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Abstract—An analytical method for evaluating the Josephson and magnetic energies of a vortex, as well as the
vortex pinning energy and its components, in a long periodically modulated Josephson contact is suggested.
The method allows one to take into account the variation of the vortex shape with the position of the vortex.
The results obtained with this method are much closer to those of exact computer analysis compared with
results of the conventional techniques. The discrepancy between the exact shape of the vortex and a function
obtained by solving a differential equation approximating the exact difference equation is studied. © 2004
MAIK “Nauka/Interperiodica”.
INTRODUCTION

Recent investigations of high-temperature super-
conductors have shown that vortex structures have a
considerable effect on processes occurring in the mate-
rial. Specifically, those taking place when the sample is
placed in a magnetic field are governed by vortex pin-
ning and interaction.

Field penetration into the material is usually ana-
lyzed in terms of the Bean critical-state model, accord-
ing to which vortices in the range occupied by the mag-
netic field are in equilibrium. In other words, the force
exerted on a vortex by other vortices equals the maxi-
mal pinning force of the vortex. To calculate the field
profile in the framework of the Bean model, it is neces-
sary to know the field dependence of the pinning force.
To verify the Bean model and to find its applicability
domain, one should have an idea of the vortex structure
and the behavior of vortices in the material.

Moreover, vortex motion gives rise to a specific
energy loss mechanism that is different from usual
Joule heating. Accordingly, energy losses exist (i.e., the
superconducting state is broken) even in the absence of
an electric resistance. Vortex pinning suppresses this
mechanism. Therefore, increasing the critical currents
and fields, a topical problem of superconductor science
and technology, needs detailed knowledge of vortex
behavior, structure, interaction, as well as the amount
and mechanisms of pinning.

In recent years, the attention of the theorists and
experimentalists has been focused on the problem of
magnetic field penetration into a long periodically
modulated Josephson contact. On the one hand, this is
associated with recent interest in artificial structures of
this type [1], with which theoretical predictions can be
confirmed. On the other hand, it is a model problem that
combines the processes taking place in superconduc-
1063-7842/04/4904- $26.00 © 20379
tors: magnetic field expulsion, vortex generation, vor-
tex pinning, and related phenomena (such as magnetic
field penetration into the contact). Mathematically, this
problem is much easier than the same problem for a 3D
superconductor. Its solution is straightforward, which
makes it possible to evaluate the vortex structure, find
the pinning force and energy, verify the Bean model,
shed light into occurring processes.

A periodically modulated Josephson contact
(Fig. 1a) represents a thin insulating layer (the xz plane)
sandwiched in superconductors and crossed by parallel
infinitely long (in the z direction) insulating strips of
thickness 2l (in the y direction) and width d (in the x
direction). The strip spacing is L. An external magnetic
field and the axes of vortices are aligned with the z axis.
Figure 1b shows the structure of an artificially created
periodically modulated Josephson contact [1]. Between
the strips, the phase slowly varies with coordinate,
while in crossing a strip, it changes in discrete steps.
Let ϕk be the mean phase within a kth segment between
the strips (Fig. 1a). The distribution of ϕk defines the
steady state of the current.

The energy of a stationary vortex per meter of its
length is given by [2, 3]

(1)

where E0 = hjcλ2/4el, I = 2Ll/λ2 is the pinning parame-

ter, λ =  is the Josephson length, jc is the
critical current density, e is the charge of an electron,
and h is the Planck constant.

Later on, all energies will be expressed in units of
E0. The first term in (1) describes the magnetic energy

E E0
1
2
--- ϕk 1+ ϕk–( )2 I 1 ϕkcos–( )+ ,

k ∞–=

∞

∑=

hc2/8πjced
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of a vortex; the second, the energy of Josephson con-
tacts.

The equilibrium states of a vortex that correspond to
extrema of its energy are described by a set of differ-
ence equations that follow from the condition ∂E/∂ϕm = 0:

(2)

A set of equations that is similar to (2) describes
the  behavior of planar vortices in a 3D Josephson
medium [4].

Set (2) was first derived by Frenkel and Kontorova
[5] for describing the behavior of edge dislocations in a
crystal. Because of its discreteness, this set of equations
allows one to study the behavior of solitons with allow-
ance of pinning. The amount of pinning depends on a
finite energy that is necessary to displace a vortex from
one cell to another.

An exact analytical solution to nonlinear system (2)
of finite difference equations is impossible to obtain. If
the parameter I is small, the vortex distribution
becomes quasi-continuous and set (2) turns into the dif-
ferential equation

(3)

where x is measured in units of L.
The Josephson, EJ, and magnetic, EH, energies

obtained from the quasi-continuous scheme when I

ϕm 1+ 2ϕm– ϕm 1–+ I ϕm.sin=

d2ϕ
dx2
--------- I ϕ ,sin=

ϕk – 1l ϕkl ϕk + 1l
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Fig. 1. (a) Model of a periodically modulated Josephson
contact (the line is the projection of the contact plane onto
the plane xy) and (b) structure of an artificially produced
periodically modulated Josephson contact.
tends to zero, do approach their exact values. However,
the question remaining to be tackled is whether the total
pinning energy may be extracted by using such a
scheme. The fact is that the Josephson and magnetic
components of the pinning energy, which are equal to
the difference between the related energies at different
positions of a vortex are of a much higher order in I and
so may be disregarded in measurements. Below, it will
be shown that the pinning energy components are pro-

portional to exp(–π2/ ) and so cannot be expanded
into a power series in I, which substantiates the above
doubts.

In [6], the author analyzed the potential of different
approximate approaches based on Eq. (3) to calculating
the energies and compared different approximations
with each other and with the exact solution to the start-
ing problem. From this analysis, the following conclu-
sions were drawn.

Exact computation of the vortex energy showed that
(i) the Josephson and magnetic energies of a vortex
diverge and (ii) the Josephson and magnetic compo-
nents of the pinning energy are close in value but differ
in sign, so that the total pinning energy is one order of
magnitude lower than its components.

Theoretical analysis shows that the total pinning
energy of a vortex having the shape described by a solu-
tion to set (2) of finite difference equations is indepen-
dent of its position relative to cells of the medium under
the assumption that its shape remains the same. In other
words, the pinning energy equals zero. This means that
the Josephson and magnetic components of the pinning
energy are exactly the same in magnitude but differ in
sign. A nonzero total pinning energy implies that the
shape of a vortex depends on its position, the pinning
energy being much lower than its components. It is
such a relationship that results from exact computation.

Thus, the difference between the Josephson and
magnetic components of the vortex energy, as well as
different signs and almost equal magnitudes of the
Josephson and magnetic components of the pinning
energy, may be considered as typical features of the
given problem. It is desirable that approximate
approaches based on a solution to the differential equa-
tion include these features.

In our case, the discrete statement of the problem
differs from the continuous one in that (i) summation in
Eq. (1) for the energy is discrete; (ii) Eq. (1) has differ-
ence terms, such as (ϕk + 1 – ϕk)2; and (iii) the shape of
a vortex is found from finite difference set (2).

Elimination of all three items (i.e., the transition
from summation to integration in (1), from finite differ-
ences to differentials in (1), and from finite difference
set (2) to differential equation (3)) would mean com-
plete rejection of discreteness. In this case, the Joseph-
son and magnetic energies EJ and EH turn our to be
equal to each other and both components of the pinning
energy vanish.

I
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If the pinning energy is calculated using discrete
equation (1) for energy (item “i”), the Josephson and
magnetic energies EJ and EH turn our to be equal to each
other and are expressed by the same relationships as in
the continuous approach; in this case, the pinning
energy components are exactly the same but other than
zero [3].

If difference terms in the expression for the mag-
netic energy (items “i” and “ii”) are retained, the
Josephson and magnetic energies of a vortex differ in
magnitude and the Josephson and magnetic compo-
nents of the pinning energy differ in sign [6]. Thus, with
such an approach, we preserve both features mentioned
above, i.e., make a step on the road to an exact solution.

Yet, comparing the energies obtained by this
approach with those derived by exactly solving differ-
ence set (2) (items “i”–”iii” are valid) highlights the fol-
lowing considerable discrepancies.

(1) The Josephson and magnetic energies obtained
with the two approaches differ, there being the differ-
ence in the relationship between the energies: in the
approximate model, the magnetic energy EH is lower
than the Josephson energy for any I, while in the case
of the exact solution, the situation is reverse.

(2) The exact values of the Josephson, ∆EJ, and
magnetic, ∆EH, components of the pinning energy are
much higher than those obtained by the approximate
approach.

(3) The exact values of ∆EJ and ∆EH are close to
each other. The approximate approach gives ∆EJ much
higher than ∆EH.

In this work, we modify the approximate approach
suggested in [6] so that the above discrepancies are
eliminated. Also, the approach modified accounts for
the fact (discovered in [6]) that the exact and approxi-
mate values of the total pinning energy coincide,
whereas its Josephson and magnetic components differ
considerably.

BASIC EQUATIONS

The pinning energy of a vortex can be found if dis-
crete sum (1) as a function of the vortex position is
known. Using the expansion of a sum of δ functions
into the Fourier series,

(4)

δ x k–( )
k ∞–=

∞

∑ i2πnx( )exp
n ∞–=

∞

∑=

=  Re i2πnx( )exp ,
n ∞–=

∞

∑

TECHNICAL PHYSICS      Vol. 49      No. 4      2004
we represent expression (1) in the form

(5)

where α is the coordinate of the vortex center relative
to the edge of a cell. If, for example, the vortex is cen-
tered at the boundary between two cells, α = 0; if it is
at the center of a cell, α = 0.5.

If he function f(x) is even, expression (5) takes the
form

(6)

As ϕ(x), one may take a solution to differential
equation (3), which replaces discrete set (2). For an iso-
lated vortex, ϕ(x) has the form

(7)

The function (7) is plotted in Fig. 2. This solution
corresponds to a vortex in a continuous medium. The
use of the approximate solution, which ignores the dis-
creteness of the medium, to calculate the pinning
energy is an assumption that distorts the actual pattern.
Figure 3 plots the function that is the difference
between the solution to finite difference set (2) and
function (7) divided by I. The run of this function is
independent of I. As a next approximation, one could
use a solution to a differential equation that is a more
accurate approximation of discrete set (2) and substi-
tute it into (6) (for details, see the Appendix). It turns
out, however, that an exact solution to this differential
equation is impossible to find throughout the range of
the argument. Approximation of this solution by simple
smooth functions refines the vortex energy value but
cannot refine the pinning energy and its components,
since both are very sensitive to the vortex shape. In
other words, the refinement of the vortex shape cannot

E f ϕk( )
k ∞–=

∞

∑ f ϕ x α+( )( ) δ x k–( ) xd
k ∞–=

∞

∑
∞–

∞

∫= =

=  Re f ϕ x( )( ) i2πn x α–( )( ) x,dexp
n ∞–=

∞

∑
∞–

∞

∫

E = 2 2πnα( )Re f ϕ x( )( ) i2πnx( ) x.dexp

0

∞

∫cos
n ∞–=

∞

∑

ϕ x( ) 4 x I–( )exp( ).arctan=

ϕ

2π

π

0

–π

x

Fig. 2. Solution (7) to differential equation (3) for an iso-
lated vortex.
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improve the accuracy of calculating the pinning energy
and its components.

We suggest a simpler yet more efficient way of
refining the energy values. The basic idea is as follows.
A desired exact solution must minimize the total energy
given by (1). Function (7) involves the characteristic

dimensionless length 1/ . This parameter arises upon
solving differential equation (3), which is an approxi-
mation of exact equation (2). We take function (7) as a
next approximation, substituting a reciprocal length ξ
for . Our goal is to find the value of ξ minimizing
expression (1).

While being mathematically simple, such an
approach gives results that are closer to the exact solu-
tion, as will be shown below. The fact that the charac-
teristic lengths for Eqs. (2) and (3) diverge (the differ-
ence is the most noticeable at small ϕ) also counts in
favor of this approach. When ϕ is small, solution (7) to
differential equation (3) takes the form ϕ(x) =

4exp(−x/ ) and difference equation (2) is linearized
and has the exact solution

(8)

As follows from (8), the solutions to the difference
and differential equations have different characteristic
lengths even at small ϕ.

Based on formulas (6) and (7), the author derived
the following expressions for the vortex energy compo-
nents at n = 0, ±1 [6]:

(9a)

I

I

I

ϕk C 1 I
2
--- I

I2

4
----+–+ 

 
k

C k I 1 I
24
------– 

 – 
  .exp≈=

EJ0 4 I; EJ1 16π2 π2

I
------– 

  2πα( );cosexp= =

1.35 3.00 ξ x I=

–0.75

0

0.75

–0.0038

0.0037
3

1

2

Fig. 3. (1) Function ϕIC(ξ) calculated numerically, (2) its
approximation ρ(ξ), and (3) the difference ρ(ξ) – ϕIC(ξ)
between them.
(9b)

When ξ is substituted for  in formulas (9), the
pinning parameter I may appear in them (i) as a result
of substituting solution (7) or (ii) as the coefficient in
the expression for the Josephson energy in (1). With the
values of I appearing in the second way retained, we
obtain for the total vortex energy

(10)

When deriving formula (10), we left the first two
terms in expression (9b) for the magnetic energy EH0.
At the same time, the last term on the right of (10),
which is responsible for pinning, is retained, although
it is several orders of magnitude smaller than those
rejected. This term may be neglected in calculating cor-
rections to the Josephson and magnetic energies of the
vortex. Then, the total energy Et reaches a minimum if

(11)

where ∆ = I1.5/24.
Eventually, the new values of the Josephson and

magnetic energies are given by

(12)

(13)

When calculating the pinning energy and its compo-
nents, one should leave the last term in (10), since it
defines the variation of the vortex energy with vortex
position. Theoretical analysis [6] showed that the total
energy of a vortex whose shape is described by a solu-
tion to the set of difference equations under the assump-
tion of shape invariability under displacement does not
depend on the position of the vortex relative to cells of
the medium. In other words, the pinning energy equals
zero in this case. Accordingly, a nonzero total pinning
energy reflects the fact that the shape of a vortex
depends on its position. Formulas (9) for EJ1 and EH1,
by which the pinning energy was evaluated in [6], were
derived just under the assumption that the shape of a
vortex is independent of its position; therefore, a non-
zero pinning energy in [6] stems from the deviation of
function (7) from the exact solution to Eq. (2). Hence,
we may expect that the results will be greatly improved
when the vortex shape variation with a coordinate is
taken into account.

EH0 4 I
1
9
--- I3/2–

7
1350
------------I5/2 …;+ +=

EH1 16 π2– / I( ) 2.43766 I/12–( ) 2πα( ).cosexp–=

I

Et
4I
ζ
----- 4ζ ζ3

9
-----–+=

+ 16 π2/ζ–( ) π2I

ζ2
-------- 2.4– ζ2/12+ 

  2πα.cosexp

ζ I 1 I/24+( ) I ∆,+= =

ẼJ0 EJ0 4∆– 4 I
I3/2

6
-------,–= =

ẼH0 EH0 4∆+ 4 I
I3/2

18
-------+ .= =
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Importantly, the method suggested makes it possible
to include the variation of the shape of a vortex when its
energy is calculated in its different positions. When
expression (10) is minimized with the last term on the
right taken into account, the minima in different posi-
tions of the vortex center relative to the cell center are
observed at various ξ, i.e., for various shapes of the
vortex:

(14)

where

(15)

It should be noted that, when deriving expression (5),

we took into account the next order of . The factor

(1 + π2 /24) arises when the second term in the

expansion of exp(–π2/(  + ∆)) in ∆ is retained.

For equilibrium positions of a vortex, i.e., when the
vortex is centered at the boundary between two cells or
at the center of a cell, cos2πα equals +1 or –1. Then, the
Josephson and magnetic components of the pinning
energy are given by

(16)

ζ α( ) I ∆ δ 2πα,cos–+=

δ = 
2π2

I
-------- π2

I
------– 

  1
π2

24
------ I+ 

  π2 2.43766– 2 I–( )exp

≈ 147

I
--------- π2

I
------– 

  1 I
7

------+ 
  .exp

I

I

I

∆ẼJ ∆EJ 1
π2

24
------ I+ 

  8δ+=

=  
16π2

I
----------- π2

I
------– 

  1
π2

24
------ I+ 

  π2 2.43766–( )exp

≈ 8δ 1 0.27 I+( ),
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(17)

where ∆EJ and ∆EH are the pinning energy components
[6]:

(18)

The total pinning energy is

(19)

where

(20)

is the pinning energy according to [6].

Thus, both the total pinning energy (19) and its compo-
nents (16) and (17) are expressed through the parameter δ.

The values of  and  are roughly equal in
magnitude but differ in sign, so that the total pinning

energy  modulo is much smaller than either of its
components. Exact computation of the pinning energy
yields exactly the same result.

It follows from (16) and (17) that, in accordance
with theoretical predictions [6], the terms 8δ make a
major contribution to the Josephson and magnetic com-
ponents of the pinning energy. These terms describe the
variation of the shape of the vortex when it is displaced
relative to the cell.

∆ẼH ∆EH 1
π2

24
------ I+ 

  8δ– 8δ 1 0.07 I+( ),–≈=

∆EJ 32π2 π2

I
------– 

  ,exp=

∆EH 32 π2– / I( ) 2.43766 I/12–( ).exp–=

Ẽp ∆ẼJ ∆ẼH+ Ep 1
π2

24
------ I+ 

  1.6δ I ,≈= =

Ep 32 π2/ I–( ) π2 2.43766– I/12+( )exp=

∆ẼJ ∆ẼH

Ẽp
Table 1.  Josephson and magnetic energies found by various techniques

I
Theory [6], formula (9) Corrected theory;

formulas (12), (13), and (21) Exact solution from [6] Numerical calculation by 
(1) with ϕk from (A.9)

EJ0 EH0 EJ EH

0.08 1.1314 1.1289 1.1276 1.1326

1.1275 1.1326 1.1275 1.1326 1.1277 1.1325

0.15 1.5492 1.5428 1.5395 1.5524

1.5394 1.5525 1.5393 1.5525 1.5398 1.5520

0.40 2.5298 2.5022 2.4877 2.5439

2.4865 2.5450 2.4860 2.5452 2.4890 2.5417

0.70 3.347 3.2836 3.2490 3.3792

3.2444 3.3838 3.2393 3.3853 3.252 3.373

1.00 4.000 3.894 3.833 4.055

3.822 4.067 3.806 4.073 3.840 4.041

ẼJ0 ẼH0 Ẽ
˜

J Ẽ
˜

H
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Table 2.  Pinning energy found by various techniques

I
Theory [6], formulas (18) and (20) Corrected theory;

formulas (16), (17), and (19) Exact solution

∆EH ∆EJ EP ∆EH ∆EJ EP

0.08 –5.46E–14 2.22E–13 1.67E–13 –3.06E–12 3.25E–12 1.86E–13 –7.33E–12 7.77E–12 4.45E–13

0.15 –6.647E–10 2.705E–9 2.04E–9 –2.77E–8 3.009E–8 2.36E–9 –6.095E–8 6.617E–8 5.22E–9

0.40 –1.285E–5 5.27E–5 3.99E–5 –3.402E–4 3.905E–4 5.03E–5 –6.21E–4 7.14E–4 9.29E–5

0.70 –5.734E–4 2.38E–3 1.81E–3 –1.18E–2 1.42E–2 2.43E–3 –1.86E–2 2.24E–2 3.90E–3

1.00 –3.897E–3 1.63E–2 1.24E–2 –6.81E–2 8.57E–2 1.75E–2 –9.5E–2 1.21E–1 2.60E–2

∆ẼH ∆ẼJ ∆ẼP

Table 3.  Pinning energy components with correcting factor included

I

Theory corrected by multiplying by Exact solution from [6]

∆EH ∆EJ EP

0.08 –8.22E–12 8.7E–12 5.00E–13 –7.33E–12 7.77E–12 4.45E–13

0.15 –6.4E–8 6.9E–8 5.43E–9 –6.095E–8 6.617E–8 5.22E–9

0.40 –6.1E–4 7.0E–4 9.03E–5 –6.21E–4 7.14E–4 9.29E–5

0.70 –1.84E–2 2.22E–2 3.79E–3 –1.86E–2 2.24E–2 3.90E–3

1.00 –0.097 0.122 2.51E–2 –0.095 0.121 2.60E–2

1.4 I4

∆ẼH
1.4

I4
------- ∆ẼJ

1.4

I4
------- ∆ẼP

1.4

I4
-------
RESULTS AND DISCUSSION

Table 1 lists the Josephson and magnetic energies of
the vortex that are calculated by various formulas, as
well as their exact values (more specifically, the half-
sums of their values for a vortex in stable and unstable
equilibrium) found by computer analysis [6]. It is seen
that formulas (12) and (13) refined yield results, which
are totally coincident with the exact values. Note that,
when terms of the next order of smallness in I are taken
into account in ζ and ∆,

(21)

the approximate and exact values approach each other
still closer (the bottom rows in Table 1). Taking into
account the terms ±4∆ in (12) and (13) leads to the cor-
rect relationship between the Josephson and magnetic
components of the vortex (the latter is smaller for
any I).

Table 2 summarizes the pinning energy components
found by various techniques. It is seen that the tech-
nique suggested in this work (formulas (16) and (17))
improves greatly agreement with the exact computer
solution. The Josephson and magnetic components of
the pinning energy are close to each other by magnitude
but differ in sign. This agrees both with theoretical pre-
dictions and with the results of exact computation.

The values of the components also approach the
exact values. The following fact is noteworthy. The

ζ I 1 I
24
------ 49I2

17 280
----------------+ + 

 =
ratio of the Josephson and magnetic components calcu-
lated by formulas (16), (17), and (19), as well as of the
total pinning energy, to the related exact values is the
same. To put it differently, the formulas derived yield a
correct ratio of the total pinning energy to one of its
component. It may be inferred that our technique for
taking into account the variation of the vortex shape is
adequate to the problem stated and that insignificant
discrepancies of the calculated pinning energy and its
components from the exact values are associated with
inexact formula (15) for δ. When deriving (15), we used
expressions (9), which follow from solution (7) to dif-
ferential equation (3). As was mentioned above, Eq. (3)
is an approximation of exact equation (2). Therefore,
expression (15) is somewhat inaccurate, which comes
as no surprise. Rather, the fact that the calculated and
analytical (exact) results are very close to each other is
surprising.

To improve agreement between the results of calcu-
lation and computer analysis, one may introduce a cor-

recting factor of  into the expression for δ.
Table 3 lists the pinning energy and its Josephson and
magnetic components refined with this factor.
Throughout the range of I, the calculation is in agree-
ment with the exact values. Note that the exact compu-
tation was carried out to the 16th significant decimal
place. More detailed analysis shows that, with such an
accuracy, the pinning energy components cannot be
calculated for I < 0.08. To check the validity of intro-

1.4 I4
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ducing this correcting factor in the case of low I, the
accuracy of calculation should be improved.

To refine expressions (9), one would have to seek for
a solution to a differential equation that approximates
discrete equation (2) with a higher accuracy (see the
Appendix). It turns out that such a differential equation
is impossible to solve exactly throughout the range of I.
Approximation of this solution by simple smooth func-
tions refines the vortex energy value but cannot refine
the pinning energy and its components, since both are
very sensitive to the vortex shape. In other words, the
approximate refinement of the vortex shape cannot
improve the accuracy of calculating the pinning energy
and its components. This fact attaches special value to
the proximity of the exact values and those provided by
the method suggested (recall that it is based on solving
differential equation (3), which approximates exact dif-
ference equation (2)).

The given investigation allows us to answer the
question [6] as to why the exact value of the pinning
energy differs insignificantly from the results obtained
in terms of the invariable vortex shape model, while
individually the associated Josephson and magnetic
components are in sharp disagreement. It follows from
the aforesaid that the variation of the shape of a vortex
under its displacement makes a major contribution to
the pinning energy components. At the same time, the
total pinning energy is found as the difference between
the minimal energies of a vortex in two positions corre-
sponding to two values of ζ (see (14)). Then, the transi-
tion to the case considered in [6] consists in substituting

 for ζ in (14), i.e., in changing ζ by a value roughly
equal to ∆ = I1.5/24. Since a minimum of the energy cor-
responds to the zero first derivative of the energy with
respect to ζ, a change in the energy is a quantity of the
second order of smallness with respect to a change in
the argument. Therefore, the energies of a vortex in its
two equilibrium positions, as well as the difference in
these energies, which is the total pinning energy, devi-
ate from the related exact values insignificantly when
the variation of the vortex shape is neglected (the case
considered in [6]).

CONCLUSIONS

A method for calculating the Josephson and mag-
netic energies of a vortex, as well as the vortex pinning
energy and its components, in a long periodically mod-
ulated Josephson contact is suggested. The method
allows one to take into account the variation of the vor-
tex shape with the position of the vortex.

The results obtained with this method are much
closer to those of exact computer analysis than results
of the conventional techniques. Specifically, (i) a cor-
rect relationship between the Josephson and magnetic
energies of a vortex (the latter is smaller than the former
for any value of the pinning parameter) is established,
(ii) the Josephson and magnetic components of the pin-

I
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ning energy are close to each other but differ in sign in
accordance with both theoretical predictions and results
of exact computation, and (iii) the total pinning energy
of a vortex and its Josephson and magnetic components
approach their exact values.

The deviation of the exact vortex shape from a func-
tion obtained by solving a differential equation that
approximates the exact difference equation is analyzed
at length.
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APPENDIX: FINDING OF THE REFINED 
VORTEX SHAPE

Let us derive a differential equation that approxi-
mates discrete equation (2) with a higher accuracy than
Eq. (3). We expand ϕm + 1 and ϕm – 1 into a power series

(A.1)

Substituting (A.1) into (2) yields the differential
equation

(A.2)

Passing to the variable ξ =  and omitting the
subscript, we arrive at

(A.3)

Neglecting all terms but the first one on the left of
(A.3), we obtain the approximation

(A.4)

Thus, Eq. (3) approximates difference equation (2)
up to the first order in I.

Having represented a solution to (A.4) as ϕ =
ϕ0(ξ) + Iϕ1(ξ), where ϕ0(ξ) is solution (7) to Eq. (3), we
come to a differential equation for ϕ1:

(A.5)

From (A.5), it follows that ϕ1 is a universal function
for all sufficiently small values of I. A solution to (A.5)
cannot be found analytically. Figure 3 (curve 1) shows
the plot of ϕ1C(ξ), which is the numerically calculated
difference between the exact solution to difference
equation (2) and function (7).

ϕm 1± ϕm ϕm
I 1
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II 1
6
---ϕm
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ϕ II I
12
------ϕ IV+ ϕ .sin=

ϕ1
II ϕ0cos ϕ1–

1
12
------ϕ0

IV.–=
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Table 4.  Pinning energy components with corrected for vortex shape

I
Numerical calculation by (1) with function (A.9) Exact solution from [6]

∆EH ∆EJ EP

0.08 2.09E–6 1.98E–6 –2.3E–7 –7.33E–12 7.77E–12 4.45E–13

0.15 1.94E–5 1.86E–5 –7.6E–7 –6.095E–8 6.617E–8 5.22E–9

0.40 6.43E–4 7.45E–4 1.02E–4 –6.21E–4 7.14E–4 9.29E–5

0.70 5.12E–3 8.59E–3 3.46E–3 –1.86E–2 2.24E–2 3.90E–3

1.00 1.96E–3 4.14E–2 2.17E–2 –9.5E–2 1.21E–1 2.60E–2

∆Ẽ
˜

H ∆Ẽ
˜

J Ẽ
˜

P

Although Eq. (A.5) cannot be solved throughout the
range of ξ, it can be solved at large ξ such that ϕ0(ξ) ! 1.
Then, (A.5) takes the form

(A.6)

A solution to Eq. (A.6) that tends to zero at ξ  ∞
has the form

(A.7)

Figure 4 shows the plot of the function ψ(ξ) =
ϕ1C(ξ)exp(ξ), where ϕ1C(ξ) is the function shown in
Fig. 3. From Fig. 4, it is seen that ψ is a linear function
of ξ for ξ > 2, which validates (A.7).

The value of the constant C is determined by the
behavior of the function at small ξ. For ξ ! 1 (ϕ0(ξ) ≈
π), Eq. (A.5) can also be solved and has the solution
ϕ1 = C1sinξ. However, since the form of the function in
the transition range is unknown, neither a relationship
between C and C1 nor the values of these constants can
be found analytically. Using the point ξ = 3 where the
plots in Figs. 3 and 4 intersect (this point is determined
by numerical calculation), one can find that C = –1/2.
Thus, a solution to Eq. (A.4) at ξ @ 1 has the from

(A.8)

ϕ1
II ϕ1–

1
3
--- ξ–( ).exp–=

ϕ1 C
1
6
---ξ+ 

  ξ–( ).exp=

ϕ 4 I
2
---–

I
6
---ξ+ 

  ξ–( ).exp=

1.35 3.00

ξ x I=

–0.28

0

ψ

Fig. 4. Plot of the function ψ(ξ) = ϕIC(ξ)expξ.
Note that, at ϕm ! 1, difference equation (2) can be
linearized and, hence, solved. Its solution has the form

ϕm = Cλm, where λ = 1 + I/2 –  (see formu-
la  (8)). With this solution, one can also arrive at expres-
sion (A.7).

At ξ < 2, difference equation (2) or differential equa-
tion (A.5) is impossible to solve. One may approximate
curve 1 in Fig. 1 by a simple smooth function. For
example, Fig. 3 plots the function ρ(ξ) =
−0.2sin(πξ/3)exp(–ξ) (curve 2) and the difference
between this function and ϕ1C(ξ) calculated numeri-
cally (curve 3).

The results of numerical calculation of the energy
by formula (1) with

(A.9)

are listed in Tables 1 and 4. It is seen that the correction
considerably narrows the gap between the Josephson
and magnetic energies of the vortex and their exact val-
ues (columns 6–9 in Table 1).

However, the Josephson and magnetic components
of the pinning energy differ significantly from their
exact values (Table 4). This could be expected, since, as
follows from formulas (5) and (6), the pinning energy
components depend heavily on the form of a function
used to describe the vortex shape [7]. A change in this
function changes its plot insignificantly and has a minor
effect on the vortex total energy but may appreciably
affect the pinning energy. In particular, calculation by
formula (6) causes terms varying as I3.5 to appear in the
expressions for the pinning energy components (in

addition to terms of form exp(–π2/ ), see (9)). If I is
small, these additional terms specify the values of the
pinning energy components calculated by (6). That is
why the component values differ from the exact values
by several orders of magnitude (Table 4). As I grows,

terms containing exp(–π2/ ) start playing a decisive
role and the difference decreases yet remains signifi-
cant.

I I
2
/4+

ϕk ϕ0 k( ) Iρ k( )+ 4 k I–( )exparctan= =

– 0.2I πk I/3( ) k I–( )expsin

I

I
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As to the total pinning energy (Table 4), the correc-
tion approaches it to the exact value when I is relatively
large and moves off from the exact value when I ! 1.
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Abstract—The problem of increasing the mean size of clusters in gas-jet targets is tackled. Based on a math-
ematical model of clustering, the dependence of the cluster mean size on the nozzle length and rate of expansion
is derived. The nozzle shape providing micrometer-size clusters is found. The parameters of gas-jet targets pro-
duced with this nozzle are studied in detail. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

To date, investigation of the interaction between
intense femtosecond laser pulses and cluster targets
(cluster gas jets expanding into a vacuum) has become
a routine experiment [1–24]. Clusters present in the gas
jet (target) radically improve the efficiency of laser
radiation absorption by the target, since their density is
close to the density of a solid.

It has been shown [15, 18–20, 24] that, as the size of
clusters increases, so do the yield of X-ray radiation
and the ionization of a resulting plasma. This is because
prepulses disintegrate coarse clusters to a lesser extent
than fine clusters. Therefore, the plasma interacting
with a major laser pulse has clear-cut dense bunches.
Accordingly, the fraction of hot electrons grows.

In [10, 13, 23], a relationship between the prepulse
duration τpre and the time of expansion of a cluster τexp
is considered as a basic parameter governing laser
pulse–target interaction. It is noted that, for τpre @ τexp,
the clusters have a chance to completely disappear
before the main pulse is applied. In this case, the inter-
action is akin to that with an ordinary (cluster-free) gas
jet, that is, has a low laser radiation absorption effi-
ciency. Thus, of practical interest is the case τpre ~ τexp,
where clusters disintegrate only partially. Since the
prepulse duration is difficult to control, the ratio τexp/τpre
can be increased largely by increasing the time of
expansion of a cluster. This time grows with cluster
size. In [23], τexp was estimated by the formula

where Zn and mi is the charge and mass of an ion, Ncr is
the cluster concentration critical for a given laser, and
Te is the electron temperature.

Hence, the time of expansion depends on the cluster
linear size Lcl.

τexp Lcl mi/ZnkTe( )1/2 1023/Ncr( )1/3
,∼
1063-7842/04/4904- $26.00 © 20388
Thus, an increase in the cluster size is vital for
improving the laser radiation absorption and X-ray
radiation yield. Moreover, experiments with clusters of
sizes exceeding those used today (up to 0.1 µm) may be
useful for discovering resonance effects in laser absorp-
tion. The wavelength of a titanium–sapphire laser usu-
ally used in experiments [6–24] is 0.8 µm. One could
expect that, as the cluster mean size reaches or exceeds
this value, the type of interaction between laser radia-
tion and a cluster will change qualitatively.

However, experimental conditions or specific appli-
cations impose certain requirements on the spatial
structure of a cluster target. For example, the target
parameter distribution should be as uniform as possi-
ble. Then, in experiments with an X-ray laser, such a
spatially uniform cluster structure should be suffi-
ciently wide. In other cases, conversely, the target
should be as small as the beam spot to prevent the
absorption of arising X-ray radiation by the cold
(unheated by the laser) edges of the target.

Designing a cluster target (i.e., the selection of an
appropriate nozzle shape, working material, and initial
pressures and temperatures to provide desired target
parameters, such as the cluster size and extent of a
homogeneous cluster structure or desired spatial distri-
bution of the parameters) runs into obstacles associated
with the complex physics of clustering in gas jets
(homogeneous condensation of a supercooled gas). It
seems that this problem can be solved with the mathe-
matical model of nozzle flows with homogeneous con-
densation that was applied earlier to the formation of
cluster targets [16, 17, 23, 25]. The simulated distribu-
tions of the parameters of the two-phase medium
behind the nozzle [16, 17, 20, 23–25] qualitatively
agree with the situation observed experimentally. In
addition [26], for a certain range of input parameters
(the argon pressure between 20 and 60 bar and cluster
diameters of up to 0.07 µm), quantitative agreement
between calculated and experimental data, such as the
004 MAIK “Nauka/Interperiodica”
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cluster mean size and cluster concentration, was
achieved. This suggests that, in general, the model ade-
quately describes the clustering kinetics and may so be
used to calculate the cluster target parameters.

In this work, we apply numerical simulation of a
cluster target [16, 17, 23, 25] with the aim to select the
nozzle shape that provides the formation of clusters
with a diameter of ≈1 µm. Another goal is to provide a
homogeneous cluster medium with a cluster concentra-
tion as high as possible.

In the early simulation of a cluster target with this
numerical technique [16, 17, 20, 23–25], we simulated
two types of nozzles (Figs. 1a, 1b). The results of sim-
ulation in the form of the cluster mean radius spatial
distribution at a distance of 1.5 mm away from the noz-
zle are shown in Fig. 2. From Fig. 2, it follows that,
first, a conic nozzle (Fig. 1b) provides a much more
uniform distribution of clusters than a Laval nozzle (a
curved channel with the parabolic generatrix that has a
cylindrical part before the outlet) (Fig. 1a). Next, the
cluster mean size in the former case is noticeably
higher. These observations were discussed at length in
[16, 23, 25]. Finally, the cluster mean size grows with
initial pressure and krypton clusters are coarser than
argon ones, all other things being the same. This is
because the state of a gas approaches the saturation line
as the initial pressure rises and, under expansion from
nozzle, condensation starts earlier. The same takes
place in going from argon to krypton: the latter has a
higher temperature of saturation (at the same pressure)
or a lower pressure (at the same temperature) than
argon.

However, even under the most favorable conditions,
the cluster mean size is much smaller than 1 µm. Basi-
cally, the cluster size might be increased by raising the
initial pressure. However, the pressure can hardly be
raised significantly (e.g., by one order of magnitude)
because of technical troubles and its slight rise (say to
100 bar) causes a minor growth of clusters. Therefore,
it is necessary to find the nozzle shape generating large
clusters at a moderate initial pressure. A conic nozzle
providing a more uniform spatial distribution of the
cluster target parameters is taken as the basis.

MATHEMATICAL MODEL OF NOZZLE FLOW 
WITH CLUSTERING

The flow of a finely dispersed two-phase fluid, such
as a cluster gas, will be described in terms of parame-
ters averaged over the medium (the density ρ, velocity
v, and specific internal energy ε) and the moments of
the cluster radius distribution function

ρΩn f r x t, ,( )rn r; nd

0

∞

∫ 0 … 3., ,= =
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Fig. 1. (a) Laval and (b) conic nozzles used in earlier exper-
iments and (c) nozzle optimized for the production of
micrometer-size clusters.
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Fig. 2. Mean radius of argon and krypton clusters at differ-
ent inlet pressures for variously shaped nozzles: (a) argon,
conic nozzle; (b) argon, Laval nozzle; (c) krypton, conic
nozzle; and (d) krypton, Laval nozzle.
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Since the third moment Ω3 is physically related to
the weight ratio of the phases

(β is the dryness, i.e., the weight fraction of the gaseous
phase, and ρl is the density of the liquid), such an
approach allows us (under a number of additional
assumptions) to write a closed set of differential equa-
tions:

(1)

(2)

(3)

(4)

(5)

(6)

where the pressure P is estimated from the equation of
state

(7)

(Lh is the heat of phase transition and γ is the adiabatic
index).

The kinetics of cluster formation and growth is
defined by expressions for the critical nucleus radius r∗ ,

cluster growth rate , and nucleation rate I:

(8)

(9)

(10)

Here, σ is the surface tension coefficient, R is the gas
constant, Ps(T) is the saturation pressure at a given tem-
perature, Ts(P) is the saturation temperature at a given
pressure, µ is the molecular weight of the gas, NA is the
Avogadro number, and k is the Boltzmann constant.
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The temperature T appearing in these expressions is
given by

where Z is the compressibility of the gas.
Set (1)–(6) is solved in the two-dimensional or

quasi-one-dimensional statement in the domain of
computation that covers the cavity of a nozzle and (for
the two-dimensional statement) a part of the free space
adjacent to its exit section. At the entrance boundary,
the boundary conditions are the equality of stagnation
parameters to given P0 and T0:

where S is the entropy.
The nature of a specific gas (argon, krypton, etc.) is

thus taken into consideration via the following parame-
ters: ρl(T), the density of the liquid; σ(T), the surface
tension coefficient; µ, the molar mass; Ps(T) and Ts(P),
functions defining the shape of the saturation line; Lh,
the heat of vaporization; γ, the adiabatic index; and Z,
the compressibility.

For a more detailed description of the model, see
[23, 25]. Use of the model, numerical methods, etc., are
considered in [25].

NOZZLE SHAPE DESIGN

Our goal is to design a nozzle whose shape provides
the formation of as many micrometer-size clusters as
possible in argon and krypton jets. The initial parame-
ters of the gas are P0 = 60 bar and T0 = 293 K. The noz-
zle critical diameter is taken to be 0.5 mm, and the out-
let diameter is 7 mm (these values are typical of nozzles
used in practice). Also, we will consider nozzles whose
generatrix is a jogged line.

Numerous calculations and observations of the noz-
zle flow of a homogeneously condensing vapor have
discovered a so-called condensation shock typically
arising in such flows. This shock represents a thin layer
where liquid phase nuclei originate intensely and, as a
consequence, the vapor passes from the metastable
supercooled state into the near-equilibrium state.
Downstream of the condensation shock, the parameters
of the medium are usually equilibrium; that is, in this
area, the nuclei that have originated grow, while new
nuclei do not form.

Thus, the cluster size is bound to depend largely on
the number of nuclei in the condensation shock: the
smaller the number of nuclei, the larger their size at the
outlet. Several conic nozzles were tentatively analyzed
in terms of the quasi-one-dimensional model (see
table). Three initial parameters were given: the nozzle

T
P

βZρR
--------------,=

ε P
ρ
--- v2

2
-----+ + ε0

P0

ρ0
-----,+=

S P ρ,( ) S P0 ρ0,( ),=
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Results of quasi-one-dimensional analysis of conic nozzles

α L, mm P0, bar β nclust, 1011 
cm–3 〈r〉 , µm σ(r), µm 〈N〉 , 105 nat, 1018 

cm–3
nclust/nat, 

10–8

3.065 10.1 20 0.88 45 0.017 0.0028 5.2 20 22

3.065 10.1 40 0.86 28 0.028 0.0041 21 40 7.0

3.065 10.1 60 0.84 25 0.035 0.0047 39 60 4.1

3.065 20.2 20 0.88 11 0.028 0.0044 22 20 5.5

3.065 20.2 40 0.86 6.8 0.045 0.0061 84 40 1.7

3.065 20.2 60 0.84 5.6 0.057 0.0071 170 60 0.94

3.065 40.4 20 0.88 2.5 0.046 0.0069 99 20 1.2

3.065 40.4 40 0.85 1.4 0.076 0.010 410 40 0.36

3.065 40.4 60 0.84 1.1 0.098 0.012 860 60 0.19

6.13 10.1 20 0.80 60 0.012 0.0017 1.6 4.7 130

6.13 10.1 40 0.77 42 0.018 0.0021 5.2 9.4 45

6.13 10.1 60 0.75 35 0.022 0.0026 10 14 25

6.13 20.2 20 0.79 16 0.018 0.0025 6.1 4.7 34

6.13 20.2 40 0.76 11 0.027 0.0033 20 9.4 12

6.13 20.2 60 0.75 9.2 0.035 0.0039 39 14 6.5

6.13 40.4 20 0.79 4.3 0.029 0.0035 23 4.7 9.1

6.13 40.4 40 0.76 2.4 0.046 0.0055 94 9.4 2.5

6.13 40.4 60 0.74 1.9 0.059 0.0069 190 14 1.4

12.258 10.1 20 0.73 55 0.008 0.0011 0.54 1.1 490

12.258 10.1 40 0.70 42 0.012 0.0015 1.6 2.2 190

12.258 10.1 60 0.68 37 0.014 0.0017 2.9 3.3 110

12.258 20.2 20 0.73 19 0.012 0.0015 1.6 1.1 170

12.258 20.2 40 0.70 12 0.018 0.0021 5.5 2.2 55

12.258 20.2 60 0.68 9.6 0.023 0.0027 11 3.3 29

12.258 40.4 20 0.72 4.8 0.019 0.0024 6.5 1.1 43

12.258 40.4 40 0.69 2.7 0.030 0.0038 25 2.2 12

12.258 40.4 60 0.68 1.9 0.039 0.0048 56 3.3 5.8
area expansion α, which is the ratio of the outlet-to-crit-
ical diameter, the nozzle length L, and the gas initial
pressure P0. In all three cases, the initial temperature
was taken to be 293 K, the gas was argon, and the noz-
zle was a truncated cone. On the right of the table, the
parameters calculated at the exit section of each of the
nozzles are listed. The notation is as follows: nclust, the
cluster concentration; 〈r〉 , the cluster mean radius; σ(r),
the standard deviation of the radius from its mean; 〈N 〉 ,
the mean number of atoms in a cluster; and nat, the
mean atomic concentration in the two-phase target.

It follows from the table that the mean atomic con-
centration nat is independent of the nozzle length but is
uniquely defined by the nozzle area expansion α and
inlet (initial) pressure, the pressure dependence being
almost linear. This is because the atomic concentration
depends on gasdynamic factors and remains virtually
the same upon clustering.
TECHNICAL PHYSICS      Vol. 49      No. 4      2004
The dryness β is also almost independent of the noz-
zle length and is defined by the expansion and inlet
pressure. The explanation is that, at the outlet, we have
essentially an equilibrium two-phase medium, as was
noted above. Therefore, the fraction of one or the other
phase at this point depends on thermodynamic equilib-
rium rather than on kinetic factors; so, it does not vary
with rate of expansion.

At the same time, the parameters related to the clus-
ter size (the mean radius 〈r〉 and the mean number of
atoms 〈N 〉) depend considerably on the nozzle length.
With the expansion and inlet pressure fixed, the lower
the rate of expansion, the larger the clusters. This fact is
supported by the observation that the cluster concentra-
tion declines with increasing inlet pressure. The reason
for such an effect is that, as the inlet pressure rises, the
condensation shock shifts upstream, where the rate of
expansion of the square of the nozzle is lower, because
the nozzle is axisymmetric and its cross-sectional area
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is proportional to the square of the nozzle radius in a
given section. The cluster concentration is naturally
related to the cluster size, since the total amount of the
cluster material is uniquely determined by the mean
atomic concentration and dryness.

From the aforesaid, the basic qualitative conclusion
can be drawn: to produce coarse clusters, a nozzle must
expand as smoothly as possible (at least, near the con-
densation shock), while the cluster concentration is
high if large-α (fast expanding) nozzles are employed.

Thus, the dispersity of the medium at the nozzle out-
let depend mostly on the relative concentration of clus-
ters nclust/nat. Since nucleation is absent downstream of
the condensation shock, the relative cluster concentra-
tion rises in the vicinity of the condensation shock from
zero to a value characteristic of a given nozzle and then
remains unchanged.

The relative number of clusters, mean number of
atoms in a cluster, and dryness are related through the
obvious relationship

Using this relationship, one can estimate the value
of nclust/nat that is necessary for the formation of
micrometer-size clusters. From the best variant given in
the table (α = 3.065, L = 40.4 mm, and P0 = 60 bar), it
follows that we must increase the mean radius fivefold,

nclust
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Fig. 3. Parameter distributions along the nozzle (quasi-one-
dimensional calculation): (a) cluster mean radius 〈r〉
(b) concentration nclust〈N 〉  of clustered atoms, (c) super-
cooling Ts – T, and (d) relative concentration of clusters
nclust/nat. Data for argon and krypton are shown by the solid
and dashed curves, respectively.
i.e., increase 〈N 〉 by a factor of 125. However, 1 – β =
0.16 in this variant, while the nozzle being designed has
α = 14. Hence, 1 – β at the outlet will be no less than
0.32; that is, we may rely on a twofold increase in 1 –
β. Thus, the relative concentration of clusters is bound
to decrease by a factor of 62.5 to nclust/nat = 3 × 10–11.

The next stage is selecting a conic nozzle with an
expansion angle such that it provides the desired value
of nclust/nat. From a series of tentative quasi-one-dimen-
sional calculations with decreasing expansion angles of
conic nozzles, we chose a 70-mm-long cone with larger
and smaller diameters of 0.78 and 0.5 mm, respectively.
For these values, the condensation shock was observed
in the immediate vicinity of the outlet section.

It will be recalled, however, that our nozzle must
have an outlet diameter of 7 mm. To merely extend the
cone with the expansion angle found seems unaccept-
able, since the nozzle would be too long (longer than
150 mm), difficult to make, and experimentally inap-
propriate. It was therefore decided to attach a cone with
a wider expansion angle. Since clustering is absent in
this new part of the nozzle, the faster expansion of the
gas downstream of the condensation shock was
expected not to adversely affect the parameters of the
medium (namely, nclust/nat) that were achieved at the
shock.

However, tentative quasi-one-dimensional calcula-
tions showed that the second condensation shock

0.7
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Fig. 4. Parameter distributions along the nozzle (quasi-one-
dimensional calculation): (a) dryness β (b) cluster concen-
tration nclust, (c) mean number 〈N 〉 of atoms in a cluster, and
(d) mean concentration nat of atoms. Data for argon and
krypton are shown by the solid and dashed curves, respec-
tively.
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Fig. 5. Parameter distributions across the jet at a distance of
1.5 mm away from the nozzle exit section (two-dimensional
calculation): (a) dryness β (b) cluster concentration nclust,
(c) mean number 〈N 〉 of atoms in a cluster, (d) mean concen-
tration nat of atoms, (e) cluster mean radius 〈r〉 , and (f) con-
centration nclust〈N 〉  of clustered atoms. Data for argon and
krypton are shown by the solid and dashed curves, respec-
tively.

appears now in the fast-expanding part of the nozzle if
a gas containing a very small number of clusters
expands too rapidly. The parameter nclust/nat grows by
several orders of magnitude in this case and microme-
ter-size clusters do not form at the outlet of such a noz-
zle.

Therefore, we had to make the second, fast-expand-
ing, cone fairly long. As follows from our quasi-one-
dimensional estimations, reasonable results are
obtained when its length is 80 mm.

NOZZLE ANALYSIS

Thus, we have designed a 150-mm-long nozzle
(Fig. 1c), which is composed of two base-connected
truncated cones. The former (smaller) cone expands
from a base diameter of 0.5 mm (the critical diameter
of the nozzle) to a base diameter of 0.78 mm over a
length of 70 mm. The latter (larger) cone expands from
a diameter of 0.78 mm to a diameter of 7 mm over a
length of 80 mm.

