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Abstract—An analytical expression for the concentration profile of a low-soluble diffusant in a sample is
derived for a high-capacity diffusion source. The model is checked by determining the diffusion coefficient of
yttrium in beryllium. © 2004 MAIK “Nauka/Interperiodica”.
The long-term behavior of solids is often controlled
by diffusion redistribution of impurities, which is char-
acterized by the diffusion coefficient D of an impurity
in the material. Mathematically, diffusion experiments
are described by Fick’s equation, which is an analogue
of the heat conduction equation [1, 2].

The mathematical problem of diffusion, which
involves Fick’s equation and boundary conditions (as a
rule, an “instantaneous” impurity source [1, 2]), for-
mally does not impose constraints on the diffusant con-
centration in a matrix. However, the impurity concen-
tration in the matrix always depends on the solubility
limit. In [3], a constraint on the diffusant concentration
in the matrix was imposed by assuming that the time of
action of the diffusant (impurity) source is finite. In
other words, it was assumed that the impurity source at
the initial step of the process is of a finite (rather than
infinite) capacity. The higher the diffusant–matrix
mutual solubility, the smaller the error introduced into
the diffusion coefficient when the solubility limit of the
impurity in the matrix is ignored. A great body of reli-
able data has been obtained for systems with a high
mutual solubility. However, there are numerous exam-
ples of systems with a low mutual solubility [4], to
which the methods mentioned above [2, 3] are inappli-
cable. In these cases, the solubility limit of the impurity
has to be taken into account in mathematical simulation
of impurity diffusion. In this paper, an attempt to
describe the diffusion of a low-soluble impurity in a
material is made.

Let the diffusion of an impurity into a solid matrix
be controlled by the solubility limit c*. We assume, as
usual, that the process is one-dimensional case and con-
sider the linear problem of impurity diffusion into a
semi-infinite sample, neglecting the dependence of the
diffusion coefficient on the diffusant concentration (D =
const). In differential form, the problem is stated as [1]

(1)
∂
∂t
-----c x t,( ) D

∂2

∂x2
--------c x t,( ) δ x( ) f t( ), x 0, t 0;≥ ≥+=

c x t, 0=( ) 0, x 0,≥=
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where c(x, t) is the impurity concentration at a distance
x from the boundary of the matrix at a time t (the coor-
dinate of the boundary is x = 0), f(t) is the impurity
source strength on the surface x = 0 of the matrix (i.e., the
amount of the impurity entering the matrix per unit area
per unit time), and δ(x) is the Dirac delta function.

The analytical expression for the concentration profile
c(x, t) is given by the well-known general solution of (1)

(2)

We assume that (i) the diffusant source (layer) is so
thin that the time it takes for any impurity atom from
the source to reach the surface is negligibly small com-
pared with the duration of the diffusion experiment,
(ii) the source–matrix interface is perfectly permeable,
and (iii) the equilibrium number of impurity atoms that
can diffuse from the source into the matrix (i.e., the
number of activated atoms) is proportional to the total
number of atoms in the source by a time t.

Consider the case when the source capacity Q (the
number of atoms in the source) is much greater than the
number of atoms entering the sample during diffusion
annealing; i.e., Q(t) = const. Such a situation is com-
mon, e.g., for diffusion from the gas phase. In the case
of diffusion from a solid, the source may be considered
as having an infinite capacitance only if the solubility
limit of a diffusant is very low (the diffusion of yttrium
into beryllium is an example). Our early experiments
[5] showed that the overwhelming majority of yttrium
atoms (95%) did not pass into the solid matrix upon the
diffusion annealing of the beryllium sample covered by
a layer of the 90Y isotope (the experiment lasted 67.5 h
at 1220°C). This result is explained by the low solubil-
ity limit of yttrium in beryllium [4].

In the approximation Q(t) = const, the expression
for the source strength can be represented in the form

(3)

c x t,( ) 1

πD
------------ f t( )

t τ–
-------------- x2

4D t τ–( )
-----------------------–exp τ ,d

0

t

∫=

x 0, t 0.≥ ≥

f t( ) αQ0η t( ),=
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where α = 1/θ, θ is the characteristic dissociation (acti-
vation) time of diffusant atoms in the source [3], Q0 is
the total number of diffusant atoms in the source layer
per unit surface area of the sample,

(4)
is the dimensionless parameter taking into account the
fraction of “vacant sites” for impurity atoms in the sur-
face layer of the sample, c(0, t) is the actual concentra-
tion of atoms dissolved in the surface layer of the sam-
ple by a time t, and c* is the solubility limit of the dif-
fusant in the matrix.

Then, having determined c(0, t) from general solu-
tion (2) at x = 0 and using Eqs. (3) and (4), we find an
equation for the function f(t):

(5)

which is the linear integral Volterra equation of the sec-
ond kind with the kernel in the form of convolution [1].

A solution to Eq. (5) can be found by applying the
Laplace transformation:

(6)

where ξ = αQ0/c*  is a parameter of dimension

[t−1/2] and erfc(ξ ) is the probability integral.
Substituting f(t) in the form of (6) into (2) at x = 0,

one finds the time dependence of the impurity concen-
tration in the “zero” layer, i.e., at the boundary x = 0:

(7)
This dependence is shown in Fig. 1. From expres-

sion (7), it follows that, at the early stages of the diffu-
sion process, when the impurity present in subsurface
layers of the matrix as yet does not prevent other impu-
rity atoms from penetrating into the matrix (ξ2t ! 1),
the function c(0, t) is representable in the form

(8)

η t( ) 1 c 0 t,( )/c*–=

f t( ) αQ0 1
1

πDc*
------------------ f t( )

t τ–
-------------- τd

0

t

∫– ,=

f t( ) αQ0 ξ2t( )erfc ξ t( ),exp=

D

t

c 0 t,( ) c* 1 ξ2t( )erfc ξ t( )exp–( ).=

c 0 t,( ) αQ0
2t
πD
-------.≈

c(0, t)/c*

42
ξ2t, arb. units
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Fig. 1. Diffusant concentration as a function of time in the
zero layer.
Dependence (8) is typical of the case when a steady
source of strength αQ0 (an infinite-capacity source)
acts on the matrix surface.

With time, the effect of the solubility limit shows up,
which appears as though the impurity source was
nearly exhausted.

Therefore, the expansion of the function erfc(ξ )
at large times (ξ2t @ 1) results in

(9)

i.e., the impurity concentration in the subsurface layers
of the matrix tends to the limiting value c*.

An expression for the concentration profile c(x, t) is
obtained by substituting (6) into general solution (2) of
the diffusion problem:

(10)

where Φ(z) = erfc(z)exp(z2) and z = x/(2 ).
Expression (10) involves the functions Φ(z) taken at

different values of the argument z. This function
decreases monotonically at z ≥ 0: Φ(0) = 1 and Φ(z 
∞) = 0.

Under the constraint t @ max{ξ–2, x/(2 ξ)},
expression (10) simplifies to

(11)

and takes the form of the concentration profile for the
case when the impurity concentration at the surface is
held constant: c(0, t) = c*.

Note that, in diffusion experiments with radioactive
isotopes, one determines an impurity-concentration-
related quantity in solid matrices instead of the impu-
rity concentration itself. This quantity is the integral
activity N(x, t) of the sample, which is related to the
concentration c(x, t) as follows:

(12)

where µ is the linear coefficient of radioactive radiation
absorption (cm–1), A is a constant relating the activity of
the sample with the diffusant concentration
(counts/(cm2 s)), L is the length of the sample (cm), and
x' is the variable of integration (cm).

In experiments, the impurity diffusion depth (Dt)1/2

is usually substantially shorter than the length of the
sample: (Dt)1/2/L ! 1. Then, the upper limit of integra-
tion in (12) may be taken at infinity:

(13)

t

c 0 t,( ) c* 1 1

πξ2t
--------------– 

  ;≈

c x t,( ) = c*erfc z( ) 1 Φ z ξ t+( )
Φ z( )

--------------------------– ,  x 0, t 0,>≥

Dt

D

c x t,( ) c*erfc z( ), x 0, t 0>≥≈

N x t,( ) A c x' t,( ) µ x' x–( )–[ ]exp x',d

x

L

∫=

N x t,( ) A c x' t,( ) µ x' x–( )–[ ]exp x'.d

x

∞

∫=
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If the absorption of isotope radiation in the sample
is neglected, expression (13) greatly simplifies:

(14)

The case of low absorption of isotope radiation is
widely met in practice. In particular, the absorption of
90Y radioactive radiation by a 300-µm-thick beryllium
layer may be neglected.

If the impurity concentration in the matrix is
described by (10), expression (14) for the total activity
takes the form

(15)

N x t,( ) A c x' t,( ) x'.d

x

∞

∫=

N x t,( ) A
2c* Dt

π
-------------------- z2–( ) 1 πzΦ z( )–[ ] -





exp=

+
π

2ξ t
------------ Φ z ξ t+( ) Φ z( )–[ ]





,
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Fig. 2. Integral activity profile for yttrium diffusion in beryl-
lium (1200°C, 67.5 h).
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where Φ(z) = exp(z2)erfc(z).

Let us apply result (15) to process experimental data
for 90Y diffusion in Be. Figure 2 shows the experimen-
tal distribution of the integral activity of 90Y in the
beryllium sample after diffusion annealing at 1220°C
(67.5 h); Fig. 3, the distribution of the integral activity
in the beryllium sample with 0.05% yttrium after diffu-
sion annealing at 1150°C (36 h). The simulation curves
corresponding to Eq. (15) are also shown in both fig-
ures. The deviations of the data points for the activity
from the curves do not exceed the measurement error
(in Fig. 3, the measurement error is within the size of
the data points). Hence, the simulation curves give a
good fit to the experimental results.

The diffusion coefficients determined from the
above experimental curves are listed in the table.

For comparison, we also calculated the diffusion
coefficients for two limiting cases that may occur at the
interface between an impurity source and a sample if
the impurity solubility is finite and the source is inex-
haustible: the steady diffusion flux condition (short-

N
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Fig. 3. Integral activity profile for yttrium diffusion in the
beryllium–0.05% Y alloy (1150°C, 36 h).
Diffusion coefficients for yttrium in beryllium

Material Temperature, °C Model used to process 
experimental data D, cm2/s σ2 × 102

Beryllium–0.05% 
yttrium

1150 Constant concentration (4.7 ± 0.4) × 10–11 5.53

Equation (15) (6.7 ± 0.4) × 10–11 5.51

Steady flux (8.0 ± 0.5) × 10–11 7.14

Work [5] (3.8 ± 0.4) × 10–11 12.6

Beryllium 1220 Constant concentration (2.1 ± 0.2) × 10–9 1.76

Equation (15) (2.3 ± 0.2) × 10–9 1.73

Steady flux (3.0 ± 0.2) × 10–9 2.09

Work [5] (2.8 ± 0.3) × 10–9 3.29
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term diffusion annealing, see (8)) and the constant con-
centration condition (long-term annealing, see (9)).

The table also lists the minimum standard devia-
tions σ2 of the data points for the total activity from the
simulation curves corresponding to different models of
the process.

It follows from the table that formula (15) provides
the most accurate approximation.

Using Eq. (15), one can determine the degree of sat-
uration of a sample with an impurity in a particular
experiment. As applied to our experiment, the standard
deviations (the last column in the table) calculated for
various models imply that yttrium diffusion in both
samples resembles one of the limiting cases, namely,
the case of constant concentration. Hence, the surface
layer is close to saturation.
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Abstract—An analytical expression for the profile of a finite-amplitude wave on the free charged surface of a
deep low-viscosity conducting liquid is derived in an approximation quadratic in wave amplitude-to-wave-
length ratio. It is shown that viscosity causes the wave amplitude to decay with time and makes the wave profile
asymmetric at surface charge densities subcritical in terms of Tonks–Frenkel instability. At supercritical values
of the surface charge density, taking account of viscosity decreases the growth rate of emissive protrusions on
the unstable free surface, slightly broadens them for short waves, and narrows for long ones. Analytical expres-
sions for the wave frequencies, damping rates, and instability growth rates with regard to viscosity are found.
© 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Studies of nonlinear periodic capillary–gravitational
waves traveling on the free surface of a liquid date back
to the end of the 19th century (see, for example, [1]).
Throughout the 20th century, this problem was solved
in only the ideal liquid approximation [2–7]. The few
attempts to take into account viscosity were not quite
correct (see, e.g., [8, 9]). A rigorous solution to the
problem of finite-amplitude waves on the free surface
of a deep finite-viscosity liquid has been found only
recently [10–13]. However, the solution is so awkward
that it is impossible to write explicit expressions for the
wave profile and liquid velocity field. Accordingly,
numerical methods are invoked to analyze results
obtained. Therefore, the finding of asymptotic analyti-
cal expressions for the solutions [10–13] in the lower
viscosity limit seems to be of importance. Generaliza-
tion of the problem of nonlinear waves in a viscous liq-
uid for the case of a conducting liquid with the uni-
formly charged free surface is also of great scientific
and applied interest. The aforesaid is the aim of this
article.

MATHEMATICAL STATEMENT 
OF THE PROBLEM

As in [10–13], we assume that an incompressible
Newtonian liquid with a kinematic viscosity ν, density
ρ, and surface tension coefficient γ occupies the half-
space z ≤ 0 in the Cartesian coordinate system Oxyz
with the z axis directed upward in the gravitational field
(g || –ez). The environment is a vacuum. The liquid is
assumed to be an ideal conductor uniformly charged
over its free surface. Above the free surface distorted by
wave flow, the surface charge induces an electric field
1063-7842/04/4903- $26.00 © 20287
that has a uniform strength E0ez in the limit z  ∞.
Our aim is to study the evolution of the initial deforma-
tion of the free surface in time.

Let u = u(x, z, t) and v  = v(x, z, t) be the horizontal
and vertical components of the velocity field of wave
flow in the liquid that, for simplicity, are assumed to be
y independent, and ex and ez be unit vectors along the
Ox and Oz axes, respectively. Then, the deviation ξ =
ξ(x, t) of the free liquid surface from its equilibrium (in
the gravity field) shape z = 0 due to the virtual initial
deformation, the velocity field U = uex + v ez, and the
electric potential Φ above the liquid are given by

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

Here t is time, p is the pressure in the liquid; ∂t and ∂x

are the partial derivatives with respect to time and x
coordinate, respectively; t and n are the unit vectors
tangential and normal to the liquid surface, respec-

z ξ : ∆Φ> 0;=

z ξ : ∂tU curlU U×+<

=  –grad
1
ρ
--- p

U2

2
------ gz+ + 

  ν∆U;+

divU 0;=

z ξ : ∂tξ u∂xξ+ v ;= =

p 2ρνn n —⋅( )U( )⋅–
1

8π
------ —Φ( )2 γdiv n( );= =

t n —⋅( )U( )⋅ n t—( )U( )⋅+ 0;=

Φ 0;=

z +∞: —Φ E0ez;–

z ∞: U 0.–
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tively; and ∆ is the Laplacian. The derivation of the
related expressions and also the expression for div(n)
can be found elsewhere [13].

To close the mathematical statement of the problem,
we must supplement relationships (1)–(9) by initial
conditions for the deviation of the surface from its equi-
librium shape and for the distribution of the velocity
field. As is commonly accepted in the theory of finite-
amplitude periodic waves [1–7], the initial conditions
will be defined during solving of the problem so as to
obtain such types of free surface oscillations that are
simple to treat analytically and to discover the basic
nonlinearity-associated properties of the wave.

Let the maximal height of the virtual perturbation of
the wave with a length λ over the equilibrium surface
z = 0 at the zero time be A. In most of the earlier calcu-
lations for finite amplitude waves on the free surface of
an ideal liquid (see, for example, [1–13]), the initial
conditions were imposed on the amplitude of the non-
linear-wave component that is linear in the small
parameter. In this case, the maximal deviation A of the
resultant nonlinear wave from the plane surface z = 0 at
the initial time remains uncertain and is calculated after
the entire problem has been solved. At the same time,
the measurable physical quantity is A, so it is natural to
use this parameter in the initial conditions. Moreover, if
A is defined a priori, one may avoid the situation [5, 6,
10–13] where the amplitude coefficient of a nonlinear
correction to the final solution (this coefficient has res-
onant form under certain conditions) causes the ampli-
tude of the nonlinear wave to grow indefinitely. This is
inconsistent with the initial condition and breaks the
asymptotics of the solution found.

SOLUTION OF THE PROBLEM

Let the initial perturbation ξ(x, t) be periodic in x
and form a wavy pattern with a wavelength λ and
amplitude A. As a small parameter, we choose ε = kA,
where k = 2π/λ is the wavenumber.

In an approximation quadratic in ε, a solution to
problem (1)–(9) is sought in the form of expansions:

Substituting these relations into (1)–(3) and apply-
ing the boundary conditions to the undisturbed liquid
surface z = 0, one splits initial problem (1)–(9) into sub-

U U1 U2 O ε3( ), U1 O ε( ), U2 O ε2( );∼ ∼+ +=

p p0 p1 p2 O ε3( ), p0 O 1( ),∼+ + +=

p1 O ε( ), p2 O ε2( );∼ ∼

Φ Φ0 Φ1 Φ2 O ε3( ), Φ0 O 1( );∼+ + +=

Φ1 O ε( ), Φ2 O ε2( );∼ ∼

ξ ξ 1 ξ2 O ε3( ), ξ1 O ε( ), ξ2∼+ + O ε2( ).= =
problems of the zeroth, first, and second orders of
smallness (for details, [13]).

In the zeroth approximation in ε, the problem is
reduced to finding the hydrostatic pressure distribution
in the liquid:

As in [13], we will use the following notation for
linear differential operators:

and for column matrices with their components:

Operator @ acts on objects of Yj type according to
the following rule: first, the matrix operations are ful-
filled; then, all differentiations and arithmetic opera-
tions are done; and, finally, it is assumed that z = 0.
Operator @ transforms a column vector of four func-
tions dependent on the variables x, z, and t into a col-
umn of four z-independent functions.

PROBLEM OF THE FIRST ORDER 
OF SMALLNESS

In the notation adopted, the complete mathematical
formulation of the problem for the quantities of the first
order of smallness in ε has the form

(10)

(11)

u0 = 0; v 0 = 0; p0 = 
E0

2

8π
------– ρgz; Φ0–  = E0z.–

+

≡

∂t ν ∂xx ∂zz+( )– 0 1/ρ( )∂x 0

0 ∂t ν ∂xx ∂zz+( )– 1/ρ( )∂z 0

∂x ∂z 0 0

0 0 0 ∂xx ∂zz+

;

5

∂t

–ρg γ∂xx+

0

E0–

;≡

@

0 1– 0 0

0 2ρν∂z– 1 E0/ 4π( )∂z–

∂z ∂x 0 0

0 0 0 1 z 0=

≡

Ô

0

0

0

0

; Ŷ j

u j

v j

p j

Φ j

;

Y j 1[ ] u j;≡
Y j 2[ ] v j;≡
Y j 3[ ] p j;≡
Y j 4[ ] Φ j.≡

≡ ≡

+Ŷ1 Ô;=

@Ŷ1 5ξ1+ Ô;=
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(12)

(13)

(14)

For simplicity, the initial deformation is approxi-
mated by a cosine curve in a first approximation. The

functions  ≡ (x, z) and  ≡ (x, z) are chosen in
the course of the solution. These functions must pro-
vide a solution that is easy to treat analytically. Eventu-
ally, the solution to the first-order problem takes the
well-known form [14]

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

In these relationships, the parameter q is calculated
as the root of dispersion relation (20) that satisfies (21).
These relationships dictate the selection of the root cor-
responding to a wave flow with a velocity tending to
zero at z  –∞ (see condition (13)). The root chosen
is assigned a wave travelling to the right. Conditions
(21) provide the uniqueness of the complex frequency S.
The coefficient η specifies the wave amplitude compo-
nent that is linear in ε.

Relationships (15)–(23) represent the solution to the
first-order problem if one takes u1 and v 1 ((16) and (17),

respectively) at t = 0 as  ≡ (x, z) and  ≡ (x,
z) entering in (14).

Since the first-order problem is linear, any superpo-
sition of solutions of form (15)–(19) with different k
will be a solution to the initial problem. In the linear
approximation, the waves corresponding to these solu-
tions propagate without interaction between each other.

z +∞: Φ1 Y1 4[ ] 0;≡

z ∞– : u1 Y1 1[ ] 0; v 1 Y1 2[ ] 0;≡ ≡

t 0: ξ1 η kx( );cos= =

z 0: Y1 1[ ] t 0=≤ u1
0; Y1 2[ ] t 0= v 1

0.= =

u1
0 u1

0 v 1
0 v 1

0

ξ1 η θ( ) T( );expcos=

u1 = η S( 2 kz( )exp 2νk q( 2 q2z( )cos q1 q2z( )sin+–( )
× q1z( )) θ( ) D kz( )exp 2νk q1 q2z( )cos(–(+cosexp

– q2 q2z( ) ) q1z( ) ) θ( )sin ) T( );expexpsin

v 1 = η D kz( )exp 2νk2 q2z( ) q1z( )expcos–( ) θ( )cos(

– S2 kz( )exp 2νk2 q2z( ) q1z( )expsin–( ) θ( )) T( );expsin

p1 ηρk 1– –S1D S2
2+( ) θ( )cos(=

+ 2S2 S1 νk2+( ) θ( ) ) kz( ) T( );expexpsin

Φ1 ηE0 θ( ) T( );expcos=

ν2 k2 q2+( )2
k g

k2γ
ρ

--------
k
ρ
---

E0
2

4π
------–+ 

 + 4ν2k3q;=

q1 Req 0; q2≥ Im q( ) 0;≥= =

S ν q2 k2–( ); S1 ReS; S2 ImS;= = =

θ S2t kx; T– S1t; D S1 2νk2.+= = =

u1
0 u1

0 v 1
0 v 1

0
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Any solution to the linear problem is obtained from
solutions (15)–(19) by superposition, which can be
chosen in such a way as to meet any reasonable initial
conditions.

SECOND-ORDER PROBLEM
Using the same approach to finding the initial con-

ditions as in the first-order problem, we will not write
their specific form when formulating the second-order
problem:

(24)

(25)

(26)

(27)

Here,  –  are three-component columns with
complex coefficients that are independent of coordi-
nates and time:

+Ŷ2 η2Re
Â1

0
2q1z( )exp

Â2

0
2kz( )exp+



=

+
Â3

0
k q+( )z( )exp 

 2T( )exp

+
Â4

0
k q+( )z( ) 2 T iθ+( )( )expexp 

 ;

@Ŷ2 5ξ2+ η2Re
Â5

1
2
---kE0

2T( )exp





=

+
Â6

1
2
---kE0

2 T iθ+( )( )exp
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Relationships (24)–(27) are equations for the com-

plex components entering into the column . Only the
real part of these components is physically meaningful.

With the approach described in [13], one can find a
second-order nonlinear correction to the wave profile:

(28)

where the abbreviation LWSs stands for linear wave
solutions (the same as in the linear theory).

These linear wave solutions are solutions to the
homogeneous problem corresponding to inhomoge-
neous problem (24)–(27) considered. Accurate to nota-
tion, this homogeneous problem coincides with the
first-order problem. As LWSs, one may take any super-
position of travelling waves ηcos(Σ2t ± κx + ϕ)exp(Σ1t)
with an amplitude η and wavenumber κ such that κη  =
O(ε2). The complex frequency Σ = Σ1 + iΣ2 and the
wavenumber κ of these waves are related by the same
dispersion relation (20) as the quantities S and k appear-
ing in the expressions for the variables θ = S2t – kx and
T = S1t. When propagating, LWS-related waves do not
interact with each other and with the solution to the
first-order problem. Therein lies the main distinction of
the LWSs from the first part of expression (28) for ξ2,
which involves the amplitude coefficients ζ1 and ζ2
depending on k, ρ, γ, g, ν, and W, that is, on the physical
parameters entering in the expressions for the fre-
quency and wavenumber in the first-order problem. As
these physical parameters (that is, the properties of the
first-order solution) vary, so do the amplitude coeffi-
cients ζ1 and ξ2. In other words, this nonlinear part of
the second-order solution will interact with the solution
to the problem linear in ε. While the solution to the first-
order problem was chosen for simplicity of analysis, in
the nonlinear problem the part of its solution that
describes interaction between wave flows is taken into
consideration and LWSs are omitted in subsequent
analysis.

i2 = 1;  Ω1–  = k D 2νkq1–( );  Ω2 = k S2 2νkq2–( );

N0
1
2
---ρ S1

2 S2
2– 4νk2S1 4ν2k2 k2 q1

2– q2
2+( )+ +( );=

N1 N0
1
2
---k2 E0

2

4π
------;+=

N2 ρ S2D 4ν2k2q1q2–( );=

M0 k kS2 q2 3k2 q2
2

3q1
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M1 k 3kS2 q2 5k2 q2
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M2 k 2kS1 ν 6k3 5k2q1– 3q2
2q1 q1

3–+( )+( ).=

Ŷ2

ξ2 = η2 ζ1 2θ( )cos ζ2 2θ( )sin–( ) 2T( )exp LWSs,+
PROFILE OF THE NONLINEAR WAVE

Summing the solutions to the first- and second-order
problems and normalizing the amplitude η in such a
way that the maximum of the initial surface deviation
equals A, we obtain an expression for the profile of a
nonlinear periodic capillary–gravitational wave in an
approximation quadratic in ε:

(29)

where η is chosen such that

(30)

This relation is the normalization condition for the
amplitude.

The complete analytical expressions for ζ1 and ζ2
are not given here, because they are extremely awk-
ward. Below, we derive asymptotic expressions for ζ1
and ζ2 in the low viscosity approximation. Note only
that ζ1 and ζ2 depend on the wavenumber k, as well as
on ρ, ν, γ, g, and the surface charge density. The last-
named parameter determines the value of the Tonks–
Frenkel dimensionless parameter 

which characterizes the stability of the charged liquid
surface against its self-charge [15]. From the linear the-
ory, it is well known that the condition

(31)

where α = (γ/(ρg))1/2 is the capillary constant, provides,
at a given αk, the positiveness of the parameter S1 ≡
ReS entering into the solutions to the first- and second-
order problems. In this case, the charged free surface of
the liquid becomes unstable [15]. Then, S1 takes on the
meaning of the wave amplitude growth rate in the first
approximation in ε (the term linear in η in (29)) and
2S1, the growth rate of the term nonlinear in amplitude
η. If the value of W is not large enough to meet condi-
tion (30), S1 < 0 and characterizes the exponential
damping rate of the term linear in amplitude η in (29),
and 2S1 characterizes the damping rate of the nonlinear
term. Later on, the values of W that meet and do not
meet condition (31) will be called supercritical and sub-
critical, respectively.

The constant η is chosen so that normalization con-
dition (30) is valid at zero time. This condition means
that the interval [0, 2π] has a value of θ such that ξ(θ,
0) = A and that the function f(θ) = ξ(θ, 0) reaches a max-
imum at this θ. Since expression (29) implies a finite
number of extrema of f(θ), including a maximum, nor-

ξ x t,( ) ξ θ t,( ) η θ( )cos= =

+ η2 ζ1 2θ( )cos ζ2 2θ( )sin–[ ] 2T( ),exp

A maxξ θ 0,( ) at θ 0 2π,[ ] .∈=

W
E0

2

4π ρgγ
---------------------,≡

W αk
1

αk
------,+>
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malization can be accomplished using the set of equa-
tions

for θ and η. The first equation of this set is the condition
under which ξ(θ, 0) equals A at a certain θ; the second,
the necessary condition for the existence of an extre-
mum of the function f(θ). Among a finite number of
pairs of solutions (η, θ) to this set, there necessarily
exists that which maximizes ξ(θ, 0). The value of η
from this pair should be taken.

It is important to note that use of the wave amplitude
A (containing the components of the first and second
orders in ε) as the initial parameter discriminates the
problem definition in this work from previous papers
[1–13], where the parameter denoted here as η was
taken to be input.

REPRESENTATION OF THE COMPLEX 
FREQUENCY IN THE FORM OF A SERIES 

IN POWERS OF DIMENSIONLESS VISCOSITY

Consider the quantities

(32)

The values of ω0 and r0 are real at subcritical and
supercritical W, respectively. Physically, ω0 is the fre-
quency of the wave flow on the surface of an ideal liq-
uid, while r0 is the growth rate of instability against the
excess surface charge for an ideal liquid at supercritical W.

Let us divide both sides of dispersion relation (20)

by  and  when W is subcritical and supercritical,
respectively:

(33)

(34)

Hereafter, we use the designation

(35)

Along with numerical coefficients, (33) contains
only two dimensionless variables: the dimensionless
frequency β and the dimensionless viscosity χ.

η θ( )cos η2 ζ1 2θ( )cos ζ2 2θ( )sin–( )+ A=
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
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β
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Q
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For definiteness, consider dispersion relation (33) at
subcritical W:

(36)

Let χ ! 1. We will expand the root of dispersion
relation (36) that tends to β = i at χ  0 in powers of
χ. To do this, we assume that

The square root of the right-hand side of (36) has
two analytical branches

(37)

which are series in integer powers of the small parame-
ter (χ + σ) (when calculating the square root

 we, for definiteness, select the branch
where the root equals unity at χ + σ = 0). Selecting the

branch of the function  with the real part posi-
tive at (χ + σ) much smaller than unity (including zero),
we obtain the dispersion relation in the form

Represent σ as the sum of two terms: σ = σ1 + σ2,
where σ2 ~ o(χ) and σ1 remains undefined. Upon sub-
stituting σ = σ1 + σ2 into Eq. (36), its left-hand side
takes the asymptotic form 2i(σ1 + 2χ) + o(χ), while the
right-hand one is on the order of χ3/2. Eventually, in the
linear approximation in χ, we obtain σ1 = –2χ and

(38)

Upon substituting (37) and (38) into (36), we arrive
at the relationship

(39)

For the right-hand side of (39) subject to (38), we
have

Thus, two leading terms, which are proportional to
χ3/2 and χ5/2, have been separated out. This means that
the leading terms in the asymptotic representation of
the left-hand side of (39) must be of the same orders.
Eventually, two first principal orders separate out in the
asymptotic representation of σ2:

Substituting σ2 with the separated leading terms into
(39) again, we find that the least possible order of χ in
the third term of expansion (39) for the square root is
three (O(χ3)). Hence, terms of the same order must be

β 2χ+( )2
1+  = 4χ3/2 β χ+ ; Re β χ+( ) = 0.

β i σ; σ
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lim+ 0.= =

β χ+  = i 1 i χ σ+( )–  = 
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2
---------- 1 i χ σ+( )– ,±
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i σ 2χ+ +( )2 1+ 2 2 i 1+( )χ3/2 1 i χ σ+( )+ .=

β i 2χ– σ2; σ2+ o χ( ).= =
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present in the asymptotic representation of the left-
hand side of (39):

The procedure of successive isolation of the leading
terms in the representation for σ2 can be continued by
induction.

In the foregoing, we said nothing about the values of
β3 and β5, through which the coefficients multiplying
higher order terms are expressed (these coefficients
may vanish, of which β6 is an example). In the proce-
dure of isolating principal orders in the representation
for σ2, terms of each succeeding order are isolated by
powering or multiplying orders isolated at the previous
step. The process starts from χ3/2 and χ5/2. Therefore,
the orders of all subsequent terms in the expansion must
be expressed by integer powers of χ1/2. This means that,
without loss of generality, we may represent σ2 in the
form

(40)

where some βn may be zero.

The root of (36) that turns into imaginary unity at
χ = 0 should be sought in the form of the series

(41)

Substituting (41) into (36), expanding both sides of
(36) into a series in integer powers of χ1/2, and equating
the coefficients multiplying the same powers of this
parameter yields a set of equations for βn.

To find the coefficients βn in expansions (40) and
(41), we will apply the theorem on the differentiation of
a composite function to β = β(δ), where δ = χ1/2. This
function is defined in implicit form by (36). Proceeding
in this way, we can find derivatives dnβ/dδn of any order
n, which will be used to express the coefficients of Tay-
lor series (41).

σ2 β3χ
3/2 β5χ

5/2 β6χ
3 o χ3( ).+ + +=

σ2 βnχ
n/2,

n 3=

∞

∑=

β i βnχ
n/2.

n 2=

N

∑+=
Similar reasoning applies to the dispersion relation
at supercritical values of W. Eventually, for the complex
frequency S, we obtain the expression

(42)

where

(43)

The braces are used here in the sense of (35). When
calculating βn by formula (43), one should take into
account the following. First, in the successive calcula-
tion of total derivatives with respect to δ, the derivative
β' = β'(δ) resulting from the differentiation of the com-
posite function must be replaced by the expression

Second, the expression obtained after calculating
the final derivative is a fractional rational function of β,

δ, and . To calculate this expression at β = i and

δ = 0, one should replace  by (i + 1)/ . In this case,
the coefficient βn calculated corresponds to the root of

Eq. (36) that meets the condition Re( ) > 0.
When constructing series (41), we represented the

square root of the right-hand side of (37) in the form of
a series. This series converges inside the domain |χ +
σ| < 1.

