotic behavior (32
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where 8= (Pon,~ Pon,)A/A. 1 N
©o Im £=1m §(§,—N—5):E (N+6-n) 12
4. SCATTERING BY TWO POINT IMPURITIES n=0

We now discuss elastic scattering by the potential of two _
impurities in greater detail. What is interesting here is that'© €stimate{(1/2,1-5) we use the results of Ref. 31,
the problem makes it possible to carry out a fairly simple"Vnereupon
analytic and numerical analysis of the expression for the mi-
crostructure’s conductance. In addition, it can be expected 1
that this case will reveal the main features of scattering by g( ~1- 5) =(1-08)" Y24 Z(2—-6)"12—2\2=5
several point potentials. 2 2
Using the shift formula for the Riemann zeta function, 1
we separate the real and imaginary parts of this function: + ﬁ(Z— 573”2, (33

: (32

1 1
Re/=Re {( 2" N-= 5) - g(i’l_ o Combining(32) and(31), we obtain

To n=06nnl 1+ S
T TR T N+ 8- n[(1+2y Re )%+ (2y Im ¢)?]

YN+ 5-n)~2

+ , . : (34)
[1+y Re{(1+cosB)—y Im ¢ sin B]>+[y Im ¢(1+cosB)+ vy Re{ sin B]?

Let us compare this with the expression for the partialthe denominator, and both terms in braces become guantities
transmission coefficient in the case of scattering by a singlef the same order. In the second term, which is proportional
impurity (obtain in Ref. 4. The coefficient ofé, , in (34)  to 42, the same situation occurs at-24[ (1+cosp)Re ¢
(the expression in bracgdiffers from the corresponding co- —singIm ¢]=0. While in the former case there is only one
efficient in Ref. 4 in thaty is replaced by 7, which means  sych pointE at which the above situation occurs, in the latter
that the coupling constant i#) has doubled. This term in  tnhere can be many, and their location on Ehaxis depends
Th,—n does not contain the distance between the impuritiesyp, the gistance between impurities. As shown in Ref. 4, at
gnd it.s structure is the same as for scattering b_y a singlgnergy values satisfying the condition+2y Re =0, a
impurity. The second term in the sum @ ., contains the  gp531h" maximum emerges at the conductance quantization
distance between the impurities, and in the liit-0, it gteps near the threshold of each step. We expect that in the

simply turns into the analogous corresponding term in the,ses considered here, there can be several maxima of this
transmission coefficient for the case involving a single im- ind

purity. Both terms are proportionaf and, generally speak-
ing, are small becausg<1. However, at values of the elec- . , ) / :
trgn energyE at whisc$1<1+2y Re /=0, the first term of Wiré for the important case where in which the distadce
those proportional tgy? ceases to be small, since (@4) the ~ Petween the two impurities is larga/ / >1.

small factory? in the numerator cancels the same factor in ~ Using Eqs.(24) and(34), we obtain

We now consider the conductanGE) of a quantum

49°1Im ¢
YN+ 6—n[(1+2y Re)?+(2y Im ¢)?]

c N
—=> 11+
Gy nzo

N —_m-1
iy E (N+6—n)

4 nig=0 [1+y Re ¢(1+cosB)—y Im ¢ sin B+ 4 (1+cosB)Im {+Re{ sin B1?’

(39
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whereG,=2¢e?/h is the conductance quantum. Calculating the sum@%H in the same way as in Ref. 4, we obtain that
2y 1m {)?
14 (2y Im )
Go (1+2y Re{)?+(2y Im ¢)?

L % (N+6-n)*
4 no:n=0 1+ 29[ (1+cosB)Re {—sin B Im {]+2y2%(1+cosB)[(Re {)2+(Im ¢)?]

(36)

Clearly, the conductance i{36) consists of three terms: It is clear why the resonance ®&,(E) is determined by such
G/Gy=G;+G,+ Gj. The first, G;=1+[x], where[x] is  an equality: when this condition is met, the small facgdin
the integer part ok=(E/A{—1/2), is independent of scat- the numerator ir{36) cancels the same factor in the denomi-
tering and produces conductance quantization steps of widthator. A similar situation occurs fdg;(E) if the following
Q) and height equal to the conductance quantag The  condition is met:

second term,, is given by 1+429[(1+cosB)Re {—sin B Im ¢]=0. (39)

¢ E “x|-¢ El—{x} The factors Re and Im¢ in (39 behave differently,
2’ 2’ i.e., Im{ is large for <1, while Re{ is large foré~1.
1 Equations(32) and (33) clearly demonstrate this. On the

2
Gz=(27)?

2

x l+4y§(£,1—{x} + 42 5(3,_)() , other hand, because of the smallnesy ofor condition(39)
2 2 to be met at least one of these factors must be large. Clearly,
(37)
where{x} is the fractional part ok. Finally, the third term is GG,
= 1
Gs=7* X (x—n) M 1+2y (1+COSB)§<—,1—{X}) 8t 2
n,ng=0 2
. 1 1 \
—sin ,Bg(z,—x) —{(5,1—{x} +2y%(1+cosB) 6r \ L
1 2) -1 ‘\
g 4 |
x| 50X ] . (39 ]
The last two terms reflect the deviation of the shape of 2&
the quantization steps from ideal. Both ter@s,andG, are
due to scattering by impurities. Th@ vs. E curves are de-

picted in Figs. 1—3, with the details of one of the peaks at the ¢ 1 2 3 Ema- 12
step threshold depicted separately. The diagrams represent-
ing G(A) are depicted in Figs. 4—6, which show how con-
ductance quantization breaks down in the case of scattering
by two point impurities. The number of resonance peaks in G/G,
the G vs. E curves depends strongly on the distance between A
impurities and the number of the conductance step, i.e., the r/ | b
number of peaks increases withandN. All peaks are lo- 6r \
cated near a step threshold, which is due to the aforemen- | \\
tioned fact thatG,(E) andG3(E) are small everywhere ex- |
cept in the vicinity of the threshold. The height of these 4}
peaks decreases as the distance from the step threshold in-
creases, the reason obviously being thaEascreases, we
move farther away from the points of resonance, i.e., the sum ,
G,(E) +G3(E) gets small as we move away from the main
peak.

We also note that the peaks @&,(E) and G3(E) are ) ) .
located at different points in the vicinity of a step threshold 3 31 EIBQ - 172

and that the peak i®,(E) is much lower than the main peak

; ; ma m . FIG. 1. (&) Energy dependence of the conductance of a microstructure,
in G4(E), since G5™{(E)/G;*(E)~N. Indeed, the second G(E), for the case of scattering by two impurities wiifi=2.5x 10 ® cm,

term in G,(E) in the neighborhood of the resonance point|—1 1x10°6 cm, andA=2x10"5 cm. (b) Detailed structure of the reso-
determined by the equality12y Re (=0 is of order unity.  nance peaks.
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GIG, G/G,
a a
40}
20+
30+
20+
10r
| -
0 1 2 3 EmMQ-112 0 1 2 3 EIRQ - 112
G/G, G/G, X
| b
6 L
8r
A at
41 2
. . ) ) 0 2 21 EMQ-112
0 3 3.1 EmQ-12

FIG. 3. 8 Energy dependence of the conductance of a microstructure,

FIG. 2. 3 Energy dependence of the conductance of a microstructureG(E), under the same conditions as in Figs. 1a and 2a but with
G(E), under the same conditions as in Fig. 1a but with a different distance= 10™* cm. b Detailed structure of the peaks.
between impuritiesA=5X10"° cm. b) Detailed structure of the peaks.

find the probability of an electron transition from the initial
state| 8)=|m,n,p) to the final statd 3’)=|m’,n’,p’), we
use the Lippmann equati

the condition(39) is met only if 5<1. Then near the thresh-
old (39 yields the estimate siflm {=1/2y, and since
Im ¢{=1/\/8 for 6<1, we have siB=/5/2y. Hence 6< &
<4+? near a resonance. Using what was said earlier, from

(36) we find that in the neighborhood of a resonance W= 2;11|TBB’|25(8L%_86’)- (42)
Gp= iy N 1,
B)=5 20 11 V1- olay2 (Im 0?2 Introducing the scattering amplitudg, (E), we obtain
Then for 5<1 we obtain 2w )
6.(E) N+1/ 1 -
3(B)= .
2 |14 1—6l4y? whereT g (E) =V 44/ (E), with V the normalization vol-
The factor in parentheses ranges from 1/2 to 1, so tNat ( ume.

The electron motion along the wire’s axis in a longitu-
dinal magnetic fieldthe z axis) is semiclassical, so that we
can use the Boltzmann transport equation to find the non-
equilibrium distribution function for the electrons. The trans-
port equation linearized in the electric fietdparallel to the

5. CONDUCTANCE OF A QUANTUM WIRE IN THE DIFFUSIVE z axis has the form
REGIME

+1)/4<G3(E)<(N+1)/2. Clearly, for N>1 we have
G3(E)>G,(E), while for N~1 and §<1 all three terms
(G1(E), G»(E), andG3(E)) are of the same order.

We now discuss the conductance of a quantum wire in ‘9_f° e’p :|Ziﬁ,(f) (44)

the case in which the system is in the diffusive regime. To  9€g m*
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GIG,

120}

Geller et al.

FIG. 4. G vs. A at 1;=25x10%cm and I=1.1
%10 ¢ cm. The heavy curve correspondsB&i Q) — 1/2
=2, and the light curve t&/A Q) —1/2=4.

5.2 53 5.4

Wherelziﬁ,
are, respectively, the equilibrium and nonequilibrium distri-
bution functions. The collision integral is given by the well-

known formula

(f) is the collision integral, andy(¢) andf(e)

|‘;‘B,=§ W [f(e5) —f(s50)]. (45)

55 A10~ cm

Then the general formula far,, becomes

222
et afy
= — 2_ , 2
Oz7 277m*2 % p ﬁsﬁ{g |t,3[; (83)|

-1

X(s(S'B_SB/) (49)

In the relaxation-time approximation, the nonequilibriumH
ere

distribution function is
esp
m* de

f(gﬂ):fo(sﬂ)_ (46)

Combining(45) and(46), we obtain the following expression
for the relaxation timer™ 1(sﬁ) =25 Wpggr:

o (25) =V [Qeg)+a L1, Wy ()Ww.(r)),
| (50

with the matrix in the denominator given §$4).

The equation for the scattering amplitude is extremely
awkward, which means that the general express#sh is
extremely difficult to analyze, so that below we consider
various limiting cases.

We examine the important case in which geometric con-
finement is weaker than magnetic. This situation is realized
when the radiug of the wire is much greater thdg. Here
the characteristic scale of variation of the wave funci{ian

FIG. 5. The same dependence as in Fig. 4 but for a dif-
ferent range ofA.

1 2w
T (85)2_22 tBB’(EB,)g(Sﬁ_SIB,) (47)
ﬁV ﬁ’
The longitudinal conductivity is
2
e afg
= — 2—
== e 2 P, e (48)
GIG,
160f
140f M
120}
4.52 4.53 4.54 455  A107 cm
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G/G,
200F
150f -6 -6
FIG.6.G vs. A atly=2.5x10"° cm,|=1.1x10"° cm,
andE/AQ —1/2=4. The distanc@ between the impuri-
ties is much greater than in Fig. 4.
100t
50
UM MU UL
1.16 1.23 1.30 1.37 1.44 107 cm
in the geometric-confinement plane is of ordethe hybrid We first examine a nondegenerate electron gas in the

length, and <p. In view of this, the main contribution to the ultraquantum limit. The equilibrium distribution function for
current is provided by electrons moving along the wire’selectrons with a vanishing projection of angular momentum
axis, while the contribution of the electrons at a distanceon the wire’s axis is
from the axis is exponentially smaliexp(—p?%/212)). Hence
we can sepg to zero in the expressiof8) for Q(E,po).

In this case Kr#n's £-function is homogeneous, and we fo(epg)=A ex% T
can averag€42) over the positions of the randomly distrib-
uted impurities_. If the impurity concentration is low, i.e., if \yhere the normalization constant is
for a characteristic momentum of the electron gas we can

2

hQ L
+ I'H-E

] , (59

2m*

write p>#(n;) Y3, wheren; is the impurity concentration, we 8mh2n 70
can linearize the electron transition probabil{@3) in the A=————=  sinh—,
impurity  concentration, with the result thatWgg m*Qy2am*T 2T
= niVV\f;ﬁ,, where\/\lgﬁ, is the probability of elastic scatter-

with n, the electron concentration. In the ultraquantum limit

ing by a single impurity at the origin, (hQ>T), combining(54) and (55 yields

2 a2
w?

B8 VZ 1+ al(112,12- ¢ 411 QY) Aep=ep)- 2e?13TV 7O
(51) 0, ~A———F——71(a)exp — ==/, (56)
m3m* 2n, A 0a? 2T
Bearing all this in mind, we can find(E) using Eq.(47):
. . L)1 where
n; m &
7o) = —|te) P 2 (——n——) 2
2 * X0 2 ’ w 11 xT
Y V2m*7.Q “n T(a):f xe X1+ al| =,z — || dx (57
(52 0 2'2 hQ
where
t(e)= a 53
(&)= T et 1= elh ()’ (53 o.. /0,
andL is the length of the wire. 0.015F
Combining(49), (52), and(53), we find the general ex- T
pression for the conductivity in the present case:
o end [ afo , 3
Tz lem*zﬂifhmz de g [1(2)] 0.005¢
> (elhQ—n—1/2)172 6 T “RQIT
n
X . (54) FIG. 7. Dependence of the longitudinal conductivity of a nondegenerate
1hQ—n—1/2)" 12 electron gas in the ultraquantum limitQ>T with oq=4€?4%n,
; (e ) X[73aZn*2n;2mm* T~ 1.
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o /g where

L

£

3 1 1 5
100f U= n _on 2 Ko
80F V32— ol Q. 2/5/12— ol Q) 2 17O
60¢ -32
20f (62)

06 08 1.0 12 p/rQ wo 1)1

vz(m—z , Ni=Vni,

FIG. 8. Dependence of the longitudinal conductivity @g/#%() in the ul-

traquantum limit. . . .
and 0.5 Q) <uo<1.5:Q, with ug the Fermi level. The dia-

gram representing62) is depicted in Fig. 8.
To estimate the integral it67) we note thak<1 is the Finally, we consider the Shubnikov—de Haas oscillations
region in which the integrand varies substantially, which im-in the longitudinal conductivity of a quantum wire. Estimat-
plies thatx T/#Q < 1. Then for the Riemann zeta function we ing the ratio of the sums i(64) via the Poisson formula by

can use the asymptotic formdfa a method similar to the one used in Ref. 33, we easily obtain
1 1 1 1 8e%h%u
SRENE S
§<2 V6 2 \1+56 8 0w 3m3m*2n,Qa?
Combining(57) and (58), we obtain %
50 1-VRQIp 2 (— 1A cod2mkulhQ— ml4)
r(a)=1+a?—. (59) x = ,
?h QU+ 4|1+ al(1/2,1/2— ulh Q)| 2
The final expression for this limit is 63)
223
Oy AethneT where u is the chemical potential of the electron gas in the
w3\ 2mm* Tm* 2n, Qa2 wire, and
hQ hQ
Xexp| — =] | 1+ a2—|. (60) 2m*kT 1
2T T A= - > . (64)
#Q sinn 272k T/AQ) 2k
The diagram representing this dependence is depicted in Fig.
7. The curve representing the dependencesgf/oy on the

We now turn to the case of a degenerate gas in the ulratio w./wq, where
traquantum limit =0, T=0). If we bear in mind the
asymptotic behavior of the zeta function, E§4) yields 8e?h%u

g9~ ’
2624302 o 11O —1/2)L 372’ m* 2wgn;

mrasm*“N; is depicted in Fig. 9.

o, /o

60}
FIG. 9. Oscillations of the longitudinal conductivity
of a quantum wire with variations of the magnetic
field at u/T=100 andu/% wy=100.
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6. DISCUSSION

1
_ . _ Gy(E)=———. (66)
For a more detailed analysis of the resonance peaks in 1+ 6y

the conductance we consider the form(88) used for esti- . . .
mates. This formula implies thas(E) has a maximum at Let us now find the halfwidth’(E) and the height of the

5=4+2. Then from the estimates in Sec. 4 it follows that '€Sonance peaks @,(E). The maxima irG,(E) are shifted

. - o by &, to the right of the threshold of each step and have an
sin B=1, which means th =(h/A)(7/2+27K), 0 X X )

) A 'S tN@bon, ~ Pon (AIA) (m ™) amplitude AG=1. We wish to find the valueS; at which
with k=0,1,2 . ... This implies that

G,(81)=G,(8,)/2. An estimate of5; by (66) yields »?,

/ with the result thal” (E) ~ y?4 Q. Thus, the halfwidths of all
YN—ng+6—yN—n+ = — (65  peaks inG,(E) are the same, do not depend Bnand are
V2a extremely small.

The condition(65) shows which of the partial transmission Next we examine the behavior of the third term in the
coefficientsT, _, yield a resonance contribution to the con- conductanceGs(E), near a resonances. Since as noted ear-

ductance. Suppose that at an eneEgyN and 5=4,2 are lier, the peaks irGz(E) are due to a resonance in the corre-
fixed) the condition(65) is met for certain values af, and ~ SPONding transmission coefficieft, ., below we examine

n. ThenT, _, provides a resonance contribution to the thirdthe behavior of such coefficients. To the left of the step
term, G3(E) For all other transmission coefﬁmenTglr) threshold, where=1, the transmission coefﬂmenﬂ'sh —n

the quantity\/N—n{)Jré— JN=I"F5 can obviously onIy are of order N+1—n)(1-6)/2(1+cospB) and hence are

satisfy (65) at values ofs not equal to 42. The correspond- small for allny andn with the exception of certain value at

which 8= m/2+ 27k (these values of8 correspond to a

ing resonance contributions of these coefficients are smalle},
resonance, as mentioned eajliérhe line of reasoning used

Note that the peaks from these coefficients can lie either

to the right or left of the resonance point on theaxis. In studyingG,(E) shows that the increasing parts are almost

Clearly, the height of these peaks decreases as we mO\\//e(zartlcal (to the left of a resonance pojnfTo the right of a

away from the point of resonance to the right. Such behaworesonancei point the decreasing parts of the peaks are ap-

of G3(E) is due to the dependence Bfon ny andn, and prOX|mate y described by

differs considerably from the behavior &,(E), where all (N+6-n)?t

transmission coefficients provide a resonance contribution at Tnoan: m- (67)

the same point. The behavior &(E) corresponds to dia- Y

grams built according t¢35) and depicted in Figs. 1la—3a. Let us now find the halfwidth'(E). Clearly, in this case

The detailed structure d&(E) is depicted in Figs. 1b—3b. we also havd'(E)~ y*%(). Since as noted earlier, only one
Let us roughly estimate the numbiy of peaks in the resonance term contributes significantly in the vicinity of

vicinity of a step threshold, wheré<1. Equation(65) im-  each peak irG(E), this is the estimate of the halfwidth in

plies thatNy~ yV2NA/ /. This estimate shows thaty in-  G,(E). Thus, all peaks ifG3(E) are located to the right of

creases with energy in proportion {(E/7% Q) and the distance the step threshold, and their halfwidths are extremely small

between the impurities. A comparison of Figs. 1b—3b showsand depend neither on the energynor on the distancé

that the above conclusion agrees with the behavids ) between the impurities.

near the step threshold. The relationships of Secs. 3—5 were obtained on the as-
Figures 4—6 depict th& vs. A dependence for different sumption that there is strong magnetic quantization, i.e., the

values of E. We see that a&/# () increases, new peaks hybrid length is much less than the effective radius of the

appear, but the old peaks do not change position, and changére. However, the above results concerning the corrections

shape negligibly. Such behavior of the resonance peaks cda Krein's Z-function caused by deviations of impurities

be explained by the fact that each peak originates from onffom the wire’'s axis imply that changes induced by these

of the transmission coefficients, and the contribution of allcorrections in G,+G3; are higher-order corrections

the other peaks to the region where one of them is large is- y?(p//)?. Hence the deviations of impurities from the

insignificant. Moreover, the diagrams imply that the numbemicrostructure axis have no significant effect on the position

of peaks inG(A) increases withA in any neighborhood of and shape of the resonance peak&iik).

the step threshold. Equation(63) suggests that the,, vs. B dependence is
We now estimate the parameters of the peaks. We stadf an oscillatory nature. These oscillations appear when the

with the behavior of the second conductance te@w(E). Fermi level intersects a hybrid-oscillatory level with energy

The term has a maximum at a poifi,<1l such that #Q(n+1/2). Note that since th€) vs. B dependence is

v{(1/2,1- 65) = — 1. To the left of the step threshold, where nonlinear, the peaks of the curve in Fig. 9 are nonuniformly

6 approaches unityG,(E) is of order 1- 6 and hence is spaced.

extremely small, which means that the peak begins at the Now let us discuss the nature of the oscillation maxima

point where§=0, i.e., at the step threshold, and sinfg near the points wherga=7%#Q(n+ 1/2). The dependence of

<1, rises almost vertically to the resonance point, whre the scattering amplitudg x) on the magnetic field near the

= §y. The declining part of the peak can be approximatelypoints whereu=7%(n+ 1/2) has a strong effect on the con-

described by a formula that follows fronf87) for §,<<8§  ductivity, ie., at these points the factor

<1. Then |1+ af(1/2,1/2— n/n.Q)| 2 vanishes, so that the denomina-

'7T
E+27Tk .
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We study the energy spectrum of Bi2223 {B?h, .St Ca ,Cus0,) at high hydrostatic

pressures by Andreev- and tunneling-spectroscopy methods. We determine the gap anisotropy in
the basakb plane and find the following values for the paramet&(): A =42 MV,
andA,;,=19.5mV (T.=110 K anddT./dP=0.16 K/kbar). We detect an increase in the ratio
R=2A 1ax/K T With pressureP; for Bi2223 cuprated R/d P~0.017 kbar*. In the phonon-
frequency region we detect a “softening,” due to pressure, of the high-frequency part of the
phonon spectrum corresponding to “breathing” modes of oxygen, as well as other optical
modes of Cu—O. The characteristic frequencies of the spectrui(®dor 60 mV are found to
decrease, with increasing pressure, at a dalie(%.Q))/dP~ — 6.5+ 0.5x 10" 2 kbar *. This

result explains the observed increase in the ratidkZ.(P) in the model of strong
electron—phonon interaction. @998 American Institute of Physid$51063-776(98)02004-9

1. INTRODUCTION ratio, 2A/kT.=7, and probably ensures the high valueTgf
(see Ref. J. Hence complete information about the mecha-
It is impossible to decipher the pairing mechanisms inyism of highT, superconductivity can only be obtained if
high-T. superconductors without analyzing the excitationye take gap anisotropy into account. For instance, to deter-

spect_rum of the superconductlor over a broad energy ra,ngﬁ1ineA(<p) of cuprates from tunneling-spectroscopy studies,
Junction methods are the main source of such information

) . . . unctions must be created in each crystallographic direction,
especially the tunneling effect i&-1—S structures. In junc- J Y grap

tions with direct conductivity oB-c—S andS—c—N type, the vyhich techn_ologicglly is extremgly difficuft. At the same

spectroscopic characteristics of the superconductor are ofjM€: the anisotropic energy gap in a superconductor and the

served in the Andreev-reflection regifn stands for a su- changes in the gap produced by high pressure can be de-

perconductorg for a constrictionN for a normal metal, and duced from Andreev-reflection measuremehte experi-

| for an insulatoy. In this paper we use both junction regimes ment can involve a singl&-c—N junction and is therefore

to study the effect of pressure on the gap and phonon spectraore promising.

of a bismuth metal oxide, with each regime providing As a result of Andreev reflection from thHe-S inter-

complementary information. face, there is inversion of electrons into holes, with a hole
For isotropic superconductors the theory of electron—reflected in the same direction in which the respective elec-

phonon interaction yields a unique relation between the ratigron had been moving. This leads to a doubling of the junc-

gAlch and the phonon spectrum: as the phopon frequenciggyn conductances(V) at V=0, i.e., G(0)/G(eV>A)~2

increases, &/k T, must decrease, while softening of the pho'(see Refs. 10 and 11Such behavior in the reflection is

non frequer_lues must lead to an Increase in this Ffmbls retained even for large electron incidence angles. As a result,
conclusion is fully corroborated by tunneling experiments at o .

) : ", — if an NS microjunction is prepared on a single crystal,
high pressure, which serve as an additional argument in fa-

vor of the phonon mechanism of superconductidity-ere aAndreev—reercted eleptroqs carry information about the
the gap anisotropy of low-temperature superconductors playé@!ué ofA(k) for all directions of the wave vectdt (see
no important role, since it is rapidly suppressed by elastidRef- 13- Thus, measuring the conductance of a single point
scattering by impuritied. NS junction makes it possible to completely reconstruct the
The situation is different for high~, superconductors. A anisotropyA(k) of the energy gap of the superconductor.
characteristic feature of such superconductors is strong gap In our research we used three types of junction, each
anisotropy? which accounts for the anomalous value of thewith its own advantages in studies of electron—phonon inter-

1063-7761/98/86(4)/8/$15.00 763 © 1998 American Institute of Physics
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actions in high¥t, superconductors. Andreev junctions of the G, rel. units
S-c—N type make it possible to find gap anisotropy of cu- 3.01
prates in theab plane and the reaction of gap anisotropy to
pressure. InS-c—S microjunctions no anisotropy effects 25
were observed, but the junctions proved suitable for the elas | P=0
tic Andreev spectroscopy of phonons at high pressure. Fi
nally, tunnel measurements were found to yield exhaustive
information about phonons but cannot be used to measur
the size of the energy gap and gap anisotropy to high accu 1.3
racy.

2.01

1.01

2. GAP ANISOTROPY

. . 0.5
Information about gap anisotropy and the phonon spec

trum was obtained from the characteristics ®fc—N and
S-c—S microjunctions and tunnes-1-S structures. The ob- 0.0
jects of investigation were  bismuth  cuprates
(Biy.¢Ply 4SSt Ca LCU30,) (95% of the Bi2223 phaseT, -0.5 " L L
=110 K) prepared by the solid-phase synthesis method fron. -150 ~100 -0 0 50 100V, mv
chemically pure oxides. Bismuth ceramic plateX0ll  FiG. 1. The characteristic of the Bi2223—Ag junctitB-c—N) demonstrat-
x0.01 cn? were prepared by subjecting a powder of theing the singularities of the anisotropic energy gap e\=2A; and
Bi2223 phase to a pressure of 30—40 kbar between two ste@V=24; atP=0 and 10 kbar.
anvils. For the bandage supports of the powder being pressed
we used copper wires with a diame@r=0.1-0.2 mm fas-
tened to the anvil surface parallel to each other. As a result dfroke, and this moment was monitored by the change in the
pressure the powder was compacted into dense plane-paraltelsistance of the plate. The resistance of the break junctions
plates with a thicknessl<0.1 mm. The ceramic samples fabricated at room temperature was either metallic or tunnel
with current and potential leads manufactured from a silveiin nature. The stability of the characteristics of the samples
paste were then annealedTat845 °C. made it possible to study the samples at low temperatures
The method of fabrication d8—c—N microjunctions was and high pressures. For spectroscopic measurements we used
based on pressing a fine silver powder into a ceramic matex high-pressure chamber of the piston—cylinder tifpehich
rial. The silver powder with particles of diametde=3 um  contained not only the sample but also pressure and tempera-
was spread over the surface of the ceramic plate and coverédre pickups. To measure the characteristics we used a stan-
with a drop of glue. Then the sample was placed in a hydrodard four-probe circuit. The differential conductance curves
static press and subjected to a pressure of up to 15 kbar. Theere recorded by a circuit with a highly constant modulating
high mobility of the silver powder and hydrostatic pressingvoltage.
resulted in the powder being pressed into the surface of the The characteristic spectrutne., the voltage dependence
cermet, and a stable metallic junction formed. The outer diof G(V)=dIl/dV) for a Bi2223—Ag microjunction is de-
ameter of such a junction was 1-1.5 mm, while the area opicted in Fig. 1. The main features of the spectrum are easily
the spectroscopi&-c—N microjunction estimated by Sharv- reproducible for junctions that differ greatly in their conduc-
in's formula (see Ref. 2 is much smaller, about 18' tance. Note that the position of the local minima in the dy-
—10 *2 cm?. A pure S—c—N junction is probably produced namic conductancéthe resistance peaksit eV=A,=42
when microscopic cracks are formed in the thin microcrys-=0.5 meV (P=0) corresponds to the size of the of the su-
tals of the ceramic plate under shear deformations that agerconducting energy gap,,=40-50 meV of Bi2223 cu-
pear in the pressing process and the simultaneous influx gfrates previously found in tunneling measurements irathe
the silver powder into the cracks. Then, probably, the Sharplane®®® We obtained close values df,,(Bi) from tun-
vin junction is formed at the fracture of a microcrystal alongneling S-1-S spectra. And although, as we will see below,
the (001) or (010 plane. Note that what is measured in this the peaks in the tunneling conductance®t=A are clearly
case are the characteristics of fairly perfect microcrystals ofisible, their considerable smearing made it impossible to
the ceramic material. This is suggested by the high repeatietermine quantitatively the rate of change of the parameter
ability of the Andreev spectra for different junctions. A under pressure. This drawback does not exist for Andreev
In addition to normal-metal—superconductor structuresN'S microjunctions(Fig. 1).
we manufactured and studi&H—S junctions of the break In a series of experiments with microjunctions whose
junction type. Here is a brief description of the method usedesistance differed considerably, the singularities depicted in
in manufacturing such junctions. A thin ceramic plate withFig. 1 ateV=A,,A, were found to occupy the same posi-
current and potential leads was placed on a support mantions, which suggests that the nature of these singularities is
factured from a textolite foil. Then the plate was covered byspectroscopic. Another indication of the relation of these sin-
a thick,d~0.5 mm, layer of varnish. After polymerization of gularities to the superconductivities of cuprates is the tem-
the varnish the substrate was bent until the ceramic platperature dependence &f(T). For instance, the\; vs. T

P = 10 kbar
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A ATV A R(T)/R, Ven/Ves).2? The effect of inhomogeneity of the order pa-

Lar 112 rameter due to structural defects or impurities can also be
ruled out, since the value d, was reproduced in measure-

1.op 110 ments involving a large number of samples. The narrow con-
ductance peak near the zero-bias potential is often observed

0.8r 108 in experiments wittN—S junctions, but its nature has yet to
be explainedsee, e.g., Ref. 19

0.61 10.6 As the pressure growsy;=Ap.ap) increases and,
=Ain(ab) decreases, i.e., the gap anisotropg

04r 104 =Amax/Amin 0€ts stronger, and for Bi2223 the gap-
anisotropy increase rate was found to 8e/dP=0.003

0.2 102 +0.001 kbar!. The critical temperature increase rate was

o 0 found to bedT./dP=16 K/kbar, which yields the rate of

change of the ratioR=2A.@p) /kTe, namely dR/dP

=0.017+0.005 kbar *.

FIG. 2. Temperature curves fdr, (curve1) and A, (curve 2); the solid To get a feeling for the nature of the observed curve, we

curves represgrﬂs(T_)BCS and_ R(T), the superconducting transition of the calculated the conductivitya(V) of a normal-metal—

ceramic material being studied. . . p . . . ..
anisotropic-superconductor microjunction. For simplicity,
we assumed that anisotropy of the energy dam the ab

curve for Bi2223—Ag microjunctions depicted in Fig. 2 is plane is the most important and that the Blonder—Tinkham—

similar to the well-known BCS\(T) curve for the energy Klapwijk parameteiZ is small*® Then

gap of a superconductor. On the hand, the singularity for the 2 a2

small gapA, rapidly flattened out with increasing tempera- G(V)=~1+— do|A(V,e)|?,

ture and had a quite differefhon-BCSnature. Such tem- ™Jo

05 07 09 1l 137/

perature curves foA; andA, of bismuth cuprate were dis- E+il —{(E+il)2—A2}12

cussed by Pashitskiand Pentegd and was observed in the A= A , (1)
experiments of Maet al!® involving IR-spectroscopy with

high angular resolution. where A=|A(¢)|, and the Dines parametér accounts for

The characteristic features of the resulting spe(fig. the smearing of the singularity in the Gor'’kov anomalous
1) are sharp dips in dynamic conductance whose position§reen’s function. The dependence of the paramgten the
are related to the energy gan. We believe that these dips azimuthal anglep in theab plane was approximated by the
are a manifestation of an effect accompanying Andreev reformula
flection and due to the high degree of locality of the feed
current of a Sharvin microjunction. Earlier it was noted that  A(¢)=A, 1+2 Cy cog2¢Kk) |, 2
in cuprates, as well as in ordinary superconducfaiaclud- k
ing superconductors with heavy fermidfisthe dynamic re-  which makes it possible to allow fa andd-pairing effects
sistance ofN—S junctions under a bias voltagé=Vy may  simultaneously. The paramete® in (2) were selected so
exhibit peaks, withVy related toA by Vq~A/e. The tem-  that the results provided bil) would reasonably fit the ex-
perature dependence of a peak/gtwas found to follow the  perimentalG(V) dependencéFig. 1). Equation(1) for cal-
temperature dependence &(T). culating the functiorG(V) reflected the main features of the
The resistance peak in the dynamic characteristics oéxperimental curvéFig. 1) for eV=2A (with the exception
metallic N-S junctions results from nonequilibrium pro- of the peak at small bias voltagesvhich made it possible to
cesses at quasiparticle energiesV22eVy~2A (Ref. 1§  relate the singularities of the observed spectrum ofNig
or at high measuring current densitf8s.” What is important  junction to the anisotropy of the energy gage) of the
here is that irrespective of the specific mechanism of singusuperconductor.
larity formulation in the spectrum at=V,, the relationship It is currently believed that the values df, and R
of this singularity to the sized of the energy gap of the =2A/kT, in cuprates are high as a result of substantial an-
superconductor yields the convenient possibility of quantitaisotropy of the energy gap in theb plane®’ The observed
tively following the changes ik (¢) induced by hydrostatic increase in the rati® and in gap anisotropy at high pressure
pressure. agrees with these ideas. Still, this is not an argument in favor
By analyzing the experimental curves, we found that theof the nonphonon mechanism of superconductivity, since ap-
break ateV=A, (Fig. 1) is probably a reflection of the gap preciable gap anisotropy amdwave superconductivity may
anisotropy in cuprates in thab plane. The singularity at also be possible for a modified electron—phonon pairing
eV=A, cannot be related to the energy gap in themechanisnsee, e.g., Ref. 20
c-direction, since in this direction the Fermi velocl in
metal oxides is of order £0cm/s, which is much less than
the Fermi velocity in silverVg,~10® cm/s. Hence the ef-
fectiveness of Andreev reflection in the direction of the The unusual symmetry of the order parameter in high-
axis must drop considerablipy a factor of approximately is corroborated by numerous experiments, but still electron—

3. PHONON SPECTRUM
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phonon interactions play an important role in pairfigl =23 G, rel. units
The phonon spectrum of cuprates extends to 100 mV and, as o.gE
previous research has shofi?! there is strong coupling L
between electrons and high-energy phonons. In the presen 0.4r

paper this is corroborated by experiments in elastic SPectros- ; o units

copy of the electron—phonon interaction $-c—S micro- 0'0: 1
junctions of the Andreev type and in tunri@t —-S samples. 1.0k _0.4kF 2

Tunnel investigations of ordinary superconductors at ' o ;
high pressure demonstrate beyond any doubt that the devia 50 100 150 zogy m\Z/SO

tion of the ratioR=2A/kT, from the universal BCS value 08f

R=3.53 is due to strong electron—phonon interacfibin

anisotropic highf; superconductors, there is no universal

relation between the maximum energy gafd,2x and the

transition temperatur@.. However, one can expect an ap-

preciable contribution from electron—phonon interactions to ¢ 4|

the ratioR=2A /KT, for the nonphonon pairing mecha-

nism. As in the case of ordinary superconductors, this con-

tribution shows up at high pressure, since the phonon fre-0.2

guencies contribute the most to variations of the r&{®)

with pressurgthese frequencies comprise the lower part of I 4A

the bosonic spectrum of cuprate$he greatest contribution

to superconductivity is provided by phonons with large vec- _2*00 ~ 1‘00 160 260

tors q~m/a, wherea is the lattice constant. These are the V. mv

phonons detected by junction methods and neutron spectros-

copy methodé:z Hence the information aboub(P) ob- F[G.:»_’. Eff_ect of gap singula}rities'in the conductance of the Bi2223_—Bi2223
. . microjunction (S—-c—S). The inset illustrates the effect of hydrostatic pres-

tained V'_a these_me_th()ds reflects the essence of the eIeCtrOIgu_re on the position of the singularity @V=2A in the spectrum: curvé

phonon interaction in superconductors more accurately thagyrresponds to a pressufe=0, and curve2 to a pressuré®= 10 kbar.

the Raman spectroscopy method, which determines the pho-

non frequenciesvy only atq=0, i.e., at the center of the

Brillouin zone. Figure 3 depictsa(V) for an S—c—S junction, demon-

The elastic Andreev spectroscopy of bismuth metal oxstrating the emergence of an energy gap eAf=2A

ide involved usingS-c—Sjunctions, which made it possible =114 meV (T=77 K). The observed discrepancy in the val-

to simultaneously determine the ratid T, and the shift yes of the energy gap parameter for Bi2223 obtained from

of phOﬂOﬂ frequencie&;(P) for different pressures. The fea- measurements of aB—-c—N junction (A:42 mV) and an

sibility of such spectroscopy in Andreev-type junctions isS—c—S junction (A=57 mV) may be related to partial sup-

based on the fact that for strong electron—phonon interactiorpression of the order parameter and 8\ interface due to

the dynamic conductance “feels” the frequency depen- the proximity effect. As in the case of @-c—N junction,

dence of the complex-valued gap functidfw) (see Ref.  the temperature dependentéT) of an S-c—Sjunction cor-

T

[

25): responds to the BCS curve. Note that here there is no singu-
’ larity corresponding to the small energy gap, which is
G a _1 14 A(w) probably due to the special features of multiple Andreev re-
dv Ry fo+[(hw)2—A%(w)]*? w_ewﬁ’ flection of an electron between two anisotropic

3) superconductor®
At bias voltagesV higher than 2, the conductance of

whereRy is the resistance of the junction in the normal statethe S-c—S was found to exhibit singularities, which can be
From (3) it follows that the derivativaelG/dV of S-c—N and interpreted as a reflection of the phonon structure of the
S—c-Sjunctions reflects the behavior &f{ ) and hence the metal oxide being investigate@ig. 4. The spectroscopic
phonon spectrum of the superconductor. Bsic—S junc-  nature of these curves appears to be proved by the fact that
tions the singularities in the conductanG due to strong for different junctions, either with tunneling conduction or
electron—phonon interaction ought to show up at biasés with direct conduction, the arrangement of the singularities
=fhw;+2A, wherew; are the characteristic frequencies of in the conductance measured from the sum of the energy
the phonon density of statéq w). gaps, 4, was the same. To establish the nature of the pho-

We measured break-junctioB-c—S junctions whose non structure in the spectra of Andreev-type junctions, we
metallic nature was monitored both by the temperature deealculated the junction conductance with E8), where the
pendence of their conductance and by the weak reaction a@fomplex-valued gap parameter for cuprat®éew), was de-
G(0) of the junctions to pressure. At low temperatuiles termined from the solution of the Eliashberg equations for
<T,, the current—voltage characteristics®fc—S samples the phonon density of statéq w) of Bi2223 (see Ref. 2
had excess current, which is a true sign of junctions withThe value of the electron—phonon coupling constaf(tw)
direct conductance. in the functiong(w) = &?(w)F(w) was found by the method
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The effect of 10 kbar on the structure of the second de-
rivative of current of one of the Andrees~c—S junctions is
shown in Fig. 4. The initial region of the phonon spectrum of
Bi2223 changes little under pressuck)n(w)/dP=(1—1.5)

x 1073 kbar ! (this agrees with the Raman spectroscopy
data in Refs. 21 and 28The most significant changes take

P = 10 kbar

o "2 place in the high-frequency part of the spectrumfat

’§ " = 70—95 meV, where pressure is found to considerably re-
z4 duce the phonon energy at a raté In(w)/dP=-6

= X102 kbar *.