Figures 3 and 4 demonstrate the parameter distribu-
tions along the nozzle according to our quasi-one-
TECHNICAL PHYSICS      Vol. 49      No. 4      2004
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Fig. 6. Parameter distributions across the jet at a distance of
1.5 mm away from the exit section of the shortened nozzle
(two-dimensional calculation): (a) dryness β, (b) cluster
concentration nclust, (c) mean number 〈N 〉 of atoms in a
cluster, (d) mean concentration nat of atoms, (e) cluster
mean radius 〈r〉 , and (f) cluster concentration on the semilog
scale. Data for argon and krypton are shown by the solid and
dashed curves, respectively.

dimensional calculations for an inlet pressure P0 =
60 bar. The results for argon and krypton are shown by
solid and dashed curves, respectively.

In the case of krypton, which has a higher boiling
temperature than argon (at the same pressure), the con-
densation shock is usually observed upstream of the
shock for argon. As a rule, krypton clusters are larger. It
is seen that, in our case, krypton clusters are actually
larger, though insignificantly, than argon ones.

Figure 3c shows that the flow in the larger cone (at
x > 0) is no longer equilibrium: the supercooling in it
grows both for argon and krypton. However, nucleation
in the larger cone is absent under the given conditions
(the relative cluster concentration nclust/nat remains con-
stant at a level of ≈3 × 10–11). As a result, clusters
formed in the smaller cone reach micrometer sizes at
the nozzle outlet.

The parameter distributions across the jet at a dis-
tance of 1.5 mm away from the outlet section of the
nozzle are shown in Fig. 5 (two-dimensional calcula-
tions). The distributions are seen to be fairly uniform
and agree well with the quasi-one-dimensional calcula-
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tions. This is of no surprise, since the nozzle of neces-
sity was made long and narrow with a very smooth vari-
ation of the cross-sectional size, and the quasi-one-
dimensional model is quite adequate for such a nozzle.

Along with the basic design (Fig. 1c), a shortened
version of the nozzle was also considered. Here, the
former larger cone expands to 2 mm (rather than to
7 mm) with the same expansion angle. Accordingly, its
length diminishes to 15.7 mm. Such a version is of
interest, because the cluster mean radius increases
insignificantly over most of the larger cone (Fig. 3a). At
the same time, the concentration of clusters (Fig. 4b)
drops considerably. It might therefore be expected that,
using the shortened nozzle, we can produce a cluster
target of lesser extent in which the mean size of clusters
is somewhat smaller but their concentration is apprecia-
bly higher. Figure 6 shows the parameter distributions
at a distance of 1.5 mm away from the shortened nozzle
outlet. The cluster concentration did increase by one
order of magnitude, whereas the cluster size diminished
insignificantly (for both argon and krypton). For the
shortened nozzle, the quasi-one-dimensional model
falls short of ideal and the parameters across the jet vary
much more considerably than for the long design. How-
ever, in this case, too, there is an area of diameter 1.0–
1.5 mm where the parameters remain invariable.

A supersonic gas jet leaving the nozzle expands into
a vacuum, and rarefaction waves therewith form at its
edges. Within these waves, the gas expands further,
which may lead to the formation of one more conden-
sation shock. In this case, a high concentration of tiny
clusters is observed; that is, the situation is the same as
for large-α nozzles. This is certainly a pure two-dimen-
sional effect, since the quasi-one-dimensional model
applies to the nozzle flow alone.

This effect is illustrated in Fig. 6: visually argon
clusters at the edges of the jet become negligibly small,
but their concentration grows sharply. The growth is so
sharp that we failed to scale Fig. 6b in such a way that
both plots (for argon and krypton) are seen simulta-
neously on the normal scale. Therefore, Fig. 6f is con-
structed on the semilog scale. It follows from Fig. 6 that
the concentration of argon clusters rises by four orders
of magnitude.

For krypton, this effect is less pronounced: only a
small dip is observed in the related curves (Figs. 6c, 6e)
and the concentration profile remains monotonic
(Fig. 6b).

In the case of the long nozzle, the effect of second-
ary clustering at jet expansion is much weaker (Fig. 5).
The concentration of argon clusters somewhat rises at
r ≈ 3.8 mm (Fig. 5), and accordingly the cluster size
decreases (Figs. 5c, 5e). For krypton clusters, such an
effect is not observed.
CONCLUSIONS

Thus, our mathematical model of nozzle flow with
homogeneous condensation basically may be applied to
designing nozzles that provide a cluster target with the
desired parameters. A nozzle generating coarse (about
1 µm in size) clusters in argon and krypton jets is sug-
gested. The parameter distributions simulated for a
two-phase medium at the outlet are highly uniform.

It should be noted that earlier this model was not
applied to such coarse clusters and such fast expansion.
It is therefore not improbable that any side effects, e.g.,
disintegration of drops, are not included in the model.
There may be other reasons why the model fails in a
specific case. For example, an error in the nucleation
rate shifts the condensation shock down- or upstream.
In this case, the parameters of the medium at the nozzle
outlet depend heavily on whether the condensation
shock will fall into the smaller or larger cone. Experi-
mental verification of the results obtained in this work
would shed more light on the adequacy of the model
and its applicability domain.

The nozzle designed in this work makes it possible
to experiment with very large clusters (≈1 µm), for
which the ratio τexp/τpre is very high. One therefore may
expect an appreciable increase in X-ray radiation yield,
i.e., in the efficiency of laser-to-X-ray-radiation conver-
sion.

ACKNOWLEDGMENTS

This work was supported by the CRDF (project no.
RP1-2328-ME-02) and the Russian Foundation for
Basic Research (project no. 02-01-00708).

REFERENCES

1. A. McPherson, B. D. Tompson, A. B. Borisov, et al.,
Nature 370, 631 (1994).

2. T. Ditmire, T. Donnelly, A. M. Rubenchik, et al., Phys.
Rev. A 53, 3379 (1996).

3. T. Ditmire, J. Zweiback, V. P. Yanovsky, et al., Nature
398, 490 (1999).

4. T. Ditmire, R. A. Smith, J. W. G. Smith, et al., Phys. Rev.
Lett. 78, 3121 (1997).

5. T. Ditmire, J. W. G. Tisch, E. Springate, et al., Phys. Rev.
Lett. 78, 2732 (1997).

6. J. Zweiback, R. A. Smith, T. E. Cowan, et al., Phys. Rev.
Lett. 84, 2634 (2000).

7. E. Parra, T. Alexeev, J. Fan, et al., Phys. Rev. E 62,
R5931 (2000).

8. E. Lamour, S. Dreuil, J.-C. Gauthier, et al., Proc. SPIE
4504, 97 (2001).

9. J.-P. Rozet, M. Cornille, S. Dobosz, et al., Phys. Scr.
T92, 113 (2001).

10. T. Auguste, P. d’Oliveira, S. Hulin, et al., Pis’ma Zh.
Éksp. Teor. Fiz. 72, 54 (2000) [JETP Lett. 72, 38
(2000)].
TECHNICAL PHYSICS      Vol. 49      No. 4      2004



ON THE GENERATION OF LARGE CLUSTERS 395
11. S. Dobosz, M. Schmidt, M. Perdrix, et al., Pis’ma Zh.
Éksp. Teor. Fiz. 68, 454 (1998) [JETP Lett. 68, 485
(1998)].

12. C. Stents, V. Bagnoud, F. Blasco, et al., Kvantovaya Éle-
ktron. (Moscow) 30, 721 (2000).

13. J. Abdallah, Jr., A. Ya. Faenov, I. Yu. Skobelev, et al.,
Phys. Rev. A 63, 032706 (2001).

14. S. Dobosz, M. Schmidt, M. Perdrix, et al., Zh. Éksp.
Teor. Fiz. 115, 2051 (1999) [JETP 88, 1122 (1999)].

15. A. I. Magunov, T. A. Pikuz, I. Yu. Skobelev, et al., Pis’ma
Zh. Éksp. Teor. Fiz. 74, 412 (2001) [JETP Lett. 74, 375
(2001)].

16. A. S. Boldarev, V. A. Gasilov, F. Blasco, et al., Pis’ma
Zh. Éksp. Teor. Fiz. 73, 583 (2001) [JETP Lett. 73, 514
(2001)].

17. G. C. Junkel-Vives, J. Abdallah, Jr., T. Auguste, et al.,
Phys. Rev. E 65, 036410 (2002).

18. G. C. Junkel-Vives, J. Abdallah, Jr., F. Blasco, et al.,
J. Quant. Spectrosc. Radiat. Transf. 71, 417 (2001).
TECHNICAL PHYSICS      Vol. 49      No. 4      2004
19. G. C. Junkel-Vives, J. Abdallah, Jr., F. Blasco, et al.,
Phys. Rev. A 64, 021201 (2001).

20. A. Y. Faenov, I. Y. Skobelev, A. I. Magunov, et al., Proc.
SPIE 4504, 121 (2001).

21. G. C. Junkel-Vives, J. Abdallah, Jr., F. Blasco, et al.,
Phys. Rev. A 66, 033204 (2002).

22. S. B. Hansen, A. S. Shlyaptseva, A. Y. Faenov, et al.,
Phys. Rev. E 66, 046412 (2002).

23. I. Yu. Skobelev, A. Ya. Faenov, A. I. Magunov, et al., Zh.
Éksp. Teor. Fiz. 121, 88 (2002) [JETP 94, 73 (2002)].

24. I. Yu. Skobelev, A. Ya. Faenov, A. I. Magunov, et al., Zh.
Éksp. Teor. Fiz. 121, 1124 (2002) [JETP 94, 966 (2002)].

25. A. S. Boldarev and V. A. Gasilov, Mat. Model. 15 (3), 55
(2003).

26. A. S. Boldarev, V. A. Gasilov, F. Blasco, et al., in Pro-
ceedings of the European Conference on Laser Interac-
tion with Matter (ECLIM), 2002; Proc. SPIE 5228, 446
(2002).

Translated by V. Isaakyan



  

Technical Physics, Vol. 49, No. 4, 2004, pp. 396–404. Translated from Zhurnal Tekhnichesko

 

œ

 

 Fiziki, Vol. 74, No. 4, 2004, pp. 18–26.
Original Russian Text Copyright © 2004 by Khvesyuk, Chirkov.

                                                        

GAS DISCHARGES,
PLASMA

       
Analysis of the Mechanisms for the Scattering of Plasma Particles 
by Non-Steady-State Fluctuations

V. I. Khvesyuk and A. Yu. Chirkov
Bauman Moscow State Technical University, Moscow, 105005 Russia

e-mail: khves@power.bmstu.ru
Received July 10, 2003

Abstract—Results of a numerical analysis of the interaction between plasma particles and the wave packets of
electrostatic fluctuations are presented. The influence of the dynamic parameters of the particles and packets on
the particle scattering is studied. It is shown that, in general, the electron scattering by such a kind of fluctua-
tions differs qualitatively from the ion scattering. Estimates of the parameters of collisionless diffusion are pro-
posed. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

In [1, 2], a new approach to studying transport pro-
cesses in tokamak plasmas was proposed. In those
papers, a discrete set of the resonant surfaces was con-
sidered. For each of them, there is an infinite set of elec-
trostatic wave modes. It is assumed that the amplitudes
of all waves are the same, time-independent, and expo-
nentially decrease with increasing distance from the
resonant surface. The modes corresponding to the reso-
nant surfaces overlap. Summation of the modes reduces
the wave field pattern to a set of wave packets (fluctua-
tions). In this model, the abnormal transport is gov-
erned by the scattering of charged particles by such a
kind of fluctuations. We note that the authors of [1, 2]
did not consider any specific type of oscillations and
did not take into account the structure of the wave pack-
ets. They considered modes distributed uniformly over
all frequencies (from –∞ to +∞) and possessing the
same (in absolute value) phase velocity, which resulted
in a set of infinitely narrow steady-state wave packets
(δ functions).

In the general case, the interaction of particles with
wave packets depends on the frequency range of the
modes, their wavelengths, and the dispersion of the
phase velocities. Therefore, it is of interest to analyze
the particle interaction with wave packets formed
according to the dispersion relations for certain types of
plasma waves.

It is just such a problem of the interaction between
particles and wave packets that is considered in the
present paper. The calculations are performed for the
frequency and wavelength ranges corresponding to
low-frequency and lower hybrid drift instabilities [3–
12]. The quantization conditions at the resonant surface
lead to a finite set of discrete modes. It is assumed that
the mode amplitudes decrease with increasing distance
from the resonant surface, which corresponds to nonlo-
cal solutions for drift waves propagating in a nonuni-
1063-7842/04/4904- $26.00 © 20396
form plasma [10, 12]. Such a representation of the wave
fields corresponds to non-steady-state two-dimensional
wave packets.

The objective of this study is to investigate the influ-
ence of the parameters of particles and wave packets on
the final result of their interaction. The main particle
parameters are the energy, velocity relative to a wave
packet, cyclotron radius, cyclotron frequency, and the
phase of Larmor gyration at the interaction instant,
while the main parameters of the wave packets are the
frequencies, wavelengths, spatial dimensions, ampli-
tudes, and the rates at which the amplitudes change.

1. NUMERICAL MODEL

We consider a cylindrical plasma configuration that
is homogeneous along the z axis. In this model, the
magnetic field B depends only on radius r and is
directed along the z axis, while the waves propagates
along the azimuthal coordinate θ. We also take into
account a steady-state radial electric field ER(r).

The particle motion and particle fluxes are calcu-
lated in the model of collisionless diffusion across the
magnetic field under the action of many modes of elec-
trostatic drift oscillations [1, 2, 13, 14]. It is assumed
that, many modes form localized nonsteady wave pack-
ets that propagate across the magnetic field and the
plasma density gradient. The modes are assumed to be
electrostatic, and the potential of each of the packets is
described by the expression

(1)

where n is the mode number; g⊥ (r) is the radial profile
of the packet; ϕ0n and ψn are the amplitudes and initial
phases of the modes, respectively; ωn is the frequency;
k⊥ n = 2πnrs/λ0r is the azimuthal wavenumber; λ0 is the

ϕ~ ϕ0ng⊥ r( ) –ωnt k ⊥ nrθ k ||nz ψn+ + +( ),cos
n

∑=
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maximum wavelength in the packet spectrum; k||n is the
longitudinal wavenumber, k||n ! k⊥ n; and rs is the value
of the radial coordinate determining the parameters of
the packet (r = rs approximately corresponds to the
maximum of the profile g⊥ (r)). A set of discrete reso-
nant surfaces r = rs (s = 1, 2, 3, …) is introduced.

The quantities ωn and k⊥ n are related by the disper-
sion relation ω(k⊥ ). The components of the electric field
are defined by potential (1):

 = –∂ϕ~/∂r,

where tilde stands for the perturbations of the corre-
sponding quantity.

Thus, wave packets of form (1) are non-steady-state
two-dimensional formations.

We note that, according to the theory of drift insta-
bilities [5, 6], the emergence of non-steady-state low-
frequency drift waves is possible only at k|| ≠ 0, while
high-frequency drift instabilities (lower hybrid and
drift-cyclotron ones) may develop at k|| = 0. When sim-
ulating cross-field transport both in high-frequency and
low-frequency ranges, we do not take into account the
influence of the longitudinal component k|| (note that
low-frequency drift instability develops at k|| ! k⊥  [6]).
The maximum level of the potential fluctuations ∆ϕm in
our calculations was determined by the relative ampli-
tude

(2)

where e is the electron charge, kB is the Boltzmann con-
stant, and Te is the electron temperature.

It is assumed that the basic contribution to the wave
fields comes from modes with the wavenumbers k⊥
close to that at which the instability growth rate is max-
imum. This allows one to linearize the dispersion rela-
tion for each wave packet:

(3)

where ω0 and v g are the frequency and group velocity
of the packet, which are determined from the exact dis-
persion relation at k⊥  = k0.

In principle, the wavenumber k0 can be chosen
rather arbitrarily in the instability range. For example,
k⊥  = k0 may correspond to the maximum of the instabil-
ity growth rate. It should be noted that, in some cases,
the maxima of the frequency ω(k⊥ ) and growth rate
γ(k⊥ ) of drift waves may correspond to close values of
k [12]. Depending on the sign of the derivative ∂ω/∂k⊥
of the exact dispersion relation, the group velocity in
Eq. (3) may be directed either parallel to the phase
velocity or opposite to it. In both cases, the wave pack-

Er
~

Eθ
~ 1

r
---∂ϕ~

∂θ
---------,–=

εm

e∆ϕm

kBTe

-------------,=

ω k ⊥( ) ω0 v g k ⊥ k0–( ),+≈
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ets in linear approximation (3) are periodical pulsed
perturbations propagating at the velocity v g with no
spreading.

The radial electrostatic field ER, which may arise in
the plasma spontaneously or be applied externally,
causes azimuthal rotation of the plasma. In this case,
the group velocity depends on ER as follows:

(4)

where VE is the velocity of azimuthal electric drift and
v g0 is the group velocity in the reference frame rotating
together with plasma.

It should be noted that v g0 may depend on the
strength of the radial electrostatic field ER (see, e.g.,
[9]) and also on its gradient dER/dr.

We also note that, approximate dispersion relation (3)
ensures that wave packets are nonsteady, except for the
case ω0 = v gk0. In this case, the dispersion relation has
the form ω = v gk⊥  and the wave packets have the form
of solitonlike electrostatic perturbations whose shape
does not change in time. In the applicability range of
the drift approximation, such perturbations does not
cause the displacement of the plasma particles elec-
trons and ions across the magnetic field.

In our model, we consider localized fluctuations
with δ|| ! λ0, where δ|| is the length of a wave packet
along its propagation direction. Packets with λ0 @ ρTi

and ω ! ωci (where ρTi is the ion Larmor radius in terms
of the ion thermal velocity and ωci is the ion cyclotron
frequency) correspond to low-frequency drift waves
[6], while packets with λ0 ~ ρTe and ωci ! ω ! ωce

(where ρTe is the electron Larmor radius in terms of the
electron thermal velocity and ωce is the electron cyclo-
tron frequency) correspond to lower hybrid drift waves
[6]. In the intermediate range λ0 ~ ρTi and ω ~ ωci, drift-
cyclotron waves can exist [7].

In the given geometry, the trajectories of particles of
kind α are determined by numerically solving the
dynamic equations

(5)

(6)

where mα, qα, v rα, and vθα are the mass, charge, and the
radial and azimuthal components of the particle veloc-
ity, respectively.

At δ|| @ ρα, ω ! ωcα, and v g ! vα⊥ (where ρα is the

cyclotron radius and v ⊥α  =  is the velocity
component normal to the magnetic field), the motion of
a particle of kind α affected by a packet with given
parameters (δ||, ω0, and v g) can be considered in the
drift approximation. In this case, the velocity of the par-

v g v g0 VE+ v g0

ER

B
------,–= =

mα
dv rα

dt
----------- qα Er

~ ER r( ) v θαB+ +[ ] ,=

mα
dv θα

dt
------------ qα Eθ

~ v rα B–( ),=

v rα
2 v θα

2+
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ticle guiding center relative to the wave packet is equal
to

(7)

Particle dynamic equations (5) and (6) follow from
the Hamilton equations

where H = H(t, r, θ, pr, Pθ) is the Hamiltonian, pr = mv r,
Pθ = mrvθ + qΨ, and Ψ is the function of the poloidal
magnetic flux (the subscript α is omitted).

The Hamiltonian of a particle is equal to

(8)

where ϕR is the potential of the radial electrostatic
field ER.

The particles affected by the fluctuating fields are
deflected in the radial direction, normally to the mag-
netic field.

The particle flux from a certain surface of radius (r –
|∆r| < r' < r + |∆r|) through a given surface of radius r is

(9)

where N is the particle density, ∆r is the displacement
of the particle guiding center, and ν is the effective fre-
quency of interaction between particles and fluctua-
tions.

The total flux is equal to the sum of the oppositely
directed fluxes through the given surface:

(10)

where

is the effective diffusion coefficient and ∆rm is the max-
imum displacement of the particle guiding center in a
single interaction with a fluctuation.

When defining flux (10), we assumed that the radial
displacement may take any value in the range –∆rm ≤
∆r ≤ ∆rm with the same probability and that ∆rm ! LN,
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D
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where

is the characteristic scale on which the plasma density
varies.

Expression (10) is usually employed to determine
particle fluxes inside the plasma. When determining
losses through the plasma boundary, it is more correct
to use expression of form (9) for the convective flux

The calculations performed in [13–16] showed that
the motion of plasma particles in the field of many wave
packets is stochastic. Then, the estimation of the parti-
cle fluxes associated with the collisionless transport
mechanism under consideration is reduced to determin-
ing the values ∆rm and ν. We performed a series of cal-
culations in order to reveal the basic relationships and
characteristics of the interaction between a particle and
a single wave packet.

The calculations were performed under a number of
simplifying assumptions. The potential profile ϕ~ in the
direction of fluctuation propagation y (in cylindrical
coordinates, y = rθ) was approximated by a function

(11)

where ω0 accounts for the non-steady-state character of
the wave packet, ψ0 is the initial phase, and ωg =
v g/rs0 = const is the angular velocity of the packet prop-
agation in the azimuthal direction.

The value ωg was calculated using the group veloc-
ity at the point r = rs0 corresponding to the maximum of
the radial profile g⊥ . In these calculations, the radial
profile g⊥  was chosen to be sufficiently wide, so that its
characteristic width δ⊥  was certainly larger than the
maximum displacement of the particle guiding center
∆rm. The function g|| was assumed to have a triangular
shape.

Results of the calculations of the interaction
between particles and wave packets (fluctuations) are
presented in Sections 2 and 3. We performed calcula-
tions for both ions and electrons. The relationships
obtained for ions and electrons are similar at the same
ratios ωcα/ω0, ρα/δ||, and v ⊥α /v g0 (α = i, e). Therefore,
for definiteness, all the results in Sections 2 and 3 are
given for ions. The consideration for ions is limited to
two regimes: a regime of drift motion (δ|| @ ρi and ω !
ωci) and a regime of instantaneous interaction (δ|| ! ρi

and ω @ ωci).

LN
1
N
----∂N

∂r
------- 

 
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=

Γ conv 1
2
---∆rmνN .≈
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Fig. 1. Calculated dynamics of an ion (proton) influenced by a long-wavelength wave packet: B = 0.5 T, the plasma radius is a =
0.2 m, Ti = 100 eV, Te = 100 eV, ρi = 0.29 mm, the initial ion energy is 100 eV, rs0 = 0.18 m, ∆ϕm = 4 eV, vg0 = –0.01vTi, δ|| = 4ρTi =

11.6 mm, ω0 = ωmi = 1.5 × 105 rad/s, and ψ0 = 0.
2. INTERACTION BETWEEN PARTICLES 
AND FLUCTUATIONS AT δ|| * ρ AND ω ! ωc

Typical results of the calculations of the interaction
between a particle and a long-wavelength fluctuation
TECHNICAL PHYSICS      Vol. 49      No. 4      2004
are presented in Fig. 1, which shows the particle trajec-
tory in the plane (x, y) normal to the magnetic field, as
well as the time evolution of the radial coordinate r and

energy of the particle, the components  and  ofEr
~ Eθ

~
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the electric field of the packet, and the packet potential
ϕ~ along the particle trajectory.

The calculations showed that, as frequency ω0
increases, the displacement increases until the time tint
of the interaction between a particle and a fluctuation
becomes on the order of π/ω0. The dependence of the
displacement on the ratio ω0/ωm is shown in Fig. 2. In
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6
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8

ω0/ωm

∆r, mm

|∆r|

∆rm

Fig. 2. Radial displacement of an ion (proton) at the initial
phase of the wave packet ψ0 = 0 (dashed line) and the max-
imum displacement over the entire range of ψ0 (solid line)
as functions of the wave frequency ω0. The values of B, a,
Ti, Te, ρi, rs0, ∆ϕm, vg0, δ|| are the same as in Fig. 1.
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Fig. 3. Radial displacement of an ion (proton) as a function
of the longitudinal size of the wave packet. The values of δ||,
B, a, Ti, Te, ρi, rs0, ∆ϕm, vg0, and ω0 are the same as in Fig. 1.
the case under consideration, the interaction time is
tint = 2δ||/u and, at ω0 < ωm the displacement increases
nearly in proportion to ω0/ωm, where

(12)

When studying low-frequency drift waves, it is the
range ω0 < ωm that is of most interest because, for these
waves, ωm * ωd = v d/r, where v d and ωd are the velocity
and frequency of the diamagnetic drift. At ω0 > 2ωm, the
displacement decreases sharply in magnitude. At δ|| ~ ρ,
this decrease is monotonic (Fig. 2), while at δ|| @ ρ, it is
nonmonotonic.

According to the calculated results, the maximum
particle displacement across the magnetic field lines at
ω0 < ωm can be evaluated by the formula

(13)

where the angular brackets stand for averaging along
the particle trajectory over the time interval 0 ≤ t ≤ tint
and the coefficient ηδ accounts for the finiteness of the
Larmor radius (as compared to the fluctuation size δ||).

Figure 3 presents the calculated particle displace-
ment as a function of the ratio δ||/ρ. According to the
calculated results, for δ|| @ 3.5ρ, we have ηδ ≈ 1, while
for δ|| < 3.5ρ, we have ηδ ≈ δ||/(3.5ρ) ≈ 0.3δ||/ρ. We note
that displacement (13) does not exceed the characteris-
tic width of the packet radial profile δ⊥ .

The frequency of interactions in the long-wave-
length low-frequency range under consideration is
equal to ν = u/λ0.

Low-frequency drift instability develops at rela-
tively low β (β is the ratio of the plasma pressure to the
magnetic field pressure); hence, the magnetic field
dB/dr is weakly nonuniform in this case. Therefore, for
most of the particles, we have u ≈ |v g0| because the gra-
dient-drift velocity entering in Eq. (7) can be ignored
and, at ω0 < ωm, we can assume that

(14)

Resonant particles with u ≈ 0 should be considered
separately because they are capable of making a signif-
icant contribution to the total flux. For a Maxwellian
distribution, the density of the resonant particles is

equal to Nres ≈ Nexp( ), where νres is the value
of the transverse velocity component v ⊥  determined
from the condition u = 0 and vT is the particle thermal
velocity.

The flux of resonant particles can be estimated as

(15)
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3. INTERACTION BETWEEN PARTICLES 
AND FLUCTUATIONS AT δ|| ! ρ AND ω & ωc

Typical results of the calculations of the interaction
between a particle and a short-wavelength high-fre-
quency fluctuation are presented in Fig. 4.
TECHNICAL PHYSICS      Vol. 49      No. 4      2004
In the course of interaction between a particle and a
short-wavelength packet (δ|| ! ρ), the azimuthal com-
ponent of the particle velocity changes by the value

∆v θ
q∆ϕ

m v θ v g–( )
---------------------------–=
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at |∆vθ| ! |vθ – v g|. Taking into account that the dis-
placement of the guiding center along the radius is
related to the change in the particle velocity by the rela-
tionship ∆r/ρ = ∆vθ/v ⊥ , we obtain

(16)∆r
m∆v θ

qB
---------------

Eθ
~〈 〉 tint

B
-----------------.= =

1

–2π–π 0 π/2

2

3

4

5

6

ζ

|∆r|, mm

π
0

Fig. 5. Radial displacement of an ion (proton) as a function
of the ion Larmor phase ζ for vg0 = –0.1vTi. The values of
B, a, Ti, Te, ρi, rs0, δ||, ∆ϕm, ω0, and ψ0 are the same as in
Fig. 4.
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Fig. 6. Radial displacement of an ion (proton) as a function
of the wave packet frequency ω0 for vg0 = (1) 0.05vTi,
(2) 0.02vTi, (3) 0.3vTi, and (4) 0.01vTi. The values of B, a,
Ti, Te, ρi, rs0, δ||, ∆ϕm, ψ0, and ζ are the same as in Fig. 4.
For |vθ – v g| ! |vθ|, assuming that

and taking into account that 2δ|| ≈ (vθ – v g)tint, we obtain
from (14) that

The displacement of the particles with vθ ≈ v g is
maximum. The calculations show that it is these parti-
cles that make the main contribution to the total flux.
The value of the Larmor phase ξ for these particles is
close to the resonant value

(17)

The calculations show (Fig. 5) that the interaction is
most efficient for particles with the Larmor phases
ςres ± 0.1π.

The maximum interaction time of these particles
with a fluctuation is

For δ|| ≤ 0.1ρ, it follows from the relation

that the interaction time is

The calculations show that a particle is displaced
under the action of short-wavelength fluctuations even
in the case of steady-state fluctuations, i.e., at ω0 = 0.
Figure 6 presents the results of calculations demon-
strating how the displacement depends on the fre-
quency ω0 of fluctuations. The displacement begins to
appreciably decrease (approximately in proportion to
ωc/ω0) at ω0 @ ωc. Thus, at |v g0| ~ 0.3v ⊥ , the displace-
ment begins to decrease starting from ω0 ~ 50ωc.

The influence of the group velocity is illustrated in
Fig. 7. The calculations show that, as the absolute value
of the group velocity increases to |v g0| ≈ 0.1v ⊥ , the dis-
placement increases approximately in proportion to
|v g0|/(0.1v ⊥ ). This probably occurs because the non-
steady-state character of the interaction associated with
the relative motion of an ion and a fluctuation becomes
more pronounced. At |v g0| > 0.1v ⊥  the displacement
decreases approximately as 0.1v ⊥ /|v g0| because the
time during which a fluctuation and a particle interact
decreases.
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Taking into account the aforesaid, the maximum ion
displacement at |v g0| < 0.1v ⊥ is

(18)

while at |v g0| > 0.1v ⊥ , it is

(19)

The calculations also show that, at relatively low
particle energies (v ⊥  & vT), the displacement is almost
independent of the energy and, at v ⊥  @ vT, it rapidly
decreases with energy.

In the case of short-wavelength fluctuations (in con-
trast to the case of long-wavelength fluctuations), for-
mulas (18) and (19) for the displacement are applicable
regardless of whether or not the condition ∆rm < δ⊥  is
satisfied, because the displacement of the guiding cen-
ter is related to a change in the particle energy in the
course of practically instantaneous interaction with a
packet, rather than to the particle drift (the position of a
particle remains almost unchanged during the interaction).

Assuming that the particles obey a Maxwellian dis-
tribution, the averaging of the displacement squared
(formulas (18) and (19)) over the particle velocities v ⊥
gives

(20)

where ηv ≈ 0.035vT/|v g0| at |v g0| ≤ 0.07vT and ηv ≈ 0.5
at 0.07vT < |v g0| < 1.5vT.

In the short-wavelength limit, we have λ0 ! ρ; i.e.,
over one cyclotron period, the particles interact with
many packets. We note, however, that in this case, only
interactions occurring at Larmor phases close to the
resonant value ζres are to be taken into account. There-
fore, the effective interaction frequency can be set equal
to ν = ωc/π.

4. DISCUSSION

In the present paper, we have investigated the behav-
ior of plasma particles under the action of electric-field
fluctuations with allowance for their finite width and
non-steady-state character for various kinds of plasma
oscillations (in the calculations, the characteristic
wavelengths and frequencies of the fluctuations were
varied). The results obtained allow us to evaluate the
radial displacements of the plasma particles and the
characteristic frequencies of the particle–fluctuation
interaction that are necessary for calculating the diffu-
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sive and convective particle and energy fluxes from the
plasma.

According to the calculated results, a particle turns
out to be displaced along the radius after the interaction
with a fluctuation only when the fluctuation is non-
steady. Thus, in the long-wavelength low-frequency
limit, it is necessary that the fluctuation shape vary
appreciably during the interaction between a particle
and a fluctuation. In the short-wavelength high-fre-
quency limit, a fluctuation should propagate with a suf-
ficiently high velocity relative to a particle. It should be
noted that in both these cases, the mean azimuthal elec-
tric field along the particle trajectory is nonzero,

 ≠ 0. When this condition is satisfied, fluctuations
can cause anomalous cross-field transport.

The calculations show that the results obtained for
ions (ρ = ρi, ωc = ωci, and v ⊥  = v ⊥ i) can also be applied
to electrons by setting ρ = ρe, ωc = ωce, and v ⊥  = v ⊥ e in
formulas (12)–(20). It should be noted that the interac-
tion parameters for electrons, (∆rm)e and νe, may differ
from the interaction parameters for ions, (∆rm)i and νi,
at the same parameters of fluctuations.

Thus, in the case of fluctuations corresponding to
low-frequency drift instability [3, 6, 12], we can
assume the following parameter values: δ|| ≈ 0.1λ0, λ0 ≈
LN ≈ r, ω0 ≈ v d/r, ui ≈ ue ≈ |v g0| ≈ 0.1v d, and v d =
kBTe/eBLN. In this case, the drift approximation is valid
for both electrons and ions. The diffusion coefficients
and convective ion and electron fluxes can then be esti-
mated using formulas (12)–(14), which give the follow-
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Fig. 7. Maximum radial displacement of an ion (proton) as
a function of the group velocity of the wave packet vg0. The
values of B, a, Ti, Te, ρi, rs0, δ||, ∆ϕm, ω0, ψ0, and ζ are the
same as in Fig. 4
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ing values:

(21)

(22)

In the case of lower hybrid drift instability [6–8], the
conditions of the low-frequency limit ω ! ωce and δ|| ~
ρe are satisfied for electrons, while for ions, in contrast,
we have ω @ ωci and δ|| ! ρi. In this case, we can
assume δ|| ≈ ρTe, λ0 ≈ 10ρTe, v g0 ≈ 0.2vTi, and ω0 ≈

. Then, according to formulas (12)–(14), the
diffusion coefficient and the convective flux of elec-
trons are equal to

(23)

(24)

To derive the corresponding expressions for ions, it
is necessary to use formulas (18)–(20) for the short-
wavelength limit, which give

(25)

(26)

It can be seen that, in this case, the ion and electron
transport parameters differ drastically. The difference in
the transport parameters may result in the different ion and
electron fluxes. Therefore, mechanisms providing ambi-
polarity (the formation of a static electric field and a
change in the density profile) must operate in the plasma.

We also note that there is a range of amplitudes εm

within which the ion displacement may be negligibly
small as compared to their cyclotron radius ((∆rm)i !
ρi), whereas the electrons can substantially deviate
from their undisturbed orbits ((∆rm)e @ ρe). Hence,
when the ion transport is suppressed down to the clas-
sical (or neoclassical) level, the electron transport may
remain anomalously high, as has been observed in
many experiments [17].

A natural consequence of the above model is the
possibility of the existence of three transport regimes in
a magnetized plasma at different fluctuation ampli-
tudes: anomalous transport of both ions and electrons,
anomalous transport of electrons and collisional (clas-
sical or neoclassical) transport of ions, and neoclassical
transport of both ions and electrons at a certain mini-
mum level of fluctuations.

The first of the above regimes corresponds to the con-
ventional anomalous transport in a magnetized plasma.
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The second regime corresponds to the conditions under
which anomalous transport is suppressed in the regions
of internal transport barriers (see, e.g., [17]).

We note that, in the present paper, we did not con-
sider the excitation mechanisms of the corresponding
instabilities, and the wave amplitudes, which are neces-
sary for the analysis of anomalous transport, were pre-
scribed. To develop a self-consistent model, it is neces-
sary to estimate the saturation level of the wave mode
amplitudes with allowance for the anomalous transport
of the particles resulting in the onset of instabilities.
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Abstract—A method is proposed for determining the density of the ionizing electron component in a dc mag-
netron discharge in the region where the magnetic field is strong and highly nonuniform. The method is based
on the analysis of the measured dependence of the discharge current on the distance between the cathode and
the grid anode. The method was used to study the parameters of a magnetron discharge in a process magnetron
operating in the regime with a narrow discharge region localized close to the cathode surface. © 2004 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

DC magnetron discharges used in magnetron sput-
tering systems [1, 2] are characterized by a narrow dis-
charge region localized close to the cathode surface and
a relatively strong (0.04–0.12 T) and highly nonuni-
form magnetic field with an arched configuration in
both the vertical (150–350 T/m) and radial directions.
For this reason, conventional diagnostics (such as probe
measurements) are very difficult to apply to dc magne-
tron discharges. To examine the structure of a magne-
tron discharge by an electric probe [3], either special
model magnetic systems with a reduced magnetic field
are used [4] or a discharge is studied at a relatively large
distance from the cathode, where the magnetic field is
low [4, 5].

In the present paper, we propose a method for deter-
mining the spatial distribution of the density of the ion-
izing electrons by analyzing the measured dependence
of the magnetron discharge current on the distance
between the cathode and the grid anode and by examin-
ing the cathode erosion profile.

With this method, we have studied a dc magnetron
discharge at ion-current densities at the cathode of
~400–700 A/m2. In the experiments, we used a highly
efficient small-sized magnetron developed by us for
solving a wide class of problems of vacuum deposition.

DESCRIPTION OF THE EXPERIMENT

The experiments were carried out with a dc magne-
tron sputtering system. The axisymmetric magnetic
system of the magnetron consisted of a cylindrical cen-
tral magnet and a peripheral annular magnet made of
the KS37 alloy. The magnets provided a magnetic field
of Bcat ≈ 0.07–0.08 T on the cathode surface in the
region where the cathode erosion was maximum
(Fig. 1). The magnetic field configuration over the cath-
1063-7842/04/4904- $26.00 © 20405
ode surface was preliminarily calculated (Fig. 1a). The
calculations showed that the horizontal component of
the magnetic field over the region where the cathode
erosion was maximum was satisfactorily described by
an exponential dependence with a decay length λβ

(1)

in our case, the decay length was λβ ≈ 2.3 mm.

The working gas was argon. To ensure uniform sput-
tering of the target, the experiments were carried with a
1.5-mm-thick graphite cathode, because of its small
sputtering coefficient [6]. The magnetron anode was
designed in the form of a circular diaphragm that was
parallel to the cathode surface and had an aperture at its
center. The aperture diameter was equal to the maxi-
mum diameter of the cathode erosion region. For the
discharge to be localized between the anode and the
cathode, the anode aperture was covered with a metal
grid made of a 0.3-mm stainless-steel wire (Fig. 1a), the
cell size being 1 mm. Preliminary measurements
showed that the grid had no effect on the I–V character-
istic of the discharge when the anode–cathode distance
was longer than 7 mm.

The experiments included the measurements of the
I–V characteristic for different values of the anode–
cathode distance X* at a fixed value of the argon pres-
sure in the vacuum chamber (Pwork = 6.5 × 10–3 torr).
The anode–cathode distance was varied from 7.8 to
1.8 mm with a step of 0.5 mm. The largest distance was
determined by the structural features of the magnetron,
whereas at distances shorter than 1.8 mm, steady-state
magnetron discharges could not be achieved because of
the onset of anode–cathode microarcs.

The maximum erosion of the graphite cathode in the
course of the experiments did not exceed 0.1 mm, so

BR x( ) Bcat
x
λβ
-----–

 
 
 

,exp=
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that the experiments were carried with the same cath-
ode. Since the profile of the erosion region is indepen-
dent of the cathode material, we performed special
measurements of the erosion profile with a copper cath-
ode of the same thickness (1.5 mm) until it was com-
pletely eroded; the measurements were performed for
several anode–cathode distances. Comparisons of the
erosion regions for two distances X* = 7.0 and 2.8 mm
showed that the observed difference in the profile of the
erosion region correlates well with the change in the
discharge volume bounded by a magnetic field line
touching the anode grid (the boundary field line). The
boundary of the erosion region is determined by the
intersection of this magnetic line with the cathode sur-
face (Fig. 2b).

X*

L(r, X*)

2

1

3

4

5

6

(a)

r00

0 1 2 3 4 5 6 7 8 9

0.01

0.03

0.05

0.07

0.09
(b)

x, mm

Br, T

Fig. 1. (a) Magnetron ion sputtering system used in the
experiments (half of the system is depicted) and (b) the
radial component of the magnetron magnetic field as a func-
tion of the distance from the cathode: (1) cathode, (2) mag-
netic system (the central and peripheral magnets), (3) mag-
netron casing, (4) anode, (5) anode grid, and (6) magnetic
field lines.

X

r

From the experimental data (see Fig. 2), we deduced
the dependences of the magnetron-discharge current on
the distance X* for several fixed values of the discharge
voltage. These dependences were then recalculated to
the dependences of the ion-current density by using the
results of measurements of the erosion profiles.

PROCESSING OF EXPERIMENTAL DATA

The proposed method for measuring the density of
the ionizing electrons in a magnetron discharge is based
on a one-to-one correspondence between the change in
the magnetron-discharge current and the change in the
plasma volume limited by the boundary field line. The dis-
charge current, which was measured directly, was a sum of
two currents: the current of ions generated in the dis-
charge plasma and the current of secondary electrons
produced due to the ion bombardment of the cathode,

(2)
where γe is the coefficient of secondary emission.1 This
allows us to calculate the ion current from the measured
values of the discharge current.

For a fixed voltage and a given cathode–grid dis-
tance, the ion current at the cathode in a steady-state
discharge can be represented as

(3)

where e is the ion charge, Ji(r, X*) is the ion current
density at the cathode point with the coordinate r,

 is the density of ionizing electrons, and
νion(r, x) is the ionization frequency.

Integration is performed over the sputtered cathode
area Scat(X*) (dS = 2πrdr) and over the normal (to the
cathode surface) coordinate x from 0 to the point
L(r, X*) specifying the boundary field line for a given
distance X*.

The distribution of the ion current density on the
cathode is axisymmetric and corresponds in structure to
the erosion profile h(r, X*) [10], which can be either
measured directly (Fig. 2b) or calculated. Relating the
current density to the known erosion profile and total
discharge current (2), we find

(4)

where

(5)

1 The secondary emission coefficient γe may be considered con-
stant in the range of ion energies typical of magnetron ion sput-
tering systems [7–9].

Id Ii 1 γe+( ),=
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=  e ne
hot r x X*, ,( )ν ion r x,( ) x Sd ,d
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L r X*,( )

∫
Scat
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ne
hot r x X*, ,( )

Ji e X*,( ) h r X*,( )
h〈 〉 X*( )

---------------------
Id X*( )

1 γe+( )Scat X*( )
---------------------------------------,=
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-------------------- h r X*,( ) S,d
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is calculated numerically for every value of X*.
Using relation (3) for the quantity Ji(r, X*) at a fixed

coordinate (r = r0), assuming that the ions move along
vertical lines [10], and introducing the height-averaged
ionization frequency

(6)

we find the ion current density at the cathode at a fixed
coordinate,

(7)

Differentiating Eq. (7) with respect to the upper
integration limit, we obtain

(8)

Assuming that the ionizing electrons are produced
due to secondary electron emission and that their flux
density is directly proportional to the ion current at the
cathode, the spatial distribution of the density of the
ionizing electrons can be represented as a product in
which the first multiplier depends only on the ion cur-
rent at the cathode, whereas the second (normalized)
multiplier describes the coordinate dependence,

(9)

To determine the value of (Ji(r0, X*)), we use the
quasineutrality condition for the discharge plasma.
Then, from the measured I–V characteristics, we find
the value of the discharge voltage as a function of the
cathode–grid distance at a fixed discharge current. In
this case, we have

(10)

and, consequently,

(11)

Numerical estimates performed according to Eq. (11)
show that the difference between the electron and ion
densities is no larger than 2.4%; the profile of this dif-
ference is presented in Fig. 3a. Hence, the quasineutral-
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ity condition holds. Taking into account that ne ≈  at
small distances from the cathode, we define the quan-

tity (Ji(r0, X*)) as

(12)

Then, from expressions (8), (9), and (12), we find

(13)

In expressions (12) and (13), the average ion veloc-
ity is calculated for ions with the mass Mi and averaged
energy 〈Ei〉  on the cathode surface [11]

(14)

From expression (13), using a normalization condi-
tion for ne(r0, x), we can also determine the average ion-
ization frequency 〈ν ion〉(r0).
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hot

ne
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Fig. 2. (a) Measured I–V characteristics for different cath-
ode–grid distances: X* = (1) 7.8, (2) 5.8, (3) 4.8, (4) 3.8, and
(5) 2.8 mm; (b) cathode erosion profiles for two different
cathode–grid distances: X* = (1) 7.8 and (2) 2.8 mm.
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It is of great interest to determine the density of the
ionizing electrons above the region where the cathode
erosion is maximum (the profiles of this density for dif-
ferent discharge voltages are shown in Fig. 3b).

In the range of distances  ≤ X ≤ , in which
the measurements were performed, the dependence of
the electron density on the distance from the cathode is
satisfactorily described by an exponential function with
a decay length λe

(15)

where λe varies only slightly over the entire range of the
magnetron discharge voltages: 1.0 < λe < 1.2. The latter
circumstance allows us to conclude that the density dis-
tribution of the ionizing component is mainly deter-
mined by the x dependence of the magnitude of the hor-
izontal component of the magnetic field in the dis-
charge,

(16)
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Fig. 3. (a) Relative difference between the electron and ion
densities, calculated by formula (11); (b) the spatial distri-
bution of the ionizing electrons at different discharge volt-
ages: Ud = (1) 395, (2) 400, (3) 405, (4) 410, (5) 415,
(6) 420, and (7) 425 V (the solid curve shows the approxi-
mation by a formula ne(x) ∝  exp{–x/λe} with λe ≈ 1.1).
where α is defined as α = λβ/λe and is in the range 1.8 <
α < 2.2.

4. CONCLUSIONS

The electron density distribution is one of main dis-
charge characteristics. The method described above
allows one to determine the spatial parameters of the
ionizing electron component in a magnetron, namely,
the distribution of the electron density and the average
ionization frequency as a function of the distance from
the cathode. We have shown that the quasineutrality
condition holds well in a magnetron discharge. When a
grid anode is used in the magnetron, the discharge
localization is determined by the position of the bound-
ary field line. The main factors governing the distribu-
tion of the ionizing electrons in a magnetron discharge
are the magnitude and configuration of the magnetic
field of the permanent magnets. In view of the fact that
the spatial electron distribution is related to the mag-
netic configuration, the operating parameters of an ion
sputtering system can be predicted in its design phase,
because this relation presents a way of estimating the
ion currents and, as a consequence, the sputtering effi-
ciency of the target material.
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Abstract—The solubility of gases in uniformly strained bcc crystals is calculated. As a result of straining, inter-
stices occupied by interstitial atoms become nonequivalent and the temperature dependence of the solubility
changes. The effect of deformation depends substantially on the sign of energy of interaction vAC between dis-
solved atoms and host-crystal atoms. For elastic uniaxial tension, the solubility decreases linearly with strain at
vAC > 0; at vAC < 0, it increases with strain. The amount of this effect is 1–10%. The effect of complexes con-
sisting of two nearest dissolved atoms is studied. Conditions at which the role of the complexes is substantial
are found. The complexes increase the solubility and change its dependence on the gas pressure. © 2004 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

Gas absorption by crystals is a complex physico-
chemical process that includes gas molecule dissocia-
tion at the gas–crystal interface followed by diffusion
of atoms into the solvent volume. Since this process is
reversible, the gas–crystal system comes into equilib-
rium in time, and the equilibrium concentration of
atoms dissolved in the crystal specifies the solubility of
the gas.

In this work, we calculate the solubility of a gas in
bcc crystal A that is uniaxially strained (ε) along the z
axis. In this crystal, the length a0 of the unit cell edge in
the z direction changes by ∆a = εa0, and the changes in
the lengths of the edges that are normal to the z axis are
given by

where λ and µ are the Lamé constants [1].

Absorbed atoms are assumed to occupy octahedral
interstices in the undeformed crystal; that is, they are
placed at the middles of the unit cell edges and at the
centers of the unit cell faces. In the strained crystal,
however, these positions are no longer equivalent. The
distances between crystal atoms and interstices change,
and the latter are subdivided into two types. Interstices
of type I have two nearest crystal atoms at a distance
a1/2 (a1 = a0 + ∆a), and interstices of type II have two
nearest atoms at a distance a2/2 (a2 = a0 + ∆a'). It is
obvious that the number N1 of type-I interstices is half
the number N2 of type-II interstices. Since the total
number of interstices of both types is 3N (N is the num-
ber of atoms in the crystal), we have

(1)

∆a '
λ

2 λ µ+( )
---------------------a0ε,–=

N1 N , N2 2N .= =
1063-7842/04/4904- $26.00 © 0409
SOLUBILITY IN THE CASE OF THE UNIFORM 
DISTRIBUTION OF INTERSTITIALS

We will calculate the solubility of a gas in a crystal
when interstitials are uniformly distributed over inter-
stices. Let vAC(r) and v(r) be the energy of interaction
between host-crystal atoms and interstitials C and the
energy of interaction of interstitials C between each
other, respectively (the energies are taken with the
minus sign). Then, the free energy of the crystal–gas
system is

(2)

where  is the free energy of a ν-atomic gas. For
mono- and diatomic gases [2],

(3)
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In formulas (2) and (3),  is the number of inter-
stitials in interstices of an ith type (i = I, II); Ng is the
number of molecules in the gas phase; V is the gas vol-

ume; m is the weight of a gas atom; TC and  are the
characteristic temperatures for vibrational and rota-
tional degrees of freedom of a molecule, respectively;
and ε0 is the binding energy in a molecule.

Let  and  be thermodynamic variables.
Then, using the extremeness condition for F with

respect to  and  and taking into account that

(4)

we can write equilibrium equations in the form

(5)

Solving system (5) under the assumption that

 ! Ni and neglecting all terms except for those that

are logarithmic in /Ni, we come to

(6)

where p is the gas pressure and
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Using (6), we can write the solubility R as

(8)

At small strains (ε ! 1) and high temperatures,

(9)

where

Then,

(10)

where

(11)

is the solubility of the gas in the undeformed crystal.
According to (10), the solubility varies linearly with

strain. Assuming that interstitial atoms are attracted by
solvent atoms (vAC > 0), we have γ < 0. Thus, the solu-
bility of the gas in the crystal decreases under uniaxial
tension and increases under compression. At tempera-
tures such that

the uniaxial tension on the order of ε ~ 0.01 changes the
solubility of the gas by 1–10%.