Instead of analyzing the convergence of series (41)
in the general case, we studied the possibility of repre-
senting the root of Eq. (33) by the end part of series
(42). Below are given approximate expressions for the
frequency S2 and parameter r = S1, which characterizes
the damping rate (at r < 0) and growth rate (at r > 0) of
instability. These expressions are obtained from (42) by
rejecting terms on the order of O(χ5) and higher:
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Numerical calculations show that the fractional
error in formula (44) at χ = 0.1 reaches 10–6 and 0.002
if we take into account, respectively, all six terms and
the terms of orders not higher than χ3/2. For formula
(45), the fractional error is 10–5 with all terms taken into
account. The error amounts to 0.015 for the damping
rate and 0.004 for the growth rate with the terms of
orders higher than χ3/2 rejected. Therefore, at χ ≤ 0.1,
the order χ3/2 in (44) and (45) provides the accuracy suf-
ficient for practical calculations.

The terms in formulas (44) and (45) are significant
with χ close to 0.5. For χ = 0.5, the fractional error in
formula (44) is 0.03. In formula (45), the error is 0.1 for
the damping rate and 0.02 for the growth rate. The error
grows noticeably with increasing χ.

APPROXIMATE FORMULA 
FOR THE NONLINEAR WAVE PROFILE 

IN THE LOW VISCOSITY LIMIT

From exact solution (29) for the amplitude parame-
ters ζ1 and ζ2, it is easy to derive asymptotic formulas
in the low viscosity limit:

(46)

(47)

Here, the braces have the same sense as in the previous
section. At W = 0 and ν = 0, we come to the same solu-
tion as in [5, 6] if the condition imposed on η is taken
as the initial condition. From (46) and (47), it is seen
that the amplitude factors ζ1 and ζ2 tend to infinity at

αk  1/ . Because of this, the value k = k∗  = 1/
was considered resonant in [5, 6].

As was already noted, the statement of the problem
in this work implies that the amplitude η is normalized.
In other words, the value of η is chosen in such a way
that solution (29) meets initial condition (30) at zero
time. In the ideal liquid approximation (ν = 0), the
shape of the nonlinear wave at zero time has the form
ξ = ηcos(kx) + η2ζcos(2kx). Adding up these solutions
at the origin of coordinates and meeting normalization
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condition (30), one easily derives a quadratic equation
for η with the positive solutions

(48)

Such an approach assures that the amplitude of the
wave on the surface of an ideal liquid,

will not grow at k  k∗ . As the wavenumber
approaches the resonant value, the amplitude of the
term linear in the small parameter in (29) tends to zero,
while the amplitude of the nonlinear term tends to A.
Although the wave profile height under resonance is
finite, expansion (29) at k = k∗  loses its asymptotic
property: the leading term in (29) becomes infinitesi-
mal compared with the correction quadratic in the small
parameter.

Since ζ may take both positive and negative values,
it is necessary that 4A|ζ| ≤ 1 in order to employ formu-
las (48).

INFLUENCE OF VISCOSITY ON THE FREE 
SURFACE SHAPE

Viscosity influences the evolution of the wave pro-
file in two ways. On the one hand, viscosity appears in
the formula for S1, which describes the damping rate or
growth rate of the wave amplitude (in the first approxi-
mation in ε for the term linear in η in (28) and in the
second approximation for the nonlinear term) depend-
ing on whether W is subcritical or supercritical. Also, it
is easy to see that the ratios S2/ω0 and S1/r0 are functions
of only the dimensionless viscosity χ.

On the other hand, viscosity affects the amplitude
coefficients ζ1 and ζ2, through which the solution to the
second-order problem is expressed.

From asymptotic expressions (46) and (47), it fol-
lows that, at subcritical values of W, the viscosity
affects ζ2 ~ O(ν) to the greatest extent. The constant-
sign conditions for this parameter are as follows:
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Let us recast the solution for ξ in the form

Here, the bracketed term is the profile symmetric about
the vertical line passing through the crest of the wave.
The second term is the profile shifted by ±π/2 (depend-
ing on the sign of ζ2) relative to the first one. The result-
ant profile is asymmetric about the vertical line passing
through the crest of the wave. The skewness is related
to ζ2, which depends on ν; hence, the skewness depends
on viscosity. The direction of asymmetry (along or
counter to the wave flow) is determined by the sign
of ζ2.

At supercritical W, viscosity influences the shape of
the free surface in a quite different manner, as follows
from (46) and (47): an additional term proportional to
viscosity appears in the expression for ζ1. This addition
is positive for long waves, αk < 0.5, and negative for
short waves, αk > 0.5. The value of ζ2 at W ≥ 2 is equal
to zero. This means that, at supercritical W, the wave
profile is symmetric and viscosity increases the contri-
bution of the second-order correction in the expression
for ξ.

ξ η θ( ) S1t( )expcos η2ζ1 2θ( ) 2S1t( )expcos+[ ]=

– η2ζ2 2θ( ) 2S1t( ).expsin

–π π θ

ξ

–0.2

–0.4

a
b
c

–π π θ

ξ

–0.1

–0.2

a

b
c

Fig. 1. Nonlinear wave profiles calculated using expression
(29) at k = 1, ν = 0.03, and A = 0.3 for dimensionless time
t = (a) 0, (b) 10, and (c) 20. The surface charge density W = 0.

Fig. 3. Same as in Fig. 1 at W = 1.7.
Figures 1–3 show the calculation results for the
wave profile evolution at k = 1 and ν = 0.03 (the ordi-
nate and abscissa are dimensionless variables such that
ρ = g = γ = 1). In the absence of the electric charge, the
wave traveling to the right is skewed opposite to the
direction of wave propagation (Fig. 1). Such behavior is
typical of waves for which ζ2 > 0. At other k, ζ2 may be
less than 0. An increase in W up to W = 0.5 eliminates
the asymmetry (Fig. 2). As W increases further, the
leading front of the wave steepens insignificantly,
which can be judged from only the shape of the valleys
(Fig. 3). When the parameter W reaches its critical
value W = 2, the conclusions based on the analysis of
the low-viscosity expressions become invalid, because

the dimensionless viscosity χ = νk2/   ∞ at k = 1
and W = 2. However, calculations using the exact for-
mulas show that the wave profile is symmetric in the
vicinity of W = 2.

Figure 4 demonstrates the initial stage of the evolu-
tion of the free surface profile at supercritical W = 4
(k = 1, ν = 0.1); Fig. 5, the shape of a protrusion on the
free surface for W = 4 (ν = 0 and 0.1) within a certain
time after the beginning of growth. The times and vis-
cosities are selected so as to provide the same final
height of the protrusion. At ν = 0, this height is reached

ω0
2

–π π θ

ξ

–0.1

–0.2

a

b
c

–π π θ

ξ

–0.2
–0.3

a
b
c0.4

Fig. 2. Same as in Fig. 1 at W = 0.5.

Fig. 4. Shape of an emissive protrusion developing from the
initial deformation (see (29)) of the equilibrium flat surface
at k = 1, ν = 0.1, A = 0.3, and W = 4 for dimensionless time
t = (a) 0, (b) 0.1, and (c) 0.2. At larger times, the amplitude
of the protrusion increases rapidly because of a major con-
tribution from the nonlinear correction.
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in t = 0.20; at ν = 0.1, the process lasts longer: t = 0.25.
It is seen that the protrusion on the surface of the vis-
cous liquid is somewhat more flattened and its peak in
the valley is less pronounced. This is because α2k2 > 0.5
and the factor multiplying ν in (46) is negative at
dimensionless value k = 1. For k yielding α2k2 < 0.5,
this factor is positive; that is, ζ1 will be larger than in the
case of an ideal liquid and the emissive protrusion will
slightly narrow.

CONCLUSIONS
The behavior of nonlinear periodic capillary–gravi-

tational waves on the charged free surface of a viscous
conducting liquid is appreciably different from that of
nonlinear waves on the charged surface of an ideal liq-
uid. This distinction is due to surface charge and viscos-
ity. When the surface charge density is subcritical in
terms of free surface stability against excess electric
charge, viscosity causes asymmetry of the wave profile
about the vertical line passing through the crest of the
wave. This asymmetry increases with the viscosity. At
supercritical surface charge densities, the effect of vis-
cosity changes the shape of emissive protrusions on the
free charged surface at the initial stage of instability.
The top of a protrusion developing from a virtual short-

2π θ

ξ

–0.3

–2π

0.4

Fig. 5. Shape of the emissive protrusion developing from
the initial deformation (see (29)) of the equilibrium flat liq-
uid surface at k = 1, A = 0.3, and W = 4. The thick line is
drawn for the viscous liquid: ν = 0.1 and t = 0.25; the thin
line, for the ideal liquid: ν = 0 and t = 0.2.
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wave (long-wave) perturbation turns out to be flatter
(sharper) than the top of a protrusion on the surface of
the ideal liquid. It is noteworthy that the damping rate
of a nonlinear correction to the wave profile is twice as
large as the damping rate of its component linear in a
small parameter.
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Abstract—For a polycrystalline magnetic sandwich, an analytical expression that relates the electron scatter-
ing by grain boundary roughness, the conductivity of ferromagnetic layers, and the grain size is derived for the
case of a transverse charge transfer. The effect of this scattering mechanism on the giant magnetoresistance of
the sandwich is studied with account taken for the dispersity of the ferromagnetic layers and the length of grain-
boundary diffusion of nonmagnetic spacer atoms into the layers. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The discovery (1918) of the giant magnetoresis-
tance (GMR) [1] in the Fe/Cr superlattice has provoked
considerable interest in multilayer ferromagnet–non-
magnetic metal systems. On the one hand, this effect
has given us great insight into the nature of magnetism,
especially into the magnetism of surface and quasi-
two-dimensional systems. On the other hand, it has
stimulated the industrial use of new magnetic storage,
sensor, etc., technologies.

For applications, it is necessary to provide the mag-
netoresistive ratio (ρ – ρs)/ρ of superlattices as high as
possible (ρ is the maximal resistivity of the superlattice
and ρs is the resistivity of the superlattice at saturation).
The highest magnetoresistive ratios are offered by epi-
taxial structures grown along particular crystallo-
graphic directions. However, the complexity of epitax-
ial processes has given impetus to studying the GMR
effect in nonoriented highly disperse polycrystalline
superlattices, which are much easier to fabricate.

In these structures, the GMR effect has a number of
intriguing features due to unique properties of thin
polycrystalline films. For example, the character of
charge transfer in the films affects considerably the
conductivity and, hence, the magnetoresistive ratio of
polycrystalline superlattices. In the film with columnar
grains oriented normally to its surface, charge transfer
both along (parallel transfer) and across (transverse
transfer) the film should be considered. The conductiv-
ity due to parallel transfer naturally depends heavily on
the grain boundary (GB) properties. The effect of GB
scattering on the longitudinal conductivity of the layers
becomes of special importance when the grain size is
comparable to the mean free path of carriers in the bulk
metal. Quantitatively, a decrease in the longitudinal
1063-7842/04/4903- $26.00 © 20296
conductivity with decreasing grain size is described
well in terms of the Mayadas–Shatzkes theory for inter-
nal size effect [2].

The transverse conductivity is affected by GBs only
slightly. However, in the immediate vicinity of the
boundary, where the grains are in contact, there always
exist stationary domains with a high concentration of
unoccupied vacancies even at very low temperatures
[3]. Accordingly, in ferromagnetic layers of polycrys-
talline superlattices, these domains are heavily
enriched by diffused nonmagnetic metal atoms [4]. In
ferromagnetic transition metals, the electron scattering
by impurity atoms may depend appreciably on the spin
sign. In single-crystal iron, the scattering probabilities
for electrons with opposite spins differ sixfold [1]. As a
result, electrons with a particular spin that fall into the
domains adjacent to the nonmagnetic spacer will be
scattered by GBs much more strongly than in the rest of
the layer. Such spin-dependent electron scattering may
have a significant effect both on the conductivity of the
layers and on the magnetoresistive ratio of the poly-
crystalline multilayer structure even in the case of the
CPP (Current Perpendicular to the Plane) geometry
(charge carries move perpendicularly to the surface of
the layers).

It is logical to assume that the effect associated with
this scattering mechanism will depend on the grain size
much as the GMR of a superlattice depends on the fer-
romagnetic layer thickness. Moreover, if diffusion is
localized within GB regions (which is possible at very
low temperatures and extremely short diffusion anneal-
ings [4]) and so changes the magnetic parameters insig-
nificantly [5], the dispersity of the ferromagnetic layers
and the length of GB diffusion have a decisive effect on
the GMR in noncrystalline superlattices.
004 MAIK “Nauka/Interperiodica”
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In this work, we estimate the influence of spin-
dependent electron scattering by nonmagnetic spacer
atoms diffused into the ferromagnetic layers on the
magnetoresistance for a polycrystalline sandwich with
the CPP geometry. The parameters of the problem are
the mean grain size (morphology parameter) and the
length of GB diffusion.

CPP CONDUCTIVITY 
OF THE FERROMAGNETIC LAYER 

VERSUS SPIN-DEPENDENT SCATTERING
OF ELECTRONS BY GRAIN-BOUNDARY 

ROUGHNESS AND MORPHOLOGY PARAMETER

The magnetic sandwich configuration is shown in
Fig. 1. We assume for simplicity that (i) grains in the
ferromagnetic layer are rectangular columns of the
square section of side d (mean grain size) running nor-
mally to its surface; (ii) the magnetizations of the col-
umns are aligned with one another; and (iii) the transi-
tion (boundary) region between two grains is a contin-
uous domain of the nonmagnetic metal with a thickness
equal to the GB diffusion length δ, so that the electrons
in the boundary region have the same energy (velocity)
as in the nonmagnetic spacer of the sandwich.

Consider a series of the columns in the ferromag-
netic layer and direct the coordinate axis as shown in
Fig. 2. Then, within the GB diffusion length h, a section
made by cutting the layer by the plane x0z can be con-
sidered as a structure periodic along the z axis, i.e., as a
kind of one-dimensional magnetic superlattice with a
ferromagnetic configuration period equal to two col-
umns (Fig. 3). The thickness of the “ferromagnetic
layer” of such a “superlattice” equals the grain size d;
that of the nonmagnetic spacer, to the GB diffusion
length δ.

Certainly, the above assumptions greatly simplify
the actual pattern. However, they allow us to consider
on a qualitative basis how spin-dependent electron scat-
tering by the GB roughness (i.e., by nonmagnetic metal
atoms diffused) in the ferromagnetic layers of poly-
crystalline superlattices affects the CPP conductivity of
these layers in view of their morphology. To this end,
we invoke theoretical models used to estimate the effect
of various factors, such as layer thickness, on the mag-
netoresistance of multilayer crystalline structures.

In this work, the effect of spin-dependent electron
scattering by GB roughness in a ferromagnetic layer on
its CPP conductivity with regard for the morphology
parameter d was studied in terms of the model put for-
ward in [6, 7] (which is a generalization of the Fuchs–
Sondheimer theory of size effect in a single metallic
layer [8]) and its associated technique of deriving an
expression for the admittance [9]. This model was
selected, because, first, it is intended for studying the
magnetoresistance of crystalline superlattices to cur-
rent passing parallel to the plane of the layers and, sec-
ond, it includes spin-dependent coefficients that
TECHNICAL PHYSICS      Vol. 49      No. 3      2004
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Fig. 1. Magnetic sandwich: L, the length of the sample
along the x axis; a + h, the thickness of the magnetic layer;
h, the length of GB diffusion of nonmagnetic metal atoms;
and b is the nonmagnetic spacer thickness. The vertical
arrows indicate the direction of the magnetization vector in
the ferromagnetic layers for the antiferromagnetic configu-
ration; the horizontal arrows, the direction of the current in
the case of the CPP geometry.

0

y

x
d δ

h z

Fig. 2. Direction of the coordinate axes in columnar grains
of the ferromagnetic layer. Grain boundaries are hatched.

0

x
d δ

h

z–(2d + δ) –2d –d –(d – δ)

0 2 431

Jx Jx Jx Jx

Fig. 3. Ferromagnetic configuration of a one-dimensional
magnetic superlattice. Nonmagnetic spacers are hatched.
The horizontal arrows indicate the magnetization direction
in the ferromagnetic layers; the vertical arrows, the direc-
tion of the longitudinal current Jx in each of these layers.
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account for specular reflection, transmission, and dif-
fuse scattering of conduction electrons by rough inner
interfaces.

Let a uniform electric field of strength E be applied
along the x axis. Then, in each jth layer of the superlat-
tice shown in Fig. 3, there exists a longitudinal current
Jxj(z). This current is the sum of two currents due to
electrons with the spins oriented parallel and antiparal-
lel to the magnetization vector of the ferromagnetic
layer. The expression for Jxj(z) has the form [9]

(1)

Here, e is the charge of an electron, ρj is the density of
states, v j is the magnitude of the electron mean velocity,
W is the electron potential energy, θj is the angle of inci-
dence of the electrons on the interface, and ψj is a cor-
rection to the Fermi–Dirac equilibrium distribution
function f0 that takes into account electron scattering by
GB roughness.

An expression for the mean conductivity of a jth fer-
romagnetic layer (let j = 1 for the definiteness) for elec-
trons with a given spin orientation will be found by the
technique described in [9]. The boundary condition is

assumed to have the form (–d) = P12 (–d) +

Q21 (–d) (Fig. 3). In view of the equalities (–d) =

(–2d) and (–d) (–2d – δ) ≈ (–2d), which
follow from the symmetry and periodicity of the
boundary values ψj, we have

(2)

where (z) and (z) are the nonequilibrium distri-
bution functions depending on the sign of the projec-
tion of the velocity v j onto the z axis, P12 is the trans-
parency coefficient (the probability that an electron
specularly reflects from the interface between layers 1
and 2), Q21 = Q12 is the transmission coefficient (the
probability that an electron passes from layer 1 into
layer 2 through the interface), and d is the mean size of
a columnar grain.

Without going into details of calculation, we give
the desired expression:

(3)

where

(4)

Jxj z( ) e
4π
------ ρ jv j W ψ j θ jsin

2 θ j.d
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3
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(5)

Here, σ1 is the volumetric conductivity of layer 1, τ1 is
the relaxation time, v f1 is the velocity of Fermi elec-
trons, m1 is the effective mass of an electron, and l1 =
τ1v f1 is the electron free path. The second term in (3)
takes into account the deviation of the conductivity of
layer 1from its volumetric value because of the pres-
ence of inner interfaces. According to [9], the transpar-
ency coefficient P12 and the transmission coefficient
Q12 are quantitatively determined with formulas that
represent these coefficients through the electron param-
eters in explicit form and include the roughness of the
interfaces:

(6)

where R12 is the reflection coefficient; v f 2 and m2 are,
respectively, the Fermi velocity and the effective mass
of electrons in the nonmagnetic spacer; θ1 and θ2 are the
angles of incidence of electrons from layer 1 and layer 2,
respectively, on the interface between these layers; and
η is a parameter that includes the roughness of the
interfaces.

The angle θ2 is related to the angle θ1, over which
the integral in (5) is taken, by the relationship

(7)

When the angle of incidence θj exceeds a critical value

(8)

the electrons may experience total internal reflection.
Then, the reflection coefficient Rjk = 1 and the transmis-
sion coefficient qjk = 0 [9].

It should be noted that the electrons in each of the
columnar grains in a given series will experience scat-
tering by lateral faces that are normal not only to the z
axis but also to the y axis (Fig. 2), as opposed to the
usual magnetic superlattices. This additional scattering
in the expression for the mean conductivity is taken into
account as follows:

(9)
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Since the GB thickness in thin metallic films is
small (δ = 0.5–1.0 nm [4]), the conductivity of the fer-
romagnetic layer domain of thickness h that is adjacent
to the nonmagnetic spacer may be approximated by for-
mula (9) with an acceptable accuracy. As follows from
calculations performed in [9] for a Fe/Cu/Fe sandwich
(parameters of electrons and geometrical dimensions of
the sandwich are given below), the inclusion of non-
magnetic spacers between the grains changes the final
result by less than 4%, while the amount of computa-
tion grows significantly because of the need for using
four boundary conditions.

Now let us determine the conductivity of the entire
ferromagnetic layer. Within a ferromagnetic layer
domain of thickness a, electrons move parallel to GBs,
which are, in this case, free of roughness in the form of
nonmagnetic atoms (Fig. 1). Therefore, diffuse scatter-
ing by GBs in this domain may be ignored and its con-
ductivity may be taken to be roughly equal to the bulk
conductivity of the material (formula (4)). Then, for
electrons with a given spin orientation, the conductivity
of the entire ferromagnetic layer of the sandwich is
given by [10]

(10)

Expressions (4)–(7) make it possible to estimate the
contribution of spin-dependent electron GB scattering
in a ferromagnetic layer to the CPP conductivity of this
layer in view of its dispersity. Consider a Fe/Cu/Fe
sandwich as an example, for which the Fermi velocities
of electrons with oppositely oriented spins in the mag-

netic ( , ) and nonmagnetic (v f 2) layers have

been determined:  = 7.1 × 105 m/s,  = 8.51 ×
105 m/s, and v f 2 = 8.67 × 105 m/s [9]. The effective
masses of electrons are taken to be the same: m1 = m2 =
4m0, where m0 is the electron mass at rest. The parame-
ters with the arrow pointing up (down) refer to elec-
trons with the spins parallel (antiparallel) to the magne-
tization of the ferromagnetic layer. The relaxation times
are assumed to be the same: τ1 = τ2 = 10–13 s. The rough-
ness parameter η is taken to be equal to 0.1 nm (on the
order of the atomic size). The thickness a + h of the iron
layer is 10 nm, i.e., exceeds the free path length of con-
duction electrons in a metal, and the length of GB dif-
fusion of copper atoms into the magnetic layer is h =
3 nm. The thickness b of the copper spacer is taken to
be equal to 2.2 nm (the second antiferromagnetic max-
imum).

Figure 4 shows the CPP conductivity σxmm of the
magnetic layer in the Fe/Cu/Fe polycrystalline sand-
wich versus the grain size d for electrons with oppo-
sitely oriented spins (calculation by formulas (4)–(7)
and (10)). The value of d varies between 5 nm and
100 µm. As follows from the curves, the scattering
probability for the electrons with the spin directed par-

σxmax
a h+

a h/ 1 γ1–( )2+
-----------------------------------σ1.=

v f 1
↑ v f 1

↓

v f 1
↑ v f 1

↓

TECHNICAL PHYSICS      Vol. 49      No. 3      2004
allel to the magnetization is much higher than for the
electrons with the spin directed antiparallel. Note that
electron scattering by GB roughness affects the con-
ductivity of the layer until the grain size reaches a spin-
orientation-dependent critical value. For the electrons

with the spin pointing up (down),  ≈ 0.5 µm (  ≈
0.03 µm). As the grain size increases, so does the con-
ductivity, reaching a maximum that is equal to the bulk
conductivity of the magnetic material. The values of dc

for electrons with a spin up and down are shown in
Fig. 4 by arrows.

SPIN-DEPENDENT SCATTERING
OF CONDUCTION ELECTRONS

BY GRAIN-BOUNDARY ROUGHNESS
WITH REGARD FOR THE FERROMAGNETIC 

LAYER MORPHOLOGY
AND GRAIN-BOUNDARY DIFFUSION LENGTH

Let the ferromagnet–nonmagnetic spacer interface
be ideal. Then, the contribution of the spin-dependent
electron scattering by this interface to the magnetore-
sistive ratio of the sandwich may be neglected and we
can write for the antiferromagnetic configuration of the
sandwich conductivity

(11)

dc
↑ dc

↓

σAF σAF
↑ σAF

↓+=

= 
2L

a/σ1
↑ h/σ1

↑ 1 γ1
↑–( )

2
b/σnm h/σ1

↓ 1 γ1
↓–( )

2
a/σ1

↓+ + + +
---------------------------------------------------------------------------------------------------------------------------,

~~
0 1 2 3 4 5

dc dc

7.5

8.0

8.5

σxmm
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logd [nm]

log(σxmm) [Ω–1]

Fig. 4. CPP conductivity of the ferromagnetic layer in the
polycrystalline sandwich vs. grain size for electrons with

oppositely oriented spins: , the conductivity for elec-

trons with the spin parallel to the magnetization vector;

, the conductivity for electrons with the spin antipar-

allel to the magnetization vector.

σxmm
↑

σxmm
↓
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since  = . For the ferromagnetic configuration,

 ≠ ; therefore,

(12)

The CPP conductivity of the nonmagnetic metal
layer, σnm, is also taken to be roughly equal to its bulk
conductivity and may be calculated from formula (4)
by substituting the values of the electron parameters
(v f 2, m2, and τ2) into it. The effect of spin-dependent
scattering of conduction electrons in the bulk of the
grains and due to GB roughness in the ferromagnetic
layers on the magnetoresistive ratio of the sandwich is
determined by the relationship

(13)

Expressions (11)–(13) make it possible to estimate
the effect of spin-dependent electron scattering by GB
roughness on the GMR for different values of the mor-
phology parameter of the ferromagnetic layer in the
case of the CPP geometry of the polycrystalline sand-
wich. Figure 5 plots α against the grain size in the fer-
romagnetic layers of the Fe/Cu/Fe sandwich for three

GB diffusion lengths. For subcritical grain sizes (  ≈
0.5 µm), charge carrier diffuse scattering by GB rough-
ness (continuous curves) makes a much greater contri-

σAF
↑ σAF

↓

σF
↑ σF

↓

σF σF
↑ σF

↓+
L

2a/σ1
↑ 2h/σ1

↑ 1 γ1
↑–( )2

b/σnm+ +
------------------------------------------------------------------------------= =

+
L

2a/σ1
↑ 2h/σ1

↓ 1 γ1
↑–( )

2
b/σnm+ +

--------------------------------------------------------------------------.

α 1
σAF

σF
--------.–=

dc
↑

0 1 2 3 4 5

dc

10

logd [nm]

α , %

20

30

40

50

h1

h2

h3

Fig. 5. Contribution of spin-dependent scattering of con-
duction electrons by GB roughness (continuous curves) and
in the bulk of the ferromagnetic grains (dashed line) to the
CPP magnetoresistance of the polycrystalline sandwich vs.
the dispersity of the layers for the GB diffusion length h1 =
1 nm, h2 = 2 nm, and h3 = 3 nm.
bution to the magnetoresistive ratio of the sandwich
than scattering in the bulk of the iron grains (dashed
line). The latter contribution increases with GB diffu-
sion length. As the grain size grows, scattering by GB

roughness becomes less significant and, at d > , only
grain-size-independent scattering in the bulk contrib-
utes to α.

It should be noted that the above reasoning is of a
qualitative character because of a great number of sim-
plifying assumptions. It is interesting to contrast them
with experimental data [11] for the magnetoresistance
of Co/Cu/Co three-layer polycrystalline films of grain
size less than 5 nm. The films were thermomagnetically
processed, i.e., kept for 30 min at a number of temper-
atures ranging from 20 to 500°C. In this interval, the
Co/Cu system is temperature stable [5]; therefore,
structure transformations in the films annealed do not
cause magnetic degradation.

In the films exhibiting the GMR under transverse
charge transfer, the magnetoresistive ratio at T = 20°C
was found to be ≈0.7%. As the annealing temperature
rises, the ratio increases, reaching a maximum of ≈4%
at T = 240°C, and then drops to ≈0.5% (i.e., below the
initial value) at T = 380°C. Simultaneously, the grain
size increases two- to threefold. It was conjectured [11]
that the increase in the GMR is associated with cobalt
and copper stratification at the interface. This makes the
interface smoother, and copper spacer thickness fluctu-
ations diminish. As a result, the magnetostatic coupling
between cobalt layers loosens while the antiferromag-
netic coupling strengthens. A further decline in the
GMR is related to grain coarsening, which disturbs the
continuity of the copper layer and establishes direct
exchange coupling between the cobalt layers. However,
it is not improbable that electron scattering by GBs in
the magnetic layers also affects the behavior of the
magnetoresistive ratio in the Co/Cu/Co system. The
possible scenario is as follows. As the annealing tem-
perature grows, the length of diffusion of copper atoms
into the cobalt layers increases and the role of spin-
dependent scattering by GBs in the GMR effect is
enhanced. Accordingly, the magnetoresistive ratio of
the film rises. Annealing of extra vacancies in the cobalt
layers (the process going in parallel with the diffusion)
prevents the zone of GB roughness from penetrating
deeper into the layers. At the same time, it causes a
slight increase in the GMR, raising the flux of spin-
polarized electrons toward the interface. As the anneal-
ing temperature grows further, the grains start coarsen-
ing and the contribution of spin-dependent scattering
by GBs to the magnetoresistive ratio of the film eventu-
ally drops below the initial value.

CONCLUSIONS

It is shown that, when studying the magnetoresis-
tance of multilayer polycrystalline (especially finely
disperse) structures to the current passing normally to

dc
↑
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the surfaces of the layers, one should take into account
a possible decline in the ferromagnetic layer conductiv-
ity and a rise in the magnetoresistive ratio. The latter
fact may be associated with spin-dependent electron
scattering in ferromagnetic domains adjacent to the
nonmagnetic spacer. The scattering mechanism in this
case is scattering by GB roughness in the form of non-
magnetic impurity atoms. The effect of this scattering
mechanism grows with decreasing grain size in ferro-
magnetic layers and increasing the length of GB diffu-
sion of nonmagnetic atoms into the grains. Thus, the
properties of polycrystalline superlattices can be con-
trolled by varying the fabrication and GB diffusion con-
ditions.
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Abstract—If the effective mass of an electron is taken into account in the Drude classical equation for light-
induced conductivity, the conductivity can be estimated from optical experiment data. © 2004 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

From measured values of optical parameters, one
may extract valuable information on the electron
energy band structure in rare-earth metals, for which
the theory and experiment give quantitatively different
results for the position of the 4f levels [1]. It is conjec-
tured that the effect of magnetic ordering on the optical
properties of rare-earth metals in the molten state dis-
appears. One may also assume that secondary magneti-
zation effects due to s–f exchange between conduction
electrons are suppressed when cerium dissolves in mol-
ten aluminum. In REM melts, exchange interaction
between conduction electrons and 4f electrons causes an
extra periodicity in the conduction electron energy with
the formation of new gaps in the energy spectrum [1].

The wavelength (λ) dependences of the refractive
index n and absorption coefficient k for pure aluminum
and Al–3 at.% Ce alloy are given in [2]. They were
spline-approximated into the dependence of the light-
induced conductivity on the photon energy with a step
of 0.05 eV. The results of approximation are shown in
Fig. 1 (curve 1, pure aluminum; curve 2, Al–3 at.% Ce
alloy).

Miller [3] ellipsometrically measured the optical
properties of molten aluminum in the range 0.77–
5.0 eV. It was found that the light-induced conductivity
maximum at 1.5 eV, which is observed in aluminum
crystals, disappears upon melting. The light-induced
conductivity spectrum in Fig. 1 does not contain clear-
cut absorption bands. It is also seen that the light-
induced conductivity spectrum of the alloy is similar to
the associated spectrum of cerium melt; namely, it has
a sharp peak at a photon energy of 1.2 eV and an
extended peak, which starts at a threshold energy of
1.9 eV [4].

At low frequencies, the wavelength dependences of
the permittivity and light-induced conductivity σ may
be described adequately in terms of the almost-free-
electron model. At high frequencies, the quantum char-
1063-7842/04/4903- $26.00 © 20302
acter of interaction between electromagnetic radiation
and electrons that are in various energy states becomes
of crucial importance. Measuring the optical parame-
ters, one visualizes the electron energy spectrum and
the density of states within a certain interval in the
vicinity of the Fermi level.

OPTICAL CHARACTERISTICS OF ALUMINUM, 
CERIUM, AND Al–3 at. % Ce ALLOY MELTS

IN THE ALMOST-FREE-ELECTRON 
MODEL

When describing electromagnetic processes in real
solids, electrodynamics of continuous media disregards
the complex distribution of the charge density and
fields over the electron–ion system. The medium is
assumed to be electrically quasi-neutral; that is, the
mean charge density in it equals zero. Metallic systems
of this type are adequately characterized by the almost-
free-electron model. Charge transport under the action
of an external force is described by the Drude–Zener
equations for the real, ε1, and imaginary, ε2, parts of the

σ, 1015 S
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Fig. 1. Light-induced conductivity σ vs. photon energy for
molten (1) Al and (2) Al–3 at. % Ce.
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Table 1.  Plasma oscillation frequency ωp, resistivity ρ, relaxation frequency ω0, and effective electron mass meff

ωp × 10–16, s–1 ρ × 108, Ω m ω0 × 10–15, s–1 meff

Al 2.2130 2.033 [2] 28.53 [5] 1.24 1.58 [2] 1.16

Ce 1.6314 1.6575 [8] 129.0 [9] 3.03 3.6 [8] 1.38

Al–Ce 2.2432 2.023 [2] 34.01 [10] 1.51 2.06 [2] 1.23
permittivity:

(1)

(2)

where ωp is the plasma oscillation frequency and ω0 is
the quantity that numerically equals the inverse relax-
ation time τ. The plasma frequency in the Drude model
is given by

(3)

where e and me are the charge and mass of an electron.
The concentration of conduction electrons is Ne =

z/Ω , where z is the valence and Ω is the atomic volume.
Table 1 lists the plasma frequencies in Al, Ce, and

Al–3 at.% Ce melts that were calculated by Eq. (3). The
valence was taken to be equal to three. The atomic vol-
ume was found from experimental data for the densities
of molten aluminum [5], cerium [6], and Al–Ce alloy
[7]. Table 1 also shows the plasma frequencies mea-
sured ellipsometrically [2, 8]. The calculated and
experimental plasma frequencies for molten cerium are
seen to be close to each other. For the aluminum and
alloy melts, these values differ by no more than 10%.