'g -6 Although the results of elastic Andreev spectroscopy at
=0 high pressures can easily be reproduced, this method has not

gained wide acceptance, in contrast to tunneling spectros-
copy. This fact stimulated similar tunnel investigations.
Comparative analysis of the effect of high pressure on the
_1ok phonon spectrum of the metal oxide conducted in conjunc-

| “’(O)T tion with the data obtained by the Andreev and tunneling
-14 X , ) X ) spectroscopy methods greatly increases the credibility of the
20 40 60 80 100 120 results.

v-28my For the tunnel current in isotropic superconductors we

FIG. 4. The spectrum adG/dV in S-c-Sjunctions of the Andreev type at Can write

zero and finite pressure. The arrows indicate singularities of the curves that
proved to be pressure-sensitive. | ho
G(V)=— ~N(w)=Re
2 2 1/2’
IVl ev-r [(hw)®—A%(w)]"
4

developed in Ref. 27, while the electron—phonon coupling

constanfA was found by requiring that the calculated transi-where the complex-valued energy gafpw) of the supercon-
tion temperature match the experimental valuelof At A ductors has singularities at frequenctas=A,+#{) corre-
~3.3 and the value 0.1 for the Coulomb coupling constansponding to virtual phonons with an ener§j$). HereA is
u*=0.1, thecalculated value of . was found to be 110 K the BCS gap, anlll(w) is the tunnel density of states. In the
(the corresponding isotropic energy gap was found to be derivative of the tunnel conductancdG/dV, the phonon
22 me\). We see(Fig. 5 that the general structures of the structure manifests itself in the form of dips, whose positions
observed and calculated featuresd@/dV agree. The coin- give the phonon frequencies to high accuracyor
cident locations and similarity of the phonon features in theS-1-S junctions, such singularities appear at biagd4
Andreev(Fig. 4) and tunnelingFig. 6) spectra make it pos- =2A,+%);. As shown in Ref. 29, the conditiorV,
sible to ignore the possible distortions in the conductance of=2(A)+#; (where (A) is an “average” gap remains
S-c-Sjunctions related to inelastic procesges. valid for strongly anisotropic superconductofBi2223 is

0.0 4 0.0

[2) 2
g <
o 9' FIG. 5. Comparative characteristics of the experimental and calcu-
%’ 3 lated curves for a bismuth metal oxide: cutveepresentsiG/dV
3 NI reconstructed fromy?F(w), curve 2 represents the experimental
= 3 behavior ofdG/dV, and curve3 represents the behavior of the

0.1 —0.1 . . .

density of state§ (w) for a bismuth metal oxidé®
———mli
-0.2 N 1 N 1 . L i L " 1 -0.2
0 20 40 60 80 100

R = elVl - 24
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FIG. 6. dG/dV of a tunnel Bi2223—-Bi2223 break junction Bt=0 (curve
2) and 10 kbar(curve 1).

such a superconducyorThis makes it possible to determine

the energies of the characteristic phonon frequenQigsf
an anisotropic superconductor by measuring the tunndion of the featuregif units of measurement along the hori-
dG/dV spectra.
The inset in Fig. 7 depicts the behavior@&=dl/dV for
an S-1-S junction with an energy gap aeV=2A
=75 meV. Similar values of & for the bismuth metal oxide
with T,=110 K have been obtained by Kane and N\ghe
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observed smearing of the gap characteristics is inherent in
tunnel highT . superconductots and emerge in high-quality
junctions because of substantial anisotropyAifk). How-
ever, this anisotropy does not prevent the phonon structure in
the tunnel spectrum from being detected, since the character-
istic values of phonon frequencies are linked to a certain
average valugA) (see Ref. 28

To establish the extent to which the spectrum of the
tunnel sample reflects the bulk properties of the ceramic ma-
terial, we measured the temperature depend&{d@ junc-
tion conductance at zero bias. By comparing this behavior
with R(T) for the transition of the ceramic material to the
superconducting staté-ig. 7), we found that the point at
which the resistancB(T) disappears is essentially the same
as the break irG(T) for the junction, which corresponds to
the point at which the energy gap of the superconductor be-
gins. In this case the spectroscopic characteristics of the
junction are determined by the macroscopic properties of the
sample.

At bias voltage®V higher than A, the derivative of the
junction conductancd G/dV=d?I/dV? exhibits features re-
lated to the phonon structure of the metal oxideg. 6).
Comparison of thelG/dV spectra of a tunneb—1-S break
junction and Andree\s—-c—S microjunctions showsFigs. 4
and 6 that the curves coincide in both the number and loca-

zontal axes are the samé;-2A). This points to the same
nature of the two spectra. According to Ref. 26, the phonon
spectrum of Bi2223 cuts off in the vicinity of 80—90 meV,
while the tunnel characteristics and the Andreev-reflection
spectra demonstrate the existence of a feature\at 2A

1.0
0.8 FIG. 7. Temperature dependence of the conduct&aef a
tunnel Bi2223-Bi2223 junction at zero bias, aR{T), the
superconducting transition of the ceramic material being stud-
ied. The inset illustrates the effect of the energy dapn the
0.6 2 conductance of the tunnel junction Rt=0 and 10 kbar.
5
®
ad
04
0.2
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= 90—95 meV. Note that for tunnes-1-S and Andree\S— A characteristic feature of ordinary electron—phonon in-
c—Sjunctions, results with coincidingin location character- teractions in superconductors is an increase in the frequency
istic phonon frequencies were obtained despite the fact thaf the phonon modesy,, with increasing pressuré.A rare
for the S-C-S junction the parameter 2=2A,.  €xception here is lanthanum, for which softening of the low-
=114 meV is much larger than in tunnel junctionsA(2 frequency part of the spectrum is observed. In our case we
= 70—84 meV). detected a softening of the high-frequency phonon modes
Applying hydrostatic pressure up to 10 kbar introducedwith wave vectors at the edge of the Brillouin zone. A simi-
no significant changes in the tunnel value of the gap, whichar effect of softening of the edge LO phonon modes under
is probably due to the large smearing of the average tunneloping was observed in YBCO, LaSrCuO, and BaKBiO by
density of stateginset in Fig. 7. Note that the change in employing the inelastic neutron scattering method. In
location of the beginning of the tunnel gépig. 7) induced La,_,Sr,CuQy, the energy {,0) of the phonon mode was
by applying pressure is essentially the same as the pressui@nd to decrease from 79 meV at=0 to 70 meV at
dependence of the transition temperatligéP) of the junc- x=0.15 (Ref. 31); a similar mode in YBgCu;0;_, was
tion edges, at a rate InT,/dP=1.4x 102 kbar 1. found to soften from 77 meV at=1 (T.=0) to 58 meV at
Figure 6 depicts the effect of pressure on the features of=0 (T.=92 K) (Ref. 22; in Bi,Sr(Ca _4Y)CW,Og sig-
the spectrum of Bi2223. As in the case of Andreev-typenificant softening of the ion modes was observed aaried
junctions, the high-frequency part of the spectrum redr from 1 to 0 (T.=82K) (Ref. 32. In all these cases the
~90 meV proved to be the most sensitive to pressure. Thigicrease in the transition temperature of cuprates was accom-
part is probably related to the vibrational modes of oxygerpanied by a decreasésoftening in the high-frequency
and its environment, and in particular to “breathing” modes. modes of the phonon spectrum. We observed a similar ef-
As the pressure rises, the rate of shift of the mad#epicted fect: an increase i, accompanied by an increase in pres-
in Fig. 6 by an arrow is negative and amounts tosure is accompanied by a decrease in the energy of the upper
d In(w)/dP~—6.5+0.5x 102 kbar . At the same time, frequencies of the phonon spectrum. Hence it is possible that
the lower part of the phonon spectrumig <40 meV) shifts  the microscopic reasons for the softening of the phonon
at a rated In(w)/dP~1x10 3 kbar ! toward higher fre- modes under pressure and under concentration variations are
guencies. These data fully agree with the above results fahe same.
Andreev spectra. The superconducting properties of cuprates manifest
Our results concerning the variation of the characteristithemselves at the edge of the Mott metal—insulator
phonon frequencies with pressure make it possible to calcuransition®® In view of the hypothesis concerning the univer-
late the effect of pressure on the ratid /X T, in cuprates in  sal nature of this transition, the reaction of the critical tem-
the strong electron—phonon interaction approximation. Theeraturel ;. to pressurd® and concentration of impurities is
calculation were done according to the method describedetermined by a function of a dimensionless paramater
above, where the variation of the functiéi{w) with pres-  characterizing the closeness of the system to the phase tran-
sure was found with allowance for the experimental valuesition point, at whichx=x.. In this region, the difference
of w(P). The calculated variation of the ratlR=2A/kT, x—x.=P/P.+C/C., whereP. andC, are parameters char-
under pressure was found to b&=[R(P)—R(0)]/R(0) acterizing the effect of pressure and impurity concentration
=0.018, which is very close to the experimental valueon the correlation length.

6=0.017 and the valué=0.02 obtained via the Glé&kman— Recently the significant softening of the edge optical
Kresin formuld phonon modes near a metal—insulator junction has been
2 computer-simulated in the two-band model of the Peierls—
2A max T wo ; iart
=C|1+5.3—| In|=— (5) Hubbard Hamiltonian” The results show that the reason for
KTe @o Te such softening may be electron—electron correlations, which

with the characteristic phonon frequeney of the breathing make it profitable for the energy of the high-frequency LO
mode being equal to 75 meV. He@£A) is a constant whose 0xygen modes to decrease.
value is determined by the gap anisotropy functib(k) We note, finally, that the observed decrease in the fre-
(see, e.g., Ref. 30In the isotropic BCS theoryC=3.53. quencies of the upper part of the phonon spectrum explains
the increase in the ratio&,,,/kT.(P) irrespective of the
nature of the effect. Actually, agreement with the experimen-
4. CONCLUSIONS tal rgsults is ach!eved if we use a simple genera_lization of the
Geilikman—Kresin equatior(5), where C=C(k) is a con-
Our experimental results indicate that in the Bi2223 cu-stant determined by the anisotropic pairing mechanism in
prate, the high-frequency phonons, related to optical vibracuprates in the weak coupling linfit.The parameteA in (5)
tions of oxygen atoms and its environment, undergo thds equal to the maximum value &f(k), or A,... The char-
greatest change when pressure is applied. These frequenceseristic phonon frequenay, is the breathing mode, whose
correspond to energies of 70—95 MeV and, in particular, teenergy% w, decreases under pressure at a thie(w)/dP=
the breathing mode dtw= 70—75 meV. The acoustic and —6x10"2 kbar . This means that essentially the entire ob-
optical modes of the phonon spectrum with energieserved increase in the ratia\2,,,/k T, under pressure is due
hw<40 meV shift toward higher frequencies at a rate closdo the strong electron—phonon interaction.
to the values provided by Raman spectroscopy tzf. One of the author$V. M. S)) is grateful to Dr. C. Lobb
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The components of the ballistic magnetoconductance tensor of a two-dimensional electron gas
placed on a cylindrical sector are calculated for various geometries. For a quasiclassical

system a method is proposed for finding the conductance based only on the Bohr—Sommerfeld
quantization condition and not requiring a knowledge of the matrix elements of the

velocity. The effect of curvature of the surface on the spin—orbit interaction in a two-
dimensional electron gas is investigated. As examples, the microwave absorption and longitudinal
conductance of a hollow cylindrical wire are calculated, and also the conductance of a

cylindrical sector. There are qualitative differences from planar systems, in particular the relative
sign of the curvature and the spin—orbit coupling constant becomes importarit99®

American Institute of Physic§S1063-776(98)02104-(

1. INTRODUCTION The situation is, however, significantly simplified for a
surface of constant curvatufephere, circular cylindér In

Nonplanar two-dimensional electron systems have atthis case, it is possible at once to write down the two-
tracted interest for a number of years. Experiments have bee&fimensional Laplace operator in the corresponding coordi-
performed on faceted surfaces of GaAs/AlGaAs structuremates since the adiabatic potential arising in the transition
containing a two-dimensional electron dadn this case, the from the three-dimensional problem reduces to a constant. In
gas occupies a region consisting of planar segments orientebe present work we consider the spectrum and ballistic con-
differently in spacein the experiment, relative to an external ductance of a two-dimensional electron gas on the surface of
magnetic field Recently it has become possibley using  a cylindrical sector. Such a system is the closest to that re-
special techniqueslift-off ) to separate a thin layer of the alized experimentally by the lift-off methctdThe main ef-
GaAs/AlGaAs heterojunction together with the two- fect consists of an effective variation of the normal compo-
dimensional electron gas and bend it up to angles on theent of the magnetic field, which is all that the two-
order of 180°. A number of works have theoretically exam-dimensional electron “sees.” The Landau levels split, and
ined the spectrum of a curved two-dimensional electrorthis leads to the observed changes in the ballistic transport in
gas?’its plasma mode$magnetotransport! etc. comparison with a planar structure.

Going over to the model of low-dimensional electrons Less trivial is the effect of curvature on the spin-orbit
on a curved manifolda surface or contoliis not a trivial  component of the total Hamiltonian of the two-dimensional
procedure. In classical mechanics the problem reduces sinparticle. The mathematical reason for this lies, naturally, in
ply to introducing couplings which reduce the effective num-the behavior of spinors in a curved space. In the present
ber of degrees of freedom, and therefore from the “verypaper we discuss the physical consequences of the effect of
outset” can make use of curvilinear coordinates. In the quaneurvature on the spin—orbit coupling of two-dimensional
tum problem we must speak of waveguides, one or two charelectrons located on the surface of a circular cylinder or cy-
acteristic dimensions of which become much smaller than allindrical sector.
the remaining lengths of the problem, and the wave equation
must be transformed in the spirit of the adiabatic approxima-
tion (the degrees of freedom separate into fast and)slow 2. ELECTRON SPECTRUM IN CROSSED FIELDS AND THE

. ; . ; . 7T HALL CONDUCTIVITY (INTERNAL STATES)
this case an adiabatic potential of geometrical origin arises.
As far as we know, this question was first discussed by da The investigated system consists of a sectapy<¢
Kostal® We showed in Ref. 11 for the case of an electric< ¢, of a circular cylinder of radiu® in a uniform magnetic
ring that the result depends on the method of “one-field B acting in the plane perpendicular to the axis of the
dimensionalization.” Thus, the system preserves its memorgylinder (we choose the axis to coincide with this axjsWe
of the shape of th@-dimensional waveguide, or more gen- restrict the discussion to the case in which the magnetic field
erally, of the potential limiting the motion of the is directed along the& axis which passes through the top of
n-dimensional particle, from which in the limit an the sector(see Fig. 1L An electric fieldF transverse td,
(n—1)-dimensional wave equation arisghis circumstance directed along the arfc— ¢q, 0], is also applied to the sys-
was overlooked in Ref. 20 tem (it is assumed that the poles of the battery are connected

1063-7761/98/86(4)/9/$15.00 771 © 1998 American Institute of Physics
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_ Golg Jko g fF(EX(p)) 5
x(B) / " 2R T kg P V1-p2la/R?

(Go=2€?/h is the conductance quantimExpression(5)
can also be found from Kubo’s linear formula. Indeed, in the
absence of scattering the Kubo formula yields the following
expression foiGy :

\ 262 (l’} )B’B(Pﬂﬁ’f(E(O))
0, Gu=——T > — g 6)
Po B #B E,Byﬁ'

Herev,=p,/m+QR sin¢ is the operator of the compo-

nent of the veIocity,E(;)ﬁ,: EQ - E(ﬁo,); and B8’ # B means

thatng #ng (the matrix elements of the operatarsand ¢

are diagonal ip,). The sum over3’ in Eq. (6) is propor-

to the end-faces forming the sectpr + ¢,). We choose the tional to the correction of first-order perturbation theg¢ag

vector potential of the magnetic fieRl=(B,0,0) in the form the perturbation we consider the interaction with the electric

A=(0,0BYy) and use cylindrical coordinatep € R, ¢,2). field eRFy) to the diagonal matrix element of the operator
Separating out the motion along thexis in the form of ;. This allows us to prove the equivalence of expressions

a plane wavd ¥ = y(¢)exp(p,2)/\L, whereL is length of (6) and (5).

FIG. 1. Cylindrical sector in a magnetic field.

the systemy we arrive at the one-dimensional Sctiirger In the ultraquantum limitwhen only the lower Landau
equation(we neglect the electron spin band is populated, i.en=0, which is possible for cog,
1 Py >1/3) we find from Eq.(5) for T=0
_MZW"’[eFR@‘l'Ueﬁ(ﬁD;pz)]lﬂ:Elﬂy D arcsir(sin ¢o— ¢ov/2)

GH:GO 1-

: 7
where U ¢(¢;p,) =mQO?R¥(sin ¢+ pJ3/R)%/2 is the effective ®o
potential energy{)=eB/mc is the cyclotron frequency, and wherev=2wNSI§ is the filling factor and\; is the surface
Ig=+c/eB is the magnetic length. We further assumg  carrier density. Fopy<1 we have from Eq(7)

</2 and we sefi=1. First we examine the energy spec- Gro? 3

trum of the electrons withp,|<ko=R sin ¢y/I3. This in- GH:NSeC+ 0%0 [1_( — K) } ®)
equality means that the suspension point of the Landau os- B 12 2

cillator lies inside the sectdt‘internal” states. In a strong  The second term on the right in E®) is the correction to
magnetic field g<R, it is possible to expand the potential in the curvature.

Eq. (1) near its minimum¢!(=arc§ianI§/R). In this (para- If more than one Landau band is filled, it is necessary to
bolic) approximation Eq(1) is easily solved, and we find the gifferentiate cases of overlapping and non-overlapping
following expression for the energy: bands. In general, foF=0 Eq.(5) yields the following ex-
1 pzlé e2F2 pression forGy :
Eg(F)=Q n+ 3 —eFRarcsir( )——2, (2 ; 2
2 R 2mQ arcsiny1—(Eg/e
k GH:GOEn‘, (1— " (PO( Flen)) H(Sﬁ—Eé)}

0,=QJ1-p2§/R?, B=(n,p,), n=0,1,2,...(3

i 1 _ 2
This result is quite transparent: we obtain the Landau spec- 1— arcsiny1=(Ee/en)”) g(sﬁ_Eg)), 9
trum in crossed electric and magnetic fields with local value %o

of the normal component of the magnetic fieBy  whereE; is the Fermi energys,=Q(n+1/2), and6(x) is
=B cosey. the Heaviside step function. Similarly, it is possible to find

Knowing the energy spectrum, it is not hard to find thean expression for the surface concentration as a function of
Hall currentj, in the ballistic regime. Toward this end it is Er:

necessary, following the method expounded in the classic

. . 1 E 2
work of Adams and Holsteif? to sum up the veIocny. of the Ne=—5— 3 1 sinep— \/1— F 0(s2— E2)
Landau state g(F)=dEg(F)/dp, over all levels weighted 7lgeg “h &n
by the equilibrium Fermi distribution functiof(E$): =
. F 2 2
2¢e X 6| sin @0—\/1—(—) a(sn—EF)). (10
P (0) €
2=~ Rgar 2 VA(PIIES), (@) n

In order to findGy(B;Ny), it is necessary to expreks with
whereE%o)EEﬁ(O), thefactor 2 takes spin degeneracy into the help of Eq(10) in terms ofNg and substitute this result
account, and Rgy is the arc length of the sector. Substitut- into expressior(9). In general, this program cannot be car-
ing Eq. (2) into Eq. (4), we find for the contribution of the ried out analytically(in contrast to a planar, unbounded two-
internal states to the Hall conductanGg=o,,=j,/F: dimensional gas, wher&,=Gyv/2=N.ecdB). The situa-
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G,/G, 3. ACCOUNT OF BOUNDARY STATES
-
10 The foregoing treatment pertains obviously to the case
when the parameter= (I3 /R¢,)? is small. To take account
8t G /2 of boundary states it is necessary to solve the Stihger
equation for arbitrary, and also to lift the restrictiofp,]|
LS <kg. The Hall conductance in the linear approximatiorin
or can be found if the quantityEz(F)/JF|¢_o is known. In-
deed, integrating by parts with respectggin the general
al 13 formula (4), we arrive at the following expression:
1.0 e 0 JE (F of E(O)
g 3 |t T T
2 ¢,—0 Po n J-e F=0 r
(14
. . . ‘ IEY
0 01 02 03 04 05 O=—F (15)

v - [}
1/B, 1T B op,

FIG. 2. Magnetic-field dependence of the Hall conductance for a cyIindricaIWhere'““ is the Chem'_cal _pOtentlal' NOte_ that the formula of

sector. The straight line corresponds to a flat strip. type (14) for the contribution of only the internal stat@son-
sidered in the previous sectipoontains in addition a term
outside the integral, arising from the finiteness of the inte-

. o . . _ gration region ovep,:
tion simplifies somewhat when the Fermi level is found in

the group of non-intersecting bands. The bands with numbers . e ko
I . = > “ dpy(py)
—Ro

[=0,1,...,, ng+1 are separated from one another by gaps if H " 27Rpg 5
no+1/2 No+3/2 JEn(p;F)|  IFEL(p)
<COS < ———=. (11 X
No+3/2 No+5/2 F o, I
The remaining bands with=n,+ 1 overlap. Condition§11) IEq(ko;F) 0)
follow from the inequalities maky), )=min(Ey),) and T2 F:of(En (ko)) - (16)

0 (0 ; efiag i "
max(EﬁO))sr.nm((E)go)H). Thus, if ¢o satisfies inequalitie€l1) Employing the spectrun®), it is hence easy to obtain again
and Er=min(E; . 5)= coseo(no+5/2), then we have the eypression(s).
case where the Fermi level lies in the group of non- In what follows, we limit the discussion to the case in
overlapping bands. In this case,bands are filledfrom the  which the temperature is equal to zero. In this cateu
zeroth to the (n—1)-th) and themth band is partially filled. — §(E{”(p,) —Ef) [where Er=u(T=0) is the Fermi en-
Then from Eq.(10) we find V1— (Eg/ey,)?=(m+1)sin¢ ergy| and integration ovep, gives
—vgy/2, and correspondingly foB,,?

Gy= > sign(v” (ki (Ef)))
arcsin((m-+1)sin eg— eor/2) " 27Rey A o
%o aEn(kn,i(EF);F)
- 17
The correction to the curvature for smal} in this case has F=0

the form (meg<<1) wherek,, ;(Eg) are the roots of the equation
Nec Gool v\3 Ex)(p,) =Ek. (18
W Tg T 1 |(MPD—{mEl=F) 13 Let us calculate the quantities” anddE,,/dF|r_ en-

tering into expressiolil7), in the quasiclassical approxima-
The filling here is such tham<wv/2<m+1. For arbitrary tion. The energy spectrum is found from the Bohr—
bending angles, the system of equati¢@s and (10) was  Sommerfeld quantization rule:
solved numerically. The dependence of the Hall conductance s
on the magnetic field for fixed concentratidhy for sectors Rf doV2m[E—Ugx(@;p,) —eFRp]=m(n+ 7).
with different angles is plotted in Fig. 2. Instead of the e1
straight-line dependence characterizing planar systepgs ( (19)
=0), the B-dependence ofsy for a curved surface has Here ¢, =max(g,—¢g), 2=min(¢; ,¢o), Whereg, , are the
cusps at values of the magnetic field corresponding to tanturning points[roots of the integrand in Eq19)]. We as-
gency of the Fermi level with the tops of the Landau bandsume that at the boundaries of the se¢atrthe pointst ¢)
Eﬁo)(p2=0)=sn. there is an infinitely high barrier—a “hard wall.” The value
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£tk v{9(p,) = QR
257y e y | EP (P2), P+ (Pl YR P(EY (p) po)
204 I2(ED(p,).p,) '
(21)
1.5k o 9 o . .
%'1 In expressiong20) and (21) we have introduced the func-
N S 7 tions 1(9;
B T < E .
1.0+ £ Ej F
-4
< 0 R(®
0.5t P R =0 I(S)(E’k):J zd(P#, (22)
. - e1 VE=Uerl(@;K)
0 it L 1 A i
-100 -60 -20 20 60 100 WhereR(l): sin ©, R(z): 1, andR(3): .
k-Rep Substituting Egs(20) and (21) into Eq. (17), we finally
FIG. 3. Energy spectrum for a sector wighy=1.3; the first three Landau find for the Hall conductance
zones. 2
K il
-9 iarl 1V _ B (2
Gy Dg & sign 'Y (Eg . ky i)+ R |
of the parametety depends on the positions of the turning (3)
i aiiing elthiat oagy . 15)(Er kn))
points: y=1/2 if the turning points lie inside the sector, i.e., X(Ep ki) | e - (23
o, <o and e, > — ¢q; y=3/4 if for the given energf the ) P(ER Kn i)

particle reaches one of the boundaries of the sample,yand
=1 for the “passing” particles, when the turning points lie

atg="—go andp=g,. There is aquite complicated proce- upon the conductance from E@®3). The proposed method
dure, proposed by Langé&t allowing one to smooth out the ) . . :
allows one to avoid calculating velocity matrix elemefds

jumps iny. Our numerical calculation shows that even for . ) : . R .
. : is required in the Kubo formulisjn which in turn requires

n=0 (when the effect of the phase ofis maximun) the : :

. , that we know the wave functions. Instead, with the proposed
difference between the results of Langer's method and cal- L .- i

) method it is sufficient to use just the Bohr—Sommerfeld

culations for y=const=1/2 does not exceed 10%. On the equation defining the energy levels and to calculate the inte
other hand, the jumps i at the hard wall are obviously not q g 9y

(s)
due to curvature. Therefore, being interested mainly in theqraISI ' . .
. ; o Results of numerical calculations of the dependence of
effects of curvature, in what follows we will, for simplicity, the Hall conductance on the Fermi enerav for a sector with
write the Bohr—Sommerfeld conditions with constargqual 9y

to 1/2. For illustration, Fig. 3 plots the dispersion curves,:";ﬁ:aln;‘lga cS)S:VZErI\?eEIfgdrAf:flzto gtfiorr;?ivniﬁr?(hi@;o‘lb plots
Eﬁo)(pz) for a sector withgy=1.3 for d=0.01, obtained 9 b > o

numerically in the quasiclassical approximation —0, 2Rpy=d). The solid curves in both figures correspond

. L . ) to the casex—0. In this limit the edge states are unimpor-
Differentiating Eq.(19) with respect toF, we find tant, and the problem admits the analytical solution given by

Setting E=E¢ in the Bohr—Sommerfeld condition foF
=0, we find numerically the quantitidg, {(Eg) and there-

JE, eRIPEL (p,),p,) expression$9). Here the role of curvature is especially clear:
OF = I(Z)(E(O)(p py) (20 the magnetic field acting on the two-dimensional electrons
F=0 n e becomes effectively inhomogeneous. As a result, instead of
Similarly, differentiating Eq.(19) with respect top, for F vertical steps, as in the case of a plane wave, a cylindrical
=0, we arrive at an expression fof”(p,): sector is characterized by smoothed step&i{Er).
G,/G,
2.5¢
2.0t
1.5¢F FIG. 4. Curves of the dependence of the Hall
conductance on the Fermi energy for different
LoF values of the parameter; a) cylindrical sector
’ with ¢y=1, b) flat strip of the same width.
0.5f
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G., /Gy where ,(z; ¢) are the oscillator eigenfunctiorni® is a pa-
or rametey, we arrive in the usual way at the equation for
xn(@) containing the adiabatic potential:
5 1 P - 1 -
- —— — 4+ Jw?+ 07 cod + = = .
L MR 3(,02 w CosS ¢ | N 2 Xn Xn
4k (27
In the spirit of the adiabatic approximation, the nondiagonal
3r terms inn describing transitions between the adiabatic terms
have been dropped in EQR7).
2r Now, to find the ballistic conductandg,,,, we need to

find the transmission coefficients, of the b;r('prier figuring in

I+ Eq. (27). In the quasiclassical approximation the coefficients
T, are substantially different from zero and unity only for
) ) ) energies near the barrier maximum fp+= 0. Expanding the

0 05 10 15 20 25 adiabatic potential in the vicinity of this poiritf. Ref. 15,

EsQ we arrive at Campbell's parabolic barrier problésee Ref.

FIG. 5. Dependence of the longitudinal conductafigg on the Fermi en- 16). Hence it is easy to find the form of the steps of the
ergy for a cylindrical sector withpo=1.3. conductance:

(n— - -

Cop=Go N+ 1+exp(—A)}’

4. LONGITUDINAL BALLISTIC CONDUCTANCE (28)
27[Ee-B(n+12]R

To calculate the longitudinal conductance in theirec- A —
tion, G,,, we make use of the Buttiker—Landauer approach ol Vn+1/2
(see, e.g., Ref. 24 Neglecting scattering, we take all trans- where »= 02+ 02 andT2=1/me. The step width grows

mission coefficients to be equal to zero or uritlepending ) . ~
on the position of the Fermi levelThenG,(E) is deter- with magnetic field as/;.

mined by the number of roots, ; of Eq. (18):
G 5. SPIN-ORBIT INTERACTION ON A CYLINDRICAL
Gor= 2 00 (kni(Er)). (24)  SURFACE
! The spin—orbit interaction of two-dimensional electrons

Thanks to the nonmonotonic dependenceE(ﬁ(f)(pz) (see is described by two contributions to the effective spin—
Fig. 3), the number of roots of Eq18) for some values of orbital Hamiltonian. One of them, known as the Rashba
Er is doubled in comparison with the flat strip. As a result, model, is written in the invariant forhh8
G,, depends nonmonotonically df: (see Fig. 5. A A

Finally, let us consider a quantum constriction curved ~ Y1~ Y10XP-N, (29
along the direction of the current: a narrow strip cut out ofyyhere &, andp are respectively the Pauli matrices and the
the cylindrical sector transverse to those forming(@  two-dimensional momentum operatar,is the surface nor-
“arched bridge’). The external magnetic field is perpendicu- mga| andy, is the spin—orbit coupling constant. The contri-

lar tp the Sample at |'ts upper pgmt. .The situation here Sution V, is nonzero only for structures asymmetric in the
qualitatively different since in no direction now are there any_ormal direction(a typical example is a triangular quantum

.SOng'OHZ In th_e forn;)lof trav]?llng V\t/aves. Wf 'th t?lgstu(ae well). In this sense we sdyn the two-dimensional limjtthat
L.S 0 eln Onti In proi e_mio q(t;ag l;m cons r'g%’_ To-t' | v,# 0 for an oriented surface on which the two directions of
ion along thez axis is bounded by a parabolic potential [° . non-equivalent.