The interaction between atoms C can be taken into
account in terms of the perturbation theory. In the first
order of smallness in v /kT, we find from equilibrium
equation (5) that

(12)

According to (10) and (11), uniaxial tension of the
crystal does not change the pressure and temperature
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dependences of the solubility: it obeys the Arrhenius
law with a slightly modified preexponential.

EFFECT OF INTERSTITIAL COMPLEXES 
ON THE SOLUBILITY

As is known, interaction between point defects in
crystals can cause their aggregation into various com-
plexes [3]. In dilute interstitial alloys A–(C), the sim-
plest complexes are pairs of nearest interstitials. Let us
consider the effect of complexation on the solubility of
gases in deformed crystals under the assumption that
the number of complexes is small and they do not over-
lap with each other.

Obviously, there are two types of such complexes in
uniformly strained bcc crystals. Those of the first type
are formed by atoms C that occupy nearest interstices
of different types. Their number is n1, and their energy is

(13)

In complexes of the second type, neighboring atoms
C occupy nearest interstices of type II. Accordingly,
their number is n2 and their energy is

(14)

Let us determine the thermodynamic probability of
the state with n1 complexes of the first type. It equals
the number of distinguishable permutations of n1 com-
plexes taken the number of type-I interstice–type-II
interstice pairs at a time. Since the number of these
pairs is 4N, this probability is given by

(15)

Similarly, for complexes of the second type, we
have

(16)

To accommodate isolated atoms C, a solution con-
taining nonoverlapping complexes of both types has
N – n1 – 2n2 interstices of type I and 2N – 4n1 – 3n2
interstices of type II. Then, the thermodynamic proba-

bility of the state with  and  isolated atoms C
can be written as

(17)

Ek
1( ) v

a2

2
----- 

  n1.–=

Ek
2( ) v

a1

2
----- 

  n2.–=

Wk
1( ) 4N( )!

n1! 4N n1–( )!
---------------------------------.=

Wk
2( ) 2N( )!

n2! 2N n2–( )!
---------------------------------.=

NC
1( ) NC

2( )

W
N n1– 2n2–( )!

NC
1( )! N n1– 2n2– NC

1( )–( )!
----------------------------------------------------------------=

×
2N 4n1– 3n2–( )!

NC
2( )! 2N 4n1– 3n2– NC

2( )–( )!
-----------------------------------------------------------------------.
TECHNICAL PHYSICS      Vol. 49      No. 4      2004
In view of (15)–(17), the free energy is expressed as

(18)

We now construct equilibrium equations, using the

extremeness condition for F with respect to , ,
n1, and n2 and also the relation

(19)

Next, we solve these equations, neglecting all con-
centration terms except for logarithmic ones and obtain

(20)

(21)

For  and , we arrived at expression (6),
which was derived earlier.

According to (6), (20), and (21), the concentrations
of complexes, c1 = n1/4N and c2 = n2/2N, are related to
the concentrations of isolated interstitials by the rela-
tionship

(22)

where  = /Ni.

Whence, it follows that the concentration of com-
plexes is significant only if v  > 0 (atoms C are attracted

to each other), because  ! 1; at v  < 0, we can
neglect the presence of complexes.

F v
a2

2
----- 

  2v AC

a1

2
----- 

  2v AC

a2

2
----- 

 + + n1–=

– v
a1

2
----- 

  2v AC

a1

2
----- 

  2v AC

a2

2
----- 

 + + n2

– 2v AC

a1

2
----- 

  NC
1( ) 2v AC

a2

2
----- 

  NC
2( )– 2v

a2

2
----- 

  NC
1( )–

×
NC

2( )

2N 4n1– 3n2–
------------------------------------ 1

2
---v

a1

2
----- 

  NC
2( )2

2N 4n1– 3n2–
------------------------------------–

– kT N n1– 2n2–( ) N n1– 2n2–( ) 1–ln( ){

+ 4N 4N 1–ln( ) 2N 2Nln 1–( ) NC
1( ) NC

1( ) 1–( )ln–+

– N n1– 2n2– NC
1( )–( ) N n1– 2n2– NC

1( )–( ) 1–ln( )

– NC
2( ) NC

2( ) 1–( ) 2N 4n1– 3n2– NC
2( )–( )–ln

× (N 4n1– 3n2– NC
2( )– 1)}– Fgas.+ln

NC
1( ) NC

2( )

NC
1( ) NC

2( ) 2n1 2n2 Ngas+ + + + const.=

n1 4N
p

p0
ν( )-------- 

  2/ν
e

v
a2

2
----- 

  2 v AC

a1

2
----- 

  v AC

a2

2
----- 

 + 
 +

kT
--------------------------------------------------------------------------------

,=

n2 2N
p

p0
ν( )-------- 

  2/ν
e

v
a1

2
----- 

  2 v AC

a1

2
----- 

  v AC

a2

2
----- 

 + 
 +

kT
--------------------------------------------------------------------------------

.=

NC
1( ) NC

2( )

ci cC
i( )2

e
v
kT
------

; i 1 2,,= =

cC
i( ) NC

i( )

cC
i( )



412 VOLKOV et al.
Allowing for complexation, we find that the solubil-
ity R of the gas is given by

(23)

where R1 is defined by Eq. (8) and contributes to the
solubility of isolated atoms and

(24)

is the solubility due to complexes. In the undeformed
crystal,

(25)

where R0 is the solubility in the absence of complexes
and v 0 = v(a0/2).

As follows from (24), complexation changes the
dependence of the solubility on the gas pressure. For a
monatomic gas, R can be represented as

(26)

where a and b are functions of temperature.
For a diatomic gas, we have

(27)

Using Eqs. (26) and (27), one can determine the
presence of complexes from experimental data on the
solubility (from a deviation of R(p) from the linear or
parabolic dependences). The ratio b/a characterizes the
fraction of complexes with respect to the number of iso-
lated interstitials.

Let us find the strain dependence of R. As was
shown above, R1 is a linear function of ε: it decreases
under tension and decreases under compression.
Expanding vCC and vAC into series in ∆a1 and ∆a2, we
have

(28)
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where  is the contribution of complexes to the solu-
bility in the undeformed crystal and

The sign of the bracketed term is uncertain; there-
fore, a strain-induced change in R2 can be both positive
and negative.

COMPARISON WITH EXPERIMENT

In experiments, interaction of hydrogen with metals
has been studied most extensively. The solubility has

been found to obey the Sieverts law R ~  in many
cases. This indicates that the gas absorbed by a metal is
in the form of isolated atoms in the solution. However,
this law sometimes fails. For example, the solubility of

hydrogen in palladium is a nonlinear function of 
[4, Chap. 8], which may be explained by the presence
of interstitial complexes.

In [4], the effect of elastic stresses on the solubility
in Pd3Ag was studied. It was found that strain changes
the solubility and that the change correlates with the
sign of strain. The amount of this effect (about 1%)
agrees with theoretical estimates.

Thus, we conclude that our results agree with exper-
imental data.
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Abstract—A numerical model of radial (Z-pinch-based) pulsed magnetic molding of nanometer-grain powders
is developed and thoroughly investigated. The essence of the model is use of a compression adiabat measured
experimentally. With this model, one can select optimal sets of the initial parameters of the process depending
on the parameters of workpieces being molded, predict the density and homogeneity of compacts, and the effi-
ciency of using the storage energy. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Long products, specifically, ceramic tubes with
improved mechanical and service properties, are used
in various fields of present-day technology. Ceramic
materials with a fine submicrometer structure, which
offer a unique set of operating parameters, are espe-
cially promising in this respect [1, 2]. Jet-forming
heads of hydroabrasive cutters, as well as tubes made of
YSZ (yttrium-stabilized zirconia) high-temperature
electrolytes and used in electrochemical energy
sources, are known examples of using critical parts in
the form of tubes. In the former case, a thick-walled
tube must have a high hardness and wear resistance; in
the latter, a thin-walled tube must be very dense and
offer a high oxygen-ion conductivity and mechanical
strength.

Pulsed magnetic molding (PMM) seems to be a
promising technique for producing long fine-structure
ceramic products. It has a number of advantages over
the conventional techniques of producing ceramic tubes
such as slip casting and hydrostatic extrusion. In this
method, powders are subjected to dry intense compac-
tion by a radially compressed metallic cylindrical
sheath. This provides chemical purity, as well as a
higher density and homogeneity, of compacts. Earlier,
the PMM method was used for making long tubular
compacts from micrometer-grain powders of metals
and cermets [3, 4]. Much experience in electromagnetic
compression of sheaths and in numerically simulating
this process has been gained (see, e.g., [5, 6]). However,
this method of molding needed refinement, since pro-
duction of strong compacts from such nanometer-grain
powders, featuring a high hardness and toughness, was
difficult. The essence of uniaxial pulsed molding and
synthesis of ceramics from nanograin powders of sim-
1063-7842/04/4904- $26.00 © 20413
ple oxides and their mixtures has been described else-
where [7, 8].

Optimal parameters of cylindrical compacts are usu-
ally found from a number of resource-intensive experi-
ments, which, however, do not provide answers to all
questions. Moreover, the process of radial compression
of powders is difficult to monitor in practice. To consid-
erably cut the expenses and extract more information
about the process, we performed a computer simula-
tion, using a real (experimentally measured) compres-
sion adiabat (for the procedure of taking the adiabat,
see [9]). The results of such an approach are reported in
this work.

1. STATEMENT AND SOLUTION 
OF THE PROBLEM

Axisymmetric compaction of powders is carried out
by radial compression of a thin-walled fixed-edge
cylindrical metallic sheath subjected to the magnetic
pressure of the current passing through the sheath. Our
aim is to simulate compaction of a powder by describ-
ing the time evolution of the density fields and kine-
matic parameters (radii, as well as the velocities and
accelerations of grains).

The sheath is assumed to be so long that edge effects
may be neglected. At the same time, it must not be too
long so as not to violate the quasi-stationarity condition
for electrodynamic processes. Let the inner and outer
radii of the sheath be rin and rout, respectively. The spe-
cific heat, conductivity, and melting point are assumed
to be given. Inside the sheath, there is a concentric hard
rod of radius R, which produces the inner channel of a
workpiece being molded. The space between the rod
and sheath is filled with a powder with a given com-
pression adiabat (the dependence of the density of the
004 MAIK “Nauka/Interperiodica”
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medium on its density, p = p(D)). To the sheath, a cur-
rent pulse

is applied (t is the time measured from the beginning of
the process, τ is the current decay time, and ω is the
cyclic frequency).

The depth δ of penetration of the current into the
sheath does not depend on time; that is, transients ion
the sheath are ignored. This approximation will be jus-
tified in Sect. 3.

Let the material of the sheath be described in terms
of the Saint Venant model of ideal rigid–plastic body
[10]. As applied to the cylindrical (essentially planar

J J0e t /τ– ωtsin=

R

rout

rinpn

pn + 1

pn

pn – 1
A

nth layer

Fig. 1. Cross-sectional view of the sheath filled with a
medium to be compacted.
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Fig. 2. Compression adiabat. Loading–unloading cycle is
shown by dashed lines with arrows.
axisymmetric) geometry of the problem, this means
that (i) the sheath is incompressible; (ii) if |σφ – σr| < k
(where σφ and σr are the φφ and rr components of the
stress tensor written in the cylindrical coordinates and
k is the yield stress), the body remains rigid; that is, the
strain rate equals zero (stresses are not given and it is
assumed that k is a linear function temperature: k =
k0(Tm – T), where T is the temperature of the sheath,
Tm is the melting point of the sheath, and k0 is a con-
stant); and (iii) if the strain rate deviator is other than
zero in any area of the sheath, then

(1)

in this area; in other words, relationship (1) is valid
throughout the sheath wall under uniform compression.

At this step, we suppose that the process considered
is adiabatic (this assumption is justified in Sect. 3). The
motion of the powder will be described in terms of the
model of ideal compressible isotropic fluid. Since we
simulate the process numerically, it is convenient to
write the equations of motion directly for finite ele-
ments of the medium without invoking the Euler differ-
ential equation. Let us divide the volume occupied by
the powder into N thin cylindrical layers (see Fig. 1).
The density and pressure within each of the layers are
assumed to be constant, and under compression they
are related by the equation of compression adiabat.1 If
a layer is incompressible, we assume that the pressure
in it is zero, thereby effectively taking into account
pressure relaxation in the medium. If the expansion of
the layer is followed by compression, the pressure
experiences a step to point 4 of the adiabat. This point
corresponds to the density at this time (Fig. 2).

Here, we study the compression of the sheath with-
out stress relief. To consider the latter, additional mea-
surements and the refinement of the model are neces-
sary. This will be the subject of subsequent investiga-
tion.

2. BASIC EQUATIONS

Let us write the equation of motion for an nth layer.
We separate out a small sector (letter A in Fig. 1) and
sum all forces acting on it, designating the pressures in
(n – 1)th, nth, and (n + 1)th layers as pn – 1, pn, pn + 1,
respectively. The equation of motion for the medial line
of the nth layer (on this line, the center of mass of sector
A is placed) has the form

(2)

Here, mn is the weight of the nth layer divided by π, rn is

1 Certainly, the form of the adiabat depends on the process parame-
ters, such as the process rate. This circumstance will be regarded
in further investigations.

σφ σr– k,=

mn

d2r0n

dt2
------------ 2rn pn pn 1+–( ) 2rn 1– pn 1– pn–( ).+=
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the radius of the outer surface of the nth layer, and

(3)

is the radius of its medial line.

Substituting (3) into (2) yields the equation of
motion for the outer surface of the nth layer:

(4)

where an and v n are the velocity and acceleration of the
outer surface of the nth layer. Also, we have r0 = R, a0 =
v 0 = 0, rN = rin, p0 = p1, and PN + 1 = σr(rin).

Now let us consider the sheath. In the cylindrical
coordinates, the equation of motion for a small particle
of the sheath (in the case of axial symmetry and without
strains along the z axis) has the form

(5)

Here, ρ is the density of the sheath material; V is the
radial (and the only) component of the particle velocity;
and

is the Lorentz magnetic force, where

is the current density,

is the magnetic field intensity distribution over the
sheath, and h = rout – rin is the sheath wall thickness.

Immediately before plastic deformation, σφ – σr = k
throughout the sheath but dV/dt = 0. Integrating Eq. (5)
over r and taking into consideration that the stress ten-
sor is continuous at the interfaces (σr(rin) = σr(rout) = 0)
yields an equation for the critical current density Jc at
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which the sheath starts to plastically deform. Its solu-
tion has the form

(6)

where

Below, we give the equation of motion for the inner
surface of the sheath, which coincides with the outer
surface of the powder:

(7)

where

Equation (7) follows from Eq. (4), where pN + 1 is the
normal pressure on the inner surface of the sheath. It is
found by integrating both sides of Eq. (5) from rin to rout
in view of the fact that σr(rin) = pN + 1 and σr(rout) = 0 and
that the velocity distribution over the wall of the tube is
given by

where Vin(t) is the velocity of the inner surface of the
tube.

Finding pN + 1 from the resultant expression and sub-
stituting it into (4), we arrive at an equation for aN. It
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Fig. 3. Density field at various time instants (figures by the curves in microseconds) for two values of the current half-period, T1/2 =
(a–c) 9.76 and (d–f) 100 µs, and for a first-pulse amplitude of (a, d) 1.2, (b, e) 1.6, and (c, f) 2.0 MA.
solution is (7). Equations (4) (n = 1, 2, …, N – 1) form
the basis for numerical simulation of molding. We will
also use an expression for the work of pressure ∆Wp per
unit tube length that is done on the powder when the
inner surface of the tube is shifted by ∆rin:

(8)∆WP 2πrin pN∆rin.=
3. RESULTS AND DISCUSSION

In this section, we discuss the results of simulation
for several sets of the parameters and justify the
assumption that the process is adiabatic. In calcula-
tions, the number of layers was taken to be equal to
1000 and k = 100 MPa at 293 K. The slopes of the con-
ductivity and specific heat versus sheath temperature
TECHNICAL PHYSICS      Vol. 49      No. 4      2004
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curves were assumed to be the same as for copper [11].
As a compression adiabat, we used that for nanograin
Al2O3 powder [12].

Figure 3 shows the time evolution of the compact-
density fields for various pulse lengths and first-pulse
amplitude. From these curves, one can determine the
formation conditions for a powder-compressing shock.
It is known that shock wave (SW) compression of pow-
ders frequently produces cracked and variable-density
compacts [13]. Therefore, SW conditions are unfavor-
able especially as applied to powders of brittle materi-
als. In the case of a longer pulse, the SW is seen to form
at the final stage of the process, while in the case of a
shorter pulse the SW conditions are set early in the pro-
cess. The appearance of SWs is explained as follows.
Behind the wave front, the velocity of a perturbation
generated by the shrinking sheath is higher than ahead
of the front, since the density of the medium behind the
front is higher. Therefore, if the rate of compression is
sufficiently high, the front steepens with time and a dis-
continuity in the density field arises in a time. The
cylindrical geometry of the medium encourages such a
scenario.

A practically important result of soft (SW-free)
pulsed compaction of Al2O3 powder is shown in Fig. 4
(here, J1 is the first-pulse amplitude). In the case of a
longer pulse, a compact density as high as 2.5 g/cm3 is
achievable throughout the process without generating
SWs. For a shorter pulse, the same density is reached at
a much higher amplitude of the first pulse (Fig. 3c) and
the compaction wave front steepens drastically.

A critical parameter of molding is the compacting
pressure, i.e., the pressure exerted on the powder by the
compressing sheath. The evolution of this parameter in
time is demonstrated in Fig. 5. Sharp steps in the com-
pacting pressure are a consequence of the loading–
unloading model adopted (Fig. 2). As an actual pres-
sure, one should take the envelope of the peaks, which
is related to the density of the subsurface layer through
the equation of adiabat. Figure 5 also shows the evolu-
tion of the density in the subsurface layer, which repre-
sents a relatively smooth curve (without high steps).
This indicates that the process is steady and, hence, the
model is adequate.

Comparing the compacting pressure and the pres-
sure of the magnetic field (also shown in Fig. 5), one
can notice that the former may exceed the maximal
value of the latter by as much as one order of magni-
tude. This means that the compacting pressure may be
kept at a sufficiently high level even if a moderate volt-
age is applied to the fixture of the equipment (the
deforming sheath experiencing very high stresses is not
a part of the fixture). This effect is inertial: at the initial
stage of the process, where the pressure in the medium
is low and the medium exhibits no resistance to com-
pression, the major part of the magnetic field energy is
TECHNICAL PHYSICS      Vol. 49      No. 4      2004
converted to the kinetic energy of the shrinking sheath.
Subsequently, as the pressure in the medium rises, the
kinetic energy passes to the compacting energy.

Another important parameter characterizing the
efficiency of compacting is the specific compacting
energy mentioned above. Calculation of this parameter
by formula (8) was also included in the computer pro-
gram. Figure 6 plots this energy against the first-pulse
amplitude for various thicknesses of the charge (inter-
nal-rod radii). For the shorter pulse, the thinner the ini-
tial layer of the powder, the higher the specific com-
pacting energy. For the longer pulse, the situation is
reversed. One more fact deserves attention: the specific
compacting energy for the processes characterized by
Figs. 3c and 4c equals 149.8 and 75.6 J/g, respectively.
As was noted above, both processes provide nearly the
same density of compacts. However, the processes con-
sidered here are adiabatic: the compacting energy is
entirely converted to the internal energy of the medium
being compacted, causing a temperature variation.
Therefore, by controlling the width of compacting
pulses, one can vary the temperature of the powder dur-
ing compression.

Let us substantiate the assumptions made earlier,
starting from the assumption that compacting is an adi-
abatic process. To do this, we compare the size l of the
diffusion of an initially point temperature perturbation
after a time ∆t (the time of compacting) with the thick-
ness of the powder layer. The expression for l has the
form [14]

(9)l
λ∆ t
ρCp

----------,≈
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curve) at the inner surface of the sheath for the same parameters as in Fig. 3.
where λ is the thermal conductivity, ρ is the density of
the material, and Cp is the heat capacity at constant
pressure.

Since relevant data for Al2O3 nanopowder are lack-
ing, we take the values λ = 2.4 W/(m K) and ρ =
2.7 g/cm3 for a mullite–corundum refractory with an
Al2O3 content from 72 to 90% and a porosity of 16–
20% under atmospheric pressure in a wide temperature
range [15]. For Cp, we take 800 J/(kg K). This value is
typical of pure alumina modifications at 298.15 K [16].
Substituting these values into (9) and putting ∆t =
50 µs, we obtain l ≈ 8 × 10–6 m ! 10–2 m. This proves
that the process is adiabatic.

Now let us see whether we have the right to ignore
electromagnetic transients in the sheath. Figure 7 repro-
duces Fig. 3a and compares it with the same process
where the skin depth is four times smaller. Qualita-
tively, the curves run identically; as for a quantitative
discrepancy, it is very small and of no practical signifi-
cance. Thus, this discrepancy may be neglected and
there is no need to consider electromagnetic processes
in the sheath more accurately.
TECHNICAL PHYSICS      Vol. 49      No. 4      2004
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CONCLUSIONS

A model of pulsed magnetic molding of long com-
pacts is developed. It is based on using an actual (exper-
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Fig. 6. Specific compacting energy vs. the first-peak ampli-
tude for pulses of various lengths (T1/2 = (a) 9.76 and
(b) 100 µs) and an internal rod radius (compact thickness)
R = 8 (continuous line), 4.5 (dashed line), and 0 mm (dash-
and-dot line). The symbols are calculation by (9).
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Fig. 7. The process shown in Fig. 3a (continuous line) vs.
the same process where the skin depth of the sheath is four
times smaller (dashed line).
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imentally measured) adiabat of high-rate compression.
The model allows one to (i) evaluate the time evolution
of the density field, the field of kinematic parameters,
and the compacting work; (ii) predict conditions under
which a shock wave does not arise; and (iii) find sets of
parameters that provide high compacting pressure
pulses far exceeding the fixture strength.
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Abstract—The equilibrium orientations of magnetic moments that correspond to various values and directions
of the biasing field are found in a set of magnetic films with cubic crystalline anisotropy and uniaxial induced
anisotropy. The films are coupled by exchange interaction of the antiferromagnetic type. Field intervals are
established where noncollinear and bistability states causing orientational phase transitions and hysteresis exist.
Ninety degree magnetization switching (per switching cycle) of the magnetic moments of the films, as well as
an orientational phase transition of bifurcation character, is discovered. Hysteresis loops for 180° in-plane mag-
netization switching are constructed. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The static and dynamic properties of multilayer
magnetically coupled structures have been the subject
of intensive research over many years [1–7]. Interest in
these structures stems from the fact that they offer much
promise for a variety of devices. Today, one can distin-
guish designs with weak interlayer coupling due to
dipole–dipole magnetostatic interaction [1, 2] and with
strong coupling due to indirect exchange interaction
[3–7]. The former are structures based on polycrystal-
line magnetic films separated by a thick nonmagnetic
spacer. The thickness ds of this spacer must satisfy the

condition ds > , where A is the exchange
interaction constant and M is the saturation magnetiza-
tion. For permalloy-like films, A . 10–6 erg/cm, 4πM .
104 Oe, and d > 10–6 cm. To strongly coupled structures,
one can refer magnetically ordered superlattices: thin-
film structures consisting of nanocrystalline magnetic
metal films separated by nonmagnetic metal spacers of
thickness ds . 10–7 cm. Extensive research on
exchange-coupled films is dictated by present-day
requirements of microelectronics. The unique physical
properties of these objects, the most typical of which
are (Fe/Cr)n periodic structures (n is the number of peri-
ods) are defined primarily by the type of coupling
between the magnetic moments of adjacent layers. In
the absence of a biasing field, ordinary (bilinear)
exchange interaction causes either ferromagnetic or
antiferromagnetic ordering, while biquadratic
exchange interaction produces noncollinear arrange-
ment of the magnetic moments of adjacent layers [8–
10]. To analyze the establishment of dynamic regimes
responding to small variations of structure parameters
and switching fields, it is necessary to know for the first
place the equilibrium states of the system [10–12]. In

2A/πM2
1063-7842/04/4904- $26.00 © 20420
this work, we consider a periodic structure consisting of
ferromagnetic layers separated by nonmagnetic spac-
ers, which provide antiferromagnetic exchange cou-
pling between the layers. Our aim is to study the equi-
librium orientations of coupled magnetic moments and
quasi-static switching of the magnetizations of the lay-
ers in a magnetic field of given direction. This type of
coupling is of great interest, since it provides an oppor-
tunity to realize many equilibrium orientations and
dynamic regimes.

FREE ENERGY

To exclude the effect of the top layers, we will
assume that the structure being studied consists of a
great number (n @ 1) of layers (films) with a magneti-
zation Mi and thickness di that are separated by non-
magnetic spacers. The thickness of the latter provides
antiferromagnetic exchange coupling of the magnetic
layers. Following available experimental data [13], it is
adopted that magnetic anisotropy of the layers is the
superposition of induced uniaxial (easy-axis) anisot-
ropy and crystalline cubic anisotropy such that the
[100] and [010] crystallographic axes lie in the plane of
the layers and the easy magnetic axis runs normally to
the layers. In this case, the free energy of the system per
unit surface area is given by

(1)

E di –H M⋅ i
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Here, J is the constant of bilinear coupling due to indi-
rect exchange interaction between the magnetic
moments of adjacent layers (in general, this constant
depends on the thickness, material, and structure of the
spacer), K1, 2i are the first and second cubic anisotropy
constants, Kui is the growth induced anisotropy con-
stant, H is the static biasing field, ϕi is the azimuth
angle that is measured from the [100] axis and specifies
the orientation of the magnetic moment of a related
layer, and ψi is the angle between the magnetization
vector Mi and the film surface.

The magnetic layers are assumed to be identical;
that is, Mi = M, di = d, Kui = Ku, and K1, 2i = K1, 2. The
coupling constant J is taken to be positive in order to
provide antiferromagnetic coupling between the mag-
netic moments in adjacent layers, i.e., opposite direc-
tions of the moments in the absence of the biasing field.
Then, the entire set of the magnetic layers is divided
into two subsystems (j = 1, 2) and the layers in either of
the subsystems are assumed to behave in a similar
manner.

IN-PLANE MAGNETIZATION SWITCHING

First consider the quasi-static magnetization switch-
ing of the structure when the biasing field H lies in the
plane of the films. With regard to high demagnetizing
fields (4πM @ 2Ku/M, JM) used in practice, the mag-
netic moments lie in the plane of the layers; therefore,
equilibrium ψj = 0. Equilibrium azimuth angles ϕj(H)
can be found from the equilibrium conditions ∂E/∂ϕj = 0

and ∂2E/∂  > 0, which yield a set of equations for two
adjacent layers (in view of (1)):

(2)

where ϕH is the azimuth angle that is measured from the
[100] axis and defines the direction of the field H in the
plane and  = 2J/d (doubling of the coupling constant
in comparison with a two-layer system is due to inter-
action of the magnetic moment of each of the layers
with those of two nearby layers).

According to (2), in the initial state (i.e., in the
absence of an external field), the magnetic moments of
two adjacent layers are directed parallel and antiparallel
to the [100] crystallographic direction, respectively.

Let us numerically analyze the equilibrium direc-
tions of the magnetizations of the layers for ϕH = 0, i.e.,

---+ Kui 2πMi
2–( ) ψicos
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when the biasing field is parallel to the magnetization of
layers with j = 2 and antiparallel to that of layers with
j = 1. In calculations, we will use parameter values that
are close to those of the (Fe/Cr)n system: M = 1620 G
for iron layers; the anisotropy constants K1 = 4.6 ×
105 erg/cm3, K2 = 1.5 × 105 erg/cm3, and Ku = 2.06 ×
106 erg/cm3; and the thickness d = 21.2 × 10–8 cm.
These parameters for chromium do not appear in (2) in
explicit form, but they define the value of the coupling
constant J [5]. Figure 1a plots the equilibrium azimuth
angles ϕ1 (continuous lines) and ϕ2 (dotted lines) of the
magnetic moments of two adjacent films against the
biasing field for J = (1) 0.15 and (2) 0.25 erg/cm2. For
the initial orientations of the magnetic moments ϕ10 = π
and ϕ20 = 0 and for ϕH = 0, the starting state is equilib-
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Fig. 1. Field dependences of the equilibrium angles ϕ1
(solid curves) and ϕ2 (dotted curves) under in-plane
(a) 180° and 90° and (b) 45° magnetization switching. J =
(1) 0.15 and (2) 0.25 erg/cm2.
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rium when the field varies from H = 0 to H = Hc. At H =
Hc, the step orientational phase transition occurs
throughout the system. As a result of antiferromagnetic
coupling between adjacent magnetic moments, the
magnetization of films with j = 1 switches by an angle
other than 180°. An angular repulsion of the magnetic
moments also changes the magnetization direction in
films with j = 2 so that ϕ2(Hc) = –ϕ1(Hc). As the field
increases further, the angle between the magnetization
vectors of adjacent layers decreases and reaches a min-
imal value ϕ1 – ϕ2 = 2ϕa(J) at H = Ha (the minimal value
of this angle inversely varies with the coupling con-
stant). At the field Ha, the second phase transition, caus-
ing the magnetic moments to be codirected with the
field, is observed.

As the biasing field decreases from values of H > Ha,
at which the state with the codirected moments of adja-
cent layers is an equilibrium state, this state persists
down to Hb < Ha for J = 0.15 erg/cm2 (curve 1). At H =
Hb, the reverse orientational phase transition takes
place, at which the vectors M1 and M2 diverge sharply
up to the angles ϕ1(Hb) = –ϕ2(Hb). With a further
decrease in the biasing field, the angle between the
magnetizations grows smoothly, reaching π at H = 0.
However, each of the individual magnetic moments
does not return to its initial state. Thus, switching a
biasing field H > Hc on and off causes the magnetic
moments to rotate through an angle of π/2; that is, the
initial configuration with the angles ϕ10 = π and ϕ20 = 0
turns into the configuration with ϕ10 = π/2 and ϕ20 =
−π/2. The latter configuration is equivalent to the initial
one in terms of anisotropy of magnetic layers and direc-
tion of crystallographic axes.

In the case of in-plane 90° magnetization switching,
which is observed at ϕ10 = –ϕ20 = π/2 and ϕH = 0, an
increase in the field to Ha causes the magnetic moments
to gradually converge. As in the case considered above,
the orientational phase transition occurs at H = Ha, as a
result of which only the state with codirected magnetic
moments is equilibrium. When the biasing field
declines, the noncollinear configuration is restored
because of the reverse phase transition, at which H =
Hb. Thus, at small J, we observe an orientational hyster-
esis loop, which narrows with increasing the coupling
constant. When J is high (curve 2), Hb = Ha and the hys-
teresis loop disappears.

When the field differs from H = Hc, the branches of
the equilibrium orientations of the magnetic moments
M1, 2 are the same for the cases of transverse and longi-
tudinal in-plane magnetization switching (see above).
As follows from (1) and (2), this is associated with the
fact that, at the critical field, the energy minimum is
absent for the angles ϕ1 = π and ϕ2 = 0 and is present for
noncollinear magnetic moments down to the zero field,
when ϕj0 = ±π/2. As a result, having passed from the
state with opposite orientations to the equilibrium-
angle branches corresponding to noncollinear orienta-
tions, the magnetic moments cannot return to the initial
configuration in the absence of the field.

Exact expressions for the critical field values are
found from (2):

(3)

The minimal angle between the magnetic moments
for the noncollinear configuration is found from set (2)
in view of (3):

(4)

As the coupling constant grows, the hysteresis loop
narrows and the angle ϕa decreases and goes to zero
(the loop collapses) at J = Jab ≈ 0.24 erg/cm2 (Ha = Hb).

Consider now the important case of in-plane magne-
tization switching when the field H is aligned with the
[110] axis, i.e., when ϕH = π/4. For this situation, equi-
librium azimuth angles versus the biasing field are
shown in Fig. 1b for J = 0.15 and 0.25 erg/cm2 and mag-
netic moments oriented along the [100] direction (ϕ10 =
π, ϕ20 = 0) and the [010] direction (ϕ10 = π/2, ϕ20 =
−π/2). As the field grows, the magnetic moments of the
films gradually approach each other up to a critical

value  where the orientational phase transition
takes place. Upon this transition, both magnetic
moments take on equilibrium initial (symmetric about
the [110] direction) positions. With a further increase in
biasing field, the magnetic moments approach closer to

each other and become codirected at H = . The
branches of equilibrium orientations, which are sym-
metric relative to the [110] direction, can be con-
structed by using the expression

(5)

which follows from (2). Here, the upper and lower
signs refer to layers with j = 1 and 2, respectively.

The critical field  corresponds to angles ϕj =
π/4 and is given by

(6)

If the initial equilibrium orientation of the magnetic
moments is symmetric about the [110] axis, a decrease

in the biasing field to  <  causes them to

gradually diverge. The field  is a field of bifurca-
tion: as the field reaches this value, the set of two cou-
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pled magnetic moments has two possible directions of
magnetization switching. Eventually, equilibrium
angles may be close to either the [100] or the [010]
direction.

Figure 2a plots the field of bifurcation, the hystere-

sis loop width  =  – , and the field of

saturation magnetization  in the [110] direction
versus the coupling constant (curves 1–3). In Fig. 2b,

the angular steps ∆  and ∆  that occur at the

points H =  and H =  of the phase transi-
tions are plotted versus J (curves 1, 2). Large steps
(continuous lines) are typical of the magnetic moment
of the first layer when ϕ10 = π and ϕ20 = 0 and of the
magnetic moment of the second layer when ϕj = ±π/2.
It is seen that the critical field grows monotonically
while the hysteresis loop narrows as the constant of
interlayer interaction increases (for J = 0.4 erg/cm2

(Fig. 1b, curve 2), the loop has a width  ≈ 21 Oe).
The large angular steps also decrease monotonically.
Small steps in the range of J considered (the dotted
curves) exhibit a distinct maximum at the point of

phase transition (J ≈ 0.2 erg/cm2, H = ) (that is,
when the biasing field decreases) and grow monotoni-

cally with increasing field starting from H = . It
should be noted that, in the structure under study (spe-
cifically, at M1 = M2) both equilibrium configurations of
the magnetic sublattices that result from the bifurca-

tional phase transition at H =  are identical in
terms of total magnetization.

Magnetization switching to one of the two equilib-

rium states due to the phase transition at H = 
depends on parameter fluctuations and on the parame-
ters responsible for the decay of the biasing field. Fig-
ure 3 shows (at J = 0.2 erg/cm2) the time dependences
of the angles ϕj tending to the equilibrium positions of
the magnetic moments that set up after the orientational
phase transition. The transition proceeds when the field
decays (is switched off) by the law

(7)

where the time constant τ = 1 ns. Two values of the ini-

tial field that are higher than the critical field  =
576 Oe, H0 = 580 (curve 1) and 579 Oe (curve 2), are
considered. We see that which of the two equilibrium
states will be realized depends on the initial value of the
biasing field. Such curves can also be obtained at the
same H0 but different decay rates.

The hysteresis loop observed under magnetization
reversal in a magnetic sample (this loop is easy to
observe in experiments) is an important characteristic
of the sample. For multilayer systems, the hysteresis
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loop is defined by the behavior of the total magnetiza-

tion  in a magnetization-reversing field. Figure 4

shows the field dependence of the normalized projec-
tion of the total magnetic moment of both sublattices,
(M1 + M2)/M, onto the reversing field direction. The
initial orientation of the magnetic moments are ϕj =
±π/2; those of the external field are ϕH = 0, π/4, and π/8;
and the coupling constants J = 0.05, 0.15, and
0.25 erg/cm2. Since the functions are odd, only halves
of the curves are depicted. It is seen that the hysteresis
loops collapse, as a rule, under low fields. As the cou-
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pling constant grows, the loop narrows, the collapse
range expands, and the loop turns into the magnetiza-

tion reversal curve at J > Jab (or J > , where 

meets the equality  = ). The loop has only
one collapse point at H = 0 if J = Jb, where Jb is the

value of the coupling constant at which Hb (or )
vanishes. For low coupling constants, J < Jb, the loop
does not collapse. When the field is aligned with the
[100] direction, the loops disappear at coupling con-
stants lower than in the case of the field aligned with the

[110] axis, since Jab > . If the field makes an angle
with the [100] or [110] direction, specifically at ϕH =
π/8, the loop exhibits an additional bend, which is
smooth or sharp, depending on the coupling constant
value. Furthermore, as the field grows, the magnetiza-
tion tends to a maximum asymptotically. However, the
loops observed in this case are basically the same as
when the field is parallel to the [100] axis. The shape of
the loops depicted in Fig. 4 closely approximates the
shape of the loops taken of actual film structures in
experiments [13, 14].

PERPENDICULAR MAGNETIZATION 
SWITCHING

Let a biasing field H be parallel to the normal to the
film surface. Then, if oppositely directed magnetic
moments are initially aligned with the [100] or [010]
axis, the equilibrium angle between the magnetic

Jbc
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π/4( ) Hc

π/4( )

Hb
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Fig. 3. Time dependences of the angles ϕ1, 2 near the phase

transition field . H0 = (1) 580 and (2) 579 Oe, respec-

tively.
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Fig. 4. Hysteresis loops in the multilayer structure for the
initial orientations ϕj = ±π/2 of the magnetic moments. The
external field orientation ϕH = (a) 0, (b) π/4, and (c) π/8; J =

(1) 0.05, (2) 0.15, and (3) 0.25 erg/cm2.
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moments and the film surface is given by

(8)

From (8), it follows that magnetization switching in
both layers proceeds symmetrically; i.e., the angles ψ1
and ψ2 remain equal to each other during their increase
with biasing field. Once the field has reached a value

(9)

the magnetization saturates (ψ1 = ψ2 = π/2) and a fur-
ther increase in the field does not change the orientation
of the magnetic moments. Here, a decrease in the field
does not cause orientation hysteresis: the forward and
backward branches coincide. The dependences ψj(H)
for J = 0, 0.2, and 0.4 erg/cm2 (curves 1–3) are shown
in Fig. 5. The saturation field Hs is a linear function of
the coupling constant. This fact may be used for exper-
imental determination of the latter.

CONCLUSIONS

Thus, multilayer structures like (Fe/Cr)n with anti-
ferromagnetic coupling due to indirect exchange inter-
action may exhibit orientational phase transitions
resulting in both collinear and noncollinear orientations
of the magnetic moments of the films. At low values of

–HM ψ jcos
K1

2
------ 4ψ jsin+

+ J Ku– 2πM2+( ) 2ψ jsin 0.=

Hs
2
M
----- J K1– Ku– 2πM2+( )=

π/4

200 10

π/2

H, kOe

ψj

1 2 3

Fig. 5. Field dependences of the equilibrium angle ψj
between the magnetic moments and the surface of the film
for J = (1) 0, (2) 0.1, and (3) 0.2 erg/cm2.
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the coupling constant, in-plane 90° magnetization
switching causes an orientational hysteresis loop. If a
biasing field of intensity H > Hc aligned with the mag-
netic layers is turned on and off, the structure undergoes
90° switching (the hysteretic switching effect). If mag-
netization switching takes place along the [110] axis,
the point of bifurcation arises. From this point, the mag-
netic moments may run nearly parallel to either the
[100] or [010] axis. In the case of in-plane magnetiza-
tion reversal, hysteresis loops of the system’s total mag-
netization may collapse in a wide range of the interlayer
coupling constant.
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Abstract—The effect of ion bombardment on the growth of Nb films and their crystal structure is investigated.
Epitaxial niobium films with the (001) orientation are grown on (01i2) Al2O3 substrates heated to 600°C and
biased at –20 V. Niobium films with pronounced axial texture in the [110] direction are grown on water-cooled
Sitall (devitrified glass such as Pyroceram) substrates. In Nb films biased at –50 V, which are in the supercon-
ducting state, the motion of individual magnetic vortices is observed with a magnetooptic indicator. © 2004
MAIK “Nauka/Interperiodica”.
Stimulated low-temperature ordered growth of films
continues attracting considerable interest. During
growth, a film is exposed to electromagnetic radiation
[1] or particle fluxes [2–7]. Stimulation of ordered film
growth by ion bombardment seems a promising growth
technique because of a high locality of action in the
subsurface layer, a wide interval of energies used, and
the possibility of controlling the process over a wide
range of parameters. Interest in radiation-assisted
growth also stems from the fact that ion bombardment
modifies the structure and, hence, properties of the film.
In [2], the temperature of Si homoepitaxial growth was
reduced by using low-energy ion bombardment. Ion
stimulation was reported [3] to improve the properties
of ohmic contacts. Ion-beam-assisted deposition (ion–
plasma sputtering combined with ion bombardment at
an angle to the surface) has also gained wide recogni-
tion [4]. A feature of this method is the formation of a
biaxial (constrained) texture irrespective of the sub-
strate material and properties. The ion–plasma method
of film application (cathodic, magnetron, etc., sputter-
ing) allows the researchers to realize growth with bias
(when the substrate is under a negative potential) [5–7].
To the favorable effects inherent in the ion–plasma
method and mentioned in [7], one can add an increase
in the grain size [8] and a higher smoothness of the film
surface [9]. Unfortunately, defect-induced stresses
building up in the films limit the applicability of the
method. However, the formation of defects goes in par-
allel with atomic structure ordering; that is, the crystal
structure of films obtained under low-temperature ion
bombardment at low substrate temperatures is much
more perfect than that of films grown under the same
conditions but without ion assistance. For fcc materials
(such as yttria-stabilized zirconia [6] and nickel [7]), it
1063-7842/04/4904- $26.00 © 20426
has been shown that bombardment by ions with ener-
gies of 40–100 eV greatly improves (111) axial texture,
which is less pronounced without bombardment. The
(111) plane in the fcc lattice is known to be the closest
packed. It is therefore natural to expect that ion bom-
bardment will enhance (110) axial texture in bcc nio-
bium films. In this work, we study the crystal structure
of niobium films as a function of the substrate bias. Our
aim was (i) to experimentally show that ion assistance
causes (in a certain energy range) the growth of axially
textured films with the closest packed plane running
normally to the bombardment direction, (ii) to qualita-
tively estimate to what extent ion bombardment and
substrate type (polycrystalline, single-crystalline, etc.)
are responsible for the orientation of the film, and
(iii) to demonstrate that atomic ordering goes in paral-
lel with the formation of defects during ion bombard-
ment. Where necessary, the results obtained are com-
pared with experimental data for nickel films [7].

First, we will mention the results for niobium film
growth on amorphous ST 501-10.6 Sitall substrates.
Pure (99.95%) niobium films were applied by rf
(13.56 MHz) magnetron sputtering. The residual pres-
sure in the chamber and the operating pressure of argon
were 10–4 and 0.5 Pa, respectively. The power at the tar-
get 100 mm in diameter was 200 W. During growth, the
substrate was cooled by water. The substrate–target dis-
tance was 100 mm. During sputtering, the substrate and
target were under the same rf potential. Because of dif-
ferent surface areas of the target (the first electrode) and
substrate (the second electrode) and different mobilities
of electrons and ions, the substrate was kept under a
constant negative bias voltage [10]. A series of films
was grown at substrate biases from 0 to –150 V. The ion
energy was estimated with regard to the plasma poten-
004 MAIK “Nauka/Interperiodica”
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tial, which was measured with a Langmuir probe and
was equal to +20 V relative to the chamber. The crystal
structure of the films was studied with a DRON-3M dif-
fractometer using CuKα radiation.

The orientation of grains in the substrate plane was
determined by constructing pole figures [7]. It was
found that ion bombardment due to a bias applied to the
substrate favors axial texturing in the [110] direction. In
the absence of ion bombardment, the films have the
same, though less pronounced, texture. The degree of
crystallinity, as determined from the intensity of the
(110) diffraction peak, grows as the bias rises from 0 to
–50 V (Fig. 1). With a further increase in the bias, the
degree of crystallinity varies in an irregular manner but
its mean value remains higher than at low biases. Such
a crystallinity versus bias dependence is, in general,
similar to that observed in Ni films (texture in the (111)
plane) [7]. These results indicate that ion bombardment
favors the growth of those grains oriented in the direc-
tion that is preferential without bombardment and
depends on the substrate orientation. It should be
emphasized that this statement is valid for film growth
that is considerably nonequilibrium, i.e., for growth
that proceeds at low substrate temperatures. The rela-
tive density of niobium films, ρ3Nb = 0.966 (ρ3 = ρ2/ρ1,
where ρ1 is the density of a bulk sample, ρ2 is the den-
sity of a film, and ρ3 is the relative density), which have
a high degree of crystallinity, is lower than that of sim-
ilar Ni films (ρ3Ni = 1). The density of the bulk samples
and films were calculated from the values of interplanar
spacings ((222) planes for Ni and (220) planes for Nb).
This difference seems to be associated with different
types of chemical bonds in niobium and nickel. Another
distinction is that the crystallinity of Nb films varies
irregularly at biases from –60 to –100 V, while the same
dependence for Ni films is smooth and peaks near
−90 V. This discrepancy is probably a result of a com-
peting process, e.g., the participation of Nb ions in the
process of bombardment. The atomic mass of Ni
(58.7 u) is roughly twice as lower as that of Nb (92.9 u);
therefore, this effect in the case of Ni is negligible.
Moreover, the atomic mass of Ni is close to that of Ar
(40 u); accordingly, the effect of Ni and Ar on a grow-
ing film is nearly the same.

These data suggest that ion bombardment may sig-
nificantly decrease the temperature of epitaxial growth
of films on a single-crystal substrate but only if the
films have the preferential orientation mentioned
above, which depends on the lattice type. For example,
MBE-grown Nb(110) epitaxial films on Al2O3(11i0),
where i equals the sum of first two indices taken with
opposite sign, were studied in [11]. The substrate was
heated to 800°C, and the growth rate was 0.075 nm/s.
We argue that low-energy ion bombardment would
have reduced appreciably (by 100–200°C) the epitaxy
temperature in that experiment. Both inert gas ions and
ions of a material being deposited (e.g., niobium) may
be used as bombarding particles.
TECHNICAL PHYSICS      Vol. 49      No. 4      2004
In this work, we studied the effect of low-tempera-
ture ion bombardment on the epitaxial growth of nio-
bium on (01i2) sapphire substrates. Below, it will be
shown that such an orientation of sapphire is the most
suitable for the growth of Nb(001). In our opinion, the
effect of ion bombardment consists in disordering the
crystal lattice of the film. The higher the ion bombard-
ment intensity, the more disordered the growth.

Figure 2 illustrates the (01i2) plane of sapphire.
Aluminum atoms in this plane produce an almost rect-
angular network of sites with parameters close to those
of the planar network of Nb(001). In Fig. 3, the net-
works are compared by superposition. Aluminum
atoms in the (01i2) plane of Al2O3 produce a rhombus
with minor and major diagonals of 0.477 and 0.5146 nm.
Niobium atoms in the plane (001) create a square with
a diagonal of 0.467 nm. Thus, if the (001) plane of Nb
is rotated through an angle of 22° about the minor diag-
onal of Al2O3, the projection of the rhombus made of
aluminum atoms onto this plane gives a square. The lat-
tice mismatch between Nb and Al2O3 is 2.1%.

Films on the Al2O3 substrates were applied by mag-
netron sputtering at an argon pressure of 0.2 Pa, a mag-
netron power of 200 W (the growth rate 0.33 nm/s), and
a substrate temperature of 600°C. Before the substrates
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Fig. 1. (110) diffraction peak intensity for Nb/Sitall struc-
tures vs. bias voltage at the substrate during growth.

Fig. 2. Three views of the same fragment of the Al2O3(01i2)
plane. From left to right: top view, at an angle of 60°, and at
an angle of 90°. The direction [11i0] in Al2O3 is parallel to
the horizontal line on the left. Small dark balls, aluminum;
large bright balls, oxygen. Two oxygen layers differ by
color.
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were placed in the chamber, they had been cleaned by
the standard chemical technique and dried in isopropyl
alcohol vapor. The films were grown on substrates that
were preprocessed by ion bombardment and biased at
0, –20, –40, –60, and –90 V (for convenience, they are
numbered 0, 20, 40, 60, and 90, respectively). The sub-
strate preprocessing by ions was performed at a bias
voltage of –20 V for 5 min. Substrate no. 1 was not pre-
processed and was used as a reference sample.