In the limit of constant field (ω = 0), the light-
induced conductivity σ turns into the static conductivity

(4)

Table 1 lists the relaxation frequencies calculated by
(4) using experimental values of the resistivity from
[9, 10]. It also shows the relaxation frequencies deter-
mined in [2, 8] under the assumption that the experi-
mental and calculated values of the light-induced con-
ductivity in the IR range are close to each other.

The same result may be obtained by introducing the
notion of the effective mass of an electron rather than
by varying the relaxation frequency. When passing
from the almost-free-electron model to the more realis-
tic model of metal, the electron mass, which is present
in explicit form in many equations, is replaced by the
effective electron mass. Specifically, Eq. (3) is recast as

(5)

ε1 1
ωp

2

ω2 ω0
2

+
-------------------,–=

ε2ω 4πσ
ω0ωp

2

ω2 ω0
2+

------------------,= =

ωp
2 4πe2Ne/me,=

σ 0( ) ρ 1– Nee
2

meω0
------------.= =

ωp
2 4πe2Ne/m*,=
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where m* is the absolute effective mass of an electron.

Subsequently, we will use for simplicity the dimen-
sionless coefficient meff defined as m*/me (relative
effective mass). Designating the plasma frequency in
the free electron approximation as ωep, one can recast
Eq. (5) in the form

The relaxation frequency in the free electron
approximation will be designated as ωe0. With experi-
mental values of the resistivity substituted into Eq. (4),
the effective mass is taken into account indirectly; that
is, from this equation, the relationship ωe0 = ω0/meff can
be derived. It was suggested [11] that the dependence of
the relaxation time on the effective electron mass be
included in the Drude equation for the light-induced
conductivity. Then, the expression for ωe0 takes the

form ωe0 = ω0/ . In this case, we arrive at the Drude
equation for the light-induced conductivity that follows
from Eq. (2):

(6)

Expression (1) for the real part of the permittivity is
then recast as

(7)

Varying the effective electron mass value, one may
bring the experimentally found parts of the permittivity
into coincidence with the calculated values in the IR
range of the spectrum. The results of such a variation
with the effective electron mass taken from Table 1 are
shown in Fig. 2. The curves were constructed based on
Eq. (7) with the plasma oscillation frequency ωep coin-
cident with calculated ωp (Table 1) and ωe0 obtained

from the relationship ωe0 = ω0/ , where the relax-
ation frequency ω0 is also obtained by calculation.
From Fig. 2, it follows that the experiment and calcula-
tion by Eq. (7) coincide in far infrared.

ωp
2 ωep
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meff
2
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ωε2
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ELECTRONIC CHARACTERISTICS OF Al, Ce, 
AND Al–3 at.% Ce MELTS IN VIEW

OF THE EFFECTIVE ELECTRON MASS

Molten cerium intensely absorbs photons in the
wavelength interval from 0.5 to 1.7 µm or in the energy
interval from 0.7 to 2.5 eV [2]. The deviation of the
behavior of the permittivity parts in the visible range
from that predicted by the Drude–Zener model is usu-
ally explained by induced interband electron transi-
tions. However, prior to determining the electronic
parameters of such transitions, it is necessary to sepa-
rate out the contributions of conduction electrons and
electrons participating in these transitions to the optical
constants measured.

A relationship between the optical parameters and
those used in the electron theory is most clearly demon-
strated in the case of the light-induced conductivity σ.

ε1
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Fig. 2. Experimental wavelength dependences of the real
part of the permittivity for (1) Al and (3) Al–Ce. (2, 4) The
same curves for Al and Al–Ce, respectively, calculated by
Eq. (7).

Table 2.  Electronic parameters of the conduction electron
line and interband transition lines for molten aluminum with
meff = 1.132

j ∆j, eV ωpj × 10–15, 
s–1

ω0j × 10–15, 
s–1 zj

0 0 15.485 0.559 1.740

1 0.441 8.334 0.200 0.504

2 0.556 1.518 0.022 0.017

3 0.762 6.563 0.186 0.313

4 0.935 2.485 0.068 0.045

5 1.125 3.594 0.100 0.094

6 1.364 3.031 0.118 0.067

7 1.583 2.328 0.064 0.039

8 1.768 2.213 0.068 0.035

9 1.962 1.871 0.058 0.025

10 2.157 1.118 0.020 0.009
The contributions responsible for the experimental
dependence of the light-induced conductivity on the
photon energy [12] are those from conduction electrons
and electrons participating in interband transitions:

(8)

where N is the total number of interband transition lines
(the subscript j = 0 refers to the line of conduction elec-
trons; j = 1, …, N refer to interband transition lines).

The problem of finding the partial additive functions
was solved graphically [4] by appropriately selecting
three parameters: the plasma oscillation frequency ωpj
(an analogue of the peak height), the position ωj of the
peak (where the interband transition gap is ∆j = "ωj),
and the relaxation frequency ω0j (an analogue of the
peak width). Nine contributions will suffice to fit the
experimental curve for the light-induced conductivity
of molten cerium [4].

In [4], based on the rule of sum, we derived a rela-
tionship for the partial numbers of electrons per atom,
zj, that make a contribution to the light-induced conduc-
tivity:

(9)

In terms of the effective electron mass, the equation
for the contributions of electrons participating in inter-
band transitions to the light-induced conductivity [4]
can be written in the form

(10)

where ωj is the position of a jth interband transition on
the curve σ(ω),

and

A most stringent criterion of validity for the optical
properties of metals is the coincidence of light-induced
conductivity (8) with the static conductivity in the limit
ω  0. Using Eq. (4), one can represent this test as

(11)

Here, z0 obtained from (9) serves as the effective
valence, i.e., stands for the number of electrons provid-
ing the static conductivity in a molten metal.
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Tables 2–4 list the electronic parameters of the melts
of aluminum, cerium, and the alloy that were deter-
mined by varying meff with a minimal step of 0.001 pro-
vided that the right of (11) deviated from unity by no
more that 1%. The effective masses thus obtained,
though being somewhat smaller than those listed in
Table 1, are in fairly good agreement with them.

At the same time, the concentration dependence of
the effective mass in the binary metallic alloy differs
substantially from the additive dependence. This fact
suggests that the electron energy band structure is mod-
ified significantly upon alloying. From Tables 2 and 4,
it follows that the alloy exhibits all interband transitions
typical of pure aluminum. However, the energy gap for
most of the transitions in the alloy exceeds that in the
metals by about 0.1 eV. At high photon energies, the
optical properties of the alloy exhibit energy transitions
characteristic of cerium.

CONCLUSIONS

(1) If the effective mass of an electron is taken into
account in the Drude classical equation for light-
induced conductivity, the conductivity can be estimated
from optical experiment data. Tentatively, the effective
electron mass can be estimated from the experimental
wavelength dependence of the real part of the permit-
tivity.

(2) The effective mass varies with component con-
centration in the Al–3 at.% Ce alloy nonadditively.

Table 3.  Electronic parameters of the conduction electron
line and interband transition lines for molten cerium with
meff = 1.336

j ∆j, eV ωpj × 10–15, 
s–1

ω0j × 10–15, 
s–1 zj

0 0 12.661 0.991 1.750

1 0.522 3.071 0.085 0.103

2 0.902 8.292 0.305 0.751

3 1.167 4.245 0.100 0.197

4 1.660 6.227 0.245 0.423

5 1.696 6.705 0.283 0.491

6 1.743 7.687 0.374 0.645

7 2.046 4.200 0.164 0.193

8 2.340 4.163 0.114 0.189

9 2.732 3.966 0.120 0.172

10 2.925 2.624 0.133 0.075

11 2.938 3.444 0.150 0.129
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Abstract—Amorphous silver, copper, gold, and iron films of a thickness between 6 and 350 nm are grown on
polymeric substrates by vacuum evaporation. The nanostructure of the films is investigated. The dependence of
the conductivity on the film thickness is obtained, and a correlation between the surface morphology and the
conductivity is established. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The recent advancements in micro- and optoelec-
tronics, as well as in optics and a number of other fields,
are closely associated with the progress in thin-film
processes [1–4]. Current technology places stringent
requirements on the film quality and on the effective
use of their specific properties [2–4]. The structure,
conductivity, surface condition, and stability of the
material properties [1–7], all are responsible for the
quality of the films.

Today’s explosive development of nanotechnolo-
gies stimulates interest in films whose thickness is sev-
eral tens of nanometers or even several nanometers. In
addition, the amorphous state of materials has attracted
much attention in recent years [7–10]. The electrical
parameters of amorphous films (such as the conductiv-
ity) are usually much lower than those of crystalline
films. This is because the concentration and mean free
path of free electrons in the former drop due to scatter-
ing by defects [8, 11, 12]. At the same time, the conduc-
tivity is the basic parameter governing the electrody-
namic properties of the films.

At present, thin films are used in many fields of the
industry, in particular, in optics (antireflection coatings
and multilayer interference systems), in microelectron-
ics (active and passive film elements), and in space-
borne instrument making (surface films for controlling
the temperature of satellites) [2, 4, 7].

The aim of this work is to investigate the surface of
thin amorphous metal films (Ag, Cu, Au, and Fe) and to
find a correlation between the structure and conductiv-
ity of the films.

PROPERTIES OF TEST FILMS

We investigated silver, gold, copper, and iron films
produced by vacuum evaporation. The films were
deposited on polymeric substrates at room temperature
1063-7842/04/4903- $26.00 © 20306
under pressure of about 10–5 Torr with a rate of 10 nm/s.
Such a high deposition rate provides growth of pure
metal films with a minor amount of impurities under a
medium vacuum and is commonly used in the indus-
trial production of thin-film materials. The film thick-
nesses ranged from 6 to 350 nm.

The examination of the films by X-ray diffraction
showed that diffraction reflections typical of the crys-
talline state are completely absent. Hence, one can con-
clude that the films are amorphous in terms of X-ray
diffraction. With regard to the method of growing poly-
crystalline films [13], the reasons for the amorphous
state of our films may be rapid condensation, a poly-
meric substrate, or low substrate temperature (T = 300 K).
As a substrate, we used a 0.5-mm-thick polymeric
X-ray film.

EXPERIMENTAL

(i) Surface morphology. The surface morphology
of the film was examined with an ARIS-3500 atomic
force microscope (AFM) with a maximal scan area of
70 × 70 µm (Burleigh Instrument Co, USA). As a
probe, we used a standard pyramidal silicon cantilever
(Burleigh) with a radius of curvature of the tip of
≈10 nm and a stiffness of 0.1 N/m. The microscope pro-
duces three-dimensional topographic images of solid
surfaces with a lateral resolution comparable to that of
a scanning electron microscope. In addition, since an
AFM offers a higher sensitivity in the vertical direction,
one can visualize finer morphological features of solids
uniform in composition. Surface imaging was carried
out under normal conditions both at a constant probe–
substrate spacing and at a constant probe–substrate
interaction force in the contact mode (the force was
roughly equal to 10–9 N). Prior to investigation, the
films were rinsed in alcohol. Special chemical methods
making it possible to reveal the finer structure were not
employed. To take accurate measurements in the XY
004 MAIK “Nauka/Interperiodica”
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plane and in the vertical direction, we calibrated the
scales of the images using certified test samples.

(ii) Thickness and conductivity of the films. To
monitor the film thickness during deposition, we used a
calibrator based on a quartz resonator. The material
evaporated was simultaneously deposited on the sub-
strate and on the faces of the quartz crystal, which was
inserted in the high-frequency oscillatory circuit of an
oscillator. The application of an ac electric field gener-
ates resonant vibrations across the quartz plate. As the
weight of the film increases, the resonant frequency of
the oscillator shifts by a value of ∆f, which is related to
the film thickness (provided that the film thickness is no
more than 1% of the thickness of the quartz plate) by
the relationship d = B∆f/ρ, where ρ is the density of the
film and B is a constant. Down to a film thickness on the
order of several hundred nanometers, the relationship
between the frequency shift and the film thickness is
linear with an accuracy of 1% or higher. The quartz cal-
ibrator was graduated by simultaneously depositing
copper from a Mo boat on the calibrator and aluminum
foil. The copper layer deposited on the foil was
weighed using a VLR-200 precision analytical balance
(the accuracy is no worse than 0.05 mg), and the fre-
quency shift was found from the frequency difference
before and after deposition. The graduation of the cali-
brator and the experiments were performed under the
same conditions. Knowing the frequency shift ∆f and
having the calibration curve at hand, we determined the
surface density of the thin film. Under the assumption
that the surface and bulk densities differ insignificantly,
the thickness of the film was calculated.

The conductivity of the films was measured with a
setup consisting of a B5-43 dc power supply, Ch3-57
digital frequency meter, Shch-34 digital ohmmeter, and
a detector with the quartz calibrator. The detector was
level with the substrate in the vacuum chamber. In this
experiment, the substrate was made of textolite and had
silver-plated contacts at its ends. In the course of the
experiment, the resistance of the film was measured
after each deposition. Knowing the geometrical sizes
and resistance of the thin film, one can find its conduc-
tivity.

RESULTS AND DISCUSSION

The basic results of our experiments are illustrated
in Figs. 1–3. Figure 1 shows typical surface images of
silver, copper, gold, and iron films 63, 120, 74, and
130 nm in thickness, respectively.

As can be seen from Fig. 1, the morphology of the
metal films is irregular and consists of clusters (blocks).
The apparent sizes of the clusters correlate, in general,
with the thickness of the films, and the clusters have a
nonisometric rounded shape. Facets are not seen. How-
ever, when closely packed, the clusters may take on the
shape of polyhedrons. Sporadically, one can observe
individual crystal-like faceted objects.
TECHNICAL PHYSICS      Vol. 49      No. 3      2004
(a)
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Fig. 1. AFM images of the film surfaces: (a) silver, (b) cop-
per, (c) gold, and (d) iron.
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The cluster structure of the iron and silver films is
distinctly visualized, and individual clusters are well
resolved (the films appear fractured). The statistical
straggling of the sizes is relatively small. Some of these
films exhibit regions consisting of rodlike structures
formed by cluster chains. The length of these structures
reaches several hundred nanometers, and they are fre-
quently orderly oriented.

On the gold films, the clusters are also well resolved
but have the most irregular shape. Therefore, because of
a high statistical straggling, the apparent sizes of clus-
ters in the gold films are more difficult to analyze than
in the other films. On these films, the clusters some-
times merge into curved fibers.

The morphology of the copper films on the AFM
images is fairly smooth: blocks are observed only under
high magnification. The clusters tend to merge, produc-
ing islands or hills with diffuse boundaries in between,
in contrast to the other films.

On the surfaces of the silver, gold, and iron films,
there are many macroislands (drops) formed during
deposition. They are up to several micrometers in size
and also consist of rounded clusters. On the copper
films, such islands were not observed.

Our data indicate that the majority of the clusters in
the silver and copper films are much larger than those
in the other films, their thicknesses being equal.

It was also found that the size of the clusters
depends considerably on the film thickness. In Fig. 2,
the cluster mean size Φ is plotted against the thickness
of the films. As the thickness grows, so does the size of
the cluster. For copper and iron films less than 40 nm
thick, the growth is nearly linear and the lateral size of
a cluster exceeds the film thickness by a factor of 1.5–2.
However, from thicknesses of about 40–50 nm on, the
growth of the clusters slows and virtually stops at 100–

40

102

80 120 160 200 240
d, nm

Ag
Cu
Au
Fe

101

Φ, nm

0

Fig. 2. Mean cluster size vs. the film thickness.
120 nm. Such behavior pertains equally to the copper
and iron films, but the size of copper clusters invariably
exceeds iron ones by 30–50%.

For the silver films, a significant growth of the clus-
ters (from 130 to 250 nm) is observed up to thicknesses
of 100–120 nm. Above 120 nm, the growth of the cop-
per and iron clusters ceases. For thicker silver films, the
cluster size is virtually independent of the film thick-
ness and roughly equals 250 nm, which exceeds the
mean size of copper and iron clusters by a factor of 2.5
and 4, respectively (for identical thicknesses).

Figure 3 shows the conductivity versus the metal
film thickness (for the iron films, the values of the con-
ductivity are increased fivefold). The data points are
approximated by the Boltzmann function. From Fig. 3,
it follows that the conductivity depends on the thick-
ness only slightly when the films are less than 40 nm
thick. It is likely that, for thicknesses below 40 nm, the
films have an island structure [13–15]. A thin film rep-
resents a system of conducting domains (islands) sepa-
rated by nonconducting (or low-conductivity) regions;
hence, the conductivity is very low. As the film thickens
and the conducting domains merge together, the con-
ductivity sharply rises (the percolation effect). Experi-
mentally, one observes a sharp dependence of the con-
ductivity on the film thickness in this case (the range
40–120 nm for the Ag, Cu, and Au films and the range
40–70 nm for the Fe films). As the film grows, the
dependence σ(d) becomes weaker. In the ranges d >
70 nm for the iron films and d > 120 nm for the others,
the conductivity is close to the maximal value.

Note that the maximal conductivity of the films dif-
fers considerably (almost by one order of magnitude)
from the bulk value. The amorphism of the films may
decrease significantly their conductivity as compared
with the crystalline state. This is because free electrons
are pinned at cluster boundaries [16] or scattered by

1 × 106

400 80 120 160

2 × 106

3 × 106

4 × 106

5 × 106

6 × 106

Ag
Cu
Au
Fe*5

d, nm

σ, Ω–1 m–1

Fig. 3. Conductivity vs. the film thickness.
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defects [8, 11, 12]. Typically, the conductivity of amor-
phous metal alloys is on the order of 106 Ω–1 m–1 [8],
which also follows from Fig. 3 (in our case, σ ranges
from 4 × 106 to 6 × 106 Ω–1 m–1 for the gold, copper, and
silver films, and reaches 5 × 105 Ω–1 m–1 for the iron
films).

Indeed, to obtain the amorphous state of pure metals
(for example, iron) is generally a challenge, whereas a
medium working vacuum (10–4–10–5 Torr, exactly as in
this study) simplifies the problem [8]. In contaminated
metals, the conductivity may be even lower. The fore-
going reasoning to some extent explains such a low
conductivity in our experiments. However, a particular
mechanism of this phenomenon calls for special inves-
tigation.

CONCLUSIONS

Amorphous silver, copper, gold, and iron films from
6 to 350 nm in thickness are grown on polymer sub-
strates at room temperature by evaporation under a
medium vacuum. The films have a cluster structure.
The dependence of the conductivity of the films on
their thickness and, as a consequence, on the cluster
size is found. For very thin (as yet discontinuous)
films of thickness less than 40 nm, this dependence is
insignificant. Reasons for the low conductivity of the
films in comparison with the bulk crystals are ana-
lyzed. It is shown that a small thickness and the cluster
structure of the films may be partially responsible for
the above effects when the films are thinner than 40
nm, while for thicker films these factors do not work.
The amorphism of the films may to some extent
explain the low conductivity of the films, but the
detailed mechanism behind this phenomenon needs
refinement.
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Abstract—Results of complex experiments aimed at finding a relationship between the properties of initial
GaAs single-crystal wafers and epitaxial films and the threshold spectrometric characteristics of ionizing radi-
ation detectors are reported. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The present-day market of fast-particle and gamma-
radiation solid-state detectors is dominated by high-
resistivity silicon devices [1, 2]. Yet, extensive research
for alternative materials that are capable of effectively
withstanding severe temperature and radiation condi-
tions for a long time is being carried out. Among those
holding the attention of researchers, such as high-purity
Ge, PbSeEu, carbon (diamond), and GaAs [2–6], dia-
mond offers the highest radiation resistance [2]. How-
ever, because of the small charge number of carbon
(Z = 6), diamond detectors are bound to be surpassed in
efficiency of converting the energy of gamma quanta to
the generation of electron–hole pairs by the others.
Conversely, high-purity Ge (Z = 32) detectors, as well
as detectors based on PbSeEu solid solutions (Z ≈ 55),
are extremely attractive because of a higher charge
number and, hence, gamma absorption coefficient.
However, the application of pure germanium and lead-
based solid solutions is greatly limited by their narrow
energy gap and difficulties in creating good p–n junc-
tions (which have low leakage currents, a high dielec-
tric strength, and high operating temperatures). Thus,
each of the materials mentioned may compete with sil-
icon only in narrow niches of ionizing radiation detec-
tion.

Of the materials listed above gallium arsenide is
today the most technologically developed. Until
recently, the high radiation hardness of this material has
been considered as its basic advantage. However,
detailed analysis of using GaAs in gamma-radiation
and fast-particle detectors has shown that high radia-
tion hardness by no means exhausts the list of points in
its favor. Below, we give theoretical and experimental
estimates convincingly demonstrating that the noise
1063-7842/04/4903- $26.00 © 20310
parameters and conversion efficiency of GaAs detec-
tors are as good as those of high-resistivity silicon
detectors. Moreover, at temperatures between 40 and
50°C, the former significantly outperform their silicon
counterparts for ionizing radiation detection.

ANALYSIS

Detection of fast particles and gamma radiation by
solid-state detectors is based on determining the energy
loss of a particle (quantum) when it passes through the
material. In detecting particles with energies ranging
from 10 keV to 10 MeV, the first-order effect is ioniza-
tion, which generates electron–hole pairs (see, e.g.,
[7]). This is also true for X-ray gamma quanta, since
most of their energy is spent on the generation of non-
equilibrium electron–hole pairs [8].

Therefore, when detecting particles with energies
from this range and also soft X-ray radiation, one effec-
tively detects the current of nonequilibrium charge car-
ries, which appears as a result of ionization losses.

Comparing the process of interaction between fast
particles and the material of solid-state detectors, we
draw the reader’s attention to the following experimen-
tal observations. (i) The ionization efficiency in GaAs
exceeds that in silicon by a factor of 1.5 [9, 10]; (ii) the
absorption coefficient for the gamma radiation energy
may be approximately expressed as γ ≈ cZ4λ3 (λ is the
wavelength, Z is the charge number of the matrix, and
c is the speed of light), and the scattering coefficient is
σ ≈ (8π/3)q4Z/m2c4 (m is the atomic mass of the matrix)
[7, 8]; (iii) the radiation hardness of GaAs ICs far
exceeds that of silicon ICs [11–13]; and (iv) the upper
limit of the critical power for GaAs ICs is much higher
than that for silicon ICs [14]. Note also that, for micro-
particles, the absorption coefficient is proportional to
004 MAIK “Nauka/Interperiodica”
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the charge number and the number of pairs of nonequi-
librium carriers arising in a solid is proportional to the
ratio of the particle energy to the mean energy of pair
generation, as follows from many experiments (these
energies are almost the same in silicon and gallium ars-
enide).

Accordingly, in the energy range mentioned above,
the efficiency of energy conversion to the generation of
nonequilibrium electron–hole pairs per unit thickness
of the layer in GaAs is expected to be higher than in Si
by a factor of (ZGaAs/ZSi)4 for gamma radiation and by a
factor of (ZGaAs/ZSi) for microparticles, where ZSi = 14
and ZGaAs = 32. Since the vast majority of δ electrons
have an energy that is sufficient for the generation of
gamma quanta from the X-ray range and the cross sec-
tion of this process is fairly high, one may anticipate the
following sequence: microparticles give rise to gamma
quanta and the gamma quanta generate electron–hole
pairs. Therefore, it may be anticipated with a high prob-
ability that the conversion efficiency ratio for micropar-
ticles will equal to (ZGaAs/ZSi)β, where β > 1.

The detector efficiency η depends not only on the
microparticle (quantum)-to-nonequilibrium pair con-
version efficiency but also to a great extent on the ratios
of the lifetimes of the nonequilibrium carriers to their
transit times: η ~ τn/  + τp/ , where  = L2/Vµp, n

are the times the carries take to transit the gap L
between the detector contacts, V is the voltage between
the contacts, µp, n are the carrier mobilities, and τn, p are
the lifetimes of the carriers in bands of nonlocalized
states. Thus, not the lifetimes as such (in GaAs, they are
three to four orders of magnitude lower than in pure Si)
but the lifetime to the transit time ratios are of primary
importance.

The power dependence of the absorption coefficient
on the serial number of an element (γ ~ Zβ, where β > 1)
allows the designers of the GaAs detectors to employ
active layers that are much thinner than in the Si
devices (by a factor of (ZGaAs/ZSi)4 for X-ray radiation)
and, hence, cut the transit time of the nonequilibrium

tn* t p* t p n,*
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carriers in comparison with the Si devices (by a factor
of (ZGaAs/ZSi)8µGaAs/µSi, i.e., by more than 103 times),
with the efficiency of absorbing ionizing radiations
being the same. It is hoped that the great difference in
the charge number will totally compensate a loss in
photoelectric amplification in the GaAs detectors,
where the carrier lifetimes in bands of nonlocalized
states are shorter than in the silicon devices.

The photoelectric amplification η of the detector
must be high and stable. Instability may be due to radi-
ation-induced defects, which cause charge losses and,
hence, change the kinetic parameters (µp, n and τn, p) in
the active area of the device. As a result, the photoelec-
tric efficiency drops (the device degrades under opera-
tion). GaAs ICs far outperform their Si counterparts in
radiation hardness [15, 16]; therefore, with the detec-
tion efficiency of GaAs and Si detectors being the same,
the former material seems more promising for fast par-
ticle detectors.

The potentialities of GaAs are extended still further
in view of its wide energy gap, which allows for opera-
tion under high temperatures and high radiation doses
(in nuclear reactors, high-energy accelerators, or in
geology under logging conditions).

EXPERIMENTAL RESULTS

Below, we perform a comparative analysis of the
devices based on compensated GaAs crystals, pure
GaAs epitaxial films, and high-resistivity silicon by
example of detecting fast α particles. The detectors
measure the current of nonequilibrium carriers gener-
ated by the ionizing radiation flux. The vertical designs
of both barrier- (metal–semiconductor junction or p–n
junction) and resistive-type GaAs detectors were used.
The barrier-type detectors were made on variously
doped epitaxial layers (Table 1) grown by the chloride
CVD method on n-GaAs substrates doped to degener-
acy. The resistive-type devices were made on commer-
cial semi-insulating GaAs wafers (compensated by
EL2 defects or deep-seated chromium- and chromium-
Table 1.  Electrophysical parameters of the detectors

Types of detectors

Electrophysical parameters of detecting layers

Nn, cm–3 d, µm µ, cm2/(V s)
Deep trap parameters

Et St fNt

Type I: M–n–GaAs–n+GaAs 3 × 1013 29 4400 0.23D 2 × 10–17 1013

Type II: M–p+GaAs–n–GaAs 1013 29 4400 0.23D 2 × 10–17 1013

Type III: M–n–GaAs–n+GaAs– 3 × 1014 29 3900 0.6D 5 × 10–13 5 × 1013

Type IV: M–iGaAs–M(Cr–CrO) 7 × 106 ≈150 4300 0.48D 2 × 10–14 7 × 1014

Type V: M–iGaAs–M(EL2) 107 ≈150 5000 0.78 1015

Note: Nn (cm–3) is the electron concentration in the pure layer; d (µm) is the thickness of the pure layer; µ (cm2/(V s)) is the electron mobil-
ity in the pure layer; Et (eV), St (cm2), f and Nt (cm–3) are, respectively, the initial energy level, capture cross section, fill factor, and
concentration of traps in the pure layer; D is the deep donor; and M is a metal.
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Table 2.  Operating parameters of the detectors

Detector type

Electrophysical parameters

SPD, V2/Hz Optimal operating conditions

20 Hz 1330 Hz U, V Il, nA R, keV S, keV

I 4.6 × 10–12 8.36 × 10–16 –22 <15 35 18.7

II 3.33 × 10–11 2.38 × 10–15 –30 45 15.1 8.3

III 6.27 × 10–11 1.6 × 10–14 –30 6–7 141 9.1

IV – – –50 90 287 –

V >10–8 3.56 × 10–9 –70 140 40 –

Note: U is the depletion-mode voltage, Il is the leakage current of a detector cell, R is the energy resolution, and S is the energy equivalent
of noise. Alpha source: type 1, E = 5.147 MeV and E = 5.499 MeV; type 2, E = 5.499 MeV and E = 5.456 MeV.
oxide-related energy centers) by the membrane tech-
nology: a 500 µm-thick platelet measuring 6 × 8 mm
was thinned (down to 100 µm) in its 5 × 5-mm central
part on the back side, and an Au/Ge/Ni ohmic contact
to the back side and a 4 × 4-mm Au/V contact to the
front side of the platelet in its central part were made.

The electrophysical properties of the detector mate-
rials are listed in Table 1. The kinetic coefficients,
which govern the lifetimes, transit times, and dark cur-
rents of nonequilibrium carriers, were determined by
Hall measurements (in the van der Pauw configuration)
and relaxation measurements (with the contactless non-
destructive method of deep-level optoelectronic relax-
ation spectroscopy [17, 18]). By taking C–V curves, we
found the depletion width of the device’s active areas as
a function of the reverse bias voltage. From the field
and temperature dependences of the current through the
detector cells, we established that the current is limited
by the volume of the detecting layer. Typical energies
of activation and dark currents through the cells were
experimentally determined in the 15–150°C tempera-
ture range. With these parameters at hand, we can pre-
dict the behavior of the cells at temperatures above

100010 100 10 000 100 000
10–18
10–17
10–16
10–15
10–14
10–13
10–12
10–11
10–10
10–9
10–8

I

II
III

V

S, V2/Hz

Fig. 1. SPD of 1/f γ noise vs. frequency under reverse bias
voltages for various types of detectors. γ = (I) 1.86,
(II) 2.04, (III) 1.94, and (V) 4.63.

f, Hz
150°C. The electrophysical parameters thus measured
were used to select the optimal power supply condi-
tions (see Table 2) and analyze the operation of the
detectors in the spectrometric mode. For the optimal (in
terms of spectrometric characteristics) reverse bias
voltage applied to the barriers of the detector cells, the
mean dark currents for the devices with an active sur-
face area of ≈0.12 cm2 are given in Table 2. In the detec-
tors on the semi-insulating (compensated) GaAs, they
reach 90 nA; for the detectors on the pure (epitaxial)
GaAs with metal–semiconductor barriers, 10 nA; for
those on the lightly doped GaAs (3 × 1014 cm–3) with
metal–semiconductor (m/s) barriers, 6.5 nA; and for
the devices on the pure GaAs with a depleted p–n junc-
tion barrier contact, 45 nA. Thus, the best results are
offered by the device on the lightly doped GaAs (type
III) presumably because of the much deeper energy
position of traps (0.6 eV versus 0.23 eV for the pure
material).

The measurements of the excess noise spectral
power density (SPD) S are shown in Table 2 and Fig. 1.
The SPD grows with increasing background dopant
concentration: in the material compensated by intrinsic
defects (type V), it is several orders of magnitude
higher than in the pure material.

The operation of the detectors in the spectrometric
mode is represented graphically in the form of histo-
grams. All the devices were tested under the operating
voltages, which provide total depletion of the detecting
layer in majority carriers. Two types of alpha sources
were used, each having two radiation lines: 5.147 and
5.499 MeV (the first) and 5.456 and 5.499 MeV (the
second). The current of nonequilibrium carriers that are
generated by alphas absorbed in the active layer was
integrated by a charge preamplifier. Signal processing
was accomplished in such a way that the amplitude of
the signal from an ADC was proportional to the charge
absorbed over a reference time interval. Since the con-
centration of electron–hole pairs generated is propor-
tional to the alpha energy, such a processing makes it
possible to obtain an uncalibrated absorption spectrum
(histogram of events), where the ordinate and abscissa
TECHNICAL PHYSICS      Vol. 49      No. 3      2004
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Fig. 2. Histograms of events for cells of the (a) high-resistivity Si detectors (U = –17 V, T = 295 K) and GaAs detectors on (b) semi-
insulating substrate (U = –115 V, T = 295 K), (c) with m/s barrier (n = 3 × 1014 cm–3; T = 295 K; U = (1) 70 and (2) 50 V), (d) with
p+–n– junction (U = –15 V, T = 295 K), and (e) with m/s barrier (n = 3 × 1013 cm–3; T = 295 K; U = (1) 60 and (2) 25 V).
are, respectively, the number of events of pair genera-
tion and the energy channel number. The energy width
of each of the channels is the same and is easily found
by using an energy mark (the reference spacing
between the two spectral lines of the associated alpha
source), which is present in each of the runs.

Typical results for the GaAs detectors operating in
the spectrometric mode under the optimal conditions
and at different temperatures are demonstrated by the
histograms in Fig. 2 and by the curves shown in Figs. 3
and 4. The threshold and spectrometric characteristics
are listed in Table 2. The best results were obtained for
the pure GaAs layer (N ≈ 3 × 1013 cm–3) with the p–n
junction (type II) in the optimal depletion mode
(≈30 V). At an intrinsic noise level of ≈8.3 keV, the
energy resolution was ≈15.1 keV; the leakage current of
the junction detector, ≈44 nA. The lowest leakage cur-
rent was observed in type-III structures; however, their
TECHNICAL PHYSICS      Vol. 49      No. 3      2004
energy resolution was poor (≈140 keV). The high-resis-
tivity silicon detectors optimized and the GaAs detec-
tors have nearly the same detection efficiency. Spectro-
metric measurements with the source of the second
type demonstrated that the spectrometric parameters of
the high-resistivity silicon detectors are somewhat
higher than those of the GaAs devices: the energy reso-
lution is ≈10 keV and the energy equivalent of noise is
≈2 keV.