252 1] H H _ . . . .
MwZ°/2, and we carry out the procedure of “adiabatiza The second contribution arises from the terms in the

tlor!,”blsettllngtrz] up af the tfas:. vlanable an;qjd af (tjhe bSIOW thbqu Hamiltonian that are cubic in the momentufinst con-
\Iiiana'lte.' N fethvec o[)—lpo er? latk?al:ge adopted above Mgiqereq by Dresselhalisafter allowing for quantization in
amiltonian of the problem has the form the normal direction(the z axis). It can be written down

’ 1 ¢ 1 ( 9 R \? explicitly only for a certain choice of the coordinate ax@s:
=— —+-—|—i —=+5sing R o
2mR 7¢% " 2m | "z "1 Vo= y2(Gxbx—5yby). (30
mw?z? 25 The constanty, is also nonzero for a symmetric quantum

2

Writing the wave function in the form

well. The relative role of/, andV, depends on the width of

the well (and of course on the mateniabut, strictly speak-

ing, both terms must be taken into account simultaneously.
For planar two-dimensional systems the Hamiltonians

Y (z,0)= Z exp(imQRzsin @), (26 ~ A o . .
(2.¢) ; UnlZ@)xn(@)expl ¢). (29 V,; andV, are unitarily equivalentsee Ref. 18and their
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r
7 . 4
. / ____/=-l/2.7,>01
j= +172, —”2// j=u2 %, < 0 //
II 4
II
I/
u=1 ,," FIG. 6. Energy spectrum of two-dimensional
yd electrons located on the surface of a cylinder: a
v Rashba model, )bDresselhaus model. The lower
v subbands are showlii=+1/2, u=*1).
0 S
W
-4 -2 0 2 4 -4 -2 0 2 4
PR p.R

energy spectra are identical and depend only on their absevhere the braces denote the symmetrized operator product.

lute values|y,| and|y,|. It turns out that in the case of a Solving the Schrdinger equation for the Hamiltonia{85)

curved surface all these statements lose their validity. with periodic (in ¢) boundary conditions, we obtain for the
First of all, let us consider a hollow circular cylinder, for spectrum

which both models admit an exact analytical solution. It fol- 1

lows from Eq.(29) that the Hamiltonian of tvyo-dlmensm_nal E,(',D,L)(k?/\z)z B| k2+j2+ Z+’“\/j A2+ (KA, +])2|.

electrons located on the surface of a cylinder has, in the

Rashba model, the form (36)

. @24_‘32 A Here A,=2my,R.
H(R =2 ‘P+71((}Z,5¢_2F3Z), (31 It is clear from Egs.(33) and (36) that the following
2m symmetry properties hold for the energy spectrum:
. [0 —ie’le R A Ve ER A V— ER) (L
“lge o | 32) Eff(A)=Ef(—kiA)=ET (kAy),
ie
Eff(ki Ay #EfRI(k = Ay), (37)

where we assume that the radius of the cylinBes much
larger than the lattice constant and we use cylindrical coor-  E{°)(k;A,)=E{")(—k;—A,)
dinates with thez axis as the axis of the cylinder. Hepe is

_— - (k;—=Ay). (38
the longitudinal momentum  operator andp,
=—i(1/R)dl d¢. The Hamiltonian31) leads to the spectrum Properties(37) and (38) have the result that all thermody-
(see Ref. ® namic and kinetic characteristics of the system that contain
(1—2A,) sums over states depend on the relative sign of the curvature

and of y; in the Rashba model and are independent of the

sign of y, in the Dresselhaus model. The contributfd)pcan

be said to be the cause of differences in the spectra and other
+M\/J 2(A—1)%+ szi ' (33 physical characteristics of concave and convex cylindrical

systems fabricated from a GaAs/AlGaAs heterojunction. Fig-

whereB=1/2mR?, k=p,R, | is the projection of the total 15 6a and 6b plot the dependengg (k) andE(")(k) for

angular momentum on the cylindrical axig has a half-  {he case of the heterostructure GaAs/AlGaAs. For the param-

integer valug, A;=2my;R, andu=*1 is a quantum num- eersA, , we have chosen the value 4.6, which corresponds

ber labeling the two branches of the spin-split dispersion lavwy, y, = ;)2=2.5>< 1071° eV.cm (see the estimates in Refs. 17

=E® (—kiAp)=ED

—hr

E (kA =B K2+j2+ —

of each subbang. and 18 andR=1um.
A similar solution with the same structure of the wave It is not hard to find the energy spectrum of the two-
function dimensional electrons on the surface of a cylinder for simul-
exp(ip,2) [elli=12e 0 taneous action of both mechanisms of the spin—orbit interac-
V(p)= T (ei(jﬂ/%l//(z)) (34)  tion. The expression for it has the form
L

(1-2Ay)

(2 are constants independentgf is also possible for the Ej .(k;A1)=B K2+ j2+ 7

Dresselhaus model. The Hamiltonian in this model is given
by

e + u[I (A= 1) KA+ [Ak= Ao TP}
H® ===+ o[ {3, P} = 52P,], (35 39
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Hence it follows that the fundamental possibility exists of Q —

separating the contributiong, andV, when measuring the
same thermodynamiginetic) property for systems differing
only in their sign of curvature: for example, a GaAs/AlGaAs i
heterojunction bent such that the two-dimensional electron
gas is found either on the inner or outer side of the cylindri-

7,>0
cal surface. \
The longitudinal conductance of the hollow cylinder ! “\ ol
for Fermi energie€r near the origin of the spectrum de- L H ot Y ‘
pends substantially on the spin—orbit interaction. We studied 40 60 80 100 w/my’

the shape of the conductance steps in the Rashba model in an _ . _

earlier paperRef. 9. The number of intersection points of liIG. 7. Absorption of az-polarized electromagnetic wavl=1 um, Eg

the dispersion curve with the Fermi lev@his number deter- —omev.

mines the height of the conductance sjegwies within the

limits of the lower subband$j=*+1/2, u=%1) as the

Fermi level is increased, in the sequer8e4-8. In the For reasonable values of the cylinder radRisand typical
Dresselhaus model, as can be seen from Fig. 6b, the correalues of the surface concentratidhy the ratio Ex/B is
sponding sequence looks like-8—4—-8,which leads to a large (e.g., for a GaAs/AlGaAs heterojunction witks=2
different shape ofG,{Eg). It must be emphasized once x10'" cm 2 andR=1 um we haveEg/B~1.6x 10%. This
again thatG,Eg) in this model, in contrast to the Rashba makes it possible to calculate the absorption quasiclassically,

model, does not depend on the signof i.e., to replace the sum ovgrin Eqg. (40) by an integral
Observable consequences of this effect of the depen-

dence of the electron dispersion law on the signygfin- *

clude features of the microwave absorption spectrum of a 2 —[R| f_mdpy-

hollow cylindrical wire. The normalized solutions of the

Schralinger equation with the Hamiltoniat81) have the  after integrating ovetp| (p=(py,p,)) using thes-function,
form (34), where we arrive at the result

'705];): f%)zlAJC]/Alk, f],'): ji):AJ!

» eZES(A1—1)227-r|R|f1d X2 1
Aj=|A:k|/\A7D,C;, C;=D;+j(A;~1), Q*(w)= A2 o P T )
D;(po)=Vi*(A1—1)*+K*AT. W w w2 w
flo—ms 5| a2z t5] |
The absorbed power of an electromagnetic wave of fre- 8myig<(x) 2 8myig<(x) 2

quencyw due to the interaction with the electron, is given by (42)
the following expressioriper unit length of the cylindér
In expression(42) we have introduced the functiog(x)

27w . . .
Qw)=—— > (B |Hind B)I?8(Eg —Ep— w) = 1-(2A;-1)X*/AT; Eq is the amplitude of the electric
B'.B field of the electromagnetic wave.
X[f(Eg)—f(Ep)]. (40) Figure 7 presents an example of the dependence

Q@ (w) given by expression(42) for y;=2.5x10
In Eq. (40), H,,=ev-Ao/2c is the interaction operatoA  eV-cm (the GaAs/AlGaAs heterostructure, Ref.)1&R
=Re(Aq exp(—iwt) is the vector potential of the electromag- =1 um andT=0 K. The central peak of width myf cor-
netic wavey is the velocity operatoi3=(p,,j,u) is the set  responds to the planar systeiR-(:c). Curvature leads to a
of quantum numbers characterizing the state of the electrogubstantial change in the absorption line. The absorption
andf(Ep) is the Fermi distribution function. maximum is shifted toward the blueed) for negative(posi-

To start with, let us consider the interaction of the elec-tive) values ofy;R. The departure of the absorption maxi-
trons with an electromagnetic wave polarized in théirec- ~ mum from its position for a planar systeay=2|y,|muve is
tion. In this case we havés’ |HB8)<(B’|v,|B). For the of the order ofvr /R, wherevg= y2Eg/m is the Fermi ve-
operatorf)z we have from Eq.(31) lAJz= E)z/m_ 713_ The locity. Let us turn our attention now to the strong asymmetry
in the shape of the absorption lines for positive and negative
values ofy,R.

Somewhat more involved calculations are required for
the case of a circularly polarized electromagnetic wave
propagating along the axis of the cylinder. The selection
(Pzois+10aP2s)s—=)=(Pssi = v P2 oj, +)* rules for this case arAp,=0, Aj=*1, Au=0,+2. Under

i i the same condition that we used aboie<qE), we find for
— 171(A1—1)] (41) the absorption power due to spin-flip transitiona i
Dj(pz) ' =+2)

nonzero matrix elements of the operatgrare diagonal irp,
andj. Thus, for az-polarized wave absorption takes place
only for transitions with a change ip (with “spin flip” ).
The corresponding matrix elements are equal to
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FIG. 8. Absorption of a circularly polarized electromagnetic wake:
=1um, Er=5meV.

e’E3(A,—1)%27R

(c) —
Q™ (w) 16mA2
1 0(=9g-(x))
x2 Jfldx”‘x P2 (%)
X{f( w? _wq(X))_ ( w?
8my20Z(x)  29-(x)| | 8my2g3(x)
_ 0q(x)
+29+(X)+w) , (43

whereg.. (x) =q(x) £ x/|A,|, and#(x) is the Heaviside step

function. Figure 8 plots the dependence@f)(w) for the
same parameters as f@®(w) in Fig. 7. In comparison

with the z-polarization case the absorption maximum is
shifted in the opposite direction and the absorption line is

roughly two times wider.
If the double inequality ¥&|A,|<vg /vy, is satisfied, ex-

pressions(42) and (43) can both be represented in simple

analytical form A w=w— wy):

—AwR Sigr('}/l)/l)p
(2) \/
Q@)™ \ TX R wR signyp) vy

Q" (w)

s \/1—[sigr( y1)12=\1/4— AwR sign(y;)/ve]?
oC
+ 1/4—- AwR Slgl’( 'yl)/UF '

(44)

The frequencyw is restricted to the interval ensuring real

values of the radicals.

Magarill et al.

Here ¢ is a two-component spinor arie=E — p2/2m is the
transverse energy. A very important difference from the hol-
low cylinder case discussed above is that in the present case
zero, and not periodic, boundary conditions are imposed on
the wave functiony :

Y o=*¢o)=0. (46)
The spinory can be represented in the form
ei(M*l/Z)(pw(l)
lﬂ(QD):(ei(xiH/z)(p(//(z)) (47)

(2 are constants which are independentsf By virtue
of the absence now of axial symmetry the quantitieq(i
=1,2,3,4) are not half-integer@s in the case of a hollow
cylinden, but are given by expressions which follow from
Egs.(45) and(47): Ay o= *q+R and\3,=*q_R, where

q-

= \(B1= &>+ 2mE+ B35 2./ B, — £)2(2mE+ B2) + p2 32
(48)

(Bl:m711 §:1/2R)
The general solution of Eq45) is a superposition of
four wave functions of the forn7) (with different\;):

4
We)=2, Ay (@),

Subjecting these solutions to boundary conditioh§ and
making use of the connection betwegft’ and y{>), which

is given by Eq.(45), after some quite cumbersome transfor-
mations we arrive at the following equation for the electron
energy:

<f+f—p§>sin2(<q++q> g)

a

=(f,—f_)%p? sin2(<q+—q> >

~ (49)
2mE+ B - (- *|B1— &])?
2|84l '

where a=2R¢, is the width of the sector. This equation
does not have an analytical solution. However, it can be at
once seen that in the distinction to the case of a hollow
cylinder degeneracy of the spectrum for=0 is conserved.
We can carry out the same treatment for the case of a flat
strip of two-dimensional electron gas. The resulting disper-

f=

It is technologically simpler to fabricate a curved two- gion equation has the same form @$), but the quantities

dimensional system in the form of a cylindrical secjor

=R, — @o/2< p<p/2,—0<z=<w, Such samples have al-
ready been obtainédy separating off a thin layer contain-
ing two-dimensional electrons from a GaAs/AlGaAs hetero-

structure by the “lift-off” technique.

The corresponding calculations are quite cumbersome.

g- andf. are given by different expressiofthe superscript
(0) corresponds to the planar cése

q= \/(\/Zm EO+Bi+]B81)?—pz,
fO==(2mED+ g7—q0)—|B,).

(50

The transverse part of the electron wave function obeys the

one-dimensional Schdinger equation

PP 2mR ~ .
+—7 (E-Vs04=0.

67_(,02 7 (45)

Comparing these two dispersion equations, it is not hard to
convince oneself that the following relation holds between

the transverse energies of a curved and a flat strip

[E(p,:B1,€) andEO(p,;B1)]
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monotonic dependence @(Eg). Cusps corresponding to
the extrema of the Landau bands arise in the magnetic field
dependence of the Hall conductance for fixed electron con-
centration.

The spin—orbit interaction of two-dimensional electrons
undergoes a more significant change in the transition to a
curved surface. In particular, for an oriented surface it be-
comes possible to experimentally determine the sign of the
spin—orbit coupling constant in the Rashba model.
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A theory of weak localization is constructed fprtype semiconductor structures with a complex

I'g valence band. An equation for the Cooperon is obtained and solved in the case when

spin relaxation cannot be treated as a perturbation. The anomalous magnetoresistance is calculated
in bulk samples as a function of the external deformation and in quantum wells as a

function of the doping level. The results of the theory are represented in a form that allows

direct comparison with experiment. @998 American Institute of Physics.
[S1063-776(98)02204-3

1. INTRODUCTION For quantum-well structures we calculate the dependence of
the magnetoresistance on the carrier concentration. All cal-

The phenomenon of weak localization consists in quaneulations are carried out in the single-particle approximation,

tum interference of waves propagating along the same trajeavhose domain of applicability was indicated in Ref. 2. In the

tory but in opposite directions. One of the most striking con-present paper odd terms in the wave vector in the spectrum

sequences of this phenomenon is the anomalous change aine not taken into account, since the spin relaxation time due

the resistance in classically weak magnetic fields. The reasan them exceeds the momentum relaxation time for not too

for this is that when waves propagate in opposite directionsarge a deformation or not too narrow wells.

along the same path in a magnetic field an additional phase

difference arises that is proportional to the magnetic flux

through the area enclosed by the path. As a result, the initig: HOLE SPECTRUM AND WAVE FUNCTIONS

interference is destroyed and the anomalous contribution to | 3 pulk cubic semiconductor the energy level iff' @

the conductivity is decreased. valence band at the quasimomentém O is quadruply de-
Besides a magnetic field, inelastic processes and spigenerate. In the spherical approximation, which we use here,
relaxation also destroy interference. Here effects associataglese four states are classified according to the projection of
with spin relaxation depend significantly on the total angularthe total angular momenturd=3/2. Fork#0 the states are
momentum of the two waves. Thus, in the absence of magdouble degenerate and are characterized by the projection of
netic impurities, only states with nonzero total angular mo-the angular momentum in the direction, where states with
mentum are susceptible to spin relaxation. A theory takingyrojections differing only in sign have the same energy: for
these facts into account and explaining anomalous magnereavy holesJ-k/k=+3/2, and for light holesJ-k/k
toresistance in metals and metal films was developed in Refs= + 1/2. Taking uniaxial deformation into account, the hole
1 and 2, and for two-dimensional carriers in semiconductokyave functions can be written in the fofm
heterostructures in Refs. 2-5. These works assumed that the . o
spin relaxation times can be comparable with the dephasing Vak=€""Fa(K), @
time of the wave function, but both these times are muchwyherea=h1, h2 andi1, 12 label the states of the heavy and
longer than the momentum relaxation time. In these paperlzf,(‘]ht holes, respectively, ari%la are four-component column
the spin—orbit interaction, which leads to spin relaxation,Vectors in the basis of Bloch functions of the top of the

was treated as a perturbation. _ valence band. For uniaxial deformation along (60 axis
However, it is well known that in [lI-V semiconductors, e hole energies are

Si, Ge, and heterostructures based on them the valence band
is formed as a result of a strong spin—orbit interaction, and  Ej n=Ak?>= \/(Bk?)2+ beB(3k?—k?) + (be)?, 2
the total angular momentum is coupled with the quasimo- E —E.—E E.—E.—E
mentum of the particle. As a result, the spin and momentum  —h1— —h2—=h» =17 =27 =1
relaxation times are of the same order of magnitude andyhereA andB are the band parameters determining the ef-
consequently, the methods for calculating the magnetoresidective massesn,, and m, of the heavy and light holes;
tance used in Refs. 1-5 are inapplicable for these systems=e,,+ (exx+ &yy)/2 is the relative deformatiom, is the con-
The goal of the present work is to create a theory ofstant of the deformation potential, and the symbioésd L
weak localization leading to anomalous magnetoresistance inere and below denote vector projections on the deformation
semiconductor structures with a strong spin—orbit interacaxis and on the plane perpendicular to it. Form@a is
tion. We will consider non-deformed and deformed bulkwritten in the spherical approximation, where the band con-
semiconductors op-type with a compleXg valence band. stant isD=Bv3. For uniaxial deformation along th@.11)

1063-7761/98/86(4)/10/$15.00 780 © 1998 American Institute of Physics
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axis, b is replaced byl/v3. Forb=d/v3 formula(2) isvalid  which not only the quasimomentum but also the projection
for any direction of uniaxial deformation. FunctioRg cor-  Of the angular momentum changes. This means that the spin
responding to the same energy can be chosen so that they dfaxation times can be of the same order of magnitude as the

related to one another by time inversion. The volume of thenomentum relaxation time. This constitutes the main differ-
sample is assumed to be equal to unity. ence between the effects of weak localization in a complex

We examine Scattering by the short-range potentia| band and the case when the spin—orbit interaction is weak.

V(r)=Voé(r). 3. EQUATIONS FOR THE COOPERON
As can be seen from E@l), the corresponding scatter- As was shown in Ref. 7, the main quantum correction to
ing matrix element the conductivity arises when “fan” diagrams are taken into

N/ - v ETINE (1! account. Such diagrams describe the interference arising as a
Vag(kiK') =(War V(N[ ¥ ) = VoFa(K)F (k") (3 result of multiple backscattering. The amplitude of this inter-
depends on both the initial and final quasimomenta of thderence(a Cooperois determined by the sum of the ladder
hole. It follows from Eq.(3) that transitions are possible in diagrams at small total momentuegn

o, -k B. -k’ a -k B -k o -k u -g B. -k’
—éy/ e ——— > / >
C = + /C

// L
A——> —_————— > /—a
¥, k+q 8, k'+q 7. k+q 6. k'+q 7. k+q v, £4q 5. k'+q

The corresponding integral equation for the Cooperon  As is well known! a divergence arises in the integration
ng(k,k’,q), averaged over the uncorrelated impurity dis-over g on the right-hand side of Ed4) in the limit g—0.

tribution, has the form This means thag should be retained in Eq4) only in
N ) G'f(g+ g). ExpandingE,(g+q) to second order irg and
CoA(kK",a) =1 Vop(—k, =K' )V, s(k+0.k +0) then integrating oveE (g), we obtain the equation
d? af ’ — —k —k’ !
S j (z—f)zva#(—k,—g)vw(k C2A(k,K" @) =7V p(—k, =K )V, sk k')
. St [ an, 27N
+0,9+ ) CLF(g.k QGG+ G(—9). T o h
(4) XVaM(—k,—g)Vyv(k,g)C’,fg(g,k’,q)
wherez is the dimensionality of the space;is the impurity
concentration, andG4'® are the advanced and retarded x{ 1=iv”(g)ar,(9) —[vV*(g)
Green’s functions for holes of type:
1 ,  T/(9)
AR(K) = ) Xqr,(9)]— ) (7)
G, (k) Er—E,(K) =ifi/2r,(K) 71277 (k) © 7, (9)
Here Er is the Fermi energy, determined by the total con- vir(g) = E aEv(g)_
centration of light and heavy holes, ang(k) is the total fi 99
relaxation time of the statg,k): The quantityN,(g) has the meaning of a density of states of
1 27 d?k’ , holes of typev on the Fermi surface per unit solid angle
. CI 2 f G2 Vil KOPEe =By (kD] dQg:
6) gy |9,
and7\")(k) is the phase relaxation time of the wave function ™)1 99

of a hole of typev. The quantitie€; and 7,(k) depend on

the applied deformation, but the following relations hold: whereg, is the absolute value of the quasimomentum of a

hole of typev on the Fermi surface, determined from the
equationE,(g) =Eg . Here the total relaxation time is also

expressed in terms ™, (g):
In the absence of a deformatiary does not depend on the
direction ofk or on 7= 7,. Note that the proposed theory is 1 _
valid for Er7,/A>1 (Ref. 7). 7,(K)

Th1= Th2= Thy TI1= T12= 7| -

2
VD> f A0V, k9PN,  (®



782 JETP 86 (4), April 1998 Averkiev et al.

The factor{(u,v) allows for the fact that the pole contribu- Next multiplying both sides of Eq7) by .2} “(k) AP (k ),

tion to the Cooperon arises only fé,(k)=E,(k) and is  integrating ovek andk’, and summing over the spin indices

equal to unity if both indices correspond to heavy holes or tozs in Eq.(10), we obtain a system of algebraic equations for
light holes, and is otherwise equal to zero. As a consequencehe coefficientsa;,(q):

the indexv takes the same value f¢,, 7,, v(*), and 7\

inside the integral in Eq(7). For EM(k)aﬁ Ev(k) the correc-

tions to expression(7) are ~(my/m—1)"%/(Eg7,) 2 [Tni(@)+ (1= Np) Snilaim(q) =Wnm, (13
~%I(Epr,)<1.

In general, Eq.(7) can be solved as follows. To start where the coefficient¥,;, disappearing in the limigg—0
with, consider the homogeneous integral equation with theynd T(V)—>oo are equal to
same kernel as Eq(7), but where the small quantities

v(g)ar,(g), [V(g)ar(9] and 7,(g)/7,’(g) have . 27 7a(K)N4(K)
been discarded: ’ Tni(@) =7 ;5 {(a,y){(ﬁ,5)J Ay ——5——
aBy
a ZWTV(g)NV(g) 2 N
)\l/dly(k):/f % {(,LL,V) ng T XJ ng WTB(?L) ﬁ(g) Vaﬁ(_kv_g)
Xva,u(_k!_g)v'yv(k!g)///7(1;(9) (9) .
XVy5(k, @) 25 %(K). £ (@)1 VP (g)are(g)
In this equation\; are the eigenvalues and; is a set of 4 g
eigenfunctions, which can be chosen to be orthonormal: 74(0)
2773 (K)No(K) +[VA(ars(@]*+ %] (14)
; Layy) | A —————— 4" (k)7 “(K)= & . ¢
(10) It can be seen from Eq13) that the contribution to the

Cooperon that diverges &as—0 comes only from solutions

of Eg. (9) with A,=1. In this event, two cases are possible.
Bor No=1, a nondegenerate eigenvalue which corresponds
to the solution - %07(k)

Next, knowing the spectrum of eigenvalues and the
eigenfunctions, the solution of the inhomogeneous equatio
(7) can be written in the form

CoB(kk’ o) =20 ayj(a). (k). 4 (k") (11)
! CS5(k K @)= 2 aom(@). 75 (K). 4 (K"), (15
where the coefficienta;;(q) are unknown. To find them, we
also expand the inhomogeneous term in &g.in the func- W
tions.. 7 : aom(q) = °m. —.
To|(CI)T|o(Q)

Too( @) — >,
AV g =Kk sk, K) = 3 Wi ()21 P, 7o 1=\
1)

(12 Summing ovem, we finally obtain
|
o R 277,(9IN,(9)
A5 (02 L) j dQg ——"— " V,us(— 6K )V,(g k). 25 (0)
CB(k,k',q)= £ 16
oGl Ta(@To@ 19
Tol =2 —— —
i1#0
|
If, on the other hand, the eigenvalue=1 is r-tuply Let us now apply this general method to the particular
degenerate, then the coefficieats,(q) are found by solving problem of weak localization of holes with the spectrum con-
a system of equations of dimensionalityKr: sidered in Sec. 2.
r
2, Toi(@aim()=Wap, N, =1, (17
= A. Bulk crystals
Here In this case, as a result of the factiu,») in Eq. (9)
only eight of the sixteen different spin component§” (k)
r Y
o , a ) , are nonzero, namely those with and y such thatE ,(k
colik k)= 3 ay@. 4 (k. 4AK). a9 y 4 to

i1 y =E,(k). What is more, since the functioris, follow one
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from the other by time inversion, the remaining system ofwhere Dﬁ‘j’ are the components of the diffusion tensor of
eight equations splits into two systems of respectively twaholes of species:
and six equations.

Analysis shows that starting from zero deformation up to (a)_i f (@) 12
the point wherglbe|~Eg, the eigenvalue.=1 is nonde- DM_ﬁa dQgN(9)[v} (9 ]°7a(9), (25)
generate and is contained in a system of two equations:
dQINu(g)/ 7~ (g)+N,(g)/ 7V
e 277 (INn(Q) 1 T4 (@) 7, (9) N9/ 7, (9] 26
)\i./éihz(k)—./f’ ng T ¢ Nj+N,
<V K.g)|2+|V k.g)|2] 2" In the limiting case of large deformations, whée|
(Vi (k@I Visna(k 9] 'hz(g) >Eg, only one subband is filled, and the number of equa-
277(g)N(g) ) tions is reduced to four, each of which contains the eigen-
s [Vhy1(k,9)] value\ = 1. Therefore the Cooperon is found from Efk?)
and (18) with r =4.
21 A1 In this limiting case it is convenient to classify the states
+|Vhu2(k,9)|1-% (9) 1, 19 - . -
12 V¥« according to the projection of the total angular momen-
2 N tum on the deformation axis. In the case of uniaxial compres-
)\i,/g!l(k):ﬂ/-f do (M sion the states witld,= =1/2 are responsible for the upper
12 g h valence subband, and in the case of dilation, the states with
TV Ko 2+1v k. a)|21 2t ,= *3/2. Such a pair of states, differing in the signJgf
[IVith1(K,@)|*+ [ Vipa(k,9)[“]- %i,(9) we will label with the indexa=1. 2.
277 (g)N,(g) For infinitely large deformation, only one component of
— [IViz1(k,9)]? the functionsF , is different from zero. Consequently, tran-
sitions between two degenerate states are absent and we have
V,z~96 and =7y does not depend on the direction of
27 Jl1 af aB 0
+Vina(k,0) ]'/éhz(g)]’ 20 the quasimomentum. Therefore the four eigenfunctiotfs
Y
e m g2 n corresponding to the eiggnval&ezl are also independent
T T i iy of k and can be chosen in the following way:
where,///flzo. The eigenvalug& =1 belongs to the solution ﬁg%l:'%gzzd{%z:ﬁgil:(ZWToﬁ/ﬁ)—uz’ (27)
hl _ -1 J11 _ -1
‘%th(k)_fTh (k), "'%Om(k)_fﬂ (K), 2D their remaining components are equal to zero.

whereé is a normalization factor. Note that in the absence Ofintolg tze(lt%'alsalf(GZZ),JgiatgoefﬂmentsTm and W, entering
deformation the solutionZg (k) corresponds to zero total as q
Y

angular momentum, composed from the stateand y. The h
expression foC%% is obtained by substituting Eq21) into ~ Wmn= dmn PN (28)
expression(16). 0

For the particular case of scattering by a short-range POT . (q)=To(d) Snis Tola)= (D‘(‘O)qur Dg? + 7.;1)7.0_
tential, expression(16) simplifies since in this case (29)

Toi(q)Tio(g)=0 as a result of the absence of a source term ) o ]

in the classical kinetic equation for the diffusion coefficient. Heré the superscript0) indicates that the corresponding

Finally, the equation for the Cooperon takes the form quantities should be calculated for infinite deformation. The

' expression for the Cooperon has the standard form:

. noo e KA (K)ET?

CZs(k,k’,q)= — .
o R ) DD, 7! Clia)=CBa)=Clia)=CHq)=

(22)

1

27N7, To(q)
(30

Here and the remaining components are equal to zero.

— In order to obtain an expression for the Cooperon at
Nazf dQyN,(k) (23 finite deformation, we must again make use of H43) and

_ ) _ (18), where_Z are given in(27) and theT,; are replaced by
is the total number of holes of speciason the Fermi sur- - Y

face. Expression§22) have the standard form of the diffu- Thi
sion pole, which involves the average diffusion coefficient  _ 27 7gNo(K)
and the average dephasing time of the wave function: Tni(q)=Tm(q)+/¢”BE(S dQy 7

apy

ND(" +N,D{) )
D =—— 24 ™ o
Y (24 % [ 40, Ao ANV
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—T(@N(QV,5(—k,— 9V, 5k,g)], (31 diffusion pole disappears fro®11, C23, and from the first

term of the remaining four Cooperons, this first term be-
comes D{”q?+DVq? + 7,%) 7, times smaller than the sec-

ond term inCzi, and formula(36) goes over to formulé22).

The difference betweefi,(q) and Ty;(q) is due both to |t follows from formulas(33) and (34) that even for|be]
transitions between states with opposite spins and to A E. the inequalityr, , >, can be preserved. This means
change in the rate of transitions inside one branch and dignat the phenomenon of weak localization is described by
appears afbs|—. The differencerl,i(q) — Tpi(q) appears formula(36) for practically any deformation, and all changes
because in our foregoing perturbation-theory treatment ofre associated with, , , 7,, 7., and~.
spin relaxation processes, besides the parameters Note that for zero deformation the formul22) does not
v(9)ar,(9), [v(g)ar,(9)1? and 7,(g)/7)(g) taken  coincide with the corresponding expression in Ref. 2. This is
into account inT;, quantities of the same order can alsobecause Ref. 2 neglected the fact that the equation for the
arise due to changes W,4(k,g) in Eq. (4) under the action Cooperon should only treat transitions between states with
of deformation. the same energy for givdn The symmetry arguments used
Calculation shows that in the first nonvanishing order inin Ref. 2 are valid only fom,=m, i.e., forB=0.

Er/|be| the quantitiesT,; can be represented in the form

where T,;(q) are calculated according to formu(a4) for
infinitely large deformation and are given by formy(29).

fd ot B. Quantum wells
T11=T=To+ 1o/ 7y,

~ o~ Let us turn our attention now to the phenomenon of

Taa=Ty=Tot+70/(27,), (320 weak localization inp-type quantum wells based on com-

T 127, pounds with al'g valence band. We consider a rectangu'lar
34~ 143= To/LeTL)s symmetric quantum well, employing as before the spherical

the remaining components are equal to zero. Here approximation to describe the states in the valence band. For
402/ g4 424 me) 2 simplicity, we assume the barriers to be infinitely high. The

To_ _) <_F> (m”_zmzi) my My (33 ~ Spectrum and wave functions of the carriers under these as-
7 \45/ \be mymy 2mim, sumptions have been used in many studies. We use the form
7o 4\2(Eq\4 (m—m,) - of thfe wave fu?cuons suggested in Ref. 8:
7 \48) \be) “mem? 34 P=ekrE M (k,2), (37)

m, , are the effective hole masses for motion along the de- —voC(2) ivg,S(z)e‘3_i‘"k

formation axis and transverse to it. These expressions forthe . iv,S(z)e' ¥k - v,C(z)e™ 2%k

spin relaxation times, written in terms of, andm, , do not Fi= —v2C(z)e2i‘Pk ) 2= ivls(z)e*i‘#’k

depend on the sign of the deformation, but the values of the iv,S(z)e% ¥k voC(2)

masses themselves are different for dilation and K is th . . in-ol .
compressior‘?z Herek is the two-dimensionalin-plane wave vector gy is

its azimuthal anglep andz are the coordinates characteriz-
_ h? B h? 35 ing motion respectively in the plane of the quantum well and
= ml_z(AI B/2)" (39 along its growth axisn is the number of the size quantiza-

2(AxB)’
. _ tion level, « labels the two degenerate staf@sa symmetric
Here the upper sign corresponds to dilation, and the Iowe&uantum well, and C(z) and S(z) are respectively a sym-
one, to compression. Solving the system of equatid™ '

T ) . metric and an antisymmetric function of the coordinate
with Ty (32), we obtain a set of expressions for the nonzerorne dispersion equation for finding the energy of such states

components of the Cooperon: E,(k), and also expressions faZ(z) and S(z) and the
A 2 ¢-independent real coefficients (i=1-3) are given in
Cii(q)=C3a) = —— : Ref. 8.
47Ny To(d) + 7o/ 7 An equation for the Cooperon in the case when one size-
- guantization subband is filled can be derived from Ef),
C%f(q)zcrﬁ(q)z h_ 1 _ 1 , wherek and g are two-dimensionalin-plane vectors and
27N7y [ To(qQ)+ 7o/ To(Q) ] {(u,v)=1. In this case, when averaging over position of the
(36) impurities in a symmetric quantum well it is important to
5 1 1 note that
11 _ 22 —
A= N [ To@ + rolm, Tot@)' [0z @52 [az s21c2)-0.

its remaining components are equal to zero.

Comparing formulag36) and(22) we can trace out the
transition from the case of infinitely large deformation to (00 /001 _.2mN )
zero deformation. Formula&36) are valid as long as; , N () = 5 ded [Vi(er— ¢l
> 714 holds. Forr, | ~ 79 formulas(22) start to apply. Look- 2 001
ing at formulas(36) we can say that as, , decrease, the +Vid o=@ |“14 " 2(0g), (39

System of equation§) takes the form
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%500%: _tﬁg;i(OO)%, /(00)1 ,?g(OO>2 0, and 7, is the so-called transport time arising in the solution
of the kinetic equation in the case when the scattering prob-
10 101,  \_ ) ability depends on the difference of angles between the ini-
MA@ = ~ ¢l tial and final values of the quasimomentum:
+|Vid o= 0|21 4% @), (39 ~1_ .27N
VideegP AT 09 B9 i T | delIVad o) P+ Vi ) (A -cos g).
7{/(10 7/(10)1 Jzi(lo)i:'/%i(w)gz (45)
W N , In the limit Er<A we have|V;,5<|Vy4 and the solu-
)\( f/< ) 1o = 7 J deg V1, tions corresponding to the eigenvalne=1 are contained in
all four equationg38)—(40). Consequently, to calculate the
X (@x— o)A 1(0g) Cooperon it is necessary to use formu(ag) and(18) with
r=4, whereT,,; have been replaced By, :
+Videeg AV 09l (40 " "
277N To(q)=D ++12fd 2ol
L eTT Thi(q q ToT T Pk
NI A5 =02 [ degViZon.s) o i z
2T
X AP (g +Vif X f d%T.,,/z:f./2?5[70N0v<°>v<°>
X (= o)AMY
(@09 472 09)] — TNV 0= 09V, ol 01— @), (46)
A= A4E=0. The index 0 indicates quantities that have been calculated
Here the total relaxation time is given by W|_th_out allowing for the mixing of light and heavy holes
arising fork+0; the components
e ZN G or Va2 Vs )2 41 A = A = Ay = A5 =(2mmNIt) ™2 4
T o= — el[Vi(@) >+ Vi @) 7. (41) = A, =(2m7oNIf)~ ™% (47)

and the density of states at the Fermi level is expressed i€ found fork=0 with the remaining components equal to
terms of the particle velocity and the quasimomentum Zzero. Solving the system of equatiofis) with T,(q) given

Ke: by formula(46), we obtain an expression for the Cooperon:
ke h 2
N=——7—. (42) Cii(a)=C35(q)= ——
(2m)*hve 1 229) 4mN7 DoQP 1+ o/ 7,0+ ol TRV

Note that since the kernel of the integral equat{88)
depends on a difference of angles, the equations for different
Fourier harmonics separate.