X-ray analysis data showed that sample no. 1 is axi-
ally textured in the (110) plane. Its (110) pole figure is
shown in Fig. 4a. The angle α in the pole figure is the
angle of rotation of the sample in the diffractometer
about the line of intersection between the equatorial
plane of the goniometer and the plane of the sample; the
angle β, the angle of rotation of the sample about the
normal to its surface. Two peaks making an angle α =
45° correspond to (11i1) reflections from the substrate,
since their Bragg angle is close to that for the (110)
reflection from the Nb film (this reflection was used to
construct the pole figures). Such a result suggests that
chemical rinsing alone is insufficient for good cleaning
of the substrate surface. Figures 4b and 4c demonstrate

Al
Nb

(a) (b)

(001)Nb
22° (01i2)Al2O3

Fig. 3. (a) Arrangement of Al and Nb atoms when the (001)
plane of Nb is parallel to the (01i2) plane of Al2O3 and
(b) arrangement of the (001) plane of Nb and the (01i2)
plane of Al2O3 in the case of epitaxial match (misorienta-
tion 2.1%).
pole figures for samples no. 0 and 20. It is seen that
these films are epitaxial with the (100) plane of the nio-
bium running nearly parallel to the substrate surface.
All the pole figures are shown on an enlarged scale in
order to reveal few grains of another orientation. The
total intensity of the Nb peaks at α = 45° reaches 200
(in arbitrary units). However, only the interval from 0
(white color) to 3 arb. units (black color) is shown in the
pole figures. The pole figure for sample no. 0 (Fig. 4b)
exhibits a weak peak at α = 15°. It indicates that this
film contains a small amount (1.5%, as follows from
comparison between the intensities) of crystalline
blocks whose orientation differs from that of the major
portion of crystallites. This means that the temperature
600°C is insufficient for epitaxial growth. At the same
time, the pole figure for sample no. 20 (Fig. 4c), as well
as those for samples no. 40 and 60, does not contain
other peaks; in other words, the pole figures are similar
to each other. In the pole figure for sample no. 90, an
additional peak appears again now at α = 5°. As the bias
voltage rises, the (002) diffraction peak varies in inten-
sity and half-width (in terms of the angle β) (see the
table).

As follows from the table, the misorientation
between the (001) plane of Nb and the Al2O3 surface
increases, approaching the situation shown in Fig. 4b.
The relative arrangement of crystallographic planes in
the film and substrate are presented in Fig. 5. Here, γ is
the angle between the (001) plane and the substrate sur-
face (see the table).

As the bias rises from 0 to –20 V, the (002) peak
intensity somewhat increases and the half-peak in terms
of β decreases, indicating that the crystal structure of
the niobium film is improved. However, as the bias
grows further, the crystal structure of the film degrades
again, as demonstrated by the fact that the intensity of
the (002) peak decreases and its half-width increases. It
is noteworthy that, at a bias of –90 V, the (110) pole fig-
ure shows a peak that corresponds to grains oriented in
the [110] direction much closer to the substrate surface
0 30 60
α

(a) (b) (c)

0 30 60
α

0 30 60
α

β β β

Fig. 4. (110) pole figures for Nb/Al2O3 films obtained (a) without ion cleaning and biasing (sample no. 1), (b) with ion cleaning
without biasing (sample no. 0), and (c) with ion cleaning at a bias of –20 V (sample no. 20).
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(the misorientation is 5°) than in sample no. 0. This fact
supports our assumption that ion bombardment favors
the growth of grains in the [110] direction. However,
unlike the films obtained on the amorphous substrate,
grains with such an orientation arise in a small amount,
demonstrating that the effect of the substrate is much
stronger than the effect of ion bombardment. The
most ordered epitaxial film is the one grown at a bias of
–20 V.

We studied the superconducting properties of the Nb
films grown on the Sitall substrates biased at 0, –20,
−40, and –50 V. The superconducting transition with
Tc = 9 K was detected only in the film grown at –50 V.
This film was used for the observation of individual
vortices by the magnetooptic method [12]. This method
(for details, see [13]) allows one to visualize the mag-
netic field distribution in a magnetooptic indicator,
which is in contact with a film in the superconducting
state. In this work, a 0.8-µm-thick Bi-substituted ferrite
garnet (BFG) film grown by liquid phase epitaxy on a
gadolinium gallium garnet (GGG) substrate served as a
magnetooptic indicator. Plane-polarized light from the
illumination source of a microscope reflects from a pla-
nar specular surface of the superconducting sample,
passing through the BFG film two times. The higher the
magnetic field at this point of the BFG film (the Fara-
day coefficient is 0.66° µm–1A/m for a radiation wave-
length of 546 nm), the larger the rotation of the plane of
polarization. In crossed polarizer and analyzer, this
effect shows up in an increase in the image brightness.

In our experiments, we applied a 0.5-µm-thick Nb
film directly on a BFG film at a substrate bias of –50 V.
The Nb film was also deposited on Sitall. To observe
the dynamics of magnetic vortices, the Nb/BFG/GGG
multilayer structure was cooled to 5 K, after which a
magnetic field of 1590 A/m was applied normally to the
surface of the structure. The motion of magnetic vorti-
ces was observed when the magnetic field changed by
79.6 A/m (Fig. 6). In Fig. 6, the initial and final posi-
tions of the vortices appear as dark and bright spots,
respectively. The image in Fig. 6 was obtained by sub-
tracting the initial positions from the final ones. The
time interval between the initial and final positions of
the vortices is 1 s.

A high velocity of the vortices, about 10 µm/s, is
noteworthy. It seems, however, that their velocity
depends in this case on the rate of change on the mag-
netic field, since a vortex (flux line) lattice is still
absent; hence, interaction between the vortices is weak.
Yet, there must be many pinning centers in the Nb film
(recall that this film is polycrystalline with a grain size
of about 10 nm). One may then expect that grain bound-
aries in the axial Nb film grown under ion bombard-
ment have a higher-than-usual atomic order in the
direction parallel to the film surface. That is why the
film exhibits the superconducting property and the
velocity of the vortices is high.
TECHNICAL PHYSICS      Vol. 49      No. 4      2004
Thus, it is demonstrated experimentally that low-
energy ion bombardment of Nb films during their dep-
osition favors the growth of grains oriented parallel to
the closest packed plane ((110) in our case). If the lat-
tice parameters and orientation of a single-crystalline
substrate differ from those of the film, the epitaxy tem-

Nb(001)

Al2O3(001)

Al2O3(01i2)

γ

Fig. 5. Relative arrangement of crystallographic planes in
the Nb film and Al2O3 substrate.

10 µm

Fig. 6. Magnetic vortex dynamics in the Nb/BFG/GGG
multilayer structure that is visualized with a magnetooptic
indicator. The direction of vortex motion is indicated by
arrows.

Table

Sample 
no.

Misorientation γ 
between the (001) 
plane of Nb and 

substrate surface, 
deg

(002) reflection 
peak intensity 
for Nb at given 

γ, counts/s

Half-width
of peak in 

terms of angle
of rotation β, 

deg

0 3 21450 10

20 3 22370 7.4

40 4.2 14930 8.4

60 4.8 9590 11
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perature may be somewhat reduced by using low-
energy (≈30 eV) ion bombardment.

If the substrate orientation coincides with that
favored by ion bombardment, the process temperature
may be decreased appreciably (by 200°C in our exper-
iments). Today, the selection of materials used in con-
ventional semiconductor technology is limited by a
number of factors, including the substrate temperature.
As a rule, it must not exceed 200–300°C. Taking advan-
tage of the orienting effect of low-energy ion bombard-
ment, one may reduce the temperature of epitaxial
growth of materials growing at high temperatures and
apply them in the standard process steps of semicon-
ductor technology.
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SOLID-STATE
ELECTRONICS
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Co50Pt50/MgO(100) Films

P. D. Kim*, I. A. Turpanov*, S. V. Stolyar**, R. S. Iskhakov*, V. I. Yushkov***, 
A. Ya. Beten’kova*, L. A. Li*, E. V. Bondareva*, T. N. Isaeva*, and M. M. Karpenko*
* Kirenskiœ Institute of Physics, Siberian Division, Russian Academy of Sciences, Krasnoyarsk, 660036 Russia

e-mail: kim@iph.krasn.ru
** Krasnoyarsk State University, Krasnoyarsk, 660041 Russia

*** Krasnoyarsk State Technical University, Krasnoyarsk, 660074 Russia
Received August 4, 2003

Abstract—The crystal structure and hysteretic magnetic properties of equiatomic single-crystal CoPt films
applied on MgO substrates by magnetron sputtering, as well as modification of these properties by thermal
annealing, are studied. Heat-treated films of thickness in the range 2 < d ≤ 16 nm exhibit perpendicular magnetic
anisotropy. A correlation between the crystalline anisotropy constant of the CoPt films and the order parameter
of the LI0 superstructure in these alloys is found. The effect of a single-crystalline MgO substrate on the struc-
ture and magnetic properties of equiatomic CoPt films is revealed. © 2004 MAIK “Nauka/Interperiodica”.
Upon ordering of type Al  LI0, CoPt alloys with
a near-equiatomic composition acquire the tetragonal
magnetically uniaxial superstructure LI0. In this crys-
tallogeometrical state, the alloys are characterized by
the saturation magnetization Ms = 800 G and the crys-
talline anisotropy field Ha = 125 kOe [1]. These values
satisfy the condition Ha @ 4πMs, which makes it possi-
ble to produce perpendicular magnetic anisotropy in
thin films of this equiatomic alloy provided that the
films have (001) texture. Therefore, Co50Pt50 (like
Fe50Pt50 and Fe50Pd50) alloys are currently viewed as
candidates for a high-density planar magnetic data-
storage medium.

The magnetic properties of ordered equiatomic
CoPt alloys, such as the anisotropy field Ha, the coer-
cive field Hc, and the rectangularity S = Mr/Ms (where
Mr is the remanent magnetization) of the hysteresis
loop, depend on their microstructure, namely, on the
grain size, the density of defects, and the order param-
eter η of the superstructure LI0. Upon Al  LI0 order-
ing, any of three 〈010〉 axes of the fcc matrix may be
taken as the tetragonal axis. Therefore, there exist three
types of nuclei Ci (C1, C2, and C3) of the ordered super-
structure LI0 if external actions are absent. As a result,
the alloy experiences structural self-organization, caus-
ing a complicated microstructure hierarchy [2]. Thus,
in fabricating film media with desired magnetic proper-
ties, it is necessary to select appropriate methods for
forming the microstructure of ordered (or partially
ordered) Co50Pt50 (as well as Fe50Pt50 and Fe50Pd50)
alloys.

The aim of this work is to study the hysteretic mag-
netic properties of single-crystal films of equiatomic
1063-7842/04/4904- $26.00 © 20431
CoPt alloys applied on single-crystal MgO(100) sub-
strates and reveal the effect of the substrate on the mag-
netic properties of these ferromagnetic films.

EXPERIMENTAL

The samples used were grown by magnetron sput-
tering in Ar at a pressure of 2 × 10–4 Torr. In order to
avoid chemical inhomogeneity, Co and Pt layers were
applied in succession. The application time per metal
layer τi was taken such that a monomolecular layer of
the metal was deposited [3]. The thickness d of the
films was varied between 2 and 100 nm and was
checked (as well as the chemical composition of the
films) by X-ray fluorescence analysis. Isothermal
annealing was carried out in a vacuum chamber under
a pressure of no higher than 5 × 10–6 Torr.

Hysteresis loops were recorded at room temperature
with a vibrational magnetometer at fields H < 12 kOe.
Measurements were performed in two configurations:
H || n and H ⊥  n, where n is the normal to the film sur-
face. The structure of the samples was examined on a
DRON-4 diffractometer at room temperature in CuKα
radiation (λ = 0.154 nm).

STRUCTURE OF THE SAMPLES

Figure 1 shows X-ray diffraction spectra of the
films. The diffraction pattern from the as-prepared
Co50Pt50/MgO(100) structure with d = 19 nm (Fig. 1a)
indicates that the Co50Pt50 alloy with the fcc lattice is
initially single-crystalline. Here, only the (200) reflec-
tion from the film is detected. The lattice constant of the
alloy calculated from the interplanar spacing d200 was
004 MAIK “Nauka/Interperiodica”
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Fig. 1. X-ray diffraction patterns taken from the Co50Pt50 films on MgO substrates: (a) as-prepared film with d = 19 nm, (b) heat-
treated film with d = 7 nm, and (c) heat-treated film with d = 15 nm. The inset to (a) shows the diffraction pattern from the MgO
substrate.
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found to be a = 0.377 nm. Other peaks in this diffrac-
tion pattern are associated with reflections from the
MgO substrate. The inset to Fig. 1a shows the spectrum
of the substrate. Reflections (1/200), (1/300), (2/300),
etc., is likely to indicate that impurity atoms in the MgO
are arranged regularly and the MgO substrate has a
block structure. Figure 1b demonstrates the diffraction
pattern from the 7-nm-thick single-crystal
Co50Pt50/MgO(100) film annealed at 600°C for 3 h.
Reflections (001) and (003) observed suggest that the
alloy has the tetragonal superstructure LI0 after anneal-
ing. The tetrad axis runs parallel to the normal n to the
film. For the superstructure LI0 the tetrad axis of which
is parallel to the normal, the intensity ratio I(001)/I(002)
may be used to estimate the order parameter η [4]. The
parameter η turned out to grow with increasing thick-
ness of the Co50Pt50/MgO(100) film subjected to
annealing. The dependence of η versus the film thick-
ness is presented in Fig. 2. Figure 1c shows the X-ray
diffraction pattern taken from the Co50Pt50/MgO(100)
film with d = 15 nm. Here, the (200) reflection intensity
is lower than the intensity of the (002) reflection. For
the given sample, the ratio c/a = 0.978. The presence of
the (200) reflection indicates that the
Co50Pt50/MgO(100) film under study has such regions
of the superstructure LI0 where the tetrad axis lies in the
plane of the film. In fact, as the film becomes thicker
than 150 nm with the annealing conditions remaining
the same, the (200) reflection intensity grows. This
means that the fraction of LI0 regions with the tetrad
axis lying in the plane of the film increases.

MAGNETIC PROPERTIES OF THE FILMS

In the as-prepared state, the CoPt films had two easy
magnetic axes, lying in the plane of the film orthogo-
nally to each other. The rectangularity S of the hystere-
sis loop for the as-prepared films was 0.6–0.8 through-
out the range 2 < d < 100 nm. The coercive field for
these films, about 500 Oe, also did not depend on the
thickness d. Heat treatment of the as-prepared films at
T = 600°C for 3 h radically changes the hysteretic mag-
netic properties. For the films with d ≤ 16 nm, such a
heat treatment produces an easy magnetic axis that is
aligned with the normal to the film. For d > 16 nm, the
easy magnetic axis lay in the plane of the film as before.
The hysteresis loop rectangularity measured in the easy
direction was found to be 0.9–1.0. Figure 3 shows the
normalized dependences M(H) (H || n, H ⊥  n) for the
annealed film with d = 10 nm. The dependences imply
the presence of perpendicular magnetic anisotropy. Iso-
thermal annealing is seen to make the film magnetically
hard. The coercive field Hc for the films thicker than
16 nm varied between 6 and 10 kOe. For the annealed
films with d < 16 nm, the value of Hc depends the film
thickness: Hc = Hc(d). The experimental dependence
Hc(d) for these films, which are characterized by S = 1,
is given in Fig. 4.
TECHNICAL PHYSICS      Vol. 49      No. 4      2004
The coercive field Hc for single-crystal heat-treated
Co50Pt50/MgO(100) films with d < 16 nm and S = 1 is
measured as the difference between the crystalline
anisotropy field Ha and the demagnetizing field of the
film: Hc = Ha – 4πM [5]. Therefore, our experimental
dependence Hc(d) may be used to calculate Ha and,
hence, the crystalline anisotropy constant K = HaM/2
(M = 800 G), a fundamental parameter of a ferromag-
net. In this way, for single-crystal ordered (or partially
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ordered) 2- to 16-nm-thick Co50Pt50/MgO(100) films
with the structure LI0, which exhibit perpendicular
magnetic anisotropy, we found that the constant K var-
ies in the interval 4 × 106–8 × 106 erg/cm3.

RESULTS AND DISCUSSION

Heat treatment of disordered thin films of the
Co50Pt50 solid solution on single-crystal MgO(100)
substrates produces the ordered superstructure LI0.
Analysis of the hysteretic magnetic properties of these
alloys shows that (i) the heat-treated films with thick-
nesses d ≤ 16 nm exhibit perpendicular magnetic
anisotropy and (ii) the coercive field Hc measured along
the easy magnetic axis depends on the film thickness
(Fig. 4).

It is known that a film of an alloy differs in proper-
ties from its bulk state. First, thin films have an elevated
concentration of defects. Second, a film is essentially a
2D object. Third, the state of the film is greatly influ-
enced by the substrate.

Perpendicular anisotropy discovered in
Co50Pt50/MgO(100) thin films with d ≤ 16 nm results
from lattice match between the ferromagnetic alloy and
substrate. The tetrad axis along 〈100〉 and 〈010〉 direc-
tions is difficult to form because of a rise in the elastic
strain energy in the thin ferromagnetic film. The fact
that only one 〈001〉-directed nucleus of the ordered
structure LI0 (Fig. 1b) originates is a consequence of
self-organization, which minimizes the elastic strain
energy. As the Co50Pt50 film gets thicker, the effect of
the single-crystal MgO substrate weakens; therefore,
all three types of ordered domains Ci (C1, C2, C3)
(Fig. 1c) may arise in thick annealed films. Accord-
ingly, the easy magnetic axis becomes parallel to the
plane of the magnetic film and isotropic over its plane.

Let us now discuss the dependence Hc(d) (Fig. 4).
The increase in the coercive field with the thickness of
the Co50Pt50 ferromagnetic film means the growth of the
crystalline anisotropy constant K. In our opinion, such
a behavior reflects the variation of the order parameter
η in the ordered superstructure LI0 (Fig. 3). In fact, in
the films with this superstructure, the dependences
Hc(d) (Fig. 4) and η(d) (Fig. 2) found experimentally
correlate when the thickness varies between 2 and
16 nm. As η of the CoPt alloy increases, so does Hc
(and hence K). We suppose that the dependence of η on
the thickness of the film with partially ordered super-
structure LI0 also follows from a high lattice match
between the ferromagnetic single-crystal Co50Pt50 film
and single-crystal MgO(100) substrate. Our reasoning
is as follows. In the case of the fcc  LI0 phase tran-
sition, the volume of the alloy must remain unchanged:
Vfcc  VLI0

 or a3 = a'2c, where a' and c are the param-
eters of the tetragonal lattice of the LI0 phase. Upon
ordering, c decreases. For the completely ordered
superstructure LI0 (η = 1), c/a = 0.972 [2]. Conse-
quently, a' in such films is bound to increase. However,
in the thin single-crystal films studied, a' cannot change
because of a film–substrate lattice match; in other
words, the substrate in thin-film single-crystal
Co50Pt50/MgO(100) structures prevents ordering in the
range of small d mentioned above. As the Co50Pt50 film
thickens, the effect of the MgO(100) substrate weak-
ens, since the elastic strain drops as 1/d and the order
parameter η of the alloy grows.

Thus, we investigated the hysteretic magnetic prop-
erties of single-crystal Co50Pt50 films on MgO(100)
substrates. In ordered 2- to-16-nm-thick films with the
LI0 superstructure, the presence and degree of perpen-
dicular magnetic anisotropy are shown to be totally
controlled by the single-crystal MgO structure. The
substrate influences the formation of the crystal lattice
of the ordered ferromagnetic alloy twofold: it (i) favors
the appearance of the tetrad axis in the alloy along the
normal to the film and (ii) prevents ordering in the alloy.
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Abstract—This work is aimed at finding a correlation between the magnetic properties, conductivity, and crys-
tal structure of La0.6Sr0.2Mn1.2O3 and La2/3Ca1/3MnO3 films prepared by pulsed laser (KrF) deposition in order
to study the behavior of their M(T) and M(H) magnetizations. X-ray diffraction is used to investigate the cluster
crystal structure of the manganites. It is shown that the variation of growth temperature and substrate type, along
with laser irradiation, change not only the matrix structure (long-range order in ion arrangement) but also the
cluster structure (mesoscopic order). The magnetic, electron, and optical properties revealed experimentally are
explained by changes in the atomic and electron subsystems of the cluster structures, which provide magnetic
interaction between clusters. © 2004 MAIK “Nauka/Interperiodica”.
LaSr(Ca)MnO manganites, which attract the
researchers’ attention because of the giant magnetore-
sistance effect, feature a flexible structure consisting of
readily reconfigurable fragments, as a result of which
the properties of the material vary in a wide range. Spe-
cifically, these manganites behave either as an insulator
with metallic inclusions (solidified drops) or a metallic
medium with insulating inclusions [1]. Similarly, in
terms of magnetism, they represent a two-phase mag-
netic system where either ferromagnetic or antiferro-
magnetic interaction prevails [2].

The reason why the manganites readily respond to
an external action (magnetic and electric field, temper-
ature, etc.) is the superposition of different-scale struc-
tural elements. Namely, the basic crystalline matrix
with long-range order (which is a paramagnet with
insulating properties at temperatures above the Curie
temperature) coexists with the mesoscopic cluster
structure with nanometer-range atomic order (which is
a ferromagnet with metallic conduction) [3]. The clus-
ter size (30–200 Å) and concentration (2–25%) depend
on film growth conditions. Fine isolated clusters play a
role of quantum dots with a discrete energy spectrum
[3]. If clusters are so large and their concentration is so
high that the spacing ∆ between size quantization levels
satisfies the condition ∆ ! kT, the material, despite its
single-crystalline structure, is similar to a standard
granular medium in electrical properties [4, 5].

The aim of this work is to find a correlation between
the magnetic properties and fine features of atomic
order in cluster Mn–O planes of LaCa(Sr)MnO films.
The analysis of the integral intensity and widths of dif-
fuse peaks, which bear information on the concentra-
tion and size of clusters, turned out to be insufficient,
1063-7842/04/4904- $26.00 © 20435
and we had to study the intensity distribution versus the
angle of scattering within the diffuse peaks themselves.
The dependences Idif = f(θ), characterizing the occu-
pancy of clusters by scatterers (Idif ~ N), which are frag-
ments of planes with an interplanar spacing d, were rep-
resented, according to the Bragg equation 2dsinθ = nλ,
as curves of the diffuse scattering intensity versus the
interplanar distance: Idif = f(d). From the temperature
dependences of the resistivity, we managed to reveal
the nature of interaction between metallic-conduction
clusters with the insulating matrix. Such an approach
provided a more penetrating insight into a relation
between the electromagnetic properties and atomic
order in cluster areas of the manganite films.

EXPERIMENTAL

The films were obtained by pulsed sputtering of a
La0.6Sr0.2Mn1.2O3 or La2/3Ca1/3MnO3 target using a KrF
excimer laser (the pulse width τ = 25 ns, the energy
density at the target Φ = 3.0 J/cm2, the oxygen pressure
in the working chamber P0 = 300 mtorr). The films
were deposited on SrLaGaO4, Nd3Ga5O12, Gd3Ga5O12,
SiO2/Si, SAT La-30, and SAT La-22 substrates at
growth temperatures Tg = 600–730°C.

Irradiation was carried out by the same laser but
with a lower energy density (0.1 < Φ < 0.15 J/cm2,
which is below the scattering threshold for
LaSr(Ca)MnO). The number of shots was varied
between 5 and 500.

The film structure was examined by the photometric
method (long-wave CrKα radiation), which makes it
easy to record diffuse scattering of X rays in the case of
004 MAIK “Nauka/Interperiodica”
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cluster solid solutions which our objects are. Electric
measurements were carried out by the standard tech-
nique in the temperature interval 4.2–300 K. The opti-
cal absorption spectra of the films were taken at room
temperature in the energy range "ω = 0.5–5.0 eV by
using an SP 700C spectrophotometer. Magnetic mea-
surements of the thin films were performed with a
SQUID magnetometer.

RESULTS AND DISCUSSION

Magnetic order with and without external mag-
netic field. The magnetization of as-prepared (as-pr)
and laser-processed (LP) La2/3Ca1/3MnO/SiO2/Si sam-
ples (the growth temperature Tg = 625°C) was mea-
sured upon heating in an external magnetic field of
100 Oe. The samples were precooled to a cryogenic
temperature of 5 K in the absence (zero-field cooling,
ZFC and LP + ZFC curves) and presence (field cooling,
FC and LP + FC curves) of the magnetic field (Fig. 1).

Consider the domain below the Curie temperature
TC. Here, the curves FC and ZFC diverge. The discrep-
ancy may be related to a difference in domain structure
or to the presence of clusters. The experimentally
observed fact that the curves diverge starting from the
Curie temperature (the temperature of onset of mag-
netic ordering) TC = 215 K for the as-prepared sample
and from 210 K for the LP sample (Fig. 1) suggests that
clustering is a more plausible mechanism. It is notewor-
thy that the transition of the LP films to the magneti-
cally ordered state in the interval 125–225 K is more
extended compared with the unprocessed samples
(curves FC/as-pr, FC-LP and ZFC/as-pr, ZFC-LP in
Fig. 1).

In a magnetic system with ferromagnetic (FM) clus-
ters, the clusters may interact with the antiferromag-
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Fig. 1. Temperature dependence of the magnetization in the
LaCaMnO film (the growth temperature 625°C) measured
in a field of 100 Oe: (1, 3) as-prepared and (2, 4) irradiated
state. (1, 2) FC and (3, 4) ZFC conditions.
netic (AFM) matrix and with each other. At cryogenic
temperatures (5 K), the magnetization of the FC sam-
ples (cooled in magnetic field of 100 Oe) exceeds that
of the ZFC samples (i.e., cooled in the absence of the
field) by a factor of 8.75. For the irradiated samples, the
magnetizations differ by a factor of 11.75; i.e., the dif-
ference is 27% higher. This means that laser irradiation
extends the range of the magnetic state of the cluster
structure. Such an effect may be associated with an
increase in the FM cluster size upon irradiation. For
example, in the as-prepared and LP (400 shots)
LaSrMnO/Gd3Ga5O12 films with Tg = 600°C, the clus-
ter size is 70 and 160 Å, respectively.

From the temperature dependence of magnetization,
M(T), it follows that laser irradiation shifts the “freez-
ing” temperature from Tf = 165 K (for the ZFC sam-
ples) to 120 K (for the ZFC + LP samples). The mea-
surements were made in a weak magnetic field of
100 Oe (Fig. 1). As the temperature decreases (ZFC
measurements), M(T) goes through a maximum (Tmax =
Tf) and declines (Fig. 1). Such a run of the curves is due
to freezing of the magnetic moments of clusters: the
external magnetic field influences the orientation of
local magnetic moments only slightly, magnetic disor-
der builds up because of their random orientation, and
the magnetization of the samples eventually dimin-
ishes. The curves M(T) taken under the ZFC conditions
are similar to those for cluster spin glasses or magneti-
cally hard magnets [2, 6].

Hysteresis loop for nonirradiated and laser-irra-
diated samples at 5 K. Different degrees of order in
the irradiated and nonirradiated samples are better visu-
alized by taking the hysteresis loop (Fig. 2). Upon laser
processing, the loop narrows by 20%, which indicates
that magnetic order in the LP sample and its magnetic
homogeneity are improved. The effect of clusters
shows up as frustration (magnetic moment freezing)
even in high (800–2600 Oe) fields: in fields where the
loop closes, the LP sample has a higher magnetization
than the nonirradiated one (Fig. 2).

Magnetizations of films grown at different tem-
peratures. Magnetic measurements also reveal the
dependence of the cluster state on Tg. For H = 100 Oe
and T = 5–300 K, the different run of the curves in Fig. 3
is explained largely by the different structures of films
grown at different temperatures. The higher family of
curves with a high M(T) (335–350 G) refers to films
obtained by low-temperature synthesis (Tg = 625°C);
the lower family (M(T) = 130–190 G at 5 K), to films
grown at 725°C. However, the former have a higher
Curie temperature (205–215 K versus 235–260 K). The
distinction is also associated with transformations in
the cluster structure: according to [3], as Tg grows, the

R c rhombohedral structure (R) passes into the Pnma
orthorhombic (O) structure, so that the material
becomes two-phase (R + O) at Tg = 650–670°C or one-
phase (R at Tg < 650°C or O at Tg > 670°C).

3
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As follows from X-ray diffraction patterns, FM
clusters in the samples are fragments of Mn–O planes
of the R and O phases. These fragments generate dif-
fuse peaks of various shape and intensity in the angular
range θ = 30–36° (in accordance with the Mn–O bond
length in manganites) (Figs. 4, 5). FM clusters with
metallic conduction are basic constituents of these frag-
ments. Clustering stems from large-scale fluctuations
of the Mn–O bond concentration [7–9] and takes place
when the internal energy of the LaCa(Sr)MnO multi-
component system decreases as a result of local order-
ing like chemical layering [7].

The effect of growth temperature on the distribu-
tion of planes in cluster areas. To shed light on the
nature of the diffuse maxima, we studied the fine struc-
ture of two diffraction peaks, A1 (30°–33°) and A0 (33°–
36°), corresponding to large (A1) and small (A0) inter-
planar spacings. According to the Bragg equation
2dsinθ = nλ we have d ~ 1/sinθ at λ = const.
LaCa(Sr)MnO films grown at 625 and 725°C have the
rhombohedral and orthorhombic structure, respectively
[3]. A major contribution to diffuse peak A1 comes from

rhombohedral clusters ((203) and ) reflections with
a peak at θ = 31.5°–32.0°) and orthorhombic clusters
((202) reflection with a peak at 30.5°). For range A0, the
metallic state of the structure at Tg = 625 and 725°C is
due to rhombohedral clusters reflecting from the (400)
plane at 35° and orthorhombic clusters reflecting from
the (004) plane at 36.5°. Cluster areas in these films dif-
fer not only in atomic order in related planes but also in
lattice distortion, which grows when the orthorhombic
(a ≠ b ≠ c; α = β = γ = 90°) phase turns into the rhom-
bohedral phase (a = b = c; α = β = 90°, γ ≠ 90°). Com-
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Fig. 2. Hysteresis loop (1) before and (2) after laser irradia-
tion for the sample grown at 625°C.
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paring the diffraction maxima from cluster areas of the
samples differing in Tg (Fig. 5) reveals the following.

(i) In area A1, different shapes of the diffuse maxima
indicate different contributions from either of the
phases to the integral intensity.
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(ii) While the integral intensities of the areas A1 and
A0 (these intensities reflect a relationship between the
concentrations of scatterers with different interplanar
spacings) are nearly the same, I(A0)/I(A1) = 0.9, for Tg =
625°C, they differ greatly for Tg = 725°C: I(A0)/I(A1) =
0.43.

(iii) For the films synthesized at the high tempera-
ture (725°C), the integral intensities of the areas A1 and
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A0 far exceed those from the low-temperature (625°C)
films. This supports the fact that the fraction of Mn–O
clusters in the films grown at 725°C exceeds that in the
films with Tg = 625°C (12.4 versus 6.7%). It should be
noted, however, that not all clusters are responsible for
metallic conduction and ferromagnetism but only those
containing Mn3+ and Mn4+ ions in comparable amounts.
In view of the higher intensity of the area A1 and taking
into account the Mn–O bond lengths in different charge
states of manganese (Mn2+, Mn3+, or Mn4+), we may
argue, starting from the curves in Fig. 5, that the cluster
structure in the films grown at 725°C has noticeably
different amounts of different-valence manganese ions
(the planes with smaller d in the area A0 correspond to
higher charged ions; those with larger d in the area A1,
to lower charged ions).

Consider the difference between the cluster areas A1
and A0 in terms of the skewness in the diffuse maximum
intensity distributions in the areas, i.e., the distributions
of d skewed to the left (d > dmax) and to the right (d <
dmax) with respect to the predicted values: d(A1) =
2.25 Å and d(A0) = 1.94 Å. These values agree with
experimentally observed positions of diffuse maxima

for the overlapping reflections (202)O and (203, )R

from the O and R phases, respectively (these reflections
form the area A1), and for the reflections (400)R and
(004)O, which form the area A0. Tracing the intensities
to the left (I+) and to the right (I–) from the center with
a step of 0.01 Å, we compared the concentrations of
scattering ions in the fragments of planes with d > dmax
and d < dmax for either of the cluster areas in different
samples (see Fig. 6).

First, we draw the reader’s attention to different
ranges of the ratio I+/I– (the narrow range from 0.2 to
0.3 for Tg = 725°C and the wide range from 0 to 7 for
Tg = 625°C). Second, the curves qualitatively differ:
they either slightly fluctuate about the mean value (Tg =
725°C) or are skewed largely to the right, I+/I– > 1 (Tg =
625°C).

Since the intensity of diffuse scattering is propor-
tional to the concentration of scatterers, Idif ~ N, it fol-
lows from the ranges of the ratio I+/I– (Fig. 6) that the
low-temperature films (Tg = 625°C) exhibit atomic
order with a step periodic variation in the occupation of
the cluster areas by planes with different d. The relative
intensity from widely spaced planes, d = (dmax + 0.06) Å,
is seven times higher than from symmetrically arranged
narrow-spaced planes with d = (dmax – 0.06) Å in the
area A0. For the area A1, the relative intensity from the
planes with d = (dmax + 0.09) Å is four times higher than
from the planes with d = (dmax – 0.09) Å. In the case of
the high-temperature films (725°C), the periodic varia-
tion of the microstructure is smoother and the narrow-
spaced (d < dmax) planes slightly prevail (mostly I+/I– < 1).

203
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The results presented in Figs. 5 and 6 allow us to
come with proposals for the effect of cluster structures
(appearing as the areas A0 and A1 in the diffraction pat-
terns) on magnetic ordering. Based on the dependences
(I+/I–) = f(dmax – d) for diffuse scattering from the films
with Tg = 625°C (Fig. 6), which suggest that the atomic
structure of Mn–O planes in both areas (A0 and A1) is
heavily strained and highly anisotropic, one can argue
that the cluster structure of the rhombohedral phase
(625°C) is favorable for magnetic ordering in both the
ZFC and FC cases (Fig. 1). In the orthorhombic films
(725°C), the difference in the density of scatterers in
the planes compared is smaller but here the curve I(d –
dmax) runs in the opposite manner. Therefore, when one
of the structure groups (say, A1) experiences tensile
stresses, while the other (A0) is compressed, magnetic
ordering in an external field may start at higher temper-
atures. As a consequence, the Curie temperature in the
films grown at 725°C (where like stresses prevail
(Fig. 1) but the saturation magnetization M(H) = const
is lower than in those with Tg = 625°C: 250 G for the
films with Tg = 725°C against 500 G for the films with
Tg = 625°C) is higher than in the films with Tg = 625°C.
The strong discrepancy between the curves in Fig. 7
substantiates the cluster nature of magnetic interaction.

An external magnetic field induces magnetic order
of various orientation in the cluster areas A1 and A0
(which appears, at least, as crystallographically misori-
ented families of {202} and {004} planes giving
unequal diffraction intensities, as follows from the dif-
fraction patterns in Fig. 5). This fact is supported by the
lower saturation magnetization in the films with Tg =
725°C compared with the films with Tg = 625°C
(Fig. 7), although the concentration of the metallic
phase in the films grown at low temperatures (<650°C)
is lower.

ELECTRICAL PROPERTIES OF THE FILMS

Depending on the growth temperature for LaSrMnO
and LaCaMnO films, two types of the resistivity versus
temperature dependence are observed. In the case of
rhombohedral films (fine metallic-conduction clusters
embedded in the insulating matrix) at T < Tcrit = 130–
160 K, the dependence 1/ρ ~ exp(–(T0/T)1/n) with n = 4
(the Mott law) or n = 2 (granular systems) changes to
the dependence ρ(T) that has saturation portions, which
is typical of LaSrMnO, PrCaMnO, and other mangan-
ites [10, 11]. In these portions, the temperature coeffi-
cient of resistance approaches zero; that is, ρ(T) =
const.

The portions where ρ(T) ≈ const appear at low tem-
peratures (T < Tcrit), at which fine metallic-conduction
clusters turn into a set of tunnel-coupled quantum dots
with discrete (atomlike) energy spectrum [10–17]. The
most plausible mechanism of conduction seems to be
elastic tunneling between quantum dots under the con-
TECHNICAL PHYSICS      Vol. 49      No. 4      2004
dition of the Kondo effect, which provides a window in
Coulomb blockade [4]. The amount of the effect ρ(T) =
const depends on the cluster size D; free hole concen-
tration p, which specifies the energy spacing ∆ between
size quantization levels; and cluster spacing L. The
parameters ∆ and D are related to the density of states
N(EF) at the Fermi level by the formula

Earlier, we calculated the parameters of quantum
dots using available data for the metallic phase fraction
Cm and mean cluster size D in the films grown at Tg <
625°C. For Cm = 0.02–0.05, D = 20–50 Å, and p = 3 ×
1021 cm–3, we have ∆ = 0.01–0.10 eV, which explains
the value Tcrit = 160 K [10].

Let us consider the appearance of the portion ρ(T) =
const in terms of a simple model according to which the
temperature dependence of the resistance tends to satu-
ration when the thermal energy becomes lower than the
spacing between size quantization levels:

Then, the critical temperature is bound to decrease
with increasing cluster size. If clusters are fine, the crit-
ical temperature may be high (≈180 K) even in low-
resistivity La2 /3Ca1 /3MnO3 films (ρ ≈ 0.2 Ω cm in the
portion ρ(T) = const) grown at 625°C (Fig. 8a).

At the growth temperature 725°C, the dependence
R(T) changes qualitatively: the saturation portion at T <
180 K disappears and the curve takes the conventional
form with a peak at T = 180 K and a dip at T = 28–30 K
(Fig. 9). Also, when the growth temperature rises to

∆ D3N EF( )[ ]  . D3 p/EF[ ] 1–
.=

∆ D3N EF( )[ ] 1–
D3 p/EF[ ] 1–
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725°C, the resistance of the films increases by a factor
of 2–8 according to the measurement temperature. It is
known that the insulator–metal transition near the Curie
temperature is usually absent in manganites, so that
similarity between the dependences R = R(T) in manga-
nites with magnetic order and in metals is formal and
the conductivity in the former case is much lower than
the minimal metallic conductivity σmin [18, 19]. Since
the conductivity is governed by p and d hybridization,
σmin must lie between 102 and 103 (Ω cm)–1. For our
films at T = 290 K, σ = 15 (Ω cm)–1 (Tg = 625°C) and
5 (Ω cm)–1 (Tg = 725°C), i.e., is one to two orders of
magnitude lower than σmin.
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Fig. 8. (a) Temperature dependence of the resistance for the
(1) LaCaMnO film grown at 625°C and (2) YBaCuO film
after irradiation by five laser shots with an energy density of
135 mJ/cm2. (b) The portions R(T) = const of curves 1 and
2 on an enlarged scale.
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For the films grown at 625°C, σ is 2.7 and 2.3 times
that for the films grown at 725°C at measurement tem-
peratures of 290 and 5 K, respectively. This means that
the concentration of metallic clusters in the former
films is higher, providing a higher low-temperature
magnetization under magnetic ordering (Fig. 3). At the
same time, the rhombohedral structure has a lower
Curie temperature.

For all the films, tunneling is the basic mechanism
of conductivity at both moderate and low temperatures.
This statement is confirmed by the run of the magne-
toresistance versus temperature curve [3]: it decreases
monotonically with temperature, which is typical of
spin-dependent tunneling [20, 21]. When electrons tun-
nel between metallic clusters separated by high-resis-
tivity spacers in an insulating matrix, the resistivity is
given by

where L is the mean intergranular spacing.
In the case of planar clusters (the thickness is one-

third of the linear size D), the cluster spacing can be
found using the cluster concentration Cm determined
from the integral intensity ratio Iclust/Icoh:

The parameters of the La2 /3Ca1/3MnO3 films for var-
ious cluster sizes D are listed in the table.

One may assume that magnetic ordering in inhomo-
geneous samples results from tunneling between FM

ρ ρ0 L/L0( ),exp=

L D 3Cm
1/3– 1–( ).=
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Fig. 9. Temperature dependence of the resistance for the
LaCaMnO film grown at 725°C. The inset shows the optical
transmission spectra for the LaSrMnO film (Tg = 600°C) in
the (1) as-prepared and (2) irradiated state. (3) The optical
transmission spectrum for the orthorhombic structure (Tg =
730°C).
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clusters ion an AFM matrix. The coupling energy W
decreases with distance between the clusters:

The probability of electrons tunneling between clus-
ters to a great extent depends on Coulomb-blockade-
related effects, which control the conductivity of gran-
ular systems [4], and also exponentially depends on the
charge energy

where e is the electron charge and ε is the permittivity.
Upon irradiation, the concentration of the metallic

phase increases roughly twofold, which would have to
improve the magnetic properties of the samples. How-
ever, as follows from the table, the mean spacing
between clusters increases by 30% and magnetic cou-
pling between them weakens. At the same time, the
increase in L is compensated for by the decrease in Ec
and loosening of Coulomb blockade. Eventually, the
energy of exchange interaction between clusters rises
(in particular, because of an increase in the density
of    states when the fraction of the orthorhombic
phase exceeds that of the rhombohedral one upon irra-
diation [3]).

The portion R(T) = const for the LaCaMnO film
(Tg = 625°C) is shown on an enlarged scale in Fig. 8b
(the full curve is shown in Fig. 8a). It is seen that the
relationship R(T) = const is an approximation: the curve
has a peak at T = 119.5 K and a dip at 34.5 K. However,
the extreme resistances differ by only 1.5% (for the
films grown at 725°C, the difference is 500%). In the
vicinity of the peak, the thermal energy and the energy
W of tunnel coupling between clusters equal each other:
kTmax = W.

Thus, magnetic ordering influences the conductivity
of tunnel-coupled quantum dots, as indicated by the
extrema in the curves R(T). When clusters behave as
quantum dots, as in manganites grown at 625°C, the
energy spectrum is discrete and this influence is weak
while experimentally observable. It was shown [15]
that LaSr(Ca)MnO films with magnetic clusters, for
which the dependence ρ(T) is nonmonotonic and has
portions ρ(T) = const, behave in a radically different
manner than YBaCuO nonmagnetic films, for which
the related dependence is monotonic (Fig. 8, curve 2).

The optical transmission (t) spectra for the as-pre-
pared and LP films (inset to Fig. 9) exhibit qualitative
and quantitative discrepancies. Portions where the
charge is absorbed by free carriers (t decreases as "ω
becomes lower than 0.8 eV) are immediately apparent
for both the as-prepared and irradiated rhombohedral
films (Tg = 600°C). For the orthorhombic phase (Tg =
730°C) this portion is invisible, because absorption by
free carriers appears only at "ω < 0.2 eV in this case [22].

As follows from the value of t in the range "ω <
0.8 eV (the range of metallic conduction), the density

W W0e
L/L1( )–

.=

Ec e2/εD,=
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of states in the rhombohedral phase is lower than in the
orthorhombic phase. The Fermi energy for the R phase
(EF = 0.8 eV) is much higher than for the O phase (EF ≤
0.2 eV). The narrow hysteresis loop described above
and the increase in the saturation magnetization of the
films upon laser processing (Fig. 2), causing the R 
O phase transition [3], may be related to an increase in
the density of electronic states, which are responsible
for metallic conduction and ferromagnetism.

CONCLUSIONS

Our study of the magnetization, conductivity, and
structure of single-crystal LaCa(Sr)MnO manganite
films shows that the differences in the dependences
M(T), M(H), and R(T) are due to various types of mag-
netic order in Mn–O planes of metallic clusters embed-
ded in an insulating matrix.

Analysis of X-ray diffuse scattering revealed two
groups of clusters: with a large (d = 2.05–2.52 Å) and
small (d = 1.86–2.05 Å) interplanar spacing (the orthor-
hombic and rhombohedral phases, respectively).

Detailed study of X-ray diffuse scattering shows
that, in the rhombohedral phase grown at Tg = 625°C,
the number of planes with interplanar spacings d > dmean
five to seven times exceeds the number of planes with
other spacings in either of the groups. In the orthorhom-
bic phase (Tg = 725°C), the number of states with d >
dmean and d < dmean fluctuates in both groups of clusters.

In manganites grown at different temperatures, both
groups of clusters behave in a radically different man-
ner. In the films grown at 625°C, clusters at low temper-
atures (T < TC) behave as tunnel-coupled quantum dots
with a discrete energy spectrum (which shows up in the
constant-resistance portion in the curves R(T). In the
films grown at 725°C, they are characterized by a con-
tinuous spectrum (which shows up as a decrease in the
resistance in the range where the electronic and mag-
netic subsystems interact intensely, R(T) = Rmax – Rmin).
For magnetic interaction, tunnel coupling between
Mn–O clusters are of crucial importance.
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Abstract—The characteristics of a low-size low-pressure UV lamp operating on the atomic iodine resonant
line (λ = 206 nm) and xenon iodide (λ = 253 nm) and dimer iodine (λ = 342 nm) bands are investigated. A lamp
with an interelectrode distance of 19 cm was pumped by a longitudinal dc glow discharge. The working gas
mixtures were He/I2 and He/Xe/I2 mixtures with a total pressure of 50–1500 Pa. The output parameters of the
electric-discharge excimer–halogen lamp were optimized in terms of the gas mixture pressure and composition
and the power deposited in the discharge. It is shown that the total UV power emitted from the entire aperture
of the lamp in the spectral range 200–350 nm attains 5–7 W with an efficiency of ≤5%. © 2004 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

At present, optical techniques employing high-
power sources of spontaneous or laser radiation are
widely used in microelectronics, ecology, and medicine
[1, 2]. This has inspired studies of the emission charac-
teristics of different types of electric discharges in mix-
tures of noble gases with halogen-containing agents at
low and moderate pressures. The most powerful and
efficient excimer–halogen lamps were pumped by dc
glow discharges, and their emission spectra partially or
totally covered the spectral range from 160 to 353 nm
[3–15]. These lamps, however, were thoroughly studied
only when working with mixtures of heavy noble gases
with Cl2 or HCl. These working mixtures are rather cor-
rosive, and the lifetime of lamps with bare electrodes
operating in a static-gas mode is no longer than 50–
100 h [3]. At discharge currents higher than 20–30 mA,
the concentration of the chlorine-containing agents
sharply decreases because of their absorption by the hot
electrodes. For this reason, to increase the lifetime of a
sealed-off excimer–halogen lamp to 1000 h and more,
one has to use less efficient and more complicated
pumping techniques employing capacitive or barrier
discharges [15–17]. Therefore, it seems attractive to use
Br2 and I2 molecules, which are less corrosive than
chlorine. This enables one to increase the lifetime of dc
excimer–halogen lamps; moreover, besides excimer
and halogen molecular bands, the emission spectrum of
such lamps contains a 206-nm resonance line of I*. In
a recent paper [18], the lifetime of a sealed-off iodine
lamp pumped by a glow discharge was reported to be as
high as 1000 h. In that study, the main attention was
paid to the emission of the 206-nm resonant line of
atomic iodine, whereas conditions for the formation of
XeI* and  molecules and their contribution to the
total emission intensity of a dc lamp were not studied.

I2*
1063-7842/04/4904- $26.00 © 20443
This paper is devoted to studying the output charac-
teristics of an excimer–halogen lamp with He/I2 and
He/Xe/I2 working mixtures pumped by a glow dis-
charge.

EXPERIMENTAL SETUP

A dc longitudinal discharge was ignited in a quartz
tube transparent down to 190 nm. The inner diameter of
the discharge tube was 1.4 cm. The distance between
the hollow cylindrical nickel electrodes with an outer
diameter of 1.4 cm and a length of 1.5 cm was 19 cm.
Iodine crystals were placed in a special socket behind
the anode (see Fig. 1).

The optical characteristics of the glow discharge
were studied using an FÉU-106 photomultiplier and
MDR-2 monochromator with a 1200-grove/mm grat-
ing. The spectral sensitivities of the photomultiplier and
monochromator were relatively calibrated in the spec-
tral range 190–400 nm. The glow discharge was sup-
plied from a high-voltage rectifier with a rated average
current of ≤50 mA and voltage of ≤25 kV. Before being
filled with noble gases, the discharge tube was pumped
out to a residual pressure of 5–7 Pa. During a discharge,

12

34

5

6

1

Fig. 1. Schematic of an excimer–halogen lamp: (1) elec-
trodes, (2) quartz tube, (3) high-voltage power supply,
(4) ballast resistor, (5) iodine crystals, and (6) socket for
iodine crystals.
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the tube was cooled with a fan so that the temperature
of the socket with iodine crystals was close to room
temperature and exceeded the room temperature by no
more than 10–15°C even at the highest energy deposi-
tion in the discharge. In the experiment, the iodine
vapor pressure in the coldest part of the discharge tube
was no higher than 100–200 Pa [19]. The electric char-
acteristics of the discharge and the total power of the
UV emission were measured by the method described
in [20, 21].

LAMP CHARACTERISTICS

A uniform dc glow discharge in mixtures of noble
gases with iodine vapor was observed at He and Xe
pressures of ≤150–200 Pa and average currents of ≥30–
40 mA. As the discharge current was decreased from 50
to 3–5 mA, the diameter of the bright plasma column
that was observed against the background of a low-
intensity diffuse discharge decreased from 10 to 2 mm.
At noble gas pressures higher than 1 kPa, the discharge
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Fig. 2. Current–voltage characteristics of dc glow dis-
charges in He/I2 mixtures (curves 1, 2, 4) at P(He) =
(1) 130, (2) 400, and (4) 1600 Pa and He/Xe/I2 mixture
(curve 3) at P(He)/P(Xe) = 400/120 Pa.
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Fig. 3. UV emission spectrum of glow discharge in a
He/Xe/I2 mixture at P(He)/P(Xe) = 400/120 Pa.
had the form of a plasma column against the back-
ground of a uniform low-current glow discharge
throughout the entire current range under study. Such
behavior corresponds to the regime of dynamic con-
traction.