Thus, the experiments supported the analytical
results for the efficiency of the GaAs and Si detectors:
the photoelectric gain of the latter is comparable to that
of the optimized commercial high-resistivity silicon
counterparts. However, the silicon devices still outper-
form the GaAs ones in room-temperature energy equiv-
alent of noise (S ≈ 2 keV) and energy resolution
(≈10 keV). A plausible reason is a higher generation–
recombination noise of the GaAs active layer, which is
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much more heavily contaminated by background impu-
rities (Table 1).

For both detectors, the temperature range of stable
operation is governed by generation–recombination
processes and, eventually, by barrier-contact and
detecting-layer leakages. In practice, the detectors may
also be placed in hot areas, so that problems associated
with heat release and detector overheating may arise.
The same problems appear when the energy of the par-

ticles is very high (for example, in accelerators
designed for particle energies of >1 GeV) or the particle
beam has a high density. This has stimulated us to per-
form a comparative study of the detectors operating
under elevated temperatures (up to 100°C). The results
are presented in the form of the voltage and temperature
dependences of the histograms (Fig. 5), positions of the
peaks of events (Fig. 6), and height and half-width of
the peaks (Figs. 3, 4). It is seen that the efficiency of the

N
Table 3.  Effect of radiation on the electrophysical parameters of test transistors and circuits

Types of structures
High-energy electrons (4 MeV, 107 rad) Co60 (1.25 MeV, 3 × 107 rad)

∆I/I ∆V/V ∆S/S ∆I/I ∆V/V ∆S/S ∆k/k ∆τ/τ

Uniform doping –0.7 –0.4 –0.6 +0.25 +0.15 –0.10 – –0.3

δ–10–12/3 –0.4 –0.25 –0.10 – – – – –

δ–3 × 10–12/1 –0.3 –0.18 –0.07 +0.18 +0.10 ~0.02 <0.02 <0.02

n–GaAs epitaxial 
layer

Before 0.6 eV, ~8 × 1013 cm–3 Before 0.6 eV, ~8 × 1013 cm–3

After 0.35 eV, 2 × 1014 cm–3 After 0.20 eV, 1014 cm–3, δτ/τ ≈ 0.3

Semi-insulating 
substrate

Before 0.82 eV, 7 × 1014 cm–3 Eta and Etd spectra unchanged

After 0.87 eV, 0.38 eV

Note: I and ∆I are the drain current and its change; V and ∆V, the threshold voltage and its change; S and ∆S, the transconductance of the
field-effect transistor and its change; k and ∆k, the gain of the transistor and its change; and τ and ∆τ, the photovoltage relaxation
time and its change. δ–1012/3 designates a δ structure with three δ layers doped to a level of 1012 cm–2 and spaced 150 Å apart.
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Fig. 6. Dependence of the position of the peak of events on the bias voltage for the (a) GaAs detectors with p–n junction (T = 300 K),
(b) GaAs detectors on semi-insulating substrate (T = 300 K), and the (c) Si detectors (T = 300 K). (d) Histogram of events for the
GaAs detectors on the semi-insulating substrate for different voltages.
silicon detectors and those on the semi-insulating GaAs
is degraded considerably with rising temperature. Spe-
cifically, the relative charge loss in both detectors is
≈300% at ≈50°C, while in the devices on the pure GaAs
(types I and II), it is as low as 4% even at 100°C. As for
the energy resolution, the silicon devices lose their
advantage even at ≈40°C and are degraded catastrophi-
cally at temperatures above 50°C. In particular, the cal-
ibration peak (marked by C in the histograms for the
silicon detectors, Fig. 5), which occupies two energy
channels at room temperature, covers as many as 50
channels at 50°C. Therefore, preference should be
undoubtedly given to the GaAs detectors on the pure
GaAs epitaxial layers (the peak marked by P in Fig. 5)
at operating temperatures above 40°C.

The effect of radiation (high-energy electrons and
Co60 electromagnetic radiation) on the GaAs materials
used was studied with various test transistors and cir-
cuits (Table 3). The radiation of both types affects most
significantly the parameters of the GaAs devices made
on pure or uniformly doped layers. The semi-insulating
GaAs offers the highest radiation hardness (resistance
to failure); however, use of the semi-insulating material
leads to a high noise level (Fig. 1) and necessitates
forced cooling of the detectors, as follows from the data
mentioned above.
CONCLUSIONS

Thus, the complex experimental and analytical
study leads us to conclude that undoped GaAs is a
promising material for detectors of gamma radiation
and microparticles with energies ranging from 10 keV
to 10 MeV. Possessing virtually the same sensitivity
and spectral resolution as their high-resistivity Si coun-
terparts, the GaAs detectors allow for a considerable
reduction of operating voltages (by 20 to 30 V for alpha
detectors) and offer a much higher radiation and ther-
mal stability.

Our analysis was restricted to the energy range from
10 keV to 10 MeV. At higher energies of the particles
(or gamma quanta), the effect of overheating and radi-
ation-induced defects is enhanced and the dependence
of the absorption coefficient on the charge number
becomes still stronger. For particle energies higher than
10 GeV, detecting modules with alternate detecting and
moderating (i.e., tungsten) layers (platelets) appear the
most appropriate. Gamma quanta or delta electrons and
photoelectrons generated in a moderator strike the
detecting platelet immediately adjacent to the modera-
tor. In view of the specific energy losses by fast parti-
cles in a solid-state detector due to stopping (Bethe–
Heitler estimates for bremsstrahlung [19]) or ionization
(Bohr estimates [20]), the idea that ionization due to
gamma radiation prevails seems quite plausible. Hence,
one might expect the nonlinear dependence of the
absorption coefficient on the charge number of detector
TECHNICAL PHYSICS      Vol. 49      No. 3      2004
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material atoms. Both sides of a GaAs detector platelet
adjacent to a tungsten moderator will be exposed not
only to delta electrons but also to photoelectrons, soft
X-ray radiation, and hard gamma radiation. The last-
named radiation escapes the moderators from depths
that are shorter than its radiation length. Thus, for ion-
izing radiation of energy above the range considered,
the need for a detecting material with a high charge
number (e.g., GaAs) becomes still more obvious.
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Abstract—This work pursues the two-dimensional study of the spin accumulation effect in film magnetic
nanobridges between two planar electrodes. Such a structure is of considerable interest for different applications
in microelectronics. The dependence of the magnetoresistance, as well as of the spin density nonequilibrium dis-
tribution, on the geometric parameters of the system is obtained. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

In recent years, the transport properties of spin-
polarized electrons and the related field of science,
spintronics, have attracted much attention [1-4]. The
effect of giant magnetoresistance in multilayer films
and superlattices [2], tunnel junctions [3], nanocontacts
[4], nanobridges [5], and nanowires with domain walls
[6, 7] holds the lead among the subjects spintronics
covers.

Magnetic nanocontacts and nanobridges are also of
special interest. A number of new intriguing effects,
which have much potential for application in micro-
electronics, have been discovered in these systems.
Among them, the effect of extremely high magnetore-
sistance found experimentally in nanocontacts ranks
first. The value of magnetoresistance may reach several
hundreds of percent at room temperature. For example,
experiments [4] were performed with a system of two
macroscopic ferromagnetic rods that were connected
and disconnected in such a way that a point nanocontact
formed at the time of connection or disconnection.
Such a system has been demonstrated to have a magne-
toresistance as high as 700% at room temperature.
Investigations of the magnetoresistance in nanowires
are also noteworthy. It was shown, in particular [6], that
domain walls in nanowires make a significant contribu-
tion to the magnetoresistance.

Until recently, the geometry of nanocontacts has
been poorly controlled. Works [4] are, in essence, a sta-
tistical investigation of nanocontacts randomly formed
by connecting or disconnecting two oppositely magne-
tized rods. In [8], a micromagnetic study of the config-
urations arising in nanocontacts that bridge massive
rods (similar to the ones used in works [4]) were per-
formed. It was shown that the magnetic structure of
such nanocontacts is extremely sensitive even to slight
changes in the geometry. Obviously, for more reliable
experimentation and practical use, it is required that
nanocontacts have a well-defined geometry.
1063-7842/04/4903- $26.00 © 20318
As such contacts, we propose film nanobridges con-
sisting of two planar electrodes (banks) connected by a
nanowire (bridge) (Fig. 1). It was shown [5] that a
domain wall in magnetic nanobridges may be both on
and off the bridge center depending on the material
parameters. For different configurations of the system,
the transition from the symmetric to the asymmetric
state may be continuous (like second-order phase tran-
sitions) or discrete (like first-order phase transitions).
Due to this fact, nanobridges are very promising for use
in spintronics.

The mechanism behind the effect of giant magne-
toresistance in magnetic nanocontacts and nanowires
has been the subject of many theoretical papers [9]. An
important mechanism that should be taken into account
when analyzing the magnetoresistance of such systems
is spin accumulation [10–16]: the occurrence of a non-
equilibrium spin density near the domain wall when the
electric current passes through it. As a consequence, an
additional resistance arises.

The reason for the spin accumulation effect is that
the band structure of ferromagnets is different for carr-
irs whose spin is parallel and antiparallel to the magne-
tization. As a result, the transport properties (the den-
sity of states at the Fermi level and the conductivity) for
carriers with one spin polarization are much higher than
for carrirs with the opposite spin polarization. The

I

Fig. 1. Nanobridge with a domain wall inside. The nonequi-
librium spin density appearing near the domain wall when
the current passes through it is shown in gray. The small and
large arrows indicate the directions of the current and elec-
trode magnetizations, respectively.
004 MAIK “Nauka/Interperiodica”
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former have been named majority carrirs; the latter,
minority carrirs. The spin accumulation effect and its
contribution to the magnetoresistance of an infinite
one-dimensional magnetic nanowire with a domain
wall were investigated in [15, 16]. The potential distri-
bution and the surface resistance due to the domain wall
were calculated as a function of the skewness of the
transport properties for majority and minority carriers.

For practical use, as well as for quantitative process-
ing of experimental data, one should know the depen-
dence of the transport properties of nanobridges on
their physical and geometric parameters. This paper is
devoted to the theoretical investigation of the spin accu-
mulation effect in a finite-length (on the order of the
spin diffusion length) magnetic nanobridge at the cen-
ter of which a so-called linear domain boundary
[17, 18] is located. The result of this work is the con-
struction of a two-dimensional model of spin accumu-
lation in a planar nanobridge. This allowed us to find
the dependence of the magnetoresistance on the sys-
tem’s geometry.

BASIC EQUATIONS

The current flowing through a planar magnetic
nanobridge generates a nonequilibrium spin density
near the domain wall (Fig. 1) and, hence, causes the
resistance to grow as in the case of a nanowire [16].

Let us write the set of equations [11, 16] for the spin
density and electric potential in a ferromagnet through
which the current with a density J passes. The quanti-
ties governing the nonequilibrium distribution of
majority and minority electrons in the system are elec-
trochemical potentials µα

(1)

Here, α ∈  {+, –} are the spin indices for two opposite
polarizations, ζα is the nonequilibrium chemical poten-
tial of the electron subsystem with a spin α, and U is the
electrical potential at a given point. The chemical
potentials are related to the nonequilibrium density nα
as

(2)

where gα is the density of states for electrons with a
spin α on the Fermi surface and nα obeys the neutrality
condition

(3)

The values of nα and ζα are measured relative to
their equilibrium values (the Fermi level for ζα). The
spin currents jα are given by the equations

(4)

where σα are the conductivities of the spin subsystems.

µα ζα eU .–=

nα gαζα ,=

nα

α
∑ n+ n–+ 0.= =

jα σα
1
e
--- ∇µ α ,=
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The currents jα and densities nα are related via the
continuity condition:

(5)

where τs is the longitudinal time of electron spin relax-
ation.

Below, we use the symmetrized variables

(6)

and the quantities

(7)

where σ, ρ, and g are the conductivity, resistivity, and
density of states of the nanowire, respectively; β and δ
are dimensionless parameters characterizing the skew-
ness of the related parameters.

Equations (4)–(6) imply that the spin potential µs is
continuous. From Eqs. (1)–(3), it follows that [15]

(8)

i.e., µs is proportional to the nonequilibrium spin den-
sity. The distribution of µs in the bridge and banks is
given by a solution to the diffusion equation [16]

(9)

Here, Ls = (Dsτs)1/2 is the spin diffusion length and

is the diffusion coefficient of the material. To Eq. (9),
there corresponds the functional

(10)

where the integral is taken over the nanobridge (the
axes are shown in Fig. 2, where the origin is placed at
the bridge center). Differential equation (9) is the
Euler–Lagrange equation for this functional.

We assume that the domain wall is placed at the
bridge center x = 0. Hence, a solution µs(x, y) to Eq. (9)
is a function symmetric about the system’s center and
with respect to change of sign of µs. Therefore, for sim-
plicity, we designate the value of the functional as
2E(µs), where E(µs) corresponds to the integral in
Eq. (10) taken over half the nanobridge (over the right
half for definiteness).

div jα
enα

τ s
--------,=

µt µ+ µ–, µs+ µ+ µ–,–= =

ζ t ζ+ ζ–,+=

J j+ j–, js+ j+ j–,–= =

σ±
σ
2
--- 1 β±( ) 1

2ρ
------ 1 β±( ), g±

g
2
--- 1 δ±( ),= = =

µs n+ g+
1– g–

1–+( ),=

∆µs

µs

Ls
2

-----.=

Ds
1

e2
----

g+
1– g–

1–+

σ+
1– σ–

1–+
---------------------=

2E µs( )
µs

Ls
----- 

 
2 µsd

xd
-------- 

 
2 µsd

yd
-------- 

 
2

+ + 
  xd y,d
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∫
N
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To exactly solve Eq. (9) for the nanobridge is a chal-
lenge; therefore, we search for a solution in an approx-
imate form. To this end, we construct a function µs(x, y)
so that it satisfies both Eq. (9) (individually in the
bridge and in the electrodes) and the boundary condi-
tions on the domain wall and at the bridge edges. Under
general assumptions, this function, as is shown below,
depends on a single parameter (at a given current). To
find this parameter, we apply the variational principle to
functional (10), i.e., assume that integral (10) during
the solution of Eq. (9) reaches a minimum.

In view of the geometry of the nanobridge, it is nat-
ural to partition it into three areas (Fig. 2) and search for
a solution for each of them. Area P is half of the bridge;
area I, a semicircle with its base lying on the face end
of the bridge; and area B, a part of the right bank of the
bridge (without area I). The length and thickness of the
bridge are designated as w and b, respectively.

Let the bridge be sufficiently long and narrow, so
that the distribution of µs in area P may be considered
one-dimensional. Then, a solution to Eq. (9) for this
area can be expressed as

(11)

where A and B are coefficients.
Equation (11) can be conveniently expressed in the

form

(12)

where µ0 and µ1 are the spin potentials at the center and
edge of the bridge and

(13)

is the dimensionless length. We assume that the µs dis-
tribution in the banks is radially symmetric starting
from a distance to the bridge. Let this distance be equal
to half b for definiteness. Then, in view of (13), Eq. (9)
for area B in the polar coordinates can be expressed as

(14)

µs Ae x– Bex,+=

µs x( )
µ1 µ0e w/2––
2 w/2( )sinh
----------------------------ex=

+
–µ1 µ0ew/2+
2 w/2( )sinh
------------------------------e x– , 0 x w/2,≤ ≤

x x/Ls

d2µs

dr2
----------

1
r
---

dµs

dr
-------- µs–+ 0,=

y

r

x

B

I

P

0
w

b
Fig. 2. Nanobridge with the designations used in the calcu-
lations.
where r is the coordinate on the polar axis, which orig-
inates at the point where the bridge and bank meet
(Fig. 2).

The modified Bessel function of the second type
K0(r) is a limited-at-infinity solution to Eq. (14). This
function monotonically approaches zero at infinity and
logarithmically diverges at the point r = 0. Thus, a solu-
tion to Eq. (9) in area B will have the form

(15)

where a is an arbitrary constant defined by the bound-
ary conditions.

To calculate the unknown coefficients a, µ0, and µ1,
we should join together the solutions at the boundaries
between the areas and on the domain wall. First, a is
expressed in terms of µ0 and µ1. Let us take the integral
SI of Eq. (9) over area I:

(16)

The upper estimate of the right-hand side is

(17)

Since expression (17) is a quantity of the second
order of smallness in b, the value of the integral SI may
be neglected. Then, transforming the right of Eq. (16)
into a surface integral and using Eqs. (12) and (15), we
express the constant a through µ0 and µ1:

(18)

Since K0(r) is a monotonically decreasing function,
its derivative is negative.

Now let us find a relationship between µ0 and µ1. We
neglect the reflection and relaxation of polarized carri-
ers at the domain wall; therefore, the spin currents and
densities are continuous at it. The spin current takes the
form

(19)

With regard to current continuity at the domain wall,
we obtain µ0 as a function of µ1 from Eq. (12):

(20)

Thus, all the coefficients can be expressed through
each other and only one of them is independent. In this
case, µ1 is most conveniently taken as an independent
coefficient. This parameter uniquely (for a given cur-
rent) defines a solution, where functional (10) reaches a
minimum according to the variational principle. Thus,

µs r( ) a
π
---K0 r( ), r b/2,≥=

SI ∆µs( ) xd yd

I

∫∫≡ µs xd y.d

I

∫∫=

SI π b/2( )2µ1.=

a µ0 µ1,( ) 1
K0' b/2( )
-------------------

µ0 µ1 w/2( )cosh–
w/2( )sinh

-------------------------------------------.–=

js βJ
2 1 β2–( )

e
----------------------µs' .+=

µ0 µ1( ) e
β

2 1 β2–( )
---------------------- w/2( )ρJ

µ1

w/2( )cosh
--------------------------.+tanh=
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µ1 is obtained from the equation

(21)

The functional E(µs) can be expressed as the sum of
three terms:1 

(22)

each being found by integration over the related areas
into which the nanobridge is divided. In areas P and B,
a solution was found in one-dimensional form (see (12)
and (15)); hence, EP and EB are expressed as one-
dimensional integrals. To estimate EI, we integrated a
linear function that relates the spin potential at the edge
of the bridge to that on the bank of radius r = b/2 along
a rectangle b/2 × πb/4. Thus, the model spin potential in
this rectangle joins linearly solutions (12) and (15) at
the extreme points and is given by

(23)

Accordingly, EI is the integral of function (23) along
this rectangle (the dimensions of this rectangle are
taken so that its surface area equals that of area I).

RESISTANCE OF THE NANOBRIDGE

Using the technique described in the previous sec-
tion, we determined the spin potential distribution in
the nanobridge for different lengths and widths of the
bridge. In this way, one can estimate how the geometry
of the nanobridge influences its magnetoresistance.

Let us calculate a potential drop across the nano-
bridge due to the spin accumulation effect. According
to [16], the parameter µt (see (6)) is given by

(24)

Thus, since the chemical potentials are continuous
functions, the expression for voltage drop ∆U1 across
the domain wall in the nanobridge has the form

(25)

Spin accumulation results in an extra voltage drop
∆U2 along the length of the bridge and across the banks.
Set (1)–(5) yields the expression for the total current

(26)

Expressing the right of Eq. (26) through the chemi-

1 The argument on the right is omitted for brevity.

dE µs µ1( )( )
dµ1

---------------------------- 0.=

E µs( ) EP EI EB,+ +=

µmod z( ) µ1

µ1
a
π
---K0 b/2( )–

b/2
-----------------------------------– z, 0 z b/2.≤ ≤=

µt δµs 2eU .–=

∆U1
1
e
---δµs 0( ).=

J
σ+

e
------ ∇µ +

σ–

e
----- ∇µ –.+=
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cal and spin potentials, we obtain

(27)

The value of ∆U2 is determined by integrating vec-
tor equation (27) along any curve Γ that connects the
domain wall with one of the electrodes (Fig. 3) and
does not cross the current source:2 

(28)

where ds is the differential of an arc of the curve Γ. The
factor 2 in Eq. (28) means integration over both sides of
the domain wall. Set (1)–(5) also yields a correlation
between ξt and µs at any point of the curve Γ:

(29)

Eventually, from Eqs. (27)–(29), we find

(30)

Since µs goes to zero at infinity, the total voltage
drop ∆Ub due to the presence of the domain wall is
equal to, in view of (25),

(31)

In this case, a value given by Eq. (31) does not
depend on the choice of the curve Γ.

Let us designate the spin potential on the domain

wall in the case of an infinite nanowire as  and

2 For definiteness, the upper limit of integration is taken to be infin-
ity, since it is of no significance because of a fast decrease of the
spin potential with distance.

∇ U
J

2σ
------+

1
2e
------ ∇ζ t

β
2e
------ ∇µ s.+=

∆U2 2 ∇ U
J

2σ
------+ 

  s,d

0

∞

∫=

ξ t δµs.–=

∆U2
1
e
--- β δ–( )

µsd
sd

-------- s.d

0

∞

∫=

∆Ub ∆U1 ∆U2+
β
e
---µ0.= =

µ0
nw

ds

É

Fig. 3. Curve Γ along which integral (28) is taken. The resis-
tance due to the domain wall does not depend on the choice
of the curve.
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introduce a function

(32)

The resistivity of the domain wall in the case of a
nanowire, ρnw, [16] can be obtained from (20) and (31)
in the limit of an infinitely long bridge:

(33)

(here, the length is given in dimensional units.) Then,
according to (31)–(33), the total resistance of the
domain wall in a nanobridge is given by

(34)

Thus, λ(w, b) is the ratio between the resistances of
the domain wall in the nanobridge and the nanowire.
Figure 4 plots λ versus the bridge length w for different
thicknesses b. As the length and thickness of the bridge
increase, its resistance grows monotonically, approach-
ing the resistance of the nanowire.

Let us calculate the magnetoresistance of the nano-
bridge using the expression

(35)

where RAP and RP are the resistances of the nanobridge
with the banks magnetized antiparallel and parallel to
each other, respectively. RP, the ohmic resistance of the
nanobridge, can be expressed as

(36)

λ w b,( )
µ0

µ0
nw

--------.=

Rnw ρ 2β2

1 β2–
--------------Ls.=

Rb λ w b,( )ρ 2β2

1 β2–
--------------Ls.=

MR
RAP RP–

RP

---------------------,=

RP 2
Lx

Lyc
--------ρ w

bc
------ρ.+=
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λ
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b = 0.15
b = 0.4

Fig. 4. λ(w, b) as a function of the bridge length for several
values of the thickness b. The lengths are expressed in units
of the spin relaxation length Ls.
Here, Lx and Ly are the length and width of the banks,
respectively (their values are usually as large as hun-
dreds of nanometers), and c is the thickness of the nano-
bridge. The first item in expression (36) is the resistance
of the banks; the second one, the ohmic resistance of
the bridge.

In the case of a nanobridge with oppositely magne-
tized domains, its resistance equals the sum of RP and
the resistance due to the spin accumulation effect:

(37)

As a result, summing Eqs. (35)–(37) yields an
expression for the magnetoresistance of the nano-
bridge:

(38)

The dependence of the magnetoresistance MR on
the length w of the bridge is shown in Fig. 5 for differ-
ent values b of its thickness. The value of β is taken to
be 0.5, which coincides with that for transition metals
in order of magnitude. Lx and Ly are taken to be equal to
each other. As is seen from the graphs in Fig. 5, the
magnetoresistance MR of the nanobridge increases as
its length and thickness decrease, while the resistance
of the domain wall falls, as was mentioned above. The
apparent contradiction is explained by the fact that the
magnetoresistance of the nanocontact depends both on
the absolute value of the spin resistance of the system
and on the contribution of the spin resistance to the total
resistance. The first term (represented by the factor
λ(w, b)) decreases with decreasing length and thickness
of the bridge, while the contribution from the domain

RAP RP

Rb

bc
------.+=

MR λ b w,( ) 2β2

1 β2–
--------------

Ls

2b
Lx

Ly

----- w+
----------------------.=

5
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w [Ls]

MR, %

b = 0.05
b = 0.15
b = 0.4

25

Fig. 5. Magnetoresistance of the nanobridge as a function of
its length for several values of the thickness b. The lengths
are expressed in units of Ls.
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wall (represented by the last factor in Eq. (38))
increases faster than λ decreases under the same condi-
tions.

NUMERICAL SIMULATION

The results obtained vary weakly with the model
parameters. To investigate the stability of the results,
we varied (i) the linear dimensions of the rectangle
along which the function µmod in Eq. (23) was inte-
grated to estimate EI and (ii) the lower limit of integra-
tion in the one-dimensional integral determining the
value of EB (this limit equals b/2). Also (iii), in Eqs.
(16)–(18), from which the coefficient a as a function of
µ0 and µ1 was derived, the value of the left-hand side of
the integral in (16) was taken in the form of (17) (as the
upper bound).

The results of variations are as follows. A twofold
change in the lengths mentioned in (i) and (ii), as well
as the substitution made in (iii), changed λ by no more
than 2–3%. Such a value (i.e., several percent when all
the variables are varied simultaneously) may be taken
as the accuracy of the model presented.

Using the parameters µ0 and µ1, one can construct a
dimensionless fraction designated as υ:

(39)

This fraction, like λ, describes the effect of the
banks on the spin resistance. The value of υ equals zero
in the case of an infinitely long bridge and unity if the
bridge is infinitely short. This quantity is of interest

υ
µ1 µ0e

w/Ls–
–

µ0 µ1e
w/Ls–

–
------------------------------.=

0.1

10 2 3 4 5 6

1

w [Ls]

υ

b = 0.05
b = 0.2
b = 0.4

Fig. 6. υ as a function of the bridge length for several values
of the bridge thickness b. The lengths are expressed in units
of Ls.
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because it is well described by the exponential depen-
dence on the length of the bridge (Fig. 6):

(40)

Here, ν(b) is the coefficient depending on the bridge
thickness. The deviation from dependence Eq. (40) is
negligible (about 1–2%) for lengths several times
greater than the bridge thickness:

(41)

The right of condition (41) may be taken as the
lower applicability bound of simulation, above which,
in particular, corrections of the second order of small-
ness in b (see, for example, expressions (16)–(18)) may
be neglected. The same condition may be taken as the
validity bound for the assumption that the current in the
bridge is uniform and in the banks radially symmetric.

CONCLUSIONS
Thus, we investigated the behavior of a planar mag-

netic nanobridge and developed a model allowing one
to derive the nonequilibrium spin density distribution in
a set of bridged electrodes. The model is shown to be
stable; i.e., calculation results vary only slightly with
the model parameters.

Using the data obtained, we calculated a nanobridge
resistance increment induced by the presence of a
domain wall. The dependence of the magnetoresistance
on the geometric parameters of the bridge was
obtained. According to calculations based on our
model, the magnetoresistance reaches 20–30%. As the
length and thickness of the bridge decrease, the magne-
toresistance of the nanobridge increases monotonically.
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Abstract—The properties of nonrectifying AuGe/GaAs (Al0.4Ga0.6As) contacts exposed to heat treatment,
60Co γ radiation, and γ radiation combined with the application of an electrical bias are studied. A correlation
between the type of interfacial interaction in the contacts and their resistance is found. Results obtained are
explained in terms of a diffusion model with a movable boundary of the metal layer. © 2004 MAIK
“Nauka/Interperiodica”.
To date, a number of techniques for formation of
ohmic contacts (OCs) to GaAs and its solid solutions
have been proposed. The available techniques, as well
as prospective trends, are considered in reviews and
monographs [1–12]. As follows from [1–12], nonrecti-
fying contacts to III–V compounds are usually made by
forming a heavily doped layer in the subsurface region
of the semiconductor in order to raise the free carrier
concentration to the degeneracy level. In this way, a
narrow depletion layer in the semiconductor is pro-
vided.

Such a layer, being formed prior to metal deposi-
tion, is conventionally created by solid-state diffusion,
ion implantation, or epitaxy. Otherwise, it may be pre-
pared by crystallizing the eutectic melt appearing after
metal deposition. In all cases, high-temperature treat-
ment of the contact structures is necessary. However,
heat treatment broadens the metal–semiconductor
interface due to mass transfer of the contact pair com-
ponents and formation of solid solutions and interme-
tallics. The transition region of the contact becomes
disordered and consists of grains, the size, density, and
chemical composition of which depend on the heat
treatment conditions. Some of the process-related unfa-
vorable factors may be partially or completely elimi-
nated by using laser or electron-beam annealing.
Although rapid annealing techniques give good results,
vacuum evaporation of metals and alloying-in Au–Ge
eutectics covered by different metal layers (Ni, Pt, Ti,
or Ag) remain the most-used techniques for preparing
low-resistance contacts. The top metal layers influence
interfacial interaction during annealing of the contacts
and, hence, control their morphological and structural
inhomogeneity. The presence of a distinct correlation
between phase–structure transformations and the con-
tact resistance value necessitates a reduction of the
thermal budget of the process. The time of heat treat-
1063-7842/04/4903- $26.00 © 20325
ment may be cut and its temperature may be decreased
by combining heat treatment with exposure to radia-
tion. However, the locality of the irradiation effect and
the nonuniformity of temperature distribution over the
contact area may lead to troubles. Therefore, combined
processing including thermal and athermic techniques
is of great interest. Under irradiation, diffusion pro-
cesses are known to undergo significant modification
primarily because the migration of lattice components
is related to the radiation-induced variation of the elec-
tronic subsystem in the diffusion zone. Heating of the
electron gas lowers activation barriers for the motion of
defects and impurities, thereby causing their redistribu-
tion. Since the OC formation is accompanied by the
diffusion redistribution of atoms in the contact area,
exposure to radiation may be used as an athermic pro-
cess.

In this paper, we study the effect of 60Co γ irradiation
on the formation mechanism and parameters of OCs to
GaAs and AlxGa1 – xAs.

EXPERIMENTAL

Two types of samples were used in our experiments.
The structures of the first type were n–n+ layers with a
concentration of (5–7) × 1016 and (1–4) × 1018 cm–3,
respectively, grown on a semi-insulating GaAs sub-
strate. The structures of the second type were n-
AlxGa1 – xAs (1 × 1015 cm–3)/n+-GaAs (3.5 × 1018 cm–3)
heterostructures with x ≈ 0.4.

Metallization was carried out under a pressure of 1 ×
10–6 Torr by successively evaporating the AuGe eutec-
tic alloy 0.03 (0.05) µm thick and gold 0.27 (0.2) µm
thick on the semiconductor surface precleaned in HCl
and rinsed in deionized water. The structures obtained
were thermally annealed, irradiated by 60Co γ quanta at
a dose in the range 104–109 R, and exposed to γ radia-
004 MAIK “Nauka/Interperiodica”
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tion with a reverse bias voltage of 2 V applied (the
metal was negatively biased).

The contact resistance ρ was measured using the
transmission-line method. Its detailed description and
requirements for specimens are given in [13].

The chemical composition of the contacts was ana-
lyzed by X-ray photoelectron spectroscopy (XPS)
combined with ion sputtering (Ar+, Ei = 1keV) and elas-
tic backscattering of He+ ion beams with the energy
E0 = 3.0 MeV [14]. The photoelectron spectra were
recorded with MgKα radiation (hν = 1253.6 eV). The
resolution of the instrument was ≈1.2 eV for the Au
4f 1/2 line. The carbon 1s line (E = 214.6 eV) and gold
4f 7/2 line (E = 13.1 eV) were used as standards. The
core-shell electron spectra of C1s, O1s, Au4f, Ga2p,
As3d, and Al2p were investigated.

The backscattered ion spectra were recorded by a
silicon surface-barrier detector placed at an angle of
135° to the primary ion beam. The energy resolution of
the detector was 20 keV. The sample surface examined
was ≈1.5 mm2.

The surface morphology of the structures was stud-
ied by atomic force microscopy. Silicon probes with a
rated tip size of 10 nm were used in the measurements.
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Fig. 1. Energy spectrum of He+ ions elastically scattered
from the AuGe films of different thickness deposited onto
GaAs. d (1) ≥150 and (2) ≤100 nm. n is the number of
counts; N, cathode number.

Table 1.  Specific resistance of the alloyed Au/AuGe/GaAs
contacts

Sample no. Carriers concentration 
n, cm–3

Specific contact
resistance ρ, Ω cm2

1 1.25 × 1018 1.5 × 10–6

2 1.28 × 1018 8.6 × 10–6

3 3.4 × 1018 8.9 × 10–6

4 1.8 × 1018 1.1 × 10–6
RESULTS AND DISCUSSION

Figure 1 shows the energy spectra of elastically
scattered He+ ions. These spectra characterize the
atomic composition of the Au/AuGe/GaAs contacts
annealed at T = 300°C for 30 min and the variation of
the composition over the thickness. The backscattering
spectra from the samples with a metal layer thickness of
less than 100 nm (Fig. 1, curve 2) exhibit a peak, which
was assigned to scattering from Ga atoms on the Au
surface. In other words, one may expect intense outdif-
fusion in these structures even under “soft” heat treat-
ment regimes. Experimental evidence for heating-
induced migration of Ga atoms from the GaAs into the
Au film was found in [4, 15]. In [16], however, the
above features of the spectra were related to multiple
ion scattering in structures with a disordered surface
layer of the semiconductor.