If we have Er~A, where A is the minimum energy
separating two lower subbands, the eigenvaleel is con- _ 1
tained only in the first equation. The corresponding normal- D070+ 70l 7, '
ized solution is

1

C3(q)=CZ(q)=

47TNTO Doq 1o+ 70/ T, +7'0/7l

(48)

1
(00) 12 11\ ~220 0
%/_ (4777'N/ﬁ) (43 Cy(q)=C11(q) Py, Doquo+To/T¢+To/T?W
whereN=2=N.
In contrast to the three-dimensional case for scattering n 1
by a short-range potential, in the classical kinetic equation Do@?ro+ 7o/ 7,

the source term is different from zero. Consequently, the
products SausfyTOI(q)Tlo(q)g&O However as a conse- Whel’e the I’emalnlng Components are equal to zero. Here
quence of the orthogonality o/’ with the solutions 7 7%\ have the meaning of longitudinal and transverse spin

and.. /913- only the solutions. /1l”~e—|<Pk contribute to the relaxation times, where the role of the preferred axis is
sum in the denominator in th16) Carrying out the calcu- Played by the normal to the plane of the quantum well:
lations indicated in formuld16), we obtain T kea®
A00a (008 ow=|——| h- (49
C*8(k,k',q)= 0 y70 8 (44) I
yoR T Da’r+ 77, "’ 6 2
® 7o kra mj,
where the diffusion coefficient TiD_WZ — ] |1+ m? I (50)
1, wherea is the width of the quantum well anlg , depends
D= uvgT . s oL
2 TR only on the mass ratio, /m;, for infinitely high barriers:
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FIG. 1. Dependence of the longitudinal and transverse spin relaxation times
in a quantum well on the ratio of the masses of the light and heavy holes:
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Formulas ¢

I, , are plotted in Fig. 1 as functions of, /m;,.
Y FIG. 2. Diagrammatic representation of the contributions to the conductiv-

(49) and (50) are valid for

ity: a—Ac", b—Ac"", c—Ac".
kea\?
— | — <L
m ko
. HereEg7,/fi>1.
Note that the nonzero value of,/72" arises because FTe

the rate of the transitions changes with increadinghile
conserving the prOJectlon of the angular momentum, and thﬁ CALCULATION OF THE DIFFUSION CONTRIBUTION TO
nonzero value ofry /72" is due to transitions in which the THE CONDUCTIVITY

projection of the angular momentum changes. Hi A
dependence of the time$" and 72V is different:

7ol T2V~ (E/A)2, QW_(ER/A)3.
for Ep<A.

Formulas (48) apply for 7o/72\<1, i.e.,
With growth of Ez/A the spin relaxation rate growsy
becomes~ 7y, and the diffusion pole is preserved in formu-

las (48) only in the last terms irC3%, C23, C33, andC37,

As is well known? to calculate the contribution to the
conductivity associated with weak localization it is necessary
to sum the three diagrams depicted in Fig. 2. In the structures
under study this contribution to the static conductivity can be
represented in the form

A(Tij:AO'i(jl)-i‘AO'i(j“)-i‘AO'i(j“l), (51)

whose form coincides with formuld44). Consequently, e’h d’k d’q .
weak localization effects in quantum wells for arbitrary Aol)=—— =3 | 5=z 0 (KT (k)
. ) L 2 aByd (277) (2 )

Er/A (but for the case in which only one subband is fijled

are described by formul@8), in whichD, 7, 72", and~ X GH(—k)GR(—K)G(K)GR(k)CE(k,—k,q),

depend orEg/A. (52)
Having obtained expressions for the Cooperons, we can

examine the influence of weak localization on various kinetic ) e’fi d?k d’k’ d’d ..

phenomena in semiconductor structures. Below we calculate ?ii ~ 25 ot 2m?) 2mn)?) (27)? Ui

the magnetoresistance in classically weak fields such that

w.7<1, wherew, is the classical cyclotron frequency. The X(—k)v; (B (k! )G (—K)GR(—k)

resence of a magnetic field has an effect on weak localiza-

'Eon starting from ° XGA(k JGI(K' Wil =K =k Vsp(k k)

woTEpT, i~ 1. X GH(—k")GA(KICIA(K',—k,q), (53
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e’h d%k
(2m)*

d?k’
Ao mH_- - .
IJ 2w aByduv (277)

d7q . _
X GR(—K)GA(k")GRK )V, — k', — k)

XV,s(k' K)GR(K)GR(—k)CI(k,—k",q), (59)

where the matrix element contrasted with the hatched vertex

satisfies the equation

VB (k) =vI9(K) 8,4
d*g
2 v(mv)
+. MZ J Gyt Vau(K V()7

X(9)G(9GA(9). (55)

Equation(55) is similar to Eq.(4) for the Cooperon and can

be solved by the method expounded above.

To start with, let us consider corrections to the conduc-
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poles at the same time that the coefficientsqﬁi cannot
coincide with the corresponding diffusion coefficients.

For two-dimensional carriers in a symmetric quantum
well the scattering probability depends on the difference of
angles between the initial and final directions of the quasi-
momentum. Therefore the componert&?)(k) can be ex-
pressed in terms of the total relaxation and transport times:

B (k) =v(@ (k) % Bug- (60)

Substituting this expression in Eq§2)—(54), we obtain
2

e ZWN’TT
h=_ —_ L
AU ’7Tﬁ D ﬁ (2 )z 2 Cﬁa(q)
AeW=pgMm L T2 y o 61)

Tir

Using expression§4) and (48) for the Cooperon, it is pos-
sible to obtain a formula for the contribution to the conduc-
tivity. For Ep<A

tivity in a bulk sample. For scattering by a short-range po- e? d?q 2
tential for any deformationVv,,(k,g)V,z(g,k) is an even Ao=— h Dof (2m)2 D0q2+r’1+1/TQW
function of g. Therefore the integral in Ed55) is equal to ® !
zero, and + ! ! } (62)
v(aﬁ)(k)zv(a)(k)b*aﬁ_ (56) D0q2+ 7';1—1- 1/7‘8W D0q2+ 7-;1 ,
For the same reason and forEg~A
Ao"=Ac}"=0 Ao= e Df il : 63
oif'=aol=0 S T *

It follows from Eq. (56) that onIyCB (k,—k,q) Cooperons
contribute toA o). For|be|<Eg according to formulg22)
h 7, (K) 75 (k")
4m(Np+N) Dig2+D, g2+,
(57)

and after summation over and 8 and integration with re-
spect tok, the expression for the conductivity becomes

e? DJ d?q 1
wh i (211-)ZD|,q”2+Diqf+ -1

Cab(k,k',q)=—

A(Tij: (58)

In the strong deformation limit the Cooperons are defined by

Egs.(36) and

Ao — e’ D(O) d“q 2
I (2m)? | DV +D ¢ + 7, T+ 1/x,
1

T R02 N 0a2 1
D{%q7+D%qf + 7, + 17,
1
T R042: 02 1|
D{”qf+D{"q? + 7,

(59

The changeover from formulés9) to formula (58) as the
deformation is decreased takes place when becomes
~ 7o and the first two terms in formulégb9) disappear. Note
that if the inequality 7, , > 7, is still satisfied for|be]

The changeover from formul&2) to formula (63) with
growth of Eg/A is completely analogous to the changeover
from formula (59) to formula (58) with decrease of the de-
formation.

As was already mentioned, in a magnetic field an addi-
tional phase-breaking of the wave function takes place, de-
stroying the weak localization and decreasing the value of
|Agjj|. To calculate the magnetoresistance according to
Refs. 1 and 2 the integral ig in formulas (58) and (59)
should be replaced according to the following rule:

qu dZ 2
j (2m)?

Dya?+ Dqu—>(Daq2)z‘2+ w(N+1/2),

47TD (64)

where
Da: ( Dﬁ—ZDi)llz'

and o, is the cyclotron frequency of a particle with charge

2e and inverse effective mass tensn{]1=2Dij /%,
4eH
we=—7— D¢, Dc= VD, (D, cog 6+D, sir? 6).

(65

HereH is the magnitude of the magnetic field afids the
angle between the field and the deformation axis.
In formulas (64) z=3 holds if the dimensions of the

=Eg, then the first two terms have the form of diffusion sample exceed/D,7,. If the length of the sample in the

[
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direction of the magnetic field is less than this length, therabove is isotropic and is described by form(¥®) for Er
from the point of view of diffusive motion the sample is ~A and by formula71) for Er<A, where in the latter case

two-dimensional and we hawe=2. 7, have been replaced b}ﬂ’v
For the case of a quantum well As the deformation is decreased, formu(é68) and(71)
42 give way to formulag67) and (70) sincer, , decrease and
w . . . .
_q2_>_° >, (66)  the first two terms in expression68) and (71) disappear
(2m)=  4wD, 5 since we havd ;(0)=f,(0)=0. The same thing happens in

DE?— w(n+1/2): a quantum well aEEIA is increased. From formuld@ﬂ,
c ' (68), (70), and (71) it is clear that the magnetoresistance

and in this case, is also given by formul&65), where bys  changes sign whejbe|/Eg or E¢/A varies in the quantum
we mean the angle between the magnetic field and the nowell.

mal to the quantum welD ;=0 andD, =D. Formulas(67) and(70) differ from the result obtained in
It is convenient to represent the final expressions for thdref. 2 by a factor of two. This difference is due to the above-
conductivity in the form of a difference mentioned inaccuracy in the calculation of the Cooperon.

50'|J(H):AO'|J(H)_AO'”(O)

For a bulk sample for deformatioribs|<Er we have 5. CONCLUSION
S (H— D; €? eH DCf 4D eH
oitM)="5, 222 Vic b, ¥l The "¢
ductors with a complex valence band with allowance for

and for|be|>E . .
[be[>Er strong transitions between subbands. We have examined the

Di<1_0> e2 eH D(CO) dependence of the magnetoresistance on the external param-
%c DO eters: on deformation in bulk samples and on the doping

In the present paper we have constructed a theory of
' weak localization for the case of strong spin—orbit coupling.
(67) We have obtained equations for the Cooperons in semicon-

50—ij(H):

DO 47% i . .
a level in quantum wells. Expressions have been obtained for
4D<C°>e|-| ToT| the variation of the anomalous contribution to the conductiv-
x| 2 fs(T P ity in a magnetic field. We have shown that the magnetore-
el sistance in a nondeformed bulk sample is positive and
4DP%eH 7,7, 4DPeH changes sign with growth of the deformation. Such behavior
+f3 T he 147" fs(T T(p) : also takes place in a quantum well when the doping level is

e reduced.

(68) Note that since the interparticle interaction was not taken
Heref; is a function introduced in Ref. 10: into account in the construction of the given theory, it is

capable of describing the experimental data only at tempera-

- 1 turesT<#/7, (Ref. 2.
fa(x)= 2[Vn+1+x—yn+x]— ——¢. ¢
(=2 [ [ ] m}
(69)
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Intraband transitions in magnetoexcitons in coupled double quantum wells
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A theory of far-infrared(FIR) magneto-optical intrabansl—p™ transitions of direct and indirect
excitons in semiconductor coupled double quantum wells has been developed. The case of
symmetric strained IiGa, _,As/GaAs quantum wells with hondegenerate valence band in the
regime of both narrow and wide barriers has been analyzed. The energies and dipole

matrix elements of transitions between the grosrahd excitedp™ states in a quantizing

magnetic fieldB>2 T and electric field?” perpendicular to the quantum well plane have been
studied. The regimes of dire@in a weak electric fieldand indirect(in a strong electric

field) transitions, and the transition between the direct and indirect regimes, have been investigated.
© 1998 American Institute of Physids$1063-776(98)02304-X

1. INTRODUCTION data? The intraband FIR magnetospectroscopy proved to be
an efficient tool in studies of the ground and excited states of
Two-dimensional2D) spatially separated electron—hole excitons in bulk indirect semiconductotsee Ref. 10 and
(e—h) systems in a strong magnetic field have been studiegeferences therejn Experimental results concerning quasi-
theoretically for a number of yeatsDepending on the sepa- two-dimensional excitons obtained by this technique began
rationd betweene- andh-layers and the population number o emerge relatively recently. FIR magnetospectroscopy was
of excitons at the lowest Landau level=2mIgny (Where  ysed in measurements aé—h interaction as a function of
ny is the exciton density ankb= (:c/eB)'?), such systems he population number in type Il InAs/AIGaSh quantum
demonstrate an abundance of possible low-temperaturgeis. Evidence in favor of the existence of a stable exciton
phases. In part|_cular,.at smalIBose—.Elnstem condensa_mon state in a strong magnetic fieloh the presence of excess free
of magnetoexcitons in the state with momentt-0 IS giactrong was obtained.FIR spectra of type 1| GaAs/AlAs

possible(see also Ref. 2, where exact many-body results iy . antym wells in a strong magnetic field were also measured

the limit d=0 were obtame);l' . ) in the regime of low exciton densify}. Another highly sen-
In order to check theoretical predictions, real quasi-two-

di ional i ith sufficienty | con lifeti sitive technique, namely the optically detected cyclotron
Imensional systems with sutficiently on,g exciton fretimes resonance, was used in studies of direct excitons in GaAs
are necessary. Recently experimenters’ attention has been 2-15
e ; . quantum wells:
focused on systems of this kirfd’ Some evidence in favor . . .
) L ; . . No detailed theoretical study of intraband magneto-
of condensation of indirect excitons in a strong magnetic

field was provided by interband magneto-optical spectrosf)ptIcal properties of quasi-two-dimensional excitons has

copy (with a temporal and spatial resolutionf type Ii been published as yet. On the contrary, one can even find in

GaAs/AlAs quantum welld.In addition, anomalies were de- f[he I|ter§1ture erroneous cla|ﬁ?sapout the energy os.f;—>.p
tected in low-temperature transport properties of excitons if"raexciton transitions as a function of the magnetic fleld
a magnetic field. Other semiconductor structures that havedro_p in the trangltlon energy witB), which contradlct.ex-
been intensely studied in recent times are InGaAs/Gaad ~ Perimental daté_' Previously we analyzed changes in the
GaAs/GaAIAS coupled double quantum well§DQW). 1s—>np_- transmo_ns in DQW due to the magne??c field in
When an electric field is applied normally to the quantum the regime of a wide barrier between wells/at 0.~
well plane, the exciton ground state is modifietirect-to- This paper reports on a theoretical investigation of the
indirect crossover In a strong electric field? the ground energies and dipole matrix elements of FIR transitions in
state is an indirect excitoFig. 1), whose radiative lifetime ~Symmetric InGaAs/GaAs DQW as functions of the barrier
is considerably longer. This makes it possible to investigatéVidth in a strong magnetic fiel8=10 T (Sec. 3.1, changes
many_body effects in neutra—h systems ina strong mag- in the transitions caused by an applled electric figldh a
netic fieldB at low exciton temperatures. fixed magnetic fieldSec. 3.2, and changes in these param-
Identification of many-body effects in optical spectra de-eters with a magnetic field under strong and intermediate
mands detailed knowledge of optical properties of excitonglectric fieldsZ (Sec. 2.). Sections 2.1-2.3 describe the
in DQW in a strong magnetic field. The theory of magneto-calculation techniques, and Sec. 2.4 gives a qualitative de-
optical transitions of excitons in InGaAs/GaAs DQW in a scription of magnetoexciton spectra in DQW. Some results
low-density regime was presented in our previousof this work were briefly reported in our previous
publicatio? and is in good agreement with experimental publications:’*8

1063-7761/98/86(4)/8/$15.00 790 © 1998 American Institute of Physics
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InGaAs InGaAs

GaAs GaAs GaAs
FIG. 1. g Direct D and indirectl excitons in

r 3 a, DQW. Splittings between symmetric and antisym-
D metric states of electrons and holés, and Ay,
A are shown. p Excitons in DQW in an electric
" .
field
— =3
a
2. THEORETICAL MODEL The splittings between symmetric and antisymmetric states,

A=EP—E® andA,=E"-E, are determined by pen-

etration of the wave functions under the barrieee Sec.
Consider a heavy-hole exciton in a symmetric strainedg,_l).

Iny, Gay—x As/GaAs/In, Ga —x,As DQW with x;=X,=0.2, The HamiltonianH,p of relative motion of a noninter-

well widths L;=L,, and barrier widthL, (Fig. 1). Light  acting electron—hole pair with magnetic momentum of the

holes, whose branch is separated from that of heavy holes yenter of mas& in a perpendicular magnetic fieRl has the

several tens of meV, can be neglectd@he exciton Hamil- ~ form?*2*

tonian in DQW in perpendicular electrie’=(0,0/) and

magneticB= (0, 0,B) fields can be expressed as h? 1 e’B?

2.1. System Hamiltonian

Hop=-— Z—V,Z,JF > h(@en— wee)l -+ FPZ
H=Hez+Hiz+Hop+ Uern=Ho+ Uen, @ * Ke
I K2
where the Hamiltonian components + iB. XK) 4 ——
oB (PXK)+ o (6)
ﬁz 62 I . . . —1
Her=— 5~ — +Ve(ze) +€27, (20 where p=p.—py, is the relative separationy™*=m;
e 9Z2 +my is the reduced massigeny=e€B/MepC is the elec-
2 g2 tron (hole;) cyclotron frgquency, ant,=—i(pxVp), is. the
Hp=— 53— — +Vn(zy) — €2z, (3)  Z-projection of the orbital angular momentum of relative mo-
2mp, azj, tion. In this formula we have taken advantage of the exis-

) . tence of an exact integral of the motion, namely the magnetic
describe the motion of free electrons and holes along th@gnter-of-mass momentufiwhose operator is

z-axis. The well depths for electrons and holes are assumed

to be Vg=0.8AE4(x;)) and Vy,;=0.2AEy(x;), where . _ e

AEg(x)=E4(0)—Eq4(x;) is the band-gap offsetEy(x) K=—iaVe=Alp),

=1519-1.4%+0.37%*> eV is the gap width in

In,Ga,_xAs, and the effective masses amg=0.067 and  \hereR=(mgp,+mypn)/M is the center-of-mass location,
m,=0.35%1°The exciton energy is measured with respect togng M = me-+my. The vector potential is expressed in the

E4(0). _ . . - symmetric gaugé\ = 3B X p, andr=(p,z). Note that in Egs.
~ The solutions of the one-dimensional Sdfirger equa-  (2) (3), and(6), an isotropic electron spectrum is assumed,
tions while the masses of holes moving in the quantum well plane

‘ (e, A _e(h and in the perpendicular direction are different, # ny,
Hei(2e) =Ei"(i(Ze),  Hnj(zn)=Ej"&(z0),  (4) (see Appendix to Ref. 9, where the nonparabolicityrgf is

corresponding to the lowest discrete levels are calculated nliscussefl In what follows, we will neglect the difference
merically. In order to avoid difficulties with the continuum in Petween effective masses in the InGaAs wells and GaAs bar-

an electric field”#0, boundary conditions corresponding to "€rs. The energy of the Coulomb interaction between elec-
infinite energy barriers at sufficient distanc@90-500 A trons and holes can be written in the form

from the DQW are invoked. Whed=0 and the DQW is 2
symmetric (i.e., the two wells are identical at;=x, and Ueh:Ueh(“e_th:_e—’ (7)
L,=L,), the subscripts, j=s, a correspond to the sym- elre—ry|

metric ground states) and antisymmetric first excited state

(a) of electrons and holes respectively: wheree=12.5. In a InGaAs/GaAs DQW, the effect of elec-

trostatic image forces is very weak, owing to the small dif-
{sa)(Ze) = Lga)(—Zo),  Ega)(Zn)=E Ega)(—2Zn). ference between the dielectric constants of Gaés 12.5)
and Iny ,Gay gAs (e=13)? so this effect is neglected.
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2.2. Wave functions of magnetoexcitons with K=0

Fi’ =fmd de expl—q|ze—z
In order to calculate the eigenfunctions of Hamiltonian i (@ ] M—alze=2z)

(1), we diagonalize the tertd .}, of electron—hole interaction

in the basis of the wave functions of noninteracting electron— X £i(Ze) §i1(Ze) §§(21) &+ (2n) (13

hole pairs in a DQW in a magnet® and electricZ fields.  are the form factors related to the wave functions of one-

The wave function of an exciton with center-of-mass mo-dimensional motion. The integrals in Ed.3) and then in Eq.

mentumK =0 (see Sec. 2)an be expressed in the form of (11) are calculated numerically; the calculation is based on

the expansioh an expansion that includes the two lowest electron and hole
i levels ( andj), at least ten Landau levels B=12 T, and

‘I’K:o,lz(re ,rh)=exp( '[pX2R]Z D, (p,Ze,21), (8) up to 36 L.andau levels &=2 T. An apprpximate technique_
2lg z of taking into account the nonparabolicity of heavy holes is
described in Appendix to Ref. 9.

PP zezn)= 2 2 Ajnmdi(20)€(20) $an(P),

i,j=1,2n-m=
9

wherelg= (fic/eB)'? ¢i(ze) and¢;(z,) are the electron and o
hole wave functions determined by Ed4), &nm(p) In the Faraday geometrithe wave vector of light is

— (a")"(b")™00)/ ynim! are the factored wave functions in aligned with the magnetic fielB), the Hamiltonian describ-
a magnetic field 22'2.3ai1dp=p — pr.. For magnetoexcitons ing light absorption due to interaction between the excitons
the quantum nur"nbers and melabgl the Landau levels of and FIR electric field with amplitude”o and frequency

electrons and holes, respectively, and the angular momentupriis the form
projectionl,=n—m. Note that the wave functiong,.(p) -, &7,
of the e—h-pairs correspond to bound states in a fiBldthe oV-=
characteristic length scalénm|p?/nm)=2(n+m+1)I3). _ _ _
Therefore Eq(9) can be considered an expansion in excitonHere the plus and minus signs denote left-handeght-
wave functions. Note also that E¢9) takes into account handed circular polarization 07 M= TaxEiTay (@
mixing of different subbandsandj, which is important for ~=€.h), and
accuracy of calculationecompare to the discussion in Ref. e e
24) ﬂe:—iﬁve+ EAe, 'n'h=—iﬁVh— EAh

The energy eigenvaluds and eigenfunctions of Hamil-
tonian (1) for a magnetoexciton with angular momentum are the kinematic momentum operators. One can show that
projectionl,=n—m are calculated by numerically solving

2.3. Interaction between excitons and FIR radiation

o lﬁ) expl —iot) (14)
Me My '

w

the secular equation [oV=.K]=0. (19
This means that the magnetic momentum does not change
1 1 ; " .
Det | E(®+ Ej(h)+ﬁwce N+ =|+hwe m+=|—E during an FIR transition. All populated exciton states con-
2 2 tribute to intraband FIR transitions, including those with fi-
L nite K. This is the difference between intraband and inter-
X 8iir 8+ Sn Sy T Uijam )=0, (100  band transitions, since in the latter only excitons with

K =0 are optically active. In this paper we consider only FIR
where the matrix elements of the-h interaction have the transitions of excitons with center-of-mass momentum
form K =0, which can be characterized by a constant angular mo-
mentum projectior, (see Eq.6)). Therefore, the selection
rules for excitons withK =0 in a magnetic fiel® have the
usual form

U™ = (07§00 Ul M) = 60—y o

xf all ( 2Wez)F”/( )7 (@), (1)
(2m?2  eq )Y D am (D). <‘P;’<:o,|£|5vi|‘l’|<=o,|z>~5|;,|Z:1- (16)
o min(n,n’)! min(m,m’)! | ¥ Effects related to FIR absorption by two-dimensional mag-
S —mn-mZ am (A)= - - netoexcitons withK #0 were discussed in Ref. 18b. By us-
maxn,n’)! maxm,m’)!

ing expansion9) and the formula

§ g2\ lL'”_"/' qA2 s V2eh7o(al b oo an
2 min(n,n )| 2 - wlg Me My !
) 22 q212 wherea' (b") is the ladder operator corresponding to elec-
xL/m=m’l , .8 1B , tron (hole) Landau levelgsee Eq.(9)), we can express the
min(m,m") 2 2 . . .
matrix elements of intraband transitions betweeand (for

(120  example p* exciton states by the formula

whereL] are the generalized Laguerre polynomials and  |f|2~ (W _qp+|VF| ¥ _gs)|?
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2 +
IEZ IlO

— Ao Aijn+ 1041
~ 2 2 n+1 ﬁn+ln |Jnn_ 1jn+ n+ )

ij=12"n Mg My

(18 s 2p
For symmetric DQW(subscriptsi,j=s,a), FIR transitions o 4\
A

in the Faraday geometry are allowed only between exciton
states with the same spatial paritgj under inversion %, Do 3 = A
——Zs, Zn——21): S—SandA—A (see also Sec. 2.4.1 Dy,

2.4. Magnetoexcitons in DQW: qualitative description I

2.4.1. Classification of stateShe DQW have four exci- 9

ton terms(instead of one in an isolated quantum well when ! —d
00

the lowest size-quantized level is taken into accpfiit*2 m\

The classification of the states depends orRhevhich is the N

ratio between one-particle symmetric—antisymmewieh Dy, 4 — \ o

splitting A, A}, and the difference between the binding en- N ~

ergies of direct D) and indirect () excitons: SE,p=Ep

—E;, R=max(A¢,A)/ SEp, .

When R<1, the wide-barrier regime of DQW is real-
ized, and the exciton states in DQW are predominantly either
direct or indirect In addition, there is splitting due to tun- g
neling through the barrier: for example, in symmetric DQW
at #=0 each direct and indirect state is split into states symFIG. 2. Energies of 4 and 20" exciton states in DQW in the wide-barrier
metric (5) and antisymmetrc &) under inversion £, (291 8 Lclons of e secti fed verica arows show e four
—Z¢, Zy——2,). In the case of a wide barrier, the i, getail in Fig. 4a.
symmetric—antisymmetric splitting is governed by two-
particle e—h tunneling through the barrierAy=AAy/

SEp, .° The splittingAy is suppressed by a rise in excitonic bni1n(dn ne1) States. Therefore thest-2p* (1s—2p7)
effects (~ 8Ep/'); in particular, it decreases with increasing excition transition can be considered an electfoole) cy-
magnetic fieldB. In the wide-barrier regime, we will label clotron resonancepoy— ¢1o (bog— bo1), Which is modified
exciton states by quantum numbers of the high magnetipy excitonic effects. The evolution of the energy and matrix
field limit (D, 15y by indicating the numbers &f andh  elements of transitions from the symmetris ground states
Landau levels that are dominant in expangi®n and by the  or DS to variousp™ states in a magnetic fieB at #=0 in
spatial character of the states. When necessary, we will indin, ,Ga, /As/GaAs DQW were discussed in a previous
cate the state inversion symmetr§ or A) at £=0, and  publication!’ For example, the strongess-p* transitions
under strong? the lower O,,,,andl ) and upperP,,and  are D,S— DS and DyS—11¢S, i.€., the transition to the
I.m branches of the exciton spectrufone example is first electron Landau level. The transition energy is higher
shown in Fig. 2. than the free-electron cyclotron energy, since the origisal 1

For a sufficiently thin barrier, the opposite limit is en- state is more tightly bound than the fing)2 state. In DQW,
counteredA,Ap> 6Ep, andR>1. In this regime, excitons  the dipole matrix elemenjf?| of the Dy,S— DS transition
cannot be classified as direct or indirect, since these statemly increases wittB. An explanation of such behavior was
are mixed. Many of the characteristic features of the narrowgiven in Ref. 17.
barrier regime can be understood in the one-particle approxi-
mation, neglecting excitonic effect$?’ Exciton states in
symmetric DQW atZ#=0 can be classified a$,,,, where
i, j=s, a, in accordance with the quantum numbers of elec-  In this part of the paper, we discuss results for symmet-
tron and hole wave functiongé; ¢, which dominate ex-  ric Ing ,Ga, gAs/GaAs DQW withL,=L,=60 A. Section 3.1
pansion(9). The statess,,, andaa,, (sa,, andas,,,) cor- s dedicated to the dependence of energies and oscillator
respond to exciton states that are spatially symme®ric strengths of intraexciton FIR transitions on the barrier thick-
(antisymmetricA). nessL, in a magnetic field=10 T at#=0, and Secs. 3.2

2.4.2. FIR transitionsIn a strong magnetic field, the and 3.3 to their dependence on the magnetic and electric
exciton Is states are formed predominantly by the wavefields at fixedL,=60 A.
function ¢ of the loweste andh Landau levels. Owing to
the Coulombe-h interaction, there is a small admixture of
states ¢,,, of higher Landau levels proportional to An important parameter that determines many of the fea-
~lg/agegn <1, where aBe(h)zehZ/me(h)ez. Similarly, the tures of excitons in DQWin particular, the character of a
2p*(2p~) exciton states are formed predominantly by thecrossover from the direct to indirect regime in an applied
wave function ¢o( o) with a small admixture of electric field #) is the tunnel barrier thickneds,, which

1s

3. NUMERICAL CALCULATIONS AND DISCUSSION

3.1. Dependence on the barrier thickness
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antisymmetric splitting , exponentially drops with the bar-
rier widthL,. In the wide-barrier regime the paramefey is
determined by one-particle tunneling across the barfer:
=|E_ |lexp(—.",)/ 7, where”,= y2m,,|E, |Ly/%h andE, is
the energy of the level in a smgle quantum wéll.

In the considered case of J§Ga, jAs/GaAs DQW with
L,=L,=60 A and, for exampleL,=60 A, the numerical
calculation yield A,=4.9 meV andA,=0.6 meV. For
largeL, the two Iowest transitions to thepZ states are the
transitions to the direct@o;S—DoS) and indirect DgeS
—1405) excitons with the energy difference between them
=6Ep,=Ep—E,. The separation from the optically forbid-
den transitions toA-states~Ay=A A, /ey, . The transi-
tions to the next Landau level),,S—D,;S and Dy,S
—1,,S, correspond to the final8" states, and their oscilla-
tor strengths are considerably smaller.

20: 5510
=10T
10 ! ) ; . 2 " 3.2. Evolution of FIR transitions in an electric field at B+#0
0 20 30 40 50 60 , 70 ) o
L,A A perpendicular electric field?” breaks the symmetry

under inversiorz— —z and allows alls— p™ transitions in
FIG. 3. Energies and dipole matrix elements of exciton transitions from theDQw_ Exciton 1s and a:)i levels in an electric field in the
symmetri; ¥ ground state tgp~ exciteq states as functions of the barrier wide-barrier regime are shown in Fig. 2. In a weak electric
width L, in an InGaAs/GaAs DQW with ;=L,=60 A andx=0.2 at# . . .
—0. The areas of open circles are proportionalff in Eq. (18). Dashed field, all Ievelg shift quadrat'lcally due to the Stark effect. In
lines correspond to forbiddenS(>A) transitions to antisymmetric final intermediate fields, depending on Landau level numhens
states. Characteristics of final states are labeled in the graph. the crossover between direct and indirect exciton states oc-

curs. Owing to the lower Coulomb energy, this crossover

happens in weaker electric fields for the™2 state than for
determines the coupling between the quantum wells. Enetthe 1s state. This effect can be seen in the FIR absorption
gies and matrix elements of transitions from the symmetricspectra.
1s ground state t@™ states are plotted versus, in Fig. 3. Let us consider evolution of transitions from the ground
In the narrow-barrier regime, the initial state is formed 1s state to the excitegp™ states in the electric field and
mostly of the {50 Wave function denoted bgsy, (see fixed magnetic fieldFig. 4). The transition to the first ex-
Sec. 2.4.}, and two possible symmetricpZ final states are cited 2p* state experiences a red shift, which saturates in
ss;g andaa, g with the wave functiorysésé1o and €, d10, strong electric fields. This shift is also a function dB: the
respectively. The energies of these two transitionsfasg,  higher the magnetic field, the larger the red shift. This shift is
+ 6B, andfiweet+ A+ AL+ SE,, respectively. Her®dE; are  controlled by excitonic effects. Indeed, in a weak figfd
the energy corrections due to the differences in the Coulomboth the initialD 3 and finalD ;o States are direct excitons. In
binding energies of thesland 2" states, anddE,<A.  a strong electric field, they become the indirect magnetoex-
+ Ay, for small L,. The matrix element of thes,p—Ss)y  citons |y, and |1, with lower binding energies. As a result,
transition is large, and that of thes,;—aa;q transition is  the exciton transition energy drops and approaches that of
very small(and is due to the admixture of tleay, state to  the cyclotron resonance of free carri¢these energies are
SSyo and ssyp to aayg). As Ag+Ap>fwee in the narrow-  marked by arrows in Fig.)4

barrier regime, an anticrossing between the'3and ss,; Note also the nonmonotonic dependence of the energy of
states takes place &,=25 A, which leads to a redistribu- transition to the third p* excited statgat #=0 this is the
tion of oscillator strengths between the transitions. DgoS—110A transition, which is strictly forbidden by sym-

After the crossover to the wide-barrier regime, excitonsmetry selection rulés This nonmonotonic behavior is due to
become predominantly either diredd) or indirect (). For  successive crossovers from the direct state to the indirect
example, the groundslstate is theDy,S exciton with the state, first for the initial state and then for the final state in
wave function &+ {a€4) oo/ V2, and the two P final  the FIR transition. The first crossov@rhen the third excited
states are the dire@;,S and indirectl ;S excitons with the 2p™ state transforms from the indirettoA to direct D
wave functions (& £,&s) d10/ /2. Figure 3 shows that the magnetoexcitonoccurs in a lower field?, when the initial
energy of the transition to the firstpZ excited state in- state is predominantly a spatially direct excitBr,. This
creases very slowly with,, because the changes in the bind- explains both the growth in the oscillator strength and red
ing energies of the initial and final states cancel each otheshift due to the larger Stark effect for the@ 2 state. Then the
The transition energy to the nexp?2 state(with the wave initial 1s state undergoes a crossover fragSto | 5. As a
function {,&.¢10 at small L, and ((s&s— {aéa) P10/V2 at  result, we have théy,— D7, transition, which has an oscil-
large L,) rapidly drops withL,, since the symmetric— lator strength decreasing with the field strength and a shift
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FIG. 4. Evolution in an electric field of energies and dipole matrix ele-
ments of transitions from theslground state t¢a) excitedp* states andb)

p~ states in a magnetic fielB=10 T for symmetric InGaAs/GaAs DQW
with L;=L,=60 A andx=0.2. The areas of open circles are proportional to
the transition matrix element squardé?|. The horizontal arrows indicate
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FIG. 5. Evolution in a magnetic fiel8 of energies and dipole matrix ele-
ments of 5—p™* transitions as functions of the magnetic fi@dn electric
fields (@) #=7 kV/cm and(b) #=17.2 kV/cm. The dotted lines show po-

energies of cyclotron resonances for free electrons and holes. Characteristigﬁ;ionS of several weak transitions. The areas of open circles are proportional

of final states in the transitions are labeled in the graph.

almost linear in due to the Stark effect in the initial state
I 4o of the indirect exciton.

3.3. Evolution of FIR transitions in a magnetic field at fixed
£#0

The binding energy of indirect excitons increases Vth
more slowly than that of direct excitons. Therefore a ma

state in a strong fixed electric field, which depends on the
Landau level numbers of the exciton statég® This effect

can be seen in exciton FIR absorption spectra. The evolutio

of both the energies and dipole matrix elements of tee 1
—p™ transition with the magnetic field in the electric field
#&=7 kV/cm is illustrated by Fig. 5a, and in the field
=17.2 kV/cm by Fig. 5b.

In the stronger electric fiel& (Fig. 5a, the initial 1s
state is the indirect excitoh,y. In the magnetic field range
under consideratiorB<<16 T, no crossover between the di-
rect and indirect states occurs, so only kg1 1, transition
has a large matrix element, which rapidlgssentially lin-
early) increases wittB. Transitions to all remaining higher
levels have much lower intensities.

to dipole matrix elements squardd|? [Eq. 18].