The current–voltage characteristics of glow dis-
charges in He/I2 and He/Xe/I2 mixtures are shown in
Fig. 2. The current–voltage characteristics of dis-
charges in a He/I2 mixture correspond to a subnormal
regime, whereas in the case of a He/Xe/I2 mixture, they
correspond to the weakly-pronounced anomalous stage
of a glow discharge. As the pressure P(He) in a He/I2
mixture increases, the discharge passes to the regime of
dynamic contraction, the ignition voltage decreases,
and the voltage decreases with increasing discharge
current at a progressively increasing rate. Due to the
presence of a large number of negative ions in the dis-
charge plasma and because of the different radial diffu-
sion velocities of the electrons and negative iodine ions,
an ion–ion plasma forms in the central part of the dis-
charge tube. For this reason, the current–voltage char-
acteristics of electronegative and electropositive gases
are quite different. When a glow discharge operated in
Xe/I2 mixtures with P(Xe) = 130–1600 Pa, the current–
voltage characteristics varied with P(Xe) in a similar
way; however the rate at which the voltage decreases
with increasing discharge current was two to three
times lower (at discharge currents of Id ≥ 20 mA, the
current–voltage characteristics were more flat and close
to the current–voltage characteristic of a normal glow
discharge). A minor additive of xenon to a He/I2 mix-
ture led to a decrease in the discharge ignition voltage
by a factor of 2 (Fig. 2, curve 3) and the formation of a
plateau in the current–voltage characteristic at dis-
charge currents of Id = 20–50 mA.

The spectrum of UV emission from the glow dis-
charge plasma in He/Xe/I2 mixtures is shown in Fig. 3.
In the case of the He/I2 mixture, the spectrum contains
the resonant line of atomic iodine (λ = 206 nm) and the
system of I2(B–X) molecular bands within the spectral
range 320–342 nm, whereas in the case of a He/Xe/I2
mixture, there is also the XeI(B–X) band with λ =
253 nm. When a glow discharge operated in a He/I2
mixture with P(He) = 400 Pa, the spectral distribution
of the UV emission intensity was I(206 nm)/I(342 nm) =
52/48%, whereas in a He/Xe/I2 mixture with
P(He)/P(Xe) = 400/120 Pa, it was I(206 nm)/I(253 nm)/
I(342 nm) = 54/9/37%. Due to a rather large spectral
width of the emission of XeI* and  molecules, a sig-
nificant fraction of the total UV power was emitted in
the form of molecular bands.

The dependences of the emission intensity of the
iodine resonant line on the power deposited in a dis-
charge are shown in Fig. 4. These dependences (except
for the curve corresponding to the pronounced regime
of dynamic contraction of a glow discharge in a He/I2
mixture) show that the emission intensity increases

I2*
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nearly in proportion with the deposited power. The
increase in P(He) and, especially, addition of xenon to
the working mixture result in a steeper dependence of
the emission intensity of the 206-nm line on the depos-
ited power. Such behavior can be attributed to an
increase in the temperature of the coldest part of the
discharge tube and an increase in the partial pressure of
iodine vapor. It can also be seen in Fig. 4 that the
increase in the pressure of a He/I2 mixture (which is
accompanied by the transition to the contraction
regime) leads to the increase in the production effi-
ciency of the excited iodine atoms in the plasma col-
umn.

Figure 5 shows the emission intensities of the XeI*
and  molecular bands versus the power deposited in

a glow discharge. In a He/Xe/I2 mixture, the (B–X)
342-nm band is the most intense. The band intensities
are seen to increase linearly with power. The slopes of
the curves are different within the current ranges Id = 5–
20 and 25–50 mA (the slope is larger at lower discharge
currents). When a discharge operated in a He/I2 mix-
ture, the intensity of the 342-nm band was maximum at
P(He) = 130 Pa and the slope of the dependence of the
emission intensity on the deposited power decreased
with the helium partial pressure.

The maximum total UV power emitted from the
entire aperture of the excimer–halogen lamp was 5–
7 W with an efficiency of ≤5%. The lamp lifetime in a
static-gas mode was as high as 400–500 h.

Thus, the study of the output characteristics of a
low-size He/Xe/I2 excimer–halogen lamp pumped by a
dc glow discharge has shown that, in addition to the I*
206-nm emission line, the XeI*(B–X) 253-nm and

(B–X) 342-nm bands also significantly contribute to

I2*

I2*

I2*

0.25
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Fig. 4. Emission intensity of the 206-nm resonant line of
atomic iodine vs. power deposited in a glow discharge in a
He/Xe/I2 mixture (curve 1) at P(He)/P(Xe) = 400/120 Pa
and He/I2 mixtures (curves 2–4) at P(He) = (2) 1600,
(3) 400, and (4) 130 Pa.
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the total UV emission. The maximum total UV power
is 7 W with an efficiency of ≤5%. The lamp lifetime in
a static-gas mode is ≤500 h.
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Abstract—Velocity dispersion curves and phase relationships between the surface displacement components
are calculated in the case of waves propagating in XZ-, YZ-, and ZY-cut LiNbO3 plates. The dispersion curves
agree with experimental frequency dependences of the excitation efficiency for various modes in the plates.
The displacements of ZnS microparticles placed on the surface of the plates qualitatively agree with the analyt-
ical phase relationships between the displacement components. Results obtained indicate that the plate may be
used as an ultrasonic engine capable of transferring microparticles in various physical and industrial processes.
© 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The transfer of microobjects is a basic process in
many physical and industrial automated systems,
which is accomplished by different methods. In partic-
ular, micromechanical systems use electrostatic [1–3]
and magnetic [4] engines. Ultrasonic engines offer sub-
stantial advantages [5]. First, ultrasonic waves may be
excited far away from the guiding channel, allowing
one to spatially separate the electric and mechanical
systems. Second, the use of a piezoelectric acoustic line
made, for example, of LiNbO3 or quartz, provides a
mobile electric potential near its surface. This opens up
possibilities for transfer of charged microparticles,
including biological objects.

Ultrasonic engines are based largely on traveling
surface acoustic waves and standing waves in rods and
plates. Investigations into traveling waves in plates con-
sider the effect of acoustic flow. Such an approach is
strictly valid for hydrodynamic systems [6, 7]. An
important property of an ultrasonic engine is that the
normal and tangential (relative to the surface) compo-
nents of the force may be controlled independently. In
view of a variety of wave modes in the plates and, cor-
respondingly, a variety of phase relationships between
the displacement components on the surface, the use of
waves in the plates for implementing an ultrasonic
engine seems to be reasonable. Such a possibility was
first indicated in [7]. Note that an ultrasonic engine of
this type can be used in modern semiconductor nano-
technology. For example, the transfer of charge carriers
in quantum wells that occurs in composite piezoelectric
substrate–multilayer semiconductor systems modifies
significantly the luminescent characteristics of the
semiconductor [8].

The goal of this study is to find phase relationships
between the surface displacement components at the
excitation of waves in the plates. Theoretical results for
X-, Y-, and Z-cut LiNbO3 plates are reported. Experi-
1063-7842/04/4904- $26.00 © 20447
mental results for transfer of microparticles over the
plate surface are given as tentative data. Mechanisms
behind charged object transfer in the piezoelectric field
of the wave will be discussed in a special paper.

1. OPERATION OF THE ENGINE

A standard ultrasonic engine that employs reso-
nance oscillations in the plate contains an array of
ridges separated by a distance comparable to the stand-
ing wave wavelength [9, 10]. The principle of operation
of an ultrasonic engine implies that, when the plate
oscillates, the motion of the ridges is imparted to an
extended object placed on them. A change in the reso-
nance oscillation mode of the plate changes the vibra-
tion phase of the ridges, which may change the direc-
tion of object displacement.

A traveling-wave ultrasonic engine considered in
this paper combines transfer mechanisms typical of a
resonant engine and the effect of acoustic flow, which
entrains the object in the direction of wave propagation.
Note that, in plates, backward waves with oppositely
directed phase and group velocities may coexist [11].
As a consequence, the direction of object transfer may
be varied not only by varying the phase relationships
between the components of elastic displacements along
and perpendicularly the plate according to the wave
frequency, but also via forward-to-backward wave
switching.

2. THEORETICAL MODEL

Wave propagation in lithium niobate plates has been
covered in most detail for the zeroth-order Lamb modes
s0 and a0 [12]. Our goal is to find phase relationships
between the surface displacement components for
higher order modes in XZ-, YZ, and ZY-cut plates and
use these results for designing ultrasonic engines. In the
004 MAIK “Nauka/Interperiodica”
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designation of the cuts, the first letter means the normal
to the surface and the second indicates the wave propa-
gation direction.

2.1. Dispersion of wave propagation velocity in
LiNbO3 plates. Consider waves propagating in a plate
of thickness 2h (Fig. 1a). The orientation of the plate in
the crystallographic coordinates is specified by two
vectors: m = mxx + myy + mzz (aligned with the wave
propagation direction) and n = nxx + nyy + nzz (directed
normally to the plate). Since these vectors are orthogo-
nal to each other, n · m = 0. We also introduce the vector
product of m and n: l = n × m. The components li are
given by li = δijkminj, where δijk is the Levi-Civita sym-
bol. The problem is solved in the electrostatic approxi-

(a)n

m
l

2h

1

4

32

5

6
Uin

1 3

2 4

k

(b)

Uout

Fig. 1. (a) Geometry of the experiment: (1) LiNbO3 plate,
(2) electrode of the input transducer, (3) output electrode,
(4) metallic substrate, and (5, 6) ZnS microparticles trans-
ferred by the wave excited in the plate. (b) Micrographs of
280 × 280-µm areas showing the positions of microparticles
on the YZ-cut LiNbO3 plate that are taken (1, 3) before and
(2, 4) after jerky motion of one particle (2) in the direction
of the wavevector k and (4) in the opposite direction. The
arrows in panels 1 and 3 show particle displacements.
mation. To this end, we write the wave equation

(1)

the Poisson equation

(2)

and the equations for piezoelectric effect

(3)

(4)

Here, ρ is the density, ui are the acoustic displacement
components, Tij are the mechanical stress tensor com-
ponents, ϕ is the electric potential, t is the time, Di is the

electric induction,  are the elastic modulus tensor
components at a constant electric field, emij are the

piezoelectric coefficient tensor components, and  are
the permittivity tensor components at a constant strain.
Below, the superscripts E and S at the elastic moduli
and permittivity are omitted.

In order to simplify the equations, we use the desig-
nation ϕ = u4 and represent solutions to the set of
Eqs. (1) and (2) as plane inhomogeneous waves:

(5)

where ai is the complex amplitude, V is the phase veloc-
ity, β is the transverse-to-longitudinal wavenumber
ratio, and i = 1–4.

Substituting (5) into Eqs. (1) and (2) in view of (3)
and (4) yields a set of four homogeneous Christoffel
equations for the displacements components and poten-
tial:

(6)

where Γpq = cipqjRij, Γp4 = Γ4p = eijpRij, Γ44 = –εijRij, and
Rij = β2ninj + β(nimj + njmi) + mimj (i, p, q, j = 1–3 and
k = 1–4).

Set (6) has nonzero solutions when its determinant
is zero. The determinant of this set has the form of an
eighth-degree polynomial in β, thus specifying eight
independent solutions. Then, the general solution for
the displacements and potential takes the form

(7)

where p = 1–4 and q = 1–8.

ρ
∂2ui

∂t2
---------

∂Tij

∂x j

---------,=

∂Di

∂xi

--------- 0=

Tij cijkl
E ∂uk

∂xl

-------- emij
∂ϕ
∂xm

---------,+=

Di eikl

∂uk

∂xl

-------- εij
S ∂ϕ
∂x j

-------.–=

cijkl
E

εij
S

ui ai ik Vt mxx myy mzz+ +( )–([exp=

– β nxx nyy nzz+ +( ) ) ] ,

Γ pq δpqρV2–[ ] uk[ ] 0,=

up bqBpq ik Vt mxx myy mzz+ +( )–([exp
q 1=

8

∑=

– βq nxx nyy nzz+ +( ) ) ] ,
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In (7), the coefficients Bpq establish a relationship
between the potential ϕq and the partial components of
the displacements uxq, uyq, and uzq for each βq. They can
be taken as algebraic complements of one row of the
matrix of set (6).

The eight coefficients bq are found from the bound-
ary conditions. Six of them equate the normal and tan-
gential stresses on the plate surface to zero,

(8)

and the remaining two require that the electric induc-
tion be continuous on the nonmetallized side of the
plate. On the metallized surface, the potential is con-
stant:

(9)

The symbols +h and –h in Eqs. (8) and (9) refer,
respectively, to the upper and lower sides of the plate.
Since the equations of these surfaces have the form
nxx + nyy + nzz = ±h, the sum nxx + nyy + nzz, appearing
in Eq. (7), is replaced by +h or –h in (8) and (9). In this
paper, we will consider plates with metallized lower
sides and, therefore, use electric boundary conditions (9).
In free space above the surface, the electric potential
satisfies the Laplace equation ∇ 2ϕ = 0.

Substituting (7) into boundary conditions (8) and
(9), we obtain a homogeneous system of eight equa-
tions in eight unknown coefficients bq. Upon mathemat-
ical transformation, the components of the matrix [M]
of this system can be represented as

(10)

where i, j, k, p = 1–3 and q = 1–8.
Nonzero solutions to the system of Eqs. (8) and (9)

are determined by the condition

(11)

Tijnin j h±( ) Tijnim j h±( ) Tijnil j h±( ) 0,= = =

Dini +h( ) ε0
∂ϕ
∂xi

-------ni, ϕ h–( )– 0.= =

M 1 q,( ) khβq–( ) cijkp nin jnkβq nin jmk+( )Bpq[exp=

+ eijk nin jnkβq min jnk+( )B4q ] ,

M 2 q,( ) 2khβq( )M 1 q,( ),exp=

M 3 q,( ) khβq–( ) cijkp nim jnkβq nim jmk+( )Bpq[exp=

+ eijk nin jmkβq min jmk+( )B4q ] ,

M 4 q,( ) 2khβq( )M 3 q,( ),exp=

M 5 q,( ) khβq–( ) cijkp nil jnkβq nil jmk+( )Bpq[exp=

+ eijk nin jlkβp min jlk+( )B4q ] ,

M 6 q,( ) 2khβq( )M 5 q,( ),exp=

M 7 q,( ) khβq–( ) eijp nin jβq nim j+( )Bpq[exp=

– εij nin jβq nim j+( ) iε0+( )B4q ] ,

M 8 q,( ) khβq( )B4q,exp=

det M[ ] 0.=
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Solving Eq. (11), we arrive at a relationship between
the velocity V and the wavenumber k (or the frequency
ω = kV), i.e., the dispersion relation. To numerically
solve Eq. (11), one should find zeroes of the expression
Im(det[M]) + Re(det[M]) in a certain frequency range
at a given velocity V. Given the elastic moduli, piezo-
electric moduli, and permittivity of lithium niobate
[12], dispersion curves for the XZ, YZ, and ZY cuts can
be obtained (Figs. 2a, 3a, 4a). Equation (7) allows one
to calculate the displacement components at an arbi-
trary point on the surface or inside the plate accurate to
a constant multiplier. To do this, the coefficients bq and
Bpq are substituted into (7), where bq are taken as alge-
braic complementary subsets of one row of the matrix
of system (10).

It can be shown that, for the XZ cut and symmetric
boundary conditions, the solution can be represented as
the superposition of symmetric and antisymmetric
Lamb modes. In our case, the boundary conditions are
asymmetric (the upper surface of the plate is free, while
the lower one is short-circuited) and the solution cannot
be represented in this manner. This is also supported by
the fact that the dispersion curves do not intersect. For
the YZ cut, the solution is the superposition of piezo-
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Fig. 2. (a) Theoretical dispersion curves and (b) excitation
spectrum for the modes excited in the XZ-cut LiNbO3
plates. The figures by the curves are the numbers of the
modes that are analyzed in Figs. 5–7. The symbols refer to
different samples. Vt is the velocity of the transverse wave.
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electrically inactive transverse waves (displacement
along the x axis) and Lamb waves (displacement along
the y and z axes). For the ZY cut, as for the YZ cut, the
solution is the superposition of piezoelectrically inac-
tive transverse waves (displacement along the x axis)
and Lamb waves causing displacements along the y and
z axes.

Note that the positive slope of the dispersion curve,
which is observed in a number of curves in Figs. 2a–4a
near the frequency where a mode originates, indicate
that this mode is a backward wave with oppositely
directed phase and group velocities [11].

2.2. Phase relationships for the displacement
components on the surface of LiNbO3 plates. Con-
sider by way of example the amplitude and phase rela-
tionships between the displacement components on the
surface of the YZ-cut plate. For Lamb waves, the com-
ponent ux is zero and Eq. (7) yields relationships for the
displacement components uy and uz:

(12)

where |uy| is the magnitude of the displacement along
the y axis and φy is the initial phase.

uy uy i ωt φy+( )( ),exp=

uz uz i ωt φz+( )( ),exp=

1
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101
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103
(a)

1 2

Fig. 3. Same as in Fig. 2 for modes in the YZ-cut plates. The
symbols refer to different samples.
The quantities |uz| and φz have the same meaning.
The real part of (12) defines the displacement vector on
the surface. Let ∆φ = φz – φy be the phase shift between
the displacement components uz and uy. Then,

(13)

Formulas (13) constitute the parametric equation of
an ellipse. Therefore, at any point on the surface, the
end of the displacement vector describes an ellipse for
the time T = 2π/ω. The sense of rotation of the displace-
ment vector depends on the phase shift ∆φ between the
displacement components. When –π < ∆φ < 0, the vec-
tor rotates counterclockwise. When 0 < ∆φ < π, the
rotation is reverse.

The phase relationships between the displacement
components for all three cuts are graphically illustrated
in Figs. 5–7. These relationships are seen to depend sig-
nificantly on the type of mode excited and on the direc-
tion of a cut. For example, changeover from mode 1
(curve 1 in Fig. 6) to mode 2 (curve 2) in the YZ-cut
plate decreases markedly the surface displacement
component uz because of an increase in the component
uy. As a consequence, the relationship between the tan-
gential and normal components of the force acting on

Reuy uy ωt( ),cos=

Reuz uz ωt ∆φ+( ).cos=

10–1

100

101

102

103

1 2
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Fig. 4. Same as in Fig. 2 for modes in the ZY-cut plates.
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objects to be transferred over the surface changes. In
addition, the rotation of the resultant displacement vec-
tor, being initially clockwise (Fig. 6, curve 1), becomes
counterclockwise (curve 2). Moreover, mode 2 in
Fig. 3a is a backward wave. The last two facts imply
that backward (with respect to the vector k) displace-
ments of the objects will prevail when the engine oper-
ates using mode 2 (in comparison with mode-1 opera-
tion). It is also expected that backward displacements
will prevail when the engine with the YZ cut operates
using mode 2 compared with the case when the engine
has the ZY cut and operates on the same mode. For the
latter, the modes excited (1 and 2 in Fig. 4a) are forward
waves and the resultant displacement vector rotates
clockwise (Fig. 7). The dependences found above were
checked experimentally.

1.0
0.5

0
–0.5

–1.0

–1.0

–0.5

0

0.5

1.0

–1.0
–0.5

0
0.5

1.0
k

uz
uy

ux

(1)

1.0
0.5

0
–0.5

–1.0

–1.0

–0.5

0

0.5

1.0

–1.0
–0.5

0
0.5

1.0
k

uz
uy

ux

(2)

Fig. 5. Elliptic trajectories of the particles on the surface of
the XZ-cut LiNbO3 plate and their projections onto three
mutually orthogonal planes when modes 1 and 2 (Fig. 2) are
excited. The arrows show the directions of particle motion.
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3. EXPERIMENTAL TECHNIQUE

In experiments, we studied the excitation efficiency
for various modes and the performance of the engine
operating using modes 1 and 2 excited in the XZ-, YZ-,
and ZY-cut LiNbO3 plates. The plates were 210 to
1010 µm thick and 1 to 4 cm long. Two identical
≈0.5-mm-thick electrodes (2, 3 in Fig. 1a) were applied
to the upper surface of the LiNbO3 plate (1 in Fig. 1).
The LiNbO3 plate resided freely on grounded metal
surface 4. The input electric voltage Uin, which excited
ultrasonic waves, was applied between electrode 2 and
the metal surface. Electrode 3 was used to detect the
waves excited. The signal Uout picked up from electrode 3
was displayed on an oscilloscope. Radio-frequency
pulses applied to the electrodes were approximately
5 µs wide. The frequency was varied in the range 1–
17 MHz. We studied the signal amplitude Uout on the
output electrode versus the frequency of the input sig-
nal, with its amplitude Uin being constant.

The efficiency of the engine and the validity of our
theoretical results were checked by placing ZnS micro-
particles on the LiNbO3 plates under study. The micro-
particles were approximately 13 µm in diameter, and
their weight was ≈5 × 10–9 g (5, 6 in Fig. 1a). When the
voltage Uin was increased, the microparticles on the sur-
face execute a jerky motion (shown by arrows 5 and 6
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(1)
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1.0
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(2)

0.5

–1.0

Fig. 6. Elliptic trajectories of the particles on the surface of
the YZ-cut plate for modes 1 and 2 in Fig. 3. The arrows
show the directions of particle motion.
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in Fig. 1a) in all directions with respect to the wavevec-
tor k. This may be due to the limited dimensions of the
plate and the curved (nonplanar) phase front. Jerks
were observed both visually (under an optical micro-
scope) and by photographing the surface at regular time
intervals (Fig. 1b). It was found that the displacement
distribution has maxima in the direction of wave prop-
agation and in the opposite direction, while the number
of jerks perpendicular to the vector k is negligible. The
amplitudes of these maxima depend on both the cut and
the type of the mode excited in the plate. Below, we will
consider the probability distributions for displacements
in the direction of the wavevector k (forward direction),
Pf = Nf /N, and in the opposite (backward) direction,
Pb = Nb/N, versus the displacement. Here, Nf and Nb are
the numbers of jerks in the direction of k and in the
opposite direction, respectively, and N is the total num-
ber of jerks (which was typically about 200).

4. COMPARISON OF EXPERIMENTAL 
AND THEORETICAL RESULTS

The results for the excitation efficiency of various
modes in the plates are presented in Figs. 2b–4b. They
show that the configuration of the transducer electrodes
that was adopted in the experiment excites most effi-
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Fig. 7. Elliptic trajectories of the particles on the surface of
the ZY-cut plate for modes 1 and 2 in Fig. 4. The arrows
show the directions of particle motion.
ciently modes 1 and 2 indicated in Figs. 2a–4a. The
zeroth-order symmetric mode is also fairly intense [13].

The most intense modes specify the operating fre-
quency of the engine; therefore, the amplitude and
phase relationships between the displacement compo-
nents (Figs. 5–7) were calculated only for these modes.
It should be noted that the displacement components in
each of the plots in Figs. 5–7 are normalized to their
maximum value. Proportions between the resultant
amplitudes of different modes excited in variously cut
plates can be approximated by proportions between the
maximal intensities of the modes in Figs. 2b–4b.

From Figs. 5–7, it follows that, in the ultrasonic
engine based on the XZ-cut LiNbO3 plate, displace-
ments in the direction of the wavevector k are bound to
prevail over displacements in the –k direction. Also, in
the plate thus cut, the number of jerks sideways relative
to the k vector is bound to be greater than in the YZ- and
ZY-cut plates (because ux ≠ 0 in Fig. 5). Such is indeed
the case in the experiment. Figure 8a shows the proba-
bilities Pf and Pb (for forward and backward displace-
ments), and Pf is seen to be really much greater than Pb
in the XZ-cut plates.

Probability, 10–2

0.5–0.5
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4

8

0

4

8

(c)

(b)

(a)
Pb

Pb

Pb Pf

Pf
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Displacement, mm
0

Fig. 8. Probabilities of forward, Pf, and backward, Pb, dis-
placements of ZnS particles placed on the surface of the
(a) XZ-, (b) ZY-, and (c) YZ-cut LiNbO3 plates: (a) mode 2
in Fig. 2a, (b) mode 2 in Fig. 4a, and (c) mode 2 in Fig. 3a.
The applied voltage is Uin = 55 V.
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In the ZY-cut plates, the jumps of the microparticles
in the direction of –k are longer (Fig. 8b), suggesting
that in Fig. 7 the fraction of displacements that are nor-
mal to the surface is greater than that in Fig. 5. As a con-
sequence, the oscillating tangential component of the
force acting on the microparticles causes their effective
backward motion as shown in Fig. 8b.

Finally, when backward mode 2 (Fig. 3a) is excited
in the YZ-cut plate, the backward motion probability Pb
is greater than the probability of forward motion, Pf
(Fig. 8c). This result fully agrees with the theoretical
predictions in Sect. 2.2.

CONCLUSIONS

Our theoretical dispersion curves and phase rela-
tionships for the particle displacement components on
XZ-, YZ-, and ZY-cut LiNbO3 plates may serve as a basis
for designing an ultrasonic-wave engine. The ZnS par-
ticle displacements produced by ultrasonic waves qual-
itatively agree with theoretical predictions.
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Abstract—This paper pursues the study of compression–tension acoustic pulses generated by nanosecond
electron beams in a solid. In previous works, where the behavior of the acoustic pulses in the near wave zone
is analyzed, the pulse shape is defined by the absorbed beam energy distribution. In this work, the evolution
of acoustic pulses traveling large distances in thick samples and experiencing multiple reflections in thin sam-
ples is studied for the first time. It is demonstrated that diffraction is the basic factor governing the pulse shape.
© 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Studies of nonstationary acoustic fields generated
by ionizing radiation in solids dates back to the 1950s.
Before 1966, only low-intensity electron beams were
used to excite sound. The pioneering investigation of
acoustic pulses generated by high-current electron
beams was made in [1, 2]. The test sample was irradi-
ated throughout the surface by a uniform (over the cross
section) beam. The duration τp of the radiation pulse
was much less than the acoustic pulse duration Re/Vl,
where Re is the mean path of electrons and Vl is the lon-
gitudinal sound velocity in the sample. In this case, one
can assume that the energy deposition into the sample
is instantaneous (the approximation of instantaneous
energy delivery). The surface displacement was mea-
sured in absolute units using a laser interferometer. The
measured time dependence of the displacement is ade-
quately described by the one-dimensional wave equa-
tion of thermoelasticity, a solution to which is a plane
wave. Early direct measurements of acoustic stresses
generated by a high-current electron beam were carried
out at the Nonlinear Physics Laboratory at the Tomsk
Polytechnical University [3]. Acoustic waves were
measured with piezoelectric transducers. Intense
acoustic waves of the second type, i.e., those generated
by a dense electron beam in a solid plate (bending
waves), were first detected and studied in [4]. It was
demonstrated that stresses associated with bending
waves are comparable to those of a longitudinal pulse,
while the surface displacement amplitude may be three
orders of magnitude greater. The conditions under
which longitudinal compression–tension pulses and
intense bending waves are observed simultaneously
were found.

Most of the previous studies of longitudinal waves
dealt with pulses whose path in the sample is slightly
greater than their spatial extent. In this work, we ana-
1063-7842/04/4904- $26.00 © 20454
lyze the evolution of a compression–tension acoustic
pulse that travels a distance much greater than the beam
path.

EXPERIMENTAL

Figure 1 demonstrates the setup used to detect
acoustic fields excited by nanosecond electron beams.

An electron beam generated by accelerator 1 is inci-
dent on sample 3, which is attached to the housing of
the interferometer and serves as a mirror in its measur-
ing arm. The interaction of the electron beam with the
sample causes its nonuniform heating and generates
thermoelastic stresses, which cause a strain propagat-
ing as an acoustic pulse. The displacement of the back
surface of the sample is detected with an optical system
consisting of helium–neon laser 4, Michelson interfer-
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Fig. 1. Block diagram of the setup: (1) high-current electron
accelerator, (2) collimator, (3) sample, (4) LGN-224 laser,
(5) interferometer, (6) photodetector, (7) oscilloscope,
(8) diaphragm, (9) lens, (10) rotary prism, (11) capacitive
divider, (12) galvanometer, (13) glass plate, (14) automatic
tuning photodetector, (15) automatic tuning amplifier,
(16) piezoceramic transducer, (17) attenuator, and (18) per-
sonal computer.
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ometer 5, photodetector 6, and oscilloscope 7. The
Michelson interferometer and the sample are placed in
an experimental vacuum chamber. Photodetector 6
measures the intensity variation in the interference pat-
tern when the surface of the sample is displaced. The
electric signal amplified by a wide-band amplifier is
applied to TDS3000B storage oscilloscope 7 interfaced
with computer 18 (for a detailed description of the
setup, see [5]).

A DZhIN small-size high-current accelerator serves
as a source of electrons. The electron energy is no
greater than 0.35 MeV, the pulse duration ranges from
5 to 30 ns, and the current density is within 0.1–
1000 A/cm2. The beam diameter is varied from 1.5 to
12 mm using a collimator. The samples were made of
metals (copper and D16T aluminum alloy) and semi-
conductors (silicon and germanium) in the form of one-
side-polished circular plates with a diameter of 8–
62 mm and a thickness of 1–50 mm. Nonlinear optical
elements based on beta barium borate (BBB) and potas-
sium dihydrophosphate (PDP) crystals had the form of
parallelepipeds measuring 12 × 11 × 6.45 and 20.6 ×
20.6 × 20.6 mm, respectively. The back sides of the ele-
ments were coated by reflecting layers.

EXPERIMENTAL RESULTS

Figures 2 and 3 show the displacements of the back
side of the samples irradiated by electron pulses. The
curve was obtained by processing the interferograms.
The pattern displays a series of longitudinal displace-
ment pulses: the primary pulse and its reflections (echo
pulses). Zero time corresponds to the time of beam
injection into the target.

Comparing the primary acoustic signal with its echo
pulses, one can see that the former changes the shape
when propagating (Fig. 2). The initially unipolar dis-
placement pulse becomes bipolar and symmetric (i.e.,
is differentiated), and its duration increases. Experi-
ments show that the effect of differentiation is univer-
sal, showing up in various materials (Figs. 2–4). The
time taken for the bipolar pulse to become perfectly
symmetric depends on the longitudinal sound velocity
and the size of the zone irradiated. This suggests that
the phenomenon under consideration is of a 3D (dif-
fraction) nature. The most illustrative are experiments
with single crystals, in which the sound attenuation is
low. Figure 4 shows a displacement pulse and its echo
pulses experimentally observed in silicon. The scatter
of the beam fluence is no greater than 10%, which pro-
vides a high reproducibility of the interferograms.
Appropriately selecting the oscilloscope delay, we
observed the detailed image of both the primary longi-
tudinal acoustic pulse and its echo pulses.

WAVE EQUATION

The propagation of an acoustic pulse induced by a
dense nanosecond electron beam (Fig. 5) is well
TECHNICAL PHYSICS      Vol. 49      No. 4      2004
described by the one-dimensional equation of ther-
moelasticity if the distance h from the surface irradiated
to the point of observation is comparable to the distance
the electron beam travels in the target. An increase in
the distance h leads to a significant discrepancy
between the analytical acoustic fields and those found
experimentally, so that the complete set of the equa-
tions of thermoelasticity should be analyzed.

Since the collimator diameter is much less than the
target diameter and the target thickness is much greater
than the beam penetration depth, we consider the infi-
nite half-space x > 0. The acoustic pulse formation time
is much shorter than the time of temperature relaxation.
Therefore, the thermal conductivity entering into the
equation is set equal to zero. The assumption that
acoustic pulse propagation is an adiabatic process leads
us to the coupled problem of thermoelasticity. Then, for
an isotropic medium, the equation of thermoelasticity
written in terms of the scalar potential and the trans-
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Fig. 2. Displacement of the back surface of the 2.35-mm-
thick D16T aluminum alloy sample with a diameter of
29 mm. The collimator radius is 3.5 mm, and the electron
fluence is 4.5 × 1012 cm–2 per pulse. (1) Primary longitudi-
nal pulse and (2) a series of echo pulses.
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Fig. 3. Displacement of the back surface of the 9.70-mm-
thick BBB crystal for a collimator radius of 2.5 mm and an
electron fluence of 1.1 × 1013 cm–2 per pulse.
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Fig. 4. Evolution of the acoustic displacement pulse for the (111) back surface of the 9.9-mm-thick silicon sample with a diameter
of 29 mm at a collimator radius of 3.5 mm and an electron fluence of 2.75 × 1013 cm–2 per pulse.
verse component of the displacement has the form [6]

(1)

Here, Φ is the scalar potential, u(t) is the transverse com-
ponent of the displacement vector, Vl and Vt are the

Φ̇̇ V l
2∆Φ– ΓW–=

u̇̇ t( ) V t
2∆u t( )– 0.=




y

L

x

R

z

Fig. 5. Sample irradiation geometry.
velocities of the longitudinal and transverse acoustic
waves, ∆ is the Laplacian, Γ is the Grüneisen parameter,

and Md(r, t) is the absorbed dose rate.
At zero time, the sample is at rest (undeformed). The

initial conditions are given by

(2)

The normal components of the stress tensor at the
boundary equal zero, since the boundary is free. The
boundary conditions at x = 0 have the form

(3)

where ui =  + , uik = ∂ui/∂xk, and  is an ith
component of the transverse component of the dis-
placement vector.

The transverse component of displacements does
not have a source and is due to the reflection of the lon-
gitudinal component of the displacement wave from the
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boundary; hence, it is small and may be neglected.
Since the mean magnitude of the absorbed dose rate gra-
dient along the x axis is much greater than the mean mag-
nitude of this gradient in the transverse direction, it fol-
lows from the first equation of system (1) that ux @ uy ≈ uz.

Estimating the mean values of the second-order par-
tial derivatives of the absorbed dose rate yields relation-
ships for the derivatives of the longitudinal displace-
ment pulse:

Finally, system of equations (1) is reduced to a sin-
gle equation for the x component of longitudinal dis-
placements:

(4)

where u ≡  and V ≡ Vl.

At x = 0, the boundary condition for the x compo-
nent of longitudinal displacements is written as

(5)

The boundary-value problem given by (4) and (5)
with the zero initial conditions can be replaced by the
equivalent Cauchy problem with the zero initial condi-
tions:

(6)

where  is the antisymmetric extension of the function
W into the left-hand half-space x < 0.

The solution to Eq. (6) with the zero initial condi-
tions is known to have the form of a retarded potential:

(7)

ANALYSIS OF THE SOLUTION 
TO THE WAVE EQUATION

Let us analyze a solution to the wave equation for an
acoustic displacement pulse at the symmetry axis of the
system, y = z = 0, with the specific form of the absorbed
dose rate function known. For a nanosecond electron
beam, the absorbed dose rate can be represented as the
product of the time-dependent longitudinal, D(x, t), and
transverse distributions of the dose. If the beam is
homogeneous, the dose transverse distribution is well
approximated by the Heaviside theta function θ(R – ρ),
where R is the collimator radius and ρ2 = y2 + z2. In this
case, the absorbed dose rate is given by

(8)

In the near wave zone (Vt < R), the displacement is
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written as

(9)

where

Solution (10) coincides with the Zaker solution [7]
to the one-dimensional wave equation (see, for exam-
ple, [1]), which describes the propagation of acoustic
signals in thin samples. For the far wave zone (V · t @ R),
we have

(10)
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Fig. 6. (1) Measured and (2) calculated acoustic displace-
ment pulses in the near wave zone for the 0.99-mm-thick
D16T sample for a collimator radius of 3.5 mm.
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Fig. 7. (1) Measured and (2) calculated acoustic displace-
ment pulses in the far wave zone for the 49.50-mm-thick
D16T sample for a collimator radius of 3.5 mm.
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From expressions (9) and (10), it follows that the
signal in the far wave zone is its derivative in the near
wave zone.

EVOLUTION OF AN ACOUSTIC DISPLACEMENT 
PULSE

Computer simulation of an acoustic displacement
pulse was based on formula (7) at the symmetry axis of
the region irradiated. The absorbed dose rate D(x, t)
from (8) is given by

Here, D(x) is the dose longitudinal distribution calcu-
lated by the procedure from [8] and f(t) is the irradiating
pulse taken in the form f(t) = θ(τp – t), where τp = 25 ns
is the irradiating pulse duration.

Figures 6 and 7 demonstrate fairly good agreement
between the experimental and computed data.

In contrast to the diffraction equation [9–11],
expression (7) makes it possible to trace the evolution
of an initially unipolar (in the near wave zone) acoustic
displacement pulse to a bipolar signal in the far wave
zone (Fig. 8). However, the model proposed ignores the

D x t,( ) D x( ) f t( ).⋅=

0 1 2 t, µs
–0.1
–0.5

0
0.5
1.0
u, nm

Fig. 8. Calculated evolution of the acoustic pulse for the
back surface displacement in the case of the 1.0-mm-thick
D16T sample for a collimator radius of 3.5 mm.
acoustic wave attenuation in the sample and cannot
explain the increase in the longitudinal pulse duration
observed experimentally.
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Abstract—Quasi-TE and quasi-TM oscillations of an anisotropic spherical body immersed in an isotropic
medium are studied. An investigation of the set of Maxwell’s equations within the spherical body shows that it
reduces to two coupled differential equations, which are analyzed theoretically for small values of the anisot-
ropy parameter. An approximate solution to these differential equations is obtained. A dispersion relation deter-
mining the frequencies of the resonant oscillations is derived for the boundary conditions imposed on the sur-
face of the spherical body. The effect of anisotropy on the spectral characteristics of the resonant oscillations is
examined. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

At present, dielectric resonators are widely used to
investigate physical phenomena occurring in different
branches of science and technology. A homogeneous
isotropic spherical body can execute two types of inde-
pendent resonant oscillations, namely, TE oscillations
(those for which Er = 0) and TM oscillations (those for
which Hr = 0) [1, 2]. The parameters of the dielectrics
used to fabricate high-quality resonators are inherently
anisotropic. The effect of anisotropy on the spectral
characteristics of the resonant oscillations must be
taken into account in manufacturing integrated circuits
intended to operate in the millimeter and submillimeter
wavelength ranges. The most widely used uniaxial
monocrystals are those of ruby, sapphire, and quartz,
which have low dielectric losses. The electric parame-
ters of such crystals are described by the dielectric ten-
sor  = εikdi, k, where εxx = εyy = ε⊥  and εzz = ε|| are the
tensor components in the directions perpendicular and
parallel to the anisotropy axis, respectively, and δi, k is
the Kronecker index. The resonant oscillations of a
uniaxial dielectric spherical body whose fields are inde-
pendent of the azimuthal coordinate were investigated
earlier by Filippov and Eremenko [3, 4]. It is of great
interest to generalize the theory to include the depen-
dence of the fields on the azimuthal coordinate. Makk-
inejad and Ford [5] considered azimuthally nonuniform
oscillations in a resonator filled with an anisotropic
dielectric medium and bounded by a perfectly conduct-
ing spherical surface. They investigated the set of Max-
well’s equations by the method of expansion in spheri-
cal vector functions and derived two infinite sets of
algebraic equations. Solving them numerically, they
were only able to calculate the frequencies of the lowest
oscillations modes. However, this method does not
allow the study of anisotropy-related effects occurring
within a spherical body.

ε̂
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SUBJECT OF INVESTIGATION

We consider a spherical body immersed in an isotro-
pic medium with the dielectric permittivity εb and mag-
netic permeability µb (Fig. 1). The body material is a
uniaxial dielectric with the magnetic permeability µd.
The spherical body possesses anisotropic properties
that are described by the above dielectric tensor . In
spherical coordinates (r, Θ, ϕ), the components of the
dielectric tensor have the form

Here, εrr = ε+ + ε–cos2Θ, εΘΘ = ε+ – ε–cos2Θ, and εrΘ =
εΘr = ε–sin2Θ, where 2ε± = ε|| ± ε⊥ . The fact that the ten-
sor components depend on the polar coordinate makes

ε̂

ε̂
εrr εrΘ– 0

εrΘ– εΘΘ 0

0 0 ε⊥ 
 
 
 
 

.=

r0 εb

Θ

ϕ
ε̂

µd

µb

Fig. 1. Spherical dielectric resonator.
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the solution of the problem about the eigenmodes of a
spherical dielectric resonator much more difficult.

THEORY

For electromagnetic oscillations whose amplitudes
depend on time as exp(–iωt), we introduce the func-
tions UH and UE through the relationships

Here, lx = ε⊥ k2 + ∂2/∂r2 and lΘ = εΘΘk2 + ∂2/∂r2, where
k = ω/c, with ω being the complex eigenfrequency, and
c, the speed of light.

It is easy to show that an arbitrary function Ψ satis-
fies the identities

Using these identities, we reduce the set of Max-
well’s equations within the spherical body to the fol-
lowing two coupled differential equations for the func-
tions UH and UE:

(1)

where

Hr lxlΘUH; Er lxlΘUE.= =

lΘ εrΘµk2r
∂2

∂r∂Θ
-------------+ 
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∂2

∂r∂Θ
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∂
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∂
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 + Ψ

=  εΘΘ
∂

∂Θ
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∂
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----------, L̂EUE 2iε–µdkΛ̂∂UH

∂ϕ
----------,= =

L̂H = ∆⊥ r2lx+( )lΘ 2ε–µdk
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1
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2
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∂ϕ2
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∂
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∂
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∂
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The tangential components of the fields are
expressed in terms of the functions UE and UH as fol-
lows:

(2)

Equations (1) with zero on the right-hand sides are
independent of one another and describe two indepen-
dent types of azimuthally uniform oscillations. For
oscillations whose fields depend on the azimuthal coor-
dinate, Eqs. (1) for the functions UH and UE are mutu-
ally coupled. We represent the solution to the equations
in the form of the expansions

(3)

where the superscript S stands for E or H and the sub-
script p runs through the three parameters n, m, and s.

The functions Yn, m(Θ, ϕ) = (cosΘ)exp(imϕ) are the

eigenfunctions of the operator ∆⊥ . Here, (cosΘ) are
the associated Legendre functions, which are nonzero
for azimuthal indices such that m ≤ n and, as functions
of the polar coordinate, have n – m zeros [6]. The polar
index n determines the number of field oscillations over
the polar coordinate Θ for azimuthally uniform modes
(those with m = 0). The azimuthal index m, in turn,
characterizes the number of field oscillations over the
azimuthal coordinate ϕ for modes with m = n. The
radial index s gives the number of field oscillations over
the radial coordinate r.

The above eigenfunctions satisfy the functional
relationships [7]

(4)

where fn = 1/(2n + 1).
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lΘ
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∂r∂ϕ
------------ ikµd

∂
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+ ik εΘΘ
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∂
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∂Θ
-----------------------------sin f n n n m– 1+( )Yn 1+ m, Θ ϕ,( )[=

– n 1+( ) n m+( )Yn 1– m, Θ ϕ,( ) ] ,

ΘYn m, Θ ϕ,( )cos f n n m– 1+( )Yn 1+ m, Θ ϕ,( )[=

+ n m+( )Yn 1– m, Θ ϕ,( ) ] ,
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It can also be shown that

(5)

Since the dependence of the coefficients in Eqs. (1)
on the polar angle changes only the polar index, we will
omit the azimuthal and radial indices, m and s, to save
space.

Substituting expansions (3) into Eqs. (1), using rela-
tionships (4) and (5), and equating the factors in front
of the eigenfunctions Yn, m(Θ, ϕ), we arrive at the fol-
lowing set of ordinary differential equations for the

radial modes  and :

(6)

where
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H
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Because of the dependence of the components of the
tensor  on the polar coordinate, the modes with differ-
ent polar numbers are mutually coupled to each other.
For a nonzero azimuthal index m and for arbitrary val-
ues of the polar index n, it is impossible to obtain an
exact solution to Eqs. (6). For ruby, sapphire, and
quartz monocrystals, which are widely used in technol-
ogy, the ratio ε– /ε+ is on the order of 0.1. That is why
we will solve Eqs. (6) by the method of expansion in
this small parameter.

Zeroth Approximation

We neglect the quantities proportional to ε– /ε+ to
obtain the following two independent ordinary differ-
ential equations:

(7)

where the operator has the form

Inside the sphere, Eqs. (7) have the solutions jν(x) =

, and outside the sphere, the solutions are

 = . Here, ν = n + 1/2 and Jν(x)

and  are the Bessel and Hankel functions of the

first kind, respectively. The functions jν(x) and 
satisfy the functional relationship

Here and below, the prime denotes the derivative of the
function with respect to its argument.

At the spherical surface r = r0, the tangential compo-
nents of the fields, Eϕ, Hϕ, EΘ, and HΘ, are continuous.
For this to hold, the following four functions should be
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continuous at the surface of the spherical body:

(8)

where j runs through d and b. In this case, the set of
basic equations (1) splits into independent subsets
determining the resonance characteristics of the TE and
TM oscillations. Under the continuous conditions for
functions (8), we obtain

where xd = kr0 and xb = kr0.

The components of the fields of TE oscillations are
described by the relationships

The eigenfrequencies of a ball are determined by the
solutions to the dispersion relation

(9)

For the fields of the TM oscillations, we have

The corresponding eigenfrequencies are determined
from the dispersion relation

(10)
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To a first approximation, the solutions obtained
describe the spectral characteristics of the oscillations
of an isotropic spherical body with the dielectric per-
mittivity ε+. Each polar index n corresponds to 2n + 1
angular modes Yn, m(Θ, ϕ). However, dispersion rela-
tions (9) and (10) do not contain the azimuthal index m.
Consequently, for a given value of the polar index n,
2n + 1 resonant modes can be excited in an isotropic
spherical body at the same frequency, each character-
ized by its particular dependence on the angular coordi-
nates. We thus see that the oscillation frequency is
degenerate, with an associated degeneracy of 2n + 1.
Note that, at a fixed polar number, the result of the azi-
muthal nonuniformity of the fields is that their distribu-
tion over the polar coordinate Θ depends on the azi-
muthal number m. Let us examine this point in more
detail.

The associated Legendre function determines the
field distribution over the polar angle Θ and has n–m
zeros in the interval 0 < Θ < π [6]. For our purposes
here, it is more convenient to calculate the Legendre

function  from the series [7]

(11)

Figure 2 shows how the parameter

depends on the polar angle Θ for the polar index n = 3.

Since the functions  with the azimuthal indi-
ces m > 3 vanish, there can exist the following modes of
oscillations of the isotropic spherical body under con-
sideration.

(i) An azimuthally uniform mode with n = 3 and
m = 0. The dependence of the field of this mode on the
polar coordinate is determined by the Legendre polyno-

mial Pn(cosΘ) ≡ , which has n zeros in the
angular interval 0 < Θ < π.

(ii) An azimuthal mode with m = n = 3. The field of
this mode depends on the azimuthal coordinate as
exp(inϕ) and is symmetric about the polar angle Θ =
π/2, at which it is maximum. Over the angular interval
0 < Θ < π, the field of the mode does not vanish and its
amplitude is larger than the amplitudes of the fields of
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the modes with m ≠ n. For arbitrary values of the polar

index, formula (11) yields  = (2n –
1)!!sinnΘ. This oscillation mode was observed experi-
mentally in [8, 9].

(iii) An asymmetric mode with m = n – 1 = 2. The
field of this mode depends on the azimuthal coordinate
as exp[i(n – 1)ϕ] and is asymmetric about the polar
angle Θ = π/2, at which it vanishes. For arbitrary values

of n, we have  = (2n – 1)!!sinn – 1ΘcosΘ.

(iv) A symmetric mode with m = n – 2 = 1. The field
of this mode depends on the azimuthal coordinate as
exp[i(n – 2)ϕ] and is symmetric about the polar angle
Θ = π/2, at which it has a minimum amplitude. The
field amplitude is maximum at Θ = π/4. For arbitrary

values of n, we have  = (2n –
1)!!sinn − 2Θ[cos2Θ – 1/(2n – 1)].

The distributions of the fields of eigenmodes with
different azimuthal numbers and with arbitrary polar
numbers over the polar coordinate can be analyzed in a
similar way. Note only that the larger the polar number,
the narrower the region near the surface of the spherical
body where the fields of the oscillation modes are local-
ized. The modes whose fields are maximum at the polar
angle Θ = π/2 are those with equal polar and azimuthal
numbers. The larger the polar number, the larger the
magnitude of the field and the narrower the region
around this polar angle where the field is concentrated
(Fig. 3). Azimuthal oscillations with large polar num-
bers n are of high quality; they are referred to as oscil-
lations of the “whispering-gallery” type.

The results obtained above are also valid for a hemi-
spherical resonator bounded by a perfectly conducting
plane at Θ = π/2. In this case, the oscillation frequency,

Pn
n Θcos( )

Pm
n 1– Θcos( )

Pn
n 2– Θcos( )

0π 0.2π 0.4π 0.6π 0.8π 1.0π
–0.4
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P3
m(cosΘ)/P3

3 (cos(π/2))

Fig. 2. Normalized Legendre functions vs. polar angle for
the polar index n = 3 and different azimuthal indices such
that m ≤ n.
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too, is degenerate, with a degeneracy of n = 1. The
degeneracy is partially lost because there are no TE
oscillations for which the sum of m and n is even and no
TM oscillations for which this sum is odd.