The absence of this peak in the structures with a
thicker Au film (Fig. 1, curve 1), as well as data
reported in [17, 18], suggests that the feature (peak)
observed in the spectra of backscattered He+ ions is
probably due to local erosion caused by the nonuniform
temperature distribution in the semiconductor. Such a
mechanism seems quite plausible, because the melting
points of eutectics in the sequence Au/Ga/As–Au/Ga–
Au/Ge [7] differ insignificantly from the annealing
temperature used in this work.

Below, we consider the structures for which the
backscattering spectra have the form of curve 1 in
Fig. 1.

Table 1 lists the specific contact resistance of these
structures annealed at 430°C for 30 s in hydrogen, i.e.,
under conditions where GaAs–alloy interaction is
greatly enhanced because of melting.

The values of ρ obtained are typical of OCs formed
in the course of melting and solidification of gold-based
eutectics. Such a technique results in the formation of a
heavily doped GaAs layer adjacent to the metal–GaAs
interface.

Consider now the formation of the contacts and their
electrical characteristics in the absence of melting and
recrystallization at the interface. In this case, the forma-
tion of OCs follows the diffusion model [19], where it
is assumed that (i) grain boundary diffusion is respon-
sible for the migration of Ga and As atoms in Au,
(ii) the loss of As during low-temperature annealing is
negligible; and (iii) prevailing local centers are donors
formed by substituting Ge atoms for Ga vacancies

[ ].

With a rise in annealing temperature, the solubility
of Ga into Au increases and so does the concentration
of gallium vacancies VGa. They are occupied by Ge,
which, in turn, raises the donor concentration in the
subsurface region of the semiconductor.

The validity of this model can be verified by using
XPS in combination with ion sputtering. For this pur-
pose, we constructed the distributions of Ga, As, and

GeGa
+
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Au atoms along the normal to the interface in the lnC–
x6/5 coordinates based on layer-by-layer analysis data.
Figure 2 shows these distributions for the as-prepared
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Fig. 2. Distributions of (a) Ga, (b) As, and (c) Au atoms
across the AuGe/GaAs contact structure before and after
treatments. (1) As-prepared sample, (2) γ irradiation with a
dose of 107 R, and (3) γ irradiation with a dose of 107 under
a bias voltage U = –2 V.
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samples, for the samples exposed to 60Co γ radiation
with a dose of 1 × 107 R, as well as for the samples irra-
diated with the same dose (1 × 107 R) and simulta-
neously biased at 2 V (the origin corresponds to the
maximal signal from one of the components of the con-
tact pair).

As follows from Fig. 2, the linear dependence of
lnC on x6/5, which is typical of grain boundary diffusion
[4], is not observed. Moreover, the profiles of Ga and
As are similar to the profile of Au diffusing into the
semiconductor substrate. This means that the diffusion
mechanism responsible for the distribution of Ga, As,
and Au atoms is the same and that grain boundary dif-
fusion does not prevail. As a mechanism of formation
of the transition region, it is then reasonable to consider
a diffusion model where the metal boundary moves
with a constant velocity V. In this case [20], the transi-
tion region of the contact is formed by opposing atomic
fluxes from the metal layer and from the substrate. As a
result, the gold atom concentration is given by

(1)

and the concentration of semiconductor components,

C x t,( )
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2
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Fig. 3. Ge atom profiles in the AuGe/GaAs contact struc-
tures subjected to various treatments. (1) As-prepared sam-
ple, (2) γ irradiation at a dose of 107 R, and (3) γ irradiation
at a dose of 107 R under a bias voltage U = –2 V.
Table 2.  Diffusion parameters of the Au/AuGe/GaAs contacts

Treatment DAu, cm2/s DGa, cm2/s DAs, cm2/s DGe, cm2/s

As-prepared sample 6.8 × 10–12 6.2 × 10–13 7.5 × 10–13 1.7 × 10–11

1 × 107 R 2.8 × 10–13 4.5 × 10–15 1 × 10–14 1.8 × 10–13

1 × 107 R, U = –2 V – 1.7 × 10–15 – –
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by

(2)

The values of the diffusion coefficients calculated
by (1) and (2) are given in Table 2.

The Ge profiles obtained by layer-by-layer analysis
of the contacts are shown in Fig. 3. They differ from the
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Fig. 4. AFM image of the AuGe/GaAs interface (a) before
and (b) after γ irradiation at a dose of 1 × 107 R.
gold profiles and shift toward the GaAs after radiation
treatments. Possibly because of this, the value of ρ
decreases (see Table 3). These data support the effect of
diffusion processes on the OC formation. The diffusion
parameters of Ge that are estimated under the assump-
tion of planar-source diffusion [21] are given in Table 2.

The values of the diffusion coefficients for Ga, Ge,
and Au in the as-prepared structures are in good agree-
ment with the data of [19]. The decrease in the diffusion
coefficients after irradiation is probably a consequence
of structural and phase modifications in the contacts.
Indeed, as was shown in [22], treatments by radiation
may cause the relaxation of internal mechanical strains
in the contact, which results in an apparent decrease in
the diffusion coefficient. Radiation-induced formation
of thin diffusion barriers (e.g., (GaAs)1 – x(Ga2)x layers,
which form during low-temperature thermal treatment
[23], or intermetallics [7]) cannot be excluded either.
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Fig. 5. Component distribution in the transition region of
the AuGe/AlxGa1 – xAs contact (a) before and (b) after ther-
mal annealing (430°C, 30 s) normalized to the maximal sig-
nal from one of the elements.

(a)

(b)
Table 3.  Contact resistance in the Au/AuGe/GaAs structure after irradiation

γ irradiation, R γ radiation (R) at U = –2 V

as-prepared 
sample 5 × 106 107 2 × 107 5 × 107 as-prepared 

sample 3 × 105 107 2 × 107 4 × 107

Contact resis-
tance ρ, Ω cm2

10–4 7 × 10–5 5 × 10–5 4 × 10–5 4 × 10–5 10–4 4 × 10–5 2 × 10–5 2 × 10–5 2 × 10–5
TECHNICAL PHYSICS      Vol. 49      No. 3      2004
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Thus, when radiation treatment is combined with
heat treatment carried out at temperatures below the
eutectic temperature, the mechanism behind OC forma-
tion is the superposition of Ge diffusion into the GaAs
lattice and solid-phase reactions, which displace the
interface. The electronic structure of the newly formed
semiconductor surface may differ from the electronic
structure of the initial surface. In particular, the Fermi
level may be shifted toward the conduction band bot-
tom [24]. As a result, the contact resistance drops.

Since contacts thus produced do not melt, one may
expect their high homogeneity. Figure 4 shows the
AFM images from the microrelief of the AuGe–GaAs
interface (a) before and (b) after γ irradiation. It can be
concluded that γ radiation promotes solid-phase reac-
tions, which modify the interface microrelief. However,
the modification is not too pronounced to disturb con-
siderably the uniformity of the current passing through
the contact.

Consider the effect of γ radiation on the properties
of contacts of the second type. Layer-by-layer analysis
data for this structure before and after thermal anneal-
ing are shown in Fig. 5. At an annealing temperature
and time of 430°C and 30 s, respectively, the alloying
(solidified) front of the AuGe eutectic penetrates into
the subsurface layer of the Al0.4Ga0.6As solid solution,
reducing the contact resistance to 7 × 10–5 Ω cm2. Thus,
the OC formation in this case is controlled by the inter-
action of the solid solution with the melt of the Au–Ge
eutectic, and this interaction is responsible for the
change in the chemical composition of the interface
(Fig. 5). In this situation, the electrical properties of the
contact to a great extent depend on the size and compo-
sition of forming grains, i.e., on the heat treatment
regime. In review [7], a correlation between the grain
size and the value of ρ is indicated. This may be a pos-
sible explanation for the increase in ρ to 2 × 10–4 Ω cm2

at an annealing temperature of 450°C. Taking into
account that radiation treatment may affect consider-
ably the structure and phase composition at the inter-
face in the contact, we exposed the contacts to γ radia-
tion at doses in the range 105–108 R. As expected,
ρ changed most significantly in the structures that were
annealed for a longer time. However, in this case too,
the change was small: at doses lower than 108 R,
ρ decreased approximately twofold, whereas at doses
higher than 108 R, ρ increased.

Complexity and vagueness of the processes occur-
ring at the interface between metals and III–V semicon-
ductors preclude precision control of the contact forma-
tion mechanism. In spite of a great body of data for
ohmic contacts, further studies are needed to establish
a correlation between the electrical parameters, struc-
ture, and chemical composition of the interface. Our
work shows that athermic treatments are promising for
the formation of good contact structures.
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Abstract—The integral characteristics of magnetization switching in amorphous gadolinium–cobalt films with
perpendicular anisotropy are studied by visualizing the domain structure and measuring magnetooptic hyster-
esis loops. The films have a radial gradient of magnetic properties that is due to a spatially nonuniform thermal
field. Magnetization switching in those film areas where the domain wall motion depends only on the coercive
force is simulated in simple terms. In a first approximation, local events of magnetization switching are shown
to take place independently of each other and the net hysteresis loop can be represented as a sum of the local
loops. © 2004 MAIK “Nauka/Interperiodica”.
The domain structure (DS) in films with perpendic-
ular anisotropy generates both applied [1] and scientific
[2, 3] interest. Technical use of iron garnet films is
based on the high sensitivity of their DS to a magnetic
field, which renders them indispensable in magnetic
field visualization [4]. The DS of metallic amorphous
films is more sensitive to temperature fields [5]; so,
they are used to visualize them [6].

The magnetization of thin multidomain films with
perpendicular anisotropy is well studied both theoreti-
cally and experimentally. If the coercivity HC of
domain walls is small compared with the maximal stray
field 4πMS or if the reduced coercivity hC = HC/4πMS <
0.01, where MS is the saturation magnetization, the
magnetization process is described by the theory devel-
oped in [7]. In the case of high-coercivity magnets, hys-
teresis effects should be taken into account. Then, the
ascending and descending branches of the hysteresis
loop are satisfactorily described by a solution to the set
of equations derived in [8].

As hC grows, the magnetization switching process is
increasingly defined by the coercive force and its dis-
persion. The transition from the high-coercivity to low-
coercivity state may be observed in amorphous Gd–Co
films when the temperature is varied within an interval
including the temperature of magnetic compensation.
In this case, the spatially nonuniform magnetic field
causes the magnetization MS and the coercive force HC
to be space dependent; accordingly, the magnetization
curve becomes coordinate sensitive. The question
arises as to whether the magnetization process depends
only on local magnetic parameters MS(x) and HC(x) or
there exists a correlation between the magnetizations of
adjacent domains. The aim of this work is to experi-
mentally study the integral characteristics of magneti-
zation switching in magnetically nonuniform (in plane)
1063-7842/04/4903- $26.00 © 20330
Gd–Co films and to estimate the feasibility of simulat-
ing this process (the magnetic nonuniformity is due to
the nonuniform spatial temperature distribution gener-
ated by a conventional point heat source).

EXPERIMENTAL

Amorphous 0.5- to 1.0-µm-thick Gd–Co films with
perpendicular anisotropy were prepared by rf ion–
plasma sputtering on glass water-cooled substrates. The
free surface of the films was protected by a ≈500 Å
thick glass coating. The compensation temperature TM
of the magnetic moment was somewhat higher than
room temperature, TM ≈ 53°C.

A temperature gradient arose because of a tempera-
ture difference between a massive brass “thermostat”
and “heat source” (the junction of a copper/constantan
thermocouple). The source was heated by passing the
current through the constantan leads, and the thermal
emf was derived from the copper/constantan thermo-
couple. In a first approximation, the area of source–
amorphous film thermal contact may be considered to
be a circle of radius ≈40 µm. Near the contact, the tem-
perature T of the films was assumed to be constant and
roughly equal to the source temperature TS.

The domain structure was visualized by means of
the polar magnetooptic Kerr effect through the glass
substrate. The magnetization was accomplished at a
fixed source temperature TS and was controlled by mea-
suring surface magnetooptic hysteresis loops in the j–H
coordinates at various sites of the sample, where j(H) =
M/MS is the relative magnetization and M is the magne-
tization in a field H. The measurements were taken by
varying the field of vision of the DS with the field stop
of a microscope. The hysteresis loops were digitized
with the Origin editor.
004 MAIK “Nauka/Interperiodica”
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Figure 1 shows the temperature dependences of the
saturation magnetization MS, coercive force HC, and
domain width d0 in the demagnetized (equilibrium)
state. The curves were taken in a uniform thermal field,
i.e., without a temperature gradient in the plane of the
film. They are necessary for simulating the magnetiza-
tion process, determining local temperatures from the
DS parameters, and recovering the nonuniform temper-
ature field pattern in the plane of the film. The curve HC
in Fig. 1a was constructed by the formula

(1)

where the constant C = 1500 provides the best fit to
experimental data.

The reduced thickness L/l (L is the thickness of the

film, l = σw/4π  is the characteristic length of the
material, and σw is the energy density of domain walls)
that is necessary for calculating the magnetization
curves j(H) was found by the Malek–Kambersky equa-
tion [9] with the values of d0/L known.

The hysteretic properties were studied with the
well-studied DS [5], which arises in a spatially nonuni-
form centrosymmetric temperature field produced by a
conventional point heat source kept at TS = 195°C
(Fig. 2). At the center of the temperature distribution,
the temperature of the film far exceeds TM; therefore,
the DS is here fine and hardly observable: the domain
width is ≈4 µm. As T approaches the compensation
temperature away from the center, the DS coarsens. In
Fig. 2 (upper panel), areas (windows) where hysteresis
loops were taken are outlined by circles a–d. In the
lower panel, the radial dependences of the temperature
T, saturation magnetization MS, and relative coercivity
hC of domain walls are depicted (the origin is placed at
the center of symmetry of the DS pattern). The curves
were constructed by the technique suggested in [6]. The
hysteresis loops corresponding to these windows are
shown in Figs. 3a–3d.

The loops in Figs. 3a and 3c were measured in the
window with the minimal possible (under the experi-
mental conditions) diameter, with the center of window
c being shifted relative to the center of symmetry of the
DS under study. It is seen that HC increases with dis-
tance from the heat source, while the nucleation field
HN decreases; that is, the nucleation of the reversed
magnetic phase becomes difficult.

As the diameter of the window increases, the coer-
cive force tends to grow and the loop smooths out
(cf. Figs. 3a, 3b). Apparently, the field HC grows when
higher coercivity film areas with a temperature
approaching TM start contributing to the magnetization.
The loop smooths out near the nucleation field, because
this field varies in the radial direction.

The integral hysteresis loop was simulated as fol-
lows. The entire film was divided into two regions. One
is a circle of diameter Dk centered at the origin (Fig. 2).
This region is selected in such a way that the relation-

HC C/ T TM–( ),=

MS
2
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Fig. 3. (a–d) Experimental magnetooptic hysteresis loops taken in the windows shown in Fig. 2 and (f) calculated hysteresis loop.
ship hC = HC/4πMS ≤ 0.01 is fulfilled in it. In this region,
we calculated local hysteresis loops by the equations
derived in [8]. The other region is a higher coercivity
(hC > 0.01) ring bounded by the circles with the diame-
ters Dk and Dmax. In this region, the magnetization
switching process was simulated under the assumption
that the self-demagnetizing field is absent. The integral
hysteresis loop was obtained by summing the local
loops with their associated weighting factors.

(1) To construct the hysteresis loops, we, following
[6], recovered the coordinate dependence of the tem-
perature, with the origin placed at the center of symme-
try of the DS (Fig. 2). The experimental curve T(R) was
approximated by the linear dependence T = T0 – αR,
where T0 = 190°C and α = 0.27°C/µm. It was assumed
that the temperature near the film–source contact area is
constant, so that there exists a plateau (curve 1 in Fig. 2)
directly above the source, where the magnetic proper-
ties remain unchanged.

In the low-coercivity region (hC < 0.01), the hyster-
esis loop j(H) was calculated by the formulas [8]

(2)

(3)

1
τ
---

1

4π2α2
--------------- 1

n3
----- πn 1 j+( )

2
-----------------------sin

2

n 1=

∞

∑=

× 1 1 2πnα+( ) 2πnα–( )exp–[ ]
πhC

4α
---------,±

h j
1

π2α
--------- 1

n2
----- πn 1 j+( )[ ]sin

n 1=

∞

∑+=

× 1 2πnα–( )exp–[ ] hC.±
Here, τ = (4MS)2L/σw; α = L/P = L/(d1 + d2); h =
H/4πMS; j = (d1 – d2)/(d1 + d2) is the relative magneti-
zation; σw is the surface energy density of domain
walls; and d1 and d2 are the widths of domains where
the magnetization is, respectively, parallel and antipar-
allel to the external field. The plus and minus signs cor-
respond to the rise and decline of the external field.

The hysteresis loop shown in Fig. 4a was calculated
in terms of the model suggested in [8] with the param-
eters meeting plateau 1 in Fig. 2: T = 180°C, d0 = 2 µm,
MS = 139 G, and hC = 0.006. Then, we calculated the
loop for T = 150°C (Fig. 4b) with d0 = 3 µm, MS =
103 G, and hC = 0.01. The latter case geometrically cor-
responds to a circular area of radius R = 190 µm on the
film (point 2 in Fig. 2).

(2) With distance from the center of the pattern
(Fig. 2) (approach to the compensation temperature),
MS drops, HC grows, and eventually the theory [8]
becomes inapplicable to this film when hC > 0.013.
Therefore, when simulating magnetization switching
over window c in Fig. 2 (see portion c of the curve T(R)
in the lower part of Fig. 2), we proceeded as follows.
The magnetization process in the annular region of the
film, which is bounded by the radii R1 = 250 µm and
R2 = 550 µm, was assumed to depend largely on the
coercive force of the film. Such an approach is valid,
since the saturation magnetization in this region is low;
hence, the demagnetizing stray fields, which could gen-
erate the DS in the absence of the external magnetic
field, are also small. For simplicity, we suppose that
two, “white” and “black,” domains exists during mag-
netization switching and that H = HC at their boundary.
TECHNICAL PHYSICS      Vol. 49      No. 3      2004
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A rectangular window for which calculations were
carried out is shown in Fig. 5. With the origin (x = 0)
placed at the center of the window, the relative magne-
tization is given by j = x/a, where 2a is the width of the
window along the radius R. The coordinate, in turn, is
found from the condition H = HC(x). The dependence
x(H) is determined from the equation

HC(x) = C/(T(x) – TM) = H(x),

in view of (1). Then,

(4)

where α is the spatial gradient of the magnetization and
T1 and T2 are the respective temperatures at the left-
hand and right-hand boundaries of the region.

Figure 3e shows the hysteresis loop, the descending
and ascending branches of which were calculated by
formula (4). In essence, this loop is a theoretical inte-
gral hysteresis loop for window c in Fig. 2, where mag-
netization switching proceeds in such a way that the
coercive force alone counteracts the external field.
Comparing the loop in Fig. 3e with the experimental
hysteresis loop (Fig. 3c), we may conclude that our
simulation describes the real magnetization switching
process adequately (at least, on a qualitative basis).

(3) The theoretical integral hysteresis loop corre-
sponding to window d (Fig. 2) with the maximal diam-
eter Dmax was obtained as follows. The relative magne-
tization j of the net loop was found by summing the par-
tial magnetizations with the weighting factors
proportional to the related areas:

(5)

where i = 1–3 is the annular region number; ji is the rel-
ative magnetization in an ith region at a given value of
H; ρi = Si/S; Si is the surface area of a ring where the
hysteresis loop is calculated; and S is the surface area of
window d, which has the maximal radius.

It was assumed that the hysteretic properties of the
annular regions vary along the radius insignificantly, so
that the theoretical loops describe the averaged magne-
tization process in each of the rings. In our case, the sur-
face area ratio is S1 : S2 : S3 = 1 : 1 : 6. Comparing the
theoretical integral hysteresis loop thus constructed
(Fig. 3f) with the experimental magnetooptic loop for
maximal window d (Fig. 3d) indicates qualitative
agreement between the theory and experiment. The
jumps on the theoretical loop may be due to the crude-
ness of the simulation (the small number of steps). This
loop may be smoothed out by adding up a greater num-
ber of theoretical hysteresis loops calculated with a

j 1/αa T1 T2+[ ] /2 Tk– C/H–[ ] ,=

j H( ) ji H( )ρi,
i 1=

3

∑=
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smaller step in coordinate and, hence, in temperature
and magnetic properties.

CONCLUSIONS
Thus, we showed experimentally and theoretically

that magnetization reversal in amorphous Gd–Co films
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Fig. 4. Hysteresis loops for the Gd–Co film at T = (a) 180
and (b) 150°C. Calculation by the theory [8].

x
2a

T(x)

HC(x)

T H
C

Fig. 5. Simplified (two-domain) structure of a film area and
the corresponding coordinate dependences of the tempera-
ture and coercive force. The arrow shows the direction of
motion of the domain wall.

x



334 IVANOV, KANDAUROVA
with a domain structure formed in spatially nonuniform
(point heat source) and spatially uniform temperature
fields proceeds in a much different way. In the latter
case, hysteresis loops, as a rule, exhibit steps near the
DS nucleation field. In the former case, the resulting
coordinate dependence of the magnetic properties of
the film smooths out the steps.

The magnetization of domains where the coercive
force depends considerably on the coordinate and is the
only factor governing the motion of domain walls is
described in simple terms. In a first approximation,
local processes of magnetization reversal take place
independently of each other and the net hysteresis loop
is obtained by adding up local loops.
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Abstract—Photoluminescence spectra from a single-crystalline AgGaSe2 ternary compound grown by the
Bridgman–Stockbarger method from a nonstoichiometric melt are studied in the temperature interval 8–300 K
under various excitation levels. The spectra contain emission bands associated with donor–acceptor recombi-
nation, as well as with bound and free excitons. The exciton binding energy and the energy gap of the AgGaSe2
crystals are evaluated. The temperature dependence of the energies of bound and free excitons, as well as of the
energy gap of the crystals, is constructed. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Silver selenogallate AgGaSe2, as well as other I–
III–VI2 compounds, crystallizes into a chalcopyrite

structure (the space group –I42d) and is a chemical
electronic analogue of the Zn0.5Cd0.5Se solid solution.
The presence of birefringence and an optically isotro-
pic point (the point where the dispersion curves for the
ordinary, no, and extraordinary, ne, refractive indices
intersect) makes this compound promising for elec-
trooptic modulators and narrow-band filters [1–3].

The aim of this work is to study low-temperature
photoluminescence in an AgGaSe2 ternary compound.
Earlier, photoluminescence in this compound was
investigated elsewhere [4–7].

EXPERIMENTAL

AgGaSe2 single crystals were grown by the Bridg-
man–Stockbarger method from a nonstoichiometric
melt with a seed oriented in the [110] direction. The
growth was accomplished in a two-zone vertical fur-
nace. The temperatures in the growth (melt) and
annealing zones were kept at ≈1170 and ≈920 K,
respectively. The ampoule was pulled with a rate of
≈0.12 mm/h under a temperature gradient of ≈40 K/cm.
The single crystals grown were 18 mm in diameter and
35–40 mm in length. They were homogeneous
throughout the length (less the 3-mm-long top part), as
established by means of X-ray microprobe spectrum
analysis and X-ray diffraction.

The composition of the single crystals was deter-
mined with a Cameca-MBX microprobe analyzer. The
element concentration was determined with an accu-
racy of 5% or higher. The element ratio (Ag : Ga : Se =
25.36 : 24.39 : 49.26 at.%) was found to be in good

D2d
12
1063-7842/04/4903- $26.00 © 20335
agreement with the initial composition of the charge
(Ag : Ga : Se = 25.00 : 25.00 : 50.00 at.%). No signifi-
cant variation of the composition over the crystals was
observed, which indicates their high homogeneity.

The structure and equilibrium state of the crystals
were determined by X-ray diffraction on a DRON-3M
diffractometer (filtered copper radiation). The X-ray
data showed that the crystals had the structure of chal-
copyrite with the unit cell parameters a = 5.993 ± 0.001 Å
and c = 10.88 ± 0.01 Å, which is in good agreement
with data in [8, 9]. The fact that high-angle reflections
on the diffraction patterns were resolved suggests that
the single crystals were in the equilibrium state.

Photoluminescence (PL) spectra were taken from
cleavage surfaces with the setup described in [10] at
temperatures from 8 to 300 K.
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Fig. 1. Stationary PL spectrum taken of the AgGaSe2 single
crystals at 8 K.
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Figure 1 shows the PL spectrum taken from
AgGaSe2 at 8 K. At this temperature, the spectrum
exhibits two lines, one of which (at 1.749 eV) domi-
nates. It is likely that this line is associated with a
donor–acceptor recombination where silver acts as a
donor and a gallium vacancy, as an acceptor (as for
other I−III–VI2 compounds). The other line with a peak
at 1.806 eV seems to be related to the recombination of
a free exciton in the ground state. To reliably identify
this line, we considered recombinations of a bound
exciton, free exciton, and donor–acceptor bond.

As is known, a basic recombination mechanism can
be found from the dependence of the PL peak height on
the laser excitation power at a fixed temperature. At
8 K, such a dependence for the AgGaSe2 crystals is
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Fig. 2. Normalized emission spectra for free and bound
excitons in the AgGaSe2 single crystals under various exci-
tation levels: (1) 25, (2) 100, (3) 150, (4) 200, (5) 250, and
(6) 300 mW. 
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Fig. 3. Temperature behavior of the emission lines for free
and bound excitons in the AgGaSe2 single crystals.
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demonstrated in Fig. 2. At laser outputs above 25 mW,
a new line peaking at 1.816 eV appears in the spectrum.
The intensity of both lines grows with the laser power,
that of the older one increasing more rapidly. It was
shown [11] that an exciton-ionized acceptor complex
may exist only if σ = me/mh < 0.29, where me and mh are
the effective masses of an electron and hole. For
AgGaSe2 (σ = me/mh = 0.17/0.73 = 0.23), this condition
is met. Thus, the first line may be related to a bound
exciton (i.e., an exciton-ionized complex); the second,
to the ground state of a free exciton.

Figure 3 shows the temperature variation of the
exciton lines. The intensity of both lines drops with
increasing temperature, the first line (bound exciton)
decaying much faster. It is observed at temperatures
between 8 and 50 K. At higher temperatures, it disap-
pears because of thermal ionization in AgGaSe2 crys-
tals. The existence interval for the second line is consid-
erably wider: from 8 to 150 K.

In terms of the hydrogen-like atom approximation,
the binding energy of a free exciton is calculated by the
formula

(1)

where m* = memh/(me + mh) is the reduced effective
mass.

In AgGaSe2, m* = 0.138m0 and the permittivity ε0 =
10.9 [12]. The binding energy calculated by (1) is R =
16 meV, and the energy gap found from the formula

(2)

is Eg = 1.832 eV at 8 K.

Figure 4 illustrates the temperature dependences of
the binding energy for bound (E) and free (Eex) excitons
and of the energy gap. The behavior of Eex is anoma-
lous. In the interval 8–95 K, the free exciton energy first
grows with temperature from 1.816 to 1.821 eV and
then drops. Such temperature behavior of the binding
temperature may be explained by the action of two
competing mechanisms: electron–phonon interaction
and temperature variation of the AgGaSe2 unit cell
parameters [13]. Similar behavior of the free exciton
line for AgGaTe2 was also observed in [14].

Thus, one may conclude that the line with the peak
at 1.806 eV is associated with the recombination of a
bound exciton into an acceptor level. As was shown
above, the AgGaSe2 single crystals grown are slightly
enriched by silver and depleted by gallium. The devia-
tion from stoichiometry (1 : 1 : 2) causes electroactive
intrinsic defects. From the expressions [15] for nonmo-
lecularity,

(3)

and valence stoichiometry,

(4)

R m*e4/2"
2ε0

2
,=

Eex Eg R/n2–=

∆x Ag[ ] / Ga[ ] 1–=

∆y 2 Se[ ] / Ag[ ] 3 Ga[ ] 1–+=
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(where [Ag], [Ga], and [Se] are the concentrations of
silver, gallium, and selenium in the AgGaSe2 com-
pound), one finds that ∆x > 0 and ∆y > 0. Since chal-
copyrite-like semiconductors are chemically imperfect,
it may be inferred that an exciton related to an AgGa or
GaAg acceptor is responsible for the PL line with the
peak at 1.806 eV.

The calculated temperature coefficient of the energy
gap was +0.7 × 10–4 eV/K in the interval 8–95 K and
−1.5 × 10–4 eV/K in the interval 100–150 K.

The extrapolation of Eg to 300 K yields an AgGaSe2
energy gap of 1.807 eV, which agrees well with data
reported in [7].

CONCLUSIONS
The study of low-temperature PL spectra taken for a

single-crystalline AgGaSe2 ternary compound showed
that, at 8 K, they contain two lines at "ω = 1.749 eV and
1.806 eV, the former dominating. The effects of excita-
tion level and temperature on the PL line intensity and
position were investigated.

It was shown that the intensity grows with increas-
ing excitation level, while the energy positions of the
lines remain unchanged. Temperature variation, how-
ever, changes both the intensity and the energy position

"ω, eV

50 150100
T, K

250

1.79
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300200
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Fig. 4. Temperature dependences of bound- and free-exci-
ton energies (E, and Eex, respectively) and of the energy gap
Eg in the AgGaSe2 single crystals.
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of the lines. The binding energy of a free exciton first
grows from 1.816 to 1.821 eV in the interval 8–95 K
and then gradually drops to 1.807 eV at 150 K. The
binding energy of a free exciton and the energy gap of
AgGaSe2 crystals were calculated.
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Abstract—For either of the two reflection spectra of cadmium difluoride that are known from experiments, a
complete set of the fundamental optical functions is calculated in the energy range 4–45 eV with the Kramers–
Kronig relationships. The basic features of the optical spectra are established, and a hypothesis for their origin is
suggested based on the known theoretical results for the band structure. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The researchers engaged in optics and optoelectron-
ics view CdF2 as a promising material for efficient and
inexpensive lasers operating in the visible and UV
ranges [1]. CdF2 is an insulator with a band gap Eg >
8 eV that is transparent over a wide energy range. Upon
doping and an appropriate thermochemical treatment, it
passes to the semiconducting state. It is also important
that CdF2 crystals may be grown to a large enough size
and that their cost is low. To completely unveil the
potentialities of this material, one must know its energy
band structure [2, 3].

It is known that the most comprehensive informa-
tion on the electron structure of a material can be
derived from a variety of its fundamental optical
parameters [2] (the reflection coefficient R; the absorp-
tion coefficient µ; the real, ε1, and imaginary, ε2, parts
of the permittivity ε; the refractive index n, the absorp-
tion index k, etc.). These parameters are conventionally
calculated from the experimental spectra R(E) and
ε2(E); however, no such calculation for CdF2 has been
carried out.

For cadmium difluoride, which has a fluorite struc-
ture, two experimental reflection spectra are today
available from literature [4, 5], but the conditions under
which these two spectra were taken have not been com-
pared. Since the knowledge of the optical parameters
for cadmium difluoride is lacking, its optical properties
have not been discussed in detail. The aim of this study
is (i) to calculate the complete set of the CdF2 optical
parameters using two reflection spectra obtained in
experiments [4, 5], (ii) compare the results of calcula-
tion, (iii) visualize the basic features of the optical spec-
tra, and (iv) treat the results in terms of the theoretical
models known.

The band structure of CdF2 was calculated with the
empirical pseudopotential method [6], the strong cou-
pling method [7], and also by the strong coupling
method for valence bands and by the pseudopotential
1063-7842/04/4903- $26.00 © 20338
method for conduction bands [8]. In [6, 7], only a few
of the upper valence bands and a few of the lower con-
duction bands were calculated. The high-lying semi-
core bands due to the 4d states of Cd2+ were disre-
garded. In [8], the valence, core, and semicore bands
were calculated near 30 eV along many symmetric
directions in the Brillouin zone and near 13 eV for the
ΓX and ΓL directions in the conduction band. However,
the spectra ε2(E) for the crystal studied are still lacking.

In this work, a set of the optical parameters is calcu-
lated with the integral Kramers–Kronig relationships
and simple analytical formulas relating the optical func-
tions to each other. The methods applied are of frequent
use [9, 10] and are described in detail elsewhere [2].

RESULTS AND DISCUSSION

The reflection spectra were taken at 300 K in the
range 0–45 eV from as-cleaved samples [4] and from 4
to 56 eV from polished sample [5]. Based on these data,
we calculated the fundamental optical functions in the
range 4–45 eV.

The two reflection spectra are structurally similar.
They contain nine basic bands (see table) and have the
same features in the high-energy range (30–45 eV). The
distinctions between them are weak band 8', which is
absent in R(E) obtained in [4], and band 9', which is
absent in R(E) [5]. In the spectrum obtained in [4],
band 2 appears as a broad plateau; in the spectrum
taken in [5] it looks like a fairly intense peak. The posi-
tions of the basic peaks in the two spectra differ consid-
erably in the energy range 4–15 eV: ∆E ≈ 0.4 (for peaks
1, 4), 1.2 (peak 2), and 0.7 eV (peak 3). At shorter
wavelengths, the discrepancies in the energy positions
of the peaks decrease (∆E = 0.1–0.4 eV).