In the weaker electric fieldFig. 5b), the gap between the
I 1o and D, states is considerably smaller. Furthermore, the
mixing between direct and indirect exciton states is notable.
Therefore the o,— D, transition has a notable matrix ele-
ment even at intermediate magnetic fieRlsAt B<4 T, the
behavior of spectral lines is complicated owing to numerous
anticrossings between levels of direqi™ and indirecin’p*
excitons, wheren’>n. This results in small splittings of

L . . . Yines and redistribution of their intensities, which is similar
netic field B induces a crossover from an indirect to direct

to the behavior of interband transitions discussed in Refs. 4
and 9. AtB>10 T, thel,,—DJ, transition amplitude in-
creases rapidly because of the indirect-to-direct crossover in
e initial state: the ground state gradually evofveand
transforms from the indiredty, to directD,, exciton. Since
the excitonic effects in @~ states are considerably weaker,
such a crossover occurs in much stronger magnetic fields.
Note that the transition to the fin@,, state remains
very weak because of the large difference between the
shapes of wave functions @imost degenerat®;,andD ;,
direct excitons. Indeed, it follows from the probability distri-
bution for the excitongFig. 6), i.e.,

PK:O,IZ(ZeyZh):f d?p| Wy —oy (e rn)l% (19
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FIG. 6. Probability distribution®(z., z,) (Eq.
(19)) for exciton states involved in transitions
shown in Fig. 5a B=10 T): a) initial 1s state
Dgo; three of the various low-lying 2* final
states: b1y, ©) Dy, and d D3.

that in fields#=7 kV/cm andB=10 T, the ground state at and increases witB. These theoretical results may be useful

the lowest Landau levelg.e., the initial state in the transi- in planning experiments and interpreting their results.

tions in questiop is predominantly direcfwe denote it by The author is indebted to A. L. Yablonskii for designing
Doy This state is predominantly a direct exciton in the leftcomputer codes used in numerical calculations, and to G. E.
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_C X X an intermediate wi , wnhe . Note also that at a Tixedy In sutt
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The phenomenon of upper critical dimensionatify has been studied from the viewpoint of the
scaling concepts. The Thouless numbét) is not the only essential variable in scale
transformations, because there is the second essential parameter connected with the off-diagonal
disorder. The investigation of the resulting two-parameter scaling has revealed two

scenarios, and switching from one to another scenario determines the upper critical dimensionality.
The first scenario corresponds to the conventional one-parameter scaling and is characterized

by the parameteg(L) invariant under scale transformations when the system is at the

critical point. In the second scenario, the Thouless nurglfe) grows at the critical point as

L9~ 92, which leads to a violation of the Wegner relation v(d—2) between the critical

exponents for conductivitg and localization radiug, which takes the forns=v(d.,—2). The
resulting formulas fog(L) are in agreement with the symmetry theory suggested in a

previous publication, I. M. Suslov, Zh.k8p. Teor. Fiz108 1686(1995 [JETP81, 925(1995].

A more rigorous version of Mott’s argument concerning localization due to topological

disorder has been proposed. 1®98 American Institute of Physids$1063-776(98)02404-4

1. INTRODUCTION renormalizability of the theor§$~2°and the renormalization
properties of both density-of-states and conductivity prob-
The one-parameter scaling hypothésias played an im- lems are similar. This clearly follows from the fact that the
portant role in development of the contemporary localizatiorsame diagrammatic technique is used in both problems. Non-
theory’~8 and stimulated creation of the theory of quantumrenormalizability of the theory ai>4 indicates the impor-
correctiond unambiguously supported by an experiment.tance of the Hamiltonian structure on the atomic scale, which
The criticism of the one-parameter scafitigin fact refers  is the reason why the scaling invariance is broken. This rea-
not to underlying physical ideas, but rather to its justificationsoning is supported by the previously developed “symmetry
in the formalism ofo-modelst*~®The justification problem  theory,”*° which yields the results that are in agreement with
remains a pressing one, and may require more accurate defirose of a one-parameter scaling only ¢bx4.
nitions of the basic notions as well as lead to a restriction of  The present paper was motivated by two factors. On one
the range of applicability. Here we discuss modifications ofhand, the opinion thatl.,=% has recently become quite
scaling concepts that we believe are inevitable in highpopulari®?*2?® This opinion is not absolutely groundless
dimensional spaces. since the one-parameter scaling thegiyes no indicatiorof
Experience with phase-transition thebi}? indicates the existence of an upper critical dimensionality. So there are
that scaling is applicable only to spaces with dimensionalicertain drawbacks in the existing physical picture of local-
tiesd within an interval between the upper and lower critical ization, although it remains unchanged after many years of
dimensionalitiesd.; andd,. Ford<d,, there is no phase discussions.

transition, and ford>d,,, the mean-field theory is valid. On the other hand, the Wegner relation
There is no doubt thatl,;=2 in the localization theory,
whereas the issue of the upper critical dimensionality has s=(d—2)v @

remained a subject for discussions for many yéars As

concerns the problem of the density of stai@stermined by between the critical exponents for conductivit) (o those

the averaged Green'’s functid®)), a comprehensive solu- of localization radius ¢), which derives from the scaling
tion was recently fourfi~2° by the author of this paper. It theory, can be obtained under less demanding conditfons.
was demonstrated thalt,,=4 and how the conditioni>4 Namely, it suffices to postulate the symmetry of correlation
simplifies the problem. The singularity d&=4 was also in- length on both sides of the transition and independence of
vestigated, and the (4¢)-dimensional theory was devel- the Thouless number at the critical point of the length scale.
oped. As concerns conductivity, which is determined by cor-These two assumptions are taken for granted, so the mecha-
relator (GRG”), the upper critical dimensionality could be, nism responsible for a violation of the Wegner relation at
in principle, different for this quantity. The latter statementd>4%>3%32deserves a consideration on the physical level.
was made in Ref. 21, but there are some serious eftdrs. The aim of the reported work was to fill these gaps and
fact, this conjecture is not true: the special role of dimensioninvestigate the phenomenon of the upper critical dimension-
ality d=4 is a fundamental fact manifesting itself in the ality from the standpoint of the scaling concepts.

1063-7761/98/86(4)/7/$15.00 798 © 1998 American Institute of Physics
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2. PROBLEM OF THE SECOND PARAMETER ding
T = A, (8a

The scaling theoryis based on the Thouless scaling
consideratiot;*®> which is similar to the well-known
Kadanov scheme in the theory of critical phenom&n4.
The disordered system in question, which is described by the

Anderson model on a-dimensional cubic lattice with the 44 the results are determined by the properties of two func-
coupling integralsJ between nearest neighbors and theygns B(g,h) and y(g,h).

spread of the energy leveW, is divided into blocks of size The arguments presented in Ref. 1 in favorook pa-
L. In the absence of interaction b_etween the bIO(_:k_s, the SYSameter gL) scaling in spite of their peculiariﬂ/were well
tem has random energy levels with a characteristic spacingrounded. If the basic physical concept proposed in that pa-

d . B .
A(L)~J(ap/L)", wherea, is the lattice constant. If the in- per is correct, the parametg(L) changes over a distance of
teraction is “switched on,” the matrix elements between theie grder of the correlation radiugs which can be arbitrarily

states of the neighboring blocks appear and result in hybridrarge near the transition point, and E8b) can be analyzed
ization of “block” functions. The hybridization is the stron- 4 54 constang. If parameterh(L) varies between the finite
gest between the states with close energies, and on a qualimits and is a monotonic function, it should on a certain
tative level we can consider only such states. By sglectmg IRcalel ,<¢ tend to a limiting valueh..(g), and after substi-
each block a level closest to a given enekgywe obtain the  y,ing this value into Eq(8a) we return to a one-parameter
effective Anderson model with the spread of lev#l§L)  scaling. An oscillating behavior of parameteL) would
~A(L) and coupling integrald(L) determined by the cor- oy indicate its inadequate definition, since averaging out

responding matrix elements. The effective Anderson modeﬂhe oscillation3* would lead to an equation system like)

provides a reduced description of the system on scales Iargt\?vrith a smoothed parameté_r(L) which varies monotoni-
than L, and its properties are controlled by the Thoulessca"y. The parametd(L) can only be important if it tends to

), (8b)

number zero or infinity, but then can be detected on the level of
J(L) order-of-magnitude estimates, and it would have had a clear
9(L)= wW(L)’ 2 physical sense. The entire scientific community has failed to

o _ suggest such a parameter throughout the period starting with
related to the conductaneg(L) of a block with dimension the year 1979.

L: There are two candidates to the role of the second pa-

4 rameter which appear as a matter of course, but are rejected
g(L)~—ZG(L), G(L)=o(L)L92 3 after a closer scrutiny.
e a) While the Thouless scheme is constructed without ap-
Repeating the Thouless consideration for the effectivdProximations, the effective Anderson model contains a large
Anderson model, we obtain an a|gorithm for Ca|cu|atingnumbern(|_) of levels at each lattice site, which increases

g(bL) with integerb, giveng(L): with L and can be considered as the second parameter. But
hybridization of states in neighboring blocks with enerdtes
g9(bL)=F(b,g(L)). @ andE’ is determined by the paramet#flL)/|E—E’'| and is

Abrahamset al! considered the limitb—1 for this inessential fofE—E’[>J(L). Therefore one can take into
equation, when it can be rewritten in the form suggested byccount onlyn(L)~J(L)/A(L) levels around energl, and

Gell-Mann and Low: the parameten(L) does not generate a new scale since it is
of the same order as the Thouless numip@r). Nonethe-
M:B(g). (5) less, this modification of the Thouless scheme reveals new
dinL opportunities and will be considered in future work.
The transition poing, is determined by a conditioB(g.) b) The overlap integrals in the Thouless construction are
=0, and the conductivityr=lim, _..o(L) and localization ~random values, and the ratip(L)=25J(L)/J(L) between
radius¢ behave in the vicinity of the transition as their fluctuationsJ(L) and their typical valuel(L) can be
treated as the second parameter. But fluctuations can be ne-
0%(go=9e)%  £%(9c— o) " 6)  glected if SJ(L)<J(L), and the opposite case
wheregy is the value ofg(L) atL~a,, 1/v=g.8'(g.), and 8I(L)>J(L) is impossible since the extreme limit of off-
the critical exponens is determined by Eq(1). diagonal disorder corresponds to a symmetric distribution of

The theory developed by Abraharesal® corresponds ~coupling integrals around zero whefd(L)~J(L). Hence,
to the simplest scenario of one-parameter scaling. In printhe parametep(L) can only play some role when it is of the
ciple, one can imagine alternative situations. For example, iPrder of unity and does not generate a new scale. Nonethe-
two parametersg(L) andh(L), are important, we have, by less, the off-diagonal disorder is significant, although a more

analogy with Eq.(4), appropriate definition of the corresponding parameter is re-
quired.
g(bL)=F(b,g(L),h(L)), h(bL)=G(b,g(L),h(L)()7,) Estimates based on the optimal fluctuation technitjtfe

show that a typical wave function of localized states has a
which in the limitb—1 yields behavior
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wherel=d— 2 increases with the space dimensionality. This
result is valid outside the close neighborhood of the transigi. 2. pecomposition of an arbitrary configuration of impurities into clus-
tion point, i.e., in the region similar to that where the Landauters.

theory can be used, but such results have a tendency to

become rigorous in spaces with a high dimensionality. In the

critical region, a similar result is associated with investiga-If the coupling integral drops exponentially,

tions of multifractal properties of the wave functidhs
() 2w )2 er=r' |77, |r—r'|<&, (10
where n~e¢€ for d=2+¢€ and »~1 for d=3, i.e., it also

Jnrcexp— k|r,—rul}, (12

wherer , is the coordinate of thath impurity, the impurity
band is completely localized in the limit of low concentra-

increases with the space dimensionality. Therefore, let ution. Intuitive arguments in favor of this conjecture were

assume that Eq10) holds in the critical region and in-

suggested by Motton the basis of Lifshitz’s classification of

creases without bound as increases, and let us consider states>>® Here we present a refined version of Mott's argu-
whether this property can lead to a catastrophe. A large valument with the aim of attracting attention to physically sig-
of ¢ means that the block wave functions in the Thoulesaificant aspects ignored by both Mott and Lifshitz.

scheme are strongly localized on a scale smaller théfig.

The density of states(E) of the impurity band is a

1), which leads to strong off-diagonal disorder. For examplecontinuous function of energy and is formed by levels of
the overlap integral coupling states 1 and 2 is much smallewhich the overwhelming majority have energies different
than that coupling states 3 and 4. The anticipated catastropliem that of an isolated impuritf,. In order to obtain such

is a localization due to the pure off-diagonal disorder, whichlevels, one should take into account the interaction between
can occur even iW(L)=0, i.e., when the spread of energy an arbitrary impurity atom 1 and its environment, no matter

levels is neglected. The Thouless numbél) in this case is

how weak it is. According to Lifshitz, the main factor is

infinite and cannot play any role, and the hybridization of“collisions” between impurity atoms, i.e., random encoun-
block states is controlled by a different parameter related téers among the latter. If the unit distance is the average dis-

off-diagonal disorder.

3. LOCALIZATION IN THE CASE OF OFF-DIAGONAL
DISORDER

A possibility of localization due to off-diagonal disorder

was discussed in connection with the problem of formation
of an impurity band in a semiconductor, which in fact stimu-

lated the creation of the localization thedfyAn isolated

tance between impurities, the limit of zero concentration cor-
responds tok— in Eq. (12). Since the overlap integral
decays exponentially with the distance, only interaction be-
tween the nearest neighbors should be taken into account.
Nevertheless, the analysis cannot be limited to pairwise
“collisions.”

Indeed, suppose that the nearest neighbor of atom 1 is
atom 2. If the nearest neighbor of atom 2 is atom 1, the 1-2
pair can be treated in isolation from its environméhig.

impurity in a semiconductor can generate a state with energa. If the nearest neighbor of atom 2 is atom 3, we must
E, within the band gap. When the concentration of suchconsider thel—2—3cluster(Fig. 2b: first the hybridization

impurities is finite, they form an impurity band, which is

of states of atoms 2 and 3 should be taken into account, then

described in the site representation by the Anderson modéheir interaction with atom 1. If the nearest neighbor of atom

with off-diagonal disordefsometimes this is termed the Lif-
shitz model):

> IV +EqV,=EV,,. (11)
n/

3 is not atom 2 but atom 4, we must consider 1he2—3—4

cluster(Fig. 20, etc. If this construction process starts with

atom 1 and ends with atoim we consider by definition that

atom 1 belongs tath cluster. It is evident that atoms 2, 3,
. specified in this process belong to the sathecluster.
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Taking each impurity atom in turn as atom 1, we obtain a
decomposition of an arbitrary configuration into clusters
(Fig. 20. The decomposition is unique since each atom in
this scheme belongs to a certain cluster, and no atom can
belong to two clusters at ondmeglecting an infinitesimal
probability of detecting an exact equality between two inter-
atomic distances Formally we should take into account ar-
bitrarily large clusters, but in fact all clusters contain with an
overwhelming probability a number of atoms on the order of
unity (the existence of an infinite cluster would mean con-
centration of an infinite number of impurities in a finite vol-
ume.

Let us introduce paramet&;, which is the characteris-
tic interatomic distance inside a cluster, and paramBter
which is the characteristic separation between clusters. A
thorough investigation is needed to give rigorous definitions
of these parameters, but for any reasonable definition weIG. 3. Phase diagram in coordinates ¢). The hatched area corresponds

have to localized states, the cross-hatched area to delocalized states.
Rl< RZ ’ (13)
since clusters are formed from the nearest atoms. The existence of the critical point, solves the problem of

By neglecting interaction between clusters and diagonalthe second parameter in the renormalization group: the new
izing Hamiltonians of isolated clusters, we obtain the zerogntrivial scale is associated not wih but with ¢ — ¢ .
approximation for.the dgnsity of st.ate$E) of the impurity If the parameterg and¢ uniquely determine the state of
band, whose width is determined by the parameteq gisordered system, then in the course of the Thouless scale
exp(-«Ry). This approximation is asymptotically exact in transformation one point of plane(p) turns into another
the limit of zero concentration, since the nearest neighbor Oﬁ.‘omt of this plane. If the system is at a critical point, it can
each atom is in the same cluster, and the shift of its levelgye only along the criticalB surface, which is the locus
with respect tok, is calculated correctly in the lowest ap- of such points.
proximation. _ . In order to return to the conventional scheme of one-

Regarding each cluster as a site of a new lattice angharameter scaling, we should postulate, in accordance with
taking into account interaction between clusters, we obtaifhe conventional concepts of the theory of critical phenom-
the effective Anderson model with the spread of levelsena (Ref. 17, Ch. 6, the existence of a fixed poifit (Fig.
Wecexp(-«Ry) and overlap integrald>=exp(-«Rp). By vir- 44 which is stable for states on the critical surface but un-
tue of Eq.(13), we havel/W—0 asx—c, and in the zero-  staple for states off the critical surface. In the theory of dif-
concentration limit, all states are localized inside the clusterserential equation®® such a property is associated with a
The latter clarifies the physical sense of these clusters.  gaqdle point characterized by two asymptot®B,and CD,

Thus, we have proved the basic feasibility of localizationang hyperbolic trajectories in the vicinity of this poitfig.
of all states due to the pure off-diagonal disorder. Note thalig) Changes in the Thouless numiggiL) with scaleL for
the pattern of hybridization between the eigenstates of sepgnis case are shown in Fig. 5a. It has a constant vgluat
rate blocks(Fig. 1), neglecting the spread of energy levels point F (curve 1), relaxes tog, at a finite scaleL, for the
and in the limit{—ce, is similar to the case of topological points on the critical surface different from (Eurves2 and
disorder in a system of impurities with exponential overlap.3) approaches, at the scaléd., and departs from this value

at the scale¢ for the points close to the critical surface
4. TWO-PARAMETER SCALING (curves4 and5). Roughly speaking, evolution in the (¢)
plane consists of two stages, namely the fast relaxation to the

In the presence of off-diagonal disorder, a disorderecturve CD and slow motion along this curve. At scales

system can be characterized by two parameters: >L, the (g,¢) plane is in fact compressed to the liG®,
(L) 8J(L) and positions on this line are determined by the Thouless
g(L)= m o(L)= m (14 number? Thus, we have returned to the conventional
scheme, and we assume it to be valid for low dimensions.
the latter having as an upper bound a certain valys, (Sec. Suppose that there is no stationary point on the critical

2). A phase diagram in coordinateg, ) is shown in Fig. 3.  surface at largel. Then a system at a critical point moves
At ¢=0, the boundary between localized and delocalizedipward along curvé\B asL increasegFig. 4b. The down-
states is located aj~1. An increase inp leads to greater ward motion is impossible because this means that off-
disorder in the system, and the boundagbetween the two diagonal disorder disappears asymptotically at ldrgand
phases displaces to highgrand tends to infinity at some, contradicts the physical arguments of Sec. 2. The Thouless
(a curve likeAB' precludes localization due to the pure off- numberg(L) increases with. at the transition pointcurvel
diagonal disorder, when the Thouless number is infinite in Fig. 5b), in the metallic phase it increases fastay(L)
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g
B
b
FIG. 4. Flow diagram for Thouless’ scale
transformationsa@) in the presence of a sta-
tionary point F on the critical surface AB and
/\‘ (b) in the absence of such a point.
A
4 L4

~oL972 (curve 2), and in the localized phase the curve ex- The phenomenological description is possible because
hibits reentrant behavidcurve 3). the functionsB(g,h) andy(g,h) in the two-parameter scal-

At first sight, such reentrant behavior is absurd from the"g eguations8) admit regular expansions. By virtue of Eq.
physical standpoint. This mednthat the degree of hybrid- (7), they describe a relation between two finite systems,
ization between block states increases at smaljdsut then ~ Whereas all singularities emerge in the thermodynamic
drops for an unclear reason. In reality, this is not so, since thAmit 17.Thi5 argument assumes, however, an adequate choice
hybridization is not determined entirely by the ThoulessOf scaling variables, which do not have their built-in singu-
number, but is also a function af(L). At the transition Iarltles._ In this sense, the yanab{e is not appropriate be-
point, the effective disordehence the hybridization degpee Cause it has a singular point; . Therefore we introduce a
remains at the same level but is transferred from the diagon&€W variableh=F(g,¢) such that in the ¢,h) plane the
type to off-diagonal one. In the localized phase, the effectivéurves of Fig. 4a take the form shown in Fig. 6, i.e., curve
disorder increases monotonically, but in the first stage thé\B has an asymptotg~h asg,h— and curveCD be-
Thouless number grows, and the diagonal disorder charactefomes a vertical line. The first condition is adopted so that
ized by this parameter decreases owing to transformation ithe critical surface, which is associated with no singularities,
the off-diagonal disorder. Only whedn> ¢ and the total dis- should have regular projections on both coordinate axes, and
order has increased considerably does diagonal disorder alf¢ second is assumed to simplify the equatice below.
begin to grow. In investigating the bifurcation, it is suff_icient to analyze

As the space dimensionality increases, the first scenarigd- (8) in the region of largey andh, where it can be trans-
(Fig. 43 should gradually transfer to the second aiigg.  formed to

4b), so the stationary point should move upwards along the ding Ah Bh? cCh®

curve AB and go to infinity at a certain dimensionalitl,. qnL_d-2+ ?“L ?Jr 5

We identify this value with the upper critical dimensionality.

The aim of subsequent analysis is to develop a phenomeno- ~(9g

logical theory of this bifurcation. t...=(d=2)+8 ﬁ)’ (153

FIG. 5. Evolution of the Thouless parameter
in scenarios illustrated by Figs. 4a and 4b.
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FIG. 6. Diagram of Fig. 4a after the variable chargeF(g,¢).
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dinL “Th (15D
where parameter changes sign al=d,,

pw=a(d—dg), d—dg, (16)

and a>0, b>0, andA<O0. Indeed, ah=const all conclu-
sions from Ref. 1 apply to functio@(g,h), i.e., it has as-
ymptotesd—2 and Ing for large and smalf, and atd>2
has a roog., which is a function oh in this specific case.
By expandingB(g,h) in powers of 1g,
Aq(h) Az(h)+ a7
g2

we find that the expansioA,(h) in powers of 1 should
begin with h" in order to yield a rootg.~h (Fig. 6). By
retaining the leading terms of the expansiorhinve obtain
Eq. (15a.

As follows from the foregoing, ati>d., the function
v(g,h) should lead to unbounded growth ip which, how-
ever, should not be faster than thatgnso that the roog,
~h should retain its physical sense. Given thgt.) in-
creases no faster tharf ~2* we have at largé the condi-
tion 0< y(g,h)<d—2, which indicates that the expansion of
v(g,h) in powers of 1¢ and 1h begins with a zero-order
term:

+

B(g,h)=(d-2)+

b
=+ ...

h (18

a
Y(Q,h)=M+a+

If the variables are defined so that curve CD is a vertical line

the coordinatén,. of the stationary point is independent gf
and the coefficiend in Eq. (18) is zero. The stationary point
should be stable fod<d.,, and absent fod>d.,, which
means thab is positive andu changes sign at=d.,, as can
be seen in Eq915) and(16).

Equation systen(l5) is easy to analyze. Far<d.,, Eq.
(15b has a stationary poinh.=b/|u|, and the variable

changeg—gh. in Eq. (153 returns us to the one-parameter

scaling with the critical exponents given by equations

1v=9g.B'(9e), (d—2)+B(ge)=0.
(19

s=v(d—2),

I. M. Suslov 803

Ford>d,, and largeh, we haveh(L)«L#, and after the
changeg—glL*, Eq. (15b) is reduced to a one-parameter
form, but with d—2—pu instead ofd—2. For L<¢, the
Thouless number follows the law

L
ao

pt 1y

: (20)

o

+(90—9¢)

g(L)=gc a_o

and the critical exponents are determined by the equations

1v=9.8"(9.), (21a
s=v(d—2—pu), (21b)
(d—2—p)+B(gc) =0. (219

The localization radius is defined as the distance at
which the parameteg(L) begins to drop fogy<g. (i.e., in
the localized phageand the exponens is determined by
matching the function defined by Eg20) and g(L)
~ogL972 atL~¢&. At the transition point, the Thouless num-
ber increases according to the law

g(L)ecL”, (22

which is the reason why the Wegner relation fagee Eq.
(21b)). The comparison between Eq49) and(21) demon-
strates that critical exponents as functiongldfave cusps at
d=dc,.

Usually, one feature of the upper critical dimensionality
is that the critical exponents are independend a@boved..
As follows from Eq.(21b), this is possible ifu=d+ const,

which yields in combination with Eq.16)
w=d—dg,. (23

Given this relation, we obtain the Thouless number as a
function of the length scale fdr=<¢:

9(L)=gc+(go—9o)(L/ag)”, d<dcy, (24a
9(L)=0gc(L/ag)? %2+ (go—gc) (L/ag) 4 dea ™1,
d>do,. (24b)

Equation(24b) is the main result of our phenomenological
approach. Equatiori24g is a well-known consequence of

one-parameter scaling, but its range of applicability is lim-
ited.

5. COMPARISON TO THE SYMMETRY THEORY

The symmetry theorY yields the same values of critical
exponents as the Vollhardt and We self-consistent
theory'%

v=1/(d—-2), s=1 for 2<d<4,

(29

v=1/2, s=1 for d>4.

Ford<4 they are compatible with the one-parameter scaling
because the Wegner relatise v(d—2) holds. Its failure at
d>4 means thatl.,=4.
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In order to compare the results given by E24) to the
symmetry theory, let us derive from the laffthe diffusion
coefficientD, for a finite block of sizel. It is calculated
using the diffusion coefficierd (w,q) for an infinite system
using the formul3

DL
D ~D |I5J_1>. (26)
It was shown in Ref. 30 that
D((U'Q):Do(w)qov q<a611 (27)
andDy(w) is given by the equation
i 1/2v
Do(w)=A7T+B| — Do(w)> , (28)

where 7 is the distance to the transition point. Given that

g(L)=D L9 2 and parameter is proportional togo—g_,
we can easily derive from Eq§26)—(28)

9(L)=gc(L/ag)* * "+ (go—gc)(L/ag) 2. (29

This result is similar to Eq(24) but not identical in the
general case. The results expressed by Eg.and(29) are
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A study is made of the properties of the homologous series of mercury HTSC-cuprates
HgBaCa,_1Cu,05,. 2+ s With N=1-8. Experiments are conducted under pressure for samples
with n=1-5. The Hg-1223 and Hg-1234 phases were synthesized using a controlled high
pressure chamber. The oxygen content of an initial mixture corresponding to the Hg-1234 phase
was varied by changing the composition of the initial BaO/Ba®ides. The dependence

of the superconducting transition temperattigeon the lattice constard (and, therefore, on the
oxygen contentand of T7'® andd T¢'@/dp on n are convex upward up to=4,5. The

maximum values always correspond to the Hg-1223 phase. Experinieltitéh) curves for the
phases witm=1-6 andd T{"®/dp curves forn=1-5 are compared with Anderson’s

theory (the so-called RVB modgl A general analysis of these results indicates that the mercury
cuprates have an ideal structure for HTSC. The Hg-1223 phase is the “champion” in this
ideal structure and the critical temperature corresponding to this piiasel85 K) is the highest

at atmospheric pressure. €998 American Institute of PhysidsS§1063-776098)02504-9

1. INTRODUCTION pressure are maintained down to liquid-helium temperatures.
. i 0,
The homologous series of layered mercury HTSC—The temperature was measured usin¢Ca+0.15%F¢/Cu
cuprates is described by the general formulathermocouple. _ _
The measurement samples witk- 1, 2 were prepared in

HgBaCa,,Cu,0O . The layers of Cu@ determine
thge :Epgqrcén&ctzi?/;rtyﬁ Y ® closed vials in the Department of Inorganic Chemistry at the

In connection with the appearance of this series of te_ChemiStry FaCUlty of Moscow State UniverSity and those
tragonal cuprates with a high superconducting transition temwith n=3-5 were prepared in high quasihydrostatic pres-
perature(T,= 135 K, n=3)? and the available theories, we sure chambers at the Institute of High Pressure Physics of the
have decided to examine our experimental data on mercurRussian Academy of Sciences. We used our eértiata on
HTSC compounds from a unified standpoint. The superconTc(p), except for the data fon=1. The data orT.(p) for
ducting phases with=1-5 have been studied at pressuresthe 1201 phase were taken from corresponding combined
of up to 2.5 GPa. The 1245 phase was produced with an 85%ata in the literature. New experimental data, including
content of the pure phase, while the 1256 and 1267 phasesimples synthesized in a controlled quasihydrostatic pressure
are mixtures and, because of the strong overlap in the corshambeP, were also used. All th@.(p) curves in the new
ditions for synthesizing them at high pressures, it was imposexperiments were obtained for the maximidimof the given
sible to work with them. phase for monophase samples of 1223, 1234, and 1245,

We attempt to understand our experimental results irwhose superconducting characteristics are listed in Table I.
terms of the resonant valence bond model proposed bye did not use our values for the pressure derivative
Andersont All the CuQ, layers in a unit cell are assumed to dT./dp of the 1201 phase, which differed from the data
be equivalent with a uniform charge distribution and only thEpubHshed by others. The discrepancy can be explained by
bonds between neighboring layers of Guebe considered®  the fact that in our chambers, the pressure created at room

temperature redistributes the excess oxygen. Similar argu-
2. EXPERIMENT ments have been advanced and proven elseftereTl-

We used a well worked out method for measuring the2201 samples which yielded low pressure derivatives, as we
T«(p) curves from the jumps in the two magnetic suscepti-haVe also found.To a certain extent, this is consistent with
bilities. Chambers were used in which the pressure was crdéhe results of Ref. 6, where a reductionTip was observed
ated in a liquid medium and recorded at room temperatureduring peroxidation in the Hg-1223 phase and, perhaps, in
Then the chamber was cooled to the required low temperdhe Hg-1234 phase. The oxygen content was varied by
tures. The pressure was measured at room temperature anghanging the BaO/Bagratio in the initial mixture.
suitable calibration was used to determine its value at the The cations of doubly valent mercury in the structure of
given low temperature. Our experiments over many yearghe layered HTSC-oxides are characterized by a dumbell co-
with these chambers on quantum effects in single crystalsrdination with oxygen atoms necessarily present only in
have shown that hydrostatic behavior and almost the fulheighboring layers and only optionally in the mercury layers.

1063-7761/98/86(4)/6/$15.00 805 © 1998 American Institute of Physics
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TABLE |. Parameters of the HTSC-sampl@xperimental daja
n

1 2 3 4 5
T'c“ax, K 98 127 135 126 111
dT?aX/dp, K/GPa 2.4 3.2 4.6 2.2 4.3
d In a/dp, 1/GPa - - —0.003 - -
d In c/dp, 1/GPa - - —0.0067 - -
dix, nm — — 0.94 - -
di* . nm - - 0.32 - -
d In dy,/dp, 1/GPa - - -0.0098 - -
d Ind,,/dp, 1/GPa - - —0.0054 - -
d In Ay,/dp, 1/GPa 0.0245 - - - -
d In A, /dp, 1/GPa - 0.025 - - -

Notes:* Data from Ref. 15d In a/dp=—0.003,d In c/dp=—0.006;** d,, is the separation between Cufayers of neighboring unit cellsl;, is that within
a unit cell.

The weak coupling with neighboring cations makes it pos- The crystalline structur¢tetragonal for all phasg¢svas
sible to change the populatiahof the anion position in the determined for each sample during synthesis and is given in
mercury layer with oxygen atoms and to vary the concentraRefs. 2 and 5. The dependence of its parameters on pressure
tion of holes in the conduction band. There is no incompatis given in Table I. The phase analysis was based on x-ray
ibility of the layers because of this weak Hg—O bond in thepatterns. The 1223 and 1234 phases were synthesized with
layer. The amount of oxygen in the layéf), because it different peroxidation. Here the hole concentration in the
changes the lattice parametgr determinesT, (a convex- CuG; layers was varied by changing the amoxrdf oxygen
upward or dome-shapef.(a) curve); see Fig. 1. Because in the Hg—O layer, which makes it possible to conffql;’
of the distinctive features of the crystalline structufgalso  see Fig. 1. The derivatives with respect to pressure were
depends on the pressu€ig. 2). The layers of Ba—O and determined fromT, measurements at a pressure of 1 GPa.
Hg—O form an NaCl-type ionic lattice which alternates with The results are given in Table 1 and in Figs. 3 and 4.
perovskite units. The perovskite Cu—O layers are responsible Note that our data for the pressure derivatives of the
for the superconductivity. In order for superconductivity to various phase&up to the 1234 phagdorm the same sort of
appear, the degree of oxidation must be within the rangelome-shaped curves as f&f'>{n), only much more dis-
2.05-2.25. Carrier delocalization requires that the Cu—Qinctly, with a maximum in the 1223 phase. The difference in
separations in the layer be in the range 0.190-0.197 nm. THEI'® for the variousn is about 40%, while the pressure de-
Cu—Q@3) bond length is 0.27 nm, i.e., the bond is muchrivatives vary by about a factor of twd-igs. 3 and 4 The
weaker. For highT., all these structural relationships must 1245 phase does not have a dome-shaped ¢aeesbelow.
be satisfied ideally. For example, if the cation dimensions on
the two sides of the Cu—0O layer are not the same, then the
structure is distorted an@, is reduced. 3. DISCUSSION OF RESULTS

The NaCl units ensure stability of the structure and serve We have examined our results in terms of the RVB

as reservoirs of holes for the Cy@yer. The cation—oxygen o1 Wheatleyet al! have stated the basic assumptions

Q|stance in any layer is equal to the distance in the ne|ghbor6f the model and given formulas fdr. of the various phases
ing layer. All the parametera for the tetragonal structure in

the Cu—0, Hg—O, and Ba—O layers are the same. of Iay_ered HTSQ-cuprza_tes. This mak_es a comparison with
experiment possible. It is assumed without question that the
CuG, layers are responsible for the superconductivity.

T.. K
130F T.K

3 W
1o} 1301

- ! 120}

i 2
90 ] 110 7

L 4 4 P —

100 . .

70r ) ) ) , ] 0.5 1.0 p,GPa
3.84 3.86 388 a4, A

FIG. 2. T(p) curves for different phase:—Hg-1223 (§o,= 0.4); 2—Hg-
1245; 3—data for underoxidized samples of Hg-1228=0.10 and §
=0.15.

FIG. 1. T, as a function of the lattice parametarfor mercury HTSC-
cuprates1—Hg-1201;2—Hg-1212;3—Hg-1223;4—Hg-1234.
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™ K 0.05< < 0.2.%1° Starting with the data for the 1201 phase
160 when optimally doped with oxygenT{"®*=98 K) and the
g data for the pressure derivatives4 K/GPa at these critical
temperatures, we obtain the pressure derivativesAfgf.
140+ We assume thab corresponds to optimum doping of the

Hg—O layer. The results are shown in Table I.
For a layered structure with two CyQayers in a unit
cell! we have

Tc(2)=(Aouct Ain)R6. @

Using the data forA,,(p), with Eqg. (2) we calculated the
100 pressure derivatives fok;,, as well. In the calculation we
. } o used a critical temperatufe]' =127 K, which corresponds
0 2 4 6 n to optimum doping of the 1212 phase. For the 1223 and 1234

_ _ hases we calculate@]'® and the pressure derivatives as
FIG. 3. Experimental and calculated valuesT* as a function of the P ¢ P

numbem of CuG, sublayers. The solid symbols are from experiments at thefunCtlons OfAOUI( p) and Ain(p) in accordance with the for-
initial pressure(circles and at a pressure of 1 GRdiamonds; the hollow ~ mulas from Ref. 1 reduced to the form
symbols are calculations for, respectively, the initial pressure and 1 GPa.

1
To(3)= 5 (Aqut VAG+BADRS, &)

We have calculated the pressure dependence of the maj
model parameters, expressing them in terms of the interlayer
transport integrals, ;, andt, ,,; between Cu@ layers. The
exchange integral within the layersls 4tﬁ/U, whereU is
the interatomic Hubbard enerdgywhich is assumed to be
independent of pressufe.

Using our RVB model calculations for the first two
terms of the homologous series, we have obtained the pre
sure derivatives of the coupling parametarsandA,,; from
the experimental data; hew,, is the coupling parameter T.(5)=146 K, T.6)=148 K,
between the Cu®layers in a unit cell andh, is that be-
tween the layers of neighboring cells. The two parameters Tc(7)=150 K, T¢(8)=151 K.

are related to the interlayer transport layerg andt, oui:  Forn=5-8 the calculated values ®f are almost invariant.