First Approximation

In Eqs. (6), we neglect the quantities proportional to
(ε–/ε+)2 to obtain

(12)

where
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Fig. 3. Normalized Legendre functions vs. polar angle for
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Because of the anisotropy, the coefficients γE and γH

depend on the azimuthal index m and there exist oscil-
lation modes of the opposite kind with adjacent polar
numbers; i.e., the fields of the TE (TM) oscillations
have the components that are described by the solutions

. The contributions of these solutions to the

functions  are proportional to (ε–/ε+)2 and, in
the approximation at hand, can be ignored. As for the
solutions to the equations with zero on the right-hand

Rn 1±
E H( ) r( )

Rn
H E( ) r( )
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Fig. 4. (1) Eigenfrequencies and (2) quality factors of the
quasi-TEnn1 oscillations (solid curves) and quasi-TMnn1
oscillations (dashed curves) of a leucosapphire spherical
body of radius 0.66 cm.
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Fig. 5. Eigenfrequencies of the quasi-TE1011 (solid curves)
and quasi-TM1011 (dashed curves) oscillations of a dielec-
tric spherical body as functions of its radius. The calcula-
tions were carried out for an isotropic resonator with
(1) εd = 9.4 and (2) εd = 11.6 and (3) for an anisotropic res-
onator with ε⊥  = 9.4 and ε|| = 11.6.
sides, they can be represented in the form  =

( γSkr).

Using the continuity conditions for the tangential
components of the electromagnetic fields at the spheri-
cal surface r = r0, we obtain the dispersion relation for
quasi-TM oscillations,

(13)

and the dispersion relation for quasi-TE oscillations,

(14)

The solutions to these dispersion relations deter-
mine the frequencies of the resonant oscillations of a
spherical uniaxial crystal immersed in an isotropic
medium with the dielectric permittivity εb and magnetic
permeability µb.

The above analysis does not apply to oscillations
with large polar numbers n @ m or with n ! 1. In these
cases, the operators on the left-hand sides of ordinary
differential equations (12) coincide, and it is necessary
to take into account higher order terms in the expan-
sions in the small parameter ε–/ε+. The only azimuthally
uniform oscillations that are sensitive to the anisotropy
are TM oscillations. In [3], it was shown that azimuth-
ally uniform TM oscillations with large polar numbers
split into ordinary and extraordinary modes, which
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Fig. 6. Eigenfrequencies of the quasi-TE15ml (solid curves)
and quasi-TE15ml (dashed curves) oscillations of a leu-
cosapphire spherical body with radius r0 = (1) 0.6, (2) 0.7,
and (3) 0.8 cm.
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have different resonant frequencies and whose wave
vectors have different radial components.

NUMERICAL EXPERIMENT

Solutions (13) and (14) determine the eigenfrequen-
cies of a spherical uniaxial crystal; the field structure of
the eigenmodes of such a crystal depend on the azi-
muthal coordinate.

In numerical experiments, we simulated millimeter-
wavelength eigenmodes of anisotropic and isotropic
dielectric spherical bodies in vacuum.

The numerical results obtained for a leucosapphire
spherical body with radius r0 = 0.66 cm (ε⊥  = 11.6, the
dissipation factor at a temperature of 77 K being

 = 5 × 10–7 [10]) are illustrated in Fig. 4, which
shows (1) the eigenfrequencies f and (2) the quality fac-
tors Q of the quasi-TE and quasi-TM oscillations with
n = m. The quality factors for all types of quasi-TE
oscillations with n > 10 and of quasi-TM oscillations
with n ≥ 15 at different frequencies are the highest. This
allows a dielectric spherical body to be used as a broad-
band multimode element in devices for microwave
technology.

The effect of the anisotropy of a spherical body on
its eigenfrequencies is illustrated in Fig. 5. It can be
seen that the eigenfrequencies of an anisotropic spheri-
cal body are shifted with respect to those of an isotropic
spherical body whose material is characterized by con-
ventional values of the dielectric permittivity. The
eigenfrequencies of the quasi-TE oscillations of an
anisotropic resonator are higher than those of an isotro-
pic resonator, and the eigenfrequencies of the quasi-TM
oscillations are lower. The eigenfrequencies of small
resonators (r0 < 0.4 cm) increase sharply with decreas-
ing radius, so that the resonant oscillations occur in the
submillimeter wavelength range.

The anisotropy of a spherical body leads to a fre-
quency splitting of the eigenmodes with different azi-
muthal numbers m. Figure 6 shows the eigenfrequen-
cies of a resonator executing quasi-TE and quasi-TM
oscillations with different azimuthal numbers m, the
polar number (n = 15) and the radial number (s = 1)
being fixed. As the azimuthal number increases, the
eigenfrequency of the quasi-TM oscillations becomes
higher and that of the quasi-TE oscillations becomes
lower. The quality factor of the resonator is, as before,

δtan
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high and is weakly sensitive to both the resonator radius
and the azimuthal mode number.

CONCLUSIONS
We have developed a theory of open resonators in

the form of spherical uniaxial crystals (ruby, sapphire,
and quartz). Owing to the anisotropy of such crystals,
the components of the dielectric tensor in spherical
coordinates depend on the polar angle. We have inves-
tigated for the first time azimuthally nonuniform eigen-
modes of an anisotropic spherical body. We have shown
that the anisotropy removes the degeneracy of the fre-
quency of the resonant oscillations—a feature peculiar
to an isotropic spherical body. In an anisotropic spheri-
cal body, the TE and TM oscillations transform into
quasi-TE and quasi-TM oscillations.
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Abstract—Experiments on generating electromagnetic pulses (EMPs) by using nonrelativistic electron
bunches passing through diaphragms of various radii are described. Results obtained agree with the predictions
of the transition radiation theory as applied to nonrelativistic charged particles passing through apertured
conducting screens. They may also be used in designing devices for generating EMPs with tunable character-
istics, as well as in developing a transition radiation theory for electrodynamic structures of complex geome-
tries. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

As is well known, electromagnetic radiation may be
generated not only by charged particles being acceler-
ated but also by those moving with a constant velocity.
In the latter case, the presence of a material medium is
essential for electromagnetic wave generation. A
charged particle moving rectilinearly and uniformly
either near or through a conducting medium generates
time-varying currents in it. The currents induced pro-
duce electromagnetic radiation. Uniform motion of
charged particles near insulators results in a local
space–time polarization and, hence, in radiation of
electromagnetic waves with intensities substantially
lower that in the former case. Thus, electromagnetic
radiation arises due to the reconfiguration of the field of
a charged particle–medium system. The above electro-
magnetic phenomena give rise to definite types of radi-
ation, such as transition radiation, diffraction radiation,
and Smith–Purcell radiation [1, 2]. Cherenkov radia-
tion, which is generated by charged particles moving
rectilinearly and uniformly with velocities exceeding
the phase velocity of light in a given medium, stands
somewhat apart from these types of radiation.

Today, generation of short high-power EMPs is of
considerable interest. Specifically, EMPs are generated
by rapidly reconfiguring the field of a system where a
charged electron bunch interacts with a conducting
solid. Wide-band transition radiation is intended to be
employed in pulsed radar. It should be noted that, to
date, microwave generators employing diffraction radia-
tion have been designed and found wide application [2].

In this paper, the influence of apertures of various
configurations on electromagnetic wave generation by
electron bunches passing through the apertures is
studied.
1063-7842/04/4904- $26.00 © 20466
EXPERIMENTAL

Experiments were carried out with the setup shown
in Fig. 1. Two interpenetrating electron beams were
injected through a metal tube 9 cm in diameter placed
in a uniform magnetic field of 400 Oe. A lanthanum
hexaboride pellet 0.3 cm in radius emitted the first
beam; a flat tantalum spiral threaded by the electrons of
the first beam generated the second electron beam. The
beam velocities were 3.6 × 109 and 3.3 × 109 cm/s,
respectively; the total current, 40–50 mA. A sinusoidal
(50 Hz) accelerating voltage applied to the electron
guns made it possible to observe high-frequency sig-
nals at any beam energies from minimum (threshold) to
maximum (Fig. 2). The operating pressure in the cham-
ber was 2 × 10–6 mm Hg. An initial perturbation was
produced by applying a high-frequency voltage from an
external generator to modulator 3 (Fig. 1), which is a
15-cm-long decelerating coil connected to the genera-
tor through an additional coil with counter winding.
The modulating voltage at a frequency of 1 GHz was
applied from a G4-37A generator with a power of 1 W.
Cavity resonator 4 (Fig. 1) was placed some distance
(≈40 cm) away from the modulator. The signal from the
resonator was detected by coupling loop and applied to
either an S1-69 oscillograph or a spectrum analyzer
(the frequency range 40 GHz).

Electron bunches were formed by Bernstein–
Green–Kruskal waves (BGK waves) [3, 4]. These are
stationary nonlinear waves whose profile depends on
the initial distribution function of trapped particles. At
certain ratios between the velocities and densities of
modulated beams, the potential of BGK waves may
vary with time in the form of a short pulse. The initial
stage of wave evolution is the most favorable for mod-
ifying the shape of the wave. Therefore, an electron
bunch is formed before the amplitude of the first har-
monic reaches a peak.
004 MAIK “Nauka/Interperiodica”
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Fig. 1. Experimental setup: (1, 2) electron guns, (3) modulator, (4) cavity resonator, (5) collector, (6) magnets, (7) capacitor probe,
and (8) apertured diaphragm placed at either the center of the cavity or its input.
In experiments, electron bunches with supercritical
velocities are used [5, 6]. Such bunches amplify only
waves with a finite amplitude exceeding the threshold
value, above which the wave traps the particles. That is
why waves of smaller amplitudes are not amplified by
a supercritical beam and, thus, do not generate noise
distorting the evolution process. Thus, if the initial dis-
tribution function of trapped particles is constant along
the particle paths, continuous electron waves may be
generated. The profile of these waves was determined
by capacitor probe 7 (Fig. 1). The harmonic structure of
the signal was studied using the spectrum analyzer,
which measures the amplitudes of eight harmonics nor-
malized to the amplitude of the fundamental harmonic.
Calibration of the high-frequency channel was per-
formed by standard-frequency generators. Figure 3
shows the bunch waveform found by solving the
inverse Fourier problem for a modulation frequency of
925 MHz. The bunch is seen to have the form of a short
pulse with an FWHM on the order of 10–10 s. Knowing
the velocity of the bunch, we determined its longitudi-
nal size l, which equals 0.3 cm. The transverse size of
the bunch depended on the cathode geometry and was
equal to 0.6 cm. Similar results were found at other
modulation frequencies.

It was found that electron bunches passing through
metal diaphragms 8 (Fig. 1) of various sizes generate
transition electromagnetic radiation [1, 7]. Cavity reso-
nator 4 (Fig. 1) with a radius of 1.75 cm and length of
13.6 cm was used to detect this radiation. A copper dia-
phragm with a diameter of 16 mm and thickness d =
0.2 cm with an aperture (r0 = 0.4 cm) was placed at the
center of the cavity, where the electric field of the fun-
damental mode H11 is zero. The frequency spectrum of
waves induced by the bunch is rather wide. The resona-
tor selects only modes with frequencies coinciding with
its eigenfrequencies. Figure 4 shows a characteristic
frequency spectrum of electromagnetic radiation at a
TECHNICAL PHYSICS      Vol. 49      No. 4      2004
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Fig. 2. Waveforms of the (a) current, (b) accelerating volt-
age, and (c) high-frequency signal from the cavity resona-
tor.
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Fig. 3. Waveform of the potential generated by the electron
bunches.
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modulation frequency of 1.06 GHz. The peak power of
6.38-GHz radiation was measured with a thermistor
bridge and was found to equal 80 mW.

The material of the diaphragm exerts a considerable
influence on both the intensity and bandwidth of the
spectrum. Comparison of geometrically identical cop-
per and ceramic diaphragms shows that the spectrum in
the latter case is limited by the lower eigenfrequency of
the resonator and the radiation intensity in the former
case is two orders of magnitude higher than that for the
ceramic. For niobium–titanium alloy, the spectrum is
similar to that for the copper diaphragm.

The diaphragm was placed at both the center and the
input of the cavity resonator. In the latter case, the radi-
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Fig. 4. Frequency spectrum for the diaphragm placed at the
center of the cavity.
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Fig. 5. Dependence of the radiation amplitude on the aper-
ture radius.
ation intensity as a function of the aperture radius was
studied for a thin diaphragm (d = 0.2 cm) at a beam
radius of 0.3 cm (Fig. 5). The measurements were per-
formed at the fundamental mode with a frequency of
6.38 GHz. As is seen, the radiation amplitude reaches a
maximum when the aperture radii are close to the beam
radius and decreases with increasing aperture radius.
The radiation amplitude as a function of the diaphragm
thickness d at the same frequency and optimal aperture
radius is shown in Fig. 6. The transition radiation
amplitude is maximal for d < 1 mm and decreases rap-
idly with increasing diaphragm thickness, tending to
zero for thicknesses larger than the length of the elec-
tron bunch.

THEORETICAL MODEL OF TRANSITION 
RADIATION FROM NONRELATIVISTIC 

ELECTRON BUNCHES PASSING 
THROUGH A CONDUCTING SCREEN 

WITH AN APERTURE

Consider the radiation from a nonrelativistic elec-
tron bunch passing with a constant velocity through a
circle aperture in a conducting screen. We assume that
the screen thickness d is much smaller than the wave-
length λ measured: d ! λ. Following [8], we introduce
the cylindrical coordinate system with the z axis pass-
ing through the aperture center perpendicularly to the
screen plane. Let a be the aperture radius and S, S1, and
S2 designate the plane z = 0 and plane areas coinciding
with the screen and aperture, respectively.

The resulting field is represented in the form Er =
E0 + E and Hr = H0 + H, where E0 and H0 are the fields
generated by the beam in free space and E and H are the
fields generated by the screen. If the screen is conduct-
ing, the electron bunch induces varying currents, which
give rise to the E and H fields. If the electron beam
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Fig. 6. Dependence of the radiation amplitude on the dia-
phragm thickness.
TECHNICAL PHYSICS      Vol. 49      No. 4      2004



        

TRANSITION RADIATION OF NONRELATIVISTIC ELECTRON BUNCHES 469

                                     
passes through an aperture in an insulating screen, it
polarizes the insulator. Arising polarization currents
also cause electromagnetic radiation but with substan-
tially lower intensities. In view of the axial symmetry in
the cylindrical coordinate system, the only nonzero
components of all the fields are Er, Ez, and Hϕ. This is
easy to realize if one bears in mind that the vector
potential is aligned with the electron bunch velocity
and, hence, has the only nonzero component Az. The E0

and H0 fields exponentially decay at infinity and do not
contribute to the radiation.

To be specific, we will seek a solution for a point
charged particle in the half-space z ≥ 0. In order to find
E in the wave zone, one has to solve an inhomogeneous
wave equation subject to inhomogeneous boundary
conditions. Let us represent E as the sum

(1)

where E1 is a solution to an inhomogeneous equation
with homogeneous boundary conditions and E2 is a
solution to a homogeneous equation with inhomoge-
neous boundary conditions.

The first problem is reduced to determining the radi-
ation field of a point charge q appearing on the plane
z = 0 and moving along the z axis with a constant veloc-
ity v. The tangential component of the field strength is
Et = 0 over the z plane. This corresponds to the case of
the transition radiation from a charge escaping from a
metal into a vacuum. Thus, at v  ! c, where c is the
speed of light, the solution to the first problem has the
form

(2)

where q is the electron charge, v  is the electron veloc-
ity, ϑ is the angle between the z axis and the direction
to the point of observation, J0 is the unit vector in the
direction of increase in ϑ , k is the wavenumber, and
R0 is the distance between the aperture center and point
of observation.

In order to solve the second problem, one has to find
the radiation field from the known distribution of the
field tangent components on the plane z = 0. On the sur-
face, the fields are given in the following way: Et = 0 for

r > a and Ht =  for r < a. Here,  is the field in the
absence of the conducting screen. Such a statement
means a mixed boundary-value problem. This problem
is generally difficult to solve. However, in the case of
nonrelativistic beams, the electric field of a moving
charge may be considered the same as that of a static
charge placed at the point where the moving charge is
at the moment. Then, the field at the aperture is given by

(3)
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where E2 is the field of interest at the point of observa-
tion M and E'' is the field generated at the point M by a
point magnetic dipole located at a point P on the sur-
face S2 (P ∈  S2). The aperture S2 is assumed to be per-
fectly conducting (the Babinet theorem for transition
radiation [9]).

In [8], this problem was solved for the wave zone
(λ @ 2πa) and the field E2(M) was found:

(4)

Summing up expressions (2) and (4), one can find
the total radiation field:

(5)

Expression (5) shows that the presence of an aper-
ture attenuates the transition radiation. The higher the
radiation frequency, the stronger the attenuation.

The spectral density W(ω, θ, a) of the energy emit-
ted is proportional to |E|2. Thus, the normalized radia-
tion intensity has the form

(6)

In the experiments, the frequency f related to the cir-
cular frequency ω by the well-known relationship ω =
2πf was measured. In all the calculations, β = v /c was
taken to be equal to 0.1. The radiation intensity was
normalized to the transition radiation intensity without
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Fig. 7. Spectra of the transition radiation generated by elec-
tron bunches passing through apertures of radii a = (1) 0.4,
(2) 0.7, and (3) 1 mm.
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the aperture. Figure 7 shows the transition radiation
spectrum for the apertured conducting screen.

As is known, the total energy of transition radiation
tends to infinity. Apertures in a screen suppress higher
harmonics (Fig. 7); therefore, the total energy of transi-
tion radiation is finite in this case.

However, the transition radiation intensity at a given
frequency decreases with increasing radius of apertures
made in a conducting screen. These dependences are
shown in Fig. 8 for various frequencies. The plots show
that the transition radiation intensity at a given fre-
quency decreases with increasing aperture radius.

CONCLUSIONS

In this paper, an experimental setup for producing
nonrelativistic electron bunches by using BGK waves is
described. The frequency of the electron bunches gen-
erated is on the order of 1 GHz. These bunches are sta-
ble objects with a length of 3 mm and a diameter of
6 mm. When passing through diaphragms made of dif-
ferent materials with apertures of various radii, the
electron bunches produced in the experiment generate
electromagnetic radiation. The results obtained are
compared with the theory of transition radiation from
charged particles passing through an apertured con-
ducting plane [8]. Indeed, the radiation intensity versus
the aperture radius curves obtained in our experiments
(Fig. 5) agree qualitatively with those resulting from
theoretical considerations (Fig. 8). Quantitative agree-
ment is possible if an effective aperture radius one order
of magnitude smaller than the radii used in the experi-
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Fig. 8. Relative intensity of the transition radiation as a
function of the aperture radius for frequencies f = (1) 5,
(2) 6.823, and (3) 9 GHz.
ments is introduced into the theoretical model. This is
because the theory was constructed for point particles,
whereas the beam radius in our experiments approaches
the aperture radius.

It should be noted that, in the case of relativistic
beams, the theory of transition radiation is adequately
developed for conducting screens with apertures [9].
Unfortunately, the results of [9] cannot be applied to
nonrelativistic beams of charged particles. The reason
is that the theory [9] is based on the scalar approxima-
tion of the diffraction theory; i.e., it is applicable only
to ultrarelativistic particles. This approximation does
not consider the limiting case of nonrelativistic beams.

Figure 7 shows the electromagnetic radiation spec-
tra found theoretically for various aperture radii. As is
seen, the high-frequency spectrum components tend to
zero as the aperture radius grows. In this paper, this
result is confirmed experimentally (Fig. 4).

Thus, we demonstrated the possibility of creating
short (0.1 ns) electromagnetic pulses. The characteris-
tics of the pulses (the intensity and pattern of the radia-
tion, spectral composition, etc.) can be controlled by
using diaphragms that may have different configura-
tions and be made of different materials.
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Abstract—It is found that, when the shape of a dielectric sphere (hemisphere) operating under the whispering
gallery mode conditions is perturbed by a surface curvature gradient (ellipticity), the unloaded Q factor of the
sphere degrades and its resonance frequencies change. It is shown theoretically and experimentally that an ellip-
tic irregularity removes frequency degeneracy of whispering gallery modes at millimeter waves. © 2004 MAIK
“Nauka/Interperiodica”.
Interest in resonance systems built around spherical
or hemispherical dielectric resonators (DRs) is due
mostly to the possibility of their wide practical use [1–
3], including in thermonuclear fusion [4]. At millimeter
waves, high-Q whispering-gallery-mode (WGM)
dielectric resonators are currently applied in the oscil-
latory circuits of stable millimeter-wave oscillators and
power combiners [3]. They can also be used as measur-
ing devices in permittivity meters [2].

Hemispherical DRs support independent WGMs of
the waveguide type: TMnml (Er ≠ 0) and TEnml (Hr ≠ 0),
where the indices n, m, and l indicate the numbers of
field variations in the polar, θ, azimuthal, ϕ, and radial,
r, coordinates, respectively. The eigenmodes of a hemi-
spherical DR are described by the same dispersion rela-
tion as the modes of a dielectric sphere [5]:

(1)

where jν(x) = Jn + 1/2(x), (x) =

(x), xd = xb, xb = ωr0/c, Jν(x) and

(x) are the cylindrical Bessel and Hankel functions
of the first kind, c is the speed of light, ω is the resonant
frequency, and r0 is the radius of the hemisphere.

These equations do not contain the azimuthal index
m, which causes (n + 1)-fold mode degeneracy in a
dielectric hemisphere placed on a perfectly conducting
plane metal surface [6].

Fabrication-induced distortions of the shape of
hemispherical DRs, including of those with distributed
parameters (ellipticity), significantly affect the spectral
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and power characteristics of the resonators [7] and
devices built around them. Lowest order azimuthal
WGMs with m = 1 in small ellipsoidal DRs in the
absence of frequency-degenerate higher order azi-
muthal modes were studied in [7]. These degenerate
modes exist in hemispherical DRs whose diameter D is
much greater than the wavelength λd in the dielectric
(D ≥ 10λd) [6]. The order of degeneracy for eigen-
modes is different from that for forced oscillations (in
the latter case, the degeneracy is determined at the
waveguide junction between the exciting waveguide
and a curvilinear guiding channel arising on the spher-
ical surface [6]).

The aim of our experiments is to study the effect of
a slight ellipticity of a spherical DR on its spectral and
power characteristics, as well as on the field distribu-
tion of frequency-degenerate WGMs. The behavior of a
dielectric ellipsoid with its axes slightly differing in
length is contrasted with the behavior of a spherical res-
onator. To minimize the effect of the radiator on the
forced oscillation field, a small-aperture radiator was
placed in the region where the WGM field decays.

The weak ellipticity of the surface removes degen-
eracy and produces hybrid oscillations. In this case, the
dispersion relation has form (1) with the eigenfunction
index ν given by [8]

Here,

ν j( ) n 1/2+( )2 m2 γn+( )a j

n n 1+( )
---------------------------+

1/2

.=

γn
2n2 n 1+( )2 m2 2n2 2n 3+ +( )–

2n 1–( ) 2n 3+( )
----------------------------------------------------------------------------,=

a j ε jω
2τ2/c2, ε j

ε, r r0≤
1, r r0,≥




= =
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and τ is the interfocal spacing. As in [9], the depen-
dence of the indices ν( j) on the azimuthal index m,
which is caused by the weak elliptical irregularity of the
hemispherical dielectric resonator, removes the fre-
quency degeneracy of resonant oscillations.

The experiments were performed with a DR that had
the form of half a three-axial ellipsoid (designated 1 in
Fig. 1) placed on plane metal surface 2. The axes of the
ellipsoid were D1, D2 = α1D1, and D3 = α2D1 (α1 =
1.006, α2 = 1.013). The ellipsoid was cut by the plane
containing its major and medium axes. The dielectric
structure was made of Teflon (ε = 2.08), and the length
of its minor axis was D1 = 77.2 mm. WGMs were
excited at the plane metallic base of the dielectric struc-
ture by means of a radiator in the form of the open end
of a hollow rectangular metallic waveguide with the

ri = 0 = const
z

yx

1

2

3

D/2

0D2/2
D1/2

ϕi

Fig. 1. Object and geometry of the experiment.
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Fig. 2. Normalized (a) resonant frequency fn and
(b) unloaded Q factor of the degenerate WGMs vs. the azi-
muthal coordinate of the radiator.
tapered wide wall. On the metallic surface, the radiator
was terminated by coupling slot 3 measuring 7.2 × d
mm and centered at the edge of the dielectric structure
(r1 = 0 = const).

We studied the resonance frequencies of the modes
and their unloaded Q factors, as well as the shapes and
dimensions of field localization regions on the elliptical
DR surface, versus the azimuthal coordinate of the radi-
ator in the frequency range 30–36 GHz. The unloaded
Q factor was evaluated from the measured value of the
impedance [10]. The probe body method was used to
identify oscillation modes by the number of field varia-
tions in a given direction and to locate the boundaries
of field localization regions [11].

The mode characteristics obtained for this ellipsoid
were compared with the properties of a Teflon hemi-
spherical DR with diameter D = 60 mm placed on a
plane metal surface.

The coupling slot was oriented so that the TM
modes were excited for the first place. Since the eccen-
tricity of the ellipsoidal DR is small, its modes may
roughly be viewed as waveguide modes of a spherical
DR. Along the frequency axis, the resonance responses
of the oscillations in the resonators considered show up
as almost periodic trains with an average frequency
separation of 0.9 GHz for the ellipsoidal DR and
1.2 GHz for the hemispherical DR. The deviation from
these average values, which is due to the different effect
of the radiator on the oscillation fields at different fre-
quencies, was within 15 MHz (±0.05%) over the fre-
quency band of interest.

Figure 2 shows the normalized (a) resonant fre-
quency fn (which is close to 35 GHz) and (b) unloaded
Q factor Q0 versus the azimuthal coordinate ϕ1 of the
radiator.

This figure also shows the orientation of the ellip-
soid axes relative to the radiator (0x and 0y are the
minor and major axes, respectively). Note that oscilla-
tions along the DR axes are two extreme cases of our
study. Modes excited in the 0x direction may roughly
be regarded as the modes of a dielectric hemisphere,
because WGMs propagate over the DR inner surface
following trajectories (waveguide channels) with a
minimal variation (gradient) of the curvature. Oscilla-
tions excited in the 0y direction are characterized by the
highest gradient of the surface curvature, which pro-
vides a waveguide channel on the DR surface.

For the ellipsoidal DR, the above dependences are
nonmonotonic and nearly periodic, unlike the spectral
and power characteristics of the oscillations in the
hemispherical DR. The latter are independent of the
azimuthal coordinate of the radiator owing to the axial
symmetry of the resonance structure. For the ellipsoidal
DR, the azimuthal coordinates of the maxima and min-
ima of the frequency and Q factor coincide with the
directions of its major and minor axes. A change in the
unloaded Q factor leads to a change in the width of the
resonance curve. When the Q factor decreases, the res-
TECHNICAL PHYSICS      Vol. 49      No. 4      2004
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onance curve diffuses. In DRs whose electromagnetic
properties are close to those of spherical DRs, this may
be caused by two reasons: removal of resonant mode
degeneracy and an increase in the power loss of degen-
erate oscillations.

A DR ellipticity, which is a distributed irregularity,
may remove degeneracy of the forced oscillations. In
other words, if the azimuthal coordinate of the radiator
changes, so does the excitation direction in the ellipsoi-
dal DR, altering the frequency separation between the
resonances of modes with different azimuthal indices
m. To enhance the effect of degeneracy removal in an
ellipsoidal DR, a local irregularity (hole) is made on the
metal surface opposite to the radiator [6].

When the radiator is placed between the axes of the
ellipsoid (ϕ1 = 30°) and the depth of the hole is h =
0.5 mm, the frequency degeneracy (which is twofold in
our experiment) of the ellipsoidal DR disappears. The
removal of degeneracy is accompanied by a decrease in
the frequency of the higher azimuthal mode (m = 2).
Near the operating frequency f = 36 GHz, the frequency
separation between the split modes is ∆f = 9 MHz. The
frequency separation ∆f varies with azimuthal coordi-
nate of the radiator and attains a maximal value ∆f =
16 MHz at ϕ1 = 75° and 255° (at these coordinates,
WGMs and DR modes propagate in waveguide chan-
nels with the highest curvature gradient). Conversely,
when the radiator is placed so that the waves propagate
along trajectories with the lowest curvature gradient or
with a constant curvature (ϕ1 = 165° and 245°), distinct
splitting is absent and ∆f ≈ 0.

Figure 3 shows the normalized resonance frequen-
cies of modes in the system with a local irregularity
(a hole on the metal surface) versus the azimuthal coor-
dinate ϕ1 of the radiator. These plots allow one to trace
the dynamics of degeneracy removal in the ellipsoidal
DR on surface areas with variable curvature.

The dashed line that bounds the hatched region
illustrates the behavior of the resonance frequency of
the mode with the azimuthal index m = 2. The other
curve refers to the degenerate mode frequency.

It is seen that there exist intervals of ϕ1 where the
splitting of modes with different azimuthal indices is
most pronounced (20°–120° and 200°–290°) and inter-
vals where the splitting is absent (120°–200° and
290°−20°).

Measurements of the unloaded Q factor at all coor-
dinates ϕ1 of the radiator require that the oscillations be
nondegenerate. To this end, the effect of the local irreg-
ularity was enhanced by increasing the depth of the
hole on the metal surface to 1.5 mm. At this depth, split-
ting of the modes is distinct even for ϕ1 within the
ranges 120°–200° and 290°–20°, where the waves are
excited even in the channels with the lowest curvature
gradient.
TECHNICAL PHYSICS      Vol. 49      No. 4      2004
Figure 4 shows the (a) resonance frequency and
(b) unloaded Q factor normalized to their maxima for
the mode with m = 2 at frequencies close to 36 GHz.

These functions are seen to be nonmonotonic and
almost periodic. The highest unloaded Q factor is
observed for WGMs that propagate through the
waveguide channels with the lowest curvature gradient
(ϕ1  165° and 345°). The lowest unloaded Q factor,
which corresponds to the highest power losses, is
observed for modes excited along the major axis of the
ellipsoid, where the curvature gradient is the highest. It
may be supposed that the curvature gradient makes a
major contribution to the radiation power losses,
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Fig. 3. Splitting WGMs in the ellipsoidal DR as a function
of the azimuthal coordinate of the radiator.
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Fig. 4. Normalized (a) resonance frequency and
(b) unloaded Q factor of the WGM with m = 2 vs. the azi-
muthal coordinate of the radiator.
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because the dielectric losses are almost constant and
ohmic losses on the metal surface are low because of
the high conductivity of the metal and small dimen-
sions of the field spots near the radiator and its image
[6]. The shift in the resonance frequency of the mode
with m = 2 depends on ϕ1 of the radiator and is attrib-
uted to a change in the waveguide channel length [7].
Therefore, when the number of field variations in the
direction of wave propagation is fixed, the DR reso-
nance frequency changes.

From the field distributions on the ellipsoidal DR
surface, it follows that, like in hemispherical DRs [12],
the field localization regions have the form of irregular
belts, which narrow near the metal surface, the radiator,
and the image of the radiator on the opposite side of the
dielectric structure. Between these areas, the belts
widen. The width of the belt in its narrowest part is
almost constant and approaches the linear size of the
wider wall of the waveguide (7.2 mm). At the circum-
ference of the wider part of the belt, its width depends
on the position of the radiator relative to the axes of the
ellipsoid, because the waveguide channel curvature
changes. The width of the belt here varies within 8–9%.

Thus, we showed that, unlike DRs with a spherical
surface, the spectral and power characteristics of forced
WGMs in ellipsoidal DRs depend on the azimuthal
coordinate of the radiator, i.e., on its position relative to
the geometrical axes of the dielectric structure. The
shape and dimensions of WGM field localization
regions also depend on the azimuthal coordinate of the
radiator. In an ellipsoidal DR, the dependence of the
mode properties on the direction relative to its axes
removes degeneracy of the resonator modes.
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Abstract—A change in the work function when Cs atoms are adsorbed on the GaAs(100) surface and K, Rb,
and Cs atoms are adsorbed on the GaAs(110) surface is calculated with a simple model. The model includes
both dipole–dipole interaction of adatoms and broadening of their quasi-levels due to exchange effects. The
results of calculation are in good agreement with experimental data. © 2004 MAIK “Nauka/Interperiodica”.
Interaction of metal atoms with semiconductor sur-
faces is of interest most of all for Schottky-barrier for-
mation [1]. It has been found that the barrier height is
established even at the early stage of metal layer depo-
sition [2]. Therefore, it is important to realize the effect
of a submonolayer metal film on electronic states at the
semiconductor surface. A change ∆φ in the work func-
tion of an adsorptive system seems to be the simplest
integral characteristics of this effect. In this study, we
calculate ∆φ upon adsorption of alkali metal (AM)
atoms on the gallium arsenide surface.

The selection of this particular adsorptive system is
not accidental. On the one hand, Group-I metals, hav-
ing typical metallic properties, contain only one elec-
tron in the outer shell, and this electron is responsible
for adsorption. On the other hand, the electronic and
crystal structures of the gallium arsenide surface have
been studied much more extensively than the surface of
other III–V compounds [2].

The majority of calculations for the AM/GaAs sys-
tem are based on a certain version of the density func-
tional formalism [3]. Like all ab initio approaches, the
density functional formalism has decisive advantages
but faces difficulties when applied to calculating the
∆φ(Θ) function (where Θ = N/Nml is the coverage, N is
the adatom density, and Nml is the adatom density in a
monolayer). In particular, it is necessary to take into
account the actual geometry of the adsorption layer,
which changes stepwise with Θ due to structural trans-
formations. Thus, one is forced to calculate ∆φ for sev-
eral characteristic coverage values, which makes com-
parison with experimental data difficult. Note that there
are a number of model approaches to the problem [1, 4,
5] which allow for the parametric description of the
∆φ(Θ) function.

In [6, 7], we suggested a simple scheme making it
possible to calculate the variation ∆φ of the work func-
1063-7842/04/4904- $26.00 © 20475
tion with Θ in an adsorptive system. The model was
applied to AM adsorption on silicon and rutile. It is
known [8] that basically adatoms interact via
(i) dipole–dipole repulsion, causing their depolariza-
tion and a shift of their quasi-levels, as well as (ii) direct
and (iii) indirect electron exchange between them,
which causes quasi-levels to split and a quasi-two-
dimensional surface band to arise. In [6, 7], all these
channels were considered. However, while dipole–
dipole interaction was considered directly, the diffusion
of quasi-levels into the band was simulated. Namely,
we assumed that the half-width Γ0 of an isolated ada-
tom quasi-level changes to Γ = Γ0(1 + γΘ) as the cover-
age increases (here, γ is a dimensionless parameter).
According to the model [6, 7], both tunnel and Auger
processes contribute to the broadening of the isolated
adatom level.

It should be emphasized that the structure of the
adsorption layer is ignored in our model: only the sur-
face density of adatoms is of importance. Such a crude
simplification is yet adequate (at least at low coverages)
in the case of adsorption of alkali metals with a large
atomic charge. Therefore, the basic channel of interac-
tion between alkali adatoms is dipole–dipole repulsion,

which is proportional to  (Ra is the distance between
neighboring adatoms) and has circular symmetry in the
plane of the surface. Also, no consideration is given in
the model to the question of which particular surface
atom (Ga or As) an AM adatom binds to, because it suf-
fices to know that the electron of the AM atom will be
transferred to the conduction band of the substrate.

As was shown in [9, 10], the adatom charge Z is
expressed as

(1)

Ra
3–

Z Θ( ) = 
2
π
--- Ω ξΘ3/2Z Θ( )–

Γ Θ( )
-----------------------------------, ξarctan  = 2e2λ2Nml

3/2A.
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Here, Ω is the energy of the adatom quasi-level relative
to the Fermi level of the substrate, ξ is the constant of
dipole–dipole repulsion between adatoms, 2λ is the
arm of a surface dipole formed by the adatom and its
image in the substrate (we neglect the dielectric correc-
tion factor (ε0 – 1)/(ε0 + 1), where ε0 is the static permit-
tivity), and A ≈ 10 is a dimensionless coefficient weakly
dependent on the geometry of the adatom array. The
change in the work function ∆φ is expressed as [9, 10]

(2)∆φ Θ( ) ΦΘZ , Φ– 4πe2Nmlλ .= =

Table 1.  Model parameters for cesium adsorption on the
(100) surface of gallium arsenide

Parameter Ω , eV Γ0, eV γ Φ, eV ξ, eV

I [11] 2.91 1.93 2.09 13.5 9.2

2.76

II [12] 2.91 1.26 2.84 13.5 9.2

Note: The upper and lower values of γ in the first row correspond
to 300 and 200 K, respectively.

Table 2.  Model parameters for alkali metal adsorption on
the (110) surface of gallium arsenide [14]

Parameter Ω , eV Γ0, eV γ Φ, eV ξ, eV

K 2.74 2.83 0.52 19.1 12.7

Rb 2.75 2.35 0.64 17.0 11.0

Cs 2.81 2.40 0.15 17.4 12.1
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∆φ, eV

Fig. 1. Cesium adsorption on the (100) surface of gallium
arsenide [11]. The solid lines were calculated at (1) 300 and
(2) 200 K. The symbols are data points taken at (+) 300 and
(×) 200 K.

2

1

In order to determine the model parameters, we will
use the procedure proposed in [6, 7], which consists in
the following. First, we experimentally find the initial
slope of the function ∆φ(Θ) (i.e., d∆φ/dΘ at Θ  0)
and the change ∆φml in the work function of the adsorp-
tive system when the coverage equals one monolayer.
These two quantities are taken as fitting parameters,
because (i) the initial slope of ∆φ(Θ) determines the
dipole moment p0 = 2Zeλ of an isolated adatom and
(ii) from the closeness of φ + ∆φml to the work function
of the corresponding alkali metal, one can judge to
what extent the properties of the first AM monolayer
approach the properties of the bulk material.

Let us consider adsorption of cesium atoms on the
GaAs(100) surface using experimental data from [11,
12]. We assume that Nml = 4 × 1014 atoms/cm2 (see, e.g.,
[12–14]) and that the time of growth of a monolayer in
[11] (exposure time) is 500 s. Next, we set λ = 2 Å,
which is somewhat lower than the half-sum of the
atomic and ionic radii (2.24 Å), reflecting the fact that
an adatom in a submonolayer film is mainly in the ionic
state (see below). The energy of the quasi-level is
given by

(3)

where I is the ionization energy of an AM atom
(3.89 eV for cesium [15]) and φ = 5 eV is the work
function of the GaAs(100) surface [11].

Note that, in the present model, the only direct char-
acteristic of the semiconductor is the work function φ,
which obviously varies with doping level. Theoreti-
cally, it would be more logical to use the electron affin-

Ω φ I– e2/4λ ,+=
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Fig. 2. Same as in Fig. 1 according to [12]. (+) Data points.
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Fig. 3. Adsorption of (a) potassium, (b) rubidium, and
(c) cesium on the (110) surface of gallium arsenide [14].
(+) Data points.
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ity or ionization energy of the semiconductor as a refer-
ence level. However, such an approach is appropriate
only for intrinsic semiconductors. For doped semicon-
ductors, we would have to introduce the density of
impurity states, as was done, e.g., in [16]. This compli-
cates the model. In addition, nothing other than the
value of ∆φ is measured in the experiment. Therefore,
we estimate the quasi-level energy by relationship (3).

The model parameters thus obtained are presented
in Table 1 (row 1). Row 2 lists the values estimated
from the data of [12]. The discrepancy between the
experimental data in [11] and [12] probably reflects the
different structures of the clean GaAs surface. The
authors of [11] argue that surface symmetry is c(8 × 2),
while in [12], the surface structure is identified as (4 × 2).
Figures 1 and 2 compare the results of calculation with
the experimental data from [11, 12]. In both cases, the
calculation and experiment are in satisfactory agree-
ment. However, two circumstances are noteworthy. The
calculated curve 1 in Fig. 1 is monotonic, whereas the
data points exhibit a weak minimum at T = 300 K.1 For
reasons not well understood, Fig. 2 demonstrates a
great scatter of experimental data.

Consider now adsorption of potassium, rubidium,
and cesium on the GaAs(110) surface, which was stud-
ied experimentally in [15]. Following [15], we take
Nml = 6.4, 5.3, and 4.8 × 1014 atoms/cm2 for K, Rb, and
Cs, respectively. The scaling procedure yields λ = 1.65,
1.77, and 2.0 Å in the same sequence. The model
parameters are given in Table 2. The results of calcula-
tion are compared with the experimental data in Fig. 3.
It follows that, for intermediate coverages, the experi-
mental values of |∆φ(Θ)| are noticeably lower than the
calculated ones. Evidently, in this coverage range, our
model somewhat overestimates the effect of depolar-
ization in the submonolayer, although the reasons for
the linear variation of ∆φ(Θ) are not quite clear. In gen-
eral, the model results are in satisfactory agreement
with the experiment, especially with regard to the sim-
plicity of the model.

Thus, in view of [6, 7], our model adequately
describes work function variations caused by alkali
metal adsorption on semiconductor substrates.
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Abstract—A magnetron-discharge-based source of ions and electrons with cold hollow and uncooled rodlike
cathodes that offers improved physical and technical characteristics is considered. © 2004 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

Development of equipment for thin-film growth by
ion-beam sputtering implies the design of efficient and
reliable gas-discharge ion sources, among which those
based on cold-cathode discharge seem to be the most
promising [1]. The basic commonly recognized advan-
tages of using cold-cathode discharge for generating
sputtering ion beams are (i) an extremely long time
(>103 h) of maintaining the discharge initiated in a
chemically active gas (versus <10 h for filamentary
cathodes under the same conditions) and (ii) a relatively
low price of an extracted ion (the applied power is less
than that needed for cathode heating). Other no less
important advantages of cold-cathode systems are an
extremely high mechanical robustness, cost efficiency,
simple design, and maintainability. Taken together,
these advantages, keeping pace with the general
requirements for ion sources, extend the thin-film
growth potentialities.

EXPERIMENTAL

In currently used sources of electrons and ions that
are based on cold-hollow-reflex cathode discharge, the
energy delivered to the discharge gap evolves mainly at
the electrodes and is removed by a cooling system. This
energy may enhance the efficiency of such plasma
emissive devices if an uncooled rodlike cathode is
placed on the discharge axis. In this way, the reflex
electrodes of a hollow-cathode discharge turn into the
electrodes initiating a hollow-cathode magnetron
(HCM) discharge [2]. Figure 1 shows schematically the
electrode structure of a hollow-cathode magnetron dis-
charge where the cathode is heated to temperatures of
thermionic emission. Along with cavity cathode 3, the
system includes rodlike cathode 2 with a diameter rang-
ing from 0.25 to 4 mm, which is placed on the cavity
axis coaxially with the output aperture and is free to
move in the opening of cathode 6. During current mea-
1063-7842/04/4904- $26.00 © 0479
surements, cathode 2 is electrically insulated from hol-
low cathode 3. The rod is coaxial with 12-mm-long
cylindrical anode 1 18 mm in diameter. Ring-shaped
magnet 5 produces an axial magnetic induction of
0.1 T. The working gas is pumped off through the open-
ing in reflex cathode 6. This opening can also transmit
a plasma when the discharger serves as a plasma source
(to provide electrons or ions) or play the role of a nozzle
ejecting atomic particles when a discharge chamber is
incorporated into a source of atomic hydrogen. Direct
measurement of the rod temperature was carried out by
an OPPIR-017 pyrometer. A plasma-forming gas (air)
flows through opening 4 at the edge of the cavity. The
gas flow rate was 0.8–1.2 (mPa m3)/s. The plasma
parameters were measured by a cylindrical tungsten
probe 0.05 mm in diameter, which was introduced into
the opening of cathode 6. Its working length was lim-
ited to 1 mm (the rest of the probe was covered by alun-
dum). For high-voltage extraction of cathode-plasma
particles, an accelerating electrode was placed at the
axis of reflex cathode 6. An ion source based on hollow-
cathode magnetron discharge (Fig. 2) was incorporated
into a VUP-5 vacuum station redesigned for thin-film
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Fig. 1. Electrode configuration generating a hollow-cathode
magnetron discharge: (1) anode, (2) rodlike cathode,
(3) hollow cathode, (4) gas delivery, (5) magnet, and
(6) emitting cathode.
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deposition by ion-beam sputtering (Fig. 3). In the final
form, the sputterer, in essence, consists of vacuum
chamber 3, where ion source 1 is mounted. Through an
aperture on the axis of accelerating cathode 2, the ion
beam arrives at the working space and strikes target 4.
The target has a diameter of 30–50 mm and is placed on
a holder cooled by running water. The incident ion
beam forms an angle of 45°–60° with the normal to the
surface. The end face of the accelerating electrode and
the surface being sputtered are spaced 40–70 mm apart.
Molybdenum furnace 5 with a resistive tungsten heater
is used to keep the substrate temperature within 373–

Fig. 2. General view of the gas-discharge plasma source.
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Fig. 3. Design of the ion-beam sputterer: (1) plasma source
of charged particles, (2) accelerating electrode, (3) sputter-
ing chamber, (4) target holder, (5) furnace, (6) mechanical
drive, (7) shutter, (8) regulated discharge-current source,
(9) high-voltage rectifier, (10) leak, (11) flow gauge, and
(12) gas tank.
1473 K. The furnace with substrates is placed near the
accelerating cathode so that the growth surface of the
substrate is parallel to the target being sputtered by
ions. The working chamber is evacuated to a residual
pressure ranging between 10–4 and 10–3 Pa. During film
growth, the pressure in the working space is kept within
(2–3) × 10–2 Pa.

RESULTS AND DISCUSSION

The characteristics of the gas-discharge source of
ions and electrons that is considered in this work to a
great extent depend on the HCM discharge properties.
Figure 4 illustrates the behavior of the discharge under
various conditions, showing the currents of the rodlike
(curve 1), hollow (curve 2), and reflex (curve 3) cath-
odes, as well as the maintaining (discharge) voltage
(curve 4), versus the discharge current when the radius
of the uncooled tungsten rodlike cathode is rc =
0.75 mm. Argon, air, hydrogen, nitrogen, and oxygen
were used as a working gas with a flow rate on the order
of 1.2 (mPa m3)/s. The average pressure in the cathode
cavity was ≈10 Pa. Characteristic discharge conditions
may be distinguished in Fig. 4. Low discharge currents
(0.02–0.05 A) initiate and maintain a low-current mag-
netron discharge with the ascending I–V characteristic.
The distribution of the current among the cathodes is
fairly uniform. The region of cathode potential drop in
front of the cavity aperture prevents the discharge
plasma from penetrating into the cathode cavity. The
near-cathode ion sheath covers the cathode cavity aper-
ture and separates the plasma from the cavity, so that
the cavity has no effect on the discharge. As the dis-
charge current grows, the inequality lc ≤ (ra – rc) (where
ra is the cavity aperture radius, rc is the rod radius, and
lc is the characteristic length of cathode voltage drop
region in front of the cavity aperture) becomes valid. As
a result, the ion sheath at the cavity aperture breaks
down and the cathode cavity is filled with the plasma
with a potential close to the anode potential (Uc ~
0.8Ud). The length lc decreases with discharge current
if 3IddUd/2UddId < 1 [3]. Note that high currents in the
hollow cathode are due to the ions produced by fast sec-
ondary electrons entering the plasma from the region of
cathode voltage drop.

The cathodic rod is heated to 2.3 × 103 K by the
energy coming from the near-cathode discharge region.

Pyrometer indications were corrected for plasma
radiation. The temperature Tc was measured after fast
quenching of the discharge (see table). If the tempera-
ture is assumed to drop at a rate of ≈106 K/s, the tem-
perature value measured during plasma decay (for
~10−5 s) is ≈10 K lower than the true value. To measure
Tc accurately, a thermoelectric tungsten–rhenium cali-
bration converter was formed on the end face of the
tungsten rod by making a VR-5/20 rhenium–tungsten
junction. The tungsten–rhenium junction was heated to
TECHNICAL PHYSICS      Vol. 49      No. 4      2004
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Tc and did not disturb the discharge structure and con-
ditions. In this case, a considerable redistribution of the
cathode currents is observed. Specifically, the hollow
cathode current Ih steeply rises, the rodlike cathode cur-
rent Ic slightly increases, and the reflex cathode current
Ir decreases. The maintaining voltage drops stepwise
from 525 to 350 V. In the interval 0.2 < Id < 0.4 A, the
discharge behaves as a hollow-cathode glow discharge,
for which the hollow cathode current substantially
exceeds the rodlike and reflex cathode currents. The
maintaining voltage slightly increases. At a discharge
current of 0.4 A, the discharge conditions change. The
temperature of the rodlike cathode grows rapidly from
2.3 × 103 to 2.5 × 103 K, and its current increases
abruptly from 0.05 to 0.2 A. At the same time, the hol-
low cathode current decreases from 0.3 to 0.17 A, so
that Ic > Ih. The redistribution of the cathode currents is
accompanied by a sharp drop of the maintaining volt-
age from 360 to 210 V, since the discharge takes the
low-voltage high-current form. As the discharge cur-
rent grows from 0.45 to 0.6 A, the sustaining voltage
lowers gradually; the rod temperature rises to 2.6 ×
103 K; and the currents Ih, Ic, and Ir increase (Ic with the
highest rate). The processes that take place in the
plasma near the rodlike cathode (Fig. 1) define the
parameters of the discharge as a whole, and the depen-
dences observed (Fig. 4) indicate that the rodlike cath-
ode has a decisive effect on the discharge (the transition
to the conditions specified by the rod-cathode is marked
by a step in the discharge voltage and cathode currents
at Id ~ 0.4 A). Such behavior is akin to the so-called hol-
low-cathode effect, which shows up at Id ~ 0.1 A. The
decisive effect of the rodlike cathode is observed when
its current equals 0.5 of the discharge current, while the
hollow and reflex cathodes account for 0.3 and 0.2 of
the discharge current, respectively. The fraction of the
thermionic current reaches (0.3–0.35)Id. The descend-
ing current–voltage dependence of the discharge is
likely due to a change in the emission mechanism of the
rodlike cathode; namely, the contribution from thermal
electron emission to ionization in the cathodic sheath
becomes considerable. Primary electrons due to elec-
tron–ion and thermal electron emission may leave the
rodlike cathode surface with appreciably different ini-
tial velocities. If one assumes that the initial velocity of
thermal electrons is lower that the velocity of electrons
escaping from the cathode as a result of γ processes, the
magnetic field acting on thermal electrons seemingly
increases and a reduction of the discharge voltage may
be expected if the condition lc ~ RL is fulfilled (where
RL is the Larmor radius of an electron), which is the
case in experiment. The descending I–V characteristic
of the discharge cuts significantly the cost of an
extracted ion and, thus, raises the energy efficiency of
the system.