The two spectra are markedly distinct in intensity in
the range 4–20 eV and are close to each other at high
energies. Peaks 1–5 of the reflection spectrum in [5] are
lower than the corresponding peaks in [4] by a factor of
1.6 (peak 1), 1.4 (peaks 3, 5), and 1.3 (peak 4). The
004 MAIK “Nauka/Interperiodica”
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Peaks (eV) in the spectra of the CdF2 optical parameters calculated from the experimental R(E) spectra given in [4] (column 1) and
[5] (column 2)

No.
R ε1 ε2 n k µ –Imε–1 –Im(1 + ε)–1

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 7.1 7.5 6.9 7.4 7.1 7.6 7.0 7.45 7.15 7.65 7.15 7.65 7.6 7.7 7.5 7.7

2 8.8 10.0 8.6 9.3 8.6 10.3 8.7 9.6 8.7 10.4 8.7 10.5 8.6 10.5 8.6 10.5

3 12.4 13.1 11.9 12.7 12.3 13.2 12.0 12.8 12.4 13.3 12.5 13.3 13.0 13.7 12.9 13.6

4 14.9 15.3 13.9 14.2 14.6 15.05 14.1 14.3 14.9 15.3 14.9 15.4 16.2 16.4 15.8 16.3

5 17.4 17.3 16.5 16.9 17.1 17.3 16.0 16.9 17.3 17.6 17.4 17.7 18.4 18.3 17.6 18.0

6 23.0 22.4 20.6 20.1 21.9 21.9 20.8 20.3 22.5 22.2 22.9 22.3 23.6 23.6 23.0 22.5

7 26.8 26.6 25.5 24.8 26.3 26.1 25.6 24.8 26.5 26.4 26.7 26.5 27.0 27.2 26.8 26.7

8 29.3 29.05 27.7 28.3 28.2 28.7 27.7 28.4 28.8 28.8 29.0 28.9 29.5 29.5 29.2 29.0

8' – 32.8 – 31.6 – 32.5 – 31.6 – 32.7 – 32.7 – 33.0 – 32.7

9 37.1 36.7 34.6 34.2 36.0 35.9 35.1 34.3 36.3 36.3 36.6 36.5 37.2 36.8 36.7 36.6

9' 42.9 – 41.1 – 42.1 – 41.5 – 42.2 – 42.3 – 42.7 – 42.3 –
reflection coefficient of CdF2 is low throughout the
energy range: ≈0.21 in the highest peak 1 [4]. At E >
0.45 eV, R ≤ 2%. Comparing the methods and experi-
mental samples used to take the R(E) spectra, we con-
clude that the discrepancy between the spectra in the
range 4–20 eV may be related to an inadequate measur-
ing technique and the poor surface condition of the
samples in [5].

Our ε2(E) spectra show analogues of the nine basic
bands in the reflection spectrum (Fig. 1; curves II, II').
Peaks 1–4 between 4 to 20 eV are the most intense. In
spectrum II, they are shifted toward lower energies by
0–0.3 eV relative to the peaks in the R(E) spectrum.
Peaks 1–3 in curve II' are shifted toward higher ener-
gies. This enhances the discrepancy between the peak
positions in the two spectra ε2 and in the reflection spec-
tra. Also, a considerable difference in the peak intensity
is observed. In spectrum II', the amplitudes of peaks 1,
3, and 4 are nearly the same, whereas in spectrum II,
peak 1 is higher than peaks 3 and 4 by a factor of 1.3
and 1.5, respectively. The height of the peaks in spec-
trum II is 1.8 (peak 1), 1.4 (peak 3), and 1.2 (peak 4)
times that of the corresponding peaks in spectrum II'. At
high energies (20–45 eV), both the intensity and the
position of the peaks in the ε2 spectra are in good agree-
ment. A considerable drop in the intensity of the curves
is noteworthy: most of the bands are faint.

The discrepancies mentioned above plague the esti-
mation of the band-to-band transition energies and the
energy gap Eg in CdF2. According to our data, Eg is
approximately 8.6 eV. Band 2 is apparently associated
with the first band-to-band transition; the most intense
low-energy band, with free excitons. Then, the binding
energy Eb of the most long-wavelength exciton turns
out to be ≈1.5 eV, which is excessively high. According
to [8], the theory gives Eg ≈ 14.4 eV at point Γ, which
is 5.8 eV higher than our value. The structure of the ε2
TECHNICAL PHYSICS      Vol. 49      No. 3      2004
spectra in the range 8–13 eV (peaks 1–3) is defined
mainly by the transitions in the direction ΓX from the
upper valence bands that are formed by the 2p states of
F– to the lower conduction band. Within energy band 4,
the transitions from the semicore bands that are formed
by the 4d states of Cd2+ to the lower conduction band
may occur in the vicinity of the point Γ and from the
upper valence bands to the lower conduction band, in
the vicinity of the point L. Peak 5 is due to the transi-
tions from the upper valence bands, and broad peak 6 is
conditioned mainly by the transitions from the d band
into the upper conduction bands. The core band pro-
duced by the 2s fluorine states is excited at energies E
> 37eV. It is natural to consider the origin of the peaks
in the ε2 spectrum in terms of the metastable exciton
model; however, no such calculations for CdF2 have
been performed.

The absorption index k appears to be low: k ≤ 1.04
throughout the energy range considered (Fig. 2; curves II,
II'). Unlike the bands in the ε2 spectrum, the peaks k(E)
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Fig. 1. (I, I') ε1 and (II, II') ε2 spectra calculated from the
experimental R(E) spectra obtained in (I, II) [4] and (I', II') [5].
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either do not shift (in the range 6–20 eV) or shift toward
lower energies by only 0.1–0.3 eV (20–45 eV) with
respect to the peaks in R(E). The absorption coefficient
is rather high (Fig. 3): even at 50 eV, µ ≈ 0.7 × 106 cm–1.
The different intensities of the peaks in the R(E) spectra
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Fig. 2. Spectra of (I, I') n and (II, II') k calculated from the
experimental R(E) spectra obtained in (I, II) [4] and (I', II') [5].
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Fig. 3. Spectra of µ calculated from the experimental R(E)
spectra obtained in (I) [4] and (II) [5].
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Fig. 4. Spectra of (I, I') –Imε–1 and (II, II') –Im(1 + ε)–1 cal-
culated from the experimental R(E) spectra obtained in (I,
II) [4] and (I', II') [5].
(calculated in [4, 5]) are highlighted in the spectra of k
and µ, which diverge considerably in the intensity dis-
tribution of the peaks. For example, in the µ(E) spec-
trum calculated from the R(E) spectrum given in [5],
peak 7 is the highest (µ ≈ 1.39 × 106 cm–1), while in the
spectrum calculated in [4] the highest peak is peak 4
(µ ≈ 1.53 × 106 cm–1).

The n(E) and ε1(E) spectra are similar in structure
(Figs. 1, 2; curves I, I'). In each of them, highest
peaks 1–4 fall into the energy range 4–15 eV. At higher
energies, the analogues of the peaks in the R(E) spec-
trum are very weak. All bands in the ε1 spectra are
shifted toward lower energies by 0.2–2.4 eV relative to
the corresponding peaks in the reflection spectrum (the
higher the peak, the larger the shift). The energy posi-
tions of the peaks in the n spectra are 0.1–0.5 eV higher
than those in the ε1 spectrum. The peaks calculated in
[5] are shifted with respect to the peaks in curves I
toward shorter wavelengths by 0.3–0.8 eV (in the range
4–18 eV) and to longer wavelengths by 0.2–0.5 eV
(18–45 eV). The intensities of all the bands are in good
agreement except for the first peak in curves I' in Figs. 1
and 2, which is lower than the peak in curves I by a fac-
tor of ≈1.2.

In the spectra of characteristic volume losses –Imε–1,

one can easily distinguish four intense peaks at  =

18.4,  = 23.6,  = 29.5, and  = 37.2 eV
(Fig. 4, curve I). In curve I', the first three bands appear
at the same energies and the last one is shifted by 0.3 eV
toward lower energies. It is known that the peaks of the
–Imε–1 spectra are due to plasmons or the longitudinal
components of band-to-band transitions [11]. In the lat-
ter case, the transverse components of the transitions
are bound to be observed in the ε2(E) spectra; however,
in the above four bands, the transverse components are
either absent or hardly perceptible. Therefore, it is rea-
sonable to assume that the four most intense bands stem
from the plasmon excitation. By analogy with the
related crystal CaF2 [10], the peaks at 18.4 eV and
29.5 eV may be associated with the plasma oscillations
of the 2p and 2s electrons in F–, respectively. The peak
at 23.6 eV may be related to the oscillations of the 4d
electrons in Cd2+. The other peaks of the –Imε–1 spec-
trum, which are shifted by 0.3–0.7 eV toward shorter
wavelengths relative to their analogs in the spectrum of
ε2, may be assigned to band-to-band transitions. These
shifts define the amount of the transverse–longitudinal
split of transitions in CdF2.

The spectra –Im(1 + ε)–1 of surface losses are 2 to
3 times weaker than the volume loss spectra –Imε–1.
The peaks in the –Im(1 + ε)–1 spectrum are shifted
toward lower energies relative to the peaks in the vol-
ume loss spectrum by 0.5–0.8 eV for the analogs of the
plasma bands, and by 0.1–0.3 eV for the other peaks.
Thus, the bulk-to-surface plasmon energy ratio in CdF2

Epv
1( )

Epv
2( ) Epv

3( ) Epv
4( )
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varies between 1.02 and 1.04, i.e., within the same
interval as in CaF2.

CONCLUSIONS

For the first time, a complete set of the CdF2 optical
parameters is calculated and their behavior is estab-
lished. The results of this study make it possible to take
a fresh look at the CdF2 optical spectra and perform
much more accurate analysis of the band structure and
excitons. We hope that the data obtained will promote
the development of new CaF2-based optoelectronic
devices and contribute to the electron theory of solids.
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Abstract—A technique for reducing the work function of a field-emission graphite cathode by doping it by an
alkaline-earth metal (barium) is suggested. A model of formation of a barium monolayer on the cathode surface
is proposed. Field-emission tests show that the operating voltage of the doped cathode is lower than that of the
undoped one with the same emission current. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Field-emission cathodes made of carboniferous
materials are finding wide application [1] because of
their low cost and long lifetime. The basic disadvantage
of carbon fibers [2] and natural graphite compared with
nanotubes [3] and diamond-like films [4] is a relatively
high electron work function, which raises an operating
voltage of the cathode. Basically, the operating voltage
may be decreased technologically (i.e., by shrinking
the cathode–anode gap) or physically and physico-
chemically. A physical method is, for example, modifi-
cation of the emitting surface structure by training the
cathode [5]. The application of an activator on the cath-
ode in an attempt to decrease the electron work func-
tion refers to physicochemical approaches.

In the production of thermionic cathodes [6], the
cathode core is usually coated by an activating layer (an
alkali, alkaline-earth, or rare-earth metal). A dipole
layer formed on the core surface reduces the potential
barrier and, hence, the work function. The highest
effect is achieved when the thickness of the activator is
close to that of a monolayer.

The activator is applied mainly by three methods:
(i) metal-vapor deposition, (ii) use of a directed atomic
beam, and (iii) diffusion of the activator from the vol-
ume of a hot thermionic cathode to the surface. Method
(i) provides a metal (activator) monolayer on the core
surface. However, when the cathode operates under a
pressure of ~10–6 Torr, ion bombardment due to resid-
ual gases destroys the activator and the cathode
degrades (its lifetime shortens). In method (ii), the
design of the cathode unit is complicated (namely, its
dimensions grow) and a part of the power supplied is
spent on atomic beam generation. Accordingly, the sys-
tem as a whole consumes more power. The advantage
of method (iii) is that the activator layer is maintained
during the cathode operation. However, it is inefficient
for field-emission cathodes, because their operating
temperature is low.
1063-7842/04/4903- $26.00 © 20342
The aim of this work is to analyze the known meth-
ods of activator application and find ways of keeping
the activator layer on the field-emission cathode surface
during operation.

DOPING TECHNIQUES

Alkali and alkaline-earth metal may be incorporated
into the graphite structure to produce intercalation car-
bon compounds by several methods [7]. One of them is
the heating of a graphite powder mixed with a metal to
be incorporated in a hermetically sealed ampoule [7].
Such a method is as yet impractical because of troubles
associated with preparation of field-emission cathodes.
In particular, it remains unclear how one can prepare
field-emission cathodes from the final powder product
using the conventional methods [8] in such a way that
the graphite particles with the activator are not sub-
jected to physicochemical effects. Therefore, test cath-
odes were made by the method where a graphite plate
is impregnated by a salt of a metal to be incorporated
with subsequent vacuum annealing at a temperature far
exceeding the decomposition temperature of the salt.
This method allows the activator to be uniformly dis-
tributed over the cathode volume. Auger spectroscopy
and secondary ion mass spectrometry data indicated
that both the pure metal and its oxide occupy voids.
However, no traces of the activator on the surface were
found. Field-emission tests showed that the emissivity
of the field-emission cathode is improved at relatively
high voltages. An explanation may be as follows. Ion
bombardment removes the metal oxide from the voids
and leads to its decomposition. Metal atoms reach the
surface, forming a monolayer of the activator and
thereby reducing the electron work function (Fig. 1).
However, there exists a reverse process where ion bom-
bardment destroys the activator monolayer, casing the
degradation of the emissivity.
004 MAIK “Nauka/Interperiodica”
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SAMPLE PREPARATION

MPG-6 graphite plates were impregnated by solu-
tions of the BaBr2 and Ba(ClO4)2 salts. After impregna-
tion, the plates were subjected to pulsed annealing
under a pressure of 10–5 Torr at 1000–1100°C. Note that
the melting point of BaBr2 is 857°C; that is, the anneal-
ing temperatures used in the experiment were above the
melting point. We failed to find the exact value of the
melting point for Ba(ClO4)2: estimates show that it is
bound to be higher than 1300°C. Hence, the tempera-
tures reached in the experiment were insufficient for
melting Ba(ClO4)2.

Thus, we expected that BaBr2 will decompose upon
vacuum annealing, more volatile Br (its boiling temper-
ature is 59.2°C) will leave the sample, and the graphite
matrix will become impregnated by molten Ba.

Ba Ba Ba Ba BaBa Ba Ba

Ba+Ba
+ +

–

3

1

2

Fig. 1. Formation of a barium monolayer on and its removal
from the cathode surface: (1) anode, (2) graphite cathode,
and (3) barium oxide in voids.
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Fig. 2. I–V characteristics of field-emission cathodes made
of (1) barium-doped and (2) pure MPG-6 graphite under
identical test conditions.
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Further behavior of the barium in the graphite
matrix depends on the temperature, according to which
one of three processes takes place: barium diffusion
from voids to the surface and subsequent barium evap-
oration, barium diffusion into graphite crystallites, and
barium oxidation in the voids. The second and third
processes are more favorable, since barium oxide will
decompose during cathode operation with the forma-
tion of a monolayer on the surface.

The examination of the sample structure after vac-
uum annealing showed that all the three processes do
occur. The barium concentration on the surface is very
low and increases with depth. Sometimes, the barium
concentration in grains was higher than in voids, indi-
cating barium diffusion into the crystallites.

FIELD-EMISSION TESTS

Field-emission tests of the samples were conducted
in the diode-type configuration. The residual pressure
in the chamber was ~10–6 Torr. Here, we compare the
results of field-emission tests for barium-doped sam-
ples and pure MPG-6 graphite.

Figure 2 demonstrates series of the I–V characteris-
tics for the doped and pure cathodes under the same
field-emission test conditions.

The characteristics of the doped cathode are seen to
shift markedly toward lower voltages, which testifies
that the cathode efficiency (i.e., an anode–cathode volt-
age that is necessary to achieve a desired emission cur-
rent) increased.

For applications, an important parameter of a field-
emission cathode is long-term stability of the emission
current. To study the emission current stability, we
applied a dc stabilized voltage of 1400 V between the

0 5 10 15 20

20

25

30

15

t, min

I, µA

Fig. 3. Time dependence of the emission current for the bar-
ium-doped field-emission cathode under a dc voltage of
1400 V.
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cathode and anode. Under these conditions, the cathode
current was measured for 20 min in 10 s intervals. The
time dependence of the emission current (Fig. 3) shows
that the decrease in the current within the time of mea-
surement was not very large while its instability was
appreciable (more than 20%). Thus, the stabilized volt-
age conditions are not quite appropriate for cathodes of
this type. They may be used in devices with current sta-
bilization.

CONCLUSIONS

Thus, it is shown that doping by an alkaline-earth
metal (for example, barium) may reduce significantly
the work function. At the current stage of investigation,
we succeeded in markedly decreasing the operating
voltage. Our results apply not only to graphite. The
same behavior may be observed for field-emission
cathodes made of carbon fibers and other carboniferous
materials. We therefore believe that doping of these
materials is a step forward in improving the emissivity
of field-emission cathodes.
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Abstract—A method for evaluating the energy spectra and temperature dependences of the yield of neutral and
charged clusters that consist of N ≥ 5 atoms and are produced by ion bombardment of metals is proposed. The
results are presented in the form of simple formulas. Theoretical energy spectra of clusters emitted as a result
of bombarding niobium, tantalum, and iron targets by atomic ions of gold or xenon and temperature depen-
dences of the yield of silver clusters produced by bombarding the targets with xenon ions are compared with
experimental data. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

In many cases [1–5], experimental investigation of
clustering due to ion-beam sputtering of solids is aimed
at revealing mechanisms responsible for the formation
of polyatomic particles in sputtering products. Usually
(see, e.g., [6–11]), the researchers record the energy
spectra and size distributions of neutral and singly
charged clusters depending on the target type and the
type and current of bombarding particles. Of interest is
also the yield of neutral and charged particles versus the
target temperature [8], which carries more detailed
information about clustering mechanisms. The emis-
sion of clusters during ion-beam sputtering is difficult
to describe theoretically mostly because of a large num-
ber of particles involved. Furthermore, molecular
dynamics calculations (see, e.g., [1]) are very tedious,
especially for a polyatomic cluster, and hardly repro-
ducible. The difficulties are significantly aggravated
when processes that govern the charge composition of
sputtering products are included into the simulation
(see, e.g., review [5]).

In this paper, we suggest a method for calculating
the energy spectra of neutral and charged clusters due
to ion-beam bombardment of metals, as well as the
energy distributions of these clusters versus the target
temperature.

Our approach elaborates upon the physical concepts
put forward in [12–15] and the method for evaluating
the total yield of clusters [15], which are valid for clus-
ters consisting of N ≥ 5 atoms.

ENERGY SPECTRUM

Let each of the atoms of a solid (metal) be in an
oscillator well of depth ∆ and have an eigenfrequency
ω. The characteristic period of oscillations is T = 2π/ω.
Let the velocity of an incident ion be such that the ion
1063-7842/04/4903- $26.00 © 0345
and fast recoil atoms, when moving in the metal, expe-
rience a great number of collisions in a time τ ! T. As
a result of collisions, the atoms of the metal acquire
momenta qi, where i is the index of the atom. Then,
according to [15], the probability of a cluster of N
atoms being emitted (as a whole) with a momentum k
is given by

(1)

where α2 = mω/", m is the atomic mass, " is the Planck
constant, n0 = ∆/"ω, Φ0(R) is the wave function of the
center of mass of an N-atomic cluster in the ground
state, Φk(R) is the wave function of the center of mass
of the cluster in the state (from the continuous spec-
trum) that has the momentum k, and R is the radius vec-
tor of the center of mass.

The center of mass of the cluster is assumed to oscil-
late with a frequency Ω in a potential well of depth UN.
The well has the meaning of the cluster–metal binding
energy, which is proportional to the surface area SN of
the contact between the cluster and the rest of the metal.
Then, according to [12–15], UN = σSN = δN2/3, where
δ is the binding energy of the cluster per cluster atom
(in general, δ differs from the depth ∆ of the potential
well, where each of the atoms of the solid resides).

Let us use expression (1) to evaluate the energy
spectra for this case. We assume that the center of mass
of the cluster moves in a spherically symmetric oscilla-
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tor potential U(R) cut off at the height UN:

for R < RN, where RN is such that U(RN) = UN. For R >
RN, this potential takes the constant value: U(R) = UN.
Then, we write the wave function Φk(R) for the center
of mass in the state with the momentum k and energy
Ec + UN, where Ec = k2/(2mN), in quasi-classical
form [16]:

(2)

where |k(R)| =  and
k(R)  k for R  ∞.

Assume [12–15] that the well U(R) is deep enough,
so that the condition "Ω ! UN is met and we may put
U(R) ! UN within the ground state Φ0(R). Then, when
calculating the matrix element

in formula (1), one may set |k(R)| =  =
|k(0)| in the function Φk(R). As a result,

(3)

Next, following [15], we average probability (3)
over all the states qi (i = (1, 2, …, N)), making the nat-
ural assumption that the magnitudes of qi are indepen-
dent from each other and the directions of qi are
equiprobable. Consider the probability averaged over
the angles  of the vectors qi:

(4)

To calculate this average, we will take advantage of
the expedient proposed in [15]:
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where γ = 1/(mN"Ω), and use the value of the integral

The mathematics simplifies significantly if we
assume that all qi have the same length (magnitude),
|qi| = q, and randomly distributed directions [12–15].
Then, we obtain

Next, we use the formula

which is valid for N @ 1 [15], and arrive at

The integral in this expression is easy to calculate:

After averaging, the probability takes the form

(5)

The total probability  that the center of mass is

in the continuous spectrum is found by integrating 
over all k under the condition that the momentum k is
directed outwards, which corresponds to a solid angle
of 2π. To this end, we represent d3k as d3k = 2πk2dk =

1
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2πmN dE. Then,

(6)

where

is the energy spectrum of N-atomic clusters, which,
upon simple transformations, takes the form

Neglecting the energy "Ω/2 of zero-point oscilla-

tions, which is small compared with the energy 

we find the spectrum in the form

(7)

where

By setting  given by (6) equal to the expression
obtained in [15] (by summing over all bound states
Φn(R) of the center of mass and subtracting unity from
the sum),

(8)

we come to

where Γ–1(x, y) = 1/Γ(x, y) and Γ(x, y) is the incomplete
gamma function.

Strictly speaking, the above procedure of evaluating
|A|2 is valid if UN/ε  0. In our case, it is also justified

because  calculated by integrating (6) over the
states of the continuous spectrum coincides with the
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result of summation (see (8)). Eventually, we obtain the
energy spectrum of N-atomic clusters in the form

(9)

In general, expression (2) for the wave function
Φk(R) refers to the situation where the center of mass
of the cluster passes into the continuous spectrum
domain far away from the top of the potential well, i.e.,
when the energy Ec @ UN [16, p. 297]. Therefore,
expression (9) for the spectrum must be matched to the
cluster spectrum at low energies, i.e., at 0 < Ec ! UN.
We will derive the low-energy part of the spectrum as
follows. In [15], the total probability WN that the center
of mass of an N-atomic cluster passes into the continu-
ous spectrum domain was derived by summing over all
possible bound states of the center and subtracting
unity form the sum:

(10)

where summation is performed from n = 0 to a certain
maximal value n = k0 that refers to the bound state with
a maximal energy in the potential well of depth UN; i.e.,
k0 = UN/("Ω).

After calculating the matrix elements, summing
over n, and averaging over the vectors qi, formula (10)
yields [15] total probability (8), which is convenient to
represent as

This expression can be recast in the form of the inte-
gral of a certain spectral function in simple terms. We

assume that k0 is a variable quantity (  is then a func-

tion of k0; i.e.,  = (k0)) and consider the depen-
dence k0 = (Ec + UN)/("Ω). Then,

where (d /dEc)2 has the meaning of the energy spec-
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trum of an N-atomic cluster:

Carrying out differentiation and simple transforma-
tions, we obtain the energy spectrum of an N-atomic
cluster:

(11)

As follows from the procedure used to derive for-
mula (11), it can be treated as a cluster spectrum only
in the immediate vicinity of the boundary between the
continuous and discrete states, i.e., when Ec ! UN. To
obtain the spectrum in the entire range of Ec, it is nec-
essary to join the low-energy (expression (11)), and
high-energy (expression (9)), parts of the spectrum. Let
a desired result of joining have the form

(12)

where the function f(Ec) must be such that f(Ec)  1
when Ec ! UN (i.e., when Ec  0) and f(Ec)  0
when Ec @ UN (i.e., when Ec  ∞).

Then, when Ec varies from 0 to ∞, the full spectrum

d /dEc changes smoothly from (d /dEc)2 to the

spectrum (d /dEc)1. In this work, the function f(Ec)
meeting the above conditions was taken in the form

f(Ec) = exp[– /ε2]. It is clear that such a procedure
violates the normalization condition. Therefore, for-
mula (12) is provided with the normalizing factor C

such that the full spectrum d /dEc is normalized to

the probability  of escape of an N-atomic cluster,

i.e., to  = d /dEc)dEc. Then,

CHARGE COMPOSITION

To obtain the cluster energy spectra with regard to
the charge composition of clusters, we will proceed
from the physical concepts [12–15] according to which
the charge composition forms during sputtering. In this

case, the escape probability  for an N-atomic clus-
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ter that has a charge Qe (e is the electron charge) is
given by [15]

(13)

where PN(Q) is the probability that the N-atomic cluster
escaped has the charge Qe. This probability is
described by the standard formula for fluctuation prob-
ability [15]:

(14)

(15)

where the normalizing factor DN is found by summing
over all possible Q (Q = 0, ±1, ±2, …), me is the mass
of an electron in the conduction band, V is the cluster
volume, Θ is the target temperature, γ is the valence of

the metal atoms; and  is the standard deviation
of the cluster charge from an equilibrium value Q0.

According to [14, 15], the assumption that the equi-
librium charge equals zero implies that the Fermi levels
in the cluster and metal coincide. Otherwise, asymme-
try between negatively and positively charged clusters
will be observed, as demonstrated by the experiment
[8]; therefore, we assume that the equilibrium charge
Q0 is nonzero. Let us calculate the equilibrium charge
Q0 as a function of the difference ∆µ between the Fermi
energies in the metal and cluster. With the number Ne
of electrons inside the Fermi sphere of radius µ known
[17],

we obtain the following expression for the equilibrium
charge Q0e:

(16)

The expression for  in the denominator of
the exponent in formula (14) needs some comments.

The fact that  tends to zero as the temperature
Θ tends to zero is a consequence of applying the Fermi
statistics to systems with a macroscopic number of par-
ticles or of using the so-called thermodynamic limit
(N  ∞ and V  ∞ with N/V = const). In our case,
where the number of particles Ne = Nγ is, in macro-
scopic terms, small (while much greater than unity), the
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mean-square fluctuation must not exactly equal zero at
zero temperatures, because it is necessary to allow for
quantum fluctuations. With the corresponding correc-

tion to  in the denominator of the exponent in
formula (14) denoted by β, the probability that an N-
atomic cluster escaped has the charge Qe will be
described by the formula

(17)

where the parameter β corresponds to quantum fluctua-
tions of the charge at the zero target temperature.

Then, (13) yields a formula for the total probability
that an N-atomic cluster escaped has the charge Qe:

(18)

Thus, to obtain the energy spectrum (d /dEc) of
N-atomic clusters with a charge Qe, one should multi-
ply spectrum (12) by PN(Q) (see (17)). Eventually, we
arrive at a final expression for the energy spectrum of
N-atomic clusters with a charge Qe:

(19)

It should be noted that the energy spectra, as well as

the total probabilities  (cf. [15] and experiment [8]),
of neutral clusters depend on the target temperature
only slightly, whereas the spectra of charged clusters
significantly vary with the target temperature. How-
ever, as the temperature increases, they come close to
each other.

COMPARISON WITH EXPERIMENTS

Integrating full spectrum (19) over all possible clus-

ter energies Ec yields the total escape probability 
for an N-atomic cluster with a charge Qe. In this sense,

d /dEc given by (19) is the absolute value of the
spectrum. In experiments, the relative energy spectra

 of clusters with different numbers of atoms are usu-
ally easier to measure. As a rule, the relative energy

∆QN( )2

PN Q( ) 1
DN

------- 1
2
---

Q Q0–( )2

∆QN( )2 β+
---------------------------–

 
 
 

,exp=

WN
Q

1 1 ε
UN

-------+ 
  3/2–

– N
3
2
--- ε

∆
---– 

 exp=

× 1
DN

------- 1
2
---

Q Q0–( )2

∆QN( )2 β+
---------------------------–

 
 
 

.exp

WN
Q

dWN
Q

dEc
------------ = f Ec( ) C 2 dWN

Q

dEc
------------

 
 
 

2

1 f Ec( )–[ ]
dWN

Q

dEc
------------

 
 
 

1

+
 
 
 

× 1
DN

------- 1
2
---

Q Q0–( )2

∆QN( )2 β+
---------------------------–

 
 
 

.exp

WN
Q

WN
Q

WN
Q

IN
Q

TECHNICAL PHYSICS      Vol. 49      No. 3      2004
spectra normalized to unity at Ec = 0 are taken:

Note that such a normalization, while convenient in
experiments, somewhat detracts information being
derived. In particular, the dependence on the target tem-
perature disappears, as follows from (19). Figures 1 and

2 show the energy spectra  of singly charged NbN

and TaN clusters (N = 7) produced by bombarding nio-
bium and tantalum targets by singly charged 6-keV
gold ions Au–1. Figure 3 demonstrates the relative

energy spectra  of singly charged FeN clusters (N =
7–9) that are produced by bombarding an iron target by
singly charged 8.5-keV Xe+1 ions. To reduce the num-
ber of adjusting parameters, we assumed that ∆ = δ and
that this value is equal to the sublimation energy [15].
We found that, for niobium, ∆ = δ = 7.47 eV (the subli-
mation energy of niobium [18]) and the variable param-
eter q = 270 a.u. (atomic units: " = me = e = 1); for tan-
talum, ∆ = δ = 8.1 eV (the sublimation energy of tanta-
lum [18]) and q = 420 a.u.; and for iron, ∆ = δ = 4.29 eV
(the sublimation energy of iron [18]) and q = 200 a.u.
For comparison, Figs. 1–3 also show the experimental
data from [7, 19, 20]. Figure 3 corroborates the weak
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ions. Solid line, calculation with the variable parameter q =
420 a.u.; (d), data points [19].
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Ag7 clusters in relation to the yield of the same clusters
at Θ = 156°C. The clusters are produced by bombarding
a silver target by singly charged Xe+1 ions with energies
of 8.5 and 12.5 keV, respectively. In other words,
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Figs. 4 and 5 show (Θ)/ (156°C) as a function
of temperature at N = 7 and Q = ±1. It was assumed that
the difference between the Fermi energies in the metal
and hepta-atomic cluster is ∆µ = 0.08 eV and β = 0.13.
For comparison, Figs. 4 and 5 show the experimental
results normalized in the same manner [8]. For positive
clusters, three sets of data obtained in different setups
were reported [8] (see Fig. 4); for negative clusters, the
temperature dependences were taken in the same setup
[8] (one set of data in Fig. 5). The spread in the mea-
surements is insignificant. This allows us to conclude
that the theoretical results not only qualitatively but
also quantitatively agree with the experiment [8], where
the total yield of neutral, positive, and negative clusters
versus temperature was studied.
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Abstract—The characteristics (phase composition, grain shape, grain size distribution, and specific surface
area) of Ce0.78Gd0.22O2 – δ nanopowders produced by exposing the target to pulsed CO2 laser radiation are
reported. Reasons for a threefold increase in the output of the experimental powder-preparation unit (up to
60 g/h) with the characteristic grain size (≈10 nm) remaining unchanged are discussed. © 2004 MAIK
“Nauka/Interperiodica”.
INTRODUCTION
The solid high-temperature electrolyte based on

yttria-stabilized zirconia (YSZ) has the highest conduc-
tivity (up to ≈0.17 S/cm) among solid electrolytes cur-
rently available. However, its high operating tempera-
ture (≈1000°C) causes fast degradation of the elec-
trodes and the electrolyte itself, so that the cost of fuel
elements becomes unacceptably high. Therefore,
improvement of the properties of YSZ-based fuel ele-
ments goes in parallel with the search for lower temper-
ature alternatives.

A promising material for medium-temperature solid
electrolytes is gadolinium-doped cerium oxide
(CeGdO), which has recently been the subject of exten-
sive research [1, 2]. In view of the fact that the conduc-
tivity of CeGdO starts rapidly increasing when the
grain size becomes <3 µm [3] and that the mechanical
strength of the material also grows as the grains become
finer, nanometer-grain CeGdO seems the most appro-
priate for reducing internal losses in fuel elements.

In this work, we report early results concerning the
characteristics of Gd-doped CeO nanopowders pro-
duced by evaporating the target with pulsed CO2 laser
radiation. The boiling points of CeO2 (Tb = 3730 K) and
Gd2O3 (Tb = 3900 K) are considerably lower than those
of ZrO2 (≈4570 K) and Y2O3 (≈4710 K) (yttria and zir-
conia powders were previously obtained by the same
technology [3, 4]). Therefore, it was also of interest to
trace the effect of the boiling point on the output of the
powder preparation unit and on the grain size.