1
Te(4)= 5 (Aout At VAquct BAL—2AaAn)RS.  (4)

The results of the calculations on the effect of pressuré on
are given in Table | and Figs. 3 and 4. Analogously to the
%xpressions fon=3 and 4! we have obtained formulas for
the phases witm=5-8 and calculated:!*

Ain,ou=t inoul J- _ ~ Although they differ from the much higher calculated values
For a layered structure with one Cyp@yer, we obtain  (the deviation is as high as 40 K for largg, the experimen-

the following expression: tal valued? shown in Fig. 3 generally tend to become inde-
To(1)=2AuRS, (1)  Pendent oh for n>4. A comparison of the pressure deriva-

) ) ) ) tives with experiment showed good agreement for the 1223,
whereR is of order unity and is the amount of hole doping, 1234 and 1245 phaséBig. 4).

relative to half filling and defined as the number of holes per ko <5 the pressure derivatives in Fig. 4 are essen-
Cu atom. Superconductivity is observed experimentally fortially the same, although there is a sharp transition from a
dome-shaped curve to a jumprat 5 followed by a plateau
(calculation$. This kind of behavior in the pressure deriva-
dT,"*1dp, KIGPa tives is encountered in high pressure studies. The pressure is
a good parameter for testing theoretical mod@ls.

We have neglected(p). The contribution of charge
transport in the mercury cuprates is much smaller than in
HTSC materials such as Y-123 and it is the pressure, as such,
which mainly affects the magnitude at..* Our data con-
firm this. (See below. It has been showfi that the mercury
cuprates are the best candidates for studying the effect of
pressure on the properties of HTSC materials. It appears to
us that the increase if. to 135 K in the 1223 phase and the
reduction compared to theory in the 1234 phase and for
highern are related to possible disruptions of the ideal or-

. dering. For example, nonstoichiometric oxygen in the HgO
0 2 4 6 n layer increases the oxygen surroundings of part of the Ba

FIG. 4. The experimentatrossesand calculateddiamonds pressure de- atoms(increases the coordination numpand the resulting
rivativesd T™dp as functions of the number of sublayers. additional interaction displaces the Ba atoms and disrupts the
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Hg-1223 a A
) 3.854f
O Hg-1223
* 04) 4 Hg-1234
Hg 3.852
2 o6 3 8‘0:
XNO _
d cu, 3.848F
Cu(2) s - ' . -
“ica O | |92 98 100 102 104 106 x
Cu0, FIG. 6. The lattice parameter for the 1223 and 1234 phases as a function
Cu(h) [Ca O o) of the amountix of initial oxygen.
CuO,
owing to oxidation of copper and an enhancement of the
copper-oxygen bond in the layer and takes place in parallel
‘Ba with the pressure effect which rais@®'®. On the other
hand, increased peroxidation leads to a reductioh.iand in
omw the parametea,’ i.e., the opposite of the effect of pressure
on T.. In the dome-shaped plots @f, as a function of the
o L amount of oxidation(the parametea), the position oféy

(the value ofé corresponding ta¢™) depends only on the
FIG. 5. The HgB&Ca,Cu;05. ; (n=3) phase. The atoms in the structure are gmount of Cu@ layers in the structure far<3. Our studies
labelled. G4) is superstoichiometric oxygen in an amouit of peroxygenated samples of the 1223 and 1234 pHases
Figs. 1 and § showed that as the number of Cu@yers
increases, the shift in the curves along th@xis becomes
ideal structure, even in the 1223 phase. It is possible thamaller.
T.(p=0)=135 K is an upper bound for layered HTSC ma- Based on these data, tfig(n) curve can be divided into
terials, since fon=3 the “idealness” is the maximum pos- two regions with respect to. In the first(up to and includ-
sible. In the following we shall discuss in more detail whating n=3), the energy level of the apical oxyger{3plays a
we mean by this term. fundamental role. This has been proven many times, e.g., in
Measurements of the compressibility at pressures up t&ef. 16, where it is shown that the Hall effect confirms the
4.5 GPa revealed a roughly twofold anisotropgic/c) invariance in the hole concentration when pressure is ap-
X(da/a), which is not a very large amount. Our compress-plied. The hydrostatic pressure changes the volume, but does
ibility data are confirmed elsewhéreup to 6.0 GPa. not redistribute the charges. At the same time, the pressure
The sharp difference in the effect of pressure on thechanges the length of the CuZ) bond greatly:> Applying
spacing in a unit cell of the 1223 phadfég. 5 along thec  pressure to HTSC materials containing3Pproduces higher
axis observed in Ref. 15 should be mentioned: the distancpressure derivatives than wher(3pis absent. Fon=1, 2
d(Cu(2)-0(3))=0.2727 nm is greatly reduced at a pressurethe parametep is independent of the pressure, so that the
of 8 GPa(to 0.244 nm, i.e., by 109 At the same time, the character of the distribution of holes among the Gl&yers
Hg—Q(3) spacing varies little: from 0.198 to 0.196 nm at the cannot change. Equationgl) and (2) are valid for &
same pressure. Along tree axis, similarly small and equal = const. The critical temperatufiel® is entirely determined
compressibilities were observed for the(©4+0(1), Cu2)— by the parameterd,; andA;,. At the same time, the pres-
0(2), and Hg—@4) spacings. sure affectsT{'®, especially in the 1223 phase. A quantita-
Armstronget al® point out that the relationship of the tive analysisicomparisoh of the compressibilities at the ini-
Cu(2)—0(3) structural parameter to the role of the electronictial pressure along tha axis and of theT{'*(p) and T.(a)
level of the @3) ion, which controls the electronic structure curves(Figs. 1 and b shows that there are different mecha-
of the CuQ plane and therefor&., has been discussed ex- nisms by whichT and é are affected. Our experimentsee
tensively in the literature. On the other hand, the singularityFig. 1) imply that T. decreases aa is reduced. AtAa
we have observed in the pressure derivativas=a may be  =0.0007 nm there is a transition into another phase with a
related to a change in the compressibility of the structurathangeAc=0.3 nm, a change in the number of Cui@yers,
parameteid(Cu(2)—0(3)) on going from one internal CuO and another value of{'® (Figs. 1, 6, and ¥ This follows
layer to another. A further rise in the number of internalfrom the method of oxidation proposed in Ref. 7, in which
layers causes a monotonic but tiny growthTipnand makes the amount of initial oxygen during synthesis of the 1234
the pressure derivatives approach saturation. phase was changed and new phases were added. Fomsmall
Note that both underoxygenation and peroxygenatiorthe same thing happens, but the paramatehanges more
cause a drop if.. The increase i in an underoxygenated (to 0.002 nm. We may assume thdiretains a certain con-
sample is related to a reduction in the lattice consatht stancy as the relationship of the phases changes. The main
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FIG. 7. Percent content of the 1234 phase in synthesized samples as a 3 4 5 n
function of the amountx of initial oxygen (synthesis conditionsTg . o
=900 °C,t;=2 h, p.=2 GPa. FIG. 8. The separations Cu<® (1) and Hg—@3) (2) and their difference

Ad (3) as functions of the number of layers. Data obtained at a pressure of
8.5 GPa are shown for the 1223 phas&’ (solid circle d(Hg—0O(3)) and
(solid triangle d(Cu—-0(3)).

factor when pressure is applied is the variation in the lattice

parametec, i.e., in the bond lengths along it, as well as the

variation in Aqy and An. This is related to the results of the layers does not change. This is even more true of the

Refs. 15 and 16 for the 1223 phase and the assumption thf}ﬁases wittn>4. Preliminary data indicate that the range of

the $Les§tjflre has Iltftlteheffect gnpt'fl dad variation ofa, i.e., the Cu—O separation in the layer, does
€ Infiuence ot the NUMBET ot 1ayers OB deCreases as change during peroxidation in phases with3. This is

their number increases. This correlates with our results: n_e'éll confirmed by an examination of the correlations between

ther the critical tgmp_erature nor the pressure denvatlves_, Nthe pressure derivatives and separations in the lattice along
crease for larga in either the RVB theory or in the experi- the ¢ axis (a simplification of the ideas of Ref. 16At a

ments. It is possible that this is related to the fact that th ressure of 1 GPa, in the 1223 phase the separations

presence of superstoichiometric oxygen does not cause p cﬁ(H ;

o ) ! ) g—Q(3)) andd(Cu(2)—0(3)) and the separation between
oxidation of the Iayer; in phases with large Most likely, the CuQ layers decrease in different ways. According to
another pattern sets in at=3, 4: the dome-shaped curves Ref. 16, the energy level of the(® atom is determined by
Yhe electronic states in the Cyayer. This yields a maxi-
mum pressure derivative for the 1223 phase. The values of
n]-c are also set by a high oxidatidtarge 8), which depends

owing to the small role played by the interior layers of GuO
The change in the influence of the pressure, i.e., the co

stancy of the pressure derivatives, may be related to a lar eakly on the pressure but strongly on the amount 65O
increase in the separation betwee30and CuQ layers However, the effect of the separatios§Hg—O(3)) and
with large n. Furthermore, this may still be caused by thed(Cu(Z)—b(3)) should not be neglected. See Fig. 8, on
fact that the presence of superstoichiometric oxygen does NAlhich the values ofd for the Hg-1223, 1234, and 12’45
cause peroxidation of the layers in phases with largend hased>’ as well as their differenced,, are indicated. A
the overall hqle concentration does not.change |n.aII th uantity inversely proportional tad controls the interac-
supercondugtmg layers. In the phasgs "Y“‘h& there is a o tis very similar to the pressure derivativesTdf® for
rapid reduction in the Cu—O separation in the layers as th‘aifferent n. Pressure strongly reduce§Cu—Q3)) in the
degree of oxidation increa_ses, as is indicated by the magnir>o3 phase, i.e., leads to a larger pressure derivative. In-
tude of the paramete. This effect becomes sr_naller as the creasing the number of layers reduces the effect of the Hg—
rlumber of layers increases from=1 and vanishes fon O(3) and Cu—-@3) bonds on the interaction. This correlation
_3I'IE:eeestij%tulr;ngaﬁiféel)?éiIs for>3. SiNCe More Nons- leads to a reduction iTy™ and to a rise in the pressure

' derivatives to values corresponding to the 1223 phase. All

. . . . . . . . 6
toichiometric oxygen is required with increasimy® As a changes iT™ are determined by the outer layers of

roe(scl:J I;’ the Ba;.—CH.g) separation q titﬁcrgzatses, t\'Nh”E tthe BaECqu. This is also indicated by calculatidisbased on the
u) separation increases and the interaction between Ba . Wheatleyet al

and QCu) atoms decreases. This also leads to a slight reduc- Experiments should be conducted regarding the effect of

tion in the_ Cu-O separation in th_e Ck"?‘yer- Th_us, INCreas- - ressure on the dome-shapg&da) curves for phases with
ing the thickness of the perovskite unit and this unbalancin ~3. This is impossible for the phases with-5 owing to

reduceTL“aX._ . difficulties in obtaining the required samples.
The main reason for the reduction ii,>* and the

change in the pressure derivatives in the_pha}ses it 4 CONCLUSION
and 5 must be assumed to be a reduction in the average
oxidation of the copper owing to the weakened interaction, We have measured tfE'*{p) curves at pressures up to
i.e., to a reduction in the parameteig, and A;,, which 2.5 GPa for the Hg-1223, 1234, and 1245 phases. For the
determineT{® for the ideal 1223 phase. first four phaseg1201, 1212, 1223, and 12B4he plots of

We have already noted that the distribution of holes inthe pressure derivatives add™® as functions of the phase
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An exact relation for the realization-averaged effective conductivities in the fractal region is
found for two-dimensional randomly inhomogeneous media. It has the foufr,L)}

X{1oe(— L)} " t=02(r=0L>¢), where¢ is the correlation lengtkthe self-averaging scale

L is the size of the system=(p—p.)/p.:, andp. is the percolation threshold. Far> ¢,

the system is self-averaged, and the relation transforms into the Dykhne reciprocity relation, A.
M. Dykhne, Zh. Ksp. Teor. Fiz59, 110 (1970 [Sov. Phys. JETRB2, 63 (1971)]

ogo(noeo(— 7-)=o§(7-= 0)=o0,0,. A similar relation is obtained for media with an exponentially
broad distribution of local conductivities, as well as for individual realizations of some
deterministic structures. €998 American Institute of Physids$$1063-776(98)02604-3

1. INTRODUCTION mediuma, obey an exact relationrs(p) se(p) = 010, i.€.,

S . . a so-called reciprocity relation. The local fields and currents
As is widely known, a macroscopically inhomogeneous. ; )
A . ) . 2 in these media are related by the symmetry transformdtions
medium is described by its own effective characteristics, for

example, the effective electrical conductivity, which, by j:AanEprlzﬁ, E:A—lnxTEA—lpwljy
definition, relates the volume-averaged electric fie{&
and current densitie§): A=Voy03,

(i)=0E), (1) wherej andE are the local current and field in the original

_ o o medium,] andE are the analogous quantities in the recipro-
whereE=E(r) andj=](r) are the local electric field inten- ., medium,n is a unit vector that is normal to the plane of

sity and current density. The averaging is performed over &, medium, and®, is the operator for rotation by/2. In

volume V with the characteristic dimensidn~V? which . .
. . ; randomly inhomogeneous media(p) = o.(1—p), and the
is much greater than the correlation lengthSelf-averaging . ; .

reciprocity relation takes the form

of the system occurs fdr>¢ (in this casel is customarily
called the representative dimension oo(p)ae(1—p)=0i0, [=02(p=po)],

Two-phase media, in which all the elements can beWhence follows, in particular, the expressi@@ for p=p
clearly separated into two types, such as “black” and ' ' ¢

“white,” “highly conductive” and “poorly conductive,” =12,
“ (. g y f poorly ' For media of dimensionk <¢ (which are shorter than
metallic” and “insulating,” etc., represent a thoroughly

. . : self-averaging scalethe system is mesoscopic, and the mea-
studied type of randomly inhomogeneous media. o o .
. . : sured characteristics fluctuate from realization to realization.
In the two-dimensional cased&2), a series of exact

relationg for o, can be obtained for two-phase media. At the][ir;]ézls case the realization-averaged quantities are well de-
percolation threshold, i.e., fap=p.=1/2, wherep is the '
concentration of the highly conductive phase with a specific

conductancer;> o,, we obtain Dykhne’s exact expressibn, 2 RECIPROCITY RELATION FOR A TWO-PHASE TWO-

which is suitable for any value of the ratio=o5/074, DIMENSIONAL MEDIUM IN THE FRACTAL REGION
oo(P=pc)= Vo105, L>E. 2 For percolation systems the averages of the specific con-

ductance and resistance over realizations exhibit power-law
gependences on the size of the systesuch systems are
referred to as self-similar and fractal systefig-or the ex-
treme case of strong inhomogeneity=0) the realization-
averglged conductivitf oo} and resistivity {p.} have the
form

In the case op# p. the exact analytical expression feg, is
unknown and is probably impossible to obtain, but an exac
relation can be written for so-called reciprocal media.

If a reciprocal (tilde-labeled medium, which differs
from the original medium by interchange of the conductivity
values of the phaseas; < o, is introduced, then, according
to Ref. 1,0, and the effective conductivity of the reciprocal {oot=0(Llag) """, >0, L<¢,

1063-7761/98/86(4)/4/$15.00 811 © 1998 American Institute of Physics
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1000 T We note that in the general case the determination of the
conductance or the resistance of a finite sample implies the
assignment of specific boundary conditiofer example,
ideal current contacts on some faces and insulation on oth-
/ er9. It is easily seen that the symmetry transformations alter
0800 the boundary conditions so that the ideal current contacts
o "PeBeg become insulators, and, conversely, boundaries with an insu-
00"& lator become ideal current contacts. Thus, if we consider a
100} ° rectangular sample, whose vertical faces are covered by ideal
36 current contacts with a potential difference and whose hori-
© zontal faces are ideal insulators, in the reciprocal sample the
° 5 current contacts with a potential difference are the horizontal
Xy X X000 faces, and the insulators are vertical faces. Integration of the
transformations along contours joining the opposite faces
gives the relations between the corresponding potential dif-
ferences and currents in the dual samples. Substituéihg

TS 2 q into (3), for Ohm’s law in the reciprocal medium we obtain
=]
6o o2 368 Tu=GuUpe, Gy=A%G),. ®)
o o0 This relation in a finiteN X N network was indicated in Ref.
4 4. Averaging the latter expression over realizations, we ob-
tain

{GL,H}{]-/GH,L}:O-lO-Z- (6)

L " 1l0 T00 In the case of =L, , after moving over to specific charac-

Lia, teristics, we obtain

FIG. 1. Dependence of the realization-averaged conductances and resis- {Ue(p,L)}/{;e(p,L)}=0'10'2, (7)

tances on the size of the sample fo5/0;~10"2. 1 — {G(7=0.1L)}, . .
2 — [G(r=—0.1L)}, 3 — UR(7=0.1L)}, 4 — 1(R(r=—0.1)L}, Wherep,=1/o,, and since a randomly inhomogeneous me-

5— W{G(r=0.1L)}{R(r=~0.11)}. dium satisfie pe(p,L)}={pe(1—p,L)}, the reciprocity re-
lation (7) takes the form
{Ue(p:L)}/{Pe(l_ p!L)}:O-lO.Z (8)
_ /v
{pet=pa(Llag)®”, 7<0, L<§ WhenL>¢, it is no longer necessary to average over real-

wherea, is the minimum size in the medium, and in the case'Zations, and8) becomes the familiar reciprocity relation,
of a network problem it is the length of a link. Althouglr,) ~ @nd whenp=p.=1/2, it transforms into Dykhne's formula
and{p.} depend stronglyaccording to a power lajwon L,  for the effective conductivity2). .

the combination of these two parameters, which generalizes Since the operations of division and averaging over re-

the reciprocity relation to the fractal region, scarcely dependélizations do not commute, it iS’ impossible to obtain an ex-
on L in the two-dimensional case, as follows from the ex-Pression analogous to Dykhne’s formu@ from (8) even

pressions presented above: for p=p.. Itis possible, however, to write such a reciprocity
relation containing only one effective conductivity at the per-
{oo(T,L)Hpe(— 7L} t=0d(r=0L> &) ~010,. colation threshold. To derive this relation, before averaging

. . . . the second expression {B), we take its logarithm and use
Figure 1 presents the results of numerical simulation of the,. ¢t that {InG}={In G,}={In G} when L;=L, =L.

conductivity of a two-dimensional network. _ Then, after the transition to the effective conductivity, for
The reciprocity relation can be rigorously proved in thep: D, We obtain
C

fractal region. For this purpose we consider a sample of size
LyxL, (L <& and apply current contacts to it, firstalong ~ {In oe(pc.L)}=InVo10,  (=In oe(pc,L>8)). (9
the vertical sideg(in this case(j)|x) and then along the
horizontal sides. Ohm’s law can then be written in the form
3. RECIPROCITY RELATION FOR A STRIP
e =Gy ©) Let us consider a sample of a randomly inhomogeneous
whereG , is the conductance of the sample in the directiongwo-phase medium in the form of a strip, such that its dimen-
parallel and perpendicular ta sion along thex axis satisfied ;> ¢, and its dimension along
The symmetry transformations in terms of the total cur-they axis satisfies | <¢. Although one of the dimensions of
rent and the voltage drog(, andU; ) have the form the sample is less than the correlation radius, both the con-
5 B ' ductance of the medium along tleaxis (when the current
lo=—AU,, U= —Aflllvu. (4 contacts assigning the boundary conditions are such(ihat
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is parallel to thex axis) G| and the conductance in the di-
rection perpendicular to 5, are well defined quantities and
do not require additional averaging over realizations of the
random structure. In fact, in one extreme case we Have
=ag, and self-averaging occurs far>&;|7|~"1 and »,
=125 In the other, two-dimensional, case, it occurs For

= LH>§20<|7-|"’2 andv,=4/32 As L, increases froma, to
Lj>¢&, , there is a transition from one-dimensional to two-
dimensional behavior. The characteristic self-averaging
length then goes frorg, to &,, and there are no conceivable
reasons why this transition would not be monotonic. There-
fore, as in the case of randomly inhomogeneous media
(whereL =L, >§), in our case we have

FIG. 2. Two-phase structure in the form of a “broken spiral.” The resis-

'é” L(p) - GH L(1- p), tance of t_he sample remains unchanged upon interchange of the two phases
' ' and rotation bym/2.

and we can thus write the following reciprocity relation for a

strip:
P This is the reciprocity relation for a system with an exponen-
G(p)G.(1=p)=010%. (10 tially broad spread of resistivities.

At the percolation threshold, or, more precisely, in the As in the case of a two-phase medium, the relation for

blurred region, the reciprocity relatiofi0) relatesG and  {In g¢} can be obtained for a medium with an exponentially

G, for the same sample to one another as follows: broad distribution of local conductivities. Applying the argu-

ments presented at the end of Sec. 1, we obtain an expression

G(P)GL(Pe)=01075.

analogous td9), which can be written in two forms:
We note that in the special case in which is equal to
- . . In =(In In L<&))l=In L> 1
the minimum size in an inhomogeneous system and the {In gef=(In o), {In oe(L<H)} oeL>¢), (13
sample becomes homogeneous, the resistance along the., in a medium with an exponentially broad distribution of
sample is simply the sum of the elementary resistances, arldcal conductivities, the realization-averaged effective con-
the conductance across the sample is the sum of the elemethtctivity is equal to the volume-averaged local conductivity.

tary conductances. The reciprocity relatiti0) then holds The reciprocity relation in a strip can be obtained in a
identically, as is easily demonstrated by a direct calculationsimilar manner. Without presenting the derivation, we at
once write
GHGL:E‘XF(ZUI'I 0'>) (14)
4. RECIPROCITY RELATIONSHIP FOR A MEDIUM WITH AN L .
EXPONENTIALLY BROAD DISTRIBUTION OF LOCAL If the Iocal_gxonductlwty is distributed aC(_:ord|_ng to the law
CONDUCTIVITIES o(X)=oape ™, wherex is a random quantity with a uniform

distribution function that takes values from zero to unity,
One of the major problems in percolation theory is thethen
determination ofr, for a random network with an exponen- GG = o2
tially broad distribution of resistivities. The problem of hop- == %0= -
ping conduction reduces to this problem in a special éase.
In the network variant the resistance of tik link is given 5. RESISTANCE OF DETERMINISTIC STRUCTURES

: A ) ) . .
in the formr;=roe™, wherex is a random variable in a unit The reciprocity relations for realization-averaged con-
interval having a smooth distributiétin the continuum vari- ductances were considered above. There are. of course. no
— —AX H . ’ ’
ant we haveo(x)=ooe "*. Such a medium represents a g ,ch relations for an individual realization. However, for a
special case of the, two-dimensional media considered iRerain class of inhomogeneous structures the symmetry
Ref. 1 with the Ohm'’s law transformations makes it possible to obtain not only relations
j(r)=exp({In o)+ x)E(r), (11 like the reciprocity relations, but also the exact value of the

. _ resistances and conductances for arbitrary conductivities of
wherex(x,y)=In o—{In o), and is treated, according to Ref. the phases

1, as an ensemble of systems such that the multiple-point As an example, let us consider the spiral structure de-

distribution function of thg conduc_tivity !s an even function picted in Fig. 2. A structure consisting of two phases with the

of y. ForL> ¢ the expression fov is denvgd in analogy to specific conductances; (black and o, (white) is con-

the two-phase case, and, as was shown in Ref. 1, structed so that it remains unchanged under the interchange
oeo(L>¢&)=exp((In a)). o1 0, and rotation byr/2 about the axis which is perpen-

Applying the symmetry transformations to a sample of Sizedicular to the surface an_d passes through the center of the

L<£, we can easily obtain square. In structures which satisfy such symmetry, the con-
' centrations of the phases are clearly equal. The expression

{oe{pet=expIn o). (120  for the conductancéand the resistangeof the sampleG
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=\/o10, then follows at once front5) (we recall that the WhenL>¢ holds, reciprocity relations are also possible for

thickness of the sample is assumed to be equal toufdihe  kinetic phenomena which are more complicated than con-

result obtained means thay (with vertical contactsandG duction, for example, for thermoelectric phenoména.

(with horizontal contacisare identical. We note that this Similar relations can be obtained fbrx ¢ in all these cases.

does not follow directly from the drawing of the structure in The question of the existence of reciprocity relations in

Fig. 2. Rotation byr/2 without the interchange,«+ o, does three-dimensional randomly inhomogeneous media merits a

not give an identical result, since the structures are geometrseparate study. Such relations can clearly be only approxi-

cally different. Similar structures of conducting patfs for mate and can hold in the region of the universal behavior of

example, it is assumed that the “black” phase conductghe effective characteristics, for example, near the percola-

much better than the “white” phagewvere considered in tion threshold.
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The main mechanisms for the Auger recombination of nonequilibrium carriers in semiconductor
quantum-well heterostructures are investigated. It is shown for the first time that there are

three fundamentally different Auger recombination mechanisms in quantum welsthteshold-

free mechanism,)2a quasithreshold mechanism, anda3threshold mechanism. The rate of

the threshold-free process has a weak temperature dependence. The rate of the quasithreshold
Auger process exhibits an exponential temperature dependence. However, the threshold

energy depends significantly on the quantum-well width and is close to zero for narrow quantum
wells. It is shown that the threshold-free and quasithreshold processes are dominant in

fairly narrow quantum wells, while the quasithreshold and threshold Auger processes are dominant
in wide quantum wells. The limiting transition to a three-dimensional Auger process is
accomplished for a quantum-well width tending to infinity. The value of the critical quantum-

well width, at which the quasithreshold and threshold Auger processes combine to form

a single three-dimensional Auger recombination process, is foundl9@8 American Institute

of Physics[S1063-776098)02704-§

1. INTRODUCTION discussed this problem in greater detail in a separate paper.
Auger recombination processes involving impurities are not
Two recombination processes predominate in semiconeonsidered in the present work.

ductors at high nonequilibrium-carrier excitation levelsal Solitary semiconductor heterostructures, quantum wells,
radiative process and) 2 nonradiative Auger process asso- quantum wires, and quantum dots are spatially inhomoge-
ciated with an electron—electron interaction. The mechah€eous due to the existence of heterobarriers. The presence of
nisms of Auger recombination in homogeneous semiconducd interface influences not only the energies and wave func-
tors have been studied by many investigatofdn narrow- tions of the carriers, but also the macroscopic properties of
gap semiconductors the Auger recombination processe;g‘e heterlos_tructures,%tr:e |_nfluence o”n the Iatterdbelr?g ofhfun—
involving two electrons and a heavy hdllie CHCC Auger amentg Importance. It s generally assume that .t €

. ... __mechanism of Auger recombination in quantum wells is the
proces$or an electron and two heavy holes with a transition

: ) . . same as the mechanism in a homogeneous
of one of them into a spin—orbit f?“t'Oﬁ barithe CHHS oo hiconductof:#~12 Nevertheless, the presence of an inter-
Auger processare most probablé*

Both these processes (¢ significantly influences the electron—electron interaction
have thresholds, and the Auger recombination rate varieg, quantum wells, and this influence has a fundamental char-
with the temperature according to an exponential 1&w. acter. An interface removes the constraints imposed by the
Semiconductors in which the spin—orbit splitting constant iSenergy and momentum conservation laws on electron—
close to the gap widtliGaSb and InAsare exceptions. In electron interaction processes. More specifically, the conser-
these semiconductors the rate of the CHHS process dependation law for the quasimomentum component perpendicular
weakly on the temperature under certain conditibisis  to the interface is removed. This, in turn, leads to the appear-
generally assumed that the phonon-assisted Auger recomce of new threshold-free channels for Auger recombina-

nation processes are dominant in Weak]y doped Semicondug.on in heterOStrUCtUre%The rate of the threshold-free Auger

tors at low temperatures and high nonequilibrium-carrier exfecombination process varies with the temperature according

citation levels>® Because of the large momentum transfer to© @ power law. At low temperature; the threshold—free pro-
the phonon, the threshold for the heavy holes is removed €SS unlike the threshold process, is a fairly effective chan-

. . r?el of nonradiative recombination, and for narrow quantum
and the rate of such an Auger process is a power function Q o ; . . . .
wells it is dominant in comparison with the phonon-assisted

the temperatur.e. Hovyever, remO\{aI of the threshold "?‘S_f"‘ rEf&uger recombination process at high carrier concentrations.
sult of interactions with phonons is not the only possibility. 11,4 presence of a threshold-free matrix element for the

At high carrier concentrations hole—hole or hole—electrong|ectron—electron interaction also has a significant influence
scattering can be a more effective mechanism for removingn the phonon-assisted Auger recombination process. The
the threshold to the Auger process. Therefore, the question gditer becomes a resonant process and is intensified signifi-
the mechanism of Auger recombination in homogeneousgantly in comparison with the three-dimensional phonon-
semiconductors at low temperatures remains open. We hawssisted Auger procedsowever, at high concentrations of

1063-7761/98/86(4)/18/$15.00 815 © 1998 American Institute of Physics
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the nonequilibrium carriers the phonon-assisted Auger pro2. BASIC EQUATIONS
cess is considerably weaker than the phononless threshold-

free Auger process down to extremely low temperatures. The lThe vr\:av: functions og_the_ chargehcar_rlers aredneti_dzd r:O
first direct experiment devised to observe the threshold Ayanalyze the Auger recombination mechanisms and to find the

ger recombination channel &t=77 K was described in Ref. rate of the Auger process. As has already been established

for bulk Auger processes, the wave functions of the carriers
13. . . must be calculated in a multiband approximatione shall
A detailed analysis of the threshold and threshold-free . ; .
L . : . use the four-band Kane model, which faithfully describes the
Auger recombination mechanisms for a single heterobarrier . . .
) . . wave functions and spectrum of the carriers in narrow-gap
was performed in Ref. 8. The conditions under which the - 7
I|I-V semiconductors:.

threshold-free channel is more dominant than the threshol For most Ill-IV semiconductors the wave functions of

channgl were analyzed. Ther_e has been no such deta”?ﬂe conduction band at the Brillouin-zone center are de-
analysis of the Auggr.r.ecombmathn mechanisms for QUangcriped by thd"¢ representation, and the wave functions of
tum wells. The. po§5|b|llty of removing the threshold for ,thethe valence band are described by Fe andT'; represen-
Auger recombination process for quantum wells associatefiong The first two of these are doubly degenerate, and the
with the passage of excited carriers into the continuous pafs; representation is quadruply degenerate. The equations
of the spectrum was analyzed in Ref. 14. However, that pagy the corresponding wave functions can be written in dif-
per does not include a microscopic theory for the thresholdserential form. The basis wave functions of the conduction
free process, and there is no theoretical analysis of the conisand and the valence band are usually taken in the form of
petition between the threshold, quasithreshold, angijgenfunctions of the angular momentdft® However, for

threshold-free Auger recombination mechanisms at differenbyr purposes there is another more suitable representation of
temperatures for different quantum-well widths. In Refs. 15the basis functions:

and 16 only the threshold-free Auger recombination channel
corresponding to small momentum transfers during the Cou-  1ST)» [SL), [XT), XL, [yT), lyl), [21), 1), D

lomb interaction between the particles was considdfed where|s) and the functiongx), |y), and|z) ares- and p-

the CHCC procegswith neglect of the spin—orbit interac- type Bloch functions with angular momenta equal to 0 and 1,

tion. respectively. The former describes the state of the conduc-
The purpose of the present work is to theoretically in-tion band, and the latter describe the state of the valence

vestigate the principal mechanisms of the Auger recombinapand at the™ point. The arrows denote the direction of the

tion of nonequilibrium carriers in semiconductor quantumspin. The wave functions of the carriers can be represented

wells. It will be shown that there are three fundamentallyin the form

different Auger recombination mechanisms in quantum

wells: 1) a threshold mechanism, which is similar to an Au- y="rs)+¥lp),

ger process in a homogeneous semiconductpra Zjua-  whereW, andW¥ are spinors. Near thE point the equations

sithreshold mechanism, whose threshold energy depends sifpr the envelope functions o’ and W in the spherical

nificantly on the quantum-well width, and @ threshold-free  approximation have the following form:

mechanism, which is not observed in a homogeneous semi- .

conductor. The threshold energy for a threshold Auger re- (B~ B)¥s—ihyV-W=0, ,

combination process in a quantum well is close to the thresh . he - ~

old energy for a homogeneous semiconductor. Conversely, (By= 0= B)Wify V¥ st 5o (v1+472)VIV-W)

because of the small value of the threshold energy, the rate df 2

the quasithreshold process in narrow quantum wells depends — —— (y;+275,) (VX (VX W))+i (o X W) =0.

weakly on the temperature. For this reason, in fairly narrow m

guantum wells there is no clear distinction between theHere vy is the Kane matrix element, which has the dimen-

threshold-free and quasithreshold Auger recombinatioions of velocity,y; andy,=", are generalized Luttinger

mechanisms, and they combine to form a single thresholdyarameterd® 5=A./3, A, is the spin—orbit splitting con-

free Auger process. As the quantum-well width increases, thetant, E. and E, are the energies of the lower edge of the

threshold energy of the quasithreshold process increases apgnduction band and the upper edge of the valence band,

tends to the bulk value. The behavior of the threshold-fregs the mass of a free electron, and=(oy,0y,0,) denotes

Auger recombination mechanism is totally different. As thethe Pauli matrices. If the heavy-hole mass, which describes

quantum-well width increases, its rate decreases sharply, anfle interaction with the upper bands, is introduced phenom-

this mechanism vanishes when we move over to a homogemnologically instead of the Luttinger parameters, E@S.

neous semiconductor. The conditions under which theransform into the equations obtained in Ref. 19. It can be

threshold-free Auger recombination mechanism is dominangeen that Eqs(2) do not differ from the equations usually

in comparison with the threshold mechanism are obtainedised in the literatur&®2°-22|n the first equation of system

below. The critical value of the quantum-well width, at (2) for the electrons we neglect the term with a heavy mass.

which the quasithreshold and threshold Auger recombination The Fourier transformation of Eq&) makes it possible

mechanisms combine to form one three-dimensional Augeto obtain the spectra for the electrons and holes:

process, are also found. a) for heavy holes,

2
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#2k? Carrier states in a quantum well

En=0——; . L
h 2m, The wave functions of carriers in a quantum well can be

found by utilizing the symmetry properties of the Hamil-

b) for light holes and spin-split-off holes, tonian in the quantum well. The spinless Hamiltoniaf is

5 hk? 1 1 invariant under the replacemexit- —x. Let us consider the
Eis=— 5~ (M “+my7) operator.72, which is such that
2 4
5 722 2 R (XY, D)= (—XY,2), B=TC ., )
+/28%+| 2 — ——(m H+m Y| ; (€) I
2 4 7?{/ 0.72: t///g%o y
c) for electrons, where.7 is the inversion operator; ., is the operator for

- o2 rotation bysr about thex axis, and thex axis is perpendicu-
oot ‘5(2E9+3§?+(E9+35)E9_ lar to the plane of the quantum well.

h2y? Egt2+26 With consideration of the spin—orbit coupling the

Hamiltonian can be written in the form

k2=

Herek is the quasimomentum of the carriers,

22 ~ ~
-1_ -1

T= T+ L(VV>< p)- o, (8)
4m?c?

where p is the momentum operator and is the potential
energy of an electron in the crystal. The latter term does not
my, coincides with the heavy-hole mass, amgl coincides commute with.%2. Therefore, the symmetry operator can
with the light-hole mass in the case of a spin—orbit couplingbe sought in the form of the product of and a certain spin
constant equal to zero. For convenience, we set the energy ofatrix S, which must be foundZ=.72®S. Since inversion
the upper edge of the valence bag equal tos. We cal- does not alter the sign of a vector product, the maBix
culate the electron energ¥ from the lower edge of the should satisfy the relations:
conduction band.

my t=m~ (- 27,),

The expression for the probability flux density can be ST= 0%S 0 1
derived from Eq.(2) by making the substitutiorE— Soy=-0yS, o= .
i K - 10
—ifdl ot and then using a procedure similar to the procedure So,=—0,S
employed in quantum mechanitslt can also be derived _
using thek-p approximation in second-order perturbation |0 i 1t o
theory. As a result, for the holes we obtain YTl ool %7l -1l ©

. _Egto-E - if . It is clear that the Pauli matrixr, can be taken a$: S
In= 2myy [WW™ + ¥ W]~ th[(\Ichurl\If ) =0y. In the basiq1) the matrixZ takes the form
—(W* X curl)]. (4) [0 1 O 0O 0 0 0 (
For electrons in the conduction band the expression for 100 0O 0000
the probability flux density takes on a simpler form: 00 0O -1 0 0O00O0
o= YTV +WEW], (5) P L IRy
The exact procedure for deriving the boundary conditions for 00 0 0 0100
the wave functions at an interface are still not entirely clear. 0 0 O 0 1 0 0 O
However, several approximate methods for solving this 00 0O O OO0 0 1
problem have been developed in the last few years. Follow- 00 o0 0 00 1 0
ing the method developed by Bdft,from the system of - 4 10
equations(2) we obtain the Kane equations, which can be
integrated through an interface The matrix of the HamiltonianZZ must satisfy the com-
_ mutation relation®
(Egt+0—E)¥s—ihyV - ¥=0,
52 DIN—XY,2) D 1= T(X,y,2) — T (—X,Y,Z)
TEWIRy Vst 5 V(672 W) 6) =7 LAY, 2) D (11)
h? 9 ~ 0 : Consequently¥ (x,y,z) and 2¥ (—x,y,z) satisfy the same
ﬁa_n(h_zyz)a_xkq’ﬂa(axlp)_o' equation. Therefore, the eigenfunctions of the Hamiltonian

. . . . can be sought in the form of the eigenfunctions of the opera-
Using these equations and the probability flux density cons o o 9 9 P
servation law, we can obtain the boundary conditions for the  ~

wave-function envelopgsee Eqs(24) and(25)]. V(x,y,2)+vaW¥(—x,y,z), wherev==1. (12



818 JETP 86 (4), April 1998

The valuesy= *=1 correspond to carrier states with different
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The transition to functions of another symmetry in the

symmetry. When the wave functions are so chosen, thexpressions presented above can be accomplished using the
boundary conditions need to be satisfied on only one interformal replacemeng— 7 for thes, x, andy components and
face, since they will hold automatically on the second inter-the replacemen{« — 7 for the z component. In the barrier
face. Expanding Eq(12), we find the necessary conditions region (x>a/2) the wave functions of the bound holes decay
for different components of the symmetrized wave functionsexponentially as the distance from the interface increases:

Ve (X,y,2)=*Vs (—XY,2),
Vi (X,y,2) =+ Wy (—XY,2),
Yy (XY, 2) ==V, (—X)Y,2),
Y, (xy,2)=*¥,(—X,Y,2), (13

where the plus sign corresponds #e- 1, while the minus
sign corresponds to=—1 for thes, y, andz components,
and the opposite is true for thecomponent.