Along with pyrometric measurements, the cathodic
rod temperature and the fraction of the thermionic cur-
rent in the total cathodic current were estimated by
TECHNICAL PHYSICS      Vol. 49      No. 4      2004
replacing rod 2 (Fig. 1) with two closely spaced parallel
vanadium and rhenium rods insulated from each other
and from hollow cathode 3. The diameters of the rods
and the spacing between their axes were 0.25 and
0.75 mm, respectively. The current of each of the
cathodic rods can be calculated by the expression

(1)

where Ii is the ionic current toward the rod, Ie is the ther-
mionic current, and γ is the electron–ion emission
factor.

Under the assumption that the ionic currents toward
the rods are equal to each other and the rods are cooled
by the thermionic currents roughly to the same extent
(hence, the difference in γ and ε, where ε is the emissiv-
ity, is small), the difference between the currents of the
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Fig. 4. (1) Tungsten rodlike, (2) hollow, and (3) reflex cath-
ode currents and (4) maintaining voltage vs. the discharge
current. rc = 0.75 mm.
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rods in the discharge may be represented in the form

(2)

The thermionic current was calculated by the Rich-
ardson formula

(3)

where Tc is the temperature of the cathodic rod, Sc is its
surface area, k is the Boltzmann constant, ϕ0 is the work
function, and A is the emission constant.

We assumed in our calculations that A = 7.5 ×
105 A/(m2 K2) and ϕ0 = 4.54 eV for tungsten and A =
2.6 × 106 A/(m2 K2) and ϕ0 = 5.0 eV for rhenium.

Comparing the calculated ∆I(Tc) and experimental
∆I(Id) dependences (Fig. 5), where Id is the discharge
current, one can estimate the temperature of the rods at
different Id. For example, point A (Fig. 5) shows the dif-
ference ∆I in the currents of the rods measured at the
discharge current 0.5 A. The temperature 2.53 × 103 K
(point B in Fig. 5) corresponds to this point. As Id
changes from 0.6 to 2 A, the temperature of the
cathodic rods increases from 2.6 × 103 to 2.78 × 103 K.
Note that the difference in the rod currents becomes
considerable (Fig. 5). However, in the experiments with
two tungsten rods, the difference in their currents was
within 5%. This suggests that both rods were under
identical conditions and that the difference in the cur-
rents of the tungsten and rhenium rods is associated
mainly with their different thermionic properties. Since
heating of the cathodic rod greatly increases its thermi-

∆I IcW IcRe– IeW IeRe–( ).∼=

Ie ATc
2Sc eϕ0/kTc–( ),exp=
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Fig. 5. Difference in the currents of the rods (1) as a func-
tion of temperature (calculation) and (2) discharge current
(experiment).
onic current, one might expect that the power required
for the discharge current to reach a desired level also
depends on the thermionic properties of this rod.

Let us estimate the feasibility of the descending I–V
characteristic of the discharge under the conditions of
thermionic emission from the cathodic rod. We make
the following assumptions: (i) the plasma potential U0
is close to the potential Ua of the anode (the plasma
potential was determined at the inflection point of the I–
V curve for a single cylindrical probe), U0 = (0.8–
0.85)Ua; (ii) the plasma density gradient along the
length of the rod is insignificant; (iii) the rod is uni-
formly heated along its length by ions accelerated in the
cathodic sheath; and (iv) collisions in the space charge
region between the plasma and the rod are absent (the
working gas pressure in the discharge chamber is low,
0.9–1 Pa; such pressures correspond to the condition
λe > lc, where λe is the electron free path and lc is the
length of the cathode potential drop region; the cathode
potential obeys the Child’s law).

The cathodic rod current can be represented in the
form

(4)

where the coefficient K1 is found from the experimental
dependence Ic(Id) (Fig. 6).

The cathodic rod temperature is defined by the bal-
ance between the energy being released by ions accel-
erated in the cathode potential drop region and the
energy radiated by the rod:

(5)

where Ii is the ion current toward the rod; Ud is the dis-
charge voltage; K2 = (6πLrcεσ)–1; L and rc are the length
and radius of the cathodic rod, respectively; ε is the
emissivity; and σ is the Stefan–Boltzmann constant.

The expression for thermionic current in the pres-
ence of an electric field near the rod surface can be writ-
ten as

(6)

where K3 = ASc, Sc = 2πrcL, K4 =

(e11Mi)1/8(25/2π2k4K2 Sc)–1/4, ε0 is the permittivity, Mi is
the ion mass, e is the elementary charge, K5 = eϕ0k–1,
and eϕ0 is the effective work function.

Substituting (4)–(6) into Eq. (1), we find the rela-
tionship between Ud and Id in the form

(7)

where K6 = (1 + γ) .

Figure 6 shows the calculated dependence Ud(Id)
obtained by substituting tungsten rod temperatures Tc
measured at different discharge currents. We suggest
that the descending I–V curve of the magnetron dis-

Ic K1Id,=

Tc K2I iUd( )1/4,=

Ie K3Tc
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1/8– K5Tc
1––( ),exp=
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K1Id K6Tc
4Ud

1– K3Tc
2 K4Ud

1/8– K5Tc
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K2
1–
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charge with the heated cathodic rod may be associated
with thermionic emission from the cathodic rod under
the given experimental conditions. Note also that the
higher the thermionic capacity of the cathodic rod, the
lower the maintaining voltage of the discharge. Our
electronic configuration of the HCM discharge with the
rodlike cathode makes it possible to provide efficient
emission of charged particles from the near-axial
plasma of the discharge with the electron and ion cur-
rents accounting for 0.4–0.45 and 0.08–0.12 of the total
discharge current, respectively. The correlation
between the emissivity and the discharge-current
dependence of the plasma density in the absence of an
accelerating voltage is indirect evidence that the effect
of emission on the discharge plasma density and the
effect of the discharge current on the exposed (emit-
ting) area of the plasma are insignificant. The densities
of the thermionic and ion currents attained in the exper-
iment (40 and 0.6–0.75 A/cm2, respectively) are indic-
ative of a fairly high emissivity of the HCM discharge
plasma. These findings were employed in the design of
the plasma source with an uncooled rod cathode
(Fig. 2). Although the cathodic rod is heated in the
HCM discharge plasma to temperatures of thermionic
emission, it is free from the well-known drawbacks of
directly heated (filamentary) cathodes. The advantages
of our design appear because the cathode is heated by
plasma ions accelerated by the electric field of the
cathodic sheath. This circumstance makes heating cir-
cuits, which contain high-current vacuum-tight
feedthroughs, unnecessary. Also, this eliminates the
need for high-power supplies, which usually demand
reliable insulation, since they usually are under a high
potential of the ion-accelerating field. One-sided
mounting of the rod by its part near the cold edge
greatly simplifies the design of the electron–ion source
and suppresses the effect of mechanical stresses, which
usually arise in filamentary cathodes as a result of their
heating, cooling, or operation in high magnetic fields.
Efficient electron emission from a directly heated cath-
ode requires that the heating current be several tens of
amperes. In this case, the cathode may be locally over-
heated, which shortens its service life. In contrast, a rod
cathode remains efficient up to its ultimate (smallest)
thickness of 10–2 mm in the region of most intensive
heating. The descending run of the I–V curve of the dis-
charge and the linear growth of the cathode plasma den-
sity with increasing discharge current up to an ultimate
value of ≈2 A are explained by smooth glowing-to-arc
discharge transition. This remarkable feature provides
high technological properties of ion–electron sources
based on hollow-cathode discharge in our electrode
configuration. In particular, our experimental values are
as follows: the maintaining voltage varies in the range
85–180 V; the discharge current is up to 2 A; the ion
beam current is 0.1–0.15 A; the cost of an extracted ion
is 1–2 W/mA, which is two to five times lower than in
the conventional ion sources; the electron beam density
is 1 A; and the energy efficiency is 15 mA/W, which is
TECHNICAL PHYSICS      Vol. 49      No. 4      2004
six times higher than that of electron emitters based on
hollow-cathode electric discharge. Such efficient gas-
discharge sources allow for a considerable increase in
output ion and electron currents as the glow discharge
smoothly switches to a diffusion arc at Id > 2 A.

CONCLUSIONS

The electrode structure of a hollow-cathode magne-
tron discharge suggested in this work allows one to
generate high-current ion beams at a low cost of an
extracted ion and electron beams at a high energy effi-
ciency [4, 5]. Compared with conventional sources,
such a configuration offers a higher density plasma due
to thermionic emission arising when the glow discharge
gradually switches to a high-current vacuum arc that is
free of a cathode spot. It also makes it possible to
extend the application of HCM-discharge plasma
source. Specifically, the new sources may be used for
sharpening tungsten needles by ion sputtering and effi-
cient generation of atomic hydrogen through the high-
temperature activation of molecular hydrogen. This is
of special importance in diamond-like carbon film
growth and semiconductor surfaces processing.

ACKNOWLEDGMENTS

This work was supported by INTAS, project no.
2001-2399, and partially by the Lavrent’ev Competi-

0 0.80.4

0.2

0.4

200

400

1

2

3

Ic, A Ud, V

Id, A
1.2 1.6

Fig. 6. (1) Rodlike cathode current and (2) experimental and
(3) calculated maintaining voltage vs. the discharge current.



484 SEMYONOV, SEMYONOVA
tion of Young Scientists (Siberian Division, Russian
Academy of Sciences), project no. 37.

REFERENCES

1. A. P. Semyonov, Sputtering Ion Beams: Production and
Application (Izd. Buryat. Nauchn. Tsentr Sib. Otd. Ross.
Akad. Nauk, Ulan-Ude, 1999) [in Russian].

2. A. P. Semyonov, USSR Inventor’s Certificate
No. 1375024 (1985).
3. M. A. Zav’yalov, Yu. E. Kreœndel', A. A. Novikov, and
L. P. Shanturin, Plasma Processes in Electron Guns
(Énergoatomizdat, Moscow, 1989) [in Russian].

4. A. P. Semyonov and I. A. Semyonova, Izv. Vyssh.
Uchebn. Zaved. Fiz., No. 9, 69 (2001).

5. A. P. Semyonov and I. A. Semyonova, in Proceedings of
the 5th International Conference on Vacuum Technology
and Equipment, Khar’kov, 2002, pp. 227–235.

Translated by A. Sidorova
TECHNICAL PHYSICS      Vol. 49      No. 4      2004



  

Technical Physics, Vol. 49, No. 4, 2004, pp. 485–493. Translated from Zhurnal Tekhnichesko

 

œ

 

 Fiziki, Vol. 74, No. 4, 2004, pp. 108–116.
Original Russian Text Copyright © 2004 by Reznik, Yurasova.

                                        

EXPERIMENTAL INSTRUMENTS
AND TECHNIQUES

                   
Near-Field Microwave Tomography of Biological Objects
A. N. Reznik and N. V. Yurasova

Institute of Physics of Microstructures, Russian Academy of Sciences, Nizhni Novgorod, 603950 Russia
e-mail: reznik@ipm.sci-nnov.ru

Received October 20, 2003

Abstract—A method of finding the subsurface temperature distribution in biological media from near-field
microwave probing data is suggested. The electrodynamic problem of probe response to a temperature profile
disturbance ∆T(z) in a medium is solved. An integral equation that relates the shift of the resonant frequency of
the probe to the function ∆T(z) is derived. The effective near-field probing depth is shown to depend on the
probe aperture, its elevation above the surface, and the wavelength. In this method, several probes operate
simultaneously, receiving signals from different depths, and the temperature profile is reconstructed by invert-
ing the related integral equation. The components and parameters of a measuring facility that provides the tem-
perature profile reconstruction accurate to 0.5°C to a depth of up to 5 cm are established. The procedure of near-
field diagnostics is simulated in a computer experiment to check the accuracy predicted. Calculation is per-
formed based on a model of permittivity of biological media. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Measuring the internal temperature of biological
objects is of great importance in medical applications.
Inflammatory processes and tumors in the human
organism are usually localized, and the temperature
rises at the focus of inflammation. If a sore tissue is
located sufficiently deep, temperature variations on the
surface are absent or weak.

Measuring the tissue temperature under the condi-
tions of hyperthermia is a primary problem of tempera-
ture diagnostics. This way of treating malignant tumors
dates back to the 1960s, and a large body of relevant
theoretical and experimental data has been collected to
date (see, e.g., [1–3]). During hyperthermia, the tem-
perature is raised to 41–42°C for a time with a special
external heater. This increase in temperature is often
concentrated directly on the tumor (local hyperther-
mia). It is necessary that the elevated temperature be
kept within a very narrow interval, since overheating
destroys good cells and underheating stimulates, rather
than suppresses, the growth of malignant cells. Thus,
temperature control during hyperthermia is currently a
key medical problem, especially in view of the fact that
not the temperature at a separate point must be mea-
sured but the temperature profile T(z) across the depth
must be constructed.

Obvious disadvantages of today’s invasive (contact)
methods of measuring the internal temperature are
inconvenience for patients, the effect of contact sensors
on temperature distributions being recorded, and the
complexity of point-to-point profile construction.
Among the noninvasive (noncontact) methods of ther-
mometry currently available are IR thermal imaging
[4], microwave radiometry [5], and nuclear magnetic
resonance [6]. However, none of them has gained wide
1063-7842/04/4904- $26.00 © 20485
acceptance because of substantial inherent drawbacks.
For example, thermal imaging, because of a low pene-
tration of IR radiation (less than 1 mm), may be used
only for skin investigation. Microwave radiometry,
though being free of this disadvantage, is sensitive to
external interference. In addition, the latter method
needs compact high-efficiency antennas, which is a
technical challenge. Thus, the need for new techniques
of subsurface temperature measurement that are free of
above disadvantages seems obvious.

In this work, we suggest a method based on near-
field microwave probing. Near-field diagnostics has
become common in studying the surface distribution of
permittivity [7]. However, near-field probing has not
yet been applied for vertical tomography, by which the
permittivity, ε(z), or temperature, T(z), profile is recon-
structed. The potentialities of a near-field detector
(NFD) will be demonstrated below. Also, we will deter-
mine the NFD parameters providing a desired sensitiv-
ity and accuracy of T(z) reconstruction as applied to
biological objects.

The key element of an NFD is a probe with an aper-
ture diameter D that is much smaller than the radiation
wavelength λ (D ! λ). At present, advanced near-field
microwave measuring systems offer the ratio D/λ at a
level of 10–6 [8]. The possibility of producing probes
with apertures much smaller than the dimension of
radiating antennas results from an extremely high sen-
sitivity of NFDs to a permittivity variation near the
probe. Since D is responsible for the spatial resolution
of the device, NFDs are often called near-field micro-
scopes. Today, the resolution of NFDs is 1 µm or
higher, i.e., is comparable to the resolution of optical
microscopes. However, a superhigh resolution can be
achieved at a sacrifice in penetrating power. In other
004 MAIK “Nauka/Interperiodica”
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words, a very important advantage of microwaves over
IR radiation (a much higher penetration into many,
including biological, media) may be lost. It is clear that
the effective near-field probing depth deff is related to
the probe size D, although this issue calls for special
investigation, which is performed in this work. Temper-
ature diagnostics of the human body requires that the
spatial resolution be at least 1–2 cm, which provides a
probing depth of at least 3–5 cm. Whether or not this
requirement can be satisfied will be shown below.

A prerequisite for the application of NFDs to tem-
perature diagnostics of biological objects is the
assumption that the complex permittivity ε = ε1 – iε2 of
these objects is temperature-dependent. Unfortunately,
published data on direct measurement of this depen-
dence are lacking. Therefore, we constructed a physical
model of permittivity of biological objects that supports
this hypothesis and also allows us to estimate the tem-
perature sensitivity of a near-field measuring system.

MODEL OF PERMITTIVITY OF BIOLOGICAL 
OBJECTS

Our model is based on the assumption that a biolog-
ical medium is a two-component system consisting of a
dry insulator (with permittivity εi) and water (εw). The
permittivity εeff of the mixture (biological medium) is
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Fig. 1. (a) Real and (b) imaginary parts of the permittivity
of fatty tissue vs. the frequency. Curves, calculation; sym-
bols, data points from [11].
found by the formula

(1)

which follows from the equation for self-consistent
field [9] (in (1), averaging is over the volume). If the
volume content of water is ρ, we have

(2)

The permittivity εeff can be determined by solving
algebraic equation (2) (later on, the subscript “eff” is
omitted). We assume that εi is constant, while εw is a
known function of temperature and frequency: εw =
εw( f, T). The function εw( f, T) can be calculated, e.g., in
terms of the semiempirical theory[10]. Formulas for εw
that are used in this theory involve the degree of miner-
alization of water as an independent parameter (the
degree of mineralization is related to the salinity S of
water and specifies its conductivity σ). Then, to calcu-
late the function ε = ε( f, T), one needs to know three
free parameters: εi, ρ, and σ. Their values are taken such
that the model gives the best fit to published data for the
frequency dependence of ε (these dependences are usu-
ally given for the normal body temperature T = 37°C).
Figure 1 shows the calculated frequency dependences
of the real and imaginary parts of the permittivity for a
fatty tissue together with data points from [11]. For εi =
1.2, ρ = 0.3, and σ = 2.13 (Ω m)–1, agreement between
the theory and experiment is fairly good. Similar results
have also been obtained for other tissues (the related
values of εi, ρ, and σ are listed in Table 1).

Thus, the model of two-component medium
describes adequately the spectral dependence of ε for
biological media. It may be assumed that dependences
ε(T) following from this model also reflect the real sit-
uation.

NEAR-FIELD DIAGNOSTICS 
OF VARIABLE-PERMITTIVITY MEDIA

The design of an NFD is depicted in Fig. 2. The
probe is a microwave antenna with an aperture size D
much smaller than the wavelength, D ! λ. The aperture
is placed in a vacuum at an elevation of h ! λ above the
absorbing half-space surface. The permittivity of the
medium varies with height:

(3)

where ε0 = const is the undisturbed permittivity value
and the correction ∆ε(z) is due to the temperature pro-
file variation (∆T(z)) upon heating.

As the permittivity near the aperture of the antenna
changes, so does the input impedance of the antenna
Z = R + iX because of a disturbance of the quasi-station-
ary electromagnetic field near the antenna. This, in turn,
changes the coefficient Γ of reflection from the antenna

ε εeff–
ε 2εeff+
------------------- 0,=

ρ
εw f T,( ) εeff–

εw f T,( ) 2εeff+
------------------------------------- 1 ρ–( )

εi εeff–
εi 2εeff+
--------------------+ 0.=

ε z( ) ε0 ∆ε z( ),+=
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input (this coefficient is measured with a reflectome-
ter). This change ∆Γ bears information on the distur-
bance of the permittivity, ∆ε, and temperature, ∆T, in
the vicinity of the probe. To improve the NFD sensitiv-
ity, the antenna is connected to the wave-guiding input
of the reflectometer via a matching resonator, perfect
matching being achieved at the resonant frequency f0
(Γ( f0) = 0). In this case, a shift in the frequency f0 is the
response to a disturbance of ε and the largest variations
∆Γ take place near the maximal steepness of the fre-
quency response (i.e., when the working point is some-
what displaced relative to f0). Since the antenna and
matching resonator can be integrated on a single sup-
port, this integrated unit will be called the resonant
probe.

Our further aim is to calculate a shift in the fre-
quency f0, which is related to the disturbance ∆ε(z). To
this end, we represent the equivalent circuit of a reso-
nant probe as a section of a twin line with a wave resis-
tance Z1 that is terminated by an impedance Z at one
end and is open-circuited at the other end (Fig. 3). The
system is excited in the plane A–A by means of a
waveguide with an impedance Z0, which simulta-
neously acts as a receiver of the reflected power. In this
circuit, the section of the line serves as a matching res-
onator. The system is considered matched when the
input impedance Zin in the plane A–A equals the imped-
ance Z0. This condition is written in the form of two
equations: ReZin( f0) = Z0 and ImZin( f0) = 0. Detailed
analysis of this circuit is given in [12], where matching
was provided by properly selecting the resonator’s arm
length ls, 1.

If Z1, R ! |X| (this conditions is met in electrically
small antennas with D ! λ), we have ls + l1 ≈ (Λ/2)(1 –

Z1/(|X|π)), where Λ = c/( f0) is the resonant wave-
length, c is the speed of light in free space, and ε1 is the
effective permittivity of the line. Then, at ∆X/X ! 1, the
frequency shift is given by

(4)

Thus, a frequency response of the measuring system
depends on the shift ∆X of the probe reactance, which
is related to the disturbance of permittivity. Note that
the distortion of the frequency response is associated
not only with the shift in the resonant frequency f0 but
also with a change in the resonance curve width. It was
shown [12] that the bandwidth of an electrically small
antenna depends largely on losses in the matching res-
onator and insignificantly on losses due to radiation
into the environment; therefore, the variation of the Q
factor of the probe will be neglected.

The problem of calculating δf by formula (4) is
reduced to finding the relationship between the distur-
bances of the reactance, ∆X, and permittivity profile

ε1

δf
f 0
-----

Z1

π
-----∆X

X2
-------.=
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∆ε(z). This relationship can be found from the Poynt-
ing’s theorem for harmonic fields with a frequency ω [13]:

(5)

where I is the current at the input terminals of the
antenna, E and H are the electric and magnetic fields in
the environment, and ε is the permittivity of the envi-
ronment. According to (3), ε = ε(z) for z < 0 and ε = 1
for z > 0.

As is common for antenna problems, reactance (5)
is determined by integrating the fields from sources
specified on the antenna aperture over the environment.
Quasi-stationary fields in such integrals obviously play
a decisive role. Unfortunately, an analytical representa-
tion for the fields E and H in a half-space with an arbi-
trary (nonuniform) profile ε(z) is absent. However, in
the case considered, the problem can be considerably
simplified.

We take into consideration that the change in the
temperature of the medium in medical applications

X
4ω
I 2

------- H 2 Re ε( ) E 2–
16π

--------------------------------------- V ,d

V

∫=

Table 1.  Parameters of biological tissues

ρ σ, (Ω m)–1 εd α, °C–1

Fat 0.3 2.13 1.2 0.016

Muscles 0.87 1.32 1.2 0.226

Skin 0.7 1.1 1.2 0.096

R

P

A

MR

hD

T(z)

0

z

Fig. 2. Near-field measuring scheme: A, antenna; MR,
matching resonator; R, reflectometer; and P, probe.
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usually does not exceed 5°C. Accordingly, the permit-
tivity of the medium is disturbed only slightly: |∆ε|/|ε0|
< 0.05. In this case, the desired fields can be represented
as a series according to the perturbation theory:

(6a)

(6b)

where E0 and H0 are the fields in the homogeneous
upper and lower half-spaces and E1 and H1 ~ ∆ε are
first-order perturbations due to temperature nonunifor-
mity.

Calculating X by formula (5), we leave only first-
order terms in ∆ε (see expansion (6)). In terms of the
perturbation theory, the zero- and first-order fields are
found by solving the Maxwell equations with given
external sources in a piecewise homogeneous medium:

Since the Green’s function for such an electrody-
namic problem is well known (see, e.g., [14]), its solu-
tion is straightforward. Omitting tedious mathematics,
we give the final solution as

(7)

The kernel K of this integral is given in the Appen-
dix. We only note that formula (7) was derived under
the assumption Im(∆ε) @ Re(∆ε). Calculations showed
that Re(∆ε)/Im(∆ε) is invariably less than 0.1 for tem-
perature variations in biological objects.

E E0 E1 …,+ +=

H H0 H1 …,+ +=

ε
1, z 0≥
ε0, z 0.<




=

∆X D h λ, ,( ) z'Im ∆ε z'( )( )K z' D h λ, , ,( ).d

∞–

0

∫=

ls l1

Ia

A

A

Z1

Pinc

Pr

Z0

1

2

3

Fig. 3. Equivalent circuit of the antenna: 1, matching line;
2, supply line; 3, loading resistor; Pinc, incident power; and
Pr , reflected power.
AVERAGE DEPTH TEMPERATURE 
AND EFFECTIVE PROBING DEPTH

We substitute (7) into (4) and take into account that
Im(∆ε(z)) = α(λ)∆T(z) if the temperature varies insig-
nificantly (the temperature gradient α(λ) =
(∂Imε/∂T  for various types of biological tissues is
given in Table 1 for λ = 30 cm and T0 = 37°C). Then,
we have

(8)

Let us define the average depth temperature ∆Tav as
an increment of the temperature of a uniformly heated
medium that provides the same frequency shift as an
inhomogeneous medium with ∆T(z) ≠ const. With such
a definition, it follows from (8) that

(9)

where

is the normalized kernel; that is,

Then, for ∆T(z) = ∆T = const, we find from (9) that
∆Tav = ∆T.

In practice, the average temperature of the medium
can be measured by calibrating a near field thermome-
ter. During calibration, the frequency shift δf0 is mea-
sured when the medium is heated from the initial tem-
perature T0 to T0 + ∆T0. The quantity ∆T0/δf0 defines a
scale-adjusting factor, which is subsequently employed
for conversion to ∆Tav upon measuring δf in an inhomo-
geneous medium. In fact, using expression (8) at ∆T0 =
const, we obtain

hence, ∆Tav = ∆T0δf/δf0.
It is natural that for calibration one should use either

a medium studied or a standard with similar dielectric
properties, since the parameters α and X0, as well as the
function K(z) in (8), depend on ε. The major difference
between calibrated NFDs and contact thermometers is

)T T0=

δf
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Z1α λ( )
πX0

2 D h λ, ,( )
-------------------------------=
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0

∫
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∫=
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0
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that the former measure the temperature ∆Tav averaged
over the vicinity of the probe (see Eq. (9)). In other
words, NFDs are capable of remote temperature con-
trol. Calculation by formulas (A.1)–(A.4) demonstrates
that the kernel of Eq. (9) can be approximated by the
simple exponential dependence

(10)

which decays with increasing depth (z < 0). The param-
eter deff = deff(D, h, λ) is the effective probing depth of
an NFD, since it defines the characteristic interval of
integration of the temperature over z in Eq. (9). The
value of deff can be found from the relationship

(11)

The dependence of deff on D and λ at h = 0 calcu-
lated by (11) is shown in Fig. 4. The kernel K(z) was
calculated by formulas (A.1)–(A.4), and the electric
and magnetic fields at the antenna aperture were
approximated by the radially symmetric Gaussian dis-
tribution

(12)

where the characteristic scale D is the probe aperture
size. Hereafter, the medium studied is a fatty tissue at
T0 = 37°C. As follows from Fig. 4, with λ fixed, the
probing depth varies with D within 0 ≤ deff < dsk, where
dsk(λ) is the skin depth. As D decreases, so does deff,
tending to zero. As D increases, deff also increases,
approaching dsk. These results support our statement
that an improvement in the NFD resolution by decreas-
ing the probe size leads to a decrease in deff. Obviously,
specific limitations depend on the permittivity of the
medium under study. For a fatty tissue, it is important
that the probing depth may be high (deff = 3–5 cm) even
if antennas are relatively small (D = 1.0–1.5 cm)
(Fig. 4). Thus, NFDs are promising for medical diag-
nostics.

TEMPERATURE SENSITIVITY 
OF A NEAR-FIELD DETECTOR

According to Fig. 4, at a given D, the effective depth
deff may be increased by increasing the NFD operating
wavelength. However, the probing depth of the measur-
ing system is limited by the sensitivity of the reflecto-
meter to probe reflection coefficient variations. It is nat-
ural to expect that the probe response to a temperature
change decreases with decreasing ratio D/λ. Figure 5
plots the temperature responses δfT(D) calculated by (8)
for various λ at ∆T = 1°C = const. The wave impedance
of the matching resonator is Z1 = 50 Ω , and the reac-
tance X0(D, λ) was calculated from (5) for an aperture
with field distribution (12) placed on the surface (h = 0)
of a homogeneous half-space (fatty tissue). As follows

K̃ z( ) deff
1– z/deff( ),exp=

deff z'z'K̃ z'( )d

∞–

0

∫ .=

Ha r( ) Ea r( ) E0 4r2/D2–( ),exp= =
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from Fig. 5, the response δfT(D) actually drops mono-
tonically with decreasing D/λ and allows us to estimate
the temperature sensitivity of NFDs as applied to bio-
logical objects.

The change δΓ in the reflection coefficient of the
probe that is associated with a shift in its resonant fre-
quency f0 is given by

(13)

where δT is the temperature sensitivity of the detector
and δΓf is the steepness of the resonance curve of the
probe at an operating frequency f.

For the Lorentzian shape of the frequency response,
the steepness is maximal if f is shifted by the line half-
width from f0. In this case, δΓf = Q/2f, where Q is the
Q factor of the probe. For decimeter waves, the Q factor
varies in the wide range 50 & Q & 5000. The extreme
values of Q are typical of probes for which matching
devices are stripline and cavity resonators, respectively.
Since stripline resonators are compact and, therefore,
more appropriate, we will take Q = 50, although the

δΓ δΓ f δ f TδT ,=
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Fig. 4. Effective probing length deff vs. the wavelength for
D = (1) 0.5, (2) 1, and (3) 3 cm; (4) the function dsk(λ).
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Fig. 5. Response of the resonant system to the temperature
change ∆T = 1°C vs. the antenna size D. λ = (1) 15, (2) 25,
and (3) 35 cm.



490 REZNIK, YURASOVA
sensitivity is lower in this case. For temperature diag-
nostics of biological media, it is necessary that the sen-
sitivity of a near-field thermometer be at least δT =
0.1°C. Then, taking the probe parameters D and λ such
that the temperature response is no less than δfT ≈
0.5 MHz/°C (Fig. 5), we find that, for f = 1 GHz, the
necessary sensitivity of the reflectometer to reflection
coefficient variation is δΓ ≥ 10–3. Since such a value is
practically feasible (recall that we measure relative

Table 2.  NFD parameters

D, cm λ, cm deff, cm δfT, MHz/°C

3 35 5 0.7

2.5 32 3 0.6

2 30 2 0.5

1 30 1.5 0.5

1.5 20 1 0.6

1 15 0.5 0.5

1 2 3 4 5 6
deff, cm

0.5

1.0

1.5

∆Tav, °C
(a)

0

1 2 3 4 5
–z, cm

–1

0

5 (b)

0

1

2

3

4

∆T, °C

Fig. 6. (a) Dependence ∆Tav(deff) (curves, calculation; sym-
bols, experiment) and (b) the initial profile ∆T(z) given by
(15) (continuous curve) and its reconstruction (dashed line).
increments ∆Γ), the temperature sensitivity δT = 0.1°C
will certainly be achieved for δfT > 0.5 MHz/°C. In view
of the calculation data for δfT in Fig. 5, Table 2 lists the
NFD parameters that extend the probing depth range
0.5 < deff < 5 cm for a fatty tissue and at the same time
provide a necessary temperature sensitivity.

TEMPERATURE PROFILE 
RECONSTRUCTION

As follows from the above, a typical feature of
NFDs is the dependence of the probing depth on the
probe parameters: deff = deff(D, h, λ), which allows us to
suggest a new way of finding the depth temperature
profile ∆T(z). We have shown that near-field location
data may be used to measure the weighted average tem-
perature ∆Tav with a characteristic scale of averaging
over the depth (deff). The simultaneous measurement of
∆Tav at several deff makes it possible to extract informa-
tion on the temperature from different depths and
reconstruct the temperature profile ∆T(z) by inverting
Eq. (9).

With respect to the desired profile ∆T(z), relation-
ship (9) is the Fredholm integral equation of the first
kind, i.e., the ill-posed inverse problem [15]. To solve it
numerically, one must know a priori information about
a desired function. An effective method of inverting
Eq. (9) consists in expanding the profile ∆T(z) in basis
functions and seeking for expansion coefficients by
measuring the left-hand side of (9) at a number of
points corresponding to different scales deff. In this arti-
cle, we expand the profile in a power series:

(14)

where T0 = 37°C is the undisturbed temperature, an are
expansion coefficients to be determined, and N is the
number of independent measurements differing in deff.

The results of computer simulation of the recon-
struction procedure are shown in Fig. 6. The initial pro-
file was given by

(15)

with a maximum at a depth zm = 2.5 cm and a tempera-
ture drop ∆Tm = 5°C. Such a profile seems typical under
the conditions of local hyperthermia. “Experimental
data” were calculated based on the requirement that N
probes uniformly cover the depth range 0 ≤ z ≤ zmax ≈
5 cm. The values of D and λ at h = 0 for several probes

are listed in Table 2. The experimental values of ∆
(n = 1, 2, …, N) were calculated by formula (9) with the
profile ∆T(z) in the form of (15). The values calculated
are complemented by a random “measurement error”
generated by a random number generator with the
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Gaussian probability density function, zero mean devi-
ation, and given standard deviation δT. The dependence
∆Tav(deff) calculated is shown in Fig. 6a, where experi-
mental data simulated for NFDs with the parameters
from Table 2 at δT = 0.1°C are also shown. The initial
and reconstructed dependences ∆T(z) are given in
Fig. 6b. For N = 6 and δT = 0.1°C, the profile recon-
structed deviates from the initial one by no more than
0.5°C throughout the depth range. The reconstruction
procedure was repeated several times with different
realizations of random error. In all cases, the recon-
struction error was no more than 0.5°C. Thus, the given
values of the parameters N and δT, along with those of
D and λ from Table 2, may be considered as requisite
values for the measuring system to reconstruct the tem-
perature profile with an accuracy of ≈0.5°C. Determi-
nation of these parameters is the primary goal of com-
puter simulation preceding experiments. It should be
noted that the above requirements for the parameter
values are appropriate for our specific reconstruction
technique and expansion (14). Clearly, expansion (14)
uses a priori information on a desired profile to a min-
imal extent. If, for example, the function ∆T(z) is sup-
posed to have a single maximum, we should take basis
functions for expansion (14) such that they have a max-
imum. This will cut the number N of measurements and
loosen the requirement for the measurement accuracy.
The profile of ∆T(z) may be reconstructed with more
sophisticated techniques, e.g., with the Tikhonov
method of generalized residual [15], which proved its
efficiency in inverse problems like (9) [16].

CONCLUSIONS

In this work, we show that the tomography of
absorbing media may be carried out by means of near-
field microwave location. The diagnostics method sug-
gested may be applied to various media for determining
physical parameters influencing their permittivity. A
similar approach can obviously be devised for devices
operating in the IR and optical ranges. The design and
parameters of a particular device, as well as an achiev-
able measurement accuracy, depend of the dielectric
properties of the medium under study. Here, the appli-
cability of the method to temperature diagnostics of
biological objects is demonstrated. It appears that near-
field tomography may be of practical value in medical
applications (in particular, one can gain information on
the tissue temperature during hyperthermia), since reli-
able noninvasive methods of subsurface temperature
measurement are lacking at present. Certainly, further
(first of all experimental) investigations are needed to
draw final inferences about the prospects of this
method.

In this work, the problem is considered in a simple
physical statement where a constant-permittivity half-
space with an initial depth-invariable temperature T0 =
const is heated to some disturbed state with T(z) = T0 +
∆T(z). Actually, the human body has a nonuniform tem-
TECHNICAL PHYSICS      Vol. 49      No. 4      2004
perature distribution (the skin surface temperature is
lower than that of internal tissues). However, the gener-
alization of the solution for a medium that initially is
slightly nonuniform presents no problem. It will suffice
to apply formula (8) not only to the disturbed but also
to the initial state and take the difference between the
disturbed and initial profiles. The final form of formula (9)
will remain unchanged in this case, and this difference
will be taken as ∆T(z). Of interest is also the generali-
zation of this theory for a layered medium with layers
greatly differing in ε (such as the human body). The
solution of this problem faces purely technical difficul-
ties, since the Green’s function for such a medium is
derivable. One may expect that the general form of
Eq. (9) with the exponential kernel K(z) will persist;
however, some quantity averaged over all layers is
taken to mean the characteristic spatial scale deff in this
case.

One more simplification is that our method is
applied to measuring relative temperatures. That is why
we selected temperature control during hyperthermia
among a variety of medical applications. During hyper-
thermia, a temperature increment relative to the initial
(undisturbed) temperature is of greatest interest. Abso-
lute temperatures are much more difficult to measure
with NFDs, since the devices are extremely sensitive to
permittivity variation. Even insignificant temperature-
unrelated changes in the permittivity of biological tis-
sues may cause a hard-to-control offset of the reso-
nance frequency that exceeds the temperature variation
of f0. Minimization of these difficulties, which is a chal-
lenge, will enhance the potentialities and expand the
application of the method.
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APPENDIX

KERNEL OF INTEGRAL EQUATION (9)
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Here, Ea(r) is a given field distribution over the antenna
aperture; k0 = 2π/λ is the wavenumber in free space;

κ2 =  + ; and RE, RH, TE, and TH are the Fresnel
reflection and transmission coefficients for a plane
wave of two polarizations:

(A.4)
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Self-Organization and Supramolecular Chemistry of Protein 
Films from the Nano- to the Macroscale
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Abstract—Experimental data obtained with optical, polarization, scanning electron, and confocal laser micro-
scopes reveal a previously unknown supramolecular modification of protein self-organization (“protos”). This
modification arises upon condensation in the open nonequilibrium water–protein system. The process gives rise
to the liquid crystal phase of nanostructured eddylike protos films epitaxially growing on the nano- and mac-
rolevels. The model of protein spontaneous self-organization allows one to visualize and study the nonlinear
dynamics of condensation and self-organization of protein films with a supramolecular configuration on the
nano- and macroscale under abiotic and biotic conditions. This model may help in creating an atlas for protein
identification, as well as for diagnostics of pathogenic processes in the living organism that disturb protein self-
organization. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Not much is known today about the self-organiza-
tion and supramolecular chemistry of protein on the
nano- and macroscale [1–6].

Structuring in protein at the molecular level is inves-
tigated mainly by X-ray diffraction, which is capable of
detecting long-range order with strong covalent bonds.
With X-ray diffraction analysis, protein structures at
the angstrom level have been visualized [7–10]. This
method also dominates in the rapidly developing field
of biology called proteomics [11–15]. Proteomics deals
with the functioning of protein and its configuration
from the atomic to the cellular level.

It has recently been speculated that the structure of
individual molecules bears little information on protein
functioning compared with the structure of a large com-
plex [7]. Protein molecular chain folding as an informa-
tion carrier is confronted with noncovalent macromo-
lecular complexes with their unique structure and bio-
logical function [7]. The impression arises that nature
creates its functioning ensembles of vital importance at
the nanolevel, where polymer synthesis, cellular
growth, cell division, etc., take place [2].

It is known that, along with covalent bonds,
supramolecular chemistry with its weak noncovalent
van der Waals bonds also makes a large contribution to
the structuring and functioning of biological systems,
including protein, up to the macrolevel. However,
investigation of self-organization in proteins at the
meso- and macrolevel in terms of supramolecular
chemistry is still in its infancy.

Generally accepted methods of analysis of protein
topology (morphology) at the nano- and macrolevel in
the course of spontaneous self-organization in view of
1063-7842/04/4904- $26.00 © 20494
the specific supramolecular chemistry of proteins is as
yet lacking.

However, supramolecular chemistry and its related
configurations have drawn the attention of researchers
in the last decade [1, 2]. This direction is gradually
becoming a new independent interdisciplinary science
(at the interface between biology and physical chemis-
try), which is being effectively developed by Lehn with
coworkers [1, 2, 15–18]. It studies the evolution of con-
densing matter from simple division to complex phe-
nomena of self-organization.

From the available data in this field, it follows that
the primary stage of aggregation is molecular “recogni-
tion,” causing supramolecular catalytic reactions. Next
is self-assembling, i.e., mere collection and aggregation
of components. The final stage is spontaneous self-
organization, where the system executes an intrinsic
program of generating a self-organizing discrete
supramolecular architecture, this process being algo-
rithmically repeated from the nano- to the macrolevel.
Examples are the cooperative behavior of such ensem-
bles as molecular crystals, liquid crystals, micellas,
polymers, and colloids [2, 6].

The published data suggest that a kinetically con-
trolled nonequilibrium process arises, giving rise to
ordered coherent dissipative structures with hierarchi-
cal links and nonlinear dynamics.

Self-organization produces supramolecular func-
tioning structures, the properties of which depend on
their nature, chemical constitution, and interaction
between them [16]. In chemical polymers, supramolec-
ular behavior initiates the formation of domains (Fig. 1)
with supramolecular chains of monomer complexes.

Thus, there appear specific configurations of blocks
(Fig. 1) and film membranes, which form networks fea-
004 MAIK “Nauka/Interperiodica”
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turing macroscopic quasi-crystalline substructures with
autocatalysis and complementarity [2]. Such domains
and blocks play a major part in self-organization of
matter and living cell evolution [2]. Hence, supramo-
lecular behavior is inherent in the self-organization of
organic polymers and living systems.

This has been supported by numerous investigations
into the phenomenological properties and functionality
of organic polymers. Most frequently, the phase state of
epitaxially growing liquid-crystal films is of interest.
These films produce 3D supramolecular dissipative
structures with nucleation, which have a conic shape,
fractal geometry, and vortices of spiral and chiral sym-
metry. Such a material offers semiconducting proper-
ties and optical activity, is anisotropic, and has ferro-
magnetic or antiferromagnetic polarization [19–25].

Thus, it becomes obvious that one cannot carefully
study proteins, polymers most intensely functioning in
a living organism, ignoring their supramolecular struc-
ture. This point is of key importance for a better under-
standing of the process of self-organization and self-
assembly in protein systems at the cellular and macro-
scopic levels.

Our experience on visualizing the self-organization
dynamics in the protein–water colloid [4, 5, 25, 26]
appreciably helped us in studying the supramolecular
architecture of protein in terms of noncovalent chemis-
try.

EXPERIMENTAL
We performed experiments with the fast and slow

evaporation of water from the water–protein colloid
with the subsequent dynamic visualization of protein
condensation and self-organization under equilibrium
and nonequilibrium conditions in vitro. The colloid
with different proteins (albumin, globulin, hemoglobin,
lysozyme, gamma globulin, etc.) was placed on a hard
wettable substrate (glass or plastic) and dried either
uncovered (the open system, the first series of experi-
ments) at room temperature and atmospheric pressure
or covered by cover glass (the closed system, the sec-
ond series of experiments). In this way, we varied the
protein condensation kinetics. The self-organization
dynamics was visualized with optical, polarization,
scanning electron, and confocal laser microscopes.
A total of three thousand runs were carried out.
The method of investigation was detailed elsewhere
[5, 26, 27].

RESULTS
When the water was rapidly evaporated from the

open water–protein system in vitro under natural condi-
tions (at room temperature and atmospheric pressure
without any admixtures and perturbations), autowaves
arose in the excited nonequilibrium system. The self-
organization of the protein was observed with the for-
mation of its nonequilibrium post-translational modifi-
TECHNICAL PHYSICS      Vol. 49      No. 4      2004
cation (protos), which features specific symmetries of
dissipative nanostructures at the meso- and macrolevels
(Figs. 1–6).

In the closed equilibrium system with the slow evap-
oration of the water under the same temperature and
pressure, another process takes place: the crystalliza-
tion of the protein into a structure with long-range order
(irrespective of the film size) and another type of sym-
metry (for details, see [5, 26, 27]).

Thus, we studied the self-organization (self-assem-
bling during condensation) of protein, the character and
phenomenology of its structures, and their symmetry
under nonequilibrium conditions in vitro. It was found
that the process of protein self-organization is radically
different from protein condensation [8–10].

The protos modification of protein in vitro is shown
to have the same types and scales of symmetry as in
protein in vivo. Self-organization (self-assembling) of
protein occurs when the dehydration of the water–pro-
tein system is fast. In a living organism, self-organiza-
tion may attend adenosine triphosphoric (ATP) acid
hydrolysis in protein phosphorylation and also appear
in the case of usual water evaporation from the open
system in vitro.

DISCUSSION

Our experiments demonstrate that a supramolecular
architecture with its related function arises when the

a a

A

Fig. 1. Nonequilibrium form of protein (protos) under an
optical microscope. Geometrically similar blocks (cells)
with nuclei are seen. ×200.
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condensation rate in the water–protein system is rela-
tively high (higher than in the closed system). More
specifically, self-organization (self-assembling) was
observed only in the open system, which is far from
equilibrium. Under these conditions, the behavior (phe-
nomenology) of protein coincides with the supramolec-
ular properties of organic polymers [19–25]; namely,
stacked epitaxially growing liquid-crystal films appear,
causing the formation of 3D conic supramolecular
nanostructures. Their distinctive features are opposite
vorticities, nonlinear dynamics, autocatalysis and self-
complementarity (Figs. 2–6), optical activity, anisot-
ropy, etc.

Under the other experimental conditions, i.e., in the
closed and, hence, more equilibrium water–protein sys-
tem, the liquid-crystal phase with the coherent synchro-
nous autocatalytic processes of self-organization of
protein with supramolecular properties do not occur;
instead, protein acquires a crystal structure with long-
range order [5, 26, 27].

Thus, the identical chemical processes attending
protein condensation (dehydration, aggregation, and
polymerization) lead to radically different results under
different kinetic conditions. The high initial viscosity of
the water–protein colloid renders the process apprecia-
bly nonequilibrium even if the rate of evaporation of the

(a)

(b)

Fig. 2. (a, b) A series of large-scale (rectilinear and spiral)
defects split a nonequilibrium protein film into cells with
shell-like nuclei. Three-dimensional opposite vorticities,
slight asymmetry, and stacked films with attraction domains
are seen. The central area of the field of the primary
(“mother”) spiral is split into two, four, and a greater num-
ber of small (“daughter”) vortices. Optical microscope,
×185.
solvent is moderate. In this case, a specific type of tur-
bulence, elastic turbulence, arises [28].

The fact that the system is far from equilibrium
makes it pass from the nonequilibrium state to equilib-
rium via energy dissipation, causing self-organization.
Self-organization goes through conformation transi-
tions, releasing an energy for the protein “engine.” This
is consistent with the notion [1, 2] that self-organization
is the source of forces that favor the evolution of the
biological world from inanimate matter [2].

It should be emphasized that, as follows from our
experiments, protein self-organization in the open sys-
tem in vitro proceeds without any other ingredients of a
living organism, i.e., under abiotic conditions in the
absence of the ATP acid hydrolysis energy, which is
today viewed as a necessary source for self-organiza-
tion of protein.

We also found that the energy of condensation of the
nonequilibrium protein–water system in vitro is neces-
sary and sufficient for the protein to self-organize and
take supramolecular properties. This generates the
hypothesis that the mechanism of self-organization in
vivo is the same. As is known, ATP acid, when com-

100 µm

JEOL 20 kV
10 µm

×430 38 mm

Fig. 3. (a) Electron micrograph of protein samples in the
form of parallelepipeds (cleavage, side view). Stacked sim-
ilar films are cut by defects to form steps with a smooth sur-
face and aggregates inside. JEOL scanning electron micro-
scope, ×10000. (b) Electron micrographs of protein vortex
structures in vitro are similar to the cross-sectional view of
tubular human bones (the inset below).

(a)

(b)
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bined with protein, rapidly hydrolyzes (absorbs water),
providing conditions for the high-rate dehydration of
the water–protein system, i.e., passes it into the highly
nonequilibrium state. To see whether such a scenario is
a possibility in a living organism (the complex nonequi-
librium and nonlinear system) [29, 30], we compared
the morphology of the protein nonequilibrium modifi-
cation “protos” on glass (in vitro) and in the living (in
vivo). In both cases, we observed spiral, mirror, chiral,
radial, longitudinal, and “porcupine” symmetries, as
well as fractal geometry from the nano- to the macros-
cale (Figs. 1–6).

The same is indicated by a variety of biological
observations. For example, the activity of protein not
only in a living organism but also under the abiotic con-
ditions in vitro (both on glass and in a test tube) follows
from many biochemical, histochemical, immunologic,
and other investigations (Anfinsen’s tests, antigen–anti-
body reactions, etc.).