EXPERIMENTAL UNIT
The laser used in our experiments was described in

detail in [3, 5]. The only difference from the previous
scheme was that a magnetically controlled saturating
1063-7842/04/4903- $26.00 © 20352
switch, rather than a diode inductive circuit, was
applied to decouple the currents of self-maintained and
semi-self-maintained discharges. Accordingly, the radi-
ation pulse waveform slightly changed (Fig. 1).

During operation, the laser was sealed off; i.e., the
gas mixture in the pumped space of the laser was not
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Fig. 1. Waveforms of the CO2 laser output (a) before and
(b) after refining the laser design.
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(b)
004 MAIK “Nauka/Interperiodica”



        

PROPERTIES OF POWDERS 353

                                                                                                                         
changed for several hours until a desired amount of the
target was evaporated. Subsequently, the target was
replaced and the gas mixture was completely renewed.
Therefore, the laser output during operation decreased
from 800 to 500 W because of air inleakage to the gas-
filled space. Thus, the mean laser output within this
time interval was 665 W; the peak output, 11.2 kW; the
light spot diameter at the exit window, 35 mm; the
FWHM of the laser pulse, 144 µs; the pulse repetition
rate, 435 Hz; the efficiency, 8.3%; and the power con-
sumption, 8 kW.

The design of the experimental nanopowder prepa-
ration unit is shown in Fig. 2. Laser radiation 10 is
focused on target 2 through lens 8, which simulta-
neously serves as the entrance window of chamber 3.
Actuator 1 rotates target 2 and moves it in the horizon-
tal plane so that the velocity of travel of the laser beam
over the target surface remains constant, providing tar-
get evaporation uniformity. As the target is evaporated,
it is shifted in the axial direction in such a way that its
surface remains in the focal spot plane. The focal length
of the KCl lens is 10 cm; the focal spot diameter,
0.45 mm. The laser beam scans the target with a veloc-
ity of 20 cm/s; accordingly, the target displacement for
a time between the pulses is D ≈ 0.043 cm. Fan 4 forces
air 9 into hermetically sealed evaporator 3 and trans-
ports the powder to cyclone 5 and electric filter 6,
where the powder is trapped. The air additionally puri-
fied by mechanical filter 7 is applied again to the evap-
orator by means of the fan. At the target surface, the gas
velocity is ≈15 m/s.

TARGET PREPARATION

Targets were prepared from a mixture of CeO2 and
Gd2O3 powders to provide a near-optimal composition
(Ce0.8Gd0.2O2 – δ [2]) of desired powders. The initial
powders were certified by different methods. The initial
CeO2 powders were found to have a specific surface
area S = (2.8 ± 0.2) m2/g (the BET method, a GKh-1
instrument) and contain 0.25 wt % of adsorbates, which
were desorbed completely at 600°C (thermogravimet-
ric analysis (TGA), a Q-1500 instrument). The powder
had a cubic structure with a lattice parameter of
0.5411 nm (X-ray diffraction analysis, a DRON-4 dif-
fractometer) in agreement with the ASTM library. No
impurities have been detected. SEM analysis (a JSM-
T220A microscope) showed that the powder consists of
irregularly shaped grains and their agglomerates
(Fig. 3a) up to 10 µm across.

The Gd2O3 powder had S = (2.0 ± 0.2) m2/g and con-
tained up to 0.97 wt % of adsorbates, which were fully
desorbed at 700°C. The powder was one-phase and had
a cubic lattice with a parameter of 1.0813 nm. As fol-
lows from the micrographs (Fig. 3b), the grains are also
of irregular shape and are heavily agglomerated (the
grain and agglomerate size reaches 5 µm).
TECHNICAL PHYSICS      Vol. 49      No. 3      2004
When preparing the target, one should take into
account that the content of the higher temperature com-
ponent (Gd2O3) in the target evaporation product will
be lower than in the as-prepared target [4, 6]. The
desired composition Ce0.8Gd0.2O2 – δ meets the weight
ratio CeO2 : Gd2O3 = 0.792 : 0.208. Since final results
of experiments were unknown in advance, we took the
initial weight ratio of the components to be
0.654 : 0.346; in other words, the concentration of Gd2O3
far exceeded the value calculated. The same proportion
was taken for dry powders in view of the TGA data.

The initial powders taken in the above proportion
were thoroughly mixed in an LDI-65 disk mill (SiC
disks) by sequentially putting the powders (six times)
and then the mixture through the mill. Upon mixing,
S was equal to 2.46 m2/g, which agrees well with cal-
culations (2.5 m2/g).

The mixture obtained was forced down into the
evaporating dish of the die by a screw press. The den-
sity of the compact was 0.46 that of the crystalline com-
ponent mixture. Such a target, however, collapsed and
was thrown around during evaporation within about
5 min. Therefore, the target was partially sintered, after
which it evaporated without disintegration. The output
of the unit was 60 g of powder per hour.

RESULTS AND DISCUSSION

A total of 780 g of the powder with a specific surface
area S = (57 ± 4) m2/g was produced. Sedimentation
analysis in isopropyl alcohol showed that the powder
contains ≤8 wt% of objects with a size of >200 nm
(Fig. 3c). These objects represent a mixture of spherical
grains with a diameter of up to 1.5 µm (they seem likely
to appear when the liquid bath is splashed on the target)
and irregular shaped grains of size to 5 µm (possibly,
target fragments). Therefore, in order to improve the
quality of the ceramic material, the powder was settled
down. After sedimentation, S was found to be (56 ±
4) m2/g, i.e., remained virtually unchanged, since the
precipitation of coarse grains is accompanied by minor
agglomeration of the powder.
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Fig. 2. Design of the nanopowder preparation unit used in
the experiments.
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Fig. 3. Micrographs of the grains. (a, b) Initial CeO2 and Gd2O3 powders, respectively; (c) sediment particles; and (d) grains of the
settled powder.
TEM (JEM-200) data (Fig. 3d) indicate that the
shape of the grains varies from cubic to spherical. The
grain size distribution constructed (a total of
1583 grains, Fig. 4) turned out to be close to the lognor-
mal distribution with a geometric mean diameter
dg = 9.4 nm and a variance σg = 1.7 nm. In the size
range > 40 nm, only single grains with diameters d =
50, 60, 65, 80, and 195 nm were detected; that is, more
than 99% of the grains had d < 40 nm (as for YSZ pow-
ders prepared earlier [3, 4]).

TGA data suggest that the powder is one-phase and
represents the solid solution of Gd in the CeO2 cubic
lattice with a parameter of 0.5424 nm. The grain size
evaluated by the Debye–Scherrer method was found to
be D = 19 nm. Since coarser grains make a major con-
tribution to the overall grain size and D > dg, one can
conclude that the grains are single-crystalline.

Elemental identification (a Jobin Yvon 48 instru-
ment) showed that the composition of the nanopowder
is close to the desired one within the measurement
accuracy. The content of CeO2 and Gd2O3 oxides (with
regard for 2.8 wt% of adsorbates measured by TGA) is,
respectively, 78.2% and 21.8%. The significant deple-
tion of the product by gadolinium oxide may be
explained by the fact that the heat of vaporization of
Gd2O3 (it dissociates during vaporization) is roughly
1.5 times higher than that of CeO2 [7, 8]. To obtain data
for the target composition providing a desired ratio
Ce/Gd in the solid solution nanopowder, we are cur-
rently performing experiments with different compo-
nent ratios in the target.

As was noted above, the output of the unit was
60 g/h, i.e., three times higher than in the case of YSZ
[4]. This is in part because the shape of the pulse
applied was somewhat improved (it became shorter),
the peak power increased by 10%, and the repetition
rate was raised from 400 to 435 Hz. It appears, how-
ever, that the basic reason is a considerable reduction of
the energy spent to evaporate the mixture. Calculations
based on available thermodynamic data for ZrO2,
Y2O3, CeO2, and Gd2O3 [7, 8] showed that the energy
needed to heat and evaporate a 0.83ZrO2 + 0.17Y2O3
mixture (which corresponds to 10 YSZ) under adiabatic
conditions is W(H + E) ≈ 7.9 kJ/g and the mixture under
study (0.654CeO2 + 0.346Gd2O3), W(H + E) ≈ 4.75 kJ/g.
Since the pulse energy remains nearly the same as
before (≈1.5 J) and the energy W(H + E) decreased by a
factor of ≈1.7, a rise in the output might be expected.
The improvement of the laser pulse parameters men-
tioned above and the noticeably lower boiling points of
TECHNICAL PHYSICS      Vol. 49      No. 3      2004
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the components of the mixture studied compared with
the boiling points of the YSZ components are also a fac-
tor. A reduction of the boiling point in the case of a bell-
shaped pulse (Fig. 1) allows one to maintain the power
density on the target that is sufficient for evaporation
for a longer time.

It is surprising at first glance that the grain size does
not grow with increasing output. Recall that the rate of
evaporation of the 0.654CeO2 + 0.346Gd2O3 (in weight
ratio) target is three times higher than that of 10 YSZ
(0.87ZrO2 + 0.17Y2O3) [4]. However, as follows from
estimates based on [9, 10] (see the appendix), the tem-
perature of the target surface irradiated must be higher
than the boiling temperature by 1000 K. The vapor
flows away from the surface with a velocity on the order
of the velocity of sound at pressure of 1.5–2.0 MPa. In
the torch, the vapor slows down and its pressure drops
to the pressure of the surrounding gas. During the efflu-
ence, the degree of condensation is low: about 0.1. Con-
densation takes place largely when the vapor mixes
with the air. At this time, the vapor concentration in
both mixtures is roughly the same; hence, the sizes of
the grains produced from the mixtures are close to each
other.

The pulse energy is one order of magnitude higher
than needed to evaporate the amount of the material per
pulse (3.8 × 10–5 g). Obviously, the excess energy par-
tially reflects from the target and its remaining part is
absorbed and dissipated by the expanding cloud of the
vapors and by the condensate. The radiative heating is
bound to decrease the vapor concentration before con-
densation. Accordingly, the grains have no time to grow
larger than ≈10 nm because of condensation and, possi-
bly, subsequent coalescence. This suggests that the out-
put of the evaporation process may be raised further.
However, efforts in this direction (an increase in the
evaporation area) were of no avail. It seems necessary
to look into reasons for energy loss (radiation from the
torch area, the thermal conductivity of the target, melt-
ing of its surface layer, losses in the plasma, the energy
of particles leaving the target, etc.) more closely. These
issues go beyond the scope of this work and will be dis-
cussed later.

CONCLUSIONS

It is shown that the evaporation of the target by a
pulsed CO2 laser is an efficient way of producing
weakly agglomerated nanopowders of compounds with
a characteristic grain size of ≈10 nm and the narrow
grain size distribution. The basic factor governing the
output of the powder preparation unit is the specific
energy required to vaporize the material. The nanopow-
ders obtained offer possibilities for creating solid elec-
trolytes with a nanodimensional structure.
TECHNICAL PHYSICS      Vol. 49      No. 3      2004
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APPENDIX

Estimates of the Evaporation Regime Parameters

(1) According the classification made in [9], a radi-
ation flux of power density ~106 W/cm2 is a medium-
power flux. When incident on a material, it triggers the
thermal destruction mechanism, where the kinetic
energy of evaporation products is small compared with
the heat of vaporization. In addition, the effect of vapor
flow on the motion of the evaporation front is insignifi-
cant, so that they may be considered separately. The
evaporation front velocity v  and the temperature T0 of
the evaporating surface are found by solving the one-
dimensional stationary heat conduction problem:

(1)

where q is the radiation flux absorbed; ρ is the density
of the condensate; ∆H0 is the heat of vaporization at
0 K; cp is the specific heat at constant pressure of the
vapor; v∞ is the preexponential in the temperature
dependence of the rate of evaporation, v  =
v∞exp(−T∞/T); T∞ = ∆H0µ/R; µ is the molecular mass;
and R is the gas constant.

If the liquid phase evaporates, v  =
(P0/ρ)(µ/2πRT0)1/2, where P0 is the saturated vapor
pressure at the temperature T0.

(2) The temperature distribution in the condensate
depends on the relationship between the thermal con-
ductivity and the laser radiation absorption coefficient.
In metals, the optical flux is completely absorbed in a
surface layer ≈0.1 µm thick and the heat conduction
mechanism then comes into play. The temperature dis-
tribution in this case in exponential if melting is
ignored. The heat characteristic penetration depth is
given by l = κ/ρcv, where κ is the thermal conductivity
and c is the specific heat of the condensate.

In ceramic materials, the light penetration depth
may be comparable to the wavelength: l = 5–10 µm
[11]. The thermal conductivity of ceramic materials is
two orders of magnitude lower than that of metals (for
example, 2 W/(m K) for ZrO2 [12] versus 400 W/(m K)
for copper). Therefore, for ceramic materials, l ~ 1 µm
and the situation l0 @ l is quite realistic.

In this case, the temperature distribution is the sum
of two exponentials: T(x) = Aexp(–x/l0) – Bexp(–x/l). It
peaks at a depth of l. Under the steady-state conditions,
the surface temperature and the rate of evaporation do

v
q

ρ ∆H0 cpT0+( )
------------------------------------, T0

T∞

v ∞/v( )ln
-----------------------,= =
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Table 1

Mixture µ,
g/mol

∆H0, 
kJ/g Tb, K ρ,

g/cm3
v∞,

106 m/s
T∞,

103 K
c,

J/kg K
cp,

J/kg K T0, K v, m/s l, µm
mcalc,
10–5 g

YSZ(*) 111 6.66 4590 2.75 6.32 88.9 598 284 5710 1.09 0.50 8.6

YSZ(**) 111 6.66 4590 2.75 6.32 88.9 598 464 5670 0.97 0.56 7.6

CeGdO(*) 150 4.03 3780 3.65 5.38 72.7 403 202 4790 1.36 0.45 14.2

CeGdO(**) 150 4.03 3780 3.65 5.38 72.7 403 312 4760 1.24 0.50 12.9

Note: Without (*) and with (**) taking into account molecular vibration.
not depend on the temperature distribution. At the same
time, the temperature distribution affects the heating
duration and the heat stored in the layer heated.

(3) In the calculation, the mixture was replaced by a
homogeneous material with averaged parameters µ, ρ,
∆H0, c, cp, and Tb (boiling point). These parameters
were estimated from the properties of the components
in view of their weight percent [7, 8]. We took into con-
sideration that, when boiling, sesquioxides dissociate
into three molecules by the reaction Me2O3 = 2MeO + O
[7]; therefore, the molecular mass was found from the
formula µ = (g1/µ1 + 3g2/µ2)–1, where g1 and g2 are the
weight fractions. The heat of vaporization was taken to
be equal to the heat of this reaction (with opposite sign).
The specific heat c was calculated by the Dulong–Petit
law.

Next, we assumed that the target is compacted to a
relative density of 0.5, the thermal conductivity is pro-
portional to the relative density, and half the incident
flux is absorbed in the target. The radiation flux is
approximated by a rectangular pulse of amplitude
7.9 kW and duration 180 µs. For a focal spot diameter
of 0.45 mm, the power density equals 5 × 106 W/cm2.

(4) Table 1 lists the mean values of the electrophys-
ical parameters, T0, v, l, and the calculated weight mcalc
of the material evaporated per pulse. The calculation
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Fig. 4. Grain size distribution in the Ce0.78Gd0.22O2 – δ
powder after sedimentation. 
was performed for two values of cp when molecular
vibrations are unexcited and totally excited. The real
situation is between these two extreme cases.

Provided that half the incident flux is absorbed in the
target, the calculated weight of the product exceeds the
experimental value by a factor of 5.8 for YSZ and 3.6
for CeGdO. It is likely that the energy is partially lost
on the way to the target surface because of radiation
scattering and absorption by evaporation products.

(5) Upon evaporation, the nonequilibrium “semi-
Maxwellian” velocity distribution of vapor particles
becomes equilibrium with parameters T1, n1, and
velocity u1. These parameters are hard to determine
correctly and are found by solving the kinetic equation.
Direct use of results obtained for monoatomic gas [9]
fails. Let us therefore assume that the vapor flows with
a local acoustic velocity and that a backward flow
toward the surface is absent. The parameters are then
determined from the equations of conservation of mass
flow and energy flow:

(2)

where m is the molecular mass, R1 = R/µ, γ is the adia-
batic exponent, n0 = P0/kT0 is the concentration of satu-
rated vapor particles at the temperature T0.

From these equations, we get

(3)

where Pw is the pressure exerted on the evaporation sur-
face (wall). It is found from the equation of conserva-
tion of momentum flux.

(6) The simulation of the saturation temperature Ts
at the density n1 shows that the outgoing vapor is super-
saturated; hence, it becomes condensing at once. Until
the vapor pressure drops to the environmental pressure,
the vapor mixes with the air insignificantly and conden-
sation proceeds adiabatically (if the absorption of the
radiation by the vapor is ignored). Under these condi-
tions, the adiabatic equation dH – VdP = 0 (H is the
enthalpy), the equation of state for a two-phase medium
PV = (1 – x)R1T , the equation of phase equilibrium

ρv mn0 kT0/2πm( )1/2 mn1u1;= =

cp R1/2–( )T0 cpT1 u1
2/2; u1

2+ γR1T1,= =

T1/T0 1/γ; n1/n0 1/ 2π 0.399;= = =

P1/P0 0.399/γ; Pw P1 ρ1u1
2,+= =
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Table 2.

Mixture γ T1, K P1, 105 Pa Pw, 105 Pa ρ1, kg/m3 Ts, K u1, m/s x

YSZ(*) 1.359 4201 12.9 30.5 4.10 5291 654 0.124

YSZ(**) 1.192 4754 13.2 28.8 3.71 5299 651 0.090

CeGdO(*) 1.379 3471 16.5 39.3 6.35 4425 515 0.132

CeGdO(**) 1.216 3911 17.0 37.6 5.80 4433 513 0.103

Note: For * and **, see the note to Table 1.
dp/dT = ∆H(1 – x)/TV, and the expression for enthalpy
H = cp(1 – x)T + cxT – ∆Hx are valid [10]. Here, x is the
degree of condensation (the weight fraction of the liq-
uid), ∆H is the heat of phase transition, and V is the vol-
ume of a two-phase medium.

Assuming that ∆H is constant and eliminating P and
V from the equations, we come to an equation that
relates x and T:

(4)

where ∆c = c – cp.

It is reasonable to put x = 0 at T = Ts as the initial
condition. The final temperature equals the boiling tem-
perature Tb. Taking into account that the fractions
depend on temperature only slightly, we may write an
approximate solution in the form

(5)

where ∆H = ∆H0 – ∆cTb. The results of simulation are
given in Table 2.

It is seen that the temperature and degree of conden-
sation depend markedly on the excitation of molecular
vibration. However, the degree of condensation under
adiabatic expansion is small. For the most part, the
vapor condenses only when it mixes with the air, trans-
ferring to it the heat of condensation. During mixing,
the particle concentration n = P/kT is nearly the same in
both mixtures; hence, the sizes of the particles are also
close to each other.

dx
dT
------

∆H ∆cT+
∆H ∆cT–
-------------------------1 x–

T
-----------–

c
∆H ∆cT–
-------------------------,+=

1 x–
Tb

T s
----- 

 
a c

2∆c
---------- 1

Tb

T s
----- 

 
a 1–

– ;+=

a
∆H ∆cTb+
∆H ∆cTb–
---------------------------,=
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Abstract—Transmission electron microscopy and electron diffraction data show that, as silicon dissolves in
molten aluminum, a great number of silicon nanospheres (from 1.5 nm to several tens of nanometers across)
forms in the melt. When these particles are dissolved in toluene, the solution takes on a pale pink color and its
transmission coefficient at a wavelength of 300 nm decreases fivefold. In such a solution, a great number of
equal-size silicon nanospheres (1.5 nm in diameter) are observed. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Nanometer-sized semiconductor structures, specifi-
cally, silicon, GaAs, etc., filamentary nanocrystals, are
today attracting considerable interest [1]. However, no
case of producing spherical silicon nanoparticles has
come to our notice.

In this work, we describe the formation of silicon
spherical nanoparticles by a method that is based on the
well-known phenomenon of silicon dissolution in
metal melts (in particular, in aluminum melt) where sil-
icon does not chemically react with the metal [2].
Transmission electron microscopy (TEM) and electron
diffraction (ED) data for the silicon nanospheres
obtained and the transmission spectrum of the silicon
nanoparticles in toluene are reported.

EXPERIMENTAL

A small amount (≈0.04 g) of 99.99% pure aluminum
was placed on the surface of a 0.38-mm-thick polished
ÉKDB-10-26 Si(111) wafer that was located in a Hita-
chi HUS 5GB vacuum evaporator kept at a pressure of
10–5 Torr. The wafer was heated by passing electric cur-
rent through it until the metal melted. Once the silicon
had dissolved (virtually instantly) in the melt, the cur-
rent was immediately switched off and the metal was
cooled and withdrawn from the evaporator. Then, the
Al–Si alloy was etched in a large amount of a 60% solu-
tion of reagent-grade HCl in distilled water for 5 days.
As a result, we obtained a lump of porous silicon,
which was rinsed several times in distilled water to
remove the residual acid and water-soluble metal salts.
The lump was ultrasonically (44 kHz, 5 min) crushed in
distilled water. A drop of the resulting liquid was placed
on the microscope grid covered by a 20-nm-thick car-
bon film, dried in air, and examined in a Hitachi HU-
12A transmission electron microscope (the rated reso-
lution 0.2 nm at an accelerating voltage of 75 kV). The
silicon lump was also crushed in toluene, and the result-
ing solution was spun (for 30 min at an acceleration of
1063-7842/04/4903- $26.00 © 20358
800 g) to settle out coarse particles. Then, the superna-
tant liquid was carefully decanted and its transmission
spectrum was recorded with an SF-26 spectrophotome-
ter.

RESULTS AND DISCUSSION

Irregularly shaped fragments of various size, as well
as many rounded and spherical particles of size ranging
from several nanometers to several thousands of
nanometers, were observed. Figures 1a and 1b show
TEM micrographs and ED patterns taken of spherical
particles formed in the aluminum melt. The EED pat-
tern in Fig. 1b is composed of two patterns: one was
taken at a short exposure time to reveal the structure of
the inner rings; the other, at a long exposure time to
image the outer (less intense) rings. The interplanar
spacings calculated for the center of the rings with an
accuracy of ≈10% were found to be 0.33 nm (for the
(111) reflection), 0.19 nm (220), 0.16 nm (311),
0.12 nm (422), and 0.093 nm (531). Since the diame-
ters of the (211) and (311) rings are close to each other
and their brightnesses differ substantially, they seem to
merge into one ring. The tabulated values [3] for inter-
planar spacings in silicon are 0.3138 nm (111), 0.1920 nm
(220), 0.1638 nm (311), 0.1108 nm (422), and
0.0918 nm (531).

When the silicon lump disintegrated in toluene, the
solution turns pinkish. Figures 2a and 2b show, respec-
tively, TEM images and ED patterns of the silicon par-
ticles from the toluene. It is seen that most of the parti-
cles are spherical and have an equal size (1.5 nm). The
interplanar spacings (calculated for the center of the
rings with an accuracy of ≈10%) were found to be
0.312 nm (111), 0.18 nm (220), 0.16 nm (311),
0.104 nm (422), and 0.089 nm (531). Since the diame-
ters of the (211) and (311) rings are close to each other
and their brightnesses differ substantially, they seem to
merge into one ring. It is also hard to distinguish
between the (400), (331), and (422) rings. These find-
004 MAIK “Nauka/Interperiodica”
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ings coincide with the tabulated data (within the error
of measurement), suggesting that the spherical particles
observed are silicon particles.

Figure 3 demonstrates the transmission spectra
taken from the solution of the silicon nanospheres in
toluene and from pure toluene. At a wavelength of

(311)

(220)(111)

(422)
(531)

(a)40 nm

(b)

Fig. 1. (a) TEM micrograph of the silicon nanoparticles
formed by dissolving silicon in the aluminum melt and
(b) ED pattern taken of these particles.
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≈300 nm, the transmission of the solution is roughly
five times lower.

For comparison, we studied silicon particles that
formed when silicon was dissolved in molten copper
(the experimental technique was the same as described
above). Copper was chosen because it intensely dis-

(531)

(111)

(220)

(311)

(400) (331) (422)

(a)40 nm

(b)

Fig. 2. TEM micrograph of the silicon nanoparticles
extracted from the toluene solution and (b) ED pattern taken
of these particles.
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solves but does not interact with silicon [2] and con-
tains oxygen in large amounts [4]. After etching the
copper–silicon alloy, we obtained a white porous lump,
which was free of spherical particles (as demonstrated
by TEM examination). The irregular shape of the parti-
cles and their white color suggested that this lump con-
sists of silicon oxide, which was confirmed by etching
in hydrofluoric acid. One may assume that the oxygen
dissolved in copper oxidizes the silicon almost com-
pletely, thus preventing the formation of spherical sili-
con nanoparticles.
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Fig. 3. Optical transmission spectra for pure toluene (con-
tinuous curve) and for the solution of the silicon nanoparti-
cles in toluene (dashed line).
Thus, the aluminum melt appears to represent a
unique medium where oxygen and other gases that are
capable of combining with silicon are present in minor
amounts, if at all, and where silicon does not react with
the metal. As a result, silicon atoms interact with each
other to form spherical particles. The sizes of the fine
silicon particles obtained are close to theoretically pre-
dicted diameters of Si60 silicon fullerenes (1.5 nm) [5].
The coarse particles are likely to be an analogue of car-
bon soot (so-called white soot), which is known to con-
sist of spherical particles [6].

Further investigation into the structure and proper-
ties of the spherical silicon nanoparticles will clear up
whether they have a regular fullerene-like structure.
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Abstract—Magnetization of nickel nanoparticles with various lattice structures is studied. Nickel particles
with the fcc structure are shown to be magnetically harder than the particles with the icosahedron structure.
Easy magnetization axes in the particles are found. © 2004 MAIK “Nauka/Interperiodica”.
The physical properties of nanoparticles with sizes
ranging from 10 to 50 Å are of both fundamental and
applied interest (as for their practical use, see, e.g.,
review [1] and Refs. therein). Among them, tiny ferro-
magnetic particles (nanoobjects with various lattice
structures) are attracting special attention. As follows
from many experiments and numerical simulations,
metal ferromagnetic clusters have usually the bcc, fcc,
or icosahedral structure with a fivefold symmetry axis,
which is prohibited by translation symmetry in the
massive body. It is obvious that the lattice structure,
along with the size, influences the magnetic properties
of nanoparticles. Therefore, finding a correlation
between the lattice structure and magnetic properties of
nanoparticles seems topical. In this study, the effect of
the lattice structure of Ni nanoparticles on their magne-
tization is studied.

It is known [2] that small Ni particles have the icosa-
hedral or fcc structure, for which an icosahedron and
rhombic dodecahedron, respectively, are spatial sub-
units of the first coordination sphere. Let us determine
stability domains for the nanoparticles. Following [3],
we find their specific cohesion energy Ecoh/Ebulk
(Fig. 1). Calculation shows that icosahedral particles
with the number of atoms N1 = 13, 55, 147, 309, 561,
… (the characteristic sizes are 5 to 25 Å) and face-cen-
tered cubic particles with N2 = 19 (7 Å), 79 (11.1 Å),
135 (13.1 Å), 201 (15.6 Å), 675 (23 Å), … are energet-
ically the most favorable. Note that these values of N
for stable states of the particles correspond to configu-
rations with the coordination spheres totally occupied.

When investigating the magnetic properties of the
particles, we take into account that the magnetic
moment of Ni clusters with N = 55.79 is m ≈ 0.8µB,
where µB is the Bohr magneton. For Ni clusters with
N = 135, m ≈ 0.7µB; for N ≥ 147, m ≈ 0.6µB.

Thus, the magnetic moments of the most stable
atomic configurations of small Ni particles are close to
that of bulk nickel. Since the charge density of bulk
1063-7842/04/4903- $26.00 © 20361
nickel is almost coincident with the density of spin
states [5], the phenomenological expression for the
magnetic anisotropy energy of the particle can be writ-
ten in the form

(1)

where µ0 is the magnetic constant, q = m/r, r = emr, e =
m/m, m is the atomic magnetic moment (0.8µB for N =

Ea

µ0q2

8πN
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Fig. 1. Specific cohesion energy of Ni nanoparticles vs. the
number of constituent atoms: (a) icosahedral particles and
(b) particles with the fcc lattice.
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55.79, 0.7µB for N = 135, and 0.6µB for N > 135), r is
the atomic radius, and rij is the vector distance between
i and j atoms (atoms are viewed as hard spheres).

The particles with N < 55 (N = 13.19) are disre-
garded, since their characteristic size 5 Å is smaller than
the minimal size of a ferromagnetic particle (10 Å) [5].

The direction of the easy magnetization axis in the
nanoparticles is found by minimizing expression (1).
Performing minimization by the Monte Carlo method
with an angular step ∆ϕ = 1.7 × 10–6 rad between the
easy magnetization axis and the Cartesian axes, we find
that the easy magnetization axis for the icosahedral par-
ticles represents the fivefold axis of rotational symme-
try that passed through the center and opposite vertices
of the icosahedron. At the same time, the binary axis of
rotational symmetry that connects the central vertices
of the rhombic dodecahedron is the easy magnetization
axis for the fcc particles.

Using the Monte Carlo method, we also studied the
process of magnetization of the nanoparticles (Fig. 2).
The amount of hysteresis was determined by averaging
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Fig. 2. Magnetization curves for the Ni nanoparticles. N =
(1) 147, (2) 309, (3) 561, (4) 135, (5) 201, and (6) 675
(curves 5 and 6 merge together).
hysteresis loops at various directions of the easy mag-
netization axis and external magnetic field H. An angu-
lar step between the easy magnetization axis and H was
1.7 × 10–6 rad; a step in field, 1.26 × 10–4 A/m. Since Ea
varies insignificantly with N, the magnetization curves
for the particles in Fig. 2 superpose. This fact outlines
the domain of interest in studying nanoparticles. From
Fig. 2, it also follows that the icosahedral particles are
magnetically softer than the fcc ones. For example, the
coercive force ratio for the particles with N2 = 147 and
N1 = 135 and 201 are Hc135/Hc147 ≈ 6.2 and Hc201/Hc147 ≈
5.4. The ratio of the initial differential susceptibilities
χa = (dm/dH)|H → 0 is χa135/χa147 ≈ 0.2 and χa201/χa147 ≈
0.24. In other words, the lattice symmetry (the symme-
try of the icosahedral particles is higher) has an effect
on the magnetic properties of nanoparticles and,
accordingly, on the properties of materials made of
nanoparticles.

Typical ranges of the coercive fields for the icosahe-
dral and fcc particles are, respectively, (1.3–2.3) × 10–4

and (7–8) × 10–4 A/m. These values are rather high, so
that both particles may be considered as magnetically
hard materials. A jump in the coercive force that is
observed in going from the icosahedron particles with
N = 147 and 561 to the fcc particles with N = 201 and
675 is worth noting. The particle size is 15 and 15.6 Å
in the former case and 25 and 23 Å in the latter.
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Abstract—Analytical models for the magnetization vector field Bm in a uniaxial ferromagnetic film are stud-
ied. Some of them are found to closely approximate Bm even if the quality factor of the material approaches
unity. © 2004 MAIK “Nauka/Interperiodica”.
When theoretically describing states and processes
in ferromagnets, one must know the distribution of the
magnetization vector or of its components Bm and Hm
[1]. The description of Bm or Hm is usually carried out
in terms of simplified models that yield analytical
expressions for Bm and Hm, which is of great impor-
tance for applied problems. Although results obtained
from the simplified models are of limited utility, they
are often applied too broadly without considering
errors that may arise.

In this work, we describe the magnetization vector
field Bm in a magnetic film with easy-axis anisotropy in
terms of a simple model where a solitary domain wall
(DW) separates two semi-infinite domains magnetized
normally to the film plane (i.e., the magnetization is
aligned with the z axis). It is assumed that the demag-
netizing field is equal to the magnetic field produced by
an infinitely long strip of width h (h is the film thick-
ness) with a current Jy = 2Mh in the direction of the y
axis (in the film plane, the magnetization experiences a
jump of 2M). At points lying at the middle of the DW,
the demagnetizing field is given by [2, Eq. (3.2.1),
p. 77]

(1)

The model considered is a significant drawback: the
field Bmx diverges on the film surface. This field must be
known, for example, in order to calculate the “twist” of
the magnetization in the DW.

To eliminate this drawback, it is necessary to con-
sider the magnetization distribution in the DW. Let the
DW have a width ∆. In such a model, the field Bm is
equivalent to the field between two infinitely long strips
that are ∆ distant from each other and have codirected
currents Jy = Mh. The expression for the field Bmx at the

Bmx z( ) 4M
z h/2+
z h/2–
-----------------,ln=

Bmz z( ) 0.=
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middle of the DW has the form

(2)

Assuming that the magnetization inside the DW var-
ies linearly from –M to M and splitting the DW into a
set of layers dx of thickness h with currents di = Mdx,
we obtain

Now, assuming that the magnetization obeys the
Landau–Lifshitz distribution (Mz = M(tanh(x/∆) and
splitting the DW into a set of layers dx with a thickness
h and currents di = Md(tanh(x/∆)), we arrive at

(3)

For a periodic array of DWs, the field Bm may be
found under the assumption ∆ ! d, where d is the
period of the structure. For such a structure, the field
Bmx at the middle of the DW is expressed as

(4)

where  is the demagnetizing field for a solitary DW.