A. Holes in a rectangular quantum well

Selecting the coordinate system so that the longitudinal

component of the wave vector corresponds toytlais and

performing Fourier transformation in that plane, we obtain
the following expressions for the wave functions of the car-

riers.
For the heavy holes we have

g coskpx¢
W, (q,Xx)=H; —ikp sinkyx¢
—k;, sin kpx&é+q coskpxn
g sin kpxn
+H, ik, cosk,xn (14)

—(q sin kpxé—Kk;, coskyxn

Hereq andk,, are they andx components of the quasimo-
mentum of the heavy holes,

g_ \/E -1 1 n= \/E 1 1
andH,; andH, are normalization constants.

For the light holes we have

Kk, sinkxn—N\,q cosk;x¢

W, (q,x)=L,| —iq coskxn+i\k sinkxé
— Nk sinkxé+N\q coskixny
—k; coskxé—N\q sinkxzn
+L,| —iNk coskixn—iq sinkxé
=N g sinkxé—Nk, coskxn
(15
R 2 2
S.=%[Ll coskxyp+L, sinkx¢], (16

where )\|=5/(E+25—ﬁ2k|2/2mh), andq and k, are they

and x components of the light-hole quasimomentum. The R,=
wave functions of the spin-split-off holes are similar to the

wave functions of the light holes.

qé
W,=H,| —ikné |exp—«kn(x—a))
—kpét+an
an
+Ha|  —ikam | exp(—kp(x—a)), (17)
—qé+kpm
K1 7= N\ gé
W =L, —iqy+iNegé | exp—«k(x—a))
— Nk EF N7
KE=Niqn
+L,| iNkp—igé | exg—(x—a)), (18
—NAE+N K7
ihy(—if+0?) -
=——[Lip+ L ¢lexp — k(x—a)),
sl Eg+5+UC—E[ 17 2§] = )
(19
- S ~ A
)\|: - 2 y 5:i)
U,+E+26—h2kZ/2m;, 3

HereU. andU, are the heights of the barriers for the elec-
trons and holes) ., is the spin—orbit coupling constant in the
broad-band region, and, and «,, are the magnitudes of the

x components of the quasimomenta of the light and heavy
holes under the barrier, which are related to the correspond-
ing energy values according to Eq8). For x<—a/2 the
wave functions can be obtained frqftir)—(19) using(13). If

we simultaneously consider the wave functions of two or
more particles, it is impossible to cause theomponents of
their quasimomentum to vanish simultaneously by selecting
the coordinate system in a general form. The transition to a
function with arbitrary quasimomentum directions is accom-
plished using the rotation matrix

D,=R,®S,, (20)

where R, acts on the coordinate components of the wave
function, andS, acts on the spinor components. The Euler
angles for rotation in thgz plane by an angle are

O=—7/2, O=¢, V=m7/2.
Thus,
1 0 0 0
0 1 0 0
0 0 cose sing]|’
0 0 —sing cosg
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cosel2  —i sin ¢/2 exponentially, with the exponents~ 4m,A43%2 as the
S,= i sin /2 cosel2 | (21) distance from the interface increases. As a result, this branch

mainly influences the value of the derivative of the wave
If the vectorq has the componenty(0,cose, sing) in the  fynction near the interface, and its influence on the value of
X,y,z coordinate system, the wave function can be written inthe wave function itself is negligibly small. We stress that
the form such an approximation is not equivalent to the use of a 4
W =V,=D_,¥,. (22) X4 Hamiltonian from the onset. W(le.shall seek the wave
function as the result of the superposition of the branches for
The wave function previously found is labeled by a subscripthe heavy and light holes. Near the upper edge of the valence
zero. Here we present the wave function of the heavy holegand we have\J~my,/m;>1. This means that only the

obtained usind22), since we shall need it below: first and third of the boundary condition&5) can be em-
q coskyxe 1¢¢ ployeq. In this approximation the Iight_ and heavy_holes do
i , i not mix and have different spectra, which are obtained when
Wi(g,%,¢)=Hy| ~ikp sinkpx&—q coskyx sin ¢z the wave functions are substituted into the boundary condi-
—k;, sin kyxé+q coskyx cos ¢z tions (25).
i koxel @ The spectrum of the heavy holes coincides with the
A SINKnX€ "7 guantum-mechanical spectrum of a particle in a rectangular
+H,| ik coskyxn+q sinkpx sin ¢é | . guantum well. The dispersion equation for states with even
—kp, coskpxn—q sin kpX cos ¢ and oddx components of the wave function for the heavy
holes takes the form
(23)
The boundary conditions for the hole wave functions can be tankh—az X for even states-
derived by integrating the Kane equatiof® through the 2 Ky’ '
interface. We shall use the approximatigs const, which is
a good approximation for semiconductor heterostructures kna Ky
based on Ill-V compounds. Then we obtain the continuity =~ Ot~ = P for odd states. (26)
conditions for the following quantities at an interface:
1) W For the light holes the states with different parity are no
X! ) longer separated, and the dispersion equation becomes some-
Eq+46—E h _ _ hat more complicated:
2 9 . 1_ =1y, w p :
) 2my Wt 2mhq W, e (my —m)q-w,
E,+8+V.—E k?+q? ka  2x-—1
+im*1& gE +5_CE > 5 Ki C0t7+k| =
| ox ' g K| — q 2)\| -1
Jd < 2, 2
-1 E,+6+V.—E ki+q kia 2N —1
3) m, aX‘I’Lv gE 5 CE |2 5 Ki tan%—k, !
J g+ - K| — q 2)\| -1
-17 2 -
4 m, ax"l’LI : _ g 2)"_1+ Eg+o+V.—E ki +0? 2 @7
5) m; w2 (24) 2n—-1  Egtdo-E  x2-q?

The boundary conditions are further simplified, if the valueygre 3 is the width of the quantum well. We note that the

of the modified Luttinger parameters on the two sides of th&ates of the light holes also split into states with different
interfacey; andy,, which characterize the interactions with parity whengq=0.

the higher bands, are assumed to be identical. In this case we The opposite situation is observed for the spin-split-off
have mp=const. Taking into accountn '~2y%/(E4+3  holes. The components of the wave functions of the light and
—E)>m,*, instead 0f(24) we obtain the continuity condi- heavy holes oscillate rapidly, and their contribution to the

tion for the following quantities: overlap integrals is negligibly small. In just the same way, it
can be seen tha¥, and diwr/(E,+ 6—E) should be con-
1) v, ; . 9 . :
sidered continuous for the split-off spin—orbit component.
2) i\p The form of the wave functions of the spin-split-off holes is
ax L’ similar to the form of the wave functiorid5) and(16) of the
1 light holes. Strictly speaking, when the conditid— A
3) ET5-F divwr. (25 >U, is satisfied, the spectrum of the spin-split-off holes is
g

continuous. However, when the rapidly oscillating contribu-
Generally speaking, the wave functions of the holes andions of the light- and heavy-hole subbands are neglected, it
in a quantum well are results of the superposition of threecan be either continuous or discrete. In the general case there
branches of the valence band: heavy, light, and spin-split-offs a density-of-states peak with small values for the hole
holes. However, the last of the branches decays strongly, i.emomentum components that are perpendicular to the inter-
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face near such a quasidiscrete level. The spectrum of these ka Z ka Z
holes has a form similar to the spectrum of the light hdles. k¢ tan — — =kKe || Ke cot— + = K¢
2 7 2 7
2 < Z ’
B. Electrons in a rectangular quantum well. =—0Q% Ae— )\CE . (30

Electrons obey the same symmetry rules as holes. The
wave functions have a form similar to that of the wave func-
tions of the light holes and can be written as follows:

for |x|<a/2,

Fhe spectrum splits into even and odd states if the longitu-
dinal wave vectoq is small or if the expression in parenthe-
ses on the right-hand side of the equation is close to zero.
The latter condition usually holds, since as a rule we have
U,<Eq, which corresponds to semiconductors with a simi-

Wse=Ag COSkexn+ A SN KeXs, lar band structure

_ ke sin kexnyp—N g coskxé
iy . . . 3. PROBABILITY OF AUGER RECOMBINATION
‘I’c=7A1 —iq coskxmp+ikcke sinkgxé

The probability of Auger recombination per unit time is
calculated within first-order perturbation theory with respect
—k; coskxé—N;q sinkexy to the electron—electron interaction:

— ke sinkexé+ Mg coskxn
iy : o
+ TAZ —iNcke coskxnp—iq sin kexé om ,
—Ncq Sin kexé— N K coskxn Wi—»f_7|Mfi| o(es—&i), (31

(28 where

e2
. 1 ’\If r,ro, ’
Ko|r1_r2|‘ i(r1,r2,v1,72))
(32
is the matrix element of the electron—electron interactign,

5 andr, are the coordinates of the carriets, and v, are the
Ke—AQé spin variablegsee(12)], e is the charge of an electron, and

for x>al/2,

M =(W(ry,rz,v1,7,)

- ~ a
VU =[An+ Azf]“l{ - Kc( X— 5) ) ,

q,(l):iﬁ_%A Ciqntitekct | exd —xd x— a Ko Is the static dielectric constant of the semiconductor.
c oz ~q77 e Ke 2 When the antisymmetrization of the wave functions is
—Nekcé+AO7 taken into account, the matrix element of the Auger transi-
- tion can be written in the form
KcE— N7
L i _X° ° a Mg=M =My, (33
? 2 |~CKC7]~Iq§ eXp — K¢ X_E , where
=N Q&+ Nk
a ol M =(W3(ry,v)Wy(ra,vp)
(29 .
—— |V (r,v)Wo(ry,vo)),
where PRI 1(r1,v)Wa(ry,v,))
2 L2+ £(2E4+28) + (Eq+30)Ey My =(W3(ry,v)Wy(ro,vy)
a C+Eg+26 ’ o2
X| = |Wa(ra,v) Wy(ry,vq)). (34
KolF 1= 2]

2:

24+ £(2Eg+2U,+28) + (Eg+ U, +38)(Eg+U,)
; In quantum wells, as in homogeneous semiconductors,

C+EgtU,+20 the main contribution to the Auger recombination rate is

~ made by the CHCC and CHHS processes. Strictly speaking,

_ 6 such terminology is not applicable to the carriers in a quan-
¢ 7y Eg+ U,+28 tum well, since there is mixing of the states of the light,

heavy, and spin-split-off holes. However, as was indicated
Herek. is thex component of the electron quasimomen- above, in the limitm.<m;, the mixing of the heavy and light

tum in the quantum wellg is the electron longitudinal mo- holes is small, and the admixture of spin-split-off holes to the
mentum, andk, is the magnitude of th& component of the heavy and light holes can be neglected when the condition
electron quasimomentum under the barrier. Functions witiA(>T is satisfied. The latter condition practically always
different symmetries can be derived using the same procéiolds for IlI-V semiconductors. Therefore, the terminology
dure as in the case of holes. The continuitydof and ¥, indicated above can be used. In the present work we confine
follows from the boundary conditions. This leads to the dis-ourselves to consideration of the CHCC Auger recombina-
persion equation tion process. All the dependences for the Auger recombina-
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tion coefficients in the CHHS process withs,<Ey are 1, gq=0,
qualitatively identical to those for the CHCC process. De- 0= 0, q#0
tailed expressions for the Auger recombination coefficients ’ ’
in the CHHS process were presented in Ref. 7. In the CHCC

process there are two electrons and one heavy hole in the— |q, —q,|=|q;—q,| is the momentum transfer in the
initial state, which we shall assume to be localized. Theplane of the quantum well during the Coulomb interaction.
wave functions of one of the bound electrons and the Nolgn narrow-gap I11I-V semiconductors the mass of an electron
will be denoted byp. andey,, respectively. The symbol; i the conduction band is generally much less than the mass
and ¥, will be retained for the wave functions of the tWo of 4 heavy hole in the valence band. On the basis of these
departing carriers, and we shall interpyef as the final state  grguments we shall neglect the electron momenta in com-

of the high-energy electron. parison to the hole momenta wherever they appear in the
_ 3 form of simple algebraic expressions. Such an approximation
Matrix element of an Auger transition is not permissible for determining the threshold endispe,

The matrix element of the electron—electron Coulombfor example,(60)].

interaction is most conveniently calculated using the Fourier It is convenient to represent the matrix element of the
representation: electron—electron interaction in the form

M _Ame? f l23(P)l 14— p) dp
= 2, 42 27 00ta-dg—ay 8me? [« -
P i M= : f TEOWL0[7(0)-7(0)] dx,  (36)
0 0

Ko

where

+o dp 1 . a2 .
700= | e en-ipn [ ecnienmextipy) dy

e 27 02+ 2
2q¢@c(X) @n(X)
a a a
_ 1 . —exp{q X_E)} deg > o > +(¢c ¢h )il 0<x<3,
20(9*+kp) . A /a a
exp{q 57X } q¢§<§)¢§(§)_(¢:¢h<)é/2' X=5
~ +edp 1 . .
.~7(X)=f 5= 5 S eXp(—ipx) ec(Y)en(y)expiipy) dy
—» 27 p?+q Ix|>a/2
a a a
1 —exp[q x=3 Q¢c>(§) ore > +((pc>goﬁ)a/2}, 0<x<al2, -
T 2q(k2— a a ,
atky—a") ] Q<Pc>(§)<PrT(§)_(<Pc><Pr?)a/2 x>al2,

a
—2q<pc(X)<ph(x)+exq'q(§—x

The < and> signs on the wave functions and their deriva- Depending on the parity of the produgf (x) ¢n(x), the

within the quantum well and in a barrier, respectively. For-

mulas(37) were derived using the approximation .7(—x),,“}(—x): iy(x),,ij(x),
e %<1, e "2« where the plus and minus signs correspond to even and odd

values of g (X) pp(x). At small values of the momentum

transferq the expression$37) for the integrals.7 and 7
Although the last inequality does not hold for fairly narrow cease to be valid. This is because relati@® do not hold
guantum wells, the expressions obtained above, nevertheless, small values ofj, since the interference processes due to
give a value of the Auger coefficient with a sufficiently high scattering of the carriers on the two interfaces become sig-
accuracy over the entire range of quantum-well widths.  nificant. In the case of fairly high temperaturggeater than

k2<q?+k3. (39)
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the size-quantization energy of a heavy hdlee incorrect
dependence of the matrix element on the momentum transfer
at small values off does not play a significant role, since the
main contribution to the Auger recombination rate is mad
by momenta that are greater than or equal to the thermal
value. In the case of low temperaturéiselow the size-

quantization energy of a heavy hple bound carriers are ., =

located in the ground size-quantization level, and expres-
sions(37) are easily modified. For this purpose it is sufficient
to write 2 sinh(x)e % instead of the multipliers?*~ and

2 sinhga)e" ¥ instead ofed(@X),

It is noteworthy that the matrix elemeM, is nonzero
only if the productWy (X)W 4(X)¢s (X)en(x) is an even
function[see Eqs(36) and(37)]. The expression foM, is
obtained from(36) by replacing the subscript 1 i¥r} (x) by
a subscript 2. The labels | and Il will be omitted in the matrix
elements up to the end of this section. In the approximation
of an infinitely deep quantum well for the localized heavy
holes, the term containing vanishes and can, therefore, be
neglected.

The state of an excited electron can lie in either the
continuous or the discrete spectrdhthe latter situation aris-
ing when the longitudinal momentum of the electi@mthe
plane of the quantum wellsignificantly exceeds the trans-
verse momentum.

In determining the Auger recombination rate, both the
localized and delocalized states must be taken into account
as final states in the integré86). The possibility of the tran-
sition of the excited electron into a bound or free state leads
to significantly different Auger recombination mechanisms
in quantum wells.

a) Calculation of the Auger recombination matrix ele-
ment for a transition into the continuous spectrurhe wave
function of the excited carrierd ,(x) satisfies the relations

—kKiw,, for |x|<al2,
Ph=: - 39
Y| -Kew,, for [x|>al2. 39
With consideration of relatiof39), within the quantum well
we can write

o

2n "’
K3

Fi=(-1)"

whereF} is thenth original form of ¥,. Similarly,

(ePW,(x)"™
———¢€
(K3+gd)"

gx

dy=(-1)" ;
is thenth original form of ¥ ,(x)e™ 9. The expressions for
the original F; and ®} are needed below to calculate the
matrix elementM according to(36).

It is seen from(37) that the matrix element is a sum of
two parts. The first of these is related to the presence of an
interface and contains a multiplier which decays exponen-
tially on the two sides of an interface. The second part origi-
nates from integration of the wave functions of the carriers
within the quantum well. Therefore, it is natural to divide the
matrix element into two parts:

G. G. Zegrya and A. S. Polkovnikov

41re?
M= 2(M1+M,),
Ko
1
———{ (¢ (Ph),— 2 T o
2q(a%+kp) | AR (@2 k)"
a (n)
X \Ifj{exp{q §_X>]) pinb
al2-0 al2-0
(n) 2 2\n
a (g°+k3)
Ry
al2+0 a0 A7 TKS)
+2qnw Y pny
a/2-0 a/2-0

1
+d(ecen)az—o nzl (qz+—kz)“{
= 4
_X)}

(q°+kp)" . -
(q2+—~kz)n(‘1’4€W ML I S
4

N

a
\If4exp{ q(—

( )
-1

a/l2-0

al2—0

al2+0

-2 vy

a/l2—-0

al2—0

1

+2 —
a (q2+k‘21)n+l

3 cia

Xy (©cPh)az—0

a/l2—0

1
— 3 Gy W Y

(40)

= 2 2\n+1
=t (a7+ka) al2—0
X((PC(Ph)g,/Z—O] ] ;
al2
Mo=— zf (V4V1)(@cepn) dx
g +ki Jo
-2 (qz+—kz)”( VPV Voionlano
= 4

+CH VP Y (0eon) |a—o

1
2 -1
+Cr PP (ocon) laz- 05—
q°+kj
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1
-1 -1 "
Cn+2q'£1n )q’(ln )(<Pc<Ph) ’|a/270—2 2]
q°+kj

In expanding the matrix elementd, andM, into series, we
assume that the conditiog?+ k3> (k,k2) holds. In other
words, the total momentum of the excited particle exceeds
the momentum of the localized patrticle.

The value ofM, is determined by the values of the wave
functions and their derivatives at the interface, &ng—0
as a—o. Conversely, as-function contribution appears in
M, asa—o, and it transforms into the ordinary Auger re-
combination matrix element for a homogeneous semiconduc-
tor [see(62) and(64)]. We note thaM 4, M, and, therefore,
M are essentially threshold-free matrix elements. In fact,
none of the constraints imposed on the initial momenta of the
carriersky, k., andky, apply to them. However, the mecha-
nisms which lead to violation of the momentum conservation
law (k;+k,#ks+k,) in these terms are different. M, the
violation of the conservation law is associated with the scat-
tering of carriers on the interfaces. The same mechanism
leads to the appearance of a threshold-free Auger process in
the case of scattering on a single heterobafrier.M, the
reason for the violation of the conservation law is the con-
finement of the integration volume with respectxdo the
region of the quantum well, which leads to the appearance of
a function of the formk ™! sinka/2) instead ofs(k). The
differences betweem; and M, just indicated physically
mean that the matrix elemem¥l; corresponds to a true
threshold-free process, whose appearance is attributed to the
scattering of momentum on the heterobarriers. The matrix
elementM, corresponds to the quasithreshold process, and
when the quantum-well widtla tends to infinity, it trans-

-
ki 1—(k3/k3)?

- ﬁq’
K3(1+ k2/k3)?
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2 1 ,
4\If1|a/270

2 !
4 l|a/2+0

(@cPn)arz-o

- f\l}
K2(1+ k3/K3)

R ek 4
KE(1—Ki/K?)

+———="
Ka(1+ k2/K3)

2(q?+ k) {k4(1 K2/k3 )

élqul|a/2+0
4\1,“3/2—0

'
4\P1|a/2+0]

-
kg (1—K2/k3)® *

3
B (¢cPn) oo

(<Pc<Ph)a/2 ol 1 3+K3/K]
o +k;

1 1+3K2/KS
1|a/270

4 3+kiK2

v
K (1-K2K2)3

o +k;
1 (3+K2/K3)(1+3K2/K3)
3k] (1—K2/k5)*

3K (1-KE/kD)*

1|a/270

1|a/270

1|a1270

1laz—o|- (41)

forms into the ordinary threshold matrix element. The addi-1hiS expresglon can be simplified appreciably, if we leave
tional sum appearing in the curly brackets in the expressio@Nly the O(kg /kz) terms in it. The expression in the second
for M, and the corresponding terms ; were introduced ~ S€t of brackets is identically equal to zero according to the
so that at small the expansion in the small paramekgk,  ©rthogonality condition of¥"; andV,. As a result,
would begin at a higher power fddl , than forM ;. Herek is 1 3K2
1
Volapo—| 1+ —
4 1|a/2 Oki( ki )

!
the characteristic momentum of the localized carriers. (@cen)ar-o

1%

WhenM is calculated, it can be assumed thagk,. In 2(9%+ kﬁ)
fact, at large values of] there is an exponentially small ) .,
number of carriers. WhenM, andM,, are calculated, it is - 1 1- 3k1) | (¢cPn)ar-o
convenient to utilize the following relations: 4 1|a/2+0|~( K 212
4 4 ( )
1 1 3
k—_— k= X|— =W, ¥ _ot =Y,V
go X T—x’ go (1—X)2, kﬂ 4 1|a/2 0 kj 4 1|a/2 0
(@cen)in—o 1
2
kzxk:X(1+X) ksxk:X(1+4X+X ) (qT) % 4¥1|azo- (42
k=0 (1-x)3" k=0 (1—x)*

The final expressions fdvl; can be obtained after sub-
Then stituting the expressions obtained in the preceding section for
the wave functions of the carriers at an interface i#g)

(@c®n) am—o 1 1+Kk3/K2 [see(14) and (29)]. As we have already noted above, the
1~W 4V ala- ok (1k—2/k) approximation of an infinitely deep quantum well was em-
4 4 ployed during this process for the heavy holes in the bound
1 1- KZ/T<2 state. This approximation is justified in view of the large
—U V| anr0=3 mass of the heavy holes. The conditieg>U, remains in

kS (1+«3/K5)? force. As a result we have
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1) for ve==*v,,

1+al/3
1+ al2

1 ﬁS,y3
2(an+kp) ES
" 3vC+vU+g@

4E, 2 E,

2 1+2al3 qhkCKCkh

l+a \/kcz-i- KCz

) AcAh\chf f | a/l2—-0

M

1 733 1+ al3\?14+2a/3 qukckn
z(qﬁ+ Kﬁ) ES 1+al2) 1+« ,/k67+ Kg
EOC ’ .

X=—=AAY V(|22 0; (43

Eg
2) for ve=F vy,
[ 7393 (1+ al3)? 1+ 2a/3 q.qnkekn

M=~
Poqitkd) ED (1+af2? 1ta i)+ .2

3V +V,
4E,

9E,— 6V
2E,

. c
Xsin ¢ AcAhlI,c\I,f|a/270

. [ 13y3(1+ al3)? 1+2al3
2(qp+kh) ES (1+af2)?2 lta

a8+ q8(3k2+kky) + g*(3Kj+ 2k kG + k2k3) + q2(k§ + kkG + k3k3) + k*k]
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dcAnkckn Eoc

keVk2+ <2 Eg

Here we have writterv=A¢,/E4, and ¢ is the angle
between the directions of the electron and heavy-hole longi-
tudinal momentay, andqy, .

Let us proceed to an analysisdf,. The integral appear-
ing in M, is proportional to the sum

Xsin ¢ AcAh\ch}f’ | a/l2—-0- (44)

k,—Kk)a/2

Ja(‘l’ﬂ’l)@c@h dxoc ism(k—_k, (45)
0 4

wherek takes eight different value&= *k; =k.*k,. The
remaining terms in40) are obtained by subtracting from it
the expansion of this integral in the small paraméid, to
fourth order inclusively. Here/k42+ q42 must be used instead

of k4. For this reason, the terms of the form sik,(
—k)a/(k,—k) must be replaced by

sin(k,—k)a
ﬁx(km,

where

k, =
x(k,q) ()

In the limit k<k, we have M,xk;°, and henceM,

~Mj(klks)<M,. Whenk=k,, the multiplier accompany-
ing M, becomes equal to unity, signifying that the expansion

in the small parameter virtually vanishes. In the lirkif

<( the functiony is also approximately equal to unity. In

addition, fora—

 (ky—k)as2 ek
Nk 2k

whence it follows thatM, transforms into the bulk Auger

coefficient in the limit of an infinitely wide quantum well.

Of all the terms appearing in the su@b), the largest is

(46)
|
qhkcei¢+qckh1 Ve=E vy,
X Koot
X(Ke1t+KeatKn,0n) 0. Sin &, B
(47)

Here é is an insignificant phase multiplier.

b) Calculation of the Auger recombination matrix ele-
ment for a transition into the discrete spectrubet us now
move on to an analysis of the matrix element of an Auger
transition under which a particle with a large energy remains
in the bound state. This case corresponds to the approxima-
tion g;>k;, whereq; andk; are interpreted as the values of
the momentum of the highly excited particle in the plane of

the one for whichk=k;+k.+k;, since this term has the the quantum well §;) and in directions perpendicular to it
smallest threshold energgWe interpret the threshold energy (k¢). Accordingly, no expansions need be performed in the
as the mean energy of a heavy hole participating in an Augematrix element, and we can write

transition) The contribution of the remaining terms to the
sum is significantly smaller, and we neglect it for simplicity.
Then the expression for the matrix element of the qua-
sithreshold Auger process is written in the following form:

M 1 irsﬁ‘y 1—|—2/3aAAAA

~—e " —

2 8(qi+k)) Eg lta T
><Sin(kf—kcl—kcz—kh)a/Z

kf - kcl_ kc2_ I(h

al2
J (V¥ 1) (@cpn) dx. (48)

a?+ki Jo

This integral can easily be calculated, but the general
formula obtained is quite involved, and we shall not present
it here. We present only an estimate Mf; here, which is
valid when the bound carriers are in the ground quantum
state:
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1 fvya 2 )
A~ o i - _ = — — —
M~ 71 5® g AAAADy SiN 6 (ve=—1m). C= 2tk (MOif(1- T (1= 95
49 X(Es+Es—E1—Eo). (59

Here « is a multiplier of the order of unity, which arises Here f, and f, are the Fermi distribution functions of the
from the integration of the product of the envelopes of thecarriers in the initial state, ant; and f, are the analogous
carrier wave functions over the region of the quantum well:functions in the final state. For highly excited statgscan

be set equal to zero. It is noteworthy that we can wfije

al2 a ~
f fof faf, dx=~ 20 wheref;=cosk;x, (500 instead of 1-f;, wheref, is the hole distribution function.
0 The contributions of the matrix element$;, M,, and

andi labels the initial and final states of the particles partici-M3 to the Auger recombination rate differ, since the excited
pating in the Auger recombination process. We note ghist ~ Particles for such processes lie in different quantum states. In
nonzero only when the parities of the pairwise productshe case oM; andM, the excited particles lie in states in
v, ¥, and¥ ¥, coincide; therefore, there is only one term the continuous spectrum, and in the caseviaf the excited
in (49), unlike (47). For wide quantum wells, where the par- Particle lies in a state in the discrete spectrum. It is more
ticles can be in different quantum bound statess given by ~ complicated with separation of the contributions betwign
the expressioficompare(45)] and M,. Although the physical difference between them is
maintained, there is an interference term between them. At
~sin((—1)"ik;)al2 small values of the quantum-well width the interference is
ne (51) significant, since both processes are virtually threshold-free,
but a calculation neglecting it continues to lead to a result of
Here the label refers to summation from 1 to 4, ansg the correct order of magnitude, which reflects all the main
characterizes the parity of the functién(o;=1 for an odd features of the Auger recombination coefficient as a function
function, ando;=0 for an even function of the temperature and the parameters of the quantum-well
structure. If the quantum well is sufficiently wide, the inter-
ference betweeM,; andM, can be neglected. In fact, while
M, as a function of the quasimomenta does not have any
peaks, the magnitude dfl, has a maximum at the point

The calculation of the Auger recombination rate requireska(d) +ks=k;+kz. When the quantum-well width tends to
summation of the probability of the Auger transition per unitinfinity, the maximum at that point has the character of a
time (31) over all the initial and final carrier states with the function. Therefore, for wide quantum wells the Auger re-
corresponding weights, i.e., occupation numbers. We presef@mbination probability corresponding ¥, as a function

the expression foM, andM, (33) in the form of the sums ©Of the heavy-hole longitudinal momentugy, has a maxi-
mum at larger values df;, than does the probability corre-

1
=75 > (-1

vy,v2,v3,v4=0,1 (—1)Vikia/2 .

4. AUGER RECOMBINATION COEFFICIENT

M,= M§1)5V3V15V4V2+ Mf2>5V3 O, sponding toM ;. As the quantum-well width decreases, the
maxima of these probabilities approach one another, and the
+M¥8,.,.8,, ,tMYS,. 8, region of overlap between these matrix elements grows.
(52 The Auger transition probabilities correspondingMq
My=Mi3, .8, t MiP'8,, —,.,8,,, andM,, as functions of the heavy-hole longitudinal momen-
@ @ tum for various quantum-well widths are presented in Fig. 1.
+Mj 5vsvz5v4 -t M 5v3 —v25v4 —vyr It is seen from the figure that interference between the

0 (i) . . threshold-free process corresponding Ny and the qua-
whereM; " and M, are the matrix elements of transitions jineshold process correspondiity takes place only for
with fixed carrier spin states. : ._narrow quantum wells, in accordance with the foregoing
After averaging over the initial spin states and SUMMINGstatements. It should be noted that the Auger recombination
over the final spin states, we obtain probabilities are fairly smooth functions of the heavy-hole

. ' longitudinal momentum, since summation over discrete
< > |Mﬁ|2> => (IM{"2+|Mm{"|2 guantum states of the carriers was performed during their
r3:va ' calculation. Wherq,, is close to the maximum value speci-

~RgM{*M (7). (53 fied by the longitudinal momentum and energy conservation

laws, the Auger recombination probability has a square-root
In the derivation of(53) we took into account thaMl(3) divergence, which can be eliminated by integrating ayer

~MP=MB=M{P~0. It is convenient to uséM?) to de- i.e., by calculating the Auger recombination rate.
note the matrix element summed over the spin variables: Thus, we represent the Auger recombination rate in the
form
(MH= > [Mg[* (54) G=G;+G,+Gs, (56)
V3,V4,V1,V2

where the rateG,; corresponds to the threshold-free Auger
Then the Auger recombination rate takes the form process with the matrix elemeM,, G, corresponds to the
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this averaging has the form
q2
—2) da,

2 ©
(f(q))= —zf qf(q)exp( -
Q-0 aT
whereqy is the heavy-hole thermal momentum:
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guasithreshold Auger process with the matrix elendnt 4
andGj; corresponds to the threshold Auger process with the  \j=—.
matrix elementv 5. V2mcEq
Expressions foiG, and G, can be obtained using EQ. For simplicity, here we have replaced the electron longitudi-
(55) by replacing the summation ovky in it by integration  nal momentum by its thermal value. For degenerate carriers
and going over from & function with respect to the energy the electron Fermi energ- must be used instead of the
to a & function with respect to the momentum. Below we temperature. The angle brackets denote averaging over the
distribution function of the heavy holes. In the case of a
Boltzmann distribution, which is usually observed for holes,

shall investigate the Auger recombination coefficigdt
which is related to the rat€ by the expression

G=Cn?p.
Heren and p denote the two-dimensional concentrations of

the electrons and holes, respectively. For the Auger recom-
bination coefficientC; we have
2 2
kCKC
2th
qT: ﬁz *

C.~ 256 %)\4 1 F(ﬁj
Y3 kT %aa+2kg)? | Egl (K24 kD)2
ﬂ Sty Ye (MJF 9 E)z Similarly, for C, we obtain
(2+k?)3 ke(an) [ | Eg|\ 4E5 2 Ey4
. ., . 327" B o[ X*(an kn+ 2ko) Ackit Ga(ke+ag/2)
_ 2 ~——
k_sz_Ozc T kc+2"c (Vv Ve . ?E) 778 09 aat2ik)?  (R+KD%
K2 Ex| 2By 2 4E, 2 Ey4 b2k
1—cogk;—ky— a
kfrg Ege X > > (58)
_4 ? , (57) 2(kf_ kh_ZkC)
ke Fo where x(q,k) is the function defined abovieee(46)]. Fi-
where nally, for C3 we have
1+x/2 1+7x/9+2x2/9 £ m.e* c 2048m° s , 2
(1+x/22 ° 2h%E 573 Y9t 2/k,)?