(a)

(b)

Fig. 4. Formation of small appendages (branches) on oppo-
site sides of the mother protein film in vitro. The demonstra-
tion of mirror symmetry that arises during the growth of
blades of grass and trees (branches, leaves). (a) Bladelike
form and (b) form similar to a fish skeleton. ×200.
TECHNICAL PHYSICS      Vol. 49      No. 4      2004
(a)

(b)

Fig. 5. (a) Demonstration of fractal properties of the struc-
tures. The volume of the features decreases with distance
from the base. (b) Doubled blocks shearing one support
form three-block protein structures with a conic top. Joining
of the fractal elements are akin to the self-complementary
(“key-in-lock”) joining of biological fragments. Thickening
of the joint areas, spiral twisting of the films, discreteness,
and dichotomy are distinctly observed. Optical microscope,
×320.

b

a

Fig. 6. (a) Cone-shaped (fine-pointed) self-similar films of
decreasing fractal dimension. Shell-like funnel-type struc-
tures in vitro are observed. Optical microscope with a UV
filter. (b) Similar forms of cone-shaped fractal structures in
vivo (in the ridge of an insect).
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Moreover, biologists know the properties of protein
in a living organism that are completely the same as the
phenomenological properties of polymers with their
supramolecular constitution. These are the presence of
the liquid-crystal phase with eddylike structures and
stacked films from the nano- to the macroscale, as well
as with fractal geometry (Figs. 3, 6); optical activity;
birefringence [5] and other catalytic and autocatalytic
properties; and self-complementarity and complemen-
tarity (antigen–antibody interaction). Many tissues of
the protein nature in a living organism have a similar
structure (bones; hair; nerve, muscular, and connective
tissues (collagenous fibers); fibrin; etc. At the same
time, it is well known that a living organism is always
an open dynamic far-from-equilibrium system, which
is necessary for the process of self-organization with
dissipative structures to occur [29–32].

Even more convincing evidence in favor of the
hypothesis comes from the recent advances in studying
nanostructures. According to [33], nanostructures are
the focus of interest for biology, physics, and electronic
engineering. Of most interest is that organic polymers
(protein, DNA), on the one hand [33], are becoming a
promising material for electron devices [33, 34]; on the
other hand, molecules of protein, as well as its nano-
structures, cells, and tissues, are now artificially grown
to replace living tissues in medicine [3, 36, 37].

Thus, based on the above, we may argue that differ-
ent proteins in biological systems behave according to
the same program written in terms of supramolecular
chemistry. Physically, this means condensation of the
open nonequilibrium water–protein system, giving rise
to the same configuration and function of protein dur-
ing the self-organization process (both in vitro and in
vivo).
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Abstract—A theory of radiation in a crystalline microundulator is developed. It is shown that crystalline
microundulators may be used as effective alternative radiation sources in the wavelength range λ = 0.1–1.0 Å.
© 2004 MAIK “Nauka/Interperiodica”.
Crystalline undulators have been the subject of
intensive research in recent years [1–5]. It is known [6–
8] that, when a single crystal of Si1 – xGex solid solution
grows under a constant concentration gradient along

the [1 1] direction, the related atomic planes diverge in
a fanwise manner and (111) atomic planes normal to
them bend to form a channel with a certain radius of
curvature. In [5], a similar set of plane-parallel equis-
paced plates with a periodically varying direction of
curvature was viewed as a microundulator (Fig. 1). For
a number of technical reasons, a crystalline microundu-
lator may be the device of choice, e.g., in the X-ray
range λ = 0.1–1.0, which is usually used in X-ray dif-
fraction studies.

As follows from Fig. 1, a relativistic particle falling
into the channel moves along a piecewise circular peri-
odic trajectory with an oscillation frequency of Ω =
2πβc/L, where L = 2(a + b) is the period of the undula-
tor, a is the thickness of the plates, and b is the plate
spacing. In addition, inside the plate, the particle exe-
cutes oscillations with a frequency much higher than Ω:
Ωch @ Ω . The efficiency of such undulators can be esti-
mated from the angular–frequency radiation distribu-
tion given by [9]

(1)

Here, r(t) = [x(t), 0, z = βct] is the radius vector of the
particle, n = (sinθcosϕ, sinθcosϕ, cosθ) is the unit
vector in the direction of the photon emitted, and βc is
the longitudinal velocity of the particle.

For a smoothly joined trajectory of the particle, we
have (up to smalls on the order of a2/16R ! 1)

(2)
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where ach is the oscillation amplitude in the channel
(the amplitude is of atomic size) and R is the radius of
curvature of the channel. Introducing the new variable

(3)

we arrive at

(4)

instead of (2).
It is known [10] that odd periodic functions may be

expanded only in a sine Fourier series:

(5)

Since x(ϕ + π) = –x(ϕ), only the Fourier coefficients
with odd numbers are other than zero. Therefore, (5)
may be replaced by

(6)

z ϕ a b+( )/π,=
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Fig. 1. Trajectory of a particle in a crystalline undulator.
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where

The contribution from channel oscillations to the
coefficient a2n – 1 has the form

(7)

In practice, the amplitude ach is usually more than
two orders of magnitude smaller than x0 and Ωch @ Ω .
Therefore, this contribution may be neglected if n is
small, since (2n – 1) ! Ωch/Ω and the first sine in (7) is
a rapidly oscillating function in this case. In other
words, oscillations inside the crystal may be ignored for
lower harmonics of the undulator.

Substituting z = βct into (3), we find that ϕ = Ωt and
substitute this expression into the first formula of (6).
The vector integrand in (1) is represented in the form

(8)

where

and (i, j, k) are the unit vectors in the x, y, and z direc-
tions.

Relativistic particles emit hard radiation at angles

θ ≈  = 1/γ to the velocity. The angle of inclina-
tion of rectilinear parts of the trajectories is a/2R.
Therefore, radiations from various parts of the trajec-
tory interfere if the condition

(9)

is met.
Substituting (4) into (6) yields

(10)

From (10), it follows that a2n – 1 decreases with
increasing harmonic number. On the other hand, it is
known from the theory of undulator radiation that the

radiation intensity is proportional to . Therefore,
we will study only the first two harmonics. Then, in

a2n 1–
2
π
--- x 2n 1–( )ϕ ϕ .dsin

0

π
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2
n
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2
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2

view of (6) and (8), we have

(11)

With an accuracy of several percent, the exponential
in (1) can be represented in the form

(12)

if the limitation

(13)

is imposed on the frequency.
The value of x0 can be found from Fig. 1:

(14)

therefore, instead of (13), we have

(15)

Substituting (11) and (12) into (1) and taking into
account that all δ functions with nonzero arguments are
zero, we arrive at

(16)

Here, the first two terms stand for the first two harmon-
ics; the third term is a correction to the first harmonic.
Squaring this expression and replacing one integral by
the 2πδ function and the other by the time of radiation
T  ∞, we find

(17)

Substituting (17) into (1) and integrating over the
angular range, we arrive at an expression for the spec-
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tral density per unit transit length of the particle that is
well known from the theory of undulator radiation [11]:

(18)

In a similar way, we find for the correction

(19)

where ξ = ω/2Ωγ2 is the dimensionless frequency. To
illustrate the results obtained, consider a ten-period
crystalline undulator with a = 0.01 cm, b = 0.7 cm, R =
200 cm, γ = 104 (E = 5 GeV), and the dechanneling
length Ld = 0.2 cm. For these parameters, formula (10)
gives for the Fourier coefficients of the first two har-
monics

(20)

For frequencies ξ lying in the range 0.9–1.0, the
radiation wavelength is roughly equal to 0.7 Å. The
number of photons with this wavelength that are emit-
ted from the unit path length give 0.5 × 10–4 kV/cm. For
comparison, a magnetic undulator with L = 10 cm
(spacing), H = 500 Oe, and E ≈ 13 GeV generates
0.36 × 10–4 kV/cm in the same frequency range. It
should be noted that the number of photons emitted
cannot be increased by enhancing the magnetic field,
since the bipolarity condition is violated and the spec-
trum diffuses in this case.

From formulas (18), it follows that the radiation at
the second harmonic is negligible, I2/I1 ≈ 0.06, near the
peak frequency of the first harmonic (ξ = 1). The fre-
quency dependences of the intensities of both harmon-
ics are shown in Fig. 2. Correction (19) is indistinguish-
able in Fig. 2, since ∆I1/I1 = 0.013. For the case consid-
ered, conditions (9) and (15) are readily fulfilled.
Formulas (18) are also valid for the specific case b = 0.
From (10), it is seen that the undulator does not emit in
the limit R  ∞. In this case, the trajectory is given by
xch = achsinΩcht, according to (4); i.e., the trajectory is
the same as upon channeling. Therefore, we ignored an
insignificant shift of x0 and the initial phase Ωchb/2βc.

Thus, as follows from the theory developed in this
work, crystalline microundulators seem to be more
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promising radiation sources in the wavelength range
λ ≤ 0.1 Å.
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Fig. 2. Spectral distribution of the first two harmonics in a
crystalline undulator. The intensity is given in units of
Ω3(γea1/2c2)2; the frequency, in units of 2Ωγ2. Here, a1 is
the first harmonic amplitude and Ω is the oscillation fre-
quency of the particle.
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Abstract—The electron energy distribution function in an RF low-pressure plasma is found in the presence of
dust particles. The effect of microscopic objects on the electroneutrality of the plasma and the electron energy
distribution is estimated. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Charged dust particles are often present in plasma-
chemical reactors [1, 2], arising as a result of polymer-
ization, interaction between the products of plasma-
chemical reactions and the reactor walls, and cathode
sputtering. The presence of a condensed phase in etch-
ers and plasma-chemical reactors degrades the surface
quality of wafers etched and films grown [3]. The par-
ticle size may vary between 0.01 and 100 µm. Dust par-
ticles present in a plasma have a negative charge Qd
because of the higher mobility of electrons compared to
that of ions. This charge may be significant and (when
the concentration of microparticles is high) influence
considerably the plasma parameters; in particular, it
may affect the electron energy distribution [4–6]. The
charge Qd and its related floating potential at the surface
φs are found from the equality condition (in the absence
of emission) for electron and positive-ion currents on
each dust particle. The corresponding absorption cross
sections can be estimated in the approximation of lim-
ited orbital motion by using the well-known formulas
of the probe theory [7].

CALCULATION

In this study, we consider the effect of dust particles
that are charged in an argon-discharge plasma (via the
processes mentioned above) on the electron energy dis-
tribution function (EEDF). Suppose that all the parti-
cles are spherical and identical in size. Then, the Debye
potential, which screens the region around a particle, is
expressed as follows:

(1)

The Debye screening length is given by

φ r( ) φs
a
r
--- r a–( )/λL–[ ] .exp=

1
λL

-----
e2n
ε0

-------- 1
kTe
-------- 1

2E0
---------+ 

  ,=
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where φs is the floating potential on the particle surface,
a is the radius of the particle, n is the plasma volume
concentration, and E0 is the average energy of the ions.

The charge Qd of a dust particle is related to the ion,
Ii, and electron, Ie, currents through particle–particle
collisions:

(2)

The electron current toward a dust particle can be
expressed as

(3)

where ne is the electron concentration, u is the kinetic
energy of the electrons, and f is the EEDF.

The expression for the ion component is simpler and
better understood, since the ion distribution function is
known and, as a rule, is Maxwellian. The ion current
toward a dust particle has the form

(4)

where ni is the ion concentration.
The floating potential φs of a particle is related to the

particle charge by the expression

Taking into account that ne + ndQd/e = ni, one may
express the ratio ne/ni as

(5)

where nd is the dust particle concentration.
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In view of expression (1) for the electron–particle
interaction potential, the cross section of elastic elec-
tron–particle scattering can be written as follows [8]:

(6)

where Te is the electron energy in eV.
According to [5], the cross section of electron

attachment to a dust particle is given by

(7)

In explicit form, this expression demonstrates that
only fast electrons may be absorbed by dust particles.
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Fig. 1. EEDF in the RF argon-discharge plasma (1') with
and (2') without the condensed phase at E/N = (1) 50 and
(2) 100 Td. nd = 3 × 107 cm–3.

Fig. 3. Ionization rate constant of an argon atom in the RF
plasma (1) without and (2) with the condensed phase.
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RESULTS AND DISCUSSION

We simulated the EEDF in an RF argon-discharge
plasma in the presence of dust particles, as well as
charging of a dust particle according to expression (2).
Figure 1 shows the EEDFs in the RF plasma for several
dust particle concentrations. The distributions were cal-
culated for dust particles of radius rd = 10–4 cm and con-
centration nd = 3 × 107 cm–3. The values of E/N (the
Townsend coefficient) varied in the range 25–1000 Td.
The ion concentration was given parametrically and
equaled ni = 3 × 1011 cm–3. The electron concentration
in the plasma was calculated by formula (5).

At the initial stage of calculation, the charge of the
particles was taken to be –1. Then, the EEDF was cal-
culated by formulas (3) and (4), the ion and electron
currents toward a dust particle were found, and the
charge was calculated from relationship (2). The fulfill-
ment of the equality Ie = Ii indicated that the calculation

3
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Fig. 2. (1) Floating potential ϕs of a dust particle and (2) the
electron temperature Te in the RF argon-discharge plasma.

Fig. 4. Charge Qd of a dust particle vs. applied field E/N.
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cycle was over. The time step was τ = 10–12 s. As is seen
from Fig. 1, the presence of dust particles in the plasma
leads to the depletion of the high-energy part of the dis-
tribution function.

Figure 2 plots the floating potential of a dust particle
and the electron temperature in the RF plasma versus
E/N. The particle potential is independent of the parti-
cle size and is governed by only the surface adsorption
of electrons and ions. It depends on the electrophysical
and thermophysical parameters of the plasma and the
particle material (ne, ni, Te, and Ti). The increase in the
floating potential with increasing electric field intensity
is caused by a rise in the electron temperature Te and an
increase in the fraction of high-energy electrons in the
EEDF. The floating potential of the particles exceeds Te
approximately by 50% for the same values of E/N,
which is in agreement with estimates made in [8]. Dust
modifies the EEDF, causing the other discharge charac-
teristics to change. For example, a decrease in the elec-
tron concentration in the high-energy part of the EEDF
because of the attachment of fast electrons to dust par-
ticles lowers the ionization rate constant of argon
(Fig. 3). The charge of a particle may be as high as 103

electron charges in this case (Fig. 4). In this situation,
the discharge self-maintenance condition may be vio-
lated. To maintain the discharge, the ionization rate
(and, hence, the electric field intensity) must be raised.
This, in turn, necessitates an increase in the power
delivered to the discharge.

Thus, we studied the effect of dust particles on the
EEDF and, accordingly, on the kinetic coefficients of
processes occurring with the participation of electrons
and ions and on the gas discharge maintenance condi-
tions. It is shown that one should consider this effect
when simulating plasma-chemical reactions.
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Abstract—The fractal dimension of the residual deformation relief on the surface of titanium nickelide is
shown to be sensitive to the deformation mechanism. It decreases under phase-transformation-induced inelas-
ticity and increases under plasticity. At the time the basic deformation mechanism changes, fluctuations are
maximal. The experimental dependence of the microstrain on the fractal dimension for the initial austenitic
phase is not a single-valued function: it consists of two groups of data points that correspond to different defor-
mation mechanisms. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Deformation relief forming on a solid surface is
related to deformation mechanisms that occur at several
scale levels. It was shown [1–3] that the relief can be
analyzed in terms of fractal geometry, which allowed
one to track its evolution under mechanical and other
actions [4, 5]. However, physical quantities and defor-
mation mechanisms that are related to the fractal char-
acteristics of a surface have not been systematically
studied. Therefore, it would be of interest to study the
fractal characteristics of deformation relief in materials
where deformation mechanisms at various stages of
deformation are known to be distinctly different. One
such material is an alloy that undergoes strain-inducing
martensitic transformation. During loading of the alloy,
the stage of elastic deformation is followed by that of
phase-transformation-induced (phase) inelasticity, and
then the material plastically deforms. In the load–strain
diagram, stages where one or another deformation
mechanism dominates are clearly seen. The phase and
structural state of the material at each of the stages can
be determined by X-ray diffraction analysis.

The purpose of this work is to find the relation of a
macrostrain and lattice parameters of the microstruc-
ture with the fractal characteristics of the surface upon
strain-inducing martensitic transformation in TiNi.

EXPERIMENTAL

Dumbbell-shaped specimens with a 22-mm-long
and 5-mm-wide portion to be deformed were cut out
from a 1-mm-thick sheet of Ti–Ni50.7 intermetallic,
mechanically polished with diamond pastes (down to
ASM 1/0 superfine diamond paste), vacuum annealed
at 110°C for 1 h, and furnace cooled. The specimens
were subjected to stepwise extension on an INSTRON-
1063-7842/04/4904- $26.00 © 20505
1185 testing machine at room temperature to record
load–extension diagrams. After each step (i.e., after
relieving), three preselected characteristic surface areas
were imaged by means of an RÉM-200 scanning elec-
tron microscope at ten magnifications. The minimal
and maximal scan areas measured 10 × 10 and 750 ×
750 µm.

To obtain the fractal characteristics, we applied the
technique [6] based on the Mandelbrot vertical section
method [7] to the SEM images. In computer scanning,
the images were represented as a dot pattern of 512 ×
512 dots and the ratio L/L0 (where L is the apparent
length of the scan line over the scan surface and L0 is
the projection of this line onto the plane) was deter-
mined from their brightness (the secondary electron
current). The value of ln(L/L0) was taken to be the mea-
sure of the surface roughness. Then, we plotted L/L0
against the magnification in the log–log coordinates
(so-called fractal plots). These plots had a shape close
to an inverse sigmoid. The fractal dimension Df was
calculated through the absolute value of the slope B of
the middle segment of the linearly approximated fractal
plot, Dr = 1 + |B|, and, therefore, served as an integral
characteristic of the surface [7].

The phase state and microstructure modifications
after each loading and relieving were examined using a
DRON-UM1 X-ray diffractometer (CuKα radiation).

RESULTS AND DISCUSSION

For residual strains within 2%, inelasticity in the
specimen is induced by the B2  B19' martensite
transformation. The inelasticity consists of the revers-
ible (superelastic) and irreversible, or memorizable (at
a given temperature), components. At this stage, defor-
mation is due only to martensitic transformation and
004 MAIK “Nauka/Interperiodica”
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Fig. 1. SEM images of the titanium nickelide surface at a residual strain of (a) 1, (b) 2.8, and (c) 5%.
this mechanism causes a relief in the form of martensite
lamellas. This relief appears during loading and almost
completely disappears upon relieving: the traces of the
lamellas have a weak contrast against the background
of the initial relief (Fig. 1a).

The residual strain may rise to 3% at the same tem-
perature only when the plastic component arises, which
turns the superelastic component into the memorizable
one. Strain hardening and the broadening of X-ray dif-
fraction lines indicate that the amount of structure
defects increases. The surface relief in the form of par-
allel lines of localized strain that run normally to the
loading direction is clearly visible at high magnifica-
tions (Fig. 1b). On the contrary, the relief appearing as
areas of weak surface extrusion is distinctly observed at
low magnifications (Fig. 1b). The characteristic size of
the extrusion areas is 30–100 µm, which is slightly
larger than the grain mean size (about 20 µm).

When the residual strain exceeds 4%, the number of
localized strain lines increases substantially and they
occupy extended regions of the material via the forma-
tion of new lines, which run approximately parallel to
the already existing ones (Fig. 1c). At low magnifica-
tions, the surface appears as consisting of individual
grains because of their nonuniform extrusion (Fig. 1c).
At this stage, the material hardens and the macrostress
reaches the yield point, which is more than twice as
high as the stress of B2  B19' phase transformation.
According to X-ray diffraction data, microstrains also
grow significantly, and the austenite–martensite trans-
formation ceases. The set of the above findings indicate
that martensite-induced inelasticity make a minor con-
tribution to the macrostrain, whereas plasticity, on the
contrary, becomes the basic mechanism of deforma-
tion.

For a given dot pattern, the surface roughness
ln(L/L0) increases with the residual macrodeformation
only slightly. However, we failed to find the detailed
form of this dependence. It seems likely that the tech-
nique applied to determine the roughness from SEM
images gives overestimated values, since the roughness
thus determined not only depends on the surface profile
but is also affected by the contrast from inclusions,
voids, etc.

A typical dependence of the surface roughness on
the magnification is given in Fig. 2. In most cases, this
quantity behaves as a fractal one: it drops with increas-
ing magnification and is nearly constant at the lowest
and highest magnifications. Figure 2 also demonstrates
the interpolating straight line whose slope specifies the
fractal dimension Df. The dependence of the dimension
Df on the residual strain in the specimen is given in
Fig. 3. When using different-degree polynomials to
approximate this dependence, we found that the change
of a linear function to a parabola improves the correla-
tion coefficient most significantly: with a further rise in
the degree of polynomial, this coefficient increases only
slightly. We therefore assumed that the parabolic func-
tion (Fig. 3) is the best approximation. It has a mini-
mum at a residual macrostrain of about 2% and then
sharply grows, far exceeding the initial decline. The
approximating parabolas Df(εσ = 0) constructed for sev-
eral surface areas of the deformed specimen were found
to virtually coincide with each other; that is, the strain
range where Df decreases terminates at a residual strain
of about 2% and is associated solely with the martensi-
TECHNICAL PHYSICS      Vol. 49      No. 4      2004
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tic mechanism of deformation. The initial point of
increase in Df(εσ = 0) coincides with the onset of local-
ized plastic deformation, and the development of the
deformation relief leads to a substantial increase in Df.

The decrease in Df at small strains may be assigned
to the specific feature of the residual martensite-related
relief. If the characteristic size of the relief is small, the
surface roughness at high magnifications may appear to
be higher than at low magnifications. Because of this,
the right-hand side of the fractal curve in Fig. 2
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Fig. 2. Typical fractal plot (the residual strain is 3.4%).
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Fig. 3. Dependence of the fractal dimension Df on the resid-
ual strain.
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ascends, which, in turn, may decrease its slope and,
hence, the value of Df. Thus, two basic deformation
mechanisms, forming reliefs of different types, make
contributions of opposite sign to the variation of
Df(εσ = 0).

The measurement errors given in the plots are
obtained by statistically processing the data with allow-
ance for errors of individual measurements [6, 7]. As is
seen from Fig. 3, the fluctuations of Df are maximal
(exceed the errors) at low strains and near the mini-
mum. Note that, in this range, elastic deformation
changes to phase inelasticity and then to plastic defor-
mation.

Figure 4a shows the full width at half maximum
(FWHM) of X-ray diffraction lines (with greatly differ-
ing interplanar spacings dhkl in the B2 lattice) versus the
fractal dimension Df. The arrows indicate the direction
of growth of the residual strain. The FWHM data points
for the (321) line are seen to split into two groups,
which are interpolated by different dependences: the
lower branch, by a near-parabola curve; the upper one,
by a straight line. For the (110) line, the FWHM curve
at high Df can also be subdivided into two branches;
however, in this case, the half-width is small compared
with that for the (321) line. Assuming that a major con-
tribution to the FWHM comes from lattice micros-
trains, we plotted the microstrains against the fractal
dimension in Fig. 4b. For both reflections mentioned
above, the microstrain curves run in a similar way and
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Fig. 4. (a) FWHM of X-ray diffraction lines and (b) micros-
trains in different atomic planes of the B2 lattice vs. the frac-
tal dimension Df of the titanium nickelide surface during
tension. (×) (110) reflection and (d) (321) reflection.
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almost coincide quantitatively. Two branches can be
distinguished in the plot: linearly increasing and
decreasing with increasing Df. The data points corre-
sponding to the onset of deformation are at the lower
right corner of the plot. The lower branch as a whole
corresponds to the martensitic mechanism of deforma-
tion, where the FWHM grows first slowly and then rap-
idly. The upper (linear) branch corresponds to intense
surface patterning during plastic deformation. In other
words, the smooth and long-term transition from phase
inelasticity to plasticity is clearly outlined via the pres-
ence of small-Df range in this plot.

CONCLUSIONS

Thus, when titanium nickelide deforms via phase
inelasticity alone, the fractal dimension Df decreases
and visually detectable traces of the residual deforma-
tion relief in SEM images are absent. As the material
begins hardening and plastic microstrains appear, two
types of deformation relief are observed first locally
and then throughout the specimen and the fractal
dimension Df increases.

Fluctuations of the fractal dimension Df, which
attend the growth of the residual strain, are maximum
in the range of change of the basic deformation mecha-
nism.

The dependence of the B2 lattice microstrain on the
fractal dimension Df is not a single-valued function; it
is divided into two groups of data points according to
different mechanisms of titanium nickelide deforma-
tion.
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Abstract—A kinetic theory of rarefied plasma that is based on the construction of propagators for distribution
functions is developed. The feature of this theory, which is physically equivalent to the standard kinetic theory,
is that propagators being constructed for distribution functions are themselves dependent on these distribution
functions. © 2004 MAIK “Nauka/Interperiodica”.
The standard kinetic theory for rarefied plasma,

where n  @ 1 (n is the particle concentration, rD is the
Debye radius of the plasma), is based on a set of inte-
gro-differential equations. These are the Boltzmann
kinetic equations with collision integral (for particles of
each sort) and the Maxwell equations. In the latter, the
charge density and current density are expressed
through one-particle distribution functions, which, in
turn, are determined from the kinetic equations (see,
e.g., [1]). In this work, the author suggests a kinetic the-
ory of rarefied plasma (a physical equivalent to the stan-
dard kinetic theory) that is based on the construction of
propagators for distribution functions, these propaga-
tors being dependent on these functions. With such an
approach, the study of plasma kinetics is reduced to
solving a set of integro-differential equations, so that
the problem may be simplified.

Consider a volume V that contains Na particles of
sort a and Nb particles of sort b. In the case of a classical
plasma, it suffices to take into account only the contribu-
tion of the classical trajectory in the path integral [2],
which specifies the propagator of a particle. The classical
propagator for the density matrix ρ(r, r', t) has the form

(1)

where
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is the classical action of a particle with mass ma, va(t)
and ra(t) are the velocity and radius vector of the parti-
cle, Uaa and Uab are the potential energies of particle–
particle interaction, Ri is the radius vector of a scatterer,
and Fa is the external force acting on the particle. In a
rarefied plasma, the characteristic correlation (interac-
tion) time is much shorter than the characteristic relax-
ation time [1]. Therefore, one may assume that scatter-
ers in (1) and (2) describe piecewise rectilinear trajec-
tories and pass rectilinear segments for a time that is
smaller than the relaxation time but longer than the cor-
relation time. In this case, ensemble averaging of prop-
agator (1) is carried out with a multiparticle distribution
function where only pair correlations are taken into
account (polarization approximation [1]). Such averag-
ing results in an effective-action propagator. In the limit
N  ∞ and V  ∞, the averaged propagator has the
form
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Here, gba(R1, p1, R2, p2, t) is the pair correlation func-
tion, which is expressed through the single-particle dis-
tribution functions fa,b(r, p, t) (p is the particle momen-
tum) [1], 

(4)

and  is the collision volume (the linear Stark effect
in the line broadening theory [3]).

In the case of Coulomb interaction, the Weisskopf
radius is on the order of the minimal impact parameter
rmin in the Landau collision integral [4]. The averaged
effect of the scatterer fields on the particle trajectory in
(3) can be taken into consideration in terms of the per-

turbation theory where rmin/rD and  are small
parameters (rD is the Debye radius, which defines the
characteristic correlation length of plasma particles).

The first term in (3) describes the evolution of the
distribution function in the self-consistent field approx-
imation, and the term with the collision integral in the
exponent defines the deceleration (acceleration) of a
plasma particle due to the self-consistent field. The
other terms describe the effect of the collision integral
on the plasma kinetics.

If an external force is so high that Frmin ≥ U(rmin), the
effect of such a force on the correlation function should
be regarded [1].

In the case of a relativistic plasma, one should sub-
stitute the relativistic expression for the kinetic energy
of a particle into (3) and take into consideration both
the scalar and the vector potentials of scatterers [5]. The
correlation functions of the particles should also be rel-
ativistic [1].
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For a quantum plasma, when calculating the path
integral, which defines the propagator, one must con-
sider the contributions of all trajectories rather than of
the classical trajectory alone. Statistical averaging is
carried out over the density matrix. In the polarization
approximation, the quantum correlation function is
expressed through one-particle density matrices in the
Wigner representation ([1, part 3 and references
therein]). The averaged propagator is given by

(5)
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where

is the collision volume.

For a rarefied plasma, the path integrals for scatter-
ing particles in (4) and (5) can be calculated in terms of
the perturbation theory [2]. The averaged effect of scat-
terers on a probe particle is also found from the pertur-
bation theory. Exchange interaction is included in the
quantum correlation function.
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To conclude, expressions (3) and (5) can be consid-
ered as a solution to the kinetic problems for short
times, i.e., when the distribution function varies insig-
nificantly.

REFERENCES

1. Yu. L. Klimontovich, Kinetic Theory of Nonideal Gases
and Nonideal Plasmas (Nauka, Moscow, 1975; Perga-
mon, Oxford, 1982).

2. R. P. Feynman and A. R. Hibbs, Quantum Mechanics
and Path Integrals (McGraw-Hill, New York, 1965; Mir,
Moscow, 1968).

3. H. Griem, Plasma Spectroscopy (McGraw-Hill, New
York, 1964; Atomizdat, Moscow, 1969); I. I. Sobel’man,
Introduction to the Theory of Atomic Spectra (Fizmatgiz,
Moscow, 1963) [in Russian].

4. E. M. Lifshitz and L. P. Pitaevskii, Physical Kinetics
(Nauka, Moscow, 1979; Pergamon, Oxford, 1981).

5. L. D. Landau and E. M. Lifshitz, The Classical Theory
of Fields (Nauka, Moscow, 1973; Pergamon, Oxford,
1975).

Translated by V. Isaakyan



  

Technical Physics, Vol. 49, No. 4, 2004, pp. 512–515. Translated from Zhurnal Tekhnichesko

 

œ

 

 Fiziki, Vol. 74, No. 4, 2004, pp. 135–138.
Original Russian Text Copyright © 2004 by Ibragimova, Kalanov, Kirk, Foltyn.

                                                                                                                                                                 

SHORT
COMMUNICATIONS
Effect of Mechanical Deformation on the Critical Current 
in YBa2Cu3O7 – b Superconducting Films

E. M. Ibragimova*, M. U. Kalanov*, M. A. Kirk**, and S. R. Foltyn***
* Institute of Nuclear Physics, Academy of Sciences of Uzbekistan, Tashkent, 702132 Uzbekistan

e-mail: ibragimova@inp.uz

** Argonne National Laboratory, Argonne, Illinois, USA

*** Los Alamos National Laboratory, New Mexico, USA

Received September 25, 2003

Abstract—It is shown that local mechanical bending of YBa2Cu3O7 – b Ag-coated superconducting films
deposited on flexible metal substrates in the temperature interval 77–300 K may increase the critical density Jc
of the transport current to values as high as 106 A/cm2 or even higher at 77 K. Also, bending decreases the volt-
age criterion. This means a rise in the intergranular conductivity and, accordingly, a reduction of Joule losses.
© 2004 MAIK “Nauka/Interperiodica”.
In accordance with requirements of high-current
electronics, superconducting motors, transformers, and
transmission lines must withstand current densities of
Jc > 106 A/cm2 at 77 K in magnetic fields up to 2 T. To
provide a high efficiency and low losses, the insulating
layer must be thin and robust. In the Russian project of
superconducting transformer, insulation as thin as
10−6 m is expected to raise the interturn breakdown
voltage to 300 V [1]. Japanese companies are projecting
the production of 100- to 1000-m-long and 100-µm-
thick tapes coated by an YBaCuO layer that is capable
of withstanding Jc > 104–105 A/cm2 at 77 K [2]. The
current status of high-current superconducting technol-
ogy demonstrates that Bi-based HTSC tapes withstand
current densities of 0.14 × 106 A/cm2 in magnetic fields
of 1–8 T only at 4.2 K (although they have Tc > 77 K
[1]), while YBaCuO tapes may pass currents of density
higher than 106 A/cm2 at 77 K [2–4]. To this end, it is
necessary to provide good (tough) intergranular con-
tacts (with a small, <7°, misorientation between grains)
to provide a high critical transport current, Ic ~ 100 A
[5]. This is possible when both the metal substrate sur-
face and the ZrO2CeO2 : Y2O3 dielectric buffer layer
coated by a superconducting film are biaxially textured
[3, 4]. Candidate materials for a buffer spacer between
a YBaCuO layer and a substrate (such as MgO,
BaZrO2, and ZrO2 : Y2O3 [2–4]; α-Al2O3: CeO2 [6];
and LaAlO3 [7]) must not only provide as close lattice
matching with superconductors as possible but also
have a very high permittivity (≈1000), especially at
near-Tc temperatures [8]. However, provision of uni-
form texture throughout a flexible HTSC tape is still a
challenge. Even for a 1-m-long tape, local values of Jc
differ by ≈50% [3] and may differ by a factor of 3 [2].
1063-7842/04/4904- $26.00 © 20512
Today, various ways of texturing to increase Jc pass-
ing through low-angle grain boundaries in long super-
conductors are under development. One of them is
periodic compacting. In the case of Bi(2223)/Ag tapes,
this method makes it possible to raise Jc by 30–40% at
77 K [9].

In this study, we apply local mechanical bending
(above and below the elastic limit) in the temperature
range 77–300 K to YBa2Cu3O7 – b superconducting films
deposited on flexible metal substrates for greater criti-
cal transport current density Jc at 77 K.

Thick (~10–6 m) Ag-coated YBa2Cu3O7 – b films
deposited on a 5-mm-wide and 0.3-mm-thick steel tape
used as a substrate were prepared at the Los Alamos
National Laboratory (USA). The best of them have Jc >
106 A/cm–2 at 75 K in the absence of magnetic field [4].
Specimens studied were 1-cm-long tape fragments
(marked a–f) in each of which a superconducting
bridge 5- to 6-mm-long and 250- to 300-µm-wide was
formed. The cross-sectional area of the bridge varied in
the range (2–3) × 10–6 cm–2 (see table).

The I–V characteristics of the specimens were taken
at the Argonne National Laboratory at 77 K by the stan-
dard four-point probe method. The specimen was
placed in a cooled cell and pressed against strip gold
contacts. The spacings between the current and voltage
contact pads were 6 and 2 mm, respectively. For this
geometry, the range 5 × 10–7–10–6 V may be considered
a voltage criterion for a kink (kink voltage range) in the
I–V curve constructed in the log–log coordinates. To
avoid Joule heating by a current of up to 10 A passing
through the bridge with the cross-sectional area men-
tioned above, we used a pulsed current generator (pulse
004 MAIK “Nauka/Interperiodica”
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Fig. 1. Effect of bending on the I–V characteristics of Ag-coated YBaCuO films at 77 K in the self-field. (a), (e), and (f), are strongly
(plastically) deformed specimens; (b), (c), and (d) are weakly (elastically) deformed specimens. Specimen (e) was subjected to post-
deformation annealing in oxygen at 500°C. The lines are the quadratic means of data points (symbols). (1) As-prepared specimens,
(2) deformed specimens, and (3) annealed specimen.
duration 10–6 s). The initial values of Tc measured by
both inductive and resistive methods were about 90 K
(the lowest value was 88 K). In the absence of an exter-
nal magnetic field, the values of Jc for as-prepared spec-
imens (a)–(f) at 77 K varied in the range (0.40–0.93) ×
TECHNICAL PHYSICS      Vol. 49      No. 4      2004
106 A/cm2 (see table). This more than twofold differ-
ence in Jc, which was observed in 2-m-long conduc-
tors  in local measurements, is a serious obstacle to
the   application of these superconductors in power
industry [2].
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The effect of deformation on the critical current density in Ag-coated YBaCuO films deposited on a flexible substrate at 77 K
(in the self-field)

Specimen Cross-sectional 
area, 10–6 cm2

As-prepared specimens Deformed specimens
Relative 

change Jc, %Ic, A Jc, MA/cm2 Vc, 10–6V Ic, A Jc, MA/cm2 Vc, 10–6V

A* 2.07 1.2 0.58 40.0 2.7 1.3 13.0 +124

B 2.64 2.0 0.76 0.17 1.8 0.68 0.12 –11

C 3.11 1.26 0.4 1.3 1.56 0.5 0.07 +25

D 2.46 2.3 0.93 0.6 2.3 0.93 0.4 0

E* 3.0 1.7 0.57 8.0 3.9 1.3 50.0 +128

F* 2.24 1.0 0.45 0.1 1.8 0.8 0.05 +78

Note: Ic, the critical current flowing through the specimen; Jc, the critical current density; Vc, the voltage criterion (voltage at which Jc is
reached). A*, E*, and F* stand for strongly (plastically) deformed specimens; B, C, and D are weakly (elastically) deformed specimens.
Bending was carried out in a cryogenic cell in such
a way as to simulate possible operating conditions for
preparing solenoids. At 300 K, the center of the speci-
men was pressed by controllably turning a screw. Next,
the cell with the specimen was cooled to 77 K and
slowly heated as liquid nitrogen was evaporated. Spec-
imens (a), (e), and (f) with initially low values of Jc
were strongly deformed (above the elastic limit),
whereas specimens (b), (c), and (d) were deformed
weakly (below this limit). We could compare the effect
of high (plastic) and weak (elastic) deformation on
specimens (c) and (f), in which the critical current den-
sities Jc were equally low. For comparison, one of the
strongly deformed specimens (e) was annealed in oxy-
gen at 500°C for 1 h and then slowly cooled in order for
mechanical stresses to relax. The I–V characteristics (in
the log–log coordinates) of all the specimens (a)–(f)
before and after deformation, along with the I–V curve
for specimen (e) annealed in oxygen, are depicted in
Fig. 1. The figure shows the quadratic means of data
points (squares correspond to the as-prepared speci-
mens; circles, to the deformed ones). It is seen that the
I–V characteristics for the as-prepared specimens ((b),
(e), and (f)) have two kinks, i.e., two values of Jc corre-
sponding to different superconducting clusters. This
indicates that the film is textured nonuniformly.

The values of the critical current Ic found experi-
mentally, the critical (kink) voltage Vc, the calculated
cross-sectional areas of the superconducting bridges,
and the critical current densities Jc, with their variation
due to deformation, are listed in the table.

In weakly deformed specimens (b) and (c), Jc
changed insignificantly, while in specimen (d), the ini-
tially high value of Jc remained the same. However, for
specimen (c) with the initially low value of Jc, the volt-
age Vc decreased almost 20-fold, although Jc increased
only by 25%. It follows that the intergranular conduc-
tivity is enhanced and, accordingly, the Joule losses
decrease.

Specimens (a) and (e), which were subjected to
strong plastic deformation, showed a more than two-
fold increase in the critical current. In specimen (f)
from the same series of the specimens, the critical cur-
rent Jc increased only by 78%. It appears that speci-
mens (a) and (f) were deformed under optimal condi-
tions, as a result of which the severalfold rise in Jc was
accompanied by the severalfold reduction of the kink
voltage. In specimen (e), where Jc grew to the maximal
extent, the kink voltage, on the contrary, decreased by a
factor of 5. Comparing the effect of plastic and elastic
deformation on specimens (c) and (f) with the equally
low values of Jc, one can see how loose intergranular
contacts become tough with the corresponding
decrease in the voltage Vc.

For example, testing (with a 1-cm step) tape sections
with initially low values of Jc, (0.4–0.5) × 106 A/cm2,
and controllably bending these sections, one can
enhance the related values of Jc up to ≥106 A/cm2,
improve the longitudinal homogeneity of the tapes, and
thus improve considerably the transport characteristics
of long superconducting tapes. As was mentioned
above, periodic compacting of Bi(2223)/Ag tapes
makes it possible to raise Jc by 30–40% [9].

Thus, we experimentally showed that local bending
(at 77 K) may change the I–V characteristics of Ag-
coated YBa2Cu3O7 – b superconducting films deposited
on flexible steel substrates. Namely, the critical current
density increases considerably (by a factor of 2), while
the voltage criterion (kink voltage) decreases. This
indicates that the intergranular conductivity rises and
Joule losses drop.
TECHNICAL PHYSICS      Vol. 49      No. 4      2004



EFFECT OF MECHANICAL DEFORMATION 515
REFERENCES

1. N. A. Chernoplekov, Usp. Fiz. Nauk 172, 716 (2002).

2. Y. Shiohara and T. Izumi, Mater. Res. Soc. Symp. Proc.
659, II.1.1 (2001).

3. S. R. Foltyn, P. N. Arendt, P. C. Dowden, et al., IEEE
Trans. Appl. Supercond. 9, 1519 (1999).

4. Q. X. Jia, S. R. Foltyn, P. N. Arendt, and J. F. Smith,
Appl. Phys. Lett. 80, 1601 (2002).

5. M. Watahiki, W. J. Jang, N. Sakai, and M. Murakami,
Physica C 296, 43 (1998).
TECHNICAL PHYSICS      Vol. 49      No. 4      2004
6. E. K. Hollmann, D. A. Plotkin, S. V. Razumov, and
A. V. Tumarin, Zh. Tekh. Fiz. 69 (9), 132 (1999) [Tech.
Phys. 44, 1119 (1999)].

7. O. I. Lebedev, J.-F. Hamet, G. Van Tendeloo, et al.,
J. Appl. Phys. 90, 5261 (2001).

8. P. Lunkenheimer, V. Bobnar, A. V. Pronin, et al., Phys.
Rev. B 66, 052105 (2002).

9. F. Marti, Y. B. Huang, G. Witz, et al., IEEE Trans. Appl.
Supercond. 9, 2521 (1999).

Translated by Yu. Vishnyakov



  

Technical Physics, Vol. 49, No. 4, 2004, pp. 516–519. Translated from Zhurnal Tekhnichesko

 

œ

 

 Fiziki, Vol. 74, No. 4, 2004, pp. 139–142.
Original Russian Text Copyright © 2004 by Shcherbakov, Churaev, Svetlov.

                                             

SHORT
COMMUNICATIONS

                         
Modification of the Copper Slab Surface Submicrorelief 
by Applying High-Density Electric Current

I. P. Shcherbakov, D. V. Churaev, and V. N. Svetlov
Ioffe Physicotechnical Institute, Russian Academy of Sciences, 

Politekhnicheskaya ul. 26, St. Petersburg, 194021 Russia
e-mail: sherbakov.mhd@mail.ioffe.ru

Received September 30, 2003

Abstract—The modification of the copper slab surface submicrorelief by applying a current pulse of density
higher than Jthr. The passage of a high-density current is shown to change the pattern of the copper slab polished
surface, resulting in the formation of regular periodic structures. These structures are produced when moving
dislocations emerge on the specimen surface. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Metals usually take a desired shape when subjected
to plastic deformation. However, plastic deformation is
sometimes impossible, so that special methods are
invoked. One of them that has already gained much rec-
ognition is the application of high-density (up to
100 kA/cm2) current pulses to a metallic material.
When passing through metallic conductors, electric
current causes many secondary effects, such as Joule
heating, generation of electromagnetic fields, scattering
of conduction electrons by phonons and lattice defects,
etc. Obviously, if such a high current density were
applied for a long time, the metal would evaporate
almost instantaneously because of Joule heat evolution.
To avoid this, very short (≈100 µs) low-frequency
(≈1 Hz) current pulses are applied. Such a method of
processing was called electroplastic deformation [1, 2].
In spite of wide use of this method, its underlying
mechanism still remains unclear.

The drift motion of conduction electrons in a metal
under the action of an electric field causes electric cur-
rent. In a perfect crystal, this motion does not experi-
ence dissipation (resistance). In an imperfect crystal,
conduction electrons interact with defects like disloca-
tions, thermal motion of atoms, etc. In this case, dislo-
cations are under the action of the electronic drag force
FN, which is proportional to the drift velocity V of elec-
trons [3]:

(1)

where j is the electric current density, e is the elemen-
tary charge, n is the concentration of conduction elec-
trons, and BN is the coefficient of dislocation–electron
drag.

Thus, the action of force (1) is equivalent to the
application of a mechanical stress to the specimen:

FN BNV , V j/ en( ),–= =

SN FN/b,=
1063-7842/04/4904- $26.00 © 20516
where b is the Burgers vector.

It was shown [4–6] that the application of a mechan-
ical stress to noble metals (Cu, Ag, and Au) generates
submicrodefects on the surface in the form of a prism
with a vertex angle of ≈70°. It is known [7] that Cu, Ag,
and Au have the fcc lattice where the angle between the

(111) and ( ) easy slip planes roughly equals
≈70.5°. It is therefore natural to suppose that these
defects arise when moving dislocations cross the sur-
face of the metal [5, 6].
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Fig. 1. Topogram taken from the GaAs diffraction grating
(height h ≈ 0.25 µm, spacing L ≈ 1 µm) covered by a gold
layer.
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Fig. 2. Fragments of 3D topograms taken from the copper specimen (a) after polishing, (b) after polishing and application of the
current with density J = 200 kA/cm2, and (c) after polishing and application of the current with J = 700 kA/cm2.
One may assume that an electric field acting on
metallic conductors will also modify their surface. This
work is aimed at checking this assumption.

EXPERIMENTAL

We studied the profiles of 99.96% pure 30-µm-thick
copper platelets measuring 3.3 × 1.6 cm. The surface
TECHNICAL PHYSICS      Vol. 49      No. 4      2004
pattern was examined with an RTP-1 scanning tunnel
profilometer (designed by the Research Institute of
Physics at St. Petersburg State University and manufac-
tured by the Éra production cooperative).

The resolution, operating stability, and calibration
of the instrument were checked with a GaAs diffraction
grating (the height and spacing are, respectively, h =
0.25 µm and L = 1 µm) covered by a gold layer.



 

518

        

SHCHERBAKOV 

 

et al

 

.

                                                                
Figure 1a shows the 3D image of the diffraction grat-
ing, where the height and spacing of the grating are dis-
tinctly seen. From the section XZ of the image (Fig. 1b),
the height and spacing are estimated as h ≈ 250 nm and
L ≈ 1000 nm. This is in agreement with the actual grat-
ing parameters and means that the tunnel microscope
operates properly. To be sure that the operating condi-
tions of the instrument are chosen in a proper way and
it reliably displays the actual surface of the specimen,
we took the topogram of the grating before and after
imaging the surface. Measuring tips were made of a
tungsten wire by electrochemical etching. The shape of
the tips was estimated by comparing with the finest
defects in the topograms. In the profilometer, the tip can
travel no more than 1 µm normally to the surface. Sur-
face microirregularities higher than 1 µm were removed
by polishing with diamond pastes. Then, the specimens
were rinsed in acetone and alcohol. A current was
applied to the copper specimen by means of a capacitor
bank (capacitance 400 µF, voltage up to 5 kV), which
was discharged when the voltage reached the desired
value.

The parameters of the discharge were recorded with
a Rogowski loop (discharge current I) and ohmic volt-
age divider (discharge voltage U), which was con-
nected to an ADC. The data were stored on a computer.
The current and voltage waveforms were obtained by
using a special program devised for processing oscillo-
grams.

RESULTS OF MEASUREMENTS

Figure 2 demonstrates fragments of the 3D topo-
grams taken from the surface of the copper specimen
(a) before and (b, c) after applying 300-µs-long current
pulses of various density that exceeds the threshold
value Jthr = 50 kA/cm2. At lower densities, no changes
in the submicrorelief were observed. It is seen that the
passage of the current modifies the surface microrelief
of the specimens: the surface relief of the specimens
that were only polished (Fig. 2a 1) differs from the
relief of those polished and subjected to the pulses
(Figs. 2b 1, 2c 1). Figure 2a 2 shows the surface profile

5

1000 200

10

15

nm

nm

Fig. 3. Shape of one of the defects formed.
of the polished copper specimen in the section XZ. Sur-
face irregularities are seen to vary in height (depth)
from 15 to 30 nm, and their transverse dimensions vary
from 50 to 200 nm. The linear density of defects is near
2.5 × 10–3 nm–1.

The passage of the current changes significantly not
only the surface relief (Fig. 2b 1) but also the size and
density of defects. At J = 200 kA/cm2, initially fine
defects merge together. The height (depth) of coarser
defects increases to 30–100 nm; their transverse dimen-
sions, to 1000–2000 nm. The density of defects
decreases to ≈10–3 nm–1 (Fig. 2b 2).

At J = 700 kA/cm2, the surface exhibits regular peri-
odic structures (Fig. 2c 1). The height (depth) and the
transverse dimensions of these structures increase still
further: to 100–200 and to 1800–2500 nm, respectively.
At the same time, the density of defects decreases to
≈0.5 × 10–3 nm–1 (Fig. 2c 2). On all the topograms, the
basic features forming the relief are irregularities
almost equal in shape and size that, when superposed,
produce the profiles observed on the sections of the sur-
faces. The enlarged view of one such defect is shown in
Fig. 3. The height (depth) of these imperfections vary
from 15 to 30 nm; their transverse size, from 50 to
200 nm. In the volume, they appear as prisms three
faces of which are nearly perpendicular to the specimen
surface and the fourth one makes an angle of ≈30° with
the surface. The prism angle is ≈70° (Fig. 3). The orien-
tation of the defect walls in Figs. 2b and 2c suggests
that these defects arise when dislocations emerge on the
surface under the action of stresses (as in the case
described in [4, 5]). The defects present on the polished
surface not processed by the current are also associated
with the emergence of dislocations on the surface. Dur-
ing mechanical polishing, dislocations are known to
reach the surface, moving along easy slip planes, and
create a specific surface pattern shown in Fig. 2a [7].

CONCLUSIONS

It is shown that, passing through copper specimens,
a current of higher-than-threshold density changes the
submicrorelief of the surface: new defects originate and
old polishing-related ones rearrange into regular clus-
ters the size of which depend on the current density.

The shape and orientation of nanodefects on the sur-
face confirm the supposition that they arise when mov-
able dislocations emerge on the specimen surface.

Our investigation supports the assumption that the
dislocation mechanism is behind pattern modification
on metal surfaces subjected to electric current pulses.
This offers the possibility of controlling this modifica-
tion and thereby creating a desired microrelief.
TECHNICAL PHYSICS      Vol. 49      No. 4      2004
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