For a curved DW, which arises in dynamic pro-
cesses, the component Bmz of the field Bm is other than

Bmx z( ) 2M
z h/2+( )2 ∆2/4+

z h/2–( )2 ∆2/4+
-----------------------------------------.ln=

Bmx z( ) 2M
z h/2+( )2 ∆2+

z h/2–( )2 ∆2+
------------------------------------ln=

+ 4M
h/2 z+( )

∆
--------------------- ∆

h/2 z+( )
---------------------arctan

– 4M
h/2 z–( )

∆
--------------------- ∆

h/2 z–( )
---------------------.arctan

Bmx z( ) 2M
1

x/∆( )cosh
2

--------------------------- z h/2+( )2 x2+

z h/2–( )2 x2+
----------------------------------- xd

∆
-----.ln

0

∞

∫=

Bmx z( ) Bmx
1=

+ 2M 1–( )n z h/2+( )2 nd/2( )2+

z h/2–( )2 nd/2( )2+
-------------------------------------------------,ln

n 1=

∞

∑

Bmx
1
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zero. Expressions for the components of the field Bm
can be found by supposing that the field is equivalent to
the field of currents passing over the curved surfaces
q(z) – ∆/2 and q(z) + ∆/2, where q(z) is the coordinate
of the DW center:

Advanced numerical methods allow one to solve the
rigorously stated problem of magnetization vector dis-

Bmx z( ) 2M
z z'–( )

z z'–( )2 q z( ) q z'( )– ∆/2+( )2+
---------------------------------------------------------------------------

h/2–

h/2

∫=

+
z z'–( )

z z'–( )2 q z( ) q z'( )– ∆/2–( )2+
-------------------------------------------------------------------------- dz',

Bmz z( ) 2M
q z( ) q z'( )– ∆/2+( )

z z'–( )2 q z( ) q z'( )– ∆/2+( )2+
---------------------------------------------------------------------------

h/2–

h/2

∫=

+
q z( ) q z'( )– ∆/2–( )

z z'–( )2 q z( ) q z'( )– ∆/2–( )2+
-------------------------------------------------------------------------- dz'.

0

z
h/2

10

20

Bmx/M
1

2
3
4

Field Bmx calculated by Formulas (1)–(4) and obtained by
the dynamic establishment method for a twisted DW
(dashed line).
tribution both in a solitary DW [4] and in a periodic
domain structure [5] with any desired accuracy and cal-
culate the field Bm [6].

The figure compares Bm calculated by formulas (1)–
(4) with the result of numerical calculation by the
dynamic establishment method (dashed line) [5]. The
ordinate is the component Bmx in units of M; the
abscissa, the coordinate z from the middle of the film to
its surface. The parameters of the film are the quality
factor Q = K/2πM2 = 2, the thickness h = 10l, and the
period of the magnetization structure d = 11l. Here, l =
(AK)1/2/πM is the characteristic length of the film and A
and K are the anisotropy constant and the constant of
exchange interaction, respectively.

As follows from the figure, Bmx found from formulas
(1)–(4) qualitatively agree with Bmx obtained by the
numerical method. The mean discrepancy between the
field obtained by (4) and that obtained numerically var-
ies from 18% for Q = 4 to 45% for Q = 1. Thus, the ana-
lytical formulas provide a good approximation of Bm
even if the Q factor of a material is close to unity.
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Abstract—A spectral analysis technique based on approximating a set of counts by a first-degree trigonometric
polynomial with a varying frequency of its harmonics. With this technique, the parameters of a signal compo-
nent that is two orders of magnitude weaker than an interference are estimated at a frequency ratio of 0.82.
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In experiments, one often needs to estimate the
spectrum of a weak periodic component in the presence
of an intense harmonic interference. Fast Fourier trans-
formation in this case cannot provide a necessary reso-
lution because of its poor selectivity [1] and the pres-
ence of extra noise [2]. Earlier [3], the author suggested
a technique for consistent spectral analysis of quasi-
periodic oscillations where a set of counts is approxi-
mated by a first-degree trigonometric polynomial with
a varying frequency of its harmonics. To date, this tech-
nique has proved to be efficient in estimating the
parameters of components of a digital signal with an
intense harmonic interference. In [4], the parameters of
a double-period component of oscillations were esti-
mated in the case when the amplitude of this compo-
nent was five times lower that the basic component
amplitude. Therefore, it seems reasonable to extend the
technique for a wider range of amplitude and frequency
ratios.

The parameters of oscillation harmonics can be
appropriately estimated by the spectral analysis tech-
nique where a sequence of counts is approximated by a
first-degree trigonometric polynomial. Let we have a
sequence of counts x(n) (n = 0, 1, …, N – 1) that may
contain harmonics such that their number K and fre-
quencies are unknown but a frequency range expected
can be given. We approximate this sequence by a trigo-
nometric polynomial [3] of type

Here,

A is the starting point of spectral analysis; r is a step;
and Cj, Sj, and Gj are to be found by the least-squares

y j n( ) G j S j nh j( )sin C j nh j( ),cos+ +=

j 1 2 … L @ K , n, , , 0 1 … N 1.–, , ,= =

h j
2π
24
------ A rj+( ),=
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method:

In the above formulas,

From the maxima of the dependences

the presence of harmonics in a process studied is estab-
lished. Then, if necessary, one can determine the coef-

S j = U2 jF1 j U1 jF2 j–( )/Wj; C j = V1 jF2 j V2 jF1 j–( )/Wj;

G j E1 j A1 jS j– A2 jC j–( )/N .=

W j V1 jU2 j V2 jU1 j; V1 j– B1 j A0 j A1 jB0 j;–= =

V2 j D1 j A0 j A1 jD0 j; U1 j– B2 j A0 j A2 jB0 j;–= =

U2 j D2 j A0 j A2 jD0 j; F1 j– E2 j A0 j E1 jB0 j;–= =

F2 j E3 j A0 j E1 jD0 j,–=

A0 j N ; A1 j B0 j nh1( );sin
n 0=

N 1–

∑= = =

B1 j nh j( ); A2 jsin
2

n 0=

N 1–

∑ D0 j nh j( );cos
n 0=

N 1–

∑= = =

B2 j D1 j nh j( ) nh j( );cossin
n 0=

N 1–

∑= =

D2 j nh j( ); E1 jcos
2

n 0=

N 1–

∑ x n( );
n 0=

N 1–

∑= =

E2 j x n( ) nh j( ); E3 jsin
n 0=

N 1–

∑ x n( ) nh1( ),cos
n 0=

N 1–

∑= =

j 1 2 … L., , ,=

M j S j
2 C j

2+ , J 1 2 … L, , ,= =
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ficients of the trigonometric polynomial that corre-
spond to these maxima.

Since the constant component is found simulta-
neously, associated calculations are carried out without
preliminarily memorizing the array of input data, i.e.,
in real time. Using the technique of approximation by
trigonometric polynomial, one may reveal [4] weak fre-
quency components in the presence of an intense har-

M

0.82
I

1.00
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0

0.5

1.5

MR × 10–2

0.82
I

1.00

1.0

0

0.5
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Fig. 2.

Fig. 1.
monic interference. In this case, calculations are per-
formed in two steps. First, spectral analysis is carried
out in a given frequency range and the parameters S1,
C1, and h1 of the intense harmonic component (interfer-
ence) are found with the entire spectrum memorized. At
the second step, spectral analysis is performed again in
the same frequency range of the signal:

Next, the spectral components are successively sub-
tracted: W1j = Sj – Z1j, W2j = Cj – Z2j (j = 1, 2, …, L), and

the dependence MRj = , from which the
parameters of weak components are estimated, is calcu-
lated.

The author investigated the signal with a = 2π/24:

Figure 1 shows the initial spectrum; Fig. 2, the dif-
ference signal spectrum, from which one determines
the absolute value of the weak component of interest
with an accuracy of 20% or higher (the abscissa is the
frequency ratio).
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Abstract—Conditions under which a ferroelectric subjected to an electric field acquires equal-permittivity
paraelectric states at different temperatures are studied. The temperature dependences of the control (inducing)
field intensity and feasible permittivity interval (εmin–εmax) are obtained. The effect of intersection of the ε(E, Ti)
characteristics of the ferroelectric in the paraelectric state is analyzed. With the control field and temperature
varying consistently, the permittivity εi of strontium titanate films and films of the barium titanate–strontium
titanate solid solution may be kept constant in a wide (200–320 K) temperature range and, at the same time,
changed by more than twofold by varying the electric field. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Use of ferroelectric (FE) materials in metal–insula-
tor–metal structures makes it possible to design electri-
cally controlled electronic devices [1]. In ferroelectrics,
the field and temperature dependences of the permittiv-
ity ε coexist; i.e., ε = ε(E, T). From the viewpoint of
applications, the temperature sensitivity of the permit-
tivity (ε(T)) and, accordingly, device characteristics is a
detrimental factor. A straightforward way of removing
this effect is to stabilize the temperature of an FE ele-
ment or device as a whole. Insertion of a thermostat
sometimes degrades the performance of an electronic
system. For applications, one needs to devise less hard-
ware-intensive techniques for stabilizing the tempera-
ture characteristics of FE components.

In the absence of an external electric action, each
paraelectric state of a ferroelectric is known to be
assigned a specific value of the permittivity ε(T). The
application of an electric field may change the situa-
tion. In particular, if the polarization is constant
(Pi(T) = const), all the states have different permittivi-
ties. However, when the control field intensity is tem-
perature-invariable (Ei(T) = const), the temperature
dependence of the permittivity (ε(Ei, T)) in the
paraelectric range becomes nonmonotonic. Pairs of
states with the same permittivity ε(Ei, Tk) = ε(Ei, Tl)
appear. Also, the situation becomes possible where the
electric field provides a constant permittivity (εi(T) =
const) over a wide temperature range [2]. In this paper,
we consider the problem of matching the temperature
and control field so as to induce states in a ferroelectric
that differ in temperature interval but are indistinguish-
able in permittivity.

INDUCED STATES OF A FERROELECTRIC

The dielectric properties of a ferroelectric with the
second-order phase transition will be described in
1063-7842/04/4903- $26.00 © 20367
terms of the Ginzburg–Devonshire formalism. In this
approximation, the inverse permittivity (α = 1/ε0ε) of a
ferroelectric in the paraelectric state is a function of two
independent arguments, namely, polarization (P) and
temperature (T):

(1)

where α(0, T) is the temperature-dependent inverse per-
mittivity in the absence of the control field and β is the
constant of first-order dielectric nonlinearity (β =
const(T)).

The dependence P(T) artificially maintained in the
form

(2)

where P1 is a constant and

(3)

is the temperature-dependent component of the polar-
ization, provides both the control of the permittivity
εi(P1) and compensation for its temperature variation
(dεi/dT = 0). Note that temperature dependence (2) con-
structed by a step increase in the polarization at a con-
stant temperature (∆PT) and a step increase in the tem-
perature at a constant polarization (∆TP) meets the
applicability condition for relationship (1). The invari-
ant statement of an electric action that induces states
indistinguishable in permittivity has the form

(4)

where

(5)

α P T,( ) α0 0 T,( ) 3βP2,+=

P2 T( ) P1
2 P2

2 T( ),–=

P2 T( ) 3βε0ε 0 T,( )( ) 0.5–=

E2 T( ) E1
2 3

2
--- 2E1

4E2
2 T( )3 E2

2 T( ),–+=

E1 27βε0
3εi

3( ) 0.5–
,=
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and

(6)

are the electric field components that provide, respec-
tively, the variation of the permittivity εi(E1) and main-
tenance of its constant value (εi(T) = const) in a given
temperature range and ε0 is the absolute dielectric con-
stant.

Thus, basically the permittivity of an FE may be sta-
bilized in a given temperature range and available hard-
ware can implement algorithms (1) and (4), which
match the control field and temperature.

A relationship between the temperature interval
width Tl–Tk, the range εi = εmax–εmin of realizable per-
mittivities, and the related range of control field
strengths Emin–Emax is a key issue in the discussed prob-
lem of stabilizing the FE permittivity. The search for a
correlation between ∆εi and ∆T and between ∆E and ∆T
simplifies greatly if one takes a good look at the behav-
ior of the point of intersection between characteristics
ε(E, T) corresponding to two different temperatures
(Tl < Tk). Note that the property ε(EC, Tl) = ε(EC, Tk) of
nonlinear FEs could be noticed from earlier experimen-
tal data [3, 4]; however, it was overlooked by the
researchers and was not explained analytically.

INTERSECTION OF ε(E) CHARACTERISTICS

In the absence of the control field (E = 0), the per-
mittivity ε(0, T) of a ferroelectric exhibiting the second-
order phase transition decreases monotonically with
increasing temperature in the paraelectric range (T >
TC). The application of an electric field (Ei = const)
causes the permittivity to decrease (ε(0, T) > ε(Ei, T))
and produces a maximum in the curve ε(Ei, T) in the
range T > TC [3–5]. In this case, pairs of states equal in

E2 T( ) 2 27βε0
3ε3 0 T,( )( ) 0.5–

=

0.2

0.6

1.0

1.4

1.8

εC

1

2

0 20 40 60EC

E = U/g, V/µm

ε(E, Ti)/ε(0, 300), C(U, Ti)/C(0, 300)

Fig. 1. Calculated permittivity (solid lines) of strontium
titanate and the capacitance of the SrTiO3 film plane capac-
itor (data points) vs. electric field intensity E at T = (1) 78
and (2) 300 K. U is the control voltage, and g is the elec-
trode gap.
permittivity appear. The presence of equal values of ε
(ε(Ei, Tl) = ε(Ei, Tk) in the temperature dependence ε(Ei,
T) means that the field dependences ε(E, Tl) and ε(E, Tk)
at temperatures Tl and Tk > Tl must intersect.

This conclusion follows from the phenomenological
theory of ferroelectricity. Let us use the truncated Gin-
zburg–Devonshire series where polarization terms to a
power higher than the fourth are rejected. Standard dif-
ferentiation of the series yields a system of algebraic
equations that relate the electric field intensity E and
inverse permittivity α = 1/ε0ε(E, T) to the magnitude of
the polarization vector P of the ferroelectric in the
paraelectric state:

(7)

System (7) is written for two temperatures, T = Tk
and T = Tl < Tk, and has a positive solution εC for the
permittivity (ε(EC, Tl) = ε(EC, Tk) = εC),

(8)

and a positive solution EC for the field intensity,

(9)

In combination, these solutions specify the point
where the curves ε(E, Tl) and ε(E, Tk) intersect. This
property is exemplified in Fig. 1, which plots ε(E, Ti)
calculated for strontium titanate (TC = 40 K, CC = 9 ×
104 K, and β = 8.9 × 109 m5/C2F [3–5]).

E α0 βP2+( )P=

α α 0 3βP2.+=



1

εC
2

-----
4
3
--- 1

ε2 0 Tl,( )
-------------------- 1

ε 0 Tl,( )ε 0 Tk,( )
-------------------------------------- 1

ε2 0 Tk,( )
---------------------+ + 

 =

27β ε0ε 0 Tk,( )( )3( )EC
2

=  
ε 0 Tk,( )

εC
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 
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Fig. 2. C–U characteristics of the Ba0.3Sr0.7TiO3 film plane
capacitor (TC = 120 K, Fig. 2) at T = (1) 325, (2) 305,
(3) 225, and (4) 200 K. The measuring field frequency is f =
1 MHz.
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Pair intersection of the capacitance–voltage charac-
teristics C = C(U, Ti) was observed for plane-parallel
metal–insulator–metal structures based on bulk ferro-
electrics [4] and for plane capacitors made of SrTiO3
(TC = 40 K, Fig. 1) and BaxSr1 – xTiO3 (TC = 120 K,
Fig. 2) films produced by rf magnetron sputtering
[6, 7]. It should be noted that the electrode spacing of a
plane capacitor is filled with a dielectric nonuniformly
and its capacitance depends on the FE permittivity non-
linearly [8]. For this reason, the permittivities are not
exactly equal at the point of interaction of the two C–U
characteristics:

For the planar structures we studied, the correction
∆ is small (∆ ! 1), so that the condition ε(EC, Tl) = ε(EC,

ε EC Tl,( )/ε EC Tk,( ) 1 ∆.±=

0.5

0.20 0.4 0.6 0.8 1.0

1.0
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2.0
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2.0

1.0

0.5

0

Tl/Tk

ε(0, Tk)/εC EC, arb. units

Fig. 3. Coordinates (εC, EC) of the point where two ε(E)
characteristics of strontium titanate intersect vs. the ratio of
temperatures (Tl/Tk) at which they were taken.
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Fig. 4. Temperature behavior of the control field intensity in
strontium titanate at which the permittivity εi of the bulk
sample (solid lines, calculation) and the capacitance Ci of
the SrTiO3 film plane capacitor (data points) are kept con-
stant: Ci/C(0, 310) = εi/ε(0, 310) = (1) 1.00, (2) 0.83,
(3) 0.71, and (4) 0.62.
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Tk) is met at the point {CC, UC} in the C–U curve
(Fig. 1).

The temperature ratio Tl/Tk has a decisive effect on
the coordinates of this point (Fig. 3). As follows from
(8), the permittivity εC takes a minimal value (εC =
0.5ε(0, Tk)) at Tl/Tk = 1. The greater the difference
between Tk and Tl, the higher the permittivity εC. Its
ultimate value εC = 0.87ε(0, Tk) is reached in the limit
Tl = TC.

The other coordinate, the field intensity EC (see (9)),
increases with ratio Tl/Tk (Fig. 3), taking a maximal
value at Tl/Tk = 1:

(10)

It should also be noted that, when the control field is
weak (Ei < (EC)max)), the derivative ∂(ε(Ei, T))/∂T is
negative. At high control fields (Ei > (EC)max), the deriv-
ative becomes positive. In the latter case, each of the
characteristics ε(E, Ti) taken in the interval Ti ∈  (Tl–Tk)
is assigned the same range (εmax–εmin) of realizable per-
mittivities.

Analysis shows that the field dependence ε(E, Tk),
where Tk is a maximal temperature, contains full infor-
mation about the extrema (εmax and εmin) of permittivi-
ties to be stabilized: εmax = ε(0, Tk) and εmin = (ε(Emax,
Tk)), where Emax is the maximum intensity of the control
field at T = Tk. To be definite, we assume that Emax
equals the maximum field intensity (EC)max given by
(10). Note that (EC)max is a physical parameter of a fer-
roelectric, because it includes only the material con-
stants. It is also significant that the application of the
field (EC)max halves the permittivity (ε(0, Tk) =
2(ε((EC)max, Tk))). Such a variation is sufficient for
applications.

EC( )max
4
3
--- 3β ε0ε 0 Tk,( )( )3( ) 1/2–

.=

0

10

20

30 4

200 240 280 300
T, K

E = U/g, V/µm

320

40

3

2

1

220 260 340

5
6

Fig. 5. Temperature behavior of the control field intensity in
the barium titanate–strontium titanate solid solution at
which the permittivity εi of the bulk sample (solid lines, cal-
culation) and the capacitance Ci of the Ba0.3Sr0.7TiO3 film
plane capacitor (data points) are kept constant: Ci/C(0,
310) = εi/ε(0, 310) = (1) 1.00, (2) 0.83, (3) 0.71, (4) 0.55,
(5) 0.66, and (6) 0.50.
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DISCUSSION

Experimental temperature dependences of the con-
trol field strength that provides a constant permittivity
(εi(T) = const) of SrTiO3 are presented in Fig. 4. Even
if the temperature interval of interest for applications
(220–320 K) is far from the Curie temperature (TC =
40 K), the control field intensity is several times lower
than the critical value (Ecr ~ 200 V/µm [9]) for FE films.
The disagreement between the theoretical and experi-
mental results observed in Fig. 4 is conceivably associ-
ated with a nonuniform permittivity of the FE film of
the plane capacitor.

The field component E2(T) (see (6)), which compen-
sates for the temperature dependence of the permittiv-
ity, grows with temperature as E2 ~ (T – TC)3/2. A
decrease in the temperature (T – TC) through using a
ferroelectric with high TC is expected to reduce signifi-
cantly the E2 component and resultant intensity (4) of
the control field. Experimental data (Fig. 5) for
Ba0.3Sr0.7TiO3 film plane capacitors (TC = 120 K) cor-
roborate this prediction.

To conclude, a control field consistently varying
with temperature induces states in a ferroelectric that
differ in temperature interval but are indistinguishable
in permittivity. The permittivity εi of the ferroelectric
becomes temperature independent but may be con-
trolled with a field in the range from εi = εmin to εi = εmax
(εmax/εmin ≈ 2), which is sufficient for applications.
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Abstract—The parameters of an avalanche generated by an electron in helium at different ratios E/p, where E
is the external field strength and p is the pressure, are simulated. The E/p dependences of the ionization rate and
Townsend coefficient have maxima at E/p ≈ 1000 and ≈200 V/(cm Torr), respectively. The today’s concepts of
the electron density distribution in the avalanche are valid only at small values of the reduced strength, E/p <
100 V/(cm Torr). With E/p > 100 V/(cm Torr), the electron density distribution extends along the field. © 2004
MAIK “Nauka/Interperiodica”.
INTRODUCTION

If a gas is under a strong electric field, an acciden-
tally born electron causes exponential electron multi-
plication, generating an avalanche [1–7]. When the
number of the electrons becomes sufficiently large, the
resultant plasma begins to distort the external field,
causing streamers [1–7]. Streamer modification has
recently become the subject of extensive research (see,
e.g., [8–13] and Refs. therein). However, the avalanche
has been simulated in detail only in nitrogen [14],
whereas the avalanche in helium, for which electron–
atom collision cross sections are well known, is much
more interesting with a view to check the basic state-
ments of the theory.

In [15], we, using the method of multiparticle
dynamics, calculated the Townsend coefficients and
mean velocities of electrons that multiply in helium in
the gap between planar electrodes. It was shown that
the notion of the Townsend ionization coefficient
remains valid even in high fields if the spacing between
the planes is sufficiently large. In this case, the E/p
dependence of the Townsend coefficient (E is the exter-
nal field strength, and p is the pressure) has a maximum
at E/p ≈ 200 V/(cm Torr), which gives rise to the upper
branch of the Paschen curve. In [15], the parameters of
a single avalanche were not considered. In this work,
we fill this gap.

STATEMENT OF THE PROBLEM 
AND SOLUTION METHOD

The multiplication and runaway of electrons in
helium were simulated based on the modified particle
method [15–17]. An avalanche-initiating electron was
born at the origin and had a randomly directed velocity.
Its initial energy obeys the Poisson distribution with a
mean value ε0 = 0.2 eV. At small time steps, the equa-
tions of motion were solved for all the electrons and
elastic and inelastic collisions with probabilities
1063-7842/04/4903- $26.00 © 20371
defined by the cross sections of elementary events were
drawn. The cross sections were taken from [18–20],
and the approximations of these sections are given in [15].

As a result of the simulation, which took a reason-
able amount of time, we managed to trace the electron
dynamics within seven to nine characteristic times of
electron multiplication: t ~ (7–9)/νi, where νi is the ion-
ization rate. Upon simulating, the number of electrons
in the avalanche reached five thousands. Unfortunately,
the method of multiparticle dynamics does not allow
researchers to trace an avalanche at times t ≥ 11/νi,
because the time of computation grows exponentially.
Therefore, we proceeded as follows.

After the electron dynamics had been simulated, the
data obtained were extrapolated to double time. When
extrapolating, we assumed that each of the electrons
generates a new avalanche and that the new avalanche
is identical to the one for which dynamic simulation has
been already performed. In other words, it was assumed
that the avalanche evolution is a Markovian process.
Such an approach is certainly inapplicable if the elec-
tric field of an avalanche is comparable to the external
field. If the avalanche field is taken to be weak, such an
extrapolation can be applied only once for times t &
(15–18)/νi.

Using this expedient, we calculated the distributions
of ions and electrons in the avalanche, as well as the
field produced by the particles, at later time instants.
The particle density and the field were calculated in the
following way.

Let sets { , j ∈  1…N} and { , j ∈  1…N} be the
sets of radius vectors for electrons and ions, respec-
tively, at a time t that is the time of completion of sim-
ulating electron multiplication in an avalanche. Under
the assumption that the process is Markovian, the sets
of the electron and ion coordinates at a time 2t are,

respectively, {  + , j ∈  1…N, k ∈  1…N} and

r j
e( ) r j

i( )

r j
e( ) rk

e( )
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{ , j ∈  1…N} ∪  {  + , j ∈  1…N, k ∈  2…N}.
To calculate the particle density in the cylindrical coor-
dinate system with the Z axis aligned with the external
electric field, a 3D grid was constructed. Either interval
of distances, 0 ≤ z ≤ zmax and 0 ≤ ρ ≤ ρmax, was split into

20 to 50 meshes of equal size (zmax = 2max( ) and

ρmax = 2max( ) are the maximal val-
ues of the particle coordinates at a time 2t). Then, all the
particles in the system were searched through and the
number of the particles in each of the meshes was cal-
culated. The density was defined as the number of par-
ticles per mesh divided by the mesh volume.

Concurrently, the net field produced by the particles
at the Z axis at a time 2t was calculated. At given points
on the Z axis, the field was calculated as a vector sum
of partial (one-particle) Coulomb fields.

RESULTS OF SIMULATION

Ionization rate. The time dependence of the total
number of electrons, ne, and ions, ni, in the avalanche
may be approximated by the expression ni = ne =
n0exp(νit), where n0 is a constant (Fig. 1). The depen-
dences ni = ne on νit are straight lines and have equal
slopes at νit > 3. However, the quantities νi and n0 vary
significantly with E/p. A series of calculations allowed
us to reveal a relationship between the reduced electric
field strength E/p and ionization rate νi (Fig. 2a).

r j
i( ) r j

e( ) rk
i( )

z j
e i,( )

x j
e i,( )2

y j
e i,( )( )2

+
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20 4 6 8 10
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ne(νi t)
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1

23

Fig. 1. Number of electrons and ions in the avalanche vs.
reduced time νit for various reduced field strengths:
(1) E/p = 40 V/(cm Torr), E = 30.4 kV/cm, and νi = 1.82 ×
1010 s–1; (2) E/p = 71.85 V/(cm Torr), E = 54.6 kV/cm, and
νi = 6.5 × 1010 s–1; (3) E/p = 160 V/(cm Torr), E =

121.6 kV/cm, and νi = 2.23 × 1011 s–1; and (4) E/p =

2.56 kV/(cm Torr), E = 1946 kV/cm, and νi = 2.91 × 1011 s–1

(p = 760 Torr). (5) Approximating exponential dependence
on νit. The value of νi is found from the slopes of curves 1–4.
This relationship was contrasted with results from
[15], where the ionization rate was determined by the
well-known formula νi = αiud, where αi is the
Townsend coefficient and ud is the drift velocity. In
[15], the Townsend coefficient was defined as a factor
in the exponent of the exponential function ni = const
exp(αiz) (where ni is the number of ionization events
and z is the distance from the cathode) and the drift
velocity [15], as the steady-state mean projection of the
electron velocity onto the electric field direction:
uz(z) = const = ud. The values of αi and ud set up at z >

(3–5) . Many avalanche-initiating electrons were
taken into consideration. The results for νi obtained in
this work differ from the data in [15] by less than 10%.
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Fig. 2. Avalanche parameters vs. E/p. Solid curves, calcula-
tions made in this work (p = 760 Torr); dotted curves, cal-
culations made in [15]. (a) Reduced ionization rate νi/p
(1/(ns Torr)) and Townsend coefficient αi (1/(cm Torr)).
Solid curves, calculations made in this work (p = 760 Torr);
dotted curves, calculations [15] based on the relationship
νi = αiud, where the Townsend coefficient αi and the drift
velocity ud were calculated from the steady-state depen-
dences of αi and ud on the distance z to the planar cathode
for p = 100 Torr. (b) Avalanche propagation velocity (cm/s),
drift velocity (cm/s), and coefficient of diffusion D in the
transverse direction (cm2/s). The upper solid curve stands
for the propagation velocity umax of the density maximum;
dotted curve, for the mean drift velocity ud of electrons in
the process of multiplication.
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Fig. 3. Projections of the coordinates of the electron (xez) and ion (xiz) positions (instantaneous patterns) for three field values at the

final time instant t of multiparticle dynamics simulation. (a) E/p = 40 V/(cm Torr), E = 30.4 kV/cm, νi = 1.82 × 1010 s–1, and νit =

9.1; (b) E/p = 160 V/(cm Torr), E = 121.6 kV/cm, νi = 2.23 × 1011 s–1, and νit = 8.7; and (c) E/p = 2.56 kV/(cm Torr), E =

1946 kV/cm, νi = 2.91 × 1011 s–1, and νit = 6.16. p = 760 Torr.
We also calculated the propagation velocity of the
avalanche umax = zmax(t)/t, where zmax is the position of
the density maximum (for details, see below). As fol-
lows from Fig. 2b, the density maximum does move
with the drift velocity of the electrons according to the
present-day concepts [6]. The values of umax and ud dif-
fer by less than 30%.

Figure 2a shows the Townsend coefficients αi =
νi/umax calculated based on the data obtained in this
work. As was expected, they agree with the data
from [15].
TECHNICAL PHYSICS      Vol. 49      No. 3      2004
The small discrepancy between our data and those
in [15] is likely to be associated with a statistical scatter.
In [15], many avalanche-initiating electrons were con-
sidered, while here a single electron avalanche is taken
into consideration.

Charge density distribution. A set of projections
of the ion and electron coordinates onto the plane xz
(“instantaneous patterns” shown in Fig. 3) provides a
rough idea of the avalanches after the multiparticle
dynamics simulation is complete. More detailed infor-
mation may be derived from the electron density distri-
bution obtained by extrapolating the results of dynam-
ics simulation (Fig. 4).
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The parameters are the same as in Fig. 3.
The assumption that the electrons multiply, drift,
and diffuse leads us to the Gaussian electron density
distribution in the coordinate system moving along the
field with the drift velocity. The space–time depen-
dence of the electron density in an avalanche initiated
TECHNICAL PHYSICS      Vol. 49      No. 3      2004
by a single electron has the form [6]

(1)Ne t ρ z, ,( ) Ne0 t( )
ρ2 z zmax t( )–( )2+

σ2 t( )
-------------------------------------------–

 
 
 

,exp=
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νit = 6.16, and νi = 2.91 × 1011 s–1; p = 760 Torr.
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where ρ is the distance to the Z axis aligned with the
field, σ2(t) = 4Dt, D is the diffusion coefficient, Ne0(t) =
(4πDt)–3/2exp(νit) is the maximum electron density, and
zmax(t) = udt.

Expression (1) implies that electron density isolines
are concentric circles centered at the point z = zmax. At a
stretch, this is true when E/p is small and Ne is close to
the maximal value (Fig. 4a). However, even with E/p =
160 V/(cm Torr), which roughly corresponds to the
maximum of the Townsend coefficient, the isolines
extend in the Z-axis direction (Fig. 4b). The extension
increases with increasing E/p (Fig. 4c).

Comparing the analytical electron density distribu-
tion (Fig. 5) with distribution (1) yields the avalanche
parameters σ2 and zmax for various E/p. The value of σ
was determined from the transverse size Ne(ρ, z = zmax)
of the avalanche; zmax, from the distribution along the
field, Ne(ρ = 0, z). Based on these values, the E/p depen-
dences of D and umax were constructed (Fig. 2).

From the ion and electron coordinates known, we
found the electric field F(z) generated by the particles
at the Z axis (Fig. 6). The behavior of its projection
Fz(z) (growth, fall into the negative range, and then the
transition to the positive range again) coincides qualita-
tively with the behavior of the projection of the electric
field produced by positive and negative charge clouds
shifted along the Z axis, the center of the positive
charge cloud being shifted relative to the center of the
negative charge cloud toward smaller z. In fact, the
electron distributions in Fig. 5 are somewhat shifted
toward larger z relative to the ion distributions.

It is seen that the plasma field strength is small com-
pared with the strength E of the external avalanche-ini-
tiating field at times considered. This is not only
because the amount of charges is as yet insufficient at
these time instants. Another reason is that the clouds of
positive and negative charges overlap considerably. The
mean values of the electron, zem, and ion, zim, coordi-
nates differ insignificantly. Moreover, the relative dif-
ference of the mean coordinates, (zem – zim)/zem, drops
with time (Fig. 7). The plasma field cannot hold the
charges close to each other and is disregarded in the cal-
culation. The fact is that, when multiplying, the elec-
trons cannot be displaced relative to the ions by a dis-
tance much greater than that predicted by the inverse
Townsend coefficient.

Obviously, since the amount of charges in an ava-
lanche grows exponentially, the plasma field will equal
the external field at t ~ 20/νi, which meets the well-
known criterion of avalanche–streamer transition [1–7].

CONCLUSIONS

Thus, electrons in an avalanche multiply by the
exponential law (both in time and in coordinate along
the field) even if the reduced field strength E/p is high,
E/p > 200 V/(cm Torr), when the Townsend multiplica-
TECHNICAL PHYSICS      Vol. 49      No. 3      2004
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tion coefficient and the ionization rate start decreasing.
However, today’s concepts of the electron distribution
in an avalanche are valid only for low values of the
reduced field strength, E/p < 100 V/(cm Torr).
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