FO)= 15 2%79
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FIG. 2. Dependence of the threshold energy for the
CHCC process on the quantum-well width for three
Auger recombination mechanisms: the threshold-
free mechanism &'tlh), the quasithreshold mecha-

nism (E3), and the threshold mechanisrgY) at

T=300 K. The solid curve corresponds to the
threshold energ§! for the total Auger recombina-
tion coefficient C=C;,+C,+Cj3). The horizonal
dotted line corresponds to the threshold endEgy

for the three-dimensional Auger process.
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holds. For narrow quantum wells the threshold energyCfpr
increase$see(60)], and the Auger recombination coefficient
(59) decreases in comparison to the bulk value by the factor

kg me EOc)
exp —<|=exp — —=—].
of My T

By equating the exponent to unity it is easy to estimate the

2 2 2
x<q—g‘—2q°23exp(—q—t2“)a2> : (59)
ar (it kp) ar n
In the latter case the averaging is performed only over the
discrete heavy-hole quantum states and the electron mo-
menta. The threshold value gf;, is found from the energy

conservation law and the longitudinal component of the mo-
mentum:

20042 112 2012 112
= /—k?+qt2h):Eg+ A" (At kn) + h (k°1+k°2)_ characte_ristjq guantum-well width at which this effect be-
2my 2m comes significant:
For simplicity, we neglected the electron longitudinal mo- om -
menta in determining the threshold energy, since they are E, ~T- §Fh®a%q_' (61)
C T

small; however, we took into account the size-quantization

energy of the electrons, which alters the effective value ofr, ;s at values of the quantum-well widihthat are smaller
the gap width in.the quantum_well. If th_e energy of the €X-than several reciprocal thermal momentes /gy, the
cited electronk; is expanded into a series in the momentainrashold energyE(a) becomes significantly greater than
nearqy,= Q, whereQ is the value of the electron momentum o puik vaIueEf’hD (see Fig. 2 For Ill-V semiconductor

corresponding to an energy equallg (Q~V4mcEq/%%),  compounds at room temperature the equaBty) is achieved
the following estimate can be obtained for the threshold moyhen the quantum-well width is of the order of a hundred

mentum: angstroms.
AME. 3 Let us consider the Auger recombination coefficiént
O~ 9, —kg. (60) in greater detail for the quasithreshold process. In the limit
h? 2 a—o the following replacement can be made in the aver-

If the quantum-well width tends to infinity, the threshold @ged function in(58):

momentum tends to its bulk valdein addition, it must be

taken into account that for wide quantum wells with a large 1—cos{kf—kh—2kc)a_>w_a5(k _
number of levels the multiplierr [see(49)] tends to aé 2(ks—kp—2ke)? 2 !
function. This is a manifestation of the conservation law for
the transverse component of the quasimomentum:

kn—2ko). (62

This formula clearly reveals the presence of a threshold in
this limit, and after multiplication bya?, C, transforms into
the three-dimensional expression. For comparison, we
present the result from Ref. 2 @3 and our limiting ex-
pression:

v
a?— Tog? > 8(KnE Koy F KepFKeg).

When the quantum-well width is large and<Eg holds,
the inequalityC;<C, is satisfied, sinceC3/Cy~ V. /Ej.
Therefore, for wide well€; can be neglected in comparison
to C,. If Vc=<Eg, the relationC3/Cy~ V. /(Eq—V()=1

4 73
e'mi 1
Cc3P=627°
k2 Eg/2T1/2m1/2 3/2

c My



828 JETP 86 (4), April 1998 G. G. Zegrya and A. S. Polkovnikov

2mc Eg 63 )\ T 3/2 Eth 66
X - —= = — —.

ex mh T y ( ) aC Eg Eth €X T ( )

, 16\27° e*m i3 1 For sem|conduct0r_s_ with a wide gap of order 1 eV at room
C,a“=6 57 > TR temperature the critical width, can reach several thousand
ko Eg T memy angstroms. However, the criterica>a, for passage from
om. E the two-dimensional Auger process to the three-dimensional
><exp< - i ?g) (64)  process was obtained without consideration of the momen-
h

tum relaxation processes of the particles due to interactions

The multiplier 4 in(64) appears, because the calculation ofWith phonons and electron—electron scattering. In reality, the
M, according to(47) requires considering not only the term mean free path of the particles is generally smaller tan
with k=kg;+kep+kp,, but also the terms with=k.,—k,,  and the transition to the three-dimensional Auger process
+kp, k=—ke+kep+kp, and k=—ke—kep+ky. When  actually occurs when the quantum-well width takes a value
the quantum-we” width tends to infinity, all four terms make of the order of the mean free path of the carriers. It follows
identical contributions t&€,. As we see, there is a difference directly from these statements that the Auger coefficient in
between expression&3) and (64) only in the numerical the three-dimensional case can be correctly calculated only
multiplier. The small discrepancy by a factor of 2/3 appearsWhen the processes involving scattermg of the electron and
because the size-quantization momenta of the electrons muggle momenta are taken into accodnt.
be distinguished from one another when there is a large num- Quantum wells with a widtla<a, exhibit displacement
ber of electronic levelsk.;#kc,. In addition, expression Of the probability maximumw, for the quasithreshold pro-
(63) was obtained in a simplified model, in which the mag-cess as a function of the heavy-hole momentum toward
nitude of the spin—orbit splitting is assumed to be infinitelylonger wavelengthésee Fig. 1 asa decreases. This leads to
large. The conditiom\<E,, which holds for most narrow- 2 decrease in the threshold energy of this process and, as a
gap -V semlconductors was actually used in derivingconsequence, in weakening of the temperature dependence of
(64). When we calculate4), we neglected/ in compari-  the Auger recombination coefficient.
son toEg. In the general cas€,a® must be replaced by Figure 2 presents plots of the dependence of the thresh-
(C2+ Cs)a and(64) remains valid. However, the ||m|t|ng old energy on the quantum- -well width for all three Auger
transition from the quasithreshold process to the thresholecombination mechanisms wih, C,, andC; taken indi-
procesisee(GZ)] can be made 0n|y for very wide guantum viduaIIy and for the overall Auger recombination process
wells. A qualitative criterion for this transition can be ob- With C=C;+C,+ C3, which were determined from the for-
tained from an analysis of the Auger transition probability asmula
a function of the heavy-hole momentum. As we have already d
noted above, the quasithreshold process Wisthdominates ('>(T) T? ,
for wide quantum wells. The probability of this process has dT
two characteristic peaksee(58)]. The first of them corre-  The threshold energy for the quasithreshold process is
sponds to a maximum of the square of the matrix element fogmaller than the three-dimensional value, since the value of
the transition near the threshold value of the heavy-hole mothe critical widtha,~1000 A is greater than the maximum
mentum. The width of this maximum is of the order of the quantum-well width presented in the figure. For the
reciprocal width of the quantum well. The second peak isthreshold-free Auger process the threshold energy decreases
near the value of the hole thermal momentum. The Augeas the quantum-well width increases, and it becomes nega-
recombination coefficien€, can be estimated by multiply- tive at a certain width. Such behavior of the threshold energy
ing the values of the Auger transition probability near theses associated with the fact that the Auger recombination co-
maxima by the corresponding widths. Then efficient C, becomes a decreasing function of the tempera-
ture for sufficiently wide quantum wells. As the quantum-
~C2(Qn~an) + C2(Qn~an), 65 el width increases, the threshold energy for the overall
where Q;, is the value of the heavy-hole momentu@ﬁ Auger process tends to the limiting VallﬁhD, which is
=k2+qp. marked in the figure.
Let us move on to an examination of the threshold-free
CT Cth)\ g(_) S/Zex Ewn Auger process. As we have already noted above, the prob-
= PT ability of the threshold-free Auger transition does not have
any features as a function of the heavy-hole momentum.
Here \g ~2m/qy, is the wavelength of the highly excited therefore, the coefficien€, has a weak nonexponential
electron, A comparison of the contributions fr@4' andC]  temperature dependence. It was investigated in detail for the
provides a natural criterion for transformation of the qua-first time in Ref. 8. In addition, the functio,(T) is non-
sithreshold process into the three-dimensional threshold Aumonotonic and has a maximum. The presence of this maxi-
ger process. It can be written as follows: mum is easily explained. At low temperatures and, accord-
ingly, small longitudinal momenta of the carriers, their wave
functions are almost orthogonal, and the valu€gis small.
where As the temperature rises, the characteristic momentum trans-

i=1,2,3. (67)

a>ac,
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fer in the Coulomb interaction increas@sis approximately Figure 3 presents the dependence of the Auger recombi-
nation coefficient<C; andC, on the quantum-well width at

equal to the heavy-hole thermal momenjurherefore, at
low temperatures the Auger coefficient is an increasing funcvarious temperatures for a model structure based on the com-

tion of the temperature. As the temperature rises further, thpound InGaAsP. First, the dependence€eofandC, on the
Auger recombination coefficier®@,(T) reaches a maximum quantum-well width have a pronounced maximum. It is note-
and begins to decrease, since the long-range Coulomb inteworthy that the positions of the maxima scarcely depend on
action responsible for the Auger process is weak when théhe temperature. Second, as is seen from the figure, the rela-
momentum transfer is large. The temperature at which théve role of the quasithreshold Auger recombination pro-
maximum occurs is easily estimated on the basis of the aresses increases with increasing temperature. The threshold
gument that the size-quantization energy of the holes is equ@rocess is not indicated in the figure, since the valu€-pt

to the temperatur@~#2m2/2m,a?. We note that this maxi- the quantum-well widths considered is considerably smaller
mum would not be present, if we assumed that the overlafby several orders of magnitudéhanC, andC,. Therefore,
integrall ;, is proportional to the momentum transfer. Suchthe dependence of; on the quantum-well width is pre-

an assumption, which, in our opinion, has no justification forsented separately in Fig. 4. We note that the maximum is
most of the structures investigated, has often been used in tleehieved at a far greater quantum-well width for this process
literature (see, for example, Ref. 24nd leads to incorrect than for the quasithreshold and threshold-free processes.
expressions for the Auger recombination rate and to incorrecthis, in turn, is attributed to the decrease in the value of the

dependences of this rate on the temperature and thtareshold energy for the threshold process as the quantum-
guantum-well parameters. well width increasessee Fig. 2, rather than to the overlap of
The Auger coefficienC; as a function of the quantum- the wave functions.
well width a has an abruptly descending form. Depending on  Figure 5 presents the temperature dependence of the to-
which term is predominant it57), C, decreases with in- tal Auger recombination coefficient and the partial contribu-
tions of the threshold-free and quasithreshold mechanisms

creasinga either as 13, as 14°, or as 14’. In any case,
even after multiplication bya?, C, remains a decreasing for various quantum-well widths. It is seen from this figure

function of the quantum-well width. Therefore, such a pro-for sufficiently wide quantum wells that the threshold-free
cess can be dominant only for fairly narrow quantum wells.Auger process dominatesC{>C,)at low temperatures,

For a~1/k., the coefficientC; has a maximum, which is while the quasithreshold process dominat€s*¥C;) at
associated with the weak overlap of the carrier wave funchigh temperatures. Therefore, the temperature dependence of
tions. As the quantum-well width is diminished further, the the total Auger recombination coefficient has a characteristic
rate of the threshold-free Auger process decreases smoothliprm with a maximum and a minimum. As the quantum-well
The simplified expression fo€, in the CHCC process ob- width is increased, both the maximum and the minimum of

tained in Refs. 15 and 16 gives aal/dependence on the the Auger recombination coefficient shift toward lower tem-
peratures, and they vanish in the limit of an infinitely wide

quantum-well width.
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guantum well. Thus, in the case of a homogeneous semicos- DISCUSSION

ductor the Auger recombination coefficient is a monotonic

function of the temperature. We note that a Boltzmann dis- The analysis that we performed showed that in semicon-
tribution of the carriers was used to calculate the temperaturductor quantum-well structures there are three different Au-
dependence of the Auger recombination coefficients. At lowger recombination mechanisms, viz., threshold, quasithresh-
temperatures electrons and holes generally obey Fermield, and threshold-free mechanisms. The Auger
Dirac statistics. Therefore, the mean momenta of the elececombination coefficient€,, C,, C3 of these processes
trons and holes participating in the Auger process dependepend differently both on the temperature and on the pa-
weakly on the temperature and do not vanisfiat0. Figure  rameters of the quantum well: the heights of the heterobarri-
6 presents the temperature dependence of the threshold-frees for electrons and hole&/{ andV,) and its width(see
Auger recombination coefficiel@, for various values of the Figs. 3—5. In the limit a— the sum of the quasithreshold
hole Fermi energy for quantum wells with various widths.and threshold Auger recombination coefficients multiplied
There are significant differences between the Auger recorrby the square of the quantum-well widtB,a2+ Cza?, tends
bination coefficients for the Fermi—Dirac and Boltzmann dis-to the bulk value of the Auger recombination coefficieiP,
tributions in the limitT<Eg, whereE is the hole Fermi while C,a? tends to zero. For sufficiently narrow quantum
energy. This condition is usually achieved only in the case ofvells the value of the two-dimensional Auger recombination
very low temperatures, at which the Auger recombinationcoefficient multiplied by a? is greater than the three-
process is not important. dimensional value due to the predominance of the threshold-
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a=100 A
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contributions of the threshold-free and qua-
sithreshold mechanisms for various quantum-
well widths.
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free and quasithreshold Auger recombination processesum wells?®?® The phonon-assisted Auger recombination
Thus, the Auger recombination process is enhanced in quaiprocesses with the quasithreshold and threshold-free matrix
tum wells in comparison to a homogeneous semiconductoelements for the electron—electron interaction can be reso-
This enhancement is even more significant at low temperarant processesAt low temperatures they can compete with
tures. Under these conditions the three-dimensional Augethe phononless Auger recombination processes. However,
recombination coefficien®3P is small due to the presence of because there is no strong dependence of the latter on the
a small exponential multipliefsee(63)]. We note that the temperature, such competition is possible at far lower tem-
entire analysis of the dependence of the Auger recombingseratures than in the three-dimensional case. Thus, in narrow
tion coefficients C,, C,, andC;) on the temperature and the quantum wells the phononlegthreshold-freg Auger pro-
parameters of the quantum well is qualitatively applicable tacess is dominant in comparison to the phonon-assisted pro-
both the CHCC and CHHS Auger processes to the sameess over a broader temperature range than in the three-
extent. However, since we did not specify model quantum-dimensional case. As the quantum-well width increases the
well structures, we illustrated these dependences in the casesonant scattering on the phonons weakens, and we go over
of the CHCC process. The Auger recombination coefficientso the usual three-dimensional conditidns.
C,, C,, andC; for the CHHS Auger recombination process It is important to note that at high concentrations of non-
were analyzed in detail in Ref. 7. equilibrium carriers in a homogeneous semiconductor the
We note that significant suppression of the Auger recomphonon-assisted Auger recombination process can be weaker
bination processes in quantum wells is possible when théhan the Auger process followed by hole—hole scattering,
conditionsV.,V,>E, andE,—E,;>E are satisfied, and  which eliminates the threshold.
E, are the energies of the first and second size-quantization
levels of the carrieps® i.e., if the energy of the excited
particle is insufficient for a transition into the continuous ¢ ~oncLUSIONS
spectrum or to the next size-quantization level. To satisfy
these equations, structures with deep and narrow quantum The following are the main results of this work.
wells for both electrons and holes must be fabricated. The 1. It has been shown that three different Auger recombi-
presently existing technologies permit the fabrication of suchhation mechanisms operate simultaneously in quantum
structures on the basis of InAs/AlISiRef. 26 and InAs/  wells: @ a threshold mechanism) b quasithreshold mecha-
GaSb/AlSb(Ref. 27. Only the threshold Auger recombina- nism, and ¢ a threshold-free mechanism. In the limit of an
tion process corresponding t©; takes place in such deep infinitely wide quantum well the first two processes trans-
guantum wells. This coefficient can be several orders oform into the three-dimensional Auger process, and the
magnitude smaller than the Auger coefficients for thethreshold-free Auger process tends to vanish.
threshold-free and quasithreshold procesgesdndC,) in 2. It has been demonstrated for narrow quantum wells
shallow quantum wells\(;,V,<E,). that the Auger coefficients of the quasithreshold and
Note that the phonon-assisted Auger recombination prothreshold-free processes have a weak power-law dependence
cess also undergoes significant changes for quantum (vellson the temperature. In addition, their values significantly ex-
In analogy to the phononless Auger recombination processeed the three-dimensional coefficient divided by the square
there are three different mechanisms for the phonon-assisted the quantum-well width. At the same time, the coefficient
process C3 ph Czh, andC? ph)» Which correspond to the thresh- of the two-dimensional threshold Auger process has a larger
old, quaS|thresh0Id and threshold-free matrix elements fothreshold energy than in the three-dimensional c&ﬁ(
the electron—electron interaction. The first process is fully>E; D) The corresponding Auger recombination coefficient
analogous to the three-dimensional process. However, in nais smaller than the three-dimensional expression divided by
row quantum wells this process is appreciably weaker thathe square of the quantum-well width.
the threshold-free and threshold Auger recombination pro- 3. The limiting transition from the two-dimensional Au-
cesses. In the literature just this phonon-assisted processder recombination process to the three-dimensional process
considered the main Auger recombination process in quarhas been accomplished in this work. It has been shown that
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(C,+Cjy)a? transforms as— into the three-dimensional
Auger coefficientC3P obtained in Ref. 2.

4. It has been shown for sufficient wide quantum wells ,
that the dominant process is the quasithreshold Auger recomeg
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The influence of the subbarrier impurity scattering of tunneling electrons on the current—voltage
characteristic of a quasi-one-dimensional insulator layer with weak structural digarder

small impurity concentrationis considered in the one-electron approximationTat0. An
expansion in powers of the impurity concentration gives the form of the current—voltage
characteristic and the conditions for small mesoscopic fluctuations of the static tunneling
conductance of such a layer in the cases of resonant and nonresonant tunnelit@e8 ©

American Institute of Physic§S1063-776(98)02804-7

1. INTRODUCTION

o _ un= X u(r-ry, 2)
Real tunnel junctions must contain some defects or im- O=xj=L
purities, at least in small concentrations. This naturally raises
the question of how weak disorder affect the parameters of ) . . L
such junctions. The single-particle problem of the tunnelingVNere the points; are macroscopically uniformly distrib-
transmission of particles through a homogeneous potentid|!€d With the density in the layer at G<x<L, andu(r) is

barrier with identical scattering centers, i.e., impurities, ran"€ local single-impurity potential with a radius of action

domly arranged within it was examined in the q“asi-one-m the case under consideration of small impurity concentra-

dimensional and three-dimensional cases at low impurit)ﬂons’ the. fgllowing relations are as.,sume.d to hold for the
concentrations in Refs. 1 and 2. characteristic parameters with the dimensions of length:

This paper, which is closely related to Refs. 1 and 2,
considers how the subbarrier impurity scattering of tunneling
electrons affect the current—voltage characteristic of a quasi-
one-dimensional barrier layer and the magnitude of the me-
soscopic fluctuations of its static tunneling conductance iQ/vhere a;l:(UO_SF)—lQ is the characteristic damping
the cases of both nonresonant and resonant tunneling. Lowf‘erngth of an electronic state with the energy in a homo-
bounds on the transverse dimensions of the barrier layer argfeneous barrier.
obtained from the requirement that these fluctuations bé
small.

ro<apt<n <L, ©)

In the quasi-one-dimensional case considered here it is
assumed that the insulator layer is composedviot S/b?
insulator filamentgwith impurities with the transverse di-
mensionb. In addition, the mean free path with respect to
electron jumps from filament to filament is assumed to be

Let us consider atN—I-N sandwich consisting of two large in comparison to the filament length so that the
identical layers of a normal meté\) separated by a layer of tunneling dynamics in each filament is independent of the
an insulator(l) of thicknesd. and are5 that is impregnated dynamics in the other filaments. We shall first consider just
with impurities within the following model. For the conduc- this case as the simplest case for theoretical analysis and, in
tion electrons in the N layers we adopt the three-dimensionaiddition, as a case of interest in itself, since such a quasi-
isotropic quadratic dispersion lag=k? (A%/2m=1) with one-dimensional situation is possible, for example, in the
the Fermi energy, and for the barrier potentidl(r) in  case of strong anisotropy of the effective mass of the tunnel-
the region Gsx=<L, which is occupied by the insulator, in ing electrons in three-dimensional barriers or in the case of
the absence of a potential difference on the barrié=(Q)  the elastic tunneling of electrons through a bundle of ho-
we take the modél mopolymer molecules with impurities.

At a small biasV<eg,Uy—eg (the electron charge

Un=Uoto(r), r=(xp), O0=sx<L. @ =1) and the temperatur=0 and under the assumption
A homogeneous insulator without impurities would have thethat the tunneling dynamics in different filaments is indepen-
potential Uy=const>¢¢, and disorder is generated in the dent, the formulas for the tunneling currgnfV)), the tun-
model of structural disorder in the simplest case by the rannel conductance of the layég(V)) (per filamen}, and their
dom potentialy (r) of identical impurities randomly distrib- relative root-mean-square fluctuation®)*? can be repre-
uted throughout the insulator layer: sented in the form

2. MODEL: BASIC RELATIONS

1063-7761/98/86(4)/5/$15.00 833 © 1998 American Institute of Physics
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The averages ifB) are taken over the one-dimensional con-

(i(V))y= E f <gk(s))ds—FF V(g(s))ds, figurationsI',,,

- 1
1 (D(e))=2 pm_fD(Sva)dFm!
—— = AT
(V)= (i), @ @0 "ATy, an
2\1/2 - 1
(7 (D(e)D(e")= 3 Pmy
egtV 172 m=0 m
| Katrate ) —atencate ) 1de de
_ 1 Je xf D(e,I')D(e’,I'p)dly,,
M egtV :
LF (g(e))(9(e"))de de where
©) (nL)™
. . . pm:—e ng
For filaments of arbitrary thickness m!
2q is the probability thatm impurities are found in a system
9(8)59(8,Gm)=f D(e,9,p,Gm) o2 P (6)  with a linear impurity concentration; =nb? in a filament of
( ) lengthL, dT",=dX; . . .dX,, is a volume element of the con-

whereD (&,q,p,G,,) is the tunneling transmission coefficient figuration phase space, and
of a filament with a random impurity configuratio@,,

={rq,r,, ... Iy for electrons with the energy having a AFm:f dar,,

fixed transverse component of the momenityrat the “en

trance” to the barrier and a fixed transverse coordipasd

the “exit.” The integration overq is performed over the =
range G<g?<e (q>0), and the integration oves is per-

formed over the cross section of the filament. The averaginég the total volume of the configuration phase space of a
in (4) and(5) is carried out over the impurity configurations System ofm impurities in a filament of length.

Lm

XmdX2 e de: W

f(0<xl<x2< o <Xm<L)

Gn: The tunneling transmission coefficien®(e,I',) ap-
N pearing in(11) are found by solving the tunneling problem
(V-vyhom for the one-dimensional Schiimger equation with potential
<g(8)>:m§=: CWTJ 9(&,Gm)dGp, (101
() The calculations of the current—voltage characteristic

(V=vph—m (i(V)) (4) and the root-mean-square fluctuatiosf(V))*/

VN (5) reduce to calculations of the meag(e)) and the cor-
relator {g(¢)g(e')), which can be expressed in terms of
(D(e)) and (D(g)D(e’)) in accordance with(8) in the
guasi-one-dimensional case, followed by their integration ac-
cording to(4) and (5).

N
(9(e)g(s")= 2 CX

Xf 9(e,Gpa(e’,Gp)dGy,,
(V)

where dG,=dr,dr,...dr,, V;=b%L, V=SL=MV,, N
=nV is the total number of impurity atoms in the barrier

layer, n is the three-dimensional impurity density, agg] 3. CURRENT-VOLTAGE CHARACTERISTIC OF A QUASI-
=N(N=1)% ...x(N—m+1)/ml. ONE-DIMENSIONAL BARRIER IN THE CASE OF

For sufficiently thin filaments, such that<az* and ~NONRESONANT TUNNELING
M>1, Egs.(6) and(7) lead to the one-dimensional relations | et us first consider the case of nonresonant tunneling,

(g(e))~b%e(D(e)) which is observed for alb<Uy, if the impurities are repul-
' (8)  sive[ky>0 in (10)], and foreg<ey, whereeg is the true
(g(e)g(e"))~b*ee’(D(e)D(&")), lower boundary of the single-particle electron energy spec-

where D(&)=D(s,q=0,p=0:T",) is the tunneling trans- trum in an infinite filament with impurities, if they are attrac-
y 9 il m. . 1’2
mission coefficient of a strictly homogeneous filament with Ve (ko<0).

the impurity configuratiod” ,={X; X2, . . . X}, Which cor- In the, case of nonresonant tunnellr@(s,» and
responds to the one-dimensional barrier potential (D(¢)D(e')), as well as(g(e)) and (g(e)g(e")), are
smooth functions of the argument¢sande’. Therefore, for
U(x)=Uo+ 2 U(X—x.). ) V<ep,Up—eg it follows from (4) and (5) that
==t (i(V)=(g(er)V, (12)
In the one-dimensional case the impurities can be regarded ) 21172
as point scatteretsand the local single-impurity potential (82yV2= 1 (g°(er))—(9(er)) , (19

can be taken in thé-function form: M (g(ep))?

u(x) =Kod(X). (100 where, in accordance wit8),
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(9(ep))~b%ep(D(gp)), (gz(ep))~b48,2:<D2(8,:)>. When this condition is satisfied, real self-averaging of the
(14 static tunnel conductancél) of a quasi-one-dimensional,
structurally disordered insulator layer takes place in the non-

To find the values ofg(eg)) and(g?(s¢)) appearing in resonant case.

(12) and (13) we must calculatéD(gg)) and(D?(sg)) in

accordance with(14), which we do below to exponential

accuracy. For this purpose, in the limit of a small impurity

density under discussion here,@r'<1) we write virial 4. CURRENT-VOLTAGE CHARACTERISTIC OF A QUASI-

expansionsfor the corresponding dimensionless decrement©NE-DIMENSIONAL BARRIER IN THE CASE OF
RESONANT TUNNELING

1 1
m=- In(D(eg)), mo=- = In (D?(eg)), Resonant tunneling takes place whanfalls within the
- - region of the discrete spectrum in the associated problem for
F=apL>1, (150  aninfinite (—»<x<<) filament with attractive K,<0) im-
. . o ~ purities located in the former layer é()x]-<L).1'3
In powers c_)fC:nla'F <1, confining ourselves, for simplic- The resonant effects reach their greatest values in situa-
ity, to the first-order terms: tions in which the energy is close to the subbarrier scat-
1 c jtering band of amplitudec(e) ateq (sozluo—kg.m), WhiCh
m=-= In D©@(ep)— - is the energy of a bound electron state in one impurity center

(the energy of a local single-impurity leyeh the associated

7 [D(er ty) spectral problem mentioned above. Therefore, below we
X f %— 1ldt+ ..., shall consider the case whese coincides withe, whenV
o [D™(ep) =0
1 .
5 (16) To find (i(V)) and(8%(V)) we must first calculate the
7o=—— In DO(ep)— C means(D(e)) and(D(e)D(e’)) (11) at resonant energies.
z Z Let us consider the calculation ¢D(e)). For further
) 2 analysis, it is convenient to represdii(e)) in the follow-
7| D%(eg,ty) ina form:
X —————1(dt;+ ..., Ing form:
o [ DP%(gp)

where = arL is the dimensionless length of the filament,  (D(e))= 2 PmDm(e), (22)

t,= apXq is the dimensionless coordinate of an impurity at m=0

the pointx;, andD(®(gr) and D(ef,t;) are the transmis- 1

sion coefficients of the one-dimensional barrier without im- D(e)= FQ"‘(S)’

purities and with one impurity at the poirg, respectively.
For nonresonant values of and #>1 we havé

On(e)= | D(el iy, 23

Dleety) _ L (AT}

DO(gp) (1= me)%, (9 where D,(¢) is the transmission of the filament averaged

over the configurations with a fixed number of impuritras
When the energy is close toe,, there are always im-

purity configurationd'[$Y¢), called resonant configurations

at the energy, in whichD(e,I'x{e))~1 holds, while the

transmission is exponentially small for all the remaining

(nonresonantconfigurations. Accordingly, at each energy

(18)  the phase space of a systemnefimpurities in a filament of

DO(ep)=e"27,

where ur=ko(2ar+Kkg) ~! is the subbarrier scattering am-

plitude (for £¢) in the single-impurity potentiall0). In the

nonresonant case presently under considerdgigh~ 1.
Substituting(17) into (16), we find

=2+ Cup(2— pg),

Np=4+2Cur(2— up) —cud(2— pue)?. lengthL is factorized into a set of resonant and nonresonant
o regions. When#>1 holds ande is close togg, the main
Taking into account18), from (12)—(15) contribution to the integraf),(¢) is made by the resonant
(9(8r))~b2er exp(— 71.9), (19 regions of the phase spafsee(27) and(28) below:
(8)V2~M ™ exp(n.212), (20 Qm(s)=f D(e,I'p)dly,
{Aly)
wheren=7n,—2n9,= C,LL,Z:(Z— we)? and pL~cv>1. "
A bound on the parameters of a quasi-one-dimensional Nf I.=AT"e) (24)
insulator layer follows from(20). It ensuregin an ensemble {(ATT%e)} m meen

of identical samplesthat the relative fluctuations of the tun- e _
nel conductance will remain small?)¥2<1, at nonreso- WhereAI';Xe) is the resonantat the energy:) phase vol-
nant values ok upon passage from sample to sample; ~ Ume of anm-impurity system in a filament of length.
To find (i(V)) we must calculate the integrals fon
IM>exp( 7.%12), M=S/b2. (21) =1 in accordance witli4), (8), and(22)—(24) (V<&f)
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ept+V ep+V the form of a series in powers of the concentration, whose
(}’Zm(V):f SQm(S)dg”f eAT' Te)de mth term gives the contribution of then-impurity reso-
°F °F nances to the mean tunneling current.
FHY In the case considered here we are interested in the range
”EFL AT Ye)de. 29 of parameters in which the total contribution of the reso-
F nances withm=1 significantly exceeds the contribution of
Only the intermediate asymptotes found in Ref. 1 arethe empty barrieiy(V):

known for the functiomAT' |7 &), which specifies the ampli- x,
tljld.e.and shap'e of the resonant transmission maximum in the 2 cMe o (V)>i(V). (32)
vicinity of the impurity level ateq, for m>1. Therefore, to m=1

calculate the overall structure of the current—voltage chara
teristic and obtain numerical estimates, we confine ourselv
to an approximation foAT - &), which correctly takes into
account the two main parameters of the real function, viz., it
characteristic width and height:

“This inequality demarcates an extensive region in Mg)
eSlane(for fixed .Z, kp) in which the resonant impurity tun-
neling current is decisive. For example, if we confine our-
Zelves to only the term witm=1 on the left-hand side of
(32), we have(taking into account<1)

ap™, |e—sol<vml2, io(V) e 27, IV|<y,/2,

(26) 1>c> s

Q&) ~ AT )~ - (
" i 0,  le—sd>wl2, eV ° T @Viye V>,

where y,~ k% exp(—~Im) is the characteristic energy 33
width of the resonant transmission band of a barrier of lengtivhere y;~k exp(~ %) and|V|<eg. For example, for”
L=_%/ar with m impurities. =10 and the characteristic valuk\§~sp~10 eV the range
Returning to the estimaté4), we note that it is valid ©Of concentration$33) covers several orders of magnitude at
provided the contribution of the resonant regions of thelV|<1 V (107°<c<1). On the other hand, for any fixed
phase space to the integi@l,(¢) is much greater than the concentration in this range, the contribution of the first reso-

contribution of the nonresonant regions: nance is formally comparable 1g(V) at such large values
( of |V|~cy, exp(2%) ~cer exp(¥)>er that they are al-
AT e)>e 27ATy,, Aln=L"/m!, “Z=a¢L. ready far outside the range of applicability of the approxima-

(27)  tion used [V|<eg).

Thus, in the range of parameters of interest to us, the
quantity io(V) in (30) can be omitted, and the current—
voltage characteristic can be written in the form

In the resonant transmission band we h@ve &g|< y,/2.
With consideration of26), this inequality takes the form

e 27" ml<1. (29 x
H — may—CY%
For #>1 (typical values areZ~10), this condition holds <I(V)>_m2:1 ce " om(V). (34)
for all m=1. ) o )
Using (26) for the integral 7,,(V) (25), we obtain the Differentiating(i(V)) (34), we find
estimate & _ i Cme—c%d(’pm as
oV [V|< ym/2, ) dv. i=1 dv’
Tm(V)~epap :
V)~ era (Ym/2)signV, |V|>yp/2. @9 20y @ 2
) _ > cme‘“%—d m (36)
Finally, taking into account4), (8), (11), and(22)—(26), we dv2 =1 dv2’
obtain the current—voltage characteristic in the following . ) ]
form: where in the approximatiof81)
o d(Pm 2 11 |V|S'}’m/21
: s ma—CY¥ v D EF (37)
(V=i + 2 e on(V), (30 dv 0, [V[>yw2,
2
where iO(V)~b28,: exd —(2+¢c).Z£1V is the contribution d quN_bZ(gF sign(V) 5( V|- ﬁ) (38)
from the configurations witlm=0 (the “empty” barrien to dv? 2
the mean current, Of course, the functiong,,(V) found in this approximation
V) ~b2a™ 7 (V and its derivatives specify only the “skeletons” of the func-
eml(V)~b7ar 7m(V) tions(i(V)), d(i)/dV, andd¥(i)/dV2, which reflect only the
) V, [V|<ym/2, most features of the real behavior. These functions, are, of
~b%eg (yal2)signV, |V|> ynf2, (BD  course, smoothed, and tiefunctions in(38) spread out to
form peaks of finite width and height. The qualitative char-
c=n1a;1, and y,,~ kS exp(—~4im). acter of these functions is shown in Fig. 1.
Thus, at small impurity concentrationsc<€1) the The function(i(V)) is significantly nonlineafbecause

current—voltage characteristi¢(V)) (30) is represented in of the significant nonlinearity of the,,(V) given by (31)]
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d(y dXi)
o v ; — 4
. {i(v)) :::f' " dv ?‘V—: divdv
y (V)
2 7 - .
) ! Y v FIG. 1. Qualitative forms ofi(V)) (a) and of
/1 h o(i)/dV andd(i)/dV? (b).
e s
- . 2 1 (2>
| % ¥ I . Ty
T2 T2 N
av?

and thus differs radically from the dependence in a barrieiThen, it follows from(5) that
without impurities(or in the case of nonresonant tunneling in %
a barrier with impurities The resonant current in the range S cMe Yy (V)
. . . Xm
of parameters consideré@d) is several orders of magnitude <52>1,2_ 1 m=1
M {

1/2

greater than the current in an empty barrier. Tinémpurity -1, 44

resonances are displayed in the plotdgf)/dV in the form
of a plateau with the characteristic widthy,~ kS
X exp(—#/my), and peaks appear on the plotd3i)/dV? at  where
IVinl ~ ¥l 2. 5

_If, as above,%=10 andko~sF_~_1O eV are tgken for xm(V)~b4aEKm(V)~b4s§{
estimates, then for the characteristic energy widths of the
first three resonances we have

= i
mz:l cMe™° %‘Pm(v))

V2, [V|<ym/2,

7§1/4a |V|> Yml2. “3

Leaving only the terms witlm=1 in the sumg44) for
y1i~107%eV, y,~10'eV, ys~1leV. (39)  an estimate, from the conditid?)><1 we obtain the fol-

. lowing bounds on the tunnel-junction parameters:
This means that these resonances can be observed experi- 9 J P

mentally only at the temperatures 1 cs S
T,<10K, T,<10K, Ts<10*K, (40) Vm> Je eXp( 7) M= “e
respectively, and that they should be manifested on the voltwhich ensure real self-averaging of the static tunnel conduc-
age scales tance of a quasi-one-dimensional insulator layer with struc-
Vi~103V, V,~10'V, Vi~1V. (41) tural disorder in the resonant case.
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